Loading...
HomeMy WebLinkAboutDrainage Reports - 12/18/2001i Drainage Design Considerations for Kechter Road Improvements Fort Collins, Colorado December 18, 2001 JAh 1 0 2002 NORTHERN Drainage Design Considerations for Kechter Road Improvements Fort Collins, Colorado December 18, 2001 Prepared For: The Everitt Companies Fort Collins, Colorado 80525 Prepared By i7zi!i3T Northern Engineering Services, Inc 420 S. Howes, Suite 202 Fort Collins, Colorado 80521 Phone:(970) 221.4158 Project Number: FLS 00-059 December 18, 2001 City of Fort Collins Stormwater Utility 700 Wood Street Fort Collins, Colorado 80522 RE: Kechter Road Improvements Fort Collins, Colorado Project Number: 00-059 Dear Staff: Northern Engineering Services, Inc. is pleased to submit this Final Drainage Report for the Kechter Road Improvements associated with Fossil Lake Second Filing for your review. It is Northern Engineering Services, Inc. understanding that this report is to be submitted as an amendment to the Fossil Lake Second Filing report dated May 3, 2001. We understand that review by the City of Fort Collins is to assure general compliance with standardized criteria contained in the Storm Drainage Design Criteria and Construction Standards. This report was prepared in compliance with technical criteria set forth in the City of Fort Collins Storm Drainage Desien Criteria and Construction Standards manual. If you should have any questions or comments as you review this report, please feel free to contact us at your convenience. Sincerely, NORTHERN ENGINEERING SERVICES, INC. m Fse Ames III, E.I.T. M Project Engineer r: Roger A. urtiss, P.E. __ 27362 Project ManagerNice President s 420 SOUTH HOWES, SUITE 202, FORT COLLINS, COLORADO 80521, (970) 221.4158, FAX (970) 221-4159 Table of Contents VICINITY MAP I. INTRODUCTION 1.1 Objective...................................................................................... 1.2 Mapping and Surveying................................................................ 1.3 Site Reconnaissance...................................................................... II. SITE LOCATION AND DESCRIPTION 2.1 Site Location................................................................................ 2.2 Site Description............................................................................ III. PRE -DEVELOPMENT CONDITIONS 3.1 Major Basin Description................................................................ 3.2 Pre -development Drainage Patterns ............................................... IV. POST -DEVELOPMENT CONDITIONS 4.1 Post -development Conditions......................................................... 4.2 Design Criteria and References...................................................... 4.3 Hydrologic Criteria.........:....................................................I......... 4.4 Hydraulic Criteria.......................................................................... 4.5 Drainage Patterns......................................................................... 4.6 Irrigation........................................................................................ 4.7 Detention........................................................................................ 4.8 SWMM Modeling......................................................................... V. WATER QUALITY 5.1 Water Quality Measures and Criteria ............................................. VI. EROSION CONTROL PLAN 6.1 Erosion Control Plan and Criteria .................................................. 6.2 Rainfall Erosion Control Plan ........................................................ VII. CONCLUSIONS 7.1 Compliance with Standards........................................................... REFERENCES....................................................................................... APPENDICES APPENDIX A- Hydrology APPENDIX B - Design of Swales APPENDIX C - Design of Culverts & Storm Lines APPENDIX D- Design of Riprap APPENDIX E- Design of Inlets & Sidewalk Culverts APPENDIX F - Street Capacity Calculations APPENDIX G- Design of Water Quality Pond Outlet APPENDIX H- Design of Irrigation System Page 1 1 1 2 2 2 2 3 3 3 4 4 5 5 5 5 P Drainage Design Considerations Northern Engineering Services, Inc Kechter Road Improvements ' December, 2001 Drainage Design Considerations for ' Kechter Road Improvements Fort Collins, Colorado ' December, 2001 ' I. INTRODUCTION 1.1 Objective This report summarizes the results of a comprehensive analysis of both pre and post - development hydrologic and hydraulic conditions, for the Kechter Road Improvements. 1.2 Mapping and Surveving ' King Surveyrors of Windsor, Colorado provided aerial topography of the site with a contour interval of one (1) foot. Supplemental topography north of Kechter Road, east of McClelland's channel was obtained from digitized City of Fort Collins Orthophoto Maps flown ' April 12, 1984. 1.3 Site Reconnaissance The project engineer conducted a site visit on May 6, 1998, then again in June 2001. Based on the topographic mapping, existing drainage basins and land use were confirmed as well as existing structures. The location and dimensions of existing culverts were verified as well as their condition and flow direction. II. SITE LOCATION AND DESCRIPTION 2.1 Site Location ' The Kechter Road Improvements associated with Fossil Lake Second Filing are located in the West Half of Section 9, Township 6 North, Range 68 West of the Third Principal Meridian in Larimer County, Colorado (See Vicinity Map). The stretch of roadway is bounded by the ' intersection of Ziegler Road and Kechter Road on the west and the Fossil Lake Second Filing boundary on the east. The north and south boundaries consist of agricultural land. 2.2 Site Description The Kechter Road Improvements constitute approximately 6.63 acres of improved roadway. Existing agricultural land to the north drains away from the road, northeast, to McClelland Channel. Approximately 20.74 acres of agricultural land on the south side of the road drains northeast into Kechter Road before traveling east into McClellands Channel. Some agricultural land to the south drains directly into McClellands Channel. Approximately 235 acres south of Kechter Road and west of Ziegler Road drains northeast through two existing 18" culverts in the Ziegler\Kechter intersection to McClellands Channel. There are existing residences offsite on the south side of the road. ' Drainage Design Considerations Northern Engineering Services, Inc Kechter Road Improvements ' December, 2001 III. PRE -DEVELOPMENT CONDITIONS 3.1 Major Basin Description The roadway improvements are located in the McClellands Creek Basin. According to ' the McClelland's Basin Master Drainage Plan, detention was required in the McClelland's Basin with a maximum 10-year release rate of 0.2 cfs/acre and a maximum 100-year release rate of 0.5 cfs/acre. The following quote from the Fossil Lake Second Filing Report dated May 3, 2001 t demonstrates that no detention is required. "In discussions with the City of Fort Collins, it was decided it would be better not to detain runoff from the site. Releasing the runoff immediately would actually lower the peak flow in the McClelland Drainageway downstream from the site." The Second Filing report goes on to say that the McClelland Drainageway SWMM model was updated for the developed conditions, which include the Kechter Road improvements. ' 3.2 Pre -development Drainage Patterns The existing drainage south of the roadway travels northeast until it is intercepted by a ' swale along the south side of the roadway. The flow is then directed east to McClellands Channel along the roadway under two existing driveways. At several locations the swale terminates and flow is conveyed in the roadway until the swale begins again. Drainage north of ' the roadway is conveyed away from the road, northeast, overland until it reaches McClellands Channel. There are two existing corrugated metal pipes (CMP) in the intersection of Kechter Road and Ziegler Road. The CMP's are used to convey irrigation flows associated with the irrigation ditches running along the east and west side of Ziegler Road and to convey drainage flows associated with approximately 235 acres west of Ziegler Road. The flows are conveyed to the property northeast of the Kechter Road and Ziegler Road intersection. The improvements to ' Kechter Road propose the removal or flow fill of the CMP's and replacement with larger reinforced concrete pipe. ' IV. POST -DEVELOPMENT CONDITIONS 4.1 Post -development Conditions The Kechter Road Improvements include the following: ' • Widening the existing roadway and adding vertical curb and gutter • Replacement of the existing CMP's at the intersection of Kechter Road and Ziegler Road. ' • McClelland Channel improvements as described and approved with Fossil Lake Second Filing Plans, including the box culvert. • 12" waterline installation across McClelland Channel • Water Quality Pond as approved with the Fossil Lake Second Filing Plans • Conveyance of irrigation flows across Kechter Road ' 4.2 Design Criteria and References Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design Criteria Manual, (SDDCM), Storm Drainage Criteria Manual by the Urban Drainage and Flood Control District, the Final Drainage Study for Fossil Lake P.U.D. Second, Fort Collins Colorado dated May 3, 2001 and McClellands Creek Master Drainage Plan Updated, November 30, 2000 have been referenced for this study. Drainage Design Considerations Kechter Road Improvements December, 2001 Northern Engineering Services, Inc 4.3 Hydrologic Criteria The Rational Method has been used to estimate peak stormwater runoff associated with most delineated basins. The exception to the rational method is the 235-acre basin F2, which used a 10-year rate of 0.2 cfs/acre and 100-yr rate of 0.5 cfs/acre. These previous rates were agreed upon by the City of Fort Collins Stormwater Department on October 17, 2001 in a phone conversation. Furthermore the rates are supported by the McClellands Creek Master Drainage Plan Update. The 2-year, 10-year and major 100-year design storms have been used in the design of the proposed drainage system, which includes storm inlets, culverts and swales. Rainfall intensity data for the Rational Method has been taken from Figure 3-1 a updated by the City of Fort Collins in 1999. These rainfall intensities were used for the design of new improvements being proposed with the roadway. 4.4 Hydraulic Criteria The City of Fort Collins Storm Drainage Design Criteria has been referenced for all hydraulic calculations. In addition, the following computer programs have been utilized: • The computer program "UDINLET" has been used to analyze inlet capacities • The computer program "F1owMaster" has been used to analyze the swales and street capacities • The computer program HY-8 has been used to analyze the culverts 4.5 Drainage Patterns Runoff from basin F2 will flow through an existing swale system along the south edge of the Kechter roadway until it dumps into an existing ditch at the southwest corner of the Ziegler/Kechter intersection. Flow that enters the ditch will be conveyed, east, across Ziegler Road by three (3) 19"00" HERCP's. Then northeast in Swale 2 to three (3) 19"00" HERCP's which cross Kechter Road. On the north side of Kechter Road the flow will exit the HERCP drainage pipes and be conveyed in Swale 1 to McClellands Channel. All of the above -mentioned HERCP pipes have been designed to hand the 10-year flow. Basin F1 runoff flows overland until the existing irrigation ditch along the east side of Ziegler Road intercepts it. Until the ultimate build -out of Ziegler Road occurs the runoff, 2.5 cfs 10-yr, will flow through the rerouted irrigation system. Once the ultimate build out of Ziegler Road occurs the flow will be routed through the drainage system, not the irrigation system. The drainage system has been designed to handle the ultimate build out of Ziegler Road. After the ultimate build out has occured the runoff at Design Point F 1 will combine with the runoff from F2, to flow east.in a Swale 2, then north across Kechter Road in three (3) 19"00" HERCP's that have been design to handle the 10-year flow of 49.5 cfs. From there the flow will be conveyed in Swale 1 to the McClellands Channel. Both culverts for Basins F1 and F2 have been sized to handle the 10-year flows. In a 100-yr event, flow above and beyond the culverts capacity will be conveyed north in Ziegler Road to Sage Creek Road. Two existing sump -curb inlets at the PCR's in Sage Creek Road will intercept some of the flow and place it in the existing detention pond PB, built with Sage Creek. Pond PB drains into McClellands Channel. Flow that is not intercepted by the inlets will continue to flow north in Ziegler road until it reaches a low point in the road approximately 200- feet north of McClellands Channel. At the low point the runoff will be conveyed south in swales along the east and west sides of Ziegler Road until the runoff reaches McClellands Channel. 3 1 Drainage Design Considerations Northern Engineering Services, Inc Kechter Road Improvements December, 2001 Flow in existing basin E1 will be conveyed northeast overland to a swale along the south ' side of Kechter Road. Flow traveling east in the swale will be diverted to the street through a sidewalk culvert and chase prior to reaching the existing residence. From there the flow will travel east in the curb and gutter combining with flows from basins E2 and 1 as it travels. At the intersection of Kecther Road and Trilby Road the flow will follow the curve return and be deposited into the proposed Swale 7 of Fossil Lake Second Filing, then pass through Culvert 4 of Fossil Lake Second Filing into Water Quality Pond 1 of Fossil Lake Second Filing. Swale 7, Culvert 4 and Water Quality Pond 1 of Fossil Lake Second Filing are being constructed with the Kechter Road Improvements. Proposed runoff associated with Basin 2 will flow overland to curb and gutter, where it ' will be conveyed to Design Point 2. Design Point 2 will be a 15' inlet in the McClelland's Channel box culvert that has been sized to handle the 100-year flow of 18.9 cfs. Runoff from basin 3 will be conveyed overland to curb and gutter, upon which it will flow to a 5' inlet in the McClelland's Channel box culvert at Design Point 3. The 5' inlet has been designed to handle the 100-year flow of 8.9 cfs. 4.6 Irri atg ion As mentioned above the existing irrigation at the intersection of Kechter and Ziegler ' Road will be conveyed across Kechter Road. Irrigation flows in the ditch along the east side of Ziegler road will be routed east in Ditch D2 to a proposed 19"00" HERCP pipe under Kechter Road. The HERCP pipe will drain into a sump manhole that will act as the starting point for an inverted siphon to transport the irrigation flows west under the proposed Swale 1 in a 18" RCP pipe. Once the flow has crossed Swale 1 it will enter another sump manhole and exit at a higher elevation. This, second manhole, will act as the end of the inverted siphon. Flow will leave the second manhole in an 18" RCP and be conveyed west in Ditch D I to the existing ditch that runs north along Ziegler Road. Approximately 5 acres of existing agricultural land southeast of the Kechter\Ziegler intersection is irrigated during the growing season. The tail water for the irrigated land currently runs under two 12" driveway culverts to ditch, then to McClellands Channel. Due to expressed concern from the City of Fort Collins Engineering Department that the tail water entering the street will create maintenance problems, a drainage pipe has been placed under the sidewalk at the City's suggestion to alleviate any tail water problems. The pipe will connect the previously mentioned 5-acre field with Swale 7. Flow that enters the pipe will be routed through Swale 7 and Water Quality Pond 1, before entering McClellands Channel. The drainage pipe has been sized to handle the 100-year runoff of 5.8 cfs. This will provide adequate size for irrigation runoff and storm water. 4.7 Detention No detention is required as agreed upon in the Fossil Lake Second Filing Drainage report dated May 3, 2001. Water Quality Capture Volume will be provided in the form of Water Quality Pond 1, designed with Fossil Lake Second Filing, to be constructed with Kechter Road. 1 4 I Drainage Design Considerations Kechter Road Improvements December, 2001 Northern Engineering Services, Inc 4.8 SWMM Modelint? There will be no SWMM modeling performed as part of this Kechter Road drainage study. All SWMM modeling has been completed and approved by the City of Fort Collins as part of the Fossil Lake Second Filing P.U.D. V. WATER QUALITY 5.1 Water Quality Measures and Criteria Sizing for a temporary water quality pond will not be provided. The scheduled construction of Fossil Lake Second Filing, Phase 3 does not lag behind the Kechter Road Improvements long enough to justify a temporary water quality pond. Instead it is proposed that the final Water Quality Pond 1 designed with Fossil Lake Second Filing be constructed, thereby satisfying the long term needs of the area. The original design of Water Quality Pond 1 called for a standpipe structure. That design has been altered with this project at the City's request to use an orifice plate designed according to Urban Drainage standards. VI. EROSION CONTROL PLAN 6.1 Erosion Control Criteria The erosion control plan presented here is intended to control both wind and rainfall erosion. The Erosion Control Reference Manual for Construction Sites (ECRM), City of Fort Collins, has been referenced for this erosion control plan. 6.2 Rainfall Erosion Control Plan The proposed rainfall erosion control plan during construction will consist of temporary structural erosion control measures. Gravel inlet filters will be placed at all curb inlets. Straw - bale sediment traps will be placed at the entrances of all culverts. Silt fencing will be installed at the locations specified on the Grading and Erosion Control plan to prevent the migration of sediment. Straw -bale dikes will be place in the swales at a minimum spacing of 200-feet. All procedures listed under the City of Fort Collins Standard General Grading and Erosion Control Notes shall be strictly followed. It has been clearly noted on the Grading & Erosion Control Plan that no soils shall remain exposed for more than thirty days before requiring temporary or permanent erosion control measures, unless approved by the City of Fort Collins Stormwater Utility. The proposed erosion control plan after construction will consist of permanent riprap, which will be provided at the locations specified on the construction plans. All open space areas and grass -lined swales will be seeded with a permanent dry -land seed mix. VII. CONCLUSIONS 7.1 Compliance with Standards All drainage design considerations are in accordance with the City of Fort Collins Storm Drainage Design Criteria Manual (SDDCM), the Urban Drainage and Flood Control District's Drainage Criteria Manual and drainage design approved with Fossil Lake Second Filing. Drainage Design Considerations Kechter Road Improvements December, 2001 REFERENCES Northern Engineering Services, Inc 1). Final Drainage Study for Fossil Lake P.U.D. Second Filing, Fort Collins, Colorado, Northern Engineering Services, Inc., May 3, 2001. 2.) Storm Drainage Design Criteria and Construction Standards, City of Fort Collins, Colorado, May, 1984. 3.) Drainage Criteria Manual, Urban Drainage and Flood Control District, Wright - McLaughlin Engineers, Denver, Colorado, March, 1969. 4.) McClellands Creek Master Drainage Plan Update, City of Fort Collins Utilities, Icon Engineering, Inc., Englewood, Colorado, November 30, 200. .9 I December, 2001 VICINITY MAP N TS I I TV. LL,'ice}ik Y r y IT t r i 0Al ,. CD '4'� ' l ice; 't y r�• tll� tWj 4-1 x i'® C #� % 0 f k x *f" s i aW vt V _ `' r r N q s. LL_ r5 . 9.. v R`•"a i ` ., emu., a]va..Mr/rl.._+r'. -..v-rsa$'Lw�. .'^SY 'i #fi'.T. ",.! .,..� �:H a,,.i+�.... Q Lv R X n 'lam Ln rn ON Ji - 1 q ?A'�ts+-"a•��:'"�---�••�� •p'.. ti' - � '..' a . '?' a a.'' • . � , fi. y . I S tc�S.�•'�. 1 tT " ��� yr A 1 t §gib 1 s-141dwan:n n 011010000000 m n m o 0 o m v N 0,V V C � UUf,'N: co N O O 0 .r o c.i>Pnnmm ro ' 0 0 0 ui n R O Z N R?a Oyu; 0 0 0 pp O N N N 0 N' N' ' O` m�j Oca O O O O LL- M N �t L ° k0 00 00 00 00 Ur e ° k� 0 0 0 0 W U e3a kaa' L C ;r , RN ff�,14' tl� o u u) Pn o In to 0 O -- U) o N o N U) N o m ,� LS�Qi tJ r�'� � y S21 00 0 0 ®E c °C u 0 0 0 0 O O O O O O i U .�•. o` R m' O o 0 o 0 0 0 0 s 1uiLirs`k'.'R p P Stiff` %A"i F �t Tk `, "4QgM) m ` o o o u1Di n�n,a E " R rc�.�{U N V N O .ya�6'�jc N�a U) O U u. �--00 : 4' N . E ra ..�:�0NmmQ01- 6 e N r N n n u a;R Nm-viutn6cc) u 0 V V u v v � IL N N IL N N (D N 0)C\j co Q U 0 02 C 0 In 0= L L R lu A 2 ,Lo v1 6 lD - -Om�na Y p .U..m '{. 8 ^m m comm�v M -- O ---- N N c n N n n O N L � s O O ~ Ec v n m41 viOip cm m inaama `�' �.M R r� Ti g>�� � �88�8 O u - - - 0 0- O E > U N u O 8 8 �8888 o - - - O O - O N 8O0NO EO°: �vN N 3 > - t®= 81 a Z a §�^+ n n O�OOui �nDOn O C`.N N 0 0 �N mmm0- g, ~ E m m m N N m N Y= Ion 8 8 88 8 8 000 8m480 Q O um o onnNn ", dd00 (V N co (O co_ c0 O O m N N n n N n - m U N Q O O 0 0 0 0 0 II ;) 0000 C) pp > > A 2 W N n m- N U k o o n o o t N g Wm w N m w L �Ni. 3 U W w JU Quo- - -N"Ywu_N F= H H 2 > > C2 A � EIY�c � N O N � N N1 m m U n m U N O Q O <aog r o H n O o N S cp +Ju m _� y .0 m n A 4 i _ o c6 12 c6 ui n— ` U m m V lU u m of N a c� — tDOmmO ;; � _ - • ~ Em v ll mKvN'^ 2 O VVV j a' 3 0,� - �88-0 d58 n N N d�8 8 °8888� o - - - o o _ o o 0 000000 0 0 N O O N N N m m 6 U4 3 o, N N B�NO W.°i �. N CV O N lV O (V 'X Ux j H49=o8U r r: � , u � n U J qvf m O O O�00 oo *&}i N N I�AAOO nv � � N th f�nm a Y•i.�a!� E Icil'i o 3 Sr $o 8 °88889 O � N o' y�8 8 8mN8N Uc m NmmNm -'s` -- U O O 0 0 0 0 0 U � N N Ul W W to W W N � — A — N m U m co — O E om O O�NONn p N CD Q V O O 00000 oC ¢ n g 0 0 0 0 0 8 - >, U w m m — W w O Q o ;o Q N n vi — ui d N c I U L C N N � k) • +' m m W w w w N cn - - •y m O ~ C� N 6' m"'w ED w � + � � — J F c W � H F>> p W H K N cd UO O bA Q >C N CL C. El Swale 1; Q10= 49.5 cfs vPPE K $EC t-1OA1 Worksheet for Triangular Channel ' Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 1 ' Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 ' Channel Slope 0.019000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V ' Discharge 49.50 cfs -s---- (�to Results Depth 1.59 ft Flow Area 10,07 ft2 Wetted Perimeter 13.08 ft Top Width 12.69 ft Critical Depth 1.57 ft ' Critical Slope 0.020151 ft/ft Velocity 4.91 ft/s Velocity Head 0.38 ft ' Specific Energy 1.96 ft Froude Number 0.97 Flow is subcritical. '12/17/01 FlowMaster v5.13 12:30:01 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B I Swale 1; Q= 78.80 cfs UPPER SEc1-1U.t/ Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 1 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 ' Channel Slope 0.019000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V ' Discharge 78.80 cfs 4— " MAX Results Depth 1.89 ft Flow Area 14.27 ft2 Wetted Perimeter 15.58 ft Top Width 15.11 ft Critical Depth 1,89 ft ' Critical Slope 0.018940 ft/ft Velocity 5.52 ft/s Velocity Head 0.47 ft Specific Energy 2.36 ft Froude Number 1.00 Flow is supercritical. GAPAC,IrY Of upsrRFAm CVLVe1zi5 '12 I7101 FlowMaster v5.13 12:07:42 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B 2 Swale 1; Q= 105.04 cfs V PPr t2 SEGi/dN Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 1 Flow Element Triangular Channel Method Manning's Formula Solve For = Channel Depth Input Data Mannings Coefficient 0.035 ' Channel Slope 0.019000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V ' Discharge 105.04 cfs e— 78. eQ x I. 333 Results Depth 2.10 ft Flow Area 17.71 ft2 Wetted Perimeter 17.35 ft Top Width 16.83 ft Critical Depth 2.12 ft Critical Slope 0.018228 ft/ft Velocity 5.93 ft/s Velocity Head 0.55 ft Specific Energy 2.65 ft Froude Number 1.02 Flow is supercritical. A '12/17/01 FIOWMaster v5.13 12:08:11 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B 3 Swale 1; Q10= 49.5 Cfs La wER 5EcT/vx1 Worksheet for Triangular Channel ' Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 1 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.017500 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 49.50 cfs 4.-- (� a Results Depth 1.61 ft Flow Area 10.39 ft2 Wetted Perimeter 13.29 ft Top Width 12.89 ft Critical Depth 1.57 ft Critical Slope 0.020152 ft/ft Velocity 4.77 ft/s Velocity Head 0.35 ft Specific Energy 1.96 ft Froude Number 0.94 Flow is subcritical. w 12/17/01 FlowMaster v5.13 ' ge 12:29:48 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 ' Pa1 of 1 B 4 Swale 1; Q= 78.80 cfs LOWER 5E1--'r1VA/ Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 1 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.017500 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 78.80 cfs MAX Results Depth 1.92 ft Flow Area 14.72 ft2 Wetted Perimeter 15.82 ft Top Width 15.35 ft Critical Depth 1.89 ft Critical Slope 0.018940 ft/ft Velocity 5.35 ft/s Velocity Head 0.45 ft Specific Energy 2.36 ft Froude Number 0.96 Flow is subcritical. 6APAc1T1 or- ups rec5W cuLVCRT< 12/17/01 FlowMaster v5.13 ' 12:08:37 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 e 5 Swale 1; Q= 105.04 cfs L OW E k S r'(; 7-1OA1 Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 1 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.017500 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 105.04 cfs er— 76. 80 K ).333 Results Depth 2.14 ft Flow Area 18.26 ft2 Wetted Perimeter 17.62 ft Top Width 17.09 ft Critical Depth 2.12 ft Critical Slope 0.018228 ft/ft Velocity 5.75 ft/s Velocity Head 0.51 ft Specific Energy 2.65 ft Froude Number 0.98 Flow is subcritical. 12/17/01 FlowMaster v5.13 ' 12:08:25 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B 6 ' Project Description Swale 2: Q10=49.50 cfs Worksheet for Irregular Channel Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 2 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.008000 ft/ft ' Elevation range: 0.00 ft to 4.36 ft. Station (ft) Elevation (ft) Start Station End Station -15.90 4.36 -15.90 15.90 -3.00 0.06 0.00 0.00 3.00 0.06 ' 15.90 4.36 Discharge 49.50 cfs cam-- ' Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 1.40 ft Flow Area 13.59 ftz Wetted Perimeter 14.47 ft Top Width 14.03 ft Height 1.40 ft Critical Depth 1.11 ft Critical Slope 0.019982 ft/ft Velocity 3.64 ft/s Velocity Head 0.21 ft Specific Energy 1.61 ft ' Froude Number 0.65 Flow is subcritical. Roughness 0.035 12/17/01 ' 12:30:22 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 B 7 Swale 2: Q10=73.2 cfs Worksheet for Irregular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 2 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.008000 ft/ft Elevation range: 0.00 ft to 4.36 ft. Station (ft) Elevation (ft) Start Station -15.90 4.36 -15.90 -3.00 0.06 0.00 0.00 3.00 0.06 15.90 4.36 Discharge 73.20 cfs kk— MAX ' Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 1.70 ft Flow Area 18.05 ft2 Wetted Perimeter 16.36 ft ' Top Width 15.83 ft Height 1.70 ft Critical Depth 1.37 ft Critical Slope 0.018888 ft/ft ' Velocity 4.05 ft/s Velocity Head 0.26 ft Specific Energy 1.95 ft Froude Number 0.67 Flow is subcritical. r End Station Roughness 15.90 0.035 CAPAeiry OF vPs7-kf-A1V\ C-UtVeRT5 '12/18/01 FlowMaster v5.13 12:22:47 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 756-1666 Page 1 of 1 B 8 Swale 2 Cross Section for Irregular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 2 Flow Element Irregular Channel Method Manning's Formula Solve For 1 Water Elevation Section Data ' Wtd. Mannings Coefficient 0.035 Channel Slope 0.008000 ft/ft Water Surface Elevation 1.70 ft Discharge 73.20 cfs 4.5 4.0 3.5 3.0 ' 2.5 C .o 1 N 2.0 lL '12JI8101 12:23:47 PM 1.5 1.0 0.5 0.0'- -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 Station (ft) FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B Swale 2: Q10=97.57 cfs Worksheet for Irregular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 2 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.008000 ft/ft Elevation range: 0.00 ft to 4.36 ft. Station (ft) Elevation (ft) Start Station -15.90 4.36 -15.90 -3.00 0.06 0.00 0.00 3.00 0.06 15.90 4.36 Discharge 97.57 cfs — MAX Results Wtd. Mannings Coefficient 0.035 Water Surface Elevation 1.95 ft Flow Area 22.27 ftz Wetted Perimeter 17.97 ft Top Width 17.35 ft Height 1.95 ft Critical Depth 1.60 ft Critical Slope 0.018140 ft/ft Velocity 4.38 ft/s Velocity Head 0.30 ft Specific Energy 2.25 ft Froude Number 0.68 Flow is subcritical. End Station Roughness 15.90 0.035 Cr1PA, C 07 !,F vPsTRC-AiY7 (f JLv)-r=RTS X 1,373 12/18/01 FlowMaster v5.13 12:23:25 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B 10 Swale 2 Cross Section for Irregular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale 2 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Data ' Wtd. Mannings Coefficient 0.035 Channel Slope 0.008000 ft/ft Water Surface Elevation 1.95 ft Discharge 97.57 cfs 1 S r 12/18/01 12:23:35 Ptv 4.5 4.0 3.G 3.0 2.5 C 0 ca w 2.0 W 1.5 1.0 0.5 0.01 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 Station (ft) Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 20.0 FlowMaster v5.13 Page 1 of 1 B 1 1 Project Description SWALE 7; Q2=1.8 CFS Worksheet for Triangular Channel Project File d:\projects\kec\drainage\flow master\kechter .fm2 Worksheet SWALE 7 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.010000 ft(ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 1.80 cfs = — D F a Results Depth 0.52 ft Flow Area 1.07 ft2 Wetted Perimeter 4.26 ft ' Top Width 4.13 ft Critical Depth 0.42 ft Critical Slope 0.031345 ft/ft Velocity 1.69 fits Velocity Head 0.04 ft Specific Energy 0.56 ft Froude Number 0.59 Flow is subcritical. 08/29/01 09:48:53 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 B 12 SWALE 7; Q100=8.2 CFS Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\flow master\kechter .fm2 Worksheet SWALE 7 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.010000 ftift ' Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 8.20 cfs --- Results Depth 0.91 ft Flow Area 3.33 ft2 Wetted Perimeter 7,52 ft Top Width 7.30 ft Critical Depth 0.76 ft Critical Slope 0.025610 ft/ft Velocity 2.46 ft/s Velocity Head 0.09 ft Specific Energy 1.01 ft Froude Number 0.64 Flow is subcritical. 08/29/01 09:48:31 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 B 13 SWALE 7; 01 00*1.33=1 0.9 CFS Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\flow master\kechter .fm2 Worksheet SWALE 7 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.010000 ft/ft ' Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 10.90 cfs Results Depth 1.01 ft Flow Area 4.12 ft2 Wetted Perimeter 8.37 ft Top Width 8.12 ft Critical Depth 0.86 ft Critical Slope 0.024656 ftfft Velocity 2.65 ftis Velocity Head 0.11 ft Specific Energy 1,12 ft Froude Number 0.66 Flow is subcritical. 08/29/01 09:49:20 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 B 14 t I Ci [1 I Swale E1: Q=5.8 cfs Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale E1 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.045000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 50.000000 H : V Discharge 5.80 cfs E — Q IV Results Depth 0.29 ft Flow Area 2.32 ftz Wetted Perimeter 15.87 ft Top Width 15.83 ft Critical Depth 0,31 ft ' Critical Slope 0.033338 ft/ft Velocity 2.50 ft/s Velocity Head 0.10 ft Specific Energy 0.39 ft Froude Number 1.15 Flow is supercritical. 12/18/01 FlowMaster v5.13 02:53:55 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B 15 Swale E1: Q=7.73 cfs Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Swale E1 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.045000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 50.000000 H : V Discharge 7.73 cfs Results Depth 0.33 ft Flow Area 2,88 ft' ' Wetted Perimeter 17.67 ft Top Width 17.63 ft Critical Depth 0.35 ft Critical Slope 0.032085 ft/ft Velocity 2.69 fus Velocity Head 0.11 ft Specific Energy 0.44 ft Froude Number 1.17 Flow is supercritical. 12/18/01 FlowMaster v5.13 ' 02:54:31 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B 16 Ditch D1 Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Ditch D1 Flow Element Triangular Channel Method Manning's Formula Solve For Discharge Input Data Mannings Coefficient 0.035 Channel Slope 0.005000 ft/ft Depth 3.00 ft Left Side Slope 2.000000 H : V Right Side Slope 2.000000 H : V Results Discharge 65.73 cfs Flow Area 18.00 ft2 Wetted Perimeter 13.42 ft Top Width 12.00 ft Critical Depth 2.32 ft Critical Slope 0.019715 ft/ft Velocity 3.65 ft/s Velocity Head 0.21 ft Specific Energy 3.21 ft Froude Number 0.53 Flow is subcritical. MAX C-APAGIPJ 12/17/01 ' 12:26:22 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 B 17 Ditch D2 Worksheet for Triangular Channel Project Description Project File d:\projects\kec\drainage\swales\kec.fm2 Worksheet Ditch D2 Flow Element Triangular Channel Method Manning's Formula Solve For Discharge Input Data Mannings Coefficient 0.035 Channel Slope 0.013100 ft/ft Depth 3.00 ft Left Side Slope 2.000000 H : V ' Right Side Slope 2.000000 H : V Results Discharge 106.40 cfs — mA X 6A (SAG 17 V Flow Area 18,00 ftz Wetted Perimeter 1 13.42 ft Top Width 12.00 ft Critical Depth 2.81 ft ' Critical Slope 0.018489 ft/ft Velocity 5.91 ft/s Velocity Head 0.54 ft Specific Energy 3.54 ft Froude Number 0.85 Flow is subcritical. 1 12/17/01 FlowMaster v5.13 12:27:00 PM Haes tad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 B 18 IN Kechter Road Culverts I CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001 CURRENT TIME: 11:54:34 FILE NAME: CR36 �t**:t:t,t+,r****tt****,t:t+r****�*:rt,t*,t,r***�***�*:r*+*t***��+********:r**,t*t•+*:r*t:r**:t* FHWA CULVERT ANALYSIS **********************r**r HY-8, VERSION 6.1 C SITE DATA CULVERT SHAPE, MATERIAL, INLET UI-------------------------------------------------------------------------� L I INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET INO. 1 (ft) (ft) (ft) I MATERIAL (ft) (ft) n TYPE 1 1 12.80 12.30 124.67 i 3 ROPE 2.50 1.58 .013 CONVENTIONAL 2 4 6 SUMMARY OF CULVERT FLOWS (cfs) FILE: CR36 DATE: 12-17-2001 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 12.80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 13.41 6.0 6.0 0.0 0.0 0.0 0.0 0.0 0.00 1 13.69 12.0 12.0 0.0 0.0 0.0 0.0 0.0 0.00 1 13.92 18.0 18.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.14 24.0 24.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.32 30.0 30.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.50 36.0 36.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.70 42.0 42.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.07 48.0 48.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.00 49.5 49.5 0.0 0.0 0.0 0.0 0.0 0.00 1 15.39 60.0 60.0 0.0 0.0 0.0 0.0 0.0 0.00 1 16.50 78.8 78.8 0.0 0.0 0.0 0.0 0.0 OVERTOPPING 10-YR. FLOW = 49.5'CFS SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: CR36 DATE: 12-17-2001 HEAD HEAD TOTAL FLOW "s FLOW ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR 12.80 0.000 0.00 0.00 0.00 13.41 0.000 6.00 0.00 0.00 13.69 0.000 - 12.00 0.00 0.00 13.92 0.000 18.00 0.00 0.00 14.14. 0.000 24.00 0.00 0.00 14.32 0.000 30.00 0.00 0.00 14.50 0.000 36.00 0.00 0.00 14.70 0.000 42.00 0.00 0.00 15.07 0.000 48.00 0.00 0.00 15.00 0.000 49.50 0.00 0.00 15.39 0.000 60.00 0.00 0.00 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (%) = 1.000 2 ' CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001 CURRENT TIME: 11:54:34 FILE NAME: CR36 ++++++++++++++++++++++++++++++*++++++++++*++*+++++++*++*++++++++++++++++++++++*+ ' PERFORMANCE CURVE FOR CULVERT 1 - 3( 2.50 (ft) BY 1.58 (ft)) RCPE ++*++*++++++++++++++++++++++++++++++++++++++++++++*++++++++++++++*++++++++++++++ DIS- HEAD- INLET OUTLET ' CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) ++*++++++++*++++++++++++++++++++++++++++++++*++++++*+++++++++++++++++++*++++++++ 0.00 12.80 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 6.00 13.41 0.54 0.61 3-Mlt 0.39 0.39 0.72 0.72 1.40 2.90 12.00 13.69 0.79 0.89 3-Mlt 0.57 0.57 0.93 0.93 2.05 3.45 ' 18.00 13.92 1.01 1.12 3-Mlt 0.71 0.71 1.09 1.09 2.58 3.82 24.00 14.14 1.21 1.34 3-Mlt 0.84 0.83 1.21 1.21 3.07 4.10 30.00 14.32 1.41 1.52 3-Mlt 0.97 0.94 1.31 1.31 3.52 4.34 36.00 14.50 1.60 1.70 3-Mlt 1.09 1.03 1.41 1.41 4.00 4.54 42.00 14.70 1.81 1.90 3-Mlt 1.23 1.12 1.49 1.49 4.51 4.72 48.00 15.07 2.05 2.27 3-M2t 1.58 1.20 1.57 1.57 5.02 4.88 49.50 15.00 2.11 2.20 3-Mlf 1.58 1.22 1.58 1.59 5.15 4.91 60.00 15.39 2.59 2.49 3-Mlf 1.58 1.33 1.58 1.71 6.24 5.16 El. inlet face invert 12.80 ft El. outlet invert 12.30 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ***********+** INLET STATION 0.00 ft ' INLET ELEVATION 12.80 ft OUTLET STATION 124.67 ft OUTLET ELEVATION 12.30 ft NUMBER OF BARRELS 3 SLOPE (V/H) 0.0040 CULVERT LENGTH ALONG SLOPE 124.67 ft CULVERT DATA SUMMARY ******************++**++ BARREL SHAPE ELLIPTICAL BARREL SPAN 2.50 ft BARREL RISE 1.58 ft ' BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQ. EDGE WITH HEADWALL INLET DEPRESSION NONE ++++++++++++++++++++++++++++++++++++++++++++++*+++++++++++++++++++++++++++++++*+ C 2 3 ' CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001 CURRENT TIME: 11:54:34 FILE NAME: CR36 ++++*++*+++++++*++++++++++ TAILWATER ++++++++++++++*+*+++++++++ +++++*+*+++++++++++++++++++++++++++++++++++++++****++++++++++++++++++++++++++++* REGULAR CHANNEL CROSS SECTION **************** SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (ft/ft) 0.019 MANNING'S n (.01-0.1) 0.035 CHANNEL INVERT ELEVATION 12.30 ft CULVERT NO.1 OUTLET INVERT ELEVATION 12.30 ft UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) (ft) NUMBER (ft) (f/s) (psf) 0.00 12.30 0.000 0.00 0.00 0.00 6.00 13.02 0.602 0.72 2.90 0.85 12.00 13.23 0.629 0.93 3.45 1.11 ' 18.00 13.39 0.645 1.09 3.82 1.29 24.00 13.51 0.657 1.21 4.10 1.43 30.00 13.61 0.666 1.31 4.34 1.56 36.00 13.71 0.674 1.41 4.54 1.67 42.00 13.79 0.680 1.49 4.72 1.77 48.00 13.87 0.686 1.57 4.88 1.86 49.50 13.89 0.687 1.59 4.91 1.88 ' 60.00 14.01 0.696 1.71 5.16 2.02 +++++++++++++++*++++++++++*+++++++++++++++++++++++++++++++++++++++++++++++++++++ ************************** ROADWAY OVERTOPPING DATA ******************++++*+++ ROADWAY SURFACE GRAVEL EMBANKMENT TOP WIDTH 5.00 ft ' CREST LENGTH 5.00 ft• OVERTOPPING CREST ELEVATION 16.50 ft +++++*+++++**+*+++++*++++++*+*+++++**++++++++++++++++++++++++*+++++++++++**+++++ C 3 1 . KECHTER ROAD STORM CULVERT 1 ' PROFILE SCALE: HORIZ. 1 "=50' VERT. 1 "=5' s _ , � � ., a -• • :- • �� I• •• a •� •• N n j w CD U' 7 z �- c u XmW- W r ! /W ! + 3 o ! a N_ N W (9 5ai avow 831031Z - --=— W Z m 7J W onfz w zQ0 o U)�¢ W IM Q ' Ziegler Road Culverts 1 CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001 CURRENT TIME: 11:58:04 FILE NAME: CR9 +++++++++++++++++++++++++* FHWA CULVERT ANALYSIS ++++++++++++++++++++++++++ ++++++++++++++++++++++++++ HY-8, VERSION 6.1 ++++++++++++++++++++++++++ C SITE DATA CULVERT SHAPE, MATERIAL, INLET U-------------------------- -----------------------------------------------� L INLET OUTLET CULVERT BARRELS V I ELEV. ELEV. LENGTH I SHAPE SPAN RISE MANNING INLET INO. 1 (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 I 13.60 13.30 72.18 3 RCPE 2.50 1.58 .013 CONVENTIONAL 2 4 6 SUMMARY OF CULVERT FLOWS (cfs) FILE: CR9 DATE: 12-17-2001 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 15.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.01 6.0 6.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.05 12.0 12.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.13 18.0 18.0 0.0 0.0 0.0 0.0 0.0 0.00 1 ' 15.33 24.0 24.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.41 30.0 30.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.51 36.0 36.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.63 42.0 42.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.74 47.0 47.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.92 54.0 54.0 0.0 0.0 0.0 0.0 0.0 0.00 1 16.19 60.0 60.0 0.0 0.0 0.0 0.0 0.0 0.00 1 ' 16.93 73.2 73.2 0.0 0.0: 0.0 0.0 0.0 OVERTOPPING 10-YR. FLOW - 47.0 CFS SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: CR9 DATE: 12-17-2001 HEAD HEAD TOTAL FLOW °s FLOW ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR ' 15.00 0.000 0.00 0.00 0.00 15.01 0.000 6.00 0.00 0.00 15.05 0.000 12.00 0.00 0.00 15.13 0.000 18.00 0.00 0.00 15.33 0.000 24.00 0.00 0.00 15.41 0.000 30.00 0.00 0.00 15.51 0.000 36.00 0.00 0.00 ' 15.63 0.000 42.00 0.00 0.00 15.74 0.000 47.00 0.00 0.00 15.92 0.000 54.00 0.00 0.00 ' 16.19 0.000 60.00 0.00 0.00 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (°s) = 1.000 C 6 2 ' CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001 CURRENT TIME: 11:58:04 FILE NAME: CR9 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ PERFORMANCE CURVE FOR CULVERT 1 - 3( 2.50 (ft) BY 1.58 (ft)) RCPE ++++++++++++++++++++++++++++++++++++++++++++++++++++++*+++++++++++++++++++++++++ DIS- HEAD- INLET OUTLET ' CHARGE WATER CONTROL CONTROL FLOW NORMAL GRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' 0.00 15.00 0.00 1.40 0-NF 0.00 0.00 0.00 1.70 0.00 0.00 6.00 15.01 0.54 1.41 1-Slf 0.39 0.39 1.58 1.70 0.62 0.00 12.00 15.05 0.79 1.45 1-Slf 0.56 0.57 1.58 1.70 1.24 0.00 18.00 15.13 1.01 1.53 1-Slf 0.70 0.71 1.58 1.70 1.86 0.00 24.00 15.33 1.21 1.73 3-Mlf 0.83 0.83 1.58 1.70 2.50 0.00 30.00 15.41 1.41 1.81 3-Mlf 0.95 0.94 1.58 1.70 3.12 0.00 36.00 15.51 1.60 1.91 3-Mlf 1.08 1.03 1.58 1.70 3.74 0.00 ' 42.00 15.63 1.81 2.03 3-Mlf 1.21 1.12 1.58 1.70 4.37 0.00 47.00 15.74 2.01 2.14 3-Mlf 1.36 1.19 1.58 1.70 4.89 0.00 54.00 15.92 2.30 2.32 3-Mlf 1.58 1.28 1.58 1.70 5.62 0.00 60.00 16.19 2.59 2.49 3-Mlf 1.58 1.33 1.58 1.70 6.24 0.00 El. inlet face invert 13.60 ft El. outlet invert 13.30 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 13.60 ft OUTLET STATION 72.18 ft OUTLET ELEVATION 13.30 ft NUMBER OF BARRELS 3 ' SLOPE (V/H) 0.0042 CULVERT LENGTH ALONG SLOPE 72.18 ft CULVERT DATA SUMMARY ++++++++++++++++++++++++ BARREL SHAPE ELLIPTICAL BARREL SPAN 2.50 ft BARREL RISE 1.58 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQ. EDGE WITH HEADWALL INLET DEPRESSION NONE ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C 7 3 CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001 CURRENT TIME: 11:58:04 FILE NAME: CR9 +t+t+t++t+++t++t++++++++++++++t+ttttttt++ttt+++tttttttttttt++tttttttt+++tttttt++ +++++++++++++++tt++++++ttt TAILWATER +++tttttttttt++ttttt++tttt tttttttttttttttttttttttttttttttttttttttttttttttt++++tttttttttttttttttttttttttttt +tttttttt+t+tt+ttt+ttttt+ttttttttttttttttttttttttttttttt++tttttttttt++tttttttttt CONSTANT WATER SURFACE ELEVATION 15.00 tt++++++++++++++t++tttttttttttt+tttttttttttttttttttttt+tttttttttt+tttttttt+ttttt ************************** ROADWAY OVERTOPPING DATA ************************** tt++++++t++++tt+t+t++tt+t+t++tttttttttt+ttttt+ttttttttttt+ttttttttttttttttt++ttt ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH 30.00 ft ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 0.00 17.19 2 50.00 16.94 3 73.77 17.06 4 94.54 16.93 5 147.54 17.13 tttt+tttttttttttttttttttttttttttt++++tttttttttt++tttttttt++tttttttttt+++tttttttt C 8 ZIEGLER ROAD T S ORM CULVERT 1 PROFILE SCALE: HORIZ. 1 "=50' VERT. 1 "=5' e S-S-7iT7ni�30��� •GAO �� I '� ■�-►,,: - ., . .. p C� ' m Ln N.D ! it i I O' DWX f ` 1 1� r omc� o + m O� m A ��� > i! f ! j q! �• I rn 02 0 %, m 0 ZIEGLER ROAD �*x111A .hZ fmn D > V m / N A V L, F19 t�ir---------- /I m , 0'" Culvert 4 1 CURRENT DATE: 08-27-2001 FILE DATE: 08-27-2001 CURRENT TIME: 10:13:43 FILE NAME: CULVERT4 FHWA CULVERT ANALYSIS HY-8, VERSION 6.1 C U I SITE DATA I CULVERT SHAPE, MATERIAL, INLET L INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET NO. (ft) (ft) (ft) I MATERIAL (ft) (ft) n TYPE 1 90.50 90.00 120.12 1 1 RCP 2.00 2.00 .013 CONVENTIONAL 2 3 4 5 6 SUMMARY OF CULVERT FLOWS (cfs) FILE: CULVERT4 DATE: 08-27-2001 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 90.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 91.44 3.1 3.1 0.0 0.0 0.0 0.0 0.0 0.00 1 91.88 6.2 6.2 0.0 0.0 0.0 0.0 0.0 0.00 1 92.21 9.2 9.2 0.0 0.0 0.0 0.0 0.0 0.00 1 92.54 12.3 12.3 0.0 0.0 0.0 0.0 0.0 0.00 1 92.88 15.4 15.4 0.0 0.0 0.0 0.0 0.0 0.00 1 93.21 18.5 18.5 0.0 0.0 0.0 0.0 0.0 0.00 1 93.95 21.6 21.6 0.0 0.0 0.0 0.0 0.0 0.00 1 94.74 24.6 24.6 0.0 0.0 0.0 0.0 0.0 0.00 1 95.16 27.7 26.4 0.0 0.0 0.0 0.0 0.0 1.07 17 95.27 30.8 26.6 0.0 0.0 0.0 0.0 0.0 3.95 10 95.00 25.7 25.7 0.0 0.0 0.0 0.0 0.0 OVERTOPPING Design Flow - 30.8 (100-yr) SUMMARY OF ITERATIVE SOLUTION ERRORS HEAD HEAD ELEV (ft) ERROR (ft) 90.50 0.000 91.44 0.000 91.88 0.000 92.21 0.000 92.54 0.000 92.88 0.000 93.21 0.000 93.95 0.000 94.74 0.000 95.16 -0.004 95.27 -0.003 FILE: CULVERT4 DATE: 08-27-2001 TOTAL FLOW % FLOW FLOW (cfs) ERROR (cfs) ERROR 0.00 0.00 0.00 3.08 0.00 .0.00 6.16 0.00 0.00 9.24 0.00 0.00 12.32 0.00 0.00 15.40 0.00 0.00 18.48 0.00 0.00 21.56 0.00 0.00 24.64 0.00 0.00 27.72 0.25 0.90 30.80 0.21 0.68 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (%) = 1.000 C 11 2 LCURRENT DATE: 08-27-2001 FILE DATE: 08-27-2001 CURRENT TIME: 10:13:43 FILE NAME: CULVERT4 PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.00 (ft) BY 2.00 (ft)) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) 0.00 90.50 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 3.08 91.44 0.81 0.94 3-Mlt 0.62 0.61 0.64 0.64 3.55 1.85 6.16 91.88 1.26 1.38 2-M2c 0.90 0.87 0.87 0.84 4.67 2.20 ' 9.24 92.21 1.62 1.71 2-M2c 1.15 1.08 1.08 0.97 5.33 2.44 12.32 92.54 1.95 2.04 2-M2c 1.40 1.26 1.26 1.08 5.93 2.62 15.40 92.88 2.30 2.38 2-M2c 1.76 1.41 1.41 1.18 6.49 2.77 18.48 93.21 2.71 2.51 2-M2c 2.00 1.54 1.54 1.26 7.12 2.90 21.56 93.95 3.19 3.45 2-M2c 2.00 1.65 1.65 1.34 7.79 3.02 24.64 94.74 3.76 4.24 2-M2c 2.00 1.74 1.74 1.40 8.51 3.12 26.40 95.16 4.12 4.66 2-M2c 2.00 1.79 1.79 1.47 8.89 3.21 26.64 95.27 4.17 4.77 2-M2c 2.00 1.80 1.80 1.53 8.94 3.30 El. inlet face invert 90.50 ft El. outlet invert 90.00 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION 120.12 ft INLET ELEVATION 90.50 ft OUTLET STATION 0.00 ft OUTLET ELEVATION 90.00 ft NUMBER OF BARRELS 1 ' SLOPE (V/H) 0.0042 CULVERT LENGTH ALONG SLOPE 120.12 ft ***** CULVERT DATA SUMMARY ************************ BARREL SHAPE CIRCULAR BARREL DIAMETER 2.00 ft BARREL MATERIAL CONCRETE BARREL MANNING'S n 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE C 12 TAILWATER ******* REGULAR CHANNEL CROSS SECTION **************** SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (ft/ft) 0.009 MANNING'S n (.01-0.1) 0.035 CHANNEL INVERT ELEVATION 90.00 ft CULVERT NO.1 OUTLET INVERT ELEVATION 90.00 ft ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) (ft) NUMBER (ft) (f/s) (psf) 0.00 90.00 0.000 0.00 0.00 0.00 3.08 90.64 0.407 0.64 1.85 0.36 6.16 90.84 0.425 0.84 2.20 0.47 9.24 90.97 0.436 0.97 2.44 0.55 12.32 91.08 0.444 1.08 2.62 0.61 15.40 91.18 0.450 1.18 2.77 0.66 18.48 91.26 0.455 1.26 2.90 0.71 21.56 91.34 0.460 1.34 3.02 0.75 24.64 91.40 0.464 1.40 3.12 0.79 27.72 91.47 0.467 1.47 3.21 0.82 30.80 91.53 0.470 1.53 3.30 0.86 ROADWAY OVERTOPPING DATA ROADWAY SURFACE GRAVEL EMBANKMENT TOP WIDTH 24.00 ft ***** USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. ft ft 1 0.00 95.35 2 20.00 95.00 3 40.00 95.35 Notes: Overtopping is a temporary condition that will be alleviated with the construction of Fossil Lake Second Filing. Fossil Lake Second Filing will reduce the amount of flow being directed to Swale 7 and Culvert 4. 0 C 13 - - - - - - - - - - I 4 C 51: 14 A CULVERT 4 TYPE L RIPRAP ENGTH = 13' IDTH = 16' DEPTH = 1.5' ffiURY WITH 6" NA r- P SOIL & REVI Go 0 0 PROFILE SCALE: HORIZ. 1 "=50' VERT. 1 "=5' --- - a - - L- 1 - -^_IQ-Y)- ' _.-...- 1 a - V —_ L k .._ 0-4---------------- - ----------4905 F--- --E �W = w I _ _a� --- - � Op _Q _._.=4900 4900;-:^ �* —--_._. — �—--- _- � —O ��p ;— --- -- -- -- - - z' — W - — .� w ------- ----- }------ -- a arn�— -- ---� a -� - NQ o Q �--- .p- �t4»- -- -- W _ - _ i -- - ..__ Wes._-.�G Lai � - = 4895 4896 IVE- ----- ETATE ----- -- .._.. _ ..—_-. — - -- - - -- - -=fI" 4885=__-_:-_�:_:__ -..�_ ... - - - ;----- —_ C.Ol TTMI-r- 4STRUCT]ED-Yr-, ' 1 FO SIL-LAKE SECO D-FIUNG, _ P E 1—.1 � T 107 24-' 24"-}-CL CP_ - - 0 a : -- -III _ -= ---PO 4z% _ --- - -- - -- _ _ : - : -.-� - 4880 I©coa - 1 - ;_ __� _-._.. i.. _.._ t. N -- O__-_ 4875; . o _ _ o o =14875 _ Icc- 4870; 4870 11 +00 10+00 TYPE L RIPRAP LENGTH = 13' WIDTH = 16' DEPTH = 1.5' BURY WITH 6" K TOP SOIL & RE% c is 0 O N N T 7 ddd m E m c � a E 00 M a0i O coo LLO m NMD) = 2 > d 7 [F V o W 0 X) 0 0 N M O O CL m vvv :3 w E o rn N cc O= M LO N O O r O w O O O O E o o)No m E Lo of CL m O r r vvv n W N N N N N N Y O o > o e > = V) v E �ONoo m r o o 0 6 a > N 01 O O 3 c > aa<t O w O N m O) E _ CO O r O O O r m d 1 U U U n a EL aaa d a d c o 0 0 a c O O O 0 r r r .L Ln 00 O of o J Lf) Lr) r O M O 6.2 F U. V II II it 8 o S a a C3 a R d d 2 0 v O O O Ivvv d C r r r p O O O m L IO Co O a c d m _ O N n O O r O Y O D O A U G CD O O I SF J N N N O O O N O O O o ? a > • V ^y O O O O i, 7 > " = r T co CD > CCD W d rn w V V V = 119T O f. O d) (pia vOO w > O r r w v v v C N O O L .. m (1) Co C 3 m C L w N O O N N (O - m m - L N 7 -O � C O C N () D m U U C N N >, L > co (L) c 3 _a a a)� c L n m 0. v a) na`�U o a N 7 L U N U) F- OO _O a m N w L N ICUO 'm o o m = CD N U ( 6 V C O C C C fA LLO �U 3O o 0 w W F- O z C 16 l l j m= m i 1 I I x /S J (j Ii r if 11 1 / J J m / 0o i !t I- J J I 1 ! t t r m ! ! I o / / , ! i ill I t! i w I m c 17 C 18 Q 7d _ in A LL' IIi m II) IIl y N p a O VI ' s Y N 0 0 0 ri6b 0 0 0 0 0 C) 0 0 J a -- - - - @ 11 Co u u u u LO ^ O O 19� 03 ��" ° mmvo o x 88a° � V u In lfl W O 00 LU z z o o � a � QN a<< Z F Z Z Z Z in u (L 7 W aV. K �- JI: Q Q Q Q } Z Z Z Z ^F— I—/ ca mcnvo � li m m OOOCCC IL m m CO 133 4/ n u in OC L� u Co. co W Z O <o r — O O O O - } 3 u 00 umu Q is U > M Z N ` u u 3 � 5 u m x O In = V s > d O J z u 0000 sL E 00 0 to O W m N N N— U p p - O V c O O m u j L N O fi 0 BUM t — _ N u � 6'm E m u V'C C30 u u 5 u o d u v V V O V u m - In N N m- O rL U O 3 0 I DRAINAGE CRITERIA MANUAL i 2F J N O 151 p S • oQV QQ G! W W V1 W m O ZNZ W MW MAJOR DRAINAGE Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock * d50 Designation Given Size Dimension By Weight (Inches) Inches Type VL 70-100 12 50-70 9 35-50 6 6**, 2-10 2 Type L 70-100 15 50-70 12 35-50 9 9** 2-10 3 Type M 70-100 21 50-70 18 35-50 12 12 2-10 4 Type H 100 30 50-70 24 35-50 18 18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 9 *d50 = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. J Za D 2 No Text DRAINAGE CRITERIA MANUAL. G 4C 0 2C RIPRAP 4�1 fir'{- -- --- - --- TYPE L 00 .2 .4 Y /D .6 .8 1.0 t Use Do instead of D whenever flow is supercritical in ;he barrel. **Use Type L for o distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 6 FLOOD CONTROL. DISTRICT D 4 DRAINAGE CRITERIA MANUAL G 7 p = Expansion Angle N a� h C/ C1 1' ---- ._..._..___ 1 I.0,/ .1 .2 .3 .4 .5 .6 / .13 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D RIPRAP FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT D 5 The following pages are printouts of the RIPRAP DESIGN SYSTEM, version 2.0 by West Consultants, Inc. The program was used to evaluate riprap needs for Swale 1. The largest recommended D50 was selected as the design riprap. The design values were taken from the USBR method, suggesting a D50 if 0.41 ft which corresponds closely to Type VL. However as a conservative approach Type L is being used place of Type VL. D 6 12/20/01 WEST Consultants, Inc. 2111 Palomar Airport Rd. Suite 180 Carlsbad, CA 92009-1419 PROGRAM OUTPUT ASCE Method Input Parameters: Run Name: SWALEI Description: Kechter Road Swale 1 Local Depth Averaged Velocity, ft/sec 5.51 Unit Weight of Stone, lbs/cu ft 160.00 Cotangent of Sideslope 4.00 Output Results: Computed D50, ft [e]W*a *** Using Gradation from COE ETL 1110-2-120 *** Computed D30, ft 0.18 Specific Weight, pcf 160.00 Layer Thickness, ft 0.75 Selected Minimum D30, ft 0.37 Selected Minimum D90, ft 0.53 Stone Weight, lbs Percent Lighter by Weight Minimum Maximum W100 14 35 W50 7 10 W15 2 5 USER Method Input Parameters: Run Name: SWALEI Description: Kechter Road Swale 1 Average Channel Velocity, ft/sec 5.52 Output Results: Computed D50, ft 0.41 Riprap 2.0 D 7 *** Using Gradation from COE ETL 1110-2-120 *** Computed D30, ft 0.34 Specific Weight, pcf 160.00 Layer Thickness, ft 0.75 Selected Minimum D30, ft 0.37 Selected Minimum D90, ft 0.53 Stone Weight, lbs Percent Lighter by Weight Minimum Maximum W100 W50 W15 14 35 7 10 2 5 Isbash Method Input Parameters: Run Name: SWALEI Description: Kechter Road Swale 1 Average Channel Velocity, ft/sec 5.52 Unit Weight of Stone, lbs/cu ft 160.00 Turbulence Level Low Output Results: Computed D50, ft 0.21 *** Using Gradation from COE ETL 1110-2-120 *** Computed D30, ft 0.17 Specific Weight, pcf 160.00 Layer Thickness, ft 0.75 Selected Minimum D30, ft 0.37 Selected Minimum D90, ft 0.53 Stone Weight, lbs Percent Lighter by Weight Minimum Maximum W100 W50 W15 14 35 7 10 2 5 D 8 No Text Sidewalk Chase Performance Curve: Kechter Road - Design Point E1 Lechter Road with 6" Vertical Curb and Gutter Governing Equations: When the depth of water is less than the top of the curb, then the sidewalk chase = r L H ] .5 acts as a horizontal broad -crested weir governed by the following equation: rµ l.•,, ' where H corresponds to the depth of water above the flowtine When the depth of water is equal to or greater than the top of the curb, then the �o = Co A(2 gH) 0.5 sidewalk chase acts as a rectangular orifice governed by the following equation: ' where H corresponds to the depth of water above the centroid of the cross -sectional area (A) Also, when the depth of water is greater than the top of the curb, then the spill Qow = Cam, L H 1.5 * 1. 12 overtopping the curb acts as an integrated weir governed by the following equation: where L corresponds to the width of the water spread across the top of the curb 'where H corresponds to the average depth of water above the top of the curb *where 1,12 represents the result of integrating the weir equation across the entire section Input Parameters: rectangular weir coefficient: Cr,,, = 2.95 overtopping weir coefficient: Co,,, = 2.95 rectangular orifice coefficient: Ca = 0.60 width of sidewalk chase (ft): L = 4.00 height of sidewalk chase (ft): H = 0.50 slope of left curb -line (ft/ft): SL = 0.0100 slope of right curb -line (Wit): SR = 0.0100 flowline elevation (ft): 0.00 Depth vs. Flow: Rectangular Orifice Overtopping Total Elevation Weir Flow Flow Weir Flow Flow Depth at Flowline (ft) (ft) (cfs) (cfs) (cfs) (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.09 0.00 0.00 0.09 0.08 0.08 0.27 0.00 0.00 0.27 0.12 0.12 0.49 0.00 0.00 0.49 0.16 0.16 0.76 0.00 0.00 0.76 0.20 0.20 1.06 0.00 0.00 1.06 0.23 0.22 1.30 0.00 0.00 1.30 F Q2 0.24 0.24 1.39 0.00 0.00 1.39 0.28 0.28 1.75 0.00 0.00 1.75 0.32 0.32 2.14 0.00 0.00 2.14 0.36 0.36 2.55 0.00 0.00 2.55 0.40 0.40 2.99 0.00 0.00 2.99 0.44 0.44 3.44 0.00 0.00 3.44 0.48 0.48 3.92 0.00 0.00 3.92 0.52 0.52 0.00 5.00 0.01 5.02 0.56 0.56 0.00 5.36 0.21 5.57 0.57 0.57 0.00 5.47 0.33 5.80 FQloo 0.60 0.60 0.00 5.70 0.74 6.44 0.64 0.64 0.00 6.01 1.71 7.73 0.64 0.64 0.00 6.04 1.84 7.88 0.68 0.68 0.00 6.31 3.21 9.53 E ----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------------------- - SER:Northern Engineering Services -Ft Collins Colorado ....................... N DATE 08-29-2001 AT TIME 15:13:52 I** PROJECT TITLE: DP 2 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 1 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.25 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (W) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 25.19 GUTTER FLOW DEPTH (ft) = 0.67 FLOW VELOCITY ON STREET (fps)= 2.89 FLOW CROSS SECTION AREA (sq ft)= 6.51 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(o)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 22.44 / Qioo 0 (cfs) = 18.90 DP Z (cfs)= 18.90 (cfs) = 0.00 (cfs) = 18.90 (cfs)= 18.90 (cfs) = 0.00 E 2 t------------------------------------------------------------------------------ UDINLET: ___________________________________ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------ --------------------------------------- t;-E-R-:-N-o-r-t-h-e-r-n-E-ngineeringServices-Ft Collins Colorado ....................... N DATE 08-29-2001 AT TIME 14:53:02 t** PROJECT TITLE: DP 3 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: f3 2 7 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.43 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.12 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.40 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER'DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 18.63 GUTTER FLOW DEPTH (ft) = 0.54 FLOW VELOCITY ON STREET (fps)= 2.43 FLOW CROSS SECTION AREA (sq ft)= 3.64 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC=12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 10.59 Q 100 (cfs) = 8.90 e CP 3 (cfs)= 8.90 (cfs) = 0.00 (cfs) = 8.90 (cfs)= 8.90 (cfs) = 0.00 E 3 w i ' The following street capacity calculations have been done in accordance with the City of Fort Collins Storm Drainage Design Criteria and Construction Standards. Using the allowable depths based on Tables 4-1 and 4-2 the theoretical street capacities were calculated with the computer program "F1owMaster v 5.13". A reduction factor from Figure 4-2 was than applied to the theoretical flow to give the allowable flow. The ' output is presented in the form of street cross -sections that progress through each design point as follows: 1. Minor Storm Theoretical Flow 2. Minor Storm Actual Flow ' 3. Major Storm Theoretical Flow 4. Major Strom Actual Flow ' The 100-yr flows at Design Points 2 and 3 have been combined due to overtopping. All street capacities were labeled acceptable based on depth requirements set fourth in Tables 4-1 and 4-2. Design point 2 did not meet the reduction factor flow for the minor and major storms, but depth and lane requirements were acceptable, based on that the street was pronounced acceptable. 1 F TABLE 4-1 NTIAL STORM - STREET RUNOFF ENCROACFNEhIT erreer LOCAL (Includes olaces. alleys No curb -overtopping. *Flow may spread to marginal access) crown of street. COLLECTOR No curb -overtopping. ' Flow spread must leave of least one lone width free of water. MAJOR ARTERIAL No curb -overtopping. 'Flow spread must leave of least one-half of roadway width free of water in each direction. • Where no curb overtopping exists, encroachment shall not extend over properly lines. TABLE 4-2 MAJOR STORM - STREET RUNOFF ENCROACf /uENT a&*" ahmrRlo.eor. LOCAL (Includes places, alleys Residential dwellings, public, marginal access, do collector) commercial dnd industrial buildings shall not be inundated at the ground line unless buildings .are flood -proofed. The depth of water over the crown shall not exceed six (6) inches. ARTERIAL Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line unless buildings are flood -proofed. Depth of water at the street crown shall not exceed six (6) inches to allow operation of emergency vehicles. The depth of water over the huller flowline shall not exceed 18 inches. In some cases: the 18 inch depth over the gutter flowline is more restrictive than the 6 inch depth over the street crown. For these conditions, the most restrivtive of the two criteria shall govern. MAJOR ARTERIAL Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line unless buildings are flood -proofed. The street flow shall not overtop the crown to allow operation of emergency vehicles. The depth of water over the putter flowline shall not exceed 18 inches. In some cases, the 18 inch depth over the gutter flowline is more restrictive than the no overtopping of the street crown. For these conditions, the most restriAive of the two criteria shall govern. REFERENCE: Cm OF ruin COEUNS. STORINVATER OTUW SIORN DRI NIGE DESIGN CID117M AND CONSTRUCTION STMIDMIOS. AMUARr, I9e7. Zg r F 2 0 .9 .8 .7 .3 .2 Cls=06% f c 0.8 _N S'0.4% IF 0.5 I BELOW MINIMUM ALLOWABLE I STREET GRADE 0 2 4 6 8 10 12 14 "SLOPE OF GUTTER M) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) MAY 1984 4-4 DESIGN CRITERIA F 3 Minor Storm Theoretical Street Capacity (DP 1) Cross Section for Irregular Channel Project Description Project File d:\projects\kec\drainage\flow master\kechter .fm2 Worksheet Street Capcity Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.016 Channel Slope 0.016800 ft(ft Water Surface Elevation 0.50 ft Discharge 14.55 cis 0 m tti w 08r21101 04:17:47 PM 0.9 0.8 0.7 0.6 0.5 Q 0.4 0.3 0.2 0.1 0.0 -45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 Station (ft) FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 4 Minor Storm Actual Street Capacity (DP 1) Cross Section for Irregular Channel Project Description ' Project File d:\projects\kec\drainage\flow master\kechter .fm2 Worksheet Street Capcity Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation ' Section Data Wtd. Mannings Coefficient 0.016 ' Channel Slope 0.016800 ftfft Water Surface Elevation 0.38 ft Discharge 5.50 cfs 3 1 i 1 08/21/01 04:20:16 PM Theoretical Flow = 14.55 cfs Reduction Factor = 0.80 (Fig. 4-2) Allowable Flow = 11.64 cfs Design Flow = 5.5 cfs Street Capacity Acceptable o.a 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 Station (ft) FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 5 Major Storm Theoretical Street Capacity (DP 1) Cross Section for Irregular Channel Project Description Project File d:\projects\kec\drainage\flow master\kechter .fm2 Worksheet Street Capcity Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.024 Channel Slope 0.016800 ft(ft Water Surface Elevation 0.82 ft Discharge 53.74 cfs c 0 to ro W 1 r 1 r '08r21/01 04:25:51 PM r 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 Station (ft) FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 6 Major Storm Actual Street Capacity (DP 1) Cross Section for Irregular Channel Project File d:\projectslkec\drainagelflow, masterlkechter .fm2 Worksheet Street Capcity Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Data Wtd. Mannings Coefficient 0.021 Channel Slope 0.016800 ft/ft Water Surface Elevation 0.65 ft Discharge 25.60 cfs w 08/21ro1 04:26:32 PM Theoretical Flow = 53.74 cfs Reduction Factor = 0.80 (Fig. 4-2) Allowable Flow = 42.99 cfs Design Flow = 25.60 cfs Street Capacity Acceptable 0.9 0.8 0.7 O.s 0.5 0.4 0.3 0.2 0.1 1 1 1 1 V, I I I I 0.0 -45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 Station (ft) FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 7 Minor Storm Theoretical Street Capacity (DP 2) Cross Section for Irregular Channel Project Description Project File dAprojects\kec\drainage\flow master\kechter .fm2 Worksheet Street Capcity Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.016 Channel Slope 0.004000 f fft Water Surface Elevation 0.50 ft Discharge 7.10 cfs c 0 m m W 0&21 /01 04:20:67 PM 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1 1 1 1 V, I 1 1 0.0 -45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 Station (ft) FlowMaster v5.13 Hassled Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 8 Minor Storm Actual Street Capacity (DP 2) Cross Section for Irregular Channel Project Description Project File d:lprojects\kec\drainage\flow master\kechter .fm2 Worksheet Street Capcity Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Data Wtd. Mannings Coefficient 0.016 Channel Slope 0.004000 fttft Water Surface Elevation 0.43 . ft Discharge 4.10 cfs C 0 W ro W 1 '08/21/01 04:44:55 PM 1 e Theoretical Flow = 7.10 cfs Reduction Factor = 0.50 (Fig. 4-2) Allowable Flow = 3.5 cfs Design Flow = 4.1 cfs Street Capacity Acceptable (Reduction factor not satisfied, but no curb overtopping occurs) 0.9 0.8 0.7 0.6 0.5 T 0.4 0.3 0.2 0.1 D.O -45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 Station (ft) FlowMaster v5.13 Hassled Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 9 Minor Storm Theoretical Street Capacity (DP 3) Cross Section for Irregular Channel Project File Oprojectftec\drainagelflow master\kechter .fm2 Worksheet Street Cepcity <half> Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wild. Mannings Coefficient 0.016 ' Channel Slope 0.004000 ft/ft Water Surface Elevation 0.50 ft Discharge 7.10 cfs 1 oar30/01 07:47:21 AM 1.0 0.9 0.8 0.7 0.6 C 2 0.5 i m w 0.4 0.3 0.2 0.1 0.0 t- -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 Station (ft) Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 F 10 Minor Storm Actual Street Capacity (DP 3) Cross Section for Irregular Channel Project Description Project File d:\projectsXkec\drainage\flow master\kechter .fm2 Worksheet Street Capcity <halh Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Data Theoretical Flow = 7.10 ds Wtd. Mannings Coefficient 0.016 Reduction Factor = 0.50 (Fig. 4-2) Channel Slope 0.004000 ft/ft Allowable Flow = 3.5 cfs Water Surface Elevation 0.35 ft Design Flow = 2.0 cfs Discharge 2.00 cfs Street Capacity Acceptable v C O Y i W 1 '08130/01 07:47:49 AM 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 Station (ft) FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 1 1 08/29/01 02:09:41 PM Major Storm Theoretical Street Capacity at DP 2 & DP3 Combined Cross Section for Irregular Channel Project File dAprojects\kec\drainage\flow master\kechter .fm2 Worksheet Street Capcity Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.016 Channel Slope 0.004000 fVft Water Surface Elevation 1.00 ft Discharge 154.19 cfs 1.0 0.9 0.8 0.7 OA c 0 0.! to N W 0.4 0.3 WA 0.1 0.0' ' ° I I I I -40.0 -30.0 -20.0 -10.0 0.0 10.0 Station (ft) 20.0 30.0 40.0 FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Mterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 12 Major Storm Actual Street Capacity at DP 2 & DP3 Combined Cross Section for Irregular Channel Project Description Project File d:lprojects\kec\drainage\flow masterlkechter .fm2 Worksheet Street Capcity Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Date Wtd. Mannings Coefficient 0.016 Channel Slope 0.004000 ft/ft Water Surface Elevation 0.62 ft Gtioo Discharge 27.80 cfs v C i+ RI '08/29/01 03:08:35 PM Theoretical Flow = 154.19 cfs Reduction Factor = 0.50 (Fig. 4-2) Allowable Flow='77.10 cfs Design Flow = 27.80 cfs Street Capacity Acceptable 1.0 0.9 0.8 0.7 0.6 s 0.5 0.4 0.3 0.2 0.1 0.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 Station (ft) FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 F 13 u w Al 2 I I Design of Dry Extended Detention Basins for Water Quality Reference: Urban Storm Drainage Criteria Manual, Volume 3 - Best Management Practices, Urban Drainage and Flood Control District, September 1999 Project: Fossil Lake Second Filing/ Kechter Road Location: Pond 1 l) Determine the Design Volume: 1.1) Determine Basin Imperviousness: Basin Parameters Basin Area (acres)= 39.300 Area of Roofs (acres)= 2.500 Area of Parking, Walks (acres)= 5.900 Basin Imperviousness (%)= 21 ' 1.2) Tributary Area's Imperviousness Ratio (i = Ia/100) = 0.21 1.3) Determine the Water Quality Capture Volume (WQCV) from Figure EDB- 2. WQCV = 0.125 watershed inches 1.4) Determine the Design Volume in ac-ft; ' Design Volume= (WQCV/12)*(Area)*(1.2) Area= The tributary drainage area upstream of the water quality enhancement facility in acres Design Volume = 0.49 ac-ft = 21,398.85 cu-ft 2) Design the Outlet Works: ' 2.1) Outlet Type: Perforated Orifice Plate 2.2) From the Stage -Storage table for Pond 1, at 0.49 ac-ft, Elevation= 4890.85 2.3) Invert Elevation of Outlet Pipe= 4886.00 ' 2.4) Depth at the Outlet (DWQ, feet) = 4890.85-4886.00 = 4.85 2.5) From Figure EDB-3, Required Area per Row= 0.385 in2 2.6) From Figure 5, Use (2) 1/2" diameter hole per row, space rows on 4" centers, ' D:\Projects\Spr\ExDetC ol.wpcl G 1 STRUCTURAL BEST MANAGEMENT PRACTICES DRAINAGE CRITERIA MANUAL (V. 3) He) 0.50 0.45 0.40 0.35 d L 0.30 d 0.25 M 0.20 3 0.15 0.10 0.05 0.00 40-hour Drain Time Arucled Welland Basin )ur Drain Time 6-hr drain time a = 0.7 1 1 12-hr drain time a = 0.8 7Ail 24-hr drain time a = 0.9 40-hr drain time a = 1.0 ps,.ro 3 K• yap Detention and Porous _ Landscape Detention 12-hour Drain Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Total Imperviousness Ratio (i=1 a1100) FIGURE EDB-2 Water Quality Capture Volume (WQCV), 801° Percentile Runoff Event . L- S-42 9-1-99 Urban Drainage and Flood Control District G 2 DRAINAGE CRITERIA MANUAL (V.3) STRUCTURAL BEST MANAGEMENT PRACTICES H9 10.1 6.( 4.( 2.( 1.( 0.6( 0.410 E T 0.2( U O.OE 0.04 0.02 so MM SOL SOL UTION: Required Area er 'A j F4OA ArAA ra WQCV '�40 I� I�PE 0.011 0.02 U.Uv U.Ub U. i U U.1U 0.40 0.60 1.0 2.0 4.0 6.0 Required Area per Row,a (in.2 ) FIGURE EDB-3 Water Quality Outlet Sizing: Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume 9-1-99 Urban Drainage and Flood Control Dislric t S-43 G 3 .H to Orifice Plate Perforation Sizing Circular Perforation Sizing Chart may be applied to orifice plate or vertical pipe outlet. Hole Dlo (in) • Hole Die (in) Min. Se (In) Area per Row (sq in) n=1 n=2 n=3 1 4 0.250 _ 1 0.05 0.10 0.15 5716 0.313 2 0.08 0.15 0.23 3 8 0.375 2 0.11, 0.22 0.33 7/16 0.438 2 0.15 0.30 0.45 1 /2 0.500 2 0.20 0.39 4- 0.59 9 16 0.563 3 0.25 0.50 0.75 5 8 0.6Z5 3 0.31 0.61 0.92 11 16 0.688 3 0.37 0.74 1.11 3 4 0.750 - 3 0.44 0.88 1.33 13 IG .._.ILB _ 15/16 U.B13 .0.015 U.936 3 .._ _3- 3 4 - 4--_0.89 0.52 0.60 0.69 U.79__ -8 I.OM1 1.20 1.30 1.77 --- 1.56 I.80 2.07 2.66 - 1 I 18 1.063 1 t 8 1.125 _ 4 0_99 1.99 2.98 t 3 18_ 1_I80 _ 4 _ 3.J2 _I 1 _4_ I J 8 _1 1 I 2 1 9 16 - 1.25_O._ 1.375 1,500 _ 1.563 4 4 -M1 -- _...4 _ 4 1_35 -_ 1.M1ff - I.62 1.77 - 1.92 _ 2.45 _ 2.71 -_-� 2.97 3.25 -- 3.53 3.83 _ _ 3.68 _ 4.06 C45 -_- _ 4.87_ 5.30 -_- 5.75 1 5 8 1.625 4 2.07 _ 4.15 6.22 1 .11 16 1.688 4 2.24_ 4.47 6.71 1 3 4 _ 1.750 _ 4 2.41 4.81 7.22 1 13 16 1.813 4 2.58 5.16 7.74 1 7 8 1.875 1 4 2.76 5.52 8.28 1 15 16 1.938 1 4 2.95 5.90 8.84 2 1 2.000 1 3.14 6.28 9.42 n - Number of columns of perforations Minimum steel plate thickness 1L4 ' 5/16 3/8 " • Designer may Interpolate to the nearest 32nd Inch to better match the required area. If desired. Rectangular Perforation Sizing Only one column of rectangular perforations allowed. Rectangular Height = 2 inches Rectangular Width (inches) = Required Area per Row (sq in) 2" Urban Drainage and Flood Control District Drainage Criteria Manual (V.3) FlIc Detalls.dwq -- PoN D 2 Rectangular Hole Width Min. Steel Thickness 5" 1 4 6" 1 4 T 5 32 8" 5/16 " g" 11 32 " 10" 3/8 " >10" 1/2 " Figure 5 WQCV Outlet Orifice Perforation Sizing 0 4 w a■ Design of the proposed irrigation system was based on the existing 18" CMP irrigation pipe under Kechter Road. The capacity of the pipe was analyzed with the program HY8. ' Based on the existing 49 LF of 18" CMP and a maximum ponding elevation of 16.82, the existing pipe can handle 10 cfs. The supporting HY8 documents follow. ' In addition to basing the design off of the existing culvert both downstream irrigation users have been contacted for input; ' A phone conversation with Paul Staley, downstream shareholder, on 12/20/01 at approximately 10:00 am took place. In this conversation the proposed rerouting of the irrigation flow was discussed. Paul mentioned that he typically runs 4 cfs through the system, but would like to get 8 cfs. He has been limited to 4 cfs because of the existing ditch and culvert, which have been in disrepair and sediment lading. The proposed ' system, including the siphon was explained as well as the flows. Paul agreed that the proposed flows and system would be acceptable and pointed out that the siphon may not be constructed do to the timing with the school property. The realignment of the ditch along the north side of Kechter Road would eliminate the siphon. This realignment is being designed by Nolte Associates. A phone conversation with Tom Brown, downstream shareholder, on 12/20/01 at 1:15 pm discussed the proposed system as wells as the flow amounts. As mentioned above Tom agreed that the existing culvert typically allowed for only 4-5 cfs in the past. The ' proposed system was explained, including the inverted siphon. Tom had no reservations about the layout and agreed that the design flow of 14 cfs was acceptable. The proposed realignment of the irrigation system will involve rerouting the existing ditch, southeast of the intersection, to line up with the proposed 19"x30" HERCP irrigation pipe crossing Kechter Road. From there the flow will travel east through an inverted siphon under the proposed Swale 1. Upon exiting the siphon the flow will enter Ditch D1 and be channeled back into the existing irrigation ditch that runs along the east side of Ziegler Road. The existing ditch runs north and crosses McClellands Channel in an existing 18" CMP flume. The proposed system has been modeled with Eagle Point Storm Sewer Module. The system has been designed to handle 14 cfs, which is above the expected irrigation flow of 8 cfs. Supporting documentation follows. H No Text r Existing Irrigation Culvert 1 CURRENT DATE: 12-20-2001 FILE DATE: 12-20-2001 CURRENT TIME: 08:18:53 FILE NAME: EX1 +*+++*++++++++++++*+++++++ FHWA CULVERT ANALYSIS +++++++++++++**+**++++++++ ++++++++++*++*++++++++++++ HY-8, VERSION 6.1 +*++++++++**++++++++++++++ C I SITE DATA I CULVERT SHAPE, MATERIAL, INLET U-------------------------------------------------------------------------� L I INLET OUTLET CULVERT BARRELS V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET INO.I (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE 1 1 13.38 13.17 49.00 I 1 CSP 1.50 1.50 .024 CONVENTIONAL 2 4 6 SUMMARY OF CULVERT FLOWS (cfs) FILE: EX1 DATE: 12-20-2001 ELEV (ft) TOTAL 1 2 3 4 5 6 ROADWAY ITR 13.38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.01 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.28 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.50 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.70 4.0 4.0 0.0 0.0 0.0 0.0 0.0 0.00 1 14.92 5.0 5.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.09 6.0 6.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.57 7.0 7.0 0.0 0.0 0.0 0.0 0.0 0.00 1 15.92 8.0 8.0 0.0 0.0 0.0 0.0 0.0 0.00 1 16.41 9.0 9.0 0.0 0.0 0.0 0.0 0.0 0.00 1 16.76 10.0 9.8 0.0 0.0 0.0 0.0 0.0 0.00 30 16.82 10.0 10.0 0.0 0.0 0.0 0.0 0.0 OVERTOPPING MAX. PONDING ELEVATION = 16.82 FT SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: EX1 DATE: 12-20-2001 HEAD HEAD TOTAL FLOW % FLOW ELEV (ft) ERROR (ft) FLOW (cfs) ERROR (cfs) ERROR 13.38 0.000 0.00 0.00 0.00 14.01 0.000 1.00 0.00 0.00 14.28 0.000 2.00 0.00 0.00 14.50 0.000 3.00 0.00 0.00 14.70 0.000 4.00 0.00 0.00 14.92 0.000 5.00 0.00 0.00 15.09 0.000 6.00 0.00 0.00 15.57 0.000 7.00 0.00 0.00 15.92 0.000 8.00 0.00 0.00 16.41 0.000 9.00 0.00 0.00 16.76 -0.004 10.00 0.16 1.60 <1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (°s) = 1.000 H 3 2 CURRENT DATE: 12-20-2001 FILE DATE: 12-20-2001 CURRENT TIME: 08:18:53 FILE NAME: EX1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ PERFORMANCE CURVE FOR CULVERT 1 - 1( 1.50 (ft) BY 1.50 (ft)) CSP ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL FLOW ELEV. DEPTH CONTROL FLOW DEPTH TYPE NORMAL DEPTH GRIT. OUTLET TW DEPTH DEPTH DEPTH OUTLET VEL. TW VEL. (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 0.00 13.38 0.00 0.00 0-NF 0.00 0.00 0.00 0.12 0.00 0.00 1.00 14.01 0.51 0.63 3-Mlt 0.53 0.37 0.64 0.64 1.38 1.82 2.00 14.28 0.74 0.90 3-Mlt 0.78 0.53 0.80 0.80 2.09 2.16 3.00 14.50 0.93 1.12 3-M2t 1.02 0.65 0.91 0.91 2.67 2.39 4.00 14.70 1.11 1.32 3-M2t 1.50 0.76 1.00 1.00 3.19 2.57 5.00 14.92 1.27 1.54 3-M2t 1.50 0.86 1.08 1.08 3.67 2.71 6.00 15.09 1.44 1.71 3-M2t 1.50 0.94 1.15 1.15 4.15 2.84 7.00 15.57 1.62 2.19 3-M2t 1.50 1.02 1.21 1.21 4.59 2.95 8.00 15.92 1.81 2.54 3-M2t 1.50 1.09 1.26 1.26 5.05 3.06 9.00 16.41 2.02 3.03 3-M2t 1.50 1.16 1.32 1.32 5.49 3.15 9.84 16.76 2.21 3.38 3-M2t 1.50 1.21 1.36 1.36 5.82 3.23 El. inlet face invert 13.38 ft El. outlet invert 13.17 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ SITE DATA ***** CULVERT INVERT ************** INLET STATION 0.00 ft INLET ELEVATION 13.38 ft OUTLET STATION 49.00 ft OUTLET ELEVATION 13.17 ft NUMBER OF BARRELS 1 ' SLOPE (V/H) 0.0043 CULVERT LENGTH ALONG SLOPE 49.00 ft ***** CULVERT DATA SUMMARY BARREL SHAPE BARREL DIAMETER BARREL MATERIAL BARREL MANNING'S n INLET TYPE INLET EDGE AND WALL INLET DEPRESSION ++++++++++++++++++++++++ CIRCULAR 1.50 ft CORRUGATED STEEL 0.024 CONVENTIONAL SQUARE EDGE WITH HEADWALL NONE ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ H 4 3 CURRENT DATE: 12-20-2001 FILE DATE: 12-20-2001 CURRENT TIME: 08:18:53 FILE NAME: EX1 ******************************************************************************** ************************** TAILWATER ************************** ******* REGULAR CHANNEL CROSS SECTION **************** SIDE SLOPE H/V (X:1) 2.0 CHANNEL SLOPE V/H (ft/ft) 0.005. MANNING'S n (.01-0.1) 0.022 CHANNEL INVERT ELEVATION 13.29 ft CULVERT NO.1 OUTLET INVERT ELEVATION 13.17 ft ******* UNIFORM FLOW RATING CURVE FOR DOWNSTREAM CHANNEL FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (cfs) (ft) NUMBER (ft) (f/s) (psf) 0.00 13.29 0.000 0.00 0.00 0.00 1.00 13.81 0.442 0.52 1.82 0.16 2.00 13.97 0.461 0.68 2.16 0.21 3.00 14.08 0.473 0.79 2.39 0.25 4.00 14.17 0.482 0.88 2.57 0.28 5.00 14.25 0.488 0.96 2.71 0.30 6.00 14.32 0.494 1.03 2.84 0.32 7.00 14.38 0.499 1.09 2.95 0.34 8.00 14.43 0.503 1.14 3.06 0.36 9.00 14.49 0.507 1.20 3.15 0.37 10.00 14.53 0.510 1.24 3.23 0.39 ************************** ROADWAY OVERTOPPING DATA ************************** ******************************************************************************** ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH 30.00 ft CREST LENGTH 2O.00 ft OVERTOPPING CREST ELEVATION 16.82 ft ******************************************************************************** H 5 2 W co U) N m r Z E COD `p Y N r E N A O O ,y 0 a` z Li N � 0 E C OO cD co «` J « > C = T _m O m W 0 A J 0 00 m' :'. (7 A (i v > CL m T T m m E c O cr) ` o O m c E m U) (ri c> r r c)) d) 0 u, v v 0 E c M M c p m m c E A mcnc > T T a� m m m c 7 W V 7 , r d >CL 0 e c y „ V V V: C) O O E C r (O M •m Y N m r > > r O r C p m m m 00 W V V V c I, 0 0 d it« N r � > m N h N > r O r c� °' mmm D W V 19T V a a a U U U n n U U U a' m 0 0 C) d E v T T v N N N C C IMOMI w CO m Ln O J � E. cD 0 0 30=ONN 0 0 mt moo «gam r� o0 d- C L � N N 7 m c O) O) 00 '.u�. C c O M r N U `. (D (D cD V 75 d m ti (0M Y O O O A ci Y J M cM 0 E N o y M N cD 00 W It ; ; (6 6 li O N � N co T CC) V couiv c M M m J O M r cD (� m V' Lo U-) W > T r r c ( M N V m V L6 (D W > r r T W V V V' f N M a n ma a) N C N O .L > > ca CD CD cn C U N C N O O) O > C U O O N (.) f0 'X C C .� (D 0 . C a) a) CO y O w "O cn V N L a)O r -0 . O w N n O D_ O m a) c 3 O m LCL w N .Q U O L o m N H w O Co O N O y N c 3 m U N=3Eco a ca c � X > E E c 0 U 0 0 0 -0 >. = L cc o m co (D L D cn a E L L U a) ,U., N O7 Lo co 7 T E 0L V 3 c Y 2 cn � 2 O M O Q O , 'O N W 3 F- 3 -0 ?:, m N W 0 2 1 j � 1 � 3 ! / 1 Z / QZ x im 1 1 010a0 v / / ± Q19 / w 3 <3 / 1 V�r` �mor / aoiao ao Ncn UI I ar I1., ti 11� 1 NI /I•! I 1 p 1 Omj m 0- I a _ I 1 1 m I I z O W0uj 1 1 1 I I J t r f t W Zf t I I I 1 t I 1 1 w z <=L1� O W,W o w o t;3z 8-in r, 8i m N 0 w r 0 2 0 0 0 2 a $ $ $ $ $ $ % 0 � � + . . t ---- F -W+- | � it \ , \ a- I Li/ ` � (. pr) \i• ^t. da f o [ %1 \��� Q.q14 I FFFFF� 0 ^ V • + — m g a R • • � A� � 7 $ 0# \w :I a \ 7b 0 Q ƒ oLLIk C k1 �� ƒr 3§ 2/9A dR 9,•3 o a 1. € N 0 �1 111 lilt , , ' .2 -lJ \ \§ ] !& NN & o V L § � �� a � \t m & f � f o k){/( JX ` ) \\ > z%§§ o u .. ... .. .. 0 LO \ / / Ln 0 / ƒ $ % $ $ $ $ $ � � � I 8 S 9LSIN !x EXTENDS FRISW rt D THE AITIVABLE AREA REFTRENCE DRUNNAGE P(MT MR ID C E G Po I o9i� 10-YR E`9rt el SW F E1- LXDER SW[WHx / x f e, � _ - 116RR p1WM1 PWp 1 i0 � • xR ` 1 (`i�x ~y -R• L V1[F ACp1D FIUNG CDLKRf R.\` `\ ` X `L'_!! \ _ I 'l � V `I .•a_.J \ YJ T.:l L..� sx � Rc9 rRoa IwvLwEu � me:µ - 1 L It j_ f4�iF TONE MM JV1♦H � O OR WN Ge 1VN Gm m9 CO1NHl1Ol1 INiML�••! 1 1, E1 h E2 14.91 0.36 5.5 - 25.6 MCCIFLIINDS CHANNEL CdG --> CIXV a --> 1NLF 1 --> LkCIE DS CHANNEL 1 1, EI, E2 8 E3 22.28 OM 5.8 309 MCCUEDEND'S CNMINEL C8G --> CULVERT ♦ --> ROLY 1 --> MCCIEWIID'S CHANNEL 1 ES 7.87 0.20 1.3 - 8.2 CULVERT 6 SWAIE Z --> C0.VERT 6 2 2 3,22 O.T2 4.1 - 10.9 McCLE1WID'S CHANNEL C8G --> INLET 1 --> MCCLEEbWO'S CHAWIEL 3 3 2.01 O.W 2.9 - 13.4 MCcL D'S CNwNI4a CBA --> INIET 27 --> M9QE¢AND'S CNMINEL El E1 5.99 0.20 1.3 - 5.8 MCCIEWND'S CHANNEL PVC OIMW-->4RALE ) --> 'A'OCV --> MCCLEILMDS F1 FI 0.71 O.T9 1.5 2.5 7.0 WALE ALONG ZIEGLER RUED SMAIE --> CULVERT --> SYMLE NORM F2 F2 235 47.0 117.5 SWAIE ALDNG ZIEGIER ROID CULVERT --> SWNE --> CULVERT NORM --> SWAIE NORM 6' tl10 =1.40 HIM OF-- TCP a 491853 6WN-4916.50 e' nBMLNE SLOPE�O.WS swp�E z 2( MIN 01. =L61' ROWLINE SLOPF-'I 9OS �.J PFP SWALE 1 Nis I2. MIN I I tlr =0.91 15' MIN RDeUNE SLWE-I WS 12 HER, CF 7d-0 - TW W a17 BWx�991fi 50 ,N,i. FLORLINE STORE =045X nOwuxE SLDPE=I.31% BW ATL.E E2 DETW D2 LEC3ErO: EM151M6 9CITA Sit PRDPosY.O so1161 SErrtR gyp PRDPosEo cwtt D ® PF'SOSED sob SEME4 MEET /' ifCtVSED CRVIE AT IIDMIIF PROPOSE➢ CbRWR L� O IR6JSED SEMW MIE CRIME p151MG COxIWR - MD2o EXRIMG It CCMOM �• O RFVJSED W VEL INLET FILTER PRCIt CURB PRO BUTTER PRS05E0 n4WUNE 111(f D SLI FENCE LLLF LLB DELBN DRt MRIINI I qp gp'OEED RIPRID BASIN DESMIuicR 1 I.IOI AREA IN ILRES Q DESRN MYJT ).ERORD nOw NOTES: I. EROVCH CMTRCE SIGWN AND LIBELED M THE tlVtINB " ERE)NCN CONFIRM SNE13 2 EDSNL LVtE SECOND FYINB SYH! 07, MLHRI E. AND WATER gWRY P^AX) II H r0 BE CONSTIM1kTED WIN THE E[IDW RbD IWRP91FN15. APPROVAL BLOCKS: EMRQ:R COUNTY CNGRI88ELRIG APPROVAL CHl UTILITY pRY 1qH WHI IW�Cf COEMIM }8M0o-922-IM7 RR001 �ME`tEW` CRT z m MAME �bQ�e�ib HUNCH 1w 0 150 lCO 45D IM IN FEET ) 1 Tlh. 1SD It Im1Dlm rn9 mMRR+ p®® ■Y u1e T pm®■W OLD M�� u