Loading...
HomeMy WebLinkAboutDrainage Reports - 07/01/2010Cat of Ft CgUib s rov Plans Approved gY I� ao io ►�ra�+ CoP� F'no- L CoaPLA no4 Rc-cee� NORTH COLLEGE IMPROVEMENTS PROJECT - PHASE II Vine Drive to Conifer/Hickory Intersections Drainage and Erosion Control Report Prepared for City of Fort Collins 250 North Mason Street Fort Collins, Colorado 80522 AWES ASSOCIATES NORTH COLLEGE IMPROVEMENTS PROJECT - PHASE II Vine Drive to Conifer/Hickory Intersections Drainage and Erosion Control Report Prepared for City of Fort Collins 250 North Mason Street Fort Collins, Colorado 80522 AVWS ASSOCIATES P.O. Box 270460 Fort Collins, Colorado 80527 (970) 223-5556, FAX (970) 223-5578 Ayres Project No. 32-1415.02 NCNINU DOG July 2010 TABLE OF CONTENTS 1. Introduction................................................................................................................1.1 1.1 Project Description and Location.........................................................................1.1 1.2 Land Use............................................................................................................1.3 1.3 Local Drainage Ways..........................................................................................1.4 1.4 Existing Street Layout.........................................................................................1.4 1.5 Proposed Street Layout......................................................................................1.4 2. Existing Drainage Systems........................................................................................ 2.1 2.1 Existing Drainage Concept..................................................................................2.1 2.1.1 West Side of North College Avenue.............................................................2.1 2.1.2 East Side of North College Avenue.............................................................. 2.1 2.2 Storm Sewer Criteria and Constraints................................................................. 2.5 3. Hydrology...................................................................................................................3.1 3.1 Rainfall................................................................................................................3.1 3.2 Drainage Basin Parameters................................................................................ 3.1 3.3 Existing Drainage Basins.................................................................................... 3.3 3.3.1 West Side of North College Avenue............................................................. 3.3 3.3.2 East Side of North College Avenue..............................................................3.4 3.3.3 Existing Flow Summary ................................................................................ 3.4 3.4 Proposed Drainage Basins..................................................................................3.5 3.4.1 West Side of North College Avenue.............................................................3.9 3.4.2 East Side of North College Avenue.............................................................. 3.9 3.4.3 Proposed Flow Summary ............................................................................. 3.9 4. Hydraulic Design........................................................................................................4.1 4.1 Proposed Storm Sewer General Design Concept ............................................... 4.1 4.2 Proposed Storm Sewer System.......................................................................... 4.1 4.3 Inlet Sizing.......................................................................................................... 4.2 4.4 Water Quality Pond Analysis...............................................................................4.3 4.5 Siphon Under Lake Canal...................................................................................4.5 4.6 Josh Aimes/Lake Canal Flows............................................................................ 4.5 4.7 Existing System Near Vine Drive......................................................................... 4.6 4.8 Utilities................................................................................................................ 4.6 4.9 Master Plan Drainage (NCDID and NECCO)......................................................4.9 5. Pou.dre River Floodplain and Floodway......................................................................5.1 Ayres Associates 6. Pedestrian Bridge.......................................................................................................6.1 6.1 Location.............................................................................................................. 6.1 6.2 Hydrology............................................................................................................6.1 6.3 Existing Conditions Model................................................................................... 6.2 6.4 Modeling Approach and Assumptions.................................................................6.2 6.5 Rise in Water Surface Elevation.........................................................................6.2 6.6 Freeboard........................................................................................................... 6.4 6.7 Preventing Failure Due to Scour.........................................................................6.4 6.7.1 Contraction Scour........................................................................................ 6.5 6.7.2 Abutment Scour...........................................................................................6.5 6.8 Scour Results...................................................................................................... 6.5 7. Erosion Control.......................................................................................................... 7.1 7.1 Existing Soil Data................................................................................................7.1 7.2 Existing Vegetation, Including Percent Cover ...................................................... 7.1 7.3 Temporary Sediment/Erosion Control Methods ................................................... 7.1 7.4 Sediment/Erosion Control Methods.....................................................................7.2 7.5 Materials Handling and Spill Prevention..............................................................7.5 7.6 Inspection and Maintenance............................................................................... 7.6 8. References.................................................................................................................8.1 APPENDIX A — Street Capacity Calculations...................................................................... -- APPENDIX B — Existing Drainage....................................................................................... -- APPENDIX C — Proposed Drainage.................................................................................... -- APPENDIX D — Existing Utilities.......................................................................................... -- APPENDIX E — Pedestrian Bridge Analysis........................................................................ -- APPENDIXF — Erosion Control.......................................................................................... -- Ayres Associates LIST OF FIGURES Figure1.1. Vicinity Map....................................................................................................1.2 Figure 1.2. Typical cross section of proposed North College Avenue...............................1.5 Figure 3.1. Proposed drainage basins.............................................................................. 3.6 Figure 4.1. North College Avenue Improvements Overall Storm Plan .............................. 4.2 Figure 5.1. Floodplain Exhibit........................................................................................... 5.2 Figure 6.1. HEC-RAS Cross Section Layout.................................................................... 6.3 Figure 6.2. Freeboard for bridge on continuous grade (CDOT 2004) ............................... 6.4 LIST OF TABLES Table 2.1. CDOT and COFC Criteria................................................................................ 2.5 Table 3.1. Street Capacity vs. Existing Stormwater Flows ................................................ 3.1 Table 3.2. Total Rainfall Depths....................................................................................... 3.1 Table 3.3. City of Fort Collins Hyetographs......................................... :............................ 3.2 Table 3.4. Existing Flow Summary ................................................................................... 3.5 Table 3.5. Proposed Basin Flows................................................................................... 3.10 Table 4.1. Values for Exit and Entrance Losses............................................................... 4.3 Table 4.2. Values for Entrance Losses............................................................................. 4.3 Table4.3. Inlet Summary .................................................................................................4.4 Table 4.4. Water Quality Pond Summary ......................................................................... 4.5 Table 4.5. Existing System Near Vine Drive Capacity During 100-Year Event.................4.7 Table 4.6. Existing Utility Information...............................................................................4.7 Table 6.1. Pedestrian Bridge Hydrology...........................................................................6.1 Table 6.2. Effects of Pedestrian Bridge............................................................................ 6.2 Table 6.3. Freeboard Summary .......................................................................................6.4 iii Ayres Associates 1. INTRODUCTION 1.1 Project Description and Location North College Avenue, also US Highway 287 and Colorado State Highway 14 (north of Jefferson Street), is a major north -south route through the City of Fort Collins which provides the northern entryway into the City. The arterial provides both local and regional connectivity and carries a large volume of interstate truck traffic. Overtime, citizens have expressed concern about the corridor's physical condition, as well as associated challenges to economic prosperity. Through previous planning efforts, the City identified needs to create a gateway into the City, to improve mobility for the traveling public, including bicyclists and pedestrians, and to establish a strong connection to downtown and the Poudre River. In 2005, Fort Collins voters approved the Building on Basics (BOB) 1/4 cent sales tax to fund capital projects, including improvements on the North College Avenue between Vine Drive and Conifer Street. In addition, the City has secured State and Federal funding for construction of improvements between Vine Drive and the Conifer/Hickory intersections. Project costs are anticipated to exceed appropriated funds. The project area encompasses approximately 1/2 mile of North College Avenue between Vine Drive and Hickory Street. The roadway is a four -lane, urban highway with a two-way left turn lane throughout most of the corridor. The highway is generally shouldered with open, uncontrolled access, and limited storm drainage facilities. Corridor users include automobiles, heavy truck traffic, bicyclists, and pedestrians. Designated facilities for bicyclists and pedestrians are not continuously available. In general, land use along the project corridor is commercial and light industrial. Partial right-of-way acquisition of multiple properties is anticipated as part of the project due to additional width needed for proposed improvements. A portion of the project lies within the Poudre River floodway. Construction of improvements in the floodway is limited for public safety reasons. As stated previously, College Avenue is a major north -south arterial route through the City of Fort Collins. It provides the northern entryway into the City and is a primary route to access downtown. Currently, one transit route utilizes North College Avenue in the southbound direction. The City plans to expand transit service in the area, utilizing North College Avenue south of Conifer Street as an enhanced travel corridor for the area north of downtown. Also, functioning as US Highway 287 (US 287) and Colorado State Highway 14 (SH 14) (north of Jefferson Street), North College Avenue provides both local and regional connectivity linking Colorado and Wyoming, as well as providing a link to Interstate 25 via SH 14. Designated as the Cache La Poudre - North Park Scenic Byways route, North College Avenue is a gateway to the mountains and to recreational lands in northwestern Colorado and Wyoming (see Figure 1.1 for a vicinity map of the project area). According to the City of Fort Collins website, www.fcoov.com, the North College Improvements Project is located in the City of Fort Collins Dry Creek Basins. Dry Creek is a tributary of the Cache la Poudre River. The Dry Creek basin, which begins near the Wyoming border, has a drainage area of about 62 square miles with a series of irrigation canals and reservoirs dominating the upper basin. Due to agriculture and development, only a fraction of the original drainage channel remains. Dry Creek enters Fort Collins near Willox Lane and College Avenue and meanders through small remnants of ditches and channels until it joins the Cache la Poudre River near Mulberry Street and Timberline Road. 1.1 Ayres Associates LlWil plYi�L! �\ I .1�� 9y G1.1R1A/lr- ��P I I PINON .lL@V1M Pdlda NWt � � 0.4T fL1ApR.Y CONMSTIM �I ` ♦ I '•••� r `_VINE DA 1 ---77 �- Figure 1.1. Vicinity Map. mms IASSOCIATES 1.2 Ayres Associates Although local newspapers reported numerous floods over the last 100 years that affected different areas in and around Fort Collins, many floods in Dry Creek probably went unnoticed due to the sparse population in the upper basin. A local resident documented that in 1924 there was flooding that was "belly deep to a horse" in the area that is now JAX Surplus. In the flood in August 1951, the Coloradoan reported two breaks in the Eaton Ditch (Larimer and Weld Canal) which spilled over into Dry Creek and "flooded tourist camps, stores and houses on the west side of N. College Avenue north of the City limits." In the same storm, another 20 houses flooded in the Goering Addition, west of the old speedway track at the northwest corner of Willox Lane and College Avenue. In 1977, another storm brought 4.28 inches of rain in 24 hours, flooding basements north of town, most likely in the Dry Creek basin. In spite of the small number of reported floods in the Dry Creek basin, it contains a very large drainage area - significant flooding could occur at any time. The proposed project is also within the Poudre River floodplain. According to the City of Fort Collins website, www.fcgov.com, the location of the City of Fort Collins is where it is today because of flooding on the Poudre River. The first military post, Camp Collins, was originally established near the present day town of LaPorte. It was destroyed in 1864 when the Poudre River flooded. Camp Collins was relocated to higher ground near present day Old Town in Fort Collins. There are several well -documented large floods on the Poudre River around the turn of the century. A flood in 1891 was due to a dam break on Chambers Lake. The most notable flood was in 1904. This storm was greater than a 100-year event and resulted in the death of Fort Collins resident Robert Strauss. The Buckingham, Alta Vista, and Andersonville neighborhoods were severely damaged by the 1904 flood. The most recent flood on the Poudre River was a relatively small one in the spring of 1999. It was caused by rain and snow runoff during a warm period in April. The flood lasted only a few days, but resulted in a great deal of bank erosion and threatened many properties. The Poudre River behind the Mulberry Water Reclamation Facility had flows of almost 4,000 cubic feet per second (cfs). Normal river flow at this location is 100 cfs. Although the Poudre River has not flooded in recent years, we know from the past that large floods on the Poudre River can happen. Only the future will tell how flooding on the Poudre River could change the history of Fort Collins again. 1.2 Land Use In general, land use along the project corridor is commercial and light industrial with several auto -related businesses. The adjacent properties are predominantly small and individually owned. This situation creates potential opportunity for redevelopment to occur in the short- term. A majority of the area is zoned Service Commercial District with a small segment near the south end of the corridor zoned Community Commercial — Poudre River District. Redevelopment in the area is anticipated as largely commercial and mixed -use. At the southern end of the project, just north of the Poudre River is a small piece of land that is currently undeveloped land in the floodway. This land will be used for a water quality pond. 1.3 Ayres Associates 1.3 Local Drainage Ways The local drainage ways of the area include the Poudre River, Lake Canal, and Josh Aimes Ditch. North College Avenue crosses over the Poudre River and Lake Canal, just south and north of Vine Drive, respectively. The 500-year Poudre River floodplain extends to a location between Lake Canal and Alpine Street along North College Avenue and as far north as Pinon Street for adjacent properties. The 1/2-foot Poudre River floodway ends approximately 100-150 ft south of Lake Canal, influencing the types of project improvements that can be implemented south of the canal. 1.4 Existing Street Layout The horizontal alignment of North College Avenue is straight, generally following the section line from Vine Drive to Conifer Street. The profile of the roadway is nearly flat and slopes south toward the Poudre River. A normal (2%) cross -slope generally exists. The street slopes range from 0.14% to 0.8%. 1.5 Proposed Street Layout The proposed design includes the following: • 12 ft through lane width (exclusive of the curb and gutter) • 11 ft auxiliary lane width (exclusive of the curb and gutter) • 15 ft raised, landscaped median — 4 ft median with 11 ft left turn lane • 8 ft detached shared use path • 7.5 ft landscape buffer (inclusive of 0.5 ft curb head) • 6 ft on -street bike lane (inclusive of 2 ft gutter) • 110 ft ROW width • Gateway Entry between Poudre River and Lake Canal compatible with floodway requirements • Pedestrian bridge crossings at Lake Canal Figure 1.2 is a typical cross sectional view of the proposed North College Avenue. 1.4 Ayres Associates I 1 RA1 R" A Illn aasodoud IA —f9 _____ M OL 03BOdlRld_/T__ 6D a Im r � I� m b m I � � I I 110 .---------%YVi ALlwl OiYPmAtld Figure 1.2. Typical cross section of proposed North College Avenue. 1.5 Ayres Associates 2. EXISTING DRAINAGE SYSTEMS 2.1 Existing Drainage Concept The high center line of North College Avenue creates a natural drainage divide between the east and west sides of North College Avenue. Due to the high centerline, the existing drainage patterns along North College Avenue can be broken out into the west side of College and the east side of College. 2.1.1 West Side of North College Avenue The west side of North College Avenue generally slopes from north to south. The drainage area for the west half of North College Avenue is bound by the Larimer and Weld to the north and by the Lake Canal to the south. The drainage area is bound by the railroad tracks to the west and North College Avenue to the east. Approximately 100 to 200 feet west of North College Avenue is a low spot that travels the length of the drainage area. This low spot acts as the main drainage path for the west half of College. The drainage path collects flows from the adjacent developments. The majority of the adjacent developments along the west half of College do not detain the storm runoff from their developments. Currently, there are two storm sewer systems along the west side of North College Avenue. One system starts at the intersection of Willox Street and North College Avenue. The storm sewer runs along the west side of College and consists of roadside ditches and small diameter storm sewer. The storm sewer crosses under North College Avenue at the intersection of Hickory and North College Avenue and runs east where it ultimately outlets into Dry Creek. A second storm sewer system starts south of the intersection of Hickory and North College Avenue. This system runs south along the west side of North College Avenue with inlets and laterals picking up local stormwater from North College Avenue, surrounding side streets and adjacent development. This system runs south and discharges into the Josh Aimes Ditch which ultimately discharges into the Lake Canal irrigation ditch. Both existing storm sewer systems are undersized, are filled with sediment and debris, and do not meet either the City of Fort Collins or CDOT stormwater criteria for encroachment (spread) or allowable depth of ponding (see Section 2.2 for storm criteria). Figure 2.1 depicts the existing drainage basins for the project area. 2.1.2 East Side of North College Avenue The east side of North College Avenue generally slopes from west to east. Because there is no curb and gutter along North College Avenue the stormwater discharges off of North College Avenue and onto the adjacent properties. Ultimately the majority of the runoff from the east half of North College Avenue is collected in Dry Creek or the Lake Canal irrigation ditch. With the improvements to North College Avenue and the addition of curb and gutter the storm runoff can not continue to discharge onto the adjacent properties. An adequately sized storm sewer system in combination with the street capacity must be designed to meet both the City of Fort Collins and CDOT criteria for encroachment and depth of ponding (see Section 2.2 for storm criteria). Exhibit 2.1 depicts the existing drainage basins for the project area. 2.1 Ayres Associates 1.84 v S2 �1b EX14 F.•• �, 0.41 __ _ 0.44 0.22 ,r.. i ail $ S4 ----- _ ,� 0,34 Ile vi 4 1�11 11I1111/ 111 flj� ,1 - 90 - - ---`\ °� --- ----------- -'_ -Alw .b p\ I AMS ASSOCIATES \' I ;'' 1FT - _.FLOODWAY /I l II a .7 - 1 _ EX15 �..� . .._.._ 0 28 EX21 EX4 0.24 -•'� •� 1.14 I /YI If MI � II II IIII fll II / / 1 / I 1 i 1 _ 0.5FT FLOODWAY / 500-YEAR �7p I FLOODPLAIN / I j lyl : N�• � i;-=_;,. �; \i 'j 111111 11 111 11 100-YEAR FLOODPLAIN"I 1 / _ ------------ MAIN ^LOW CI \ PATH H r' 1 ,---- EX1 0 1 CA a0.17 T- I T- _ 14.73 -1 -\ - If r' • I __ 051 ._.._ Imo' -_ •._u _..�A_ _ ._ �u�[l _ _u_.. �•. _+•r / __-. �•.��� -i ._.. �•5' �- �7-77- .g.. �'. �.._� — ' EX23 .... . _.._.. _.. `•l �' 1 1 _ i 43 l --'PROPOSED _�� .; \\__, '.;` � •�-_ STORM SEWER ' - --- -_ ; a1 �ly�`� a u^ FIGURE 2.1 1 i -a 5�0 %/------ ^� EXISTING BASINS SCALE IN FEET_,,' It Ate_ __________ •'w�j' - 1 of 3 -- 1 � I I - I V, ,- 1 , I I II 1 H EXISTING STORM SEWER k / 7 I , ... _.. _.. tl.. _.. _.._.. _.i.�rn>r>r 1 \ I I 1 r I --, 0.91 - 97 ( I 1 M , / 1 i / as i '= =- ---- ----------1.�.._.._.._.._.._.._.._..J ----- ---------- --------------- 498 vi i 1 , O \ �; ;'_ 1 11 • / �\ � ;: ``\ exit1762 EX fit -- • 1 . 3l7 80 - MAIN FLOW - �� PATH ; , Alt , I \ TpI - - COLLEGE _--- ___�,� -== --,. COLLEGEAVEIVIJE _ = : - _.._.. .. .. .. �ti _.._. ..1 ( - _ _ __ __ _ ____-- ~ _____ -``I `\ i \.• - � i 1 `" 1 III 1 I � � + 1 -` ----- --------- A f\z ' � \\ ; - ---. 2; is ' �--. i 1-"---- : ; -�•` FIGURE 2.1ti lip EXISTING BASINS, '` � ; `\` ; 1 -_ \ \ :-- •1 I; it � � -I. ...� \, ;1j"y// /_ ;' 2 of 3 1 SCALE IN-FEgET--- AMS ASSOCIATES J I %j I 1 o \ \\ 49 96 1 _ J I ' 9 -- ----- _ --- ------------- 1 ,1 I / 1 \ I" I, l ,I 1 1 � „ ASSOCIATES 1 1 � - \ - - - - - ,----------- 1 \ 3 r 0 DO IDD 2D0 SCALE L 1 i i - EX12 22.8898 I • ` I G `Ill 1' 1 /I u ' 1 LAM IPO -_ - _ I trT - ---------- ---- -- ,r ---- ----- -- ---- ---- -----_------- ---_ 1 1 = I 1 - Low POLYf ommow 10 •` 4985 EX11 17,62 8.49 I ``a 1 ( i (( 1 - _ ------------- I -" 6, - . N It •\/ --- I I 1 ` ' 1 I1� / 111 I 1 I 1 l 11 III 1 `, � 1 n ,• / 1 I11 I - I \e9ej1 1• 1 I �I i i I 1 � / I • 14 f _-'- 1 , 1 / I ' i FIGURE 2.1 EXISTING BASINS . 3of3'•r 2.2 Storm Sewer Criteria and Constraints Table 2.1 lists storm drainage design criteria for both CDOT and the City of Fort Collins. Table 2.1. CDOT and COFC Criteria. 10 ear 100- ear Agency Spread FL Depth Spread FL Depth CL Depth COFC Leave one lane free of water 6 in Leave one lane free of water 6 in None CDOT Shoulder +3ft --- --- 18 in 6 in 2.5 Ayres Associates 3. HYDROLOGY Based on CDOT and the City of Fort Collins storm drainage criteria the capacity of North College Avenue ranges from approximately 0.5 to 2 cfs for the 10-year event and approximately 34 to 140 cfs for the 100-year event. The capacity is based on the street cross slope and gutter slope. Table 3.1 compares the existing capacity of North College Avenue to the accumulated storm runoff at the downstream end of the project area for the west and east sides of North College Avenue. Table 3.1. Street Capacity vs. Existing Stormwater Flows for North College Avenue. 10 ear 1 00-ear Street Capacity 0.5-2 cfs 34-140 cfs Total Cumulated Flow +/- 45 cfs +/- 70 cfs While the 100-year flow does not exceed the current street capacity for the majority of the project site, the 10-year flow greatly exceeds the current street capacity. Therefore, the controlling flow for the design of the storm drainage system is the 10-year event (refer to Appendix A for Street Capacity Calculations). 3.1 Rainfall The standard 2-hour rainfall hyetographs used throughout the City of Fort Collins were used for the hydrologic modeling efforts. These hyetographs can be found in the City of Fort Collins Drainage Criteria Manual. The system was designed to meet both the major (100- year) and minor (10-year) events. Table 3.2 is a summary of the total rainfall depths associated with each of the three return period storms. Table 3.3 gives the actual rainfall hyetographs defined for the three storm events. Table 3.2. Total Rainfall Depths. Rainfall Period 2-year 10 ear 100 ear Rainfall Depth in 0.98 1.71 3.67 3.2 Drainage Basin Parameters Drainage basins were delineated for both the east and west sides of North College Avenue. Offsite basins were delineated along the west side of North College Avenue to account for the offsite flows that contribute to the existing storm sewer system. The following parameters were determined for each of the delineated basins: Basin Area: Current runoff patterns and development conditions within the project site were defined beginning with a detailed sub basin evaluation and delineation. The basins along North College Avenue were delineated using surveyed topographic information that was obtained for this project. Offsite basins were delineated using 1-foot aerial topographic information that was obtained with the North College Drainage Improvements Design (NCDID) project. 3.1 Ayres Associates Table 3.3. City of Fort Collins Hyetographs. Time min 2-year 10 ear 100- ear 5 0.29 0.49 1.00 10 0.33 0.56 1.14 15 0.38 0.65 1.33 20 0.64 1.09 2.23 25 0.81 1.39 2.84 30 1.57 2.69 5.49 35 2.85 4.87 9.95 40 1.18 2.02 4.12 45 0.71 1.21 2.48 50 0.42 0.71 1.46 55 0.35 0.60 1.22 60 .0.30 0.52 1.06 65 0.20 0.39 1.00 70 0.19 0.37 0.95 75 0.18 0.35 0.91 80 0.17 0.34 0.87 85 0.17 0.32 0.84 90 0.16 0.31 0.81 95 0.15 0.30 0.78 100 0.15 0.29 0.75 105 0.14 0.28 0.73 110 0.14 0.27 0.71 115 0.13 0.26 0.69 120 0.13 0.25 0.67 Basin Width: The basin width was computed by dividing the overland flow length into the basin area. The overland flow length was estimated for each basin by averaging the distances associated with several representative flow paths as defined using the topographic mapping. Percent Impervious: The percentage of area within each basin that was impervious was estimated based on recent aerial photography. The aerial photography was verified with field visits. Basin Slope: The basin slope was estimated based on the topographic information that was available for this project. Additional Parameters: Additional parameters, including overland roughness values, surface storage, and infiltration rates were defined using standard values currently specified by the City of Fort Collins Utilities. Overland roughness coefficient (impervious areas): 0.016 Overland roughness coefficient (pervious areas): 0.250 Surface storage (impervious area): 0.1 inches Surface storage (pervious area): 0.3 inches Initial Infiltration Rate: 0.51 in/hr Final infiltration rate: 0.50 in/hr Decay rate coefficient: 0.0018 sec' 3.2 Ayres Associates Once the above parameters were obtained, EPA SWMM version 5.0.0018 was used to determine the 10- and 100-year flows. During the design phase, inlets were added and the corresponding basins were adjusted to insure that the 10-year street capacity was not exceeded (refer to Section 3.0 for North College Avenue street capacity and COFC and CDOT requirements). 3.3 Existing Drainage Basins There are 24 existing drainage basins. Basins EX1 through EX12 are offsite basins that drain to the existing storm sewer system or the main drainage path along North College Avenue. Basins EX13 through EX20 make up the west half of North College Avenue while basins EX21 through EX24 make up the east half of North College Avenue. Basins S1 through S4 were created to verify the capacity of the existing storm sewer near Vine Drive (refer to Appendix B for Existing Drainage Basin Calculations). 3.3.1 West Side of North College Avenue The majority of the drainage along the west half of North College Avenue drains to a low spot that is approximately 100 to 200 ft west of North College Avenue. This low spot acts as the main drainage path for the west half of North College Avenue. The drainage path begins south of Willox and continues south to the Josh Aimes Ditch and Lake Canal. Drainage along the west side of North College Avenue starts with basin EX12, north of Willox. The basin is currently developed (residential and commercial) and flows to a low spot on Willox. The storm flows overtop Willox and continue south, via overland flow, ultimately to the low spot in Hickory. Basins EX11, EX9, EX6, and EX4 also drain to the low spot in Hickory via overland flow. The basins consist of a mix between undeveloped land, commercial development, residential subdivisions, and a mobile home park. Basins EX8 and EX7, commercial developments, drain south to the existing storm sewer system along North College Avenue. The storm sewer system consists of small diameter storm sewer and roadside drainage ditches. The existing storm sewer system starts south of Willox and continues to the Hickory and North College Avenue intersection. At this intersection the storm sewer crosses under North College Avenue and discharged in Dry Creek. This system is undersized and filled with sediment and debris. When the capacity of the storm sewer system is exceeded, the storm runoff overflows to the low spot in Hickory. Basin EX10 is a subdivision that drains to Dry Creek. Basin EX5 is Dry Creek. Dry Creek drains to an existing 30" clogged storm sewer which connects into the storm sewer system along North College Avenue. The flows from Dry Creek overtop and flow south to the low spot in Hickory. The Hickory low spot, design point DP1, is approximately 3 ft lower than the intersection of North College Avenue and Hickory and is drained by an existing storm sewer. The existing storm sewer connects into the existing storm sewer system along North College Avenue. Once the storm sewer capacity has been met, the storm flows overtop Hickory and travel south continuing in the main drainage path along the west side of North College Avenue. 3.3 Ayres Associates The overtopping flows, along with runoff from basins EX2 and EX3, travel south in the main flow path to a low spot at Hemlock, design point 131132. These basins are a combination of undeveloped land and commercial development. The low spot at Hemlock is drained by a small storm sewer which connects into an existing storm sewer system in North College Avenue. This existing system starts just north of Hemlock and continues south where it discharges into the Josh Aimes Ditch. The Josh Aimes ditch crosses under North College Avenue and outlets into Lake Canal. Once the storm sewer capacity is met, the flows overtop Hemlock and head south. The flows overtopping Hemlock, along with the runoff from basin EX1, drain into the Josh Aimes Ditch, design point DP3, via overland flow. Basin EX1 mainly consists of residential development. Josh Aimes ditch travels under North College Avenue in a 2x6 RCBC. Once across North College Avenue the storm sewer is connected into an 30" RCP. The 30" RCP outlets into the Lake Canal. The 30" RCP has capacity of approximately 30 cfs. During a 100-year event there is approximately 265 cfs that drains to the Josh Aimes ditch, DP3. According to existing contours and weir calculations, the flow will overtop Josh Aimes ditch and head south to the Lake Canal and east to North College Avenue. The majority of the flows that get to North College Avenue will flow back to the west and ultimately back into the Lake Canal. A portion of the flows will cross over North College Avenue and into the Lake Canal. Basins EX14 to EX20 consist of the west half of North College Avenue along with the commercial developments that drain directly onto North College Avenue. These basins drain to the existing storm sewer system along North College Avenue. Once capacity of the existing storm sewer is met, the storm flows will overtop the storm sewer and travel south along North College Avenue to the Josh Aimes ditch and the Lake Canal. 3.3.2 East Side of North College Avenue The east side of North College Avenue generally slopes from west to east. Because there is no curb and gutter along North College Avenue the stormwater discharges off of North College Avenue and onto the adjacent properties. Ultimately the majority of the runoff from the east half of North College Avenue is collected in Dry Creek or the Lake Canal irrigation ditch. Basins EX21 to EX24 consist of the east half of North College Avenue. These basins drain directly offsite to the surrounding developments. Basins S1 to S4 consist of North College Avenue. These basins drain to an existing storm sewer system near the proposed water quality ponds. The existing system discharges into the Poudre River, design point DP4. These basins were created to verify the capacity of the existing storm sewer. 3.3.3 Existing Flow Summary Table 3.4 summarizes the existing basin flows for this project. 3.4 Ayres Associates Table 3.4. Existing Flow Summary Basin/Design Point 10-year Flow (cfs) 100-year Flow (cfs) West Side EX01 37.53 91.98 EX02 43.78 108.17 EX03 11.69 33.51 EX04 97.83 252.10 EX05 5.23 25.71 EX06 14.88 39.34 EX07 6.29 13.28 EX08 20.02 42.30 EX09 74.64 189.82 EX 10 37.28 82.27 EX 11 32.04 85.68 EX12 64.51 164.02 EX 13 0.80 3.73 EX 14 2.09 4.37 EX 15 1.33 2.78 EX 16 2.42 5.06 EX17 8.55 17.86 EX18 0.81 1.69 EX19 4.51 9.43 EX20 7.36 15.38 East Side EX21 1.14 2.38 EX22 5.42 11.31 EX23 6.79 14.19 EX24 4.32 9.03 Southern Existing Basins S 1 --- 4.03 S2 --- 2.17 S3 --- 3.35 S4 --- 4.63 3.4 Proposed Drainage Basins There are 48 proposed drainage basins. Basins OS1 through OS12 are offsite basins that drain to the existing storm sewer system along North College Avenue. The proposed system will pick up the existing storm sewer system. Basins W01 through W18 make up the west half of North College Avenue while basins E01 through E13 make up the east half of North College Avenue. Figure 3.1 shows the proposed drainage basins (refer to Appendix C for Proposed Drainage Calculations). 3.5 Ayres Associates A l:tlap IN it I I / \ l M1,ljz I _ ' 100 YEAR FLOODPLAIN q / ------------- ' / I r /r ------ -_FLOOD WAY r ,I !I / 11 \ / I i / I / I / 11 W1 / 0.60 E1 E2 034 if s ♦//I II. J i_' ` - - i '/. ;� lei \I , it 500—YEAR 00 0.5FT r I : -;ice•,/;. ' J -------------- MAIN -FLOW' C/] PATH yy .I 19> WO O i I ' - vi ...- i -- Wg _ / pI- �D "\. ---- --- ;' 10 ------ 0�4,I O.J4 �.. I r 0.17 \a �J 0.53 i w7 II % wa 037 F oas 047 _ __ 0.° i1 =13 0.05 0.50 r 0 24 ---� td E8 ." E9 `- 0.5 If y 'PROPOSED-- _____ STORM SEWER II ; --- -- 7!!n��`� -----' � �rll1k'y FIGURE 3.1 i a \� ,�; � `— PROPOSED BASINS SCALE IN FEET 1- ' 1 of 3 ----- 0.18 .rl 0 1 1� • / rrrr '/iiii �'rr '� '/ ' I \\e_- i _/' � 11 1,\ i / �r \ r • 1 /' r --- _ i\ i i Ill/Yh / r '• // //j / "' '"I ` `♦ � I j is -1 Os3 .�MfOC 1 ' \\\,'; `\ \♦h p ,ram/ ./ \ tl I 1 1\ r_ / ILNI ,yet 1 -,1 PROPOSED - STORM SEWER I`--- ' 1I' i I 1 jFt� I IIF I \ J ' • I 1 I 1 I 1' - 1 vi I 1,1 1 1 I 1 1 I I `t I I 1 1 I 1 I I 1 11 11 I, r 1 I \ , --tea.• � '-_''--.-_ / '' \1``.'% '\ _' � 1 I - -I MAIN FLOW OSg PATH ; e_- 7 I r - I - i /I •`� I 1 i ____ __________ �4ya II 11 1 II I 11 1 1,1 1 11' 11 Ir-_ \ \ 1 1 \ 1 \ I j�• 1 I 1 1 ✓ ii „ / 1 III I i - ossr -, 30.80 '\,1 1 I 111 ----------------- I It -_--___-- -----COLLEGE AVENUE _____ ___ - ---------------------------------- ' Jr• i `_-' -''•i it ' /' � `'4 - -___ - :. ---------------- r � .n`t+ii ; i 1\vl iiii i i I �.<sadt � ,% A • / -1 l 1,11 I I 111 m 1 ♦\ 1, I �1 _ i `' I \r-^ '♦\a %'i/`� - � `\ � � __ -, _� ; n - FIGURE 3.1 PROPOSED BASINS Q l Il,epi- n i it Fv I �I 1�_ Iill I O \II'1 I I r 1 1 r •\ �, i / 1 1 ---- _------1 I i All II i I 1 e 1 \ I/ � n n 1 •\ 1� zoo SCALE IN -FEET ____- c ASSOCIATES 0 50 100 200 SCALE IN FEET J ; I I - JiF �'�• 1 I , t 111 �`, ' = - __ sir �..ron�.s us=:;r..�:+3.C�....L�. uiL.. r _ I - - ._____ . _ _� .r.• �.r �.. _,�_ _ NT 66 _ __ _ �__ �- �___________" ---_ _....�..�ai.�..�.:-aa.-atK..�7.-�.. �.. �..�..�..r r ---,------- ---- LLO ---- _ --- t i " ---------- STREET _------------ -_-= ----- -- _ .ti it s� • ---- _-------_-_----- '`\ 1\\t it i i it 1\I ' I i LOW PORT 1 1 \ II '\ c.:__ i i I ---- 1 /' 01FNFLOW / `\ t' li \` ' it I --_ - ----`17.62 ' OS11 f 1 __- \ `y \♦ \ 1 •. r I _ `I .--'' : ' ; 1 ` --------- ..pti p It\ h\\\\`, \,\ •\ `�__`__� `f i `. O P\ 1�fy, \ ` 1 ,•I •-------------- 1 I `••`•. . III p 11 \' ; <"�!•\� ' 1, It —•v \ I it I \ tw I y\ ---------------- �� \,,. \ `\\ --- ,,,\ \ _`,\ �.\\\w,, ,♦ ,`: �_ � ---1'\ i \. -- -- - -� _ ---- -- -_' FIGURE 3.1 ASSOCIATES ` ;, ;,;�;n1\,. 4' - - - --. ,- `y -- PROPOSED BASINS - 7 J ,q `♦ i `\I \� 1 1 \r r I IN I r ii I 1-Ul Kill w _ \ 1` I O I I I 1 I fl 1 I t i I 3.4.1 West Side of North College Avenue The flow along the west half of North College Avenue continues along the same path as described in the sections above. The offsite basins are the same as the existing basins; the nomenclature has just been changed for the proposed basin discussion. The "EX" in front of the existing basins was changed to "OS." For a detailed discussion in basins OS1 to OS12, refer to the previous sections (referencing EX1 to EX12). The offsite basins were analyzed because they contribute to the existing storm sewer, system, and are accounted for in the proposed storm sewer design. The offsite basins flow to the Josh Aimes ditch, approximately 265 cfs. With the design of the North College Avenue storm sewer system, the flow to the Josh Aimes ditch is not reduced. The flow is controlled by the surrounding developments and not by the flow on North College Avenue. With the project a low spot will be added in Woodlawn Drive and the Lake Canal will be siphoned. The storm flows will overtop Woodlawn Drive and continue south, over the Lake Canal siphon and to the water quality pond, design point DIPS. The flows will proceed through the water quality ponds where they will eventually spill into the Poudre River through the spillway located at the south end of the pond. Basins W1 to W18 consist of the west half of North College Avenue along with the commercial developments that drain directly onto North College Avenue. These basins drain to the proposed storm sewer system along North College Avenue and ultimately to the water quality ponds, design point DP4. The basins were broken out in order to model each inlet. 3.4.2 East Side of North College Avenue The east side of North College Avenue generally slopes from west to east. With the addition of curb and gutter, the flows do not travel offsite as in existing conditions. Basins E1 to E13 consist of the east half of North College Avenue. These basins drain to' the proposed storm sewer system along North College Avenue and ultimately to the water quality ponds, design point DP5. Basins E2, E3, E10, E12, and El will continue to travel offsite as in existing conditions. These basins are in areas where it is difficult to collect all the site runoff. The offsite flows are reduced from existing conditions and do not adversely affect the existing developments. 3.4.3 Proposed Flow Summary Table 3.5 summarizes proposed basin flows for this project 3.9 Ayres Associates Table 3.5. Proposed Basin Flows. Basin/Design Point 10-year Flow (cfs) 100-year Flow (cfs) Off Site Basins OS 1 37.53 108.17 OS2 43.78 33.23 OS3 11.59 252.20 OS4 97.87 25.71 OS5 5.23 39.34 OS6 14.88 13.28 OS7 0.00 0.00 OS8 20.02 189.82 OS9 74.64 82.27 Oslo 37.28 85.68 OS 11 32.04 164.02 OS12 64.51 3.01 West Side W 01 1.37 1.27 W 02 0.58 3.61 W 03 1.64 1.37 W 04 0.62 3.31 W 05 1.51 5.87 W 06 2.54 4.23 W 07 1.84 4.60 W08 2.10 1.67 W 09 0.79 5.20 W 10 2.46 2.64 Will 1.21 5.03 W 12 2.32 6.53 W 13 3.03 5.96 W 14 2.68 3.42 W 18 0.00 0.00 East Side E01 0.71 1.56 E02 0.58 1.27 E03 0.31 0.68 E04 1.78 3.91 E05 1.07 2.34 E06 2.36 5.18 E07 1.79 3.92 E08 1.31 2.85 E09 2.70 5.83 E 10 3.24 7.01 E 12 0.23 0.49 E13 37.53 91.98 3.10 Ayres Associates 4. HYDRAULIC DESIGN 4.1 Proposed Storm Sewer General Design Concept A traditional storm sewer system is proposed to collect project stormwater flows. The design includes a main trunk line on the west side of North College Avenue with laterals connecting proposed inlets from the east and west side of North College Avenue. In addition, the existing storm sewer along the west side of North College Avenue and at Hickory will be tied into the new trunk line. Proposed inlets will be added where needed due to limited street capacity. The inlets and storm sewer are sized to convey the 10-year event. Once constructed, the system will meet City of Fort Collins and CDOT storm drainage criteria for encroachment and depth of flow for both the 10- and 100-year events (see section 3 for North College Avenue street capacity calculation results). Storm flows will be treated in a water quality pond before discharge into the Poudre River. Water quality ponds will be located between the Lake Canal and Poudre River on parcels currently owned by the City of Fort Collins Stormwater Department. The Stormwater Department has approved use of this property for purposes of water quality treatment. In addition, the ponds will be incorporated into the proposed gateway as described in Section 5. The Lake Canal will be siphoned under the proposed storm sewer. A siphon can not be avoided due to the flowline elevation of the Lake Canal compared to the discharge location in the Poudre River. Siphoning the storm sewer under the Lake Canal was analyzed, but after a detailed investigation the COFC and CDOT preferred the Lake Canal siphon to the storm sewer siphon. Further discussion on the siphon can be found in Section 4.5. Figure 4.1 shows the proposed storm sewer system. 4.2 Proposed Storm Sewer System In order to accurately size the proposed storm sewer system a hydraulic model of the project was created. EPA SWMM version 5.0.0018 was used to analyze the proposed storm sewer system including the proposed water quality pond and siphon. EPA SWMM was chosen because of its ability to model various hydraulic flow regimes including backwater, surcharging, reverse flow, and surface ponding. EPA SWMM uses a series of links, nodes and ponds to represent the components of the storm sewer system. Inlets were modeled with a node. The invert assigned to the inlet is the proposed outlet pipe invert. The actual size of the inlet was determined using UDlnlet. The UDlnlet calculations can be found in Appendix C. The proposed storm sewer connects into the existing storm sewer system. In order to account for the flows from the existing system, portions of the existing system were added to the EPA SWMM model. The existing system overflows, thereby affecting downstream inlets. This was modeled using overflow links and nodes at the existing inlets. The overflow link is set at the grate flowline of the inlet. When the storm runoff exceeds the capacity of the exiting pipe, the inlet overtops and travels downstream. Overflow links were also added for the proposed inlets to model any overtopping that may occur during the 100-year event. No overtopping of the proposed inlets occurs during the 10-year event. 4.1 Ayres Associates FLOODIPLAIN LEGEND FEMA 500-YEAR FLOODPLAIN .......... FEMA 100-YEAR FLOODPLAIN POUDRE RIVER LOFT FLOODWAY POUDRE RIVER 0.5FT FLOODWAY e �_;t so 0 30 60 120 6iimmm!rm� SCALE IN FEET 34x53 HERCP STORM M AV I in WL&I . I 6 19x30 HERCP POUDRE RIVER POUDRE RIVER ONE -FOOT --HALF-FOOT m 3 MH A2 5' TYPE R ,n... CURS INLET A7 11 W/ is-- POP 5' TYPE R CURB INLET A4 5' TYPE R W/ 18" RCP CURB INLET A5 1. 5' TYPE R MH A9 W/ 18" POP CURB INLET As W/ is- RCP 5, TYPE R CURB INLET 34x53 MH All MH Al2 A8-'_ HERCP W/ 18" RCP STORM 1, MH AI01 36" RCP --- STORM A MH C3 COLLEGE AVENUE G4 MH r5 r-MH 18" RCP ---------- p STORM IS --- ---------------- t HERCP----------- L 18 RCP -STORM Aj r- F_ STORM RCP 4*STORM G I 14x23 HERCP FIERCP 14x2 S CURB INLET G3 J'CURB INLET G5 �:A,. j� 5' TYPE CURB INLET G4 sk STORM G3 STORM G4 W 5' TYPE R 10' TYPE R 19almormb Pft Date: July 29, 2010 Sheet Revisions As Constructed Mm" Flo Norm: FA32-1415.00 -NOrth C01ftffkM&InDw9sSxhIb*DrWn&p RDWW9g4.1 I I'it. I X *W411W.Wilivi comments 281 North College Avenue HoilbmtsiScale Full: 1"=60' Half., 1" = 120' AMSEngineeIVScientists/Sturveyors 3865 JFK Pwkway, Building Z Sufte 200 P.O. Box 270460 527 ASSOCIATES (R7'0'l`22"3`W' �5W H" RCP STORM A 77TE RIL INLET A9" -18" PCP 36- RCP wo STORM A U POUDRE RI VER 100-YR "F-LOODPLAIN Zt 0 5 TYPE R CURB INLET H 1 Or " TYPE R CURB INLET A3 H A7 W1/718 RCP 42" RCP 2" RCP STORM A AH As-- CONTINUED MH G2 14x23 HERCP RCP STORM G2 w w C0 CONTINUED Cf) Ct 0 ---SEND A2 li F6%-i Ly 0 Fort Collins, CO 80521 No Rw4Wws: rt Collins Phone: (970) 221-6605 PwAsed: Fax: (970) 221-6378 Void: MH A14-J MH A13 --- - ---------- As ------------------ -------- ----------- - --------------- -------------- -- NORTH COLLEGE AVENUE IMPROVEMENTS, ProjectNo./Code OVERALL STORM PLAN Engheer J. MICHAELSEN Structure Designer J. MICHAELSEN Numbers Sheet Subset STORM Subset Shestr Sheet Number EXHIBIT4.1 Exit and entrance losses were assigned to each pipe according to documentation from the UDSewer program developed by Urban Drainage. Both EPA SWMM and UDSewer calculate friction losses through the pipe and through the structures (i.e., manholes, inlets etc.) with the same equations. Because EPA SWMM does not provide any documentation on loss values, the values documented in UDSewer were used. Table 4.1 shows the values used for exit and entrance losses. Table 4.1. Values for Exit and Entrance Losses. Angle in Degree Bend Loss Coefficient for Curved Deflector Manhole Bend Loss Coefficient for Non -shaping Manhole Straight Through 0.05 0.05 22.5 0.08 0.1 45 0.28 0.4 60 0.46 0.64 90 1.01 1.32 A Snout oil -water debris separator is to be installed on the manhole just upstream of the water quality pond. The purpose of the Snout is to trap oil, sediment and trash within a deepened inlet or manhole section until it can be removed with a vac truck by City of Fort Collins maintenance personnel. The Snout is a relatively new water quality BMP. The Snout will ultimately minimize the amount of oil, sediment and trash that would have otherwise entered the water quality pond in the Gateway area. Entrance losses for the manhole which will incorporate the snout is based on documentation from the Snout manufacturer; Best Management Products, Inc. According to the manufacturer, the losses caused by the snouts are based on modeling efforts by PennDOT. The losses associated with the Snouts are dependent on the size of the outlet pipe and size of the Snout (refer to Appendix C for a detailed table of the losses associated with the Snouts). Table 4.2 lists the losses associated with the Snouts used for the CIPO project. Table 4.2. Values for Entrance Losses. Diameter of Exit Pie Size of Snout Specified Entrance Loss Coefficient 48" 72FTB 2.4 The proposed storm sewer has minimal cover due to unavoidable existing utility conflicts. Pre -Cast Concepts (concrete pipe manufacturer) analyzed the strength of the pipe with respect to the shallow depth of the pipe and the traffic loading that North College Avenue will be expected to experience. It was determined that Class III RCP will be adequate throughout the length of the design (refer to Appendix C for documentation on the suggested class of RCP to be used for the project). 4.3 Inlet Sizing Inlets were sized using UDlnlet. The UDlnlet calculations can be found in Appendix C. Inlets were sized to insure that the EGL was under the grate flowline elevation of the proposed inlet during the 10-year event. During the 100-year, the EGL will be above the grate flowline elevation for the majority of the inlets. The majority of the inlets are at grade inlets. The overflow from the inlets on the west side of North College Avenue will remain in North College Avenue where it will ultimately flow into the water quality ponds. On the east side of North College Avenue inlets G2 and E1 were increased to collect the flow that can not be collected in the upstream inlets. Table 4.3 summarizes the proposed inlet hydraulics for the 10- and 100-year events. 4.3 Ayres Associates Table 4.3. Inlet Summary. Inlet Tributary Basin Inlet Grate Elevation 10 ear 100 ear Flow HGL EGL Flow HGL EGL INLET -All W02 4964.43 0.58 4962.54 4962.80 13.29 4964.84 4965.32 INLET-A2 W03 4965.1 3.79 4962.90 4963.46 3.61 4965.18 4965.76 INLET-A3 W06 4966.83 2.54 4963.58 4963.67 6.13 4966.93 4967.13 INLET-A4 W07 4967.85 1.84 4964.65 4964.72 4.31 4967.90 4968.14 INLET-A5 W08 4968.83 2.10 4965.64 4965.71 4.74 4968.84 4969.07 INLET-A6 W11 4969.54 1.21 4966.58 4966.67 2.64 4969.57 4970.03 INLET-A7 W12 4970.15 2.32 4966.81 4966.88 5.03 4970.17 4970.59 INLET-A8 W 13 4971.19 3.03 4967.56 4967.72 6.53 4971.21 4972.02 INLET-A9 W 14 4973.22 2.68 4968.82 4968.97 5.96 4971.74 4972.26 INLET-13 E01 4963.77 1.06 4961.26 4961.41 1.55 4963.34 4963.86 INLET-E E04 4964.51 1.78 4962.66 4962.83 11.71 4964.73 4964.91 INLET-F1 W04 4965.95 0.62 4963.09 4963.12 2.22 4965.96 4965.99 INLET-H1 W05 4966.06 1.51 4963.11 4963.16 4.24 4966.16 4966.23 INLET-G1 E05 4966.02 1.07 4963.20 4963.29 6.70 4966.23 4966.33 INLET-G2 E06 4966.85 2.36 4964.21 4964.34 5.35 4966.99 4967.15 INLET-G3 E07 4967.88 1.79 4965.15 1 4965.25 3.92 4967.93 4968.08 INLET-G4 E08 4969.32 1.30 4966.77 4966.80 2.85 4969.37 4969.50 INLET-G5 E09 4970.53 2.69 4967.74 4967.88 5.83 4970.57 4970.77 INLET-J1 OS1 4961.83 17.41 4962.50 4962.70 25.61 4964.78 1 4965.20 4.4 Water Quality Pond Analysis With the addition of curb and gutter, stormwater flows are concentrated and redirected. This change in flow patterns triggers the need for storm drainage improvements which provide for the safe passage of vehicles during significant storms. Also, water quality treatment is required by Federal Law for projects larger than 1 acre to protect surface waters from pollution. North College Avenue drains to the Poudre River and must be treated prior to discharging into the River. The storm flows will be treated in a water quality pond before being discharged into the Poudre River. The water quality pond will be located just south of the Lake Canal and north of the Poudre River. The land is currently owned by the City of Fort Collins Stormwater Department. The required volume for the water quality pond was determined using the Urban Drainage Flood Control District (UDFCD) method. The total volume required for the project area is 0.50 ac-ft. The water quality pond will be designed to have a 40-hour drain time and will therefore meet CCDDOTssMMS4 permit requirements of 80% TSS removal. The outlet structure�forrtthe water quality pon� will Ite the structure recommended by Urban Drainage. The structure will have an orifice plate sized to provide a 40-hour drain time for water quality purposes. A Type D and a Type C inlet grate will be set at the water quality volume elevation. Once the pond fills up and achieves the required volume for water quality purposes the storm flows will begin to overtop the outlet structure and flow into the grated inlets. Once through the inlet, the flow will discharge into the Poudre River through a 48-inch RCP. Eventually the pond will fill up and begin to spill south over a proposed 44 ft long spillway. The spillway will safely direct flows to the Poudre River. 4.4 Ayres Associates The runoff volume treated in a water quality pond is typically referred to as the first -flush volume. This initial flush of runoff is known to carry the most significant non -point pollutant loads. By restricting the flow out of a water quality pond, water is stored for up to 40 hrs following a storm thus providing an opportunity for urban pollutants carried by the flow to settle out. Water quality ponds generally have the following pollutant removal efficiency: • Suspended Sediment: 80-100% • Total Phosphorus: 60-80% • Total Nitrogen: 40-60% • Oxygen Demand: 40-60% • Trace Metals: 60-80% In general, water quality ponds are considered to have a high overall removal capability. The outlet of the pond will discharge into a terrace along the south (left) bank of the Poudre River. The outlet will be protected with Scour Stop transition mats. Scour Stop is a replacement for hard armor, such as riprap, used to prevent scour and erosion at the outlets of storm culverts. The channel will be lined with a turf reinforcement mat past the hydraulic transition point in order to protect the terrace from erosion. The spillway will be lined with a turf reinforcement mat. This mat will extend from the top of the spillway and into the terrace along the north (left) bank of the Poudre River. In order to install the mat the bank and terrace will need to be cleared of most vegetation. This can be done by hand to minimize the impacts that large equipment would have on the banks of the river as well as to the roots of the existing plants. Native soil, approximately 0.6 inch thick, will be placed on top of the cleared land. This soil will be graded with an excavator at the top of the bank. The soil will be graded so as to create a smooth and solid surface for the TRM to be installed on top of. The smooth surface is required so that the voids between the TRM and surface of the soil will be minimized. Voids allow water to travel between the TRM and the soil, thus creating erosion and negating the effects of the TRM. The TRM will not extend above exiting grade. The water quality outlet structure in the water quality pond was modeled in EPA SWMM as an orifice, a weir and an overflow spillway. The orifice is set at the invert of the pond and models the total opening of the orifice plate. The weir models the overflow grates of the outlet structure and is set at the water quality water surface elevation. The grates were modeled as a weir based on off line calculations. The overflow spillway models the overflow spillway. Offline calculations were performed to size the orifice plate, overflow inlet and the overflow spillway. Table 4.4 summarizes the hydraulics of the water quality pond. Table 4.4. Water Quality Pond Summary Description Elevation Pond Volume ac-ft Pond Depth ft Pond invert 4955.66 0.000 0.00 Outlet Pipe Invert 4955.66 0.000 0.00 Orifice Plate Elevation 4955.66 0.000 0.00 Overflow Grate Elevation 4959.6 0.505 3.96 Overflow Spillway Elevation 4962.5 1.919 6.84 2-year WSEL 4960.73 0.914 5.07 10 ear WSEL 4961.24 1.153 5.58 1 00-ear WSEL 4963.34. 2.701 7.68 WQ WSEL 4959.6 0.505 3.96 4.5 Ayres Associates All of the storm sewer and water quality calculations for the final design are included in the Appendix C. The spillway will be set at elevation 4962.50. It should be noted that in order to achieve this elevation, the bank of the Poudre River will be lowered in this area by several feet. The spillway is set at the proposed elevation in order to spill the overtopping flows from the pond south to the Poudre River without creating ponding in the low spot along North College Avenue. The existing low spot in North College Avenue, just east of the water quality ponds, is set at an elevation of 4963.4. Per direction of City of Fort Collins staff, ponding in North College Avenue was not acceptable during a 100-year flooding event within the North College Avenue basins. According to the FEMA published water surface elevations, the 10-year event along the Poudre River will be contained within the Poudre River. The 50-year flows will overtop the spillway and fill up the water quality pond. Minimal ponding on North College Avenue will occur. It should be noted, that the Poudre River overtops west of the ponds and water will eventually fill up the ponds regardless of the elevation of the spillway. During a 100-year event, the water surface in the Poudre River is several feet higher than the spillway and of North College Avenue. Water overtops the banks of the Poudre River regardless of the elevation of the spillway. The following information is the FEMA published water surface elevations at the water quality pond outlet: 10-year WESL: 4961.62 ft 50-year WSEL: 4964.13 ft 100-year WSEL: 4965.04 ft In order to prevent backflow of the Poudre River into the water quality pond outlet and into the proposed ponds, a Tide Flex Check Mate Valve will be installed at the end of the outlet pipe. The Check Mate Valve fits into the storm sewer and has a maximum head loss of 2 ft. 4.5 Siphon Under Lake Canal The siphon of the Lake Canal was modeled using HEC-22. Bend losses were applied to the manholes upstream and downstream of the Lake Canal due to the extreme change in pipe slope. The manholes associated with the siphon will contain a grated manhole lid. The grated manhole lids will help prevent the buildup of pressure in the siphon. The siphon will contain trash racks at either end to help deter people from entering the siphon. 4.6 Josh Aimes/Lake Canal Flows Approximately 265 cfs of runoff from existing developments (from Willox to Josh Aimes Ditch) flows to the Josh Aimes Ditch during a 100-year event. The Josh Aimes ditch travels under North College Avenue in a 2x6 RCBC. Once across North College Avenue the storm sewer is connected into a 30" RCP. The 30" RCP outlets into the Lake Canal. The 30" RCP has capacity of approximately 30 cfs. According to existing contours and weir calculations, the flow will overtop Josh Aimes ditch and head south to the Lake Canal and east to North College Avenue. The majority of the flows that get to North College Avenue will flow back to the west and ultimately back into the Lake Canal. A portion of the flow will cross over North College Avenue and into the Lake Canal on the east side of North College Avenue. 4.6 Ayres Associates With the design of the North College Avenue storm sewer system, the flow to the Josh Aimes ditch is not reduced. The flow is controlled by the surrounding developments and not by the flow on North College Avenue. With the project a low spot will be added in Woodlawn Drive and the Lake Canal will be siphoned. The storm flows will overtop Woodlawn Drive and continue south, over the Lake Canal siphon and to the water quality pond. The flows will proceed through the water quality ponds where they will eventually spill into the Poudre River through the spillway located at the south end of the pond. 4.7 Existing System Near Vine Drive Basins S1 through S4 were created to verify the capacity of the existing storm sewer near Vine Drive. The existing system was modeled in EPA SWMM. The existing system can handle the 100-year event and therefore no changes were made to the system. Table 4.5 summarizes the 100-year hydraulics for this system: Table 4.5. Existing System Near Vine Drive Capacity During 100-Year Event. Node Rim (ft) Flow (cfs) HGL (ft) EGL (ft) 2-MANHOLE 4967.57 14.37 4963.09 4963.486 3-INLET 4965.59 13.26 4959.34 4959.705 4-INLET 4965.92 10.3 4959.34 4959.591 5-INLET 4963.81 6.52 4959.76 4959.975 6-INLET 4963.71 4.59 4959.95 4960.152 4.8 Utilities There are a large number of existing utilities within the project corridor, most of which effect the design in some way. Many of the utilities have been potholed in order to locate all existing utilities that may conflict with the proposed design. The utility locates were surveyed, multiple site visits were taken and the existing utility companies were contacted to help verify the location of the utilities within the project corridor. Table 4.6 provides a list of the type of utility and contact information for those utilities within the project corridor. Table 4.6. Existing Utility Information. Owner utility Contact Person Contact Number Utility in Project Area City of Fort Collins Light & Power Bruce Vogel (970) 221-6700, 224-6157 Yes City of Fort Collins Utilities/Stormwater Glen Schlueter 970 224-6065 Yes City of Fort Collins Water/Wastewater Roger Buffington (970) 221-6700, 221-6854 Yes ELCO Water District Water Mike Scheid 970 493-2044 Yes Comcast Fiber optic Don Ka erman 970 567-0245 Yes Xcel Gas Len Hildebrandt 970 225-7848 Yes Owest Communication and duct bank Terry Speer (970) 377-6405 Yes Greelev Water Dan Moore 970 350-9814 Yes The Lake Canal Company Lake Canal Don Magnuson (970) 352-0222, cell: 970 381-5444 Yes 4.7 Ayres Associates Based on the utility information collected, the following are the major utilities in the area: Light and Power: • Light and Power has several electric lines that run parallel to the east side of North College Avenue. These lines will need to be relocated at several locations throughout the project site. • Existing street lights, vaults, and meters will be impacted by the proposed roadway improvements. Removal and replacement of street lights throughout the project corridor will be necessary. Street lights will be located along the edges of the roadway on both sides and at intersections. City Light and Power will be responsible for design and maintenance of the street lights. Comcast: • Comcast has a direct bury line that runs along the west side of the project area. This line is shallow in depth and will be in conflict with the road section and excavation and will need to be relocated. • Comcast has a Fiber optic duct bank that crosses the Hickory/Conifer/North College Avenue Intersection. This line will not be crossed with new storm sewer. The existing storm sewer at this intersection will be utilized. ELCO: • ELCO has three water lines in the project area: - An existing 24 inch ductile water line on the south side of Conifer that will be difficult to lower. This line will not be crossed with new storm sewer. - An existing 14 inch steel water line at the south end of the water quality pond. The line has been potholed and is in conflict with the pond outlet pipe. This line will need to be lowered. - ELCO is also proposing a 48-inch water line at the intersection of Pinon and North College Avenue. This line has a 60-inch casing pipe. The proposed storm sewer will have over one foot of clearance over the casing of the pipe. City Of Fort Collins Water and Wastewater: • The City of Fort Collins has an existing and very old sanitary sewer line which crosses under North College Avenue at the Lake Canal. However, this line has been abandoned and no longer creates a problem. • The COFC also has a sanitary sewer crossing under North College Avenue to the north of Alpine Street. This sanitary is in good shape. Because this line is a gravity system the actual location is important and therefore has been determined through survey and potholes. The crown of this line is near the invert of the proposed storm sewer and therefore a conflict manhole is being proposed at the crossing of the two systems. The sanitary sewer will be lined with Class IV structural liner. The lining will begin at the manhole west of North College Avenue and terminate at the manhole along the east side of North College Avenue. 4.8 Ayres Associates • There are a number of water valves that will need to be adjusted to grade. • There are a number of fire hydrants that will need to be relocated with this project. • Waterline lowerings are required under some of the proposed storm laterals in order to provide 18-inches of clearance between the water and storm sewer. There are a few locations where the proposed storm sewer crosses over the existing water lines and 18- inches of clearance is not met. The clearance was approved by the City of Fort Collins; it was preferred to not lower the waterlines. City of Greeley: • The City of Greeley has a 60-inch water line at the intersection of Pinon and North College Avenue. This water line has a 79-inch casing and creates one of the major constraints of the project. The proposed storm sewer will have minimal clearance over the casing pipe. A reinforced concrete slab will be constructed between the pipes to help disipate the load of the storm sewer. Qwest: • There is a large Qwest duct bank running north -south along the west side of North College Avenue. This duct bank can not be moved and due to the location and inverts of the bank, is difficult to cross with large storm sewer. The laterals will cross the duct bank with minimal clearance. • There are several Qwest manholes that will need to be adjusted to grade with this project as well. • A direct bury line travels the length of the project. This line will need to be relocated as it will be in conflict with the pavement section of North College Avenue. Xcel: • Xcel has a 4-inch steel gas line that runs along the west side of the street. This line is located where the proposed storm sewer will be and shall be relocated under the proposed sidewalk. Lake Canal: • A single span concrete slab bridge structure currently crosses Lake Canal (CDOT Structure B-16-AD). A pedestrian bridge on the east side of the Lake Canal Bridge is proposed to provide safe pedestrian crossings, as well as to enhance the gateway to the North College District. This bridge is compatible with the vision originally identified in the North College Corridor Plan and will offer opportunities to highlight the Outdoors/Natural character of the corridor. The location and type of bridge has been coordinated with the North Poudre Irrigation Company. Refer to the utility sheets in Appendix D for more information on each utility. 4.9 Ayres Associates 4.9 Master Plan Drainage (NCDID and NECCO) The NCDID is the master drainage plan in the North College area. It identifies storm drainage solutions for each side of North College Avenue maintaining the natural drainage division created by the high center line of North College Avenue. The North East College Corridor Outfall (NECCO) project is the final design for the NCDID solution for the east side of North College Avenue. The NECCO design is predicated on a realigned Vine Drive. The outfall for the west side of College in the NCDID is along the future Mason Street corridor, discharging into the Poudre River. Initially, the North College Corridor Improvements Phase II project investigated the feasibility of implementing recommendations from NCDID and placing the outfall along the Mason Street Corridor; however, due to funding limitations, it was quickly determined that these improvements could not be incorporated into the project without additional sources of funding. The storm drainage improvements have been designed to accommodate project flows while maintaining compatibility with the NCDID and NECCO projects. The design does not preclude any of the NCDID or NECCO improvements, but reduces the flows that will need to be accommodated by these future outfall systems. 4.10 Ayres Associates 5. POUDRE RIVER FLOODPLAIN AND FLOODWAY The southern end of the project lies within the Poudre River 500- and 100-year floodplain and 1- and 1/2-foot floodway. While construction can occur within the floodplains as long as floodplain development criteria are met, construction within the floodways is much more complex. The 100-year floodplain represents the area that gets inundated during a 100-year storm. The floodway refers to the channel of a river or other watercourse and the adjacent land areas that must be reserved in order to discharge the base flood without cumulatively increasing the water surface elevation more than a designated height. The Poudre River 1- foot and 1/2-foot floodway are "no -rise" areas regulated by the City of Fort Collins Floodplain Administrator. For the Poudre River the City administrates to a half foot floodway. If any fill is placed within the designated floodway as part of the project then it necessitates the Conditional Letter of Map Revision/Letter of Map Revision (CLOMR/LOMR) process. This is required to evaluate the effect of the fill on flood hazards and to create a design that protects public health, safety, and welfare. The goal of this project is to design the proposed improvements without any fill within the floodway. Figure 5.1 shows the existing FEMA floodplain and floodway limits as well as the City of Fort Collins Poudre River half foot floodway. The FEMA floodplain and floodway can be found on FEMA FIRM Panel 08069C0977G. No improvements are proposed along the current effective FEMA cross sections for the Poudre River (as seen in Figure FP-03) and therefore a hydraulic model update will not be required for FEMA. The proposed grading within the floodway will be at or below the existing ground surface. The water quality pond will be broken into two ponds in order to obtain the required volume. The northern water quality pond will be located completely within the Poudre River 0.5 ft floodway boundary while the southern pond will be located completely within the Poudre River 1.0 ft floodway boundary. The ponds must be located within the boundaries to insure that the existing floodway boundary will not encroach onto land where it does not currently exist after the project is built. The pond grading will not change the floodway boundaries. The proposed water surface elevations for the water quality, 2- and 10-year events are below the existing ground surface. The proposed water quality pond and pedestrian trail lie within the floodway. The City of Fort Collins floodplain Administrator informed the design team that the proposed improvements can be constructed within the floodway as long as all proposed grading is at or below the existing ground. The pedestrian trail and water quality pond were designed to ensure that all grading was below existing ground. Exhibits in Appendix C show the extents of the proposed grading, spot elevations and cross sections through the water quality ponds spaced at 50 ft. The outlet to the water quality pond will be into the Poudre River. Scour stop is proposed at the end of the outlet in the Poudre River. The Scour Stop will not extend above the existing ground. Vegetation and plantings will be added to the area in such a way as to not restrict Poudre River Flows, increase the water surface elevation, or increase the existing condition roughness coefficient. Native grasses and plantings will be used that will lie down during a flood event. 5:1 Ayres Associates ti I T L. !' u ,n t POUDRE RIVER. ONE -FOOT FLOODWAY O i W 20G 400 SCALE IN FEET MZ> < •av r� +1 J W Z .r COLLEGE AVENUE �_. a: �� rr E' _" PROPOSED PROJECT SITE J OUDRE RIVER YEAR OUND OARY LEGEND POUDRE RIVER ILO-YEAk FEMA 500-YEAR ROOOPLAIN OODPLAIN B ' WNDARY fEMA 100-YEAR F1000PLAIN POUDRE RIVER I.OFT FLOOOWAY V - _-___ POUDRE RIVER 0.5FT FLOOD•AAY el Sams FIGURE 5.1 ASSOCIATES FLOODPLAIN EXHIBIT 1 OF 3 0 50 100 200 „ALE III FEET 1 A i f i - r POUIDRE RIVER 1 :' ONE -FOOT- / FIL WAY x -- r r F V Ak '�. s PROPOSED WATER .-.'.._ .,•- III Q�OQ Ol ALITY POND 0 ')R BELOW •,. EXIS71NG ORArE 4 O S� RAILROAD ".p,.,f -_ it -.....-.y i, .. _ . PROPOSED :. d COLLEGE AVENUE.., 411 -• -'� r J - 1 _ ,. _._r PROPOSED TRAILS ® OR BELOW EXISTING GRADE,;, r AYLtf_� ' MEDIAN do ROADWAY ..rR IMPROVEMENTS PAST I -- I ;�� ! it ,w 11 ... 3 µi yw,Ri•-. - r HALF FOOT FLOODWAY . „ BOUNDARY WAY AND FLOODPLAIN NOTES' 1. THE FOLLOWING ITEMS ARE NOT ALLOWED WITHIN THE FLOODWAY BOUNDARIES:AY FILL T STORAGE OF MATERIALS LANDSCAPE IN THE FLOODWAY WILL NOT INCREASE THE EXISTING MANNINCS ROUGHNESS COEFFICIENT NOT BLOCK CONVEYANCE WLL UE DOWN DURING A FLOODING EVENT 3. A FLOODPLAIN USE PERMIT WILL BE COMPLETED PRIOR TO CONSTRUCTION 4, ANY ITEMS IN THE FLOODWAY/FLOODPLAIN THAT CAN FLOAT (IE: BENCHES) ppUDRE RIVER WILL BE ANCHORED 3+ 100-YEAR +. '. 5. THE PEDESTRIAN BRIDGES WILL BE ANCHORED o. ANY ART WORK WILL BE DESIGNED TO NOT BLOCK CONVEYANCE AND WILL BE " " - -, ..., q FLOOOPLAIN BOUNDARY � w ANCHORED DOWN '. ../j'•^> FENCES WITHIN THE FLOODWAY WILL NOT BLOCK CONVEYANCE AND WILL BE DESIGNED TO BREAK -AWAY B. SPOT ELEVATIONS ARE TO BE PROVIDED WITH FINAL DESIGN- 9. THE TOPO SHOWN IS ON THE NGVD29 DATUM (WTHOUT THE 1984 . POUDRE RIVER CORRECTION). THE FEMA INFORMATIODN IS ON THE NAVD 1988 DATUM. THE - :3. 500-YEAR CONVERSION IS: !%,��. .f ?'" _/ FLOODPLAIN NGV029 (WITHOUT THE 1984 CORRECTION) + 3.OFT - NAVD 1988. s BOUNDARY 10. BENCHMARk: No 1-00. CATCH BASIN ON THE SOUTHEAST CORNER OF NNE - - AND COLLEGE. ELEV-4965.57tt NGVD29. -�� FIGURE 5.1 ASSOCIATES FLOODPLAIN EXHIBIT 2OF3 JAMS ASSOCIATES 0 100 200 4DO SCALE IN FEET vi3O Cn N 0 X O Z X Z m C_ \ O MO �] I O % PE K N hI r, / � r PANEL oenc ONE hOGT �// 4965 O DWAY ��_ FIRM N MASON F, y RIVER Z IAL -rI, IT STREET N r o FLOOD INSURANCE RATE MAP M FLOOWA O r CF m z 0-0LARIMER COUNTY, C) Cl:= °1 COLORADO Z)— --- 7 }� AND INCORPORATED AREAS (fl L.� —LE AVENU N - PANEL 977 OF 1420 E% i ` ti _ 4.. . - - - a MAP INOFOR FIRM PANEL IAVOUiI X O CorAAIN� _zi � 1, _ - - - � � � CONTB I �� COMMUNITY NUMBER PANEL SUFFIX f J � n�� VAIMER CAl1NiV ]W101 yJ( 4 i O O n T PROPOSED VU w w uNs a o am m an /�D 49�1, <'- 1 PROJECT SITE 0 1. 7 ,.. �n 1 z M N X O { RED CEDAR m rn 96S _ _ 3woa3r �. ,���.b.� 1.�. �roN�4., nlx rx Wa��YI 1w mJ w rormrvv ,yN.dl�xry m� 0� m i­l nnh CO __l wm `e,, MAP NUMBER �� L5 X 1 08069CO977G POUDRE RIVER M 0 1 500YEAR m N g� MAP REVISED � Dn FLOODPLAIN � -++M ���" JUNE 172008 y L BOUNDARY O C ' \ N �T Z I o M `—' Federal Emergency Manngemenl Agencc 'N \/ Z O X N Z > POUORE RIVER O m 100-YEAR O -YEAR FLOODPLAIN � FEMA 500 Z MFLOODPLAIN Z FEMA 100-YEAR FLOODPLAIN BOUNDARY X` BLONDEL STR I m POUDRE RIVER 1.OFT FLOODWAY BLUI X 111 Z m0 XPOUDRE RIVER OSFT FLOOOWAY 6'> 1 D r N `` / 69 as m 11 � /<n o° FIGURE 5.1 FLOODPLAIN EXHIBIT 3OF3 There will be a pedestrian bridge over the Lake Canal. The bridge will be anchored or the footings will extend to the calculated scour depth. Any benches added to the area will be anchored so as not to float during a storm event. If art is to be placed within the floodway, it will be designed in such a way as to not obstruct flows and will also be anchored. If fences are added to prevent people from entering the water quality pond, they will not block conveyance of flood water and will be designed as break -away fences. In future phases the City of Fort Collins staff will determine who is to maintain the water quality pond. A floodplain use permit will be completed prior to construction of any kind in the floodway and floodplain. 5.5 Ayres Associates 6. PEDESTRIAN BRIDGE A pedestrian bridge is proposed over the Lake Canal. This section describes hydraulic scour analysis of the proposed structures. 6.1 Location The pedestrian bridge is located across the Lake Canal in the 100-year Poudre River Floodplain. This bridge is not within the boundaries of the floodway. The bridge will be located 30 ft downstream of North College. 6.2 Hydrology There are a number of different flows that could be used to calculate the potential scour on the proposed pedestrian bridge. • Decreed Flow • Bank Full Flow • FEMA Poudre River 500-year Floodplain overbank flows • FEMA Poudre River 100-year Floodplain overbank flows • FEMA Poudre River 50-year Floodplain overbank flows • FEMA Poudre River 10-year Floodplain overbank flows • Bank Overtopping The pedestrian bridge hydraulic model was developed with FEMA cross section CD as the downstream cross section and FEMA cross section CIF as the upstream cross section. The 100-year flow was determined by adjusting the flow in the model until the WSEL at the FEMA cross sections were within half foot of the WSEL provided in the FIS study for the Poudre River. The 500-, 50-, and 10-year flows were calculated by obtaining a percent of 100-year flow in the Poudre River to actual flow in the Lake Canal. The percentage was applied to the 10- and 50-year.flows provided in the FEMA FIS Study. The bank full was obtained by adjusting the flow until it started to overtop the banks of the Lake Canal at any of the cross sections. Table 6.1 summarizes the flows that were developed for the scour analysis: Table 6.1. Pedestrian Bridge Hydrology. Description Flow Decreed Flow 156 cfs Bank Full 300 cfs FEMA 100 ear 1,500 cfs Poudre River = 13,300 cfs FEMA 500 ear 2,718 cfs Poudre River = 24,100 cfs FEMA 50- ear 1,150 cfs Poudre River = 10,200 cfs FEMA 10- ear 606 cfs Poudre River = 5,370 cfs Brink Overtopping of North College 950 cfs Bank overtopping is the maximum amount of flow that goes through the bridge opening. Flows greater than this will start.to spill over the banks of the Lake Canal 6.1 Ayres Associates. 6.3 Existing Conditions Model An existing conditions model was created of the Lake Canal to determine the effects of the Pedestrian Bridges during the 100-year event. Hydraulic simulations of existing conditions were made using version 3.1.4 of HEC-RAS, the Corps of Engineers' current modeling software for 1-dimensional analysis (HEC 2004). A plan view of the HEC-RAS model schematic is provided in Appendix E. 6.4 Modeling Approach and Assumptions The HEC-RAS model extends approximately 225 ft upstream and 533 ft downstream of the North College Avenue bridge. The model includes eleven cross sections that were developed from field survey and aerial topography. The model was extended upstream and downstream of the existing bridge to account for the flow contraction and expansion into and out of the bridge. The existing bridge structure under North College Avenue was modeled using the HEC-RAS bridge routines. Figure 6.1 shows the HEC-RAS cross section layout for this analysis. The HEC-RAS ineffective flow option was used to account for flow contraction and expansion into and out of the bridge. The downstream starting water -surface elevation was the FEMA 100-year WSEL at cross section CD of 4962.6. Manning's "n" values of 0.035 for the main channel, 0.045 to 0.12 for the overbanks were used in the model based upon field observation in conjunction with standard references (Chow 1959, Barnes 1967). Manning's "n" varies from cross section to cross section based on land types. The undeveloped land contains a value of 0.045 while the commercial development contains a value of 0.12. A main channel value of 0.035 was used based on Chow. The bottom of the canal can be described as "stoney bottom and weedy banks," which correlates to a normal value of 0.035. 6.5 Rise in Water Surface Elevation The normal expectation for bridge replacements in approximate floodplain reaches is that the replacement will cause no more than 12 inches of rise in base flood elevations as compared to existing conditions. Table 6.2 shows the effects of the pedestrian bridge the 100-year WSEL's in the Lake Canal. Table 6.2. Effects of Pedestrian Bridges. Description River Station Existing WSEL ft Bridge WSEL(ft) Difference WSEL ft 1086 4965.43 4965.43 0 1043 4965.21 4965.22 0.01 900 4965.21 4965.22 0.01 875 4965.16 4965.17 0.01 861 4965.09 4965.11 0.02 North College Avenue 824 0 774 4964.41 4964.49 0.08 Ped Bride 767 761 4963.78 4963.78 0 740 4963.76 4963.76 0 644 4963.14 4963.14 0 493 4962.65 4962.65 0 241 4962.E 4962.E 0 The maximum rise in water surface elevation is 0.08 ft. This is less than the allowed rise in a FEMA floodplain. 6.2 Ayres Associates its U 100 200 +00 SCALE IN FEET 1 /� I (� f - � /__! t � rt I I (�� � l/r1 � •� // ',' `� I IJ_ `,. �`� ', U � t� c= i///J/ f ':. > I 41i IV •, � Q / r �,�1���!y���.1 -, C � C� Sri I ���/� / � � `-~� j _` ^ �, �`` `_�'- / i~'I jr ' J ` I r .. j I. Jl , � ._i �r (lI r� �:1 t I I , � rl // '/•''�" `�' - i � � - � ,:� ♦ ,� � � ' I � I • / x / /^ � Q...�,)r � �"�/l (�/ r 1'� JJ�_T 1II� � r� l �\ lj' r y.� lr a ✓�"/ ::'• }li'i-'• 11n POUDRE G n., r <�.• /'-. I 'I s. — .\ \ `\ 4it• VER ONE -FOOT /•.� ''d] _ 1--.. I ` v ( /' - �""i —• r 1 y }7L n� FLOOOWAY� J ��"... _ '.1'�\}I��A j _— i �""\_. ✓ L�� •.`�/`�^ _> 11 .�1 �" RIVER - r I --.�^' ' yY J q /HALF -Fool FLOODWAY -,F.' (- .1 `1 y - ♦. _ _.. �.� _ I.' , AAA I86 CF 75 COLLEGE AVENUE 861 COLEEBRDGE s - , G L/ 61 - �. PROPOSED PEO BRIDGE 17 r-ors fl LOCA DON (} _--� '�/ •7� � ¢ ~ i \ � 'psi L •. ` _ `J`l / z - j --)itN,; el�j1\'ill /. { • f �� r':v�\ �ti� ) �„'�r-_.� - I / ._ _ /� _ _ --�-. .➢aq �� a �o -, �`�� ,. \� _ i I l 1 qI ttt( I POU 1 ORE RIVER 500-YEAR -'�i� f;•• t� _i� `.i 1�. p 1l�/, FLOODPLAIN V f 1 f VVV BOUNDARY \ILJ � LEGEPlQ �UD E{RIVER 71 • r • LI ', l n I �` -;aw '.a 1 I iI - o � -_:� � � � � �.•�' 'f,.a_w, �� -1 �? 100-YEAR y ��, �\ FEMA 500-YEAR FLOODPLAIN �, ) �J FLOODPLAIN`\, \ f FEMA 100 YEAR FLOODPLAIN BOUNDARY ir � /" p "� % I ' POUDRE RIVER 1 OFT FLOODWAY POUORE RIVER 0.5Ff FLOODWAY 40 FIGURE 6.1 IM&M HEC-RAS CROSS ASSOCIATES SECTION LAYOUT 1 OF 1 6.6 Freeboard Based upon Equation 6.1 and Figure 6.2 (taken from the CDOT drainage design manual criteria), the required freeboard for the proposed bridge is summarized in Table 6.3 below. Freeboard = 0.1Q03 +0.008V z (6.1) Bridge Superstructure 6FI*Mbr�� — W Figure 6.2. Freeboard for bridge on continuous grade (CDOT 2004). Table 6.3. Freeboard Summary. Event Low Chord WSEL Required Freeboard Actual Freeboard 1 00ear 4964.00 4964.49 1.31 -0.49 50 ear 4962.96 1.53 1.04 10 ear 4962.46 0.92 1.54 Decree 4959.71 0.53 4.29 Bank Full 4961.02 0.67 2.98 Providing adequate freeboard for the 100-year flood is not possible given the site constraints. The bridge meets the required freeboard for the 10-year event. The bridge will have footings that extend to the maximum calculated scour depth. 6.7 Preventing Failure Due to Scour To determine the scour potential at the proposed pedestrian bridge over Lake Canal, a HEC- RAS model was created to simulate the hydraulic conditions during various flood events. The model includes the pedestrian bridge on the east side of North College Avenue as well as the North College Avenue bridge. The pedestrian bridge is a single -span bridge, thus it does not have piers and therefore won't have any pier scour. However, the bridges needed to be evaluated for both contraction scour, as well as abutment scour. The scour evaluation was performed in accordance with FHWA publication HEC-18 "Evaluating Scour at Bridges" (Richardson and Davis 2001). Due to the configuration of the bridges, pressure scour was not calculated and is considered to be minimal. Once the bridge starts to experience pressure conditions, the banks of the Lake Canal are overtopped and relief is provided by overtopping the bridge. 6.4 Ayres Associates 6.7.1 Contraction Scour In this situation the pedestrian bridge has a greater span (50 ft) than the North College Avenue bridge (24 ft). Therefore the contraction scour at the existing bridge will be greater than at the pedestrian bridge. Also, the pedestrian bridge is at grade with the sidewalks, which don't have an embankment associated with them. Once flow leaves the banks of the Lake Canal, it will not be forced back into the channel at the pedestrian bridge. There is, however, an embankment associated with the North College Avenue bridge. Due to the above two conditions, the scour at North College Avenue will be greater than the scour seen at either of the pedestrian bridges. For this scour analysis, the scour depth was calculated for the North College Avenue bridge and then assigned to the pedestrian bridge. Contraction scour calculations were performed in accordance with the HEC-18 (Richardson et al. 2001). Contraction scour can be either live -bed in which bed sediment is flowing into the bridge waterway from upstream, or clear -water in which the water entering the bridge waterway is not transporting sediment. The contraction scour calculations were made assuming that the cobble armor layer was disturbed, exposing the finer gravel and sand beneath the armor. This is a live -bed scenario because the brink overtopping average channel velocities upstream of the bridge are adequate to entrain the majority of this gravel and sand. Even with this somewhat conservative assumption, the computed contraction scour is zero for both bridges. Computing the contraction scour, using the live bed equations, results in a negative value, which indicates that contraction scour is negligible. 6.7.2 Abutment Scour According to HEC-18 (Evaluating Scour at Bridges) 4th Edition, there are two equations that can be used to calculate abutment scour; the Froelich's scour equation or the HIRE scour equation. The HIRE method should be used when the ratio of the length of embankment projected normal to flow over the depth of flow at the abutment is greater than 25. In the brink overtopping model the ratio was 410 ft/1.84 ft = 223. Therefore, the HIRE equation was used. The abutment scour was found to be 7.6 ft on the north abutment and 6.8 on the south abutment. The footings shall be designed to a depth of 8 ft to prevent failure of the bridges due to abutment scour. 6.8 Scour Results A nominal degradation depth of 8.0 ft is assumed at the abutments. Abutment scour can be negligible if riprap is placed around the abutments as abutment scour countermeasures. Contraction scour was calculated to be negligible. Appendix E contains the scour calculation worksheets. 6.5 Ayres Associates 7. EROSION CONTROL Construction of the proposed project will require implementation of erosion control BMPs to minimize the amount of sediment carried by wind and water (refer to Appendix F). 7.1 Existing Soil Data Subsurface conditions encountered in borings consisted of approximately 6 to 7 ft of silty sand and sandy clay fill over gravelly sand and sandy gravel underlain by sandstone and clay stone bedrock. Sandstone bedrock was encountered below the sand and gravel at depths ranging from 14 to 17.5 ft. Clay stone was encountered at depths of 30 to 32.5 ft. The sand and gravel encountered were dense to very dense and the bedrock was very hard Groundwater levels were measured at depths ranging from 6.5 to 10 ft below the existing ground surface. The materials found can be excavated using conventional heavy-duty excavation equipment. Excavations into the gravelly sands will likely encounter caving conditions. Excavations should be sloped or shored to meet local, State and Federal safety regulations. The clay solids classify as type B soils and the sands as type C soils. 7.2 Existing Vegetation, Including Percent Cover The majority of the site is currently developed with the ground surface being a paved surface such as asphalt or concrete. The location where the water quality pond is to be constructed mainly consists of tall grasses, weeds and trees. The percent impervious for the existing water quality pond land is approximately 5%, the rest of the project is approximately 95%. 7.3 Temporary Sediment/Erosion Control Methods The erosion control methods to be implemented during the construction of the proposed storm sewer can be seen on the Erosion Control Sheets in the construction plans and the SWMP. Erosion control BMPs for the proposed project will include wattle dikes set across all flow paths determined by the general grading plan. The wattle dikes are placed in the flow paths for each 2 ft of vertical drop to slow the conveyance of water and prevent significant erosion before vegetation is installed. Gutter protection is to be placed at a 45 degree angle toward flow in the street flowline, anywhere that the stormwater runoff and sediment may exit the site via curb and gutter. Silt fencing will be installed around the construction site as necessary to prevent sediment from leaving the site during construction. Silt fence will also be placed around the soil stockpiles. Drop inlet wattle protection will be installed around each existing and proposed inlet, grated manhole lid, and pond outlet structure to prevent sediment from leaving the project site and entering the Poudre River or downstream stormwater facilities. Straw mulch will be applied after seeding to prevent erosion from runoff and help establish plant cover. A vehicle -tracking pad is to be installed at the water quality pond to prevent mud from being carried off site on vehicle tires. Vehicle tracking pads must also be provided at any other access locations to the worksite. Existing vegetation shall be preserved where possible. All disturbed areas not in the roadway or greenbelt shall have temporary vegetation seed applied within 30 days of initial 7.1 . Ayres Associates disturbance. After seeding, hay or straw mulch shall be applied over the seed at a rate of 1.5 ton/ac minimum, and the mulch shall be adequately anchored, tacked, or crimped into the soil. Those roads that are to be paved as part of the project must have a 1-inch layer of gravel mulch applied at a rate of at least 135 ton/ac immediately after grading is completed. The placement structure shall be applied within 30 days after the utilities have been installed. If the disturbed areas will not be constructed upon within one growing season, a permanent seed shall be applied. After seeding, a hay or straw mulch shall be applied over the seed at a minimum rate of 1.5ton/ac, and the mulch shall be adequately anchored, tacked or crimped into the soil. The above structural practices are temporary and must be installed prior to any grading or construction on the project site. Temporary sediment control measures shall be checked regularly and after storms for silt buildup. Silt fence shall be properly installed and maintained including checking for undermining. Curb inlet protection shall be checked for openings and silt buildup, if necessary clean or replace gravel to maintain a protective barrier around all inlets which may receive stormwater. Erosion and sediment control measures must be replaced or repaired as needed during regular inspections. The temporary structures must be maintained until the site has uniform cover equivalent to 70% of existing site conditions. Cover may include vegetation in the interim condition. 7.4 Sediment/Erosion Control Methods BMPs must be installed prior to any grading or construction on the project site. Temporary sediment control measures shall be checked regularly and after storms for silt buildup. Silt fences shall be properly installed and maintained including checking for undermining. Inlet protection shall be checked for silt buildup, if necessary clean or replace gravel to maintain a protective barrier around all inlets which may receive stormwater. Erosion and sediment control measures must be replaced or repaired as needed during regular inspections. The temporary structures must be maintained until the site has uniform cover equivalent to 70% of existing site conditions. Cover may include vegetation in the interim condition (see the erosion control details, plans and specs). Following site construction the goal is to achieve a stabilized cover condition to provide long term stormwater protection. Stabilization is quantified by achieving uniform cover equal to 70% of the pre -disturbance condition. Final stabilization shall be achieved by installation of the permanent erosion control methods. Immediately after the storm sewer improvements have been constructed, permanent erosion control practices are to be installed and maintained. Temporary erosion and sediment control measures can be removed after establishment of permanent stable vegetation to the satisfaction of the City of Fort Collins inspector. 1. Paving: All existing streets shall be repaved prior to the completion of the project. The post -construction condition for approximately 20% of the project site will be re -surfaced with concrete walkways, concrete curbs, gutters and asphalt pavement. 2. Surface Roughen!ng/Grading Techniques/Embankment Protector: Any disturbed slopes adjacent to the Poudre River shall be protected with redundant BMPs. BMPs shall be dependant on the time of year and phase of construction. Toes of temporary slopes shall be protected by BMP (i.e., silt fence). Slopes still being worked on shall be left in a roughened condition at the end of the day or temporary mulch shall be applied. 7.2 Ayres Associates If drainage from roadway is directed towards new, incomplete slopes, toes of slopes shall be protected by placing a berm at the end of the day or other BMPs as directed. Temporary seeding and mulch shall be used on the graded slopes of the Poudre River and the water quality pond to stabilize grades prior to when permanent seeding is in place. 3. Seeding Permanent: All un-paved disturbed areas shall be reseeded to match native ground cover, unless otherwise specified on the landscape plans, soon after construction or grading as weather permits. This provides the opportunity for pollutants to settle out of the stormwater runoff. Seeding is used to control runoff and erosion on disturbed areas. Drill seeding shall occur on slopes flatter than 2:1 and shall occur on the contour of the slope. Completed areas (any portion of a slope that is at final grade) shall be seeded within 48 hours during seeding seasons. Seeded areas shall be inspected frequently for areas of failure. When Engineer approves the top portion of the slope (approximately 15 ft) can remain unseeded for paving operations to occur. Once paving operations are completed in an area, shouldering shall occur immediately. Seeding per section 9 of the SWMP shall then take place within 48 hours. Slopes that had been previously seeded and were disturbed by paving/shouldering operations shall be reseeded at no additional cost to the project. 4. Seeding Temporary: Temporary seeding shall be used to stabilize slopes until final grades are reached or until permanent seeding can be applied. 5. Soil Retention Blanket (SRB) (also called out as a Turf Reinforcement Mat on the plans): SRB is a permanent erosion control feature that is to be placed at the spillway in-between water quality ponds as well as at the spillway into the Poudre River. SRB shall also be installed at the end of the curb and gutter at the north end of the water quality pond. The local storm runoff will exit the curb and gutter and sheet flow to the water quality pond, SRB is required to prevent erosion. Soils shall be properly prepared prior to placing blanket. On Slopes when seeding cannot occur due to seasonal constraints, a temporary berm, erosion log or other BMP shall be placed at the top of slope to prevent stormwater from flowing onto the slope and causing erosion. In addition flexible growth medium or mulch/mulch tactifier shall be applied on the slopes. If erosion occurs on slope, flexible growth medium or mulch/mulch tackifier shall be replaced by a blanket as a temporary measure. Once seeding can occur blanket shall be removed and disposed of and a new soil retention blanket shall be used. Vegetation along the Poudre River shall be protected where possible. Minimal disturbance will be required during the construction of the water quality outlet pipe. A soil retention blanket shall be placed on the bank of the Poudre River. The blanket shall be installed according to details and specs. Existing Vegetation shall be cut back and a 4- inch thick layer of soil shall be applied. This will give the existing vegetation a greater chance of survival. The soil shall be smoothened prior to construction of the blanket/mat to ensure close contact to the soil. The mat shall be applied around the existing trees. 7.3 Ayres Associates. 6. Protection of trees and mature vegetation: Existing vegetation shall be preserved where possible. Where existing land is disturbed, temporary seeding is to be initiated until permanent seeding is established. 7. Silt Fences: Silt fences shall be used to capture sediment laden runoff from disturbed areas during construction. It shall be placed on the contour; ends shall be j-hooked to prevent water from running around the ends of the fence. A maximum drainage area of 1/4 acre per 100 ft of silt fence; maximum slope length behind the barrier is 100 ft; maximum gradient behind the barrier is 2:1. Silt fences shall be installed along the Poudre River and Lake Canal. The fence shall be installed to minimize the stormwater runoff and sediment into the river and irrigation channel. 8. Erosion Log Ditch: These are to be placed in the proposed Water Quality pond in the flowline of the pond. The purpose of the log ditch is to prevent the sediment that from the slopes of the water quality pond to enter to Poudre River. They are also to be placed in the Lake Canal during construction of the storm sewer under Lake Canal. The construction will occur when the canal is dry and therefore can be used. 9. Permanent Sediment Trap/Basin: The water quality pond is considered a permanent basin. The pond shall be constructed early in the project prior to the construction of the proposed storm sewer. The pond shall be cleaned as needed during construction. Cleaning shall be paid for as Sediment Removal and Disposal. 10. Inlet Protection: a. Storm Drain Inlet Protection: The purpose of the storm drain inlet protections are to protect the existing and proposed inlets and prevent stormwater and sediment from entering the existing storm drainage system or receiving bodies of water. Inlet protections are to be placed at all existing and proposed inlets. If the existing inlets are to be removed, they require protection until they are removed. Inlets consist of street inlets as well as pond outlet structures. b. Erosion Inlet Bale Filter: The purpose of the bale filter is to prevent stormwater and sediment from entering the existing storm drainage system and the Poudre River. Bale filters are to be placed on the proposed area inlets (Inlet F-1) as well as the inlets making up the water quality pond outlet structure. 11. Storm Drain Gutter Protection: Gutter, protection is placed along the gutter flowline to prevent stormwater runoff and sediment from leaving the site via the curb and gutter. North College slopes from North to South and shall be placed along the entire stretch of improved roadway. Gutter protection shall also be placed at the corners of all intersections. 12.Outlet Protection: Scour stop is a permanent erosion control feature and shall be placed at the end of the proposed storm sewer prior to discharge into the water quality pond or Poudre River. 7.4 Ayres Associates. 13. Stabilized Construction Entrance: A vehicle tracking pad shall be placed at the entrance into the water quality pond to prevent the spreading of sediment offsite. Mud and debris should not be tracked along roadways and allowed to enter any non -protected drainage. Off -site soil tracking shall be controlled by at least monthly removal of accumulated sediment in the street. More frequent removal of sediment shall occur when significant buildup is evident. 14. Other (Snout): Snout Oil -Water Debris Separator shall be installed in a manhole upstream of the water quality pond to prevent the accumulation of trash and sediment in the water quality pond. A snout will also be installed in the water quality outlet structure to help eliminate the trash and sediment entering the Poudre River. 15. Other (Water Quality outlet Structure): A water quality outlet structure designed using Urban Drainage Criteria Manual shall be installed at the water quality pond. The purpose of the structure is to provide water quality and remove sediment prior to discharging into the Poudre River. 16. Cleaning of Construction Site: Drainage ditches, pans, and culverts must be cleaned of debris and sediment. 7.5 Materials Handling and Spill Prevention A project staging area shall be located in the temporary construction easement. The exact location of the staging area will be determined by the contractor. Measures should be undertaken to control building materials, waste and disposal of excess asphalt and concrete to ensure these materials do not leave the site and enter the water quality pond or Poudre River. Asphalt, concrete, building materials, waste and cleanup by- products should not be discharged into the on -site curb inlets and storm sewer systems nor should they be allowed to enter the water quality pond, Poudre River or Lake Canal. Measures should be undertaken to remove excess waste products from the site and dispose of these waste materials off -site in an appropriate manner. A temporary concrete washout area as well as a separate designated loading/unloading area shall be located in the project staging area. The exact location of the washout area will be determined by the contractor. It is the contractor's responsibility to ensure that the concrete is handled in the appropriate manner so as not to contaminate the water quality pond, Poudre River, Lake Canal or surrounding areas. Upon completion of the project the concrete in the concrete washout area shall be exposed of in an acceptable waste site. The concrete wash -out area and designated loading/unloading areas shall be re -vegetated to existing or better conditions. The heavy equipment contractor shall be responsible for protecting the soil from Contamination due to any hydrocarbon or other hazardous spills associated with his contractual obligations. All chemicals used in maintenance (oil, antifreeze, hydraulic fluid, etc.) are to be stored offsite. Fertilizers are to be stored in the contractor staging area. The contractor shall be responsible for preventing contamination in the water quality pond, Poudre River, Lake Canal and surrounding areas. 7.5 Ayres Associates Any periodic refueling of earthmoving equipment on site shall be carefully controlled to ensure these materials are not spilled on the site and will not enter the water quality pond, Poudre River or Lake Canal. It shall be the responsibility of the heavy equipment contractor to designate a fueling area and take appropriate actions to ensure pollution of stormwater does not occur. The fueling area shall be located within the contractor staging area. The fueling area shall be at least 100 ft from drainage channels and/or storm sewer systems and be enclosed by a minimum 12-inch high compacted berm capable of retaining potential spills. In the event of a spill from the site into an on -site curb inlet or storm sewer system appropriate measures should be undertaken immediately to contain spilled pollutants and properly remove the spilled materials along with all contaminated soils and prevent future spills from occurring. In addition, measures should be undertaken to limit off -site soil tracking of mud and debris spillage from vehicles leaving the site. Mud and debris should not be tracked along roadways and allowed to enter any non -protected drainage path. Several measures are suggested to protect stormwater quality and prevent contaminates from migrating off -site. • Washing of vehicles or equipment into the storm drainage system is prohibited • Refueling operations should be done in the designated fueling area during dry weather conditions and on level ground • Potential flow paths for spills should be assessed prior to any fuel or hazardous substance transfer • Ample absorbent material and containment should be available to contain a spill • Any storm drain conveyance within a containment area should be protected with berms or plugs • Hazardous materials such as fuel, solvent or fertilizer used on site should be in a secure covered area • No dedicated concrete or asphalt batch plants shall exist on the site 7.6 Inspection and Maintenance The erosion control measures will be inspected daily during construction. The inspection must include observation of the construction site perimeter and discharge points (including into a storm sewer system), all disturbed areas, any areas used for material storage that are exposed to precipitation, any area used for washing of machinery, the vehicle tracking control pads, and any other erosion and sediment control measures. Silt fence and other barriers will be checked for undermining and bypass and repaired or expanded as needed. The temporary vegetation of bare soils will be checked regularly and areas where it is lost or damaged will be reseeded. Hazardous materials such as fuel, solvent or fertilizer used on site should be in a secure covered area. At a minimum the inspections shall occur for all BMPs every 14 days and after significant precipitation events (i.e., rainfall, snowmelt, etc.). Installations and modifications as required by the City of Fort Collins or authorized personnel will be implemented immediately or within 48 hours of notification. Mitigation measures shall be inspected for at least the following. 7.6 Ayres Associates • Accumulation of excess sediment and determination of whether or not the effectiveness of each structure is significantly reduced. Removal of accumulated sediment shall occur once a 50% reduction of the design storage capacity becomes evident. • Damage to structures that need repairing to ensure their effectiveness. Addition or elimination of sediment and/or erosion control measures that are designed to control the movement of soil particles in a practical and effective manner. • Immediate repair and/or replacement of necessary mitigation measures when total failures are found. A site log should be kept up to date to record inspections, repairs and maintenance. Additionally any spills should be fully documented. Include what the spill material was, reason for spill, date, time of start and finish of spill, quantity, location, weather conditions, who was contacted, how the spill was cleaned, impact to environment, and method of disposal of cleanup materials. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Public Health and Environment CDPHE Construction Permit will be required before any construction or grading activity can begin. 7.7 Ayres Associates 8. REFERENCES Adopted by Larimer County, City of Loveland, City of Fort Collins, Larimer County Urban Area Street Standards, Repealed and Reenacted April 1, 2007. Adopted by The Transportation Commission of Colorado, State Highway Access Code, Volume 2, Code of Colorado Regulations 601-1, August 31, 1998. American Association of State Highway and Transportation Officials, 2004. Geometric Design of Highways and Streets 2004, Fifth Edition. Ayres Associates Inc, 2005. North College Drainage Improvements Design (NCDID) Alternative Analysis Report. Ayres Associates Inc, 2008. New Vine Drive Realignment Conceptual Plan. Ayres Associates Inc, 2009. Northeast College Corridor Outfall (NECCO) Final Design Report, February. City of Fort Collins Utilities Department Stormwater Division, 1997. Storm Drainage Design Criteria and Construction Standards. Colorado Department of Transportation, 2004. Drainage Design Manual. Colorado Department of Transportation Safety and Traffic Engineering Branch Safety Engineering and Analysis Group, 2009. Safety Assessment (SH 287C Traffic Safety Corridor Review Region 4 SH 287C (MP 347.25 to MP 348.54), June 4, 2009. PBS&J, LSA Associates, 2004. Coley/Forrest, Intermountain Corporate Affairs, Fort Collins Transportation Master Plan 2004, February. Urban Drainage and Flood Control District, 2004. Drainage Design Manual. 8.1 Ayres Associates APPENDIX A — Street Capacity Calculations CDOT Drainage Design Manual Storm Drains Table 13.2 Design Frequency vs. Spread Width. Design Frequency vs. Spread Width. Road Classification Desiga Frequency Interstate 2-5 years 10 years Arterials < 45mph 2-5 years 10 years > 45 mph 2-10 years sag point 50 years Collectors < 45 mph 2-10 years > 45 mph 2-5 years 10 years sag point 10 years Local Streets 2-10 years sag point 10 years Design Spread Width Shoulder i Lod'- r Shoulder + 3 ft t- 5 ' Shoulder + 4 ft Shoulder + 3 ft Shoulder Shoulder + 3 ft 1/2 Driving Lane Shoulder + 4 ft Shoulder 1/2 Driving Lane 1/2 Driving Lane 1/2 Driving Lane Note: These criteria applies to shoulder widths of 4 ft or greater. Where shoulder widths are less than 4 ft, a minimum design spread of 4 ft should be considered. 13-10 CDOT Drainage Design Manual Storm Drains 13.3 PAVEMENT DRAINAGE 13.3.1 Introduction Roadway features considered during gutter, inlet and pavement drainage calculations include: • Longitudinal and cross slope, • Curb and gutter sections, • Pavement texture/surface roughness, • Roadside and median ditches, and • Bridge decks. The pavement width, cross slope, profile and pavement texture control the time it takes for stormwater to drain to the gutter section. The gutter cross section and longitudinal slope control the quantity of flow that can be carried in the gutter section. 133.2 Major Storoi And Street Caaaeo The effects of the major or 100-year storm has to be assessed for any storm drain design. For this assessment the major storm's allowable depth and inundation shall not exceed the following limitations: 1. Residential dwellings, public, commercial and industrial buildings shall not be flooded around the foundation unless the buildings are flood proofed. 2. The depthofwater at the street crown on continuous grade sections shall not exceed 6 inches to allow the passage of emergency vehicles. 3. The depth of water at the panline on continuous grade sections shall not exceed 18 inches. 4. For interstate highways, on continuous grades and at sumps, the water shall not go out into the traveled lane more than Oft for the i 00-year storm. 5. For all highways except interstates, depth of ponding in sump areas shall be kept to a minimum for the major storm. Major storm inundation and closing of a sump area is not allowed if alternate detour routes are not available. If the major storm criteria are not met, the size and design frequency of the minor storm drain system shall be increased in size to reduce major storm flooding. 13.3.3 Longitudinal Slope Desirable gutter grades should not be less than 0.3 percent for curbed pavements. Minimum grades can be maintained in very flat terrain by use placing the flowline of the gutter at a steeper grade than the centerline profile of the roadway. To provide adequate drainage for both crest and sag vertical curves, a minimum slope of 0.3 percent should be maintained within 50 feet of the level point in the curve. This is accomplished where the length of the curve divided by the algebraic difference in grades is equal to or less than 167. Although ponding is not usually a problem at crest vertical curves, on extremely flat curves a similar minimum gradient should be provided to facilitate drainage. 133.4 Cross Slope Reference (1) is standard practice and should be consulted prior to deviation from this Manual. 13-11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage inlet ID: _ Street Capacity -TBACK TCRowe - 98ACK T. TM Ax - -W -' Tx Street gown Y Q. Ox �► HCURa. d __ Sx ayr mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ng's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Lim for Minor & Major Storrs Flow Depth at Street Crown (leave blank for no) at Cross Slope (Eq. ST-8) er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression wable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) :harge outside the Gutter Section W, carded in Section Tx :harge within the Gutter Section W (Or - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) :imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth xetical Water Spread xetical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xetical Discharge outside the Gutter Section W, carried in Section TxTM ial Discharge outside the Gutter Section W, (limited by distance TcAMN) harge within the Gutter Section W (%- Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ,e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultara Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) TeAcx = t0.0 SBAGK = 0.0050 ft. vent. / ft. hodz neACK = 0.0160 HcuRB= 6.00 inches Tc QWN = 40.0 ft a= 2.00 inches W = 2.00 ft Sx = 0.0250 ft. van. / ft. horiz So = 0.0034 ft. vent. / ft. horiz nSrnEU = TMAx - dM = Sw = Y= d= Tx = Fo = Qx= Qw = QBACK = Or = V= V'd = TTM = Txnt = Eo = Qxnt = Qx= Ow = Qaarx = O= V= V•d = R- O4 = d= dCROWN = Minor Storm Major Storm 9.01 24.0 6,001 18.00 0.1083 0.1083 2.70 7.20 4.70 9.20 7.0 22.0 0.636 0.247 0.8 16.6 1.4 5.4 0.0 5.1 2.1 27.1 2.4 4.1 0.91 3.2 Mirror Storm Major Storm 13.3 53.3 11.3 51.3 0.450 0.106 2.8 158.8 2.8 154.4 2.3 18.9 0.0 52.2 5.1 2255 3.0 6.6 1.5 10.2 1.00 1.00 5.1 225.5 6.00 18.01 0. 0 4.01 ft inches X = yes ft/ft inches inches Cis cis CIS cis IDS cis CIS cfs Cis Cfa s cfs inches Inches Minor Storm Major Storm tible Gutter Capacity Based on Minimum of OT or Q. Oslo, = 2.11 27.1 tia MINOR STORM max. allowable capacity is less than flow given on sheet '&Peak' MAJOR STORM maxallowable capacity is less than flow aiven an sheet 'O-peak' College Street Capacity.xls, Q-Allow 11/13/2009, 10:59 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity --- BACK -- TLROWN SsAz_ .. _ _--. T. TMxX K _W T- TX -_ - n ,ow C - -- _ - Crown Q. I Qx Hcuae c I aT 5+ mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Lino for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) or Cross Slope (Eq. ST-8) er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression Wable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHW A HEC-22 method (Eq. ST-7) :harge outside the Gutter Section W, carried in Section Tx :harge within the Gutter Section W (Qr - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flaw Velocity Times Gutter Flowline Depth 3retical Water Spread xetical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xe8cal Discharge outside the Gutter Section W. carried in Section Tx TR at Discharge outside the Gutter Section W, (limited by distance TCROWN) harge within the Gutter Section W (Qd - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) II Discharge for Major & Minor Storm i Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) T= 0.0t00. 0 = 050 ft. ert. / ft. horiz nBXK = 0.0160 HcuRa = 6.00 inches TCRMN = 40.0 ft a = 2.00 inches W = 2.00 ft Sx = - 0.0250 ft. vert. / ft. honz So = 0.0041 ft. vent. / ft. horiz nsiBEU = 0.0160 Tux = cl a = Sw = y= d= Tx = Eo = Qx= Qw _ QeTCK = Or= V- V'd = TTM = TxTM Eo = Qxv.i Ox = Qw = QSP K = O- V= V•d = R= Qa = d= dCROW N = Minor Storm Major Storm 9.01 24.0 6.00 18.00 0.1093 0.1083 2.70 7.20 4.70 9.20 7.0 22.0 0.636 0.247 0.9 18.2 1.5 6.0 0.0 5.6 2.4 29.8 2.6 4.5 1.0 3.5 Minor Storm Major Storm 13.3 53.3 11.3 51.3 0.450 0.106 3.1 174.4 3.1 169.6 2.5 20.8 0.0 57.3 5.6 247.6 3.2 7.5 1.6 11.2 1.00 1.00 5.7 247.6 6.00 18.01 0.00 4.01 ft inches X = yes ft/ft inches inches ft cis fs Ps CIS cis cis cis cfs fps Lfs Inches Inches Minor Storm Major Storm 3x. Allowable Gutter Capacity Based on Minimum of O. or O. Qdbw = 2.41 29.8 fs .. r,.r.�. F,l. -,,al max- allowable capacity is less than flow given on sheet'O-Peak' ARNING: MA_. NORM max. allowable capacity is leas then fin. ni~ nn ahmi t't] Peek' College Street Capacity.xls, Q-Allow 11 /13/2009, 10:59 AM 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 (eased on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity TRACK- TCRowN -- _ T. T SBACK MAx -- -W Tx - Street -- _ Crown Q. Q. Hcuae d 9 K a 5-, mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition 1g's Roughness for Street Section Allowable Water Spread for Minor & Major Steam Allowable Depth at Gutter Flow Line for Mirror & Major Stem Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) or Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression Nable Spread for Discharge outside the Gutter Section W IT - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W. carried in Section Tx .harge within the Gutter Section W (Or - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread i Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth wetical Water Spread lreticel Spread for Discharge outside the Gutter Section W IT - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xetical Discharge outside the Gutter Section W, carded in Section Tx TR al Discharge outside the Gutter Section W, (limited by distance TcRONN) harge within the Gutter Section W (Qd - Qx) harge Behind the Curb (e.g., sidewalk, driveways, &lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6°) Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) TeACK = .0010.0 ft SBACK = 050 ft. van. / ft. horiz neAcK = 0.0160 HcuRe = 6.00 inches TCROWii 40.0 ft a - 2.00 inches W = 2.00 ft Sx = 0.0300 ft. van. / ft. horiz So =1 0.0046 ft. van. / ft. horiz nsT E,,, = TM = clA = Sw = y= d= Tx = Eo = Qx= Qw = QWK = OT = V- V'd = TTN = Tx TN = Eo = Qx TN = Qv = Qw = QBACK = O= V- V•d = R= Oe = d= dcRmN = Minor Storm Major Storm 9.01 24.0 6.00 8.00 0.1133 0.1133 3.24 8.64 5.24 10.64 7.0 22.0 0.615 0.241 1.2 26.0 2.0 8.2 0.01 11.6 3.2 45.3 3.0 5.3 1.3 4.7 Minor Storm Major Storm 11.1 44.4 9.1 42.4 0.515 0.127 2.5 149.9 2.5 149.5 2.6 21.7 0.0 60.4 5.1 231.6 3.4 7.8 1.7 11.8 1.00 1.00 5.1 231A 6.00 18.01 0.00 1.61 ft inches X = yes Wft inches inches ft cis cfs cis of$ fps cis CIS cis CIS cis fps CIS inches inches Mirror Storm Major Storm doe Gutter Capacity Based on Minimum of OT or Q. Q.iw. =1 3.21 afs MINOR STORM max allowable capacity is Was than flow given on aheet'Q-Peak' MAJOR STORM max. allowable capacity is less than flow given on sheet 'Q-Peak' College Street Capacity.xls, Q-Allow 11 /1312009, 11:00 AM L ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity TSACK Tcnow - - SaAC -' T, TMAx _. _ K_ --w - .- Tx Street -- -t_- - Crown Qw I Qx c�� Y o _ Sx a 9' mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) t rig's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition 'tg's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) :er Cross Slope (Eq. ST-8) 'er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression wable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Merge outside the Gutter Section W, carded in Section Tx Marge within the Gutter Section W (Or - Qx j :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) :imum Flow Based On Allowable Water Spread v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W IT - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xetical Discharge outside the Gutter Section W, carded in Section TxrN ial Discharge outside the Gutter Section W, (limited by distance TCROWN) :harge within the Gutter Section W (Qd - Qx) .harge Behind the Curb (e.g., sidewalk, driveways, & lawns) d Discharge for Major & Minor Storm u Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth :e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultarx Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) TBACK 10.0 ft S'A = = 0.0050 ft. vert. / ft. honz nl A K - 0.0160 HOURS = 6.00 inches TCROwN = 40.0 ft a- 2.00 inches W = 2.00 ft Sx = 0.0300 ft. van. / ft. honz So = 0.0050 ft. van. / ft. horiz nsTResT = T,m = dmo = Sw' _ y= d= Tx = Eo = Qx = Ow = GBACK - or= V- V'd = T,, = TxrR = Eo = Qx rR = Ox= Qw = OBACK = o= V= V'd = R- od = d= dCROWN = Mirror Storm Major Storm 9.01 24.0 6.001 18.00 0.1133 0.1133 3.24 8.64 5.24 10.64 7.0 22.0 0.615 0.241 1.3 27.2 2.1 8.6 0.0 12.1 3.3 48.0 3.21 5.6 1.41 4.9 Minor Storm Major Storm 11.1 44.4 9.1 42.4 0.515 0.127 2.6 157.1 2.6 1S6.8 2.8 22.8 0.0 63.3 5.3 242.8 3.6 8.2 1.8 12.3 1.00 1.00 5.4 242.8 6.00 18.01 0.00 1.61 ft inches X = yes It/ft inches inches ft CIS cis CIS efa s cis CIS CIS CIS ds fps CIS inches inches Minor Storm Major Storm ible Gutter Capacity Based on Minimum of Or or Q„ o,n„x =I 3.31 cfs MINOR STORM maxallowable capacity =s less than flow given on sheet'O-Peak' MAJOR STORM max. allowabM capacity is lees than flow aiven on sheet'O-Peak' College Street Capacity.xls, Q-Allow 11/13/2009, 11:00 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity TBAOx TCeOWN SaAT. TMAx K ` W Tx Street Qw I. Qx = -_ Crown Y H S one d x a 9� num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition 1g's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) at Gross Slope (Eq. ST-B) er Depth without Gutter Depression (Eq. ST-2) at Depth with a Gutter Depression wable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) :harge outside the Gutter Section W, carried in Section Tx :harge within the Gutter Section W (QT - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) :imum Flow Based On Allowable Water Spread v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth 3retical Water Spread )retical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) 3retica) Discharge outside the Gutter Section W, carried in Section Tx TN al Discharge outside the Gutter Section W, (limited by distance TceowN) harge within the Gutter Section W (Gd - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm i Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ,e-Based Depth Safety Reduction Factor for Major & Minor (d> 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultara Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) TaACK = 10.0 ft SeacK = 0.0050 ft. vert. / ft. horiz neAcK = 0.0160 HmAs = 6.00 inches Tc MN= 40.0 ft a= 2.00 inches W = 2.00 ft Sx = 0.0300 ft. van. / ft. hertz So = 0.0076 ft. vert. / ft. horiz nsmEET = Txux = duax = SA' _ Y= d= Tx = Eo = Qx= QW = QRACK = Or = V- V'd = TTN = Tx,, = Eo = QxT = Orr = Qw = OeAcx = o= V= V'd = R- Oa = d= dLMOWN = Mirror Storm Major Storm 9.01 24.0 6.001 18.00 0.1133 0.117 3.24 8.64 5.24 10.64 7.0 22.0 0.615 0.241 1.6 33.6 2.5 10.6 0.0 15.0 4.1 59.2 3.9 6.9 1.71 6.1 Minor Storm Major Storm 11.1 44.4 9.1 42.4 0.515 0.127 3.2 193.7 3.2 193.3 3.4 28.1 0.0 78.0 6.6 299.4 4.4 10.1 2.2 15.2 1.00 1.00 5.6 299.4 6.00 18.01 0.00 1.61 inches X = yes ttift inches inches ft cfs cfs cis big fps oft; CIS cfs CIS b(s s cfe inches inches Minor Storm Major Storm lowable Gutter Capacity Based on Minimum of o= or G. oiii • 21 4.11 59.2 cfs NG MINOR STORM max. allowable capacity is less than flow given on sheet 'Q-Peak' STORM max. allowable capacity OK - oreater than flow siren on sheet 'O-Peak' College Street Capacity-xls, Q-Allow 11 /13/2009, 11:00 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major (tsaseo on Hegulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity - 7 - _... , SBRC! r_ T, TMAx CROWN aACx !`- W d' Tx - Street _ rown �~ Ow I Qx y HCURs d Sx �I a 53 mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for nO conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line -e from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm r Flow Depth at Street Crown (leave blank for no) at Cross Slope (Eq. ST-8) or Depth Without Gutter Depression (Eq. ST-2) or Depth with a Gutter Depression Noble Spread for Discharge outside the Gutter Section W IT - W) at Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W, carded in Section Tx harge within the Gutter Section W (Or - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imam Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth Dretical Water Spread oretical Spread for Discharge outside the Gutter Section W (7 - W) at Flow to Design Flow Ratio by FHW A HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W, carried in Section Txn, al Discharge outside the Gutter Section W, (limited by distance TcRowN) :harge within the Gutter Section W (Od - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ie-Based Depth Safety Reduction Factor for Major & Minor (d a 6") Storm : Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) Taecx = 10.0 ft SeAcx = 0.0050 ft. vert. / ft. horiz neAcx = 0.0160 Hcuss = 6.00 inches TCOOWN= 40,0 ft a = 2.00 inches W = 2.00 ft Sx = 0.0300 ft. van. / ft. horiz So = 0.0021 ft. van. / ft. horiz nsr,R = Minor Storm Major Storm T. -1 9.0 24.0 ft d.= 6.00 18.00 inches X=yes Minor Storm Major Storm Sw = y= d- Tx = EO = Qx = Qw = QeAcx = Or= V- V'd = TTM = TxTM= Eo = Oxn, _ Qx = Ow = Qa = Q= V= V'd = R= Old = d= dcROW N = 0.1133 0.1133 3.24 8.64 5.24 10.64 7.0 22.0 0.615 0.241 0.8 17.7 1.3 5.6 0.01 7.9 2.21 2.1 q3.6 0.9 Minor Storm Major Storrs 11.1 44.4 9.1 427 0.515 0.127 1.7 101.8 1.7 101.6 1.8 14.8 0.0 41.0 3.5 157A 2.3 5.3 1.2 8.0 1.00 1.00 3.5 157.4 6.00 18.01 0.00 1.61 ft/ft inches inches cfs cts cfs Ots fps cis CIS CIS cis cfs fps cfs inches inches Minor Storm Major Stops able Gutter Capacity Based on Minimum of Q, or O Q aw, =1 2.21 31.1 cfs MINCR STORM maxaNewaoie capacity is .ess than flow given on sheet'O-Peak' MAJOR STORM max. allowable caoeeity a less than flow aiwen on sheet 'Q-Peak' College Street Capacity.xls, Q-Allow 11/13/2009, 11:00 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity TBALK TCROWN - SBAC_- T. TMAx - W T. Sheer Crown y Qw Qx !� HcuRB d Sx a 9° mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) zing's Roughness Behind Curb TBALK = 0.010.0 ' SBAOK = 050 ft. ,it. / ft. horiz nRACK = 0.0160 of Curb at Gutter Flow Line HcuRe = 6.00 inches :e from Curb Face to Street Crown TCAMN = 40.0 ft Depression a= 2.00 inches Width W = 2.00 ft Transverse Slope Sx = 0.0300 ft. vert. / ft. horiz Longitudinal Slope - Enter 0 for sump condition So = 0.0018 ft. vent. / ft. horiz rg's Roughness for Street Section ns,nss, = 0.0160 Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) at Cross Slope (Eq. ST-8) or Depth without Gutter Depression (Eq. ST-2) or Depth with a Gutter Depression Noble Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHW A HEC-22 method (Eq. ST-7) harge outside the Gutter Section W, carried in Section Tx harge within the Gutter Section W (Or - Qx) barge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth tretical Water Spread xetical Spread for Discharge outside the Gutter Section W IT - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) )ratical Discharge outside the Gutter Section W, carded in Section Tx m, al Discharge outside the Gutter Section W, (limited by distance TCAONN) harge within the Gutter Section W (Qd - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d> 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied Atant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) Minor Storm Major Storm TMAx =1 9.01 24.0 ft d. =1 6.001 18.00 if X = yes Minor Storm Major Storm Sw = y= d= Tx = Eo = Ox= Qw = Qe = Or = V- V`d = TTM = TxTM = Flo = Qxn Qx = Ow = OeACK = 0= V- V'd = R- Qd = d- dCROWN = 0.1133 0.117 3.24 8.64 5.24 10.64 7.0 22.0 0.615 0.241 0.8 16.3 1.2 5.2 0.0 7.3 2.01 28.8 1.91 3.3 0.81 3.0 Minor Storm Major Storm 11.1 44.4 9.1 42.4 0.515 0.127 1.6 94.3 1.6 94.1 1.7 13.7 0.0 38.0 3.2 145.7 2.1 4.9 1.1 7.4 1.00 1.00 3.2 145.7 6.00 18.01 1.61 ft/ft inches inches ft cis cfs cfs cis fps CIS cfs cfs cfs ofs fps cfs inches inches Minor Storm Major Storm Ible Gutter Capacity Based on Minimum of O. or Q„ Qalkw =1 2.01 28.8 cfs MINOR STORM max. allowable capacity is less than flow given on.n.� . '. MAJOR STORM maxallowable capacity is less than flow given i College Street Capacity.xls, Q-Allow 11/13/2009, 11:01 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity TBACK� TCROWN - SeAC__ T, TMA% - �W Tx- C L- Strownreet _ Qw I Qx H CURB d a 9• mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition 1g's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression wable Spread for Discharge outside the Gutter Section W IT - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) :harge outside the Gutter Section W. carried in Section Tx :harge within the Gutter Section W (Or - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) :imum Flow Based On Allowable Water Spread v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth xetical Water Spread aretical Spread for Discharge outside the Gutter Section W IT - W) ar Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xetical Discharge outside the Gutter Section W, carried in Section Tx TN al Discharge outside the Gutter Section W, (limited by distance TCRCwN) :harge within the Gutter Section W (Qd - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) d Discharge for Major & Minor Storm v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth Na-Based Depth Safety Reduction Factor for Major & Minor (d a 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultam Flow Depth at Gutter Flowline (Safety Factor Applied) ultam Flow Depth at Street Crown (Safety Factor Applied) IG: M!N ---- STOI TRACK = 10.0 ft SBACK = 0.0050 ft. vert. / ft. horiz nBACK = 0.0160 HcuRe = 6.00 inches TcRmN = 40.0 ft a= 2.00 inches W = 2.00 ft Sx= 0,0400 ft. vert. / ft. horiz So = 0.0021 ft. vert. / ft. horiz nsTReEr= 0.0160 TMAx = dmm = SW = y= d= Tx = Eo = Qx= Qw = QRACK = Or = V- V'd - TTM = Tx,, = Eo = Qx TN = Qx= Qw = QBACK = O= V= V`d = R- Oa = d A = dCROWN = Minor Storm Major Storm 9.01 24.0 6.001 18.00 0.1233 0.1233 4.32 11.52 6.32 13.52 70 22.0 0.587 0.232 1.3 28.5 1.9 8.6 0.0 18.3 331 55.5 2.4 4.3 1.31 4.8 Minor Storm Major Storm 8.3 33.3 6.3 31.3 0.625 0.166 1.0 73.2 1.0 73.2 1.7 14.6 0.0 41.0 2.7 128.8 2.3 5.3 1.1 8.0 1.00 1.00 2.7 128.8 6.00 18.00 0.00 0.00 inches X = yes run inches inches ft CfS CIS cfs efs fps cfs CIS of$ CIS ofa fps cfs inches inches Minor Storm MajorStorm on Minimum of O, or O. O.mw =1 2.71 efs flow given on ~'Q-0Mk' College Street Capacity.xls, Q-Allow 11/13/2009, 11:01 AM 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity TRACK TCROWN __ 3a_ T. TMAX ACK -yy_ Tx _.. Street �- Crown i Q. I Qx s HCURS d y __ SK - ' a 0+ num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ling's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ng's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm r Flow Depth at Street Crown (leave blank for no) at Cross Slope (Eq. ST-8) at Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression Nable Spread for Discharge outside the Gutter Section W (T- W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W, carried in Section Tx harge within the Gutter Section W (Or - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth xetical Water Spread xetical Spread for Discharge outside the Gutter Section W (T - W) ar Flow to Design Flow Ratio by FHWA HEC-22 method (Eq- ST-7) netical Discharge outside the Gutter Section W, carded in Section Tx,., al Discharge outside the Gutter Section W, (limited by distance TCROWN) harge within the Gutter Section W (Qa - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) 1 Discharge for Major & Minor Storm , Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) i tant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) TRACK = 100 SOX, = 07t . vert. / ft. horiz neACK = 0.0160 HcuRa = 6.00 inches TCRo N = 40.0 ft a = 2.00 inches W = 2.00 tt Sx = 0.0200 ft. vert. / ft. horiz So = 0.0033 ft. vert. / ft. honz nSMEU = 0.0160 Minor Storm Major Storm TMAx =1 9.01 241r, dmo= 6.00 18.ches = yes Minor Storm Major Storm SW = y= d= Tx Eo = Qx = Qw = QSACK = OT V= V'd = TTM = TxTM = Eo - QXTH = QX= Ow = QBACK O= V= V•d = R= Qe= d= dCROWN = 0.1033 0.1033 2.16 5.76 4.16 7.76 7.0 22.0 0.664 0.258 0.5 11.2 1.0 3.9 0.0 16 1-B 165 2.11 3.6 0.71 2.3 Mirror Storm Major Storm 16.7 66.7 14.7 64.7 0.378 0.086 3.8 198.1 3.8 179.4 2.3 18.6 0.0 51.0 6.1 249.0 2.9 6.7 1.5 10.0 too 1.00 a.t 249.0 6.00 18.00 0.M 40 It/ft inches inches ft cfs CIS CIS s cfs cfs cis cis cfs s s inches inches Minor Storm Major Storm ible Gutter Capacity Based on Minimum of 0, or 0., O,p,w =1 1.6 16.7 ds MINOR STORM max. allowable capacity is less than flow given on sheet'0-PNk' MAJOR STORM max. allowable capacity is less than flow oiwn on eheet'111ilimle College Street Capacity.xls, O-Allow 11/1312009, 11:02 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) - (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: _ North College Drainage Inlet ID: Street Capacity TBACK - TCROWN , T -� SaACK T -_-_ MA% _W_ W_.-. Tx Stfeet ---- -- Crown T Q. � Qx - R y CURB d SK a 9• mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) zing's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition tg's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Mirror & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) or Depth without Gutter Depression (Eq. ST-2) or Depth with a Gutter Depression Nable Spread for Discharge outside the Gutter Section W (r- W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W, carried In Section Tx harge within the Gutter Section W (QT - Ox) harge Behind the Curb (e.g.. sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth aretical Water Spread aretical Spread for Discharge outside the Gutter Section W (T- W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) aretical Discharge outside the Gutter Section W, carried in Section TxtR ial Discharge outside the Gutter Section W, (limited by distance Tcro m) ,harge within the Gutter Section W (Qd - Qx) :harge Behind the Curb (e.g.. sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ,e-Based Depth Safety Reduction Factor for Major & Minor (d > W) Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) TsACK = 10.0 ft SeACK = 0.0050 ft. van. / ft. horiz nBACK = 0.0160 Hcum= 6.00 inches TCRowN = 40.0 ft a= 2.00 inches W = 2.00 ft Sx = 0.0200 ft. vert. / ft. honz So = 0.0043 ft. van. / ft. horiz nSTREET = 0.0160 Sw = y= d= Tx = Eo = Ox= Qw = ABACK = OT = V- V'd = TTN = Tx TN = Eo = Ox TN = OK= Qv= ABACK = 0= V= V'd = R= Od = d= dcROwN = Minor Storm Major Storm 9.0 24.0 6.00 1 B.00 0.1033 0.1033 2.16 5.76 4.16 7.76 7.0 22.0 0.664 0.258 0.6 12.9 1.2 4.5 0.0 1.8 1.8 192 2.51 4.1 0.91 2.7 Minor Storm Major Storm 16.7 66.7 14.7 64.7 0.378 0.086 4.4 227.9 4.4 206.4 2.7 21.4 0.0 58.7 7.0 2]6.40 3.3 1.7 1.00 7.0 2 6.00 1 0.00 I inches X=yes ftlft inches inches ft cfs cfs CIS cfs fps cfs cfs CIS cfs CIS fps CIS inches inches Minor Storm Major Storm rble Gutter Capacity Based on Minimum of O, or O„ O,iy„ = 1.81 cfs MINOR STORM max. allowable capacity is less than flow given on sheet O-Peak MAJOR STORM max. allowable capacity m less than flow oiven on sheet'O-Pack' College Street Capacity.xls, O-Allow 11/13/2009, 11:02 AM 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 (Based on and Project: North College Drainage Inlet ID: Street Capacity T9 nt. n. --... TCROWN Sn„�., _ _ T. TMAx W Tx Street Crown Ow Ox '4,CURB a Y Ss I a 5" num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for not er Cross Slope (Eq. ST-8) er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression Nable Spread for Discharge outside the Gutter Section W (T - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) '.harge outside the Gutter Section W. camed in Section Tx harge within the Gutter Section W (Or - Qx) .harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth xetical Water Spread tretical Spread for Discharge outside the Gutter Section W IT - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) weticai Discharge outside the Gutter Section W, carried in Section Tx TN at Discharge outside the Gutter Section W, (limited by distance TCROWN) harge within the Gutter Section W (Qa - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) II Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) TBAcx = 10.0 ft SBACK = 0.0050 ft. van. / ft. horiz nBACK = 0.0160 HcuRe = 6.00 inches TCROWN =AnOnl�fflft. ft a =inches W =ft Sx =ft. Vert. / ft. horiz So = van. / ft. honz nMEET = TM� _ dNAx = Sw = y= d= Tx = Eo = Ox= Qw = QBACK = OT = V- Wit = TTM = Tx,, Eo = Qx TN = Qx= Qw = Q8ACK = Q= V= V'd = R= Od = d- dCROWN = Minor Storm Major Storm 9.0 24.0 6.001 18.00 0.1033 0.1033 2.16 5.76 4.16 7.76 7.0 22.0 0.664 0.258 0.6 12.1 1.1 4.2 0.0 1.7 1.71 18.0 2.31 3. 0.81 2.5 Minor Storm Major Storm 16.7 66.7 14.7 64. 0.378 0.086 4.1 214.2 4.1 194.0 2.5 20.1 0.0 55.2 6.6 269.3 3.1 7.2 1.6 10.8 1.00 1.00 6.6 269.3 6.00 18.00 0.00 6.40 ft inches X = yes Wit inches inches ft cfs cfs cfs cfs fps cfs cis CIS cis cfs fps offs inches inches Minor Storm Major Storm Max. Allowable Gutter Capacity Based on Minimum of Or or OA Q.M. =r 1.71 18.0 cfs ,.J,NG: MINOR STORM maxallowable capacity is less than flow given on sheet 'O-Peak' WARNING: MAJOR STORM max. allowable capacity is less than flow doyen on sheet'O-Peak' College Street Capacity.xls, Q-Allow, 11/13/2009, 11:02 AM II ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity TBACK �- TCROwN -- SaA_� �- T. TMA% K W T TA '- -T--- Crown Ow Oz H CURB d S% a 5 mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ting's Roughness Behind Curb of Curb at Gutter Flow Line Ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition 1g's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) at Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression Atable Spread for Discharge outside the Gutter Section W IT - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) :harge outside the Gutter Section W, carded in Section Tx :harge within the Gutter Section W (OT - Ox) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Rowline Depth xetical Water Spread wetical Spread for Discharge outside the Gutter Section W IT - W) at Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xetical Discharge outside the Gutter Section W, carried in Section Tx TN al Discharge outside the Gutter Section W, (limited by distance TCROWN) harge within the Gutter Section W (Oa - Ox) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) Atant Flow Depth at Gutter Flowline (Safety Factor Applied) Atari Flow Depth at Street Crown (Safety Factor Applied) TRACK = 10.0 It SeAcK = 0.750 ft. van. / ft. horiz nBACK = 0.0160 HwRs = 6.00 inches TCROWN= 40.0 ft a = 2.00 inches W = 2.00 ft SK = 0.0200 ft. ven. / ft. horiz SO = 0.0045 ft. van. / ft. horiz nsTREET = 0.0160 Minor Storm Major Storm Twv =1 9.01 2410X ft dMAx= 6.00 18.0inches = yes Mirror Storm Major Storm SW = y= d= Tx = Eo = Qx = Ow = OBACK = OT = V- V'd = TTM = Tx TN = Ea = Qx TR = Ox= ow = OBACK = o= V- V•d - R- Od = d= dCRCW N = 0.1033 0.1033 2.16 5.76 4.16 7.76 7.0 22.0 0.664 0.258 0.6 13.1 1.2 4.6 0.011.9 1.81 19.6 2.51 42 0.91 2.7 Minor Storm Major Storm 16.7 66.7 14.7 64.7 0.378 0.086 4.5 233.1 4.5 211.1 2.7 21.9 0.0 60.0 7.2 293.0 3.4 7.8 1.7 11.7 1.00 1.00 7.2 293.0 6.00 18.00 0.00 6.40 ft/ft inches inches ft cis cis cfs ds fps cis cis cfs cis cfs fps Cis inches inches Minor Storm Major Storm ible Gutter Capacity Based on Minimum of O, or Q. Odild„ = 1, 19,6 cfg MINOR STORM max. allowable capacity is less than flow given on rrheet'O-Peak' MAJOR STORM maxallowable caoacdv is less than flow aivan on ahaet'O-Pask' College Street Capacity.xls, Q-Allow 11113t2009, 11:02 AM 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 on and Project: North College Drainage Inlet ID: Street Capacity TRACK TcRowN T, TMAX SaACK W T Tx Sweet Ow Ox y CURB d Sx a 9+ num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) or Cross Slope (Eq. ST-8) or Depth without Gutter Depression (Eq. ST-2) or Depth with a Gutter Depression vable Spread for Discharge outside the Gutter Section W (T - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W, carried in Section Tx harge within the Gutter Section W (Or - Ox) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) !mum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth )retical Water Spread )retical Spread for Discharge outside the Gutter Section W (T - W) or Flow to Design Flow Ratio by FHW A HEC-22 method (Eq. ST-7) )retical Discharge outside the Gutter Section W, carried in Section Tx,, at Discharge outside the Gutter Section W, (limited by distance TCROWN) harge within the Gutter Section W (Od - Ox) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) Atant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) TRACK = 10.0 ft SeACK = 0.0050 ft. vert. / ft. horiz nBACK = 0.0160 HcuRB = 6.00 inches TcRowN = 40.0 ft a= 2.00 inches W = 2.00 ft Sx= 0.0250 ft. van. / ft. horiz So = 0.0045 ft. vert. / ft. horiz nsmEBT = TMAX = dMAX = Sw = y= d= TX = Eo = Ox= QW = OeacK = OT= V- V•d = T,, = Tx,, = Eo = Ox rN = Ox = Ow = OBACK = Oa V- V•d = R= Od = d= dCROWN = Minor Storrs Major Storm 9.01 24.0 6.00 18.00 0.1083 0.1083 2.70 7.20 4.70 9.20 7.0 22.0 0.636 0.247 0.9 19.1 1.6 6.3 0.0 5.9 2.51 31.2 2.81 4.8 1.11 3.7 Minor Storm Major Storm 13.3 53.3 11.3 51.3 0.450 0.106 3.3 182.7 3.3 177.6 2.7 21.7 0.0 60.0 5.9 259.4 3.4 7.If 1.7 11.7 1.00 1.00 5.9 259.4 6.00 18.01 0. 4.01 ft inches X = yes Wit inches inches ft CIS CIS cfs cfs fps CIS CIS CIS CIS cfs fps cfs inches inches Minor Storrs MajorStorm tx. Allowable Gutter Capacity Based on Minimum of O. or OA O,Ib„ = 2.51 cfs n^)� MI'l-: -TORM max. allowable capacity is less than flow given on sheet 'O-Peak' - TORM max. allowable capacity is less than flow given on sheet 'O-Peak' College Street Capacity.xls, O-Allow 11/1312009, 1 t03 AM II ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) II (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity -TBACK - TCRCWN -- -- Se�erc --. T. TNAx IV -t- TKStreet Crown yQ W 1 OxHCURs d 8b4 num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression wattle Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) :harge outside the Gutter Section W, carried in Section Tx :harge within the Gutter Section W (Q, - Ox) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) :imum Flow Based On Allowable Water Spread v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth xetical Water Spread xetical Spread for Discharge outside the Gutter Section W IT - W) or Flow to Design Flaw Ratio by FHW A HEC-22 method (Eq. ST-7) lretical Discharge outside the Gutter Section W, earned in Section TxTM ial Discharge outside the Gutter Section W, (limited by distance TcRowN) harge within the Gutter Section W (Qd - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm i Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ,e-Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultars Flaw Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) TencK= 10.0 ft SBACK - 0.0050 ft. ven. / ft. hodz nancx - 0.0160 HcuRs= 6.00 inches TGROWN= 40.0 ft a = 2.00 inches W = 2.00 ft Sx= 0.0250 ft. vert. /ft. horiz So = 0.0066 ft. ven. / R. honz n!MtEEr = Twix = cl,_ SW = Y= d- Tx = Eo = Qx= Qw = QBACK = Qr= V= V'd = TTM = TxTM= Eo = Qxn+= Qx= Qw = CRACK = 0= V= V•d = R- Qd = d= dCROWN = Minor Storm Major Storm 9.0 24.0 6.00 18.)0 0.1083 0.1083 2.70 7.20 4.70 9.20 7.0 22.0 0.636 0.247 1.1 23.0 1.9 7.6 0.01 7.1 3.0 37.7 3.3 5.7 1.31 4.4 Minor Storm Maior Stonn 13.3 53.3 11.3 51.3 0.450 0.106 3.9 220.4 3.9 214.3 3.2 26.2 0.0 72.4 7.1 313-0 4.1 9.4 2,1 14.1 1.00 1.00 7.1 313.0 6.00 18.01 0.00 4.01 it inches X = yes ft/ft inches inches ft cfs cis cfs ds cts cfs cfs fps cfs inches inches Minor Storm Major Storm rble Gutter Capacity Based on Minimum of Q. or Q., QwR = 3.01 37.7 cfs MINOR STORM maxallowable capacity m lose than flow given on sheet'O-Peak' MAJOR STORM max. allowable capacity is less than flow given on sheet 'Q-Peak' College Street Capacity.xls, Q-Allow 11/13/2009, 11:03 AM II ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storml II (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity --TBACK - - TCROWN StlAC -- T. TNA% `--- ' -W Tx _.. sheet r------ crown Qw � Qx Fctl y S,A�,► a 5" mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) frog's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) or Depth without Gutter Depression (Eq. ST-2) or Depth with a Gutter Depression Noble Spread for Discharge outside the Gutter Section W IT - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W, carded in Section Tx harge within the Gutter Section W (Or - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W IT - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W, carded in Section Tx1R lal Discharge outside the Gutter Section W, (limited by distance TcROWN) :harge withn the Gutter Section W (Qd - Ox) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth to -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) Want Flow Depth at Street Crown (Safety Factor Applied) TeACK = 10.0 ft SeACK = 0.0050 . vert. / ft. honz OBACK = 0.0160 Hems = 6.00 inches TcRowN = 41 ft a = 2.00 inches W = 2.00 ft Sx = 0.0250 ft. van. / ft. honz So = 0.0086 ft. vert. / ft. honz ri �u = TNAx = el A = SW = y= d- Tx = Eo = Qx= QW = oBALx = QT = V- V'd = TTN = Tx rR = Eo = Qx rR = Qx = Qw = Q�x = G= V= V•d = R- Od= d= CICROWN = Minor Storm Major Storm 9.0 24.0 6.001 18.00 0.1083 0.1083 2.70 7.20 4.70 9.20 7.0 22.0 0.636 0.247 1.2 26.4 2.2 8.7 0.0 8.1 3.4 43.2 3.8 6.6 1.51 5.0 Minor Storm Major Storm 13.3 53.3 11.3 51.3 0.450 0.106 4.5 252.5 4.5 245.6 3.7 30.1 0.0 83.0 8.2 6 358M358. 4.7 2.3 1.00 8.2 600 0.00 inches X = yes ft/ft inches Inches ft cfs CIS cfs cfs fps cfs cfs CIS offs cfs fps cfs inches inches Minor Storm Major Storm Gutter Capacity Based on Minimum of Q. or Q. G,i„w =1 3.41 4 2 cfs MINOR STORM max. allowable capacity is less than flow given on sheet 'Q-Peak' MAJOR STORM max, allowable capacity is less than flow given on sheet'G-Peak' College Street Capacity.xls, Q-Allow 11/13/2009, 11:03 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & (based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity -TBACK TCROWN -- SBAC~_ T. TMAx `W Sheet -� �_ ---- Crown y L w HCURB d B a 5y num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) zing's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition 1g's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression wable Spread for Discharge outside the Gutter Section W (T- W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) .harge outside the Gutter Section W. carried in Section Tx .barge within the Gutter Section W (Or - 0x) barge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth xeticai Water Spread )retical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xetical Discharge outside the Gutter Section W. carried in Section Tx TN al Discharge outside the Gutter Section W, (limited by distance TCROWN) harge within the Gutter Section W (Od - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) II Discharge for Major & Minor Storm i Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) .nitant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) MINOR STORM max. allowac. TeacK = 10.0 ft S,,,, = 0.0050 . vert. / ft. horiz nw,cx = 0.0160 HcuRB = 6.00 inches TCACWN = 40.0 It a= 2.00 inches W = 2.00 It Sx = 0.0250 ft. van. / ft. horiz So = 0.0024 ft. vert. / ft. horiz nsTREET= 0.0160 TM = dux= Sw = y= d= Tx = Ed = Qx= Qw = QBACK = Or= V- V'd = TTK = Tx,, = Eo = Qxn Qx = Qw = QBACK = 0= V- V`d = R= Qd= d= dCROWN = Minor Storm Major Storm 9.0 24.0 6.00 18.00 0.1083 0.1083 2.70 7.20 4.70 9.20 7.0 22.0 0.636 0.247 0.7 13.9 1.1 4.6 0.0 4.3 1.8 22.a 2.0 3.5 0.81 2.7 Minor Storm Major Storm 13.3 53.3 11.3 51.3 0.450 0.106 2.4 133.4 2.4 129.7 1.9 15.9 0.0 43.8 4.3 189.5 2.5 5.7 1.2 8.6 1.00 1.00 4.3 189.5 6.00 18.01 0.00 4.01 ft inches X=yes ft/ft inches inches ft CIS cfs cfs cfs fps cfs cfs cfs cis cfs fps cf s inches inches Minor Storm Major Storm 0, or O„ o,lkw =1 1.81 Clio "a_ ,s than flow given on sheet 'O-Peak' less than flow given on sheet'0-Peak' College Street Capacity.xis, G-Allow, 11/13/2009, 11:03 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major on and Project: North College Drainage Inlet ID: Street Capacity -TRACK _--- - - TCROWN - - -- SeACK T. Tw Ax _ -W _. _-_ Tx Street - - _ Crown Y Q. Qx HCORB of Sx I a y, mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line :e from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Gross Slope (Eq. ST-8) ar Depth without Gutter Depression (Eq. ST-2) ar Depth with a Gutter Depression vable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W. carried in Section Tx harge within the Gutter Section W (Or - Cy) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W IT - W) er Flow to Design Flow Ratio by FHW A HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W, carried in Section Tx TN lal Discharge outside the Gutter Section W. (limited by distance TCROWN) :harge within the Gutter Section W (Qd - Ox) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm u Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth re -Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm : Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultam Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) T,,,K = 10.0 SeACK = 0.0050 . vert. / ft. horiz neACK = 0.0160 Hcuae = 6.00 inches TCROWN- 40.0ft a = 2.00 inches W = 2.00 ft Sx - 0.0250 ft. vert. / ft. horiz So = 0.0019 ft. vert. / ft. horiz nsTREBT = 0.0160 Minor Storm Major Storm Twtx = 9.0 24'0 ft dii c = 6.00 18.00 inches X = yes Minor Storm Major Storm Sw = y= d- Tx = Ep = 0, = 0, = QBACK = 0T = V- V•d = TTM = Tx,, = Eo = QxT = Qx = C6 = Qeacx = 0= V= V'd = R= Oa= d- dCROWN - 0.1083 0.1063 2.70 7.20 4.70 9.20 7.0 22.0 0.636 0.247 0.6 12.4 1.0 4.1 0.01 3.8 !.51 20.3 1 .81 3.1 0.7 2.4 Minor Storm Major Storm 13.3 53.3 11.3 51.3 0.450 0.106 2.1 118.7 2.1 115.4 1.7 14.1 0.0 39.0 3.8 1d4.O 2.2 1.1 1.00 3.8 6.00 1 0.00 fUft inches inches ft CIS CIS cis cfs e CIS cfs cis cis pfs fps cis inches inches Minor Storm Major Storm ax. Allowable Gutter Capacity Based on Minimum of 0,, or Q. 0,1,. = _ -_ 1.61 cfs -NOR STORM max. allowable capacity is less than flow given on shed O-Peak' A. -WING. MAJOR STORM max. allowable Capacity is less than flow oiven on *heat '0-Peak College Street Capecity.xls, Q-Allow 12/16/2009, 4:15 PM I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: North College Drainage Inlet ID: Street Capacity _ TF.1,:R � TCROWN T. T MA% an _W T � Street Ow O% - y H CURB d < I a 5 mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) zing's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W IT - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section V•d Product: Flow Velocity Times Gutter Flowline Depth Dretical Water Spread xetical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xetical Discharge outside the Gutter Section W, carried in Section Tx,,, at Discharge outside the Gutter Section W. (limited by distance T,,MN) harge within the Gutter Section W (Od - Ox) :harge Behind the Curb (e.g.. sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ,e-Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultam Flow Depth at Street Crown (Safety Factor Applied) TBACK - 10.0 ft SBACK = 0.0050 ft. van. / ft. horiz ni, C = 0.0160 HcuRe = 6.00 inches TCRowN = 40.0 ft a = 2.00 inches W = 2.00 ft Sx = 0.0300 ft. van. / ft. horiz So = 0.0014 ft. vert. / ft. horiz nsTRssr= 0.0160 Minor Storm Major Storm Tw,x =1 9.024.0 dmm =1 6.001 18.00 inches X = yes Minor Storm Major Storm Sw = y= d= T%= Eo = O%= Ow= OBACK = Or = V= V'd = T,N = Txot = Eo = Oxn = a'. Ow. OBACK = Qa V= V•d= R= Oe = d= dcnowN = 0.1133 0.117 3.24 8.64 5.24 10.64 7.0 22.0 0.615 0.241 0.7 14.4 1.1 4.6 0.0 6.4 1.8 25.4 1.71 3.0 0.71 2.6 Minor Storm Major Storm 11.1 44.4 9.1 42.4 0.515 0.127 1.4 83.1 1.4 82.9 1.5 12.1 0.0 33.5 2.8 1285 1.9 4.3 0.9 6.5 1.00 1.00 2.8 128.5 6.00 18.01 0.00 1.61 ft/ft inches inches ft cis cis cis cfs fps CIS cfs CIS CIS cfs Ins cfs inches inches Minor Storm Major Storm tble Gutter Capacity Based on Minimum of Or or O,, O,s>w = 1.81 cfs MINOR STORM max. allowable capacity is less than flow given on sheet 'O-Peak' MAJOR STORM max. allowable caoacity is Was than flaw oiven on shwwt O-Pwat' College Street Capacity.xls, O-Allow 12/1612009. 4:16 PM APPENDIX B — Existing Drainage Existing Drainage Basins m Q m O n m N N m _ p m O m m N N m m m d m m m m m d N N n N m N P A 3 O LL m N n R 0 m N m m N O tdO N O m O m m N m m d N m N a cL O ON O O O m m N y m m m n m N m n n n n n n Till n OJ N C O y z m o O n N O m P m m d N N d m N O A m N m m m m m N N m m m m m m m m m m m m m m m m m N m m m Q a E = m n m N m N N 2 m O m m d o m m m m 3 N N fmO m m n d n n N N N m O m m m d b m d m d m d N O m m r m m N d N N d m W m Q m m m m d d m d f m m m m m m N N m m N Q m O Q P n N m m P N n m N m m m m n m m m �- n m m m m m m N m m d m n m O r m O m m N m O m O m N` m m N mn O N 0 N N N (m�) n Omi m N n O N d� (•mJ 0 0 C C N m C 0 N W m N N 0 co W W W W U UUUUUUUUUUU W W W W W W C W W C C W W C C W W UU Y Y Y Y Y Y m y m m m m Y Y O J J J J J J J J J J J j m j j j j j j J J Y y m L= L= L L L L L L 0 0 0 Q Q Q Q Q\\ d d am -= m m o 0 o m m m m m m m m g g U U m O D O O O O D 0 0 o? > O mE mE mE mE m m am, m mE m m O O a a O O a a O O a a O O a a m m E <aa«««a<a L L N N O O L L W W O O E E L L m W O O' E E L L m W O E L L W O O E E L L O O E E as L L W N O O 0 m N Y — W W N N N p m m ' UUUUUUUUUUU m m m m m m m m m m Q 6 m m 6 W m U m W U U W W U U � 3 • m O 9 9 y m m m m• aaa E `o m 0 P 0 o m m'W c m O m UOJ N m N N m N O m m O O y O c 0 O O m _' W m—m ' 3 9 m P mmm yO O m m O 5 Gm m m Ym m^ Q O O G C C m m m m ;N W O O O O m S O U U a N Q J L t t•> m O W> O> m T w w Zc i C C m N m U o o 0 0 a o 0 o m m m mmm m O.M. t� L C m N m m p m"; m E E U c t c c a E u W x x m E E U U o = m o= m = r Z Z e c Z Z G C W 7JcLL Z Z Z 0 2 2 2 a Y g O w z O z o 0 0 m m `m 0 o m m o ti o E E wwwmxm t= U r o Z 0 L Y 0 Z m y 33333333333333333333wwww NXXXXX00,NN XXXXXXXXXXXXXXXXX h NN XX m WWWWwwww W W W W W w W w W W w W w a a, � °i it S1 - I- EX14 EXIT 0.22 0.44 �..�..� 0.28 Ex21 _ Res ASSOCIATES It / /I lr i I I I i ' i ;i' ' ``\\` ��\t i ill it I i'/ r, ' / ' `'' / ';I 1 I I p III I III I' 1 III\ 'II I � II 111 � / �\ 1 ` 'A N l r ll ♦ �1`1 i `\ ,; / '' - i♦ �_ --I ``l /_-) � I II 11 { ,III; r\I\.. II '- ` 1 _` \ I, /i�i - '\♦\ 4'^ ` I' 11 1 �__% i 1111 / IIII `t 111 1\ % /1 I/l �� ` / 1\ ♦\ \I II II tY 1l "1 100—YEAR t I 1 I, 11 % " I I/ FLOODPLAIN i� y I' i `" 1 I 1 1 "ll ".._.' ♦` I I ``I I Ij / I I i _� __-% 11 YII/ = I 1 r\ 1 / rl, r•' n\ \I I / 1 Il II 1;�� i Ill \ \ / // 1 ♦ 1 1, � YlII I �'1 \ � .\ % :+ %// ' `\.. \`\ J % ' •L-,' _�� ' ;' SI:- '' l /N Syr.l l " i I 50 YEAR FI.i10DPL AIN-� ii 1:• 'ems '!' \ ; ;/ -71 'I 1 It \ 0.5FT /1 ✓'I �\ FLOODWAY J .�' EX2 '.'��•'� - r' ___ _\�� - C•�l ! A `mot i `\ � `_ ------------ a+'✓ ;%-� ' r 11 MAIN FLOW -- Z PATH y __ X18 i L'J I I_ ' \ �.. p EX19 17 0.95 �..I'. 1 .,�` ,�.,•, EXQQ - .....,�' ..1 , �` ,�...i•'Y'�•• +.�^ ,GY}w` f ' EX20 /\ \: i \ 'i 1 1,43 �1' I 1�. I I 'PROPOSEDIz --- ^ ' ----____,STORM SEWER ! ---------" A I it .. --- ----,_ ; ---.i 1-♦, ,`-�y---;: '_-"♦__% I �. ' -\--- ---' FIGURE 2.1 EXISTING BASINS 2 I I--, ­' - SCALE IN FEET 1 of 3 I , , I I� 1 1 I i I , , � I 1 I I I , 1 vi I e `� ` r , A ' -- / - � 1 ____1___-=--�__ 1- Ir/ 1 I lil' I 1 III III I i I I 1 I ' Ijl It I I 1 1 I 'II , I11 , \ I 1 I� In'aJ ♦ � yy I _ EXISTING STORM SEWER I I 1 I / I ` _ 1 1 � I I r I i I / , 1 I' / 1 1 n - I II I 1 , I I I , � 1 Q 1 II 1 \ I 1 jl • -- \ \ 1 1 \ 1 \ 1 1 I 1 ' I I '• i 9 11 1 11\ 11 1 I �I t I 1 ; I I II 1 I '1 I ♦ / 1 MAIN FLOW I V 11 - � '• n EX6 ' � / PATH � I 01 .ram ---._.--'--•'•`. ' �' .' , ' ------------------ -COLLEGE A - ----- VENUE - _.r,.._�._- ----- _ _ - --- __�------- -. C.._.r_.._.._ __ � _.._.._.._..� --- . _••_••_••_u_••_••_••_••_•r_••_u l 1��••_u_u_••_••�••_•._••_••u�i•_u_••_••_.),•Y�•�r_••_••_•. _((_••_r••_••_• �T u�/i•�•r_ , ` l / ' I , - II♦ _ -- _ __1 ____ __ ni. 1 1 FIGURE 2.1 ---` --- - --- - - 1 _ EXISTING BASINS '; ' - _I_ SCALE IN-W.ET- 2 of 3 --- -----= - A&MM ASSOCIATES 6 v A II I 1 1 11 /z _ ♦ (vim !� ; !! 1 � L i 1 - 1 ,1 / / 1 ' 4 4 IIIII 1 AMES ASSOCIATES 3M --------------- / I 1 1 -- ' I � I y(y \ 1 I 1 1 ----- 4989 \ \ j •� a 1 .-------------- \ y q,\ ` o so� SCALE IN FEET --4 11 I 0 EX12 22.88 i -' ,' I ;Low PoLM - I ------------- _ (--- -- 1 ---' Low POLYF ---; / OVERFLOW ) o 1 c. nil - • EXII ' ill / 17.62 / •_'-',� u / 'Y ••-••-- -••- .. _-____ • 1-_______---- "Lv�___--_- ' I I \ /_____-__ --------------- ---- 1 - - i m FIGURE 2.1 EXISTING BASINS 3 of 3 iY A 4 '10 qw- , - EPASWMM EXISTING CONDITIONS PROJECT MODEL 1 OF 3 im AIN IN 0 rlw mom AAWA ilia W't lw_ AS, ML- 4. mlo IN& I CIO bwTw 741 a � -9." a 1w. U A 1111i wli� I'Ill 'on I lAlk N. co ril t 4* 40 in P, I A -- 41 4w -j EPASWMM EXISTING CONDITIONS PROJECT MODEL 20F3 I F mI 1 /ry 1 r' 1 1 r 1 1 f V 1 f � , r r 1 :I 1 1 1J14 1 - . •eA 1. r Ir at t\ 1 �,► r r r i 1 r 1 f /e, YS 1 _ �1 41 f ♦ EPASWMM EXISTING CONDITIONS PROJECT MODEL 3OF3 M ' _ F m J 1 I 1 1 J /1 100-Year EPASWMM Analysis 2 EPASWMM EXISTING Summary 100-yr INPUT 100-yr EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.018) -------------------------------------------------------------- tr 4trQQtrQQtr4QdA4Q#Q#####Q#trtrtrQ4tr4QQQQ###QrtrtrtrtQtr4rt4QQ####QrtQ NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reportin time step. not from Q#####eportiQ #####Q*#rtQrttrQtrQ### 4**4***#**Qd4QQQ Analysis Options tr}###4}###*44tr*rt Flow units ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ YES water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ DEC-15-2009 00:00:00 Ending Date .............. DEC-15-2009 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:05:00 Dry Time Step ............ 01:00:00 Routing Time Step ........ 1.00 sec WARNING 04: minimum elevation drop used for Conduit os5 WARNING 02: maximum depth increased for Node dcl WARNING 02: maximum depth increased for Node ssl WARNING 02: maximum depth increased for Node ss3 44444444444*4 Element count 444444444444E Number of rain gages ...... 1 Number of subcatchments ... 24 Number of nodes ........... 27 Number of links ........... 32 Number of pollutants ...... 0 Number of land uses ....... 0 444}44****4*4444 Raingage Summary 4444E*444****4*4 Name --------------- COFCRainGage }}}}4}}}d}**}44}}4}} Subcatchment summary 444}}}}}}R}4}}4}}4}4 Name EXO1 Ex02 EX03 EX04 EX05 EX06 EX07 Ex08 EX09 Ex10 EX11 EX12 Ex13 EX14 Ex15 EX16 EX17 Data Recording Data Source ----------------------------------------- Type Interval 100-year INTENSITY 5 min. Area ----------------------------------------------------------------------- width %Impery %Slope Rain Gage Outlet 11.94 1733.00 70.00 0.5000 COFCRainGage os14 14.73 2138.00 65.00 0.5000 COFCRainGage ss9a 4.74 2065.00 40.00 0.5000 COFCRainGage ss3 43.91 6376.00 45.00 0.5000 COFCRainGage ss2 5.27 . 3062.00 5.00 0.5000 COFCRainGage ssl 6.21 1352.00 45.00 0.5000 COFCRainGage ss2 1.35 589.00 95.00 0.5000 COFCRainGage ss4 4.30 1873.00 95.00 0.5000 COFCRainGage os2 30.80 4473.00 50.00 0.5000 COFCRainGage os2 8.49 3700.00 85.00 0.5000 COFCRainGage dcl 17.62 2558.00 35.00 0.5000 COFCRainGage osl 22.88 4983.00 55.00 0.5000 COFCRainGage osl 1.84 267.00 5.00 0.5000 COFCRainGage os18 0.44 255.00 95.00 0.5000 COFCRainGage OS18 0.28 164.00 95.00 0.5000 COFCRainGage os17 0.51 296.00 95.00 0.5000 COFCRainGage ss13 1.80 1044.00 95.00 0.5000 COFCRainGage ss12 North College Corridor Improvements December 2009 I of 7 Ex18 0.17 97.00 95.00 0.5000 COFCRainGage ss10 Ex19 0.95 551.00 95.00 0.5000 COFCRainGage 559 EX20 1.55 900.00 95.00 0.5000 COFCRainGage ss8 Ex21 0.24 139.00 95.00 0.5000 COFCRainGage os30 Ex22 1.14 665.00 95.00 0.5000 COFCRainGage os30 Ex23 1.43 833.00 95.00 0.5000 COFCRainGage OS30 EX24 0.91 530.00 95.00 0.5000 COFCRainGage os30 ####trtr#z#### Node Summary ##trtrtr####### Invert Max. Ponded External Name Type Elev. Depth Area Inflow ------------------------------------------------------------------------------ dcl JUNCTION 4976.00 6.00 0.0 osl JUNCTION 4978.00 2.00 0.0 osl3 JUNCTION 4966.90 2.00 0.0 osl4 JUNCTION 4964.40 2.00 0.0 osl7 JUNCTION 4965.60 1.00 0.0 Os18 JUNCTION 4964.50 1.00 0.0 os2 JUNCTION 4976.00 10.00 0.0 os8 JUNCTION 4971.00 2.00 0.0 ssl JUNCTION 4972.00 6.00 0.0 ss10 JUNCTION 4966.84 10.00 0.0 ssll JUNCTION 4965.88 5.00 0.0 ss12 JUNCTION 4963.19 10.00 0.0 ssl3 JUNCTION 4961.87 5.32 0.0 ss2 JUNCTION 4969.75 10.00 0.0 ss3 JUNCTION 4969.50 4.50 0.0 ss4 JUNCTION 4968.85 5.45 0.0 ss5 JUNCTION 4968.42 6.29 0.0 ss6 JUNCTION 4968.37 5.23 0.0 ss8 JUNCTION 4966.68 3.75 0.0 ss9 JUNCTION 4966.09 10.00 0.0 ss9a JUNCTION 4967.00 5.00 0.0 os27 OUTFALL 4959.00 2.00 0.0 ss7 OUTFALL 4960.00 3.00 0.0 0515 OUTFALL 4963.50 1.00 0.0 OS19 OUTFALL 4963.50 1.00 0.0 os30 OUTFALL 0.00 0.00 0.0 1 OUTFALL 4963.50 2.00 0.0 4trtr#trtr#Ctr4tr# Link summary Name From Node TO Node Type Length %Slope Roughness ------------------------------------------------------------------------------------------ dry_Creek dcl ssl CONDUIT 1600.0 0.2500 0.0450 osl osl os2 CONDUIT 800.0 0.2500 0.1000 Os10 ss8 Ss10 CONDUIT 200.0 1.2951 0.1000 Osll ss9a ss10 CONDUIT 127.0 1.0473 0.0160 os12 ss10 osl3 CONDUIT 500.0 0.3540 0.1000 os13 osl3 osl4 CONDUIT 300.0 0.8334 0.1000 osl4 osl4 os15 CONDUIT 210.0 0.4286 0.0450 osl6 ssl3 os14 CONDUIT 50.0 1.5802 0.0130 osl7 osl3 ssl2 CONDUIT 50.0 1.3401 0.0130 os18 os18 OS19 CONDUIT 165.0 0.6061 0.0450 os2 052 551 CONDUIT 450.0 0.2222 0.0800 os21 osl7 osl8 CONDUIT 280.0 0.3929 0.0160 os4 ssl ss2 CONDUIT 120.0 3.3352 0.0800 os5 ss2 ss3 CONDUIT 57.0 0.0018 0.0160 os6 ss3 os8 CONDUIT 60.0 1.6669 0.1000 os7 ss5 ss4 CONDUIT 80.0 0.5125 0.0160 os8 s55 os8 CONDUIT 60.0 4.5213 0.1000 os9 os8 1 CONDUIT 2000.0 0.3750 0.1000 ssl ssl ss4 CONDUIT 250.0 0.2600 0.0130 sslo ss9 ssll CONDUIT 50.0 0.4200 0.0130 ssll ssll ssl2 CONDUIT 730.0 0.3685 0.0130 ssl2 SS12 ssl3 CONDUIT 300.0 0.4400 0.0130 ssl3 ss13 os27 CONDUIT 210.0 1.3668 0.0130 ss2 ss2 ss3 CONDUIT 57.0 0.4386 0.0130 ss3 ss3 ss5 CONDUIT 220.0 0.4909 0.0130 ss4 ss4 ss5 CONDUIT 50.0 0.8600 0.0130 ss6 ss5 ss6 CONDUIT 400.0 0.0125 0.0130 ss7 ss6 ss7 CONDUIT 500.0 1.6742 0.0130 558 ss8 ssll CONDUIT 200.0 0.4000 0.0130 SS9 ss10 559 CONDUIT 60.0 1.2501 0.0130 ssl4 s511 ss10 CONDUIT 60.0 0.2333 0.0160 ss9a ss9a ss9 CONDUIT 127.0 0.5197 0.0130 ####zz##z###tr####z### Cross Section Summary ##################### Full Full Hyd. Max. No. of Full Conduit shape Depth Area Rad. width Barrels Flow --------------------------------------------------------------------------------------- dry_Creek TRAPEZOIDAL 6.00 174.00 3.19 53.00 1 623.09 osl TRAPEZOIDAL 2.00 600.00 1.50 400.00 1 584.13 Os10 TRAPEZOIDAL 1.00 260.00 0.81 320.00 1 382.84 North College Corridor Improvements December 2009 2 of 7 OS11 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 514.09 os12 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 195.73 os13 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 300.31 Os14 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 478.58 os16 TRAPEZOIDAL 1.00 70.00 0.78 90.00 1 850.37 os17 TRAPEZOIDAL 1.00 70.00 0.78 90.00 1 783.11 OS18 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 139.05 os2 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 193.85 os21 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 314.87 os4 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 750.97 055 TRAPEZOIDAL 2.00 480.00 1.71 280.00 1 267.40 os6 TRAPEZOIDAL 1.00 260.00 0.81 320.00 1 434.32 os7 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 359.63 Os8 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 170.91 Os9 TRAPEZOIDAL 2.00 600.00 1.50 400.00 1 715.41 SS1 FILLED_CIRCULAR 0.75 0.88 0.23 1.50 1 1.96 S510 CIRCULAR 1.50 1.77 0.38 1.50 1 6.81 SS11 CIRCULAR 2.00 3.14 0.50 2.00 1 13.73 ss12 CIRCULAR 2.00 3.14 0.50 2.00 1 15.01 ss13 CIRCULAR 2.00 3.14 0.50 2.00 1 26.45 ss2 CIRCULAR 1.50 1.77 0.38 1.50 1 6.96 ss3 CIRCULAR 1.50 1.77 0.38 1.50 1 7.36 ss4 CIRCULAR 3.00 7.07 0.75 3.00 1 61.85 ss6 CIRCULAR 3.00 7.07 0.75 3.00 1 7.46 ss7 CIRCULAR 3.00 7.07 0.75 3.00 1 86.30 SS8 CIRCULAR 2.00 3.14 0.50 2.00 1 14.31 SS9 CIRCULAR 1.25 1.23 0.31 1.25 1 7.22 ss14 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 242.66 ss9a - CIRCULAR 0.83 0.54 0.21 0.83 1 1.56 w North College Corridor Improvements December 20D9 - 3 of 7 OUTPUT 100-yr ************************** volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation ...... 56.108 3.669 Evaporation LOSS ......... 0.000 0.000 Infiltration LOSS ........ 11.389 0.745 Surface Runoff ........... 44.398 2.903 Final Surface Storage .... 0.616 0.040 Continuity Error (%) ..... -0.527 ************************** volume volume Flow Routing Continuity d dAdAdA4:######AAdAAAdAA4d4 acre-feet 10a6 gal Dry weather Inflow ....... --------- 0.000 --------- 0.000 wet weather Inflow ....... 44.417 14.474 Groundwater Inflow ....... 0.000 0.000 RDII Inflow ............... 0.000 0.000 External Inflow .......... 0.000 0.000 External Outflow ......... 44.225 14.411 Internal Outflow ......... 0.000 0.000 Storage Losses ........... 0.000 0.000 initial Stored volume .... 0.002 0.001 Final Stored volume ...... 0.188 0.061 Continuity Error (%) ..... 0.013 4444444#44#444d4444444444 Highest Continuity Errors 44R444#4#444444444A44d444 Node os2 (4.69%) Node ssl (-1.50%) tr trdtrddLdArtrt#tr4#4#4444A4A444 Time -Step critical Elements 444444444dAA4AdLrtdd4AdtrdAA4 None 4dddtrdtrd#tr#tr####*A4#444#444444A4 Highest Flow Instability Indexes #trd44dII44tr#L##tr4444A4444444#4444 All links are stable. 44444444444444#ARtr4444A44 Routing Time Step Summary #44#4444444#4Ld44Ad4d4dLL Minimum Time Step 0.50 sec Average Time step 1.00 sec Maximum Time Step 1.00 sec Percent in Steady State 0.00 average Iterations per Step 2.00 tr trtr4tr##444dAd44A*trd4A4*44dL subcatchment Runoff summary d 444#trtrd#####444A4AA4*tr4444 ---------------------------------------------------------------------------------------------- Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10A6 gal CFS ----------------------------------------------------------------- Ex01 3.669 0.000 0.000 0.458 3.182 1.031 91.975 -- 0.867 EX02 3.669 0.000 0.000 0.544 3.099 1.239 108.170 0.844 EX03 3.669 0.000 0.000 0.883 2.777 0.357 33.510 0.757 Ex04 3.669 0.000 0.000 0.910 2.743 3.271 252.096 0.748 EX05 3.669 0.000 0.000 1.417 2.268 0.325 25.705 0.618 Ex06 3.669 0.000 0.000 0.860 2.794 0.471 39.336 0.762 Ex07 3.669 0.000 0.000 0.068 3.553 0.130 13.282 0.968 EX08 3.669 0.000 0.000 0.068 3.554 0.415 42.304 0.968 Ex09 3.669 0.000 0.000 0.815 2.835 2.371 189.818 0.773 EX10 3.669 0.000 0.000 0.206 3.423 0.789 82.272 0.933 EX11 3.669 0.000 0.000 1.105 2.553 1.221 85.678 0.696 Ex12 3.669 0.000 0.000 0.687 2.962 1.840 164.024 0.807 Ex13 3.669 0.000 0.000 1.732 1.941 0.097 3.727 0.529 Ex14 3.669 0.000 0.000 0.067 3.552 0.042 4.366 0.968 EX15 3.669 0.000 0.000 0.067 3.552 0.027 2.779 0.968 Ex16 3.669 0.000 0.000 0.067 3.552 0.049 5.060 0.968 EX17 3.669 0.000 0.000 0.067 3.552 0.174 17.860 0.968 Ex18 3.669 0.000 0.000 0.067 3.552 0.016 1.686 0.968 Ex19 3.669 0.000 0.000 0.067 3.552 0.092 9.426 0.968 North College Corridor Improvements December 2009 4 of 7 EX20 3.669 0.000 0.000 0.067 3.SS2 .� Ex21 3.669 0.000 0.000 0.067 3.S52 r EX22 3.669 0.000 0.000 0.067 3.552 EX23 3.669 0.000 0.000 0.067 3.552 EX24 3.669 0.000 0.000 0.067 3.552 ----------------------------------------------------------------- System 3.669 0.000 0.000 0.745 2.903 AAAAARR#R'tR AARA### Node Depth summary 0.149 15.380 0.968 0.023 2.381 0.968 0.110 11.313 0.968 0.138 14.190 0.968 0.088 9.030 0.968 --------------------- 14.467 1225.333 0.791 --------------------------------------------------------------------- Average maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type Feet, Feet Feet days hr:min --------------------------------------------------------------------- dcl JUNCTION 0.13 2.16 4978.16 0 00:42 osl JUNCTION 0.06 1.00 4979.00 0 00:44 os13 JUNCTION 0.01 0.12 4967.02 0 01:09 os14 JUNCTION 0.02 0.34 4964.74 0 00:42 os17 JUNCTION 0.00 0.06 4965.66 0 00:41 os18 JUNCTION 0.02 0.27 4964.77 0 00:44 Os2 JUNCTION 0.09 1.25 4977.25 0 00:57 058 JUNCTION 0.10 1.09 4972.09 0 01:10 ssl JUNCTION 2.17 4.47 4976.47 0 00:55 ss10 JUNCTION 0.32 2.29 4969.13 0 00:55 ssll JUNCTION 0.35 3.33 4969.21 0 00:41 ss12 JUNCTION 0.41 3.88 4967.07 0 01:09 ss13 JUNCTION 0.24 1.90 4963.77 0 00:41 ss2 JUNCTION 0.39 3.31 4973.06 0 00:40 ss3 JUNCTION 0.41 3.54 4973.04 0 00:40 ss4 JUNCTION 0.43 1.82 4970.67 0 00:40 ss5 JUNCTION 0.77 2.28 4970.70 0 00:40 ss6 JUNCTION 0.33 1.16 4969.53 0 00:41 ss8 JUNCTION 0.14 2.79 4969.47 0 00:42 ss9 JUNCTION 0.38 3.21 4969.30 0 00:40 ss9a JUNCTION 0.41 4.40 4971.40 0 00:40 os27 OUTFALL 0.24 1.84 4960.84 0 00:41 ss7 OUTFALL 0.32 1.16 4961.16 0 00:41 OS15 OUTFALL 0.02 0.34 4963.84 0 00:42 OS19 OUTFALL 0.00 0.09 4963.59 0 00:44 os30 OUTFALL 0.00 0.00 0.00 0 00:00 1 OUTFALL 0.10 1.09 4964.59 0 01:10 444EEE44E4444AEE4EE Node Inflow Summary E 444AEE44444E4E4444 _ maximum maximum Lateral Total Lateral Total Time of max Inflow Inflow Inflow Inflow Occurrence volume volume Node - Type CFS CFS days hr:min - 10A6 gal 10A6 gal ------------------------------------------------------------------------------------ dcl JUNCTION 82.25 82.25 0 00:40 0.790 0.790 osl JUNCTION 249.65 249.65 0 00:40 3.063 3.063 os13 JUNCTION 0.00 23.43 0 00:58 0.000 0.479 • os14 JUNCTION 91.95 91.95 0 00:40 1.032 1.186 Os17 JUNCTION 2.78 2.78 0 00:40 0.027 0.027 Os18 JUNCTION 8.06 10.38 0 00:40 0.139 0.167 Os2 JUNCTION 232.07 333.34 0 00:40 2.787 5.881 Os8 JUNCTION 0.00 317.38 0 00:52 0.000 8.802 ssl JUNCTION 25.70 267.93 0 00:44 0.325 6.806 ss10 JUNCTION 1.69 113.81 0 00:40 0.016 1.099 5511 JUNCTION 0.00 15.57 0 00:38 0.000 1.017 ss12 JUNCTION 17.85 31.80 0 01:08 0.174 1.514 ss13 JUNCTION 5.06 28.78 0 00:40 0.049 1.560 ss2 JUNCTION 291.37 316.49 .0 00:52 3.743 9.347 ss3 JUNCTION 33.50 329.06 0 00:52 0.358 9.702 ss4 JUNCTION 13.28 16.73 0 00:40 0.130 1.435 ss5 JUNCTION 0.00 27.52 0 00:40 0.000 2.346 ss6 JUNCTION 0.00 27.40 0 00:40 0.000 2.346 ss8 JUNCTION 15.37 15.37 0 00:40 0.150 0.150 ss9 JUNCTION 9.42 12.22 0 00:40 0.092 0.907 ss9a JUNCTION 108.15 108.15 0 00:40 1.240 1.240 os27 OUTFALL 0.00 28.56 0 00:41 0.000 1.560 ss7 OUTFALL 0.00 27.32 0 00:41 0.000 2.346 OS15 OUTFALL 0.00 75.22 0 00:42 0.000 1.187 OS19 OUTFALL 0.00 8.04 0 00:44 0.000 0.166 os30 OUTFALL 36.90 36.90 0 00:40 0.359 0.359 1 OUTFALL 0.00 236.58 0 01:10 0.000 8.793 R RAARRR4AR4AARAAAAR4dR Node Surcharge Summary Q 4444333trtrtrtrtrtrtr44444tr4 surcharging occurs when water rises above the top of the highest conduit. ----------------------------------=-------------------------------- North College Corridor Improvements December 2009 5 of 7 Max. Height Min. Depth Hours Above Crown Below aim Node Type surcharged Feet Feet --------------------------------------------------------------------- ss9 ]UNCTION 1.87 1.709 6.791 4444A4444444444trtr4444 Node Flooding summary 444Yt4444#44444444444# No nodes were flooded. R #RRAARRRRRRAR#A#RRRAAA Outfall Coadin Summary tr 4444444 R44i44 44444444 Flow Avg. Max. Total Freq. Flow Flow volume Outfall Node Pcnt. CFS CFS 10A6 gal ----------------------------------------------------------- os27 99.58 2.53 28.56 1.560 ss7 99.43 3.81 27.32 2.346 OS15 72.25 2.65 75.22 1.187 OS19 41.58 0.65 8.04 0.166 os30 22.30 2.60 36.90 0.359 1 98.45 14.43 236.58 8.793 ----------------------------------------------------------- system 72.27 26.68 308.95 14.410 44444444444444444444 Link Flow summary tr 444#4444trtr4444R4444 Maximum Time of Max maximum max/ max/ IFIOWI occurrence velocity Full Full Link Type CFS days hr:min ft/sec Flow Depth ---------------- dry_creek ----- CONDUIT 57.65 ---------------------------------- 0 00:42 1.66 0.09 0.52 osl CONDUIT 164.64 0 00:45 0.66 0.28 0.53 Oslo CONDUIT 1.70 0 00:42 0.01 0.00 0.52 Osll CONDUIT 104.29 0 00:40 4.89 0.20 0.40 osl2 CONDUIT 23.43 0 00:58 0.40 0.12 0.28 os13 CONDUIT 8.13 0 01:09 0.27 0.03 0.17 os14 CONDUIT 75.22 0 00:42 1.01 0.16 0.34 Osl6 CONDUIT 0.00 0 00:00 0.00 0.00 0.17 osl7 CONDUIT 19.87 0 01:09 2.15 0.03 0.48 OS18 CONDUIT 8.04 0 00:44 0.86 0.06 0.18 os2 CONDUIT 191.27 0 00:44 0.78 0.99 1.00 os21 CONDUIT 2.45 0 00:41 0.32 0.01 0.16 os4 CONDUIT 204.95 0 00:55 1.35 0.27 0.67 os5 CONDUIT 314.36 0 00:52 1.70 1.18 0.53 os6 CONDUIT 317.38 0 00:52 1.70 0.73 0.90 os7 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 os8 CONDUIT 0.00 0 00:00 0.00 0.00 0.50 os9 CONDUIT 236.58 0 01:10 0.85 0.33 0.55 ssl CONDUIT 4.65 0 00:55 5.40 2.37 0.92 ss10 CONDUIT 11.56 0 01:58 6.54 1.70 1.00 ssll CONDUIT 13.15 0 00:39 4.84 0.96 1.00 ssl2 CONDUIT 24.24 0 01:09 8.26 1.62 0.98 ssl3 CONDUIT 28.56 0 00:41 9.60 1.08 0.94 ss2 CONDUIT 9.32 0 00:14 5.27 1.34 1.00 ss3 CONDUIT 11.37 0 00:55 6.44 1.55 1.00 ss4 CONDUIT 16.70 0 00:40 3.27 0.27 0.68 ss6 CONDUIT 27.40 0 00:40 6.62 3.67 0.57 ss7 CONDUIT 27.32 0 00:41 10.82 0.32 0.39 ss8 CONDUIT 11.99 0 00:38 3.82 0.84 1.00 ss9 CONDUIT 8.65 0 02:27 7.05 1.20 1.00 ss14 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 ss9a CONDUIT 3.88 0 00:21 7.21 2.48 1.00 4##44#4#44R444A#444##4##### Flow Classification Summary 44#4#4#4####44d44444i ------------------------------------ Adjusted --- /Actual Conduit Length Dry ------------------------------------ dry creek 1.00 0.00 osl 1.00 0.00 Oslo 1.00 0.00 osll 1.00 0.91 osl2 1.00 0.03 os13 1.00 0.00 os14 1.00 0.00 ----------------------------------------------------- Fraction of Time in Flow Class ---- Avg. Avg. up Down sub Sup up Down Froude Flow Dry Dry Crit Crit Crit Crit Number change ----------------------------------------------------- 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.00 0.00 0.00 0.09 0.10 0.0000 0.89 0.00 0.08 0.00 0.00 0.00 0.01 0.0000 0.03 0.00 0.97 0.00 0.00 0.00 0.03 0.0000 0.00 0.00 1.00 0.00 0.00 0.00 0.13 0.0000 North College Corridor Improvements December 2009 6 of 7 os16 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os17 1.00 0.03 0.00 0.00 0.04 0.00 0.00 0.93 0.68 0.0000 os18 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.16 0.0000 os2 1.00 0.00 0.00 0.00 0.41 0.00 0.00 0.59 0.05 0.0000 os21 1.00 0.00 0.56 0.00 0.44 0.00 0.00 0.00 0.01 0.0000 os4 1.00 0.82 0.02 0.00 0.11 0.00 0.00 0.05 0.05 0.0000 os5 1.00 0.87 0.00 0.00 0.12 0.00 0.00 0.01 0.04 0.0000 os6 1.00 0.01 0.87 0.00 0.12 0.00 0.00 0.00 0.02 0.0000 os7 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os8 1.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os9 1.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.08 0.0000 ssl 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.98 0.69 0.0001 ss10 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.76 0.0001 ssil 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.69 0.0000 ss12 1.00 0.00 0.00 0.00 0.63 0.36 0.00 0.00 0.97 0.0000 ss13 1.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 1.57 0.0000 ss2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.49 0.0001 ss3 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.02 0.0000 ss4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.39 0.0000 ss6 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.54 0.0001 ss7 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.90 0.0000 ss8 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.02 0.0000 ss9 1.00 0.00 0.00 0.00 0.54 0.46 0.00 0.00 0.91 0.0001 ss14 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 ss9a 1.00 0.00 0.00 0.00 0.22 0.00 0.00 0.77 0.72 0.0001 444A#*4A#4A4A4dA44444dd4d Conduit surcharge Summary *RR#4*R#*#AR##RRARAAA#ARA ---------------------------------------------------------------------------- Hours Hours --------- Hours Full -------- above Full Capacity Conduit Both Ends upstream Dnstream Normal Flow Limited ---------------------------------------------------------------------------- os2 0.53 0.53 0.53 0.01 0.01 os5 0.01 0.01 0.01 0.29 0.01 ssl 0.01 0.01 0.01 11.83 0.01 sslo 1.54 1.54 1.54 2.46 1.29 s511 1.07 1.07 1.07 0.01 0.01 ss12 0.01 0.01 0.01 1.65 0.01 ss13 0.01 0.01 0.01 0.10 0.01 ss2 3.00 3.00 3.00 0.14 0.13 ss3 2.93 2.93 2.93 3.02 2.93 /F ss6 0.01 0.01 0.01 3.09 0.01 ss8 0.22 0.22 0.22 0.01 0.01 ss9 2.21 2.21 2.21 1.39 1.01 ss9a 2.00 2.00 2.02 2.15 1.91 analysis begun on: Fri Jul 23 14:05:10 2010 analysis ended on: Fri Jul 23 14:05:20 2010 North College Corridor Improvements December 2009 7 of 7 10-Year EPASWMM Analysis EPASWMM EXISTING Summary INPUT 10-yr EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (BUild 5.0.018) -------------------------------------------------------------- E SSSSSSS4Etr####trtr4tr4E44444Q44Q######E###rtrtEE44444OQ4trE##E NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. EQ#########Ert4E4trQd444Q######tr4rtrt#44E444Q4444444Q####44E4 34#3###4##333434 Analysis Options 3333333333334##3 Flow units ............... CFS Process Models: Rainfall/Runoff ........ YES snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ YES water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ DEC-15-2009 00:00:00 Ending Date .............. DEC-15-2009 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:05:00 Dry Time Step ............ 01:00:00 Routing Time Step ........ 1.00 sec WARNING 04: minimum elevation drop used for conduit os5 WARNING 02: maximum depth increased for Node dcl WARNING 02: maximum depth increased for Node ssl WARNING 02: maximum depth increased for Node ss3 #444444444444 Element Count 4444444444444 Number of rain gages ...... 1 Number of subcatchments ... 24 Number of nodes ........... 27 Number of links ........... 32 Number of pollutants ...... 0 Number of land uses ....... 0 Q 3Q4#3tr######tr4# Raingage Summary EQ4334E33E4##### Name Data Source ------------------------------- COFCRainGage 10-year . 3333333343433#3trfr 3tr3 subcatchment Summary 43trtrtrtrtr444444R443333 Name Area ------------------------------ Data Recording Type Interval -------------------------- INTENSITY 5 min. 10-yr width %Impery %Slope Rain Gage outlet ---------------------------------------------------------- EX01 11.94 1733.00 70.00 0.5000 COFCRainGage os14 EX02 14.73 2138.00 65.00 0.5000 COFCRainGage ss9a EX03 4.74 2065.00 40.00 0.5000 COFCRainGage ss3 Ex04 43.91 6376.00 45.00 0.5000 COFCRainGage ss2 EX05 5.27 3062.00 5.00 0.5000 COFCRainGage ssl EX06 6.21 1352.00 45.00 0.5000 COFCRainGage ss2 Ex07 1.35 589.00 95.00 0.5000 COFCRainGage ss4 EX08 4.30 1873.00 95.00 0.5000 COFCRainGage os2 EX09 30.80 4473.00 50.00 0.5000 COFCRainGage os2 EX10 8.49 3700.00 85.00 0.5000 COFCRainGage dcl EX11 17.62 2558.00 35.00 0.5000 COFCRainGage osl Ex12 22.88 4983.00 55.00 0.5000 COFCRainGage osl Ex13 1.84 267.00 5.00 0.5000 COFCRainGage os18 EX14 0.44 255.00 95.00 0.5000 COFCRainGage OS18 EX15 0.28 164.00 95.00 0.5000 COFCRainGage os17 Ex16 0.51 296.00 95.00 0.5000 COFCRainGage ss13 EX17 1.80 1044.00 95.00 0.5000 COFCRainGage ss12 North College Corridor Improvements December 2009 1 of Ex18 0.17 97.00 95.00 0.5000 COFCRainGage ss10 Ex19 0.95 551.00 95.00 0.5000 COFCRainGage ss9 Ex20 1.55 900.00 95.00 0.5000 COFCRainGage ss8 EX21 0.24 139.00 95.00 0.5000 COFCRainGage os30 Ex22 1.14 665.00 95.00 0.5000 COFCRainGage os30 Ex23 1.43 833.00 95.00 0.5000 COFCRainGage os30 Ex24 0.91 530.00 95.00 0.5000 COFCRainGage os30 ############ Node Summary Invert Max. Ponded External Name Type Elev. Depth Area Inflow ------------------------------------------------------------------------------ dcl JUNCTION 4976.00 6.00 0.0 osl JUNCTION 4978.00 2.00 0.0 os13 JUNCTION 4966.90 2.00 0.0 osl4 JUNCTION 4964.40 2.00 0.0 osl7 JUNCTION 4965.60 1.00 0.0 osl8 JUNCTION 4964.50 1.00 0.0 os2 JUNCTION 4976.00 10.00 0.0 os8 JUNCTION 4971.00 2.00 0.0 ssl JUNCTION 4972.00 6.00 0.0 ss10 JUNCTION 4966.84 10.00 0.0 ssll JUNCTION 4965.88 5.00 0.0 ssl2 JUNCTION 4963.19 10.00 0.0 ssl3 JUNCTION 4961.87 5.32 0.0 ss2 JUNCTION 4969.75 10.00 0.0 ss3 JUNCTION 4969.50 4.50 0.0 SO JUNCTION 4968.85 5.45 0.0 ss5 JUNCTION 4968.42 6.29 0.0 ss6 JUNCTION 4968.37 5.23 0.0 ss8 JUNCTION 4966.68 3.75 0.0 ss9 JUNCTION 4966.09 10.00 0.0 ss9a JUNCTION 4967.00 5.00 0.0 os27 OUTFALL 4959.00 2.00 0.0 ss7 OUTFALL 4960.00 3.00 0.0 OS15 OUTFALL 4963.50 1.00 0.0 OS19 OUTFALL 4963.50 1.00 0.0 os30 OUTFALL 0.00 0.00 0.0 1 OUTFALL 4963.50 2.00 0.0 Link Summary ############ Name From Node To Node Type Length %slope Roughness ------------------------------------------------------------------------------------------ dry_creek dcl ssl CONDUIT 1600.0 0.2500 0.0450 osl osl os2 CONDUIT 800.0 0.2500 0.1000 Os10 ss8 ss10 CONDUIT 200.0 1.2951 0.1000 Osll ss9a ss10 CONDUIT 127.0 1.0473 0.0160 osl2 ss10 osl3 CONDUIT 500.0 0.3540 0.1000 os13 os13 osl4 CONDUIT 300.0 0.8334 0.1000 osl4 osl4 osl5 CONDUIT 210.0 0.4286 0.0450 osl6 ssl3 osl4 CONDUIT 50.0 1.5802 0.0130 osl7 osl3 ssl2 CONDUIT 50.0 1.3401 0.0130 osl8 Os18 OS19 CONDUIT 165.0 0.6061 0.0450 os2 os2 ssl CONDUIT 450.0 0.2222 0.0800 Os21 osl7 0518 CONDUIT 280.0 0.3929 0.0160 os4 ssl ss2 CONDUIT 120.0 3.3352 0.0800 Os5 ss2 ss3 CONDUIT 57.0 0.0018 0.0160 os6 ss3 058 CONDUIT 60.0 1.6669 0.1000 os7 ss5 ss4 CONDUIT 80.0 0.5125 0.0160 os8 ss5 os8 CONDUIT 60.0 4.5213 0.1000 os9 O58 1 CONDUIT 2000.0 0.3750 0.1000 ssl ssl ss4 CONDUIT 250.0 0.2600 0.0130 ss10 ss9 ssll CONDUIT 50.0 0.4200 0.0130 ssll ssll ssl2 CONDUIT 730.0 0.3685 0.0130 ssl2 ssl2 ssl3 CONDUIT 300.0 0.4400 0.0130 ssl3 ss13 os27 CONDUIT 210.0 1.3668 0.0130 ss2 ss2 ss3 CONDUIT 57.0 0.4386 0.0130 ss3 ss3 ss5 CONDUIT 220.0 0.4909 0.0130 ss4 ss4 ss5 CONDUIT 50.0 0.8600 0.0130 ss6 ss5 ss6 CONDUIT 400.0 0.0125 0.0130 ss7 ss6 ss7 CONDUIT 500.0 1.6742 0.0130 ss8 ss8 ssll CONDUIT 200.0 0.4000 0.0130 ss9 ss10 ss9 CONDUIT 60.0 1.2501 0.0130 ssl4 ssll ss10 CONDUIT 60.0 0.2333 0.0160 ss9a ss9a ss9 CONDUIT 127.0 0.5197 0.0130 Cross Section Summary Full Full Hyd. Max. NO. Of Full Conduit shape Depth Area Rad. width Barrels Flow --------------------------------------------------------------------------------------- dry_creek TRAPEZOIDAL 6.00 174.00 3.19 53.00 1 623.09 osl TRAPEZOIDAL 2.00 600.00 1.50 400.00 1 S84.13 Os10 TRAPEZOIDAL 1.00 260.00 0.81 320.00 1 382.84 North College Corridor Improvements December 2009 2 of 7 r 0511 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 514.09 os12 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 195.73 os13 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 300.31 os14 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 478.58 OS16 TRAPEZOIDAL 1.00 70.00 0.78 90.00 1 850.37 Os17 TRAPEZOIDAL 1.00 70.00 0.78 90.00 1 783.11 OS18 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 139.05 os2 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 193.85 Os21 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 314.87 os4 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 750.97 Oss TRAPEZOIDAL 2.00 480.00 1.71 280.00 1 267.40 os6 TRAPEZOIDAL 1.00 260.00 0.81 320.00 1 434.32 os7 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 359.63 O58 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 170.91 059 TRAPEZOIDAL 2.00 600.00 1.50 400.00 1 715.41 551 FILLED_CIRCULAR 0.75 0.88 0.23 1.50 1 1.96 ss10 CIRCULAR 1.50 1.77 0.38 1.50 1 6.81 ssll CIRCULAR 2.00 3.14 0.50 2.00 1 13.73 ss12 CIRCULAR 2.00 3.14 0.50 2.00 1 15.01 ss13 CIRCULAR 2.00 3.14 0.50 2.00 1 26.45 ss2 CIRCULAR 1.50 1.77 0.38 1.50 1 6.96 ss3 CIRCULAR 1.50 1.77 0.38 1.50 1 7.36 ss4 CIRCULAR 3.00 7.07 0.75 3.00 1 61.85 ss6 CIRCULAR 3.00 7.07 0.75 3.00 1 7.46 ss7 CIRCULAR 3.00 7.07 0.75 3.00 1 86.30 ss8 CIRCULAR 2.00 3.14 0.50 2.00 1 14.31 559 CIRCULAR 1.25 1.23 0.31 1.25 1 7.22 ss14 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 242.66 ss9a CIRCULAR 0.83 0.54 0.21 0.83 1 1.56 North College Corridor Improvements December 2009 3 of OUTPUT 10-yr ********°*4444444344444*°' volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation ...... 26.149 1.710 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 9.504 0.622 Surface Runoff ........... 16.170 1.057 Final Surface Storage .... 0.616 0.040 Continuity Error (%) ..... -0.541 ************************** volume volume Flow Routing Continuity 4 S444dd44 4444444*44444d acre-feet _________ 10A6 gal --------- Dry weather Inflow ....... 0.000 0.000 Wet weather Inflow ....... 16.181 5.273 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 0.000 0.000 External outflow ......... 15.845 5.163 Internal outflow ......... 0.000 0.000 Storage tosses ........... 0.000 0.000 initial stored volume .... 0.002 0.001 Final stored volume ...... 0.186 0.060 Continuity Error (%) ..... 0.941 Highest continuity Errors ####rtrt#rtrtrt**4h*4443*4#44rt Node os2 (9.36%) Node ss10 (1.44%) Node ssl (-1.26%) A A*AAAAARAAAAAAA**#*AAA#4AA Time -Step Critical Elements A AAAA4Atr444trtr*44 4d44trtr44 None 4 A44#4A#frfr #Rfr#AAR###ARAfrfrA*#AA## Highest Flow Instability Indexes #44A#AAfrA###fr #ARRRfr##ARfrfrA##A#R# All links are stable. R44RR#RRRRRRRR*RRRRRRRRRR Routin Time Step Summary 44 *RR444R4A44R#RARRARAA4 Minimum Time step 0.50 sec Average Time Step 1.00 sec Maximum Time Step 1.00 sec Percent in Steady state 0.00 Average Iterations per Step 2.00 34344d443444A4##344AR444434 Subcatchment Runoff summary 44444444444444444444A4444A4 Total Total Total Total Total Precip Runon Evap Infil Runoff subcatchment in in in in in -------------------------------------------------------------------- Ex01 1.710 0.000 0.000 0.389 1.279 Ex02 1.710 0.000 0.000 0.460 1.211 Ex03 1.710 0.000 0.000 0.754 0.935 Fx04 1.710 0.000 0.000 0.753 0.931 Ex05 1.710 0.000 0.000 1.210 0.504 Ex06 1.710 0.000 0.000 0.726 0.959 Ex07 1.710 0.000 0.000 0.057 1.596 EX08 1.710 0.000 0.000 0.057 1.596 EX09 1.710 0.000 0.000 0.679 1.002 EX10 1.710 0.000 0.000 0.175 1.486 EX11 1.710 0.000 0.000 0.905 0.786 EX12 1.710 0.000 0.000 0.584 1.095 Ex13 1.710 0.000 0.000 1.371 0.338 EX14 1.710 0.000 0.000 0.057 1.595 EX15 1.710 0.000 0.000 0.057 1.595 Ex16 1.710 0.000 0.000 0.057 1.595 Ex17 1.710 0.000 0.000 0.057 1.595 EX18 1.710 0.000 0.000 0.057 1.595 ------------------------- Total Peak Runoff Runoff Runoff coeff 10A6 gal CFS ------------------------- 0.415 37.533 0.748 0.484 43.783 0.708 0.120 11.689 0.547 1.110 97.829 0.544 0.072 5.230 0.295 0.162 14.875 0.561 0.058 6.285 0.933 0.186 20.017 0.933 0.838 74.639 0.586 0.342 37.279 0.869 0.376 32.035 0.459 0.680 64.509 0.640 0.017 0.802 0.198 0.019 2.090 0.933 0.012 1.331 0.933 0.022 2.423 0.933 0.078 8.550 0.933 0.007 0.807 0.933 Nonh College Corridor Improvements December 2009 4 of 7 i r EX19 1.710 0.000 0.000 0.057 1.595 0.041 4.513 0.933 EX20 1.710 0.000 0.000 0.057 1.595 0.067 7.363 0.933 EX21 1.710 0.000 0.000 0.057 1.595 0.010 1.140 0.933 EX22 1.710 0.000 0.000 0.057 1.595 0.049 5.417 0.933 EX23 1.710 0.000 0.000 0.057 1.595 0.062 6.794 0.933 Ex24 -------------------------------------------------------------------------------------------- 1.710 0.000 0.000 0.057 1.595 0.039 4.324 0.933 System 1.710 0.000 0.000 0.622 1.057 5.269 491.013 0.618 33333333333333**33 Node Depth Summary 333333333333333333 -----------------------------------9------------ Average maximum maximum ------------ Time of Max Depth Depth NGL Occurrence Node Type Feet Feet Feet days hr:min --------------------------------------------------------------------- dcl JUNCTION 0.09 1.57 4977.57 0 00:42 osl JUNCTION 0.03 0.54 4978.54 0 00:47 os13 JUNCTION 0.00 0.00 4966.90 0 00:00 os14 JUNCTION 0.01 0.19 4964.59 0 00:43 os17 JUNCTION 0.00 0.04 4965.64 0 00:41 os18 JUNCTION 0.01 0.14 4964.64 0 00:45 os2 JUNCTION 0.05 0.60 4976.60 0 00:57 os8 JUNCTION 0.05 0.40 4971.40 0 01:34 ssl JUNCTION 2.07 4.21 4976.21 0 01:17 - ss10 JUNCTION 0.16 1.26 4968.10 0 01:03 ssll JUNCTION 0.21 1.54 4967.42 0 00:41 ss12 JUNCTION 0.21 2.42 4965.61 0 00:42 ss13 JUNCTION 0.16 1.35 4963.22 0 00:41 ss2 JUNCTION 0.30 2.91 4972.66 0 00:41 ss3 JUNCTION 0.32 3.15 4972.65 0 00:41 ss4 JUNCTION 0.39 1.38 4970.23 0 00:40 ss5 JUNCTION 0.72 1.82 .4970.24 0 00:40 ss6 JUNCTION 0.30 0.93 4969.30 0 00:42 ss8 JUNCTION 0.05 1.01 4967.69 0 00:40 ss9 JUNCTION 0.22 1.63 4967.72 0 00:47 ss9a JUNCTION 0.32 4.22 4971.22 0 00:40 os27 OUTFALL 0.15 1.34 4960.34 0 00:42 ss7 OUTFALL 0.30 0.93 4960.93 0 00:42 os15 OUTFALL 0.01 0.19 4963.69 0 00:43 OS19 OUTFALL 0.00 0.04 4963.54 0 00:45 os30 OUTFALL 0.00 0.00 0.00 0 00:00 1 OUTFALL 0.05 0.40 4963.90 0 01:34 A 44444444444d444444 Node Inflow Summary 4444E444444444444A4 Maximum Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence volume volume Node Type CFS CFS days hr:min 10A6 gal 10A6 gal ------------------------------------------------------------------------------------- dcl JUNCTION 37.25 37.25 0 00:40 0.343 0.343 osl JUNCTION 96.48 96.48 0 00:40 1.057 1.057 os13 JUNCTION 0.00 0.00 0 00:00 0.000 0.000 os14 JUNCTION 37.51 37.51 0 00:40 0.415 0.415 os17 JUNCTION 1.33 1.33 0 00:39 0.012 0.012 os18 JUNCTION 2.89 3.91 0 00:40 0.036 0.048 os2 JUNCTION 94.59 119.52 0 00:40 1.025 2.089 os8 JUNCTION 0.00 102.17 0 00:42 0.000 1.827 ssl JUNCTION 5.23 94.73 0 00:58 0.072 2.370 ss10 JUNCTION 0.81 41.72 0 00:40 0.007 0.314 rill JUNCTION 0.00 13.63 0 00:40 0.000 0.595 ss12 JUNCTION 8.54 20.99 0 00:40 0.078 0.673 ss13 JUNCTION 2.42 20.97 0 00:41 0.022 0.695 ss2 JUNCTION 112.63 112.63 0 00:40 1.272 2.438 ss3 JUNCTION 11.68 111.56 0 00:41 0.121 2.554 ss4 JUNCTION 6.28 6.81 0 00:40 0.059 1.292 ss5 JUNCTION 0.00 17.86 0 00:41 0.000 2.023 ss6 JUNCTION 0.00 18.02 0 00:41 0.000 2.022 ss8 JUNCTION 7.36 7.36 0 00:39 0.067 0.067 ss9 JUNCTION 4.51 9.75 0 00:53 0.041 0.534 ss9a JUNCTION 43.76 43.76 0 00:40 0.485 0.485 os27 OUTFALL 0.00 20.97 0 00:42 0.000 0.695 ss7 OUTFALL 0.00 17.97 0 00:42 0.000 2.022 OS15 OUTFALL 0.00 28.12 0 00:43 0.000 0.415 OS19 OUTFALL 0.00 2.45 0 00:45 0.000 0.048 os30 OUTFALL 17.66 17.66 0 00:39 0.161 0.161 1 OUTFALL 0.00 40.85 0 01:34 0.000 1.821 R 4R¢}}¢¢*¢R¢R*tr*44}434 Node Surcharge summary 444444¢}*4R¢*****tr4444 Surcharging occurs when water rises above the top of the highest conduit. Nonh College Conidor Improvements December 2009 5 of --------------------------------------------------------------------- Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- ss9 JUNCTION 0.78 0.132 8.368 Node Floodin Summary *#4*#******# *Summary No nodes were flooded. Outfall Loading summary k *kkkkkkkkkkkkk##*kkkkk Flow Avg. Max. Total Freq. Flow Flow volume Outfall Node Pcnt. CFS CFS 10A6 gal ----------------------------------------------------------- os27 99.54 1.13 20.97 0.695 ss7 99.36 3.29 17.97 2.022 OS15 66.05 1.02 28.12 0.415 OS19 39.62 0.20 2.45 0.048 os30 22.01 1.19 17.66 0.161 1 97.93 3.01 40.85 1.821 ----------------------------------------------------------- System 70.75 9.84 90.17 5.163 ¢54444d44S444444444A Link Flow summary 344tr4d4444¢444d44444 Maximum Time of Max maximum Max/ Max/ IFIOwI occurrence velocity Full Full Link Type CFS days hr:min ft/sec Flow Depth - --------------------------------------------------------------- dry_Creek CONDUIT 28.92 0 00:43 1.63 0.05 0.41 osl CONDUIT 53.11 0 00:50 0.45 0.09 0.27 0510 CONDUIT 0.00 0 00:00 0.00 0.00 0.50 osll CONDUIT 39.26 0 00:40 3.39 0.08 0.22 osl2 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 os13 CONDUIT 0.00 0 00:00 0.00 0.00 0.10 os14 CONDUIT 28.12 0 00:43 0.70 0.06 0.19 osl6 CONDUIT 0.00 0 00:00 0.00 0.00 0.10 os17 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OS18 CONDUIT 2.45 0 00:45 0.53 0.02 0.09 os2 CONDUIT 78.35 0 00:58 0.57 0.40 0.78 os21 CONDUIT 1.11 0 00:41 0.28 0.00 0.09 os4 CONDUIT 53.16 0 01:17 0.88 0.07 0.33 os5 CONDUIT 99.94 0 00:41 0.96 0.37 0.33 os6 CONDUIT 102.17 0 00:42 1.16 0.24 0.40 os7 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 os8 CONDUIT 0.00 0 00:00 0.00 0.00 0.20 Os9 CONDUIT 40.85 0 01:34 0.47 0.06 0.20 ssl CONDUIT 4.48 0 01:17 5.24 2.29 0.91 ss10 CONDUIT 9.75 0 00:53 5.64 1.43 1.00 ssll CONDUIT 12.81 0 00:40 4.87 0.93 0.89 ssl2 CONDUIT 19.06 0 00:42 6.96 1.27 0.84 ssl3 CONDUIT 20.97 0 00:42 9.34 0.79 0.67 ss2 CONDUIT 9.46 0 00:22 5.35 1.36 1.00 ss3 CONDUIT 11.02 0 00:42 6.24 1.50 1.00 ss4 CONDUIT 6.85 0 00:41 2.68 0.11 0.53 ss6 CONDUIT 18.02 0 00:41 5.74 2.42 0.46 ss7 CONDUIT 17.97 0 00:42 9.64 0.21 0.31 SS8 CONDUIT 7.22 0 00:40 3.48 0.50 0.63 SS9 CONDUIT 5.77 0 01:16 4.73 0.80 1.00 ss14 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 ss9a CONDUIT 3.88 0 00:30 7.21 2.48 1.00 R tr443_4 _4444dQ44Q44QQkQQQ Flow classification summary 4 QQQ4Q***Q#Q4RRRtr4QR4*43445 Adjusted --- Fraction of Time in Flow class ---- Avg. Avg. /Actual up Down Sub Sup up Down Froude Flow Conduit Length Dry Dry Dry Crit Crit Crit Crit Number Change ----------------------------------------------------------------------------------------- dry_Creek 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 osl 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 Oslo 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 Osll 1.00 0.94 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.0000 os12 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os13 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 Nonh College Corridor Improvements December 2009 6 of 7 os14 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.13 0.0000 os16 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os17 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OS18 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 - 0.15 0.0000 os2 1.00 0.00 0.00 0.00 0.39 0.00 0.00 0.61 0.04 0.0000 os21 1.00 0.00 0.56 0.00 0.44 0.00 0.00 0.00 0.01 0.0000 os4 1.00 0.85 0.03 0.00 0.07 0.00 0.00 0.05 0.04 0.0000 os5 1.00 0.90 0.00 0.00 0.09 0.00 0.00 0.01 0.03 0.0000 os6 1.00 0.02 0.89 0.00 0.10 0.00 0.00 0.00 0.02 0.0000 os7 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os8 1.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os9 1.00 0.02 0.00 0.00 0.98 0.00 0.00 0.00 0.08 0.0000 ssl 1.00 0.03 0.00 0.00 0.00 0.00 0.00 0.97 0.69 0.0001 s510 1.00 0.00 0.00 0.00 0.98 0.01 0.00 0.00 0.79 0.0000 ss111.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.73 0.0000 ss12 1.00 0.00 0.00 0.00 0.64 0.35 0.00 0.00 0.95 0.0000 ss13 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.58 0.0000 ss2 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.51 0.0001 ss3 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.03 0.0000 ss4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.39 0.0000 ss6 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.53 0.0001 ss7 1.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 1.90 0.0000 ss8 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.03 0.0000 ss9 1.00 0.00 0.00 0.00 0.57 0.43 0.00 0.00 0.96 0.0000 ss14 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 ss9a 1.00 0.00 0.00 0.00 0.14 0.00 0.00 0.86 0.81 0.0001 conduit surcharge Summary xx<aexeaaecexxa-«aaae�ae Hours Hours Hours Full -------- above Full capacity conduit ---------------------------------------------------------------------------- Both Ends upstream 0nstream Normal Flow Limited ssl 0.01 0.01 0.01 11.31 0.01 ss10 0.05 0.05 0.05 1.39 0.03 ss12 0.01 0.01 0.01 0.20 0.01 ss2 2.41 2.41 2.41 0.14 0.13 ss3 2.34 2.34 2.34 2.42 2.34 ss6 -0.01 0.01 0.01 2.56 0.01 ss9 0.14 0.14 0.14 0.01 0.01 ss9a 1.56 1.56 1.58 1.85 1.56 analysis begun on: Fri Jul 23 14:07:10 2010 analysis ended on: Fri Jul 23 14:07:20 2010 North College Corridor Improvements December 2009 7 of 2-Year EPASWMM Analysis EPASWMM EXISTING Summary 2-yr INPUT 2-yr EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.018) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ............... CFS Process Models: ' Rainfall/Runoff ........ YES snowmelt ............... No Groundwater ............ No Flow Routing ........... YES Ponding Allowed ........ YES water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ DEC-15-2009 00:00:00 Ending Date .............. DEC-15-2009 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:05:00 Dry Time step ............ 01:00:00 Routing Time step ........ 1.00 sec WARNING 04: minimum elevation drop used for Conduit osil WARNING 04: minimum elevation drop used for Conduit os5 WARNING 02: maximum depth increased for Node dcl WARNING 02: maximum depth increased for Node ssl i #kkk##kkkkrtk Element count k**k*Yth*#k*kk Number of rain gagges ...... 1 Number of subcatchments ... 24 Number of nodes ........... 25 Number of links ........... 31 Number of pollutants....... 0 Number of land uses ....... 0 Raingage Summary *****#*#*####h## Name Data Source ------------------------------- COFCRainGage 2-year kk#kkkk*kkk*h*h*i.*## subcatchment summary Name ---------------------------------------- Area Width EX01 11.94 1733.00 EX02 14.73 2138.00 Ex03 4.74 2065.00 Ex04 43.91 6376.00 EX05 5.27 3062.00 EX06 6.21 1352.00 Ex07 1.35 589.00 EX08 4.30 1873.00 EX09 30.80 4473.00 EX10 8.49 3700.00 EX11 17.62 2558.00 EX12 22.88 4983.00 Ex13 1.84 267.00 EX14 0.44 255.00 EX15 0.28 164.00 Ex16 0.51 296.00 EX17 1.80 1044.00 North College Corridor Improvements December 2009 Data Recording Type Interval --------------------- INTENSITY 5 min. %Impery ------------------------------------ %Slope Rain Gage outlet -------------------- 70.00 0.5000 COFCRainGage os14 65.00 0.5000 COFCRainGage ss9 40.00 0.5000 COFCRainGage ss3 45.00 0.5000 COFCRainGage ss2 5.00 0.5000 COFCRainGage ssl 45.00 0.5000 COFCRainGage - ss2 95.00 0.5000 COFCRainGage ss4 95.00 0.5000 COFCRainGage os2 50.00 0.5000 COFCRainGage os2 85.00 0.5000 COFCRainGage dcl 35.00 0.5000 COFCRainGage. osl 55.00 0.5000 COFCRainGage osl 5.00 0.5000 COFCRainGage OS18 95.00 0.5000 COFCRainGage OS18 95.00 0.5000 COFCRainGage os17 95.00 0.5000 COFCRainGage ss13 95.00 0.5000 COFCRainGage ss12 1 of7 Ex18 0.17 97.00 95.00 0.5000 COFCRainGage ss10 EX19 0.95 551.00 95.00 0.5000 COFCRainGage ss9 Ex20 1.55 900.00 95.00 0.5000 COFCRainGage ss8 Ex21 0.24 139.00 95.00 0.5000 COFCRainGage os30 EX22 1.14 665.00 95.00 0.5000 COFCRainGage os30 Ex23 1.43 833.00 95.00 0.5000 COFCRainGage os30 EX24 0.91 530.00 95.00 0.5000 COFCRainGage os30 Node Summary Invert Max. Ponded External Name Type Elev. Depth Area Inflow ----------------------------------------------------------------- dcl JUNCTION 4976.00 6.00 0.0 osl JUNCTION 4978.00 2.00 0.0 os13 JUNCTION 4966.90 2.00 0.0 osl4 JUNCTION 4964.40 2.00 0.0 os17 JUNCTION 4965.60 1.00 0.0 OS18 JUNCTION 4964.50 1.00 0.0 o52 JUNCTION 4976.00 10.00 0.0 O58 JUNCTION 4971.00 2.00 0.0 ssl JUNCTION 4972.00 6.00 0.0 ss10 JUNCTION 4966.84 10.00 0.0 SS11 JUNCTION 4965.88 5.00 0.0 ssl2 JUNCTION 4963.19 10.00 0.0 ss13 JUNCTION 4961.87 5.32 0.0 ss2 JUNCTION 4969.75 10.00 0.0 ss3 JUNCTION 4969.50 3.50 0.0 554 JUNCTION 4968.85 5.45 0.0 ss5 JUNCTION 4968.42 6.29 0.0 ss6 JUNCTION 4968.37 5.23 0.0 ss8 JUNCTION 4966.68 3.75 0.0 ss9 JUNCTION 4966.09 10.00 0.0 os27 OUTFALL 4959.00 2.00 0.0 ss7 OUTFALL 4960.00 3.00 0.0 OS15 OUTFALL 4963.00 1.00 0.0 - OS19 OUTFALL 4963.50 1.00 0.0 os30 OUTFALL 0.00 0.00 0.0 Link summary ############ Name From Node To Node Type Length %Slope Roughness ---------------------------------------------------------------------- dry_Creek dcl ssl CONDUIT 1600.0 0.2500 0.0450 051 o51 o52 CONDUIT 800.0 0.2500 0.0450 Oslo ss8 S510 CONDUIT 200.0 1.2951 0.0450 osll ss10 ss9 CONDUIT 60.0 0.0017 0.0160 osl2 S510 osl3 CONDUIT 730.0 0.2178 0.0450 osl3 os13 osl4 CONDUIT 300.0 0.8334 0.0450 osl4 osl4 OS15 CONDUIT 210.0 0.6667 0.0450 osl6 ss13 osl4 CONDUIT 50.0 1.5802 0.0130 os17 os13 S512 CONDUIT 50.0 1.3401 0.0130 osl8 OS18 OS19 CONDUIT 165.0 0.6061 0.0450 o52 os2 Ssl CONDUIT 450.0 0.2222 0.0450 os21 os17 0518 CONDUIT 280.0 0.3929 0.0160 os4 SS1 ss2 CONDUIT 120.0 3.3352 0.0450 os5 ss2 ss3 CONDUIT 57.0 0.0018 0.0160 os6 ss3 os8 CONDUIT 60.0 1.6669 0.0450 057 555 ss4 CONDUIT 80.0 0.5125 0.0160 os8 ss5 OS8 CONDUIT 60.0 4.5213 0.0450 OS9 os8 SS9 CONDUIT 750.0 0.6547 0.0450 SS1 ssl ss4 CONDUIT 500.0 0.6300 0.0130 s510 559 ssll CONDUIT 50.0 0.4200 0.0130 ssll ssll ssl2 CONDUIT 730.0 0.3685 0.0130 ss1Z ss12 ssl3 CONDUIT 300.0 0.4400 0.0130 ssl3 ssl3 os27 CONDUIT 210.0 1.3668 0.0130 ss2 ss2 ss3 CONDUIT 57.0 0.4386 0.0130 ss3 ss3 ss5 CONDUIT 220.0 0.4909 0.0130 ss4 ss4 ss5 CONDUIT 50.0 0.8600 0.0130 ss6 ss5 ss6 CONDUIT 400.0 0.0125 0.0130 ss7 ss6 ss7 CONDUIT 500.0 1.6742 0.0130 ss8 S58 ssll CONDUIT 200.0 0.4000 0.0130 s59 sslo ss9 CONDUIT 60.0 1.2501 0.0130 ssl4 ssll ss10 CONDUIT 60.0 0.2333 0.0160 Cross Section Summary Full Full Hyd. Max. No. of Full conduit shape Depth Area Rad. width Barrels Flow ------------------------------------------ dry_Creek TRAPEZOIDAL 6.00 174.00 ----------------------------- 3.19 53.00 1 623.09 osl TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 365.52 Oslo TRAPEZOIDAL 1.00 260.00 0.81 320.00 1 850.75 0511 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 20.51 osl2 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 341.17 os13 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 667.35 North College Corridor Improvements - December 2009 2 of 7 os14 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 596.90 Os16 TRAPEZOIDAL 1.00 70.00 0.78 90.00 1 8SO.37 os17 TRAPEZOIDAL 1.00 70.00 0.78 90.00 1 783.11 os18 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 139.05 os2 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 344.61 Os21 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 314.87 os4 TRAPEZOIDAL 1.00 210.00 0.95 220.00 1 1227.40 os5 TRAPEZOIDAL 1.00 220.00 0.92 240.00 1 80.75 os6 TRAPEZOIDAL 1.00 260.00 0.81 320.00 1 965.16 os7 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 359.63 Os8 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 379.79 Os9 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 591.50 ssl CIRCULAR 1.50 1.77 0.38 - 1.50 1 8.34 5510 CIRCULAR 1.S0 1.77 0.38 1.50 1 6.81 ssll CIRCULAR 2.00 3.14 0.50 2.00 1 13.73 ss12 CIRCULAR 2.00 3.14 0.50 2.00 1 15.01 ss13 CIRCULAR 2.00 3.14 0.50 2.00 1 26.45 ss2 CIRCULAR 1.00 0.79 0.25 1.00 1 2.36 ss3 CIRCULAR 1.50 1.77 0.38 1.50 1 7.36 ss4 CIRCULAR 3.00 7.07 0.75 3.00 1 61.85 ss6 CIRCULAR 3.00 7.07 0.75 3.00 1 7.46 ss7 CIRCULAR 3.00 7.07 0.75 3.00 1 86.30 s58 CIRCULAR 2.00. 3.14 0.50 2.00 1 14.31 ss9 CIRCULAR 1.25 1.23 0.31 1.25 1 7.22 ss14 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 242.66 North College Corridor improvements December 2009 3 of 7 OUTPUT 2-yr 3##A4A##R#A4##A#R4R4AAAAA4 volume Depth Runoff Quantity continuity 4 A¢444A4A4444#444d44AdR4A4 acre-feet inches Total Precipitation ...... _________ 14.960 ------- 0.978 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 6.849 0.448 surface Runoff ........... 7.564 0.495 Final Surface Storagge .... 0.616 0.040 continuity Error (%) ..... -0.458 ¢II4¢II¢4II"II4"4II"#°"tr4444IIII4 volume volume Flow Routing continuity d 4d44d44AA44A4ARR44trdtrR4d4 acre-feet 10A6 gal Dry weather Inflow ....... --------- 0.000 --------- 0.000 wet weather Inflow ....... 7.576 2.469 Groundwater Inflow ....... 0.000 0.000 RDII Inflow ............. 0.000 0.000 External Inflow .......... 0.000 0.000 External Outflow ......... 7.176 2.338 Internal outflow ......... 0.000 0.000 Storage Losses ........... 0.000 0.000 Initial Stored volume .... 0.002 0.001 Final Stored volume ...... 0.277 0.090 Continuity Error (%) ..... 1.645 rt #ARRrtR#RRrtRRRrtR#¢R#rtRRrt# Highest continuity Errors ¢¢R¢RRRR¢R¢A4RR4¢¢¢A¢44R¢ Node ss10 (54.87%) Node ss9 (15.64%) Node os2 (10.67%) Node os8 (-1.86%) Node ssl C-1.81%) R#A#RR##RRRRh#RRR##RRRRRR#R Time -Step Critical Elements 44¢}44##R4AA#RR#RRRRRARAAA4 None R RRR4RRRR4RRR#RR#RRRRRRRR4RRRRR# Highest Flow Instability indexes 4444trtr44R44d4444444444d4trtrd44444 All links are stable. Routing Time Step Summary ¢¢¢¢4¢¢¢4}II944II44444444¢II Minimum Time step 1.00 sec Average Time step 1.00 sec Maximum Time Step 1.00 sec Percent in Steady State 0.00 Average Iterations per Step 2.00 }44A44}444d444d4444444444}4 Subcatchment Runoff Summary 4A}444A44A44#A4A4A4dA444444 ---------------------------------------------------------------------------------------------- Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff subcatchment in in in in in 10A6 gal CFS ------------------------------------------------ Ex01 0.978 0.000 0.000 0.289 ------------------------------------ 0.642 0.208 18.822 0.656 Ex02 0.978 0.000 0.000 0.338 0.597 0.239 22.021 0.610 Ex03 0.978 0.000 0.000 0.575 0.377 0.049 5.380 0.385 EX04 0.978 0.000 0.000 0.533 0.415 0.495 49.513 0.424 EX05 0.978 0.000 0.000 0.912 0.063 0.009 0.785 0.065 Ex06 0.978 0.000 0.000 0.531 0.417 0.070 7.458 0.427 Ex07 0.978 0.000 0.000 0.046 0.870 0.032 3.400 0.889 Ex08 0.978 0.000 0.000 0.046 0.870 0.102 10.828 0.889 EX09 0.978 0.000 0.000 0.484 0.461 0.385 37.771 0.471 Ex10 0.978 0.000 0.000 0.140 0.782 0.180 19.392 0.799 EX11 0.978 0.000 0.000 0.631 0.324 0.155 16.123 0.331 Ex12 0.978 0.000 0.000 0.434 0.508 0.316 32.670 0.520 Ex13 0.978 0.000 0.000 0.924 0.051 0.003 0.267 0.052 Ex14 0.978 0.000 0.000 0.045 0.870 0.010 1.143 0.889 Ex15 0.978 0.000 0.000 0.045 0.870 0.007 0.728 0.889 EX16 0.978 0.000 0.000 0.045 0.870 0.012 1.326 0.889 EX17 0.978 0.000 0.000 0.045 0.870 0.043 4.678 0.889 EX18 0.978 0.000 0.000 0.045 0.870 0.004 0.441 0.889 EX19 0.978 0.000 0.000 0.045 0.870 0.022 2.469 0.889 North College Corridor Improvements December 2009 4 of 7 EX20 Ex21 Ex22 Ex23 EX24 System 4 EE4E44444A4A#4A#4 Node Depth summary 44AAAA#R####44EE44 Node dcl osl os13 os14 os17 OS18 os2 os8 s51 Ss10 ssll 5s12 ss13 5s2 Ss3 ss4 ss5 ss6 ss8 ss9 os27 ss7 OS15 OS19 os30 R R444444444Atr444444 Node Inflow summary #44444444E444A44A44 0.978 0.000 0.000 0.045 0.870 0.037 0.978 0.000 0.000 0.045 0.870 0.006 0.978 0.000 0.000 0.045 0.870 0.027 0.978 0.000 0.000 0.045 0.870 0.034 0.978 0.000 0.000 0.045 0.870 0.021 ------------------------------------------------------- 0.978 0.000 0.000 0.448 0.495 2.465 -------------------------------------- Average Maximum Maximum Time of Max Depth Depth NGL Occurrence Type Feet Feet Feet days hr:min ------------------------------------------------ JUNCTION 0.06 1.17 4977.17 0 00:44 JUNCTION 0.01 0.24 4978.24 0 00:44 JUNCTION 0.00 0.00 4966.90 0 00:00 JUNCTION 0.01 0.15 4964.55 0 00:47 JUNCTION 0.00 0.02 4965.62 0 00:42 JUNCTION 0.01 0.08 4964.58 0 00:47 JUNCTION 0.03 0.32 4976.32 0 01:01 JUNCTION 0.00 0.17 4971.17 0 00:46 JUNCTION 0.57 3.51 4975.51 0 01:55 JUNCTION 0.02 0.03 4966.87 0 02:18 JUNCTION 0.29 0.66 4966.54 0 01:31 JUNCTION 0.29 0.96 4964.15 0 00:41 JUNCTION 0.21 0.76 4962.63 0 00:41 JUNCTION 0.19 2.53 4972.28 0 00:40 JUNCTION 0.18 2.72 4972.22 0 00:40 JUNCTION 0.27 1.73 4970.58 0 01:03 JUNCTION 0.49 2.00 4970.42 0 01:07 JUNCTION 0.20 0.98 4969.35 0 01:10 JUNCTION 0.03 0.72 '4967.40 0 00:40 JUNCTION 0.29 0.68 4966.77 0 01:33 OUTFALL 0.22 0.76 4959.76 0 00:41 OUTFALL 0.19 0.98 4960.98 0 01:10 OUTFALL 0.00 0.05 4963.05 0 00:47 OUTFALL 0.00 0.02 4963.52 0 00:47 OUTFALL 0.00 0.00 0.00 0 00:00 Node Type 4.029 0.889 0.624 0.889 2.964 0.889 3.718 0.889 2.366 0.889 ------------- 248.918 0.506 ---------------------------------------------------------- Maximum Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow. Inflow Occurrence volume volume CF5 CFS days hr:min 10A6 gal' 10A6 gal dcl JUNCTION OS1 JUNCTION os13 JUNCTION os14 JUNCTION os17 JUNCTION OS18 JUNCTION Os2 JUNCTION os8 JUNCTION S51 JUNCTION ss10 JUNCTION 5511 JUNCTION ss12 JUNCTION ss13 JUNCTION ss2 JUNCTION ss3 JUNCTION ss4 JUNCTION ss5 JUNCTION ss6 JUNCTION 5S8 JUNCTION SS9 JUNCTION os27 OUTFALL ss7 OUTFALL OS15 OUTFALL 0519 OUTFALL os30 OUTFALL 444A4444dEE44d4d444444 Node Surcharge summary 4444444444444k44444EAR No nodes were surcharged. 44tr4444444¢4¢RR¢RR444 Node Flooding Summary 44444444¢4d¢RR4R44A44 --------------------------------------------------- 19.38 19.38 0 00:40 0.181 0.181 48.76 48.76 0 00:40 0.472 0.472 0.00 0.00 0 00:00 0.000 0.000 18.81 18.81 0 00:40 0.208 0.208 0.73 0.73 0 00:39 0.007 0.007 1.41 1.91 0 00:40 0.013 0.020 48.57 64.67 0 00:40 0.487 0.962 0.00 49.33 0 00:41 0.000 0.267 0.79 37.92 0 01:19 0.009 1.081 0.44 0.44 0 00:39 0.004 0.004 0.00 3.99 0 00:40 0.000 0.491 4.67 7.39 0 00:40 0.043 0.530 1.32 8.16 0 00:41 0.012 0.542 56.93 56.93 0 00:40 0.566 0.566 5.38 58.91 0 00:40 0.049 0.615 3.40 11.48 0 01:35 0.032 1.133 0.00 -26.57 0 01:03 0.000 1.482 0.00 20.19 0 01:08 0.000 1.481 4.03 4.03 0 00:39 0.037 0.037 24.48 44.66 0 00:44 0.261 0.538 0.00 8.15 0 00:41 0.000 0.542 0.00 19.88 0 01:10 0.000 1.481 0.00 11.24 0 00:47 0.000 0.208 0.00 0.97 0 00:47 0.000 0.020 9.66 9.66 0 00:39 0.088 0.088 North College Corridor Improvements December 2009 5 of 7 No nodes were flooded. R3###RtrrttrRtrRRR#R##R34R4 Outfall Loadin R#4tr#Summary ######RR#4RR44 RRR Flow Avg. Max. Total Freq. Flow Flow volume outfall Node Pcnt. CFS CFS 10A6 gal ----------------------------------------------------------- os27 99.49 0.88 8.15 0.542 ss7 99.28 2.41 19.88 1.481 os15 86.08 0.39 11.24 0.208 Os19 38.48 0.08 0.97 0.020 os30 21.70 0.65 9.66 0.088 ----------------------------------------------------------- system 69.01 4.41 40.90 2.338 334#444444444444444# Link Flow Summary 334344444E#444444444 ----------------------------------------------------------------------------- Maximum Time of Max maximum Max/ Max/ JFlOwl Occurrence velocity Full Full Link Type CFS days hr:min ft/sec Flow Depth -------------- dry_Creek ------------------------------------------------------- CONDUIT 14.45 0 00:47 1.36 0.02 0.32 Osl CONDUIT 31.29 0 00:46 0.61 0.09 0.25 Oslo CONDUIT 0.00 0 00:00 0.00 0.00 0.01 osll CONDUIT 0.00 0 00:00 0.00 0.00 0.00 osl2 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 osl3 CONDUIT 0.00 0 00:00 0.00 0.00 0.07 os14 CONDUIT 11.24 0 00:47 0.57 0.02 0.10 osl6 CONDUIT 0.00 0 00:00 0.00 0.00 0.07 os17 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OS18 CONDUIT 0.97 0 00:47 0.37 0.01 0.05 os2 CONDUIT 34.67 0 01:19 0.61 0.10 0.32 Os21 CONDUIT 0.57 0 00:42 0.25 0.00 0.05 os4 CONDUIT 0.00 0 00:00 0.00 0.00 0.14 os5 CONDUIT 52.77 0 00:40 1.04 0.65 0.25 os6 CONDUIT 49.33 0 00:41 1.66 0.05 0.17 Os7 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 058 CONDUIT 0.00 0 00:00 0.00 0.00 0.09 os9 CONDUIT 28.60 0 00:46 0.60 0.05 0.36 ssl CONDUIT 11.26 0 01:35 6.64 1.35 1.00 ss10 CONDUIT 2.95 0 01:35 3.92 0.43 0.45 ssll CONDUIT 3.21 0 01:31 3.52 0.23 0.40 ss12 CONDUIT 7.02 0 00:41 5.42 0.47 0.43 ss13 CONDUIT 8.15 0 00:41 7.41 0.31 0.38 ss2 CONDUIT 5.67 0 00:25 7.22 2.40 1.00 ss3 CONDUIT 10.40 0 00:36 5.89 1.41 1.00 ss4 CONDUIT 17.20 0 01:04 4.36 0.28 0.59 ss6 CONDUIT 20.19 0 01:08 6.14 2.71 0.50 ss7 CONDUIT 19.88 0 01:10 9.91 0.23 0.33 ss8 CONDUIT 3.99 0 00:40 4.35 0.28 0.33 ss9 CONDUIT 0.00 0 02:18 0.06 0.00 0.28 ss14 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 4344444444444E#4444#4444444 Flow Classification Summary 44444444R#R4444444444444494 Adjusted --- Fraction of Time in Flow class ---- Avg. Avg. /Actual Up Down sub Sup up Down Froude Flow Conduit -------------------------------------------- Length Dry Dry Dry Crit Crit Crit ------- Crit Number Change ---- ---- dry_Creek 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 osl 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.02 0.0000 Oslo 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 Osll 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 osl2 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 osl3 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os14 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.16 0.0000 os16 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os17 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 osl8 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.14 0.0000 os2 1.00 0.00 0.00 0.00 0.10 0.00 0.00 0.89 0.11 0.0000 os21 1.00 0.00 0.56 0.00 0.43 0.00 0.00 0.00 0.01 0.0000 os4 1.00 0.95 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os5 1.00 0.95 0.00 0.00 0.02 0.00 0.00 0.03 0.01 0.0000 os6 1.00 0.02 0.95 0.00 0.03 0.00 0.00 0.00 0.01 0.0000 os7 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 Os8 1.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os9 1.00 0.00 0.02 0.00 0.98 0.00 0.00 0.00 0.00 0.0000 ssl 1.00 0.00 0.00 0.00 0.18 0.81 0.00 0.00 1.08 0.0001 North College Corridor Improvements December 2009 6 of 7 11 ss10 1.00 0.00 0.00 0.00 0.91 0.08 0.00 0.00 0.91 0.0000 ssll 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.84 0.0000 ss12 1.00 0.00 0.00 0.00 0.01 0.99 0.00 0.00 1.13 0.0000 ss13 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.57 0.0000 ss2 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.55 0.0001 ss3 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.04 0.0001 ss4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.33 0.0002 ss6 1.00 0.00 0.00 0.00 0.98 0.01 0.00 0.00 0.41 0.0002 ss7 1.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 1.82 0.0000 ss8 1.00 0.00 0.00 0.00 0.97 0.03 0.00 0.00 0.05 0.0000 ss9 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 ss14 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 4 #RtrA##A#RR##AAAA#AA#4##4 Conduit surcharge Summary tr RtrtrtrtrRRR4R##R4RRA4#R4tr44 ---------------------------------------------------------------------------- Hours Hours --------- Hours Full -------- Above Full capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ----------------------------------------------------------- ssl 0.19 0.19 0.20 3.54 0.19 ss2 1.17 1.17 1.17 1.15 0.54 ss3 0.83 0.83 0.83 0.77 0.72 ss6 0.01 0.01 0.01 3.93 0.01 Analysis begun on: Fri jul 23 14:08:30 2010 Analysis ended on: Fri .7ul 23 14:08:37 2010 North College Corridor Improvements December 2009 7 of System Near Vine Drive FA N�1 K I� yr 1" I� Irl, Xi I rA x Y n ri yJ -- Existing South End System Summary 1 00-ear INVERT DEPTH RIM FLOW HGL Velocity EGL Ponding Head 2-MANHOLE 4956.51 11.06 4967.57 14.37 4963.09 5.05 4963.486 -4.48 -4.084 3-INLET 4957.04 8.55 4965.59 13.26 4959.34 4.85 4959.705 -6.25 -5.885 4-INLET 4958.22 7.7 4965.92 10.3 4959.34 4.02 4959.591 -6.58 -6.329 5-INLET 4958.56 5.25 4963.81 6.52 4959.76 3.72 4959.975 -4.05 -3.835 6-INLET 4959.11 4.6 4963.71 4.59 4959.95 3.61 4960.152 -3.76 1 -3.558 Basins FLOW S1 4.03 S2 2.17 S3 3.35 S4 4.63 Existing South End System EPASWMM Summary 100-yr INPUT 100-yr EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.016) -------------------------------------------------------------- ###trtrR4tr444444R444#4###4444trtrtrtrtrtr4444R###4tr###444444Rrt### NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. 4##R#4R######4tr##44trtr44444R##RR#R#R##trRtr44444R44R#R444trtr4 #QQQ44QQQ44d4Qx4 Analysis options E#####xtr####tr4ak Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ NOV-09-2009 00:00:00 Ending Date .............. NOV-11-2009 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 wet Time Step ............ 00:05:00 f�. Dry Time Step ............ 01:00:00 Routing Time Step ........ 1.00 sec E#QRxxxQQQ4QQ Element Count Q QxQxQQQQQ#4Q Number of rain gages ...... 1 Number of subcatchments ... 4 Number of nodes ........... 6 Number of links ........... 5 Number of pollutants ...... 0 Number of land uses ....... 0 4444444E444EE4EE Raingage Summary E #R4trE4E#44EEEEE Data Interval Name ----------------- Data Source ------------------------------ Type hours Raingage 100-YEAR INTENSITY 0.08 R####k##k##kkk4kRRRR Subcatchment Summary k kkkkkRkRRrtkR#####k# Name ---------------------------------------------------------------------------------------------- Area width %Impery %Slope Rain Gage Outlet S1 0.41 177.00 95.00 0.5000 Raingage 4-INLET s2 0.22 97.00 95.00 0.5000 Raingage 5-INLET s3 0.34 148.00 95.00 0.5000 Raingage 3-INLET S4 0.47 206.00 95.00 0.5000 Raingage 6-INLET #kkkkkkRkkRR Node summary 44k4R#R##rt## Invert Max. Ponded External Name ------------------------------------------------------------------------------ Type Elev. Depth Area Inflow 2-MANHOLE JUNCTION 4956.51 11.06 0.0 3-INLET JUNCTION 4957.04 8.55 0.0 4-INLET JUNCTION 4958.22 7.70 0.0 5-INLET JUNCTION 4958.56 5.25 0.0 6-INLET JUNCTION 4959.11 4.60 0.0 North College Corridor Improvements December 2009 1 of 5 r,. 1-OUTFALL OUTFALL 4955.71 2.00 0.0 d 444444444aa Link Summary a####aaaaa4x Name ------------------------- From Node TO Node ----___________---------______-__-_------_-_______------_ Type Length %Slope Roughness 1-STORM 2-MANHOLE 1-OUTFALL CONDUIT 134.0 0.5970 0.0130 2-STORM 3-INLET 2-MANHOLE CONDUIT 106.0 0.3774 0.0130 3-STORM 4-INLET 3-INLET CONDUIT 95.0 1.0843 0.0130 4-STORM S-INLET 4-INLET CONDUIT 207.0 0.1643 0.0130 5-STORM 6-INLET 5-INLET CONDUIT 91.0 0.6044 0.0130 ####xdfr444x#4##a###d4 Cross Section Summary Full Full Hyd. Max. No. of Full conduit Shape Depth Area Rad. width Barrels Flow --------------------------------------------------------------------------------------- 1-STORM CIRCULAR 2.00 3.14 0.50 2.00 1 17.48 2-STORM CIRCULAR 2.00 3.14 0.50 2.00 1 13.90 3-STORM CIRCULAR 2.00 3.14 0.50 2.00 1 23.56 4-STORM CIRCULAR 2.00 3.14 0.50 2.00 1 9.17 S-STORM CIRCULAR 1.50 1.77 0.38 1.50 1 8.17 Nonh College Corridor Improvements December 2009 2of5 OUTPUT 100-yr volume De th Runoff Quantity continuity #R######R####?**??RRRR#RRR acre-feet inches Total Precipitation ...... 0.440 ------- 3.669 Evaporation LOSS ......... 0.000 0.000 Infiltration Loss ........ 0.008 0.068 surface Runoff ........... 0.426 3.553 Final Surface Storage .... 0.009 0.071 Continuity Error (%) ..... -0.608 volume volume Flow Routing Continuity acre-feet 10A6 gal Dry weather Inflow ....... --------- 0.000 --------- 0.000 wet weather Inflow ....... 0.427 0.139 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 0.049 0.01.6 External outflow ......... 0.459 0.150 Internal outflow ......... 0.000 0.000 Storage Losses ........... 0.000 0.000 initial Stored volume .... 0.005 0.002 Final Stored volume ...... 0.020 0.006 Continuity Error (%) ..... 0.211 RRRRrtRRRRR#R#R#####�`##n.*rt Highest Continuity Errors ##*#RR*RRRRrtRRRRRRRRR#RR# Node 2-MANHOLE (1.80%) Node 3-INLET (1.20%) #########R*'aR RRRRRRRRRRR##R Time -Step Critical Elements RRRrtRRR#R#ARR##RCR######".rttr None _##rt*Rt#RRGSRARRRR##*####'t#rt*R* Highest Flow Instability Indexes R RRRR#R######R####*##RRRRRRRRR#R All links are stable. A *R *'?RRRRRRR#R#??RRRR###R Routing Time step Summary RRR##RRR##R#h####?RRRRRRR minimum Time Step 0.54 sec Average Time Step 1.00 sec maximum Time step 1.00 sec Percent in Steady State 0.00 Average Iterations per Step 2.00 ?RRRRRRR*RRRR#RR#RRRR##RR#R Subcatchment Runoff Summary ###R###RRRRRRRRRRRR#RRRR#?# ----------------------------------------------------------------- Total Total Total Total Total Precip Runon Evap Infil Runoff Subcatchment in in in in in ------------ S1 ------------------------------ 3.669 0.000 0.000 0.068 3.553 S2 3.669 0.000 0.000 0.068 3.552 S3 3.669 0.000 0.000 0.068 3.552 54 3.669 0.000 0.000 0.068 3.552 ---------------------- System 3.669 ---------------------------------- 0.000 0.000 0.068 3.553 RRRRRRRR#RRRRRRR## Node Depth Summary R RRRRRRRRRRRR####R Node Type 2-MANHOLE JUNCTION 3-INLET JUNCTION �- 4-INLET JUNCTION 5-INLET JUNCTION 6-INLET JUNCTION North College Corridor Improvements December 2009 -------------------------------------- Average maximum maximum Time of max Depth Depth HGL Occurrence Feet Feet Feet days hr:min -------------------------------------- 1.99 6.58 4963.09 0 00:01 1.46 2.30 4959.34 0 00:40 0.28 1.12 4959.34 0 00:40 0.01 1.20 4959.76 0 00:40 0.01 0.84 4959.95 0 00:40 ------------------------- Total Peak Runoff Runoff Runoff Coeff 10A6 gal CFS ------ ----------- 0.040 4.032 0.968 0.021 2.165 0.968 0.033 3.345 0.968 0.045 4.625 0.968 0.139 14.168 0.968 3 of 1-OUTFALL OUTFALL 2.79 A AAAA4A4AA4AAA##RR# Node In Flow Summary ####hrt#####hhAhAAAA --------------------------------------- Maximum Lateral Inflow Node Type CFS --------------------------------------- 2-MANHOLE JUNCTION 0.00 3-INLET JUNCTION 3.34 4-INLET JUNCTION 4.03 5-INLET JUNCTION 2.16 6-INLET JUNCTION 4.62 1-OUTFALL OUTFALL 0.00 444444444#444444h44444 Node surcharge Summary 44#44##44E44fr 44E4tr4444 2.79 4958.50 0 00:00 -------------------------------------------- Maximum Lateral Total Total Time of Max Inflow Inflow Inflow occurrence volume volume CFS days hr:min 10A6 gal 10A6 gal -------------------------------------------- 14.37 0 00:00 0.000 0.162 13.25 0 00:40 0.033 0.157 10.41 0 00:40 0.040 0.116 6.72 0 00:40 0.021 0.067 4.62 0 00:39 0.045 0.045 14.37 0 00:00 0.000 0.166 Surcharging occurs when water rises above the top of the highest conduit Max. Height Min. Depth Hours Above crown Below Rim Node Type Surcharged Feet Feet -------- 2-MANHOLE ---------_--------------- JUNCTION0.17 4.448 24.482 3-INLET JUNCTION 0.05 0.149 26.251 4 AASAAAAA#4#AAA4QQR## Node Flooding summary R#S#R#QQtrQQR#A4#rt###4 No nodes were flooded. . 4##EEE444EE44#E444A4ER4 Outfall Loading Summary ###Q#QQE4QQQEQQEE4E}44} ----------------------------------------------------------- Flow Avg. Max. Total Freq. Flow Flow volume Outfall Node Pcnt. CFS CFS 10A6 gal ---------------------------------------------- 1-OUTFALL 90.12 0.10 14.37 -_-_ 0.166 ----------------------------------------------------------- System 90.12 0.10 14.37 0.166 ###EIIEIIEQQEQIIQ#QE#4} Link Flow Summary 4 R4E44E4}#444E44444II ----------------------------------------------------------------------------- Maximum Time Of Max Maximum Max/ Max/ IFlow1 Occurrence velocity Full Full Link Type CFS days hr:min ft/sec Flow Depth ------------------------- 1-STORM CONDUIT ---------------------------------- 14.37 0 00:00 5.05 0.82 1.00 2-STORM CONDUIT 13.26 0 00:41 4.85 0.95 1.00 3-STORM CONDUIT 10.30 0 00:41 4.02 0.44 0.78 4-STORM CONDUIT 6.52 0 00:40 3.72 0.71 0.58 5-STORM CONDUIT 4.59 0 00:40 3.61 0.56 0.68 ####IIEQIIIIIIQQQQQQEE4444RE444 Flow classification Summary 4 E44444E4#E44#4EEESSSES#SSE ----------------------------------------------------------------------------------------- Adjusted --- Fraction of Time in Flow class ---- Avg. Avg. /Actual Up Down Sub Sup Up Down Froude Flow conduit Length Dry Dry Dry Crit Crit Crit Crit Number Change ------------------ 1-STORM 1.00 ------------------------------------------------------------ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0001 2-STORM 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0001 3-SToRM 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 4-STORM 1.00 0.00 0.90 0.00 0.10 0.00 0.00 0.00 0.02 0.0000 5-STORM 1.00 0.90 0.03 0.00 0.07 0.00 0.00 0.00 0.03 0.0000 S S41S444S4E4Q4A4SS44##S#S conduit surchar2a Summary E4RhA4AEhAAA44AEE#}SESSS North College Corridor Improvements December 2009 4 of 5 N r ------------------- ---------------------------------------------------------------------------------------------- IHours Hours ;- Hours Full - - Above Full Capacity Conduit Both Ends upstream Dnstream Normal Flow Limited 1-STORM 1.28 1.28 1.31 0.01 0.01 2-STORM 0.08 0.08 0.08 0.01 0.01 Analysis begun on: Thu Dec 03116:07:08 2009 Analysis ended on: Thu Dec 03 16:07:13 2009 North College Corridor Improvements December 2009 1 5 of 5 Existing South End System EPASWMM Summary 10-yr INPUT 10-yr EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.016) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. #4##fr##4#R#####fr##fr44###4######4#fr#frfr#4A4R#rt#####fr#4frR#R# R RRRRAAAR#ARRRRR Analysis Options R RRAAAAArtARR#RRR Flow Units ............... CFS - Process Models: Rainfall/Runoff ........ YES snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ NOV-09-2009 00:00:00 Ending Date .............. NOV-11-2009 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 wet Time Step ............ 00:05:00 } Dry Time Step ............ 01:00:00 Routing Time Step ........ 1.00 sec 44d4444444444 Element Count 4444444444444 Number of rain gages ...... 1 Number of subcatchments ... 4 Number of nodes ........... 6 Number of links ........... 5 Number of pollutants ...... 0 Number of land uses ....... 0 44R444rr##rr#4frfr44 Raingage summary 4fr444444trtr444rt4# Data Interval Name Data Source Type hours Raingage 10-YEAR INTENSITY 0.08 444444444R44444A4444 Subcatchment Summary 444#4444444444tr#tr444 Name ---------------------------------------------------------------------------------------------------- Area width %Impery %Slope Rain Gage Outlet S1 0.41 177.00 95.00 0.5000 Raingage 4-INLET 52 0.22 97.00 95.00 0.5000 Raingage 5-INLET 53 0.34 148.00 95.00 0.5000 Raingage 3-INLET S4 0.47 206.00 95.00 0.5000 Raingage 6-INLET 4Atr444444444 Node Summary 4 A44###44444 Invert Max. Ponded External Name ------------------------------------------------------------------------------ Type Elev. Depth Area Inflow /- 2-MANHOLE JUNCTION 4956.51 11.06 0.0 / 3-INLET JUNCTION 4957.04 8.55 0.0 4-INLET JUNCTION 4958.22 7.70 0.0 5-INLET JUNCTION 4958.56 5.25 0.0 North College Corridor Improvements December 2009 1 of 5 6-INLET JUNCTION �'- 1-OUTFALL OUTFALL ##R##R##R#RR Link summary 44d44444444R Name From Node ---------------------------- 1-STORM 2-MANHOLE 2-STORM 3-INLET 3-STORM 4-INLET 4-STORM 5-INLET 5-STORM 6-INLET 444ddd44444#4R##4444# Cross Section Summary 444444Q4444444R####RR conduit shape ---------------------------- 1-STORM CIRCULAR 2-STORM CIRCULAR 3-STORM CIRCULAR 4-STORM CIRCULAR 5-STORM CIRCULAR r 4959.11 4.60 4955.71 2.00 To Node Type 1-OUTFALL CONDUIT 2-MANHOLE CONDUIT 3-INLET CONDUIT 4-INLET CONDUIT 5-INLET CONDUIT Full Full Hyd. Depth Area Rad. -------------------------------- .2.00 3.14 0.50 2.00 3.14 0.50 2.00 3.14 0.50 2.00 3.14 0.50 1.50 1.77 0.38 0.0 0.0 Length %Slope Roughness -------------------------- 134.0 0.5970 0.0130 106.0 0.3774 0.0130 95.0 1.0843 0.0130 207.0 0.1643 0.0130 91.0 0.6044 0.0130 Max. No. of Full width Barrels Flow -------------- 2.00 1 17.48 2.00 1 13.90 2.00 1 23.56 2.00 1 9.17 1.50 1 8.17 North College Corridor Improvements December 2009 2 of 5 r- OUTPUT 10-yr 4A4#R4###k#kRdAdd444443343 volume De th Runoff Quantity Continuity ¢dE¢4kkkdkdd44AAd44d4E4ES4 acre-feet inches Total Precipitation ...... 0.205 ------- 1.710 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 0.007 0.057 Surface Runoff ........... 0.191 1.594 Final Surface Storagge .... 0.009 0.071 Continuity Error (%) ..... -0.737 volume volume Flow Routing Continuity A##k4444AE4444AE¢#4A#k##kk acre-feet 10A6 gal Dry weather inflow ....... _________ 0.000 --------- 0.000 wet weather Inflow ....... 0.192 0.062 Groundwater Inflow ....... 0.000 0.000 RDII Inflow ............. 0.000 0.000 External Inflow .......... 0.053 0.017 External outflow ......... 0.228 0.074 Internal outflow ......... 0.000 0.000 Storage Losses ........... 0.000 0.000 initial Stored volume .... 0.005 0.002 Final Stored volume ...... 0.020 0.006 continuity Error (%) ..... 0.404 444A444444444444#44444444 Highest Continuity Errors 44 44444444444d444444tr444' Node 2-MANHOLE (3.39%) Node 3-INLET (2.30%) *d4444444AEA#44****4**#**44 Time -Step Critical Elements 4444******44Atrtr4tr444}444}}4 None 44444A4d444444444444444444444444 Highest Flow instability Indexes A4 4d444d4444444444444444#R444#4 All links are stable. tr¢*#R##R#d44d4d44E444E#43 Routing Time Step Summary *A*RAd#4A4rt4444444kRk#kkk minimum Time Step 1.00 sec Average Time Step 1.00 sec maximum Time Step 1.00 sec Percent in Steady State 0.00 Average Iterations per Step 2.00 R##R##RR##A#rtARRRnrtnn###R## Subcatchment Runoff Summary n###R###R#R####nnnnnn4RnnRR -------------------------------------- Total Total Precip Runon Subcatchment in in -------------------------------------- S1 1.710 0.000 S2 1.710 0.000 S3 1.710 0.000 S4 1.710 0.000 -------------------------------------- System 1.710 0.000 444444444444E#4444 Node Depth Summary 4444444444S4ES444E ------------------------------------------------------- Total Total Total Total Peak Runoff Evap Infil Runoff Runoff Runoff coeff in in in 10A6 gal CFS 0.000 ------------------------------------------------ 0.057 1.594 0.018 1.907 0.932 0.000 0.057 1.594 0.010 1.025 0.932 0.000 0.057 1.594 0.015 1.583 0.932 0.000 0.057 1.594 0.020 2.189 0.932 --------------------------------------------------- 0.000 0.057 1.594 0.062 6.704 0.932 -------------------------------------- Average Maximum maximum Time of max Depth Depth HGL occurrence Node Type Feet Feet Feet days hr:min -------------- 2-MANHOLE ----------------------------------------------- JUNCTION 1.99 6.58 4963.09 0 00:01 3-INLET JUNCTION 1.46 1.95 4958.99 0 00:01 4-INLET JUNCTION 0.28 0.70 4958.92 0 00:02 S-INLET JUNCTION 0.01 0.80 4959.36 0 00:40 6-INLET JUNCTION 0.01 0.53 4959.64 0 00:40 North College Corridor Improvements December 2009 3of5 1-OUTFALL OUTFALL d 4RRRR#####Q4d44ddR Node InFlow Summary ###A#trdd4ddQ4RRR#d# Node Type 2-MANHOLE JUNCTION 3-INLET JUNCTION 4-INLET JUNCTION 5-INLET JUNCTION 6-INLET JUNCTION 1-OUTFALL OUTFALL 444444444tr444444#44444 Node Surcharge Summary 4444444#44444444444444 2.79 2.79 4958.50 ----------------------------- Maximum Maximum Lateral Total Time Of Max Inflow inflow Occurrence CFS CFS days hr:min ----------------------------- 0.00 14.37 0 00:00 1.58 11.67 0 00:00 1.91 4.92 0 00:40 1.02 3.18 0 00:40 2.19 2.19 0 00:39 0.00 14.37 0 00:00 0 00:00 -------------------- Lateral Total Inflow Inflow volume volume 10A6 gal 10A6 gal . -------------------- 0.000 0.086 0.015 0.082 0.018 0.059 0.010 0.030 0.020 0.020 0.000 0.091 surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- Max. Height Min. Depth Hours Above crown Below Rim Node Type surcharged Feet Feet --------------------------------------------------------------------- 2-MANHOLE JUNCTION 0.01 4.448 24.482 4444444444#4#4444d444 Node Flooding summary 444444444444 44tr4#444 No nodes were flooded. 4 rt¢AA#44tr4444gdgg4R4444 Outfall Loading Summary tr 444444A4d4g44¢¢R4tr#444 J Flow Avg. Max. Total Freq. Flow Flow volume outfall Node pcnt. CFS CFS 10A6 gal ----------------------------------------------------------- 1-OUTFALL 90.52 0.05 14.37 0.091 ----------------------------------------------------------- System 90.52 0.05 14.37 0.091 #rt444444#44444A4ggRR Link Flow summary 44¢4444444444tr4grtg4R ----------------------------------------------------------------------------- Maximum Time of Max maximum Max/ Max/ IFlowl occurrence velocity Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------------- 1-STORM CONDUIT 14.37 0 00:00 5.05 0.82 1.00 2-STORM CONDUIT 11.67 0 00:00 4.85 0.84 0.98 3-STORM CONDUIT 4.89 0 00:40 2.94 0.21 0.56 4-STORM CONDUIT 3.12 0 00:40 3.15 0.34 0.35 5-STORM CONDUIT 2.16 0 00:40 2.89 0.27 0.44 444dd4d44RRRRgRRR444444444Q Flow classification summary 4 d444¢¢¢¢¢4444444d44444trR¢¢ - ----------------------------------------------------------------------------------------- Adjusted Fraction of Time in Flow class ---- Avg. Avg. /Actual Up Down Sub sup Up Down Froude Flow conduit Length ----------------------------------------------------------------------------------------- Dry Dry Dry Crit crit C n t Crit Number change 1-STORM 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0001 2-STDRm 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0000 3-STORM 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 4-STORM 1.00 0.00 0.90 0.00 0.10 0.00 0.00 0.00 0.02 0.0000 5-STORM 1.00 0.90 0.03 0.00 0.07 0.00 0.00 0.00 0.03 0.0000 444R#R4¢¢¢44#4trtr#4444d444 Conduit Surcharge summary R¢4d444444#4#4trtrtr44444R#R North College Corridor improvements December 2009 4 of 5 Hours Hours --------- Hours Full -------- above Full Capacity Conduit - Both Ends upstream Dnstream Normal Flow Limited - - ------------------------------------------------- 1-STORM 1.32 1.32 1.35 0.01 0.01 Analysis begun on: Thu Dec 03 16:09:58 2009 analysis ended on: Thu Dec 03 16:10:03 2009 North College Corridor Improvements December 2009 5 of 5 APPENDIX C — Proposed Drainage Proposed Drainage Basins C p 7 m m m m W m W N- m N N N N N N V m M m N N M M M M O N N ? O m n m N N <C M W n n n M V V a m N n '� O mnnnnnoN(m�J Mn N r v ne <mNm NOONm a W � � v v� v W n m U d m p 0 0 0< O N M N n V m m n n n M m m m V CC! W N N m m n m s{ W N m w NM N mmM m- N- mO OM MN OM cN g mMm 00 N NV MWN 00 i[l O N N N 0 m M Nn mVM 0OO W mnN mmm m0a M0 3 N o LL m a W m M W n n O W M m n M O n O m M N n M W In V W N W m O i[l V W O m n m N M m 0 N r m M Om0 O O tip N O N p ti 0 0 0 N N 0 0 O O N N O V N N - M N O CJ m N 0 O m a W N m O O N n M m o v c « m o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o p o 0 0 0 0 0 o m o 0 0 0 0 0 0 c N o p p o 0 0 0 0 0 0 o W o 0 0 0 0 to �2 o 0 0 0 0 0 0 0 0 0 0 o n o 0 0 0 0 0 0 m O N m N 0 0 "' w m N m N m N m m N m N M M M M O m N N N N N N m m m to m m N m N m N m N M N N U fq CV N N N N N c 0 _o �� m m rn m m rn m m rn rn m m m rn rn rn m rn rn rn rn rn rn rn rn rn n W a e v m rn m m M W a E m m p V M 7 C 0 V V m Q o m n N N a m m M V m M m M m M W M V 't m V m 'It W 'ItO m m m m v N« v 0 m 0 to 0 m 0 0 0 0 0 0 0 0 0 j 0 U '� 0 0 0 0 0 0 0 0 0 0 � 0 0 0 0 0101010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 « m m n m M u'f n O O N M M n n N tO N m O m m N M m m m O m N m v V VV m N M m O N n N M m - N m W O m N 0 M M m M n W n N m- N W W M n M n O O m m M m .- -N--NM .- .- .- � N N - N N N W n N N N cMp M M m m V m N O m W MOO N m O N N r m 0 M M C? O N m V V n N N m wm n N m N mI m m 0 [q W O 0 m w . N (' m m Q mmnm W0n�[1 n mvO"MMMmNn mmtM0 rnnnM mNiNll mMm NmmO m mWN WOOmO mrnui ao �mon c�o nC') mrnmuDi rnVn amvNmo O m mvn T m mto N MVm V MOm WNmW 'Itmm mOmi ANM �N. rnn rnNn nnma mOmmmI mLONm OWWumi m Mm0m 6 M� 'm4: o"m' 0 M. c NMNV N-6 O Om MN0 VOM6m mib W W m m O M O n M O N N n n N W W m p W M m O W W W M m N N m O m W N m m n m N N t7 n N m W- N N n N- NNN OOD N m N N IT ! M M m m t�0 n W W W W W Q C�(.7 C7 W W ('S C7 w ww W FF- F-F F Z C C Z Z Z_Z_ Z_H_F_ Z_ Z_IL H_H_ C OLL LL W C7 C7 C7 <.7 C7LL LL LL LL _ Q QLL2 _ _ QQQ.N X NQQQQa X UPI-H(n W �%MmLLLLfnNLLLLOO (A OOO O w w O Y x x x LL LL X X LL3 3 QwWwooWw000 No Mo mj n�j W�j m 0000 00000.-�-'- o oV jm jO> `9» w w w w w w w w w W w w > rj » 9>»»> ' lj rj >>> 5> �- 5>>> Q o0000000000 11 Lo CU 0 O 0 0 0 0 N N N N T O M m mC? D_ m U m m m m N m m Coco O O O0 O 00 0 0 0 3 o m m 0 a c L 0000 m O J N m O O _ J N N N N U rq c o _o Z o rn rn rn rn d m a E y m S .2 0 N N N L 'i4 n n�vo m co y � N m v N m v _m Q n o N m no�v�i N C C C C m W W W W C y uo N c V m �rn o �rn m /I II rl 1/ /I 1 II 1/ II 'AMS ASSOCIATES ,�yl N II lal 1 1 j ', 1 / / ' / I' ♦ ' \� \ \I 1\\\ I \\ \ 1\ `\ � I�� II j I \ , I l�, 1 1 \`�_—.I 1 \\ , / II II I l`\ �__♦ it I - Iljli nlll II III; 10-YEAR 0p1 1 III 11I \ 11 111 ♦\ \/ / ! -/'-1 11 - ell, l I/1%l% `/ ^' / 111 I 1 I I 1 I 1 ) II I ley/ , , , / , FLOODPLAN .'/ � ♦ I J ii N ii i i - 1I + � M ' /' . -_i \ I % `I \J I / 1 ;,.. I \ / i � �: �\ •�.. /f n ow 71 11 / / `,-1 1 `. \ / `� �/— l♦ '\^.' � i.: � ! � ' � ' ' / :, •;; / ; ', I, _. r .^ yam.,=�'- �'`='^ _ '41-L00D P LAIN '..-- I,I I r 1- 0.5FT -_OODWAYaf 1 !.�•.i �yy OS2; mob, MAIN FLOW V Z PATH I W9 '10`F' 1 1 0.17 as053 0.50 0.41 ♦ `C at C. --_ 0.13 _0.37 - 0.47 / i • 0.22 " � - - 0. 2 — 47 - �, -''�. - -I. S3 -- 0.10 0.13 0.a0--T--..,,C• 0.24 E6 - __ E7 - 0. _ �. 0.29 0.59 • �_ `-ol E T 2 If Q .�` �`.�` ' � \ � � � �\ I I a I E3•• '-- .- _.�.1 II ~—• �` � \1u� '� • _ r _ -,_. _ _ -� ♦ 0.18 r 1 t_.i iii 1 0.05 P , it \ ♦ ' 1 n i`` , r I ` \ _ /__`\`' ' � -' n '`♦, i �` ♦`� --"�\ � / i I`, �`\♦ f -`.\ a \`•� `♦1 11 � ` - -) rs� � ♦1 ,Y c I I ,,, �+ l `PROROSED .�` 0 SEWER I I! __ tl"x. .aE.�,\ ` ! i \v/ 1�' `, ` 1 1 _ _ II —'------- IN 1� I 0 ` 50. ` " -- --z --- .I! INS / ' FIGURE 3.1 / 1 ♦ , I�.♦ I ,I\ r , \ I I �^ `♦ 1r r SCALE IN FEET I — , 1 I i 1 `, ill ll\ > ��'/ i ` , ♦ 1 b / 1 " 1 . ' Tr I rl 1 / 0.54 -, PROPOSED t STORM SEWER _ 1 I ' I1 ,, 1,1 i III I III I III I 111.. I I I,I 1 III ` 1,1 I 11�{ - __ --- I I II i I n"I r� i I i<NI --------- 1 I 1 I I I I >y rA �� Kk l •.1.+1 � 1 I I t nl % I , I ; I I I r i 1 I 1 II II 1 ,li I j /\ \ \ I E 1 I , 1 I I 1 1' 1 1 1 • 1 ` I I\ , I I I I li i I t , 1( I 4 , \ 1 , I MAIN FLOW II , PATH It n✓ - i __ \•. l t .Jl'J I ____ 1 1 \ :--- — -- - - ---------------- ---- --- -- --- v 1_ I I M•�.•�• �.. I `i 00 ----COLLEGE AVENUE " = : " _------ -v (.-a I 1 ; j III j i 1 I I i; 1 1 77-1 If ---- FIGURE 3.1 --- - _ PROPOSED BASINS ; -- -- 2 of 3 - ly" {--- -. 1 i <o �s i� -�-W ' C mms ASSOCIATES ` 1 _ \ 1 11- � / 11 1 ``11 -• I I 1 10 I ' 1 `\ I \\ ♦ `\ Ix \\ `\1\ , \ ---------------- --- - - ---------- IV, X \_-:- m AVMS L x \ N \ `\9 ,\ I \\1 0 50� SCALE IN FEET J j - I 11 I /I ' I / 1 / 1 1 )✓ - --- 1 1 0� 1 I , T-------- f /. I I / , .:LOW POL\T WILLOX STREET __ - LOW POLYP i i OVERFLOW ))) ` - I I ------------- j 01910 _ __ `� • '\ N ,/ I I I If -1 - - `'_---_' FIGURE 3.1 - ---- - PROPOSED BASINS 3 of 3 jl ' -+ -- - -- , 1• 1 I �� I \ I - _ -- Y• I I i i i �� \ j - I 49a I 1 / 1 j 1 1 I 1 1 1 1 / I , t� 0 r A _ ------------� 8 n Z U ♦ q pp C lXIl7 CmO A T � a f<il 0 gr r _ _ - • b l��1t O ao N � N ti m P S r - $z E REFER TO THE EPA SWMM MODEL FOR MORE DETAILED INFORMATION EPASWMM PROPOSED PROJECT MODEL e= 1 OF 3 p D 2 p - mrm a p B 8 8 a \ z f ; , _. ■ # ..� § / ■ : s «® \ & � » :•4 : a ® � k ) )■ ° � ; ,a } ; -a ! J .■ : \ f V2� \ § 9 § $ '--- ) 91 � ` t & & ! ) ! ■ ._.---� 7 ■ \ 9 � .. EPASWMM PROPOSED PROJECT MODEL �- 2OF3 EPASWMM PROPOSED PROJECT MODEL 30F3 L cuk 2 Ca no, S.� Fv\on � NE042 PIPES NYBiRj'-ArAULIC-ArAjN'J-rAALIT�l,S� Client: City o1 Fort Colline Project: North College Analysis: Siphon Side Calculations Date: 713012010 StartingTeilwatar Conditions Starting HGL (ft): T I Starting Pipe Critical D the 1.43 Starts EGL 11 : 4961.59 Tailwater Elevation: 496L00 Exit Heatl Loss ft 1 0.37 1 Tailwater Velocity I s : 3.76 Upstream Structure /MH ID Pipe ID Pipe Dia. Or Height s Pipe Type Pipe Area (at)full Wetted Perimeter Hydraulic Radius full Total Discharge cfs Length (fl) Station (it) Pipe INV Downst. End Pipe INV Upstream End Graph Top Slope (tt") Mannings n Full Flow? Check Velocity Full f s Normal Velocity (a)Condition DepthEN/A Flow Velocity Head tt Friction Slope ttAt Pipe Loss tt EGL Structure Out NGL Structure Out K (From Work. S Structure Loss (it) K V^2/2 EGL Structure In HGL Structure In Upstream TOC Elevation Ground Elevation Surcharge Height (f! Internal Pressure Head tt Internal Pressure (psi) Freeboard (it) 0 4957 4961 4961.59 4961.00 4961.59 4961.00 4964.00 1 1 4.00 RCP 26.00 24,00 1.08 160.00 50.00 50.00 4957 4950 4954 -0.1400 0.013 Full 6.15 N/A 4.00Pressure 0.59 0.0026 0.30 4961.89 4961.30 0.60 0.35 4962.25 4961.66 4954.00 4964.00 0.00 11.66 5.05 2.34 2 2 1.00 RCP 26.00 24.00 t08 160.00 26.00 76.00 4950 4950.13 4954.13 0.0050 0.013 Full 6.15 N/A 4.00Pressure 0.59 0.0026 0.24 4962.49 4961.90 0.65 0.38 4952.87 4962.28 4954.13 4964.00 0.00 12.15 5.26 1.72 3 3 4.00 RCP 26.00 2400 1.08 16000 50,00 126.G0 4950.13 4957.03 4961.03 0.1380 0 113 Full 6.15 WA 1.00Pressure 0.59 0.0026 0.30 4963.18 4962.59 0.12 0.07 4963.25 4962.66 0,00 4964.00 0.00 5.63 2.44 1.34 'Pipe Am.4x7 RCSC NOTES: Analysis based upon HEC-22, Urban Drainage Design Manual (FWHA-NHI-01.021, August 2001, FHWA, NHI, and Ayres Associates). See HEC-22 Chapter 7 for detailed information about storm drain design, energy and hydraulic grade line calculations, and energy losses. Spreadsheet currently requires separate use of Manning'a Equation by other software for flows less than pipe full. In such cases the EGL and HGL equations must be manually changed. RED colored text indicates input data that must be provided by the user. BLACK cobred text is output (hat is automatically calculated. Copyright Ayres Associates, 2003. Storm Sewer System 4970 4965 4960 4955 4950 -Pipe -Pipe Top -HGL _EGL -Ground 11.66 12.15 5.63 Copyright Ayres Associates 7/30/2010 � JJ§k { § - § ;;t / _ !!! )! !!® t5o ) ))/ -)/0 )f� |0a 0 )\j 2m\22� ) )) �)kj�0 ■ `f00 mm |] ; ))f!)t7)!! �2§e!#;-! kik322C = �k� \k)j3/ 2 k § 00a. �!){ 0 - �§ .9� |) laj�2 /(%% ^ -C,'� :;\/§\}/)))m) :2f�; £`off)f•f, �k\f\k\)))))) §/��2]77]E;E2w.2 7�7|«_!!!!,!! lafeeee.e, a#�!!!!3)wA$ !Ifƒ�=;|�ooao]O •..20 ,9,0.l=� __adw __ __ 0 100-Year EPASWMM Analysis EPASWMM Summary 100-yr INPUT 100-yr EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.018) -------------------------------------------------------------- EEEEEEEtrEtrEEEE EtrEEEt##EEE##########rt#EEEErtE#*E##rt#####E4tr NOTE: The summary statistics displayed in this report are based on results found at every computational time step, notust on results from each reporting time step. E#EjE4EEE EEEEtrErtE#EE##E##*##4LEEEE n.EErt*#E*E#####EEEtrE *4E4**EEEEE EE E*E Analysis options **************** Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmelt ............... NO Groundwater ............ NO Flow Routing........... YES Ponding Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ DEC-15-2009 00:00:00 Ending Date .............. DEC-15-2009 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time step ............ 00:05:00 Dry Time Step ............ 01:00:00 Routing Time Step ........ 1.00 sec WARNING 04: minimum elevation drop used for Conduit os5 WARNING 02: maximum depth increased for Node 02-MH-AO2_(SNOUT) WARNING 02: maximum depth increased for Node dcl WARNING 02: maximum depth increased for Node INLET-GO4 WARNING 02: maximum depth increased for Node INLET-JO1 WARNING 02: maximum depth increased for Node ssl WARNING 02: maximum depth increased for Node ss3 Element Count #kkkkkkRk##k# Number of rain gages ...... 1 Number of subcatchments ... 39 Number of nodes ........... 72 Number of links ........... 95 Number of pollutants ...... 0 Number of land uses ....... 0 #ERE************ Raingage summary EEEEEEEEEEEEEEEE Data Recording Name Data Source Type Interval ------------------------------------------------------------- COFCRainGage 100-year INTENSITY 5 min. #k##k###*kEEEE#E#R*E subcatchment summary Name Area width %Impery %Slope Rain Gage Outlet - ---------------------------------------------------------------------------------------------------- E01 0.16 69.00 95.00 0.3400 COFCRainGage INLET-DO1 E02 0.13 57.00 95.00 0.4100 COFCRainGage OFFSITE-2 E03 0.07 31.00 95.00 0.4100 COFCRainGage OFFSITE-2 E04 0.40 175.00 95.00 0.4100 COFCRainGage INLET-EO1 E05 0.24 104.00 95.00 0.4100 COFCRainGage INLET-GO1 E06 0.53 232.00 95.00 0.4100 COFCRainGage INLET-GO2 E07 0.40 173.00 95.00 0.4550 COFCRainGage INLET-GO3 EO8 0.29 127.00 95.00 0.5000 COFCRainGage INLET-GO4 E09 0.59 2S6.00 95.00 0.7600 COFCRainGage INLET-GO5 E10 0.73 318.00 95.00 0.2100 COFCRainGage OFFSITE-1 E12 0.18 80.00 95.00 0.2100 COFCRainGage OFFSITE-1 E13 0.05 25.00 95.00 0.4100 COFCRainGage OFFSITE-2 OSO1 11.94 1733.00 70.00 0.5000 COFCRainGage os14 OS02 14.73 2138.00 65.00 0.5000 COFCRainGage ss9a North College Corridor Improvements December 2009 1 of 13 OS03 4.70 2047.00 40.00 0.5000 COFCRainGage ss3 os04 43.93 6378.00 45.00 MOOD COFCRainGage ss2 OS05 5.27 3062.00 5.00 0.5000 COFCRainGage ssl OS06 6.21 1352.00 45.00 0.5000 COFCRainGage ss2 OS07 1.35 589.00 95.00 0.5000 COFCRainGage ss4 0508 4.30 1873.00 95.00 0.5000 COFCRainGage os2 0509 30.80 4473.00 50.00 0.5000 COFCRainGage os2 Oslo 8.49 3700.00 85.00 0.5000 COFCRainGage dcl Osll 17.62 2558.00 35.00 0.5000 COFCRainGage osl OS12 22.88 4983.00 55.00 0.5000 COFCRainGage osl w01 0.31 136.00 95.00 0.3250 COFCRainGage WQ-POND w02 0.13 55.00 95.00 0.4300 COFCRainGage 04-INLET-AOI w03 0.37 160.00 95.00 0.3800 COFCRainGage INLET-AO2 w04 0.14 62.00 95.00 0.3800 COFCRainGage INLET-FO1 w05 0.34 146.00 95.00 0.3800 COFCRainGage INLET-H01 w06 0.63 184.00 90.00 0.3800 COFCRainGage INLET-Ao3 w07 0.45 132.00 90.00 0.4500 COFCRainGage INLET-AO4 W08 0.47 205.00 95.00 0.4500 COFCRainGage INLET-AO5 W09 0.17 72.00 95.00 0.4500 COFCRainGage ss10 W10 0.53 232.00 95.00 0.4500 COFCRainGage ss9 wll 0.27 119.00 95.00 0.4500 COFCRainGage INLET-AO6 w12 0.51 221.00 95.00 0.6550 COFCRainGage INLET-AO7 w13 0.66 286.00 95.00 0.8600 COFCRainGage INLET-AO8 w14 0.62 269.00 95.00 0.2400 COFCRainGage INLET-AO9 w18 1.84 802.00 5.00 0.1400 COFCRainGage WQ-POND Node Summary C RRir>R*frACCG Invert Max. Ponded External Name Type Elev. Depth Area Inflow ------------------------------------------------------------------------------ 01-MH-A01 JUNCTION 4957.59 7.35 0.0 02-MH-AO2_(SNOUT) JUNCTION 4957.82 9.01 0.0 03-MH-AO3_RISER\BENDJUNCTION 4958.07 7.19 0.0 04-INLET-AO1 JUNCTION 4958.18 7.25 0.0 05-MH-A04 JUNCTION 4958.32 7.48 0.0 06-DT-INLET-Ao2 JUNCTION 4958.71 7.00 0.0 07-MH-AO5 JUNCTION 4958.75 6.60 0.0 08-MH-AO6 JUNCTION 4959.58 6.71 0.0 09-MH-AO7 JUNCTION 4960.25 7.20 0.0 10-MH-AO8 JUNCTION 4960.82 6.10 0.0 11-DT-INLET-AO3 JUNCTION 4960.94 7.00 0.0 12-MH-AO9 JUNCTION 4961.78 5.98 0.0 13-DT-INLET-AO4 JUNCTION 4962.62 7.00 0.0 14-DT-INLET-AO5 JUNCTION 4963.55 7.00 0.0 15-MH-AlO JUNCTION 4963.76 5.38 0.0 16-MH-All JUNCTION 4964.28 6.42 0.0 17-DT-INLET-AO6 JUNCTION 4964.42 7.00 0.0 18-OT-INLET-AO7 JUNCTION 4965.03 7.00 0.0 19-MH-Al2 JUNCTION 4965.74 5.62 0.0 20-DT-INLET-AO8 JUNCTION 4965.78 7.00 0.0 21-OT-INLET-AO9 JUNCTION 4967.23 6.16 0.0 22-MH-A13 JUNCTION 4967.32 6.16 0.0 23-TIE-IN-EXO1 JUNCTION 4968.34 8.00 0.0 dcl JUNCTION 4976.00 6.00 0.0 INLET-AO2 JUNCTION 4960.48 5.32 0.0 INLET-AO3 JUNCTION 4961.72 6.11 0.0 INLET-AO4 JUNCTION 4963.26 5.59 0.0 INLET-AO5 JUNCTION 4964.19 5.64 0.0 INLET-AO6 JUNCTION 4964.93 5.61 0.0 INLET-AO7 JUNCTION 4965.55 5.60 0.0 INLET-AO8 JUNCTION 4966.59 5.60 0.0 INLET-AO9 JUNCTION 4968.11 6.11 0.0 INLET-DO1 JUNCTION 4957.71 7.06 0.0 INLET-EO1 JUNCTION 4961.71 3.80 0.0 INLET-FO1 JUNCTION 4960.24 6.71 0.0 INLET-GO1 JUNCTION 4962.59 4.43 0.0 INLET-GO2 JUNCTION 4963.58 4.27 0.0 INLET-GO3 JUNCTION 4964.58 4.30 0.0 INLET-GO4 JUNCTION 4966.01 4.31 0.0 INLET-GOS JUNCTION 4966.88 4.65 0.0 INLET-H01 JUNCTION 4960.90 6.16 0.0 INLET-101 JUNCTION 4958.07 7.43 0.0 LAKE -CANAL JUNCTION 4963.50 2.00 0.0 MH-801_TIDE-FLEX JUNCTION 4955.61 8.43 0.0 MH-E01 JUNCTION 4958.61 6.42 0.0 MH-G01 JUNCTION 4960.17 6.88 0.0 MH-G02 JUNCTION 4962.93 4.33 0.0 MH-G03 JUNCTION 4964.17 4.30 0.0 MH-G04 JUNCTION 4965.93 3.97 0.0 MH-G05 JUNCTION 4966.80 4.28 0.0 Osl JUNCTION 4978.00 2.00 0.0 osl3 JUNCTION 4966.90 2.00 0.0 osl4 JUNCTION 4964.40 2.00 0.0 os2 JUNCTION 4976.00 10.00 0.0 os8 JUNCTION 4971.00 2.00 0.0 ssl JUNCTION 4972.00 6.00 0.0 ss1O JUNCTION 4966.84 10.00 0.0 ss2 JUNCTION 4969.75 10.00 0.0 ss3 JUNCTION 4969.50 4.50 0.0 North College Corridor Improvements December 2009 2 of 13 ss4 JUNCTION 4968.85 5.45 0.0 ss5 JUNCTION 4968.42 6.29 0.0 ss9 JUNCTION 4966.09 10.00 0.0 ss9a JUNCTION 4967.00 5.00 0.0 WQ-OUTLET JUNCTION 495S.64 8.36 0.0 OFFSITE-1 OUTFALL 0.00 0.00 0.0 OFFSITE-2 OUTFALL 0.00 0.00 0.0 OFFSITE-3 -OUTFALL 4963.00 1.00 0.0 OFFSITE-4 OUTFALL 4963.00 1.00 0.0 PR-OUTLETI OUTFALL 0.00 0.15 0.0 PR-OUTLET2 OUTFALL 4955.53 4.00 0.0 PR -OUTLETS OUTFALL 4955.00 9.56 0.0 WQ-POND STORAGE 4955.64 8.36 0.0 Link Summary Name From Node To Node Type Length %Slope Roughness ------------------------------------------------------------------------------------------ dry_Creek dcl ssl CONDUIT 1600.0 0.2500 0.0450 INLET-AO2 INLET-AO2 06-DT-INLET-AO2 CONDUIT 4.5 9.0881 0.0130 INLET-AO3 INLET-AO3 11-DT-INLET-AO3 CONDUIT 3.3 2.1153 0.0130 INLET-AO4 INLET-AO4 13-DT-INLET-AO4 CONDUIT 4.5 2.0004 0.0130 INLET-AO5 INLET-AOS 14-DT-INLET-AOS CONDUIT 5.6 1.9507 0.0130 INLET-AO6 INLET-AO6 17-DT-INLET-AO6 CONDUIT 4.8 4.9958 0.0130 INLET-AO7 INLET-AO7 18-DT-INLET-AO7 CONDUIT 4.0 1.985S 0.0130 INLET-AO8 INLET-AO8 20-DT-INLET-AOB CONDUIT 4.7 5.0913 0.0130 INLET-AO9 INLET-AO9 21-DT-INLET-AO9 CONDUIT 4.7 5.0913 0.0130 INLET-FO1 INLET-F01 08-MH-A06 CONDUIT 31.0 0.5161 0.0130 INLET-GO1 INLET-GO1 MH-GO1 CONDUIT 18.0 0.5000 0.0130 INLET-GO2 INLET-GO2 MH-G02 CONDUIT 30.0 0.5000 0.0130 INLET-GO3 INLET-GO3 MH-G03 CONDUIT 17.0 0.4706 0.0130 INLET-GO4 INLET-GO4 MH-G04 CONDUIT 17.0 0.4706 0.0130 INLET-G05 INLET-GO5 MH-G05 CONDUIT 17.0 0.4706 0.0130 INLET-H01 INLET-H01 09-MH-AO7 CONDUIT 30.0 0.5000 0.0130 INLET-JO1 INLET-JO1 02-MH-A02_(SNOUT)CONDUIT 50.0 0.5000 0.0130 Osl osl os2 CONDUIT 800.0 0.2500 0.1000 osll 559a ss10 CONDUIT 127.0 1.0473 0.0160 os12 ss10 os13 CONDUIT 500.0 0.3540 0.1000 os13 os13 os14 CONDUIT 300.0 0.8334 0.1000 osl4 0s14 INLET-101 CONDUIT 210.0 0.1571 0.0450 os2 os2 ssl CONDUIT 450.0 0.2222 0.0700 os4 ssl ss2 CONDUIT 120.0 3.3352 0.0800 Os5 ss2 ss3 CONDUIT 57.0 0.0018 0.0160 os6 ss3 os8 CONDUIT 60.0 1.6669 0.1000 os7 ss4 os8 CONDUIT 80.0 2.8762 0.0160 os8 ss5 os8 CONDUIT 60.0 4.S213 0.1000 os9 os8 LAKE -CANAL CONDUIT 2000.0 0.3750 0.1000 OVERFLOW-A02-A01INLET-A02 04-INLET-AOI CONDUIT 152.0 0.2434 0.0130 OVERFLOW-A03-H01INLET-A03 INLET-H01 CONDUIT 153.0 0.5033 0.0130 OVERFLOW-AO4-AO3INLET-AO4 INLET-AO3 CONDUIT 258.0 0.3954. 0.0130 OVERFLOW-AOS-AO41NLET-AO5 INLET-AO4 CONDUIT 203.0 0.4828 0.0130 OVERFLOW-AO6-AO5INLET-AO6 INLET-AO5 CONDUIT 191.0 0.3717 0.0130 OVERFLOW-A07-A061NLET-A07 INLET-AO6 CONDUIT 133.0 0.4587 0.0130 OVERFLOW-A08-A071NLET-A08 INLET-AO7 CONDUIT 164.0 0.6342 0.0130 OVERFLOW-09-A08INLET-A09 INLET-AO8 CONDUIT 318.0 0.6384 0.0130 OVERFLOW-DO1 INLET-001 OFFSITE-3 CONDUIT 100.0 0.7700 0.0130 OVERFLOW-E01 INLET-E01 OFFSITE-4 CONDUIT 100.0 1.S102 0.0130 OVERFLOW-FO1-AOIINLET-FO1 INLET-AO2 CONDUIT 248.0 0.4637 0.0130 OVERFLOW-GO1-EOIINLET-GO1 - INLET-E01 CONDUIT 361.0 0.4193 0.0130 OVERFLOW-GO2-GOlINLET-GO2 INLET-GO1 CONDUIT 189.0 0.4392 0.0130 OVERFLOW-GO3-GO2INLET-GO3 INLET-GO2 CONDUIT 311.0 0.3312 0.0130 OVERFLOW-G04-G03INLET-G04 INLET-GO3 CONDUIT 315.0 0.4571 -0.0130 OVERFLOW-GOS-GO41NLET-GOS INLET-GO4 CONDUIT 218.0 0.5551 0.0130 OVERFLOW-HO1-FOIINLET-HO1 INLET-F01 CONDUIT 40.0 0.2750 0.0130 OVERFLOW-MHA02-WQPOND02-MH-AO2_(SNOUT)WQ-POND CONDUIT 50.0 4.3842 0.0130 OVERFLOW-MHGOI-GOIMH-GO1 INLET-GO1 CONDUIT 18.0 0.1667 0.0130 ssl ssl ss4 CONDUIT 250.0 0.2600 0.0130 ss10 ss9 16-MH-All CONDUIT 50.0 0.3200 0.0130 ss2 ss2 ss3 CONDUIT 57.0 0.4386 0.0130 ss3 ss3 ss5 CONDUIT 220.0 0.4909 0.0130 ss4 ss4 ss5 CONDUIT SO.0 0.8600 0.0130 ss6 ss5 23-TIE-IN-EXO1 CONDUIT 387.0 0.0207 0.0130 ss9 ss10 ss9 CONDUIT 60.0 1.2501 0.0130 ss9a ss9a ss9 CONDUIT 127.0 0.5197 0.0130 STORM-A01 01-MH-AOI WQ-POND CONDUIT 123.0 0.3496 0.0130 STORM-AO2 02-MH-AO2_(SNOUT)01-MH-A01 CONDUIT 64.0 0.3594 0.0130 STORM-AO3 03-MH-AO3_RISER\BEND02-MH-AO2_(SNOUT)CONDUIT 72.0 0.3472 0.0130 STORM-AO4 04-INLET-AO1 03-MH-A03_RISER\BENDCONDUIT 27.0 0.4074 0.0130 STORM-AOS 05-MH-A04 04-INLET-AOI CONDUIT 39.0 0.3590 0.0130 STORM-AO6 06-DT-INLET-AO2 OS-MH-AO4 CONDUIT 113.0 0.3451 0.0130 STORM-AO7 07-MH-AOS 06-DT-INLET-AO2 CONDUIT 10.0 0.4000 0.0130 STORM-AO8 08-MH-AO6 07-MH-AO5 CONDUIT 238.0 0.3487 0.0130 STORM-AO9 09-MH-AO7 08-MH-AO6 CONDUIT 40.0 1.6752 0.0130 STORM-A10 10-MH-AO8 09-MH-AO7 CONDUIT 127.0 0.4488 0.0130 STORM -All 11-DT-INLET-AO3 10-MH-A08 CONDUIT 26.0 0.4615 0.0130 STORM-Al2 12-MH-AO9 11-DT-INLET-AO3 CONDUIT 182.0 0.4615 0.0130 STORM-A13 13-DT-INLET-AO4 12-MH-AO9 CONDUIT 76.0 0.4474 0.0130 STORM-A14 14-DT-INLET-AOS 13-DT-INLET-AO4 CONDUIT 203.0 0.4581 0.0130 STORM-A15 15-MH-AIO 14-DT-INLET-AOS CONDUIT 45.0 0.4667 0.0130 STORM-A16 16-MH-All 15-MH-AIO CONDUIT 112.0 0.4643 0.0130 North College Corridor Improvements December 2009 3 of 13 STORM-A17 17-DT-INLET-AO6 16-MH-All CONDUIT STORM-A18 18-DT-INLET-AO7 17-DT-INLET-AO6 CONDUIT STORM-A19 19-MH-Al2 18-DT-INLET-AO7 CONDUIT STORM-A20 20-DT-INLET-AO8 19-MH-Al2 CONDUIT STORM-A21 21-DT-INLET-AO9 20-DT-INLET-AO8 CONDUIT STORM-A22 22-MH-A13 21-DT-INLET-AO9 CONDUIT STORM-A23 23-TIE-IN-EXO1 22-MH-A13 CONDUIT STORM-B01 MH-B01_TIDE-FLEXPR-OUTLET2 CONDUIT STORM-BO2 WQ-OUTLET MH-BO1_TIDE-FLEXCONDUIT STORM-D INLET-DO1 WQ-POND CONDUIT STORM-E01 MH-EO1 05-MH-AO4 CONDUIT STORM-EO2 INLET-EO1 MH-EO1 CONDUIT STORM-GO1 MH-GO1 08-MH-A06 CONDUIT STORM-GO2 MH-G02 MH-GO1 CONDUIT STORM-GO3 MH-G03 MH-G02 CONDUIT STORM-GO4 MH-G04 MH-G03 CONDUIT STORM-GOS MH-G05 MH-G04 CONDUIT 63 OS-MH-AO4 04-INLET-AOI CONDUIT WQ-ORIFICE WQ-POND PR-OUTLETI ORIFICE WQ-SPILLWAY WQ-POND PR-OUTLET3 WEIR WQ-OUTLET WQ-POND WQ-OUTLET WEIR OVERFLOW-301-WQPONDINLET-JO1 WQ-POND WEIR OVERFLOW-LAKE-CANALLAKE-CANAL WQ-POND WEIR R####d###dddddbdddddd Cross Section Summary #######d##d#ddd3ddCdd Full Full Conduit Shape Depth Area --------------------------------------------------- dry_Creek TRAPEZOIDAL 6.00 INLET-AO2 CIRCULAR 1.50 INLET-AO3 CIRCULAR 1.50 INLET-AO4 CIRCULAR 1.50 INLET-A05 CIRCULAR 1.50 INLET-AO6 CIRCULAR 1.S0 INLET-AO7 CIRCULAR 1.50 INLET-AO8 CIRCULAR 1.50 INLET-AO9 CIRCULAR 1.50 INLET-FO1 CIRCULAR 1.50 INLET-GO1 HORIZ_ELLIPSE 1.17 INLET-GO2 HORIZ_ELLIPSE 1.17 INLET-GO3 HORIZ_ELLIPSE 1.17 INLET-GO4 CIRCULAR 1.50 INLET-GOS CIRCULAR 1.50 INLET-H01 CIRCULAR 1.50 INLET-101 CIRCULAR 2.50 Osl TRAPEZOIDAL 2.00 os11 TRAPEZOIDAL 1.00 os12 TRAPEZOIDAL 1.00 os13 TRAPEZOIDAL 1.00 os14 TRAPEZOIDAL 1.00 os2 TRAPEZOIDAL 1.00 Os4 TRAPEZOIDAL 1.00 os5 TRAPEZOIDAL 2.00 os6 TRAPEZOIDAL 1.00 os7 TRAPEZOIDAL 1.00 os8 TRAPEZOIDAL 1.00 OS9 TRAPEZOIDAL 2.00 OVERFLOW-AO2-AO1 TRAPEZOIDAL 1.00 OVERFLOW-A03-H01 TRAPEZOIDAL 1.00 OVERFLOW-AO4-AO3 TRAPEZOIDAL 1.00 OVERFLOW-AOS-AO4 TRAPEZOIDAL 1.00 OVERFLOW-AO6-AO5 TRAPEZOIDAL 1.00 OVERFLOW-AO7-AO6 TRAPEZOIDAL 1.00 OVERFLOW-AO8-AO7 TRAPEZOIDAL 1.00 OVERFLOW-AO9-AO8 TRAPEZOIDAL 1.00 OVERFLOW-DO1 TRAPEZOIDAL 1.00 OVERFLOW-E01 TRAPEZOIDAL 1.00 OVERFLOW-FO1-A01 TRAPEZOIDAL 1.00 OVERFLOW-GOI-E01 TRAPEZOIDAL 1.00 OVERFLOW-GO2-GO1 TRAPEZOIDAL 1.00 OVERFLOW-GO3-GO2 TRAPEZOIDAL 1.00 OVERFLOW-GO4-GO3 TRAPEZOIDAL 1.00 OVERFLOW-GOS-GO4 TRAPEZOIDAL 1.00 OVERFLOW-HOI-FO1 TRAPEZOIDAL 1.00 OVERFLOW-MHA02-WQPOND TRAPEZOIDAL 1. OVERFLOW-MHG01-G01 TRAPEZOIDAL 1.00 SS1 FILLED_CIRCULAR 0.75 SS10 CIRCULAR 1.50 SS2 CIRCULAR 1.50 ss3 CIRCULAR 1.50 ss4 CIRCULAR 3.00 ss6 CIRCULAR 3.00 SS9 CIRCULAR 1.25 ss9a CIRCULAR 0.83 STORM-AO1 CIRCULAR 4.00 STORM-AO2 CIRCULAR 4.00 STORM-AO3 CIRCULAR 4.00 STORM-AO4 CIRCULAR 4.00 STORM-AOS CIRCULAR 4.00 34.0 0.4118 0.0130 133.0 0.4587 0.0130 156.0 0.4551 0.0130 8.0 0.5000 0.0130 318.0 0.4560 0.0130 17.0 0.5294 0.0130 13.0 7.8704 0.0130 34.0 0.2353 0.0130 10.0 0.3000 0.0130 143.0 0.4056 0.0130 59.0 0.4915 0.0130 19.0 0.5263 0.0130 59.0 1.0001 0.0130 189.0 0.4021 0.0130 311.0 0.3987 0.0130 315.0 0.4000 0.0130 218.0 0.3991 0.0130 39.0 0.9488 0.0130 Hyd. Max. No. of Rad. width Barrels 174.00 3.19 53.00 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 1.73 0.36 1.92 1.73 0.36 1.92 1.73 0.36 1.92 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 4.91 0.63 2.50 600.00 1.50 400.00 60.00 0.86 70.00 250.00 0.83 300.00 250.00 0.83 300.00 250.00 0.83 300.00 250.00 0.83 300.00 250.00 0.83 300.00 480.00 1.71 280.00 260.00 0.81 320.00 60.00 0.86 70.00 60.00 0.86 70.00 600.00 1.50 400.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 15.00 0.74 20.00 00 20.00 0.66 30 15.00 0.74 20.00 0.88 0.23 1.50 1.77 0.38 1.50 1.77 0.38 1.50 1.77 0.38 1.50 7.07 0.75 3.00 7.07 0.75 3.00 1.23 0.31 1.25 0.54 0.21 0.83 12.57 1.00 4.00 12.57 1.00 4.00 12.57 1.00 4.00 12.57 1.00 4.00 12.57 1.00 4.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 Full Flout 623.09 31.67 15.28 14.86 14.67 23.48 14.80 23.70 23.70 7.55 7.03 7.03 6.82 7.21 7.21 7.43 29.00 584.13 514.09 195.73 300.31 289.79 221.54 750.97 267.40 434.32 851.95 170.91 715.41 69.37 99.75 88.41 97.70 85.73 95.23 111.97 112.35 123.39 172.80 95.75 90.94 93.18 80.92 95.07 104.76 73.74 364.50 57.40 1.96 5.94 6.96 7.36 61.85 9.59 7.22 1.56 84.93 86.11 84.64 91.69 86.06 North College Corridor Improvernenrs December 2009 4 of 13 STORM-AO6 CIRCULAR 4.00 12.57 1.00 4.00 1 84.39 STORM-AO7 CIRCULAR 4.00 12.57 1.00 4.00 1 90.85 STORM-AO8 CIRCULAR 4.00 12.57 1.00 4.00 1 84.83 STORM-AO9 CIRCULAR 4.00 12.57 1.00 4.00 1 185.92 STORM-A10 CIRCULAR 3.50 9.62 0.88 3.50 1 67.40 STORM -All CIRCULAR 3.50 9.62 0.88 3.50 1 68.35 STORM-Al2 CIRCULAR 3.50 9.62 0.88 3.50 1 68.35 STORM-A13 CIRCULAR 3.50 9.62 0.88 3.50 1 67.29 STORM-A14 CIRCULAR 3.50 9.62 0.88 3.50 1 68.10 STORM-A15 CIRCULAR 3.50 9.62 0.88 3.50 1 68.73 STORM-A16 CIRCULAR 3.50 9.62 0.88 3.50 1• 68.55 STORM-A17 CIRCULAR 3.00 7.07 0.75 3.00 1 42.80 STORM-A18 CIRCULAR 3.00 7.07 0.75 3.00 1 45.17 STORM-A19 CIRCULAR 3.00 7.07 0.7S 3.00 1 45.00 STORM-A20 CIRCULAR 3.00 7.07 0.75 3.00 1 47.16 STORM-A21 CIRCULAR 3.00 7.07 0.75 3.00 1 45.04 STORM-A22 CIRCULAR 3.00 7.07 0.75 3.00 1 48.53 STORM-A23 CIRCULAR 3.00 7.07 0.75 3.00 1 187.12 STORM-801 CIRCULAR 4.00 12.57 1.00 4.00 1 69.68 STORM-aO2 CIRCULAR 4.00 12.57 1.00 4.00 1 78.68 STORM-D CIRCULAR 2.00 3.14 0.50 2.00 1 14.41 STORM-E01 HORIZ_ELLIPSE 1.17 1.74 0.36 1.92 1 7.02 STORM-EO2 HORIZ_ELLIPSE 1.17 1.74 0.36 1.92 1 7.27 STORM-GO1 CIRCULAR 2.00 3.14 0.50 2.00 1 22.62 STORM-GO2 CIRCULAR 2.00 3.14 0.50 2.00 1 14.35 STORM-GO3 CIRCULAR 2.00 3.14 0.50 2.00 1 14.28 STORM-GO4 CIRCULAR 1.50 1.77 0.38 1.50 1 6.64 STORM-GO5 CIRCULAR 1.50 1.77 0.38 1.50 1 6.64 63 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 136.96 North College Condor Improvements December 2009 5 of 13 OUTPUT 100-yr volume Depth Runoff Quantity Continuity R AAAAARRRAA4#RR#R######A## acre-feet inches Total Precipitation ...... _________ 56.086 ------- 3.669 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 11.469 0.750 Surface Runoff ........... 44.301 2.898 Final Surface Storage .... 0.615 0.040 Continuity Error (%) ..... -0.532 AAAAAAAAAAAAA*********AAAA volume volume Flow Routing Continuity R RRRR#RR#RRRR##AR##RA4AAAA acre-feet 10A6 gal Dry weather Inflow ....... _________ 0.000 ____ _ 0.000 wet weather Inflow ....... 44.320 14.442 Groundwater Inflow ....... 0.000 0.000 RDII Inflow ............. 0.000 0.000 External Inflow .......... 0.002 0.001 External outflow ......... 43.577 14.200 Internal outflow ......... 0.000 0.000 Storage Losses ........... 0.000 0.000 Initial Stored volume .... 0.002 0.001 Final Stored volume ...... 0.714 0.233 Continuity Error (%) ..... 0.077 RR#R4R#A#R##A##tr##StrA3444 Highest Continuity Errors R rtrtA44A4GRRARR########AA# Node os2 (4.44%) Node INLET-A06 (-3.61%) Node INLET-A02 (1.78%) Node MH-G04 (1.63%) Node LAKE -CANAL (1.32%) 44ARAR4444RRR44RRRRR#RR#RA# Time -Step Critical Elements #RRRARAAAAR#R T.rtArt`kAARA44444 Link STORM-B02 (1.23%) hRR#########AAAA#AArtAAAArtrt4AAAA4 Highest Flow instability Indexes RY:ARAAAAAA#rtAArtAArtA4rtRRA4####### All links are stable. #!:##AA#AAAAARAAAArtARrtAA4R Routing Time Step Summary t AARAAAAAAAAArtR4RRR4#4#rt# Minimum Time Step 0.50 sec Average Time Step 0.99 sec Maximum Time Step 1.00 sec Percent in steady State 0.00 Average Iterations per Step 2.02 North College Corridor Improvements December 2009 6 of 13 AnnAnnnnnnnAnnAAntrtrAAAA#aaa subcatchment Runoff Summary Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff subcatchment in in in in- in 10A6 gal CFS ---------------------------------------------------------------------------------------------- E01 3.669 0.000 0.000 0.095 3.528 0.015 1.555 0.962 E02 3.669 0.000 0.000 0'.095 3.528 0.012 1.270 0.962 E03 3.669 0.000 0.000 0.095 3.528 0.007 0.684 0.962 E04 3.669 0.000 0.000 0.095 3.528 0.038 3.908 0.962 E05 3.669 0.000 0.000 0.095 3.528 0.023 2.344 0.962 E06 3.669 0.000 0.000 0.095 3.528 0.051 5.178 0.962 E07 3.669 0.000 0.000 0.095 3.528 0.038 3.915 0.961 E08 3.669 0.000 0.000 0.094 3.528 0.028 2.845 0.961 E09 3.669 0.000 0.000 0.094 3.527 0.056 5.827 0.961 El0 3.669 0.000 0.000 0.068 3.555 0.070 7.013 0.969 E12 3.669 0.000 0.000 0.068 3.555 0.017 1.732 0.969 E13 3.669 0.000 0.000 0.094 3.527 0.005 0.491 0.961 os01 3.669 0.000 0.000 0.458 3.182 1.031 91.975 0.867 os02 3.669 0.000 0.000 0.544 3.099 1.239 108.170 0.844 OS03 3.669 0.000 0.000 0.883 2.777 0.354 33.225 0.757 OSO4 3.669 0.000 0.000 0.910 2.743 3.272 252.202 0.748 OS05 3.669 0.000 0.000 1.417 2.268 0.325 25.705 0.618 os06 3.669 0.000 0.000 0.860 2.794 0.471 39.336 0.762 OS07 3.669 0.000 0.000 0.068 3.553 0.130 13.282 0.968 OS08 3.669 0.000 0.000 0.068 3.554 0.415 42.304 0.968 OS09 3.669 0.000 0.000 0.815 2.835 2.371 189.818 0.773 Oslo 3.669 0.000 0.000 0.206 3.423 0.789 82.272 0.933 0511 3.669 0.000 0.000 1.105 2.553 1.221 85.678 0.696 OS12 3.669 0.000 0.000 0.687 2.962 1.840 164.024 0.807 w01 3.669 0.000 0.000 0.095 3.528 0.030 3.011 0.962 w02 3.669 0.000 0.000 0.095 3.528 0.012 1.269 0.962 w03 3.669 0.000 0.000 0.095 3.528 0.035 3.606 0.962 w04 3.669 0.000 0.000 0.095 3.528 0.013 1.366 0.962 w05 3.669 0.000 0.000 0.095 3.528 0.033 3.312 0.962 w06 3.669 0.000 0.000 0.192 3.436 0.059 5.873 0.937 w07 3.669 0.000 0.000 0.192 3.436 0.042 4.231 0.937 w08 3.669 0.000 0.000 0.095 3.528 0.045 4.600 0.961 w09 3.669 0.000 0.000 0.068 3.554 0.016 1.667 0.969 w10 3.669 0.000 0.000 0.068 3.554 0.051 5.204 0.969 wll - 3.669 0.000 0.000 0.094 3.528 0.026 2.644 0.961 w12 3.669 0.000 0.000 0.094 3.527 0.049 5.026 0.961 w13 3.669 0.000 0.000 0.094 3.526 0.063 6.528 0.961 w14 3.669 0.000 0.000 0.095 3.529 0.059 5.960 0.962 w18 3.669 0.000 0.000 2.091 1.584 0.079 3.418 0.432 -------------------------------------------------------------------------------------------- System 3.669 0.000 0.000 0.750 2.898 14.435 1222.342 0.790 #A##nn###nnn#nnnnn Node Depth Summary -------------------------------------- Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type Feet Feet Feet days hr:min ------------------------------------------------------------- 01-MH-AO1 JUNCTION 2.60 6.52 4964.11 0 00:52 02-MH-AO2_(SNOUT) JUNCTION 2.40 6.66 4964.48 0 00:49 03-MH-AO3_RISER\BEND JUNCTION 2.16 6.62 4964.69 0 00:46 04-INLET-AO1 JUNCTION 2.06 6.69 4964.87 0 00:46 05-MH-A04 JUNCTION 1.93 6.64 4964.96 0 00:46 06-DT-INLET-AO2 JUNCTION 1.56 6.51 4965.22 0 00:46 07-MH-A05 JUNCTION 1.53 6.51 4965.26 0 00:46 08-MH-AO6 JUNCTION 0.85 6.36 4965.94 0 00:43 09-MH-AO7 JUNCTION 0.67 5.86 4966.11 0 00:43 10-MH-AOB JUNCTION 0.70 5.84 4966.66 0 00:41 11-DT-INLET-AO3 JUNCTION 0.71 5.96 4966.90 0 00:42 12-MH-AO9 JUNCTION 0.61 5.80 4967.58 0 00:40 13-DT-INLET-AO4 JUNCTION 0.56 5.29 4967.91 0 00:40 14-DT-INLET-AO5 JUNCTION 0.53 5.21 4968.76 0 00:40 15-MH-AIO JUNCTION 0.52 5.12 4968.88 0 00:40 16-MH-All JUNCTION 0.53 4.99 4969.27 0 00:39 17-DT-INLET-AO6 JUNCTION 0.56 5.09 4969.51 0 00:40 18-DT-INLET-AO7 JUNCTION 0.50 6.38 4971.41 0 00:39 19-MH-Al2 JUNCTION 0.49 5.29 4971.03 0 00:39 20-DT-INLET-AO8 JUNCTION 0.52 5.19 4970.97 0 00:39 21-DT-INLET-AO9 JUNCTION 0.47 4.90 4972.13 0 00:41 22-MH-A13 JUNCTION 0.47 4.58 4971.90 0 00:41 23-TIE-IN-EXO1 JUNCTION 0.24 2.02 4970.36 0 00:42 dcl JUNCTION 0.13 2.15 4978.15 0 00:42 INLET-AO2 JUNCTION 0.41 4.69 4965.17 0 00:45 INLET-AO3 JUNCTION 0.31 5.20 4966.92 0 00:42 INLET-AO4 JUNCTION 0.20 4.62 4967.88 0 00:40 INLET-A05 JUNCTION 0.17 4.67 4968.86 0 00:40 INLET-AO6 JUNCTION 0.24 4.66 4969.59 0 00:40 INLET-AO7 JUNCTION 0.18 4.60 4970.15 0 00:39 INLET-AO8 JUNCTION 0.11 4.61 4971.20 0 00:39 North College Corridor Improvements December 2009 7 of 13 INLET-AO9 JUNCTION 0.07 3.80 4971.91 0 00:41 INLET-DO1 JUNCTION 2.38 5.45 4963.16 0 01:37 INLET-E01 JUNCTION 0.23 3.01 4964.72 0 00:43 INLET-F01 JUNCTION 0.48 S.71 496S.95 0 00:43 INLET-GO1 JUNCTION 0.17 3.63 4966.22 0 00:43 INLET-GO2 JUNCTION 0.10 3.40 4966.98 0 00:42 INLET-GO3 JUNCTION 0.06 3.32 4967.90 0 00:39 INLET-GO4 JUNCTION 0.05 3.34 4969.35 0 00:41 INLET-GO5 JUNCTION 0.05 3.66 4970.54 0 00:40 INLET-H01 JUNCTION 0.38 5.25 4966.15 0 00:42 INLET-J01 JUNCTION 2.16 6.71 4964.78 0 00:55 LAKE -CANAL JUNCTION 0.08 0.82 4964.32 0 01:36 MH-BOI-TIDE-FLEX JUNCTION 1.19 5.70 4961.31 0 01:37 MH-E01 JUNCTION 1.64 6.18 4964.79 0 00:44 MH-GO1 JUNCTION 0.50 6.06 4966.23 0 00:43 MH-GO2 JUNCTION 0.16 5.06 4967.99 0 00:38 MH-G03 JUNCTION 0.08 5.41 4969.58 0 00:39 MH-G04 JUNCTION 0.06 3.45 4969.38 0 00:40 MH-G05 JUNCTION 0.05 3.66 4970.46 0 00:39 osl JUNCTION 0.06 1.01 4979.01 0 00:44 os13 JUNCTION 0.01 0.33 4967.23 0 00:56 os14 JUNCTION 0.04 0.50 4964.90 0 00:43 os2 JUNCTION 0.08 1.17 4977.17 0 00:56 os8 JUNCTION 0.13 1.49 4972.49 0 01:13 ssl JUNCTION 2.18 4.49 4976.49 0 00:55 ss10 JUNCTION 0.17 2.55 4969.39 0 00:45 ss2 JUNCTION 0.41 3.29 4973.04 0 00:40 ss3 JUNCTION 0.44 3.53 4973.03 0 00:40 ss4 JUNCTION 0.43 2.24 4971.09 0 00:42 ss5 JUNCTION 0.73 2.67 4971.09 0 00:42 ss9 JUNCTION 0.21 3.37 4969.46 0 00:40 ss9a JUNCTION 0.42 4.40 4971,40 0 00:40 WQ-OUTLET JUNCTION 1.28 6.53 4962.17 0 01:37 OFFSITE-1 OUTFALL 0.00 0.00 0.00 0 00:00 OFFSITE-2 OUTFALL 0.00 0.00 0.00 0 00:00 OFFSITE-3 OUTFALL 0.00 0.00 4963.00 0 00:00 OFFSITE-4 OUTFALL 0.00 0.21 4963.21 0 00:44 PR-OUTLETI OUTFALL 0.00 0.00 0.00 0 00:00 PR-OUTLET2 OUTFALL 0.91 3.36 4958.89 0 01:37 PR-OUTLET3 OUTFALL 0.00 0.00 4955.00 0 00:00 WQ-POND STORAGE 4.42 7.52 4963.16 0 01:37 Node Inflow Summary *#*#####*########** ------------------------------------------------------------------------------------- Maximum Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence volume volume Node Type CFS CFS days hr:min 10A6 gal JOA6 gal ------------------------------------------------------ 01-MH-AOI JUNCTION 0.00 86.45 0 00:39 0.000 4.408 02-MH-A02_(SNOUT) JUNCTION 0.00 86.94 0 00:39 0.000 4.411 03-MH-AO3_RISER\BEND JUNCTION 0.00 69.17 0 00:42 0.000 3.557 04-INLET-AO1 JUNCTION 1.27 69.50 0 00:41 0.012 3.556 05-MH-A04 JUNCTION 0.00 67.59 0 00:38 0.000 3.523 06-DT-INLET-AO2 JUNCTION 0.00 71.96 0 00:41 0.000 3.549 07-MH-AOS JUNCTION 0.00 71.73 0 00:40 0.000 3.524 08-MR-A06 JUNCTION 0.00 71.77 0 00:40 0.000 3.527 09-MH-AO7 JUNCTION 0.00 60.58 0 00:40 0.000 3.325 10-MH-A08 JUNCTION 0.00 57.66 0 00:40 0.000 3.290 11-DT-INLET-AO3 JUNCTION 0.00 57.63 0 00:40 0.000 3.290 12-MH-AO9 JUNCTION 0.00 55.90 0 00:40 0.000 3.233 13-OT-INLET-AO4 JUNCTION 0.00 55.84 0 00:40 0.000 3.234 14-DT-INLET-AO5 JUNCTION 0.00 52.53 0 00:38 0.000 3.191 15-MH-AIO JUNCTION 0.00 50.90 0 00:38 0.000 3.146 16-MH-All JUNCTION 0.00 52.05 0 00:38 0.000 3.146 17-DT-INLET-AO6 JUNCTION 0.00 38.22 0 00:40 0.000 2.517 18-DT-INLET-AO7 JUNCTION 0.00 37.57 0 00:39 0.000 2.491 19-MH-Al2 JUNCTION 0.00 34.50 0 00:39 0.000 2.442 20-DT-INLET-AO8 JUNCTION 0.00 36.86 0 00:39 0.000 2.442 21-DT-INLET-AO9 JUNCTION 0.00 43.17 0 00:41 0.000 2.378 22-MH-A13 JUNCTION 0.00 42.36 0 00:41 0.000 2.319 23-TIE-IN-EX01 JUNCTION 0.00 25.84 0 00:40 0.000 2.319 dcl JUNCTION 82.21 82.21 0 00:39 0.790 0.790 INLET-AO2 JUNCTION 3.60 11.96 0 00:45 0.035 0.084 INLET-AO3 JUNCTION 5.87 5.95 0 00:40 0.059 0.059 INLET-AO4 JUNCTION 4.23 4.36 0 00:40 0.042 0.042 INLET-AO5 JUNCTION 4.60 4.91 0 00:40 0.045 0.045 INLET-AO6 JUNCTION 2.64 5.19 0 00:39 0.026 0.026 INLET-AO7 JUNCTION 5.02 10.64 0 00:39 0.049 0.049 INLET-AO8 JUNCTION 6.52 9.45 0 00:39 0.063 0.063 INLET-AO9 JUNCTION 5.96 8.77 0 00:41 0.059 0.060 INLET-DO1 JUNCTION 1.55 1.55 0 00:39 0.015 0.017 INLET-EO1 JUNCTION 3.90 11.28 0 00:43 0.038 0.084 INLET-FO1 JUNCTION 1.36 2.06 0 00:42 0.013 0.016 INLET-GO1 JUNCTION 2.34 6.47 0 00:41 0.023 0.032 INLET-GO2 JUNCTION 5.17 5.18 0 00:39 0.051 0.051 INLET-GO3 JUNCTION 3.91 6.60 0 00:39 0.038 0.039 INLET-GO4 JUNCTION 2.84 3.99 0 00:39 0.028 0.028 North College Corridor Improvements December 2009 8 of 13 INLET-GO5 JUNCTION 5.82 5.82 0 00:39 0.057 0.057 INLET-HO1 JUNCTION 3.31 4.01 0 00:42 0.033 0.037 INLET-J01 JUNCTION 0.00 89.41 0 00:43 0.000 1.690 LAKE -CANAL JUNCTION 0.00 245.95 0 01:22 0.000 8.918 MH-BOLTIDE-FLEX JUNCTION 0.00 125.39 0 01:37 0.000 9.592 MH-EO1 JUNCTION 0.00 4.77 0 00:48 0.000 0.058 MH-GO1 JUNCTION 0.00 11.99 0 00:40 0.000 0.190 MH-G02 JUNCTION 0.00 12.02 0 00:38 0.000 0.169 MH-G03 JUNCTION 0.00 10.97 0 00:40 0.000 0.122 MH-G04 JUNCTION 0.00 7.66 0 00:39 0.000 0.085 MH-G05 JUNCTION 0.00 6.29 0 00:40 0.000 0.057 osl JUNCTION 249.55 249.55 0 00:40 3.063 3.063 os13 JUNCTION 0.00 59.22 0 00:48 0.000 0.687 os14 JUNCTION 91.92 93.71 0 00:40 1.032 1.710 os2 JUNCTION 231.97 332.73 0 00:40 2.787 5.877 os8 JUNCTION 0.00 332.60 0 00:52 0.000 8.821 ssl JUNCTION 25.70 281.30 0 00:44 0.325 6.816 5510 JUNCTION 1.67 105.86 0 00:40 0.016 1.048 ss2 JUNCTION 291.36 333.14 0 00:51 3.745 9.355 ss3 JUNCTION 33.20 344.13 0 00:52 0.355 9.707 ss4 JUNCTION 13.27 16.79 0 00:40 0.130 1.422 s55 JUNCTION 0.00 27.23 0 00:40 0.000 2.319 ss9 JUNCTION 5.20 15.22 0 00:39 0.051 0.629 s59a JUNCTION 108.10 108.10 0 00:40 1.240 1.240 wQ-OUTLET JUNCTION 0.00 125.39 0 01:37 0.000 9.591 OFFSITE-1 OUTFALL 8.74 8.74 0 00:39 0.088 0.088 OFFSITE-2 OUTFALL 2.44 '2.44 0 00:39 0.024 0.024 OFFSITE-3 OUTFALL 0.00 0.00 0 00:00 0.000 0.000 OFFSITE-4 OUTFALL 0.00 11.18 0 00:44 0.000 0.061 PR-OUTLETI OUTFALL 0.00 0.25 0 01:37 0.000 0.118 PR-OUTLET2 OUTFALL 0.00 125.39 0 01:37 0.000 9.592 PR -OUTLETS OUTFALL 0.00 148.16 0 01:37. 0.000 4.316 wQ-POND STORAGE 6.30 274.94 0 01:23 0.109 14.179 444}4d}4}44}}44d444d44 Node Surcharge Summary 4d}d4444d4dd4444d4dd44 Surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- 01-MH-AOI JUNCTION 2.54 2.515 0.835 03-MH-AO3_RISER\BEND JUNCTION 2.33 2.625 0.565 06-DT-INLET-AO2 JUNCTION 1.92 2.509 0.491 07-MH-AO5 JUNCTION 1.89 2.511 0.089 08-MH-AO6 JUNCTION 1.58 2.359 0.351 09-MH-AO7 JUNCTION 1.23 1.856 1.344 10-MH-A08 JUNCTION 1.35 2.341 0.259 11-DT-INLET-AO3 JUNCTION 1.29 2.462 1.038 12-MH-AO9 JUNCTION 0.35 1.804 0.176 13-DT-INLET-AO4 JUNCTION 0.31 1.788 1.712 14-DT-INLET-AOS JUNCTION 0.23 1.706 1.794 15-MH-AIO JUNCTION 0.21 1.619 0.261 16-MH-All JUNCTION 0.18 1.485 1.435 17-DT-INLET-AO6 JUNCTION 0.23 2.085 1.915 18-DT-INLET-AO7 JUNCTION 0.19 3.382 0.618 19-MH-Al2 JUNCTION 0.14 2.292 0.328 20-DT-INLET-AO8 JUNCTION 0.14 2.185 1.815 21-DT-INLET-AO9 JUNCTION 0.05 1.898 1.262 22-MH-A13 JUNCTION 0.04 1.584 1.576 MH-BOLTIDE-FLEX JUNCTION 2.28 1.697 2.733 MH-EO1 JUNCTION 1.84 2.007 0.243 MH-G02 JUNCTION 0.46 3.058 0.000 MH-G03 JUNCTION 0.18 3.408 0.000 MH-G04 JUNCTION 0.12 1.954 0.516 MH-GO5 JUNCTION 0.07 2.162 0.618 ss9 JUNCTION 1.74 1.870 6.630 North College Corridor Improvements December 2009 9 of 13 R RAAtAAARR4RRRRRRRRRR Node Flooding Summary AA#rtCRRA#AAArtRA:'tAAArtR No nodes were flooded. R#R#4##44AARARA###44AA Storage volume Summary RAR#4R#AAAAA44AA4444AA -------------------------------------------------------------------------------------------- Average Avg E&I Maximum Max Time of Max Maximum volume Pcnt PCnt volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss 1000 ft3 Full days hr:min CFS WQ-POND 31.495 20 0 106.015 68 0 01:37 273.80 ARRRRRRR#RRRRARRRtrRRRRR outfall Loading Summary R RRRRRRRRRRRRRR#RRRRRR# ----------------------------------------------------------- Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. CFS CFS JOA6 gal ----------------------------------------------------------- OFFSITE-1 21.08 0.72 8.74 0.088 OFFSITE-2 14.85 0.28 2.44 0.024 OFFSITE-3 0.00 0.00 0.00 0.000 OFFSITE-4 2.90 3.85 11.18 0.061 PR-OUTLETI 99.60 0.19 0.25 0.118 PR-OUTLET2 93.29 17.54 125.39 9.592 PR-OUTLET3 8.88 82.44 148.16 4.316 ----------------------------------------------------------- System 34.37 105.03 274.72 14.200 RRRCAAA4444AA#AA4#AA Link Flow Summary AAARR###RAARAAA4#A4R ----------------------------------------------------------------------------- Maximum Time of Max Maximum Max/ Max/ jFIOWI occurrence velocity Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------------- dry_creek CONDUIT 57.36 0 00:42 1.64 0.09 0.53 INLET-AO2 CONDUIT 10.34 0 00:45 6.13 0.33 1.00 INLET-AO3 CONDUIT 6.17 0 00:37 3.49 0.40 1.00 INLET-AO4 CONDUIT 6.44 0 00:40 3.64 0.43 1.00 INLET-AO5 CONDUIT 7.52 0 00:40 4.2S 0.51 1.00 INLET-AO6 CONDUIT 8.56 0 00:40 4.84 0.36 1.00 INLET-AO7 CONDUIT 8.72 0 00:39 4.93 0.59 1.00 INLET-AO8 CONDUIT 11.36 0 00:40 6.43 0.48 1.00 INLET-AO9 CONDUIT 9.75 0 00:41 5.52 0.41 1.00 INLET-FO1 CONDUIT 2.00 0 00:42 1.43 0.27 1.00 INLET-GO1 CONDUIT 2.82 0 00:49 2.54 0.40 1.00 INLET-GO2 CONDUIT 5.63 0 00:38 3.26 0.80 1.00 INLET-GO3 CONDUIT 5.27 0 00:39 3.05 0.77 1.00 INLET-GO4 CONDUIT 5.16 0 00:39 2.92 0.72 1.00 INLET-GO5 CONDUIT 6.29 0 00:40 3.63 0.87 1.00 INLET-HO1 CONDUIT 3.64 0 00:38 2.13 0.49 1.00 INLET-301 CONDUIT 25.90 0 01:02 5.28 0.89 1.00 Osl CONDUIT 163.87 0 00:46 0.66 0.28 0.51 Osll CONDUIT 104.25 0 00:40 4.89 0.20 0.40 os12 CONDUIT 59.22 0 00:48 0.56 0.30 0.47 os13 CONDUIT 43.54 0 00:56 0.49 0.14 0.41 os14 CONDUIT 89.41 0 00:43 0.84 0.31 0.60 os2 CONDUIT 204.45 0 00:44 0.86 0.92 1.00 os4 CONDUIT 218.49 0 00:55 1.35 0.29 0.69 OSS CONDUIT 329.75 0 00:52 1.73 1.23 0.52 os6 CONDUIT 332.60 0 00:52 1.70 0.77 0.94 os7 CONDUIT 0.00 0 00:00 0.00 0.00 0.50 os8 CONDUIT 0.00 0 00:00 0.00 0.00 0.50 os9 CONDUIT 245.95 0 01:22 0.89 0.34 0.55 OVERFLOW-AO2-AO1 CONDUIT 11.72 0 00:45 2.66 0.17 0.40 OVERFLOW-AO3-HO1 CONDUIT 1.55 0 00:42 1.60 0.02 0.09 OVERFLOW-AO4-AO3 CONDUIT 0.20 0 00:40 0.63 0.00 0.05 OVERFLOW-A05-Ao4 CONDUIT 0.21 0 00:40 0.77 0.00 0.03 OVERFLOW-AO6-A05 CONDUIT 0.38 0 00:40 0.93 0.00 0.04 OVERFLOW-AO7-AO6 CONDUIT 0.03 0 00:39 0.09 0.00 0.03 OVERFLOW-AO8-AO7 CONDUIT 0.01 0 00:39 0.00 0.00 0.00 OVERFLOW-AO9-AO8 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-DO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-E01 CONDUIT 11.18 0 00:44 4.72 0.06 0.21 OVERFLOW-FO1-A01 CONDUIT 0.01 0 00:43 0.01 0.00 0.19 OVERFLOW-GO1-E01 CONDUIT 5.37 0 00:43 2.35 0.06 0.21 OVERFLOW-GO2-GO1 CONDUIT 2.66 0 00:42 1.60 0.03 0.17 OVERFLOW-GO3-GO2 CONDUIT 0.19 O 00:39 0.82 0.00 0.07 OVERFLOW-GO4-GO3 CONDUIT 0.16 0 00:41 0.68 0.00 0.02 North College Corridor Improvements December 2009 10 of 13 OVERFLOW-GO5-GO4 CONDUIT 0.12 0 00:39 0.58 0.00 0.02 OVERFLOW-H0I-F01 CONDUIT 1.10 0 00:42 1.29 0.01 0.08 OVERFLOW-MHA02-WQPOND CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-MHGOI-GO1 CONDUIT 1.13 0 00:42 0.82 0.02 0.19 ssl CONDUIT 4.66 0 00:55 5.42 2.38 0.92 ss10 CONDUIT 15.23 0 00:39 8.69 2.56 1.00 ss2 CONDUIT 9.29 0 00:14 5.26 1.34 1.00 ss3 CONDUIT 11.51 0 01:06 6.51 1.56 1.00 ss4 CONDUIT 16.65 0 00:40 3.12 0.27 0.82 ss6 CONDUIT 25.84 0 00:40 6.40 .2.69 0.78 ss9 CONDUIT 8.97 0 00:53 7.31 1.24 1.00 ss9a CONDUIT 3.88 0 00:18 7.19 2.48 1.00 STORM-AO1 CONDUIT 86.44 0 00:39 6.93 1.02 1.00 STORM-AO2 CONDUIT 86.45 0 00:39 6.88 1.00 1.00 STORM-AO3 CONDUIT 69.17 0 00:42 5.50 0.82 1.00 STORM-AO4 CONDUIT 69.17 0 00:42 5.50 0.75 1.00 STORM-A05 CONDUIT 66.39 0 00:39 5.28 0.77 1.00 STORM-AO6 CONDUIT 65.28 0 00:39 5.19 0.77 1.00 STORM-AO7 CONDUIT 71.96 0 00:41 5.73 0.79 1.00 STORM-AO8 CONDUIT 71.73 0 00:40 5.71 0.85 1.00 STORM-AO9 CONDUIT 60.63 0 00:40 5.92 0.33 1.00 STORM-A10 CONDUIT 57.60 0 00:40 6.95 0.85 1.00 STORM -All CONDUIT 57.66 0 00:40 6.32 0.84 1.00 STORM-Al2 CONDUIT 55.93 0 00:40 6.18 0.82 1.00 STORM-A13 CONDUIT 55.90 0 00:40 7.70 0.83 1.00 STORM-A14 CONDUIT 52.00 0 00:40 7.10 0.76 1.00 STORM-AIS CONDUIT 48.80 0 00:38 6.65 0.71 1.00 STORM-A16 CONDUIT 50.90 0 00:38 6.68 0.74 1.00 STORM-A17 CONDUIT 38.36 0 00:40 5.45 0.90 1.00 STORM-A18 CONDUIT 35.90 0 00:39 5.38 0.79 1.00 STORM-A19 CONDUIT 34.02 0 00:39 5.63 0.76 1.00 STORM-A20 CONDUIT 34.50 0 00:39 5.94 0.73 1.00 STORM-A21 CONDUIT 31.63 0 00:39 5.46 0.70 1.00 STORM-A22 CONDUIT 41.80 0 00:41 5.91 0.86 1.00 STORM-A23 CONDUIT 42.36 0 00:41 8.24 0.23 0.84 STORM-B01 CONDUIT 125.39 0 01:37 10.37 1.80 0.92 STORM-BO2 CONDUIT 125.39 0 01:37 9.98 1.59 1.00 STORM-D CONDUIT 1.63 0 00:40 1.63 0.11 1.00 STORM-E01 CONDUIT 4.77 0 00:48 2.74 0.68 1.00 STORM-EO2 CONDUIT 4.77 0 00:48 3.39 0.66 1.00 STORM-GO1 CONDUIT 10.65 0 00:40 3.39 0.47 1.00 STORM-GO2 CONDUIT 11.93 0 00:40 4.34 0.83 1.00 STORM-GO3 CONDUIT 10.97 0 00:40 3.65 0.77 1.00 STORM-GO4 CONDUIT 7.38 0 00:43 4.48 1.11 1.00 STORM-GOS CONDUIT 6.30 0 00:40 3.57 0.95 1.00 63 CONDUIT 5.64 0 00:46 1.64, 0.04 0.30 WQ-ORIFICE ORIFICE 0.25 0 01:37. WQ-SPILLWAY WEIR 148.16 0 01:37 0.32 WQ-OUTLET WEIR 125.39 0 01:37 0.81 OVERFLOW-301-WQPOND WEIR 43.50 0 00:55 0.64 OVERFLOW -LAKE -CANAL WEIR 220.76 0 01:36 0.41 Flow Classification Summary d 444444d4tr44C44tr44d4h4444rt4 Adjusted --- Fraction of Time in Flow Class ---- Avg. Avg. /Actual Up Down Sub Sup Up Down Froude Flow Conduit Length Dry Dry Dry Grit Crit Cn t Crit Number Change ----------------------------------------------------------------------------------------- dry_creek 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 INLET-AO2 5.49 0.00 0.00 0.00 0.22 0.00 0.00 0.77 0.30 0.0001 INLET-AO3 4.71 0.00 0.00 0.00 0.16 0.00 0.00 0.83 0.51 0.0001 INLET-AO4 3.41 0.00 0.00 0.00 0.44 0.00 0.00 0.56 0.12 0.0000 INLET-AO5 2.70 0.00 0.00 0.00 0.46 0.00 0.00 0.53 0.07 0.0000 INLET-AO6 4.21 0.00 0.02 0.00 0.55 0.00 0.00 0.42 0.03 0.0000 INLET-AO7 3.80 0.00 0.00 0.00 0.53 0.00 0.00 0.47 0.05 0.0001 INLET-AO8 4.31 0.00 0.00 0.00 0.48 0.00 0.00 0.52 0.07 0.0000 INLET-AO9 4.31 0.00 0.00 0.00 0.18 0.00 0.00 0.82 0.59 0.0000 INLET-FO1 1.00 0.00 0.00 0.00 0.49 0.00 0.00 0.51 0.02 0.0002 INLET-GO1 1.00 0.00 0.00 0.00 0.10 0.00 0.00 0.90 0.14 0.0001 INLET-GO2 1.00 0.00 0.00 0.00 0.08 0.00 0.00 0.92 0.20 0.0001 INLET-GO3 1.00 0.00 0.00 0.00 0.04 0.00 0.00 0.96 0.21 0.0001 INLET-GO4 1.00 0.00 0.10 0.00 0.89 0.00 0.00 0.00 0.11 0.0000 INLET-GOS 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.25 0.0000 INLET-H01 1.00 0.00 0.00 0.00 0.16 0.00 0.00 0.84 0.19 0.0002 INLET-301 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0000 osl 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 osll 1.00 0.91 0.00 0.00 0.00 0.00 0.00 0.09 0.10 0.0000 osl2 1.00 0.02 0.90 0.00 0.08 0.00 0.00 0.00 0.01 0.0000 osl3 1.00 0.00 0.02 0.00 0.98 0.00 0.00 0.00 0.02 0.0000 osl4 1.00 0.00 0.00 0.00 0.04 0.00 0.00 0.96 0.10 0.0000 os2 1.00 0.00 0.00 0.00 0.41 0.00 0.00 0.58 0.05 0.0000 os4 1.00 0.82 0.02 0.00 0.11 0.00 0.00 0.04 0.05 0.0000 os5 1.00 0.86 0.00 0.00 0.12 0.00 0.00 0.02 0.04 0.0000 os6 1.00 0.01 0.86 0.00 0.13 0.00 0.00 0.00 0.02 0.0000 os7 1.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os8 1.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 Os9 1.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.09 0.0000 OVERFLOW-A02-A01 1.00 0.97 0.01 0.00 0.02 0.00 0.00 0.00 0.01 0.0000 North College Condor Improvements December 2009 11 of 13 OVERFLOW-AO3-HOl 1.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.0000 OVERFLOW-AO4-AO3 1.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AOS-AO4 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO6-AO5 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO7-AO6 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO8-AO7 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO9-A08 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-DO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-E01 1.00 0.97 0.00 0.00 0.00 0.03 0.00 0.00 0.05 0.0000 OVERFLOW-FOl-AO1 1.00 0.98 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GOI-EOS 1.00 0.97 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.0000 OVERFLOW-GO2-GO1 1.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO3-GO2 1.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO4-GO3 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GOS-GO4 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-HOI-FO1 1.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.0000 OVERFLOW-MHA02-WQPOND 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-MHGOI-GO1 1.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.0000 ssl 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.98 0.69 0.0001 ssl0 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.98 0.63 0.0001 ss2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.49 0.0001 ss3 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.03 0.0000 ss4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.44 0.0000 ss6 1.00 0.00 0.00 0.00 0.53 0.46 0.00 0.00 0.71 0.0001 ss9 1.00 0.00 0.19 0.00 0.81 0.00 0.00 0.00 0.01 0.0001 ss9a 1.00 0.00 0.00 0.00 0.08 0.00 0.00 0.91 0.82 0.0001 STORM-A01 1.00 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.04 0.0000 STORM-AO2 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.04 0.0000 STORM-AO3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.05 0.0000 STORM-AO4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.06 0.0000 STORM-AO5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.06 0.0000 STORM-AO6 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.08 0.0000 STORM-AO7 1.86 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.11 0.0001 STORM-AO8 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.19 0.0000 STORM-AO9 1.00 0.00 0.00 0.00 0.47 0.53 0.00 0.00 0.95 0.0000 STORM-A10 1.00 0.00 0.00 0.00 0.35 0.64 0.00 0.00 1.05 0.0000 STORM -All 1.00 0.00 0.00 0.00 0.98 0.02 0.00 0.00 0.78 0.0000 STORM-Al2 1.00 0.00 0.00 0.00 0.69 0.30 0.00 0.00 0.83 0.0000 STORM-A13 1.00 0.00 0.00 0.00 0.07 0.00 0.00 0.92 1.07 0.0000 STORM-A14 1.00 0.00 0.00 0.00 0.53 0.47 0.00 0.00 0.87 0.0000 STORM-A15 1.00 0.00 0.00 0.00 0.53 0.47 0.00 0.00 0.91 0.0000 STORM-A16 1.00 0.00 0.00 0.00 0.53 0.46 0.00 0.00 0.91 0.0000 STORM-A17 1.00 0.00 0.00 0.00 0.60 0.40 0.00 0.00 0.87 0.0000 STORM-A18 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.86 0.0000 STORM-A19 1.00 0.00 0.00 0.00 0.S3 0.47 0.00 0.00 0.92 0.0000 STORM-A20 2.06 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.88 0.0000 STORM-A21 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.88 0.0000 STORM-A22 1.00 0.00 0.00 0.00 O.S2 0.47 0.00 0.00 0.94 0.0001 STORM-A23 2.79 0.00 0.00 0.00 0.01 0.99 0.00 0.00 1.64 0.0000 STORM-BO1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.44 0.0000 STORM-BO2 1.76 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.28 0.0000 STORM-D 1.00 0.00 0.00 0.00 0.98 0.00 0.00 0.01 0.01 0.0001 STORM-EO1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0001 STORM-EO2 1.00 0.00 0.00 0.00 0.12 0.00 0.00 0.88 0.15 0.0001, STORM-GO1 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.01 0.0001 STORM-GO2 1.00 0.00 0.00 0.00 0.11 0.00 0.00 0.89 0.36 0.0000 STORM-GO3 1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.20 0.0000 STORM-GO4 1.00 0.00 0.00 0.00 0.02 0.00 0.00 0.98 0.37 0.0000 STORM-GOS 1.00 0.00 0.04 0.00 0.95 0.00 0.00 0.00 0.18 0.0000 63 1.00 0.97 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.0000 t ttStRtRtRttt##tt#Rttt#R# Conduit surcharge summary RR#R#RRRRRRRRR####t#RRRRR ---------------------------------------------------------------------------- Hours Hours --------- Hours Full -------- Above Full capacity Conduit Both Ends upstream Dnstream Normal F1oW Limited ---------------------------------------------------------------------------- INLET-AO2 2.42 2.42 2.42 0.01 0.01 INLET-AO3 1.75 1.75 1.75 0.01 0.12 INLET-AO4 1.10 1.10 1.10 0.01 0.04 INLET-AO5 0.55 0.55 0.56 0.01 0.03 INLET-AO6 0.51 0.51 0.51 0.01 0.01 INLET-AO7 0.33 0.33 0.33 0.01 0.08 INLET-AO8 0.23 0.23 0.24 0.01 0.02 INLET-AO9 0.12 0.12 0.12 0.01 0.01 INLET-FO1 2.61 2.61 2.61 0.01 0.01 INLET-GO1 1.55 1.55 1.55 0.01 0.01 INLET-GO2 0.72 0.72 0.72 0.01 0.02 INLET-GO3 0.23 0.23 0.23 0.01 0.05 INLET-GO4 0.11 0.11 0.11 0.01 0.02 INLET-GO5 0.07 0.07 0.07 0.01 0.07 INLET-HO1 2.21 2.21 2.21 0.01 0.01 INLET-JO1 3.35 3.35 3.35 0.01 0.58 os2 0.40 0.40 0.40 0.01 0.01 os5 0.01 0.01 0.01 0.33 0.01 ssl 0.01 0.01 0.01 11.72 0.01 s510 0.22 0.22 0.22 1.85 0.22 ss2 2.96 2.96 2.96 0.14 0.13 North College Corridor Improvements December 2009 12 of 13 ss3 2.85 2.85 2.85 2.98 2.85 ss6 0.01 0.01 0.01 2.98 0.01 ss9 1.74 1.74 1.74 1.52 1.52 ss9a 1.84 1.84 1.84 2.16 1.84 STORM-AO1 2.46 2.46 2.46 0.04 1.52 STORM-AO2 2.44 2.44 2.44 0.02 0.60 STORM-AO3 2.33 2.33 2.33 0.01 0.11 STORM-AO4 2.29 2.29 2.29 0.01 0.30 STORM-AOS 2.22 2.22 2.22 0.01 0.12 STORM-AO6 1.92 1.92 1.92 0.01 0.01 STORM-AO7 1.89 1.89 1.89 0.01 0.10 STORM-AO8 1.58 1.58 1.58 0.01 0.01 STORM-AO9 1.23 1.23 1.23 0.01 0.01 STORM-A10 1.35 1.35 1.35 0.01 0.02 STORM -All 1.29 1.29 1.29 0.01 0.34 STORM-Al2 0.68 0.68 0.68 0.01 0.01 STORM-A13 0.31 0.31 0.31 0.01 0.01 STORM-A14 0.23 0.23 0.23 0.01 0.01 STORM-A15 0.21 0.21 0.21 0.01 0.01 STORM-A16 0.18 0.18 0.18 0.01 0.01 STORM-A17 0.23 0.23 0.23 0.01 0.21 STORM-A18 0.19 0.19 0.19 0.01 0.01 STORM-A19 0.14 0.14 0.14 0.01 0.01 STORM-A20 0.14 0.14 0.14 0.01 0.14 STORM-A21 0.05 0.05 0.05 0.01 0.01 STORM-A22 0.04 0.04 0.04 0.01 0.01 STORM-BO1 0.01 0.01 0.01 2.42 0.01 STORM-B02 2.28 2.28 2.28 2.30 2.28 STORM-D 12.89 12.89 12.89 0.01 0.01 STORM-EO1 12.31 12.31 - 12.32 0.01 0.01 STORM-EO2 1.78 1.78 1.78 0.01 0.01 STORM-GO1 2.36 2.36 2.36 0.01 0.01 STORM-GO2 0.46 0.46 0.46 0.01 0.05 STORM-GO3 0.18 0.18 0.18 0.01 0.01 STORM-GO4 0.12 0.12 0.12 0.06 0.06 STORM-GO5 0.07 0.07 0.07 0.01 0.01 Analysis begun on: Fri Jul 23 11:55:45 2010 Analysis ended on: Fri Jul 23 11:S6:10 2010 North College Corridor Improvements December 2009 13 of 13 10-Year EPASWMM Analysis EPASWMM Summary 10-yr INPUT 10-yr EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.018) -------------------------------------------------------------- d drtAd34Rdrt4RdhdrtAA#44#44#rtkA4rt4###4#rt###A#4#rtAA###rtrthdddA NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. #44A4dd'+ii.4##kdddddkdkkdkddddd4rtdddkAddkkkkkddkAd4444k444 44d444444444tr444 Analysis Options 44d4444444444tr#4 Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ DEC-15-2009 00:00:00 Ending Date .............. DEC-15-2009 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:05:00 Dry Time Step ............ 01:00:00 Routing Time Step ........ 1.00 sec WARNING 04: minimum elevation drop used for Conduit os5 WARNING 02: maximum depth increased for Node 02-MH-A02_(SNOUT) WARNING 02: maximum depth increased for Node dcl WARNING 02: maximum depth increased for Node INLET-GO4 WARNING 02: maximum depth increased for Node INLET-JO1 WARNING 02: maximum depth increased for Node ssl WARNING 02: maximum depth increased for Node ss3 dd4dddd4dddd4 Element Count A##44#Rtr4#p#4 Number of rain gages ...... 1 Number of subcatchments ... 39 Number of nodes ........... 72 Number of links ........... 95 Number of pollutants ...... 0 Number of land uses ....... 0 A AdAA44AAA4AA4AA Raingage Summary d 4dk4kk4k4 kkAd44 Data Name Data Source Type ------------------------------------------------- COFCRainGage 10-year INTENSITY 4444tr4trtrtrtrtr3trtrdtrddhk Subcatchment Summary 4 AA4444444444A#444trA Name Area width %Impery ----------------------------------------------- E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E12 E13 OSO1 Recording Interval 5 min. %Slope Rain Gage outlet ---------------------------------------------- 0.16 69.00 95.00 0.3400 COFCRainGage INLET-DO1 0.13 57.00 95.00 0.4100 COFCRainGage OFFSITE-2 0.07 31.00 95.00 0.4100 COFCRainGage OFFSITE-2 0.40 175.00 95.00 0.4100 COFCRainGage INLET-EO1 0.24 104.00 95.00 0.4100 COFCRainGage INLET-GO1 0.53 232.00 95.00 0.4100 COFCRainGage INLET-GO2 0.40 173.00 95.00 0.4550 COFCRainGage INLET-GO3 0.29 127.00 95.00 0.5000 COFCRainGage INLET-GO4 0.59 256.00 95.00 0.7600 COFCRainGage INLET-GO5 0.73 318.00 95.00 0.2100 COFCRainGage OFFSITE-1 0.18 80.00 95.00 0.2100 COFCRainGage OFFSITE-1 0.05 25,00 95.00 0.4100 COFCRainGage OFFSITE-2 11.94 1733.00 70.00 0.5000 COFCRainGage os14 North College Corridor Improvements December 2009 1 of 12 os02 14.73 2138.00 6S.00 0.5000 COFCRainGage ss9a os03 4.70 2047.00 40.00 0.5000 COFCRainGage ss3 os04 43.93 6378.00 45.00 0.5000 COFCRainGage ss2 DOS 5.27 3062.00 5.00 0.5000 COFCRainGage ssl OS06 6.21 1352.00 45.00 0.5000 COFCRainGage ss2 o507 1.35 589.00 95.00 0.5000 COFCRainGage ss4 OS08 4.30 1873.00 95.00 0.5000 COFCRainGage os2 OS09 30.80 4473.00 50.00 0.5000 COFCRainGage os2 Oslo 8.49 3700.00 85.00 0.5000 COFCRainGage dcl OS11 17.62 2558.00 35.00 0.5000 COFCRainGage osl OS12 22.88 4983.00 55.00 0.5000 COFCRainGage osl w01 0.31 136.00 95.00 0.3250 COFCRainGage wQ-POND w02 0.13 55.00 95.00 0.4300 COFCRainGage 04-INLET-AO1 w03 0.37 160.00 95.00 0.3800 COFCRainGage INLET-AO2 W04 0.14 62.00 95.00 0.3800 COFCRainGage INLET-FO1 W05 0.34 146.00 95.00 0.3800 COFCRainGage INLET-HO1 W06 0.63 184.00 90.00 0.3800 COFCRainGage INLET-AO3 W07 0.45 132.00 90.00 0.4500 COFCRainGage INLET-AO4 W08 0.47 205.00 95.00 0.4500 COFCRainGage INLET-A05 W09 0.17 72.00 95.00 0.4500 COFCRainGage ss10 W10 0.53 232.00 95.00 0.4500 COFCRainGage ss9 W11 0.27 119.00 95.00 0.4500 COFCRainGage INLET-AO6 w12 0.51 221.00 95.00 0.6550 COFCRainGage INLET-AO7 w13 - 0.66 286.00 95.00 0.8600 COFCRainGage INLET-AO8 W14 0.62 269.00 95.00 0.2400 COFCRainGage INLET-AO9 w18 1.84 802.00 5.00 0.1400 COFCRainGage wQ-POND xxxxxxxxxxxx Node Summary x xxxxxxxxxxx Invert Max. Ponded External Name Type Elev. Depth Area Inflow ------------------------------------------------------------------------------ 01-MH-AO1 JUNCTION 4957.59 7.35 0.0 02-MH-AO2_(SNOUT) JUNCTION 4957.82 9.01 0.0 03-MH-AO3_RISER\BENDJUNCTT0N 4958.07 7.19 0.0 04-INLET-AOI JUNCTION 4958.18 7.25 0.0 05-MH-A04 JUNCTION 4958.32 7.48 0.0 06-DT-INLET-AO2 JUNCTION 4958.71 7.00 0.0 07-MH-AO5 JUNCTION 4958.75 6.60 0.0 08-MH-A06 JUNCTION 4959.58 6.71 0.0 09-MH-AO7 JUNCTION 4960.25 7.20 0.0 10-MH-A08 JUNCTION 4960.82 6.10 0.0 11-OT-INLET-AO3 JUNCTION 4960.94 7.00 0.0 12-MH-AO9 JUNCTION 4961.78 5.98 0.0 13-DT-INLET-AO4 JUNCTION 4962.62 7.00 0.0 14-DT-INLET-AOS JUNCTION 4963.SS 7.00 0.0 15-MH-AIO JUNCTION 4963.76 5.38 0.0 16-MH-All JUNCTION 4964.28 6.42 0.0 17-DT-INLET-AO6 JUNCTION 4964.42 7.00 0.0 18-DT-INLET-AO7 JUNCTION 4965.03 7.00 0.0 19-MH-Al2 JUNCTION 4965.74 5.62 0.0 20-DT-INLET-AO8 JUNCTION 4965.78 7.00 0.0 21-DT-INLET-AO9 JUNCTION 4967.23 6.16 0.0 22-MH-A13 JUNCTION 4967.32 6.16 0.0 23-TIE-IN-EXO1 JUNCTION 4968.34 8.00 0.0 dcl JUNCTION 4976.00 6.00 0.0 INLET-AO2 JUNCTION 4960.48 5.32 0.0 INLET-AO3 JUNCTION 4961.72 6.11 0.0 INLET-AO4 JUNCTION 4963.26 5.59 0.0 INLET-AO5 JUNCTION 4964.19 5.64 0.0 INLET-AO6 JUNCTION 4964.93 5.61 0.0 INLET-AO7 JUNCTION 4965.55 5.60 0.0 INLET-AO8 JUNCTION 4966.59 5.60 0.0 INLET-AO9 JUNCTION 4968.11 6.11 0.0 INLET-DO1 JUNCTION 4957.71 7.06 0.0 INLET-EO1 JUNCTION 4961.71 3.80 0.0 INLET-FO1 JUNCTION 4960.24 6.71 0.0 INLET-GO1 JUNCTION 4962.59 4.43 0.0 ' INLET-GO2 JUNCTION 4963.58 4.27 0.0 INLET-GO3 JUNCTION 4964.58 4.30 0.0 INLET-GO4 JUNCTION 4966.01 4.31 0.0 INLET-G05 JUNCTION 4966.88 4.65 0.0 INLET-H01 JUNCTION 4960.90 6.16 0.0 INLET-301 JUNCTION 4958.07 7.43 0.0 LAKE -CANAL JUNCTION 4963.50 2.00 0.0 MH-BOl-TIDE-FLEX JUNCTION 4955.61 8.43 0.0 MH-EO1 JUNCTION 4958.61 6.42 0.0 MH-GO1 JUNCTION 4960.17 6.88 0.0 MH-G02 JUNCTION 4962.93 4.33 0.0 MH-G03 JUNCTION 4964.17 4.30 0.0 MH-G04 JUNCTION 4965.93 3.97 0.0 MH-G05 JUNCTION 4966.80 4.28 0.0 osl JUNCTION 4978.00 2.00 0.0 os13 JUNCTION 4966.90 2.00 0.0 osl4 JUNCTION 4964.40 2.00 0.0 os2 JUNCTION 4976.00 10.00 0.0 os8 JUNCTION 4971.00 2.00 0.0 ssl JUNCTION 4972.00 6.00 0.0 ss10 JUNCTION 4966.84 10.00 0.0 ss2 JUNCTION 4969.75 10.00 0.0 North College Corridor Improvements December 2009 2 of 12 ss3 JUNCTION 4969.50 4.50 0.0 ss4 JUNCTION 4968.85 5.45 0.0 ss5 JUNCTION 4968.42 6.29 0.0 ss9 JUNCTION 4966.09 10.00 0.0 ss9a JUNCTION 4967.00 5.00 0.0 WQ-OUTLET JUNCTION 4955.64 8.36 0.0 OFFSITE-1 OUTFALL 0.00 0.00 0.0 OFFSITE-2 - OUTFALL 0.00 0.00 0.0 OFFSITE-3 OUTFALL 4963.00 1.00 0.0 OFFSITE-4 OUTFALL 4963.00 1.00 0.0 PR-OUTLETI OUTFALL 0.00 0.15 0.0 PR-OUTLET2 OUTFALL 4955.53 4.00 0.0 PR-OUTLET3 OUTFALL 4955.00 9.56 0.0 WQ-POND STORAGE 4955.64 8.36 0.0 naa>xaaaartec Link summary Name From Node TO Node Type Length %Slope Roughness dry -Creek dcl ssl CONDUIT 1600.0 0.2500 0.0450 INLET-AO2 INLET-AO2 06-DT-INLET-AO2 CONDUIT 4.5 9.0881 0.0130 INLET-AO3 INLET-AO3 11-DT-INLET-AO3 CONDUIT 3.3 2.1153 0.0130 INLET-AO4 INLET-AO4 13-DT-INLET-AO4 CONDUIT 4.5 2.0004 0.0130 INLET-AO5 INLET-AO5 14-DT-INLET-AO5 CONDUIT 5.6 1.9507 0.0130 INLET-AO6 INLET-AO6 17-DT-INLET-AO6 CONDUIT 4.8 4.9958 0.0130 INLET-AO7 INLET-AO7 18-DT-INLET-AO7 CONDUIT 4.0 1.9855 0.0130 INLET-AO8 INLET-AO8 20-DT-INLET-AO8 CONDUIT 4.7 5.0913 0.0130 INLET-AO9 INLET-AO9 21-DT-INLET-AO9 CONDUIT 4.7 5.0913 0.0130 INLET-FO1 INLET-FO1 08-MH-A06 CONDUIT 31.0 0.5161 0.0130 INLET-GO1 INLET-GOI MH-GO1 CONDUIT 18.0 0.5000 0.0130 INLET-GO2 INLET-GO2 MH-G02 CONDUIT 30.0 0.5000 0.0130 INLET-GO3 INLET-GO3 MH-G03 CONDUIT 17.0 0.4706 0.0130 INLET-GO4 INLET-GO4 MH-G04 CONDUIT 17.0 0.4706 0.0130 INLET-GO5 INLET-GOS. MH-GO5 CONDUIT 17.0 0.4706 0.0130 INLET-HO1 INLET-HO1 09-MH-AO7 CONDUIT 30.0 0.5000 0.0130 INLET-301 INLET-301 02-MH-AO2_(SNOUT)CONDUIT 50.0 0.5000 0.0130 Osl Osl os2 CONDUIT 800.0 0.2500 0.1000 Osll ss9a ss10 CONDUIT 127.0 1.0473 0.0160 os12 ss10 os13 CONDUIT 500.0 0.3540 0.1000 osl3 os13 osl4 CONDUIT 300.0 0.8334 0.1000 osl4 osl4 INLET-JO1 CONDUIT 210.0 0.1571 0.0450 os2 os2 ssl CONDUIT 450.0 0.2222 0.0700 os4 ssl ss2 CONDUIT 120.0 3.3352 0.0800 OS5 ss2 ss3 CONDUIT 57.0 0.0018 0.0160 os6 ss3 os8 CONDUIT 60.0 1.6669 0.1000 os7 ss4 O58 CONDUIT 80.0 2.8762 0.0160 O58 ss5 O58 CONDUIT 60.0 4.5213 0.1000 OS9 OS8 LAKE -CANAL CONDUIT 2000.0 0.3750 0.1000 OVERFLOW-AO2-AOIINLET-AO2 04-INLET-AO1 CONDUIT 152.0 0.2434 0.0130 OVERFLOW-AO3-HOIINLET-AO3 INLET-HO1 CONDUIT 153.0 0.5033 0.0130 OVERFLOW-AO4-AO31NLET-AO4 INLET-AO3 CONDUIT 258.0 0.3954 0.0130 OVERFLOW-AO5-AO41NLET-AO5 INLET-AO4 CONDUIT 203.0 0.4828 0.0130 OVERFLOW-AO6-AOSINLET-AO6 INLET-AOS CONDUIT 191.0 0.3717 0.0130 OVERFLOW-AO7-AO61NLET-AO7 INLET-AO6 CONDUIT 133.0 0.4587 0.0130. OVERFLOW-AO8-AO71NLET-AO8 INLET-AO7 CONDUIT 164.0 0.6342 0.0130 OVERFLOW-AO9-AO81NLET-AO9 INLET-AO8 CONDUIT 318.0 0.6384 0.0130 OVERFLOW-DO1 INLET-001 OFFSITE-3 CONDUIT 100.0 - 0.7700 0.0130 OVERFLOW-EO1 INLET-EO1 OFFSITE-4 CONDUIT 100.0 1.5102 0.0130 OVERFLOW-FO1-AOlINLET-FO1 INLET-AO2 CONDUIT 248.0 0.4637 0.0130 OVERFLOW-GOI-EOIINLET-GO1 INLET-EO1 CONDUIT 361.0 0.4183 0.0130 OVERFLOW-Go2-GOlINLET-GO2 INLET-GO1 CONDUIT 189.0 0.4392 0.0130 OVERFLOW-GO3-GO2INLET-GO3 INLET-GO2 CONDUIT 311.0 0.3312 0.0130 OVERFLOW-GO4-GO31NLET-GO4 INLET-GO3 CONDUIT 315.0 0.4571 0.0130 OVERFLOW-GO5-GO41NLET-GOS INLET-GO4 CONDUIT 218.0 0.5551 0.0130 OVERFLOW-HO1-FOIINLET-HO1 INLET-FO1 CONDUIT 40.0 0.2750 0.0130 OVERFLOW-MHA02-WQPOND02-MH-AO2_(SNOUT)WQ-POND CONDUIT 50.0 4.3842 0.0130 OVERFLOW-MHGOI-GOIMH-GO1 INLET-GO1 CONDUIT 18.0 0.1667 0.0130 551 s51 - ss4 CONDUIT 250.0 0.2600 0.0130 5510 559 16-MH-All CONDUIT 50.0 0.3200 0.0130 ss2 ss2 ss3 CONDUIT 57.0 0.4386 0.0130 .. ss3 ss3 ss5 CONDUIT 220.0 0.4909 0.0130 ss4 ss4 ss5 CONDUIT 50.0 0.8600 0.0130 Ss6 ss5 23-TIE-IN-EXO1 CONDUIT 387.0 0.0207 0.0130 ss9 ss10 ss9 CONDUIT 60.0 1.2501 0.0130 ss9a ss9a ss9 CONDUIT 127.0 0.5197 0.0130 STORM-A01 01-MH-AOI WQ-POND CONDUIT 123.0 0.3496 0.0130 STORM-AO2 02-MH-AO2_(SNOUT)01-MH-AO1 CONDUIT 64.0 0.3594 MIN STORM-AO3 03-MH-AO3_RISER\BEND02-MH-AO2_(SNOUT)CONDUIT 72.0 0.3472 0.0130 STORM-AO4 04-INLET-AO1, 03-MH-AO3_RISER\BENDCONOUIT 27.0 0.4074 0.0130 STORM-AO5 05-MH-A04 04-INLET-AOI CONDUIT 39.0 0.3590 0.0130 STORM-AO6 06-DT-INLET-AO2 05-MH-AO4 CONDUIT 113.0 0.3451 0.0130 STORM-AO7 07-MH-AO5 06-DT-INLET-AO2 CONDUIT 10.0 0.4000 0.0130 STORM-AO8 08-MH-AO6 07-MH-AO5 CONDUIT 238.0 0.3487 0.0130 STORM-AO9 09-MH-AO7 08-MH-A06 CONDUIT 40.0 1.6752 0.0130 STORM-A10 10-MH-AO8 09-MH-AO7 CONDUIT 127.0 0.4488 0.0130 STORM -All 11-DT-INLET-AO3 10-MH-AO8 CONDUIT 26.0 0.4615 0.0130 STORM-Al2 12-MH-AO9 11-DT-INLET-AO3 CONDUIT 182.0 0.4615 0.0130 STORM-A13 13-DT-INLET-AO4 12-MH-AO9 CONDUIT 76.0 0.4474 0.0130, STORM-A14 14-DT-INLET-AO5 13-DT-INLET-AO4 CONDUIT 203.0 0.4581 0.0130 STORM-A15 15-MH-AIO 14-DT-INLET-AO5 CONDUIT 45.0 0.4667 0.0130 North College Condor Improvements December 2009 3 of 12 STORM-A16 16-MH-All 15-MH-AlO CONDUIT 112.0 0.4643 0.0130 STORM-A17 17-DT-INLET-AO6 16-MH-All CONDUIT 34.0 0.4118 0.0130 STORM-A18 18-DT-INLET-AO7 17-DT-INLET-AO6 CONDUIT 133.0 0.4587 0.0130 STORM-A19 19-MH-Al2 18-DT-INLET-AO7 CONDUIT 156.0 0.4551 0.0130 STORM-A20 20-DT-INLET-AO8 19-MH-Al2 CONDUIT 8.0 0.5000 0.0130 STORM-A21 21-DT-INLET-AO9 20-DT-INLET-AO8 CONDUIT 318.0 0.4560 0.0130 STORM-A22 22-MH-A13 21-DT-INLET-AO9 CONDUIT 17.0 0.5294 0.0130 STORM-A23 23-TIE-IN-EX01 22-MH-A13 CONDUIT 13.0 7.8704 0.0130 STORM-BO1 MH-BOl_TIDE-FLEXPR-OUTLET2 CONDUIT 34.0 0.2353 0.0130 STORM-BO2 WQ-OUTLET MH-801_TIDE-FLEXCONDUIT 10.0 0.3000 0.0130 STORM-D INLET-DO1 WQ-POND CONDUIT 143.0 0.4056 0.0130 STORM-EO1 MH-E01 05-MH-AO4 CONDUIT 59.0 0.4915 0.0130 STORM-EO2 INLET-EO1 MH-E01 CONDUIT 19.0 0.5263 0.0130 STORM-GO1 MH-GO1 08-MH-AO6 CONDUIT 59.0 1.0001 0.0130 STORM-GO2 MH-GO2 MH-GO1 CONDUIT 189.0 0.4021 0.0130 STORM-GO3 MH-G03 MH-G02 CONDUIT 311.0 0.3987 0.0130 STORM-GO4 MH-G04 MH-G03 CONDUIT 315.0 0.4000 0.0130 STORM-GO5 MH-G05 MH-G04 CONDUIT 218.0 0.3991 0.0130 63 05-MH-AO4 04-INLET-AO1 CONDUIT 39.0 0.9488 0.0130 WQ-ORIFICE WQ-POND PR-OUTLET1 ORIFICE WQ-SPILLWAY WQ-POND PR-OUTLET3 WEIR WQ-OUTLET WQ-POND WQ-OUTLET WEIR OVERFLOW-301-WQPONDINLET-JO1 WQ-POND WEIR OVERFLOW-LAKE-CANALLAKE-CANAL WQ-POND WEIR #kkkh#kh###rth#k#kkhkrt Cross Section Summary k rtrtrt#rtrtk#k##k#kkkk#krt Full Full Hyd. Max. NO. of Full Conduit Shape Depth Area Rad. width Barrels Flow --------------------------------------------------------------------------------------- dry_creek TRAPEZOIDAL 6.00 174.00 3.19 53.00 1 623.09 INLET-AO2 CIRCULAR 1.SO 1.77 0.38 1.50 1 31.67 INLET-AO3 CIRCULAR 1.50 1.77 0.38 1.50 1 15.28 INLET-AO4 CIRCULAR 1.50 1.77 0.38 1.SO 1 14.86 INLET-AOS CIRCULAR 1.50 1.77 0.38 1.50 1 14.67 INLET-AO6 CIRCULAR 1.50 1.77 0.38 1.50 1 23.48 INLET-AO7 CIRCULAR 1.50 1.77 0.38 1.50 1 14.80 INLET-AO8 CIRCULAR 1.50 1.77 0.38 1.50 1 23.70 INLET-AO9 CIRCULAR 1.50 1.77 0.38 1.50 1 23.70 INLET-FO1 CIRCULAR 1.50 1.77 0.38 1.50 1 7.55 INLET-GO1 HORIZ_ELLIPSE 1.17 1.73 0.36 1.92 1 7.03 INLET-GO2 HORIZ_ELLIPSE 1.17 1.73 0.36 1.92 1 7.03 INLET-GO3 HORIZ_ELLIPSE 1.17 1.73 0.36 1.92 1 6.82 INLET-GO4 CIRCULAR 1.50 1.77 0.38 1.50 1 7.21 INLET-GO5 CIRCULAR LSO 1.77 0.38 1.50 1 7.21 INLET-HO1 CIRCULAR 1.50 1.77 0.38 1.50 1 7.43 INLET-JO1 CIRCULAR 2.50 4.91 0.63 2.50 1 29.00 O51 TRAPEZOIDAL 2.00 600.00 1.50 400.00 1 584.13 OS11 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 514.09 os12 TRAPEZOIDAL 1.00 2SO.00 0.83 300.00 1 195.73 os13 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 300.31 os14 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 289.79 os2 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 221.54 os4 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 750.97 Os5 TRAPEZOIDAL 2.00 480.00 1.71 280.00 1 267.40 os6 TRAPEZOIDAL 1.00 260.00 0.81 320.00 1 434.32 os7 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 851.95 os8 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 170.91 Os9 TRAPEZOIDAL 2.00 600.00 1.50 400.00 1 715.41 OVERFLOW-AO2-AO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 69.37 OVERFLOW-AO3-HO1 TRAPEZOIDAL 1.00 1S.00 0.74 20.00 1 99.75 OVERFLOW-AO4-AO3 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 88.41 OVERFLOW-AO5-AO4 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 97.70 OVERFLOW-AO6-AOS TRAPEZOIDAL 1.00 ' 15.00 0.74 20.00 1 85.73 OVERFLOW-AO7-AO6 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 95.23 OVERFLOW-AO8-AO7 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 111.97 OVERFLOW-AO9-AO8 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 112.35 OVERFLOW-DO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 123.39 OVERFLOW-EO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 172.80 OVERFLOW-FOI-AO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 95.75 OVERFLOW-GO1-EO1 TRAPEZOIDAL 1.00 ISM 0.74 20.00 1 90.94 OVERFLOW-GO2-GO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 93.18 OVERFLOW-GO3-GO2 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 80.92 OVERFLOW-GO4-GO3 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 95.07 OVERFLOW-GOS-GO4 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 104.76 OVERFLOW-HO1-FOl TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 73.74 OVERFLOW-MHA02-WQPOND TRAPEZOIDAL 1.00 20.00 0.66 30.00 1 364.50 OVERFLOW-MHGO1-G01 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 57.40 ssl FILLED_CIRCULAR 0.75 0.88 0.23 1.50 1 1.96 ss10 CIRCULAR 1.50 1.77 0.38 1.50 1 5.94 ss2 CIRCULAR 1.50 1.77 0.38 1.50 1 6.96 ss3 CIRCULAR 1.50 1.77 0.38 1.50 1 7.36 ss4 CIRCULAR 3.00 7.07 0.75 3.00 1 61.85 ss6 CIRCULAR 3.00 7.07 0.75 3.00 1 9.59 SS9 CIRCULAR 1.25 1.23 0.31 1.25 1 7.22 ss9a CIRCULAR 0.83 0.54 0.21 0.83 1 1.56 STORM-AO1 CIRCULAR 4.00 12.57 1.00 4.00 1 84.93 STORM-AO2 CIRCULAR 4.00 12.57 1.00 4.00 1 86.11 STORM-AO3 CIRCULAR 4.00 12.57 1.00 4.00 1 84.64 STORM-AO4 CIRCULAR 4.00 12.57 1.00 4.00 1 91.69 North College Corridor Improvements December 2009 4 of 12 STORM-A05 CIRCULAR 4.00 12.57 1.00 4.00 1 86.06 STORM-AO6 CIRCULAR 4.00 12.57 1.00 4.00 1 84.39 STORM-AO7 CIRCULAR 4.00 12.57 1.00 4.00 1 90.85 STORM-AO8 CIRCULAR 4.00 12.57 1.00 4.00 1 84.83 STORM-AO9 CIRCULAR 4.00 12.57 1.00 4.00 1 185.92 STORM-A10 CIRCULAR 3.50 9.62 0.88 3.50 1 67.40 STORM -All CIRCULAR 3.50 9.62 0.88 3.50 1 68.35 STORM-Al2 CIRCULAR 3.50 9.62 0.88 3.50 1 68.35 STORM-A13 CIRCULAR 3.50 9.62 0.88 3.50 1 67.29 STORM-A14 CIRCULAR 3.50 9.62 0.88 3.50 1 68.10 STORM-A15 CIRCULAR 3.50 9.62 0.88 3.50 1 68.73, STORM-A16 CIRCULAR 3.50 9.62 0.88 3.50 1 68.55 STORM-A17 CIRCULAR 3.00 7.07 0.75 3.00 1 42.80 STORM-A18 CIRCULAR 3.00 7.07 0.75 3.00 1 45.17 STORM-A19 CIRCULAR 3.00 7.07 0.75 3.00 1 45.00 STORM-A20 CIRCULAR 3.00 7.07 0.75 3.00 1 47.16 STORM-A21 CIRCULAR 3.00 7.07 0.75 3.00 1 45.04 STORM-A22 CIRCULAR 3.00 7.07 0.75 3.00 1 48.53 STORM-A23 CIRCULAR 3.00 7.07 0.75 3.00 1 187.12 STORM-BO1 CIRCULAR 4.00 12.57 1.00 4.00 1 69.68 STORM-BO2 CIRCULAR 4.00 12.57 1.00 4.00 1 78.68 STORM-D CIRCULAR 2.00 3.14 0.50 2.00 1 14.41 STORM-EO1 HORIZ_ELLIPSE 1.17 1.74 0.36 1.92 1 7.02 STORM-EO2 HORIZ_ELLIPSE 1.17 1.74 0.36 1.92 1 7.27 STORM-GO1 CIRCULAR 2.00 3.14 0.50 2.00 1 22.62 STORM-GO2 CIRCULAR 2.00 3.14 0.50 2.00 1 14.35 STORM-GO3 CIRCULAR 2.00 3.14 0.50 2.00 1 14.28 STORM-GO4 CIRCULAR 1.50 1.77 0.38 1.50 1 6.64 STORM-GO5 CIRCULAR 1.50 1.77 0.38 1.50 1 6.64 63 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 136.96 North College Corridor Improvements December 2009 5 of 12 OUTPUT 10-yr volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation ...... 26.139 1.710 Evaporation LOSS ......... 0.000 0.000 Infiltration LOSS ........ 9.558 0.625 surface Runoff ........... 16.106 1.054 Final Surface Storage .... 0.615 0.040 Continuity Error (%) ..... -0.539 volume volume Flow Routing Continuity acre-feet E d ^.}dddEdd}ddd}d}d}dd}}d#} JOA6 gal _________ Dry weather Inflow ....... 0.000 --------- 0.000 wet weather Inflow ....... 16.117 5.252 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 0.003 0.001 External outflow ......... 15.244 4.968 Internal outflow ......... 0.000 0.000 Storage losses ........... 0.000 0.000 Initial Stored volume .... 0.002 0.001 Final Stored volume ...... 0.711 0.232 Continuity Error (%) ..... 1.032 E EEEEAE _EEEEd4Ed}}444}4 Highest Continuity Errors _4444d____}4}}trtrd##EE 4#Ed Node os2 (8.93%) Node MH-E01 (2.08%) Node os13 (1.40%) Node ssl (-1.02%) Node MH-G02 (1.01%) A#44##444AE44EEA4A44A344444 Time -Step Critical Elements ##R##44#kE4444E4A444}II4AA*4 None k Ekkk#k#kkkkkkE4Akkkkkk44k4d4kkd Highest Flow Instability Indexes }kkk##kkkk###k##kkkkk AkkkkkkkkkE All links are stable. }}}4dd}4d}tr3d}4tr4}rt}}tr}#tr Routing Time Step summary }E}44EA4*kAAEd}A}A44Adx44 Minimum Time Step 0.50 sec Average Time Step 0.99 sec Maximum Time step 1.00 sec Percent in steady state 0.00 Average Iterations per step 2.00 subcatchment Runoff summary q4}4}dd4A444}Ad44A}44 }AA}AA ---------------------------------------------------------------------------------------------- Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10A6 gal CFS E01 ------------------------------------------------------------------------- 1.710 0.000 0.000 0.078 1.573 0.007 0.706 0.920 E02 1.710 0.000 0.000 0.078 1.573 0.006 0.580 0.920 E03 1.710 0.000 0.000 0.078 1.573 0.003 0.313 0.920 E04 1.710 0.000 0.000 0.078 1.573 0.017 1.784 0.920 E05 1.710 0.000 0.000 0.078 1.573 0.010 1.069 0.920 E06 1.710 0.000 0.000 0.078 1.573 0.023 2.364 0.920 E07 1.710 0.000 0.000 0.078 1.573 0.017 1.790 0.920 E08 1.710 0.000 0.000 0.078 1.573 0.012 1.305 0.920 E09 1.710 0.000 0.000 0.078 1.573 0.025 2.695 0.920 E10 1.710 0.000 0.000 0.057 1.595 0.032 3.236 0.933 E12 1.710 0.000 0.000 0.057 1.595 0.008 0.800 0.933 E13 1.710 0.000 0.000 0.078 1.573 0.002 0.226 0.920 OS01 1.710 0.000 0.000 0.389 1.279 0.415 37.533 0.748 os02 1.710 0.000 0.000 0.460 1.211 0.484 43.783 0.708 OS03 1.710 0.000 0.000 0.754 0.935 0.119 11.590 0.547 0504 1.710 0.000 0.000 0.753 0.931 1.110 97.870 0.544 0505 1.710 0.000 0.000 1.210 0.504 0.072 5.230 0.295 os06 1.710 0.000 0.000 0.726 0.959 0.162 14.875 0.561 OS07 1.710 0.000 0.000 0.057 1.596 0.058 6.285 0.933 OS08 1.710 0.000 0.000 0.057 1.596 0.186 20.017 0.933 North College Corridor Improvements December 2009 6 of 12 OS09 1.710 0.000 0.000 0.679 1.002 0.838 74.639 0.586 Oslo 1.710 0.000 0.000 0.17S 1.486 0.342 37.279 0.869 osll 1.710 0.000 0.000 0.905 0.786 0.376 32.035 0.459 OS12 1.710 0.000 0.000 0.584 1.095 0.680 64.509 0.640 w01 1.710 0.000 0.000 0.078 1.573 0.013 1.367 0.920 w02 1.710 0.000 0.000 0.078 1.573 0.006 0.579 0.920 w03 1.710 0.000 0.000 0.078 1.573 0.016 1.642 0.920 w04 1.710 0.000 0.000 0.078 1.573 0.006 0.623 0.920 w05 1.710 0.000 0.000 0.078 1.573 0.015 1.508 0.920 w06 1.710 0.000 0.000 0.159 1.495 0.026 2.543 0.874 w07 1.710 0.000 0.000 0.159 1.495 0.018 1.839 0.874 w08 1.710 0.000 0.000 0.078 1.573 0.020 2.104 0.920 w09 1.710 0.000 0.000 0.057 1.596 0.007 0.786 0.933 w10 1.710 0.000 0.000 0.057 1.596 0.023 2.457 0.933 wll 1.710 0.000 0.000 0.078 1.573 0.012 1.210 0.920 w12 1.710 0.000 0.000 0.078 1.573 0.022 2.317 0.920 w13 1.710 0.000 0.000 0.078 1.573 0.028 3.026 0.920 w14 1.710 0.000 0.000 0.079 1.573 0.026 2.681 0.920 w18 ------------------------------------------------------------------------ 1.710 0.000 0.000 1.592 0.115 0.006 0.491 0.067 System 1.710 0.000 0.000 0.625 1.054 ----------- 5.248 487.441 0.616 A 4AAAdtrAddd4ddddAA Node Depth summary AddddAAAAAAAAAAAAA --------------------------------------------------------------------- Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type Feet Feet Feet days hr:min --------------------------------------------------------------------- 01-MH-AO1 JUNCTION 2.33 4.56 4962.15 0 00:49 02-MH-AO2_(SNOUT) JUNCTION 2.11 4.57 4962.39 0 00:48 03-MH-AO3_RISER\BEND JUNCTION 1.87 4.44 4962.51 0 00:48 04-INLET-AOI JUNCTION 1.77 4.42 4962.60 0 00:47 05-MH-AO4 JUNCTION 1.64 4.39 4962.71 0 00:47 06-DT-INLET-AO2 JUNCTION 1.27 4.17 4962.88 0 00:46 07-MH-AOS JUNCTION 1.23 4.16 4962.91 0 00:46 08-MH-A06 JUNCTION 0.54 3.54 4963.12 0 00:46 09-MH-AO7 JUNCTION 0.38 2.89 4963.14 0 00:46 10-MH-AO8 JUNCTION 0.46 2.56 4963.38 0 00:46 11-DT-INLET-AO3 JUNCTION 0.48 2.63 4963.57 0 00:45 12-MH-AO9 JUNCTION 0.44 2.13 4963.91 0 00:43 13-DT-INLET-AO4 JUNCTION 0.44 2.02 4964.64 0 00:42 14-DT-INLET-AOS JUNCTION 0.44 2.07 4965.62 0 00:42 15-MH-AIO JUNCTION 0.44 2.04 4965.80 0 00:42 16-MH-All JUNCTION 0.45 2.10 4966.38 0 00:42 17-DT-INLET-AO6 JUNCTION 0.48 2.16 4966.58 0 00:42 18-DT-INLET-AO7 JUNCTION 0.43 1.76 4966.79 0 00:42 19-MH-Al2 JUNCTION 0.43 1.59 4967.33 0 00:41 20-DT-INLET-AO8 JUNCTION 0.46 1.74 4967.52 0 00:41 21-DT-INLET-AO9 JUNCTION 0.43 1.45 4968.68 0 00:41 22-MH-A13 JUNCTION 0.42 1.44 4968.76 0 00:41 23-TIE-IN-EX01 JUNCTION 0.21 0.73 4969.07 0 00:41 dcl JUNCTION 0.09 1.56 4977.56 0 00:42 INLET-AO2 JUNCTION 0.14 2.45 4962.93 0 00:46 INLET-AO3 JUNCTION 0.10 1.86 4963.58 0 00:45 INLET-AO4 JUNCTION 0.09 1.39 4964.65 0 00:42 INLET-AO5 - JUNCTION 0.10 1.45 4965.64 0 00:42 INLET-AO6 JUNCTION 0.17 1.65 4966.58 0 00:42 INLET-AO7 JUNCTION 0.12 1.26 4966.81 0 00:41 INLET-AO8 JUNCTION 0.06 0.97 4967.56 0 00:41 INLET-AO9 JUNCTION 0.04 0.71 4968.82 0 00:40 INLET-DO1 JUNCTION 2.15 3.55 4961.26 0. 02:07 INLET-EO1 JUNCTION 0.03 1.00 4962.71 0 00:47 INLET-FO1 JUNCTION 0.19 2.89 4963.13 0 00:46 INLET-GOS JUNCTION 0.02 0.63 4963.22 0 00:46 INLET-GO2 JUNCTION 0.02 0.63 4964.21 0 00:40 INLET-G03 JUNCTION 0.02 0.57 4965.15 0 00:40 INLET-GO4 JUNCTION 0.02 0.76 4966.77 0 00:41 INLET-GOS JUNCTION 0.03 0.86 4967.74 0 00:40 INLET-HO1 JUNCTION 0.10 2.24 4963.14 0 00:46 INLET-J01 JUNCTION 1.87 4.51 4962.58 0 00:48 LAKE -CANAL JUNCTION 0.03 0.23 4963.73 0 02:07 MH-BOLTIDE-FLEX JUNCTION 0.87 3.16 4958.77 0 02:08 MH-EO1 JUNCTION 1.35 4.10 4962.71 0 00:47 MH-GO1 JUNCTION 0.21 3.04 4963.21 0 00:46 MH-G02 JUNCTION 0.05 1.14 4964.07 0 00:42 MH-G03 JUNCTION 0.04 0.83 4965.00 0 00:41 MH-G04 JUNCTION 0.03 0.81 4966.74 0 00:41 - MH-GOS JUNCTION 0.03 0.65 4967.45 0 00:40 Osl JUNCTION 0.03 0.54 4978.54 0 00:47 os13 JUNCTION 0.01 0.10 4967.00 0 01:06 os14 JUNCTION 0.03 0.28 4964.68 0 00:51 os2 JUNCTION 0.05 0.57 4976.57 0 00:55 os8 JUNCTION 0.07 0.55 4971.55 0 01:37 ssl JUNCTION 2.07 4.22 4976.22 0 01:15 sslo JUNCTION 0.09 2.11 4968.95 0 00:49 ss2 JUNCTION 0.31 2.91 4972.66 0 00:41 ss3 JUNCTION 0.33 3.15 4972.65 0 00:41 ss4 JUNCTION 0.38 1.40 4970.25 0 00:41 North College Corridor Improvements December 2009 7 of 12 ss5 JUNCTION 0.68 1.84 4970.26 0 00:41 ss9 JUNCTION 0.15 1.97 4968.06 0 00:40 ss9a JUNCTION 0.33 4.22 4971.22 0 00:40 WQ-OUTLET JUNCTION 0.90 3.41 4959.05 0 02:08 OFFSITE-1 OUTFALL 0.00 0.00 0.00 0 00:00 OFFSITE-2 OUTFALL 0.00 0.00 0.00 0 00:00 OFFSITE-3 OUTFALL 0.00 0.00 4963.00 0 00:00 OFFSITE-4 OUTFALL 0.00 0.00 4963.00 0 00:00 PR-OUTLETI OUTFALL 0.00 0.00 0.00 0 00:00 PR-OUTLET2 OUTFALL 0.74 2.26 4957.79 0 02:08 PR-OUTLET3 OUTFALL 0.00 0.00 4955.00 0 00:00 WQ-POND STORAGE 4.18 5.60 4961.24 0 02:07 Node Inflow summary Maximum Maximum Lateral Total Lateral Total Time of Max Inflow inflow Inflow Inflow Occurrence volume volume Node Type CFS CFS days hr:min JOA6 gal 10A6 gal ------------------------------------------------------------------------------------- 01-MH-AO1 JUNCTION 0.00 63.43 0 00:45 0.000 3.219 02-MH-AO2_(SNOUT) JUNCTION 0.00 63.73 0 00:45 0.000 3.223 03-MH-AO3_RISER\BEND JUNCTION 0.00 49.30 0 00:42 0.000 2.701 04-INLET-AO1 JUNCTION 0.58 49.64 0 00:42 0.006 2.702 O5-MH-AO4 JUNCTION 0.00 49.68 0 00:42 0.000 2.699 06-DT-INLET-AO2 JUNCTION 0.00 49.93 0 00:41 0.000 2.684 07-MH-AO5 JUNCTION 0.00 49.17 O 00:42 0.000 2.669 08-MH-AO6 JUNCTION 0.00 51.03 0 00:42 0.000 2.669 09-MH-AO7 JUNCTION 0.00 43.77 0 00:42. 0.000 2.575 10-MH-AO8 JUNCTION 0.00 43.03 0 00:42 0.000 2.560 11-DT-INLET-AO3 JUNCTION 0.00 43.40 0 00:42 0.000 2.561 12-MH-AO9 JUNCTION 0.00 41.49 0 00:42 0.000 2.535 13-OT-INLET-AO4 JUNCTION 0.00 41.49 0 00:42 0.000 2.535 14-DT-INLET-AOS JUNCTION 0.00 40.01 0 00:42 0.000 2.517 15-MH-AlO JUNCTION 0.00 38.38 0 00:42 0.000 2.497 16-MH-All JUNCTION 0.00 38.36 0 00:42 0.000 2.497 17-DT-INLET-AO6 JUNCTION 0.00 25.41 0 00:42 0.000 2.091 18-DT-INLET-AO7 JUNCTION 0.00 24.46 0 00:41 0.000 2.079 19-MH-Al2 JUNCTION 0.00 22.61 0 00:42 0.000 2.057 20-DT-INLET-AO8 ]UNCTION 0.00 22.66 0 00:41 0.000 2.058 21-DT-INLET-AO9 JUNCTION 0.00 20.16 0 00:41 0.000 2.029 22-MH-A13 ]UNCTION 0.00 17.90 0 00:42 0.000 2.003 23-TIE-IN-EX01 JUNCTION 0.00 17.87 0 00:41 0.000 2.003 dcl JUNCTION 37.27 37.27 0 00:40 0.343 0.343 INLET-AO2 JUNCTION 1.64 3.67 0 00:38 0.016 0.016 INLET-AO3 JUNCTION 2.54 2.54 0 00:40 0.026 0.026 INLET-AO4 JUNCTION 1.84 1.84 0 00:40 0.018 0.018 INLET-AO5 JUNCTION 2.10 2.10 0 00:40 0.020 0.020 INLET-AO6 JUNCTION 1.21 1.21 0 00:40 0.012 0.012 INLET-AO7 JUNCTION 2.32 2.32 0 00:40 0.022 0.022 INLET-AO8 JUNCTION 3.03 3.03 0 00:40 0.028 0.028 INLET-AO9 JUNCTION 2.68 2.68 0 00:40 0.027 0.027 INLET-DO1 ]UNCTION 0.71 1.06 0 00:35 0.007 0.013 INLET-EO1 JUNCTION 1.78 1.78 0 00:40 0.017 0.017 INLET-FO1 JUNCTION 0.62 0.62 0 00:40 0.006 0.006 INLET-GO1 JUNCTION 1.07 1.07 0 00:40 0.010 0.010 INLET-GO2 JUNCTION 2.36 2.36 0 00:40 0.023 0.023 INLET-GO3 JUNCTION 1.79 1.79 0 00:40 0.017 0.017 INLET-GO4 JUNCTION 1.30 1.30 0 00:40 0.012 0.012 INLET-GO5 JUNCTION 2.69 2.69 0 00:40 0.025 0.025 INLET-HO1 JUNCTION 1.51 1.51 0 00:40 0.015 0.015 INLET-JO1 JUNCTION 0.00 17.41 0 00:51 0.000 0.524 LAKE -CANAL JUNCTION 0.00 37.55 0 01:46 0.000 1.849 MH-801_TIDE-FLEX JUNCTION 0.00 56.62 0 02:07 0.000 4.802 MH-EO1 JUNCTION 0.00 1.78 0 00:40 0.000 0.017 MH-GO1 JUNCTION 0.00 7.87 0 00:41 0.000 0.087 MH-GO2 JUNCTION 0.00 7.25 0 00:40 0.000 0.077 MH-G03 ]UNCTION 0.00 5.18 0 00:41 0.000 0.055 MH-G04 JUNCTION 0.00 3.87 0 00:40 0.000 0.038 MH-GOS JUNCTION 0.00 2.68 0 00:40 0.000 0.025 osl JUNCTION 96.51 96.51 0 00:40 1.057 1.057 os13 JUNCTION 0.00 9.79 0 00:52 0.000 0.111 os14 JUNCTION 37.52 37.54 0 00:40 0.415 O.S24 os2 JUNCTION 94.62 119.43 0 00:40 1.025 2.088 Os8 JUNCTION 0.00 102.51 0 00:42 0.000 1.849 ssl JUNCTION 5.23 100.37 0 OO:S6 0.072 2.378 ss10 JUNCTION 0.79 40.29 0 00:40 0.007 0.311 ss2 JUNCTION 112.71 112.71 0 00:40 1.272 2.452 ss3 JUNCTION 11.59 111.63 0 00:41 0.119 2.567 ss4 JUNCTION 6.28 6.91 0 00:40 0.059 1.282 s55 ]UNCTION 0.00 17.89 0 00:41 0.000 2.003 ss9 JUNCTION 2.46 13.08 0 00:40 0.023 0.406 ss9a JUNCTION 43.77 43.77 0 00:40 0.485 0.485 WQ-OUTLET JUNCTION 0.00 56.62 0 02:07 . 0.000 4.801 OFFSITE-1 OUTFALL 4.04 4.04 0 00:40 0.039 0.039 OFFSITE-2 OUTFALL 1.12 1.12 0 00:40 0.011 0.011 OFFSITE-3 OUTFALL 0.00 0.00 0 00:00 0.000 0.000 OFFSITE-4 OUTFALL 0.00 0.00 0 00:00 0.000 0.000 North College Corridor Improvements December 2009 8 of 12 PR-OUTLETI OUTFALL 0.00 0.22 0 02:07 0.000 0.116 PR-OUTLET2 OUTFALL 0.00 56.62 0 02:08 0.000 4.802 PR-OUTLET3 OUTFALL 0.00 0.00 0 00:00 0.000 0.000 wQ-POND STORAGE 1.86 65.22 0 00:45 0.019 5.074 444ARA?4R4RAR*RRRRRRR* Node Surcharge Summary surcharging occurs when water rises above the top of the highest conduit Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- 01-MH-AO1 JUNCTION 0.75 0.564 2.786 03-MH-AO3_RISER\BEND JUNCTION 0.37 0.441 2.749 06-DT-INLET-AO2 JUNCTION 0.13 0.172 2.828 07-MH-AO5 JUNCTION 0.12 0.157 2.443 ss9 JUNCTION 0.90 0.471 8.029 #RkR#Ak44ARR4krtA44k4R Node Flooding summary k#k#h##kkhk#kkkk#kkkk No nodes were flooded. #4k###Ak##A#k#kA#k##Rk Storage volume Summary Ak#A#kkk##k##k#k#kA### -------------------------------------------------------------------------------------------- Average Avg E&I maximum Max Time of max Maximum volume Pcnt Pcnt volume Pcnt Occurrence outflow Storage Unit 1000 ft3 Full LOSS 1000 ft3 Full days hr:min CFS -------------------------------------------------------------------------------------------- wQ-POND 25.982 17 0 50.192 32 0 02:07 56.93 rt 4444¢4434¢44¢443444343 Outfall Loading summary 4?44444k44¢¢d444¢44444¢ ----------------------Flow --------- Avg Max. Total Freg. Flow Flow volume Outfall Node PCnt. CFS CFS JOA6 gal ----------------------------------------------------------- OFFSITE-1 20.14 0.34 4.04 0.039 OFFSITE-2 13.93 0.13 1.12 0.011 OFFSITE-3 0.00 0.00 0.00 0.000 OFFSITE-4 0.00 0.00 0.00 0.000 PR-OUTLETI 99.57 0.19 0.22 0.116 PR-OUTLET2 92.86 8.56 56.62 4.802 PR -OUTLETS 0.00 0.00 0.00 0.000 ----------------------------------------------------------- System 32.36 . 9.22 57.07 4.968 khR#kk#kk##k##Ak###k Link Flow Summary 4 A4AAAAAhAAAAA#AAAAA Link Type dry -Creek CONDUIT INLET-AO2 CONDUIT INLET-AO3 CONDUIT INLET-AO4 CONDUIT INLET-AO5 CONDUIT INLET-AO6 CONDUIT INLET-AO7 CONDUIT INLET-AO8 CONDUIT INLET-AO9 CONDUIT INLET-FO1 CONDUIT INLET-GO1 CONDUIT INLET-GO2 CONDUIT INLET-GO3 CONDUIT INLET-GO4 CONDUIT INLET-GO5 CONDUIT INLET-1-101 CONDUIT INLET-301 CONDUIT osl CONDUIT OS11 CONDUIT os12 CONDUIT os13 CONDUIT ---------------------------------------------- maximum Time of max maximum max/ max/ lFlowl occurrence velocity Full Full CFS days hr:min ft/sec Flow Depth --------------------------------------------- 28.57 0 00:42 1.63 0.05 0.42 4.23 0 00:38 6.04 0.13 1.00 2.51 0 00:40 2.41 0.16 1.00 1.82 0 00:40 2.11 0.12 0.95 2.09 0 00:40 2.18 0.14 0.98 1.19 0 00:40 2.34 0.05 1.00 2.29 0 00:40 2.10 0.16 0.86 3.00 0 00:40 3.17 0.13 0.71 2.67 0 00:40 3.09 0.11 0.50 0.62 0 00:39 1.28 0.08 1.00 1.06 0 00:40 2.45 0.15 0.58 2.35 0 00:40 2.89 0.33 0.53 1.78 0 00:40 2.57 0.26 0.45 1.29 0 00:40 1.44 0.18 0.52 2.68 0 00:40 3.02 0.37 0.50 1.45 0 00:40 1.71 0.19 1.00 ' 17.42 0 00:51 3.55 0.60 1.00 52.70 0 00:51 0.45 0.09 0.26 39.54 0 00:40 3.40 0.08 0.22 9.79 0 00:52 0.28 0.05 0.17 5.50 0 01:06 0.15 0.02 0.18 North College Corridor Improvements December 2009 9 of 12 os14 CONDUIT 17.41 0 00:51 0.50 0.06 0.17 os2 CONDUIT 82.83 0 00:56 0.64 0.37 0.76 os4 CONDUIT 55.20 0 01:15 0.89 0.07 0.33 os5 CONDUIT 100.09 0 00:41 0.97 0.37 0.33 os6 CONDUIT 102.51 0 00:42 1.16 0.24 0.41 os7 CONDUIT 0.00 0 00:00 0.00 0.00 0.28 os8 CONDUIT 0.00 0 00:00 0.00 0.00 0.28 Os9 CONDUIT 37.55 0 01:46 0.46 0.05 0.19 OVERFLOW-AO2-AO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO3-HO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO4-AO3 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AOS-AO4 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO6-AO5 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO7-AO6 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO8-AO7 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO9-AO8 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-DO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-EO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-FOI-AOI CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GOI-EOI CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GO2-GO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GO3-GO2 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GO4-GO3 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GOS-GO4 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-HOI-FO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-MHA02-WQPOND CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-MHGOI-GO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 ssl CONDUIT 4.49 0 01:15 5.24 2.29 0.91 ss10 CONDUIT 13.08 0 00:40 7.54 2.20 0.95 ss2 CONDUIT 9.61 0 00:22 5.44 1.38 1.00 ss3 CONDUIT 10.94 0 00:41 6.19 1.49 1.00 ss4 CONDUIT 6.95 0 00:41 3.12 0.11 0.54 ss6 CONDUIT 17.87 0 00:41 6.17 1.86 0.43 Ss9 CONDUIT 8.32 0 00:54 6.78 1.15 1.00 ss9a CONDUIT 3.88 0 00:26 7.19 2.48 1.00 STORM-AO1 CONDUIT 63.42 0 00:45 5.19 0.75 1.00 STORM-AO2 CONDUIT 63.43 0 00:45 5.05 0.74 1.00 STORM-AO3 CONDUIT 48.73 0 00:44 4.30 0.58 1.00 STORM-AO4 CONDUIT 49.30 0 00:42 4.45 0.54 1.00 STORM-AOS CONDUIT 49.19 0 00:42 4.39 0.57 1.00 STORM-AO6 CONDUIT 48.47 0 00:42 4.57 0.57 1.00 STORM-AO7 CONDUIT 49.79 0 00:41 5.12 0.55 1.00 STORM-AO8 CONDUIT 49.17 0 00:42 5.25 0.58 0.94 STORM-AO9 CONDUIT 42.77 0 00:42 5.90 0.23 0.80 STORM-AlO CONDUIT 42.67 0 00:42 6.96 0.63 0.78 STORM -All CONDUIT 43.03 0 00:42 6.36 0.63 0.74 STORM-Al2 CONDUIT 41.43 0 00:42 6.24 0.61 0.67 STORM-A13 CONDUIT 41.49 0 00:42 7.29 0.62 0.57 STORM-AI4 CONDUIT 40.04 0 00:42 6.87 0.59 0.58 STORM-A15 CONDUIT 38.40 0 00:42 6.55 0.56 0.59 STORM-A16 CONDUIT 38.38 0 00:42 6.48 0.56 0.59 STORM-A17 CONDUIT 25.42 0 00:42 5.29 0.59 0.71 STORM-AI8 CONDUIT 24.46 0 00:42 5.22 0.54 0.65 STORM-A19 CONDUIT 22.63 0 00:42 5.60 0.50 0.56 STORM-A20 CONDUIT 22.61 0 00:42 5.62 0.48 0.55 STORM-A21 CONDUIT 20.19 0 00:41 5.29 0.45 0.53 STORM-A22 CONDUIT 17.91 0 00:42 5.49 0.37 0.48 STORM-A23 CONDUIT 17.90 0 00:42 8.04 0.10 0.36 STORM-1101 CONDUIT 56.62 0 02:08 6.25 0.81 0.68 STORM-BO2 CONDUIT 56.62 0 02:07 5.13 0.72 0.82 STORM-D CONDUIT 1.10 0 00:40 1.54 0.08 1.00 STORM-EO1 CONDUIT 1.76 0 00:40 1.01 0.25 1.00 STORM-EO2 CONDUIT 1.78 0 00:40 3.27 0.24 0.90 STORM-GO1 CONDUIT 7.75 0 00:42 2.47 0.34 1.00 STORM-GO2 CONDUIT 7.00 0 00:42 4.24 0.49 0.52 STORM-GO3 CONDUIT 5.14 0 00:41 3.37 0.36 0.49 STORM-GO4 CONDUIT 3.60 0 00:41 3.97 0.54 0.51 STORM-GOS CONDUIT 2.61 0 00:40 3.12 0.39 0.48 63 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 WQ-ORIFICE ORIFICE 0.22 0 02:07 WQ-SPILLWAY WEIR 0.00 0 00:00 0.00 WQ-OUTLET WEIR 56.62 0 02:07 0.37 OVERFLOW-101-WQPOND WEIR 0.00 0 00:00 0.00 OVERFLOW -LAKE -CANAL WEIR 33.23 0 02:07 0.12 #########4rttr##trtr##trtrtrrttr###4 Flow Classification Summary ----------------------------------------------------------- Adjusted --- Fraction of Time in Flow Class --------- ---- Avg. Avg. /Actual Up Down Sub Sup Up Down Froude Flow Conduit Length Dry Dry Dry Crit Crit Crit Crit Number Change ----------------------------------------------------------------------------------------- dry_creek 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 INLET-AO2 5.49 0.00 0.00 0.00 0.20 0.00 0.00 0.80 0.35 0.0001 INLET-AO3 4.71 0.00 0.00 0.00 0.14 0.00 0.00 0.86 0.54 0.0000 INLET-AO4 3.41 0.00 0.00 0.00 0.42 0.00 0.00 0.58 0.14 0.0000 INLET-A05 2.70 0.00 0.00 0.00 0.44 0.00 0.00 O.S6 0.09 0.0000 INLET-AO6 4.21 0.00 0.02 0.00 0.53 0.00 0.00 0.44 0.04 0.0000 INLET-AO7 3.80 0.00 0.00 0.00 0.50 0.00 0.00 0.49 0.06 0.0000 North College Corridor Improvements December 2009 10 of 12 INLET-AO8 4.31 0.00 0.00 0.00 0.45 0.00 0.00 0.54 0.09 0.0000 INLET-AO9 4.31 0.00 0.00 0.00 0.15 0.01 0.00 0.84 0.63 0.0000 INLET-F01 1.00 0.00 0.00 0.00 0.47 0.00 0.00 0.53 0.03 0.0000 INLET-GO1 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.98 0.20 0.0000 INLET-GO2 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.25 0.0000 INLET-GO3 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.23 0.0000 INLET-GO4 1.00 0.00 0.11 0.00 0.89 0.00 0.00 0.00 0.12 0.0000 INLET-G05 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.25 0.0000 INLET-HO1 1.00 0.00 0.00 0.00 0.14 0.00 0.00 0.85 0.20 0.0000 INLET-JO1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0000 osl 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 osll 1.00 0.94 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.0000 os12 1.00 0.02 0.93 0.00 0.04 0.00 0.00 0.00 0.00 0.0000 os13 1.00 0.00 0.02 0.00 0.97 0.00 0.00 0.00 0.01 0.0000 os14 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.10 0.0000 os2 1.00 0.00 0.00 0.00 0.38 0.00 0.00 0.61 0.05 0.0000 os4 1.00 0.85 0.03 0.00 '0.07 0.00 0.00 0.05 0.04 0.0000 os5 1.00 0.89 0.00 0.00. 0.09 0.00 0.00 0.01 0.03 0.0000 os6 1.00 0.02 0.88 0.00 0.10 0.00 0.00 0.00 0.01 0.0000 os7 1.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 Os8 1.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 Os9 1.00 0.02 0.00 0.00 0.98 0.00 0.00 0.00 0.08 0.0000 OVERFLOW-AO2-A01 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO3-HOS 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLow-AO4-AO3 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AOS-AO4 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO6-AOS 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO7-AO6 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO8-AO7 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO9-AO8 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-DOl 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-EO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-FO1-AOI 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO1-E01 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO2-GO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO3-GO2 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO4-GO3 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GOS-GO4 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-HOl-FO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-MHA02-WQPOND 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-MHGOI-GO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 ssl 1.00 0.03 0.00 0.00 0.00 0.00 0.00 0.97 0.68 0.0001 ss10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.64 0.0001 ss2 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.51 0.0001 ss3 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.03 0.0000 ss4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.43 0.0000 ss6 1.00 0.00 0.00 0.00 0.55 0.45 0.00 0.00 0.69 0.0000 s59 1.00 0.00 0.19 0.00 0.81 0.00 0.00 0.00 0.01 0.0000 ss9a 1.00 0.00 0.00 0.00 0.05 0.00 0.00 0.95 0.85 0.0001 STORM-AO1 1.00 0.01 0.00 0.00 0.97 0.00 0.00 0.02 0.05 0.0000 STORM-AO2 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.06 0.0000 STORM-AO3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.06 0.0000 STORM-AO4 1-.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.07 0.0000 STORM-AO5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.08 0.0000 STORM-AO6 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.10 0.0000 STORM-AO7 1.86 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.13 0.0001 STORM-AO8 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.22 0.0000 STORM-AO9 1.00 0.00 0.00 0.00 0.46 0.54 0.00 0.00 1.02 0.0000 STORM-A10 1.00 0.00 0.00 0.00 0.28 0.71 0.00 0.00 1.15 0.0000 STORM -All 1.00 0.00 0.00 0.00 0.97 0.02 0.00 0.00 0.86 0.0000 STORM-Al2 1.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 0.89 0.0000 STORM-A13 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.12 0.0000 STORM-A14 1.00 0.00 0.00 0.00 0.48 0.51 0.00 0.00 0.90 0.0000 STORM-A15 1.00 0.00 0.00 0.00 0.51 0.49 0.00 0.00 0.92 0.0000 STORM-A16 1.00 0.00 0.00 0.00 o.S3 0.47 0.00 0.00 0.92 0.0000 STORM-A17 1.00 0.00 0.00 0.00 0.59 0.40 0.00 0.00 0.88 0.0000 STORM-A18 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.87 0.0000 STORM-A19 1.00 0.00 0.00 0.00 0.52 0.48 0.00 0.00 0.93 0.0000 STORM-A20 2.06 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.89 0.0000 STORM-A21 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.88 0.0000 STORM-A22 1.00 0.00 0.00 0.00 0.53 0.47 0.00 0.00 0.94 0.0000 STORM-A23 2.79 0.00 0.00 0.00 0.00 0.99 0.00 0.00 1.64 0.0000 STORM-1301 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.42 0.0000 STORM-1302 1.76 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.32 0.0000 STORM-D 1.00 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.02 0.0002 STORM-EO1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 STORM-EO2 1.00 0.00 0.00 0.00 0.04 0.00 0.00 0.96 0.22 0.0000 STORM-GO1 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.01 0.0000 STORM-GO2 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.98 0.44 0.0000 STORM-GO3 1.00 0.00 0.01 0.00 0.98 0.00 0.00 0.00 0.24 0.0000 STORM-GO4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.37 0.0000 STORM-GO5 1.00 0.00 0.04 0.00 0.95 0.00 0.00 0.00 0.18 0.0000 63 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 4#####tr4}}}}4}4d4}k4d4kkd conduit Surcharge Summary _tr}4}4kkkk4dkkdkkkddkddd -------------------------------------------------------------------- Hours Hours --------- Hours Full -------- Above Full capacity North College Corridor Improvements December 2009 11 of 12 conduit Both Ends upstream Dnstream Normal Flow Limited -------------------------------------------------------------------- INLET-AO2 0.66 0.66 0.66 0.01 0.01 INLET-AO3 0.23 0.23 0.23 0.01 0.01 INLET-AO6 0.11 0.11 0.11 0.01 0.01 INLET-FO1 0.86 0.86 0.86 0.01 0.01 INLET-HO1 0.35 0.35 .0.35 0.01 0.01 INLET-101 2.64 2.64 2.64 0.01 0.01 ssl 0.01 0.01 0.01 11.22 0.01 ss10 0.01 0.01 0.01 0.97 0.01 ss2 2.38 2.38 2.38 0.14 0.13 ss3 2.27 2.27 2.27 2.40 2.27 ss6 0.01 0.01 0.01 2.39 0.01 ss9 0.90 0.90 0.90 0.85 0.85 ss9a 0.96 0.96 0.96 1.86 0.96 STORM-AO1 0.15 0.15 0.15 0.01 0.15 STORM-AO2 0.59 0.59 0.59 0.01 0.12 STORM-AO3 0.37 0.37 0.37 0.01 0.01 STORM-AO4 0.32 0.32 0.32 0.01 0.01 STORM-AO5 0.27 0.27 0.27 0.01 0.01 STORM-AO6 0.13 0.13 0.13 0.01 0.01 STORM-AO7 0.12 0.12 0.12 0.01 0.01 STORM-D 12.39 12.39 12.39 0.01 0.01 STORM-EO1 11.81 11.81 11.81 0.01 0.01 STORM-GO1 0.58 0.58 0.58 0.01 0.01 Analysis begun on: Fri Jul 23 13:54:24 2010 Analysis ended on: Fri Jul 23 13:54:49 2010 North College Corridor Improvements December 2009 12 of 12 2-Year EPASWMM Analysis EPASWMM Summary 2-yr INPUT 2-yr EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.018) -------------------------------------------------------------- 34444trtr44444444trtrtrtr44443344rt4333#3.R3hhhhhh w`h 44h #rt*h33tp44 NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not ust on results from each reportin time step. noth 4hh####results from eachh 4##hh#h4 4h4h#Rh4hhh#R#RR4# *44Q}444**R**#*Q Analysis Options }44}Q4Q}}Q44Q4}4 Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ DEC-15-2009 00:00:00 Ending Date .............. DEC-15-2009 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 wet Time Step ............ 00:05:00 Dry Time Step ............ 01:00:00 Routing Time Step ........ 1.00 sec WARNING 04: minimum elevation drop used for Conduit os5 WARNING 02: maximum depth increased for Node 02-MH-AO2_(SNOUT) WARNING 02: maximum depth increased for Node dcl WARNING 02: maximum depth increased for Node INLET-GO4 WARNING 02: maximum depth increased for Node INLET-101 WARNING 02: maximum depth increased for Node ssl WARNING 02: maximum depth increased for Node ss3 R RRRRRRRRRRRR Element Count 3 }4R4}R4RRRRR Number of rain gagges ...... 1 Number of subcatchments ... 39 Number of nodes ........... 72 Number of links ........... 94 Number of pollutants ...... 0 Number of land uses ....... 0 444444443444h4h4 Raingage Summary 444344trtr4434tr444 Data Recording Name Data source Type Interval COFCRainGage 2-year INTENSITY 5 min 3344444d4Q3434444444 subcatchment Summary 444444444 R4344444444 Name -------------------- E01 E02 E03 E04 EOS E06 E07 E08 E09 E10 E12 E13 OSO1 OS02 Area --------------------------------------------------------------------------- width %impery %Slope Rain Gage outlet 0.16 69.00 95.00 0.3400 COFCRainGage INLET-DO1 0.13 57.00 95.00 0.4100 COFCRainGage OFFSITE-2 0.07 31.00 95.00 0.4100 COFCRainGage OFFSITE-2 0.40 175.00 95.00 0.4100 COFCRainGage INLET-E01 0.24 104.00 95.00 0.4100 COFCRainGage INLET-GO1 0.53 232.00 95.00 0.4100 COFCRainGage INLET-GO2 0.40 173.00 95.00 0.4550 COFCRainGage INLET-GO3 0.29 127.00 95.00 0.5000 COFCRainGage INLET-GO4 0.59 256.00 95.00 0.7600 COFCRainGage INLET-GOS 0.73 318.00 95.00 0.2100 COFCRainGage OFFSITE-1 0.18 80.00 95.00 0.2100 COFCRainGage OFFSITE-1 0.05 25.00 95.00 0.4100 COFCRainGage OFFSITE-2 11.94 1733.00 70.00 0.5000 COFCRainGage os14 14.73 2138.00 65.00 0.5000 COFCRainGage ss9a Nonh College Corridor Improvements December 2009 1 of 12 os03 4.70 2047.00 40.00 0.5000 COFCRainGage ss3 OSO4 43.93 6378.00 45.00 0.5000 COFCRainGage S52 OS05 5.27 3062.00 5.00 0.5000 COFCRainGage Ssl os06 6.21 1352.00 45.00 0.5000 COFCRainGage ss2 OS07 1.35 589.00 95.00 0.5000 COFCRainGage ss4 OS08 4.30 1873.00 95.00 0.5000 COFCRainGage os2 OS09 30.80 4473.00 50.00 0.5000 COFCRainGage os2 OS10 8.49 3700.00 85.00 0.5000 COFCRainGage dcl 0511 17.62 2558.00 35.00 0.5000 COFCRainGage OS1 OS12 22.88 4983.00 55.00 0.5000 COFCRainGage Osl w01 0.31 136.00 95.00 0.3250 COFCRainGage WQ-POND W02 0.13 55.00 95.00 0.4300 COFCRainGage 04-INLET-AO1 w03 0.37 160.00 95.00 0.3800 COFCRainGage INLET-AO2 W04 0.14 62.00 95.00 0.3800 COFCRainGage INLET-F01 AS 0.34 146.00 95.00 0.3800 COFCRainGage INLET-HO1 w06 0.63 184.00 90.00 0.3800 COFCRainGage INLET-AO3 w07 0.45 132.00 90.00 0.4500 COFCRainGage INLET-AO4 w08 0.47 205.00 95.00 0.4500 COFCRainGage INLET-AO5 W09 0.17 72.00 95.00 0.4500 COFCRainGage sS10 w10 0.53 232.00 95.00 0.4500 COFCRainGage SS9 W11 0.27 119.00 95.00 0.4500 COFCRainGage INLET-AO6 w12 0.51 221.00 95.00 0.6550 COFCRainGage INLET-AO7 w13 0.66 286.00 95.00 0.8600 COFCRainGage INLET-AO8 w14 0.62 269.00 95.00 0.2400 COFCRainGage INLET-AO9 w18 1.84 802.00 5.00 0.1400 COFCRainGage wQ-POND <#trtrtr4R##rt4# Node Summary _#trtrtrtrtrtrtr### Invert Max. Ponded External Name Type Elev. Depth Area Inflow ------------------------------------------------------------------------------ 01-MH-AO1 JUNCTION 4957.59 7.35 0.0 02-MH-AO2_(SNOUT) JUNCTION 4957.82 9.01 0.0 03-MH-AO3_RISER\BENDJUNCTION 4958.07 7.19 0.0 04-INLET-AO1 JUNCTION 4958.18 7.25 0.0 OS-MH-AO4 JUNCTION 4958.32 6.48 0.0 06-DT-INLET-AO2 JUNCTION 4958.71 7.00 0.0 07-MH-AO5 JUNCTION 4958.75 6.60 0.0 08-MH-A06 JUNCTION 4959.58 6.71 0.0 09-MH-AO7 JUNCTION 4960.25 7.20 0.0 10-MH-AO8 JUNCTION 4960.82 6.10 0.0 11-DT-INLET-AO3 JUNCTION 4960.94 7.00 0.0 12-MH-AO9 JUNCTION 4961.78 5.98 0.0 13-DT-INLET-AO4 JUNCTION 4962.62 7.00 0.0 14-DT-INLET-AO5 JUNCTION 4963.55 7.00 0.0 15-MH-AIO JUNCTION 4963.76 5.38 0.0 16-MH-All JUNCTION 4964.28 6.42 0.0 17-DT-INLET-AO6 JUNCTION 4964.42 7.00 0.0 18-DT-INLET-AO7 JUNCTION 4965.03 7.00 0.0 19-MH-Al2 JUNCTION 496S.74 5.62 0.0 20-DT-INLET-AO8 JUNCTION 4965.78 7.00 0.0 21-DT-INLET-AO9 JUNCTION 4967.23 6.16 0.0 22-MH-A13 JUNCTION 4967.32 6.16 0.0 23-TIE-IN-EXO1 JUNCTION 4968.34 8.00 0.0 dcl JUNCTION 4976.00 6.00 0.0 INLET-AO2 JUNCTION 4960.48 5.32 0.0 INLET-AO3 JUNCTION 4961.72 6.11 0.0 INLET-AO4 JUNCTION 4963.26 5.59 0.0 INLET-A05 JUNCTION 4964.19 5.64 0.0 INLET-AO6 JUNCTION 4964.93 5.61 0.0 INLET-AO7 JUNCTION 4965.55 5.60 0.0 INLET-AO8 JUNCTION 4966.59 5.60 0.0 INLET-AO9 JUNCTION 4968.11 6.11 0.0 INLET-DO1 JUNCTION 4957.71 7.06 0.0 INLET-EO1 JUNCTION 4961.71 3.80 0.0 INLET-FO1 JUNCTION 4960.24 6.71 0.0 INLET-GO1 JUNCTION 4962.59 4.43 0.0 INLET-GO2 JUNCTION 4963.58 4.27 0.0 INLET-GO3 JUNCTION 4964.58 4.30 0.0 INLET-GO4 JUNCTION 4966.01 4.31 0.0 INLET-GO5 JUNCTION 4966.88 4.65 0.0 INLET-H01 JUNCTION 4960.90 6.16 0.0 INLET-101 JUNCTION 4958.07 7.43 0.0 LAKE -CANAL JUNCTION 4963.50 2.00 0.0 MH-BO1_TIDE-FLEX JUNCTION 4955.61 8.43 0.0 MH-E01 JUNCTION 4958.61 6.42 0.0 MH-GO1 JUNCTION 4960.17 6.88 0.0 MH-G02 JUNCTION 4962.93 4.33 0.0 MH-G03 JUNCTION 4964.17 4.30 •.0.0 MH-G04 JUNCTION 496S.93 3.97 0.0 MH-G05 JUNCTION 4966.80 4.28 0.0 051 JUNCTION 4978.00 2.00 0.0 os13 JUNCTION 4966.90 2.00 0.0 os14 JUNCTION 4964.40 2.00 0.0 os2 JUNCTION 4976.00 10.00 0.0 os8 JUNCTION 4971.00 2.00 0.0 SS1 JUNCTION 4972.00 6.00 0.0 S510 JUNCTION 4966.84 10.00 0.0 ss2 JUNCTION 4969.75 10.00 0.0 ss3 JUNCTION 4969.50 4.50 0.0 North College Corridor Improvements December 2009 2 of 12 ss4 JUNCTION 4968.85 5.45 0.0 sss JUNCTION 4968.42 6.29 0.0 ss9 JUNCTION 4966.09 10.00 .0.0 ss9a JUNCTION 4967.00 5.00 0.0 WQ-OUTLET JUNCTION 4955.64 8.36 0.0 OFFSITE-1 OUTFALL 0.00 0.00 0.0 OFFSITE-2 OUTFALL 0.00 0.00 0.0 OFFSITE-3 OUTFALL 4963.00 1.00 0.0 OFFSITE-4 OUTFALL 4963.00 1.00 0.0 PR-OUTLETI OUTFALL 0.00 0.15 0.0 PR-OUTLET2 OUTFALL 4955.53 4.00 0.0 PR-OUTLET3 OUTFALL 4955.00 9.76 0.0 WQ-POND STORAGE 4955.64 8.36 0.0 Link Summary rtrtrt#rtrt####n# Name From Node To Node Type Length %Slope Roughness ------------------------------------------------------------------------------------------ dry_creek dcl ssl CONDUIT 1600.0 0.2500 0.0450 INLET-AO2 INLET-AO2 06-DT-INLET-AO2 CONDUIT 4.5 9.0881 0.0130 INLET-AO3 INLET-AO3 11-DT-INLET-AO3 CONDUIT 3.3 2.1153 0.0130 INLET-AO4 INLET-AO4 13-DT-INLET-AO4 CONDUIT 4.5 2.0004 0.0130 INLET-AOS INLET-AO5 14-DT-INLET-AO5 CONDUIT 5.6 1.9507 0.0130 INLET-AO6 INLET-AO6 17-DT-INLET-AO6 CONDUIT 4.8 4.9958 0.0130 INLET-AO7 INLET-AO7 18-DT-INLET-AO7 CONDUIT 4.0 1.9855 0.0130 INLET-AO8 INLET-AO8 20-DT-INLET-AO8 CONDUIT 4.7 5.0913 0.0130 INLET-AO9 INLET-AO9 21-DT-INLET-A09 CONDUIT 4.7 5.0913 0.0130 INLET-FO1 INLET-FO1 08-MH-A06 CONDUIT 31.0 0.5161 0.0130 INLET-GO1 INLET-GO1 MH-GOl CONDUIT 18.0 0.5000 0.0130 INLET-GO2 INLET-GO2 MH-G02 CONDUIT 30.0 0.5000 0.0130 INLET-GO3 INLET-GO3 MH-G03 CONDUIT 17.0 0.4706 0.0130 INLET-GO4 INLET-GO4 MH-G04 CONDUIT 17.0 0.4706 0.0130 INLET-GOS INLET-GOS MH-GOS CONDUIT 17.0 0.4706 0.0130 INLET-HOI INLET-HO1 09-MH-AO7 CONDUIT 30.0 0.5000 0.0130 INLET-101 INLET-JO1 02-MH-AO2_(SNOUT)CONDUIT 50.0 0.5000 0.0130 051 Osl os2 CONDUIT 800.0 0.2500 0.1000 Os11 ss9a ss10 CONDUIT 127.0 1.0473 0.0160 os12 ss10 osl3 CONDUIT 500.0 0.3540 0.1000 os13 os13 os14 CONDUIT 300.0 0.8334 0.1000 os14 osl4 INLET-JO1 CONDUIT 210.0 0.1571 0.0450 os2 os2 ssl CONDUIT 450.0 0.2222 0.0700 os4 ssl ss2 CONDUIT 120.0 3.3352 0.0800 os5 ss2 ss3 CONDUIT 57.0 0.0018 0.0160 os6 ss3 Os8 CONDUIT 60.0 1.6669 0.1000 os7 ss4 058 CONDUIT 80.0 2.8762 0.0160 OS8 ss5 Os8 CONDUIT 60.0 4.5213 0.1000 059 058 LAKE -CANAL CONDUIT 2000.0 0.3750 0.1000 OVERFLOW-AO2-AOlINLET-AO2 04-INLET-AO1 CONDUIT 152.0 0.2434 0.0130 OVERFLOW-AO3-HOIINLET-AO3 INLET-HO1 CONDUIT 153.0 0.5033 0.0130 OVERFLOW-AO4-AO31NLET-AO4 INLET-AO3 CONDUIT 258.0 0.3954 0.0130 OVERFLOW-AOS-AO41NLET-AOS INLET-AO4 CONDUIT 203.0. 0.4828 0.0130 OVERFLOW-AO6-AO51NLET-AO6 INLET-AOS CONDUIT 191.0 0.3717 0.0130 OVERFLOW-A07-A06INLET-AO7 INLET-AO6 CONDUIT 133.0 0.4587 0.0130 OVERFLOW-AO8-AO71NLET-AO8 INLET-AO7 CONDUIT 164.0 0.6342 0.0130 OVERFLOW-AO9-AO81NLET-AO9 INLET-AO8 CONDUIT 318.0 0.6384 0.0130 OVERFLOW-DO1 INLET-DO1 OFFSITE-3 CONDUIT 100.0 0.7700 0.0130 OVERFLOW-E01 INLET-EO1 OFFSITE-4 CONDUIT 100.0 1.5102 0.0130 OVERFLOW-FO1-AOlINLET-FO1 INLET-AO2 CONDUIT 248.0 0.4637 0.0130 OVERFLOW-GO1-EO1INLET-GOI INLET-EO1 CONDUIT 361.0 0.4183 0.0130 OVERFLOW-GO2-GOlINLET-GO2 .INLET-GO1 CONDUIT 189.0 0.4392 0.0130 OVERFLOW-GO3-GO21NLET-GO3 INLET-GO2 CONDUIT 311.0 0.3312 0.0130 OVERFLOW-GO4-GO31NLET-GO4 INLET-GO3 CONDUIT 315.0 0.4571 0.0130 OVERFLOW-GOS-GO4INLET-GOS INLET-GO4 CONDUIT 218.0 0.5551 0.0130 OVERFLOW-HO1-FOIINLET-HO1 INLET-FO1 CONDUIT 40.0 0.2750 0.0130 OVERFLOW-MHA02-WQPOND02-MH-AO2_(SNOUT)WQ-POND CONDUIT 50.0 4.3842 0.0130 OVERFLOW-MHGOI-GOIMH-GO1 INLET-GO1 CONDUIT 18.0 0.1667 0.0130 SSI ssl ss4 CONDUIT 250.0 0.2600 0.0130 5s10 ss9 16-MH-All CONDUIT 50.0 0.3200 0.0130 ss2 ss2 ss3 - CONDUIT 57.0 0.4386 0.0130 ss3 ss3 s55 CONDUIT 220.0 0.4909 0.0130 ss4 ss4 ss5 CONDUIT 50.0 0.8600 0.0130 Ss6 ss5 23-TIE-IN-EXO1 CONDUIT 387.0 0.0207 0.0130 ss9 5510 ss9 CONDUIT 60.0 1.2501 0.0130 ss9a ss9a ss9 CONDUIT 127.0 0.5197 0.0130 STORM-AO1 O1-MH-AO1 WQ-POND CONDUIT 123.0 0.3496 0.0130 STORM-AO2 02-MH-AO2_(SNOUT)01-MH-AO1 CONDUIT 64.0 0.3594 0.0130 STORM-AO3 03-MH-AO3_RISER\BEND02-MH-AO2_(SNOUT)CONDUIT 72.0 0.3472 0.0130 STORM-AO4 04-INLET-AO1 03-MH-AO3_RISER\BENDCONDUIT 27.0 0.4074 0.0130 STORM-A05 05-MH-A04 04-INLET-AO1 CONDUIT 39.0 0.3590 0.0130 STORM-AO6 06-DT-INLET-AO2 05-MH-A04 CONDUIT 113.0 0.3451 0.0130 STORM-AO7 07-MH-AOS 06-DT-INLET-AO2 CONDUIT 10.0 0.4000 0.0130 STORM-AO8 08-MH-A06 07-MH-AOS CONDUIT 238.0 0.3487 0.0130 STORM-AO9 09-MH-AO7 08-MH-A06 CONDUIT 40.0 1.6752 0.0130 STORM-A10 10-MH-AO8 09-MH-AO7 CONDUIT 127.0 0.4488 0.0130 STORM -All 11-DT-INLET-AO3 10-MH-A08 CONDUIT 26.0 0.4615 0.0130 STORM-Al2 12-MH-AO9 11-OT-INLET-AO3 CONDUIT 182.0 0.4615 0.0130 STORM-A13 13-OT-INLET-AO4 12-MH-AO9 CONDUIT 76.0 0.4474 0.0130 STORM-A14 14-DT-INLET-AOS 13-DT-INLET-AO4 CONDUIT 203.0 0.4581 0.0130 STORM-A1S 15-MH-AlO 14-DT-INLET-AOS CONDUIT 45.0 0.4667 0.0130 STORM-A16 16-MH-All 15-MH-AlO CONDUIT 112.0 0.4643 0.0130 North College Corridor Improvements December 2009 3 of 12 STORM-A17 17-DT-INLET-AO6 16-MH-All CONDUIT 34.0 0.4118 0.0130 STORM-A18 18-DT-INLET-AO7 17-DT-INLET-AO6 CONDUIT 133.0 0.4587 0.0130 STORM-A19 19-MH-Al2 18-DT-INLET-AO7 CONDUIT 156.0 0.4551 0.0130 STORM-A20 20-DT-INLET-AO8 19-MH-Al2 CONDUIT 8.0 0.5000 0.0130 STORM-A21 21-DT-INLET-AO9 20-DT-INLET-AO8 CONDUIT 318.0 0.4560 0.0130 STORM-A22 22-MH-A13 21-DT-INLET-AO9 CONDUIT 17.0 0.5294 0.0130 STORM-A23 23-TIE-IN-EX01 22-MH-A13 CONDUIT 13.0 7.8704 0.0130 STORM-BO1 MH-901_TIDE-FLEXPR-OUTLET2 CONDUIT 34.0 0.2353 0.0130 STORM-BO2 WQ-OUTLET MH-BOLTIDE-FLEXCONDUIT 10.0 0.3000 0.0130 STORM-D INLET-DO1 WQ-POND CONDUIT 143.0 0.4056 0.0130 STORM-EO1 MH-E01 05-MH-A04 CONDUIT 59.0 0.4915 0.0130 STORM-EO2 INLET-EO1 MH-EO1 CONDUIT 19.0 0.5263 0.0130 STORM-GO1 MH-G01 08-MH-A06 CONDUIT 59.0 1.0001 0.0130 STORM-G02 MH-G02 MH-GO1 CONDUIT 189.0 0.4021 0.0130 STORM-GO3 MH-G03 MH-G02 CONDUIT 311.0 0.3987 0.0130 STORM-GO4 MH-G04 MH-G03 CONDUIT 315.0 0.4000 0.0130 STORM-GO5 MH-G05 MH-G04 CONDUIT 218.0 0.3991 0.0130 WQ-ORIFICE WQ-POND PR-OUTLETI ORIFICE WQ-SPILLWAY WQ-POND PR -OUTLETS WEIR WQ-OUTLET WQ-POND WQ-OUTLET WEIR OVERFLOW-301-WQPONDINLET-301 WQ-POND WEIR OVERFLOW-LAKE-CANALLAKE-CANAL WQ-POND WEIR R#RR#dEErtEddEdYYdddEG Cross Section #AFAR##EYEE#EEYEEEYdA Summary Full Full Hyd. Max. No. Of Full Conduit Shape Depth Area Rad. width Barrels Flow --------------------------------------------------------------------------------------- dry_creek TRAPEZOIDAL 6.00 174.00 3.19 53.00 1 623.09 INLET-AO2 CIRCULAR 1.50 1.77 0.38 1.50 1 31.67 INLET-AO3 CIRCULAR 1.50 1.77 0.38 1.50 1 15.28 INLET-AO4. CIRCULAR 1.50 1.77 0.38 1.50 1 14.86 INLET-AO5 CIRCULAR 1.50 1.77 0.38 1.50 1 14.67 INLET-AO6 CIRCULAR 1.50 1.77 0.38 1.50 1 23.48 INLET-AO7 CIRCULAR 1.50 1.77 0.38 1.50 1 14.80 INLET-AO8 CIRCULAR 1.50 1.77 0.38 1.50 1 23.70 INLET-AO9 CIRCULAR 1.50 1.77 0.38 1.50 1 23.70 INLET-FO1 CIRCULAR 1.50 1.77 0.38 1.50 1 7.55 INLET-GO1 HORIZ_ELLIPSE 1.17 1.73 0.36 1.92 1 7.03 INLET-GO2 HORIZ_ELLIPSE 1.17 1.73 0.36 1.92 1 7.03 INLET-GO3 HORIZ_ELLIPSE 1.17 1.73 0.36 1.92 1 6.82 INLET-GO4 CIRCULAR 1.50 1.77 0.38 1.50 1 7.21 INLET-G05 CIRCULAR 1.50 1.77 0.38 1.50 1 7.21 INLET-1-101 CIRCULAR 1.50 1.77 0.38 1.50 1 7.43 INLET-301 CIRCULAR 2.50 4.91 0.63 2.50 1 29.00 051 TRAPEZOIDAL 2.00 600.00 1.50 400.00 1 584.13 OS11 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 514.09 OS12 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 195.73 os13 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 300.31 os14 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 289.79 o52 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 221.54 os4 TRAPEZOIDAL 1.00 250.00 0.83 300.00 1 750.97 055 TRAPEZOIDAL 2.00 480.00 1.71 280.00 1 267.40 os6 TRAPEZOIDAL 1.00 260.00 0.81 320.00 1 434.32 os7 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 851.95 OS8 TRAPEZOIDAL 1.00 60.00 0.86 70.00 1 170.91 059 TRAPEZOIDAL 2.00 600.00 1.50 400.00 1 715.41 OVERFLOW-AO2-AO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 69.37 OVERFLOW-A03-H01 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 99.75 OVERFLOW-AO4-AO3 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 88.41 OVERFLOW-AOS-AO4 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 97.70 OVERFLOW-A06-A05 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 85.73 OVERFLOW-AO7-AO6 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 95.23 OVERFLOW-AO8-AO7 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 111.97 OVERFLOW-AO9-AO8 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 112.35 OVERFLOW-DO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 123.39 OVERFLOW-E01 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 172.80 OVERFLOW-F01-A01 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 95.75 OVERFLOW-GOI-EO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 90.94 OVERFLOW-G02-G01 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 93.18 OVERFLOW-GO3-GO2 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 80.92 OVERFLOW-GO4-GO3 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 95.07 OVERFLOW-GO5-GO4 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 104.76 OVERFLOW-HOI-FO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 73.74 OVERFLOW-MHA02-WQPOND TRAPEZOIDAL 1.00 20.00 0.66 30.00 1 364.50 OVERFLOW-MHGOI-GO1 TRAPEZOIDAL 1.00 15.00 0.74 20.00 1 57.40 5s1 FILLED_CIRCULAR 0.75 0.88 0.23 1.50 1 1.96 ss10 CIRCULAR 1.50 1.77 0.38 1.50 1 5.94 ss2 CIRCULAR 1.50 1.77 0.38 1.50 1 6.96 ss3 CIRCULAR 1.50 1.77 0.38 1.S0 1 7.36 ss4 CIRCULAR 3.00 7.07 0.75 3.00 1 61.85 ss6 CIRCULAR 3.00 7.07 0.75 3.00 1 9.59 Ss9 CIRCULAR 1.25 1.23 0.31 1.25 1 7.22 ss9a CIRCULAR 0.83 0.54 0.21 0.83 1 1.56 STORM-AO1 CIRCULAR 4.00 12.57 1.00 4.00 1 84.93 STORM-AO2 CIRCULAR 4.00 12.57 1.00 4.00 1 86.11 STORM-AO3 CIRCULAR 4.00 12.57 1.00 4.00 1 84.64 STORM-AO4 CIRCULAR 4.00 12.57 1.00 4.00 1 91.69 STORM-AO5 CIRCULAR 4.00 12.57 1.00 4.00 1 86.06 STORM-AO6 CIRCULAR 4.00 12.57 1.00 4.00 1 84.39 North College Corridor Improvements December 2009 4 of 12 STORM-A07 CIRCULAR 4.00 12.57 1.00 4.00 1 90.85 STORM-A08 CIRCULAR 4.00 12.57 1.00 4.00 1 84.83 STORM-A09 CIRCULAR 4.00 12.57 1.00 4.00 1 185.92 STORM-A10 CIRCULAR 3.50 9.62 0.88 3.50 1 67.40 STORM -All CIRCULAR 3.50 9.62 0.88 3.50 1 68.35 STORM-Al2 CIRCULAR 3.50 9.62 0.88 3.50 1 68.35 STORM-A13 CIRCULAR 3.50 9.62 0.88 3.50 1 67.29 STORM-A14 CIRCULAR 3.50 9.62 0.88 3.50 1 68.10 STORM-A15 CIRCULAR 3.50 9.62 0.88 3.50 1 68.73 STORM-A16 CIRCULAR 3.50 9.62 0.88 3.50 1 68.55 STORM-A17 CIRCULAR .3.00 7.07 0.75 3.00 1 42.80 STORM-A18 CIRCULAR 3.00 7.07 0.75 3.00 1 45.17 STORM-A19 CIRCULAR 3.00 7.07 0.75 3.00 1 45.00 STORM-A20 CIRCULAR 3.00 7.07 0.75 3.00 1 47.16 STORM-A21 CIRCULAR 3.00 7.07 0.75 3.00 1 45.04 STORM-A22 CIRCULAR 3.00 7.07 0.75 3.00 1 48.53 STORM-A23 CIRCULAR 3.00 7.07 0.75 3.00 1 187.12 STORM-BO1 CIRCULAR 4.00 12.57 1.00 4.00 1 69.68 STORM-602 CIRCULAR 4.00 12.57 1.00 4.00 1 78.68 STORM-D CIRCULAR 2.00 3.14 0.50 2.00 1 14.41 STORM-E01 HORIZ_ELLIPSE 1.17 1.74 0.36 1.92 1 7.02 STORM-E02 HORIZ_ELLIPSE 1.17 1.74 0.36 1.92 1 7.27 STORM-GOS CIRCULAR 2.00 3.14 0.50 2.00 1 22.62 STORM-G02 CIRCULAR 2.00 3.14 0.50 2.00 1 14.35 STORM-G03 CIRCULAR 2.00 3.14 0.50 2.00 1 14.28 STORM-G04 CIRCULAR 1.50 1.77 0.38 1.50 1 6.64 STORM-G05 CIRCULAR 1.50 1.77 0.38 1.50 1 6.64 North College Condor Improvements December 20D9 5 of 12 OUTPUT 2-yr volume Depth Runoff Quantity Continuity ####A####AA#A#AAA33334###k acre-feet inches Total Precipitation ...... _________ 14.955 ------- 0.978 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 6.856 0.448 Surface Runoff ........... 7.552 0.494 Final Surface storage .... 0.615 0.040 continuity Error (%) ..... -0.457 volume volume Flow Routing continuity 44#344rtrtrt#########CRA3A443 acre-feet 10A6 gal Dry weather Inflow ....... _________ 0.000 --------- 0.000 wet weather Inflow ....... 7.564 2.465 Groundwater Inflow ....... 0.000 0.000 RDII Inflow ............. 0.000 0.000 External Inflow .......... 0.003 0.001 External Outflow ......... 6.724 2.191 internal outflow ......... 0.000 0.000 Storage Losses ........... 0.000 0.000 Initial stored volume .... 0.002 0.001 Final Stored volume ...... 0.698 0.227 Continuity Error (%) ..... 1.941 44rtrtA#A###AAA#AAAtrAAAAAAA Highest Continuity Errors AAAAA4A4AA4AArtA#ARAAARAA* Node os2 (12.70%) Node os13 (4.10%) Node MH-E01 (3.96%) Node os8 (3.79%) Node LAKE -CANAL (1.58%) A#k##A#CA#AA#AA#A4334kk#k#k Time -Step critical Elements rt #AAAAA#tr#AAA4A34+.34kAA#### None 4 k4krtrtkkkkkkkk#k*4*33t344434!ektk Highest Flow Instability Indexes rt kkk k#kkArtkrtA4*A3444'ek4kkkk#kR4k All links are stable. 3 rt4rt4kk4#Art##A#CAA#**A434 Routing Time Step summary z zzz S.AAAZAAz4tAC t.4z4zzkzz Minimum Time Step 0.50 sec Average Time Step 1.00 sec Maximum Time step 1.00 sec Percent in steady state 0.00 Average Iterations per step 2.00 AA44A443444344443343434#AA* subcatchment Runoff Summary 3443444434444#k4#A###43 3 Total Total Total Precip Runon Evap Subcatchment in in in -------------------- E01 0.978 --------------- 0.000 0.000 E02 0.978 0.000 0.000 E03 0.978 0.000 0.000 E04 0.978 0.000 0.000 E05 0.978 0.000 0.000 E06 0.978 0.000 0.000 E07 0.978 0.000 0.000 E08 0.978 0.000 0.000 E09 0.978 0.000 0.000 E10 0.978 0.000 0.000 E12 0.978 0.000 0.000 E13 0.978 0.000 0.000 Os01 0.978 0.000 0.000 OS02 0.978 0.000 0.000 os03 0.978 0.000 0.000 os04 0.978 0.000 0.000 OS05 0.978 0.000 0.000 OS06 0.978 0.000 0.000 os07 0.978 0.000 0.000 ------------------------------------------- Total Total Total Peak Runoff Infil Runoff Runoff Runoff Coeff in in 10A6 gal CFS ------------------------------------------- 0.049 0.866 0.004 0.391 0.885 0.049 0.866 0.003 0.323 0.885 0.049 0.866 0.002 0.174 0.885 0.049 0.866 0.009 0.993 0.885 0.049 0.866 0.006 0.595 0.885 0.049 0.866 0.012 1.316 0.885 0.049 0.866 0.009 0.998 0.885 0.049 0.866 0.007 0.730 0.885 0.049 0.866 0.014 1.519 0.885 0.046 0.869 0.017 1.709 0.888 0.046 0.869 0.004 0.423 0.888 0.049 0.866 0.001 0.126 0.885 0.289 0.642 0.208 18.822 0.656 0.338 0.597 0.239 22.021 0.610 0.575 0.377 0.048 5.335 0.385 0.533 0.415 0.495 49.534 0.424 0.912 0.063 0.009 0.785 0.065 0.531 0.417 0.070 7.458 0.427 0.046 0.870 0.032 3.400 0.889 North College Corridor Improvements December 2009 6 of 12 0508 0.978 0.000 0.000 0.046 0.870 0.102 10.828 0.889 OS09 0.978 0.000 0.000 0.484 0.461 0.385 37.771 0.471 Oslo 0.978 0.000 0.000 0.140 0.782 0.180 19.392 0.799 osil 0.978 0.000 0.000 0.631 0.324 0.155 16.123 0.331 osi2 0.978 0.000 0.000 0.434 0.508 0.316 32.670 0.520 w01 0.978 0.000 0.000 0.049 0.866 0.007 0.756 0.885 w02 0.978 0.000 0.000 0.049 0.866 0.003 0.322 0.885 w03 0.978 0.000 0.000 0.049 0.866 0.009 0.912 0.885 w04 0.978 0.000 0.000 0.049 0.866 0.003 0.346 0.885 w05 0.978 0.000 0.000 0.049 0.866 0.008 0.837 0.885 w06 0.978 0.000 0.000 0.098 0.820 0.014 1.381 0.838 w07 0.978 0.000 0.000 0.098 0.820 0.010 1.005 0.838 w08 0.978 0.000 0.000 0.049 0.866 0.011 1.174 0.885 w09 0.978 0.000 0.000 0.046 0.869 0.004 0.423 0.889 w10 0.978 0.000 0.000 0.046 0.869 0.013 1.326 0.889 wil 0.978 0.000 0.000 0.049 0.866 0.006 0.675 0.885 w12 0.978 0.000 0.000 0.049 0.866 0.012 1.302 0.885 w13 0.978 0.000 0.000 0.049 0.866 0.016 1.709 0.885 w14 0.978 0.000 0.000 0.049 0.866 0.015 1.469 0.885 w18 -------------------------------------------------------------------------------------------- 0.978 0.000 0.000 0.929 0.046 0.002 0.264 0.047 System 0.978 0.000 0.000 0.448 0.494 2.461 247.339 0.505 ARRRRRRR###A#AAR Node Depth Summary RRR#RAArtRRAR:}###AA ------------------------- Average Maximum Maximum Depth Depth HGL Node Type Feet Feet Feet -------------------------------------------------------- 01-MH-AO1 JUNCTION 2.13 3.21 4960.80 02-MH-A02_(SNOUT) JUNCTION 1.93 3.37 4961.19 03-MH-AO3_RISER\BEND JUNCTION 1.69 3.16 4961.23 04-INLET-AO1 JUNCTION 1.59 3.10 4961.28 OS-MH-AO4 JUNCTION 1.46 3.00 4961.32 06-DT-INLET-AO2 JUNCTION 1.08 2.71 4961.42 07-MH-AO5 JUNCTION 1.05 2.69 4961.44 08-MH-A06 JUNCTION 0.38 2.16 4961.74 09-MH-A07 JUNCTION 0.28 1.68 4961.93 10-MH-A08 JUNCTION 0.37 1.83 4962.65 11-DT-INLET-AO3 JUNCTION 0.38 1.98 4962.92 12-MH-AO9 JUNCTION 0.36 1.78 4963.56 13-OT-INLET-AO4 JUNCTION 0.36 1.73 4964.35 14-DT-INLET-AO5 JUNCTION 0.36 1.77 4965.32 15-MH-AIO JUNCTION 0.36 1.76 4965.52 16-MH-All JUNCTION 0.37 1.80 4966.08 17-DT-INLET-AO6 JUNCTION 0.39 1.81 4966.23 18-DT-INLET-AO7 JUNCTION 0.36 1.42 4966.45 19-MH-Al2 JUNCTION 0.36 1.32 4967.06 20-DT-INLET-AO8 JUNCTION 0.38 1.44 4967.22 21-DT-INLET-AO9 JUNCTION 0.36 1.24 4968.47 22-MH-A13 JUNCTION 0.35 1.23 4968.55 23-TIE-IN-EXO1 JUNCTION 0.18 0.61 4968.95 dcl JUNCTION 0.07 1.17 4977.17 INLET-AO2 JUNCTION 0.03 1.30 4961.78 INLET-AO3 JUNCTION 0.05 1.21 4962.93 INLET-AO4 JUNCTION 0.05 1.10 4964.36 INLET-AO5 JUNCTION 0.05 1.14 4965.33 INLET-AO6 JUNCTION 0.10 1.30 4966.23 INLET-AO7 JUNCTION 0.07 0.91 4966.46 INLET-A08 JUNCTION 0.03 0.65 4967.24 INLET-AO9 JUNCTION 0.02 0.46 4968.57 INLET-DO1 JUNCTION 2.00 3.07 4960.78 INLET-EO1 JUNCTION 0.01 0.33 4962.04 INLET-FO1 JUNCTION 0.06 1.51 4961.75 INLET-GO1 JUNCTION 0.01 0.30 4962.89 INLET-GO2 JUNCTION 0.02 0.44 4964.02 INLET-GO3 JUNCTION 0.01 0.41 4964.99 INLET-GO4 JUNCTION 0.02 0.52 4966.53 INLET-GO5 JUNCTION 0.02 0.61 4967.49 INLET-HO1 JUNCTION 0.04 1.03 4961.93 INLET-301 JUNCTION 1.69 3.14 4961.21 LAKE -CANAL JUNCTION 0.01 0.03 4963.53 MH-BOi_TIDE-FLEX JUNCTION 0.64 2.28 4957.89 MH-EO1 JUNCTION 1.17 2.71 4961.32 MH-GO1 JUNCTION 0.07 1.62 4961.79 MH-G02 JUNCTION 0.03 0.79 4963.72 MH-G03 JUNCTION 0.03 0.61 4964.78 MH-G04 JUNCTION 0.03 0.57 4966.50 MH-G05 JUNCTION 0.02 0.48 4967.28 osl JUNCTION 0.02 0.32 4978.32 osl3 JUNCTION 0.00 0.01 4966.91 os14 JUNCTION 0.02 0.17 4964.57 os2 JUNCTION 0.03 0.34 4976.34 Os8 JUNCTION 0.03 0.14 4971.14 ssl JUNCTION 1.83 3.88 4975.88 ss10 JUNCTION 0.05 1.91 4968.75 ss2 JUNCTION 0.16 2.67 4972.42 ss3 JUNCTION 0.16 2.91 4972.41 Time of Max Occurrence days hr:min 01:06 01:02 01:02 01:02 01:01 00:45 00:44 00:44 00:43 00:42 00:42 00:42 00:42 00:42 00:42 00:41 00:41 00:41 00:41 00:41 00:41 00:41 00:40 00:44 00:43 00:42 00:42 00:42 00:41 00:41 00:41 00:40 01:07 00:40 00:43 00:40 00:40 00:40 00:41 00:40 00:43 01:02 02:26 01:07 01:01 00:43 00:42 00:41 00:41 00:40 00:49 01:02 00:54 01:13 01:03 02:51 00:48 00:42 00:42 North College Corridor Improvements December 2009 7 of 12 ss4 JUNCTION 0.31 1.20 4970.05 0 00:40 ss5 JUNCTION 0.59 1.64 4970.06 0 00:40 ss9 JUNCTION 0.11 1.84 4967.93 0 00:40 ss9a JUNCTION 0.20 4.14 4971.14 0 00:40 wQ-OUTLET JUNCTION 0.65 2.44 4958.08 0 01:07 OFFSITE-1 OUTFALL 0.00 0.00 0.00 0 00:00 OFFSITE-2 OUTFALL 0.00 0.00 0.00 0 00:00 OFFSITE-3 OUTFALL 0.00 0.00 4963.00 0 00:00 OFFSITE-4 OUTFALL 0.00 0.00 4963.00 0 00:00 PR-OUTLETI OUTFALL 0.00 0.00 0.00 0 00:00 PR-OUTLET2 OUTFALL O.S8 1.69 4957.22 0 01:07 PR-OUTLET3 OUTFALL 0.00 0.00 4955.00 0 00:00 WQ-POND STORAGE 4.02 5.09 4960.73 0 01:07 Node Inflow Summary ------------------------------------------------------------------------------------- Maximum Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence volume volume Node Type CFS CFS days hr:min 10A6 gal 10A6 gal ------------------------------------------------------------------------------------- 01-MH-AO1 JUNCTION 0.00 43.04 0 00:45 0.000 2.070 02-MH-A02_(SNOUT) JUNCTION 0.00 43.51 0 00:44 0.000 2.074 03-MH-AO3_RISER\BEND JUNCTION 0.00 39.22 0 00:43 0.000-. 1.862 04-INLET-AO1 JUNCTION 0.32 39.7S 0 00:43 0.003 1.863 05-MH-AO4 JUNCTION 0.00 39.77 0 00:43 0.000 1.862 06-DT-INLET-AO2 JUNCTION 0.00 42.81 0 00:43 0.000 1.856 07-MH-AOS JUNCTION 0.00 38.75 0 00:43 0.000 1.847 08-MH-A06 JUNCTION 0.00 38.65 0 00:43 0.000 1.847 09-MH-A07 JUNCTION 0.00 34.07 0 00:42 0.000 1.795 10-MH-AO8 JUNCTION 0.00 33.44 0 00:42 0.000 1.787 11-OT-INLET-AO3 JUNCTION 0.00 33.46 0 00:42 0.000 1.787 12-MH-AO9 JUNCTION 0.00 32.34 0 00:42 0.000 1.773 13-DT-INLET-AO4 JUNCTION 0.00 32.34 0 00:42 0.000 1.773 14-DT-INLET-AO5 JUNCTION 0.00 31.50 0 00:42 0.000 1.763 15-MH-AlO JUNCTION 0.00 30.55 0 00:42 0.000 1.752 16-MH-All JUNCTION 0.00 30.54 0 00:41 0.000 1.752 17-DT-INLET-AO6 JUNCTION 0.00 18.51 0 00:41 0.000 1.502 18-DT-INLET-AO7 JUNCTION 0.00 17.9S 0 00:41 0.000 1.495 19-MH-Al2 JUNCTION 0.00 16.84 0 00:41 0.000 1.483 20-DT-INLET-AO8 JUNCTION 0.00 16.88 0 00:41 0.000 1.483 21-DT-INLET-AO9 JUNCTION 0.00 1S.39 0 00:41 0.000 1.468 22-MH-A13 JUNCTION 0.00 14.05 0 00:41 0.000 1.453 23-TIE-IN-EXOI JUNCTION 0.00 14.04 0 00:40 0.000 1.453 dcl JUNCTION 19.39 19.39 0 00:40 0.181 0.181 INLET-AO2 JUNCTION 0.91 3.17 0 00:42 0.009 0.011 INLET-AO3 JUNCTION 1.38 1.38 0 00:40 0.014 0.014 INLET-AO4 JUNCTION 1.01 1.01 0 00:40 0.010 0.010 INLET-A05 JUNCTION 1.17 1.17 0 00:40 0.011 0.011 INLET-AO6 JUNCTION 0.68 0.68 0 00:40 0.006 0.006 INLET-AO7 JUNCTION 1.30 1.30 0 00:40 0.012 0.012 INLET-AO8 JUNCTION 1.71 1.71 0 00:40 0.016 0.016 INLET-AO9 JUNCTION 1.47 1.47 0 00:40 0.015 0.01S INLET-001 JUNCTION 0.39 1.10 0 00:41 0.004 0.012 INLET-EO1 JUNCTION 0.99 0.99 0 00:40 0.009 0.009 INLET-FO1 JUNCTION 0.35 0.35 0 00:40 0.003 0.003 INLET-GO1 JUNCTION 0.59 0.59 0 00:40 0.006 0.006 INLET-GO2 JUNCTION 1.32 1.32 0 00:40 0.012 0.012 INLET-GO3 JUNCTION 1.00 1.00 0 00:40 0.009 0.009 INLET-GO4 JUNCTION 0.73 0.73 0 00:40 0.007 0.007 INLET-G05 JUNCTION 1.52 1.52 0 00:40 0.014 0.014 INLET-HO1 JUNCTION 0.84 0.84 0 00:40 0.008 0.008 INLET-301 JUNCTION 0.00 6.55 0 00:54 0.000 0.214 LAKE -CANAL JUNCTION 0.00 2.61 0 01:07 0.000 0.240 MH-BOLTIDE-FLEX JUNCTION 0.00 32.59 0 01:07 0.000 2.051 MH-EO1 JUNCTION 0.00 0.99 0 00:40 0.000 0.009 MH-GO1 JUNCTION 0.00 4.35 0 00:42 0.000 0.048 MH-G02 JUNCTION 0.00 4.01 0 00:41 0.000 0.043 MH-G03 JUNCTION 0.00 2.87 0 00:41 0.000 0.030 MH-G04 JUNCTION 0.00 2.17 0 00:40 0.000 0.021 MH-GOS JUNCTION 0.00 1.51 0 00:40 0.000 0.014 osl JUNCTION 48.79 48.79 0 00:40 0.472 0.472 os13 JUNCTION 0.00 0.98 0 00:49 0.000 0.006 os14 JUNCTION 18.82 18.82 0 00:40 0.208 0.215 os2 JUNCTION 48.60 56.45 0 00:40 0.487 0.962 Os8 JUNCTION 0.00 38.53 0 00:43 0.000 0.250 ssl JUNCTION 0.79 32.59 0 01:24 0.009 1.065 S510 JUNCTION 0.42 18.35 0 00:40 0.004 0.112 ss2 JUNCTION 56.99 56.99 0 00:40 0.566 0.566 ss3 JUNCTION 5.33 49.28 0 00:41 0.048 0.613 ss4 JUNCTION 3.40 4.37 0 02:05 0.032 1.090 ss5 JUNCTION 0.00 14.13 0 00:40 0.000 1.453 ss9 JUNCTION 1.33 12.10 0 00:40 0.013 0.250 ss9a JUNCTION 22.02 22.02 0 00:40 0.239 0.239 WQ-OUTLET JUNCTION 0.00 32.59 0 01:07 0.000 2.050 OFFSITE-1 OUTFALL 2.13 2.13 0 00:40 0.021 0.021 OFFSITE-2 OUTFALL 0.62 0.62 0 00:40 0.006 0.006 OFFSITE-3 OUTFALL 0.00 0.00 0 00:00 0.000 0.000 North College Corridor Improvements December 2009 8 of 12 OFFSITE-4 OUTFALL 0.00 0.00 0 00:00 0.000 0.000 PR-OUTLETI OUTFALL 0.00 0.21 0 01:07 0.000 0.114 PR-OUTLET2 OUTFALL 0.00 32.59 0 01:07 0.000 2.051 PR-OUTLET3 OUTFALL 0.00 0.00 0 00:00 0.000 0.000 wQ-POND STORAGE 1.02 43.56 0 00:44 0.010 2.320 Node Surcharge Summary kk#kkk#k##kk##k#k##k## Surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- max. Height min. Depth Hours Above Crown Below Rim Node Type surcharged Feet Feet --------------------------------------------------------------------- ss9 JUNCTION 0.49 0.336 8.164 S SEEEEEEEEEEEEEEEEEkE Node Flooding Summary E SSEEEEEEEEEEEEEErtSES No nodes were flooded. #Ek#rt#rtrt##rtrtrt##rtrt#k#".# � Storage volume Summary k##rt###rt#rtrtrt#rt#rtrt#k#i.S -------------------------------------------------------------------------------------------- Average Avg E&I maximum Max Time of max maximum volume Pcnt Pcnt volume Pcnt occurrence Outflow Storage Unit 1000 ft3 Full Loss 1000 ft3 Full days hr:min CFS -------------------------------------------------------------------------------- wQ-POND 23.SO2 15 0 39.973 26 0 01:07 33.09 E SEE##EEk###kE##k##SS Outfall Loading Summary EEE###rt###rt#rtrtrtrtEk#SGSS ----------------------------------------------------------- Flow Avg. Max. Total Freq. Flow Flow volume Outfall Node Pcnt. CFS CFS 10A6 gal ----------------------------------------------------------- OFFSITE-1 19.30 0.18 2.13 0.021 OFFSITE-2 13.11 0.07 0.62 0.006 OFFSITE-3 0.00 0.00 0.00 0.000 OFFSITE-4 0.00 0.00 0.00 0.000 PR-OUTLETI 99.54 0.18 0.21 0.114 PR-OUTLET2 90.93 3.64 32.59 2.051 PR -OUTLETS 0.00 0.00 0.00 0.000 ----------------------------------------------------------- System 31.84 4.08 33.17 2.192 SEE##########rtrt####k Link Flow Summary }EEEEEEEEEEEEEE4EEEE ----------------------------------------------------------------------------- maximum Time of Max maximum max/ max/ ]Flow) Occurrence velocity Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------------- dry_Creek CONDUIT 14.45 0 00:47 1.36 0.02 0.34 INLET-AO2 CONDUIT 3.48 0 00:42 6.28 0.11 0.87 INLET-AO3 CONDUIT 1.36 0 00:40 2.34 0.09 0.83 INLET-AO4 CONDUIT 0.99 0 00:40 2.07 0.07 0.76 INLET-A05 CONDUIT 1.16 0 00:40 2.18 0.08 0.80 INLET-AO6 CONDUIT 0.66 0 00:40 2.09 0.03 0.93 INLET-AO7 CONDUIT 1.29 0 00:40 2.08 0.09 0.63 INLET-AO8 CONDUIT 1.70 0 00:40 3.17 0.07 0.51 INLET-AO9 CONDUIT 1.46 0 00:40 3.06 0.06 0.35 INLET-F01 CONDUIT 0.34 0 00:40 1.20 0.04 1.00 INLET-GO1 CONDUIT 0.59 0 00:40 2.11 0.08 0.24 INLET-GO2 CONDUIT 1.30 0 00:40 2.66 0.19 0.35 INLET-GO3 CONDUIT 0.99 0 00:40 2.35 0.15 0.32 INLET-GO4 - CONDUIT 0.72 0 00:40 1.30 0.10 0.36 INLET-G05 CONDUIT 1.51 0 00:40 2.62 0.21 0.36 INLET-H01 CONDUIT 0.81 0 00:40 1.64 0.11 0.74 INLET-701 CONDUIT 6.58 0 00:53 1.34 0.23 1.00 osl CONDUIT 20.40 0 00:54 0.32 0.03 0.15 osll CONDUIT 17.94 0 00:40 2.51 0.03 0.14 os12 CONDUIT 0.98 0 00:49 0.11 0.00 0.04 Os13 CONDUIT 0.12 0 01:02 0.01 0.00 0.09 os14 CONDUIT 6.55 0 00:54 0.32 0.02 0.10 os2 CONDUIT 29.82 0 01:24 0.44 0.13 0.49 os4 CONDUIT 0.00 0 00:00 0.00 0.00 0.21 North College Corridor Improvements December 2009 9 of 12 os5 CONDUIT 43.94 0 00:42 0.73 0.16 0.21 os6 CONDUIT 38.53 0 00:43 0.79 0.09 0.23 os7 CONDUIT 0.00 0 00:00 0.00 0.00 0.07 058 CONDUIT 0.00 0 00:00 0.00 0.00 0.07 Os9 CONDUIT 2.61 0 01:07 0.16 0.00 0.04 OVERFLOW-AO2-AO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-A03-H01 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO4-AO3 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-A05-A04 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-A06-A05 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO7-AO6 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-A08-A07 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-AO9-AO8 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-DO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-EO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-F01-A01 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GO1-EO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GO2-GO1 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GO3-GO2 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GO4-GO3 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-GO5-GO4 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-HOI-F01 CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-MHA02-WQPOND CONDUIT 0.00 0 00:00 0.00 0.00 0.00 OVERFLOW-MHGOI-GOI CONDUIT 0.00 0 00:00 0.00 0.00 0.00 ssl CONDUIT 4.27 0 02:52 5.01 2.18 0.90 ss10 CONDUIT 12.10 0 00:40 7.02 2.04 0.94 ss2 CONDUIT 9.37 0 00:28 5.30 1.35 1.00 ss3 CONDUIT 10.95 0 00:44 6.20 1.49 1.00 ss4 CONDUIT 4.39 0 02:06 3.10 0.07 0.47 ss6 CONDUIT 14.04 0 00:40 5.83 1.46 0.37 Ss9 CONDUIT 7.83 0 00:53 6.38 1.08 1.00 ss9a CONDUIT 3.88 0 00:32 7.18 2.48 1.00 STORM-AO1 CONDUIT 42.27 0 00:44 6.43 0.50 0.85 STORM-AO2 CONDUIT 43.04 0 00:45 4.92 0.50 0.82 STORM-AO3 CONDUIT 39.19 0 00:43 3.96 0.46 0.82 STORM-AO4 CONDUIT 39.22 0 00:43 4.12 0.43 0.78 STORM-AO5 CONDUIT 39.54 0 00:43 4.13 0.46 0.76 STORM-AO6 CONDUIT 39.06 0 00:43 4.40 0.46 0.71 STORM-AO7 CONDUIT 42.81 0 00:43 4.97 0.47 0.67 STORM-AO8 CONDUIT 38.75 0 00:43 5.21 0.46 0.60 STORM-AO9 CONDUIT 34.05 0 00:43 5.92 0.18 0.48 STORM-A10 CONDUIT 33.44 0 00:42 6.96 0.50 0.50 STORM -All CONDUIT 33.44 0 00:42 6.25 0.49 0.54 STORM-Al2 CONDUIT 32.36 0 00:42 6.14 0.47 0.54 STORM-A13 CONDUIT 32.34 0 00:42 6.86 0.48 0.49 STORM-A14 CONDUIT 31.52 0 00:42 6.54 0.46 0.50 STORM-A15 CONDUIT 30.56 0 00:42 6.29 0.44 0.50 STORM-A16 CONDUIT 30.55 0 00:42 6.22 0.45 0.51 STORM-A17 CONDUIT 18.51 0 00:42 4.77 0.43 0.60 STORM-A18 CONDUIT 17.95 0 00:42 4.91 0.40 0.54 STORM-A19 CONDUIT 16.86 0 00:41 5.41 0.37 0.46 STORM-A20 CONDUIT 16.84 0 00:41 5.30 0.36 0.46 STORM-A21 CONDUIT 15.40 0 00:41 5.09 0.34 0.45 STORM-A22 CONDUIT 14.05 0 00:41 5.35 0.29 0.41 STORM-A23 CONDUIT 14.05 0 00:41 7.90 0.08 0.31 STORM-1301 CONDUIT 32.59 0 01:07 5.23 0.47 0.50 STORM-1102 CONDUIT 32.59 0 01:07 4.22 0.41 0.59 STORM-D CONDUIT 0.77 0 00:41 1.51 0.05 1.00 STORM-EO1 CONDUIT 1.01 0 00:40 0.63 0.14 1.00 STORM-EO2 CONDUIT 0.99 0 00:40 2.80 0.14 0.28 STORM-GO1 CONDUIT 4.39 0 00:42 1.48 0.19 0.90 STORM-GO2 CONDUIT 3.88 0 00:42 3.67 0.27 0.37 STORM-GO3 CONDUIT 2.84 0 00:41 2.94 0.20 0.35 STORM-GO4 CONDUIT 1.99 0 00:41 3.37 0.30 0.37 STORM-GO5 CONDUIT 1.46 0 00:40 2.72 0.22 0.35 WQ-ORIFICE ORIFICE 0.21 0 01:07 WQ-SPILLWAY WEIR 0.00 0 00:00 0.00 WQ-OUTLET WEIR 32.59 0 01:07 0.26 OVERFLOW- 701-WQPOND WEIR 0.00 0 00:00 0.00 OVERFLOW -LAKE -CANAL WEIR 1.85 0 02:26 0.02 .. .. ..##h#3f.###fr##hRh tfthhgfrtOR Flow Classification Summary Conduit dry -Creek INLET-AO2 INLET-AO3 INLET-AO4 INLET-AO5 INLET-AO6 INLET-AO7 INLET-AO8 INLET-AO9 INLET-FO1 INLET-GO1 ---------------------------------------------------------- Adjusted --- Fraction of Time in Flow Class ---- /Actual Up Down Sub Sup Up Down Length Dry Dry Dry Crit Crit Crit Crit ----------------------------------------------- 1.00 0.00 0.00 0.00 1.00 0.00 5.49 0.00 0.00 0.00 0.09 0.01 4.71 0.00 0.00 0.00 0.08 0.00 3.41 0.00 0.00 0.00 0.36 0.00 2.70 0.00 0.00 0.00 0.38 0.00 4.21 0.00 0.01 0.00 0.49 0.00 3.80 0.00 0.00 0.00 0.45 0.00 4.31 0.00 0.00 0.00 0.40 0.00 4.31 0.00 0.00 0.00 0.08 0.01 1.00 0.00 0.00 0.00 0.41 0.00 1.00 0.00 0.00 0.00 0.00 0.00 Avg. Avg. Froude Flow Number Change ---------------------------- 0.00 0.00 0.01 0.0000 0.00 0.89 0.59 0.0001 0.00 0.91 0.62 0.0000 0.00 0.63 0.19 0.0000 0.00 0.61 0.12 0.0000 0.00 0.50 0.05 0.0000 0.00 0.55 0.07 0.0000 0.00 0.60 0.12 0.0000 0.00 0.90 0.76 0.0000 0.00 0.58 0.04 0.0000 0.00 1.00 0.20 0.0000 North College Corridor Improvements December 2009 10 of 12 INLET-GO2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.25 0:0000 INLET-GO3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.22 0.0000 INLET-GO4 1.00 0.00 0.11 0.00 0.89 0.00 0.00 0.00 0.12 0.0000 INLET-GO5 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.25 0.0000 INLET-HO1 1.00 0.00 0.00 0.00 0.09 0.00 0.00 0.91 0.26 0.0000 INLET-301 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 osl 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 osll 1.00 0.97 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.0000 os12 1.00 0.03 OAS 0.00 0.02 0.00 0.00 0.00 0.00 0.0000 os13 1.00 0.00 0.03 0.00 0.97 0.00 0.00 0.00 0.01 0.0000 os14 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.10 0.0000 os2 1.00 0.00 0.00 0.00 0.32 0.00 0.00 0.68 0.06 0.0000 os4 1.00 0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os5 1.00 0.96 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.0000 os6 1.00 0.02 OAS 0.00 0.03 0.00 0.00 0.00 0.01 0.0000 os7 1.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os8 1.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 os9 1.00 0.02 0.00 0.00 0.98 0.00 0.00 0.00 0.08 0.0000 OVERFLOW-AO2-AO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-A03-HO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLow-AO4-AO3 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-A05-AO4 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO6-AO5 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO7-AO6 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO8-AO7 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-AO9-AO8 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-DO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-EO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-FOI-AO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO1-EO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO2-GO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO3-GO2 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO4-GO3 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-GO5-GO4 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-HOI-FO1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-MHA02-WQPOND 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 OVERFLOW-MHGOI-GOI 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 ssl 1.00 0.03 0.00 0.00 0.00 0.00 0.00 0.97 0.67 0.0001 ss10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.63 0.0000 ss2 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.57 0.0001 ss3 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.05 0.0000 ss4 1.00 0.00 0.00 0.00 1.00 0.00 0.00. 0.00 0.43 0.0000 ss6 1.00 0.00 0.00 0.00 0.60 0.39 0.00 0.00 0.65 0.0000 ss9 1.00 0.00 0.19 0.00 0.80 0.00 0.00 0.00 0.01 0.0000 ss9a 1.00 0.00 0.00 0.00 0.02 0.00 0.00 0.97 0.86 0.0001 STORM-A01 1.00 0.01 0.00 0.00 0.97 0.00 0.00 0.02 0.06 0.0000 STORM-AO2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.06 0.0000 STORM-AO3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.07 0.0000 STORM-AO4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.08 0.0000 STORM-AOS 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.08 0.0000 STORM-AO6 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.10 0.0000 STORM-AO7 1.86 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.13 0.0001 STORM-AO8 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.23 0.0000 STORM-AO9 1.00 0.00 0.00 0.00 0.39 0.61 0.00 0.00 1.08 0.0000 STORM-A10 1.00 0.00 0.00 0.00 0.27 0.73 0.00 0.00 1.16 0.0000 STORM -All 1.00 0.00 0.00 0.00 0.96 0.03 0.00 0.00 0.86 0.0000 STORM-Al2 1.00 0.00 0.00 0.00 0.67 0.32 0.00 0.00 0.89 0.0000 STORM-A13 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.13 0.0000 STORM-A14 1.00 0.00 0.00 0.00 0.52 0.47 0.00 0.00 0.88 0.0000 STORM-A15 1.00 0.00 0.00 0.00 0.54 0.46 0.00 0.00 0.91 0.0000 STORM-A16 1.00 0.00 0.00 0.00 0.54 0.45 0.00 0.00 0.91 0.0000 STORM-A17 1.00 0.00 0.00 0.00 0.64 0.35 0.00 0.00 0.88 0.0000 STORM-A18 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.86 0.0000 STORM-A19 1.00 0.00 0.00 0.00 0.54 0.46 0.00 0.00 0.92 0.0000 STORM-A20 2.06 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.88 0.0000 STORM-A21 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.88 0.0000 STORM-A22 1.00 0.00 0.00 0.00 0.53 0.47 0.00 0.00 0.93 0.0000 STORM-A23 2.79 0.00 0.00 0.00 0.00 0.99 0.00 0.00 1.64 0.0000 STORM-BO1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.38 0.0000 STORM-602 1.76 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.30 0.0000 STORM-0 1.00 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.02 0.0002 STORM-EO1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0000 STORM-EO2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.24 0.0000 STORM-GO1 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.02 0.0000 STORM-GO2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.43 0.0000 STORM-GO3 1.00 0.00 0.01 0.00 0.98 0.00 0.00 0.00 0.23 0.0000 STORM-GO4 1.00 0.00 0.00 0.00 0.00 0;00 0.00 1.00 0.36 0.0000 STORM-GOS 1.00 0.00 0.04 0.00 0.95 0.00 0.00 0.00 0.18 0.0000 Conduit Surcharge Summary Art#######4444*4444#4###4# ---------------------------------------------------------------------------- Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends upstream DnstreaM Normal FloW Limited ---------------------------------------------------------------- INLET-FO1 0.01 0.01 0.01 0.01 0.01 INLET-101 0.86 0.86 0.86 0.01 0.01 ssl 0.01 0.01 0.01 9.98 0.01 North College Corridor Improvements December 2009 11 of 12 ss10 0.01 0.01 0.01 0.53 0.01 ss2 0.87 0.87 0.87 0.21 0.19 ss3 0.76 0.76 0.76 0.88 0.76 ss6 0.01 0.01 0.01 0.88 0.01 ss9 0.48 0.48 0.48 0.47 0.47 ss9a 0.53 0.53 0.53 1.34 0.53 STORM-D 11.18 11.18 11.18 0.01 0.01 STORM-E01 10.60 10.60 10.60 0.01 0.01 Analysis begun on: Fri Jul 23 13:56:27 2010 Analysis ended on: Fri Jul 23 13:56:52 2010 North College Corridor Improvements December 2009 12 of 12 Water Quality Pond Calculations POND RATING CURVE Description: Water Quality pond Invert Out ELEV. AREA ft. s .ft. 4955.64 0 4956.0 174 4957.0 2352 4961.0 20228 4962.0 26849 4963.0 35617 4964.0 75720 100-yr WSEL 4963.34 ... 10-yr WSEL 4961.24 2-yr WSEL 4962.43 --- WQ WSEL 4959.6 --- DEPTH AREA VOLUME VOLUME VOLUME ft. Acres Acre-feet Acre-feet Cf 0.00 0.000 0.000 0.000 0 0.36 0.004 0.024 0.000 21 1.36 0.054 0.098 0.025 1076 2.36 0.151 0.197 0.123 5355 3.36 0.248 0.297 0.320 13954 4.36 0.349 0.406 0.618 26911 5.36 0.464 0.539 1.023 44578 6.36 0.616 0.715 1.562 68038 7.36 0.818 1.249 2.277 99168 8.36 1.738 3.526 153592 7.70 --- --- 2.701 --- 5.60 --- --- 1.153 6.79 -- --- 1.869 3.98 --- 0.505 M Cal els North College Water Quality Pond Design Engineer: Jaclyn Michaelsen Design Firm: Ayres Associates Project Number: 32-1415.00 Date: July 23, 2010 DESIGN CRITERIA: Contributing Basins East Basins Basin Area 1% E01 0.16 95 E04 0.40 95 E06 0.53 95 E07 0.40 95 E08 0.29 95 E09 0.59 95 Total 2.37 95 West Basins Basin Area 1% W 01 0.31 95 W02 0.13 95 W03 0.37 95 W04 0.14 95 W05 0.34 95 W 06 0.63 90 W 07 0.45 90 W 08 0.47 95 W09 0.17 95 W 10 0.53 95 W11 0.27 95 W 12 0.51 95 W 13 0.66 95 W 14 0.62 95 W15 0.31 95 W 16 0.68 95 W 16a 0.26 95 W17 0.22 95 W18 1.84 5 Total 8.92 95 Total Il. -2s 9s/ C N N _d N O U_ N 00 N QU) j, C N U � Q C] y d 3 C N C �a V 7 rn E E C3 W LL Z pr ` LO C C U m O N ooao Z3 5 Q w E- U Z C) rn W 0 O O N N C � O O t; O U N C v N C O C o cu U c6 a _ °O c° FLm c U ro � am rn rn ro ro c c � m � o E C ro O �] U) C Co a> > E O > U E O aci a � a _ Q 0 m c � ro .. U ro N d ro U ro me c E @o Ec o O c U co a Ul 0\° O N E m E C N N � N (D L d U U U ro C ro c o O n N Cl)01 V Cl) O O El ro Q z t6 H tl i vi c ro C L v! U C Z a a N U m E (7 E_ N � a c/l O > a O E 'v a U CC 0 ■ 91 I 0 a Q N CE N 00 rn ro a E 41 w .6 C O O �a a� m V O'cm E E wlLz rnrn0 ai O N N .N .o 3 z3 0 5 c it w U z a w 0 O O N N C 7 0 O O � N C C N C O C 7 O C U as a _ 00 0 i a) c U (a m O rn 0) as m c C .ca N � M E c (a 0 n� D� co -9 a):D O 0 C) UQ a U) a) � a a �Q N c6 7 c � m .. c U a5 N a) 0 r fu U m mcl C E 0 0 U) E T O 7 in 0 c U m c a0) R: N Q U) m LL m E H C M 0 O 6 v 0 O N E 7 E c 11 N U c0 O V O vi N N U Q1 C N U U 7 o C Z a Q CL y U U a) C7 E C7 Q ai .N 3 a C0 c Z, �. co 0 > N `0 al n n E CU7 Q v H 0 U 3: a)c cc Q 2 a) 0) m d WO Cad c S N _N O @ O Rf ' U 00 U O N �alnco T U) V N T � Q (7 � ate+ c o CL d L C � o 'rn E E U Q c -_ :3 m L W tLz } C C V rnrnO O W ai m 'a) 'o co ooao z 3 r, cc w F Ir U z a N W 0 O O N N C O O U N i a) N_ C O C O O U `a a� o is o -- LL a) c U m m w CM 0) CO <a C E ca 0 d co C wD E U U _ Q R N 7 - c Yas c U N d) m U ca Ca rn c E 0 0U) E O 7 O c U ca U .n N N O1 LL a) E f= c o ro o N E 7 7 O E = C_ 6 N tN w w y N ai L U C � II o d (a r7l0 N N N m Lo N O O O i Q I I d U O O U N 3 N i co N W C m N a1 L U O n co E C m a`) a E Q ai N cz o O ca > a 2 U o 0 o0) I— U 3: cr v aa) Q cc i :3 to a N W 0 00 N 03 a) rn as a cr a4e w a EL F w O N O O N O O O O] N M N V p K n 'a f m 11 " m a n c p .. u m _ O > 0 Q > ] j O aw w IN Q Ci II 5 m cN0 � N M N N O I.j Nj N M N0 O N NI O o m o m o 0 SO U 000000�[I M � O of m F LL N O N m a top a n Cl m 0 p °o��onoi o m Min' eP .` O 1 �$ �i, chi mm �i l�inm O O N m M Vl m 0 1�: m Qpp IL p aO n V T 0 u0i O �Ip �O mmm n m O V O C O � O � N O O N O OI N�� O O G m Yf f0 f. Ol C O O O O O O m M N M O N m M m n N N V IfI w o o m U O 'm O0000 O O 00 O o11Op1 O pppp 3 O w O o 0 0 M m O N 8 0 0 0 6 0 0 0 L O V po y000000mm mm mmaem m in Mm = O N N M R O LL O O m m O O N 0 m O N O O O O O O O O O O G O 'C O �g mG c m m C O V m O Ip O O m 0 N m O O N O N M O O m uimi: jai ai omrnNm rn v rn v rn rn m v v rn a W v v e v a a e m w cn > 3 i ` o 01-t-P,CJ2, SjZi7) Project: North College Project Number: 32-1415.01 Location: Water Quality Pond Water Quality Pond 40-hour Drain Time Orifice Plate Sizing Equations = Qo4. = C„A„ 2gH Drain Time = 40 hrs C. = 0.65 Time Duration = 0.1 hrs g = 32.2 WQCV = 0 505 ac-ft Number of holes = 4 Hole Spacing (in) = 6 (invert to invert) 0.5 M b (in) = 1.500 b (ft) = 0.125 h (in) = 0.650 h (ft) = 0.054 A. (in2) = 0.766 A, (ft2) = 0.005 Water Quality Pond Volume o.W am 040 V OI m 0.00 E 0 020 - 0.10 0.00 0 5 10 15 20 25 30 - 40 Time (hours) Time Stage 1 Flow Out 2 Flow Out 3 Flow Out 4 Flow Out Total Flow Out Volume Out Volume Out Remaining Volume in Pond hours feet cfs cfs cfs cfs cfs It ac-ft ac-ft 0.1 3.98 0.06 0.05 0.05 0.04 0.20 71.21 0.002 0.50 0.2 3.974 0.06 0.05 0.05 0.04 0.20 71.14 0.002 0.50 0.3 3.969 0.06 0.05 0.05 0.04 0.20 71.08 0.002 0.50 0.4 3.963 0.06 0.05 0.05 0.04 0.20 71.02 0.002 0.50 0.5 3.958 0.05 0.05 0.05 0.04 0.20 70.96 0.002 0.50 0.6 3.952 0.05 0.05 0.05 0.04 0.20 70.90 0.002 0.49 0.7 3.947 0.05 0.05 0.05 0.04 0.20 70.83 0.002 0.49 0.8 3.941 0.05 0.05 0.05 0.04 0.20 70.77 0.002 0.49 0.9 3.936 0.05 0.05 0.05 0.04 0.20 70.71 0.002 0.49 1 3.930 0.05 0.05 0.05 0.04 0.20 70.65 0.002 0.49 1.1 3.925 0.05 0.05 0.05 0.04 0.20 70.58 0.002 0.49 1.2 3.919 0.05 0.05 0.05 0.04 0.20 70.52 0.002 0.49 Time Stage Flow Out Flow Out Flow Out Flow Out Total Flow Out Volume Out Volume Out Remaining Volume in Pond hours feet cfs cfs cfs cfs cfs ft ac-ft ac-ft 1.3 3.914 0.05 0.05 0.05 0.04 0.20 70.46 0.002 0.48 1.4 3.909 0.05 0.05 0.05 0.04 0.20 70.40 0.002 0.48 1.5 3.903 0.05 0.05 0.05 0.04 0.20 70.34 0.002 0.48 1.6 3.898 0.05 0.05 0.05 0.04 0.20 70.27 0.002 0.48 1.7 3.892 0.05 0.05 0.05 0.04 0.20 70.21 0.002 0.48 1.8 3.887 0.05 0.05 0.05 0.04 0.19 70.15 0.002 0.48 1.9 3.881 0.05 0.05 0.05 0.04 0.19 70.09 0.002 0.47 2 3.876 0.05 0.05 0.05 0.04 0.19 70.03 0.002 0.47 2.1 3.871 0.05 0.05 0.05 0.04 0.19 69.96 0.002 0.47 2.2 3.865 0.05 0.05 0.05 0.04 0.19 69.90 0.002 0.47 2.3 3.860 0.05 0.05 0.05 0.04 0.19 69.84 0.002 0.47 2.4 3.854 0.05 0.05 0.05 0.04 0.19 69.78 0.002 0.47 2.5 3.849 0.05 0.05 0.05 0.04 0.19 69.71 0.002 0.46 2.6 3.844 0.05 0.05 0.05 0.04 0.19 69.65 0.002 0.46 2.7 3.838 0.05 0.05 0.05 0.04 0.19 69.59 0.002 0.46 2.8 3.833 0.05 0.05 0.05 0.04 0.19 69.53 0.002 0.46 2.9 3.828 0.05 0.05 0.05 0.04 0.19 69.47 0.002 0.46 3 3.822 0.05 0.05 0.05 0.04 0.19 69.40 0.002 0.46 3.1 3.817 0.05 0.05 0.05 0.04 0.19 69.34 0.002 0.45 3.2 3.811 0.05 0.05 0.05 0.04 0.19 69.28 0.002 0.45 3.3 3.806 0.05 0.05 0.05 0.04 0.19 69.22 0.002 0.45 3.4 3.801 0.05 0.05 0.05 0.04 0.19 69.16 0.002 0.45 3.5 3.795 0.05 0.05 0.05 0.04 0.19 69.09 0.002 0.45 3.6 3.790 0.05 0.05 0.05 0.04 0.19 69.03 0.002 0.45 3.7 3.785 0.05 0.05 0.05 0.04 0.19 68.97 0.002 0.45 3.8 3.779 0.05 0.05 0.05 0.04 0.19 68.91 0.002 0.44 3.9 3.774 0.05 0.05 0.05 0.04 0.19 68.84 0.002 0.44 4 3.769 0.05 0.05 0.05 0.04 0.19 68.78 0.002 0.44 4.1 3.764 0.05 0.05 0.05 0.04 0.19 68.72 0.002 0.44 4.2 3.758 0.05 0.05 0.05 0.04 0.19 68.66 0.002 0.44 4.3 3.753 0.05 0.05 0.05 0.04 0.19 68.60 0.002 0.44 4.4 3.748 0.05 0.05 0.05 0.04 0.19 68.53 0.002 0.43 4.5 3.742 0.05 0.05 0.05 0.04 0.19 68.47 0.002 0.43 4.6 3.737 0.05 0.05 0.05 0.04 0.19 68.41 0.002 0.43 4.7 3.732 0.05 0.05 0.05 0.04 0.19 68.35 0.002 0.43 4.8 3.727 0.05 0.05 0.05 0.04 0.19 68.29 0.002 0.43 4.9 3.721 0.05 0.05 0.05 0.04 0.19 68.22 0.002 0.43 5 3.716 0.05 0.05 0.05 0.04 0.19 68.16 0.002 0.42 5.1 3.711 0.05 0.05 0.05 0.04 0.19 68.10 0.002 0.42 5.2 3.705 0.05 0.05 0.05 0.04 0.19 68.04 0.002 0.42 5.3 3.700 0.05 0.05 0.05 0.04 0.19 67.97 0.002 0.42 5.4 3.695 0.05 0.05 0.05 0.04 0.19 67.91 0.002 0.42 5.5 3.690 0.05 0.05 0.05 0.04 0.19 67.85 0.002 0.42 5.6 3.684 0.05 0.05 0.05 0.04 0.19 67.79 0.002 0.42 5.7 3.679 0.05 0.05 0.05 0.04 0.19 67.73 0.002 0.41 5.8 3.674 0.05 0.05 0.05 0.04 0.19 67.66 0.002 0.41 5.9 3.669 0.05 0.05 0.05 0.04 0.19 67.60 0.002 0.41 6 3.664 0.05 0.05 0.05 0.04 0.19 67.54 0.002 0.41 6.1 3.658 0.05 0.05 0.04 0.04 0.19 67.48 0.002 0.41 6.2 3.653 0.05 0.05 0.04 0.04 0.19 67.41 0.002 0.41 6.3 3.648 0.05 0.05 0.04 0.04 0.19 67.35 0.002 0.40 6.4 3.643 0.05 0.05 0.04 0.04 0.19 67.29 0.002 0.40 6.5 3.638 0.05 0.05 0.04 0.04 0.19 67.23 0.002 0.40 6.6 3.632 0.05 0.05 0.04 0.04 0.19 67.17 0.002 0.40 6.7 3.627 0.05 0.05 0.04 0.04 0.19 67.10 0.002 0.40 6.8 3.622 0.05 0.05 0.04 0.04 0.19 67.04 0.002 0.40 6.9 3.617 0.05 0.05 0.04 0.04 0.19 66.98 0.002 0.40 7 3.612 0.05 0.05 0.04 0.04 0.19 66.92 0.002 0.39 7.1 3.607 0.05 0.05 0.04 0.04 0.19 66.85 0.002 0.39 7.2 3.601 0.05 0.05 0.04 0.04 0.19 66.79 0.002 0.39 7.3 3.596 0.05 0.05 0.04 0.04 0.19 66.73 0.002 0.39 7.4 3.591 0.05 0.05 0.04 0.04 0.19 66.67 0.002 0.39 7.5 3.586 0.05 0.05 0.04 0.04 0.19 66.61 0.002 0.39 Time Stage Flow Out Flow Out Flow Out Flow Out Total Flow Out Volume Out Volume Out Remaining Volume in Pond hours feet cfs cfs cfs cfs cfs tt3 ac-ft ac-ft 7.6 3.581 0.05 0.05 0.04 0.04 0.18 66.54 0.002 0.38 7.7 3.576 0.05 0.05 0.04 0.04 0.18 66.48 0.002 0.38 7.8 3.570 0.05 0.05 0.04 0.04 0.18 66.42 0.002 0.38 7.9 3.565 0.05 0.05 0.04 0.04 0.18 66.36 0.002 0.38 8 3.560 0.05 0.05 0.04 0.04 0.18 66.29 0.002 0.38 8.1 3.555 0.05 0.05 0.04 0.04 0.18 65.23 0.002 0.38 8.2 3.550 0.05 0.05 0.04 0.04 0.18 66.17 0.002 0.38 8.3 3.545 0.05 0.05 0.04 0.04 0.18 66.11 0.002 0.37 8.4 3.540 0.05 0.05 0.04 0.04 0.18 66.05 0.002 0.37 8.5 3.535 0.05 0.05 0.04 0.04 0.18 65.98 0.002 0.37 8.6 3.530 0.05 0.05 0.04 0.04 0.18 65.92 0.002 0.37 8.7 3.525 0.05 0.05 0.04 0.04 0.18 65.86 0.002 0.37 8.8 3.519 0.05 0.05 0.04 0.04 0.18 65.80 0.002 0.37 8.9 3.514 0.05 0.05 0.04 0.04 0.18 65.73 0.002 0.36 9 3.509 0.05 0.05 0.04 0.04 0.18 65.67 0.002 0.36 9.1 3.504 0.05 0.05 0.04 0.04 0.18 65.61 0.002 0.36 9.2 3.499 0.05 0.05 0.04 0.04 0.18 65.55 0.002 0.36 9.3 3.494 0.05 0.05 0.04 0.04 0.18 65.48 0.002 0.36 9.4 3.489 0.05 0.05 0.04 0.04 0.18 65.42 0.002 0.36 9.5 3.484 0.05 0.05 0.04 0.04 0.18 65.36 0.002 0.36 9.6 3.479 0.05 0.05 0.04 0.04 0.18 65.30 0.001 0.35 9.7 3.474 0.05 0.05 0.04 0.04 0.18 65.24 0.001 0.35 9.8 3.469 0.05 0.05 0.04 0.04 0.18 65.17 0.001 0.35 9.9 3.464 0.05 0.05 0.04 0.04 0.18 65.11 0.001 0.35 10 3.459 0.05 0.05 0.04 0.04 0.18 65.05 0.001 0.35 10.1 3.454 0.05 0.05 0.04 0.04 0.18 64.99 0.001 0.35 10.2 3.449 0.05 0.05 0.04 0.04 0.18 64.92 0.001 0.35 10.3 3.444 0.05 0.05 0.04 0.04 0.18 64.86 0.001 0.34 10.4 3.439 0.05 0.05 0.04 0.04 0.18 64.80 0.001 0.34 10.5 3.434 0.05 0.05 0.04 0.04 0.18 64.74 0.001 0.34 10.6 3.429 0.05 0.05 0.04 0.04 0.18 64.67 0.001 0.34 10.7 3.424 0.05 0.05 0.04 0.04 0.18 64.61 0.001 0.34 10.8 3.419 0.05 0.05 0.04 0.04 0.18 64.55 0.001 0.34 10.9 3.414 0.05 0.05 0.04 0.04 0.18 64.49 0.001 0.33 11 3.409 0.05 0.05 0.04 0.04 0.18 64.43 0.001 0.33 11.1 3.404 0.05 0.05 0.04 0.04 0.18 64.36 0.001 0.33 11.2 3.399 0.05 0.05 0.04 0.04 0.18 64.30 0.001 0.33 11.3 3.394 0.05 0.05 0.04 0.04 0.18 64.24 0.001 0.33 11.4 3.389 0.05 0.05 0.04 0.04 0.18 64.18 0.001 0.33 11.5 3.384 0.05 0.05 0.04 0.04 0.18 64.11 0.001 0.33 11.6 3.379 0.05 0.05 0.04 0.04 0.18 64.05 0.001 0.32 11.7 3.374 0.05 0.05 0.04 0.04 0.18 63.99 0.001 0.32 11.8 3.369 0.05 0.05 0.04 0.04 0.18 63.93 0.001 0.32 11.9 3.364 0.05 0.05 0.04 0.04 0.18 63.86 0.001 0.32 12 3.359 0.05 0.05 0.04 0.04 0.18 63.80 0.001 0.32 12.1 3.352 0.05 0.05 0.04 0.04 0.18 63.70 0.001 0.32 12.2 3.344 0.05 0.05 0.04 0.04 0.18 63.61 0.001 0.32 12.3 3.337 0.05 0.05 0.04 0.04 0.18 63.52 0.001 0.31 12.4 3.329 0.05 0.05 0.04 0.04 0.18 63.42 0.001 0.31 12.5 3.322 0.05 0.05 0.04 0.04 0.18 63.33 0.001 0.31 12.6 3.315 0.05 0.05 0.04 0.04 0.18 63.23 0.001 0.31 12.7 3.307 0.05 0.05 0.04 0.04 0.18 63.14 0.001 0.31 12.8 3.300 0.05 0.05 0.04 0.04 0.18 63.05 0.001 0.31 12.9 3.293 0.05 0.05 0.04 0.04 0.17 62.95 0.001 0.31 13 3.285 0.05 0.05 0.04 0.04 0.17 62.86 0.001 0.30 13.1 3.278 0.05 0.05 0.04 0.04 0.17 62.76 0.001 0.30 13.2 3.271 0.05 0.05 0.04 0.04 0.17 62.67 0.001 0.30 13.3 3.263 0.05 0.05 0.04 0.04 0.17 62.58 0.001 0.30 13.4 3.256 0.05 0.05 0.04 0.04 0.17 62.48 0.001 0.30 13.5 3.249 0.05 0.05 0.04 0.04 0.17 62.39 0.001 0.30 13.6 3.242 0.05 0.05 0.04 0.04 0.17 62.29 0.001 0.30 13.7 3.234 0.05 0.05 0.04 0.04 0.17 62.20 0.001 0.29 13.8 3.227 0.05 0.05 0.04 0.04 0.17 62.10 0.001 0.29 Time Stage Flow Out Flow Out Flow Out Flow Out Total Flow Out Volume Out Volume Out Remaining Volume in Pond hours feet cfs cfs cis cfs cis ft ac-ft ac-ft 13.9 3.220 0.05 0.05 0.04 0.04 0.17 62.01 0.001 0.29 14 3.213 0.05 0.05 0.04 0.04 0.17 61.92 0.001 0.29 14.1 3.206 0.05 0.05 0.04 0.04 0.17 61.82 0.001 0.29 14.2 3.198 0.05 0.05 0.04 0.04 0.17 61.73 0.001 0.29 14.3 3.191 0.05 0.05 0.04 0.04 0.17 61.63 0.001 0.29 14.4 3.184 0.05 0.05 0.04 0.04 0.17 61.54 0.001 0.28 14.5 3.177 0.05 0.05 0.04 0.04 0.17 61.45 0.001 0.28 14.6 3.170 0.05 0.05 0.04 0.04 0.17 61.35 0.001 0.28 14.7 3.163 0.05 0.05 0.04 0.04 0.17 61.26 0.001 0.28 14.8 3.155 0.05 0.04 0.04 0.04 0.17 61.16 0.001 0.28 14.9 3.148 0.05 0.04 0.04 0.04 0.17 61.07 0.001 0.28 15 3.141 0.05 0.04 0.04 0.04 0.17 60.97 0.001 0.28 15.1 3.134 0.05 0.04 0.04 0.04 0.17 60.88 0.001 0.27 15.2 3.127 0.05 0.04 0.04 0.04 0.17 60.79 0.001 0.27 15.3 3.120 0.05 0.04 0.04 0.04 0.17 60.69 0.001 0.27 15.4 3.113 0.05 0.04 0.04 0.03 0.17 60.60 0.001 0.27 15.5 3.106 0.05 0.04 0.04 0.03 0.17 60.50 0.001 0.27 15.6 3.099 0.05 0.04 0.04 0.03 0.17 60.41 0.001 0.27 15.7 3.092 0.05 0.04 0.04 0.03 0.17 60.31 0.001 0.27 15.8 3.085 0.05 0.04 0.04 0.03 0.17 60.22 0.001 0.26 15.9 3.078 0.05 0.04 0.04 0.03 0.17 60.13 0.001 0.26 16 3.071 0.05 0.04 0.04 0.03 0.17 60.03 0.001 0.26 16.1 3.064 0.05 0.04 0.04 0.03 0.17 59.94 0.001 0.26 16.2 3.057 0.05 0.04 0.04 0.03 0.17 59.84 0.001 0.26 16.3 3.050 0.05 0.04 0.04 0.03 0.17 59.75 0.001 0.26 16.4 3.043 0.05 0.04 0.04 0.03 0.17 59.65 0.001 0.26 16.5 3.036 0.05 0.04 0.04 0.03 0.17 59.56 0.001 0.26 16.6 3.029 0.05 0.04 0.04 0.03 0.17 59.46 0.001 0.25 16.7 3.022 0.05 0.04 0.04 0.03 0.16 59.37 0.001 0.25 16.8 3.015 0.05 0.04 0.04 0.03 0.16 59.28 0.001 0.25 16.9 3.008 0.05 0.04 0.04 0.03 0.16 59.18 0.001 0.25 17 3.001 0.05 0.04 0.04 0.03 0.16 59.09 0.001 0.25 17.1 2.995 0.05 0.04 0.04 0.03 0.16 58.99 0.001 0.25 17.2 2.988 0.05 0.04 0.04 0.03 0.16 58.90 0.001 0.25 17.3 2.981 0.05 0.04 0.04 0.03 0.16 58.80 0.001 024 17.4 2.974 0.05 0.04 0.04 0.03 0.16 58.71 0.001 0.24 17.5 2.967 0.05 0.04 0.04 0.03 0.16 58.61 0.001 0.24 17.6 2.960 0.05 0.04 0.04 0.03 0.16 58.52 0.001 0.24 17.7 2.954 0.05 0.04 0.04 0.03 0.16 58.43 0.001 0.24 17.8 2.947 0.05 0.04 0.04 0.03 0.16 58.33 0.001 0.24 17.9 2.940 0.05 0.04 0.04 0.03 0.16 58.24 0.001 0.24 18 2.933 0.05 0.04 0.04 0.03 0.16 58.14 0.001 0.23 18.1 2.926 0.05 0.04 0.04 0.03 0.16 58.05 0.001 0.23 18.2 2.920 0.05 0.04 0.04 0.03 0.16 57.95 0.001 0.23 18.3 2.913 0.05 0.04 0.04 0.03 0.16 57.86 0.001 0.23 18.4 2.906 0.05 0.04 0.04 0.03 0.16 57.76 0.001 0.23 18.5 2.900 0.05 0.04 0.04 0.03 0.16 57.67 0.001 0.23 18.6 2.893 0.05 0.04 0.04 0.03 0.16 57.57 0.001 0.23 18.7 2.886 0.05 0.04 0.04 0.03 0.16 57.48 0.001 0.23 18.8 2.879 0.05 0.04 0.04 0.03 0.16 57.39 0.001 0.22 18.9 2.873 0.05 0.04 0.04 0.03 0.16 57.29 0.001 0.22 19 2.866 0.05 0.04 0.04 0.03 0.16 57.20 0.001 0.22 19.1 2.859 0.05 0.04 0.04 0.03 0.16 57.10 0.001 0.22 19.2 2.853 0.05 0.04 0.04 0.03 0.16 57.01 0.001 0.22 19.3 2.846 0.05 0.04 0.04 0.03 0.16 56.91 0.001 0.22 19.4 2.840 0.05 0.04 0.04 0.03 0.16 56.82 0.001 0.22 19.5 2.833 0.05 0.04 0.04 0.03 0.16 56.72 0.001 0.22 19.6 2.826 0.05 0.04 0.04 0.03 0.16 56.63 0.001 0.21 19.7 2.820 0.05 0.04 0.04 0.03 0.16 56.53 0.001 0.21 19.8 2.813 0.05 0.04 0.04 0.03 0.16 56.44 0.001 0.21 19.9 2.807 0.05 0.04 0.04 0.03 0.16 56.34 0.001 0.21 20 2.800 0.05 0.04 0.04 0.03 0.16 56.25 0.001 0.21 20.1 2.794 0.05 0.04 0.04 0.03 0.16 56.15 0.001 0.21 Time Stage Flow Out Flow Out Flow Out Flow Out Total Flow Out Volume Out Volume Out Remaining Volume in Po n hours feet cfs cfs cfs cfs cfs ft ac-ft ac-ft 20.2 2.787 0.05 0.04 0.04 0.03 0.16 56.06 0.001 0.21 20.3 2.781 0.05 0.04 0.04 0.03 0.16 55.96 0.001 0.20 20.4 2.774 0.05 0.04 0.04 0.03 0.16 55.87 0.001 0.20 20.5 2.768 0.05 0.04 0.04 0.03 0.15 55.77 0.001 0.20 20.6 2.761 0.05 0.04 0.04 0.03 0.15 55.68 0.001 0.20 20.7 2.755 0.05 0.04 0.04 0.03 0.15 55.58 0.001 0.20 20.8 2.748 0.05 0.04 0.04 0.03 0.15 55.49 0.001 0.20 20.9 2.742 0.05 0.04 0.04 0.03 0.15 55.39 0.001 0.20 21 2.735 0.05 0.04 0.04 0.03 0.15 55.30 0.001 0.20 21.1 2.729 0.05 0.04 0.04 0.03 0.15 55.20 0.001 0.19 21.2 2.722 0.05 0.04 0.04 0.03 0.15 55.11 0.001 0.19 21.3 2.716 0.05 0.04 0.04 0.03 0.15 55.01 0.001 0.19 21.4 2.710 0.05 0.04 0.04 0.03 0.15 54.92 0.001 0.19 21.5 2.703 0.05 0.04 0.04 0.03 0.15 54.82 0.001 0.19 21.6 2.697 0.05 0.04 0.04 0.03 0.15 54.73 0.001 0.19 21.7 2.690 0.05 0.04 0.04 0.03 0.15 54.63 0.001 0.19 21.8 2.684 0.05 0.04 0.04 0.03 0.15 54.54 0.001 0.19 21.9 2.678 0.05 0.04 0.04 0.03 0.15 54.44 0.001 0.18 22 2.671 0.05 0.04 0.04 0.03 0.15 54.35 0.001 0.18 22.1 2.665 0.05 0.04 0.04 0.03 0.15 54.25 0.001 0.18 22.2 2.659 0.04 0.04 0.04 0.03 0.15 54.16 0.001 0.18 22.3 2.652 0.04 0.04 0.04 0.03 0.15 54.06 0.001 0.18 22.4 2.646 0.04 0.04 0.04 0.03 0.15 53.97 0.001 0.18 22.5 2.640 0.04 0.04 0.04 0.03 0.15 53.87 0.001 0.18 22.6 2.634 0.04 0.04 0.04 0.03 0.15 53.78 0.001 0.18 22.7 2.627 0.04 0.04 0.04 0.03 0.15 53.68 0.001 0.17 22.8 2.621 0.04 0.04 0.04 0.03 0.15 53.59 0.001 0.17 22.9 2.615 0.04 0.04 0.03 0.03 0.15 53.49 0.001 0.17 23 2.609 0.04 0.04 0.03 0.03 0.15 53.40 0.001 0.17 23.1 2.602 0.04 0.04 0.03 0.03 0.15 53.30 0.001 0.17 23.2 2.596 0.04 0.04 0.03 0.03 0.15 53.21 0.001 0.17 23.3 2.590 0.04 0.04 0.03 0.03 0.15 53.11 0.001 0.17 23.4 2.584 0.04 0.04 0.03 0.03 0.15 53.01 0.001 0.17 23.5 2.578 0.04 0.04 0.03 0.03 0.15 52.92 0.001 0.16 23.6 2.572 0.04 0.04 0.03 0.03 0.15 52.82 0.001 0.16 23.7 2.565 0.04 0.04 0.03 0.03 0.15 52.73 0.001 0.16 23.8 2.559 0.04 0.04 0.03 0.03 0.15 52.63 0.001 0.16 23.9 2.553 0.04 0.04 0.03 0.03 0.15 52.54 0.001 0.16 24 2.547 0.04 0.04 0.03 0.03 0.15 52.44 0.001 0.16 24.1 2.541 0.04 0.04 0.03 0.03 0.15 52.35 0.001 0.16 24.2 2.535 0.04 0.04 0.03 0.03 0.15 52.25 0.001 0.16 24.3 2.529 0.04 0.04 0.03 0.03 0.14 52.15 0.001 0.16 24.4 2.523 0.04 0.04 0.03 0.03 0.14 52.06 0.001 0.15 24.5 2.517 0.04 0.04 0.03 0.03 0.14 51.96 0.001 0.15 24.6 2.511 0.04 0.04 0.03 0.03 0.14 51.87 0.001 0.15 24.7 2.505 0.04 0.04 0.03 0.03 0.14 51.77 0.001 0.15 24.8 2.499 0.04 0.04 0.03 0.03 0.14 51.68 0.001 0.15 24.9 2.493 0.04 0.04 0.03 0.03 0.14 51.58 0.001 0.15 25 2.487 0.04 0.04 0.03 0.03 0.14 51.49 0.001 0.15 25.1 2.481 0.04 0.04 0.03 0.03 0.14 51.39 0.001 0.15 25.2 2.475 0.04 0.04 0.03 0.03 0.14 51.29 0.001 0.14 25.3 2.469 0.04 0.04 0.03 0.03 0.14 51.20 0.001 0.14 25.4 2.463 0.04 0.04 0.03 0.03 0.14 51.10 0.001 0.14 25.5 2.457 0.04 0.04 0.03 0.03 0.14 51.01 0.001 0.14 25.6 2.451 0.04 0.04 0.03 0.03 0.14 50.91 0.001 0.14 25.7 2.445 0.04 0.04 0.03 0.03 0.14 50.81 0.001 0.14 25.8 2.439 0.04 0.04 0.03 0.03 0.14 50.72 0.001 0.14 25.9 2.433 0.04 0.04 0.03 0.03 0.14 50.62 0.001 0.14 26 2.427 0.04 0.04 0.03 0.03 0.14 50.53 0.001 0.14 26.1 2.421 0.04 0.04 0.03 0.03 0.14 50.43 0.001 0.13 26.2 2.415 0.04 0.04 0.03 0.03 0.14 50.33 0.001 0.13 26.3 2.410 0.04 0.04 0.03 0.03 0.14 50.24 0.001 0.13 26.4 2.404 0.04 0.04 0.03 0.03 0.14 50.14 0.001 0.13 Time Stage Flow Out Flow Out Flow Out Flow Out Total Flow Out Volume Out Volume Out Remaining Volume in Pond hours feet cfs cfs cfs cfs cfs ft ac-ft ac-ft 26.5 2.398 0.04 0.04 0.03 0.03 0.14 50.05 0.001 0.13 26.6 2.392 0.04 0.04 0.03 0.03 0.14 49.95 0.001 0.13 26.7 2.386 0.04 0.04 0.03 0.03 0.14 49.85 0.001 0.13 26.8 2.381 0.04 0.04 0.03 0.03 0.14 49.76 0.001 0.13 26.9 2.375 0.04 0.04 0.03 0.03 0.14 49.66 0.001 0.12 27 2.369 0.04 0.04 0.03 0.03 0.14 49.56 0.001 0.12 27.1 2.363 0.04 0.04 0.03 0.03 0.14 49.47 0.001 0.12 27.2 2.355 0.04 0.04 0.03 0.03 0.14 49.33 0.001 0.12 27.3 2.343 0.04 0.04 0.03 0.03 0.14 49.13 0.001 0.12 27.4 2.332 0.04 0.04 0.03 0.02 0.14 48.94 0.001 0.12 27.5 2.320 0.04 0.04 0.03 0.02 0.14 48.75 0.001 0.12 27.6 2.309 0.04 0.04 0.03 0.02 0.13 48.55 0.001 0.12 27.7 2.298 0.04 0.04 0.03 0.02 0.13 48.36 0.001 0.12 27.8 2.286 0.04 0.04 0.03 0.02 0.13 48.16 0.001 0.11 27.9 2.275 0.04 0.04 0.03 0.02 0.13 47.97 0.001 0.11 28 2.264 0.04 0.04 0.03 0.02 0.13 47.77 0.001 0.11 28.1 2.253 0.04 0.04 0.03 0.02 0.13 47.58 0.001 0.11 28.2 2242 0.04 0.04 0.03 0.02 0.13 47.38 0.001 0.11 28.3 2.231 0.04 0.04 0.03 0.02 0.13 47.19 0.001 0.11 28.4 2.220 0.04 0.04 0.03 0.02 0.13 46.99 0.001 0.11 28.5 2.209 0.04 0.04 0.03 0.02 0.13 46.80 0.001 0.11 28.6 2.198 0.04 0.04 0.03 0.02 0.13 46.60 0.001 0.11 28.7 2.187 0.04 0.04 0.03 0.02 0.13 46.40 0.001 0.10 28.8 2.176 0.04 0.04 0.03 0.02 0.13 46.21 0.001 0.10 28.9 2.165 0.04 0.04 0.03 0.02 0.13 46.01 0.001 0.10 29 2.154 0.04 0.04 0.03 0.02 0.13 45.81 0.001 0.10 29.1 2.144 0.04 0.04 0.03 0.02 0.13 45.62 0.001 0.10 29.2 2.133 0.04 0.04 0.03 0.02 0.13 45.42 0.001 0.10 29.3 2.122 0.04 0.04 0.03 0.02 0.13 45.22 0.001 0.10 29.4 2.112 0.04 0.03 0.03 0.02 0.13 45.02 0.001 0.10 29.5 2.101 0.04 0.03 0.03 0.02 0.12 44.83 0.001 0.10 29.6 2.091 0.04 0.03 0.03 0.02 0.12 44.63 0.001 0.10 29.7 2.080 0.04 0.03 0.03 0.02 0.12 44.43 0.001 0.09 29.8 2.070 0.04 0.03 0.03 0.02 0.12 44.23 0.001 0.09 29.9 2.060 0.04 0.03 0.03 0.02 0.12 44.03 0.001 0.09 30 2.049 0.04 0.03 0.03 0.02 0.12 43.83 0.001 0.09 30.1 2.039 0.04 0.03 0.03 0.02 0.12 43.63 0.001 0.09 30.2 2.029 0.04 0.03 0.03 0.02 0.12 43.43 0.001 0.09 30.3 2.019 0.04 0.03 0.03 0.02 0.12 43.23 0.001 0.09 30.4 2.009 0.04 0.03 0.03 0.02 0.12 43.03 0.001 0.09 30.5 1.999 0.04 0.03 0.03 0.02 0.12 42.83 0.001 0.09 30.6 1.989 0.04 0.03 0.03 0.02 0.12 42.63 0.001 0.09 30.7 1.979 0.04 0.03 0.03 0.02 0.12 42.43 0.001 0.08 30.8 1.969 0.04 0.03 0.03 0.02 0.12 42.23 0.001 0.08 30.9 1.959 0.04 0.03 0.03 0.02 0.12 42.03 0.001 0.08 31 1.949 0.04 0.03 0.03 0.02 0.12 41.83 0.001 0.08 31.1 1.939 0.04 0.03 0.03 0.02 0.12 41.62 0.001 0.08 31.2 1.929 0.04 0.03 0.03 0.02 0.12 41.42 0.001 0.08 31.3 1.920 0.04 0.03 0.03 0.02 0.11 41.22 0.001 0.08 31.4 1.910 0.04 0.03 0.03 0.02 0.11 41.01 0.001 0.08 31.5 1.901 0.04 0.03 0.03 0.02 0.11 40.81 0.001 0.08 31.6 1.891 0.04 0.03 0.03 0.02 0.11 40.60 0.001 0.08 31.7 1.882 0.04 0.03 0.03 0.02 0.11 40.40 0.001 0.08 31.8 1.872 0.04 0.03 0.03 0.02 0.11 40.19 0.001 0.07 31.9 1.863 0.04 0.03 0.03 0.02 0.11 39.98 0.001 0.07 32 1.853 0.04 0.03 0.03 0.02 0.11 39.78 0.001 0.07 32.1 1.844 0.04 0.03 0.03 0.02 0.11 39.57 0.001 0.07 32.2 1.835 0.04 0.03 0.02 0.02 0.11 39.36 0.001 0.07 32.3 1.826 0.04 0.03 0.02 0.02 0.11 39.15 0.001 0.07 32.4 1.816 0.04 0.03 0.02 0.01 0.11 38.94 0.001 0.07 32.5 1.807 0.04 0.03 0.02 0.01 0.11 38.73 0.001 0.07 32.6 1.798 0.04 0.03 0.02 0.01 0.11 38.52 0.001 0.07 32.7 1.789 0.04 0.03 0.02 0.01 0.11 38.31 0.001 0.07 Time Stage Flow Out Flow Out Flow Out Flow Out Total Flow Out Volume Out Volume Out Remaining Volume in Pond hours feet cfs cis cfs cfs cfs ft ac-ft ac-ft 32.8 1.780 0.04 0.03 0.02 0.01 0.11 38.09 0.001 0.07 32.9 1.771 0.04 0.03 0.02 0.01 0.11 37.88 0.001 0.06 33 1.763 0.04 0.03 0.02 0.01 0.10 37.67 0.001 0.06 33.1 1.754 0.04 0.03 0.02 0.01 0.10 37.45 0.001 0.06 33.2 1.745 0.04 0.03 0.02 0.01 0.10 37.23 0.001 0.06 33.3 1.736 0.04 0.03 0.02 0.01 0.10 37.02 0.001 0.06 33.4 1.728 0.04 0.03 0.02 0.01 0.10 36.80 0.001 0.06 33.5 1.719 0.04 0.03 0.02 0.01 0.10 36.58 0.001 0.06 33.6 1.711 0.04 0.03 0.02 0.01 0.10 36.35 0.001 0.06 33.7 1.702 0.04 0.03 0.02 0.01 0.10 36.13 0.001 0.06 33.8 1.694 0.04 0.03 0.02 0.01 0.10 35.90 0.001 0.06 33.9 1.685 0.04 0.03 0.02 0.00 0.09 31.71 0.001 0.06 34 1.678 0.04 0.03 0.02 0.00 0.09 31.60 0.001 0.06 34.1 1.670 0.04 0.03 0.02 0.00 0.09 31.49 0.001 0.05 34.2 1.663 0.04 0.03 0.02 0.00 0.09 31.38 0.001 0.05 34.3 1.656 0.04 0.03 0.02 0.00 0.09 31.27 0.001 0.05 34.4 1.648 0.04 0.03 0.02 0.00 0.09 31.16 0.001 0.05 34.5 1.641 0.04 0.03 0.02 0.00 0.09 31.05 0.001 0.05 34.6 1.634 0.04 0.03 0.02 0.00 0.09 30.94 0.001 0.05 34.7 1.627 0.04 0.03 0.02 0.00 0.09 30.83 0.001 0.05 34.8 1.619 0.04 0.03 0.02 0.00 0.09 30.72 0.001 0.05 34.9 1.612 0.03 0.03 0.02 0.00 0.09 30.61 0.001 0.05 35 1.605 0.03 0.03 0.02 0.00 0.08 30.51 0.001 0.05 35.1 1.598 0.03 0.03 0.02 0.00 0.08 30.40 0.001 0.05 35.2 1.591 0.03 0.03 0.02 0.00 0.08 30.29 0.001 0.05 35.3 1.584 0.03 0.03 0.02 0.00 0.08 30.18 0.001 0.05 35.4 1.577 0.03 0.03 0.02 0.00 0.08 30.07 0.001 0.05 35.5 1.570 0.03 0.03 0.02 0.00 0.08 29.96 0.001 0.04 35.6 1.563 0.03 0.03 0.02 0.00 0.08 29.85 0.001 0.04 35.7 1.556 0.03 0.03 0.02 0.00 0.08 29.74 0.001 0.04 35.8 1.549 0.03 0.03 0.02 0.00 0.08 29.63 0.001 0.04 35.9 1.542 0.03 0.03 0.02 0.00 0.08 29.52 0.001 0.04 36 1.535 0.03 0.03 0.02 0.00 0.08 29.40 0.001 0.04 36.1 1.528 0.03 0.03 0.02 0.00 0.08 29.29 0.001 0.04 36.2 1.521 0.03 0.03 0.02 0.00 0.08 29.18 0.001 0.04 36.3 1.514 0.03 0.03 0.02 0.00 0.08 29.07 0.001 0.04 36.4 1.508 0.03 0.03 0.02 0.00 0.08 28.96 0.001 0.04 36.5 1.501 0.03 0.03 0.02 0.00 0.08 28.85 0.001 0.04 36.6 1.494 0.03 0.03 0.02 0.00 0.08 28.74 0.001 0.04 36.7 1.487 0.03 0.03 0.02 0.00 0.08 28.63 0.001 0.04 36.8 1.481 0.03 0.03 0.02 0.00 0.08 28.52 0.001 0.04 36.9 1.474 0.03 0.03 0.02 0.00 0.08 28.41 0.001 0.04 37 1.467 0.03 0.03 0.02 0.00 0.08 28.29 0.001 0.03 37.1 1.461 0.03 0.03 0.02 0.00 0.08 28.18 0.001 0.03 37.2 1.454 0.03 0.03 0.02 0.00 0.08 28.07 0.001 0.03 37.3 1.448 0.03 0.03 0.02 0.00 0.08 27.96 0.001 0.03 37.4 1.441 0.03 0.03 0.02 0.00 0.08 27.85 0.001 0.03 37.5 1.435 0.03 0.03 0.02 0.00 0.08 27.74 0.001 0.03 37.6 1.428 0.03 0.03 0.02 0.00 0.08 27.62 0.001 0.03 37.7 1.422 0.03 0.03 0.02 0.00 0.08 27.51 0.001 0.03 37.8 1.415 0.03 0.03 0.02 0.00 0.08 27.40 0.001 0.03 37.9 1.409 0.03 0.03 0.02 0.00 0.08 27.29 0.001 0.03 38 1.402 0.03 0.03 0.02 0.00 0.08 27.17 0.001 0.03 38.1 1.396 0.03 0.03 0.02 0.00 0.08 27.06 0.001 0.03 38.2 1.390 0.03 0.03 0.02 0.00 0.07 26.95 0.001 0.03 38.3 1.384 0.03 0.03 0.02 0.00 0.07 26.83 0.001 0.03 38.4 1.377 0.03 0.03 0.02 0.00 0.07 26.72 0.001 0.03 38.5 1.371 0.03 0.03 0.02 0.00 0.07 26.61 0.001 0.03 38.6 1.365 0.03 0.03 0.02 0.00 0.07 26.49 0.001 0.02 38.7 1.354 0.03 0.03 0.02 0.00 0.07 26.30 0.001 0.02 38.8 1.329 0.03 0.02 0.02 0.00 0.07 25.83 0.001 0.02 38.9 1.305 0.03 0.02 0.01 0.00 0.07 25.36 0.001 0.02 39 1.281 0.03 0.02 0.01 0.00 0.07 24.88 0.001 0.02 Time Stage Flow Out Flow Out Flow Out Flow Out Total Flow Out Volume Out Volume Out Remaining Volume in Pond hours feet cfs cis cfs cfs cfs ft ac-ft ac-ft 39.1 1.257 0.03 0.02 0.01 0.00 0.07 24.40 0.001 0.02 39.2 1.234 0.03 0.02 0.01 0.00 0.07 23.91 0.001 0.02 39.3 1.212 0.03 0.02 0.01 0.00 0.07 23.42 0.001 0.02 39.4 1.189 0.03 0.02 0.01 0.00 0.06 22.91 0.001 0.02 39.5 1.168 0.03 0.02 0.01 0.00 0.06 22.40 0.001 0.02 39.6 1.146 0.03 0.02 0.01 0.00 0.06 21.87 0.001 0.02 39.7 1.126 0.03 0.02 0.00 0.00 0.05 18.19 0.000 0.02 39.8 1.108 0.03 0.02 0.00 0.00 0.05 18.00 0.000 0.02 39.9 1.091 0.03 0.02 0.00 0.00 0.05 17.80 0.000 0.02 40 1.075 0.03 0.02 0.00 0.00 0.05 17.61 0.000 0.02 AMES ASSOCIATES Giet,& a, 3� W a o w r.,trf_f_A1._.n.�-b Cca.ul 1 L) 7D ?or.v-1 rf /&0C. s Gu FFt le3,3110' ,11 Cf) ;f f� ,;a Project No. Remarks Prepared by Date Project Name Checked by Date Title/Item Sheet of Top of Weir Overflow from Woodlawn Drive Lake Loveland starts to outlet at the top of the lake's flood control gate. Weir Actual Weir Coefficient C Weir Coefficient C Slope feet feet 4963.85 44 3.6 1 3.6 1 40 Rectangular Broad Crested Weir Eq. Q = C,NLH312 + Cw2SH512 Elevation Head (H) Flow Over Weir Flow Over Weir Total Flow feet feet cfs cfs cfs 4963.85 0.00 0 0 0 4964.40 0.55 65 32 97 4964.60 0.75 103 70 173 4965.35 1.50 291 397 688 4966.35 2.50 626 1423 2049 4964.68 0.83 230 Top of Weir Proposed swale into WO Pond Lake Loveland starts to outlet at the top of the lake's flood control gate. Weir Actual Weir Coefficient C Weir Coefficient C Slope feet feet 4963.50 10 3.6 3.6 18 Rectangular Broad Crested Weir Eq. Q = CWLH"' + Cw2SH5/2 Elevation Head (H) Flow Over Weir Flow Over Weir Total Flow feet feet cfs cfs cfs 4963.50 0.00 0 0 0 4964.00 0.50 65 2 67 4964.50 1.00 185 12 197 4965.50 2.00 523 68 591 4966.50 3.00 960 187 1147 4964.58 1.08 230 Top of Weir Water Quality Pond Between Ponds Lake Loveland starts to outlet at the top of the lake's flood control gate. Weir Actual Weir Coefficient C Weir Coefficient C Slope feet feet 4963.85 56 3.3 3 4 Rectangular Broad Crested Weir Eq. Q = C,NLH3/2 + C12SH512 Elevation Head (H) Flow Over Weir Flow Over Weir Total Flow feet feet cfs cfs cfs 4962.50 0.00 0 0 0 4963.40 0.90 158 9 167 4963.50 1.00 185 12 197 4964.50 2.00 523 68 591 4965.50 3.00 960 187 1 1147 4963.36 0.86 160 HY-8 Culvert Analysis Report r�A u Table 1 - Summary of Culvert Flows at Crossing: Pond Connection Headwater Elevation (ft) Total Discharge (cfs) Culvert 1 Discharge (cfs) Roadway Discharge (cfs) Iterations 4958.48 0.00 0.00 0.00 1 4959.24 27.00 27.00 0.00 1 4960.33 54.00 54.00 0.00 1 4961.34 81.00 81.00 0.00 1 4962.42 108.00 108.00 0.00 1 4962.81 135.00 115.03 19.82 6 4963.02 162.00 117.55 44.33 5 4963.15 180.00 117.18 62.74 5 4963.36 216.00 117.53 98.42 5 4963.53 243.00 113.53 129.42 1 5 4964.04 270.00 = --7-O A0 161.76 5 aT � Rating Curve Plot for Crossing: Pond Connection Total Rating Curve Crossing: Pond Connection 4964 ----------------- ----- --------------;------------- 4963 -----------------------------------------------------� c o 4962 -- --------------------------- ------ - > ; LLI CD 4961---------------- ----- ---------------------------- m4960 ;--------------------------------------- d 4959 ' 100 150 200 Total Discharge (cfs) Table 2 - Culvert Summary Table: Culvert 1 Total Discharge (cfs) Culvert Discharge (cfs) Headwater Elevation (ft) Inlet Control Depth (ft) Outlet Control Depth (N) Flow Type Normal Depth (ft) Critical Depth (ft) Outlet Depth (ft) Tailwaler Depth (h) Outlet Velocity (ros) Tailwater Velocity (foci 0.00 0.00 4958.48 0.000 1.660 0-NF 0.000 0.000 0.000 1.820 0.000 0.000 27.00 27.00 4959.24 2.156 2.421 3-M1t 1.694 1.531 2.090 2.090 4.066 0.000 54.00 54.00 4960.33 3.310 3.508 3-M21 2.590 2.200 2.580 2.580 6.310 0.000 81.00' 1 81.00 4961.34 1 4.352 4.520 1 3-102t 4.000 1 2.721 3.080 1 3.080 7.816 1 0.000 108.00 108.00 4962.42 5.605 5.594 3-M2t 4.000 3.137 3.390 3.390 9.544 0.000 135.00 115.03 4962.81 5.988 5.932 3-M2t 4.000 3.229 3.640 3.640 9.565 0.000 162.00 117.55 4963.02 6.132 6.199 7-M2t 4.000 3.255 3.840 3.840 9.553 0.000 180.00 117.18 4963.15 6.111 6.329 4-FFf 4.000 3.252 4.000 4.040 9.325 0.000 216.00 117.53 4963.36 6.131 6.544 4-FFf 4.000 3.255 4.000 4.240 9.353 0.000 243.00 113.53 4963.53 5.904 6.709 4-FFf 4.000 3.214 4.000 4.570 9.034 0.000 270.00 108.00 4964.04 5.605 7.220 4-FFf 4.000 3.137 4.000 5.300 8.594 0.000 Inlet Elevation (invert): 4956.82 ft, Outlet Elevation (invert): 4956.66 ft Culvert Length: 64.00 ft, Culvert Slope: 0.0025 Culvert Performance Curve Plot: Culvert 1 Performance Curve Culvert: Culvert 1 F Inlet Control Elev Outlet Control Elev 4964 -. ---------------------------- 6 ; --4963 ' 0 4962 -. ;--------------------------------------------------------------------� m 4961 ------------- --/ ----- t!J m4960--------------- ,------------------------ ------------- 4959 1 ' � Y = 4958 - '------- '-------------------------------------- ; ; 4957------------------------------------------------ -----; ................... 50 100 150 200 Total Discharge (cfs) Water Surface Profile Plot for Culvert: Culvert 1 Crossing - Pond Connection, Design Discharge - 180.0 cfs Culvert - Culvert 1, Culvert Discharge - 117.2 cfs 4963 i---i---i-- ; ; 4962 '--------------- -------------------- ' ; 4961 '---------------•-------------L--------------------------------------------� c 4960 '------------- -- — ----- — —-----------; r 049594 ' ; 4958 '-------------------------------------------- -- ' ; ; 4957-------------- -- , -20 0 20 4 Station (ft) Site Data - Culvert 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 4956.82 ft Outlet Station: 64.00 ft Outlet Elevation: 4956.66 ft Number of Barrels: 1 Culvert Data Summary - Culvert 1 Barrel Shape: Circular Barrel Diameter: 4.00 ft Barrel Material: Barrel Manning's n: 0.0130 Inlet Type: Inlet Edge Condition: Inlet Depression: None Table 3 - Downstream Channel Rating Curve (Crossing: Pond Connection) Flow (cfs) Water Surface Elev (ft) Depth (ft) 0.00 4958.48 1.82 27.00 4958.75 2.09 54.00 4959.24 2.58 81.00 4959.74 3.08 108.00 4960.05 3.39 135.00 4960.30 3.64 162.00 4960.50 3.84 180.00 4960.70 4.04 216.00 4960.90 4.24 243.00 4961.23 4.57 270.00 4961.96 5.30 Tailwater Channel Data - Pond Connection Tailwater Channel Option: Enter Rating Curve Roadway Data for Crossing: Pond Connection Roadway Profile Shape: Constant Roadway Elevation Crest Length: 44.00 ft Crest Elevation: 4962.50 ft Roadway Surface: Gravel Roadway Top Width: 12.00 ft PROTECT EXISTING TREES ALONG POUDRE EXISTING WETLANDS RIVER. FOR RELOCATED 997 SF OF TEMPORARY TREES. REFER TO DISTURBANCE: REMOVAL PLANS (TRM, GRADING AND f . TRANSITION MATS) 360 SF OF PERMANANT _ E E DISTURBACNE: _ a (TRANSITION MATS) c c c - E E E E "' --� 48" RCP F E E 1 C GRADE SWALE TO MAN CHANNEL OF POUDRE 4 RIVER FROM END OF E _ PROPOSED STORM SEWER - ® 0.35% SLOPE SE SHEET WO-0,7 �hTt_ �4gE TRANSITION MATS 16'X24' --- INSTALL TRM CLASS I UNDER AND DOUBLE MANUFACTURERS STAPLE RATE 14" ELCO WATERLINE TO BE LOWERED UNDER STORM SEWER 4FT WIDE CONCRETE TRICKLE PAN J ® 0.30% SLOPE SEE DETAIL SHEET DT-03 AND TYPICAL CROSS SECTION SHEET WO-04 GENERAL POND NOTES 4FT WIDE CONCRETE TRICKLE PAN RAILROAD 1. FOR GRADING INFORMATION (SPOT ELEVATIONS AND CROSS 0 0.30% SLOPE NO PROPOSED SECTIONS) REFER TO WO-02. FOR TYPICAL CROSS TRM CLASS I SEE DETAIL SHEET DT-03 AND TYP CROSS SECTION GRADING IS TO EXTEND ONTO THE POUDRE RIVER SECTIONS REFER TO SHEET WO-04. SHEET WO-04 REMOVE INLET (R-IN01) RAILROAD PROPERTY 1.0 FT FLOODWAY 2. EXISTING UTILITIES TO BE PROTECTED UNLESS OTHERWISE SPW 01 AND PLUG STORM'ROPOSED STATED. FOR UTILITY INFORMATION REFER TO SHEETS UT-01 44FT OVERFLOW SPILLWAY SEWER (PLUG 01) - 6e Pb-i STORM SEWER TO UT-07 SEE DETAIL SHEET DT-03 ELEV=4962.20 ABANDON EXISTING (TYPICAL) W 3. FOR FLOODPLAIN NOTES, CONSTRAINTS AND INFORMATION 4g6\ WATER UTILITY WALL '''s? REFER TO SHEET WO-05 96,- P1 - r!� 4 SIDE S OPES VARY THROUG OUT a 4961 U THE POND TO MINIMIZE THE "BATH TUB" FEEL OF WATER QUALITY PONDS. 03 0 30y ; W:S. THE POUDRE RIVER O.5FT FLOODWAY SHALL BE STAKED _. 495 f PRIOR TO CONSTRUCTION. ;C 1 _i��;-'-�` �J - 6. TOPSOIL IN AREA OF WATER QUALITY PONDS AND POUDRE o RIVER TO BE STOCKPILED. Lu ID N0. STATION, =• OFFSET E E E man E �. - --- - - W - -Zi'� - - - E - - V" TURF REINFORCEMENT MAT (TRM) TRM CLASS I EXISTING SIDEWALK t LK EXISTING REFER TO PROJECT SPECS TO BE PROTECTED ELECTRIC TO BE _ _ I - _ _ , _,... , I � -- TRM CLASS II FOR MORE INFORMATION ON LOWERED TO 30" i � _ _ ',.� r _ _ , _. - _ � ..I.. ,.. _ ._. i -. ; -. ` _ TRM CLASS I, Il, & M. WATER QUALITY OF COVER I EXISTING . TRANSITION MATS 20'z 16' Ij _ _. TRM CLASS III OUTLET 14" ELCO WATERLINE f FENCE TO BE INSTALL TRM CLASS 11 STRUCTURE TO BE PROTECTED I REMOVED UNDER AND DOUBLE SEE DETAIL CAUTION TO BE USED 'a - w MANUFACTURERS STAPLE SHEET DT-01 WHEN EXCAVATING M ` COLLEGE AVENUE ! RATE ' I TRANSITION MATS OVER THE LINE I f L POND FL CURVEAND LINE TA81 F TRANSITION MATS O.SFT 2LL 20' POUDRE RIVER FLOODWAY / -��I, y �/ I LINE TABLE LINE LENGTH BEARING BEGIN NORTHING BEGIN FASTING BEGIN ELEV END NORTHING END FASTING END ELEV INSTALL TRM -Pt- f Lt 37 S00'00'00•W 134101 194736 4955.53 134097 194736 4955.52 CLASS It UNDER DER TRM CLASS IB f// GRADE A SWALE FROM L2 129 S37'2C17"E 134082 194741 4955.47 134071 194749 495543 AND DOUBLE MANUFACTURERS TRIM CLASS II WOODLAWN DRIVE TO WATER L3 9.6 SO4'0T32"E 134058 194754 4955.39 134048 194755 4955.36 496 QUALITY POND ® 0.457. L4 11.2 541'01'46'E 134043 194757 4955.34 134034 194764 4955.31 STAPLE RATE / /� SLOPE. SEE TYPE CROSS L5 65.5 S10"09'33"E 134488 194747 4956.66 134424 194759 4956.46 SECTION ON SHEET WO-04. L6 73.0 S09"21'23"4V 134407 194759 4956.41 134335 194747 4956.19 4962 - L7 100 9 S08-14.47-E 134320 194747 4956.14 134220 194761 4955,84 W 4963 yj 4960-L6 964 r '/ L8 L9 24.6 S06"34'09"W 134207 194761 4955,81 134182 194759 4955.73 4965.64 18.6 S22"42'02"W 134169 194755 4955,69 134152 194748 a / I L10 7.7 S00"37'20'W 134663 194740 4957,16 134655 194740 4957.14 4-6 RCP ` L11 13.9 S19'18'32"E 134647 194742 4957.11 134633 194746 4957.07 . RCP 48" R I-1 j-r-1 _. „ I LI - 0.45% -��y_ .^� - C A . 0 3 L12 L13 17-8 S21 3147 W 134599 194746 4956.97 134582 194739 4956.91 22.8 S08"45'10"E 4956,89 134552 j 134574 194738 194742 4956,82 - N p30% 72 - (L/ 1 L14 47.6 S54"46'10"W 134701 194806 4964.06 134673 194767 4962.00 4 � K 96 g6 4962 10 `a 496 4 1- N i I -� - - E _ - - - - E A [o 'E E E - E _ E _ SPIN 02 71 55FT OVERFLOW SPILLWAY 4 r CURVE TABLE CURVE LENGTH RADIUS DELTA TANGENT CHORD BEARING C1 16.3 25.0 37'24'17' 8.5 16.0 S18"42'08"E C2 14.5 25.0 33"20'45" 7.5 14.3 N20"43'54"W C3 6.5 10.0 36"58'14" 3.3 6.3 S22"32'39"E C4 17.0 S0.0 19"30'56" 8.6 16.9 N00"24'05"W C5 15.4 50.0 17"3610" 7.7 15.3 S00"33'18"W C6 12.9 50.0 14"48'56" 6,5 12s N00'50'19"W C7 14.1 50.0 16`0753" 7-1 14.0 N14"38'06"E CB 8.7 25,0 19"55.52" 4.4 8.7 509"20'36"E C9 35.6 50.0 40`50.19" 18.6 34.9 N01'06'38"E C10 1 T9 15.0 30"16.57" 4.1 T8 1 S06`23'19"W - SEE DETAIL SHEET OT-03 ELEV4962.50 �� _ y _:. -- _F-_ SPILLWAY LINE TABLE - - TRM CLASS II EAST EDGE OF PROPOSED WALK PROPOSED 3FT SIDEWALK CHASE- S AT EXISTING GRADE. WET GRADE SWALE FROM END OF CURB 1 .� EDGE OF PROPOSED WALK ®OR AND GUTTER TO WO POND 04.0% - Ir BELOW EXISTING GROUND SEE CROSS SECTION ON SHEET WQ-04 /.., �i I \\ TO BE PAID FOR WITH SIDEWALK _ LINE TABLE LINE LENGTH BEARING BEGIN NORTHING BEGIN EASTING BEGIN ELEV END NORTHING END EASTING END ELEV L20 21A S67°43'20"E 194726 194726 4912.20 134124 194745 4962,20 L21 22s S78"33'15"E 194745 194745 4962.20 134120 194768 4962,20 L22 44.7 NB5"28'36"E 194730 1 194730 14962.50 134539 194775 4962,50 Print Date: July 26, 2010 _ Sheet Revisions Project No./Code �- _ As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS DrnMng Fie Nam: F:132-1415.00 North Cdlege\MelnDwgaVStleetsW8001-28.WO-01.dwg Date: Comments Init. 281 North College Avenue' WATER QUALITY POND --- n Horizontal Scale Full: 1" = 20' Half: 1" = 40' �� - City Of Fort Collins, CO 80521 �� rr} I I , No Revisions: - o � FKPa*wxyientists/Surveyor3 0 ol a �',,Co"�nS Phone: (970) 221-6605 EnginaerJ. MICHAELSEN 30MJ c m 2 , gol g 2 goryp 2pp / ` Revised: structure Fax: (970)221-6378 - Designer. J. MICHAELSEN Numbers ASSOCIATES csF"`io1 65e° 7 _ vole: Sheet subset- wTR QUALITY j SubsetSheets: WQ-ol ors sheet Number NOTES TURF REINFORCEMENT MAT (TRM) 1. SEE SHEET WQ-04 FOR TYPICAL CROSS SECTIONS. o PROPOSED WO WSEL = 4959.60 TRM CLASS I 2. SEE SHEET WO-01 FOR MORE INFORMATION PERTAINING TO THE WATER QUALITY POND. -'� — PROPOSED 10--YR WSEL = 4963.16 REFER PROJECT SPECS o Io so 40 ___ = 'PROPOSED 10 4961.24 YR WSEL � E INFORMATION ON TRM CLASS II FOR MORE HORIZ.� 3. SEE SHEET WO-05 FOR FLOODWAY INFORMATION, CRITERIA AND CONSTRAINTS. TRM CLASS I. II, h III. o z.s s 10 VERL 4. TOP ELEVATION PROVIDED IS PROPOSED ELEVATION. BOTTOM IS EXISTING GROUND. TRM CLASS III SCALE IN FEET RAILROAD —� ---, I 14+00 E E E E 4968 EXISTING 4968 E E E E GROUND t 4964 _ _ _ _ _ _ _ _ — - - 4964 4.963 E E > +--48et i+4960 1a- ---- PROPOS ED 4960 E S 4'GRADE 0.30% 493 O jCHANNEL __4956 4956 v -50 -60 -40 -20 0 20 40 50 80 E 4 d 495 A A A as ^N 4956 W �- 4 496Z 13+50 E � • 498 E�96 —•--�. '\ 4968 EXISTING 4968 -�4967 ._.�• v 49 F GROUND v � � 4964 � - ��. _-- - "- - 4964 1 4960 - - 1 PROPOSED 4960 ._GRADE - - - _ TRICKLE - -� - CDA 4956 CHANNEL- 4956 -80 -60 -40 -20 0 20 40 60 80 12+00 13+00 11+00 - - - - 4968 EXISTING - - 4966 4968 EXISTING 4968 496e ---- _.---4968 EXISTING .GROUND. -... ------ GROUND _ . D GROUND - • - - - 4964- - - _ _ ; - _ -- -. - 4964 4964 - - _- - -- - - - 4964 4964 —`~S�LLWW�. 4fi62.2 GRADESED a96a - ------$-- PROPOSED 'GRADE --- Q---- 1 4960 _ 5 3.5 4%0 4%D - _ - 4960 PROPOSED 4.5 4960 4960 TRICKLE - _GRADE _ — _ TRICKLE ass6 - �� CHANNEL 4956 4956 - - CHANNEL. .4956 -80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 20 40 60 80 -80 -60 -40 -20 O 20 40 60 80 10+50 11+50 12+50 4964 _ - 4964 4968 EXISTING 4968 4968 - EXISTING 4968 GROUND - GROUND 4964 r - - 4964 449644 - _ - - — - - - $----- PROPOSED 4964 4964 —_—`—�--- 1 J 4964 4960 EXISTING PROPOSED GROUND a960 a960 ..- _�.1, :GRADE 1I --7--- 3.5.. L_ 4%0 4960 4 I-----�-- 1 L PROPOSED - 4960 JGRADE 4.5 GRADE TRICKLE TRICKLE 4956 -80 -60 - -4956 -40 -2020 40 60 80 4956 -80 CHANNEL -60 -40 -20 20 40 60 4956 80 4956 -80 -60 -40 CHANNEL -20 20 40 60 4956 80 M Print Date: July zB, zoio Sheet Revisions As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code Q. Drawing Flle Name: FA32-1415.00 - North College\MelnDwga4Sheata109001-27- Q-02-04.dwg _ Data: - - commettb Inlc 281 North College Avenue CI of `7 — - -POND GRADING AND CROSS SECTION MAP _ 7 Horizontal Scale Full: 1. = 20' Half: 1" = 40, Fort O 80521 Fort Collins Collins,r No Revisions: � c� Engineers/Scientists/Surveyors 0 Phone: (970) 221-6605 _ _ Engineer. J. MICHAELSEN Structure c ASSOCIATES JFK 70460Parkwey. eultlYp 2. SWm 200 P.O.P.o. so.voaeo C= Facan0)22T; co eos27 O fa7dlzza-s's66 Fax: (970) 221-6378 — Revised: - void: Designer. J. MICHAELSEN Sheet Subset WTR QUALITY _ Numbers ) Subset Sheets: WO-02 of 5 Sheet Number 'iV IGD x 1. SEE SHEET WO-04 FOR TYPICAL CROSS SECTIONS. PROPOSED WO WSEL = 4959.60 TURF REINFORCEMENT MAT (TRM) 2. SEE SHEET WO-01 FOR MORE INFORMATION PERTAINING TO THE WATER QUALITY POND. — -�--- PROPOSED 100-YR WSEL = 4963.34 TRM CLASS I 3. SEE SHEET WO-05 FOR FLOODWAY INFORMATION, CRITERIA AND CONSTRAINTS. _-�____ 4. TOP ELEVATION PROVIDED IS PROPOSED ELEVATION, BOTTOM IS EXISTING GROUND. - PROPOSED 10-YR WSEL = 4961.24 REFER TO PROJECT SPECS 0 10 20 40 �,a TRM CLASS IT FOR MORE INFORMATION ON HORiZ� TRM CLASS I. II. & ID. 0 2.5 " 10 POUDRE RIVER L VEP T. 0.5 FT FLOODWAYL—P 5 TRM CLASS ID SCALE IN FEET N n 4,9 18+00 POUDRE RIVER A w 9 4965 4968 4968 1.0 FT FLOODWAY—� ♦ ° 'p EXISTING '$—_—P.� �•\�•/' 4962"1 0 r� r O 496MLAKEGCOANADL 4964 •_- 49 .F 496 °' O \ BOTTOM) a9s? • `• v 9tr� > " R � j / PROPOSED iE \ O s - _ iA 1 4960 .TRM . GRADE 4960 'n m O ��4y5 O r 0.45% r + Il (W ._. `'' �.0.30% �, 4956 4956 0 30y -80 -60 -40 -20 0 20 40 60 80 (\/ CROSS SECTION IS OUT OF FLOODWAY 17+50 a 4965 4 ((�� 4962 �i p 4g ^� �� EXISTING _ 4968 ui 4968 7; PP •.9- 4 .GROUND �. 4964 4964 �•_' _. TRM .PROPOSED •�•_ 4 4.06 4960- -- - GRADE 4960 4 4. O � y�p�� 4956 COLLEGE60 40 -20 0 20 40 60 80 100 °� ' O 1 i I7 ` CROSS SECTION IS OUT OF FLOODWAY I04 15+00 I \ 16+00 17+00 4968 4968 4968 EXISTING 4968 4968 - EXISTING PROPOSED 4968 PROPOSED GROUND GROUND 4964 GRADE GRADE - - - _ --- _ .4964 4964 -- - - -- - - _ __ —. 4964 - - - .� - -- t964 EXISTING - - .'�-- - -- _. TRM ------V---- 4960 GROUND - - TRM 4960 4960 - - 45 - - 4980 1 PROPOSED 4960 4960 - - - - TRM - - 6.5 GRADE TRICKLE - - - - 4956 4956 4956 CHANNEL 4956 4956 -80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80 4956 CROSS SECTION IS OUT OF FLOODWAY 14+50 15+50 16+50 I 4968 EXISTING 4968 4968 EXISTING 4968 4968 4968 GROUND EXISTING GROUND _ .GROUND . PROPOSED 4964 - - _. _- 4964 as6a GRADE - _ _ .4964 4964. - _. _ _ �, _. _-.. - ___.� � —_4964 _----__-__ 1-_-----Y---_ . __--- 4960 1 PROPOSED 4960 4950 - 1 1 PROPOSED 4960 4960- 1 --- 4960 _ TRM ,GRADE 6.5 GRADE I. _ .5 TRICKLE t TRANSITION TRICKLE - - as - 5 - 4956 - 'CHANNEL 4956 4956 CHANNEL 4956 4956 - TRM —' MATS -80 -60 -40 20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80 4956 r Print Date: Nam:F, 2010 NORTH COLLEGE AVENUE IMPROVEMENTS July Sheet Revisions � -- - - As Constructed Project No./Code a'. D1awIngFlleNsme:F:132-1415.00N0rthC0llege\MainDwgs\SheeisW"1-27-W"2-04.dwg Date: Comments _ Ink. City of 281 North College Avenue - - - - iPOND GRADING AND CROSS SECTION MAP -- - Horizontal Scale Full: 1" = 20' Half: 1" = 40' `' Fort Collins, CO 80521 No Revisions: Engineers/Scientists/Surveyors Fort Collins a 3886 JFK Pmkwry. aWding 2. SulOe 200 - �- -- - - - - - - - - - - Phone: (970) 221-6605 Revised: Engineer: J. MICHAELSEN structure _ P.O. imz7oteo _ Fax: (970) 221-6378 - - Numbers c ASSOCIATES oassCOe - Void: Designer J"MICHAELSEN Sheet Subset: WTR QUALITY Subset Sheets: WD-03 of 5 Suet Number (A) TYPICAL CROSS SECTION OF SWALE TO POUDRE RIVER © TYPICAL CROSS SECTION OF SWALE/OVERFLOW FROM WOODLAWN DR TO WQ POND PROPOSED +4 - GRADE. +4 +4 TRM CLASS III PROPOSED EXISTING EXISTING GRADE TRM CLASS I PROPOSED +2 GROUND,. +2 +2 GROUND ,GRADE 1 SLOPE BACK AT /SEXISTING +0 3.3:9 TO J +0 +0 vgPoEs GROUND' EXISTING GROUND 6FT BOTTOM WIDTH AVENUE)' —80 —60 —40 —20 0 20 40 60 80 —60 —40 —20 0 20 40 60 80 © TYPICAL CROSS SECTION OF WATER QUALITY POND PROPOSED OR _ EXISTING SIDEWALK +6- -- - EXISTING +6 - GROUND EXISTING GROUND (COLLEGE AVENUE) +a SIDE SLOPES VARY - \1L - +a FROM 3.5:1 TO 6.5:1 TO +2 MINIMIZE THE _ "BATH TUB FEEL OF WATER. QUALITY PONDS. +0 SLOPE BACK T0. EXISTING GROUND —80 —60 —40 —20 \_ PROPOSED GRADE 4FT WIDE X /0.5FT DEEP (--TRICKLE CHANNEL 0 20 40 . Print Dace: July 26, 2010 _ Sheet Revisions • a Drawing File Name: F:132-1415.00 North College\MainDwgs\Sheets\09001-27-WQ-02-04.tlwy Date Comments Init. -. Horizontal Scale Full: 1" = 20' Half: 1" = 40' � ml AWE� Engineers/Scientists/Surveyors Surveyors En ineJFK O P.O. Box 270400 • BuIWYq Z, SWoe 200 ASSOCIATES is o °0627 +2 +0 60 80 OTYPICAL CROSS SECTION OF OVERFLOW SWALE FROM NORTH COLLEGE TO WATER QUALITY POND (UNDER SIDEWALK CHASE) +a TRM CLASS D PROPOSED GRADE +2 2FT WIDE X 0.51FT DEEP SWALE +o TO DIRECT LOW FLOWS TO THE POND OFF NORTH COLLEGE -80 -60 -40 -20 0 20 40 60 +4 +2 +0 +4 +2 +0 s0 As Constructed 'NORTH COLLEGE AVENUE IMPROVEMENTS City of 281 North College Avenue - -- —' WQ POND TYPICAL CROSS SECTION Fort Collins, CO 80521 No Revisions: Fort Collins Pnone: (g7O) 221 iSOS Engineer-J. MICHAELSEN Revised: _ structure Fax: (970) 221-6378 - Designer: J. MICHAELSEN Numbers Void: Sheet Subset WTR QUALITY Subset Streets: WQ-04 of 5 Project No./Code Street Number a I Dr&Mng Flis Mum: FA32-1415.00'N" $' Horizontal Scale Full: 1" = 100' All1�E5 Ens 0 3e5 P.O. ASSOCIATES taFixt7oli 11 0**A iii0000llillillillill11111111111111111: *00 9 11 • / ' 1 i to � go■I I . '' •�tL 04+40,0 040 r� �40 ., 400000 • Q� / POUDRE RIVER W -„ JO �Q O � PROPOSED WA IEN. 2 @ QUALITY POND CW ON BELOW EXISTING GROUNU COLLEGE AVENUE CROSSWALK AT OR BELOW EXISTING GROUND POUDRE RIVER 100-YEAR 1 FLOODPLAIN BOUNDARY - HALF -FOOT FLOODWAY V) iw ■l eo■L■! es■►■ ■■ ■ 4 go As Constructed 31 North College Avenue Fort Collins. CO 80521 No Revisions: Phone: (970) 221-6605 Revised: Fax: (970) 221-6378 Void: °:TALE IN FEET FLOODPLAIN AIN LEGEND - FEMA 5DO-YEAR FLOODPLAIN ����������������• FETIA 100-YEAR FLOODPLAIN POUDRE RIVER 1.0F7 FLOODWAY POUDRE RIVER 0.5FT FLOODWAY LINE TABLE LINE LENGTH BEARING BEGIN NORTHING BEGIN EASTING END NORTHING END EASTING L1 39.8 S80"06'56"E 134703 194681 134696 194720 L2 62.2 S75`17'14"E 134696 194720 134680 194780 L3 35.4 S76"39'33"E 134680 194780 134672 194815 L4 44.4 S85"30'50"E 134672 194815 134668 194859 L5 22.9 S82°30143"E 134668 194859 134665 194882 L6 18.5 S76'48'25'E 1346fi5 194882 134661 194900 L7 19.2 S65"29'12"E 134661 194900 134653 194917 LB 15.8 S69'O6'1TE 134653 194917 134648 194932 v FLOODWAY AND FLOODPLAIN NOTES: p 1. THE FOLLOWING ITEMS ARE NOT ALLOWED WITHIN THE FLOODWAY Z BOUNDARIES: 0- FILL STORAGE OF MATERIALS - _-----� 2. LANDSCAPE IN THE FLOODWAY WILL (SEE LANDSCAPE PLANS): NOT INCREASE THE EXISTING MANNING'S ROUGHNESS COEFFICIENT NOT BLOCK CONVEYANCE WILL LIE DOWN DURING A FLOODING EVENT - 3. A FLOODPLAIN USE PERMIT WILL BE COMPLETED PRIOR TO CONSTRUCTION. 4. ANY ITEMS IN THE FLOODWAY/FLOODPLAIN THAT CAN FLOAT (IE: BENCHES) WILL BE ANCHORED. I 5. THE PEDESTRIAN BRIDGE WILL BE ANCHORED OR CONTAIN FOOTING DOWN TO CALCULATED SCOUR DEPTH. d I 6. ANY ART WORK WALL BE DESIGNED TO NOT BLOCK CONVEYANCE AND WILL BE ANCHORED DOWN. 7. FENCES WITHIN THE FLOODWAY WILL NOT BLOCK CONVEYANCE AND WILL BE DESIGNED TO BREAK -AWAY. ( 8. THE TOPO FOR THE PROJECT IS ON THE NGV029 DATUM (WITHOUT ■ THE 1984 CORRECTION). THE FEMA INFORMATION IS ON THE NAVE) ■ 1988 DATUM. THE CONVERSION IS: NGVD29 (WITHOUT THE 1984 CORRECTION) + 3.OFT = NAVD 1988. J 9. FEMA WSEL INFORMATION JUST UPSTREAM OF COLLEGE AVENUE ON NGVD29 DATUM: r 100-YR WSEL: 4955.04 FT 50-YR WSEL: 4964.13 FT 10-YR WSEL: 4961.62 FT t 10: PROPOSED WATER QUALITY POND WSEL ON NGVD29 DATUM: -0 100-YR WSEL: 4963.16 FT 10-YR WSEL: 4961.24 FT WO WSEL: 4959.60 FT SPILLWAY ELEV: 4962.20 FT LP ON COLLEGE: 4962.40 FT 9. BENCHMARK: No 1-00. CATCH BASIN ON THE SOUTHEAST CORNER OF VINE AND COLLEGE. ELEV=4965.57ft NCVD29 10. THE POUDRE RIVER 0.5FT FLOODWAY SHALL BE STAKED PRIOR TO THE START OF CONSTRUCTION. 11. THE POUDRE RIVER FLOODWAY CAN NOT BE USED AS A STORAGE AREA. ALL EQUIPMENT AND CONSTRUCTION MATERIAL SHALL BE _ STORED OUTSIDE OF THE FLOODWAY. NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code FLOODPLAIN/FLOODWAY Engineer. J. MICHAELSEN _ Structure Designer. J. MICHAELSEN Numbers Sheet Subset STORM - Subset Sheets: WQ-05 of 5 Sheet Number Poudre River FEMA Data Fro INSI STU LARIMER COUNTY, COLORADO AND INCORPORATED AREAS VOLUME 1 OF 4 Community Community Name Number LARIMER COUNTY (UNINCORPORATED AREAS) 080101 BERTHOUD, TOWN OF 080296 ESTES PARK, TOWN OF 080193 FORT COLLINS, CITY OF 080102 JOHNSTOWN, TOWN OF 080250 LOVELAND, TOWN OF 080103 TIMNATH, TOWN OF 080005 WELLINGTON, TOWN OF 080104 Larimer County REVISED: JUNE 17, 2008 06vXR r Federal Emergency Management Agency m FLOOD INSURANCE STUDY NUMBER 08069CV001B �+HD 5E No Text No Text Y I— gad W n c2 n�y2o Qom- Ea$E d �I g�s� y-$oYo CL ��zo g ¢$8$'N �7S I n ry W CC Z E 0 C II ' m E a YaE€g a w Ro-W 80 I 6 e CIS0 U Q3Z� Di E WHO MNK "q`.8E moEaa .�rtoo D C) QQ i t�D v W �< p Z c 2JIS IAONO fl :�Q X ... W ti :W: :... z ¢ N N p� O z 040 co S1a 296� . o w ' o z JEROPAL • S,0.... ' � z Q O X 0 • 996b �o N p u C.c+ RE.4.. .:: O.o...Q.o w ui LLJ zW Zw w a Qf < c 996h :. �� p z j� do o y W = 133a1s z NOSVW -N - - �^ a O o `6J66. Z CL _ rl M, ::::'til::: O N W: 3 z l�s�: • X W O : ::::::: H .y............:::::` W z X ............. Z '..,.:::..:. X 3 w O N W 0 yr y.7 ... Li N p' � Q , ..��...,.. w Y o _ 0 3 y N O c�u �A i� e_ � s�a imp O d = V Z W a ss J ZjJlj ` �e3 a � z W O z ings C Q w � t � 6 ® 6 6 � B c O 10 c c w m O) w N 0: N i1 m d N N N N N N N C c w w N c w d C w � C w N C w G7 c w N c w N c w 07 C w N C w d C w N C w N C w I E E d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i c 0o I 0 0 0 0 0 0 0 0 WO 0 0 0 0 0 m c C.)ai ri c+i ti Ni c+i ri Cl)ri Cl)ri v v Q o E LO I a � .- a � I to Ln co 0M.- `S `S joE vi ai of cli � Pi vi � cli I cci v c+i 0 vi c•i vi � o o v E o El O E> M m CO)CV)M 0) 0)rn f7 rn M rn c7 m m 0)v �O LO rn tO 0) to 0) N 0)o m .E c N N N N N N N N M N N N cli �} O 3 ¢O 3 = � Q Ln O Z > > > J J J R Q' >. L V 3 •�O 0 Vco O Q O O 01 3 2O O O YND O O)O O U J J Q Q) NN� 75 E JU aQ d y N c d 0 m � U C7 U" 2 u2 m u m NU 1 y•2 a o oa > fn U J U U U U U C 6 U !n U rn U 0 U 0 LJ J P W _� L r a ° O a O J WW 2 a V } U O a V Q W h Z Q W ZW O� } VaU (7 W CWC w = Z J Z o a W LL TABLE 4 W WW OO�t V'(D tnMNdO InrNNOrr��NQ�rN �� o0000000000000aoo�0000 o Zv - 0 oZ �o W!- Uj 2�Q vaornmrnvnrnnornrnao�ncDhrnMvnV;ao .ri�i�oirir�oi Z F-�Z S oiv. cdr�"uiaooioirico� �-NNMMMMM�i V V'�LL)tn (p Opp (p (OhnCO S� V V V V UW W W m „ c c C A �U orn0r0i o00 'n 0 O 008 O O M ('M N N M N CC (Nh c a m u m J `U t 000000 huh V'OD h h 0 0 0 0�� M�It(n(q(p 0 M O O 000 000 .V m 0� e-•-O (nM00 �'�O NOact O MO ap O(pM \ a CO (V e- N P"1 M 'Q N C'4 fh h (O (p C7 •- a- e- IA m c a o, A t N 41 V Y a `() co iA h 000 � h 0 �.--� pOp 0V) 00 N N O pp 000 p a71 ,c r y 0 (O��O�D �OMOr`-r'-d- OtnM !i '� N �hN N G M.-- •-•-� Lo C) C e a O U m d C G t m t N 0 0 0 0 (n O OD 0p htin �� 'i '� '� O hitNOM7 ah-O ((((D ONp�(~7 w C (p (O (O (ri (O (p O c A E E R� N m a Q 'i VON CD (OA 00 N y �� m (00 c0 M (NO �� �� �� �� i i i v 04 N '� h LO h m N N (M H CY O N IT d m a me m m m 0 m ZU .c o oUU U 0 U m x �� v c a c c c A-p E w mo Y c a)vL 1° t m a c me 3 c o Q U @ U > coi c CD Z mmi .f U oaf w ¢ a) 0 = 0 0 � Cy� C NZW V 'E O0N C O> 3 O .'V' Q 0 C O 7 1 (� > to (n « _ O O > > > 0 Op OD NU > 3v '0.0 3 N.0 _j c a a c ip U c U (° D m m mQ �j " mU N o U o 0 �E �ct�m oo �e04)W �_�� m000 mrn.�`m�� wci'>'> jo> �o> vE o Eo ��? E E E (=x0 m.�`� c c o EaV o Eie 8 ami ami V � EN ami ai ami U a:(n v.� > > U c (0 0 ° m a) a m a = m « m t�q N N f/i U J U U O U .� J N 7 I.OL J N j O y d 3 1 «oaaa y y XQo»> XQaQQaa 0 0a°Q L) cl =1 Co 000 U U U f- - � Q a �;A ' �3: � x - s. L:... .s '". � �-',) iiN ���a.v i E:. :%�' a r:Y+`!i'?•�� }' ��Ja Yr L�?i JS�.. `" l 7�;}a ti. 1s�'M1t,�+'f�?� $tp 'Y )�.,iaT.ts�4 Si�ICE4:4'n:.I w���sr;:- rr� 4�s. s..µ, f"`^R 1.Y r'!. 7'xi .', E. ?i �'{tj`( �1 ti:) (' LL4\.4'/ � \�'Y ll� �} C�.�Yrt- 1 tx v.,e., 4i/+'y�4.'d tr(t� ii . Pa�yan�r ixp`. +ty '�' :kr b `=h?��)^� ` ..V; . M1.' �il^*. + 4 '14�j.!' Ji�'.��i�'�" k,"r�r 'S ! xr :. 4 •� i �!,:4G r.�n r:,v5. i r Ft.,. x1yC' C1 .>: � `SrY- ''r ! �' "t �fi, 7 �. � I x� �, }.{e ;'�tj% � ;4!' rk�{�,,�i r b.fc 4 ��'"t'" 4� x y,`�iT„) cF '��}K +�.^' v c 7 lr4, . �y i f '5,,; Y-, i.�� wy3 . {,MA 1� a e� • i. p �' r �� r r Tl r >8N.» �,�} 1 fii'.., � P A .a ,� a. �uY {�h. �,. i �L' � -. J r 1 t'�r'�.... ���. b `1�i I+.Jd. fiF + J' 4,'tnr" �n Tty.�,a. i r�� f EI 1 t, 1 ) ) 'Ci tiK ,v h7 �'�:�'� t.�+�Ys t Py ( r� 'ur. a,�i �! �� '-i � .4' 9 r 1 i F i t ( > .r 'h ,yva� rt � r {�� s. �'�. ,e�x��� �)iy+. Stt.yyL>•��e1 �s1; 4;� >L tt fiRSY.,r ver �f i�iU �lr.: ff S `f6 �'.: %t �i� lts i. "?;J' t< +�n9"-`_' �' Ir 1 :w`'S t y. r �. < ] SJ .>r1 v`tr #f�J� fS 'sJp �g �'•.�i�` r i ai^ ?���4 ��:✓�: f v4r.at . I i�,+^s(t�t-•'"�J 4i�a i,�i���ro +1 i�n'�'� ��i r7i ''' + t '"'il�f.'!iX'+'f'>'4 �u. t ryyt"�'., � yyp ..r. 55,. ; ✓ Tl�\T g t �j'�'I' X n ttt � a � t;: t x f' i � ^+ 'bl".0 �.. '11Y"� 7,v� v7i`i;.x a..ry� d h 'Ii�' s ��y {s.�ti'1 ry F4"EF'y .3C:y�; � t�n{" ?. �.,�, ctt;�l�.i� '�.4,rnl�a'�l±:aassi�rs, ";v'�'�� �kY ��� ° 33� .:: ;_ r ,�:�' �rs� dr`�rE�u"" ;�'# � aT � �'`e,W4,yy '` r "'A �, t {� y' - - ',��Cx;:`f>. � t{fS]l.��i�teva 3!_.k'.x1G Yfty. `�. ,.�.., ��>'iiu✓SAtMTIW: .i'.'iR.�c?�r..� k.7s; �...: i ,. i — � ����������� ������ ����� �� �� �_ /� _��� A�� 1����Iti ������ ��r= ���I�Illl�lxl�l��\v`'a I ����� ���i7�i �� ���� � ��,�i�� � ��iu�i .. , � �r� ��I�/ �a � ,. - "i � ' �_ _ 7 � — ,.4 I ',.t' • i�»t�; s�,u. -, A:: �..:. Inlet Calculations Inlet Summary Inlet and Street Conditions 10-yr 100-yr Max HGL and EGL Inlet Inlet Tributary Basin Street Slope Cross Slope Inv Elevation Depth Grate Total Flow Basin Flow HGL Velocity EGL Depth Head Total Basin HGL Velocity EGL Depth Head Flow Flow INLET -Al 2-Combo type 13 on grade W02 0.43 2 4958.18 6.25 4964.43 0.58 0.58 4962.54 4.08 4962.80 -1.89 -1.63 13.29 1.27 4964.84 5.57 4965.32 0.41 0.89 INLET-A2 5ft Type R on grade W03 0.43 2 4960.48 4.62 4965.1 3.79 1.64 4962.90 6.03 4963.46 -2.20 -1.64 3.61 3.61 4965.18 6.12 4965.76 0.08 0.66 INLET-A3 1Oft Type R on grade W06 0.38 2 4961.72 5.11 4966.83 2.54 2.54 4963.58 2.41 4963.67 -3.25 -3.16 6.13 5.87 4966.93 3.55 4967.13 0.1 0.30 INLET-A4 5ft Type R on grade W07 0.45 2 4963.26 4.59 14967.85 1.84 1.84 4964.65 2.11 4964.72 -3.20 -3.13 4.31 4.23 4967.90 3.91 4968.14 1 0.05 0.29 INLET-A5 5ft Type R on grade W08 0.45 2.5 4964.19 4.64 14968.83 2.10 2.10 4965.64 2.18 4965.71 -3.19 -3.12 4.74 4.60 4968.84 3.88 4969.07 0.01 0.24 INLET-A6 5ft Type R on grade W 11 0.45 2.5 4964.93 4.61 14969.54 1.21 1.21 4966.58 2.34 4966.67 -2.96 -2.87 2.64 2.64 4969.57 5.43 4970.03 0.03 0.49 INLET-A7 Sit Type R on grade W12 0.45 2.5 4965.55 4.6 14970.15 2.32 2.32 4966.81 2.10 4966.88 -3.34 -3.27 5.03 5.03 4970.17 5.19 4970.59 0.02 0.44 INLET-A8 5ft Type R on grade W 13 0.86 2.5 4966.59 4.6 4971.19 3.03 3.03 4967.56 3.17 4967.72 -3.63 -3.47 6.53 6.53 4971.21 7.22 4972.02 0.02 0.83 INLET-A9 5ft Type R on grade W14 0.24 2.5 4968.11 5.11 4973.22 2.68 2.68 4968.82 3.09 4968.97 -4.40 -4.25 5.96 5.96 4971.74 5.81 4972.26 1.48 -0.96 INLET-D 5ft Type R on grade E01 0.34 2.5 4957.71 6.06 4963.77 1.06 0.71 4961.26 3.09 4961.41 -2.51 -2.36 1.55 1.56 4963.34 5.81 5.81 4963.86 0.43 0.4 0.09 INLET-E 1Oft Type R on grade E04 0.41 2.5 4961.71 2.8 4964.51 1.78 1.78 4962.66 3.27 4962.83 -1.85 -1.68 11.71 3.91 4963.34 4963.8 0.09 40 INLET-F1 Type 13 in sump W04 In Sump 4960.24 5.71 4965.95 0.62 1 0.62 4963.09 1.28 4963.12 -2.86 -2.83 2.22 1.37 4965.96 1.43 4965.99 0.01 0.04 INLET-H1 5ft Type R in sump W05 In Sump 4960.9 5.16 4966.06 1.51 1.51 4963.11 1.71 4963.16 -2.95 -2.90 4.24 3.31 4966.16 2.18 4966.23 0.1 0.17 INLET-G1 5ft Type R on grade E05 0.41 2.5 4962.59 3.43 4966.02 1.07 1.07 4963.20 2.45 4963.29 -2.82 -2.73 6.70 2.34 4966.23 2.52 4966.33 0.21 0.31 INLET-G2 1 Oft Type R on grade E06 0.41 2.5 4963.58 3-.2-7-T 4966.85 2.36 2.36 4964.21 2.89 4964.34 -2.64 -2.51 5.35 5.18 4966.99 3.25 4967.15 0.14 0.30 INLET-G3 5ft Type R on grade E07 0.41 3 4964.58 3.3 4967.88 1.79 1.79 4965.15 2.57 4965.25 -2.73 -2.63 3.92 3.92 4967.93 3.13 4968.08 0.05 0.20 INLET-G4 5ft Type R on grade E08 0.5 1 3 4966.01 3.31 4969.32 1.30 1.31 4966.77 1.44 4966.80 2.55 2.52 2.85 2.85 4969.37 2.90 4269.50 0.05 0.18 INLET-G5 1Oft T e R on grade E09 0.5 3 4966.88 3.65 4970.53 2.69 2.70 4967.74 3.02 4967.88 -2.79 -2.65 5.63 5.83 4970.57 3.63 4970.77 0.04 0.24 INLET-J7 Type D in sump 0S1 4958.07 3.76 4961.83 17.41 4962.50 3.55 4962.70 0.67 0.87 25.61 4964.78 5.22 4965.20 2.95 3.37 DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-1 Design Flow = Gutter Flow + Carry-over Flow Design low: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): '0 =1 0.581 lcfs - I} u entered a value here, skip the rest of this sheet and proceed to sheet O-Allow eograp ie Information:(Enter data in the blue ce s : Subcatchment Area -1 Acres Percent Imperviousness -1 % NRCS Soil Type =1 IA, B, C, or D Site: (Check One Box Only) Slope (fUft) Length (ft) Site is Urban: X Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall n orma Ion: intensity inc r = G, , 7 C, + 3 Minor Stone Major Storm Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C,= C2= C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Sufxatchments, Oy =1 0.0010.00 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, Vc = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T, = Time of Concentration by Regional Formula, T, = Recommended T. = Time of Concentration Selected by User, T. = Design Rainfall Intensity, I = Calculated Local Peak Flow, Qp = Total Design Peak Flow, Q = N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.58 9.84 fps fps minutes minutes minutes minutes minutes minutes inch/hr cis cfs A-t.xls, Q-Peak 7/26/2010, 8:16 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet 10: Inlet A-1 -- Lo (C) H-Curb_ . _ H-Vert - _�_ - -�-Wo Wp W �Lo (G) of Inlet Depression (additional to contmuoua gutter depresslan'a' from'O-Allow) Number of Units in the Inlet (Grate or Curb Opening) 1t of a Single Unit Inlet (Grate or Curb Opening) of a Unit Grate (cannot be greater than W from O-Allow) ling Factor for a Single Unit Grate (typical min. value = 0.5) ling Factor for a Single Unit Curb Opening (typical min. value = 0,1) M Discharge for Nab of Street (from Sheet O-Peak) r Spread Width r Depth at Flowline (outside of total depression) r Depth at Street Crown (or at Te,rr) of Gutter Flow to Design Flow arge outside the Gutter Section W, carried in Seaton T. arge within the Gutter Section W arge Behind the Curb Face t Flow Area t Flow Velocity r Depth for Oesion Condition Length of Inlet Grate Opening Of Grate Flow to Design Flow r No -Clogging Condition um Velocity Where Grate Spash-Over Begins option Rate of Frontal Flow option Rate of Side Flow option Capacity r Clogging Condition Ing Coefficient for Multiple -unit Grate Inlet Ing Factor for Multiple -unit Grate Intel Ive (unClogged) Length of Multiple -unit Grate Inlet um Velocity Where Grate Spash-Over Begins option Rate of Frontal Flow option Rate of Side Flow it Interception Capacity -Over Flow = Oe O, (to be applied to curb opening or next d/S inlet) ant Slope Se (based on grate carry-over) W Length Lr to Have 100% Interception No Chugging Condition e Length of Curb Opening or Sloded Inlet (minimum of L. LT) olion Capacity Clogging Condition ig Coefficient ig Factor for Multiple -unit Curb Opening or Slotted Inlet e (Unclogged) Length Interception Capacity 7ver Flow = O­-0. MINOR MAJOR Type = CDOT/Denver 13 Combination ahocu = 2.0 No = 2 Lo= 3.00 3. Wo= 1.73 1. C,-G = 0.50 0. Oe =01 T= d = deROWN - E, = O,= O.= Oewc = A. = V. = diocu = MINOR MAJOR efs n Inch inch cts as cfs eq It fps inch 9.84 4.2 19.1 3.0 6.6 0.0 0.0 0.951 0.329 0.03 6.51 0.55 3.20 0.00 0.14 0.3 3.80 1. 2.59 5.01 8.6 MINOR MAJOR L = 6.00 6.00 ItE>aeas = 0.912 0.299 MINr1R MA.Ir1R V. R, R, G; GrateCoef GrateClog L. Vo: RI R,: O,: 9.981 9.98 1. 1. 0.76 0.60 0.57 6.96 as Is MINOR MAJOR Sr= 0.1785 0.0749 ftM LT = 0.82 12.49 It MINOR MAJOR L- Ob1 6.00tt 0; = 0.01 ` 57 its MINOR MAJOR CurbCosf = Curti = y = O, = O = 1.2: 0.0E 0.81 0.01 0.01 oummar MINOR MAJOR Total Inlet Interception Capacity O =i 0.57 6.5 do Total Inlet Carry -Over Flow (flow bypassing inlet) Op = 0.01 3.25 Cfs Capture Percentage = O,/Oo = C%=1 97.9 67.0 % A-1.xIs, Inlet On Grade 7/26/2010, 8:16 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-2 Design Flow = Gutter Flow + Carry-over Flow �-.UTTE1 :I.L T"ILE:' ❑F STREET Design Flow: ONLY if already determined through other met ods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q - '.641 3.61 cfs ' If you entered a value here, skip the rest of this sheet and eroceed to sheet O-Allow Geographic In ormation: nter data in the blue ce s : Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, 8, C, or D Site: (Check One Box Only) Slope (fVft) Length (ft) Site is Urban: X Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall n orma ion: iFtensity inc r = _ U2 + 1, C, Minor Storm Major Storm Design Storm Return Period, T, = years Return Period One -Hour Precipitation, Pt = inches C, Cz= G3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Ob =1 O.001 0.00 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T, _ Time of Concentration by Regional Formula, T, _ Recommended T. _ Time of Concentration Selected by User, Te = Design Rainfall Intensity, I = Calculated Local Peak Flow, Qo = Total Design Peak Flow, 0 _ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/ N/A N/ N/A N/A N/A N/A N/ N/A N/ N/A N/A N/A N/A 1.64 3.61 fps fps minutes minutes minutes minutes minutes minutes inch/hr cfs cfs A-2.xls, Q-Peak 7/26/2010, 8:16 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet A-2 -Lo (C)--- H-Curb \ �- wo W Wp Design Information (Input) MINOR MAJOR Type of Inlet Type = COOT Type R Curb Opening Local Depression (additional to continuous gulter depression's' from'0-AIII aI = 2.0 2.0 Inches Total Number of Units In the Inlet (Grate or Curb Opening) No = 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) L,= 5.00 5.00 ff Width of a Una Grate (cannot be greater than W from O-AIIow) W. = W ;7A it Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C,-G = WA W Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) C,-C = 0,20 0.20 Street Hydraulics: OK - 0 < maximum allowable from sheet 'O-Allow' MINOR MAJOR Design Discharge for Hatt of Street (from Sheet O-Peak) Q. = cis 1.64 3.61 Water Spread Width T= it 8.6 12.5 Water Depth at Flowline (outside of local depression) d = inches 4.1 5.0 Water Depth at Street Crown (or at Tuu) dcaowu = inches 0.0 0.0 Rare of Gutter Flow to Design Flow E,= 0.689 0.501 Discharge outside the Gutter Section W, tamed in Section T. 0,= cis 0.51 1.80 Discharge within the Gutter Section W Ow = cis 1.13 1.81 Discharge Behind the Curb Face Oanc,, = cis 0.00 0-00 Street Flow Area A, = sq It 0.90 1.74 1.83 2,78 Street Flow Velocity V, = fps Water Depth for Design Condition dtocx = inches 6.1 7.0 Grate Analysis Calculate MINOR MAJOR Total Length of Inlet Grate Opening L - ry Ratio of Grate Flow to Design Flow EoG.ATE _ Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V. = Ifps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow R, = Interception Capacity O, = cis Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef = Clogging Factor for Multiple -unit Grate Inlet GrateClog = Effective (unclogged) Length of Multiple -unit Grate Inlet L, = it Minimum Velocity Where Grate Spash-Over Begins V, = fps interception Rate of Frontal Flow R, _ Interception Rate of Side Flow R, = Actual interception Capacity a.. N/A WA cis Carry -Over Flow = O; O, (to be applied to curb opening or next d/s inlet) Oe = N!A W cts Curb or Slotted Inlet Opening Analysis (Calculated) MINOR MAJOR Equivalent Slope Se (based on grate carry-over) S. =1 013491 0.1036 fl/ft Required Length Lt to Have 100% Interception LT = 5.73 9.35 ft Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L =1 5.00 5.00 it Interception Capacity Oi = 1.60 2.70 cis Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoef = 1.00 1 A Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog = 020 0. Effective(Unclogged) Length L,= 4.00 4,00 it Actual Interception Capacity 0,= 1.45 2.29 cfs Carry -Over Flow = ca�Tsl-O, Ob = 0.19 1.32 cfs summary MINOR MAJOR Total Well Interception Capacity 0=1 1.451 2.29 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) Ob = 0.19 1.32 cfs Capture Percentage = 0,/0, = C%= 68.4 63.4 % A-2.xls, Inlet On Grade 726/2010, 8:16 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-3 Design Flow = Gutter Flow + Carry-over Flow Design Flow: ONLY if already determined t rough other methods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 2.541 cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet O-Allow Geographic Information:(Enter data in the ue ce s : Subcatchment Area = Acres Percent Imperviousness = NRCS Soil Type IA, B, C, or D Site: (Check One Box Only) Slope (ft/ft) Length (ft) Site is Urban: X Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall n ormation: intensity inc r = , u, + 1 U3 inor torn major Storm Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C,= Cz= C, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Ob =1 0.001 0.001cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T. = Time of Concentration by Regional Formula, T. = Recommended T. = Time of Concentration Selected by User, T, _ Design Rainfall Intensity, I = Calculated Local Peak Flow, Q, = Total Design Peak Flow, 0 = N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N N/A N/ N/A N/ N/A N/A N/A N/A 2.54 5.9 fps fps minutes minutes minutes minutes minutes minutes inch/hr cis cis A-3.xls, Q-Peak 7/26/2010. 8:16 AM 11 INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet A-3 Wamint - --Lo(C)- - H-Curb H-Ven -Wo VIP \ W ,. Lo lb1 J Deslan Information (input) MINOR MAJOR Type of Inlet Type = CDOT Type R Curb Opening Local Depression (additional to continuous gut1w dapression'a' Irom'O-AIIoW) aLprx = 2.0 2.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No = 22 Length of a Single Unit Inlet (Grate or Curb Opening) L,= 5.00 5.00 it Width of a Unit Grate (cannot be greater than W from O-Allow) W,= N/A N/ it Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cl-G = N/A N/ Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) C,-C = 0.15 0.15 Street Hydraulics WARNING -. > ALLOWABLE FOR MINOR STORM MINOR MAJOR Design Discharge for Half of Street (from Sheet O-Peak) O, = ds 2.54 5.95 Water Spread Width T= it 11.0 16.0 Water Depth at FloWine (outside of local depression) d = inches 4.6 5.8 Water Depth at Street Crown (or at TeAx) dGOOWN = 0.0 07 Inches Ratio of Gutter Flow to Design Flow E, = 0.565 0.395 Discharge outside the Gutter Section W, carried in Section T. O, = cfs 1.10 3.60 Discharge within the Gutter Section W 0„ = cfs 1.44 2.35 Discharge Behind the Curb Face OeACK = cfs 0.001 0.00 Street Flow Area A. = ad It 1.3 2.72 Street Flow Velocity V. = 1. 2 19 fps 6.g 7.8 Water Depth for Design Condition of ocn. = inches Grate Analysis (Ca(Calculated MINOR MAJOR Total Length of Inlet Grate Opening L = It Ratio of Grate Flow to Design Flow Eo(INArE _ Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V, = fps Interception Rate of Frontal Flow R, _ Interception Rate of Side Flow R, _ Interception Capactty, O, = cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoel = Clogging Factor for Multiple -unit Grate Intel GrateClog = Effective (unclogged) Length of Multiple -unit Grate Inlet Le = If Minimum Velocity Where Grate Spash-Over Begins V, = fps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow R, = Actual Interception Capacity O, WA NIA cfs Carry -Over Flow = Q.-O. (to be applied to curb opening or next d/s inlet) Os N/A N/N cfs Curb or Sinned Inlet Omnin Analysis (Calculate MINOR MAJOR Egwvalam Slope S. (based on grate carry-over) S. = 0.114 0.085 fVft Required Length LT to Have 100 % Interception LT = 7.3 12.43 ft Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L .1 7.32 10.00 tt Interception Capacity Ol = 2. 5.63 cis Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoel 1.25 t. Clogging Factor for Mulfiple-unit Curb Opening or Slotted Inlet CurbClog = 0. 0. Effective (Unclogged) Length L. = 7.32 9. it Actual Interception Capacity O, ?.S4 5. cfs Carry -Over Flow = OgcaATel-O, Oe = 0.00 0.5 cfs SUMMON MINOR MAJOR Total Inlet Interception Capacity 0 = 294 5.38 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) On- 0.00 0.57 cfs Capture Percentage = O,/%= C%= 100.0 90.5 "o A-3.xls, Inlet On Grade 7/2612010, 8:17 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-4 Design Flow = Gutter Flow + Carry-over Flow lI I (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): ' If you entered a value here. skiD the rest of this sheet and Droceed to she Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: rmahon: Intensity inc r = C, v 7_1FC72-717 uz� Subcatchment Area = Acres Percent Imperviousness= NRCS Soil Type IA. B, C. or D Slope (ft/ft) Length (ft) Overland Flow = Gutter Flow = Design Storm Return Period, Tr Return Period One -Hour Precipitation, P, C, Cz Ca User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS Bypass (Carry -Over) Flow from upstream Subcatchments, Qy a Calculated Design Storm Runoff Coefficient, C : Calculated 5-yr. Runoff Coefficient, C5: Overland Flow Velocity, Vo: Gutter Flow Velocity, Vc Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, T, Time of Concentration by Regional Formula, T,: Recommended T,: Time of Concentration Selected by User, T. r Design Rainfall Intensity, 1 : Calculated Local Peak Flow, Qo Total Design Peak Flow, Q : N/A N/A N/A N/ N/A N/ N/A N/ N/A N/ N/A N/A NA NA N/A N/ N/A N A N/A WA N/A N/A N/A N/A 1.84 4.34 Ps Ps ninutes ninutes ninutes ninutes ninutes ninutes toh/hr :fs :fs A-4.xls, O-Peak 7/26/2010, 8:17 AM 11 INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet A-4 Lo (C ) H-Curb H-Van -. Wo Wp __. W =J ��- Lo (G) Design I1 rmaton ftfigiM MINOR MAJOR Type of Intel Type = CDOT Type R CuroOpening Local Depression (additional to continuous guitu depresebn'a' fmml koc = 2.0 2.0 Inches Total Number of Units In the Inlet (Grate or Curb Opening) No = 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) L, = 5.00 5.00 it Width of a Unit Grate (cannot be greater than W from O-Allow) W, = N/A N7 it Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CI-G = N/A N/ Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) C,-C = 0.20 0.2 Street H i li" OK - im m allowilible from All MINOR MAJOR Design Discharge for Hatt of Street (from Street Q-Peak) Q. . 1.84 4.34 of$ Ater Spread Width T = 8 9.0 13.5 Water Depth at Flowllne (outside of local Depression) of = 42 5.2 inches Water Depth at Street Crown (or at Tuex) dcnowN - inches 0.0 0.0 Ratio of Gutter Flow to Design Flow E. = 0.665 0.468 Discharge outside the Gutter Section W. partied in Section T. O, = cfs 0.62 2.31 Discharge within the Gutter Section W O. = 1.22 2.03 cis Discharge Behind the Curb Face Qencx = 0. 0.0 cis Street Flow Area A, = sq It 0.97 1.9 Street Flow Velocity V, = fps 1.891 2.20 6.2f 7.2 Water Depth for Design Condition dtauAt = inches GrateAnalysisMINOR MAJOR Total Length of Inlet Grate Opening L = n Ratio of Grate Flow to Design Flow E.GRATE _ Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow R,= Interception Capacity Q_ CIS Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef = Clogging Factor for Multiple-unn Grate Inlet GrateClog = Effective (unclogged) Length of Multiple -unit Grate Inlet L.. it Minimum Velocity Where Grate Spash-Over Begins V,. fps Interception Rate of Frontal Flow R, _ Interception Rate of Side Flow A,= Actual Interception Capacity Q.. NIA IWA cfs Carry -Over Flow = Qe Q, (to be applied to curb opening or next d/s inlet) Ob 'I MAI WAICIls Curb or Slotted Inlet Octeminct Analysis (Calculated) MINOR MAJOR Equivalent Slope S. (based on grate carry-over) S. = 0.13091 0.0981 f m Required Length LT to Have 100 % Interception LT = 6.201 10.5 it Under No,Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L = 5245.00 If Interception Capacity Qi= 1.741 2.9 cis Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoetf= 1.00 1.0 Clogging Factor for Multiple-und Curb Opening or Slotted Inlet CurbClog . 0.20 0.2 Effective (Unclogged) Length L. = 4.00 4.00 R Actual Interception Capacity Qa. 1.55 2.49 cfs Carry -Over Flow = O Q ,I-O. Qy = 0.29 1.85 cfs Summary MINOR MAJOR Total Inlet Interception Capacity Q = 1.55 2.49 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) 06.10.29 1.85 cfs Capture Percentage = Q./%= C % = 84.5 57.5 "; A-4.xls, Inlet On Grade 7/26/2010. 8:17 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-5 Design Flow = Gutter Flow + Carry-over Flow -- - - INLET :IF :_'FEET (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): 'O 2. :` vo„ entered a vawe here. skid the rest of this sheet and oroceed to sheet O-Allnwl Subcatchment Area = Acres Percent Imperviousness = NRCS Soil Type IA, B. C, or D Site: (Check One Box Only) Slope (ft(ft) Length (ft) Site is Urban: X Overland Flow Site Is Non -Urban: Gutter Flow = 'm con: Intensity inc r) F1 2 + I U3 Minor Storm Major Storm Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs Bypass (Carry -Over) Flow from upstream Subcatchments, Oe me a Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo: Gutter Flow Velocity, VG = Overland Flow Time, to : Gutter Flow Time, to : Calculated Time of Concentration, T. Time of Concentration by Regional Formula, T,: Recommended T,: Time of Concentration Selected by User, T. Design Rainfall Intensity, I Calculated Local Peak Flow, Op = Total Design Peak Flow, 0 : N/A N/A N/A N/A N/A N/A N/A N/A N/A N/ N/A N/A N/A N/ N/A N/ N/A N/ N/A A N/A N/A N/A N/A 2.10 4.68 ps ps ninutes ninutes ninutes ninutes ninutes ninutes nch/hr ;h ;fs A-5.xis, Q-Peak 7/26/2010, 8:17 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet A-5 - Lo (C)- H-Curb H-Vert - - Wo W DesignInformation MINOR MAJOR Type of Inlet Type - COOT Type R Curb Opening Local Depression (addilional to continuous gutter depression'a' fmm'0.AIIoW) aLmi,, = 2.0 2.0 Inches Total Number of Units in the Inlet (Grate or Curb Opening) No = 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) L,= 5.00 5.00 it Width of a Unit Grate (cannot be greater than W from O-Allow) Ai NfA N/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CiG = N/ N/ Clogging Factor for a Single Unit Curb Opening (typical min, value = 0.1) C, C = 0.20 0.20 Street Hvdrii ice: OK - 0 < maximum allowable from shaet'O-Allow MINOR MAJOR Design Discharge for Halt of Street (from Sheet O-Peak) De = 2.10 4.68 cis Water Spread Width T= 8.3 12.1 it Water Depth at Flowline (outside Of local depression) d = 4.5 5.6 inches Water Depth at Street Crown (or at T,") dcnown = inches 0.0 0.0 Ratio of Gutter Flow to Design Flow E, = 0.676 0.495 Discharge Outside the Gutter Section W, tamed in Section T. 0,= 0.68 2.37 of$ Discharge within the Gutter Section W O. = 1.42 2.32 cfs Discharge Behind the Curb Face OBACK = 0.00 0.00 cis Street Flow Area A, = 1.03 1.98 sq R 2.04 2.36 Street Flow Velocity V. = fps 6.5 7.6 Water Depth for Design Condition dioca = inches Grate Analysis (Calculated) MINOR MAJOR Total Length of Inlet Grate Opening L = it Ratio of Grate Flow to Design Flow Esomn: _ Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V.= fps Interception Rate of Frontal Flow RI = Interception Rate of Side Flow R,= Interception Capacity O, = cis Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef = Clogging Factor for MuMple-unit Grate Inlet GrateClog = Effective (unclogged) Length of Multiple -unit Grate Inlet L. = It Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow R, = lntemepfon Rate of Side Flow R, = Actual Interception Capacity O,. N/A NIA eta Carry -Over Flow = Oo O, (to be applied to curb opening or next d/s Intel) Oe =j WA N/Aleft Curb or Stated Inlet Owning Analysis (Calculated) MINOR MAJOR Equivalent Slope S. (based on grate carry-over) S. = 0.1376 0.1075 Wit Required Length LT to Have 100% Interception LT '1 6.361 10.34 it Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L = 5.001 5.0 It Interception Capacity 0,. 1.971 3.2 cis Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoef = 1.00 1. Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurloClog. 0.20 0.20 Effective (Unclogged) Length L.. 4.00 4.00 it Actual Interception Capacity O,. 1.75 2.74 cfs Carry -Over Flow = Q,GnATErO. Oy = 0.35 1.94 cfs Summary MINOR MAJOR Total Inlet Interception Capacity O = 1.75 2.74 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) OD = 0.35 1.94 cis Capture Percentage = O,/O, = C % = 83.2 58.6 % A-5.xls, Inlet On Grade 7/26/2010, 8:17 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-6 Design Flow = Gutter Flow + Carry-over Flow Design ow: NI - a rea y etermme through other methods: Minor Storm Major Storm (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): .Q =1 1.21 2.64 c`s If you entered a value here. skip the rest of this sheet and proceed to sheet O-Allow) eograp ie Information: nter ciata in the blue ce s : SntImp Imperviousness Area =Acres Percent Imperviousness = % NRCS Soil Type = A, B, C, or D Site: (Check One Box Only) Slope (ftm) Length (ft) Site is Urban: X Overland Flow = Site Is Non -Urban: Gutter Flow = sin a n orma on: Intensity[ inc r = z + ° a Minor Storm Major Storm Design Storm Retum Period, T, = years Return Period One -Hour Precipitation, Pi = inches Cr= Cz= C]= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subeatehments, Ob =1 0.00 0.00 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T. = Time of Concentration by Regional Formula, T. = Recommended T° = Time of Concentration Selected by User, T. = Design Rainfall Intensity, I = Calculated Local Peak Flow, OP = Total Design Peak Flow, O = N/A N/A NIA N/A NIA N/A N/A N/A N/A N/A N/A N A N/A N/A N/A N/A N/A N/A N/A N/A N/A NIA N/A 1.21 2.6 fps fps minutes minutes minutes minutes minutes minutes inch/hr cis cfs A-6xls. O-Peak 7/26/2010, 8:17 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet A-6 -Lo(C) , H-Curb H-Veit _ -_ We WP \ W \ L� Design Information (Inputl (Input MINOR MAJOR Type of Inlet Type = CDOT Type R Curb Opening 2.0 2.0 Local Depression (additional to continuous guitar depression's' Irom'O-Allow) atop,& = inches Total Number of Units in the Inlet (Grate or Curb Opening) No = 1 1 Length of a Single Una Inlet (Grate or Curb Opening) LA = it 5.00 5.00 Width of a Unit Grate (cannot be greater than W from O-Allow) W, = NI N/A it Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C,G = NIA N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Ct-C = 0.20 0.20 Street Hydraulics: WARNING: O > ALLOWABLE O FOR MINOR 8 MAJOR STORM MINOR MAJOR Design Discharge for Hall of Street (from Shoat O-Peak) Q. = 1.25 2.65 Ms Water Spread Width T= a 285 40.0 Water Depth at Flowline (outside of local depression) d = 29 3.2 inches Water Depth at Street Crown (or at T..) dCAOWN = Inches 0.0 0.0 Ratio of Gutter Flow to Design Flow E,. 0.460 0.290 Discharge outside the Gutter Section W, carded in Section T, O, = cis 0.68 1.88 Discharge within the Gutter Section W Q. = 0.58 0.77 CIS Discharge Behind the Curb Face OaAcs = 0.00 0.00 cis Street Flow Area A. = 1.1 2.26 sq it 1.061 1.17 Street Flow Velocity V. = fps Water Depth for Design Condition di OOA1 = inches 4.9 5.2 Grate Analysis(Calculated) MINOR MAJOR Total Length of Inlet Grate Opening L-1 it Ratio of Grate Flow to Design Flow Eo-.RATE _ Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow Rt = Interception Rate of Side Flow R, _ Interception Capacity O; = cis Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef = Clogging Factor tot Multiple -unit Grate Inlet GrateClog = Effective (unclogged) Length of Multiple -unit Grate Inlet L. = it Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow R, = Actual Interception Capacity O,. NIA WA pis Carry -Over Flow = O; O, (to be applied to curb opening or next di inlet) O, .1 N/Al NIAlefs Curb loft d Inlet Opening Analysis (Calculated) MINOR MAJOR Equivalent Slope S, (based on grate carry-over) S, - 0,07921 0.0509 IVa Required Length L, to Have 100% Interception Lt = 7.131 12.74 It Under No -Clogging Condition MINOR MAJOR Effective Length of Cum Opening or Slotted Inlet (minimum of L. LT) L 5.001 5.00 it Interception Capacity Ot= 1.11 1.5 cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient Curti i- 1.00 1.00 Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog = 020 0.20 Effective (Unclogged) Length L,= 4.00 4.00 It Actual Interception Capacity O, 0 1. efs Carry -Over Flow = OvcnA-el-O. Ob = 028 1.35 efs Summary MINOR MAJOR Total Inlet Interception Capacity O = 0.97 1.30 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) Ob = 0.28 1.35 ofs Capture Percentage =O,IDo= C%= 77.3 49.2 A-6.xls, inlet On Grade 7/2612010, 8:17 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-7 Design Flow = Gutter Flow + Carry-over Flow (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): ff you entered a value here. skin the rest of this sheet and nrncned to she Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: c up Subcatchment Area =1 Acres Percent Imperviousness = NRCS Soil Type =1 JA, B, C, or D Slope (fvft) Length (ft) Overland Flow = Gutter Flow = Design Storm Return Period, Tr Return Period One -Hour Precipitation, P, C, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs Bypass (Carry -Over) Flow from upstream Subcatchments, Ob a Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, Vo = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, To = Time of Concentration by Regional Formula, T. = Recommended T. = Time of Concentration Selected by User, T, Design Rainfall Intensity, I = Calculated Local Peak Flow, O, _ Total Design Peak Flow, O - N/A N/A N/ N/A N! N/A N/A N A N/A N/A N/A N/A N/A N/ N/A N/A N A A N/A N/ N/A N/A 2.32 5.03 ps os ninutes ninutes ninutes ninutes ninutes ninutes tch/hr is rfs A-7.xls, Q-Peak 7/26/2010, 8:18 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet A-7 Warnmi i Lo (C)-- - H Curb WP We W Design Information fL02UU MINOR MAJOR Type of Inlet Type = CDOT Type R Curb Opening Local Depression (additional to continuous gulter depression's'fmWO-Allow) aLM&- 2.0 20 inches Total Number of Units in the Inlet (Grate or Curb Opening) No = 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) L,= 5.00 5.00 h Width of a Unit Grate (cannot be greater than W from O-Allow) W,= NIA WA it Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CrG = N/A N/ Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Cr-C = 0.2C 0.20 Street Hydraulics WARM > ALLOWABLE FOR MINOR 6 MAJOR STORM MINOR MAJOR Design Discharge for Half of Street (from Sheet "ask) O, = cfs 2.321 5.03 Water Spread Width T- it 38.61 40.0 Water Depth at Flowllne (outside of local depression) d = 3.2 3.6 inches Water Depth at Street Crown (or at T, ") dcnowN = inches 0.4 0.4 Ratio of Gutter Flow to Design Flow E. = 0.3151 0200 Discharge outside the Gutter Section W. earned in Section T, O, = cis 1.591 4.02 Discharge within the Gutter Section W O„ = cis 0.73 1.01 Discharge Behind the Curb Face QMCN = cis 0.00 0.00 Street Flow Area A, = sq it 2.D2 3.61 Street Flow Velorily, V, = fps 1.15 1.39 Ater Depth for Design Condition CILCCAL = 5.2 5.6 inches Grats Analysis (CaI I t MINOR MAJOR Total Length of Inlet Grate Opening L-1 it Rate of Grate Flow to Design Flow Eo GAATE = Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V, = lips Interception Rate of Frontal Flow Rt = Interception Rate of Side Flow R,= Interception Capacity O, = cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GraleCoef = Clogging Factor for Multiple -unit Grate Inlet GrateClog = Effective (unclogged) Length of Mulflple-unit Grate Inlet L. = it Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow RI = Interception Rate of Side Flow R,= Actual Interception Capacity 0,= NIA NfA eta Carry -Over Flow = O; O, (to be applied to curb opening or next d/s inlet) 0'.1 WAI N/Aleft Curb or Slotted Inlet Openinis Analysis I latetl) MINOR MAJOR Equivalent Slope S. (based on grate carry-over) S. =1 0.0550 0.035 ft/h Required Length LT to Have 100 % Interception LT = 11.51 20-57 it Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L. LT) L = 10.001 10.0 it Interception Capacity Ot= 226 3.51c15 Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoef = 125 1.25 Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog = 0.13 0.1 Effective (Unclogged) Length Le = 8.75 8.75 It Actual Interception Capacity 0,= 2.14 3.18 cfs Carry -Over Flow = O GRATEI'Qa Oe = 0.18 1.85 cfs Summary MINOR MAJOR Total Inlet Interception Capacity O = 2.14 3.18 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) Oe = 0.181 1.85 cfs Capture Percentage = O,/O, = C%= 92.41 63.1 % A-7.xls, Inlet On Grade 7126/2010, 8:18 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-8 Design Flow = Gutter Flow + Carry-over Flow yFLE ILCT Design Flow: ONLY if already etermin through other methods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): •Q =1 1031 cis if you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue calls): Subcatchment Area =1 Acres Percent Imperviousness = % NRCS Soil Type =1 JA, B, C, or D Site: (Check One Box Only) Slope (tuft) Length (ft) Site is Urban: % Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall n orma ion: Tntensity me r = G, 7,7, T,t,,-+7,7�Minor Storm Major Storm Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C,= Cz= C+3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS = Bypass (Carry -Over) Flow from upstream Subcatchments, Qy = 0.001 0.00 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, Va = Overland Flow Time, to = Gutter Flow Time, It; = Calculated Time of Concentration, T. = Time of Concentration by Regional Formula, T. = Recommended T. = Time of Concentration Selected by User, T� = Design Rainfall Intensity, I = Calculated Local Peak Flow, Qp = Total Design Peak Flow, Q = N/A N/A N/A N/A N/A N/A N/A N N/A N/A N/A N/A N/A N/A N/A N/A NIA N/A N/A 17A N/A N/A N/A N/A 3.03 6.53 fps fps minutes minutes minutes minutes minutes minutes inch/hr cfs cis A-8.xls, Q-Peak 7/26/2010, 8:18 AM 11 INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet A-8 Warnmr -Lo (C)- H-Curb H-Vert WO- W WP Lo (G) Design Information In tit MINOR MAJOR Type of Inlet Type = CDOT Type R Curb Opening Local Depression (addilional to continuous gutter depresslon'a' from'Q-Allow) ator = 2.0 2.0 Inches Total Number of Units in the Inlet (Grate or Curb Ope ing) No= 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) La = 5.00 5.00 It Width of a Unit Grate (cannot be greater than W from Q-Allow) W, = N/ N/A it Clogging Factor for a Single Unit Grate (typical min. value = 0,51 CrG. N/A W Clogging Factor for a Single Unit Curb Opening (typical min. value = 0,1) CrC = 0.15 OJS Street Hydraulics: WARNING: > ALLOWABLE FOR MINOR STORM' MINOR MAJOR Design Discharge for Hall of Street (from Sheet 0-Peak) Q.= 3.03 6.53 cfs Water Spread Width T. 11.5 15.7 R Water Depth at Flowline (outside of local depression) d. inches 5.4 6. Water Depth at Street Crown (or at Ts,,,,) all- Inches 0.0 0.0 Ratio of Gutter Flow to Design Flow E. • 0.519 0.384 Discharge outside the Gutter Section W, carried in Section T, Q,= cis 1.48 3.92 Discharge within the Gutter Section W 0,= 1.58 2.44 cis Discharge Behind the Curb Face Qarcx= cis 0.DO 0.18 Street Flow Area A.= 1. 3.24 aq ft Street Flow Velocity V. = fps 24 2.02 741 8. Water Depth for Design Condition allots = inches Grate Analysis Calculated MINOR MAJOR Total Length of Inlet Grate Opening L = R Ratio of Grate Flow to Design Flow E>Gwac = Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V, = fps Interception Rate of Frontal Flow Rt = Interception Rate of Side Flow R, _ Interception Capacity qI = cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef = Clogging Factor for Multiple -unit Grate Inlet GrateClog = Effective (unclogged) Length of Multiple -unit Grate Inlet L. = it Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow Rt = Intemopfion Rate of Side Flow R, = Actual Interception Capacity Q. = N/A N/A cis Carry -Over Flow = Q, 0, (to be applied to curb opening or next d!s inlet) ob -1 N! N!A cis Curb or Slotted Inlet Opening Analysis (Calculated) MINOR MAJOR Equivalent Slope S, (based on grate carry-over) S.-I 0.11161 0.0891 It/ft Required Length Lr to Have 100% Interception LT = 6.97 10.90 It Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L. LT) L = 5.00 5.00 It Interceptor Capacity 2.72 4.25 ds Under Clogging Condition MINOR MAJOR Clogging as icent CurbCoef= 1,DO 1.00 Clogging Factor for Multiple -unit Curb Opening or Sloffect Inlet CurbClog - 0.15 0.15 Effective (Unclogged) Length L. = 4,25 4.25 If Actual Interception Capacity Q.a 2.47 3.74 cfs Carry -Over Flow = Qs1asATfl'Q. Ob a 0.56 2.61 cfs Summary MINOR MAJOR Total Inlet Interception Capacity O = 2.471 3.74 cfs Total Inlet Carry -Over Flaw (flow bypassing inlet) On = 0.561 2.79 cis Capture Percentage = %/0, = C o = 6/.6 5Z4 A-8.xis, Inlet On Grade 726/2010. 8:18 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet A-9 Design Flow = Gutter Flow + Carry-over Flow Design Flow: ONLY it already determined through other methods; Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'O =1 2.681 efa If you entered a value here, skip the rest of this sheet and proceed to sheet O-Allow Geographic Informatron: mer data in the clue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B, C, or D Site: (Check One Box Only) Slope (Wft) Length (ft) Site is Urban: X Overland Flow= Site Is Non -Urban: Gutter Flow = Haintall Information: intensity inc r = Cl x + I C U3 Minor Storm Major Storm Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C,= Cz= C, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Q, =1 0.001 0.00 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, CS = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T. = Time of Concentration by Regional Formula, T. = Recommended T, = Time of Concentration Selected by User, T. = Design Rainfall Intensity, I = Calculated Local Peak Flow, Op = Total Design Peak Flow, Q . N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 2.68 5.96 fps fps minutes minutes minutes minutes minutes minutes inch/hr CIS cfs A-9.xis, Q-Peak 7/26/2010, 8:18 AM 11 INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet A-9 W arnmr -Lo (C)� H-Curb. H-Vert -- --- We Wp W _ r (G) Design Information (Ingil MINOR MAJOR Type of Inlet Type COOT Type R Curb Opening Local Depression (additional to continuous gutter depression'a' lmm'0-Allow) BL0cAt 2.0 2.0 Inches Total Number of Units in the Inlet (Grate or Curb Opening) No 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) L. = 5.00 5.00 it Width of a Unit Grate (cannot be greater than W from O-Allow) W, = N/A N/A It Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CrG = N/A N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Cl-C = 0.20 0.20 Street Hydo.hcil, WARNING: 0 > ALLOWABLE FOR MINOR STORM MINOR MAJOR Design Discharge for Half of Street (from Shoot O-Peak) O, = cts 2.68 5.96 Water Spread Width T= 10.8 15.2 it Water Depth at Rai (outside of local depression) d = 5.3 6.6 inches Water Depth at Street Crown (or at TuAx) dull = inches 0.0 0.0 Ratio of Gutter Flow to Design Flow Eo= 0.545 0.397 Discharge outside the Gutter Section W, carried in Section T, O,- 1.22 3.54 cfs Discharge within the Gutter Section W O. = cfs 1.46 2,33 Discharge Behind the Curb Face OeAcx = 0.00 0.09 cfs Street Flow Area A, = so It 17 3.04 1441 1.96 Street Flow Velocity Vs = fps 7.31 8.5 Water Depth for Design Condition dLocnt = inches Grate Analysis (Calculated) MINOR MAJOR dial Length of Inlet Grate Opening L = It Ratio of Grate Flow to Design Flow EvoanlE _ Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins Vo = fps Interception Rate of Frontal Flow RI = Interception Rate of Side Flow R,= Interception Capacity O, = eta Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GraleCoef = Clogging Factor for Multiple -unit Grate Inlet Gratei = Effective (unUogged) Length of Multiple -unit Grate Inlet LA= it Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow RI = Interception Rate of Side Flow R, _ Actual Interception Capacity 0,= WA N/A cfs Carry -Over Flow = 0e 0, (to be applied to curb opening or next all inlet) Os Ml MA N/A cfs Curb or Slotted inlet Opening Analysis (Calculated) MINOR MAJOR Equivalent Slope Sa (based on grate carry-over) S. = 0.1159 0.0912 ftltt Required Length LT to Have 100% Interception LT = 6.47 10.39 It Under No -Clogging Condition MINOR MAJOR Effective Length of Cum Opening or Slotted Inlet (minimum of L, LT) L = 5.001 5.00 It Interception Capacity O; - 2.49 4.07 cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoef = 1.00 1.00 Clogging Factor for Multiple-und Curb Opening or Slotted Inlet Curti = 0.20 0.20 Effective (Unclogged) Length L. = 4.00 4.00 It Actual Interception Capacity Q. = 2.21 3.42 cis Carry -Over Flow =0 GR<TE)'D. % 0.47 2.45 cis Summa MINOR MAJOR Total Inlet Interception Capacity O = 2.21 4 3.2 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) 0s =1 0.471 2.54 cfs Capture Percentage = Q./O. = C%= 82.31 57.4 % A-9.xls, Inlet On Grade 7/26/2010, 8:18 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet D Design Flow = Gutter Flow + Carry-over Flow (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): If you entered a value here. skip the rest of this sheet and oroceed to she Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: rrn on• n ens me r - Eel Subcatchment Area = Acres Percent Imperviousness = NRCS Soil Type IA. B. C, or D Slope (ft/ft) Length (ft) Overland Flow = Gutter Flow = Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, C, C, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C, Bypass (Carry -Over) Flow from upstream Subcatchments, Q, a Calculated Design Storm Runoff Coefficient, C: Calculated 5-yr. Runoff Coefficient, C5: Overland Flow Velocity, Ve : Gutter Flow Velocity, Vo, Overland Flow Time, to: Gutter Flow Time, to: Calculated Time of Concentration, T, Time of Concentration by Regional Formula, T,: Recommended T.: Time of Concentration Selected by User, T.: Design Rainfall Intensity, 1 : Calculated Local Peak Flow, Q, Total Design Peak Flow, O : N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.06 1.66 ps ps ninutes ninutes ninutes ninutes ninutes ninutes nch/hr :fs As D.xls, O-Peak 7/26/2010, 8:18 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet D Lo (C) . H-Curb Wi H-Vert WP W �Lo (G) Desitin Information (input) MINOR MAJOR Type of Intel Type." ype COOT Type R Curb Opening Local Depression (additional to continuous gutter depression'a'tmm'O-Allow) aiocu 2.0 2. Inches Total Number of Units in the Inlet (Grate or Curb Opening) No = 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) L,= 5.00 R Width of a Unit Grate (cannot be greater man W from O-Allow) W. W I,;N7 ItClogging Factor for a Single Unit Grate (typical min. value = 0.5) C,-G N/A Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) C,-C = 020 Hydroull OK- Q <no ^_^-dis=-^ice from SheetO-Allow' MINOR MAJOR Design Discharge for Half of Street (from Sheet O-Peak) O, cfs 1.06 1. Water Spread Width T= ft 6.2 7.7 Water Depth at Flowime (outside of local depression) d = Inches 3.9 4.1 Ater Depth at Street Crown (or at T..) cl n N = Inches 0.0 00 Ratio of Gutter Flow to Design Flow Ib = 0,815 0.71 Discharge outside the Gutter Section W, Carried in Section T. O,= cis 0,20 0.44 Discharge within the Gutter Section W Ow = 0,86 1.12 ifs Discharge Behind the Curb Face Ol = 0.00 0.0 cis Street Flow Area A, = 0.64 0.9 sq R 1.65 1.7 Street Flow Velocity V. fps Water Depth for Design Condition di = 5.9 B Inches AnalysisGrate ul t MINOR MAJOR otal Length of Inlet Grate Opening L = it atio of Grate Flow to Design Flow Under No -Clogging Condition MINOR MAJOR inimum Velocity Where Grate Spash-Over Begins V. ips Interception Rate of Frontal Flow R, _ Interception Rate of Side Flow R, = Interception Capactyy 0,= cis Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef = Clogging Factor for Muaiple-unit Grate Inlet GrateClog = Effective (unclogged) Length of Multiple -unit Grate Inlet L. = it Minimum Velocity Where Grate Spash-Over Begins V, = fps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow R, = Actual Interception Capacity O,= N/A N/A cis Carry -Over Flow = 0, O, (to be applied to curb opening or next d/s inlel) Oa a NIN Nlcfs Curb or Slotted Inlet Ownina Analysis alculatetl MINOR MAJOR Equivalent Slope S, (based on grate carry -aver) S, = 0.160 0.1443 it'll Required Length LT to Have 100 % Interception LT = 4. 5.02 it Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L =1 3.9 5.00 It Interception Capacity O, = 1, 1.5 cis Under Clogging Condition MINOR MAJOR Clogging Cot, Cram CurbCoet= 1.00 1,00 Clogging Factor for Multiple -unit Cum Opening or Slatted Inlet CurbClog = 0.20 0.20 Effective (Unclogged) length L. 3.99 4.00 it Actual Interception Capacity a.. 1.06 1.47 cis Carry -Over Flow = O iRATWO, Ob = 0.00 0.09 cfs Summa MINOR MAJOR Total Inlet Interception Capacity O = 1.06 1.47 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) Oy = 0.00 0.09 cis Capture Percentage =0./O,= C% = 100.01 94.3 % O.xls, Inlet On Gracie 7,26 20-. R 13 A,,' DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet E Design Flow = Gutter Flow + Carry-over Flow - -� (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): If you entered a value here. skin the rest of this sheet and nrocnnd to shw Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: Subcatchment Area = Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Slope (ft/h) Length (h) Overland Flow = Gutter Flow = ...-... ...........� ............. vl 1 , % Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, Cz C, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs Bypass (Carry -Over) Flow from upstream Subcatchments, Ob a Calculated Design Storm Runoff Coefficient, C: Calculated 5-yr. Runoff Coefficient, C5: Overland Flow Velocity, Vo : Gutter Flow Velocity, VG: Overland Flow Time, to: Gutter Flow Time, to Calculated Time of Concentration, T. Time of Concentration by Regional Formula, T,: Recommended T,: Time of Concentration Selected by User, T,: Design Rainfall Intensity, I : Calculated Local Peak Flow, Or; Total Design Peak Flow, O : N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/ N/A N/A N/A N/A 3.00 10.00 ps ps ninutes ninutes ninutes ninutes ninutes ninutes ich/hr :fs :fs E.xls, Q-Peak 7/26/2010, 8:19 AM INLET ON A CONTINUOUS GRADE Project: North College I Inlet ID: Inlet E earning �Lo (C)- H-Curb WP W f� Design Information (Inoutl MINOR MAJOR Type of Inlet Type COOT Type R Curb Opening Local Depression(additional to continuous gutter delvesaion'a'from'O-AIIoW) aLocnL= 2.0 2.0 Inches Total Number of Units In the Inlet (Grate or Curb Opening) No = 2 2 Length of a Single Unit Inlet (Grate or Curb Opening) L,= 5.00 5.00 it Width of a Unit Grate (cannot be greater than W from O-AIIOw) W,= WA WA It Clogging Favor for a Single Unit Grate (typical min. value = 0.5) CI-G = WA WA Clogging Factor for a Single Unit Curb Opening ( pical min. value = 0.1) C,-C = 0.15 0.15 Street Hydraulics W ARNIN > ALLOWABLE FOR MINOR STORM MINOR MAJOR Design Discharge for Half of Street (from Sheet O-Peak) O, 3.00 10.00 efs Water Spread Width T 10.1 16.6 0 Water Depth at Flowline (outside of local depression) of = 5.0 7.0 inches Water Depth at Street Crown (or at TLC dcnowu 0.0 0.0 inches 0.579 0.363 Ratio of Gutter Flow to Design Flow E. = Discharge outside the Gutter Section W, carried In Section T. O, 1.26 6.06 cis 1.74 3.46 Discharge within the Gutter Section W Off = cis Discharge Behind the Curb Face Oa = 0.001 0.50 cis Street Flow Area A. = 1. 3.59 so it 2.242.79 Street Flow Velocity V. fps Water Depth for Design Condition dtocat - 7.01 9.0 inches Grate Analysis I latetl MINOR MAJOR Total Length of Inlet Grate Opening L = it Ratio of Grate Flow to Design Flow EooaAls = Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins Vo fps Interception Rate of Frontal Flow Rr Interception Rate of Side Flow R,= Interception Capacity a = cis Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef = Clogging Factor for Multiple -unit Grate Inlet GraleClog - Effevive (unclogged) Length of Multiple -unit Grate Inlet L. = It Minimum Velocity Where Grate Spash-Over Begins V.- fps Interception Rate of Frontal Flow Rr = Interception Rate of Side Flow R,= Actual Interception Capacity O,= N/A NIA cis Carry -Over Flow = 0; O, (to be applied to curb opening or next did; inlet) Oe WA WAIalls Curb or Slanted Inlet Opening Analysis (Calculated MINOR MAJOR Equivalent Slope S. (based on grate carry-over) Sa 0.12161 0.0856 0/ft Required Length LT to Have 100 % Interception Lr= 7.74 15.51 h Under No-Cloggkngf Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, L1) L 1 7.7 10.00 Interception Capacity 0, 3. 8.02 cis Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoef 1.25 L25 Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet Curbi DD9 0.09 Effective (Unclogged) Length L„= 7.73 9.06 it Actual Interception Capacity 0, = 3,00 7.54 cis Carry -Over Flow = Oacaarel-0. Op = 0.00 1.96 cis Summary MINOR MAJOR Total Inlet Interception Capacity 0 = 3.00 7.54 cis Total Inlet Carry -Over Flow (flow bypassing inlet) De = 0.00 2.46 cfs Capture Percentage = 0,)0„ = C96 = 10D.01 75.4 % F. xis. Inlet On Grade 7/26/2010, 8:19 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet F Design Flow = Gutter Flow + Carry-over Flow y y y =LO~ C y _T L7 n ;Er'_ Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'O =1 0-621 cfs - If you entered a value here. skip the rest of this sheet and proceed to sheet O-Allow) Geographic n ormation: Enter data in the olue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B. C, or D Site: (Check One Box Only) Slope (fttft) Length (ft) Site is Urban: X Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall n orma ion: ntensity me r = G, , t U, + I ^C3 Minor Storm Major Storm Design Storm Return Period, Tr= years Return Period One -Hour Precipitation, P, = inches C,= Cz- C3- User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Ob - 0.001 0.00 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, tc = Calculated Time of Concentration, T. = Time of Concentration by Regional Formula, T. = Recommended T, = Time of Concentration Selected by User, T, _ Design Rainfall Intensity, I = Calculated Local Peak Flow, QP = Total Design Peak Flow, O = N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.62 1.76 fps fps minutes minutes minutes minutes minutes minutes inch/hr cfs cfs F.xls, Q-Peak 7/26/2010, 8:19 AM INLET IN A SUMP OR SAG LOCATION Project = North College Drainage Inlet ID = Inlet F -- Lo (C) H-Curb H-Vert - � - Wp Wp W of Inlet Type 1 I Depression (additional to continuous gutter depresslon'a' fmm'O-Allow) is , l bar of Unit Inlets (Grate or Cure Opening) No 0 Information in of a Unit Grate L. (G) n of a Unit Grate W. Opening Ratio for a Grate (typical values 0.15-0.90) A.,. ging Factor for a Single Grate (typical value 0.50.0.70) CI (G) a Weir Coefficient (typical value 3.00) C. (G) a Orifice Coefficient (typical value 0.67) Co (G) I Opening Information ith of a Una Curb Opening 4 (C) ht of Vertical Curb Opening in Inches H,.•, ht of Curb Orifice Throat in Inches H.. e of Throat (see USDCM Figure ST-5) Theta Width for Depression Pan (typically the gutter width of 2 feet) WI, ging Factor for a Single Curb Opening (typical value 0.10) Cl (C) Opening Weir Coefficient (typical value 2.30-3.00) C. (C) ODenino Onfice Coefficient Rvoical value 0.67) C. (C) ging Coefficient for Multiple Unis ging Factor for Multiple Units e as s weir Depth at Loral Depression without Clogging (0 cfs grate, 0.62 ds curb) Row Used for Combination Inlets Only Depth at Local Depression with Clogging (0 cis grate, 0.62 cis curb) Row Used for Combination Inlets Only e as an Orifice Depth at Local Depression without Clogging (0 cis grate, 0.62 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 0.62 cis curb) Atinq Gutter Flow Depth Outside of Local Depression ling Coefficient for Multiple Units ling Factor for Multiple Units as a Weir. Grate as an Orifice Depth at Local Depression without Clogging (0 cis grate, 0.62 cfs curb) Depth at Local Depression with Clogging (0 Ms grate, 0.62 cis curb) as an Orifice. Grate as an Orifice Depth at Local Depression without Clogging (0 cis grate, 0.62 cis curb) Depth at Local Depression with Clogging (0 cis grate, 0.62 cls curb) Iitino Gutter Flow Deoth Outside of Local Deoression Iniel Length Inlet Interception Capacity (Design Discharge from O-Peak) Itant Gutter Flow Depth (based on sheet Q-Allow geometry) Itant Street Flow Spread (based on sheet O-Allow geometry) MINOR MAJOR CDOT/Denver 13 Valley Grate 2.0 2.00 inches 1 1 MINOR MAJOR W NIA feet W N feet IN NI W N/ N/ N/ N/Al N/ MINOR MAJOR 5. 5.00 feet 5. 5.00 inches 4. 4.95 inches 63. 63.4 degree 2.212.D0 feet 0.101 0.10 MINOR MAJOR Coef = N/ N/A Clog = W W d _ deu,Pel = N/ W WA W I WA N/ N/ riches niches niches niches d== N/ Inches d„= NJ 4N/ Inches d.c,.i. = Inches N/ MINOR MAJOR Coal = i 00 1.00 Clog = 0.10 0.1 MINOR MAJOR dn' 1.22 2.02 Inches d„ =1 1 .271 2.11 Inches MINOR MAJOR d. =1 2.2 2.40 Inches d,• = 2.26 2. inches MINOR MAJOR L- 5.0 5 O.,= 16 1 ci = 0.26 0! T = 0.21 0 F.xls, Inlet In Sump 7/26/2010, 8:19 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet H Design Flow = Gutter Flow + Carry-over Flow (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): ' If you entered a value here. skin the rest of this sheet and oroceed to she Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: SntImp Imperviousness Area =®Acres Percent Imperviousness = NRCS Soil Type = A, B, C, or D Slope (ft(ft) Length (it) Overland Flow = Gutter Flow = Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, Cz C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs Bypass (Carry -Over) Flow from upstream Subcatchments, Ob Analysis of Flow Time (Time of Concentration) for a Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo : Gutter Flow Velocity, VG = Overland Flow Time, to Gutter Flow Time, to = Calculated Time of Concentration, T. _ Time of Concentration by Regional Formula, T.: Recommended T. Time of Concentration Selected by User, T.: Design Rainfall Intensity, I = Calculated Local Peak Flow, OP : Total Design Peak Flow, Q : N/A N/A N/A N/ N/A N/A N/A A N/A A N/A N A N/A N/A N/A N/ N/A N/A N/A N/A N/ N/A N/ 1.51 3.7 Ps Ps ninutes ninutes ninutes ninutes ninutes ninutes nch/hr :fs ;fs H.xls, Q-Peak 7/26/2010. 8:19 AM INLET IN A SUMP OR SAG LOCATION Project= North College Drainage Inlet ID - Inlet H H-Curb H•Vert o of Inlet Depression (additional to continuous gutter depression W hom'O-Allow') mir of Unit Inlets (Grate or Curb Opening) in of a Unit Grate it of a Unit Grate Opening Ratio for a Grate (typical values 0.15-0.90) ging Factor for a Single Grate (typical value 0.50 -0.70) s Weir Coefficient (typical value 3.00) a Orifice Coefficient (typical value 0.671 i Opening Information 0 of a Unit Curb Opening ht of Vertical Curb Opening in Inches ht of Curb Orifice Throat in Inches a of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feet) ging Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 2.30-3.00) Operima Orifice Coefficient rtvo,cal value 0.67) ging Coefficient for Multiple Units ging Factor for Multiple Units e as a Weir Depth at Local Depression without Clogging (0 cis grate, 1.51 cfs curb) Row Used for Combination Inlets Only Depth at Local Depression with Clogging (0 cfs grate, 1.51 cfs curb) Row Used for Combination Inlets Only a as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 1.51 cfs curb) Depth at Local Depression with Clogging 10 cfs grate, 1.51 cfs curb) rltina Gutter Flow Death Outside of Local Deoression ling Coefficient for Multiple Units ling Factor for Multiple Units as a Weir, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 1.51 cts curb) Depth at Local Depression vnth Clogging (0 cfs grate, 1 Sl cis curb) as an Orifice, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 1.51 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 1.51 cis curb) Inal Length Inlet Interception Capacity (Design Discharge from O-Peak) Itant Gutter Flow Depth (based on sheet O-Af/ow geometry) Rant Street Flow Spread (based on sheet O-Allow geometry) MINOR MAJOR Type CDOT Type R Curb Opening 11 2.001 2.00 inches No 11 1 MINr1R MA.IDR I, (G) .. W. A,ai C, (G) C,. (G) C. (G) N/A N/A N/ N/A N/ N/A N/ N/A N/ N/A W NI set set Lb (C) = 5.00 5.00 feet H.., = inches 5.00 5.00 H,.. 4.95 4.95 inches 63.4 63.4 Them = degrer 2.00 2.00 Wo feet C, C) 0.10 0.10 C. (C) 2.30 2.30 C� (C) = 0,67 0.67 MINOR MAJOR Coot - N/WA Clog = WA WA d.,= N/A WA inches 4wew = WA WA inches d-= WA N/A inches N/A N/A inches MINOR MAJOR d. = WA N/A inches d„, =1 N/A N/A inches MINOR MAJOR .00 Cost = 1.00 1 Clog = 0.10 0.10 MINOR MAJOR dM 2-211 3.65 inches ell. 2.301 3.80 inches tla, =1 2.511 dea,e = 0.51 1 L- O.- of = T = dcsow.= 5.0 1.6 0.51 1 0.4 0.00 C Kids, Inlet in Sump 7/26/2010, 8:19 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet G1 Design Flow = Gutter Flow + Carry-over Flow -'EET vesign now: VrVlr it aueaoy aeterminea mrougn omer memoos: (local peak How for 112 of street, plus flow bypassing upstream subcatchments): Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: ­i t t - l0n❑. en Slty InC fJ — , r „ % v2 - -C I - 3 Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, CZ C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS Bypass (Carry -Over) Flow from upstream Subcatchments, Ob v Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 : Overland Flow Velocity, Vo : Gutter Flow Velocity, Vo Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, T, : Time of Concentration by Regional Formula, T. : Recommended Tc Time of Concentration Selected by User, T. Design Rainfall Intensity, I : Calculated Local Peak Flow, Q, : Total Design Peak Flow, O : Minor Storm Major Sion 'O = 1 07 Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type = A, B, C. or D Slope (ft/ft) Length (ft) Overland Flow = Gutter Flow = N/A N/A N/A N/A N A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A WA N7A N/A N/A N/A N/A 1.07 6.2 ps ps ninutes ninutes ninutes ninutes ninutes ninutes nch/hr :fs :fs G1.xls, Q-Peak 7/26/2010, 8:19 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet GI r-Lo (C)- H-Curb H-Vert -" Wo WP W l _ LO (G) Design Information Nn t MINOR MAJOR Type of Inlet Type COOT Type R Curb Opening Local Depression (additional to continuous sutler depracaion's hom'O-Allow) It O 2.0 2.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) La 5.00 5.00 8 Width of a Unit Grate (cannot be greater than W from O-Allow) W. NIA N/A tt Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CI-G - N/A N/ Clogging Factor for a Single Unit Curb Openin (typical min. value = 0. t) C, C = 0.20 0.2 Street Hydraulics, K - Q < maximum allowable from sheet Allow MINOR MAJOR Design Discharge for Neff of Street (from Sheet 0-Peak) Q. cfs 1 624 Ater Spread Width T It 5.9 13.9 Water Depth at Flowfine (outside of local Depression) of = 3.8 6.2 inches Water Depth at Street Crown (or at Tu ,d deROWN = 0.0 0.0 Inches Ratio of Gutter Flow to Design Flow E, = M836 0,432 Discharge outside the Gutter Section W, carried in Section T, 0,= 0.18 3.54 cis Discharge within the Gutter Section W O., = 0.90 2.70 cfs Discharge Behind the Curb Face Oancs = 0.00 0.01 cis Street Flaw Area A, = O.fiO 2.59 sq it 1.242.42 Street Flow Velocity V, = fps Water Depth for Design Condition tlrOcnr = 5.81 8.2 Inches Grate Analysis [Calculated) MINOR MAJOR Total Length of Inlet Grate Opening L = It Ratio of Grate Flow to Design Flow E>GmTE _ Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V,,= fps Interception Rate of Frontal Flow Ri = Interception Rate of Side Flow R,= Interception Capacity 0,= cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef = Clogging Factor for Multiple -unit Grate Inlet GrateClog = Effective (unGogged) Length of Multiple -unit Grate Inlet L. = It Minimum Velocity Where Grate Spash-Over Begins V.= fps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow %= Actual Interception Capacity a, WA N/A efs Carry -Over Flow = Oe O, (to be applied to curb opening or next o/s inlet) a ai.WAI N/Alcfs Curb or Slotted Inleti A I ulatetl MINOR MAJOR Equivalent Slope S. (based on grate carry-over) S,- 0.16 0.0970 Wit Required Length LT to Have 100 % Interception Lr = 4.19 12.05 tt Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L. LT) L = 4.1 5.00 It Interception Capacity O, 1.071 3.86 cts Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoel 1.001 1.00 Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog - 0.24 0.20 Effective (Unclogged) Length L. = 4.0 4.00 it Actual interception Capacity 0, = 1. - " ofs Carry -Over Flow = O GRnTEI-O, Oy = 0.001 3.02 cis Summary MINOR MAJOR Total Inlet Interception Capacity O = 1.07 3.22 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) O� = 0.00 3.02 cfs Capture Percentage = C,/0, = C%= m6 51.6 va G t.xls, Inlet On Grade 7/26/2010, 8:19 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet G2 Design Flow = Gutter Flow + Carry-over Flow 11,LE7 r T (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): , If you entered a value here, skip the rest of this sheet and oroceed to sheet Site: (Check One Box Only) Site is Urban: Site Is Non -Urban: Subcatchment Area - Acres Percent Imperviousness - % NRCS Soil Type JA, B. C, or D Slope (f /ft) Length (ft) Overland Flow = Gutter Flow = Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, Cz C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, O, Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, tc = Calculated Time of Concentration, T. = Time of Concentration by Regional Formula, T, = Recommended T, = Time of Concentration Selected by User, Tr = Design Rainfall Intensity, I = Calculated Local Peak Flow, Q.= Total Design Peak Flow, O = N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A NIA N/A N/A N/A 2.36 5.18 rps fps minutes minutes minutes minutes minutes minutes inch/hr cfs pfs G2.xls, Q-Peak 7/26/2010, 8:19 AM INLET ON A CONTINUOUS GRADE Project: Inlet ID: North College Drainage Inlet G2 - Lo (C) - H-Cu___ �b_;_ H•Varl Wo W Wpi l Lo (G) Design Information finputl MINOR MAJOR Type of Inlet Type = CDOT Type R Curb Opening Local Depression (additional to continuous gutter depreeeion'a' from'O-Allow) aL0CM. = 2.0 2.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No = 2 2 Length of a Single Unit Inlet (Grate or Curb Opening) L. = 5.00 5.00 it Width of a Unit Grate (cannot be greater than W from O-Allow) Wo = N/A NIA ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C,-G = N/A N/ Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) C,-C = 0.20 0.20 StreetHvdraullK- Q <maximum allowable fr h t' All w' MINOR MAJOR Design Discharge for Halt of Street (from Sheet O-Poi a.. efs 230 5.18 Water Spread Width T= 8.0 11.5it 4.9 6.1 Water Depth at Flowfne (outside of local Depression) d = inches Water Depth at Street Crown (or at Tum) dcRCWN = inches 0.0 0.0 Ratio of Gutter Flow to Design Flow Eo = D.673 0.501 Discharge outside the Gutter Section W, carried in Section T, O, = 0.77 2.58 cis Discharge within the Gutter Section W O„. = 1.59 2.60 cis Discharge Behind the Curb Face Oenca = cis 0.0 0.00 Street Flow Area A, = sq it 1A 2.13 21 2.43 Street Flow Velocity V, = fps Water Depth for Design Condition dtocn, = 6.91 8.1 inches Grate i is (Calculated) MINOR MAJOR otal Length of Inlet Grate Opening L = Ratio of Grate Flow to Design Flow Epcnmr = Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V„ Ifps Interception Rate of Frontal Flow R, Interception Rate of Side Flow R,= Interception Capacity OI = cis Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef - Clogging Factor for Multiple -unit Grate Inlet GrateClog = Effective (unclogged) Length of MuNple-unit Grate Inlet L. = tt Minimum Velocity Where Grate Spash-Over Begins V. = fps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow R,- C:Actualln=Capacity O,. W W cis Carry-Ovterer Flowon = Oe O, (to be applied to turn opening or next d/s inlet) Ob -I WAI WAIclis Cyrlo or Slotted Inlet OpeninQ Analysis al MINOR MAJOR Equivalent Slope S. (based on grave carry-over) S. = 0.1423 0.1136 hRt Required Length L7 to Have 100 % Interception Lr = fi.37 10.15 it Under No -Clogging Condition MINOR MAJOR Effective Length of Cum Opening or Slotted Inlet (minimum of L. Lr) L = 6.3 10.00 R Interception Capacity Oi = 2. 5.18 cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient Curti = 1.25 1.25 Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet Curbi = 0.13 0.13 Effective (Unclogged) Length 4 = 6.36 6.75 It Actual Interception Capacity 0a. 2.36 5.03 cfs Carry -Over Flow = OgcRA-EI-O. Ob = 0.00 0.15 cfs Summary MINOR MAJOR Total Inlet Interception Capacity O = 2.36 5.03 cis Total Inlet Carry -Over Flaw (flow bypassing inlet) Ob= 0.00 0.15 cfs Capture Percentage = 0,10, = C % = 100.01 97.2 %% G2.xls, Inlet On Grade 7126/2010, 8:20 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet G3 Design Flow = Gutter Flow + Carry-over Flow --__ -- IiILF-I _ -7 F 7 Design Flow: NL i a rea y etermined through other methods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'O =1 1.79 3-92 cfs . J you entered a value here, skip the rest of this sheet and proceed to sheet 0-Allow) Geographic n ormation: nter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type =1 JA, B. C, or D Site: (Check One Box Onl) Slope (ft/ft) Length (ft) Site is Urban: X Overland Flow = Site Is Non -Urban: Gutter Flow = Hainfall Information: ntensity me r = 2 + 3 Minor Storm Major Storm Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, Pr = inches Ct= Cz— C3— User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cg = Bypass (Carry -Over) Flow from upstream Subcatchments, Qe = 0.001 0.00 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T, = Time of Concentration by Regional Formula, T. = Recommended T. = Time of Concentration Selected by User, T, = Design Rainfall Intensity, I = Calculated Local Peak Flow, OP= Total Design Peak Flow, O = N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.79 3.92 fps fps minutes minutes minutes minutes minutes minutes inch/hr cfs eta G3.xls, Q-Peak 7/26/2010, 8:20 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet G3 -Lo (C)� H-Curb 14i Wp W W- - ��i Type of Inlet Type = CDOT/Denver 13 Combination Local Depression (additional to rnminuous guitar depresslon'o horn O.Allow) atoc>L = 2D 2.0 Inches Total Number of Units in the Inlet (Grate or Curb Opening) No 1 1 Length of a Single Unit Inlet (Grate or Curb Opening) L, 3.00 3.00 8 Width of a Unit Grate (cannot be greater than W from O-Allow) Wo= 1.73 1.73 ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CrG = 0.50 0.5 Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) CI-C = 0,20 0.20 Street Hydraulic, OK - 0 < Maximum fironn Ithimt' All w MINOR MAJOR Design Discharge for Half of Street (from sheet o-peak) Qe 1 2.85 cfs Water Spread Width T 5.6 8.4It Water Depth at Flowline (outside of local depression) d 4.0 5.0 Inches Water Depth at Street Crown (or at Tu.) dceowa 0.0 0.0 Inches Plato of Gutter Flow to Design Flow Eou 0.835 0.852 Discharge outside the Gutter Section W, corned in Section T, Qi 0,22 0.99 cis Discharge within the Gutter Section W Ow 1.13 1.86 cfs Discharge Behind the Curb Face Deecx 0.001 0.00 cis Street Flow Area A, 0.64 1.21 so it Street Flow Velocity V. 2.10 2.35 fps Water Depth for Design Condition diocet = 6.01 7.0 inches Grate Analysis (Calculated MINOR MAJOR Total Length of Inlet Grate Opening L - 3.00 3.00 it Ratio of Grate Flow to Design Flow Evoexrs 0.785 0.603 Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins Ve 6.17 6.17 fps Interception Rate of Frontal Flow Rt 1.00 1.00 Interception Rate of Side Flow R, 0.40 0.35 Interception Capacity Qt = 117 2.11 cis Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef 1DO 1.00 Clogging Factor for Mulliple-unit Grate Inlet GrateClog = 0.50 0.50 Effective (unclogged) Length of Multiple -unit Grate Inlet L. 1.50 1.50 it Minimum Velocity Where Grate Spash-Over Begins V, 3.86 3.86 fps Interception Rate of Frontal Flow Rt 1.00 1.00 Interception Rate of Side Flow R, 0.12 0.10 Actual Interception Capacity Q. 1.09 1.83 CIS Carry -Over Flow = Di (to be applied to curb opening or next d/s inlet) Os 0261 1.01 Curb or Slotted Inlet Oneninat Analysis Cal ul to MINOR MAJOR Equivalent Slope Se (based on grate carry-over) S, 016240.138 tt/tt Required Length LT to Have 100% Interception LT 2.401 4.83 It Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L. LT) L 2.39 3.00 ft Interception Capacity Q 0.1 0.42 cis Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoef 1.00 1.00 Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog 020 020 Effective (Unclogged) Length L. = 2.39 2.40 If Actual Interception Capacity Da= 0.1 0.36 cfs Carry -Over Flow = Qd RnTerQ, 0. = n.13 nag .re Inlet Interception Capacity Inlet Carry -Over Flow (flow bypassing inlet) re Percentage = 0.1%= MINOR MAJOR D = 1.221 2.1 OD =i 0.131 O.E G3.xls, Inlet On Grade 7/26/2010, 8:20 AM IrILE` DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet G4 Design Flow = Gutter Flow + Carry-over Flow ^,TFLET (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): ' If you entered a value hereskin the rest of this sheet and oroceert to she Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: mtatlon: Intensity me r = C, , 2 + fi* Subcatchment Area = Acres Percent Imperviousness = NRCS Soil Type JA, B, C, or D Slope (f /ft) Length (ft) Overland Flow = Gutter Flow = Design Storm Return Period, Return Period One -Hour Precipitation, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Bypass (Carry -Over) Flow from upstream Subeatehments, I a Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to: Gutter Flow Time, to Calculated Time of Concentration, T. Time of Concentration by Regional Formula, T,: Recommended T. Time of Concentration Selected by User, T. Design Rainfall Intensity, I Calculated Local Peak Flow, Qp : Total Design Peak Flow, O : N/A N/A N/A N/A N/A N/A N/A N/A N/A N A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.31 2.85 ps ps ninutes ninutes ninutes ninutes ninutes ninutes nch/hr ;fs :fs G4.xis, Q-Peak V26/2010, 8:20 AM INLET ON A CONTINUOUS GRADE Project: North College Drainage Inlet ID: Inlet G4 Lo (C)- H-Curb H-Vert Wa Wp �- W �-r -flo (G) Design Information (Input) MINOR MAJOR Type of Inlet Type CDOT Type R Cum Opening Local Depression (additional to conlinuoua gutter depression'ofrom'D-AIIoW) ai_ c 2.0 2.0 Inches Total Number of Units in the Inlet (Grate or Cum Opening) No = 1 1 Length of a Single Unit Inlet (Grate or Cum Opening) L. = 5.0C 5.00 h Width of a Unit Grate (cannot be greater Man W from Q-Allow) W, N/ WA h Clogging Factor for a Single Unit Grate (typical min. value = 0.5) C,-G = NIA W Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) C, C = 0.20 0.2 Street HydrauliK - 0 , m nm m allowable from sheet -AII w MINOR MAJOR Design Discharge for Half of Street (from Sheet O-Peak) Q. 2.79 5.84 of$ Water Spread Width T = 8.3 11.6 If 5.0 6.2 Water Depth at Flowline (outside of local depression) tl Inches Water Depth at Street Crown (or at Tug) dCaowN - Inches 0.0 0.0 Ratio of Gutter Flow to Design Flow E, = 0.65 0.497 Discharge outside the Gutter Section W, camed in Section T, O,- 0.96 2.93 off; Discharge within me Gutter Section W O,„= 1.94 2.90 cis Discharge Behind the Cum Face QMCK - 0.0 0.00 ds 1.1 2.16 Street Flow Area A. - sq it 2.242.70 Street Flow Velocity V, = fps Water Depth for Design Condition tll.0cu. 7. 8.2 Inches GrateAnalysis (Calculatedl MINOR MAJOR Total Length of Inlet Grate Opening L tt Ratio of Grate Flow to Design Flow EuGRATE _ Under No-Ctogging Condition MINOR MAJOR Minimum Velocity Where Grate Spash-Over Begins V,- fps Interception Rate of Frontal Flow R, Interception Rate of Side Flow R,= Interception Capacity O; = cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrateCoef Clogging Factor for Multiple -unit Grate Inlet GrateClog Effective (undogged) Length of Multiple -unit Grate Inlet L,= It Minimum Velocity Where Grate Spash-Over Begins V, fps Interception Rate of Frontal Flow R, Interception Rate of Side Flow R, Actual interception Capacity Q, N/ N/A cis Carry -Over Flow = Q; Q, (to be applied to Cum opening or nest d/s inlet) Ob 9 N/ N/A cfs Curb or Slotted Inlet Opening Analysis (CaI I MINOR MAJOR Equivalent Slope S, (based on grate carry-over) Se 0.13 24 0.1129 ftM Required Length LT to Have 100% Interception L7 7. 11.36 h Under No -Clogging Condition MINOR MAJOR Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L 5.00 5.00 tt Interception Capacity 4 2431 3.78 ds Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoef 1.00 1.00 Clogging Factor for Multiple -unit Cum Opening or Slotted Inlet CurbClog 0.20 0.20 Effective (Unclogged) Length L, 4.00 4.00 If Actual Interception Capacity Q, 2.11 3.16 cis Carry -Over Flow = QycaArEl-Q. Ob 0.68 2.67 cis Summar MINOR MAJOR Total Inlet Interception Capacity O = 2.11 3.16 cfs Total Inlet Carry -Over Flow (flow bypassing inlet) Qb = 0.68 2.68 cfs Capture Percentage = O,/Oe= C%= 70 54.2 % G4.xls, Inlet On Grade 7/26/2010. 8:20 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD North College Drainage Inlet G5 Design Flow = Gutter Flow + Carry-over Flow (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): ' If you entered a value here. skin the rest of this sheet and proceed to sheet Site: (Check One Box Only) Site is Urban: X Site Is Non -Urban: rma ion: lntensjtv I finch1hr)= , 'O =1 2.701 5-8--Ices Subcatchment Area - Acres Percent Imperviousness = NRCS Soil Type - A, B, C, or D Slope (f tft) Length (ft) Overland Flow Gutter Flow - Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, C2 C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs Bypass (Carry -Over) Flow from upstream Subcatchments, Oy a uatcnment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, Vs Overland Flow Time, to: Gutter Flow Time, to: Calculated Time of Concentration, T, Time of Concentration by Regional Formula, T. Recommended T, : Time of Concentration Selected by User, Tc : Design Rainfall Intensity, 1 Calculated Loral Peak Flow, Qo Total Design Peak Flow, 0 : N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 2.70 5.83 Ps as ninutes ninutes ninutes ninutes ninutes ninutes nch/hr :fs :fs G5.xls, Q-Peak 7/26/2010, 8:20 AM INLET ON A CONTINUOUS GRADE -11 Prohck North College Drainage Inlet 10: Inlet G5 -L0 (C) H-Curb Wo W -� - Des4on Information In ut MINOR MAJOR Type of Inlet Type = CDOT Type R Curb Opening Local Depression (additional to continuous Buller depression 'a' hom'O-Alli k.CAL = 2. 2.0 Inches Total Number of Units In the Inlet (Grate or Curb Opening) No = 2 Length of a Single Unit Inlet (Grate or Curb Opening) L. = 5.0 5.00 It Width of a Unit Grate (cannot be greater than W from O-Allow) W„ = W N/ fl Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CrG = N/ N/ Clogging Factor for a Single Unit Curb Opening (typical min. value = 0,1) Ci-C = 0151 0.15 5; ro,•I Hydraulics OK - O < maximum allowable from $beat'O-Allow MINOR MAJOR Design Discharge for Half of Street (from Shoat O•Pei Q. = do 2.70dcls Water Spread Width T= B.2I1 Water Depth at Flowline (outside of local Depression) d = 4AInches Water Depth at Street Crown (or at T,,) dcnown = 0.inches Ratio of Gutter Flow to Design Flow E. = 0.665 Discharge outside the Gutter Section W, tamed in Section T, O, = 0.91cis Discharge within the Gutter Section W O, = 1. Discharge Behind the Curb Face OSACK = 0.cis Street Flow Area A, = 1.161 2.16 sq it 2331 2.70 Street Flow Velocity V. = fps Water Depth for Design Condition d10CAL = 6,91 8.2 inches Grate Analysis lout MINOR MAJOR Total Length of Inlet Grate Opening L I it Ratio of Grate Flow to Design Flow Eooryre Under No -Clogging Condition MINOR MAJOR Minimum Vapory Where Grate Spash-Over Begins V. fps Interception Rate of Frontal Flow Rr Interception Rate of Side Flow R,= Interception Capacity O, = CIS Under Clogging Condition MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Intel GrateCoef = Clogging Factor for Multiple -unit Grate Inlet GrateClog = Effective (undogged) Length of Multiple -unit Grate Inlet L. = it Minimum Velocity Where Grate Spash-Over Begins V.= fps Interception Rate of Frontal Flow R, = Interception Rate of Side Flow R,= Actual Interception Capacity O, NIA NIA cis Carry -Over Flow = Oo O, (to be applied to curb opening or next d/s inlet) Ob WAI WAIcts Curb r Slotted Inlet Opening Analysis al t tl MINOR MAJOR Equivalent Slope S. (based on grate carry-over) S, 0.1 44DSI 0.1130 Mt Required Length LT to Have 100% Interception LT 7.21 11.35 it Under No Clogging Condition MINOR MAJOR Effective Length of Cum Opening or Slotted Inlet (minimum of L. LT) L - 7.1 10.00 It Interception Capacity O, 2.7CI 5.70 cfs Under Clogging Condition MINOR MAJOR Clogging Coefficient CurbCoef _ 1.25 1.25 Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog - 0.09 0.09 Effective (Unclogged) Length L. = 7.19 9.06 it Actual Interception Capacity 0.= 2.70 5.50 efs Carry -Over Flow = OgcnAT-D. Op = 0.00 0.33 cis Summary MINOR MAJOR Total Inlet Interception Capacity O = 2-70 5.50 da Total Inlet Carry -Over Flow (flow bypassing inlet) Oe = 0.00 0. cfs Capture Percentage = O./O. = C°6 = 100.0 94.3 % G5.4s, Intel On Grade 7/2612010, 8:20 AM JII II II n rn« u u U J 3 C J m 0 ^1 m m m a c C U W > O N OOP N � N N (7 nj I Cj N ! m C`1 Q U II II t 11 II II _N It OI « W It U u IT 3 `o L _v ^� O � N d � U Q « L O N 0 Z z 0 �a oU O O. J Scour Stop and Erosion Control Fabric SccAu- w w N �•w Q 06 U CL L O c > � !E L o cca ° m Maio N Q O) m .0 O O Q C 00 N .sn 0 N �I W N GOI co Y G G d V L � O o O O coOD N od N > x Cl w m >+ L L F-cc (C O a V J O 41 U) N N O {xa Q .15 C p C N > O — O :� U _ C C CU H F- O m C � N Cl) C O Z is Q O O C a a ,c) c d cN p c O J C: O C O U N 7 U V) a s r C: m i O) O) E ca Q - c of � N C T :3 O 0 (D C ro V) U C > a Q O U)a C O) O �c C. U E (n C O) O 0 0 �0 a L f' O- () O) L > c CO m � y v t c m O U) U) .LD q N CD > .;—-0 U C ocz x N O) fl O O : _0 L O O U + N N � N O 06 > U " c m c >1 O c c O) O E O U w co O Uj fA C C C Mcc CC =c ,t &z v NS U Len 13) c a) Y O L co o `V ca c a Ca U) 0 a) Q 0) .c cod C o a)L O .. m �I 0 L. �I NI Cl) � J N `° 0 www O O L C) 0 0 O L [o O ao > N .8 c0 Q N r = x w ro >. L L al d 0 m 4) 0 a V O a) i6 O . a) H co a C O C m O . — - o U C C c0 aJ O c� D � N co c M o o c Z Ir d iLU U) cz a) c a' CL c amg a c 0 J c 0 c 0 .N N 7 U N U Lm a1 c � as c Co i G O C E Co () O `a a� o c N o O � a) c cn 0 c T O w O a) O C ca ca N U C > O O 0 C N O L a a) U E N O 0 Ca N 0 a) o Q a) a) L > O ca Ncz c N r .3 c c° o .c co (n .LD a) µ N > �-0 o cca > 0) N � CL a) .a � Y o U) r 0 O U E L a) N N 0 > U c � O C T� m C a) 0 E Y ca °) 0 LO N O N C C C F L� Y a) O N 5cCA,v s� 0 od U CL ` N C L O ca ca is a ca N O) W ca Cl .0 C O N (D Z) F— n O L- NI O- w Q N IDI n OO ^� G V L 00 O O co. OD 00 N > H Q x O a) � W r -I-- ca O a V o J is ca N N W a C O p 41 0 U U) = C N CO C � m H 0 m C 1 N C N R � f7 O C O Z cr LLI i Q O O C � o _ro 2- a 'c c am Cg d C 0 J a C ca i N cz L ca Q c N O O- O O 4) L aro as a N C co V C ca O y N a co .T (D 't-- N a)O) > .a o co > X N N (D fl N O O cn a a L O 4) r U a E Y o g a) U c c C T ca � C C C 4) ._ O E 42 ca w w i L% ca _O Lj ca _ m r t N ScCC4// 4ce)c) � O O N CO y�06 wy T O% U m T .L L N H cc 0 (D m � C c .0 a > U En C C ro i cmM ml W }� /cn mI N Q w V- O c G 0 l0 m O O O 06 m O Q > tV!) x Ill CL . >. CO- J a oca ro aai cr (ax H a Y6 ro C O — O r.:_ U c N ro C � ro H � O E2 C � N LO N O M O IL O O Z m� LL N `' CL 0)O C (n fa a c' CL C C OQ a) cu C O J c O O N U N a`> L r ro c =3 Co Co ccro i G N a) c mm U CO 7 aU O C N .Q o .0 N _0 C: C a� c CL >, O O L cL E w C m O ei 7 O M N O (D >1 j U 0-.0 N > -0 ro c ro c ro N V L T :tt c CO O N N .` N N a) > '4- 'D O ro > N w X .C:)- CLD O N o ro o O L U E L ro N N O F- > U " c CD m CL C: cc c c C 41 .N o E a ro U w m O ui (D C C C .@ Ca N O y Michaelsen, Jaclyn From: Tom Carpenter [tom@scourstop.com] Sent: Wednesday, July 07, 2010 1:53 PM To: Michaelsen, Jaclyn Subject: RE: ScourStop reply 5 Yes, they look good. At the DT 05 1 would make the length greater than the width. I can not see details pages. What soil cover are you proposing under the ScourStop? thanks Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com From: Michaelsen, Jaclyn [mailto:michaelsenj@AyresAssociates.com] Sent: Tuesday, July 06, 2010 1:17 PM To: Tom Carpenter Subject: RE: ScourStop reply 4 Tom - Here are my changes to the scour stop based on what we talked about. Please look over and let me know if I misunderstood you or if you think what I have will work. Thank you so much for your help! Jackie From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Thursday, June 24, 2010 9:56 AM To: Michaelsen, Jaclyn Subject: ScourStop reply 4 Have enclosed concept for third pipe. Let's talk. Please call at your convenience. thanks Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com From: Michaelsen, Jaclyn [mailto:michaelsenj@AyresAssociates.com] Sent: Wednesday, June 23, 2010 3:51 PM To: Tom Carpenter Subject: RE: ScourStop The second pipe coming into the first pond is a 24" pipe with around 8 cfs. How far downstream would you line the bottom of the pond past the scour stop with the TRM? The third pipe outlets into the terrace of the Poudre River. The slope is around .35%, the channel is a couple feet wide and a couple feet deep and then it spreads out onto the terrace. I will check on the soil cohesiveness. Let me know if there is anything else you need to know. Thanks for your help - Jackie From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Wednesday, June 23, 2010 2:04 PM To: Michaelsen, Jaclyn Cc: Jack Knaub; Bill Murphy Subject: RE: ScourStop Thanks for the interest in ScourStop. It looks like the first 'reception' area has an additional culvert dumping onto it? and that you have the area sized for about 25 ScourStop mats? Longitudally, I think another row of mats would be better. I recommend a minimum of NAG C-350 TRM under all mats and downstream over all unprotected areas. A high -strength mat like P-550 or Pyramat would probably be better. If you are not 'plugging' natives, I would recommend a heavy rate of annual seed (plus an initial soaking) to build up a vegetative mat to help hold soil and TRM in place. I also suggest doubling the manufacturer;s rate of staples. Same recommendation for the middle pipe. Below the third pipe, I would like more information to give you the best design advice. I have enclosed a diagram to assist, or feel free to hand draw the application. I need any downstream slope information, width of channel, length of slope to water's edge (or related low water level?), etc. I have assumed cohesive soils ... if that is not the case, I need to change my recommendations. I will send construction details as soon as we complete the design of each pipe. Thanks again. Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com From: Michaelsen, Jaclyn[mailto:michaelsenj@AyresAssociates.com] Sent: Tuesday, June 22, 2010 3:09 PM To: Tom Carpenter Subject: RE: ScourStop Tom - The project that I am working on is a storm sewer project in Fort Collins, Colorado. We have the following storm sewers: 1) entering into the first water quality pond: 48" RCP, slope=0.35%, max velocity=7ft/sec, max flow = 90cfs 2) Entering into the second water quality pond: 48" RCP, slope=0.25%, max velocity = 9.5 ft/sec, max flow = 110cfs 3) Leaving the last water quality pond and entering into the Poudre River: 42" rcp, slope=0.25%, max velocity = 14ft/sec, max flow = 180cfs I would like to use scour stop, but it may not be appropriate at these locations. Please let me know. Also, the ponds will have native grasses in them, so I would assume minimal vegetation for the first couple years. Thanks for your help - Jaclyn Michaelsen Water Resource Engineer Ayres Associates Sustainable solutions since 1959 3665 JFK Parkway, Building 2, Suite 200 P.O. Box 270460 Fort Collins, Colorado 80527 Phone (970) 223-5556 Fax (970) 223-5578 michaelsenj@avresassociates.com www.AvresAssociates.com From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Friday, June 18, 2010 10:12 AM To: Michaelsen, Jaclyn Subject: RE: ScourStop Yes please send. may or may not call today, as I was planning to take the afternoon off, but it is raining at the moment! Talk soon. Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com From: Michaelsen, Jaclyn [mailto:michaelsenj@AyresAssociates.com] Sent: Friday, June 18, 2010 11:10 AM To: Tom Carpenter Subject: RE: ScourStop My phone number is 970-223-5556. 1 do not have drawings ready to send to you yet, but I can pdf a plan view and tell you the hydraulics of the storm. Will that work? Thanks - Jaclyn Michaelsen, PE, CFM Water Resource Engineer Ayres Associates Sustainable solutions since 1959 3665 JFK Parkway, Building 2, Suite 200 P.O. Box 270460 Fort Collins, Colorado 80527 Phone (970) 223-5556 Fax (970) 223-5578 michaelseni @avresassociates.com www.AvresAssociates.com From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Friday, June 18, 2010 9:09 AM To: Michaelsen, Jaclyn 3 Cc: Bill Murphy Subject: ScourStop I did not see any phone information, so please call me, or send info and I will call back. thanks Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com Michaelsen, Jaclyn From: Tom Carpenter [tom@scourstop.com] Sent: Thursday, June 24, 2010 9:56 AM To: Michaelsen, Jaclyn Subject: ScourStop reply 4 Attachments: scan0001.pdf Have enclosed concept for third pipe. Let's talk. Please call at your convenience. thanks Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com From: Michaelsen, Jaclyn[mailto:michaelsenj@AyresAssociates.com] Sent: Wednesday, June 23, 2010 3:51 PM To: Tom Carpenter Subject: RE: ScourStop The second pipe coming into the first pond is a 24" pipe with around 8 cfs. How far downstream would you line the bottom of the pond past the scour stop with the TRM? The third pipe outlets into the terrace of the Poudre River. The slope is around .35%, the channel is a couple feet wide and a couple feet deep and then it spreads out onto the terrace. I will check on the soil cohesiveness. Let me know if there is anything else you need to know. Thanks for your help - Jackie From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Wednesday, June 23, 2010 2:04 PM To: Michaelsen, Jaclyn Cc: Jack Knaub; Bill Murphy Subject: RE: ScourStop Thanks for the interest in ScourStop. It looks like the first 'reception' area has an additional culvert dumping onto it? and that you have the area sized for about 25 ScourStop mats? Longitudally, I think another row of mats would be better. 1 recommend a minimum of NAG C-350 TRM under all mats and downstream over all unprotected areas. A high -strength mat like P-550 or Pyramat would probably be better. If you are not 'plugging' natives, I would recommend a heavy rate of annual seed (plus an initial soaking) to build up a vegetative mat to help hold soil and TRM in place. I also suggest doubling the manufacturer;s rate of staples. Same recommendation for the middle pipe. Below the third pipe, I would like more information to give you the best design advice. I have enclosed a diagram to assist, or feel free to hand draw the application. I need any downstream slope information, width of channel, length of slope to water's edge (or related low water level?), etc. I have assumed cohesive soils... if that is not the case, I need to change my recommendations. I will send construction details as soon as we complete the design of each pipe. Thanks again. Thomas Carpenter, CPESC 1 515-202-0568 www.scourstop.com From: Michaelsen, Jaclyn [mailto:michaelsenj@AyresAssociates.com] Sent: Tuesday, June 22, 2010 3:09 PM To: Tom Carpenter Subject: RE: ScourStop Tom - The project that I am working on is a storm sewer project in Fort Collins, Colorado. We have the following storm sewers: 1) entering into the first water quality pond: 48" RCP, slope=0.35%, max velocity=7ft/sec, max flow = 90cfs 2) Entering into the second water quality pond: 48" RCP, slope=0.25%, max velocity = 9.5 ft/sec, max flow = 110cfs 3) Leaving the last water quality pond and entering into the Poudre River: 42" rcp, slope=0.25%, max velocity = 14ft/sec, max flow = 180cfs I would like to use scour stop, but it may not be appropriate at these locations. Please let me know. Also, the ponds will have native grasses in them, so I would assume minimal vegetation for the first couple years. Thanks for your help Jaclyn Michaelsen Water Resource Engineer Ayres Associates Sustainable solutions since 1959 3665 JFK Parkway, Building 2, Suite 200 P.O. Box 270460 Fort Collins, Colorado 80527 Phone (970) 223-5556 Fax (970) 223-5578 michaelsen*@avresassociates.com www.AvresAssociates.com From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Friday, June 18, 2010 10:12 AM To: Michaelsen, Jaclyn Subject: RE: ScourStop Yes please send. may or may not call today, as I was planning to take the afternoon off, but it is raining at the moment! Talk soon. Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com 2 i From: Michaelsen, Jaclyn [mailto:michaelsenj@AyresAssociates.com] Sent: Friday, June 18, 2010 11:10 AM To: Tom Carpenter Subject: RE: ScourStop My phone number is 970-223-5556. 1 do not have drawings ready to send to you yet, but I can pdf a plan view and tell you the hydraulics of the storm. Will that work? Thanks - Jaclyn Michaelsen, PE, CFM Water Resource Engineer Ayres Associates Sustainable solutions since 1959 3665 JFK Parkway, Building 2, Suite 200 P.O. Box 270460 Fort Collins, Colorado 80527 Phone (970) 223-5556 Fax (970) 223-5578 michaelseno@avresassociates.com www.AvresAssociates.com From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Friday, June 18, 2010 9:09 AM To: Michaelsen, Jaclyn Cc: Bill Murphy Subject: ScourStop I did not see any phone information, so please call me, or send info and I will call back. thanks Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com i1 7:Z- 511 k:7� 4-Cti V� -Zl Q Michaelsen, Jaclyn From: Tom Carpenter [tom@scourstop.com] Sent: Wednesday, June 23, 2010 2:04 PM To: Michaelsen, Jaclyn Cc: Jack Knaub; Bill Murphy Subject: RE: ScourStop Attachments: lone worksheet 042109.pdf.pdf; SS 10-2 Lateral Outfall into "a Stream C- Soils.pdf Thanks for the interest in ScourStop. It looks like the first 'reception' area has an additional culvert dumping onto it? and that you have the area sized for about 25 ScourStop mats? Longitudally, I think another row of mats would be better. I recommend a minimum of NAG C-350 TRIM under all mats and downstream over all unprotected areas. A high -strength mat like P-550 or Pyramat would probably be better. If you are not'plugging' natives, I would recommend a heavy rate of annual seed (plus an initial soaking) to build up a vegetative mat to help hold soil and TRIM in place. I also suggest doubling the manufacturers rate of staples. Same recommendation for the middle pipe. Below the third pipe, I would like more information to give you the best design advice. I have enclosed a diagram to assist, or feel free to hand draw the application. I need any downstream slope information, width of channel, length of slope to water's edge (or related low water level?), etc. I have assumed cohesive soils... if that is not the case, I need to change my recommendations. I will send construction details as soon as we complete the design of each pipe. Thanks again. Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com From: Michaelsen, Jaclyn[mailto:michaelsenj@AyresAssociates.com] Sent: Tuesday, June 22, 2010 3:09 PM To: Tom Carpenter Subject: RE: ScourStop Tom - The project that I am working on is a storm sewer project in Fort Collins, Colorado. We have the following storm sewers: 1) entering into the first water quality pond: 48" RCP, slope=0.35%, max velocity=7ft/sec, max flow = 90cfs 2) Entering into the second water quality pond: 48" RCP, slope=0.25%, max velocity = 9.5 ft/sec, max flow = 110cfs 3) Leaving the last water quality pond and entering into the Poudre River: 42" rcp, slope=0.25%, max velocity = 14ft/sec, max flow = 180cfs I would like to use scour stop, but it may not be appropriate at these locations. Please let me know. Also, the ponds will have native grasses in them, so I would assume minimal vegetation for the first couple years. Thanks for your help - Jaclyn Michaelsen Water Resource Engineer 1 Ayres Associates Sustainable solutions since 1959 3665 JFK Parkway, Building 2, Suite 200 P.O. Box 270460 Fort Collins, Colorado 80527 Phone (970) 223-5556 Fax (970) 223-5578 michaelsene@avresassociates.com www.AyresAssociates.com From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Friday, June 18, 2010 10:12 AM To: Michaelsen, Jaclyn Subject: RE: ScourStop Yes please send. may or may not call today, as I was planning to take the afternoon off, but it is raining at the moment! Talk soon. Thomas Carpenter, CPESC 515-202-0568 www.scourstop.com From: Michaelsen, Jaclyn[mailto:michaelsenj@AyresAssociates.com] Sent: Friday, June 18, 2010 11:10 AM To: Tom Carpenter Subject: RE: ScourStop My phone number is 970-223-5556. 1 do not have drawings ready to send to you yet, but I can pdf a plan view and tell you the hydraulics of the storm. Will that work? Thanks - Jaclyn Michaelsen, PE, CFM Water Resource Engineer Ayres Associates Sustainable solutions since 1959 3665 JFK Parkway, Building 2, Suite 200 P.O. Box 270460 Fort Collins, Colorado 80527 Phone (970) 223-5556 Fax (970) 223-5578 michaelsenw@avresassociates.com www.AvresAssociates.com From: Tom Carpenter [mailto:tom@scourstop.com] Sent: Friday, June 18, 2010 9:09 AM 2 To: Michaelsen, Jaclyn Cc: Bill Murphy Subject: ScourStop I did not see any phone information, so please call me, or send info and I will call back. thanks Thomas Carpenter, CPESC 515-202-0568 www.scourstoo.com country State/Regiew City Annual R Factor Total Slope Length (R) Protection Type Protection Period (monthsl Beginning Month Adpnted R Value Slope Gradient (H_ I Sal Type K Factor Sol Loss Toemance (it) Slope Gradierd -1:1 0 P5M Reinf Vag (C401 15) 200 Not to Scale Reach Cum Dist Material Vegetation Type GrowM Habit Density ASL bare fin) ASL ad (in) SLT fa) SF Reawks egm (111) I E n d (h) 1 0 200 P550 Reef. Burtch Type <=5W.. 0.989 0.001 0.03 2Q232 STABLE 2 3 0 200 Compolke 1 110.989 0.001 Vegetation DI rovided by vegetation ASLbare;Average Sod LOSS potential of wWowW Soot fundorm exhes) MSLbare.Mawmun Soil Loss potential on unprotected sod (tworm i ch") SLT-Sail Loss Tolerance for slope segment (udorm inches) Composite -Average soil loss hom total dope length (uniform inches) C=�OYef metenal pedorm nce factor (Fraction of sod loSS Of ur p oteCted( ASLmat=Average Sol LOSS potential wlmateoal (uniorm inches) MSLm*-Mawnm Sod Loss potential w/material (udform inches) SF-SaFety factor *********************************************************************** FORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 FORTH AMERICAN GREEN SLOPE PROTECTION - ENGLISH/S.I. FSER SPECIFIED - PERMANENT BACK-UP COMPUTATIONS *********************************************************************** IROJECT NAME: NOrth College 'OMPUTED BY: JYM 'LOPE DESCRIPTION: Spillway PROJECT NO.: 32-1415.02 DATE: 7/28/2010 •-------------------------------------------------------------------------- ***** INPUT PARAMETERS ***** --------------------------------------------------------------------------- 'lope Gradient: 1:1 'lope Degrees = tan^(-1) (1/1) = 45.00 degrees 'lope Length: 200 feet (61.0 meters) 'oil Type: Silt Loam ^-^tor: K= 0.33 t*ac*h/100*ac*ft*tonf*in (K= 0.04 t*ha*h/ha*MJ*mm) xl R Factor: 30 100ft*t*in/ac*hr*yr (511 MJ*mm/ha*h*y) for United States, Colorado, Ft. Collins ?RECIPDIST = 100 REACH CUMULATIVE DISTANCE MATERIAL TYPE Density C NO. TO END OF REACH FACTOR 1 200 feet/61.0 meters P550 Reinf. Veg Bunch Type 0.002 'LT = 0.03 inches (0.08 centimeters) OJR = 30 * 100.0 / 100 =30.0 100ft*tonf*in/ac*hr*yr (510.6 MJ*mm/ha*h*yr) 'oil Loss Factor (SLF) = 1.54 inches (3.90 cm) --------------------------------------------------------------------------- ***** CALCULATIONS ***** --------------------------------------------------------------------------- LEACH NUMBER: ***l*** ;UMHORZLI =200 * cos(45.0) *jS 1 Factor = 16.78 cumulative LS 1 Factor = 16. kSLBARE 1 = .00595 * 30 * 0 RSLBARE 1 = .00595 * 30 * 0 kSLMAT 1 = 0.0015 * 0.989 RSLMAT 1 = 0.0015 * 1.518 = 141.4 feet (43.1 meters) 78 .33 * 16.78 =0.989 in (2.511 cm) .33 * 1.54 *16.78 =1.518 in (3.855 cm) =0.001 in (0.004 cm) =0.002 in (0.006 cm) iF 1 = 0.030 / 0.001=20.232 'OMPASLBARE 1 =0.989 * [( 200 - 0) / 2001 = 0.989 in (2.511 cm) TOTCOMPASLBARE = 0.989 in (2.511 cm) 'OMPASLMAT 1 =0.001 * [( 200 - 0) / 2001 = 0.001 in (0.004 cm) TOTCOMPASLMAT = 0.001 in (0.004 cm) 'or additional computation details, see the North American Green Users Manual nd the Natural Resource Conservation Service RUSLE Documentation. I IGtX(A-v ine�tt ute,�c. foo10 Country State/Re�on City Annual R Factor Total Slope Length (ft) Protection Type Protection Period (monihs) Beginning Month A4Med R Value Slope Gradient (H:1) S K S used states .... _ ..................... Colorado R Cofsns Slope Gradient - 4.1 0 C350 ReW. Veg (C=0.02) 200 a Two Factor it Loss Tolerance [in) ._............. Salt loam .................... . 0.33 _... _......: Not to Scab Q03 Reach Cum Dist Material Vegelalim Type Growth Habit Density ASL bare FN ASL seat In) SLY Fin) SF Remarks WWTIW IN) (N) 0 200 C350 Reiff. Bunch Type <=50i. (1334 0.007 0.03 4.486 STABLE 2 3 0 200 Comm" 0.334 0.007 Vegetation Dernsdy=Peroentagewf soil coverage provided by vegetation Clover material pedarmance factor (Fraction of soil loss of upotected) ASLbareaAverage Sod Loss potential of unprotected soil (uniform inches) ASLmataAverage Sol Loss potential w1material (uniform aches) MSLbare=Mw amen Sod Loss potential on unprotected sod (Unlorm inches) MSLmat.M&w nen Sod Loss potential w/material (uniform inches) SLT=Sal Loss Tolerance for slope segment (urdorm aches) SF -Safety Factor Composte+Average sod loss from total slope length (uniform hches) *********************************************************************** 7ORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 TORTH AMERICAN GREEN SLOPE PROTECTION - ENGLISH/S.I. 7SER SPECIFIED - PERMANENT BACK-UP COMPUTATIONS *********************************************************************** ?ROJECT NAME: NOrth College PROJECT NO.: 32-1415.02 :OMPUTED BY: JYM DATE: 7/28/2010 SLOPE DESCRIPTION: Spillway -between ponds --------------------------------------------------------------------_------- ***** INPUT PARAMETERS ***** ------------------- 3lope Gradient: 4:1 Slope Degrees = tanA(-1) (1/4) = 14.04 degrees Slope Length: 200 feet (61.0 meters) Soil Type: Silt Loam ( ^-^tor: K= 0.33 t*ac*h/100*ac*ft*tonf*in (K= 0.04 t*ha*h/ha*MJ*mm) !L Al R Factor: 30 100ft*t*in/ac*hr*yr (511 MJ*mm/ha*h*y) for United States, Colorado, Ft. Collins ?RECIPDIST = 100 REACH CUMULATIVE DISTANCE MATERIAL TYPE Density C NO. TO END OF REACH FACTOR 1 200 feet/61.0 meters C350 Reinf. Veg Bunch Type 0.020 3LT = 0.03 inches (0.08 centimeters) �DJR = 30 * 100.0 / 100 =30.0 100ft*tonf*in/ac*hr*yr (510.6 MJ*mm/ha*h*yr) Soil Loss Factor (SLF) = 1.43 inches (3.64 cm) --------------------------------------------------------------------------- ***** CALCULATIONS ***** --------------------------------------------------------------------------- 2EACH NUMBER: ***l*** =HORZLI =200 * cos(14.0) = 194.0 feet (59.1 meters) �S 1 Factor = 5.67 -umulative LS 1 Factor = 5.67 3SLBARE 1 = .00595 * 30 * 0.33 * 5.67 =0.334 in (0.849 cm) gSLBARE 1 = .00595 * 30 * 0.33 * 1.43 *5.67 =0.480 in (1.219 cm) %SLMAT 1 = 0.02 * 0.334 =0.007 in (0.017 cm) gSLMAT 1 = 0.02 * 0.480 =0.010 in (0.024 cm) 3F 1 = 0.030 / 0.007 =4.486 '-OMDASLBARE 1 =0.334 * [( 200 - 0) / 2001 = 0.334 in (0.849 cm) TOTCOMPASLBARE = 0.334 in (0.849 cm) OMPASLMAT 1 =0.007 * [( 200 - 0) / 2001 = 0.007 in (0.017 cm) TOTCOMPASLMAT = 0.007 in (0.017 cm) or additional computation details, see the North American Green Users Manual nd the Natural Resource Conservation Service RUSLE Documentation. n ice— (34tt, Hydatic Nomw D4chw Peak Flow ft DeAUtl cts Perrod hrs 0.79 0.91 3O0.0 20 5.56 Reach I woe-) elf CIO ilL *L--.u.00 ft t�owo --d 1 .g0 wd 0 Not to Scala pmasM I Calarla<ed I SatetyFactot I RemarksShear Stress Sheaf Stress tpso R IORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 IORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. ISER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS **************************************************************************** )ROJECT NAME: North College .OMPUTED BY: JYM PROM STATION/REACH: )RAINAGE AREA: PROJECT NO.: 32-1415.02 DATE: 7/28/2010 TO STATION/REACH: DESIGN FREQUENCY: INPUT PARAMETERS :hannel Discharge : 300.0 cfs (8.49 mA3/s) ?eak Flow Period : 2 hours :hannel Slope : 0.008 ft/ft (0.008 m/m) ;hannel Bottom Width : 50.0 ft (15.24 m) ,e,'` Side Slope : 10:1 t . Side Slope : 10:1 hannel Lining : C125 Staple D ?ermi. Shear(Tp) :2.25 psf (107.7 Pa) Phase = 0 CALCULATIONS Initial Depth Estimate = 0.16 * (300.0 /(0.008A0.5))A0.375 = 3.40 ft (1.04 m) Final Channel Depth (after 14 iterations) _ .91 ft (0.28 m) ?low Area = (50.0 * 0.9)+(0.5 *0.91A2 * (10.0+10.0)) = 54.0 sq.ft (5.0 MA2) Vet Per. =50.0 +(0.9*(((10.0�2)+1)�.5 +((10.0A2)+1)A.5)) = 68.4 ft (20.8 m) iydraulic Radius = (54.0 / 68.4) = 0.8 ft (0.2 m) hannel Velocity=(1.486/0.020)*(0.8�0.667)*(0.008A.5) = 5.6 fps (1.7 m/s) hannel Effective Manning's Roughness = 0.020 7alculated Shear (Td) = 62.4 * 0.91 * 0.008 = 0.43 psf (20.5 Pa) Safety Factor = (Tp/Td) _ (2.25 /0.43) = 5.26 ()UU - luu.) &�mM N. C6 VL i 4��o W CSL Pclv,ot s 40AAmmcanGreen-ECMDSVersion4.3 !28I2010_. 12AM MPUTEOBY: J11N °ROJECT NAME: _North CoAeoe _. . ECT N0 -.32.1415 02 AOM_STATtON/RFACF4;__._ .__.: OSTATION/fiEACH__,_ - _._ HYDRAULIC RESULTS �A!►�+GE AREA. _..._ . __.._ DESIGN FREQUENCY__ __ _._ . Disohargie ds Peak Flow Period =Mn Area tntt) Hydra is R ft Normal D ft 16Q0 20 1842 067 1.26 10.0 Wei=ZOOk 1�p Not to Scale Reach Mabv Type tab' Vegetation Characteristics Pemissble Shear Stress Calculated Shear Stress Safety Factor Remarks tapk attan Phase past y; eruiy (Dsf) fasf) Straight C350 Unvegetated 1 3.20 3.15 1.02 STABLE Sta0e E TORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 TORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. JSER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ?ROJECT NAME: North College :OMPUTED BY: JYM ?ROM STATION/REACH: )RAINAGE AREA: PROJECT NO.: 32-1415.02 DATE: 7/28/2010 TO STATION/REACH: DESIGN FREQUENCY: **************************************************************************** INPUT PARAMETERS **************************************************************************** 'hannel Discharge : 160.0 cfs (4.53 m"3/s) ?eak Flow Period : 2 hours :hannel Slope : 0.04 ft/ft (0.04 m/m) hannel Bottom Width : 2.0 ft (.61 m) .e-P* Side Slope : 10:1 Z. ; Side Slope : 10:1 :hannel Lining : C350 Staple E ?ermi. Shear(Tp) :3.20 psf (153.2 Pa) Phase = 1 CALCULATIONS Initial Depth Estimate = 0.16 * (160.0 /(0.040�0.5))�0.375 = 1.96 ft (.60 m) Final Channel Depth (after 9 iterations) = 1.26 ft (0.38 m) ?low Area = (2.0 * 1.3)+(0.5 *1.26A2 * (10.0+10.0)) = 18.4 sq.ft (1.7 mA2) Vet Per. =2.0 +(1.3*(((10.0A2)+1)A.5 +((10.0�2)+1)�.5)) = 27.3 ft (8.3 m) iydraulic Radius = (18.4 / 27.3) = 0.7 ft (0.2 m) hannel Velocity=(1.486/0.026)*(0.7A0.667)*(0.040�.5) = 8.7 fps (2.6 m/s) :hannel Effective Manning's Roughness = 0.026 calculated Shear (Td) = 62.4 * 1.26 * 0.040 = 3.15 psf (150.7 Pa) Safety Factor = (Tp/Td) _ (3.20 /3.15) = 1.02 11 41 Design Methodology Setting Background • Native • Urban • Parking Lot Scour " G h a n n e Channel Slopes •>2% Slope Channel Width fii6r� and Length and Side Slopes Downstream Conveyance Flow Velocities • Slope • Width •Intensities • Cover •Watershed the green solution to rip rap scoursto pM Erosion Tech LLC — 1-877-99SCOUR — www.scourstop.com ScourStor? Part of permanent, post -construction Stormwater Treatment Practice (STP). Facilitates a vegetated stormwater conveyance system that promotes infiltration for groundwater recharge, and pollutant collection. What is scour and shear? ScourStop'" transition mat is a new,...patented.... and proven solution to scouring directly below and downstream of a pipe or culvert outlet. It is a biotechnical alternative for rip rap. ScourStop" is a semi -rigid, high - density polyethylene plastic mat ( 4 ft X 4 ft X .5 in ) combining vegetation with modern polymer material technology to mechanically protect the soil from scour and erosion until the shear forces have dissipated. Transition mats must be used over another best management practice (BMP) cover, typically a turf reinforcement mat (TRM), sod, or combination of the two, for immediate and long term soil loss protection. ScourStop'" is formulated with 10 year, UV protection; coloring it a dark green. However, once vegetated, the mat is mostly shielded from the sun and undetectable - making it a permanent BMP. Scour is erosion at the outlet area caused by the shear forces in the water - a combination of velocity and the weight of flowing water. Shear is compounded by the increasing velocity of the water as it rapidly expands from the confined pipe out into a channel. Conversely, just a few feet below the outlet, shear forces become relatively insignificant. The water loses its scowsbp P[oleela High Shear Area 0-20r Lawer Shear A►aa concentrated weight, and thus its shear force, by expansion into a wider channel and becoming a shallow flow. r .07 Critical Design Elements i ScourStop'" transition mats mechanically protect the soil from scour until this shear force is diminished as the water expands into the open channel. 2 Shear is the culprit, and that shear is normally only a factor in the scour area of 1 - 12 ft. (0 - 3 m) downstream of the outlet. Shallow velocity is a manageable factor in a design scheme. Additionally, specifiers rarely design flows greater than 8 fps, so high velocity is not a significant factor in most designs. 3 ScourStop'" must be used with another BMP soil cover. Bare soil is quite erosive, and some type of soil cover is required under ScourStop` for a proper, effective installation. 4 The installation must be considered 'all or nothing'. Once storm water begins piping under the mats, or 'head -cutting' - rill erosion from downstream uphill - the system has failed, and re- installation is required. [However, an additional benefit of ScourStop" is that the product does not disintegrate, so it can be reinstalled from a failure, or from a temporary installation, with primarily only labor cost.] Critical Design Elements 5 NPDES - Phase II Minimum requirement #5 calls for inspection and maintenance of post - construction BMPs to ensure adequate and long-term operation of controls. ScourStop" facilitates a vegetated solution and provides long term mechanical protection, for a no maintenance, post -construction STP. Calculate Downstream Flow VolocitJos and Volumes 200, Exit ve" and 0 End of Slotse Wbcity and O Evaluate and design STP to the receiving waters. The goal is minimal scour potential and a long slope, < 4%, to allow pollutant filtration and ground water recharge. CAUTION: TRM Performance ratings are based on fully -vegetated conditions. 6 Downstream flow velocities must be calculated by the designer and then dealt with by an appropriate channel lining system (Stormwater Treatment Practice). Channel veloct Recelyinp There are several software packages available and 0 Woters from blanket manufacturers to aid in channel design and flow characteristics which indicate BMP application ranges. Two examples are from Propex, Inc. at www.fixsoil.com and North American Green at www.nagreen.com. •-mac.: _. r— �,—_— rc— W �•i 1� �.,. �f .r. Y' I II R h + I ..1. . Yfda. �• µY .w• , y1 EnOrW DinlonBon Cakuhibms: 04W GwM[wr[. I)~ 2M 41 Cr inRif .' % I`..,/` za ', r, (" 11 ,— u C7®Osf L" rrf"* 0"691 0 or YJ ! r" Rr..wr 4`w[r �r Nltllr t 1 V �.�' !„!r r hrw R.r SIT Typical outfall calculation. �w SLD•np ilO ls7 wwY -= .In rwl owe sPtrOM Umwsru.r. Iaraw r+.11M Gwi ,a W 6w n ro.t.R r r.r How Many Mats are Needed? What configuration should be used? L. uaw I mue lnq Aw SYp W.%• Outyul Cadculaborr ScourSmp inuft,"on m w IJI V&MLRO 1 « tr t,n_„..,r w...„,. r u, w wwtts TrA t t • :.r.•c. we e. r wu,tut.a Trr. C t [I ti.wa oli'Nw U Crrr'r Irw w ► C L I....lNn.�M An engineered design for ScourStop'" calculator is available in Excel format. Rule -of -thumb table. ..r 11r� I eavn-^ 41 ILI As a limited discharge area is often a significant factor in the design, mid - channel use of ScourStop" mats may be necessary at slope changes. The associated scour areas will be at the toe of the slope as runoff velocity is greatest there, and directly downstream of the change in slope. Extra soil May Need Additional ScourStop protection, such as additional at Change in Slope mats, will be required. MINIMUM TRANSITION MAT COVMAGE FOR SLOPES 06WMSiREA►A OF GUTFALL —i!xr.: s r._•esrt fir: ;= •s.v:n+1:14 rG2:,LF-[ P'dt:1Y_ 4.1L?R. t'f 106:IZI- RiA 1 !.TF aT7. rC-.3.]. �— ni NlLl-M o, r. If .11� • _ -A t =ZZ IIti:-I •l. It's okay to say no to some installations. Additional Design Considerations P� i Installers must understand all of these critical design elements and alert the designer if a proposed site is not appropriate for a certain installation or ScourStop'" BMP system. If there are some lingering questions, contact the manufacturer for further clarification. Saturated soils generally become unstable or are susceptible to heavy flows which can cause erosion. Core out these wet soils and replace with manageable, fertile soil. If the application does have trickle flows, installing a sub -surface drainage system is highly recommended. Construct the system such that the low flow can drain from the outlet immediately and quickly - you do not want it ponding on the surface, having to filter down through vegetation, or seep through slits in plastic pipe - it takes too long and puts high stress on the vegetation. • Also consider a TRM vegetated with wetland sod, native seeds, and/or wetland plugs to stabilize the outlet as soon as possible. You may not have to excavate the wet soil if you can stabilize the installation with TRMs and ScourStop" anchored securely. • Composite TRMs should only be used on sites where vegetation is likely and expected flows prior to vegetation are below calculated TRM design parameters. uvM sft, l" Hour. - Typo C • Compopl* TRM's are ameotwo Lev. r r • Lateral outlets discharging into a water conveyance must be carefully designed, and the affected streambank areas well -protected. Sod would be highly recommended over seeding in most applications. Lateral OuttaN into Stream (Top % iew) ::;:.�. rnrn9lon Mrq ►nr.fr II }Irr AR•... r rlll - rrr •rn rrrr. rr 1.r plrer •.R .s.w r rs� phi l rqn..•.. rw ■••r.rr r riwl• -r rr•r rMA r WMWrf► vft� Yrt sm R R~ Ir. R I Re"iving Stream p !r } s� M,1 am&~ 4 ftom •rrlrY ~ rr rrq rw Rrr/rrr r*rl rr �rrr M .wrrr A M rnr "0r YRYr r•r rrlR r r�.Ra .a.�• awr..1. 1'r I M..Po-W "bw� R q.r M O" wMri.l Mvnrp r 2.." MI>.- dR.Rfra i ru"Aw M r1.r1. P~ 0" W .riR•I .� r..rw rr .....�...nenlrrY.••11+r� rro. r II'r \ .ry rYnr.MIM r pY�1 M LIU Pa wwn fll rRt in &WW"I Geo-ridge• • Outlets in minimal sunlight conditions require the combination of ScourStop" and a permanent, High -Performance TRM as sod may not thrive in a low light environment. • Consult with the manufacturer for designing streambed applications. Under low volume flows and moderate sediment loads, a High -Performance TRM under ScourStop'" mats should protect the soil from erosion and allow sediment to accumulate for an aesthetic, natural landscape. TRM combinations with a geotextile component to protect the erosive soil particles have proven very effective. See installation details. • Installing sod over a HP-TRM has shown great effectiveness. If the vegetation (sod) becomes securely rooted in the mat, the application will be extremely effective against erosive forces. • Temporary option - to slow the water down until vegetation has established, you might want to utilize a product called 'Geo-ridge°' or Enviroberm® - an open mesh triangular structure which dissipates water energy. ro" 17.07 Installation Modes TYPE A Several different installation modes enable a broad range of transition mat applications on construction sites and permanent vegetation projects. Transition mats must be used over another BMP cover, typically a TRM, sod, or combination of the two, protecting the soil from erosion. Type A is an installation over plain sod. Sod protects the soil particles and provides instant vegetation, with no risk of poor seed germination. Sod is the fastest means for vegetative cover because it is ready-made with near surface root mat and good surface cover foliage. It clearly eliminates the risks and provides multiple benefits for minimizing erosion, while maximizing the benefits of the turf reinforcement mats when used in combination with them. Type B provides for ScourStop", sod, and a turf reinforcement mat (TRM) combination for higher volume and velocity flows, and also a higher level of protection and security for a permanent installation. --LZ'_, 2 ' 1 .07 Installation Modes continued Type C is a combination ScourStop'" and TRM for low flow, low shear, and low velocity installations such as at level, rural driveway culverts or temporary construction outlets. Seeding under a TRM requires germination time and often a bit of luck avoiding a storm event that washes away the seed. This mode supports a composite TRM where vegetation is likely and expected flows prior to vegetation are below calculated TRM design parameters. TYPE C Installation Modes continued Type D is a combination ScourStop" and High -Performance TRM installation where the minimum rating for the unvegetated TRM is 5.5 fps. In some instances, a geotextile under the ScourStop"/TRM combination has resisted flows greater than 21 fps and 8 lbs. of shear. It might be specified for construction outlets; DOT highway applications; and areas where the installation may not completely vegetate for 2-3 years; or streambeds - possibly in an area where vegetation is unlikely where sediment and Igravel will primarily accumulate, for example. Manufacturers of High-PerformanceTRMs (HP-TRM) have found installing sod over their product is quite effective. If it becomes rooted - down before a large storm event erodes it away, it can easily revegetate from the roots which were protected by the HP TRM. Turf Reinforcement Mats-TRMs A dense grass cover provides one of the best defenses against soil erosion, provided the velocity of water flowing over the surface is not of sufficient duration and intensity to degrade the vegetative cover. If there is a risk of degradation, the vegetation must be reinforced by turf reinforcement mats (TRMs) and mechanically anchored to the soil. A turf reinforcement mat consists of various UV -stabilized synthetic fibers and filaments processed into permanent, high -strength, three-dimensional matrices that reinforce either the stems or roots of vegetation. This three-dimensional mat functions as an open, stable matrix for the entanglement of plant roots, stems, and soil, which together form a coherent, living matrix. They are designed for permanent and critical hydraulic applications such as drainage channels where expected discharges result in velocities and tractive shear stresses that exceed the limits of mature, natural vegetation. With any mat, it is essential to minimize seepage flow between the mesh and ground surface. The flexibility of the mesh and the method of installation must be adequate to avoid bridging between the mesh and soil. TRMs alone generally can not resist the high shear forces at the transition area below a storm water outlet, and therefore are highly complimented by ScourStop" transition mats. Storm water flows - both duration and intensity - are significant factors for consideration. The erosion resistance of reinforced grass systems can be considered in terms of hydraulic loading parameters velocity and duration of flow. Velocity controls the tractive forces acting at the bed fluid interface. Height of vbpekrtian decreases ve aft, "PecW1t on low Poor. Duration of flow is an important variable because even moderate flow velocities can cause severe erosion damage over a longer time period. An intuitive deduction from known test data strongly suggests that a vegetated TRIM under ScourStop" would be much more effective than the unvegetated TRM results in the current research. In most cases the ScourStop'" system is providing a 3X safety factor over the known results. TRMs have variable permissible stress limits, depending on upon the stage of vegetative establishment in the mat. These values are generally available and included in software programs designed to help engineers design channels for TRMs, and must be consulted in the design process. Beware — results and computations are based on vegetated conditions! NPDES Phase II Includes Six Minimum Controls Non-structural Planning such as LID projects, and BMPs like buffer strips, etc. Structural Infiltration BMPs: Infiltration BMPs are designed to facilitate the percolation of runoff through the soil to ground water, and, thereby, result in reduced stormwater quantity and reduced mobilization of pollutants. Examples include infiltration basins/trenches, dry wells, and porous pavement. Vegetative BMPs: Vegetative BMPs are landscaping features which - with optimal design and good soil conditions - remove pollutants, and facilitate percolation of runoff, thereby maintaining natural site hydrology, promoting healthier habitats, and increasing aesthetic appeal. Examples include grassy swales, filter strips, artificial wetlands, and rain gardens. Post -Construction Runoff Minimum Control Measure The Phase II Final Rule requires an operator of a regulated small MS4 to develop, implement, and enforce a program to reduce pollutants in post - construction runoff to their MS4 from new development and redevelopment projects that result in land disturbance of greater than or equal to one acre. The small MS4 operator is required to: • Develop and implement strategies which include a combination of structural and/or non-structural best management practices (BMPs); • Have an ordinance or other regulatory mechanism requiring the implementation of post -construction runoff controls to the extent allowable under State, Tribal, or local law. • Ensure adequate long-term operation and maintenance of controls; • Determine the appropriate best management practices and measurable goals for this minimum control measure. ...the immediate downstream waterways will not be subject to: • Deterioration of existing culverts, bridges, dams, and other structures • Deterioration of biological functions or habitat • Accelerated streambank or streambed erosion or siltation • Increased threat of flood damage to public health, life, property There are several basic water quality strategies for treating runoff: • Infiltrate runoff into the soil • Retain/detain runoff for later release with the detention providing treatment • Convey runoff slowly through vegetation • Treat runoff on a flow -through basis using various treatment technologies NPDES Phase II Continued Solutions should be based on an understanding of the water quality and economic benefits inherent in construction of systems that utilize or mimic natural drainage patterns. Site designs should be based on site conditions and use these strategies as the basis for selecting appropriate stormwater quality controls. Strategies for infiltration, retention/detention, and bio-filtration: • Vegetated basins (ephemeral -seasonally wet) • Constructed ponds and lakes (permanent -always wet) • Crushed stone reservoir, base rock under pavement or in sumps • Cisterns and tanks • Infiltration basins • Drainage trenches • Dry wells • Others... Self -treating site design techniques include: • Conserved Natural Spaces • Large Landscaped Areas (including parks and lawns) • Grass/Vegetated Swales • Turf Block Paving Areas The infiltration and bio-treatment inherent to such areas provides the treatment control necessary. These areas therefore act as their own BMP, and no additional BMPs to treat runoff should be required. How does this biotechnical system work? Interception FolinW Retardation Bio-technical stabilization provides attractive, cost-effective, and environmentally compatible ways to protect soil against surficial erosion. It utilizes mechanical elements in combination with living vegetation to arrest and prevent erosion. Both biological and mechanical elements must function together in an integrated and complimentary manner to increase the resistance to erosion above that of grass alone, and to improve the growth and establishment of the grass itself. The protective role of vegetation is: Interception - Foliage and plant residues absorb rainfall energy and prevent soil detachment by raindrop splash. Restraint - Root systems physically bind or restrain soil particles while aboveground portions filter sediment out of runoff. Restraint I Retardation -Stems and foliage increase FO; as surface roughness and slow velocity of runoff. Infiltration - Plants and their residues help to maintain soil porosity and permeability, thereby delaying onset of runoff. The most effective vegetative cover is grasses and forbs with dense, near surface root mat and good surface cover foliage. Infiltration Foliage rr r.o7 Design Methodology NPDES Phase II Post -Construction BMP The design methodology is a system of three inter -related elements each dependent on the other for a long term, permanent Stormwater Treatment Practice (STP). 1 the landscape setting - urban manicured lawn areas, or outlying low maintenance areas; 2 the actual scour area - soil conditions, slope, width, and length; 3 the downstream channel configuration - slope, length, and width. S ;�4t mom A quick overview of the elements helps to think about the design as a system. 'Landscape Setting' refers to your site - is it a lawn, parking lot, backwoods, ditch, wetlands, etc? The 'scour area' is immediately downstream and consists of the soil conditions, slope, width, length, and cover. The 'downstream channel configuration' also consists of soil conditions, slope, width, length, and cover. As with many BMPs in the toolbox, there might be 2-3 different alternative solutions, and the decision comes down to subjective factors, risk/reward, economics, and aesthetics. 18V 71.o7 The landscape setting is our first element. Generally any residential site or commercial frontage involving a manicured landscape would be a priority for using sod under transition mats. But sod is also applicable to no -maintenance areas, as it provides great soil protection and often does fine growing wild. Other low visibility settings might be options for a TRM and ScourStop'" application where native grasses would flourish, under low maintenance. Knowing your 'setting' might short-cut your decision -making process as to a certain installation type. • Native - backlot • Urban - residential • Parking Lot - commercial 4 n. re" 11.07 Properly Installed Not Property Installed scourstop t Not Property Installed R The scour area is the next design element. The first step is to determine what soil environment you have to start with, and then to determine what you want to end up with. Is the location dry and manageable; wet on top, but stable underneath; or maybe saturated with 'no bottom'? Whatever the soil environment, it must be created or designed for a solid foundation, whether vegetated or not. The quality of the installation usually determines whether or not a BMP will be effective, and this is especially true here, because you are building a long term structure that must deal with large variances in degrees of stress. The scour area must be reasonably smooth to ensure consistent contact with the cover BMP, and fairly level to avoid concentrating the storm water runoff. Nol Properly Installed ScourStop rev. I,.., As suggested in the RUSLE formula, the scour area should be designed as wide, level, and long as possible, especially avoiding an abrupt change in slope downstream if possible. Consider sod and/or sod/TRM combinations on all slopes greater than 10:1. i � Grade Dla.eharpe Area Flat and level PP7 �sx Uwestriebed Expansion • Reduces valaclry `� • Nub" 1er8lrr comes' radon ^� r J Avoid "Waterfall" Impact No Greater Than 25% Change in Slope Do Not Create Impact Erosion Avoid impact erosion onto the mats arising from a 25% change in slope between the discharge and outlet channel slope. A 25% change would be either a 'waterfall' type impact, or a 'collision' type impact where the discharge is directed into a level channel area. r 1.07 z ax Adding an additional one, two, or four ScourStop'" mats over the primary layer of mats at the scour area has shown to improve the scour protection on unvegetated installations, especially recommended for pipes and culverts > 36". Over -lapping ScourStop'" mats at the end of storm water discharges larger than 42" has also shown to increase the installation safety factor. Scour area width is extremely important in the design specification. The minimum channel bottom width should be at least 3 times the pipe diameter to enable water expansion and thus velocity dissipation as soon as possible, but four -five times the pipe diameter is the desired width. If the channel width is less than 3 times the width of the outlet, lining the two sides with ScourStop" mats to half the height of the outlet is recommended. ' .07 The discharge channel configuration is the third consideration. This area downstream of the scour area is the last component of this Stormwater Treatment Practice. Phase II encourages vegetated channels, and requires maintenance of post -construction BMPs, so designing this system properly saves long term annual dollars as well as protecting the environment. May Need Additional Scour'Stop at Change in Slope 14 The designer should first attempt to make the discharge channel as wide, level, and long as possible. A wide open discharge area will allow velocity in the storm water to dissipate quickly, and generally requires a lesser degree of soil protection. As a limited discharge area is often a significant factor in the design, mid -channel use of ScourStop" mats may be necessary at slope changes. The associated scour areas will be at the toe of the slope as runoff velocity is greatest there, and directly downstream of the change in slope which will require extra soil protection such as additional mats. Erosion from the lower end is called head -cutting, and must be dealt with appropriately. 7 7.07 Calculate Downstream Row Valacitles and Wtumes 200, Exit V4000aiy and 0 channel L P End of Slope velocity Receiving Vc:ocity and 0 ' and 0 Wnter3 Goat: do Slope > 3:1 Im Channel 2U' Preferred Design • Long, flat, and wide as possible. • Scour area: maximum slope 10:1. • Downstream channel: as much slope length at 4:100 as possible. • Discharge into receiving waters at about the same elevation, avoiding lateral water forces on your drop down structure. _ ree11.07 stotmwaier OutlMs 1MAL Soil Cover BMPs with SCourStop Feat Per Second tnatalrtwn Typaa a a e 13 H IN M H R V w twa+ `OR'm amaYl o" My�I Loa has Geotextile with ScourStop'" mechanical support holds soil particles in place and protects soil from water energy and erosion. J%61 -J T Vegetated stream banks maintain natural aesthetics and keep stream hydraulic dynamics in equilibrium. pp� 0 Ir it Designer Checklist Complete entire check -fist for EVERY outlet_ Date: Location of Outlet: Oa%g ii Goal: A Vegc—etaled Univemmer Runoff Oxiveyanct company "Oct N • Reduce rum: if exit ve➢xity iv;h expansion of the dischame area • Utilize langt•` of slope to inawse infiltration and proundivaler moarrge • Utilize leng& of elope to inu ease pollut;r: rarnoval • NPOES compliance urtdnng a ro-rnajrtenanca Stomwaitar Treatment Practice (ST N), Storm Event: 2 year storm, Gampt.de NNN volurres and velocities; 10 year storm_ Other I ; Al Discnarge Outial fpt era 2; At ere o* first Mope. IPs c*s 3) N crc a'sucond slops. rp-e r_rs d; Al era od daHns-xeaii chanra!_ fps etg C-unr dnr tht rollok%v-Tj cYeunu rinaNe"M F" woca" one )Wort. lac` WG l..I�per MMy nn...r J v.@r.de 1 WA2 7Yun MUM I H.ISNS7 J 1 MA 1 i?:JW M/`.+at r-laNS1i't'i �O1110.I�T12C-AfJ Cr CXJ=AL n _Sc:uurstop must be traced aver y 3oil Cciver. ScourStop transition met rquanticy and ccnipuration, �.hlnnef n9 akirwInn - tqR kx1g, Yoffle, And nm as pcSgll7lr.. Avoidmq irrp3--t erasion Stacking ScaurStop at scour area? channel prate=vn - if TRIO, use ite' urrv4gA.ated rating AdcMinna: ScnuiSwp needed attkf,e charryce:? Temporary voiocity dissipaters required w 1h orvenetaHmt TRNfe. GeuRxjq"- ivnvw_rr+i rnlnT tit Erivira-bean jww* aseade-%" j7rnairlind cnridirinrr, mrp6m, HP TRM nr tnxti!a n . rnil .nos* Saturalard sods require special desrsn considera3w. eflimm.-fln =xifi2M for vregrlhillnn? .Otemste appications: Shoreline p7wect©r, tt-amtec, UN211oank, cvotTI:; uut�-utus tuc dU.aila Indezign t-mirt3Af. ScourStop may not be applicable ;o adl area3. It t3 :AK to use an alternate Sht _%wal diw;hatc}e rnlo s leam - - Dls+yn hllv.hrwetvey Restricted disharge area risy'aquiru c»c•Sita olapa r•7:t21:1ion re�1.0I MATERIAL SPECIFICATION C35O The composite turf reinforcement mat (C-TRM) shall be a machine -produced mat of 100% coconut fiber matrix incorporated into a permanent three-dimensional turf reinforcement matting. The matrix shall be evenly distributed across the entire width of the matting and stitch bonded between a super heavy duty UV stabilized bottom net with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings, an ultra -heavy duty UV stabilized, dramatically corrugated (crimped) intermediate netting with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings, and covered by a super heavy duty UV stabilized top net with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings. The corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81 cm) centers with UV stabilized polypropylene thread to form a permanent three- dimensional turf reinforcement matting. The C350 shall meet requirements established by the Erosion Control Technology Council (ECTC) Specification and the U.S. Department of Transportation, Federal Highway Administration's (FHWA) Standard Specifications For Construction of Roads and Bridges on Federal Highway Projects, FP-03 2003 Section 713.18 as a Type 5A, B, and C Permanent Turf Reinforcement Mat. Installation staple patterns shall be clearly marked on the turf reinforcement matting with environmentally safe paint. All mats shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent mats. The composite turf reinforcement mat shall be the North American Green C350, or equivalent. The C350 permanent composite turf reinforcement mat shall have the following physical properties: Material Content Matrix 100% Coconut Fiber (0.50 lb/ydz) (0.27 kg/m2) Nettings Top - Super Heavy Duty UV Stabilized Polypropylene 8.00 lbs/1,000 ftz (3.91 kg/100 m2) Mid - Corrugated Ultra -Heavy Duty UV Stabilized Polypropylene 24 ib/1,000 ftz (11.7 kg/100 mz) Bottom - Super Heavy Duty UV Stabilized Polypropylene 8.00 lbs/1,000 ftz (3.91 kg/100 m2) Thread UV Stabilized Polypropylene C350 is Available with the Following Physical Specifications Per Roll [English Units (Metric Units)] Width 6.50 ft (2.00 m) Length 55.50 ft (16.90 m) Weight f 10% 37.00 lbs (16.80 kg) Area 40.00 yd2 (33.40 m2) Stitch Spacing for All Rolls = 1.50 inches (3.81 cm) Updated 1/2004 r SUPPLEMENTAL SPECIFICATION NMW AM C350 The composite turf reinforcement mat (C-TRM) shall be a machine -produced mat of 100% coconut fiber matrix incorporated into a permanent three-dimensional turf reinforcement matting. The matrix shall be stitch bonded between a super heavy duty UV stabilized bottom net with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings, a ultra heavy duty UV stabilized, dramatically corrugated (crimped) intermediate netting with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings, and covered by a super heavy duty UV stabilized top net with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings. The corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81 cm) centers with UV stabilized polypropylene thread to form a permanent three-dimensional turf reinforcement matting. Property Test Method Thickness ASTM D6525 Resiliency ASTM D1777 Density ASTM D792 Mass per Unit Area ASTM D6566 Porosity ECTC Guidelines Stiffness ASTM D1388/ECTC Light Penetration ECTC Guidelines MD Tensile Strength ASTM D6818 [D5035] MD Elongation ASTM D6818 [D5035] TD Tensile Strength ASTM D6818 [D5035] TD Elongation ASTM D6818 [D5035] Typical 0.67 in (17 min) 90% 0.528 oz/in' (0.913 g/cm') 12.57 y& (426 g/mZ) 99% 3.83 oz-in (42,710 mg -cm) 9.0% 625 lbs/ft (9.12 kN/m) [658 lbs/ft (9.60 kN/m)] 22% [8.50%] 768 lbs/ft (11.21 kN/m) (9101bs/ft (13.28 kN/m)] 15% [10.900/,] C350 PERMANENT TURF REINFORCMENT MATTING ONLY e--� Property Test Method Typical Thickness ASTM D6525 0.49 in (12.45 min) UV Stability ASTM D4355* 86% MD Tensile Strength ASTM D5035 564 lbs/ft (8.23 kN/m) MD Elongation ASTM D5035 37% TD Tensile Strength ASTM D5035 780 lbs/ft (11.38 kN/m) TD Elongation ASTM D5035 18% *ASTM D1682 (4 inch strip) Tensile Strength and % Strength Retention of material following 1000 hrs exposure in Xenon -Arc Weatherometer; MD - Machine direction; TD - Transverse direction Bench Scale Testinet Test Method - Description Parameters Results ECTC Method 2 - Determination of unvegetated RECP's ability to protect soil from rain splash and associated runoff 50 min (2 in)/hr for 30 min Soil loss ratio* = 18.32 100 min (4 in)/hr for 30 min Soil loss ratio* = 19.65 150 min (6 in)/hr for 30 min Soil loss ratio* = 20.48 ECTC Method 3 - Determination of unvegetated RECP's ability to protect soil from hydraulically -induced shear stress. Failure criteria = 0.50 inch soil loss Shear: 4.72 lbs/ft' for 30 min Soil loss: 127g Shear: 5.74 lbs/ft' for 30 min Soil loss: 195g Shear: 5.91 lbs/ft' for 30 min Soil loss: 255g Shear at 0.50 inch soil loss (450g) 7.5 lbs/ft' ECTC Draft Method 4 - Determination of temporary RECP performance in P rY P encouraging seed germination and plant growth Topsoil; Fescue (Kentucky 31); 21 day incubation 27' C ± 2° & approximately 50% RH u Percent improvement = 243 /o (increased biomass) * Soil Loss Ratio = Soil Loss with Bare Soil / Soil Loss with RECP (NOTE: Soil loss based on regression analysis) tBench Scale Performance Testing Bench scale tests are index property tests. These tests are not indicative of field performance and therefore should not be used in design to establish performance levels for rolled erosion control products. Bench scale tests are performed according to methods developed by the Erosion Control Technology Council (ECTC). Updated 1/2004 MATERIAL SPECIFICATION 1 4 qr A QC125 REEM The long-term erosion control blanket shall be a machine -produced mat of 100% coconut fiber with a functional longevity up to 36 months (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographic location, and elevation). The blanket shall be of consistent thickness with the coconut evenly distributed over the entire area of the blanket. The blanket shall be covered on the top and bottom with heavyweight polypropylene netting having ultraviolet additives to delay breakdown and approximate 0.625 x 0.625 inch (1.59 x 1.59 cm) mesh size. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with UV stable polypropylene thread. The C125 shall meet requirements established by the Erosion Control Technology Council (ECTC) Specification and the U.S. Department of Transportation, Federal Highway Administration's (FHWA) Standard Specifications For Construction of Roads and Bridges on Federal Highway Projects, FP-03 2003 Section 713.17 as a Type 4. Long-term Erosion Control Blanket. The C125 is also available upon request with the DOT SystemTM. The DOT SystemTM consists of installation staple patterns clearly marked on the erosion control blanket with environmentally safe paint. The blanket shall be manufactured with a colored line or thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) to ensure proper material overlapping. The long-term erosion control blanket shall be the C125 as manufactured by North American Green, or equivalent. The C125 erosion control blanket shall have the following properties: . Material Content Matrix 100% Coconut Fiber (0.50 lb/yd2 [0.27 kg/m2]) Netting Both sides, heavyweight UV stabilized (3.0 lbs/1,000 ft2 [1.47 kg/100 m2] approximate weight) Thread 100% Black Polypropylene C125 is Available with the Following Physical Specifications Per Roll [English Units (Metric Units)] Width 6.67 ft (2.03 m) 16.0 ft (4.87 m) Length 108.00 ft (32.92 m) 108.0 ft (32.92 m) Weight f 10% 44.00 lbs (19.95 kg) 105.6 lbs (47.90 kg) Area 80.00 yds2 (66.89 m2) 192.0 yd2 (165.53 m2) Roll Widths Also Available Upon Special Request Width 8.0 ft (2.43 m) 13.3 ft (4.05 m) Length 108.0 ft (32.92 m) 108.0 ft (32.92 m) Weight t 10% 52.8 lbs (23.95 kg) 88.0 lbs (39.92 kg) Area 96.0 yd2 (80.26 m2) 160.0 yd2 (133.78 m2) r Stitch Spacing for All Rolls = 1.50 inches (3.81 cm) Updated 1/2004 ,a 3 GEEEE N N N N N N N N LL O N a) O to O 00 O 0 to COv 00 CV OEM NIN t—co t-- - �-- IN $-- N m IN M m IN � m N a+ N N N N N N co N N N CL N N CL Ntn ma _.0� _aa .0a _0 .0 mO mN m y N tor- to — OrZ CO to0000 ti — LOCO 00 0M O 00 rl ri too N rl LO.i cr) 'i CL N li rl rl c4 �N N v N v N v r E E E E t E � E E E C \Z \Z N\ Q N Z N Z N Z N\ in U) Z N Z Y Q Y Z Y Y Y .O Y Z e 'x �M mM oO O� 00 M� tpN 00 00 00 .�i0 O Q rl x rl x N M x •l e-I �i rl N M rl N M x N� x y� N (h C x LO 00 x LO 00 x t` to x x CO r x x CO n x x M rl xN to x x rl 0 x q N x N pp'a- 12 rl� ci `1w rl � NM c�-IN N aW-iN N tNh �t NM N� N� M d: tT � J N rl O O / p O O N to Rt'f3s0 • N O) OrI 20,0 .N50) _ O ri O e}qO O c•IO. O, O O� rl rl"O �O'O O rl Op0 r O. rl 0- O 9 O rl' O O O r O O R>�: O O O O - O� 1 O O�� OHO O O''s f_ `. O O .O�O� -116.�'?�C OrEm 00 . WAAM y (aPoll- N O A N N, 3 N o. thr pyt iV y r 0 ri .o t U d) Nr��. V-1 U a4 a C M CN VE In Y ' ` E El F'XC64 LL}ma,�Jc N NL , a•,s 0E 0 fN0 VN O N N T. N 00 N r �._. • .E. x M x M .x'4C'!) O `. x. M l00 O- i is M Cj �, N x� ON ei M •x�x O rlsN "�M O ei Ctl :. x M aN• 1-4N x2M x�4x# tiW) t�S x r x 6 �.0. �lp` • �� O -ObM 0 MO, r $ 0 IM �O G. COO COD• �f00•CV DLO (-V N Cii N 0 m t0 m N 0) N C C a C U -coo •' C G E E am E 3 co E 3 a7m M .`.• -0 a) Q)� a o V b 3 a) CID w; a) m 'D CO E 3 t`0 h0 @ a) C`0 tUl t`6 v ...• a E (0 -0 3 @ 3 E t10 N y `m o C N e �' 'o o m @ pAL w U x a> o .` v Q� n . oN .- oN „ UID 'D V ON c�0m 0�s mME -0U. co 203 CO L L U N 00 0 d o j N\ N 0- N U E 3 v yo �o �o n'1 Cl 0o aI, o 0Y n0 0' 3 0- c� m� � 34 3: oli 3 y 0 0� 3 vi 00 ^^ M C N C ~ C ~ C ~ C 40 H C r 'J U Z Y Z N Q z Y Z co LO O li oO to Uin ON .-1 LO Op 0. Q m IUD U m m uual-ljoyg Weal- papuaIX3 Wial-RuoI Q N N r Q � G Q T O N hD a a 0 00 `O N U U O C M O O c to N c E a) '0 'o C N ` nQ a� C ®• C N C CD U) Co 0 > V N O N ca U0 0— C N L N ca H N w N N O (D U * 0 II z0 * * 2F- l- -j W co E ^L ^^W CL cn i vJ (0 'o L Om 90 or- OO NP- O(@ y O LO (pM ci a .1 LO ohm cc Y to (n j t O Wrl- oco Oc pCO cN�Op LO O t c j LO vl o M N cn a_ O N a N r LO0 N� oa M N( o(0 CV .o O M li co m L pa NCi) 0'1 O114* 10 ai .i o'i LO V 0) H C6 � C5 O U) N E a)\ \ N m\ \ N E N E U) N E ate) E y 9 �"> E @CV N ,. UO - .O N Y E YM dcu � y t0tC.--� ,6 Y W m N� Y +y-'CV N N ln_, 7 l[) - Tln ei� C ci .-mm' m 0^'� td N N• OOyOya) O oA (UO t` ci a) >� C am cl (o cx c 3 E L'm cl apt m a m d v2U U)C7 u0 ` L a) =oU EU in0 O a) 3 0 L m N 0 o rn t>> m to . _0 �¢ M OD y X\ Opa. ` Z, ai. O'`M O M Z C�3 N — � s IC) �fi ',_' s' O .ODNgCV P,') N s en p E 'w n E yN' L T�• �T to O [O s .. ✓ YN N ;. E E E E c LO L� 1V� 0ONi N E 16 O In L6 (0 LO ri L6 tD M ci ri N x M O x i! O x LO x ,A O X ((00 M O(V OCVi ON OC14 C a� o Q y M Q O C N a) a) O N M� 3LL Co c`nLCD ox��� co o� ox mo�yx .0 .a >a i`CIC O y 0 >•�a Om>m pO o�p=Y QO TY O� O� PTO am > Oci 22 d0 TN0U CD �CL N-,O d cc w d �_T .CL N., O >1 fi TN L O a) O o@ _T L y 6 a) O �@-! _T4) L -�5 y 0 N O- �a.ZLLLL 3 0 0 0 HCLZh\2 Hx D_z �lLLH F-dZaLL 0 o Nm U E loco m E iOm a E m a �> > > 0 m c c UO 0 fA a) M U 0 tiA W ~ d m 3 z U) Snout Oil -Debris Separators J •- . t. ---!144r.1 II■I�ti�i��IIM11 � �., BEST MANAGEMENT PRODUCTS. INC. For additional information, visit our A{ytp website at www.bmpinc.com. For technical support please call 800.504.8008 or 888.434-0277 Reach us via email at snouttechQbmpinc.com 7MONr • m A ivvp wm trstQA U *UP, Mt. NOWT& p f a a Nest.RO IrgNnwl d ADiunctMA. Ifv QMAffordable Stormwater Quality Improvement Systems over PR ICES START 25,000 at $ 275 In servicce under Ant -siphon device prevents contaminants from being Hooded outlet cover for sump style stormwater catch basins or structures Stainless steel hardware used throughout Attaches to structure over any type of pipe Removable watertight access port US Patent 6126817 / Caned4an Psnent 2286144 Strong, light -weigh plastic composite construction is very easy to install • Converts any sumped catch basin or distribution structure into an ofl-water-debris separator, Easy and inexpensive Best Management Practice for NPOES Phase 11, • Reduce discharge of floatables and trash. free -ails. sediment and grit. • Flow rastrictoes, flow deflectors. and oil absorbent booms available. • SNOUT system Rives designers urnlltnited HeKlblllty to match stormwatst treatment options with application requirements. Use our parts with your structures. • Unite come in many adzes to accommodate discharge pipes from 2" to 84' 10. • All units are high -flow designs. • Pipe and retention basin maintenance substantially radaced. PRODUCTS FOR A BETTER ENVIRONMENT Download drawings. specs and pricing at www.8MPINC.com Best Management Products, Inc. SNOUT Oil -Water -Debris Separator K-factor Worksheet. Outlet Pipe Flowing Full. H=K VOA / (2g) where H=Head loss in manhole with SNOUT (ft). K=K factor from table. Vo=Outlet pipe velocity when flowing full (fps). g=32.174 f /sA2 K-FACTOR vs. OUTLET PIPE INSIDE DIAMETER inch MODEL 12F 12R 18F 18R 24F 24R 30F 30R 36FT8 48F 54R72 72FTBB 96FTB 96FTBB PIPE I.D. 4 6 0.7 3.5 0.6 3.0 0.2 0.1 - _ �NLO. - -_ WO NIO N/0 N/0 N/0 N'0 NC 8 11.0 9.3 0.5 0.3 0.2 0.1 N/0 N/O N/0 N/0 N/0 N/C 10 26.9 22.7 1.2 0.8 0.4 0.3 N./O N/O N/C N'O N/C Ni0 12 -TIIA 2.4 1,8 08 0.5 0.3 0.2 _. N/0 WO �N/0 NO 15 N A 58 4.3 1 A 1.3 0.8 0.5 N/0 � _ N/O w0 18 �N'�A 8.9 3.8 27 1.6 1.1 0.a 0.2 0.1 N/0 N;O 21 n; A 'r A 7.1 5,1 2,9 2.0 1.4 0.4 0.2 - N/Q NO 24 N:A N7. NYC— - "RIA 5.0 3.4 2.4 0.8 0,3 N,0 27 N/A N,A NIA N/A VA 7.9 5.4 3.8 1.2 0,5 "-N;0 30, NA N:A NIA N/A NIA N/A 8.2 5.8 1.8 0.8 0.4 361 NA NA NA VA NIA 3.8SNN,A 8 0.2 0.2 42 N':. N,�4 NA N/A MA N:A N,A Z1 0.4 0.4 48 N '• n.A N/A N/A NA rJA NIA N/A N/A ' 0.8 0,8 54 b.A .NA N;'A N/A Nx N.�A N/A MA8 1.2 1.2 60 N'A N.A NA NA N,A N.A NIA NIA N/A N/A8 1.8 1.8 66 N>A N A NA N/A N,A N.A NIA NIA MA MA5 2.7 2.7 72 ' % , N.A N/A NA NA N : NIA N,A N,A NIA3.8 3.8 78 N,>" NA NA NIA NIA N:A N/A N,A NA NIAf '" 5.3 5.3 84 nbi r, A N/A NIA N/A N,A N,A NA Na N/A 7.1 7.1 90 - Use "F" for flat back SNOUT in rec tanoular structure N,A 9.3' Use "R" for round back SNOUT in cylindrical structure HMarginal Sizing Not Applicable Not Optimal BMP, Inc. Phone: (800)504-8008 Fax: (410) 687-6757 Websilte: www.bmpinc.com Email' t'm bm inc.com a e ITEMS Best Management Products, Inc. SNOUT® Stormwater Quality System 2007 Price List Suggested Weight List (tbs.) Price 5# BELO WARE OUR LARGE PIPE SERIES SNOUTS, FOR PIPE> 24" f0. ALL UNITS 2 or 3 PIECE PARTS •TB=Top & Base) Top & 2 Bases as below) 10# 15# 15# 18# 43# 55# 97# f10# 55# Call 900-504-8008 for pricing questions. Cal 888434-0277 to place order or check status. 12/5 M6 Ah Best Management Products, Inc. SNOUTO Stormwater Quality System 2007 Price List ITEMS Suggested Weight List (tbs.) Price "SNOUT" 961W (96FTB=Top & Base; 96FTBB=T0p & 2 Bases as below) 170 "N P Kt' 318 SandSnout with 5 Botl Iat 1 166.55 318xd (extra deep) SandSnout with iGt 1 262.05 5# 8# 25# 15# 22# 'Instatabon Kts Contain: (1) PSA backed gasket strip, (1) pipe adapter, (1)12" length of PVC Pipe, (2)neoprene O rings, (1) PVC lock -nut, (1) 900 elbow & SS bolls, washers and lead tamp -in anchors assemblies. "Basic 10t is Flat or Round -backed Flow Restrictors with PSA-backed gasket & SS bolts with nuts "Also needed a size by size FERNCO-type coupling and PVC Pipe With Approved Credit Terms: 20Aten, net 30, 1 10/6 / month (180/o/year) late charges after 30 days. We expect payment in full at the end of each month. Accounts are automatcah put on COD that are over 60 days Restocking fee for returned goods in undamaged and saleable condition is 30% plus return shipping. We accept MasterCard, VISA and American Express "ALL SHIPPING EXTRA: FOB Lyme, CT, freight extra, prepaid & b0ed to customer -by UPS or common carrier Visit our WEBSITE at www.bmpinc.com Toll Free 800-504-8008, 877-434-3197 fax PLEASE CALL 888-434.0277 to check order status 53 Mt. Archer Rd. Lyme CT 06371 • tjmd@bmpinc com U.S. Patent #6126817 Canadian Patent $12285146 Cal 800.504.8008 for pricing questions. Cal 888-434-0277 to place order or check status. 12AIM Best Management Products, Inc. Affordable Stormwater Quality and Quantity C SNOUT Reference Sheet Individual Contacts Firm ST Phone Email Mario Chavez, P.E. CDM, Inc. FL 407-660-2552 610-240-0450 chavezm!@cdm.com Rob Lambert, P.E. Site En ineerin , LLC PA dambertCcbsite-enaineers.com Joe Baran, P.E. Bohler Engineering PA 215-393-8300 jbaranCrDbohlererg.com Steve Garland, P.E. Sherman Carter Barnhart KY 859-224-1351 s ariand scb.k Tom Friese, P.E. Pennoni Assoc. PA 215-222-3000 tfriese@pennoni.com Trace Robinson, P.E. West Valley City UT 801-963-3204 trobinson@ci.west-valley.ut.us Jose Casio, P.E. City of N. Miami Beach FL 305-948-2980 Jose. Casio0gitvnmb.com Firm Name Office Location ST Site Location Project Name Bohannon Huston, Inc. Albuquerque NM Sante Fe Industrial Park RGS Engineering Brownstown PA Lancaster Co., PA Commercial Site EMC Engineering Statesboro GA Statesboro, GA Commercial Site Great Basin En r. Svcs. Salt Lake City UT Salt Lake City Industrial Park Sanborn, Head Assoc. Westford MA Westfield MA Private School CRS Engineers Salt Lake City UT SLC, UT Commericial Development `-1-gate Engineering Pittsburgh PA Allegheny Co., PA Industrial Park yen International Boston MA Boston, MA New Development .jhu g Engineering Kitchener ON Kitchener, ON Commercial Development Rem e-Sharpe Geneva IL Batavia, IL Industrial Park Pennoni Assoc. Allentown PA Allentown, PA JPovver Company HQ, LEEDS Specifying Municipalities State Applications Boston MA Roadway Inlets and Various West Valley City UT Commercial Sites New Development Sea Tac WA Res. & Comm. Allentown PA Commercial Sites Savannah GA New Development Collier County FL Roadway Inlets and Commercial Development Bellingham MA New Development Roadway Inlets and Structures Salinas CA As of January, 2006, more than 20,000 SNOUTs have been installed. As BMP, Inc. sells primarily through distributors, information on many projects is not readily available. For more installations please visit our web site at www.bmpinc.com go to SITE MAP/ Installation Sites. Or contact BMP, Inc. at (800) 504-8008 or (888)434-0277 for more information. 7 Mariners Walk Way Middle River, MD 21220 Ph. (800) 504-8008 Fax (410) 687.6757 www.bmpinc.com CONFIGURATION DETAIL 1" wr. ANn qla ON ER BLE' POR - - LET PIPE (HIDDEN) FRONT VIEW SNOUT OIL -WATER -DEBRIS SEPARATOR SIDE VIEW 1. ALL HOODS AND TRAPS FOR CATCH BASINS AND WATER QUALITY STRUCTURES SHALL BE AS MANUFACTURED BY: BEST MANAGEMENT PRODUCTS, INC. 53 MT. ARCHER RD. LYME, CT 06371 (860) 434-0277, (860) 434-3195 FAX TOLL FREE: (800) 504-8008 OR (888) 354-7585 WEB SITE: w .bestmp.00m OR PRE -APPROVED EQUAL 2. ALL HOODS SHALL BE CONSTRUCTED OF A GLASS REINFORCED RESIN COMPOSITE WITH ISO GEL COAT EXTERIOR FINISH WITH A MINIMUM 0.125" LAMINATE THICKNESS. 3. ALL HOODS SHALL BE EQUIPPED WITH A WATERTIGHT ACCESS PORT, A MOUNTING FLANGE, AND AN ANTI -SIPHON VENT AS DRAWN. (SEE CONFIGURATION DETAIL) 4. THE SIZE AND POSITION OF THE HOOD SHALL BE DETERMINED BY OUTLET PIPE SIZE AS PER MANUFACTURER'S RECOMMENDATION. 5. THE BOTTOM OF THE HOOD SHALL EXTEND DOWNWARD A DISTANCE EQUAL TO 1/2 THE OUTLET PIPE DIAMETER WITH A MINIMUM DISTANCE OF 6" FOR PIPES <12" I.D. 6. THE ANTI -SIPHON VENT SHALL EXTEND ABOVE HOOD BY MINIMUM OF 3" AND A MAXIMUM OF 24" ACCORDING TO STRUCTURE CONFIGURATION. 7. THE SURFACE OF THE STRUCTURE WHERE THE HOOD IS MOUNTED SHALL BE FINISHED SMOOTH AND FREE OF LOOSE MATERIAL. 8. THE HOOD SHALL BE SECURELY ATTACHED TO STRUCTURE WALL WITH 3/8' STAINLESS STEEL BOLTS AND OIL -RESISTANT GASKET AS SUPPLIED BY MANUFACTURER. (SEE INSTALLATION DETAIL) 9. INSTALLATION INSTRUCTIONS SHALL BE FURNISHED WITH MANUFACTURER SUPPLIED INSTALLATION KIT. INSTALLATION KIT SHALL INCLUDE: A. INSTALLATION INSTRUCTIONS B. PVC ANTI -SIPHON VENT PIPE AND ADAPTER C. OIL -RESISTANT CRUSHED CELL FOAM GASKET WITH PSA BACKING D. 3/8" STAINLESS STEEL BOLTS E. ANCHOR SHIELDS - US Patent # 6126817 TYPICAL INSTALLATION e ANTI -SIPHON DEVICE' ..° SNOUT ' OIL -DEBRIS •„• HOOD •• OILANDDEBRIS 4 OUTLET PIPE SEE NOTE•r- ' ' SOLIDSSETTLEON'!'° ° BOTTOM •; , 'NOTE- SUMP DEPTH OF 36" MIN. FOR < OR= 12" DIAM. OUTLET. FOR OUTLETS >OR= 15", DEPTH = 2.5-3X DIAM INSTALLATION DETAIL DETAIL B FOAM GASKET W/ PSA BACKINO� (TRIM TO LENGTH) MOUNTI ANCHOR WI BOLT -FLANGE • SEE DETAIL A) D INSTALLATION NOTE: POSITION HOOD SUCH THAT T BOTTOM FLANGE IS A 112 D DISTANCE OF 1/2 OUTLET PIPE DIAMETER (MIN.) BELOW THE PIPE INVERT, GASKET MINUMUM DISTANCE FOR COMPRESSED PIPES < 12" I.D. IS 6'. BETWEEN HOOD AND STRUCTURE DETAILA (SEE DETAIL B) • DRILLED ANCHOR HOLE SHIELD STAINLESS BOLT EXPANSION OONE (NARROW END OUT) HOOD SPECIFICATION FOR CATCH BASINS AND WATER QUALITY STRUCTURES DESCRIPTION DATE SCALE OIL- DEBRIS HOOD 09/08/00 NONE SPECIFICATION AND DRAWING NUMBER S P-S N INSTALLATION (TYPICAL) U o CL C)_ N C� O o) s CO o> O _ � W o � V% ° M LL W W cn U W_ Q Ja M d LL 0 CD Ix w Vi •O OUV N W � WaW c _NN w ozXZlxU�O D: co� -aH; Q W — a HM CCE) °D 0 Z p o W W W F'QQQQ QQQQ o O f �0000��00U CO Z o� �-TCOO(OO�O�NMM W �� (AMd�(OtiHF-HH W U) U) (n U) U) LL LL LL LL co 2Ft:t:HHo0466 W LL LL LL LL U- � N CO CO} Ui � LO 00 N J IX N co '7 O 0- ILn- IL Z CD t � s- N CM (n Z Z Z Z OO � 0 m g O O O N co(O CN U N a z m U OW w rr�� a H} oW(ncc NgZ co F- co 0L iy O co w Q w Z ? Z H } Q U) � a z a NOc) O IlL U ° r— a� Q z = — co qc:) NZ LON (o LL LL 0 CVcMZO LL Ln to of LO AM MM 4Wy—.nuMaY.r. Quick -Start Design Guide with SNOUT® to Structure Ratio (STSR) Methodology Background: The SNOUT system from Best Management Products, Inc. (BMP, Inc.) is based on a vented hood that can reduce floatable trash and debris, free oils, and other solids from stormwater discharges. In its most basic application, a SNOUT hood is installed over the outlet pipe of a catch basin or other stormwater quality structure which incorporates a deep sump (see Installation Drawing). The SNOUT forms a baffle in the structure which collects floatable debris and free oils on the surface of the captured stormwater, while permitting heavier solids to sink to the bottom of the sump. The clarified intermediate layer is forced out of the structure through the open bottom of the SNOUT by displacement from incoming flow. The resultant discharge contains considerably less unsightly trash and other gross pollutants, and can also offer reductions of free -oils and finer solids. �t What follows are basic design tips to optimize the performance of SNOUT systems. Design Recommendations for Site: ❖ Establish SNOUT to Structure Ratio (STSR) for site as follows: Heavy Traffic -and Pollutant Loading Applications (STSR 1:1): This includes gas stations, convenience stores, fast food restaurants, vehicle repair facilities, stores with "drive through" service (e.g. banks, drug stores, dry cleaners, coffee shops), loading docks, distribution facilities, marinas, hospitals, transportation terminals (air, bus, train, sea, shipping), school bus loading areas, maintenance facilities, light industrial sites, waste disposal facilities or "dumpster areas", parking and roadway areas of shopping centers close to the stores, etc. In "Heavy Traffic and Pollutant Load" areas a SNOUT in every structure is indicated (STSR 1:1). The exception will be where an inlet can not be maintained. In this case, and where additional treatment is desired, non -inlet polishing structures can be added to the drainage network prior to discharge (e.g. with a cover not a grate thus it receives no surface flow). An oil absorbing boom may also be deployed in structures that will receive heavy hydrocarbon loading and flow deflectors may be added to a polishing structure to increase solids removals. Moderate Traffic and Pollutant Loading Applications (STSR 1:2): This includes office buildings, multi -residential complexes, schools (other than bus �— areas), most shopping mall parking areas, mixed retail commercial facilities, municipal/government buildings, athletic/entertainment/recreational facilities, non -fast food restaurants, special event/remote parking areas, etc. In "Moderate Traffic and Pollutant Load" areas a SNOUT in at least every other structure is indicated (STSR 1:2). The downstream structures (prior to discharge) are most critical, and oil absorbing booms.may be useful if heavier hydrocarbon loading is expected. Flow deflectors may be employed in a polishing structure to increase solids separation. Low Traffic and Pollutant Loading Applications (STSR 1:3): This includes grassy or vegetated areas, single family residences, parks*, parking for offices within residences, flow excess from permeable paving areas, etc. In Low Traffic and Pollutant Load areas one SNOUT in every three structures may be adequate (STSR 1:3). The need for oil booms or flow deflectors is unlikely as such a need would indicate a Moderate or Heavy Pollutant load scenario. * If discharge in a park setting is to a "high -value" water body, additional treatment may be indicated even if it is otherwise defined as a low traffic low load area. STSR Note: A large site may have different STSR areas, just like it may have different runoff coefficients. For instance, a shopping mall may have an STSR of 1:1 in heavy traffic roadways and loading/unloading areas, but may have a STSR 1:2 in a remote parking area. Therefore apply the appropriate STSR to each area of the site to arrive at the total number of SNOUT equipped structures for the project. Design Recommendations for Individual Structures: 4- As a rule of thumb, BMP, Inc. recommends minimum sump depths based on outlet pipe inside diameters of 2.5 to 3 times the outlet pipe size. (Special Note for Smaller Pipes: A minimum sump depth of 36 inches for all pipe sizes 12 inches ID or less, and 48 inches for pipe 15-18 inches ID is required if collection of finer solids is desired.) ❖ The plan dimension of the structure should be up to 6 to 7 times the flow area of the outlet pipe. ❖ Oil absorbent booms (for hydrocarbons in any structure) and flow deflectors (for settleable solids in a final polishing structure) can increase pollutant removals. Oil booms are highly recommended for gas or vehicle service stations, convenience stores, restaurants, loading docks, marinas, or high traffic applications. Oil booms must be used with SNOUT. ❖ The "R" series SNOUTs are available for round manhole type structures of up to 72" ID with pipes up to 54" OD; the "F" series SNOUTs are available for flat walled box type structures for pipes up to 96" OD; the "NP" series SNOUTs are available for PVC Nyloplast® type structures up to 30" ID. Further structural design guidelines including CAD drawings, hydraulic spreadsheets, and site inspection and maintenance field reports and installation inspection sheets are available from BMP, Inc. TYPICAL INSTALLATION J ANTI -SIPHON DEVICE! SNOUT -- OIL -DEBRIS HOOD OIL AND DEBRIS OUTLET !!! P" SEE NOTE' SOLIDS SETTLE ON BOTTOM 'NOTE- SUMP DEPTH OF 36' MIN. FOR - OR= 12' DIAM OUTLET FOR OUTLETS >OR= 15-. DEPTH = 2 5-3X DIAM Contact Information: Please contact us if we can offer further assistance. 53 Mt. Archer Rd. Lyme, CT 06371. Technical Assistance: T. J. Mullen (800-504-8008, tjm@bmpinc.com) or Lee Duran (888-434-0277). Website: www.bmpinc.com The SNOUT® is protected by: US PATENT # 6126817 CANADIAN PATENT # 2285146 SNOUT® is a registered trademark of Best Management Products, Inc. Nyloplase is a registered trademark of ADS Structures, Inc. Introduction to Design and Maintenance Considerations for SNOUT° Stormwater Quality Systems Background: The SNOUT system from Best Management Products, Inc. (BMP, Inc.) is based on a vented hood that can reduce floatable trash and debris, free oils, and other solids from stormwater discharges. In its most basic application, a SNOUT hood is installed over the outlet pipe of a catch basin or other stormwater quality structure which incorporates a deep sump (see Installation Drawing). The SNOUT forms a baffle in the structure which collects floatable debris and free oils on the surface of the captured stormwater, while permitting heavier solids to sink to the bottom of the sump. The clarified intermediate layer is forced out of the structure through the open bottom of the SNOUT by displacement from incoming flow. The resultant discharge contains considerably less unsightly trash and other gross pollutants, and can also offer modest reductions of free -oils and finer solids. As with any structural stormwater quality BMP (Best Management Practice), design and maintenance considerations will have a dramatic impact on SNOUT system performance over the life of the facility. The most important factor to consider when designing structures which will incorporate a SNOUT is the depth of the sump (the sump is defined as the depth from beneath the invert of the outlet pipe to the bottom of the structure). Simply put, the deeper the sump, the more effective the unit will be both in terms of pollutant removals and reducing frequency of maintenance. More volume in a structure means more quiescence, thus allowing the pollutant constituents a better chance to separate out. Secondly, more volume means fewer cycles between maintenance operations, because the structure has a greater capacity. Design Notes: ❖ As a rule of thumb, BMP, Inc. recommends minimum sump depths based on outlet pipe inside diameters of 2.5 to 3 times the outlet pipe size. ❖ Special Note for Smaller Pipes: A minimum sump depth of 36 inches for all pipe sizes 12 inches ID or less, and 48 inches for pipe 15-18 inches ID is required if collection of finer solids is desired. ❖ The plan dimension of the structure should be up to 6 to 7 times the flow area of the outlet pipe. ❖ To optimize pollutant removals establish a "treatment train" with SNOUTS placed in every inlet where it is feasible to do so. ' ❖ At a minimum, SNOUTs should be used in every third structure for less critical applications. ❖ Oil absorbent booms (for hydrocarbons in any structure) and flow deflectors (for settleable solids in a final polishing structure) can increase pollutant removals. Example Structure Sizing Calculation: A SNOUT equipped structure with a 15 inch ID outlet pipe (1.23 sgft. flow area) will offer best performance with a minimum plan area of 7.4 sgft. and 48 inch sump. Thus, a readily available 48 inch diameter manhole -type structure, or a rectangular structure of 2 feet x 4 feet will offer sufficient size when combined with a sump depth of 48 inches or greater. Maintenance Recommendations: ❖ Monthly monitoring for the first year of a new installation after the site has been stabilized. ❖ Measurements should be taken after each rain event of .5 inches or more, or monthly, as determined by local weather conditions. Checking sediment depth and noting the surface pollutants in the structure will be helpful in planning maintenance. ❖ The pollutants collected in SNOUT equipped structures will consist of floatable debris and oils on the surface of the captured water, and grit and sediment on the bottom of the structure. ❖ It is best to schedule maintenance based on the solids collected in the sump. _ ❖ Optimally, the structure should be cleaned when the sump is half full (e.g. when 2 feet of material collects in a 4 foot sump, clean it out). ❖ Structures should also be cleaned if a spill or other incident causes a larger than normal accumulation of pollutants in a structure. ❖ Maintenance is best done with a vacuum truck. ❖ If oil absorbent hydrophobic booms are being used in the structure to enhance hydrocarbon capture and removals, they should be checked on a monthly basis, and serviced or replaced when more than 2/3 of the boom is submerged, indicating a nearly saturated state. ❖ All collected wastes must be handled and disposed of according to local environmental requirements. ❖ To maintain the SNOUT hoods themselves, an annual inspection of the anti -siphon vent and access hatch are recommended. A simple flushing of the vent, or a gentle rodding with a flexible wire are all that's typically needed to maintain the anti -siphon properties. Opening and closing the access hatch once a year ensures a lifetime of trouble -free service. Further structural design guidelines including CAD drawings, hydraulic spreadsheets, and site inspection and maintenance field reports and installation inspection sheets are available from BMP, Inc. r Installation Drawing: SEE ANCHOR W/BOLT (SEE DETAIL A) D T 1/2 D GASKET COMPRESSED BETWEEN HOOD AND STRUCTURE (SEE DETAIL B) INSTALLATION NOTE: POSITION HOOD SUCH THAT BOTTOM FLANGE IS A DISTANCE OF 112 OUTLET PIPE DIAMETER (MIN.) BELOW THE PIPE INVERT. MINUMUM DISTANCE FOR PIPES < 12" I.D. IS 6" TYPICAL INSTALLATION I ANTI -SIPHON DEVICE SNOUT OIL -DEBRIS HOOD 4 OIL AND DEBRIS OUTLET PIPE „ SOLIDS SETTLE ON BOTTOM 'NOTE- SUMP DEPTH OF 36" MIN. FOR < OR= 12" DIAM. OUTLET FOR OUTLETS >OR= 15", DEPTH = 2.5-3X DIAM. Contact Information: Please contact us if we can offer further assistance. 53 Mt. Archer Rd. Lyme, CT 06371. Technical Assistance: T. J. Mullen (800-504-8008) or Lee Duran (888- 434-0277). Website: www.bmoine.com The SNOUT is protected by US PATENT # 6126817 and CANADIAN PATENT # 2285146 SNOUT° is a registered trademark of Best Management Products, Inc Tide Flex Valve TideffCV.-, Technologies CheckMate", Inline Check Valve 41 b6 AM, �.M-Kmb& , � The Revolutionary CheckMateTM Inline Check Valve Patented by Tideflex® Technologies in 1998, the CheckMateTM Inline Check Valve is ideal for backf low prevention and odor mitigation applications. Created for inline service, CheckMate'sTM custom -engineered, all -rubber unibody design eliminates costly backflow from oceans, CSO, SSO, rivers, stormwater and interceptors. The unibody valve's unique elastomer fabric - reinforced design provides a proven record of maintenance -free performance, cost savings and results no other inline check valve can match. CheckMateTM Valves are readily available in a wide range of sizes, from 4" to 60", and performance criteria, to suit all your site -specific and flow needs. Maintenance -Free, Totally Passive Operatior, Faulty Ilapgate valves that have corroded. Flapgate valves are mechanical and have moving parts with inherent problems of corrosion, faulty function and wear. Replacing traditional flapgate valves with the CheckMateTM Inline Check Valve eliminates these issues. CheckMate'- Engineered Features • Extremely Low Headloss • 100% Elastomer Durable Construction, Similar to Truck Tire • No Moving Mechanical Parts • 4" (101.6 mm) - 60" (1524 mm) Size • 25 Year Life • Operates on Differential Pressure • Virtually No Maintenance, Except for Periodic Inspection • Self -draining • Less than 1"of Head Pressure Opens the Valve, Eliminating Standing Water • Silent, Non -slamming • Simple Installation • Extensive Independent Hydraulic Testing Like the Tideflex® Check Valve, the CheckMateTm has a 1O0% fabric and elastomer unibody construction that eliminates corrosion problems. Because the CheckMateTM is made with a unibody construction, there are no one-piece mechanical components to catch debris, corrode, or fail. The result is savings - both in time and costs. Cutaway igustmtion of the CheckMate I -Valve, showing an upstream view. 2 1 Check Valves Eliminate Seating Problems Many traditional check valves are prone to debris lodging in the seating area, which in turn prevents the valve from closing and causes excessive backflow. The CheckMatelm Valve's inherent flexibility virtually eliminates the seating problems associated with traditional valves. Flow in the forward direction opens the CheckMateTM Valve, while reverse flow closes it. The flexible CheckMateT/ Valve seals tightly around silt and small debris upon reverse flow, preventing unwanted backflow and mitigating odor. Lowest Headloss of Any Check Valve A major advantage of the CheckMateTM Inline Check Valve is its extremely low headloss. This is particularly beneficial in low-lying areas. CheckMateTM Valves drain with very low head pressure and are sensitive enough to open with as little as 1 inch of water. 2.0 i)" 1.6 1.4 111.2 N 0 1.0 J O 0.8 2 0.2 M CheckMate- Valve Coer•ation Open Closing Tideflexe CheckMateTM Valve Headloss vs. Pipe Velocity* 0 1 2 3 4 5 6 7 8 9 Pipe Velocity (fps) *Red Valve will provide headloss flowcharts for your specific application requirements. Partially Open 10 11 Closed Check Valves Water and Wastewater Pipelines The CheckMateT° Inline Check Valve's maintenance - free design makes it the perfect choice for pipeline applications. Use large and small diameter CheckMateTM" Valves in water and slurry pipelines where absolute backflow prevention is critical. Odor Control Lightweight CheckMateTM Inline Check Valves prevent sewer systems' offending odors from escaping, while still allowing water to discharge when needed. The CheckmateTM valves is designed to eliminate the backflow of unwanted methane and hydrogen sulfide gases that typically result in complaints about odor from the general public. FDrainage and Outfall Lines CheckMateTM Inline Check Valves have become a frequently specified solution for commercial and residential areas where complete, dependable backflow prevention is necessary. The Checkmate TM valve's maintenance -free, passive operation provides years of trouble -free service —even when the valve is partially buried. Interceptor and Manhole Installations CheckMateTM Inline Check Valves are used for interceptor and manhole installations because, because they are ideal for preventing water from backflowing into a sewage treatment plant. The CheckMateTM Valve's innovative inline design allows it to be installed without modifications to structures such as interceptors, manholes and vaults. 4 1 Check Valves F— Effluent Discharge As the world continues to recognize the importance of environmental stewardship, the CheckMateTM Inline Check Valve is the ideal solution for promoting a safer, cleaner environment. When addressing effluent discharge from wastewater treatment plants, the CheckMateTM Valve helps protect the surrounding eco-system with its ability to diffuse effluent and prevent backflow. - Stormwater Runoff - The CheckMateTm Inline Check Valve is the valve of choice by both coastal and inland municipalities for stormwater and CSO systems. Because the CheckMateTM Valves utilizes dissimilar elastomers and fabric in the hinge area, there are no mechanical parts to warp or corrode. It is maintenance free! Check Valves I Sample Specification PART 1: GENERAL 1.01 SUBMITTALS A. Submit product literature that includes information on the performance and operation of the valve, materials of construction, dimensions and weights, elastomer characteristics, headloss, flow data and pressure ratings. B. Upon request, provide shop drawings that clearly identify the valve materials of construction and dimensions. 1.02 QUALITY ASSURANCE A. Supplier shall have at least twelve (12) years experience in the design and manufacture of "CheckMateTM" style elastomeric check valves. B. Manufacturer shall have conducted independent hydraulic testing to determine headloss, jet velocity and vertical opening height characteristics on multiple sizes of CheckMateTM valves ranging from 4" through 60". The testing must have been conducted for free discharge (discharge to atmosphere) and submerged conditions. PART 2: PRODUCTS 2.01 "CHECKMATET""' ELASTOMERIC CHECKVALVES A. Check Valves are to be all rubber and the flow operated check type with slip -in cuff or flange connection. The entire CheckMateTM Valve shall be ply reinforced throughout the body, disc and bill, which is cured and vulcanized into a one-piece unibody construction. A separate valve body or pipe used as the housing is not acceptable. The valve shall be manufactured with no metal, mechanical hinges or fasteners, which would be used to secure the disc or bill to the valve housing. The port area of the disc shall contour down, which shall allow passage of flow in one direction while preventing reverse flow. The entire valve shall fit within the pipe I.D. Once installed, the CheckMateTM Valve shall not protrude beyond the face of the structure or end of the pipe. B. The downstream end of the valve must be circumferentially in contact with the pipe while in the closed positions. C. Slip -in style CheckMateTM Valves will be furnished with a set of stainless steel bands. The bands, which will secure the valve in place, shall be installed inside the cuff portion of the valve, based on installation orientation, and shall expand outwards by means of a turnbuckle. Each band shall be pre -drilled allowing for the valve to be pinned and secured into position in accordance with the manufacturer's installation instructions. Flange style CheckMateTM Valves will be furnished with a stainless steel, ANSI 125/150 drilled, retaining flange unless specified otherwise. D. Manufacturer must have flow test data from an accredited hydraulics laboratory to confirm pressure drop and hydraulic data. Company name, plant location, valve size patent number, and serial number shall be bonded to the check valve. 2.02 FUNCTION A. When line pressure exceeds the backpressure, the line pressure forces the bill and disc of the valve open, allowing flow to pass. When the backpressure exceeds the line pressure, the bill and disc of the valve is forced closed, preventing backflow. J 2.03 MANUFACTURER A. All valves shall be of the slip -in or flanged CheckMateTm as manufactured by Tideflex Technologies®, A Division of Red Valve Company, Carnegie, PA 15106. All valves shall be manufactured in the U.S.A. PART 3:EXECUTION 3.01 INSTALLATION A. Valve shall be installed in accordance with manufacturer's written Installation and Operation Manual and approved submittals. 3.02 MANUFACTURER'S CUSTOMER SERVICE A. Manufacturer's authorized representative shall be available for customer service during installation and start-up, and to train personnel in the operation, maintenance and troubleshooting of the valve. B. If specified, the manufacturer shall also make customer service available directly from the factory in addition to authorized representatives for assistance during installation and start-up, and to train personnel in the operation, maintenance and troubleshooting of the valve. 6 1 Check Valves Designed for Inline Service CHECKMATETM VALVE NOMINAL BACK PRESSURE PIPE SIZE OVERALL NUMBER CUFF RATING I D. LENGTH* OF CLAMPS DEPTH (FEET) i i i 12" 23" 1 2" 40 14" 30.2" 1 4" 20 16" 33.3" 1 4" 20 18" 36.5" 1 4" 20 42" 82.5" 2 8" 10 48" 92" 2 8" 10 54" 101.5" 2 8" 10 60" 119" 2 12" 10 The best choice for the toughest applications. In addition to the CheckmateTM Inline Check Valve, TideflexO Technologies offers a complete line of check valves. - TF-1 CHECK VALVES The Tideflex® TF-1 Curved Bill Check Valve is designed with enhanced sealing to improve headloss. The improved TF-1 design allows the valve to handle long-term water weight while maintaining structural integrity. The spine is at a greater vertical angle, making it able to withstand the cantilever effect when water is flowing through the valve. The TF-1 is contructed of rubber, making it immune to rust, corrosion and weathering. SERIES 35-1 CHECK VALVES The flat -bottom Series 35-1 features an integral rubber flange, allowing them to be mounted to flanged outfali pipes or directly to headwalls where the pipe is flush. The flange size drilling conforms to ANSI 616.10, Class 150#, or can be constructed with DIN, 2632 and other standards. The Series 35-1 Check Valve is furnished complete with steel or stainless steel backup rings for installation. SERIES 39 CHECK VALVES The Tideflex® Series 39 Inline Check Valve features a fabric -reinforced elastomer check sleeve housed in a cast iron body with ANSI 125/150 flanges, allowing for easy installation into any piping system. The valve's operation is silent, non -slamming and maintenance free. Sliding, rotating, swinging and plunging parts are completely eliminated. The body is equipped with flush ports and a clean -out port and can be epoxy coated. Q V � O s > V 4) .CL M G. 2 vi V N N s O 4i 4) ■ 1.. s.. i. j- -� :. . ;.. .... ..._ .; ;.. . >. a IL z ° pp Z2 j .��z K1� UP S�= E o 9 h 60M oa 02V) Q �3hN�d"a�3F � Z :... ..:... ..:... ..:.. =•-- ------ ------ --- O 00 (q d' N O CO 1p N O N r- � I— O O O O O (400=) SSO-1(3d3H O m .• 0 U) a c0 0 LO> m a Ei co m vl- W r.,v m o = X W� U p p X a m O W W W W N Z NZ O WWi Z J x V-I�NQ C.7 J 0-d a 3 Z W< Q mCL p F F Q K O Z p Ox c O Q W W m W N d 0 Q ¢ Q W Q Y Z a F U M- W H Q m e U Z V c a aCf N oc IW- d W W Z mE3 Z p o Y N Z 33o cU L> I� It 2 Z W Z U Q N �> U m< U p J O N N m W W J ? m ~� a U W Z J Q d Y H tV Q C (<.l 0< O W S> Z cc Y CL U m 2 J 1J \• 0•m WZJ��N O \\.I �N- J.UOWOsU W Od G'�.NUVmxW �y � /� i Nnp OOwpXO C� / I O Z m S 0 o m 0 0 / � I Z OI=/1mm LLOz �O1 O W tJ00i��n� ��z0 OI-vl < w O d J U �-oFz<pW z FZUVCW.ro J inOw GW 3 �mzi�z� w maw s �l 6 U4SIrNK 6 O OJ r W< w= om3m F C < Q Z o E< ',i rnp kl S� z � � ;_•.i I x N Y o a Z �� Q O C W CDW O � Q E p 0 C) o Z ? O w Z j 0 }: i o d U H �Z in >- Z J\ m p W p x x `< d X x 'i [wwCl] OIL X .0S'0 w U)i d o Z O W N C U O © 1 11' 1 Cl Pipe Classification Michaelsen, Jaclyn From: Sent: To: Subject: Attachments: Hello Jaclyn, Don Grzesiek (don@ precastconcepts.com) Thursday, July 22, 2010 10:12 AM Michaelsen, Jaclyn RE: North College 3 EB_Resu Its_N orthCollege. pdf A common assumption is that shallow cover depths require higher strength classes of RCP (e.g., Class III, IV or V). This is a common misperception (unless you have severe live load conditions of course) as demonstrated by the attached structural design calculation (48" RCP example). As you'll see, Class I RCP is sufficient for the installation/loading conditions represented in the plans sheets you provided. I should note that we do not manufacture < Class III for any of our concrete pipe products unless there is a very significant quantity to justify the slight savings in material cost. You could be technically accurate and specify Class I RCP, but you will very likely receive Class III RCP. Maybe consider this additional factor of safety for no additional cost. Hope this helps. Please contact me if you have any questions or concerns. Thanks, Don From: Michaelsen, Jaclyn [mailto:michaelsenj@AyresAssociates.com] Sent: Wednesday, July 21, 2010 2:31 PM To: Don Grzesiek Subject: North College Don - I talked to you on the phone last week about my storm sewer and the class of pipe required due to the depth of pipe. Could you just glance it over and if you could just type up something (not too much, it could just be a response in an email) stating what you think the class should be. The pavement section is 3" asphalt on top of 11 concrete on top of 6" of ABC. This is for North College in Fort Collins. It is a highway, but an in town highway. Here are a couple of sheets. The storm sewer is never very deep, nothing like CIPO ;) Thanks so much for your help! You are always so helpful O Jaclyn Michaelsen, PE Water Resource Engineer Ayres Associates Sustainable solutions since 1959 3665 JFK Parkway, Building 2, Suite 200 P.O. Box 270460 Fort Collins, Colorado 80527 Phone (970) 223-5556 Fax (970) 223-5578 michaelseno@avresassociates.com www.AyresAssociates. corn 1 Three Edge Bearing Analysis - Results Project Description Project Title: North College Avenue Improv Consultant: Ayres Associates Project Location: Fort Collins, CO Contractor: Contract Number: Analyzed By: Don Grzesiek Country: US Date: 22-Jul-10 Units: English Comply To: ASTM (AASHTO Alternative: College Alpine D-LOAD REQUIREMENTS FOR A 48 in. DIAMETER CIRCULAR PIPE PIPE DATA Inner Diameter (in.) 48 Wall 'B' Thickness (in.) 5.000 INSTALLATION CONDITIONS Minimum Depth of Fill (ft) 0.50 Maximum Depth of Fill (ft) 5.00 Soil Density (lb/cu. ft) 120.0 Installation Type Trench Trench Width (ft) 8.17 Soil Lateral Pressure/Friction Term (kp') 0.1650 Parameters to compute Transition Width Positive Projection Ratio 0.50 Soil Lateral Pressure Ratio 0.33 Soil Lateral Pressure/Friction Term (kp) 0.1000 Soil Lateral Fraction (m) 0.50 Settlement Ratio 0.70 ADDITIONAL LOADS Live Load AASHTO HS-SERIES (HS-20) Single Axle Load = 32(kips), Double Axle - Load per Axle = 24(kips), Space = 4(ft) Default I.F. per AASHTO Used. No Surcharge Load FACTOR OF SAFETY Factor of Safety on 0.01 Inch Crack D-Load (Earth,Live) 1.00 1.00 Factor of Safety on Ultimate Earth and Live Load (ASTM C 76) DL.01 Less Than or Equal To 2000 Ibs/ft/ft 1.50 DL.01 Greater Than or Equal To 3000 Ibs/ft/ft 1.25 DL.01 Between 2000 and 3000 Ibs/ft/ft Interpolated r Date Printed: 07-22-2010 PipePac Version 3 Copyright ©1996-2003 OCPA, CCPA, ACPA Pagel of 4 J 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 D-LOAD REQUIREMENTS FOR A 48 in. DIAMETER CIRCULAR PIPE Results of Analysis for Bedding Type B Earth Load Arching >Trans Factor 1.01 Y 1.02 Y 1.03 Y 1.04 Y 1.05 Y 1.06 Y 1.08 Y 1.09 Y 1.10 Y 1.11 Y Live Load Load (lb/ft) (lb/ft) 293 3825 592 3145 898 2623 1209 2475 1528 1994 1853 1474 2184 1226 2523 1039 2869 918 3222 823 Surch Load (lb/ft) Total Load (lb/ft) Bedding Factor DL Required D-Load 0.01in. (lb/ft/ft) 0 4118 2.38 433 (CL-I) 0 3737 2.38 393 (CL-I) 0 3521 2.38 370 (CL-I) 0 3685 2.38 388 (CL-I) 0 3522 2.35 375 (CL-I) 0 3326 2.33 357 (CL-I) 0 3410 2.31 369 (CL-I) 0 3562. 2.30 388 (CL-I) 0 3787 2.28 414 (CL-I) 0 4045 2.28 444 (CL-I) Selected Depth: 0.5 ft. (closest pipe depth : 0.5 ft) Reinforced Pipe Classes for 0.01 in. crack per ASTM C76 (lb/ft/ft): CL I <= 800; CL II <= 1000; CL III <= 1350; CL IV <= 2000; Class V <= 3000 Date Printed: 07-22.2010 PipePac Version 3 Copyright ©1996-2003 OCPA, CCPA, ACPA Page 2 of 4 I Pipe Analysis Report Pipe Depth — The height of cover from the top of the pipe to the soil surface, m (ft) Earth Load Arching Factor — The ratio of the design soil load on the pipe to the load from the prism of soil immediately above the pipe (prism load). By multiplying the soil prism load by the Arching Factor, the Earth Load on the pipe will be determined. The Arching Factor is constant for Standard Installations in the positive projecting condition, but variable for all other bedding and installation conditions. >Trans - (Applicable for Trench and Negative Projecting Conditions only) — When a trench or negative projecting design is performed, the soil load above the pipe may or may not be reduced by frictional forces between the insitu and placed soils, depending on the depth and width of the trench. A symbol of "Y" is shown when the trench width exceeds the width at which frictional forces reduce the soil load on the pipe (Yes, the transition width has been exceeded, and the positive projecting design governs). A symbol of "N' is shown if frictional forces reduce the load on the pipe (No, the transition width has not been exceeded). Load — The load in kN/m (lbs/ft) imposed on the pipe from the soil. Live Load — The load on the pipe resulting from a dynamic load at the surface, kN/m (lbs/ft). Surcharge Load — The load in kN/m (lbs/ft) imposed on the pipe from surcharge loads such as buildings, stationary equipment, etc. on the soil surface above the pipe. Total Load — The summation of all the loads on the pipe. This would include when applicable; Earth Load + Surcharge Load + Live Load + Fluid Load. Note: Since the internal fluid load for a pipe is constant regardless of fill height it is not listed in the table. When the user chooses to consider fluid load, it is written below the table and included in the total load. Bedding Factor DL — The dead load bedding factor applied to the pipe at that depth. The higher the bedding factor, the greater the support that is given to the pipe by the surrounding soil. This factor is divided by the Total Load for the B, C, and D beddings only. LL — The live load bedding factor applied to the pipe at that depth. The live load bedding factor accounts for concentrated loads resulting from live loads over pipe with shallow cover. For the Type 1, 2, 3, 4 and Jacking Installations the Live Load is divided by the lower of this value or the DL value, and all other loads are summed up and divided by the DL value. Required D-Load 0.3mm (0.01 in) — The load the pipe is required to support in the three -edge bearing test with a crack equal to or less than 0.3 mm (0.01 in) which equates to the maximum stress induced on the pipe in the installed condition. The load is given in kN (lbs) per m (ft) length of pipe per mm (ft) of diameter (or span for noncircular pipe). Required TEB-Load Ultimate — The load that the pipe is required to be able to support in the three -edge bearing test prior to failure. The load is given in kN (lbs) per m (ft) length of pipe. Date Printed: 07-22-2010 PipePac Version 3 Copyright ©1996-2003 OCPA, CCPA, ACPA Page 3 of 4 LIABILITY AGREEMENT The successful application and use of this software product is dependent on the application of skilled engineering judgement supplied by the user and/or their consultant. The user of this software must select input values suitable to describe their specific engineering situation. The information presented in the computer output is for review, interpretation application, and approval by a qualified engineer who must assume full responsibility for verifying that all output is appropriate and correct. ANY IMPLIED OR EXPRESS WARRANTIES COVERING THIS SOFTWARE PROGRAM OR USER MANUAL INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. GIFFELS ASSOCIATES LIMITED, the ONTARIO CONCRETE PIPE ASSOCIATION, the CANADIAN CONCRETE PIPE ASSOCIATION, the AMERICAN CONCRETE PIPE ASSOCIATION and TUBECON INC. shall not be held liable for any special, incidental, consequential, indirect or other similar damages resulting from the use of this software. Use of this program consitutes acceptance of this liability agreement by the user. Date Printed : 07.22.2010 PipePac Version 3 Copyright © 1996-2003 CCPA, CCPA, ACPA Page 4 of 4 APPENDIX D — Existing Utilities CONTACTS NOTES OWNER UTILITY CONTACT PERSON CONTACT NUMBER 1. ELECTRIC WORK TO BE COMPLETED BY COFC LIGHT & POWER. LOCATION OF REVISED CITY OF FORT COLLINS LIGHT & POWER BRUCE VOGEL (970) 221-6700, 224-5157 UTILITY TO BE COORDINATED NTH ENGINEER. CITY OF FORT COLUNS UTILITIES / STORM WATER GLEN SCHLUETER (970) 224-6065 2. STREET LIGHT REMOVAL TO BE COMPLETED BY COFC LIGHT & POWER. LOCATION OF REVISED UTILITY TO BE COORDINATED NTH ENGINEER. CITY OF FORT COLLINS WATER / WASTEWATER ROGER BUFFINGTON (970) 221-6700, 221-6854 ELCO WATER DISTRICT WATER MIKE SCHEID (970) 493-2044 3. NEW STREET LIGHTS AND ELECTRIC TRANSFORMERS/VAULTS/METERS WILL REPLACE THOSE ON THE PLANS THAT ARE CALLED OUT AS REMOVED. LOCATION OF REVISED COMCAST FIBER OPTIC AND CABLE DON KAPPERMAN (970) 567-0245 UTILITY TO BE COORDINATED WITH ENGINEER. WORK TO BE COMPLETED BY COFC LIGHT & POWER. XCEL GAS LEN HILDEBRANDT (970) 225-7848 QWEST COMMUNICATION TERRY SPEER (970) 377-6405 4. EXISTING ELECTRIC LINES TO BE ADJUSTED TO NEW VAULTS, LIGHTS, TRANSFORMERS, METERS... BY CITY OF FORT COLLINS LIGHT & POWER. GREELEY WATER DAN MOORE (970) 350-9814 5. LOWERING AND RELOCATION OF GAS LINES AND ADJUSTMENT OF GAS METERS TO BE LAKE CANAL LAKE CANAL DON MAGNUSON (970) 352-0222, 381-5444 COMPLETED BY XCEL WORK TO BE COORDINATED WITH ENGINEER. COMPANY 6. LOWERING AND RELOCATION OF TELEPHONE LINES AND ADJUSTMENTS OF TELEPHONE JUNCTION BOXES TO BE COMPLETED BY QWEST. LOCATION OF REVISED UTILITY TO BE COORDINATED BY ENGINEER. 7. QWEST MANHOLE RIM ADJUSTMENTS TO BE DONE BY THE CONTRACTOR. FLOW FILL AROUND MANHOLES MAY BE REQUIRED PER DIRECTION OF THE ENGINEER. FIRE HYDRANT NOTES 8. ADJUSTMENTS TO THE SANITARY SEWER MANHOLES AND THE LINING OF THE SANITARY 1. REMOVAL OF FIRE HYDRANT SHALL INCLUDE REMOVAL OF FIRE HYDRANT, THRUST BLOCK, GATE SEWER (AS CALLED OUT IN THE PLANS) TO BE COMPLETED BY THE CONTRACTOR. FLOW VALVE, FIRE HYDRANT LINE FROM THE HYDRANT TO THE MAINUNE, AND ALL WORK EQUIPTMENT FILL AROUND MANHOLES MAY BE REQUIRED PER DIRECTION OF THE ENGINEER. AND MATERIALS NECESSARY TO COMPLETLY REMOVE THE FIRE HYDRANT AND COMPONENTS PER COOT SPEC 202. 9. LOWERING AND RELOCATION OF WATER LINES, FIRE HYDRANTS, AND WATER SERVICES TO 2. PROPOSED FIRE HYDRANTS TO BE CONNECTED TO MAINLINE WITH WET TAP. PROPOSED WET BE COMPLETED BY CONTRACTOR. TAPS TO BE A MINIMUM OF 3 FT FROM NEAREST JOINT ON MAIN LINE. MOVE WET TAP AS 10. ALL UTILITY SERVICES ARE NOT SHOWN. NEEDED. 11. ALL UTILITY LOCATIONS SHOWN ON THESE PLANS ARE APPROXIMATE AND THE 3. PROPOSED FIRE HYDRANT UNE SHALL BE 6" DUCTILE IRON CLASS 52. THE LINE SHALL BE CONTRACTOR SHALL VERIFY THEIR LOCATION PRIOR TO THE BEGINNING OF CONSTRUCTION. RESTRAINED AND THRUST BLOCKS PROVIDED PER THE DETAIL NOT ALL U71UTIES MAY BE SHOWN. 4. TO EXTEND FIRE HYDRANT REMOVE EXISTING FIRE HYDRANT AND REPLACE WITH A NEW ONE. 12. ADJUST EXISTING WET UTILITIES TO GRADE TO BE COMPLETED BY CONTRACTOR (IE: THE NEW FIRE HYDRANT SHALL MEET CITY CRITERIA (SEE NOTE 5 BELOW). REMOVE THRUST EXISTING MANHOLE RIMS, WATER VALVES, WATER METERS, CURB STOPS). BLOCKS AND EXTEND UNE. RESTRAIN LINE TO MAIN AS DIRECTED BY THE ENGINEER AND ADJUST VALVE BOX TO PROPOSED GRADE. 13. REMOVAL OF LIGHTS SHALL INCLUDE REMOVAL OF CONCRETE PAD. 5. PROPOSED FIRE HYDRANTS TO BE RIGHT HAND OPEN AND MUELLER 250, WATROUS (PER CITY 14. CONTRACTOR TO NOTIFY PROPERTY OWNERS WITHIN 48 HRS OF WORK ON ANY UTILITY CODE). THAT WILL EFFECT THEM. 6. THE PROPOSED GATE VALVES SHALL BE RESILIENT SEAT GATE VALVES TO BE RIGHT HAND OPEN 15. FOR STORM SEWER REMOVAL REFER TO SHEETS ST-01 THROUGH ST-16. (PER CITY CODE). 16. ADDITIONAL WATER VALVES MAY BE REQUIRED TO COMPLETE WATER MAIN LOWERINGS IN ORDER TO MINIMIZE THE INCONVENIENCE TO COSTUMERS PER THE DIRECTION OF THE ENGINEER. COST OF ADDITIONAL VALVES SHALL BE INCLUDED IN WATER LINE LOWERING COST. THE PROPOSED GATE VALVES SHALL BE RESILIENT SEAT GATE VALVES TO BE RIGHT HAND OPEN (PER CITY CODE). PLAN DESCRIPTION AND CORRESPONDING PAY ITEM 17. ANY METER PITS BEING REMOVED WILL NEED TO BE REPLACED WITH NEW ONES PER THE CITY CODE. REFER SHEET THROUGH FOR THE UTILITY TABULATION OF QUANTITIES. THE IT HE WO TO BE SHEET ITEMIZES THE WORK NEEDED TO BE DONE AND WHERE THE COST FOR EACH ITEM WILL BE 18. FOR WATER UNE LOWERINGS, SWAB MAIN UNE 'NTH CHLORINE. NO PRESSURE TEST IS ACCOUNTED. REQUIRED, VISUAL TEST PREFERRED. EXTENSIVELY FLUSH MAIN LINE. FOR MORE INFORMATION REFER TO SPEC 619. DESCRIPTION PAY ITEM ABANDON UTILITY WELL ABANDON WELL ADJUST VALVE BOX ADJUST VALVE BOX PROPOSED FIRE HYDRANT FIRE HYDRANT REMOVE EXISTING FIRE HYDRANT REMOVAL OF FIRE HYDRANT ADJUST CURB STOP ADJUST VALVE BOX ADJUST WATER METER ADJUST WATER METER LOWER WATER SERVICE LOWER WATER SERVICE RELOCATE AND ADJUST CURB STOP ADJUST VALVE BOX LOWER 6 WATER LINE LOWER 6 WATER LINE EXTEND EXISTING FIRE HYDRANT RESET FIRE HYDRANT ABANDON SERV. AND REMOVE STOP BOX ABANDON SERVICE LOWER 12 WATER LINE LOWER 12 WATER LINE REMOVE EXISTING WATER METER REMOVAL OF WATER METER PROPOSED WATER METER WATER METER LOWER 14 ELCO WATER LINE LOWER 14 ELCO WATER UNE ADJUST EXISTING FIRE HYDRANT ADJUST FIRE HYDRANT LOWER 12 WATER LINE LOWER 12 WATER LINE T��TE LIGHT RESET LIGHT STANDARD ADJUST MANHOLE STRUCTURAL BACKFILL FLOW FILL RESET VALVE E RIM I RESET VALVE ROX Print Date: July 26, 2010 Drawing File Name: F:132-1415.00 North CollegeNa1nDwgs1Sheets109001= Horizontal Scale Full: N/A Half: N/A AVMSEngineers/Scientling;Z urvey0rs o Pees JFK 70400 , BW dkq z sa er zoo C. P.O. BOK 2704e0 ,3 A Fwt Collin• uWv `7 ASSOCIATES 1s7o1 zzPs3se 19. FOR WATER LINE LOWERING DETAILS, SEE SHEETS DT-06 AND DT-07. 20. REFER TO CITY OF FORT COLLINS DETAILS FOR STANDARD WATER AND SANITARY DETAILS LEGEND --w- - EXISTING WATER EXISTING SANITARY (COFC) EXISTING GAS (XCEL) -Fo- EXISTING FIBER OPTICS - -e- - EXISTING ELECTRIC (COFC) --oHE -- EXISTING OVERHEAD ELECTRIC -r - EXISTING TELEPHONE (QWEST) EXISTING DUCT BANK EXISTING STORM - - - - EXISTING ROW EXISTING PROPERTY LINE gqP--L..pp- ,ylJf EXISTING FIRE HYDRANT WM O EXISTING WATER METER wV X 'C 0�CS LLJ M EM O 000 EXISTING WATER VALVE ,4965� PROPOSED WATER QUAUTY CONTOURS PROPOSED STORM --- - -- SEWER PROPOSED INLET PROPOSED MANHOLE PROPOSED OR EXTENDED FIRE HYDRANT PROPOSED WATER SERVICE AND - W METER PIT Ol}iERS)55 TREET LIGHT (B - PROPOSED ELECTRIC VAULT (BY OTHERS) - PROPOSED ELEC TRANSFORMER (BY OTHERS) w - OWER 0R ELOCATE EX WATER UNEIi (BY OTHERS LOWER OR RELOCATE EX GAS LINE (BY OTHERS EXISTING WATER UTILITY WELL O EX TELE LINE LL RR EXISTING IRRIGATION (BWER OTHERS EXISTING CURB STOP - io - LOWER OR RELOCATE EX FIBER OPTIC. (BY OTHERS) EXISTING SANITARY MANHOLE _ E LOWER OR RELOCATE EX ELEC UNE (BY OTHERS) EXISTING GAS METER E PROPOSED ELEC LINE (BY OTHERS) EXISTING ELECTRIC VAULT N EXISTING ELEC TRANSFORMER BOX *,_71 EXISTING ELECTRIC METER'F=' IX EXISTING STREET UGHT TRAFFIC PULL BOX IEXISTING EXISTING TRAFFIC SIGNAL EXISTING TRAFFIC CONTROL CABINET EXISTING POWER POLE EXISTING GUY WIRE EXISTING TELEPHONE MANHOLE EXISTING TELEPHONE JUNCTION BOX '.I EXISTING STORM MANHOLE EXISTING STORM INLET PROPOSED TREE ELECTRIC VAULT & LIGHT TO BE REMOVED (BY OTHERS) ELECTRIC VAULT TO BE REMOVED (BY OTHERS) ELECTRIC TRANSFORMER TO BE REMOVED (BY OTHERS) ELECTRIC METER TO BE REMOVED (BY OTHERS) ELECTRIC LIGHT TO BE REMOVED (BY OTHERS) PROPOSED CURB STOP Sheet Revisions As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS I project No./Code 281 North College Avenue - - - GENERAL UTILITY PLAN City of I I •n Fort Collins, CO 80521 No Revisions: F6rt Collins •s Phone: (970) 221-6605Re,A� Engineer. J. MICHAELSEN Structure Fax: (970) 221-6378 Destgner.J.MICHAELSEN Numbers - Void: Sheet Subset UTILITIES Sheets: UT-01 of 7 Sheet Number -- - �h - JT-01-07.dwg Data: Comments Inn -�I O 0 I 60 LOWER I - t26LF OF T—T- 14' ELCO WATERLINE fh 44� ��—}95 I _ X -- A _ _._.-A — - 495 A u RALROAD OO ABANDON a UTILITY WELL �—g9n3 � _490I� ✓, 0 LOWER t15LF - \- - OF TELEPHONE _ 138 Z (BY OTHERS) �'� 4i63 � 496 P o $ 4460_ 4958 -4960--� 496:- + + + -E- E E I -E L14" ELCO WATER / LOWER f 340 LF OF I ''- '1 BEGIN ELECTRIC UNE TO BE PROTECTED COFC 2-4' & 1-2' L EXISTING ELECTRIC TO �I „ I LOWER GAS TO -'� '-+'•-'�` - LINE LOWERING (BY OTHERS) ACHIEVE 30" MIN COVER I:. II ACHIEVE 30" MIN END ELECTRIC LINE LOWERIJUE (BY OTHERS) i COVER THROUGH POND (BY OTHE EXISTING ELECTRIC C (BY OTHERS) EXISTING STORM LINES (2-4', 1-2") - - _ COLLEGE TO BE PROTECTED TO BE PROTECTED 14+00 - 15+00 6+00 I f" 1700 16+00 19+00 I, t I w � '"-,_ I ADJUST TE MH TO PR 61 ADJUST EXISTING I: 3+ _ _ FIRE HYDRANT TO GRADE PROPOSED GRADE:�'� w--- w-- -w - - -w-- I m i Ny r; --w---w---w---w--- - w- -- w-- -w — -..... w _ I-- A .-� 0 h J PO _ •X K E — .r -.... < A q A _ q .. m Y.•�- FO _ - FO _ _ FD — FO x X FO — — _ E---E—E� FO T -iA A A A.. PRIVATE LIGHTS TO I •"� . I I , BE PROTECTED Print Dam: July 26, 2010 Sheet Revisions Draw9rg Fie Name: F:132-1415.00 North Co0epelMa1nDwg&0wftWWM-1 -0t-07 Dam: Commends IniL \ Horizontal Scala Full: 1" = 20' Half: 1" = 40' 38M ineers/S y. Suksfs2. Sah a 00 36a6 n 704W , &dl0hq 2, SWb 200 O P.O. Flux ..0 ASSOCIATES 19F 77oi o13,ss's6CO6 ' As Constructed City Of 281 North College Avenue C6rt Collins Fort e: (9 0 22 -660 No Revisions: ����J� t ` Phone: (970) 221-6605 Rom: Fax: (970) 221-6378 Void: 0 10 20 40 SCALE IN FEET IORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code GENERAL UTILITY PLAN Engineer. J. MICHAELSEN Structure Designer J.MICHAELSEN Numbers Sheet Subset UTILITIES Subset Sheets: UT-02 of 7 Sheet Number 4362� i0 w RELOCATED ELECTRIC LINE _ (BY OTHERS) RELOCATE t147 LF ELECTRIC LINE WEST TO "RELOCATED ELECTRIC LINE" LOCATION (BY OTHERS) + T w 62 LOWER t171-F Of WATERLINE TO ABANDONED MAINTAIN 18" MIN 12 SANITARY CLEARANCE / 20s00 21-M RELOCATE 320LF OF 4" GAS LINE AROUND PROPOSED STORM (BY OTHERS) 62 ADJUST VALVE BOX 2 TO PROPOSED PROPOSED GRADE —w-- w — PRIVATE LIGHT TO ' I '' w�) BE PROTECTED' D 1 r .2 �I Print Date: July 26, 2010 a Drawing File Neme: FA32-1415.00 North Cdiege\MelnDwgs\Sheets108007-19-UT-01-07.Ov N Horizontal Scale Full: 1" = 20' Half. 1" = 40' ofAVW� Engineers/Scientists/Surveyors c 3B85 JFKox270a90 P :gr. . eull(Mg 2. Suee 200 P.O. BO ASSOCIATES (o)-22"3-5'5-58- (� / r'r BEGIN ELECTRIC LINE RELOCATION ,)ADJUST TELEPHONE MANHOLE TO PROPOSED GRADE 15 LF OF 6" DIP CLASS 52 w—T—w-- E— / ; I LOWER ±30 LF OF ELECTRIC LINE UNDER PROPOSED STORM SEWER (BY OTHERS) I TELEPHONE JUNCTION BOX TO BE RELOCATED OUT OF WOODLAWN DRIVE (BY OTHERS) ELECTRIC TRANSFORMERS TO BE PROTECTED LOWER ±23 LF OF ELECTRIC LINE UNDER PROPOSED STORM SEWER (BY OTHERS) _ LOWER ±18 LF OF 3" TELEPHONE UNDER PROPOSED STORM SEWER (BY OTHERS) BEGIN 3" TELEPHONE RELOCATION — E — (BY OTHERS) E a L RELOCATE ±415 LF ELECTRIC LINE UNDER .I PROPOSED SIDEWALK it ! W/ MIN 30" COVER (BY OTHERS) E — —A + RELOCATE ±2200 LF OF / 3" TELEPHONE LINE TO J ACHIEVE 30" MIN COVER 22+00 23+00 (BY OTHERS) ADJUST VALVE BOX LOWER t22 LF OF 4" TO PROPOSED GRADE GAS UNDER PROPOSED STORM SEWER O REMOVE (BY OTHERS) ELECTRIC EXISTING FIRE -' (3-2" PVC) HYDRANT ——w---w— — ---w w— w--- -- FO �- \ PO .n. 1 - - - 1 O PROPOSED O FIRE HYDRANT I I ELECTRIC VAULT TO BE PROTECTED RELOCATE PRIVATE LIGHT. COORDINATE RELOCATION WITH - _ _- -- — - PROPERTY OWNERS Sheet Revisions Date: Comments Init. (-1 RELOCATE t28LF OF 3-2" PVC ELECTRIC I� AROUND PROPOSED INLET (BY OTHERS) RELOCATE ±28 LF OF 2" FIBER OPTIC i "—� AROUND PROPOSED INLET (BY OTHERS) � a I I? f j PRIVATE LIGHT TO BE PROTECTED ADJUST WATER METER TO PROPOSED GRADE WIN I 'd�� 5 LOWER 25 LF OF COFC� \\ ,- WATER SERVICES UNDER �L EXISTING OWEST DUCT PROPOSED STORM gA BANK TO BE PROTECTED I 24+00 25+00 COLLEGE AVENUE II 4 STL GAS 1L�.�w---w—w w—EE --w-- w- -Lr_— E E �� E. �— —�--c E— —E — - ADJUST CURB STOP TO PROPOSED GRADE I RELOCATE ±230LF OF / 2" COFC FIBER OPTIC J OUT OF PARKWAY (BY OTHERS) -- _ i RELOCATE PRIVATE LIGHT. COORDINATE I I RELOCATION WITH ry PROPERTY OWNERS b 10 RELOCATE CURB STOP TO PARKWAY PROTECT ELECTRIC & ADJUST TO TRANSFORMER 7 PROPOSED GRADE As Constructed City of 281 North College Avenue - F6rt Collins No Rev Ins Fort Collins, CO 80521 isions: `I Phone: (970) 221-6605 Revised: Fax: (970) 221-6378 Void: 0 IU 20 40 SCALE IN FEET RE NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code GENERAL UTILITY PLAN - - Engineer. J. MICHAELSEN SUucture Designer. J. MICHAELSEN Numbers Sheet Subset UTILITIES Subset Shasta; UT-03 of Sheet Number IRELOCATE ±415 LF ELECTRIC LINE UNDER PROPOSED SIDEWALK W/ MIN 30- COVER (BY OTHERS) EXISTING 21" CLAY SANITARY TO BE PROTECTED ru I I 21 RELOCATE CURB STOP TO PARKWAY AND ADJUST TO PROPOSED GRADE 66 ADJUST SANITARY jj I 16 LF OF 6" MANHOLE RIM TO i DIP. CLASS 52 PROPOSED GRADE W PROPOSED FIRE 12 HYDRANT i I ADJUST CURB STOP 19 BEGIN 4' II TO PROPOSED GRADE GAS LINE RELOCATION ,• IIV��F ADJUST VALVE BOX 15 TO PROPOSED GRADE I _ END 4" ELECTRIC i REMOVE EXISTING p LINE RELOCATION �I I ,i �� FIRE HYDRANT iJ 14 LOWER ±25 LF 6" WATER 1ED UNDER PROPOSED STORM TOI MAINTAIN MIN 18" CLEARANCE ; 25-00 '26+00 I 13 RESET 1 3: BOX WE LOWER ±10 LF OF 4" GAS I STORM LINE UNDER PROPOSED STORM (BY OTHERS) _ -- W— W---W---w-- — w— E— — E---E----- w E -- — E — — \'E--E _ RELOCATE f23OLF OF 2" i COFC FIBER OPTIC OUT OF PARKWAY (BY OTHERS) I LOWER ±101LF OF 4" GAS g SERVICE UNDER STORM SEWER (BY OTHERS) ADJUST SANITARY 67 MANHOLE RIM TO PROPOSED GRADE A. ADJUST WATER METER TO PROPOSED GRADE I FJE ±950 LF OF 4" STL UNDER PROPOSED K W/ MIN 30- COVER T SERVICES TO ED LINE (BY OTHERS) CATE PRIVATE LIGHT. DINATE RELOCATION WITH ERTY OWNERS ADJUST TELEPHONE MHS TO PROPOSED GRADE25ADJUST CURB STOP r TO PROPOSED GRADE I I , I I I 3 I i I 42" ELCO WATERLINE 60" GWET WATERLINE — LOWER 17 LF OF GAS LLtLL1J11 i ttH m UNDER PROPOSED STORM SEWER (BY OTHERS) I I O ADJUSTU STOPTO PROPOSED GRADE =. _ u LOWER ±20 LF (TOTAL) OF EXISTING DUCT BANK 4" GAS SERVICE UNDER TO BE PROTECTED STORM SEWER (BY OTHERS) 3 00 B" WATER LINE (COFC) ;F DJUST VALVE BOX 5RELOCATE ±534 LF OF 4" STL 3 TO PROPOSED GRADE 3-2" PVC ADJUST VALVE BOX GAS UNDER PROPOSED R ELECTRIC ADJUST pg LINES TO PROPOSED GRADE SIDEWALK W/ MIN COVER VALVE BOX (By OTHERS) i TO PROPOSED GRADE 11j _W--_ _——_—W—__ __W W— W_. — __—W---W__—w-- W-- W— —_W _ E — _ — E — — — E — _ — — _ W _ _ — W _ — _ E--_ — E E _ --E —_ —E — E —EO —FO Fe �a. y. vo —FO + �a — m + 1 �� II I 26 INSTALL 1" Y I WATER SERVICE 7S F j LOWER AND RELOACTE ±30 & METER PIT LF (TOTAL) OF 4" GAS (BY OTHERS 27 m 15 LF OF 6" 1 I SERVICE UNDER AND AROUND ) DIP CLASS 52 I LJ ABANDON I f I V STORM SEWER (BY OTHERS) SERVICE AT MAIN f 20 EXTEND EXISTING FIRE "F RELOCATE PRIVATE LIGHT. AND REMOVE HYDRANT TO PARKWAY o } - COORDINATE RELOCATION WITH ; I PROPERTY OWNERS STOP BOX I t I I a RELOCATE t2200 LF OF — 0 < - ; 3" TELEPHONE LINE TO ACHIEVE 30" MIN COVER COLLEGE AVENUE 2L LOWER ES70 LF R 2 a LOWER ±30 LF (TOTAL) 2q (BY OTHERS) PROPOSED STORM I WATER SERVICES ER V 27+00 28+001 16 g+ 0 UNDER PROPOSED STORM Print Date: July 26, 2010 Sheet Revisions Drawing Flo Nam@: F.i32-1415.00 North ColWgoWalnDwgsVgwataWe001-1 T-01-07. Date: Comments Init. CI OII M Horizontal Scale Full: 1" = 20' Halt 1" = 40' rr} Collins xes JFK 70460 y, ewla g z sold 200AMES O / P.O. Box 2704eo ASSOCIATES (ro)MMi 5606 ' =svisions7 tnJCted 281 North College Avenue Fort Collins, CO 80521 No Phone: (970) 221-6605 I Revised: Fax: (970) 221-6378 Void: — — FO — — -1 F E _ — T- I '0 f � i RELOCATE ±21 LF OF EXIST FO (COFC) AROUND PROPOSED INLET (BY OTHERS) .I w I L REFER TO LANDSCAPE PLANS FOR IRRIGATION SYSTEM MODIFICATIONS w 0 10 20 40 SCALE IN FEET COLLEGE AVENUE IMPROVEMENTS GENERAL UTILITY PLAN Engineer. J. MICHAELSEN Structure Designer. J. MICHaLSNumbers Sheet Subset UTILITIES Subset Sheets: UT-04 of 7 Project No:/Code Sheet Number - W- Y I I I I I I I I 36 ADJUST VALVE BOX F TO PROPOSED GRADE REFER TO LANDSCAPE PLANS FOR IRRIGATION SYSTEM MODIFICATIONS s 31 LOWER ±20 LF OF COFC WATER SERVICE UNDER _ PROPOSED STORM i 7LFOF6" DIP CLASS 52 35 EXTEND EXISTING FIRE HYDRANT 3 FT NORTH OF SIDEWALK. REMOVE ELECTRIC LINE ±170 LF (BY OTHERS) F LOWER t15LF Of 34 RELOCATE f2200 Of 37 REST VALVE BOX WATER SERVICE 3' TELEPHONE LINE TO EXISTING DUCT BANK WEST OF STORM 3 UNDER PROPOSED ACHIEVE 30" MIN COVER TO BE PROTECTED SEWER d STORM (BY OTHERS) LOWER GAS 33+00 COLLEGE AVENUE SERVICE UNDER PROPOSED STORM SEWER 33 RELOCATE CURB STOP TO LOWER GAS SERVICE COFC (BY OTHERS) PARKWAY & ADJUST TO PROPOSED GRADE UNDER PROPOSED STORM SEWER (BY OTHERS) 8" WATER LINE W- -- W-- - W- ---W-- - W- -- W- - - -Z}� W - - - -- - -- -- - - r 34+00 I I RELOCATE ±1150 LF OF i 4' STL GAS UNDER PROPOSED SIDEWALK AND ADJUST SERVICE TO �1 RELOCATED LINE W/ MIN 30- COVER (BY OTHERS) I, LOWER ±23 LF OF 12" COFC WATER UNDER PROPOSED STORM 38 -- E I - W P 3-2" PVC 6 LF OF 6" DIP ELECTRIC - a CLASS 52 EXTEND EXISTING FIRE 32 _ HYDRANT TO PARKWAY. � I F F Pft Date: July 26, 2010 Sheet Revisions Dwwkq FU Nerve: FA32-1415.01) MGM C098Q8 WWnDwgs0wft10M-1 -01-07 Date: COmments Horlamtal Scale Full: 1" = 20' Halt 1" = 40' Ell O aeesJPlcP.kwa,eDemgzaWrmo � P.O. Bmr I7Wl0 ASSOCIATES (s2s1a3es °' O RELOCATE ±20 LF OF 3-2" PVC AROUND PROPOSED INLET (BY OTHERS) R a REFER TO LANDSCAPE PLANS FOR IRRIGATION SYSTEM MODIFICATIONS Z Q --- 1 E -� ADJUST TELEPHONE MH LOWER ±20 LF (TOTAL) OF TO PROPOSED GRADE 4- GAS SERVICE UNDER 72 STORM SEWER (BY OTHERS) 35+00 36+00 COFC/ r�s / 2' FIBER 'OPTIC -1-W--W---W---W- W- -'A'--W---'A'---W--Ir FO' - F0 - - -I FO W(! W -- - 39 ADJUST CURB STOP II JI f f TO PROPOSED GRADE ©RELOCATE PRIVATE I F �iyF LIGHT. COORDINATE RELOCATION WITH -..PROPERTY OWNERS - f F I I I I I s t W I I j^ 0 10 2D 40 SCALE IN FEET As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code Init. 281 North College Avenue GENERAL UTILITY PLAN - -- City of Fort Collins, CO 90521 NO Revisions: 6rt Collins Phone: (970) 221-6605 1 Engineer.J. MICHAELSEN Structure Fax: (970) 221-6378 Pevised:Designer. J. MICHAELSEN Numbers - Vad: Sheet Subset UTILITIES Subset Sheets: UT-05 of 7 Sheet Number Z F- Q i � 9 I RELOCATE ±1150 LF OF 4" STL GAS UNDER PROPOSED SIDEWALK AND ADJUST SERVICE TO F RELOCATED LINE W/ MIN ADJUST WATER48 30" COVER (BY OTHERS) METER TO PROPOSED GRADE. L51 REMOVE EXISTING WATER METER AND INSTALL A NEW ONE I RELOCATE ±2200 LF OF v IN PARKWAY SOUTH 3" TELEPHONE LINE TO J END GAS RELOCATION LJ/ OF ACCESS i i L. ACHIEVE 30" MIN COVER _ (BY OTHERS) E -_ OH . :-�- OHE ._.. -. ._. W W _T _ W yy _ O47 LOWER ±11 LF OF COFC-- WATER SERVICE UNDER COLLEGE AVEWUE I 4• sn. GAS PROPOSED STORM I ; EXISTING DUCT BANK 37-00 38.00 11 39-00 TO BE PROTECTED ADJUST VALVE BOX 45 ADJUST VALVE BOX B- WATER LOWER ±17 LF OF � TO PROPOSED GRADE TO PROPOSED GRADED LINE (COFC) COfC WATER PRIVATE LIGHT TO BE PROTECTED 2-4"SERVICE UNDER 52 - - II I ELEC PVC PROPOSED STORM ELECTRICW- -W-- W---W---W- I`I`___-----W--- -- FO---E-__E_ _E---E-- Fo t + \ 2" FIBER 15 LF OF 6" 4 REMOVE EXISTING WATER 50 OPTIC., METER AND INSTALL A DIP CLASS 52 (COFC)'- � 0 N I NEW ONEIN PARKWAY F PROPOSED FIRE HYDRANT - 4. REFER TO TRAFFIC SIGNAL PLANS FOR - RELOCATE CURB STOP SIGNAL MODIFICATIONS ��!- TO PARKWAY & ADJUST O TO PROPOSED GRADE/ FIRE HYDRANT TO BE REMOVED Print Data: July 26, 2010 o- DrsI File Name: FA32-1415.00 North CollegelMelnDwgMSheets109001-19• T-01-07.ot n - Horizontal Scale Full: 1" = 20' Half: 1" = 40' AVM Engineers/S y, Buli etelSurvey0rs 0 P.O. JFK Parkway, BUIHYig 2, Suite 200 O � P.O. Box 2709e0 Fort Cdlirre CO s0527 O c ASSOCIATES (9701 Sheet Revisions Date: I Comments Init. 53 ADJUST VALVE BOX J TO PROPOSED GRADE E TELEPHONE JUNCTION BOXES TO BE RELOCATED INTO PARKWAY (BY OTHERS) EXISTING STORM SEWER TO BE / PROTECTED / REFER TO TRAFFIC SIGNAL PLANS FOR SIGNAL MODIFICATIONS Z yypp v FOFO "ie- FOFO FO 73 ADJUST TELEPHONE MANHOLE TO PROPOSED GRADE T—� COMCAST FIBER7GRADPE OPTIC LINES TO BE PROTECTED ADJUST VALVE .'I TO PROPOSED-W---W--W -M ---M 13 LF OF 6" DIP CLASS 52 U 64 }4 - PROPOSED FIRE HYDRANT T'I ADJUST WATER 56 METER TO PROPOSED GRADE RELOCATE TELEPHONE i /0 PEDESTAL (BY OTHERS) REMOVE EXISTING / FIRE HYDRANT REFER TO TRAFFIC SIGNAL PLANS FOR I II a SIGNAL MODIFICATIONS f 0 24" DIP ELCO WATER LINE I � � 0 10 2D JD SCALE IN FEET As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code Cityof 281 North College Avenue - - GENERAL UTILITY PLAN - FrCollins`Fort Collins, CO 90521 No Revisions: o■ �+•Phone: (970) 221-6605 Engineer J. MICHAELSEN Structure Revised: Fax: (970) 221-6378 Designer. MIJ CHAELSEN Numbers Void: - Sheet Subset UTILITIES Subset Sheets: UT-06 of 7 Sheet Number W Z 2 H Q E FO — — =TSS w 3' 25 LF OF 6" DIP CLASS 52 o v; �w �I 58 PROPOSED FIRE HYDRANT I w O 3 II 3 I 4" STL GAS 24" DIP ELCO F WATER LINE COMCAST FIBER OPTIC F - -�- --� ADJUST VALVE BOX 59 TO PROPOSED GRADE f I I i f 2" FIBER OPTIC (COFC) -ct F P i I � X 1 E — — �c �f0 - c0 - ;O — - — E E t —Cir�E 't 9 — AYEI _J]HE F � � -..� _ — — hD .. T h - - _ - lltlE= - _OHE — — —ONE. r0 Ot�.. _"rfi. j"'. ONE .i OME — REFER TO TRAFFIC SIGNAL PLANS FOR 4" STL GAS 33 SIGNAL LINE OD FICATIONS MI 43+00 PROTECT 3 I I 3 44+a0 EXISTING DUCT 45+00 1 46+00 47+0 1 BANK Q FIRE HYDRANT TO BE REMOVED i; ; COLLEGE AVENUE 33 w---W---w---W—w---w---ww-- --w-- w——— W—— —w— --v w 1 -- --—W---w--1W---w---w---w---w---I — — — — — — �'-5I may% m—W--- W--- W--T W II FC LIGHT TO - - - LIGHT TO g� WATER �3 REMAIN REMAIN X - I LINE LIGHT IN 7E 3.� CP F - REMAIN F � �" _ 10 REFER TO TRAFFIC SIGNAL PLANS FOR - SIGNAL MODIFICATIONS ` _ I I •w _ _ . do I 0 10 20 40 SCALE IN FEET PrhADaf: July 26,2010 Sheet Revisions NORTH COLLEGE AVENUE As Constructed OL IMPROVEMENTS project No./Code D wMng FRO Name:FA32-1415.00 North Cdlege\MWnDwgMShaeb10g001-1 -01-07.dwg Date: Comments InR 281 North College Avenue GENERAL UTILITY PLAN Horizontal Scale Full: 1" = 20' Half. 1" = 40' City Of Fort Collins Fort Collins, CO 80521 No Revielons: o Engineers/ScientistalSurveyom Phone: (970) 221-6605 Revised: ErxpneerJ. MICHAELSEN Structure 3ee6 o. asrxwey, ewldlno 2, salts zoo O ( ) Designer. J. MICHAELSEN - - AVM PMWilvoaeo Fax: 970 221-6378 Numbers n ASSOCIATES (s ojA�Izzaww �52� Vold: Sheet Su6sft UTILITIES Subael Sheets: UT-07 of 7 Sheet Number APPENDIX E — Pedestrian Bridge Analysis HEC-RAS Model Pf d RIVER_, 1 /� f ONF FDOT FLOODWAY j POUDRE RIVER a 7 .a COLLEGE AVENUE r a � i. q l .—. Y Ilk . FIGURE 6.1 HEC-RAS CROSS SECTION LAYOUT 1 OF 1 0 100 200 tr SCALE IN FEET r I` Y <I V Ax Pro po.c a HEGRAS Pan _ Rash- --_ .. uw-- _. RaNM1 tpw Re 1w8 .NMCh _1086 __ - F _ 15p M 495].YJ gB85M _ _4882.N_ 150.W 485>.J3 490.81 4B58.16 D.ODwM 4.04 d1.31 025 87 i4 -0AO _ 35W 025 W.fie _- _aa2 49,w _ _ 025 53. to 023. 815)2 045 Rash 1p Fun 3M.M 4B6].]0' 498128. 49ww 498101 D.W1247 2.90 1M.w 3669 0.30', Rawh 1N8I FEMp Floes (106-_ �DemN - 15M.W�. dB5].]0 498529 49w.w 99w.61 p.M1812. 4.89 a35.19 J2]4> 0.40' RNLI 1048.' .50p!! 1w8.W, 496].70, 48w.5 49w23 4860.63 O.WI437 Zw 81y71 _ 30.24 031 RNOh .- 104V _ _.. _ 1M.W d85]]0' g085.13 -..- 4882.1E 496535 D.0l1 4M 384.96 3M.29, (Ui RrOh 1048.' 10. 008MI - 495].]01 49w.w 49W.87 49M,78 0601143 3.41' 1J].w __.. 40.w1 _. 0.31 RNOh 1048I ]M.M 496]]O1 OB64.37' 4wt0] 4964.w. OOMBB4 3221 233.50 148.901 0.27 RNch IOwI ,Ove1loppMy_ _ 500.�f_ _ 2715:01 496],701_ 48w.81 4965.50 498895 0601248 3w 1324.13 w].21. 0.33 RNch 101V Full 3W.W 495].)0 4961.66 405993 4061.85 0.001824 3.521' 1i5.12 W.W 0.37 flwcM1 1010.' FEMp FIwe(1W 15W.W; 495]]0 _ 4985.16 4963.26 4965.53 0.002515 5.381 016.37 d2B.08'_ UAe Ftl 1011).• Oacrw _ _ 158.W. 457.70` 4960.42 _ 4959.)J 4960.57 OA02031 3A3' 51.52 2428 0.37 14a110 IOtO' S0.pm . 11W.W_ _ 057.00 .._. 49w.04 4982.55 496529 0MI853 4.361 3w.91 394.54 0.37 RMd1 . _ _.. 1010.' .f0. per Bw.W 495].]0 40fiJ.44 488161 49M.101 O.M1814 4.041 150.18 n2.24 U.M Rl 1010.' 0 re�OPP�ng ]W _W': 496J.J0 49842], 4w135 4964,46 OM1333'.- 3.>21 2W.w' Rash _ 10101. _ ,506y> _ 271OW 4B6]]0' 48w.wi 4965.66 4966.89- O.000w]' _ 3.3r4 14w.3B 79799 ]9Z99 0a 0.29 972 - Full MM 9 w 2 48Rrtl1' 70.1C 2312 0A4. ReN _h 972 FEMAFI!w� 15W.W 491WM 4Bw.0J 49w.P 49M 41 0 ul� sm w8,9 534.12 049 Rash 012 Oeow 158.W'. w ,66 48W.M 495924 49MA7 0M28W 3.54 41.10 2035 0A2. RBeN BM ,50.pm _ 11w.W� 496).w 49N.J8 99w.99 99w.19 O.OW1W S.w 288.29,. a13.i1 050. _Rrrll 9T2 f0.pm _ � �OM%*Pklg M6.W; 485].M_ _49M.20 4901.19 49&t.59 0.OW220 S.W 120.95 36.50 _ 0.49 Rash 9P2 ]f10.W g051.w 4904.10 4981.58 4w4A1 111 217 4.47 Imn 91.18 0.41 RNCM1 912 _ .500.yr _ 2718.M_ 0957.w 48w.]9 49w.4Z OBw.w 0.000090 278 1552.51 67645 024 Rash 90D Full -- _ 3W.M' 495].M 496128 48W.62 4961.54 0.003 4.11 -72.w 28]1 045 RNMI BOD _ _ .._. _ FEMA_R_ave(1_pb _ _ 15_0_p.W' g95],W. _ d865.23 498.3_,21 4965.28 O.00W0.5 2.14 1388.13 61 ]02 O.I] Rash BW Mnw 156.W' 4B5].03 1059.85 4959.33 49M.20 0.0050W 462 38.w 23.05 O.w RNtlI WO 56 __ 1150.W�; 4B6].Wi 4864.3] 4982.53 nYea.W O.OW59N 6.M. 204.32 649.43 O.X Rash _ 900 �_ _ wll _ . w6.W' 4w].M 48w 04 . 4961.13 - _ 496337 0.0024J8 4_w tw.92 170.06 0.43 RemA 9W OvmaAp09 ]W.WI 4 7.W 49098 4w141 4964.25 - _ O 01931 417 111M 579.49 039 A.h 8W_ .w yr 2718.M 49U,MI <BMM 41WI 51 4966N2 0000163 1 A_ 2J84.20 BUM Ol'2 R.h wJ HridgB ResM1 e75 Full 3W.W. 4B6>.00 496126 495929 4961041 0.0018w1 &QI 8>31 29A8 0.36 flestl 815 FEMA Floes (1 W 15W.W 496].UU 4885.16 408Z)1 48fiS23 O.W0540 2.BB�W)_]2 ]33.C3 022 Rash 875 DWIw 1w.W 4957.W 4959.92 4958.54 4860.06 O.W1]w 2w, W.39 22.N6 0,35 RN 875 _ 50_pm _ HW.W 495].W 488427 g88203 4964.]8 0002502'. 5]4l 2W:61 S9.42' 0,47 Rwch 515 10.par _ M6.W 491P.W 488A02 _ 498048 49028 0.061]281 _ 412' Wlu M. 0.31' Rmlch 516 _ Ovegg in ._ 1W_M! 405].M 48ww_49M81 _ 498E 10__ 6W126'. 3J6i IM.23 447.25 032 Rash 5>5 500.yr 2718.W, 4B6).M 4Bw.J11 I .89 48w.81 O.M 220. 2415.46 92010 0.15 Raach wt F18 3W.W' 495].W 4w123 _ 486829 496102 _ 0.W1]32i 3.47 56.50 29 Jd 0,35. Reach w1 FEMA FIwve(ID0. 15W.M' 495TOO 4B85.w1 4%wn 488520. ml0 ffi'' &M 91].N] 152. I4 DIM Al w1 D4maa Iw.W' OWW 4M.w 49w.54 OBM.M' O.Wtw4.. 3.O2 _ 5169 22.74 035. Ranch wt _ ,50.�ar_ tt50.W 4957.W, 4884.21 d9w.W 48B4.74 0.002)20: 5.84 187.19 nW.W 04 Rash w1 - - 16iaer --- - M,00MOO _ 4_w).W 4w2.BB 4BB0.48' 4M.4 O.Wf]52 _ 0.3)' Ruc11 wt OMRppYq 1W.W�' W5].M 48W.B4 488p.B1 9881.t8 O.M1232'. 3,M 3.J8 IM'mMM 1w.M _38.21 31831 0.32 Resit wt S0D3> _ _. 2118W _ 195J.W 4888.18 1884.1Z OBw.811. 0.0002138.. Z43 22w:w wt.w. 0.16 R.-Iq W4 Reece 114 - Full 3MW'. 48w.]0 4w1.02 48w.11 489125 _ 0.WINI _ 3A _ T13B M.w 0.37 Peach »4 _ FEIM Fbwe(106 _� tSpp.W gB513.]0 48B4A1 4B04.91 49w,18' O:00328 ].W 452W 504.2_4_ am Reach A4 OSIaa - --- 158.M_, _ QW.10 4959.71 4958.33 49w._w_ O:W196I 3:18. 49.40 20.W. 0.M Poach M -- SPywr -- 11w.W - 4956.10 490.46 06IA6 _ 4984.W _ 0.00 W 0.44 _ 141.13 W.67 0.%0 Rash J14 10.pm Bw.w 49w.10 49W,S 49w.N 49M.02 0.0 12 5.32 113.w 25.0 0,43 Rash A4 Overlapping 700.00 99w.70 49821e 4960.88 48w.33 5.58 118.02 28.01 OA% Rash M WO 2718.W ww.70 49M.25 4965.M 4Bw.49 _0.002924 0.017w 5A8 IN6.w 959.w U!, R_Nc11 761 Full 300,M _ 49_58b5 4w1.W _ 49676_ 4961.18 2.J6 105.]2 34.55 02] Rawh 761 FEMA Flmvs(100. 1w0M 4958.55 4984.20 4961.92 4984.w _O.M81 0M2921 5.w 3]258 2W.20 O.w. Ra 781 Osrw __ _ _156.M 48w,56 495971 aB680J 4968.81 6W10U 235 w45 -._ 28,59 0.27 RMII 751 --`_� _ 50. 1tw.W 49w.55 4803 ]8 d98120 4964.18 ____ O.W24]1 ... 48B� _.__ wtw n2Ds p.15 J ReNh_ 781 _10.pm --_ _. 6W.W 4g%M _ dBw.w -_ 49w.82 4982.w O:M1161 3.% 170.41 41 IN _ D.31 .Rash -_ 751 ]OO.M 4966.65 49w.92 49M.10 4803.10 O.W1320 aw' 1M.98 1TO 0.33' RNch 701 _i 2718.W 49w.55 49w.0q 4904.34 49w.42 O.M1929 5w 1190.w w).90 - Rrtll J90 &bps 1 / flash )40 Full 3M:M 4856.22 4961,05 48ww 4w1.15 O.0w 2,54 118N 3>.w 025 1 REC-RM Men: Inlw law x4 RNer: Stream Re h: Ra0ch (C0n9nuW) _ R44cp RI S% Ra19a OTOW MMCIIEI W.S.EW CLAWS. E.C. EIw E.O. Slope VWCM Flue) Tap WMN Fr #CM -- --- ---- -- - Reedl la0 FEMA FPowB too- J..-_ 15%50 49%22 4 .la 49B1.% OB84.45 0."14] 4.% 482.13- W.13 2]4.11 0.43. Ru0rJl 740 . 04cM 158.00 dB5922 4860 ]t 4B6].% 4B5B.ie 0.000%fi 2.1] ]1.81 3Q91 025' A.h 740 wy. 1150-00 4%022 4983.76 4W101 49M.M OA01]91 429 3%S3 2B 0.30 Re6M1 740 _ 1011eer._ 6%.DO 4y 496P.87 4960.BB 41MM 0-0Ot0]9 3" 192.23 W." ox Reach 7a0 Ovmlgyirq_ ]tp.ro 486812 9862.92 485883 49B:i.11 0.0041 T2 _ 3.48 21].1] 136.]8 0.31 Rep:ll 740 _ wlDr -. 2718.00. 4856.22 4B64.94 4863.E 48%57 0.61323] 6S1 MW 37158 M Rw_GI 664 Full 300.00 I958.57 4880.88 495_9.97 4981.02. 0.001552 3m' 80.93 31.08 6.3a _ ResO W (100. 1500A0 d05657 4883.81 dB82.18' d 421 )AOZd35__ 5.39 53205 OA6 _ 4ow" 844 _FEMAF D.. 4%,W 49%57 49SB51 485826 4959.64 0:0010% 2.94 5297 _42722 _ 25.20 0.36 gwch BN So-y00r 1150.00 4956.57 4883.fM 4801.86 490J.04 O.00tet] _ dS] 423.33 _ 342.28 0.40 R0[f31 044 llyy r 6%.00 49W.57 49W 52 499010 4862.]0 0.001M7 3.48 20B37 142.97 0.38 Beech 84d OverlopFlly__ 7OO.00i 095fi.57 49B2.]] 4860.30 4882,9] 0.001820- 385 246.112 149.81 0.%'. Reach 844 _ 5%-yr _ 2]18.W�49685) 4964.fi0 4983.96 496522. 0.003]]1 70.5, 918A7' 88246 _ 0.59 gawM 493 Full 300.00' 48%.01 4BB0.] l8 QU 69 49W.V 0.0029101 __.4.6 BVO 1].0] _ 0.43 geepll 493 FIDAAFI..(I 6 150000 QW.01 4MA 4B_03]4 00pd1B]'_ 7.83 005;86 85985'_ 0.56 Smh 493 _ _ 156.00 4956.01 4B6B OB 4B5].e] _498_3]2 4959.30 0,00205] 3.66 _ 42& 1619 _ 0.40 RaecM1 483 _ _Oause 50.yeer 11W.W 4966.01 4B62.SB� IB82.31 49W.35� W005049 0.09 473.681 52]2] 050 geed) 403 1RY98t_ __. 606.00'. 4956.01 4961.69_ 4%D.O3 496229 D.003in 6.99 15].50 mom 0.52 fleeWl 493 Ovenopwm ]OO.W:. 49%.01 496184 490.30 4982.54 D.%459 ].CO 179.32 28701 0.% RexM1 493 yr. 2718.00'. 4968.01 486100 496'f.66 4964.58' O.004590 6.95, 1d4B.92 828.%! O58 Rexh 241 Full 300 W 005683' 4959.05 4058,04 4960.05�_ OAOZW9 355 08.38 3).]6 D.30 Bach 241 FEMPFIwv(10o- _ t_5_0000_ _dB5 W 4B_B2.B0_ 490t5t 4982.79� 0901714. a" _ 1120.14 _ 6)0.63_ 0.37 Reach 241 0. 156.E 4955.63 40W,55 4957,30 49W01 0.O l 310. W0 231 0.37 RemM1 241 SPYeY n%AD 4855.83. 486100 4%1.15 4882.19i D.00:Wfl9 _ S.Bt' 1%.01 53231 _ _ 051 R.h 241 16yw _ 6%AO 4955.03 495025 49%.25 4900.Wi 0_013 1 _ 8.01' -_4A2 8724 28.33 088 Rash 241 O"nV lny MOO 4955.W 4%144 4950.01 ._- 4%1.88'. _-_a OA020O3 -__-�_ 340.43 400.00, 0.39 Ruch 241 S Yr____ _ 2718.E 49%.W 498,W 4962.37 4%3.]2, 0-0019% 5. 17668Y. 751.46 OAl 0 a rn w w N IL O y O LL pV � > 0 �N O N LL N 0 p IL � m c p C m •� p Q N O N O ® C OI. Q 1p ❑ m _C c m V1 T O V l/I _ O x x a Ll n m y o _ oo c m o0 — n O m N ml ml i rn A A a o m a m d a 0 d g a 0 o a g o 0 v 0 < m rn p � o m m a o m 0 V N O aD (O a a a v a a a a o e a v v a v o o (4) UOIIBA813 (4) uogene13 m d M o to �! m, 31� O to 3 fn U'J{c•m O j N N O UI U' J c•N N 3 3�3 3 I N 3 LL 3 N 3 3 3 m m LL U ' oo N m _ O 02 x e x o 0 m 0 m O m O w o c o N O C m¢ a Q LLm oo m a y a o a o 0 d m O I� m N O N C N N m• O O m N O N O O h (O O O tp �O N O O O m N fp rn a m e m e rn e m v rn a rn a rn v rn rn v a rn rn rn m rn N rn v v v o v v (14) uoyen813 (4) UOIJUA813 Sp p m m ® N 000 Q n x m I A Q co m = r ' D II Cot N ¢ m _ Ctm m I1 -.. c aIn a c mi — a N m a V O 0o m N N E _O X m a pp N O — m o c o a i —,oc 0 ' � m c a a a a m w I N m OIt IDI N N - m 0 Ib N v a e v Is a al N �LL j 0 N O m b CSC O N N O N� N O nFN 0 x E x R m m a v i c n ml O O m C O II N ml s N Q a mIn - u7 a �To c m o � m D v a m a $ ¢ N al m al m v v v < e e e v (4) uopen1913 S u N LL� p p N O Q m m •y o N IS' 8 -O 0 0 N n m umi u1Oi m o m v m e m m a a m a m v m v (14) uogen013 Qom p O N LL p m p m O li > C•C� 3 3 m 0 0 N — o O ap N ? N O ab O (14) U0I1ena13 D d 'p IL 0 N Y Ot ON 191 p N L j N O O y CgC d 0 0 m .d is O n J N 3 LL N 3 O m N 3 3 0 J m O 0 J N 3 LL N 3 (J N N 3 3 N 3 (7 J m m ; . O L O aD x E O m I 0 5 N _Qm n LL m N 5 C � m — $ v ul m O a m m a F N OO N 111 m V I mII I N a m (y) UO4ena13 0 Q m C C e o v v o a v a (8) UOI3enaIB j. m m 4 q mp Q m too Co C 0 I3 LL 3 3 3 3 N 3 LL 3 m 3 3 N N 3 W O O C T m O N U m N I X o o % a J O N O W p m N A 0 m m EL 0 f/1 m C N Om 0 o U__ � o - m a -.o Nin 0 LLL a O 0 (n a a a u a U N Q. O a p1 -- a m N ca O m ! a m a a v v v a v v v (4) uO.WaG O O O i. DC Q�� LL m qq N N 3 LL; 3 3 c 3 N N3 N __ _ - O `v N m N N 3 U U O m m o m m N X E - N ¢ x N OC' m N 0 O c - = D 11 O O C O V m T N ¢ - m R m pml •OPI YI � a a N W m O m O N O O m m II N al m g • .INTO O m m a a a v v a a a (4) UOIIBA913 0 m m tN0 N O Imo a v a a v v (14) uogen813 O O q a 5, �� `m n ips R N m p 3� 3 m � 3 o (4) O011en913 0 S m p mm � 3 w 3 N 3 3 3 J- o -i 1:� O N m 10 O N O m m a v e v a a a (4) UOUen813 O O O O m I 0 0 0 m N LL� O� Q CSC N❑ 0 g -a N 3 O _ X E N a m N ro H S N O O N t —0 CJ N C a m =m z o v m o m ro rn a o C � N ro a O � a w m m -o m II N !n m a a o v a o (4) uogen613 I o a w ml N Q I�i 2 N O O m 2OxW O i N to O J o f 3 LL 3 w 3 3 3 LL 3 m 3 3 m 3 0 O 02 X E O X U N N m 'p JO . _OthN OI a> o c v V o m Q O v m N _ � 9 W a ¢ a D a c m a N N a m a n o o w co cr O m II m N p m [O (O d' N O OJ (O t0 V N O m 10 R tD t0 t0 O t0 N N (O ID (0 t0 N I(J � v v v a e a v v v < v a a a (g) uogen813 (4) UOI en913 0 0, c C s _o T o m a L w, < n N w N O o 0 o N m n N U m X d m 0 a o m C — m CD U '0 N_ 0 m C CL L U C ftl c m v N m m aI m n. \ \ o o N \ v a v e a v c a (4) uOIILA013 NEC_-RAS Plan: Ea._ U! Riv>: SVaem ,each. Reach _ RarJ1 RNetBM PrpflM DTpW min Ch El _._ W.S. EIev _C41 _. W.8. _E.D. FJev _-- E.29ft4te V�CM Flpw Arm TgrWMT __ FrxgaaCN -- -- - l ---... cc19_ _ - .4 .49 (n)_ l01 L fi t- --(. _ _ S .. - _ Reach t00B _ Full �O.aO 4B5).]3 49 4961.02 das9.]t 1 ae6t9) 0.000&f0 2.46 121.1 t2L80 41.10 025 Reach 1088 FESM Fbwa (106 15W.W 4957.M 4965.43 4982.3E 49155.81 O.WIM 4.96 ".14 149.41 OJ9 Reach 1W D. 155.00 4957.73 4950W 4959.15 49M 67 0.000920 2.0 na.o] 35.W _ 025 Reach 1086 50yaer_. 135O.W 4957.73 4965.00 _ 4961.)] 46652) OA01228_ 4.17 275ffi 5585 om Reach Im 1O-,ce] 609.00 495).]3 406052 4960.54 4953.67 0.cc0B50 3.05 196A3 48.93 027 Roach low low Ov ]W.W 495].]3 4954A2. 4800.]8 4984.55 0. W 2.86 2H.M W.10 _ 024 Reach 1aa6 500y, 2718.W 495].]3 4969.91 49W4 498].1) O.W18]6 4.76 1036.32 MOM _ 0.40 Reach 1043 FWI 3W.00 4951.71 4961.76 49MM 49C87 01M1010 2]1 11081 37.40_ 0.28 RucM1 tO43 FEMA Flows h➢0- 16W.W 4957.71 4985.21'i 4802.W 0.W2209 5.n _ 50.50 0.44 Reach Im Dadra ISOM 499.71 4860.54 4959.14 _4965]2 4900.62 O.WttO] 220 _261.89 68.37 32.2 ONReach 1W3 56 r tISOM 4967.71 4964 B8, 486192_ 490.2_O_001554 4.70' 24453 48.71 0,3] Reach 1043 t0�aer _. BOOM495].]t� 48&3.H' 4960.69 4903.82 OWi03] 330 1]9.23 93.63 029 Flinch 100 Ov ]W,W 485].]1 4Bfl430 48W.01 4964.52 O.OW>60 3.17 220]0 48.92 0.26 Roach 1043 ,S F 2718.00 _ 4957.711 _ 496528 496438 4800.901 --- 0.W]OB] _ 1027 28d fill 50.83_ 0.19, Reach 1007,25' FUII _ 3WW 4957.891 498E08, 4969.851 4961,Wi 0,001314 3.02 99.41 34.69 0.31 Reach 1007.25- FEMA Flows RW 1500.00_ 495J.691 _ 4964.99, _4062.81 4965.82 OA02993 6.34= 24473 _ 141.01 0.51 Reach INT25' _ _ _496823 49W.5) 0.001529 2.601 W 10 � 28.81 042 Reach 1WA25' Soy ar _ 11W.W 495]B9 4960.]2i 488213 --4963.58 49&5.f3'. _ 0.002059 5.16 _ 222 ]J _ 4].&5 092 Reach, _. 10072_5' IDyear 606.W _ 4�95]89_ 496336' 49W.81 0.W131B 3121 162,6641.16 D30 RUM 1007.25' OvehoppiN 7W.W - 4957.09 4984.31T 4981.0E 4964481 &0008&3 3.H1 2W.9 45.35 029 Ruch 100725' 500,y+ 2718.W 4957,69 4906.00 4964]3 4966]] 0.0W)9] 5.95 905.11 759.56 0J9 Reach 9715' FWI 3WA0 495].6] 4981.59 4959.98 _ _ 4881.n o.Mini 3.40 W. 2 vSO 0.36 Ruch 9715- FEMAFb (taco- 15W.W 495].67 49fi4,92 49" 4906,48 O.W3342 &W 332.76 357M 0.53 Roach 971.5' Oeaea _ 150.00 485].6] 46aO.26 49592] 4880.50'. 0.0@213 3.01 51.85 27.I4 038 Ruch 971 SOy1Mr 1150.W H5J.6J 4983. _ 4982.35 4at&N OA02&30 5.54 tB717 0-17 Ranch S. 9>15• t0.yaM _ 0p6.00 485].8) 4118328' 4981.Op 48B3S2' 0.001TJ] _ 4.12 147 M t4].YJ 24 3924 ON Reach 9115' OvencppYl�_ )WW 495].6) 488423 4981.28 _ 4954.44 )A01_223 3.73 16).n H.5] Om Reach ,971.5. _5Myr 2)1&W 4B 5).67 4888AJ' 4885.W_ 496624 _ 0.00141 O50_ _ _ 1272.11.__ B42.13. 036 RUM B35.)5' FW 3W.W' 4967.55. 4051.45 4960.06 4961.69 -0.002523 3.90 76.95 29.57 � 0.J3 RexA 835.)5' FEMA Flvvs 11W� W.00 15 496].&5. _ 998nt9'. 49631 4965.29 0.001032 3.d7 893.59 791.50 030 Reach935.J5' Mxea _ IW.W 4867.65. 490020, 4969.32 49040 0:064601 359I 43.421 2379 114: Reach 935.75' Wyeer 1150.00 4957.85. 4964.68 4962.59 4964.89 0A01840. 426_ 511.31 R.h 935.]S' 16(ep 6W.W1 d95JJ15'* ufi3.12 4981. t91 4903A4 0.002322i 4.5> _48662 132-58 3Ln;• Reach 935.M OurlGp wq ]00.00 4951.651. 498420 4981 4] 4964,39. O W12631 3.66 273.68_ 356.J., Reach 935.75 506 TL 2]&1 W 4B5].551 406610. 4965� 4.10_OAOOJ20 908 330'._ 18JB.60. BB034 oJ1, Reach am- _ FWI __ 3_WW 4957.63 _ 49_61.251 4960,181 498157 0.003827I 4.55_ M.9 2721 0.52 Reach 9W FEMAFIow_a(i_W ISOO 00 4957.0 498521. 490.49: OM251 _ 0:000419' 1322.21 B1156 0,19 Rests OW Dec.156,W 495].63, 4958.08� {86830' 4980.0000404 __2.30 463 33a7 20.19 063 Reach 000 50yur l 1150.00 495].G3' 4984.751F 496275 _ 4904.90i 0.000579 252' 89451 75668 0.22 Reach 9W. IDYex BW.Oo 4957.63' 4982.93' 49613d 498334 O.OWH2. 5.19' tt].W 34.08 0.49 Reach 9W_ Osxl >W.W 495].G3 49842]'� 496148 496432 O.OWS)Bi 231 6I0.35 98S2 021 Reach 9W SOOyr _ 27I8.06 OBS].BJ 4988.1E 4964.48 098fi.15 1,OOW]3 2.94 212542 90715 O.18 Reach 075 FWI 300.00 4957.60'. 496126 4969.28 u81.H O.W168] 3F3' 67.40 28.H 0.35 Reat9 e75 FEMA FIpwe (106 15W:06 u5].WI __ 4Bfi518 1 48B2n I88523 O.WW48 2.86 1WB O] ]3105 0.22 Reach eJfi Dacru t58.W 485].W, _485BA1' -_ _. 4868.52 W.M _ O.Oo1800� 5224 ._ 0.35 Reach 8)5 50.year 1150W 4a5],W' u8488f {9B1.Bi _4860.05 18H.n O.WOn1 _ _259 331 _ 883.16 _?1_83 6. 5_I.61 ON Reach 875 100.]ax 8W.W 4957.00 4982.94. 4960.W 49H 21 0.001830' 421 143.W 37.93 0.38 geacn 875 Ova6apalrp_ _ ]00.00 495].00 _ 4884.18 4880.E 49Bd29 0:000&44 2_8t 460.85 550.82 023 Reach 875 _ .50" ____. _ 271&W _495].W 4088.07 4964.71, 4988.13 0.O 3.05 _ _I808.18 818.27 .11 Reach Ball -_...- FW 3W.W 495J.00 _ 498123 495828 4961.4R OA01]31 3.4) 85.5) ZB.35 0.38 Reach WI FEMq Fbwa (idd _ i500.W 7 d85].W 4B65,08_ 496267 48B5.2O O.OW]83 3.47 81 B.B2 M.N. 0.28 Reach 881 _ OeCM_ 156.W 4857.W 4858.W 4958.52.. _ 48&I.O2 O.W1868. 3.W_ 51.55 M.JI 0.35 Reach Ball WWx 1150.00. 4&57.09 4904.48 496199 4941I.i 0.001291 _ 4.b _ 487.89 W5.86 0.34 Reach Ball 16y 606.W 49.57.W 4962.W 4960 .1&.50 4963 O.W1055 4,38 138.48 37.07 0.37 Reach NO Ovxlcpleng moccI 496).W _ 4983_98_ 49W.00_ d9 64.23 O.Wtdb 4,04 1]3.40 347,23 03 1 Reach 861 SM" 2]18.W 4857.1)(3' 4008.W 4964.91 4906.12 0.000627 3.46.1 104823 795.45 0.24 Reach Ma - Bridge Reach n1 _ Full . _ 3W.00 4950.]01_ 498T.02'. _ 4858.11 496125 O.W19W'_ 3.88' ]].32 2257 0.37. Reach n4 FEMA Flows 000. IWOM 495_8J01 4984A1,1 4964Al 4965,18 O.W5328 ].52 _ 452.WI 5'J9.2n O.B3_ Reach 774 _ _ _ D.. 156.00 4858.]01 4959YV _., 495B.M 4959.06 0.W19W' _ _ _3.16 _ 49.38 20.00 0.35 Roach n4 _ SO weer 1150,00 d958]0 __._. 4962.96 _. 49G1.Oa 4984.32 0.00]136 9.35 122.98 26.A _ _ On ReecM1 n1 10yMx BW.OU 4B56.I0 4982.48 d8W34 49fi'233 0.002]10 &45 __ _.._ 111.W' _.___.. 25A1 - _- 0.45 Reach n{ __ OvxlOpplr� ]W.W d958.]0_ dg82.86_ --4905.38 48W.6al +983.23 _. O.OW188 6.05 115TL 25.J9 0.40 Reach T]4 _ amyy?_ 2l4&W 4965.M 4866.10 0.D05230 8.46 _ 1049.12 Man 0.05 _4956.]0' Reach 761 - FWI _- - 3W.W 4856.55. 4961.06' 40M.M 4881.t B' 0:000863 2.)6 1W.c2 3454 0.27 Retch )BI FEMq FlOwa (1W- 15W.W 4858.55 4983.]B 1881_BB _ 4984,42_ OA04216 fist M1.27 In 03 0.59 Reach J81 .. Decree 158.W 4856.55 4959.J2 QW.07 __-.__.. 4959.81 O.W1053 - 2.35 _ 60.42 28.59 02J Reach ]81 .... %Y. _ .._ 11W:W -- 4958.55 BOOM _._. a90t14 _ ___ _ _ 4B03.B8: _-_ 0.oxron 6.01 2W.H _ 153.32 _. 0.51 Reach 781 10.year _ BW.W 495al.55 ,55 4882.58 {96B.B2 u82]B O.Wtt>8_ 3.]4 182.25 __ _ d1,18_ _ __ 0.32 NEC-RAS Plan_: Ea. UpE jsd Rlv . Slm Retch: Ream (CwM Rm RI,. SO PrWe _ OTMM .._ AMCh EI WHEW CWW.S. EQ. E.O. _ewe ---- VMC R.Arm T WM1M op__ Frou0n4Chl - - - . .. _. - ov -- n--- -LfiL-_- .__. _. ._ (R_ _ lal lrtpC._ _ _(U) .-. .._ (e5 -;_-M _- aexn 781 warwQp9g _ MOOs95e.ss _ 4Bfiz.7e 4BeB.10 49e3,05 0m1353 4.10_ nosB 4z.14 0a4 Raxh 761 - �5002 _ �_ _ V15:00 _ 4956.65 _4Bm.W _ 4W6 4a65.B1 0.005196 8.01 5fi92fi MEN 0_67 Rmtl1 740 FUS.-.-_ 300.00 4966.22 4961.05 4958.M ea01.15 0.000835 2.54 11193 0i.W 025 R4e1cn 740 FEMA Floes 110D 1500.00 495822 48M.78 401,68 4984.27 0.003296 5.79 32I.T) 20120 OS2' Ruch . I40 _ Oamm 158.00 a95822 485B.J1 ___--.---_ 4BS188 4B6B.J8 0.000896 2.17 J1.81 30.91 0.25 Rexn )10 - SOyer 1150.00 095832 496331 4881.01 4aM.T! 0.00Z744 5.11 244.45 15622 ---_ OA] Raxh 70 M". 606.00 48 M6 4962.56 4959.68 48fi2.73 O.M1159 333 181.93 49.M 0.31. Reecn 70 OverlopDln9 700.00 486822 4B82.J8 4959.83 4962:89 0.001346 _ _ 3.82 193.33 58.02 �- - Rexh 140 NO 2718.00 M4.99 4W3,97 4865]2 0.003816 7,37 602.45 305.88 _0.33' 0.58' Rexn 644 FWI 300.00: OM57 4MOM 4960.97 4961.W 0.001558 3.30 9081 31.06 -�0.34. Rexh 644 FEMA Flows(IM 1500.M' 4866.67 490.14 4B82.46 4963.63 0.004955 _ 685 _ 30fi� 0.64 Reecn 644 ❑ocrm 1M.00, 056.67 4969.51 4968.26 49W64 0.00189E 2.94 52.97 25.20 0.36. Reach A. 50yaer 11M.00 496B.S1 QW.WI 40B1.85 4963.39 0003i64 ST1! 266M 153.691 055. Reach 644 _ 808.00 4BE8.6T_ 48fi2.3] - 4960.10 4382.56 00019W. 3.891 - 1B8.88 139R6 038 Raxn 844 ,IOyev _ WMW Ping- >M.M 4B50.ST1 4882M 498930' 4B62 03 9.991994 -_ 3� _- 220]5 1d4.B8 039 Reap2716.w _844 _ 6 JT I 2Jt B.W 4966.6]' 49M.86'i_ 49M85. 4965 60-.11 000s9-__ 9wl MO.B6'�4004W _ _ _ 0J8 Rexn 4S1 FWI 300.00', 49M.01'. 4MOS 4956.69 _. 4960.69 0.002831 84.69 1].e] -0.43 Rmd1 4B3 FENA Flpvs(100. 1500.001 4858.01_ 4B82.M 4962.38 998:i.OB O.ON9B2. 723 )23 SOI.BBi S61.40 0.53 Ae 40 _ 0494m .Sp__. - - 168.001, 4MA1 4950.09,_ _ 4957.87 49%.30_ 0.002857' _ IN 42& 16.79 _ 0.40 Reecn 493 YMr 11M.M 4956.01 4SUM 496233 49WSI --._- 0.003WS - 6.91 3M.q- 342,31- 0.53 Reech 4M :0" MB.00 4961 4800.03'. 4B62.32 0.0034BB: S.W _ 154.)0 259.73 O5 Rexn 493 _ . __.. loom. Q56.61 4956.01 -_- 4961.5ei_..-__._ WIM! saM.3e _ 4aa.3z 0.a95za3 - zz3 . 149s)' _.-__ 1e9.n_ _ os9 Rexn 493 M6yI_ - _ 2718.00 4 01 4983.M__ 49 16. 4963,n O.=138 5.91 IMM 78324 OAO Reecn 241 FA ----300.0 4B55.S4 4BSB.65. IB5804' 480044 0002003 3.55 M.15 y -- 0.38' Rexh 241 FEMA Mom(IM 15)0.00� IKIM.83 4B82.6 _ 488T 4982.65 _ 0.000609 2�I_t_20.t4 6J0.83 _ _0.22 Reach 241 Bxrm 15B.M IB55.83 4BM.55 4�].30 4959.70 0.0020.01 _ 3.10 50.36 22.7I OJI, R.e 241 W.Y. --___ 11M.001 4855.83 496180 481.15 4MI.98 0601926 420 428.04 _ S 11 0.38 Rexh 241 _1_yeer_ 606.00 4955.63 495925i 49M26 4960.52 0013963 9.01 9i24_ 2633 O.m Reach 241 _ _0""Wp4y iMM;. AB65.83 _ 4861.20' 4968.M 488_1.38, 3.M� 281.78'. 4_3 m 0_30' Rmcn 241 _SOD - - 2i1&ODi 4BSS.My _ 49SIM, 498 201 4 MI- _0.002001 0000 61 IW 1J65,@� ]51a5 01P' N N N n G T T 0 y� V' N Eq m d LL C m ��3a333�Jm 3 3 0 3 w 3 m 3 3 N i N � N o eD o G � � S _ N n r ¢ l 0 a g rn o m T o o a I � a - m a N - ---.1— --_ _.__ _ _—. o m m m rn `8i �i m m m m. rn. Xi g, m m rn a a d d a d d d a a d d d d d d (U) uo!le-ig (U) mia"13 o � d O m O O T O T a'. li O LL 'CJ m m C Y IL C0 LL y C a m Uj >IY 3 m N ❑® o 3 3 3 3 o 3 w N- n N o N LL U O f Ncc V - (J N N o O N O N � O � N .X omu K y W LL — O O c O W¢ -Oman C W m N C O c ltl O O Vl A EL to Q o -p m cm v N CD o p N N m a N d _ dT --- — -o O N a d d d a d a d (a) UOIIUA913 (U) UN8e 13 0 o_ o gg m- i 3 3 3 3 m N 3 0 0 0 a s a g o LL m g 8 �m N �I � Q N j N O Q m G •C o ow 3 3 3 J m o M 3 N N W O - C o (D x ro � d. C A m IT U) X L) o O co in N N IWi a u cc 0 0 N N rn m rn m rn rn m rn v a v v v o v a m a N (4) OOItUA813 (4) OOIJUA813 p o C ^o O o C g a w C m N 01 N ILT CN dm w Q O >�s O N N N y N e >P•C N J N J m 0 0 IJ' N O m 3 3 3 3 3 o N 3 N$ 3 N ^ ; a m E $ m -% s g a CLy:D pN p C OL_ om C O W i4 N m W¢ W .O NN o O N N n 00 N d o m a g v m w o IM 0 O N N m al m I N CL N a N (11) OO11M13 (8) UO4BAOIq N Q d 9 0 m m 8 N m N 0 c O m L N m�Y y S g$ 1p LL yl $ N Q a m•C O 3 w of a o a 3 N o N 3 N a - m m i 3; 3 3 3 LL LL 3 N n 'm gym. m T W E o ce d ccpp N W a i m = m N � ; t O m O Ol= W � W K WW yTo c9 u> _ o w' n - 0 o c 0 _ .� cm: O N W o N W O N N m O C3, W m m r II I N W I W W CL m w -- - (a) uopenel3 (4) uopenel3 o u c `a a, -- `m --- - o• j pS pmT Yd¢. = o a 9 a ?` S p n> N m O � c c m�� �i O O � ��c J 3 g 3 m J N❑ E Q g 3 3 3 W oco m 3 3---- N --'- — - n -- n 3 'o O -p 6 W E c0 O. D � O L_ � T z' W� _OWW t O W> O[7N 0 C CC C n ia a { o a� a S W N N tm U O N cm w O O nV N a N T3 n N W O N W O W W N W uI O n W W W W N W W O W W N W rn rn rn rn rn rn rn rn rn rn rn m rn rn rn N rn v v v v v v a a v a o o a o a v (4) UOI)ene13 (4) uopane13 m �p Lpp yC�j g m 9Cp O 3 � CCp 6p LL � D 9p8 � i m 3� O N 3 N 0 — n o `o O a N W U w _ o o 6 J a O. O 5 U C y x U a W ¢ _m N lC Wi o �� IL m N II N U) o a _ N m r ai m o a �— b M M M N rn rn rn M M rn rn a a a a v a a (4) UOyenal3 m e s S@ g y =gym (4) u0111ena13 � ou �o s d o e ii g i g u N m y � m N � � � �•q p n' 3 `W 3 h 3 �' 3 J `° O a 3 W 3 3 �+ 0 3 m 0 CD of M N m n ; 0 a N E - 76 me C H N N � L y U X W a N Q a¢ m D c m N N W D! 'O o n ml 0 a Q N O. m m m m rn rn a e m coo vmi rn m m m a v a v (g) UOWAal3 00 N m f� 3 6 a -- N E 0 _ N N a c 0' m � � T p � C m XC o x > W N o 90 d y O c m W O OI W N � m CD < I n U1(D n � � w coo umi umi a a c a a a (4) U011an013 0 0 N 0 O O O V 0 N o 0 m I C 9 O O T O T j 0 0 N co N n m v a � o rn m � c d U N X W y C N c d m t U \ C OI O � _ O O m N (8) uogen813 Calculations Calc to determine flow in Lake Cnanl during Poudre River Flood Total Q = 13,300 cfs Conversion 3 Lake Canal Q= 1,500 cfs 11 % of flow goes through bridge opening FEMA XS River Sta FEMA ft FEMA ft W.S. Elev ft Diff ft CF 1086 4968.3 4965.3 4965.43 0.13 CE 861 4968 4965 4965.09 0.09 CD 241 4965.6 4962.6 4962.6 0 Average 0.11 f F Rise in WSEL due to Pedestrian Bridges Existing Bride Difference River Sta W.S. Elev W.S. Elev W.S. Elev (ft) (ft) (ft) 1086 4965.43 4965.43 0 1043 4965.21 4965.22 0.01 900 4965.21 1 4965.22 0.01 875 4965.16 4965.17 0.01 861 4965.09 4965.11 0.02 College 824 0 774 4964.41 4964.49 0.08 Ped Bridge 767 761 4963.78 4963.78 0 740 4963.76 4963.76 0 644 4963.14 4963.14 0 493 4962.65 4962.65 0 241 4962.6 4962.6 0 Freeboard Calculations Freeboard = 0.1 Q0-3 + 0.008 V2 @ XS 774 100-year East Bridge Freeboard 1.31 Q 1 1500 VI 7.21 WSEL 4964.49 Low Chordl 4964 Freeboard -0.49 50-year East Bridge Freeboard 1.53 Ql 1150 VI 9.35 WSEL 4962.96 Low Chordl 4964 Freeboard 1.04 10-year East Bridge Freeboard 0.92 al 606 V 1 5.45 WSELI 4962.46 Low Chordl 4964 Freeboardl 1.54 500-year East Bridge Freeboard 1.34 Q 2718 VI 5.78 WSEL 4966.14 Low Chord 4964 Freeboard -2.14 Decree Flow East Bridge Freeboard 0.53 Q 156 VI 3.16 WSELI 4959.71 Low Chord 4964 Freeboardl 4.29 Bank Full East Bridge Freeboardl 0.67 Qj 300 V 3.88 WSELI 4961.02 Low Chord 1 4964 Freeboard 2.98 Flow Summary 500-year 100-year 50-year 10-year Poudre River Flow 24,100 13,300 10,200 5,370 Lake Canal Flow 2,718 1,500 1,150 606 11% 11% 11% 11% SCOUR SUMMARY FOR PEDESTRIAN BRIDGE OVER THE LAKE CANAL FORT COLLINS, COLORADO JULY 2010 Brink Overtopping (of College Ave.) Discharge: 950 cfs Contraction Abutment Total Bent Scour Scour Scour (ft) (ft) (ft) North Abutment 1.0 N/A 1.0 South Abutment 1.0 N/A 1.0 50-yr Discharge: 1,150 cfs Contraction Abutment Total Bent Scour Scour Scour (ft) (ft) (ft) North Abutment 0.0 7.6 7.6 South Abutment 0.0 6.8 6.8 100-yr Discharge: 1,500 cfs Contraction Abutment Total Bent Scour Scour Scour (ft) (ft) (ft) North Abutment 0.0 6.8 6.8 South Abutment 0.0 6.6 1 6.6 500-yr Discharge: 2,718 cfs Contraction Abutment Total Bent Scour Scour Scour (ft) (ft) (ft) North Abutment 0.0 0.4 0.4 South Abutment 0.0 0.5 0.5 NOTE: These tables present potential scour depths for the associated hydraulic events. If a soil horizon exists beneath the bridge which is resistant to scour, the predicted scour depths could be reduced to reflect the competence of the material. This reduction would require examination and approval by a qualified geotechnical engineer with knowledge of the properties of the material. Calc. By: SJL Date: 7/19/2010 Check By: Date: M SCOUR MODE COMPUTATION FOR PEDESTRIAN BRIDGE OVER THE LAKE CANAL FORT COLLINS, COLORADO JULY 2010 The following computations are made using Laursen's Equation (Equation 15 in HEC-18): V, = Ku x Y1 vs x Dsov3 BRINK OVERTOPPING DISCHARGE (of College Ave.) MAIN CHANNEL SCOUR MODE APPROACH SECTION MAIN CHANNEL AREA (fe), A, = 196 APPROACH SECTION MAIN CHANNEL WIDTH (ft), W, = 46 APPROACH SECTION AVERAGE CHANNEL DEPTH (ft), Y, = A,/W, = 4.26 MEDIAN GRAIN SIZE (ft), D5 = 0.033 Ku 11.17 BED TRANSPORT CRITICAL VELOCITY (fps), V� = 4.55 DISCHARGE IN APPROACH CHANNEL (cfs), 01 MEAN VELOCITY IN APPROACH CHANNEL (fps), V, = 946 = 4.84 MAIN CHANNEL SCOUR MODE — LIVE -BED 50-YR DISCHARGE MAIN CHANNEL SCOUR MODE APPROACH SECTION MAIN CHANNEL AREA (ft), A, = 204 APPROACH SECTION MAIN CHANNEL WIDTH (ft), W, = 48 APPROACH SECTION AVERAGE CHANNEL DEPTH (h), Y, = A,/W1 = 4.28 MEDIAN GRAIN SIZE (ft), Dso = 0.033 Ku 11.17 BED TRANSPORT CRITICAL VELOCITY (fps), V. = 4.56 DISCHARGE IN APPROACH CHANNEL (cfs), Q, MEAN VELOCITY IN APPROACH CHANNEL (fps), V. = 1,130 = 5.55 MAIN CHANNEL SCOUR MODE = LIVE -BED 100-YR DISCHARGE MAIN CHANNEL SCOUR MODE APPROACH SECTION MAIN CHANNEL AREA (ft), A, = 222 APPROACH SECTION MAIN CHANNEL WIDTH (ft), W, = 51 APPROACH SECTION AVERAGE CHANNEL DEPTH (ft), Y, = A,/W, = 4.34 MEDIAN GRAIN SIZE (ft), Dso = 0.033 Ku 11.17 BED TRANSPORT CRITICAL VELOCITY (fps), V. = 4.57 DISCHARGE IN APPROACH CHANNEL (cfs), Q, MEAN VELOCITY IN APPROACH CHANNEL (fps), V. = 1,382 = 6.23 MAIN CHANNEL SCOUR MODE — LIVE -BED 500-YR DISCHARGE MAIN CHANNEL SCOUR MODE APPROACH SECTION MAIN CHANNEL AREA (ft'), A, = 328 APPROACH SECTION MAIN CHANNEL WIDTH (ft), W, = 59 APPROACH SECTION AVERAGE CHANNEL DEPTH (ft), Y, = A,/W, = 5.59 MEDIAN GRAIN SIZE (ft), Dso = 0.033 Ku 11.17 BED TRANSPORT CRITICAL VELOCITY (fps), Vc = 4.76 DISCHARGE IN APPROACH CHANNEL (cfs), 01 = 981 MEAN VELOCITY IN APPROACH CHANNEL (fps), V. = 2.99 MAIN CHANNEL SCOUR MODE — CLEAR -WATER Calc. By, I SJL Date: 1 7/19/2010 Check By: Date: ABUTMENT SCOUR COMPUTATIONS FOR PEDESTRIAN BRIDGE OVER THE LAKE CANAL FORT COLLINS, COLORADO MARCH 2O02 HEC-18 METHOD The following computations are made using Froehlich's Live -Bed Abutment Scour Equation: from HEC-18 (equation 7.1, page 7.8): Ye =Aa/L Fir =Qe/(A. gYa) K2 =(0/90)0.13 0.43 Ys =2.27K K Fr0'61+1 Ya 2 Ya Froehlich's Live -Bed Abutment Scour Computations Event Brink Overtopping North Ab. South Ab. FLOW OBSTRUCTED BY EMBANKMENT (cts), 0, = 0.00 0.00 FLOW AREA OBSTRUCTED (ft). A. = 0.00 0.00 LENGTH OF EMBANKMENT NORMAL TO FLOW (ft), L = 16.75 27.30 LENGTH OF ACTIVE FLOW OBSTRUCTED (it), L' = 0.00 0.00 SKEW ANGLE (degrees), B = 75 105 COEFFICIENT FOR ABUTMENT SHAPE, K, = 0.82 0.82 AVG. DEPTH OF FLOW IN FLOODPLAIN (It), y, = 0.00 0.00 FROUDE NUMBER OF APPROACH FLOW (no units), Fr = 0.00 0.00 COEFFICIENT FOR ANGLE OF EMBANKMENT TO FLOW, Kz - 0.98 1.02 ABUTMENT SCOUR DEPTH (tt), It. - 0.00 0.00 Event 50•Year North Ab. South Ab. FLOW OBSTRUCTED BY EMBANKMENT (cfs), O, = 58.66 55.91 FLOW AREA OBSTRUCTED (IIt), A. = 17.73 17.03 LENGTH OF EMBANKMENT NORMAL TO FLOW (It), L = 4.36 5.82 LENGTH OF ACTIVE FLOW OBSTRUCTED (it), U = 4.36 5.82 i SKEW ANGLE (degrees), B = 75 105 COEFFICIENT FOR ABUTMENT SHAPE, K, = 0.82 0.82 AVG. DEPTH OF FLOW IN FLOODPLAIN (It), y, = 4.07 2.93 FROUDE NUMBER OF APPROACH FLOW (no units), Fr = 0.29 0.34 COEFFICIENT FOR ANGLE OF EMBANKMENT TO FLOW, Kz - 0.98 1.02 ABUTMENT SCOUR DEPTH (1t), It. - 7.60 6.80 Event 100-Year North Ab. South Ab. FLOW OBSTRUCTED BY EMBANKMENT (cts), Q. = 169.47 62.10 FLOW AREA OBSTRUCTED (ft), A. = 188.46 28.97 LENGTH OF EMBANKMENT NORMAL TO FLOW (It), L = 401.61 10.18 LENGTH OF ACTIVE FLOW OBSTRUCTED (It), U = 401.61 10.18 SKEW ANGLE (degrees), 0 = 75 105 COEFFICIENT FOR ABUTMENT SHAPE, K, = 0.82 0.82 AVG. DEPTH OF FLOW IN FLOODPLAIN (II), y, = 0.47 2.85 FROUDE NUMBER OF APPROACH FLOW (no units), Fr = 0.23 0.22 COEFFICIENT FOR ANGLE OF EMBANKMENT TO FLOW, K2 - 0.98 1.02 ABUTMENT SCOUR DEPTH lift), It. - 6.80 6.60 Event 500-Year North Ab. South Ab. FLOW OBSTRUCTED BY EMBANKMENT (cis), O, = 0.08 0.07 FLOW AREA OBSTRUCTED (ffz), A. = 0.22 0.09 LENGTH OF EMBANKMENT NORMAL TO FLOW (II), L = 16.75 27.30 LENGTH OF ACTIVE FLOW OBSTRUCTED (ft), L' - 16.75 27.30 SKEW ANGLE (degrees), 0 = 75 105 COEFFICIENT FOR ABUTMENT SHAPE, K, = 0.82 0.82 AVG. DEPTH OF FLOW IN FLOODPLAIN (ft), Y. = 0.01 0.00 FROUDE NUMBER OF APPROACH FLOW (no units), Fr = 0.56 2.39 COEFFICIENT FOR ANGLE OF EMBANKMENT TO FLOW, Kz - 0.98 1.02 ABUTMENT SCOUR DEPTH (ft), y, - 0.40 0.50 Calc. By. SJL Date: 7119/2010 Check By: I 11)ate: CONTRACTION SCOUR COMPUTATIONS FOR PEDESTRIAN BRIDGE OVER THE LAKE CANAL FORT COLLINS, COLORADO / JULY 2010 The following computations are made using the HEC-18 equation for Live Bed Contraction Scour: Ys=Y2_y0 Y2=((Q2/Q1) W ((W 1/W2)k' )YYl - LIVE -BED CONTRACTION SCOUR COMPUTATIONS BRINK OVERTOPPING (of College Ave.) ENERGYSLOPE = 2.03E-03 m FALL VELOCITY (fps) = 1.48 AVERAGE UPSTREAM CHANNEL DEPTH (ft), Y, = A,/W, = 4.26 g GRAVITATIONAL ACCELERATION (ft/s) = 32.20 V. SHEAR VELOCITY IN UPSTREAM SECTION (fps) = 0.53 V'/W = 0.36 k, HEC-18 = 0.59 DISCHARGE IN UPSTREAM CHANNEL (cfs), 01 = 946 DISCHARGE IN CONTRACTED SECTION (Cfs), 02 = 950 WIDTH OF UPSTREAM CHANNEL SECTION (ft), W, 45.9 WIDTH OF MAIN CHANNEL CONTRACTED SECTION (ft), W2 = 24.0 MEDIAN GRAIN SIZE (ft), Dso = 0.033 COMPUTED WATER DEPTH OF CONTRACTED SECTION (ft), Y2 = 6.27 AVERAGE WATER DEPTH AT BRIDGE(ft), Yo - 5.26 AVERAGE SCOUR DEPTH AT CONTRACTED SECTION, Ys - 1.0 50-YR DISCHARGE ENERGYSLOPE = 2.65E-03 m FALL VELOCITY (fps) = 1.48 AVERAGE UPSTREAM CHANNEL DEPTH (ft), Y, = A,/W, = 4.28 �- g GRAVITATIONAL ACCELERATION qt S2) = 32.20 V. SHEAR VELOCITY IN UPSTREAM SECTION (fps) = 0.60 V'/m = 0.41 k, HEC-18 = 0.59 DISCHARGE IN UPSTREAM CHANNEL (cfs), Q, = 1,130 DISCHARGE IN CONTRACTED SECTION (cfs), Q2 = 910 WIDTH OF UPSTREAM CHANNEL SECTION (fl), W, = 47.5 WIDTH OF MAIN CHANNEL CONTRACTED SECTION (ft), W2 = 24.0 MEDIAN GRAIN SIZE (ft), Dso = 0.033 COMPUTED WATER DEPTH OF CONTRACTED SECTION (ft), Y2 = 5.32 AVERAGE WATER DEPTH AT BRIDGE(ft), Yo - 5.43 AVERAGE SCOUR DEPTH AT CONTRACTED SECTION, Ys - -0.1 100-YR DISCHARGE ENERGYSLOPE = 3.27E-03 w FALL VELOCITY (fps) = 1.48 AVERAGE UPSTREAM CHANNEL DEPTH (ft), Y,= A,/W, = 4.34 - g GRAVITATIONAL ACCELERATION (fVS2) = 32.20 V. SHEAR VELOCITY IN UPSTREAM SECTION (fps) = 0.68 V'/m = 0.46 k, HEC-18 = 0,59 DISCHARGE IN UPSTREAM CHANNEL (cfs), Q, = 1,382 DISCHARGE IN CONTRACTED SECTION WS), Q2 = 730 WIDTH OF UPSTREAM CHANNEL SECTION (ft), W, = 51.1 WIDTH OF MAIN CHANNEL CONTRACTED SECTION (ft), W2 = 24.0 MEDIAN GRAIN SIZE (ft), Dso = 0.033 COMPUTED WATER DEPTH OF CONTRACTED SECTION (ft), Y2 = 3.92 AVERAGE WATER DEPTH AT BRIDGE(ft), Yo - 6.07 AVERAGE SCOUR DEPTH AT CONTRACTED SECTION, Ys - -2.1 / Catc. B SJL Date: 7/19/2010 Check By: I IDate: Brink Overtopping (of College Ave.) Hydraulic Data for Pedestrian Bridge Over the Poudre River Hydraulic: Y, = 5.26 it. adjacent Q, = 946 cis Channel 02 = 950 cfs A, = 195.7 It A2 = 126.3 ft' W, = 45.9 ft. Channel W2 = 24.0 it. V. = 4.84 fvs D, = 0.033 ft. Energy Slope = 2.025E-03 ft. Gravity Acceleration = 32.2 ftfs' Fall Vel., (o = 1.48 ft/s 50-Year Hydraulic Data for Pedestrian Bridge Over the Poudre River Hydraulic: Yo = 5.43 ft. adjacent Q, = 1,130 cis Channel 02 = 910 cis A, = - 203.6 ft.' A2 = 130.2 ft.' W, = 47.5 ft. Channel W2 = 24.0 ft. V,,, = 5.55 Ws D, = 0.033 ft. Energy Slope = 2.646E-03 h. Gravity Acceleration = 32.2 Ws' Fall Val., to = 1.48 Ws 100-Year Hydraulic Data for Pedestrian Bridge Over the Poudre River Hydraulic: Yo = 6.07 ft. adjacent Q, = 1,382 cis Channel Q2 = 730 cis A, = 221.7 ft.2 A2 = 145.6 R' W, = 51.1 ft. Channel W2 = 24.0 ft. V, = 6.23 Ws D, = 0.033 ft. Energy Slope = 3.269E-03 ft. Gravity Acceleration = 32.2 Ws' Fall Vet, m = 1.48 fits 500-Year Hydraulic Data for Pedestrian Bridge Over the Poudre River Hydraulic: Y, = 9.03 ft. adjacent Q, = 981 cis Channel Q2 = 527 cis A, = 327.9 W' A2 = 216.7 ft' W, = 58.7 h. Channel W2 = 24.0 ft. Vm = 2.99 Ws D� = 0.033 ft. Energy Slope = 5.340E-04 ft, Gravity Acceleration = 32.2 Ws' Fall Vel., ru = 1.48 Ws = Main Channel contracted depth = Main Channel flow in approach section = Main Channel flow in contracted section = Main Channel approach area = Main Channel contracted area = Main channel approach top width = Main channel contracted TW, subtract piers = D,of the main channel material = Approach channel energy slope = Fall Velocity, ft/sec = Main Channel contracted depth = Main Channel flow in approach section = Main Channel flow in contracted section = Main Channel approach area = Main Channel contracted area = Main channel approach top width = Main channel contracted TW, subtract piers = D,of the main channel material = Approach channel energy slope = Fall Velocity, It/sec = Main Channel contracted depth = Main Channel flow in approach section = Main Channel flow in contracted section = Main Channel approach area = Main Channel contracted area = Main channel approach top width = Main channel contracted TW, subtract piers = Dwof the main channel material = Approach channel energy slope = Fall Velocity, ft/sec = Main Channel contracted depth = Main Channel flow in approach section = Main Channel flow in contracted section = Main Channel approach area = Main Channel contracted area = Main channel approach top width = Main channel contracted TW, subtract piers = D,of the main channel material = Approach channel energy slope = Fall Velocity, ft/sec SJ L Profile: 50-year 19-Jul-10 Hydraulic Data from HEC-RAS (Ped_Bridge.prj) Plan: Ped_Bridge - Updated Contracted Section ,Plan: PedBr - Updated E.G. Elev (ft) Stream Reach 1 4964.711 RS: 824 ----BR U- lement Profile: 50-year I Left OB Channel Right OB Vel Head (ft) 0.921 Wt. n-Val. W.S. Elev (ft) 4964.48 Reach Len. (ft) 76.00 76.00 76.00 Crit W.S. (ft) 4961.99 Flow Area (sq ft 130.24 128.65 E.G. Slope ft/ft Area (sg ft 130.24 68.77 Q Total cfs 1150 Flow (cfs) 909.72 241.68 Top Width (ft) 245.48 Top Width ft 245.48 Vel Total (ft/s) 0 Avg. Vel. ft/s) 6.98 1.88 Max Chl D th ft 7.48 H dr. Depth (ft) Conv. Total (cfs) Conv. (cfs) Length Wtd. ft 76 Wetted Per. (ft) 53.26 245.59 Min Ch El ft 4957 Shear (lb/s ft) Alpha 1.78 Stream Power(lb/ft s) Frctn Loss (ft) Cum Volume (acre-ft) 2.601 2.14 0.37 C & E Loss (ft) Cum SA (acres) 3.091 0.49 0.76 .:Updated E.G. Elev (ft) 1 4965.04 Element Left OB Channel Ri ht OB Vel Head (ft) 0.47 Wt. n-Val. 0.04 0.05 W.S. Elev (ft) 4964.57 Reach Len. ft 34.28 35.75 36.50 Crit W.S. (ft) 4962.35 Flow Area (sq ft) 203.56 31.82 E.G. Slope ft/ft) 0.002646 Area (s ft) 203.56 31.82 Q Total (cfs) 1150 Flow (cfs) 1129.76 20.24 Top Width (ft) 186.37 Top Width ft 47.53 138.84 Vel Total ft/s) 4.89 Avg. Vel. (ft/s) 5.55 0.64 Max Chl D th (ft) 6.9 H dr. Depth ft 4.28 0.23 Conv. Total (cfs) 22354.6 Conv. (cfs) 21961.1 393.5 Length Wtd. ft 35.85 Wetted Per. (ft) 50.25 138.85 Min Ch El (ft) 4957.67 Shear Ib/s ft) 0.67 0.04 Alpha 1.271 Stream Power (Ib/ft s) 1 3.711 0.02 Frctn Loss (ft) 10.081 Cum Volume acre-ft) 2.661 2.671 1.39 C & E Loss ft 0.081 Cum SA (acres) 3.291 0.611 1.87 Pos Left Sta Right Sta Flow Area W.P. Percent H dr Velocity (ft) (ft) cfs) (sq ft (ft) Conv De th ft (ft/s 1 LOB 293.24 390.98 0 0.22 10.38 0 0.02 0 2 LOB 390.98 486.73 0 10.42 45.05 0 0.23 0 3 Chan 488.73 490.3 0 1.17 1.7 0 0.75 0 4 Chan 490.30 491.87 0 2.21 1.7 0 1.41 0 5 Chan 491.871 493.43 01 3.25 1.7 0 2.07 0 6 Chan 493.43 495 0 4.32 1.71 0 2.75 0 7 Chan 495.00 496.45 14.66 4.97 1.59 1.27 3.42 2.95 8 Chan 496.45 497.91 19.51 5.9 1.59 1.7 4.06 3.31 9 Chan 497.91 499.36 24.49 6.86 1.65 2.13 4.72 3.57 10 Chan 499.36 500.82 31.5 8.18 1.75 2.74 5.62 3.85 11 Chan 500.82 502.27 41.13 9.6 1.75 3.58 6.6 4.28 12 Chan 502.271 503.73 53.461 10.76 1.57 4.65 7.4 4.97 13 Chan 503.731 505.18 57.271 10.87 1.45 4.98 7.47 5.27 14 Chan 505.181 506.64 57.251 10.87 1.45 4.98 7.47 5.27 15 Chan 506.64 508.09 57.24 10.87 1.45 4.98 7.47 5.27 16 Chan 508.09 509.55 57.23 10.87 1.45 4.98 7.47 5.27 17 Chan 509.55 511 57.22 10.87 1.45 4.98 7.47 5.27 18 Chan 511 512.45 57.2 10.86 1.45 4.97 7.471 5.27 19 Chan 512.45 513.91 57.19 10.86 1.45 4.97 7.47 5.26 20 Chan 513.91 515.36 57.17 10.86 1.45 4.97 7.47 5.26 21 Chan 515.36 516.82 53.291 10.72 1.56 4.63 7.37 4.97 22 Chan 516.82 518.27 42.771 9.66 1.68 3.72 6.64 4.43 23 Chan 518.27 519.73 34.191 8.45 1.68 2.97 5.81 4.05 24 Chan 519.73 521.18 26.391 7.23 1.68 2.29 4.97 3.65 25 Chan 521.18 522.64 21.441 6.2 1.56 1.86 4.26 3.46 26 Chan 522.64 524.09 17.221 5.42 1.55 1.5 3.73 3.18 27 Chan 524.091 525.55 13.311 4.65 1.55 1.16 3.19 2.87 28 Chan 525,551 527 9.81 3.87 1.55 0.85 2.66 2.54 29 Chan 5271 528.46 6.76 3.09 1.55 0.591 2.13 2.18 30 Chan 528.461 529.91 4.17 2.32 1.55 0.361 1.59 1.8 31 Chan 529.911 531.37 2.77 1.78 1.48 0.241 1.22 1.56 32 Chan 531.37 532.82 1.87 1.41 1.5 0.161 0.97 1.32 33 ROB 532.82 572.82 19.46 24.021 40.01 1.69 0.6 0.81 34 ROB 572.82 612.82 9.31 15.431 40 0.81 0.39 0.6 351 ROB 612.82 652.81 12.81 18.681 40 1.11 0.47 0.69 361 ROB 652.81 692.81 15.12 20.641 40 1.32 0.521 0.73 SJ L Profile: 100-year 19-Jul-10 Hydraulic Data from HEC-RAS (Ped_Bridge. prj) Plan: Ped_Bridge - Updated Contracted Section E.G. Elev ft 4965.22 Element Left OB Channel Right OB Vel Head ft 0.29 Wt. n-Val. W.S. EIev ft 4965.11 Reach Len. ft 76.00 76.00 76.00 Crit W.S. (ft) 4964.97 Flow Area (sq ft) 13.17 150.40 306.49 E.G. Slope ft/ft Area (sq ft 7.06 145.64 263.40 Q Total cfs 1500 Flow cfs 20.47 730.29 765.76 Top Width ft 482.88 Top Width (ft) 47.89 44.09 390.90 Vel Total fUs 3.19 Avg. Vel. ft/s 1.56 4.86 2.50 Max Chl D th (ft) 8.11 H dr. Depth ft 0.27 3.41 0.78 Conv. Total cfs Conv. cfs Length Wtd. ft 76 Wetted Per. ft 47.89 97.35 391.71 Min Ch El ft 4957 Shear Ib/s ft Alpha 1.441 Stream Power(lb/ft s) Frctn Loss ft Cum Volume acre-ft 4.641 2.381 0.81 C & E Loss (ft) Cum SA acres 4.761 0.571 1.07 Approach Section .: .._ E.G. Elev (ft) 1 4965.491 Element ILeftOB •0 Channel Right OB Vel Head ft 0.56 Wt. n-Val. 0.04 0.04 0.05 W.S. Elev ft 4964.94 Reach Len. ft 34.28 35.75 36.50 Crit W.S. (ft) 4963.06 Flow Areas ft 0.23 221.65 118.07 E.G. Slope ft/ft 0.003269 Areas ft 0.23 221.65 118.07 Q Total cfs 1500 Flow cfs 0.1 1381.78 118.12 Top Width (ft) 362.48 Top Width ft 2.31 51.05 309.12 Vel Total fUs 4.41 Avg. Vel. ft/s 0.42 6.231 1 Max Chl D th ft 7.271 H dr. Depth ft 0.1 4.34 0.38 Conv. Total cfs 26233.8 Conv. cfs 1.7 24166.3 2065.8 Length Wtd. ft 35.87 Wetted Per. ft 2.51 53.86 309.17 Min Ch El ft 4957.67 Shear Ib/s ft 0.02 0.84 0.08 Alpha 1.84 Stream Power Ib/ft s 0.01 5.24 0.08 Frctn Loss ft 0.06 Cum Volume acre-ft 4.97 2.97 2.42 C & E Loss (ft) 0.14 Cum SA acres 5.36 0.7 2.28 -•C ••r Pos -• Left Sta Right Sta HOW •Flows.11 Area W.P. Percent H dr Velocity ft (ft) cfs (Sq ft) (ft Conv De th ft ft/s 1 LOB 97.75 195.49 0.6 3.04 27.3 0.04 0.11 0.2 2 LOB 195.49 293.24 14.05 33.74 97.93 0.94 0.35 0.42 3 LOB 293.24 390.98 25.62 48.34 97.76 1.71 0.49 0.53 4 LOB 390.98 488.73 45.06 67.94 98.1 3 0.7 0.66 5 Chan 488.73 490.3 2.65 2.16 1.7 0.18 1.38 1.23 6 Chan 490.30 491.87 5.1 3.2 1.7 0.34 2.04 1.59 7 Chan 491.87 493.43 8.14 4.24 1.7 0.54 2.71 1.92 8 Chan 493.43 495 11.79 5.31 1.71 0.79 3.39 2.22 9 Chan 495.00 496.45 14.75 5.89 1.59 0.98 4.05 2.5 10 Chan 496.45 497.91 18.82 6.82 1.59 1.26 4.69 2.76 11 Chan 497.91 499.36 22.89 7.78 1.65 1.53 5.35 2.94 12 Chan 499.36 500.82 28.52 9.1 1.75 1.9 6.26 3.13 13 Chan 500.82 502.27 36.32 10.52 1.75 2.42 7.23 3.45 14 Chan 502.27 503.73 46.47 11.68 1.57 3.1 8.03 3.98 15 Chan 503.73 505.18 49.72 11.79 1.45 3.31 8.11 4.22 16 Chan 505.18 506.64 49.7 11.79 1.45 3.31 8.1 4.22 17 Chan 506.64 508.09 49.69 11.79 1.45 3.31 8.1 4.22 18 Chan 508.09 509.55 49.68 11.79 1.45 3.31 8.1 4.22 19 Chan 509.55 511 49.67 11.78 1.45 3.31 8.1 4.22 20 Chan 511.00 512.45 49.66 11.78 1.45 3.31 8.1 4.21 21 Chan 512.45 513.91 49.65 11.78 1.45 3.31 8.1 4.21 22 Chan 513.91 515.36 49.64 11.78 1.45 3.31 8.1 4.21 23 Chan 515.36 516.82 46.35 11.63 1.56 3.09 8 3.98 24 Chan 516.82 518.27 37.73 10.58 1.68 2.52 7.27 3.57 25 Chan 518.27 519.73 30.8 9.36 1.68 2.05 6.44 3.29 26 Chan 519.73 521.18 24.43 8.15 1.68 1.63 5.6 3 27 Chan 521.18 522.64 20.47 7.12 1.56 1.36 4.89 2.87 28 Chan 522.64 524.09 16.95 6.341 1.55 1.13 4.36 2.67 29 Chan 524.091 525.55 13.64 5.56 1.55 0.911 3.83 2.45 30 Chan 525.55 527 10.61 4.79 1.55 0.71 3.29 2.22 31 Chan 527 528.46 7.91 4.01 1.55 0.53 2.76 1.97 32 Chan 528.46 529.91 5.52 3.24 1.55 0.37 2.22 1.71 33 Chan 529.91 531.37 4.2 2.7 1.48 0.28 1.85 1.56 34 Chan 531.37 532.82 3.271 2.33 1.5 0.22 1.6 1.4 35 ROB 532.82 572.82 1 51.051 49.29 40.01 3.4 1.23 1.04 36 ROB 1 572.821 612.82 1 37.121 40.711 401 2.471 1.021 0.91 SJ L Profile: 500-year 19-Jul-10 Hydraulic Data from HEC-RAS (Ped_Bridge.prj) Plan: Ped_Bridge - Updated Contracted Section .: ... E.G. Elev ft 4966.78 Element 00 Left OB Channel Ri ht OB Vel Head (ft) 0.06 Wt. n-Val. 0.045 0.035 0.045 W.S. Elev ft 4966.72 Reach Len. (ft) 76.00 76.00 76.00 Crit W.S. (ft) 4965.45 Flow Area (sq it) 394.76 216.72 908.22 E.G. Sloe (ft/ft) 0.001128 Area (sq ft) 394.76 216.72 908.22 Q Total (cfs) 2718 Flow (cfs) 457.59 526.97 1733.44 Top Width (ft) 850.31 Top Width ft) 406.24 44.09 399.98 Vel Total ft/s 1.79 Avg. Vel. ft/s) 1.16 2.43 1.91 Max Chl D th ft 9.72 H dr. Depth (ft) 0.97 4.92 2.27 Conv. Total (cfs) 80909.7 Conv. (cfs) 13,621.70 15686.90 51601.20 Length Wtd. (ft) 76 Wetted Per. (ft) 406.26 97.35 402.41 Min Ch El ft 4957 Shear (lb/s ft) 0.071 0.16 0.16 Alpha 1.16 Stream Power Ib/ft s) 0.081 0.381 0.30 Frctn Loss (ft) 0.2 Cum Volume (acre-ft) 10.811 2.961 2.29 C & E Loss ft) 0.11 Cum SA (acres) 7.601 0.58 1.14 Aooroach Section Plan: PedBr -Updated, E.G. Elev (ft) .Stream Reach 1 4966,831 FIS: 971.5* Profile: Element 500-yr Left OB Channel Ri ht OB Vel Head (ft) 0.06 Wt. n-Val. 0.05 0.04 0.05 W.S. Elev (it) 4966.77 Reach Len. (ft) 34.28 35.75 36.50 Crit W.S. (ft) 4965.5 Flow Area (sq ft) 680.72 327.88 864.90 E.G. Slope ft/ft 0.000534 Area (sq ft) 680.72 327.88 864.90 Q Total (cfs) 2718 Flow (cfs) 667.45 981.30 1069.25 Top Width ft 878.73 Top Width (ft) 402.62 58.68 417.43 Vel Total (ft/s) 1.45 Avg. Vel. fUs 0.98 2.99 1.24 Max Chl D th (ft) 9.1 H dr. Depth ft 1.69 5.59 2.07 Conv. Total (cfs) 117633.8 Conv. (cfs) 28887.1 42470.1 46276.6 Length Wtd. (ft) 35.76 Wetted Per. ft 404.22 61.52 419.32 Min Ch El (ft) 4957.67 Shear (lb/s ft) 0.06 0.18 0.07 Alpha 1.93 Stream Power Ib/ft s) 0.061 0.531 0.08 Frctn Loss ft 0.01 Cum Volume (acre-ft) 12.561 3.771 5.92 C & E Loss (ft) 0.011 Cum SA (acres) 8.61 0.71 2.4 IrgeTpl, xs Pos Stream Left Sta Reach Right Sta RS: 824 HOW BR U: Profile: Area Brink OT W.P. Percent H dr Veloci ft ft cfs) (sq ft ft Conv De th ft fUs 1 Chan 497.38 498.86 6.67 3.12 5.24 0.8 3.63 2.14 2 Chan 498.86 500.34 30.18 6.38 3.25 3.63 4.32 4.73 3 Chan 500.34 501.61 42.58 7.84 3.25 5.12 5.31 5.43 4 Chan 501.81 503.29 57.03 9.24 3.16 6.86 6.26 6.17 5 Chan 503.29 504.77 63.65 9.6 2.95 7.66 6.5 6.63 6 Chan 504.77 506.24 63.63 9.59 2.95 7.65 6.5 6.63 7 Chan 506.24 507.72 63.63 9.59 2.95 7.65 6.5 6.63 8 Chan 507.72 509.2 63.6 9.59 2.95 7.65 6.5 6.63 9 Chan 509.20 510.67 63.59 9.59 2.95 7.65 6.49 6.63 10 Chan 510.67 512.15 63.56 9.59 2.95 7.64 6.49 6.63 11 Chan 512.15 513.62 63.56 9.59 2.95 7.64 6.49 6.63 12 Chan 513.62 515.1 63.53 9.59 2.95 7.64 6.49 6.63 13 Chan 515.10 516.58 61.82 9.52 3.02 7.44 6.45 6.49 14 Chan 516.58 518.05 50.09 8.56 3.18 6.02 5.8 5.85 15 Chan 518.05 519.53 38.48 7.31 3.18 4.63 4.95 5.27 16 Chan 519.53 521.01 28.14 6.06 3.181 3.38 4.11 4.65 17 Chan 1 521.011 522.48 7.69 3.421 5.331 0.921 3.441 2.25 SJL Profile: Brink OT (of College Ave.) 19-Jul-10 Hydraulic Data from HEC-RAS (Ped_Bridge. prj) Plan: Ped_Bridge - Updated Contracted Section Plan: Br • ... E.G. Elev ft 4964.21 Element • I Left OB Channel Right OB Vel Head ft 0.881 Wt. n-Val. 0.035 W.S. Elev ft 4963.32 Reach Len. ft 76.00 76.00 76.00 Crit W.S. (ft) 4961.48 Flow Area (sq ft) 126.34 E.G. Slope ft/ft 0.003316 Area (sq ft 126.34 Q Total cfs 950 Flow cfs 950.00 Top Width ft 22 Top Width (ft) 22.00 Vel Total ft/s 7.52 Avg. Vel. ft/s 7.52 Max Chl D th ft 6.32 H dr. Depth ft 5.74 Conv. Total cfs 16497.7 Conv. cfs 16497.70 Length Wtd. ft 76 Wetted Per. ft 23.42 Min Ch El ft 4957 Shear Ib/s ft 1.12 Alpha 1 Stream Power (Ib/ft s 8.40 Frctn Loss ft 0.3 Cum Volume acre-ft 2.021 2.02 0.20 C & E Loss ft 0.041 Cum SA acres 2.751 0.52 0.25 Aooroach Section Plan; Br • .._ E.G. Elev (ft) 4964.76 Element • Left OB Channel Ri ht OB Vel Head ft 0.361 Wt. n-Val. 0.041 0.05 W.S. Elev ft 4964.4 Reach Len. ft 34.28 35.75 36.50 Crit W.S. ft 4961.9 Flow Area (sq ft) 195.74 10.69 E.G. Slope ft/ft 0.002025 Area (sq ft 195.74 10.69 Q Total cfs 950 Flow cfs 946.49 3.51 Top Width (ft) 156.09 Top Width ft 45.93 110.16 Vel Total ft/s 4.6 Avg. Vel. ft/s 4.84 0.33 Max Chi D th ft 6.73 Hy dr. Depth ft 4.26 0.1 Conv. Total cfs 21111.2 Conv. cfs 21033.2 78 Length Wtd. ft 35.81 Wetted Per. ft 48.61 110.17 Min Ch El ft 4957.67 Shear Ib/s ft 0.51 0.01 Alpha 1.1 Stream Power(lb/ft s 2.46 0 Frctn Loss ft 0.07 Cum Volume acre-ft 2.021 2.5 0.64 C & E Loss (ft) 0.03 Cum SA acres 2.751 0.631 1.22 Pos Left Sta Right Sta Flow Area W.P. Percent H dr Velocity (ft) (ft) cfs) (sq ft ft Conv De th ft ft/s 1 Chan 497.38 498.86 8.36 2.54 0.94 1.38 2.95 3.29 2 Chan 498.86 500.34 19.11 5.38 1.78 3.15 3.64 3.55 3 Chan 500.34 501.81 28.53 6.84 1.78 4.71 4.63 4.17 4 Chan 501.81 503.29 40.26 8.24 1.69 6.64 5.58 4.89 5 Chan 503.29 504.77 47.27 8.6 1.48 7.8 5.82 5.5 6 Chan 504.77 506.24 47.26 8.6 1.48 7.8 5.82 5.5 7 Chan 506.24 507.72 47.25 8.6 1.48 7.8 5.82 5.5 8 Chan 507.72 509.2 47.23 8.6 1.48 7.79 5.82 5.49 9 Chan 509.20 510.67 47.21 8.59 1.48 7.79 5.82 5.49 10 Chan 510.67 512.15 47.2 8.59 1.48 7.79 5.82 5.49 11 Chan 512.15 513.62 47.19 8.59 1.48 7.79 5.82 5.49 12 Chan 513.62 515.1 47.17 8.59 1.48 7.78 5.82 5.49 13 Chan 515.10 516.58 45.14 8.52 1.55 7.45 5.77 5.29 14 Chan 516.58 518.05 34.71 7.56 1.7 5.73 5.12 4.59 15 Chan 518.05 519.53 25.67 6.31 1.7 4.24 4.27 4.07 16 Chan 519.53 521.01 17.76 5.061 1.7 2.93 3.431 3.51 171 Chan 1 521.01 522.48 8.681 2.751 1.08F 1 431 2.771 3.16 INDEX OF SHEETS HEET NO. 1 SKETCH MAP, TITLE PAGE AND TABULATION OF LENGTH AND DESIGN - 2 TYPICAL SECTION, DETAIL OF GROUTED RUBBLE SLOPE PAVING, CONCRETE PAVEMENT • 3 JOINT DETAILS AND DETAILS OF CONCRETE COMBINATION CURB B GUTTER SUMMARY OF APPROXIMATE QUANTITIES -4 LOCATION OF MATERIAL PIT 5 SUB -BASE MATERIAL AND SURFACING PLANS, DETAIL OF JOINT FOR C.B.C. EXTENSIONS STA.18+,TABULATtON OF CONCRETE PAVEMENT AND DETAILS OF CUT-OFF WALL FOR GB.0 STA. IB+ AND TABULATION OF TIMBER :GUARD POSTS. -'6-9 LIST OF STRUCTURES -10-12 DETAILS OF BRIDGE STA.9+ -43-14 DETAILS OF BRIDGE STA.17+ . 15-I8 DETAILS OF BRIDGE AND HEADGATE STA.75+ 19 STANDARD METHODS FOR. SUPERELEVATION AND WIDENING OF CURVES M-1-C 20 STANDARD MARKER POSTS M-7-C 21 STANDARD CONCRETE PAVEMENT JOINT DETAILS M-8-C -'ZZ STANDARD LETTERS AND FIGURES FOR YEAR NUMBERS 8 STRUCTURE NUMBERS M-10-B . 23 STANDARD TIMBER GUARD POSTS M-19-D 24 STANDARD ROADWAY CONSTRUCTION TRAFFIC SIGNS M-29-A ' 25 STANDARD SINGLE AND DOUBLE CONCRETE BOX CULVERTS M-50-A 26 STANDARD WINGWALLS FOR VARIOUS TYPES OF CONCRETE BOX CULVERTS M-50-AW 27 STANDARD HEADWALLS AND APRONS FOR CMP CULVERTS M-102-H 28 STANDARD TYPES OF DITCHES AND CONSTRUCTION METHODS M-107-C . 29 STANDARD-TYPES.OF RAILROAD WARNING SIGNS M- 18-B 30-35 ALIGNMENT PLAN ANDPROFILE 36 "MARY-:OF EARTHWORK QUANTITIES 37-56 CROSS SECTIONS TABULATION OF LFNGTH AND DESIGN ROADWAY , BRIDGE STATION LIN-FT. LIN. F r7 LOADING 0+30.0 BEGIN C06-0001-lO 850.2 B+B0.2=3+39.B .BEGIN FAP.144E i 46.6 1 9+27.0 ��11 cache. La Poudre River Bridge 302.7 12+29.7 227.0 I I 14'+56.7 Bk. - 13+07.0 Ah. -�j.� Equation 1 I 2+36.7onF..4P144.EJ I 1 429.0 17# 36.0 Lake Canol �- Bridge 22.3 174-58.3 ��11 - 5164. 2 694-22.5= 3+50,0 BEGIN F 004-1(3) 609.4 75+31.9 Eaton Cona/ Bridge 50.7 �I 75+82.6 287.7 ; 78+70.3e68400.0 END F.A.P-144E.= 68+00.0, BEGIN F. A. P. 144 F 152- 2 80+22.5=14450.0 END F 004-1(3) 477.5 85400.0 END C 06-0001-10= 74429.7 on FAP 144 F 1 TOTALS 8244.0- ;. 375.7 ARY i LIN.F1' MILES Roadway C 06-0001-10 8244.0 1.562 Bridges C 06-0001-10 375.7 0.071 ' TOTALS (Gross and Net L th) 8s19. 7 1.633 DESIGN DATA Maximum Degree of Curve 3" 00 Maximum Grade 1-40% Minimum N PS.O Horizontal 730' Minimum NPS.D. Vertical 520' Maximum Design Speed 35 M.P-N, TB T. 7 COLORADO DEPARTMENT OF HIGHWAYS PLAN- AND PROFILE OF PROPOSED STATE PROJECT NO. C 0 6-0001-10 STATE HIGHWAY NO. I4 LARIMER COUNTY .SCALES OF ORIGINAL DRAWINGS ON PLAN I:N. • 50 FT ON PROFILE I I InI. ` 50 FT. HORIZONTAL I IN. = l0 FT. VERTICAL GROSS LENGTH OF PROJECT ...I.- 9619.7 FT. = 1.633 MI. NET LENGTH OF PRDJEGT _- i SCALE OF MILES JL �r NOTICE TO:BIODEIri it IS RECOMMENDED THAT BIDDERS LOH THIS PROJECT Go OVER THE FLAN. DETAILS WITH ONE OF -THE FOLLOWIN' FIELD REPRESENTATIVES OF THIS DEPARTMENT: E W.OVIATT,OONSTROCTION ENGINEER,GREELET,OW.ORADO J M.MciVER,RESIDENT ENGINEER, LGVELATJNCOLORADO. HOME PHONE 115I-W COLORAD'O DEPARTMENT OF HIGHWAY5 APPROVED. lrcfil�/Gr�tio 395 DATE 'CHIEF ENGINEER. . A 3. 5 at. J / » 51f Abut_2 at .17+ 36.00 Abal. I Sfa. f7° 58.3 Abut- 2 - e � \4i I I ��.£• `/ \ I Cut present wi s -- 42/ to 437@ /, 8`i_ n c�,!I: Footings to clear ` A 2\ \! now sfrucfure /j ��! \" - 9-56/a /@ J4Z Do a9'S6JC> /O° Dowe/s \ I \ PRESENT ABUTMENT R• 2-416 • •?; A 4 5 to 407 408 L4OM 3 404 2-4/6yf ; To & Sodom Bo)tom \ �4.— - I \\y •a-` �l F lT TOB@ lB at. No. z on l� Tap & Balfom Bo Nom A -, ._.._.. _.----...._ .. __... 17-708 @ /B" Abut. No.2 onl / !Dowe/s) —'-'-- -&/8' °A .9 i2-414 , I TYPO � �Illf— i N I h C +i— 1 2BUTMENT NO.1 (ABUT. 2 SAME EXCEPT AS NOTED) ' Abutback to /ins of prase of Inside curb ('Do not C. exposed RImf- Bar) _ EXTENSION To PRESENT ABUT. PRESENT ABUTMENT O `O H cold Joi»l . 20-562@is, ELEVATION -ABUTMENT NO. I (ABUT.. 2 SAME EXCEPT AS NOTED) 3 L" % Pomf L towards 3sr waehe% 3 hale in L- '-ra'•J's/ot M - 1¢ of br%dye <N - o.s. ley of L. _ u•hPle, xl$ bo/t, Weldon inside - '_. hex hd. & . t, lock washer PLAN WITHOUT CAP SEC, CC 2-L'e3¢x,3s' a "32 Bolt top L's to post web with q x2`boft, hex hd., not. and lock, washer. Weld bo Nw 41E" om L•s to web ith CAST /RONCAP FORPOST eontinaoas fl/tet weld tand bottom of L's. - — - - --- atap - `holrinL 8� 9`s[aC;nq rie arie ... 9`spach?j� I ho% In web 1* 2 �•. �... 1 _ 3` 9S63E''N7=4` P =. b N _ ____-___`�� s/o Ned 1.J'` I;- hotel 2-414 i IJf. Met" Typed! -DISTRICT ! pnom T NO. ! 81110T i K DIY. N0. _ M0. eram oom I C_06_OMI-10._ I ._14.__...J -- - - 2C�{J f. Roadway �I t 4)100 � ° 413or4J9- � • -e / 1 it � .... 421 fo437 Ini 24 _40/ to 403 Top CE._�__-_- 40. _ or405 ta407 I er41 SECTION A -A _2=0_ 1 i— I i ' D 5453 n ° Y V ch {j1r .-3.E-p_'n. Jl. M&t%... i ..r 4f0 lIIl! r o i --- I .'�I '� • °. -t'l -- Type � °. �: .�I <� _ i. ( 7-5 3Gv q".,gt6'_ 3• �i L 5 ,0•, SECTION D-D +1 COLORADO DEPARTMENT OF HIGHWAYS - Y-- WIDEN 28'-0'R'DWY To 74'-00RbW) _ 403 Cl---3-409p 21-3"CLEAR SPAN- 77.32�SKEW N .--'- _ 562 /8� - I CONCRETE SLAB BRIDGE r r• L-Bent Bor3il Sle T;tc /pCate.y on _ _ _ •-4-40g ABUTMENT HANDRAIL DETAILS 4 S x 12" bolts wifh 6r East 5rde of bride furnished otbers. 1 In v_ B povdeep,r 9 4 by _.. _... __—._ _. "'_. Arross LAXE CANAL dhx "of & lock washer I S64 8 ' !4c& �0 tam x_B'cxo¢nsion Anchor Y .TOP _._.. i_ y....` Sta. !7 r 36.00 TO 77.36..<1 _ SECTION THRU CURBS HANDRAIL SECTION B-B I �^ 56'SLm 1B`botl. SS5 GA/ Bj boJlornl 1. x I Near FOR7.�LL/NSdec.l T.7N R.69- D D — Qealgnndhy E.F.S,APft"eehy& _. 9=0`_4" DETAILS OFSTEEL HANDRAIL ''- Made by L wF Bridge E,gin TRUE ELEVATION -SEBNW ING Note TRUEELEVATION-S.WBN.E.WING STRUCTURE No.B -le-An cnexenty oat�:tt:w�J�t959 - Bar Dimensions are to ¢ of bar unless marked `c%er`(Cl ) - KkVINION) LA A F CANAL Located on East Side E'lowt of Bridge terAZI RIWI I Typ C 4.1fill, 7Z' , 1 1 1 ove sent 'Ecil, slabs_ D)I p"ERElot Z-Gos, Main Location Ex, 2" Gas Main. ri it 17 GENERAL LAYOUT R LIST FOR ABUTMENT JVCL I UT No.2 SIMILAR EXCEPVTA55 BAR F aiNrrpF BENDING 6 DIAGRAMS 7Y 241 S-Y I I296' LY Z5-'O­14--6- P__-__F77'0"5tr, 5t TYPE Z 4 4 r_.,J 4 j(i,.Ld pep t 14 -3 5y__1 ... 7_.: 7:7 Str. 4)j IF' Except 7 7 V� + TYPE IL 17.2, 11,8- 9" _34 2_.1Ttr_ TYPE V7 I I I Lit FOR 55UPER5rR(UWKC E (ISIZEJ.".0n LENTRITYPE fn fi I0, a 123-9", TYPE A7 4 I LIST FOR APPROACH SLABS rj �'4 131C 6 BD 7-6 st r. t 4 It Trilf." r, rz L; 4 s PRESENT APPROA CM -5 4LA 01. 5.64t�6 00 V0 Fort "ns MAP 4IIMAIZDV IWALF PLAN SHOWING WIDEP ABUT. No.I I lWnl L85- Aad✓7. NO. Z LIWT! LI55. Sn?JCTVRE=S LIN. ' L63. .F7., f� TO 13181 880 13119 C580 - i,o 1/26 �.11.74 //Zr. 1174 115921 143 .9162 iStU6. 34. 1,92 301516163 - j, ".22,71 73 -94 rank"E"! zoi,5- 7375 - .--i-%50- 20' 0." w S02 c""MADV nr /Vill' . 411 I PRESENT BRIDGE 7 7_ M;tCTyNEY 011 No ftii� No rI NO At L P 4 97611!114 8/k, Af Re Sleeve on 2"Cas Main S, 16 be (ocat Cat PiTese"i wiws e f"tit7gS to clear new structure, I 111111".i 14*i _j PRESENT APPRP� O4C# SLAB SLAB 7 CNG -11-n in'T nfl, ITEM ITEM MIT' SUPER- ABUTMENT ABUTMENT Z APPROACH T4_)T`1L5 NQ. S rRUC TURE Alo± I NO.Z 5LA85e Ilb ,!LC UNCLASSIFIED EXCAVATION 14b DR9 COMMON CU-Yd. 32..S Es 65 14d WETCOMMON EXCAVATION(STIR.) Cu Yd. 77.5 77.5 /5S /6c 5TRuCrURE SACKFILL (CLA551) CEl 7S.0 75.0 16. WCHWICAL TAMPING Hour 9-5 9.5 18a STATION YARD OVERHAUL 5ta.yd 825 326 16:50 18b YARD MfLE OVERHAUL Vi:!. Ali. 4.9 49 96 i/M REMOVING CONC. PAV4EMf1V75?.X6 $219 129 6k GAL V. SHEET METAL SqC Ff 170 170 ld.. .64,_7 52.6 52A 4�&# _. .169.9 47 REINFORCING SP79CrUNAL STCEL(1'61`10�)Wd 11"EXP, JOINTMATERIALTkpeZ1 Lb.: .Ft _- .4 7375 2065 4 20�70 5 625 20 ;2 L 0 /1720 44 8 .0 • EXP JOINT MATERIAL I .Ft j__ 7C, 746 TYPE 3U dl Expo joint material shall be inaffc-ldanf* with A-A-1H.0, Spec. M 153-52 Of the type show" and ShUll be includedin the Class "A"Conctf-ete. bid prce or a r. be i,,IDd,a, ;. Aid once of Cl9s1 'A'Corcrefe. between Abut 47 z ABUT. Na If ABUT. NOR 'I V*IZ - SECTION 'A -A­ SO, t . bit M,t, r,.I, Aiech.. Tam i-med. OF PRE5ENT BRIDGE AF4Qe/z­ Ell, "I ILE 0 A V)� N Mil Ell AtOCCEENE& Concrete curb. 4- Remove prisent slab it Abu t.tO msrde curb lire! Do not cut exposcl 3t( 2"Parabc crown - : I I.._ - GENERAL NOTES ALL V,Efl: LqAL, ift DONE Ac'ORDAE, To nk ITAIMARO MCNICATIltin of mt COLORADO ONACLRNToHRW0. 10 .ltNAIA1j &L COFLAITE QA.1 C111-A W0, I�'lM ASftWADDI� VAM�MT( LEXULE& WO"OTO l.%1RKOWLSYRfiif CKCIFT THE UNONII&E Of no"t ,qD Asurrla 'It. OilITI,ul, ONCUTE Oil ILOCR "Ourt"y Foll 10, wNE=TT 31).R.CE3 2 TALL If CONSORICTIO w f SINEW OR TONnut AND QNERy( Witatil j 3 S W;LM fl-OD lVITH PANEL Ill 10)(1ITMOS I" IOCK NNALE. of NOR11twonin To wK AND inn FOLK, Rial ANO DO Of `CKOTDR: SNOW.:AVE IN AOCOMANCIF WITH THE EAST AUILAILI AT. I.. VVICNWIMEW MlIXTIONK ARF F-FOtUNTILIND TNC IOCOK ENGINEER WILL IN ETILICTUR,41. '.�ECL ttALI it 11INIM ONE SNOW COAT OF -NC CffOlrFATT AND TVIDI Ni aDkTS 01 IIA1.111.1., 1314L.1 OINSI'M NOTED EXCEPT T.S AlEf"in PORTION If SIM MTMG IF. I01 It 'ItITI11 MIN"Aft "I,r. DJ�Ll_ HAVE ME, NIAM XN0 1OCr WAVK� UNLO5 OTHIMM OOCI TED AND ALL 14YETS. fRCEPT AS NOTED ARC Q!A� AND S51).EL SE TDHVEI DRIVEN INCH TIZATIM TINIER OR MINN.. M �.I. . rFt Dl THE MME141111 11 1111, AIN, X, at Ckunori 0%. WHEN OCAVA713NG of f9aFtl 7NI WI'L ON! `001 'N ORION WALL 91 DONE IN HAND loop AWTHOP., WHIYAWIC'AL iAMPING OIA6)?AIW 0 Ificluded in profile quanfifies. O,Quatntihies for two avioHloacb slabs are not included in totafl for 5trffct�,e Bar dimensions are to of STRUCTURE NO B-J`5-801 I =M S'701 z a SECTION "C-C" LOPLINNG CATO Lilt LOAD I I-. AORT10.1 VVEARPO At20 CIAO LOAD WVW� 11, 1.1,% 1 W.IACE VV"KN INCLUll IN, -1 -111" Coxilf" PON OLMHP ,ITARIN4, TIMIACEF LROIHN DESIGNING DATA I I " . O I!, 10JIT 11,Itk "CIET As NOTED 116flIN't., -4.1 4 2wD0Il,,.j.A,,ttL st"'IN1.1 "itil 10 SPAN COLOR DO CO L 0 -A' DEPARTMENT OF HIGHWAYS T y WIDEN Z8VRIDW.Y. TO 74-'0 RVWy- wl p TM DW DEN _8V Z _I 3 C1 5 4 1:3'CLEAR VAN - 7Z*3a5KKW C;OMCJ? T SLAB C,01VCRETiF SLAB BRIDGE 51 JJ,ERSr X JZ 7 V -URE,tAPPROACH SLABS SUPERSrAX7 R Aa.sO Lake Canal Sly j7qt96-00 w N..,Yark Collins SL,, I - T_7N - R69,W :Deig..d by C.E.5- App­,.;7_d �byZ� Wde by E.gir,to, . I Cbecktd by I Dote APPENDIX F - Erosion Control 1 EXISTING TREES ALONG BANK OF POUDRE RIVER TO BE PROTECTED WHERE POSSIBLE (TYP) EXISTING WETLANDS 997 SF OF TEMPORARY DISTURBANCE: (TRM, GRADING AND TRANSITION MATS) 360 SF OF PERMANANT DISTURBACNE: (TRANSITION MATS) NOTES 1. THE CONTRACTOR SHALL COORDINATE THE VEHICLE TRACKING CONTROL PAD WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 2. THE CONTRACTOR SHALL COORDINATE THE CONCRETE WASHOUT AREA WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 3. EARTH DISTURBANCE OUTSIDE OF THE LIMITS OF DISTURBANCE DESIGNATED ON THE PLANS WILL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RESTORE TO EXISTING CONDITIONS. 4. SEE SHEETS SW-01 TO SW-04 FOR SWMP NOTES AND CONTRACTOR RESPONSIBILITIES. 5. PROVIDE WATTLES AROUND STOCKPILE. FOR MORE NOTES ON STOCKPILE REFER TO SHEETS SW-01 TO SW-04. 6. TOPSOIL IN AREA OF WATER QUALITY PONDS AND POUDRE RIVER TO BE STOCKPILED. Print Date: July 26, 201 D N Drawing File Name: F:132-7416.00 North C0llepelMelnOw9e45heata108001.32_ C-01-06. Data: Horizontal Scale Full: 1" = 20' Half: 1" = 40' IFAVM5 EngineerslScleulists4S ufte2W 3 P.O. JFK 70480 y, eulMYlp 2, Sidle 200 P.O. Box 2700e0 l—1 ASSOCIATES i 76) 5 1 CP"GAln STABILIZED CONSTRUCTION TION ENTRANCE ----------- TOE OF SLOPE (VEHICLE T O LOC CONSTRUCTION BOUNDARY SF — SF— SILT FENCE (REINFORCED) 20:1 TIE-IN SLOPES EP EMBANKMENT PROTECTION EROSION LOG (12 INCH) (CULVERT EROSION LOG INLET PROTECTION) O'mayor EROSION BALES STGP STORM GUTTER PROTECTION STIP i STORM DRAIN INLET PROTECTION OCONCRETE WASHOUT STRUCTURE DIP-3 F51 EROSION BALES FILTER (DROP INLET WATTLE) Sheet Revisions Comments Ink City }off I 281 North College Avenue Fort Collins, CO 80521 For` Collins Ph ne: (970) 221-6605 Fax: (970) 221-6379 TRM CLASS I TRM CLASS D O TRM CLASS DI REFER TO PROJECT SPECS FOR MORE INFORMATION ON TRM CLASS I, D, & DI. rn TRANSITION MATS 0�--1�00 �220--- aL7e� SCALE IN FEET As Constructed :NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code EROSION CONTROL PLAN - No Revisions: Revised: Engineer. J. MICHAELSEN_ Structure - - - Designer. J. MICHAELSEN N mbers u Void: _ Sheet Subset EROSION- Subset Sheets: EC-01 of 6 Street Number TRM CLASS II 19+00 ��'�_C'�-• �, Ili. TRANSITION `TRM CLASS III MATS 49 � LOG Q rL a .� O 965 o°' 96=��� NOTES 1. THE CONTRACTOR SHALL COORDINATE THE VEHICLE TRACKING CONTROL PAD WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 2. THE CONTRACTOR SHALL COORDINATE THE CONCRETE WASHOUT AREA WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 3. EARTH DISTURBANCE OUTSIDE OF THE LIMITS OF DISTURBANCE DESIGNATED ON THE PLANS WILL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RESTORE TO EXISTING CONDITIONS. 20 LF / SF / STGP SIDEWALK CHASE 20.00 5FT TYPE R INLET 7' 15 LF 21,00 PROTECT _ EXISTING STORM � STIP III 9 DIP-3 - � MODFIFIED COMBINATION LOC F • TYPE 13 INLET ------------------- -5FT TYPE R INLET A A I ` - — S96V COLLEGE AVENUE 1 --, 23.00 it f 24+00 A. \ 40 LF j I --... _ - STGP STGP a — - — \ F o LOC \ — — 30LF L_.l N SF 1OFT TYPE R INLET 4. SEE SHEETS SW-01 TO SW-04 FOR SWMP NOTES AND CONTRACTOR RESPONSIBILITIES. 5. PROVIDE WATTLES AROUND STOCKPILE. FOR MORE NOTES ON STOCKPILE REFER TO SHEETS SW-01 TO SW-04. 6. TOPSOIL IN AREA OF WATER QUALITY PONDS AND POUDRE RIVER TO BE STOCKPILED. 'L Print Date: July 26, 2010 Sheet Revisions te Lraaing Flle Name: F:Y32.1415.00 North College\Main sISheet&VyM1-32- C-01-06. h _ _ 0'"'e Date: Comments Ink. Horizontal Scale Full: 1" = 20' Halt: 1" = 40' EngineerntistslSu Suite 200 s 0 AVMS 7666 JFK 70460Parkway, BrJtlkp 2, 9u10e 200 O 0 P.O. Bon 2704B6 FM I'22" 5- CO 60527 c;_ ASSOCIATES c97o1zzoss66 LEGEND r r VTC STABILIZED CONSTRUCTION EHICLE TRACKINGCKG CE CONTROL PAD) V O � CONCRETE WASHOUT STRUCTURE SILT FENCE (REINFORCED) DIP-3 Q❑ EROSION BALES FILTER (DROP INLET WATTLE) EP EMBANKMENT PROTECTION ----------- TOE OF SLOPE o 10 20 40 LOG � EROSION LOG (12 INCH) (CULVERT EROSION LOG INLET PROTECTION) LOC — CONSTRUCTION BOUNDARY SCALE OEROSION BALES 20:1 TIE-IN SLOPE REFER TO PROJECT SPECS �y TRM CLASS II FOR MORE INFORMATION ON s� STGP ,p+ STORM GUTTER PROTECTION TRM CLASS II, & III. O STIP STORM DRAIN INLET PROTECTION TRM CLASS III TRANSITION MATS As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code CI of 291 North College Avenue EROSION CONTROL PLAN F1L Collins /� I Fort Collins, CO 80521 No Revisions: `-t ollin s Phone: (970) 221-6605 Revised: Engineer. J. MICHAELSEN Structure Fax: (970) 221-6378 - Designer. J. MICHAELSEN Numbers - Void: - Sheet Subset- EROSION Subset Sheets: EC-02 of 6 Sheet Number F I NOTES LEGEND 1. THE CONTRACTOR SHALL COORDINATE THE VEHICLE TRACKING CONTROL PAD NTH CONSTRUCTION AND O Y'. VTC (;::::::::::J ----------- TOE OF SLOPE STABILIZED CONSTRUCTION ENTRANCE SHALL MOVE AS NEEDED. O SF— (VEHICLE TRACKING CONTROL PAD) O — CONSTRUCTION BOUNDARY SILT FENCE 2. THE CONTRACTOR SHALL COORDINATE THE CONCRETE (REINFORCED) 20:1 TIE—IN SLOPE WASHOUT AREA WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. O EMBANKMENT PROTECTION LOG 3. EARTH DISTURBANCE OUTSIDE OF THE LIMITS OF EROSION LOG (12 INCH) (CULVERT EROSION LOG INLET PROTECTION) DISTURBANCE DESIGNATED ON THE PLANS WILL BE THE RESPONSIBILITY O OF THE CONTRACTOR TO RESTORE TO EROSION BALES EXISTING CONDITIONS. STORM GUTTER PROTECTION 4. SEE SHEETS SW-01 TO SW-04 FOR SWMP NOTES AND CONTRACTOR RESPONSIBILITIES. STIP STORM DRAIN INLET PROTECTION,�� 5. PROVIDE WATTLES AROUND STOCKPILE. FOR MORE NOTES ON STOCKPILE ❑ REFER TO SHEETS SW-01 TO SW-04. DIP-3 CONCRETE WASHOUT STRUCTURE o io EROSION BALES FILTER DROP INLET WATTLE) SCALE IN FEET Prim Date: July 26, 2010 DrawftFee Name: RM-1415.00North C0pkMdnDw9aGSheeWM001-32 ca1-05 Sheet Revisions As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code N Data: moments Init City281 North College Avenue of EROSION CONTROL PLAN Florizorrlal Scale Full: 1" = 20' Halt 1' = 40' O Fort Collins Fort Collins, CO 80521 No Revlabns: EngineerslScientists/Surveyors 5 O /� Phone: (970) 221-6605 �� Enlsed:gineer. J. MICHAELSEN Sire 3865JFK Parkway, eulkleV 2, Suite 200 P.O. Box 27099a O / �_ ( ) Fax: 970 221-6378 Devi ner. J. MICHAELSEN g Numbers ASSOCIATES (rg o 2°1ussaoeos2' O Void:Stoat Stoat Subset EROSION Subset Sheets: EC-03 of 6 Number Ll i i W W STIP )Lsv EXISTING INLET-/ _ Yt 1 o � • I II O I + . r9 4970 - 5FT TYPE R INLET ------_ + / A. I I6'e _ o � / Q J STGP STIP 5FT TYPE R INLET R — 0,16b 30+00 31.00 ._ I- 32+00 33.00 COLLEGE AVENUE 34+00 STGP - STIP STIF n �^ 5FT TYPE R INLET - LOC - -- -- -- '-' -'- - - - - . - - - - • \ �'\ 5FT TYPE R INLET \ STGP ._ —-,w o 9 0 ,. ,\ �/ O SF SF SFLF + N v NOTES 1. THE CONTRACTOR SHALL COORDINATE THE VEHICLE TRACKING CONTROL PAD WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 2. THE CONTRACTOR SHALL COORDINATE THE CONCRETE WASHOUT AREA WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 3. EARTH DISTURBANCE OUTSIDE OF THE LIMITS OF DISTURBANCE DESIGNATED ON THE PLANS WILL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RESTORE TO EXISTING CONDITIONS. 4. SEE SHEETS SW-01 TO SW-04 FOR SWMP NOTES AND CONTRACTOR RESPONSIBILITIES. 5. PROVIDE WATTLES AROUND STOCKPILE. FOR MORE NOTES ON STOCKPILE REFER TO SHEETS SW-01 TO SW-04. EXISTING INLET 4970 LEGEND VTC STABILIZED (VEHICLE TRACKING UCTION ENTRANCE CONTROL PAD)LOC O—sF—SILT FENCE (REINFORCED) OEMBANKMENT PROTECTION L� EROSION LOG (12 INCH) (CULVERT EROSION LOG INLET PROTECTION) O�,, ,,p� " 40 EROSION BALES OSTORM STIP GUTTER PROTECTION I� LOC � C - 5FT TYPE R INLET \ ) STCP 35+00 y P 970 .a I --------- TOE OF SLOPE CONSTRUCTION BOUNDARY 20:1 TIE-IN SLOPE STORM DRAIN INLET PROTECTION (� CONCRETE WASHOUT STRUCTURE DIP-3 � EROSION BALES FILTER (DROP INLET WATTLE) 0 10 20 40 SCALE IN FEET Pdnt Data: July 26, 2010 Sheet Revisions As Drawing Fie Name.FA32-1415.00 NOM CdlepWWnDwg"hests=001-32 C-01-MA" Date: Comments InR 281 North College Avenue COnStnlCt@fI City Of Fort Collins, CO 80521 No RaMslons: "°�"�'�" 1=u9: '"-� Had: ''-'°� � Fort Collins AVMSEngineers/way,BL i V SurveY� �,� Phone: (970) 221-6605 Revised: 3P0. Boox2 �'y' 11s�'g'ae200 �' / ` Fax: (970) 221-6378 ASSOCIATES (s o))2Y&5556 Void: IORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code EROSION CONTROL PLAN Engineer. J. MICHAELSEN Sbudure Designer J.MICHAELSEN Numbers Sheet Subset: EROSION Subset Sheets: EC-04 of 6 Sheet Number LOC o �J _ET 5FT TYPE R INLET 5FT TYPE R INLET rn v / _ 5FT TYPE R INLET--�- ~ STGP C STIP STIP 35+00 36-00 37+00 36+00 39+00 40+ 0 COLLEGE AVENUE r Af rrr;� y9/a STIP ~ EXISTING AREA INLET STGP DIP-3. qU, 1CFT TYPE R INLET J - LDG r{ 1 ni 63l� STGP I NOTES 1. THE CONTRACTOR SHALL COORDINATE THE VEHICLE TRACKING CONTROL PAD WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 2. THE CONTRACTOR SHALL COORDINATE THE CONCRETE WASHOUT AREA NTH CONSTRUCTION AND SHALL MOVE AS NEEDED. 3. EARTH DISTURBANCE OUTSIDE OF THE LIMITS OF DISTURBANCE DESIGNATED ON THE PLANS WILL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RESTORE TO EXISTING CONDITIONS. 4. SEE SHEETS SW-01 TO SW-04 FOR SWMP NOTES AND CONTRACTOR RESPONSIBILITIES. 5. PROVIDE WATTLES AROUND STOCKPILE. FOR MORE NOTES ON STOCKPILE REFER TO SHEETS SW-01 TO SW-04. Print Data: July 28, 2010 Sheet Revision N DravAng File Name: FA32-1415.00 North Colbp WalnDwgsZtwetsWM1-32 G-01-06 Date: Comments Horizontal Scale Full: 1 " = 20' Half: 1" = 40' oEngineers/Scientists/Surveyors 3.9E JFKox 4aWdYq 2, SWOe 200 O P.D. a270r04W 80 SM ASSOCIATESsesCOe' LEGEND w N - I 41+( OSTABILIZED CONSTRUCTION ENTRANCE -"""'-'" TOE TR SLOPE (VEHICLE TRACKING CONTROL PAD) LOC CONSTRUCTION BOUNDARY jl I r� SF —SF— O RCED) "� SILT FENCE (REINFORCED) ( 20:1 TIE-IN SLOPE EP EMBANKMENT PROTECTION LOG EROSION LOG (12 INCH) (CULVERT EROSION LOG INLET PROTECTION) O" EROSION BALES STGP STORM GUTTER PROTECTION I STIP 4b STORM DRAIN INLET PROTECTION O❑ CONCRETE WASHOUT STRUCTURE o 10 =o 40 EROSION BALES FILTER (DROP INLET WATTLE) o a DIP-3 SCALE IN FEET s NORTH COLLEGE AVENUE IMPROVEMENTS As Constructed Project No./Code Init. 281 North College Avenue - - - - EROSION CONTROL PLAN — FCity, Of Fort Collins, CO 80521 No Revisions: ort Collins Phone: (970) 221-6605 Revised: Engineer. J. MICHAELSEN Structure _. _. Fax: (970) 221-6378 - Designer. J. MICHAELSEN Numbers i - - — Void: Sheet Subset EROSION Subset Sheets: EC-05 of 6 Sheet Number NOTES 1. THE CONTRACTOR SHALL COORDINATE THE VEHICLE TRACKING CONTROL PAD WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 2. THE CONTRACTOR SHALL COORDINATE THE CONCRETE WASHOUT AREA WITH CONSTRUCTION AND SHALL MOVE AS NEEDED. 3. EARTH DISTURBANCE OUTSIDE OF THE LIMITS OF DISTURBANCE DESIGNATED ON THE PLANS WILL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RESTORE TO EXISTING CONDITIONS. 4. SEE SHEETS SW-01 TO SW-04 FOR SWMP NOTES AND CONTRACTOR RESPONSIBILITIES. 5. PROVIDE WATTLES AROUND STOCKPILE. FOR MORE NOTES ON STOCKPILE REFER TO SHEETS SW-01 TO SW-04. Print Date: July 25, 2010 Sheet Revisions DrmMng Fta Name: F.\32-1415.DO North CollegelMelnDwp%Shaera10 W1-3Y C-01-06 Init 281 North College Avenue Of Date: Commimts VCity Horizontal Scale Full: 1" = 20' Half: 1" = 40' } „ Fort Collins, CO 80521 Fort Collins o 0 IS Phone: (970) 221-6605 ��Engineers/Scientists/Surveyrxs 3055 e KK i ma 'eua°h°2'sue2°° P.O. O / Fax: (970) 221-6378 Fw llim, CO ASSOCIATES (9 0)2223,5556 60527 O LEGEND STABILIZED CONSTRUCTION ENTRANCE (VEHICLE TRACKING CONTROL PAD) LOC SILT FENCE (REINFORCED) EMBANKMENT PROTECTION EROSION LOG (12 INCH) (CULVERT EROSION LOG INLET PROTECTION) EROSION BALES STORM GUTTER PROTECTION STORM DRAIN INLET PROTECTION CONCRETE WASHOUT STRUCTURE EROSION BALES FILTER (DROP INLET WATTLE) As Constructed No Revisions: Revised: Void: ----------- TOE OF SLOPE CONSTRUCTION BOUNDARY 20:1 TIE—IN SLOPE o ZG� 0 10 20 40 SCALE IN FEET COLLEGE AVENUE IMPROVEMENTS EROSION CONTROL PLAN Engineer. J. MICHAELSEN Structure Designer..J.MICHAELSEN Numbers Sheert Subset EROSION Subset Sheets: EC-06 of 6 Project NoXode Sheet Number 1. Site Description F. Potential Pollutants Sources: See First Construction Activities under Potential Pollutant Sources. The EC! Additional information for permitted projects. For information only to fulfill the CDPS-SCP (Colorado Discharge shall prepare a list of all potential pollutants and their locations in accordance with subsection 107.25. Permit - Stormwater Construction Permit) A. Project Site Description: North College Avenue, also US Highway 287 and Colorado State Highway 14 (north of G. Receiving Water: 1. Outfall locations: A 36" RCP STA 19+45) the Jefferson Street), is a major north -south route through the City of Fort Collins which provides the northern proposed (at will outlet proposed water quality pond and into entryway into the City. The arterial provides both local and regional connectivity and carries a large volume the Poudre River. The existing City of Fort Collins storm sewer along North College Avenue from Lake of interstate truck traffic. The project area encompasses approximately 1/2 mile of North College Avenue Canal to the intersection of Hickory and North College shall be picked up in the proposed storm sewer. between Vine Drive and Hickory Street. The roadway is a four -lane, urban highway with a two-way left turn There are three ditches in the vicinity of the project site: Josh Aimes Ditch, Lake Canal and Dry Creek. lane through most of the corridor. The highway is generally shouldered with open, uncontrolled access, and All of these ditches ultimately flow into the Poudre River. limited storm drainage facilities. This 2. Names of receiving water(s) on site and the ultimate receiving water: The Poudre River project will entail widening North College, adding curb and gutter and sidewalk and improving the inadequate existing storm sewer system. 3. Distance ultimate receiving water is from project: The water quality pond discharges into the Poudre The construction activities on the site will include, but are not limited to: installation River, therefore it is immediately south of the project site. From the road construction it is of storm sewer, relocation of existing gas and electric, waterline lowerings, paving, excavation and grading of North College, approximately 600ft south. i landscape in the parkway along the corridor and in the projects' gateway. 4. Does the receiving water have an approved TMDL: Yes. The Contractor shall coordinate with the Colorado Department of Public Health and Environment Water Quality Control Division (the Division) to ensure B. Proposed Sequencing For Major Activities: The construction will follow the following general construction appropriate BMPs are incorporated into the plans. sequence: 1. Relocation of existing utilities along the corridor (gas, electric, waterlines) H. Allowable Non-Stormwater Discharges: It is anticipated that the Contractor shall obtain a dewatering permit 2. Siphon of Lake Canal - work in the ditch can only be completed from October 15`" to April 15`". from the Colorado Department of Public Health and Environment. Prior to the start construction the 3. Pedestrian Bridge across Lake Canal - work in the ditch can only be completed from October 15`" to April 15`". of contractor shall fill out a groundwater discharge permit stating how the groundwater will be handled 4. Installation of the water quality pond outfall pipe to the Poudre River during construction and the suggested point of discharge. Landscape irrigation return flows can be 5. Grading of the water quality pond near the Poudre River discharged into the proposed storm sewer as long as the water quality pond has been constructed with the 6. Installation of the storm sewer from the water quality pond to Lake Canal design water quality outlet structure. 7. Installation of the storm sewer and laterals on the west half of the street. Existing storm sewer is to be connected into the proposed storm sewer as encountered along the corridor. 5. Groundwater and stormwater dewatering: Discharge to the ground of water from construction dewatering 8. Road grading and widening of North College Avenue to follow the storm sewer installation on the west activities may be authorized provided that: half of the street 9. Installation of the storm sewer laterals the a. The source is groundwater and/or groundwater combined with Stormwater that does not contain pollutant) on east side of the street 10. Road grading and widening of North College Avenue to follow the storm sewer installation of the east b. The source and BMPs are identified in the SWMP. half of the street. C. Discharges do not leave the site as surface runoff or to surface waters. C. Acres of Disturbance: 6. If discharges do not meet the above criteria a separate permit from the Department of Health will be required. Contaminated groundwater requiring coverage under a separate permit may include groundwater Total area of construction site: +/- 11 acres contaminated with pollutants from a landfill, mining activities, industrial pollutant plumes, underground) Total area of disturbance: +/- 11 acres storage tank, etc. Acreage of seeding: +/- 2 acres I. Environmental Impacts: Earth disturbance outside the limits of disturbance shown on the will be the 1. Wetland Impacts: yes, 997 sf of temporary disturbance, 360 sf of permanent disturbance2. plans responsibility of the Contractor. Stream Impacts: yes (Poudre River) ' 3. Possible Threatened and Endangered Species: none D. Existing Soil Data: Subsurface conditions encountered in borings consisted of approximately 6 to 7 feet of silty sand and sandy clay fill over gravelly sand and sandy gravel underlain by sandstone and clay stone 2. Site Map Components bedrock. Sandstone bedrock was encountered below the sand and gravel at depths ranging from 14 to 17.5 ft. Pre -construction Clay stone was encountered at depths of 30 to 32.5 ft. The sand and gravel encountered were dense to very dense and the bedrock was very hard. Groundwater levels were measured at depths ranging from 6.5 ft to 10 ft below the existing ground surface. A. Construction Site Boundaries Shown in the Erosion Control Plans B. All Areas Of Ground Surface Disturbance: Shown in the Erosion Control Plans The materials found can be excavated using conventional heavy-duty excavation equipment. Excavations into the C. Areas Of Cut And Fill Proposed Contours are shown in the Erosion Control gravelly sands will likely encounter caving conditions. Excavations should be sloped or shored to meet local, Plans State and Federal safety regulations. The clay solids classify as type B soils and the sands as type C soils. D. Location Of All Structural BMPs Identified In The SWMP Shown in the Erosion Control Plans E. Location Of Non -Structural BMPs As Applicable In The SWMP Shown in the Erosion Control Plans E. Existing Vegetation, Including Percent Cover: The majority of the site is currently developed with the F. Springs, Stream, Wetlands And Other Surface Water Shown in the Erosion Control Plans ground surface being a paved surface such as asphalt or concrete. The location where the water is to be G. Protection Of Trees. Shrubs, Cultural Resources And Mature Vegetation Protected trees are labeled in quality pond constructed mainly consists of tall grasses, weeds and trees. The percent impervious for the existing water the Erosion Control Plans quality pond land is approximately 5%, the rest of the project is approximately 95%. Date of survey: March 2009 3. SWMP Administrator For Design: Professional Engineer with ECRUS g �Lt Print Dare: July zs, zoio Sheet Revisions pralFilollame:F:v32-14,s.00Naro,CasannanDwgekshwrsweoo,-38-$W-0,-oa.dw As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code pare: Comments Init. Horizontal Scale City 281NorthCollegeAvenue - SWMP Full: _ _ Half: Engineers/Scienti o Fort Collins CO 80521 No Revisions: Fort Collins, _ rveyors AVWS Phone: (970) 221-6605 Engineer. J. MICHAELSEN 0 Building 3sss aFtc Parkway, eowma z, soroe zoo O /� P.O. 22704M, S ` Revised: Slruclers Fax: cormCOm 7 ASSOCIATES (970) 221-6378 - - Desigrwr. J. Mill CHAELSEN Numbers c t970l223,5556 I Void:SheetSubsetSWMP Subset Sheets: SW-01of4 Sheet Number 4. Stormwater Management Controls First Construction Activities The Contractor Shall Perform The Following: A. Obtain Required Permits: Prior to the start of construction, the Contractor shall obtain the required stormwater permit (SWMP) B. Designate A SWMP Administrator/Erosion Control Supervisor: (To be filled out at time of construction; designate the individual(s) responsible for implementing, maintaining and revising SWMP, including the title and contact information. The activities and responsibilities of the administrator shall address all aspects of the projects SWMP ) C. Potential Pollutant Sources: Evaluate, identify and describe all potential sources of pollutants at the site in accordance with subsection 107.25 and place in the SWMP notebook. All BMPs related to potential pollutants shall be shown on the SWMP site map by the contractor's ECS. D. Contact the COFC, at a minimum, 24 hours prior to start of construction: D.A. Black, Environmental Regulatory Specialist Email: Dblack @fcgov.com Office: 970-224-6015 Cell: 970-218-3011 Fax: 970-221-6619 E. Best Management Practices (BMPs) For Stormwater Pollution Prevention Phased BMP Implementation During design: fields are marked when used in the SWMP. During construction: the ECS shall update the checked boxes to match site conditions. Clearly describe the relationship between the phases of construction and the implementation of BMP controls. Add a narrative to the table or to the site map describing why the BMPs are being used in specific locations NON -Structural BMP practices for erosion and sediment control; practices may include, but are not limited to: BMP Type Of Control BMP As Designed In Use On Site First Construction Activities During Construction Interim/Final Stabilization Surface Roughening/Grading Techniques Erosion x X Seeding Permanent Erosion x X Seeding Temporary Erosion x X Mulch/Mulch Tackifier Erosion x X X Soil Binder Erosion X Soil Retention Blanket Erosion x X X Vegetative Buffer Strips Erosion X X X Protection Of Trees Erosion x X X Preservation Of Mature Vegetation Erosion x X X X Other Print Date: July 26, 2010 N Drawing Flle Name: F:472-1415.00 North College aInDwgslSheets109001 Horizontal Scale Full: Half: o AVM% Engineers my,111 sts1,11 yors P.O. JFK 70460 y, BullOhq 2, auXe 200 frC3� P.O. Box 27e980 ASSOCIATES Pod nissse 80�7 Sheet Revisions Date: i Comments City, of Flirt Collins Structural BMP practices for erosion and sediment control; practices may include, but are not limited to: TFIRST TYPE OF BMP as CONSTRUCTION DURING INTERIM/FINAL BMP CONTROL Designed ned it ACTIVITIES CONSTRUCTION STABILIZATION Earth Berm/Diversion erosion x x Check Dams sediment x x Silt Fence sediment x x x Erosion Logs sediment x x x Temporary Sediment Trap/Basin sediment x x Permanent Sediment Trap/Basin sediment x x x Embankment Protector erosion x x x Inlet Protection erosion x x x Outlet Protection erosion x x Concrete Washouts construction x x Stabilized Construction Entrance construction x x x Dewatering sediment x x Temporary Stream Crossing erosion x x Other: Snout and WQ Outlet Structure Sediment X x • Erosion control devices are used to limit the amount of erosion on site. • Sediment control devices are designed to capture sediment on the project site, • Construction control are BMPs related to construction access and staging. • BMP locations are indicated on the site map. • BMP installation details and general narratives are in the SWMP notebook. BMPs must be installed prior to any grading or construction on the project site. Temporary sediment control measures shall be checked regularly and after storms for silt buildup. Site inspections must occur, at a minimum, every 14 days and after storm events according to spec 208.03 and the CDPS-SCP. Silt fences shall be properly installed and maintained including checking for undermining. Inlet protection shall be checked for silt buildup, if necessary clean or replace gravel to maintain a protective barrier around all inlets which may receive storm water. Erosion and sediment control measures must be replaced or repaired as needed during regular inspections. The temporary structures must be maintained until the site has uniform cover equivalent to 70% of existing site conditions. Cover may include vegetation in the interim condition. Please see the erosion control details, plans and specs. Following site construction the goal is to achieve a stabilized cover condition to provide long term storm water protection. Stabilization is quantified by achieving uniform cover equal to 70% of the pre -disturbance condition. Final stabilization shall be achieved by installation of the permanent erosion control methods. Immediately after the storm sewer improvements have been constructed, permanent erosion control practices are to be installed and maintained. Temporary erosion and sediment control measures can be removed after establishment of permanent stable vegetation to the satisfaction of the City of Fort Collins inspector. Surface Roughening/Grading Techniques/Embankment Protector: Any disturbed slopes adjacent to the Poudre River shall be protected with redundant BMPs. BMPs shall be dependant on the time of year and phase of construction. Toes of temporary slopes shall be protected by BMP (ie: silt fence). Slopes still being worked on shall be left in a roughened condition at the end of the day or temporary mulch shall be applied. If drainage from roadway is directed towards new, incomplete slopes, toes of slopes shall be protected by placing a berm at the end of the day or other BMPs as directed. Temporary seeding and mulch shall be used on the graded slopes of the Poudre River and the water quality pond to stabilize grades prior to when permanent seeding is in place. As Constructed 281 North College Avenue Fort Collins, CO 80521 No Revisions: Phone: (970) 221-6605 Revised: Fax: (970) 221-6378 Void: JORTH COLLEGE AVENUE IMPROVEMENTS Project No. ode SWMP — Engineer. J. MICHAELSEN Structure Designer. J. MICHAELSEN Numbers Sheet Subset: SWMP_ Subset Sheets: SW-02 of 4 Sheet Number Seeding Permanent: Seeding is used to control runoff and erosion on disturbed areas. Drill seeding shall occur on slopes flatter than 2:1 and shall occur on the contour of the slope. Completed areas (any portion of a slope that is at final grade) shall be seeded within 48 hours during seeding seasons. Seeded areas shall be inspected frequently for areas of failure. When Engineer approves the top portion of the slope (approx 15ft) can remain unseeded for paving operations to occur. Once paving operations are completed in an area, shouldering shall occur immediately. Seeding per section 9 of the SWMP shall then take place within 48 hours. Slopes that had been previously seeded and were disturbed by paving/shouldering operations shall be reseeded at no additional cost to the project. Seeding Temporary: Temporary seeding shall be used to stabilize slopes until final grades are reached or until permanent seeding can be applied. SEE LANDSCAPE PLANS FOR TEMPORARY SEED MIX Mulch and Mulch Tracker: In accordance with subsection 213.03 (a) Soil Retention Blanket (SRB) (also called out as a Turf Reinforcement Mat on the plans): SRB is a permanent erosion control feature that is to be placed at the spillway in-between water quality ponds, from Lake Canal to the water quality pond, as well as at the spillway into the Poudre River. A permanent SRB shall also be installed at the end of the curb and gutter at the north end of the water quality pond. The local storm runoff will exit the curb and gutter and sheet flow to the water quality pond, SRB is required to prevent erosion. If temporary blankets are required because failure of slope where flexible growth medium or mulch is applied on temporary slopes, the blanket must be 100% biodegradable. Soils shall be properly prepared prior to placing blanket. On Slopes when seeding cannot occur due to seasonal constraints, a temporary berm, erosion log or other BMP shall be placed at the top of slope to prevent stormwater from flowing onto the slope and causing erosion. In addition flexible growth medium or mulch/mulch tactifier shall be applied on the slopes. If erosion occurs on slope, flexible growth medium or mulch/mulch tackifier shall be replaced by a blanket as a temporary measure. Once seeding can occur blanket shall be removed and disposed of and a new soil retention blanket shall be used. Vegetation along the Poudre River shall be protected where possible. Minimal disturbance will be required during the construction of the water quality outlet pipe. A soil retention blanket shall be placed on the bank of the Poudre River. The blanket shall be installed occurring to details and specs. Existing Vegetation shall be cut back and a 4" thick layer of soil shall be applied. This will give the existing vegetation a greater chance of survival. The soil shall be smoothened prior to construction of the blanket/mat to ensure close contact to the soil. The mat shall be applied around the existing trees. Protection of trees and mature vegetation: Existing vegetation shall be preserved where possible. where existing land is disturbed, temporary seeding is to be initiated until permanent seeding is established. Silt Fences: Silt fences shall be used to capture sediment laden runoff from disturbed areas during construction. It shall be placed on the contour; ends shall be j-hooked to prevent water from running around the ends of the fence. A maximum drainage area of Y acre per 100-ft of silt fence; maximum slope length behind the barrier is 100 ft; maximum gradient behind the barrier is 2:1. Silt fences shall be installed along the Poudre River and Lake Canal. The fence shall be installed to minimize the stormwater runoff and sediment into the river and irrigation channel. Inlet Protection: Storm Drain Inlet Protection: The purpose of the storm drain inlet protections are to protect the existing and proposed inlets and prevent storm water and sediment from entering the existing storm drainage system or receiving bodies of water. Inlet protections are to be placed at all existing and proposed inlets. If the existing inlets are to be removed, they require protection until they are removed. Inlets consist of street inlets as well as pond outlet structures. Erosion Bales Filter: The purpose of the bale filter is to prevent storm water and sediment from entering the existing storm drainage system and the Poudre River. Bale filters are to be placed on the proposed area inlets as well as the inlets making up the water quality pond outlet structure. Storm Gutter Protection: Gutter protection is placed along the gutter flowline to prevent storm water runoff and sediment from leaving the site via the curb and gutter. North College slopes from North to South and shall be placed along the entire stretch of improved roadway. Gutter protection shall also be placed at the corners of all intersections. Outlet Protection: Transition Mats are a permanent erosion control feature and shall be placed at the end of the proposed storm sewer prior to discharge into the water quality pond or Poudre River. Stabilized Construction Entrance: A vehicle tracking pad shall be placed at the entrance into the water quality pond to prevent the spreading of sediment offsite and shall be installed in accordance to CDOT Spec 208.04. Mud and debris should not be tracked along roadways and allowed to enter any non -protected drainage. Off -site soil tracking shall be controlled in the street. At a minimum, of Daily removal of sediment shall occur when significant buildup is evident so there is no offsite sediment accumulation and in accordance to section 208.04F. CDOT nor the CDPS-SCP allow for any accumulation of sediment on paved surfaces or offsite. , Other: An Oil -Water -Debris Separator shall be installed in a manhole upstream of the water quality pond to prevent the accumulation of trash and sediment in the water quality pond. Other (Water Quality outlet Structure): A water quality outlet structure designed using Urban Drainage Criteria Manual shall be installed at the water quality pond. The purpose of the structure is to provide water quality and remove sediment prior to discharging into the Poudre River. Dewatering: Dewatering shall be done in such as manner as to prevent potential pollutants from entering state waters. F. Offsite Drainage (Run On Water) 1. Describe and record BMPs on the SWMP site map that have been implemented to address run-on water in accordance with subsection 208.03. G Erosion Bales: These are to be placed in the proposed Water Quality pond in the flowline of the pond. The purpose of the log ditch is to prevent the sediment that from the slopes of the water quality pond to enter to Poudre River. They are also to be H placed in the Lake Canal during construction of the storm sewer under Lake Canal. The construction will occur when the canal is dry and therefore can be used. Permanent Sediment Trap/Basin: The water quality pond is considered a permanent basin. The pond shall be constructed early in the project prior to the construction of the proposed storm sewer. The pond shall be cleaned as needed during construction. Cleaning shall be paid for as Sediment Removal and Disposal. Print Date: July 26, 2010 Sheet Revisions Drawing File Name: F:X32-1415.00 North College\MalnDwgaZheets10900t-36SW-01-04.dwQ Date: Comments Horizontal Scale Full: Half: Engineers/Sci BWWk slSu its 200 3ti95 JFK 70460Parksy, BWldkp 2, Suae 200 O AWESP.O. Box 270460 ASSOCIATES js7o 223-ssaOBe ' 0 Stabilized Construction Entrance/Vehicle Tracking Control 1. BMPs shall be implemented in accordance with subsection 208.04. Perimeter Control 1. Perimeter control shall be established as the first item on the SWMP to prevent the potential for pollutants leaving the construction site boundaries, entering the stormwater drainage system, or discharging to state waters. 2. Perimeter control may consist of vegetation buffers, berms, silt fence, erosion logs, existing landforms, or other BMPs as approved. 3. Perimeter control shall be in accordance with subsection 208.04. As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS 281 North College Avenue SWMP Project No./Code - Fort Collins, CO 80521 No Revisions: Phone: (970) 221-6605 Revised: Engineer. J. MICHAELSEN SWcture Fax: (970) 221-6378 Designer. J. MICHAELSEN Numbers Void: Sheet Subset SWMP �. Subset Sheets: SW-03 of 4 Sheet Number 5. During Construction Responsibilities of the SWMP administrator/erosion control supervisor during construction. The SWMP should be considered a "living document" that is continuously reviewed and modified. During construction, the following items shall be added, updated, or amended as needed by the SWMP Administrator/Erosion Control Supervisor (ECS) in accordance with section 208. A. Materials Handling And Spill Prevention - see spill prevention control section of the SWMP notebook B. Stockpile Management - topsoil stockpiles shall be stabilized by spraying a flexible growth medium on the soil immediately upon stockpile completion. Toes of stockpiles shall be protected immediately with a berm, silt fence, etc. as directed by the Erosion Control Supervisor with the Engineers approval. Stockpiles and BMPs shall be marked on the same site map. Other erodible stockpile (including spoils piles) shall be protected immediately with gravel bags, berms, erosion logs, etc. as directed. BMP shall be indicated on the site map. When piles need to be accessed during the day, BMP may be removed for short periods of time for access to the pile. BMP shall be back in place at the end of the day. C. Grading And Slope Stabilization - shall be roughened at the end of each day D. Surface Roughening - see above sections E. Vehicle Tracking - see above sections F. Temporary Stabilization - see above sections G. Concrete Washout 1. Concrete washout water or waste from field laboratories and paving equipment shall be contained in accordance with subsection 208.05. H. Saw Cutting - Saw cutting will be vacuumed at the time of cutting. Refer to CDOT spec 208.04G for saw cutting. The Erosion Control Supervisor shall develop a plan for saw cutting containment to be approved by the Engineer. I. New Inlet/Culvert Protection - see above sections 3. Street Cleaning - CDOT nor the CDPS-SCP allow for any accumulation of sediment on paved surfaces or offsite. Offsite tracking shall be controlled in accordance to section 208.04F. 6. Inspections A. Inspections shall be in accordance with subsection 208.03 (c). 7. BMP Maintenance A. Maintenance shall be in accordance with subsection 208.04 (e). 8. Record Keeping A. Records shall be in accordance with subsection 208.03 (c). 9. Interim And Final Stabilization A. Seeding Plan: Soil preparation, soil conditioning or topsoil, seeding (native), mulching (weed free), and mulch tackifier will be required for an estimated 2 acres of disturbed area within the right-of-way limits which are not surfaced. For the types and rates that shall be used with this project, refer to the Landscape Plans. B. Seeding Application: Drill seed 0.25 inch to 0.5 inch into the soil. In small areas not accessible to a drill, hand broadcast at double the rate and rake 0.25 inch to 0.5 inch into soil. C. Mulching Application: Apply 1 % tons of certified weed free hay per acre mechanically crimped into the soil in combination with an organic mulch tackifier and in accordance to the spec. D. Special Requirements: Due to high failure rates, hydromulching and/or hydroseeding will not be allowed. E. Soil Conditioning And Fertilizer Requirements: 1. Fertilizer will not be required on the project. 2. Soil conditioner, organic amendment shall be applied to all seeded areas at 3 cy/1000 sf. F. Blanket Application: On slopes and ditches requiring a blanket, the blanket shall be placed in lieu of mulch and mulch tackifier. See SWMP for blanket locations. Print Date: July 26, 2010 \ Drawing File Name: F:13&1415.00 North CoilsgeWalnDwgsZheeb101K01 -01-04. Date: Horizontal Scale Full: Half. 0 c S Engine ftkweyi WWQ 2Sunreyors 0 S P.O. Ma PeAwey, edwq t �� a10 O P.O.a0a%.00 ASSOCIATES 980627 C__) Sheet Revisions Comments in City of Flirt Collins G. Reseeding Operations/Corrective Stabilization Prior To Final Acceptance. 1. Seeded areas shall be reviewed during the 14 day inspections by the Erosion Control Supervisor for bare soils caused by surface or wind erosion. Bare areas caused by surface or gully erosion, blown away mulch, etc., shall be re -graded, seeded, mulched and have mulch tackifier (or blanket) applied as necessary. 2. Areas where seed has not germinated after one season shall be evaluated by the Engineer and CDOT Landscape Architect. Areas that have not germinated shall have seed, mulch and mulch tackifier (or blanket) applied. Work shall be done at the expense of the Contractor. 3. The Contractor shall maintain seeding/mulch/tackifier, mow to control weeds or apply herbicide to c weeds in the seeded areas until final acceptance. 10.Prior To Final Acceptance A. Final acceptance shall be in accordance with subsection 208.061. 11. Tabulation Of Stormwater Ouantities Pay Item Description Unit Quantity 207 Topsoil Cy 3250 207 Stockpile Topsoil Cy 3250 208 Erosion Log 12 Inch) LF 30 208 Erosion Bales Weed Free EA 17 208 Silt Fence Reinforced LF 361 208 Concrete Washout Structure Each 1 208 Storm Drain Inlet Protection Each 3 208 Storm Gutter Protection Each 7 208 Stabilized Construction Entrance Each 1 208 Sediment Removal And Disposal LS 1 208 Erosion Control Supervisor LS 1 208 Erosion Bale Inlet Filter Each 10 212 Seeding Native Acre 2 212 Seeding (Temporary) Acre 2 213 Mulching Weed Free StrawAcre 420 TRM Class I Sy 295 420 TRM Class II Sy 1110 420 TRM Class III Sy 1110 420 Transition Mats SF 1305 601 lConcrete Class 8 Trickle Channel) Cy 40 1. BMP maintenance shall be paid for as: Section 208, Sediment Reomval and Disposal (Lump Sum) 2. It is estimated that 3 concrete washout structures will be required on the project. One concrete was structure shall be used for the field laboratories. 3. It is estimated that 1 stabilized construction entrance(s) will be required as directed to minimize vehicle tracking control. Locate BMP on the SWMP map. 4. Maintenance of seeded areas shall be paid for as: [FA Erosion Control, 212 Seeding (native), 214 Landscape Maintenance Lump Sum, 203 Labor Hours, or included in the price of the work] 281 North College Avenue Fort Collins, CO 80521 Phone: (970) 221-6605 Fax: (970) 221-6378 As Constructed NORTH COLLEGE AVENUE IMPROVEMENTS Project No./Code SWMP No Revisions: Revised: Engineer. J. MICHAELSEN Structure -- - Designer.J. MICHAELSEN Numbers Void: Sheet Subset SWMP Subset Sheets: SW-04 of 4 Sheet Number No Text w. •;y ;.- - . IN No i' ' ems• •� 1 ,. \� ' �: OfNo ! No � I 1 ry 1 ! i I % i✓ "' ! /�Exiii j 1 exs 1 I it r r.9, 1. ! i Ex � s � C / 1 rxe ia pit I'mi 1 - � _ ram,,,41 1 1jI` r 1� 1 N x r 1< i- i'= EX6 No IIIIIP ••—.._ _.._ ...._.._. FX7 . . oII. i COLLEGE AVENUE ! .._ To_u_ L._ •_u_.. _..�_ �._. _-- _.._ ! -- ._.._.._.._..__.._.._.._.._.., .._.._.._ _.._ Mr _ u. r /J v V .ry i Qr'i. d .. ••4i a_ vd �y FIGURE 2.1fool 7� +1 ` EXISTING BASINS �� ASSOCIATES 2 of 3 - SCALEIN�- -_ No Text 4 v ' r i •err i i i r. `i 1 Wz " __ 0.37 ES 'e sa Si El .. .. —.1 .. I� E3 - E13 �105 IN AVMS a, Ji 100—YEAR FLOODPLAIN 10Vw �� ,i i. z MAIN „FLOW . PATH W 1 C'A STORM SEWER i FIGURE 3.1 \ PROPOSED BASINS 1 1 of 3 Of USL 1 1 I I 1 1 1 1 1 1 1 O I .r„ ' 200 icy` i i ------------------- too ' % I -„sex Of I % 1 Of I .n f 1 j f ` i x' ,• � I � �5a97 a �i Of 0SO j s .Ci7 j= j I i :% t NOON \ J i COLLEGE AVENUE _.._. _.._.._.. _.._.._.._.. L.._.._.._.._..t.._.._.._.. f._.._ _.. _. _.. _.._ ._.._• , , 'tli, Leo a: � PROPOSED BASINS r . z ASSOCIATES T $CAtE IV. £E£I-- 2 of 3 No Text