Loading...
HomeMy WebLinkAboutDrainage Reports - 08/08/2002 (2)2004 HIGH SCHOOL FINAL DRAINAGE & EROSION CONTROL STUDY for ............................. ............................ :I?o idk SthodIDlSfi'i I R I ............................ ............................. ............................ 2407 LaPorte Avenue Fort Collins, Colorado 80521 by Nolte Associates, Inc. 1901 Sharp Point Drive, Suite A Fort Collins, Colorado 80525 (970) 221-2400 June 24, 2002 I 1 1 1 1 1 1 1 1 1 1 1 M 1 2004 HIGH SCHOOL FINAL DRAINAGE & EROSION CONTROL STUDY for ............................. ............................ ............................ 2407 LaPorte Avenue Fort Collins, Colorado 80521 0 Nolte Associates, Inc. 1901 Sharp Point Drive, Suite A Fort Collins, Colorado 80525 (970) 221-2400 June 24, 2002 B E Y O N D E N G I N E E R I N G ' June 24, 2002 1 Mr. Basil Hamdan City of Fort Collins 700 Wood Street Fort Collins, CO 80521 RE: Drainage and Erosion Control Study for the 2004 Fort Collins High School Dear Basil: We are pleased to submit to you, for your review and approval, the Drainage and Erosion Control Study for the 2004 Fort Collins High School. All computations within this report have been completed in compliance with the City of Fort Collins Storm -Drainage Design Criteria and Construction Manual and the Urban Storm Drainage Criteria Manual. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. ' Sincerely, I* Nolte Associates, Inc. Prepared by: Greg A. Dreeszen, E.I.T. Junior Engineer cc: File FC0194 NOLTE ASSOCIATES, INC. 1901 SHARP POINT DRIVE, SUITE A FORT COLLINS, CO 80525 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM Thomas M. Ochwat, P.E. Senior Engineer BEYOND ENGINEERING N I Final Drainage & Erosion Control Study 2004 High School TABLE OF CONTENTS PAGE ' 1.0. INTRODUCTION........................................................................................................1 1.1 Site Location..................................................................................................... 1 1.2 Existing Site Description...................................................................................1 1 1.3 Proposed Project Description............................................................................ 1 2.0 METHODOLOGY.......................................................................................................2 ' 2.1 Compliance with Standards............................................................................... 2.2 Analytical Methods........................................................................................... 2 2 3.0 HISTORIC DRAINAGE CONDITIONS..................................................................... 3 3.1 Major Basin Description.................................................................................... 3 4.0 DEVELOPED DRAINAGE CONDITIONS 3 ' 4.1 General Concept ............... ................................................................. 3 4.2 Basin Descriptions............................................................................................. 4 ' 4.3 Detention Pond Design...................................................................................... 7 5.0 EROSION CONTROL................................................................................................. 8 5.1 General Concept............................................................................................... 5.2 Specific Detail ................................................................................................... 8 9 5.0 CONCLUSIONS.......................................................................................................... 5.1 Drainage Concept............................................................................................. 9 9 REFERENCES........................................................................................................... 10 ' APPENDIX A - Developed Site Hydrology APPENDIX B - Street Capacity Calculations ' APPENDIX C - Inlet Design APPENDIX D - Swale Calculations ' APPENDIX E - Storm Drain Design APPENDIX F - Detention Pond Calculations APPENDIX G - Erosion Control Calculations ' APPENDIX H - Charts, Tables & Graphs APPENDIX I - Excerpts from other Reports BACK POCKET — Overall Drainage Plan (Sheet DROI) - Overall Grading and Erosion Control Plans ' Nolte Associates, Inc. i N:\FC0194\DrainagelWord1Fc0194_DrainageReport_Final.doc RE Y O N D E N G INS E R I No 1.0 1.1 Site Location Final Drainage & Erosion Control Study 2004 High School The proposed Fort Collins 2004 High School (Site) is located in south Fort Collins. The Site is bordered to the north by Rock Creek Drive; to the east by Cambridge Avenue; to the south by Kechter Road; and the to the west by Ziegler Road (Refer to Exhibit 1, Vicinity Map). More particularly, the Site (90t acres) is located in the Southwest Quarter of Section 4, Township 6 North, Range 68 West of the 6m Principal Meridian, City of Fort Collins, County of Larimer, State of Colorado. 1.2 Existing Site Description In general, the existing Site slopes south and east along grades that vary between 0.5 percent and 3 percent. The existing Site is presently irrigated cropland. According to the results of the geotechnical subsurface exploration report that was prepared by Earth Engineering Consultants, Inc., (Dated: November 14, 2001) the existing Site is comprised of topsoil/vegetation underlain by light brown lean clay with varying amounts of silt and sand. Other pertinent on -site features include the following • Three small buildings and a two-story farmhouse that are located near the Site's west property line. • Three irrigation ditches that traverse the Site from west to east. The first follows the north property line of the Site; the second runs through the north third of the parcel; and the third splits the parcel approximately in half. The City of Fort Collins Parks and Recreation Department will allot the area to the south of the third ditch for future development. • The McClellands Channel runs west to east through the southern third of the Site. This reach of McClellands Channel will be within the City of Fort ' Collins Parks property. ' The Site lies within the McClellands Creek Watershed Basin. The existing on -site runoff currently flows overland and is captured by the irrigation ditches or McClellands Creek. 1.3 Proposed Project Description ' The proposed 2004 High School will consist of one two-story, predominantly brick building that covers 258,746 ft2 (5.94 acres). There are four separate parking areas will provide the school with approximately 1200 parking spaces. The two largest parking areas are located south of the proposed building. A third and Nolte Associates, Inc. I N:\FC01941Drainage\Wor&FcOI94_DminageReport_Final.doc 2:02 p.m. DATE: 03/12/02 PATH: N:\fcOI94\CADD\CP\ R: FCS1 SERVICE: PROJECT DRAWING NAME: ETDR0I.DWG : LetterP �a0�,d 5ti 0 v i ND Ygh h� l �1NESARK t cc 7`` c°,trso ciR :REEK sr s r`yGr�ANi77F"_1UlYPl�. a .� '.' YEccowsr Cr��, _. hiaRrtlt p1 , _: Gtll_NOOK :LlV:. -- �! Hewlett- �• � ,`; Packard I ui•- : PROJECT ss SITE -a a a�1 -a-a-a a. 'a i • a a. as .a.• 00 525 2004 HIGH SCHOOL VICINITY MAP r 31 kY< i_ a. N.T.S. B E Y O N D E N e 1 N E E R I N 0 IM °W Fart °M °M A. Fart cm"" C0' eos>s PREPARED FOR: Poudre School DlStrict R-1 DATE SUBMITTED: 03/13/02 S?QnU 00 TEL OY02K 4! FAX WWW=TEC011 a7 SHEET NUMBER 1 OF 1 SHEETS JOB NUMBER FC0194 NOLTE BEYOND ENGINEERING N Final Drainage & Erosion Control Study 2004 High School smaller parking area lies to the west of the proposed building. The fourth and smallest parking lot will be located in the northeast corner of the Site. The north portion of the Site will be heavily landscaped and contain a meandering pedestrian walkway. The area on the east side of the building will consist of numerous athletic fields and a running track. A truck docking area has been designed for the west side of the building. Vehicle access for the Site will be from west via Ziegler Road, from the east via ' Cambridge Avenue and from the north via Rock Creek Drive. In addition, the Site will include a dual use detention/irrigation pond located in the ' southeast corner. The irrigation raw water will come two irrigation laterals. The Poudre School District has raw water shares from Warren Lake and the New ' Mercer Lateral. The Warren Lake raw water will be conveyed from the north via a proposed pipe system and the onsite storm sewer system. The New Mercer Lateral raw water will be conveyed from the west (NEC of the Kechter Road and Ziegler ' Road intersection) via a separate pipe system. The irrigation raw water storage will used to irrigate the high school, the adjacent CFC parks parcels and Zach Elementary School located to the south and east along Kechter Road. ' 2.0 METHODOLOGY 2.1 Compliance with Standards The final drainage and erosion control study that follows was prepared in ' accordance with the requirements and procedures for storm drainage design set forth in the City of Fort Collins Storm -Drainage Design Criteria and Construction ' Manual (FC-SDDCCA4) and the Urban Storm Drainage Criteria Manual (Manual). 2.2 Analytical Methods ' The Rational Method was used to analyze the minor and major design storm runoff (I0-yearand 100-year). This method is widely accepted for drainage design involving small drainage areas (<160 acres) and short times of concentration. The Rational Method relates peak discharge to the runoff coefficient, rainfall intensity, and drainage area. The rainfall intensity and runoff coefficients were taken from the FGSDDCCM. ' This method is ideal for storm sewer sizing and simple detention pond sizing or M design situations where only the peak flow rate and/or the total volume of runoff are needed. 1 Nolte Associates, Inc. 2 N:\FC0194\Drainage\WordTc0194_DrainageReport_Final.doc ' NOLTE Final Drainage & BEYOND ENGINEERING Erosion Control Stu dy 2004 High School N The FAA Method was used to estimate the detention pond size requirements. This value was multiplied by a factor of 1.50 to simulate results from a SWMM model and to allow extra assurance that adequate volume is provided. ' In addition to the methods mentioned above, this drainage study was prepared ' using hydraulic software packages from Haestad Methods and the Urban Drainage and Flood Control District, including: StormCAD, FlowMaster, HydroPond, and UD Inlet. HEC-2 software was used to model the proposed McClellands Channel improvements. 3.0 HISTORIC DRAINAGE BASINS 3.1 Major Basin Description ' The 2004 High School Site lies within the McClellands Creek Master Drainage Planning Area. An updated master drainage plan for McClellands Creek, ' McClellands Creek Master Drainage Plan Update (Dated: November 30, 2000), was completed by ICON Engineering, Inc. ' According to the Update, McClellands Creek is located in the southern part of Fort Collins and begins near the northeast corner of the intersection of College Avenue and Harmony Road. McClellands Creek flows in a southeasterly direction ' to Swift Pond. The mandated developed release rate for this area is 0.5 cfs per tributary acre. Because of this criterion, no historic drainage calculations were made. ' 4.0 DEVELOPED DRAINAGE CONDITIONS 4.1 General Concept 1 w In general, the majority of on -site developed runoff will sheet flow across landscaping or asphalt to a local area inlet that outlets to the sub -surface storm drainage system. The roof drainage will be captured by an internal piping system and dispersed to one of two different sub -surface conveyance systems that are located to the north and south of the building. The sub -surface storm drainage system will transport the developed runoff to on -site detention facility that will be located in the southeast corner of the Site. The three on -site parking areas that are located to the west and south of the building will act as local detention facilities and release developed runoff to the detention/irrigation facility at a rate of 0.50 cfs/acre. Nolte Associates, Inc. N:\FC0194\Dminagc\WontFcOI94_DminageReportjinal.doe I P 1 i 1 i 1 1 BEYOND ENGINEERING Final Drainage & Erosion Control Study 2004 High School Developed runoff along the Site's undeveloped west side (interim condition) will continue to sheet flow across existing terrain and drain into the existing irrigation ditches. An interim condition occurs in which undeveloped basins in the northwest comer of the site will contribute runoff to the system. During this interim condition, the parking lot ponds will release the total tributary area at 0.50 cfs/acre. At the time when the northwest corner lots are developed, they will be required to detain/release into the proposed system at 0.50 cfs/acre. The proposed storm sewer system has been designed and provides a connection point at manhole location for this future development. The basins to the north of the proposed building will sheet flow to either Rock Creek Drive or to the local detention facility that is located in the northeast comer of the soccer fields. This detention pond (i.e., Basin 403) will release at 1.20 cfs to the east and into detention pond in Basin 400. From here, an outlet structure will restrict the release of storm water (i.e., 7.70 cfs) to an off -site system located in Rock Creek Drive. Basins along the southern half of Rock Creek Drive will drain to a proposed 15' Type `R' curb inlet (i.e., D.P. 204) and release into the proposed detention pond in Basin 400. 1 The main sub -surface drainage system will route storm water runoff as well the Warren Lake raw irrigation water to a detention/irrigation facility located in the southeast corner of the Site. This pond will provide water quality capture volume, 1 detain the 100-year storm event and maintain a permanent water surface elevation below which irrigation water will be stored. The pond will release to McClellands Creek via a 50' spillway at a rate of 0.50 cfs/acre. 1 t2 Basin Descriptions Basin 100 pertains to the building's roof drainage. The roof drainage has been 1 designed by MKK Consulting Engineers, Inc. using the Uniform Building Code. An intensity of 3-in/hr was used equating to 15.75 cfs exiting the building to the ' south and 2.36 cfs leaving each drain from the north. There are four roof drain connections on the south side of the building that will connect to 15" PVC. This storm water will outfall into a 3-ft wide (bottom -width) grass -lined swale located 1 in Basin 308. The intent of this swale and associated planting is to provide a bio- swale environment. There are two roof drains that exit the building from the north. The northeast drain connects to 12" PVC that routes the runoff to a storm system that runs east along Rock Creek Drive. The northwest drain ties into system `B' at 1 SDB-MH314. Basin 101 (0.12 ac) is the truck docking/maintenance yard. This area's runoff will flow to a trench drain located at the bottom of the truck ramp. NThe runoff will then be routed into the school's interior roof drainage system. Nolte Associates, Inc. 4 N.WC0194Ukainap%WwWcOI94 DreinageReport_Final.doc r� P i 1 i 1 1 1 1 1 1 1 J 11 1 BEYOND E N G I N E E R I N G Final Drainage & Erosion Control Study 2004 High School Basins 200-204 border the Site to the east and north. These basins are bounded by the centerline of the adjoining streets and neighboring high points. The developed runoff in Basin 200 (1.23 ac) flows across landscaped areas and sidewalks and enters existing curb and gutter that routes the runoff north to D.P. 200. Basin 201 (1.33 ac) sheet flows across landscaped areas and sidewalks to a low point in the landscaping. An area inlet will capture the runoff and route it to the on -site sub- surface drainage system. Basin 202a (1.13 ac) sheet flows across a tennis court playing surface and sidewalks and enters existing curb and gutter that routes the runoff south to D.P. 200. A 10' Type `R' Wet was designed to accept the runoff from basins 200 and 202a. Runoff from Basin 202b (2.46 acres) flows across landscaped areas and sidewalks and enters existing curb and gutter that routes the runoff south to D.P. 202b where the flow is intercepted by a 20' on -grade Type `R' inlet. Runoff from Basin 203 (1.29 ac) flows overland across landscaping and enters curb and gutter that routes the runoff north to D.P. 203. A 10' Type `R' curb inlet was designed to accept the developed runoff and route it to the north to the detention pond in Basin 400. Basin 204 (3.36 ac) borders the Site to the north and encompasses a portion of the east half of Ziegler Road and the south half of Rock Creek Drive. Runoff will be routed by curb and gutter to a 15' on -grade Type `R' curb inlet located at the east end of the basin (near the corner Rock Creek Drive and Cambridge Avenue). This runoff will be routed to the detention facility in Basin 400. Basins 300-315 are located on the interior of the Site. The developed runoff in Basins 300 (0.66 ac), 301a (1.80 ac), 301b (1.42 ac), 302a (0.27 ac), 302b (0.59 ac), 309 (0.89 ac), and 310 (1.67 ac) traverse landscaped areas and half street areas and enter curb and gutter that routes the developed runoff to its respective design point. This developed runoff will be captured by Type `R' curb inlets and routed to storm drainage system `B'. The bypass flow at the inlets at D.P. 300 and 301a will follow curb and gutter to system `A' located to the south along Cambridge Avenue. The developed runoff from basins 303 (3.56 ac), 304 (1.52 ac), 305a (3.45 ac), and 305b (3.51 ac), respectively, will be intercepted in area inlets in each basin and routed to the sub -surface drainage system. An underdrain system utilizing ADS AdvanEDGE pipe will run along the south and west perimeter of the adjacent ball field. The underdrain will route surface runoff nuisance away from the field. Developed runoff from Basin 308 (0.51 ac) will flow into the swale and enter a 24" NRCP culvert at D.P. 308. Ultimately, this runoff ' will be routed overland to D.P. 303. Refer to the swale calculations in Appendix D for further information. The main parking areas will act as local detention facilities that release storm water from the major event at a rate of 0.5cfslacre. Basins 306 (2.66 ac), 307 (4.79 ac), 311 (3.17 ac), 312a (7.18 ac), and 313a (4.71 ac) will 1 None Associates, IDc. 5 N:\FC0194\Dnunage\Word\Fc0194_DramageReport_ uW.doc BEYOND ENGINEERING Final Drainage & Erosion Control Study 2004 High School capture local developed runoff in grass4ined bio-swales located in the center of each basin within the parking lot median islands. The runoff will enter the swales through under -sidewalk drains and flow overland to area inlets. The inlets will have orifice plates attached either to the pipe entrance or to the grate itself. These ' inlets route the runoff to storm drainage system `B' at a rate of 0.5 cfs per tributary acre. The plates on the inlets at D.P. 312a and 313a will need to be replaced once the future commercial lots to the west are developed. The major ' storm event ponding limits are shown on the overall drainage plan. Basin 313b (1.02 ac) was delineated to calculate the street capacity for the north entrance to ' the faculty parking lot. A high point at this entrance does not allow street runoff to enter the school site at this location. Basins 311b (0.57 ac) and 312b (2.12 ac) will flow overland to curb and gutter to design points located at the entrance to the parking lot. Basin 314 (1.63 ac) is located to the north of basin 313a and consists ' of mostly pervious terrain. This runoff will be captured in an area inlet within the landscaped area. Basin 315 (0.36 ac) is located adjacent to the west side of the building's west entrance. Runoff from this area will also be collected by a landscape area inlet. Overflow runoff from both Basins 314 and 315 will spill into the faculty parking lot area. ' Developed runoff in basin 400 (2.75 ac) flows overland through the future northeast parking lot. In the interim condition, runoff will sheet flow to the pond. ' During the ultimate condition, runoff will be collected and conveyed via curb and gutter that routes the storm water to curb cuts located at the midpoint of the north end of the future lot. Runoff will enter the local detention pond through curb cuts. An outlet structure is proposed to control the release of storm water to the existing sub -surface storm drain system within Rock Creek Drive. Basins 401 ' (1.86 ac) and 402 (1.86 ac) are delineated around the proposed athletic field and track. The drainage for this facility is currently designed as a trench system along the interior of the track_ Two connection points are designed to take half of the ' runoff each. The north connection, Basin 401, will release into the north detention pond. The south half will be routed to the subsurface storm drain system `B', which will outfall into the southeast detention/irrigation pond. Areas along the ' north and east side of the building will be primarily landscaped and graded for playing fields. Basin 403 (10.80 ac) will attenuate runoff from these landscaped areas in the northeast corner of the basin. An inlet with an orifice plate is proposed to regulate the flow to the pond in basin 400 to 1.20 cfs. An underdrain has been designed to carry nuisance flows from the northwest corner of the field areas east to the inlet at D.P.403. This corner of the basin will act as a detention facility ' during major storm events. Storm water from Basin 404 (1.31 ac) will travel overland through landscaped areas to an area inlet at D.P. 404. If the inlet were to be clogged, the excess runoff would be routed over the sidewalk and continue east within the play field adjacent to Rock Creek Drive. ' Nolte Associates, Inc. 6 N:\FC01940ramage\Word\FoOI94_DmmageReport_Final.doe I ' NC&TE Final Drainage & BEYOND ENGINEERING Erosion Control Study 2004 High School ' Undeveloped runoff in basin 500 (4.43 ac) will continue to flow overland through existing fields toward the northwest parking lot. Proposed curb and gutter will ' route the runoff to D.P. 313a. Runoff in basin 501 (4.39 ac) will flow overland and into an existing irrigation ditch to the south of the basin. Storm water that is not routed to the ditch will be routed to D.P. 312a. Basins 502 (2.04 ac) and 503 (0.88 ac) will route runoff via curb and gutter to a 10' Type `R' inlet that will route flows un-detained to McClellands Channel. As a condition of the un-detained release from Ziegler, Cambridge Avenue runoff will be detained in the detention pond P-300. Developed runoff in Basin 600 (1.68 ac) flows overland through landscaped areas and playing fields to Cambridge Avenue. The flows are collected by curb and gutter that route the flow south to D.P. 601. A 10' Type `R' curb inlet will capture ' the water and route it into the detention/irrigation facility. The developed runoff from Basin 601 (1.97 ac) will flow overland through landscaped areas and playing fields to Cambridge Avenue. This runoff will also be routed by curb and gutter to D.P. 601. Basin 602 (1.24 ac) will capture half street flows from Cambridge Avenue and route the runoff to D.P. 602 where the storm water will be captured by a 10' Type `R' curb inlet. These flows will be routed to the detention/irrigation pond via storm drainage system `A'. ' 4.3 Detention Pond Design The detention pond P-30O located in Basin 1000 will be utilized for runoff from the site as well as raw water irrigation storage. The pond was sized using USDCM ' program Hydropond that utilizes the FAA method. The volume required was 4.29 ac-ft. This volume was multiplied by 1.50 to simulate the results typically given using SWMM modeling to obtain a volume of 6.44 ac-ft. This pond will also ' detain runoff (0.9 ac-ft) from the parcel to the east (Reid Riedlinger Parcel). The water quality volume was determined using USDCM Best Management Practices ' for Retention Ponds. The amount of WQCV required is 0.47 ac-ft. No water quality outlet structure was designed due to the lack of measurable depth over the surface of the pond (3.5+ ac surface area). ' The irrigation volume was mandated by Aqua Engineering is 13.5 ac-ft. This creates a water surface elevation of 4889.37. The storm systems outfalling to this ' pond (System A & B) have been designed to begin construction incorporating this elevation as tailwater. The water quality capture volume increases the water surface to 4889.50 and the 100-yr event runoff increases the water surface to an elevation of 4891.44. The spillway elevation for the has been designed to pond tNolte Associates, Inc. 7 N:\FC0194\Dreinage\Word\Fc0194_DrainageReport_Final.doc � NOLT� BEYOND ENGINEERING Final Drainage & Erosion Control Study 2004 High School 4891.15 to allow the 100- yr. release of 22.2 cfs at the 100-yr. pond elevation. ' This release is equal to 0.5 cfs per acre of the contributing tributary area to the pond. The detention/irrigation pond will also have a secondary release for Stormwater that is collected when the irrigation pond is not at capacity. An 18" PVC drain will allow for measurable release of Stormwater after a rainfall event. The drain will have a valve that will be operated manually. Measurement of the water surface will be made prior to an event allowing for more accurate release. Each parking lot, Basins 306, 307, 31la, 312a, and 313a, act as local detention facilities during the major event. These ponds will detain and release runoff at 0.5 cfs per contributing acre. Basins 306 and 31 la will have an orifice plate attached to the area inlet, restricting the release. Basins 307, 312a, and 313a will have an orifice plate attached to the pipe entrance to inhibit flows to allowable release ' rates. The areas contributing to these ponds are not calculated in the sizing of detention pond P-300. On the north side of the building, the playing fields will act as temporary storage for runoff. The area inlet at design point 403 will have an orifice plate attached to ' the entrance of the exiting pipe to restrict flow. During the 100-yr event the high water line is 4906.76. If this inlet becomes clogged, the water would pond up and spill into basin 400 to the east. Basin 400 contains the northeast detention pond. ' This has a volume of 1.11 ac-ft during the major event. This creates a high water elevation of 4904.08. An outlet structure is designed to regulate the flow into the existing storm drain system in Rock Creek Drive. A pedestrian grate on a Type C outlet will regulate a maximum release of 6.5 cfs. The release from design point 403 releases at 1.20 cfs, which accounts for the remainder of the allowable 7.70 ' cfs. (See Appendix H.) 5.0 EROSION CONTROL ' 5.1 General Concept ' The 2004 High School is in the Moderate Rainfall and Moderate Wind Erodibility Zones per City of Fort Collins zone maps. Until the disturbed ground is re - vegetated, the potential exist for erosion problems during and after construction. ' The Erosion Control Performance Standard (PS) during construction for this project was computed to be 94.36 per the criteria in the City of Fort Collins ' Nolte Associates, Inc. 8 N:\FCOl94\Drainage\Word\FcOI94_DrainageReprnt_ inal.dac NOLTE BEYOND ENGINEERING M I I Final Drainage & Erosion Control Study 2004 High School Erosion Control Reference Manual for Construction Sites. The Effectiveness (EFF) of the proposed erosion control plan was calculated to be 77.00. The proposed erosion control methods meet the City of Fort Collins' requirements. Calculations can be found in Appendix G. 5.2 Specific Detail Prior to commencement of the overlot grading, vehicle tracking controls and silt fence must be installed as shown on the Grading and Erosion Control Plans. All disturbed areas that will not be paved shall be mulched and seeded within 30 days of the beginning of grading operations unless otherwise approved by the Stormwater Utility. Upon completion of the curb inlets, area inlets and sidewalk chases, inlet protection and straw bale check dams shall be installed. Straw bale check dams shall also be placed around the outlet works of the northeast pond, prior to construction in this area. These straw bales shall be left in place until re - vegetation growth is well established. 19 All construction activities must comply with the State of Colorado permitting process for Storm water Discharges Associated with Construction Activity. ' 6.0 CONCLUSIONS 6.1 Drainage Concept tThe proposed drainage concepts presented in this study and shown on the preliminary drainage plans adequately provide for the conveyance of developed ' runoff from the proposed development. I 1 1 Nolte Associates, Inc. N:\FC0194\Drainage\Word\Fc0194_DndnageReport_Final.doe ' NO� Final Drainage & BEYOND ENGINEERING Erosion Control Study 2004 High School ' 1. Storm Drainaize Design Criteria and Construction Standards (FC-SDDCCM), City of Fort Collins, Colorado (Revised January 1997). 2. Drainage Criteria Manual (Manual), Urban Drainage and Flood Control District, Wright - McLaughlin Engineers, Denver, Colorado, June 2001. 3. McClellands Creek Master Drainage Plan Update, City of Fort Collins, Colorado, prepared by Icon Engineering, Inc., November 30, 2000. (Draft Report) 4. Flood Plain Modeling Report McClellands Channel Improvements, for Fossil Lake P.U.D. ' Second Filing, City of Fort Collins, Colorado, prepared by Northern Engineering Services, Inc., November 30, 2000. I 1 P ' Nolte Associates, Inc. 10 N:\FC0194\Drainage\WordTc0194_DrainageReport_Final.doc I M 1 1 1 1 1 1 1 k i 1 r APPENDIX A Developed Site Hydrology 1 _I .a ain ii:&C -,: M. ` Project#: FC0194 Project Name: 2004 High School ' Calculated By: GAD, HHF Date: 3/11/2002 BEYOND E N G I N E E R I N G Per Table 3-3 (City ofFon Collins Stonn Drainage Design and Constnnion Standards) C;,,a,,.;°,n= 0.95 Cram 0.50 C2mna., .= 0.25 . Ce°noae,evt= 0.85 C,% 0.20 Total Total Total Total Total Basin Impervious 2 to 7% lawn <2% Lawn Artificial Turf Commercial 10 yr. 10 yr. 100 100 Overland Average Channelized Average Area Area Area Area Area Area Area %Impervious Composite"C" Cr CCr Cf CCr. Basin Length Slope Length Slope ft2 ac. ft2 ft2 ft2 ft2 ft2 ft % ft % 100 250,604 5.75 250,604 0 0 0 0 100% 0.95 ` 1.00 1..0.95 1.25 .1:00 100 n/a I n/a n/a n/a - -- - - - 101 5,370 0.12 5,370 0 0 0 0 1000/0 0.95 i 1.00 0.95 ..., 1.25 �,:<1t00 •,n•: 101 1018 I 275 n/a n/a 1 200 53,732 1.23 15,937 0 37,795 0 0 30% 0.42 1.00 '10A2 1.25 ="''0'S3' . 200 220 I 1.99 190 0.50 201 58,105 1.33 15,192 0 42,913 0 0 26% 0.40 1.00 1 - -0.40 -' 1.25 InO:SOt' 201 143 5.88 200 1.50 202a 49,193 1.13 43305 0 5,888 0 0 88% 0.86 1.00 6-Fi0.86==:; 1.25rz_L'00 -_' 202a 207 0.50 207 0.68 202b 106,975 2.46 27,494 0 79,481 0 0 26% 0.39 ' 1.00 I -039 1,25 '..0.49 202b - 96.26 2.00 509 0.68 203 56,408 1.29 27,551 0 -_0 28,857 0 0 49% 0.57 1.00 I . '' 0.57 1,25 ;? "'0.71 203 96 ! 2.00 356 0.60 204 146,197 3.36 87,467 58,731 0 0 60% 0.65 1.00 1 0.65 ` 1.25 1"`0.81 204 40 2.00 2759 0.50 1 -- 1 1 1 1 1 300 28,539 0.66 7,294 0 21,245 0 0 26% "' 0.39 1.00 1.._..0.39- 1.25 �e0.49 ._ 300 212 i 1.50 246 0.64 301a 78,214 1.80 10,839 67,375 0 0 0 14% 0.35 1.00 1 035 1.25 1 ' 0.43 301a 313 1.50 200 0.50 301b 62,042 - 1.42 35,726 26,316 0 0 0 58% 0.65 1.00 I 0.65 1.25 �_, .0M. 301b 97 5.14 870 0.63 302a 11,974 0.27 11,106 832 0 0 0 93% 0.90 1.00 I-:-.0.90 1.25 :=1.00:: _ 302a 16 2.00 330 0.80 302b 25,751 0.59 22,081 3,670 0 0 0 86% 0.85 1 1.00 I "0.W"' 125 %_-.P'1`:00" 302b 15 ! 2.00 794 0.84 i 303 155,000 3.56 7,504 0 147,496 0 0 5% 0.24 1.00 ' 0:24 ! 1.25 .=:,030 _ 303 313 1.50 249 2.57 304 " 66,018 1.52 5,767 0 60,251 0 0 9% 0.27 1.00 1.25 1,4. 0 33 "" 304 ' 312 1 1.50 71 0.50 305a 150,108 3.45 31,158 0 118,950 0 0 21% 0.36 1.00 1 `-036. -.'.4 1.25 1» (1:44>=-- 305a 1 173 1 2.10 137 2.00 305b 152,917 3.51 19,894 0 133,023 0 0 13% 0.30 1.00 r_',030'=- 1 1.25 j `" 37e'^. 305b 168 i 2.00 208 2.00 306 115,946 2.66 87,832 13,706 14,308 0 0 76% 0.77 1.00 1 •0.77 _- 1.25 `�S'0:97 "` • 306 ! 109 862 275 100 307 208,463 4.79 124,379 69,117 14,967 0 0 60% 0.66 1.00 '40.66--'i 125 '083 307 i 160 1 564 282 100 308 22,185 0.51 0 0 22,185 0 0 0% 0.20 1.00 J ='° 020`:1 1.25 1't:.7015'-.'' 308 1 63 i 25.00 272 0.50 309 38,920 0.89 19,327 19,593 0 0 0 _ 50% 0.60 1.00 I=_;^0.60-.. 1.25 0:75 - 309 i 90 1 3.75 287 1.08 310 72,532 1.67 28,871 43,662 0 0 0 40°/a i 0.53 1.00 +z;:0!53-==a I25 `v0.66'•'• 310 91 3.75 309 0.80 311a 138,008 3.17 93,632 25,501 18,875 0 0 68% 0.72 1.00 (: 0.72 1.25 1..=0100._., 311a 238 1 340 165 100 311b 24,715 0.57 15,162 9,553 0 0 0 61% 0.68 1.00 1:'s0.68='-.;+ 125 v�018ALt5� 311b ! 53 1 10.00 193 0.90 I 312a 312,817 7.18 116,139 175,162 21,516 0 0 37% 0.51 + 1.00 /"OSI..`:_`; I.25 ,:;a,0:63'-.r.• : 312a 257 2.36 272 1.75 312b 92,265 2.12 36,052 56,214 0 0 0 39% 0.52 1.00 (e: =t0.52 i " 125 "<. 0:65'-r 312b ' 452 1 1.55 11 309 0.68 313a 204,968 4.71 116,078 88,890 0 0 0 57% 0.65 i 1.00 a+i 65*"'q 125 !^ tO:817tRi 313a 1. 425 2.11 1 77 1 1.31 ! 313b 44,536 1.02 11,644 32,892 0 0 0 26% + 0.43 1.00 i,'>043 125',0154r�;.�`! 313b 1 269 0.69 1 57.93 0.66 1 314 71,133 1.63 4,795 - - 66,338 0 0 0 7% 1 0.30 1 1.00 s030NA 1.25 *a`it037 r! 314 1 111 1.76 1 203 ! 1.33 1 315 15,710 036 2,658 13,052 0 0 0 17% 0.37 1.00 125 :'0A6.:.:4' 315 1 64 I 2.12 1 146 1.70 400 119,791 2.75 60,964 58,827 0 0 0 51% 0.61 1.00 125 >-<jw,0:76c �� 400 244 I 2.24 211.75 1.90 401 - 81.237 1.86 26,221 0 _ 0 55,015 0 32% 0.65 1.00 I,.".i0.65 1.25 '�"?'0.8Y .' 401 315 1 1.55 45 1.55 402 81,229 1.86 25,607 _ 0 _ 0 55,622 0 32% 0.64 1.00 (`-= 0.64 -:- . 1.25 ,= 0:80-'- 402 315 1.55 45 1.55 403 _ 470.267 10.80 3_5,290 0 434.977 0 0_ 8% - 0.26 1.00 1' ' 026 1.25 1-- 0.32 403 264 - 2.10 742 1.02 404 57,092 1.31 3,698 53,395 -_ _0 -_ 0 _ 0 6% 0.30 _ 1.00 ;'- 0.30 1.25 J - 0.37 404 245 2.10 23 2.46 500 192,925 4.43 0 0 192,925 0 0 0% _ - 0.20 1.00 ,L020 1.25 V -0:25---'-- 500 I 178 1 1.13 402 0.50 ' - 501 191,029 4.39 - 0 0 I91,029 0 -- 0 0% 0.20 1.00 ;020 ' L25 a025 : 501 500 1 0.80 16 0.80 _ 502 88,687 2.04 51,920 36,767 0 0 0 59% 0.66 1.00 1 ,-.•0.66 1.25 ..0:82 .: 502 43 2.00 1288 - 0.89 503 38250 0.88 29,883 8,367 0 0 0 78% 0.80 1.00 1:T- UV�`,, 1.25 )1 00-• - 503 1 45 2.00 894 1.17 6(10 72,984 _ 1.68_ 16,9713,822_- 52,191--_ - 0 0 --- 23% 0.38 1.00 �..0.38 1.25 0:47 .�: 600 i 338 ' 'I 2.08 164 1.00 601 85,859 1.97 24,563 5,567 55,730 0 0 29% -, - 0.42 1.00 xz;0.42Fi'! 1.25 1 0:32 ..i 601 i 310 1.25 i 401 1.33 + 602 53,800 1.24 44,709 ' 9,092 0 0 0 83% 0.83 i 1.00 9= 0.81x=1 1.25 q>7' .00 i 602 1 20 1 2.00 1 988.67 i 1.10 i 1000 305,242 7.01 _ 0 177,265 -127,977 0 0- - 0°/a 0.23 i 1.00 ':• -'0.23 -- 1.25 w 029'-`-' _ _ 1000 327 1.60 91 _ 16.76 _- Total Site 4,139,751 95.04 1,514,439 869,229 1,645,410 110,637 0 037 FC0194_Rational-Fort Collins.xls 2:27 PM I M 7 1 1 1 Date: 3l112002 Calculxtcd BY GAD, Fffff BEYOND E N 0 1 N E E R 1 N G Design Sturm: 10 ym (Dncloped) DATA INITIAUOVERLA.ND TIME(Q TRAVEL TIME (t,) FINAL t Dniage Basin (Il Design Point Ifa) Ana ands) (21 Runoff Coef6nmt C (3 Frequency Facto Ct (3a) CCt (361 Length R f4 Slope % (5 4 min 161 Length R 7) Slope % Iel Velociry Nstt f9 4 min IO Computed t. min f121 100 1 100 5.75 1 0.95 1 1 M 0.95 Na Na no da Na I da MOO I 10.00 I 101 1 101 0.12 1 0,95 1 100 1 095 102 1 275 202 0 000 1 n/a 1 1000 I 1202 I 200 1 200 1.3 1 OA2 1 1.00 042 220 1 1.99 14.94 190 Os0 JAI 1 2.24 17.18 I 201 1 201 1.33 1 0.40 1 1.00 040 143 ! 5.99 S.71 200 L50 2,45 1 1.36 10.09. I 2023 I 202a 1.13 1 0.86 1.1 0.86 217 "1 ! 1,12 207 0.68 1 1.65 1 2.09 I 202b 202b 2.46 0.39 L00 0.J9 96 2.00 ! 10.30 509 0.68 1.65 5.14 203 203 1.29 0.57 1.00 0.57 96 2.00 7.76 356 0.60 L53 3.83 11.59 ! 204 I 204 3.36 0.65 im 0.65 40 2.00 4.24 2759 0.50 1 1.41 1 32.52 I 300 1 30D 0.66 1 0.39 1 IAO 1 0.39 212 1 1.50 ! 16.85 246 0,64 1 1.60 1 2.56 - 19.41 I 301a 301a 1.90 I 0.35 100 0.35 313 1.50 21.77 1 200 0.50 1 1.41 1 2.36 --=-2T12'. 1 301b I 301b 1.42 0.65 L00 0.65 97 5.14 i 4.77 870 0.63 1 1.59 1 9.14 "13.91 3023 1 302a 0.27 0.90 1.00 0,90 16 2.00 1 1.20 330 0.80 1 1.79 1 3.07 -- 5.00 '.=-- 302b 302b 0.59 0.85 1.00 0.85 IS 2.00 ! 1.4a 794 0.84 1.83 7.22 303 303 3.56 1 0.24 1.00 0,24 313 1.50 1 24.97 249 2.57 1 2,40 1 1.72 - 26.69 304 304 1!,"0.27 LOD 027 312 1.50 i 24.08 71 0.50 1 1,06 1.17 305a 305a 3.15 I 0.36 LW 0.36 173 1 2.10 14.30 137 2.00 1 2.12 1 1.08 15.39 I 305b 305b 3.51 1 0.30 1 1.00 1 0.30 168 1 2,00 1S44 208 2,00 I 2.12 1 1.63 17.07 7-7 1 306 1 306 2,66 1 0.77 1 LOO 1 0.77 109 1 8.62 3.10 275 1.00 1 1.50 1 3.06 6.16 1 307 1 307 4.79 I 0.66 1.00 0.66 1 160 1 3.64 5.80 282 1.00 1 1.50 1 3.13 - 8.93 I 308 1 308 0.51 0.20 1 1.00 ! 0.20 63 25.00 4.57 272 0.50 1 1.06 309 1 309 0.89 1 060 1.00 0.60 1 90 3.75 1 5,74 287 L08 2.08 230 804 1 310 310 L67 0.53 L00 0.53 91 3.75 6,56 309 0.80 1.79 288 944 311a I 3112 3.1-1 10.72 1.00 0.72 238 3.40 7.33 165 1.00 1 1.50 I 1.83 - 9.16 - I 311b 1 311b 0,57 1 0.68 1 L00 1 0.66 1 53 10.00 1 2.65 193 0.90 1 1.90 I -1 70 -.. 5.00 I 3123 I 312a 7.18 I 0.31 1. 10 0.51 257 2.36 1 13,37 272 1.75 1 1.98 1 2.28 -- - :.15.65 - ! 3126 3126 212 I 0.52 1.00 0.52 452 1.55 1 19.91 309 0.68 1,65 I 3.12 - ' �'2293 313a 313a 4.71 1 0.65 1 1.00 1 0.65 425 2.11 1 13,64 77 1 1.31 229 1 056 1420 7: 313b 313b 1.02 0,43 1.00 043 269 0.69 1 23.12 58 1 066 ! L62 059 2372 314 314 1.63 0.30 1.00 0.30 111 1.76 ! 13.11 ! 203 1.33 1.73 1 1.96 15 06 ;L . 315 315 1 036 1 0.37 1.00 037 64 2.12 1 8.52 ! 146 1 1.70 1 1.96 1 124 - 9.77 400 400 275 1 0.61 1 1.00 0.61 244 224 1 11.03 212 1.90 1 2.07 1 L71 -- = '12.74 - 401 I 401 1.86 1 0.65 1 1.00 1 065 315 I 1.55 13.04 45 L55 1 1.87 1 0.40 - 13.44 - ! 402 1 402 1.86 1 0.64 1 1.00 0.64 315 1 1.55 i 13.14 45 1.55 1 1.87 1 0.40 - 13.54 '. 1 403 403 10.80 1 0.26 1 1.00 0.26 264 2.10 20.02 742 1.02 1 L51 1 8.16 28.19 ! 404 I 404 1.31 1 0.30 1 1.00 1 0.30 245 2.10 119.40 23 2,46 7.35 1 0.16 -. 18.56 ` 500 Soo 443 1 0.20 1.00 0.20 179 1 1.13 1 21.56 402 0.50 1 049 I 13.54 `- 35.09 501 501 4.39 ! 0.20 1 1.00 I 010 SOD 1 0.so - 40.54 16 0.80 ! 0.63 ! 0.42 - ` . 40.95 502 I 502 204 I 0.66 I W 1 066 43 ! 200 d 1288 089 1 189 1 1138 - '1138 503 1 503 1 0.88 I 0.80 100 O80 45 200 1 da 1 am 1 1.17 1 > sa 1 490 601 I ow 1 601 I 1." 1.97 1 u.36 0.42 1 M L00 I 0.38 442 336 310 2.08 1.25 1 1948 20.85 164 401 l 1.00 1.33 1 2.00 1 > v - 1 137 2094 602 602 121 1 0.93 1 00 OS 3 >n 7 m 1 1.78 7.96 96/ 10110 1 1000 I 7.01 1 0.23 1.00 0.23 327 L60 1 25.19 i 91 1 16.76 1 6.14 1 0.25 _ - 25A3 Raaed Fbws ' 600 1 601 I 1.66 0.38 LW 0.38 318 2.06 1 19.48 1 657 t L06 I 2.06 ( 5.32 77'24.79 - ! 311b 1 3112 057 I 0.68 1.00 068 53 1 1000 1 265 517 - 093 1 182 1 e73 I 3121, 312a 2.12 1 0.52 1.00 0.52 1 452 1 1.55 19.81 681 L61 2.54 1 4.47 24.28 ' 313b I 313a 1.02 1 OA3 1 100 1 043 I 269 1 069 2312 427 211 291 245 2557 3Wb I J02a 0.59 1 0.85 1 L00 1 085 15 1 2,00 L. 1067 0.67 1.64 1 10,97 - . 12-30 1 n M ' - FC0194_RatiNul-Fen CoOva.xls 226 PM I lab\umber: FC0194 Date: 3/112002 Project: 2004 High School ■ Calculated By. GAD. HHF E! O N D E' N G I N E! R I N G Design Storm: 100 year(Developed) DATA ' INITIAL/OVERLAND TIME(tj TRAVELTIME f4) FINAL 4 Dniaage Basin (11 Design Point l(a) Area acre(s) (2) Rlalotf Coelfi<ient C (3) Frequenry Factor Cr (3a CC1 3b) Length R (4 Slope % (5 4 min (6) Length R Slope % (6 Velocity N'sec (9 4 min (10 Computed �. min 13 I0i 1 100 5.75 0.95 1.25 I 1.00 1 Na No Na I Na I Na I Ra I Na 10.110 I01 101 0.12 1 a95 1.25 1 1.00 1 102 1 273 Na Na n1a I N N 1000 200 200 I 1.23 1 0.42 1.25 1 0.53 1 220 1.99 12.61 190 0.50 1 1.41 1 2.24 ,14.85- 201 I 201 1 L33 i 040 1 1.25 1 0.50 1 143 5.88 1 7.50 1 200 1.30 1 2.45 1 1.36 8.96 -. 202a 1 202a 1 L13 1 0.86 In 1 1.00 1 207 1 0.50 3.39 207 0.68 1.65 1 2.09 5.48 20'b 202b 1 2.46 1 0.J9 I l.0 0.49 96 2.00 8.87 509 0.68 1.65 5.14 :14.01 " 20, 203 1 1.29 ! 0.57 1.25 0.7I 96 2.00 5.70 356 0.60 1 1.55 3.83 :9.53 20e 204 1 3.36 1 0.65 1 L25 0.81 1 40 1 200 2.71 27591 0.50 I 'Al I 32.52 [35.23 - - 300 300 i 0.66 1 0.39 1 1.25 0.49 1 212 1.50 14.52 246 0.64 1.60 2.56 47.08'. `- 301a 301a ! 1.80 1 0.35 1 1.25 0.43 313 L50 19.26 200 0.50 1.41 1 2.36 --:2R61-`•= 301b 301b i 142 1 0.65 1 1.25 0.82 97 1 5.14 3.03 1 870 0.63 1.59 9.14 '-12-16----/' 302a 1 3022 1 0.27 0.90 1 1.25 LOD 16 2.00 0.59 1 330 I 0.80 1.79 I 3.07 --5.00'-'.` " 302b I 302b 1 0.59 1 0.95 1 1.25 1.00 I 15 2.00 0.57 1 794 0.84 1.83 1 7.22 'i .7.80r.--. -. 303 1 303 1 3.56 i 0.24 1 1.25 1 0.30 1 313 1 1.50 23.26 1 249 2.57 2.40 1.72 5'24:98-: r- 1 3Pe 304 I 1.52 0.27 I 1.25 0.33 312 I L50 22.77 71 0.50 1.06 1.12 '= '2328 305a 305a i 3.45 1 0.36 1 1.25 0.44 173 2.10 12.59 137 2.00 2.12 1 1.08 13.67 3050 305b 1 3.51 1 0.30 1 1.25 0.37 768 2.00 14.01 I 208 2.00 1 2.12 1 L63 .;15,64r 305 306 2.66 0.77 L25 0.97 109 8.62 1.26 1 275 1.00 1.50 3.06 '"5.00-'- 307 307 1 4.79 ! 0.66 1 1.25 1 0.83 1 160 1 5.64 3.59 1 282 1.00 1 1.50 1 3.13 t6.72- 305 308 1 0.51 1 0.20 1.1 0.25 63 1.00 4.32 272 0.50 1 1.06 1 4.27 - '8.59" - 309 309 1 0.89 0 60 ! 1.25 0.75 90 1 3.75 4.03 1 287 1.08 1 2.08 1 2.30 ' 6.33 1 310 310 I 1.67 1 0.53 1 1.25 0.66 91 I 3.75 5.05 1 309 0.80 1.79 2.88 '.'.i7.92f "- 3112 3lla I 3.17 1 0.72 1 1.25 0.90 236 1 340 1 3.88 1 165 1 1.00 1 1.50 1 1.83 ;5:72 1 31lb 311b 057 0.68 1 1.25 I 0.85 53 1 10.00 1.59 1 193 0.90 1 1.90 1.70 5.00. `- -- - 3132 I 3122 7.18 0.51 I L25 1 0.63 257 1 2.36 10.52 1 272 1 1.75 1.98 1 2.28 -:-12:80- 313, 312b 212 I 0.52 115 0.65 452 1.55 15.31 1 309 0.68 1.65 3.12 d-."18.44 I 313a J13a 4.71 1 0.65 1 1.25 0.81 425 2.11 8.76 77 1.31 2.29 j 0.569.34' :o - ! 313b 313b L02 0.43 I 1.25 0.54 269 0.69 19.37 58 0.66 1.62 0.59 1996 .' 374 314 1.63 0.30 I L25 0.37 I11 1.76 IL89 203 1.33 1.73 1.96 1385 315 315 0.36 1 0.37 1 1.25 0.46 64 2.12 7.45 146 1.70 1.96 1 1.29 1.4 669' - _ I 400 400 ! 275 1 0.61 I, 1.25 76 24 7.65 I 212 90 11...55 21.0877 1 98..3954:-- 401 1.86 1 0.65 1 1.258 I 1.87 0.40 8:82 � 40_' 102 L86 I 0.64 I 1.25 0321 1.5 45 01..4701 -- . =-- - 403 I 1080 1 0.26 I 1.25 0403 6 50 I 742 404 1 404 1 1.31 1 0.30 1 1.25 1 0.37 1 245 1 210 1 16.71 1 23 500 Soo I 4A3 1 0.20 1 1.25 0.25 178 113 2036 402 O50 049 1354 =3 390='=' _ 501 I 501 I 4.39 1 0.20 1 1.25 0.25 500 0.80 38.28 16 0.80 063 I 0.42 38.70 502 502 ! 2.04 I 0.M 1 1.25 1 0.82 43 2.00 1 Na 1 1288 nAa 1 va 11.38 11.38 503 503 1 0.88 1 0.80 1 1.25 100 45 200 n1a1 1.17 1 216 1 690 1 690+ - -� 600 600 1 1.68 1 0.38 1 1.25 0.47 338 2.08 16.94 1 164 1.0It 200 1.37 :p .'18:3 1 601 601 1.97 1 0.42 i 1.25 ( 0.52 310 1.25 17.66 1 401 1.33 231 I 2.90 -. .2036- I 602 602 I 124 1 0.83 1 1.25 1.00 20 2.00 0.66 1 939 1.10 2-10 I 7.86 1000 1000 7.01 0.23 1 1.25 0.29 1 327 1.60 23.53 91 1 16.76 1 6.11 1 0.25 :. '.23-78-=-i - Rauh Flans 600 601 I 1.68 0.38 1 1.25 0.47 338 2.08 16.94 1 657 1 1.06 --fO6-j 5.32 2226 2s; e . I 3111, 311a I 0.67 1 0.68 1 125 0.85 63 10.00 1.68 517 1 0.83 1.82 4.73 631.._zl', I 312b 312a ! 2.12 1 0.62 1 1.25 0.65 452 1.55 16.31 681 1 L61 2-54 1 447 - `19.79.F ' 313b 313a 1.02 0.43 1 1.25 1 - 0 54 268 92 0 69 19.37 1 426.93 2.11 1 2.91 1 2,45 21.82 302b 302a 0.59 1 0.85 1 L25 1 1.00 15 1 2.00 _ - 0.57 1 1067 I 0.67 1 1.64 1 10.87 11.44 - - A ' FC0194_RariauFFort Collna.xls 2:30PM I M 1 1 1 1 1 1 r Job Nurnber. FC0194 Pmject 2004 High School NOXE Date: 3/112002 Calculated By: GAD, HHF Design Storm 2 year (Developed) BEYOND ENGI N EERING DIRECT RUNOFF Design Rainfall Basin Point Aof rea Area CCt t: CCr • A Intensity Flow (Q) Design acre(s) min acre(s) in/hr cfs 1 (2) (3) 4 5 (6) 7 (8) (9 100 100 I 100 I 5.75 0.95 10.00 ! 5.47 3.78 20.66 101 101 I 101 0.12 0.95 12.02 0.12 3.54 ' 0.41 200 200 1 200 1.23 0.42 17.18 0.52 1 2.99 -'1:56 - 201 201 201 1.33 0.40 10.09 0.53 1 3.77 -:-.1:99 202a 202a I 202a 1.13 0.86 10.21 0.97 1 3.75 -. -:3i65 202b 202b 202b 2.46 0.39 15.44 1 0.96 ! 3.15 203 203 I 203 L29 0.57 1159 0.73 I 3.59 2.63 - -'- 204 1 204 204 3.36 0.65 3635 2.18 1.94 =•4:22-1 300 300 I 300 0.66 1 0.39 19.41 0.26 1 2.79 301a 301a 1 301a 1.80 0.35 24.12 0.62 1 2.49..1'.i5- 301b 301b 301b 1.42 0.65 13.91 0.93 3.32 _."cr:3:09 i=- 302a 302a 302a 0.27 0.90 5.00 0.25 1 4.87 =.L20- 1 302b 302b 302b 0.59 0.85 8.66 0.50 4.07 -,:2.05 -� 303 303 303 3.56 - 0.24 26.69 0.84 1 2.36 `.1.99. 304 304 I 304 1.52 0.27 I 25.20 I 0.40 2.43 0.98 • ! 305a 305a I 305a 3.45 0.36 1538 I 1.23 I 3.16 _c':3.87-:-, 305b 3056 I 305b 3.51 0.30 17.07 1.04 1 3.00 "314 - 306 306 I 306 2.66 0.77 6.16 2.06 1 4.62 :-. )9:51 '- 307 307 1 307 4.79 0.66 8.93 3.18 1 4.01 , J112.75 308 i 308 308 0.51 0.20 8.85 0.10 4.03 309 1 309 i 309 0.89 0.60 8.D4 0.53 4.21 ,' 2:25.'•t:.; 310 310 I 310 1.67 0.53 9.44 0.88 I 3.90 3,-7-- 311a 311a I 311a 3.17 0.72 9.16 2.28 I 3.96 '-.[9:01'�`=_- 311b 31 lb I 311b 0.57 0.68 5.00 0.39 1 4.87 -'.' 11188!-� 312a 312a I 312a 7.18 0.51 15.65 1 3.64 3. 33 ,"11>39". "' 312b 312b 3126 2.12 0.52 22.93 1.11 2.56 2:84 313a 3132 3133 4.71 0.65 14.20 3.04 3.28 9.99+C' 313b 313b 1 313b 1.02 0.43 1 23.72 0.44 2.52 '-'';':"T:19 -•:I 314 314 314 1.63 0.30 15.06 0.49 I 3.18 ': _..1i55 ". 315 315 315 0.36 0.37 9.77 0.13 I 3.83 400 400 1 400 2.75 0.61 1 12.74 I 1.67 I 3.46 '•'-5.76-..: 401 i 401 401 1.86 0.65 13.44 1.20 3.37 `'4!06'> 402 ! 402 402 1.86 0.64 13.54 1.20 3.36"4:02'-�=== 403 1 403 403 10.80 0.26 28.19 2.77 2.29 -:T6 35f- 404 1 404 404 NI 0.30 1856 0.39 1 2.87 '. ` 1 1I `1 -- 500 ! 500 500 4.43 1 0.20 1 35.09 1 0.89 501 I 501 501 4.39 0.20 40.95 0.88 1.90 1.58 <• - 502 I 502 502 1 2.04 0.66 503 ( 503 503 0.88 0.80 6.90 0.70 4-46 '-.-3:12_.e::` 1000 1000 1 1000 1 7.01 0.23 1 25.43 1 1.60 ;A4 Rotted Flows Basins I Design Point I 1: CxA 1 6 I I I Q 200,202 i 200 1 1.49 17.18 1 2.99 1 .: 4.47 600,601 601 1.46 24.79 2.45 . 3.57 311a631lb I 311a 2.66 7.38 4.35 312a, 3126 I 312a 4.75 24.28 2.48 -' 1 L78 "- 313a, 313b i 313a I 3.48 25.57 2.41 FC0194_Rational-Fort Collim.xls 2:24 PM I 1 1 1 t 1 A Job Numba: FC0194 Date: 3/11/2002 Project: 2004 High School Calculated By: GAD, HHF Design Storm: 100 year (Developed) BE Y O N D E N G IN E E It ING DIRECT RUNOFF Design Rainfall Basin Point Area of Area CC( t, CC, • A Intensity Flow (Q) Design acre(s) min acre(s) in/hr CA (1) (2) (3) (4) (5) (6) (7) (8) (9) 100 100 1 100 j 5.75 1.00 10.01 5.75 7.72 I .44.41 101 101 1 101 ! 0.12 1.00 10.00 1 0.12 7.72 1 0.95 200 200 1 200 1 1.23 0.53 14.85 1 0.65 6.56 :4.27 201 201 1 201 133 0.50 8.86 0.66 1.23 5.43, 202a 202a 1 202a 1 1.13 1.00 5.48 I 1.13 94 �181:0 - 220023b 2026 2.46 049 14.01 I 1.21 :":• 06 I 203 l29 0.71 9.53 1 0.92 1 7.93 --'.717" 204 204 204 336 0.81 35.23 2.72 1 4.06 `11.06 300 - 300 300 0.66 0.49 17.08 1 032 1 6.14 •; 1i97C "i-•. 301a 301a 301a 1.90 0.43 21.61 1 0.78 5.40 "-,'41I'. 301b 301b 1 301b 1.42 0.82 12.16 1.16 7.20 ---83T., 302a 302a I 302a 0.27 1.00 5.00 1 0.27 9.95 ..:2.73b: .: 302b 302b 302b 0.59 1.00 7.80 1 0.59 8.70 - 3:14-". 303 303 I 303 3.56 1 030 1 24.98 1 1.05 4.98 .524,-." 304 304 364 1.52 033 23.28 0.50 5.19 - - 2.61 305a 305a 305a 3.45 I 0.44 13.67 1 1.53 6.TM -.10.48 : 305b 305b I 305b I 3.51 ! 037 15.64 131 6.40 836 I 306 306 1 306 1 2.66 0.97 5.00 1 2.57 I 9.95 25.62 . I 307 307 1 307 1 4J9 0.83 1 6.72 1 3.97 I 9.18 "36.47 308 308 i 308 1 0.51 1 015 1 8.59 0.13 I 835 i 1.06. 309 309 I 309 0.89 0.75 I 6.33 1 0.67 9.36 1-' `-624_ - I 310 310 ! 310 1.67 0.66 7.92 1.10 8.65 =-_ 9.51 311a 311a I 311a 3.17 0.90 5.72 2.84 9.63 '"-_-2738. 311b ; 31lb i 311b 0.57 0.85 5.00 0.48 9.95 4.79 "-' 312a i 312a 312a - 7.18 0.63 12.80 4.55 7.05 312b 1 3I26 312b 2.12 0.65 18.44 t.39 5.89 8.16 ` 313a 3132 313a 4.71 0.81 9.34 3.80 8.01 . '30.47'-r:i 313b 313b 313b 1.02 0.54 19.96 1 0.55 5.61 -L�=3:30";"-. 314 314 314 1.63 0.37 13.85 0.61 6.80 =:'-'4.12"` z 315 315 1 315 036 0.46 8.69 0.17 8.30 i1.138 '.- 400 400 400 2.75 0.76 9.35 2.08 8.01 A6.69 401 401 I 401 1.86 0.81 I 8.82 1 1.50 8.25 402 402 1 402 1 1.86 1 0.80 8.94 1 1.50 1 8.19 403 403 I 403 10.80 032 26.67 I 3.46 4.83 404 404 404 1 1.31 037 16.87 1 0.48 6.18 500 500 1 Soo 1 4.43 015 33.90 1.11 4.18 t7 �' '4.63 -t -: 501 501 501 439 015 38.70 1.10 502 1 502 502 2.04 0.92 11.38 1.68 7,39 503 1 50J 503 0.88 1.00 6.90 0.87 9.10 '=----- 600 600 1.68 0.47 18.30 0.79 5.91 :-.=.4(6T IP600 601 1 601 601 L97 0.52 20.56 1.03 5.53 602 1 602 602 124 1 1.00 8.52 1.24 1 838 1000 1000 I 1000 7.01 0.29 23.78 1 2.01 5.131030= -+ Routed Flows Basins Design Point I CxA t, I Q I 200.202a 200 1 1.78 1 14.85 1 6.56 1 11.67 : ! 302a, 302b I 302a 0.87 11.44 737 311a,31lb 311a 1 333 1 631 9.37 31.15 I Controls ( 312a. 312b I 312a ! 5.93 ( 19.79 5.64 :33.46 Controls 313a, 313b i 313a 436 21.82 5.37 502,503 1 502 2.55 11.38 739 tc:18.87 501. 312a, 312b I 312a 7.03 38.70 500,313a, 313b! 313a 5.46 33.90 4.18 : •..22:82'.: ' FC0194_Rational-Fort CoOinsals 221 PM 11 P 1 1 1 1 1 APPENDIX B 1 Street Capacity Calculations 1 n 0 1 1 1 1 J M 1 N 1 1 1 1 1 1 Project Number. FC0194 Designer: GAD Date: 5/6/2002 Given: 1. Modified Manning's Formula for flow in shallow triangular channels: Q = 0.56(Iin)Sonaye0 Where: Refer to figure 1. (below) Q= Theoretical Gutter Capacity, cfs Depth of Flow at Face ofGuner, feet n= Roughness CoefficimL 0.016 So Longitudinal Channel Slope,% S,= Cross Slope ofGuter Pan, feet/feet Se= Cross Slope of Asphalt fectlfat Z= Reciprocal of Cross Slope, feetlfeet 0.016 B E-Y O'N D E N G I N E E R 1 N G Solution: 1. Soht for'Q', S.- 0.0833 Ss= 0.02 Z. = I/S, - 12.00 Z,/n - 75030 Za = 1/Ss - 50.00 Za/n - 3125.00 Y= 0.50 (water depth at cub face, feet) r- 0.41 (warn depth at curb face w/14' CL to FL) Se= See Below (longitudinal slope ofstreet, %) a = 2.00 a = 2.00 Y= 033 }'= 0.24 Therefore, 0.56(Zln)y"- 13533 Therefore. 036(Z/n)Ya7= 95.75 Q - 13533=Sala Q = 74.62-S.,r= Minor Sturm Stan Spread Tame Criteria Widrb FL to CL ft Street Classification Developed pfs Longitudinal Calculated Grade cfs Reductive Factor (See Anached Aflowable c� Design Point(s) 1 Top of Curb I Rock Creek Dr. i 20 Cmeoa 1 4.22 1 0.509/ 9.57 0.65 1 6.22 204 1 O.K. Top of Curb I Cambridge Ave.I 25 come 1.70 1.03% 1 13.71 080 to 09 6nn nn� ' Top of Curb I Cambridge Ave. 25 CoOmar 2.07 1 30% 1 15.43 0.80 12.34 601 O K To ofCurb l CambridgeAst.l 25 cmavr 1 3.96 1 1.41% 1 16.07 0.80 12.86 602 O.K. Top of Curb I Cambridge Ave.1 25 1 Cotavr 1 1.56 1 0.68% 1 11.16 0.80 8.93 200 O K Top of Curb ICartbnd eAve.1 25 1 Cotara 1 11.00 1 0.68% 1 11.16 0.80 8.93 202a O.K. ' Top of Curb I Cambridge Ave.1 25 1 CaOaav 1 8.15 1 0.68% 1 11.16 0.80 8.93 202b O.K. To of Curb I Cambridge Ave. 25 CoOata 2.63 0.64% 1 10.83 0.80 I 8.66 203 O.K. Mane Free Zie nRoad 1 26 Mao Atmial 4.86 2.25% 1 20.30 0.78 15.83 502 O.K. I Crnterline Intrerior Road 1 14 1tad 1.55 1 0.50% 1 6.77 0.65 1 4.40 301a O.K. ' Cveterline I Intrerior Road 1 14 1 tnol 1 3.09 1 0.67 % i 7.94 0.80 1 6.27 1 301 b O.K. Centerline i Inmrior Road 1 Id toot 1 120 0.67% 1 7.94 0.80 i 627 302a OK. 1 Centerline I Intrenor Road I Id tad I 2.05 0.67Y. I 7.8.1 0.80 I 6.27 302b I n e Centerline Invenor Road 1 14 toss 0.72 0.50% I 6 77 0.65 a an inn n e Y b 1 v a r Za Zb Y' Figure 1. D Nolle Assocla/es, Inc. 51612002 10:09AM Gutter Spread - Minor Event (10yr) Worksheet for Gutter Section Project Description N Worksheet Ziegler Road (DP 502) Type Gutter Section Solve For Spread ' Input Data Slope 0.022500 ft/ft Discharge 4.86 cis Gutter Width 2.00 ft Gutter Cross Slope 0.083000 ft/ft ' Road Cross Slope Mannings Coefficient 0.020000 ft/ft 0.016 Results 10.19 ft Spread Flow Area 1.2 ft' Depth 0.33 ft Gutter Depression 1.5 in ' Velocity 4.18 ft/s t P t n:\fc0194\drainage\haestad\fc0194_gutterspread.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 08:34:00 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel ' Project Description N Worksheet Cambridge Avenue - D.P.200 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.006000 ft1ft Water Surface Elevation 100.00 ft t Options Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method ' Results Mannings Coefficient 0.014 ' Elevation Range 99.25 to 100.00 Discharge 38.25 cfs = QGaP Qloo = 4. �! crb OK Flow Area 11.1 ft' Wetted Perimeter 38.63 It ' Top Width 38.00 ft Actual Depth 0.75 ft Critical Elevation 100.02 ft ' Critical Slope 0.004591 fl/ft Velocity 3.46 ftfs Velocity Head 0.19 It Specific Energy 100.19 it ' Froude Number 1.13 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. ' Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+38 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+05 0+13 99.90 99.75 0+13 99.75 0+13 99,25 N 0+ 99.42 0+38 38 99.8888 ' n:\fo0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j) 03/05/02 10:48:44 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 USA (203) 755-1666 Page 1 of 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 N 1 Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description Worksheel Cambridge Avenue - D.P.200 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.006000 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 38.25 cfs 100.00c_ 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 n:\fc0194\drainageXhaestad\sb,eetcapacity.fm2 Nolte Associates Inc 03/05/02 10:51:10 AM m.Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 0+40 V:4.0❑ H:1 NTS FlowMaster v6.1 [614j] Page 1 of 1 Theoretical Capacity - Major Event (100yr) ' Worksheet for Irregular Channel Project Description N Worksheet Cambridge Avenue - D.P.203 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.006400 ft/ft Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotters Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 Elevation Range 99.25 to 100.00 Discharge 39.50 cfs = QCA9 i Qloo c{s Flow Area 11.1 ft' ' Wetted Perimeter 38.63 ft Top Width 38.00 ft Actual Depth 0.75 ft ' Critical Elevation Critical Slope 100.03 ft 0.004560 ft/ft Velocity 3.57 ft/s Velocity Head 0.20 ft ' Specific Energy 100.20 ft Froude Number 1.17 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. ' Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+38 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+05 99.90 ' 0+13 99.75 0+13 99.75 N 0+13 0+15 99,25 99.4242 0+38 99.88 ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:54:01 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 . Page 1 of 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.203 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.006400 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 39.50 cfs 100.00-c- 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ H:1 NTS ' nAfc0194tdrainagethaestadtstreetcapaciry.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:54:10 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 ' Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel ' Project Description Worksheet Rock Creek Drive - D.P.204 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.005000 ft/ft ' Water Surface Elevation 100.00 ft Options ' Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method ' Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 ' Elevation Range 99.25 to 100.00 Discharge 34.67 cfs = �Lqp QI00 = l•O(0 D Flow Area 10.3 ft2 Wetted Perimeter 33.74 ft ' Top Width 33.00 ft Actual Depth 0.75 ft ' Critical Elevation Critical Slope 100.01 ft 0.004368 ft/ft Velocity 3.37 fUs Velocity Head 0.18 ft Specific Energy 100.18 ft Froude Number 1.06 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.224 ft. ' Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+33 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+05 99.90 ' 0+13 99.75 0+13 99.75 0+13 0+15 99,25 99:4242 0+33 99.78 t n:\fc0194\drainage\haestad\streetcapaclty.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:04:19 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 1 1 1 N 1 Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Rock Creek Drive - D.P.204 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.005000 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 34.67 cfs 1 0+00 0+05 0+10 0+15 0+20 0+25 0+30 n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc 03/05/02 11:04:43 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 0+35 V:4.017 H:1 NTS FlowMaster v6.1 [614j] Page 1 of 1 ' Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description N Worksheet Interior Road - D.P.300 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.005000 ft/ft Water Surface Elevation 100.00 ft ' Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method ' Results ' Mannings Coefficient Elevation Range 0.014 99.27 to 100.00 Discharge — 29.90 cfs = Qppp Q too I' q% Flow Area 8.7 ft' Wetted Perimeter 29.28 ft ' Top Width 28.50 ft Actual Depth 0.73 ft ' Critical Elevation Critical Slope 100.02 ft 0.004150 ft/ft Velocity 3.42 ft/s Velocity Head 0.18 ft Specific Energy 100.18 ft ' Froude Number 1.09 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.27 ft. ' Start Station Roughness Segments End Station Mannings Coefficient ' 0+00 0+06 0.013 0+06 0+12 0.035 0+12 0+14 0.013 ' 0+14 0+29 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+06 99.88 ' 0+12 99.77 0+12 99.77 0+12 99.27 N 0+ 99.44 0+29 29 99.7373 ' n:\fc0194\drainage\haestad\sb,eetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614t7 03/05/02 11:40:46 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 I Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Interior Road - D.P.300 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.005000 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.27 to 100.00 Discharge 29.90 cfs 10 0.003- 99.50 9920 — 0+00 0+05 0+10 0+15 0+20 0+25 N ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc 03105/02 11:40:53 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 0+30 V:4.0 H:1 NITS FlowMaster v6.1 [614j] Page 1 of 1 ' Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel ' Project Description Worksheet Interior Road - D.P.301a Flow Element Irregular Channel Method Manning's Formula ' Solve For w Discharge Input Data Slope 0.005000 ft/ft ' Water Surface Elevation 100.00 ft Options ' Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotters Method Closed Channel Weighting Method Horton's Method ' Results Mannings Coefficient Elevation Range 0.015 99.30 to 100.00 Discharge 26.12 cfs = Q ? > c;� loo Flow Area 9.3 ft' Wetted Perimeter 36.57 It ' Top Width 36.00 ft Actual Depth 0.70 ft ' Critical Elevation Critical Slope 100.00 ft 0.005221 ft/ft Velocity 2.82 ft/s Velocity Head 0.12 ft Specific Energy 100.12 ft ' Froude Number 0.98 Flow Type Subcritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.06 ft. ' Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+13 0.013 0+13 0+36 0.016 ' Natural Channel Points Station Elevation (ft) (ft) C 1 0+00 100.00 0+10 99.80 0+11 99.80 0+11 99.30 0+13 99.47 0+36 99.94 n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:16:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Interior Road - D.P.301a Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.015 Slope 0.005000 fVft Water Surface Elevation 100.00 ft Elevation Range 99.30 to 100.00 Discharge 26.12 cfs 10 0.00 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0 ❑ H:1 NTS N ' n:\fc0194\drainage\haestadlstreetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614jj 03/05/02 11:16:51 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) ' Project Description Worksheet for Irregular Channel Worksheet Interior Road - D.P.301b Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.005000 ft/ft ' Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 ' Elevation Range 99.11 to 100.00 Discharge 48.61 cfs = a — Qiop — 8. �! C } 5 Flow Area _AP 12.8 ft' ' Wetted Perimeter 34.99 ft Top Width 34.00 ft Actual Depth 0.89 ft ' Critical Elevation Critical Slope 100.02 ft 0.004133 ft/ft Velocity 3.80 ft/s Velocity Head 0.22 ft ' Specific Energy 100.22 ft Froude Number 1.09 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.48 ft. ' Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+10 0.013 0+10 0+20 0.035 0+20 0+22 0.013 ' 0+22 0+34 0.016 Natural Channel Points Station Elevation (ft) (ft) 0+00 100.00 0+10 99.80 ' 0+20 99.61 0+20 99.61 0+2 0+22 99,11 99.2828 0+34 99.52 (V, ' n:\fc0194tdrainagethaestad�streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j) 03/05/02 11:22:49 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Interior Road - D.P.301 b Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.005000 f /ft Water Surface Elevation 100.00 ft Elevation Range 99.11 to 100.00 Discharge 48.61 cfs 100.0oc- 99.70 99.40 99.10 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 V:4.0❑ HA NTS ' n:\fc0194\drainage\haestadlstreetcapacity.fm2 Notte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:23:03 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description Worksheet Interior Road - D.P.302a Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Slope 0.006700 ft/ft Water Surface Elevation 100.00 It Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.015 Elevation Range 99.39 to 100.16 Discharge 17.37 cfs = Q �qQ QI O0 2.73 C �S Flow Area 6.2 ft' Wetted Perimeter 30.51 It Top Width 30.00 It Actual Depth 0.61 ft Critical Elevation 100.01 ft Critical Slope 0.005737 ft/ft Velocity 2.78 fits Velocity Head 0.12 It Specific Energy 100.12 It Froude Number 1.07 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+08 0.013 0+08 0+38 0.016 Natural Channel Points Station Elevation (ft) (ft) 0+00 100.00 0+06 99.89 0+06 99.89 0+06 99.39 0+08 99.56 0+38 100.16 n:\fc0194WrainageXhaestadlstreetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614j) 03/05/02 11:45:20 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I_ J 1 1 1 1 M 1 Theoretical Capacity- Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Interior Road - D.P.302a Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.015 Slope 0.006700 Wit Water Surface Elevation 100.00 ft Elevation Range 99.39 to 100.16 Discharge 17.37 cfs 100.20 — 99.90`= 99.60 — 99.30 0+00 L- 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ HA NITS n:\fc0194\drainage\.haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614jj 03/05/02 11:45:30 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) ' Worksheet for Irregular Channel Project Description Worksheet Interior Road - D.P.302b Flow Element Irregular Channel Method Manning's Formula tSolve For Discharge Input Data Slope 0.006700 ft/ft ' Water Surface Elevation 100.00 ft 11 Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.015 ' Elevation Range 99.39 to 100.16 Discharge 17.37 cfs = Q Cp,p Flow Area 6.2 W ' Wetted Perimeter 30.51 ft Top Width 30.00 ft Actual Depth 0.61 It Critical Elevation 100.01 ft ' Critical Slope 0.005737 fttft Velocity 2.78 ftls Velocity Head 0.12 ft ' Specific Energy 100.12 ft Froude Number 1.07 Flow Type Supercritical ' Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+08 0.013 0+08 0+38 0.016 ' Natural Channel Points Station Elevation (ft) (ft) 0+00 100.00 0+06 99.89 0+06 99.89 ' 0+06 99.39 .0+08 99.56 0+38 100.16 M > Qtoo = 5, 14 c Ok ' n:\fC0194\drainage\haestafttreetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] - 03(05102 11:46:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Project Description Worksheet Flow Element Method Solve For Section Data Mannings Coefficient ' Slope Water Surface Elevation Elevation Range ' Discharge t 100.20 ' _ 99.9 0'—=� 99.60 99.30 0+00 N Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Interior Road - D.P.302b Irregular Channel Manning's Formula Discharge 0.015 0.006700 ft/ft 100.00 ft 99.39 to 100.16 17.37 cis 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0 ❑ H:1 NTS n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:46:38 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (1OOyr) Worksheet for Irregular Channel Project Description Worksheet Ziegler Road - D.P.502 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Slope 0.022500 ft/ft Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results ' Mannings Coefficient 0.015 Elevation Range 99.19 to 100.00 Discharge 95.99 .cfs = Q ce ? i Q� oo - 12, �S Flow Area 13.6 ft' Wetted Perimeter 42.68 ft Top Width 42.00 ft Actual Depth 0.81 It Critical Elevation 100.22 ft Critical Slope 0.004017 ft/ft Velocity 7.05 ft/s Velocity Head 0.77 ft ' Specific Energy 100.77 ft Froude Number 2.18 Flow Type Supercritical Calculation Messages: Water elevation exceeds lowest end station by 0.16 ft. Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+06 0.013 0+06 0+16 0.035 0+16 0+18 0.013 ' 0+18 0+42 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+06 99.88 ' 0+16 99.69 0+16 99.69 N 0+199.19 0+18 99.3636 0+42 99.84 ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:11:27 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 ' Theoretical Capacity - Major Event (100-yr) ' Cross Section for Irregular Channel Project Description Worksheet Ziegler Road - D.P.502 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Section Data ' Mannings Coefficient 0.015 Slope 0.022500 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.19 to 100.00 ' Discharge 95.99 cfs 100.00^ ' 99.50 - -- — - 99.10 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 ' V:4.0❑ H:1 ' NTS ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:11:34 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel M 11 w Project Description Worksheet Cambridge Avenue - D.P.600 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Slope 0.010300 ft/ft Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotters Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 Elevation Range 99.25 to 100.00 Discharge 50.11 cfs = (x GAp > Ole = 4, G7 cF5 . Flow Area 11.1 ft' Wetted Perimeter 38.63 ft Top'Width 38.00 ft Actual Depth 0.75 ft Critical Elevation 100.09 ft Critical Slope 0.004342 ft/ft Velocity 4.53 ft/s Velocity Head 0.32 ft Specific Energy 100.32 ft Froude Number 1.48 Flow Type Supercritical Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 0+15 0+38 0.016 Natural Channel Points Station Elevation (ft) (ft) 0+00 100.00 0+05 99.90 0+13 99.75 0+13 99.75 0+13 99.25 0+15 99.42 0+38 99.88 d� n:\fc0194\ drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:55:18 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cambridge Avenue- D.P.600 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge ' Section Data Mannings Coefficient 0.014 ' Slope 0.010300 ft/ft Water Surface Elevation 100.00 It ' Elevation Range Discharge 99.25 to 100.00 50.11 cfs 1] 100.001 ' 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 ' VA.0 H:1 ' NITS 1 ' n:\fco194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j) 03/05/02 10:55:28 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.601 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Slope 0.013000 ft/ft Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient ' Elevation Range Discharge Flow Area Wetted Perimeter ' Top Width Actual Depth Critical Elevation Critical Slope Velocity Velocity Head ' Specific Energy Froude Number Flow Type 0.014 99.25 to 100.00 56.30.cfs = QL4P > 0' 0 = 9.68 ccs Ok. 11.1 ft' o 38.63 ft 38.00 ft 0.75 ft 100.12 ft 0.004240 ft/ft 5.09 ft/s 0.40 ft 100.40 ft 1.66 Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. Roughness Segments 0 Start End Mannings Station Station Coefficient ' 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+38 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+05 99.90 ' 0+13 99.75 0+13 99.75 0+13 99.25 0+15 99.4242 0+38 99.88 ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates fnc FlowMaster v6.1 [614j] 03/05/02 10:56:05 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description Worksheet Flow Element Method Solve For Section Data 1 1 1 1 1 1 1 1 1 1 M Cambridge Avenue - D.P.601 Irregular Channel Manning's Formula Discharge Mannings Coefficient 0.014 Slope 0.013000 Wit Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 56.30 cfs 100.00c- 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ H:1 NTS ' n:\fo0194\drainagethaestadlstreetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:56:12 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 ' Theoretical Capacity - Major Event (100yr) ' Worksheet for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.602 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.014100 ft/ft t Water Surface Elevation 100.00 ft Options ' Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method ' Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 ' Elevation Range 99.25 to 100.00 Discharge 58.63 ,cfs = QcaP Qroo - 10.35 cis Flow Area 11.1 ft' ' Wetted Perimeter 38.63 ft Top'Width 38.00 ft Actual Depth 0.75 ft Critical Elevation Critical Slope 100.13 ft 0.004205 ft/ft Velocity 5.30 ft/s Velocity Head 0.44 ft ' Specific Energy 100.44 ft Froude Number 1,73 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.12 fL ' Start Station Roughness Segments End Station Mannings Coefficient ' 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+38 0.016 Natural Channel Points ' Station Elevation (ft) (ft) 0+00 100.00 0+05 99.90 ' 0+13 99.75 0+13 99.75 0+13 0+15 99.25 99.4242 0+38 99.88 bk ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:56:40 AM 0 Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description IR Worksheet Flow Element Method Solve For Cambridge Avenue - D.P.602 Irregular Channel Manning's Formula Discharge Section Data Mannings Coefficient 0.014 Slope 0.014100 ft/ft Water Surface Elevation 100.00 It Elevation Range 99.25 to 100.00 t Discharge 58.63 cfs 1 1 100.000-- ' 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ H:1 NTS n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:56:47 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 M 1 �I I11 APPENDIX C Inlet Design I I I 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 N 1 GUTTEWCONVEYANCE CAPACITY~ Project = FC0194 - 2004 High School Street ID = Cambridge Avenue - D.P.2C street Side Walk Ts Crown A A- Y Qw •/' Qx Sx H' D ^___ Do �Sw T <------------------------> <-- ><--------- =x-------- > Gutter street In Discharge in the Gutter Qo = 8:2 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1.52 inches I Transverse Slope Sx = 0.0200 ft/ft I Longitudinal Slope So = 0.0068 ft/ft ing's Roughness N = 0.016 ar Cross Slope ,r Spread Width ar Depth without Gutter Depression :r Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope rate Carried by Width Ts rate Carried by Width (Ts - W) :r Flow Flow I Flow (Check against Qo) sr Flow to Design Flow Ratio talent Slope for the Street Area Velocity product LID -Inlet v1.00.xls, Street Hy Sw = - 0.08 ft/ft T = 16.39 ft Y = 0.33 ft D = 0.45 ft Tx = 14.39 ft Ts = 5.45 ft Qws = 4.2 cfs Qww = 1.3 cfs Qw =. - 3.0 cfs Qx = 5.2 cfs Qs = 8.2 cfs Eo = 0.36 Se = 0.04 ft/ft As= .2.81 sgft Vs = 2.90 fps VsD = 1.32 ftZ/s 3/6/2002, 12:45 PM ,CURB OPENING INLET ON A GRADE Project: FC0194 - 2004 High School Inlet ID: Cambridge Avenue - D.P.202b W Wp - L �-- � ow Direction i Discharge on the Street (from Street Hy) Qo = ._8.2 cfs Flow to Design Flow Ratio (from Street Hy) Eo = 0.36 of a Single Inlet Unit Lu = 5.00 ft ig Factor for a Single Unit Inlet Co = 0.10 !r of Inlet Units in Curb Opening No = 4 Length of Curb Opening Inlet L = °"20:00"ft alent Slope Se (from Street Hy) Se = ' :. 0.0400 tuft red Length Lo to Have 100% Interception Lo = " ` "`28:72.ft ing Coefficient C-coeff = ..''. '1'.33 ing Factor for Multiple -unit Curb Opening Inlet Clog = 0.03 ive (Undogged) Length Le =: 19:34 ft r No -Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) L = .20:00 ft eption Capacity Qi =C:': = '- 7;5 cfs r Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) Le =: 19.34 ft eption Capacity Qa = 7.?3I cfs overflow = Qo - Qa = Qco = ' 0€8, cfs ire Percentage for this Inlet = Qa / Qo = C%= I: 'arryover +a D•P20� UD-Inlet v1.00.xls, Curb-G 3/6/2002, 2:19 PM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M GUTTERCONVEYANCE :CAPACITY Project = FC0194 - 2004 High School Street ID = Cambridge Avenue - D.P. 200 Side Walk Ts y Qx. C D Sx K Sw T <--W><----- ----------------- T"--------> Gutter Street Stmet Crown to Discharge in the Gutter Qo = 12.5 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1.52 inches t Transverse Slope Sx = 0.0200 ft/ft t Longitudinal Slope So = 0.0068 ft/ft ing's Roughness N = 0.016 ar Cross Slope SW = -0.08 ft/ft :r Spread Width T = -19.43 ft :r Depth without Gutter Depression Y = 0:39 ft ;r Depth with a Gutter Depression D = 0:52 ft ad for Side Flow on the Street Tx = 17-.43 ft ad for Gutter Flow along Gutter Slope Ts = - = 818•ft rate Carried by Width Ts Qws =' "5.9 cfs rate Carried by Width (Ts- W) Qww= .2.1 cfs sr Flow Qw = ,:3.8 cfs Flow Qx=:; =:8.7 cfs I Flow (Check against Qo) Qs =' ':12.5 cfs :r Flow to Design Flow Ratio Eo = 0.31 Talent Slope for the Street Se = 0.04 ft/ft Area As = . 3.90 sq ft Velocity Vs = 3.20 fps product VsD = 1.65 ftz/s (2,0a s D. P. 200 / 202a= I1. < c, + 0-W cfs cot ryaver frov D. P. 201 b ' DP_200.xls, Street Hy 3/6/2002, 4:20 PM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 M II GURB-OPENING'INLET IN A SUMP , II Project = FC0194 - 2004 Inlet ID = Cambridge Av gh School ue - D.P.200 Wp Lu WP nv Direction gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 12.5 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = 3.00 ft ling Factor for a Single Unit Co = 0.15 it of Curb Opening in Inches H = 6:00 inches e Coefficient Cd = 0:65 Coefficient Cw = 3.00 it Depth for the Design Condition Yd = 0:77 ft of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees )er of Curb Opening Inlets No = 2 a Weir al Length of Curb Opening Inlet L = 10.00 ft :)acity as a Weir without Clogging Qwi = 31.2 cfs gging Coefficient for Multiple Units Clog-Coeff = 1.25 gging Factor for Multiple Units Clog = - 0.09 3acity as a Weir with Clogging Qwa = "_ ';29:3!cfs an Orifice mcity as an Orifice without Clogging Qoi =:. 19.3 cfs 3acity as an Orifice with Clogging Qoa = 17.5 cfs 3acity for Design with Clogging Qa=I'';>: -.1.7:5icfs Aure Percentage for this Inlet = Qa / Qo = C% r100 00 % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' DP_200.xls, Curb-S 317/2002, 11:31 AM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 M 1 - :GUTTER°' -CONVEYANCE CAPACITY. Project = FC0194 - 2004 Street ID = Cambridge Ave CA DP_203.xis, Street Hy School - D.P.203 Side Walls Ts Y QW ' D Sk Dv I� Sw T W Y- - <- W><-------------------> TX Gutter Stmet Stmet . Cmwn in Discharge in the Gutter Qo = 10.3 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1:52 inches i Transverse Slope Sx = 0.0200 ft/ft i Longitudinal Slope So = 0.0064 ft/ft ing's Roughness N = 0.016 ;r Cross Slope SW = 0.08 ft/ft ar Spread Width T = 18.20 ft it Depth without Gutter Depression Y = 0.36 ft ;r Depth with a Gutter Depression D = 0.49 ft ad for Side Flow on the Street Tx = 16.20 ft ad for Gutter Flow along Gutter Slope Ts = : -°. -5:89,ft rate Carried by Width Ts Qws = 5.0 cfs rate Carried by Width (Ts- W) Qww= 1J cis ;r Flow Qw = , % _ 3.4 cis Flow Qx = ' - 6.9 cfs I Flow (Check against Qo) Qs = 10.3 cfs m Flow to Design Flow Ratio Eo = 0.33 talent Slope for the Street Se = 0.04 ft/ft Area As = 3.44 sq ft Velocity Vs = - 2.99 fps product VsD = 1.47 ftz/s Q, , c- D.P.203 = 7.27cf; } 3.00c.S carr�JP✓ r YO✓/` D.P. 20,I 3/7/2002, 11:19 AM I -CURB,OPENING-INLET''IN A:.SUMP. Project = FC0194 - 2004 High School Inlet ID = Cambridge Avenue - D.P.203 ' Lu WP Wp water Yd Flow Direction Fan ' Gutter 1 0 1 u M gn Discharge on the Street (from Street Hy) th of a Unit Inlet Width for Depression Pan Sing Factor for a Single Unit It of Curb Opening in Inches :e Coefficient Coefficient �r Depth for the Design Condition a of Throat (see USDCM Chapter 6, Figure ST-5) ber of Curb Opening Inlets a Weir al Length of Curb Opening Inlet )acity as a Weir without Clogging gging Coefficient for Multiple Units gging Factor for Multiple Units )acity as a Weir with Clogging an Orifice )acity as an Orifice without Clogging )acity as an Orifice with Clogging re Percentage for this Inlet = Oa / Qo = Qo = 10.3 cfs Lu = 5.00 ft W p = 3.00 It Co = 0.15 H = 6.00 inches Cd = 0:65 Cw = 3.00 Yd = 0.74 ft Theta = 63.0 degrees No = 2 L = --10.00ift Qwi=`',_.: ,29.4,cfs Clog-Coeff = 1.25„ Clog = 0.09 Qwa = :;- -.27:6,cfs Qoi = - `='s -18:8+cis Qoa = 17.0. cfs Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' DP_203.xls, Curb-S 3/7/2002, 11:19 AM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 GUTTER .CONVEYANCE CAPACITY Project = FC0194 - 2004 Street ID =Rock Creek Dr 3h School - D.P.204 Street Side Walk Ts Crown Y Qw Qx 4� Sx x D Ds -�ST <- W><---------Tx--------> Gutter Street DP_204.xis, Street Hy In Discharge in the Gutter Qo = 11:1 cfs Height H = 6.00 inches r Width W = 2.00 It r Depression Ds = 1.52 inches t Transverse Slope Sx = 0:0200 ft/ft t Longitudinal Slope So = 0.0050 fttft ing's Roughness N = ;6.016 ;r Cross Slope Sw = ° : `0.08 ft/ft it Spread Width T = . ._ .19.69 ft it Depth without Gutter Depression Y = 0.39 ft ar Depth with a Gutter Depression D = ' : 0.52 It ad for Side Flow on the Street Tx = _ � � ,17.69 ft ad for Gutter Flow along Gutter Slope Ts =':. s'_>:6.25 It rate Carried by Width Ts Qws = '- -;' .5.2 cfs rate Carried by Width (Ts - W) Qww =--; -'- ^ 1.9 cfs :r Flow Qw =;;v =; _ w3.3 cfs Flow Qx? 777 cfs I Flow (Check against Qo) Qs = :11.1 cfs .r Flow to Design Flow Ratio Eo =' ' : 0.30 talent Slope for the Street Se = 0.04 ft/ft Area As = '. 4.00 sq It Velocity Vs = ' .2.76 fps product VsD = 1.44 ft�/s 3/6/2002, 3:22 PM 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 CURB<OP,ENING-INLET ON_AGRADE_ Project: FC0194 - 2004 High School Inlet ID: Rock Creek Drive - D.P.204 WP L WP <--------)�<----Pam--- ). Curb Gutter i Discharge on the Street (from Street Hy) Flow to Design Flow Ratio (from Street Hy) of a Single Inlet Unit ig Factor for a Single Unit Inlet �r of Inlet Units in Curb Opening Length of Curb Opening Inlet alent Slope Se (from Street Hy) red Length Lo to Have 100% Interception ing Coefficient ing Factor for Multiple -unit Curb Opening Inlet ive (Undogged) Length r No -Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) :ption Capacity r Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) aption Capacity over flow = Qo - Qa = ire Percentage for this Inlet = Qa / Qo = DP_204.x1s, Curb-G Pan Flow Direction Qo = 41.1 cfs Eo = 0.30 Lu = 5.00 R Co = 0.10 No = 3 L =' ..,15.001 ft Se=1 0.0400`Wit Lo= s 27.7&ft C-coeff =:: " 1.31 Clog ='., -s;0.04 Le =+ '- 14.35 :it L= .'c '15:00.ft Qi c: 843i cfs Le =' '.1435. ft Qa = . ' rii cfs Q-co =; 3:Oj cfs C%=(=; '7.3c1'Of% Gprr yovek fa D.P.'t0_ 3/7/2002, 11:17 AM 1 1 M 1 1 1 1 1 1 1 1 Project = FC0194 - 2004 High School Street ID = Interior Road - D.P.300 Street Side walk TO Crown Sx H' D Dr S, v ► v--- T <------------------------> <- W><--------- T"-------- > Gutter Street DP-300.xis, Street Hy ign Discharge in the Gutter Qo = 2.0 cfs Height H = 6.00 inches er Width W = 2.00 ft er Depression Ds = 1:52 inches at Transverse Slope Sx = 0.0200 ft/ft at Longitudinal Slope So = • .. 0.0050. ft/ft ning's Roughness N = .: 10.616 er Conveyance Capacity er Cross Slope SW =' ` ' 0.08 ft/ft :r Spread Width T :r Depth without Gutter Depression Y =- '" - '0.19 ft :r Depth with a Gutter Depression D =r;: ':- :_ 0:32 ft for Side Flow ad on the Street Tx = ".` t:7.50•ft ad for Gutter Flow along Gutter Slope Ts =;<<- ^-,'180' ft rate Carried by Width Ts Qws= '::1t4 cis rate Carried by Width (Ts - W) Qww =, 0:21 cis arFlow Qw=?, :;;v .JZcfs Flow Qx:OiB cfs I Flow (Check against Qo) Qs =".' •. `--2:01 cfs ;r Flow to Design Flow Ratio Eo = 0.60 valent Slope for the Street Se = 0.06 Wit Area As =. 1.03 sq ft Velocity Vs =;': 1:92 fps product VsD =. .0.61 ftZ/s 3/6/2002, 3:35 PM 1 1 M 1 1 1 1 1 1 1 1 II =CURB OPENING,INLET;:ONAGRADE II Project: FC0194 - 2004 High School Inlet ID: Interior Road - D.P.300 WL WP <---- T--r<- --- ).<--- )* i Discharge on the Street (from Street Hy) Flow to Design Flow Ratio (from Street Hy) of a Single Inlet Unit ig Factor for a Single Unit Inlet rrof Inlet Units in Curb Opening Length of Curb Opening Inlet alent Slope Se (from, Street Hy) ired Length Lo to Have 100% Interception ling Coefficient ling Factor for Multiple -unit Curb Opening Inlet ive (Undogged) Length r No -Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) eption Capacity r Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) eption Capacity over flow = Qo - Qa = ire Percentage for this Inlet = Qa / Qo Flow Direction Qo = 2.0 cfs Eo = 0.60 Lu = 5.00 ft Co = 0.15 No = 2 L= 10.00:ft Se = 0:0600 ft/ft Lo= :10.521ft C-coeff = -T:25 Clog = 0.09 Le = 9.06'ft L = 10.00 ft Qi =- - 2.0-cfs Le = '9A6 ft Qa = € - "z;1 91 cfs Q-co = 1 cfs C%=V're 17A4';% Cow ryover to D.P. (c-_' ' DP_300.xis, Curb-G 3/6/2002, 3:36 PM GUTTER CONUEYANCE:CAPACITY-71 Project = FC0194 --2004 Street ID = Interior Road - School Street Side Walk Ts Crown i Y Qw QX Sx H' D DY Sw T <- W><--------- T"-------- > Gutter Street In Discharge in the Gutter Height r Width r Depression t Transverse Slope t Longitudinal Slope ing's Roughness -r Cross Slope ;r Spread Width ,r Depth without Gutter Depression ;r Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope rate Carried by Width Ts rate Carried by Width (Ts - W) :r Flow Flow Flow (Check against Qo) ;r Flow to Design Flow Ratio valent Slope for the Street Area Velocity product Qo = 6.3 cfs 4 H = 6.00 inches f W = 2.00 ft Ds = 1.52 inches Sx = 0.0200 ft/ft So = - . 0.0050 ft/ft N = 0.016 SW = ..,r _ ` 0.08 ft/ft T = 15.71 ft Y = 0.31 ft D = 0.44 ft Tx = .13.71 ft Ts =5.29 ft Qws = - .3:3 cfs Qww = 0.9 cis Qw :2.4-cfs Qx = ` ==. ': 3.9 cfs Qs = -", 6.3 cfs Eo = 0.38 Se = 0.04 ft/ft As = 2.59 sq ft Vs = 2.43 fps VsD = 1.07 ftZ/s so@ D.P. 30la = H.21 Z.l Cr5 wr,yoveV 10r D. P. 301 b DP-301a.xls, Street Hy 3/612002, 4:24 PM 1 1 M 1 1 1 1 1 1 1 1 ' `CURB 'OPENING INLET.ON A GRADE . - Project: FC0194 - 2004 High School Inlet ID: Interior Road - D.P.301a WP L WP <--------ice----'i[-__� Flow Direction i Discharge on the Street (from Street Hy) Qo = - -6.3 cis Flow to Design Flow Ratio (from Street Hy) Eo = 0.38 of a Single Inlet Unit Lu = 5.00 ft ig Factor for a Single Unit Inlet Co = 0.10 :r of Inlet Units in Curb Opening No = ` -3 Length of Curb Opening Inlet L = ( ' 5A0"ft alent Slope Se (from Street Hy) Se =1 r' 0.0400'. ft/ft ired Length Lo to Have 100% Interception Lo =; .: 21.87'ft ing Coefficient C-coeff = " . ' i:31 ing Factor for Multiple -unit Curb Opening Inlet Clog = • 0:04 ive (Undogged) Length Le = -. `44.35 ft r No -Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) L =- 15:00 ft eption Capacity Qi ='r ." , :' 5i5. efs rClogging Condition ive Length of Curb Opening Inlet (must be < Lo) Le = ' `'', 1' 4:35 ft option Capacity Qa =KWIft5al cfs overflow = Qo - Qa = Q-co =077 0:9 cfs ire Percentage for this Inlet = Qa / Qo = C% 63¢1% DP_301a.xls, Curb-G yover to D.P.(�o! 3/6/2002, 4:24 PM 1 M I 1 r 1 1 n M GUTTER=C.ONVEYANCE CAPACITY Project = FC0194 - 2004 High School Street ID = Interior Road - D.P.301 b Street Side Walk Ts Crown Y >O-Z" ' Qx �� Sx ; H' D oT <------------------------> <--W><---------=X--------> Gutter Street In Discharge in the Gutter Qo = 8.4 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1.52 inches i Transverse Slope Sx = 0.0200 ft/ft I Longitudinal Slope So = 0.0067 ft/ft ing's Roughness N = 0.016 !r Cross Slope Sw = 0.'08 ft/ft �r Spread Width T = 16.61 ft r Depth without Gutter Depression Y = 0.33 ft r Depth with a Gutter Depression D = 0.46 ft ad for Side Flow on the Street Tx = 14.61 • ft ad for Gutter Flow along Gutter Slope Ts = .5.51 ft -ate Carried by Width Ts Qws = 4.3 cfs ate Carried by Width (Ts - W) Qww = I` .3 cfs r Flow Qw =. •. 3;0. cfs Flow Qx 15.4. cis Flow (Check against Qo) Qs =. ' ` 8.4 cfs ;r Flow to Design Flow Ratio Eo = 0.36 talent Slope for the Street Se = 0.04 fl/ft Area As = 2:89 sq ft Velocity Vs = 2.90 fps product VsD = 1.33 ft2is ' DP_301b.xls, Street Hy 3/6/2002, 4:25 PM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 II - `, -CURWOP_ENING INLET ON A,GRADE- -_ 11 Project: FC0194 - 2004 High School Inlet ID: Interior Road D.P.301b Wp L Wp Curb Gutter H esign Discharge on the Street (from Street Hy) utter Flow to Design Flow Ratio (from Street Hy) mgth of a Single Inlet Unit logging Factor for a Single Unit Inlet umber of Inlet Units in Curb Opening Length of Curb Opening Inlet alent Slope Se (from Street Hy) fired Length Lo to Have 100% Interception ing Coefficient ing Factor for Multiple -unit Curb Opening Inlet ive (Unclogged) Length r No -Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) eption Capacity r Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) eption Capacity over flow = Qo - Qa ire Percentage for this Inlet = Qa / Qo = DP_301b.xls, Curb-G Flow Direction Qo = 8.4 efs Eo = 0.36 Lu = 5.00 ft Co = 0.10 No = -3 L ='„:.- '1500 ft Se =' - `0.0400 Tuft Lo = -y .. 26:90 ft C-coeff = 1.31 Clog = 0.04 Le ='• '14.35 ft L = -15100 ft Oi = i ,i`''` 674cfs Le =. ', "14:35 ft Qa = A :, ..6:2! cfs Qco = '_i ;7,efs C%=I; ` 74:62!% to D.o, -," 3/6/2002, 4:25 PM 1 1 1 1 1 1 1 1 1 1 M 1 `:GUTTER=GONVE -ANCE CAPACITY Project = FC0194- 2004 High School Street ID = Interior Road - D.P.302a street Side Walk Ts Crown A A--- Y , QW .' Qx �� Sx H' D W Do -zsw T <------------------------ > <- W><--------- TX -------- > Gutter Street DP_302a.xls, Street Hy In Discharge in the Gutter Qo = 6.4 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1.52 inches t Transverse Slope Sx = 0.0200 ft/ft t Longitudinal Slope So = 0.0067 Wit ing's Roughness N = 0.016 �r Cross Slope SW = :0.08 ft/ft �r Spread Width T = 14.88 ft it Depth without Gutter Depression Y = 10.30 ft �r Depth with a Gutter Depression D = -:0.42 ft 3d for Side Flow on the Street Tx = 12:88 ft 3d for Gutter Flow along Gutter Slope Ts = '5:09 ft ate Carried by Width Ts Qws = 3:5 cfs ate Carried by Width (fs- W) Qww= 0.9 cfs :r Flow Qw = 2.6 cfs Flow Qx = = "3.8 cfs Flow (Check against Qo) Qs = -, 6A cfs ar Flow to Design Flow Ratio Eo = 0.40 talent Slope for the Street Se = 0.05 ft/ft Area As = 2.34 sq ft Velocity Vs = 2.73 fps product VsD = 1.16 ft2/s 3/6/2002, 4:50 PM Project='FC0194 - 2004 H Inlet ID = Interior Road - C CU.RB'OPENING, INLET'IN<AxSUMP II School WP Lu WP -><---� Yd Pan Gutter ign Information (Input) ign Discharge on the Street (from Street Hy) gth of a Unit Inlet Width for Depression Pan Iging Factor for a Single Unit Iht of Curb Opening in Inches ce Coefficient r Coefficient er Depth for the Design Condition le of Throat (see USDCM Chapter 6, Figure ST-5) fiber of Curb Opening Inlets a Weir al Length of Curb Opening Inlet 3acity as a Weir without Clogging gging Coefficient for Multiple Units gging Factor for Multiple Units )acity as a Weir with Clogging an Orifice )acity as an Orifice without Clogging )acity as an Orifice with Clogging Percentage for this Inlet = Qa / Qo = Ovate r Flow Direction Qo = 6.4 cfs Lu = 5.00 ft W p = 3.00 ft Co = 0.20 H = 1.6.00 inches Cd = 0:65 Cw = 73.00 Yd = 0:67 ft Theta = 630 degrees No = I1 L = , .":500; ft Qwi = ' � 17.1 cfs Clog-Coeff = . _ 1-00 Clog = •°0:20 Qwa = -:4'15.5 cfs Qoi = --"8.7 cfs Qoa = - - 7.0 cfs Qa ;= , ; 0 cfs C%=1 ;:_400.001% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. DP_302a.xls, Curb-S 3/6/2002, 4:50 PM 1 1 M 1 1 1 1 1 1 LJ 1 1 1 1 M a'GUTTER CONVEYANCE "CAPACITY Project = FC0194 -2004 Street ID = Interior Road (I School - D.P.309 Side walk Street >4Z Ts--> Crown A--- D VDr T <- -----------------------> <- w><--------- Tx -------- > Gutter Street to Discharge in the Gutter Height r Width r Depression t Transverse Slope t Longitudinal Slope ing's Roughness er Cross Slope er Spread Width er Depth without Gutter Depression ar Depth with a Gutter Depression !ad for Side Flow on the Street !ad for Gutter Flow along Gutter Slope rate Carried by Width Ts rate Carried by Width (Ts - W) 2�r Flow Flow I Flow (Check against Qo) ;r Flow to Design Flow Ratio oalent Slope for the Street Area Velocity product Qo = 6.2 cfs H = 6.00 inches W = 2.00 ft Ds = 1.52 inches Sx = 0.0200 ft/ft So = ;0.0120 ft/ft N = -10.016 Sw = ` .. 0.08, ft/ft T = -13.04; ft Y = .0.26 ft D = 0.39 ft Tx = A 1.04, ft Ts = ':->,--4.65�ft Qws = "3.7 cfs Qww = i0.8°cfs Qw = , _ -u2.8, cfs Qx = `:- - 3.4, cfs Qs = 6:2=cfs Eo = 0.46 Se = 0.05 ft/ft As = 1.83 sq it . Vs = . 3.42 fps VsD = 1.32 ftZ/s ' DP_309.xls, Street Hy 3/6/2002, 4:52 PM M 1I [] 1 �.i -CURB OPENING 1NLET.IN �A SUMP Project = FC0194 - 2004 Nigh School Inlet ID = Interior Road (Loop) - D.P.309 WP Lu WP w Direction gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 6.2 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = -3.00 ft Ping Factor for a Single Unit Co = 0.20 it of Curb Opening in Inches H = I-.,- _6.00 inches e Coefficient Cd = ' " 0c65 Coefficient Cw = . - 3.00 r Depth for the Design Condition Yd = _'0.64 ft . of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees )er of Curb Opening Inlets No = u 1 a Weir al Length of Curb Opening Inlet L -'•5i00 ft )acity as a Weir without Clogging Qwi = "16.0 cfs gging Coefficient for Multiple Units Clog-Coeff = .-1000 gging Factor for Multiple Units Clog = ` --v''�0:20 )acity as a Weir with Clogging Qwa = ' '� .M4 4, cfs an Orifice )acity as an Orifice without Clogging Qoi = - '1 -78.4 cfs )acity as an Orifice with Clogging Qoa = -:.=:.6.7 cfs )acity for Design with Clogging Qa = 7 _ Vt cfs rture Percentage for this Inlet = Qa / Qo = C% = f a `-100:00: % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' DP_309.xls, Curb-S 3/6/2002, 4:52 PM I� . `'GUTTER�CONNEYAN:CE CAPACITY '= ``�I Project = FC0194 = 2004 High School Street ID = Interior Road (Loop) - D.P.310 Street Side Walls Ts Crown --- _ V Qom' Qx Sx x D ; Dr ^�SW T <------------------------ > <--W ><---------T"--------> Gutter Sheet In Discharge in the Gutter Qo = '95 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = .- . -1.52 inches t Transverse Slope Sx = 0.0200 ft/ft t Longitudinal Slope So = .—�,�-.0 0120,fltft ing's Roughness N = -:""% `iY016- .r Cross Slope Sw =; 008- ft/ft ;r Spread Width T = 6.541ft ar Depth without Gutter Depression Y = ">' _ 031'ft ;r Depth with a Gutter Depression D ='_ :- ` `p:44:-ft ad for Side Flow on the Street Tx = 3.54;ft ad for Gutter Flow along Gutter Slope Ts �Z =:5 251ft rate Carried by Width Ts Qws =. ; = �,"Z 1<cfs rate Carried by Width (Ts - W) Qww =:= - : =:`'4,kcis ar Flow Qw = ae37; cis Flow Qx e5:9; cis I Flow (Check against Qo) Qs ;95` cfs ,r Flow to Design Flow Ratio Eo = 0 38 talent Slope for the Street Se = O.b4 ft/ft Area As = -2.54 sq ft Velocity Vs ='_ .-' _-.:-`3.74 fps product VsD =- _, ' -1.64 ftz/s DP_310.x1s, Street Hy 3/6/2002, 4:53 PM L 1 1 AMA CURB OPENING.INLET:IN�,A-SUMP . Project = FC0194 - 2004 High School Inlet ID = Interior Road (Loop) - D.P.310 Lu WP P -><---� H.' Gutter Yd Pan water Flow Direction gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 9.5 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = 3.00 ft Bing Factor for a Single Unit Co = 0.15 ht of Curb Opening in Inches H = 6.00 inches :e Coefficient Cd = 0.65 Coefficient Cw = 3:00 :r Depth for the Design Condition Yd = 0.69 ft of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees ber of Curb Opening Inlets No = 2 a Weir al Length of Curb Opening Inlet L = 10.00 ft )acity as a Weir without Clogging Qwi = 26.5 cfs gging Coefficient for Multiple Units Clog-Coeff = 1.25 gging Factor for Multiple Units Clog = 0.09 )acity as a Weir with Clogging Qwa = ^; - '" .24.9 cfs an Orifice )acity as an Orifice without Clogging Qoi = 17.8 cfs )acity as an Orifice with Clogging Qoa = %16.2 cfs )acity for Design with Clogging Qa = 16.2 cfs 3ture Percentage for this Inlet = Qa / Qo = C% _: - -.-100.00. % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' DP_310.x1s, Curb-S 3/6/2002, 4:52 PM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 M ;.GUTTER'CONVEYANCE CAPACITY Project = FC0194 - 2004 High School Street ID =.Ziegler Road - D.P.502 Side Walls Ts i' �, QW �'Qx L� Sx Hi D ' W --- Do SW <________________________�, <- W><---------Tx--------> Gutter street In Discharge in the Gutter Height r Width r Depression i Transverse Slope : Longitudinal Slope ing's Roughness :r Cross Slope �r Spread Width it Depth without Gutter Depression it Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope ate Carried by Width Ts ate Carried by Width (Ts - W) r Flow Flow Flow (Check against Qo) ,r Flow to Design Flow Ratio valent Slope for the Street Area Velocity product street Crown I Qo = 18.9 cfs H = 6.00 inches W = 2.00 ft Ds = 1.52 inches Sx = 0.0200 ft/ft So = 0.0225 ft/ft N = 0:016 Sw =':0,08 ft/ft T = 18.06 ft Y = 0.36 ft D = 0.49 ft Tx = M06 ft Ts = 585-ft Qws = 9.3 cis Qww = - 3.0 cfs Qw = - '; 8.2- cfs Qx = ". .12.7 cfs Qs = 18.9 cfs Eo = 0.33 Se = 0.04 ft/ft As = 3.39 sq ft Vs = .5.57 fps VsD = 2.72 ft2/s UD-Inlet v1.00.xls, Street Hy 3/6/2002, 2:55 PM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M Project = Inlet ID = f -CURRDPENING•INLET=IN ASUMP 94 - 2004 High School er Road - D.P.502 WP Lu WP -- r[- - - � Yd H v Pan Gutter gn Information (Input) gn Discharge on the Street (from Street Hy) th of a Unit Inlet Width for Depression Pan Ling Factor for a Single Unit it of Curb Opening in Inches e Coefficient Coefficient r Depth for the Design Condition of Throat (see USDCM Chapter 6, Figure ST-5) )er of Curb Opening Inlets a Weir al Length of Curb Opening Inlet )acity as a Weir without Clogging gging Coefficient for Multiple Units gging Factor for Multiple Units )acity as a Weir with Clogging an Orifice )acity as an Orifice without Clogging )acity as an Orifice with Clogging re Percentage for this Inlet = Qa / Qo = water Flow Direction Qo = 18.9 cfs Lu = 5.00 ft W p = 3.00 ft Co = 0.20 H = 6.00 inches Cd = 0.65 Cw = -3.00 Yd = 0:74 ft Theta = 63.0 degrees No = 3 L = 15.00 ft Qwi = 39.0 cfs Clog-Coeff = 1.31 Clog = 0.09 Qwa = . ' ':36.5 cfs Qoi = !. , 28:1 cfs Qoa = 25.7 cfs Qa = T `25:7; cfs C%=,'. '.100.00'% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' LID -Inlet v1.00.x1s, Curb-S 3/6/2002, 2:56 PM 1 1 M 1 1 �I -. ;GUTTER CONVEYANCE -CAPACITY . Project = FC0194 - 2004 High School Street ID = Cambridge Avenue - D.P.6( Side Walk street Ts cre.z. Y Qx, Qx �� Sk H' D W DrSw _ <________________________> <- W><--------- T"-------- > Gutter Street DP_601.xis, Street Hy In Discharge in the Gutter Height r Width r Depression tTransverse Slope t Longitudinal Slope ing's Roughness sr Cross Slope ar Spread Width ;r Depth without Gutter Depression ar Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope rate Carried by Width Ts rate Carried by Width (Ts - W) ar Flow Flow I Flow (Check against Qo) %r Flow to Design Flow Ratio dalent Slope for the Street Area Velocity product Qo = 10.7 cfs G,00 a D.P.60nk601 - 9.G5 H = 6.00 inches or` + 0.10 cfs Carry ovev W = 2.00 ft Trams-, D.P. alb Ds = 1.52 inches Sx = 0.0200 ft/ft + 0.40=s corrvoJ=. �rorn D. P. 301 a So = 0.0130 ft/ft N = 0.016 Sw= ft/ft T = - 16.03 ft Y = 0.32 ft D = . 0.45 ft Tx= -:" '14:03'ft Ts = -- t6.37'ft Qws = 5.6 cfs Qww = " 1:6 cfs Qw = "m' 4:A. cfs Qx Qs = 10.7 cfs Eo = 0.37 Se = 0.04 ft/ft As = 2.70 sq ft Vs = 3.96 fps VsD = -1.77 ft2/s 3/6/2002, 4:53 PM 1 1 M 1 1 L II CURB OPENING.INLET'IN.A SUMP JI Project = FC0194 - 2004 High School Inlet ID = Cambridae Avenue - D.P.601 WP Lu WP -YC-- --><---� Gutter water Yd Flow Direction H gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 10.7 cfs ith of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = 3.00 ft ging Factor for a Single Unit Co = 0.15 ht of Curb Opening in Inches H = 6.00 inches ;e Coefficient Cd = 0:65 Coefficient Cw = 3.00 ;r Depth for the Design Condition Yd = 070 It e of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees ber of Curb Opening Inlets No = .2 a Weir Total Length of Curb Opening Inlet L = : '-:' 10c00 ft Capacity as a Weir without Clogging Qwi =. 27.1 cfs Clogging Coefficient for Multiple Units Clog-Coeff = 125 Clogging Factor for Multiple Units Clog = :0'.09 Capacity as a Weir with Clogging Qwa = --._ : 254 cis As an Orifice Capacity as an Orifice without Clogging Qoi = ' ' - -18:0 cfs Capacity as an Orifice with Clogging Qoa = -16.3 cis Caoacitv for Design with Cloqc lingQa Capture Percentage for this Inlet = Qa / Qo = C% =I-. =+_=;100.00' % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. DP_601.xls, Curb-S 3/6/2002, 4:54 PM I Project = Street ID = t 1 I C `:-GUTTER CONVEYANCE CAPACITY FC0194-_2004 High School Cambridge Avenue - D.P.602 Side Walk street Ts Crown i A, A--- H ; D Y 1w Qx �„� _ Sx ( DO�Sw r W Y--- T <------------------------> <--w><--------- TX -------- > Gutter Street In Discharge in the Gutter Height r Width r Depression :Transverse Slope Longitudinal Slope ing's Roughness ;r Cross Slope ;r Spread Width :r Depth without Gutter Depression :r Depth with a Gutter Depression ad for Side Flow on the Street 3d for Gutter Flow along Gutter Slope ate Carried by Width Ts 'ate Carried by Width (Ts - W) :r Flow Flow Flow (Check against Qo) ' Gutter Flow to Design Flow Ratio Equivalent Slope for the Street Flow Area ' Flow Velocity sD product Qo = 10.4 cfs H = 6.00 inches W = 2.00 ft Ds = 1.52 inches Sx = 0.0200 fUft So= 0.014.1.fttt N = > . 0.016 Sw = .0.08 ft/ft T = . = 15:57' ft Y = 0.31 ft D = '0.44 ft Tx =.: -: '13.57 ft Qws = >;�:5:5 cfs Qww -.1.5. cfs Qw =,„': ,!4:0icfs -; Qx cfs Qs = '; 10.4• cfs Eo Se = 0.04 ft/ft As = 2.55 sq ft Vs = 4.06 fps VsD = 1.78 ftZ/s DP_602.xls, Street Hy 3/6/2002, 4:55 PM M r 1 0 1 EJ CURBOPENI'NG INLET, ;IN1A'°SUMP Project = FC0194 - 2004 High School Inlet ID = Cambridge Avenue - D.P.602 WP Lu WP _ nv Direction gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = '10.4 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = 3.00 ft Bing Factor for a Single Unit Co = 0.15 it of Curb Opening in Inches H = - :6.00 inches :e Coefficient Cd = :. 0.65 Coefficient Cw=. - ". -4- 0 it Depth for the Design Condition Yd = 0:69 ft of Throat (see USDCM Chapter 6, Figure ST-5) Theta = .:63.0 degrees ber of Curb Opening Inlets No = .2 a Weir al Length of Curb Opening Inlet L = "^: > 10:00•ft )acity as a Weir without Clogging Qwi = 26.-5 cfs gging Coefficient for Multiple Units Clog-Coeff = '1.25 gging Factor for Multiple Units Clog = 0.09 )acity as a Weir with Clogging Qwa =w i'-,-, ' , 24:9, cfs an Orifice racity as an Orifice without Clogging Qoi = -1;78 .cis racity as an Orifice with Clogging Qoa =.- :.: • 16.2 cis )acity for Design with Clooaino Qa 9 6 2+cfs rture Percentage for this Inlet = Qa / Qo Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. DP_602.xls, Curb-S 3/6/2002, 4:55 PM 1 1 1 1 1 1 1 1 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/11/2002 Design Point-- 3061' Orifice Calculation: Rim Elevation= 4902:80 Q. = CA(2gH)o.s 100-yr Ponding Elev= 490535 Hydraulic Grade Out-- 4900:71 Allowable Release Rate-- -' A 33 cfs H= 2.55 ft C = 0.65 g= 32.2 ft/s Q= 1.33 cfs Ac = 0.16 ftZ Diameter of Orifice: 1 15/16" B E Y O N D E N G I N E E R I N G ' Nolte Associates, Inc. IIp L 1 0 n u M Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/10/2002 Design Point-- 307 Orifice Calculation: Rim Elevation= 4902.70 Q. = CA(2gli fs 100-yr Ponding Elev= 4905.61 Hydraulic Grade Out-- 4899.79 Allowable Release Rate= .2.395 cfs H= 5.82 ft C = 0.65 g = 32.2 ft/s Q= 2.40 cfs Ac = 0.19 ft2 Diameter of Orifice: 2 15/16" B E Y O N D E N G I N E E R I N G ' Nolte Associates, Inc. 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 M 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/ 11 /2002 Design Point-- 31.1a Orifice Calculation: Rim Elevation= 4904.20 Qo = CA(2gH)o.s I00-yr Ponding Elev= --4906.74 Hydraulic Grade Out-- 4902.10 Allowable Release Rate= 1:87 cfs H= 2.54 ft C = 0.65 g = 32.2 ft/s Q= 1.87 cfs Ac = 0.22 ft2 Diameter of Orifice: 2 11/16 BE Y O N D E N G IN E E R ING Nolte Associates, Inc. 1 1 M 1 1 1 Project: 0194 Project Names 20: 2004 Fort Collins High School Calculated By: HHF/GAD B E Y O N D E N G I N E E R I N G Date: 3/11/2002 Design Point-- 312a Orifice Calculation: Rim Elevation= • -4903.90 Q. = CA(2gH)°'S 100-yr Ponding Elev= --4907.10 Hydraulic Grade Our-- 4903.64 Allowable Release Rate= •4.65 cfs H= 3.46 ft C = 0.65 g = 32.2 ft/s Q= 4.65 cfs Ac = 0.48 ftZ Diameter of Orifice: 47I1/16" Nolte Associates, Inc. 1 1 M 1 1 J 1 1 1 I Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/11/2002 Design Point-- -.312a - Orifice Calculation: Rim Elevation= -4903.90 Q. = CA(2gH)0.5 100-yr Ponding Elev= —4907.15 Hydraulic Grade Out-- 4904.94 Allowable Release Rate= 6.845 cfs H= 2.21 ft C = 0.65 g = 32.2 ft/s Q= 6.85 cfs Ac = 0.88 ftZ Diameter of Orifice: 10 B E Y O N D E N G I N E E R I N G INJE9-1M COIJt?1TlrN Nolte Associates, Inc. _ S S r Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD BE Y O N D E N G IN E E R ING Date: 3/10/2002 Design Point-- 313a" ` Orifice Calculation: ' Rim Elevation= 4908.00 Q. = CA(2gH)o.s 100-yr Ponding Elev— 4910.39 Hydraulic Grade Out-- 4906.7.7 ' Allowable Release Rate .187 cfs H= 3.62 ft C = 0.65 g = 32.2 ft/s Q= 2.87 cfs ' Ac = 0.29 ft2 Diameter of Orifice: 1 N Nolte Associates, Inc. 1 1 M 1 1 1 1 1 I Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/11/2002 Design Point- -313a ' -- Orifice Calculation: Rim Elevation= 4908.00 Q. = CA(2gH)o.s 100-yr Ponding Elev= --4910.45 Hydraulic Grade Out-- 4909.06 Allowable Release Rates -5.08 cfs H= 1.39 ft C = 0.65 g = 32.2 ft/s Q= 5.08 cfs Ac = 0.83 ftZ Diameter of Orifice: 9'15LI6" BE Y O N D E N G IN E E R ING Interim Condition: -Accepting runoff from BASM500 Nolte Associates, Inc. 1 1 M 1 1 1 1 1 1 1 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/11/2002 Design Point-- 400 -- Orifice Calculation: Rim Elevation= 'N.A..-' Q. = CA(2gH)os 100-yr Ponding Elev= --4904.79 Hydraulic Grade Out-- 4898.70 Allowable Release Rate= 66 cfs H= 6.09 ft C = 0.65 g= 32.2 ftis Q= 6.50 cfs Ac = 0.50 ftZ Diameter of Orifice: BE Y O N D E N G IN E E R ING Nolte Associates, Inc. 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M Project: 0194 Project Names 20: 2004 Fort Collins High School Calculated By: HHF/GAD BEYOND ENGINEERING Date: 3/11/2002 Design Point— 403 Orifice Calculation: Rim Elevation= - 4902.80 Q. = CA(2gH)os 100-yr Ponding Elev= ---4906.70 Hydraulic Grade Out-- 4904.79 Allowable Release Rate= . ..1.2 cfs H= 1.91 ft C = 0.65 g= 32.2 f/s Q= 1.20 cfs Ac= 0.17 ft, Diameter of Orifice: I Nolte Associates, Inc. M C ' APPENDIX D ' Swale Calculations I I I 0 I I r 1 Swale Capacity - Major Event (100-yr) ' Project Description Worksheet for Trapezoidal Channel Worksheet Roof Drainage - D.P.308 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 ' Slope 0.005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V ' Bottom Width 3.00 ft Discharge 16.81 cis Results Depth 1.04 ft Flow Area 7.5 ft' Wetted Perimeter 11.61 ft ' Top Width 11.36 ft Critical Depth 0.72 It ' Critical Slope Velocity _ 0.023340 ft/ft 2.24 ft/s Velocity Head 0.08 ft —_ Specific Energy 1.12 ft Froude Number 0.49 ' Flow Type Subcritical N ' n:\...\drainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/11/02 02:45:14 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 Swale Capacity - Major Event (100-yr) Cross Section for Trapezoidal Channel Project Description Worksheet Roof Drainage - D.P.308 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.035 Slope 0.005000 ft/ft Depth 1.04 ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 3.00 it Discharge 16.81 cis ft V:4.0E-1 H:1 NTS n:�...kdrainage\haestad\fo0194_swale-basin308.fm2 Notte Associates Inc 03/11/02 02:45:43 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 FlowMaster v6.1 [614j) Page 1 of 1 Swale Capacity - Major Event (100-yr) Worksheet for Trapezoidal Channel Project Description Worksheet Flow Element Method Solve For Culvert Outfall to D.P.303 Trapezoidal Channel Manning's Formula Channel Depth 1 Input Data Mannings Coefficient 0.035 Slope 0.013000 ft/ft Left Side Slope 14.00 H : V Right Side Slope 4.00 H : V Bottom Width 22.00 ft Discharge 16.81 cfs ' Results Depth 0.32 ft Flow Area 8.0 ft' Wetted Perimeter 27.82 ft ' Top Width 27.77 ft Critical Depth 0.25 ft ' Critical Slope Velocity 0.029120 ft/ft 2.11 ft/s Velocity Head 0.07 ft Specific Energy 0.39 ft Froude Number 0.69 Flow Type Subcritical n:\...\drainage\haestad\fc0194_pwale-basin308.fm2 Nolte Associates Inc 03/11/02 02:58:16 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 FlowMaster v6.1 [614j] Page 1 of 1 ' Swale Capacity - Major Event (100-yr) Cross Section for Trapezoidal Channel ' Project Description Worksheet Culvert Outfall to D.P.303 Flow Element Trapezoidal Channel Method Manning's Formula ' Solve For Channel Depth Section Data Mannings Coefficient 0.035 Slope 0.013000 ft/ft Depth 0.32 ft Left Side Slope 14.00 H : V ' Right Side Slope 4.00 H : V Bottom Width 22.00 ft Discharge 16.81 cfs ' 04 ft ' 22.00 ft ' V:4.0❑ H:1 NTS 1 ' nA ..\drainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/11/02 02:58:10 PM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Swale Capacity - Major Event (100-yr) Worksheet for Trapezoidal Channel Project Description Worksheet Pond P-300 Overflow Spillway Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.030 Slope 0.020000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 50.00 ft Discharge 22.20 cfs Results Depth 0.19 ft Flow Area 9.7 ft' Wetted Perimeter 51.57 ft Top Width 51.52 ft Critical Depth 0.18 ft Critical Slope 0.023275 ft/ft Velocity 2.30 ft/s Velocity Head 0.08 ft Specific Energy 0.27 ft Froude Number 0.93 Flow Type Subcritical n:\...\drainage\haestad\fc0194_swale-overflow.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/11/02 03:04:35 PM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Project Description Worksheet Flow Element Method Solve For Swale Capacity - Major Event (100-yr) Cross Section for Trapezoidal Channel Pond P-300 Overflow Spillway Trapezoidal Channel Manning's Formula Channel Depth Section Data ' Mannings Coefficient 0.030 Slope 0.020000 ft/ft 1 1 1 1 1 1 1 1 1 1 1 1 Depth 0.19 ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 50.00 ft Discharge 22.20 cfs 0.00 ft V:4.0❑ HA NTS n:\...\drainage\haestad\fc0194_swale-overflow.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/11/02 03:04:28 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 IIp 11 1, U 1 rI T UtSHVLIU FtCDUL I O Discharge cfs Peak Flow Period hrs lVelocity (fps) Area (sq.ft) Hydraulic Radius ft Normal De th ft �2.2 0.5 1 1.68 13.20 0.25 0.26 LINER RESULTS L_ Bottom 4.0 Width = 50.00 ft 4.0 Not to Scale Reach Maleiral[Type 1 Phase 1 Vea.Type 1 Soil Type Manning's'n' Permissible Shear Stress (psf) Calculated Shear Stress fntA Safety Factor Remarks Sta le Pattern I Class I Veg. Densit Straight SC150 0.050 1.80 0.32 5.58 STABLE Staple D 1 1 1 1 1 HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal De th ft 22.2 0.5 2.30 9.67 0.19 0.19 LINER RESULTS Unreinforced Vegetation Bottom 4.0 Width = 50.00 It 4.0 Not to Scale Reach Material Type Phase Vag. Type Soil Type Manning's'n' Permissible Shear Stress (psf) 'aEulated Shear Stress (psFJ Safety Factor Remarks Staple Patten Class Ve . Densit Straight Unenforced I Mix 1 0.030 3.33 1 0.24 14.00 STABLE D 1 75-95 a 1 Clay Loam 0.050 1 0.016 3.11 STABLE I N 1 1 1 1 1 1 1 1 1 1 1 1 1 w APPENDIX E Storm Drain Design 1 Culvert Calculator Report ' D.P.308 to D.P.303 NSolve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,906.89 ft Headwater Depth/Height 1.27 ' Computed Headwater Elevation 4,905.85 ft Discharge 16.81 cfs Inlet Control HW Elev. 4,905.80 ft Tailwater Elevation 4,900.36 ft Outlet Control HW Elev. 4.905.85 ft Control Type Outlet Control Grades ' Upstream Invert 4,903.32 ft Downstream Invert 4,900.23 ft Length 464.11 ft Constructed Slope 0.006658 ft/ft ' Hydraulic Profile Profile M2 Depth, Downstream 1.48 ft Slope Type Mild Normal Depth 1.50 ft ' Flow Regime Subcritical Critical Depth 1.48 ft Velocity Downstream 6.75 fUs Critical Slope 0.006877 ft/ft ' Section Section Shape Circular Mannings Coefficient 0.013 ' Section Material Concrete Span 2.00 ft Section Size 24 inch Rise 2.00 ft Number Sections 1 ' Outlet Control Properties ' Outlet Control HW Elev. Ke 4,905.85 ft 0.50 Upstream Velocity Head Entrance Loss 0.69 ft 0.34 ft ' Inlet Control Properties Inlet Control HW Elev. 4,905.80 ft Flow Control Transition Inlet Type Square edge w/headwall Area Full 3.1 ft' K 0.00980 HDS 5 Chart 1 ' M 2.00000 HDS 5 Scale 1 C 0.03980 Equation Form 1 Y 0.67000 1 1 N ' Title: 2004 High School Project Engineer: GAD nA..Vhaestad\fc0194_culvert_basin308.cvm Nolte Associates Inc CulvertMaster v2.0 [2005a] 05/22/02 04:12:56 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1.203-755-1666 Page 1 of 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Project ;•: FC0194 Project Name: 2004 High School Calculated By: GAD Date: 5/28/2002 Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System A Outlet to pond Basin 1000. Outfall Pipe Diameter, in: 30 Velocity, ft/s: '.2.65 Q1.. cfs, 13.00 Depth of flow, ft: .2.5 Tailwater depth, ft: "3:69': Froude Number: 0.30 subcrhical Where, F = V/(gY)os F>0.80, supercritical flow . F<0.80, subctitical flow Required Rock Size: a. Q/D25= 1.32 Q/D1'5= 3.29 b. Y,/D= 1.48 C. (dwtD)(Y/D)"/(Q/D' ) = 0.023 From Figure 5-7, Use Type •":L' Riprap d, = "9:00 inches Ifiheflow in the culvert is supercritical, substitute D,jor D. Where: D,=1/,(D + YJ Therefore: D,= n/a ft a. Q/D,zs= n/a Q/D,1.5= n/a b'. Y,/D,= n/a c. (d,,/DJ(Yt/DJ1.:/(Q/D.z)=0.023 From Figure 5-7, BE Y O N D E N G IN E E R ING Use Type L Riprap ds�='- ;9.:'..-`inches Extent of Protection: L = (1/(2tan0))(A,N, - W) Where: ?i/(2ta1iB)=`6.6 per.figure_5-99 -' A,QN Where, V = acceptable velocity, 5.5 fps A, 2.36 ftt Therefore: Calculated L= -12.27 ft Check Results: L> 3D •L < l OD • When Q/D'' > 6 Maximum Depth: D = 2d5o Riprap Width: W=3D Minimum L = 7.5 ft Maximum L = 25 ft Use L = 8 feet Use D = 18 inches Use W= 7.5 feet 1 1 M 1 1 1 1 1 1 1 1 1 ear � Rtprdp�bestgn Ca/culalions�- Cir`cu[&r Outfall Project : 0 Project Name: 20Hi : 2004 High School Calculated By GAD Date: 5/28/2002 B E Y O N D E N G I N E E R I N G Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System B Outlet to pond Basin 1000. Outfall Pipe Diameter, in: ---42 Velocity. ft/s: ' :8.77 Q,M, cfs, - _84.4: Depth of flow, ft: '3.5 Tailwater depth, ft: � `5.44` Froude Number: 0.83 supercritical Where, F = V/(gY)°5 F>0.80, supercritical flow F<0.80, subcritical flow Required Rock Size: a. Q/D25= n/a Q/DI.5= n/a b. YM-- n/a C. (d5o/D)(Y/D)1.2/(Q/D21) = 0.023 From Figure 5-7, UseTvpei' -n/a -Riprap d,=.":in/a *,inches If the flow in the culvert is supercritical, substitute D, for D. Where: D.= t/2(D+ yJ Therefore: D.= 3.50 ft al.Q/D.2.s= 3.68 Q/D.1.s= 12.89 V. Y,/D.= 1.55 q. (d50/DJ(Y/D01.2/(Q/D.2.$)=0.023 From Figure 5-7, Use Type L -- Riprap d, _ -' 9 --inches Extent ojProtection: L = (1/(2tan6))(A/Y, - W) Where: 1/(2tan0) = 210,;per Figure_5=9 Ati Q/V Where, V = acceptable velocity, 5.5 fps A,. 15.35 ft2 Therefore: Calculated L= -1.49 ft ' Check Results Maximum Depth: 1 Riprap Width: L > 3D Minimum L = 10.5 ft •L < IOD Maximum L = 35 ft When Q/D" > 6 Use L = 11 feet D=2d, W=3D Use D = 18 inches Use W = 10.5 feet 1 1 1 1 1 I N 1 �, ,. rprap?Desr@alculations,�Crrcular�Qutfall � ,, Projectp:20High Psko� Project Name: 2004 High School Calculated By: GAD Daze: 5/2812002 BEYOND ENGINEERI NG Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System C Outlet to swale Basin 308. Outfall Pipe Diameter, in: 24 -- - Velocity. ft/s: -- 6.55 - Q,,, cfs, 15.75 Depth of flow. ft: 1,43 Tailwater depth, ft: 1.04 Froude Number: 0.97 supercritical Where, F=V/(gY)°5 F>0.80, supercritical flow F<0.80, subcritical flow Required Rock Size: a. Q/D2.5= n/a Q/DL5= n/a b. YeD= n/a C. (d51/D)(YfD)t.2/(Q/D2.) = 0.023 From Figure 5-7, Use Type Riprap d5u = ; ' inches " fjthe flow in the culvert is supercritical, substitute D,for D. Where: D,= '/2(D + Y.) . Therefore: D.= 1.72 ft a' Q/D,zs= 4.09 Q/D,t.s= 7.01 b'. YM.= 0.61 c'. (ds,/DJ(YfD.)L2/(Q/D.2.5)=0.023 From Figure 5-7, Use Type CL = Riprap dam= - 9 :inches Event of Protection L = (1/(2tan0))(A,/Y, - W) Where: 1%(2tan0)_ 6.0, per_Figure'S_9 _ A,. QN Where, V = acceptable velocity, 5.5 fps AF 2.86 ft2 Therefore: Calculated L= 4.52 ft Check Results: L>3D •L < IOD When Q/D" > 6 Afaximum Depth: D = 2d" Riprap Width: W=3D Minimum L = 6 ft Maximum L = 20 ft Use L = 6 feet Use D = 1S inches Use W = 6 feet 1 ' _ "" '. � �� RrpTap7Desig"nGalculakons Circular Ouffall - 1� - NOLTE Project #: FC0194 Project Name: 2004 High School Calculated By: GAD Date: 5/28/2002 B E Y O N D E N G I N E E R I N G ' Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System F Outlet to Pond 400. Outfall Pipe Diameter, in: 24 Velocity, ft/s::' '3:55 " Q1,,cfs,. 11.15 Depth of flow, ft: -2 ' Tail water depth, ft:: �4.08 FroudeNumber: 0.44 subcritical Where, F = V/(gY)°'S F>0.80, supercritical flow F<0.80, subcritical flow - Required Rock Size: ' a Q/D25= 1.97 Q/D1.5= 3.94 b. Y,/D-- 2.04 ' C. (d"/D)(YfD)1.2/(Q/D2s)=0.023 From Figure 5-7, Use Type`-.-L-' Riprap ' d5o=--" 9.00 inches /f the flow in the culvert is supercritical, substitute D.for D. Where: D. = 1/2(D + Y.) ' Therefore: D,= n/a ft a'.Q/D,25= n/a Q/D.1-5= n/a V. Yr D,= n/a C.. (d5utD.)(YaDP/(Q/D,2.5) = 0.023 From Figure 5-7, ' Use Types ' L Riprap dm=z;:',_ 9 '..inches Extent ojprotection: ' - L= (1/(2tan0))(A,/Y, - W) Where: ;1/(2tan0) 6.6 per Frgure�5,-9 _, Ati QN Where, V = acceptable velocity, 5.5 fps AM1 2.03 ft2 Therefore: Calculated L= -9.02 ft ' Check Results: L>3D Minimum L= 6 R •L < I OD Maximum L = 20 ft Whn Q/D"> 6 ' Use L = 6 feet Maximum Depth: ' D-2da Use D = 18 inches Riprap Width: W=3D Use W =. 6 feet 1 1 1 M 1 1 1 1 1 1 1 1 M p " `-��� Rrnran esig`ntCalculatio�isCiitular_!�u��'1%,a�,�, - , Project :0 Project Name: 20Hi : 2004 High School Calculated By: GAD Date: 5/28/2002 BEYOND ENGIN EERING Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System G Outlet to Pond Basin 400. Outfall Pipe Diameter, in: 30 - Velocity, ft/s: 1.49 Q,00,cfs, - 7.32 Depth of flow, ft: -. _ 2 Tailwater depth, ft: 3.65 Froude Number: 0.19 subcritical Where, F=V/(gY)o5 F>0.80, supercritical flow . F<0.80, subcritical flow Required Rock Size: a. Q/Dzs= 0.74 Q/DI.s= 1.85 b. YM-- 1.46 C. (d,o D)(YeD)t.z/(Q/D2.) = 0.023 From Figure 5-7, Use Type; L Piprap d5o 9.00 :inches IjtheJlow in the culvert is supercritical, substitute D.for D. Where: D. = t/z(D + Y.) Therefore: D,= n/a ft a' Q/D, - = n/a Q/D."s= n/a V. YM.= n/a c'. (dso/D.)(YM JLZ/(Q/Dazs) = 0.023 From Figure 5-7, Use Type %L : Piprap d5o ;9, =!inches Extent of Protection: L = (1/(2tan6))(A,/Y, - W ) Where: .1/(2tano) -_6_6 - per-Figurei5-9,.._ Ar i /V Where, V = acceptable velocity, 5.5 fps A,. 1.33 R2 Therefore: Calculated L= -12.81 ft Check Results: L> 3D •L < I OD • When Q/D53> 6 Maximum Depth: D = 2dw Riprap Width: W=3D Minimum L= 7.5 ft Maximum L = 25 ft Use L = 8 feet Use D = 18 inches Use W = 7.5 feet 1 1 Nolte Associates, Inc. Riprap Design (for rectangular outfall conduits) Project #: FCO194 Project Name: 2004 High School Calculated By. GAD Date: 3/9/2002 ' Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection ' Location: Cambridge Avenue Box Culvert Outlet H W Outfall Pipe Dimensions, in: __ 60 _ 192 Velocity, ft/s: 535 Q,.,cfs, 677.5 Depth of flow, ft: 3.26 Tailwater depth, ft:'' 6.70'= Froude Number: 0.52 subcritical ' Where, F = V/(gY)o.s F>0.80, supercritical flow F<0.80, subcritical flow Required Rock Size: ' a. Q/WH'-s= 0.95 Q/WHo.s= 75.75 b. Y M= 1.34 ' a 0.014 From Figure 5-8, Use Type' ' 914"-:-Riprap dso => .12 ''. -; inches If theflow in the culvert is supercritical, substitute H, jor H. Where: H,='/,(H + Y.) ' Therefore: H,= 4.13 ft a'. Q/WH,"= 1.26 QAVH,os= 83.34 V. YfH,= 1.62 ' c'. (dso/D)(Yr H,)u/(Q/WH,'s) = 0.014 From Figure 5-7, Use Type = Riprap ' dso =' ...: inches Extent ojlsrotection: L = (1/(2tan0))(AVY, - W) ' Where: sl/(2taa0)=.6.6; per _Fgum, 40: A, QN Where, V = acceptable velocity, 5.5 fps ' A,- 123.18 ft' Therefore: Calculated L= 16 ft Check Results: ' L> 3H Minimum L = 15 ft 'L < 10D Maximum L = 50 . ft • When Q/WH"<6 ' Use L = 50 feet Maximum Depth: D = 2dso ' Use D = 24 inches Riprap Width: W=3W Use W = 48 feet 1 1 M 1 1 I 1 O Q C -1 V O M V M I M M W 0 W W M 0 0 O W v M 0 0 W V 0 0 0 W V M M 00 h I� V N N N N O) W W O m O O M I� W V 0 i� V W I� n W W W W (0 NV -0 0^ V V, ... V v V V N W W W 1. W W 10 M W 10 V M V N M 0) 0) h W co co co 00 10 (' M M, 0 0 0 0 o O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 >.(7 � ao ao rn rn rn rn rn rn rn m rn rn rn rn rn rn rn rn rn a, rn rn rn rn rn rn m rn rn rn rn rn rn rn rn = J -v V V V _v V V V V v V V v V V V V V V v V V V V V V v V v V V V V V V E 0 W o w o 0 0 0 W W o 0 o n W W 0 0 0 W 0 0 0 0 0 0 0 0 0 0 In � r N W O M N o M 0 O O( V V N N N N W h N W W M o 0 W W W n r 0 0 o N W 0 N N C .- M O N V N- M N N N o O O W W 0) W f0 N C (O Iq O O 0) O o O 0) 0) O 01 01 W W N � Z O C > ... 0) m 0 0 0 0 0 O O O O O O O O. O O O O O O W W 01 01 W 0) 0) 0) 0) 0 0) 0) 0) 0) M 0) 0) (M 0) 0) 0) 0) M 0) O) 0) M 0) 0 0 0) 0) 0) O) 0) 3 (Dm v v V v v v V v v O v V v v V V V V v a v v v v v v v v v v v v v v V W ❑O U N N W W O V 0 W M W 0 W O W 0 01 W N 0 V V N O W M W W V W V ' O C W W M M N 0 0 0 W O W N V 0 0 W M M v m m c v v v v M 0 0 0 0 r r, co v of W v m Iri v of of rn rn ao ao of m ao co of vi 0) 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rn >.f� S" J � w rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn = V V V V V V v V V V V V V v v V V V V V V V v V V v V V v V V V v V V E r� o In W W o 0 0 0 o In 0 0 0 0 o W W o 0 0 0 0 0 0 o M o 0 0 0 0 N M W M ClM W V N N o InIn m� O (' V N N N N W 0 N 0W O N O V W 0W 01� � O O O O N > V N N N N O W, n OW M 6 N n N N O N O0O O 6 ON O 0) O O O O Orn y0 0 0 m 0 0 0 0 0 0 0 m 0 M 0M00mrnmMM0M0M mm v vv j(m g vvv avv v v vw v W N W N V M V h O W 0 0 N W 0 W W 0 W M o V M 0 0 0 O O m m 3 y O M O M W V V W V 0 0 V M N M 0 M N � N W M M � 0 V o 0 W � O V W t0 O O N of M h W N O M V Cr) I` V M In N Cl) N 0 0W (D N N V 0 W 0 0 N W o N 0 0 0 M W Q7 W n V V IN O O M 0 0 W W W M 01 W W W M 0 M V M 0 W W M •V N W D7 0) m 0 0 0 M N M M N M M W W m M M V a) O N v V V er W (� M 0 m h 0 O) O 1� am n W In W M 6m W W W 6 W W 6 W V � 6 �- e- (� W 6 n n 6 W V I� W V W W N V LL U ca N, N N M In W M 0 0 W W W O W M W M V M 0 M V W 0 O v 0 V M o N o 0 In v W 0 V W 10 V V O W W W W 01 0 W 0 O 10 r V O M 0 W 0 O W (D 0 0) V W O p O v N IN M M 6 N M N W V M W V W h N N M W W M N O M O O N O M M W 0 V 0 O M O O O M N N N N N N M O o V W o O W N r O W W W M M V 0 O) N N M C C 2 O I O V O o O M W W M 0 M V W, N W 0 10 O N M W �,— M W, W W 7 r 6 y a) �0 ` O h O O O 0) W co, 10 10 V N W un co, co, M N, r W W W V V W N N M M 01 W 0 0 0 0) 0 0 o O o 0 o o o o o M M o 0 0 0 0 0 0 0 0 0 0 0 0 0 c > > .., C W al rn rn coCD m m rn CD rn w 0) 0) 0) 0) 0) 0) 0) co (M 0) 0) 0) (M 0) rn rn rn 0) C 0) 0) rn 3 m v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v a v v v v o w ❑ O O O O O O O O O) O O 01 O O N O f� O O O O V O O O W 0 0 0 0 0 0 W 0 In W v W W W 0 v M v v M V v M o M 0 0 W W W 0 0 o W W W v W W W W 0 W . 19 O O O o 0 0 0 0 0 0 0 0 0 o W N O O M V O N 0 0 � 0 0 O O N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E C CO M M co N M M M M M N W V N O W N O V W N O W V V N W O 10 W co N Cl) O V V W N W M (� M O (0 W N V M M O W V N 0 W O W m m j f0 O W O O O h W f� W OJ (D W V W N_ V W N M 1� M n 0 N W 0 W V V M M W W 0 0 W C>" m _V 0 0 0 0 0 0 0 0 0 0 O O O M O 0 0 0 0 0 0 0 0 0 0 0 0 W W 0? 0 0 W 0 0 0 0 O M 0) 0) Q) 0 O) 0 0 W 0 O 01 a) M W 0 0 0 0 M W 0 O 0 a- W v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v � N M M M M M M M 0 0 0 0 0 0 M 0 N N N N M O O M N M M N M M N M O N S _M _M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m c O 5 L L L L L L L L L L L L L L L L L L L L L L L L L t L L L t L L L M U U U U U U N U U U U U U U U U U U U U U U U U U U U U U U U U U L U N G C C C C C C C C C C C C C c C C C G C ON x C C C C C C C C C C C C U C V% N M M N N N W W W W W V N N N W co W IN N N W N W W N W N N M N � I � N � � � N N N W .- 0 W O V W CO M N W O W 0 0 W N 0 W W W 0 M CO h N W W M M M 0 N h V IN O N O N M O In W 10 o M r W C v V N CO W W W 0 V V In 00 0V W W W 0 W W V N N V N N W W V W (-_ W 01 M V W N N N W In 0) J N O O N N 0 0 0 0 0 W N M 10 W N 1 0 N O W N O i.- M N I N I N M N N M V N '- N M M M M Cl)W m m m.0 m m m m O v V M _M W IN N 10 In O O O O O O M O O O O J p �0 E E m o N co W N W w W M M M N v V V M H� M M n 0 0 M M M M M M 0 ID O O O LL UU OU 0 0 o m LL LL g LL LL LL 0 a O LL i M M M M O N Z << li W S U U U U U CJ m O O O O O O O 0 0 0 0 0 0 0 0 00 0❑ 0 0 0 0 0 0 0 0 0 0 0❑❑ 0❑ O N W W W V) uJ v7 N W W u) V) M V) W N W y u) y y W In W W W u1 V1 W y O V) W M h N N N V W M N m m 0 o m 0 m m o 0 0 0 0 _ a Q 0- a CL W W v M r W N a a a a a a W V M N W M W p O M 0 a 'aaa'aaaaaaaa-(L CL 'a 'a 'a aaaaaaaaaaaaaaaa J a, ¢, LL U 9 W= U U U U U U U 9 O O❑ O❑ U m 6 m m m m m m 6 m 6 a0 6 m ❑ ❑ 0 ❑ 0 ❑ 0 0 ❑ ❑ 0 ❑ ❑ ❑ 0 ❑ ❑ ❑ ❑ ❑ 0 ❑ 0 ❑ ❑ 0 ❑ ❑ ❑ 0 ❑ ❑ ❑ ❑ ❑ W w fA fn co y !A N co co N (n U) N (n N (O (n co w W W w w W N y W W (A w co W W (n U ' a) m O O O O O O E Cl)o o m v o 0 o a a(a o m m 0.0 o o n o M M 0 v M W p 0 0 c c 0 0 0 0 O O O O= 0 M IN 0 L° '� O O (� N 2 A O O= S O W m O V In M ILn (7 In 10 M M aZ W W N N ? ❑ O D U ❑❑ rC ❑ U lL O O M M M M M M Im ❑` `o `o U U `o o U 0 p 0 0 6 6 6 U m m ro m Cb (n a0 as M, Co M, `0 m O O O O 0 0 0 o 0 0 0 o m❑ o 0 0 0 0❑ O o 0 0 0 0 0 0 0 0 0 0 0 00 W W co co W co CD 2 CC co co w w W m w W co w N y 0C w W co N co W co co to CO (n CC W W W W tN 10 n 0 O N Q U co O O F U u � c m � �3 O N W O m � O m Z m 0 O m U C 0 � u N o c� N 0 03 't �0) 0 rn� Q M W F W co U o O m N LL m80 H c o 6- N O 1 M 11 M U m N )0 rn 0 0 0 0 m l0 )0 10 M 10 l0 M M O N A N N A V V V N N N V m V V A rn A �v0^ A A V M M M M N N A A V 10 O M M M m m m N N N V M ,0 N m" V M N N N 0 m m 0 0 0 m rn rn V m m m V V V o o o o o o 0 o 0 o 0 0 o m 0 o o 0 0 0 0 m 0 0 m 0 m m 0 0 aU 0) m rn 0) 0) 0) m 0) m 0) m rn rn co co rn 0) rn m m co co co w oo m m co m co 2 Z .0 v v v v V v v v v a v v v v v v v v v c v v v v v v v v v E O a 0 O o 0 0 o V t0 10 l0 N O O O O O 10 o A A m N N N m t0 n O m, CO V 1n A f� m t0 )0 t0 m I� r A M 10 10 O O 10 m O m f0 m 10 10 )0 m 0 10 10 c 6A rn N M N N N N V V V A co M< C 10 C R O) N N N rn rn Oi N > ^ C 2 > 0 0 0 0 0 r 0 0 0 0 0 0 0 0 0 0 0 0 0 o m O 0 0 0 0 m m 0) 0) 0) O) 0) 0) CD0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) CD (M 0) m 0) 0 0) m m m m 3 U m v v v v a v v v v v v v v v v v a v v v v v v v v v a v v v o w 0 m C O m m In m A N m O A 0 V V N N m N )0 )0 V A A l0 V 10 N 0 0 0 r V 10 V M A A M m N M m m r N m N V M V m 0 o N V m 0 'a— l4) `0 v V V m N M M M M 0 1 1 1 N m m 0 A A o O m (6 to 0) V V 10.M 0 0 0 0 0 'o J rn rn rn 0) rn 0) O) rn 0) 0) rn 0) 0) m m 0) rn O) m m 0) 0) m m m m m m m m S v v v v v v a v v v v v v v v o v v v a v v v v v a v v v v E c o 0 A (D U) o v )n V o 0 0 0 o V o )n N o 0 0 0 )n o m A )n N 0 A m m O N V )0 A r A A m )0 rn m rn A M t0 "t O t0 m O A% (O m f0 )0 t0 @ C 10 N 0) N CO )0 A O) V N M M N_ N NM V A M rn V t0 O V M M N CD=O y > `= O O O O O O O O O O O O O O O O O O rn 0 0 0 0 0 0 O) 0) o 03 rn M M 0) 0) O) 0) 0) 0) 0) 0 rn 0) 0) rn O) 0) 0) rn CO 0) 0) (M C) rn rn CO m 0) m a(D W V V V V V V V V V V Ni V V V V V V V V V rf) O A 0) O N M V O M (D A N A 0 10 M rn CO O m A V m )0 N 0 (p m 3 N m Cl rn N 10 t0 V m N m m rn Cl V)N V A O m V O m N 0) A CO o co l0 V ALL V V m N O CO M N CO 0) N 0 0) 10 N_ N m 0 A m N_ NCO A r 00 B N _m N W m� rn rn m m V m M M M m O V M N O N 0 0 A N N N M O 0 N M .V of M m m m v N 0 V m V rn r r V V O r 10 rn V r O r m M O V m r >@ LL 0 v A A l0 A M A r m A A r� M A m A A rn A rn N N A m m A rn M m r r r N r r V N V r r M V r N V N N A U M m N N rn O N rn rn A N 10 m M rn rn O rn m M M N m 10 N A OO m 10 M A A m V m m rn V V t0 r rn M m t0 N M t0 V r r t0 M V O r A O j N th A M r M m V V N r M t0 M m r M 10 t0 N V t0 10 V r m M r A m i @ C O rn m O rn V rn m A A A N V V M M 10 t0 rn rn M M M 0 O N O M rn O m t0 O N V A M N A A V V N M M r V A A 10 N A A rn N M 0 m r _rnrnrnGorncornCDmmcoco°'mm000rncommmcococomm>> O O rn 0) 0 0) N N 0) m A t0 10 N A m M V V V O V V N rn N A m � co co CD 0 co 00 — v v v v v v v v v v v_ v vvvo-0 0 ID O rn O V V O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V O M O M A 0 0 0 0 0 w0 )0 t0 0 0 0 0 0 0 00 10 0 0 0A 10 m 0 0 m V 0 00 m M 10 a= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o )n o a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m- o o o o 0 0 0 0 o c o 0 0 0 0 0 0 0 o c o 0 0 0 0 0 0 0 0 0 E C m A M N 00 V O N M 0) V m 0 A N V N M M l0 0 rn O M N r m A V r N m V m m V A 0) 01 t0 O N O 0 N N N O M m N O m N r @ It 2 >@ N o M O 0 o (D 0) rn (7) m 0 0 0 m A V 0 A m M V V V o M N A o 0 0 0 0 0 0 o rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn m a c> rn 0) o) rn rn 0) rn o) CO CO m m m CO co m m CO m m CO m m CO m m CO CO CO CO v v v v v v v v o v v v v v a w N M M M Cl) N M M M M M 'M M Cl) M M Cl) Cl) M M M M Cl)M M M M M M M C _M _ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 @ O m C C L L L L L t L L L L L L LL L L L L L L L L LL L L L L L L 0 0 0 O 0 0 0 0 0 O 0 0 0 0 U 0 U 0 0 U 0 0 0 U j� N 0 0 0 0 0 0 C C c M c c C c c M c c c C c C c c C c c c c C c C C c c C m m rn m m V 0) N CO r O m 0) CO V m m m m O m V V O m V V m m O m N N r r N r r r N M r r N M r r r M M N NM M N N r M Cl) V r V L O AN 0 O M V A M A O V M O rn M m O A O m m M M m A A �` m )0 N )0 r r N rn m O O V m A rn rn m m A N m m O r V m m M. r V C 0)A V )0 O M O N A O N V rn A N A V 0 m o 0 0 r M l0 V N m N m 0 M M rn O V N A m t0 V (D m 0 0 V O r M )0 N J r M r r N N N N r N N r r N N r M N V M M N mmcu .0 O V V V m N O a L N N N @@@ c E m @ L @ r O O O O O O O O L 0 0 M 0 0 0 O O O r O M 0 0 M M M p M M M M N N p p M N M M M M M M M M OQ) Z M M M M 2 N 2 2 2 2 2 E °' M 2 2 °' 2 2 M 2 2 2 2 2 2 LL m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O m m m w w m m m rn m m m m m m m m rn m m m m rn m rn m m m y h r M A o O N M m m 0 V N V )0 N M O 0 m@ M M rn N 0 M M m V N N N A V V N N m V N N 10 V N N V r r N m asaaan.aaan.aaan.aaaaaaaaaaaaaaaa m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m m w m m rn m m co rn rn m m m m m m m m m m m m w rn rn m m m w E @ @ N_ 10 O_ V CO N O 1 N @ rp m m _ @ O L L @ O O O 0 0 rp O Co O O N 0) M N M O M N l0 V UI M O A M M N M rp M N ry M p M M 0 O S O Q S o O O O 2 O O O 2 2 S O O 2 2 O O 2 O o S S M M aZ M V 0 M 2 N M M M 2 N N M 2 2 2 M M�� D m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O m m m m w 0 0 w 0 rn m m m w m N m m rn m m m m m 0 0 N w w V) 0 c u 0 O cc N Y O 0 3 0 VI O Q S � M N � C F m . C M U o 0 M O LL N � M i c o Scenario: Base M 11 11 1 1 1 M el Node Report Label Total System Flow (cfs) Ground Elevation (ft) Rim Elevation (ft) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) Description SDA-1601 4.37 4,893.27 4,893.27 4,891.93 4,891.82 SDA-1602 13.00 4,893.30 4,893.30 4,891.73 4,891.61 SDA-FES1 12.66 4,890.25 4,890.25 4.891.44 4,891.44 SDF-1204 11.15 4,905.85 4,905.85 4,904.37 4,904.37 SDF-FES1 11.10 4,902.00 4,902.00 4,904.23 4,904.23 SDG-1203 7.32 4,904.36 4,904.36 4,904.36 4,904.31 SDG-MH203 6.89 4,904.36 4,904.36 4,904.27 4,904.25 SDG-FES1 6.72 4,902.50 4,902.50 4.904.23 4,904.23 SDE-1401 12.41 4,907.50 4,907.50 4,904.91 4,904.91 SDE-FES1 12.41 4,901.00 4.901.00 4,904.23 4,904.23 SDH-1502 10.47 4,906.40 4,906.40 4,903.62 4,903.05 SDH-FES1 10.18 4,903.00 4,903.00 4,902.16 4,902.16 Roof Drain 100c 3.54 4,914.20 4,914.20 4,909.00 4,909.00 Roof Drain 100d 4.43 4,914.20 4,914.20 4,908.84 4,908.84 SDC-CO100c 3.54 4,912.70 4.912.70 4,908.96 4,908.96 SDC-CO100d 7.97 4,912.45 4,912.45 4,908.68 4,908.68 Roof Drain 100e 4.40 4,912.20 4,912.20 4,907.23 4,907.23 Roof Drain 100f 3.38 4,912.20 4,912.20 4,907.48 4,907.48 SDC-MH307 15.75 4,910.20 4,910.20 4,906.95 4,906.95 SDC-FES3 15.75 4,906.77 4,906.77 4,905.14 4,905.14 Roof Drain 100b 2.36 4,918.20 4,918.20 4,914.96 4,914.96 SDD-1404 3.02 4,911.50 4,911.50 4,909.25 4,908.80 SDD=CO100b 2.36 4,915.55 4,915.55 4,913.31 4,913.18 SDD-MH403b 5.29 4,909.75 4,909.75 4,905.67 4,905.49 SDD-MH403a 5.18 4,906.50 4,906.50 4,904.43 4,904.41 SDD-1403 6.25 4,903.80 4,903.80 4,903.80 4,903.80 SDD-OUTLET 6.14 4,904.36 4,904.36 4,904.79 4,904.79 SDC-FES2 16.81 4,908.00 4,908.00 4,905.07 4,905.07 SDC-FES1 16.81 4,906.00 4,906.00 4,902.48 4,902.48 Roof Drain 100a 2.36 4,918.20 4,918.20 4,914.96 4,914.96 SDB-CO100a 2.36 4,915.00 4,915.00 4,913.86 4,913.72 SDB-1314 4.13 4,912.40 4,912.40 4,909.96 4,909.85 SDB-1305e 0.00 4,912.50 4,912.50 4,909.44 4,909.44 SOB-MH314 6.44 4,910.50 4,910.50 4,909.77 4,909.64 SDB-1101 0.93 4,912.63 4,912.63 4,908.82 4,908.82 SDB-1305d 0.00 4,909.50 4.909.50 4,907.60 4,907.60 SDB-1313a 2.87 4.909.70 4,909.70 4,908.53 4,908.48 SDB-1315 8.16 4,910.70 4,910.70 4,908.81 4,908.73 SDB-1305c 0.00 4,910.00 4,910.00 4,906.16 4,906.16 SDB-1501 12.41 4,915.00 4,915.00 4,909.06 4,908.76 SDB-MH313a 10.81 4,909.00 4,909.00 4,908.46 4,908.34 Roof Drain 100g 0.50 4,912.00 4,912.00 4,909.36 4,909.36 SDB-CO305b 0.00 4,910.25 4,910.25 4,905.14 4,905.14 SDB-1312a 4.65 4,905.70 4,905.70 4,904.14 4,904.00 SDB-1309 6.30 4,907.80 4,907.80 4,905.23 4.904.98 SDB-MH312a 22.97 4.909.67 4,909.67 4,907.63 4,906.96 SDB-1402 12.29 4,907.00 4,907.00 4,902.15 4,902.15 SDB-CO305a 0.50 4,908.25 4,908.25 4,903.47 4,903.41 SDB-1311a 6.52 4,905.40 4,905.40 4,903.66 4,903.56 SDB-1310 15.43 4,907.54 4,907.54 4,904.42 4,903.47 SDB-MH310 22.84 4,909.75 1 4,909.75 1 4,903.45 4.903.32 ' Title: Fort Collins High School 2004 Project Engineer. zcs n:\fc019Mstormcad\fc0194_working.stm Nolte Associates Inc StormCAD v4.1.1 [4.2014a] 05/30/02 08:43:39 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 2 Scenario: Base 1 M n 1 1 1 1 M Node Report Label Total System Flow (cfs) Ground Elevation (ft) Rim Elevation (ft) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) Description SDB-1202b 8.21 4,904.14 4,904.14 4,901.18 4,900.76 SDB-1305b 9.60 4,902.70 4,902.70 4,901.79 4,901,70 SDB-1304 2.63 4,903.70 4,903.70 4,901.41 4,901.37 SDB-1305a 10.96 4,903.60 4.903.60 4,901.90 4,901.80 SDB-MH311a 39.37 4,912.50 4,912.50 4,902.70 4,902.21 SDB-1201 5.52 4,902.90 4,902.90 4,899.13 4,898.94 SDB-1200 12.27 4,902.84 4,902.84 4,899.46 4,898.64 SDB-1307 2.40 4,903.90 4,903.90 4,900.86 4,900.82 SDB-MH304 18.71 4,904.75 4,904.75 4,901.35 4,901.12 SDB-MH308 39.05 4,907.32 4,907.32 4,901.33 4,901.28 SDB-MH201 16.63 4,903.50 4,903.50 4,898.25 4,897.82 SDB-1303 7.49 4,899.40 4,899A0 4,897.36 4,897.25 SDB-1306 22.08 4,904.00 4,904.00 4,900.73 4,900.45 SDB-MH302b 38.80 4,905.50 4,905.50 4,900.40 4,900.31 SDB-MH200 16.26 4,901.85 4,901.85 4,896.52 4,896.44 SDB-1301b 12.97 4,901.00 4,901.00 4,897.07 4,896.67 SDB-1302a 2.71 4,900.76 4,900.76 4,896.72 4,896.67 SDB-MH301b 58.84 4,904.67 4,904.67 4,899.32 4,899.05 SDB=1301a 17.08 4,899.85 4,899.11 4,894.37 4,894.24 SDB-1300 1.85 4,899.61 4,899.11 4,894.65 4,894.41 SDB-MH302a 68.52 4,902.52 4,902.52 4,896.64 4,895.85 SDB-MH301a 84.40 4,899.55 4,899.55 4,894.22 4,893.02 SDB-FES1 83.94 4,892.50 4,892.50 4,891.44 4,891.44 ' Title: Fort Collins High School 2004 - Project Engineer: zcs n:\fc0194\stonnnd\fc0194_working.stm Nolte Associates Inc StormCAD v4.1.1 [4.2014a) 05/30/02 08:43:39 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755.1666 Page 2 of 2 O �o O 0. 0 N a 0) -SOD 2 c SOS 0 sF > > N N c c 0000 V) O 0 M N I wa w 1 0 az 00 (n a M O �t00 0. U Q)co C CO ¢ N c 0 p � > > V) — cc LO rr N CD O OD 00 a oo a � CO ao o�>> V)N c c N N N O O U (D (D 1 O Qn.�t 000 N a m N o )- U y Z c 0 c;0 cn J djLd z r 0 ¢ Q N m O � 2 UCC 0) N, `. C ` W H N (n E w N 0 N 0 N O 0 U o w 0 F O a U O Q O _ a E 0 (n p ¢ 0 s w w N (n ¢ Z m 0 I w ' Z ~ GiZ� . c� 3 ¢ ¢ w m v0 w w = O d O X 0 (n . M O N n tw.. a Up 00 N H U LLJ C/-) NO U) O ON ro a 0 Of N NcCCO V / NCO 0 u W M09 I o_ ao ooro U7 O O w O— p U . GD c O_M 'vori 0-� a or) O O . N C ca— N a 0 'a0 n ui 0 0 � pp0) �sX a rl . '17 l c c p a' G n Op POyJ'l; a LO a` 2—`—` 0 -t W �y NLa aj ww U¢ `70S� � c c I 0 .0- y vi s N N c C N N of M f0 N 1� D) CD p rn� n x o O_ ua .:j aL I c cp U c> U a m 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 w cn N c Z OOO N_N U BZ�sb. Of O 1-- oa �Oap,y,�G;IGGj V) OD 'yam cn y2 0 y0S 0 I wa 10 WZ 00 V) a. 0 Lq o to m o0 _a 00 m d U . i+ O c cp ` i i N°� c c 00 � � U larn 00� m N N N 06 O 0) d 0 a O ccp coo i i V) C C C� w - I— _ N cli = n0 NNO VI.Z 'h�pp O)o aM c� �Qep ciao �G/ecGr��p �pp N - N c O N O 5 O A. I-- r, U) NI Wa 10 Z 00 O N a V I Wa `j W 0 voi a DO Es W d��oS C vi r vv u cf) z wa;a N 0 O I- - V / O at �p 2 M � O O n IL CY) cn 0 a c op M 0 m V)C C N M N in Ot- 04 ara« ZS Zs n �•�GO ^G/ SOa 4� /�u ON;O vi — c c qcl olOS o5 o I a O, v OOOD 0`° 0 O c c0' ca 0 N i i (n Cj c c O O D D w O U O O K oow I o u) I O am 0 is fV N MM a rn O j Z O n 1 li Z t O W < 0 m O U 0 2 U 0 0 y O w N V) E N O o o N a U 3 O a U 0 m F a. 0o Q U 0O 1 N N 0 O E O b O Q W N Vl O m Lo I a z z o Z U (� W 3 < < w w m . 0 a 0 x 0 v) C O N O ON"- N+ th O O L C 1 M N N u o pdp Q) o NO N 0 , U) w M I a n — 00� 1C�M N p O , . N z 0 U 12 Li V? Z V / CY 0 W 0 Of Z 0 Q � Q of w 0 Q� (� Q 3::N J OZ Q J J 0 W d L� J U Z af N Q Q d W N Of > o 0 W ZgO Z N of F- :2 m } 00 < W H H > N )OwOw N N U N Z W H 0 Z rn �? o U p O D 7 Z w V (n J O V w Z Q mO r p m U N U E d N O o 0 Law N N N E 2 O N 0 CN 0 0 LO U w O 0 a 0 o a U r Q 0 ` t N p Of 0 CLp ECD N p 0 Q r r W V N N U , U-) I WLo Q Z Z z 0 Z F r W af (n w W 2 r 0 a 0 x 0 N SDB-P13 uD-1014 D.P. 314 18 inch 4.12 cfs Inv.ln: 4907.64 DB-CO100o Inv.Out:4907.37 SDB-P14 SDB-MH314 12 inch Inv.ln: 4913.06 SDB-P15 SDB-P12 Inv.Out:4907.77 12 inch 18 inch Inv.In:4914.30 SDB-1313a Inv.In:4907.27 Inv. Out:4913.26 D.P. 313a Inv.Out:4906.16 2.87 cfs Roofdrain 100o S74 DB315 SDB-1315 D.P.8 inph D.P. 315 1.3cfs cfs SDB-MH313a Inv.In:4905.66 1.38 cfs Inv.Out:4904.63 SDB-P16 SDB-P10 18 In SDB-1101 24 inch Inv.In:4906.96 D.P. 101 Inv.In:4904.43 Inv.Out:4906.16 3.44 cfs SDB-1501 Inv.Out: 4902.89 Commercial D.P. 501 12.41 cfs SDB-P19 240& 24 inch nv.In:4904.77 Inv.Out:4902.89 O� 490? 490?>9 SDB-MH312a Og SDB-1310 SDB-1309 D.P. 310 D.P. 309 9.50 cfs 6.20 cfs SDB-MH310 See Sheet 5 for continuation. SDB-1305a D.P. 305a 10.48 cfs s 7La17' SDB,P26ch 19X g0 SDB-MH04b \nv 0 SDB-1306 D.P. 306 1.33 c06\gar 9B Z 33 cfs W SD.P. 307 S0B'p24 m.4999p923 �m 2.40 cfs 1B \nv.\n'• 4g98 c r SDB-1304 v No D.P. 304 51 03 2.61 cfs SDB-1312o 401, � �o c �h NV SDB-P33 D.P. 312a 4.65 cfs' SDB rDs ry pp•pp• Q o, a, u a� 18 inch Inv.In:4901.67 _p37 18 inch �0 'D 0, oc Inv.Out:4900.90 InvIn: 4901 - Inv.Out 49pp 37 SOB _P30 18 inch �c - c SDA-1311a D.P. nV. n: Inv0ut:4899.09 SD@_p 36 inc �DB-MH308 311a 1.87 cfs Inv. In. 4898 SD@_p6 1a 9. Out:48972gSDB-MH31Ilnv4897 Inv Out .62 4896.35 ■■.■■■ 2004 High School StormCAD Layout System B DWG NAME: SD-.LAYOUT.DWG PATH:N: fc0194 CADD CP DATE: 05 29 02 1 TIME: 11:20 a.m. SCALE: N.T.S. XREFS: Stom DESIGNER: GAD PROJ. MGR: TMO JOB N0. FC0194 ' SHEET 2 - OF 5 SHEETS SDB-P5 36 inch Inv-Ir 489 . Inv.Out: 4894.79 STORM SYSTEM 'B' N.T.S. I SDB-1402 D.P. 402 12.26 cfs p 'Oro I of Gi�Di}AO OJlb c X SDB-1305b D.P. 305b 8.36 cfs SDB-1303 SDB-P23 D.P. 303 22.05 cfs 30 inch Inv.ln: 4897.23 - Inv.Out: 4894.79 s a>�m `o �Qo 10 a •� a SDB-MH301 b SD@� SDB-P21 24 inch Inv.ln:4894.31 Inv.Out:4894.23 Oof•�g2g 92 �3 SDB-MH302a A ^o r `\ r'JO0 c J 0 SDB-1302a D.P. 302a 6.40 cfs SDB-1300 D.P. 300 1.90 cfs .I . SDB-1301b D.P. 103b 6.20 cfs SDB-M SDB-1202b D.P. 202b 7.30 cfs SDB-P43 18 inch Inv.ln: 4896.8.4 Inv -Out: 4895.78 SDB-1200 D.P. 200 SDB-P42 12.50 cfs 18 inch Inv.ln: 4896.84 SDB-1201 Inv -Out: 4895.78 D.P. 201 5.43 cfs SDB-P44 Inv.ln:t 48j94 SI Inv.Oi 4895.44 SDB-13010 D.P. 301a 5.40 cfs ,h r ��O 009 � D a`OOJ`. S O A. 03 op. ,;�� - S B-FES1 DMJn n a__ Q�p �„�• gyp. ti\c c. c I 1 ��j 1 1 1 1 i i 1 1 1 1 APPENDIX F Detention Pond Calculations P 1 1 1 1 1 1 P of 'In- Pnnrl olume Calculation Project #: 0194 20 Project Name: 2004 Fort Collins High School Calculated By: GAD Date: 4/24/2002 B E Y O N D E N G I N E E R I N G Detention pond volume (V):l/3d(A+B+(AB)°'5) (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, ft2 - r . , t;.. • ,, ":. ,..:. :South Detention,Pond: z. Volume I Vo Elevation Dd A ft ft, B ftZ Volume ft3 Cummulative Volume ft' Cummulative Volume ac-ft 4882.50 0 ! 0 0.00 0.00 1 0.00 0.00 VI 4883.00 j 0.50 1 0 28,923 : 4,821 j 4,821 0.11 V2 j 4884.00 ! 1.00 128,923 ( 31,626 30,265 35,085 0.81 V3. 4885.00 1.00 I 31,626 83,379 ' 55,452 0.00 0.00 Va j 4886.00 i 1.001 83,379 1123,673 102,866 102,866 2.36 V5 1 4887.00 1 1.00 123,673 1141,520 132,496 1 235,362 5.40 j V6 I 4888.00 1.00 ; 141,520 1147,899; 144,698 j 380,060 8.72 Vr 4889.00 1.00 147,899 1153,2051 150,544 530,605 12.18 13.50 ac-ft V m 4889.37 13.50 0.47 ac-ft J V 4889.50 13.97 Ve 4890.00 1 1.00 153,205 1156,1461 154,673 1 685,278 15.73 j V9 4891.00 E00 i 156,146 174,847! 165,408 J 850,686 19.53 7.34ac-ft ( *•Vloo., 4891.44 1 20.41 J VIO 4892.00 1.00 174,847 179,849! 177,342 1,028,028 23.60 V I I J 4893.00 1.00 179,849 1 188 5891 184,202 1,212,230 27.83 ' A 2-ft sediment depth is required by the irrigation pond design. '• 0.9 Acre-feet added per CFC to accommodate Reid riedlinger parcel (5ac) Nolte Associates, Inc. 412412002 2:46 PM DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ 1 EXECUTED ON 04-24-2002 AT TIME 14:17:06 PROJECT TITLE: 2004 Fort Collins High School 1 **** DRAINAGE BASIN DESCRIPTION 1 BASIN ID NUMBER 1000 BASIN AREA (acre)= 40.61 RUNOFF COEF 0.60 ***** DESIGN RAINFALL STATISTICS 1 DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN 1 DURATION 5 10 20 30 40 50 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 60 80 100 120 150 180 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 20.3 CFS 1 OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 20.3 CPS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. 1 ***** COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME ' STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE -FT 0.00 0.00 0.00 0.00 0.00 5.00 9.95 1.68 0.14 1.54 10.00 7.72 2.61 0.28 2.33 15.00 6.66 3.38 0.42 2.96 20.00 5.60 3.79 0.56 3.23 25.00 5.06 4.28 0.70 3.58 1 30.00 4.52 4.59 0.84 3.75 35.00 4.13 4.89 0.98 3.91 40.00 3.74 5.06 1.12 3.94 45.00 3.49 5.31 1.26 4.05 1 50.00 3.23 5.47 1.40 4.07 55.00 3.05 5.67 1.54 4.13 60.00 2.86 5.81 1.68 4.13 65.00 2.74 6.04 1.82 4.22 70.00 2.63 6.23 1.96 4.27 1 75.00 2.52 6.38 2.10 4.29 80.00 2.40 6.50 2.24 4.26 85.00 2.30 6.62 2.38 4.24 90.00 2.20 6.70 2.52 4.18 ' 95.00 2.10 6.75 2.66 4.10 100.00 2.00 6.77 2.80 3.97 105.00 1.95 6.93 2.94 3.99 ------------------------------------------------ THE REQUIRED POND SIZE = 4.286277 ACRE -FT +z 9 x 1-5 THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 75 MINUTES M 1 I Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 1 of 3) Designer: GAD Company. Nolte Associates, Inc. Date: April 24, 2002 Project: FC0194 - 2004 High School Location: Fort Collins, CO 1. Basin Storage Volume I, = 38.00 % A) Tributary Area's Imperviousness Ratio (i = I, / 100) i = 0.38 B) Contributing Watershed Area (Area) Area = 40.61 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.14 watershed inches (WQCV =0.8 - (0.91 -13-1.19`IZ+0.78.1)) D) Design Volume: Vol = (WQCV / 12)' Area Vol = 0.47 acre-feet 2. Permanent Pool A) Volume: Volppd _ (1.0 to 1.5)' Vol acre-feet B) Average Depth Zone 1 = Littoral Zone - 6 to 12 inches deep feet Zone 2 = Deeper Zone - 4 feet to 8 feet deep Zone 2 feet C) Maximum Zone 2 Pool Depth (not to exceed 12 feet) Depth = feet D) Permanent Pool Water Surface Area (Estimated Minimum) (Zone 1 - Littoral Zone = 25% to 40% of the total surface area) % = acresc (Zone 2 - Deeper Zone = 60% to 75% of the total surface area) % = acres = Total Estimated Minimum Surface Area (AT,,,,,) % = acres = 3. Annual/Seasonal Water Balance (Q,e, has to be positive) 2. Outlet Works A) Outlet Type (Check One) B) Depth at Outlet Above Lowest Perforation (H) C) Required Maximum Outlet Area per Row, (Ap) D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR ii) 2" Height Rectangular Perforation Width E) Number of Columns (nc) Q;nfim acre-feet/year QeWP acre-feeUyear Qseepage acre-feet/year QE.T. acre-feet/year One, acre feeUyear x_ Orifice Plate _ Perforated Riser Pipe Other: H = feet A, _ _..square inches D = inches, OR W = inches nc= .Number FC0194_Water Quality_NEW.xls, RP tBasins contributing to the irrigation Pond. 100 250603.83 5.75 101 5370.44 0.12 200 53732.39 1.23 201 18105.26 1.33 ' 202 156168.3 3.59 300 28539.1 0.66 301 a 78214.17 1.80 ' 301b 62041.59 1.42 302a 11973.51 0.27 302b 25750.63 0.59 303 154999.68 3.56 ' 304 66017.58 1.52 305a 150107.73 3.45 305b 152916.81 3.51 ' 308 22184.63 0.51 309 38919.6 0.89 ' 310 314 72532,37 71132.98 1.67 1.63 315 15709.87 0.36 402 81229.03 1.86 ' 600 72983.87 1.68 601 85859.25 1.97 602 53800.45 1.24 ' - :40.61„." 1 t 1 1 1 1 FC0194_Rational-Fort Collins.xls 2:10 PM Wei }a1c atoi 0`0- ear eleas Ove , ow iliw Project Name: 2004 High School �O Project M FC0194 Designer: TMO/GAD Design Storm: Developed 100-year BEYOND ENGIN EERI N G Detention Pond: Southeast Detention Pond P-300 Problem: Calculate the head required to discharge 22.2cfs through a 50' wide broad crested weir. Given: ' Broad -Crested Weir Equation: Q= CLH3n Where, Value Q = Discharge, cfs 22.2 Solution: C = Broad Crested Weir Coefficient, See Table 5-91 2.82 L = Broad Crested Weir Length, ft 50 H = Head above the weir crest, ft Solve For Note: 1. Per Handbook of Hydraulics, King and Brater (1963) 2. 100-yr pond elevation = 4891.44 Solve for H': H = (Qaro/CL)v3 H = 0.29 ft 3. Weir crest elevation = 4891.15 Nolte Associates, Inc. FC0194_Weir.>ds 5/30/2002 DETENTION POND SIZING BY FAA METHOD Developed bj Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc........ .... ....... ........ ...... ... ' EXECUTED ON 03-04-2002 AT TIME 11:59:15 PROJECT TITLE: 2004 Ft.Collins High School 1 **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 306 ' BASIN AREA (acre)= 2.66 RUNOFF COEF 0.97 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN ' DURATION 5 10 20 30 40 50 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 60 80 100 120 150 180 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 1.33 CFS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 1.33 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE -FT 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.18 0.01 0.17 10.00 7.72 0.28 0.02 0.26 15.00 6.66 0.36 0.03 0.33 20.00 5.60 0.40 0.04 0.36 25.00 5.06 0.45 0.05 0.41 ' 30.00 4.52 0.49 0.05 0.43 35.00 4.13 0.52 0.06 0.45 40.00 3.74 0.54 0.07 0.46 45.00 3.49 0.56 0.08 0.48 50_00 3.23 0.58 0.09 0.49 55.00 3.05 0.60 0.10 0.50 60.00 2.86 0.61 0.11 0.51 65.00 2.74 0.64 0.12 0.52 70.00 2.63 0.66 0.13 0.53 ' 75.00 2.52 0.68 0.14 0.54 80.00 2.40 0.69 0.15 0.54 85.00 2.30 0.70 0.16 0.54 90.00 2.20 0.71 0.16 0.54 ' 95.00 2.10 0.71 0.17 0.54 100.00 2.00 0.72 0.18 0.53 105.00 1.95 0.73 0.19 0.54 110.00 1.90 0.75 0.20 0.55 ' 115.00 1.85 0..76 0.21 0.55 , 120.00 1.80 0.77 0.22 0.55 125 DOS i 11 7VF-,.i 7-0::-78 Or.-23 _.5:C0..55 130,00 1,70 0,79 0.24 1,55 1.00 1.60.80 0..2 0.55 14040.00 1.60 0.80, 0.26 . 0.55 145.00 1.55 0.81 0.27 0.54 150.00 1.50 0.81 0.27 0.53 155.00 1.45 0.81 0.26 0.52 ----------------------------------------------------- THE REQUIRED POND SIZE _ .5549204 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 125 MINUTES 1_J 1 1 M 1 1 1 1 1 1 )etenfion on o'IEW-CR1"lcai' lion Project : FC0194 Project Name:.2004 Fort Collins High School Calculated By: GAD Date: 5/30/2002 B E Y O N D E N G I N E E R I N G Detention pond volume (V):1/3d(A+B+(AB)°'S) (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ft2 B= Surface area of contour line at a depth relevant to d, ft2 Basin 06 Volume Elevation Dd fr A ft2 B Volume ft2 ft3 Cummulative Volume ft3 Cummulative Volume ac-ft Vo 4904.00 0.00 0 25 0 0 I 0.00 V 4905.00 1.00 25i 406 1 177 177 j 0.00 V2 4906.00 1.00 406 1 9,891 1 4,100 4,278 I 0.10 VIO 4906.76 i 0.55 V3 4907.00 1.00 1 91891 44,935I 25,303 29,580 0.68 Nolte Associates, Inc. 513012002 1:16 PM I DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado ' USER=Nolte Associates, Inc ............................................ EXECUTED ON 03-04-2002 AT TIME 13:13:35 PROJECT TITLE: 2004 Ft.Collins High School **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 307 BASIN'AREA (acre)= 4.79 ' RUNOFF COEF 0.83 ***** DESIGN RAINFALL STATISTICS ' DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 2.395 CPS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 2.395 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ------------------------------------------ RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED ' DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE -FT ' 0.00 0.00 0.00 0.00 5.00 9.95 0.27 0.02 0.00 0.26 10.00 7.72 0.43 0.03 0.39 15.00 6.66 0.55 0.05 0.50 20.00 5.60 0.62 0.07 0.55 25.00 5.06 0.70 0.08 0.62 ' 30.00 4.52 0.75 0.10 0.65 35.00 4.13 0.80 0.12 0.68 40.00 3.74 0.83 0.13 0.69 45.00 3.49 0.87 0.15 0.72 50.00 3.23 0.89 0.16 0_73 55.00 3.05 0.92 0.18 0.74 60.00 2.86 0.95 0.20 0.75 65.00 2.74 0.99 0.21 0.77 70.00 2.63 1.02 0.23 0.79 75.00 2.52 1.04 0.25 0.79 80.00 2.40 1.06 0.26 0.80 85.00 2-.30 1..08 --0.28 0.80 90.00 2.20 1.09 0.30 95.00 2.10 1.10 0.31 0.80 0.79 100.00 2.00 1.10 0.33 0.77 105.00 1.95 1.13 0.35 0.78 ' 110.00 1.90 1.15 0.36 0.79 115.00 1.85 1.17 0.38 0.80 - - - -- THE REQUIRED POND SIZE _ .7991067 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 85 MINUTES 1 1 M 1 1 1 1 1 1 1 fl M 1 ^--e'�en'fion ,on ��o ume �aleu"'Ia'�ion ProName20 F : 01 4 �O Project Name: 2004 Fart Collins high School Calculated By: GAD Date:5/30/2002 BEYOND ENGINEERINGG Detention pond volume (V): 1/3d(A+B+(AB)0s) (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ftZ B= Surface area of contour line at a depth relevant to d, ftZ UWAM arias 307 Volume Elevation Dd ft A ftZ B ftZ Volume W Cummulative Volume ft3 Cummulative Volume ac-ft o I 4904.00 0.00 0 97 0 ( 0 0.00 VI 4905.00 1.00 97 12,351 976 976 0.02 VZ 4906.00 1.00 2,351 10,807 6,066 7,042 0.16 Moo- 4907.00 0:80 V3 ( 4907.00 1.00 1 10,807 j 49,031 27,619 34,661 0.80 DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ ' EXECUTED ON 03-04-2002 AT TIME 13:16:37 PROJECT TITLE: 2004 Ft.Collins High School ' **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 311a BASIN AREA (acre)= 3.74 ' RUNOFF COEF 0.89 ***** DESIGN RAINFALL STATISTICS t DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1..2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 1.87 CPS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 1.87 CPS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE -FT 0.00 0.00 0.00 0.00 5.00 9.95 0.23 0.01 0.00 0.22 10.00 7.72 0.36 0.03 0.33 15.00 6.66 0.46 0.04 0.42 20.00 5.60 0.52 0.05 0.47 25.00 5.06 0.58 0.06 0.52 ' 30.00 4.52 0.63 0.08 0.55 35.00 4.13 0.67 0.09 0.58 40.00 3.74 0.69 0.10 0.59 ' 45.00 3.49 0.73 0.12 50.00 3.23 0.75 0.13 0.61 0.62 55.00 3.05 0.77 0.14 0.63 60.00 2.86 0.79 0.15 0.64 65.00 2.74 0.82 0.17 0.66 70.00 2.63 0.85 0.18 0.67 ' 75.00 2.52 0.87 0.19 0.68 80.00 2.40 0.89 0.21 0.68 85.00 2.30 0.90 0.22 0.68 ' ' 90.00 2.20 0.92 0.23 95.00 2.10 0.92 0.24 0.68 0.68 100.00 2.00 0.92 0.26 0.67 105.00 1.95 0.95 0.27 0.68 110.00 1.90 0.97 0.28 0.68 115.00 1.85 0.98 0.30 ' .0.69 IL2 L. 00 1 80_�1,-00= >0� 31y Op. 69 - 125.00 1.75 1.01 0.32 0.69 130.00 1.70 1.02 0.33 0.69 1.00 1.61.00.3 0.6 14090.00 1.60 1.04 0.36 0.677 145.00 1.55 1.04 0.37 0.67 150.00 1.50 1.04 0.39 0.65 ----------------------------------------------------- THE REQUIRED POND SIZE _ .689489 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 120 MINUTES 1 1 1 1 1 _ - , .e�ifio" n P�on� o7ume Laic > la . An Project#: FC0194 Project Name: 2004 Fort Collins High School NO Calculated By: GAD Date: 5/30/2002 BEYOND ENGINEERI N G Detention pond volume (V): 1/3d(A+B+(AB)"') (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, ftt Basia.3111 a Volume Elevation Dd ft A frZ B fr2 Volume ft3 Cummulative Volume ft' Cummulative Volume ac-ft Vo 1 4905.20 0.00 0 0 1 0 0 0.00 Vr 4906.00 0.80 0 867 231 231 0.01 Vr 4907.00 1.00 867 6,660 3,310 3,541 0.08 V3 4908.00 1.00 6,660 41,250 21,495 25,036 0.57 Vl; 4908.10 0.6.9 V, 1 4908.50 0.50 41,250 58,702 24,860 49,896 1.15 Nolte Associates, Inc. 513012002 1:38 PM r DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ ' EXECUTED ON 03-04-2002 AT TIME 13:19:25 PROJECT TITLE: 2004 Ft.Collins High School DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 312a (Interim Cond:-ion) BASIN AREA (acre)= 13.69 ' RUNOFF COEF 0.51 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 ' INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 so 60 80 100 120 150 180 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 6.845 CFS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 6.845 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ----------------------------------------------------- ACRE -FT ACRE-FT 0.00 0.00 0.00 5.00 9.95 0.48 0.00 0.05 0.00 0.44 10.00 7.72 0.75 0.09 0.65 15.00 6.66 0.97 0.14 0.83 20.00 5.60 1.09 0.19 0.90 25.00 5.06 1.23 0.24 0.99 ' 30.00 4.52 1.31 0.28 1.03 35.00 4.13 1.40 0.33 1.07 40.00 3.74 1.45 0.38 1.07 45.00 3.49 1.52 50..00 3.23 1.57 0.42 0.47 1.10 1.09 55.00 3.05 1.62 0.52 1.11 60.00 2.86 1.66 0.57 1.10 65.00 2.74 1.73 0.61 1.12 70.00 2.-63 1.79 _'0.66 _ 1.13 75.00 2.52 1.83 0.71 1.12 80.00 2.40 1.86 0.75 1.11 85.00 2.30 1.90 0.80 1.09 90.00 2.20 1.92 95.00 2.10 1.93 0.85 0.90 1.07 1.04 100.00 2.00 1.94 0.94 1.00 ----------------------------------------------------- THE REQUIRED POND SIZE = 1.125247 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES ,.etenfion ,on'7T.'olume C"a"lculation Project p: 0194 20 �O Project Name: 2004 Fort Collins High School Calculated By: HEY Date: 5/3012002 BEYOND ENGINEERING 1 1 1 Detention pond volume (V): 1/3d(A+B+(AB)o'S) (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, 112 MMMUMEM73 nterim Volume Elevation Dd ft A ft, B ft2 Volume ft3 Cummulative Volume fe Cummulative Volume ac-ft Vo 4905.50 0.00 1 0 25 0 0 0.00 V, 4906.00 0.50 1 25 1,380 265 265 0.01 V2 4907.00 1.00 1,380 7,255 3,933 4,198 0.10 V3 4908.00 1.00 1 7,255 33,564 1 18,808 23,006 0.53 V1 490853 1.12 V4 ( 4909.00 1.00 33,564 65,821 48,796 71,802 1 1.65 Nolte Associates, Inc. S13012002 1:42 PM DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U.of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado ' USER=Nolte Associates, Inc____________________________________________________ EXECUTED ON 03-04-2002 AT TIME 13:22:05 PROJECT TITLE: 2004 Ft.Collins High School ' **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 312a BASIN AREA (acre)= 9.30 ' RUNOFF COEF 0.63 DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 ' INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 4.65 CPS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 4.65 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME. STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE -FT 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.40 0.03 0.37 10.00 7.72 0.63 0.06 0.56 15.00 6.66 0.81 0.10 0.12 20.00 5.60 0.91 0.13 0.78 25.00 5.06 1.03 0.16 0.87 ' 30.00 4.52 1.10 0.19 0.91 35.00 4.13 1.18 0.22 0.95 40.00 3.74 1.22 0.26 0.96 45.00 3.49 1.28 0.29 0.99 ' 50.00 3.23 1.31 0.32 0.99 55.00 3.05 1.36 0..35 1.01 60.00 2.86 1.40 0.38 1.01 65.00 2.74 1.45 0.42 1.04 70.00 2.63 1.50 0.45 1.05 ' 75.00 2.52 1.53 0.48 1.05 80.00 2.40 1.56 0.51 1.05 85.00 2.30 1.59 0.54 1.05 90.00 2.20 1.61 95.00 2.10 1.62 0.58 0.61 1.03 1.01 100.00 2.00 1.63 0.64 0.99 105.00 1.95 1.67 0.67 0.99 1 ----------------------------------------------------- THE REQUIRED POND SIZE = 1.054564 ACRE -FT. THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 75 MINUTES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 ,eTention . on"dW�"olume @alc—u on ProName20: 0194 Project Name: 2004 Fort Collins High School Calculated By: HHF Date:5/30/2002 BEYOND ENGINEERING Detention pond volume (V): 1/3d(A+B+(AB)o'S) (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, ft' Basin L2a Volume Elevation Dd ft A ft2 B ft2 Volume ft3 Cummulative Volume ft3 Cummulative Volume ac-ft Vo 4905.50 0.00 0 25 0 0 0.00 V, j 4906.00 0.50 25 1,380 265 265 0.01 j V2 4907.00 1.00 1,380 7,255 3,933 4,198 0.10 V3 4908.00 1.00 7,255 33,564 18,808 23,006 0.53 Vwu 4908A - - 1.05 V4 4909.00 1.00 33,564 65,821 48,796 71,802 1.65 Nolte Associates, Inc. 513012002 1:41 PM DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado -- -------------- USER=Nolte Associates, Inc ............................................ ' EXECUTED ON 03-04-2002 AT TIME 13:24:27 PROJECT TITLE: 2004 Ft.Collins High School **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 313a (Interim Condition) BASIN AREA (acre)= 10.16 ' RUNOFF COEF 0.54 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 ' INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 5.08 CPS OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 5.08 CPS _ AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE-FT 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.38 0.03 0.34 10.00 7.72 0.59 0.07 0.52 15.00 6.66 .0.76 0.10 0.66 20.00 5.60 0.85 0.14 0.71 25.00 5.06 0.96 0.17 0.79 ' 30.00 4.52 1.03 0.21 0.82 35.00 4.13 1.10 0.24 0.86 40.00 3.74 1.14 0.28 0.86 ' 45.00 3.49 1.20 0.31 50.00 3.23 1.23 0.35 0.88 0.88 55.00 3.05 1.28 0.38 0.89 60.00 2.86 1.31 0.42 0.89 65.00 2.74 1.36 0.45 0.90 _ 70:00 - 2.63 1.40,=.''.Q:49'.-• 0,91 ' 75.60 2.52 1.44 0.52 0.91 80.00 2.40 1.46 0.56 0.90 85.0,0 2.30 1.49 0.59 0.89 90.00 2.20 1.51 0.63 0.88 ' 95.00 2.10 1.52 0.66 0.86 100.00 2.00 1.52 0.70 0.82 ----------------------------------------------------- THE REQUIRED POND SIZE = .913035 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES 1 1 1 1 1 1 1 1 1 1 1 1 1 M )efe�nfion ,onUW,o-Iame C*a-Mc ation Project : 0194 Project Name: 20 : 2004 Fort Collins High School Calculated By: GAD Date: 5/30/2002 BE Y O N D E N G IN E E R ING Detention pond volume (V):1/3d(A+B+(AB)os) (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour fine at a depth relevant to d, fe asar 43 nterim Volume Elevation Da ft A ftZ B ft2 Volume ft' Cummulative Volume ft' Curmnulative Volume ac-ft Vo 4908.00 0.00 0 20 1 0 0 0.00 VI 4909.00 1.00 20 278 124 124 0.00 Vz I 4910.00 1.00 278 2,889 1,479 0.03 V3 I 4911.00 1.00 1 2,889 15,795 9,958 f8,48O ( 0.23 Va j 4912.00 1.00 1 15,795 41,967 i 37,795 0.87 Nolte Associates, Inc. 513012002 1:49PM . IJ DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study ' Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc .... ....... ................... ......... ' EXECUTED ON 03-04-2002 AT TIME 13:26:32 PROJECT TITLE: 2004 Ft.Collins High School DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 313a BASIN AREA (acre)= 5.73 ' RUNOFF COEF 0.76 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 ' INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4. 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 2.865 CPS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 2.865 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT ----------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.30 0.02 0.28 10.00 7.72 0.47 0.04 0.43 15.00 6.66 0.60 0.06 0.55 20.00 5.60 0.68 0.08 0.60 25.00 5.06 0.77 0.10 0.67 ' 30.00 4.52 0.82 0.12 0.70 35.00 4.13 0.87 0.14 0.74 40.00 3.74 0.90 0.16 0.75 ' 45.00 3.49 0.95 0.18 0.77 50.00 3.23 0.98 0.20 0.78 55.00 3.05 1.01 0.22 0.80 60.00 2.86 1.04 0.24 0.80 65.00 2.74 1.08 0.26 0.82 70.00 2.63 1.11 0.28 0.84 75.00 2.52 1.14 0.30 0.84 80.00 2.40 1.16 0.32 0.85 85.00 2.30 1.18 0.34 0.85 90.00 2.20 1.20 0.36 0.84 ' 95.00 2.10 1.21 0.37 0.83 100.00 2.00 1.21 0.39 0.82 105.00 1.95 1.24 0.41 0.82 110.00 1.90 1.26 0.43 0.83 " ' 115.00 1.85 1.29 0.45 0.83 -- ----------------------------------------------------- THE REQUIRED POND SIZE .= .8470155 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 85 MINUTES )efefffion ,RNU olume Galc""`lu a'fion Project : 0194 Project Name: 20: 2004 Fort Collins High School Calculated By: GAD Date: 5/30/2002 BEYOND E N G I N. E E R I N G Detention pond volume (V): 1/3d(A+B+(AB)o') (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, 112 B= Surface area of contour line at a depth relevant to d, ft' asin,31a Volume Elevation Da ft A ftZ B ft2 Curmnulative Volume Volume ft' ft' Curnmulative Volume ac-ft Vo 4908.00 0.00 0 20 0 0 0.00 VI 4909.00 1.00 20 278 124 124 0.00 V2 ( 4910.00 1.00 278 2,889 1354 1,479 0.03 V3 4911.00 1.00 2,889 15,795 8,480 9,958 0.23 VI 4911.97 0.85 Nolte Associates, Inc. 513012002 1:47.PM 1 1 M 1 1 1 1 1 1 1 M 1 9 - Deten6 n-Po dAWI61—uE GMEu—I Edon Project : 0194 Project Name: 20 : 2004 Fort Collins High School Calculated By: GAD Date:5/2/2002 BEYOND ENGINEERING Detention pond volume (V): 1/3d(A+B+(ABf") (uniformsides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, ft' t_ I M14ITRS� ltg` Barin`9001 Volume Elevation Dd ft A ft2 B ft2 Volume ft' Cummulative Volume W Cummulative Volume ac-ft Va 4898.83 0.00 j 0 0 0 0 j 0.00 j V, 4899.00 0.17 j 0 1,144 65 65 0.00 V, 4900.00 j 1.00 1,144 9,016 4,457 4,522 0.10 V3 4901.00 1.00 9,016 12,643 10,779 10,844 0.25 V, 4902.00 1.00 12,643 16,523 14,540 19,062 0.44 Vs 4903.00 { 1.00 16,523 19,634 • 24,290 35,133 0.81 Vb 4904.00 j 1.00 19,634 31,365 ; 35,778 46,622 1.07 V lw 4904.08 1 ' 1.11 Vr ( 4905.00 1.00 31,361 150,900 50,544 69,606 1.60 V8 4906.00 1.00 50,900 73,931 68,020 103,153 2.37 Nolte Associates, Inc. .51212002 11:17" DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado ' USER=Nolte Associates, Inc ............................................ EXECUTED ON 05-02-2002 AT TIME 11:00:05 PROJECT TITLE: 2004 Fort Collins High School **** DRAINAGE BASIN DESCRIPTION ' BASIN ID NUMBER 400 BASIN AREA (acre)= 7.08 RUNOFF COEF 0.81 ***** DESIGN RAINFALL STATISTICS ' DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN ' DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 6.5 CFS OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 6.5 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT ----------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.40 0.04 0.35 10.00 7.72 0.61 0.09 0.53 15.00 6.66 0.80 0.13 0.66 20,00 5,60 0,81 0,18 0.71 ' 25.00 5.06 1.01 0.22 0.78 30.00 4.52 1.08 0.27 0.81 35.00 4.13 1.15 0.31 0.84 40.00 3.74 1.19 0.36 0.83 .. _ ' 45 00. -L3 50.00 3..23 1.29 0.45 0.84 55.00 3.05 1.33 0.49 0.84 60.00 2.86 1.37 0.54 0.83 65,00 2,74 1,42 0.58 0.84 70.00 2.63 1.47 0.63 0.84 75.00 2.52 1.50 0.67 0.83 ----------------------------------------------------- THE REQUIRED POND SIZE _ .8462186 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 45 MINUTES M 1 1 M 1 1 1 1 i 1 1 1 Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 1 of 3) Designer: GAD Company: Nolte Associates, Inc. Date: May-2, 2002 Project: FC0194 - 2004 High School Location: NE Pond - Basin 400 1. Basin Storage Volume la = 27.80 % A) Tributary Area's Imperviousness Ratio (i = la / 100) i = 0.28 B) Contributing Watershed Area (Area) Area = 27.13 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.12 - watershed inches (WQCV =0.8'(0.91-13-1.19-I2+0.78.1)) D) Design Volume: Vol = (WQCV / 12)' Area Vol = 0.26 acre-feet 2. Permanent Pool A) Volume: Volp., = (1.0 to 1.5) ' Vol B) Average Depth Zone 1 = Littoral Zone - 6 to 12 inches deep Zone 2 = Deeper Zone - 4 feet to 8 feet deep Zone 2 C) Maximum Zone 2 Pool Depth (not to exceed 12 feet) Depth = D) Permanent Pool Water Surface Area (Estimated Minimum) (Zone 1 - Littoral Zone = 25% to 40% of the total surface area) % = (Zone 2 - Deeper Zone = 60% to 75% of the total surface area) % = Total Estimated Minimum Surface Area (ATma,) % = . -. 3. Annual/Seasonal Water Balance (Qne, has to be positive) 2. Outlet Works A) Outlet Type (Check One) B) Depth at Outlet Above Lowest Perforation (H) C) Required Maximum Outlet Area per Row, (AJ D) Perforation Dimensions (enter one only): I) Circular Perforation Diameter OR ii) 2' Height Rectangular Perforation Width E) Number of Columns (nc) acre-feet feet feet feet acres = -- acres = acres = Q,nf,p,.. acre-feet/year Qe p acre-feet/year Qseepage acre-feet/year QE.T. acre-feet/year Qnet - - -, •acre-feet/year x Orifice Plate _ Perforated Riser Pipe Other: H = 2.05 feet Ap = „. 0.94 square inches D = 1.0630 inches, OR W = inches nc = 1. Number FC0194_Water Quality_400.xls, RP 1 1 1 1 1 1 1 1 1 1 Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 2 of 3) Designer: GAD Company: Nolte Associates, Inc. .Date: May.2, 2002 Project: FC0194 -2004 High School Location: NE Pond - Basin 400 F) Actual Design Outlet Area per Row (AJ G) Number of Rows (nr) H) Total Outlet Area (A,,) 5. Trash Rack A) Needed Open Area: A, = 0.5' (Figure 7 Value)' A„ B) Type of Outlet Opening (Check One) C) For 2", or Smaller, Round Opening (Ref.: Figure 6a) A. = 0.89 square inches nr= 6 Number Aot = 5.46 square inches A,= 184 square inches X - < 2" Diameter Round 2" High Rectangular Other: 1) Width of Trash Rack and Concrete Opening Wwnc = 9 inches (Wpp p) from Table 6a-1 ii) Height of Trash Rack Screen (HTR) HTR = =•=49 inches iii) Type of Screen (Based on Depth H), Describe if "Other" S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other" 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) Type and Size of Support Rod (Ref.: Table 6a-2) vi) Type and Size of Holding Frame (Ref.: Table 6a-2) inches D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening form 4.D.ii. (W) W = inches ii) Width of Perforated Plate Opening (Ww e = W + 12") Ww e = inches iii) Width of Trash Rack Opening (Wopen;n9) from Table 6b-1 Wopen;na = inches iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempT'' KPP inches Grating). Describe if "Other" Other: t - FC0194_WaterQuality 400.xls,RP 1 1 M 1 1 1 1 1 1 1 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: GAD Date: 5/2/2002 BE Y O N D E N G IN E E R ING Grate: CDOT Type 'C' Structure Weir Perimeter, L = 141.84 in 11.82 ft Open Area, A = 997.92 in' 6.93 ftz Clogging Factor, c = 50% Stage Interval, Ah = 0.10 ft Weir Calculation: Orifice Calculation: Q, = CLH ''s Qo = CA(2gH)0.5 C = 3.00 C = 0.65 cL= 5.91 ft Ac = 3.47 ft' H H Qw_MLET Qo-A2ET Rules ft ft cfs cfs cfs 0.00 1 4903.57 0.00 1 0.00 0.00 !<__Set Grate @ Elev. 0.10 1 4903.67 ! 0.56 I 5.72 0.56 020 I 490177 1 59 ! R OR 1 i9 0.30 4903.87 1 2.91 9.90 2.91 0.40 4903.97 4.49Lk 4.49 0.50 4904.07 I 6.276.27 1OS1 _..v '`490408w,� s 00 ._: 0.60 4904A7 1 824 1 14.00 1 8.24 0.70 1 4904.27 j 10.38 I 15.12 10.38 0.80 1 4904.37 I 12.69 16.17 12.69 1 0.90 I 4904.47 15.14 17.15 15.14 i 1.00 1 4904.57 1 17.73 18.07 17.73 1.10 1 4904.67 1 20.45 1 18.96 ; 18.96 1 1.20 4904.77 1 23.31 19.80 I 19.80 1.30 1 4904.87 1 26.28 20.61 20.61 1.40 1 4904.97 i 29.37 21.39 21.39 1.50 I 4905.07 •. 32.57 1 22.14 22.14 ' Nolte Associates, Inc. 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 f/ a. FINISHED + GRADE 6" DIA IN -� INV. IN= j 489A 24" RCP 4896.50 ° INV. OUT= OVERFLOW � 100 YR. GRATE' W.S.E.L.= 4903.57 "WARNING OUnauthorized modification of this outlet is a zoning code violation" O O (minimum sign area = 0.75 sq. ft.) FINISHED 97- MIN GRADE It TYPE 'C' INLET BOX MIN 6" DIA INV. IN= A48966.5' EXISTING 4899.00 24" RCP © 0.40% OUTLET 6 6„ INV. OUT= 47" 4896.00 1. USE CDOT TYPE 'C' INLET; CDOT STANDARD M-604-10 WITH PEDESTRIAN GRATE OUTLET STRUCTURE N.T.S. � � etenfion Pon'a�olu`iCalculation Project : FC0194 �O "Project Name:.2004 Fort Collins High School Calculated By: GAD Date:S/2/2002 BEYOND ENGINEERING ' Detention pond volume (V): 1/3d(A+B+(AB)") (uniform sides) M Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, ft' Basii1403 ':'rr Volume Elevation Dd ft A ft'- B ftZ Volume ft, Cummulative Volume ft3 Cummulative Volume ac-ft Vo 4904.00 0.00 0 1,007 0 0 0.00 •V, 4904.08 0.08 1,007 j 9,579 I 365 0 ( 0.00 VZ 4905.00 0.92 9,579 1 11,8571 9,842 1 9,842 0.23 V3 4906.00 1.00 1J,857 33,9401 21,953 31,794 0.73 V,d� 4906.76 1 1 1.66 Va 4907.00 1.00 33.940 1 73,697 i 52,549 i 84,344 1.94 •4904.08 is the ponding surface elevation of basin 400. This causes egauhzation of the system The ponding surface for basin 403 will begin at this elevation. Nolte Associates, Inc. 51212002 11:17AM DETENTION POND SIZING BY FAA METHOD .Developed by Civil Eng. Dept., U. of Colorado Supported.by Denver Metro Cities/Counties Pool Fund Study Denver Urban -Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ' EXECUTED ON 05-02-2002 AT TIME 11:04:36 PROJECT TITLE: 2004 Fort Collins High School DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 403 BASIN AREA (acre)= 14.86 RUNOFF COEF 0.41 '*... DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 ' INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 t�**• POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 1.2 CPS - ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 1.2 CPS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE • ADJUSTMENT FACTOR. *-***• COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE ---------------------------------------------------- INCH/HR ACRE -FT ACRE -FT ACRE -FT 0.00 5.00 0.00 0.00 9.95 0.42 0.00 0.01 0.00 0.41 10.00 7.72 0.65 0.02 0.64 15.00 6.66 0.85 0.02 0.82 20.00 5.60 0.95 0.03 0.91 25.00 5.06 1.07 0.04 1.03 ' 30.00 4.52 1.15 0.05 1.10 35.00 4.13 1.22 0.06 1.17 40.00 3.74 1.27 0.07 1.20 ' 45.00 50.00 3.49 1.33 3.23 1.37 0.07 0.08 1.25 1.28 55.00 3.05 1.42 0.09 1.33 60.00 2.86 1.45 0.10 1.35 65.00 2.74 1.51 0.11 1.40 70.00 2.63 1.56 0.12 1.44 _ ' 75.00 2.52 1.60 0.12 1.47 80.00 2.40 1.62 0.13 1.49 85.00 2.30 1.65 0.14 1.51 90.00 2.20 1.68 0.15 1.53 ' 95.00 2.10 1.69 0.16 1.53 100.00 2.00 1.69 0.17 1.53 105.00 1.95 1.73 0.17 1.56 110,00 1,90 1,77 0,11 1,59 115.00 1.85 1.80 0.19 1.61 ' 120.00 1.80 1.83 0.20 1.63 125.00 1.75 1.85 0.21 .1.64 -- 13.00 1.1.8 0.22 1.66 135.00 1.65 65 1.88 0.2 1.66 140.00 1.60 1.90 0.23 1.66 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 145.00 1.55 1.90 0.24 1.66 150.00 1.50 1.90 0.25 1.66 155.00 1.45 1.90 0.26 1.65 160.00 - 1.40 1.89 0.26 1.63 165.00 1.35 1.88 0.27 1.61 170.00 1.30 1.87 0.28 1.59 ----------------------------------------------------- THE REQUIRED POND SIZE = 1.66407 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 140 MINUTES 1 1 M 1 1 1 1 1 1 1 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 5/2/2002 Design Point-- " -403 - Orifice Calculation: Rim Elevation= 4902.80 Q. = CA(2gH)" 100-yr Ponding Elev= 4 4906.60 Hydraulic Grade Out-- 4904.08 Allowable Release Rate= .1.2 cfs H= 2.52 ft C = 0.65 g = 32.2 ft/s Q= 1.20 cfs Ac= 0.14 ftZ Diameter of Orifice: BEYOND ENGIN EERI N G Nolte Associates, Inc. M 1 11 APPENDIX G Erosion Control Calculations 1 1 1 1 F, 1 1 M 1 1 1 1 1 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By. GAD Date: 6252002 STANDARD FORM A BEYOND ENGINEERING DEVELOPED SUB -BASIN ERODIBILITY ZONE Asb (ac) Lsb (ft Ssb % Lb (ft Sb PS ' 100 MODERATE/MODERATE- 5.75 530.00 1.00 101 0.12 106.80 2.64 200 1.23 410 1.30 201 1.33 343 3.33 202a 1.13 414 0.59 202b 2.46 605 1 0.89 203 1.29 452 0.90 204 3.36 2799 1 0.52 300 6.66 458 1.04 301a 1.80 513 1.11 301b 1.42 967 1.08 302a 0.27 346 0.86 302b 0.59 809 0.86 303 3.56 562 1.97 304 1.52 383 - 1.31 305a 3.45 310 2.06 305b 3.51 376 2.00 " 306 2.66 384 3.16 307 4.79 442 2.68 308 0.51 335 5.11 309 0.89 377 1.72 310 1.67 400 1.47 "311a 3.17 403 2.42 31 lb 0.57 246 2.85 312a 7.18 529 2.05 312b 2.12 761 1.20 313a 4.71 502 1.99 313b 1.02 327 1 0.69 314 1.63 314 1.48 315 0.36 210 1.83 400 2.75 456 2.08 401 1.86 360 1.55 402 1.86 360 1.55 403 10.80 1006 1.30 404 1.31 268 2.13 500 4.43 580 0.69 501 4.39 516 0.80 502 2.04 1331 1 0.93 503 0.88 939 1.21 600 1.68 502 1.73 601 1.97 711 1.30 602 1.24 1009 1.12 1000 MODER4TE/MODERATE• 7.01 417 4.89 - 106.92 627.66 1.80 80.21 ' Lb = sum(AiLi)/(sum(Ai) _ (5.75.530+ ... +7.01.417.35)/106.92 627.66 • - MODERATE WIND EROD113U Y ZONE & MODERATE RAINFALL ERODIBILITY ZONE ' Sb - sum(AiSi)/(sum(Ai) _ (5.75•1+ ... +7.01.4.89)/106.92 1.80 PS (during construction) - 80.21 (from Table S-A) PS (after construction) - 80.21/0.85 - 94.36 N:1FC01941DrainagelExceP4FC0194_ Erosion -Fort Collins.xis]PERFORMANCE 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M Project#: FC0195 Project Name: 2003 Elementary School Calculated By: GAD Date: 6/25/2002 STANDARD FORM B BEYOND EN.G I'N E E RING EROSION CONTROL METHOD C-FACTOR VALUE P-FACTOR VALUE COMMENTS BARE SOIL 1 1.00 0.90 GRAVEL MULCH 2 O.05 1.00 STRAW -HAY MULCH 3 0.06 1.00 HYDRAULIC MULCH 4 0.10 1.00 ESTABLISHED GRASS COVER 5 0.35 1.00 PAVEMENT 6 0.01 1.00 STRAW BALE, GRAVEL FILTER 7 1.00 0.80 SILT FENCE BARRIER 1 8 1 1.00 1 0.50 SUB BASIN PS (% AREA (ac SITE 80.21 1 106.92 SUB BASIN SUB AREA AREA (ac PRACTICE C*A P*A REMARKS 100 PERVIOUS 0.00 L 1 0.00 0.00 BARE SOIL 100 IMPERVIOUS 250603.83 1 250603.83 225543.45 BARE SOIL 101 PERVIOUS 0.00 1 0.00 0.00 BARE SOIL 101 IMPERVIOUS 5370.44 1 5370.44 4833.40 BARE SOIL 200 PERVIOUS 37795.00 3 2267.70 37795.00 STRAW -HAY MULCH _ 200 IMPERVIOUS 15937.39 1 15937.39 14343.65 BARE SOIL 201 PERVIOUS 42913.26 5 15019.64 42913.26 ESTABLISHED GRASS COVER 201 IMPERVIOUS 15192.00 3 911.52 15192.00 STRAW -HAY MULCH 202a PERVIOUS 5888.42 3 353.31 5888.42 STRAW -HAY MULCH 202a IMPERVIOUS 43305.02 8 43305.02 21652.51 SILT FENCE BARRIER 202b PERVIOUS 79480.78 3 4768.85 79480.78 STRAW -HAY MULCH 202b IMPERVIOUS 27494.08 6 274.94 27494.08 PAVEMENT 203 PERVIOUS 28856.84 3 1731.41 28856.84 STRAW -HAY MULCH 203 IMPERVIOUS 27551.00 6 275.51 27551.00 PAVEMENT 204 PERVIOUS 58730.67 3 3523.84 58730.67 STRAW -HAY MULCH 204 IMPERVIOUS 87466.72 6 874.67 87466.72 PAVEMENT 300 PERVIOUS 21244.78 3 1274.69 21244.78 STRAW -HAY MULCH 300 IMPERVIOUS 7294.32 6 72.94 7294.32 PAVEMENT 301a PERVIOUS 67375.00 3 4042.50 67375.00 STRAW -HAY MULCH 301a IMPERVIOUS 10839.17 6 108.39 10839.17 PAVEMENT 301b PERVIOUS 26316.00 3 1578.96 26316.00 STRAW -HAY MULCH 301b IMPERVIOUS 35725.59 6 357.26 35725.59 PAVEMENT 302a PERVIOUS 831.88 3 49.91 831.88 STRAW -HAY MULCH 302a IMPERVIOUS 11105.90 6 111.06 11105.90 PAVEMENT 302b PERVIOUS 3670.09 3 220.21 3670.09 STRAW -HAY MULCH 302b IMPERVIOUS 22080.54 6 220.81 22080.54 PAVEMENT 303 PERVIOUS 147495.68 5 51623.49 147495.68 ESTABLISHED GRASS COVER 303 IMPERVIOUS 7504.00 3 450.24 7504.00 STRAW -HAY MULCH 304 PERVIOUS 60250.58 5 21087.70 60250.58 ESTABLISHED GRASS COVER 304 IMPERVIOUS 5767.00 3 346.02 5767.00 STRAW -HAY MULCH 305a PERVIOUS 118949.73 5 41632.41 118949.73 ESTABLISHED GRASS COVER 305a IMPERVIOUS 31158.00 3 1869.48 31158.00 STRAW -HAY MULCH 305b PERVIOUS 133022.81 5 46557.98 133022.81 ESTABLISHED GRASS COVER 305b IMPERVIOUS 19894.00 3 1193.64 19894.00 STRAW -HAY MULCH 306 PERVIOUS 28014.25 2 1400.71 28014.25 GRAVEL MULCH 306 IMPERVIOUS 87831.90 7 87831.90 70265.52 STRAW BALE, GRAVEL FILTER 307 PERVIOUS 84094.00 2 4204.20 84084.00 GRAVELMULCH 307 IMPERVIOUS 124379.20 7 124379.20 99503.36 STRAW BALE, GRAVEL FILTER tNolte Associates, Inc. M 1 M 308 PERVIOUS 22184.63 5 7764.62 22184.63 ESTABLISHED GRASS COI 308 IMPERVIOUS 0.00 6 0.00 0.00 PAVEMENT 309 PERVIOUS 19593.09 5 6857.58 19593.09 ESTABLISHED GRASS COI 309 IMPERVIOUS 19326.51 3 1159.59 19326.51 STRAW -HAY MULCH 310 PERVIOUS 43661.84 5 15281.64 43661.94 ESTABLISHED GRASS COI 310 IMPERVIOUS 28870.53 3 1732.23 28870.53 STRAW -HAY MULCH 31la PERVIOUS 44376.06 2 2218.80 44376.06 GRAVEL MULCH 31 la IMPERVIOUS 93631.55 7 93631.55 74905.24 STRAW BALE, GRAVEL FIL 311b PERVIOUS 9552.80 2 477.64 9552.80 GRAVEL MULCH 31lb IMPERVIOUS 15162.18 6 151.62 15162.18 PAVEMENT 312a PERVIOUS 196678.01 2 9833.90 196678.01 GRAVEL MULCH 312a IMPERVIOUS 116139.20 7 116139.20 92911.36 STRAW BALE, GRAVEL FW 312b PERVIOUS 56213.80 3 3372.83 56213.80 STRAW -HAY MULCH 312b IMPERVIOUS 36051.55 6 360.52 36051.55 PAVEMENT 313a PERVIOUS 88889.62 3 5333.38 88889.62 STRAW -HAY MULCH 313a IMPERVIOUS 116078.00 7 116078.00 92862.40 STRAW BALE, GRAVEL FU: 313b PERVIOUS 32892.06 3 1973.52 32892.06 STRAW -HAY MULCH 313b IMPERVIOUS 11643.98 6 116.44 11643.98 PAVEMENT 314 PERVIOUS 66338.38 5 23218.43 66338.38 ESTABLISHED GRASS CON 314 IMPERVIOUS 4794.60 2 239.73 4794.60 GRAVEL MULCH 315 PERVIOUS 13051.87 1 13051.87 11746.68 BARE SOIL 315 IMPERVIOUS 2658.00 2 132.90 2658.00 GRAVEL MULCH 400 PERVIOUS 59827.24 2 2941.36 58827.24 GRAVELMULCH 400 IMPERVIOUS 60963.68 1 60963.68 54867.31 BARE SOIL 401 PERVIOUS 55015.41 3 3300.92 55015.41 STRAW -HAY MULCH 401 IMPERVIOUS 26221.33 2" 1311.07 26221.33 GRAVEL MULCH 402 PERVIOUS 55622.03 3 3337.32 55622.03 STRAW -HAY MULCH 402 IMPERVIOUS 25607.00 2 1280.35 25607.00 GRAVEL MULCH 403 PERVIOUS 434976.81 5 152241.88 434976.81 ESTABLISHED GRASS CO'v 403 IMPERVIOUS 35290.15 2 1764.51 35290.15 GRAVEL MULCH 404 PERVIOUS 53394.84 5 18688.19 53394.94 ESTABLISHED GRASS COS 404 IMPERVIOUS 3697.50 2 194.88 3697.50 GRAVEL MULCH 500 PERVIOUS 192924.65 3 11575.48 192924.65 STRAW -HAY MULCH .500 IMPERVIOUS 0.00 6 0.00 0.00 PAVEMENT 501 PERVIOUS 191028.60 3 11461.72 191028.60 STRAW -HAY MULCH 501 IMPERVIOUS 0.00 6 0.00 0.00 PAVEMENT 502 PERVIOUS 36767.40 3 2206.04 36767.40 STRAW -HAY MULCH 502 IMPERVIOUS 51919.88 7 51919.88 41535.90 STRAW BALE, GRAVEL FILI 503 PERVIOUS 8367.00 3 502.02 8367.00 STRAW -HAY MULCH 503 IMPERVIOUS 29883.12 7 " 29883.12 23906.50 STRAW BALE, GRAVEL FII.7 600 PERVIOUS 56012.42 3 3360.75 56012.42 STRAW -HAY MULCH 600 IMPERVIOUS 16971.45 8 16971.45 8485.72 SILT FENCE BARRIER 601 PERVIOUS 61296.72 3 3677.80 61296.72 STRAW -HAY MULCH 601 IMPERVIOUS 24562.53 8 24562.53 12281.27 SILT FENCE BARRIER 602 PERVIOUS 9091.57 3 545.49 9091.57 STRAW -HAY MULCH 602 IMPERVIOUS 44708.88 8 44708.88 22354.44 SILT FENCE BARRIER 1000 PERVIOUS 305242.09 3 18314.53 305242.09 STRAW -HAY MULCH 1000 IMPERVIOUS 0.00 8 0.00 0.00 SILT FENCE BARRIER Cnet = (250603.83'1+ .._+305242.09'0.05)/(250603.83+._.+305242.09) = Pnet = (250603.83'1+ _..+305242.09'1)/(250603.83+,,,+305242.09) = EFF = (1-C'P)100 = (1-0.35'0.95)100 N:\FC0194\DrainageXExcel\[FC0194_Erosion-Fort Collins.xls)PERFORMANCE 0.35 0.95 66.75 80.21 (PS) Nolte Associates, Inc. Project#: FC0194 Project Name: '2004 Fort Collins High School Calculated By: GAD Date: 6/25/2002 STANDARD FORM B BE Y O N D E N G IN E E R ING EROSION CONTROL METHOD C-FACTOR VALUE P-FACTOR VALUE COMMENTS BARE SOIL 1 1.00 0.90 GRAVEL MULCH 2 O.05 1.00 STRAW -HAY MULCH 3 0.06 1.00 HYDRAULIC MULCH 4 0.10 1.00 ESTABLISHED GRASS COVER 5 0.35 1.00 PAVEMENT 6 0.01 1.00 STRAW BALE, GRAVEL FILTER 7 1.00 0.80 SILT FENCE BARRIER 1 8 1 1.00 1 0.50 SUB BASIN PS % AREA ac SITE 1 94.36 106.92 SUB BASIN SUB AREA AREA ac PRACTICE C•A P'A REMARKS 100 PERVIOUS 0 5 0 0 ESTABLISHED GRASS COVER 100 IMPERVIOUS 250604 6 2506 250604 PAVEMENT 101 PERVIOUS 0 5 0 0 ESTABLISHED GRASS COVER 101 IMPERVIOUS 5370 6 54 5370 PAVEMENT 200 PERVIOUS 37795 5 13228 37795 ESTABLISHED GRASS COVER 200 IMPERVIOUS 15937 6 159 15937 PAVEMENT 201 PERVIOUS 42913 5 15020 42913 ESTABLISHED GRASS COVER 201 IMPERVIOUS 15192 6 152 15192 PAVEMENT 202a PERVIOUS 5888 5 2061 5888 ESTABLISHED GRASS COVER 202a IMPERVIOUS 43305 6 433 43305 PAVEMENT 202b PERVIOUS 79481 5 27818 79481 ESTABLISHED GRASS COVER 202b IMPERVIOUS 27494 6 275 27494 PAVEMENT 203 PERVIOUS 28857 5 10100 28857 ESTABLISHED GRASS COVER 203 IMPERVIOUS 27551 6 276 27551 PAVEMENT 204 PERVIOUS 58731 5 20556 58731 ESTABLISHED GRASS COVER 204 IMPERVIOUS 87467 6 875 87467 PAVEMENT 300 PERVIOUS 21245 5 7436 21245 ESTABLISHED GRASS COVER 300 IMPERVIOUS 7294 6 73 7294 PAVEMENT 301a PERVIOUS - 67375 5 23581 67375 ESTABLISHED GRASS COVER 301a IMPERVIOUS 10839 6 108 10839 PAVEMENT 301b PERVIOUS 26316 5 9211 26316 ESTABLISHED GRASS COVER 301b IMPERVIOUS 35726 6 357 35726 PAVEMENT 302a PERVIOUS 832 5 291 832 ESTABLISHED GRASS COVER 302a IMPERVIOUS 11106 6 111 11106 PAVEMENT 302b PERVIOUS 3670 5 .1285 3670 ESTABLISHED GRASS COVER 302b IMPERVIOUS 22081 6 221 22081 PAVEMENT 303 PERVIOUS 147496 5 51623 147496 ESTABLISHED GRASS COVER 303 IMPERVIOUS 7504 6 75 7504 PAVEMENT 304 PERVIOUS 60251 5 21088 60251 ESTABLISHED GRASS COVER 304 IMPERVIOUS 5767 6 58 5767 PAVEMENT 305a PERVIOUS 118950 5 41632 118950 ESTABLISHED GRASS COVER 305a IMPERVIOUS 31158 6 312 31158 PAVEMENT 305b PERVIOUS 133023 5 46558 133023 ESTABLISHED GRASS COVER 305b IMPERVIOUS 19894 6 199 19894 PAVEMENT 306 PERVIOUS 28014 5 9805 28014 ESTABLISHED GRASS COVER 306 IMPERVIOUS 87832 6 878 87832 PAVEMENT 307 PERVIOUS 84084 5 29429 84084 ESTABLISHED GRASS COVER 307 IMPERVIOUS 124379 6 1244 124379 PAVEMENT Nolte Associates, Inc. F—, A fl 1 A 308 PERVIOUS 22185 5 7765 22185 ESTABLISHED GRASS COVER 308 IMPERVIOUS 0 6 0 0 PAVEMENT 309 PERVIOUS 19593 5 6858 19593 ESTABLISHED GRASS COVER 309 IMPERVIOUS 19327 6 193 19327 PAVEMENT 310 PERVIOUS 43662 5 15282 43662 ESTABLISHED GRASS COVER 310 IMPERVIOUS 28871 6 289 28871 PAVEMENT 311a PERVIOUS 44376 5 15532 44376 ESTABLISHED GRASS COVER 311a IMPERVIOUS 93632 6 936 93632 PAVEMENT 311b PERVIOUS 9553 5 3343 9553 ESTABLISHED GRASS COVER 311b IMPERVIOUS 15162 6 152 15162 PAVEMENT 312a PERVIOUS 196678 5 68837 196678 ESTABLISHED GRASS COVER 312a IMPERVIOUS 116139 6 1161 116139 PAVEMENT 312b PERVIOUS 56214 5 19675 56214 ESTABLISHED GRASS COVER 312b IMPERVIOUS 36052 6 361 36052 PAVEMENT 313a PERVIOUS 88890 5 31111 88890 ESTABLISHED GRASS COVER 313a IMPERVIOUS 116078 6 1161 116078 PAVEMENT 313b PERVIOUS 32892 5 11512 32892 ESTABLISHED GRASS COVER 313b WERVIOUS 11644 6 116 11644 PAVEMENT 314 PERVIOUS 66338 5 23218 66338 ESTABLISHED GRASS COVER 314 IMPERVIOUS 4795 6 48 4795 PAVEMENT 315 PERVIOUS 13052 5 4568 13052 ESTABLISHED GRASS COVER 315 IMPERVIOUS 2658 6 27 2658 PAVEMENT 400 PERVIOUS 58827 5 20590 58827 ESTABLISHED GRASS COVER 400 IMPERVIOUS 60964 6 610 60964 PAVEMENT 401 PERVIOUS 55015 5 19255 55015 ESTABLISHED GRASS COVER 401 IMPERVIOUS 26221 6 262 26221 PAVEMENT 402 PERVIOUS 55622 5 19468 55622 ESTABLISHED GRASS COVER 402 IMPERVIOUS 25607 6 256 25607 PAVEMENT 403 PERVIOUS 434977 5 152242 434977 ESTABLISHED GRASS COVER 403 IMPERVIOUS 35290 6 353 35290 PAVEMENT 404 PERVIOUS 53395 5 18688 53395 ESTABLISHED GRASS COVER 404 IMPERVIOUS 3698 6 37 3698 PAVEMENT 500 PERVIOUS 192925 5 67524 192925 ESTABLISHED GRASS COVER 500 IMPERVIOUS 0 6 0 0 PAVEMENT 501 PERVIOUS 191029 5 66860 191029 ESTABLISHED GRASS COVER 501 IMPERVIOUS 0 6 0 0 PAVEMENT 502 PERVIOUS 36767 5 12869 36767 ESTABLISHED GRASS COVER 502 IMPERVIOUS 51920 6 519 51920 PAVEMENT 503 PERVIOUS 8367 5 2928 8367 ESTABLISHED GRASS COVER 503 IMPERVIOUS 29883 6 299 29883 PAVEMENT 600 PERVIOUS 56012 5 19604 5W12 ESTABLISHED GRASS COVER 600 IMPERVIOUS 16971 6 170 16971 . PAVEMENT 601 PERVIOUS 61297 5 21454 61297 ESTABLISHED GRASS COVER 601 IMPERVIOUS 24563 6 246 24563 PAVEMENT 602 PERVIOUS 9092 5 3182 9092 ESTABLISHED GRASS COVER 602 IMPERVIOUS 44709 6 447 44709 PAVEMENT 1000 PERVIOUS 305242 5 106835 305242 ESTABLISHED GRASS COVER 1000 IMPERVIOUS 0 6 0 0 PAVEMENT Cnet = (250603.83*1+ ...+305242.09'0.05)/(250603.83+...+305242.09) = Pnet = (250603.83'1+ ...+305242.09'1)/(250603.83+...+305242.09) = EFF = (1-C'P)l00 = (1-0.23*1)100 N:\FC0194\Drainage\Exoell[FC0194_Erosion-Fort Collins.xls]PERFORMANCE 0.23 1.00 77 94.36 Nolte Associates, Inc. A 1 0 O m R j a N 9 C L D x 6 i 3 C 0 a a E E n O y C 0 r O c N p u3 � m V O E E e c _y t � •- 3 d L y� N V u d a H U c o p a m Fq u d G 9 coo N m y o W O Z Y V 6 C p'a t 6 j a ¢ m N O L T a $ a aQ m E > a ��0 N _?m Q 4�� it Q LL O O � N Z O 41 Q Q LL O N 0 Z O N Q N O N c c m m c c i C O a a w O m o y c 3 Y a a C v a 'Sc �.�m$ - HE n u pp � „ d d os pp_ V `mmmc o ~pmma�` Ups `N ra m 0 0 jY D E LL 3 Z >; S �, t t7 00. o E r m y d IL O R w u $i m 5= `m m` ` w a r 0- m` m m t 0d g30! >a w,o �Nm=mv�m mci Sao vzo � 3 ¢ F-h 11 11 1l APPENDIX H Charts, Tables & Graphs I I I I I I I 1 1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 M Table 3-3 RATIONAL METHOD RUNOFF COEFFICIENTS FOR COMPOSITE ANALYSIS Character of Surface Runoff Coefficient Streets, Parking Lots, Drives: Asphalt................................................................................................ 0.95 Concrete............................................................................................. 0.95 Gravel................................................................................................. 0.50 Roofs.......................................................................................................... 0.95 Lawns, Sandy Soil: Flat<2%............................................................................................. 0.10 Average2 to 7%.................................................................................. 0.15 Steep>700.......................................................................................... 0.20 Lawns, Heavy Soil: Flat<2%............................................................................................. 0.20 Average2 to 7%................................................................................. 0.25 Steep> 7 %..........................:............................................................... 0.35 MAY 1984 3-4 DESIGN CRITERIA Table 3-4 RATIONAL METHOD FREQUENCY ADJUSTMENT FACTORS Storm Return Period Frequency Factor (years) C, 2to 10 1.00 11 to25 1.10 26 to 50 1.20 51 to 100 1.25 Note: The product of C times C, shall not exceed 1.00 1 No Text 1 M ' MAY 1984 1.0 .9 s=06 F c 0.8 .8 + .7 LL Cr o .6 U a U. Z 0 .5 U O w 4 .3 .2 s:0.4% F=0.5 I I I BELOW MINIMUM ALLOWABLE I STREET GRADE .O V I 1 I 1 I 1 i f I I I I I 0 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacityto obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA Table 5-4 nUZT CAPACITY REDUCTION FACTORS Percentages of ' Drainage Condition 'Inlet Type Theoretical Canacity Sump or Continuous Grade CDOR Type R-Curb Opening ' S 80 10' 85% 15, 90% Street - Sump 4' Curb Opening 80% ' Street - Continuous Grade 4' Curb Opening 80% Parking Lots, Medians Area Inlet 80% ' The theoretical capacity of inlets in a low point or soma shall be determined from Figures 5-2 and 5-3. ' The theoretical capacity of curb openings on a continuous grade shall be determined from Figures 5-4, 5-5 and 5-6. The standard curb -opening is illustrated by Figure 5-4 and is defined as having a gutter depression apron W feet wide at the inlet opening which extends W feet upstream and downstream from the opening, has a depression depth (a) equal to W/12 feet -at the curb face, and a curb opening height (h) of at least 0.5 feet. The graph as presented by Figure 5-5 is based on a depression apron width (W) equal to 2 feet and depression ' width (a) equal to 2 inches. The pavement cross-section is straight to the curb face; however, a street section with gutters cross -sloped steeper than the street can also be analyzed using Figure 5-6. Since the figures are based on an inlet opening free of ' obstructions, the reduction factors listed"previously shall be utilized. DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE 1 M 1 1 1 1 1 1 1 1 'Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock * d50 Designation Given Size Dimension By Weight (Inches) (Inches) Type VL 70-100 12 50-70 9 35-50 6 6**. 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 24 35-50 18 18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 9 *d50 = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major advantages of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary riprap. Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fashioned into almost any shape that can be 11-15-82 DRAINAGE CRITERIA MANUAL RIPRAP �4C 0 0 2c MENNEN EN 0 0 ME VA 0 FAA MME% 100dw. rodcal - W-A d 0 - 00 --I .2 A Y /D .6 .8 .0 t Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL RIPRAP 8 7 9 = Expansion Angle NEWAd VAA 0 FA NA, I I FA A' FAr Emmummum mr0mummomm 011709AMENE MAINe mmmmmm .l Z .J .4 D b J .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15 -82 URBAN DRAINAGE B FLOOD CONTROL DISTRICT II Rfun = D14 for circular pipes, 1 Rfi,11 = Afurr/ (2H+2w) for rectangular pipes. when: w = width of a rectangular conduit. all in feet. "Then vf„11 =.Qfu1-4f„11 1 in which: Vf u = Flow velocity of the pipe flowing full, in feet per second 1 The normal depth of flow, d, and the velocity at that depth in a conduit can be found with the aid of Figure 2. 1 Using the known design discharge, O, and the calculated pipe -frill discharge. Qf u, enter Figure 2 with the value of 1 QQ-f.0 and find d/D for a circular pipe or d/H for a rectangular pipe. Compare the value of this &D (or 1 d1H) with that obtained from Figure 3 using the Fronde parameter.. namely, ' Q/D" or - 01(w -H is ) Choose the smaller of the two d/D (or d/f) ratios to calculate the flow depth at the end of the -pipe, namely; d=D-��) or d=H-l�iY) i - Again enter Figure 2 using the 1 smaller &D (or d/H) ratio to find the A/Af u ratio. Use this to calculate the area of flow at the end of the pipe, 1 namely,,U111 A=I J=Ate.... in which: A = Area of the design flow 1 in the end of the pipe, in square feet Finally, 1 _ Nwbich. V = Design flow velocity at Pipe outlet, in feet per second 1 Finding the Appropriate Riprap Size Use Figure 4 to find the size and type of the Tiprap to use in the scour protection basin downstream of the pipe outlet f i.e...HG (grouted H), H. M or LI. First, calcu-late the riprap sizing design parameter. Pa ,-namely. pd=�v2.+.g d1. 2 in which: g = acceleration due to gravity, 32.2 feet per second per second - When the riprap sizing design Parameter indicates conditions that place the design above the Type H riprap line in Figure 4. use HG, or larger, grouted rock. An alternative to a grouted or loose riprap basin is to use the standard Bureau of Reclamation Basin VI, a reinforced concrete impact structure, to dissipate the energy in the flow at the outlet of the pipe. After the riprap size has been selected the minimum thickness of the nprap layer,: T in feet. in the basin is set 1.' ..:1.0 M .? O. E Q Q . 0.7 0 0.6 /yZz 0.5 0.4 0-3 C11N 0.1 El N at T =1.75 •D50 in which: DJo = the median size of the riprap (see Table.l). Table .1. Median (Dso) Rock Size of Urban Drainage District Riprap. ,R;MpType Median Size (Inches) L 9 M 12 H&HG 18 Finding the Basin Length The minimum length of the basin. L in Figure 1. is denned.as being the greater of the following lengths: For circular pipe, t� V L 4D or L=(D)r2 •— ... ------------ fl -------------- ,__-___—__ _- ----. "AlAfur, I *- ;--;ICircular ! - - ---------------- . a__-__i_. a__-___ _�. I_•_ - Q19 urr L_ ja— % _�IRectangular i_ ;Recta----:'r.-� ---, -------------;--- -- ---- - ------ ----- -- -- -- -- /_�pj quo -- - - - - -- -- - --- -• - -- s� - ICircular �- - 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Figure 2:. Discharge and Flow Area Relationships for Circular and Rectangular Pipes (Ratios for flow based on Manning's n varying with depth) 12 For rectangular pipe, Step 3. Using the Q10w, = 0.88 ratio. Figure-2 gives dlb = 0.82 fora circular pipe-,: L =-4 H or L= V . 2 Step 4. Calculate: QID' = 2.81. Use this in Figure Ito find &D = 0.57. Finding the Basin Width Theminimum width, tG. of the Step 5 Since the smaller of the two basin downstream of the pipe's flared d1D ratios is 0.57,, use it to calculate end section is set at: deptl4,4 at the outlet and then in Figure 2 to find the ratio fortAfull For circular pipes: 0.59. 11 I U I I W = 4D d = (dID) - D = 0.57.4.0 = 2.28 feet For rectangular pipe: Step 6 Using the.4/Afa = 0.59 ratio calculate flow area andvejocq the at w-+4H end of the pipe: Othe_rDesi Design Requirements WAfu)-- Afff (0.59) - (7r.- 2.oz) 7.41, square feet All slopes- in the preshaped - riprapped basin are 2H to IV. V = (Q1,4) = (90) (7.4 1) = 12.1 feet per secon cL-- - - strucan-al concrete -cutoff -wall. at. thi end of the flared end section for --Step 7 Calculate the riprap sizing a circularpipe- a headwall pipe- with -design Pararu;te4 Pd. and use it in wing walls and a paved bottom - Figure 4.to find the appropriate nprap betveen, the walls, both- with a size: - cutoff wall that W=ds down to a depth of Pd. . = (jT2 g 2 D B=-+T or B=-+T 2 2 The niprap must be extended up the outlet embankments slope to the mid -pipe level. Examples ExaInnip I -Circular pipe on a relatively !!at slope, Given: Design flow, Q = go C& Tailwater depth, y, = 1.0 feet Pipe Diameter D = 4.0 feet: Slope S = 0.00:5 fttft Manning's n = 0.013 Step L Determine if method is applicable: y, < D13; namely, low tailwater. Step 2 Calculate the Oile capacity of the flowing full: Q. 02 cfs is ,. =Ikonduusing the Manning's Equation. (12.1- + 32-2 -.2.28)1t.-'; 14:8; Use Type L-Riprap Step 8. Calculate the minimum thickness of the ripmp layerfor D.50 = 9 inches: T=175 - 9.0 = 15.75 inches Use T = 16 inches. Step 9 Find the length of the basin. namely the greater of the following two lengths: L = (D 42) 12.1 feet 1 L = (d1D) - D = 4 - 4­ 16 feet (Greater of the two: use this value.) Step i a Find the width of the hprap basin: W= 4 -D 4r-4­16 feet. 1.0 0.9 0.8 dID 0.7 - 0.6 - 0 0.5 - 04 0.3 0.2 - 0.1 0.0 0.0 2.0 4.0 610 8.0 QID 2-5 or-QlwH 1-5 Figure 3: Brink Depth for Horizontal Pipe Outlets 13 Ezample 3 - Rectaneular Dine on a ' fairly steep slope. Given: Design flow O = 300 cfs: Tailwater depth v; = 1.0 feet Box -Height H= 4.0 feet. ' Width-w=.3.0 feet Slope S = 0.05 ft/ft; - Manning's n = 0.013 ' Step 1. Determine if method is applicable: y, < H13: namely, low tailwater. ' Step 2 Calculate the capacity of the pipe flowing full: O,.„ = 426 cfs is found using the Manning`s Equation. ' Step.3. Using the O/Of„ p = 0.70 ratio, Figurel gives the.ratio d/H= 0.73. Step 4. Calculate OAv -s = 7.50 and use this in Figure 3 to find d/H = 0.94 Step .5. Since the smaller of the two d/H ratios.is 0.73, use it to find the depth, d,.at the outlet and in Figure 2 to find the.ratio ofA/Af a = 0.73. ' d=_0.7V _4.o.=2.92.feet 'Step 6. TlsingA/Afdt = 0.73 ratio, cala,tAtP the flow area and velocity at .the end of the pipe. ' A=A/Af„o7Af„Q=(0.73)-(4-5)= 14.6 square feet 'V = O/A = (300) / (14.6) = 20.5 feet per second Step 7. Calculate the riprap sizing design parameter, Pd , and use it in Figure 4 find the appropriate riprap size- - — - Pd = (20.51+32.2 2.92) in = 22.7; Use Type M Riprap Step 8. Calculate the minimum thiclmess of the riprap laver for Dso = 102 inches T= 1.75. 12.0 = 21 inches. Step 9. Find the length of the basin, namely the greater of the following two lengths: , L= 4 - H = 16 feet L=Wt ).-(UP)=4ip-.-(20.5/2)_ 20.5 feet (use this length) Step 10. Find the width of the riprap basin: W=w=4H=5+4.4=21feet Acknowledgments The authors express their appreciation to Bill DeGroot and Bryan Kohlenberg, Urban Drainage and Flood Control District and Besharah Najjar, I to 25 lL� y .20 0 15 C_ C 10 at 5 Adams County Engineering Department for their review and suggestions; to Bryan for the preparation of the design examples: and to Ken McKenzie and Vmce-Vigil. the .District's student interns for the preparation of the graphics. _ . References - _ .. -The information on circular pipes in Table 2 was taken from: Chow. Ven Te (1959). Open -channel Hvdraulics. McGraw-Hill Book Company. Inc.. New York. page 135. The information on brink depth for mild slopes and size of riprap is taken from: Stevens, M.A_, (1969). Scour 1n Riprap At Culvert Outlets. Ph.D. dissertation. Civil Engineering Department, Colorado State University. Ft. Collins, Colorado. ====_'_Riprap Type = HG== Ham;'' 1 2 3 4 5 6 7 8 Storm Sewer Diameter, D, or Height, H, in. ft. Figure 4: Riprap selectionchartfor low tailwater basin at pipe outlets 1 1. M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 DRAINAGE CRITERIA MANUAL 8 7 Q6 c v N5 4 z 3 0 z a x 2 W RIPRAP 6 = Expansion Angle sir EME VA�� , i r'� 9.1 1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 TAILWATER DEPTH / CONDUIT HEIGHT-Yt/H FIGURE 5-10. EXPANSION FACTOR FOR RECTANGULAR CONDUITS 11-15-82 URBAN DRAINAGE a FLOOD CONTROL.DISTRIC7 1 1. M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DRAINAGE CRITERIA MANUAL F RIPRAP FAA WA PA A N rpm ■ ■ 9� 00 .2 .4 .6 .8 1.0 Yt/H Use Ho instead of H whenever culvert has supercritical flow in the barrel. *-*Use Type L for a distance of 3H downstream. FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT NOTE: When specifying or ordering grates - Please refer to "CHOOSING THE PROPER INLET GRATE" on pages 108 and 109. ' R-2560 Series Beehive Grates with Frames Suitable for drainage in circumstances when: clogging of a flat grating is a problem. Excellent for roadside or earth ditch catch basins. Furnished standard with as -cast bearing surfaces. ' Dimensions In Inches Catalog Frame No. A B C E F G Reference R-2560-A 12 1 11 19 4 4 R-1791-A ' R-2560-C 18 11/4 161/2 30 8 4 R-1900-A R-2560-Cl 22 11/2 20 28 4 41/2 R-1690 R-2560-C2 22 11/2 201/2 211/4 6 41/2 1-1161 ' R-2560-D 22 11/2 20 35 9 41/2 R-1710 R-2560-Dl 22 1 1/2 20 28 4 7 R-1690 R-256D-02 22 11/2 201/2 281/4 6 7 R-1761 R-2560-03 22 1 1/2 20 35 9 7 R-1710 ' B-2560.05 22 3'4 1 1/2 21 1/4 34 4 41/2 R-1647-A R-2560-06 22 314 1 1/2 21 34 9 4 1/2 R-1713 R-2560-D7 22 :'4 11/2 211/4 34 4 7 R-1647-A R-256G-08 22 3/4 1 1/2 21 34 9 7 R-1713 ' R-2560-E 23 1 1/2 21 36 9 7 R-1550-A R-2560-EA 25 2V4 7/8 241/8 35 1/2 4 6 R-1733-1 ' R-2560-EB 25 3/4 7/8 241/8 351/2 4 9 R-1733-1 R-256D-Et 25 3/4 7/8 241/8 351/2 7 6 R-1733 R-256G-E2 25 NA 7/8 241/8 351/2 7 9 R-1733 R-2560-E5 25 3/4 7/8 241/8 351/2 8 6 R-1733-A R-256D-E6 25 3/4 7/8 241/g 351/2 8 9 R-1733-A R-2560-E7 25 314 7/8 241/8 351/2 9 6 R-1733-B R-2560-EB 25 314 7/8 241/8 351/2 9 9 R-1733-B R-2560-E9 25 314 7/8 241/8 351/2 10 6 R-1733-C ' R-2560-E10 25 3/4 7/8 241/8 351/2 10 9 R-1733-C R-256D-G 32 1 1/2 30 46 7 4 R-1740-B_ A mm4 �mm Te 1 , F C� E 1 M 1 Illustrating R-2560-E NEENAH L I ' 99 FOYNOi7Y =MWWY (NOTE: When specifying or ordering grates - !Please refer to "CHOOSING THE PROPER INLET GRATE" on pages 108 and 109. -2561 igh Beehive Grate and Frame 1 12561-A Same as R-2561 except with e" oeehive te. mish=_d standaro with as -cast __a•:ng surfaces. ive Gratelaad Frame ,signed to fit in Dell of 24" =_ev:_ c:oe. Furnished standarc :with as-cas- ___ring surfaces. 1 � 2564 ehive Grate Designed to fit in oe:i of 24"- Inished stand=_rc with as -cast c ng surfaces. = �N / n\ 25 3W 2< 33 7116' —� 22 Uses R-1733 frame. I® Uses Uses R-1761 frame. �0 NEENAH `� I 7t� 1 1 ' APPENDIX I Excerpts from other Reports P P I I I 1 1 No Text .STD 1 - STORM SEWER 'SYSTEM DESIGN USING UDSEWER MODEL- - Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study . USER:TST Inc Consulting Engineers .......................... ON.DATA 06-20-2001 AT TIME.15:56:21 .......................... VERSION=07-17-1995 ' *** PROJECT TITLE :Willow Brook ST-9 Ultimate *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION - MINUTES INCH/HR -------- -----CFS----_-FEET------FEET-- -------- 1.00 0.00 0.00 0.00 139.90 4871.40 4871.40 OK 2.00 294.44 270.56 0.48 139.90 4878.50 4871.41 OK. 3.00 280.67 253.97 0.50 139.90 4895.70 4880.63 OK 4.00 13.77 51.76 1.56 21.50 4894.00 4883.37 OK 5.00 12.82 46.41 1.68 21.50 4894.00 4884.69 OK 6.00 253.13 276.21 0.47 118.40 4896.60 4882.54 OK 7.00 55.08 403.33 0.35 19.30 4894.80 4883.52 OK 8.00 41.31 276.64 0.47 19.30 4892.30 4883.82 OK 9.00 27.54 161.12 0.70 19.30 4892.20 4884.10 OK 10.00 13.77 60.85 1.40 19.31 4189.75 4884.39 OK ' 11.00 12.82 54.72 1.50 19.30 4889.75 4884.79 OK 12.00 185.22 231.23 0.54 99.10 4896.00 4888.95 OK 13.00 172.40 210.18 0.'57 99.10 4899.50 4890.67 OK 14.00 15.00 158.63 14.71 188.05 111.47 0.62 0.92 99.10 13.50 4899.80 4898.00 4892.37 4893.68 OK OK 16.00 0.94 5.00 14.29 13.50 4898.00 4893.76 OK 17.00 130.14 175.50 0.66 85.60 4902.60 4894.64 OK 18.00 117.32 152.56 0.73 85.60 4906.20 4895.75 OK ' �19 '00 ` A14' 71 '238..:15 ' 0.52 - 7..70 4904.•00.., . •4898.70 OK. 20'*00 0.94 '5..-00 8.15 7..70 4904..00 - 4898..73 OK, 23.00 12.82 5.13 4.72 60.50 4906.00 4896.16 OK .24:00 91.67 555.65 0.27 25.10 4906.60 •4898.06 OK 25.00 64.13 562.23 0.27 17.40 4908.60 4900.49 OK 26.00 51.30 420.80 0.34 17.40 4910.50 4902.87 OK 27.00 38.47 288.76 0.45 17.40 4912.50 4905.25 OK ' 28.00 25.65 168.36 0.68 17.40 4912.90 4905.58 OK 29.00 12.82 63.84 1.36 17.40 4913.00 4905.82 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH NO, ID N0. (FT) (IN) (FT) (IN) (FT) (FT) ------- ------ID 12.00 - 2.00 - --------------------- 1'.00 -(IN) ROUND ----- 47.53 ----- ----- 48.00 ----- ----- --------- 54:00 0.00 23.00 3.00 2.00 ROUND 40.66 42.00 54.00 0.00 N 34.00 45.00 4.00 5.00 3.00 4.00 ROUND ROUND 18.16 18.16 21.00 21.00 21.00 21.00 0.00 0.00 36.00 6.00 3.00 ROUND 48.41 54.00 54,.00 0.00 1 •67.00 7.00 1.00 ROUND 29.33 .30.00 30.00 0.00 '78.00 8.00 7.00 ROUND 29.33 30.00 30.00 0.00 89.00 9.00 8.00 ROUND 29.33 '30.00 30.00 0.00 910.00 10.00 9.00 ROUND 29.33 30.00 30.00 0.00 1011.00 11.00 10.00 ROUND 29.33 30.00 30.00 0.00 612.00 12.00 6.00 ROUND 36.03 42.00 54.00 0.00 1 1213.00 13.00 12.00 ROUND 49.60 54.00 -54.00 0.00 1314.00 14.00 13.00 ROUND 49.60 54.00 54.00 0.00 1415.00 15.00 14.00 ROUND 22.52 24.00 24.00 0.00 1 1516.00 16.00 15.00 ROUND 22.52 24.00 .24.00 0.00 1417.00 17.00 14.00 ROUND 46.95 48.00 48.00 0.00 1718.00 18.00 17.00 ROUND 46.95 48.00 48.00 0.00 1 1823.00 1824.00 23.00 24.00 18.00 18.00 ROUND ROUND 41.22 30.55 42.00 33.00 48.00 36.00 0.00 0.00 ;2419..'00 -19.00 24.00 :ROUND 19.03 :21.00 24.00 0.00 '1920.:00 20.00 .19.00 "-ROUND _19...03 ;21,.00 .24.00 - -0.00 2425.00 25.00 24.00 ROUND 26.63 .27.00 24.00 0.00 2526.00 26.00 25.00 ROUND 26.63 27.00 24.00 0.00 2627.00 27.00 26.00 ROUND 26.63 27.00 24.00 0.00 2728.00 28.00 27.00 ROUND 26.63 27.00 24.00 0.00 1 2829.00 29.00 28.00 ROUND 26.63 27.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET 1 REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, 1 EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORMAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. 1 NUMBER -------- -------- CFS CFS -------- FEET -------- FPS FEET FPS FPS 12.0 139.9 197.2 ---------------- 2.80 13.45 -------- 3.48 ----------------------- 10.61 8.80 1.54 V-OK 23.0 139.9 299.0 2.16 18.48 3.48 10.61 8.80 2.51 V-OK 1 34.0 21.5 31.8 1.05 14.19 1.60 9.31 8.94 2.66 V-OK 45.0 21.5 31.8 1.05 14.19 1.60 9.31 8.94 2.66 V-OK 36.0 118.4 159.0 2.89 10.96 3.19 9.83 7.44 1.22 V-OK 1 67.0 19.3 20.6 1.92 4.76 1.49 6.35 3.93 0.60 V-OK 78.0 19.3 20.6 1.92 4.76 1.49 6.35 3.93 0.60 V-OK 89.0 19.3 20.6 1.92 4.76 1.49 6.35 3.93 0.60 V-OK ' 910.0 1011.0 19.3 20.6 19.3 20.6 1.92 1.92 4.76 4.76 1.49 1.49 6.35 6.35 3.93 3.93 0.60 0.60 V-OK V-OK 612.0 99.1 292.5 1.81 16.61 2.92 9.08 6.23 2.52 V-OK 1213.0 99.1 124.7 3.03 8.70 2.92 9.08 6.23 0.93 V-OK 1314.0 99.1 124.7 3.03 8.70 2.92 9.08 6.23 0.93 V-OK 1 1415.0 13.5 16.0 1.41 5.72 1.32 6.14 4.30 0.89 V-OK 1516.0 13.5 16.0 1..41 5.72 1.32 6.14 4.30 0.89 V-OK 1417.0 85.6 91.1 3.08 8.24 2.83 9.00 6.81 0.83 V-OK 1718.0 85.6 91.1 3.08 8.24 2.83 9.00 6.81 0.83 V-OK 1 1823.0 60.5 91.1 2.38 7.76 2.34 7.93 4.81 0.97 V-OK 1824.0 25.1 39.0 1.75 5.86 1.63 6.42 3.55 0.86 V-OK 14 3 =1. 04. ' . 4. 65 1.01 - ' 4'.'83 ' - 2: 45:' 0: 90 V-OK' 1 1920 0" 7:7 ". 14.3 1 04 4.65, 1.01 _: 4.83 2.45 0.90 V-OK 2425.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK 2526.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK 2627.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK N 2728.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK 2829.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK 1 '5--g FROUDE.NUMBER=0 INDICATES THAT'P. PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ------------------------------ % (.FT) ---------- (FT) (FT) (FT) .12.00 1.00 4867.23 4867.00 ---------- -------------------- 6.77 -0.10 NO ' 23.00 2.30 4877.15 4870.94 14.05 3.06 OK .34.00 4.00 4881:77 4879.64 10.48 14.31 OK 45.00 4.00 4881.79 4881.75 10.46 10.50 OK 36.00 0.61 4171.20 4877.15 12.90 14.05 OK ' 67.00 0.25 4881.47 4881.22 10.83 12.88 OK 78.00 0.25 4881.80 4881.47 8.00 10.83 OK 89.00 0.25 4882.10 4881.80 7.60 8.00 OK 910.00 1011.00 0.25 0.25 4882.30 4882.31 4882.10 4882.31 4.95 4.94 7.60 OK 4.94 OK 612.00 2.20 4886.03 4879.43 5.47 12.67 OK 1213.00 0.40 4887.63 4886.03 7.37 5.47 OK 1314.00 0.40 4889.30 4887.63 6.00 7.37 OK ' 1415.00 0.50 4890.00 4889.80 6.00 8.00 OK 1516.00 0.50 4890.01 4890.00 5.99 6.00 OK 1417.00 0.40 4891.10 4889.30 7.50 6.50 OK ' 1718.00 0.40 4892.60 4891.10 9.60 7.50 OK 1823.00 0.40 4892.78 4892.59 9.22 9.61 OK 1824.00 0.34 4895.63 4895.15 7.97 8.05 OK :2AI9..:00 `;1920'.,0.0. '' 0.40 -4896.0,0 4895.64 6.00 8.96 OK 0.40 ..4896.01 4896.01 5.99 5.99 OK 2425.00 0.34 4896.99 4895.63 9.61 8.97 OK 2526.00 0.34 4898.35 4896.99 10.15 9.61 OK ' 2627.00 2728.00 0.34 0.34 4899.71 4899.89 4898.35 4899.71 10.79 11.01 10.15 OK 10.79 OK 2829.00 0.34 4900.02 4899.89 10.98 11.01 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION ------------------------------ WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION 12.00 FEET ----FEET-- FEET ---------------------------------------- FEET FEET FEET 22.50 0.00 4871.73 4871.50 4871.41 4871.40 JUMP 23.00 270.00 0.00 4881.65 4875.44 4880.63 4871.41 JUMP ' 34.00 45.00 53.22 1.00 0.00 0.00 4883.52 4883.54 4881.39 4883.50 4883.37 4884.69 4880.63 JUMP 4883.37 JUMP 36.00 315.69 0.00 4883.70 4881.65 4882.54 4880.63 JUMP 67.00 101.35 0.00 4883.97 4883.72 4863.52 4882.54 SUBCR 78.00 131.40 0.00 4884.30 4883.97 4883.82 4883.52 SUBCR ' 89.00 120.97 0.00 4884.60 4884.30 4884.10 4883.82 SUBCR 910.00 80.00 0.00 4884.80 4884.60 4884.39 4884.10 SUBCR 1011.00 1.00 0.00 4884.81 4884.81 4884.79 4884.39 SUBCR 612.00 300.00 0.00 4890.53 4883.93 4888.95 4882.54 JUMP 1213.00 400.00 0.00 4892.13 4890.53 4890.67 4888.95 SUBCR 1314.00 417.96 0:00 4893.80 4892.13 4892.37 4890.67 SUBCR N 1415.00 1516.00 40.60 1.00 40.00 1.00 4892.00 4892.01 4891.80 4892.00 4893.68 4893.76 4892.37 PRSS'ED 4893.68 PRSS'ED 1417.00 450.00 0.00 4895.10 4B93.30 4894.64 4892.37 SUBCR 1 1718.00 374.42 0.00 4116.60 4195,11 1195,71 1114.64 SUBCR 1823.00 46.35 0.00 4896.78 4896.59 4896.16 4895.75 SUBCR 1824.00 139.72 0.00 4898.63 4898.15 4898.06 4895.75 SUBCR :2419...00 91.14 91.14 4898.00 4897.64 4B98.70 4898.06 PRSS'ED 1920.00 1.00 1.'00 4898.01 4898.01 4898..73 4898:70.PRSS'.ED 1 2425.00 400.00 400.00 4898.99 4897.63 4900.49 4898.06 PRSS'ED 2526.00 400.00 400.00 4900.35 4898.99 4902.87 4900.49 PRSS'ED 2627.00 400.00 400.00 4901.71 4900.35 4905.25 4902.87 PRSS'ED 1 2721,00 2829.00 52.31 37.28 52.31 37.28 4901,81 4902.02 4911.71 4901.89 4905.58 4905.82 4905.25 4905.58 PRSS'ED PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW 1 *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE 1 SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ------------------------------------------------------------------------------- ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT 1 12.0 2.00 4872.61 1.21 0.35 0.00 0.00 0.00 1.00 4871.40 23.0 3.00 4882.37 9.52 0.20 0.24 0.00 0.00 2.00 4872.61 34.0 4.00 4884.72 1.09 1.01 1.25 0.00 0.00 3.00 4882.37 45.0 5.00 4885.93 0.90 0.25 0.31 0.00 0.00 4.00 4884.72 1 36.0 6.00 4883.40 0.00 0.05 0.04 0.25 0.99 3.00 4882.37 67.0 7.00 4883.91 0.26 1.01 0.24 0.00 0.00 6.00 4883.40 78.0 8.00 4884.15 0.22 0.08 0.02 0.00 0.00 7.00 4883.91 89.0 9.00 910.0 10.00 1011.0 4884.44 4884.72 0.27 0.18 0.08 0.46 0.02 0.11 0.00 0.00 0.00 0.00 8.00 9.00 4884.15 4884.44 11.00 4885.03 0.25 0.25 0.06 0.00 0.00 10.00 4884.72 612.0 12.00 4890.23 6.08 0.05 0.03 0.25 0.71 6.00 4883.40 1213.0 13.00 4891.86 1.60 0.05 0.03 0.00 0.00 12.00 4890.23 1 1314.0 14.00 4893.54 1.64 0.05 0.03 0.00 0.00 13.00 4891.86 1415.0 15.00 4893.97 0.14 1.01 0.29 0.00 0.00 14.00 4893.54 1516.0 16.00 4894.04 0.00 0.25 0.07 0.00 0.00 15.00 4893.97 ' 1417.0 17.00 4895.69 1.70 0.05 0.04 0.25 0.42 14.00 4893.54 1718.0 18.00 4896.81 1.08. 0.05 0.04 0.00 0.00 17.00 4895.69 1823.0 23.00 4896.72 0.00 1.01 0.36 0.00 0.00 18.00 4896.81 1824.0 24.00 4898.59 1.10 0.05 0.01 0.25 0.67 18.00 4896.81 1 2419.0 19.00 4898.79 0.10 1.01 0.09 0.00 0.00 24.00 4898.59 1920.0 20.00 4898.82 0.00 0.25 0.02 0.00 0.00 19.00 4898.79 2425.0 25.00 4900.97 2.35 0.05 0.02 0.00 0.00 24.00 4898.59 2526.0 26.00 2627.0 27.00 4903.35 4905.72 2.35 2.35 0.05 0.05 0.02 0.02 0.00 0.00 0.00 0.00 25.00 4900.97 2728.0 28.00 4906.06 0.31 0.05 0.02 0.00 0.00 26.00 27.00 4903.35 4905.72 2829.0 29.00 4906.30 0.22 0.05 .0.02 0.00 0.00 28.00 4906.06 1 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. ' FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. ' FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 >1 A; \< 0 0 )�\>,\ < 7 Qo 0 >1 Im >1 > >/ U M