HomeMy WebLinkAboutDrainage Reports - 05/20/1999Amok
VMTT OF
s MFinal g1 1
„�/ �.►1owe
Final Drainage Report
for
Spring Creek Center P.U.D.
Fort Collins, Colorado
April23, 1999
AP? 2 8 I-99
SERVICES INC
M
a
LI
I
N O R T H E R N
April 23, 1999
City of Fort Collins
Stormwater Utility
235 Mathews
Fort Collins, Colorado 80522
RE: Spring Creek Center P.U.D.
Fort Collins, Colorado
Project Number: 9734.00
Dear Staff:
Northern Engineering Services, Inc. is pleased to resubmit this Final Drainage Report for
Spring Creek Center P.U.D. for your review. We have addressed the comments contained on the
"Project Comment Sheet" dated January 26, 1999.
This report was prepared in compliance with technical criteria set forth in the City of Fort
Collins Storm Drainage Design Criteria and Construction Standards manual.
If you should have any questions or comments as you review this report, please feel free
to contact me at your convenience.
Sincerely,
NORTHERN
kl--� . 11 =
Mary B. Woln
INC.
_� 420 SOUTH HOWES, SUITE 202, FORT COLLINS, [OLORADO 00521, (970) 221-4158, FAX (970) 221-4159
REVISION
COMMENT SHEET
DATE: January 26, 1999 TO: Stormwater
PROJECT: #17-9OD Spring Creek Center P.U.D. — Final
(LDGS)
All comments must be received by Bob Blanchard no later than the staff
review meeting:
Wednesday, February 17, 1999
No Comment
MProblems or Concerns (see below or attached)
1. On the final drainage plan, please delineate sub -basin 01 as it still contributes flow in
the developed condition. Also, please add the 01 sub -basin data to the runoff table
and discuss contribution of runoff from Ol in the report.
RESPONSE: ���..►c -
2. The required storage for pond 3 does not seem to correspond to what is shown in the
calculations for a peak WSEL of 5.25 ft. Please clarify.
RESPONSE:
(continued on back)
Date: j�V4j Signature:
CC.'• 'Seb aN �
ClEa HERE IF YOU W® M RECEN COPE OF REVISIONS T.•. 'Blo.,dFeed
�Pw �Rdh s� Win* ReW 1 Odff fas�nses �l0444hF�, ,ra Q
4W. lmr ds
Ciri of Fort Collins
3. Please call-out/label "pond 3" and "swale 12" on the drainage plan. In addition,
please shade in the extent of ponding for pond 3.
RESPONSE: LA�,r a.
4. For the swale calculations, please use a Manning's n coefficient of 0.060 for grass
bottoms as the flow depth is less than 2.0'. (See section 7.2 in the SDDC manual)
Also, it is not clear what the given discharge should be for swale 1 as it is being
controlled by an orifice plate. Please clarify.
RESPONSE: A rV\,..J ./i-J4S ✓� 0 - o. o (moo ,S /✓� ".-.-+ rdo /�+s --�
� r-is� ` ��✓.�'r� /��c...c-cw�c� vi� a �=�-+� G.yrr�?�+.A ScE
5. According to Fig. 5-2 from the UDFCD manual, the water quality outlet structure for
inlet 6 needs a minimum of 8 holes per row. Please revise outlet detail to match
specifications.
RESPONSE: GS.. I— 8 rl�I-c�s /
-5Am "ff " /✓�r.J rr-��... i✓l h�✓�..-�r°CrY G� I-6 VLa•--X
srlLr.,�,r.-..mac �-fT"+S �i i�c�.�S H.+rl-r`r-1 Sr#o.n��� ��' f►r'✓E
6. The riprap being placed at the outlet from storm sewers 7 and 8 needs to be buried
and revegetated. Please add a note on the profile view stating this.
RESPONSE: 64
/�a .J
Master Planning Review Comments
Note: The analysis of the spill across Timberline Road appears to be in good order. The
following comments are for clarification purposes or are concerning the analysis of the
flow once over Timberline Road.
1 The first sentence of page 4 implies the 1997 flood raised consideration for the spill
of the C&S railroad tracks. This statement is not the case. The spill over the railroad
was identified in the 1988 Master Plan. Please rephrase this statement so it is clear
the 1988 Spring Creek Master Plan identified the spill.
RESPONSE: Tr*i 1-4. /3�cJ �✓� s„�rc,�P�-ter
i+e.d.i /=-6jM To 77
2� Please provide the full SWMM output for the 100-year Spring Creek model to clarify
what rating curve was used for pond 302.
RESPONSE:
/�-, ..r �T/-Irk C.Nr.r-E ��c-c 4...,T rT+�,�rs /�-qe ✓C✓.J rr+c
pc-fi�-.f r%.��T v✓tftr-s-i i-F�s /�'Cc'7J /^�,+.�✓rJ�s7 �-�I LCA'r- /
spkcntr8.doc
' L
,1
Please provide the pre -development floodplain model and maps unless there is no
difference between the pre -development and post -development models. Please note
if this is the case.
RESPONSE:
Please provide a copy of all HEC-2 models on disk.
RESPONSE: cs
// / 5.-.,�� err► c_ S.
S. Cross-section 1074 of the post -development model does not match the cross-section
shown on sheet 3 of 4. Please verify the cross -sections in the model with the
topography of the site.
RESPONSE: �f [� �o�l L,r« iT .✓+s.r�, +� s i✓1 E .
8' Encroachments were used for cross -sections 2000 and 2025. Please. explain why the
encroachment stations were used. Also, please justify the use of the 1.5:1 expansion
from cross -sections 2000 to 2025.
I
1
1
I
RESPONSE: s� �� = t z z a s 4 ,��- X ��., �.• �J .
7. Please map the 500-year floodplain. Please verify the 500-year flow in Midpoint
Drive does not spill into the gas station.
RESPONSE:
8. Please verify the 100-year floodplain mapping. It appears the mapping may not
match the water surface elevations and contours in the vicinity of cross -sections 1980
and 1757.
RESPONSE: r,-+� �, ^ P,= „� t_.» �s , ,E .
spkcntr8.doc
Erosion/Sediment Control Comments
1. The erosion control report indicates that "Vegetative erosion control will be used in
association with this project." Please define what this means, and add notes to the
plan indicating what areas are to be seeded and mulched. c -
2. Spring Creek and the western channel need to be protected during construction. The
grade of the site away from these areas isn't sharp enough to insure sheet flows won't
drain into them. This is a good location for silt fence.s—T�
ADJE17 Aw'r4 Ttic /�. ��-o ?cI••rr L.•Jc,
3. The wind erosion sit fencing along t e south and east perimeters of the site won't
work to deter windblown sediments. For fencing to be effective against wind erosion,
the fencing must be installed upwind to keep the wind off the surface of the disturbed
soil, not downwind of a graded area to catch windblown sediments (this doesn't
work). It would be better for both wind and water erosion on this site place if the silt
fencing was placed along western and northern perimeters.
4. The plan note indicates erosion control BMP details are on sheet 12. This is untrue,
they are on sheet 14.
There should be gravel sediment trap filters on the pond outlet and on the last
upstream end of the pipe leading out of the western swale. These gravel filters are
much more effective at these locations than straw bales. r_DL-•-ia
6. As of November 1, 1998, the cost to reseed/mulch per the City reseeding contract is
$655/acre for acres <5 acres, and $615/acre for areas >5 acres. Please correct your
erosion control escrow calculations to these costs.
Please refer to the redlined plans and report for additional review comments
spkcntr8.doc
TABLE OF CONTENTS
I. INTRODUCTION
Page
1.1 Objective..................................................................................................
1
1.2 Mapping and Surveying............................................................................
1.3 Site Reconnaissance.................................................................................
1
1
II. SITE LOCATION AND DESCRIPTION
2.1 Site Location
2.2 Existing Site Description...........................................................................
1
2.3 Spring Creek and Irrigation Laterals .........................................................
I
III. PREDEVELOPMENT DRAINAGE BASIN
3.1 Major Basin Identification.........................................................................
2
3.2 Predevelopment Drainage Patterns............................................................
2
IV. POSTDEVELOPMENT DRAINAGE
v 4.1 Postdevelopment Conditions..................................................................... 2
4.2 Design Criteria and References.................................................................. 2
4.3 Hydrologic Criteria............................................2
4.4 Hydraulic Criteria ....................................... 3
4.5 Drainage Concept ............................
r
V. SPILLS ACROSS THE C&S RAILROAD AND TIMBERLINE ROAD
5.1
Spill Across the C&S Railroad..................................................................
4
5.2
Spill Across Timberline Road ..................................................
4
5.3
Water Surface Profile along Midpoint Drive ..............................................
6
VI. EROSION CONTROL
6.1
Erosion Control Plan ................................................................................
7
6.2
Water Quality Measures...........................................................................
8
VII. CONCLUSIONS
7.1
Compliance with Standards......................................................................
8
REFERENCES.................................................................................................... 9
APPENDICES
Appendix A:
Predevelopment Hydrology Appendix I:
Water Surface Profile Along
Midpoint Drive
Appendix B:
Postdevelopment Hydrology Appendix J:
Excerpts from the F.I.R.M.
Appendix C:
Design of Inlets Appendix K:
Emergency Overflow Weirs
Appendix D:
Design of Culverts Appendix L:
Riprap Calculations
Appendix E:
Design of Storm Sewers Appendix M:
Erosion Control Calculations
Appendix F:
Design of Swales Appendix N:
Stormceptor Design
Appendix G:
Detention Pond 3 Calculations Appendix O:
Extended Detention Calculations
Appendix H:
Spill Across the C&S Railroad
I
li
I
Final Drainage Report
for
Spring Creek Center P.U.D.
Fort Collins, Colorado
April 23, 1999
I. INTRODUCTION
1.1 Objective
To provide a final drainage scheme for the proposed Spring Creek Center planned unit
development based on master drainageway planning and overaW preliminary drainage concepts.
Specific objectives as part of this study are:
1. To address the 100 and 500-yr spills from Spring Creek over Timberline
Road as identified in the Spring Creek Master Drainageway Plan (Master
Plan), (Reference 1);
2. To recognize the potential impact of the existing conditions floodplain of
Spring Creek in relation to storm sewers and finished grades;
3. To consider any possible adverse effects downstream of the development
due to developed stormwater.
1.2 Mapping and Surveying
Topography of the site was provided to Northern Engineering Services by Landstar
Surveying with a contour interval of one (1) foot.
1.3 Site Reconnaissance
A site visit was conducted on August 22, 1997 by the project engineer. Based on the
topographic mapping, existing drainage basins and land use were confirmed as well as existing
structures. The location and dimensions of existing culverts were vcrified as well as their
condition and flow direction.
H. SITE LOCATION AND DESCRIPTION
2.1 Site Location
The site is located within the NW Quarter of Section 20, Township 7 North, Range 68
West of the 6th Principal Meridian in Fort Collins, Colorado. The project is bounded by
Timberline Road on the west, East Prospect Road on the north and Midpoint Drive to the south.
r (See Vicinity Map).
2.2 Site Description
Spring Creek Center P.U.D. is approximately 11.600 acres and has historically been open
space. There are no existing structures on the site.
2.3 SSpring Creek and Imgation Laterals
Spring Creek runs through the northern portion of the site, flowing from west to east
toward the Cache La Poudre River. The Flood Insurance Rate Map (FIRM) from FEMA has
been used to define the regulatory floodplain (see supporting documentation in Section n. The
Final Drainage Report
Spring Creek Center P.U.D.
April 23, 1999
Northern Engineering Services, Inc.
City of Fort Collins ("City") has also defined the 100-year floodplain for Spring Creek based on
fully developed basin conditions, which includes a 75 cfs spill over Timberline Road (see page
H1). However, based on HEC-2 modeling performed as part of this analysis, it has been
determined that the actual spill across Timberline Road is roughly 35 cfs.
There are indications of a former irrigation lateral on the site which has since been
abandoned.
M. PREDEVELOPMENT DRAINAGE BASIN
3.1 Major Basin Identification
The site is located in the Spring Creek Drainage Basin. Reference 1 has been used as a
guide in the development of the drainage and grading for the site.
3.2 Historic DEgiMe Patterns
The site historically drains from west to east at slopes ranging from 0.57 to 2.64%. The
majority of the site has historically drained to the east through developed properties and to the
existing W.W. Reynolds detention pond.
Historic runoff from the site, discharging to the east, has been defined at Design Points H 1
and H2 (see Appendix A). The 100-year discharge at Design Points H1 and H2 are 15.3 and 4.6
cfs respectively for a total of 19.9 cfs. Runoff from offsite Basin 01 (0.16 acres) enters the site at
the southwest comer (see Appendix A, page A2) and is conveyed to Spring Creek.
IV. POSTDEVELOPMENT DRAINAGE
4.1 Postdevelopment Conditions
Planned development for Spring Creek Center includes:
• commercial buildings and possible gas stations;
• utilities including storm and sanitary sewers and water.
Off -site easements for drainage and grading are not required for this development.
4.2 DesigLa Criteria and References
Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design Criteria
ManuaL(SDDCM) and Storm Drainage Criteria Manual by the Urban Drainage and Flood
Control District have been referenced for this Final Drainage Study.
4.3 Hydrologic Criteria
The Rational Method has been used to estimate peak stormwater runoff within the
developed site with a minimum time of concentration of 5.0 minutes. The initial 10-year and
major 100-year design storms have been used in the design of the proposed drainage system
which include swales, inlets and storm sewers. Rainfall intensity data for the Rational Method has
been taken from IDF curves and equations generated specifically for the Spring Creek Center
P.U.D. site by the computer program "Watershed Modeling" by Eagle Point (see page 135). Input
-2-
I
` Final Drainage Report Northern Engineering Services, Inc.
Spring Creek Center P.U.D.
April 23, 1999
of precipitation amounts for the intensity equations have been taken from the NOAA Atlas 2,
Volume III - Colorado. Compared to Figure 3-1 in the SDDCM, rainfall intensities generated for
the site were comparable to intensities given in Figure 3-1.
4.4 Hydraulic Criteria
The City of Fort Collins Storm Drainage Design Criteria has been referenced for all
hydraulic analyses. In addition, the following computer programs have been utilized:
' • The computer program "HY8" by the U.S. Department of Transportation, Federal
Highway Administration has been used to size all culverts;
• The computer program "UDINLET" has been used to analyze inlet capacities;
1 • The computer program "Flowmaster" has been used to analyze the capacity of
proposed swales.
The hydraulic analysis of the 100 and 500-yr spills across Timberline Road have been
developed through the use of the HEC-2 computer model with the split flow option.
4.5 Drainage Concevtt
Detention is not a requirement for the proposed development due to the proximity of the
site to Spring Creek. Detention will be provided however at the east end of the site, in order not
to exceed historic discharge rates. The total 100-year developed release rate from the site, which
drains to the east, of 15.54 cfs (Pond 3 (3.14 cfs) and Design Points 1 (6.9 cfs) and 13 (5.5cfs))
will not exceed the historic rate of 19.9 cfs (Design Points Hi and 1-12).
1 The remainder of the site will drain to Spring Creek through Storm Sewer Lines 7, 8 and
8-9. Emergency overflows have been provided in the event that on -site area inlets become
clogged (see Drainage Plan for location of spill points). The overflows, route on -site spills to the
northeast comer of the site in the vicinity of Inlet 7 where an emergency overflow weir has been
provided. Ample freeboard has been provided to finished floor elevations of buildings adjacent to
ponding locations.
The storm sewers have been designed using critical depth at the outlet of the sewer pipe to
begin the backwater profile of the hydraulic grade line. If by chance the peak in Spring Creek
coincides with the peak runoff from the site, whereby the storm sewers could not convey the peak
flow, stormwater would be routed through the site by overflows provided in the parking lot (see
Drainage Plan). Stormwater from Basins 5-11 will be routed to the emergency overflow weir
located near Inlet 7. The overflow weir has been designed to handle 55.2 cfs, which is the total
100-yr flow from these basins, with a maximum water surface elevation of roughly 4908.00. The
finished floor elevation of the building adjacent to the emergency weir is 4909.30.
Water quality structures will be provided at all discharge locations from the site (see
Section 6.2).
l
.}
1
Final Drainage Report Northern Engineering Services, Inc
Spring Creek Center P.U.D.
April23,1999
V. SPILL ACROSS THE C&S RAILROAD AND TIMBERLINE ROAD
5.1 Spill Across the C&S Railroad
In light of the recent flooding of Spring Creek on July 28, 1997, the spill over the C&S
Railroad tracks and subsequent spill over Timberline Road (identified previously in the 1988
Master Plan, see Appendix H, page H1) has received serious consideration. The proposed site is
adjacent to the location of the 100 and 500 year spills, which begins at the intersection of
Timberline Road and Midpoint Drive and extends roughly 400 feet south along the crown of
Timberline.
The -first spill occurs across the C&S Railroad tracks and is due to the ponding of water
upstream of the culvert crossing on Spring Creek at the C&S Railroad (SWMM Pond 302). The
existing culvert does not have the capacity to pass the 100 and 500-yr discharges and, is proposed
to be improved as per the Master Plan. The C&S Railroad culvert crossing is roughly 400 feet
west of Timberline Road as measured along Spring Creek. The railroad runs from northwest to
southeast, crossing Timberline Road roughly 900 feet south of the intersection of Timberline and
Prospect.
Hydrologic models (SWMM) used in the analysis of the spill at the railroad tracks have
been taken from the 1998 Lidstone & Anderson SWMM update. The rating table for Pond 302
has been taken from the report, Hydrology Study Spring Creek (Reference 4) by Greenhorne and
O'Mara. Greenhorne & O'Mara prepared the request for a physical map revision from the
Federal Emergency Management Agency (FEMA) for Spring Creek in 1992-1993.
The discharge at the C&S railroad (Conveyance Element 302 in SWMM) has been used in
the analysis of the spill across the C&S railroad tracks.
The 100 and 500-year discharges of 2142.3 and 2600.0 cfs respectively, have been derived
using the Lidstone and Anderson SWMM model SCFD-100_SC, and reflect peak flows for the
developed basin (see page H18). Appendix H, page H2, describes the methodology used in
deriving these discharges.
The 2142.3 and 2600 cfs design flows have been used to quantify the 100 and 500-year
spills over the low point in the C&S Railroad tracks. The spills were determined by interpolating
the FIS stage -discharge rating from G&O (see pages H19 thru H21), and are estimated to be
396.3 cfs and 822.3 cfs for the 100 and 500 year storms respectively (see page H18).
5.2 Spill Across Timberline Road
The computer model HEC-2 with the split flow option was used to analyze the
predevelopment (existing) 100 and 500-yr spills over Timberline Road. The centerline profile
along Timberline Road, where the spill occurs, will not change due to the proposed development.
The HEC-2 model developed for this analysis is called EC -RAIL. Appendix H of this
report contains the output file from the model along with other supporting documentation. The
model extends from roughly the top of bank of Spring Creek (Section 100) to the centerline of the
C&S Railroad tracks, which is where the spill occurs (Section 700) from Pond 302. Cross -
sections were placed in locations were both existing and proposed structures are located and,
critical depth was used to determine the starting water surface elevation. When the model was
run using the slope -area method, the starting water surface elevations were identical to that of the
-4-
J
i
11
It
Final Drainage Report Northern Engineering Services, Inc.
Spring Creek Center P.U.D.
April 23, 1999
critical depth method.
Field survey information has been used in conjunction with the City of Fort Collins aerial
topography (at a 2-foot contour interval) in the generation of HEC-2 cross -sections. The HEC-2
Mapping (Exhibit 1) differentiates between the aerial and survey information. Field survey
information was also used to define the centerline profile along the C&S Railroad (SECNO 700),
from the center of Timberline Road to the culvert crossing at Spring Creek.
The aerial topographic mapping, shown as Exhibit 1, is dated March 27, 1986, which is
prior to the completion of the Timberline Road improvements, which included a culvert crossing
at Spring Creek, improvements to Spring Creek and improvements to Timberline Road.
According to the plans for the Timberline Road improvements, Timberline Road was raised from
0-3-feet, beginning at the intersect:m of Timberline Road and Midpoint Drive. These
improvements were completed in approximately 1988-89, and are considered existing conditions
for this analysis.
Appendix J, page J4 documents the 100 and 500-year flood elevations of 4907.9 and
4909.2 respectively, in Spring Creek from the FIS. The existing grade at Section 100 is roughly
4911.20, which demonstrates that the WSEL's in Spring Creek do not influence the starting
WSEL used in this hydraulic analysis.
The model EC -RAIL reflects the existing topography with cross -sections extending from
the centerline of Timberline Road toward the west, to the centerline of the C&S Railroad.
As stormwater spills over the C&S Railroad tracks (which acts as a weir) the flow will be
distributed over the weir and therefore the discharge must be manually reduced in the HEC-2
model between Sections 450 thru 700. The amount by which the discharge has been reduced was
determined by using the FIS weir cross-section and the depth of flow. Appendix H, pages H22
through H24, document the calculations made as part of this analysis.
Values for Mannings `N' have been estimated based on the best available information.
The 'W' value for asphalt is 0.016, grass-- 0.035, gravel= 0.025 and gravel with weeds=0.030.
The NH card in HEC-2 has been used to define the 'W' value for each cross-section.
Table 1 summarizes the output from the HEC-2 model EC -RAIL.
Cross -Section
100yr Spill
500yr Spill
Number
Across
Across
Timberline
Timberline
File: EC -RAIL
File: EC -RAIL
(cls)
(cfs)
200-300
0.0
0.0
300-400
0.0
4.6
400-500
0.0
14.6
500-700
34.9 1
173.2
Total S ill=
1 34.9 1
192.4
Table l
During the 100-yr event, stormwater spills across Timberline Road between Sections 500
-5-
I
Final Drainage Report Northern Engineering Services, Inc.
Spring Creek Center P.U.D.
April 23, 1999
and 700 only. During the 500-yr event, stormwater will spill across Timberline Road between
Sections 300 through 700, with the majority (roughly 90%) of the spill occurring between
Sections 500 and 700. During both design storms, all or most of the spill occurs between
Sections 500 and 700 and will continue northeast toward Midpoint Drive. Only during the 500-
year event will stormwater be conveyed through the site, which amounts to roughly 4.5 cfs.
Cross-section 700 in the HEC-2 model uses survey data for the low point in the railroad
tracks (Elev.=15.54) which varies slightly from the elevation used in the FIS by G&O (Elev.=
15.30, page H21). This would account for the minor difference in the calculated water surface
elevation at Section 700 in the HEC-2 model EC -RAIL (100yr=16.40,500yr-16.68) versus the
water surface elevation used to compute the spills over the railroad (100yr=16.15, 500y>=16.36)
Output from the HEC-2 models reveals that at a few cross -sections, the conveyance
change is outside of an acceptable range, which is from 0.7 to 1.4. Review of the conveyance
output shows that the calculated conveyance is not far from the allowable and is therefore not a
major concern. It was noted by the modeler that when additional cross -sections were entered into
the model which reduced the spacing between sections and, was intended to eliminate the
conveyance error, more errors appeared.
5.3 Water Surface Profile along Midpoint Drive
The computer model HEC-2 was used to analyze both the predevelopment 100-yr (EC-
SPLT.DAT) and postdevelopment 100 and 500-yr (PD-100 and PD-500) water surface profiles
along Midpoint Drive due to the spills over Timberline Road. The 100 and 500-year design
discharges used in this analysis.were discussed previously in Section 5.2, and are 34.9 and 192.4
cfs respectively.
The north top of curb of Midpoint Drive acts as an overflow weir under existing
conditions enabling stormwater to spill from Midpoint Drive onto the proposed site. This spill is
then conveyed east across the proposed site to Specht Point Drive. This weir has been defined,
and extends from Timberline Road to Specht Point Drive (see the plan "Pre -Development; Spring
Creek Spill HEC-2 Mapping", Sheet 1/2 in the back of this report).
The model EC-SPLT reflects predevelopment conditions for the 100-year storm only.
Based on the existing topography it appears that the 34.9 cfs spilled over Timberline between
Sections 500 and 700 is conveyed to the northeast towards Midpoint Drive. Out of this 34.9 cfs
flow, 5.9 cfs spills over the north top of curb in Midpoint Drive and 29.0 cfs is contained in the
street and conveyed to the east. The entire 34.9 cfs, 100yr flow, eventually ends up in the W.W.
Reynolds detention pond and no stormwater will be returned to Spring Creek. The ET card in
HEC-2 has been used to model an expansion ratio of 1.5:1 between Sections 2025 and 2000
which will reflect the expansion of the spill over Timberline Road (the weir).
The models PD-100 and PD-500 reflect postdevelopment conditions. The
postdevelopment condition has been modeled for both the 100 and 500-year storms (see the plan
"100yr Postdevelopment, Spring Creek Spill ", Sheet 2/2 in the back of this report). The 100-
year spill of 34.9 cfs would again be conveyed to Midpoint Drive just as it was during the
predevelopment condition. Out of this 34.9 cfs, 1.3 cfs spills over the high point at Specht Point
Road and 33.6 cfs is contained in the street and conveyed to the east. None of the 100-year flow
-6-
r.
Final Drainage Report Northern Engineering Services, Inc.
Spring Creek Center P.U.D.
Ali April 23, 1999
spills onto the proposed site from Midpoint Drive.
The 500-year spill across Timberline Road is 192.4 cfs. Out of the 192.4 cfs spill, roughly
4.5 cfs spills between Section 300 and 400 (HEC-2 model EC -RAIL) and is lost from the main
channel between Sections 2000 and 2025 (HEC-2 model PD-500). The total flow that is
conveyed to Midpoint Drive then, is reduced to 192.4 - 4.5 cfs= 187.9 cfs. Out of the 187.9 cfs,
1.2 cfs spills between Section 1980 and 2000 into Swale 12 for conveyance to Spring Creek. The
total 500yr flow conveyed to Spring Creek is 4.5+1.2= 5.7cfs. Roughly 50 cfs spills over the high
point at Specht Point Road between Sections 1000 and 1152 and, 137.2 cfs is conveyed to the
east in Midpoint Drive.
The 500-year postdevelopment conditions model PD-500 shows that the approximate
water surface elevation is 4913.66 at SECNO 1980. The proposed gas station at this location has
a finished floor elevation of 4915.0 providing 1.34-feet of freeboard. The other proposed gas
station located in the northeast comer of the site is also outside the 500-year floodplain based on
the 1988 Master Plan elevation of 4906.44 (see "100yr Postdevelopment, Spring Creek Spill").
The finished floor elevation of the gas station at this location is 4908.0.
Both pre and postdevelopment HEC-2 cross -sections and split flow weir profiles have
. been provided in the back of this report, Sheets 1/4 thru 4/4.
I
i
EROSION CONTROL and WATER QUALITY
6.1 Erosion Control Plan
The erosion control plan presented here is intended to control both wind and rainfall
erosion. Evaluation of the rainfall erosion control Klan will be completed first, with the wind
erosion control plan to follow. The Erosion Control Reference Manual for Construction Sites
(ECRM), City of Fort Collins, has been referenced for this erosion control plan.
The proposed rainfall erosion control plan during construction will consist of temporary
structural erosion control measures and vegetation. Gravel inlet filters will be placed at all area
inlets and sidewalk chases. In addition, inlet protection will be provided at the upstream end of
Storm Sewer Line 7. Temporary sediment control consisting of straw bale dikes will be used in
swales until permanent vegetation is established. Riprap outlet protection provided at the outlet
of all storm sewers and will be buried with a minimum of six inches of native topsoil.
Vegetative erosion control will be used in association with this project. As specified on
Standard Form B (Appendix M, page M2) straw mulch with temporary seed will be used for soil
stabilization. It has been clearly noted on the Grading, Drainage and Erosion Control Plan (note
4) that no soils will remain exposed for more than thirty days before requiring temporary or
permanent erosion control measures, unless approved by Stormwater Utility.
Performance standards for the City of Fort Collins to be used for "During Construction'
activities are given in Table 5.1. Computation of the "Performance Standard" and "Effectiveness"
of the Erosion and Sediment Control Plan are presented in Section L of this report. The
"Construction Sequence" for the proposed development is given on the Grading, Drainage and
Erosion Control Plan.
The proposed wind erosion control plan during construction will consist of sift fencing.
-7-
I
Final Drainage Report
Spring Creek Center P.U.D.
April 23, 1999
Northern Engineering Services, Inc. 11
From the Wind Erodibility Map for Fort Collins, Colorado, the site is located in a moderate
erodibility zone. From Table 4.1 (page 19 of the ECRM) the maximum barrier spacing is 200
feet. Silt fencing will be placed along the south and east propertylines to act as a wind barrier.
See the Grading, Drainage and Erosion Control Plan for locations of proposed erosion
control measures.
6.2 Water Ouality Measures
The issue of water quality has been addressed for the Spring Creek Center site. Roughly
5.405 acres of developed runoff will be routed through a proposed "Stormceptor" (see page M1).
The Stormceptor is a pollution prevention device which is manufactured by Carder Concrete of
Littleton, Colorado. The guidelines given in the Stormceptor Technical Manual have been used
to determine the appropriate unit for the proposed conditions. The model STC 1800 has been
specified on the plans and a detail has also been provided.
In addition to the "Stormceptor", extended detention will be provided for water quality
purposes at Pond 3, Swale 6 and Inlet 7. Extended detention calculations can be found in Section
N, and are based on Best Management Practices (BMP's) provided by the Urban Drainage and
Flood Control District (UDFCD), Drainage Criteria Manual, Volume 3.
VII. CONCLUSIONS
7.1 Compliance with Standards
All drainage analyses have been performed according to the City of Fort Collins Storm
Drainage Design Criteria Manual (SDDCM) and the Urban Drainage and Flood Control District's
Drainage Criteria Manual. No variances are requested as part of the proposed development.
The 500-year floodplain, which has been defined by using the most recent SWMM
modeling, has also been taken into consideration in the analysis of the proposed site.
-8-
I
I
Final Drainage Report
Spring Creek Center P.U.D.
April 23, 1999
Northern Engineering Services, Inc.
REFERENCES
1). Spring Creek Master Drainagewav Plan, City of Fort Collins, Colorado, Engineering
Professionals Inc., March, 1988.
2.) Storm Drainage Design Criteria and Construction Standards, City of Fort Collins,
Colorado, May, 1984.
3.) Drainage Criteria Maunal, Urban Drainage and Flood Control District, Wright -
McLaughlin Engineers, Denver, Colorado, March, 1969.
4). Hydrology SjjLdv Spring Creek, Fort Collins, Colorado, Greenhome & O'Mara, Inc.
March, 1993.
-9-
I
C
r
I
C
I
I
I
I
D
I
[1
1
zo
r
A I
P"TOPOC CONDmomd \� ^1
Ste: 1-_150•
I'I �I I �
H2 HI
• � �-_��- 11 `�� Jul l�
r i
`ZX
AZ®Z) V
CiZZ
y®�f
�moom
r�
mrn
-
rdalW
O
N
<
N
Q
m
N
N
Q
w
C
T
U
o
m
m �
(n Co
C C
O
o
0
0
0
0
Y W
cu
O7 0 w
Uao
LL
N
m
Z
m=
m
c
c
o
0
0
J
a
O
'v
U
LL
na
0
o
0
0
o
a
0
m
0
'
LL a)
N
J
O c
Z Q)
U
t
_
y
o
O
0
m
0
0
0
N
0
N
D Y
m
J
0
m
m
m
_U m
C
h_
ae
m
n
n
$
o
O
9
N
J
t
O
o
0
C 41
¢
_
O
Q
0
0
C N
C O N
8 LL�
U
0
N
N
l01
N
W
C c r
O
O
O
O
O
U
0 0
�L
o
O
o
U e e LL
0 0 u
o
0
0
0
0
0
0
N ~ w (�
C
E 4=
NJ 3
O 0)FL SC Y O
w m
o
ei
.%+
m
o
c_
FL � ld i "v
LJJ0 .0
CP-
_CD
M 00 �� _y C
O
�L- C O
/N� LJ LH
`0
U O r V r r C/of
O d
O o
N
o
N
O
i
No Text
�
I
U CO
"
u•
1' a)
-
C.iC6
m m L'
..
O
O
O
M
C Q
O GO CO
[....
I
I
S> a l
`5
l c
l o
s c:
'c'
I`
S! o
S
S
S
cc
''^^
V J U .O a)
Z
> v
0
Ua`ol
_
�•.
"yy
pj"^.
S
S
O
p
I O
I S
O
S
I
O
O
8
N
I
I
I
I
I
�
O-
LO
N
•d,
r
l
n
P.
I O
I O
q,
O
O
U
a�
I
LL
1 1
1—
T
C
O
I O
O
O
q
1 O
8
O
O
O
I
LL
I`
N
Ci
N
O
i O
N
O
O
i
Z
�
"
o)
I
I
oI
I
1 o
�y
a
o
o;
f o
c
m
o
c
0
c
o
f
a)
J
of
`
S
C
L
ryo
G 3F
N
q,
1D
^
I '
In
O
co
N
^
^
F—
L
O
J
U/
:Q
o co
E
1
N
N
m
m I
6
a
m m
m
m
m
O O N
U LL
Z
C C
� r-
o
d l
c
o
c
o
c
l o
G I
o
c
8
8
8
8i
8
S�
8
S
8
8
8
_
v �'
U
C 0
rnQ^�
U
C 11 U
O
E E
r,
J
r
Yf
n
O
m
I
q
r$
a
r
d
l m
YI
n
YI a
q
m
a)
C p 11
c
o
c
t o I
o
0 1
0
0
0
o
c
C F
O
U
U o a)
7
�
I
rLL7 6>lL
O 'p '^ 3
LL CtiU)(O }
.�.r a7
m
"'
a1 m ... �
O H
C
-
m�
_L
'•.
1
I
J
C .0CD
N
> II 7 II 11� _
51/
Z
'
0
rt
c
cC) �
U �
O
m O
m
'
G Y
m C
a7 rt
� m
o
Y.
G 7
Y
'
17
( rt
zY
T
(gyp
r O
ro
n
n
n
.7
rt
ft
w
rt
O
I
F
u
rl
I
1 /_
00
O CD 11 II C II < zr
m
CD
0 _ O_
o
m
0=l + Q1 CTV C TI
_ Ta
C + W OO n
O
N
U
O
N
>
V
J
U
N
O y
(
O C M O ±'
IU
p tit
N
o o -i N
o
U
m
m
m
n3 3 �o 3
o �n
C
0
00
0
0
0
o
n
—
o
a
o
0
0
(11 n
O O
1 � 0
T
7
0
N
N
S
`r
O
'N^^
N 7 V/
U
e O
m
m
a
T
O
O
T
N
N
N
N
N
N
o
b
A
3,
(D
C O
r
O
O
O
10
t0
m
=3 /v
N
N
O
O•
O
00
O
00
N
N
N
N
e O
a�
�
II C
V Z
<
p
ooWW
<
0
o
o
J
N
W
O
D
N
N
�
O
m
E
O v
/z
O
C {JJ
n
i_ Sy
N O
O
fJ
O
O
O
O
0
O
O
O
~
En
p
1 T
F
SW
(Q /\
J
V
Oai
OOi
N
y �
to <D
�
J
J
A
D
T
o j
1]
I
t
I
1
I
I
1
L�
D V CO
e°
n
n
o o o o a o
n i ei 1 of 1 I m I m m of
0
m
0
m
0
of
in a)a)
c) M
' v w
I
N
- m(
N O O O
W I 7 1 N I b
O O O
VI N I U)
O
1A
O
10
O
m
CO O)
O
O O O O
1
O O m
O
O
O
N .� C
O Y- '
p p- c
0
— C �o
V J
I O
G
O,
G
6.O
U al 0.
,
_O
m
N
o
0
0
0 o
c
o
o
a
c
LL
�
G �
O04
E•
' o; o d
dW
o f o
( o: c
m
o
o
0
0
0
U m
i
LL
r
a=
!'I
I'1 O O I O 7 O• O
O
o
O
OO
OO
O
Z R
_
0
$
8
8
8
o
$
LL
n
o
I d
o
0
`
N
L
i
0
O
O
�
N
O a
N
O
i
b
tN0
I Imf
N
Oa
I
L
O
O
-
m
N I m
O
en
N
Vl
m
h
10,
m
l7
m
� I
m 1
a
$
� 5
O
5
i
I
i
O — L
t0
O
O
O
O
C U 11
� V
c C
c '� N Q1Q
U e c LZ �2
C E
p� C 1=
N N 2 p
3 c c c
C
Q
F-
r U O Y •O
m
y
m
0
pggq�
C
Y
QO♦♦ L
O
CI
N
m
O
1•f
O 1
N
N
O
N
O
O
m
O
Vo
I.�� 3> ">W
U- c h (n (D
p H
_
Q a
N
mL
v
m
m l
n
m
L(D J c D .p
U' 0H(D H H > Q'
m
z
'
O
rt
m
c
0
N
0
O
m
m
'
a
� G
A �
o
r
A ]
T r
m
�
r
rt
0
n
O
n
rt
ri
a
rt
r
O
5
H
ry
a
a
N
r
0
�
1
Q
r
n
iJ
r 1
rIIIJ
11]
r
I
11
�II
C II G
0 0 z) -{ � m
n 0
� o
(D / 0< n
O
O
U
O
N
N
J
VJ
N
U
N
d D
0 d
»i Qi T 0 G o
(
O'
0
O
L
`Y 0
T
D0 0 (D
o
m
u
m
m
n
@ U) 0
_T 7 o
m o
0
C
D-+ : 3
0
U
0
0
0
m
0
U
o
U
U7 0 i L
N 0 O
l ! 0
3 m =3 Z7
c_
m
o
N
N
3m
O
D7 0
0
T
O
0
cn
N
N
N
N
N
o p
TOT
N
�
CD
N
0
0
+m
r
i
N
fD
a
o
O
o
N
uNi
N
u
O
V
E m
�
I I
N
a
m
T
�
A Z
� O
� l J
r
N
0
0
9-
J
m
9
O
U
U
O
O
O
La
r
N
D
a�aao
"
_
m
O
o
F
�
F
V�
Z)co
C: N
(o O0
O
O
n
N
f0
`O
J 1
J C
N
O
O
A
O
P
O
T y
(D
K
T
U
0
8/25/97
RAINFALL REPORT
RAINFALL TYPE : WESTERN RAINFALL
RAINFALL FILENAME : Spring Creek Center P.U.D.
(PRECIPITATION]
[ 2yr/6hr ]
= 1.40
in
( 2yr/24hr ]
= 2.00
in
[ 100yr/6hr ]
= 3.40
in
[ 100yr/24hr ] =
4.80
in
[ Elevation ] =
4908.00
ft
INTERMEDIATE INTENSITIES (in/hr)
Page 1
[
5 min ] [
15 min ]
[ 30 min ] (
60 min ] [
[ 2
yr]
3.17
2.07
1.44
0.91
[ 5
yr]
4.59
3.01
2.09
1.32
[ 10
yr]
5.71
3.74
2.59
1.64
[ 25
yr]
6.93
4.54
3.14
1.99
[ 50
yr]
7.97
5.22
3.62
2.29
[ 100
yr]
8.91
5.84
4.04
2.56
[ 100
yr]SDDCM; Figure
3-1 (6.00)
(4.17)
(2.60)
[BDE VALUES
Intensity
= B/(time
conc + D)^E]
( B ]
[ D ]
[ E ]
[ 2
yr]
26.09
9.41
0.79
[ 5
yr]
39.47
9.77
0.80
[ 10
yr]
47.73
9.52
0.79
( 25
yr]
57.72
9.48
0.79
[ 50
yr]
66.99
9.57
0.80
[ 100
yr]
74.56
9.52
0.79
/3.5/
6 hr ] (
24 hr ]
0.24
0.08
0.35
0.12
0.45
0.15
0.54
0.18
0.59
0.20
0.70
0.24
i
D
n
b
6
y
D
m
r
r
!n
o
D
D
0
Z
m
Cn D
Z
N
D-n
CA
N
p C) D
2
m M>
y
m lm >
j
D Z "NO
cn
A
m
D
CA
D
m
D
Q h
D
n
Z
D
r m r
m
D
v m N
{
m
V m
J N o9
J N of
m
O
A
O
O
I
r
C
I 1
I I
I
I I I
(n
m
O
I I
1 1 1
I 1
1
C)
z
I I
1 I
I I
1
1
n
D
I I I
I
1
m
r
I I
N
I I I
I I I
1
�
I I I
I I I
1
I I I
1 1 1
I I I
I I I
I I I
I
I
I I I
t
I
n
O
I I I
I I I
I
I I I
p
i t
I
Z
T
i/
I I I
I I I
I
I I I
y
z
L
I I I
I I I
I I I
I I I
I
I
I I I
I I I
p
A
O
'
1
fn
I I I
I I I
I I I
I I I
1
I
1 I 1
O
1 1
1 I I
>
D
"
I I I
I I I
I
Z
>
O
I I
I
m
m
D
I I I
I
I I I
'—'
I
I
I
m
I
I I I
C7
I I I
I I I
1 I I
I I I
I
I I I
Z
A
Z
CO
1 1 1
>
I I I
I I I
I
I
I
I I
I
I I
I I I
I
I I I
I
I I I
Q
1 1 1
I I I
I
I I I
n
11 1
I I I
I
I I' I
p
I I I
I I I
I
c
C
I I I
I I I
I
I I I
I I I
I
C)
T
V
I I I
I I I
I
O/
I I I
I I I
I
(AV/�
D
1 1 1
Z
m
I I I
I I I
I I I
I I I
I
I
I I I
V
I I I
I I I
I
I
I I I
I l
I I I
I I I
O
CD
rA
Q 0 0
0 0 0
CD
Q 0 0
n
(D
N 6 t0
O
(n CD 0
O Cn O
n
O .n s
m
T
m
z
1
�������... �.....� ...wry..
malwmmm
tt�tt■t�t■� ��■■■ tl tl ttt I�t tl /I� ■tl
tt■tt�t�t■� �■■■J ■tltt/ I//tl /■ ■■
1t11111111■ ■o ■m tt tt tt011t111t■t■111
1�111111■�/■■■■�t1 �����
11111111■■■■■■��11�����
11111111■■■■■■��II�����
11111111■■■■��1111��..■
11111111■■���11111■■■■■
11111111■■�IIIIIII����■
IIIIIIII■111111111����■
IIIIIIIIIIIIIIUII����1
11111111■■■...1111��..■
11111111 ■■ ■. �� II11 �■■■■
i
I
h
I
I
I
1
9------------------------------------------------------------------------ ---L
' UDINLET: INLET HYDRRULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----------7---- 7-------------------------------------------------------
ER:Northern Engineering Services -Ft Collins Colorado .......................
ON DATE 01-08-1998 AT TIME 12:20:59
1* PROJECT TITLE: Spring Creek
*** GRATE INLET HYDRAULICS AND ST_ZING:
INLET ID NUMBER: 8
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
INLET GRATE WIDTH (ft)= 1.63
INLET GRATE LENGTH (ft)= 2.25
INLET GRATE TYPE =Nonstandard Grate
' NUMBER OF GRATES =
SUMP DEPTH ON GRATE (ft)= 0.67
GRATE OPENING AREA RATIO (%) _ .39
IS THE INLET GRATE NEXT TO A CURB ?-- NO
Note: Sump is the additional depth to flow depth.
' STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) = 0.40
STREET CROSS SLOPE M = 2.00
' STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)= 1.00
GUTTER WIDTH (ft) = 1.00
' STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 22.28
GUTTER FLOW DEPTH (ft) _ :53
FLOW VELOCITY ON STREET (fps)=
FLOW CROSS SECTION AREA (sq ft)= 5.03
' GRATE CLOGGING FACTOR M = 20.00
CURB OPENNING CLOGGING FACTOR(%)= 10.00
INLET INTERCEPTION CAPACITY:
FOR 2 GRATE INLETS:
' DESIGN DISCHARGE (cfs)= 13.20
IDEAL GRATE INLET CAPACITY (cfs)= 16.84
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED (cfs)= 13.20` ca�io 0
CARRY-OVER FLOW (cfs)= 0.00
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED (cfs)= 13.20
' CARRY-OVER FLOW (cfs)= - 0.00
YX► G. f�t +- O.(o-) f-
' /n!t_ar- wOt_` Co.J!-ik=L TI-hCy+i+'�7Z ��,� Ac�C C-c✓
-----------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. :J OF COLOR DO AT DENVER
SUPPORTED BY METRO DENVER CITT_ES/COUNTIES AND UD&FCD
-----------------------------------------------------------------------------
USER:Northern Engineering Services -Ft Collins Colorado .......................
ON DATE 01-12-1998 AT TIME 12:36:21
*** PROJECT TITLE: Spring Creek
*** GRATE INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 9
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
INLET GRATE WIDTH (ft)= 1.63
INLET GRATE LENGTH (ft)= 2.25
INLET GRATE TYPE =Nonstandard Grate
NUMBER OF GRATES = 3.00 _
SUMP DEPTH ON GRATE (ft)= �0.00
GRATE OPENING AREA RATIO M = 0.39
IS THE INLET GRATE NEXT TO A CURB ?-- NO
Note: Sump is the additional depth to flow depth.
STREET GEOMETRIES:
STREET
LONGITUDINAL
SLOPE (%) =
0.40
STREET
CROSS SLOPE
M =
2.00
STREET
MANNING N
=
0.016
GUTTER
DEPRESSION
(inch)=
1.00
GUTTER
WIDTH
(ft) =
1.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET
(ft) =
20.
GUTTER FLOW DEPTH
(ft) =
I C.
FLOW VELOCITY ON STREET
(fps)=
2.48
FLOW CROSS SECTION AREA
(sq ft)=
4.23
GRATE CLOGGING FACTOR
M =
20.00
CURB OPENNING CLOGGING
FACTOR(%)=
10.00
INLET INTERCEPTION CAPACITY:
FOR 3 GRATE INLETS:
DESIGN DISCHARGE
(cfs)=
IDEAL GRATE INLET CAPACITY
(cfs)=
BY FAA HEC-12 METHOD:
FLOW INTERCEPTED
(cfs)=
CARRY-OVER FLOW
(cfs)=
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED
(cfs)=
CARRY-OVER FLOW
(cfs)=
10.50
16.17
10.50-0 "� c
0.00
10.50
0.00
4-5 (� . -7 2.
'it+e i-JL-_-7- �^-+��-�- Gv..r�ra-o` 7_r_ C W rC
-------------- ----------------------------------------------------------- G -
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIr. ENG DEPT. L' OF COLORADO AT DENVER
SUPPORTED BY METRE DENVER CITIES/COUNTIES AND UD&FCD
ER•Northern _ En ineerin Serv,.e • g g � s-rt Collins Colorado ................
ON DATE 01-08-1998 AT TIME 12:30:44
#* PROJECT TITLE: Spring Creek
' *** GRATE INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 10
'
INLET HYDRAULICS: IN A
SUMP.
GIVEN INLET DESIGN INFORMATION:
'
INLET GRATE WIDTH
(ft)= 1.63
INLET GRATE LENGTH
(ft)= 2.25
INLET GRATE TYPE
=Nonstandard Grate
NUMBER OF GRATES
SUMP DEPTH ON GRATE
(ft)= C 42
GRATE OPENING AREA RATIO (%) _ .-39
IS THE INLET GRATE NEXT TO A CURB ?-- NO
'
Note: Sump is the
additional depth to flow depth.
'
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) = 0.40
STREET CROSS SLOPE
(%) = 2.00
'
STREET MANNING N
= 0.016
GUTTER DEPRESSION
(inch)= 1.00
GUTTER WIDTH
(ft) = 1.00
'
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET
(ft) = 25.00
'
GUTTER FLOW DEPTH
(ft) = 0:58
FLOW ? LOCITY ON STREET
(fps)= 82
FLOW CROSS SECTION AREA
(sq ft)= 6.32
GRATE CLOGGING FACTOR
(%)= 20.00
'
CURB OPENNING CLOGGING
FACTOR(%)= 10.00
'
INLET INTERCEPTION CAPACITY:
FOR 3 GRATE INLETS:
DESIGN DISCHARGE
(cfs)=
17.80
'
IDEAL GRATE INLET CAPACITY
(cfs)=
23.08
BY FA1 HEC-12 METHOD:
FLOW INTERCEPTED
(cfs)=
17.80
CARRY-OVER FLOW
(cfs)=
0.00
BY DENVER UDFCD METHOD:
FLOW INTERCEPTED
(cfs)=
17.80
'
CARRY-OVER FLOW
(cfs)=
0.00
C.,.iscr_c "7. 2.L 4- O.¢Z
4-
4e,oa. 24e
VQ
Z-
3�t
ell ,lam
I -I � n
,
4r-,o3.zo
_
Z
/ \
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
i_
1
4-1'7/Sg
S1 Zc ` /mil c_cT %
o o — 6112— 1--:.> c r i -�, -j u J cz—' �. P. % = -7, (v �rf
Z—S- OcnQ-rs 3bi-t< c _ z
✓ S i�-i=c�o w) �=v,i N1 .� �.�iz. SrZa.i�--� � /l/) a P-c i�i� Z� iw
SToa-r-,s w��� io�r.r 7—P+7�-,
C�"'+Cfi�iGnlL�
N
CZ
'
O O
o
am
;o
u
miG)
�N
Co
o T
S•gLU
t gm
sr 7
■ p
T
!g1 G O m
s U m u u
,9Ac� C ZA
{r}� D O r
v
rn
m .. ?...
Ln Z
N V1 to 9 ,. ��..`..
oA A aaa�
7• D Oc
(A f1 CA
T n Q -cl�? T�y N _
Ul O a
' C
x O 1
N Z O-91
It 11
mvZ
v ul
I w �ii
0 m
a o A
< d
m m m CL 3
o z a s O
M (A VI fA 10
D D a a a ? 3
mA 0. CL 0. <
~ ,
".
y C to
O ' '
W G1 W
y
M" z
ZN 09
Mx Z�
D V _Z L7
II O C)
N � ~
O y Om
A
Ln
W 'r
tit > c-00
rn
Ln
NOLn D i�
0 0 O
D ~ O I O
p DOD � 000
G 7
>I
I
o
w a
Q
O N O
CO 00 01
O
co
O
co
0
co
,�FJ
gI
I I
I
I
I
F4
I I I
11 1
1 1 1
I
I
I
I
1
I
I
I
I
I
I
I
I I
I I I
I
I
I
I
a
p
Q
U
Ln
Z
I I I
I
I
I
Z
W
d
V
O
O
�
d
U)U
Z
V
Z
V
Z
Q
I
w
w
I
LL
o
w
ILJ
a
O
a
o
w
Z
Q
>
F
I I I
co cr
CY
Z
O
C
WO
F
=
1
=
U
=
U
C
lil
U
1—
Of
I O
o
N
�
7
<
Q
,A
U)
W
LU
MWy
�
Li
.�.
li
O
1
W
U
r
Z
Q
Of
I
I
I
I
(L
Q
Of
U
V)
H
Z
I
I
LU
J
J
I
I
I
U
I
K
O
U
F
U
W
O
LJ
0
O
Q
1
Q
0
1
l
U
O
V)
D
U)
0
z
Q
O
Z
O
O
D
p
w
Z
LU
Z OV
:DO
~
a
N
U
O
c
I
I
z
w
W
F-
W
W
Y
D
F
Q
U
G
UI
U)
In
d
vi
W
m
LQ/
pW
Q
U
Q
4
oz
00
S
O
m
N
C;
ilm
„z
n g
E2
�A
�m
$5
0
om
N CO
sso
sss�
e
fie.
oo: ash::
Vi
Qo
G
8'B66
�gQQ3 t5���
o
--Q• i F � �
�
QS
Q3 g$
73 G B
c
i
�$
o
s M tN
G -,--!
N
N N N N N
N NNNNN N
�
s mffi
Ssaaa
aaaaaaa
�
�
A$..ffi
ffiffiffiffi
8S gwR
9
H
�
NNNNN Ntt�t�N
iR�SBffi8 6ffiSSffi
.ffi
NNN«N«
R�RR866N
�
s
saffi aaffiffi�
asssa�
I
n
1
1
I
G
I
1
ER
11
n
1
i
I
k
I
I
I
I
Culvert 2
CURRENT DATE: 01-08-1998
CURRENT TIME: 13:10:07
C
U
L
V
NO
1
2
3
4
5
6
SITE DATA
1
FILE DATE: 01-08-1998
FILE NAME: SPR-2
FHWA CULVERT ANALYSIS
HY-8, VERSION 6.0
CULVERT SHAPE, MATERIAL, INLET
I
INLET
OUTLET
CULVERT
ELEV.
ELEV.
LENGTH
(ft)
(ft)
(ft)
6.00
5.90
8.50
BARRELS
SHAPE SPAN RISE MANNING INLET
MATERIAL (ft) (ft) n TYPE
2 RCB 2.00 0.43 .013 CONVENTIONAL
SUMMARY OF CULVERT FLOWS (cfs) FILE: SPR-2
DATE: 01-08-1998
ELEV (ft)
TOTAL
1
2
3
4
5
6
ROADWAY
ITR
6.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00
1
6.16
0.6
0.6
0.0
0.0
0.0
0.0
0.0
0.00
1
6.23
1.2
1.2
0.0
0.0
0.0
0.0
0.0
0.00
1
6.30
1.7
1.7
0.0
0.0
0.0
0.0
0.0
0.00
1
6.37
2.3
2.3
0.0
0.0
0.0
0.0
0.0
0.00
1
6.43
2.9
2.9
0.0
0.0
0.0
0.0
0.0
0.00
1
6.44
3.0
3.0
0.0
0.0
0.0
0.0
0.0
0.00
1
6.52
4.1
3.8
0.0
0.0
0.0
0.0
0.0
0.07
30
6.56
4.6
4.1
0.0
0.0
0.0
0.0
0.0
0.48
26
6.58
5.2
4.3
0.0
0.0
0.0
0.0
0.0
0.90
18
6.60
5.8
4.4
0.0
0.0
0.0
0.0
0.0
1.34
15
6.50
3.6
3.6
0.0
0.0
0.0
0.0
,0.0
OVERTOPPING
SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: SPR-2 DATE: 01-08-1998
HEAD
HEAD
TOTAL
FLOW
% FLOW
ELEV (ft)
ERROR (ft)
FLOW (cfs)
ERROR (cfs)
ERROR
6.00
0.000
0.00
0.00
0.00
6.16
0.000
0.58
0.00
0.00
6.23
0.000
1.16
0.00
0.00
6.30
0.000
1.74
0.00
0.00
6.37
0.000
2.32
0.00
0.00
6.43
0.000
2.90
0.00
0.00
6.44
0.000
3.00
0.00
0.00
6.52
-0.001
4.06
0.20
4.93
6.56
0.000
4.64
0.05
1.08
6.58
0.000
5.22
0.05
0.96
6.60
0.000
5.80
0.05
0.86
<1> TOLERANCE (ft) = 0.010
<2> TOLERANCE ($) = 1.000
02-1
2
CURRENT DATE: 01-08-1998 FILE DATE: 01-08-1998
CURRENT TIME: 13:10:07 FILE NAME: SPR-2
PERFORMANCE CURVE FOR CULVERT 1 - 2( 2.00 (ft) BY 0.43 (ft)) RCB
DIS- HEAD- INLET OUTLET
CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW
FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL.
(cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps)
0.00 6.00 0.00 -0.10 0-NF 0.00 0.00 0.00 0.00 0.00 0.00
0.58 6.16 0.15 0.16 l-S2n 0.07 0.09 0.07 0.16 2.10 1.68
1.16 6.23 0.23 0.20 1-S2r. 0.11 0.14 0.10 0.18 2.96 1.81
1.74 6.30 0.30 0.24 1-S2n 0.14 0.18 0.14 0.19 3.05 1.93
2.32 6.37 0.37 0.28 1-S2n 0.17 0.22 0.17 0.21 3.35 2.02
2.90 6.43 0.43 0.33 1-S2n C.19 0.25 0.2C 0.22 3.60 2.10
3.00 6.44 0.44 0.34 1-S2n C.20 0.26 0.21 0.22 3.64 2.12
3.79 6.52 0.52 C.41 1-S2n 0.23 0.30 0.24 0.24 3.92 2.24
4.11 6.56 0.56 0.45 5-S2n 0.24 0.32 0.26 0.25 4.02 2.31
4.27 6.58 0.58 0.46 5-S2n 0.25 0.33 0.26 0.26 4.06 2.36
4.40 6.60 0.60 0.48 5-S2n 0.26 0.34 0.27 0.27 4.10 2.42
El. inlet face invert 6.00 ft El. cutlet invert 5.90 ft
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
***** SITE DATA ***** CULVERT INVERT **************
INLET STATION
0.00
ft
INLET ELEVATION
6.00
ft
OUTLET STATION
8.50
ft
OUTLET ELEVATION
5.90
ft
NUMBER OF BARRELS
2
SLOPE (V/H)
0.0118
CULVERT LENGTH ALONG
SLOPE
8.50
ft
***** CULVERT DATA SUMMARY
BARREL SHAPE
BOX
BARREL SPAN
2.00 ft
BARREL RISE
0.43 £t
BARREL MATERIAL
CONCRETE
BARREL MANNING'S n
0.013
INLET TYPE
CONVENTIONAL
INLET EDGE AND WALL
SQUARE EDGE
(90-45 DEG.)
INLET DEPRESSION
NONE
I
CURRENT DATE: 01-08-1998
CURRENT TIME: 13:10:07
TAILWATER
***** USER DEFINED CHANNEL, CROSS-SECTION
MAIN CHANNEL ONLY
LEFT CHANNEL BOUNDARY
0
RIGHT CHANNEL BOUNDARY
MANNING n LEFT OVER BANK
0
0.000
MANNING n MAIN CHANNEL
C.016
MANNING n RIGHT OVER BANK
0.000
SLOPE OF CHANNEL
0.0099 ft/ft
CROSS-SECTION X
Y
COORD. NO. (ft)
(ft)
1 1.00
6.40
2 1.00
5.90
3 25.50
6.22
1
******* UNIFORM FLOW RATING CURVE
FOR DOWNSTREAM
CHANNEL
FLOW W.S.E. FROUDE
DEPTH
VEL.
SHEAR
I
(cfs) (ft) NUMBER
0.00 5.90 0.000
(ft)
0.00
(f/s)
0.00
(psf)
0.00
0.58 6.06 1.056
0.16
1.68
0.05
1.16 6.08 1.077
0.18
1.81
0.05
1.74 6.09 1.093
0.19
1.93
0.06
2.32 6.11 1.107
0.21
2.02
0.06
2.90 6.12 1.118
0.22
2.10
0.07
3.00 6.12 1.120
0.22
2.12
0.07
4.06 6.14 1.136
0.24
2.24
0.07
4.64 6.15 1.144
0.25
2.31
0.08
5.22 6.16 1.151
0.26
2.36
0.08
5.80 6.17 1.157
0.27
2.42
0.08
Note: Shear stress was calculated
using R.
I
p
__ ROADWAY OVE?TOPPING DATA
ROADWAY SURFACE
EMBANKMENT TOP WIDTH
***** USER DEFINED ROADWAY PROFILE
CROSS-SECTION
X
COORD. NO.
ft
1
0.00
2
14.50
3
21.50
4
34.00
5
37.50
6
85.00
Y
ft
6.70
6.6G
6.55
6.5C
6.50
6.80
GRAVEL
9.00 ft
3
FILE DATE: 01-08-1998
FILE NAME: SPR-2
FILE NAME: SPR-2
FILE DATE: 08-28-1997
,I
Culvert 3
CURRENT DATE: 01-11-1999
CURRENT TIME: 09:29:15
1
FILE DATE: 01-11-1999
FILE NAME: SPR-3
FHWA CULVERT
ANALYSIS
HY-8, VERSION 6.0
C
SITE DATA
I
CULVERT
SHAPE, MATERIAL,
INLET
U
L
INLET
OUTLET
CULVERT
BARRELS
V
ELEV.
ELEV.
LENGTH
SHAPE
SPAN
RISE
MANNING
INLET
NO.
(ft)
(ft)
(ft)
MATERIAL
(ft)
(ft)
n
TYPE
1
3.30
3.15
15.00
1 RCB
2.00
0.43
.013
CONVENTIONAL
2
3
4
5
6
SUMMARY OF CULVERT FLOWS (cfs)
FILE:
SPR-3
DATE: 01-11-1999
ELEV (ft)
TOTAL
1
2
3
4
5
6
ROADWAY
ITR
3.50
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00
1
3.87
1.1
1.1
0.0
0.0
0.0
0.0
0.0
0.00
1
4.11
2.3
2.3
0.0
0.0
0.0
0.0
0.0
0.00
1
4646
3.5
3.5
0.0
0.0
0.0
0.0
0.0
0.00
1
4.93
4.6
4.6
0.0
0.0
0.0
0.0
0.0
0.00
1
5.16
5.8
5.0
0.0
0.0
0.0
0.0
0.0
0.67
8
5.17
5.8
5.0
0.0
0.0
0.0
0.0
0.0
0.71
4
5.36
8.1
5.3
0.0
0.0
0.0
0.0
0.0
2.64
9
5.43
9.2
5.4
0.0
0.0
0.0
0.0
0.0
3.70
11
5.50
10.4
5.5
0.0
0.0
0.0
0.0
0.0
4.76
11
5.55
11.5
5.6
0.0
0.0
0.0
0.0
0.0
5.83
11
5.00
4.7
4.7
0.0
0.0
0.0
0.0
0.0
OVERTOPPING
SUMMARY OF ITERATIVE
SOLUTION ERRORS
HEAD
HEAD
ELEV (ft)
ERROR (ft)
3.50
0.000
3.87
0.000
4.11
0.000
4.46
0.000
4.93
0.000
5.16
-0.004
5.17
-0.002
5.36
-0.003
5.43
-0.001
5.50
-0.001
5.55
-0.001
<1> TOLERANCE (ft) = 0.010
FILE: SPR-3
DATE:
01-11-1999
TOTAL
FLOW
% FLOW
FLOW (cfs)
ERROR (cfs)
ERROR
0.00
0.00
0.00
1.15
0.00
0.00
2.30
0.00
0.00
3.45
0.00
0.00
4.60
0.00
0.00
5.75
0.06
1.04
5.80
0.05
0.86
8.05
0.08
0.99
9.20
0.07
0.76
10.35
0.08
0.77
11.50
0.09
0.78
<2>
TOLERANCE ($)
= 1.000
I
o=/
i
I
2
CURRENT DATE: 01-11-1999 FILE DATE: 01-11-1999
CURRENT TIME: 09:29:15 FILE NAME: SPR-3
PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.00 (ft) BY 0.43 (ft)) RCB
DIS-
HEAD-
INLET
OUTLET
CHARGE
WATER
CONTROL
CONTROL FLOW NORMAL
CRIT. OUTLET TW OUTLET
FLOW
ELEV.
DEPTH
DEPTH TYPE DEPTH
DEPTH DEPTH DEPTH VEL.
(cfs)
(ft)
(ft)
(ft) <F4> (ft)
(ft) (ft) (ft) (fps)
0.00
3.50
0.00
0.20
0-NF
0.00
0.00
0.00
0.35
1.15
3.87
0.37
0.57
4-FFt
0.18
0.22
0.43
0.65
2.30
4.11
0.62
0.81
4-FFt
0.28
0.35
0.43
0.71
3.45
4.46
0.98
1.16
4-FFt
0.36
0.43
0.43
0.75
4.60
4.93
1.52
1.63
4-FFt
0.43
0.43
0.43
0.79
5.03
5.16
1.77
1.86
4-FFt
0.43
0.43
0.43
0.82
5.04
5.17
1.78
1.87
4-FFt
0.43
0.43
0.43
0.82
5.33
5.36
1.97
2.06
4-FFt
0.43
0.43
0.43
0.88
5.44
5.44
2.04
2.14
4-FFt
0.43
0.43
0.43
0.90
5.51
5.50
2.09
2.20
4-FFt
0.43
0.43
0.43
0.92
5.58
5.56
2.14
2.26
4-FFt
0.43
0.43
0.43
0.94
El. inlet face invert 3.30 ft El. outlet invert
El. inlet throat invert 0.00 ft El. inlet crest
***** SITE DATA ***** CULVERT INVERT **************
INLET STATION
0.00
ft
INLET ELEVATION
3.30
ft
OUTLET STATION
15.00
ft
OUTLET ELEVATION
3.15
ft
NUMBER OF BARRELS
1
SLOPE (V/H)
0.0100
CULVERT LENGTH ALONG
SLOPE
15.00
ft
***** CULVERT DATA SUMMARY
************************
BARREL SHAPE
BOX
BARREL SPAN
2.00 ft
BARREL RISE
0.43 ft
BARREL MATERIAL
CONCRETE
BARREL MANNING'S n
0.013
INLET TYPE
CONVENTIONAL
INLET EDGE AND WALL
SQUARE EDGE
(90-45 DEG.)
INLET DEPRESSION
NONE
TW
VEL.
(fps)
0.00 0.00
1.34 1.89
2.67 2.10
4.01 2.27
5.35 2.40
5.84 2.51
5.86 2.52
6.20 2.70
6.32 2.79
6.41 2.86
6.49 2.93
3.15 ft
0.00 ft
CURRENT DATE: 01-11-1999
CURRENT TIME: 09:29:15
TAILWATER
3
FILE DATE: 01-11-1999
FILE NAME: SPR-3
***** USER DEFINED CHANNEL CROSS-SECTION
FILE NAME: SPR-3
MAIN CHANNEL ONLY
FILE DATE: 08-28-1997
LEFT CHANNEL BOUNDARY
0
RIGHT CHANNEL BOUNDARY
0
MANNING n LEFT OVER BANK
MANNING n MAIN CHANNEL
0.000
0.022
MANNING n RIGHT OVER BANK
0.000
SLOPE OF CHANNEL
0.0095 ft/ft
CROSS-SECTION X
Y
COORD. NO. (ft)
(ft)
1 0.00
4.75
2 14.00
3.58
3 15.00
3.50
4 16.00
3.58
5 30.00
4.75
******* UNIFORM FLOW RATING CURVE
FOR DOWNSTREAM
CHANNEL
FLOW W.S.E. FROUDE
(cfs) (ft) NUMBER
DEPTH VEL.
(ft) (f/s)
SHEAR
(psf)
0.00 3.50 0.000
0.35 0.00
0.00
1.15 3.81 0.848
0.65 1.89
0.09
2.30 3.86 0.871
0.71 2.10
0.11
3.45 3.90 0.887
0.75 2.27
0.12
4.60 3.94 0.900
0.79 2.40
0.13
5.75 3.97 0.911
0.82 2.51
0.14
5.80 3.97 0.911
0.82 2.52
0.14
8.05 4.03 0.927
0.88 2.70
0.16
9.20 4.05 0.934
0.90 2.79
0.16
10.35 4.07 0.941
11.50 4.09 0.946
0.92 2.86
0.94 2.93
0.17
0.18
Note: Shear stress was calculated
using R.
ROADWAY OVERTOPPING DATA
ROADWAY SURFACE
GRAVEL
EMBANKMENT TOP WIDTH
1.00 ft
***** USER DEFINED ROADWAY PROFILE
CROSS-SECTION X
Y
COORD. NO. ft
ft
1 0.00
6.00
2 21.70
6.00
3 23.70
6.00
4 27.70
5.00
5 30.70
5.00
6 34.70
6.00
7 36.70
6.00
8 55.10
6.00
PROJECT .Ir>R No, S.�.Z r1 'Tj 4•oc7 ��
' 1 1
CLIENT _ _ ".Al r:l II Al If NdR I OFI
1
MADE BY _ /rl%j��{ _ DAIf: f:l IF.CKEh HV
DATE I I I r'I "I SHEET I OF I _
FORT COLLINS, COLORADO 80521
i
O✓E.i T •r'13 �.Z c-...I � i��-•] /� Tw � C�J S� �r-.o. J S
r21.1J
O, -r ri Tc�— /' 1..J C> I I
4•"l 7 4.5 .. e.-1.rc T7lv�_- iooYa, C-�' la' .r'_j
I
08
Culvert 12
CURRENT DATE:
03-31-1999
FILE
DATE:
03-31-1999
CURRENT TIME:
11:22:56
FILE
NAME:
SPR-12
FHWA
CULVERT
ANALYSIS
HY-8, VERSION 6.0
C
SITE DATA
I
CULVERT SHAPE, MATERIAL,
INLET
U
L INLET
OUTLET
CULVERT
BARRELS
V ELEV.
ELEV.
LENGTH
SHAPE
SPAN
RISE MANNING
INLET
NO. (ft)
(ft)
(ft)
MATERIAL
(ft)
(ft)
n
TYPE
1 4910.00
4909.54
60.00
1 RCP
1.50
1.50
.013
IMPR SDT
CIR
2
3
4
,5
6
FILE:
SPR-12
DATE: 03-31-1999
SUMMARY OF CULVERT
FLOWS
(cfS)
ELEV (ft)
TOTAL
1
2
3
4
5
6
ROADWAY
ITR
4910.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4910.49
1.0
1.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4910.71
2.0
2.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4910.85
3.0
3.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4910.98
4.0
4.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4911.08
4.7
4.7
0.0
0.0
0.0
0.0
0.0
0.00
1
4911.29
6.0
6.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4911.44
7.0
7.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4911.72
8.0
8.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4911.86
9.0
9.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4911.89
10.0
10.0
0.0
0.0
0.0
0.0
0.0
0.00
1
4912.50
11.9
11.9
0.0
0.0
0.0
0.0
0.0
OVERTOPPING
u
SUMMARY OF ITERATIVE
SOLUTION ERRORS
HEAD
HEAD
ELEV (ft)
ERROR (ft)
4910.00
0.000
4910.49
0.000
4910.71
0.000
4910.85
0.000
4910.98
0.000
4911.08
0.000
4911.29
0.000
4911.44
0.000
4911.72
0.000
4911.86
0.000
4911.89
0.000
<1> TOLERANCE (ft) = 0.010
D:\HYB\DATA\SPR-12.LST
FILE: SPR-12
DATE:
03-31-1999
TOTAL
FLOW
% FLOW
FLOW (cfs) ERROR (cfs)
ERROR
0.00
0.00
0.00
1.00
0.00
0.00
2.00
0.00
0.00
3.00
0.00
0.00
4.00
0.00
0.00
4.70
0.00
0.00
6.00
0.00
0.00
7.00
0.00
0.00
8.00
0.00
0.00
9.00
0.00
0.00
10.00
0.00
0.00
<2>
TOLERANCE M
= 1.000
�-_7
2
CURRENT DATE: 03-31-1999
FILE
DATE:
03-31-1999
CURRENT TIME: 11:22:56
FILE
NAME:
SPR-12
PERFORMANCE CURVE FOR CULVERT 1
- 1( 1.50 (ft) BY 1.50 (ft)) RCP
DIS- HEAD- INLET
OUTLET
CHARGE WATER CONTROL
CONTROL FLOW
NORMAL CRIT.
OUTLET
TW
OUTLET
TW
FLOW ELEV, DEPTH
DEPTH TYPE
DEPTH DEPTH
DEPTH DEPTH
VEL.
VEL.
(cfs) (ft) (ft)
(ft) <F4>
(ft) (ft)
(ft)
(ft)
(fps)
(fps)
0.00 4910.00 0.00
-0.46 0-NF
0.00 0.00
0.00
0.00
0.00
0.00
1.00 4910.49 0.49
0.48 1-S2n
0.33 0.37
0.27
0.37
4.64
1.82
2.00 4910.71 0.71
0.60 1-S2n
0.48 0.53
0.48
0.48
4.14
2.17
3.00 4910.85 0.85
0.72 1-S2n
0.60 0.65
0.59
0.56
4.60
2.40
4.00 4910.98 0.98
0.85 1-S2n
0.70 0.76
0.71
0.62
4.87
2.58
4.70 4911.08 1.08
0.96 1-S2n
0.78 0.83
0.77
0.66
5.15
2.68
6.00 4911.28 1.28
1.17 1-S2n
0.90 0.94
0.84
0.73
5.87
2.85
7.00 4911.44 1.44
1.36 1-S2n
1.01 1.02
0.92
0.77
6.14
2.96
8.00 4911.72 1.58
1.72 2-M2c
1.12 1.09
1.09
0.81
5.79
3.07
9.00 4911.86 1.73
1.86 2-M2c
1.26 1.16
1.16
0.84
6.17
3.16
10.00 4911.89 1.89
1.71 2-M2c
1.50 1.22
1.22
0.88
6.51
3.24
El. inlet face invert 4910.00 ft El. outlet invert 4909.54
ft
El. inlet throat
invert 4909.97 ft El. inlet crest
0.00
ft
***** SITE DATA ***** CULVERT INVERT **************
INLET STATION 0.00
ft
INLET ELEVATION
4910.00
ft
OUTLET STATION
64.50
ft
OUTLET ELEVATION
NUMBER OF BARRELS
4909.54
1
ft
SLOPE (V/H)
0.0071
CULVERT LENGTH ALONG SLOPE
60.00
ft
CULVERT DATA SUMMARY ************************
BARREL SHAPE
CIRCULAR
BARREL DIAMETER
1.50 ft
BARREL MATERIAL
CONCRETE
BARREL MANNING'S n
0.013
INLET TYPE
IMPR SDT CIRC
INLET EDGE AND WALL
INLET DEPRESSION
BEVELED EDGES (45-90 DEG
NONE
WINGWALL)
***** SIDE -TAPERED CIRCULAR IMPROVED INLET *******
FACE WIDTH
SIDE TAPER (4:1 TO
6:1) (X:1)
3.00 ft
6.00
FACE HEIGHT
1.50 ft
E
D:\HYB\DATA\SPR-12.LST
I
tom! cv
CURRENT DATE: 03-31-1999
CURRENT TIME: 11:22:56
TAILWATER
3
FILE DATE: 03-31-1999
FILE NAME: SPR-12
******* REGULAR CHANNEL CROSS SECTION ****************
SIDE SLOPE H/V (X:1) 4.0
CHANNEL SLOPE V/H (ft/ft) 0.018
MANNING'S n (.01-0.1) 0.035
CHANNEL INVERT ELEVATION 4909.54 ft
CULVERT NO.1 OUTLET INVERT ELEVATION 4909.54 ft
******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL
FLOW
W.S.E.
FROUDE
DEPTH
VEL.
SHEAR
(cfs)
(ft)
NUMBER
(ft)
(f/s)
(psf)
0.00
4909.54
0.000
0.00
0.00
0.00
1.00
4909.91
0.528
0.37
1.82
0.42
2.00
4910.02
0.551
0.48
2.17
0.55
3.00
4910.10
0.565
0.56
2.40
0.63
4.00
4910.16
0.576
0.62
2.58
0.71
4.70
4910.20
0.581
0.66
2.68
0.75
6.00
4910.27
0.590
0.73
2.85
0.82
7.00
4910.31
0.596
0.77
2.96
0.87
8.00
4910.35
0.601
0.81
3.07
0.92
9.00
4910.38
0.606
0.84
3.16
0.96
10.00
4910.42
0.609
0.88
3.24
1.00
ROADWAY OVERTOPPING DATA
ROADWAY SURFACE
EMBANKMENT TOP WIDTH
***** USER DEFINED ROADWAY PROFILE
CROSS-SECTION X Y
COORD. NO. ft ft
1 0.00 4913.00
2 17.50 4912.50
3 31.50 4913.00
D:\HY8\DATA\SPR-12.LST
PAVED
6.00 ft
W
k
a
c
m
a
a
Q
i
01
I
1
fl
COMPUI MODEL. S_WEr;' k;ODJL- E" EAGLE -OIN
SOFTWARE
PROGRAM METHODOLOGY: STANDARD STEP ENERGY BALANCE
FINAL DRAINAGE REPr>R;l CUT=J
OUTPUT 7--ROM ALL S-ORV SEWE ANALYSEpS .ARE GIVEN IN . E
DRAINAGE RELOR E �^ C' IN "J JT (ABLE
SPECIFIES H= r=''P_ __tiC. � �I �JS ^iV=rVSION IS TEE
ACTUAL LLiN0 T - -P:i z- f R01V i`S:D= TO INS;DE OF ADJACENT
STRUCTURES. THIS D!MENSiON VAY ALSO IVCLUDE THE LAY LENGTH
OF A FLARED END SECTION IF ONE IS SHOWN.
THE SECOND COLiJM\' IN THE O JTPUT TABLE IS THE DESIGN FLOW
FOR THE STORM SEWER. THIS FIGURE MAY REFLECT ATTENUATION
AS FLOW PASSES THROUGH THE SEWER.
UTILITY CLAN. STORM 'SE'NE . .: AN. A !D =POF'L ES
FROM %C J Cl G E \' I E .�_ J_ ..CI\' S ` ' 1-T -L-S.
STATIONING GIVEN CIN E STOR`-, _EWER PROFILE IS ALSO THE
DISTANCE =ROM CENTERLIN' TO CENTERLINE OF ADJACENT
STRUCTURES.
I
H N
1
W W
1
O O
1
N
1
••
I m N
H
J�
I •-1 .-a
W
a c a�
1
El
V1 F 41
❑ ❑ W
I
m ❑ £
m 3 E
I O N
I � N
�
I
a a w
1
❑ o w
1
1
I
I r o
1 m o
M Y
1 H
a 41
I
U ❑ w
I
I
1
I r m
I ran
C
I
❑
1 N m
I O O
a
I rn rn
11
1 P P
ac w
I
I
I
I H rn
1 ao r
a
I
O
1 nl c
Ioo
.7
rn rn
x
I
I
Ioo
I m m
O
I m N
1 O O
M
Y
I P P
a W
I
I
I
I o 0
a
I
rt
I U1 VI
I O O
�
1 rn rn
—1 u
I PP
a w
I
1
I
1 N N
> a
C H
I o o
H V) ap
1
1
N
I
m
I O O
m
I
1
0
C
i o 0
rn rn
W N
I P P
H W
1
1
••
E r
1
N
1 an O
m m
b
a
1 HN
C.4
O
rn rn
'O N
P P
H W
I
H 3
1
a m
1
N m
G) m
I U U
t, E
a O
N F
C i
P. E. +i
I U U
'o V
I
/ m
Oo
a••
a)
1 0 0
W z
am
1
/o
-d C
l m IO
fA H
W ❑ -M
Im
I H H
TF
I
C a
m o
3
r o
m U
1
N m
a C
P rn
❑ rn
/ a) J
1
rn
a awl
ti \
1
•• O H
Ioo
w \
OI
I r H
£ ••P
a+ m
i ri ao
z C4
o w
1 +
0
E U
rA
F E
A
1
H W 4
m
1 N
C. z ❑
C
I
a z
I
V)
W
r.
m
C
I
O
I
fi
I
1
M
1
r
m
I
F
I
al
I
1
m
I
N
1
�
I
7
1
u
I
C
I
-.I
R7
O
rd
.0
I
� a)
i
V 3
3 a+
I
N
W -I
I
a) C
•-I -M
1
C
�
I
C
O X
I
- N
I
In N
I
N
1
V
1
H
1
1
I N
- I
I
O -
I
U U
I N H
rl C
1
rn r
U 7 w
I
t
I NN
rn b.
•
C C
-n
I 00
m m
I
c
i m r
P. O.
❑
I Orn
-'I -.1
m
I
a a
H \
I m P
p w
I
1
O O
a
n r
z z
o
r rn
••
m
I
4) N
H\
I r v
V C C
m a)
I
O
>wl
.4 14
zaa
i
Ej
1
1
N
a
N
C
J
I $-- @ I ! I ! 4 ! I f
I
w w
0 0
e
4)
O
0
rl
M
1
CD
ka
OD
4)
C
a
E
n LI
3
4 4)
V)
4
a
N
0
O 4.)
to
YI
a•
w z
/ o
!n H
O+ F
G d
3 N u U
4 m
i O m
m
N m
• O H
w \
Y o
Z O ••
w] EE, F .
H w <
L Z ❑
I
W
I
0
O O
I
I
c
H N O
1
I O m 0 0
..
•• •• if1
H c O O
H
L
F
W
N N N N
w x
a C W
I
m F W
G O w
l
m G f
M H H
m 3 F
e o 0
I m m o 0
L
W
I N N N N
a a L
1
❑ � w
1
W t
+y W
I N N H H
4 a W
I
U G W
1
1
I
l o m m m
c
1
❑
1 o l0 l0
I 0 O O O
a
I m m m m
C7 11
I e e e e
= W
I
I
I
I m H r N
I H m m m
a
I
1 e e m
I 0000
.]
mmmm
CD
x w
I
I
l o o m m
I e e N N
C
I
G
e m
1 Coco
E
I m m m m
� w
I
1
I
I ommio
1 e N H N
1 m p 0 r
1 0 0 0 0
E
m m m m
I
I e m O e
c c 0 0
c a
1
0 0 0 0
H m m
I
4
1 olnoo
w 0
I m m e In
r
C
N N
O
G
1 0000
O
w W
l e e e e
H W
I
I
E m
% U
w
m m e N
• G
p.
a
I N m e
G
�
1 0000
4
I m m m m
•(] 4
w w
I v c c c
I N
H W
I
4 3
1
a v
/
W N
I V U U V
01 E
a CL
c
0
a F -CI
I U U U U
•O V
I
/ m
4
Coco
0 z
N
am
I
/o
.,iN C
I lfl to e e
N H
4r G .1
I m m N N
01 F
I
G a
S u
w m m 0 n
0 N
0 U
4 m
w
I
N m
p
Coco
w \
a
Y O
Z
0
v v H H
0
EE- U
,i
[,�
�E�a
C
+1 O
I
a z
I
r
r
r
r
1
r
r
I
r
r
11
I
n
I a
n
L�1.J u M c
J
o�
O N
I
a
OJ � N
�l V
J
O C
a
a
0
(IJ)uot112natLq
■
E s1
Elevation(ft)
0
3
A
t0
o
C/D
V
o
ruO
d
uu
N
OO�
P
O
'e
V L
N
O
fD
�
S
�
1
r,0
O
rn ��
04
o
WA
N
I
N
O
N
A
N
m
0
I
I
1]
I
1
I
1
i
1
I
L
1
11
r
Swale 1; Q10= 5.8 ds (D.P. 3)
Worksheet for Irregular Channel
Project Description
Project File
c:lprojects\,spr\spr-swie.fm2
Worksheet
Swale 1
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Input Data
Channel Slope
0.009500 ft/ft
Elevation range: 3.50 ft to 4.75 ft.
Station (ft)
Elevation (ft)
Start Station
0.00
4.75
0.00
14.00
3.58
14.00
15.00
3.50
16.00
16.00
3.58
30.00
4.75
Discharge
5.80 cfs
I
i
L
I
Results
Wtd. Mannings Coefficient
0.021
Water Surface Elevation
3.93
ft
Flow Area
2.30
ft2
Wetted Perimeter
10.53
ft
Top Width
10.49
ft
Height
0.43
ft
Critical Depth
3.93
ft
Critical Slope
0.010407 ft(ft
Velocity
2.53
ft/s
Velocity Head
0.10
ft
Specific Energy
4.03
ft
Froude Number
0.95
Flow is subcritical.
End Station
14.00
16.00
30.00
Roughness
0.035
0.016
0.035
09/10/97 FlowMaster v5.13
' 04:50:15 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
Swale 1; Q100=11.5 cfs(Inflow to Pond 3)
Worksheet for Irregular Channel
Project Description
Project File
d:\projects\spr\spr-swle.fm2
Worksheet
Swale 1
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Input Data
Channel Slope
0.009500 ft/ft
Elevation range: 3.50 ft to 4.75 ft.
Station (ft)
Elevation (ft)
Start Station
0.00
4.75
0.00
14.00
3.58
14.00
15.00
3.50
16.00
16.00
3.58
30.00
4.75
Discharge
11.50 cfs
T 7-- -
Results
Wtd. Mannings Coefficient
0.023
Water Surface Elevation
4.08
ft
Flow Area
4.11
ft'
Wetted Perimeter
14.08
ft
Top Width
14.03
ft
Height
0.58
ft
Critical Depth
4.06
ft
Critical Slope
0.011324 ft/ft
Velocity
2.80
ft/s
Velocity Head
0.12
ft
Speck Energy
4.20
ft
Froude Number
0.91
Flow is subcriticel.
End Station
14.00
16.00
30.00
04/12/99
03:39:06 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
Roughness
0.035
0.016
0.035
I
,=L 1
FlowMaster v5.13
Page 1 of 1
[l
I
J
11
I
7
I
I
I
I
1
Swale 1; Q100x 1.333=15.3 cfs
Worksheet for Irregular Channel
Project Description
1
Project File
dAprojects\sprlspr-swle.fm2
Worksheet
Swale 1
Flow Element
Method
Irregular Channel
Manning's Formula
Solve For
Water Elevation
1
Input Data
Channel Slope
0.009500 fVft
Elevation range: 3.50 ft to 4.75 ft.
Station (ft)
Elevation (ft) Start Station End Station
0.00
4.75 0.00 14.00
'
14.00
3.58 14.00 16.00
15.00
3.50 16.00 30.00
16.00
3.58
30.00
4.75
Discharge
15.30 cfs
'
Results
Wtd. Mannings Coefficient 0.024
Water Surface Elevation 4.16 ft
Flow Area
5.23 ft2
Wetted Perimeter
15.88 ft
Top Width
15.83 ft
'
Height
0.66 ft
Critical Depth
4.13 ft
Critical Slope
0.011673 fifft
Velocity
2.93 fvs
Velocity Head
0.13 ft
Specific Energy
4.29 ft
'
Froude Number
0.90
Flow is subcritical.
r
11
I
1
04/12/99
03:40:22 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
1
F3
Roughness
0.035
0.016
0.035
FlowMaster v5.13
Page 1 of 1
Swale 6; Q100= 6.1 as
Worksheet for T iangular Channel
Project Description
Project File
c:lprojects\spr\spr-swie.fm2
Worksheet
Swale 6
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.016500 fttft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
6.10 cfs
Results
I
I
I
Depth
0.74 ft
Flow Area
2.21 ft2
Wetted Perimeter
6.13 ft
Top Width
5.94 ft
Critical Depth
0.68 ft
Critical Slope
0.026639 ft/ft
Velocity
2.76 ft/s
Velocity Head
0.12 ft
Specific Energy
0.86 ft ,
Froude Number 0.80
Flow is subcritical. ,
I
11
01/12/98 FlowMaster v5.13
12:17:27 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 ,
I
I
I
I
Swale 6; Q100x 1.33=8.1 cis
Worksheet for Triangular Channel
Project Description
Project File
c:\projects\spr\spr-swie.fm2
Worksheet
Swale 6
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.016500 ft/ft
Left Side Slope
4.000000 H : V
' Right Side Slope
4.000000 H : V
Discharge
8.10 cfs
Results
Depth
0.83
ft
Flow Area
2.73
ft2
Wetted Perimeter
6.81
ft
Top Width
6.61
ft
Critical Depth
0.76
ft
Critical Slope
0.025651 ft/ft
Velocity
2.96
ft(s
Velocity Head
0.14
ft
'
Specific Energy
0.96
ft
Froude Number
0.81
Flow is subcritical.
I
I
r
r5/
'01/12/98 FlowMaster v5.13
12:16:49 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
PROJECT JOB NO.
CLIENT CALCULATIONS FOR
MADEBY DATE CHECKED BY
DATE / ` 5 SHEET I OF
_FORT COLLINS, COLORADO 80521
1 2. G G r^ vc.2-•r I Z
O✓F�,L T "-13 c.�-t_..v � /2o.--n� /�' T'�...� � �7J Sc c�i�. J S ,
�-�&a t�,'4A>
I
i
• ��/� f J TC � /R1l � 0 � i .i V7 YL ' /�/IG-�-F �h� C = 1 . 4 f�fJ
4.5 r��g TH>= roo Yi L_c�+ ` ,sj•.1, J _
a
Swale 12; Q100 = 4.7 cfs r= -7
1 Worksheet for Triangular Channel
'
Project Description
Project File
d:\projects\.spr\spr-swle.fm2
Worksheet
Swale 12
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
1
Input Data
Mannings Coefficient
0.035
Channel Slope
0.008100 fttft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
'
Discharge
4.70 cfs
Results
Depth
0.77
ft
Flow Area
2.37
ft2
Wetted Perimeter
6.35
ft
Top Width
6.16
ft
Critical Depth
0.61
ft
Critical Slope
0.027582 f tft
Velocity
1.98
ftis
Velocity Head
0.06
ft
Specific Energy
0.83
ft
Froude Number
0.56
Flow is subcritical.
1
l
11
I
L/11199 FlowMaster v5.13
11:05:47 AM Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1
Swale 12; Q100x 1.333 = 6.3 cfs r ,
Worksheet for Triangular Channel
Project Description
Project File
d:\projectMsprlspr-swle.fm2
,
Worksheet
Swale 12
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.008100 fttft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
6.30 cfs
'
Results
Depth
0.86 ft
Flow Area
2.95 ftz
Wetted Perimeter
7.09 ft
Top Width
6.88 ft
,
Critical Depth
0.69 ft
Critical Slope
0.026527 f 1ft
Velocity
2.13 fUs
Velocity Head
0.07 ft
Specific Energy
0.93 ft
Froude Number
0.57
,
Flow is subcritical.
01/11/99 FbwMaster v5.13
11.06:29 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 765-1666 Page 1 of 1
I
[l
I
4= -:5
U N
� W
3
j
O p
J �
O
K
Z z
O Z
U a
3
p
Oa
J W
LL
p U
Z
a W
wp
pz
i<
a�
�p
p �
z�
m�
N
N
J Z
6
rd
W �
� J
N
_L
O
00
NLO
fnN
s�O
• I
00
00
0 0
3 c
0 C
0 0
C O
— C
«C
I
i
F
Z
y
O i
i
ono
00
00
IL
W
23^
N,�
00
C O
O—
C O
OC
O O
O _
�
N
N
W
�
C
L
N
N
Y
I
G
_
W O
N N
N
O
N L
L r
L
Q
u
N
G
m
N t
O
N V
L
O O
O O
�-C
C
°�
rs
C� Of
N
C C
Li
of
c,l
ofo
a
3
p
vi
w
m
a
w
U
a
i
1
i
i
1
1
1
1
1
1
1
1
1
I
F'
1
1
i
1
C�
1
[J
1
H
1
1
1
o l I 4'i
`
O
O
O
O
co
cD
(D II
w U
®
��UN
p �
Z},000p
®
O p000Lr)
a_LL.00ON
00
��
w ww
U Z Z
w O 0
O
0 O
U � � J
LLJV)J
i l
a- a_ a_
�
JQNOOOJ
QZ UUULL.
J
L,J
OOfZpJQQ
U)
a_
Pond 3
Elevation
4903.300
4903.300
4903.400
4903.500
4903.600
4903.700
4903.800
4903.900
4904.000
4904.100
4904.200
4904.300
4904.400
4904.500
4904.600
4904.700
4904.800
4904.900
4905.000
4905.100
4905.200
4905.300
4905.400
4905.500
4905.600
4905.700
4905.800
4905.900
4906.000
Area (so
Ave. Area
Volume (cu-ft)
0.000
0.000
0.000
0.000
0.000
0.000
10.288
5.144
0.348
36.109
23.198
2.210
74.990
55.549
5.441
129.053
102.021
10.032
202.693
165.873
16.464
297.657
250.175
24.816
419.488
358.573
35.598
551.620
485.554
48.232
720.058
635.839
63.283
922.142
821.100
81.891
1163.413
1042.778
103.927
1435.486
1299.450
129.729
1728.631
1582.058
157.968
2042.411
1885.521
188.280
2375.655
2209.033
221.126
2716.528
2546.092
254.514
3064.116
2890.322
288.826
3382.482
3223.299
322.086
3728.197
3555.340
355.255
4101.261
3914.729
391.413
4506.337
4303.799
430.046
4948.056
4727.197
472.342
5428.703
5188.379
518.374
5962.246
5695.474
568.847
6560.394
6261.320
626.204
7220.280
6890.337
688.403
7928.284
7574.282
755.705
Cum. Volume (cu-ft)
0.000
0.000
0.348
2.559
8.000
18.032
34.497
59.313
94.912
143.143
206.427
288.318
392.244
521.974
679.942
868.222
1089.347
1343.862
1632.688
1954.774
2310.029
2701.442
3131.488
3603.830
4122.204
4691.051
5317.255
6005.658
6761.363
45'Z/
Cum. Volume (ac-ft)
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.002
0.003
0.005
0.007
0.009
0.012
0.016
0.020
0.025
0.031
0.037
0.045
0.053
0.062
0.072
0.083
0.095
0.108
0.122
0.138
0.155
Note: This rating curve was developed by Eagle Point software and was used in the routing of Pond 3.
Volumes have been calculated using the Prismoidal method.
1
1
1
1
I I— <, c SG•'+— ✓ E.,s 7Z7 VCT- I r-T- 7"T-!C /2^ / . j S
�.J i�S . ; Z�, t-'5 rd--O o,J 7""r-Ic .e5 =;p--,rT, o.J
i ✓r=-j „J Ar —,J
norihem engineering services
Cl
H
3
$
[+7
C
C
]
y
r
m
H
z
K
O
O
o
0
rt
01
w
z
0
m
m
a
A.
OD
s1
t0
W
OD
J
J
0
01
UI
Ul
A
A
W
W
N
N
F.
r
OY
J
f]
O
Ut
O
UI
O
ILn
10
Ln
10
jLn
O
10
O
Ul
O
In
O
H
O
I
I
I
I
I
G
:
U,
I
I
y
PC
A
m
r
n
w
°
'"
0
m
m
M
ri
�S
wo
0
GZf
m
U7
UI
A
A
A
W
W
W
W
N
N
N
r
r
r
n
A
r
M
Ut
N
%0
0%
W
O
J
A
r
OD
W
N
%0
ON
W
m
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
m
�0
0101010
01010
01010
010
0
0
010101010
x'
n
r
m
o
F
z
z
m
M
m
r
m
0
O
O
m
m
ID
tv
n
m
z
m
r
r
r
N
N
N
N
N
N
N
N
W
W
W
A
In
4•
O
x
IS
m
ID
ti
"
qO
N
W
J
l0
N
In
t0
A
W
In
D
rt
fC
(.i
cr
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
r
m
0
0
010
010
0
01010
010
0
0
010101010
A
0
M
r
m
O
r
0
N
N
N
N
N
N
N
W
W
W
W
A
A
A
In
0
O
r
0
r
N
A
N
O�
aD
0
O
W
A
J
O
A
�0
J
N
W
O
J
t0
N
Ut
OD
O
W
ON
r
A
0
100
T
J
r
ON
%0
ILrT
10
r
r
r
r
r
0
r
r
ct
7
rrrrr0000N3w00&-4mA
W
0
J
J
01
A
N
Ul
0
�0
N
OO
UI
O
A
J
O
-0
A
W
3
O
O
N
J
A
w
W
Ul
�0
A
�0
J
O�
W
UI
W
OD
J
O
m
M
W
A
CD
U1
T
W
W
W
J
r
J
•
r
•
r
•
r
•
W
•
O
•
•
N
•
N
•••
J
•
J
•
•
•
•
•
•
•
O
•
01
%0
N
O
�0
w
O
�
A
A
UI
10
k0
Iti
a•
JW
JLn
10
IOD
W
Ul
J
IW
O%
IOD
10
0
rrrrrrrr
l
'�
cr
m
0
m
In
A
W
N
r
0
w
O
J
0
U1
A
W
N
r
�
W
0
w
w
O
O
r
r
N
W
W
A
A
m
In
0
J
J
w
OO
t0
ct
m
UI
r
J
W
w
A
O
m
N
J
W
0
U7
r
0
N
O
A
m
N
0
0
010
01010
0101010101010
0101010101
tv
m
M
0
fi
m
M
fr
m
G
m
A
W
N
r
r
1
I
r
r
N
N
N
W
W
N
W
cct
f"
N
W
A
01
t0
W
J
N
UI
OD
W
�0
W
J
tp
N
O
A
r•
m
N
r
A
Ut
A
O
A
O�
N
r
W
J
J
A
a•
UI
W
T
W
N
O
W
.
J
.
.
.
W
.
.
J
.
W
.
t0
.
J
.
W
.
.
O
.
r
.
.
.
OD
.
OD IW
.
.
N
J IJ
Ir
r
%0
J 10
1r
01
%0
W jr
10
%0 10
0
w
w
cct
m
o
m
1
I
I
I
I
I
I
I
re
Ft
r.
rt
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
cf
I
m
r
0
0
0
0
0
66
0
0
0
0
0
06
0
0
0
0
0
Q•
N
t0
J
O�
A
W
r
o
r
r
W
A
O
m
m
J
J
w
O
r
t0
t0 1r
Ln 10
J
0%
N
t0 1r
ILrl
ut
W
OD ILn
IH
J 10
v
m
x
1111111
Jill
O
6/2/98
HYDROGRAPH REPORT
Page 1/,,- G 5/
RECORD NUMBER : 3
TYPE : RESER STOR. IND
DESCRIPTION : Pond .3 Routing w/ Storage
Indication
[HYDROGRAPH INFORMATION]
Peak Discharge ............................ =
3.14
(cfs)
4•L s
Volume .................................... =
0.11
(acft
)(` _ Yz
Time Interval ............................. =
0.10
(min)
Time to Peak .............................. =
11.10
(min)
-Time of Base .............................. =
26.30
(min)
Peak Elevation ............................ =
4905.25
(ft)
[RESERVOIR STRUCTURE INFORMATION]
Reservoir# ............................... = 1
Description ............................... = Pond 3
Storage type .............................. = MAN STAGE/STOR
Max storage ............................... = 6761.36 Cuft
Discharge type ............................ = COMP STAGE/DIS
Maxdischarge ............................. = 3.77 cfs
[RESERVOIR INFORMATION]
Reservoir # ............................... = 1
Reservoir Description ..................... = Pond 3
[INFLOW HYDROGRAPH INFORMATION]
Hydrograph#.............................. = 1
Hydrograph Descript;on.................... = Basins 2, 3 and 4
6/2/98
Page 2/¢
d;; �--)
[Storage Indication Reservoir Routed Hydrograph Flow Values Time vs. Flow]
(The time interval is 0.1 min)
-------------------------------------------------------------------------
ELEVATION
TIME
INFLOW
OUTFLOW
(ft)
-------------------------------------------------------------------------
(min)
(cfs)
(cfs)
4903.46
0.1
0.23
0.23
4903.56
0.2
0.46
0.46
4903.64
0.3
0.69
0.69
4903.72
0.4
0.92
0.92
4903.78
0.5
1.15
1.15
4903.88
0.6
1.38
1.38
4904.00
0.7
1.61
1.61
4904.13
0.8
1.84
1.84
4904.29
0.9
2.07
2.07
4904.46
1.0
2.30
2.30
4904.65
1.1
2.53
2.53
4904.86
1.2
2.76
2.76
4905.00
1.3
2.98
2.90
4905.00
1.4
3.21
2.90
4905.00
1.5
3.44
2.90
4905.00
1.6
3.67
2.90
4905.00
1.7
3.90
2.90
4905.00
1.8
4.13
2.90
4905.00
1.9
4.36
2.90
4905.00
2.0
4.59
2.90
4905.00
2.1
4.82
2.90
4905.00
2.2
5.05
2.90
4905.00
2.3
5.28
2.90
4905.00
2.4
5.51
2.90
4905.01
2.5
5.74
2.90
4905.01
2.6
5.97
2.90
4905.01
2.7
6.20
2.90
4905.01
2.8
6.43
2.91
4905.01
2.9
6.66
2.91
4905.01
3.0
6.89
2.91
4905.01
3.1
7.12
2.91
4905.01
3.2
7.35
2.91
4905.01
3.3
7.58
2.91
4905.02
3.4
7.81
2.91
4905.02
3.5
8.04
2.91
4905.02
3.6
8.27
2.92
4905.02
3.7
8.49
2.92
4905.02
3.8
8.72
2.92
4905.02
3.9
8.95
2.92
4905.03
4.0
9.18
2.92
4905.03
4.1
9.41
2.93
4905.03
4.2
9.64
2.93
4905.03
4.3
9.87
2.93
4905.03
4.4
10.10
2.93
4905.04
4.5
10.33
2.93
L
I�
77
J
7I
I
11
6/2/98
Page 3/4
G 7/
[Storage Indication Reservoir Routed Hydrograph Flow Values Time vs. Flow)
(The time interval is 0.1 min)
-------------------------------------------------------------------------
ELEVATION
TIME
INFLOW
OUTFLOW
(ft)
-------------------------------------------------------------------------
(min)
(cfs)
(cfs)
4905.04
4.6
10.56
2.94
4905.04
4.7
10.79
2.94
4905.04
4.8
11.02
2.94
4905.05
4.9
11.25
2.94
4905.05
5.0
11.48
2.95
4905.05
5.1
11.34
2.95
4905.05
5.2
11.20
2.95
4905.06
5.3
11.07
2.95
4905.06
5.4
10.93
2.96
4905.06
5.5
10.79
2.96
4905.06
5.6
10.65
2.96
4905.07
5.7
10.52
2.96
4905.07
5.8
10.38
2.96
4905.07
5.9
10.24
2.97
4905.07
6.0
10.10
2.97
4905.08
6.1
9.97
2.97
4905.08
6.2
9.83
2.97
4905.08
6.3
9.69
2.98
4905.08
6.4
9.55
2.98
4905.08
6.5
9.42
2.98
4905.09
6.6
9.28
2.98
4905.09
6.7
9.14
2.98
4905.09
6.8
9.00
2.98
4905.09
6.9
8.87
2.99
4905.09
7.0
8.73
2.99
4905.09
7.1
8.59
2.99
4905.10
7.2
8.45
2.99
4905.10
7.3
8.32
2.99
4905.10
7.4
8.18
3.00
4905.11
7.5
8.04
3.00
4905.11
7.6
7.91
3.01
4905.12
7.7
7.77
3.02
4905.13
7.8
7.63
3.02
4905.14
7.9
7.49
3.03
4905.15
8.0
7.36
3.04
4905.15
8.1
7.22
3.05
4905.16
8.2
7.08
3.05
4905.17
8.3
6.94
3.06
4905.17
8.4
6.81
3.06
4905.18
8.5
6.67
3.07
4905.19
8.6
6.53
3.08
4905.19
8.7
6.39
3.08
4905.20
8.8
6.26
3.09
4905.20
8.9
6.12
3.09
4905.21
9.0
5.98
3.10
6/2/98
Page 4/4
(Storage Indication
Reservoir
Routed Hydrograph Flow
Values Time vs. Flow]
,
(The time
interval is 0.1 min)
-------------------------------------------------------------------------
ELEVATION
TIME
INFLOW OUTFLOW
(ft)
(min)
(cfs)
(cfs)
-------------------------------------------------------------------------
4905.21
9.1
5.84
3.10
,
4905.21
9.2
5.71
3.10
4905.22
9.3
5.57
3.11
4905.22
4905.23
9.4
9.5
5.43
5.29
3.11
3.11
,
4905.23
9.6
5.16
3.12
4905.23
9.7
5.02
3.12
4905.23
9.8
4.88
3.12
4905.24
9.9
4.74
3.12
,
4905.24
10.0
4.61
3.13
4905.24
10.1
4.47
3.13
4905.24
10.2
4.33
3.13
4905.25
10.3
4.19
3.13
,
4905.25
10.4
4.06
3.13
4905.25
10.5
3.92
3.13
4905.25
10.6
3.78
3.14
'
4905.25
10.7
3.64
3.14
4905.25
10.8
3.51
3.14
4905.25
10.9
3.37
3.14
4905.25
11.0
3.23
3.14
,
4905.25
11.1
3.09
3.14 Peak
4905.25
11.2
2.96
3.14
4905.25
11.3
2.82
3.14
4905.25
11.4
2.68
3.14
'
4905.25
11.5
2.54
3.14
4905.25
11.6
2.41
3.14
4905.25
11.7
2.27
3.13
,
4905.25
11.8
2.13
3.13
4905.24
11.9
1.99
3.13
4905.24
4905.24
12.0
12.1
1.86
1.72
3.13
3.13
'
4905.24
12.2
1.58
3.13
4905.24
12.3
1.44
3.12
4905.23
12.4
1.31
3.12
4905.23
12.5
1.17
3.12
'
4905.23
12.6
1.03
3.12
4905.22
12.7
0.89
3.11
4905.22
12.8
0.76
3.11
4905.22
12.9
0.62
3.11
,
4905.21
13.0
0.48
3.10
4905.21
13.1
0.34
3.10
4905.20
13.2
0.21
3.09
,
4905.20
13.3
0.07
3.09
4905.19
13.4
0.00
3.09
4905.19
13.5
0.00
3.08
'
1
6/2/98
RESERVOIR REPORT
RECORD NUMBER : 1
STORAGE TYPE : MAN STAGE/STOR
DISCHARGE TYPE : COMP STAGE/DIS
DESCRIPTION : Pond 3 Rating
(RATING CURVE LIMIT]
Minimum Elevation ......................... _
MaximumElevation ......................... _
Elevation Increment ....................... _
[STAGE STORAGE INFORMATION]
Input file = NULL
Output file = NULL
(Manual Storage
vs. Elevation]
---------------------------------------------
ELEVATION
STORAGE
(ft)
---------------------------------------------
(cuft)
4903.40
0.35
4903.50
2.56
4903.60
8.00
4903.70
18.03
4903.80
34.50
4903.90
59.31
4904.00
94.91
4904.10
143.14
4904.20
206.43
4904.30
288.32
4904.40
392.24
4904.50
521.97
4904.60
679.94
4904.70
868.22
4904.80
1089.35
4904.90
1343.86
4905.00
1632.69
4905.10
1954.77
4905.20
2310.03
4905.30
2701.44
4905.40
3131.49
4905.50
3603.83
4905.60
4122.20
4905.70
4691.05
4905.80
5317.26
4905.90
6005.66
4906.00
6761.36
Page 1/z G `, /
4903.30 (ft)
4906.00 (ft)
0.10 (ft)
6/2/98
[STAGE DISCHARGE INFORMATION]
OUTLET STRUCTURE:
STR # 4
TYPE : RECTANGULAR ORIFICE
DESCRIPTION : Pond 3 Rectangular Orifice
[Reservoir Discharge Value vs. Stage]
(the elevation increment is 0.1)
Page 21, al oY
--------------------------------------------------------------
STAGE
ELEVATION
STORAGE
STORAGE
DISCHARGE
(ft)
(ft)
(Acft)
(cuft)
(cfs)
--------------------------------------------------------------
0.00
4903.30
0.00
0.00
0.00
0.10
4903.40
0.35
0.11
0.20
4903.50
2.56
0.30
0.30
4903.60
8.00
0.56
0.40
4903.70
18.03
0.86
0.50
4903.80
34.50
1.20
0.60
4903.90
59.31
1.42
0.70
4904.00
0.002
94.91
1.61
0.80
4904.10
143.14
1.78
0.90
4904.20
206.43
1.94
1.00
4904.30
288.32
2.08
1.10
4904.40
392.24
2.22
1.20
4904.50
521.97
2.35
1.30
4904.60
679.94
2.47
1.40
4904.70
868.22
2.58
1.50
4904.80
1089.35
2.69
1.60
4904.90
1343.86
2.80
1.70
4905.00
0.037
1632.69
2.90
1.80
4905.10
1954.77
3.00
1.90
4905.20
2310.03
3.09
2.00
4905.30
2701.44
3.18
2.10
4905.40
3131.49
3.27
2.20
4905.50
3603.83
3.36
2.30
4905.60
4122.20
3.44
2.40
4905.70
4691.05
3.53
2.50
4905.80
5317.26
3.61
2.60
4905.90
6005.66
3.69
2.70
4906.00
0.155
6761.36
3.77
6/2/98
OUTLET STRUCTURE REPORT
Page 112.
e::;,I /
RECORD NUMBER : 4
TYPE : RECTANGULAR ORIFICE
DESCRIPTION : Pond 3 Rectangular Orifice Rating
FILE NO: Pond30rf.rtg
[RATING CURVE LIMIT]
Minimum Elevation = 4903.30 (ft)
Maximum Elevation ......................... = 4906.00 (ft)
Elevation Increment ....................... = 0.10 (ft)
[OUTLET STRUCTURE INFORMATION]
Width ..................................... = 1.00 (ft)
Height .................................... = 0.50 (ft)
Coefficient Co ............................ = 0.60000
Invert Elevation .......................... = 4903.30 (ft)
# of Openings ............................. = 1
[RECTANGULAR ORIFICE EQUATION]
Q = Co*A*[2gh]/k]^0.5
A = Wetted area, (sqft)
K = 1
[Culvert Weir Discharge Value vs. Stage]
(the elevation increment is 0.1)
----------------------------------------------------
STAGE
ELEVATION
FLOW
----------------------------------------------------
(ft)
(cfs)
0.10
4903.40
0.11
0.20
4903.50
0.30
0.30
4903.60
0.56
0.40
4903.70
0.86
0.50
4903.80
1.20
0.60
4903.90
1.42
0.70
4904.00
1.61
0.80
4904.10
1.78
0.90
4904.20
1.94
1.00
4904.30
2.08
1.10
4904.40
2.22
1.20
4904.50
2.35
1.30
4904.60
2.47
1.40
4904.70
2.58
1.50
4904.80
2.69
1.60
4904.90
2.80
1.70
4905.00
2.90
1.80
4905.10
3.00
1.90
4905.20
3.09
6/2/98
[Culvert Weir Discharge Value vs. Stage]
(the elevation increment is 0.1)
STAGE
ELEVATION
FLOW
(ft)
(cfs)
--------------------------------------------
2.00
4905.30
3.18
2.10
4905.40
3.27
2.20
4905.50
3.36
2.30
4905.60
3.44
2.40
4905.70
3.53
2.50
4905.80
3.61
2.60
4905.90
3.69
2.70
4906.00
3.77
Page 212- G,Z/
I
1
1
1
I
1
1 N r I' 2f"r� I, I .•^. � : ( ' A,:,:w�:wwg4w , � � x � ,ytli: • �'�i•••rl•aA
�T7. � M t� se'�� dl y�+x•wR,wl, � / - ', ��.�..G' �:\ 1•' F4� — — 113 5}
(I1. inu:l nWl aPF,I/p rY rII1L� WAWIWx.\ .w.:. F •• I �l aa'�� rylhwrWN'%•
' a J 1 r,.l\..y .,yya 4 'r� '.r.FX unY Wa .4•. P IPIII
r xn,awnnm
N I'
10,
F:. h .. r r I rf yP,Rlmw',•^. P , -:• - x +voa.•`RUW'�, xl r I•
e r r
ERR
t' 1 n r��! 1a irlls v r
t ill . Jn W WlJp R X'711 li j.XX(/ \ TI
♦x T!1
RENT
Qt
/TOP�iR a+x
'" 17►11►r r n!NI X MI?x y f'�'µ al�FePI F h:y.?' I aR `, ,;,r! /., '' y.. J` ,r `,
7 ]I
' P ♦ ;vxR ��ll �y ul'..0 ! A �.. � I, I r ��g1,p1 u' f '�� "N� ' � A II r? Y �*"I,F,,�r , I � a
r r .
y:..,' +�1 A •� 7 1i r M t 3r OD Ic'I I r W -J
MI
./•f�'., _. r� "
r Pf
���� ` max• ti tar r paly " Ft 11 rr Ip W! 'e � ` 1 1 ; �
: r N 1 :a r�f�•�z xy klitw ' �'I'p' IK�r 1 rS�x rN �� �� x 1 � 1�.
milli
` F I'rd
.an. 11 i i
I l,�y
r r :I 14 aaEp., „ ' ,. d.... W :+� --' r�.'. �•:: "��
' y WYN I Y,/r • � `, . '' 1 a Y+ - • 9 : i � � 7�',,5��'�L111�'� � D � ..
"fx xf
III
it 1 `I • � t '' _ .
I IL I Y
�� y r i I �. I y •f.w.� s � yAN PRh �.
I f ' IIr11�� .« i.lNY; w. 1F�I�,r�ll „lll I' IZ I III,I IIN:.
1 I 1..��
FULL 0 VE EIODMENT I I ly, �l (I
_ N
I � 1 Idl�.�j II Ih'• n4F �1: O.29OOets
\ I<I .a rmr' I ry I i!i IX4j l,.r n I I I I II r 'I!h"prjl 1 a 1111.
Iw� ql
e�. .1 1 N I ,y 4 rlI I1�, II' iI'I �'�lillillllUlirrW '. h'I0I dM wAn JN »N 1 X if
I,rhl
.i
i � h r j IQ n 4y '
I � I
1
I„r Ih I� rlr h ? IM I�I�i IAa LpI ,� Mt
r
✓' h� � : qx �� .II' I I r+ I' m I �r��«%''r.'� I •d r r I � M u
� r r
ily�l' hla i4 '•w" .. r,�Ap I uu 'J I I ° I ..., : I w, ... _ ,�L
A '' � li; � ��1j", I 'IAFI'`' ',,a 1 rd "gyp �' ,.,�,-�•.1„y�„�,,,; I, _'.—„—,--�.:..w� I
r
r I �1^ I' x ._ ' ' � M p I III III'll P II G Ilo i : I rl�la' F' Ilr. y r'i ryxr .. ,,, - � -... X`gF•,n
FTtl
II
II r x,ArAd w II;P F F w+!!rI111,1,I;y1 HEC 2'Mapping from
the Mater Plan by Engineering Professionals
of 1988, showing the location of the spill across the C&S
24..Vill•.�
a l Scale Na 200'
RVISM or MN5 CLIENT:a,TLE FLOODPLAIN DELINEATION •L•rr No oX
s SC,L•Zoo' CITY OF FORT COLLINS STA. TO STA. 2 37
Nt 19BB ORIG.I••IOO'
11
Analysis Methodology
Objective:
The objective of this portion of the analysis, is to determine the spill over the C&S Railroad tracks
for the 100 and 500 year storms, which are to be used as the design flows in the subsequent HEC-
2 modeling (EC-RAIL.DAT).
1) Determine the discharge from Pond 302 for the 2, 5, 10, 25, 50 and 100-year recurrence
intervals using SWMM.
2) Start with SWMM file SCFD-100_sc.dat. Copy this file, rename the file for the
appropriate design storm (e.g. SCFD-2.DAT), modify the rainfall intensities according to
Table 1 (pg. H4) and run the model (see output pg's. H5-HI6).
3) Plot the discharge and recurrence interval information at Pond 302 for each storm on
probability paper (see Graph 1, pg. H17).
4) Extrapolate the line on Graph 1 to determine the 500-yr discharge= 2600 cfs.
5) Using the 100 and 500-year discharges, determine the CWSEL at Pond 302 using the
F.I.S. rating table (see pg's. H18-H21).
6) Using the CWSEL from step 5, determine the spill over the C&S Railroad tracks using the
F.I.S. stage -discharge rating on page H21.
D:%Projeas%Spr%SPR-HEC2.RPT
c T
rgo
`��qc S
tu
Sr 1
/ Oft vol
cy \
T ` \
Rd.
v+ N Si E Hoffman - Mill
` 102_ G ✓
Q \ C
' 1
8u-ke a Sr
•.
Y _
3 1103
D c 7 '"
'9 J� Q
qu
e Sr r �i
101- i
�.;
1066
Er r.< 205 Mid ornt $ Dr a a
_ - 2cc
3 110
105
IF& \ocG
ter.
g — 01 f 1 10
kwpCL
�c U push wjp dli ~�
�-
0 61rnM•�
0 o z U Tro''wopd 2 SWMM Schematic
Or 8 Or from
E0S' Greenhome & O'Mara F.I.S.
Teakw.)od''l, o Scale: F'= 1000'
n '0111n Woo Ct. 4r
`.E Dr g.Ke Rd. r East Drake Road
/ ar..r4rrt:
A
Y.
J
A
0
L
'_ a 1n r
nl O O G® O a p c f�l u Sri
w
O
O
.-1
O
h
{+
onN
s
l
tl
M
N
O �O d CO O d O N t0 %0 O d O O �O �p d d d .7 ♦T d N N
r-r
0 0 0 0 6 6 O
O d M M O .T N d d -w b N N O w 4O d -Q d d �0' N. N N
O W O %O d d M N O d 01 h h .T M M N N N N N M 9'0 .y
O O 4 .4 N d h M N .-1 O 0 0 0 0 6 O O 0 0 0 0 O O
m N U N w N d O .O w .T N N w %D %O
d h C% M N h 00 w 4M O w h h ♦T M M
O O O .r N N 1; 4 O O O O O O O O O O O O O O
w O N 0 O N .1 m N d N O O w .0 -a .T N N N N N N N
d %D h • M .y N .-i M h %0 %0 d M N N r4 - 4 P, r1 4-4 .-1 .-1
O OQQ Ooo OX Ng M V1 N .-/ O O O O OO. O O O O O p O O O
Q 4 & rj Q
N %0 co O d O .T 00 .T 00 %0 %O .it N N aV N N N N
P4 N1 ♦T %0 GO Wo N O 00 ♦T M M M N IV N N " -4 1-1 .r .ti P-1 N
0 6Z O O O 0 0 0 0 O O O O O 0 0 O O O O
:1� %n o In o 4n c In o In o
•"� •y N N M M .Y d M h �O 10 h h EO OD 01 01 O. O �-1 .1 N
ri M ri r-1 .-1
Table 1
Fossil Creek Basin Rainfall Intensities
from the City of Fort Collins Stormwater Utility
Department
M
fn
1 d�
IN
h
O
J
,-45;
SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF
COLLEGE AVE. FILE:SCFD-2
2-YR DEVELOPED
CONDITION - FEBRUARY 1998
LIDSTONE s ANDERSON PROJ:COFC97.07
*** PEAK FLOWS, STAGES AND STORAGES
OF GUTTERS AND
DETENTION DAMS ***
*** NOTE :S IMPLIES A
SURCHARGED ELEMENT
AND
:D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT)
(AC -FT)
(HR/MIN)
5:2
51:2
21.0
11313.7
.0
.0
12.7:D
2.2:D
3
0
0.
50.
101:4
114.5
1.4
1
5.
102:5
24.6
2.1
0
40.
103:2
15.9
.1
2.6:D
1
30.
104:5
100.5
3.5
0
40.
105:5
25.9
2.3
0
40.
106:5
61.8
2.0
0
35.
107:5
19.2
2.2
0
40.
10:2
5.6
.1
1.2:D
1
30.
109:2
.6
.1
.2:D
1
30.
110:5
17.1
1.8
0
35.
111:4
88.2
4.0
0
40.
112:3
15.3
(DIRECT
FLOW)
0
35.
113:3
8.9
(DIRECT
FLOW)
0
35.
114:1
35.8
1.6
0
40.
118:1
111.8
1.7
1
0.
119:1
110.0
1.9
1
0.
120:1
94.4
1.7
0
55.
123:1
85.1
2.0
0
55.
�
124:1
82.0
2.1
0
55.
125:3
397.5
(DIRECT
FLOW)
1
10.
126:1
81.4
2.1
0
50.
127:5
88.2
3.6
0
45.
128:1
9.0
1.0
0
40.
129:1
43.6
1.6
0
45.
130:1
74.8
.9
0
40.
131:5
33.4
2.7
0
35.
132:3
15.1
(DIRECT
FLOW)
1
0.
133:3
15.1
(DIRECT
FLOW)
1
0.
134:3
.0
(DIRECT
FLOW)
0
0.
135:4
73.6
.6
0
40.
151:4
12.6
.6
0
35.
152:4
12.
.5
0
40.
153:4
19.3
.6
0
90.
154:4
19.9
.6
0
35.
155:4
25.7
.7
0
40.
156:3
44.0
(DIRECT
FLOW)
0
40,
160:1
21.0
.9
2
55.
161:1
23.9
.6
0
40.
170:5
1.7
.4
1
30.
171:5
10.7
1.5
1
20.
173:5
34.3
2.2
0
40.
174:1
.8
.1
2
0.
175:5
34.7
2.1
0
45.
177:5
66.3
2.1
0
40.
178:5
212.5
4.0
0
40.
179:5
49.4
2.0
0
35.
180:5
14.3
1.8
0
40.
161:5
128.2
2.4
0
50.
187:5
29.9
1.3
0
35.
189:5
27.0
.9
0
40.
200:5
24.6
1.3
1
40.
201:4
1021.4
3.5
3
30.
202:4
49.5
1.2
0
50.
203:1
35.9
.7
1
35.
205:4
206:4
970.5
966.0
5.4
5.2
3
3
20.
15.
�l
207:1
3.8
.3
2
5.
208:2
3.8
.1
1.2:D
1
55.
209:4
962.2
4.4
3
15.
210:5
51.2
2.1
0
55.
211:1
55.6
.1
0
50.
212:4
962.6
3.7
3
10.
213:4
962.5
3.8
3
5.
21:5
215:5
24.
25.2
1.1
1.1
1
1
40.
30.
216:4
950.9
4.9
3
5.
217:5
55.1
2.2
0
50.
218:4
949.0
5.0
3
0.
219:1
325.8
2.5
1
25.
221:5
115.1
2.0
0
40.
226:4
873.0
5.4
2
20.
227:1
921.1
1.9
1
55.
226:1
634.2
2.4
1
55.
229:1
630.5
2.6
1
55.
230:4
630.0
4.9
1
50.
231:4
625.6
3.8
1
45.
232:4
593.7
5.1
1
40.
233:2
67.5
1.7
0
40.
234:4
585.8
3.4
1
35.
235:4
525.0
4.8
1
40.
236:4
542.4
3.3
1
20.
237:4
217.0
2.0
1
0.
23:4
1.
1.
0
5.
239:4
13737.2
1.6
0
500.
240:1
10.3
.5
0
50.
241:4
146.7
1.5
0
45.
242:4
144.2
1.4
0
40.
243:4
88.6
1.1
0
35.
2 4 4 : 1
46.4
1.3
0
45.
24 5: 1
38.5
1.1
0
40.
260:3
28.4
(DIRECT FLOW)
0
40.
271:3
11.2
(DIRECT FLOW)
0
55.
272:3
11.2
(DIRECT FLOW)
0
55.
273:3
.0
(DIRECT FLOW)
0
0.
274:3
27.2
(DIRECT FLOW)
0
50.
275:3
27.2
(DIRECT FLOW)
0
50.
276:3
.0
(DIRECT FLOW)
0
0.
277:3
69.3
(DIRECT FLOW)
0
40.
262:2
27.2
.0 .3:D
0
50.
287:2
3.7
.1 3.3:D
2
5.
288:2
.9
.1 1.1:D
2
10.
289:2
1.5
.1 1.4:D
2
5.
295:3
23.9
(DIRECT FLOW)
0
40.
296:3
17.1
(DIRECT FLOW)
0
45.
297:3
46.0
(DIRECT FLOW)
0
35.
298:3
119.0
(DIRECT FLOW)
0
40.
299:3
57.0
(DIRECT FLOW)
0
35.
300:3
1021.4
(DIRECT FLOW)
3
30.
301:4
976.2
4.0
3
30.
302:2
968.9
.1 4.8:D
3
25.
303:2
949.2
.1 28.9:D
3
0.
304:2
504.2
.1 5.3:D
1
35.
��-
317:3
10.1
(DIRECT FLOW)
0
40.
318:2
3.8
.1 1.1:D
1
35.
319:3
330.8
(DIRECT FLOW)
1
25.
321:3
949.8
(DIRECT FLOW)
3
0.
325:1
364.2
3.4
1
25.
�
327:3
933.0
(DIRECT FLOW)
1
55.
328:3
636.2
(DIRECT FLOW)
1
55.
330:3
636.0
(DIRECT FLOW)
1
55.
332:3
627.3
(DIRECT FLOW)
1
40.
333:2
2.7
.1 1.O:D
1
30.
334:2
2.2
.1 .9:D
1
30.
335:3
592.3
(DIRECT FLOW)
1
35.
336:2
337:3
3.3
68.5
.1 1.7:D
(DIRECT FLOW)
2
0
5.
35.
338:2
15.1
.1 1.4:D
1
0.
340:2
1.4
.1 5.6:D
3
40.
349:2
4.2
.1 1.7:D
2
0.
355:3
62.5
(DIRECT FLOW)
0
35.
356:3
21.4
(DIRECT FLOW)
0
35.
357:2
11.4
.1 1.3:D
1
30.
358:2
1.7
.1 2.2:D
2
15.
360:2
4.4
.1 .4:D
0
55.
361:2
.2
.1 .1:D
1
40.
IJ
SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF COLLEGE AVE. FILE:SCFD-5
5-YR DEVELOPED
CONDITION - FEBRUARY 1998
LIDSTONE S ANDERSON PROJ:COFC97.07
*** PEAK
FLOWS, STAGES AND STORAGES OF GUTTERS AND
DETENTION DAMS ***
*** NOTE
:S IMPLIES A
SURCHARGED ELEMENT AND
:D IMPLIES
A SURCHARGED DETENTION FACILITY
�I
CONVEYANCE PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT)
(AC -FT)
(HR/MIN)
50:2
80.3
.0
20.0:D
2
0.
51:2
189.4
.0
4.2:D
0
55.
101:4
208.8
2.2
1
5.
102:5
35.8
2.3
0
40.
103:2
21.5
.1
6.1:D
1
40.
104:5
147.2
4.7
0
45.
�i
105:5
46.8
2.5
0
40.
106:5
104.2
3.0
0
40.
107:5
36.4
2.4
0
40.
108:2
7.9
.1
2.6:D
1
35.
109:2
1.1
.1
.3:D
1
30.
110:5
29.3
2.4
0
40.
111:4
166.3
4.7
0
40.
112:3
24.6
(DIRECT
FLOW)
0
40. '
113:3
14.3
(DIRECT
FLOW)
0
40,
114:1
65.3
2.1
0
40.
118:1
219.2
2.3
1
0.
'
119:1
207.2
2.6
1
0.
120:1
196.0
2.3
0
55.
'
123:1
124:1
164.0
154.8
2.6
2.8
0
0
55.
50.
125:3
397.5
(DIRECT
FLOW)
1
10.
126:1
149.6
2.7
0
45.
127:5
161.8
3.8
0
45.
128:1
17.6
1.3
0
40.
129:1
81.3
2.1
0
40.
130:1
150.0
1.4
0
40.
131:5
52.6
2.9
0
40.
132:3
133:3
20.9
20.9
(DIRECT
(DIRECT
FLOW)
FLOW)
1
1
15.
15.
J
134:3
.0
(DIRECT
FLOW)
0
0.
135:4
147.6
.7
0
40.
151:4
26.8
.7
0
40.
152:4
24.4
.6
0
40.
153:4
29.3
.7
0
40.
154:4
33.4
.7
0
40.
155:4
47.6
.8
0
40.
156:3
85.7
(DIRECT
FLOW)
0
40,
160:1
79.5
1.7
2
5.
161:1
83.2
1.1
2
5.
17 0: 5
2.2
.5
1
40.
171:5
14.8
1.6
1
25.
173:
174:1
61.
1.5
2.
.11
0
1
4,
455.
175:5
50.5
2.7
0
45.
177:5
100.9
3.1
0
40.
178:5
328.2
5.6
0
40.
1:5
74.
3.
0
4.
18080:5
16.4
1.8
0
455.
181:5
210.9
3.3
0
50.
187:5
44.9
1.6
0
35.
189:5
41.5
1.1
0
40.
200:5
48.1
2.9
1
25.
201:4
1347.5
3.8
1
30.
202:4
99.6
1.6
0
45.
203:1
68.9
1.0
1
25.
205:4
1296.5
5.9
3
15.
206:4
1286.5
5.8
3
10.
�i
207:1
6.6
.4
2
0.
208:2
6.6
.1
2.1:D
1
50.
209:4
1277.4
4.6
3
10.
210:5
110.2
2.3
0
50.
211:1
116.6
.2
0
45.
r�
I
G
212:4
1276.2
4.2
3
5.
213:4
1273.9
4.2
3
S.
21:5
4.3
1.
1
.
215:5
99.4
1.1
1
15
15.
216:4
1256.4
5.5
3
0.
217:5
103.2
2.3
0
45.
218:4
1253.0
5.5
3
0.
219:1
383.3
2.8
1
15.
221:5
202.3
2.9
0
40.
226:4
1302.1
5.8
2
5.
227:1
1359.6
2.4
1
45.
226:1
1021.0
3.1
1
45.
229:1
1014.8
3.4
1
40.
230:4
1011.1
5.7
1
40.
231:4
992.8
4.5
1
35.
232:4
924.5
5.9
1
35.
233:2
118.4
2.3
0
40.
234:4
908.4
3.8
1
30.
235:4
797.4
5.8
1
35.
236:4
865.0
4.0
1
15.
237:4
566.2
3.0
1
0.
23:4
.
2.
0
55.
239:9
363
363.0
2.4
0
55.
�
240:1
33.8
.9
0
55.
2 4 1 : 4
353.8
2.3
0
45.
-
242:4
308.6
1.9
0
40.
24 3: 4
185.3
1.6
0
40.
2 4 4 : 1
92.1
1.7
0
45.
245:1
73.8
1.4
0
40.
260:3
83.7
(DIRECT
FLOW)
2
5.
271:3
15.0
(DIRECT
FLOW)
1
10.
272:3
15.0
(DIRECT
FLOW)
1
10.
273:3
.0
(DIRECT
FLOW)
0
0.
�+
274:3
34.5
(DIRECT
FLOW)
0
55.
275:3
34.5
(DIRECT
FLOW)
0
55.
276:3
.0
(DIRECT
FLOW)
0
0.
277:3
103.7
(DIRECT
FLOW)
0
40.
282:2
34.5
.0
1.1:D
0
55.
287:2
5.7
.1
5.2:D
2
0.
28:2
.4
.1
1.7:D
2
5.
289:2
2
2.3
.1
2.3:D
2
0.
295:3
23.9
(DIRECT
FLOW)
0
40.
296:3
17.1
(DIRECT
FLOW)
0
45.
297:3
46.0
(DIRECT
FLOW)
0
35.
296:3
119.0
(DIRECT
FLOW)
0
40.
299:3
57.0
(DIRECT
FLOW)
0
35.
300:3
1347.5
(DIRECT
FLOW)
1
30.
301:4
1277.2
4.5
3
40.
302:2
1268.8
.1
11.2:D
3
40.
303:2
1252.9
.1
63.4:D
3
0.
304:2
761.8
.1
11.6:D
1
30.
317:3
10.1
(DIRECT
FLOW)
0
40.
318:2
7.5
.1
2.2:D
1
35.
319:3
392.1
(DIRECT
FLOW)
1
15.
321:3
1253.9
(DIRECT
FLOW)
3
0.
325:1
364.5
3.4
1
25.
327:3
1382.3
(DIRECT
FLOW)
1
40.
328:3
1023.6
(DIRECT
FLOW)
1
45.
330:3
332:3
1023.5
993.5
(DIRECT
(DIRECT
FLOW)
FLOW)
1
1
40.
30.
333:2
4.6
.1
1.7:D
1
25.
334:2
3.9
.1
1.6:D
1
25.
335:3
923.9
(DIRECT
FLOW)
1
25.
336:2
337:3
4.4
116.5
.1
(DIRECT
3.6:D
FLOW)
2
0
5.
40.
338:2
20.9
.1
3.1:D
1
15.
340:2
4.5
.1
17.6:D
4
10.
349:2
6.0
.1
3.5:D
2
5.
355:3
100.0
(DIRECT
FLOW)
0
40.
356:3
35.3
(DIRECT
FLOW)
0
40.
357:2
17.8
.1
3.9:D
2
5.
358:2
28.3
.1
2.8:D
1
5.
360:2
5.6
.1
.9:D
1
15.
-
361:2
.3
.1
.2:D
1
45.
i`
r�l
SPRING CREEK MASTER
PLAN MODEL UPDATED UPSTREAM OF
COLLEGE AVE. FILE:SCFD-10
10-YR
DEVELOPED CONDITION - FE13RUARY
1998 LIDSTONE 6 ANDERSON PROJ:COFC97.07
*** PEAK
FLOWS, STAGES
AND STORAGES OF GUTTERS AND
DETENTION DAMS ***
`
**NOTE
:S IMPLIES
A SURCHARGED ELEMENT AND
:D IMPLIES
A SURCHARGED DETENTION FACILITY
CONVEYANCE PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE (CFS)
(FT)
(AC -FT)
(HR/MIN)
'
50:2
149.5
.0
22.9:D
1
50.
51:2
201.7
.0
6.2:D
1
0.
101:4
266.4
2.6
1
0.
102:5
46.5
2.4
0
40.
103:2
23.7
.1
8.7:D
1
45.
104:5
194.6
4.9
0
45.
105:5
63.7
2.7
0
40.
106:5
124.3
3.9
0
40.
107:5
48.7
2.5
0
40.
108:2
8.9
.1
3.6:D
1
40.
109:2
1.4
.1
.4:D
1
25.
110:5
40.6
2.5
0
40.
111:4
204.9
4.9
0
40.
112:3
31.9
(DIRECT
FLOW)
0
40.
113:3
18.6
(DIRECT
FLOW)
0
40.
114:1
84.9
2.3
0
40.
118:1
280.1
2.6
1
0.
119:1
271.8
2.9
0
55.
120:1
123:1
255.4
212.4
2.6
2:9
0
0
55.
55.
124:1
201.9
3.1
0
50.
125:3
397.5
(DIRECT
FLOW)
1
10.
126:1
198.7
3.1
0
45.
127:5
211.4
3.9
0
45.
128:1
24.0
1.5
0
40.
129:1
108.1
2.4
0
40.
130:1
203.0
1.7
0
40.
132:3
132:3
22.6
22.6
(DIRECT
(DI
FLOW)
0
1
20.
20.
133:3
22.6
(DIRECT
FLOW)
1
20.
134:3
.0
(DIRECT
FLOW)
0
0.
135:4
204.0
.8
0
40.
15:
3.
.8
0
40.
152:4
34.6
.7
0
90.
153:4
41.5
.8
0
40.
154:4
43.1
.7
0
35.
155:4
63.2
.9
0
40.
156:3
116.6
(DIRECT
FLOW)
0
40.
160:1
147.3
2.4
1
55.
161:1
153.0
1.5
2
0.
170:5
2.4
.5
1
40.
17:5
173:5
..
79
79.8
2.4
1
0
40.
90.
174:1
1.9
.2
1
40.
175:5
68.3
2.8
0
45.
177:5
108.3
3.6
0
40.
178:5
412.3
5.8
0
40.
�i
17 9: 5
93.9
3.2
0
40.
180:5
18.9
1.8
0
45.
181:5
221.9
3.4
1
0.
187:5
55.2
1.9
0
35.
189:5
52.7
1.3
0
40.
200:5
65.7
3.2
1
15.
201:4
1595.6
4.1
1
25.
202:4
133.7
1.9
0
45.
203:1
205:4
93.1
1490.4
1.1
6.2
1
3
20.
15.
�
206:4
1476.0
6.1
3
10.
207:1
8.6
.4
2
0.
208:2
8.6
.1
2.7:D
1
50.
209:4
1463.5
4.8
3
10.
210:5
150.4
2.3
0
45.
211:1
156.2
.2
0
45.
212:4
1461.2
4.5
3
5.
213:
19..
3
5.
214:5
6565.8
1.2
1
15.
215:5
67.2
1.1
1
10.
,
216:4
1437.1
5.8
3
0.
217:5
133.7
2.3
0
45.
C
216:4
1433.3
5.7
3
0.
219:1
424.4
2.9
1
10.
i
221:5
240.7
3.6
0
40.
226:4
1597.2
6.0
1
55.
227:1
1679.6
2.7
1
35.
228:1
1301.1
3.6
1
35.
229:1
1293.6
3.9
1
30.
230:4
1282.6
6.2
1
30.
231:4
1253.0
4.9
1
25.
232:4
1139.7
6.3
1
30.
233:2
143.9
2.6
0
40.
234:4
1114.3
4.0
1
25.
235:4
970.0
6.3
1
35.
236:4
1138.7
4.4
1
10.
23:4
.
3.
1
0.
238:9
793.9
743
3.4
0
55.
239:4
551.6
2.9
0
50.
240:1
53.7
1.2
0
55.
'
241:4
527.8
2.7
0
45.
242:4
456.1
2.3
0
40.
243:4
282.3
1.9
0
40.
2 4 4 : 1
123.9
1.9
0
40.
245:1
99.1
1.5
0
40.
260:3
154.0
(DIRECT
FLOW)
1
55.
271:3
17.0
(DIRECT
FLOW)
1
15.
i
272:3
17.0
(DIRECT
FLOW)
1
15.
273:3
.0
(DIRECT
FLOW)
0
0.
274:3
35.4
(DIRECT
FLOW)
1
0.
275:3
35.4
(DIRECT
FLOW)
1
0.
276:3
.0
(DIRECT
FLOW)
0
0.
277:3
134.4
(DIRECT
FLOW)
0
40.
i
282.2
35.4
.0
1.8:D
1
0.
287:2
6.9
.1
6.3:D
1
45.
288:2
1.6
.1
2.1:D
2
0.
289:2
2.8
.1
2.7:D
1
50.
295:3
23.9
(DIRECT
FLOW)
0
40.
296:3
17.1
(DIRECT
FLOW)
0
45.
297:3
46.0
(DIRECT
FLOW)
0
35.
298:3
119.0
(DIRECT
FLOW)
0
40.
299:3
57.0
(DIRECT
FLOW)
0
35.
300:3
1595.6
(DIRECT
FLOW)
1
25.
301:4
1456.0
4.8
3
45.
302:2
1446.6
.1
19.7:D
3
45.
303:2
1433.4
.1
92.3:D
3
0.
304:2
933.3
.1
19.2:D
1
30.
317:3
10.1
(DIRECT
FLOW)
0
40.
318:2
9.9
.1
3.O:D
1
30.
319:3
437.7
(DIRECT
FLOW)
1
10.
321:3
1434.2
(DIRECT
FLOW)
3
0.
325:1
364.7
3.4
1
25.
327:3
1710.5
(DIRECT
FLOW)
1
35.
328:3
1304.5
(DIRECT
FLOW)
1
35.
330:3
1306.7
(DIRECT
FLOW)
1
30.
332:3
1255.2
(DIRECT
FLOW)
1
25.
333:2
5.6
.1
2.2:D
1
20.
334:2
4.9
.1
2.O:D
1
20.
335:3
336:2
1138.9
27.2
(DIRECT
.1
FLOW)
4.O:D
1
1
15.
10.
337:3
150.8
(DIRECT
FLOW)
0
40.
338:2
22.6
.1
4.5:D
1
20.
340:2
9.4
.1
25.7:D
3
45.
34 9: 2
7.5
.1
4.7:D
2
0.
355:3
146.0
(DIRECT
FLOW)
0
40.
356:3
45.0
(DIRECT
FLOW)
0
40.
-
357:2
25.9
.1
6.1:D
2
5.
358:2
53.3
.1
3.2.D
0
55.
360:2
6.0
.1
1.3:D
1
20:
J
i
f-= r i
SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF COLLEGE AVE. FILE:SCFD-25
25-YR DEVELOPED CONDITION - FEBRUARY 1998 LIDSTONE d ANDERSON PROJ:COFC97.07
1
*** PEAK
*** NOTE
FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS ***
:S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT)
(AC -FT)
(HR/MIN)
50:2
230.0
.0
25.2:D
2
0.
51:2
223.2
.0
9.6:D
1
10.
101:4
356.5
3.2
1
0.
102:5
62.1
2.5
0
40.
103:2
26.8
.1
12.4:D
1
50.
104:5
259.4
5.1
0
45.
105:5
87.0
2.8
0
40.
106:5
162.7
4.1
0
40.
107:5
65.7
2.6
0
40.
108:2
10.6
.1.
5.0:D
1
40.
109:2
1.9
.1
.6:D
1
30.
110:5
57.1
2.6
0
40.
111:4
265.3
5.3
0
40. ,
112:3
42.4
(DIRECT
FLOW)
0
40.
113:3
24.8
(DIRECT
FLOW)
0
40.
114:1
110.7
2.6
_
0
40.
118:1
372.6
3.0
1
0.
119:1
361.9
3.2
0
55.
12:1
.
2.
0
5.
123:1
282
282.3
3.3
0
500.
124:1
265.4
3.5
0
50.
125:3
397.5
(DIRECT
FLOW)
1
10.
126:1
262.4
3.4
0
45.
127:5
275.3
4.0
0
45.
128:1
32.5
1.6
0
40.
129:1
141.0
2.7
0
40.
130:1
273.3
2.0
0
40.
13:5
132:3
.
62.5
62
(DI (DIRECT
FLOW)
0
1
40.
0.
133:3
23.0
(DIRECT
FLOW)
0
50.
134:3
39.5
(DIRECT
FLOW)
1
0.
135:4
280.3
.9
0
40.
15:4
152:4
4.
97.5
.9
.8
0
0
0.
4 0.
153:4
53.8
.9
0
40.
154:4
56.6
.8
0
35.
155:4
83.6
1.0
0
40.
156:3
153.7
(DIRECT
FLOW)
0
40.
160:1
228.1
2.9
2
0.
161:1
236.3
1.9
2
5.
170:5
3.5
.6
1
40.
171:5
173:5
19.1
102.8
1.6
2.5
1
0
30_
40.
174:1
2.4
.2
1
40.
175:5
90.1
2.9
0
45.
177:5
138.2
3.8
0
45.
178:5
531.1
6.1
0
40.
179:5
126.3
3.4
0
40.
180:5
23.1
1.9
0
45.
181:5
244.7
3.7
1
5.
187:5
68.6
2.1
0
35.
189:5
61.2
1.4
0
40.
200:5
90.2
3.5
1
10.
201:4
1893.5
4.3
1
25.
202:4
182.0
2.1
0
45.
203:1
205:4
127*0
1775.1
1.2
6.6
1
3
15.
15.
206:4
1753.9
6.4
3
10.
207:1
11.5
.5
2
0.
208:2
11.5
.1
3.6:D
1
55.
209:4
1736.3
4.9
3
10.
210:5
213.5
2.4
0
45.
1�
211:1
214.3
.3
0
40.
212:4
1732.7
4.8
3
5.
213:4
1727.7
4.7
3
5.
214:5
90.9
1.3
1
10.
215:5
92.8
1.1
1
5.
216:4
1701.1
6.2
3
5.
'
217:5
175.0
2.4
0
45.
218:4
219:1
1696.4
477.7
6.1
3.1
3
1
0.
10.
'
221:5
289.4
4.4
0
40.
226:4
2029.7
6.3
1
50.
227:1
2116.8
3.1
1
35.
228:1
1693.8
4.2
1
30.
229:1
1678.6
4.5
1
30.
230:4
1650.2
6.8
1
25.
231:4
1606.6
5.3
1
25.
232:4
1427.6
6.7
1
30.
233:2
181.0
3.0
0
40.
234:4
1387.0
4.3
1
15.
235:4
1209.2
6.8
1
35.
236:4
1570.6
4.9
1
5.
237:4
238:4
1304.9
1148.1
4.3
4.1
0
0
55.
55.
239:4
846.1
3.5
0
50.
240:1
85.4
1.5
0
50.
2 4 1 : 4
789.3
3.2
0
45.
242:4
658.1
2.7
0
40.
243:4
428.3
2.3
0
40.
244:1
168.0
2.1
0
40.
245:1
132.6
1.7
0
40.
260:3
237.1
(DIRECT
FLOW)
2
0.
271:3
19.1
(DIRECT
FLOW)
1
20.
272:3
19.1
(DIRECT
FLOW)
1
20.
273:3
.0
(DIRECT
FLOW)
0
0.
274:3
36.3
(DIRECT
FLOW)
1
5.
275:3
36.3
(DIRECT
FLOW)
1
5.
276:3
.0
(DIRECT
FLOW)
0
0.
277:3
177.2
(DIRECT
FLOW)
0
40.
,
282:2
36.3
.0
2.8:D
1
5.
287:2
8.6
.1
7.9:D
1
45.
288:2
2.1
.1
2.6:D
2
0.
289:2
3.5
.1
3.4:D
1
50.
295:3
23.9
(DIRECT
FLOW)
0
40.
296:3
17.1
(DIRECT
FLOW)
0
45.
297:3
46.0
(DIRECT
FLOW)
0
35.
298:3
119.0
(DIRECT
FLOW)
0
40.
299:3
57.0
(DIRECT
FLOW)
0
35.
300:3
1893.5
(DIRECT
FLOW)
1
25.
301:4
1716.9
5.2
3
55.
302:2
1706.5
.1
37.4:D
3
55.
303:2
1696.6
.1
136.4:D
3
0.
304:2
1163.8
.1
33.2:D
1
35.
317:3
10.1
(DIRECT
FLOW)
0
40.
318:2
13.3
.1
4.O:D
1
30.
319:3
495.7
(DIRECT
FLOW)
1
5.
321:3
1697.3
(DIRECT
FLOW)
3
0.
325:1
365.2
3.4
1
25.
327:3
2165.7
(DIRECT
FLOW)
1
30.
328:3
1700.3
(DIRECT
FLOW)
1
30.
330:3
1698.5
(DIRECT
FLOW)
1
30.
332:3
1609.6
(DIRECT
FLOW)
1
20.
333:2
5.8
.1
2.8:D
1
30.
334:2
5.2
.1
2.7:D
1
30.
335:3
1424.6
(DIRECT
FLOW)
1
15.
336:2
65.8
.1
4.3:D
0
55.
337:3
200.3
(DIRECT
FLOW)
0
40.
338:2
62.5
.1
5.5:D
1
0.
340:2
18.9
.1
36.1:D
3
15.
349:2
12.9
.1
6.2:D
1
45.
,
355:3
237.7
(DIRECT
FLOW)
0
40.
356:3
59.0
(DIRECT
FLOW)
0
40.
'
357:2
67.7
.1
7.3:D
1
30.
358:2
94.7
.1
3.6:D
0
50.
360:2
6.5
.1
1.8:D
1
30.
SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF
COLLEGE AVE. FILE:SCFD-50
50-YR DEVELOPED CONDITION - FEBRUARY
1998 LIDSTONE S ANDERSON PROJ:COFC97.07
***
*** PEAK FLOWS, STAGES AND STORAGES
OF GUTTERS
AND
DETENTION DAMS
*** NOTE :S IMPLIES A
SURCHARGED ELEMENT
AND
:D IMPLIES
A SURCHARGED DETENTION FACILITY
�(
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT)
(AC -FT)
(HR/MIN)
50:2
264.4
.0
26.2:D
1
55.
51:2
246.9
.0
13.5:D
1
10.
101:4
445.0
3.8
1
0.
102:5
78.1
2.6
0
40.
103:2
29.6
.1
15.6:D
1
55.
104:5
325.9
5.2
0
45.
105:5
110.1
2.9
0
40.
`
106:5
201.7
4.2
0
40.
107:5
81.1
2.7
0
40.
101:2
40.5
.1
5.6:D
1
10,
109:2
2.3
.1
.7:D
1
25.
110:5
69.6
2.7
0
40.
111:4
322.1
5.5
0
40.
112:3
51.7
(DIRECT
FLOW)
0
40.
113:3
30.2
(DIRECT
FLOW)
0
40.
114:1
134.4
2.8
0
40.
118:1
462.8
3.3
1
0.
119:1
453.5
3.6
0
55.
120:1
429.1
3.2
0
55.
12:1
3.3
3.
0
50.
(
124:1
33131.6
3.88
0
50.
125:3
397.5
(DIRECT
FLOW)
1
10.
126:1
328.4
3.8
0
45.
127:5
344.5
4.1
0
45.
128:1
41.0
1.8
0
40.
129:1
172.8
2.9
0
40.
130:1
338.9
2.2
0
40.
131:5
107.9
3.2
0
40.
132:3
136.2
(DIRECT
FLOW)
0
50.
133:3
23.0
(DIRECT
FLOW)
0
45.
134:3
113.2
(DIRECT
FLOW)
0
50.
135:4
355.9
1.0
0
40.
151:4
60.3
.9
0
40.
152:4
59.6
.9
0
40.
153:4
67.9
.9
0
40.
154:4
71.1
.8
0
35.
155:4
102.1
1.1
0
40.
156:3
189.5
(DIRECT
FLOW)
0
40.
160:1
263.6
3.1
2
0.
161:1
274.2
2.1
2
0.
170:5
5.6
.8
1
25.
171:5
20.6
1.6
1
20.
17 3: 5
122.9
2.6
0
40.
174:1
2.9
.2
1
35.
175:5
109.0
3.0
0
45.
177:5
172.1
3.9
0
95.
178:5
651.1
6.3
0
40.
179:5
160.1
3.5
0
40.
180:5
27.6
1.9
0
40.
181:5
270.3
4.1
1
10.
187:5
81.8
2.4
0
35.
189:5
71.2
1.6
0
40.
200:5
119.4
3.8
1
5.
201:4
2146.2
4.5
1
20.
202:4
229.0
2.4
0
45.
203:1
162.1
1.3
1
10.
205:4
2039.0
6.9
1
0.
206:4
1936.6
6.6
3
15.
207:1
14.1
.6
2
0•
208:2
14.1
.1
4.4:D
1
55.
209:4
1916.4
5.0
3
15.
210:5
275.3
2.5
0
45.
211:1
276.0
.3
0
40.
i
Ah,4
212:4
1912.3
5.1
3
10.
213:4
1906.5
4.9
3
10.
214:5
117,7
1.4
1
5.
215:5
120.5
1.1
1
0.
216:4
1877.0
6.5
3
10.
217:5
221.5
2.5
0
40.
218:4
1872.3
6.3
3
5.
219:1
532.5
3.3
1
5.
221:5
337,7
4.5
0
40.
226:4
2414.7
6.5
1
45.
227:1
2518.3
3.5
1
30.
228:1
2048.2
4.7
1
25.
229:1
2036.1
5.0
1
25.
230:4
2001.5
7.3
1
25.
231:4
1950.2
5.7
1
20.
232:4
1693.7
7.0
1
20.
233:2
207.9
3.3
0
40.
234:4
1654.4
4.5
1
15.
235:4
1404.5
7,1
1
35.
236:4
2064.9
5.3
1
0.
237:4
1805.7
4.9
0
55.
238:4
1575.8
4.6
0
50.
239:4
1165.2
4.0
0
50.
240:1
120.1
1.7
0
50.
241:4
1067.5
3.6
0
45.
242:4
879.8
3.0
0
40.
243:4
571.0
2.6
0
40.
244:1
212.8
2.3
0
40.
245:1
165.3
1.8
0
40.
260:3
274.9
(DIRECT
FLOW)
2
0.
271:3
28.6
(DIRECT
FLOW)
1
10.
272:3
20.7
(DIRECT
FLOW)
1
10.
273:3
7,9
(DIRECT
FLOW)
1
10.
274:3
40.4
(DIRECT
FLOW)
1
5.
275:3
36.8
(DIRECT
FLOW)
1
5.
276:3
3.6
(DIRECT
FLOW)
1
5.
277:3
219.0
(DIRECT
FLOW)
0
40.
282:2
40.4
.0
3.9:D
1
5.
287:2
10.0
.1
9.2:D
1
50.
288:2
2.4
.1
3.1:D
1
55.
289:2
4.0
.1
4.O:D
1
50.
295:3
23.9
(DIRECT
FLOW)
0
40.
296:3
17.1
(DIRECT
FLOW)
0
45.
297:3
46.0
(DIRECT
FLOW)
0
35.
298:3
119.0
(DIRECT
FLOW)
0
40.
299:3
57.0
(DIRECT
FLOW)
0
35.
300:3
2146.2
(DIRECT
FLOW)
1
20.
301:4
1973.1
5.6
3
30.
302:2
1957.8
.1
46.7:D
3
30.
303:2
1872.5
.1
180.2:D
3
5.
304:2
1361.3
.1
50.4:D
1
35.
317:3
10.1
(DIRECT
FLOW)
0
40.
318:2
16.4
.1
4.9:D
1
25.
319:3
552.7
(DIRECT
FLOW)
1
0.
321:3
1873.1
(DIRECT
FLOW)
3
5.
325:1
365.6
3.4
1
25.
327:3
2569.6
(DIRECT
FLOW)
1
25.
328:3
2054.7
(DIRECT
FLOW)
1
25.
330:3
2056.9
(DIRECT
FLOW)
1
25.
332:3
1953.4
(DIRECT
FLOW)
1
15.
333:2
6.0
.1
3.4:D
1
25.
334:2
5.5
.1
3.3:D
1
25.
335:3
1700.7
(DIRECT
FLOW)
1
10.
336:2
112.3
.1
4.5:D
0
50.
337:3
244.4
(DIRECT
FLOW)
0
40,
338:2
136.2
.1
5.8:D
0
50.
34 0: 2
30.8
.1
45. 3:D
2
55.
349:2
25.7
.1
7.1:D
1
25.
355:3
333.1
(DIRECT
FLOW)
0
40.
356:3
71.4
(DIRECT
FLOW)
0
40.
357:2
111.6
.1
8.1:D
1
15.
358:2
141.5
.1
4.O:D
0
45.
360:2
9.2
.1
2.2:D
1
20.
361:2
.5
.1
.5:D
1
50..
SPRING CREEK MASTER PLAN MODEL UPDATED UPSTREAM OF
COLLEGE AVE. FILE:SCFD-100
100-YR
DEVELOPED
CONDITION - FEBRUARY
1998 LIDSTONE 6 ANDERSON PROJ:COFC97.07
*** PEAK
FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS ***
*** NOTE
:S IMPLIES A SURCHARGED ELEMENT AND
:D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT)
(AC -FT)
(HR/MIN)
50:2
51:2
304.3
348.0
.0
.0
27.3:D
17.1:D
1
1
95.
5.
101:4
541.0
4.3
1
0.
102:5
96.9
2.7
0
40.
103:2
36.8
.1
18.6:D
1
50.
104:5
399.1
5.4
0
45.
105:5
136.5
2.9
0
40.
106:5
248.4
4.4
0
40.
107:5
98.5
2.8
0
40.
108:2
108.6
.1
5.7:D
0
55.
109:2
2.7
.1
.8:D
1
20.
110:5
86.0
2.8
0
40.
111:4
384.3
5.8
0
40.
112:3
62.3
(DIRECT
FLOW)
0
40.
113:3
36.4
(DIRECT
FLOW)
0
40.
114:1
160.1
3.0
0
40.
118:1
562.7
3.6
1
0.
119:1
552.6
3.9
0
55.
120:1
527.0
3.4
0
55.
123:1
441.0
4.0
0
55.
124:1
398.3
4.1
0
50.
125:3
397.5
(DIRECT
FLOW)
1
10.
126:1
393.2
4.0
0
45.
127:5
403.3
4.2
0
45.
i
128:1
50.6
2.0
0
40.
129:1
206.9
3.1
0
40.
130:1
411.3
2.5
0
40.
131:5
127.8
3.3
0
40.
132:3
206.7
(DIRECT
FLOW)
0
45.
133:3
23.0
(DIRECT
FLOW)
0
40.
134:3
183.7
(DIRECT
FLOW)
0
45.
--
135:4
457.7
1.2
0
40.
151:4
74.3
1.0
0
35.
15:.2
.9
0
40.
153:4
8383.7
1.0
0
90.
154:4
78.8
.9
0
35.
155:4
118.8
1.1
0
40.
156:3
225.8
(DIRECT
FLOW)
0
40.
160:1
303.4
3.4
1
50.
161:1
318.3
2.2
1
50.
17 0: 5
11.9
1.5
1
5.
v
171:5
21.0
1.6
1
15.
173:5
144.1
2.6
0
40.
174:1
3.4
.2
1
30.
175:5
129.0
3.0
0
55.
177:5
210.5
4.1
0
45.
178:5
791.1
6.6
0
40..
179:5
197.1
3.6
0
40.
180:5
33.1
2.0
0
40.
181:5
340.7
5.3
1
10.
187:5
92.5
2.6
0
35.
189:5
85.4
1.7
0
40.
200:5
147.9
4.0
1
5.
201:4
2397.3
4.7
1
20.
202:4
277.6
2.6
0
45.
203:1
198.3
1.5
1
10.
205:4
206:4
2395.1
2231.0
7.3
7.0
1
0
0.
55.
207:1
21.4
.7
1
40.
208:2
22.1
.1
5.1:D
1
35.
209:4
2089.8
5.1
3
15.
210:5
341.1
2.6
0
45.
211:1
347.0
.4
0
40.
i
H �L
212:4
2084.9
5.3
3
15.
213:4
2078.6
5.1
3
10.
21:5
14.
1.
1
5.
215:5
148.4
1.2
1
0.
216:4
2046.2
6.7
3
10.
217:5
273.9
2.5
0
40.
218:4
2041.2
6.5
3
10.
219:1
594.1
3.5
1
0.
221:5
388.7
4.6
0
40.
226:4
2779.4
6.7
1
40.
227:1
2905.5
3.8
1
25.
226:1
2386.4
5.1
1
25.
229:1
2368.4
5.4
1
20.�
230:4
2334.1
7.7
1
20.
231:4
2266.3
6.0
1
15.
232:9
1943.8
7.2
1
20.
233:2
293.4
3.7
0
35.
239:9
1895.8
9.7
1
15.
235:4
1561.5
7.3
1
35.
236:4
2606.8
5.7
1
0.
237:4
2332.4
5.4
0
55.
238:4
2018.2
5.1
0
50.
239:4
1490.2
4.4
0
50.
240:1
155.4
1.9
0
50.
241:4
1360.4
4.0
0
45.
242:4
1124.7
3.3
0
40.
243:4
703.0
2.9
0
40.
244:1
263.9
2.5
0
40.
245:1
202.2
2.0
0
40.
260:3
319.1
(DIRECT
FLOW)
1
50.
271:3
57.7
(DIRECT
FLOW)
1
0.
i
272:3
21.3
(DIRECT
FLOW)
1
0.
273:3
36.4
(DIRECT
FLOW)
1
0.
274:3
55.9
(DIRECT
FLOW)
1
0.
275:3
37.1
(DIRECT
FLOW)
1
0.
276:3
18.7
(DIRECT
FLOW)
1
0.
277:3
268.5
(DIRECT
FLOW)
0
40.
282:2
55.9
.0
4.6:D
1
0.
287:2
11.3
.1
10.4:D
1
50.
288:2
2.7
.1
3.5:D
1
55.
289:2
4.5
.1
4.5:D
1
50.
295:3
23.9
(DIRECT
FLOW)
0
40.
296:3
17.1
(DIRECT
FLOW)
0
45.
297:3
46.0
(DIRECT
FLOW)
0
35.
298:3
299:3
119.0
57.0
(DIRECT
(DIRECT
FLOW)
FLOW)
0
0
40.
35.
300:3
2397.3
(DIRECT
FLOW)
1
20.
301:4
2160.0
5.8
3
25.
302:2
2142.3
.1
48.6:D
3
25.
303:2
2041.1
.1
222.3:D
3
10.
304:2
1517.5
.1
69.8:D
1
35.
317:3
10.1
(DIRECT
FLOW)
0
40.
318:2
19.3
.1
5.8:D
1
25.
319:3
623.7
(DIRECT
FLOW)
1
0.
321:3
2041.9
(DIRECT
FLOW)
3
10.
325:1
366.0
3.4
1
25.
'
327:3
2967.2
(DIRECT
FLOW)
1
25.
328:3
2393.0
(DIRECT
FLOW)
1
25.
330:3
332:3
2394.5
2270.6
(DIRECT
(DIRECT
FLOW)
FLOW)
1
1
20.
15.
333:2
6.1
.1
3.9:D
1
20.
334:2
5.7
.1
3.8:D
1
20.
335:3
1949.8
(DIRECT
FLOW)
1
10.
336:2
163.2
.1
4.6:D
0
45.
337:3
294.1
(DIRECT
FLOW)
0
40.
338:2
206.7
.1
6.O:D
0
45.
340:2
44.5
.1
53.9:D
2
35.
349:2
44.0
.1
7.8:D
1
10.
355:3
438.6
(DIRECT
FLOW)
0
40.
356:3
85.4
(DIRECT
FLOW)
0
40.
357:2
156.7
.1
8.9:D
1
10.
358:2
188.7
.1
4.3:D
0
40.
360:2
14.1
.1
2.5:D
1
10.
361:2
.5
.1
.6:D
1
50.-
No Text
\1
G... ,i..c To .�E TB�r-+,.Jc GvV rc` B C �f /�-„�,2.��►.�
CE
Z
5�a_9
I c�
144G, 8
dq
Ia0
Z14Z.�
4�i 1!_.1;�
'�!`ir/i•�
S.ao
tLoo. 0
4ylfi.3li
P�ZZ. �>
GREENHORNE & O'MARA, INC. ENGINEERS • ARCHITECTS • PLANNERS SURVEYORS
BY__dt_I/!ti! ------- DATE LZ '3_1—Y_ SUBJECT--- 5O &A--- -------------
_ _ SHEET NO.__j_____OF__
J CHKO. BY ------DATE-------- ----------------------------------- JOB NO.--- --------
.ZEV. BY --------- DATE -------- ------- C+!��^t C. �ZfIiYG�------------- FILE NO. 4�7.�i-ol7J--MS-3
STAGE - STo�2A�GE Fv2 t��apoSED r ��e�o�
Zx)
5-rAc,E
[Fr
l , I
s,
f _
q,
►l,
-- 13 , 1
EiF\)
6z.9
keZA
luz
d
kaA
(t4c
o
Ami-w
kTek(.AQ
-u�sr
Carl
von
-ttl
Ate. ,30L-
CK-c.-T-T1
I�
0,-b3
0,03
D . 03
O 4-
0, Lo
o.IZ
Z
D.Z4
0 ,z7
o,4-Z
'b4
llil
08
z
0, �4-
D. 92,
Z
1 .84
Z, 95
I o
S.ZZ
1,Za
I , So
Z
3, �D
61 ,SS
I L
I q�-
Io,45
3(o,34
85.31
Z14a
� � . S$
5,3a
2
10.76
17,3/
2Z,4-8
I
2
44,qlo
qo,z�
S T�
e-),ev. s .
No Text
GREENHORNE & OWARA, INC. SURVEYORS PHOTOGRAMMETRISTS
/-i 2-1
�. BY DATE _\ 2-1_�L SUBJECT GZS------ SHEET NO. -_ _-. OF-3 ---_
CHKD. BY _-----_ DATE ----------- ------------ ----------------- --------- ---- --- ------ -----. JOB NO- -------------- ------------
ZG-000• Cts _ _
- - FILE NO.
REV_ BY _� --r DATE ---- --------- ------- ----------------- ---------_- ----- - - - - ---- - - ---- ---
_. ------ ---- -
- ------ -
- - ------- --- -- -- - - -- -- - -
--------=----------=---=- = -- = = --`-------;-------------- - ------------------- ----
ir
G+ s 22 --
1 --- - --- --- ------ --------------- - --
`
- ------
-------- - - -
------
-- ---- ----
-- - ------ ---= -- - - - - - - - -- - - -
- - - - -
I _ - -
,
•�--- r -
t
aIIF ------�--- ---- - - -- - -----------
- - -
-
---�---------------- - - y _ '
_ � 3/ _ L -
- -
-----------
GL
- -
- - --'
- - - - ---------- --- ---- - --
_ _
- -
L
- -i -------'----J-"-----
-- - --- i
-
-_- - ------- - -- --
--------- - - --- - - --
1 : ------ ---- - ---
- -- - -
- _ -40-
- — - -
,
ILL-. ✓ _. :_T_'_'t :f_C, _ ,-- --- -- - - - -- --- ---- r i
1 . , , ------ --- ---- --- ---'
--' --
' ___
_-___ ___ _ _ __ ___ ___ _______ ___ ___ ___ _______ __y_
_________________
1
,
r
, 1 1
r ;
I ,
____ __ _ _ __
. 1 r _ _
_ _ _ ______ ___ ___ , 1 1
_ r • 1 1 • 1 ; r t t ' _ ___ ___ __ _
__ __ ______ __
1 , I
L L L a _3
t _ _
_ _ _ ___ __'
1 • 1 __ _____
_-_ �__-1--- i--- ;_ r r - - i • • t-_- L_
1 '
..___-__ L___l
r ,
1 y
r , , r
_ t
7 1
,
r
- - - .
.
.
______ __--_"__- ._-•--------.-------- __-.....--- -. __-__.- - _
r
, I
r
:
,__ _ ._.-_..
--------_ _- ___ _
1
%-AEG -L /✓la��t_ CG- /Z-•tear1LL
1�`Tw��� �cUi-ro•�1 � 3ov r.„J� .�00
0
� Imo. rS
i
I T
o!
3.S
id �-jo 400 - 5vo
Sl1
2.>4
�' r� ' �a./g
(/r3_33XD./5;
Qn Z.S `�� Sry 1( p io 5/Z
o .r�•. f crf Z = 12.Oj cr•J
��
h
/
jL
1�
_
'Ta Tit:- _ /O. r'1 Gr=f a /L•rS- IL.O-/Sr
S�GrJ O �j Oc.7 � �00
z.b I
= '�S�o.iL' = loj.Ye 11'� /r..31--/G�.o = o•3L
Q Z.41 47.3�
Ll. c� �r l Z = �rc•-1 cruet
'Ll
�? a Gbh L G = Z•74
�= SI /o.lo' _ Grp h� /4.c�-/S, �i = o.rtp
�
b = Z.��F (�+��(o.ro, =
4'• (ors � L r � 2.�j c.F1
S/
-
5/Z
ffI
rf Zj-
��c f � F •�
/-' �--- v�l f 1-�+'�
/'� C G - Z
/✓l o OE �- C!i- /1+� ! L-
iov Y.'i
Q� a 'ySV.
z z. 3 f
i
4Sv
C7 =
PILL, '� - I•P� c
PiLo.7 u-f
(v-c �� 7 5.4441 b'js
w
1 n
d �(
h1
VI�
4Lvr 4 -na-+a
o'Zo£ r of s
�'OiZI r1t
o7•11 = ' a
o �
J
r77� vrj
t �
�'�ly-eI v_LS
11
o as o , .s•�.r
I
j
1
J. r•o�r „i�M
-�
fir'^''�Qw'J- �
5'z o4• v1.S
Q
- vow _
��,�gr = •n3-,�
A
��•OQZ� t+•1s
1(r�
J�
S
a o''y �J Tr a•1g
55 -zr c •n�=
z�
S
lv �
I-
1�1
-
-
�
r i
�.-ter = •n�,�
'
N
s
Cre Or
u
Sia'Z• � 'n��
1r�dS tr Zl
oo C9oi do+s
i
�8
r
-STsa I +ca 8 = I V. v
— snb loZ$ n l3.1
sl + I + o X. / S. 3
S r+c i�"10 � Iz.yo
Sro /IQ-� = lt.oa
STo. ,i4,5 = ,Z.GS
-< ,. , io q = 12-.L4.
srA ,2i3 = 14. 0`1
= CoA
lC u�
"P Z h-!
-STsa I +ca 8 = I V. v
— snb loZ$ n l3.1
sl + I + o X. / S. 3
S r+c i�"10 � Iz.yo
Sro /IQ-� = lt.oa
STo. ,i4,5 = ,Z.GS
-< ,. , io q = 12-.L4.
srA ,2i3 = 14. 0`1
= CoA
lC u�
"P Z h-!
l
`�j '-C 1 e •Il ��'
7
2
a•Zl _ •�a-,�
-
�
y •j/ � TzC/ .us
if
; u
yes
P•i col --••'y5 - --
m
d•
a
o
"
C"�o'Lr bLas
S Z
w
0o•Lo I / t'•1$
0 u
J
t
Al��-
• \` aL•4/ v ^11� CZrHdS Z�L/�
Y 1
t � U
J? Jr
h� �rE64-
�
s ri r-rs �zr 3
eo •Ooc./ �.rjs
4 J
t
1�
V
-E$„ d1s
p
IU
9
�
�
U
a ' L+s O, i'1 S
o'Gror v1�
e
c+Z • b, � a 4 6 r r bJ.s'
Q
i
-
Ju!
1�
H sd►
c`•-oLi
Irv.-,-da4'�-�•�1 �j =
49'-bl c 'ns-+a
t+ • 6 Z , ' �r1g
-
,oy
�a
�J
a
OP 'l�Op/ �•JS
e •s-r e, .�� s
o•eZ e� 1S
O 'O Oor �r1S
Q-gZ,re/ tr15
1
0
r
-7
iU
Q
Q
v
N
sd • c, = n�-� �U
ea
v 0•n
a
r
N.
rtry
m »
N
H
Y n
n rt r
'O
N
'O
y
�
Y fY
1 Y N
Y 4
r
t
^n
P.
» o
»
z
r
0
to
O
Y a
0
o
N
»
»
f0
Z
i »
M
C
ap
+ 3
[n9 i cn
In
O N•
r
O
» r
'ro r a
a
a
r
Y
m »
»
N »
'O
0
»
Y
a
a
Y
»
o n
a
»
»
a
»
Y
Y
»
(
m
»
»
»
»
fD
m
+
k
n
(D
O
M
O
r
r
O
E
F•-
.7
m
4
ro
n
0
0
0
n
a
H
z
N
z
C
z
m
x
m
n
H
m
O
r
N
4
z
z
0
r
O b
N
rn m
a
N
r
r
i
ZzN
r-4 33
N
W
r,
W •-i N N
O •--I m
m
O o m
v t
N m
4
CV
rl •-I l0
O
W
•-i .-I
m
U
•-I
o
Q
a
O
d
E
m
m u1N
io
O •--I m
O
a
m
E
o
W
N
M
O
m
• N l�
m
$
m N
d
m
.�
M
N
m
z
O
U
V I O m 0 l0
m
O
.-•
M O m
m
>
>
a
I
o oo�o
0
m
V)
•-i
a
a
�o
•-I
.-I
U
m
O
W
z
m
In ❑❑ O ei
m
a
W
m N m
m
O
�Q[
•--I '-I •-1 N
•-�1
N
�
K
N •--I
.•I
•-I
I
m
W
S
N
N
N
a
I
W
O
O
E.
m
m
x
•+
•+
•+
.+
m m m o o
m
O
O
O
01
ry O m m
N
O
v
r
-fl
M r-i ri ••I
m to
to
O
W
•
O
O
Ory
i
'p ONi
i
'O ON
'O ONi
>
H
fm'1
N
'O •-1
C
C N
C • .-1
a
O
U
O
C N �O
�O N
N N M
Itl N Vf
W
I -a
W
O
O
N •-I
N
sT
N
❑
m
E
•--I
O
O •--1
O •--1
U
1-I
X
Z
O
O
O
O
M
M
N rl •-I
.•I r-I
••I ul
•-I a
11
W
N
N O Ia7 N v
N
I M
P! I O
OI 1 0
N I O
C
C
C
C
m
>•
N
r• .-1 m .-I N
•--I
O a
O a
O v
O N
In
~
~
~
~
O
V
L
N
N C
z
.-I
U
U
U
U
W -.I
H
a
I
z
W
m01
m0 V'
mom
mOm
N C N
m
O
O
O
O
v d N
C m 1r
ov.+
Cm r`
Ct` io
U C
om
o
W m
W o
w 0
01
O
01 N
Gl m
of .X O
3 .•1
3 . •
3 .+
3 .+
.. w O •.+
E
m
rl .-. •-�
11
O N W •-1
N
O
m
rl
M O
O
O
N
0
W
N
.-I H M
Cl
a
O
W
m o o
m o o
m 0 •--I
m O M
U C f•
z
W
❑
O •--I
O N
O
O m
H m
H
H
O
3N
$m
$ - P
a
mUl
U
O m
O v
O a
O v
C .0 N
•-I .••I
.-I e-1
.-1 .-1
r1 .-1
.i W T
W
W
W
W
w
Nt0'/
m0�1
m p•0a
x
m
�t00
al
u
V
v
m m z .+
U
w
Q
o
.•a a
M m .a
.•I N �
+i V' C'
+i tT V/
z
W
O
O
M
m •-1 .i
M
V)
N ID
m O
f/a1 m
N
M
z
SmU
$mU
SmU
$mu
•-INm
•-I
N
m
EU
aa
5
F S S
F 3 3
F 3 3
F. 3 3
••1
F E.F
h
h
h
d z
z U' (D U
z xLD
z
41 G'141X 24
G'1 (7) GI X Zi0
Y
,n (.l (7]X Z
41 G1 Gf X Z
C)QG1%2
%
pppYxH
ppp YdCH
pppYS
pupprx
pppYS
pppr
N
4
pZ'
W a l n
N Y O l
N W m
Y r 01
Y Y T
N N J
lP
W A
1p
a
N W W
N W N
N
NNtpO
1p rut
�
J Jr 0
aO
JlA
N a JO
Y
O W
O W
O
O
O
O
Y Y Y m
Y Y Y 1p
Y Y Y
Y Y Y
Y Y Y
Y Y Y
r 0 0 O N
r 0 0 O 01
N
Y 0 0 O
Y 0 0 O
Y 0 0 O
N O O
N N O Y W
N a 0 Y W
p�
W A O Y W
Y a 0 Y W
A to O Y W
r 01 O Y
t0 NO N OA
m O0A0 W
aD JO a 0
OdDOIn O
10O0InO
to OOtn
A
N
Y Y Y J
Y r m
Y Y
Y Y
Y Y
Y Y Y
A A 01 Y Y m
W Y p� Y Y N
W Y 01 Y Y
N Y O1 Y Y
N Y Oi r Y
N N J Y
O O O
N O N O
N O r
W O Y
W O Y
O
lA N r O a
O r 0 0
(n Y 0 0
O� a 0 Y
O1 J O a
r W J 0
O
O
O
O
O
Y Y Y Y
Y r Y Y
Y Y r F•
Y r Y Y•
Y r Y Y•
Y Y r Y
Y O O Y O
Y O O r 0
Y O O Y O
r O 0 Y 0
Y O O N O
N O O N
Of NON N
UtnOtn N
JJOm N
to to O�DN
O\(nO NN
O�mO W
A J W 1p UI
W �D W m lA
m 0 W N (r
O W W J lA
lD ll� W W In
Y O W O
Y Y r
W N Y r
W N r Y
N Y r r
N N Y Y
r N Y
a s r
N A Y
NOl Y
N01 Y
pIYN
p�
JO
a N
Gt W W
N
N W N O
In W l0
0 0
0 0
O
O
O
O
O
Y Y
Y Y Y
Y Y Y
Y Y Y
Y Y Y
Y Y Y
O O O
Y 0 0 O
Y 0 0 O
Y 0 0 O
N O O O
N O O r
W O W W
p� (n Y W W
m J 0 W W
m J O W W
O J O O1 W
Of m Y W
Y
r
Y
Y N
Y N
Y Y Y
a N Y r
a N Y r
W N Y r
a N r r
In N r
N W Y
N W Y
• N A r
N A r
A r N
a
W N
N W tl�
O W m
�p a \D
O W N N
O W J
O tpO�D
OOOI ODm
YOOmN
aOOO J
tDOOO W
01OON
O
O
O
O
O
00 O
r r 0 O
N Y O O
Y 0 0 O
N O O O
N r 0
A Y r
1p O N Y
O O Y r
1p J Y r
N J Y Y
m N N
Uf W 01
W O O 01
N J W p�
J W U� p�
W m N
Y
Y
r
r N
Y Y Y
W Y Y
Y Y Y
Y W Y
a N Y Y
a N Y Y
(n N N
A r
N W Y
N N
N W N
W N
r
W
r Y
Y r
r Y
Y Y Y
Y Y Y
O Y Y
r 0
Y O
Y O
N Y O
N Y O
N r 0
O N
O W
•O
O A
N r N
a a N
N to
O O
O In
pY
J N
NON
to �O to
{/� p In
W
1-43S
W W
m
W W
b
a
r mra
m�oma
a4Qai
mM.iv
rover
m m F ❑
m�Dmut
r �+1N0
.7 Cy W
.ti.-�vr
O 1
O N
'-I
❑
GOON
.y M M tp
m
y M�
O. N rM
p N �•-I
as5o
O F W F
.a
O m
m ^;
lz
o 0 0 0
~
0
O
•�
0F .4
X > 3 U
Fen
000
00 O
P10
z
.y
O
O
N N
, m Z U
T Q X H
or v r
rinrno
O
Nm
Q p
mOc
U L)za
m
W Q X"
N �
m
r1
.7
Q
N
F
m 0 0 0
G O O N
m M
U
N O
p
O O
N
N
O
.0 z F
.Ny
3Qxt+
m
O c N
O
O t 7
U
v 0 0
r o 0
m co
N 0 0
m 0 0
a s
M
ate'
u a > x
• o m
a .+
in
O .a of
W
V� VAN
.ivl0
w S
Q
O
N Q O
O . I N
UU..4
0
�.
.••I
r
f•fmM
3
U O> X
U
W time
N
O
O N O
a
U
W
V O
�
Q
O
•"�
o
.Ti .7
W
m
tl
.7
v 0 0
x O Oa
m 0 0
a000
V Ow
O
W❑
S
a.y
SO
.y •rn
3
O01>
E.
U
y
O
W
O
x
.07
S
000
w
DO
ruu
DO W
O O
O
p
N O m
W
�. i z
W
a
W
❑ o ❑
o'er
at
O
❑
Qo
❑
U
Hov om
QO
inov.•+�n
o W
W
W
.]
U�
H
>
HaO. O
m o.
U N
N
O O N
U N M
•�
U O
.-1
Q
M
W l0 O
x
H
�D r
N
7.
❑
U 00 t7 ~O
2
❑
00 (•1 Op
Z O in
N
m O E. m
fu
M
tl
Z
z
m
kO
b
N
�U N
x .ym
a
W
U v m
N
N~
r
OOf W
N
a m
N
v N
•+
o
M a
W
N
M a
N
M a
0 O
N
N
0 O
W
!n
0 0
f+
O z
O O
O W O
$
O
o z
O W O
p
o z
t ." M
(a
m
a. N
m
H. m
hl
m
0 x 0
a
o
Sb7
C
a
M
"Gb
0
z
M
O f i
J O~ O
H
0 0
M O
l p
O b
m N a
o
O N a 0
0
O:
� p
z
[pal
zb
O0
L'1
0
00
O
O p
0
o C
0
OUOi
0
ON
M
t-
t
%CIO 0
O
0
$
O
f+
E
O
00010
f+
W 110 lD H
O
U O • m
<
�ooe
r m
• oo
M
w
a
(z7
N
M
xclon
rnns
W N W
0
N m W
!7 m m M
m M m
O a J
r
• m l p N
J a l p
W
M
O
c
x C 10 O
O Fa
O0 0
wm
A N
• mM l
M
OO�D
O
Im
n
%b £
H z r M
O
O
r
M
o
00 L.
H
o • o
ro
o
x
N O OO
bH
N OOO
fib-.
ID
r
M
x b M
z A t7
0 m
z
omw
a 0 0 u l
M
x
y
n z w
~
O A O
to
N
O
O O
y
O m 0 0
O O O D
u
0ECm
0
m
zrr
oo• �
oo. �.,
�
0 o J W
o o m �•
H M H O
o r :E: r
1p N
F+ N
a M b
M
M z M
O O t p W
m O m t+
p
M M w r
= M I 1
a J w m
m J w m
O H to w
m b b b
m
ow�o a
H z z
mmmm
mmam
xx
M M
rr
M M
C C
u
r %1
W
a
a
ww
uai w
mrN�n
�G �G
.+orm
zayQN
�MOm
CO m E+Q
•-1 ""� •y m
I 1 m z
o�
.aamw
of
m z
Nr
i M
0Qao
gg
O E W F
t D m 0 0
• o
m
a0
a
a F 0
W 9 a U
0
vr�oo
M
V O
N
>az`'F
x
C7
N N •-I
r o
x
Q
v o
04
U z 0
w
wax.+
a
m
FO
O O N
a
G
O O
w
O
am
a
aax.E
Ga
O
O
o n v
m a
Ir
N M
3 m m m
t+000
aaaa
o
uaax
0
w
2
mNr
a
o• m m
a
5
rn M
w
Q
w
m 0 0
u l
00
3 O
N
O
uFi 000
O U
w
waaa
O O✓ X
[av
00
G U
O 0
A IZ-1
ovMr
Qo
rn
U O
m O W
z W a
G S
M
z
m O
z
N m 01 E. m
N N
v
O U
i
O O
m W
N M
C m
M M
.•i 4
••1
N a O O
�c •oo
r o l M
N N r
• M o
a s
.•I .y
E
O O O N W
o •o w
• o
• N
N
rn M v
a m r
• .+ M
N
w
..
o
z
E-
x
Z
rn•-Io
ovto
M o
S2
U
C N N
O
U' Cl l m M •-1
M
a w , M
C_W.1
o
za
r
wm
U Q
W
w
0
.rn
-I -0
(W =w .00
r
O
N
w 10-I
W W
m F
[L Q
O O U
m
bi
In
o m
£ Q
z
a
U
Z
o-0m
Uo of
r1 F o -olD
o .�
r O
z H O �• w
F Q
10
q $
am O
z 0 U
£ U 00 M
O O
0
UO
U/Or
D O
M W m
m N
N M
C m N
H r
M M
.••I k ("1
r M
Y
r
N
r
W N
1H-•
y
y
H
H
£
£
£
£
r
Y
2
Y
N
7
y
N
r 1p
A
4
W N
N
to
W
N
w
N
N
4
N
'� 10
-0
10
-0
10
10
10
10
DO
O
N
p£1
2
z
M
A
In Z N
p
p
r
O
r
O
r
O
r
l0
x
o Oro
D
N
t
O
ft
O
M
O
Y
p
o n n
'G
n
N W
10
O
0
O
10
O
A
O
1-1
Y
co n
A
E
A
E
A
E
A
E
y
O Ct"
PC)
ro M
w
w
3.
N
W
Y
O
W
Y PJ 0
O
10
CD
q
N
(D
•O
fD
O
H
Y 7 fD
1p
&
O
rf
o
(f
O
if
W 7C
N
N
E
O
E
O
E
o
E
r
m
N
N
N
a
0
t] A
N
N
N
N
(D 1D
::l
0
O
7
a
N
N
'O
z
n&
N
N
w
N
N
I '.tl
Y +J
Y
2
V• fD
a n
'•:•tl0
?/
0
q
O
A
';pV
n
O
C
10
A
1Y
A
fI
A
R
A
(t
N
O
V•
O
Y•
O
r
O
r
O
O
O
O
N
7
7
7
5
n
a
a
a
O
N
O
m
W
O
N
O
N
O
N
O D7
A
O
Y
•A
a
a
O
a
10
a
10
a
7
C
O.
KJ
N I
0.
O
O•
O
CL
O
V-
w
Y
J
(n
b
O
N
O
O
O
O
O
O
O
ai
H
o
w0
n
n
n
o
1
a 10
10
IO
IO
fN
]
H
bG
M
o
O
O
O
A
1
N
O
O
O
z
r
ro
LM
m
ro
o
H
o
pl
va
D7
M
A
O
o
O
O
i
S
Y
Y
M
Y
t
C
H
H
H
H
Y 0
O
Z
A
A
7tn0
p
N
N
to
ut
U
y
w
10
Y
Y N
Y N
Y N
£
a £
w £
w £
w £
O
N
N
N
N
O
Y
N
J
O
lD
V1
tp
Y
•>
N
Y
N
x
N
£
Y N
Y N
Y N
Y N
Z
N
Of £
£
W i,•
w £
O N
01
W
N
N
N
N
3
++
t�
w
�•
m
�
N
n
N
Y
o
O
C
O
tnN
n N
W N
NN
M
'•]
O N
O N
O N
O N
O
o
o
0
o
o
0
00
0
00
0
0
0
0
0
[Af
o
0
0
0
C
C
C
C
J N
t n N
n N
W N
0 2
o Z
o Z
o Z
O
O
O
O
0
0
0
0
0
0
0
0
0
0
0
0
Q4 -
1- J5Ii
7T
w
c�
a
x x
rmwm
Mcor
rnrnrn
Q Q Q N
N M m v
r 0 t D Ol
r O M
wwN0
mtoor
rcn to .-�
to 4c4
a a m w
o M
o N
o
m z
0 0 0 0
M
O N r
O N N
O m 0
0Qw
aaao
O F W E+
y
N
a
o 0 0 0
o .00
uri �:oo
c.o
aza�
o
o
tu'O
o
T 7 $ U
0 00 0
N O O O
r 0 0
goZ
tm• f
N O
N O
O
>zzC)
N m v 0
'-I N m r•1
0
U z ❑
N N
M 0
ti 0
W
W
M
x Q
F
� a a O
O O O N
O O O
o
O 00
O
m o a a
w
O
m .4 z F
m
aQx.+
m
m
a
m a
U
o 0 0
o 0 a
< o 0
st co m w
a
cn .00
.-c oo
m o
a
M
n
cn
aao>aa
U O > X
Q
a
F
o
�nO rno
rnrnrn
Q.ti
QQ
N r N
OOi
m m O U
a
M
wNNO`
m r
Mid °
rn
M,N`
cLa iax
u
N
U
m
Q
cn
w
m
o
c0 o o
rn�o
o
E.M W aa
Cl) •oo
EMa
r •om
.••c
Oi 00 O
O
W❑
S
a ..
❑
3
SO
rc
a s> x
1-of
a
a
0
W
a
z
oao
w
ao
w
ao
w
O o
❑
❑
QO
q
MOTON
QO
p
a(A. M
O w
UO
;
E-OMOm
UN
M
O •O.-1
Uul
H
O O
"Q'
U F. O
N
Q
T. ~
N
%. N m
M
O. N'
'.a
h
w H a
u
z o
❑
U o w o
S
z
❑
toN
m
z
❑
. C,
on `O
N
m oc E. m
w
rc
a z
o 0
z
o o
z
H
O
E+
.7 O U
ul
O .-1
O U
of
N
O U
u/
N
PG
I-i
S rn W
t0
N
0+ W
t0
m W
w
W
LL'
Uem
N
r
vm
N
am
N
}
U
U .ti }
M
M
rl fi
M
•-1 }
M
W W
• Y
W
W
W
♦ Y
W
Y
• Y
m m
m�
o
m
m
m�
rn
y a
m io
O to
(] O
a
N
O
N
0 0
W
to
Y
O
N
O z
G
O
O
r N A m
4
z
O z
O
•A
N W
b
z
N N O
M
0 3 A
Y
a
O C
a
a a o
•b
N
w
M
O 0
MO. 0
H
Li O
1p
O 0
N
m O
O
m N. 0
Ob
O N pO
O
p
Ob
J
m EM O
. O
z
G1
M
[q
O
O
tq
C7
O C7
ro
oc
0
ro
0o
oc
0m
y r
to
-3
r
m
r
x<oo
o ^�
O
N
O
O
E
U
N
000 m
Y
O
r
W
z
m m m H
O
N
lA O N
00 Y
r S
N
00 a
(xJ
a
z
a
a
O
O
X C 10 0
O
W O
A
O
W N a
(7 z Y N
O
W Y
O
a J
S
Y
N
m 0 N
t.
O
X
J O a
z
R I
a N J
•3
M
y
L]
z
to
O
-3
03
O
W W a
o
Y W
r 0 0 A
O w
� N
N
• Ol a N
[9
O J �D
O
ro
N
0
N
w
H z r
n
o• o
ro
M
o-
x
O O O
r
N
y
H
b1
H X b M
O z 0 0
cn a
o
O a
Cl n S
Y •
z
S
x
H
00o<
O 10
O
O N
z m
Y N
Y
0 m w 0O
£ < s
0
r
o
�p
z L0-•
0 0 Y
0 0 Y
O O O a
O O m W
O
Y
n Y
R] H O
Y
N N
O Y
J N
ro 3 b o
moY .
J
• o
tno• o
H z m
.-•
Y Y
N O
" Y
N O
Y
O Y Y Y
�... �... �... �..•
i
zmwN
N
tnNWOi
m a W 01
O H m m
Y
o f+rnY
mwzpa
z 3 z
to
o tnmm
inwam
x x
m
cm W
[r•] Vj
Otj+-1
N 4 1
ww
ww
m r m o
x x
1 O P O
4
w m m M
W F 0
.•Y .-i O m
I I U1 Z
aamw
O N O N
O O V
m z
NN
0ac
i P
gg
•"I
O F W F
x'>s0
N M 0 O
O O
N
ZL)
7>w
P .-1rnN
P p
x
P P
U• U Z O
W Q X N
F
ra
N
a
O O
W
O
a M M
O
N .00 Z E.
sax.+
o r v
m a
•a' M
3a0m 00
00 0
x
U O > x
W
F
X
N N M
W
P • N m
m M
O
W x
POM
o
mLcxA
o
0 a > x
O
N
tlI
P
N O O
N
•oo
x
m
ci
o o
a000
Da
aou
oa>x
O W
� O m
O r N M
Q O m
m
�M
Urn
ON
O
Z
Z W 0.
OW o
zOU
h
W I£i.4
mOFm
P
O UO
.N-1
m W m
P m N
.y • M
.i
o m o o
m m o 0
mN mo
.-I Mom
�n M m P
io 1c o m
o .•I
•.I M
.-IMoo
r.-IPo
O O P
O N m
y
N
N r
Yl m
.••I h
.•� N
•"I
N
t0 M 00
1A .i 00
o o o
r• o 0
M
0
O O
r N O O
O
N O
N
W
cgww%0
u1POm
U•
r N.-1
O Prl
Z
e+0
PO
P rn
r In
OKG
w
a
E.
E
O O O N
W
O O O O
W
O 00
W
O 00
U
O
•
U
N
a
•
r.,
0
mm"r
O
br1`m')M
E•M•I
m N
N N N
W
O
x
W
F
X
z
Z
mN P
W
m 1D.
x
� -ma
W m
M
O
iy O� m
U
PPN
o
P.r
a W ti�
z
o
w p
a
w
m 0 0
N P 0 0
u/ • 00
kW W 00
r
O
N
O O
U W .a
U
W I -I
W W
D O U
m
a m
z
U
'I.
O •ON
UO m
M FO ON
PG
O r M
r O
Z HI00 rn
3
oom Oo
x 0 U
£ UOOr C4
N
N
O U O
m O r
O
m W m
m N
M
P mN
.-1r
.•I
3
F
* »
m
r
z
*
»
H
0
O
O
H
»<
m »
En
r
rt
y
E
y
E
y
S
0
~
N
rb
b
b
b
rr
rrA
N
rt
co
cn
00
m
.<
m
b
* O
*
b
W A
'O
O
'O
a A
�p
A
H»
0 o
z
M
*
b
O
rt
a
K
a
M
o
O O
O
H
rb
Y
t'J
O O
z
M
r a
ry0
rt
n]
rq
ry
r
r
r
C
x
A
O
A
O
A
O
A
i
E
0
E
E
to
z
O
r
O
O
M»
r
W 3
tE
a3
m
a3
m
3
ro
-0rt
ro
fD
ro
N N
m
r
0
»
J
ct
U
tr
rt
O
to
b
r 3
to
*
rn
o
E
N
E
o
E
o
rnN
t+
H
*d
*
m
m
m
m
a s
L4
+
m
m
t.
,rti
z
�n
7
M
y
k
N
to
to
W
M
H
m W
» r
t'
»
b
n
7
n
n
N rn
O
*
to
»
C)
rt
0
rt
0
rt
0
l0 r
A
f+]
*
m*
N
W
m
P.
1p
P.
O
N m
0
y
4
b
O
N
O
O
Oti
O
o
m
*
r
.3
ur
H
a
W
H
N
N
*
r
�p N
O
r
O
m
O
rb/J
X
m
*
*
NA
ioA
ap
A
S
y
I
7
r
N!
7
0
0 o
H
m
a
J
a
a
a
o
O O
O
J
n
a
z
o
0
0
O
0
o
b n
A
r
0
0
NA
wiO
aA
A
H r
ro
to
4
�
o
0
a a
H
z
OH
H
H
H
H
O
to
�]
r r
b
mtmy
M[
m a
E
M
90
71
70
P
r
b
o
J
a
10 m N
3
m
[7
m
y
m
FI
H
H
H
r r
b
m
pi
t+Hi
O m m
[o
m
M
m rn
b
z
J
J
J
J
N
m
O
O
O
O
rr
amS
aS
aS
rr.�8
O O
m
N
m
N
m
N
r
N
N
a
m r
b
01 J
sJ
m
S
700
mS
a $
,rn S
am
0 o
z
0
`i
�
'
�m
Nm
Nm
rm
J
tp
a
m a
H
z
N
y
H
p1
U
a 0
W
NN
O
w
n
O
o z
O
o z
0
0
• o
0
0
0
0
0
H
C
N
J m
N m
a N
W W
4
O w
O m
O N
O m
2
0 z
a z
z
z
0
0
0
0
0
m
o
0
0
0
0
0
0
0
r
o
ro
b
m
m
m
trJ
a
N
h+
W
0
I
r4 43
I
1
e
W
a
a
'
vcc
rm
min
mo
�nO
mo
.�o
rrn
. .
NCO
. .
om
oo
mo
uio
.+m
o.�
rn.a
. .
iom
. .
van
. .
mM
. .
vv
. .
rm
rr
r+N
rn.y
mo
mm
�nm
oN
N N
'
rl rl
rl rl
rl rl
rl rl
rl r1
rl rl
r1 rl
m r
N
m M
m n
N m
v 0
O O
W
W W
W
W W
o
U
U
O U
C M
r-1 e-1
.i .i
N ri
.i O
O O
O O
z
a4
zO
a cx
ZO
a
Z2
a
O O
0 0
O O
O O
O O
0 0
rl rl
W
W w
O
M
I-
F F
F
F F
m
N 01
a
a s
a
a s
W
w w
W
W W
a �O
O r-1
l0 N
N O
N O
C' m
r 01
U
U U
U
U U
.y �O
r1 Y1
a O
O �D
N r
�Il rl
Ol N
rl e-1
rl rl
rl N
rl rl
rl rl
rl N
rl
Q
Q Q'
Q'
Q Q
W
W W
W
❑ ❑
�D Of
rl
m N
o 1O
M N
O
rl O
q
M
m
H
m 0 m
hl
m
H
m 0) m
N N
q 0,110
'+N
�n.y
I
10vf
rnm
.av1
rnv
.im
W W
w
E
FF
F
FF
wawa
'
m Vl
O r
rl r
m V
r N
rl r
r m
D
pp
D
D D
HEW
m 0
M M
V' l0
N V f
M e
C N
O N
m m
O
0 0
O
O O
m W m W
m m
W
W W
W
W W
m m
QQ
U'
C9 C7
U'
0 U'
QU Q U
W W
L)
u
m t0
O O
01 r
b y
m N
m 0w
w
CJ
r>
U L)
nF, U a U
c r
10 C1
r rl
m N
O P
rl 1f
m rl
ca
w
ww
w
ww
nwow
U
U
U U
m m
ZQU
U U
IZUy
i4
i4 N
>4
N
U S U p£p£
w,
>w
FzEr+
0 0
0 0
0 0
0 0
0 0
0 0
0 o
a s
00
o
ZO 0
m" z"
0 0
. .
0 0
C. .
0 0
. .
0 0
. .
0 0
. .
0 0
. .
0 o
. .
U U
U
U U
U
U U
U E U E
N N
O O
O O
m m
m m
O O
O O
r r
N N
v v
M M
M M
Mtn
m m
. r
U)
a o
a
a s
a
o a
a o a o
F
W W
W
W W
W
W w
W W W W
O
N
a
a
N
a a a
Z
" M
H
M
H M
"
H
H H hl H
W W
W
W
w
W W w
U.
U.
1.0 W W W
;o
;o
A
00
0
00
0
00
0 0
0000
M
o0
Q
as
a
as
a
as
aaaa
M 1D
M�0
wC-
M N
M�0
M M
M�0
wM
M M
Mao
M o
Mao
mm
m m
Mr
H
U
m w
a
a s
a
o4 m
a a a o.
W
a
o0
0
00
0
00
0000
N
m
O O
O
00
O
O O
O O O O
O O
O
O O
0 0 0 0
r
OO
O1r
N a
mN
mm
Om
..
q
. .
.
. .
.
. .
. . . .
O " N
� Ol
r r i
m N
O v
Z
00
O
0 0
O
00
0 0 0 0
a
a
w
Z
Z
2
2
p p
z
0 0
0 0
0 0
0 0
0 0
0 0
0 0
2
.ZO
Z
Z
m m 2
00
0 0
0 0
0 0
0 0
0 0
O o
w
U U
U
U U
U
U U
U U U U
00
0 0
00
00
00
00
00
m
O
w w
W
w W
w
W W
W w w w
01
m m
m
m m
m
m m
m m m m
0 0
0 0
0 o
0 0
0 0
C;C;
0 o
0 0
7a.
00
�nCn
o0
00
oo
00
z
2 Z
(9
00
t9
(9 0
z z Z Z
NN
NN
MM
as
as
NN
rr
F 0
x
izgi
m
gHg
z'yWz
FF F E
m
Q Q
Q
Q Q
Q
Q Q
Q Q Q Q
UU
a
as
a
as
UUUU
@
@
�
!
�
@
1 ..
1
1
1
j HWr
FLOW
1A
3.10
pwED i
3.00 GF► i
I �
C. r
2.90
0.16 G 20 0.24 0.26 0.32
A) DISCHARGE COEFFICIENT FOR
HWr /Le > 0.13
3.10
3.00
2.90
Cr 2.80
2.70
2.60
2.50
0
1.0 2.0 3.0 4.0
H W r ft.
e) DISCHARGE COEFFICIENT FOR
HWr/LrA0. IS
r-+45
h I (t4a'4r14)
C d I klCr
f/VEiR-
1.00
O✓c �- T1+c
.. P�vED N-jF�r'L . (NvJF
0.90
0.80
s
0.73
0.60
0.50.
0.6
0.7 0.8 0.9
hI/HWr
C) SUBMERGENCE FACTOR
Figure III- I1--Discharge coefficients for roadway overtopping.
The outlet control nomogrrphs in appen-
dix D provide solutions for equation (5)
for entrance, friction, and exit losses
in full barrel flow. Using the approximate
backwater method, the losses (H).obtained
from the nomograohs can be applied for
the partly Cull Clow conditions shown in
figures III-7 and III-9. The losses .are
added to the elevation of the. extended
full flow hydraulic grade line at the
barrel outlet in order to obtain the
headwater elevation. The extended hy-
draulic grade line is set at the higher
of (dC + D)/2 or the tailwater elevation
at the culvert outlet. Again, .the approxi-
mation works best when the barrel flows
full over at least part of its length.
39
BE
3. Roadway Overtopping. Overtop-
ping will -begin when the headwater rises
to the elevation of the roadway. _(figure
III-10) The overtopping will usually
occur at the low point of a sag vertical
curve on the roadway. The Clow will be
similar to flow over a broad crested
weir. Flow coefficients for flow over-
topping roadway embankments are found in
HDS No. 1, Hydraulics of Bridge Waterways
(21), as well as in the documentation of
HY-7 the Bridge Waterways Analysis Model
(22). Curves from re erence are
shown in figure III-11. Figure III-1
is for deep overtopping, figure II1.11-B
is for shallow overto ping,1 and figure
111-11-C 1s a correction factor for down-
I
77
Ii
FI
I
I
I
I
1_
�II
lJ
' � �^ v� i✓� i+++a- � �r-L C cT o.^ /� C L - Z /V7 a p C 4-r
�
1
n
9
1..
V
I
J
J
t
n
r
Y fD
m %
V
N
13
% G
%
O
O
%
N %
0
o
M
n
O
+
7 x
0
g
o
G
W
t0.1
O
rt
m
P
�
C7
~
Fw'
tr
+
Lr9 w
W
O
*
%
N
%
»
N
G
I4
FS
to
b'
O
M
w
O
I-+
0
O
r
�
E
S
0
rt
o
>
r
m
rt
rt
4
ro
v
n
n
r-
m
<
n
m
0
n
0.
b
W
m
f+
xxxxxxx
x x
x x
x x
x x
x x
x
x
x
x
x
x x x x
x x x
x x x
x x x
x x x
x x x
x xx
'ZS
r5
N
w
Q
a
w
U
O �t
ti N
a E .+
W H
3
in
x
U
�
P
In
1D
rl
P
M
o
u>
r
o
H
o
0
0
rn
rn
rn
rn
P
d
m
P
P
P
N
P
VI
m
m
•ti
H
M
Ol
P
N
r
m
H
H
w
m
m
O
>
a
m
a
r
P
O1 P
�o
Q
m
M
H
H
• N
O
o
.•� rn
H
U
Q�
Ol
Ol P
Ol
E
H
P
P
P
P
Q
cw
o
❑
F
o
o
P
m P
n
W
Z
Vl
N
�O
1p
F
E
W
a
a
io
m
rn ui
M
a
m
P H
m
w
m
N
O O
E-E
N
U
N
rn
m m
0
O
O
E
m
m
�O
O
l0 O
r O� ti
O N
Z
m
O
X
P O
N Of
m O O\
of O H
m •--I
O
r Ol
N P
P 01 P
r 01 01
Ol 01
Ol
O P
•--1
.-i P
•i P P
•y P
H
O
H
i
�O O
l0 r
'O O to N
'O O P m
'Ornm
R7m
C
C M
ro to . . H
ro
ro
5
o
U
ro N r
ro N
N M M
N Om
N P
W
H
w O
r
o
N M Cl)
w .+ o
r P
w
❑
m
G n
C
C
C
r
m
O m
O rn .i
O N
m
-.a rn
0
-.� o
-.i o
0
-.a o
>
o
>
W mP
W O�
W mT
L mOl
m
l� OI
FI r
Z
L. •-i
U P
U P
U P P
U P P
U P
01 -w
H
a4
yPOM
yN�O
m�oinr
airrr
z
a
vioo
io C y
r M m
N m
M N H
In M r
m N
P y y
C o
C H
C P
C r
C rn
U C
N •--I r P
01 H M
N rl M N
G1 •-I O m
41 H P
•M
W r r
N
W rn rn
W r �O
a)o
m rn
3 m rn
3 0
3 o N
3 M in
3 r
•• C H
N
a)
E
1D
W H
W H rl
Y rl '-1
W •ti
N w H
N
O
w
w
w
w
.� p -N
O
a o
m OQ-M
mPr
mNN01
m�ON
mr P
U C a
$
W
o
3o
3o�n
3 P01
3 rN
O�W
.i �n
O0
O H o
O.-1 om
0
O.+O H
O.-�
W P Ol
W P
W P 01
W P Ol
W P
31 N O
P
P
P
O1 a OO
Y•
m z
U
0
a�
a O P
a
a M N
a m
a O
h
U
W
M N
m �Il
VI
H
Z
Ol
H •--1
H
L)
L)
E 3 z 3
E 3 z
E 3 3 3
F 3 S z
E 3 3
F F E
h
h
M
N
O
N
.-+
W
O
N
W
b�
P
ro
a
M
0
m
H
O
�
M
O
O
E
z
H
0
a M
o
P
m
O
M
W
o P
. M
w
O
U
W
a
N H
4
0
H
>
h
za
cic)x
mz
c)a
r
c�cix
z
c�c�c�x
c�c�c�x
H n
?i 'p 'M A r
'fl 'p r
n
' pap 'A r
w
',cl 'p ;V r
',tl ,t7 � r
;V r
MW
r
m
in
r rNft
rrrr
2
rrr
oor
000r
000r
a
. . O (D
r
. . . m
W
. . N
r
. . W
. . . N
. . . J
. . O
ll� J O 0.
m
O 1p a 0
a a J
O1
J O 01
O m N N
m 0 J a
W �O O
W
(D
O
r r ro
r r r
r r
r r
N r r
N r r
r r
a N
U� W N
r
a W
Ol to
W J O1
a J p�
01 Of
W W N
O
J a m
N
A t p
O
O O
m a l e
W W W
m r
A r N
p� W m
W m
a N
r to W
O m U�
lD a
o o
w
o
O r �
z
r
O N r r
l0
O a
W
r a r
m r O� r
01 N O1 r
N �O r
W 1p OG W
r O�
J a O N
tp W tp
ll�
Ol a 0
r W m r
01 0 �O N
tp 1p O
r
a
rt
�
A a �-• H
a a A r
A a r
a a r
A a r
a a r
A A r
l0 1p N I+
�D l0 l0 W
l0 t0 W
1p 1p N
lD 1p 01
a tp 1p Ol
l0 �D O�
. . . fD
O
. . . .
. . .
O
. . .
. . .
m . .
. . .
r
a
CD
a N to O
Ol a N to
VI W a
p� 4� 4�
J 01 J
U� J O� 01
J Ol T
m p� a y
01 0 m a
l0 1p W
tJ� O W
lD �O W
41 Ol W J
N W Ol
J J O O.
a N m W
N aD to
N W lD
J a 0
O W O� N
J N tp
. .
. . .
N p� W
. . . .
J to 01 tp
. . .
�p m r
. . .
Ol O N
. . .
�p a J
. . . .
Ol l0 N m
.
r N N
m J J
W (!� O W
W Ol W
N Ol J
J r 1p
Ol r r lD
lD N 1p
a A
A A
A A
A A
a s
a s
a s
0
0 0
r r
r r
r r
O O
O O
O O
00
ll� W
N W
N N
m W
m
N a
N
W
N
�O J N
N
Qi In N
J O m
W r J
m U J
A
ww W
O O f'
r W a
W m m
W t0 a
J p� O
m
rr
r F-
rr
rr
rr
rr
rr
N N
a W
m a
J
m J
J
J
a m
J O
J r
O N
a r
dD In
0
J w
O W
to J
N J
a 0
m N
a A
Q� N
• W
W
N
W t0 N
W r a
1p N N
N a m
N to J
A p� J
N J
J r r
A dl r
W a r
N N a
r J m
N m A
r N 0
a s
a
A
A a
a s
A a
A
1p l0
A 1p
A 1p
1p l0
l0 l0
l0 lD
a
W
a W
lD N
A
O l0 O
m N
Q� m
r J
m O J
W
O W
a r W
O In r
(n r a
a M p� m
W wa
m a 0
W
�-•
r r
rr
Nr
rr
rr
rr
N
OD N
T W
O W
t0 W
r J
N (l�
J
N Ol
J a
A m
m 0
O N
N r
J
O J
l0 Ol
N J
m N
O W
J r
a
a 0
W W
N J
r 1p
m 1p
J N
r
a s
A
a
a
a s
a
a
W
lD t0
lD
A t0
A 1p
1p 1p
a lD
tp
J
r r
r
lD O
t0 O
O O
tp O
r
W
W W
N
r l0
OO1
to to
O a
a
o
rn
rn•
a
tJ� a
W
r
r
m N
J
r
W
N r
to
O r
Ol Ol
r l0
to O�
r
r
r r
r
N r
N r
r r
N r
J
a
a N
W
r W
Ol W
W J
W Ol
l0
O
W J
(n
�p tp
r 0
O N
r m
m
W
O
TI
r
N N
m J
Ol m
J J
lA
J
w
W W
q
W
N J
r 1p
Ol l0
J 1p
m
W
S5
a
r o
a
N o
a
rn ri
m N
C P
H H
> >
o
as
N
w W
uHi a,
xx
ooHN
omm
M a
lay El
mMMr
rN�o
ti
az a
rt
{{C E O
N N N m
N N N
l I I m Z
O o M m
O O M
a a m W
mmw �
mmlp
0
0 o m N
o m
to
V1 Z H
o ry
O o
m
N H 3
M
Oa £ a
yr
In
•+
43140
o F w E
�
m
a
a
H O
0 0 0 0
m 0 0
N
a
O O O
N O
o
• o
•N-I
.4zaa'
o
a
x > 3 U
H
0
II
H
N H N r
m m N
El
0
go
M N
o a o
m
zaxu
m
r
x
G1
N
M
tP
H
T
N
a
o H�or
o
w
mcic
m
o o
a
z
N o
•-IN
amZ O
off
o~
N
w a x es
m
m
a
a
II
W
H
m
a
a
a
O
m
a
0
x a
Elb
0
U
W
O o
AM H
U
O
W
o
w o a a
W
N
U
m z F
m
o
U
3 x H
m
a
V m
m
V
O m
O
O
bo o
U
r v v
W
v M M
o NN
m a
M Mo
A
�o M
a H
30 fq0
a
o
H
H
a
v
o
m
v
a
C
U ClOI > X
m
O
0
m
a N
a
0
{ O
H
W
W H
O
C7
ov
W
rlov
o
z
oro
N ti
a
E
O M m 0
O
a
r • V
-.I .+m
W 5
a
o m
II
r
5
m
E <
m S S U
3 U U a
a
o
M Cl N N N
W o
O
z
.- V
M H M 0
U
N N N
0
W
U O> X
U
£ m
U
w
m
°
a
a
a
voice
N.
z
rl to v
U
o
Ol
Q
a
Ol
ace+
m-ti H
M
w
II H00
o
m
w
Hoo
w or
••
x a
w
> xw •oo
rL
m
>
w •o
O N O
N
E m R1 m
OC E •
z
w
m OOO
O
W a
Z
r HmM
O
a
W a a a
E
U W
O
U
0 OI > x
o o
H
m o N
o
y
5
00
E
m H
0
O
-.1
a
s
m
N
!7
H N O N
W
O U
H
M
C
z
N N
m
0
o" 0 0 0"
a
r
H
O O H
N o v to
m
O W
OE-0 • O N
E.
Z
O 0
1IN •-I •-I
Z
z w m
a
H H Om •M
m
0 II II 0
H
a
OO
C mm
rt
U £ O
H
a
a N 0
H
OIa a x
a
M
a) v v
h
w Ho
U
O U o 0
0
W W E
O
3
a'
U
N
co
H
II z o o
a s> a
z
r
H
O
E.
> Uoo
3
II
w a W
U
N
o
a
H
m W N H
o
a
s o
W
o
H
F .+ace
a
a
Umr
a
F
N
M
w X LD U'
*
U
U+ M
W
m
M
H
W W
•
N
KJ
W J W
O dl
m
O ro
q
O
r N m p�
N N
(]
m v m
II
£
N O N N
£ 0
O
HLC-] M�
o
o N(]3 O
Y H
m r K)
z C
r
II Y II II
N
J r o H Z <
z H
Ja
H
H
N O O H H H
m
H
�CNrOH
z
m
m
o
o
p
y
N -7
a ro r
O ems'
N m O W
7.
ro n 8.
r
J H H
CT
S pm
Pi
W
O
O O r
<
r
Nn
A
rn
rNtp
m
,nC Z
m
n
3 m
Ou
O
H
T�
n
`z,
N
J p J
m
r
Y
O
H W O
r
n
n
O
N O H n
N
tp
H
H
p
N
J
O
Y O1
r
Ol
O
J Ol
H H J
Y
m
io
0
•
n
o • o
£
o 0 0 0
N
m
o nor �•
r
r
II
a
0
0
�
m
•
�c
O 1p
lD
r r N
rn
J
o m
w • r
o lA o 0
r
n
r
ro v m
u
N HpN
u,
z ro <ww
o
o n
"y
O mY
x
S r K)
not
ro m z
z
r u u u u
m io
m O
o
r
r
H N
N
W
H
o
C
o r o
H
x <100
O NNID
H
w a n p
Z
W W W .3
N
r
J
r m
m
ro0 �
w
N
rn
r
m
LX"np£
rWioo
z
S S
S m
rn
101 J
O
Y
O
X CAO
,Jn
r P A z
W 61 N £
O J
w N
p
H X>Z£
•3Z rN
zrom
H m r
x
L�
E r
N
m
r
H x v m
oz�c�
O O S
S
,p
�o r
O N
H x b £
o
0zx<
O w O
Z to
H
O
n£<S
oHOr
z r
� o
0
H m H o
E H m
H Z N
O p
r
m N I I
tjgm
HY Y P D
H z z
x x �
m m
r r
m L'J
C C
51—T
=--2
W
a
W W
WW
Q N
rn rn N O
m m E❑
N CV m 1p
OOOIp
IICOZ
rn rn r
a a m W
rn rn m r
P P rl •-I
P P "1 .-1
O •-I N .-1
q
O .••1 IA N
O
fn Z F
O m 0
• �
m F 3
m
m N
o rn14
F 14 F
O
O~i IN+I
P
P
O N O O
O P O O
�o •oo
a
� •oo
o
N
o ,
0Za -
rh
> 8 U
.-I
In m In O
II
u O
o • m
F
O
o m
rn o
Oa0
N�
S H
rE.
a
4 X
M
tL
N
m
P
m
m •-1 rl
mC)•
P . m '-I
01
• N O
rn
r
W a x F
rn
P
n
.+
`•
a
a
•
F
w
U
rm
00 nm
Yd Q
• �=
P
a m F
W
o
�o
•
or
mZE
A
o
L)
�
P 1p VI rl
P rn l0 r-I
M
N rl ID
W
M
m m P
M
UI a
❑
P r rl
m
0 m
O
O N.-iN
O
M
O
a a a a
W
F
�'�
rn
.O
N m IA N
U 01 > x
q
D
m
P
m
Z
O
P
In
W
r
N P
rl
M
F
W
x
m rn m
P
W
m•
Qz
Q
v r
.In m
0
.o
W 5
o
r N
II
P
m N N
O
rl
m m U
O
U
N .•-I N m
O
rl
O
Z
O N m 0
S Uu a
.I
m 4D r rl
rn
U
U O> x
r
W
rn
U
P
W
m .1
l0
vl
U
P
W
rl
m
P
r
y
m
a
m
rn
Q
N�oP
m
>
o00
O
tm+I
11...
umi
5 a
• m
rl
N
F ro m m
Z
Z
N
Z
rn P rn rl
•-I
11.000
3
O
O
m
Z
rl rl r M
Oa
U
FO
O N N
q d> x
O
E
O O N
F
N
O
W
U
E
I+1 rl
O
y
aD0
m
❑
c9
W
m
F
o
r
W
Z
F
rn
oo�nrn
a
In
rn
O
m
F
o�oP.-I
a
m
o• o r
F
.I
rn
o W
r
F
m
om
• m m
m
F
n n n n
a a a a
z a
o
>
o
a
oP m
m
n n n n
m .-I
❑
W W E.
c.I
W I -I a
O
F
❑
a
U
a
3
• M m
r O
I
❑
a Q a m
W W F
m o
as>a
In
mdErn
Z
In o
aa> W
P
S
a
a a
~
w
m
3
n
W Q W
i
O
a
W
o
'r-I
O
491,
❑
.7
W
m
k
m
m
M
W
N
ei
r
y
pq
W
W J M
m
t-
Vi=
O
NJ
Nmm
O •Ov
O
7 W Y
£
00
Qu ()
r
W Y Ln
0 £
w •p
o O
z
mHpm
In
•O <wA a
W
O
0 o W
n mo
rH m
4
HL9 L9
O
by
H
0 W. Z
W"
Om ()
xr TipII
H
II II
m
W. A00
HZN
mVj Z
z
II II II
m
r
H
ON- ow
H Ho
Ln O
H
W
,'O
O m IpO O
H 3 0
1p
N
0
H
H
r
W 0
W
m o
H
J O
H
W
p o
p tl
H
z
wo
Hm
ro 0
o00 ro
no.mz
r
N
H H
m W W H
N
r
lA
•+J
01 O a m
x '9
r x
N sJ
a
O
O O J H
O
y
N
m
H
m
a
n
Etq
a 0
o z
m
r H
0
D
.
0
z
r(R
L9 W
r (]£
rOJN
z
O
�a II
OLl
nxxm
r o
a
K
x
II
W W- m
IW
• a �p r
J
N
H
O
a W
m
O
lD J
X< p
N O O O
O
r w
w
r
o
• �
o 0 H
O H
W o
O
N A
m m m£
N O
• O O r
•
A 1p
tp O
r
a lli
W p� (n N
O
H Z r m
N
a
xr O t,
a
o a
ao
A
0. m
yH
b 7 C
n
8
0
s
N
H
(o
L]
K
til
r
LM
t.
p
a m
o
Lq
0 z n 0
w a
0 0 x
a
O J
x
a
a
W
r
m
N
r
J
v
0zac
x
O
Z m
I
n£cx
O •-3 Or
o r
�xr
O O O 01
•T
O O J W 01
O
a
a O
o
O r E t,
nw
a 0
n
£ H m
W O
H Z m
w
W arO
L7
r r
•.O O
r r O O
a woo
tI
z W I
l00 W O O
O H W m
b
W �noo
H�b2
rn W o o
x x
m m
rr
Ln LM
ce
•o
G)
w
M
J
N r
N W
W O W
• O a J
a
W
w u
a .
r O O
• O O J
O W
r o
tnmao
A
• a w
O �O•
r W N
J to tnJ
z
H
Sri
1
1
1
1
1
m
w
a
a
0
0
0
0
0
0
0
0
0
o
O •
o •
Z a'
ZN
Zw
mr
mM
wO
U) m H
In P
O o o r
O
o
0
O Oo 10
O
O
o
0
O
O O H N
O
Oo
O
Comm
Z 0
Ze
Z N
OOM v
O
w
O O .ti H
w
VI O
m
N O
U)
N H
00
p H
O H
O H
H .y
O N O r
r
m
r
O O �D
Ol
lD
N
p
H
m
P H
m
U1
m
H m
Ol
V) O
to O
!n O
O C
p O�
•^� O1
O O�
N
m.-iroo
v
r
m
M o • o o
r
rn
�
H O .
M
p
H
Sin
3m
3m
mo
mo
mo
q rn
q m
p rn
V'
it
P
II
F M
W O O
N
N
N
/1
F
F
F
F
H
H
H
M
Z
Z
Z
M
H
ui
utN�
W r
W H
W
•"�
RI
as
w
rn
E.
E.
E.
W
E.
m
M o 0 0
3
a
a
o
M o
U
rn
o
0
M O
•
• N
d
d N
d o
rn •"�
U
U
�D
U
m rn
a'
F
N
F
M
F
a a
r
in
a
o M
o
ro
ro
• ui
o
d .+
d c�
N
d o
.+ .+
0
N
a
W
m
M y
N
o
E
o
E
.�
E
H
o
H
H
CO
CO
m
O
a
rn
am
d
w
rintiMHN
2
aa))
ar
cxv
aH
Z
O a
W
W
W
W
W m
H
m
a
C
C
C
U 4
Q
a
r
Ot
W
y
a)
H
F M O O •
O
0
M
3
c
3
0
3
r
W x
m M O H
W
H F
N
H
N
a)
a
a)
a
a)
m
rn v
U a
FH
Z
0 m m m
.�
W
g
m
Z.�
of
E H
m Wp
W
o
o 0 H
3
U
3
U
3
U
�
o N
d
0
d
d
o0a
E
.0
.0
£
W
W
W
W
inPU
Q
N
N H
O0 C1 mm
a
M
m
L
H
yi
h
W
p
O H E.
a 0 • N r
E.
m
O
vi
o
.i
at
p II
N Z H
Uov •M
m
a II II II
Z
a x
H a
z • M o
H
d a a x
a
a
d H
a
Ol
a
d H
W F
O£ U
W 0 O
p
W W F
h
In
m
m
m
m
m
>a
Z
N o
az>a
w
c) � o
0 0
3
n W sC w
H
q
m
N
O
a p
3
N
P
E
E
E
x r M
M
W
N
H
o O
O H
L21
N N
r
r
r
r
r
r
ry
O O
D
J
a
r
O
O
N O
m
to
W
V+
J
O
m
K
m
m
En
'U W
A
ro
r H
0 0
0
0
0
0
0
o
z
w
r m
0 0
0
0
0
0
0
o
z
H
En
x
c
a a
a
a
a
a
a
a
H
N
En
m
W W
N
a
m
r
J
W
r
H
W r
J
ll�
W
J
O
J
r
m
W W
W
W
W
W
W
N
O
io m
io
to
O
o
O
O
f]
O O
O
W
N
W
W
N
p
O
m
W
I
N a
O
N
W
J
J
[x+
m
r w
w
r
a
W
a
n
n
S
H
O O
O
O
O
O
O
O
r
0 0
0
0
0
0
0
0
0
z
v
CzC
3
m
m
r r
ro
m
H
p
W a
W
Ol
N
tl�
Ol
Ol
�
W J
J
O
W
r
r
r
r
Z
C7
r
H
n
r
w
r
O
b
W �n
�o
N
to
m
in
rn
ro
H
H
W
p� t0
J
O
Ol
J
W
a
t7
J w
O
to
r
W
O
(n
M
m
m
m
q
�s
N W
to
w
N
r
r
r
',d
Vj
VI J
N
w
r
m
y
r
t0 W
Ip
O�
O�
O
W
N
Z
W N
J
r
In
O�
W
N
m
r r
r
r
r
r
r
r
W W
N
W
N
01
m
Vt J
W
l0
O
w
W
Enr
W
m
W
N
w
O W
a
W
lD
W
1p
r
sJ
m
.'O
r r
r
r
r
r
r
r
A
a a
UI
J
J
l0
Ol
m
m
O
N 1p
tp
Ol
O
m
�O
lO
O
W
m
01 W
J
r
W
01
l0
J
y
r
J W
W
O
W
J
tp
UI
H
W
H
r
»
* C
S
H
» r
»
4
W
N
p
�O
r p
»
E»
Z
*
y
*
IO
N
(f
N
»
m
* a
»
»•
*
H
r
O
*
C
»
n
E
nN
ro
»
r
z
at
r3
n
y
n
N
ro
N
ro
*
n
n
N
Y
a
* 3
m
n
w
m
E
r
* GI
n
iO
fD
* r
O*
m
m
m
* o
ro
*
k Ip
I -I
n
r
fD
» r
r
*
N
nW
*
m
*
n
n
*
m
n
1p
P. V�
J
»
*
W
O
10
*
*
f0
*
»
n
n
H
r
H
n
»
W
u
W
»
n
W p
J
to p
m
N
to
m
7
m
a
r
H
W
H
O
0K)
W b
m
m
r
H
H
b
w
ro
ro
W m
N m
O
N
z
z
..
r
H
H
vq
N
N
r
r
a
a
N £
m £
• m
m
a
W
ll�
N
W
J
a
a
C
o C
m
W E
N E
�+
W
W
W
N
a
C
Z
r v
r v
m
J W
a W
m
�z
rnz
n
o
0
c
o
0
H
C
O
m
O
o
v
r
r C
r C
n
p w
J W
y
O Z
J Z
Z
O
O
0
0
r
N
ro
W
G1
io
m
a
m
�I 1
yil
1
1
1
1
1
1
r�
01
7m7r�..
7
H
W w W W
0 cn 0
m m m m
a a a a
a a a a
W w w w
U U UU
a a a a
W N D U W W N C] U' 0 L
W F W a F F F £W£ a W a
0 5 z O O a0 b z D z
U) a14 u It 0 a u
f� g
z H
�a Tg
H G �G H
0. U m U U U U MF U W U
o W o a W W W o w o w
U V] U U U tll Ol
a z a zd a a
H
H PH
a a
a o a .z. a z a z
U U U£ V U V U E U Z
H H H H H H H H H H H
n n n n n n n n n n n
W w w W W W w W W w W
a a a s a a a a s a s
H M H H H H H H H H H
0 0 0 0 0 0 0 0 0 00
a a a s a a a a s a s
w a m a a a a m m a s
O O O O O O O O O O O
O O O O O O O O O O O
O O 0 0 O O O 0 0 O O
00 m Vf
O r N PI N aD O O N N
0 0 0 0 0
H "� H •+ H H H N N N N
a s as a a a as as
z z z z z z z z z z z
U U U U U U U U U U U
W W W W W W W W W W w
fN V) W N U) W In W M W Vl
z 0 z z 0 cD CD z z z z
0 z Oo z z z 00 00
H H H H zCH, "Z2aµH' H H H H H
U 3 U U 3 S 3: U U U U
q n
m
Y7
O 1+
rt
CA
K1
ro C
O
» C
m»
m
m*
H
* n
n »
p
M
* /••
N *
O O
ro
»
y »
£ O
O
»
m »
Cm9
H N
(r
+ rn
m
e
*
7 »
W
m
m
* 3
m
In
lb
»L<
Y
�
S
» H
O *
m
» �o
•n *
p
» e
H *
m
p
*
»
m »
m rt
k
rt
*
*
*
*
^
rt
rt
wy
rt
*
ft
r-
O
m
x
x
x
x
x
x x x x
x x x
x x x
x x x
x x x
x x x
x xx
* %
* 4
* O m 5 C
* Clopm %
% H 0 %
* n M Or b »
» 000 3
Y b •Z H K %
* � P G n %
* rn Im m m O
0%
* H z M %
* Al *
k J 2.• m"H fn Y
* u H m z
* rn b H m 0 *
* 1 m •+1 %
* O m Z Z
H
% a r H H
* rn H H
* mnz
» m o z m »
* m H W
* J m W %
* *
* *
* *
* %
k %
* %
1
1
1
1
1
1
1
1
1
N
m
W
w
u
o
aw,
W
w
H
P
N
a
ut
S
W
w
H
O
W
Z
S
o
cmi
M
rn
�
P
• V1
M
o
rn
rn
rn P
rn
P
d
oS0
P
P
P
P
H
P
P
w P
r
O
N
m
r
P
w
N M
M
rl
W
O
O1
O
N .•i
M
.-1
hzi
p
>
a
x
a
r
o
00
orn
o
,y
m
O
M N
O
Vl
• N
P
o
O
0 0
ti rn
ti
U
rn
m
m rn
O1 P
m
P
<•
P P
P
P
a
a
o
p
o
w
m
o+
r o+
o+
w
z
M
m
O
N M
V) r1
m
p
W
ri
rY rl
rl
rl
O•
S
m
O
O W
O N
O
E
N
U
N
O
P N
O r
W
%
w
W
p
V)
O
X
P O
r O1
N
1I) 01
P Of OI
r Ol V1
OI 01
N
O P
~
e-I P
rl P P
ri P P
•-1 P
.-I
O
O
P O
w r
'0 N r r
•O P M V)
'0 P m
[a�i
V
Z7rnm
�O
v
C
C W W W
C W M
>
E
M
C
C
ro
ro
ro
a
o
a
ro N r
W N N
N r P
N P m
N O
tll
H
rA
W
O
O
r
O
N O
O m
P O
Vf N M
M P w
vt m
U
H
X
2
O
r rl
ti r1 ••1
P rl rl
r rl
.i
H
0 Vl 0
0 w
0 o 0
O a+ N
o m
W
a
M o
>
O
>
P
Y O� P
Y Ol
Y P V1
Y V� V1
Y W
N C
Z
w
.i
u P
u P
u P
o P P
u P
N -r1
H
a
oiPOM
0Nw
wwm�
oirMin
yaN
z
m
m c a�i
W
rMm
ulM
Mmm
m.no
mo
M y y
C o
.
C r
.. U C •ti
aG
m
W
y .a o
4)
0) .i W o
G) .+ r m
G1
w
w r r
m rn
(D
d m .+
w w
d
3 m rn
3 W
3 .y M
3 M w
3 r
•• N C G•
E.
Y .y
Ol W W
N
O
W
.I O
N
W
W
N
Cl
$4
o u
d
o
W
mornM
mPro
mN00
mwrul
mrrn
U C N
Z
m a
q
o rn
r • o
m• r
M• o
N
w ro
H
H
O
•
o� •
.
P .
r N
rn d w
U
0•ti O V)
0 N Om
O •tio•O�
O tia N
O .ti .ti
C X N
.-i rn o
.i m o
.-� rn o
.•a rn .�
•� m
•$4 Y i
W
w P QI
w P 01
w P QI
w P Ol
w P
N O
a
W
P
P
P
P
m a0 o
x
m
M
Y
Y
Y
Y
Y
W W 2 .ti
U
w
O
+i r o r
+- I w M N
- r I O N P•
IMP40
r i U 1m
W
O
O
H
•r • r
� m
.0
.p
x
x
O
m
H
M
Val fon c
v lWD
Val
Vai 1•ml m
Val
m
Z
>
rn
m
.T. W U U
S W U L)
a: W L) u
S W L) L)
S W L)
N N
U
F S 3 3
E 3 3 3
F S S S
F 3 3 3
F. S 3
F F E
z
x tm
2
noa X
r
mox
2
G]anx
onox
610ox
00 X iO
Y
fA
o
i0 l0 l0
t0 l0
O
t0 l0 1p
l0 �O �D
�D 1p l0
�D t0
N ff
r Y r r
w
r r r
N O O N
O O O Y
O O O r
O O r
O
O
a N W W
w
Ol Ol � r
Ol Ol to O
� � O
O fD
r
m
1p
N
�.•�
• • • W
UI
J
O
W
(D
O
M
Y r Y
Y
r r
Y r
Y Y r
r r
W O O
O
O
J O
W O
m r 0
Ol T
N
O
W l0 A
l0
m
O
W N
l0 O\
N W W
Ol Y
A Y
O\ O1 r
m J r
Ol W r
lD a W
TJ �O
O
In
O
o
O
O
a
Y ,7
r
N W N r
m
a 0 Y
W
a a O r
J J O
N N r
m
O m N N
m O O
N
N m 0 Y
l M O N
M�O N
i t O 1p
r
w
w,3
a a a r
a a Y
a a a r
A a A r
a a r
Y Y-
l0 l0 l0 O
1p 1p O
a a
tp m tp O
lD l0 t0 O
�D �D Ol
MR
O
Y Y Y m
Y Y N
O
0 m
O O O W
O O O W
O O W
m
( N N W
N N J
O O r
t t m O
m m to r
U� lli N
. m m
o
. . . .
. . .
o
moo
. . . .
. . . .
. . .
O M
r
O l r
W W J
W
O
O m r
O O Y J
a A N
W r r
O1
O w m N N
Ol to m
V+
J N O
O a m m O�
O a m 0
A O\ N
a
N
r w
r Y r r
Y r r
Y r
r r r r
r Y r Y
r Y r
No
"WOW
O O O
Y r 0
J O O O
l Y O O
J m m
m W
N U a o
J N Ol
N O N
r m W O
�O a
O m a O
N J a
r 0 Ol
m N O J
01 tp N m
J N 1p
O
N
m J O
A J
W
J Y J
W J r m
r N N
p1
O\ w m N Ol
m
A m m
Ol (o m m
l0 rm Ol Ol
Ol O 1p m
1p N t0
a s
a s
a s
a s
a s
a s
l0 lD
�O tp
�D l0
t0 t0
tp tp
�O �O
r r
r Y
0 0
O O
O O
O O
N W
N Y
m m
OlN
to to
to A
N
W
N
N
l0 Ol N
W m N
Ol A m
l0 Ol J
m to J
a lD
01
W W W
N J r
A t0 a
(o m m
W l0 a
J O) O
�O
N
r r
r r
r Y
r Y
r Y
r Y
fD
W 01
N N
Ol N
W W
m to
J w
Y W
N m
D O
a r
0 0
Ol N
W
W
W
N
N
N a
N N N
m N m
� W J
r J
N J
O r
m m r
Ol
J r r
N J a
(!� tp m
W m Ol A
r N 0
M
r
0
a s
a s
a s
a s
a s
a s
tp t0
�O �O
t0 tp
1p m
l0 t0
�O �D
Y Y
r r
o 0
0 0
0 0
0 0
W N
N N
m l0
01 O�
to to
to to
W
W
N
A
O l0 O
Ol to N
J O m
W r J
m 0 J
W
W
A r W
O O r
r W a
W m m
W tp A
m a 0
M
r r
Y Y
r Y
r Y
r Y
r Y
N O
l o O
N O
r 0
N O
m m
W m
O A
N W
m a
O Ol
N to
m N
N Ol
Y J
Ul 1p
U� m
N r
Y m
N to
a Ol
r to
J W
J r
J N
J l0
N N
�O In
m O1
J N
Y
A A
a s
a s
a s
a s
a
W
w
t0 m
t0 m
l0 1p
l0 l0
A 1p
J
r w
r r
O O
0 0
O O
m O
W
W W
A Y
l0 m
Ol N
U� ll�
O a
�•
a
to A
O m
N T
r 0\
m to
J
W
to r
O N
O r
a 01
Y l0
N Ol
r
r r
r r
r r
r r
r r
N r
(n
W O
Ut O
Ol O
N O
N O
N Ol
(o
O m
l0 Ol
N U1
W Ol
N Ol
W Ol
r
O W
J W
r lf�
lJ� J
Ol m
r m
O
O r
�O
N lD
A m
J N
W m
J J
J
Ol to
Y
J m
N m
�O O�
O� Ol
J tp
O
RJ
W
-j/T
=I5
a
W
m N
r o o
Q
o+
N v o
a
m
m yti
m m
m o u1
•-I N
V' N a
rl rl
rl rl ti
W f4
m u1
0 0 �n
.a a
f'
fn M
.-i v ui
w w
rnrn
m rnrn
Z
vroiN0
v v
,ti v v
a 4 Q CIO5
CO m1 N 2
0 0 N
a a m W
rn m o r
m 10
0 �n
�n in
10 r
Orn
.I 1D
m Z M
m1n
torn
M H3
+ N
m04
110,
P rl
ti
a
m
O F W
m
a
m m
N N O
a
O 0 0
O
a
+
a o F o
rn rn
rn rn
x> 3 U
QQ
Qa
N v N r
E.
m
N O
m N
m r N
O a 0
NN
rm
4XN
O N
rl N
p
rl rl
r1 rl
N
m vlow
o
x
r O
P
x U U
u
vor
Nf`~'l umi
m a X Q
m
v
a m
v v
m
a
w
F
rn rn
m rn
J4 Q
F
10 O
U
W
a m
o
a+
w
E.
3 Q X
rn
of for
r
v
ulmo
ooln
vj
N
0
C N .y
r rn N
m m
O O 10 m
O N N
A N O N
to
T • V� O
���
•��•�
m
3000
.i
.a
O
x
Q
m
-Ci
cai a>
o
0
u000
E.
o
2
mmm
.�
mmo
� doo •tiN
4
ti
F
rnrnrn
E rnrn
p] x
Q
O •N
p
r
o
V• V' <
C C
N S x U
m g N m N
O
•�
O
m
wrn
Oc
O
U d> x
U
V
•vv
•.i.romo
m
Q
a
m
o
rn .� o
�n
w
n 1n o 0 •
0
10
o m.-i
N .-err
••
x
m
x m •oo
w
wO.-1m
W 00
rn
Fmm m m
14 E+
.+
ZO
.+Na
Nin
O
m 000
O
W n.
ovrnm
•+
c •� .�
W rl
F
U W
0
to
> x
F
0 0 r
p
O W
~
m
m r V
O N T O N
W
O U
M
m
V•
rlN
01
❑
O Nowa0
a
r m
u/mv
a+0 VI V tp
mO
W
o E0 Ol0
F
.ti
O m
�a-m •v
a
''
mmm
tiNmmm
Q
U £O
.•+
Q
H
as S
a
vvv
X avv
W
h
rn
W H.4
mdFm
W
U
ri
OUO o
n 2
q
fr��s7F
O U
.ti
O
F
o O
> U 0 0
3
n
as>w
W Q W
Z
U O
a
to
xwN•+
O
Qn.
a
Wm
a a a
E + a a a
a
a
U m r
a
E.
m N
000
w xOcDO
+
U
U+ m
w
m
• m
Y
En ftj
rn m
o ro
v
O
Y nJi aYo
m
m
o ro
v O
Y
cn A
pl :to m
u
S
Y o U
U
Y
ff
pl b pl
u S
O
z
ro<ww
o In
mH10w
�O
z
-0 w
o J
O O
Stlt-I
H
N0
O
rY @7
4
O
Hmm
O
O a
o
W 7tlY
H
0x 0
b
xrb10
< Y
n n n n
m
U1 • a O M z
<
ro p1 z
z
Y
n n u u
m
m a 0
1-1 a
Y
H
YO off Y
Y
pi O
H
m0 o
p W
O
w
NNtpOM
p
1p
U
O w
01 Y 1pO
I
N
0
O
b7
b
O
N O
O
Q
r
o
a
H
r O
tJ ro
r
x< 10 O
O
N W O
M
E
O O O O
z
ro 0
$
0 0 0 ro
O
a U a 0
z
Y
J H Y
w w w H
O
m0 U x •+J
r x
O .+J
a0 J
W
O
W O a N
U
O O
O O Y
m
Y m
to
W
m
N O W
a z
C Z
U
pJ
a
07.
3
x
..
W tOYY
at9 A
t np$
YUm0
Y
O
N N 01 O W
0 x x m
Y O
N W U
O u
J W
01
mm N
r
1p
a U J
Y
Y
Y N J
Y
p
NO U wY
N
o
00
r',0
m
m
O
J U
m m m E
O
J Y
N
mm N
mil fA
a U O�
•
1p l0 O
p a LA
Y W m
N O O J
O
H z t- w
zr0M
Y 0 0 0
m
N
r
EM
o w n n
Y
u
a
o
a
w
o
Vj
0z 0C)
o
01
Y p1
0 0 x
Y V1
•
a
o o•
x
a
o w
1p
Y Y W
m
Y m
o
OI OIYY
o
lnrnao
owmin
Y
N
J
N
n
O
Y b x
1.a
0
z
z <
0 �O 0
�
O N
w• o
O u�mY
O U m t0
E C x
0
o
0
zor
00 W
',O
00 N
O O Y O
O O O J
a
0
O O
O r "a r
atn
roxb0
aupi
s
NO1 O
Y z rn
00 O
o m w o
O
o o Y o
YYaa
�..•1..•,pa
r
oo�n to
Owoo
zEn t
p W O O
01 0 01 O1
tzi
U Y U U
w b b b
O N N Y
H z z
J J U J
amour
7C 7C
o000
m as
rr
pI pl
C <
L.
-jIS
m
w
R
W
as
w w
0 o v m
z x
�n o m rn
r .+rnr
Z 2 F
Mamv
rn o rn
Q Q Q m
m
�i
oo0
p0
mz
OI OI ON
a a m W
OM
Q
O N N N
O a v
CO Z H
O m Of
H m•
M
m m
00
01 N
O F fail F
rn m
a
a,
r N 0 0
m C 0 0
.+ •oo
a
�n •oo
o
N
o
M
S > S U
MM V10
O� M
F
o• M
• rn o
o a o
N
4 X H
M
M
m
v
m V'mv
m
O
m V�u1m
N
e4
m . .••1 rl
O�
C� M e•1
Ol
• a o
a
m o
a
m
o
U
x U
N
M
O
m
W a X H
rn
m
A
A
A
N r
w
�M
w
00000o
ooNm+N
u
�m
tm3i
x a
• o
a w H
o
f�
N
w d a a
N
N
0.4 Z E.
N
•�
3QXH
,y
N
f•l ...�
M m N
N
N
N m
O
r
w
O N.-IN
O
0a
fi z z
Ol
m
OOMN
U d> X
m • r V�
N
a
p . 01 rl
m
a• •N •m
p
.+
w 0:
•m •N
A
o
o ❑ m •-I N N
O
•y
m x U
N rl rl M
O
rl
a
Z
mMro
3 U Ua
.-�
Z
rcrn
Em
U d> X
.
z v
W
N .�
a
m
m
m
u
Qmoo.
H
O
Ln
eft
mN u/
O
N
Cv S M • O v
W
o
••
z a
W
o
H E+ •
F m W 94
N
r vm.1
o
w00
rIO
M
Z
YINN O
w w
O
A.0
1
O
O
v N
❑ d> X
14
H
.-I
O a
m❑
F
M
00
F
O W
a
o
0
£ Q
fA
ey
CQ
c
q
`J U
H
.a
r
W
W
H
H
N
O W
£ H O OI m m
a
O
V f
❑
O O M M
a
O
m q
H F O • o ul
E+
.+
r
m
O W
H
F
,Z H O N
m
A A O
.�
�
Z W W
>
o o
en
A A A A
>
Ha •M .,
H
dQ
U £O
H
m.a7C ,
H
dQaE.
H
q
W W F
O
W H a
❑
q
W W E.O
q
M O
a sW
2
m>
m d F m
N O
a s> W
Z
Oa
A
144 W
U
.+
in
r
Q
m
0
F
W ❑
~
q
r
a
m
N
a
E.
m N
r M
W
In
Y
M
W
m
• M
•
[/3
[O O ro
b O
N J
N m tv
tl ro
b O
H O
0 M b L•1
II £
O O
H
O N (P]
LL] b b1
II £
�D N
z ro <Z'17u
o o
mH10m
�o
z
ro<z z
o m
O I.3 W M
Clo
o W
r H M
4
0 m 0
13 m M
O
O O £
x r b 0
H
o w• z
O 3 0
Y
0 H
x r b b
H
F W• �Y
N p p p p
N
N a 0 0
ro 61 z
•L
H z N
II ° °°
m
H a O p
O
H H
W N O w
P7 O
10
H H O
H H
(JI N • O z
N
W A
N J W O O
1D
H x 0
O ',tl
J m tp O H
<n
q o
a H
z
tlH0
n
0 SSfnO
a
O
H
r
O
3
H
o
H
t9
x <a t7
Oro o
HHa
H
O O O O
z
H H
0 0 0 ro
O
ro 0
N O J J
z
N 0
W w w H
to
H H
H
N• W. z
N f+]
mO am
r x
x K]
O 1+1
W 1p W <
J O
OOJH
In
H
to 0
mUI J m
o x1
b
m
b l]
a 70
le
H
N
b
W m
m
H
W
m
m
z
H W H
DIa
0
111
C z
M
a
n
n
oz
xn
C10
zta
• ...
m
o �]
]o�•,a
z
Hm
rnn£
HomN
z
z
H
�• O
a II
(] x m
x
M
a4�
H
w W W 0a
p
a
x M.0
o u
o ff x
w
wo m
r
m
wm• N
H
O O H
W
N a J �v
O
N
H
M
U m
O
H
p
o
a w
m
a 0
NN1p W
O
1p J
x <IO
N O O O
O
10 O
�•
r, W
r 0 w
H
H H
a O
W a
O0 O H
O O
W W m
m O
N a a
1y (» to
m O
a H
O
F+ m m
47 m
W
H O O t7
•
1p ID H
OOm bl
W W
O O
O
H
P1
a
W m m H
H H
H z LL- En
w
0
a•
wroth
o
0
o H
H m r
o
o w Ln
oomH
x
o
[b+
m
�nmmo b
VO£i
M
to
to
r
ro
r
r
°
o G
°
M
H xbM
o
H
o z0c)
H
n x
w w
a
o
m
a
o z
10
H O m
tp
H W N O
H
a 00N
'-•
J Vlmm M
a
w
H
m
N
b
z z
O <
O l0 (•]
z m
O M
H O m
H
O• O O
O m O H H
o 0 o H
A
p
W
0g0t.
o
�zt.
00 O J
ry°
. o
00 m
O O J F+ J
O O J H
m
a
a o
a
to
H tO H O
H �o
rnw
03b0
mn�i
In
£ H m
{fl
t0 W o
H Z m
1p 1p O
J a N 0
O
W 0 0 0
H H
O O
H H o o
H H a a
awoo
t-i xr
Noiom
m J O O
zw
z m l I
m a
o w o o
m
maw w
w w
N g Y y
a a oo
H
o W o o
x x
w to V1 H
M t-I
rr
m to
C C
J
gI T
a
F a o 0 0
W O o
o
a
E
H
r mom
N O
vl N
H
A m
a '•
N
F
Mono
m o
m o
m m
a a
m o o
o •M
�n m
m a
H
m m N
N
a N
z0
W b
W
E-
U Q
Q
H
E+Moo
w x
m m • o H
a
N
U
F H
WW
z
O
U£1
£
b U
Q
M
F
a o N N
O
M a
z M H
£U
W Ul O
N O
m N
r N
r M
M
H
z0 om nM
H O N N
E. O N
H Vf
a M
Hoaaz
a az>a
0 a a 4o
.4 F
W m
m
w
a
a
0
0
0
0
0
0
0
0
0
0
0•
0
o
O
O
z a
z N
z m
z z r
m
to M
m �n
0
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
z 0
z a
z N
z o
m o
m r
m u
m M
m
r
in
r
O
m
N
N
r
H
m
P
m
m
m
N
D rn
m
D
P m
� rn
m
m
r
n
O
O
m
N
U)
3�n
S�
3m
N O
m 0
N O
m 0
0 m
0 m
0 m
0 m
v
a
a
v
aH
a''
a"
a•�
El
H
H
H
z
z
z
z
0
0
0
0
a�
a�
a�
aCQ
14
F
E
E
E
m
m
M
M
a +
a
a
a
F
to
a
N
F
m
F
n
F
v
v
v M
G
rHn
m
rHi
m
m
ro
ro
a
N
a
o
ce
w
cn
to)
m
E
E
04
O
O
H
E
E
H
H
C
C
q
C
O o
O
o
O
o
O
o
Y U
U Q
L
U
�
U
Qa
U
rat
m
y
PaG
w
of
a
W
N
N
N
a+ m
a+
o
a+
o
u
o
•
Oda H
fOA
£
Ada
£
a�A
£
0
0
a
0
a
0
Ot
w
a+ .•i
a+
o
u
o
u
o
•.� M
•.�
o.a
o
o
a a+
a
a
w
a
a
a
m
rgn
y
On
a
Qm
Q
E
S
gm
C
E.
y
1
m
4 '{
()
r
F+
t0
N
N
1-+
4+
F-•
F+
F-•
N
•!
i
r m
i
r
to
b
Z
o
mo
J
m
ni
o
A 'q
(Nil
Z
ro
H
+�
b+
o
(o
0
0
0
o
O
o
0
o
Z
7o
m
m
r
y
rt
to
o rr
O
O
O
O
O
O
O
O
O
F-I
•O
A
4
m
M
O
O
O
O
O
O
O
O
7.
Y-
H
4 a
•p
r
.q
H
m
4•
r
N
C
~N
ON
i
O
C+
E
a
a
a
a
a
a
a
a
H
N
,ro
r
Q
O
m
1p
1p
1p
�D
tp
�O
m
A
k
r
�n
r
Y•
1-+
r
o
0
0
0
£
---
r
q
w
ro (mp
U
a
W
N
m
m
U
U
m
m
p
m
W
m
N
a
m
N
J
a
[m+
s
m
m
W
O
1-+
1-+
4
ro
r
(p
r
r
w
r
:J
0
pn
M 1p
1q
rt
w m
H
r o
H
4
m
4 ..
r
r
n
W
W
W
W
W
W
W
W
n
a
a
a
a
a
a
a
w
K)
rtOj
i
N
r
Frt,•
O
tj
m
r
r
m
r
r
W
W
N
I
r
k
r
4
y U
1-• i0 J
N
a
O
N
m
J
J
[mil
W N
O
O
O
O
O
O
O
O
.ti'
M
~ 0•
O
O
O
O
O
O
O
O
Z
1+
Zq
y m
o
3
A
F+
1 +
to
w
a
W
to
w
to
J
S
p
W
J
J
m
W
0
-3
b
H
0
m
y
m
J
m
l0
O
O
O
m
m
ro
pw
�D
m
m
tp
a
N
O
m
O
O
m
J
W
U
N
O
O
F+
3
m
m
z
to
N
W
U
N
N
m
m
m
ON
O�
m
OI
W
w
F+
m
a
I--•
F+
1--•
1-+
F-.
1--•
I-.
rn
N S
w
W
W
O
O
O
O
O
m
(n
U
J
a
N
F+
W
W
w
m
O
a
W
Oi
lD
N
J
N
b
J
^l
tm
a
m C
V
1-�
I-+
I--•
Y
1--.
I--�
Y•
W£
a
a
N
W
N
N
O
J
m
Q
M
N
N
01
pi
W
J
U
t0
(-•
Z
'mod
m
N
m
O
W
ID
Ol
a
O
m
1.1
Z
m
f 0
H
m
J m
m
�z
�
o
H
O
m
o
h•
W
tp
�'
O
N
N
O
F+
t+ C
o
to m
b
o z
z
o
�o
0
io
0
0
,d
o
m
m
m
W
t+
to
0
I
i
i
0
W
0
z
a
a
N
U
W
W
ti
O
z
PC
N
a
a
a
W
I N
N i4 H 71 >�
°w ££ a F wa w a m a
N N W W O N W V)W
Q Q U Q U 0 Q U Q U
Ea 1cw E-m zd xm xw
N H E. E H
W W u U W U W U W U
0 o a o a W a m o w
Vl VI U V) V)
a a0 a£ zd a a
N N£ H W N M
U U£ Cd U£ u U£ U z
H H H H H H H H H H
FA a s a s a a s a s
N N N H H hl hI H H H
W W W W W W W W 0 W
a a s a z a aOG w s s
W W W W W W 0.0. W W
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
O H H c v O O O O
N N N
S SS SS S SS SS
U U U U U U U U U U
W W W W W W W W W W
W Vl m V) w m V) Vl to V)
0 00 00 z 80 00
H H H H H H H H H H
D DM) D� 9 D mD
4
U U U U $ U U U 4
=z I
PROJECT
JOB NO. -51V'i
CLIENT
CALCULATIONS FOR _
MADE BY /✓1
DATE CHECKED BY
DATE t t�I�S SHEET
I OF
ri-1'.Y, 05
ki v,_,E-N'%G--] 'N I E-R 1=N=Gh ,
Lr.� �.�4,rv4+'i•'Y_r 2pni'n���.�'-'•r v��s:-:-��•�ai I�'fi-�i
FORT COLLINS. COLORADO 80521
I4- - Z /V1'.%i7�jla L1
v��� r ,__,�✓,G�c /�+-���1 E S�Lrc:J / 5?>c7 _..,_. _ ._
'Pr2_ e,-J
l/CTwc�
�Ccn o,�Js
I �l Pi0 .4+-tJ
2o.Z� .
I> h-Fov.1 /✓1�. �►1 t�..�..`) G'O^.�c-r ✓��,-_=.f %/�✓',C��:�r�C_r.IC
Z) Sl ..,cam T�`-1-� ��iiG G+�+�� I S STniv✓7cTi�-ILA L� C�;
S�f�!•la.�l 4�0
1=",-J /i e7- . dJ
}`moo i-.LGrIoP C-> /"j /✓l,J a- i-JT L�iZ i✓C - __ .
Sce C r10 J 5, P� o
I
ktrc A /. 5 - ) C x Ps,�Jl�o•�J I��°-a.►� ��.c�� �.�/
1 /
Zo zS ry 2-000
r4 SS ✓��^�(� /��.e rJ Tim-JJ�'�io"�f t�i►T _T�i+-�J Ole
• STvis.r�w.. _/� �"� S it i�.e+tfc�j _o.✓�'P-: y�+-c v.J'Si.Z.---------.
C rd c�e�G•,-+/�E✓./r B SE G•r io:JZ� �.S ,° Jc� .yJ -
_ 'i/-✓'c_C�ec-.r.T.a.. �l O� 7TfcT_fi��t�` CiiV�7�/ /1/ !✓1�_pc_C... __
G-
_.
t
1
=z3
.a
xx x
x x x
x x x
xx xxxx
x
x
x
xx xx
x x
x x
X x
x x x x x
x x x
x xxxxx x
x xxxxx x
x
x
xxxxxxx
w
c
M
N
H
E1
O
F
U
W
w
N
m
d
h
U
Y
G
?
w
+�1
C
H
M
O
v
�
3
0
O
W
W
111
«
«
C
V
+
«
y
H O
«
«
«
«
d
a
« m
«
w
« w
rn«
w
o
« O
# a
.� «
�
.O
•ti o
#
Eypw
u
«a
cv«
z
+ m
o«
N
H
3
3
« a
a«
aD W
w
0
°
« w
«
O 0
w
w
3
4J
.wio
« N
M «
«
>1LO
m
m
U
M«
rFi
W
i«
C Q
«
Lna
m
N
77
z
4
4
4
H H H
r
E y
£££ H
£££ y
£££ H
££ E H
0W
N
r
WNr
o
(]m£
(i Am$
(i (gym$
(iAm£
AAm£
Y
Y Y
Y Y
Y t0
m
G
z
Y
b
m m
b W m
Y m m
001 a m
a W m
w
b
ro
n
4
a •O
w (o •O
o m 'O
vl • 'O
o 'O
o m
70
r
S
r
r
r r
m r
J• r
MI
0
O
O
M
l0U W
mamF+•
a N0
Nwmct
JOJ
o
�f
z m
(c
r•r
rr
ct
(*
(r
n
w
w
x
a '[7
m
a
a
a
a
L.
ff
03
1 n w
(o r
r r
o m Y
o m r
o m h•
70
YYO
N0 rO
w(OorO
UoYO
A
(D (D
(D 10
N J E
m a L
wm tw
U O E
U O E
O
M
H
N H
• U
O• W
J• U
O• J
m• O
cy
"too
b J
U J m
O O N
O J a
W m O
m
O
C%
O
O
m
N
m
m
m
O r
m
O
N
m W (D
m
Y 0
Y Y &
Y Y &
&
0
H
•O O m
••
J E
m w E
WY E
(c E
I m E
O
-1
F+ (O X
U
r (p
r m N
Y U (D
m N
J J (D
W
O
r W
J
m r (D
m J r N
O U r (D
O r (D
a J r( D
O 0
m p
J ".1'
a is
Y y
O:3
N N
N
O m
O D U
m m W
W U
m W J
m
(D 7
U
NOm
Uw J m
Um0%W
mNm
w O a m
H
1
D%
FH• ((DD
a 0
a s O
a n
a n
a n
z
O H
w (t
m w (f
m a rt
10 (t
a t0 K
M
r V
O m
V•
m V
O W
•A
m
w O
N(O
w O
(o O 0
m O
oO o O
K
m
y
7
b 7
7
.
to 7
O
N
N I 4)
N U I W
N I CO
O I
J I
("•
ro
M
J F+
(l� O N
O O Y
O Y Y
J m Y Y
m
A
G
Y
Y
r
O
O
Y
V•
Y J
Y Y a
Y r r
r J
O
m O
H
O
VJ
p
(D
N J
ONE
Y a m
ma Na
N O N
a JNa
O
UN7
J
J N7
C
0
O
0N
W
H
C
w o p
wmw p
mow 7
m0CL
m(o O.
m
'9
m aO.
U W aO•
J JNO.
Jm
O a
V•
r
r
O
O
Y
a Y
a s Y
a s Y
a r
a O
(D
�0 t0
1p t0 J
tp (p a
m U
m J
r
O
Y m
Y Y U
0 0 W
O N
O a
m
m
y
O
O
LLI
m
U
J O
N a
O
N
0
N
-3
y
O
U O
m 0
O
m
�
•O
Y
Y
Y r
Y
m
�J
m
Y ll•
W N
O
m
1
J
m U
W a
Y
m
O
U
O
N
m J
a
m W
O
m
•+f
3
o
w
(o
m m
a
(n
o
H
v
r•(
H
(O
a (o
m
(D
n
Y
o Y
00
0
0
0
a
Y N
(0 10
m
U
a
N
mJ
b
o
(oo
00
o
r
m
i
r
C
r
Y
Y
Y
O
N
Y
In
Y N
O
(D
C)
O
(D
m
W m
Y
Y
cn
m
Y
W
W N
m
a
J
(0
N
m
w
Y
N
O
J
a m
a
a
U
Y
a
a
a
a
DO
p
a
(o
a m
(n
m
£
(o
Y
m o
0
0
O
Y
N
O tp
\O
U
O
W
m
U
W
O
a
a
m
J O
O
U
a
U
m
W
7
O
5
n
£
Z
m
O
Y
m
[]
3
m
r
a
Y
�
Y
H
iO
U
�U
b
o
M
[•f
N
+FZ T
i
i
A
1
1
1
1
1
1
1
1
1
1
M
w
r r
mM
N r
rnp
rnN
a
.-10
O
O
.i
t0 M
l0 N
�0 M
V) N
�0 rn
m 0
N
i0 N
O N
O N
O l0
O N
O M
VI
.-1 N
ri .�
.-� .-1
.-1 ri
ri .-1
N rl
•i
r
. o
QO
OO
V110
mrn
.i P
MM
N
rnP
QQ
rnrn
rnrn
rnrn
mrn
.-�
p
Q P
Q P
P P
Q Q
e-1
N r
t 0 m
: n rn
N N
rn r
N r
1O p
SON
m.i
rY N
mM
rn M
r.-I
t0N
Nm
.-1 ri
.-I .-1
ri rl
rl rl
rl .-�
•-I rl
:(/
N
M
M
�l1N
O0
a0 �0
rnm
NN
NM
O O
rn rn
O O
O O
ey .-1
.y .••�
rn rn
Q Q
rn rn
rn m
rn m
rn rn
Q Q
Q Q
Q Q
Q P
Q Q
r N
r w .-1
r M rn
m N m
N N N
P N P
N
M
M
O rn
m N
M
N m
N N
l0 m
t0r
O.y
Oti
Oe1
ON
ON
.-1 �-1
rl rl
rl rl
rl rl
•i e-I
ri .-I
Ol0r
MMM
Ol P
r
rw
W Qw
NmM
N �0rn
Vf to
ry .
M
N
Q ul
O C:
40
m m
.-1 N
M N
O O
rn o
0 O
rn rn
P c
rn rn
rn rn
rn rn
rn rn
P Q
Q P
p p
p Q
p p
rnNrn
�0rn c tt:
�0 �0 .y rn
m:O �O
mm P
tON mtD
N N.-1
m.-Ir c':
r l0H r
P M
Pr p
O rl0m
rnNr
mNrnb
r ONm
tO O.-1
QrN
OPmO
tDMN
%0 M Lflm
%D rnGo
Vf ON
�DN r
OQ�If N
mmr
oo.-+rn
000r
o.+.+
Ooo
Mo.tiP
.i rl 'i
rl ei .-1 rl
rl H •i rl
rl N
rl N M
eel ri .-1 e4
N �O p
O m Q 0
�0 t0 p 0
O N r
�O
m of �O
N N m 0
1p
•-�
N P Q
r• -1 O O
� O.� m 0
O
M
r M M
e y rn rn O
. r
rn
\0m
rn
r-1 OO
r NN
M N Nm
M O O
M 0 0 0
M 0 0 0
rn rn
O
ry. -1 ti
m.- I.- I. i
O
w m m
O M m m
O m m rn
Q Q
O rn rn
O m m m
.-1 Q Q
p4 P p p
rl Q Q P
rl Q Q
rl P p P
m
N
rn o m m
N O M m
N O m rn
. ti O m N
o f
O O m
P
N NW O
t 0
. ti
.y rn N
.ti r rn M
.i O h h
rl O p p
M
ti O Q
h
N N M N
.-1
r
O
O
O
O
to
N
O
rn
m p rn
M l0
r1 r m
.-1 \0 \0
.1 Q
•.
rn
Q
.-I •Y
m MN
NM
O
m
rn
.i
p rn M
O
k0 w �0
o.+m
om
or
o
0
ooM
i
.+ OrnM
p r o m
N O NW
W0 r a
w
r M P
O
O�(1 1D 10
r 0 0
pm01
O
r NN
rn
rnMNQ
O
.i 00
rl OOO
'i O0O
e1 OO
•
e1 'i 'i r1
rn rn
rn rn rn
rn rn rn
rn rn m
O
rn rn
Q
rn rn rn
O
P P
P p P
Q Q P
P P P
Q Q
7
Q P Q
rn
E. .,aa
.+aaa
.+aaa
.,aaa
V
. za;
E.
. wo:z
U
E
Od x0 C9
x (.9 U' LD
x U' 0U'
x U' U' LD
z
x 0o
a
x LD UU'
z
w
r2-:S
`
N
ftl
w s0
0
»
aG)ax M
claG)x
H
t
JNPt�I
A7
ro
a��r H
�1p�r
tvi b to
u
E
oo0 C
H
o
r
ro< •A w
O O z II
H
11
N H 10 N
tO
m
LM
HM M
v
o ro00
0
t' H M
Ca
aaa x
aaa N
S t' b
H
N W •A
b
r
O 0
Dot
t w 1+
t0 m w N
0 0 o'Qi
N
t0• JOH r
t
ro z
z
rrrN0
rrrNR
L'] O
t0
O\ aU OM
a W UO
O)
h1
UONOH O
tJ
1p
N1+
O(D
UOmU�
aJWOQ
CL
r
tO
b•Or
ro
C
e o o
H
m
o
z
N
r
1H•1
v O
x< 4 v
O
O
M 0
H
tr tlM
rr 7
rr M
r ON
z
ro M
O
000ro
O
UN &
aNH
r
H S
to to OH
m
a N
W ro N
O Ol tp S <
m
t^ z
••
J J H 1t
r W O fG
w
o
N tD m II
M
U
O r l0
O R7
N
ytl
b
J
omor lam•
as r7'
N
a m O r 7 r
m N O N N
N O1
N
>
N
N
r
Q3N
U
M
01 J 01 a
z
O M
C
t' on X
M
r
o
wmcnv w
t
0m S to
as
aaarH
rn
u
• 0% • o
b
S M
to t0 H
t0 m to r t•-
m
om• J o
H
t
H H 1+
rrrm&
tD
mt0a
M
aUr
rn W am
v
o o
m
N r
H
N rOm
O mtOO M
rrm
o
b
000n r
to tc tnWr
H
a N W W
o
tp
X< 10 n
r
.7
r
o
b
7
c0
J
o
atn
r
0 0 0H
m
N
o
to
r
w t0NE
rrr
r
J
O m J
;U N
N O U O
W N O"o
• J W a
A
W 01 O O
U W W Ot 01
r H
N 10 J
r N a6
r W O
0
O.
C
.
N
U 0 0
O m U U
W O t0 O
a
N
J tp a
J 01 U Ol
J
o
w
HZ tbw
J
U
M
•A t• O M
tO r
•
n
w• to
H
b x
ocn tom
HO
etn
N
N mmt0r
0
N
a s
W
a
m
tp
H x b M
U W N
J a N
N
O
vzn c)
wrH
a
W
N U
(J (] S
•
a
O W
S
U r
O
a p t O t m
U
r
J
N r
N O
a
t0
H% b S
m J
N N
W
z C
•
U
0 0 'P
U J W
NmN
00
z O
aptr
b Nr
w r
H
U tnJa
a a
a a
H O
O t'
r r
N H
it z t^
U a
W W
o
b
0 O
•A
O N N
W m a
a
0 0 0 0
a O r
a m W
a
ra
ro 3 b 0
wr
NI•+
$ H N
m O
T W
J J O
H z N
Otr
tDO
O p 0 0
v
J QI
U Z.
U O
Ot m
r r a a
m Ot l0 t0
M N ;I tI
O
cw.i IN+ con coil
H W to
N b b b
a s r
a s
r W W a
H z z
tD t0 r
t0 t0
U a p
W W
M M
r r
u o r
U w
Ur o
rnto
C<
r H H
H r
a N U
N r
U O O
m m
H r J
r m
ro
O a O
r 0
M
a
-sop Z
rz-)
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
R
W
a
m
O O p
10
E
•-I N N r
Q Q Q m
N m.I P
0PII F a)io
kD for
O O M N
I I m Z
O O N m
rn rn o P
a a w w
m rn o M
P P rl rl
P P e-I rl
O O r
w Z
~
�(f N
O Q$ £ W
N N
Ol M
O, w F
m M
P
P
Ol N O O
P M O O
O
Q
O
P
S> m U
m
N
m
P
M
�-1
N
Yl m m 0
...
l0 M N O
.-1 • M
.•+ N
E
e•i • M
10 N
•O10
NM
W Z
r
r
m
> a Z U
o
N
S Q X
M
M
N
r
N
p•1
.•1
Y1
.-1
m m O M
P O1 M
b
m .••I m m
O
M \D 14
M Ol tD N
O
.••1 m .••I
U U
w N
�fl
rn
N
W QX.+
rn
r moM
mC4
E.w
w
•N
Pm.•1
FA
0oo
mmo
o
u
J4 Q
a
U
• o
o
a m
o
c�
M
m
woaM
..
SQXH
.i
.y v
Orn CV
M Mw
rMr
S m m m
P~
o
m
O
�.
m y
o
0
w
o
a a a .1
o
q
rn
m
mm ui ..
U a> X
M
N
P01m
w
F
.ti
.ti
., •me
M
a
�n •Nm
�o
o
• .I r
A
.ti
W S
r
o
O
U .i M
O
.+
w 9 x U
D
ED 0
.�
W 0 •••I
a w
Z
Nr.•nP
UU a
w 0.,
W a w
z
PO+M
c
r
w rn
z P
0
W
in P .�
�n
Ua> x
w rn
Z P
U
w
v m v
O
W m
m
.-1N
N
w w
w
NN
m
m
Q
Q
M MOO
O
m
M e-1 m rl
O
M
w z N .0C
w
O
7 C a
w m: m • O l in
w
O
z
E. • r
m
E M M M
H E r
+
0
L)11..
z
M. w w
o
m o o o
m
U m
z
P m m
H
ww
O
• • • •
w.aaa
O
ww
O
O E
m 0
H
N m M
Q a> x
O
a
m 0
rl
O U
w
E
W N
O
w.
m
E.
ow
o
o
a
o
w
£a
�a
P
D U
H
M
N
W
U
H
N
r w
£ MON.•i.-I
a
O
OI
m
q
£ H 0r a
a
O
O w
"[.a • O M
F
•-I
M
0 W
.+
Ir
H F O • o M
E+
. O
Z HOM •P
w
n on
z w m
.+
>
Z HOW •m
w
gnu
a
OU
M a• r N
£ L) .- O
M
0
Q a S
W W F
7
U £ O
w Ha
O
M
0
"m • m M
£UtV .i O
M
0
014 a
W W
z
r o
as>m
rn
waFw
z
w o
aa>
UO
mo 0
S
o
W Q W
.+
ri
m
w0.
a
Q
w w
m N.
O
a
m a
w
w
m N.
o
a
m N
+ M
r1 r
r M
a
w
E
m
m
•
N
M
r•I r
r M
a
w
E
w
Y
N
♦
N
W J
W
+
H
t
r
C.
H
r7
tJ
J Y
N
y
O rob
O
Y
O ro
b
O
Y N m
m
p
b +1
tilro[
tl
S
Jn
Y
to bRl
B
S
aU
o
U
0 Vj
m C7oA
O tnz
mH Om
m
roC A
O w
z -0
ro
H[a tton
O
O YJO
4
H C
O
Y Ym03'
p
O H
Y
m m
om 0
OS
b
V
Srbiu
Y
w m •p
I a I u
tl tl B tl
N
N mow Y
z
ro l+7 Z
`L
tl tl II tl
m
W rn o Y Z
G
Y 0
Y
H
O Y O J
N O
m
Y
H
a 0 O H Y
Y
a
O
'A
OO J OU
1p
O
'A
OUJ OM
w
Y
J
O
N
O
Li
w
U
Oto:,ON
O
C
Cb'�
O
H
O
Y N
H
N
Rl
O
NNN
1-1
O
X 410p
aNJ
Y
p ro
r
O
OZ
Ya001
Z
W N
OOOro
O
NNalO
N ro C1
S
N
Y
N a•
mm mH
�o
Y
m• • H`+
O
-3
Ya J
r S
O
"1
a0 U'S In
N
O
Y m m
U
U
0
O O W H
m
sv
J
m
A
b n
y
YN
m
N
N
N Rl
N01 Y
it
a
U
Ym01
it
a •2•i
C)
w
X 10 0
n
m N
r 0S
Y U m J
Z
O W m
01
Y
O
W NwN
X=
O m
Y
O
NaUippw
O
II
N 1p
S ['1
Y
II
m N K
01
Y W p�
r
N
a Y O
a
•
m Ot W
Y
�D Y N
Y
Y N
Y
Y N Y
J
N J N
a
U
a
W
a
w O 1 O J
J
Y
Y N
LX" A A A
O
O
w Y a N
O O O Y
Y
O
N Y w m
J
O
N N
m m m S
J
O
m a
N
Y U U
'A N
O
a 1p O
• Y W J
•
U Of N
a a
Y N
Y W N
N m W
w m J o
Y
Y X b S
N
w r O tq
N
N
O N
Y m r
Y
O
a W•
S
O O O O
tb"
N Y•
S
O O O O
Y m N
m
Ll
N w Y a
r
N a Y N
r
O
tl
tl
U
m
Y X b D9
W
m
L'1
N
Y N
0 n S
Y 1p
•
a
OOf
S
a
ON•
lD
Y W 01
tp
Y Y Y
Y
a U O1 m
O
U O1 a s
N
�p
O O O O
w
Y
01
O
0 w 0
W O
H
W Y
O U l0 U
O U �p N
N
nseac
w
�0�opzrr
Y
o •
b
o
o. m
z
o o• m
arn W
oo�oa
a
a
a m
H O
W m
0 0
pY
ro3b0
nO1im
• Ol •
±. Y rn
. W
m m O
Y Z m
m a O
m Ut VI Y
0
m {O a 0
Y Y a a
Y Y a a
U Ol0w
C9 N m r
w010 �O
o Y Y Y
Z N I I
m o 0 0
a W N N
O H m [D
O U to w
N b b b
a U a w
H Z Z
m W Y J
N a o N
x x
m m o 0
[tl U7
m
m
4�;7-e-
= Z`7
r
W
Q
a
as
w w
rl m N m
01 P M N
.Y. W
P NN.ti
MMCI m
z z E
R R 4 W
M M P m
M M N M
m m E❑
m z
OI OI O M
mO�.1 M
a W m W
P P e"1 p•1
P P ."1 rl
O M O 0
P �Il P 01
❑
O 01 Cl
O M m
m z H
•
a+
m 3
r$Hl
01N
O~i�
O F W F
P
o P
P
ti
.a �000
moron
o •oo
�o.. •oo
m
N O
M N O
i
r
a
O F O
m > 3 U
N
tl
II
M vfmo
Err�co
o o
(w7~mo
m z
N
qO
m
a
I'•
QXU
.••� �/1 M .-I
rl
W
.+•
H
O IO 10 u�
.ti
C7
W
l0 .-I
M
Of
N • .y .y
Ot
O.
P
O
P
RC
M M
O
P N
W
ei rl
O
.1
U z❑
ON
W 4X H
W
H
E
w
F
00 M N
U
m
o r• 1 0
a
S
x
M
U
W
Yl O
M
r1 M O
a m
P
W
U
W Oam
�o
N
U
o
.ti ,ti
W azE
M
4
�.+Nmin
34XH
vNiv
rn.tim
W
.•I
• .
O
P rn. N
N
W
NrI �O
NNP
H
P
O
m
Ol m N
S m m W
O
m
❑
m
M M
O
O
P r M
H O O D
O
N
w
E
x a as a
.+
❑
D
m
O
N r O P
m Ol
U OI > x
O
m w w
V.
O
WE.
H
N
X
w
,W
z
b
M
10 - N M
O M M
a
O
S
o
tl
O
!•
O P
W S
tl
N
o
U
O
.ti
C7 ❑
II POM
W TS U
O
.+
O
w
rn
U
w£
Z rn
U O> X
U
m
U
P
w
rrN
z
O P
Vt
W
NCIM
z
W
W
W
W N
ri
Cl)
E.
Q
Q
r
%
m
W
%DO M
O
P
H
E-MM � .
In
>
r •OM
W
O
W X
V) W •PLO
7C a
W
z
E.
M N
01
F m m In
rl
O
H
O
u
MNN
z
0
N M%0 Ut
••••
U w
W w
F .i P
z
O
W 000
W a w a
z
o
N'1 N
O F
H
.-I
O W❑
W
❑OI >x
M
rt•1a
m
H of
m
0
v
L)
w
of
-
C
H
m W
M
O PlO m
aH4'
O
O O Ptp m
01
ly
em-1
m W
z
o •.tim
F
'+
oHE
mo -.-
m
O W
E
.+
.-I O
m
ON • m
m
B tl Y tl
N z H
U O N e-I
z W IL
W
tl B A
m
RC
O
H
al a=
H 06
z •0 fl
°a
oU
z
s
o o
m O
❑
r�7. wE
a4 > 04
0xU
z
Wo o
O O
h
01
w H.4
W O
o
w�i
U O
N
Q,
S
tl
W 4 W
U 00
00 •
rl
F m
C4
Q
wm
O
.+
O
4ix
❑
WmN
rN
O
4w
mN
M
a
F
W.-Ir
P
a
E.
f M
M
W
m
f r M
M
W
W
N
Y
N ro W W J
$ S E S C ro b O N J N m m O
Y m p'pm tl s 00 ou n m
N N N N N a N 4 N M L'1 O O rwM 0m 0 H
p 'o p V J p V N •O b S r b p Y m �o Z •P " S
Y Y r Y Z tl tl tl tl N r N O 0 `a Z N tl
W O N (n 1 F+ o N %O Y H t0 r o 'A -3 Y O
�Y O rt N ff N (T to Y p J J a 0 0 H 3 N
m Y Sb c) C �n
p O p O p O p O to O m H 3 t+ N o
i O E E a p E W O O 2 b0J m O
3 w 3 to Jam• N N3 N o autmo Z H on m
ro m ro m ro m ro m t0 Y N• H H
ff O fT to rf O 'i to 0 Y O• m m x ro
m O m w m N m J O O O N b b 0
m m m m H m
O O tl tl N cn N rA q m
fA :'1 N 4�oa N w N n w Z 3 m
0 n 3+ n n o w a o o cci
0 rt 0 rf 0 M 0 tt tl N N K
0 O H r 0 O N Y a m
O O m J O m a to
N W N
Y Y O r
H r H r H O H O N a r
b a b Y b J b o In �O m m
N W a N I n a N a a N O Y m
p m top N pop Np O a
lb
0 p O W Y
N N N N OC O 6C Y O m
y a O a . N O O to
a o.
r r
r r r o Y
J a U� J a to N
n J a 0 m a 0 N a 0 a 0 O
O p to p N 10 a
0 0
n in o 3c o rn
E 000u�
N H
m K
L. ro
b b b b tl A
m Rl m lV r
m m m m u� a
XJ p p •p a out
O 0 O wv Y m
m m J r co m m a
a
Y
rn
M M Y H
LLl LH9 M LH•1 9bo
v S 7o S o • O
o • Y m
p
a a a
v 0 v o v w v
£ m S rn E 0£
N N co N
to Y J ON W
m W W 0 0 r a
�D
a a a a
C C a o
En� S rn S rn S a r
N N N N m a
O to Y l0
N l0 O In O m 0
Y Y
v Yv Yo Yv o0
N r N O N O N Y Y 0 0
N N N J N O m W Y 0 0
Z N Z a Z O Z Y m 0 0
O O O O m m o 0
0 0 0
0 0 0 0�•00
0 0 o u,000
C Y C Y C Y C
N a m Y m O N
N W N n N J N
Z m Z N Z a Z
O O O O
0 0 0
0 0 0
0 0 0
ro
b
O
m
m
c4 T
=jl
1
i
1
1
1
1
i
1
1
1
1
1
1
1
1
1
m
0
0
0
0
O
0
0
0
0
0
m
E
.a
rn
N
-
r•I
X
F
m
M
N
H
N
m
N
m
N
m
m
o
rn
v
r
o
c
co
In
u�
a
'7.
rn
N
m
m
O
O
m
.•i
W
w
N
O
m
m
P
N
M
O
O
M
r
N
M
m
N
rn
rl
F
�+
M
P
N
m
LG
m
N
M
N
O
•-I
P
m
�D
m
�O
O
O
O
O
O
•-I
.y
2�Pgj:
rl
N
'i
.-1
•-I
rl
rl
'i
m
M
M
10
P
m
ON
./
r
m
rn
O
M
m
m
P
m
m
m
W
Fi
rn
ti
N
m
m
m
rn
m
O
r
h
P
m
m
rn
m
rn
m
H
W
d
ei
N
N
N
O
M
O
m
m
�i
O
N
M
M
M
P
N
ri
U
F
O
5
M
m
M
rl
M
m
m
m
m
w
w
£�
A
Z
O0
0
0
0
0
0
0
0
N
O
O
O
O
O
O
O
O
E
S
N
a
h
r
m
N
O
P
N
+
k
X
N
M
M
f
#
1
t
x
m
k
«
N
+
+
O
«
#
«
«
c�
.+
•�
r
r
r
P
P
P
+ W
+
O
M
r
m
m
m
rn
m
m
m«
« o
m
# a
k
a
t w
i1 k
P
M
h
N
tO
N
m
ko
�o
4 U
«
m
m
m
l0
rn
N
M
P
P
rn
rn
rn
rn
rn
rn
N
P
P
P
P
P
P
P
P
t •,7
t
�
« m
Io «
.•i
o
#
x
ul
m
a
E.
# a
P#
H
ti
2
0
0
0
0
0
0
0
0
k W
«
a
1-1
O
0
0
0
0
0
0
0
0
m
a
o
0
0
0
0
0
0
0
« Q
«
F
u
t$
G t
fO
M
W
O
P
N
\O
r
O
O
m
i1
m
O
r
m
M
m
m
O
N
m
O
O
# U
N t
V]
!�
rl
rl
••1
rl
rl
N
N
N
+ S
> +
O
O
b b b b by�l > YO Y� b b b
HH HH 'L' yH -3-]H HH H
0 00 Q0 00zz zz z
Vl m 7N pl M m fA M m N N nnnn nn nnN
zz zz z zz zz zz z
00 00 0 00 00 00 0
O O 0 0 w w F m O O O
N N 00 m 0) W W InIn J J O
0 0 0 0 0 0 0 0 0 0 0 0
00 00 0 00 00 00 0
00 00 0 00 0 0 0 0 0
ro ro ro ro ro ro ro ro ro ro ro ro
x7 w b w w A w w w w% 40
00 00 O 00 00 00 O
N FI N 1-1 FI M N N M I-1 M M
rr rr r rr rr rr r
n n n a 0 H n
[H M Ln M M M cc
a u n n n
M gU M W O M yO H w M w w
'S SH i Y N [-l� I q H 1 M7 i N N
3 � q q
N r y r o 0 r w r y r r
LM o Lo o w al o M M v o a
0Nl npa 0m cev L-jn a Ln
It
n ro n ro n n ro n ro n ro ro
H H m H S N H `+ H Fd H H
m H Hx z Hx Hm Hm m
n y n :to 0 n b n y n b b
w N L•l N N O N
2 rp 2 (aO m V) z to t-I 0 cao m O Q O co M O M O O O U
74 T
s 33
Flow Transitions in Bridge Backwater Analysis
(�4) e 32, Le1
No
•i r
1 typical now
' CR � I �. transition pattem
ER
Flow
assumed flow transition ,
� patter for 1-dimensional
modeling \
Figure I. Conceptual I lustration of Transition Reaches
The flow transitions through a bridge crossing, that blocks a portion of the
' overbank area, is typically modeled with four cross sections. The downstream and
upstream sections 1 and 4 represent the full floodplain conveyance. The bounding
' cross sections 2 and 3 represent the effective flow area just downstream and
upstream from the bridge. The bridge is modeled with the bounding cross sections
and additional bridge data.
The question of how far d it qu does take for the flow transition to occur, and the
location of the downstream and upstream sections 1 and 4, was examined using
limited available prototype data and two-dimensional models of idealized
' floodplain crossings. The study was performed by Mr. John Hunt, who submitted
the project as a MS thesis. The work was performed at and supervised by HEC
staff, and is published as HEC Research Document No. 42, "Flow Transitions in
' Bridge Backwater Analysis." The following are excerpts from that document
sections on results, conclusions, and recommendations. The figure and equation
numbers are those used in the report
' from: Flow Tram m Bridge Bwkw= Analysis, HEC R==b Do unm 4Z Sept 1995 t
s34 1
7.2 Expansion Reach Lengths (From Chapter 7. Results)
The expansion ratio was less than 4:1 for all of the idealized cases. The
mean and an values of the expansion ratio for the idealized cases were both
aro 1.5:1. a idealized cases included a wide range of hydraulic and geometric
conditions. These observations are quite interesting because they indicate that the
traditional 4:1 rule of thumb will over predict the expansion reach length for most
situations.
Many independent variables and combinations of variables were investigated
in seeking a possible correlation with Le. The variable which showed the greatest
correlation was the ratio of the main channel Froude number at the most constricted
section (Section 2) to that at the normal flow section (Section 1). The best -fitting
equation for the expansion reach length is
Le = — •298 + 257 (Fo2) + 0.918 (L�) + 0.00479 (Q)
FCi
for which R = 0.84 and Se = 96 feet, with
Le = length of the expansion reach, in feet,
Fc2 = main channel Froude number at Section 2,
Fct = main channel Froude number at Section 1,
Lobs average length of bridge obstruction, in feet,
Q = total discharge, cfs,
R = the adjusted determination coefficient (the percentage of
variance of the dependent variable from the mean which is
explained by the regression equations), and
Se = standard error of estimate.
(17)
Similarly, the regression equation for the expansion ratio was found to be
IIt = I—` = 0.421 + 0.485 (Fe2) + 1.80x10'5 (Q) (18)
Lobs Fc t
for which R = 0.71 and Se = 0.26.
I
',
I
I
I-
from: Flow Tra mUn is Bndp Backwater Awbrs a. HEC Rawc6 Docvmw 4Z Sep 1"5
2 1
I
[1
I
I
i
I
1
I
I
I
I
I
�u
ri
I
I
I
k
4
Q
I
NATIONAL FLOOD INSURANCE PROGRAM
FIRM
FLOOD INSURANCE RATE MAP
CITY OF
FORT COLLINS,
COLORADO
LARIMER COUNTY
(SEE MAP INDEX FOR PANELS NOT PRINTED)
COMMUNITY•PANEL NUMBER
080102.0012 C
MAP REVISED:
MARCH 18, 1996
Federal Emergency Management Agency
'N
as
�z
'�
r�
a
Ta Tm
V
D0
Z Z
;m
Da
zC
ON PA
_
9
3
N
9 _
2 2
2
of
i
c X n
rri
m
_
r
m
,'
z
ga
13
O O Y�
N N• ti.l.�
0 0 0 G O O O h I A O O O Q O O n 0! 4
0 Y
U.
W
W
V
Z
0 a
N
O a
Q
M
7
W
M
.d
7
O
a
3
W
Q IA
U
W
.'�
W J
O
z Qv
u
W
_ Cg
°
L9 U.•
W Li.
15
qW
W
W Uu.
F-QmJlu fV
O •-• 0
0 0 0 0
0
Z
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
�
.....O.��Y
CO +I7 p1
.�O�MnnCpM�n.-•O%OhOOpIN OOD
Q
3
Mv1 v11n
�O �O -phhp%u'1
V1 v1 V�Ip ap p�O N.thnhpl
>
��
0000000000.-1.-�.-/.4.-•.-I
.�%p
.�N1N NN NNNMM
� W
8
p� p% pn
CA O% pl p%
O% p% at O% p1: OI pl O\ 01 pl pl p% p% pl p, OI � at O%
O W
i
���
��S
�.7�.7.7�.Y���.Y�ddd•7d�Y
O W
J �/
2
��HpI
•D pIM co
cm OIMnh OOMhO%D O%pnOOp•v�O%D
mH
�;
Md.7
u'1 V1.O.Onnpl
V�u'1 U1 v1 %D 00 COON�7nnh00
�
FEc$
0
0000000
O� Qh OI
O� OI O. O•
OO.-/.-•.-�.yNNNNNNNMM
OI O% O% ON CA OI at O• T O% O� O%
�S
3
w w w
w w w w
w w w w w w w w w w w, w w w w w w♦ w
3
•D ."'10+•C
phM 00
p•M nnOOMnO%00.OnOOp%V1 C?•D
�
�
Md �1'V�v1
.O .O
npt vlM Mv1 �O OO OOON.Ynhnpp .-/•D
�
0000000
p% CA T
pn p% ON a\
00.-•.-/.-1.-I .ti .-1 .�NNNNNNNMM
p% CA p% � p% Ol ph p• p� p% ON pl p% Q• Qt ON ON Q\
�7 CA en
h%?00M
00 MAD.-1n O%pNv1 1-10 v1 ♦-1OhM•O •-1 pI
�O -p %D
In v► v� •O
h v1 OD Cl .-/ ri O M 00 O pl •o pl M n
i���
.7 r• N r+
}
3
W
o�°�F
MdhNpIv10NNNnOpUp.CpQnoodiV.-qIn�7�7NMn
O %O o0
N M .-� OI
d O
' O
G•��gj
M N.N
M M l+1 N
•-+ .-+ h O �Y .D M �7 N •-1 N n pl V1 •Q I!1 O
M N �7 0 M N M N N N ICI N •O M N N .-< p�
0
M N ti
r
J
W
�E
O OI r/
O�Onhnhn
♦.
O Ifs 1!� M
1-4 O V1 d %O •-1 M .--4 U'1 Y'1 M ON Ifs 1!1 M Y'1 to V1 O
nao Op.-/�7 •p n1+1 P1nap pp y�,.y y�y�MN
�
o p� In .-, ♦r r,
rZj
NaoOOhM.�o0ho0v1hv1Ou'1Om000DONOV1plOMMir
No Text
SPRING CREEK
MASTER DRAINAGEWAY PLAN
Prepared for:
City of Fort Collins
March, 1988
Prepared by:
Engineering Professionals, Inc.
2000 Vermont Drive
Fort Collins, CO 80525
(303) 226-3852
J5
li
9Z
u
N
N
W
t-•
r
r
r
r
r
r
Hr
r
r
r
r
r
to
n
I
N
r
O
b
m
at
Ot
W
A
W
N
N
N
r
r
O
t0
b
b
t0
m
J
m
N
p
W
N
H
m
s
W
0
0
0
0
W
O
O
O
to
J
tr
O
W
O
O
J
Ct
m
0
0
0
0
0
0
0
0
0
to
►�
N
'OZ'
n
'
O
m
to
A
p
A
W
W
W
W
W
W
W
N
N
N
N
N
N
N
r
r
r
r
r
r
I--W
p
W
m
ON
N
A
W
N
r
b
J
01
N
p
W
r
b
A
A
r
r
O
Ot
P
N
O
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
♦
+
+
+
+
+
+
+
+
r
H
r
N
CDp
m
r
m
N
O
to
W
J
J
O
O
O
Ot
N
J
0
0
0
N
O
Q
N
W
N
O
CD
0.N
O
O
N
%0 b
ti N
J
W
to
O
N
m
J
J
J
In
W
O
O
O
N
N
O
d1
to
0
z
$=
M
n
W
.�0i
o
�
m
0
&
w
M
V!
w
M
m
Q
(O
C.
t0
W
W
r
•nJ
Y
HH
n
n n
r
o
n
to
n
''
C
W
A
r
N
A
0
J
A
0
m
A
0
Ot
A
0
tJ1
p
O
N
A
O
W
A
O
N
P
0
N
A
0
N
A
0
N
A
O
N
A
0
r
A
0
O
A
0
O
A
0
O
P
0
O
A
O
O
A
b
b
A
b
m
P
b
Ot
A
b
t!1
A
m
b
U
A
m
b
m
A
m
b
to
A
m
b
to
A
CO
b
W
p
m
t0
N
A
m
b
N
v
�y
O
J
O
W
O
b
O
m
N
N
P
O
N
O\
Ot
r
to
Ot
O
m
to
O
O
O
N
O
O
C
y
N
P
b
r
to
A
b
r
N
p
b
r
r
A
b
r
r
A
t0
o
b
P
b
0
J
A
b
0
J
A
b
0
to
A
b
0
m
P
b
0
W
A
b
0
W
A
b
0
A
A
b
0
P
A
to10
0
W
P
b
0
W
A
b
0
W
A
0
N
A
b
0
N
A
b
0
N
A
t0
o
r
A
m
b
b
A
m
b
m
P
m
b
m
P
m
o
m
P
to
to
J
w m
J
A
m
b
as
P
m
to
m
A
m to
N
�
tj
(y
q
Il
y
OWyYO
t0
p
A
J
m
p
yl
O
N
N
m
N
r
CDA
t0
Ot
O
W
A
W
J
t0
m
N
W
J
J
I.
Ot
r
b
J
P
W
Ot
O
m
0•
0
O
r
V1
m
In
m
O
m
A
O
N
A
W
w
O
r
0
•
�
(
�r
DO
CD _.
A
b
r
M
J
W
P
b
r
W
Ot
b
p
b
r
N
Ot
J
A
b
r
N
W
J
A
b
r
r
O
O
A
b
r
O
A
O
A
b
O
m
W
W
A
t0
O
M
b
N
A
b
O
M
A
Ot
A
b
O
M
W
A
P
b
O
M
N
m
P
b
O
N
m
N
A
b
O
to
r
A
A
to
O
A
J
r
A
b
O
A.
W
W
A
b
O
A
r
r
P
t0
O
W
N
W
A
b
0
W
O
m
A
b
0
N
A
m
A
b
0
r
b
b
A
m
t0
b
W
P
A
m
b
b
r
A
P
m
b
b
r
A
p
m
b
m
A
01
A
m
b
W
O
b
P
m
b
J
b
W
A
m
b
J
A
N
A
0
b
M
m
W
m
b
M
A
O
ty
r
O
a
A
b
r
J
A
b
r
p
P
b
r
W
A
t0
r
W
A
b
r
N
A
to
r
N
A
t0
o
m
A
b
0
J
A
b
0
0%
A
b
0
0%
A
b
0
Ot
P
b
0
0%
A
b
0
U
A
b
0
N
P
b
0
A
A
b
0
A
A
b
0
W
A
b
0
W
A
b
0
N
A
b
0
N
P
m
b
to
A
m
b
w
p
0
b
b
A
m
to
m
P
m
b
m
P
m
b
m
A
m
b
J
A
m
to
J
A'
b
ch
N
i
•�
y
M
r
O
m
N
01
W
W
W
O
A
N
O
O
b
b
W
0%
m
P
J
0
Ot
r
N
N
to
0•
r
A
J
m
W
0.
to
J
W
O
W
m
r
m
W
W
m
W
J
J
O
A
O
N
N
J
N
r
m
m
O
!a
•yQ'
W
A
b
r
J
A
'a
r
P
A
b
r
A
A
b
r
P
A
b
r
A
A
'a
r
W
A
to
O
t0
A
b
O
J
A
b
O
J
A
b
O
J
A
%0
O
0%
AAA
b
O
Ct
b
0
tr
b
0
to
b
0
tr
b
0
P
b
O
A
A.
b
O
W
A
b
O
W
A
b
O
N
A
m
b
b
A
m
b
b
A
m
b
to
A
m
b
m
A
m
t0
m
A
m
t0
m
A
m
b
m
A
m
t0
J
p
m
b
J
[•
N
O
W
N
m
J
N
r
W
O1
O
r
Ot
J
U
O
J
J
N
r
O
A
b
J
Ot
r
t0
(n
to
U1
r
W"
b
O
N
O\
O
J
A
W
O
J
W
Ot
r
01
r
b
NJ
Ot
to
W
O
W
p
Ct
t..•
O
•a
f
I`
A
b
r
J
p
b
r
Ot
A
to
r
Ot
A
b
r
O1
A
b
r
at
A
t0
r
Ot
A
b
r
O
A
b
O
m
A
t0
O
J
A
b
O
J
p
t0
O
J
P
t0
O
J
A
b
O
Ot
A
to
O
Ot
P
b
0
N
A
b
0
N
A
w
O
A
A
b
O
W
to
b
O
N
A
b
O
N
P
m
t0
to
A
m
to
b
A
m
b
b
P
m
b
b
P
m
b
m
A
m
b
CO
A
m
b
m
A
to
to
J
A
m
b
J
(*J
[q
r
0
O
N
OD
In
r
W
r
W
r
N
N
r
O
r
to
A
N
m
O
to
b
to
P
r
b
to
A
r
to
J
N
W
r
N
M
J
W
J
b
W
b
m
W
m
01
m
MW
W
b
Ot
tj
N
W
r
•
J
N
P
O
G
�
A
b
r
m
A
b
r
J
P
b
r
J
A
b
r
J
A
b
r
J
A
b
r
T
A.
b
r
O
A
t0
O
b
A
b
O
m
A
b
O
m
A
b
O
m
A
b
O
m
A
wb
O
J
A
O
J
P
b
O
m
p
b
O
0%
A
b
O
.0.
P
b
O
A
P
t0
O
N
P
b
O
tJ
A
b
O
O
It.
b
O
O
A
b
O
O
A
m
b
t0
P
m
b
b
p
m
b
t0
A
m
b
m
A
m
t0
m
P
m
b
m
pJ
t•
LA
0
O
t
•�'
m
W
01
r
r
r
O
r
O
N
b
O
b
J
P
W
J
r
A
Ot
A
W
O
b
A
m
r
O
01
W
A
A
m
b
r
J
b
U
Ot
m
r
m
N
b
W
O
J
r
p
J
W
Ot
m
J
W
J
r
O
•�
t
IJ
I
`1
h
1
1
1
�J
I
r
1
C�
9/2/97
OUTLET STRUCTURE REPORT
Page 1 1,411
RECORD NUMBER : 1
TYPE : TRAPEZOIDAL WEIR
DESCRIPTION : Emergency Overflow Weir L
[RATING CURVE LIMIT]
Minimum Elevation ............... :......... =
4907.00
(ft)
Maximum Elevation ......................... =
4908.00
(ft)
Elevation Increment ....................... =
0.10
(ft)
[OUTLET STRUCTURE INFORMATION]
Weir Angle ................................ =
151.93000
(deg)
Crest Elevation .................... =
4907.00
(ft)
Crest Length .............................. =
20.00
(ft)
Coefficient Cw............................ =
2.85000
Exponential ............................... =
1.50000
(TRAP EQUATION)
Q = Cw*tan(ang/2)HAexp
H = Headwater depth above inlet control section
invert, (ft)
ang = Weir Angle
(Culvert Weir Discharge Value vs. Stage]
(the elevation increment is 0.1)
----------------------------------------------------------
STAGE
ELEVATION
FLOW
----------------------------------------------------------
(ft)
(cfs)
0.10
4907.10
1.83
0.20
4907.20
5.26
0.30
4907.30
9.82
0.40
4907.40
15.34
0.50
4907.50
21.76
0.60
4907.60
29.03
0.70
4907.70
37.12
0.80
4907.80
46.01
0.90
4907.90
55.68
1.00
4908.00
66.12
6/2/98 Page 1/1
OUTLET STRUCTURE REPORT
RECORD NUMBER : 3
TYPE : TRAPEZOIDAL WEIR
DESCRIPTION : Pond 3 Emergency
Overflow Weir
[RATING CURVE LIMIT]
Minimum Elevation .........................
=
4905.25
(ft)
Maximum Elevation .........................
=
4906.00
(ft)
Elevation Increment .......................
=
0.10
(ft)
[OUTLET STRUCTURE INFORMATION]
Weir Angle ................................
=
151.92760
(deg)
Crest Elevation ...........................
=
4905.25
(ft)
Crest Length ..............................
=
4.00
(ft)
Coefficient Cw............................
=
3.03000
Exponential ...............................
=
1.50000
[TRAP EQUATION]
Q = Cw*tan(ang/2)H^exp
H = Headwater depth above inlet control
section
invert, (ft)
ang = Weir Angle
[Culvert Weir Discharge Value vs. Stage]
(the elevation increment is 0.1)
----------------------------------------------------------
STAGE ELEVATION
FLOW
(ft)
(cfs)
----------------------------------------------------------
0.10 4905.35
0.41
0.20 4905.45
1.26
0.30 4905.55
2.47
0.40 4905.65
4.05
0.50 4905.75
6.00
0.60 4905.85
8.34
0.70 4905.95
11.07
0.75 4906.00
12.60 > 11.5
cfs Peak
Inflow
From
Basin's 2,3
& 4
14z1
z
y
0
u
W
•
N
p
M
a
3
of
a.
N
rI
ra
7=Pl
V
y
„
c
m I N
u 4: �' •''
a o0 3
,Eo
c
U C C
u
00
ca •. o
L '3
h
n
Cd
p
m�"IN
p
y H v
+
o II c
II
a
3`
J
II II
v'
v;
v
ci
a13
a
a
a
v
y
O
A.
w
w
Z
-3
D
0
O
e
c
O
U
=
a
D
>
>
m
a
m
u
m
n
�
D
m
m
a
o
t
`
n
c
�
e
H
�
71,r
3
0
C�
m
m
m
1.�
t
�-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
J
.�
Q
1
'
t2l �/�-�•,= G-. `ter.., `<,-�-r �r�Ls �,.� C n-, e= �G c�.l � -�—
t�%Cll�
1-4
ram, rn .S ti •T i-->'c !►1-4
1
-7
v o - TZ /✓1.+ x . �, f �H rr i c _ > S . 2 rr= r
'
l7�aI-H o,=-
1-4-t,477-1 ,1
o. -
Q 55,--7 Zo' ( I. of 2.g
ci
l= �-�,✓1 �S . - 8 vlJc %`T�c� L lZii''ri-"� t=o i .A
2
0
r+
O
�
*oc
`II y
m
O
O
m 7
O 7
C)
M
ro
N
r N n
v m y
�l
a H
H
n o a
ro
H
r- r
rr b' u
aGa
Har
� a a
a
E
�
F+
C u
a
'
H
ar
I �
J
E d
'
P'
N
� C
� n
�
n
r
nG
C �
r�
N
'
n
M u
M n
H
o n
r
E
N
N c
G �
� 9
al F
n
n K
n
rr
M- f
mE
r E
'
O
II
o
'
v
x
a
r
r
0
rr
m
x
n
m
m
a
0
h
r-•
c� ro ti
a
N
'�
'''
n N (D
r 0 7
w rr L<
rt ..
(]
Z m o
O Ul ko
�ro
H
H E m N O
EO F"S
N
H
H
H
N F, O! O yr
to .7 l0
rr
a
m
J
HrrH mgao
ko
�
N
gg �
co
O N
0
x x
H
H
W
H
0
M W O
�
a( u
o
m
o
o
�-r m e
0
m rt H
n
<
rOi hd
N
rt
ro
d
\
❑
\
p
\
7
\
s
m- �Z
ro , s
M
d
lu
n
❑ ro
ID
a
a
a
It W <
,-, 7 N
a
�y
R n
N
ro
8 C
H
N
M
I_
91 .4�tr
w
a
w
a
H
A
y
a
H-
Hcl
J
a
nr rt
O
x�
•�
\
o
w
Q
G
n
IA�J
H H
H
N
H
J
J
N
p
O
H x
pn
w
❑
n
O
M
Ir
N
u
p
\
w
7
\
a
y
\
a
7
\
a
to
m
\
X
a
[39
r
J
N
J
O
5 n d
O
H
r
m ❑ v n
0m
o n a
n m v
N
u
m
N
O
r
O
V 0 0
H MQ
a n
p
v :3r
C
s H-
µ
•l) O y-
ro 7
H
H
H
H
M O O N
M 'O
cn
to
In
to
� � rt
x
ro
i
1
1
1
1
1
i
1
C
I I
i
� M
20
TYPE L
Q •2 R 6 g j
Y I .'D
Use Do instead of D whenever' -flow is supercritical in tree barrel.
**Use Type L for a distance of 3D downstream.
.0
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT QUTLET.
FIGURE 5-7 IS VALID FOR Q/ D2.5
OF 5.0 OR LESS.
0= DESIGN DISCHARGE IN CFS
D= CIRCULAR ,CONDUIT DIAMETER IN FEET
w
i
�o
vi
r�
zS
o_
w
o�
pu
1i
`W
Z �j32
W W�
u:
C
W
`OV
p�
60
on 40
d
3
0
FBI
O
.2 .4
.6 .8 1.0
Yj/H
Use Ho
instead of H whenever culvert
has supercrifical flow in the barrel.
**Use
Type L for a distance of
3H .downstream.
FIGURE 5-8. RIPRAP EROSION
PROTECTION AT RECTANGULAR
CONDUIT OUTLET.
-•
FIGURE 5-8 IS VALID FOR O/ WHL5
OF 8.0 OR LESS.
g
W
U= DESIGN DISCHARGE. IN CFS
J
m
F
W A14D H= WIDTH AND HEIGHT OF
..
RECTANGULAR CONDUIT IN- FEET
Yi-AILWATER DEPTH
I
F]
fl
t
I
1
I
I
1
1
I
I
nVol
RAINFALL PERFORMANCE STANDARD EVALUATION
,STANDARD FOR AfA
PROJECT: SPRING CREEK CENTER, THIRD FILING
CALCULATED BY: MWohnrade
PROJECT #: SPR: 9734.00
DEVELOPED
BASIN
ERODIBILITY
ZONE
Asb
(ac)
Lsb
(ft)
Asb*
Lsb
Ssb
(%)
Asb*
Ssb
Lb
(ft)
Sb
(%)
PS
(%)
1
HIGH
1.075
155.3
166.9
1.51
1.62
2
HIGH
0.647
1 226.1
146.3
1.36
0.88
3
HIGH
0.362
136.6
49.4
2.93
1.06
4
HIGH
0.282
252.5
71.2
1.61
0.45
5
HIGH
0.598
148.5
88.8
1.39
0.83
6
HIGH
0.254
148.5
37.7
1.39
0.35
7
HIGH
0.899
177.2
159.3
2.01
1.81
8
HIGH
1.462
173.7
253.9
2.13
3.11
9
HIGH
1.166
139.6
162.8
2.11
2.46
10
HIGH
2.523
292.1
737.0
2.15
5.42
11
HIGH
0.254
90.1
22.9
1 2.04
0.52
12
HIGH
0.500
37.2
18.6
10.78
5.39
13
HIGH
1.026
545.0
559.2
1.03
1.06
TOTAL
11.048
2474.1
24.97
224
2.26
79.8
EXAMPLE CALCULATIONS
Lb = SUM(Asb*Lsb)/A
Sb = SUM(Asb*Ssb)/A
PS (during construction) = 79.8 (From Table 5.1)
D:\Projects\Spr\erosion\SPRa.wpd March 12, 1999
EFFECTIVENESS CALCULATIONS
STANDARD FORM B
PROJECT: SPRING CREEK CENTER, THIRD FILING
CALCULATED BY: J.P.M.
PROJECT #: SPR: 9734.00
EROSION CONTROL METHOD
C-Factor
P-Factor
Comment
Value
Value
Roads & Curb
0.01
1.00
Paved & Constructed
Gravel Filters
1.00
0.80
Placed at Inlets
Hay/Straw Mulch w/Temp. Seed
0.06
1.00
All Areas not in Roadway
Straw Bales
1.00
0.80
In Swales and Channels
MAJOR
PS
SUB -BASIN
AREA
CALCULATIONS
BASIN
(%)
(AC)
79.8
ALL
11.048
DURING CONSTRUCTION:
Plan intent: Temporarily seed & mulch all
disturbed areas not in a roadway if exposed for more
than 30-days; use gravel filters & straw bales.
Roads
Lump sum --roads & impervious = 6.433 acres
Pervious:
11.048 - 6.433 = 4.615 acres
Cnet =(0.01*6.433)+(0.06*4.615)/11.048 = 0.03
Pnet = 0.8*0.8 = .64
EFF = [ 1-(C*P)] 100=(1-(0.03*0.64)100= 98.0 >79.8
I
D:\Projects\Spr\erosion\SPRb.wpd March 12, 1999 L C�
I
PAGE 2,3.:.
I
M3
I O I C: O10 0 Cr
1
1 O I-w c to Ln Lo
1 Ln 1 ggqqq
1
1
1 C I'cnfTC1C1CC0000
1
1
1C•Icc c Q Ln Ln Ln Ln LL: Ln
1 c 1 g q q q q q q q q q
1
1
I C I . Q1010101 C1 Q10. C. C. 01CC0
1
1
1
1 I .
I O 1 c c c cc c c cc c c c Ln Ln Ln
1
qq q co=co q ggCC comm qq
1
1
f�W CC Co C1 C1 (;M0101 C1 C1 Ct 0)0% 0101 C101 C1
A C I c c c c c c c c c MI. c c c c c 044444
1
I cq I gcoCCco ggqcoqqqqqqqqqqqq
L
1
1
1.
1 O I OMCLo kotOLOLor�gggqcoco
I I
i
1. O I c c c c c c c c c c c c c c c c c c c c c c c
Ir-I.I1.ggq.00 co CUgCO co co CO OOgggqq OJgggqqLYJqOO
1
1 O 1 CC N M c Ln Ln Ln t0 LO tO t0 t0 10nf�^t\n qqq
1
1 01 I'Mcccccetccccccc c c c c c cccc
C0
c c c
1 i-qq COq co co co co co co co co co co qqq q ggqqqq CO CO
I
1
• O
I O I LO O N m c c Ln Ln Ln Ln t0 t0 40 W tO l0 W W W W
O"1
CO I Mcccccccccca'C'ccccccccccccc
U
I 1 q q co W CC W g W q W q CC_ CC Co coW coCC q co co co coW q coI
1
N
1 C) qw 4m N M M c c c c Ln Ln Ln Ln Ln Ln Ln Ln Ln t0 t0 tO tO t0 %0 ^
1
I .M met c et c c �'et"� eF C er c v er c v v v
i
c a'
g CC q CC q q q q q q CC q q C2 W CO W W qqqq
I
.I.ggqW
0tOc O.-t rr NNMMMMccccetcccln ll-1 to to tD tO
1
U
I t0 I M M M c c c c c c c c c c c c c c c c c c
�'N
c c c Crc
i '-' i-.ggqqqqqqqqqq.qqqqqqqqqqqqqq
I
1
I _Ln NLnnw4m C)b.Q +.-r r•fNNNNNMMMMMcca'cet
1
LL.
1 vUl' 1 :N M M M M M c c c c c c c c c c c c c c c C c
OC
c c c
I W 1 -COW q.q qqqq W M M M qqqq CO W rW W qqqq COCO
l
I
•- �..i
Otn ,l .-L m c Ln Ln tO tO f� l� r� q W qqw Ctm C%CC000
4N
1
Ln
1 J'c N fh M C7 M M M In M M M'M m M M M M M M M c er c
I b' er
1
Ln I'ggcoCOCOCCCOCOCCCOgCCgqqqqcOqqqqqqqq
I
t0 Ln Co (D Mcc Ln Ln Lo tO tO tO t0 tO r� I-, r-, l., Co co co Cl ON
1
0
.Z ..1'
1.=." c •I N N fo fh M LM Co LM M CM fh M M 00 M 00 Co fM M M MM
1 Coqqqq CO Co Coq. CO CO Co Co Co CoO0 CO O0 CO a0 CO CO CO CoCOgq W co co
'
I
.. Q •
1 t .
Ln 1� rr •-I.Ln n COO 0 r-1 N N M M M c c c c c Ln Ln Ln t0 t0 t0 P. r\
•--1 `. . . . . . . . .
I
I
- -
'1.::
. .
ly. ::..M..'1�NNNNMMMMMMMMMMMMMMM MMMMMM
".1
W
qq CC CO LOCO CCCO COCO COCOCOCOCOCO COOO W WWWggqq
1 -
I
Z..1.
Q
-' .O I. MN km co CT O. N N M M M c c c c c c Ln Ln Ln Lo t0
1 -
N N N N C N .. . N N N N N 1 I.00OCCOCOOOCOgCOCOOOOOOOCDNNCOCOCOCOCOCOCO=COgq I
Ln *"I
Ln'Ln C1NMcLn t0 r\^ r\ q q q C101 Ct C1 C1 C10 OOOOO 1
..A • . . . . . . . . . . . . . • I
_ W I ... N -1 01 C O r-L .-L ry rr .••I rti r•1 rN r-1 r.1 v-L .,,d r-1 .�1 .--1 •-r •-1 N N N N N N 1 - d 1 qq q qq CO CO W g q W qqqq W qCO W I
' .. I -•.; 0 ,1-,4' Ln.O m Ln t0 q q 471.40 O O r-1 r4 .-y .-L N N N N M M M M M M 1
1 'N _1 -.00-C1 O O O O O O O •--I eti •-L r•+ r-L r-i .-1 rr ...1 rr r•1 .-• rq r-1 r-1 rr 1
1 .'1 I�,f�gCO CO CO O0 C0 aDNC0 CO 0O CONCO OC COgOJ COggqOOq 1
1 Ln. I q C:; •-r Q Ln f-I 1-1 q 01 cmC C r+ .-I .--1 .-r .-.r N N N M M M M M 1
0101.01010L 01 C1 C1000000000000000 1
W g W q W q W W W g W CO CO CO CO 1 -.
.. ,.1.... 1 _-
t0MOcn ONO.-1 NM M cc Ln Ln Ln Ln t0 L0 1.0 t01\ f�- t0 t0t0 1
.. 1 .... I . . • • .
•. 1 :.. :rN ..1 t'c t0. ^ ^ f\ CO OO CO CO CO CO CO CO CO CO CO CO q q q I
�. .ILn '1' 01 0 c t0 r� Co Co r� r� f'� t0 t0 t0 Ln c c M M N N C1 t0 c r-1 CJt t0 1
N N N N N N N N N N
. -. 1' •,_. r. ;q .-^ f\ n rs f\ ^ f� n f\ n n f� 1� t\ f� f� f� f� ^ f\ n n f\ f\'f\ f� I
�� If3i-�► LO.O:oo00000000000000CDQCD CD C) i
I O cm F- 1 0 0-0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 Cl 0 0 0 0 0 0 0 1 1-.J Z U- 1 =e-L N M -W Ln LD r� Co01 C)r r" M c Ln tD r- CoC1 0 Lo O Ln C Ln O I LL W ry �-N r-1 rr .--4 .-•1 rti N N m M c c Ln 1
1 LU 1
1
TABLE 5.1
1
PAGE 19 M <{
2. Sites of 1 acre or less.
3. Sites with unsheltered distances (distance unbroken by
a wind barrier) parallel to the prevailing wind
direction of less than the values in Table 4.1.
4.2.2 Requirements
A11 other sites shall be protected from wind erosion, by one or
more of the following:
1. ;ive vegetation evenly distributed over 30$ of the
entire disturbed area.
2. Crop residue evenly distributed over so% of the entire
disturbed area.
3.. One half ton/acre hay or straw mulch properly anchored.
4. One half ton per acre paper or wood fiber hydraulic
mulch, applied according to manufacturer s
specifications.
5. Surface binding materials applied according to
manufacturers specifications.
6. A rough soil surface with ridges and wind barriers,
both perpendicular to the prevailing northwest wind
direction. A wind barrier means a snow fence, trees,
shrubs, grasses, screens, natural terrain, or other
natural or manmade structures, which is greater than
.,one foot high and causes wind -suspended sediment
deposition to occur. Barriers will be installed in a
:'_'northeast to southwest direction with a maximum.spacing
".as.shown in Table 4.1. The most downwind barrier will
be placed inside the site boundary at a distance`of 10
times the barrier height.
Table:4.1,_ Allowable Wind Barrier Spacing.
Wind Erodibility Zone' Maximum Barrier Spacing
Low 1000 feet
Moderate 200 feet
High 50 feet
Use. the attached Wind Erodibility Zone Map to detprmine
-which zone the site is in.
61
,vn
000000
V) O O O O O Cul N
r r 0kn OC
G .= N N
69
O O O O O O I I I I
O O O O O O
U O M M [� O
00
F F
� o
A " W)
E �q oo v o o
o,
>~ o N:
U c ¢�waww '• k iM.
U U o
(L! M
h
O
encq
.- b9
W 0
W
W z a F� II ¢ E�-
z
w �¢w x n F c7 w
Nm Ln
CD� OOi �0 u a �Q � (�
l~ W O O w
rn W Z W W Ag E-O O FF�% U O
V�dW�Q OV 000
���a O �Oaza�aa
r�w� W x�C�7vdivFivFi
F—I
n
I
Fj
I
I
I
n
I
I
11
n
�j
11
11
I
fm
Q
Q
I
STor'-ice GE PTC�- L7E Sr �i •J
'T`irBNTr.,�-Y ��-cvr = �. �FvS •�L �13grr.JS 8 - 11 )
l3ASr�J /nn�..z✓.o.�, s.J c � S = S? `�o
!—�., a r T•4r rr� � = l.rorY,.-,..` i TYPE L�
- - -
I=P-•� � rir3 L� L � ti rc A = TG /�lo.'�� l.- 1800 . -- - --
Z S, t
r
Aa G r7rf. .rro��-r. mac. r'Ta,Z Mo���c_ r9op .
-
Z
lam'-��^ T�+v�•� `'1 T�-Fc Nt.•+xrN+N ✓1 ScOrA✓+cE7v;
1
�1
,�cPTI-'i = l.0 .'. /�la.ri�/Tr�7J.araJc-c lnJo�n.-.7 r3E
Technical Design Manual Page 17
it
Installation D^pth
The maximum installation depth for the precast concrete Stormceptor® is 33 feet.
The fiberglass units have been designed based on a maximum depth to the bottom
of the treatment chamber of 20 feet. The dimensions (i.e. depth of treatment
chambers) for various Stormceptor® units are provided in Table 3.
Stormceptor® installations at depths greater than those noted above will require
custom manufacturing. Carder Concrete and Wyoming Concrete should be
consulted for recommendations in these instances.
Z4 Stormceptor® Sizing Guidelines
In 1994 Stormceptor Canada Inc. monitored 21 sites with Stormceptor®
installations. The land use of these sites ranged from industrial and automotive
service stations to commercial parking lots, subdivisions, and streets. The
purpose of the monitoring was to determine the rate of solids accumulation in the
Stormceptor® units with time. Although this study was by no means definitive, it
provides the best available field data upon which to base a sizing guideline.
Accordingly, the sizing guidelines will be updated as additional field results
become available.
The captured sediment in the interceptors was normalized based on the length of
time since installation and upstream drainage area. r The normalized sediment
capture (ft'/ac/y) was compared to the estimated loading (29.1 ft'/ac/y - based on
an event mean concentration of 185 mg/1 suspended solids) Ito determine the
The estimated removal was plotted against the sediment storage volume
(excluding oil storage) provided by the each Stormceptot°o normalized by
upstream drainage area (i.e. ft'/ac).
The relationship between estimated suspended solids removal and Stormceptor®
storage per acre of upstream impervious drainage area is graphically shown in
Figure 6. The regression analysis best fit indicates a linear relationship between
the estimated solids removal and interceptor storage (correlation coefficient (r') _
0.60) .
Carder Concrete Products 1-(303)-791-1600 Feb, 1997
Technical Design Manual Page 18 /J 3/
Figure 6 StormceptorT" Sizing Guideline
T
0
V
0
co
m
a
E
0 50 100. 150 200 250
Stormceptor'° Sediment Storage Capacity (ft 3/ac)
Based on the sizing guideline in Figure 6, Table 6 provides rule of thumb drainage
area constraints for the Stormceptor®models that are manufactured.
The STA and STC in the model number column refer to fiberglass and concrete
versions of the Stormceptor®, respectively. Stormceptor Canada Inc. currently
produces the fiberglass version of Stormceptor® while the precast concrete model
is manufactured under license by Carder Concrete in Colorado, Wyoming
Concrete in Wyoming, and Hydro Conduit for the remainder of the United States.
Table 6 indicates that there are 4 design levels for the Stormceptor®. The first
three design levels are based on the classification of the receiving waters (river,
watercourse). These design levels are for stormwater management plans in which
the Stormceptor® is the only stormwater quality measure being implemented.
The fourth design level is intended for situations in which the Stormceptor® is
one of a number of stormwater quality control measures being implemented on a
site (i.e. the interceptor discharges to a pond, perforated pipe, sand filter,
infiltration trench, etc.)
Retrofits designs, in all likelihood, will not be able to meet the design guidelines
in Table 6. In these cases, the implementation of the Stormceptor® is still
applicable since it represents a low cost measure to provide some degree of water
quality enhancement (spills protection and bedload removal).
Carder Concrete Products 1-(303)-791-1600 Feb,1997
Technical Design Manual Page 19
The habitat conditions in Table 6 refer to the Ministry of Natural Resources
Habitat Types which are summarized in Appendix 2. The reader is directed to the
Ministry's publication "Fish Habitat Protection Guidelines for Developing Areas"
(1994) for a detailed discussion of the habitat types and classification of the
receiving waters. The relationship between habitat type and suspended solids
removal in the Ministry of Environment and Energy's Stormwater Management
Practices Planning and Design Manual (MOEE, 1994) was used to derive the
drainage areas in Table 6 (Type 1 (Sensitive)- 80% TSS removal, Type 2
(Normal)- 70% TSS removal, Type 3 (Degraded/Altered)- 60% TSS removal).
Table 6. Maximum
Im ervions Drainage Area Guidelines ac
Stormceptor®Model
(STA / STC)
Type 1
Sensitive
Type 2
Normal
Type 3
Degraded
Treatment
Train*
900
0.45
0.55
0.70
0.90
1200
0.70
0.85
1.05
1.45
1800 '
1.25
1.50
1.90
2.55
2400
1.65
2.00
2.50
3.35
3600
2.60
3.15
3.95
5.30
4800
3.60
4.30
5.40
7.25
6000
4.60
5.55
6.95
9.25
7200
5.55
6.70
8.40
11.25
* 50% TSS removal
The designer must ensure that the unit is also properly sized for the spill potential
associated with the site (i.e. fuel truck, bus, cars, etc.).
Spills Capture
The results from the laboratory testing at the National Water Research Institute in
Burlington indicate that free oil is retained in the Stormceptor® for both dry
weather spills and during minor storms (Marsalek, 1994). In a dry weather spill
the latter portion of the spill will remain in the down pipe. This oil will be purged
into the Stormceptor® treatment chamber during subsequent inflow to the
separation chamber.
Based on API style calculations with a 150 µm (0.0059 in.) oil globule (rise
velocity of 3.47 ft/min.) the oil will rise anywhere from 10 inches to 24 inches
during peak flow conditions in the separation chamber depending on the size of
unit implemented. These distances are based on the assumption that only half of
the storage volume in the separator is used in the flow through zone. As such, the
calculations and laboratory tests indicate that oil will be readily trapped since the
outlet riser is the same elevation as the inlet riser.
F
r
11
1i
Carder Concrete Products 1-(303)-791-1600
Feb, 1997
q, I
i
Technical Design Manual Page 20
,,J 6 /
I
I
i
I
I
I
Flow Treatment
A check was made on the sizing criteria provided in Table 6 based on modeling
which was undertaken by Marshall Macklin Monaghan Limited (MMM, 1994).
MMM continuously modeled 4 parking lots with various drainage areas (1.2 ac,
2.5 ac, 7.4 ac, and 12.4 ac). The continuous flow series resulting from these
simulations were analyzed to determine the percentage of annual flow volume that
by-passed the Stormceptor®. It was assumed that the design treatment flow rate
remained the same during by-pass conditions for the determination of the volume
of stormwater that by-passed the interceptor (i.e. when a by-pass occurs water
which flows over the weir creates a backwater effect on the discharge pipe from
the treatment chamber which restricts the flow rate in the treatment chamber to
the design value). This is consistent with laboratory tests conducted at the
National Water Research Institute (Marsalek, 1994).
Table 7 shows the results of the modeled flow analysis. The table indicates that
the sizing guidelines provided in Table 6 will result in 800/0+ of the annual flow
volume being treated by the Stormceptor®. Interceptor sizing for Type 1 habitat
results in approximately 90% of the annual flow volume being treated by the
Stormceptor®.
Table 7. Percents a of Annual Flow Volume Treated by the Stormce tor®
Impervious
Drainage Area (ac)
STA/STC 900
STA/STC 1200
STA/STC 1800
STA/STC 2400
STA/STC 3600
STA/STC 4800
STA/STC 6000
1.2
89 %
93 %
96 %
2.5
81 %
87%
92%
7.4
61%
72%
$1%
12.4
52 %
65 %
76 %
Table 7. Percents a of Annual Flow Volume Treated by the Stormce tor®
Impervious
Drainage Area (ac)
STA/STC 7200
1.2
98 %
2.5
95 %
7.4
85 %
12.4
82 %
r
Carder Concrete Products 1-(303)-791-1600 Feb, 1997
Technical Design Manual Page 26
5.5 Inspection
The Stormceptor® can be easily inspected visually for oil and fuels by removing
the cover (i.e. oil can be seen thru the vent pipe and smelt from the surface).
Similarly, the depth of sediment can be measured from the surface without entry
into the Stormceptor® via a dipstick tube equipped with a ball valve (Sludge
Judge). Maintenance should be performed once the sediment depth exceeds the
guideline values provided in Table 9.
Table 9. Sediment Depths Ind
cating Required Maintenance*
' Model
Sediment Depth feet
900
0.50
1200
0.75
1800
1.00
2400
1.00
3600
1.25
4800
1.00
6000
1.50
7200
1.25
* based on 15% of the interceptor's sediment storage
Any potential obstructions at the inlet can be observed from the surface. The
insert has been designed as a platform for maintenance personnel in the event that
obstructions need to be removed, sewer flushing needs to be performed, or camera
surveys are required.
h
I
I
F
C�
1,
Carder Concrete Products 1-(303)-791-1600 Feb,1997
I I
N —7
I
DBq#
' - A%4t
*Gpp
CO C TB
es„ W. comae oounr IL*�{�
u3111 W.. RICo
elmas
11 a0 �2 o
ns ert nw sloac ,IUL
OONCIad'Tm WVMM 0°
(Cam
D
m
m
z
Q
m
in
N
STC 1800 PRECAST CONCRETE STORMCEPTOR®
VENT PIPE H
72"0
rSTORMCEPTOR
INSERT
r WEIR
CE INLET _
INVERT IN
24"0 OUTFLOW
RISER PIPE
C
.•
6"0 INF OW DROP
Y
PIPE W% TEE
SECTION VIEW
24"0 RIM AND COVER
(SEE NOTE 8)
ADJUSTING
RINGS
D
2
z
m
c U
FLEXIBLE
a
CONNECT
TLET
T OUT
o
a
_ N
1
IVIP%IGT%IhL a%.nr_IJVLC
STATION
RIM ELEVATION
INVERT IN EL.
PIPE IN SIZE "B"
INVERT OUT EL.
PIPE OUT SIZE "D"
w
Li
"A" (INCHES)
"C" (INCHES)
LL
0:
BELL LID
ADJUSTING RINGS
0
RING AND COVER
OUTLET PIPE IS DEGREES
TO THE (LEFT/RIGHT) OF INLET
INFLOW 6"0 VENT
DROP PIPE
_ OU
RISERL PIPE
0
--- \ { (STD.•)
1 l
*IF OUTLET PIPE IS ���
NOT 180' FROM INLET OUTLET
ENTER LOCATION ABOVE
PLAN VIEW
1,
STORMCEPTOR DESIGN SPECIFICATIONS
U.S. PATENT NUMBER 4.985.148.
2.
3.
MANUFACTURED TO ASTM C478.
JOINTS PER ASTM C443.
CCP ORDER NO.
LOCATIONz
4. CONCRETE STRENGTH = 4,000 PSI (30 MPA).
5.
6.
WELDED WIRE FABRIC TO ASTM A185.
DESIGNED TO AASHTO HS20 LOADING.
DATE
CONTRACTOR;
7.
STORMCEPTOR IS CONFINED ENTRY, NO
STEPS
SUPPLIED. ECCENTRIC ACCESS STANDARD.
STEPS SUPPLIED UPON REQUEST.
DRAWN
ENGINEER;
8.
STORMCEPTOR RING AND COVER TO BE
D&L
PDATE
02/97
9.
SUPPLY MODEL A-1071 OR EQUAL.
MANUFACTURER RECOMMENDS FLEXIBLE
CONNEC-
.
REV. $r
APPROVED BY;
TIONS AT INLET AND OULET WHEN APPLICABLE.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
' DRAINAGE CRITERIA MANUAL (V. 3)
r
I
I
I
It
STORMWATER QUALITY MANAGEMENT
di/
however, when using the practice of minimizing directly connected impervious areas in combination
with extended detention basins, retention ponds, wetlands, and other practices depended on a design
capture volume. Whenever applicable, the needed modifications are described in the appropriate
Structural BMP section.
IicSf !� � ��.-.�Gct� N �-c /'-'�i� C xrc•�+•�c�7 f�cTCNT�o.�J
5.4.2 Water Quality Capture Volume. Extended detention facilities (dry), retention ponds (wet), and
wetland basins should be designed to capture and treat runoff equal to the 80th percentile event.
This is achieved by draining the design capture volume over a specified time. Extended detention
basins need to be designed to drain their design volume in approximately 40 hours. Retention ponds
require only a 12-hour drain time because the sedimentation process is more efficient and some
mixing and dilution between a permanent dry weather pool and storm runoff occurs. The wet pond
also provides for treatment between storms, which provides long periods of time for fine particles to
settle out and for biological activity to occur. Wetland basins should be designed to drain the design
capture volume in no less than 24 hours, thereby providing for some biological uptake during the
contact time with wetland media.
Infiltration -type structural BMPs such as porous pavement shall be designed to capture and treat the
runoff from at least a 2-year storm. The use of a 2-year storm is also recommended for the design of
slow -moving grass -lined swales and of wetland channels.
The following is a step-by-step procedure for determining the water quality capture volume needed to
size extended detention basins, retention ponds, and wetland basins:
Determine basin imperviousness.
2. Select either a 12- or 40-hour brim -full volume drain time for the proposed facility. Use
a 40-hour detention time for extended detention basins and a 12-hour detention time
for retention ponds. For wetland basins, use the arithmetic average of the 12- and
40-hour drain time volumes.
3. Estimate the brim -full storage volume in watershed inches of runoff from Figure 5-1.
9-1-92
Urban Drainage and Flood Control District
r
STORMWATER QUALITY MANAGEMENT DRAINAGE CRITERIA MANUAL (V. 3)
p1/
4. Determine the water quality capture volume (WQCV) in acre-feet as follows:
WQCV a (Required Storage I (Area)12
,
,
in which,
Required Storage = Required storage from Figure 5-1 in watershed inches
Area = The tributary drainage area upstream of the water quality enhancement facility
,
In acres
9-1-92
Urban Drainage and Flood Control DWdct
I
I
I
I
i
I
r
I
I
I
If
Design of
Dry Extended Detention Basins
for
Water Quality
Reference: Urban Storm Drainage Criteria Manual, Volume 3 - Best Management Practices,
Urban Drainage and Flood Control District, September 1992.
Project: Spring Creek Center
Location: Design Point 6
1) Determine the Water Quality Capture Volume:
1.1) Determine Basin Imperviousness:
Basin Parameters
Basin Area (acres)—
0.852
Area of Roofs (acres)=
0.060
Area of Parking, walks (acres)=
0.431
Basin Imperviousness (8)=
58
1.2) Use a 40-hour detention time for extended detention basins;
1.3) Estimate the brim -full storage volume in watershed inches of runoff from Figure 5-1;
1.4) Required storage from Figure 5-1(inches) = 0.24
1.5) Determine the water quality capture volume (WQCV) in ac-ft;
WQCV= (Required Storage/12)(Area)
Requited Storage= Required storage from Figure 5-1 in watershed inches.
Area= The tributary drainage area upstream of the water quality enhancement facility in acres
WQCV= 0.01704 ac-ft = 742.2624 cu-ft
2) Calculate the Number oferforations per Row -for WQCV Release:
2.1) WQCV= 0.01704 ac-ft
2.2) From the Rating Table for Swale 6, at 0.01704 ac-ft, Elevation= 4905
2.3) Invert Elevation of Outlet Pipe= 4903
2.4) Depth at the Outlet (DwQ, feet) = 4905-4903= 2
2.5) From Figure 5-3, Required Area per Row= 0.045 in'
2.6) From Figure 5-2, Use (1) 1/4" diameter hole per row,
space rows on 4" centers,
Riser Pipe is 2-feet high
oaP-je spAExDerca...pd
V
J
LL
2 .-
3w5
4 F J
a
rcCIO
r jL
ao
Z
OWO
ice+
0 0
�W rn
0 -11 .
O m
lJ
L. JM6
0.
5
0.
77
0.
3 0,
m
0.
it
i
0.1
V/001F
I
F
t
c
0
0 10 20 30 40 50 60 70 80 90 100
Percent Impervious Area in Tributary Watershed
Source: Urbanos, Guo, Tucker (1989)
Note: Watershed Inches of runoff shall apply to the
entire watershed tributary to the 8MP Facility.
V
FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV)
R
e
xten ad De ent)o Bask (Dry
)
0-Ho r Dral time
4
3
2
D tentl n Pon s (W 1 -Hour Draln Time
t)
DRAINAGE CRITERIA MANUAL W. 3)
Threaded Cap
Wdsr Capture Volume
Level0 inrlgg20%additional
volume for sediment storage)
Gravel (1.12• to
3' Rock) Around
/Perforated River
s� Filter Fabric
Water Dustily
Rleer Poe (See Detail)
Notes: t. The outlet pfpe sftelt be sized to control
orereow krfo tlr oenue o riser.
2. AIYma4 designs Include a
or critics
deslpru ass) long an se hydraulic
nutNns ass
Note: 1. Mnlrnur l resnber of holes . 8
2. Wimum hole dWffww . V8' d a.
9.1.1992
LVFCD
STRUCTURALBMPS
,able & Lockable
m Orate for
Storrm
Access Plt Outlet Pips—►
(Min. 3 ft)
` Sue Base to Prevent
OUTLET WORKS Hydrostatic Uplift
NOT To SCALE
1-12' diameter Air
Vera In Threaded Cap
Ductile Iron or
Steel Pipe
WATER OUALITY
RISER PIPE
NOT TO SCALE
Maximum Number of Perforated Columns
Rher
Hots DismalK In.
Diamsb
114'
1/Y
1 314-
T
(h)
4
6
6
—
—
6
12
12
9
—
8
18
16
12
6
10
20
20
14
10
12
24
24
16
12
Hole Diameter
Area of Hole
(h)
(h2
ire
0.013
114
0.049
318
0.110
12
0.196
lire
0.307
3/4
0."2
718
0.601
1
0.76s
FIGURE 5.2. WATER QUALITY OUTLET FOR A DRY
EXTENDED DETENTION BASIN
a
SF�
O
KU�
UFO
P��v
8
`c!
cOZO
21a
o rove
ow
� a
�m
Mom
o(tv
DRAINAGE CRITERIA MANUAL(V. 3)
10.(
6.1
4.1
2.1
U
0.61
O.4
0.2
i o
0.1
0
0.0
0.0
o.a
0.01
0.02 0.04 0.06 0.10 020 0.40 0.60 1.0 2.0
Required Area per Row (In.2 )
Sinew: Dapee Gounb Storm Droner and Todniwl CatsdA 1Yee.
FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION
BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME
STRUCTURAL BMPs
momm.momwiviioAPAA01orAii
SOLUTION: Required Aroefor I
Iiii
p" rd,
For
E,
FA
PA
I
mimeWFFF
AJj
PAS
AS
W Ed
APIA
ANNAll
VAAMI
0
.e
11.Nr42
'AAJO
WAAFA'
Aer
APIANA
Ell
FAMOAPOP*
'A
L
A VON
PA,
PA Ar
WAA
Fir
m
I m
0
1
OUR
AA
AA
1001011
1001011
rAAdAl
F®r
'A
sm
WA"r
Ap
'Arl
IwAr
Rev. 3-1.1994
UDFCD
1
1
1
1
1
i
1
1
1
1
1
1�
1
1
f�
1
L
1
di
0
3c�
O
CVK
n
V J
W
oz<a
�Z
i �
r4-�-c A.zc"7a Q o, 0 4�l I"q
s
W I
!/1 lc
rc
L
0 10 20 30 40 50
Outlet Diameter in Inches
FIGURE 5-4. MINIMUM TRASH RACK AREA
/A zi
t Va3N
i
60 Ibi f_ --
z
Ooo
z N
O
I
Elevation
Area (sq
Ave. Area
Volume (cu-ft)
Cum. Volume Swale 6
4903.000
0.000
0.000
0.000
0.000
4903100
10.360
5.180
0.632
0.632
4903.200
19.424
14.892
1.437
2.069
4903.300
34.646
27.035
2.656
4.725
4903.400
56.025
45.335
4.482
9.207
4903.500
83.574
69.799
6.926
16.133
4903.600
117.274
100.424
9.986
26.119
4903.700
157.145
137.210
13.660
39.779
4903.800
203.173
180.159
17.999
57.778
4903.900
255.360
229.267
22.868
80.646
4904.000
313.714
284.537
28.390
109.036
4904.100
363.442
338.578
33.830
142.866
4904.200
416.302
389.872
38.952
181.818
4904.300
472.792
444.547
44.443
226.261
4904.400
534.715
503.754
50.323
276.584
4904.500
602.374
568.545
56.796
333.379
4904.600
675.773
639.074
63.842
397.221
4904.700
754.894
715.334
71.460
468.681
4904.800
839.752
797.323
79.779
548.461
4904.900
930.343
885.048
88.436
636.896
4905.000
1026.669
978.506
97.773
---Ykra69�
4905.100
1124.647
1075.658
107.528
�8.42.197
4905.200
1226.642
1175.644
117.516
959.713
4905.300
1332.743
1279.692
127.984
1087.697
4905.400
1443.054
1387.899
138.745
1226.442
4905.500
1557.700
1500.377
149.981
1376.422
4905.600
1676.848
1617.274
161.657
1538.080
4905.700
1800.821
1738.835
173.797
1711.877
4905.800
1931.736
1866.279
186.719
1898.596
4905.900
2070.000
2000.868
200.003
2098.599
4906.000
2213.494
2141.747
214.084
2312.683
w l w c4 c✓ = " t 4 Z.. 3� rr+= � Z = 4�i o S_ o
I
I
I
,t
I®CII 1MYIMV T/Ia�
MODEL: EC -RAIL
SECNO
100-YR
WSEL
ri
500-M
WSEL
p
too
412.24
0121M
200
4913,01
4913.29
2%
4913.60
4913.90
300
4913.79
4914.17
AGO
4913.85
4914124
450
4914OB
4914.42
500
4914.19
4914.59
700
4916.40
4916,68
MODEL: EC-SPLT
SmNO
10o-YR
WSEL
Po
1000
4905.37
1074
4905.70
f 152
4906,19
1436
4906.W
1257
4912.45
19W
4913.27
2000
4914.51
2025
4915.M
"IST1G LW POOR IN C "URIND
RREAL IEAL ST_YR SWl. ]Y6) Cf➢
YFM SPILL. BM.] CFS
FLW ILSE FROM! SEAL Q®' phR tWHPNNE
too-,Ew-.U.S CIS; (S S Nv)
&M-YFAo 1924 COB (4CM 3p-)00)
- to
'�'[IMBERLI-- — _ ROAD
02
c,P �
4�
000
.� PREDEIF LOPMENT SPLIT
_
FILL1
I
xcRax xpx5 toLOW SP- 03 CPS
iR�.
S:1 PPueOx MORE]
MASTER PLAN 1 W A 500-YEAR
OM \ 11
sEAYIx t9W \ ii'�. to 20 1 ROODPWN, MMGH, 1988
MASTER PLAN HEC-2
/may SECTION FOR SPRING
75 ISMS - -- I CREEK
H
e01i IWtti bCHASE 9064
NORTHERN ENGINEERING ( -
NEC-2 SECTION FOR SPILL
MR RMBERUNE ROAD
0
�P° N
0 SI
NOTE:
100—YR SPILL' I 1) TIE'..W—YFM ROOD%NN DEUNEATION FOR SPMW CREEK IS FoXEN FROM
FLOODPW( SAM N LIMIT - - d TAKE ! OF Tf CREEK MINISTER M TER AMAGIMAY % Moto 19M,
�Y 'I ROW ELEVATION WA PRESENTED IN CAI G REPMFMS DMLCPET MSW
I 1 IF MCeOIpY WIN OTRW CHANNEL WHO ONS.
PRF.DEVELOPMEM SPLIT
F.OW SPILL= 6 IFS •� I 1 - 49 .15 j12 x) THE HCRINFRH ENCYIFFRNIG XEC-x MVLYSES Rf9RESENR OE\fIOFF➢ 8Wx
XYCN.YWY WTI D(oSo CHANNEL NEL CONDEMPN5. MdG.VWY FTHIS
\ \ \I �t \ / 1 ' I.. I ' \ ♦ .10 MOODINGOWAR PROOKO T THE CRT OF FAR COLLINS s1oRWATFR U1MY
It
HEC-2 MAIN CHANNEL I "0 .�. ( � 6 3) THIS RAN REA16ENrs IREP'JT FROM To XEC-2 MODES FEE
CENTERLINE, FILE NO — — — 1 ` \ \ \ \ \h Ea-SRia1rt AND EC-Rru.WT.
EC-SP COAT \ \
T \ \\ LEGEND:
1 \ T\ 100 k 500-YEAR MASTER PLAN HOOD
N1� BOUNDARY FOR SPRING CREEK
KAN;\ \ ` y v v BYCNORTHES ENCTION C
COY OF FORT GOWNS / C� G1 �� MASTER PLAN CROSS SECTION
AERIAL TOPOGRAPHY USED i1 / �i�1%
IN THIS AREA TO ALONG SPRING GREEN W DEVELOPED
SUPPLEMENT SURVEY TOM CONDITIONS WATER SURFACE
FOR HEC`-2 SECTIONS / yg ELEVATIONS (CWSEL)
Jn4910 EXISTING COWOUR
,r PRE.EBELCPMEN- SVLN ;
- CO SP..._ ..9 CFS
It Itt—
N6,_ --
D
TH
PREDEVELOPMENTifWLIT \ O
FLOW SPILL- H.+ CFS _ \
PREDEVELOPMEMf SPLIT / QRAPHIC SCALE
PREOROW WEIR I '- NO 60 120 100 ONE
FLOW ELOPMENG 10DYR 6. 1 ` . ( - 0
ROW MIDPOINTCONTINUIFAST 'b 1 \SY ____ __ _. _. .. ____ _ (ix FEET)
DOWN MIDPOINT DRNL-
zso DIPS (FROM 34.9 c6sPECHT POINT - (ROAD
'�� - Ro 11.
SPILL MR RMBERUNE ,' 1 SPLRyCOW WILLS 1.0 _
ROAD) - _ _ --.
By °" NORTHERN ENGINEERING SERVICES Pr°"`` 9734.00 Print Dale: MpNm° ^.a. m SPRING CREEK CENTER. P.U.D. sheet
SCALE 1'=60' 100YR PREDEVELOPMENT
420 SOUTH HOMES SUITE 202. Ff. COLLMS. COLORADO 80521
(990) 221-4158 DE ONER : MBW CHECKED BY: XX%w°g1L. T.4:..•.� SPRING CREEK SPILL G
DRAFTSMAN: CARD PREPARED,01 20 99 Sheets
No Text
PRE/POSTDEVELOPMENT SECW 1000 °°�""'""°`"m
xtm an rnai mlvmunn our m VERTICU SCUE: t'�5'
tNr Iwlmn tlltaa HORIZOMU SLUE: t'=30'
4910
4905
4905
E r
- : 4900
9+00 10+00 11-I.00 1?+00 13t OC 14+00 15+00 16+00 1/IG: _ 18+00
`°""PREDEVELOPMENT SECNO 1074 aR M%&T�omm
1 _ —
4910
4910
g ^
_ s
4905 _ t__:: :... 4905
F
4900 - - - _ .. _ _ _. 4900
9+00 10+00 11+00 12+00 13+60 _ 14+00 IS+00 16+00 17+00 18+00
PREDEVELOPMENT SECNO 1 152 �"" ° m
m
rem an rar torsaMslW
txr MIIRWD mina
T—
'._.
N:
491 o f 910
490 - _ _ _ 4905
4900
10+00 11+00 ' 2+00 13+00 14+00 15+00 i - --
18+00
1 16 r00 +0 19+00
PREDEVELOPMENT SECNO_ 1436
Wm rnr r[MVL r°Rocwrxr art m
mE sUt+a° 1R.CI6
4910 _-4910
aso5 4905
m -
4900 - _—r. 1 .t.._.
5 9+00 10+00 11+00 12+00 — 13+CO 14+00 15+00 76+00 17+00 18+00
E tlMIE: •
UL CRO55-SECRONS ME ORIEMATEO LOOKING GOWNS,RDIM (EASo WIM
CRO55-SEC„ ON 5 AT Mp FROM , TO RIGHT.
No. Revisions B Data [Project: L: Print Dote: ^^^•^ SPRING CREEK CENTER, P.U.D. Sheet
NORTHERN ENGINEERING SERVICES 9734.00""° a
- SCAIE:,=3o -°^'F� PRE -DEVELOPMENT; SPRING
T -- — azo sourtl xoxes sttrre zoz, FT. COLLINS. coLowtDo 80521 4
DESIGNER: M& ICHENEDBY:XXX CREEK SPILL HEC-2 SECTIONS
�� (990)221-4169 DRAFTSMAN+CIDD IppFpAprn.M/15/00'—'�'
No Text
No Text
rl
rJ
a
8