Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 08/08/2002 (2)2004 HIGH SCHOOL
FINAL DRAINAGE &
EROSION CONTROL STUDY
for
.............................
............................
:I?o idk SthodIDlSfi'i I R I
............................
.............................
............................
2407 LaPorte Avenue
Fort Collins, Colorado 80521
by
Nolte Associates, Inc.
1901 Sharp Point Drive, Suite A
Fort Collins, Colorado 80525
(970) 221-2400
June 24, 2002
I
1
1
1
1
1
1
1
1
1
1
1
M
1
2004 HIGH SCHOOL
FINAL DRAINAGE &
EROSION CONTROL STUDY
for
.............................
............................
............................
2407 LaPorte Avenue
Fort Collins, Colorado 80521
0
Nolte Associates, Inc.
1901 Sharp Point Drive, Suite A
Fort Collins, Colorado 80525
(970) 221-2400
June 24, 2002
B E Y O N D E N G I N E E R I N G
' June 24, 2002
1
Mr. Basil Hamdan
City of Fort Collins
700 Wood Street
Fort Collins, CO 80521
RE: Drainage and Erosion Control Study for the 2004 Fort Collins High School
Dear Basil:
We are pleased to submit to you, for your review and approval, the Drainage and Erosion Control
Study for the 2004 Fort Collins High School. All computations within this report have been
completed in compliance with the City of Fort Collins Storm -Drainage Design Criteria and
Construction Manual and the Urban Storm Drainage Criteria Manual.
We appreciate your time and consideration in reviewing this submittal. Please call if you have any
questions.
' Sincerely,
I*
Nolte Associates, Inc.
Prepared by:
Greg A. Dreeszen, E.I.T.
Junior Engineer
cc: File FC0194
NOLTE ASSOCIATES, INC.
1901 SHARP POINT DRIVE, SUITE A
FORT COLLINS, CO 80525
970.221.2400 TEL 970.221.2415 FAX
WWW.NOLTE.COM
Thomas M. Ochwat, P.E.
Senior Engineer
BEYOND
ENGINEERING
N
I
Final Drainage &
Erosion Control Study
2004 High School
TABLE OF CONTENTS
PAGE
'
1.0.
INTRODUCTION........................................................................................................1
1.1 Site Location..................................................................................................... 1
1.2 Existing Site Description...................................................................................1
1
1.3 Proposed Project Description............................................................................
1
2.0
METHODOLOGY.......................................................................................................2
'
2.1 Compliance with Standards...............................................................................
2.2 Analytical Methods...........................................................................................
2
2
3.0
HISTORIC DRAINAGE CONDITIONS..................................................................... 3
3.1 Major Basin Description.................................................................................... 3
4.0
DEVELOPED DRAINAGE CONDITIONS
3
'
4.1 General Concept ............... .................................................................
3
4.2 Basin Descriptions.............................................................................................
4
'
4.3 Detention Pond Design......................................................................................
7
5.0
EROSION CONTROL.................................................................................................
8
5.1 General Concept...............................................................................................
5.2 Specific Detail ...................................................................................................
8
9
5.0
CONCLUSIONS..........................................................................................................
5.1 Drainage Concept.............................................................................................
9
9
REFERENCES...........................................................................................................
10
'
APPENDIX A - Developed Site Hydrology
APPENDIX B - Street Capacity Calculations
'
APPENDIX C - Inlet Design
APPENDIX D - Swale Calculations
'
APPENDIX E - Storm Drain Design
APPENDIX F - Detention Pond Calculations
APPENDIX G - Erosion Control Calculations
'
APPENDIX H - Charts, Tables & Graphs
APPENDIX I - Excerpts from other Reports
BACK POCKET — Overall Drainage Plan (Sheet DROI)
- Overall Grading and Erosion Control Plans
' Nolte Associates, Inc. i N:\FC0194\DrainagelWord1Fc0194_DrainageReport_Final.doc
RE Y O N D
E N G INS E R I No
1.0
1.1 Site Location
Final Drainage &
Erosion Control Study
2004 High School
The proposed Fort Collins 2004 High School (Site) is located in south Fort
Collins. The Site is bordered to the north by Rock Creek Drive; to the east by
Cambridge Avenue; to the south by Kechter Road; and the to the west by Ziegler
Road (Refer to Exhibit 1, Vicinity Map). More particularly, the Site (90t acres) is
located in the Southwest Quarter of Section 4, Township 6 North, Range 68 West
of the 6m Principal Meridian, City of Fort Collins, County of Larimer, State of
Colorado.
1.2 Existing Site Description
In general, the existing Site slopes south and east along grades that vary between
0.5 percent and 3 percent. The existing Site is presently irrigated cropland.
According to the results of the geotechnical subsurface exploration report that was
prepared by Earth Engineering Consultants, Inc., (Dated: November 14, 2001) the
existing Site is comprised of topsoil/vegetation underlain by light brown lean clay
with varying amounts of silt and sand.
Other pertinent on -site features include the following
• Three small buildings and a two-story farmhouse that are located near the
Site's west property line.
• Three irrigation ditches that traverse the Site from west to east. The first
follows the north property line of the Site; the second runs through the
north third of the parcel; and the third splits the parcel approximately in
half. The City of Fort Collins Parks and Recreation Department will allot
the area to the south of the third ditch for future development.
• The McClellands Channel runs west to east through the southern third of
the Site. This reach of McClellands Channel will be within the City of Fort
'
Collins Parks property.
' The Site lies within the McClellands Creek Watershed Basin. The existing on -site
runoff currently flows overland and is captured by the irrigation ditches or
McClellands Creek.
1.3 Proposed Project Description
' The proposed 2004 High School will consist of one two-story, predominantly
brick building that covers 258,746 ft2 (5.94 acres). There are four separate parking
areas will provide the school with approximately 1200 parking spaces. The two
largest parking areas are located south of the proposed building. A third and
Nolte Associates, Inc. I N:\FC01941Drainage\Wor&FcOI94_DminageReport_Final.doc
2:02 p.m. DATE: 03/12/02 PATH: N:\fcOI94\CADD\CP\
R: FCS1 SERVICE: PROJECT DRAWING NAME: ETDR0I.DWG
: LetterP
�a0�,d 5ti
0 v
i
ND
Ygh h� l �1NESARK t
cc
7`` c°,trso ciR
:REEK
sr s
r`yGr�ANi77F"_1UlYPl�. a .�
'.' YEccowsr Cr��,
_.
hiaRrtlt
p1 ,
_: Gtll_NOOK
:LlV:.
-- �! Hewlett-
�•
� ,`;
Packard
I
ui•- :
PROJECT ss
SITE
-a a a�1 -a-a-a a. 'a i • a a. as .a.•
00
525
2004 HIGH SCHOOL
VICINITY MAP
r
31
kY<
i_
a.
N.T.S.
B E Y O N D E N e 1 N E E R I N 0
IM °W Fart °M °M A. Fart cm"" C0' eos>s PREPARED FOR: Poudre School DlStrict R-1 DATE SUBMITTED: 03/13/02
S?QnU 00 TEL OY02K 4! FAX WWW=TEC011
a7
SHEET NUMBER
1
OF 1 SHEETS
JOB NUMBER
FC0194
NOLTE
BEYOND
ENGINEERING
N
Final Drainage &
Erosion Control Study
2004 High School
smaller parking area lies to the west of the proposed building. The fourth and
smallest parking lot will be located in the northeast corner of the Site.
The north portion of the Site will be heavily landscaped and contain a meandering
pedestrian walkway. The area on the east side of the building will consist of
numerous athletic fields and a running track. A truck docking area has been
designed for the west side of the building.
Vehicle access for the Site will be from west via Ziegler Road, from the east via
' Cambridge Avenue and from the north via Rock Creek Drive.
In addition, the Site will include a dual use detention/irrigation pond located in the
' southeast corner. The irrigation raw water will come two irrigation laterals. The
Poudre School District has raw water shares from Warren Lake and the New
' Mercer Lateral. The Warren Lake raw water will be conveyed from the north via a
proposed pipe system and the onsite storm sewer system. The New Mercer Lateral
raw water will be conveyed from the west (NEC of the Kechter Road and Ziegler
' Road intersection) via a separate pipe system. The irrigation raw water storage will
used to irrigate the high school, the adjacent CFC parks parcels and Zach
Elementary School located to the south and east along Kechter Road.
' 2.0 METHODOLOGY
2.1 Compliance with Standards
The final drainage and erosion control study that follows was prepared in
' accordance with the requirements and procedures for storm drainage design set
forth in the City of Fort Collins Storm -Drainage Design Criteria and Construction
' Manual (FC-SDDCCA4) and the Urban Storm Drainage Criteria Manual (Manual).
2.2 Analytical Methods
' The Rational Method was used to analyze the minor and major design storm runoff
(I0-yearand 100-year). This method is widely accepted for drainage design
involving small drainage areas (<160 acres) and short times of concentration. The
Rational Method relates peak discharge to the runoff coefficient, rainfall intensity,
and drainage area. The rainfall intensity and runoff coefficients were taken from
the FGSDDCCM.
' This method is ideal for storm sewer sizing and simple detention pond sizing or
M design situations where only the peak flow rate and/or the total volume of runoff
are needed.
1 Nolte Associates, Inc. 2 N:\FC0194\Drainage\WordTc0194_DrainageReport_Final.doc
' NOLTE Final Drainage &
BEYOND ENGINEERING Erosion Control Stu
dy
2004 High School
N
The FAA Method was used to estimate the detention pond size requirements. This
value was multiplied by a factor of 1.50 to simulate results from a SWMM model
and to allow extra assurance that adequate volume is provided.
' In addition to the methods mentioned above, this drainage study was prepared
' using hydraulic software packages from Haestad Methods and the Urban Drainage
and Flood Control District, including: StormCAD, FlowMaster, HydroPond, and
UD Inlet. HEC-2 software was used to model the proposed McClellands Channel
improvements.
3.0 HISTORIC DRAINAGE BASINS
3.1 Major Basin Description
' The 2004 High School Site lies within the McClellands Creek Master Drainage
Planning Area. An updated master drainage plan for McClellands Creek,
' McClellands Creek Master Drainage Plan Update (Dated: November 30, 2000),
was completed by ICON Engineering, Inc.
' According to the Update, McClellands Creek is located in the southern part of
Fort Collins and begins near the northeast corner of the intersection of College
Avenue and Harmony Road. McClellands Creek flows in a southeasterly direction
' to Swift Pond. The mandated developed release rate for this area is 0.5 cfs per
tributary acre. Because of this criterion, no historic drainage calculations were
made.
' 4.0 DEVELOPED DRAINAGE CONDITIONS
4.1 General Concept
1
w
In general, the majority of on -site developed runoff will sheet flow across
landscaping or asphalt to a local area inlet that outlets to the sub -surface storm
drainage system. The roof drainage will be captured by an internal piping system
and dispersed to one of two different sub -surface conveyance systems that are
located to the north and south of the building. The sub -surface storm drainage
system will transport the developed runoff to on -site detention facility that will be
located in the southeast corner of the Site. The three on -site parking areas that are
located to the west and south of the building will act as local detention facilities
and release developed runoff to the detention/irrigation facility at a rate of 0.50
cfs/acre.
Nolte Associates, Inc.
N:\FC0194\Dminagc\WontFcOI94_DminageReportjinal.doe
I
P
1
i
1
i
1
1
BEYOND ENGINEERING
Final Drainage &
Erosion Control Study
2004 High School
Developed runoff along the Site's undeveloped west side (interim condition) will
continue to sheet flow across existing terrain and drain into the existing irrigation
ditches. An interim condition occurs in which undeveloped basins in the northwest
comer of the site will contribute runoff to the system. During this interim
condition, the parking lot ponds will release the total tributary area at 0.50
cfs/acre. At the time when the northwest corner lots are developed, they will be
required to detain/release into the proposed system at 0.50 cfs/acre. The proposed
storm sewer system has been designed and provides a connection point at manhole
location for this future development.
The basins to the north of the proposed building will sheet flow to either Rock
Creek Drive or to the local detention facility that is located in the northeast comer
of the soccer fields. This detention pond (i.e., Basin 403) will release at 1.20 cfs to
the east and into detention pond in Basin 400. From here, an outlet structure will
restrict the release of storm water (i.e., 7.70 cfs) to an off -site system located in
Rock Creek Drive. Basins along the southern half of Rock Creek Drive will drain
to a proposed 15' Type `R' curb inlet (i.e., D.P. 204) and release into the proposed
detention pond in Basin 400.
1 The main sub -surface drainage system will route storm water runoff as well the
Warren Lake raw irrigation water to a detention/irrigation facility located in the
southeast corner of the Site. This pond will provide water quality capture volume,
1 detain the 100-year storm event and maintain a permanent water surface elevation
below which irrigation water will be stored. The pond will release to McClellands
Creek via a 50' spillway at a rate of 0.50 cfs/acre.
1 t2 Basin Descriptions
Basin 100 pertains to the building's roof drainage. The roof drainage has been
1 designed by MKK Consulting Engineers, Inc. using the Uniform Building Code.
An intensity of 3-in/hr was used equating to 15.75 cfs exiting the building to the
' south and 2.36 cfs leaving each drain from the north. There are four roof drain
connections on the south side of the building that will connect to 15" PVC. This
storm water will outfall into a 3-ft wide (bottom -width) grass -lined swale located
1 in Basin 308. The intent of this swale and associated planting is to provide a bio-
swale environment. There are two roof drains that exit the building from the north.
The northeast drain connects to 12" PVC that routes the runoff to a storm system
that runs east along Rock Creek Drive. The northwest drain ties into system `B' at
1 SDB-MH314. Basin 101 (0.12 ac) is the truck docking/maintenance yard. This
area's runoff will flow to a trench drain located at the bottom of the truck ramp.
NThe runoff will then be routed into the school's interior roof drainage system.
Nolte Associates, Inc. 4 N.WC0194Ukainap%WwWcOI94 DreinageReport_Final.doc
r�
P
i
1
i
1
1
1
1
1
1
1
J
11
1
BEYOND E N G I N E E R I N G
Final Drainage &
Erosion Control Study
2004 High School
Basins 200-204 border the Site to the east and north. These basins are bounded by
the centerline of the adjoining streets and neighboring high points. The developed
runoff in Basin 200 (1.23 ac) flows across landscaped areas and sidewalks and
enters existing curb and gutter that routes the runoff north to D.P. 200. Basin 201
(1.33 ac) sheet flows across landscaped areas and sidewalks to a low point in the
landscaping. An area inlet will capture the runoff and route it to the on -site sub-
surface drainage system. Basin 202a (1.13 ac) sheet flows across a tennis court
playing surface and sidewalks and enters existing curb and gutter that routes the
runoff south to D.P. 200. A 10' Type `R' Wet was designed to accept the runoff
from basins 200 and 202a. Runoff from Basin 202b (2.46 acres) flows across
landscaped areas and sidewalks and enters existing curb and gutter that routes the
runoff south to D.P. 202b where the flow is intercepted by a 20' on -grade Type
`R' inlet. Runoff from Basin 203 (1.29 ac) flows overland across landscaping and
enters curb and gutter that routes the runoff north to D.P. 203. A 10' Type `R'
curb inlet was designed to accept the developed runoff and route it to the north to
the detention pond in Basin 400. Basin 204 (3.36 ac) borders the Site to the north
and encompasses a portion of the east half of Ziegler Road and the south half of
Rock Creek Drive. Runoff will be routed by curb and gutter to a 15' on -grade
Type `R' curb inlet located at the east end of the basin (near the corner Rock
Creek Drive and Cambridge Avenue). This runoff will be routed to the detention
facility in Basin 400.
Basins 300-315 are located on the interior of the Site. The developed runoff in
Basins 300 (0.66 ac), 301a (1.80 ac), 301b (1.42 ac), 302a (0.27 ac), 302b (0.59
ac), 309 (0.89 ac), and 310 (1.67 ac) traverse landscaped areas and half street
areas and enter curb and gutter that routes the developed runoff to its respective
design point. This developed runoff will be captured by Type `R' curb inlets and
routed to storm drainage system `B'. The bypass flow at the inlets at D.P. 300 and
301a will follow curb and gutter to system `A' located to the south along
Cambridge Avenue. The developed runoff from basins 303 (3.56 ac), 304 (1.52
ac), 305a (3.45 ac), and 305b (3.51 ac), respectively, will be intercepted in area
inlets in each basin and routed to the sub -surface drainage system. An underdrain
system utilizing ADS AdvanEDGE pipe will run along the south and west
perimeter of the adjacent ball field. The underdrain will route surface runoff
nuisance away from the field. Developed runoff from Basin 308 (0.51 ac) will flow
into the swale and enter a 24" NRCP culvert at D.P. 308. Ultimately, this runoff
' will be routed overland to D.P. 303. Refer to the swale calculations in Appendix D
for further information. The main parking areas will act as local detention facilities
that release storm water from the major event at a rate of 0.5cfslacre. Basins 306
(2.66 ac), 307 (4.79 ac), 311 (3.17 ac), 312a (7.18 ac), and 313a (4.71 ac) will
1 None Associates, IDc. 5 N:\FC0194\Dnunage\Word\Fc0194_DramageReport_ uW.doc
BEYOND ENGINEERING
Final Drainage &
Erosion Control Study
2004 High School
capture local developed runoff in grass4ined bio-swales located in the center of
each basin within the parking lot median islands. The runoff will enter the swales
through under -sidewalk drains and flow overland to area inlets. The inlets will
have orifice plates attached either to the pipe entrance or to the grate itself. These
'
inlets route the runoff to storm drainage system `B' at a rate of 0.5 cfs per
tributary acre. The plates on the inlets at D.P. 312a and 313a will need to be
replaced once the future commercial lots to the west are developed. The major
'
storm event ponding limits are shown on the overall drainage plan. Basin 313b
(1.02 ac) was delineated to calculate the street capacity for the north entrance to
'
the faculty parking lot. A high point at this entrance does not allow street runoff to
enter the school site at this location. Basins 311b (0.57 ac) and 312b (2.12 ac) will
flow overland to curb and gutter to design points located at the entrance to the
parking lot. Basin 314 (1.63 ac) is located to the north of basin 313a and consists
'
of mostly pervious terrain. This runoff will be captured in an area inlet within the
landscaped area. Basin 315 (0.36 ac) is located adjacent to the west side of the
building's west entrance. Runoff from this area will also be collected by a
landscape area inlet. Overflow runoff from both Basins 314 and 315 will spill into
the faculty parking lot area.
'
Developed runoff in basin 400 (2.75 ac) flows overland through the future
northeast parking lot. In the interim condition, runoff will sheet flow to the pond.
'
During the ultimate condition, runoff will be collected and conveyed via curb and
gutter that routes the storm water to curb cuts located at the midpoint of the north
end of the future lot. Runoff will enter the local detention pond through curb cuts.
An outlet structure is proposed to control the release of storm water to the
existing sub -surface storm drain system within Rock Creek Drive. Basins 401
'
(1.86 ac) and 402 (1.86 ac) are delineated around the proposed athletic field and
track. The drainage for this facility is currently designed as a trench system along
the interior of the track_ Two connection points are designed to take half of the
'
runoff each. The north connection, Basin 401, will release into the north detention
pond. The south half will be routed to the subsurface storm drain system `B',
which will outfall into the southeast detention/irrigation pond. Areas along the
'
north and east side of the building will be primarily landscaped and graded for
playing fields. Basin 403 (10.80 ac) will attenuate runoff from these landscaped
areas in the northeast corner of the basin. An inlet with an orifice plate is proposed
to regulate the flow to the pond in basin 400 to 1.20 cfs. An underdrain has been
designed to carry nuisance flows from the northwest corner of the field areas east
to the inlet at D.P.403. This corner of the basin will act as a detention facility
'
during major storm events. Storm water from Basin 404 (1.31 ac) will travel
overland through landscaped areas to an area inlet at D.P. 404. If the inlet were to
be clogged, the excess runoff would be routed over the sidewalk and continue east
within the play field adjacent to Rock Creek Drive.
' Nolte Associates, Inc. 6 N:\FC01940ramage\Word\FoOI94_DmmageReport_Final.doe
I
' NC&TE Final Drainage &
BEYOND ENGINEERING Erosion Control Study
2004 High School
' Undeveloped runoff in basin 500 (4.43 ac) will continue to flow overland through
existing fields toward the northwest parking lot. Proposed curb and gutter will
' route the runoff to D.P. 313a. Runoff in basin 501 (4.39 ac) will flow overland and
into an existing irrigation ditch to the south of the basin. Storm water that is not
routed to the ditch will be routed to D.P. 312a. Basins 502 (2.04 ac) and 503 (0.88
ac) will route runoff via curb and gutter to a 10' Type `R' inlet that will route
flows un-detained to McClellands Channel. As a condition of the un-detained
release from Ziegler, Cambridge Avenue runoff will be detained in the detention
pond P-300.
Developed runoff in Basin 600 (1.68 ac) flows overland through landscaped areas
and playing fields to Cambridge Avenue. The flows are collected by curb and
gutter that route the flow south to D.P. 601. A 10' Type `R' curb inlet will capture
' the water and route it into the detention/irrigation facility. The developed runoff
from Basin 601 (1.97 ac) will flow overland through landscaped areas and playing
fields to Cambridge Avenue. This runoff will also be routed by curb and gutter to
D.P. 601. Basin 602 (1.24 ac) will capture half street flows from Cambridge
Avenue and route the runoff to D.P. 602 where the storm water will be captured
by a 10' Type `R' curb inlet. These flows will be routed to the detention/irrigation
pond via storm drainage system `A'.
'
4.3 Detention Pond Design
The detention pond P-30O located in Basin 1000 will be utilized for runoff from
the site as well as raw water irrigation storage. The pond was sized using USDCM
'
program Hydropond that utilizes the FAA method. The volume required was 4.29
ac-ft. This volume was multiplied by 1.50 to simulate the results typically given
using SWMM modeling to obtain a volume of 6.44 ac-ft. This pond will also
'
detain runoff (0.9 ac-ft) from the parcel to the east (Reid Riedlinger Parcel). The
water quality volume was determined using USDCM Best Management Practices
'
for Retention Ponds. The amount of WQCV required is 0.47 ac-ft. No water
quality outlet structure was designed due to the lack of measurable depth over the
surface of the pond (3.5+ ac surface area).
'
The irrigation volume was mandated by Aqua Engineering is 13.5 ac-ft. This
creates a water surface elevation of 4889.37. The storm systems outfalling to this
'
pond (System A & B) have been designed to begin construction incorporating this
elevation as tailwater. The water quality capture volume increases the water
surface to 4889.50 and the 100-yr event runoff increases the water surface to an
elevation of 4891.44. The spillway elevation for the has been designed to
pond
tNolte Associates, Inc. 7 N:\FC0194\Dreinage\Word\Fc0194_DrainageReport_Final.doc
�
NOLT�
BEYOND
ENGINEERING
Final Drainage &
Erosion Control Study
2004 High School
4891.15 to allow the 100- yr. release of 22.2 cfs at the 100-yr. pond elevation.
' This release is equal to 0.5 cfs per acre of the contributing tributary area to the
pond.
The detention/irrigation pond will also have a secondary release for Stormwater
that is collected when the irrigation pond is not at capacity. An 18" PVC drain will
allow for measurable release of Stormwater after a rainfall event. The drain will
have a valve that will be operated manually. Measurement of the water surface will
be made prior to an event allowing for more accurate release.
Each parking lot, Basins 306, 307, 31la, 312a, and 313a, act as local detention
facilities during the major event. These ponds will detain and release runoff at 0.5
cfs per contributing acre. Basins 306 and 31 la will have an orifice plate attached
to the area inlet, restricting the release. Basins 307, 312a, and 313a will have an
orifice plate attached to the pipe entrance to inhibit flows to allowable release
' rates. The areas contributing to these ponds are not calculated in the sizing of
detention pond P-300.
On the north side of the building, the playing fields will act as temporary storage
for runoff. The area inlet at design point 403 will have an orifice plate attached to
' the entrance of the exiting pipe to restrict flow. During the 100-yr event the high
water line is 4906.76. If this inlet becomes clogged, the water would pond up and
spill into basin 400 to the east. Basin 400 contains the northeast detention pond.
' This has a volume of 1.11 ac-ft during the major event. This creates a high water
elevation of 4904.08. An outlet structure is designed to regulate the flow into the
existing storm drain system in Rock Creek Drive. A pedestrian grate on a Type C
outlet will regulate a maximum release of 6.5 cfs. The release from design point
403 releases at 1.20 cfs, which accounts for the remainder of the allowable 7.70
' cfs. (See Appendix H.)
5.0 EROSION CONTROL
' 5.1 General Concept
' The 2004 High School is in the Moderate Rainfall and Moderate Wind Erodibility
Zones per City of Fort Collins zone maps. Until the disturbed ground is re -
vegetated, the potential exist for erosion problems during and after construction.
' The Erosion Control Performance Standard (PS) during construction for this
project was computed to be 94.36 per the criteria in the City of Fort Collins
' Nolte Associates, Inc. 8 N:\FCOl94\Drainage\Word\FcOI94_DrainageReprnt_ inal.dac
NOLTE
BEYOND
ENGINEERING
M
I
I
Final Drainage &
Erosion Control Study
2004 High School
Erosion Control Reference Manual for Construction Sites. The Effectiveness
(EFF) of the proposed erosion control plan was calculated to be 77.00.
The proposed erosion control methods meet the City of Fort Collins'
requirements. Calculations can be found in Appendix G.
5.2 Specific Detail
Prior to commencement of the overlot grading, vehicle tracking controls and silt
fence must be installed as shown on the Grading and Erosion Control Plans. All
disturbed areas that will not be paved shall be mulched and seeded within 30 days
of the beginning of grading operations unless otherwise approved by the
Stormwater Utility. Upon completion of the curb inlets, area inlets and sidewalk
chases, inlet protection and straw bale check dams shall be installed. Straw bale
check dams shall also be placed around the outlet works of the northeast pond,
prior to construction in this area. These straw bales shall be left in place until re -
vegetation growth is well established.
19 All construction activities must comply with the State of Colorado permitting
process for Storm water Discharges Associated with Construction Activity.
' 6.0 CONCLUSIONS
6.1 Drainage Concept
tThe proposed drainage concepts presented in this study and shown on the
preliminary drainage plans adequately provide for the conveyance of developed
' runoff from the proposed development.
I
1
1
Nolte Associates, Inc.
N:\FC0194\Drainage\Word\Fc0194_DndnageReport_Final.doe
' NO� Final Drainage &
BEYOND ENGINEERING Erosion Control Study
2004 High School
' 1. Storm Drainaize Design Criteria and Construction Standards (FC-SDDCCM), City of Fort
Collins, Colorado (Revised January 1997).
2. Drainage Criteria Manual (Manual), Urban Drainage and Flood Control District, Wright -
McLaughlin Engineers, Denver, Colorado, June 2001.
3. McClellands Creek Master Drainage Plan Update, City of Fort Collins, Colorado,
prepared by Icon Engineering, Inc., November 30, 2000. (Draft Report)
4. Flood Plain Modeling Report McClellands Channel Improvements, for Fossil Lake P.U.D.
' Second Filing, City of Fort Collins, Colorado, prepared by Northern Engineering Services,
Inc., November 30, 2000.
I
1
P
' Nolte Associates, Inc. 10 N:\FC0194\Drainage\WordTc0194_DrainageReport_Final.doc
I
M
1
1
1
1
1
1
1
k
i
1
r
APPENDIX A
Developed Site Hydrology
1
_I
.a ain ii:&C -,: M.
`
Project#: FC0194
Project Name: 2004 High School
' Calculated By: GAD, HHF
Date: 3/11/2002
BEYOND E N G I N E E R I N G
Per Table 3-3 (City ofFon Collins Stonn Drainage Design and Constnnion Standards)
C;,,a,,.;°,n= 0.95 Cram 0.50
C2mna., .= 0.25 . Ce°noae,evt= 0.85
C,% 0.20
Total
Total
Total
Total
Total
Basin
Impervious
2 to 7% lawn
<2% Lawn
Artificial Turf
Commercial
10 yr.
10 yr.
100
100
Overland
Average
Channelized
Average
Area
Area
Area
Area
Area
Area
Area
%Impervious
Composite"C"
Cr
CCr
Cf
CCr.
Basin
Length
Slope
Length
Slope
ft2
ac.
ft2
ft2
ft2
ft2
ft2
ft
%
ft
%
100 250,604 5.75 250,604 0 0 0 0 100% 0.95 `
1.00 1..0.95 1.25 .1:00 100 n/a I n/a n/a n/a
- -- - - -
101 5,370 0.12 5,370 0 0 0 0 1000/0 0.95 i 1.00 0.95 ..., 1.25 �,:<1t00 •,n•: 101 1018 I 275 n/a n/a
1
200
53,732
1.23
15,937
0
37,795
0
0
30%
0.42
1.00
'10A2
1.25
="''0'S3' .
200
220 I
1.99
190
0.50
201
58,105
1.33
15,192
0
42,913
0
0
26%
0.40
1.00
1 - -0.40 -'
1.25
InO:SOt'
201
143
5.88
200
1.50
202a
49,193
1.13
43305
0
5,888
0
0
88%
0.86
1.00
6-Fi0.86==:;
1.25rz_L'00
-_'
202a
207
0.50
207
0.68
202b
106,975
2.46
27,494
0
79,481
0
0
26%
0.39
' 1.00
I -039
1,25
'..0.49
202b
- 96.26
2.00
509
0.68
203
56,408
1.29
27,551
0
-_0
28,857
0
0
49%
0.57
1.00
I . '' 0.57
1,25
;? "'0.71
203
96 !
2.00
356
0.60
204
146,197
3.36
87,467
58,731
0
0
60%
0.65
1.00
1 0.65 `
1.25
1"`0.81
204
40
2.00
2759
0.50
1 --
1
1
1
1
1
300
28,539
0.66
7,294
0
21,245
0
0
26% "'
0.39
1.00
1.._..0.39-
1.25
�e0.49 ._
300
212
i 1.50
246
0.64
301a
78,214
1.80
10,839
67,375
0
0
0
14%
0.35
1.00
1 035
1.25
1 ' 0.43
301a
313
1.50
200
0.50
301b
62,042 -
1.42
35,726
26,316
0
0
0
58%
0.65
1.00
I 0.65
1.25
�_, .0M.
301b
97
5.14
870
0.63
302a
11,974
0.27
11,106
832
0
0
0
93%
0.90
1.00
I-:-.0.90
1.25
:=1.00:: _
302a
16
2.00
330
0.80
302b
25,751
0.59
22,081
3,670
0
0
0
86%
0.85
1 1.00
I "0.W"'
125
%_-.P'1`:00"
302b
15
! 2.00
794
0.84 i
303
155,000
3.56
7,504
0
147,496
0
0
5%
0.24
1.00
' 0:24 !
1.25
.=:,030 _
303
313
1.50
249
2.57
304 "
66,018
1.52
5,767
0
60,251
0
0
9%
0.27
1.00
1.25
1,4. 0 33 ""
304 '
312
1 1.50
71
0.50
305a
150,108
3.45
31,158
0
118,950
0
0
21%
0.36
1.00
1 `-036. -.'.4
1.25
1» (1:44>=--
305a 1
173
1 2.10
137
2.00
305b
152,917
3.51
19,894
0
133,023
0
0
13%
0.30
1.00
r_',030'=- 1
1.25
j `" 37e'^.
305b
168
i 2.00
208
2.00
306
115,946
2.66
87,832
13,706
14,308
0
0
76%
0.77
1.00
1 •0.77 _-
1.25
`�S'0:97 "` •
306 !
109
862
275
100
307
208,463
4.79
124,379
69,117
14,967
0
0
60%
0.66
1.00
'40.66--'i
125
'083
307 i
160
1 564
282
100
308
22,185
0.51
0
0
22,185
0
0
0%
0.20
1.00
J ='° 020`:1
1.25
1't:.7015'-.''
308 1
63
i 25.00
272
0.50
309
38,920
0.89
19,327
19,593
0
0
0 _
50%
0.60
1.00
I=_;^0.60-..
1.25
0:75 -
309 i
90
1 3.75
287
1.08
310
72,532
1.67
28,871
43,662
0
0
0
40°/a i
0.53
1.00
+z;:0!53-==a
I25
`v0.66'•'•
310
91
3.75
309
0.80
311a
138,008
3.17
93,632
25,501
18,875
0
0
68%
0.72
1.00
(: 0.72
1.25
1..=0100._.,
311a
238
1 340
165
100
311b
24,715
0.57
15,162
9,553
0
0
0
61%
0.68
1.00
1:'s0.68='-.;+
125
v�018ALt5�
311b !
53
1 10.00
193
0.90 I
312a
312,817
7.18
116,139
175,162
21,516
0
0
37%
0.51
+ 1.00
/"OSI..`:_`;
I.25
,:;a,0:63'-.r.• :
312a
257
2.36
272
1.75
312b
92,265
2.12
36,052
56,214
0
0
0
39%
0.52
1.00
(e: =t0.52 i "
125
"<. 0:65'-r
312b '
452
1 1.55 11
309
0.68
313a
204,968
4.71
116,078
88,890
0
0
0
57%
0.65
i 1.00
a+i 65*"'q
125
!^ tO:817tRi
313a 1.
425
2.11 1
77 1
1.31 !
313b
44,536
1.02
11,644
32,892
0
0
0
26% +
0.43
1.00
i,'>043
125',0154r�;.�`!
313b 1
269
0.69 1
57.93
0.66 1
314
71,133
1.63
4,795 -
- 66,338
0
0
0
7% 1
0.30
1 1.00
s030NA
1.25
*a`it037 r!
314 1
111
1.76 1
203 !
1.33 1
315
15,710
036
2,658
13,052
0
0
0
17%
0.37
1.00
125
:'0A6.:.:4'
315 1
64
I 2.12 1
146
1.70
400
119,791
2.75
60,964
58,827
0
0
0
51%
0.61
1.00
125
>-<jw,0:76c ��
400
244
I 2.24
211.75
1.90
401
- 81.237
1.86
26,221
0
_ 0
55,015
0
32%
0.65
1.00
I,.".i0.65
1.25
'�"?'0.8Y .'
401
315
1 1.55
45
1.55
402
81,229
1.86
25,607
_ 0
_ 0
55,622
0
32%
0.64
1.00
(`-= 0.64 -:- .
1.25
,= 0:80-'-
402
315
1.55
45
1.55
403
_ 470.267
10.80
3_5,290
0
434.977
0
0_
8% -
0.26
1.00
1' ' 026
1.25
1-- 0.32
403
264 -
2.10
742
1.02
404
57,092
1.31
3,698
53,395 -_
_0 -_
0 _
0
6%
0.30 _
1.00
;'- 0.30
1.25
J - 0.37
404
245
2.10
23
2.46
500
192,925
4.43
0
0
192,925
0
0
0% _ -
0.20
1.00
,L020
1.25
V -0:25---'--
500 I
178
1 1.13
402
0.50
' -
501
191,029
4.39
- 0
0
I91,029
0 --
0
0%
0.20
1.00
;020 '
L25
a025 :
501
500
1 0.80
16
0.80
_
502
88,687
2.04
51,920
36,767
0
0
0
59%
0.66
1.00
1 ,-.•0.66
1.25
..0:82 .:
502
43
2.00
1288
-
0.89
503
38250
0.88
29,883
8,367
0
0
0
78%
0.80
1.00
1:T- UV�`,,
1.25
)1 00-• -
503 1
45
2.00
894
1.17
6(10
72,984
_ 1.68_
16,9713,822_-
52,191--_
- 0
0 ---
23%
0.38
1.00
�..0.38
1.25
0:47 .�:
600 i
338 ' 'I
2.08
164
1.00
601
85,859
1.97
24,563
5,567
55,730
0
0
29%
-,
- 0.42
1.00
xz;0.42Fi'!
1.25
1 0:32 ..i
601 i
310
1.25 i
401
1.33 +
602
53,800
1.24
44,709 '
9,092
0
0
0
83%
0.83
i 1.00
9= 0.81x=1
1.25
q>7' .00 i
602 1
20
1 2.00 1
988.67
i 1.10 i
1000
305,242
7.01 _
0
177,265
-127,977
0
0-
- 0°/a
0.23
i 1.00
':• -'0.23 --
1.25
w 029'-`-'
_ _
1000
327
1.60
91 _
16.76 _-
Total Site 4,139,751 95.04 1,514,439 869,229 1,645,410 110,637 0 037
FC0194_Rational-Fort Collins.xls
2:27 PM
I
M
7
1
1
1
Date: 3l112002 Calculxtcd BY GAD, Fffff BEYOND E N 0 1 N E E R 1 N G
Design Sturm: 10 ym (Dncloped)
DATA
INITIAUOVERLA.ND
TIME(Q
TRAVEL TIME
(t,)
FINAL
t
Dniage
Basin
(Il
Design
Point
Ifa)
Ana
ands)
(21
Runoff
Coef6nmt
C
(3
Frequency
Facto
Ct
(3a)
CCt
(361
Length
R
f4
Slope
%
(5
4
min
161
Length
R
7)
Slope
%
Iel
Velociry
Nstt
f9
4
min
IO
Computed
t.
min
f121
100
1 100
5.75
1 0.95
1 1 M
0.95
Na
Na
no
da
Na
I da
MOO
I 10.00
I 101
1 101
0.12
1 0,95
1 100
1 095
102
1 275
202
0
000
1 n/a
1 1000
I 1202
I 200
1 200
1.3
1 OA2
1 1.00
042
220
1 1.99
14.94
190
Os0
JAI
1 2.24
17.18
I 201
1 201
1.33
1 0.40
1 1.00
040
143
! 5.99
S.71
200
L50
2,45
1 1.36
10.09.
I 2023
I 202a
1.13
1 0.86
1.1
0.86
217
"1
! 1,12
207
0.68
1 1.65
1 2.09
I 202b
202b
2.46
0.39
L00
0.J9
96
2.00
! 10.30
509
0.68
1.65
5.14
203
203
1.29
0.57
1.00
0.57
96
2.00
7.76
356
0.60
L53
3.83
11.59
! 204 I
204
3.36
0.65
im
0.65
40
2.00
4.24
2759
0.50
1 1.41
1 32.52
I 300 1
30D
0.66
1 0.39
1 IAO
1 0.39
212
1 1.50 !
16.85
246
0,64
1 1.60
1 2.56
- 19.41
I 301a
301a
1.90
I 0.35
100
0.35
313
1.50
21.77 1
200
0.50
1 1.41
1 2.36
--=-2T12'.
1 301b I
301b
1.42
0.65
L00
0.65
97
5.14 i
4.77
870
0.63
1 1.59
1 9.14
"13.91
3023 1
302a
0.27
0.90
1.00
0,90
16
2.00 1
1.20
330
0.80
1 1.79
1 3.07
-- 5.00 '.=--
302b
302b
0.59
0.85
1.00
0.85
IS
2.00 !
1.4a
794
0.84
1.83
7.22
303
303
3.56 1
0.24
1.00
0,24
313
1.50 1
24.97
249
2.57
1 2,40
1 1.72
- 26.69
304
304
1!,"0.27
LOD
027
312
1.50 i
24.08
71
0.50
1 1,06
1.17
305a
305a
3.15 I
0.36
LW
0.36
173
1 2.10
14.30
137
2.00
1 2.12
1 1.08
15.39
I 305b
305b
3.51 1
0.30
1 1.00
1 0.30
168
1 2,00
1S44
208
2,00
I 2.12
1 1.63
17.07 7-7
1 306 1
306
2,66 1
0.77
1 LOO
1 0.77
109
1 8.62
3.10
275
1.00
1 1.50
1 3.06
6.16
1 307 1
307
4.79 I
0.66
1.00
0.66
1 160
1 3.64
5.80
282
1.00
1 1.50
1 3.13
- 8.93
I 308 1
308
0.51
0.20
1 1.00
! 0.20
63
25.00
4.57
272
0.50
1 1.06
309 1
309
0.89 1
060
1.00
0.60
1 90
3.75 1
5,74
287
L08
2.08
230
804
1 310
310
L67
0.53
L00
0.53
91
3.75
6,56
309
0.80
1.79
288
944
311a I
3112
3.1-1 10.72
1.00
0.72
238
3.40
7.33
165
1.00 1
1.50
I 1.83
- 9.16 -
I 311b 1
311b
0,57 1
0.68 1
L00
1 0.66 1
53
10.00 1
2.65
193
0.90 1
1.90 I
-1 70
-.. 5.00
I 3123 I
312a
7.18 I
0.31
1. 10
0.51
257
2.36 1
13,37
272
1.75 1
1.98 1
2.28
-- - :.15.65 -
! 3126
3126
212 I
0.52
1.00
0.52
452
1.55 1
19.91
309
0.68
1,65 I
3.12
- ' �'2293
313a
313a
4.71 1
0.65 1
1.00
1 0.65
425
2.11 1
13,64
77 1
1.31
229 1
056
1420 7:
313b
313b
1.02
0,43
1.00
043
269
0.69 1
23.12
58 1
066 !
L62
059
2372
314
314
1.63
0.30
1.00
0.30
111
1.76 !
13.11 !
203
1.33
1.73 1
1.96
15 06 ;L .
315
315 1
036 1
0.37
1.00
037
64
2.12 1
8.52 !
146 1
1.70 1
1.96 1
124
- 9.77
400
400
275 1
0.61 1
1.00
0.61
244
224 1
11.03
212
1.90 1
2.07 1
L71
-- = '12.74 -
401 I
401
1.86 1
0.65 1
1.00 1
065
315
I 1.55
13.04
45
L55 1
1.87 1
0.40
- 13.44 -
! 402 1
402
1.86 1
0.64 1
1.00
0.64
315
1 1.55 i
13.14
45
1.55 1
1.87 1
0.40
- 13.54 '.
1 403
403
10.80 1
0.26 1
1.00
0.26
264
2.10
20.02
742
1.02 1
L51 1
8.16
28.19
! 404 I
404
1.31 1
0.30 1
1.00 1
0.30
245
2.10 119.40
23
2,46
7.35 1
0.16
-. 18.56 `
500
Soo
443 1
0.20
1.00
0.20
179 1
1.13 1
21.56
402
0.50 1
049 I
13.54
`- 35.09
501
501
4.39 !
0.20 1
1.00 I
010
SOD 1
0.so -
40.54
16
0.80 !
0.63 !
0.42
- ` . 40.95
502 I
502
204 I
0.66
I W 1
066
43 !
200
d
1288
089 1
189 1
1138
- '1138
503 1
503 1
0.88 I
0.80
100
O80
45
200 1
da 1
am 1
1.17 1
> sa 1
490
601
I ow
1 601
I 1."
1.97
1 u.36
0.42
1 M
L00
I 0.38
442
336
310
2.08
1.25
1 1948
20.85
164
401 l
1.00
1.33
1 2.00
1 > v
-
1 137
2094
602
602
121
1 0.93
1 00
OS 3
>n
7 m
1 1.78
7.96
96/
10110
1 1000
I 7.01
1 0.23
1.00
0.23
327
L60
1 25.19 i
91 1
16.76 1
6.14
1 0.25
_ - 25A3
Raaed Fbws
'
600
1 601
I 1.66
0.38
LW
0.38
318
2.06
1 19.48 1
657 t
L06 I
2.06 (
5.32
77'24.79 -
!
311b
1 3112
057
I 0.68
1.00
068
53 1
1000
1 265
517 -
093 1
182 1
e73
I
3121,
312a
2.12
1 0.52
1.00
0.52
1 452 1
1.55
19.81
681
L61
2.54 1
4.47
24.28
'
313b
I 313a
1.02
1 OA3 1
100 1
043 I
269 1
069
2312
427
211
291
245
2557
3Wb
I J02a
0.59
1 0.85 1
L00 1
085
15 1
2,00
L.
1067
0.67
1.64 1
10,97
- . 12-30
1
n
M
' - FC0194_RatiNul-Fen CoOva.xls
226 PM
I
lab\umber: FC0194
Date: 3/112002
Project: 2004 High School ■
Calculated By. GAD. HHF E! O N D E' N G I N E! R I N G
Design Storm: 100 year(Developed)
DATA
'
INITIAL/OVERLAND
TIME(tj
TRAVELTIME
f4)
FINAL
4
Dniaage
Basin
(11
Design
Point
l(a)
Area
acre(s)
(2)
Rlalotf
Coelfi<ient
C
(3)
Frequenry
Factor
Cr
(3a
CC1
3b)
Length
R
(4
Slope
%
(5
4
min
(6)
Length
R
Slope
%
(6
Velocity
N'sec
(9
4
min
(10
Computed
�.
min
13
I0i
1 100
5.75
0.95
1.25
I 1.00
1 Na
No
Na
I Na
I Na
I Ra
I Na
10.110
I01
101
0.12
1 a95
1.25
1 1.00
1 102
1 273
Na
Na
n1a
I N
N
1000
200
200
I 1.23
1 0.42
1.25
1 0.53
1 220
1.99
12.61
190
0.50
1 1.41
1 2.24
,14.85-
201
I 201
1 L33
i 040
1 1.25
1 0.50
1 143
5.88
1 7.50
1 200
1.30
1 2.45
1 1.36
8.96 -.
202a
1 202a
1 L13
1 0.86
In
1 1.00
1 207
1 0.50
3.39
207
0.68
1.65
1 2.09
5.48
20'b
202b
1 2.46
1 0.J9
I l.0
0.49
96
2.00
8.87
509
0.68
1.65
5.14
:14.01 "
20,
203
1 1.29
! 0.57
1.25
0.7I
96
2.00
5.70
356
0.60
1 1.55
3.83
:9.53
20e
204
1 3.36
1 0.65 1
L25
0.81
1 40
1 200
2.71
27591
0.50
I 'Al
I 32.52
[35.23 -
- 300
300
i 0.66
1 0.39 1
1.25
0.49
1 212
1.50
14.52
246
0.64
1.60
2.56
47.08'. `-
301a
301a
! 1.80
1 0.35 1
1.25
0.43
313
L50
19.26
200
0.50
1.41
1 2.36
--:2R61-`•=
301b
301b i
142
1 0.65 1
1.25
0.82
97
1 5.14
3.03
1 870
0.63
1.59
9.14
'-12-16----/'
302a
1 3022 1
0.27
0.90 1
1.25
LOD
16
2.00
0.59
1 330
I 0.80
1.79
I 3.07
--5.00'-'.` "
302b
I 302b 1
0.59
1 0.95 1
1.25
1.00
I 15
2.00
0.57
1 794
0.84
1.83
1 7.22
'i .7.80r.--. -.
303
1 303 1
3.56
i 0.24 1
1.25
1 0.30
1 313
1 1.50
23.26
1 249
2.57
2.40
1.72
5'24:98-: r- 1
3Pe
304 I
1.52
0.27 I
1.25
0.33
312
I L50
22.77
71
0.50
1.06
1.12
'= '2328
305a
305a i
3.45
1 0.36 1
1.25
0.44
173
2.10
12.59
137
2.00
2.12
1 1.08
13.67
3050
305b 1
3.51
1 0.30 1
1.25
0.37
768
2.00
14.01
I 208
2.00
1 2.12
1 L63
.;15,64r
305
306
2.66
0.77
L25
0.97
109
8.62
1.26
1 275
1.00
1.50
3.06
'"5.00-'-
307
307 1
4.79
! 0.66 1
1.25
1 0.83
1 160
1 5.64
3.59
1 282
1.00
1 1.50
1 3.13
t6.72-
305
308 1
0.51
1 0.20
1.1
0.25
63
1.00
4.32
272
0.50
1 1.06
1 4.27
- '8.59" -
309
309 1
0.89
0 60 !
1.25
0.75
90
1 3.75
4.03
1 287
1.08
1 2.08
1 2.30
' 6.33
1 310
310 I
1.67
1 0.53 1
1.25
0.66
91
I 3.75
5.05
1 309
0.80
1.79
2.88
'.'.i7.92f "-
3112
3lla I
3.17
1 0.72 1
1.25
0.90
236
1 340
1 3.88 1
165
1 1.00
1 1.50
1 1.83
;5:72 1
31lb
311b
057
0.68 1
1.25
I 0.85
53
1 10.00
1.59
1 193
0.90
1 1.90
1.70
5.00. `- -- -
3132
I 3122
7.18
0.51 I
L25
1 0.63
257
1 2.36
10.52
1 272
1 1.75
1.98
1 2.28
-:-12:80-
313,
312b
212
I 0.52
115
0.65
452
1.55
15.31
1 309
0.68
1.65
3.12
d-."18.44
I 313a
J13a
4.71
1 0.65 1
1.25
0.81
425
2.11
8.76
77
1.31
2.29
j 0.569.34'
:o -
! 313b
313b
L02
0.43 I
1.25
0.54
269
0.69
19.37
58
0.66
1.62
0.59
1996 .'
374
314
1.63
0.30 I
L25
0.37
I11
1.76
IL89
203
1.33
1.73
1.96
1385
315
315
0.36
1 0.37 1
1.25
0.46
64
2.12
7.45
146
1.70
1.96
1 1.29
1.4 669' - _
I
400
400 !
275
1 0.61 I,
1.25
76
24
7.65 I
212
90
11...55
21.0877
1
98..3954:--
401
1.86
1 0.65 1
1.258
I
1.87
0.40
8:82 �
40_'
102
L86
I 0.64 I
1.25
0321
1.5
45
01..4701
--
. =-- -
403 I
1080 1
0.26 I
1.25
0403
6
50 I
742
404
1 404 1
1.31 1
0.30 1
1.25 1
0.37 1
245 1
210
1 16.71 1
23
500
Soo I
4A3 1
0.20 1
1.25
0.25
178
113
2036
402
O50
049
1354
=3 390='='
_ 501
I 501 I
4.39 1
0.20 1
1.25
0.25
500
0.80
38.28
16
0.80
063 I
0.42
38.70
502
502 !
2.04 I
0.M 1
1.25 1
0.82
43
2.00
1 Na 1
1288
nAa
1 va
11.38
11.38
503
503 1
0.88 1
0.80 1
1.25
100
45
200
n1a1
1.17 1
216 1
690 1
690+ - -�
600
600 1
1.68 1
0.38 1
1.25
0.47
338
2.08
16.94 1
164
1.0It
200
1.37
:p
.'18:3
1 601
601
1.97 1
0.42 i
1.25 (
0.52
310
1.25
17.66 1
401
1.33
231 I
2.90
-. .2036-
I 602
602 I
124 1
0.83 1
1.25
1.00
20
2.00
0.66 1
939
1.10
2-10 I
7.86
1000
1000
7.01
0.23 1
1.25
0.29 1
327
1.60
23.53
91 1
16.76 1
6.11 1
0.25
:. '.23-78-=-i -
Rauh Flans
600
601
I 1.68
0.38 1
1.25
0.47
338
2.08
16.94
1 657 1
1.06
--fO6-j
5.32
2226 2s; e .
I 3111,
311a
I 0.67
1 0.68 1
125
0.85
63
10.00
1.68
517 1
0.83
1.82
4.73
631.._zl',
I 312b
312a
! 2.12
1 0.62 1
1.25
0.65
452
1.55
16.31
681 1
L61
2-54 1
447
- `19.79.F
'
313b
313a
1.02
0.43 1
1.25 1
- 0 54
268 92
0 69
19.37
1 426.93
2.11 1
2.91 1
2,45
21.82
302b
302a
0.59
1 0.85 1
L25 1
1.00
15 1
2.00 _ -
0.57
1 1067 I
0.67 1
1.64 1
10.87
11.44 - -
A
' FC0194_RariauFFort Collna.xls
2:30PM
I
M
1
1
1
1
1
1
r
Job Nurnber. FC0194 Pmject 2004 High School NOXE
Date: 3/112002 Calculated By: GAD, HHF
Design Storm 2 year (Developed) BEYOND ENGI N EERING
DIRECT RUNOFF
Design
Rainfall
Basin
Point
Aof
rea
Area
CCt
t: CCr • A
Intensity
Flow (Q)
Design
acre(s)
min acre(s)
in/hr
cfs
1
(2)
(3)
4
5
(6) 7
(8)
(9
100 100
I 100
I 5.75
0.95 10.00 ! 5.47 3.78
20.66
101 101
I 101
0.12
0.95 12.02 0.12 3.54
' 0.41
200
200
1 200
1.23
0.42
17.18
0.52
1 2.99
-'1:56 -
201
201
201
1.33
0.40
10.09
0.53
1 3.77
-:-.1:99
202a
202a
I 202a
1.13
0.86
10.21
0.97
1 3.75
-. -:3i65
202b
202b
202b
2.46
0.39
15.44 1
0.96 !
3.15
203
203
I 203
L29
0.57
1159
0.73 I
3.59
2.63 - -'-
204 1
204
204
3.36
0.65
3635
2.18
1.94
=•4:22-1
300
300
I 300
0.66
1 0.39
19.41
0.26
1 2.79
301a
301a
1 301a
1.80
0.35
24.12
0.62
1 2.49..1'.i5-
301b
301b
301b
1.42
0.65
13.91
0.93
3.32
_."cr:3:09 i=-
302a
302a
302a
0.27
0.90
5.00
0.25
1 4.87
=.L20- 1
302b
302b
302b
0.59
0.85
8.66
0.50
4.07
-,:2.05 -�
303
303
303
3.56
- 0.24
26.69
0.84
1 2.36
`.1.99.
304
304
I 304
1.52
0.27
I 25.20
I 0.40
2.43
0.98 • !
305a
305a
I 305a
3.45
0.36
1538
I 1.23
I 3.16
_c':3.87-:-,
305b
3056
I 305b
3.51
0.30
17.07
1.04
1 3.00
"314 -
306
306
I 306
2.66
0.77
6.16
2.06
1 4.62
:-. )9:51 '-
307
307
1 307
4.79
0.66
8.93
3.18
1 4.01
, J112.75
308
i 308
308
0.51
0.20
8.85
0.10
4.03
309
1 309
i 309
0.89
0.60
8.D4
0.53
4.21
,' 2:25.'•t:.;
310
310
I 310
1.67
0.53
9.44
0.88 I
3.90
3,-7--
311a
311a
I 311a
3.17
0.72
9.16
2.28 I
3.96
'-.[9:01'�`=_-
311b
31 lb
I 311b
0.57
0.68
5.00
0.39 1
4.87
-'.' 11188!-�
312a
312a
I 312a
7.18
0.51
15.65
1 3.64
3. 33
,"11>39". "'
312b
312b
3126
2.12
0.52
22.93
1.11
2.56
2:84
313a
3132
3133
4.71
0.65
14.20
3.04
3.28
9.99+C'
313b
313b
1 313b
1.02
0.43
1 23.72
0.44
2.52
'-'';':"T:19 -•:I
314
314
314
1.63
0.30
15.06
0.49 I
3.18
': _..1i55 ".
315
315
315
0.36
0.37
9.77
0.13 I
3.83
400
400
1 400
2.75
0.61
1 12.74 I
1.67
I 3.46
'•'-5.76-..:
401
i 401
401
1.86
0.65
13.44
1.20
3.37
`'4!06'>
402
! 402
402
1.86
0.64
13.54
1.20
3.36"4:02'-�===
403
1 403
403
10.80
0.26
28.19
2.77
2.29
-:T6 35f-
404
1 404
404
NI
0.30
1856
0.39
1 2.87
'. ` 1 1I `1 --
500 ! 500 500
4.43
1 0.20
1 35.09
1 0.89
501 I 501 501
4.39
0.20
40.95
0.88 1.90
1.58 <• -
502 I 502 502
1 2.04
0.66
503 ( 503 503
0.88
0.80
6.90
0.70 4-46
'-.-3:12_.e::`
1000 1000 1 1000 1 7.01 0.23 1 25.43 1 1.60 ;A4
Rotted Flows
Basins I
Design Point I
1: CxA
1 6 I
I
I Q
200,202 i
200 1
1.49
17.18 1
2.99
1 .: 4.47
600,601
601
1.46
24.79
2.45
. 3.57
311a631lb I
311a
2.66
7.38
4.35
312a, 3126 I
312a
4.75
24.28
2.48
-' 1 L78 "-
313a, 313b i
313a I
3.48
25.57
2.41
FC0194_Rational-Fort Collim.xls
2:24 PM
I
1
1
1
t
1
A
Job Numba: FC0194
Date: 3/11/2002
Project: 2004 High School
Calculated By: GAD, HHF
Design Storm: 100 year (Developed)
BE Y O N D E N G IN E E It ING
DIRECT RUNOFF
Design
Rainfall
Basin
Point
Area of
Area
CC(
t,
CC, • A
Intensity
Flow (Q)
Design
acre(s)
min
acre(s)
in/hr
CA
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
100 100
1 100
j 5.75
1.00
10.01 5.75
7.72
I .44.41
101 101
1 101
! 0.12
1.00
10.00 1 0.12
7.72
1 0.95
200
200
1 200
1 1.23
0.53
14.85 1
0.65
6.56
:4.27
201
201
1 201
133
0.50
8.86
0.66
1.23
5.43,
202a
202a
1 202a
1 1.13
1.00
5.48 I
1.13
94
�181:0 -
220023b
2026
2.46
049
14.01 I
1.21
:":•
06
I 203
l29
0.71
9.53 1
0.92
1 7.93
--'.717"
204
204
204
336
0.81
35.23
2.72
1 4.06
`11.06
300 - 300 300
0.66
0.49
17.08
1 032
1 6.14
•; 1i97C "i-•.
301a 301a 301a
1.90
0.43
21.61
1 0.78
5.40
"-,'41I'.
301b 301b 1 301b
1.42
0.82
12.16
1.16
7.20
---83T.,
302a 302a I 302a
0.27
1.00
5.00
1 0.27
9.95
..:2.73b: .:
302b 302b 302b
0.59
1.00
7.80
1 0.59
8.70
- 3:14-".
303 303 I 303
3.56
1 030
1 24.98
1 1.05
4.98
.524,-."
304 304 364
1.52
033
23.28
0.50
5.19
- - 2.61
305a 305a 305a
3.45
I 0.44
13.67
1 1.53
6.TM
-.10.48 :
305b 305b I 305b
I 3.51
! 037
15.64
131
6.40
836
I 306 306 1 306
1 2.66
0.97
5.00
1 2.57
I 9.95
25.62 .
I 307 307 1 307
1 4J9
0.83
1 6.72
1 3.97
I 9.18
"36.47
308 308 i 308
1 0.51
1 015
1 8.59
0.13
I 835
i 1.06.
309 309 I 309
0.89
0.75
I 6.33
1 0.67
9.36
1-' `-624_ -
I 310 310 ! 310
1.67
0.66
7.92
1.10
8.65
=-_ 9.51
311a 311a I 311a
3.17
0.90
5.72
2.84
9.63
'"-_-2738.
311b ; 31lb i 311b
0.57
0.85
5.00
0.48
9.95
4.79 "-'
312a i 312a 312a -
7.18
0.63
12.80
4.55
7.05
312b 1 3I26 312b
2.12
0.65
18.44
t.39
5.89
8.16 `
313a 3132 313a
4.71
0.81
9.34
3.80
8.01
. '30.47'-r:i
313b 313b 313b
1.02
0.54
19.96 1
0.55
5.61
-L�=3:30";"-.
314 314 314
1.63
0.37
13.85
0.61
6.80
=:'-'4.12"` z
315 315 1 315
036
0.46
8.69
0.17
8.30
i1.138 '.-
400
400
400
2.75
0.76
9.35
2.08
8.01
A6.69
401
401
I 401
1.86
0.81
I 8.82 1
1.50
8.25
402
402
1 402
1 1.86
1 0.80
8.94 1
1.50
1 8.19
403
403
I 403
10.80
032
26.67 I
3.46
4.83
404
404
404
1 1.31
037
16.87 1
0.48
6.18
500
500
1 Soo
1 4.43
015
33.90
1.11
4.18
t7 �' '4.63 -t -:
501
501
501
439
015
38.70
1.10
502 1
502
502
2.04
0.92
11.38
1.68
7,39
503 1
50J
503
0.88
1.00
6.90
0.87
9.10
'=-----
600
600
1.68
0.47
18.30
0.79
5.91
:-.=.4(6T
IP600
601 1 601
601
L97
0.52
20.56
1.03
5.53
602 1 602
602
124
1 1.00
8.52
1.24
1 838
1000
1000 I
1000
7.01
0.29
23.78 1 2.01 5.131030= -+
Routed Flows
Basins
Design Point
I CxA
t,
I
Q
I 200.202a
200 1
1.78 1
14.85 1
6.56
1 11.67 : !
302a, 302b I
302a
0.87
11.44
737
311a,31lb
311a 1
333 1
631
9.37
31.15 I Controls
( 312a. 312b I
312a !
5.93 (
19.79
5.64
:33.46 Controls
313a, 313b i
313a
436
21.82
5.37
502,503 1
502
2.55
11.38
739
tc:18.87
501. 312a, 312b I
312a
7.03
38.70
500,313a, 313b!
313a
5.46
33.90
4.18
: •..22:82'.:
' FC0194_Rational-Fort CoOinsals
221 PM
11
P
1
1
1
1
1 APPENDIX B
1 Street Capacity Calculations
1
n
0
1
1
1
1
J
M
1
N
1
1
1
1
1
1
Project Number. FC0194
Designer: GAD
Date: 5/6/2002
Given:
1. Modified Manning's Formula for flow in shallow triangular channels:
Q = 0.56(Iin)Sonaye0
Where:
Refer to figure 1. (below)
Q= Theoretical Gutter Capacity, cfs
Depth of Flow at Face ofGuner, feet
n= Roughness CoefficimL 0.016
So Longitudinal Channel Slope,%
S,= Cross Slope ofGuter Pan, feet/feet
Se= Cross Slope of Asphalt fectlfat
Z= Reciprocal of Cross Slope, feetlfeet
0.016
B E-Y O'N D E N G I N E E R 1 N G
Solution:
1. Soht for'Q',
S.- 0.0833 Ss= 0.02
Z. = I/S, - 12.00 Z,/n - 75030
Za = 1/Ss - 50.00 Za/n - 3125.00
Y= 0.50 (water depth at cub face, feet) r- 0.41 (warn depth at curb face w/14' CL to FL)
Se= See Below (longitudinal slope ofstreet, %)
a = 2.00 a = 2.00
Y= 033 }'= 0.24
Therefore, 0.56(Zln)y"- 13533 Therefore. 036(Z/n)Ya7= 95.75
Q - 13533=Sala Q = 74.62-S.,r=
Minor Sturm Stan
Spread Tame
Criteria
Widrb
FL to CL
ft
Street
Classification
Developed
pfs
Longitudinal Calculated
Grade cfs
Reductive Factor
(See Anached
Aflowable
c�
Design
Point(s)
1 Top of Curb I Rock Creek Dr. i
20
Cmeoa
1 4.22
1 0.509/
9.57
0.65
1 6.22
204
1 O.K.
Top of Curb I Cambridge Ave.I
25
come
1.70
1.03% 1
13.71
080
to 09
6nn
nn�
' Top of Curb I Cambridge Ave.
25
CoOmar
2.07
1 30% 1
15.43
0.80
12.34
601
O K
To ofCurb l CambridgeAst.l
25
cmavr
1 3.96
1 1.41% 1
16.07
0.80
12.86
602
O.K.
Top of Curb I Cambridge Ave.1
25
1 Cotavr
1 1.56
1 0.68% 1
11.16
0.80
8.93
200
O K
Top of Curb ICartbnd eAve.1
25
1 Cotara
1 11.00
1 0.68% 1
11.16
0.80
8.93
202a
O.K.
' Top of Curb I Cambridge Ave.1
25
1 CaOaav
1 8.15
1 0.68% 1
11.16
0.80
8.93
202b
O.K.
To of Curb I Cambridge Ave.
25
CoOata
2.63
0.64% 1
10.83
0.80
I 8.66
203
O.K.
Mane Free Zie nRoad 1
26
Mao Atmial
4.86
2.25% 1
20.30
0.78
15.83
502
O.K.
I Crnterline Intrerior Road 1
14
1tad
1.55
1 0.50% 1
6.77
0.65
1 4.40
301a
O.K.
' Cveterline I Intrerior Road 1
14
1 tnol
1 3.09
1 0.67 % i
7.94
0.80
1 6.27
1 301 b
O.K.
Centerline i Inmrior Road 1
Id
toot 1
120
0.67% 1
7.94
0.80
i 627
302a
OK. 1
Centerline I Intrenor Road I
Id
tad I
2.05
0.67Y. I
7.8.1
0.80
I 6.27
302b I
n e
Centerline Invenor Road 1
14
toss
0.72
0.50% I
6 77
0.65
a an
inn
n e
Y
b
1
v a r
Za
Zb Y'
Figure 1.
D
Nolle Assocla/es, Inc.
51612002
10:09AM
Gutter Spread - Minor Event (10yr)
Worksheet for Gutter Section
Project Description
N
Worksheet
Ziegler Road (DP 502)
Type
Gutter Section
Solve For
Spread
'
Input Data
Slope
0.022500 ft/ft
Discharge
4.86 cis
Gutter Width
2.00 ft
Gutter Cross Slope
0.083000 ft/ft
'
Road Cross Slope
Mannings Coefficient
0.020000 ft/ft
0.016
Results
10.19 ft
Spread
Flow Area
1.2 ft'
Depth
0.33 ft
Gutter Depression
1.5 in
'
Velocity
4.18 ft/s
t
P
t n:\fc0194\drainage\haestad\fc0194_gutterspread.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 08:34:00 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
'
Project Description
N
Worksheet
Cambridge Avenue - D.P.200
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.006000 ft1ft
Water Surface Elevation
100.00 ft
t
Options
Current Roughness Method
Improved Lotters Method
Open Channel Weighting Method
Improved Lotter's Method
Closed Channel Weighting Method
Horton's Method
'
Results
Mannings Coefficient
0.014
'
Elevation Range
99.25 to 100.00
Discharge
38.25 cfs = QGaP Qloo = 4. �! crb OK
Flow Area
11.1 ft'
Wetted Perimeter
38.63 It
'
Top Width
38.00 ft
Actual Depth
0.75 ft
Critical Elevation
100.02 ft
'
Critical Slope
0.004591 fl/ft
Velocity
3.46 ftfs
Velocity Head
0.19 It
Specific Energy
100.19 it
'
Froude Number
1.13
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by 0.12 ft.
'
Roughness Segments
Start End
Mannings
Station Station
Coefficient
'
0+00 0+05
0.013
0+05 0+13
0.035
0+13 0+15
0.013
'
0+15 0+38
0.016
Natural Channel Points
Station Elevation
'
(ft) (ft)
0+00
100.00
0+05
0+13
99.90
99.75
0+13
99.75
0+13
99,25
N
0+
99.42
0+38 38
99.8888
'
n:\fo0194\drainage\haestad\streetcapacity.fm2
Nolte Associates Inc FlowMaster v6.1 [614j)
03/05/02 10:48:44 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 USA (203) 755-1666 Page 1 of 1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
N
1
Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheel
Cambridge Avenue - D.P.200
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.006000 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.25 to 100.00
Discharge
38.25 cfs
100.00c_
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
n:\fc0194\drainageXhaestad\sb,eetcapacity.fm2 Nolte Associates Inc
03/05/02 10:51:10 AM m.Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
0+40
V:4.0❑
H:1
NTS
FlowMaster v6.1 [614j]
Page 1 of 1
Theoretical Capacity - Major Event (100yr)
'
Worksheet for Irregular Channel
Project Description
N
Worksheet
Cambridge Avenue - D.P.203
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope 0.006400 ft/ft
Water Surface Elevation 100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotters Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.014
Elevation Range
99.25 to 100.00
Discharge
39.50 cfs = QCA9 i Qloo c{s
Flow Area
11.1 ft'
'
Wetted Perimeter
38.63 ft
Top Width
38.00 ft
Actual Depth
0.75 ft
'
Critical Elevation
Critical Slope
100.03 ft
0.004560 ft/ft
Velocity
3.57 ft/s
Velocity Head
0.20 ft
'
Specific Energy
100.20 ft
Froude Number
1.17
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by
0.12 ft.
'
Roughness Segments
Start End
Mannings
Station Station
Coefficient
0+00 0+05
0.013
0+05 0+13
0.035
0+13 0+15
0.013
'
0+15 0+38
0.016
Natural Channel Points
Station Elevation
'
(ft) (ft)
0+00
100.00
0+05
99.90
'
0+13
99.75
0+13
99.75
N
0+13
0+15
99,25
99.4242
0+38
99.88
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:54:01 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 . Page 1 of 1
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.203
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.006400 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.25 to 100.00
Discharge
39.50 cfs
100.00-c-
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30
0+35 0+40
V:4.0❑
H:1
NTS
' nAfc0194tdrainagethaestadtstreetcapaciry.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:54:10 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
'
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
'
Project Description
Worksheet
Rock Creek Drive - D.P.204
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.005000 ft/ft
'
Water Surface Elevation
100.00 ft
Options
'
Current Roughness Method
Improved Lotter's Method
Open Channel Weighting Method
Improved Lotter's Method
'
Closed Channel Weighting Method
Horton's Method
Results
Mannings Coefficient
0.014
'
Elevation Range
99.25 to 100.00
Discharge
34.67 cfs = �Lqp QI00 = l•O(0 D
Flow Area
10.3 ft2
Wetted Perimeter
33.74 ft
'
Top Width
33.00 ft
Actual Depth
0.75 ft
'
Critical Elevation
Critical Slope
100.01 ft
0.004368 ft/ft
Velocity
3.37 fUs
Velocity Head
0.18 ft
Specific Energy
100.18 ft
Froude Number
1.06
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by 0.224 ft.
'
Roughness Segments
Start End
Mannings
Station Station
Coefficient
'
0+00 0+05
0.013
0+05 0+13
0.035
0+13 0+15
0.013
'
0+15 0+33
0.016
Natural Channel Points
Station Elevation
'
(ft) (ft)
0+00
100.00
0+05
99.90
'
0+13
99.75
0+13
99.75
0+13
0+15
99,25
99:4242
0+33
99.78
t
n:\fc0194\drainage\haestad\streetcapaclty.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:04:19 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
1
1
1
N
1
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Rock Creek Drive - D.P.204
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.005000 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.25 to 100.00
Discharge
34.67 cfs
1
0+00 0+05 0+10 0+15 0+20 0+25
0+30
n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc
03/05/02 11:04:43 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
0+35
V:4.017
H:1
NTS
FlowMaster v6.1 [614j]
Page 1 of 1
'
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
N
Worksheet
Interior Road - D.P.300
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.005000 ft/ft
Water Surface Elevation
100.00 ft
'
Options
Current Roughness Method
Improved Lotter's Method
Open Channel Weighting Method
Improved Lotter's Method
Closed Channel Weighting Method
Horton's Method
'
Results
'
Mannings Coefficient
Elevation Range
0.014
99.27 to 100.00
Discharge
—
29.90 cfs = Qppp Q too I' q%
Flow Area
8.7 ft'
Wetted Perimeter
29.28 ft
'
Top Width
28.50 ft
Actual Depth
0.73 ft
'
Critical Elevation
Critical Slope
100.02 ft
0.004150 ft/ft
Velocity
3.42 ft/s
Velocity Head
0.18 ft
Specific Energy
100.18 ft
'
Froude Number
1.09
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by 0.27 ft.
'
Start
Station
Roughness Segments
End
Station
Mannings
Coefficient
'
0+00
0+06
0.013
0+06
0+12
0.035
0+12
0+14
0.013
'
0+14
0+29
0.016
Natural Channel Points
Station
Elevation
'
(ft)
(ft)
0+00
100.00
0+06
99.88
'
0+12
99.77
0+12
99.77
0+12
99.27
N
0+
99.44
0+29 29
99.7373
' n:\fc0194\drainage\haestad\sb,eetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614t7
03/05/02 11:40:46 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
I
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.300
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.005000 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.27 to 100.00
Discharge
29.90 cfs
10 0.003-
99.50
9920 —
0+00
0+05 0+10 0+15 0+20 0+25
N
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc
03105/02 11:40:53 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
0+30
V:4.0
H:1
NITS
FlowMaster v6.1 [614j]
Page 1 of 1
'
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
'
Project Description
Worksheet
Interior Road - D.P.301a
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For w
Discharge
Input Data
Slope
0.005000 ft/ft
'
Water Surface Elevation
100.00 ft
Options
'
Current Roughness Method
Improved Lotters Method
Open Channel Weighting Method
Improved Lotters Method
Closed Channel Weighting Method
Horton's Method
'
Results
Mannings Coefficient
Elevation Range
0.015
99.30 to 100.00
Discharge
26.12 cfs = Q ? > c;� loo
Flow Area
9.3 ft'
Wetted Perimeter
36.57 It
'
Top Width
36.00 ft
Actual Depth
0.70 ft
'
Critical Elevation
Critical Slope
100.00 ft
0.005221 ft/ft
Velocity
2.82 ft/s
Velocity Head
0.12 ft
Specific Energy
100.12 ft
'
Froude Number
0.98
Flow Type
Subcritical
'
Calculation Messages:
Water elevation exceeds lowest end station
by 0.06 ft.
'
Roughness Segments
Start End
Mannings
Station Station
Coefficient
'
0+00 0+13
0.013
0+13 0+36
0.016
'
Natural Channel Points
Station Elevation
(ft) (ft)
C
1
0+00
100.00
0+10
99.80
0+11
99.80
0+11
99.30
0+13
99.47
0+36
99.94
n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:16:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.301a
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.015
Slope
0.005000 fVft
Water Surface Elevation
100.00 ft
Elevation Range
99.30 to 100.00
Discharge
26.12 cfs
10 0.00
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
V:4.0 ❑
H:1
NTS
N
' n:\fc0194\drainage\haestadlstreetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614jj
03/05/02 11:16:51 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
'
Project Description
Worksheet for Irregular Channel
Worksheet
Interior Road - D.P.301b
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.005000 ft/ft
'
Water Surface Elevation
100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.014
'
Elevation Range
99.11 to 100.00
Discharge
48.61 cfs = a —
Qiop — 8. �! C } 5
Flow Area
_AP
12.8 ft'
'
Wetted Perimeter
34.99 ft
Top Width
34.00 ft
Actual Depth
0.89 ft
'
Critical Elevation
Critical Slope
100.02 ft
0.004133 ft/ft
Velocity
3.80 ft/s
Velocity Head
0.22 ft
'
Specific Energy
100.22 ft
Froude Number
1.09
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by
0.48 ft.
'
Roughness Segments
Start End
Mannings
Station Station
Coefficient
'
0+00 0+10
0.013
0+10 0+20
0.035
0+20 0+22
0.013
'
0+22 0+34
0.016
Natural Channel Points
Station Elevation
(ft) (ft)
0+00
100.00
0+10
99.80
'
0+20
99.61
0+20
99.61
0+2
0+22
99,11
99.2828
0+34
99.52
(V,
' n:\fc0194tdrainagethaestad�streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j)
03/05/02 11:22:49 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.301 b
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.005000 f /ft
Water Surface Elevation
100.00 ft
Elevation Range
99.11 to 100.00
Discharge
48.61 cfs
100.0oc-
99.70
99.40
99.10
0+00
0+05 0+10 0+15 0+20 0+25 0+30
0+35
V:4.0❑
HA
NTS
' n:\fc0194\drainage\haestadlstreetcapacity.fm2 Notte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:23:03 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.302a
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Slope 0.006700 ft/ft
Water Surface Elevation 100.00 It
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.015
Elevation Range
99.39 to 100.16
Discharge
17.37 cfs = Q �qQ QI O0 2.73 C �S
Flow Area
6.2 ft'
Wetted Perimeter
30.51 It
Top Width
30.00 It
Actual Depth
0.61 ft
Critical Elevation
100.01 ft
Critical Slope
0.005737 ft/ft
Velocity
2.78 fits
Velocity Head
0.12 It
Specific Energy
100.12 It
Froude Number
1.07
Flow Type
Supercritical
Roughness Segments
Start End
Mannings
Station Station
Coefficient
0+00 0+08
0.013
0+08 0+38
0.016
Natural Channel Points
Station Elevation
(ft) (ft)
0+00
100.00
0+06
99.89
0+06
99.89
0+06
99.39
0+08
99.56
0+38
100.16
n:\fc0194WrainageXhaestadlstreetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614j)
03/05/02 11:45:20 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
I_ J
1
1
1
1
M
1
Theoretical Capacity- Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.302a
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.015
Slope
0.006700 Wit
Water Surface Elevation
100.00 ft
Elevation Range
99.39 to 100.16
Discharge
17.37 cfs
100.20 —
99.90`=
99.60 —
99.30
0+00
L-
0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40
V:4.0❑
HA
NITS
n:\fc0194\drainage\.haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614jj
03/05/02 11:45:30 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
'
Worksheet for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.302b
Flow Element
Irregular Channel
Method
Manning's Formula
tSolve
For
Discharge
Input Data
Slope
0.006700 ft/ft
'
Water Surface Elevation
100.00 ft
11
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.015
'
Elevation Range
99.39 to 100.16
Discharge
17.37 cfs = Q Cp,p
Flow Area
6.2 W
'
Wetted Perimeter
30.51 ft
Top Width
30.00 ft
Actual Depth
0.61 It
Critical Elevation
100.01 ft
'
Critical Slope
0.005737 fttft
Velocity
2.78 ftls
Velocity Head
0.12 ft
'
Specific Energy
100.12 ft
Froude Number
1.07
Flow Type
Supercritical
'
Roughness Segments
Start End
Mannings
Station Station
Coefficient
'
0+00 0+08
0.013
0+08 0+38
0.016
'
Natural Channel Points
Station Elevation
(ft) (ft)
0+00
100.00
0+06
99.89
0+06
99.89
'
0+06
99.39
.0+08
99.56
0+38
100.16
M
> Qtoo = 5, 14 c Ok
' n:\fC0194\drainage\haestafttreetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] -
03(05102 11:46:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Project Description
Worksheet
Flow Element
Method
Solve For
Section Data
Mannings Coefficient
'
Slope
Water Surface Elevation
Elevation Range
'
Discharge
t
100.20
'
_
99.9 0'—=�
99.60
99.30
0+00
N
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Interior Road - D.P.302b
Irregular Channel
Manning's Formula
Discharge
0.015
0.006700 ft/ft
100.00 ft
99.39 to 100.16
17.37 cis
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
V:4.0 ❑
H:1
NTS
n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:46:38 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (1OOyr)
Worksheet for Irregular Channel
Project Description
Worksheet
Ziegler Road - D.P.502
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Slope 0.022500 ft/ft
Water Surface Elevation 100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
' Mannings Coefficient 0.015
Elevation Range 99.19 to 100.00
Discharge 95.99 .cfs = Q ce ? i Q� oo - 12,
�S
Flow Area 13.6 ft'
Wetted Perimeter 42.68 ft
Top Width 42.00 ft
Actual Depth 0.81 It
Critical Elevation 100.22 ft
Critical Slope 0.004017 ft/ft
Velocity 7.05 ft/s
Velocity Head 0.77 ft
' Specific Energy 100.77 ft
Froude Number 2.18
Flow Type Supercritical
Calculation Messages:
Water elevation exceeds lowest end station by 0.16 ft.
Roughness Segments
Start End
Mannings
Station Station
Coefficient
'
0+00 0+06
0.013
0+06 0+16
0.035
0+16 0+18
0.013
'
0+18 0+42
0.016
Natural Channel Points
Station Elevation
'
(ft) (ft)
0+00 100.00
0+06 99.88
'
0+16 99.69
0+16 99.69
N
0+199.19
0+18 99.3636
0+42 99.84
'
n:\fc0194\drainage\haestad\streetcapacity.fm2
Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:11:27 AM O Haestad Methods, Inc.
37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
' Theoretical Capacity - Major Event (100-yr)
' Cross Section for Irregular Channel
Project Description
Worksheet Ziegler Road - D.P.502
Flow Element Irregular Channel
Method Manning's Formula
' Solve For Discharge
Section Data
' Mannings Coefficient 0.015
Slope 0.022500 ft/ft
Water Surface Elevation 100.00 ft
Elevation Range 99.19 to 100.00
' Discharge 95.99 cfs
100.00^
' 99.50 - -- — -
99.10
0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45
' V:4.0❑
H:1
' NTS
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:11:34 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
M
11
w
Project Description
Worksheet
Cambridge Avenue - D.P.600
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Slope 0.010300 ft/ft
Water Surface Elevation 100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotters Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.014
Elevation Range
99.25 to 100.00
Discharge
50.11 cfs = (x GAp > Ole = 4, G7 cF5 .
Flow Area
11.1 ft'
Wetted Perimeter
38.63 ft
Top'Width
38.00 ft
Actual Depth
0.75 ft
Critical Elevation
100.09 ft
Critical Slope
0.004342 ft/ft
Velocity
4.53 ft/s
Velocity Head
0.32 ft
Specific Energy
100.32 ft
Froude Number
1.48
Flow Type
Supercritical
Calculation Messages:
Water elevation exceeds lowest end station by 0.12 ft.
Roughness Segments
Start
End
Mannings
Station
Station
Coefficient
0+00
0+05
0.013
0+05
0+13
0.035
0+13
0+15
0.013
0+15
0+38
0.016
Natural Channel Points
Station
Elevation
(ft)
(ft)
0+00
100.00
0+05
99.90
0+13
99.75
0+13
99.75
0+13
99.25
0+15
99.42
0+38
99.88
d�
n:\fc0194\ drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:55:18 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cambridge Avenue- D.P.600
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
'
Section Data
Mannings Coefficient
0.014
'
Slope
0.010300 ft/ft
Water Surface Elevation
100.00 It
'
Elevation Range
Discharge
99.25 to 100.00
50.11 cfs
1]
100.001
' 99.50
9920
0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40
' VA.0
H:1
' NITS
1
' n:\fco194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j)
03/05/02 10:55:28 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.601
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Slope 0.013000 ft/ft
Water Surface Elevation 100.00 ft
Options
Current Roughness Method Improved Lotters Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
'
Elevation Range
Discharge
Flow Area
Wetted Perimeter
'
Top Width
Actual Depth
Critical Elevation
Critical Slope
Velocity
Velocity Head
'
Specific Energy
Froude Number
Flow Type
0.014
99.25 to 100.00
56.30.cfs = QL4P > 0' 0 = 9.68 ccs Ok.
11.1 ft' o
38.63 ft
38.00 ft
0.75 ft
100.12 ft
0.004240 ft/ft
5.09 ft/s
0.40 ft
100.40 ft
1.66
Supercritical
' Calculation Messages:
Water elevation exceeds lowest end station by 0.12 ft.
Roughness Segments
0
Start End
Mannings
Station Station
Coefficient
'
0+00 0+05
0.013
0+05 0+13
0.035
0+13 0+15
0.013
'
0+15 0+38
0.016
Natural Channel Points
Station Elevation
'
(ft) (ft)
0+00 100.00
0+05 99.90
'
0+13 99.75
0+13 99.75
0+13 99.25
0+15 99.4242
0+38 99.88
'
n:\fc0194\drainage\haestad\streetcapacity.fm2
Nolte Associates fnc FlowMaster v6.1 [614j]
03/05/02 10:56:05 AM ® Haestad Methods, Inc.
37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Flow Element
Method
Solve For
Section Data
1
1
1
1
1
1
1
1
1
1
M
Cambridge Avenue - D.P.601
Irregular Channel
Manning's Formula
Discharge
Mannings Coefficient
0.014
Slope
0.013000 Wit
Water Surface Elevation
100.00 ft
Elevation Range
99.25 to 100.00
Discharge
56.30 cfs
100.00c-
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
V:4.0❑
H:1
NTS
' n:\fo0194\drainagethaestadlstreetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:56:12 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
'
Theoretical Capacity - Major Event (100yr)
'
Worksheet for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.602
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.014100 ft/ft
t
Water Surface Elevation
100.00 ft
Options
'
Current Roughness Method
Improved Lotter's Method
Open Channel Weighting Method
Improved Lotter's Method
'
Closed Channel Weighting Method
Horton's Method
Results
Mannings Coefficient
0.014
'
Elevation Range
99.25 to 100.00
Discharge
58.63 ,cfs = QcaP Qroo - 10.35 cis
Flow Area
11.1 ft'
'
Wetted Perimeter
38.63 ft
Top'Width
38.00 ft
Actual Depth
0.75 ft
Critical Elevation
Critical Slope
100.13 ft
0.004205 ft/ft
Velocity
5.30 ft/s
Velocity Head
0.44 ft
'
Specific Energy
100.44 ft
Froude Number
1,73
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by 0.12 fL
'
Start
Station
Roughness Segments
End
Station
Mannings
Coefficient
'
0+00
0+05
0.013
0+05
0+13
0.035
0+13
0+15
0.013
'
0+15
0+38
0.016
Natural Channel Points
'
Station
Elevation
(ft)
(ft)
0+00
100.00
0+05
99.90
'
0+13
99.75
0+13
99.75
0+13
0+15
99.25
99.4242
0+38
99.88
bk
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:56:40 AM 0 Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
IR
Worksheet
Flow Element
Method
Solve For
Cambridge Avenue - D.P.602
Irregular Channel
Manning's Formula
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.014100 ft/ft
Water Surface Elevation
100.00 It
Elevation Range
99.25 to 100.00
t
Discharge
58.63 cfs
1
1
100.000--
'
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30
0+35 0+40
V:4.0❑
H:1
NTS
n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:56:47 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
M
1
�I
I11
APPENDIX C
Inlet Design
I
I
I
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
N
1
GUTTEWCONVEYANCE CAPACITY~
Project = FC0194 - 2004 High School
Street ID = Cambridge Avenue - D.P.2C
street
Side Walk Ts Crown
A A-
Y Qw •/' Qx Sx
H' D
^___
Do
�Sw
T
<------------------------>
<-- ><--------- =x-------- >
Gutter street
In Discharge in the Gutter
Qo =
8:2 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1.52 inches
I Transverse Slope
Sx =
0.0200 ft/ft
I Longitudinal Slope
So =
0.0068 ft/ft
ing's Roughness
N =
0.016
ar Cross Slope
,r Spread Width
ar Depth without Gutter Depression
:r Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
rate Carried by Width Ts
rate Carried by Width (Ts - W)
:r Flow
Flow
I Flow (Check against Qo)
sr Flow to Design Flow Ratio
talent Slope for the Street
Area
Velocity
product
LID -Inlet v1.00.xls, Street Hy
Sw = -
0.08 ft/ft
T =
16.39 ft
Y =
0.33 ft
D =
0.45 ft
Tx =
14.39 ft
Ts =
5.45 ft
Qws =
4.2 cfs
Qww =
1.3 cfs
Qw =. -
3.0 cfs
Qx =
5.2 cfs
Qs =
8.2 cfs
Eo =
0.36
Se =
0.04 ft/ft
As=
.2.81 sgft
Vs =
2.90 fps
VsD =
1.32 ftZ/s
3/6/2002, 12:45 PM
,CURB OPENING INLET ON A GRADE
Project: FC0194 - 2004 High School
Inlet ID: Cambridge Avenue - D.P.202b
W
Wp - L �-- �
ow Direction
i Discharge on the Street (from Street Hy)
Qo =
._8.2 cfs
Flow to Design Flow Ratio (from Street Hy)
Eo =
0.36
of a Single Inlet Unit
Lu =
5.00 ft
ig Factor for a Single Unit Inlet
Co =
0.10
!r of Inlet Units in Curb Opening
No =
4
Length of Curb Opening Inlet
L = °"20:00"ft
alent Slope Se (from Street Hy)
Se = '
:. 0.0400 tuft
red Length Lo to Have 100% Interception
Lo = " ` "`28:72.ft
ing Coefficient
C-coeff = ..''.
'1'.33
ing Factor for Multiple -unit Curb Opening Inlet
Clog =
0.03
ive (Undogged) Length
Le =:
19:34 ft
r No -Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
L =
.20:00 ft
eption Capacity
Qi =C:':
= '- 7;5 cfs
r Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
Le =:
19.34 ft
eption Capacity
Qa = 7.?3I cfs
overflow = Qo - Qa =
Qco = ' 0€8, cfs
ire Percentage for this Inlet = Qa / Qo =
C%= I:
'arryover +a D•P20�
UD-Inlet v1.00.xls, Curb-G
3/6/2002, 2:19 PM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
1
M
GUTTERCONVEYANCE :CAPACITY
Project = FC0194 - 2004 High School
Street ID = Cambridge Avenue - D.P. 200
Side Walk Ts
y Qx. C
D
Sx
K Sw T
<--W><-----
-----------------
T"-------->
Gutter Street
Stmet
Crown
to Discharge in the Gutter
Qo =
12.5 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0.0200 ft/ft
t Longitudinal Slope
So =
0.0068 ft/ft
ing's Roughness
N =
0.016
ar Cross Slope
SW =
-0.08 ft/ft
:r Spread Width
T =
-19.43 ft
:r Depth without Gutter Depression
Y =
0:39 ft
;r Depth with a Gutter Depression
D =
0:52 ft
ad for Side Flow on the Street
Tx =
17-.43 ft
ad for Gutter Flow along Gutter Slope
Ts =
- = 818•ft
rate Carried by Width Ts
Qws ='
"5.9 cfs
rate Carried by Width (Ts- W)
Qww=
.2.1 cfs
sr Flow
Qw = ,:3.8 cfs
Flow
Qx=:; =:8.7 cfs
I Flow (Check against Qo)
Qs ='
':12.5 cfs
:r Flow to Design Flow Ratio
Eo =
0.31
Talent Slope for the Street
Se =
0.04 ft/ft
Area
As = .
3.90 sq ft
Velocity
Vs =
3.20 fps
product
VsD =
1.65 ftz/s
(2,0a s D. P. 200 / 202a= I1. <
c, + 0-W cfs cot ryaver
frov D. P. 201 b
' DP_200.xls, Street Hy 3/6/2002, 4:20 PM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
M
II GURB-OPENING'INLET IN A SUMP , II
Project = FC0194 - 2004
Inlet ID = Cambridge Av
gh School
ue - D.P.200
Wp Lu WP
nv Direction
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
12.5 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
3.00 ft
ling Factor for a Single Unit
Co =
0.15
it of Curb Opening in Inches
H =
6:00 inches
e Coefficient
Cd =
0:65
Coefficient
Cw =
3.00
it Depth for the Design Condition
Yd =
0:77 ft
of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
)er of Curb Opening Inlets
No =
2
a Weir
al Length of Curb Opening Inlet
L =
10.00 ft
:)acity as a Weir without Clogging
Qwi =
31.2 cfs
gging Coefficient for Multiple Units
Clog-Coeff =
1.25
gging Factor for Multiple Units
Clog = -
0.09
3acity as a Weir with Clogging
Qwa =
"_ ';29:3!cfs
an Orifice
mcity as an Orifice without Clogging
Qoi =:.
19.3 cfs
3acity as an Orifice with Clogging
Qoa =
17.5 cfs
3acity for Design with Clogging
Qa=I'';>:
-.1.7:5icfs
Aure Percentage for this Inlet = Qa / Qo =
C%
r100 00 %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' DP_200.xls, Curb-S 317/2002, 11:31 AM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
M
1
- :GUTTER°' -CONVEYANCE CAPACITY.
Project = FC0194 - 2004
Street ID = Cambridge Ave
CA
DP_203.xis, Street Hy
School
- D.P.203
Side Walls Ts
Y QW '
D
Sk
Dv I� Sw T
W Y- -
<- W><------------------->
TX
Gutter Stmet
Stmet
. Cmwn
in Discharge in the Gutter
Qo =
10.3 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1:52 inches
i Transverse Slope
Sx =
0.0200 ft/ft
i Longitudinal Slope
So =
0.0064 ft/ft
ing's Roughness
N =
0.016
;r Cross Slope
SW =
0.08 ft/ft
ar Spread Width
T =
18.20 ft
it Depth without Gutter Depression
Y =
0.36 ft
;r Depth with a Gutter Depression
D =
0.49 ft
ad for Side Flow on the Street
Tx =
16.20 ft
ad for Gutter Flow along Gutter Slope
Ts =
: -°. -5:89,ft
rate Carried by Width Ts
Qws =
5.0 cfs
rate Carried by Width (Ts- W)
Qww=
1J cis
;r Flow
Qw =
, % _ 3.4 cis
Flow
Qx =
' - 6.9 cfs
I Flow (Check against Qo)
Qs =
10.3 cfs
m Flow to Design Flow Ratio
Eo =
0.33
talent Slope for the Street
Se =
0.04 ft/ft
Area
As =
3.44 sq ft
Velocity
Vs =
- 2.99 fps
product
VsD =
1.47 ftz/s
Q, , c- D.P.203 = 7.27cf;
} 3.00c.S carr�JP✓
r YO✓/` D.P. 20,I
3/7/2002, 11:19 AM
I
-CURB,OPENING-INLET''IN A:.SUMP.
Project = FC0194 - 2004 High School
Inlet ID = Cambridge Avenue - D.P.203
' Lu WP
Wp
water
Yd
Flow Direction
Fan
' Gutter
1
0
1
u
M
gn Discharge on the Street (from Street Hy)
th of a Unit Inlet
Width for Depression Pan
Sing Factor for a Single Unit
It of Curb Opening in Inches
:e Coefficient
Coefficient
�r Depth for the Design Condition
a of Throat (see USDCM Chapter 6, Figure ST-5)
ber of Curb Opening Inlets
a Weir
al Length of Curb Opening Inlet
)acity as a Weir without Clogging
gging Coefficient for Multiple Units
gging Factor for Multiple Units
)acity as a Weir with Clogging
an Orifice
)acity as an Orifice without Clogging
)acity as an Orifice with Clogging
re Percentage for this Inlet = Oa / Qo =
Qo =
10.3 cfs
Lu =
5.00 ft
W p =
3.00 It
Co =
0.15
H =
6.00 inches
Cd =
0:65
Cw =
3.00
Yd =
0.74 ft
Theta =
63.0 degrees
No =
2
L =
--10.00ift
Qwi=`',_.:
,29.4,cfs
Clog-Coeff =
1.25„
Clog =
0.09
Qwa = :;- -.27:6,cfs
Qoi = - `='s -18:8+cis
Qoa = 17.0. cfs
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' DP_203.xls, Curb-S 3/7/2002, 11:19 AM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
GUTTER .CONVEYANCE CAPACITY
Project = FC0194 - 2004
Street ID =Rock Creek Dr
3h School
- D.P.204
Street
Side Walk Ts Crown
Y Qw Qx 4� Sx
x D
Ds -�ST
<- W><---------Tx-------->
Gutter Street
DP_204.xis, Street Hy
In Discharge in the Gutter
Qo =
11:1 cfs
Height
H =
6.00 inches
r Width
W =
2.00 It
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0:0200 ft/ft
t Longitudinal Slope
So =
0.0050 fttft
ing's Roughness
N =
;6.016
;r Cross Slope
Sw = ° :
`0.08 ft/ft
it Spread Width
T = . ._ .19.69
ft
it Depth without Gutter Depression
Y =
0.39 ft
ar Depth with a Gutter Depression
D = '
: 0.52 It
ad for Side Flow on the Street
Tx = _ � � ,17.69 ft
ad for Gutter Flow along Gutter Slope
Ts =':. s'_>:6.25 It
rate Carried by Width Ts
Qws = '- -;'
.5.2 cfs
rate Carried by Width (Ts - W)
Qww =--; -'- ^
1.9 cfs
:r Flow
Qw =;;v =;
_ w3.3 cfs
Flow
Qx? 777 cfs
I Flow (Check against Qo)
Qs =
:11.1 cfs
.r Flow to Design Flow Ratio
Eo =' ' :
0.30
talent Slope for the Street
Se =
0.04 ft/ft
Area
As = '.
4.00 sq It
Velocity
Vs = '
.2.76 fps
product
VsD =
1.44 ft�/s
3/6/2002, 3:22 PM
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
CURB<OP,ENING-INLET ON_AGRADE_
Project: FC0194 - 2004 High School
Inlet ID: Rock Creek Drive - D.P.204
WP L WP
<--------)�<----Pam--- ).
Curb
Gutter
i Discharge on the Street (from Street Hy)
Flow to Design Flow Ratio (from Street Hy)
of a Single Inlet Unit
ig Factor for a Single Unit Inlet
�r of Inlet Units in Curb Opening
Length of Curb Opening Inlet
alent Slope Se (from Street Hy)
red Length Lo to Have 100% Interception
ing Coefficient
ing Factor for Multiple -unit Curb Opening Inlet
ive (Undogged) Length
r No -Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
:ption Capacity
r Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
aption Capacity
over flow = Qo - Qa =
ire Percentage for this Inlet = Qa / Qo =
DP_204.x1s, Curb-G
Pan
Flow Direction
Qo =
41.1 cfs
Eo =
0.30
Lu =
5.00 R
Co =
0.10
No =
3
L ='
..,15.001 ft
Se=1
0.0400`Wit
Lo= s
27.7&ft
C-coeff =:: "
1.31
Clog ='.,
-s;0.04
Le =+ '-
14.35 :it
L= .'c '15:00.ft
Qi c: 843i cfs
Le =' '.1435. ft
Qa = . ' rii cfs
Q-co =; 3:Oj cfs
C%=(=; '7.3c1'Of%
Gprr yovek fa D.P.'t0_
3/7/2002, 11:17 AM
1
1
M
1
1
1
1
1
1
1
1
Project = FC0194 - 2004 High School
Street ID = Interior Road - D.P.300
Street
Side walk TO Crown
Sx
H' D
Dr S,
v ► v--- T
<------------------------>
<- W><--------- T"-------- >
Gutter Street
DP-300.xis, Street Hy
ign Discharge in the Gutter
Qo =
2.0 cfs
Height
H =
6.00 inches
er Width
W =
2.00 ft
er Depression
Ds =
1:52 inches
at Transverse Slope
Sx =
0.0200 ft/ft
at Longitudinal Slope
So = •
.. 0.0050. ft/ft
ning's Roughness
N = .:
10.616
er Conveyance Capacity
er Cross Slope
SW =' `
' 0.08 ft/ft
:r Spread Width
T
:r Depth without Gutter Depression
Y =- '"
- '0.19 ft
:r Depth with a Gutter Depression
D =r;:
':- :_ 0:32 ft
for Side Flow
ad on the Street
Tx = ".`
t:7.50•ft
ad for Gutter Flow along Gutter
Slope
Ts =;<<- ^-,'180' ft
rate Carried by Width Ts
Qws=
'::1t4 cis
rate Carried by Width (Ts -
W)
Qww =,
0:21 cis
arFlow
Qw=?, :;;v .JZcfs
Flow
Qx:OiB cfs
I Flow (Check against Qo)
Qs =".'
•. `--2:01 cfs
;r Flow to Design Flow Ratio
Eo =
0.60
valent Slope for the Street
Se =
0.06 Wit
Area
As =.
1.03 sq ft
Velocity
Vs =;':
1:92 fps
product
VsD =.
.0.61 ftZ/s
3/6/2002, 3:35 PM
1
1
M
1
1
1
1
1
1
1
1
II =CURB OPENING,INLET;:ONAGRADE II
Project: FC0194 - 2004 High School
Inlet ID: Interior Road - D.P.300
WL WP
<---- T--r<- --- ).<--- )*
i Discharge on the Street (from Street Hy)
Flow to Design Flow Ratio (from Street Hy)
of a Single Inlet Unit
ig Factor for a Single Unit Inlet
rrof Inlet Units in Curb Opening
Length of Curb Opening Inlet
alent Slope Se (from, Street Hy)
ired Length Lo to Have 100% Interception
ling Coefficient
ling Factor for Multiple -unit Curb Opening Inlet
ive (Undogged) Length
r No -Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
eption Capacity
r Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
eption Capacity
over flow = Qo - Qa =
ire Percentage for this Inlet = Qa / Qo
Flow Direction
Qo =
2.0 cfs
Eo =
0.60
Lu =
5.00 ft
Co =
0.15
No =
2
L=
10.00:ft
Se =
0:0600 ft/ft
Lo=
:10.521ft
C-coeff =
-T:25
Clog =
0.09
Le =
9.06'ft
L = 10.00 ft
Qi =- - 2.0-cfs
Le = '9A6 ft
Qa = € - "z;1 91 cfs
Q-co = 1 cfs
C%=V're 17A4';%
Cow ryover to D.P. (c-_'
' DP_300.xis, Curb-G 3/6/2002, 3:36 PM
GUTTER CONUEYANCE:CAPACITY-71
Project = FC0194 --2004
Street ID = Interior Road -
School
Street
Side Walk Ts Crown
i Y Qw QX Sx
H' D
DY Sw
T
<- W><--------- T"-------- >
Gutter Street
In Discharge in the Gutter
Height
r Width
r Depression
t Transverse Slope
t Longitudinal Slope
ing's Roughness
-r Cross Slope
;r Spread Width
,r Depth without Gutter Depression
;r Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
rate Carried by Width Ts
rate Carried by Width (Ts - W)
:r Flow
Flow
Flow (Check against Qo)
;r Flow to Design Flow Ratio
valent Slope for the Street
Area
Velocity
product
Qo =
6.3 cfs
4
H =
6.00 inches
f
W =
2.00 ft
Ds =
1.52 inches
Sx =
0.0200 ft/ft
So = -
. 0.0050 ft/ft
N =
0.016
SW = ..,r _ ` 0.08 ft/ft
T = 15.71 ft
Y =
0.31 ft
D =
0.44 ft
Tx =
.13.71 ft
Ts =5.29
ft
Qws =
- .3:3 cfs
Qww =
0.9 cis
Qw :2.4-cfs
Qx = ` ==. ': 3.9 cfs
Qs =
-", 6.3 cfs
Eo =
0.38
Se =
0.04 ft/ft
As =
2.59 sq ft
Vs =
2.43 fps
VsD =
1.07 ftZ/s
so@ D.P. 30la = H.21
Z.l Cr5 wr,yoveV
10r D. P. 301 b
DP-301a.xls, Street Hy 3/612002, 4:24 PM
1
1
M
1
1
1
1
1
1
1
1
' `CURB 'OPENING INLET.ON A GRADE . -
Project: FC0194 - 2004 High School
Inlet ID: Interior Road - D.P.301a
WP L WP
<--------ice----'i[-__�
Flow Direction
i Discharge on the Street (from Street Hy)
Qo = -
-6.3 cis
Flow to Design Flow Ratio (from Street Hy)
Eo =
0.38
of a Single Inlet Unit
Lu =
5.00 ft
ig Factor for a Single Unit Inlet
Co =
0.10
:r of Inlet Units in Curb Opening
No =
` -3
Length of Curb Opening Inlet L = ( ' 5A0"ft
alent Slope Se (from Street Hy)
Se =1 r' 0.0400'. ft/ft
ired Length Lo to Have 100% Interception
Lo =; .: 21.87'ft
ing Coefficient
C-coeff = " . ' i:31
ing Factor for Multiple -unit Curb Opening Inlet
Clog = • 0:04
ive (Undogged) Length
Le = -. `44.35 ft
r No -Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
L =- 15:00 ft
eption Capacity
Qi ='r ." , :' 5i5. efs
rClogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
Le = ' `'', 1' 4:35 ft
option Capacity
Qa =KWIft5al cfs
overflow = Qo - Qa =
Q-co =077 0:9 cfs
ire Percentage for this Inlet = Qa / Qo =
C% 63¢1%
DP_301a.xls, Curb-G
yover to D.P.(�o!
3/6/2002, 4:24 PM
1
M
I
1
r
1
1
n
M
GUTTER=C.ONVEYANCE CAPACITY
Project = FC0194 - 2004 High School
Street ID = Interior Road - D.P.301 b
Street
Side Walk Ts Crown
Y >O-Z"
' Qx �� Sx ;
H' D
oT
<------------------------>
<--W><---------=X-------->
Gutter Street
In Discharge in the Gutter
Qo =
8.4 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1.52 inches
i Transverse Slope
Sx =
0.0200 ft/ft
I Longitudinal Slope
So =
0.0067 ft/ft
ing's Roughness
N =
0.016
!r Cross Slope
Sw =
0.'08 ft/ft
�r Spread Width
T =
16.61 ft
r Depth without Gutter Depression
Y =
0.33 ft
r Depth with a Gutter Depression
D =
0.46 ft
ad for Side Flow on the Street
Tx =
14.61 • ft
ad for Gutter Flow along Gutter Slope
Ts =
.5.51 ft
-ate Carried by Width Ts
Qws =
4.3 cfs
ate Carried by Width (Ts - W)
Qww =
I`
.3 cfs
r Flow
Qw =. •.
3;0. cfs
Flow
Qx
15.4. cis
Flow (Check against Qo)
Qs =. ' `
8.4 cfs
;r Flow to Design Flow Ratio
Eo =
0.36
talent Slope for the Street
Se =
0.04 fl/ft
Area
As =
2:89 sq ft
Velocity
Vs =
2.90 fps
product
VsD =
1.33 ft2is
' DP_301b.xls, Street Hy 3/6/2002, 4:25 PM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
II - `, -CURWOP_ENING INLET ON A,GRADE- -_ 11
Project: FC0194 - 2004 High School
Inlet ID: Interior Road D.P.301b
Wp L Wp
Curb
Gutter
H
esign Discharge on the Street (from Street Hy)
utter Flow to Design Flow Ratio (from Street Hy)
mgth of a Single Inlet Unit
logging Factor for a Single Unit Inlet
umber of Inlet Units in Curb Opening
Length of Curb Opening Inlet
alent Slope Se (from Street Hy)
fired Length Lo to Have 100% Interception
ing Coefficient
ing Factor for Multiple -unit Curb Opening Inlet
ive (Unclogged) Length
r No -Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
eption Capacity
r Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
eption Capacity
over flow = Qo - Qa
ire Percentage for this Inlet = Qa / Qo =
DP_301b.xls, Curb-G
Flow Direction
Qo =
8.4 efs
Eo =
0.36
Lu =
5.00 ft
Co =
0.10
No =
-3
L ='„:.-
'1500 ft
Se ='
- `0.0400 Tuft
Lo = -y
.. 26:90 ft
C-coeff =
1.31
Clog =
0.04
Le ='•
'14.35 ft
L = -15100 ft
Oi = i ,i`''` 674cfs
Le =. ', "14:35 ft
Qa = A :, ..6:2! cfs
Qco = '_i ;7,efs
C%=I; ` 74:62!%
to D.o, -,"
3/6/2002, 4:25 PM
1
1
1
1
1
1
1
1
1
1
M
1
`:GUTTER=GONVE -ANCE CAPACITY
Project = FC0194- 2004 High School
Street ID = Interior Road - D.P.302a
street
Side Walk Ts Crown
A A---
Y , QW .' Qx �� Sx
H' D
W
Do -zsw
T
<------------------------ >
<- W><--------- TX -------- >
Gutter Street
DP_302a.xls, Street Hy
In Discharge in the Gutter
Qo =
6.4 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0.0200 ft/ft
t Longitudinal Slope
So =
0.0067 Wit
ing's Roughness
N =
0.016
�r Cross Slope
SW =
:0.08 ft/ft
�r Spread Width
T =
14.88 ft
it Depth without Gutter Depression
Y =
10.30 ft
�r Depth with a Gutter Depression
D =
-:0.42 ft
3d for Side Flow on the Street
Tx =
12:88 ft
3d for Gutter Flow along Gutter Slope
Ts =
'5:09 ft
ate Carried by Width Ts
Qws =
3:5 cfs
ate Carried by Width (fs- W)
Qww=
0.9 cfs
:r Flow
Qw =
2.6 cfs
Flow
Qx =
= "3.8 cfs
Flow (Check against Qo)
Qs =
-, 6A cfs
ar Flow to Design Flow Ratio
Eo =
0.40
talent Slope for the Street
Se =
0.05 ft/ft
Area
As =
2.34 sq ft
Velocity
Vs =
2.73 fps
product
VsD =
1.16 ft2/s
3/6/2002, 4:50 PM
Project='FC0194 - 2004 H
Inlet ID = Interior Road - C
CU.RB'OPENING, INLET'IN<AxSUMP II
School
WP Lu WP
-><---�
Yd
Pan
Gutter
ign Information (Input)
ign Discharge on the Street (from Street Hy)
gth of a Unit Inlet
Width for Depression Pan
Iging Factor for a Single Unit
Iht of Curb Opening in Inches
ce Coefficient
r Coefficient
er Depth for the Design Condition
le of Throat (see USDCM Chapter 6, Figure ST-5)
fiber of Curb Opening Inlets
a Weir
al Length of Curb Opening Inlet
3acity as a Weir without Clogging
gging Coefficient for Multiple Units
gging Factor for Multiple Units
)acity as a Weir with Clogging
an Orifice
)acity as an Orifice without Clogging
)acity as an Orifice with Clogging
Percentage for this Inlet = Qa / Qo =
Ovate r
Flow Direction
Qo =
6.4 cfs
Lu =
5.00 ft
W p =
3.00 ft
Co =
0.20
H =
1.6.00 inches
Cd =
0:65
Cw =
73.00
Yd =
0:67 ft
Theta =
630 degrees
No =
I1
L =
, .":500; ft
Qwi =
' � 17.1 cfs
Clog-Coeff = .
_ 1-00
Clog =
•°0:20
Qwa =
-:4'15.5 cfs
Qoi =
--"8.7 cfs
Qoa =
- - 7.0 cfs
Qa
;= , ; 0 cfs
C%=1 ;:_400.001%
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
DP_302a.xls, Curb-S 3/6/2002, 4:50 PM
1
1
M
1
1
1
1
1
1
LJ
1
1
1
1
M
a'GUTTER CONVEYANCE "CAPACITY
Project = FC0194 -2004
Street ID = Interior Road (I
School
- D.P.309
Side walk Street
>4Z
Ts--> Crown
A--- D
VDr T
<- ----------------------->
<- w><--------- Tx -------- >
Gutter Street
to Discharge in the Gutter
Height
r Width
r Depression
t Transverse Slope
t Longitudinal Slope
ing's Roughness
er Cross Slope
er Spread Width
er Depth without Gutter Depression
ar Depth with a Gutter Depression
!ad for Side Flow on the Street
!ad for Gutter Flow along Gutter Slope
rate Carried by Width Ts
rate Carried by Width (Ts - W)
2�r Flow
Flow
I Flow (Check against Qo)
;r Flow to Design Flow Ratio
oalent Slope for the Street
Area
Velocity
product
Qo =
6.2 cfs
H =
6.00 inches
W =
2.00 ft
Ds =
1.52 inches
Sx =
0.0200 ft/ft
So =
;0.0120 ft/ft
N =
-10.016
Sw =
` .. 0.08, ft/ft
T =
-13.04; ft
Y =
.0.26 ft
D =
0.39 ft
Tx =
A 1.04, ft
Ts =
':->,--4.65�ft
Qws =
"3.7 cfs
Qww =
i0.8°cfs
Qw = ,
_ -u2.8, cfs
Qx =
`:- - 3.4, cfs
Qs =
6:2=cfs
Eo =
0.46
Se =
0.05 ft/ft
As =
1.83 sq it .
Vs =
. 3.42 fps
VsD =
1.32 ftZ/s
' DP_309.xls, Street Hy 3/6/2002, 4:52 PM
M
1I
[]
1
�.i
-CURB OPENING 1NLET.IN �A SUMP
Project = FC0194 - 2004 Nigh School
Inlet ID = Interior Road (Loop) - D.P.309
WP Lu WP
w Direction
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
6.2 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
-3.00 ft
Ping Factor for a Single Unit
Co =
0.20
it of Curb Opening in Inches
H = I-.,-
_6.00 inches
e Coefficient
Cd = ' "
0c65
Coefficient
Cw = .
- 3.00
r Depth for the Design Condition
Yd =
_'0.64 ft
. of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
)er of Curb Opening Inlets
No =
u 1
a Weir
al Length of Curb Opening Inlet
L
-'•5i00 ft
)acity as a Weir without Clogging
Qwi =
"16.0 cfs
gging Coefficient for Multiple Units
Clog-Coeff =
.-1000
gging Factor for Multiple Units
Clog =
` --v''�0:20
)acity as a Weir with Clogging
Qwa = '
'� .M4 4, cfs
an Orifice
)acity as an Orifice without Clogging
Qoi =
- '1 -78.4 cfs
)acity as an Orifice with Clogging
Qoa =
-:.=:.6.7 cfs
)acity for Design with Clogging
Qa = 7 _ Vt cfs
rture Percentage for this Inlet = Qa / Qo =
C% = f a `-100:00: %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' DP_309.xls, Curb-S 3/6/2002, 4:52 PM
I� . `'GUTTER�CONNEYAN:CE CAPACITY '= ``�I
Project = FC0194 = 2004 High School
Street ID = Interior Road (Loop) - D.P.310
Street
Side Walls Ts Crown
---
_
V Qom' Qx Sx
x D ;
Dr ^�SW
T
<------------------------ >
<--W ><---------T"-------->
Gutter Sheet
In Discharge in the Gutter
Qo =
'95 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds = .- .
-1.52 inches
t Transverse Slope
Sx =
0.0200 ft/ft
t Longitudinal Slope
So = .—�,�-.0
0120,fltft
ing's Roughness
N = -:""% `iY016-
.r Cross Slope
Sw =; 008- ft/ft
;r Spread Width
T = 6.541ft
ar Depth without Gutter Depression
Y = ">' _ 031'ft
;r Depth with a Gutter Depression
D ='_ :- ` `p:44:-ft
ad for Side Flow on the Street
Tx = 3.54;ft
ad for Gutter Flow along Gutter Slope
Ts �Z =:5 251ft
rate Carried by Width Ts
Qws =. ; = �,"Z 1<cfs
rate Carried by Width (Ts - W)
Qww =:= - : =:`'4,kcis
ar Flow
Qw = ae37; cis
Flow
Qx e5:9; cis
I Flow (Check against Qo)
Qs ;95` cfs
,r Flow to Design Flow Ratio
Eo = 0 38
talent Slope for the Street
Se = O.b4 ft/ft
Area
As = -2.54 sq ft
Velocity
Vs ='_ .-' _-.:-`3.74 fps
product
VsD =- _, ' -1.64 ftz/s
DP_310.x1s, Street Hy 3/6/2002, 4:53 PM
L
1
1
AMA
CURB OPENING.INLET:IN�,A-SUMP .
Project = FC0194 - 2004 High School
Inlet ID = Interior Road (Loop) - D.P.310
Lu WP
P -><---�
H.'
Gutter
Yd
Pan
water
Flow Direction
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
9.5 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
3.00 ft
Bing Factor for a Single Unit
Co =
0.15
ht of Curb Opening in Inches
H =
6.00 inches
:e Coefficient
Cd =
0.65
Coefficient
Cw =
3:00
:r Depth for the Design Condition
Yd =
0.69 ft
of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
ber of Curb Opening Inlets
No =
2
a Weir
al Length of Curb Opening Inlet
L =
10.00 ft
)acity as a Weir without Clogging
Qwi =
26.5 cfs
gging Coefficient for Multiple Units
Clog-Coeff =
1.25
gging Factor for Multiple Units
Clog =
0.09
)acity as a Weir with Clogging
Qwa = ^;
- '" .24.9 cfs
an Orifice
)acity as an Orifice without Clogging
Qoi =
17.8 cfs
)acity as an Orifice with Clogging
Qoa =
%16.2 cfs
)acity for Design with Clogging
Qa =
16.2 cfs
3ture Percentage for this Inlet = Qa / Qo =
C% _: -
-.-100.00. %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' DP_310.x1s, Curb-S 3/6/2002, 4:52 PM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
M
;.GUTTER'CONVEYANCE CAPACITY
Project = FC0194 - 2004 High School
Street ID =.Ziegler Road - D.P.502
Side Walls Ts
i' �, QW �'Qx L� Sx
Hi D ' W ---
Do
SW
<________________________�,
<- W><---------Tx-------->
Gutter street
In Discharge in the Gutter
Height
r Width
r Depression
i Transverse Slope
: Longitudinal Slope
ing's Roughness
:r Cross Slope
�r Spread Width
it Depth without Gutter Depression
it Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
ate Carried by Width Ts
ate Carried by Width (Ts - W)
r Flow
Flow
Flow (Check against Qo)
,r Flow to Design Flow Ratio
valent Slope for the Street
Area
Velocity
product
street
Crown
I
Qo =
18.9 cfs
H =
6.00 inches
W =
2.00 ft
Ds =
1.52 inches
Sx =
0.0200 ft/ft
So =
0.0225 ft/ft
N =
0:016
Sw =':0,08
ft/ft
T =
18.06 ft
Y =
0.36 ft
D =
0.49 ft
Tx =
M06 ft
Ts =
585-ft
Qws =
9.3 cis
Qww =
- 3.0 cfs
Qw =
- '; 8.2- cfs
Qx =
". .12.7 cfs
Qs =
18.9 cfs
Eo =
0.33
Se =
0.04 ft/ft
As =
3.39 sq ft
Vs =
.5.57 fps
VsD =
2.72 ft2/s
UD-Inlet v1.00.xls, Street Hy 3/6/2002, 2:55 PM
1
1
1
1
1
1
1
1
1
1
1
1
1
1
M
Project =
Inlet ID =
f
-CURRDPENING•INLET=IN ASUMP
94 - 2004 High School
er Road - D.P.502
WP Lu WP
-- r[- - -
�
Yd
H v
Pan
Gutter
gn Information (Input)
gn Discharge on the Street (from Street Hy)
th of a Unit Inlet
Width for Depression Pan
Ling Factor for a Single Unit
it of Curb Opening in Inches
e Coefficient
Coefficient
r Depth for the Design Condition
of Throat (see USDCM Chapter 6, Figure ST-5)
)er of Curb Opening Inlets
a Weir
al Length of Curb Opening Inlet
)acity as a Weir without Clogging
gging Coefficient for Multiple Units
gging Factor for Multiple Units
)acity as a Weir with Clogging
an Orifice
)acity as an Orifice without Clogging
)acity as an Orifice with Clogging
re Percentage for this Inlet = Qa / Qo =
water
Flow Direction
Qo =
18.9 cfs
Lu =
5.00 ft
W p =
3.00 ft
Co =
0.20
H =
6.00 inches
Cd =
0.65
Cw =
-3.00
Yd =
0:74 ft
Theta =
63.0 degrees
No =
3
L =
15.00 ft
Qwi =
39.0 cfs
Clog-Coeff =
1.31
Clog =
0.09
Qwa = . '
':36.5 cfs
Qoi =
!. , 28:1 cfs
Qoa =
25.7 cfs
Qa =
T `25:7; cfs
C%=,'.
'.100.00'%
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' LID -Inlet v1.00.x1s, Curb-S 3/6/2002, 2:56 PM
1
1
M
1
1
�I
-. ;GUTTER CONVEYANCE -CAPACITY
. Project = FC0194 - 2004 High School
Street ID = Cambridge Avenue - D.P.6(
Side Walk street
Ts cre.z.
Y Qx, Qx �� Sk
H' D
W
DrSw
_
<________________________>
<- W><--------- T"-------- >
Gutter Street
DP_601.xis, Street Hy
In Discharge in the Gutter
Height
r Width
r Depression
tTransverse Slope
t Longitudinal Slope
ing's Roughness
sr Cross Slope
ar Spread Width
;r Depth without Gutter Depression
ar Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
rate Carried by Width Ts
rate Carried by Width (Ts - W)
ar Flow
Flow
I Flow (Check against Qo)
%r Flow to Design Flow Ratio
dalent Slope for the Street
Area
Velocity
product
Qo =
10.7 cfs
G,00 a D.P.60nk601 - 9.G5
H =
6.00 inches
or`
+ 0.10 cfs Carry ovev
W =
2.00 ft
Trams-, D.P. alb
Ds =
1.52 inches
Sx =
0.0200 ft/ft
+ 0.40=s corrvoJ=.
�rorn D. P. 301 a
So =
0.0130 ft/ft
N =
0.016
Sw=
ft/ft
T = -
16.03 ft
Y =
0.32 ft
D =
. 0.45 ft
Tx= -:"
'14:03'ft
Ts =
-- t6.37'ft
Qws =
5.6 cfs
Qww =
" 1:6 cfs
Qw =
"m' 4:A. cfs
Qx
Qs =
10.7 cfs
Eo =
0.37
Se =
0.04 ft/ft
As =
2.70 sq ft
Vs =
3.96 fps
VsD =
-1.77 ft2/s
3/6/2002, 4:53 PM
1
1
M
1
1
L
II CURB OPENING.INLET'IN.A SUMP JI
Project = FC0194 - 2004 High School
Inlet ID = Cambridae Avenue - D.P.601
WP Lu WP
-YC-- --><---�
Gutter
water
Yd
Flow Direction
H
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
10.7 cfs
ith of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
3.00 ft
ging Factor for a Single Unit
Co =
0.15
ht of Curb Opening in Inches
H =
6.00 inches
;e Coefficient
Cd =
0:65
Coefficient
Cw =
3.00
;r Depth for the Design Condition
Yd =
070 It
e of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
ber of Curb Opening Inlets
No =
.2
a Weir
Total Length of Curb Opening Inlet
L = :
'-:' 10c00 ft
Capacity as a Weir without Clogging
Qwi =.
27.1 cfs
Clogging Coefficient for Multiple Units
Clog-Coeff =
125
Clogging Factor for Multiple Units
Clog =
:0'.09
Capacity as a Weir with Clogging
Qwa = --._ : 254 cis
As an Orifice
Capacity as an Orifice without Clogging
Qoi = '
' - -18:0 cfs
Capacity as an Orifice with Clogging
Qoa =
-16.3 cis
Caoacitv for Design with Cloqc lingQa
Capture Percentage for this Inlet = Qa / Qo =
C% =I-.
=+_=;100.00' %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
DP_601.xls, Curb-S
3/6/2002, 4:54 PM
I
Project =
Street ID =
t
1
I
C
`:-GUTTER CONVEYANCE CAPACITY
FC0194-_2004 High School
Cambridge Avenue - D.P.602
Side Walk street
Ts Crown
i A, A---
H ; D Y 1w Qx �„� _ Sx
(
DO�Sw
r W Y--- T
<------------------------>
<--w><--------- TX -------- >
Gutter Street
In Discharge in the Gutter
Height
r Width
r Depression
:Transverse Slope
Longitudinal Slope
ing's Roughness
;r Cross Slope
;r Spread Width
:r Depth without Gutter Depression
:r Depth with a Gutter Depression
ad for Side Flow on the Street
3d for Gutter Flow along Gutter Slope
ate Carried by Width Ts
'ate Carried by Width (Ts - W)
:r Flow
Flow
Flow (Check against Qo)
' Gutter Flow to Design Flow Ratio
Equivalent Slope for the Street
Flow Area
' Flow Velocity
sD product
Qo =
10.4 cfs
H =
6.00 inches
W =
2.00 ft
Ds =
1.52 inches
Sx =
0.0200 fUft
So=
0.014.1.fttt
N = >
. 0.016
Sw =
.0.08 ft/ft
T = . =
15:57' ft
Y =
0.31 ft
D =
'0.44 ft
Tx =.: -:
'13.57 ft
Qws =
>;�:5:5 cfs
Qww
-.1.5. cfs
Qw =,„':
,!4:0icfs
-;
Qx cfs
Qs = ';
10.4• cfs
Eo
Se =
0.04 ft/ft
As =
2.55 sq ft
Vs =
4.06 fps
VsD =
1.78 ftZ/s
DP_602.xls, Street Hy 3/6/2002, 4:55 PM
M
r
1
0
1
EJ
CURBOPENI'NG INLET, ;IN1A'°SUMP
Project = FC0194 - 2004 High School
Inlet ID = Cambridge Avenue - D.P.602
WP
Lu WP
_
nv Direction
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
'10.4 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
3.00 ft
Bing Factor for a Single Unit
Co =
0.15
it of Curb Opening in Inches
H =
- :6.00 inches
:e Coefficient
Cd = :.
0.65
Coefficient
Cw=. -
". -4- 0
it Depth for the Design Condition
Yd =
0:69 ft
of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
.:63.0 degrees
ber of Curb Opening Inlets
No =
.2
a Weir
al Length of Curb Opening Inlet
L = "^: > 10:00•ft
)acity as a Weir without Clogging
Qwi =
26.-5 cfs
gging Coefficient for Multiple Units
Clog-Coeff =
'1.25
gging Factor for Multiple Units
Clog =
0.09
)acity as a Weir with Clogging
Qwa =w i'-,-,
' , 24:9, cfs
an Orifice
racity as an Orifice without Clogging
Qoi =
-1;78 .cis
racity as an Orifice with Clogging
Qoa =.- :.: • 16.2 cis
)acity for Design with Clooaino
Qa 9 6 2+cfs
rture Percentage for this Inlet = Qa / Qo
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
DP_602.xls, Curb-S 3/6/2002, 4:55 PM
1
1
1
1
1
1
1
1
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/11/2002
Design Point--
3061'
Orifice Calculation:
Rim Elevation=
4902:80
Q. = CA(2gH)o.s
100-yr Ponding Elev=
490535
Hydraulic Grade Out--
4900:71
Allowable Release Rate--
-' A 33
cfs
H=
2.55 ft
C =
0.65
g=
32.2 ft/s
Q=
1.33 cfs
Ac =
0.16 ftZ
Diameter of Orifice: 1 15/16"
B E Y O N D E N G I N E E R I N G
' Nolte Associates, Inc.
IIp
L
1
0
n
u
M
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/10/2002
Design Point--
307
Orifice Calculation:
Rim Elevation=
4902.70
Q. = CA(2gli fs
100-yr Ponding Elev=
4905.61
Hydraulic Grade Out--
4899.79
Allowable Release Rate=
.2.395
cfs
H=
5.82 ft
C =
0.65
g =
32.2 ft/s
Q=
2.40 cfs
Ac =
0.19 ft2
Diameter of Orifice: 2 15/16"
B E Y O N D E N G I N E E R I N G
' Nolte Associates, Inc.
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
M
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/ 11 /2002
Design Point--
31.1a
Orifice Calculation:
Rim Elevation=
4904.20
Qo = CA(2gH)o.s
I00-yr Ponding Elev=
--4906.74
Hydraulic Grade Out--
4902.10
Allowable Release Rate=
1:87
cfs
H=
2.54 ft
C =
0.65
g =
32.2 ft/s
Q=
1.87 cfs
Ac =
0.22 ft2
Diameter of Orifice: 2 11/16
BE Y O N D E N G IN E E R ING
Nolte Associates, Inc.
1
1
M
1
1
1
Project:
0194
Project Names
20: 2004 Fort Collins High School
Calculated By:
HHF/GAD B E Y O N D E N G I N E E R I N G
Date:
3/11/2002
Design Point--
312a Orifice Calculation:
Rim Elevation=
• -4903.90 Q. = CA(2gH)°'S
100-yr Ponding Elev=
--4907.10
Hydraulic Grade Our--
4903.64
Allowable Release Rate=
•4.65 cfs
H=
3.46 ft
C =
0.65
g =
32.2 ft/s
Q=
4.65 cfs
Ac =
0.48 ftZ
Diameter of Orifice: 47I1/16"
Nolte Associates, Inc.
1
1
M
1
1
J
1
1
1
I
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/11/2002
Design Point--
-.312a -
Orifice Calculation:
Rim Elevation=
-4903.90
Q. = CA(2gH)0.5
100-yr Ponding Elev=
—4907.15
Hydraulic Grade Out--
4904.94
Allowable Release Rate=
6.845
cfs
H=
2.21 ft
C =
0.65
g =
32.2 ft/s
Q=
6.85 cfs
Ac =
0.88 ftZ
Diameter of Orifice: 10
B E Y O N D E N G I N E E R I N G
INJE9-1M COIJt?1TlrN
Nolte Associates, Inc.
_
S
S r
Project#: FC0194
Project Name: 2004 Fort Collins High School
Calculated By: HHF/GAD
BE Y O N D E N G IN E E R ING
Date: 3/10/2002
Design Point-- 313a" ` Orifice Calculation:
'
Rim Elevation= 4908.00 Q. = CA(2gH)o.s
100-yr Ponding Elev— 4910.39
Hydraulic Grade Out-- 4906.7.7
'
Allowable Release Rate .187 cfs
H= 3.62 ft
C = 0.65
g = 32.2 ft/s
Q= 2.87 cfs
'
Ac = 0.29 ft2
Diameter of Orifice:
1
N
Nolte Associates, Inc.
1
1
M
1
1
1
1
1
I
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/11/2002
Design Point-
-313a ' --
Orifice Calculation:
Rim Elevation=
4908.00
Q. = CA(2gH)o.s
100-yr Ponding Elev=
--4910.45
Hydraulic Grade Out--
4909.06
Allowable Release Rates
-5.08
cfs
H=
1.39 ft
C =
0.65
g =
32.2 ft/s
Q=
5.08 cfs
Ac =
0.83 ftZ
Diameter of Orifice: 9'15LI6"
BE Y O N D E N G IN E E R ING
Interim Condition:
-Accepting runoff from BASM500
Nolte Associates, Inc.
1
1
M
1
1
1
1
1
1
1
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/11/2002
Design Point--
400 --
Orifice Calculation:
Rim Elevation=
'N.A..-'
Q. = CA(2gH)os
100-yr Ponding Elev=
--4904.79
Hydraulic Grade Out--
4898.70
Allowable Release Rate=
66
cfs
H=
6.09 ft
C =
0.65
g=
32.2 ftis
Q=
6.50 cfs
Ac =
0.50 ftZ
Diameter of Orifice:
BE Y O N D E N G IN E E R ING
Nolte Associates, Inc.
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
Project:
0194
Project Names
20: 2004 Fort Collins High School
Calculated By:
HHF/GAD BEYOND ENGINEERING
Date:
3/11/2002
Design Point—
403 Orifice Calculation:
Rim Elevation=
- 4902.80 Q. = CA(2gH)os
100-yr Ponding Elev=
---4906.70
Hydraulic Grade Out--
4904.79
Allowable Release Rate=
. ..1.2 cfs
H=
1.91 ft
C =
0.65
g=
32.2 f/s
Q=
1.20 cfs
Ac=
0.17 ft,
Diameter of Orifice:
I
Nolte Associates, Inc.
M
C
' APPENDIX D
' Swale Calculations
I
I
I
0
I
I
r
1
Swale Capacity - Major Event (100-yr)
'
Project Description
Worksheet for Trapezoidal Channel
Worksheet
Roof Drainage - D.P.308
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
'
Slope
0.005000 ft/ft
Left Side Slope
4.00 H : V
Right Side Slope
4.00 H : V
'
Bottom Width
3.00 ft
Discharge
16.81 cis
Results
Depth
1.04 ft
Flow Area
7.5 ft'
Wetted Perimeter
11.61 ft
'
Top Width
11.36 ft
Critical Depth
0.72 It
'
Critical Slope
Velocity
_ 0.023340 ft/ft
2.24 ft/s
Velocity Head
0.08 ft
—_
Specific Energy
1.12 ft
Froude Number
0.49
'
Flow Type
Subcritical
N
' n:\...\drainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/11/02 02:45:14 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
Swale Capacity - Major Event (100-yr)
Cross Section for Trapezoidal Channel
Project Description
Worksheet
Roof Drainage - D.P.308
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.035
Slope
0.005000 ft/ft
Depth
1.04 ft
Left Side Slope
4.00 H : V
Right Side Slope
4.00 H : V
Bottom Width
3.00 it
Discharge
16.81 cis
ft
V:4.0E-1
H:1
NTS
n:�...kdrainage\haestad\fo0194_swale-basin308.fm2 Notte Associates Inc
03/11/02 02:45:43 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
FlowMaster v6.1 [614j)
Page 1 of 1
Swale Capacity - Major Event (100-yr)
Worksheet for Trapezoidal Channel
Project Description
Worksheet
Flow Element
Method
Solve For
Culvert Outfall to D.P.303
Trapezoidal Channel
Manning's Formula
Channel Depth
1
Input Data
Mannings Coefficient
0.035
Slope
0.013000 ft/ft
Left Side Slope
14.00 H : V
Right Side Slope
4.00 H : V
Bottom Width
22.00 ft
Discharge
16.81 cfs
'
Results
Depth
0.32 ft
Flow Area
8.0 ft'
Wetted Perimeter
27.82 ft
'
Top Width
27.77 ft
Critical Depth
0.25 ft
'
Critical Slope
Velocity
0.029120 ft/ft
2.11 ft/s
Velocity Head
0.07 ft
Specific Energy
0.39 ft
Froude Number
0.69
Flow Type
Subcritical
n:\...\drainage\haestad\fc0194_pwale-basin308.fm2 Nolte Associates Inc
03/11/02 02:58:16 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
FlowMaster v6.1 [614j]
Page 1 of 1
'
Swale Capacity - Major Event (100-yr)
Cross Section for Trapezoidal Channel
'
Project Description
Worksheet
Culvert Outfall to D.P.303
Flow Element
Trapezoidal Channel
Method
Manning's Formula
'
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.035
Slope
0.013000 ft/ft
Depth
0.32 ft
Left Side Slope
14.00 H : V
'
Right Side Slope
4.00 H : V
Bottom Width
22.00 ft
Discharge
16.81 cfs
'
04 ft
'
22.00 ft
' V:4.0❑
H:1
NTS
1
' nA ..\drainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/11/02 02:58:10 PM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Swale Capacity - Major Event (100-yr)
Worksheet for Trapezoidal Channel
Project Description
Worksheet
Pond P-300 Overflow Spillway
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.030
Slope
0.020000 ft/ft
Left Side Slope
4.00 H : V
Right Side Slope
4.00 H : V
Bottom Width
50.00 ft
Discharge
22.20 cfs
Results
Depth
0.19 ft
Flow Area
9.7 ft'
Wetted Perimeter
51.57 ft
Top Width
51.52 ft
Critical Depth
0.18 ft
Critical Slope
0.023275 ft/ft
Velocity
2.30 ft/s
Velocity Head
0.08 ft
Specific Energy
0.27 ft
Froude Number
0.93
Flow Type
Subcritical
n:\...\drainage\haestad\fc0194_swale-overflow.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/11/02 03:04:35 PM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Project Description
Worksheet
Flow Element
Method
Solve For
Swale Capacity - Major Event (100-yr)
Cross Section for Trapezoidal Channel
Pond P-300 Overflow Spillway
Trapezoidal Channel
Manning's Formula
Channel Depth
Section Data
' Mannings Coefficient 0.030
Slope 0.020000 ft/ft
1
1
1
1
1
1
1
1
1
1
1
1
Depth
0.19 ft
Left Side Slope
4.00 H : V
Right Side Slope
4.00 H : V
Bottom Width
50.00 ft
Discharge
22.20 cfs
0.00 ft
V:4.0❑
HA
NTS
n:\...\drainage\haestad\fc0194_swale-overflow.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/11/02 03:04:28 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
IIp
11
1,
U
1
rI T UtSHVLIU FtCDUL I O
Discharge
cfs
Peak Flow
Period hrs
lVelocity (fps)
Area (sq.ft)
Hydraulic
Radius ft
Normal
De th ft
�2.2
0.5
1 1.68
13.20
0.25
0.26
LINER RESULTS
L_ Bottom
4.0 Width = 50.00 ft 4.0
Not to Scale
Reach
Maleiral[Type
1 Phase
1 Vea.Type
1 Soil Type
Manning's'n'
Permissible
Shear Stress (psf)
Calculated
Shear Stress fntA
Safety
Factor
Remarks
Sta le Pattern
I Class
I Veg. Densit
Straight
SC150
0.050
1.80
0.32
5.58
STABLE
Staple D
1
1
1
1
1
HYDRAULIC RESULTS
Discharge
cfs
Peak Flow
Period hrs
Velocity (fps)
Area (sq.ft)
Hydraulic
Radius ft
Normal
De th ft
22.2
0.5
2.30
9.67
0.19
0.19
LINER RESULTS
Unreinforced Vegetation
Bottom
4.0 Width = 50.00 It 4.0
Not to Scale
Reach
Material Type
Phase
Vag. Type
Soil Type
Manning's'n'
Permissible
Shear Stress (psf)
'aEulated
Shear Stress (psFJ
Safety
Factor
Remarks
Staple Patten
Class
Ve . Densit
Straight
Unenforced
I Mix
1
0.030
3.33
1 0.24
14.00
STABLE
D
1 75-95 a
1 Clay Loam
0.050
1 0.016
3.11
STABLE
I
N
1
1
1
1
1
1
1
1
1
1
1
1
1
w
APPENDIX E
Storm Drain Design
1
Culvert Calculator Report
'
D.P.308 to D.P.303
NSolve
For: Headwater Elevation
Culvert Summary
Allowable HW Elevation
4,906.89 ft
Headwater Depth/Height
1.27
'
Computed Headwater Elevation
4,905.85 ft
Discharge
16.81 cfs
Inlet Control HW Elev.
4,905.80 ft
Tailwater Elevation
4,900.36 ft
Outlet Control HW Elev.
4.905.85 ft
Control Type
Outlet Control
Grades
'
Upstream Invert
4,903.32 ft
Downstream Invert
4,900.23 ft
Length
464.11 ft
Constructed Slope
0.006658 ft/ft
'
Hydraulic Profile
Profile
M2
Depth, Downstream
1.48 ft
Slope Type
Mild
Normal Depth
1.50 ft
'
Flow Regime
Subcritical
Critical Depth
1.48 ft
Velocity Downstream
6.75 fUs
Critical Slope
0.006877 ft/ft
'
Section
Section Shape
Circular
Mannings Coefficient
0.013
'
Section Material
Concrete
Span
2.00 ft
Section Size
24 inch
Rise
2.00 ft
Number Sections
1
'
Outlet Control Properties
'
Outlet Control HW Elev.
Ke
4,905.85 ft
0.50
Upstream Velocity Head
Entrance Loss
0.69 ft
0.34 ft
'
Inlet Control Properties
Inlet Control HW Elev.
4,905.80 ft
Flow Control
Transition
Inlet Type Square edge w/headwall
Area Full
3.1 ft'
K
0.00980
HDS 5 Chart
1
'
M
2.00000
HDS 5 Scale
1
C
0.03980
Equation Form
1
Y
0.67000
1
1
N
' Title: 2004 High School Project Engineer: GAD
nA..Vhaestad\fc0194_culvert_basin308.cvm Nolte Associates Inc CulvertMaster v2.0 [2005a]
05/22/02 04:12:56 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1.203-755-1666 Page 1 of 1
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Project ;•: FC0194
Project Name: 2004 High School
Calculated By: GAD
Date: 5/28/2002
Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System A Outlet to pond Basin 1000.
Outfall Pipe Diameter, in: 30 Velocity, ft/s: '.2.65
Q1.. cfs, 13.00 Depth of flow, ft: .2.5
Tailwater depth, ft: "3:69': Froude Number: 0.30 subcrhical
Where, F = V/(gY)os
F>0.80, supercritical flow
. F<0.80, subctitical flow
Required Rock Size:
a. Q/D25= 1.32 Q/D1'5= 3.29
b. Y,/D= 1.48
C. (dwtD)(Y/D)"/(Q/D' ) = 0.023
From Figure 5-7,
Use Type •":L' Riprap
d, = "9:00 inches
Ifiheflow in the culvert is supercritical, substitute D,jor D.
Where:
D,=1/,(D + YJ
Therefore:
D,= n/a ft
a. Q/D,zs= n/a Q/D,1.5= n/a
b'. Y,/D,= n/a
c. (d,,/DJ(Yt/DJ1.:/(Q/D.z)=0.023
From Figure 5-7,
BE Y O N D E N G IN E E R ING
Use Type L Riprap
ds�='- ;9.:'..-`inches
Extent of Protection:
L = (1/(2tan0))(A,N, - W)
Where:
?i/(2ta1iB)=`6.6 per.figure_5-99 -'
A,QN Where, V = acceptable velocity, 5.5 fps
A, 2.36 ftt
Therefore:
Calculated L= -12.27 ft
Check Results:
L> 3D
•L < l OD
• When Q/D'' > 6
Maximum Depth:
D = 2d5o
Riprap Width:
W=3D
Minimum L = 7.5 ft
Maximum L = 25 ft
Use L = 8 feet
Use D = 18 inches
Use W= 7.5 feet
1
1
M
1
1
1
1
1
1
1
1
1
ear � Rtprdp�bestgn Ca/culalions�- Cir`cu[&r Outfall
Project : 0
Project Name:
20Hi
: 2004 High School
Calculated By GAD
Date: 5/28/2002 B E Y O N D E N G I N E E R I N G
Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System B Outlet to pond Basin 1000.
Outfall Pipe Diameter, in: ---42 Velocity. ft/s: ' :8.77
Q,M, cfs, - _84.4: Depth of flow, ft: '3.5
Tailwater depth, ft: � `5.44` Froude Number: 0.83 supercritical
Where, F = V/(gY)°5
F>0.80, supercritical flow
F<0.80, subcritical flow
Required Rock Size:
a. Q/D25= n/a Q/DI.5= n/a
b. YM-- n/a
C. (d5o/D)(Y/D)1.2/(Q/D21) = 0.023
From Figure 5-7,
UseTvpei' -n/a -Riprap
d,=.":in/a *,inches
If the flow in the culvert is supercritical, substitute D, for D.
Where:
D.= t/2(D+ yJ
Therefore:
D.= 3.50 ft
al.Q/D.2.s= 3.68 Q/D.1.s= 12.89
V. Y,/D.= 1.55
q. (d50/DJ(Y/D01.2/(Q/D.2.$)=0.023
From Figure 5-7,
Use Type L -- Riprap
d, _ -' 9 --inches
Extent ojProtection:
L = (1/(2tan6))(A/Y, - W)
Where:
1/(2tan0) = 210,;per Figure_5=9
Ati Q/V Where, V = acceptable velocity, 5.5 fps
A,. 15.35 ft2
Therefore:
Calculated L= -1.49 ft
' Check Results
Maximum Depth:
1
Riprap Width:
L > 3D
Minimum L =
10.5
ft
•L < IOD
Maximum L =
35
ft
When Q/D" > 6
Use L =
11
feet
D=2d,
W=3D
Use D = 18 inches
Use W = 10.5 feet
1
1
1
1
1
I
N
1
�, ,. rprap?Desr@alculations,�Crrcular�Qutfall � ,,
Projectp:20High
Psko�
Project Name: 2004 High School
Calculated By: GAD
Daze: 5/2812002 BEYOND ENGINEERI NG
Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System C Outlet to swale Basin 308.
Outfall Pipe Diameter, in: 24 -- - Velocity. ft/s: -- 6.55 -
Q,,, cfs, 15.75 Depth of flow. ft: 1,43
Tailwater depth, ft: 1.04 Froude Number: 0.97 supercritical
Where, F=V/(gY)°5
F>0.80, supercritical flow
F<0.80, subcritical flow
Required Rock Size:
a.
Q/D2.5= n/a
Q/DL5= n/a
b.
YeD= n/a
C.
(d51/D)(YfD)t.2/(Q/D2.) = 0.023
From Figure 5-7,
Use Type
Riprap
d5u =
; ' inches
"
fjthe flow in the culvert is supercritical, substitute D,for D.
Where:
D,= '/2(D + Y.)
.
Therefore:
D.= 1.72 ft
a'
Q/D,zs= 4.09
Q/D,t.s= 7.01
b'.
YM.= 0.61
c'.
(ds,/DJ(YfD.)L2/(Q/D.2.5)=0.023
From Figure 5-7,
Use Type
CL = Riprap
dam=
- 9 :inches
Event of Protection
L = (1/(2tan0))(A,/Y, - W)
Where:
1%(2tan0)_ 6.0, per_Figure'S_9 _
A,. QN Where, V = acceptable velocity, 5.5 fps
AF 2.86 ft2
Therefore:
Calculated L= 4.52 ft
Check Results:
L>3D
•L < IOD
When Q/D" > 6
Afaximum Depth:
D = 2d"
Riprap Width:
W=3D
Minimum L = 6 ft
Maximum L = 20 ft
Use L = 6 feet
Use D = 1S inches
Use W = 6 feet
1
' _ "" '. � �� RrpTap7Desig"nGalculakons Circular Ouffall -
1� - NOLTE
Project #: FC0194
Project Name: 2004 High School
Calculated By: GAD
Date: 5/28/2002 B E Y O N D E N G I N E E R I N G
' Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System F Outlet to Pond 400.
Outfall Pipe Diameter, in: 24 Velocity, ft/s::' '3:55 "
Q1,,cfs,. 11.15 Depth of flow, ft: -2
' Tail water depth, ft:: �4.08 FroudeNumber: 0.44 subcritical
Where, F = V/(gY)°'S
F>0.80, supercritical flow
F<0.80, subcritical flow -
Required Rock Size:
' a Q/D25= 1.97 Q/D1.5= 3.94
b. Y,/D-- 2.04
' C. (d"/D)(YfD)1.2/(Q/D2s)=0.023
From Figure 5-7,
Use Type`-.-L-' Riprap
' d5o=--" 9.00 inches
/f the flow in the culvert is supercritical, substitute D.for D.
Where:
D. = 1/2(D + Y.)
' Therefore:
D,= n/a ft
a'.Q/D,25= n/a Q/D.1-5= n/a
V. Yr D,= n/a
C.. (d5utD.)(YaDP/(Q/D,2.5) = 0.023
From Figure 5-7,
' Use Types ' L Riprap
dm=z;:',_ 9 '..inches
Extent ojprotection:
' - L= (1/(2tan0))(A,/Y, - W)
Where:
;1/(2tan0) 6.6 per Frgure�5,-9 _,
Ati QN Where, V = acceptable velocity, 5.5 fps
AM1 2.03 ft2
Therefore:
Calculated L= -9.02 ft
' Check Results:
L>3D Minimum L= 6 R
•L < I OD Maximum L = 20 ft
Whn Q/D"> 6
' Use L = 6 feet
Maximum Depth:
' D-2da
Use D = 18 inches
Riprap Width:
W=3D
Use W =. 6 feet
1
1
1
M
1
1
1
1
1
1
1
1
M
p " `-��� Rrnran esig`ntCalculatio�isCiitular_!�u��'1%,a�,�, - ,
Project :0
Project Name:
20Hi
: 2004 High School
Calculated By: GAD
Date: 5/28/2002 BEYOND ENGIN EERING
Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System G Outlet to Pond Basin 400.
Outfall Pipe Diameter, in: 30 - Velocity, ft/s: 1.49
Q,00,cfs, - 7.32 Depth of flow, ft: -. _ 2
Tailwater depth, ft: 3.65 Froude Number: 0.19 subcritical
Where, F=V/(gY)o5
F>0.80, supercritical flow .
F<0.80, subcritical flow
Required Rock Size:
a. Q/Dzs= 0.74 Q/DI.s= 1.85
b. YM-- 1.46
C. (d,o D)(YeD)t.z/(Q/D2.) = 0.023
From Figure 5-7,
Use Type; L Piprap
d5o 9.00 :inches
IjtheJlow in the culvert is supercritical, substitute D.for D.
Where:
D. = t/z(D + Y.)
Therefore:
D,= n/a ft
a' Q/D, - = n/a Q/D."s= n/a
V. YM.= n/a
c'. (dso/D.)(YM JLZ/(Q/Dazs) = 0.023
From Figure 5-7,
Use Type %L : Piprap
d5o ;9, =!inches
Extent of Protection:
L = (1/(2tan6))(A,/Y, - W )
Where:
.1/(2tano) -_6_6 - per-Figurei5-9,.._
Ar i /V Where, V = acceptable velocity, 5.5 fps
A,. 1.33 R2
Therefore:
Calculated L= -12.81 ft
Check Results:
L> 3D
•L < I OD
• When Q/D53> 6
Maximum Depth:
D = 2dw
Riprap Width:
W=3D
Minimum L= 7.5 ft
Maximum L = 25 ft
Use L = 8 feet
Use D = 18 inches
Use W = 7.5 feet
1
1
Nolte Associates, Inc. Riprap Design
(for rectangular outfall conduits)
Project #: FCO194
Project Name: 2004 High School
Calculated By. GAD
Date: 3/9/2002
' Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
' Location: Cambridge Avenue Box Culvert Outlet
H W
Outfall Pipe Dimensions, in: __ 60 _ 192 Velocity, ft/s: 535
Q,.,cfs, 677.5 Depth of flow, ft: 3.26
Tailwater depth, ft:'' 6.70'= Froude Number: 0.52 subcritical
' Where, F = V/(gY)o.s
F>0.80, supercritical flow
F<0.80, subcritical flow
Required Rock Size:
' a. Q/WH'-s= 0.95 Q/WHo.s= 75.75
b. Y M= 1.34
' a 0.014
From Figure 5-8,
Use Type' ' 914"-:-Riprap
dso => .12 ''. -; inches
If theflow in the culvert is supercritical, substitute H, jor H.
Where:
H,='/,(H + Y.)
' Therefore:
H,= 4.13 ft
a'. Q/WH,"= 1.26 QAVH,os= 83.34
V. YfH,= 1.62
' c'. (dso/D)(Yr H,)u/(Q/WH,'s) = 0.014
From Figure 5-7,
Use Type = Riprap
' dso =' ...: inches
Extent ojlsrotection:
L = (1/(2tan0))(AVY, - W)
' Where:
sl/(2taa0)=.6.6; per _Fgum, 40:
A, QN Where, V = acceptable velocity, 5.5 fps
' A,- 123.18 ft'
Therefore:
Calculated L= 16 ft
Check Results:
' L> 3H Minimum L = 15 ft
'L < 10D Maximum L = 50 . ft
• When Q/WH"<6
' Use L = 50 feet
Maximum Depth:
D = 2dso
' Use D = 24 inches
Riprap Width:
W=3W
Use W = 48 feet
1
1
M
1
1
I
1
O
Q
C
-1
V
O
M V M I M M W 0 W W M 0 0 O W v M 0 0 W V 0 0 0 W V M M 00 h
I� V N N N N O) W W O m O O M I� W V 0 i� V W I� n W W W W (0 NV
-0 0^
V V,
... V v V V N W W W 1. W W 10 M W 10 V M V N M 0) 0) h W co co co 00 10 (' M M,
0 0 0 0 o O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0
>.(7 �
ao ao rn rn rn rn rn rn rn m rn rn rn rn rn rn rn rn rn a, rn rn rn rn rn rn m rn rn rn rn rn rn rn rn
= J
-v V V V _v V V V V v V V v V V V V V V v V V V V V V v V v V V V V V V
E
0 W o w o 0 0 0 W W o 0 o n W W 0 0 0 W 0 0 0 0 0 0 0 0 0 0 In � r N W
O
M N o M 0 O O( V V N N N N W h N W W M o 0 W W W n r 0 0 o N W 0 N N
C .-
M O N V N- M N N N o O O W W 0) W f0 N C (O Iq O O 0) O o O 0) 0) O 01 01 W W
N � Z
O
C > ...
0) m 0 0 0 0 0 O O O O O O O O. O O O O O O
W W 01 01 W 0) 0) 0) 0) 0 0) 0) 0) 0) M 0) 0) (M 0) 0) 0) 0) M 0) O) 0) M 0) 0 0 0) 0) 0) O) 0)
3 (Dm
v v V v v v V v v O v V v v V V V V v a v v v v v v v v v v v v v v V
W
❑O
U
N N W W O V 0 W M W 0 W O W 0 01 W N 0 V V N O W M W W V W V
' O C
W W M M N 0 0 0 W O W N V 0 0 W M M
v
m m c
v v v v M 0 0 0 0 r r, co v of W v m Iri v of of rn rn ao ao of m ao co of vi
0) 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rn
>.f� S"
J
� w rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn
=
V V V V V V v V V V V V V v v V V V V V V V v V V v V V v V V V v V V
E
r� o In W W o 0 0 0 o In 0 0 0 0 o W W o 0 0 0 0 0 0 o M o 0 0 0 0
N M W M ClM W V N N
o InIn
m� O
(' V N N N N W 0 N 0W O N O V W 0W 01� � O O O O N
>
V N N N N O W, n OW M 6 N n N N O N O0O O 6 ON O
0) O O O O Orn
y0
0 0 m 0 0 0 0 0 0 0 m 0 M
0M00mrnmMM0M0M mm
v vv
j(m
g
vvv avv v v vw v
W N W N V M V h O W 0 0 N W 0 W W 0 W M o V M 0 0 0 O O
m m 3 y
O
M O M W V V W V 0 0 V M N M 0 M N � N W M M � 0 V o 0 W � O V W t0 O
O N
of M h W N O M V Cr) I` V M In N Cl) N 0 0W (D N N V 0 W 0 0 N W o N 0 0 0
M W Q7 W n V V IN O O M 0 0 W W W M 01 W W W M 0 M V M 0 W W M
•V
N
W D7 0) m 0 0 0 M N M M N M M W W m M M V a) O N v V V er W (� M 0 m h 0 O) O 1�
am
n W In W M 6m W W W 6 W W 6 W V � 6 �- e- (� W 6 n n 6 W V I� W V W W N V
LL U
ca
N, N N
M In W M 0 0 W W W O W M W M V M 0 M V W 0 O v 0 V M o N o 0 In v W 0
V W 10 V V O W W W W 01 0 W 0 O 10 r V O M 0 W 0 O W (D 0 0) V W O
p O v
N IN M M 6 N M N W V M W V W h N N M W W M N O M O O N O M M W 0
V 0 O M O O O M N N N N N N M O o V W o O W N r O W W W M M V 0 O) N N
M C
C 2
O I O V O o O M W W M 0 M V W, N W 0 10 O N M W �,— M W, W W 7 r
6
y a) �0 `
O h O O O 0) W co, 10 10 V N W un co, co, M N, r W W W V V W N N M M
01 W 0 0 0 0) 0 0 o O o 0 o o o o o M M o 0 0 0 0 0 0 0 0 0 0 0 0 0
c > > ..,
C
W al rn rn coCD m m rn CD rn w 0) 0) 0) 0) 0) 0) 0) co (M 0) 0) 0) (M 0) rn rn rn 0) C 0) 0) rn
3 m
v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v a v v v v
o w
❑
O O O O O O O O O) O O 01 O O N O f� O O O O V O O O W 0 0 0 0 0 0 W 0
In W v W W W 0 v M v v M V v M o M 0 0 W W W 0 0 o W W W v W W W W 0 W
.
19
O O O o 0 0 0 0 0 0 0 0 0 o W N O O M V O N 0 0 � 0 0 O O N
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E C
CO M
M co N M M M M M N W V N O W N O V W N O W V V N W O 10 W co N Cl) O V
V W N W M (� M O (0 W N V M M O W V N 0 W O W
m
m j f0
O W O O O h W f� W OJ (D W V W N_ V W N M 1� M n 0 N W 0 W V V M M
W W 0 0
W C>"
m
_V
0 0 0 0 0 0 0 0 0 0 O O O M O 0 0 0 0 0 0 0 0 0 0 0 0
W W 0? 0 0 W 0 0 0 0 O M 0) 0) Q) 0 O) 0 0 W 0 O 01 a) M W 0 0 0 0 M W 0 O 0
a-
W
v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v
�
N
M M M M M M M 0 0 0 0 0 0 M 0 N N N N M O O M N M M N M M N M O N
S
_M _M
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C C
C
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m
c
O
5 L L L L L L L L L L L L L L L L L L L L L L L L L t L L L t L L L
M U U U U U U
N
U U U U U U U U U U U U U U U U U U U U U U U U U U L U
N G C C C C C C C C C C C C C c C C C G C
ON
x C C C C C C C C C C C C U C
V%
N M M N N N W W W W W V N N N W co W IN N N W N W W N W N N
M N � I � N � � � N N N W
.- 0 W O V W CO M N W O W 0 0 W N 0 W W W 0 M CO h N W W M M M 0
N h V IN O N O N M O In W 10 o M r W
C v
V N CO W W W 0 V V In 00 0V W W W 0 W W V N N V N N W W V W (-_ W 01 M V
W N N N W In
0)
J
N O O N N 0 0 0 0 0 W N M 10 W N 1 0 N O W N O i.- M
N I N I N M N N M V N '- N M M
M M Cl)W m m m.0 m m m m
O v V M _M W IN N 10 In
O O O O O O M O O O O J p
�0
E E m
o
N co W N W w W M M M N v V V M H� M M n 0 0 M M M M M M 0
ID O O O
LL UU OU 0 0
o m
LL LL g LL LL LL 0 a O LL i M M M M
O N Z
<< li W S U U U U U CJ m
O O O O O O O 0 0 0 0 0 0 0 0 00 0❑ 0 0 0 0 0 0 0 0 0 0 0❑❑ 0❑ O
N W W W V) uJ v7 N W W u) V) M V) W N W y u) y y W In W W W u1 V1 W y O V) W M h
N N N V W M N
m m 0 o m 0 m m o 0 0 0 0
_
a Q 0- a CL W W v M r W N a a a a a a W V M N W M W p O M 0
a 'aaa'aaaaaaaa-(L CL 'a 'a 'a
aaaaaaaaaaaaaaaa
J
a, ¢, LL U 9 W= U U U U U U U 9 O O❑ O❑ U m 6 m m m m m m 6 m 6 a0 6 m
❑ ❑ 0 ❑ 0 ❑ 0 0 ❑ ❑ 0 ❑ ❑ ❑ 0
❑ ❑ ❑ ❑ ❑ 0 ❑ 0 ❑ ❑ 0 ❑ ❑ ❑ 0 ❑ ❑ ❑ ❑ ❑
W w fA fn co y !A N co co N (n U) N (n N (O (n co w W W w w W N y W W (A w co W W (n
U ' a) m
O O O O O O
E
Cl)o o m v o 0 o a a(a o m m 0.0
o o n o M M 0 v M W
p
0 0 c c 0 0 0 0
O O O O= 0 M IN 0 L° '� O O (� N 2 A O O= S O W m O V In M ILn (7 In 10 M M
aZ
W W N N ? ❑ O D U ❑❑ rC ❑ U lL O O M M M M M M Im ❑`
`o `o U U `o o U 0 p 0 0 6 6 6 U m m ro m Cb (n a0 as M, Co M, `0 m
O
O O O 0 0 0 o 0 0 0 o m❑ o 0 0 0 0❑ O o 0 0 0 0 0 0 0 0 0 0 0 00
W W co co W co CD 2 CC co co w w W m w W co w N y 0C w W co N co W co co to CO (n CC W
W
W
W
tN
10
n
0
O
N
Q
U
co
O
O
F
U
u �
c
m �
�3
O
N W
O
m �
O m
Z m
0
O
m
U
C
0 �
u
N
o c�
N
0 03
't
�0)
0
rn� Q
M
W
F W
co
U o
O m N
LL
m80
H c o
6- N
O
1
M
11
M
U
m N )0 rn 0 0 0 0 m l0 )0 10 M 10 l0 M M O N A N N A V V V N N N V
m V V A rn A
�v0^
A A V M M M M N N A A V 10 O M M M m m m N N N V
M
,0 N m"
V M N N N 0 m m 0 0 0 m rn rn V m m m V V V
o o o o o o 0 o 0 o 0 0 o m 0 o o 0 0 0 0 m 0 0 m 0 m m 0 0
aU
0) m rn 0) 0) 0) m 0) m 0) m rn rn co co rn 0) rn m m co co co w oo m m co m co
2 Z
.0 v v v v V v v v v a v v v v v v v v v c v v v v v v v v v
E
O a 0 O o 0 0 o V t0 10 l0 N O O O O O 10 o A A m N N N m t0 n O
m, CO
V 1n A f� m t0 )0 t0 m I� r A M 10 10 O O 10 m O m f0 m 10 10 )0 m 0 10 10
c
6A rn N M N N N N V V V A co M< C 10 C R O) N N N rn rn Oi N
> ^
C 2 >
0 0 0 0 0 r 0 0 0 0 0 0 0 0 0 0 0 0 0 o m O 0 0 0 0 m m
0) 0) 0) O) 0) 0) CD0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) CD (M 0) m 0) 0 0) m m m m
3 U m
v v v v a v v v v v v v v v v v a v v v v v v v v v a v v v
o w
0
m C
O m m In m A N m O A 0 V V N N m N )0 )0 V A A l0 V 10 N
0 0 0 r V 10 V M A A M m N M m m r N m N V M V m 0 o N V m 0
'a—
l4)
`0 v
V V m N M M M M 0 1 1 1 N m m 0 A A o O m (6 to 0) V V 10.M
0 0 0 0 0
'o
J
rn rn rn 0) rn 0) O) rn 0) 0) rn 0) 0) m m 0) rn O) m m 0) 0) m m m m m m m m
S
v v v v v v a v v v v v v v v o v v v a v v v v v a v v v v
E c
o 0 A (D U) o v )n V o 0 0 0 o V o )n N o 0 0 0 )n o m A )n N 0
A m m O N V )0 A r A A m )0 rn m rn A M t0 "t O t0 m O A% (O m f0 )0 t0
@ C
10 N 0) N CO )0 A O) V N M M
N_ N NM V A M rn V t0 O V M M N CD=O
y > `=
O O O O O O O O O O O O O O O O O O rn 0 0 0 0 0 0 O) 0) o 03
rn M M 0) 0) O) 0) 0) 0) 0) 0 rn 0) 0) rn O) 0) 0) rn CO 0) 0) (M C) rn rn CO m 0) m
a(D W
V V V V V V V V V V Ni V V V V V V V V V
rf) O A 0) O N M V O M (D A N A 0 10 M rn CO O m A V m )0 N 0
(p m 3 N
m Cl rn N 10 t0 V m N m m rn Cl V)N V A O m V O m N 0) A CO o co l0 V
ALL V
V m N O CO M N CO 0) N 0 0) 10 N_ N m 0 A m N_ NCO A r 00
B
N _m
N W m�
rn rn m m V m M M M m O V M N O N 0 0 A N N N M O 0 N M
.V
of M m m m v N 0 V m V rn r r V V O r 10 rn V r O r m M O V m r
>@
LL 0 v
A A l0 A M A r m A A r� M A m A A rn A rn N N A m m A rn M m
r r r N r r V N V r r M V r N V N N A
U
M m N N rn O N rn rn A N 10 m M rn rn O rn m M M N m 10 N A
OO
m 10 M A A m V m m rn V V t0 r rn M m t0 N M t0 V r r t0 M V O r A
O j
N th A M r M m V V N r M t0 M m r M 10 t0 N V t0 10 V r m M r A m
i
@ C
O rn m O rn V rn m A A A N V V M M 10 t0 rn rn M M M 0 O N O
M rn O m t0 O N V A M N A A V V N M M r V A A 10 N A A rn N M 0
m r
_rnrnrnGorncornCDmmcoco°'mm000rncommmcococomm>>
O O rn 0) 0 0) N N 0) m A t0 10 N A m M V V V O V V N rn N A m
�
co co CD 0 co 00
—
v v v
v v v v v v v v_ v vvvo-0
0
ID
O rn O V V O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V O M O M A 0 0 0 0 0
w0 )0 t0 0 0 0 0 0 0 00 10 0 0 0A 10 m 0 0 m V 0 00 m M 10
a=
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o
)n
o a
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m-
o o o o 0 0 0 0 o c o 0 0 0 0 0 0 0 o c o 0 0 0 0 0 0 0 0 0
E C
m A M N 00 V O N M 0) V m 0 A N V N M M l0 0 rn O M N
r m A V r N m V m m V A 0) 01 t0 O N O 0 N N N O M m N O m N r
@ It 2
>@
N o M O 0 o (D 0) rn (7) m 0 0 0 m A V 0 A m M V V V o M N A
o 0 0 0 0 0 0 o rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn m
a c>
rn 0) o) rn rn 0) rn o) CO CO m m m CO co m m CO m m CO m m CO m m CO CO CO CO
v v v v v v v v o v v v v v a
w
N
M M M Cl) N M M M M M 'M M Cl) M M Cl) Cl) M M M M Cl)M M M M M M M
C
_M _
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C C
C
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
@
O m
C C
L L L L L t L L L L L L LL L L L L L L L L LL L L L L L L
0 0 0 O 0 0 0 0 0 O 0 0 0 0 U 0 U 0 0 U 0 0 0 U
j� N
0 0 0 0 0 0
C C c M c c C c c M c c c C c C c c C c c c c C c C C c c C
m m
rn
m m V 0) N CO r O m 0) CO V m m m m O m V V O m V V m m O m N N
r r N r r r N M r r N M r r r M M N NM M N N r M Cl) V r V
L
O AN 0 O M V A M A O V M O rn M m O A O m m M M m A A
�`
m )0 N )0 r r N rn m O O V m A rn rn m m A N m m O r V m m M. r V
C
0)A
V )0 O M O N A O N V rn A N A V 0 m o 0 0 r M
l0 V N m N m 0 M M rn O V N A m t0 V (D m 0 0 V O r M )0 N
J
r M r r N N N N r N N r r N N r M N V M M N
mmcu .0 O V V V m N O a L N N N @@@
c E m
@ L @ r O O O O O O O O L 0 0 M 0 0 0 O O O
r O M 0 0 M M M p M M M M N N p p M N M M M M M M M M
OQ) Z
M M M M 2 N 2 2 2 2 2 E °' M 2 2 °' 2 2 M 2 2 2 2 2 2 LL
m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
m m m w w m m m rn m m m m m m m m rn m m m m rn m rn m m m y h
r M A o O N M m m 0 V N V )0 N M O 0 m@
M M rn N 0 M M m V N N N A V V N N m V N N 10 V N N V r r N
m
asaaan.aaan.aaan.aaaaaaaaaaaaaaaa
m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m m w m m rn m m co rn rn m m m m m m m m m m m m w rn rn m m m w
E
@ @
N_ 10 O_ V CO N O 1 N @
rp m
m
_
@ O L L @ O O O 0 0 rp O Co O O
N 0) M N M O M N l0 V UI M O A M M N M rp M N ry M p M M
0
O S O Q S o O O O 2 O O O 2 2 S O O 2 2 O O 2 O o S S
M M
aZ
M V 0 M 2 N M M M 2 N N M 2 2 2 M M��
D
m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
m m m m w 0 0 w 0 rn m m m w m N m m rn m m m m m 0 0 N w w V)
0
c
u
0
O cc
N
Y
O
0 3
0 VI
O
Q
S � M
N �
C F m
. C M
U o
0 M O
LL
N � M
i c o
Scenario: Base
M
11
11
1
1
1
M
el
Node Report
Label
Total
System
Flow
(cfs)
Ground
Elevation
(ft)
Rim
Elevation
(ft)
Hydraulic
Grade
Line In
(ft)
Hydraulic
Grade
Line Out
(ft)
Description
SDA-1601
4.37
4,893.27
4,893.27
4,891.93
4,891.82
SDA-1602
13.00
4,893.30
4,893.30
4,891.73
4,891.61
SDA-FES1
12.66
4,890.25
4,890.25
4.891.44
4,891.44
SDF-1204
11.15
4,905.85
4,905.85
4,904.37
4,904.37
SDF-FES1
11.10
4,902.00
4,902.00
4,904.23
4,904.23
SDG-1203
7.32
4,904.36
4,904.36
4,904.36
4,904.31
SDG-MH203
6.89
4,904.36
4,904.36
4,904.27
4,904.25
SDG-FES1
6.72
4,902.50
4,902.50
4.904.23
4,904.23
SDE-1401
12.41
4,907.50
4,907.50
4,904.91
4,904.91
SDE-FES1
12.41
4,901.00
4.901.00
4,904.23
4,904.23
SDH-1502
10.47
4,906.40
4,906.40
4,903.62
4,903.05
SDH-FES1
10.18
4,903.00
4,903.00
4,902.16
4,902.16
Roof Drain 100c
3.54
4,914.20
4,914.20
4,909.00
4,909.00
Roof Drain 100d
4.43
4,914.20
4,914.20
4,908.84
4,908.84
SDC-CO100c
3.54
4,912.70
4.912.70
4,908.96
4,908.96
SDC-CO100d
7.97
4,912.45
4,912.45
4,908.68
4,908.68
Roof Drain 100e
4.40
4,912.20
4,912.20
4,907.23
4,907.23
Roof Drain 100f
3.38
4,912.20
4,912.20
4,907.48
4,907.48
SDC-MH307
15.75
4,910.20
4,910.20
4,906.95
4,906.95
SDC-FES3
15.75
4,906.77
4,906.77
4,905.14
4,905.14
Roof Drain 100b
2.36
4,918.20
4,918.20
4,914.96
4,914.96
SDD-1404
3.02
4,911.50
4,911.50
4,909.25
4,908.80
SDD=CO100b
2.36
4,915.55
4,915.55
4,913.31
4,913.18
SDD-MH403b
5.29
4,909.75
4,909.75
4,905.67
4,905.49
SDD-MH403a
5.18
4,906.50
4,906.50
4,904.43
4,904.41
SDD-1403
6.25
4,903.80
4,903.80
4,903.80
4,903.80
SDD-OUTLET
6.14
4,904.36
4,904.36
4,904.79
4,904.79
SDC-FES2
16.81
4,908.00
4,908.00
4,905.07
4,905.07
SDC-FES1
16.81
4,906.00
4,906.00
4,902.48
4,902.48
Roof Drain 100a
2.36
4,918.20
4,918.20
4,914.96
4,914.96
SDB-CO100a
2.36
4,915.00
4,915.00
4,913.86
4,913.72
SDB-1314
4.13
4,912.40
4,912.40
4,909.96
4,909.85
SDB-1305e
0.00
4,912.50
4,912.50
4,909.44
4,909.44
SOB-MH314
6.44
4,910.50
4,910.50
4,909.77
4,909.64
SDB-1101
0.93
4,912.63
4,912.63
4,908.82
4,908.82
SDB-1305d
0.00
4,909.50
4.909.50
4,907.60
4,907.60
SDB-1313a
2.87
4.909.70
4,909.70
4,908.53
4,908.48
SDB-1315
8.16
4,910.70
4,910.70
4,908.81
4,908.73
SDB-1305c
0.00
4,910.00
4,910.00
4,906.16
4,906.16
SDB-1501
12.41
4,915.00
4,915.00
4,909.06
4,908.76
SDB-MH313a
10.81
4,909.00
4,909.00
4,908.46
4,908.34
Roof Drain 100g
0.50
4,912.00
4,912.00
4,909.36
4,909.36
SDB-CO305b
0.00
4,910.25
4,910.25
4,905.14
4,905.14
SDB-1312a
4.65
4,905.70
4,905.70
4,904.14
4,904.00
SDB-1309
6.30
4,907.80
4,907.80
4,905.23
4.904.98
SDB-MH312a
22.97
4.909.67
4,909.67
4,907.63
4,906.96
SDB-1402
12.29
4,907.00
4,907.00
4,902.15
4,902.15
SDB-CO305a
0.50
4,908.25
4,908.25
4,903.47
4,903.41
SDB-1311a
6.52
4,905.40
4,905.40
4,903.66
4,903.56
SDB-1310
15.43
4,907.54
4,907.54
4,904.42
4,903.47
SDB-MH310
22.84
4,909.75 1
4,909.75 1
4,903.45
4.903.32
' Title: Fort Collins High School 2004 Project Engineer. zcs
n:\fc019Mstormcad\fc0194_working.stm Nolte Associates Inc StormCAD v4.1.1 [4.2014a]
05/30/02 08:43:39 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 2
Scenario: Base
1
M
n
1
1
1
1
M
Node Report
Label
Total
System
Flow
(cfs)
Ground
Elevation
(ft)
Rim
Elevation
(ft)
Hydraulic
Grade
Line In
(ft)
Hydraulic
Grade
Line Out
(ft)
Description
SDB-1202b
8.21
4,904.14
4,904.14
4,901.18
4,900.76
SDB-1305b
9.60
4,902.70
4,902.70
4,901.79
4,901,70
SDB-1304
2.63
4,903.70
4,903.70
4,901.41
4,901.37
SDB-1305a
10.96
4,903.60
4.903.60
4,901.90
4,901.80
SDB-MH311a
39.37
4,912.50
4,912.50
4,902.70
4,902.21
SDB-1201
5.52
4,902.90
4,902.90
4,899.13
4,898.94
SDB-1200
12.27
4,902.84
4,902.84
4,899.46
4,898.64
SDB-1307
2.40
4,903.90
4,903.90
4,900.86
4,900.82
SDB-MH304
18.71
4,904.75
4,904.75
4,901.35
4,901.12
SDB-MH308
39.05
4,907.32
4,907.32
4,901.33
4,901.28
SDB-MH201
16.63
4,903.50
4,903.50
4,898.25
4,897.82
SDB-1303
7.49
4,899.40
4,899A0
4,897.36
4,897.25
SDB-1306
22.08
4,904.00
4,904.00
4,900.73
4,900.45
SDB-MH302b
38.80
4,905.50
4,905.50
4,900.40
4,900.31
SDB-MH200
16.26
4,901.85
4,901.85
4,896.52
4,896.44
SDB-1301b
12.97
4,901.00
4,901.00
4,897.07
4,896.67
SDB-1302a
2.71
4,900.76
4,900.76
4,896.72
4,896.67
SDB-MH301b
58.84
4,904.67
4,904.67
4,899.32
4,899.05
SDB=1301a
17.08
4,899.85
4,899.11
4,894.37
4,894.24
SDB-1300
1.85
4,899.61
4,899.11
4,894.65
4,894.41
SDB-MH302a
68.52
4,902.52
4,902.52
4,896.64
4,895.85
SDB-MH301a
84.40
4,899.55
4,899.55
4,894.22
4,893.02
SDB-FES1
83.94
4,892.50
4,892.50
4,891.44
4,891.44
' Title: Fort Collins High School 2004 - Project Engineer: zcs
n:\fc0194\stonnnd\fc0194_working.stm Nolte Associates Inc StormCAD v4.1.1 [4.2014a)
05/30/02 08:43:39 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755.1666 Page 2 of 2
O
�o
O 0. 0
N
a 0)
-SOD
2 c SOS
0 sF > >
N N c c
0000
V)
O
0
M
N I
wa
w
1 0
az
00
(n a
M O
�t00
0. U Q)co
C CO
¢ N c 0
p � > >
V) — cc
LO
rr
N CD
O OD 00
a oo
a � CO
ao
o�>>
V)N c c
N N N
O O U
(D (D
1 O
Qn.�t
000
N
a
m
N
o
)-
U
y
Z
c
0
c;0
cn
J
djLd
z
r
0
¢
Q
N
m
O
�
2
UCC
0)
N,
`.
C
`
W
H
N
(n
E
w
N
0
N
0
N
O
0
U
o
w
0
F
O
a
U
O
Q
O
_
a
E
0
(n
p
¢
0
s
w
w
N
(n
¢
Z
m
0
I
w
'
Z
~
GiZ�
.
c�
3
¢
¢
w
m
v0
w
w
=
O
d
O
X
0
(n
.
M
O
N n
tw.. a
Up
00
N H
U
LLJ
C/-)
NO
U)
O
ON
ro
a
0
Of
N NcCCO
V /
NCO 0
u
W
M09
I o_ ao
ooro
U7
O O w
O—
p U
. GD
c O_M
'vori
0-�
a
or) O
O
. N
C
ca—
N
a 0
'a0
n ui
0
0
�
pp0)
�sX
a
rl
.
'17
l c c p
a' G
n Op
POyJ'l;
a LO
a` 2—`—`
0 -t
W
�y
NLa
aj
ww
U¢
`70S� �
c c I
0 .0-
y vi
s
N N c C
N
N
of
M f0
N
1�
D) CD
p
rn�
n
x
o
O_ ua .:j
aL
I c cp
U
c>
U
a
m
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
w
cn
N
c Z
OOO
N_N U
BZ�sb.
Of
O
1--
oa
�Oap,y,�G;IGGj
V)
OD
'yam
cn
y2
0
y0S
0
I
wa
10
WZ
00
V) a.
0
Lq
o to
m o0
_a 00 m
d U . i+
O c cp
` i i
N°� c c
00
� � U
larn
00� m
N N
N 06
O 0)
d 0
a
O ccp
coo
i i
V) C C
C�
w
-
I—
_
N
cli =
n0
NNO
VI.Z
'h�pp
O)o
aM c�
�Qep
ciao
�G/ecGr��p �pp
N -
N c O
N O
5
O
A.
I--
r,
U)
NI
Wa
10
Z
00
O
N a
V I
Wa
`j
W
0
voi a
DO Es
W
d��oS
C vi
r
vv u
cf) z
wa;a
N 0
O
I- -
V /
O
at
�p
2 M
� O
O n
IL
CY)
cn 0 a
c op
M
0 m
V)C
C
N M N
in
Ot-
04
ara«
ZS Zs
n
�•�GO ^G/
SOa 4� /�u
ON;O
vi — c c
qcl
olOS
o5 o
I a O,
v
OOOD
0`°
0
O c c0'
ca
0 N i i
(n Cj c c
O
O
D D
w
O
U
O
O
K
oow
I
o
u)
I O
am
0 is fV
N
MM
a
rn
O
j
Z
O
n
1
li
Z
t
O
W
<
0
m
O
U
0
2
U
0
0
y
O
w
N
V)
E
N
O
o
o
N
a
U
3
O
a
U
0
m
F
a.
0o
Q
U
0O
1
N
N
0
O
E
O
b
O
Q
W
N
Vl
O
m
Lo
I
a
z
z
o
Z
U
(�
W
3
<
<
w
w
m
.
0
a
0
x
0
v)
C
O
N O
ON"- N+
th O O L C
1 M N N u
o pdp Q) o
NO N 0 , U) w
M
I a n —
00� 1C�M
N p O , .
N
z
0
U
12
Li V?
Z
V /
CY
0
W
0 Of
Z 0
Q �
Q of
w 0
Q� (�
Q 3::N
J OZ
Q J
J 0 W d
L� J U Z
af N Q Q
d W N Of
> o
0 W ZgO
Z N of F-
:2 m } 00 <
W
H H > N
)OwOw
N N U N Z
W
H
0
Z
rn
�?
o
U
p
O
D
7
Z
w
V
(n
J
O
V
w
Z
Q
mO
r
p
m
U
N
U
E
d
N
O
o
0
Law
N
N
N
E
2
O
N
0
CN
0
0
LO
U
w
O
0
a
0
o
a
U
r
Q
0
`
t
N
p
Of
0
CLp
ECD
N
p
0
Q
r
r
W
V
N
N
U
,
U-)
I
WLo
Q
Z
Z
z
0
Z
F
r
W
af
(n
w
W
2
r
0
a
0
x
0
N
SDB-P13
uD-1014
D.P. 314
18 inch
4.12 cfs
Inv.ln: 4907.64
DB-CO100o
Inv.Out:4907.37
SDB-P14
SDB-MH314
12 inch
Inv.ln: 4913.06
SDB-P15
SDB-P12
Inv.Out:4907.77
12 inch
18 inch
Inv.In:4914.30
SDB-1313a
Inv.In:4907.27
Inv. Out:4913.26
D.P. 313a
Inv.Out:4906.16
2.87 cfs
Roofdrain 100o
S74 DB315
SDB-1315
D.P.8
inph
D.P. 315
1.3cfs cfs
SDB-MH313a
Inv.In:4905.66
1.38 cfs
Inv.Out:4904.63
SDB-P16
SDB-P10
18 In SDB-1101
24 inch Inv.In:4906.96 D.P.
101
Inv.In:4904.43 Inv.Out:4906.16
3.44
cfs
SDB-1501
Inv.Out: 4902.89
Commercial
D.P. 501
12.41 cfs
SDB-P19
240&
24 inch
nv.In:4904.77
Inv.Out:4902.89
O� 490?
490?>9
SDB-MH312a
Og
SDB-1310
SDB-1309
D.P. 310
D.P. 309
9.50 cfs
6.20 cfs
SDB-MH310
See Sheet 5
for continuation.
SDB-1305a
D.P. 305a
10.48 cfs
s
7La17'
SDB,P26ch
19X g0
SDB-MH04b
\nv 0
SDB-1306
D.P. 306
1.33
c06\gar 9B Z 33
cfs
W
SD.P. 307 S0B'p24
m.4999p923
�m
2.40 cfs 1B
\nv.\n'• 4g98
c r
SDB-1304
v No D.P. 304
51 03 2.61 cfs
SDB-1312o
401, � �o
c
�h NV
SDB-P33
D.P. 312a
4.65 cfs' SDB
rDs
ry pp•pp•
Q o, a,
u a�
18 inch
Inv.In:4901.67
_p37
18 inch
�0
'D
0,
oc
Inv.Out:4900.90
InvIn: 4901
- Inv.Out 49pp 37
SOB _P30
18 inch
�c -
c
SDA-1311a
D.P.
nV. n:
Inv0ut:4899.09
SD@_p
36 inc
�DB-MH308
311a
1.87 cfs
Inv. In. 4898
SD@_p6
1a
9.
Out:48972gSDB-MH31Ilnv4897
Inv Out .62
4896.35
■■.■■■
2004 High School
StormCAD Layout
System B
DWG NAME: SD-.LAYOUT.DWG
PATH:N: fc0194 CADD CP
DATE: 05 29 02 1 TIME: 11:20 a.m. SCALE: N.T.S.
XREFS: Stom
DESIGNER: GAD PROJ. MGR:
TMO JOB N0. FC0194 '
SHEET 2 - OF 5
SHEETS
SDB-P5
36 inch
Inv-Ir 489 .
Inv.Out: 4894.79
STORM SYSTEM 'B'
N.T.S.
I
SDB-1402
D.P. 402
12.26 cfs
p 'Oro I
of
Gi�Di}AO OJlb
c X
SDB-1305b
D.P. 305b
8.36 cfs
SDB-1303
SDB-P23
D.P. 303
22.05 cfs
30 inch
Inv.ln: 4897.23
-
Inv.Out: 4894.79
s
a>�m
`o
�Qo
10
a
•� a
SDB-MH301 b
SD@�
SDB-P21
24 inch
Inv.ln:4894.31
Inv.Out:4894.23
Oof•�g2g
92
�3
SDB-MH302a
A ^o
r
`\
r'JO0 c J
0
SDB-1302a
D.P. 302a
6.40 cfs
SDB-1300
D.P. 300
1.90 cfs
.I .
SDB-1301b
D.P. 103b
6.20 cfs
SDB-M
SDB-1202b
D.P. 202b
7.30 cfs
SDB-P43
18 inch
Inv.ln: 4896.8.4
Inv -Out: 4895.78
SDB-1200
D.P. 200
SDB-P42 12.50 cfs
18 inch
Inv.ln: 4896.84
SDB-1201 Inv -Out: 4895.78
D.P. 201
5.43 cfs SDB-P44
Inv.ln:t 48j94 SI
Inv.Oi 4895.44
SDB-13010
D.P. 301a
5.40 cfs
,h
r ��O 009
� D
a`OOJ`.
S
O
A. 03
op. ,;�� -
S B-FES1
DMJn n a__
Q�p �„�• gyp.
ti\c c.
c
I
1
��j
1
1
1
1
i
i
1
1
1
1
APPENDIX F
Detention Pond Calculations
P
1
1
1
1
1
1
P
of 'In- Pnnrl olume Calculation
Project #: 0194 20
Project Name: 2004 Fort Collins High School
Calculated By: GAD
Date: 4/24/2002 B E Y O N D E N G I N E E R I N G
Detention pond volume (V):l/3d(A+B+(AB)°'5) (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, ft2
- r . , t;.. • ,, ":. ,..:. :South Detention,Pond: z.
Volume
I Vo
Elevation
Dd A
ft ft,
B
ftZ
Volume
ft3
Cummulative
Volume
ft'
Cummulative
Volume
ac-ft
4882.50
0 ! 0
0.00 0.00
1 0.00
0.00
VI
4883.00
j 0.50 1 0
28,923 : 4,821
j 4,821
0.11
V2
j 4884.00
! 1.00 128,923
( 31,626 30,265
35,085
0.81
V3.
4885.00
1.00 I 31,626
83,379 ' 55,452
0.00
0.00
Va
j 4886.00
i 1.001
83,379
1123,673 102,866 102,866
2.36
V5
1 4887.00
1 1.00
123,673
1141,520 132,496
1 235,362
5.40
j V6
I 4888.00
1.00
; 141,520
1147,899; 144,698
j 380,060
8.72
Vr
4889.00
1.00
147,899
1153,2051
150,544
530,605
12.18
13.50 ac-ft V m
4889.37
13.50
0.47 ac-ft J V
4889.50
13.97
Ve
4890.00 1
1.00
153,205
1156,1461
154,673 1
685,278
15.73
j V9
4891.00
E00
i 156,146
174,847!
165,408 J
850,686
19.53
7.34ac-ft ( *•Vloo.,
4891.44
1
20.41
J VIO
4892.00
1.00
174,847
179,849!
177,342
1,028,028
23.60
V I I J
4893.00
1.00
179,849 1
188 5891
184,202
1,212,230
27.83
' A 2-ft sediment depth is required by the irrigation pond design.
'• 0.9 Acre-feet added per CFC to accommodate Reid riedlinger parcel (5ac)
Nolte Associates, Inc.
412412002
2:46 PM
DETENTION POND SIZING
BY FAA METHOD
Developed by
Civil Eng. Dept.,
U. of Colorado
Supported by Denver Metro Cities/Counties
Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
1
EXECUTED ON 04-24-2002 AT TIME 14:17:06
PROJECT TITLE: 2004 Fort Collins High School
1
****
DRAINAGE BASIN DESCRIPTION
1
BASIN ID NUMBER 1000
BASIN AREA (acre)= 40.61
RUNOFF COEF 0.60
***** DESIGN RAINFALL STATISTICS
1
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS
GIVEN
1
DURATION 5 10 20 30 40 50
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2
60 80 100 120 150 180
2.9
2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 20.3 CFS
1
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 20.3 CPS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
1
***** COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME VOLUME
' STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE -FT
0.00 0.00 0.00 0.00
0.00
5.00 9.95 1.68 0.14
1.54
10.00 7.72 2.61 0.28
2.33
15.00 6.66 3.38 0.42
2.96
20.00 5.60 3.79 0.56
3.23
25.00 5.06 4.28 0.70
3.58
1
30.00 4.52 4.59 0.84
3.75
35.00 4.13 4.89 0.98
3.91
40.00 3.74 5.06 1.12
3.94
45.00 3.49 5.31 1.26
4.05
1
50.00 3.23 5.47 1.40
4.07
55.00 3.05 5.67 1.54
4.13
60.00 2.86 5.81 1.68
4.13
65.00 2.74 6.04 1.82
4.22
70.00 2.63 6.23 1.96
4.27
1
75.00 2.52 6.38 2.10
4.29
80.00 2.40 6.50 2.24
4.26
85.00 2.30 6.62 2.38
4.24
90.00 2.20 6.70 2.52
4.18
'
95.00 2.10 6.75 2.66
4.10
100.00 2.00 6.77 2.80
3.97
105.00 1.95 6.93 2.94
3.99
------------------------------------------------
THE REQUIRED POND SIZE = 4.286277 ACRE -FT +z 9 x 1-5
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 75 MINUTES
M
1
I
Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 1 of 3)
Designer:
GAD
Company.
Nolte Associates, Inc.
Date:
April 24, 2002
Project:
FC0194 - 2004 High School
Location:
Fort Collins, CO
1. Basin Storage Volume
I, =
38.00
%
A) Tributary Area's Imperviousness Ratio (i = I, / 100)
i =
0.38
B) Contributing Watershed Area (Area)
Area =
40.61
acres
C) Water Quality Capture Volume (WQCV)
WQCV =
0.14
watershed inches
(WQCV =0.8 - (0.91 -13-1.19`IZ+0.78.1))
D) Design Volume: Vol = (WQCV / 12)' Area
Vol =
0.47
acre-feet
2. Permanent Pool
A) Volume: Volppd _ (1.0 to 1.5)' Vol acre-feet
B) Average Depth Zone 1 = Littoral Zone - 6 to 12 inches deep feet
Zone 2 = Deeper Zone - 4 feet to 8 feet deep Zone 2 feet
C) Maximum Zone 2 Pool Depth (not to exceed 12 feet) Depth = feet
D) Permanent Pool Water Surface Area (Estimated Minimum)
(Zone 1 - Littoral Zone = 25% to 40% of the total surface area) % = acresc
(Zone 2 - Deeper Zone = 60% to 75% of the total surface area) % = acres =
Total Estimated Minimum Surface Area (AT,,,,,) % = acres =
3. Annual/Seasonal Water Balance (Q,e, has to be positive)
2. Outlet Works
A) Outlet Type (Check One)
B) Depth at Outlet Above Lowest Perforation (H)
C) Required Maximum Outlet Area per Row, (Ap)
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
ii) 2" Height Rectangular Perforation Width
E) Number of Columns (nc)
Q;nfim
acre-feet/year
QeWP
acre-feeUyear
Qseepage
acre-feet/year
QE.T.
acre-feet/year
One, acre feeUyear
x_ Orifice Plate
_ Perforated Riser Pipe
Other:
H = feet
A, _ _..square inches
D = inches, OR
W = inches
nc= .Number
FC0194_Water Quality_NEW.xls, RP
tBasins
contributing
to the irrigation
Pond.
100
250603.83
5.75
101
5370.44
0.12
200
53732.39
1.23
201
18105.26
1.33
'
202
156168.3
3.59
300
28539.1
0.66
301 a
78214.17
1.80
'
301b
62041.59
1.42
302a
11973.51
0.27
302b
25750.63
0.59
303
154999.68
3.56
'
304
66017.58
1.52
305a
150107.73
3.45
305b
152916.81
3.51
'
308
22184.63
0.51
309
38919.6
0.89
'
310
314
72532,37
71132.98
1.67
1.63
315
15709.87
0.36
402
81229.03
1.86
'
600
72983.87
1.68
601
85859.25
1.97
602
53800.45
1.24
'
-
:40.61„."
1
t
1
1
1
1
FC0194_Rational-Fort Collins.xls
2:10 PM
Wei }a1c atoi 0`0- ear eleas Ove , ow iliw
Project Name:
2004 High School
�O
Project M
FC0194
Designer:
TMO/GAD
Design Storm:
Developed 100-year BEYOND ENGIN EERI N G
Detention Pond:
Southeast Detention Pond P-300
Problem:
Calculate the head required to discharge 22.2cfs through a 50' wide
broad crested weir.
Given:
'
Broad -Crested Weir
Equation: Q= CLH3n
Where,
Value
Q = Discharge, cfs 22.2
Solution:
C = Broad Crested Weir Coefficient, See Table 5-91 2.82
L = Broad Crested Weir Length, ft 50
H = Head above the weir crest, ft Solve For
Note:
1. Per Handbook of Hydraulics, King and Brater (1963)
2. 100-yr pond elevation = 4891.44
Solve for H':
H = (Qaro/CL)v3
H = 0.29 ft
3. Weir crest elevation = 4891.15
Nolte Associates, Inc.
FC0194_Weir.>ds 5/30/2002
DETENTION POND SIZING BY FAA METHOD
Developed
bj
Civil Eng. Dept., U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc........ ....
....... ........ ...... ...
'
EXECUTED ON 03-04-2002 AT TIME 11:59:15
PROJECT TITLE: 2004 Ft.Collins High School
1
****
DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 306
'
BASIN AREA (acre)= 2.66
RUNOFF COEF 0.97
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS
GIVEN
'
DURATION 5 10 20 30 40 50
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2
60 80 100 120 150 180
2.9
2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 1.33 CFS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 1.33 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE
RATE * ADJUSTMENT FACTOR.
***** COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE -FT
0.00 0.00 0.00 0.00
0.00
5.00 9.95 0.18 0.01
0.17
10.00 7.72 0.28 0.02
0.26
15.00 6.66 0.36 0.03
0.33
20.00 5.60 0.40 0.04
0.36
25.00 5.06 0.45 0.05
0.41
'
30.00 4.52 0.49 0.05
0.43
35.00 4.13 0.52 0.06
0.45
40.00 3.74 0.54 0.07
0.46
45.00 3.49 0.56 0.08
0.48
50_00 3.23 0.58 0.09
0.49
55.00 3.05 0.60 0.10
0.50
60.00 2.86 0.61 0.11
0.51
65.00 2.74 0.64 0.12
0.52
70.00 2.63 0.66 0.13
0.53
'
75.00 2.52 0.68 0.14
0.54
80.00 2.40 0.69 0.15
0.54
85.00 2.30 0.70 0.16
0.54
90.00 2.20 0.71 0.16
0.54
'
95.00 2.10 0.71 0.17
0.54
100.00 2.00 0.72 0.18
0.53
105.00 1.95 0.73 0.19
0.54
110.00 1.90 0.75 0.20
0.55
'
115.00 1.85 0..76 0.21
0.55 ,
120.00 1.80 0.77 0.22
0.55
125 DOS i 11 7VF-,.i 7-0::-78 Or.-23
_.5:C0..55
130,00 1,70 0,79 0.24
1,55
1.00 1.60.80 0..2
0.55
14040.00 1.60 0.80, 0.26 .
0.55
145.00 1.55 0.81 0.27 0.54
150.00 1.50 0.81 0.27 0.53
155.00 1.45 0.81 0.26 0.52
-----------------------------------------------------
THE REQUIRED POND SIZE _ .5549204 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 125 MINUTES
1_J
1
1
M
1
1
1
1
1
1
)etenfion on o'IEW-CR1"lcai' lion
Project : FC0194
Project Name:.2004 Fort Collins High School
Calculated By: GAD
Date: 5/30/2002 B E Y O N D E N G I N E E R I N G
Detention pond volume (V):1/3d(A+B+(AB)°'S) (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ft2
B= Surface area of contour line at a depth relevant to d, ft2
Basin 06
Volume
Elevation
Dd
fr
A
ft2
B Volume
ft2 ft3
Cummulative
Volume
ft3
Cummulative
Volume
ac-ft
Vo
4904.00
0.00
0 25 0
0
I 0.00
V
4905.00
1.00
25i 406 1 177
177
j 0.00
V2
4906.00
1.00
406 1 9,891 1 4,100
4,278
I 0.10
VIO
4906.76
i
0.55
V3
4907.00
1.00
1 91891 44,935I 25,303
29,580 0.68
Nolte Associates, Inc.
513012002
1:16 PM
I
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept., U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
' USER=Nolte Associates, Inc ............................................
EXECUTED ON 03-04-2002 AT TIME 13:13:35
PROJECT TITLE: 2004 Ft.Collins High School
**** DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 307
BASIN'AREA (acre)= 4.79
'
RUNOFF COEF 0.83
***** DESIGN RAINFALL STATISTICS
'
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN)
TABLE IS
GIVEN
DURATION 5 10 20 30 40 50
60 80 100 120 150 180
'
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2
2.9 2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 2.395 CPS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 2.395 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
'
DURATION INTENSITY VOLUME VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE -FT
'
0.00 0.00 0.00 0.00
5.00 9.95 0.27 0.02
0.00
0.26
10.00 7.72 0.43 0.03
0.39
15.00 6.66 0.55 0.05
0.50
20.00 5.60 0.62 0.07
0.55
25.00 5.06 0.70 0.08
0.62
'
30.00 4.52 0.75 0.10
0.65
35.00 4.13 0.80 0.12
0.68
40.00 3.74 0.83 0.13
0.69
45.00 3.49 0.87 0.15
0.72
50.00 3.23 0.89 0.16
0_73
55.00 3.05 0.92 0.18
0.74
60.00 2.86 0.95 0.20
0.75
65.00 2.74 0.99 0.21
0.77
70.00 2.63 1.02 0.23
0.79
75.00 2.52 1.04 0.25
0.79
80.00 2.40 1.06 0.26
0.80
85.00 2-.30 1..08 --0.28
0.80
90.00 2.20 1.09 0.30
95.00 2.10 1.10 0.31
0.80
0.79
100.00 2.00 1.10 0.33
0.77
105.00 1.95 1.13 0.35
0.78 '
110.00 1.90 1.15 0.36
0.79
115.00 1.85 1.17 0.38
0.80
- - - --
THE REQUIRED POND SIZE _ .7991067 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND
STORAGE= 85 MINUTES
1
1
M
1
1
1
1
1
1
1
fl
M
1
^--e'�en'fion ,on ��o ume �aleu"'Ia'�ion
ProName20 F : 01 4 �O
Project Name: 2004 Fart Collins high School
Calculated By: GAD
Date:5/30/2002 BEYOND ENGINEERINGG
Detention pond volume (V): 1/3d(A+B+(AB)0s) (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ftZ
B= Surface area of contour line at a depth relevant to d, ftZ
UWAM
arias 307
Volume
Elevation
Dd
ft
A
ftZ
B
ftZ
Volume
W
Cummulative
Volume
ft3
Cummulative
Volume
ac-ft
o
I 4904.00
0.00
0
97
0
( 0
0.00
VI
4905.00
1.00
97
12,351
976
976
0.02
VZ
4906.00
1.00
2,351
10,807
6,066
7,042
0.16
Moo-
4907.00
0:80
V3 (
4907.00
1.00
1 10,807 j
49,031
27,619
34,661
0.80
DETENTION POND SIZING
BY
FAA METHOD
Developed by
Civil Eng. Dept.,
U. of
Colorado
Supported by Denver Metro Cities/Counties
Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
'
EXECUTED ON 03-04-2002 AT TIME 13:16:37
PROJECT TITLE: 2004 Ft.Collins High School
'
**** DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 311a
BASIN AREA (acre)= 3.74
'
RUNOFF COEF 0.89
***** DESIGN RAINFALL STATISTICS
t
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN)
TABLE IS
GIVEN
DURATION 5 10 20 30 40 50
60
80 100 120 150 180
'
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2
2.9
2.4 2.0 1.8 1.5 1..2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 1.87
CPS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 1.87
CPS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
***** COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE
-FT
0.00 0.00 0.00 0.00
5.00 9.95 0.23 0.01
0.00
0.22
10.00 7.72 0.36 0.03
0.33
15.00 6.66 0.46 0.04
0.42
20.00 5.60 0.52 0.05
0.47
25.00 5.06 0.58 0.06
0.52
'
30.00 4.52 0.63 0.08
0.55
35.00 4.13 0.67 0.09
0.58
40.00 3.74 0.69 0.10
0.59
'
45.00 3.49 0.73 0.12
50.00 3.23 0.75 0.13
0.61
0.62
55.00 3.05 0.77 0.14
0.63
60.00 2.86 0.79 0.15
0.64
65.00 2.74 0.82 0.17
0.66
70.00 2.63 0.85 0.18
0.67
'
75.00 2.52 0.87 0.19
0.68
80.00 2.40 0.89 0.21
0.68
85.00 2.30 0.90 0.22
0.68
'
'
90.00 2.20 0.92 0.23
95.00 2.10 0.92 0.24
0.68
0.68
100.00 2.00 0.92 0.26
0.67
105.00 1.95 0.95 0.27
0.68
110.00 1.90 0.97 0.28
0.68
115.00 1.85 0.98 0.30
'
.0.69
IL2 L. 00 1 80_�1,-00= >0� 31y Op. 69
-
125.00 1.75 1.01 0.32
0.69
130.00 1.70 1.02 0.33
0.69
1.00 1.61.00.3
0.6
14090.00 1.60 1.04 0.36
0.677
145.00 1.55 1.04 0.37 0.67
150.00 1.50 1.04 0.39 0.65
-----------------------------------------------------
THE REQUIRED POND SIZE _ .689489 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 120 MINUTES
1
1
1
1
1
_ - , .e�ifio" n P�on� o7ume Laic > la . An
Project#: FC0194
Project Name: 2004 Fort Collins High School NO
Calculated By: GAD
Date: 5/30/2002 BEYOND ENGINEERI N G
Detention pond volume (V): 1/3d(A+B+(AB)"') (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, ftt
Basia.3111 a
Volume
Elevation
Dd
ft
A
frZ
B
fr2
Volume
ft3
Cummulative
Volume
ft'
Cummulative
Volume
ac-ft
Vo
1 4905.20
0.00
0
0
1 0
0
0.00
Vr
4906.00
0.80
0
867
231
231
0.01
Vr
4907.00
1.00
867
6,660
3,310
3,541
0.08
V3
4908.00
1.00
6,660
41,250
21,495
25,036
0.57
Vl;
4908.10
0.6.9
V, 1
4908.50
0.50
41,250
58,702
24,860
49,896
1.15
Nolte Associates, Inc.
513012002
1:38 PM
r
DETENTION
POND SIZING
BY FAA METHOD
Developed by
Civil Eng. Dept.,
U. of Colorado
Supported by Denver Metro Cities/Counties
Pool Fund Study
Denver Urban Drainage
and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
'
EXECUTED ON 03-04-2002 AT
TIME 13:19:25
PROJECT TITLE: 2004 Ft.Collins
High School
DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER =
312a
(Interim Cond:-ion)
BASIN AREA (acre)=
13.69
'
RUNOFF COEF
0.51
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
'
INTENSITY(IN/HR)-DURATION(MIN)
TABLE IS
GIVEN
DURATION 5 10 20 30
40 so
60 80 100 120 150 180
INTENSITY 9.9 7.7 5.6 4.5
3.7 3.2
2.9
2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE
RATE
= 6.845 CFS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 6.845 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW
OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME
VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT
-----------------------------------------------------
ACRE -FT
ACRE-FT
0.00 0.00 0.00
5.00 9.95 0.48
0.00
0.05
0.00
0.44
10.00 7.72 0.75
0.09
0.65
15.00 6.66 0.97
0.14
0.83
20.00 5.60 1.09
0.19
0.90
25.00 5.06 1.23
0.24
0.99
'
30.00 4.52 1.31
0.28
1.03
35.00 4.13 1.40
0.33
1.07
40.00 3.74 1.45
0.38
1.07
45.00 3.49 1.52
50..00 3.23 1.57
0.42
0.47
1.10
1.09
55.00 3.05 1.62
0.52
1.11
60.00 2.86 1.66
0.57
1.10
65.00 2.74 1.73
0.61
1.12
70.00 2.-63 1.79
_'0.66
_ 1.13
75.00 2.52 1.83
0.71
1.12
80.00 2.40 1.86
0.75
1.11
85.00 2.30 1.90
0.80
1.09
90.00 2.20 1.92
95.00 2.10 1.93
0.85
0.90
1.07
1.04
100.00 2.00 1.94
0.94
1.00
-----------------------------------------------------
THE REQUIRED POND SIZE = 1.125247 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES
,.etenfion ,on'7T.'olume C"a"lculation
Project p: 0194 20 �O
Project Name: 2004 Fort Collins High School
Calculated By: HEY
Date: 5/3012002 BEYOND ENGINEERING
1
1
1
Detention pond volume (V): 1/3d(A+B+(AB)o'S) (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, 112
MMMUMEM73 nterim
Volume
Elevation
Dd
ft
A
ft,
B
ft2
Volume
ft3
Cummulative
Volume
fe
Cummulative
Volume
ac-ft
Vo
4905.50
0.00
1 0
25
0
0
0.00
V,
4906.00
0.50
1 25
1,380
265
265
0.01
V2
4907.00
1.00
1,380
7,255
3,933
4,198
0.10
V3
4908.00
1.00
1 7,255
33,564
1 18,808
23,006
0.53
V1
490853
1.12
V4
( 4909.00
1.00
33,564
65,821
48,796
71,802 1
1.65
Nolte Associates, Inc.
S13012002
1:42 PM
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept., U.of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
' USER=Nolte Associates, Inc____________________________________________________
EXECUTED ON 03-04-2002 AT TIME 13:22:05
PROJECT TITLE: 2004 Ft.Collins High School
' **** DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER =
312a
BASIN AREA (acre)=
9.30
'
RUNOFF COEF
0.63
DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS)
= 100.00
'
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS
GIVEN
DURATION 5 10 20 30 40
50
60
80 100 120 150 180
INTENSITY 9.9 7.7 5.6 4.5 3.7
3.2
2.9
2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 4.65
CPS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 4.65
CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE
RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME VOLUME.
STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE
-FT
0.00 0.00 0.00
0.00
0.00
5.00 9.95 0.40
0.03
0.37
10.00 7.72 0.63
0.06
0.56
15.00 6.66 0.81
0.10
0.12
20.00 5.60 0.91
0.13
0.78
25.00 5.06 1.03
0.16
0.87
'
30.00 4.52 1.10
0.19
0.91
35.00 4.13 1.18
0.22
0.95
40.00 3.74 1.22
0.26
0.96
45.00 3.49 1.28
0.29
0.99
'
50.00 3.23 1.31
0.32
0.99
55.00 3.05 1.36
0..35
1.01
60.00 2.86 1.40
0.38
1.01
65.00 2.74 1.45
0.42
1.04
70.00 2.63 1.50
0.45
1.05
'
75.00 2.52 1.53
0.48
1.05
80.00 2.40 1.56
0.51
1.05
85.00 2.30 1.59
0.54
1.05
90.00 2.20 1.61
95.00 2.10 1.62
0.58
0.61
1.03
1.01
100.00 2.00 1.63
0.64
0.99
105.00 1.95 1.67
0.67
0.99
1
-----------------------------------------------------
THE REQUIRED POND SIZE = 1.054564
ACRE -FT.
THE RAINFALL DURATION FOR THE ABOVE
POND STORAGE= 75 MINUTES
1
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
,eTention . on"dW�"olume @alc—u on
ProName20: 0194
Project Name: 2004 Fort Collins High School
Calculated By: HHF
Date:5/30/2002 BEYOND ENGINEERING
Detention pond volume (V): 1/3d(A+B+(AB)o'S) (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, ft'
Basin L2a
Volume
Elevation
Dd
ft
A
ft2
B
ft2
Volume
ft3
Cummulative
Volume
ft3
Cummulative
Volume
ac-ft
Vo
4905.50
0.00
0
25
0
0
0.00
V,
j 4906.00
0.50
25
1,380
265
265
0.01 j
V2
4907.00
1.00
1,380
7,255
3,933
4,198
0.10
V3
4908.00
1.00
7,255
33,564
18,808
23,006
0.53
Vwu
4908A
- -
1.05
V4
4909.00
1.00
33,564
65,821
48,796
71,802
1.65
Nolte Associates, Inc.
513012002
1:41 PM
DETENTION POND SIZING BY FAA METHOD
Developed
by
Civil Eng. Dept.,
U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
-- --------------
USER=Nolte Associates, Inc ............................................
'
EXECUTED ON 03-04-2002 AT TIME 13:24:27
PROJECT TITLE: 2004 Ft.Collins High School
**** DRAINAGE BASIN
DESCRIPTION
BASIN ID NUMBER = 313a
(Interim Condition)
BASIN AREA (acre)= 10.16
'
RUNOFF COEF 0.54
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
'
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS
GIVEN
DURATION 5 10 20 30 40 50
60 80 100 120 150 180
'
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2
2.9 2.4 2.0 1.8 1.5
1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 5.08 CPS
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 5.08 CPS
_ AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
***** COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE-FT
0.00 0.00 0.00 0.00
0.00
5.00 9.95 0.38 0.03
0.34
10.00 7.72 0.59 0.07
0.52
15.00 6.66 .0.76 0.10
0.66
20.00 5.60 0.85 0.14
0.71
25.00 5.06 0.96 0.17
0.79
'
30.00 4.52 1.03 0.21
0.82
35.00 4.13 1.10 0.24
0.86
40.00 3.74 1.14 0.28
0.86
'
45.00 3.49 1.20 0.31
50.00 3.23 1.23 0.35
0.88
0.88
55.00 3.05 1.28 0.38
0.89
60.00 2.86 1.31 0.42
0.89
65.00 2.74 1.36 0.45
0.90
_
70:00 - 2.63 1.40,=.''.Q:49'.-•
0,91
'
75.60 2.52 1.44 0.52
0.91
80.00 2.40 1.46 0.56
0.90
85.0,0 2.30 1.49 0.59
0.89
90.00 2.20 1.51 0.63
0.88
'
95.00 2.10 1.52 0.66
0.86
100.00 2.00 1.52 0.70
0.82
-----------------------------------------------------
THE REQUIRED POND SIZE = .913035 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND
STORAGE= 70 MINUTES
1
1
1
1
1
1
1
1
1
1
1
1
1
M
)efe�nfion ,onUW,o-Iame C*a-Mc ation
Project : 0194
Project Name:
20
: 2004 Fort Collins High School
Calculated By: GAD
Date: 5/30/2002 BE Y O N D E N G IN E E R ING
Detention pond volume (V):1/3d(A+B+(AB)os) (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour fine at a depth relevant to d, fe
asar 43 nterim
Volume
Elevation
Da
ft
A
ftZ
B
ft2
Volume
ft'
Cummulative
Volume
ft'
Curmnulative
Volume
ac-ft
Vo
4908.00
0.00
0
20
1 0 0
0.00
VI
4909.00
1.00
20
278
124 124
0.00
Vz
I 4910.00
1.00
278
2,889
1,479
0.03
V3
I 4911.00
1.00
1 2,889
15,795
9,958
f8,48O
( 0.23
Va
j 4912.00
1.00
1 15,795
41,967
i 37,795
0.87
Nolte Associates, Inc.
513012002
1:49PM .
IJ
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept., U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
' Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc .... ....... ................... .........
'
EXECUTED ON 03-04-2002 AT TIME 13:26:32
PROJECT TITLE: 2004 Ft.Collins High School
DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 313a
BASIN AREA (acre)= 5.73
'
RUNOFF COEF 0.76
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
'
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN
DURATION 5 10 20 30 40 50 60 80 100 120 150 180
'
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4. 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE = 2.865 CPS
'
OUTFLOW ADJUSTMENT FACTOR = 1
AVERAGE RELEASE RATE = 2.865 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED
DURATION INTENSITY VOLUME VOLUME STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT
-----------------------------------------------------
0.00 0.00 0.00 0.00 0.00
5.00 9.95 0.30 0.02 0.28
10.00 7.72 0.47 0.04 0.43
15.00 6.66 0.60 0.06 0.55
20.00 5.60 0.68 0.08 0.60
25.00 5.06 0.77 0.10 0.67
'
30.00 4.52 0.82 0.12 0.70
35.00 4.13 0.87 0.14 0.74
40.00 3.74 0.90 0.16 0.75
'
45.00 3.49 0.95 0.18 0.77
50.00 3.23 0.98 0.20 0.78
55.00 3.05 1.01 0.22 0.80
60.00 2.86 1.04 0.24 0.80
65.00 2.74 1.08 0.26 0.82
70.00 2.63 1.11 0.28 0.84
75.00 2.52 1.14 0.30 0.84
80.00 2.40 1.16 0.32 0.85
85.00 2.30 1.18 0.34 0.85
90.00 2.20 1.20 0.36 0.84
'
95.00 2.10 1.21 0.37 0.83
100.00 2.00 1.21 0.39 0.82
105.00 1.95 1.24 0.41 0.82
110.00 1.90 1.26 0.43 0.83 "
'
115.00 1.85 1.29 0.45 0.83
--
-----------------------------------------------------
THE REQUIRED POND SIZE .= .8470155 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 85 MINUTES
)efefffion ,RNU olume Galc""`lu a'fion
Project : 0194
Project Name:
20: 2004 Fort Collins High School
Calculated By: GAD
Date: 5/30/2002 BEYOND E N G I N. E E R I N G
Detention pond volume (V): 1/3d(A+B+(AB)o') (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, 112
B= Surface area of contour line at a depth relevant to d, ft'
asin,31a
Volume Elevation
Da
ft
A
ftZ
B
ft2
Curmnulative
Volume Volume
ft' ft'
Curnmulative
Volume
ac-ft
Vo 4908.00
0.00
0
20
0 0
0.00
VI 4909.00
1.00
20
278
124 124
0.00
V2 ( 4910.00
1.00
278
2,889
1354 1,479
0.03
V3 4911.00
1.00
2,889
15,795
8,480 9,958
0.23
VI 4911.97
0.85
Nolte Associates, Inc.
513012002
1:47.PM
1
1
M
1
1
1
1
1
1
1
M
1
9
- Deten6 n-Po dAWI61—uE GMEu—I Edon
Project : 0194
Project Name:
20
: 2004 Fort Collins High School
Calculated By: GAD
Date:5/2/2002 BEYOND ENGINEERING
Detention pond volume (V): 1/3d(A+B+(ABf") (uniformsides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, ft'
t_ I M14ITRS� ltg` Barin`9001
Volume
Elevation
Dd
ft
A
ft2
B
ft2
Volume
ft'
Cummulative
Volume
W
Cummulative
Volume
ac-ft
Va
4898.83
0.00
j 0
0
0
0
j 0.00 j
V,
4899.00
0.17
j 0
1,144
65
65
0.00
V,
4900.00 j
1.00
1,144
9,016
4,457
4,522
0.10
V3
4901.00
1.00
9,016
12,643
10,779
10,844
0.25
V,
4902.00
1.00
12,643
16,523
14,540
19,062
0.44
Vs
4903.00 {
1.00
16,523
19,634 •
24,290
35,133
0.81
Vb
4904.00 j
1.00
19,634
31,365 ;
35,778
46,622
1.07
V lw
4904.08
1
' 1.11
Vr (
4905.00
1.00
31,361 150,900
50,544
69,606
1.60
V8
4906.00
1.00
50,900 73,931
68,020
103,153
2.37
Nolte Associates, Inc.
.51212002
11:17"
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept., U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
' USER=Nolte Associates, Inc ............................................
EXECUTED ON 05-02-2002 AT TIME 11:00:05
PROJECT TITLE: 2004 Fort Collins High School
**** DRAINAGE BASIN DESCRIPTION
' BASIN ID NUMBER 400
BASIN AREA (acre)= 7.08
RUNOFF COEF 0.81
***** DESIGN RAINFALL STATISTICS
' DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN
' DURATION 5 10 20 30 40 50 60 80 100 120 150 180
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE = 6.5 CFS
OUTFLOW ADJUSTMENT FACTOR = 1
AVERAGE RELEASE RATE = 6.5 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED
DURATION INTENSITY VOLUME VOLUME STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT
-----------------------------------------------------
0.00 0.00 0.00 0.00 0.00
5.00 9.95 0.40 0.04 0.35
10.00 7.72 0.61 0.09 0.53
15.00 6.66 0.80 0.13 0.66
20,00 5,60 0,81 0,18 0.71
' 25.00 5.06 1.01 0.22 0.78
30.00 4.52 1.08 0.27 0.81
35.00 4.13 1.15 0.31 0.84
40.00 3.74 1.19 0.36 0.83
.. _
' 45 00. -L3
50.00 3..23 1.29 0.45 0.84
55.00 3.05 1.33 0.49 0.84
60.00 2.86 1.37 0.54 0.83
65,00 2,74 1,42 0.58 0.84
70.00 2.63 1.47 0.63 0.84
75.00 2.52 1.50 0.67 0.83
-----------------------------------------------------
THE REQUIRED POND SIZE _ .8462186 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 45 MINUTES
M
1
1
M
1
1
1
1
i
1
1
1
Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 1 of 3)
Designer:
GAD
Company:
Nolte Associates, Inc.
Date:
May-2, 2002
Project:
FC0194 - 2004 High School
Location:
NE Pond - Basin 400
1. Basin Storage Volume
la =
27.80
%
A) Tributary Area's Imperviousness Ratio (i = la / 100)
i =
0.28
B) Contributing Watershed Area (Area)
Area =
27.13
acres
C) Water Quality Capture Volume (WQCV)
WQCV =
0.12 -
watershed inches
(WQCV =0.8'(0.91-13-1.19-I2+0.78.1))
D) Design Volume: Vol = (WQCV / 12)' Area
Vol =
0.26
acre-feet
2. Permanent Pool
A) Volume: Volp., = (1.0 to 1.5) ' Vol
B) Average Depth Zone 1 = Littoral Zone - 6 to 12 inches deep
Zone 2 = Deeper Zone - 4 feet to 8 feet deep Zone 2
C) Maximum Zone 2 Pool Depth (not to exceed 12 feet) Depth =
D) Permanent Pool Water Surface Area (Estimated Minimum)
(Zone 1 - Littoral Zone = 25% to 40% of the total surface area) % =
(Zone 2 - Deeper Zone = 60% to 75% of the total surface area) % =
Total Estimated Minimum Surface Area (ATma,) % = . -.
3. Annual/Seasonal Water Balance (Qne, has to be positive)
2. Outlet Works
A) Outlet Type (Check One)
B) Depth at Outlet Above Lowest Perforation (H)
C) Required Maximum Outlet Area per Row, (AJ
D) Perforation Dimensions (enter one only):
I) Circular Perforation Diameter OR
ii) 2' Height Rectangular Perforation Width
E) Number of Columns (nc)
acre-feet
feet
feet
feet
acres = --
acres =
acres =
Q,nf,p,..
acre-feet/year
Qe p
acre-feet/year
Qseepage
acre-feet/year
QE.T.
acre-feet/year
Qnet - - -, •acre-feet/year
x Orifice Plate
_ Perforated Riser Pipe
Other:
H = 2.05 feet
Ap = „. 0.94 square inches
D = 1.0630 inches, OR
W = inches
nc = 1. Number
FC0194_Water Quality_400.xls, RP
1
1
1
1
1
1
1
1
1
1
Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 2 of 3)
Designer:
GAD
Company:
Nolte Associates, Inc.
.Date:
May.2, 2002
Project:
FC0194 -2004 High School
Location:
NE Pond - Basin 400
F) Actual Design Outlet Area per Row (AJ
G) Number of Rows (nr)
H) Total Outlet Area (A,,)
5. Trash Rack
A) Needed Open Area: A, = 0.5' (Figure 7 Value)' A„
B) Type of Outlet Opening (Check One)
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a)
A. = 0.89 square inches
nr= 6 Number
Aot = 5.46 square inches
A,= 184 square inches
X - < 2" Diameter Round
2" High Rectangular
Other:
1) Width of Trash Rack and Concrete Opening Wwnc = 9 inches
(Wpp p) from Table 6a-1
ii) Height of Trash Rack Screen (HTR) HTR = =•=49 inches
iii) Type of Screen (Based on Depth H), Describe if "Other" S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other" 0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
Type and Size of Support Rod (Ref.: Table 6a-2)
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
inches
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening form 4.D.ii. (W)
W = inches
ii) Width of Perforated Plate Opening (Ww e = W + 12")
Ww e = inches
iii) Width of Trash Rack Opening (Wopen;n9) from Table 6b-1
Wopen;na = inches
iv) Height of Trash Rack Screen (HTR)
HTR = inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm KPP Series Aluminum
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, KlempT'' KPP inches
Grating). Describe if "Other" Other:
t -
FC0194_WaterQuality 400.xls,RP
1
1
M
1
1
1
1
1
1
1
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
GAD
Date:
5/2/2002
BE Y O N D E N G IN E E R ING
Grate:
CDOT Type 'C' Structure
Weir Perimeter, L =
141.84 in
11.82 ft
Open Area, A =
997.92 in'
6.93 ftz
Clogging Factor, c =
50%
Stage Interval, Ah =
0.10 ft
Weir Calculation:
Orifice Calculation:
Q, = CLH ''s
Qo = CA(2gH)0.5
C =
3.00
C = 0.65
cL=
5.91 ft
Ac = 3.47 ft'
H
H Qw_MLET
Qo-A2ET Rules
ft
ft cfs
cfs cfs
0.00
1 4903.57 0.00 1
0.00 0.00 !<__Set Grate @ Elev.
0.10
1 4903.67 ! 0.56 I
5.72 0.56
020
I 490177 1 59 !
R OR 1 i9
0.30
4903.87
1 2.91
9.90
2.91
0.40
4903.97
4.49Lk
4.49
0.50
4904.07
I 6.276.27
1OS1 _..v
'`490408w,� s
00 ._:
0.60
4904A7
1 824
1 14.00
1 8.24
0.70
1 4904.27
j 10.38
I 15.12
10.38
0.80
1 4904.37
I 12.69
16.17
12.69 1
0.90
I 4904.47
15.14
17.15
15.14 i
1.00 1
4904.57
1 17.73
18.07
17.73
1.10 1
4904.67
1 20.45
1 18.96
; 18.96 1
1.20
4904.77
1 23.31
19.80
I 19.80
1.30
1
4904.87 1
26.28
20.61
20.61
1.40
1
4904.97 i
29.37
21.39
21.39
1.50
I
4905.07 •.
32.57 1
22.14
22.14
' Nolte Associates, Inc.
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
f/ a.
FINISHED +
GRADE 6" DIA
IN -�
INV. IN= j
489A
24" RCP
4896.50
°
INV. OUT=
OVERFLOW
� 100 YR. GRATE'
W.S.E.L.= 4903.57
"WARNING
OUnauthorized modification of
this outlet is a zoning code
violation"
O O
(minimum sign area = 0.75 sq. ft.)
FINISHED
97- MIN GRADE
It
TYPE 'C' INLET BOX
MIN 6" DIA
INV. IN= A48966.5'
EXISTING
4899.00 24" RCP
© 0.40%
OUTLET
6 6„ INV. OUT=
47" 4896.00
1. USE CDOT TYPE 'C' INLET;
CDOT STANDARD M-604-10 WITH
PEDESTRIAN GRATE
OUTLET STRUCTURE
N.T.S.
� � etenfion Pon'a�olu`iCalculation
Project : FC0194 �O
"Project Name:.2004 Fort Collins High School
Calculated By: GAD
Date:S/2/2002 BEYOND ENGINEERING
' Detention pond volume (V): 1/3d(A+B+(AB)") (uniform sides)
M
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, ft'
Basii1403 ':'rr
Volume
Elevation
Dd
ft
A
ft'-
B
ftZ
Volume
ft,
Cummulative
Volume
ft3
Cummulative
Volume
ac-ft
Vo
4904.00
0.00
0
1,007
0
0
0.00
•V,
4904.08
0.08
1,007
j 9,579
I 365
0
( 0.00
VZ
4905.00
0.92
9,579
1 11,8571
9,842
1 9,842
0.23
V3
4906.00
1.00
1J,857
33,9401
21,953
31,794
0.73
V,d�
4906.76
1 1
1.66
Va
4907.00
1.00
33.940
1 73,697 i
52,549 i
84,344
1.94
•4904.08 is the ponding surface elevation of basin 400. This causes egauhzation of the system The ponding
surface for basin 403 will begin at this elevation.
Nolte Associates, Inc.
51212002
11:17AM
DETENTION
POND
SIZING BY FAA METHOD
.Developed
by
Civil Eng. Dept.,
U. of Colorado
Supported.by Denver Metro
Cities/Counties Pool Fund Study
Denver Urban -Drainage
and Flood Control District, Colorado
USER=Nolte
Associates, Inc
'
EXECUTED ON 05-02-2002 AT
TIME
11:04:36
PROJECT TITLE:
2004 Fort Collins High School
DRAINAGE
BASIN DESCRIPTION
BASIN ID NUMBER
=
403
BASIN AREA (acre)=
14.86
RUNOFF COEF 0.41
'*... DESIGN
RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS)
= 100.00
'
INTENSITY(IN/HR)-DURATION(MIN)
TABLE
IS
GIVEN
DURATION
5 10 20 30
40
50
60 80 100 120 150 180
'
INTENSITY
9.9 7.7 5.6 4.5
3.7
3.2
2.9 2.4 2.0 1.8 1.5 1.2
t�**• POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 1.2 CPS -
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 1.2 CPS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE • ADJUSTMENT FACTOR.
*-***• COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL
RAINFALL INFLOW
OUTFLOW
REQUIRED
DURATION
INTENSITY VOLUME
VOLUME
STORAGE
MINUTE
----------------------------------------------------
INCH/HR ACRE -FT
ACRE
-FT
ACRE -FT
0.00
5.00
0.00 0.00
9.95 0.42
0.00
0.01
0.00
0.41
10.00
7.72 0.65
0.02
0.64
15.00
6.66 0.85
0.02
0.82
20.00
5.60 0.95
0.03
0.91
25.00
5.06 1.07
0.04
1.03
'
30.00
4.52 1.15
0.05
1.10
35.00
4.13 1.22
0.06
1.17
40.00
3.74 1.27
0.07
1.20
'
45.00
50.00
3.49 1.33
3.23 1.37
0.07
0.08
1.25
1.28
55.00
3.05 1.42
0.09
1.33
60.00
2.86 1.45
0.10
1.35
65.00
2.74 1.51
0.11
1.40
70.00
2.63 1.56
0.12
1.44 _
'
75.00
2.52 1.60
0.12
1.47
80.00
2.40 1.62
0.13
1.49
85.00
2.30 1.65
0.14
1.51
90.00
2.20 1.68
0.15
1.53
'
95.00
2.10 1.69
0.16
1.53
100.00
2.00 1.69
0.17
1.53
105.00
1.95 1.73
0.17
1.56
110,00
1,90 1,77
0,11
1,59
115.00
1.85 1.80
0.19
1.61
'
120.00
1.80 1.83
0.20
1.63
125.00
1.75 1.85
0.21
.1.64 --
13.00
1.1.8
0.22
1.66
135.00
1.65 65 1.88
0.2
1.66
140.00
1.60 1.90
0.23
1.66
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
145.00 1.55 1.90 0.24 1.66
150.00 1.50 1.90 0.25 1.66
155.00 1.45 1.90 0.26 1.65
160.00 - 1.40 1.89 0.26 1.63
165.00 1.35 1.88 0.27 1.61
170.00 1.30 1.87 0.28 1.59
-----------------------------------------------------
THE REQUIRED POND SIZE = 1.66407 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 140 MINUTES
1
1
M
1
1
1
1
1
1
1
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
5/2/2002
Design Point--
" -403 -
Orifice Calculation:
Rim Elevation=
4902.80
Q. = CA(2gH)"
100-yr Ponding Elev=
4 4906.60
Hydraulic Grade Out--
4904.08
Allowable Release Rate=
.1.2
cfs
H=
2.52 ft
C =
0.65
g =
32.2 ft/s
Q=
1.20 cfs
Ac=
0.14 ftZ
Diameter of Orifice:
BEYOND ENGIN EERI N G
Nolte Associates, Inc.
M
1
11
APPENDIX G
Erosion Control Calculations
1
1
1
1
F,
1
1
M
1
1
1
1
1
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By.
GAD
Date:
6252002
STANDARD FORM A
BEYOND ENGINEERING
DEVELOPED
SUB -BASIN
ERODIBILITY
ZONE
Asb
(ac)
Lsb
(ft
Ssb
%
Lb
(ft
Sb
PS
'
100
MODERATE/MODERATE-
5.75
530.00
1.00
101
0.12
106.80
2.64
200
1.23
410
1.30
201
1.33
343
3.33
202a
1.13
414
0.59
202b
2.46
605
1 0.89
203
1.29
452
0.90
204
3.36
2799
1 0.52
300
6.66
458
1.04
301a
1.80
513
1.11
301b
1.42
967
1.08
302a
0.27
346
0.86
302b
0.59
809
0.86
303
3.56
562
1.97
304
1.52
383
- 1.31
305a
3.45
310
2.06
305b
3.51
376
2.00
" 306
2.66
384
3.16
307
4.79
442
2.68
308
0.51
335
5.11
309
0.89
377
1.72
310
1.67
400
1.47
"311a
3.17
403
2.42
31 lb
0.57
246
2.85
312a
7.18
529
2.05
312b
2.12
761
1.20
313a
4.71
502
1.99
313b
1.02
327 1
0.69
314
1.63
314
1.48
315
0.36
210
1.83
400
2.75
456
2.08
401
1.86
360
1.55
402
1.86
360
1.55
403
10.80
1006
1.30
404
1.31
268
2.13
500
4.43
580
0.69
501
4.39
516
0.80
502
2.04
1331 1
0.93
503
0.88
939
1.21
600
1.68
502
1.73
601
1.97
711
1.30
602
1.24
1009
1.12
1000
MODER4TE/MODERATE•
7.01
417
4.89
-
106.92
627.66
1.80
80.21
' Lb = sum(AiLi)/(sum(Ai) _ (5.75.530+ ... +7.01.417.35)/106.92
627.66
• - MODERATE WIND EROD113U Y ZONE & MODERATE RAINFALL ERODIBILITY ZONE
' Sb - sum(AiSi)/(sum(Ai) _ (5.75•1+ ... +7.01.4.89)/106.92
1.80
PS (during construction) - 80.21 (from Table S-A)
PS (after construction) - 80.21/0.85 - 94.36
N:1FC01941DrainagelExceP4FC0194_ Erosion -Fort Collins.xis]PERFORMANCE
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
Project#:
FC0195
Project Name:
2003 Elementary School
Calculated By:
GAD
Date:
6/25/2002
STANDARD FORM B
BEYOND EN.G I'N E E RING
EROSION CONTROL
METHOD
C-FACTOR
VALUE
P-FACTOR
VALUE
COMMENTS
BARE SOIL
1
1.00
0.90
GRAVEL MULCH
2
O.05
1.00
STRAW -HAY MULCH
3
0.06
1.00
HYDRAULIC MULCH
4
0.10
1.00
ESTABLISHED GRASS COVER
5
0.35
1.00
PAVEMENT
6
0.01
1.00
STRAW BALE, GRAVEL FILTER
7
1.00
0.80
SILT FENCE BARRIER 1
8 1
1.00 1
0.50
SUB
BASIN
PS
(%
AREA
(ac
SITE
80.21
1 106.92
SUB
BASIN
SUB
AREA
AREA
(ac
PRACTICE
C*A
P*A
REMARKS
100
PERVIOUS
0.00 L
1
0.00
0.00
BARE SOIL
100
IMPERVIOUS
250603.83
1
250603.83
225543.45
BARE SOIL
101
PERVIOUS
0.00
1
0.00
0.00
BARE SOIL
101
IMPERVIOUS
5370.44
1
5370.44
4833.40
BARE SOIL
200
PERVIOUS
37795.00
3
2267.70
37795.00
STRAW -HAY MULCH
_ 200
IMPERVIOUS
15937.39
1
15937.39
14343.65
BARE SOIL
201
PERVIOUS
42913.26
5
15019.64
42913.26
ESTABLISHED GRASS COVER
201
IMPERVIOUS
15192.00
3
911.52
15192.00
STRAW -HAY MULCH
202a
PERVIOUS
5888.42
3
353.31
5888.42
STRAW -HAY MULCH
202a
IMPERVIOUS
43305.02
8
43305.02
21652.51
SILT FENCE BARRIER
202b
PERVIOUS
79480.78
3
4768.85
79480.78
STRAW -HAY MULCH
202b
IMPERVIOUS
27494.08
6
274.94
27494.08
PAVEMENT
203
PERVIOUS
28856.84
3
1731.41
28856.84
STRAW -HAY MULCH
203
IMPERVIOUS
27551.00
6
275.51
27551.00
PAVEMENT
204
PERVIOUS
58730.67
3
3523.84
58730.67
STRAW -HAY MULCH
204
IMPERVIOUS
87466.72
6
874.67
87466.72
PAVEMENT
300
PERVIOUS
21244.78
3
1274.69
21244.78
STRAW -HAY MULCH
300
IMPERVIOUS
7294.32
6
72.94
7294.32
PAVEMENT
301a
PERVIOUS
67375.00
3
4042.50
67375.00
STRAW -HAY MULCH
301a
IMPERVIOUS
10839.17
6
108.39
10839.17
PAVEMENT
301b
PERVIOUS
26316.00
3
1578.96
26316.00
STRAW -HAY MULCH
301b
IMPERVIOUS
35725.59
6
357.26
35725.59
PAVEMENT
302a
PERVIOUS
831.88
3
49.91
831.88
STRAW -HAY MULCH
302a
IMPERVIOUS
11105.90
6
111.06
11105.90
PAVEMENT
302b
PERVIOUS
3670.09
3
220.21
3670.09
STRAW -HAY MULCH
302b
IMPERVIOUS
22080.54
6
220.81
22080.54
PAVEMENT
303
PERVIOUS
147495.68
5
51623.49
147495.68
ESTABLISHED GRASS COVER
303
IMPERVIOUS
7504.00
3
450.24
7504.00
STRAW -HAY MULCH
304
PERVIOUS
60250.58
5
21087.70
60250.58
ESTABLISHED GRASS COVER
304
IMPERVIOUS
5767.00
3
346.02
5767.00
STRAW -HAY MULCH
305a
PERVIOUS
118949.73
5
41632.41
118949.73
ESTABLISHED GRASS COVER
305a
IMPERVIOUS
31158.00
3
1869.48
31158.00
STRAW -HAY MULCH
305b
PERVIOUS
133022.81
5
46557.98
133022.81
ESTABLISHED GRASS COVER
305b
IMPERVIOUS
19894.00
3
1193.64
19894.00
STRAW -HAY MULCH
306
PERVIOUS
28014.25
2
1400.71
28014.25
GRAVEL MULCH
306
IMPERVIOUS
87831.90
7
87831.90
70265.52
STRAW BALE, GRAVEL FILTER
307
PERVIOUS
84094.00
2
4204.20
84084.00
GRAVELMULCH
307
IMPERVIOUS
124379.20
7
124379.20
99503.36
STRAW BALE, GRAVEL FILTER
tNolte Associates, Inc.
M
1
M
308
PERVIOUS
22184.63
5
7764.62
22184.63
ESTABLISHED GRASS COI
308
IMPERVIOUS
0.00
6
0.00
0.00
PAVEMENT
309
PERVIOUS
19593.09
5
6857.58
19593.09
ESTABLISHED GRASS COI
309
IMPERVIOUS
19326.51
3
1159.59
19326.51
STRAW -HAY MULCH
310
PERVIOUS
43661.84
5
15281.64
43661.94
ESTABLISHED GRASS COI
310
IMPERVIOUS
28870.53
3
1732.23
28870.53
STRAW -HAY MULCH
31la
PERVIOUS
44376.06
2
2218.80
44376.06
GRAVEL MULCH
31 la
IMPERVIOUS
93631.55
7
93631.55
74905.24
STRAW BALE, GRAVEL FIL
311b
PERVIOUS
9552.80
2
477.64
9552.80
GRAVEL MULCH
31lb
IMPERVIOUS
15162.18
6
151.62
15162.18
PAVEMENT
312a
PERVIOUS
196678.01
2
9833.90
196678.01
GRAVEL MULCH
312a
IMPERVIOUS
116139.20
7
116139.20
92911.36
STRAW BALE, GRAVEL FW
312b
PERVIOUS
56213.80
3
3372.83
56213.80
STRAW -HAY MULCH
312b
IMPERVIOUS
36051.55
6
360.52
36051.55
PAVEMENT
313a
PERVIOUS
88889.62
3
5333.38
88889.62
STRAW -HAY MULCH
313a
IMPERVIOUS
116078.00
7
116078.00
92862.40
STRAW BALE, GRAVEL FU:
313b
PERVIOUS
32892.06
3
1973.52
32892.06
STRAW -HAY MULCH
313b
IMPERVIOUS
11643.98
6
116.44
11643.98
PAVEMENT
314
PERVIOUS
66338.38
5
23218.43
66338.38
ESTABLISHED GRASS CON
314
IMPERVIOUS
4794.60
2
239.73
4794.60
GRAVEL MULCH
315
PERVIOUS
13051.87
1
13051.87
11746.68
BARE SOIL
315
IMPERVIOUS
2658.00
2
132.90
2658.00
GRAVEL MULCH
400
PERVIOUS
59827.24
2
2941.36
58827.24
GRAVELMULCH
400
IMPERVIOUS
60963.68
1
60963.68
54867.31
BARE SOIL
401
PERVIOUS
55015.41
3
3300.92
55015.41
STRAW -HAY MULCH
401
IMPERVIOUS
26221.33
2"
1311.07
26221.33
GRAVEL MULCH
402
PERVIOUS
55622.03
3
3337.32
55622.03
STRAW -HAY MULCH
402
IMPERVIOUS
25607.00
2
1280.35
25607.00
GRAVEL MULCH
403
PERVIOUS
434976.81
5
152241.88
434976.81
ESTABLISHED GRASS CO'v
403
IMPERVIOUS
35290.15
2
1764.51
35290.15
GRAVEL MULCH
404
PERVIOUS
53394.84
5
18688.19
53394.94
ESTABLISHED GRASS COS
404
IMPERVIOUS
3697.50
2
194.88
3697.50
GRAVEL MULCH
500
PERVIOUS
192924.65
3
11575.48
192924.65
STRAW -HAY MULCH
.500
IMPERVIOUS
0.00
6
0.00
0.00
PAVEMENT
501
PERVIOUS
191028.60
3
11461.72
191028.60
STRAW -HAY MULCH
501
IMPERVIOUS
0.00
6
0.00
0.00
PAVEMENT
502
PERVIOUS
36767.40
3
2206.04
36767.40
STRAW -HAY MULCH
502
IMPERVIOUS
51919.88
7
51919.88
41535.90
STRAW BALE, GRAVEL FILI
503
PERVIOUS
8367.00
3
502.02
8367.00
STRAW -HAY MULCH
503
IMPERVIOUS
29883.12
7 "
29883.12
23906.50
STRAW BALE, GRAVEL FII.7
600
PERVIOUS
56012.42
3
3360.75
56012.42
STRAW -HAY MULCH
600
IMPERVIOUS
16971.45
8
16971.45
8485.72
SILT FENCE BARRIER
601
PERVIOUS
61296.72
3
3677.80
61296.72
STRAW -HAY MULCH
601
IMPERVIOUS
24562.53
8
24562.53
12281.27
SILT FENCE BARRIER
602
PERVIOUS
9091.57
3
545.49
9091.57
STRAW -HAY MULCH
602
IMPERVIOUS
44708.88
8
44708.88
22354.44
SILT FENCE BARRIER
1000
PERVIOUS
305242.09
3
18314.53
305242.09
STRAW -HAY MULCH
1000
IMPERVIOUS
0.00
8
0.00
0.00
SILT FENCE BARRIER
Cnet = (250603.83'1+ .._+305242.09'0.05)/(250603.83+._.+305242.09) =
Pnet = (250603.83'1+ _..+305242.09'1)/(250603.83+,,,+305242.09) =
EFF = (1-C'P)100 = (1-0.35'0.95)100
N:\FC0194\DrainageXExcel\[FC0194_Erosion-Fort Collins.xls)PERFORMANCE
0.35
0.95
66.75
80.21 (PS)
Nolte Associates, Inc.
Project#:
FC0194
Project Name:
'2004 Fort Collins High School
Calculated By:
GAD
Date:
6/25/2002
STANDARD FORM B
BE Y O N D E N G IN E E R ING
EROSION CONTROL
METHOD
C-FACTOR
VALUE
P-FACTOR
VALUE
COMMENTS
BARE SOIL
1
1.00
0.90
GRAVEL MULCH
2
O.05
1.00
STRAW -HAY MULCH
3
0.06
1.00
HYDRAULIC MULCH
4
0.10
1.00
ESTABLISHED GRASS COVER
5
0.35
1.00
PAVEMENT
6
0.01
1.00
STRAW BALE, GRAVEL FILTER
7
1.00
0.80
SILT FENCE BARRIER
1 8
1 1.00
1 0.50
SUB
BASIN
PS
%
AREA
ac
SITE
1 94.36
106.92
SUB
BASIN
SUB
AREA
AREA
ac
PRACTICE
C•A
P'A
REMARKS
100
PERVIOUS
0
5
0
0
ESTABLISHED GRASS COVER
100
IMPERVIOUS
250604
6
2506
250604
PAVEMENT
101
PERVIOUS
0
5
0
0
ESTABLISHED GRASS COVER
101
IMPERVIOUS
5370
6
54
5370
PAVEMENT
200
PERVIOUS
37795
5
13228
37795
ESTABLISHED GRASS COVER
200
IMPERVIOUS
15937
6
159
15937
PAVEMENT
201
PERVIOUS
42913
5
15020
42913
ESTABLISHED GRASS COVER
201
IMPERVIOUS
15192
6
152
15192
PAVEMENT
202a
PERVIOUS
5888
5
2061
5888
ESTABLISHED GRASS COVER
202a
IMPERVIOUS
43305
6
433
43305
PAVEMENT
202b
PERVIOUS
79481
5
27818
79481
ESTABLISHED GRASS COVER
202b
IMPERVIOUS
27494
6
275
27494
PAVEMENT
203
PERVIOUS
28857
5
10100
28857
ESTABLISHED GRASS COVER
203
IMPERVIOUS
27551
6
276
27551
PAVEMENT
204
PERVIOUS
58731
5
20556
58731
ESTABLISHED GRASS COVER
204
IMPERVIOUS
87467
6
875
87467
PAVEMENT
300
PERVIOUS
21245
5
7436
21245
ESTABLISHED GRASS COVER
300
IMPERVIOUS
7294
6
73
7294
PAVEMENT
301a
PERVIOUS -
67375
5
23581
67375
ESTABLISHED GRASS COVER
301a
IMPERVIOUS
10839
6
108
10839
PAVEMENT
301b
PERVIOUS
26316
5
9211
26316
ESTABLISHED GRASS COVER
301b
IMPERVIOUS
35726
6
357
35726
PAVEMENT
302a
PERVIOUS
832
5
291
832
ESTABLISHED GRASS COVER
302a
IMPERVIOUS
11106
6
111
11106
PAVEMENT
302b
PERVIOUS
3670
5
.1285
3670
ESTABLISHED GRASS COVER
302b
IMPERVIOUS
22081
6
221
22081
PAVEMENT
303
PERVIOUS
147496
5
51623
147496
ESTABLISHED GRASS COVER
303
IMPERVIOUS
7504
6
75
7504
PAVEMENT
304
PERVIOUS
60251
5
21088
60251
ESTABLISHED GRASS COVER
304
IMPERVIOUS
5767
6
58
5767
PAVEMENT
305a
PERVIOUS
118950
5
41632
118950
ESTABLISHED GRASS COVER
305a
IMPERVIOUS
31158
6
312
31158
PAVEMENT
305b
PERVIOUS
133023
5
46558
133023
ESTABLISHED GRASS COVER
305b
IMPERVIOUS
19894
6
199
19894
PAVEMENT
306
PERVIOUS
28014
5
9805
28014
ESTABLISHED GRASS COVER
306
IMPERVIOUS
87832
6
878
87832
PAVEMENT
307
PERVIOUS
84084
5
29429
84084
ESTABLISHED GRASS COVER
307
IMPERVIOUS
124379
6
1244
124379
PAVEMENT
Nolte Associates, Inc.
F—,
A
fl
1
A
308
PERVIOUS
22185
5
7765
22185
ESTABLISHED GRASS COVER
308
IMPERVIOUS
0
6
0
0
PAVEMENT
309
PERVIOUS
19593
5
6858
19593
ESTABLISHED GRASS COVER
309
IMPERVIOUS
19327
6
193
19327
PAVEMENT
310
PERVIOUS
43662
5
15282
43662
ESTABLISHED GRASS COVER
310
IMPERVIOUS
28871
6
289
28871
PAVEMENT
311a
PERVIOUS
44376
5
15532
44376
ESTABLISHED GRASS COVER
311a
IMPERVIOUS
93632
6
936
93632
PAVEMENT
311b
PERVIOUS
9553
5
3343
9553
ESTABLISHED GRASS COVER
311b
IMPERVIOUS
15162
6
152
15162
PAVEMENT
312a
PERVIOUS
196678
5
68837
196678
ESTABLISHED GRASS COVER
312a
IMPERVIOUS
116139
6
1161
116139
PAVEMENT
312b
PERVIOUS
56214
5
19675
56214
ESTABLISHED GRASS COVER
312b
IMPERVIOUS
36052
6
361
36052
PAVEMENT
313a
PERVIOUS
88890
5
31111
88890
ESTABLISHED GRASS COVER
313a
IMPERVIOUS
116078
6
1161
116078
PAVEMENT
313b
PERVIOUS
32892
5
11512
32892
ESTABLISHED GRASS COVER
313b
WERVIOUS
11644
6
116
11644
PAVEMENT
314
PERVIOUS
66338
5
23218
66338
ESTABLISHED GRASS COVER
314
IMPERVIOUS
4795
6
48
4795
PAVEMENT
315
PERVIOUS
13052
5
4568
13052
ESTABLISHED GRASS COVER
315
IMPERVIOUS
2658
6
27
2658
PAVEMENT
400
PERVIOUS
58827
5
20590
58827
ESTABLISHED GRASS COVER
400
IMPERVIOUS
60964
6
610
60964
PAVEMENT
401
PERVIOUS
55015
5
19255
55015
ESTABLISHED GRASS COVER
401
IMPERVIOUS
26221
6
262
26221
PAVEMENT
402
PERVIOUS
55622
5
19468
55622
ESTABLISHED GRASS COVER
402
IMPERVIOUS
25607
6
256
25607
PAVEMENT
403
PERVIOUS
434977
5
152242
434977
ESTABLISHED GRASS COVER
403
IMPERVIOUS
35290
6
353
35290
PAVEMENT
404
PERVIOUS
53395
5
18688
53395
ESTABLISHED GRASS COVER
404
IMPERVIOUS
3698
6
37
3698
PAVEMENT
500
PERVIOUS
192925
5
67524
192925
ESTABLISHED GRASS COVER
500
IMPERVIOUS
0
6
0
0
PAVEMENT
501
PERVIOUS
191029
5
66860
191029
ESTABLISHED GRASS COVER
501
IMPERVIOUS
0
6
0
0
PAVEMENT
502
PERVIOUS
36767
5
12869
36767
ESTABLISHED GRASS COVER
502
IMPERVIOUS
51920
6
519
51920
PAVEMENT
503
PERVIOUS
8367
5
2928
8367
ESTABLISHED GRASS COVER
503
IMPERVIOUS
29883
6
299
29883
PAVEMENT
600
PERVIOUS
56012
5
19604
5W12
ESTABLISHED GRASS COVER
600
IMPERVIOUS
16971
6
170
16971 .
PAVEMENT
601
PERVIOUS
61297
5
21454
61297
ESTABLISHED GRASS COVER
601
IMPERVIOUS
24563
6
246
24563
PAVEMENT
602
PERVIOUS
9092
5
3182
9092
ESTABLISHED GRASS COVER
602
IMPERVIOUS
44709
6
447
44709
PAVEMENT
1000
PERVIOUS
305242
5
106835
305242
ESTABLISHED GRASS COVER
1000
IMPERVIOUS
0
6
0
0
PAVEMENT
Cnet = (250603.83*1+ ...+305242.09'0.05)/(250603.83+...+305242.09) =
Pnet = (250603.83'1+ ...+305242.09'1)/(250603.83+...+305242.09) =
EFF = (1-C'P)l00 = (1-0.23*1)100
N:\FC0194\Drainage\Exoell[FC0194_Erosion-Fort Collins.xls]PERFORMANCE
0.23
1.00
77
94.36
Nolte Associates, Inc.
A
1
0
O
m
R j
a
N 9
C L
D x
6 i
3 C
0 a
a
E E
n
O y
C 0
r
O
c
N
p
u3
� m
V
O E
E
e
c _y
t �
•-
3 d
L y�
N
V
u
d
a H U c
o
p a m
Fq
u d G 9
coo
N m
y o W
O Z Y
V
6 C
p'a
t
6 j
a
¢
m
N
O L T
a $ a
aQ
m E >
a
��0
N
_?m
Q
4��
it
Q
LL
O
O �
N
Z
O
41
Q
Q
LL
O
N
0
Z
O
N
Q
N
O
N
c
c
m m
c c
i
C O
a a
w
O
m o
y
c 3
Y
a a C
v a
'Sc �.�m$ -
HE n u
pp � „ d
d os
pp_
V `mmmc
o ~pmma�` Ups
`N ra
m 0 0
jY
D E LL 3 Z
>; S �,
t
t7
00.
o E r m y d
IL O R
w u $i m 5= `m m` ` w a r
0- m` m m t
0d
g30! >a w,o
�Nm=mv�m mci Sao
vzo
�
3
¢
F-h
11
11
1l
APPENDIX H
Charts, Tables & Graphs
I
I
I
I
I
I
I
1
1
N
1
1
1
1
1
1
1
1
1
1
1
1
1
M
Table 3-3
RATIONAL METHOD RUNOFF COEFFICIENTS FOR COMPOSITE ANALYSIS
Character of Surface
Runoff Coefficient
Streets, Parking Lots, Drives:
Asphalt................................................................................................
0.95
Concrete.............................................................................................
0.95
Gravel.................................................................................................
0.50
Roofs..........................................................................................................
0.95
Lawns, Sandy Soil:
Flat<2%.............................................................................................
0.10
Average2 to 7%..................................................................................
0.15
Steep>700..........................................................................................
0.20
Lawns, Heavy Soil:
Flat<2%.............................................................................................
0.20
Average2 to 7%.................................................................................
0.25
Steep> 7 %..........................:...............................................................
0.35
MAY 1984 3-4 DESIGN CRITERIA
Table 3-4
RATIONAL METHOD FREQUENCY ADJUSTMENT FACTORS
Storm Return Period Frequency Factor
(years) C,
2to 10 1.00
11 to25 1.10
26 to 50 1.20
51 to 100 1.25
Note: The product of C times C, shall not exceed 1.00
1
No Text
1
M
' MAY 1984
1.0
.9
s=06
F c 0.8
.8 +
.7
LL
Cr
o .6
U
a
U.
Z
0 .5
U
O
w 4
.3
.2
s:0.4%
F=0.5 I
I
I BELOW MINIMUM
ALLOWABLE
I STREET GRADE
.O V I 1 I 1 I 1 i f I I I I I
0 2 4 6 8 10 12 14
SLOPE OF GUTTER (%)
Figure 4-2
REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY
Apply reduction factor for applicable slope to the theoretical gutter capacityto obtain
allowable gutter capacity.
(From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
4-4 DESIGN CRITERIA
Table 5-4
nUZT CAPACITY REDUCTION FACTORS
Percentages of
'
Drainage Condition 'Inlet Type Theoretical Canacity
Sump or Continuous Grade CDOR Type R-Curb
Opening
'
S 80
10' 85%
15, 90%
Street - Sump 4' Curb Opening 80%
'
Street - Continuous Grade
4' Curb Opening 80%
Parking Lots, Medians Area Inlet 80%
'
The theoretical
capacity of inlets in a low point or soma shall be determined from
Figures 5-2 and 5-3.
'
The theoretical capacity of curb openings on a continuous grade shall be determined
from Figures 5-4,
5-5 and 5-6.
The standard curb -opening is illustrated by Figure 5-4 and is defined as having a
gutter depression apron W feet wide at the inlet opening which extends W feet upstream
and downstream from
the opening, has a depression depth (a) equal to W/12 feet -at the
curb face, and a curb opening height (h) of at least 0.5 feet. The graph as presented
by Figure 5-5 is based on a depression apron width (W) equal to 2 feet and depression
'
width (a) equal to 2 inches. The pavement cross-section is straight to the curb face;
however, a street section with gutters cross -sloped steeper than the street can also
be analyzed using Figure 5-6. Since the figures are based on an inlet opening free of
'
obstructions, the reduction factors listed"previously shall be utilized.
DRAINAGE CRITERIA MANUAL
MAJOR DRAINAGE
1
M
1
1
1
1
1
1
1
1
'Table 5-1
CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP
Riprap
% Smaller Than
Intermediate Rock
*
d50
Designation
Given Size
Dimension
By Weight
(Inches)
(Inches)
Type VL
70-100
12
50-70
9
35-50
6
6**.
2-10
2
Type L
70-100
15
50-70
12
35-50
9
9**
2-10
3
Type M
70-100
21
50-70
18
35-50
12
12
2-10
4
Type H
100
30
50-70
24
35-50
18
18
2-10
6
Type VH
100
42
50-70
33
35-50
24
24
2-10
9
*d50 = Mean particle size
** Bury types VL and L with native top soil and revegetate to protect
from vandalism.
5.2 Wire Enclosed Rock
Wire enclosed rock refers to rocks that are bound together in a
wire basket so that they act as a single unit. One of the major
advantages of wire enclosed rock is that it provides an alternative in
situations where available rock sizes are too small for ordinary
riprap. Another advantage is the versatility that results from the
regular geometric shapes of wire enclosed rock. The rectangular
blocks and mats can be fashioned into almost any shape that can be
11-15-82
DRAINAGE CRITERIA MANUAL
RIPRAP
�4C
0
0
2c
MENNEN
EN
0
0
ME
VA
0
FAA
MME%
100dw.
rodcal
- W-A d
0
-
00
--I
.2 A Y /D .6 .8 .0
t
Use Do instead of D whenever flow is supercritical in the barrel.
**Use Type L for a distance of 3D downstream.
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
DRAINAGE CRITERIA MANUAL
RIPRAP
8
7
9 = Expansion Angle
NEWAd
VAA
0
FA
NA,
I I
FA A'
FAr
Emmummum
mr0mummomm
011709AMENE
MAINe
mmmmmm
.l Z .J .4 D b J .8
TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D
FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS
11-15 -82
URBAN DRAINAGE B FLOOD CONTROL DISTRICT
II
Rfun = D14 for circular pipes,
1
Rfi,11 = Afurr/ (2H+2w) for
rectangular pipes. when: w = width of a
rectangular conduit. all in feet. "Then
vf„11 =.Qfu1-4f„11
1
in which: Vf u = Flow velocity of the
pipe flowing full, in feet per second
1 The normal depth of flow, d, and
the velocity at that depth in a conduit
can be found with the aid of Figure 2.
1 Using the known design discharge, O,
and the calculated pipe -frill discharge.
Qf u, enter Figure 2 with the value of
1 QQ-f.0 and find d/D for a circular pipe
or d/H for a rectangular pipe.
Compare the value of this &D (or
1 d1H) with that obtained from Figure 3
using the Fronde parameter.. namely,
' Q/D" or - 01(w -H is )
Choose the smaller of the two d/D (or
d/f) ratios to calculate the flow depth at
the end of the -pipe, namely;
d=D-��)
or
d=H-l�iY)
i -
Again enter Figure 2 using the
1 smaller &D (or d/H) ratio to find the
A/Af u ratio. Use this to calculate the
area of flow at the end of the pipe,
1 namely,,U111
A=I J=Ate....
in which: A = Area of the design flow
1 in the end of the pipe, in square feet
Finally,
1 _
Nwbich. V = Design flow velocity at
Pipe outlet, in feet per second
1
Finding the Appropriate Riprap Size
Use Figure 4 to find the size and
type of the Tiprap to use in the scour
protection basin downstream of the pipe
outlet f i.e...HG (grouted H), H. M or LI.
First, calcu-late the riprap sizing design
parameter. Pa ,-namely.
pd=�v2.+.g d1. 2
in which: g = acceleration due to
gravity, 32.2 feet per second per second -
When the riprap sizing design
Parameter indicates conditions that
place the design above the Type H
riprap line in Figure 4. use HG, or
larger, grouted rock. An alternative to
a grouted or loose riprap basin is to use
the standard Bureau of Reclamation
Basin VI, a reinforced concrete impact
structure, to dissipate the energy in the
flow at the outlet of the pipe.
After the riprap size has been
selected the minimum thickness of the
nprap layer,: T in feet. in the basin is set
1.'
..:1.0
M
.? O. E
Q
Q . 0.7
0 0.6
/yZz 0.5
0.4
0-3
C11N
0.1
El N
at
T =1.75 •D50
in which: DJo = the median size of the
riprap (see Table.l).
Table .1. Median (Dso) Rock Size of
Urban Drainage District Riprap.
,R;MpType
Median Size (Inches)
L
9
M
12
H&HG
18
Finding the Basin Length
The minimum length of the basin.
L in Figure 1. is denned.as being the
greater of the following lengths:
For circular pipe,
t� V
L 4D or L=(D)r2 •— ...
------------
fl
-------------- ,__-___—__ _-
----. "AlAfur, I
*- ;--;ICircular ! - -
----------------
. a__-__i_. a__-___ _�. I_•_ - Q19 urr L_
ja— % _�IRectangular i_
;Recta----:'r.-� ---, -------------;--- -- ----
- ------ ----- -- -- -- --
/_�pj quo -- - - - - -- -- - --- -• - --
s� - ICircular �- -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Figure 2:. Discharge and Flow Area Relationships for Circular and Rectangular
Pipes (Ratios for flow based on Manning's n varying with depth)
12
For rectangular pipe,
Step 3. Using the Q10w, = 0.88 ratio.
Figure-2 gives dlb = 0.82 fora circular
pipe-,:
L =-4 H or L= V .
2
Step 4. Calculate: QID' = 2.81. Use
this in Figure Ito find &D = 0.57.
Finding the Basin Width
Theminimum width, tG. of the
Step 5 Since the smaller of the two
basin downstream of the pipe's flared
d1D ratios is 0.57,, use it to calculate
end section is set at:
deptl4,4 at the outlet and then in
Figure 2 to find the ratio fortAfull
For circular pipes:
0.59.
11
I
U
I
I
W = 4D d = (dID) - D = 0.57.4.0 = 2.28 feet
For rectangular pipe:
Step 6 Using the.4/Afa = 0.59 ratio
calculate flow area andvejocq the
at
w-+4H
end of the pipe:
Othe_rDesi
Design Requirements
WAfu)-- Afff (0.59) - (7r.- 2.oz)
7.41, square feet
All slopes- in the preshaped
-
riprapped basin are 2H to IV.
V = (Q1,4) = (90) (7.4 1) = 12.1 feet
per secon cL-- - -
strucan-al concrete -cutoff -wall. at.
thi end of the flared end section for
--Step 7 Calculate the riprap sizing
a circularpipe- a headwall
pipe- with
-design Pararu;te4 Pd. and use it in
wing walls and a paved bottom
-
Figure 4.to find the appropriate nprap
betveen, the walls, both- with a
size: -
cutoff wall that W=ds down to a
depth of
Pd. . = (jT2 g
2
D
B=-+T or B=-+T
2 2
The niprap must be extended up
the outlet embankments slope to
the mid -pipe level.
Examples
ExaInnip I -Circular pipe on a
relatively !!at slope,
Given:
Design flow, Q = go C&
Tailwater depth, y, = 1.0 feet
Pipe Diameter D = 4.0 feet:
Slope S = 0.00:5 fttft
Manning's n = 0.013
Step L Determine if method is
applicable: y, < D13; namely, low
tailwater.
Step 2 Calculate the Oile capacity of the flowing full: Q. 02 cfs is
,. =Ikonduusing the Manning's Equation.
(12.1- + 32-2 -.2.28)1t.-'; 14:8;
Use Type L-Riprap
Step 8. Calculate the minimum
thickness of the ripmp layerfor D.50 = 9
inches:
T=175 - 9.0 = 15.75 inches
Use T = 16 inches.
Step 9 Find the length of the basin.
namely the greater of the following two
lengths:
L = (D 42)
12.1 feet
1
L = (d1D) - D = 4 - 4 16 feet
(Greater of the two: use this value.)
Step i a Find the width of the hprap
basin:
W= 4 -D 4r-416 feet.
1.0
0.9
0.8
dID
0.7 -
0.6 -
0 0.5 -
04
0.3
0.2 -
0.1
0.0
0.0 2.0 4.0 610 8.0
QID 2-5 or-QlwH 1-5
Figure 3: Brink Depth for Horizontal Pipe Outlets
13
Ezample 3 - Rectaneular Dine on a
'
fairly steep slope.
Given:
Design flow O = 300 cfs:
Tailwater depth v; = 1.0 feet
Box -Height H= 4.0 feet.
'
Width-w=.3.0 feet
Slope S = 0.05 ft/ft; -
Manning's n = 0.013
' Step 1. Determine if method is
applicable: y, < H13: namely, low
tailwater.
' Step 2 Calculate the capacity of the
pipe flowing full:
O,.„ = 426 cfs is found using the
Manning`s Equation.
' Step.3. Using the O/Of„ p = 0.70 ratio,
Figurel gives the.ratio d/H= 0.73.
Step 4. Calculate OAv -s = 7.50 and
use this in Figure 3 to find d/H = 0.94
Step .5. Since the smaller of the two
d/H ratios.is 0.73, use it to find the
depth, d,.at the outlet and in Figure 2 to
find the.ratio ofA/Af a = 0.73.
' d=_0.7V _4.o.=2.92.feet
'Step 6. TlsingA/Afdt = 0.73 ratio,
cala,tAtP the flow area and velocity at
.the end of the pipe.
' A=A/Af„o7Af„Q=(0.73)-(4-5)=
14.6 square feet
'V = O/A = (300) / (14.6) = 20.5 feet per
second
Step 7. Calculate the riprap sizing
design parameter, Pd , and use it in
Figure 4 find the appropriate riprap
size- - — -
Pd = (20.51+32.2 2.92) in = 22.7;
Use Type M Riprap
Step 8. Calculate the minimum
thiclmess of the riprap laver for Dso =
102 inches
T= 1.75. 12.0 = 21 inches.
Step 9. Find the length of the basin,
namely the greater of the following two
lengths: ,
L= 4 - H = 16 feet
L=Wt ).-(UP)=4ip-.-(20.5/2)_
20.5 feet (use this length)
Step 10. Find the width of the riprap
basin:
W=w=4H=5+4.4=21feet
Acknowledgments
The authors express their
appreciation to Bill DeGroot and Bryan
Kohlenberg, Urban Drainage and Flood
Control District and Besharah Najjar,
I
to
25
lL�
y .20
0
15
C_
C
10
at
5
Adams County Engineering
Department for their review and
suggestions; to Bryan for the
preparation of the design examples: and
to Ken McKenzie and Vmce-Vigil. the
.District's student interns for the
preparation of the graphics. _ .
References - _ ..
-The information on circular pipes
in Table 2 was taken from: Chow. Ven
Te (1959). Open -channel Hvdraulics.
McGraw-Hill Book Company. Inc..
New York. page 135.
The information on brink depth
for mild slopes and size of riprap is
taken from: Stevens, M.A_, (1969).
Scour 1n Riprap At Culvert Outlets.
Ph.D. dissertation. Civil Engineering
Department, Colorado State University.
Ft. Collins, Colorado.
====_'_Riprap Type = HG==
Ham;''
1
2
3 4
5 6
7
8
Storm
Sewer
Diameter,
D, or Height,
H,
in. ft.
Figure 4: Riprap selectionchartfor
low tailwater basin at pipe outlets
1
1.
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
DRAINAGE CRITERIA MANUAL
8
7
Q6
c
v
N5
4
z 3
0
z
a
x 2
W
RIPRAP
6 = Expansion Angle
sir
EME
VA��
,
i
r'�
9.1
1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
TAILWATER DEPTH / CONDUIT HEIGHT-Yt/H
FIGURE 5-10. EXPANSION FACTOR FOR RECTANGULAR CONDUITS
11-15-82
URBAN DRAINAGE a FLOOD CONTROL.DISTRIC7
1
1.
M
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DRAINAGE CRITERIA MANUAL
F
RIPRAP
FAA
WA
PA A
N
rpm
■
■
9�
00
.2 .4 .6 .8 1.0
Yt/H
Use Ho instead of H whenever culvert has supercritical flow in the barrel.
*-*Use Type L for a distance of 3H downstream.
FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
NOTE: When specifying or ordering grates -
Please refer to "CHOOSING THE PROPER INLET GRATE" on pages 108 and 109.
'
R-2560 Series
Beehive Grates with Frames
Suitable for drainage
in circumstances when: clogging of a flat grating is
a problem.
Excellent for
roadside or earth ditch catch basins.
Furnished standard
with as -cast bearing surfaces.
'
Dimensions In Inches
Catalog
Frame
No.
A
B
C
E
F
G
Reference
R-2560-A
12
1
11
19
4
4
R-1791-A
'
R-2560-C
18
11/4
161/2
30
8
4
R-1900-A
R-2560-Cl
22
11/2
20
28
4
41/2
R-1690
R-2560-C2
22
11/2
201/2
211/4
6
41/2
1-1161
'
R-2560-D
22
11/2
20
35
9
41/2
R-1710
R-2560-Dl
22
1 1/2
20
28
4
7
R-1690
R-256D-02
22
11/2
201/2
281/4
6
7
R-1761
R-2560-03
22
1 1/2
20
35
9
7
R-1710
'
B-2560.05
22 3'4
1 1/2
21 1/4
34
4
41/2
R-1647-A
R-2560-06
22 314
1 1/2
21
34
9
4 1/2
R-1713
R-2560-D7
22 :'4
11/2
211/4
34
4
7
R-1647-A
R-256G-08
22 3/4
1 1/2
21
34
9
7
R-1713
'
R-2560-E
23
1 1/2
21
36
9
7
R-1550-A
R-2560-EA
25 2V4
7/8
241/8
35 1/2
4
6
R-1733-1
'
R-2560-EB
25 3/4
7/8
241/8
351/2
4
9
R-1733-1
R-256D-Et
25 3/4
7/8
241/8
351/2
7
6
R-1733
R-256G-E2
25 NA
7/8
241/8
351/2
7
9
R-1733
R-2560-E5
25 3/4
7/8
241/8
351/2
8
6
R-1733-A
R-256D-E6
25 3/4
7/8
241/g
351/2
8
9
R-1733-A
R-2560-E7
25 314
7/8
241/8
351/2
9
6
R-1733-B
R-2560-EB
25 314
7/8
241/8
351/2
9
9
R-1733-B
R-2560-E9
25 314
7/8
241/8
351/2
10
6
R-1733-C
'
R-2560-E10
25 3/4
7/8
241/8
351/2
10
9
R-1733-C
R-256D-G
32
1 1/2
30
46
7
4
R-1740-B_
A
mm4 �mm Te 1
,
F
C�
E
1
M
1
Illustrating R-2560-E
NEENAH L I ' 99
FOYNOi7Y =MWWY
(NOTE: When specifying or ordering grates -
!Please refer to "CHOOSING THE PROPER INLET GRATE" on pages 108 and 109.
-2561
igh Beehive Grate and Frame
1
12561-A
Same as R-2561 except with e" oeehive
te.
mish=_d standaro with as -cast __a•:ng surfaces.
ive Gratelaad Frame
,signed to fit in Dell of 24" =_ev:_ c:oe.
Furnished standarc :with as-cas- ___ring surfaces.
1
� 2564
ehive Grate
Designed to fit in oe:i of 24"-
Inished stand=_rc with as -cast c ng surfaces.
= �N
/ n\
25 3W
2<
33 7116' —�
22
Uses R-1733 frame.
I®
Uses
Uses R-1761 frame.
�0 NEENAH `�
I
7t�
1
1
' APPENDIX I
Excerpts from other Reports
P P
I
I
I
1
1
No Text
.STD
1
- STORM SEWER 'SYSTEM DESIGN USING UDSEWER MODEL- -
Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver
Metro Denver Cities/Counties & UDFCD Pool Fund Study .
USER:TST Inc Consulting Engineers
..........................
ON.DATA
06-20-2001 AT TIME.15:56:21
..........................
VERSION=07-17-1995
'
*** PROJECT
TITLE :Willow Brook
ST-9 Ultimate
*** SUMMARY
OF HYDRAULICS AT MANHOLES
MANHOLE
CNTRBTING
RAINFALL RAINFALL
DESIGN
GROUND
WATER
COMMENTS
ID NUMBER AREA * C
DURATION INTENSITY
PEAK FLOW
ELEVATION
ELEVATION
- MINUTES
INCH/HR
--------
-----CFS----_-FEET------FEET--
--------
1.00
0.00
0.00
0.00
139.90
4871.40
4871.40
OK
2.00
294.44
270.56
0.48
139.90
4878.50
4871.41
OK.
3.00
280.67
253.97
0.50
139.90
4895.70
4880.63
OK
4.00
13.77
51.76
1.56
21.50
4894.00
4883.37
OK
5.00
12.82
46.41
1.68
21.50
4894.00
4884.69
OK
6.00
253.13
276.21
0.47
118.40
4896.60
4882.54
OK
7.00
55.08
403.33
0.35
19.30
4894.80
4883.52
OK
8.00
41.31
276.64
0.47
19.30
4892.30
4883.82
OK
9.00
27.54
161.12
0.70
19.30
4892.20
4884.10
OK
10.00
13.77
60.85
1.40
19.31
4189.75
4884.39
OK
'
11.00
12.82
54.72
1.50
19.30
4889.75
4884.79
OK
12.00
185.22
231.23
0.54
99.10
4896.00
4888.95
OK
13.00
172.40
210.18
0.'57
99.10
4899.50
4890.67
OK
14.00
15.00
158.63
14.71
188.05
111.47
0.62
0.92
99.10
13.50
4899.80
4898.00
4892.37
4893.68
OK
OK
16.00
0.94
5.00
14.29
13.50
4898.00
4893.76
OK
17.00
130.14
175.50
0.66
85.60
4902.60
4894.64
OK
18.00
117.32
152.56
0.73
85.60
4906.20
4895.75
OK
'
�19 '00 ` A14' 71
'238..:15
' 0.52
- 7..70
4904.•00..,
. •4898.70
OK.
20'*00
0.94
'5..-00
8.15
7..70
4904..00
- 4898..73
OK,
23.00
12.82
5.13
4.72
60.50
4906.00
4896.16
OK
.24:00
91.67
555.65
0.27
25.10
4906.60
•4898.06
OK
25.00
64.13
562.23
0.27
17.40
4908.60
4900.49
OK
26.00
51.30
420.80
0.34
17.40
4910.50
4902.87
OK
27.00
38.47
288.76
0.45
17.40
4912.50
4905.25
OK
'
28.00
25.65
168.36
0.68
17.40
4912.90
4905.58
OK
29.00
12.82
63.84
1.36
17.40
4913.00
4905.82
OK
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
'
*** SUMMARY
OF SEWER HYDRAULICS
NOTE:
THE GIVEN
FLOW DEPTH -TO -SEWER SIZE RATIO= .85
SEWER
MAMHOLE NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE DIA(RISE)
DIA(RISE)
DIA(RISE)
WIDTH
NO,
ID N0.
(FT)
(IN) (FT)
(IN) (FT)
(FT)
------- ------ID
12.00
-
2.00
- ---------------------
1'.00
-(IN)
ROUND
-----
47.53
----- -----
48.00
----- ----- ---------
54:00
0.00
23.00
3.00
2.00
ROUND
40.66
42.00
54.00
0.00
N
34.00
45.00
4.00
5.00
3.00
4.00
ROUND
ROUND
18.16
18.16
21.00
21.00
21.00
21.00
0.00
0.00
36.00
6.00
3.00
ROUND
48.41
54.00
54,.00
0.00
1
•67.00
7.00
1.00
ROUND
29.33
.30.00
30.00
0.00
'78.00
8.00
7.00
ROUND
29.33
30.00
30.00
0.00
89.00
9.00
8.00
ROUND
29.33
'30.00
30.00
0.00
910.00
10.00
9.00
ROUND
29.33
30.00
30.00
0.00
1011.00
11.00
10.00
ROUND
29.33
30.00
30.00
0.00
612.00
12.00
6.00
ROUND
36.03
42.00
54.00
0.00
1
1213.00
13.00
12.00
ROUND
49.60
54.00
-54.00
0.00
1314.00
14.00
13.00
ROUND
49.60
54.00
54.00
0.00
1415.00
15.00
14.00
ROUND
22.52
24.00
24.00
0.00
1
1516.00
16.00
15.00
ROUND
22.52
24.00
.24.00
0.00
1417.00
17.00
14.00
ROUND
46.95
48.00
48.00
0.00
1718.00
18.00
17.00
ROUND
46.95
48.00
48.00
0.00
1
1823.00
1824.00
23.00
24.00
18.00
18.00
ROUND
ROUND
41.22
30.55
42.00
33.00
48.00
36.00
0.00
0.00
;2419..'00
-19.00
24.00
:ROUND
19.03
:21.00
24.00
0.00
'1920.:00
20.00
.19.00 "-ROUND
_19...03
;21,.00
.24.00
- -0.00
2425.00
25.00
24.00
ROUND
26.63
.27.00
24.00
0.00
2526.00
26.00
25.00
ROUND
26.63
27.00
24.00
0.00
2627.00
27.00
26.00
ROUND
26.63
27.00
24.00
0.00
2728.00
28.00
27.00
ROUND
26.63
27.00
24.00
0.00
1
2829.00
29.00
28.00
ROUND
26.63
27.00
24.00
0.00
DIMENSION UNITS FOR ROUND
AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX
SEWER ARE
IN FEET
1
REQUIRED DIAMETER WAS DETERMINED BY SEWER
HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED
BY COMMERCIALLY
AVAILABLE
SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE
SUGGESTED SEWER SIZE;
OTHERWISE,
1
EXISITNG SIZE WAS USED
-------------------------------------------------------------------------------
SEWER DESIGN FLOW
NORMAL
NORMAL
CRITIC
CRITIC
FULL
FROUDE
COMMENT
ID FLOW Q FULL Q
DEPTH
VLCITY
DEPTH
VLCITY VLCITY
NO.
1
NUMBER
-------- --------
CFS CFS
--------
FEET
--------
FPS
FEET
FPS
FPS
12.0
139.9 197.2
----------------
2.80
13.45
--------
3.48
-----------------------
10.61
8.80
1.54
V-OK
23.0
139.9 299.0
2.16
18.48
3.48
10.61
8.80
2.51
V-OK
1
34.0
21.5 31.8
1.05
14.19
1.60
9.31
8.94
2.66
V-OK
45.0
21.5 31.8
1.05
14.19
1.60
9.31
8.94
2.66
V-OK
36.0
118.4 159.0
2.89
10.96
3.19
9.83
7.44
1.22
V-OK
1
67.0
19.3 20.6
1.92
4.76
1.49
6.35
3.93
0.60
V-OK
78.0
19.3 20.6
1.92
4.76
1.49
6.35
3.93
0.60
V-OK
89.0
19.3 20.6
1.92
4.76
1.49
6.35
3.93
0.60
V-OK
'
910.0
1011.0
19.3 20.6
19.3 20.6
1.92
1.92
4.76
4.76
1.49
1.49
6.35
6.35
3.93
3.93
0.60
0.60
V-OK
V-OK
612.0
99.1 292.5
1.81
16.61
2.92
9.08
6.23
2.52
V-OK
1213.0
99.1 124.7
3.03
8.70
2.92
9.08
6.23
0.93
V-OK
1314.0
99.1 124.7
3.03
8.70
2.92
9.08
6.23
0.93
V-OK
1
1415.0
13.5 16.0
1.41
5.72
1.32
6.14
4.30
0.89
V-OK
1516.0
13.5 16.0
1..41
5.72
1.32
6.14
4.30
0.89
V-OK
1417.0
85.6 91.1
3.08
8.24
2.83
9.00
6.81
0.83
V-OK
1718.0
85.6 91.1
3.08
8.24
2.83
9.00
6.81
0.83
V-OK
1
1823.0
60.5 91.1
2.38
7.76
2.34
7.93
4.81
0.97
V-OK
1824.0
25.1 39.0
1.75
5.86
1.63
6.42
3.55
0.86
V-OK
14 3
=1. 04. '
. 4. 65
1.01 -
' 4'.'83 ' -
2: 45:'
0: 90
V-OK'
1
1920 0"
7:7 ". 14.3
1 04
4.65,
1.01
_: 4.83
2.45
0.90
V-OK
2425.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
2526.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
2627.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
N
2728.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
2829.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
1
'5--g
FROUDE.NUMBER=0 INDICATES THAT'P.
PRESSURED FLOW OCCURS
----------------------------------------------------------------------
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
------------------------------
%
(.FT)
----------
(FT)
(FT)
(FT)
.12.00
1.00
4867.23
4867.00
---------- --------------------
6.77
-0.10
NO
'
23.00
2.30
4877.15
4870.94
14.05
3.06
OK
.34.00
4.00
4881:77
4879.64
10.48
14.31
OK
45.00
4.00
4881.79
4881.75
10.46
10.50
OK
36.00
0.61
4171.20
4877.15
12.90
14.05
OK
'
67.00
0.25
4881.47
4881.22
10.83
12.88
OK
78.00
0.25
4881.80
4881.47
8.00
10.83
OK
89.00
0.25
4882.10
4881.80
7.60
8.00
OK
910.00
1011.00
0.25
0.25
4882.30
4882.31
4882.10
4882.31
4.95
4.94
7.60
OK
4.94
OK
612.00
2.20
4886.03
4879.43
5.47
12.67
OK
1213.00
0.40
4887.63
4886.03
7.37
5.47
OK
1314.00
0.40
4889.30
4887.63
6.00
7.37
OK
'
1415.00
0.50
4890.00
4889.80
6.00
8.00
OK
1516.00
0.50
4890.01
4890.00
5.99
6.00
OK
1417.00
0.40
4891.10
4889.30
7.50
6.50
OK
'
1718.00
0.40
4892.60
4891.10
9.60
7.50
OK
1823.00
0.40
4892.78
4892.59
9.22
9.61
OK
1824.00
0.34
4895.63
4895.15
7.97
8.05
OK
:2AI9..:00
`;1920'.,0.0.
'' 0.40
-4896.0,0
4895.64
6.00
8.96
OK
0.40
..4896.01
4896.01
5.99
5.99
OK
2425.00
0.34
4896.99
4895.63
9.61
8.97
OK
2526.00
0.34
4898.35
4896.99
10.15
9.61
OK
'
2627.00
2728.00
0.34
0.34
4899.71
4899.89
4898.35
4899.71
10.79
11.01
10.15
OK
10.79
OK
2829.00
0.34
4900.02
4899.89
10.98
11.01
OK
OK MEANS BURIED DEPTH
IS GREATER THAN REQUIRED SOIL
COVER OF
1 FEET
'
*** SUMMARY
OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER
SEWER SURCHARGED
CROWN ELEVATION
------------------------------
WATER ELEVATION
FLOW
ID NUMBER
LENGTH
LENGTH UPSTREAM
DNSTREAM UPSTREAM
DNSTREAM
CONDITION
12.00
FEET ----FEET--
FEET
----------------------------------------
FEET
FEET
FEET
22.50
0.00
4871.73
4871.50
4871.41
4871.40
JUMP
23.00
270.00
0.00
4881.65
4875.44
4880.63
4871.41
JUMP
'
34.00
45.00
53.22
1.00
0.00
0.00
4883.52
4883.54
4881.39
4883.50
4883.37
4884.69
4880.63
JUMP
4883.37
JUMP
36.00
315.69
0.00
4883.70
4881.65
4882.54
4880.63
JUMP
67.00
101.35
0.00
4883.97
4883.72
4863.52
4882.54
SUBCR
78.00
131.40
0.00
4884.30
4883.97
4883.82
4883.52
SUBCR
'
89.00
120.97
0.00
4884.60
4884.30
4884.10
4883.82
SUBCR
910.00
80.00
0.00
4884.80
4884.60
4884.39
4884.10
SUBCR
1011.00
1.00
0.00
4884.81
4884.81
4884.79
4884.39
SUBCR
612.00
300.00
0.00
4890.53
4883.93
4888.95
4882.54
JUMP
1213.00
400.00
0.00
4892.13
4890.53
4890.67
4888.95
SUBCR
1314.00
417.96
0:00
4893.80
4892.13
4892.37
4890.67
SUBCR
N
1415.00
1516.00
40.60
1.00
40.00
1.00
4892.00
4892.01
4891.80
4892.00
4893.68
4893.76
4892.37
PRSS'ED
4893.68
PRSS'ED
1417.00
450.00
0.00
4895.10
4B93.30
4894.64
4892.37
SUBCR
1
1718.00 374.42
0.00
4116.60
4195,11
1195,71
1114.64
SUBCR
1823.00
46.35
0.00
4896.78
4896.59
4896.16
4895.75
SUBCR
1824.00 139.72
0.00
4898.63
4898.15
4898.06
4895.75
SUBCR
:2419...00
91.14
91.14
4898.00
4897.64
4B98.70
4898.06
PRSS'ED
1920.00
1.00
1.'00
4898.01
4898.01
4898..73
4898:70.PRSS'.ED
1
2425.00 400.00
400.00
4898.99
4897.63
4900.49
4898.06
PRSS'ED
2526.00 400.00
400.00
4900.35
4898.99
4902.87
4900.49
PRSS'ED
2627.00 400.00
400.00
4901.71
4900.35
4905.25
4902.87
PRSS'ED
1
2721,00
2829.00
52.31
37.28
52.31
37.28
4901,81
4902.02
4911.71
4901.89
4905.58
4905.82
4905.25
4905.58
PRSS'ED
PRSS'ED
PRSS'ED=PRESSURED FLOW;
JUMP=POSSIBLE
HYDRAULIC JUMP; SUBCR=SUBCRITICAL
FLOW
1
*** SUMMARY OF
ENERGY GRADIENT
LINE ALONG
SEWERS
-------------------------------------------------------------------------------
UPST
MANHOLE
SEWER
JUNCTURE LOSSES
DOWNST MANHOLE
1
SEWER MANHOLE
ENERGY
FRCTION
BEND
BEND LATERAL LATERAL
MANHOLE
ENERGY
ID NO ID NO.
-------------------------------------------------------------------------------
ELEV FT
FT
K COEF LOSS FT K
COEF LOSS FT
ID
FT
1
12.0 2.00
4872.61
1.21
0.35
0.00
0.00 0.00
1.00
4871.40
23.0 3.00
4882.37
9.52
0.20
0.24
0.00 0.00
2.00
4872.61
34.0 4.00
4884.72
1.09
1.01
1.25
0.00 0.00
3.00
4882.37
45.0 5.00
4885.93
0.90
0.25
0.31
0.00 0.00
4.00
4884.72
1
36.0 6.00
4883.40
0.00
0.05
0.04
0.25 0.99
3.00
4882.37
67.0 7.00
4883.91
0.26
1.01
0.24
0.00 0.00
6.00
4883.40
78.0 8.00
4884.15
0.22
0.08
0.02
0.00 0.00
7.00
4883.91
89.0 9.00
910.0 10.00
1011.0
4884.44
4884.72
0.27
0.18
0.08
0.46
0.02
0.11
0.00 0.00
0.00 0.00
8.00
9.00
4884.15
4884.44
11.00
4885.03
0.25
0.25
0.06
0.00 0.00
10.00
4884.72
612.0 12.00
4890.23
6.08
0.05
0.03
0.25 0.71
6.00
4883.40
1213.0 13.00
4891.86
1.60
0.05
0.03
0.00 0.00
12.00
4890.23
1
1314.0 14.00
4893.54
1.64
0.05
0.03
0.00 0.00
13.00
4891.86
1415.0 15.00
4893.97
0.14
1.01
0.29
0.00 0.00
14.00
4893.54
1516.0 16.00
4894.04
0.00
0.25
0.07
0.00 0.00
15.00
4893.97
'
1417.0 17.00
4895.69
1.70
0.05
0.04
0.25 0.42
14.00
4893.54
1718.0 18.00
4896.81
1.08.
0.05
0.04
0.00 0.00
17.00
4895.69
1823.0 23.00
4896.72
0.00
1.01
0.36
0.00 0.00
18.00
4896.81
1824.0 24.00
4898.59
1.10
0.05
0.01
0.25 0.67
18.00
4896.81
1
2419.0 19.00
4898.79
0.10
1.01
0.09
0.00 0.00
24.00
4898.59
1920.0 20.00
4898.82
0.00
0.25
0.02
0.00 0.00
19.00
4898.79
2425.0 25.00
4900.97
2.35
0.05
0.02
0.00 0.00
24.00
4898.59
2526.0 26.00
2627.0 27.00
4903.35
4905.72
2.35
2.35
0.05
0.05
0.02
0.02
0.00 0.00
0.00 0.00
25.00
4900.97
2728.0 28.00
4906.06
0.31
0.05
0.02
0.00 0.00
26.00
27.00
4903.35
4905.72
2829.0 29.00
4906.30
0.22
0.05 .0.02
0.00 0.00
28.00
4906.06
1
BEND LOSS =BEND K* FLOWING FULL VHEAD IN
SEWER.
LATERAL LOSS=
OUTFLOW
FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS
IT IS NEGLIGIBLE OR POSSIBLE
ERROR DUE TO JUMP.
'
FRICTION LOSS
INCLUDES
SEWER INVERT
DROP
AT MANHOLE
NOTICE: VHEAD
DENOTES
THE VELOCITY
HEAD OF FULL FLOW CONDITION.
A MINIMUM JUCTION
LOSS
OF 0.05 FT WOULD BE
INTRODUCED
UNLESS LATERAL K=O.
'
FRICTION
LOSS
WAS ESTIMATED
BY BACKWATER
CURVE COMPUTATIONS.
1
>1
A;
\<
0 0
)�\>,\
<
7
Qo
0
>1
Im
>1 >
>/
U
M