Loading...
HomeMy WebLinkAboutDrainage Reports - 05/20/1999Amok VMTT OF s MFinal g1 1 „�/ �.►1owe Final Drainage Report for Spring Creek Center P.U.D. Fort Collins, Colorado April23, 1999 AP? 2 8 I-99 SERVICES INC M a LI I N O R T H E R N April 23, 1999 City of Fort Collins Stormwater Utility 235 Mathews Fort Collins, Colorado 80522 RE: Spring Creek Center P.U.D. Fort Collins, Colorado Project Number: 9734.00 Dear Staff: Northern Engineering Services, Inc. is pleased to resubmit this Final Drainage Report for Spring Creek Center P.U.D. for your review. We have addressed the comments contained on the "Project Comment Sheet" dated January 26, 1999. This report was prepared in compliance with technical criteria set forth in the City of Fort Collins Storm Drainage Design Criteria and Construction Standards manual. If you should have any questions or comments as you review this report, please feel free to contact me at your convenience. Sincerely, NORTHERN kl--� . 11 = Mary B. Woln INC. _� 420 SOUTH HOWES, SUITE 202, FORT COLLINS, [OLORADO 00521, (970) 221-4158, FAX (970) 221-4159 REVISION COMMENT SHEET DATE: January 26, 1999 TO: Stormwater PROJECT: #17-9OD Spring Creek Center P.U.D. — Final (LDGS) All comments must be received by Bob Blanchard no later than the staff review meeting: Wednesday, February 17, 1999 No Comment MProblems or Concerns (see below or attached) 1. On the final drainage plan, please delineate sub -basin 01 as it still contributes flow in the developed condition. Also, please add the 01 sub -basin data to the runoff table and discuss contribution of runoff from Ol in the report. RESPONSE: ���..►c - 2. The required storage for pond 3 does not seem to correspond to what is shown in the calculations for a peak WSEL of 5.25 ft. Please clarify. RESPONSE: (continued on back) Date: j�V4j Signature: CC.'• 'Seb aN � ClEa HERE IF YOU W® M RECEN COPE OF REVISIONS T.•. 'Blo.,dFeed �Pw �Rdh s� Win* ReW 1 Odff fas�nses �l0444hF�, ,ra Q 4W. lmr ds Ciri of Fort Collins 3. Please call-out/label "pond 3" and "swale 12" on the drainage plan. In addition, please shade in the extent of ponding for pond 3. RESPONSE: LA�,r a. 4. For the swale calculations, please use a Manning's n coefficient of 0.060 for grass bottoms as the flow depth is less than 2.0'. (See section 7.2 in the SDDC manual) Also, it is not clear what the given discharge should be for swale 1 as it is being controlled by an orifice plate. Please clarify. RESPONSE: A rV\,..J ./i-J4S ✓� 0 - o. o (moo ,S /✓� ".-.-+ rdo /�+s --� � r-is� ` ��✓.�'r� /��c...c-cw�c� vi� a �=�-+� G.yrr�?�+.A ScE 5. According to Fig. 5-2 from the UDFCD manual, the water quality outlet structure for inlet 6 needs a minimum of 8 holes per row. Please revise outlet detail to match specifications. RESPONSE: GS.. I— 8 rl�I-c�s / -5Am "ff " /✓�r.J rr-��... i✓l h�✓�..-�r°CrY G� I-6 VLa•--X srlLr.,�,r.-..mac �-fT"+S �i i�c�.�S H.+rl-r`r-1 Sr#o.n��� ��' f►r'✓E 6. The riprap being placed at the outlet from storm sewers 7 and 8 needs to be buried and revegetated. Please add a note on the profile view stating this. RESPONSE: 64 /�a .J Master Planning Review Comments Note: The analysis of the spill across Timberline Road appears to be in good order. The following comments are for clarification purposes or are concerning the analysis of the flow once over Timberline Road. 1 The first sentence of page 4 implies the 1997 flood raised consideration for the spill of the C&S railroad tracks. This statement is not the case. The spill over the railroad was identified in the 1988 Master Plan. Please rephrase this statement so it is clear the 1988 Spring Creek Master Plan identified the spill. RESPONSE: Tr*i 1-4. /3�cJ �✓� s„�rc,�P�-ter i+e.d.i /=-6jM To 77 2� Please provide the full SWMM output for the 100-year Spring Creek model to clarify what rating curve was used for pond 302. RESPONSE: /�-, ..r �T/-Irk C.Nr.r-E ��c-c 4...,T rT+�,�rs /�-qe ✓C✓.J rr+c pc-fi�-.f r%.��T v✓tftr-s-i i-F�s /�'Cc'7J /^�,+.�✓rJ�s7 �-�I LCA'r- / spkcntr8.doc ' L ,1 Please provide the pre -development floodplain model and maps unless there is no difference between the pre -development and post -development models. Please note if this is the case. RESPONSE: Please provide a copy of all HEC-2 models on disk. RESPONSE: cs // / 5.-.,�� err► c_ S. S. Cross-section 1074 of the post -development model does not match the cross-section shown on sheet 3 of 4. Please verify the cross -sections in the model with the topography of the site. RESPONSE: �f [� �o�l L,r« iT .✓+s.r�, +� s i✓1 E . 8' Encroachments were used for cross -sections 2000 and 2025. Please. explain why the encroachment stations were used. Also, please justify the use of the 1.5:1 expansion from cross -sections 2000 to 2025. I 1 1 I RESPONSE: s� �� = t z z a s 4 ,��- X ��., �.• �J . 7. Please map the 500-year floodplain. Please verify the 500-year flow in Midpoint Drive does not spill into the gas station. RESPONSE: 8. Please verify the 100-year floodplain mapping. It appears the mapping may not match the water surface elevations and contours in the vicinity of cross -sections 1980 and 1757. RESPONSE: r,-+� �, ^ P,= „� t_.» �s , ,E . spkcntr8.doc Erosion/Sediment Control Comments 1. The erosion control report indicates that "Vegetative erosion control will be used in association with this project." Please define what this means, and add notes to the plan indicating what areas are to be seeded and mulched. c - 2. Spring Creek and the western channel need to be protected during construction. The grade of the site away from these areas isn't sharp enough to insure sheet flows won't drain into them. This is a good location for silt fence.s—T� ADJE17 Aw'r4 Ttic /�. ��-o ?cI••rr L.•Jc, 3. The wind erosion sit fencing along t e south and east perimeters of the site won't work to deter windblown sediments. For fencing to be effective against wind erosion, the fencing must be installed upwind to keep the wind off the surface of the disturbed soil, not downwind of a graded area to catch windblown sediments (this doesn't work). It would be better for both wind and water erosion on this site place if the silt fencing was placed along western and northern perimeters. 4. The plan note indicates erosion control BMP details are on sheet 12. This is untrue, they are on sheet 14. There should be gravel sediment trap filters on the pond outlet and on the last upstream end of the pipe leading out of the western swale. These gravel filters are much more effective at these locations than straw bales. r_DL-•-ia 6. As of November 1, 1998, the cost to reseed/mulch per the City reseeding contract is $655/acre for acres <5 acres, and $615/acre for areas >5 acres. Please correct your erosion control escrow calculations to these costs. Please refer to the redlined plans and report for additional review comments spkcntr8.doc TABLE OF CONTENTS I. INTRODUCTION Page 1.1 Objective.................................................................................................. 1 1.2 Mapping and Surveying............................................................................ 1.3 Site Reconnaissance................................................................................. 1 1 II. SITE LOCATION AND DESCRIPTION 2.1 Site Location 2.2 Existing Site Description........................................................................... 1 2.3 Spring Creek and Irrigation Laterals ......................................................... I III. PREDEVELOPMENT DRAINAGE BASIN 3.1 Major Basin Identification......................................................................... 2 3.2 Predevelopment Drainage Patterns............................................................ 2 IV. POSTDEVELOPMENT DRAINAGE v 4.1 Postdevelopment Conditions..................................................................... 2 4.2 Design Criteria and References.................................................................. 2 4.3 Hydrologic Criteria............................................2 4.4 Hydraulic Criteria ....................................... 3 4.5 Drainage Concept ............................ r V. SPILLS ACROSS THE C&S RAILROAD AND TIMBERLINE ROAD 5.1 Spill Across the C&S Railroad.................................................................. 4 5.2 Spill Across Timberline Road .................................................. 4 5.3 Water Surface Profile along Midpoint Drive .............................................. 6 VI. EROSION CONTROL 6.1 Erosion Control Plan ................................................................................ 7 6.2 Water Quality Measures........................................................................... 8 VII. CONCLUSIONS 7.1 Compliance with Standards...................................................................... 8 REFERENCES.................................................................................................... 9 APPENDICES Appendix A: Predevelopment Hydrology Appendix I: Water Surface Profile Along Midpoint Drive Appendix B: Postdevelopment Hydrology Appendix J: Excerpts from the F.I.R.M. Appendix C: Design of Inlets Appendix K: Emergency Overflow Weirs Appendix D: Design of Culverts Appendix L: Riprap Calculations Appendix E: Design of Storm Sewers Appendix M: Erosion Control Calculations Appendix F: Design of Swales Appendix N: Stormceptor Design Appendix G: Detention Pond 3 Calculations Appendix O: Extended Detention Calculations Appendix H: Spill Across the C&S Railroad I li I Final Drainage Report for Spring Creek Center P.U.D. Fort Collins, Colorado April 23, 1999 I. INTRODUCTION 1.1 Objective To provide a final drainage scheme for the proposed Spring Creek Center planned unit development based on master drainageway planning and overaW preliminary drainage concepts. Specific objectives as part of this study are: 1. To address the 100 and 500-yr spills from Spring Creek over Timberline Road as identified in the Spring Creek Master Drainageway Plan (Master Plan), (Reference 1); 2. To recognize the potential impact of the existing conditions floodplain of Spring Creek in relation to storm sewers and finished grades; 3. To consider any possible adverse effects downstream of the development due to developed stormwater. 1.2 Mapping and Surveying Topography of the site was provided to Northern Engineering Services by Landstar Surveying with a contour interval of one (1) foot. 1.3 Site Reconnaissance A site visit was conducted on August 22, 1997 by the project engineer. Based on the topographic mapping, existing drainage basins and land use were confirmed as well as existing structures. The location and dimensions of existing culverts were vcrified as well as their condition and flow direction. H. SITE LOCATION AND DESCRIPTION 2.1 Site Location The site is located within the NW Quarter of Section 20, Township 7 North, Range 68 West of the 6th Principal Meridian in Fort Collins, Colorado. The project is bounded by Timberline Road on the west, East Prospect Road on the north and Midpoint Drive to the south. r (See Vicinity Map). 2.2 Site Description Spring Creek Center P.U.D. is approximately 11.600 acres and has historically been open space. There are no existing structures on the site. 2.3 SSpring Creek and Imgation Laterals Spring Creek runs through the northern portion of the site, flowing from west to east toward the Cache La Poudre River. The Flood Insurance Rate Map (FIRM) from FEMA has been used to define the regulatory floodplain (see supporting documentation in Section n. The Final Drainage Report Spring Creek Center P.U.D. April 23, 1999 Northern Engineering Services, Inc. City of Fort Collins ("City") has also defined the 100-year floodplain for Spring Creek based on fully developed basin conditions, which includes a 75 cfs spill over Timberline Road (see page H1). However, based on HEC-2 modeling performed as part of this analysis, it has been determined that the actual spill across Timberline Road is roughly 35 cfs. There are indications of a former irrigation lateral on the site which has since been abandoned. M. PREDEVELOPMENT DRAINAGE BASIN 3.1 Major Basin Identification The site is located in the Spring Creek Drainage Basin. Reference 1 has been used as a guide in the development of the drainage and grading for the site. 3.2 Historic DEgiMe Patterns The site historically drains from west to east at slopes ranging from 0.57 to 2.64%. The majority of the site has historically drained to the east through developed properties and to the existing W.W. Reynolds detention pond. Historic runoff from the site, discharging to the east, has been defined at Design Points H 1 and H2 (see Appendix A). The 100-year discharge at Design Points H1 and H2 are 15.3 and 4.6 cfs respectively for a total of 19.9 cfs. Runoff from offsite Basin 01 (0.16 acres) enters the site at the southwest comer (see Appendix A, page A2) and is conveyed to Spring Creek. IV. POSTDEVELOPMENT DRAINAGE 4.1 Postdevelopment Conditions Planned development for Spring Creek Center includes: • commercial buildings and possible gas stations; • utilities including storm and sanitary sewers and water. Off -site easements for drainage and grading are not required for this development. 4.2 DesigLa Criteria and References Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design Criteria ManuaL(SDDCM) and Storm Drainage Criteria Manual by the Urban Drainage and Flood Control District have been referenced for this Final Drainage Study. 4.3 Hydrologic Criteria The Rational Method has been used to estimate peak stormwater runoff within the developed site with a minimum time of concentration of 5.0 minutes. The initial 10-year and major 100-year design storms have been used in the design of the proposed drainage system which include swales, inlets and storm sewers. Rainfall intensity data for the Rational Method has been taken from IDF curves and equations generated specifically for the Spring Creek Center P.U.D. site by the computer program "Watershed Modeling" by Eagle Point (see page 135). Input -2- I ` Final Drainage Report Northern Engineering Services, Inc. Spring Creek Center P.U.D. April 23, 1999 of precipitation amounts for the intensity equations have been taken from the NOAA Atlas 2, Volume III - Colorado. Compared to Figure 3-1 in the SDDCM, rainfall intensities generated for the site were comparable to intensities given in Figure 3-1. 4.4 Hydraulic Criteria The City of Fort Collins Storm Drainage Design Criteria has been referenced for all hydraulic analyses. In addition, the following computer programs have been utilized: ' • The computer program "HY8" by the U.S. Department of Transportation, Federal Highway Administration has been used to size all culverts; • The computer program "UDINLET" has been used to analyze inlet capacities; 1 • The computer program "Flowmaster" has been used to analyze the capacity of proposed swales. The hydraulic analysis of the 100 and 500-yr spills across Timberline Road have been developed through the use of the HEC-2 computer model with the split flow option. 4.5 Drainage Concevtt Detention is not a requirement for the proposed development due to the proximity of the site to Spring Creek. Detention will be provided however at the east end of the site, in order not to exceed historic discharge rates. The total 100-year developed release rate from the site, which drains to the east, of 15.54 cfs (Pond 3 (3.14 cfs) and Design Points 1 (6.9 cfs) and 13 (5.5cfs)) will not exceed the historic rate of 19.9 cfs (Design Points Hi and 1-12). 1 The remainder of the site will drain to Spring Creek through Storm Sewer Lines 7, 8 and 8-9. Emergency overflows have been provided in the event that on -site area inlets become clogged (see Drainage Plan for location of spill points). The overflows, route on -site spills to the northeast comer of the site in the vicinity of Inlet 7 where an emergency overflow weir has been provided. Ample freeboard has been provided to finished floor elevations of buildings adjacent to ponding locations. The storm sewers have been designed using critical depth at the outlet of the sewer pipe to begin the backwater profile of the hydraulic grade line. If by chance the peak in Spring Creek coincides with the peak runoff from the site, whereby the storm sewers could not convey the peak flow, stormwater would be routed through the site by overflows provided in the parking lot (see Drainage Plan). Stormwater from Basins 5-11 will be routed to the emergency overflow weir located near Inlet 7. The overflow weir has been designed to handle 55.2 cfs, which is the total 100-yr flow from these basins, with a maximum water surface elevation of roughly 4908.00. The finished floor elevation of the building adjacent to the emergency weir is 4909.30. Water quality structures will be provided at all discharge locations from the site (see Section 6.2). l .} 1 Final Drainage Report Northern Engineering Services, Inc Spring Creek Center P.U.D. April23,1999 V. SPILL ACROSS THE C&S RAILROAD AND TIMBERLINE ROAD 5.1 Spill Across the C&S Railroad In light of the recent flooding of Spring Creek on July 28, 1997, the spill over the C&S Railroad tracks and subsequent spill over Timberline Road (identified previously in the 1988 Master Plan, see Appendix H, page H1) has received serious consideration. The proposed site is adjacent to the location of the 100 and 500 year spills, which begins at the intersection of Timberline Road and Midpoint Drive and extends roughly 400 feet south along the crown of Timberline. The -first spill occurs across the C&S Railroad tracks and is due to the ponding of water upstream of the culvert crossing on Spring Creek at the C&S Railroad (SWMM Pond 302). The existing culvert does not have the capacity to pass the 100 and 500-yr discharges and, is proposed to be improved as per the Master Plan. The C&S Railroad culvert crossing is roughly 400 feet west of Timberline Road as measured along Spring Creek. The railroad runs from northwest to southeast, crossing Timberline Road roughly 900 feet south of the intersection of Timberline and Prospect. Hydrologic models (SWMM) used in the analysis of the spill at the railroad tracks have been taken from the 1998 Lidstone & Anderson SWMM update. The rating table for Pond 302 has been taken from the report, Hydrology Study Spring Creek (Reference 4) by Greenhorne and O'Mara. Greenhorne & O'Mara prepared the request for a physical map revision from the Federal Emergency Management Agency (FEMA) for Spring Creek in 1992-1993. The discharge at the C&S railroad (Conveyance Element 302 in SWMM) has been used in the analysis of the spill across the C&S railroad tracks. The 100 and 500-year discharges of 2142.3 and 2600.0 cfs respectively, have been derived using the Lidstone and Anderson SWMM model SCFD-100_SC, and reflect peak flows for the developed basin (see page H18). Appendix H, page H2, describes the methodology used in deriving these discharges. The 2142.3 and 2600 cfs design flows have been used to quantify the 100 and 500-year spills over the low point in the C&S Railroad tracks. The spills were determined by interpolating the FIS stage -discharge rating from G&O (see pages H19 thru H21), and are estimated to be 396.3 cfs and 822.3 cfs for the 100 and 500 year storms respectively (see page H18). 5.2 Spill Across Timberline Road The computer model HEC-2 with the split flow option was used to analyze the predevelopment (existing) 100 and 500-yr spills over Timberline Road. The centerline profile along Timberline Road, where the spill occurs, will not change due to the proposed development. The HEC-2 model developed for this analysis is called EC -RAIL. Appendix H of this report contains the output file from the model along with other supporting documentation. The model extends from roughly the top of bank of Spring Creek (Section 100) to the centerline of the C&S Railroad tracks, which is where the spill occurs (Section 700) from Pond 302. Cross - sections were placed in locations were both existing and proposed structures are located and, critical depth was used to determine the starting water surface elevation. When the model was run using the slope -area method, the starting water surface elevations were identical to that of the -4- J i 11 It Final Drainage Report Northern Engineering Services, Inc. Spring Creek Center P.U.D. April 23, 1999 critical depth method. Field survey information has been used in conjunction with the City of Fort Collins aerial topography (at a 2-foot contour interval) in the generation of HEC-2 cross -sections. The HEC-2 Mapping (Exhibit 1) differentiates between the aerial and survey information. Field survey information was also used to define the centerline profile along the C&S Railroad (SECNO 700), from the center of Timberline Road to the culvert crossing at Spring Creek. The aerial topographic mapping, shown as Exhibit 1, is dated March 27, 1986, which is prior to the completion of the Timberline Road improvements, which included a culvert crossing at Spring Creek, improvements to Spring Creek and improvements to Timberline Road. According to the plans for the Timberline Road improvements, Timberline Road was raised from 0-3-feet, beginning at the intersect:m of Timberline Road and Midpoint Drive. These improvements were completed in approximately 1988-89, and are considered existing conditions for this analysis. Appendix J, page J4 documents the 100 and 500-year flood elevations of 4907.9 and 4909.2 respectively, in Spring Creek from the FIS. The existing grade at Section 100 is roughly 4911.20, which demonstrates that the WSEL's in Spring Creek do not influence the starting WSEL used in this hydraulic analysis. The model EC -RAIL reflects the existing topography with cross -sections extending from the centerline of Timberline Road toward the west, to the centerline of the C&S Railroad. As stormwater spills over the C&S Railroad tracks (which acts as a weir) the flow will be distributed over the weir and therefore the discharge must be manually reduced in the HEC-2 model between Sections 450 thru 700. The amount by which the discharge has been reduced was determined by using the FIS weir cross-section and the depth of flow. Appendix H, pages H22 through H24, document the calculations made as part of this analysis. Values for Mannings `N' have been estimated based on the best available information. The 'W' value for asphalt is 0.016, grass-- 0.035, gravel= 0.025 and gravel with weeds=0.030. The NH card in HEC-2 has been used to define the 'W' value for each cross-section. Table 1 summarizes the output from the HEC-2 model EC -RAIL. Cross -Section 100yr Spill 500yr Spill Number Across Across Timberline Timberline File: EC -RAIL File: EC -RAIL (cls) (cfs) 200-300 0.0 0.0 300-400 0.0 4.6 400-500 0.0 14.6 500-700 34.9 1 173.2 Total S ill= 1 34.9 1 192.4 Table l During the 100-yr event, stormwater spills across Timberline Road between Sections 500 -5- I Final Drainage Report Northern Engineering Services, Inc. Spring Creek Center P.U.D. April 23, 1999 and 700 only. During the 500-yr event, stormwater will spill across Timberline Road between Sections 300 through 700, with the majority (roughly 90%) of the spill occurring between Sections 500 and 700. During both design storms, all or most of the spill occurs between Sections 500 and 700 and will continue northeast toward Midpoint Drive. Only during the 500- year event will stormwater be conveyed through the site, which amounts to roughly 4.5 cfs. Cross-section 700 in the HEC-2 model uses survey data for the low point in the railroad tracks (Elev.=15.54) which varies slightly from the elevation used in the FIS by G&O (Elev.= 15.30, page H21). This would account for the minor difference in the calculated water surface elevation at Section 700 in the HEC-2 model EC -RAIL (100yr=16.40,500yr-16.68) versus the water surface elevation used to compute the spills over the railroad (100yr=16.15, 500y>=16.36) Output from the HEC-2 models reveals that at a few cross -sections, the conveyance change is outside of an acceptable range, which is from 0.7 to 1.4. Review of the conveyance output shows that the calculated conveyance is not far from the allowable and is therefore not a major concern. It was noted by the modeler that when additional cross -sections were entered into the model which reduced the spacing between sections and, was intended to eliminate the conveyance error, more errors appeared. 5.3 Water Surface Profile along Midpoint Drive The computer model HEC-2 was used to analyze both the predevelopment 100-yr (EC- SPLT.DAT) and postdevelopment 100 and 500-yr (PD-100 and PD-500) water surface profiles along Midpoint Drive due to the spills over Timberline Road. The 100 and 500-year design discharges used in this analysis.were discussed previously in Section 5.2, and are 34.9 and 192.4 cfs respectively. The north top of curb of Midpoint Drive acts as an overflow weir under existing conditions enabling stormwater to spill from Midpoint Drive onto the proposed site. This spill is then conveyed east across the proposed site to Specht Point Drive. This weir has been defined, and extends from Timberline Road to Specht Point Drive (see the plan "Pre -Development; Spring Creek Spill HEC-2 Mapping", Sheet 1/2 in the back of this report). The model EC-SPLT reflects predevelopment conditions for the 100-year storm only. Based on the existing topography it appears that the 34.9 cfs spilled over Timberline between Sections 500 and 700 is conveyed to the northeast towards Midpoint Drive. Out of this 34.9 cfs flow, 5.9 cfs spills over the north top of curb in Midpoint Drive and 29.0 cfs is contained in the street and conveyed to the east. The entire 34.9 cfs, 100yr flow, eventually ends up in the W.W. Reynolds detention pond and no stormwater will be returned to Spring Creek. The ET card in HEC-2 has been used to model an expansion ratio of 1.5:1 between Sections 2025 and 2000 which will reflect the expansion of the spill over Timberline Road (the weir). The models PD-100 and PD-500 reflect postdevelopment conditions. The postdevelopment condition has been modeled for both the 100 and 500-year storms (see the plan "100yr Postdevelopment, Spring Creek Spill ", Sheet 2/2 in the back of this report). The 100- year spill of 34.9 cfs would again be conveyed to Midpoint Drive just as it was during the predevelopment condition. Out of this 34.9 cfs, 1.3 cfs spills over the high point at Specht Point Road and 33.6 cfs is contained in the street and conveyed to the east. None of the 100-year flow -6- r. Final Drainage Report Northern Engineering Services, Inc. Spring Creek Center P.U.D. Ali April 23, 1999 spills onto the proposed site from Midpoint Drive. The 500-year spill across Timberline Road is 192.4 cfs. Out of the 192.4 cfs spill, roughly 4.5 cfs spills between Section 300 and 400 (HEC-2 model EC -RAIL) and is lost from the main channel between Sections 2000 and 2025 (HEC-2 model PD-500). The total flow that is conveyed to Midpoint Drive then, is reduced to 192.4 - 4.5 cfs= 187.9 cfs. Out of the 187.9 cfs, 1.2 cfs spills between Section 1980 and 2000 into Swale 12 for conveyance to Spring Creek. The total 500yr flow conveyed to Spring Creek is 4.5+1.2= 5.7cfs. Roughly 50 cfs spills over the high point at Specht Point Road between Sections 1000 and 1152 and, 137.2 cfs is conveyed to the east in Midpoint Drive. The 500-year postdevelopment conditions model PD-500 shows that the approximate water surface elevation is 4913.66 at SECNO 1980. The proposed gas station at this location has a finished floor elevation of 4915.0 providing 1.34-feet of freeboard. The other proposed gas station located in the northeast comer of the site is also outside the 500-year floodplain based on the 1988 Master Plan elevation of 4906.44 (see "100yr Postdevelopment, Spring Creek Spill"). The finished floor elevation of the gas station at this location is 4908.0. Both pre and postdevelopment HEC-2 cross -sections and split flow weir profiles have . been provided in the back of this report, Sheets 1/4 thru 4/4. I i EROSION CONTROL and WATER QUALITY 6.1 Erosion Control Plan The erosion control plan presented here is intended to control both wind and rainfall erosion. Evaluation of the rainfall erosion control Klan will be completed first, with the wind erosion control plan to follow. The Erosion Control Reference Manual for Construction Sites (ECRM), City of Fort Collins, has been referenced for this erosion control plan. The proposed rainfall erosion control plan during construction will consist of temporary structural erosion control measures and vegetation. Gravel inlet filters will be placed at all area inlets and sidewalk chases. In addition, inlet protection will be provided at the upstream end of Storm Sewer Line 7. Temporary sediment control consisting of straw bale dikes will be used in swales until permanent vegetation is established. Riprap outlet protection provided at the outlet of all storm sewers and will be buried with a minimum of six inches of native topsoil. Vegetative erosion control will be used in association with this project. As specified on Standard Form B (Appendix M, page M2) straw mulch with temporary seed will be used for soil stabilization. It has been clearly noted on the Grading, Drainage and Erosion Control Plan (note 4) that no soils will remain exposed for more than thirty days before requiring temporary or permanent erosion control measures, unless approved by Stormwater Utility. Performance standards for the City of Fort Collins to be used for "During Construction' activities are given in Table 5.1. Computation of the "Performance Standard" and "Effectiveness" of the Erosion and Sediment Control Plan are presented in Section L of this report. The "Construction Sequence" for the proposed development is given on the Grading, Drainage and Erosion Control Plan. The proposed wind erosion control plan during construction will consist of sift fencing. -7- I Final Drainage Report Spring Creek Center P.U.D. April 23, 1999 Northern Engineering Services, Inc. 11 From the Wind Erodibility Map for Fort Collins, Colorado, the site is located in a moderate erodibility zone. From Table 4.1 (page 19 of the ECRM) the maximum barrier spacing is 200 feet. Silt fencing will be placed along the south and east propertylines to act as a wind barrier. See the Grading, Drainage and Erosion Control Plan for locations of proposed erosion control measures. 6.2 Water Ouality Measures The issue of water quality has been addressed for the Spring Creek Center site. Roughly 5.405 acres of developed runoff will be routed through a proposed "Stormceptor" (see page M1). The Stormceptor is a pollution prevention device which is manufactured by Carder Concrete of Littleton, Colorado. The guidelines given in the Stormceptor Technical Manual have been used to determine the appropriate unit for the proposed conditions. The model STC 1800 has been specified on the plans and a detail has also been provided. In addition to the "Stormceptor", extended detention will be provided for water quality purposes at Pond 3, Swale 6 and Inlet 7. Extended detention calculations can be found in Section N, and are based on Best Management Practices (BMP's) provided by the Urban Drainage and Flood Control District (UDFCD), Drainage Criteria Manual, Volume 3. VII. CONCLUSIONS 7.1 Compliance with Standards All drainage analyses have been performed according to the City of Fort Collins Storm Drainage Design Criteria Manual (SDDCM) and the Urban Drainage and Flood Control District's Drainage Criteria Manual. No variances are requested as part of the proposed development. The 500-year floodplain, which has been defined by using the most recent SWMM modeling, has also been taken into consideration in the analysis of the proposed site. -8- I I Final Drainage Report Spring Creek Center P.U.D. April 23, 1999 Northern Engineering Services, Inc. REFERENCES 1). Spring Creek Master Drainagewav Plan, City of Fort Collins, Colorado, Engineering Professionals Inc., March, 1988. 2.) Storm Drainage Design Criteria and Construction Standards, City of Fort Collins, Colorado, May, 1984. 3.) Drainage Criteria Maunal, Urban Drainage and Flood Control District, Wright - McLaughlin Engineers, Denver, Colorado, March, 1969. 4). Hydrology SjjLdv Spring Creek, Fort Collins, Colorado, Greenhome & O'Mara, Inc. March, 1993. -9- I C r I C I I I I D I [1 1 zo r A I P"TOPOC CONDmomd \� ^1 Ste: 1-_150• I'I �I I � H2 HI • � �-_��- 11 `�� Jul l� r i `ZX AZ®Z) V CiZZ y®�f �moom r� mrn - rdalW O N < N Q m N N Q w C T U o m m � (n Co C C O o 0 0 0 0 Y W cu O7 0 w Uao LL N m Z m= m c c o 0 0 J a O 'v U LL na 0 o 0 0 o a 0 m 0 ' LL a) N J O c Z Q) U t _ y o O 0 m 0 0 0 N 0 N D Y m J 0 m m m _U m C h_ ae m n n $ o O 9 N J t O o 0 C 41 ¢ _ O Q 0 0 C N C O N 8 LL� U 0 N N l01 N W C c r O O O O O U 0 0 �L o O o U e e LL 0 0 u o 0 0 0 0 0 0 N ~ w (� C E 4= NJ 3 O 0)FL SC Y O w m o ei .%+ m o c_ FL � ld i "v LJJ0 .0 CP- _CD M 00 �� _y C O �L- C O /N� LJ LH `0 U O r V r r C/of O d O o N o N O i No Text � I U CO " u• 1' a) - C.iC6 m m L' .. O O O M C Q O GO CO [.... I I S> a l `5 l c l o s c: 'c' I` S! o S S S cc ''^^ V J U .O a) Z > v 0 Ua`ol _ �•. "yy pj"^. S S O p I O I S O S I O O 8 N I I I I I � O- LO N •d, r l n P. I O I O q, O O U a� I LL 1 1 1— T C O I O O O q 1 O 8 O O O I LL I` N Ci N O i O N O O i Z � " o) I I oI I 1 o �y a o o; f o c m o c 0 c o f a) J of ` S C L ryo G 3F N q, 1D ^ I ' In O co N ^ ^ F— L O J U/ :Q o co E 1 N N m m I 6 a m m m m m O O N U LL Z C C � r- o d l c o c o c l o G I o c 8 8 8 8i 8 S� 8 S 8 8 8 _ v �' U C 0 rnQ^� U C 11 U O E E r, J r Yf n O m I q r$ a r d l m YI n YI a q m a) C p 11 c o c t o I o 0 1 0 0 0 o c C F O U U o a) 7 � I rLL7 6>lL O 'p '^ 3 LL CtiU)(O } .�.r a7 m "' a1 m ... � O H C - m� _L '•. 1 I J C .0CD N > II 7 II 11� _ 51/ Z ' 0 rt c cC) � U � O m O m ' G Y m C a7 rt � m o Y. G 7 Y ' 17 ( rt zY T (gyp r O ro n n n .7 rt ft w rt O I F u rl I 1 /_ 00 O CD 11 II C II < zr m CD 0 _ O_ o m 0=l + Q1 CTV C TI _ Ta C + W OO n O N U O N > V J U N O y ( O C M O ±' IU p tit N o o -i N o U m m m n3 3 �o 3 o �n C 0 00 0 0 0 o n — o a o 0 0 (11 n O O 1 � 0 T 7 0 N N S `r O 'N^^ N 7 V/ U e O m m a T O O T N N N N N N o b A 3, (D C O r O O O 10 t0 m =3 /v N N O O• O 00 O 00 N N N N e O a� � II C V Z < p ooWW < 0 o o J N W O D N N � O m E O v /z O C {JJ n i_ Sy N O O fJ O O O O 0 O O O ~ En p 1 T F SW (Q /\ J V Oai OOi N y � to <D � J J A D T o j 1] I t I 1 I I 1 L� D V CO e° n n o o o o a o n i ei 1 of 1 I m I m m of 0 m 0 m 0 of in a)a) c) M ' v w I N - m( N O O O W I 7 1 N I b O O O VI N I U) O 1A O 10 O m CO O) O O O O O 1 O O m O O O N .� C O Y- ' p p- c 0 — C �o V J I O G O, G 6.O U al 0. , _O m N o 0 0 0 o c o o a c LL � G � O04 E• ' o; o d dW o f o ( o: c m o o 0 0 0 U m i LL r a= !'I I'1 O O I O 7 O• O O o O OO OO O Z R _ 0 $ 8 8 8 o $ LL n o I d o 0 ` N L i 0 O O � N O a N O i b tN0 I Imf N Oa I L O O - m N I m O en N Vl m h 10, m l7 m � I m 1 a $ � 5 O 5 i I i O — L t0 O O O O C U 11 � V c C c '� N Q1Q U e c LZ �2 C E p� C 1= N N 2 p 3 c c c C Q F- r U O Y •O m y m 0 pggq� C Y QO♦♦ L O CI N m O 1•f O 1 N N O N O O m O Vo I.�� 3> ">W U- c h (n (D p H _ Q a N mL v m m l n m L(D J c D .p U' 0H(D H H > Q' m z ' O rt m c 0 N 0 O m m ' a � G A � o r A ] T r m � r rt 0 n O n rt ri a rt r O 5 H ry a a N r 0 � 1 Q r n iJ r 1 rIIIJ 11] r I 11 �II C II G 0 0 z) -{ � m n 0 � o (D / 0< n O O U O N N J VJ N U N d D 0 d »i Qi T 0 G o ( O' 0 O L `Y 0 T D0 0 (D o m u m m n @ U) 0 _T 7 o m o 0 C D-+ : 3 0 U 0 0 0 m 0 U o U U7 0 i L N 0 O l ! 0 3 m =3 Z7 c_ m o N N 3m O D7 0 0 T O 0 cn N N N N N o p TOT N � CD N 0 0 +m r i N fD a o O o N uNi N u O V E m � I I N a m T � A Z � O � l J r N 0 0 9- J m 9 O U U O O O La r N D a�aao " _ m O o F � F V� Z)co C: N (o O0 O O n N f0 `O J 1 J C N O O A O P O T y (D K T U 0 8/25/97 RAINFALL REPORT RAINFALL TYPE : WESTERN RAINFALL RAINFALL FILENAME : Spring Creek Center P.U.D. (PRECIPITATION] [ 2yr/6hr ] = 1.40 in ( 2yr/24hr ] = 2.00 in [ 100yr/6hr ] = 3.40 in [ 100yr/24hr ] = 4.80 in [ Elevation ] = 4908.00 ft INTERMEDIATE INTENSITIES (in/hr) Page 1 [ 5 min ] [ 15 min ] [ 30 min ] ( 60 min ] [ [ 2 yr] 3.17 2.07 1.44 0.91 [ 5 yr] 4.59 3.01 2.09 1.32 [ 10 yr] 5.71 3.74 2.59 1.64 [ 25 yr] 6.93 4.54 3.14 1.99 [ 50 yr] 7.97 5.22 3.62 2.29 [ 100 yr] 8.91 5.84 4.04 2.56 [ 100 yr]SDDCM; Figure 3-1 (6.00) (4.17) (2.60) [BDE VALUES Intensity = B/(time conc + D)^E] ( B ] [ D ] [ E ] [ 2 yr] 26.09 9.41 0.79 [ 5 yr] 39.47 9.77 0.80 [ 10 yr] 47.73 9.52 0.79 ( 25 yr] 57.72 9.48 0.79 [ 50 yr] 66.99 9.57 0.80 [ 100 yr] 74.56 9.52 0.79 /3.5/ 6 hr ] ( 24 hr ] 0.24 0.08 0.35 0.12 0.45 0.15 0.54 0.18 0.59 0.20 0.70 0.24 i D n b 6 y D m r r !n o D D 0 Z m Cn D Z N D-n CA N p C) D 2 m M> y m lm > j D Z "NO cn A m D CA D m D Q h D n Z D r m r m D v m N { m V m J N o9 J N of m O A O O I r C I 1 I I I I I I (n m O I I 1 1 1 I 1 1 C) z I I 1 I I I 1 1 n D I I I I 1 m r I I N I I I I I I 1 � I I I I I I 1 I I I 1 1 1 I I I I I I I I I I I I I I t I n O I I I I I I I I I I p i t I Z T i/ I I I I I I I I I I y z L I I I I I I I I I I I I I I I I I I I I p A O ' 1 fn I I I I I I I I I I I I 1 I 1 I 1 O 1 1 1 I I > D " I I I I I I I Z > O I I I m m D I I I I I I I '—' I I I m I I I I C7 I I I I I I 1 I I I I I I I I I Z A Z CO 1 1 1 > I I I I I I I I I I I I I I I I I I I I I I I I I Q 1 1 1 I I I I I I I n 11 1 I I I I I I' I p I I I I I I I c C I I I I I I I I I I I I I I C) T V I I I I I I I O/ I I I I I I I (AV/� D 1 1 1 Z m I I I I I I I I I I I I I I I I I V I I I I I I I I I I I I l I I I I I I O CD rA Q 0 0 0 0 0 CD Q 0 0 n (D N 6 t0 O (n CD 0 O Cn O n O .n s m T m z 1 �������... �.....� ...wry.. malwmmm tt�tt■t�t■� ��■■■ tl tl ttt I�t tl /I� ■tl tt■tt�t�t■� �■■■J ■tltt/ I//tl /■ ■■ 1t11111111■ ■o ■m tt tt tt011t111t■t■111 1�111111■�/■■■■�t1 ����� 11111111■■■■■■��11����� 11111111■■■■■■��II����� 11111111■■■■��1111��..■ 11111111■■���11111■■■■■ 11111111■■�IIIIIII����■ IIIIIIII■111111111����■ IIIIIIIIIIIIIIUII����1 11111111■■■...1111��..■ 11111111 ■■ ■. �� II11 �■■■■ i I h I I I 1 9------------------------------------------------------------------------ ---L ' UDINLET: INLET HYDRRULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------7---- 7------------------------------------------------------- ER:Northern Engineering Services -Ft Collins Colorado ....................... ON DATE 01-08-1998 AT TIME 12:20:59 1* PROJECT TITLE: Spring Creek *** GRATE INLET HYDRAULICS AND ST_ZING: INLET ID NUMBER: 8 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.63 INLET GRATE LENGTH (ft)= 2.25 INLET GRATE TYPE =Nonstandard Grate ' NUMBER OF GRATES = SUMP DEPTH ON GRATE (ft)= 0.67 GRATE OPENING AREA RATIO (%) _ .39 IS THE INLET GRATE NEXT TO A CURB ?-- NO Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE M = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.00 GUTTER WIDTH (ft) = 1.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 22.28 GUTTER FLOW DEPTH (ft) _ :53 FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= 5.03 ' GRATE CLOGGING FACTOR M = 20.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= 13.20 IDEAL GRATE INLET CAPACITY (cfs)= 16.84 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 13.20` ca�io 0 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 13.20 ' CARRY-OVER FLOW (cfs)= - 0.00 YX► G. f�t +- O.(o-) f- ' /n!t_ar- wOt_` Co.J!-ik=L TI-hCy+i+'�7Z ��,� Ac�C C-c✓ ----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. :J OF COLOR DO AT DENVER SUPPORTED BY METRO DENVER CITT_ES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- USER:Northern Engineering Services -Ft Collins Colorado ....................... ON DATE 01-12-1998 AT TIME 12:36:21 *** PROJECT TITLE: Spring Creek *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 9 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.63 INLET GRATE LENGTH (ft)= 2.25 INLET GRATE TYPE =Nonstandard Grate NUMBER OF GRATES = 3.00 _ SUMP DEPTH ON GRATE (ft)= �0.00 GRATE OPENING AREA RATIO M = 0.39 IS THE INLET GRATE NEXT TO A CURB ?-- NO Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.00 GUTTER WIDTH (ft) = 1.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 20. GUTTER FLOW DEPTH (ft) = I C. FLOW VELOCITY ON STREET (fps)= 2.48 FLOW CROSS SECTION AREA (sq ft)= 4.23 GRATE CLOGGING FACTOR M = 20.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 10.50 16.17 10.50-0 "� c 0.00 10.50 0.00 4-5 (� . -7 2. 'it+e i-JL-_-7- �^-+��-�- Gv..r�ra-o` 7_r_ C W rC -------------- ----------------------------------------------------------- G - ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIr. ENG DEPT. L' OF COLORADO AT DENVER SUPPORTED BY METRE DENVER CITIES/COUNTIES AND UD&FCD ER•Northern _ En ineerin Serv,.e • g g � s-rt Collins Colorado ................ ON DATE 01-08-1998 AT TIME 12:30:44 #* PROJECT TITLE: Spring Creek ' *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= 1.63 INLET GRATE LENGTH (ft)= 2.25 INLET GRATE TYPE =Nonstandard Grate NUMBER OF GRATES SUMP DEPTH ON GRATE (ft)= C 42 GRATE OPENING AREA RATIO (%) _ .-39 IS THE INLET GRATE NEXT TO A CURB ?-- NO ' Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE (%) = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.00 GUTTER WIDTH (ft) = 1.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 25.00 ' GUTTER FLOW DEPTH (ft) = 0:58 FLOW ? LOCITY ON STREET (fps)= 82 FLOW CROSS SECTION AREA (sq ft)= 6.32 GRATE CLOGGING FACTOR (%)= 20.00 ' CURB OPENNING CLOGGING FACTOR(%)= 10.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 17.80 ' IDEAL GRATE INLET CAPACITY (cfs)= 23.08 BY FA1 HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 17.80 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 17.80 ' CARRY-OVER FLOW (cfs)= 0.00 C.,.iscr_c "7. 2.L 4- O.¢Z 4- 4e,oa. 24e VQ Z- 3�t ell ,lam I -I � n , 4r-,o3.zo _ Z / \ 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 i_ 1 4-1'7/Sg S1 Zc ` /mil c_cT % o o — 6112— 1--:.> c r i -�, -j u J cz—' �. P. % = -7, (v �rf Z—S- OcnQ-rs 3bi-t< c _ z ✓ S i�-i=c�o w) �=v,i N1 .� �.�iz. SrZa.i�--� � /l/) a P-c i�i� Z� iw SToa-r-,s w��� io�r.r 7—P+7�-, C�"'+Cfi�iGnlL� N CZ ' O O o am ;o u miG) �N Co o T S•gLU t gm sr 7 ■ p T !g1 G O m s U m u u ,9Ac� C ZA {r}� D O r v rn m .. ?... Ln Z N V1 to 9 ,. ��..`.. oA A aaa� 7• D Oc (A f1 CA T n Q -cl�? T�y N _ Ul O a ' C x O 1 N Z O-91 It 11 mvZ v ul I w �ii 0 m a o A < d m m m CL 3 o z a s O M (A VI fA 10 D D a a a ? 3 mA 0. CL 0. < ~ , ". y C to O ' ' W G1 W y M" z ZN 09 Mx Z� D V _Z L7 II O C) N � ~ O y Om A Ln W 'r tit > c-00 rn Ln NOLn D i� 0 0 O D ~ O I O p DOD � 000 G 7 >I I o w a Q O N O CO 00 01 O co O co 0 co ,�FJ gI I I I I I F4 I I I 11 1 1 1 1 I I I I 1 I I I I I I I I I I I I I I I I a p Q U Ln Z I I I I I I Z W d V O O � d U)U Z V Z V Z Q I w w I LL o w ILJ a O a o w Z Q > F I I I co cr CY Z O C WO F = 1 = U = U C lil U 1— Of I O o N � 7 < Q ,A U) W LU MWy � Li .�. li O 1 W U r Z Q Of I I I I (L Q Of U V) H Z I I LU J J I I I U I K O U F U W O LJ 0 O Q 1 Q 0 1 l U O V) D U) 0 z Q O Z O O D p w Z LU Z OV :DO ~ a N U O c I I z w W F- W W Y D F Q U G UI U) In d vi W m LQ/ pW Q U Q 4 oz 00 S O m N C; ilm „z n g E2 �A �m $5 0 om N CO sso sss� e fie. oo: ash:: Vi Qo G 8'B66 �gQQ3 t5��� o --Q• i F � � � QS Q3 g$ 73 G B c i �$ o s M tN G -,--! N N N N N N N NNNNN N � s mffi Ssaaa aaaaaaa � � A$..ffi ffiffiffiffi 8S gwR 9 H � NNNNN Ntt�t�N iR�SBffi8 6ffiSSffi .ffi NNN«N« R�RR866N � s saffi aaffiffi� asssa� I n 1 1 I G I 1 ER 11 n 1 i I k I I I I Culvert 2 CURRENT DATE: 01-08-1998 CURRENT TIME: 13:10:07 C U L V NO 1 2 3 4 5 6 SITE DATA 1 FILE DATE: 01-08-1998 FILE NAME: SPR-2 FHWA CULVERT ANALYSIS HY-8, VERSION 6.0 CULVERT SHAPE, MATERIAL, INLET I INLET OUTLET CULVERT ELEV. ELEV. LENGTH (ft) (ft) (ft) 6.00 5.90 8.50 BARRELS SHAPE SPAN RISE MANNING INLET MATERIAL (ft) (ft) n TYPE 2 RCB 2.00 0.43 .013 CONVENTIONAL SUMMARY OF CULVERT FLOWS (cfs) FILE: SPR-2 DATE: 01-08-1998 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 6.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 6.16 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.00 1 6.23 1.2 1.2 0.0 0.0 0.0 0.0 0.0 0.00 1 6.30 1.7 1.7 0.0 0.0 0.0 0.0 0.0 0.00 1 6.37 2.3 2.3 0.0 0.0 0.0 0.0 0.0 0.00 1 6.43 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.00 1 6.44 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.00 1 6.52 4.1 3.8 0.0 0.0 0.0 0.0 0.0 0.07 30 6.56 4.6 4.1 0.0 0.0 0.0 0.0 0.0 0.48 26 6.58 5.2 4.3 0.0 0.0 0.0 0.0 0.0 0.90 18 6.60 5.8 4.4 0.0 0.0 0.0 0.0 0.0 1.34 15 6.50 3.6 3.6 0.0 0.0 0.0 0.0 ,0.0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: SPR-2 DATE: 01-08-1998 HEAD HEAD TOTAL FLOW % FLOW ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR 6.00 0.000 0.00 0.00 0.00 6.16 0.000 0.58 0.00 0.00 6.23 0.000 1.16 0.00 0.00 6.30 0.000 1.74 0.00 0.00 6.37 0.000 2.32 0.00 0.00 6.43 0.000 2.90 0.00 0.00 6.44 0.000 3.00 0.00 0.00 6.52 -0.001 4.06 0.20 4.93 6.56 0.000 4.64 0.05 1.08 6.58 0.000 5.22 0.05 0.96 6.60 0.000 5.80 0.05 0.86 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE ($) = 1.000 02-1 2 CURRENT DATE: 01-08-1998 FILE DATE: 01-08-1998 CURRENT TIME: 13:10:07 FILE NAME: SPR-2 PERFORMANCE CURVE FOR CULVERT 1 - 2( 2.00 (ft) BY 0.43 (ft)) RCB DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) 0.00 6.00 0.00 -0.10 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 0.58 6.16 0.15 0.16 l-S2n 0.07 0.09 0.07 0.16 2.10 1.68 1.16 6.23 0.23 0.20 1-S2r. 0.11 0.14 0.10 0.18 2.96 1.81 1.74 6.30 0.30 0.24 1-S2n 0.14 0.18 0.14 0.19 3.05 1.93 2.32 6.37 0.37 0.28 1-S2n 0.17 0.22 0.17 0.21 3.35 2.02 2.90 6.43 0.43 0.33 1-S2n C.19 0.25 0.2C 0.22 3.60 2.10 3.00 6.44 0.44 0.34 1-S2n C.20 0.26 0.21 0.22 3.64 2.12 3.79 6.52 0.52 C.41 1-S2n 0.23 0.30 0.24 0.24 3.92 2.24 4.11 6.56 0.56 0.45 5-S2n 0.24 0.32 0.26 0.25 4.02 2.31 4.27 6.58 0.58 0.46 5-S2n 0.25 0.33 0.26 0.26 4.06 2.36 4.40 6.60 0.60 0.48 5-S2n 0.26 0.34 0.27 0.27 4.10 2.42 El. inlet face invert 6.00 ft El. cutlet invert 5.90 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 6.00 ft OUTLET STATION 8.50 ft OUTLET ELEVATION 5.90 ft NUMBER OF BARRELS 2 SLOPE (V/H) 0.0118 CULVERT LENGTH ALONG SLOPE 8.50 ft ***** CULVERT DATA SUMMARY BARREL SHAPE BOX BARREL SPAN 2.00 ft BARREL RISE 0.43 £t BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE (90-45 DEG.) INLET DEPRESSION NONE I CURRENT DATE: 01-08-1998 CURRENT TIME: 13:10:07 TAILWATER ***** USER DEFINED CHANNEL, CROSS-SECTION MAIN CHANNEL ONLY LEFT CHANNEL BOUNDARY 0 RIGHT CHANNEL BOUNDARY MANNING n LEFT OVER BANK 0 0.000 MANNING n MAIN CHANNEL C.016 MANNING n RIGHT OVER BANK 0.000 SLOPE OF CHANNEL 0.0099 ft/ft CROSS-SECTION X Y COORD. NO. (ft) (ft) 1 1.00 6.40 2 1.00 5.90 3 25.50 6.22 1 ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR I (cfs) (ft) NUMBER 0.00 5.90 0.000 (ft) 0.00 (f/s) 0.00 (psf) 0.00 0.58 6.06 1.056 0.16 1.68 0.05 1.16 6.08 1.077 0.18 1.81 0.05 1.74 6.09 1.093 0.19 1.93 0.06 2.32 6.11 1.107 0.21 2.02 0.06 2.90 6.12 1.118 0.22 2.10 0.07 3.00 6.12 1.120 0.22 2.12 0.07 4.06 6.14 1.136 0.24 2.24 0.07 4.64 6.15 1.144 0.25 2.31 0.08 5.22 6.16 1.151 0.26 2.36 0.08 5.80 6.17 1.157 0.27 2.42 0.08 Note: Shear stress was calculated using R. I p __ ROADWAY OVE?TOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X COORD. NO. ft 1 0.00 2 14.50 3 21.50 4 34.00 5 37.50 6 85.00 Y ft 6.70 6.6G 6.55 6.5C 6.50 6.80 GRAVEL 9.00 ft 3 FILE DATE: 01-08-1998 FILE NAME: SPR-2 FILE NAME: SPR-2 FILE DATE: 08-28-1997 ,I Culvert 3 CURRENT DATE: 01-11-1999 CURRENT TIME: 09:29:15 1 FILE DATE: 01-11-1999 FILE NAME: SPR-3 FHWA CULVERT ANALYSIS HY-8, VERSION 6.0 C SITE DATA I CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET NO. (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 3.30 3.15 15.00 1 RCB 2.00 0.43 .013 CONVENTIONAL 2 3 4 5 6 SUMMARY OF CULVERT FLOWS (cfs) FILE: SPR-3 DATE: 01-11-1999 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 3.87 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.00 1 4.11 2.3 2.3 0.0 0.0 0.0 0.0 0.0 0.00 1 4646 3.5 3.5 0.0 0.0 0.0 0.0 0.0 0.00 1 4.93 4.6 4.6 0.0 0.0 0.0 0.0 0.0 0.00 1 5.16 5.8 5.0 0.0 0.0 0.0 0.0 0.0 0.67 8 5.17 5.8 5.0 0.0 0.0 0.0 0.0 0.0 0.71 4 5.36 8.1 5.3 0.0 0.0 0.0 0.0 0.0 2.64 9 5.43 9.2 5.4 0.0 0.0 0.0 0.0 0.0 3.70 11 5.50 10.4 5.5 0.0 0.0 0.0 0.0 0.0 4.76 11 5.55 11.5 5.6 0.0 0.0 0.0 0.0 0.0 5.83 11 5.00 4.7 4.7 0.0 0.0 0.0 0.0 0.0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS HEAD HEAD ELEV (ft) ERROR (ft) 3.50 0.000 3.87 0.000 4.11 0.000 4.46 0.000 4.93 0.000 5.16 -0.004 5.17 -0.002 5.36 -0.003 5.43 -0.001 5.50 -0.001 5.55 -0.001 <1> TOLERANCE (ft) = 0.010 FILE: SPR-3 DATE: 01-11-1999 TOTAL FLOW % FLOW FLOW (cfs) ERROR (cfs) ERROR 0.00 0.00 0.00 1.15 0.00 0.00 2.30 0.00 0.00 3.45 0.00 0.00 4.60 0.00 0.00 5.75 0.06 1.04 5.80 0.05 0.86 8.05 0.08 0.99 9.20 0.07 0.76 10.35 0.08 0.77 11.50 0.09 0.78 <2> TOLERANCE ($) = 1.000 I o=/ i I 2 CURRENT DATE: 01-11-1999 FILE DATE: 01-11-1999 CURRENT TIME: 09:29:15 FILE NAME: SPR-3 PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.00 (ft) BY 0.43 (ft)) RCB DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) 0.00 3.50 0.00 0.20 0-NF 0.00 0.00 0.00 0.35 1.15 3.87 0.37 0.57 4-FFt 0.18 0.22 0.43 0.65 2.30 4.11 0.62 0.81 4-FFt 0.28 0.35 0.43 0.71 3.45 4.46 0.98 1.16 4-FFt 0.36 0.43 0.43 0.75 4.60 4.93 1.52 1.63 4-FFt 0.43 0.43 0.43 0.79 5.03 5.16 1.77 1.86 4-FFt 0.43 0.43 0.43 0.82 5.04 5.17 1.78 1.87 4-FFt 0.43 0.43 0.43 0.82 5.33 5.36 1.97 2.06 4-FFt 0.43 0.43 0.43 0.88 5.44 5.44 2.04 2.14 4-FFt 0.43 0.43 0.43 0.90 5.51 5.50 2.09 2.20 4-FFt 0.43 0.43 0.43 0.92 5.58 5.56 2.14 2.26 4-FFt 0.43 0.43 0.43 0.94 El. inlet face invert 3.30 ft El. outlet invert El. inlet throat invert 0.00 ft El. inlet crest ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 3.30 ft OUTLET STATION 15.00 ft OUTLET ELEVATION 3.15 ft NUMBER OF BARRELS 1 SLOPE (V/H) 0.0100 CULVERT LENGTH ALONG SLOPE 15.00 ft ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE BOX BARREL SPAN 2.00 ft BARREL RISE 0.43 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE (90-45 DEG.) INLET DEPRESSION NONE TW VEL. (fps) 0.00 0.00 1.34 1.89 2.67 2.10 4.01 2.27 5.35 2.40 5.84 2.51 5.86 2.52 6.20 2.70 6.32 2.79 6.41 2.86 6.49 2.93 3.15 ft 0.00 ft CURRENT DATE: 01-11-1999 CURRENT TIME: 09:29:15 TAILWATER 3 FILE DATE: 01-11-1999 FILE NAME: SPR-3 ***** USER DEFINED CHANNEL CROSS-SECTION FILE NAME: SPR-3 MAIN CHANNEL ONLY FILE DATE: 08-28-1997 LEFT CHANNEL BOUNDARY 0 RIGHT CHANNEL BOUNDARY 0 MANNING n LEFT OVER BANK MANNING n MAIN CHANNEL 0.000 0.022 MANNING n RIGHT OVER BANK 0.000 SLOPE OF CHANNEL 0.0095 ft/ft CROSS-SECTION X Y COORD. NO. (ft) (ft) 1 0.00 4.75 2 14.00 3.58 3 15.00 3.50 4 16.00 3.58 5 30.00 4.75 ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE (cfs) (ft) NUMBER DEPTH VEL. (ft) (f/s) SHEAR (psf) 0.00 3.50 0.000 0.35 0.00 0.00 1.15 3.81 0.848 0.65 1.89 0.09 2.30 3.86 0.871 0.71 2.10 0.11 3.45 3.90 0.887 0.75 2.27 0.12 4.60 3.94 0.900 0.79 2.40 0.13 5.75 3.97 0.911 0.82 2.51 0.14 5.80 3.97 0.911 0.82 2.52 0.14 8.05 4.03 0.927 0.88 2.70 0.16 9.20 4.05 0.934 0.90 2.79 0.16 10.35 4.07 0.941 11.50 4.09 0.946 0.92 2.86 0.94 2.93 0.17 0.18 Note: Shear stress was calculated using R. ROADWAY OVERTOPPING DATA ROADWAY SURFACE GRAVEL EMBANKMENT TOP WIDTH 1.00 ft ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 0.00 6.00 2 21.70 6.00 3 23.70 6.00 4 27.70 5.00 5 30.70 5.00 6 34.70 6.00 7 36.70 6.00 8 55.10 6.00 PROJECT .Ir>R No, S.�.Z r1 'Tj 4•oc7 �� ' 1 1 CLIENT _ _ ".Al r:l II Al If NdR I OFI 1 MADE BY _ /rl%j��{ _ DAIf: f:l IF.CKEh HV DATE I I I r'I "I SHEET I OF I _ FORT COLLINS, COLORADO 80521 i O✓E.i T •r'13 �.Z c-...I � i��-•] /� Tw � C�J S� �r-.o. J S r21.1J O, -r ri Tc�— /' 1..J C> I I 4•"l 7 4.5 .. e.-1.rc T7lv�_- iooYa, C-�' la' .r'_j I 08 Culvert 12 CURRENT DATE: 03-31-1999 FILE DATE: 03-31-1999 CURRENT TIME: 11:22:56 FILE NAME: SPR-12 FHWA CULVERT ANALYSIS HY-8, VERSION 6.0 C SITE DATA I CULVERT SHAPE, MATERIAL, INLET U L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET NO. (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 4910.00 4909.54 60.00 1 RCP 1.50 1.50 .013 IMPR SDT CIR 2 3 4 ,5 6 FILE: SPR-12 DATE: 03-31-1999 SUMMARY OF CULVERT FLOWS (cfS) ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 4910.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4910.49 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4910.71 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4910.85 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4910.98 4.0 4.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4911.08 4.7 4.7 0.0 0.0 0.0 0.0 0.0 0.00 1 4911.29 6.0 6.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4911.44 7.0 7.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4911.72 8.0 8.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4911.86 9.0 9.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4911.89 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.00 1 4912.50 11.9 11.9 0.0 0.0 0.0 0.0 0.0 OVERTOPPING u SUMMARY OF ITERATIVE SOLUTION ERRORS HEAD HEAD ELEV (ft) ERROR (ft) 4910.00 0.000 4910.49 0.000 4910.71 0.000 4910.85 0.000 4910.98 0.000 4911.08 0.000 4911.29 0.000 4911.44 0.000 4911.72 0.000 4911.86 0.000 4911.89 0.000 <1> TOLERANCE (ft) = 0.010 D:\HYB\DATA\SPR-12.LST FILE: SPR-12 DATE: 03-31-1999 TOTAL FLOW % FLOW FLOW (cfs) ERROR (cfs) ERROR 0.00 0.00 0.00 1.00 0.00 0.00 2.00 0.00 0.00 3.00 0.00 0.00 4.00 0.00 0.00 4.70 0.00 0.00 6.00 0.00 0.00 7.00 0.00 0.00 8.00 0.00 0.00 9.00 0.00 0.00 10.00 0.00 0.00 <2> TOLERANCE M = 1.000 �-_7 2 CURRENT DATE: 03-31-1999 FILE DATE: 03-31-1999 CURRENT TIME: 11:22:56 FILE NAME: SPR-12 PERFORMANCE CURVE FOR CULVERT 1 - 1( 1.50 (ft) BY 1.50 (ft)) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW ELEV, DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) 0.00 4910.00 0.00 -0.46 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 1.00 4910.49 0.49 0.48 1-S2n 0.33 0.37 0.27 0.37 4.64 1.82 2.00 4910.71 0.71 0.60 1-S2n 0.48 0.53 0.48 0.48 4.14 2.17 3.00 4910.85 0.85 0.72 1-S2n 0.60 0.65 0.59 0.56 4.60 2.40 4.00 4910.98 0.98 0.85 1-S2n 0.70 0.76 0.71 0.62 4.87 2.58 4.70 4911.08 1.08 0.96 1-S2n 0.78 0.83 0.77 0.66 5.15 2.68 6.00 4911.28 1.28 1.17 1-S2n 0.90 0.94 0.84 0.73 5.87 2.85 7.00 4911.44 1.44 1.36 1-S2n 1.01 1.02 0.92 0.77 6.14 2.96 8.00 4911.72 1.58 1.72 2-M2c 1.12 1.09 1.09 0.81 5.79 3.07 9.00 4911.86 1.73 1.86 2-M2c 1.26 1.16 1.16 0.84 6.17 3.16 10.00 4911.89 1.89 1.71 2-M2c 1.50 1.22 1.22 0.88 6.51 3.24 El. inlet face invert 4910.00 ft El. outlet invert 4909.54 ft El. inlet throat invert 4909.97 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 4910.00 ft OUTLET STATION 64.50 ft OUTLET ELEVATION NUMBER OF BARRELS 4909.54 1 ft SLOPE (V/H) 0.0071 CULVERT LENGTH ALONG SLOPE 60.00 ft CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 1.50 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE IMPR SDT CIRC INLET EDGE AND WALL INLET DEPRESSION BEVELED EDGES (45-90 DEG NONE WINGWALL) ***** SIDE -TAPERED CIRCULAR IMPROVED INLET ******* FACE WIDTH SIDE TAPER (4:1 TO 6:1) (X:1) 3.00 ft 6.00 FACE HEIGHT 1.50 ft E D:\HYB\DATA\SPR-12.LST I tom! cv CURRENT DATE: 03-31-1999 CURRENT TIME: 11:22:56 TAILWATER 3 FILE DATE: 03-31-1999 FILE NAME: SPR-12 ******* REGULAR CHANNEL CROSS SECTION **************** SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (ft/ft) 0.018 MANNING'S n (.01-0.1) 0.035 CHANNEL INVERT ELEVATION 4909.54 ft CULVERT NO.1 OUTLET INVERT ELEVATION 4909.54 ft ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) (ft) NUMBER (ft) (f/s) (psf) 0.00 4909.54 0.000 0.00 0.00 0.00 1.00 4909.91 0.528 0.37 1.82 0.42 2.00 4910.02 0.551 0.48 2.17 0.55 3.00 4910.10 0.565 0.56 2.40 0.63 4.00 4910.16 0.576 0.62 2.58 0.71 4.70 4910.20 0.581 0.66 2.68 0.75 6.00 4910.27 0.590 0.73 2.85 0.82 7.00 4910.31 0.596 0.77 2.96 0.87 8.00 4910.35 0.601 0.81 3.07 0.92 9.00 4910.38 0.606 0.84 3.16 0.96 10.00 4910.42 0.609 0.88 3.24 1.00 ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 0.00 4913.00 2 17.50 4912.50 3 31.50 4913.00 D:\HY8\DATA\SPR-12.LST PAVED 6.00 ft W k a c m a a Q i 01 I 1 fl COMPUI MODEL. S_WEr;' k;ODJL- E" EAGLE -OIN SOFTWARE PROGRAM METHODOLOGY: STANDARD STEP ENERGY BALANCE FINAL DRAINAGE REPr>R;l CUT=J OUTPUT 7--ROM ALL S-ORV SEWE ANALYSEpS .ARE GIVEN IN . E DRAINAGE RELOR E �^ C' IN "J JT (ABLE SPECIFIES H= r=''P_ __tiC. � �I �JS ^iV=rVSION IS TEE ACTUAL LLiN0 T - -P:i z- f R01V i`S:D= TO INS;DE OF ADJACENT STRUCTURES. THIS D!MENSiON VAY ALSO IVCLUDE THE LAY LENGTH OF A FLARED END SECTION IF ONE IS SHOWN. THE SECOND COLiJM\' IN THE O JTPUT TABLE IS THE DESIGN FLOW FOR THE STORM SEWER. THIS FIGURE MAY REFLECT ATTENUATION AS FLOW PASSES THROUGH THE SEWER. UTILITY CLAN. STORM 'SE'NE . .: AN. A !D =POF'L ES FROM %C J Cl G E \' I E .�_ J_ ..CI\' S ` ' 1-T -L-S. STATIONING GIVEN CIN E STOR`-, _EWER PROFILE IS ALSO THE DISTANCE =ROM CENTERLIN' TO CENTERLINE OF ADJACENT STRUCTURES. I H N 1 W W 1 O O 1 N 1 •• I m N H J� I •-1 .-a W a c a� 1 El V1 F 41 ❑ ❑ W I m ❑ £ m 3 E I O N I � N � I a a w 1 ❑ o w 1 1 I I r o 1 m o M Y 1 H a 41 I U ❑ w I I 1 I r m I ran C I ❑ 1 N m I O O a I rn rn 11 1 P P ac w I I I I H rn 1 ao r a I O 1 nl c Ioo .7 rn rn x I I Ioo I m m O I m N 1 O O M Y I P P a W I I I I o 0 a I rt I U1 VI I O O � 1 rn rn —1 u I PP a w I 1 I 1 N N > a C H I o o H V) ap 1 1 N I m I O O m I 1 0 C i o 0 rn rn W N I P P H W 1 1 •• E r 1 N 1 an O m m b a 1 HN C.4 O rn rn 'O N P P H W I H 3 1 a m 1 N m G) m I U U t, E a O N F C i P. E. +i I U U 'o V I / m Oo a•• a) 1 0 0 W z am 1 /o -d C l m IO fA H W ❑ -M Im I H H TF I C a m o 3 r o m U 1 N m a C P rn ❑ rn / a) J 1 rn a awl ti \ 1 •• O H Ioo w \ OI I r H £ ••P a+ m i ri ao z C4 o w 1 + 0 E U rA F E A 1 H W 4 m 1 N C. z ❑ C I a z I V) W r. m C I O I fi I 1 M 1 r m I F I al I 1 m I N 1 � I 7 1 u I C I -.I R7 O rd .0 I � a) i V 3 3 a+ I N W -I I a) C •-I -M 1 C � I C O X I - N I In N I N 1 V 1 H 1 1 I N - I I O - I U U I N H rl C 1 rn r U 7 w I t I NN rn b. • C C -n I 00 m m I c i m r P. O. ❑ I Orn -'I -.1 m I a a H \ I m P p w I 1 O O a n r z z o r rn •• m I 4) N H\ I r v V C C m a) I O >wl .4 14 zaa i Ej 1 1 N a N C J I $-- @ I ! I ! 4 ! I f I w w 0 0 e 4) O 0 rl M 1 CD ka OD 4) C a E n LI 3 4 4) V) 4 a N 0 O 4.) to YI a• w z / o !n H O+ F G d 3 N u U 4 m i O m m N m • O H w \ Y o Z O •• w] EE, F . H w < L Z ❑ I W I 0 O O I I c H N O 1 I O m 0 0 .. •• •• if1 H c O O H L F W N N N N w x a C W I m F W G O w l m G f M H H m 3 F e o 0 I m m o 0 L W I N N N N a a L 1 ❑ � w 1 W t +y W I N N H H 4 a W I U G W 1 1 I l o m m m c 1 ❑ 1 o l0 l0 I 0 O O O a I m m m m C7 11 I e e e e = W I I I I m H r N I H m m m a I 1 e e m I 0000 .] mmmm CD x w I I l o o m m I e e N N C I G e m 1 Coco E I m m m m � w I 1 I I ommio 1 e N H N 1 m p 0 r 1 0 0 0 0 E m m m m I I e m O e c c 0 0 c a 1 0 0 0 0 H m m I 4 1 olnoo w 0 I m m e In r C N N O G 1 0000 O w W l e e e e H W I I E m % U w m m e N • G p. a I N m e G � 1 0000 4 I m m m m •(] 4 w w I v c c c I N H W I 4 3 1 a v / W N I V U U V 01 E a CL c 0 a F -CI I U U U U •O V I / m 4 Coco 0 z N am I /o .,iN C I lfl to e e N H 4r G .1 I m m N N 01 F I G a S u w m m 0 n 0 N 0 U 4 m w I N m p Coco w \ a Y O Z 0 v v H H 0 EE- U ,i [,� �E�a C +1 O I a z I r r r r 1 r r I r r 11 I n I a n L�1.J u M c J o� O N I a OJ � N �l V J O C a a 0 (IJ)uot112natLq ■ E s1 Elevation(ft) 0 3 A t0 o C/D V o ruO d uu N OO� P O 'e V L N O fD � S � 1 r,0 O rn �� 04 o WA N I N O N A N m 0 I I 1] I 1 I 1 i 1 I L 1 11 r Swale 1; Q10= 5.8 ds (D.P. 3) Worksheet for Irregular Channel Project Description Project File c:lprojects\,spr\spr-swie.fm2 Worksheet Swale 1 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.009500 ft/ft Elevation range: 3.50 ft to 4.75 ft. Station (ft) Elevation (ft) Start Station 0.00 4.75 0.00 14.00 3.58 14.00 15.00 3.50 16.00 16.00 3.58 30.00 4.75 Discharge 5.80 cfs I i L I Results Wtd. Mannings Coefficient 0.021 Water Surface Elevation 3.93 ft Flow Area 2.30 ft2 Wetted Perimeter 10.53 ft Top Width 10.49 ft Height 0.43 ft Critical Depth 3.93 ft Critical Slope 0.010407 ft(ft Velocity 2.53 ft/s Velocity Head 0.10 ft Specific Energy 4.03 ft Froude Number 0.95 Flow is subcritical. End Station 14.00 16.00 30.00 Roughness 0.035 0.016 0.035 09/10/97 FlowMaster v5.13 ' 04:50:15 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Swale 1; Q100=11.5 cfs(Inflow to Pond 3) Worksheet for Irregular Channel Project Description Project File d:\projects\spr\spr-swle.fm2 Worksheet Swale 1 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.009500 ft/ft Elevation range: 3.50 ft to 4.75 ft. Station (ft) Elevation (ft) Start Station 0.00 4.75 0.00 14.00 3.58 14.00 15.00 3.50 16.00 16.00 3.58 30.00 4.75 Discharge 11.50 cfs T 7-- - Results Wtd. Mannings Coefficient 0.023 Water Surface Elevation 4.08 ft Flow Area 4.11 ft' Wetted Perimeter 14.08 ft Top Width 14.03 ft Height 0.58 ft Critical Depth 4.06 ft Critical Slope 0.011324 ft/ft Velocity 2.80 ft/s Velocity Head 0.12 ft Speck Energy 4.20 ft Froude Number 0.91 Flow is subcriticel. End Station 14.00 16.00 30.00 04/12/99 03:39:06 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Roughness 0.035 0.016 0.035 I ,=L 1 FlowMaster v5.13 Page 1 of 1 [l I J 11 I 7 I I I I 1 Swale 1; Q100x 1.333=15.3 cfs Worksheet for Irregular Channel Project Description 1 Project File dAprojects\sprlspr-swle.fm2 Worksheet Swale 1 Flow Element Method Irregular Channel Manning's Formula Solve For Water Elevation 1 Input Data Channel Slope 0.009500 fVft Elevation range: 3.50 ft to 4.75 ft. Station (ft) Elevation (ft) Start Station End Station 0.00 4.75 0.00 14.00 ' 14.00 3.58 14.00 16.00 15.00 3.50 16.00 30.00 16.00 3.58 30.00 4.75 Discharge 15.30 cfs ' Results Wtd. Mannings Coefficient 0.024 Water Surface Elevation 4.16 ft Flow Area 5.23 ft2 Wetted Perimeter 15.88 ft Top Width 15.83 ft ' Height 0.66 ft Critical Depth 4.13 ft Critical Slope 0.011673 fifft Velocity 2.93 fvs Velocity Head 0.13 ft Specific Energy 4.29 ft ' Froude Number 0.90 Flow is subcritical. r 11 I 1 04/12/99 03:40:22 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 F3 Roughness 0.035 0.016 0.035 FlowMaster v5.13 Page 1 of 1 Swale 6; Q100= 6.1 as Worksheet for T iangular Channel Project Description Project File c:lprojects\spr\spr-swie.fm2 Worksheet Swale 6 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.016500 fttft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 6.10 cfs Results I I I Depth 0.74 ft Flow Area 2.21 ft2 Wetted Perimeter 6.13 ft Top Width 5.94 ft Critical Depth 0.68 ft Critical Slope 0.026639 ft/ft Velocity 2.76 ft/s Velocity Head 0.12 ft Specific Energy 0.86 ft , Froude Number 0.80 Flow is subcritical. , I 11 01/12/98 FlowMaster v5.13 12:17:27 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 , I I I I Swale 6; Q100x 1.33=8.1 cis Worksheet for Triangular Channel Project Description Project File c:\projects\spr\spr-swie.fm2 Worksheet Swale 6 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.016500 ft/ft Left Side Slope 4.000000 H : V ' Right Side Slope 4.000000 H : V Discharge 8.10 cfs Results Depth 0.83 ft Flow Area 2.73 ft2 Wetted Perimeter 6.81 ft Top Width 6.61 ft Critical Depth 0.76 ft Critical Slope 0.025651 ft/ft Velocity 2.96 ft(s Velocity Head 0.14 ft ' Specific Energy 0.96 ft Froude Number 0.81 Flow is subcritical. I I r r5/ '01/12/98 FlowMaster v5.13 12:16:49 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 PROJECT JOB NO. CLIENT CALCULATIONS FOR MADEBY DATE CHECKED BY DATE / ` 5 SHEET I OF _FORT COLLINS, COLORADO 80521 1 2. G G r^ vc.2-•r I Z O✓F�,L T "-13 c.�-t_..v � /2o.--n� /�' T'�...� � �7J Sc c�i�. J S , �-�&a t�,'4A> I i • ��/� f J TC � /R1l � 0 � i .i V7 YL ' /�/IG-�-F �h� C = 1 . 4 f�fJ 4.5 r��g TH>= roo Yi L_c�+ ` ,sj•.1, J _ a Swale 12; Q100 = 4.7 cfs r= -7 1 Worksheet for Triangular Channel ' Project Description Project File d:\projects\.spr\spr-swle.fm2 Worksheet Swale 12 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth 1 Input Data Mannings Coefficient 0.035 Channel Slope 0.008100 fttft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V ' Discharge 4.70 cfs Results Depth 0.77 ft Flow Area 2.37 ft2 Wetted Perimeter 6.35 ft Top Width 6.16 ft Critical Depth 0.61 ft Critical Slope 0.027582 f tft Velocity 1.98 ftis Velocity Head 0.06 ft Specific Energy 0.83 ft Froude Number 0.56 Flow is subcritical. 1 l 11 I L/11199 FlowMaster v5.13 11:05:47 AM Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 Swale 12; Q100x 1.333 = 6.3 cfs r , Worksheet for Triangular Channel Project Description Project File d:\projectMsprlspr-swle.fm2 , Worksheet Swale 12 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.008100 fttft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 6.30 cfs ' Results Depth 0.86 ft Flow Area 2.95 ftz Wetted Perimeter 7.09 ft Top Width 6.88 ft , Critical Depth 0.69 ft Critical Slope 0.026527 f 1ft Velocity 2.13 fUs Velocity Head 0.07 ft Specific Energy 0.93 ft Froude Number 0.57 , Flow is subcritical. 01/11/99 FbwMaster v5.13 11.06:29 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 765-1666 Page 1 of 1 I [l I 4= -:5 U N � W 3 j O p J � O K Z z O Z U a 3 p Oa J W LL p U Z a W wp pz i< a� �p p � z� m� N N J Z 6 rd W � � J N _L O 00 NLO fnN s�O • I 00 00 0 0 3 c 0 C 0 0 C O — C «C I i F Z y O i i ono 00 00 IL W 23^ N,� 00 C O O— C O OC O O O _ � N N W � C L N N Y I G _ W O N N N O N L L r L Q u N G m N t O N V L O O O O �-C C °� rs C� Of N C C Li of c,l ofo a 3 p vi w m a w U a i 1 i i 1 1 1 1 1 1 1 1 1 I F' 1 1 i 1 C� 1 [J 1 H 1 1 1 o l I 4'i ` O O O O co cD (D II w U ® ��UN p � Z},000p ® O p000Lr) a_LL.00ON 00 �� w ww U Z Z w O 0 O 0 O U � � J LLJV)J i l a- a_ a_ � JQNOOOJ QZ UUULL. J L,J OOfZpJQQ U) a_ Pond 3 Elevation 4903.300 4903.300 4903.400 4903.500 4903.600 4903.700 4903.800 4903.900 4904.000 4904.100 4904.200 4904.300 4904.400 4904.500 4904.600 4904.700 4904.800 4904.900 4905.000 4905.100 4905.200 4905.300 4905.400 4905.500 4905.600 4905.700 4905.800 4905.900 4906.000 Area (so Ave. Area Volume (cu-ft) 0.000 0.000 0.000 0.000 0.000 0.000 10.288 5.144 0.348 36.109 23.198 2.210 74.990 55.549 5.441 129.053 102.021 10.032 202.693 165.873 16.464 297.657 250.175 24.816 419.488 358.573 35.598 551.620 485.554 48.232 720.058 635.839 63.283 922.142 821.100 81.891 1163.413 1042.778 103.927 1435.486 1299.450 129.729 1728.631 1582.058 157.968 2042.411 1885.521 188.280 2375.655 2209.033 221.126 2716.528 2546.092 254.514 3064.116 2890.322 288.826 3382.482 3223.299 322.086 3728.197 3555.340 355.255 4101.261 3914.729 391.413 4506.337 4303.799 430.046 4948.056 4727.197 472.342 5428.703 5188.379 518.374 5962.246 5695.474 568.847 6560.394 6261.320 626.204 7220.280 6890.337 688.403 7928.284 7574.282 755.705 Cum. Volume (cu-ft) 0.000 0.000 0.348 2.559 8.000 18.032 34.497 59.313 94.912 143.143 206.427 288.318 392.244 521.974 679.942 868.222 1089.347 1343.862 1632.688 1954.774 2310.029 2701.442 3131.488 3603.830 4122.204 4691.051 5317.255 6005.658 6761.363 45'Z/ Cum. Volume (ac-ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.005 0.007 0.009 0.012 0.016 0.020 0.025 0.031 0.037 0.045 0.053 0.062 0.072 0.083 0.095 0.108 0.122 0.138 0.155 Note: This rating curve was developed by Eagle Point software and was used in the routing of Pond 3. Volumes have been calculated using the Prismoidal method. 1 1 1 1 I I— <, c SG•'+— ✓ E.,s 7Z7 VCT- I r-T- 7"T-!C /2^ / . j S �.J i�S . ; Z�, t-'5 rd--O o,J 7""r-Ic .e5 =;p--,rT, o.J i ✓r=-j „J Ar —,J norihem engineering services Cl H 3 $ [+7 C C ] y r m H z K O O o 0 rt 01 w z 0 m m a A. OD s1 t0 W OD J J 0 01 UI Ul A A W W N N F. r OY J f] O Ut O UI O ILn 10 Ln 10 jLn O 10 O Ul O In O H O I I I I I G : U, I I y PC A m r n w ° '" 0 m m M ri �S wo 0 GZf m U7 UI A A A W W W W N N N r r r n A r M Ut N %0 0% W O J A r OD W N %0 ON W m N O O O O O O O O O O O O O O O O O O m �0 0101010 01010 01010 010 0 0 010101010 x' n r m o F z z m M m r m 0 O O m m ID tv n m z m r r r N N N N N N N N W W W A In 4• O x IS m ID ti " qO N W J l0 N In t0 A W In D rt fC (.i cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r m 0 0 010 010 0 01010 010 0 0 010101010 A 0 M r m O r 0 N N N N N N N W W W W A A A In 0 O r 0 r N A N O� aD 0 O W A J O A �0 J N W O J t0 N Ut OD O W ON r A 0 100 T J r ON %0 ILrT 10 r r r r r 0 r r ct 7 rrrrr0000N3w00&-4mA W 0 J J 01 A N Ul 0 �0 N OO UI O A J O -0 A W 3 O O N J A w W Ul �0 A �0 J O� W UI W OD J O m M W A CD U1 T W W W J r J • r • r • r • W • O • • N • N ••• J • J • • • • • • • O • 01 %0 N O �0 w O � A A UI 10 k0 Iti a• JW JLn 10 IOD W Ul J IW O% IOD 10 0 rrrrrrrr l '� cr m 0 m In A W N r 0 w O J 0 U1 A W N r � W 0 w w O O r r N W W A A m In 0 J J w OO t0 ct m UI r J W w A O m N J W 0 U7 r 0 N O A m N 0 0 010 01010 0101010101010 0101010101 tv m M 0 fi m M fr m G m A W N r r 1 I r r N N N W W N W cct f" N W A 01 t0 W J N UI OD W �0 W J tp N O A r• m N r A Ut A O A O� N r W J J A a• UI W T W N O W . J . . . W . . J . W . t0 . J . W . . O . r . . . OD . OD IW . . N J IJ Ir r %0 J 10 1r 01 %0 W jr 10 %0 10 0 w w cct m o m 1 I I I I I I I re Ft r. rt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cf I m r 0 0 0 0 0 66 0 0 0 0 0 06 0 0 0 0 0 Q• N t0 J O� A W r o r r W A O m m J J w O r t0 t0 1r Ln 10 J 0% N t0 1r ILrl ut W OD ILn IH J 10 v m x 1111111 Jill O 6/2/98 HYDROGRAPH REPORT Page 1/,,- G 5/ RECORD NUMBER : 3 TYPE : RESER STOR. IND DESCRIPTION : Pond .3 Routing w/ Storage Indication [HYDROGRAPH INFORMATION] Peak Discharge ............................ = 3.14 (cfs) 4•L s Volume .................................... = 0.11 (acft )(` _ Yz Time Interval ............................. = 0.10 (min) Time to Peak .............................. = 11.10 (min) -Time of Base .............................. = 26.30 (min) Peak Elevation ............................ = 4905.25 (ft) [RESERVOIR STRUCTURE INFORMATION] Reservoir# ............................... = 1 Description ............................... = Pond 3 Storage type .............................. = MAN STAGE/STOR Max storage ............................... = 6761.36 Cuft Discharge type ............................ = COMP STAGE/DIS Maxdischarge ............................. = 3.77 cfs [RESERVOIR INFORMATION] Reservoir # ............................... = 1 Reservoir Description ..................... = Pond 3 [INFLOW HYDROGRAPH INFORMATION] Hydrograph#.............................. = 1 Hydrograph Descript;on.................... = Basins 2, 3 and 4 6/2/98 Page 2/¢ d;; �--) [Storage Indication Reservoir Routed Hydrograph Flow Values Time vs. Flow] (The time interval is 0.1 min) ------------------------------------------------------------------------- ELEVATION TIME INFLOW OUTFLOW (ft) ------------------------------------------------------------------------- (min) (cfs) (cfs) 4903.46 0.1 0.23 0.23 4903.56 0.2 0.46 0.46 4903.64 0.3 0.69 0.69 4903.72 0.4 0.92 0.92 4903.78 0.5 1.15 1.15 4903.88 0.6 1.38 1.38 4904.00 0.7 1.61 1.61 4904.13 0.8 1.84 1.84 4904.29 0.9 2.07 2.07 4904.46 1.0 2.30 2.30 4904.65 1.1 2.53 2.53 4904.86 1.2 2.76 2.76 4905.00 1.3 2.98 2.90 4905.00 1.4 3.21 2.90 4905.00 1.5 3.44 2.90 4905.00 1.6 3.67 2.90 4905.00 1.7 3.90 2.90 4905.00 1.8 4.13 2.90 4905.00 1.9 4.36 2.90 4905.00 2.0 4.59 2.90 4905.00 2.1 4.82 2.90 4905.00 2.2 5.05 2.90 4905.00 2.3 5.28 2.90 4905.00 2.4 5.51 2.90 4905.01 2.5 5.74 2.90 4905.01 2.6 5.97 2.90 4905.01 2.7 6.20 2.90 4905.01 2.8 6.43 2.91 4905.01 2.9 6.66 2.91 4905.01 3.0 6.89 2.91 4905.01 3.1 7.12 2.91 4905.01 3.2 7.35 2.91 4905.01 3.3 7.58 2.91 4905.02 3.4 7.81 2.91 4905.02 3.5 8.04 2.91 4905.02 3.6 8.27 2.92 4905.02 3.7 8.49 2.92 4905.02 3.8 8.72 2.92 4905.02 3.9 8.95 2.92 4905.03 4.0 9.18 2.92 4905.03 4.1 9.41 2.93 4905.03 4.2 9.64 2.93 4905.03 4.3 9.87 2.93 4905.03 4.4 10.10 2.93 4905.04 4.5 10.33 2.93 L I� 77 J 7I I 11 6/2/98 Page 3/4 G 7/ [Storage Indication Reservoir Routed Hydrograph Flow Values Time vs. Flow) (The time interval is 0.1 min) ------------------------------------------------------------------------- ELEVATION TIME INFLOW OUTFLOW (ft) ------------------------------------------------------------------------- (min) (cfs) (cfs) 4905.04 4.6 10.56 2.94 4905.04 4.7 10.79 2.94 4905.04 4.8 11.02 2.94 4905.05 4.9 11.25 2.94 4905.05 5.0 11.48 2.95 4905.05 5.1 11.34 2.95 4905.05 5.2 11.20 2.95 4905.06 5.3 11.07 2.95 4905.06 5.4 10.93 2.96 4905.06 5.5 10.79 2.96 4905.06 5.6 10.65 2.96 4905.07 5.7 10.52 2.96 4905.07 5.8 10.38 2.96 4905.07 5.9 10.24 2.97 4905.07 6.0 10.10 2.97 4905.08 6.1 9.97 2.97 4905.08 6.2 9.83 2.97 4905.08 6.3 9.69 2.98 4905.08 6.4 9.55 2.98 4905.08 6.5 9.42 2.98 4905.09 6.6 9.28 2.98 4905.09 6.7 9.14 2.98 4905.09 6.8 9.00 2.98 4905.09 6.9 8.87 2.99 4905.09 7.0 8.73 2.99 4905.09 7.1 8.59 2.99 4905.10 7.2 8.45 2.99 4905.10 7.3 8.32 2.99 4905.10 7.4 8.18 3.00 4905.11 7.5 8.04 3.00 4905.11 7.6 7.91 3.01 4905.12 7.7 7.77 3.02 4905.13 7.8 7.63 3.02 4905.14 7.9 7.49 3.03 4905.15 8.0 7.36 3.04 4905.15 8.1 7.22 3.05 4905.16 8.2 7.08 3.05 4905.17 8.3 6.94 3.06 4905.17 8.4 6.81 3.06 4905.18 8.5 6.67 3.07 4905.19 8.6 6.53 3.08 4905.19 8.7 6.39 3.08 4905.20 8.8 6.26 3.09 4905.20 8.9 6.12 3.09 4905.21 9.0 5.98 3.10 6/2/98 Page 4/4 (Storage Indication Reservoir Routed Hydrograph Flow Values Time vs. Flow] , (The time interval is 0.1 min) ------------------------------------------------------------------------- ELEVATION TIME INFLOW OUTFLOW (ft) (min) (cfs) (cfs) ------------------------------------------------------------------------- 4905.21 9.1 5.84 3.10 , 4905.21 9.2 5.71 3.10 4905.22 9.3 5.57 3.11 4905.22 4905.23 9.4 9.5 5.43 5.29 3.11 3.11 , 4905.23 9.6 5.16 3.12 4905.23 9.7 5.02 3.12 4905.23 9.8 4.88 3.12 4905.24 9.9 4.74 3.12 , 4905.24 10.0 4.61 3.13 4905.24 10.1 4.47 3.13 4905.24 10.2 4.33 3.13 4905.25 10.3 4.19 3.13 , 4905.25 10.4 4.06 3.13 4905.25 10.5 3.92 3.13 4905.25 10.6 3.78 3.14 ' 4905.25 10.7 3.64 3.14 4905.25 10.8 3.51 3.14 4905.25 10.9 3.37 3.14 4905.25 11.0 3.23 3.14 , 4905.25 11.1 3.09 3.14 Peak 4905.25 11.2 2.96 3.14 4905.25 11.3 2.82 3.14 4905.25 11.4 2.68 3.14 ' 4905.25 11.5 2.54 3.14 4905.25 11.6 2.41 3.14 4905.25 11.7 2.27 3.13 , 4905.25 11.8 2.13 3.13 4905.24 11.9 1.99 3.13 4905.24 4905.24 12.0 12.1 1.86 1.72 3.13 3.13 ' 4905.24 12.2 1.58 3.13 4905.24 12.3 1.44 3.12 4905.23 12.4 1.31 3.12 4905.23 12.5 1.17 3.12 ' 4905.23 12.6 1.03 3.12 4905.22 12.7 0.89 3.11 4905.22 12.8 0.76 3.11 4905.22 12.9 0.62 3.11 , 4905.21 13.0 0.48 3.10 4905.21 13.1 0.34 3.10 4905.20 13.2 0.21 3.09 , 4905.20 13.3 0.07 3.09 4905.19 13.4 0.00 3.09 4905.19 13.5 0.00 3.08 ' 1 6/2/98 RESERVOIR REPORT RECORD NUMBER : 1 STORAGE TYPE : MAN STAGE/STOR DISCHARGE TYPE : COMP STAGE/DIS DESCRIPTION : Pond 3 Rating (RATING CURVE LIMIT] Minimum Elevation ......................... _ MaximumElevation ......................... _ Elevation Increment ....................... _ [STAGE STORAGE INFORMATION] Input file = NULL Output file = NULL (Manual Storage vs. Elevation] --------------------------------------------- ELEVATION STORAGE (ft) --------------------------------------------- (cuft) 4903.40 0.35 4903.50 2.56 4903.60 8.00 4903.70 18.03 4903.80 34.50 4903.90 59.31 4904.00 94.91 4904.10 143.14 4904.20 206.43 4904.30 288.32 4904.40 392.24 4904.50 521.97 4904.60 679.94 4904.70 868.22 4904.80 1089.35 4904.90 1343.86 4905.00 1632.69 4905.10 1954.77 4905.20 2310.03 4905.30 2701.44 4905.40 3131.49 4905.50 3603.83 4905.60 4122.20 4905.70 4691.05 4905.80 5317.26 4905.90 6005.66 4906.00 6761.36 Page 1/z G `, / 4903.30 (ft) 4906.00 (ft) 0.10 (ft) 6/2/98 [STAGE DISCHARGE INFORMATION] OUTLET STRUCTURE: STR # 4 TYPE : RECTANGULAR ORIFICE DESCRIPTION : Pond 3 Rectangular Orifice [Reservoir Discharge Value vs. Stage] (the elevation increment is 0.1) Page 21, al oY -------------------------------------------------------------- STAGE ELEVATION STORAGE STORAGE DISCHARGE (ft) (ft) (Acft) (cuft) (cfs) -------------------------------------------------------------- 0.00 4903.30 0.00 0.00 0.00 0.10 4903.40 0.35 0.11 0.20 4903.50 2.56 0.30 0.30 4903.60 8.00 0.56 0.40 4903.70 18.03 0.86 0.50 4903.80 34.50 1.20 0.60 4903.90 59.31 1.42 0.70 4904.00 0.002 94.91 1.61 0.80 4904.10 143.14 1.78 0.90 4904.20 206.43 1.94 1.00 4904.30 288.32 2.08 1.10 4904.40 392.24 2.22 1.20 4904.50 521.97 2.35 1.30 4904.60 679.94 2.47 1.40 4904.70 868.22 2.58 1.50 4904.80 1089.35 2.69 1.60 4904.90 1343.86 2.80 1.70 4905.00 0.037 1632.69 2.90 1.80 4905.10 1954.77 3.00 1.90 4905.20 2310.03 3.09 2.00 4905.30 2701.44 3.18 2.10 4905.40 3131.49 3.27 2.20 4905.50 3603.83 3.36 2.30 4905.60 4122.20 3.44 2.40 4905.70 4691.05 3.53 2.50 4905.80 5317.26 3.61 2.60 4905.90 6005.66 3.69 2.70 4906.00 0.155 6761.36 3.77 6/2/98 OUTLET STRUCTURE REPORT Page 112. e::;,I / RECORD NUMBER : 4 TYPE : RECTANGULAR ORIFICE DESCRIPTION : Pond 3 Rectangular Orifice Rating FILE NO: Pond30rf.rtg [RATING CURVE LIMIT] Minimum Elevation = 4903.30 (ft) Maximum Elevation ......................... = 4906.00 (ft) Elevation Increment ....................... = 0.10 (ft) [OUTLET STRUCTURE INFORMATION] Width ..................................... = 1.00 (ft) Height .................................... = 0.50 (ft) Coefficient Co ............................ = 0.60000 Invert Elevation .......................... = 4903.30 (ft) # of Openings ............................. = 1 [RECTANGULAR ORIFICE EQUATION] Q = Co*A*[2gh]/k]^0.5 A = Wetted area, (sqft) K = 1 [Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) ---------------------------------------------------- STAGE ELEVATION FLOW ---------------------------------------------------- (ft) (cfs) 0.10 4903.40 0.11 0.20 4903.50 0.30 0.30 4903.60 0.56 0.40 4903.70 0.86 0.50 4903.80 1.20 0.60 4903.90 1.42 0.70 4904.00 1.61 0.80 4904.10 1.78 0.90 4904.20 1.94 1.00 4904.30 2.08 1.10 4904.40 2.22 1.20 4904.50 2.35 1.30 4904.60 2.47 1.40 4904.70 2.58 1.50 4904.80 2.69 1.60 4904.90 2.80 1.70 4905.00 2.90 1.80 4905.10 3.00 1.90 4905.20 3.09 6/2/98 [Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) STAGE ELEVATION FLOW (ft) (cfs) -------------------------------------------- 2.00 4905.30 3.18 2.10 4905.40 3.27 2.20 4905.50 3.36 2.30 4905.60 3.44 2.40 4905.70 3.53 2.50 4905.80 3.61 2.60 4905.90 3.69 2.70 4906.00 3.77 Page 212- G,Z/ I 1 1 1 I 1 1 N r I' 2f"r� I, I .•^. � : ( ' A,:,:w�:wwg4w , � � x � ,ytli: • �'�i•••rl•aA �T7. � M t� se'�� dl y�+x•wR,wl, � / - ', ��.�..G' �:\ 1•' F4� — — 113 5} (I1. inu:l nWl aPF,I/p rY rII1L� WAWIWx.\ .w.:. F •• I �l aa'�� rylhwrWN'%• ' a J 1 r,.l\..y .,yya 4 'r� '.r.FX unY Wa .4•. P IPIII r xn,awnnm N I' 10, F:. h .. r r I rf yP,Rlmw',•^. P , -:• - x +voa.•`RUW'�, xl r I• e r r ERR t' 1 n r��! 1a irlls v r t ill . Jn W WlJp R X'711 li j.XX(/ \ TI ♦x T!1 RENT Qt /TOP�iR a+x '" 17►11►r r n!NI X MI?x y f'�'µ al�FePI F h:y.?' I aR `, ,;,r! /., '' y.. J` ,r `, 7 ]I ' P ♦ ;vxR ��ll �y ul'..0 ! A �.. � I, I r ��g1,p1 u' f '�� "N� ' � A II r? Y �*"I,F,,�r , I � a r r . y:..,' +�1 A •� 7 1i r M t 3r OD Ic'I I r W -J MI ./•f�'., _. r� " r Pf ���� ` max• ti tar r paly " Ft 11 rr Ip W! 'e � ` 1 1 ; � : r N 1 :a r�f�•�z xy klitw ' �'I'p' IK�r 1 rS�x rN �� �� x 1 � 1�. milli ` F I'rd .an. 11 i i I l,�y r r :I 14 aaEp., „ ' ,. d.... W :+� --' r�.'. �•:: "�� ' y WYN I Y,/r • � `, . '' 1 a Y+ - • 9 : i � � 7�',,5��'�L111�'� � D � .. "fx xf III it 1 `I • � t '' _ . I IL I Y �� y r i I �. I y •f.w.� s � yAN PRh �. I f ' IIr11�� .« i.lNY; w. 1F�I�,r�ll „lll I' IZ I III,I IIN:. 1 I 1..�� FULL 0 VE EIODMENT I I ly, �l (I _ N I � 1 Idl�.�j II Ih'• n4F �1: O.29OOets \ I<I .a rmr' I ry I i!i IX4j l,.r n I I I I II r 'I!h"prjl 1 a 1111. Iw� ql e�. .1 1 N I ,y 4 rlI I1�, II' iI'I �'�lillillllUlirrW '. h'I0I dM wAn JN »N 1 X if I,rhl .i i � h r j IQ n 4y ' I � I 1 I„r Ih I� rlr h ? IM I�I�i IAa LpI ,� Mt r ✓' h� � : qx �� .II' I I r+ I' m I �r��«%''r.'� I •d r r I � M u � r r ily�l' hla i4 '•w" .. r,�Ap I uu 'J I I ° I ..., : I w, ... _ ,�L A '' � li; � ��1j", I 'IAFI'`' ',,a 1 rd "gyp �' ,.,�,-�•.1„y�„�,,,; I, _'.—„—,--�.:..w� I r r I �1^ I' x ._ ' ' � M p I III III'll P II G Ilo i : I rl�la' F' Ilr. y r'i ryxr .. ,,, - � -... X`gF•,n FTtl II II r x,ArAd w II;P F F w+!!rI111,1,I;y1 HEC 2'Mapping from the Mater Plan by Engineering Professionals of 1988, showing the location of the spill across the C&S 24..Vill•.� a l Scale Na 200' RVISM or MN5 CLIENT:a,TLE FLOODPLAIN DELINEATION •L•rr No oX s SC,L•Zoo' CITY OF FORT COLLINS STA. TO STA. 2 37 Nt 19BB ORIG.I••IOO' 11 Analysis Methodology Objective: The objective of this portion of the analysis, is to determine the spill over the C&S Railroad tracks for the 100 and 500 year storms, which are to be used as the design flows in the subsequent HEC- 2 modeling (EC-RAIL.DAT). 1) Determine the discharge from Pond 302 for the 2, 5, 10, 25, 50 and 100-year recurrence intervals using SWMM. 2) Start with SWMM file SCFD-100_sc.dat. Copy this file, rename the file for the appropriate design storm (e.g. SCFD-2.DAT), modify the rainfall intensities according to Table 1 (pg. H4) and run the model (see output pg's. H5-HI6). 3) Plot the discharge and recurrence interval information at Pond 302 for each storm on probability paper (see Graph 1, pg. H17). 4) Extrapolate the line on Graph 1 to determine the 500-yr discharge= 2600 cfs. 5) Using the 100 and 500-year discharges, determine the CWSEL at Pond 302 using the F.I.S. rating table (see pg's. H18-H21). 6) Using the CWSEL from step 5, determine the spill over the C&S Railroad tracks using the F.I.S. stage -discharge rating on page H21. D:%Projeas%Spr%SPR-HEC2.RPT c T rgo `��qc S tu Sr 1 / Oft vol cy \ T ` \ Rd. v+ N Si E Hoffman - Mill ` 102_ G ✓ Q \ C ' 1 8u-ke a Sr •. Y _ 3 1103 D c 7 '" '9 J� Q qu e Sr r �i 101- i �.; 1066 Er r.< 205 Mid ornt $ Dr a a _ - 2cc 3 110 105 IF& \ocG ter. g — 01 f 1 10 kwpCL �c U push wjp dli ~� �- 0 61rnM•� 0 o z U Tro''wopd 2 SWMM Schematic Or 8 Or from E0S' Greenhome & O'Mara F.I.S. Teakw.)od''l, o Scale: F'= 1000' n '0111n Woo Ct. 4r `.E Dr g.Ke Rd. r East Drake Road / ar..r4rrt: A Y. J A 0 L '_ a 1n r nl O O G® O a p c f�l u Sri w O O .-1 O h {+ onN s l tl M N O �O d CO O d O N t0 %0 O d O O �O �p d d d .7 ♦T d N N r-r 0 0 0 0 6 6 O O d M M O .T N d d -w b N N O w 4O d -Q d d �0' N. N N O W O %O d d M N O d 01 h h .T M M N N N N N M 9'0 .y O O 4 .4 N d h M N .-1 O 0 0 0 0 6 O O 0 0 0 0 O O m N U N w N d O .O w .T N N w %D %O d h C% M N h 00 w 4M O w h h ♦T M M O O O .r N N 1; 4 O O O O O O O O O O O O O O w O N 0 O N .1 m N d N O O w .0 -a .T N N N N N N N d %D h • M .y N .-i M h %0 %0 d M N N r4 - 4 P, r1 4-4 .-1 .-1 O OQQ Ooo OX Ng M V1 N .-/ O O O O OO. O O O O O p O O O Q 4 & rj Q N %0 co O d O .T 00 .T 00 %0 %O .it N N aV N N N N P4 N1 ♦T %0 GO Wo N O 00 ♦T M M M N IV N N " -4 1-1 .r .ti P-1 N 0 6Z O O O 0 0 0 0 O O O O O 0 0 O O O O :1� %n o In o 4n c In o In o •"� •y N N M M .Y d M h �O 10 h h EO OD 01 01 O. O �-1 .1 N ri M ri r-1 .-1 Table 1 Fossil Creek Basin Rainfall Intensities from the City of Fort Collins Stormwater Utility Department M fn 1 d� IN h O J ,-45; SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF COLLEGE AVE. FILE:SCFD-2 2-YR DEVELOPED CONDITION - FEBRUARY 1998 LIDSTONE s ANDERSON PROJ:COFC97.07 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 5:2 51:2 21.0 11313.7 .0 .0 12.7:D 2.2:D 3 0 0. 50. 101:4 114.5 1.4 1 5. 102:5 24.6 2.1 0 40. 103:2 15.9 .1 2.6:D 1 30. 104:5 100.5 3.5 0 40. 105:5 25.9 2.3 0 40. 106:5 61.8 2.0 0 35. 107:5 19.2 2.2 0 40. 10:2 5.6 .1 1.2:D 1 30. 109:2 .6 .1 .2:D 1 30. 110:5 17.1 1.8 0 35. 111:4 88.2 4.0 0 40. 112:3 15.3 (DIRECT FLOW) 0 35. 113:3 8.9 (DIRECT FLOW) 0 35. 114:1 35.8 1.6 0 40. 118:1 111.8 1.7 1 0. 119:1 110.0 1.9 1 0. 120:1 94.4 1.7 0 55. 123:1 85.1 2.0 0 55. � 124:1 82.0 2.1 0 55. 125:3 397.5 (DIRECT FLOW) 1 10. 126:1 81.4 2.1 0 50. 127:5 88.2 3.6 0 45. 128:1 9.0 1.0 0 40. 129:1 43.6 1.6 0 45. 130:1 74.8 .9 0 40. 131:5 33.4 2.7 0 35. 132:3 15.1 (DIRECT FLOW) 1 0. 133:3 15.1 (DIRECT FLOW) 1 0. 134:3 .0 (DIRECT FLOW) 0 0. 135:4 73.6 .6 0 40. 151:4 12.6 .6 0 35. 152:4 12. .5 0 40. 153:4 19.3 .6 0 90. 154:4 19.9 .6 0 35. 155:4 25.7 .7 0 40. 156:3 44.0 (DIRECT FLOW) 0 40, 160:1 21.0 .9 2 55. 161:1 23.9 .6 0 40. 170:5 1.7 .4 1 30. 171:5 10.7 1.5 1 20. 173:5 34.3 2.2 0 40. 174:1 .8 .1 2 0. 175:5 34.7 2.1 0 45. 177:5 66.3 2.1 0 40. 178:5 212.5 4.0 0 40. 179:5 49.4 2.0 0 35. 180:5 14.3 1.8 0 40. 161:5 128.2 2.4 0 50. 187:5 29.9 1.3 0 35. 189:5 27.0 .9 0 40. 200:5 24.6 1.3 1 40. 201:4 1021.4 3.5 3 30. 202:4 49.5 1.2 0 50. 203:1 35.9 .7 1 35. 205:4 206:4 970.5 966.0 5.4 5.2 3 3 20. 15. �l 207:1 3.8 .3 2 5. 208:2 3.8 .1 1.2:D 1 55. 209:4 962.2 4.4 3 15. 210:5 51.2 2.1 0 55. 211:1 55.6 .1 0 50. 212:4 962.6 3.7 3 10. 213:4 962.5 3.8 3 5. 21:5 215:5 24. 25.2 1.1 1.1 1 1 40. 30. 216:4 950.9 4.9 3 5. 217:5 55.1 2.2 0 50. 218:4 949.0 5.0 3 0. 219:1 325.8 2.5 1 25. 221:5 115.1 2.0 0 40. 226:4 873.0 5.4 2 20. 227:1 921.1 1.9 1 55. 226:1 634.2 2.4 1 55. 229:1 630.5 2.6 1 55. 230:4 630.0 4.9 1 50. 231:4 625.6 3.8 1 45. 232:4 593.7 5.1 1 40. 233:2 67.5 1.7 0 40. 234:4 585.8 3.4 1 35. 235:4 525.0 4.8 1 40. 236:4 542.4 3.3 1 20. 237:4 217.0 2.0 1 0. 23:4 1. 1. 0 5. 239:4 13737.2 1.6 0 500. 240:1 10.3 .5 0 50. 241:4 146.7 1.5 0 45. 242:4 144.2 1.4 0 40. 243:4 88.6 1.1 0 35. 2 4 4 : 1 46.4 1.3 0 45. 24 5: 1 38.5 1.1 0 40. 260:3 28.4 (DIRECT FLOW) 0 40. 271:3 11.2 (DIRECT FLOW) 0 55. 272:3 11.2 (DIRECT FLOW) 0 55. 273:3 .0 (DIRECT FLOW) 0 0. 274:3 27.2 (DIRECT FLOW) 0 50. 275:3 27.2 (DIRECT FLOW) 0 50. 276:3 .0 (DIRECT FLOW) 0 0. 277:3 69.3 (DIRECT FLOW) 0 40. 262:2 27.2 .0 .3:D 0 50. 287:2 3.7 .1 3.3:D 2 5. 288:2 .9 .1 1.1:D 2 10. 289:2 1.5 .1 1.4:D 2 5. 295:3 23.9 (DIRECT FLOW) 0 40. 296:3 17.1 (DIRECT FLOW) 0 45. 297:3 46.0 (DIRECT FLOW) 0 35. 298:3 119.0 (DIRECT FLOW) 0 40. 299:3 57.0 (DIRECT FLOW) 0 35. 300:3 1021.4 (DIRECT FLOW) 3 30. 301:4 976.2 4.0 3 30. 302:2 968.9 .1 4.8:D 3 25. 303:2 949.2 .1 28.9:D 3 0. 304:2 504.2 .1 5.3:D 1 35. ��- 317:3 10.1 (DIRECT FLOW) 0 40. 318:2 3.8 .1 1.1:D 1 35. 319:3 330.8 (DIRECT FLOW) 1 25. 321:3 949.8 (DIRECT FLOW) 3 0. 325:1 364.2 3.4 1 25. � 327:3 933.0 (DIRECT FLOW) 1 55. 328:3 636.2 (DIRECT FLOW) 1 55. 330:3 636.0 (DIRECT FLOW) 1 55. 332:3 627.3 (DIRECT FLOW) 1 40. 333:2 2.7 .1 1.O:D 1 30. 334:2 2.2 .1 .9:D 1 30. 335:3 592.3 (DIRECT FLOW) 1 35. 336:2 337:3 3.3 68.5 .1 1.7:D (DIRECT FLOW) 2 0 5. 35. 338:2 15.1 .1 1.4:D 1 0. 340:2 1.4 .1 5.6:D 3 40. 349:2 4.2 .1 1.7:D 2 0. 355:3 62.5 (DIRECT FLOW) 0 35. 356:3 21.4 (DIRECT FLOW) 0 35. 357:2 11.4 .1 1.3:D 1 30. 358:2 1.7 .1 2.2:D 2 15. 360:2 4.4 .1 .4:D 0 55. 361:2 .2 .1 .1:D 1 40. IJ SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF COLLEGE AVE. FILE:SCFD-5 5-YR DEVELOPED CONDITION - FEBRUARY 1998 LIDSTONE S ANDERSON PROJ:COFC97.07 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY �I CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 50:2 80.3 .0 20.0:D 2 0. 51:2 189.4 .0 4.2:D 0 55. 101:4 208.8 2.2 1 5. 102:5 35.8 2.3 0 40. 103:2 21.5 .1 6.1:D 1 40. 104:5 147.2 4.7 0 45. �i 105:5 46.8 2.5 0 40. 106:5 104.2 3.0 0 40. 107:5 36.4 2.4 0 40. 108:2 7.9 .1 2.6:D 1 35. 109:2 1.1 .1 .3:D 1 30. 110:5 29.3 2.4 0 40. 111:4 166.3 4.7 0 40. 112:3 24.6 (DIRECT FLOW) 0 40. ' 113:3 14.3 (DIRECT FLOW) 0 40, 114:1 65.3 2.1 0 40. 118:1 219.2 2.3 1 0. ' 119:1 207.2 2.6 1 0. 120:1 196.0 2.3 0 55. ' 123:1 124:1 164.0 154.8 2.6 2.8 0 0 55. 50. 125:3 397.5 (DIRECT FLOW) 1 10. 126:1 149.6 2.7 0 45. 127:5 161.8 3.8 0 45. 128:1 17.6 1.3 0 40. 129:1 81.3 2.1 0 40. 130:1 150.0 1.4 0 40. 131:5 52.6 2.9 0 40. 132:3 133:3 20.9 20.9 (DIRECT (DIRECT FLOW) FLOW) 1 1 15. 15. J 134:3 .0 (DIRECT FLOW) 0 0. 135:4 147.6 .7 0 40. 151:4 26.8 .7 0 40. 152:4 24.4 .6 0 40. 153:4 29.3 .7 0 40. 154:4 33.4 .7 0 40. 155:4 47.6 .8 0 40. 156:3 85.7 (DIRECT FLOW) 0 40, 160:1 79.5 1.7 2 5. 161:1 83.2 1.1 2 5. 17 0: 5 2.2 .5 1 40. 171:5 14.8 1.6 1 25. 173: 174:1 61. 1.5 2. .11 0 1 4, 455. 175:5 50.5 2.7 0 45. 177:5 100.9 3.1 0 40. 178:5 328.2 5.6 0 40. 1:5 74. 3. 0 4. 18080:5 16.4 1.8 0 455. 181:5 210.9 3.3 0 50. 187:5 44.9 1.6 0 35. 189:5 41.5 1.1 0 40. 200:5 48.1 2.9 1 25. 201:4 1347.5 3.8 1 30. 202:4 99.6 1.6 0 45. 203:1 68.9 1.0 1 25. 205:4 1296.5 5.9 3 15. 206:4 1286.5 5.8 3 10. �i 207:1 6.6 .4 2 0. 208:2 6.6 .1 2.1:D 1 50. 209:4 1277.4 4.6 3 10. 210:5 110.2 2.3 0 50. 211:1 116.6 .2 0 45. r� I G 212:4 1276.2 4.2 3 5. 213:4 1273.9 4.2 3 S. 21:5 4.3 1. 1 . 215:5 99.4 1.1 1 15 15. 216:4 1256.4 5.5 3 0. 217:5 103.2 2.3 0 45. 218:4 1253.0 5.5 3 0. 219:1 383.3 2.8 1 15. 221:5 202.3 2.9 0 40. 226:4 1302.1 5.8 2 5. 227:1 1359.6 2.4 1 45. 226:1 1021.0 3.1 1 45. 229:1 1014.8 3.4 1 40. 230:4 1011.1 5.7 1 40. 231:4 992.8 4.5 1 35. 232:4 924.5 5.9 1 35. 233:2 118.4 2.3 0 40. 234:4 908.4 3.8 1 30. 235:4 797.4 5.8 1 35. 236:4 865.0 4.0 1 15. 237:4 566.2 3.0 1 0. 23:4 . 2. 0 55. 239:9 363 363.0 2.4 0 55. � 240:1 33.8 .9 0 55. 2 4 1 : 4 353.8 2.3 0 45. - 242:4 308.6 1.9 0 40. 24 3: 4 185.3 1.6 0 40. 2 4 4 : 1 92.1 1.7 0 45. 245:1 73.8 1.4 0 40. 260:3 83.7 (DIRECT FLOW) 2 5. 271:3 15.0 (DIRECT FLOW) 1 10. 272:3 15.0 (DIRECT FLOW) 1 10. 273:3 .0 (DIRECT FLOW) 0 0. �+ 274:3 34.5 (DIRECT FLOW) 0 55. 275:3 34.5 (DIRECT FLOW) 0 55. 276:3 .0 (DIRECT FLOW) 0 0. 277:3 103.7 (DIRECT FLOW) 0 40. 282:2 34.5 .0 1.1:D 0 55. 287:2 5.7 .1 5.2:D 2 0. 28:2 .4 .1 1.7:D 2 5. 289:2 2 2.3 .1 2.3:D 2 0. 295:3 23.9 (DIRECT FLOW) 0 40. 296:3 17.1 (DIRECT FLOW) 0 45. 297:3 46.0 (DIRECT FLOW) 0 35. 296:3 119.0 (DIRECT FLOW) 0 40. 299:3 57.0 (DIRECT FLOW) 0 35. 300:3 1347.5 (DIRECT FLOW) 1 30. 301:4 1277.2 4.5 3 40. 302:2 1268.8 .1 11.2:D 3 40. 303:2 1252.9 .1 63.4:D 3 0. 304:2 761.8 .1 11.6:D 1 30. 317:3 10.1 (DIRECT FLOW) 0 40. 318:2 7.5 .1 2.2:D 1 35. 319:3 392.1 (DIRECT FLOW) 1 15. 321:3 1253.9 (DIRECT FLOW) 3 0. 325:1 364.5 3.4 1 25. 327:3 1382.3 (DIRECT FLOW) 1 40. 328:3 1023.6 (DIRECT FLOW) 1 45. 330:3 332:3 1023.5 993.5 (DIRECT (DIRECT FLOW) FLOW) 1 1 40. 30. 333:2 4.6 .1 1.7:D 1 25. 334:2 3.9 .1 1.6:D 1 25. 335:3 923.9 (DIRECT FLOW) 1 25. 336:2 337:3 4.4 116.5 .1 (DIRECT 3.6:D FLOW) 2 0 5. 40. 338:2 20.9 .1 3.1:D 1 15. 340:2 4.5 .1 17.6:D 4 10. 349:2 6.0 .1 3.5:D 2 5. 355:3 100.0 (DIRECT FLOW) 0 40. 356:3 35.3 (DIRECT FLOW) 0 40. 357:2 17.8 .1 3.9:D 2 5. 358:2 28.3 .1 2.8:D 1 5. 360:2 5.6 .1 .9:D 1 15. - 361:2 .3 .1 .2:D 1 45. i` r�l SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF COLLEGE AVE. FILE:SCFD-10 10-YR DEVELOPED CONDITION - FE13RUARY 1998 LIDSTONE 6 ANDERSON PROJ:COFC97.07 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** ` **NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) ' 50:2 149.5 .0 22.9:D 1 50. 51:2 201.7 .0 6.2:D 1 0. 101:4 266.4 2.6 1 0. 102:5 46.5 2.4 0 40. 103:2 23.7 .1 8.7:D 1 45. 104:5 194.6 4.9 0 45. 105:5 63.7 2.7 0 40. 106:5 124.3 3.9 0 40. 107:5 48.7 2.5 0 40. 108:2 8.9 .1 3.6:D 1 40. 109:2 1.4 .1 .4:D 1 25. 110:5 40.6 2.5 0 40. 111:4 204.9 4.9 0 40. 112:3 31.9 (DIRECT FLOW) 0 40. 113:3 18.6 (DIRECT FLOW) 0 40. 114:1 84.9 2.3 0 40. 118:1 280.1 2.6 1 0. 119:1 271.8 2.9 0 55. 120:1 123:1 255.4 212.4 2.6 2:9 0 0 55. 55. 124:1 201.9 3.1 0 50. 125:3 397.5 (DIRECT FLOW) 1 10. 126:1 198.7 3.1 0 45. 127:5 211.4 3.9 0 45. 128:1 24.0 1.5 0 40. 129:1 108.1 2.4 0 40. 130:1 203.0 1.7 0 40. 132:3 132:3 22.6 22.6 (DIRECT (DI FLOW) 0 1 20. 20. 133:3 22.6 (DIRECT FLOW) 1 20. 134:3 .0 (DIRECT FLOW) 0 0. 135:4 204.0 .8 0 40. 15: 3. .8 0 40. 152:4 34.6 .7 0 90. 153:4 41.5 .8 0 40. 154:4 43.1 .7 0 35. 155:4 63.2 .9 0 40. 156:3 116.6 (DIRECT FLOW) 0 40. 160:1 147.3 2.4 1 55. 161:1 153.0 1.5 2 0. 170:5 2.4 .5 1 40. 17:5 173:5 .. 79 79.8 2.4 1 0 40. 90. 174:1 1.9 .2 1 40. 175:5 68.3 2.8 0 45. 177:5 108.3 3.6 0 40. 178:5 412.3 5.8 0 40. �i 17 9: 5 93.9 3.2 0 40. 180:5 18.9 1.8 0 45. 181:5 221.9 3.4 1 0. 187:5 55.2 1.9 0 35. 189:5 52.7 1.3 0 40. 200:5 65.7 3.2 1 15. 201:4 1595.6 4.1 1 25. 202:4 133.7 1.9 0 45. 203:1 205:4 93.1 1490.4 1.1 6.2 1 3 20. 15. � 206:4 1476.0 6.1 3 10. 207:1 8.6 .4 2 0. 208:2 8.6 .1 2.7:D 1 50. 209:4 1463.5 4.8 3 10. 210:5 150.4 2.3 0 45. 211:1 156.2 .2 0 45. 212:4 1461.2 4.5 3 5. 213: 19.. 3 5. 214:5 6565.8 1.2 1 15. 215:5 67.2 1.1 1 10. , 216:4 1437.1 5.8 3 0. 217:5 133.7 2.3 0 45. C 216:4 1433.3 5.7 3 0. 219:1 424.4 2.9 1 10. i 221:5 240.7 3.6 0 40. 226:4 1597.2 6.0 1 55. 227:1 1679.6 2.7 1 35. 228:1 1301.1 3.6 1 35. 229:1 1293.6 3.9 1 30. 230:4 1282.6 6.2 1 30. 231:4 1253.0 4.9 1 25. 232:4 1139.7 6.3 1 30. 233:2 143.9 2.6 0 40. 234:4 1114.3 4.0 1 25. 235:4 970.0 6.3 1 35. 236:4 1138.7 4.4 1 10. 23:4 . 3. 1 0. 238:9 793.9 743 3.4 0 55. 239:4 551.6 2.9 0 50. 240:1 53.7 1.2 0 55. ' 241:4 527.8 2.7 0 45. 242:4 456.1 2.3 0 40. 243:4 282.3 1.9 0 40. 2 4 4 : 1 123.9 1.9 0 40. 245:1 99.1 1.5 0 40. 260:3 154.0 (DIRECT FLOW) 1 55. 271:3 17.0 (DIRECT FLOW) 1 15. i 272:3 17.0 (DIRECT FLOW) 1 15. 273:3 .0 (DIRECT FLOW) 0 0. 274:3 35.4 (DIRECT FLOW) 1 0. 275:3 35.4 (DIRECT FLOW) 1 0. 276:3 .0 (DIRECT FLOW) 0 0. 277:3 134.4 (DIRECT FLOW) 0 40. i 282.2 35.4 .0 1.8:D 1 0. 287:2 6.9 .1 6.3:D 1 45. 288:2 1.6 .1 2.1:D 2 0. 289:2 2.8 .1 2.7:D 1 50. 295:3 23.9 (DIRECT FLOW) 0 40. 296:3 17.1 (DIRECT FLOW) 0 45. 297:3 46.0 (DIRECT FLOW) 0 35. 298:3 119.0 (DIRECT FLOW) 0 40. 299:3 57.0 (DIRECT FLOW) 0 35. 300:3 1595.6 (DIRECT FLOW) 1 25. 301:4 1456.0 4.8 3 45. 302:2 1446.6 .1 19.7:D 3 45. 303:2 1433.4 .1 92.3:D 3 0. 304:2 933.3 .1 19.2:D 1 30. 317:3 10.1 (DIRECT FLOW) 0 40. 318:2 9.9 .1 3.O:D 1 30. 319:3 437.7 (DIRECT FLOW) 1 10. 321:3 1434.2 (DIRECT FLOW) 3 0. 325:1 364.7 3.4 1 25. 327:3 1710.5 (DIRECT FLOW) 1 35. 328:3 1304.5 (DIRECT FLOW) 1 35. 330:3 1306.7 (DIRECT FLOW) 1 30. 332:3 1255.2 (DIRECT FLOW) 1 25. 333:2 5.6 .1 2.2:D 1 20. 334:2 4.9 .1 2.O:D 1 20. 335:3 336:2 1138.9 27.2 (DIRECT .1 FLOW) 4.O:D 1 1 15. 10. 337:3 150.8 (DIRECT FLOW) 0 40. 338:2 22.6 .1 4.5:D 1 20. 340:2 9.4 .1 25.7:D 3 45. 34 9: 2 7.5 .1 4.7:D 2 0. 355:3 146.0 (DIRECT FLOW) 0 40. 356:3 45.0 (DIRECT FLOW) 0 40. - 357:2 25.9 .1 6.1:D 2 5. 358:2 53.3 .1 3.2.D 0 55. 360:2 6.0 .1 1.3:D 1 20: J i f-= r i SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF COLLEGE AVE. FILE:SCFD-25 25-YR DEVELOPED CONDITION - FEBRUARY 1998 LIDSTONE d ANDERSON PROJ:COFC97.07 1 *** PEAK *** NOTE FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 50:2 230.0 .0 25.2:D 2 0. 51:2 223.2 .0 9.6:D 1 10. 101:4 356.5 3.2 1 0. 102:5 62.1 2.5 0 40. 103:2 26.8 .1 12.4:D 1 50. 104:5 259.4 5.1 0 45. 105:5 87.0 2.8 0 40. 106:5 162.7 4.1 0 40. 107:5 65.7 2.6 0 40. 108:2 10.6 .1. 5.0:D 1 40. 109:2 1.9 .1 .6:D 1 30. 110:5 57.1 2.6 0 40. 111:4 265.3 5.3 0 40. , 112:3 42.4 (DIRECT FLOW) 0 40. 113:3 24.8 (DIRECT FLOW) 0 40. 114:1 110.7 2.6 _ 0 40. 118:1 372.6 3.0 1 0. 119:1 361.9 3.2 0 55. 12:1 . 2. 0 5. 123:1 282 282.3 3.3 0 500. 124:1 265.4 3.5 0 50. 125:3 397.5 (DIRECT FLOW) 1 10. 126:1 262.4 3.4 0 45. 127:5 275.3 4.0 0 45. 128:1 32.5 1.6 0 40. 129:1 141.0 2.7 0 40. 130:1 273.3 2.0 0 40. 13:5 132:3 . 62.5 62 (DI (DIRECT FLOW) 0 1 40. 0. 133:3 23.0 (DIRECT FLOW) 0 50. 134:3 39.5 (DIRECT FLOW) 1 0. 135:4 280.3 .9 0 40. 15:4 152:4 4. 97.5 .9 .8 0 0 0. 4 0. 153:4 53.8 .9 0 40. 154:4 56.6 .8 0 35. 155:4 83.6 1.0 0 40. 156:3 153.7 (DIRECT FLOW) 0 40. 160:1 228.1 2.9 2 0. 161:1 236.3 1.9 2 5. 170:5 3.5 .6 1 40. 171:5 173:5 19.1 102.8 1.6 2.5 1 0 30_ 40. 174:1 2.4 .2 1 40. 175:5 90.1 2.9 0 45. 177:5 138.2 3.8 0 45. 178:5 531.1 6.1 0 40. 179:5 126.3 3.4 0 40. 180:5 23.1 1.9 0 45. 181:5 244.7 3.7 1 5. 187:5 68.6 2.1 0 35. 189:5 61.2 1.4 0 40. 200:5 90.2 3.5 1 10. 201:4 1893.5 4.3 1 25. 202:4 182.0 2.1 0 45. 203:1 205:4 127*0 1775.1 1.2 6.6 1 3 15. 15. 206:4 1753.9 6.4 3 10. 207:1 11.5 .5 2 0. 208:2 11.5 .1 3.6:D 1 55. 209:4 1736.3 4.9 3 10. 210:5 213.5 2.4 0 45. 1� 211:1 214.3 .3 0 40. 212:4 1732.7 4.8 3 5. 213:4 1727.7 4.7 3 5. 214:5 90.9 1.3 1 10. 215:5 92.8 1.1 1 5. 216:4 1701.1 6.2 3 5. ' 217:5 175.0 2.4 0 45. 218:4 219:1 1696.4 477.7 6.1 3.1 3 1 0. 10. ' 221:5 289.4 4.4 0 40. 226:4 2029.7 6.3 1 50. 227:1 2116.8 3.1 1 35. 228:1 1693.8 4.2 1 30. 229:1 1678.6 4.5 1 30. 230:4 1650.2 6.8 1 25. 231:4 1606.6 5.3 1 25. 232:4 1427.6 6.7 1 30. 233:2 181.0 3.0 0 40. 234:4 1387.0 4.3 1 15. 235:4 1209.2 6.8 1 35. 236:4 1570.6 4.9 1 5. 237:4 238:4 1304.9 1148.1 4.3 4.1 0 0 55. 55. 239:4 846.1 3.5 0 50. 240:1 85.4 1.5 0 50. 2 4 1 : 4 789.3 3.2 0 45. 242:4 658.1 2.7 0 40. 243:4 428.3 2.3 0 40. 244:1 168.0 2.1 0 40. 245:1 132.6 1.7 0 40. 260:3 237.1 (DIRECT FLOW) 2 0. 271:3 19.1 (DIRECT FLOW) 1 20. 272:3 19.1 (DIRECT FLOW) 1 20. 273:3 .0 (DIRECT FLOW) 0 0. 274:3 36.3 (DIRECT FLOW) 1 5. 275:3 36.3 (DIRECT FLOW) 1 5. 276:3 .0 (DIRECT FLOW) 0 0. 277:3 177.2 (DIRECT FLOW) 0 40. , 282:2 36.3 .0 2.8:D 1 5. 287:2 8.6 .1 7.9:D 1 45. 288:2 2.1 .1 2.6:D 2 0. 289:2 3.5 .1 3.4:D 1 50. 295:3 23.9 (DIRECT FLOW) 0 40. 296:3 17.1 (DIRECT FLOW) 0 45. 297:3 46.0 (DIRECT FLOW) 0 35. 298:3 119.0 (DIRECT FLOW) 0 40. 299:3 57.0 (DIRECT FLOW) 0 35. 300:3 1893.5 (DIRECT FLOW) 1 25. 301:4 1716.9 5.2 3 55. 302:2 1706.5 .1 37.4:D 3 55. 303:2 1696.6 .1 136.4:D 3 0. 304:2 1163.8 .1 33.2:D 1 35. 317:3 10.1 (DIRECT FLOW) 0 40. 318:2 13.3 .1 4.O:D 1 30. 319:3 495.7 (DIRECT FLOW) 1 5. 321:3 1697.3 (DIRECT FLOW) 3 0. 325:1 365.2 3.4 1 25. 327:3 2165.7 (DIRECT FLOW) 1 30. 328:3 1700.3 (DIRECT FLOW) 1 30. 330:3 1698.5 (DIRECT FLOW) 1 30. 332:3 1609.6 (DIRECT FLOW) 1 20. 333:2 5.8 .1 2.8:D 1 30. 334:2 5.2 .1 2.7:D 1 30. 335:3 1424.6 (DIRECT FLOW) 1 15. 336:2 65.8 .1 4.3:D 0 55. 337:3 200.3 (DIRECT FLOW) 0 40. 338:2 62.5 .1 5.5:D 1 0. 340:2 18.9 .1 36.1:D 3 15. 349:2 12.9 .1 6.2:D 1 45. , 355:3 237.7 (DIRECT FLOW) 0 40. 356:3 59.0 (DIRECT FLOW) 0 40. ' 357:2 67.7 .1 7.3:D 1 30. 358:2 94.7 .1 3.6:D 0 50. 360:2 6.5 .1 1.8:D 1 30. SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF COLLEGE AVE. FILE:SCFD-50 50-YR DEVELOPED CONDITION - FEBRUARY 1998 LIDSTONE S ANDERSON PROJ:COFC97.07 *** *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY �( CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 50:2 264.4 .0 26.2:D 1 55. 51:2 246.9 .0 13.5:D 1 10. 101:4 445.0 3.8 1 0. 102:5 78.1 2.6 0 40. 103:2 29.6 .1 15.6:D 1 55. 104:5 325.9 5.2 0 45. 105:5 110.1 2.9 0 40. ` 106:5 201.7 4.2 0 40. 107:5 81.1 2.7 0 40. 101:2 40.5 .1 5.6:D 1 10, 109:2 2.3 .1 .7:D 1 25. 110:5 69.6 2.7 0 40. 111:4 322.1 5.5 0 40. 112:3 51.7 (DIRECT FLOW) 0 40. 113:3 30.2 (DIRECT FLOW) 0 40. 114:1 134.4 2.8 0 40. 118:1 462.8 3.3 1 0. 119:1 453.5 3.6 0 55. 120:1 429.1 3.2 0 55. 12:1 3.3 3. 0 50. ( 124:1 33131.6 3.88 0 50. 125:3 397.5 (DIRECT FLOW) 1 10. 126:1 328.4 3.8 0 45. 127:5 344.5 4.1 0 45. 128:1 41.0 1.8 0 40. 129:1 172.8 2.9 0 40. 130:1 338.9 2.2 0 40. 131:5 107.9 3.2 0 40. 132:3 136.2 (DIRECT FLOW) 0 50. 133:3 23.0 (DIRECT FLOW) 0 45. 134:3 113.2 (DIRECT FLOW) 0 50. 135:4 355.9 1.0 0 40. 151:4 60.3 .9 0 40. 152:4 59.6 .9 0 40. 153:4 67.9 .9 0 40. 154:4 71.1 .8 0 35. 155:4 102.1 1.1 0 40. 156:3 189.5 (DIRECT FLOW) 0 40. 160:1 263.6 3.1 2 0. 161:1 274.2 2.1 2 0. 170:5 5.6 .8 1 25. 171:5 20.6 1.6 1 20. 17 3: 5 122.9 2.6 0 40. 174:1 2.9 .2 1 35. 175:5 109.0 3.0 0 45. 177:5 172.1 3.9 0 95. 178:5 651.1 6.3 0 40. 179:5 160.1 3.5 0 40. 180:5 27.6 1.9 0 40. 181:5 270.3 4.1 1 10. 187:5 81.8 2.4 0 35. 189:5 71.2 1.6 0 40. 200:5 119.4 3.8 1 5. 201:4 2146.2 4.5 1 20. 202:4 229.0 2.4 0 45. 203:1 162.1 1.3 1 10. 205:4 2039.0 6.9 1 0. 206:4 1936.6 6.6 3 15. 207:1 14.1 .6 2 0• 208:2 14.1 .1 4.4:D 1 55. 209:4 1916.4 5.0 3 15. 210:5 275.3 2.5 0 45. 211:1 276.0 .3 0 40. i Ah,4 212:4 1912.3 5.1 3 10. 213:4 1906.5 4.9 3 10. 214:5 117,7 1.4 1 5. 215:5 120.5 1.1 1 0. 216:4 1877.0 6.5 3 10. 217:5 221.5 2.5 0 40. 218:4 1872.3 6.3 3 5. 219:1 532.5 3.3 1 5. 221:5 337,7 4.5 0 40. 226:4 2414.7 6.5 1 45. 227:1 2518.3 3.5 1 30. 228:1 2048.2 4.7 1 25. 229:1 2036.1 5.0 1 25. 230:4 2001.5 7.3 1 25. 231:4 1950.2 5.7 1 20. 232:4 1693.7 7.0 1 20. 233:2 207.9 3.3 0 40. 234:4 1654.4 4.5 1 15. 235:4 1404.5 7,1 1 35. 236:4 2064.9 5.3 1 0. 237:4 1805.7 4.9 0 55. 238:4 1575.8 4.6 0 50. 239:4 1165.2 4.0 0 50. 240:1 120.1 1.7 0 50. 241:4 1067.5 3.6 0 45. 242:4 879.8 3.0 0 40. 243:4 571.0 2.6 0 40. 244:1 212.8 2.3 0 40. 245:1 165.3 1.8 0 40. 260:3 274.9 (DIRECT FLOW) 2 0. 271:3 28.6 (DIRECT FLOW) 1 10. 272:3 20.7 (DIRECT FLOW) 1 10. 273:3 7,9 (DIRECT FLOW) 1 10. 274:3 40.4 (DIRECT FLOW) 1 5. 275:3 36.8 (DIRECT FLOW) 1 5. 276:3 3.6 (DIRECT FLOW) 1 5. 277:3 219.0 (DIRECT FLOW) 0 40. 282:2 40.4 .0 3.9:D 1 5. 287:2 10.0 .1 9.2:D 1 50. 288:2 2.4 .1 3.1:D 1 55. 289:2 4.0 .1 4.O:D 1 50. 295:3 23.9 (DIRECT FLOW) 0 40. 296:3 17.1 (DIRECT FLOW) 0 45. 297:3 46.0 (DIRECT FLOW) 0 35. 298:3 119.0 (DIRECT FLOW) 0 40. 299:3 57.0 (DIRECT FLOW) 0 35. 300:3 2146.2 (DIRECT FLOW) 1 20. 301:4 1973.1 5.6 3 30. 302:2 1957.8 .1 46.7:D 3 30. 303:2 1872.5 .1 180.2:D 3 5. 304:2 1361.3 .1 50.4:D 1 35. 317:3 10.1 (DIRECT FLOW) 0 40. 318:2 16.4 .1 4.9:D 1 25. 319:3 552.7 (DIRECT FLOW) 1 0. 321:3 1873.1 (DIRECT FLOW) 3 5. 325:1 365.6 3.4 1 25. 327:3 2569.6 (DIRECT FLOW) 1 25. 328:3 2054.7 (DIRECT FLOW) 1 25. 330:3 2056.9 (DIRECT FLOW) 1 25. 332:3 1953.4 (DIRECT FLOW) 1 15. 333:2 6.0 .1 3.4:D 1 25. 334:2 5.5 .1 3.3:D 1 25. 335:3 1700.7 (DIRECT FLOW) 1 10. 336:2 112.3 .1 4.5:D 0 50. 337:3 244.4 (DIRECT FLOW) 0 40, 338:2 136.2 .1 5.8:D 0 50. 34 0: 2 30.8 .1 45. 3:D 2 55. 349:2 25.7 .1 7.1:D 1 25. 355:3 333.1 (DIRECT FLOW) 0 40. 356:3 71.4 (DIRECT FLOW) 0 40. 357:2 111.6 .1 8.1:D 1 15. 358:2 141.5 .1 4.O:D 0 45. 360:2 9.2 .1 2.2:D 1 20. 361:2 .5 .1 .5:D 1 50.. SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF COLLEGE AVE. FILE:SCFD-100 100-YR DEVELOPED CONDITION - FEBRUARY 1998 LIDSTONE 6 ANDERSON PROJ:COFC97.07 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 50:2 51:2 304.3 348.0 .0 .0 27.3:D 17.1:D 1 1 95. 5. 101:4 541.0 4.3 1 0. 102:5 96.9 2.7 0 40. 103:2 36.8 .1 18.6:D 1 50. 104:5 399.1 5.4 0 45. 105:5 136.5 2.9 0 40. 106:5 248.4 4.4 0 40. 107:5 98.5 2.8 0 40. 108:2 108.6 .1 5.7:D 0 55. 109:2 2.7 .1 .8:D 1 20. 110:5 86.0 2.8 0 40. 111:4 384.3 5.8 0 40. 112:3 62.3 (DIRECT FLOW) 0 40. 113:3 36.4 (DIRECT FLOW) 0 40. 114:1 160.1 3.0 0 40. 118:1 562.7 3.6 1 0. 119:1 552.6 3.9 0 55. 120:1 527.0 3.4 0 55. 123:1 441.0 4.0 0 55. 124:1 398.3 4.1 0 50. 125:3 397.5 (DIRECT FLOW) 1 10. 126:1 393.2 4.0 0 45. 127:5 403.3 4.2 0 45. i 128:1 50.6 2.0 0 40. 129:1 206.9 3.1 0 40. 130:1 411.3 2.5 0 40. 131:5 127.8 3.3 0 40. 132:3 206.7 (DIRECT FLOW) 0 45. 133:3 23.0 (DIRECT FLOW) 0 40. 134:3 183.7 (DIRECT FLOW) 0 45. -- 135:4 457.7 1.2 0 40. 151:4 74.3 1.0 0 35. 15:.2 .9 0 40. 153:4 8383.7 1.0 0 90. 154:4 78.8 .9 0 35. 155:4 118.8 1.1 0 40. 156:3 225.8 (DIRECT FLOW) 0 40. 160:1 303.4 3.4 1 50. 161:1 318.3 2.2 1 50. 17 0: 5 11.9 1.5 1 5. v 171:5 21.0 1.6 1 15. 173:5 144.1 2.6 0 40. 174:1 3.4 .2 1 30. 175:5 129.0 3.0 0 55. 177:5 210.5 4.1 0 45. 178:5 791.1 6.6 0 40.. 179:5 197.1 3.6 0 40. 180:5 33.1 2.0 0 40. 181:5 340.7 5.3 1 10. 187:5 92.5 2.6 0 35. 189:5 85.4 1.7 0 40. 200:5 147.9 4.0 1 5. 201:4 2397.3 4.7 1 20. 202:4 277.6 2.6 0 45. 203:1 198.3 1.5 1 10. 205:4 206:4 2395.1 2231.0 7.3 7.0 1 0 0. 55. 207:1 21.4 .7 1 40. 208:2 22.1 .1 5.1:D 1 35. 209:4 2089.8 5.1 3 15. 210:5 341.1 2.6 0 45. 211:1 347.0 .4 0 40. i H �L 212:4 2084.9 5.3 3 15. 213:4 2078.6 5.1 3 10. 21:5 14. 1. 1 5. 215:5 148.4 1.2 1 0. 216:4 2046.2 6.7 3 10. 217:5 273.9 2.5 0 40. 218:4 2041.2 6.5 3 10. 219:1 594.1 3.5 1 0. 221:5 388.7 4.6 0 40. 226:4 2779.4 6.7 1 40. 227:1 2905.5 3.8 1 25. 226:1 2386.4 5.1 1 25. 229:1 2368.4 5.4 1 20.� 230:4 2334.1 7.7 1 20. 231:4 2266.3 6.0 1 15. 232:9 1943.8 7.2 1 20. 233:2 293.4 3.7 0 35. 239:9 1895.8 9.7 1 15. 235:4 1561.5 7.3 1 35. 236:4 2606.8 5.7 1 0. 237:4 2332.4 5.4 0 55. 238:4 2018.2 5.1 0 50. 239:4 1490.2 4.4 0 50. 240:1 155.4 1.9 0 50. 241:4 1360.4 4.0 0 45. 242:4 1124.7 3.3 0 40. 243:4 703.0 2.9 0 40. 244:1 263.9 2.5 0 40. 245:1 202.2 2.0 0 40. 260:3 319.1 (DIRECT FLOW) 1 50. 271:3 57.7 (DIRECT FLOW) 1 0. i 272:3 21.3 (DIRECT FLOW) 1 0. 273:3 36.4 (DIRECT FLOW) 1 0. 274:3 55.9 (DIRECT FLOW) 1 0. 275:3 37.1 (DIRECT FLOW) 1 0. 276:3 18.7 (DIRECT FLOW) 1 0. 277:3 268.5 (DIRECT FLOW) 0 40. 282:2 55.9 .0 4.6:D 1 0. 287:2 11.3 .1 10.4:D 1 50. 288:2 2.7 .1 3.5:D 1 55. 289:2 4.5 .1 4.5:D 1 50. 295:3 23.9 (DIRECT FLOW) 0 40. 296:3 17.1 (DIRECT FLOW) 0 45. 297:3 46.0 (DIRECT FLOW) 0 35. 298:3 299:3 119.0 57.0 (DIRECT (DIRECT FLOW) FLOW) 0 0 40. 35. 300:3 2397.3 (DIRECT FLOW) 1 20. 301:4 2160.0 5.8 3 25. 302:2 2142.3 .1 48.6:D 3 25. 303:2 2041.1 .1 222.3:D 3 10. 304:2 1517.5 .1 69.8:D 1 35. 317:3 10.1 (DIRECT FLOW) 0 40. 318:2 19.3 .1 5.8:D 1 25. 319:3 623.7 (DIRECT FLOW) 1 0. 321:3 2041.9 (DIRECT FLOW) 3 10. 325:1 366.0 3.4 1 25. ' 327:3 2967.2 (DIRECT FLOW) 1 25. 328:3 2393.0 (DIRECT FLOW) 1 25. 330:3 332:3 2394.5 2270.6 (DIRECT (DIRECT FLOW) FLOW) 1 1 20. 15. 333:2 6.1 .1 3.9:D 1 20. 334:2 5.7 .1 3.8:D 1 20. 335:3 1949.8 (DIRECT FLOW) 1 10. 336:2 163.2 .1 4.6:D 0 45. 337:3 294.1 (DIRECT FLOW) 0 40. 338:2 206.7 .1 6.O:D 0 45. 340:2 44.5 .1 53.9:D 2 35. 349:2 44.0 .1 7.8:D 1 10. 355:3 438.6 (DIRECT FLOW) 0 40. 356:3 85.4 (DIRECT FLOW) 0 40. 357:2 156.7 .1 8.9:D 1 10. 358:2 188.7 .1 4.3:D 0 40. 360:2 14.1 .1 2.5:D 1 10. 361:2 .5 .1 .6:D 1 50.- No Text \1 G... ,i..c To .�E TB�r-+,.Jc GvV rc` B C �f /�-„�,2.��►.� CE Z 5�a_9 I c� 144G, 8 dq Ia0 Z14Z.� 4�i 1!_.1;� '�!`ir/i•� S.ao tLoo. 0 4ylfi.3li P�ZZ. �> GREENHORNE & O'MARA, INC. ENGINEERS • ARCHITECTS • PLANNERS SURVEYORS BY__dt_I/!ti! ------- DATE LZ '3_1—Y_ SUBJECT--- 5O &A--- ------------- _ _ SHEET NO.__j_____OF__ J CHKO. BY ------DATE-------- ----------------------------------- JOB NO.--- -------- .ZEV. BY --------- DATE -------- ------- C+!��^t C. �ZfIiYG�------------- FILE NO. 4�7.�i-ol7J--MS-3 STAGE - STo�2A�GE Fv2 t��apoSED r ��e�o� Zx) 5-rAc,E [Fr l , I s, f _ q, ►l, -- 13 , 1 EiF\) 6z.9 keZA luz d kaA (t4c o Ami-w kTek(.AQ -u�sr Carl von -ttl Ate. ,30L- CK-c.-T-T1 I� 0,-b3 0,03 D . 03 O 4- 0, Lo o.IZ Z D.Z4 0 ,z7 o,4-Z 'b4 llil 08 z 0, �4- D. 92, Z 1 .84 Z, 95 I o S.ZZ 1,Za I , So Z 3, �D 61 ,SS I L I q�- Io,45 3(o,34 85.31 Z14a � � . S$ 5,3a 2 10.76 17,3/ 2Z,4-8 I 2 44,qlo qo,z� S T� e-),ev. s . No Text GREENHORNE & OWARA, INC. SURVEYORS PHOTOGRAMMETRISTS /-i 2-1 �. BY DATE _\ 2-1_�L SUBJECT GZS------ SHEET NO. -_ _-. OF-3 ---_ CHKD. BY _-----_ DATE ----------- ------------ ----------------- --------- ---- --- ------ -----. JOB NO- -------------- ------------ ZG-000• Cts _ _ - - FILE NO. REV_ BY _� --r DATE ---- --------- ------- ----------------- ---------_- ----- - - - - ---- - - ---- --- _. ------ ---- - - ------ - - - ------- --- -- -- - - -- -- - - --------=----------=---=- = -- = = --`-------;-------------- - ------------------- ---- ir G+ s 22 -- 1 --- - --- --- ------ --------------- - -- ` - ------ -------- - - - ------ -- ---- ---- -- - ------ ---= -- - - - - - - - -- - - - - - - - - I _ - - , •�--- r - t aIIF ------�--- ---- - - -- - ----------- - - - - ---�---------------- - - y _ ' _ � 3/ _ L - - - ----------- GL - - - - --' - - - - ---------- --- ---- - -- _ _ - - L - -i -------'----J-"----- -- - --- i - -_- - ------- - -- -- --------- - - --- - - -- 1 : ------ ---- - --- - -- - - - _ -40- - — - - , ILL-. ✓ _. :_T_'_'t :f_C, _ ,-- --- -- - - - -- --- ---- r i 1 . , , ------ --- ---- --- ---' --' -- ' ___ _-___ ___ _ _ __ ___ ___ _______ ___ ___ ___ _______ __y_ _________________ 1 , r , 1 1 r ; I , ____ __ _ _ __ . 1 r _ _ _ _ _ ______ ___ ___ , 1 1 _ r • 1 1 • 1 ; r t t ' _ ___ ___ __ _ __ __ ______ __ 1 , I L L L a _3 t _ _ _ _ _ ___ __' 1 • 1 __ _____ _-_ �__-1--- i--- ;_ r r - - i • • t-_- L_ 1 ' ..___-__ L___l r , 1 y r , , r _ t 7 1 , r - - - . . . ______ __--_"__- ._-•--------.-------- __-.....--- -. __-__.- - _ r , I r : ,__ _ ._.-_.. --------_ _- ___ _ 1 %-AEG -L /✓la��t_ CG- /Z-•tear1LL 1�`Tw��� �cUi-ro•�1 � 3ov r.„J� .�00 0 � Imo. rS i I T o! 3.S id �-jo 400 - 5vo Sl1 2.>4 �' r� ' �a./g (/r3_33XD./5; Qn Z.S `�� Sry 1( p io 5/Z o .r�•. f crf Z = 12.Oj cr•J �� h / jL 1� _ 'Ta Tit:- _ /O. r'1 Gr=f a /L•rS- IL.O-/Sr S�GrJ O �j Oc.7 � �00 z.b I = '�S�o.iL' = loj.Ye 11'� /r..31--/G�.o = o•3L Q Z.41 47.3� Ll. c� �r l Z = �rc•-1 cruet 'Ll �? a Gbh L G = Z•74 �= SI /o.lo' _ Grp h� /4.c�-/S, �i = o.rtp � b = Z.��F (�+��(o.ro, = 4'• (ors � L r � 2.�j c.F1 S/ - 5/Z ffI rf Zj- ��c f � F •� /-' �--- v�l f 1-�+'� /'� C G - Z /✓l o OE �- C!i- /1+� ! L- iov Y.'i Q� a 'ySV. z z. 3 f i 4Sv C7 = PILL, '� - I•P� c PiLo.7 u-f (v-c �� 7 5.4441 b'js w 1 n d �( h1 VI� 4Lvr 4 -na-+a o'Zo£ r of s �'OiZI r1t o7•11 = ' a o � J r77� vrj t � �'�ly-eI v_LS 11 o as o , .s•�.r I j 1 J. r•o�r „i�M -� fir'^''�Qw'J- � 5'z o4• v1.S Q - vow _ ��,�gr = •n3-,� A ��•OQZ� t+•1s 1(r� J� S a o''y �J Tr a•1g 55 -zr c •n�= z� S lv � I- 1�1 - - � r i �.-ter = •n�,� ' N s Cre Or u Sia'Z• � 'n�� 1r�dS tr Zl oo C9oi do+s i �8 r -STsa I +ca 8 = I V. v — snb loZ$ n l3.1 sl + I + o X. / S. 3 S r+c i�"10 � Iz.yo Sro /IQ-� = lt.oa STo. ,i4,5 = ,Z.GS -< ,. , io q = 12-.L4. srA ,2i3 = 14. 0`1 = CoA lC u� "P Z h-! -STsa I +ca 8 = I V. v — snb loZ$ n l3.1 sl + I + o X. / S. 3 S r+c i�"10 � Iz.yo Sro /IQ-� = lt.oa STo. ,i4,5 = ,Z.GS -< ,. , io q = 12-.L4. srA ,2i3 = 14. 0`1 = CoA lC u� "P Z h-! l `�j '-C 1 e •Il ��' 7 2 a•Zl _ •�a-,� - � y •j/ � TzC/ .us if ; u yes P•i col --••'y5 - -- m d• a o " C"�o'Lr bLas S Z w 0o•Lo I / t'•1$ 0 u J t Al��- • \` aL•4/ v ^11� CZrHdS Z�L/� Y 1 t � U J? Jr h� �rE64- � s ri r-rs �zr 3 eo •Ooc./ �.rjs 4 J t 1� V -E$„ d1s p IU 9 � � U a ' L+s O, i'1 S o'Gror v1� e c+Z • b, � a 4 6 r r bJ.s' Q i - Ju! 1� H sd► c`•-oLi Irv.-,-da4'�-�•�1 �j = 49'-bl c 'ns-+a t+ • 6 Z , ' �r1g - ,oy �a �J a OP 'l�Op/ �•JS e •s-r e, .�� s o•eZ e� 1S O 'O Oor �r1S Q-gZ,re/ tr15 1 0 r -7 iU Q Q v N sd • c, = n�-� �U ea v 0•n a r N. rtry m » N H Y n n rt r 'O N 'O y � Y fY 1 Y N Y 4 r t ^n P. » o » z r 0 to O Y a 0 o N » » f0 Z i » M C ap + 3 [n9 i cn In O N• r O » r 'ro r a a a r Y m » » N » 'O 0 » Y a a Y » o n a » » a » Y Y » ( m » » » » fD m + k n (D O M O r r O E F•- .7 m 4 ro n 0 0 0 n a H z N z C z m x m n H m O r N 4 z z 0 r O b N rn m a N r r i ZzN r-4 33 N W r, W •-i N N O •--I m m O o m v t N m 4 CV rl •-I l0 O W •-i .-I m U •-I o Q a O d E m m u1N io O •--I m O a m E o W N M O m • N l� m $ m N d m .� M N m z O U V I O m 0 l0 m O .-• M O m m > > a I o oo�o 0 m V) •-i a a �o •-I .-I U m O W z m In ❑❑ O ei m a W m N m m O �Q[ •--I '-I •-1 N •-�1 N � K N •--I .•I •-I I m W S N N N a I W O O E. m m x •+ •+ •+ .+ m m m o o m O O O 01 ry O m m N O v r -fl M r-i ri ••I m to to O W • O O Ory i 'p ONi i 'O ON 'O ONi > H fm'1 N 'O •-1 C C N C • .-1 a O U O C N �O �O N N N M Itl N Vf W I -a W O O N •-I N sT N ❑ m E •--I O O •--1 O •--1 U 1-I X Z O O O O M M N rl •-I .•I r-I ••I ul •-I a 11 W N N O Ia7 N v N I M P! I O OI 1 0 N I O C C C C m >• N r• .-1 m .-I N •--I O a O a O v O N In ~ ~ ~ ~ O V L N N C z .-I U U U U W -.I H a I z W m01 m0 V' mom mOm N C N m O O O O v d N C m 1r ov.+ Cm r` Ct` io U C om o W m W o w 0 01 O 01 N Gl m of .X O 3 .•1 3 . • 3 .+ 3 .+ .. w O •.+ E m rl .-. •-� 11 O N W •-1 N O m rl M O O O N 0 W N .-I H M Cl a O W m o o m o o m 0 •--I m O M U C f• z W ❑ O •--I O N O O m H m H H O 3N $m $ - P a mUl U O m O v O a O v C .0 N •-I .••I .-I e-1 .-1 .-1 r1 .-1 .i W T W W W W w Nt0'/ m0�1 m p•0a x m �t00 al u V v m m z .+ U w Q o .•a a M m .a .•I N � +i V' C' +i tT V/ z W O O M m •-1 .i M V) N ID m O f/a1 m N M z SmU $mU SmU $mu •-INm •-I N m EU aa 5 F S S F 3 3 F 3 3 F. 3 3 ••1 F E.F h h h d z z U' (D U z xLD z 41 G'141X 24 G'1 (7) GI X Zi0 Y ,n (.l (7]X Z 41 G1 Gf X Z C)QG1%2 % pppYxH ppp YdCH pppYS pupprx pppYS pppr N 4 pZ' W a l n N Y O l N W m Y r 01 Y Y T N N J lP W A 1p a N W W N W N N NNtpO 1p rut � J Jr 0 aO JlA N a JO Y O W O W O O O O Y Y Y m Y Y Y 1p Y Y Y Y Y Y Y Y Y Y Y Y r 0 0 O N r 0 0 O 01 N Y 0 0 O Y 0 0 O Y 0 0 O N O O N N O Y W N a 0 Y W p� W A O Y W Y a 0 Y W A to O Y W r 01 O Y t0 NO N OA m O0A0 W aD JO a 0 OdDOIn O 10O0InO to OOtn A N Y Y Y J Y r m Y Y Y Y Y Y Y Y Y A A 01 Y Y m W Y p� Y Y N W Y 01 Y Y N Y O1 Y Y N Y Oi r Y N N J Y O O O N O N O N O r W O Y W O Y O lA N r O a O r 0 0 (n Y 0 0 O� a 0 Y O1 J O a r W J 0 O O O O O Y Y Y Y Y r Y Y Y Y r F• Y r Y Y• Y r Y Y• Y Y r Y Y O O Y O Y O O r 0 Y O O Y O r O 0 Y 0 Y O O N O N O O N Of NON N UtnOtn N JJOm N to to O�DN O\(nO NN O�mO W A J W 1p UI W �D W m lA m 0 W N (r O W W J lA lD ll� W W In Y O W O Y Y r W N Y r W N r Y N Y r r N N Y Y r N Y a s r N A Y NOl Y N01 Y pIYN p� JO a N Gt W W N N W N O In W l0 0 0 0 0 O O O O O Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y O O O Y 0 0 O Y 0 0 O Y 0 0 O N O O O N O O r W O W W p� (n Y W W m J 0 W W m J O W W O J O O1 W Of m Y W Y r Y Y N Y N Y Y Y a N Y r a N Y r W N Y r a N r r In N r N W Y N W Y • N A r N A r A r N a W N N W tl� O W m �p a \D O W N N O W J O tpO�D OOOI ODm YOOmN aOOO J tDOOO W 01OON O O O O O 00 O r r 0 O N Y O O Y 0 0 O N O O O N r 0 A Y r 1p O N Y O O Y r 1p J Y r N J Y Y m N N Uf W 01 W O O 01 N J W p� J W U� p� W m N Y Y r r N Y Y Y W Y Y Y Y Y Y W Y a N Y Y a N Y Y (n N N A r N W Y N N N W N W N r W r Y Y r r Y Y Y Y Y Y Y O Y Y r 0 Y O Y O N Y O N Y O N r 0 O N O W •O O A N r N a a N N to O O O In pY J N NON to �O to {/� p In W 1-43S W W m W W b a r mra m�oma a4Qai mM.iv rover m m F ❑ m�Dmut r �+1N0 .7 Cy W .ti.-�vr O 1 O N '-I ❑ GOON .y M M tp m y M� O. N rM p N �•-I as5o O F W F .a O m m ^; lz o 0 0 0 ~ 0 O •� 0F .4 X > 3 U Fen 000 00 O P10 z .y O O N N , m Z U T Q X H or v r rinrno O Nm Q p mOc U L)za m W Q X" N � m r1 .7 Q N F m 0 0 0 G O O N m M U N O p O O N N O .0 z F .Ny 3Qxt+ m O c N O O t 7 U v 0 0 r o 0 m co N 0 0 m 0 0 a s M ate' u a > x • o m a .+ in O .a of W V� VAN .ivl0 w S Q O N Q O O . I N UU..4 0 �. .••I r f•fmM 3 U O> X U W time N O O N O a U W V O � Q O •"� o .Ti .7 W m tl .7 v 0 0 x O Oa m 0 0 a000 V Ow O W❑ S a.y SO .y •rn 3 O01> E. U y O W O x .07 S 000 w DO ruu DO W O O O p N O m W �. i z W a W ❑ o ❑ o'er at O ❑ Qo ❑ U Hov om QO inov.•+�n o W W W .] U� H > HaO. O m o. U N N O O N U N M •� U O .-1 Q M W l0 O x H �D r N 7. ❑ U 00 t7 ~O 2 ❑ 00 (•1 Op Z O in N m O E. m fu M tl Z z m kO b N �U N x .ym a W U v m N N~ r OOf W N a m N v N •+ o M a W N M a N M a 0 O N N 0 O W !n 0 0 f+ O z O O O W O $ O o z O W O p o z t ." M (a m a. N m H. m hl m 0 x 0 a o Sb7 C a M "Gb 0 z M O f i J O~ O H 0 0 M O l p O b m N a o O N a 0 0 O: � p z [pal zb O0 L'1 0 00 O O p 0 o C 0 OUOi 0 ON M t- t %CIO 0 O 0 $ O f+ E O 00010 f+ W 110 lD H O U O • m < �ooe r m • oo M w a (z7 N M xclon rnns W N W 0 N m W !7 m m M m M m O a J r • m l p N J a l p W M O c x C 10 O O Fa O0 0 wm A N • mM l M OO�D O Im n %b £ H z r M O O r M o 00 L. H o • o ro o x N O OO bH N OOO fib-. ID r M x b M z A t7 0 m z omw a 0 0 u l M x y n z w ~ O A O to N O O O y O m 0 0 O O O D u 0ECm 0 m zrr oo• � oo. �., � 0 o J W o o m �• H M H O o r :E: r 1p N F+ N a M b M M z M O O t p W m O m t+ p M M w r = M I 1 a J w m m J w m O H to w m b b b m ow�o a H z z mmmm mmam xx M M rr M M C C u r %1 W a a ww uai w mrN�n �G �G .+orm zayQN �MOm CO m E+Q •-1 ""� •y m I 1 m z o� .aamw of m z Nr i M 0Qao gg O E W F t D m 0 0 • o m a0 a a F 0 W 9 a U 0 vr�oo M V O N >az`'F x C7 N N •-I r o x Q v o 04 U z 0 w wax.+ a m FO O O N a G O O w O am a aax.E Ga O O o n v m a Ir N M 3 m m m t+000 aaaa o uaax 0 w 2 mNr a o• m m a 5 rn M w Q w m 0 0 u l 00 3 O N O uFi 000 O U w waaa O O✓ X [av 00 G U O 0 A IZ-1 ovMr Qo rn U O m O W z W a G S M z m O z N m 01 E. m N N v O U i O O m W N M C m M M .•i 4 ••1 N a O O �c •oo r o l M N N r • M o a s .•I .y E O O O N W o •o w • o • N N rn M v a m r • .+ M N w .. o z E- x Z rn•-Io ovto M o S2 U C N N O U' Cl l m M •-1 M a w , M C_W.1 o za r wm U Q W w 0 .rn -I -0 (W =w .00 r O N w 10-I W W m F [L Q O O U m bi In o m £ Q z a U Z o-0m Uo of r1 F o -olD o .� r O z H O �• w F Q 10 q $ am O z 0 U £ U 00 M O O 0 UO U/Or D O M W m m N N M C m N H r M M .••I k ("1 r M Y r N r W N 1H-• y y H H £ £ £ £ r Y 2 Y N 7 y N r 1p A 4 W N N to W N w N N 4 N '� 10 -0 10 -0 10 10 10 10 DO O N p£1 2 z M A In Z N p p r O r O r O r l0 x o Oro D N t O ft O M O Y p o n n 'G n N W 10 O 0 O 10 O A O 1-1 Y co n A E A E A E A E y O Ct" PC) ro M w w 3. N W Y O W Y PJ 0 O 10 CD q N (D •O fD O H Y 7 fD 1p & O rf o (f O if W 7C N N E O E O E o E r m N N N a 0 t] A N N N N (D 1D ::l 0 O 7 a N N 'O z n& N N w N N I '.tl Y +J Y 2 V• fD a n '•:•tl0 ?/ 0 q O A ';pV n O C 10 A 1Y A fI A R A (t N O V• O Y• O r O r O O O O N 7 7 7 5 n a a a O N O m W O N O N O N O D7 A O Y •A a a O a 10 a 10 a 7 C O. KJ N I 0. O O• O CL O V- w Y J (n b O N O O O O O O O ai H o w0 n n n o 1 a 10 10 IO IO fN ] H bG M o O O O A 1 N O O O z r ro LM m ro o H o pl va D7 M A O o O O i S Y Y M Y t C H H H H Y 0 O Z A A 7tn0 p N N to ut U y w 10 Y Y N Y N Y N £ a £ w £ w £ w £ O N N N N O Y N J O lD V1 tp Y •> N Y N x N £ Y N Y N Y N Y N Z N Of £ £ W i,• w £ O N 01 W N N N N 3 ++ t� w �• m � N n N Y o O C O tnN n N W N NN M '•] O N O N O N O N O o o 0 o o 0 00 0 00 0 0 0 0 0 [Af o 0 0 0 C C C C J N t n N n N W N 0 2 o Z o Z o Z O O O O 0 0 0 0 0 0 0 0 0 0 0 0 Q4 - 1- J5Ii 7T w c� a x x rmwm Mcor rnrnrn Q Q Q N N M m v r 0 t D Ol r O M wwN0 mtoor rcn to .-� to 4c4 a a m w o M o N o m z 0 0 0 0 M O N r O N N O m 0 0Qw aaao O F W E+ y N a o 0 0 0 o .00 uri �:oo c.o aza� o o tu'O o T 7 $ U 0 00 0 N O O O r 0 0 goZ tm• f N O N O O >zzC) N m v 0 '-I N m r•1 0 U z ❑ N N M 0 ti 0 W W M x Q F � a a O O O O N O O O o O 00 O m o a a w O m .4 z F m aQx.+ m m a m a U o 0 0 o 0 a < o 0 st co m w a cn .00 .-c oo m o a M n cn aao>aa U O > X Q a F o �nO rno rnrnrn Q.ti QQ N r N OOi m m O U a M wNNO` m r Mid ° rn M,N` cLa iax u N U m Q cn w m o c0 o o rn�o o E.M W aa Cl) •oo EMa r •om .••c Oi 00 O O W❑ S a .. ❑ 3 SO rc a s> x 1-of a a 0 W a z oao w ao w ao w O o ❑ ❑ QO q MOTON QO p a(A. M O w UO ; E-OMOm UN M O •O.-1 Uul H O O "Q' U F. O N Q T. ~ N %. N m M O. N' '.a h w H a u z o ❑ U o w o S z ❑ toN m z ❑ . C, on `O N m oc E. m w rc a z o 0 z o o z H O E+ .7 O U ul O .-1 O U of N O U u/ N PG I-i S rn W t0 N 0+ W t0 m W w W LL' Uem N r vm N am N } U U .ti } M M rl fi M •-1 } M W W • Y W W W ♦ Y W Y • Y m m m� o m m m� rn y a m io O to (] O a N O N 0 0 W to Y O N O z G O O r N A m 4 z O z O •A N W b z N N O M 0 3 A Y a O C a a a o •b N w M O 0 MO. 0 H Li O 1p O 0 N m O O m N. 0 Ob O N pO O p Ob J m EM O . O z G1 M [q O O tq C7 O C7 ro oc 0 ro 0o oc 0m y r to -3 r m r x<oo o ^� O N O O E U N 000 m Y O r W z m m m H O N lA O N 00 Y r S N 00 a (xJ a z a a O O X C 10 0 O W O A O W N a (7 z Y N O W Y O a J S Y N m 0 N t. O X J O a z R I a N J •3 M y L] z to O -3 03 O W W a o Y W r 0 0 A O w � N N • Ol a N [9 O J �D O ro N 0 N w H z r n o• o ro M o- x O O O r N y H b1 H X b M O z 0 0 cn a o O a Cl n S Y • z S x H 00o< O 10 O O N z m Y N Y 0 m w 0O £ < s 0 r o �p z L0-• 0 0 Y 0 0 Y O O O a O O m W O Y n Y R] H O Y N N O Y J N ro 3 b o moY . J • o tno• o H z m .-• Y Y N O " Y N O Y O Y Y Y �... �... �... �..• i zmwN N tnNWOi m a W 01 O H m m Y o f+rnY mwzpa z 3 z to o tnmm inwam x x m cm W [r•] Vj Otj+-1 N 4 1 ww ww m r m o x x 1 O P O 4 w m m M W F 0 .•Y .-i O m I I U1 Z aamw O N O N O O V m z NN 0ac i P gg •"I O F W F x'>s0 N M 0 O O O N ZL) 7>w P .-1rnN P p x P P U• U Z O W Q X N F ra N a O O W O a M M O N .00 Z E. sax.+ o r v m a •a' M 3a0m 00 00 0 x U O > x W F X N N M W P • N m m M O W x POM o mLcxA o 0 a > x O N tlI P N O O N •oo x m ci o o a000 Da aou oa>x O W � O m O r N M Q O m m �M Urn ON O Z Z W 0. OW o zOU h W I£i.4 mOFm P O UO .N-1 m W m P m N .y • M .i o m o o m m o 0 mN mo .-I Mom �n M m P io 1c o m o .•I •.I M .-IMoo r.-IPo O O P O N m y N N r Yl m .••I h .•� N •"I N t0 M 00 1A .i 00 o o o r• o 0 M 0 O O r N O O O N O N W cgww%0 u1POm U• r N.-1 O Prl Z e+0 PO P rn r In OKG w a E. E O O O N W O O O O W O 00 W O 00 U O • U N a • r., 0 mm"r O br1`m')M E•M•I m N N N N W O x W F X z Z mN P W m 1D. x � -ma W m M O iy O� m U PPN o P.r a W ti� z o w p a w m 0 0 N P 0 0 u/ • 00 kW W 00 r O N O O U W .a U W I -I W W D O U m a m z U 'I. O •ON UO m M FO ON PG O r M r O Z HI00 rn 3 oom Oo x 0 U £ UOOr C4 N N O U O m O r O m W m m N M P mN .-1r .•I 3 F * » m r z * » H 0 O O H »< m » En r rt y E y E y S 0 ~ N rb b b b rr rrA N rt co cn 00 m .< m b * O * b W A 'O O 'O a A �p A H» 0 o z M * b O rt a K a M o O O O H rb Y t'J O O z M r a ry0 rt n] rq ry r r r C x A O A O A O A i E 0 E E to z O r O O M» r W 3 tE a3 m a3 m 3 ro -0rt ro fD ro N N m r 0 » J ct U tr rt O to b r 3 to * rn o E N E o E o rnN t+ H *d * m m m m a s L4 + m m t. ,rti z �n 7 M y k N to to W M H m W » r t' » b n 7 n n N rn O * to » C) rt 0 rt 0 rt 0 l0 r A f+] * m* N W m P. 1p P. O N m 0 y 4 b O N O O Oti O o m * r .3 ur H a W H N N * r �p N O r O m O rb/J X m * * NA ioA ap A S y I 7 r N! 7 0 0 o H m a J a a a o O O O J n a z o 0 0 O 0 o b n A r 0 0 NA wiO aA A H r ro to 4 � o 0 a a H z OH H H H H O to �] r r b mtmy M[ m a E M 90 71 70 P r b o J a 10 m N 3 m [7 m y m FI H H H r r b m pi t+Hi O m m [o m M m rn b z J J J J N m O O O O rr amS aS aS rr.�8 O O m N m N m N r N N a m r b 01 J sJ m S 700 mS a $ ,rn S am 0 o z 0 `i � ' �m Nm Nm rm J tp a m a H z N y H p1 U a 0 W NN O w n O o z O o z 0 0 • o 0 0 0 0 0 H C N J m N m a N W W 4 O w O m O N O m 2 0 z a z z z 0 0 0 0 0 m o 0 0 0 0 0 0 0 r o ro b m m m trJ a N h+ W 0 I r4 43 I 1 e W a a ' vcc rm min mo �nO mo .�o rrn . . NCO . . om oo mo uio .+m o.� rn.a . . iom . . van . . mM . . vv . . rm rr r+N rn.y mo mm �nm oN N N ' rl rl rl rl rl rl rl rl rl r1 rl rl r1 rl m r N m M m n N m v 0 O O W W W W W W o U U O U C M r-1 e-1 .i .i N ri .i O O O O O z a4 zO a cx ZO a Z2 a O O 0 0 O O O O O O 0 0 rl rl W W w O M I- F F F F F m N 01 a a s a a s W w w W W W a �O O r-1 l0 N N O N O C' m r 01 U U U U U U .y �O r1 Y1 a O O �D N r �Il rl Ol N rl e-1 rl rl rl N rl rl rl rl rl N rl Q Q Q' Q' Q Q W W W W ❑ ❑ �D Of rl m N o 1O M N O rl O q M m H m 0 m hl m H m 0) m N N q 0,110 '+N �n.y I 10vf rnm .av1 rnv .im W W w E FF F FF wawa ' m Vl O r rl r m V r N rl r r m D pp D D D HEW m 0 M M V' l0 N V f M e C N O N m m O 0 0 O O O m W m W m m W W W W W W m m QQ U' C9 C7 U' 0 U' QU Q U W W L) u m t0 O O 01 r b y m N m 0w w CJ r> U L) nF, U a U c r 10 C1 r rl m N O P rl 1f m rl ca w ww w ww nwow U U U U m m ZQU U U IZUy i4 i4 N >4 N U S U p£p£ w, >w FzEr+ 0 0 0 0 0 0 0 0 0 0 0 0 0 o a s 00 o ZO 0 m" z" 0 0 . . 0 0 C. . 0 0 . . 0 0 . . 0 0 . . 0 0 . . 0 o . . U U U U U U U U U E U E N N O O O O m m m m O O O O r r N N v v M M M M Mtn m m . r U) a o a a s a o a a o a o F W W W W W W W w W W W W O N a a N a a a Z " M H M H M " H H H hl H W W W W w W W w U. U. 1.0 W W W ;o ;o A 00 0 00 0 00 0 0 0000 M o0 Q as a as a as aaaa M 1D M�0 wC- M N M�0 M M M�0 wM M M Mao M o Mao mm m m Mr H U m w a a s a o4 m a a a o. W a o0 0 00 0 00 0000 N m O O O 00 O O O O O O O O O O O O 0 0 0 0 r OO O1r N a mN mm Om .. q . . . . . . . . . . . . O " N � Ol r r i m N O v Z 00 O 0 0 O 00 0 0 0 0 a a w Z Z 2 2 p p z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 .ZO Z Z m m 2 00 0 0 0 0 0 0 0 0 0 0 O o w U U U U U U U U U U U U 00 0 0 00 00 00 00 00 m O w w W w W w W W W w w w 01 m m m m m m m m m m m m 0 0 0 0 0 o 0 0 0 0 C;C; 0 o 0 0 7a. 00 �nCn o0 00 oo 00 z 2 Z (9 00 t9 (9 0 z z Z Z NN NN MM as as NN rr F 0 x izgi m gHg z'yWz FF F E m Q Q Q Q Q Q Q Q Q Q Q Q UU a as a as UUUU @ @ � ! � @ 1 .. 1 1 1 j HWr FLOW 1A 3.10 pwED i 3.00 GF► i I � C. r 2.90 0.16 G 20 0.24 0.26 0.32 A) DISCHARGE COEFFICIENT FOR HWr /Le > 0.13 3.10 3.00 2.90 Cr 2.80 2.70 2.60 2.50 0 1.0 2.0 3.0 4.0 H W r ft. e) DISCHARGE COEFFICIENT FOR HWr/LrA0. IS r-+45 h I (t4a'4r14) C d I klCr f/VEiR- 1.00 O✓c �- T1+c .. P�vED N-jF�r'L . (NvJF 0.90 0.80 s 0.73 0.60 0.50. 0.6 0.7 0.8 0.9 hI/HWr C) SUBMERGENCE FACTOR Figure III- I1--Discharge coefficients for roadway overtopping. The outlet control nomogrrphs in appen- dix D provide solutions for equation (5) for entrance, friction, and exit losses in full barrel flow. Using the approximate backwater method, the losses (H).obtained from the nomograohs can be applied for the partly Cull Clow conditions shown in figures III-7 and III-9. The losses .are added to the elevation of the. extended full flow hydraulic grade line at the barrel outlet in order to obtain the headwater elevation. The extended hy- draulic grade line is set at the higher of (dC + D)/2 or the tailwater elevation at the culvert outlet. Again, .the approxi- mation works best when the barrel flows full over at least part of its length. 39 BE 3. Roadway Overtopping. Overtop- ping will -begin when the headwater rises to the elevation of the roadway. _(figure III-10) The overtopping will usually occur at the low point of a sag vertical curve on the roadway. The Clow will be similar to flow over a broad crested weir. Flow coefficients for flow over- topping roadway embankments are found in HDS No. 1, Hydraulics of Bridge Waterways (21), as well as in the documentation of HY-7 the Bridge Waterways Analysis Model (22). Curves from re erence are shown in figure III-11. Figure III-1 is for deep overtopping, figure II1.11-B is for shallow overto ping,1 and figure 111-11-C 1s a correction factor for down- I 77 Ii FI I I I I 1_ �II lJ ' � �^ v� i✓� i+++a- � �r-L C cT o.^ /� C L - Z /V7 a p C 4-r � 1 n 9 1.. V I J J t n r Y fD m % V N 13 % G % O O % N % 0 o M n O + 7 x 0 g o G W t0.1 O rt m P � C7 ~ Fw' tr + Lr9 w W O * % N % » N G I4 FS to b' O M w O I-+ 0 O r � E S 0 rt o > r m rt rt 4 ro v n n r- m < n m 0 n 0. b W m f+ xxxxxxx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xx 'ZS r5 N w Q a w U O �t ti N a E .+ W H 3 in x U � P In 1D rl P M o u> r o H o 0 0 rn rn rn rn P d m P P P N P VI m m •ti H M Ol P N r m H H w m m O > a m a r P O1 P �o Q m M H H • N O o .•� rn H U Q� Ol Ol P Ol E H P P P P Q cw o ❑ F o o P m P n W Z Vl N �O 1p F E W a a io m rn ui M a m P H m w m N O O E-E N U N rn m m 0 O O E m m �O O l0 O r O� ti O N Z m O X P O N Of m O O\ of O H m •--I O r Ol N P P 01 P r 01 01 Ol 01 Ol O P •--1 .-i P •i P P •y P H O H i �O O l0 r 'O O to N 'O O P m 'Ornm R7m C C M ro to . . H ro ro 5 o U ro N r ro N N M M N Om N P W H w O r o N M Cl) w .+ o r P w ❑ m G n C C C r m O m O rn .i O N m -.a rn 0 -.� o -.i o 0 -.a o > o > W mP W O� W mT L mOl m l� OI FI r Z L. •-i U P U P U P P U P P U P 01 -w H a4 yPOM yN�O m�oinr airrr z a vioo io C y r M m N m M N H In M r m N P y y C o C H C P C r C rn U C N •--I r P 01 H M N rl M N G1 •-I O m 41 H P •M W r r N W rn rn W r �O a)o m rn 3 m rn 3 0 3 o N 3 M in 3 r •• C H N a) E 1D W H W H rl Y rl '-1 W •ti N w H N O w w w w .� p -N O a o m OQ-M mPr mNN01 m�ON mr P U C a $ W o 3o 3o�n 3 P01 3 rN O�W .i �n O0 O H o O.-1 om 0 O.+O H O.-� W P Ol W P W P 01 W P Ol W P 31 N O P P P O1 a OO Y• m z U 0 a� a O P a a M N a m a O h U W M N m �Il VI H Z Ol H •--1 H L) L) E 3 z 3 E 3 z E 3 3 3 F 3 S z E 3 3 F F E h h M N O N .-+ W O N W b� P ro a M 0 m H O � M O O E z H 0 a M o P m O M W o P . M w O U W a N H 4 0 H > h za cic)x mz c)a r c�cix z c�c�c�x c�c�c�x H n ?i 'p 'M A r 'fl 'p r n ' pap 'A r w ',cl 'p ;V r ',tl ,t7 � r ;V r MW r m in r rNft rrrr 2 rrr oor 000r 000r a . . O (D r . . . m W . . N r . . W . . . N . . . J . . O ll� J O 0. m O 1p a 0 a a J O1 J O 01 O m N N m 0 J a W �O O W (D O r r ro r r r r r r r N r r N r r r r a N U� W N r a W Ol to W J O1 a J p� 01 Of W W N O J a m N A t p O O O m a l e W W W m r A r N p� W m W m a N r to W O m U� lD a o o w o O r � z r O N r r l0 O a W r a r m r O� r 01 N O1 r N �O r W 1p OG W r O� J a O N tp W tp ll� Ol a 0 r W m r 01 0 �O N tp 1p O r a rt � A a �-• H a a A r A a r a a r A a r a a r A A r l0 1p N I+ �D l0 l0 W l0 t0 W 1p 1p N lD 1p 01 a tp 1p Ol l0 �D O� . . . fD O . . . . . . . O . . . . . . m . . . . . r a CD a N to O Ol a N to VI W a p� 4� 4� J 01 J U� J O� 01 J Ol T m p� a y 01 0 m a l0 1p W tJ� O W lD �O W 41 Ol W J N W Ol J J O O. a N m W N aD to N W lD J a 0 O W O� N J N tp . . . . . N p� W . . . . J to 01 tp . . . �p m r . . . Ol O N . . . �p a J . . . . Ol l0 N m . r N N m J J W (!� O W W Ol W N Ol J J r 1p Ol r r lD lD N 1p a A A A A A A A a s a s a s 0 0 0 r r r r r r O O O O O O 00 ll� W N W N N m W m N a N W N �O J N N Qi In N J O m W r J m U J A ww W O O f' r W a W m m W t0 a J p� O m rr r F- rr rr rr rr rr N N a W m a J m J J J a m J O J r O N a r dD In 0 J w O W to J N J a 0 m N a A Q� N • W W N W t0 N W r a 1p N N N a m N to J A p� J N J J r r A dl r W a r N N a r J m N m A r N 0 a s a A A a a s A a A 1p l0 A 1p A 1p 1p l0 l0 l0 l0 lD a W a W lD N A O l0 O m N Q� m r J m O J W O W a r W O In r (n r a a M p� m W wa m a 0 W �-• r r rr Nr rr rr rr N OD N T W O W t0 W r J N (l� J N Ol J a A m m 0 O N N r J O J l0 Ol N J m N O W J r a a 0 W W N J r 1p m 1p J N r a s A a a a s a a W lD t0 lD A t0 A 1p 1p 1p a lD tp J r r r lD O t0 O O O tp O r W W W N r l0 OO1 to to O a a o rn rn• a tJ� a W r r m N J r W N r to O r Ol Ol r l0 to O� r r r r r N r N r r r N r J a a N W r W Ol W W J W Ol l0 O W J (n �p tp r 0 O N r m m W O TI r N N m J Ol m J J lA J w W W q W N J r 1p Ol l0 J 1p m W S5 a r o a N o a rn ri m N C P H H > > o as N w W uHi a, xx ooHN omm M a lay El mMMr rN�o ti az a rt {{C E O N N N m N N N l I I m Z O o M m O O M a a m W mmw � mmlp 0 0 o m N o m to V1 Z H o ry O o m N H 3 M Oa £ a yr In •+ 43140 o F w E � m a a H O 0 0 0 0 m 0 0 N a O O O N O o • o •N-I .4zaa' o a x > 3 U H 0 II H N H N r m m N El 0 go M N o a o m zaxu m r x G1 N M tP H T N a o H�or o w mcic m o o a z N o •-IN amZ O off o~ N w a x es m m a a II W H m a a a O m a 0 x a Elb 0 U W O o AM H U O W o w o a a W N U m z F m o U 3 x H m a V m m V O m O O bo o U r v v W v M M o NN m a M Mo A �o M a H 30 fq0 a o H H a v o m v a C U ClOI > X m O 0 m a N a 0 { O H W W H O C7 ov W rlov o z oro N ti a E O M m 0 O a r • V -.I .+m W 5 a o m II r 5 m E < m S S U 3 U U a a o M Cl N N N W o O z .- V M H M 0 U N N N 0 W U O> X U £ m U w m ° a a a voice N. z rl to v U o Ol Q a Ol ace+ m-ti H M w II H00 o m w Hoo w or •• x a w > xw •oo rL m > w •o O N O N E m R1 m OC E • z w m OOO O W a Z r HmM O a W a a a E U W O U 0 OI > x o o H m o N o y 5 00 E m H 0 O -.1 a s m N !7 H N O N W O U H M C z N N m 0 o" 0 0 0" a r H O O H N o v to m O W OE-0 • O N E. Z O 0 1IN •-I •-I Z z w m a H H Om •M m 0 II II 0 H a OO C mm rt U £ O H a a N 0 H OIa a x a M a) v v h w Ho U O U o 0 0 W W E O 3 a' U N co H II z o o a s> a z r H O E. > Uoo 3 II w a W U N o a H m W N H o a s o W o H F .+ace a a Umr a F N M w X LD U' * U U+ M W m M H W W • N KJ W J W O dl m O ro q O r N m p� N N (] m v m II £ N O N N £ 0 O HLC-] M� o o N(]3 O Y H m r K) z C r II Y II II N J r o H Z < z H Ja H H N O O H H H m H �CNrOH z m m o o p y N -7 a ro r O ems' N m O W 7. ro n 8. r J H H CT S pm Pi W O O O r < r Nn A rn rNtp m ,nC Z m n 3 m Ou O H T� n `z, N J p J m r Y O H W O r n n O N O H n N tp H H p N J O Y O1 r Ol O J Ol H H J Y m io 0 • n o • o £ o 0 0 0 N m o nor �• r r II a 0 0 � m • �c O 1p lD r r N rn J o m w • r o lA o 0 r n r ro v m u N HpN u, z ro <ww o o n "y O mY x S r K) not ro m z z r u u u u m io m O o r r H N N W H o C o r o H x <100 O NNID H w a n p Z W W W .3 N r J r m m ro0 � w N rn r m LX"np£ rWioo z S S S m rn 101 J O Y O X CAO ,Jn r P A z W 61 N £ O J w N p H X>Z£ •3Z rN zrom H m r x L� E r N m r H x v m oz�c� O O S S ,p �o r O N H x b £ o 0zx< O w O Z to H O n£<S oHOr z r � o 0 H m H o E H m H Z N O p r m N I I tjgm HY Y P D H z z x x � m m r r m L'J C C 51—T =--2 W a W W WW Q N rn rn N O m m E❑ N CV m 1p OOOIp IICOZ rn rn r a a m W rn rn m r P P rl •-I P P "1 .-1 O •-I N .-1 q O .••1 IA N O fn Z F O m 0 • � m F 3 m m N o rn14 F 14 F O O~i IN+I P P O N O O O P O O �o •oo a � •oo o N o , 0Za - rh > 8 U .-I In m In O II u O o • m F O o m rn o Oa0 N� S H rE. a 4 X M tL N m P m m •-1 rl mC)• P . m '-I 01 • N O rn r W a x F rn P n .+ `• a a • F w U rm 00 nm Yd Q • �= P a m F W o �o • or mZE A o L) � P 1p VI rl P rn l0 r-I M N rl ID W M m m P M UI a ❑ P r rl m 0 m O O N.-iN O M O a a a a W F �'� rn .O N m IA N U 01 > x q D m P m Z O P In W r N P rl M F W x m rn m P W m• Qz Q v r .In m 0 .o W 5 o r N II P m N N O rl m m U O U N .•-I N m O rl O Z O N m 0 S Uu a .I m 4D r rl rn U U O> x r W rn U P W m .1 l0 vl U P W rl m P r y m a m rn Q N�oP m > o00 O tm+I 11... umi 5 a • m rl N F ro m m Z Z N Z rn P rn rl •-I 11.000 3 O O m Z rl rl r M Oa U FO O N N q d> x O E O O N F N O W U E I+1 rl O y aD0 m ❑ c9 W m F o r W Z F rn oo�nrn a In rn O m F o�oP.-I a m o• o r F .I rn o W r F m om • m m m F n n n n a a a a z a o > o a oP m m n n n n m .-I ❑ W W E. c.I W I -I a O F ❑ a U a 3 • M m r O I ❑ a Q a m W W F m o as>a In mdErn Z In o aa> W P S a a a ~ w m 3 n W Q W i O a W o 'r-I O 491, ❑ .7 W m k m m M W N ei r y pq W W J M m t- Vi= O NJ Nmm O •Ov O 7 W Y £ 00 Qu () r W Y Ln 0 £ w •p o O z mHpm In •O <wA a W O 0 o W n mo rH m 4 HL9 L9 O by H 0 W. Z W" Om () xr TipII H II II m W. A00 HZN mVj Z z II II II m r H ON- ow H Ho Ln O H W ,'O O m IpO O H 3 0 1p N 0 H H r W 0 W m o H J O H W p o p tl H z wo Hm ro 0 o00 ro no.mz r N H H m W W H N r lA •+J 01 O a m x '9 r x N sJ a O O O J H O y N m H m a n Etq a 0 o z m r H 0 D . 0 z r(R L9 W r (]£ rOJN z O �a II OLl nxxm r o a K x II W W- m IW • a �p r J N H O a W m O lD J X< p N O O O O r w w r o • � o 0 H O H W o O N A m m m£ N O • O O r • A 1p tp O r a lli W p� (n N O H Z r m N a xr O t, a o a ao A 0. m yH b 7 C n 8 0 s N H (o L] K til r LM t. p a m o Lq 0 z n 0 w a 0 0 x a O J x a a W r m N r J v 0zac x O Z m I n£cx O •-3 Or o r �xr O O O 01 •T O O J W 01 O a a O o O r E t, nw a 0 n £ H m W O H Z m w W arO L7 r r •.O O r r O O a woo tI z W I l00 W O O O H W m b W �noo H�b2 rn W o o x x m m rr Ln LM ce •o G) w M J N r N W W O W • O a J a W w u a . r O O • O O J O W r o tnmao A • a w O �O• r W N J to tnJ z H Sri 1 1 1 1 1 m w a a 0 0 0 0 0 0 0 0 0 o O • o • Z a' ZN Zw mr mM wO U) m H In P O o o r O o 0 O Oo 10 O O o 0 O O O H N O Oo O Comm Z 0 Ze Z N OOM v O w O O .ti H w VI O m N O U) N H 00 p H O H O H H .y O N O r r m r O O �D Ol lD N p H m P H m U1 m H m Ol V) O to O !n O O C p O� •^� O1 O O� N m.-iroo v r m M o • o o r rn � H O . M p H Sin 3m 3m mo mo mo q rn q m p rn V' it P II F M W O O N N N /1 F F F F H H H M Z Z Z M H ui utN� W r W H W •"� RI as w rn E. E. E. W E. m M o 0 0 3 a a o M o U rn o 0 M O • • N d d N d o rn •"� U U �D U m rn a' F N F M F a a r in a o M o ro ro • ui o d .+ d c� N d o .+ .+ 0 N a W m M y N o E o E .� E H o H H CO CO m O a rn am d w rintiMHN 2 aa)) ar cxv aH Z O a W W W W W m H m a C C C U 4 Q a r Ot W y a) H F M O O • O 0 M 3 c 3 0 3 r W x m M O H W H F N H N a) a a) a a) m rn v U a FH Z 0 m m m .� W g m Z.� of E H m Wp W o o 0 H 3 U 3 U 3 U � o N d 0 d d o0a E .0 .0 £ W W W W inPU Q N N H O0 C1 mm a M m L H yi h W p O H E. a 0 • N r E. m O vi o .i at p II N Z H Uov •M m a II II II Z a x H a z • M o H d a a x a a d H a Ol a d H W F O£ U W 0 O p W W F h In m m m m m >a Z N o az>a w c) � o 0 0 3 n W sC w H q m N O a p 3 N P E E E x r M M W N H o O O H L21 N N r r r r r r ry O O D J a r O O N O m to W V+ J O m K m m En 'U W A ro r H 0 0 0 0 0 0 0 o z w r m 0 0 0 0 0 0 0 o z H En x c a a a a a a a a H N En m W W N a m r J W r H W r J ll� W J O J r m W W W W W W W N O io m io to O o O O f] O O O W N W W N p O m W I N a O N W J J [x+ m r w w r a W a n n S H O O O O O O O O r 0 0 0 0 0 0 0 0 0 z v CzC 3 m m r r ro m H p W a W Ol N tl� Ol Ol � W J J O W r r r r Z C7 r H n r w r O b W �n �o N to m in rn ro H H W p� t0 J O Ol J W a t7 J w O to r W O (n M m m m q �s N W to w N r r r ',d Vj VI J N w r m y r t0 W Ip O� O� O W N Z W N J r In O� W N m r r r r r r r r W W N W N 01 m Vt J W l0 O w W Enr W m W N w O W a W lD W 1p r sJ m .'O r r r r r r r r A a a UI J J l0 Ol m m O N 1p tp Ol O m �O lO O W m 01 W J r W 01 l0 J y r J W W O W J tp UI H W H r » * C S H » r » 4 W N p �O r p » E» Z * y * IO N (f N » m * a » »• * H r O * C » n E nN ro » r z at r3 n y n N ro N ro * n n N Y a * 3 m n w m E r * GI n iO fD * r O* m m m * o ro * k Ip I -I n r fD » r r * N nW * m * n n * m n 1p P. V� J » * W O 10 * * f0 * » n n H r H n » W u W » n W p J to p m N to m 7 m a r H W H O 0K) W b m m r H H b w ro ro W m N m O N z z .. r H H vq N N r r a a N £ m £ • m m a W ll� N W J a a C o C m W E N E �+ W W W N a C Z r v r v m J W a W m �z rnz n o 0 c o 0 H C O m O o v r r C r C n p w J W y O Z J Z Z O O 0 0 r N ro W G1 io m a m �I 1 yil 1 1 1 1 1 1 r� 01 7m7r�.. 7 H W w W W 0 cn 0 m m m m a a a a a a a a W w w w U U UU a a a a W N D U W W N C] U' 0 L W F W a F F F £W£ a W a 0 5 z O O a0 b z D z U) a14 u It 0 a u f� g z H �a Tg H G �G H 0. U m U U U U MF U W U o W o a W W W o w o w U V] U U U tll Ol a z a zd a a H H PH a a a o a .z. a z a z U U U£ V U V U E U Z H H H H H H H H H H H n n n n n n n n n n n W w w W W W w W W w W a a a s a a a a s a s H M H H H H H H H H H 0 0 0 0 0 0 0 0 0 00 a a a s a a a a s a s w a m a a a a m m a s O O O O O O O O O O O O O O O O O O O O O O O O 0 0 O O O 0 0 O O 00 m Vf O r N PI N aD O O N N 0 0 0 0 0 H "� H •+ H H H N N N N a s as a a a as as z z z z z z z z z z z U U U U U U U U U U U W W W W W W W W W W w fN V) W N U) W In W M W Vl z 0 z z 0 cD CD z z z z 0 z Oo z z z 00 00 H H H H zCH, "Z2aµH' H H H H H U 3 U U 3 S 3: U U U U q n m Y7 O 1+ rt CA K1 ro C O » C m» m m* H * n n » p M * /•• N * O O ro » y » £ O O » m » Cm9 H N (r + rn m e * 7 » W m m * 3 m In lb »L< Y � S » H O * m » �o •n * p » e H * m p * » m » m rt k rt * * * * ^ rt rt wy rt * ft r- O m x x x x x x x x x x x x x x x x x x x x x x x x x xx * % * 4 * O m 5 C * Clopm % % H 0 % * n M Or b » » 000 3 Y b •Z H K % * � P G n % * rn Im m m O 0% * H z M % * Al * k J 2.• m"H fn Y * u H m z * rn b H m 0 * * 1 m •+1 % * O m Z Z H % a r H H * rn H H * mnz » m o z m » * m H W * J m W % * * * * * * * % k % * % 1 1 1 1 1 1 1 1 1 N m W w u o aw, W w H P N a ut S W w H O W Z S o cmi M rn � P • V1 M o rn rn rn P rn P d oS0 P P P P H P P w P r O N m r P w N M M rl W O O1 O N .•i M .-1 hzi p > a x a r o 00 orn o ,y m O M N O Vl • N P o O 0 0 ti rn ti U rn m m rn O1 P m P <• P P P P a a o p o w m o+ r o+ o+ w z M m O N M V) r1 m p W ri rY rl rl rl O• S m O O W O N O E N U N O P N O r W % w W p V) O X P O r O1 N 1I) 01 P Of OI r Ol V1 OI 01 N O P ~ e-I P rl P P ri P P •-1 P .-I O O P O w r '0 N r r •O P M V) '0 P m [a�i V Z7rnm �O v C C W W W C W M > E M C C ro ro ro a o a ro N r W N N N r P N P m N O tll H rA W O O r O N O O m P O Vf N M M P w vt m U H X 2 O r rl ti r1 ••1 P rl rl r rl .i H 0 Vl 0 0 w 0 o 0 O a+ N o m W a M o > O > P Y O� P Y Ol Y P V1 Y V� V1 Y W N C Z w .i u P u P u P o P P u P N -r1 H a oiPOM 0Nw wwm� oirMin yaN z m m c a�i W rMm ulM Mmm m.no mo M y y C o . C r .. U C •ti aG m W y .a o 4) 0) .i W o G) .+ r m G1 w w r r m rn (D d m .+ w w d 3 m rn 3 W 3 .y M 3 M w 3 r •• N C G• E. Y .y Ol W W N O W .I O N W W N Cl $4 o u d o W mornM mPro mN00 mwrul mrrn U C N Z m a q o rn r • o m• r M• o N w ro H H O • o� • . P . r N rn d w U 0•ti O V) 0 N Om O •tio•O� O tia N O .ti .ti C X N .-i rn o .i m o .-� rn o .•a rn .� •� m •$4 Y i W w P QI w P 01 w P QI w P Ol w P N O a W P P P P m a0 o x m M Y Y Y Y Y W W 2 .ti U w O +i r o r +- I w M N - r I O N P• IMP40 r i U 1m W O O H •r • r � m .0 .p x x O m H M Val fon c v lWD Val Vai 1•ml m Val m Z > rn m .T. W U U S W U L) a: W L) u S W L) L) S W L) N N U F S 3 3 E 3 3 3 F S S S F 3 3 3 F. S 3 F F E z x tm 2 noa X r mox 2 G]anx onox 610ox 00 X iO Y fA o i0 l0 l0 t0 l0 O t0 l0 1p l0 �O �D �D 1p l0 �D t0 N ff r Y r r w r r r N O O N O O O Y O O O r O O r O O a N W W w Ol Ol � r Ol Ol to O � � O O fD r m 1p N �.•� • • • W UI J O W (D O M Y r Y Y r r Y r Y Y r r r W O O O O J O W O m r 0 Ol T N O W l0 A l0 m O W N l0 O\ N W W Ol Y A Y O\ O1 r m J r Ol W r lD a W TJ �O O In O o O O a Y ,7 r N W N r m a 0 Y W a a O r J J O N N r m O m N N m O O N N m 0 Y l M O N M�O N i t O 1p r w w,3 a a a r a a Y a a a r A a A r a a r Y Y- l0 l0 l0 O 1p 1p O a a tp m tp O lD l0 t0 O �D �D Ol MR O Y Y Y m Y Y N O 0 m O O O W O O O W O O W m ( N N W N N J O O r t t m O m m to r U� lli N . m m o . . . . . . . o moo . . . . . . . . . . . O M r O l r W W J W O O m r O O Y J a A N W r r O1 O w m N N Ol to m V+ J N O O a m m O� O a m 0 A O\ N a N r w r Y r r Y r r Y r r r r r r Y r Y r Y r No "WOW O O O Y r 0 J O O O l Y O O J m m m W N U a o J N Ol N O N r m W O �O a O m a O N J a r 0 Ol m N O J 01 tp N m J N 1p O N m J O A J W J Y J W J r m r N N p1 O\ w m N Ol m A m m Ol (o m m l0 rm Ol Ol Ol O 1p m 1p N t0 a s a s a s a s a s a s l0 lD �O tp �D l0 t0 t0 tp tp �O �O r r r Y 0 0 O O O O O O N W N Y m m OlN to to to A N W N N l0 Ol N W m N Ol A m l0 Ol J m to J a lD 01 W W W N J r A t0 a (o m m W l0 a J O) O �O N r r r r r Y r Y r Y r Y fD W 01 N N Ol N W W m to J w Y W N m D O a r 0 0 Ol N W W W N N N a N N N m N m � W J r J N J O r m m r Ol J r r N J a (!� tp m W m Ol A r N 0 M r 0 a s a s a s a s a s a s tp t0 �O �O t0 tp 1p m l0 t0 �O �D Y Y r r o 0 0 0 0 0 0 0 W N N N m l0 01 O� to to to to W W N A O l0 O Ol to N J O m W r J m 0 J W W A r W O O r r W a W m m W tp A m a 0 M r r Y Y r Y r Y r Y r Y N O l o O N O r 0 N O m m W m O A N W m a O Ol N to m N N Ol Y J Ul 1p U� m N r Y m N to a Ol r to J W J r J N J l0 N N �O In m O1 J N Y A A a s a s a s a s a W w t0 m t0 m l0 1p l0 l0 A 1p J r w r r O O 0 0 O O m O W W W A Y l0 m Ol N U� ll� O a �• a to A O m N T r 0\ m to J W to r O N O r a 01 Y l0 N Ol r r r r r r r r r r r N r (n W O Ut O Ol O N O N O N Ol (o O m l0 Ol N U1 W Ol N Ol W Ol r O W J W r lf� lJ� J Ol m r m O O r �O N lD A m J N W m J J J Ol to Y J m N m �O O� O� Ol J tp O RJ W -j/T =I5 a W m N r o o Q o+ N v o a m m yti m m m o u1 •-I N V' N a rl rl rl rl ti W f4 m u1 0 0 �n .a a f' fn M .-i v ui w w rnrn m rnrn Z vroiN0 v v ,ti v v a 4 Q CIO5 CO m1 N 2 0 0 N a a m W rn m o r m 10 0 �n �n in 10 r Orn .I 1D m Z M m1n torn M H3 + N m04 110, P rl ti a m O F W m a m m N N O a O 0 0 O a + a o F o rn rn rn rn x> 3 U QQ Qa N v N r E. m N O m N m r N O a 0 NN rm 4XN O N rl N p rl rl r1 rl N m vlow o x r O P x U U u vor Nf`~'l umi m a X Q m v a m v v m a w F rn rn m rn J4 Q F 10 O U W a m o a+ w E. 3 Q X rn of for r v ulmo ooln vj N 0 C N .y r rn N m m O O 10 m O N N A N O N to T • V� O ��� •��•� m 3000 .i .a O x Q m -Ci cai a> o 0 u000 E. o 2 mmm .� mmo � doo •tiN 4 ti F rnrnrn E rnrn p] x Q O •N p r o V• V' < C C N S x U m g N m N O •� O m wrn Oc O U d> x U V •vv •.i.romo m Q a m o rn .� o �n w n 1n o 0 • 0 10 o m.-i N .-err •• x m x m •oo w wO.-1m W 00 rn Fmm m m 14 E+ .+ ZO .+Na Nin O m 000 O W n. ovrnm •+ c •� .� W rl F U W 0 to > x F 0 0 r p O W ~ m m r V O N T O N W O U M m V• rlN 01 ❑ O Nowa0 a r m u/mv a+0 VI V tp mO W o E0 Ol0 F .ti O m �a-m •v a '' mmm tiNmmm Q U £O .•+ Q H as S a vvv X avv W h rn W H.4 mdFm W U ri OUO o n 2 q fr��s7F O U .ti O F o O > U 0 0 3 n as>w W Q W Z U O a to xwN•+ O Qn. a Wm a a a E + a a a a a U m r a E. m N 000 w xOcDO + U U+ m w m • m Y En ftj rn m o ro v O Y nJi aYo m m o ro v O Y cn A pl :to m u S Y o U U Y ff pl b pl u S O z ro<ww o In mH10w �O z -0 w o J O O Stlt-I H N0 O rY @7 4 O Hmm O O a o W 7tlY H 0x 0 b xrb10 < Y n n n n m U1 • a O M z < ro p1 z z Y n n u u m m a 0 1-1 a Y H YO off Y Y pi O H m0 o p W O w NNtpOM p 1p U O w 01 Y 1pO I N 0 O b7 b O N O O Q r o a H r O tJ ro r x< 10 O O N W O M E O O O O z ro 0 $ 0 0 0 ro O a U a 0 z Y J H Y w w w H O m0 U x •+J r x O .+J a0 J W O W O a N U O O O O Y m Y m to W m N O W a z C Z U pJ a 07. 3 x .. W tOYY at9 A t np$ YUm0 Y O N N 01 O W 0 x x m Y O N W U O u J W 01 mm N r 1p a U J Y Y Y N J Y p NO U wY N o 00 r',0 m m O J U m m m E O J Y N mm N mil fA a U O� • 1p l0 O p a LA Y W m N O O J O H z t- w zr0M Y 0 0 0 m N r EM o w n n Y u a o a w o Vj 0z 0C) o 01 Y p1 0 0 x Y V1 • a o o• x a o w 1p Y Y W m Y m o OI OIYY o lnrnao owmin Y N J N n O Y b x 1.a 0 z z < 0 �O 0 � O N w• o O u�mY O U m t0 E C x 0 o 0 zor 00 W ',O 00 N O O Y O O O O J a 0 O O O r "a r atn roxb0 aupi s NO1 O Y z rn 00 O o m w o O o o Y o YYaa �..•1..•,pa r oo�n to Owoo zEn t p W O O 01 0 01 O1 tzi U Y U U w b b b O N N Y H z z J J U J amour 7C 7C o000 m as rr pI pl C < L. -jIS m w R W as w w 0 o v m z x �n o m rn r .+rnr Z 2 F Mamv rn o rn Q Q Q m m �i oo0 p0 mz OI OI ON a a m W OM Q O N N N O a v CO Z H O m Of H m• M m m 00 01 N O F fail F rn m a a, r N 0 0 m C 0 0 .+ •oo a �n •oo o N o M S > S U MM V10 O� M F o• M • rn o o a o N 4 X H M M m v m V'mv m O m V�u1m N e4 m . .••1 rl O� C� M e•1 Ol • a o a m o a m o U x U N M O m W a X H rn m A A A N r w �M w 00000o ooNm+N u �m tm3i x a • o a w H o f� N w d a a N N 0.4 Z E. N •� 3QXH ,y N f•l ...� M m N N N N m O r w O N.-IN O 0a fi z z Ol m OOMN U d> X m • r V� N a p . 01 rl m a• •N •m p .+ w 0: •m •N A o o ❑ m •-I N N O •y m x U N rl rl M O rl a Z mMro 3 U Ua .-� Z rcrn Em U d> X . z v W N .� a m m m u Qmoo. H O Ln eft mN u/ O N Cv S M • O v W o •• z a W o H E+ • F m W 94 N r vm.1 o w00 rIO M Z YINN O w w O A.0 1 O O v N ❑ d> X 14 H .-I O a m❑ F M 00 F O W a o 0 £ Q fA ey CQ c q `J U H .a r W W H H N O W £ H O OI m m a O V f ❑ O O M M a O m q H F O • o ul E+ .+ r m O W H F ,Z H O N m A A O .� � Z W W > o o en A A A A > Ha •M ., H dQ U £O H m.a7C , H dQaE. H q W W F O W H a ❑ q W W E.O q M O a sW 2 m> m d F m N O a s> W Z Oa A 144 W U .+ in r Q m 0 F W ❑ ~ q r a m N a E. m N r M W In Y M W m • M • [/3 [O O ro b O N J N m tv tl ro b O H O 0 M b L•1 II £ O O H O N (P] LL] b b1 II £ �D N z ro <Z'17u o o mH10m �o z ro<z z o m O I.3 W M Clo o W r H M 4 0 m 0 13 m M O O O £ x r b 0 H o w• z O 3 0 Y 0 H x r b b H F W• �Y N p p p p N N a 0 0 ro 61 z •L H z N II ° °° m H a O p O H H W N O w P7 O 10 H H O H H (JI N • O z N W A N J W O O 1D H x 0 O ',tl J m tp O H <n q o a H z tlH0 n 0 SSfnO a O H r O 3 H o H t9 x <a t7 Oro o HHa H O O O O z H H 0 0 0 ro O ro 0 N O J J z N 0 W w w H to H H H N• W. z N f+] mO am r x x K] O 1+1 W 1p W < J O OOJH In H to 0 mUI J m o x1 b m b l] a 70 le H N b W m m H W m m z H W H DIa 0 111 C z M a n n oz xn C10 zta • ... m o �] ]o�•,a z Hm rnn£ HomN z z H �• O a II (] x m x M a4� H w W W 0a p a x M.0 o u o ff x w wo m r m wm• N H O O H W N a J �v O N H M U m O H p o a w m a 0 NN1p W O 1p J x <IO N O O O O 10 O �• r, W r 0 w H H H a O W a O0 O H O O W W m m O N a a 1y (» to m O a H O F+ m m 47 m W H O O t7 • 1p ID H OOm bl W W O O O H P1 a W m m H H H H z LL- En w 0 a• wroth o 0 o H H m r o o w Ln oomH x o [b+ m �nmmo b VO£i M to to r ro r r ° o G ° M H xbM o H o z0c) H n x w w a o m a o z 10 H O m tp H W N O H a 00N '-• J Vlmm M a w H m N b z z O < O l0 (•] z m O M H O m H O• O O O m O H H o 0 o H A p W 0g0t. o �zt. 00 O J ry° . o 00 m O O J F+ J O O J H m a a o a to H tO H O H �o rnw 03b0 mn�i In £ H m {fl t0 W o H Z m 1p 1p O J a N 0 O W 0 0 0 H H O O H H o o H H a a awoo t-i xr Noiom m J O O zw z m l I m a o w o o m maw w w w N g Y y a a oo H o W o o x x w to V1 H M t-I rr m to C C J gI T a F a o 0 0 W O o o a E H r mom N O vl N H A m a '• N F Mono m o m o m m a a m o o o •M �n m m a H m m N N a N z0 W b W E- U Q Q H E+Moo w x m m • o H a N U F H WW z O U£1 £ b U Q M F a o N N O M a z M H £U W Ul O N O m N r N r M M H z0 om nM H O N N E. O N H Vf a M Hoaaz a az>a 0 a a 4o .4 F W m m w a a 0 0 0 0 0 0 0 0 0 0 0• 0 o O O z a z N z m z z r m to M m �n 0 0 0 0 0 0 0 0 0 0 0 0 O O O O z 0 z a z N z o m o m r m u m M m r in r O m N N r H m P m m m N D rn m D P m � rn m m r n O O m N U) 3�n S� 3m N O m 0 N O m 0 0 m 0 m 0 m 0 m v a a v aH a'' a" a•� El H H H z z z z 0 0 0 0 a� a� a� aCQ 14 F E E E m m M M a + a a a F to a N F m F n F v v v M G rHn m rHi m m ro ro a N a o ce w cn to) m E E 04 O O H E E H H C C q C O o O o O o O o Y U U Q L U � U Qa U rat m y PaG w of a W N N N a+ m a+ o a+ o u o • Oda H fOA £ Ada £ a�A £ 0 0 a 0 a 0 Ot w a+ .•i a+ o u o u o •.� M •.� o.a o o a a+ a a w a a a m rgn y On a Qm Q E S gm C E. y 1 m 4 '{ () r F+ t0 N N 1-+ 4+ F-• F+ F-• N •! i r m i r to b Z o mo J m ni o A 'q (Nil Z ro H +� b+ o (o 0 0 0 o O o 0 o Z 7o m m r y rt to o rr O O O O O O O O O F-I •O A 4 m M O O O O O O O O 7. Y- H 4 a •p r .q H m 4• r N C ~N ON i O C+ E a a a a a a a a H N ,ro r Q O m 1p 1p 1p �D tp �O m A k r �n r Y• 1-+ r o 0 0 0 £ --- r q w ro (mp U a W N m m U U m m p m W m N a m N J a [m+ s m m W O 1-+ 1-+ 4 ro r (p r r w r :J 0 pn M 1p 1q rt w m H r o H 4 m 4 .. r r n W W W W W W W W n a a a a a a a w K) rtOj i N r Frt,• O tj m r r m r r W W N I r k r 4 y U 1-• i0 J N a O N m J J [mil W N O O O O O O O O .ti' M ~ 0• O O O O O O O O Z 1+ Zq y m o 3 A F+ 1 + to w a W to w to J S p W J J m W 0 -3 b H 0 m y m J m l0 O O O m m ro pw �D m m tp a N O m O O m J W U N O O F+ 3 m m z to N W U N N m m m ON O� m OI W w F+ m a I--• F+ 1--• 1-+ F-. 1--• I-. rn N S w W W O O O O O m (n U J a N F+ W W w m O a W Oi lD N J N b J ^l tm a m C V 1-� I-+ I--• Y 1--. I--� Y• W£ a a N W N N O J m Q M N N 01 pi W J U t0 (-• Z 'mod m N m O W ID Ol a O m 1.1 Z m f 0 H m J m m �z � o H O m o h• W tp �' O N N O F+ t+ C o to m b o z z o �o 0 io 0 0 ,d o m m m W t+ to 0 I i i 0 W 0 z a a N U W W ti O z PC N a a a W I N N i4 H 71 >� °w ££ a F wa w a m a N N W W O N W V)W Q Q U Q U 0 Q U Q U Ea 1cw E-m zd xm xw N H E. E H W W u U W U W U W U 0 o a o a W a m o w Vl VI U V) V) a a0 a£ zd a a N N£ H W N M U U£ Cd U£ u U£ U z H H H H H H H H H H FA a s a s a a s a s N N N H H hl hI H H H W W W W W W W W 0 W a a s a z a aOG w s s W W W W W W 0.0. W W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O H H c v O O O O N N N S SS SS S SS SS U U U U U U U U U U W W W W W W W W W W W Vl m V) w m V) Vl to V) 0 00 00 z 80 00 H H H H H H H H H H D DM) D� 9 D mD 4 U U U U $ U U U 4 =z I PROJECT JOB NO. -51V'i CLIENT CALCULATIONS FOR _ MADE BY /✓1 DATE CHECKED BY DATE t t�I�S SHEET I OF ri-1'.Y, 05 ki v,_,­E-N'%G--] 'N I E-R 1=N=Gh , Lr.� �.�4,rv4+'i•'Y_r 2pni'n���.�'-'•r v��s:-:-��•�ai I�'fi-�i FORT COLLINS. COLORADO 80521 I4- - Z /V1'.%i7�jla L1 v��� r ,__,�✓,G�c /�+-���1 E S�Lrc:J / 5?>c7 _..,_. _ ._ 'Pr2_ e,-J l/CTwc� �Ccn o,�Js I �l Pi0 .4+-tJ 2o.Z� . I> h-Fov.1 /✓1�. �►1 t�..�..`) G'O^.�c-r ✓��,-_=.f %/�✓',C��:�r�C_r.IC Z) Sl ..,cam T�`-1-� ��iiG G+�+�� I S STniv✓7cTi�-ILA L� C�; S�f�!•la.�l 4�0 1=",-J /i e7- . dJ }`moo i-.LGrIoP C-> /"j /✓l,J a- i-JT L�iZ i✓C - __ . Sce C r10 J 5, P� o I ktrc A /. 5 - ) C x Ps,�Jl�o•�J I��°-a.►� ��.c�� �.�/ 1 / Zo zS ry 2-000 r4 SS ✓��^�(� /��.e rJ Tim-JJ�'�io"�f t�i►T _T�i+-�J Ole • STvis.r�w.. _/� �"� S it i�.e+tfc�j _o.✓�'P-: y�+-c v.J'Si.Z.---------. C rd c�e�G•,-+/�E✓./r B SE G•r io:JZ� �.S ,° Jc� .yJ - _ 'i/-✓'c_C�ec-.r.T.a.. �l O� 7TfcT_fi��t�` CiiV�7�/ /1/ !✓1�_pc_C... __ G- _. t 1 =z3 .a xx x x x x x x x xx xxxx x x x xx xx x x x x X x x x x x x x x x x xxxxx x x xxxxx x x x xxxxxxx w c M N H E1 O F U W w N m d h U Y G ? w +�1 C H M O v � 3 0 O W W 111 « « C V + « y H O « « « « d a « m « w « w rn« w o « O # a .� « � .O •ti o # Eypw u «a cv« z + m o« N H 3 3 « a a« aD W w 0 ° « w « O 0 w w 3 4J .wio « N M « « >1LO m m U M« rFi W i« C Q « Lna m N 77 z 4 4 4 H H H r E y £££ H £££ y £££ H ££ E H 0W N r WNr o (]m£ (i Am$ (i (gym$ (iAm£ AAm£ Y Y Y Y Y Y t0 m G z Y b m m b W m Y m m 001 a m a W m w b ro n 4 a •O w (o •O o m 'O vl • 'O o 'O o m 70 r S r r r r m r J• r MI 0 O O M l0U W mamF+• a N0 Nwmct JOJ o �f z m (c r•r rr ct (* (r n w w x a '[7 m a a a a L. ff 03 1 n w (o r r r o m Y o m r o m h• 70 YYO N0 rO w(OorO UoYO A (D (D (D 10 N J E m a L wm tw U O E U O E O M H N H • U O• W J• U O• J m• O cy "too b J U J m O O N O J a W m O m O C% O O m N m m m O r m O N m W (D m Y 0 Y Y & Y Y & & 0 H •O O m •• J E m w E WY E (c E I m E O -1 F+ (O X U r (p r m N Y U (D m N J J (D W O r W J m r (D m J r N O U r (D O r (D a J r( D O 0 m p J ".1' a is Y y O:3 N N N O m O D U m m W W U m W J m (D 7 U NOm Uw J m Um0%W mNm w O a m H 1 D% FH• ((DD a 0 a s O a n a n a n z O H w (t m w (f m a rt 10 (t a t0 K M r V O m V• m V O W •A m w O N(O w O (o O 0 m O oO o O K m y 7 b 7 7 . to 7 O N N I 4) N U I W N I CO O I J I ("• ro M J F+ (l� O N O O Y O Y Y J m Y Y m A G Y Y r O O Y V• Y J Y Y a Y r r r J O m O H O VJ p (D N J ONE Y a m ma Na N O N a JNa O UN7 J J N7 C 0 O 0N W H C w o p wmw p mow 7 m0CL m(o O. m '9 m aO. U W aO• J JNO. Jm O a V• r r O O Y a Y a s Y a s Y a r a O (D �0 t0 1p t0 J tp (p a m U m J r O Y m Y Y U 0 0 W O N O a m m y O O LLI m U J O N a O N 0 N -3 y O U O m 0 O m � •O Y Y Y r Y m �J m Y ll• W N O m 1 J m U W a Y m O U O N m J a m W O m •+f 3 o w (o m m a (n o H v r•( H (O a (o m (D n Y o Y 00 0 0 0 a Y N (0 10 m U a N mJ b o (oo 00 o r m i r C r Y Y Y O N Y In Y N O (D C) O (D m W m Y Y cn m Y W W N m a J (0 N m w Y N O J a m a a U Y a a a a DO p a (o a m (n m £ (o Y m o 0 0 O Y N O tp \O U O W m U W O a a m J O O U a U m W 7 O 5 n £ Z m O Y m [] 3 m r a Y � Y H iO U �U b o M [•f N +FZ T i i A 1 1 1 1 1 1 1 1 1 1 M w r r mM N r rnp rnN a .-10 O O .i t0 M l0 N �0 M V) N �0 rn m 0 N i0 N O N O N O l0 O N O M VI .-1 N ri .� .-� .-1 .-1 ri ri .-1 N rl •i r . o QO OO V110 mrn .i P MM N rnP QQ rnrn rnrn rnrn mrn .-� p Q P Q P P P Q Q e-1 N r t 0 m : n rn N N rn r N r 1O p SON m.i rY N mM rn M r.-I t0N Nm .-1 ri .-I .-1 ri rl rl rl rl .-� •-I rl :(/ N M M �l1N O0 a0 �0 rnm NN NM O O rn rn O O O O ey .-1 .y .••� rn rn Q Q rn rn rn m rn m rn rn Q Q Q Q Q Q Q P Q Q r N r w .-1 r M rn m N m N N N P N P N M M O rn m N M N m N N l0 m t0r O.y Oti Oe1 ON ON .-1 �-1 rl rl rl rl rl rl •i e-I ri .-I Ol0r MMM Ol P r rw W Qw NmM N �0rn Vf to ry . M N Q ul O C: 40 m m .-1 N M N O O rn o 0 O rn rn P c rn rn rn rn rn rn rn rn P Q Q P p p p Q p p rnNrn �0rn c tt: �0 �0 .y rn m:O �O mm P tON mtD N N.-1 m.-Ir c': r l0H r P M Pr p O rl0m rnNr mNrnb r ONm tO O.-1 QrN OPmO tDMN %0 M Lflm %D rnGo Vf ON �DN r OQ�If N mmr oo.-+rn 000r o.+.+ Ooo Mo.tiP .i rl 'i rl ei .-1 rl rl H •i rl rl N rl N M eel ri .-1 e4 N �O p O m Q 0 �0 t0 p 0 O N r �O m of �O N N m 0 1p •-� N P Q r• -1 O O � O.� m 0 O M r M M e y rn rn O . r rn \0m rn r-1 OO r NN M N Nm M O O M 0 0 0 M 0 0 0 rn rn O ry. -1 ti m.- I.- I. i O w m m O M m m O m m rn Q Q O rn rn O m m m .-1 Q Q p4 P p p rl Q Q P rl Q Q rl P p P m N rn o m m N O M m N O m rn . ti O m N o f O O m P N NW O t 0 . ti .y rn N .ti r rn M .i O h h rl O p p M ti O Q h N N M N .-1 r O O O O to N O rn m p rn M l0 r1 r m .-1 \0 \0 .1 Q •. rn Q .-I •Y m MN NM O m rn .i p rn M O k0 w �0 o.+m om or o 0 ooM i .+ OrnM p r o m N O NW W0 r a w r M P O O�(1 1D 10 r 0 0 pm01 O r NN rn rnMNQ O .i 00 rl OOO 'i O0O e1 OO • e1 'i 'i r1 rn rn rn rn rn rn rn rn rn rn m O rn rn Q rn rn rn O P P P p P Q Q P P P P Q Q 7 Q P Q rn E. .,aa .+aaa .+aaa .,aaa V . za; E. . wo:z U E Od x0 C9 x (.9 U' LD x U' 0U' x U' U' LD z x 0o a x LD UU' z w r2-:S ` N ftl w s0 0 » aG)ax M claG)x H t JNPt�I A7 ro a��r H �1p�r tvi b to u E oo0 C H o r ro< •A w O O z II H 11 N H 10 N tO m LM HM M v o ro00 0 t' H M Ca aaa x aaa N S t' b H N W •A b r O 0 Dot t w 1+ t0 m w N 0 0 o'Qi N t0• JOH r t ro z z rrrN0 rrrNR L'] O t0 O\ aU OM a W UO O) h1 UONOH O tJ 1p N1+ O(D UOmU� aJWOQ CL r tO b•Or ro C e o o H m o z N r 1H•1 v O x< 4 v O O M 0 H tr tlM rr 7 rr M r ON z ro M O 000ro O UN & aNH r H S to to OH m a N W ro N O Ol tp S < m t^ z •• J J H 1t r W O fG w o N tD m II M U O r l0 O R7 N ytl b J omor lam• as r7' N a m O r 7 r m N O N N N O1 N > N N r Q3N U M 01 J 01 a z O M C t' on X M r o wmcnv w t 0m S to as aaarH rn u • 0% • o b S M to t0 H t0 m to r t•- m om• J o H t H H 1+ rrrm& tD mt0a M aUr rn W am v o o m N r H N rOm O mtOO M rrm o b 000n r to tc tnWr H a N W W o tp X< 10 n r .7 r o b 7 c0 J o atn r 0 0 0H m N o to r w t0NE rrr r J O m J ;U N N O U O W N O"o • J W a A W 01 O O U W W Ot 01 r H N 10 J r N a6 r W O 0 O. C . N U 0 0 O m U U W O t0 O a N J tp a J 01 U Ol J o w HZ tbw J U M •A t• O M tO r • n w• to H b x ocn tom HO etn N N mmt0r 0 N a s W a m tp H x b M U W N J a N N O vzn c) wrH a W N U (J (] S • a O W S U r O a p t O t m U r J N r N O a t0 H% b S m J N N W z C • U 0 0 'P U J W NmN 00 z O aptr b Nr w r H U tnJa a a a a H O O t' r r N H it z t^ U a W W o b 0 O •A O N N W m a a 0 0 0 0 a O r a m W a ra ro 3 b 0 wr NI•+ $ H N m O T W J J O H z N Otr tDO O p 0 0 v J QI U Z. U O Ot m r r a a m Ot l0 t0 M N ;I tI O cw.i IN+ con coil H W to N b b b a s r a s r W W a H z z tD t0 r t0 t0 U a p W W M M r r u o r U w Ur o rnto C< r H H H r a N U N r U O O m m H r J r m ro O a O r 0 M a -sop Z rz-) 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 R W a m O O p 10 E •-I N N r Q Q Q m N m.I P 0PII F a)io kD for O O M N I I m Z O O N m rn rn o P a a w w m rn o M P P rl rl P P e-I rl O O r w Z ~ �(f N O Q$ £ W N N Ol M O, w F m M P P Ol N O O P M O O O Q O P S> m U m N m P M �-1 N Yl m m 0 ... l0 M N O .-1 • M .•+ N E e•i • M 10 N •O10 NM W Z r r m > a Z U o N S Q X M M N r N p•1 .•1 Y1 .-1 m m O M P O1 M b m .••I m m O M \D 14 M Ol tD N O .••1 m .••I U U w N �fl rn N W QX.+ rn r moM mC4 E.w w •N Pm.•1 FA 0oo mmo o u J4 Q a U • o o a m o c� M m woaM .. SQXH .i .y v Orn CV M Mw rMr S m m m P~ o m O �. m y o 0 w o a a a .1 o q rn m mm ui .. U a> X M N P01m w F .ti .ti ., •me M a �n •Nm �o o • .I r A .ti W S r o O U .i M O .+ w 9 x U D ED 0 .� W 0 •••I a w Z Nr.•nP UU a w 0., W a w z PO+M c r w rn z P 0 W in P .� �n Ua> x w rn Z P U w v m v O W m m .-1N N w w w NN m m Q Q M MOO O m M e-1 m rl O M w z N .0C w O 7 C a w m: m • O l in w O z E. • r m E M M M H E r + 0 L)11.. z M. w w o m o o o m U m z P m m H ww O • • • • w.aaa O ww O O E m 0 H N m M Q a> x O a m 0 rl O U w E W N O w. m E. ow o o a o w £a �a P D U H M N W U H N r w £ MON.•i.-I a O OI m q £ H 0r a a O O w "[.a • O M F •-I M 0 W .+ Ir H F O • o M E+ . O Z HOM •P w n on z w m .+ > Z HOW •m w gnu a OU M a• r N £ L) .- O M 0 Q a S W W F 7 U £ O w Ha O M 0 "m • m M £UtV .i O M 0 014 a W W z r o as>m rn waFw z w o aa> UO mo 0 S o W Q W .+ ri m w0. a Q w w m N. O a m a w w m N. o a m N + M r1 r r M a w E m m • N M r•I r r M a w E w Y N ♦ N W J W + H t r C. H r7 tJ J Y N y O rob O Y O ro b O Y N m m p b +1 tilro[ tl S Jn Y to bRl B S aU o U 0 Vj m C7oA O tnz mH Om m roC A O w z -0 ro H[a tton O O YJO 4 H C O Y Ym03' p O H Y m m om 0 OS b V Srbiu Y w m •p I a I u tl tl B tl N N mow Y z ro l+7 Z `L tl tl II tl m W rn o Y Z G Y 0 Y H O Y O J N O m Y H a 0 O H Y Y a O 'A OO J OU 1p O 'A OUJ OM w Y J O N O Li w U Oto:,ON O C Cb'� O H O Y N H N Rl O NNN 1-1 O X 410p aNJ Y p ro r O OZ Ya001 Z W N OOOro O NNalO N ro C1 S N Y N a• mm mH �o Y m• • H`+ O -3 Ya J r S O "1 a0 U'S In N O Y m m U U 0 O O W H m sv J m A b n y YN m N N N Rl N01 Y it a U Ym01 it a •2•i C) w X 10 0 n m N r 0S Y U m J Z O W m 01 Y O W NwN X= O m Y O NaUippw O II N 1p S ['1 Y II m N K 01 Y W p� r N a Y O a • m Ot W Y �D Y N Y Y N Y Y N Y J N J N a U a W a w O 1 O J J Y Y N LX" A A A O O w Y a N O O O Y Y O N Y w m J O N N m m m S J O m a N Y U U 'A N O a 1p O • Y W J • U Of N a a Y N Y W N N m W w m J o Y Y X b S N w r O tq N N O N Y m r Y O a W• S O O O O tb" N Y• S O O O O Y m N m Ll N w Y a r N a Y N r O tl tl U m Y X b D9 W m L'1 N Y N 0 n S Y 1p • a OOf S a ON• lD Y W 01 tp Y Y Y Y a U O1 m O U O1 a s N �p O O O O w Y 01 O 0 w 0 W O H W Y O U l0 U O U �p N N nseac w �0�opzrr Y o • b o o. m z o o• m arn W oo�oa a a a m H O W m 0 0 pY ro3b0 nO1im • Ol • ±. Y rn . W m m O Y Z m m a O m Ut VI Y 0 m {O a 0 Y Y a a Y Y a a U Ol0w C9 N m r w010 �O o Y Y Y Z N I I m o 0 0 a W N N O H m [D O U to w N b b b a U a w H Z Z m W Y J N a o N x x m m o 0 [tl U7 m m 4�;7-e- = Z`7 r W Q a as w w rl m N m 01 P M N .Y. W P NN.ti MMCI m z z E R R 4 W M M P m M M N M m m E❑ m z OI OI O M mO�.1 M a W m W P P e"1 p•1 P P ."1 rl O M O 0 P �Il P 01 ❑ O 01 Cl O M m m z H • a+ m 3 r$Hl 01N O~i� O F W F P o P P ti .a �000 moron o •oo �o.. •oo m N O M N O i r a O F O m > 3 U N tl II M vfmo Err�co o o (w7~mo m z N qO m a I'• QXU .••� �/1 M .-I rl W .+• H O IO 10 u� .ti C7 W l0 .-I M Of N • .y .y Ot O. P O P RC M M O P N W ei rl O .1 U z❑ ON W 4X H W H E w F 00 M N U m o r• 1 0 a S x M U W Yl O M r1 M O a m P W U W Oam �o N U o .ti ,ti W azE M 4 �.+Nmin 34XH vNiv rn.tim W .•I • . O P rn. N N W NrI �O NNP H P O m Ol m N S m m W O m ❑ m M M O O P r M H O O D O N w E x a as a .+ ❑ D m O N r O P m Ol U OI > x O m w w V. O WE. H N X w ,W z b M 10 - N M O M M a O S o tl O !• O P W S tl N o U O .ti C7 ❑ II POM W TS U O .+ O w rn U w£ Z rn U O> X U m U P w rrN z O P Vt W NCIM z W W W W N ri Cl) E. Q Q r % m W %DO M O P H E-MM � . In > r •OM W O W X V) W •PLO 7C a W z E. M N 01 F m m In rl O H O u MNN z 0 N M%0 Ut •••• U w W w F .i P z O W 000 W a w a z o N'1 N O F H .-I O W❑ W ❑OI >x M rt•1a m H of m 0 v L) w of - C H m W M O PlO m aH4' O O O Ptp m 01 ly em-1 m W z o •.tim F '+ oHE mo -.- m O W E .+ .-I O m ON • m m B tl Y tl N z H U O N e-I z W IL W tl B A m RC O H al a= H 06 z •0 fl °a oU z s o o m O ❑ r�7. wE a4 > 04 0xU z Wo o O O h 01 w H.4 W O o w�i U O N Q, S tl W 4 W U 00 00 • rl F m C4 Q wm O .+ O 4ix ❑ WmN rN O 4w mN M a F W.-Ir P a E. f M M W m f r M M W W N Y N ro W W J $ S E S C ro b O N J N m m O Y m p'pm tl s 00 ou n m N N N N N a N 4 N M L'1 O O rwM 0m 0 H p 'o p V J p V N •O b S r b p Y m �o Z •P " S Y Y r Y Z tl tl tl tl N r N O 0 `a Z N tl W O N (n 1 F+ o N %O Y H t0 r o 'A -3 Y O �Y O rt N ff N (T to Y p J J a 0 0 H 3 N m Y Sb c) C �n p O p O p O p O to O m H 3 t+ N o i O E E a p E W O O 2 b0J m O 3 w 3 to Jam• N N3 N o autmo Z H on m ro m ro m ro m ro m t0 Y N• H H ff O fT to rf O 'i to 0 Y O• m m x ro m O m w m N m J O O O N b b 0 m m m m H m O O tl tl N cn N rA q m fA :'1 N 4�oa N w N n w Z 3 m 0 n 3+ n n o w a o o cci 0 rt 0 rf 0 M 0 tt tl N N K 0 O H r 0 O N Y a m O O m J O m a to N W N Y Y O r H r H r H O H O N a r b a b Y b J b o In �O m m N W a N I n a N a a N O Y m p m top N pop Np O a lb 0 p O W Y N N N N OC O 6C Y O m y a O a . N O O to a o. r r r r r o Y J a U� J a to N n J a 0 m a 0 N a 0 a 0 O O p to p N 10 a 0 0 n in o 3c o rn E 000u� N H m K L. ro b b b b tl A m Rl m lV r m m m m u� a XJ p p •p a out O 0 O wv Y m m m J r co m m a a Y rn M M Y H LLl LH9 M LH•1 9bo v S 7o S o • O o • Y m p a a a v 0 v o v w v £ m S rn E 0£ N N co N to Y J ON W m W W 0 0 r a �D a a a a C C a o En� S rn S rn S a r N N N N m a O to Y l0 N l0 O In O m 0 Y Y v Yv Yo Yv o0 N r N O N O N Y Y 0 0 N N N J N O m W Y 0 0 Z N Z a Z O Z Y m 0 0 O O O O m m o 0 0 0 0 0 0 0 0�•00 0 0 o u,000 C Y C Y C Y C N a m Y m O N N W N n N J N Z m Z N Z a Z O O O O 0 0 0 0 0 0 0 0 0 ro b O m m c4 T =jl 1 i 1 1 1 1 i 1 1 1 1 1 1 1 1 1 m 0 0 0 0 O 0 0 0 0 0 m E .a rn N - r•I X F m M N H N m N m N m m o rn v r o c co In u� a '7. rn N m m O O m .•i W w N O m m P N M O O M r N M m N rn rl F �+ M P N m LG m N M N O •-I P m �D m �O O O O O O •-I .y 2�Pgj: rl N 'i .-1 •-I rl rl 'i m M M 10 P m ON ./ r m rn O M m m P m m m W Fi rn ti N m m m rn m O r h P m m rn m rn m H W d ei N N N O M O m m �i O N M M M P N ri U F O 5 M m M rl M m m m m w w £� A Z O0 0 0 0 0 0 0 0 N O O O O O O O O E S N a h r m N O P N + k X N M M f # 1 t x m k « N + + O « # « « c� .+ •� r r r P P P + W + O M r m m m rn m m m« « o m # a k a t w i1 k P M h N tO N m ko �o 4 U « m m m l0 rn N M P P rn rn rn rn rn rn N P P P P P P P P t •,7 t � « m Io « .•i o # x ul m a E. # a P# H ti 2 0 0 0 0 0 0 0 0 k W « a 1-1 O 0 0 0 0 0 0 0 0 m a o 0 0 0 0 0 0 0 « Q « F u t$ G t fO M W O P N \O r O O m i1 m O r m M m m O N m O O # U N t V] !� rl rl ••1 rl rl N N N + S > + O O b b b b by�l > YO Y� b b b HH HH 'L' yH -3-]H HH H 0 00 Q0 00zz zz z Vl m 7N pl M m fA M m N N nnnn nn nnN zz zz z zz zz zz z 00 00 0 00 00 00 0 O O 0 0 w w F m O O O N N 00 m 0) W W InIn J J O 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0 00 00 00 0 00 00 0 00 0 0 0 0 0 ro ro ro ro ro ro ro ro ro ro ro ro x7 w b w w A w w w w% 40 00 00 O 00 00 00 O N FI N 1-1 FI M N N M I-1 M M rr rr r rr rr rr r n n n a 0 H n [H M Ln M M M cc a u n n n M gU M W O M yO H w M w w 'S SH i Y N [-l� I q H 1 M7 i N N 3 � q q N r y r o 0 r w r y r r LM o Lo o w al o M M v o a 0Nl npa 0m cev L-jn a Ln It n ro n ro n n ro n ro n ro ro H H m H S N H `+ H Fd H H m H Hx z Hx Hm Hm m n y n :to 0 n b n y n b b w N L•l N N O N 2 rp 2 (aO m V) z to t-I 0 cao m O Q O co M O M O O O U 74 T s 33 Flow Transitions in Bridge Backwater Analysis (�4) e 32, Le1 No •i r 1 typical now ' CR � I �. transition pattem ER Flow assumed flow transition , � patter for 1-dimensional modeling \ Figure I. Conceptual I lustration of Transition Reaches The flow transitions through a bridge crossing, that blocks a portion of the ' overbank area, is typically modeled with four cross sections. The downstream and upstream sections 1 and 4 represent the full floodplain conveyance. The bounding ' cross sections 2 and 3 represent the effective flow area just downstream and upstream from the bridge. The bridge is modeled with the bounding cross sections and additional bridge data. The question of how far d it qu does take for the flow transition to occur, and the location of the downstream and upstream sections 1 and 4, was examined using limited available prototype data and two-dimensional models of idealized ' floodplain crossings. The study was performed by Mr. John Hunt, who submitted the project as a MS thesis. The work was performed at and supervised by HEC staff, and is published as HEC Research Document No. 42, "Flow Transitions in ' Bridge Backwater Analysis." The following are excerpts from that document sections on results, conclusions, and recommendations. The figure and equation numbers are those used in the report ' from: Flow Tram m Bridge Bwkw= Analysis, HEC R==b Do unm 4Z Sept 1995 t s34 1 7.2 Expansion Reach Lengths (From Chapter 7. Results) The expansion ratio was less than 4:1 for all of the idealized cases. The mean and an values of the expansion ratio for the idealized cases were both aro 1.5:1. a idealized cases included a wide range of hydraulic and geometric conditions. These observations are quite interesting because they indicate that the traditional 4:1 rule of thumb will over predict the expansion reach length for most situations. Many independent variables and combinations of variables were investigated in seeking a possible correlation with Le. The variable which showed the greatest correlation was the ratio of the main channel Froude number at the most constricted section (Section 2) to that at the normal flow section (Section 1). The best -fitting equation for the expansion reach length is Le = — •298 + 257 (Fo2) + 0.918 (L�) + 0.00479 (Q) FCi for which R = 0.84 and Se = 96 feet, with Le = length of the expansion reach, in feet, Fc2 = main channel Froude number at Section 2, Fct = main channel Froude number at Section 1, Lobs average length of bridge obstruction, in feet, Q = total discharge, cfs, R = the adjusted determination coefficient (the percentage of variance of the dependent variable from the mean which is explained by the regression equations), and Se = standard error of estimate. (17) Similarly, the regression equation for the expansion ratio was found to be IIt = I—` = 0.421 + 0.485 (Fe2) + 1.80x10'5 (Q) (18) Lobs Fc t for which R = 0.71 and Se = 0.26. I ', I I I- from: Flow Tra mUn is Bndp Backwater Awbrs a. HEC Rawc6 Docvmw 4Z Sep 1"5 2 1 I [1 I I i I 1 I I I I I �u ri I I I k 4 Q I NATIONAL FLOOD INSURANCE PROGRAM FIRM FLOOD INSURANCE RATE MAP CITY OF FORT COLLINS, COLORADO LARIMER COUNTY (SEE MAP INDEX FOR PANELS NOT PRINTED) COMMUNITY•PANEL NUMBER 080102.0012 C MAP REVISED: MARCH 18, 1996 Federal Emergency Management Agency 'N as �z '� r� a Ta Tm V D0 Z Z ;m Da zC ON PA _ 9 3 N 9 _ 2 2 2 of i c X n rri m _ r m ,' z ga 13 O O Y� N N• ti.l.� 0 0 0 G O O O h I A O O O Q O O n 0! 4 0 Y U. W W V Z 0 a N O a Q M 7 W M .d 7 O a 3 W Q IA U W .'� W J O z Qv u W _ Cg ° L9 U.• W Li. 15 qW W W Uu. F-QmJlu fV O •-• 0 0 0 0 0 0 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � .....O.��Y CO +I7 p1 .�O�MnnCpM�n.-•O%OhOOpIN OOD Q 3 Mv1 v11n �O �O -phhp%u'1 V1 v1 V�Ip ap p�O N.thnhpl > �� 0000000000.-1.-�.-/.4.-•.-I .�%p .�N1N NN NNNMM � W 8 p� p% pn CA O% pl p% O% p% at O% p1: OI pl O\ 01 pl pl p% p% pl p, OI � at O% O W i ��� ��S �.7�.7.7�.Y���.Y�ddd•7d�Y O W J �/ 2 ��HpI •D pIM co cm OIMnh OOMhO%D O%pnOOp•v�O%D mH �; Md.7 u'1 V1.O.Onnpl V�u'1 U1 v1 %D 00 COON�7nnh00 � FEc$ 0 0000000 O� Qh OI O� OI O. O• OO.-/.-•.-�.yNNNNNNNMM OI O% O% ON CA OI at O• T O% O� O% �S 3 w w w w w w w w w w w w w w w w w w, w w w w w w♦ w 3 •D ."'10+•C phM 00 p•M nnOOMnO%00.OnOOp%V1 C?•D � � Md �1'V�v1 .O .O npt vlM Mv1 �O OO OOON.Ynhnpp .-/•D � 0000000 p% CA T pn p% ON a\ 00.-•.-/.-1.-I .ti .-1 .�NNNNNNNMM p% CA p% � p% Ol ph p• p� p% ON pl p% Q• Qt ON ON Q\ �7 CA en h%?00M 00 MAD.-1n O%pNv1 1-10 v1 ♦-1OhM•O •-1 pI �O -p %D In v► v� •O h v1 OD Cl .-/ ri O M 00 O pl •o pl M n i��� .7 r• N r+ } 3 W o�°�F MdhNpIv10NNNnOpUp.CpQnoodiV.-qIn�7�7NMn O %O o0 N M .-� OI d O ' O G•��gj M N.N M M l+1 N •-+ .-+ h O �Y .D M �7 N •-1 N n pl V1 •Q I!1 O M N �7 0 M N M N N N ICI N •O M N N .-< p� 0 M N ti r J W �E O OI r/ O�Onhnhn ♦. O Ifs 1!� M 1-4 O V1 d %O •-1 M .--4 U'1 Y'1 M ON Ifs 1!1 M Y'1 to V1 O nao Op.-/�7 •p n1+1 P1nap pp y�,.y y�y�MN � o p� In .-, ♦r r, rZj NaoOOhM.�o0ho0v1hv1Ou'1Om000DONOV1plOMMir No Text SPRING CREEK MASTER DRAINAGEWAY PLAN Prepared for: City of Fort Collins March, 1988 Prepared by: Engineering Professionals, Inc. 2000 Vermont Drive Fort Collins, CO 80525 (303) 226-3852 J5 li 9Z u N N W t-• r r r r r r Hr r r r r r to n I N r O b m at Ot W A W N N N r r O t0 b b t0 m J m N p W N H m s W 0 0 0 0 W O O O to J tr O W O O J Ct m 0 0 0 0 0 0 0 0 0 to ►� N 'OZ' n ' O m to A p A W W W W W W W N N N N N N N r r r r r r I--W p W m ON N A W N r b J 01 N p W r b A A r r O Ot P N O + + + + + + + + + + + + + + + + + + + + ♦ + + + + + + + + r H r N CDp m r m N O to W J J O O O Ot N J 0 0 0 N O Q N W N O CD 0.N O O N %0 b ti N J W to O N m J J J In W O O O N N O d1 to 0 z $= M n W .�0i o � m 0 & w M V! w M m Q (O C. t0 W W r •nJ Y HH n n n r o n to n '' C W A r N A 0 J A 0 m A 0 Ot A 0 tJ1 p O N A O W A O N P 0 N A 0 N A 0 N A O N A 0 r A 0 O A 0 O A 0 O P 0 O A O O A b b A b m P b Ot A b t!1 A m b U A m b m A m b to A m b to A CO b W p m t0 N A m b N v �y O J O W O b O m N N P O N O\ Ot r to Ot O m to O O O N O O C y N P b r to A b r N p b r r A b r r A t0 o b P b 0 J A b 0 J A b 0 to A b 0 m P b 0 W A b 0 W A b 0 A A b 0 P A to10 0 W P b 0 W A b 0 W A 0 N A b 0 N A b 0 N A t0 o r A m b b A m b m P m b m P m o m P to to J w m J A m b as P m to m A m to N � tj (y q Il y OWyYO t0 p A J m p yl O N N m N r CDA t0 Ot O W A W J t0 m N W J J I. Ot r b J P W Ot O m 0• 0 O r V1 m In m O m A O N A W w O r 0 • � ( �r DO CD _. A b r M J W P b r W Ot b p b r N Ot J A b r N W J A b r r O O A b r O A O A b O m W W A t0 O M b N A b O M A Ot A b O M W A P b O M N m P b O N m N A b O to r A A to O A J r A b O A. W W A b O A r r P t0 O W N W A b 0 W O m A b 0 N A m A b 0 r b b A m t0 b W P A m b b r A P m b b r A p m b m A 01 A m b W O b P m b J b W A m b J A N A 0 b M m W m b M A O ty r O a A b r J A b r p P b r W A t0 r W A b r N A to r N A t0 o m A b 0 J A b 0 0% A b 0 0% A b 0 Ot P b 0 0% A b 0 U A b 0 N P b 0 A A b 0 A A b 0 W A b 0 W A b 0 N A b 0 N P m b to A m b w p 0 b b A m to m P m b m P m b m A m b J A m to J A' b ch N i •� y M r O m N 01 W W W O A N O O b b W 0% m P J 0 Ot r N N to 0• r A J m W 0. to J W O W m r m W W m W J J O A O N N J N r m m O !a •yQ' W A b r J A 'a r P A b r A A b r P A b r A A 'a r W A to O t0 A b O J A b O J A b O J A %0 O 0% AAA b O Ct b 0 tr b 0 to b 0 tr b 0 P b O A A. b O W A b O W A b O N A m b b A m b b A m b to A m b m A m t0 m A m t0 m A m b m A m t0 J p m b J [• N O W N m J N r W O1 O r Ot J U O J J N r O A b J Ot r t0 (n to U1 r W" b O N O\ O J A W O J W Ot r 01 r b NJ Ot to W O W p Ct t..• O •a f I` A b r J p b r Ot A to r Ot A b r O1 A b r at A t0 r Ot A b r O A b O m A t0 O J A b O J p t0 O J P t0 O J A b O Ot A to O Ot P b 0 N A b 0 N A w O A A b O W to b O N A b O N P m t0 to A m to b A m b b P m b b P m b m A m b CO A m b m A to to J A m b J (*J [q r 0 O N OD In r W r W r N N r O r to A N m O to b to P r b to A r to J N W r N M J W J b W b m W m 01 m MW W b Ot tj N W r • J N P O G � A b r m A b r J P b r J A b r J A b r J A b r T A. b r O A t0 O b A b O m A b O m A b O m A b O m A wb O J A O J P b O m p b O 0% A b O .0. P b O A P t0 O N P b O tJ A b O O It. b O O A b O O A m b t0 P m b b p m b t0 A m b m A m t0 m P m b m pJ t• LA 0 O t •�' m W 01 r r r O r O N b O b J P W J r A Ot A W O b A m r O 01 W A A m b r J b U Ot m r m N b W O J r p J W Ot m J W J r O •� t IJ I `1 h 1 1 1 �J I r 1 C� 9/2/97 OUTLET STRUCTURE REPORT Page 1 1,411 RECORD NUMBER : 1 TYPE : TRAPEZOIDAL WEIR DESCRIPTION : Emergency Overflow Weir L [RATING CURVE LIMIT] Minimum Elevation ............... :......... = 4907.00 (ft) Maximum Elevation ......................... = 4908.00 (ft) Elevation Increment ....................... = 0.10 (ft) [OUTLET STRUCTURE INFORMATION] Weir Angle ................................ = 151.93000 (deg) Crest Elevation .................... = 4907.00 (ft) Crest Length .............................. = 20.00 (ft) Coefficient Cw............................ = 2.85000 Exponential ............................... = 1.50000 (TRAP EQUATION) Q = Cw*tan(ang/2)HAexp H = Headwater depth above inlet control section invert, (ft) ang = Weir Angle (Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) ---------------------------------------------------------- STAGE ELEVATION FLOW ---------------------------------------------------------- (ft) (cfs) 0.10 4907.10 1.83 0.20 4907.20 5.26 0.30 4907.30 9.82 0.40 4907.40 15.34 0.50 4907.50 21.76 0.60 4907.60 29.03 0.70 4907.70 37.12 0.80 4907.80 46.01 0.90 4907.90 55.68 1.00 4908.00 66.12 6/2/98 Page 1/1 OUTLET STRUCTURE REPORT RECORD NUMBER : 3 TYPE : TRAPEZOIDAL WEIR DESCRIPTION : Pond 3 Emergency Overflow Weir [RATING CURVE LIMIT] Minimum Elevation ......................... = 4905.25 (ft) Maximum Elevation ......................... = 4906.00 (ft) Elevation Increment ....................... = 0.10 (ft) [OUTLET STRUCTURE INFORMATION] Weir Angle ................................ = 151.92760 (deg) Crest Elevation ........................... = 4905.25 (ft) Crest Length .............................. = 4.00 (ft) Coefficient Cw............................ = 3.03000 Exponential ............................... = 1.50000 [TRAP EQUATION] Q = Cw*tan(ang/2)H^exp H = Headwater depth above inlet control section invert, (ft) ang = Weir Angle [Culvert Weir Discharge Value vs. Stage] (the elevation increment is 0.1) ---------------------------------------------------------- STAGE ELEVATION FLOW (ft) (cfs) ---------------------------------------------------------- 0.10 4905.35 0.41 0.20 4905.45 1.26 0.30 4905.55 2.47 0.40 4905.65 4.05 0.50 4905.75 6.00 0.60 4905.85 8.34 0.70 4905.95 11.07 0.75 4906.00 12.60 > 11.5 cfs Peak Inflow From Basin's 2,3 & 4 14z1 z y 0 u W • N p M a 3 of a. N rI ra 7=Pl V y „ c m I N u 4: �' •'' a o0 3 ,Eo c U C C u 00 ca •. o L '3 h n Cd p m�"IN p y H v + o II c II a 3` J II II v' v; v ci a13 a a a v y O A. w w Z -3 D 0 O e c O U = a D > > m a m u m n � D m m a o t ` n c � e H � 71,r 3 0 C� m m m 1.� t �- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i J .� Q 1 ' t2l �/�-�•,= G-. `ter.., `<,-�-r �r�Ls �,.� C n-, e= �G c�.l � -�— t�%Cll� 1-4 ram, rn .S ti •T i-->'c !►1-4 1 -7 v o - TZ /✓1.+ x . �, f �H rr i c _ > S . 2 rr= r ' l7�aI-H o,=- 1-4-t,477-1 ,1 o. - Q 55,--7 Zo' ( I. of 2.g ci l= �-�,✓1 �S . - 8 vlJc %`T�c� L lZii''ri-"� t=o i .A 2 0 r+ O � *oc `II y m O O m 7 O 7 C) M ro N r N n v m y �l a H H n o a ro H r- r rr b' u aGa Har � a a a E � F+ C u a ' H ar I � J E d ' P' N � C � n � n r nG C � r� N ' n M u M n H o n r E N N c G � � 9 al F n n K n rr M- f mE r E ' O II o ' v x a r r 0 rr m x n m m a 0 h r-• c� ro ti a N '� ''' n N (D r 0 7 w rr L< rt .. (] Z m o O Ul ko �ro H H E m N O EO F"S N H H H N F, O! O yr to .7 l0 rr a m J HrrH mgao ko � N gg � co O N 0 x x H H W H 0 M W O � a( u o m o o �-r m e 0 m rt H n < rOi hd N rt ro d \ ❑ \ p \ 7 \ s m- �Z ro , s M d lu n ❑ ro ID a a a It W < ,-, 7 N a �y R n N ro 8 C H N M I_ 91 .4�tr w a w a H A y a H- Hcl J a nr rt O x� •� \ o w Q G n IA�J H H H N H J J N p O H x pn w ❑ n O M Ir N u p \ w 7 \ a y \ a 7 \ a to m \ X a [39 r J N J O 5 n d O H r m ❑ v n 0m o n a n m v N u m N O r O V 0 0 H MQ a n p v :3r C s H- µ •l) O y- ro 7 H H H H M O O N M 'O cn to In to � � rt x ro i 1 1 1 1 1 i 1 C I I i � M 20 TYPE L Q •2 R 6 g j Y I .'D Use Do instead of D whenever' -flow is supercritical in tree barrel. **Use Type L for a distance of 3D downstream. .0 FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT QUTLET. FIGURE 5-7 IS VALID FOR Q/ D2.5 OF 5.0 OR LESS. 0= DESIGN DISCHARGE IN CFS D= CIRCULAR ,CONDUIT DIAMETER IN FEET w i �o vi r� zS o_ w o� pu 1i `W Z �j32 W W� u: C W `OV p� 60 on 40 d 3 0 FBI O .2 .4 .6 .8 1.0 Yj/H Use Ho instead of H whenever culvert has supercrifical flow in the barrel. **Use Type L for a distance of 3H .downstream. FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR CONDUIT OUTLET. -• FIGURE 5-8 IS VALID FOR O/ WHL5 OF 8.0 OR LESS. g W U= DESIGN DISCHARGE. IN CFS J m F W A14D H= WIDTH AND HEIGHT OF .. RECTANGULAR CONDUIT IN- FEET Yi-AILWATER DEPTH I F] fl t I 1 I I 1 1 I I nVol RAINFALL PERFORMANCE STANDARD EVALUATION ,STANDARD FOR AfA PROJECT: SPRING CREEK CENTER, THIRD FILING CALCULATED BY: MWohnrade PROJECT #: SPR: 9734.00 DEVELOPED BASIN ERODIBILITY ZONE Asb (ac) Lsb (ft) Asb* Lsb Ssb (%) Asb* Ssb Lb (ft) Sb (%) PS (%) 1 HIGH 1.075 155.3 166.9 1.51 1.62 2 HIGH 0.647 1 226.1 146.3 1.36 0.88 3 HIGH 0.362 136.6 49.4 2.93 1.06 4 HIGH 0.282 252.5 71.2 1.61 0.45 5 HIGH 0.598 148.5 88.8 1.39 0.83 6 HIGH 0.254 148.5 37.7 1.39 0.35 7 HIGH 0.899 177.2 159.3 2.01 1.81 8 HIGH 1.462 173.7 253.9 2.13 3.11 9 HIGH 1.166 139.6 162.8 2.11 2.46 10 HIGH 2.523 292.1 737.0 2.15 5.42 11 HIGH 0.254 90.1 22.9 1 2.04 0.52 12 HIGH 0.500 37.2 18.6 10.78 5.39 13 HIGH 1.026 545.0 559.2 1.03 1.06 TOTAL 11.048 2474.1 24.97 224 2.26 79.8 EXAMPLE CALCULATIONS Lb = SUM(Asb*Lsb)/A Sb = SUM(Asb*Ssb)/A PS (during construction) = 79.8 (From Table 5.1) D:\Projects\Spr\erosion\SPRa.wpd March 12, 1999 EFFECTIVENESS CALCULATIONS STANDARD FORM B PROJECT: SPRING CREEK CENTER, THIRD FILING CALCULATED BY: J.P.M. PROJECT #: SPR: 9734.00 EROSION CONTROL METHOD C-Factor P-Factor Comment Value Value Roads & Curb 0.01 1.00 Paved & Constructed Gravel Filters 1.00 0.80 Placed at Inlets Hay/Straw Mulch w/Temp. Seed 0.06 1.00 All Areas not in Roadway Straw Bales 1.00 0.80 In Swales and Channels MAJOR PS SUB -BASIN AREA CALCULATIONS BASIN (%) (AC) 79.8 ALL 11.048 DURING CONSTRUCTION: Plan intent: Temporarily seed & mulch all disturbed areas not in a roadway if exposed for more than 30-days; use gravel filters & straw bales. Roads Lump sum --roads & impervious = 6.433 acres Pervious: 11.048 - 6.433 = 4.615 acres Cnet =(0.01*6.433)+(0.06*4.615)/11.048 = 0.03 Pnet = 0.8*0.8 = .64 EFF = [ 1-(C*P)] 100=(1-(0.03*0.64)100= 98.0 >79.8 I D:\Projects\Spr\erosion\SPRb.wpd March 12, 1999 L C� I PAGE 2,3.:. I M3 I O I C: O10 0 Cr 1 1 O I-w c to Ln Lo 1 Ln 1 ggqqq 1 1 1 C I'cnfTC1C1CC0000 1 1 1C•Icc c Q Ln Ln Ln Ln LL: Ln 1 c 1 g q q q q q q q q q 1 1 I C I . Q1010101 C1 Q10. C. C. 01CC0 1 1 1 1 I . I O 1 c c c cc c c cc c c c Ln Ln Ln 1 qq q co=co q ggCC comm qq 1 1 f�W CC Co C1 C1 (;M0101 C1 C1 Ct 0)0% 0101 C101 C1 A C I c c c c c c c c c MI. c c c c c 044444 1 I cq I gcoCCco ggqcoqqqqqqqqqqqq L 1 1 1. 1 O I OMCLo kotOLOLor�gggqcoco I I i 1. O I c c c c c c c c c c c c c c c c c c c c c c c Ir-I.I1.ggq.00 co CUgCO co co CO OOgggqq OJgggqqLYJqOO 1 1 O 1 CC N M c Ln Ln Ln t0 LO tO t0 t0 10nf�^t\n qqq 1 1 01 I'Mcccccetccccccc c c c c c cccc C0 c c c 1 i-qq COq co co co co co co co co co co qqq q ggqqqq CO CO I 1 • O I O I LO O N m c c Ln Ln Ln Ln t0 t0 40 W tO l0 W W W W O"1 CO I Mcccccccccca'C'ccccccccccccc U I 1 q q co W CC W g W q W q CC_ CC Co coW coCC q co co co coW q coI 1 N 1 C) qw 4m N M M c c c c Ln Ln Ln Ln Ln Ln Ln Ln Ln t0 t0 tO tO t0 %0 ^ 1 I .M met c et c c �'et"� eF C er c v er c v v v i c a' g CC q CC q q q q q q CC q q C2 W CO W W qqqq I .I.ggqW 0tOc O.-t rr NNMMMMccccetcccln ll-1 to to tD tO 1 U I t0 I M M M c c c c c c c c c c c c c c c c c c �'N c c c Crc i '-' i-.ggqqqqqqqqqq.qqqqqqqqqqqqqq I 1 I _Ln NLnnw4m C)b.Q +.-r r•fNNNNNMMMMMcca'cet 1 LL. 1 vUl' 1 :N M M M M M c c c c c c c c c c c c c c c C c OC c c c I W 1 -COW q.q qqqq W M M M qqqq CO W rW W qqqq COCO l I •- �..i Otn ,l .-L m c Ln Ln tO tO f� l� r� q W qqw Ctm C%CC000 4N 1 Ln 1 J'c N fh M C7 M M M In M M M'M m M M M M M M M c er c I b' er 1 Ln I'ggcoCOCOCCCOCOCCCOgCCgqqqqcOqqqqqqqq I t0 Ln Co (D Mcc Ln Ln Lo tO tO tO t0 tO r� I-, r-, l., Co co co Cl ON 1 0 .Z ..1' 1.=." c •I N N fo fh M LM Co LM M CM fh M M 00 M 00 Co fM M M MM 1 Coqqqq CO Co Coq. CO CO Co Co Co CoO0 CO O0 CO a0 CO CO CO CoCOgq W co co ' I .. Q • 1 t . Ln 1� rr •-I.Ln n COO 0 r-1 N N M M M c c c c c Ln Ln Ln t0 t0 t0 P. r\ •--1 `. . . . . . . . . I I - - '1.:: . . ly. ::..M..'1�NNNNMMMMMMMMMMMMMMM MMMMMM ".1 W qq CC CO LOCO CCCO COCO COCOCOCOCOCO COOO W WWWggqq 1 - I Z..1. Q -' .O I. MN km co CT O. N N M M M c c c c c c Ln Ln Ln Lo t0 1 - N N N N C N .. . N N N N N 1 I.00OCCOCOOOCOgCOCOOOOOOOCDNNCOCOCOCOCOCOCO=COgq I Ln *"I Ln'Ln C1NMcLn t0 r\^ r\ q q q C101 Ct C1 C1 C10 OOOOO 1 ..A • . . . . . . . . . . . . . • I _ W I ... N -1 01 C O r-L .-L ry rr .••I rti r•1 rN r-1 r.1 v-L .,,d r-1 .�1 .--1 •-r •-1 N N N N N N 1 - d 1 qq q qq CO CO W g q W qqqq W qCO W I ' .. I -•.; 0 ,1-,4' Ln.O m Ln t0 q q 471.40 O O r-1 r4 .-y .-L N N N N M M M M M M 1 1 'N _1 -.00-C1 O O O O O O O •--I eti •-L r•+ r-L r-i .-1 rr ...1 rr r•1 .-• rq r-1 r-1 rr 1 1 .'1 I�,f�gCO CO CO O0 C0 aDNC0 CO 0O CONCO OC COgOJ COggqOOq 1 1 Ln. I q C:; •-r Q Ln f-I 1-1 q 01 cmC C r+ .-I .--1 .-r .-.r N N N M M M M M 1 0101.01010L 01 C1 C1000000000000000 1 W g W q W q W W W g W CO CO CO CO 1 -. .. ,.1.... 1 _- t0MOcn ONO.-1 NM M cc Ln Ln Ln Ln t0 L0 1.0 t01\ f�- t0 t0t0 1 .. 1 .... I . . • • . •. 1 :.. :rN ..1 t'c t0. ^ ^ f\ CO OO CO CO CO CO CO CO CO CO CO CO q q q I �. .ILn '1' 01 0 c t0 r� Co Co r� r� f'� t0 t0 t0 Ln c c M M N N C1 t0 c r-1 CJt t0 1 N N N N N N N N N N . -. 1' •,_. r. ;q .-^ f\ n rs f\ ^ f� n f\ n n f� 1� t\ f� f� f� f� ^ f\ n n f\ f\'f\ f� I �� If3i-�► LO.O:oo00000000000000CDQCD CD C) i I O cm F- 1 0 0-0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 Cl 0 0 0 0 0 0 0 1 1-.J Z U- 1 =e-L N M -W Ln LD r� Co01 C)r r" M c Ln tD r- CoC1 0 Lo O Ln C Ln O I LL W ry �-N r-1 rr .--4 .-•1 rti N N m M c c Ln 1 1 LU 1 1 TABLE 5.1 1 PAGE 19 M <{ 2. Sites of 1 acre or less. 3. Sites with unsheltered distances (distance unbroken by a wind barrier) parallel to the prevailing wind direction of less than the values in Table 4.1. 4.2.2 Requirements A11 other sites shall be protected from wind erosion, by one or more of the following: 1. ;ive vegetation evenly distributed over 30$ of the entire disturbed area. 2. Crop residue evenly distributed over so% of the entire disturbed area. 3.. One half ton/acre hay or straw mulch properly anchored. 4. One half ton per acre paper or wood fiber hydraulic mulch, applied according to manufacturer s specifications. 5. Surface binding materials applied according to manufacturers specifications. 6. A rough soil surface with ridges and wind barriers, both perpendicular to the prevailing northwest wind direction. A wind barrier means a snow fence, trees, shrubs, grasses, screens, natural terrain, or other natural or manmade structures, which is greater than .,one foot high and causes wind -suspended sediment deposition to occur. Barriers will be installed in a :'_'northeast to southwest direction with a maximum.spacing ".as.shown in Table 4.1. The most downwind barrier will be placed inside the site boundary at a distance`of 10 times the barrier height. Table:4.1,_ Allowable Wind Barrier Spacing. Wind Erodibility Zone' Maximum Barrier Spacing Low 1000 feet Moderate 200 feet High 50 feet Use. the attached Wind Erodibility Zone Map to detprmine -which zone the site is in. 61 ,vn 000000 V) O O O O O Cul N r r 0kn OC G .= N N 69 O O O O O O I I I I O O O O O O U O M M [� O 00 F F � o A " W) E �q oo v o o o, >~ o N: U c ¢�waww '• k iM. U U o (L! M h O encq .- b9 W 0 W W z a F� II ¢ E�- z w �¢w x n F c7 w Nm Ln CD� OOi �0 u a �Q � (� l~ W O O w rn W Z W W Ag E-O O FF�% U O V�dW�Q OV 000 ���a O �Oaza�aa r�w� W x�C�7vdivFivFi F—I n I Fj I I I n I I 11 n �j 11 11 I fm Q Q I STor'-ice GE PTC�- L7E Sr �i •J 'T`irBNTr.,�-Y ��-cvr = �. �FvS •�L �13grr.JS 8 - 11 ) l3ASr�J /nn�..z✓.o.�, s.J c � S = S? `�o !—�., a r T•4r rr� � = l.rorY,.-,..` i TYPE L� - - - I=P-•� � rir3 L� L � ti rc A = TG /�lo.'�� l.- 1800 . -- - -- Z S, t r Aa G r7rf. .rro��-r. mac. r'Ta,Z Mo���c_ r9op . - Z lam'-��^ T�+v�•� `'1 T�-Fc Nt.•+xrN+N ✓1 ScOrA✓+cE7v; 1 �1 ,�cPTI-'i = l.0 .'. /�la.ri�/Tr�7J.araJc-c lnJo�n.-.7 r3E Technical Design Manual Page 17 it Installation D^pth The maximum installation depth for the precast concrete Stormceptor® is 33 feet. The fiberglass units have been designed based on a maximum depth to the bottom of the treatment chamber of 20 feet. The dimensions (i.e. depth of treatment chambers) for various Stormceptor® units are provided in Table 3. Stormceptor® installations at depths greater than those noted above will require custom manufacturing. Carder Concrete and Wyoming Concrete should be consulted for recommendations in these instances. Z4 Stormceptor® Sizing Guidelines In 1994 Stormceptor Canada Inc. monitored 21 sites with Stormceptor® installations. The land use of these sites ranged from industrial and automotive service stations to commercial parking lots, subdivisions, and streets. The purpose of the monitoring was to determine the rate of solids accumulation in the Stormceptor® units with time. Although this study was by no means definitive, it provides the best available field data upon which to base a sizing guideline. Accordingly, the sizing guidelines will be updated as additional field results become available. The captured sediment in the interceptors was normalized based on the length of time since installation and upstream drainage area. r The normalized sediment capture (ft'/ac/y) was compared to the estimated loading (29.1 ft'/ac/y - based on an event mean concentration of 185 mg/1 suspended solids) Ito determine the The estimated removal was plotted against the sediment storage volume (excluding oil storage) provided by the each Stormceptot°o normalized by upstream drainage area (i.e. ft'/ac). The relationship between estimated suspended solids removal and Stormceptor® storage per acre of upstream impervious drainage area is graphically shown in Figure 6. The regression analysis best fit indicates a linear relationship between the estimated solids removal and interceptor storage (correlation coefficient (r') _ 0.60) . Carder Concrete Products 1-(303)-791-1600 Feb, 1997 Technical Design Manual Page 18 /J 3/ Figure 6 StormceptorT" Sizing Guideline T 0 V 0 co m a E 0 50 100. 150 200 250 Stormceptor'° Sediment Storage Capacity (ft 3/ac) Based on the sizing guideline in Figure 6, Table 6 provides rule of thumb drainage area constraints for the Stormceptor®models that are manufactured. The STA and STC in the model number column refer to fiberglass and concrete versions of the Stormceptor®, respectively. Stormceptor Canada Inc. currently produces the fiberglass version of Stormceptor® while the precast concrete model is manufactured under license by Carder Concrete in Colorado, Wyoming Concrete in Wyoming, and Hydro Conduit for the remainder of the United States. Table 6 indicates that there are 4 design levels for the Stormceptor®. The first three design levels are based on the classification of the receiving waters (river, watercourse). These design levels are for stormwater management plans in which the Stormceptor® is the only stormwater quality measure being implemented. The fourth design level is intended for situations in which the Stormceptor® is one of a number of stormwater quality control measures being implemented on a site (i.e. the interceptor discharges to a pond, perforated pipe, sand filter, infiltration trench, etc.) Retrofits designs, in all likelihood, will not be able to meet the design guidelines in Table 6. In these cases, the implementation of the Stormceptor® is still applicable since it represents a low cost measure to provide some degree of water quality enhancement (spills protection and bedload removal). Carder Concrete Products 1-(303)-791-1600 Feb,1997 Technical Design Manual Page 19 The habitat conditions in Table 6 refer to the Ministry of Natural Resources Habitat Types which are summarized in Appendix 2. The reader is directed to the Ministry's publication "Fish Habitat Protection Guidelines for Developing Areas" (1994) for a detailed discussion of the habitat types and classification of the receiving waters. The relationship between habitat type and suspended solids removal in the Ministry of Environment and Energy's Stormwater Management Practices Planning and Design Manual (MOEE, 1994) was used to derive the drainage areas in Table 6 (Type 1 (Sensitive)- 80% TSS removal, Type 2 (Normal)- 70% TSS removal, Type 3 (Degraded/Altered)- 60% TSS removal). Table 6. Maximum Im ervions Drainage Area Guidelines ac Stormceptor®Model (STA / STC) Type 1 Sensitive Type 2 Normal Type 3 Degraded Treatment Train* 900 0.45 0.55 0.70 0.90 1200 0.70 0.85 1.05 1.45 1800 ' 1.25 1.50 1.90 2.55 2400 1.65 2.00 2.50 3.35 3600 2.60 3.15 3.95 5.30 4800 3.60 4.30 5.40 7.25 6000 4.60 5.55 6.95 9.25 7200 5.55 6.70 8.40 11.25 * 50% TSS removal The designer must ensure that the unit is also properly sized for the spill potential associated with the site (i.e. fuel truck, bus, cars, etc.). Spills Capture The results from the laboratory testing at the National Water Research Institute in Burlington indicate that free oil is retained in the Stormceptor® for both dry weather spills and during minor storms (Marsalek, 1994). In a dry weather spill the latter portion of the spill will remain in the down pipe. This oil will be purged into the Stormceptor® treatment chamber during subsequent inflow to the separation chamber. Based on API style calculations with a 150 µm (0.0059 in.) oil globule (rise velocity of 3.47 ft/min.) the oil will rise anywhere from 10 inches to 24 inches during peak flow conditions in the separation chamber depending on the size of unit implemented. These distances are based on the assumption that only half of the storage volume in the separator is used in the flow through zone. As such, the calculations and laboratory tests indicate that oil will be readily trapped since the outlet riser is the same elevation as the inlet riser. F r 11 1i Carder Concrete Products 1-(303)-791-1600 Feb, 1997 q, I i Technical Design Manual Page 20 ,,J 6 / I I i I I I Flow Treatment A check was made on the sizing criteria provided in Table 6 based on modeling which was undertaken by Marshall Macklin Monaghan Limited (MMM, 1994). MMM continuously modeled 4 parking lots with various drainage areas (1.2 ac, 2.5 ac, 7.4 ac, and 12.4 ac). The continuous flow series resulting from these simulations were analyzed to determine the percentage of annual flow volume that by-passed the Stormceptor®. It was assumed that the design treatment flow rate remained the same during by-pass conditions for the determination of the volume of stormwater that by-passed the interceptor (i.e. when a by-pass occurs water which flows over the weir creates a backwater effect on the discharge pipe from the treatment chamber which restricts the flow rate in the treatment chamber to the design value). This is consistent with laboratory tests conducted at the National Water Research Institute (Marsalek, 1994). Table 7 shows the results of the modeled flow analysis. The table indicates that the sizing guidelines provided in Table 6 will result in 800/0+ of the annual flow volume being treated by the Stormceptor®. Interceptor sizing for Type 1 habitat results in approximately 90% of the annual flow volume being treated by the Stormceptor®. Table 7. Percents a of Annual Flow Volume Treated by the Stormce tor® Impervious Drainage Area (ac) STA/STC 900 STA/STC 1200 STA/STC 1800 STA/STC 2400 STA/STC 3600 STA/STC 4800 STA/STC 6000 1.2 89 % 93 % 96 % 2.5 81 % 87% 92% 7.4 61% 72% $1% 12.4 52 % 65 % 76 % Table 7. Percents a of Annual Flow Volume Treated by the Stormce tor® Impervious Drainage Area (ac) STA/STC 7200 1.2 98 % 2.5 95 % 7.4 85 % 12.4 82 % r Carder Concrete Products 1-(303)-791-1600 Feb, 1997 Technical Design Manual Page 26 5.5 Inspection The Stormceptor® can be easily inspected visually for oil and fuels by removing the cover (i.e. oil can be seen thru the vent pipe and smelt from the surface). Similarly, the depth of sediment can be measured from the surface without entry into the Stormceptor® via a dipstick tube equipped with a ball valve (Sludge Judge). Maintenance should be performed once the sediment depth exceeds the guideline values provided in Table 9. Table 9. Sediment Depths Ind cating Required Maintenance* ' Model Sediment Depth feet 900 0.50 1200 0.75 1800 1.00 2400 1.00 3600 1.25 4800 1.00 6000 1.50 7200 1.25 * based on 15% of the interceptor's sediment storage Any potential obstructions at the inlet can be observed from the surface. The insert has been designed as a platform for maintenance personnel in the event that obstructions need to be removed, sewer flushing needs to be performed, or camera surveys are required. h I I F C� 1, Carder Concrete Products 1-(303)-791-1600 Feb,1997 I I N —7 I DBq# ' - A%4t *Gpp CO C TB es„ W. comae oounr IL*�{� u3111 W.. RICo elmas 11 a0 �2 o ns ert nw sloac ,IUL OONCIad'Tm WVMM 0° (Cam D m m z Q m in N STC 1800 PRECAST CONCRETE STORMCEPTOR® VENT PIPE H 72"0 rSTORMCEPTOR INSERT r WEIR CE INLET _ INVERT IN 24"0 OUTFLOW RISER PIPE C .• 6"0 INF OW DROP Y PIPE W% TEE SECTION VIEW 24"0 RIM AND COVER (SEE NOTE 8) ADJUSTING RINGS D 2 z m c U FLEXIBLE a CONNECT TLET T OUT o a _ N 1 IVIP%IGT%IhL a%.nr_IJVLC STATION RIM ELEVATION INVERT IN EL. PIPE IN SIZE "B" INVERT OUT EL. PIPE OUT SIZE "D" w Li "A" (INCHES) "C" (INCHES) LL 0: BELL LID ADJUSTING RINGS 0 RING AND COVER OUTLET PIPE IS DEGREES TO THE (LEFT/RIGHT) OF INLET INFLOW 6"0 VENT DROP PIPE _ OU RISERL PIPE 0 --- \ { (STD.•) 1 l *IF OUTLET PIPE IS ��� NOT 180' FROM INLET OUTLET ENTER LOCATION ABOVE PLAN VIEW 1, STORMCEPTOR DESIGN SPECIFICATIONS U.S. PATENT NUMBER 4.985.148. 2. 3. MANUFACTURED TO ASTM C478. JOINTS PER ASTM C443. CCP ORDER NO. LOCATIONz 4. CONCRETE STRENGTH = 4,000 PSI (30 MPA). 5. 6. WELDED WIRE FABRIC TO ASTM A185. DESIGNED TO AASHTO HS20 LOADING. DATE CONTRACTOR; 7. STORMCEPTOR IS CONFINED ENTRY, NO STEPS SUPPLIED. ECCENTRIC ACCESS STANDARD. STEPS SUPPLIED UPON REQUEST. DRAWN ENGINEER; 8. STORMCEPTOR RING AND COVER TO BE D&L PDATE 02/97 9. SUPPLY MODEL A-1071 OR EQUAL. MANUFACTURER RECOMMENDS FLEXIBLE CONNEC- . REV. $r APPROVED BY; TIONS AT INLET AND OULET WHEN APPLICABLE. I I I I I I I I I I I I I I I I I ' DRAINAGE CRITERIA MANUAL (V. 3) r I I I It STORMWATER QUALITY MANAGEMENT di/ however, when using the practice of minimizing directly connected impervious areas in combination with extended detention basins, retention ponds, wetlands, and other practices depended on a design capture volume. Whenever applicable, the needed modifications are described in the appropriate Structural BMP section. IicSf !� � ��.-.�Gct� N �-c /'-'�i� C xrc•�+•�c�7 f�cTCNT�o.�J 5.4.2 Water Quality Capture Volume. Extended detention facilities (dry), retention ponds (wet), and wetland basins should be designed to capture and treat runoff equal to the 80th percentile event. This is achieved by draining the design capture volume over a specified time. Extended detention basins need to be designed to drain their design volume in approximately 40 hours. Retention ponds require only a 12-hour drain time because the sedimentation process is more efficient and some mixing and dilution between a permanent dry weather pool and storm runoff occurs. The wet pond also provides for treatment between storms, which provides long periods of time for fine particles to settle out and for biological activity to occur. Wetland basins should be designed to drain the design capture volume in no less than 24 hours, thereby providing for some biological uptake during the contact time with wetland media. Infiltration -type structural BMPs such as porous pavement shall be designed to capture and treat the runoff from at least a 2-year storm. The use of a 2-year storm is also recommended for the design of slow -moving grass -lined swales and of wetland channels. The following is a step-by-step procedure for determining the water quality capture volume needed to size extended detention basins, retention ponds, and wetland basins: Determine basin imperviousness. 2. Select either a 12- or 40-hour brim -full volume drain time for the proposed facility. Use a 40-hour detention time for extended detention basins and a 12-hour detention time for retention ponds. For wetland basins, use the arithmetic average of the 12- and 40-hour drain time volumes. 3. Estimate the brim -full storage volume in watershed inches of runoff from Figure 5-1. 9-1-92 Urban Drainage and Flood Control District r STORMWATER QUALITY MANAGEMENT DRAINAGE CRITERIA MANUAL (V. 3) p1/ 4. Determine the water quality capture volume (WQCV) in acre-feet as follows: WQCV a (Required Storage I (Area)12 , , in which, Required Storage = Required storage from Figure 5-1 in watershed inches Area = The tributary drainage area upstream of the water quality enhancement facility , In acres 9-1-92 Urban Drainage and Flood Control DWdct I I I I i I r I I I If Design of Dry Extended Detention Basins for Water Quality Reference: Urban Storm Drainage Criteria Manual, Volume 3 - Best Management Practices, Urban Drainage and Flood Control District, September 1992. Project: Spring Creek Center Location: Design Point 6 1) Determine the Water Quality Capture Volume: 1.1) Determine Basin Imperviousness: Basin Parameters Basin Area (acres)— 0.852 Area of Roofs (acres)= 0.060 Area of Parking, walks (acres)= 0.431 Basin Imperviousness (8)= 58 1.2) Use a 40-hour detention time for extended detention basins; 1.3) Estimate the brim -full storage volume in watershed inches of runoff from Figure 5-1; 1.4) Required storage from Figure 5-1(inches) = 0.24 1.5) Determine the water quality capture volume (WQCV) in ac-ft; WQCV= (Required Storage/12)(Area) Requited Storage= Required storage from Figure 5-1 in watershed inches. Area= The tributary drainage area upstream of the water quality enhancement facility in acres WQCV= 0.01704 ac-ft = 742.2624 cu-ft 2) Calculate the Number oferforations per Row -for WQCV Release: 2.1) WQCV= 0.01704 ac-ft 2.2) From the Rating Table for Swale 6, at 0.01704 ac-ft, Elevation= 4905 2.3) Invert Elevation of Outlet Pipe= 4903 2.4) Depth at the Outlet (DwQ, feet) = 4905-4903= 2 2.5) From Figure 5-3, Required Area per Row= 0.045 in' 2.6) From Figure 5-2, Use (1) 1/4" diameter hole per row, space rows on 4" centers, Riser Pipe is 2-feet high oaP-je spAExDerca...pd V J LL 2 .- 3w5 4 F J a rcCIO r jL ao Z OWO ice+ 0 0 �W rn 0 -11 . O m lJ L. JM6 0. 5 0. 77 0. 3 0, m 0. it i 0.1 V/001F I F t c 0 0 10 20 30 40 50 60 70 80 90 100 Percent Impervious Area in Tributary Watershed Source: Urbanos, Guo, Tucker (1989) Note: Watershed Inches of runoff shall apply to the entire watershed tributary to the 8MP Facility. V FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV) R e xten ad De ent)o Bask (Dry ) 0-Ho r Dral time 4 3 2 D tentl n Pon s (W 1 -Hour Draln Time t) DRAINAGE CRITERIA MANUAL W. 3) Threaded Cap Wdsr Capture Volume Level0 inrlgg20%additional volume for sediment storage) Gravel (1.12• to 3' Rock) Around /Perforated River s� Filter Fabric Water Dustily Rleer Poe (See Detail) Notes: t. The outlet pfpe sftelt be sized to control orereow krfo tlr oenue o riser. 2. AIYma4 designs Include a or critics deslpru ass) long an se hydraulic nutNns ass Note: 1. Mnlrnur l resnber of holes . 8 2. Wimum hole dWffww . V8' d a. 9.1.1992 LVFCD STRUCTURALBMPS ,able & Lockable m Orate for Storrm Access Plt Outlet Pips—► (Min. 3 ft) ` Sue Base to Prevent OUTLET WORKS Hydrostatic Uplift NOT To SCALE 1-12' diameter Air Vera In Threaded Cap Ductile Iron or Steel Pipe WATER OUALITY RISER PIPE NOT TO SCALE Maximum Number of Perforated Columns Rher Hots DismalK In. Diamsb 114' 1/Y 1 314- T (h) 4 6 6 — — 6 12 12 9 — 8 18 16 12 6 10 20 20 14 10 12 24 24 16 12 Hole Diameter Area of Hole (h) (h2 ire 0.013 114 0.049 318 0.110 12 0.196 lire 0.307 3/4 0."2 718 0.601 1 0.76s FIGURE 5.2. WATER QUALITY OUTLET FOR A DRY EXTENDED DETENTION BASIN a SF� O KU� UFO P��v 8 `c! cOZO 21a o rove ow � a �m Mom o(tv DRAINAGE CRITERIA MANUAL(V. 3) 10.( 6.1 4.1 2.1 U 0.61 O.4 0.2 i o 0.1 0 0.0 0.0 o.a 0.01 0.02 0.04 0.06 0.10 020 0.40 0.60 1.0 2.0 Required Area per Row (In.2 ) Sinew: Dapee Gounb Storm Droner and Todniwl CatsdA 1Yee. FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME STRUCTURAL BMPs momm.momwiviioAPAA01orAii SOLUTION: Required Aroefor I Iiii p" rd, For E, FA PA I mimeWFFF AJj PAS AS W Ed APIA ANNAll VAAMI 0 .e 11.Nr42 'AAJO WAAFA' Aer APIANA Ell FAMOAPOP* 'A L A VON PA, PA Ar WAA Fir m I m 0 1 OUR AA AA 1001011 1001011 rAAdAl F®r 'A sm WA"r Ap 'Arl IwAr Rev. 3-1.1994 UDFCD 1 1 1 1 1 i 1 1 1 1 1 1� 1 1 f� 1 L 1 di 0 3c� O CVK n V J W oz<a �Z i � r4-�-c A.zc"7a Q o, 0 4�l I"q s W I !/1 lc rc L 0 10 20 30 40 50 Outlet Diameter in Inches FIGURE 5-4. MINIMUM TRASH RACK AREA /A zi t Va3N i 60 Ibi f_ -- z Ooo z N O I Elevation Area (sq Ave. Area Volume (cu-ft) Cum. Volume Swale 6 4903.000 0.000 0.000 0.000 0.000 4903100 10.360 5.180 0.632 0.632 4903.200 19.424 14.892 1.437 2.069 4903.300 34.646 27.035 2.656 4.725 4903.400 56.025 45.335 4.482 9.207 4903.500 83.574 69.799 6.926 16.133 4903.600 117.274 100.424 9.986 26.119 4903.700 157.145 137.210 13.660 39.779 4903.800 203.173 180.159 17.999 57.778 4903.900 255.360 229.267 22.868 80.646 4904.000 313.714 284.537 28.390 109.036 4904.100 363.442 338.578 33.830 142.866 4904.200 416.302 389.872 38.952 181.818 4904.300 472.792 444.547 44.443 226.261 4904.400 534.715 503.754 50.323 276.584 4904.500 602.374 568.545 56.796 333.379 4904.600 675.773 639.074 63.842 397.221 4904.700 754.894 715.334 71.460 468.681 4904.800 839.752 797.323 79.779 548.461 4904.900 930.343 885.048 88.436 636.896 4905.000 1026.669 978.506 97.773 ---Ykra69� 4905.100 1124.647 1075.658 107.528 �8.42.197 4905.200 1226.642 1175.644 117.516 959.713 4905.300 1332.743 1279.692 127.984 1087.697 4905.400 1443.054 1387.899 138.745 1226.442 4905.500 1557.700 1500.377 149.981 1376.422 4905.600 1676.848 1617.274 161.657 1538.080 4905.700 1800.821 1738.835 173.797 1711.877 4905.800 1931.736 1866.279 186.719 1898.596 4905.900 2070.000 2000.868 200.003 2098.599 4906.000 2213.494 2141.747 214.084 2312.683 w l w c4 c✓ = " t 4 Z.. 3� rr+= � Z = 4�i o S_ o I I I ,t I®CII 1MYIMV T/Ia� MODEL: EC -RAIL SECNO 100-YR WSEL ri 500-M WSEL p too 412.24 0121M 200 4913,01 4913.29 2% 4913.60 4913.90 300 4913.79 4914.17 AGO 4913.85 4914124 450 4914OB 4914.42 500 4914.19 4914.59 700 4916.40 4916,68 MODEL: EC-SPLT SmNO 10o-YR WSEL Po 1000 4905.37 1074 4905.70 f 152 4906,19 1436 4906.W 1257 4912.45 19W 4913.27 2000 4914.51 2025 4915.M "IST1G LW POOR IN C "URIND RREAL IEAL ST_YR SWl. ]Y6) Cf➢ YFM SPILL. BM.] CFS FLW ILSE FROM! SEAL Q®' phR tWHPNNE too-,Ew-.U.S CIS; (S S Nv) &M-YFAo 1924 COB (4CM 3p-)00) - to '�'[IMBERLI-- — _ ROAD 02 c,P � 4� 000 .� PREDEIF LOPMENT SPLIT _ FILL1 I xcRax xpx5 toLOW SP- 03 CPS iR�. S:1 PPueOx MORE] MASTER PLAN 1 W A 500-YEAR OM \ 11 sEAYIx t9W \ ii'�. to 20 1 ROODPWN, MMGH, 1988 MASTER PLAN HEC-2 /may SECTION FOR SPRING 75 ISMS - -- I CREEK H e01i IWtti bCHASE 9064 NORTHERN ENGINEERING ( - NEC-2 SECTION FOR SPILL MR RMBERUNE ROAD 0 �P° N 0 SI NOTE: 100—YR SPILL' I 1) TIE'..W—YFM ROOD%NN DEUNEATION FOR SPMW CREEK IS FoXEN FROM FLOODPW( SAM N LIMIT - - d TAKE ! OF Tf CREEK MINISTER M TER AMAGIMAY % Moto 19M, �Y 'I ROW ELEVATION WA PRESENTED IN CAI G REPMFMS DMLCPET MSW I 1 IF MCeOIpY WIN OTRW CHANNEL WHO ONS. PRF.DEVELOPMEM SPLIT F.OW SPILL= 6 IFS •� I 1 - 49 .15 j12 x) THE HCRINFRH ENCYIFFRNIG XEC-x MVLYSES Rf9RESENR OE\fIOFF➢ 8Wx XYCN.YWY WTI D(oSo CHANNEL NEL CONDEMPN5. MdG.VWY FTHIS \ \ \I �t \ / 1 ' I.. I ' \ ♦ .10 MOODINGOWAR PROOKO T THE CRT OF FAR COLLINS s1oRWATFR U1MY It HEC-2 MAIN CHANNEL I "0 .�. ( � 6 3) THIS RAN REA16ENrs IREP'JT FROM To XEC-2 MODES FEE CENTERLINE, FILE NO — — — 1 ` \ \ \ \ \h Ea-SRia1rt AND EC-Rru.WT. EC-SP COAT \ \ T \ \\ LEGEND: 1 \ T\ 100 k 500-YEAR MASTER PLAN HOOD N1� BOUNDARY FOR SPRING CREEK KAN;\ \ ` y v v BYCNORTHES ENCTION C COY OF FORT GOWNS / C� G1 �� MASTER PLAN CROSS SECTION AERIAL TOPOGRAPHY USED i1 / �i�1% IN THIS AREA TO ALONG SPRING GREEN W DEVELOPED SUPPLEMENT SURVEY TOM CONDITIONS WATER SURFACE FOR HEC`-2 SECTIONS / yg ELEVATIONS (CWSEL) Jn4910 EXISTING COWOUR ,r PRE.EBELCPMEN- SVLN ; - CO SP..._ ..9 CFS It Itt— N6,_ -- D TH PREDEVELOPMENTifWLIT \ O FLOW SPILL- H.+ CFS _ \ PREDEVELOPMEMf SPLIT / QRAPHIC SCALE PREOROW WEIR I '- NO 60 120 100 ONE FLOW ELOPMENG 10DYR 6. 1 ` . ( - 0 ROW MIDPOINTCONTINUIFAST 'b 1 \SY ____ __ _. _. .. ____ _ (ix FEET) DOWN MIDPOINT DRNL- zso DIPS (FROM 34.9 c6sPECHT POINT - (ROAD '�� - Ro 11. SPILL MR RMBERUNE ,' 1 SPLRyCOW WILLS 1.0 _ ROAD) - _ _ --. By °" NORTHERN ENGINEERING SERVICES Pr°"`` 9734.00 Print Dale: MpNm° ^.a. m SPRING CREEK CENTER. P.U.D. sheet SCALE 1'=60' 100YR PREDEVELOPMENT 420 SOUTH HOMES SUITE 202. Ff. COLLMS. COLORADO 80521 (990) 221-4158 DE ONER : MBW CHECKED BY: XX%w°g1L. T.4:..•.� SPRING CREEK SPILL G DRAFTSMAN: CARD PREPARED,01 20 99 Sheets No Text PRE/POSTDEVELOPMENT SECW 1000 °°�""'""°`"m xtm an rnai mlvmunn our m VERTICU SCUE: t'�5' tNr Iwlmn tlltaa HORIZOMU SLUE: t'=30' 4910 4905 4905 E r - : 4900 9+00 10+00 11-I.00 1?+00 13t OC 14+00 15+00 16+00 1/IG: _ 18+00 `°""PREDEVELOPMENT SECNO 1074 aR M%&T�omm 1 _ — 4910 4910 g ^ _ s 4905 _ t__:: :... 4905 F 4900 - - - _ .. _ _ _. 4900 9+00 10+00 11+00 12+00 13+60 _ 14+00 IS+00 16+00 17+00 18+00 PREDEVELOPMENT SECNO 1 152 �"" ° m m rem an rar torsaMslW txr MIIRWD mina T— '._. N: 491 o f 910 490 - _ _ _ 4905 4900 10+00 11+00 ' 2+00 13+00 14+00 15+00 i - -- 18+00 1 16 r00 +0 19+00 PREDEVELOPMENT SECNO_ 1436 Wm rnr r[MVL r°Rocwrxr art m mE sUt+a° 1R.CI6 4910 _-4910 aso5 4905 m - 4900 - _—r. 1 .t.._. 5 9+00 10+00 11+00 12+00 — 13+CO 14+00 15+00 76+00 17+00 18+00 E tlMIE: • UL CRO55-SECRONS ME ORIEMATEO LOOKING GOWNS,RDIM (EASo WIM CRO55-SEC„ ON 5 AT Mp FROM , TO RIGHT. No. Revisions B Data [Project: L: Print Dote: ^^^•^ SPRING CREEK CENTER, P.U.D. Sheet NORTHERN ENGINEERING SERVICES 9734.00""° a - SCAIE:,=3o -°^'F� PRE -DEVELOPMENT; SPRING T -- — azo sourtl xoxes sttrre zoz, FT. COLLINS. coLowtDo 80521 4 DESIGNER: M& ICHENEDBY:XXX CREEK SPILL HEC-2 SECTIONS �� (990)221-4169 DRAFTSMAN+CIDD IppFpAprn.M/15/00'—'�' No Text No Text rl rJ a 8