Loading...
HomeMy WebLinkAboutDrainage Reports - 07/28/1995final 0. �' 1 1. PROPMTY OF . O,1,.. UTMI �' TABLE OF CONTENTS FINAL STORM DRAINAGE AND EROSION CONTROL REPORT FOR MILESTONE DRIVE - TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE I. COMPLIANCE LETTER, STORM DRAINAGE REPORT, AND VICINITY MAP II. COMPLIANCE LETTER, EROSION CONTROL.REPORT, AND EROSION CONTROL COST ESTIMATE III. ADDENDUM A - HYDRAULIC CALCULATIONS IV. ADDENDUM B - ORIGINAL MASTER STORM DRAINAGE REPORT FOR TIMBERLINE FARM P.U.D. JAI/LESToNF, V� 1 III IIfit , R u •0.• I I I THIS FINAL STORM DRAINAGE STUDY AND REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS (TIMBERLINE ROAD TO SUNSTONE VILLAGE P.U.D. 7TH SUBDIVISION) WAS PREPARED BY LAND DEVELOPMENT SERVICES USING THE CITY OF FORT COLLINS STORM DRAINAGE DESIGN CRITERIA and CONSTRUCTION STANDARDS MANUAL, dated May, 1984. The results of this drzinage study are reported in the enclosed text and supporting documents, and are shown in further detail on the Utility Plans submitted concurrently with this report. This report is a revision of previous reports dated November 15, 1994 and February 15, 1995. Signed this 15th_day-Qf_June, 1995. 1 L •� Dennis L. Donovan, P.E. Land Development Services ' 309 W. Harmony Road Fort Collins, Colorado 80526 Phone (303) 225-9244 1 It I 11 I RM F,ai\ i FINAL STORM DRAINAGE REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE I. GENERAL INFORMATION Milestone Drive is a proposed street and utility improvement project in southeast Fort Collins, Colorado. The street will provide access on the east side of Timberline Road to both existing residential and proposed commercial development. The associated utility improvements will serve the commercial area only, as utility service is already provided to the completed Sunstone Village residential subdivision. This report is provided to address the storm drainage conditions relative to these improvements. The construction of Milestone Drive is intended to be part of a concurrent Timberline Road widening project from north of Harmony Road (actually at Milestone Drive) to south of Horsetooth Road - a distance of 3,500 feet. Timberline Road from Milestone Drive south to Harmony Road is also anticipated to be widened/constructed at the same time, providing a total of about three -fourths of a mile of new arterial street. Timberline Road is a city designated "Major Arterial Street", and Milestone Drive is designed to function as a "Collector Street". Milestone Drive will connect Timberline Road to a previously constructed portion of Milestone Drive 150 feet, or so, south of Winterstone Drive in the Sunstone Village P.U.D. residential neighborhood. Winterstone Drive connects Milestone Drive and Timberline Road to the local and collector street system throughout the Sunstone development to the north. iThe 150 feet stub of Milestone Drive improvements were Previously built as a "Local Street" within Sunstone Village P.U.D., 7th Subdivision. The improvements subject to this report are located between the proposed intersection returns (PCR's) of Milestone on the east side of the Timberline Road widening project to the existing Milestone Drive. The returns (at Station 1 0+75) designate the break in design and construction between the Timberline Road and Milestone Drive projects. The Milestone Drive street improvements will be about 650 feet in length, and the street cross section will transition from a 68 foot right of way as a collector street east of Timberline Road to a 54 foot right of way at the existing local street (a difference of 50 feet versus 36 feet curb to curb). Two (2) driveway access points off Milestone are provided ' for street and utility access to the undeveloped commercial property on the north and south sides of the street. Milestone Drive will be an important and valuable street access for the neighborhood to and from Timberline Road. FINAL STORM DRAINAGE REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE This report is provided to address the existing and proposed storm drainage conditions affecting Milestone Drive, and to make recommendations for storm drainage improvements to be constructed in association with Milestone and adjacent properties. A general Vicinity Map of the study area is provided at the end of this report. Construction drawings for- this project were prepared by this office (i.e. Land Development Services) as "UTILITY PLANS FOR MILESTONE DRIVE", and are considered a part of this report. One of the drawings in the set of plans is the "STORM DRAINAGE AND EROSION CONTROL PLAN", which is Exhibit A to �. this report. Exhibit B is also included with this report. It is the Master Drainage Basin Plan for Timberline Farm, P.U.D. prepared by Engineering Professionals, Inc. several years ago. This office has previously updated the master plan to show the final storm drainage conditions after development of both Sunstone Village 7th and 8th Filings, as well as after the proposed construction of the Timberline Road street improvement project. It is further updated with this report as result of the proposed Milestone Drive improvements. On both Exhibits A and B the drainage subbasins affecting Milestone Drive are delineated and labeled. Historically, the land in this vicinity slopes west to east. In the currently vacant land in the immediate area of the improvements, the slope is less than 1/2 percent along the thalweg of the drainage basin. The land where this portion of Milestone Drive is to be built is historically and currently planted in crops. This construction project will not disturb much of the planted area. There are no active irrigation ditches crossing or within the construction limits of this street construction project. There is a small active irrigation ditch south of Milestone Drive, but no affect on these improvements is anticipated from the minor ditch flows (see Exhibit B for alignment of the ditch through subbasin E-1). No surface runoff onto the street improvement area will occur from off —site west of Timberline Road. The storm drainage report for Timberline Road titled "FINAL STORM DRAINAGE REPORT FOR TIMBERLINE ROAD STREET IMPROVEMENTS — MILESTONE DRIVE TO COUNTRYSIDE VET CLINIC" was prepared by Land Development Services. The report outlines the manner in which those flows are intercepted and collected into storm water facilities north and west of Milestone Drive. In fact, the westerly 100 feet of Milestone will surface drain to Timberline Road and then I FINAL STORM DRAINAGE REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE northerly away from the area - as described in further detail within the Timberline Road drainage report and construction plans. Milestone Drive and the adjacent properties are all located within Reach 2 of the City designated Fox Meadows Drainage Basin. Basin wide improvements are required for all of the City designated "Master" Storm Drainage Basins. Certain basin storm drainage improvements are identified in each of the Drainage Basin Utility Construction Plans. All of the Fox Meadows Basin improvements in the vicinity of this project have already been completed. Drainage Basin Fees are collected in each City designated basin to offset the anticipated cost of basin wide improvements. Information regarding the City designated Fox Meadows Basin can also be obtained in current form at the City Storm Water Utility Department. Existing storm drainage conditions for this design section of Milestone Drive are as follows: I. There is a detention pond existing on the downstream/easterly side of Milestone Drive and the south side of the Sunstone 7th Filing. This storm water detention facility is intended to serve the study area as a storm water flood storage facility (i.e. Detention Pond No. 1 on Exhibit B). iThe detention pond was constructed with the 7th filing of Sunstone. An easement for the north half of the detention pond was provided on the final plat for the 7th filing, and a separate easement for the south one-half of the pond was provided by the property owner to the south. The same property owner to the south still is in title to all of the land that will drain into the pond. As required by the Master Drainage Plan and as a result of the granting of the easement for the south half of the detention pond, permission exists for all of the contributing 1 subbasins to the pond to utilize the existing detention facility. 2. Sunstone 7th and 8th filings contain small drainage subbasins that contribute to the storm drainage system to be constructed in this Milestone Drive project. Please refer to Exhibits A and B for locations of the drainage subbasin flow patterns and other information. The Sunstone development is essentially complete, and all of the area of Sunstone draining to the study area contain existing homes with landscaping in -place. Subbasins SS 8-1, 8-9, 7-7 and 7-9 are shown on both exhibits. Subbasins 8-I contributes storm water runoff to the study area as sheet flow southerly from the backyard areas onto the undeveloped commercial property north of Milestone (which is subbasin G-1). FINAL STORM DRAINAGE REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE The right to surface drain runoff from subasin 8-1 onto Parcel G was granted by the downstream (subbasin G-1) owner when Sunstone 8th Filing was approved, and all of the backyard area of 8-1 currently drains in that manner. Subbasin SS 7-7 drain to the north side of the Winterstone and Milestone Drive intersection, then through an existing 4 foot inlet into a 15 inch RCP pipe culvert that conveys storm water from the intersection to the south end of existing Milestone Drive near the upper end of Detention Pond No. 1. 3. The land north of Milestone falls easterly at a flat slope from west to east. Accommodating the storm drainage detention requirements for the contributory areas to Pond No. 1 creates a 100 year ponding depth that must be taken into account in this study and the ultimate development of the adjacent commercial properties (i.e. the maximum 100 year water surface elevation in Pond No. 1 is at 4958.2, and the existing grade at the thalweg of the drainage basin where Milestone drive is to be built is 4957.0). ' II. PROPOSED STORM DRAINAGE SYSTEM The following is a description of the storm drainage conditions that will exist after construction of this reach of Milestone Drive: ,j 1. The crown of Milestone east of Timberline Road will be offset 9 feet to the south of the centerline of the street. This will allow the north flowline of the curb and gutter to be 0.4 foot lower than the south flowline, while still maintaining a standard two percent street cross slope on the street surface. 2. The entire length of street is to be constructed at finished grades higher than existing (i.e. a mostly 2 to 4 foot fill from prepared subgrade to final street elevation). This creates a ' damming affect across the natural thalweg of the existing Swale, necessitating a storm drainage system under Milestone Drive from west to east. Because the 100 year storm Maximum Water Surface Elevation in the downstream detention pond has a significant backwater Profile (and a corresponding tailwater depth for hydraulic calculations for the below street grade culvert crossing, it was determined that a one by eight foot (1' x 81) concrete box culvert will be needed. Assuming the 100 year storm event has backed water to the 4958.2 WSEL anticipated with the Sunstone 7th filing drainage evaluation, a 1' x 6' CBC will allow the fully developed flows upon the completion of Milestone Drive, as well as the ultimate 11 I i I i FINAL STORM DRAINAGE REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE development of the additional 2.4 acres of commercial property North of Milestone to pass under Milestone with an increase of only 0.3 feet to the maximum WSEL on the west side of Milestone. This seemingly oversized drainage culvert will efficiently pass even the fully developed 100 year storm from west to east, as well as from the street surface itself, with minimal increase in the upstream ponding depth. This report is based on the most conservative approach, assuming that the 100 year storm runoff from this relatively small subbasin area will be occurring during the peak of the ponded WSEL in the downstream detention facility. 3. There will be a sag vertical curve in the street at about Station 6+00. One inlet on each side of the street will provide access to the box culvert passing west to east under the street. 4. The 15 inch Reinforced Concrete Pipe (RCP) culvert stubbed under the easterly sidewalk of the existing Milestone Drive dead ended street will be extended about 14 feet further to the south to a new -Storm Drain Manhole at approximately Station.6+65 East. From the manhole, a 12 foot long 15 inch RCP culvert will be extended to the east to match the existing flowline of the 2 foot trickle channel at the upstream end of Detention Pond No. 1. This will complete the storm drainage system for subbasin 7-7. 5. It is recommended that none of the property south of Milestone Drive be allowed, when developed, to drain onto the Milestone Drive street section. The street is already higher than the site, so collecting and passing the future developed storm runoff from subbasin E-1 should easily be accomplished south of Milestone. This recommendation is made so as to not further hamper the efficient system required just to pass runoff from subbasins G-1, SS 8-1 and on -street runoff. It is possible that a portion of the area south of Milestone may be able to drain onto this street and these improvements, but it should be the responsibility of that actual development proposal to address this consideration based on the storm water runoff characteristics of the proposal. The Hydrologic Characteristics,for the sub -basins associated with this street improvement project filing, as well as for the combined sub basins at Design Point Ws I and II are included on the following page as Table 1. TABLE 1 HYDROLOGIC CHARACTERISTICS MILESTONE DRIVE IMPROVEMENTS TIMBERLINE RD. TO WINTERSTONE DR. 2 YEAR 100 YEAR BASIN AREA C VALUE TIME OF TIME OF i 2-YR i 100-YR O 2-YR 0 100-Y DESIGN DESIGNATION CONCEN- CONCEN- POINT TRATION TRATION (ACRES) (MIN) (MIN) (in/hr) (in/hr) (CFS) (CFS) TRACT G-1 2.44 0.85 15.8 14.3 2.0 6.2 4.1 15.1 TR 0-2 0.38 0.85 10.0 10.0 2.5 7.2 0.8 2.4 SS 8-1 0.88 0.40 10.0 10.0 2.5 7.2 0.9 3.2 SS 8-9 0.57 0.6 10.0 10.0 2.5 7.2 0.9 3.1 SS 7-7 0.71 0.6 12.3 10.3 2.3 7.1 1.0 3.7 VI SS 7-8 0.38 0.6 10.0 10.0 2.5 7.2 0.6 2.0 TRACT E-1 2.41 0.85 12.4 10.7 2.3 7.1 4.7 16.9 TRACT E-2 0.38 0.85 10.0 10.0 2.5 7.2 0.8 2.4 COMBINED FLOWS 8-1 8 0-1 3.32 0.73 15.8 14.3 2.0 6.2 4.8 18.8 I 8-9 8 G-2 0.95 0.70 10.0 10.0 2.5 7.2 1.7 6.0 II 8-11 8-91 4.27 0.71 15.8 14.3 2.0 6.2 6.1 23.5 III G-1 S G-2 7-8 8 E-2 0.76 0.73 10.0 10.0 2.5 7.2 1.4 5.0 IV 8-11 8-91 5.03 0.71 15.8 14.3 2.0 6.2 7.1 27.7 V G-1 8 G-2 7-8 8 E-2 NOTE: "C" VALUES ARE BASED ON 0.40 FOR MOSTLY REAR YARD AREAS, 0.6 FOR FRONT YARD AND STREET AREAS, AND 0.85 FOR PLANNED BUSINESS AND STREET RIGHT OF WAY AREAS NOTE: SEE STORM DRAINAGE REPORT FOR TIME OF CONCENTRATION CALCULATIONS Lq I I I n FINAL STORM DRAINAGE REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE The Time of Concentrations were determined by first using the equation for overland flow in the City design manual, and by then adding the time of concentrated gutter flow. The time of concentrated flow was estimated using Figure 3-2 "Estimate of Average Flow Velocity for Use with the Rational Formula" provided in the "Urban Hydrology for Small Watersheds" Technical Release No. 55, USDA, SCS January, 1975. The formula for overland flow Time of Concentration is: Tc = E1.87 (1.1 - CCf) D1/21 / S1/3 The subbasins in the Milestone Drive improvements project are relatively small. The maximum time of concentration for any of the subbasins is 15.8 minutes for Subbasin G-1 (two year event). Subbasins 7-7 and E-1 are just over 12 minutes, and the rest of the subbasins have a 10 minute time of concentration - since combined overland and concentrated flow times were at or less than 10 minutes. The Time of Concentration for Subbasin G-1 was determined by using an overland flow length of 60 feet, an average slope of 1.0 percent, and a C value of 0.4 for the mostly landscaped area from the back of curb on Timberline to the likely parking lot setback location. An additional 500 feet of flow concentrated in future curb and gutter will drain downstream to the culvert crossing under Milestone at 1.5 feet per second. The two combined flows equal a time of concentration of 15.8 minutes. Time of Concentration for Combined subbasin flows at the Design Points is determined using the longest time of concentration for any of the subbasins contributing at that point. The longest time of concentration was 15.8 minutes at Design Point I, which is the inlet into the 1' by 6' Concrete Box Culvert crossing under Milestone Drive. III. DESCRIPTION OF STREET FLOWS AND DRAINAGE IMPROVEMENTS Due to the relatively small area of contribute storm runoff to the Milestone project, the concentration of discharges will be somewhat minor. In fact, since adjacent to Milestone is lower than the direct storm runoff from the streets and in Sunstone will contribute storm runoff constructed in Milestone (i.e. Subbasins E-2). the subbasins that will Drive improvement in the street gutters the land to be developed street itself, only the front of a few yards to the two inlets to be G-2, SS 8-9, SS 7-8 and The largest flow in a gutter will be from Subbasin approaches the inlet. There, a 2 - year "minor" design of 0.9 cfs is estimated, and a 100 - year "major" design discharge of 3.1 cfs is estimated. The minimum slope of street at that location is 0.4 percent. 8-9 as it discharge the I FINAL STORM DRAINAGE REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE According to Figure 4-1 of the design manual and using the following criteria: Cross Slope of 2 %, so a Reciprocal (Z) of 50; a Roughness Coefficient (n) of 0.016 from Table 4-3; an allowable depth of flow in the gutter of 6 inches during a two year storm: and a fifty percent reduction factor, the gutter will - carry about 9 cfs before exceeding City criteria for the two year, or Minor, storm. The largest 100 - year storm (i.e. 3.1 cfs in subbasin SS 8-9) will only flow at 3 to 4 inches deep versus an allowable depth of about 1.0 foot. Obviously, street gutter flows in Milestone Drive are well within City of Fort Collins criteria. tStorm drainage facilities, or improvements, for Milestone include the two inlets, the 1' by 6' CBC crossing under Milestone, a 4 foot concrete trickle pan from the box culvert to the existing 2 foot trickle pan in the detention pond, and completion of the existing storm drain on the east side of the street where the construction of this project ties into the existing street. The existing system that has been constructed in the existing section of Milestone Drive will be completed. A 20 - foot section of 15 inch RCP culvert will tie into a new storm drain manhole, and a 12 - foot section of 15" RCP will connect the manhole with the existing concrete trickle channel in the Detention Pond east of Milestone. An end section for the pipe will be installed to match the existing concrete flow pan. The inlets at the low points, or sag curves, of the Milestone Drive curb and gutter will drain into the box culvert under Milestone thru a grated inlet (NEENAH R-3067-LL). RBD Engineering, Inc. was subcontracted to design the 1' x 6' Culvert structure and provide the hydraulic calculations regarding the inlet. The hydraulic analysis by RBD is included in ADDENDUM A to this report. The depth of flow in the gutter at the inlets are about 0.3 feet during a 2-year storm and 0.43 during a 100 - year storm. Both depths are well within City criteria. In summary, the proposed storm drainage system and improvements for the Milestone Drive project is generally consistent with the Master Plan and previously prepared storm drainage plans for Sunstone Village P.U.D. and Timberline Rd. The resulting storm drainage system should adequately protect life and property within the street improvements and on the adjacent properties. J The above statement is contingent on future planning and design for the adjacent vacant parcels in Tracts G and E to properly utilize the storm drainage and grading improvements as designed for Milestone Drive. I FINAL STORM DRAINAGE REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE Following the Vicinity Map at the end of this report as Addendum A are the Hydraulic calculations by RBD for the 1' x 6' CBC and by Land Development Services for the 15 inch storm drain. 11 I I i 1 1 I VICINITY MAPS f" ; 3000't i I I I i I o $6e.. tow ,azn ;EEs 0 to WO Y.0 S OODO al 0a m Om f I uo� T :l0 Co{M8 -'1 44wY i �f E"sE�seA_E m, sxs,F 0 a i_ !• f#Cjile F{j£Ii-2=CPG v t jm, aa IT 9 I' S • - ;y, E A l $ _ i S ---xzrrzssx ER"==*$ eE i co Nam bccceccc 4 Q �$ �2R RE dG -0-4 a=.. cC:iccc -"Av a�pR Hai a o Rom �i =t cz:c E arm „� �g A . '-,ICyCYAilt1.l (COVER, Sa -CAc.i CROP ESL,o Sol 1. lol 'to to It I to to towtool WoI �l000 - _ _I .._......-..... o-i m"° .. y I I x 'L wM ON 5 1 r z ti b moo z �" o v C y @ f O No N G c E`IMIBI% �. . R71.iL l�< I c CRW L 1 an. i CHEUED aY: loxs: ew are wrt: Aix>es wuwn a.. s. ntmm: vaaccrm�: am m. t MPPRMFID�,— MILESTONE DRIVE DRAINAGE PLAN 4 6 P—Yh2:1 c:\pRAmtlG\us-DROIN 1j THIS FINAL FINAL EROSION CONTROL PLAN REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS BETWEEN TIMBERLINE ROAD AND EXISTING MILESTONE DRIVE WAS PREPARED BY LAND DEVELOPMENT SERVICES USING THE CITY OF FORT COLLINS EROSION CONTROL REFERENCE MANUAL for Construction Sites, dated January, 1991. The results of this erosion control study are reported in the enclosed text and supporting documents, and are shown in further detail on the Utility Plans submitted concurrently with this report. This report is an update from the original reports that were submitted on November 15, 1994 and April 5, 1995. ISigned this 20th day of June, 1995. Dennis L. Donovan, P.E. Land Development Services 309 W. Harmony Road — Unit B Fort Collins, Colorado 80526 ■ Phone (303) 225-9244 FINAL EROSION CONTROL PLAN REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE General Information: The erosion control concepts and general design considerations for the Milestone Drive street improvement project are outlined in the following paragraphs and shown in further detail on Exhibit A. The exhibit is the same as for the storm 1 drainage report, which is Sheet 4 of 6 of the UTILITY PLANS, titled the STORM DRAINAGE AND EROSION CONTROL PLAN. It was determined from the City provided reference manual and Wind Erodibility Zone Map that the Erodibility Zone for both Rainfall Erosion and Wind Erosion is moderate for the site. Standard Form A - "RAINFALL PERFORMANCE STANDARD EVALUATION" follows this text. It identifies the four areas of concern for the erosion control plan and identifies their pertinent basin characteristics. Subbasin G-1 will drain to the east into a 1' by 8' concrete box culvert crossing under Milestone Drive from west to east. Subbasins G-2 and E-2 will surface drain the Milestone Drive street improvements into inlets at the sag curve near Station 6+00. Subbasin E-1 will be a commercial development that will drain northerly toward Milestone Drive. At this time, nor in the future, it is not anticipated that subbasin E-1 will surface drain onto Milestone Drive, but the subbasin is included as a result of the disturbance of the northerly portion of the site by the Milestone improvements. ' Subbasins G-2 and E-2 will flow within Milestone Drive to the inlets at the sag curve. The areas contain 30 of 34 feet of the one-half rights of way as paved or concrete surfaces when complete. 1 Subbasins G-1 and E-1 will be largely left undisturbed. A thirty foot work area adjacent to the street right of way is anticipated, with the remainder of the site left as is. Table 5-1 indicates a required Performance Standard of 72.7 percent for the subbasins G-1, G-2 and E-2, and a PS of 78.0 for E-1. Standard Form B "EFFECTIVENESS CALCULATIONS" follows Form A and identifies the recommended erosion control measures and their effect on the site. Subbasins G-1 contains 2.44 acres, of which 2.07 acres will remain as undisturbed crop land. The remaining 0.37 acres will be seeded with temporary crop grasses when Milestone Drive improvements are completed. The effectiveness is 91 percent. FINAL EROSION CONTROL PLAN REPORT FOR MILESTONE DRIVE STREET IMPROVEMENTS FROM TIMBERLINE ROAD TO EXISTING MILESTONE DRIVE The area of subbasins G-2 and E-2 will have 0.34 acres of the total 0._38 acres each as paved (asphalt and concrete) surfaces. This achieves an effectiveness of 95.7 percent - even leaving the four foot area between curb and detached sidewalk as bare soil. For subbasins G-1 the area is 2.41 acres. The same erosion control effectiveness calculations (i.e. 85 percent of the area left undisturbed and temporary grass seeding of the finished dirt grade) as for subbasin G-1 achieves an effectivness percentage of 91.0. All of the areas easily meet the performance requirements. During construction, straw bales and silt fence shall be used as necessary to protect downstream properties from sedimentation from storm runoff - in such locations and at such times as necessary. Notes are included on Exhibit A to alert the contractor as to the required protection against sediment transport. Watering of the disturbed areas to minimize wind blown particulates is required per standard practice. The construction schedule for the project is to begin grading as soon as the plan approval allows - late April, 1995 if ' possible. The project will probably be under construction thru June of 1995, if started by May 1st. The construction sequence and erosion control measures schedule are included as STANDARD FORM C to this report, and is included on Exhibit A. I 11 i RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: STANDARD FORM A ICOMPLETED BY: L DATE: -I5 - I--------------------------------------------------------------------- IDEVELOPED ERODIBILITYI Asb I Lsb I Ssb I Lb I Sb I PS ISUBBASIN I ZONE ---I (ac) I (ft) I (%) .I(feet) ----------------- _ o C9onER-1 0,3g1 4'50 1 CJ. 5 1 5A M$ 72.7 I S,FwLe IG5 I -2 �9ooE�,r�l.o.381�5a 1,15��z? I5 1 I I 1 G " I I i�o pER�47 2,`f4'I 50o a. 5 154m A-- 72,71 1760 ------------- 1 I 1 I I 1 1 1 I I 1 I I 1 I I i 1 I i I # I I I I I I I I . I I 1 I I i I I I � I I I I I I I I ► I i I I I HDI/SF-A:1939 I �L I I i I I 1 I I I r 1 ------EFFECTIVENESS -CALCULATIONS r% G E ' ' PROJECT: M �, E S TD N E .DR / V� S7ANDARO FORM B � COMPLETED BY: DLD DATE: I � Erosion Control C-Factor P-Factor I Method Value Value Comment I I----------------------------------------------- I �-5PH4L-Ti PAdiYJG 0,L1,0 1 I TEMP. CRoPCodrk r�-,s-r, Dpy LA"D Q,.o3 -----------Grp Ass ' ----- -------- --------. F 8 }t--------- MAJORI PS SUB I AREA I I BASINI (%) IBASINI (Ac) I CALCULATIONS ---- -I------1----- I ------- I------------------------- ----------- --------� 611 GZ -7Z,711 t4lAd 2,�t� c 85% i`s To BE UNDts7'c1R�pEr,� �5Ti4dL/SHED ��tfL�i�Q(SPA 55 RFMA)NG 1 5% 7-o Y3c- Sr=Co w ► r-K TENtP CpoP. 85%xz• �,f w4-J G r.tc-ro R — �0. p3 x 2,07 -(- Val + R oK IV14 0, 381 8A Yo ► 5 -ro t3 E A SP144L T A- Na Ca N c R E-rr rM PRO VC MEN7`5 (8961,nX6.38 = 0.34-Ac) Ro ---------------- DI/SF-B:1989 �rD CFACTaR=(d,0/Xo,3�"t =6.0t{-3 PF,A cTo,� =1, 0 r/quso oN �'��� EFFECTIVENESS CALCULATIONS PAC, �. 2 ----------,--� --------------------------------------------------------- �/ PROJECT: �" 1 I I. 6 5 70 N 5 PR I V C STANDARD FORM B COMPLETED BY: OL ,D DATE: 7-1 5-fS Erosion Control C-Factor P-Factor Method Value Value Comment ---------------------------------------------------------- MAJORI PS SUB BASIN (%) (BASIN ----- ------ ----- E-Z ?Z,? �-1178-a! ---------------------------------------------------- AREA (Ac) CALCULATIONS U, 3 O Trf-GR Si D C a F S77REE T 1'16 W " SDj SAME AS 4S-Z I A 1\4 C- Nt I✓ Tf(o 0 A 5 <a R � 45.1 U M M I x!G 36/5'W4M WILL $8 DIS?ruRR,E�o-6L-:fg11vD1 -rH6 R-6-k1. 5o85% RENIit/NI rN 5x/ST/ejcy fRoP 4Aln 0r5TuR&F-D ARE -Az; 4pr- 5 EE,OZP w l rr-t /f. TE,&jp CRoF, N ------------ I/SF-B 1989 I i i I I I CONSTRUCTION SEQUENCE PROJECT: 1J l L 5 STo nI F jC,)R I V C— STANDARD FORM C SEQUENCE. FOR 19 9 5 ONLY COMPLETED BY: J, L DATE: Z—/ 5 -S RE� 5 Indicate by use of a bar line or symbols when erosion control measures wi 1 be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. YEAR MONTH OVERLOT GRADING WIND EROSION CONTROL Soil Roughing Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALLEROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting) Mulching/Sealant II Temporary Seed Planting Sod Installation Nettings/Mats/Blankets Other I----------- � jug UW AJ61 SE Pi STRUCTURES: INSTALLED BY C0 N TF A C Ta R MAINTAINED BY VEGETATION/MULCHING CONTRACTOR ' DATE SUBMITTEED - - q.5 APPROVED BY CITY OF FORT COLLINS ON HDI/SF-C:1989'� t EROSION CONTROL NOTES: 1. All erosion control measures are to be installed according to recommendations in the City of Fort Collins Erosion Control Manual. 2. All disturbed areas outside of Milestone Drive to be seeded with temporary crop grassess upon completion of final grading. 3. A silt fence shall be installed downstream of the work area to protect against silt accumulation in the existing detention pond. 4. Straw bales shall be installed in the downstream entry of the drainage from the 1' x 8' CBC, into the detention pond. 5. Once the 4' concrete trickle channel has been installed, burlap sand bags across the pan shall replace the straw bales. A r7e---q --m-14A TLazIp-o ry -- Cr6p- Cc v tE-,7 r- 36o :5- _71720-7 r-A Cos 11 1 1 i LI �J i 1 i i 1 1 1 1 1 1 1 ADDENDUM A 1 1l1 r O Z A I 0 c3� I yU b Ak 39 O ���Jlo L Q �rrnn ~ 0 `I U U V Al10013A J W (� 13iino w U z O� F}- } O ~ H �O Z F- HI1lOtl1H00 N 41 wa oWo w a N > > _ 0 o a Q 14' w J W a U z QQ 2 W H Q ~ ofLrl z X = N Q W W Q W ; z I J O J u = J W O e r Q + t Z" F a _� F 3 s �p j 0 v f ' I I 0 4 Z 11 II w Q z 0 w 0• - �� 0 f,- a O _O _O O j W = J � a CIA>a c 1 w a O s M O ao ¢ JJ h0 w 7 w w I " N z cr 0 a z cv O_ W w w N H Z a s w u _ _ Z V)U 3 3 O w� as �= z a c ILin ~ ~ y Z N a IL oo a z U rn w Y I--W I In s M w F- O c ix U J is ..• w 7 O Moll a Ix N O O z o ~ 0 ► zc as o N Ix - o a 0 >- W a W Q IY d = J� i O W W 7► O.Z U w = Q: --------------- rrom 13PK MAY 1984 Figure 6-1 DESIGN COMPUTATION FORM FOR CULVERTS 6-2 DESIGN CRITERIA F.. � N w 1 ^ W2 J �1 l`1 N 0 ,1 U I I 1110013A �! W N W 1311noLLI N Z `O T Y ~ ~ •N z F.- p M1110hilMoo -� 39 O w 0 0 > u u > F" 0 Z J Q Q Q = V o W w 0 N Z N N ; `i J �1 Q x ��lJ' Q 1 1 1 W w Q 2 i J W V ; z � w J .Z w tn Q + s O 'f1 I V J x +IN r V w W F ' Q z n n Q 0 v O z z 3 U w . F O O Q Q a O La J ~ > O � W o x a Q 4 ¢ O Z W W o o N e_ lU � � r w W W N N p N z a s W w z g ; x _ of z o p l 11� a� W; ~ U Zi x At i x Q J l 1 Um N_ y — G z W � _ n- N Q 4 O z N N I W V X U U O 1` O M o O cc� W U U J It I.• q W O cr N O O = a HO s it ; l►J ca O o v o �� o . } } wa Q a _ >o i J V a n N • O O L) W 2 T. O Ut U) rrom tw MAY 19154 Figure 6-1 DESIGN COMPUTATION FORM FOR CULVERTS 6.2 DESIGN CRITERIA i 1 T3DINC. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 303/482-5922 FAX:303/482-6368 Land Development Services 309 W. Harmony Road Ft. Collins, CO 80525 ' Attention: Mr. Dennis Donovan ' Subject: Milestone Project - Hydraulic Calculations RBD Project No: 681-001 July 3, 1995 Dear Dennis: Attached are hydraulic calculations for the sizing of a concrete box culvert, and for the sizing of two inlets on Milestone Drive. The calculations are based on the hydrologic information provided to ' RBD on the Milestone construction drawings, dated March 29, 1995. Hvdraulic Design In summary, the hydraulic calculations demonstrate that a 6-foot wide, 1-foot high box culvert will pass the 2-year recurrence interval design flow of 7.1 cfs with the 100-year recurrence interval design flow of 27.7 cfs ponding water to an elevation of approximately 58.21 feet. It is believed that by inspection of the grading shown on sheet 4/6 of the construction drawings that the "ponded" water surface will be within subbasin "G-1" and therefore not encroach onto private property. For the hydraulic analysis of culvert performance, the flow of 27.7 cfs is assumed to be conveyed ' through the entire barrel length of the culvert. Performing the analysis in this manner is considered conservative because some of the flow (of the 27.7 cfs) will enter through the inlets "cut into" the top of the box culvert. ' The proposed inlets are a combination inlet meaning the inlet has a "curb -type" and "grate -type" inlet in the same assembly. Combination inlets are proposed for this application because of site restrictions. Stated another way, there is not enough vertical clearance between the flowline elevation and the top of the box culvert to build typical City of Fort Collins "Type-R curb inlets". Therefore variance for the use of combination inlets is requested. Attached calculations show the combination inlet "capture" discharges for the 2-year recurrence interval and 100-year recurrence interval discharges anticipated at this location. A "catalog cut of the proposed combination inlets is provided. I ' Denver303/458-5526 Land Development Services, page 2 July 3, 1995 At your request a copy of this letter and attached calculations may be delivered to the Storm Water Utility for their review. I am available to attend a meeting with the Utility, again at your request. Please call if you have questions or continents. Respectfully cc: Janelle - RBD, Inc. File G1 I I I r Emi IP r R-3066 Curb Inlet Frame, Grate, Curb Box Heavy Duty Total Weight 385 Pounds Type DR Reversible grate shown. For opposite hand flip grate top to bottom. Furnished standard with 12" pan opening. Also available with 18" pan opening on special order. Specify pan opening required. Specify: 1. Pan opening 12" or 18". CURB BOX ADJUSTABLE 21 ♦' TO 9- �,�6S 1' GIA60NA12,2'27 WITH d: OPENOl66 I 1 n 23 0 so' R-3067 Curb Inlet Frame, Grate, Curb Box Heavy Duty Total Weight 510 Pounds Type DL Reversible grate shown. For opposite hand flip grate top to bottom. CURB BOX ADJUSTABLE f TO 9 9� 1 ITS �Ij-DUGONLL BARS r �, !WITH If OPENINGS R-3067-LL. Curb Inlet Frame, Grate, Curb Box Heavy BOip Unit shown is for flow -left. w tSl-Wetght 4Z5'Peuods If flow -right is required, .Order as R-3067-LR. Sooke as above except R-3067-V withNType V Grate. 'Leavy Duty ldtal,Weight 485 Pounds CURB BOX ADJUSTABLE fi TO 6 33 24' 43 31 — Illustrating R-3066 with Type DR grate Illustrating R-3067 with Type DL grate Illustrating R-3067-LL 101 1------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ ,USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 07-01-1995 AT TIME 05:38:57 *** PROJECT TITLE: Milestone *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: �.9� 2 y r P �,, f INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.48 INLET GRATE LENGTH (ft)= 2.94 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.00 GRATE OPENING AREA RATIO (%) = 0.35 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 8.84 GUTTER FLOW DEPTH (ft) = 0.30 FLOW VELOCITY ON STREET (fps)= 1.86 FLOW CROSS SECTION AREA (sq ft)= 0.91 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS.: ' DESIGN DISCHARGE (cfs)= 1.70 IDEAL GRATE INLET CAPACITY (cfs)= 2.94 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.47 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.47 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 2.50 HEIGHT OF CURB OPENING (in)= 4.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.33 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.23 ' FLOW INTERCEPTED (cfs)= 0.23 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.23 FLOW INTERCEPTED (cfs)= 0.23 ' CARRY-OVER FLOW (cfs)= 0.00 ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs) = 1. 7b-�— ter �2 BY FAA HEC-12 METHOD: / FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.47 ✓ FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.23 TOTAL FLOW INTERCEPTED (cfs)= 1.70 ✓ CARRYOVER FLOW (cfs)= 0.00 ✓ ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.47 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.23 TOTAL FLOW INTERCEPTED (cfs)= 1.70 ------------------------------------------------------------------------------ CARRYOVER FLOW (cfs)= 0.00 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER -------- ---SUPPORTED BY METRO DENVER CITIES/COUNTIES AND ------------------------------------------------------------- UD&FCD SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ............................... ON DATE 07-01-1995 AT TIME 05:41:20 '*** PROJECT TITLE: milestone *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= INLET GRATE LENGTH (ft)= 1.48 2.94 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 1.00 rI L SUMP DEPTH ON GRATE (ft)= 0.00 GRATE OPENING AREA RATIO (%) = 0.60 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.50 STREET CROSS SLOPE (%) = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.44 ' GUTTER FLOW DEPTH (ft) = 0.43 FLOW VELOCITY ON STREET (fps)= 2.41 FLOW CROSS SECTION AREA (sq ft)= 2.51 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(°s)= 20.00 INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 6.00 IDEAL GRATE INLET CAPACITY (cfs)= 5.06 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.53 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.53 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 2.50 HEIGHT OF CURB OPENING (in)= 4.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 , Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.01 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 3.47 3.47 0.00 3.47 3.21 0.27 (0cliz BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.53✓ , FLOW INTERCEPTED BY CURB OPENING(cfs)= 3.47. ' TOTAL FLOW INTERCEPTED (cfs)= 6.00 CARRYOVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 2.53 FLOW INTERCEPTED BY CURB OPENING (cfs)= 3.21 TOTAL FLOW INTERCEPTED (cfs)= 5.73 '---------------CARRYOVER 0.27 -FLOW -------------------(cfs) ------ --- ----------------- UDINLET: INLET HYDARULICS AND SIZING ---- DEVELOPED BY ' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ ,USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 07-01-1995 AT TIME 05:43:08 '*** PROJECT TITLE: milestone *** COMBINATION INLET: GRATE INLET AND CURB OPENING: ' *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: y)Z � {�"L1 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.48 INLET GRATE LENGTH (ft)= 2.94 INLET GRATE TYPE =Curved Vane Grate NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.00 GRATE OPENING AREA RATIO (%) = 0.35 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE M) = 0.50 ' STREET CROSS SLOPE (%) 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.50 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 8.09 GUTTER FLOW DEPTH (ft) = 0.29 FLOW VELOCITY ON STREET (fps)= 1.81 ' FLOW CROSS SECTION AREA (sq ft)= 0.78 GRATE CLOGGING FACTOR (o)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 1 GRATE INLETS: DESIGN DISCHARGE (cfs)= 1.40 IDEAL GRATE INLET CAPACITY (cfs)= 2.72 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.36 BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 1.36 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 2.50 HEIGHT OF CURB OPENING (in)= 4.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.16 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.04 FLOW INTERCEPTED (cfs)= 0.04 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.04 FLOW INTERCEPTED (cfs)= 0.04 ' CARRY-OVER FLOW (cfs)= 0.00 *** SUMMARY FOR THE COMBINATION INLET: ' THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 1.40 4.-4 �`-C 2 BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.36 ' FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.04 / TOTAL FLOW INTERCEPTED (cfs)= 1.40 ✓ ' CARRYOVER FLOW BY DENVER UDFCD METHOD: (cfs)= 0.00 FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.36 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.04 ' TOTAL FLOW INTERCEPTED (cfs)= 1.40 ------------------------------------------------------------------------------ CARRYOVER FLOW (cfs)= 0.00 UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER BY METRO DENVER CITIES/COUNTIES AND UD&FCD -----SUPPORTED ------------------------------------------------------------ - SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 07-01-1995 AT TIME 05:43:52 F** PROJECT TITLE: milestone *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: � 100 - I/i�Z k+ ' INLET HYDRAULIICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= 1.48 INLET GRATE LENGTH (ft)= 2.94 INLET GRATE TYPE =Curved Vane Grate ' NUMBER OF GRATES = 1.00 SUMP DEPTH ON GRATE (ft)= 0.00 GRATE OPENING AREA RATIO (%) = 0.35 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (o) = 0.50 STREET CROSS SLOPE (°s) = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.31 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.31 FLOW CROSS SECTION AREA (sq ft)= 2.17 GRATE CLOGGING FACTOR (°s)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: ' FOR 1 GRATE INLETS: DESIGN DISCHARGE _ (cfs)= 5.00 ' IDEAL GRATE INLET CAPACITY (cfs)= 4.67 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 2.33 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 2.33 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 2.50 HEIGHT OF CURB OPENING (in)= 4.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 ' Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.70 I 1 1 1 1 1 1 -BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 2.67 2.67 0.00 2.67 2.67 0.00 5.00 4 Dr Qic-"" 2.3 ✓ 2.67 5.00 0.00 2.33 2.67 5.00 0.00 1 'CURRENT DATE: 07-01-1995 CURRENT TIME: 04:53:05 I FHWA CULVERT ANALYSIS HY-8, VERSION 4.0 C SITE DATA U ------- ------------------ L INLET OUTLET CULVERT ELEV. ELEV. LENGTH 'V # (FT) (FT) (FT) ---------------- -- - J � 1 2 56.70- 56.25 80.00 3 4 6 ' FILE: DENNIS ' DISCHARGE 0 3 6 7 11 t 14 17 19 22 ' 25 28 39 The above FILE DATE: 07-01-1995 FILE NAME: DENNIS -----CULVERT SHAPE, MATERIAL, INLET ------------------------------------- BARRELS SHAPE SPAN RISE MANNING INLET MATERIAL (FT) (FT) n TYPE -------------------------- 1 RCB 6.00 J 1.00 .013 CONVENTIONAL CULVERT HEADWATER ELEVATION (FT) DATE: 07-01-1995 1 2 3 56.70 0.00 0.00 57.02 0.00 0.00 57.21 0.00 0.00 57.30 0.00 0.00 57.50 0.00 0.00 57.63 0.00 0.00 57.75 0.00 0.00 57.88 0.00 0.00 58.02 0.00 0.00 58.17 0.00 0.00 58.33 0.00 0.00 59.18 0.00 0.00 Q and HW are for a point above 4 5 6 ROADWAY 0.00 0.00 0.00 59.00 0.00 0.00 0.00 59.03 0.00 0.00 0.00 59.04 0.00 0.00 0.00 59.05 0.00 0.00 0.00 59.07 0.00 0.00 0.00 59.08 0.00 0.00 0.00 59.09 0.00 0.00 0.00 59.10 0.00 0.00 0.00 59.11 0.00 0.00 0.00 59.12 0.00 0.00 0.00 59.13 0.00 0.00 0.00 0.00 the roadway. iZr 7C I�„s+R bR+h, S M i E STC rvC- �2j n - Q IOU I r. 1 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 6 BY 1 ) RCB DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL_ OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH ' (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 56.70 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 3 57.02 0.32 0.32 1-S2n 0.17 0.19 2.66 0.17 0.88 0.27 ' 6 57.21 0.51 0.51 1-S2n 0.27 0.30 3.43 0.27 1.12 0.40 7 57.30 0.60 0.60 1-S2n 0.32 0.36 3.77 0.32 1.22 0.46 t 11 57.50 0.80 0.80 1-S2n 14 57.63 0.93 0.93 1-S2n 0.42 0.48 0.47 4.42 0.55 4.79 0.42 0.48 1.39 1.49 0.59 •0.66 17 57.75 1.05 1.05 5-S2n 0.54 0.62 5.12 0.54 1.57 0.73 19 57.88 1.18 1.18 5-S2n 0.60 0.69 5.40 0.60 1.65 0.80 22 58.02 1.32 1.32 5-S2n 0.65 / 0.75 5.67 0.65 1.71 0.85 25 58.17 1.47 1.47 5-S2n 0.70 0.81 5.91 V/0.70 1.77 0.91 C�5 28 58.33 1.63 1.63 5-S2n 0.55 0.87 6.13 0.75 1.83 0.96 El. inlet face invert 56.70 ft El. outlet invert. 56.25 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft **** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 0.00 INLET ELEVATION (FT) 56.70 OUTLET STATION (FT) 80.00 OUTLET ELEVATION (FT) 56.25✓ . NUMBER OF BARRELS 1 ✓ SLOPE (V-FT/H-FT) 0.0056� CULVERT LENGTH ALONG SLOPE (FT) 80.00 **** CULVERT DATA SUMMARY ************************ BARREL SHAPE BOX BARREL SPAN 6.00 FT ✓ BARREL RISE 1.00 FT`/ BARREL MATERIAL CONCRETE ✓ BARREL MANNING'S N. 0.013 INLET TYPE CONVENTIONAL ✓ INLET EDGE AND WALL SQUARE EDGE (90-45 DEG.) ✓ INLET DEPRESSION NONE 1 91 TAILWATER ******* REGULAR CHANNEL CROSS SECTION **************** 1 BOTTOM WIDTH (FT) 10.00 SIDE SLOPE H/V (X:1) 6.0 CHANNEL SLOPE V/H (FT/FT) 0.002 MANNING'S N (.01-0.1) 0.032 CHANNEL INVERT ELEVATION (FT) 56.25 ✓ CULVERT NO.1 OUTLET INVERT ELEVATION 56.25 FT ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CFS) (FT) NUMBER (FT) (FPS) (PSF) ' 0.00 56.25 0.000 0.00 0.00 0.00 2.77 56.52 0.300 0.27 0.88 0.04 5.54 56.65 0.311 0.40 1.12 0.06 7.20 56.71 0.315 0.46 1.22 0.07 11.08 56.84 0.320 0.59 1.39 0.09 13.85 56.91 0.322 0.66 1.49 0.10 16.62 56.98 0.324 0.73 1.57 0.11 19.39 57.05 0.325 0.80 1.65 0.12 22.16 57.10 0.327 0.85 1.71 0.13 / ✓ 24.93 27.70 57.16 0.328 J 57.21 0.329 0.91 0.96 1.77 1.83 0.14 0.15 I I I I L ROADWAY OVERTOPPING DATA ROADWAY SURFACE EMBANKMENT TOP WIDTH (FT) CREST LENGTH (FT) OVERTOPPING CREST ELEVATION (FT) G 1 1 PAVED 54.00 200. oo-,* ssc.tiwE1� 59.00 G a c s s frr� vim-, 0 I 1, I I I I i Pi I I 1 C I al1-N1MUID7:3 MASTER DRAINAGE REPORT FOR TIMBERLINE FARM P.U.D Project No. 248.8 September 1989 Revised November 1989 Prepared For: G T Land, Inc. 3555 Stanford Road Fort Collins, CO 80521 Prepared By: Engineering Professionals, Inc. 2000 Vermont Drive Fort Collins, CO 80525 TABLE OF CONTENTS 1 1.0 Location .............................................. 1 2.0 Existing Conditions ....................................... 1 3.0 Proposed Drainage ....................................... 1 4.0 Fox Meadows Basin Master Plan Modifications ................... 3 4.1 Impacts of Fox Meadows Basin Master Plan Modifications ........... 4 ' 6.0 Conclusion ............................................ 6 1 APPENDIX: Calculations Revised Fox Meadows Basin 100 Year SWMM Run ' Revised Fox Meadows Basin 2 Year SWMM Run 1 I I 1 MASTER DRAINAGE REPORT 1 FOR TIMBERLINE FARM P.U.D. r ' 1.0 Location Timberline Farm consists of the west half of the southwest quarter of Section 32, T7N, R68W. The site is bounded by Timberline Road on the west, Harmony Road on the south, Caribou Road on the north and Harmony Village Mobile Home Court on the east. The property is located in reach 2 of the Fox Meadows Drainage Basin. 2.0 Existing Conditions The 80 acre site has historically been used for agricultural purposes. Presently ' a portion of the tract is being farmed with the remainder uncultivated. Several irrigation laterals cross the property. The property is currently made up of three subbasins - the north and east 2/3 of the site draining toward the north; the west central 10 acres, draining to the west into the "Chandler sump"; and the south 1/3 draining toward the east. The historical drainage basins and flows for the site are identified on the Master Drainage Plan (back pocket). The property has slopes of 0.5% to 3% with the north portion being the steepest. There is no offsite drainage onto the site, nor is there any designated floodplain located within the site. A swale has been constructed from the northeast corner of the site to the east along the south side of Sunstone Village Filing No. 1 which directs flows to the Harmony Village Mobile Home Court detention pond. This swale was specifically constructed to handle existing 2 year event runoff from Timberline Farm. r3.0 Proposed Drainage The 80 acre site will be divided into 5 subbasins which will result in a minor modification of the existing Fox Meadows Basin Master Plan. This modification is discussed in detail further in this report. 1 Basin 1 Basin 1 consists of approximately 30 acres located at the south end of the site including parcels E, G, and a portion of Phase B. This basin will drain to the east into I a detention pond to be located in the northeast corner of parcel E. The detention pond has been preliminary sized at 3.8 acre-feet. Flows released from the detention pond will be directed along the east property in a pipe and overflow swale into detention pond 2. jBasin 2 Consisting of approximately 29 acres, basin 2 will drain to the northeast into detention pond 2, sized at 5.0 acre feet. Flows released from this pond, at a maximum rate of 12 cfs, will be directed into the swale along the south end of Sunstone Filing No. 1 into the Harmony Village Mobile Home Park detention pond and ultimately into the Sunstone regional detention pond. Runoff released from detention pond 2 (from basin 1 and 2) will be substantially in accordance with the current Fox Meadows Basin Drainage Master Plan. Basin 3 Basin 3 consists of approximately 8.2 acres located within the area denoted as Phase C on the Master Plan. This basin currently drains to the Chandler sump (see Figure 2). Runoff from this basin will be directed to the west where it will be detained priorto being discharged into the 42' storm sewer being constructed along the east side of Timberline Road. This pipe will convey runoff to the open channel located along the north side of the Sunstone development and into the Sunstone regional detention pond. The maximum release rate and detention pond volume for this basin are 9 cfs Iand 0.9 acre feet respectively. 1 Basin 4 Basin 4, consisting of 8.0 acres, is located at the northwest corner of the site and includes most of Phase D and a small portion of Phase A. This basin will drain to the northwest and will be released to the 42' pipe along the west side of the site and to the Sunstone detention pond in the same manner as basin 3. The maximum release rate and detention pond volume for this basin are 9 cfs and 0.9 acre feet respectively. 2 Basin 5 Consisting of approximately only 4.7 acres, basin 5 includes the area immediately south of Caribou Drive which will drain directly onto this street. Runoff from this basin will be directed to the Sunstone regional detention pond by Caribou Drive. Street capacities for both the 2 and 100 year storm have been calculated to be adequate with this additional flow (refer to appendix). 4.0 Fox Meadows Basin Master Plan Modifications Drainage master planning for the Fox Meadows Basin was first completed in 1981 with the Fox Meadows Basin Drainage Master Plan. This plan was later revised as presented in Updated Hydrology for the Fox Meadows Basin Master Plan, dated October 21, 1987, both prepared by Resource Consultants, Inc. The current plan assumes that all runoff from the 80 acre site will be directed to the north east corner of the site, detained, and released at a maximum rate of 11 cfs, well below the 2 year historic runoff rate for the site. Because of the large detention pond volumes and extensive earthwork required to make the site conform to the existing Master Plan, alternatives were investigated. Numerous drainage schemes for the site were evaluated utilizing the SWMM model for the basin. Presented herein is a modification to the Fox Meadows Basin Master Plan which utilizes the capacity of existing and planned facilities while providing a more workable drainage scheme for the site. The 2 and 100 year developed conditions SWMM runs for this modification are located in the appendix. The site is divided into two basins in the current Master Plan, 13 and 14, as identified on the 1987 Update SWMM network schematic (figure 1). For the Timberline Farms Drainage Master Plan the site has been divided into five basins as discussed above. These basins are delineated on the Master Drainage Plan (back pocket) and the revised SWMM network schematic (figure 2). Three detention ponds have been added to the model corresponding to ponds 1, 3, and 4 on the Timberline Farms Master Plan. Pond 2 corresponds to the existing pond 306 in the SWMM model. Storage volume versus outflow curves were input into the model for ponds 1 and 2 based on current planning. Storage/discharge curves for ponds 3 and 4 were estimated from a conceptual pond layout (see grading plans in back pocket). Should the assumed volume/discharge curves be revised as these ponds are finalized, the model should be revised to verify their adequacy. The following table relates the Timberline Farms Master Plan basins and detention ponds to the subareas and reservoirs incorporated into the revised Fox Meadows Basin SWMM Model. 3 1 1 1 1 1 1 1 1 1 1 i 1 1 1 r Timberline Farms Master Plan Basin Designation 2 3 4 5 Timberline Farms Master Plan Detention Pond Designation 2 3 4 Revised Fox Meadows SWMM Subarea designation 14 13 39 40 included with 17 Revised Fox Meadows SWMM reservoir designation 310 306 312 311 The change in 100 year peak flows downstream of the Timberline Farm resulting from the modifications are identified in the following table: Drainage Element 42' Pipe @ Timberline Road Swale North of Sunstone Sunstone Detention Pond Channel east of Fox Meadows Flow west of CR #9 SWMM Element No 113 210 143+302 116 Peak flow (cfs) Master Plan Revised Master Plan 47 cfs 56 cfs 68 cfs 81 cfs 29.0 ac-ft 29.1 ac-ft 86 cfs 100 cfs 93 cfs 109 cfs .1- i Scale ( in feet 1 1000 500 0 1200 LEGEND Ponding Areas G7 Noncontributing Subcatchment Divides ------ Open Channels -- Storm Sewers 22 Subcatchment Number <6> Drainage Element ,4 Lzc , 10 NKi -0E- fi&l-1 LITi 647 IN TP•BL-Ewo 2 Figure 1 UPDATED SWMM NETWORK FOR FOX MEADOWS BASIN 'OCTOBER 1987 , FIGURE 1 - CURRENT FOX MEADOWS BASIN MASTER PLAN SWMM SCHEMATIC i Ti0t4 ,Tu Fsw 1 1 I r 40 `CHANDLER SUMP SUNSTONE REGIONAL' DETENTION POND es . 17 w � � 4 CT)MBERLINE FARM z, °� , • 15 HARMONY RO R68W FIGURE 2 - REVISED FOX MEADOWS BASIN MASTER PLAN SWMM SCHEMATIC 1 4.1 Impacts of Fox Meadows Basin Master Plan Modifications The capacity of drainage facilities downstream of the site, both existing and proposed, were evaluated to confirm that the their capacities would not be exceeded during the major storm. The following discussion addresses each component of the 1 downstream drainage system which is impacted by the modifications to the basin master plan. ' 42" Pipe Aloncl Timberline Road ' The purpose of the 42" pipe along Timberline is to provide an outlet for the Chandler Sump detention pond (SWMM element 108). In order to assess the effect i additional flow would have on this pipe the hydraulic grade line for the pipe with 56 cfs flow was determined (calculations are in the appendix). The calculated hydraulic grade line is below the existing ground level up to the Chandler sump. The hydraulic grade line at the Chandler sump is at elevation 4951.0 which should allow for construction of this detention facility without excessive berming. IChannel North of Sunstone ' The channel north of Sunstone conveys flows from the 42" pipe along Timberline Road to the Sunstone Village detention pond. The pond has recently been constructed and a review of the design drawings reveals the capacity of the swale to be in excess of 100 cfs. The culvert crossing at Caribou Road will create a maximum headwater of 4934.9 with the Sunstone pond at peak stage. The final grading plan of the area upstream of this culvert shows the adjacent houses to have a floor elevation more than 1 foot above the culvert headwater. The section of this channel between Timberline Road and Sunstone Village has yet to be constructed. This section of channel should be designed for a 100 year flow of 82 cfs as opposed to the current master plan flow of 68 cfs. Sunstone Detention Pond The "as built" volume calculations for this detention facility prepared by Landmark Engineering dated May 26, 1988, indicate that the existing volume of the pond is 29.4 acre feet. This volume is developed at a high water elevation of 4934.5. This calculated volume is adequate to hold the necessary volume of 29.1 acre feet. 5 rDownstream of Sunstone Detention Pond Runoff released from the Sunstone Village detention pond is conveyed to the north and east by a 30" pipe. As the pipe is inadequate to handle the 100 year flow, some overland flow will occur in this event. It has been assumed by previous studies that residential development would occur in this area and the over land flow would be handled by the streets. The SWMM run indicates that 38 cfs will be handled by the pipe (element 143) and 55 cfs will flow through the streets (element 302). The capacity of a local street at 0.4% is approximately 60 cfs with flow 0.5 feet above the curb, consequently the 55 cfs flow requirement should not overly burden any future ' development. Should it be desired to limit the 100-year peak overflow from the Sunstone Pond to the 48 cfs identified in the revised masterplan, it could probably be done by modifying the pond outlet to utilize the excess volume in the pond (0.3 ac-ft). I Overland flow could also be reduced by raising the level of the overflow weir, forcing more flow through the pipe. Street Flows within Sunstone Village Basin 5 will discharge runoff directly onto Caribou Drive. These flows were unanticipated during the design of Sunstone Village and consequently adequate street and inlet capacity for the effected areas was verified. Calculations are contained in the appendix. 6.0 Conciusion The proposed Timberline Farm Drainage Master Plan was prepared in 1 accordance with the City of Fort Collins Storm Drainage Criteria. The proposed modification to Fox Meadows Basin Drainage Master Plan will result in a more practical drainage solution for the site while not negatively impacting downstream properties. ' ENGINEERING PROFESSIONALS,_INCV",.,;: l ,00" Steven L. Kraushaar, P.E. 6 I i 1 1 11 i I i i 1 i 1 1 1 t 1 APPENDIX J I � S S ; '... z G — o..Zw— � L YV O-Ukt C- c1vaa-g- ��..,,� v'�.ar..,n � �•� : e:t�_� _ . 3 Oho 4 S=f,00►CoX4 �a.�..1no�� lctseS 71 ' 1 1 I 0 ��.ic',5✓� S�nT L4��,S 140 ed • 3!0 7L j Q = V4A R 5=�.�Z`?o � �` l..a.�.c'r�o,rlc 9fa.cJ.�I,•q re.r. Q�+a.�� 44 S �� �1�Q7S Z= Z3"? C>3S r 8Z �r (�ls LII = 100� ff '3+.4 (cC"S 4J�Ci�: z. CGSro� Cl�zc� i� tk t U V.0 vn O 1 i Z. %.ELIC wl a,,,, !,.ek - Q 2 L!ow _. Z4"P:� — lC� c^�s LET 5���-�.'•'.'.in,�,. Z� E-i. Pw._� Flo! �,.,,.� = zz, c� ��• Sw�..+ ivy �� l t �w = 33:(o L. (5= 34.4 � 4`=13d•�i cG���o�s Ro-* .N ELc.4 34.9 -, .` —�'------- \s --� -- Sox I I i s 4 1 1� 3 BLOCK 8 3A t 2 eb'lllyl/ 35 S.D. Q &1 I � .C) llo a�Ck- yjlar�ss �\ c - , 4-Z J 4- Z. � ¢ Z z JS . � 20 sIZct -n6 " Vo ( u �-t — . I d'�e-1 SCo I.o2 i,55, Z. Sa SS l� 50 4.oS / L CD L. GCk a r� Tv�-1., ad'4� (�;. •_`�.<<.c_ emu-.; /-�F I. L �_ L� U Ys �auy ©-c �c� �o 11� - 1.5 4+ D � p D C U r.c.,L- u t-kl l h a AC- � fv2_ t��.� � l�o,r�� ems = c of .�ir � S `r.� L�o•-- � 'L"Z� o l J n. qR, �Q �/•�I � l.'H `� �'� C\ t/y�L,� S CC.�ci \{,.w� /O�� sr _3a 4 Z. Al 44 Z.4 48 i, 3 4 o.� (a.-7 co T�- i.1o�rTz 1—r•�. \. 41 0 0 c4 4� to.b 43 13. o 6, o 4-9.s �3.4- (a.7 4b 4'7 -� 45 �-3 G2 x 44 Z.C> C,IRa I S I ES'�,i� � SLorew�- d,icoorgr PC�dS wr`.cr T IGv� •+4 SujV-4 LV�Lc,,V- .00 8C��1�-ram J VN•L lnZ ,ZC> a5 _ IDS ,49 Z7o 0.SSu�e� t I o2 13\ r -7,J S3 LOB ci,3 i.a-3 J I,,. = S,ZJ l a D o c� (0 3 8 .Z , S3 2 4� S<iltlUlUl-1 f o .� o0 SroG�2 (�!o`L3 a G L) %mac--- 0 11 11 .1 .1 U....zc..L av-••aov .`mac �—,-.a_-- L :-r_G.c _�:e: Sc � -. --� 1 1 QL -TL - !S•(o It 1zoo C� too .1 �eaJ' a.�l cwc�a�2 Cc.-�Gc\� � l •T �=-s. � j �� S u,nS-o.a_. .I �►la`s, `�' . �u-!1�O u \ O W P C \.,�\ 1 �':��+�. Cu`.Slc� -owi '. •�=�S!e�•.. :w C- = � l LDS 0.S C3�1rv.,., '.. �� \ :.1 :�:%C,r.L !•L � �.yG.L z � :I:Q I I r �: ^-G. UC1-^l �S �^•/k '�-:vo�� T`OW O\ L.Z CS' G�\.Z �� I It 1 i o . , ,� T-� _ Q Y'rt r-i. c,- G\Yj,GM ^ O r S V .�S . G-G_ �l. •. �e��%� `2 I�D..S,... � p� � 1 vw.r.•. �� �c., � ..S , a•-•� a.,� T a i � o w r ` . � c—. ; . •.mac •.�;� � i u {�0.1 1 1 1 ENNVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEEP.S, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS ' MISSOURI RIVER DIVISION, CDRPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 19r5, JULY 1985) ' OTAPE OP. DISK ASSIGNMENTS J1N(!) JIN(2) JINi3) 3IHi4} JIN(5) JIN(5) JIN(7) JIN(8) J!N(9) JIN001 2 1 0 0 0 0 0 0 0 0 JOUT(!) JOUT(2) JOUTQ) JOUT(4) JOUT(5) JOUT(5) JOUT(7) JOUT(S) JDUT(9) JOUT(10) 1 47 0 0 0 0 0 0 0 0 NSCRATQ ) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) :l 4 0 0 0 1 W;TERSHED PROGRAM CALLED 1 ' III ENTRY MADE TO RUNOFF MODEL III BASIN.H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED OCTOBER 1987 FOR ANTICIPATED CONDITIONS ' . ONUMBER OF TIME STEPS 96 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 ' 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR ') .12 .36 .48 .60 .84 1.80 3.24 1.08 .84 .48 .36 .36 36 .24 .24 .24 .24 .12 .12 .12 j 12 .12 .12 .12 ' 1 1 BASIN H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED OCTOBER 1987 FOR ANTICIPATED CONDITIONS 2 SUBAREA BUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORASE(IN) INFILTRATION RATEIIN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 1 3 500. 10.0 40.0 .0130 .016 .250 .100 .300 3.00 .50 .00180 1 2 2 2000. 23.0 .0 .0150 .016 .250 .100 .300 3.00 .50 .00190 1 r 3 3 5600. 58.5 41.0 .0070 .016 .250 .100 .300 3.00 .50 .00180 1 4 4 6000. 80.1 46.0 .0050 .016 .250 .100 .300 3.00 .50 .00180 1 7 5 5 4800. 64.3 69.0 .0030 .016 .250 .100 .300 3.00 .50 .00180 1 ' 6 9 1800. 12.8 80.0 .0070 .016 .250 .100 .500 3.00 .50 .00180 1 7 108 2700. 55.8 40.0 .0110 .016 .250 .100 .300 3.00 .50 .00180 1 8 6 1400. 14.5 .0 .0120 .016 .250 .100 .300 3.00 .50 .00180 1 9 I! 1700. 90.0 2.0 .0070 .016 .250 .100 .300 3.00 .50 .00180 1 '. 10 101 2200. 79.1 48.0 .0090 .016 .250 .100 .300 3.00 .50 .00180 1 11 14 5000. 80.2 42.0 .0040 .016 .250 .100 .300 3.00 .50 .00160 1 12 200 1610, 41.9 40.0 .0120 .016 .211 .100 .300 3,00 .50 .00111 1 13 118 2750. 27.2 40.0 .0150 .016 .250 .100 .500 3.00 .50 .00180 1 14 120 1080. 30.5 40.0 .0060 .016 .250 .100 .300 3.00 .50 .00180 1 15 21 2800. 38.6 40.0 .0070 .016 .250 .100 .300 3.00 .50 .00190 1 !6 122 1400. 26.3 40.0 .0080 .016 .250 .100 .300 3.00 .50 .00180 1 ' . 17 119 2000. 38.1 40.0 .0060 .0!6 .250 .100 .300 3.00 .50 .00180 1 18 124 4800. 103.0 40.0 .0080 .016 .250 .100 .300 3.00 .50 .00l80 1 19 44 2500. 2.4 50.0 .0070 .016 .250 .100 .300 3.00 .50 .00!80 1 ' 21 125 3200. 66.3 40.0 .0040 .0l6 .250 .100 .300 3.00 .50 .00180 1 23 126 4000. 61.3 40.0 .0070 .016 .250 .!00 .300 3.00 .50 .00100 1 24 127 2100. 10.6 40.0 .0131 .016 .250 .100 .101 3,10 .51 .10110 1 ' 25 46 1500. 17.5 40.0 .0900 .016 .250 .100 .300 3.00 .50 .00190 1 26 47 1800. 9.4 20.0 .0l00 .016 .250 .100 .300 3.00 .50 .00180 1 27 204 600. 14.5 40.0 .0400 .016 .250 .100 .300 3.00 .50 .00180 1 2a 204 1900. 37.1 40.0 .0600 .016 .250 .100 .300 3.00 .50 OO180 1 131 2800. 37.9 40.0 .0060 .016 .250 .100 .300 3.00 .50 .00180 1 30 50 2000. 20.1 40.0 .1100 .016 .250 .100 .300 3.00 .50 .00190 1 ' ' 31 32 128 36 5000. 3200. 87.9 40.0 40.0 40.0 .0090 .0750 .016 .016 .250 .250 .100 .100 .300 .300 3.00 3.00 .50 .50 .00l80 .00!80 I I 33 39 3000. 30.4 70.0 .0050 .016 .250 .100 .300 3.00 .50 .00180 1 34 41 5600. 95.6 50.0 .0050 .016 .250 .100 .300 3.00 .50 .00!80 1 ' 35 51 1200. !1.1 20.0 .0800 Oib 250 .100 .300 3.00 .50 .00180 1 36 54 400, 9.1 37.0 .0200 .016 .250 .100 .300 3.00 .50 .00180 1 37 307 1000. 21.0 40.0 .0080 .016 .250 .100 .300 3.00 .50 .00180 1 38 302 700. 35.0 40.0 .0070 .016 .250 .100 .300 3.00 .50 .00180 1 ' 39 312 900: 8.0 60.0 .0200 .016 250 .100 .300 3.00 .50 .00180 1 40 311 900. 8.2 60.0 .0200 .016 .250 .100 .300 3.00 .50 .00180 1 'OTOTAL NUMBER OF OTOTAL TRIBUTARY SUBCATCHMENTS, 38 AREA (ACRES), 1495.30 BASIN.H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED OCTOBER 1987 FOP. ANTICIPATED CONDITIONS III CONTINUITY CHECK FOR SUBCATCHME!IT P.OUTlll IN UDS112-PC MO➢EL III, WATERSHED AREA (ACRES) 1495.300 TOTAL RAINFALL (INCHES) 1.060 TOTAL INFILTRATION (INCHES) .483 TOTAL WATERSHED OUTFLOW (INCHES) .406 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .171 ERROR. IN CONTINUITY. PERCENTAGE OF RAINFALL .001 BASIN H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CON➢ITIONS ... UPDATED OCTOBER 1987 FOR ANTICIPATED CONDITIONS WIDTH INVERT SI➢E SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 2 9 0 1 CHANNEL 5.0 2000. .0020 2.5 2.5 .035 100.00 1 3 4 0 4 CHANNEL 2.0 2600. .0060 33.0 33.0 .016 .50 1 OVERFLOW 40.0 2600. .0060 30.0 30.0 .040 100.00 4 1 0 5 PIPE 2,0 2110, .0160 .0 .0 .011 1,01 1 OVERFLOW 2.0 2000. .0060 33.0 35.0 .020 100.00 5 7 0 1 CHANNEL _ 5.0 4800. .0050 3.0 3.0 .040 100.00 1 6 7 0 1 CHANNEL .5 1900. .0050 1.0 1.0 .020 100.00 l 7 10 5 2 PIPE .0 50. .0100 .0 .0 .013 .01 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.5 1.7 8.0 17.0 16.0 82.0 22.0 196.0 ' 9 10 0 108 0 5 1 2 CHANNEL PIPE 5,0 1611, 3.0 60. 1020 0050 2.5 .0 245 .0 .115 .015 111,01 3.00 1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1) .0 1.6 _ 23.0 4.0 35.0 7.7 45.0 ' 1! 101 3 1 CHANNEL .0 31. .0100 U .0 .023 .01 0 RESERVOIR STORAGE IN ACRE -'FEET VS. SPILLWAY OUTFLOW .0 .0 4.2 8.0 17.4 24.0 14 15 0 1 CHANNEL 2.0 2000. .0060 30.0 30.0 .016 100.00 1 ' 15 116 5 2 PIPE .0 85. .0075 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 14.0 1.0 14.0 3.0 l5.0 6.2 23.0 8.2 108.0 21 122 0 1 CHANNEL 2.0 1500. .0050 30.0 30.0 .016 100.00 1 32 133 _ 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .6 63.0 1.4 179.0 35 38 0 1 CHANNEL 2.0 2000. .0030 3.0 3.0 .040 100.00 1 36 37 0 1 CHANNEL 2.0 1400. 0050 30.0 30.0 016 100.04 1 37 38 10 ? PIPE 0 104. 0100 .0 .0 Q23 .01 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .2 7.5 .9 2!.5 2.8 25.7 5.1 28.3 7.4 31.2 9.9 34.2 11.1 34.5 12.5 60.0 15.0 320.0 ' 38 39 0 1 CHANNEL 8.0 1900. .0060 3.0 3.0 .040 100.00 1 39 40 9 2 PIPE .0 100, .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .5 19.5 1.8 59.6 4.0 85.5 7.2 106.3 10.3 125.5 ' 16.6 139.5 17.5 141.5 18.0 200.0 40 42 0 1 CHANNEL 6.0 1100. .0040 3.0 3.0 .040 100.00 1 41 42 0 1 CHANNEL 2.0 2800. .0060 30.0 30.0 .016 100.00 1 ' 42 203 4 2 PIPE .0 100. .0100 .0 .0 .023 . .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.5 23.0 !3.3 24.0 24.0 1200.0 44 145 0 1 CHANNEL 2.0 2600. .0040 3.0 3.0 .040 100.00 ! 46 202 0 1 CHANNEL 25.0 1500. .0004 3.0 3.0 .030 100.00 1 47 48 0 1 CHANNEL 2.0 IB00. .0200 5.0 10.0 .040 100.00 1 49 49 0 1 CHANNEL 25.0 700. .0004 3.0 3.0 .030 100.00 ! 49 50 0 1 CHANNEL 25.0 1900. .0004 3.0 3.0 .030 100.00 1 50 51 0 1 CHANNEL 25.0 2200. .0004 3.0 3.0 .030 100.00 1 51 203 0 1 CHANNEL 25.0 1300. .0004 3.0 3.0 .030 100.00 1 54 48 3. 1 CHANNEL 1.0 40. .0200 .0 .0 .023 1.00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW > .0 .0 .7 .0 1.4 100.0 ' 101 112 .0 5 PIPE 2.0 900. .0080 .0 .0 .013 2.00 1 OVERFLOW 2.0 900. .0080 30.0 30.0 .016 100.00 !08 113 3 2 PIPE 0 24Q0. .0024 .0 .0 .013 .01 0 U Je.0 �.0 J0.0 ".0 46.4 112 113 5 2 PIPE .0 100. .0100 .0 .0 .013 .01 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 4.0 .0 7.0 20.0 12.0 35.0 19.0 1000.0 113 210 0 5 PIPE 2.0 2600. .0040 .0 .0 .111 2.01 1 OVERFLOW 5.0 2600. .0040 4.0 4.0 .040 100.00 116 145 0 5 PIPE 3.0 2600. .0050 .0 .0 .013 3.00 1 OVERFLOW 5.0 2600. .0050 4.0 4.0 .040 100.00 118 306 0 5 PIPE 1.5 _ 1700. .0100 .0 .0 .013 1.50 1 OVERFLOW 2.0 1700. .0100 30.0 30.0 .016 100.00 119 210 0 5 PIPE 2.0 1500., .0030 .0 .0 .013 2.00 1 ' 120 310 0 1 OVERFLOW CHANNEL 2.0 1500. 2.0 1000. .0030 .0100 30.0 30.0 30.0 30.0 .016 .016 100.00 100.00 1 122 303 0 5 PIPE 2.0 1300. .0060 .0 .0 .013 2.00 1 OVERFLOW 2.0 1300. .0060 30.0 30.0 .016 100.00 ' 123 210 4 2 PIPE .0 50. .0100 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 !1.0 6.2 24.0 8.0 150.0 124 211 0 1 CHANNEL 2.0 2400. .0050 30.0 30.0 .016 100.00 1 ' 125 213 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 126 214 0 1 CHANNEL 2.0 2000. .0040 30.0 30.0 .016 100.00 1 127 35 0 1 CHANNEL 2.0 1310. .0061 30.0 30.0 .016 111*10 1 ' 123 215 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 13! 32 0 1 CHANNEL 2.0 1200. .0040 30.0 30.0 .016 100.00 1 133 50 0 2 PIPE 1.5 !00. .0100 .0 .0 .013 1.50 1 ' 143 1!6 0 5 PIPE 2.5 1200. .0060 .0 .0 .0!3 2.50 1 OVERFLOW 5.0 1200. .0060 4.0 4.0 .040 100.00 145 202 0 5 PIPE 3.5 1200. .0200 .0 .0 .013 3.50 ! OVERFLOW 2.0 1200. .0200 4.0 4.0 .040 100.00 ' 200 210 0 1 CHANNEL 2.0 2200. .0040 30.0 30.0 .016 100.00 1 202 0 0 1 CHANNEL 5.0 2000. .0030 4.0 4.0 .040 100.00 ! 203 0 0 1 CHANNEL 5.0 1800, 1111 4.0 4.0 .041 100.00 1 ' 204 216 0 1 CHANNEL 2.0 1900. .0100 30.0 30.0 .016 100.00 1 20 300 6 2 PIPE .0 76. .0015 .0 .0 .013 .0! 0 P.ESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 16.0 3.0 16.0 5.0 32.0 20.0 38.0 29.0 86.0 34.0 336.0 ' 2!1 145 3 17 - PIPE .0 80. .0300 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 15.0 6.0 16.0 13.0 t3.0 ' 2!3 35 0 2 PIPE 2.0 100. .0100 .0 .0 .013 2.00 1 214 35 0 2 PIPE 2.0 l00. .0100 .0 .0 .013 2.00 1 215 35 0 2 PIPE 2.0 100. .0100 .0 .0 .013 2.00 1 2!6 50 0 2 PIPE 1.5 100. .0100 .0 .0 .013 1.50 ! 500 301 3 3 .0 1. .0010 .0 .0 .001 10.00 302 DIVERSION TO GUTTER. NUMBER 302 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 58.0 .0 86.0 - 48.0 ' 301 .' 143 0 3 .0 1. .0010 .0 .0 .001 10.00 1 302 116 0 3 .0 1. .0010 .0 .0 .001 10.00 1 303 114 3 DIVERSION 3 TO GUTTER NUMBER 305 - TOTAL .0 1. O VS DIVERTED 0 .0010 IN CF3 .0 .0 .001 10.00 305 .0 .0 60.0 .0 160.0 50.0 304 123 0 3 .0 1. .0010 .0 .0 .001 10.00 1 305 173 0 3 .0 1. .0010 .0 .0 .001 10.00 1 306 307 5 2 PIPE .0 100. .0100 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 3.6 1.6 8.1 3.6 10.8 6.0 13.0 ,) 307 123 0 1 CHANNEL .0 1000. .0050 - 6.0 6.0 .020 100.00 1 308 309 0 1 CHANNEL 2.0 1400. .0070 30.0 30.0 .020 100.00 1 ') 309 4 3 RESERVOIR 2 STORAGE IN PIPE .0 165. ACRE-FEET VS SPILLWAY OUTFLOW .0060 .0 .0 .013 .01 0 .0 25.0 2.0 35.0 2.5 500.0 1 310 118 3 2 PIPE .0 100. .0100 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.6 8.3 4.1 13.1 311 1!3 5 2 PIPE .0 -0. .0200 .0 .0 .013 .01 0 u .0 .1 . . j .J C.; 312 113 5 2 PIPE .0 20. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 6.3 .5 8.2 1 OTOTAL NUMBER OF GUTTEP.S/PIPES, 71 11 BASIN H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED OCTOBER 1987 FOR ANTICIPATED CONDITIONS ' ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES ' BUTTER TRIBUTARY GUTTER/PIPE 2 0 0 0 0 0 0 0 0 0 0 ' 3 0 0 0 0 0 0 0 0 0 0 ' 4 3 309 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 ' 6 0 0 0 0 0 0 0 0 0 0 .7 4 5 6 0 0 0 0 0 0 0 ' 9 2 0 0 0 0 0 0 0 0 0 10 7 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 ' 14 0 0 0 0 0 0 0 0 0 0 15 14 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 32 131 0 0 0 0 0 0 0 0 0 35 127 213 214 215 0 0 0 0 0 0 ' 36 0 0 0 0 0 0 0 0 0 0 37 36 0 0 0 0 0 0 0 0 0 ' 38 35 37 0 0 0 0 0 0 0 0 39 38 0 0 0 0 0 0 0 0 0 40 39 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 42 40 41 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 46 0 0 0 0 0 0 0 0 0 0 ' 47 0 0 0 0 0 0 0 0 0 0 ) l.0 7.1 1.Zj ia.v .0200 .0 .0 .013 .01 0 1.0 9.7 1.5 11.0 TRIBUTARY SUBAREA D.A.(AC) 2 0 0 0 0 0 0 0 0 0 23.0 1 3 0 0 0 0 0 0 0 0 68.5 4 0 0 0 0 0 0 0 0 0 183.E 5 0 0 0 0 0 0 0 0 0 64.3 B 0 0 0 0 0 0 0 0 0 14.5 0 0 0 0 0 0 0 0 0 0 262.4 6 0 0 0 0 0 0 0 0 0 35.2 0 0 0 0 0 0 0 0 0 0 262.4 9 0 0 0 0 0 0 0 0 0 90.0 11 0 0 0 0 0 0 0 0 0 60.2 0 0 0 0 0 0 0 0 0 0 80.2 15 0 0 0 0 0 0 0 0 0 32.6 0 0 0 0 0 0 0 0 0 0 37.9 0 0 0 0 0 0 0 0 0 0 226.1 32 0 0 0 0 0 0 0 0 0 40.0 0 0 0 0 0 0 0 0 0 0 40.0 33 0 0 0 0 0 0 0 0 0 296.5 0 0 0 0 0 0 0 0 0 0 296.5 0 0 0 0 0 0 0 0 0 0 296.5 34 0 0 0 0 0 0 0 0 0 95.6 0 0 0 0 0 0 0 0 0 0 392.1 19 0 0 0 0 0 0 0 0 0 2.4 25 0 0 0 0 0 0 0 0 0 17.5 26 0 0 0 0 0 0 0 0 0 9.4 603 0 0 0 0 0 0 0 0 0 0 .'{9 0 0 0 0 0 0 0. 0 0 0 £'-9 0 0 0 0 0 0 0 0 0 0 0'101 0 0 0 0 0 0 0 0 0 0 I'9ZL 0 0 0 0 0 0 0 0 0 0 9'is 0 0 0 0 0 0 0 0 8z Lz £'ON 0 0 0 0 0 0 0 0 0 0 Z'6Z6 0 0 0 0 0 0 0 0 0 0 61t 0 0 0 0 0 0 0 0 0 Zi L'TI6 0 0 0 0 0 0 0 0 0 0 i'9ZL 0 0 0 0 0 0 0 0 0 0 6L£ 0 0 0 0 0 0 0 0 0 0 6•L£ 0 0 0 0 0 0 0 0 0 6z 6'L9 0 0 0 0 0 0 0 0 0 it ?'JI 0 0 0 0 0 0 0 0 0 t_1 £'T9 0 0 0 0 0 0 0 0 0 £z £'99 0 0 0 0 0 0 0 0 0 IZ 01£GI 0 0 0 0 0 0 0 0 0 81 9'£ti 0 0 0 0 0 0 0 0 0 0 6't9 0 0 0 0 0 0 0 0 0 91 0£ 0 0 0 0 0 0 0 0 0 tI 0 0 0 0 0 0 0 0 0 LI L'LS 0 0 0 0 0 0 0 0 0 £1 £'908 0 0 0 0 0 0 0 0 0 0 S'ZOS 0 0 0 0 0 0 0 0 0 0 1'891 0 0 0 0 0 0 0 0 0 0 Z•BT£ 0 0 0 0 0 0 0 0 0 L I'891 0 0 0 0 0 0 0 0 0 OI I' 8 0 0 0 0 0 0 0 0 0 9£ Z'8£i 0 0 0 0 0 0 0 0 0 S£ I'LZI 0 0 0 0 0 0 0 0 0 0£ 5'LI 0 ,0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 BZI STZ 0 0 0 0 0 0 0 0 0 961 tIZ 0 0 0 0 0 0 0 0 0 Sz1 2 1 Z 0 0 0 0 0 0 0 0 0 tz1 TTZ 0 0 0 0 0 0 OR £zi 611 UT OTz 0 0 0 0 0 0 0 0 0 0 tOZ 0 0 0 0 0 0 0 0 IS Zt £Oz 0 0 0 0 0 0 0 0 Stl 9t ZOZ 0 0 0 0 0 0 0 0 0 0 OR 0 0 0 0 0 0 0 ITZ 9ii tt sit 0 0 0 0 0 0 0 0 0 IO£ 2tI OOOOOOOOOZC ££T 0 0 0 0 0 0 0 0 0 0 1£1 0 0 0 0 0 G 0 0 0 0 EN 0 0 0 0 0 0 0 0 0 G LZT 0 0 0 0 0 0 0 0 G 0 9zi 0 0 0 0 0 0 0 0 0 0 Szi 0 0 0. 0 0 0 0 0 0 0 tzi 0 0 0 0 0 0 0 LO£ SO£ t0£ £ZI 0 0 0 0 0 0 0 0 G Iz ZZI 0 0 0 0 0 0 0 0 0 0 ON 0 0 0 0 0 0 0 0 0 0 611 0 0 0 0 0 0 0 0 0 01£ BII 0 0 0 0 0 0 0 ZO£ £tT 91 911 0 0 0 0 0 0 z1£ il£ ZIT 801 £TT 0 0 0 0 0 0 0 0 0 I01 ZIT 0 0 0 0 0 0 0 0 0 OI 801 0 0 0 0 0 0 0 0 0 IT TOT 0 0 0 0 0 0 0 0 0 0 tS 0 0 O O 0 0- 0 O 0 OS Is 0 0 0 0 0 0 0 91Z ££i 61 OS 0 0 0 0 0 0 0 0 0 8t 61, ' 300 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 726.: 301 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 726.: 302 0 0 0 0- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 303 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6,.-- 304 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.4 305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 306 Ila 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57.7 307 306 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0 7a.-. 308 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 35.0 ' 309 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35. ' 310 120 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 Q 0 3Q.: 31! 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 S- ' 312 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 a." 1 BASIN H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED OCTOBER 1987 FOR ANTICIPATED CONDITIONS HYDR062APHS ARE LISTED FDR THE FOLLOWING 13 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER. IS ONE OF THE FOLLOWING CASES: ' ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HP./MIN) 11 112 109 306 123 210 302 211 15 145 ' 310 311 312 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. '. o(S) O(S) o(S) o(S) o(S) G(S) .o( ) .0(S) o(S) .O( 1 0. 0. 0. .O(S) o(S) o(S) 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 'J .O(S) O(S) o(S) o(S) o(5) O(5) .0( 1 .D(S) .O(S) .0l 1 0. 0. 0. O(S) .O(S) .o(S) 0. IS. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ,J .0(5) o(S) o(5) o(S) .0(5) .0(5) .0( 1 o(5) O(S) .o( 1 ' 0. 0. 0. i .0(3) .0(S) .O(S) V -.. V. V. V. V. V. V. V. V. V. U. ' AM O(S) O(S) AM AM AM .0( ) O(S) AM .0( l 0. 0. 0. 1 AM AM AM ? ' 0 25. 0. 0. 7. 0. 0. 2. 0. 1. 1. 0. AM AM .OIS) AM AM O(S) .0l ) AM AM ,Il ) 0, 0, 0, .OIS) ,O(s) .OIS) �i 0 30. 0. 0. 22. 1. 1. 16. 0. 6. 6. 5. O(S) ,1(s) AM AM O(S) .O(S) .Ol ) .O(S) AM ,4( ) 0. 2. 2. 0 35. 0. 0. 36. 2. 6. 16. 0. 15. 14. 23. I(S) .2(S) .I(S) .1(S) MS) ,1(S) 0( ) .OIS) O(S) .9( ) ' 0. .1(S) 4. AM 4. .1(S) 0 40. 0. 0. 36. 3. 11. 16. 0. 15. 14. 39. .1(S) .6(s) I(S) .2(5) AM .4(S) O( ) 2!S) 2(S) 1.2( 1 1. 6. 6. ' 1 .2ts1 .IfSI .lfs) 0 45. 0. 0. 36. 4. 12. 16. 0. 15. 14. 43. ' 1(S) .9(S) .1(S) .3(s) .6(S) .7(S) .O( 1. .4(S) AM 1.3( ) 1. 6. 6. 3tSl Its) 1(S) 0 50. 0. 0. 36. 4. 12. 16. 0. 15. 14. 45. .l(S) 1.2(S) O(S) .4(S) .9(s) 1 ?(S) .O( 1 Ms) .6(S) 1.4( ) ' 2. 6. 5. .4(S) .I(s) .1(s) ' 0 55. 0. 0. 19. 4. 13. 16. 0. 15. 14. 46. .1(s) 1.5(5) 0(5) .5(9) 1.1(s) 1.6(s) .O( ) .9(S) .7(S) 1.4( 1 2. 5. 5. AM .1(s) I(S) 1 0. 0. 0. 16. 4. 13. 16. 0. 15. 14. 46. ' .Its) 1.7(S) AM .5(S) 1.2(S) 2.0(S) .0( ) Lots) .S(S) 1.4( ) 3. 4. 4. �) .5(S) .1(S) .1(S) 1 5. 0. 0. 19. 5. 13. 16. 0. 15. 14. 46. �i .1(S) 1.9(s) AM .6(S) I M S) 2.4(S) .0( 1 1.1(S) .9(S) 1.4( ) 3. 3. 3. ' .5(S) A(s) ,1(S) 1 10. 0. 0. 16. 5. 14. 16. 0. 15. 14. 46. .� .I(S) 2.0(S) AM .6(S) 1.5(S) 2.7(S) .0( ) 1.2(S) I.O(S) 1,41 ) 3. 3. 3. _% .6(S) .1ts) A(s) 1.. 10. ' .1(S) 2.2(S) .0(S) .6(5) 1.5(5) 3.0(S) .O( 1 1.3(S) 1.0(S) 1.4( ) 3. S. 3. .6(S) .1(S) .I(S) 1 20. 0. 0. 16. 5. 14. I8. 0. 15. 14. 46. 7 .I(S) 2.3(S) AM .6(S) 1.5(5) 3.3(S) .O( ) 1.3(S) I.0(S) 1.4( ) 3. 2. 2. .6(S) AM .OISI ' 1 25. 0. 0. 20. S. 14. 20. 0. 15. 14. 47. .I1S) 2.3(S) .O(S) .6(S) 1.6(S) 3.5(5) .0( 1 1.3(S) 1.01S) 1.4( l 3. 2. 2. 6(5) O(S) AM 1 30. 0. 0. 16. 5. 14. 22. 0. 15. 14. 49. '. .1(S) 2.4(S) O(S) .6(5) 1.6(S) 3.7(S) .0( ) !.3(S) I.O(S) 1.4( ) ' 3. .6(S) 2. � .O(51 2. .0(S) 1 35. 0. 0. 19. 5. 14. 23. 0. 15. 14. 50. AM 2.5(S) 0(S) 6(S) 1.61S1 3.9(5) .O( 1 1.3(S) .9(S) 1.4( 1 3. 2. 1. ' .6(S) AM O(S) ! 40. 0. 0. 16. 5. 14. 24. 0. 15. 14. 52. .11S1 2.6(S) 0(S) .6(S) 1.6(S) 4.0(S) .0( 1 1.3(S) .9(5) 1.5( l ' 3. 1. 1. S(S) O(S) AM ' 1 45. 0. 0. 19. 5. 14. 25. 0. 15. 14. 53. AM 2.6(S) AM .b(S) MIS) 4.2(S) .O( ) 1.2(S) .9(S) 1.5( 1 ' 3. 1. !. .6(S) .01S) AM ' 1 50. 0. 0. 17. 5. 14. 26. 0. 15. 14. 54. .1(S) 2.7(S) O(S) .6151 1.5(S) 4.3(5) .0( 1 1.2(S) AM 1.5( 1 3. !. 1. .6(S) .OISI .0(5) '. 1 15, 0, AM 0, 2.7(S) 20, O(S) 5, b(S) 14, 1.5(S) 21, 4.4(S) O. ) 15, 1.2(5) 14. AM 15. 1.5( ) .O( 3. 1. 1. b(S) .OIS) AM 2 0. 0. 0. 17. S. 14. 29. 0. 15. 14. 56. AM 2.8(S) AM b(S) 1.5(S) 4.5(S) .O( 1 LIM MS) 1.5( ) 3. 1. 1. AM .0(S) AM 2 5. 0. 0. 19. 5. 14. 29. 0. 15. 14. 57. . ! .1(S) 2.8(S) AM .6(S) 1.5(S) 4.6(S) .0( ) 1.0(S) .115) 1.5( ) ' 3. 1. 1. .6(S) O(S) AM :1 AM 2.8(S) .O(S) .6(S) 1.5(S) 4.7(S) .O( ) 1.0(s) .6Is) 1.6( 1 S. 2 15. 0. 0. 19. S. 13. 30. 0. 15. 14. 58. .1(s) 2.9(S) AM .6(S) 1.4(S) 4.7(5) .Ol 1 .9(s) .5(S) 1.6( 1 3. 1. 1. b(S) .0(s) AM 2 20. 0. 0. 16. 5. 13. 30. 0. 15. 14. S. AM 2.9(s) AM .6(s) 1.4(S) 4.8(S) O( ) .9iss) .5(s) 1.6( l 1 3. 0. 0. .5(s) AM O(S) 2 25. 0. 0. 18. 5. 13. 30. 0. 15. 14. 59. .1(S) 2.9(S) O(S) .6(S) 1.4(S) 4.8(S) .O( ) AM MS) 1.6( ) i 3. .5(S) 0. .O(S) 0. .O(S) 2 30. 0. 0. 15. 5. 13. 31. 0. 15. 14. 60. 1 .113) 2.9(S) .O(S) .6(S) 1.3(3) 4.8(S) .O( 1 .7(S) .3(s) 1.6( ) 3. 0. 0. 2 35. 0. 0. is. S. 13. 31. 0. 15. 14. 60, .list LON) .0(s) .6(s) 1.3(S) 4.9(S) .0( ) .6(S) .2(S) 1.6( ) ' 3. 0. 0. 5{Sl O(S) O(S) I2 40. 0. 0. 15. S. 13. 31. 0. 15. 14. 60. .1(S) L ON) O(S) b(s) 1.2(s) 4.9(S) .0( i .5(S) MS) 1.6( i 3. 0. 0. 5(s) AM AM 2 45. 0. 0. 17. 5. 13. 31. 0. 15. 14. 60. A(s) 3.0(s) O(S) .6(S) 1.2(S) 4.9(S) .0( ) .5(s) .1(S) 1.6( ) 3. 0. 0. 5(S) .01s) AM 2 50. 0. 0. 15. 5. 13. 31. 0. 15. 10. 59. I : AM 3.0(s) AM .6(S) i.l(Sl 4.9(S) .O( 1 MS) O(S) 1.6( ) 2. 0. 0. 1� .5(S) O(S) O(S) 2 55. 0. 0. 17. 4. 13. 31. 0. 15. 0. 55. .1(S) 3.0(S) AM 5(S) 1.1(S) 4.9(S) .O( ) .3(s) .O(S) 1.5( ) 2. 0. 0. AM O(S) AM 3 0. 0. 0. 14. 4. 13. 31. 0. 15. S. 50. J ' AM 3.0(s) AM .5(s) 1.0(S) 4.9(S) .O( 1 .21s) .O(S) 1.4( ) 2. 0. 0. .41S) O(S) .0(s) S J. U. U. 11. 4. 1Z. 31. U. 1 v. 4o. 1IS) 3.0(S) O(S) S(S) 1.O(S) 4.9(S) .0( ) .1(S) O(S) 1.4( ) 2. 0. 0. .4(S) O(S) O(S) 3 10. 0. 0. 14. 4. 12. 31. 0. 13. 2. 47. .1(S) 3.0(5) .O(S) .5(S) .9(5) 4.9(S) .0( ) AM .O(S) 1.4( ) ' 2. 0. 0. .4(S) O(S) .0(S) 3 15. 0. 0. 16. 4. 12. 31. 0. 0. 0. 36. AM 3.0(S) .O(S) AM .9(S) 4.9(S) .0l ) .0(S) O(S) 1.2( ) ' 2. 0. 0. AM O(S) .O(S) 3 20. 0. 0. 13. 4. 12. 31. 0. 2. 2. 32. AM 3.0(S) O(S) .5(S) AM 4.9(S) .0( 1 .O(S) O(S) 1.1( ) 2. 0. 0. .4(Sl .O(S) .0(S") 3 25. 0. 0. 16. 4. 12. 31. 0. 0. 0. 34. .1(Sl LI M O(S) .5(S) AM 4.9(S) .0I l O(S) O(S) 1.21 1 2. 0. 0. AM O(S) O(S) 3 30. 0. 0. 13. 4. 12. 31, 0. 2. 1. 33. AM LI M .0(S) .5(S) .7(S) 4,9(S) IN ) .0(911 AM I.II ) 2. 0. 0. ,4(S) O(S) O(S) 3 35. 0. 0. 16. 4. 12. 31. 0. 0. 0. 33. .1(S) 3.1(S) .O(S) .4(S) .7(S) 4.8(S) .0( ) O(S) AM 1.1( ) ' 2. 0. 0. AM O(S) O(S). 3 40. 0. 0. 13. 4. 12. 31. 0. 2. 1. 32. .1(S) LIES) AM .4(S) .b(S) 4.8(S) .0( ) .0(3) .0(3) 1.1( ) 2. 0. 0. .3(S) O(S) O(S) 3 45. 0. AM 0. LIM 15. 4. 12. 30. 4.8(S) 0. ) 0. O(S) 0. O(S) 32. 1.1( ) .O(S) .4(S) .b(S) .0( 2. 0. 0. .3(S) O(S) O(S) 3 50. 0. 0. 12. 4. 12. 30. 0. 1. 1. 32. AM 3.1(S) O(S) .4(S) .5(S) 4.8(S) .0( 1 .O(S) O(S) 1.1( ) 2. 0. 0. .3(5) O(S) .O(S) 3 55. 0. 0. 15. 4. 11. 30. 0. 0. 0. 32. I(S) LI M O(S) .4(S) .5(S) 4.8(S) .0l ) .O(S) .O(S) 1.1( ) 2. 0. 0. .3(3) .0(S) O(S) • r• u• J• 1�. �• 11• Jr• �• •• ♦• Jl• ' AM LIM AM AM AM 4.7(S) .Ol ) AM AM 1.1( ) 2. 0. 0. 4 S. 0. 0. 15. 4. 11. 30. 0. 0. 0. 31. t i(S) LIM .OISI .3(S) AM 4.7(S) .0( ) .0(S) AM 1.1( l 2.3(S) O.O(S) O.O(S) 4 10. 0. 0. 12. 4. 11. 30. 0. 1. 1. 31. I(S) LIM AM .3(S) .3(S) 4.715) .Ol ) AM 0(5) i.l( ) 1. 0. 0.' .3(S) AM .O(S) 4 15. 0. 0. 14. 4. 10. 24. 0. 0. 0. 31. ' AM LIM AM .3(S) .3(S) 4.7(5) .O( 1 .O(S) AM 1.11 i 1. 0. 0. .3(S) O(S) AM 4 20. 0. 0. H . 4. ?. 24. 0. 1. 1. 30. AM LIM O(S) .3(S) .2(S). 4.6(S) .0( ) AM .OIS) 1.1( ) 1. 0. 0. 3(5? AM O(5) 4 25. 0. 0. 14. 3. 8. 29. 0. 0. 0. 30. A M M (S) O(S) .3(S► Vs) U(S)0( 1 AM0(S) 1.1( l 1. 0. 0. .3(5) O(S) .O(S) �. 4 30. 0. 0. M. 3. 7. 22. 0. 1. 0. 29. .1(S) LIM O(S) .3(S) .2(S) 4.5(S) .0( ! AM 0(S) 1.1( ) ' 1. 0. 0. .2(S) AM O(S) . 4 35. O. 1(5) O. 13. J. C. 2(3. 0. 0. 0. LIM O(S) .3(S) .2(S) 4.5(S) .0l ? AM AM i.l( ) 1. 0. 0. '.. .2(S) AM .OISI 4 40. 0. 0. 10. 3. 6. 27. 0. 1. 0. 28. �.. .I(S) LIM AM .2(S) MS) 4.4(S) .O( ) AM .OISI 1.1( ) 1. 0. 0. .2(S) AM .0(S) 4 45. 0. 0. 13. 3. 5. 27. 0. 0. 0. 28. AM LIM AM .2(S) AM 4.3(S) .0( ) .O(S) AM 1.H ) 1. 0. 0. .2(5) .0(S) .0(51 4 50. 0. 0. 10. 3. 5. 26. 0. 0. 0. 27. .I(S) LIM O(S) .2(S) AM 4.3(S) .Ol 1 AM O(S) I.O( ) ' 1. 0. 0. . 4 JJ. V. U. !J. J. i. Z.O. V. V. V. 41. �1 I(s) LIM AM .2(S) AM 4.2(S) .o( ) O(S) O(s) Lot 1 1. 0. 0. .2(s) AM O(S) 5 0. 0. 0. 10. 2. 4. 25. 0. 0. 0. 26. 7 .1(S) LIM AM .2(S) AM 4.1(S) .0( ) AM .O(s) I.O( l 1. 0. 0. 5 5. 0. 0. 12. 2. 4. 25. 0. 0. 0. 26. AM LIM AM .2(S) .1(S) 4.1(5) .O( 1 O(s) .O(S) I.O( ) 1. 0. 0. .2(S) O(S) AM 5 10. 0. 0. 9. 2. 3. 24. 0. 0. 0. 25. AM LIM AM .2(s) AM 4.0(S) .O( ) AM AM 1.01 ) ' 1. .2(S) 0. .O(sl 0. .OIS) 5 15. 0. 0. 12. 2. 3. 23. 0. 0. 0. 25. .1(s) LIM AM .2(S) .1(s) 3.9(S) .Ol ? AM AM 1.0( ) 1. 0. 0. .2(S) AM O(S) 5 20. 0. 0. 9. 2. 3. 23. 0. 0. 0. 24. .I(S) SA M O(S) .2(S) A(s) 3.9(s) .Ol ! AM O(S) I.OI ) 1. 0. 0. .2(s? O(s) AM 5 25. 0. 0. 12. 1. 3. 22. 0. 0. 0. 24. .1(S) LIM AM 2(S) .I(s) LED .0( 1 AM O(S) I.OI 1 ?. 0. 0. .2(S) O(S) .OIS) 5 30. 0. 0. 9. 2. 3. 22. O. 0. 0. 23. 1(S) LIM O(S) .21S) .1(s) M(S) .0( ] .0ls) AM 1.01 ) 1. 0. 0. '. .2(S) O(S) AM 5 35. 0. 0. 11. 2. 3. 22. 0. 0. 0. 23. ' A(S) LIM .0(S) .2(S) .115) M(S) .O( ) .O(S) O(S) .9( ) 1. 0. 0. �I .2(S) O(S) AM 5 40. 0. 0. 9. 2. 2. 21. 0. 0. 0. 22. ° AM 3.2(S) AM i(s) .1(S) 3.6(s) .Ol ) O(S) O(s) .9( ) 1. 0. 0. 5 45. 0. 0. 11. 2. 2. 21. 0. 0. 0. 22. J .1(s) 3.2(S) AM .1(s) .1(s) 3.6(S) .0( l AM O(s) .9( ) 1. 0. 0. .I(S) O(S) O(s) .1(S) 3.2(S) AM A(s) .1(s) 3.5(S) .0( ) O(s) .0(s) .9( ) .1(S) AM AM 5 55. 0. 0. 11. 2. 2. 20. 0. 0. 0. 21. .1(s) 3.2(S) AM .1(s) .1(s) 3.5(S) .Ot ) AM AM .9l ) 1. 0. 0. i A(s) O(S) AM e, 6 0. 0. 0. B. 1. 2. 19. 0. 0. 0. 20. .I(s) 3.2(s) AM .1(S) .1(s) SAM ,Ol ) AM AM ,9( ) 1. 0. 0. .Its) .O(s) AM 6 5. 0. 0. 11. 1. 2. 19. 0. 0. 0. 20. ' .1(s) 3.2tS) AM .1(S) AM 3.4(S) ,Ot ) O(s) AM .9( ) ' 1. 0. 0. .Ils> .OIS) .OIS) I(S) 3.2(S) AM .1ts) AM 4.3is) .0( ) O!S) AM .9( ) 1. 0. 0. A(s) AM O(s) 6 15. 0. 0. 10. 1. 2. Is. 0. 0. 0. 19. I(S) 3.2(5) .O(S) Its) O(s) 3.3(S) .Ot ) O(s) O(s) .9( ) 1. 0. 0. .1(S) .0(s) AM 6 20. 0. 0. 7. 1. 2. 18. 0. 0. 0. Is. AM 3,2(S) AM .1(s) O(S) 3.2(S) ,O( 1 .O(s) AM ?1 ) 1. 0. 0. AM AM O(S) 6 25. 0. 0. 10. 1. 2. 17, 0. 0. 0. 18. .I(S) 3.2(s) AM I(s) .0(s) 3.2(s) .0( ) AM O(s) .Bl 1 1. 0. 0. 6 30. 0. 0. 7. 1. 2. 17. 0. 0. 0. 18. A(s) 3.2(S) O(S) I(s) .0(s) LIM ,O( ) AM AM .8( ) 1. 0. 0. e ,1(s) O(S) AM 6 35. 0. 0. 10. 1. 1. 17. 0. 0. 0. 17. A(s) 3.2(S) AM .1(5) AM LIM .0( ) O(S) AM .8( ) 1. 0. 0. 7 .I(S) O(s) AM 6 40. 0. 0. 7. 1. 1. 16. 0. 0. 0. 17. .1(S) 3.2(S) AM .1(s) AM 3.0(S) .Ol ) .OISI AM .8( ) 1. 0. 0. .1(S) O(s) O(S) 0 6 4Z). U. 0. 9. 1. 1. 16. u. u. u. ii. 1 AM 3.2(S) O(S) AM .O(S) 3.0(s) .0( ) .0(S) O(S) .8( r 1. 0. 0. AM .O(S) .O(S) 6 50. 0. 0. 7. 1. 1. 16. 0. 0. 0. 16. '7 Als) 3.2(S) O(S) AM .O(S) 2.9(S) .0( ) .O(S) O(S) .8( ) 0. 0. 0. AM .O(S) .O(S) 6 55. 0. 0. 9. 1. 1. 16. 0. 0. 0. 16. AM 3.2(S) O(S) AM .O(S) 1.9(S) .0( ) .015) .O(S) .8( ) 0. 0. 0. 'r AM .O(S) O(S) 7 0. 0. 0. 6. 1. 1. 16. 0. 0. 0. 16. .i(S) 3.2(S) O(S) AM .O(S) 2.8(S) .0( ) O(S) 0(S) .8( ) 0. 0. 0. .1lS) .O(S) .O(s) 7 5, 0, 0, 1, 1, 1, 16, 0, 1, 0. 16 AM 3.2(S) O(S) 1(S) O(S) 2.8(s) .0( ) O(S) O(S) .8( ) 0. 0. 0. AM O(S) O(S) 7 10. 0. 0. 6. 1. 1. 16. 0. 0. 0. 16. AM 3.2(S) O(S) AM .0(s) 2.7(S) .0( ) O(S) O(S) .8( ) 0. 0. 0. AM AM O(S) 7 15. 0. 0. 9. 1. 1. 16. 0. 0. 0. 16. A (S) 3.2(S) O(S) .Hs) .0(s) 2.7(S) .0( ) O(S) O(S) A( ? 0. 0. 0. lcsr O(S) O(S) 7 20. 0. 0. 6. 1. 1. 16. 0. 0. 0. 16. AM LIM) .0(5) 1(S1 .O(S) 2.615) .0( 1 O(S) O(S) At ) 0. 0. 0. ' . I(S) O(S) O(S) 7 25. 0. 0. 9. 1. 1. 16. 0. 0. 0. 16. �.' 1(S) 3.2(S) .O(S) 1(S) .O(S) 2.6(S) M ) O(S) .0(S) .8( 1 0. 0. 0. I(S) O(S) O(S) . 7 30. 0. 0. 6. 1. 1. 16. 0. 0. 0. 16. �) I(S) 3.2(S) .O(S) .1(S) O(S) 2.5(S) .0( ) O(S) O(S) .8( ) 0. 0. 0. 7 35. 0. 0. B. 1. 1. 16. 0. 0. 0. 16. AM 3.2(S) O(S) A (s) INS) 2.5(S) .0( 1 .O(S) .O(S) X ) 0. 0. 0. AM O(S) .O(s) ! TV. V. V. J. 1. 1. 10. 'I• V. V. .... i� 1(Sl 3.2(S) o(S) Its) D(S) 2.4(S) .0( 1 o(S) O(S) .8( 1 0. 0. 0. IIS) O(S) .0(5) 7 45. 0. 0. B. 1. 1. 16. 0. 0. 0. 16. .1(S) 3.2(S) .o(S) 1(5) o(S) 2.4(S) .0( ) O(S) .O(S) .8( ) 0. 0. 0. IIS) .0(S) o(S) 1 7 50. 0. 0. 5. 1. 1. 16. 0. 0. 0. 16. 1(S) 3.2(S) D(S) .11S) o(S) 2.3(S) .0( ) o(S) .O(S) .8( ! 0. 0. 0. 1(S) .o(S) O(S) 7 55. 0. 0. S. 1. 1. 16. 0. 0. 0. 16. 1(S1 3.261 .O(S) Its) o(S) 2.3(S) .0( 1 .O(S) o(S) .8( ) 0. .1(S) 0. .0(S) 0. .0(S) 8 0. 0. 0. 5. 1. 1. 16. 0. 0. 0. 16. :r .I(S) 3.2(S) o(S) .0(S) o(S) 2.2(S) 0( ) o(S) O(S) .8( ) 0. 0. 0. 1 .1(S) o(S) o(S) 1 BASIN H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED OCTOBER 1987 FOR ANTICIPATED CONDITIONS 1 III PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS Itt CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) r308 14. .4 0 50. 120 1?. .4 0 40. -� 309 14. .0 0 50. 3 34. .5 0 45. 310 3. .0 .6 1 35. 21 24. .5 0 40. 6 0. .2 1 30. 5 -0. 1.3 0 55. 4 82. 2.8 0 50. 118 20. 1.8 0 40. 122 35. 2.4 0 45. 11 0. .0 .1 2 15. 7 16. .0 7.5 2 25. 306 5. .0 .6 1 55. 303 35. (DIRECT FLOW) 0 45. 101 55. 2:5 0 40. 10 16. 1.3 2 25. 307 17. .0 0 40. 305 0. (DIRECT FLOW) 0 . 0. 304 35. (DIRECT FLOW) 0 45. 312 b. .0 .l 0 40. 311 6. .0 .1 0 40. tuts ib. .0 t v 4u. 128 42. .7 0 45. 126 32. .6 0 45. 125 27. .6 0 50. 200 123 17. 14. .5 .0 -1.6 0 1 50. 35. 119 20. 2.3 0 45. 7 113 34. 3.1 0 55. 36 31. .6 0 40. 215 24. 2.0 .4 1 5. ? 214 24. 2.0 .1 0 55. 213 24. 2.0 .0 0 55. 127 7. .3 0 40. 210 31. .0 4.9 3 0. 131 25. .5 0 40. 54 4. 1.0 .0 0 40. 47 3. .3 0 40. 37 13. .0 .5 0 55. 35 72. 2.0 1 10. ,:. 300 31. IDIRECT FLOW) 3 0. 204 39. .5 0 40. 32 19. .0 .2 0 50, 1 48 5. .4 0 55. 38 92. 1.9 1 N. 111 31, 1111EIT FLOW) 3 0, 14 45. .6 0 45, 216 It. 1.5 .6 1 5. 133 U. 1.5 .2 1 5. 49 2. .2 1 50. 39 61. .0 2.5 1 35. 124 52. .7 0 'S. 102 0, IOIP.ECT FLOW) 0 0. 1 ! 43 31. 2.0 3 0. 15 14. .0 1.0 1 20. 50 24. 1.0 1 40. ' 41 56. .7 0 45. 40 67. 2.0 1 45. 211 15. .0 1.3 1 25. 116 45. 2.3 2 45. 44 1. .3 0 50. 51 22. .9 1 50. 145 60. 1.6 2 45. 46 4. .4 0 50. 2 0. .1 2 10. 203 45. 1.7 2 10. 202 61. 2.0 2 45. 9 12. 1.0 0 45. 1 ENDPROGUM PROSRAM CALLED ENVIRONMENTAL PROTECTION AGENCY — STORM WATER MANAGEMENT MODEL — VERSION PC.1 J DEVELOPED BY METCALF + EDDY. INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS. INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF EN61NEERS MISSOURI RIVER DIVISION, CORPS OF EN6XHEERS (SEPTEMBER 1974) BOYLE ENGIHEERING CORPORATION (MARCH 1985, JULY 1985) . OTAPE OR DISK ASSIGNMENTS JIN(I) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(S) JIN(9) JIN(IO) 2 1 0 0_ 0 0 0 0 0 0 JOUT(I) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(6) JOUT(9) JOUT(1O) 1 1 2 0 0 0 0 0 0 0 0 HSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 4 0 0 0 1 r NATEoSH-D PROGRAM CALLED rtit ENTRY MADE TO RUNOFF MOREL t11 BASIN.H ... FOX MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED AUGUST 1989 FOR ANTICIPATED CONDITIONS �.; ONUMBER OF TIME STEPS 96 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES.PER HOUR ' .60 .96 1.44 1.68 3.00 5.04 9.00 1.20 .84 .60 .48 .36 .36 .24 24 .24 .12 .12 BASIN H ... FOX MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CON➢ITIONS ... UPDATED AUGUST 1999 FOR ANTICIPATED CONDITIONS 3.72 2.16 1.56 .24 .24 .24 po I e-mr i-) I. I �1 I I II i ) SUBAREA BUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STOP.ABE(,N) INFILTRATION RATE(IN/HR) GicE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 1 3 500. 10.0 40.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 2 2 2000. 23.0 .0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 3 3 5600. 58.5 41.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 4 4 6000. 80.1 46.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 5 5 4B00. 64.3 69.0 .0030 .016 .250 .100 .300 .51 .50 .00180 1 b 9 1800. 12.8 80.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 7 108 2700. 55.8 40.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 8 6 1400. 14.5 .0 .0120 .016 .250 .100 .300 .51 .50 .00180 1 9 11 1700. 90.0 2.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 10 101 2200. 78.1 48.0 .0090 .016 .250 .100 .300 .51 .50 .00180 1 11 14 5000. 80.2 42.0 .0040 .016 .250 .100 .300 .51 .50 .00180 1 12 200 2600. 41.9 40.0 .0020 .016 .250 .100 .300 .51 .50 .00180 1 13 118 2750. 27.2 50.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 14 120 1080. 30.5 60.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 15 21 2800. 38.6 40.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 Ib 111 1400. 26.3 40.0 .0090 .016 .250 .100 .300 .51 .50 .00180 1 17 119 2000. 38.1 40.0 .0060 .016 .250 .100 .300 .51 .50 .00190 1 18 124 4800. 103.0 40.0 .0090 .016 .250 .100 .300 .51 .50 .00180 1 14 44 2500. 1.4 50.0 .0010 .016 .- .!00 .300 .51 .50 .00180 1 11 !25 -200. 66.3 40.0 .0040 .016 .250 .100 .300 .51 .50 .00180 1 23 126 4000. 61.3 40.0 .0070 .016 .250 l0O 300 .51 .50 00180 i 14 127 2.500. 10.6 40.0 . .0030 .016 .250 .100 .300 .5! 50 00180 1 25 46 1500. 17.5 40.0 .0800 .016 .150 .100 .300 .51 .50 .00190 1 1b 47 1900. 9.4 20.0 .0100 .016 .150 .100 .300 .51 .50 .00!8Q 1 17 204 600. 14.5 40.0 .0400 .016 .250 .100 .300 .51 .50 .00!80 1 19 204 1900. 37.1 40.0 .0600 .016 .150 .100 .300 .51 .50 .00180 1 19 131 1B00. 37.9 40.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 30 50 2000. 10.1 40.0 .1100 .016 .250 .100 .300 .51 .50 .00180 1 31 118 5000. 87.9 40.0 .0090 .016 .150 .100 .300 .51 .50 .00180 1 32 36 3100, 40.0 40.0 .0750 .016 .250 .100 .300 .51 .50 .00180 1 33 38 3000. 30.4 70.0 .0050 .016 .250 .!00 .500 .51 .50 .00180 1 34 41 5600. 95.6 50.0 .0050 .016 .250 .!00 .300 .51 .50 .00!80 1 35 51 110Q. 1l.1 10.0 .0800 .016 .5Q 100 .300 .5! 50 00180 1 36 54 400. B.! 37.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 37 307 1000. 21.0 40.0 .0080 .016 .150 .100 .300 .5! .50 .00180 1 3S 308 700. 35.0 40.0 .0070 .0!6 .250 .!00 .300 .5! .50 .0020 1 39 311 900. 8.0 60.0 .0200 .016 .250 .100 .300 .51 .50 .00!80 1 40 3!! 900. 8.2 60.0 .0200 .016 .150 .100 .300 .51 .50 .00180 1 OTOTAL NUMBER OF SUBCATCHMENTS, 38 OTOTAL TRIBUTARY 1 AREA (ACRES), 1495.30 BASIN.H ... FOX MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED AUGUST 1989 FOR ANTICIPATED CONDITIONS $It CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL iit WATERSHED AREA (ACRES) 1495.300 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .551 TOTAL WATERSHED OUTFLOW (INCHES) 2.072 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .267 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .001 1 BASIN H ... FOX MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED AUGUST 1989 FOR ANTICIPATED CONDITIONS WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NOP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 2 9 0 1 CHANNEL 5.0 2000. .0020 2.5 2.5 .035 100.00 1 3 4 0 4 CHANNEL 2.0 2600. .0060 33.0 33.0 .016 .50 1 OVERFLOW 40.0 2600. .0066 30.0 30.0 .040 100.00 4 7 0 5 PIPE 2.0 2000. .0060 .0 .0 .013 2.00 1 OVERFLOW 2.0 2000. .0060 33.0 33.0 .020 100.00 5 7 0 1 CHANNEL 5.0 4800. .0050 3.0 3.0 .040 100.00 1 6 7 0 1 CHANNEL .5 1900. .0050 1.0 1.0 .020 100.00 1 7 10 5 2 PIPE .0 50. .0100 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.5 1.7 8.0 17.0 16.0 82.0 22.0 196.0 9 10 0 108 0 5 1 2 CHANNEL PIPE 5.0 1600. 3.0 60. .0020 .0050 2.5 .0 2.5 .0 .011 .015 100.00 3.00 1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .3 .0 1.6 23.0 4.0 35.0 7.1 45.0 11 101 3 1 CHANNEL 0 31. 0100 .0 .0 .023 01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 4.2 8.0 17.4 24.0 14 15 0 1 CHANNEL 2.0 2000. .0060 30.0 30.0 .016 100.00 1 15 116 5 2 PIPE .0 85. .0075 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 14.0 1.0 14.0 3.0 15.0 6.2 23.0 8.2 108.0 21 122 0 1 CHANNEL 2.0 1500. .0050 30.0 30.0 .016 100.00 1 32 133 3 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .6 - 63.0 1.4 179.0 35 38 0 1 CHANNEL 8.0 2000. .0030 3.0 3.0 .040 !00.00 1 36 37 0 1 CHANNEL 2.0 1400. .0050 30.0 30.0 .016 !00.00 1 .� 31 39 10 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACP.E-FEET VS SPILLWAY OUTFLOW .0 .0 .2 7.5 .9 21.5 2.8 25.7 5.1 28.5 7.4 31.2 9.9 34.2 11.1 34.5 12.5 60.0 15.0 320.0 ' y 3 39 0 1 CHANNEL 8.0 1900. .0060 3.0 3.0 .040 100.00 1 39 40 9 2 PIPE .0 100. .0100 .0 .0 .025 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .5 1915 1.8 59.6 4.0 85.5 7.2 106.3 10.3 125.5 16.6 139.5 17.5 141.5 18.0 200.0 40 42 0 1 CHANNEL 6.0 1100. .0040 3.0 3.0 .040 100.00 1 41 42 0 1 CHANNEL 2.0 2900. .0060 30.0 30.0 .016 100.00 1 42 203 4 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 5.5 23.0 13.3 24.0 24.0 1200.0 1 44 145 0 1. CHANNEL 2.0 2600. .0040 3.0 3.0 .040 100.00 1 46 202 0 1 CHANNEL 25.0 1500. .0004 3.0 3.0 .030 100.00 1 47 48 0 1 CHANNEL 2.0 1800. .0200 5.0 10.0 .040 100.00 1 48 49 0 1 CHANNEL 25.0 700. .0004 3.0 3.0 .030 100.00 1 49 50 0 1 CHANNEL 25.0 1900. .0004 3.0 3.0 .030 100.00 1 50 51 0 1 CHANNEL 25.0 2200. .0004 3.0 3.0 .030 100.00 1 51 203 0 1 CHANNEL 25.0 1300. .0004 3.0 3.0 .030 100.00 1 �) 54 49 3 1 CHANNEL 1.0 40. .0200 .0 .0 .023 1.00 0 RESERVOIR STORAGE IN ACRE-FEET YS SPILLWAY OUTFLOW �) .0 .0 .7 .0 1.4 100.0 101 112 0 5 PIPE 2.0 900. .0080 .0 .0 .013 2.00 1 OVERFLOW 2.0 900. .0080 30.0 30.0 .016 100.00 106 113 3 2 PIPE .0 2400. .0024 .0 .0 .013 .01 0 .V 4u.V J.V .'Y.V JV.V T.i.V 111 113 5 2 PIPE .0 100. .0100 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 4.0 .0 7.0 20.0 12.0 35.0 19.0 1000.0 113 210 0 5 PIPE 2.0 2600. .0040 .0 .0 .013 2.00 1 1' ? OVERFLOW 5.0 2600. .0040 4.0 4.0 .040 100.00 116 145 0 5 PIPE 3.0 2600. .0050 .0 .0 .013 3.00 1 'D OVERFLOW 5.0 2600. .0050 4.0 4.0 .040 100.00 118 306 0 5 PIPE 1.5 1700. .0100 .0 .0 .013 1.50 1 OVERFLOW 2.0 1700. .0100 30.0 30.0 .016 100.00 119 210 0 5 PIPE 2.0 1500. .0030 .0 .0 .013 2.00 1 r 120 310 0 1 OVERFLOW CHANNEL 2.0 1500. 2.0 1000. .0030 .0100 30.0 30.0 30.0 30.0 .016 .016 100.00 100.00 1 122 303 0 5 PIPE 2.0 1300. .0060 .0 .0 .013 2.00 1 OVERFLOW 2.0 1300. .0060 30.0 30.0 .016 100.00 123 210 4 1 PIPE .0 50. .0100 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 11.0 6.2 24.0 8.0 150.0 124 211 0 1 CHANNEL 2.0 2400. .0050 30.0 30.0 .016 100.00 1 125 213 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 126 214 0 1 CHANNEL 2.0 2000. .0040 30.0 30.0 .016 100.00 1 12? 35 0 1 CHANNEL 2.0 1300. 30.0 30.0 .011 100.01 1 1 128 215 0 1 CHANNEL 2.0 2600. ;1161 0040 30.0 30.0 .016 100.00 1 131 32 0 1 CHANNEL 1.0 1200. .0040 30.0 30.0 .016 100.00 1 133 50 0 1 PIPE 1.5 100. .0!00 .0 .0 .O!3 !.50 1 !43 116 0 5 PIPE 2.5 t200. .0060 .0 .0 .013 2.50 1 OVERFLOW 5.0 1200. .0060 4.0 4.0 .040 100.00 145 202 0 5 PIPE 3.5 1200. .0200 .0 .0 .013 3.50 1 OVERFLOW 2.0 1200. .0200 4.0 4.0 .040 !00.00 200 210 0 1 CHANNEL 2.0 2200. .0040 30.0 30.0 .016 100.00 1 202 0 0 1 CHANNEL 5.0 2000. .0030 4.0 4.0 .040 100.00 1 203 0 0 1 CHANNEL 5.0 1800. .0030 4.0 4.0 .040 100.00 1 204 216 0 1 CHANNEL 2.0 1900. 0100 30.0 30.0 016 I00.00 1 210 300 6 2 PIPE .0 76. .0015 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 16.0 3.0 16.0 5.0 32.0 20.0 38.0 29.0 86.0 34.0 336.0 211 145 3 2 PIPE .0 80. .0300 .0 .0 .0!3 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 15.0 6.0 !6.0 13.0 18.0 213 35 0 2 PIPE 2.0 100. .0100 .0 .0 .013 2.00 1 114 35 0 2 PIPE 2.0 100. .0100 .0 .0 .013 2.00 1 215 35 0 2 PIPE 2.0 100. .0100 .0 .0 .013 2.00 1 216 50 0 2 PIPE 1.5 IOQ. 0100 .0 .0 .013 1.50 1 500 301 3 3 .0 1. .0010 .0 .0 .00! 10.00 302 DIVERSION TO GUTTER NUMBER 302 - TOTAL 0 VS DIVERTED O IN CFS .0 .0 38.0 .0 86.0 49.0 301' .' 143 0 3 .0 1. .0010 .0 .0 - .001 10.00 1 302 116 0 3 .0 1. .0010 .0 .0 .001 10.00 1 303 304 3 DIVERSION 3 TO GUTTER NUMBER 305 - TOTAL 0 1. O VS DIVERTED O 0010 IN CFS .0 .0 001 10.00 305 .0 .0 60.0 .0 160.0 50.0 304 123 0 3 .0 1. .0010 .0 .0 .001 10.00 1 305 123 0 3 .0 1. .0010 .0 .0 .001 10.00 1 306 307 5 2 PIPE .0 100. .0100 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 3.6 1.6 8.1 3.6 10.8 6.0 13.0 307 123 0 1 CHANNEL .0 1000. .0050 - 6.0 6.0 .020 100.00 1 308 303 0 1 CHANNEL 2.0 1400. .0070 30.0 30.0 .020 100.00 1 109 4 3 2 PIPE .0 165. .0111 .0 .0 .011 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 25.0 . 2.0 35.0 2.5 500.0 _) 310 118 3 2 PIPE .0 100. .0120 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.6 2.3 4.1 13.1 311 113 5 2 PIPE .0 20. .0020 .01 0 n/n-nIV1In n+nn.r- 711 .rn[_r 11- rvr F unv nnTri nu .0 .0 .013 312 113 5 2 PIPE 0 20. .0020 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 6.3 .5 8.2 1.0 9.7 4.4 11.0 OTOTAL NUMBER OF GUTTERS/PIPES, 71 j \ Iq BASIN H ... FOX MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED AUGUST 1989 FOR ANTICIPATED CONDITIONS A4 I� ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC1 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 23.0 3 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 68.1- 4 3 309 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 183. c 5 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 64. 6 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 14.; 7 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 262. 9 2 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 35. 10 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 262.E 11 0 0 0 0 0 0 0 0 0 0 9 0 0 0.0 0 0 0 0 0 90.r ' 14 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 80. 15 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80.2 21 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 3S.6 32 131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37.9 35 127 213 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 226.1 36 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 40.0 37 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40.0 38 35 37 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 296.5 39 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 296.5 40 39 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 295.5 41 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 95.6 42 40 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 392.1 ' 44 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 2.4 46 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 17.5 47 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 9.4 n n n r. n n n n 17 a 1 49 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.5 50 49 133 216 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 127.1 51 50 0 0 0 _0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 138.2 54 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 8.1 l 101 11 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 169.1 !08 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3i9.2 112 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168.1 113 109 112 311 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 502.5 116 15 143 302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 806.3 ' 118 310 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 57.7 119 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 35.1 0 0 30.5 120 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 . 122 21 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 64.9 123 304 305 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 143.6 I124 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 103.0 125 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 66.3 I126 0 0 0 0 23 0 0 0 0 0 0 0 0 0 61.3 0 0 0 0 0 0 ' 127 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 10.6 123 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 91.9 131 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 37.9 133 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37.9 143 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126.1 145 44 116 211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 911.7 200 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 41.9 202 46 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 929.2 203 42 51 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 530.3 f204 0 0 0 0 0 0 0 0 0 0 27 28 0 0 0 0 0 0 0 0 51.6 210 113 119 123 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 726.1 211 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103.0 213 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66.3 _ 214 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.5 215 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87.9 1I L ^n!. n n n n n n n n n - n n n n n n n n n n =! 4 1 300 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 726.: 1 301 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 726.: r302 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 303 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.4 304 303 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64. 311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 306 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57.7 307 306 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0 78.7 308 0 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 35.0 '. 309 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35.f 310 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.5 0 0 0 0 0 40 0 0 0 0 0 0 0 511 0 0 0 0 0 0 0 B. 312 1 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 ?.0 BASIN H ... FBI MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED AUGUST 1989 FOR ANTICIPATED CONDITIONS HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 13 CONVEYANCE ELEMENTS ' THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 11 112 108 306 113 110 302 211 15 145 1 310 511 312 0 5. 0. 0. 0,0. 0, 0. 0, 0. ,. O(S) O(S) .O(S) O(S) O(S) O(S) .0( 1 O(S) O(S) .0l ) 0. 0. 0. O(S) O(S) .O(S) 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O(S) O(J) .O(S) O(S) O(S) .OIS) .0( ) O(S) .O(S) .01 ) 0. 0. 0. O(S) .O(S) OIS) 0 15. 0. 0. 12. 0. 0. 4. 0. 2. 1. 1. J O(S) O(S) O(S) O(S) .O(S) .O(S) .0( ) .O(S). O(S) .1( ) 0. 1. 1. O(S) .O(5) oc.; V �Y• V• AM V• .1(S) ter• AM •• AM r• A(S) •u• O(S) .. .0( ) ..• .OISI .. AM . .6( ) 0. 2. 2. ^- AM .OISI AM ' 0 25. 0. 0. 36. 2. 7. 16. 0. 15. 14. 27. .1(S) .3(5) .1(S) .2(S) MS) .2(S) .O( ) .i(5) .O(S) 1.01 ) 0. 5. 5. .1(S) .1(S) .1(S) 0 30. 0. 0. 36. 4. 11. 16. 0. 15. 14. 40. .1(S) MS) AM .4(S) .5(S) .5(S) .0( ) .315) .3(S) 1.3( ) 1. 7. 7. .3(S) .2fS1 .2(S) ' 0 35. 1. .3(S) 0. 1.815) 36. 1.3(s) 5. B(S) 13. 1.3(5) 16. 1.3(S) 0. .O( ) 15. 1.1(S) 14. 1.0(S) 47. 1.4( ) 4. B. B. MS) .5(S) .4(S) 0 40. 1. 0. 36. 8. 16. 16. 0. 15. 15. 51. .5(S) 3.4(5) 2.3(S) 1.5(S) 2.6(S) 2.5(5) .0( ) 2.6(5) 2.3(S) 1.4i ) 7. 9. 9. 1.415) .7(S) .7(S) 0 45. 1. 6. 36. 9. 19. 24. 0. 16. 17. 54. MS) 4.9(S) 3.1(S) 2.2(S) 4.1(S) CO(S) .Ol ) 4.2(S) 3.6(S) 1.5( 1 9. 9. 9. 2.0(S) AM INS) 0 50. 2. 13. 36. 10. 22. 32. 0. 16. H. 59. .9151 6.0(S) 3.7(5) 2.7(S1. 5.4(S) 5.3(S) .0( ) 5.6(S) 4.7(S) 1.6( ) 10. 9. 9. 2.5(S) .9(S) .8(S) 0 55. 2. R. 36. 10. 33. 33. 0. 16. 21. 61. ' 1.1(S) 6.8(5) 4.3(S) SA M 6.3(5) 6.6(S) .0( ) L E S) 5.5(S) 1.7( ) 11. 9. 9. 2.9(S) .9(S) .9(5) 1 0. 3. 21. 16, 11, 76, 33, 0, 16, 23, 11, ' 1.4(S) 7.4(S) 4.8(S) 3.4(S) 6.9(S) 8.0(S) .O( ) 7.7(S) 6.2(S) 1.8( ) 11. 9. 9. LIM AM .9(S) 1 5. 3. 23. 36. 11. 94. 34. 0. 17. 42. 73. 1.6(S) 7.8(S) 5.4(S) 3.7(S) 7.2(S) 9.5(S) .0( ) 8.5(S) 6.6(S) 1.8( ) 12. 9. 9. 3.3(S) .9(S) .9(S) 1 10. 3. 24. 36. H . 99. 34. 0. 17. 53. 76. _) 1.7(S) 8.2(S) 5.9(S) 3.9(S) 7.3(S) 11.O(S) .O( ) 9.2(S) 6.9(S) 1.8( ) 12. 9. 9. 11. 70. JJ. V. 1(. JJ. CT. 1.9(S) 8.5(S) 6.4(S) 4.0(S) 7.2(S) 12.4(S) M l 9.7(S) 7.0(S) 1.9( 1 12. 9. 9. LIM AM AM ' 1 20. 4. 25. 37. 11. 90. 36. 0. 17. 59. 91. 2.1(S) 8.7(S) 6.9(S) 4.2(S) 7.1(S) 13.8(S) M 1 10.2(5) 7.0(S) 2.0( ) 12. 9. 9. 3.1(S) AM AM . 1 25. 4. 26. 37. 11. 83. 36. 0. 17. 58. 97. 2.3(S) 8.9(S) 7.4(S) 4.3(S) 7.0(S) 15.0(S) .0(l 10.51S) 7.0(S) 2.1( ) 12. 9. 9. 3.7(S) MS) .7(S) 1 30. 5. 26. 37. 12. 76. 36. 0. 17. 55. 101. 2.4(S) 9.0(5) LES) 4.4(S) 6.9(S) 16.2(S) .O() 10.9(S) 7.0(S) 2.2( ) 3.8(S) .1(S) 9. MS) 1 35. 5. 26. 38. 12. 70. 37. 0. 17. 52. 103. 2.6(S) M.(S) 8.4(S) 4.5(S) 6.9(S) 17.3(5) M } 11.2(S) 6.9(S) 2.21 1 12. 9. 9. 3.8(S) MS) .6(S) 1 40. 5. 27. 38. 12. 64. 37. 0. 12. 49. 104. 2.7(S) 9.3(S) 8.9(S) 4.6(S) 6.8(S) 18.4(5) .0(1 11.4(S) 6.8(S) 2.2( 1 12. S. 8. 3.8151 .6(S) .6(S) 1 45. 5. 27. 39. 12. 59. 38. 0. 18. 46. 104. 2.9(S) 9.3(S) 9.4(S) 4.6(S) 6.7(S) 19.3(S) .sill 11.6(S) 6.7(S) 2.2( 1 12. 8. 8. LES) .6(5) .5(S) 1 50. 6. 27. 38. 12. 55. 39. 1. 18.' 42. 103. 3.0(S) 9.4(S) 9.9(S) 4.7(S) 6.6(S) 20.3(S) .0( ) 11.8(S) 6.7(S) 2.2( ) 12. B. 8. 3.81S) .5(S) .5(S) 1 15. b. 3.1(S) 21. 9.4(S) 39, 10.4(Sl 12, 4.1(S) 51. b.615) 44. 21.1(S1 Is .0() 18. 11.9(S) 39. 6.6(S) 112, 2.2( l 12. 8. 8. ,) LES) .5(S) .5(S) 2 0. 6. 27. 39. 12. 48. 48. 10. 18. 37. 102. 3.2(S) 9.5(S) 10.9(S) 4.81S) 6.5(S) 21.9(S) .0( ) 12.1(S) 6.5(S) 2.2( ) 12. S. 8. 3.8151 .4(S) .4(S) 2 5. 6. 27. 39. 12. 45. 52. 14. 18. 34. 102. M(S) 9.5(S) 11.3(S) 4.8(S) 6.5(S) 22.7(S) M 12.2(S) 6.5(S) 2.2( ) ' 12. 8. 7. 3.1(S) .4(S) .41S) SA M 9.5(S) II.B(S) 4.9(S) 6.5(S) 23.3(S) .O() 12.3(S) 6.4(S) 2.2( ) 12. .7. 7. 3.7(S) .3(S) .3(S) 2 15. 7. 27. 40. 12. P. 59. 21. is. 29. 104. L ES) 9.5(S) 12.3(5) 4.9(S) 6.4(S) 23.91S) .0( ) 12.4(S) 6.3(S) 2.2( ) 12. 7. 7. 3.7(S) .3(S) .3(S) ' 2 20. 7. 27. 40. 12. 36. 62. 24. 18. 26. 104. 3.6(S) 9.4(S) 12.8(S) 4.9(S) 6.4(S) 24.5(S) .O( ) 12.4(S) 6.3(3) 2.2t ) 12. 7. 7. 3.6(S) .2(S) .2(S) 2 25. 7. 27. 40. 12. 33. 64. 26. 18. 24. 105. MIS) 9.4(S) 13.3(S) 4.9(S) MIS) 25.0(S) .0l ) 12.4(S) 6.2(S) 2.2( ) 12. 7. 7. 3.61Si .2(S) .2Is) 2 30. 7. 27. 40. 12. 31. 67. 29. 18. 23. 106. 3.8(S) 9.4(S) 13.1(S) 4.9(S) 6.3(S) 25.4(S) .0O 12.5(S) 6.2(S) 2.2( ) 12. 6. 6. 3.51s) .2(S) .1(S) 2 35. 7. 27. 40. 12. 29. 69. 31. Is. 23. 107. 3.9(S) 9.3(S) 14.2(S) S.0(S) 6.3(S) 25.S(S) .Oi 1 12.5(S) 6.1(S) 2.3( 1 12. 6. 5. 3.5(s) Its) Its) ' 2 40. G. 27. 41. 12. 27. 71. 33. 18. 23. 108. CON) 9.3(S) 14.7(S) 5.0(3) 6.2(S) 26.2(S) .0(l 12.5iS) 6.0(S) 2.3( 1 12. 4. 4. 3.4191 .Its) Its) ' 2 45. 8. 27. 41. 12. 26. 73. 35. is. 72. 109. 4.0(5) 9.2(5) 15.2(5) 5.O(S) 6.2(5) 26.5(3) .0l ) 12.5(S) 6.0(S) 2.3( ) 12. 3. 3. 3.4(S) Its) .1(s) 1 50. B. 4.1(S1 27, 9.2(S) 41, 15.6(S) 12, SA M 24, 6.2(5) 74. 26.8(S) 36. .0( ) 18. 12.5(S) 22. 5.9(S) 111. 2.3( ) 12. 2. 2. i 3.3(S) AM .OIS) 2 55. 8. 26. 41. 12. 24. 75. 37. 18. 22. 112. 4.2(S) 9.1(S) 16.1(S) 5.0(S) 6.2(S) 27.0(S) .Ol l 12.4(S) SA M 2.3( ) I1. 2. 1. 3.3(S) .OISI AM 3 0. B. 26. 42. 12. 24. 77. 39. 18. 22. 113. 4.2(S) It. 9.0(S) 16.5(S) 5.0(S) 6.2(S) 27.2(S) .Ol ) 12.4(S) 5.7(S) 2.4( 1 3.2(S) .01s) AM J J. G. ;a. 1i. 1- 41. IG. 1V. 1G. ..0 .11. ` 4.3(S) 9.0(S) 17.0(5) 5.0(S) 6.1(S) 27.4(S) .OS ) 12.4(S) 5.6(S) 2.4( ) 11. 1. 1. LIM AM AM 3 10. 8. 26. 42. 12. 24. 79. 41. 18. 21. 115. s 4.3(S) 8.9(S) 17.4(S) 5.O(S) 6.1(5) 27.6(S) .Ol ) 12.3(S) 5.6(S) 2.4( ) 11. 1. 1. 3 15. B. 26. 42. 12. 24. 80. 42. 18. 21. 116. ` 4.4(S) 8.81S1 17.8(S) 5.0(S) 6.1(S) 27.8(S) .0( ) . 12.3(S) 5.5(S) 2.41 ) 11. 0. 0. 3.0(5) O(S) .O(S) 3 20. 8. 25. 42. 12. 24. 80. 42. 18. 21. 117. ' 4.4(S) 8.8(S) 18.2(S1 5.0(S) 6.1(S) 27.9(S) .Ol l 12.2(S) 5.4(S) 2.4( 1 11. 0. 0. 3 25. S. 25. 43, 12. 24. 81. 43. 18. 21. ns. 1 4.5(5) 8.7(S) 18.71S) 5.0(S) 6.0(S) 28.1(S) .0() !2.2(S) 5.3(S) 2.4( ) 11. 0. 0. 2.9(5) O(S) O(S) 3 30. 43. 12. 24. 82. 44. 18. 20. 119. ' 4.5(S) 8.6(S) 19.1(S) 5.0(S) 6.0(S) 28.2(S) .O(1 12.1(S) 5.2(S) 2.4( ) 11. 0. 0. 2.8(S) AM O(S) 3 35. 8. 25. 43. 12. 23. 82. 44. 18. 20. 119. 4.5(S) 8.6(S) 19.5(S) 5.0(S) 5.9(S) 28.3(S) .0( 12.0(S) 5.11S) 2.4t ) ' 11. 0. 0. 2.8(S) AM O(S) 3 40. 8. 24. 43. 12. 23. 83. 45. 18. 20. 120. 4.6(S) 8.5(5) 19.9(S) S.O(S) 5.9(S) 28.4(5) .0( ) 12.0(S) 5.0(5) 2.5( ) 10. 0. 0. ' 2.7(S) .OSS1 .O(S) 3 45, 9, 24, 43, 12, 23, 14, 46. 18, 20. 120, 4.6(S) 8.4(S) 20.3(S) SA M 5.9(S) 28.5(5) .Ol l 11.9(5) 4.9(S) 2.5( ) 10. 0. 0. 2.7(S) O(S) AM 3 50. 9. 24. 44. 12. 23. 84. 46. 18. 19. 120. 4.6(S) 8.4(5) 20.6(S) 5.0(S) SA N) 28.6(S) .Ol l 11.8(S) 4.8(S) 2.51 ) 10. 0. 0. ' 2.6(S) O(S) AM 3 55. 9. 24. 44. 12. 23. 85. 47. 18. 19. 121. J 4.7(S) 8.3(S) 21.0(S) 5.0(S) SA M 28.7(S) .Ol 1 IL E S) 4.7(S) 2.5( ) 10. 0. 0. 2.5(S) .0(S) AM 4.7(S) 8.2(S) 21.4(S) 5.0(S) 5.7(S) 28.8(S) .0(1 I1.7(S) 4.6(S) 2.5( 1 10. 0. 0. 2.5(S) O(S) O(S) 4 S. 9. 23. 44. 12. 23. 85. 47. 18. 19. 121. 4.7(S) 8.1(S) 21.7(3) 4.9(S) 5.7(S) 28.9(S) .0l ) 11.6(S) 4.5(S) M( ) 10. 0. 0. 2.4(S) O(S) .O(S) 4 10. 9. 23. 44. 12. 23. 86. 48. 18. 19. 121. 4.7(S) 8.1(S) 22.1(S) 4.9(S) 5.6(S) 29.0(S) .0( 11.5(5) 4.4(S) 2.5( ) 10. 0. 0. ' 2.4(S) O(S) O(S) 4 15, 9, 23. 44. 12. 23. 87. 49. 19. 18. 122. �. 4.8(3) 8.0(S) 22.4(S) 4.9(S) 5.6(S) 29.0(S) .0( 11.4(S) 4.3(S) 2.5( ) 10. 0. 0. 2.3(S) O(S) .0(S) 4 20. 9. 23. 45. 12, 23. 89. 51. 18. 18. 122. ' 4.9(S) 7.9(S) 22.7(S) 4.9(S) 5.5(S) 29.1(S) .0( ) 11.4(S) 4.2(S) 2.5( ! 10. 0. 0. 2.2(S) O(S) O(S) 4 25. 9. 23, 45. 12. 22. 01. 53. 18. 18. 123. 4.8(S) 7.9(S) 23.1(S) 4.9(S) 5.5(S) 29.1(3) .0( ) 1l.3(S) 4.1(S) 2.5( 1 9. 0. 0. 2.2(S) AM O(S) ' 4 30. 9. 22. 45. 12. 22. 92. 54. P. 18. 124. 4.8(S) LESS) 23.4(S) 4.9(5) 5.4(S) 29.1(S) .0( 1 11.2(S) 4.0(S) 2.5( ) 9. 0. 0. 2.11S) AM 0(S) 4 35. 4. 22. 45. 12. 22. K. 54. 17. 17. 125. 4.8(S) 7.7(S) 23.7(S) 4.8(S) 5.4(S) 29.1(S) .0l 1 11.1(S) 3.9(S) 2.5( ) ' 9. 2.1(S) 0. O(S) 0. O(S) . 4 40. 9. 22. 45. 12. 22. 93. 55. 17. 17. 126. 4.8(S) 7.7(S) 24.0(S) 4.8(S) 5.3(S) 29.1(S) .0(1 11.0(5) 3.8(S) 2.6( ) 9. 0. 0. 2.0(S) .O(S) .0(5) 4 45. 9. 22. 45. 12. 22. 93. 55. 17. 17. 126. 4.8(S) 7.6(S) 24.3(S) 4.8(S) 5.3(S) 29.1(S) .0( ) 10.9(S) 3.7(S) 2.6( ) 9. 0. 0. 2.0(S) .O(S) .O(S) 4 50. 9. 22. 45. 12. 22. 93. 55. 17. 17. 127. J 4.8(S) 7.5(S) 24.6(8) 4.8(S) 5.2(S) 29.1(S) .0() 10.8(S) L ES) 2.6( 1 ' 9. 0. 0. _% 1.9(S) O(S) O(S) 4 33. 7. 4.8(S) 7.4(S) 24.9(S) 4.8(S) 5.2(S) 29.1(S) .O(! 10.7(S) 3.5(S) 2.6( 1 9. 0. 0. LED AM AM 12. 22. 92. 54. 17. 16. 126. 5 0. 9. 21. 46. 4.9(S) 7.4(S) 25.1(S) 4.7(S) SA M 29.1(S) .0( 1 10.6151 3.4(S) 2.6( ) 9. 0. 0. 1.815) AM O(S) 5 5. 9. 21. 46. 12. 22. 92. 54. 17. 16. 126. 4.9(S) 7.3(S) 25.4(S) 4.7(S) 5.I(S) 29.1(S) .OI 1 10.5(S) 3.4(S) 2.6( ) 9. 0. 0. ' 1.1(S) AM AM 5 10. 9. 21. 46. 12. 21. 92. 54. 17. 16. 126. ' 4.9(S) 7.2(S) 25.6(S) 4.7(S) SA M 29.1(S) .Ol) l0.41S) 3.3(S) 2.6( ) 8. 0. 0. ' I.1IS) .OIS1 .0(S) 5 I5. 9. 21. 46. 12. 21. 92. 54. 17. 15. 125. ' 4.9(S) 7.2(S) 25.9(S) 4.7(S) 5.0(S) 29.1(S) 0( ) 10.3151 3.2IS) 2.6( ) B. 0. 0. 1.6(S) AM '70. O(S) 5 20. 9. 46. 12. 21. 91. 53. 17. 15. 125. 4.8(S) LI M 16.1(S) 4.7(5) 4.9(S) 29.1(S) .Ol ) 10.2(S) LI M 2.5( ) ' B. 0. 0. 1.6(S) O(S) AM 5 25. 9. 20. 46. 12. 21. 91. 53. 17. 15. 125. 4.8(3) L I M 26.3(S) 4.6(S) 4.9(S) 29.I15) .O() 10.1(S) 3.O(S) 2.5( ) ' 8. 0. 0. 1.5(S) O(S) O(S) 5 30. 9. 20. 46. 12. 21. 91. 53. 17. 15. 124. 4.8(S) 7.0(S) 26.6(S) 4.6(S) 4.8(S) 29.1(S) .0( ) 10.0(S) 2.9(S) 2.5( ) 8. D. 0. 1.5(S) .O(S1 .0(S) 5 35, 9, 20, 46. 12, 21. 91, 53, 17, 15, 124, 4.8(S) 6.9(S) 26.8(S) 4.6(S) 4.7(S) 29.1(S) At ) 9.91S) 2.8(S) 2.5( ) 7. 0. 0. I.41S) AM AM 5 40. 9. 19. 47. 12. 21. 90. 52. 17. 15. 123. 4.8(S) 6.9(S) 26.9(S) 4.6(S) 4.1(S) 29.I(S) .01 ) MIS) 1.7(S) 2.5( 1 7. 0. 0. 1.41S) .OISI AM 5 45. 9. 19. 47. 12. 21. 90. 52. 17. 15. 123. 4.8(9) 6.8(S) 27.1(S) 4.5(S) 4.6(S) 29.1(S) .0( ) 9.1(S) 2.6(S) 2.5( 1 ' 7. 0. 0. 1.3(S) O(S) AM J JU. 7. L- 11. lc. :V. IV. A- 4.8(S) 6.9(S) 27.3(S) 4.5(S) 4.6(S) 29.1(5) .O( l 9.6(S) 2.5(5) 2.5( ) 7. 0. 0. 1.3(S) .015) AM 5 55. 9. 18. 47. 12. 20. 89. 51. 17. 15. 122. '.� 4.8(S) 6.7(S) 27.4(S) 4.5(S) 4.5(S) 29.1(S) .0( ) 9.5(S) 2.5(S) 2.51 ) 6. 0. 0. 1.2(S) .O(S) .O(S) 6 0. 9. 18. 47. 12. 20. 89. 51. 17. 15. 122. 4.8(S) 6.7(S) 27.5(S) 4.4(S) 4.5(S) 29.1(S) .0( 1 9.4(S) 2.4(S) 2.51 ) 6. 0. 0. ' 1.2(S) .OISI ..O(S) 6 5. 9. 17. 47. 12. 20. 88. 50. 17. 15. 121. ' 4.8(S) 6.6(S) 27.6(S) 4.4(S) 4.4(S) 29.0(S) .0( 1 9.3(S) 2.3(S) 2.5( ) 6. 0. 0. ' 1.2(S) .O(S) AM b 10. 9. 17. 47. 11. 20. as. 50. 17. 15. 124l. U(S) 6.6(S) 27.7(S) 4.3(S) 4.4(S) 29.0(S) .0( ) 9.2(S) 2.2(S) 2.5( 1 6. 0. 0. _ ' 1.1(S) O(S) .0(S) 6 15. 9. 17. 47. 11. 20. 87. 49. 17. 15. !20. ' 4.B(S1 6.5(S) 27.7(S) 4.3(S) 4.3(S) 29.0(S) .O( 1 9.1tS) 2.1(S) 2.5( ) 6. 0. 0. 1.1(S) O(S) O(S) 6 20. 9. !b. 41. M. 20. 87. 49. 17. 15. 120. 4.7(S) 6.5(S) 27.7(S) 4.3(S) 4.3(S) 29.0(S) .Ol 1 9.0(S) 2.0(S) 2.5( ) ' 5. 0. 0. I M S) O(S) O(S) ' 6 25. 9. 16. 47. 11. 20. 86. 49. 17. 14. 119. 4.7(S) 6.4(S) 27.7(3) 4.2(5) 4.2(5) 29.0(9) .0( ) SA M 1.9(S) 2.4( 1 S. 0. 4. ' 1.OlSl .OtS) .0(51 6 30, 9, 16, 41, 11, 20. 86, 48, 11, 14, 119, 4.7(S) 6.4(S) 27.6(S) 4.2(S) 4.2(S) 29.0(S) .0( 1 SA M 1.8151 2.4( 1 5. 0. 0. r. 1.0(S) O(S) AM -. 6 35. 9. 16. 47. 11. 19. 86. 4B. 17. 14. 118. 4.7(S) 6.3(S) 27.3(S) 4.1(S) 4.1(S) 29.0(S) .0( ) 8.7(S) 1.7(3) 2.41 1 5. 0. 0. 1.0(S) O(S) O(S) 6 40. 9. 15. 47. 11. 19. 86. 48. 17. 14. 118. 4.7(S) 6.3(S) 27.1(S) 4.1(S) 4.1(5) 29.0151 .0l ) 8.6(5) 1.6(S) 2.41 1 5. 0. 0. J .9(S) AM O(J) J 1J. I. 4.7(5) AJ. 6.3(S) Tl. 26.9(5) ... 4.1(S) ... 4.0(5) JJ. 29.0(S) I.. .0( ) .•. A.5(S) ... 1.5(S) .•.• 2.4( ) S. 0. 0. .915) .O(S) .O(S) 6 50. 9. 15. 46. 11. 19. A6. 48. 17. 14. 117. ;7 4.6(S) 6.2(S) 26.7(S) CUSS) 4.0(S) 28.9(S) .0( ) 8.4(S) 1.5(S) 2.4( ! C. 0. 0. AM .O(S) .O(S) 6 55. 9. 15. 46. 11. 19. 86. 48. 17. 14. 117. 4.6(S) 6.2(S) 26.5(S) U(S) 3.9(S) 28.9IS1 .Ot 1 8.3IS1 1.4(Sl 2.4( ) 4. 0. 0. .8tS1 .O(S) .O(S) 7 O. 8. 14, 46. 11. 19. 85. 47. 17. 14. 117. 4.6(S) 6.2(S) 26:3(S) 3.9(S) 3.9(S) 28.9(S) .0( l 8.2(S) 1.3(S) 2.41 ! 4. 0. 0. ' AM O(S) O(S) 7 5. B. 14. 46. I1. 19. 65. 47. 17. 14. 116. i 4.6(S) 6.1(S) 26.1(S) 3.9(S) L E S) 28.9(S) .0( 1 L I M 1.2(S) 2.4( ) 4. 0. 0. AM O(S) O(S) ' 7 10. S. 14. 46. 11. 19. 85. 47. 17. 14. 116. 4.6(S) 6.1(S) 25.9(S) L ES) 3.8IS1 HAM .0( ) 8.0(S) I.1(S) 21.4( ) ' 4. 0. 0. .S(S) O(S) O(S) ' 7 15. 8. 14. 46. 11. 19. 85. 47. 17. 14. 116. 4.5(S) 6.1(S) 25.6(S) 3.8(S) 3.7(S) 28.8(S) .0( ) 7.9(S) I.O(S) 2.4( ) 4. 0. 0. MS) O(S) .0(S) 7 20. 8. 14. 46. 11. 18. 85. 47. 16. 14. 116. ' 4.5(S) 6.0(S) 25.4(S) 3.7(S) 3.7(S) 28.8(S) .0( ) 7.7(S) AM 2.4( ) 4. 0. 0. .7(5) .O(S) .0(S) 7 25. 8, 13, 46, I1. 11, 85, 47. 16, 14. 116. �. 4.5(S) 6.0(S) 25.2(S) 3.7(S) 3.6(S) 29.7(S) .O( ) 7.6(S) B(S) 2.4( ) 4. 0. 0. .7(S) O(S) O(S) 7 30. B. 13. 46. 11. 19. 84. 46. 16. 14. 115. 4.51S) 6.0(5) 25.0(S) 3.6(S) 3.6(S) 28.7(S) .0( ) 7.5(5) MS) 2.4( ) 3. 0. 0. .•.i MS) O(S) .O(S) 7 35. A. 13. 45. 11. 18. 84. 46. 16. 14. 115. ,r 4.4(S) 6.0(S) 24.8(S) 3.6(S) 3.5(3) 28.7(S) .0I 1 7.4(S) .6(S) 2.4( ) i, 3. 0. 0. .6(5) O(S) O(S) 4.4(S) 5.9(S) 24.5(S) 3.5(S) 3.5(S) 28.6(S) .0( ) 7.3(S) .5(S) 2.4( ) 3. 0. 0. .6(S) O(S) .o(S) 7 45. B. 13. 45. 11. 18. 84. 46. 16. 14. 115. 4.4(S) 5.9(S) 24.3(S) 3.5(S) 3.4(S) 28.6(S) .0( 1 7.2(S) .4(S) 2.4( ) 3. 0. 0. .6(S) 0(S) o(S) 7 50. 8. 12. 45. it. 18. 84. 46. 16. 14. 114. 4.4(S) 5.9(S) 24.1(S) 3.4(S) 3.4(S) 28.51S) .0l 1 7.11S1 .4fS1 2.4( ) 3. 0. 0. ' .6(S) O(S) O(S) 1 55. 8. 11. 45, 10, 11, 83. 45, 16, 14. 114, ' 4.3(S) 5.8(S) 13.9(S) 3.4(S) 3.3(S) 28.5(S) .Ol l 7.0(S) .3(S) 2.4( ) S. 0. 0. ' .6(S) 0(S) 0(S) 8 0. 8. 12. 45. 10. 12. 83. 45. 16. 14. 114. ' 4.3(S) 5.8(S) 23.7(S) 3.3(S) 3.3(S) 28.4(S) O( ) 6.9(S) .215) 2.4( i 0. 0. .5(5) O(S) O(S) 1 ' BASIN H ... FOi MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED AUGUST 1989 FOR ANTICIPATED CONDITIONS tll PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS 111 CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 303 73. .B 0 40. 120 117. .8 0 40. '309 3 168. .9 0 40. 510 12. .0 3.8 1 45. 21 118. .9 0 40. 6 21. 1.9 0 50. 5 155. 3.0 0 50. 4 386. 3.5 0 45. 11B 124. 2.3 0 40. ' 122 116. 3.0 0 40. 11 9. .0 4.9 5 10. 7 112. .0 22.8 1 30. ' 306 12. .0 5.0 3 15. 303 176. (DIRECT FLOW) 0 40. 101 260. 3.1 0 40. !0 102. 3.0 12.3 2 45. 307 72. 1.6 0 40. 305 59. (DIRECT FLOW) 0 40. 304 118. (DIRECT FLOW) 0 40. ' . 312 9. .0 .9 1 0. _ 311 9. .0 .9 1 0. 1:? 2!6. 1.3 0 40. ' 126 167. 1.1 0 40. 125 136. 1.0 0 45. 200 85. 9 0 45. 123 99. .0 7.3 1 10. 119 96. 2.9 0 40. 113 81. 4.0 2 5. 36 169. 1.1 0 40. ' 215 24. 2.0 9.3 2 10. 214 24. 2.0 5.7 1 50, 213 24. 2.0 5.3 2 0. 127 39. .6 0 40. 210 93. .0 29.1 4 45. 131 119. 1.0 0 40. 54 4. 1.0 .7 1 25. ' 47 23. .9 0 45. 37 28. .0 4.4 1 15. 0 55. 300 93. (DIRECT FLOW) 4 45. 204 187. 1.0 0 .40. 32 98. .0 .9 0 45. 48 23. .9 0 55. ' 39 208. 2.9 0 45. 301 38. (DIRECT FLOW) 1 55. 14 227. 1.2 0 40. 216 11. 1.5 6.8 2 5. 133 11. 1.5 4.1 2 10. 49 39 13 107. 7 .0 7.3 1 2 ^5 15. 124 265. 1.3 0 40. 302 55. (DIRECT FLOW) 4 45. 143 38. 2.9 3 50. ' 15 59. .0 7.0 1 20. 50 59. 1.6 0 55. ' 41 40 2"c0. 107. 1.3 2.5 0 2 40. 15. 211 18. .0 12.5 2 35. 116 109. 4.9 4 55. ' 44 6. .9 0 40. 51 69. 1.8 1 0. 42 162. .0 14.6 1 30. 145 127. 2.6 4 55. ' 46 40. 1.3 0 45. 2 27. 1.6 1 0. 201 209, 3.5 1 40, ' 10Z 127. 2.8 5 0. 9 61. 2.3 0 40. 1 ' ENDFR09RAM PR09RAM CALLED r J: