Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 12/18/2001i
Drainage Design Considerations
for
Kechter Road Improvements
Fort Collins, Colorado
December 18, 2001
JAh 1 0 2002
NORTHERN
Drainage Design Considerations
for
Kechter Road Improvements
Fort Collins, Colorado
December 18, 2001
Prepared For:
The Everitt Companies
Fort Collins, Colorado 80525
Prepared By
i7zi!i3T
Northern Engineering Services, Inc
420 S. Howes, Suite 202
Fort Collins, Colorado 80521
Phone:(970) 221.4158
Project Number: FLS 00-059
December 18, 2001
City of Fort Collins
Stormwater Utility
700 Wood Street
Fort Collins, Colorado 80522
RE: Kechter Road Improvements
Fort Collins, Colorado
Project Number: 00-059
Dear Staff:
Northern Engineering Services, Inc. is pleased to submit this Final Drainage Report for the
Kechter Road Improvements associated with Fossil Lake Second Filing for your review. It is
Northern Engineering Services, Inc. understanding that this report is to be submitted as an
amendment to the Fossil Lake Second Filing report dated May 3, 2001. We understand that
review by the City of Fort Collins is to assure general compliance with standardized criteria
contained in the Storm Drainage Design Criteria and Construction Standards. This report was
prepared in compliance with technical criteria set forth in the City of Fort Collins Storm
Drainage Desien Criteria and Construction Standards manual.
If you should have any questions or comments as you review this report, please feel free to
contact us at your convenience.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
m Fse Ames III, E.I.T.
M Project Engineer
r:
Roger A. urtiss, P.E. __
27362
Project ManagerNice President s
420 SOUTH HOWES, SUITE 202, FORT COLLINS, COLORADO 80521, (970) 221.4158, FAX (970) 221-4159
Table of Contents
VICINITY MAP
I. INTRODUCTION
1.1 Objective......................................................................................
1.2 Mapping and Surveying................................................................
1.3 Site Reconnaissance......................................................................
II. SITE LOCATION AND DESCRIPTION
2.1 Site Location................................................................................
2.2 Site Description............................................................................
III. PRE -DEVELOPMENT CONDITIONS
3.1 Major Basin Description................................................................
3.2 Pre -development Drainage Patterns ...............................................
IV. POST -DEVELOPMENT CONDITIONS
4.1 Post -development Conditions.........................................................
4.2 Design Criteria and References......................................................
4.3 Hydrologic Criteria.........:....................................................I.........
4.4 Hydraulic Criteria..........................................................................
4.5 Drainage Patterns.........................................................................
4.6 Irrigation........................................................................................
4.7 Detention........................................................................................
4.8 SWMM Modeling.........................................................................
V. WATER QUALITY
5.1 Water Quality Measures and Criteria .............................................
VI. EROSION CONTROL PLAN
6.1 Erosion Control Plan and Criteria ..................................................
6.2 Rainfall Erosion Control Plan ........................................................
VII. CONCLUSIONS
7.1 Compliance with Standards...........................................................
REFERENCES.......................................................................................
APPENDICES
APPENDIX A- Hydrology
APPENDIX B - Design of Swales
APPENDIX C - Design of Culverts & Storm Lines
APPENDIX D- Design of Riprap
APPENDIX E- Design of Inlets & Sidewalk Culverts
APPENDIX F - Street Capacity Calculations
APPENDIX G- Design of Water Quality Pond Outlet
APPENDIX H- Design of Irrigation System
Page
1
1
1
2
2
2
2
3
3
3
4
4
5
5
5
5
P
Drainage Design Considerations Northern Engineering Services, Inc
Kechter Road Improvements
' December, 2001
Drainage Design Considerations
for
' Kechter Road Improvements
Fort Collins, Colorado
' December, 2001
' I. INTRODUCTION
1.1 Objective
This report summarizes the results of a comprehensive analysis of both pre and post -
development hydrologic and hydraulic conditions, for the Kechter Road Improvements.
1.2 Mapping and Surveving
' King Surveyrors of Windsor, Colorado provided aerial topography of the site with a
contour interval of one (1) foot. Supplemental topography north of Kechter Road, east of
McClelland's channel was obtained from digitized City of Fort Collins Orthophoto Maps flown
' April 12, 1984.
1.3 Site Reconnaissance
The project engineer conducted a site visit on May 6, 1998, then again in June 2001.
Based on the topographic mapping, existing drainage basins and land use were confirmed as well
as existing structures. The location and dimensions of existing culverts were verified as well as
their condition and flow direction.
II. SITE LOCATION AND DESCRIPTION
2.1 Site Location
' The Kechter Road Improvements associated with Fossil Lake Second Filing are located
in the West Half of Section 9, Township 6 North, Range 68 West of the Third Principal Meridian
in Larimer County, Colorado (See Vicinity Map). The stretch of roadway is bounded by the
' intersection of Ziegler Road and Kechter Road on the west and the Fossil Lake Second Filing
boundary on the east. The north and south boundaries consist of agricultural land.
2.2 Site Description
The Kechter Road Improvements constitute approximately 6.63 acres of improved
roadway. Existing agricultural land to the north drains away from the road, northeast, to
McClelland Channel. Approximately 20.74 acres of agricultural land on the south side of the
road drains northeast into Kechter Road before traveling east into McClellands Channel. Some
agricultural land to the south drains directly into McClellands Channel. Approximately 235 acres
south of Kechter Road and west of Ziegler Road drains northeast through two existing 18"
culverts in the Ziegler\Kechter intersection to McClellands Channel. There are existing
residences offsite on the south side of the road.
' Drainage Design Considerations Northern Engineering Services, Inc
Kechter Road Improvements
' December, 2001
III. PRE -DEVELOPMENT CONDITIONS
3.1 Major Basin Description
The roadway improvements are located in the McClellands Creek Basin. According to
' the McClelland's Basin Master Drainage Plan, detention was required in the McClelland's Basin
with a maximum 10-year release rate of 0.2 cfs/acre and a maximum 100-year release rate of 0.5
cfs/acre. The following quote from the Fossil Lake Second Filing Report dated May 3, 2001
t demonstrates that no detention is required. "In discussions with the City of Fort Collins, it was
decided it would be better not to detain runoff from the site. Releasing the runoff immediately
would actually lower the peak flow in the McClelland Drainageway downstream from the site."
The Second Filing report goes on to say that the McClelland Drainageway SWMM model was
updated for the developed conditions, which include the Kechter Road improvements.
' 3.2 Pre -development Drainage Patterns
The existing drainage south of the roadway travels northeast until it is intercepted by a
' swale along the south side of the roadway. The flow is then directed east to McClellands
Channel along the roadway under two existing driveways. At several locations the swale
terminates and flow is conveyed in the roadway until the swale begins again. Drainage north of
' the roadway is conveyed away from the road, northeast, overland until it reaches McClellands
Channel. There are two existing corrugated metal pipes (CMP) in the intersection of Kechter
Road and Ziegler Road. The CMP's are used to convey irrigation flows associated with the
irrigation ditches running along the east and west side of Ziegler Road and to convey drainage
flows associated with approximately 235 acres west of Ziegler Road. The flows are conveyed to
the property northeast of the Kechter Road and Ziegler Road intersection. The improvements to
' Kechter Road propose the removal or flow fill of the CMP's and replacement with larger
reinforced concrete pipe.
' IV. POST -DEVELOPMENT CONDITIONS
4.1 Post -development Conditions
The Kechter Road Improvements include the following:
' • Widening the existing roadway and adding vertical curb and gutter
• Replacement of the existing CMP's at the intersection of Kechter Road and
Ziegler Road.
' • McClelland Channel improvements as described and approved with Fossil Lake
Second Filing Plans, including the box culvert.
• 12" waterline installation across McClelland Channel
• Water Quality Pond as approved with the Fossil Lake Second Filing Plans
• Conveyance of irrigation flows across Kechter Road
' 4.2 Design Criteria and References
Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design Criteria
Manual, (SDDCM), Storm Drainage Criteria Manual by the Urban Drainage and Flood Control
District, the Final Drainage Study for Fossil Lake P.U.D. Second, Fort Collins Colorado dated
May 3, 2001 and McClellands Creek Master Drainage Plan Updated, November 30, 2000 have
been referenced for this study.
Drainage Design Considerations
Kechter Road Improvements
December, 2001
Northern Engineering Services, Inc
4.3 Hydrologic Criteria
The Rational Method has been used to estimate peak stormwater runoff associated with
most delineated basins. The exception to the rational method is the 235-acre basin F2, which
used a 10-year rate of 0.2 cfs/acre and 100-yr rate of 0.5 cfs/acre. These previous rates were
agreed upon by the City of Fort Collins Stormwater Department on October 17, 2001 in a phone
conversation. Furthermore the rates are supported by the McClellands Creek Master Drainage
Plan Update. The 2-year, 10-year and major 100-year design storms have been used in the
design of the proposed drainage system, which includes storm inlets, culverts and swales.
Rainfall intensity data for the Rational Method has been taken from Figure 3-1 a updated by the
City of Fort Collins in 1999. These rainfall intensities were used for the design of new
improvements being proposed with the roadway.
4.4 Hydraulic Criteria
The City of Fort Collins Storm Drainage Design Criteria has been referenced for all
hydraulic calculations. In addition, the following computer programs have been utilized:
• The computer program "UDINLET" has been used to analyze inlet capacities
• The computer program "F1owMaster" has been used to analyze the swales and
street capacities
• The computer program HY-8 has been used to analyze the culverts
4.5 Drainage Patterns
Runoff from basin F2 will flow through an existing swale system along the south edge of
the Kechter roadway until it dumps into an existing ditch at the southwest corner of the
Ziegler/Kechter intersection. Flow that enters the ditch will be conveyed, east, across Ziegler
Road by three (3) 19"00" HERCP's. Then northeast in Swale 2 to three (3) 19"00" HERCP's
which cross Kechter Road. On the north side of Kechter Road the flow will exit the HERCP
drainage pipes and be conveyed in Swale 1 to McClellands Channel. All of the above -mentioned
HERCP pipes have been designed to hand the 10-year flow.
Basin F1 runoff flows overland until the existing irrigation ditch along the east side of
Ziegler Road intercepts it. Until the ultimate build -out of Ziegler Road occurs the runoff, 2.5 cfs
10-yr, will flow through the rerouted irrigation system. Once the ultimate build out of Ziegler
Road occurs the flow will be routed through the drainage system, not the irrigation system. The
drainage system has been designed to handle the ultimate build out of Ziegler Road. After the
ultimate build out has occured the runoff at Design Point F 1 will combine with the runoff from
F2, to flow east.in a Swale 2, then north across Kechter Road in three (3) 19"00" HERCP's that
have been design to handle the 10-year flow of 49.5 cfs. From there the flow will be conveyed
in Swale 1 to the McClellands Channel.
Both culverts for Basins F1 and F2 have been sized to handle the 10-year flows. In a
100-yr event, flow above and beyond the culverts capacity will be conveyed north in Ziegler
Road to Sage Creek Road. Two existing sump -curb inlets at the PCR's in Sage Creek Road will
intercept some of the flow and place it in the existing detention pond PB, built with Sage Creek.
Pond PB drains into McClellands Channel. Flow that is not intercepted by the inlets will
continue to flow north in Ziegler road until it reaches a low point in the road approximately 200-
feet north of McClellands Channel. At the low point the runoff will be conveyed south in swales
along the east and west sides of Ziegler Road until the runoff reaches McClellands Channel.
3
1 Drainage Design Considerations Northern Engineering Services, Inc
Kechter Road Improvements
December, 2001
Flow in existing basin E1 will be conveyed northeast overland to a swale along the south
' side of Kechter Road. Flow traveling east in the swale will be diverted to the street through a
sidewalk culvert and chase prior to reaching the existing residence. From there the flow will
travel east in the curb and gutter combining with flows from basins E2 and 1 as it travels. At the
intersection of Kecther Road and Trilby Road the flow will follow the curve return and be
deposited into the proposed Swale 7 of Fossil Lake Second Filing, then pass through Culvert 4 of
Fossil Lake Second Filing into Water Quality Pond 1 of Fossil Lake Second Filing. Swale 7,
Culvert 4 and Water Quality Pond 1 of Fossil Lake Second Filing are being constructed with the
Kechter Road Improvements.
Proposed runoff associated with Basin 2 will flow overland to curb and gutter, where it
' will be conveyed to Design Point 2. Design Point 2 will be a 15' inlet in the McClelland's
Channel box culvert that has been sized to handle the 100-year flow of 18.9 cfs.
Runoff from basin 3 will be conveyed overland to curb and gutter, upon which it will
flow to a 5' inlet in the McClelland's Channel box culvert at Design Point 3. The 5' inlet has
been designed to handle the 100-year flow of 8.9 cfs.
4.6 Irri atg ion
As mentioned above the existing irrigation at the intersection of Kechter and Ziegler
' Road will be conveyed across Kechter Road. Irrigation flows in the ditch along the east side of
Ziegler road will be routed east in Ditch D2 to a proposed 19"00" HERCP pipe under Kechter
Road. The HERCP pipe will drain into a sump manhole that will act as the starting point for an
inverted siphon to transport the irrigation flows west under the proposed Swale 1 in a 18" RCP
pipe. Once the flow has crossed Swale 1 it will enter another sump manhole and exit at a higher
elevation. This, second manhole, will act as the end of the inverted siphon. Flow will leave the
second manhole in an 18" RCP and be conveyed west in Ditch D I to the existing ditch that runs
north along Ziegler Road.
Approximately 5 acres of existing agricultural land southeast of the Kechter\Ziegler
intersection is irrigated during the growing season. The tail water for the irrigated land currently
runs under two 12" driveway culverts to ditch, then to McClellands Channel. Due to expressed
concern from the City of Fort Collins Engineering Department that the tail water entering the
street will create maintenance problems, a drainage pipe has been placed under the sidewalk at
the City's suggestion to alleviate any tail water problems. The pipe will connect the previously
mentioned 5-acre field with Swale 7. Flow that enters the pipe will be routed through Swale 7
and Water Quality Pond 1, before entering McClellands Channel. The drainage pipe has been
sized to handle the 100-year runoff of 5.8 cfs. This will provide adequate size for irrigation
runoff and storm water.
4.7 Detention
No detention is required as agreed upon in the Fossil Lake Second Filing Drainage report
dated May 3, 2001. Water Quality Capture Volume will be provided in the form of Water
Quality Pond 1, designed with Fossil Lake Second Filing, to be constructed with Kechter Road.
1 4
I
Drainage Design Considerations
Kechter Road Improvements
December, 2001
Northern Engineering Services, Inc
4.8 SWMM Modelint?
There will be no SWMM modeling performed as part of this Kechter Road drainage
study. All SWMM modeling has been completed and approved by the City of Fort Collins as
part of the Fossil Lake Second Filing P.U.D.
V. WATER QUALITY
5.1 Water Quality Measures and Criteria
Sizing for a temporary water quality pond will not be provided. The scheduled
construction of Fossil Lake Second Filing, Phase 3 does not lag behind the Kechter Road
Improvements long enough to justify a temporary water quality pond. Instead it is proposed that
the final Water Quality Pond 1 designed with Fossil Lake Second Filing be constructed, thereby
satisfying the long term needs of the area. The original design of Water Quality Pond 1 called for
a standpipe structure. That design has been altered with this project at the City's request to use
an orifice plate designed according to Urban Drainage standards.
VI. EROSION CONTROL PLAN
6.1 Erosion Control Criteria
The erosion control plan presented here is intended to control both wind and rainfall
erosion. The Erosion Control Reference Manual for Construction Sites (ECRM), City of Fort
Collins, has been referenced for this erosion control plan.
6.2 Rainfall Erosion Control Plan
The proposed rainfall erosion control plan during construction will consist of temporary
structural erosion control measures. Gravel inlet filters will be placed at all curb inlets. Straw -
bale sediment traps will be placed at the entrances of all culverts. Silt fencing will be installed at
the locations specified on the Grading and Erosion Control plan to prevent the migration of
sediment. Straw -bale dikes will be place in the swales at a minimum spacing of 200-feet.
All procedures listed under the City of Fort Collins Standard General Grading and
Erosion Control Notes shall be strictly followed. It has been clearly noted on the Grading &
Erosion Control Plan that no soils shall remain exposed for more than thirty days before
requiring temporary or permanent erosion control measures, unless approved by the City of Fort
Collins Stormwater Utility.
The proposed erosion control plan after construction will consist of permanent riprap,
which will be provided at the locations specified on the construction plans. All open space areas
and grass -lined swales will be seeded with a permanent dry -land seed mix.
VII. CONCLUSIONS
7.1 Compliance with Standards
All drainage design considerations are in accordance with the City of Fort Collins Storm
Drainage Design Criteria Manual (SDDCM), the Urban Drainage and Flood Control District's
Drainage Criteria Manual and drainage design approved with Fossil Lake Second Filing.
Drainage Design Considerations
Kechter Road Improvements
December, 2001
REFERENCES
Northern Engineering Services, Inc
1). Final Drainage Study for Fossil Lake P.U.D. Second Filing, Fort Collins, Colorado,
Northern Engineering Services, Inc., May 3, 2001.
2.) Storm Drainage Design Criteria and Construction Standards, City of Fort Collins,
Colorado, May, 1984.
3.) Drainage Criteria Manual, Urban Drainage and Flood Control District, Wright -
McLaughlin Engineers, Denver, Colorado, March, 1969.
4.) McClellands Creek Master Drainage Plan Update, City of Fort Collins Utilities,
Icon Engineering, Inc., Englewood, Colorado, November 30, 200.
.9
I
December, 2001
VICINITY MAP
N TS
I
I
TV.
LL,'ice}ik Y
r y
IT
t r
i 0Al
,.
CD
'4'� '
l
ice; 't y r�• tll� tWj
4-1
x i'®
C #� % 0 f k x *f" s
i aW vt
V _
`' r r N q
s. LL_ r5
. 9.. v R`•"a i ` ., emu., a]va..Mr/rl.._+r'. -..v-rsa$'Lw�. .'^SY 'i #fi'.T. ",.! .,..� �:H a,,.i+�....
Q Lv R
X
n 'lam Ln rn
ON
Ji
-
1
q
?A'�ts+-"a•��:'"�---�••��
•p'.. ti' - � '..' a . '?' a a.'' • . � ,
fi. y .
I S tc�S.�•'�. 1
tT
" ��� yr
A 1
t §gib 1 s-141dwan:n
n
011010000000
m
n
m
o
0
o
m
v
N
0,V
V
C �
UUf,'N:
co
N
O
O
0
.r o c.i>Pnnmm
ro
'
0
0
0
ui
n
R
O
Z
N
R?a Oyu;
0
0
0
pp
O
N
N
N
0
N'
N'
'
O`
m�j
Oca
O
O
O
O
LL-
M
N
�t
L
°
k0
00
00
00
00
Ur
e
°
k�
0
0
0
0
W
U
e3a kaa'
L
C
;r , RN
ff�,14'
tl�
o
u
u)
Pn
o
In
to
0
O
--
U)
o
N
o
N
U)
N
o
m
,�
LS�Qi
tJ r�'� � y
S21
00
0
0
®E
c
°C
u
0
0
0
0
O
O
O
O
O
O
i
U
.�•.
o` R m'
O
o
0
o
0
0
0
0
s 1uiLirs`k'.'R
p
P Stiff` %A"i F
�t
Tk
`, "4QgM)
m
`
o
o
o
u1Di
n�n,a
E
" R rc�.�{U
N
V
N
O
.ya�6'�jc N�a
U)
O
U
u. �--00
: 4' N
.
E
ra
..�:�0NmmQ01-
6
e
N
r
N
n
n
u
a;R
Nm-viutn6cc)
u
0
V
V
u
v
v
�
IL
N
N
IL
N
N
(D
N
0)C\j
co
Q
U
0
02
C
0
In
0=
L
L
R
lu
A 2
,Lo
v1
6
lD
-
-Om�na
Y
p .U..m
'{.
8
^m
m
comm�v
M
--
O
----
N
N
c
n
N
n
n
O
N
L �
s O
O
~ Ec
v
n
m41
viOip
cm
m
inaama
`�'
�.M
R
r�
Ti
g>��
�
�88�8
O
u
-
-
-
0
0-
O
E
>
U
N
u
O
8
8
�8888
o
-
-
-
O
O
-
O
N
8O0NO
EO°:
�vN
N
3
>
-
t®=
81
a
Z
a
§�^+
n
n
O�OOui
�nDOn
O
C`.N
N
0
0
�N
mmm0-
g,
~ E
m
m
m
N
N
m
N
Y=
Ion
8
8
88
8
8
000
8m480
Q
O
um
o
onnNn
",
dd00
(V
N co
(O co_
c0 O
O
m
N
N
n
n
N
n
-
m U N Q
O
O
0
0
0
0
0
II ;)
0000
C)
pp
> >
A
2
W
N
n
m-
N
U k o o
n
o
o t
N
g
Wm
w
N
m
w
L �Ni.
3 U
W
w
JU
Quo-
-
-N"Ywu_N
F= H H 2 > > C2
A
� EIY�c
� N
O
N �
N
N1 m m
U
n
m U N O Q
O
<aog
r o
H
n O o N S
cp +Ju
m
_� y .0 m
n
A 4 i
_
o
c6
12
c6
ui
n—
`
U
m
m
V
lU
u
m
of
N
a
c�
—
tDOmmO
;; �
_
-
•
~ Em
v
ll
mKvN'^
2 O
VVV
j a'
3
0,�
-
�88-0
d58
n
N
N
d�8
8
°8888�
o
-
-
-
o
o
_
o
o
0
000000
0
0
N
O
O
N
N
N
m
m
6
U4
3
o,
N
N
B�NO
W.°i
�.
N
CV
O
N
lV
O
(V
'X Ux
j
H49=o8U
r r:
�
,
u
� n
U
J
qvf
m
O
O
O�00
oo
*&}i
N
N
I�AAOO
nv
�
�
N
th
f�nm
a
Y•i.�a!�
E
Icil'i
o
3
Sr
$o
8
°88889
O
�
N
o'
y�8
8
8mN8N
Uc
m
NmmNm
-'s`
--
U
O
O
0
0
0
0
0
U
� N
N
Ul
W
W
to
W
W
N �
—
A
— N m
U
m
co —
O
E om
O
O�NONn
p N CD Q
V
O
O
00000
oC
¢ n
g
0
0
0
0
0
8
-
>, U
w
m
m
—
W
w O Q
o
;o
Q
N
n
vi
—
ui
d
N
c I
U L C
N
N
� k)
• +' m
m
W
w w
w
N cn
- -
•y
m
O ~ C� N 6'
m"'w
ED
w
� +
� �
— J F
c
W
�
H F>>
p W
H K
N
cd
UO
O
bA
Q
>C
N
CL
C.
El
Swale 1; Q10= 49.5 cfs vPPE K $EC t-1OA1
Worksheet for Triangular Channel
' Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 1
' Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient 0.035
'
Channel Slope
0.019000 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
' Discharge
49.50 cfs -s---- (�to
Results
Depth
1.59
ft
Flow Area
10,07
ft2
Wetted Perimeter
13.08
ft
Top Width
12.69
ft
Critical Depth
1.57
ft
' Critical Slope
0.020151 ft/ft
Velocity
4.91
ft/s
Velocity Head
0.38
ft
' Specific Energy
1.96
ft
Froude Number
0.97
Flow is subcritical.
'12/17/01 FlowMaster v5.13
12:30:01 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B
I
Swale 1; Q= 78.80 cfs UPPER SEc1-1U.t/
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 1
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
'
Channel Slope
0.019000 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
'
Discharge
78.80 cfs 4— " MAX
Results
Depth
1.89
ft
Flow Area
14.27
ft2
Wetted Perimeter
15.58
ft
Top Width
15.11
ft
Critical Depth
1,89
ft
'
Critical Slope
0.018940 ft/ft
Velocity
5.52
ft/s
Velocity Head
0.47
ft
Specific Energy
2.36
ft
Froude Number
1.00
Flow is supercritical.
GAPAC,IrY Of upsrRFAm CVLVe1zi5
'12 I7101 FlowMaster v5.13
12:07:42 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B 2
Swale 1; Q= 105.04 cfs V PPr t2 SEGi/dN
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 1
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
= Channel Depth
Input Data
Mannings Coefficient 0.035
'
Channel Slope
0.019000 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
'
Discharge
105.04 cfs e— 78. eQ x I. 333
Results
Depth
2.10
ft
Flow Area
17.71
ft2
Wetted Perimeter
17.35
ft
Top Width
16.83
ft
Critical Depth
2.12
ft
Critical Slope
0.018228 ft/ft
Velocity
5.93
ft/s
Velocity Head
0.55
ft
Specific Energy
2.65
ft
Froude Number
1.02
Flow is supercritical.
A
'12/17/01 FIOWMaster v5.13
12:08:11 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B 3
Swale 1; Q10= 49.5 Cfs La wER 5EcT/vx1
Worksheet for Triangular Channel
' Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 1
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.017500 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
49.50 cfs 4.-- (� a
Results
Depth
1.61
ft
Flow Area
10.39
ft2
Wetted Perimeter
13.29
ft
Top Width
12.89
ft
Critical Depth
1.57
ft
Critical Slope
0.020152
ft/ft
Velocity
4.77
ft/s
Velocity Head
0.35
ft
Specific Energy
1.96
ft
Froude Number
0.94
Flow is subcritical.
w
12/17/01 FlowMaster v5.13
' ge
12:29:48 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 ' Pa1 of 1
B 4
Swale 1; Q= 78.80 cfs LOWER 5E1--'r1VA/
Worksheet for Triangular Channel
Project Description
Project File d:\projects\kec\drainage\swales\kec.fm2
Worksheet Swale 1
Flow Element Triangular Channel
Method Manning's Formula
Solve For Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.017500 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
78.80 cfs MAX
Results
Depth
1.92
ft
Flow Area
14.72
ft2
Wetted Perimeter
15.82
ft
Top Width
15.35
ft
Critical Depth
1.89
ft
Critical Slope
0.018940 ft/ft
Velocity
5.35
ft/s
Velocity Head
0.45
ft
Specific Energy
2.36
ft
Froude Number
0.96
Flow is subcritical.
6APAc1T1 or- ups rec5W cuLVCRT<
12/17/01 FlowMaster v5.13
' 12:08:37 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
e
5
Swale 1; Q= 105.04 cfs L OW E k S r'(; 7-1OA1
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 1
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient 0.035
Channel Slope 0.017500 ft/ft
Left Side Slope 4.000000 H : V
Right Side Slope 4.000000 H : V
Discharge 105.04 cfs er— 76. 80 K ).333
Results
Depth
2.14
ft
Flow Area
18.26
ft2
Wetted Perimeter
17.62
ft
Top Width
17.09
ft
Critical Depth
2.12
ft
Critical Slope
0.018228 ft/ft
Velocity
5.75
ft/s
Velocity Head
0.51
ft
Specific Energy
2.65
ft
Froude Number
0.98
Flow is subcritical.
12/17/01 FlowMaster v5.13
' 12:08:25 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B 6
' Project Description
Swale 2: Q10=49.50 cfs
Worksheet for Irregular Channel
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 2
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Input Data
Channel Slope
0.008000 ft/ft
'
Elevation range: 0.00
ft to 4.36 ft.
Station (ft)
Elevation (ft) Start Station End Station
-15.90
4.36 -15.90 15.90
-3.00
0.06
0.00
0.00
3.00
0.06
'
15.90
4.36
Discharge
49.50 cfs cam--
' Results
Wtd. Mannings Coefficient
0.035
Water Surface Elevation
1.40
ft
Flow Area
13.59
ftz
Wetted Perimeter
14.47
ft
Top Width
14.03
ft
Height
1.40
ft
Critical Depth
1.11
ft
Critical Slope
0.019982 ft/ft
Velocity
3.64
ft/s
Velocity Head
0.21
ft
Specific Energy
1.61
ft
'
Froude Number
0.65
Flow is subcritical.
Roughness
0.035
12/17/01
' 12:30:22 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
B 7
Swale 2: Q10=73.2 cfs
Worksheet for Irregular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 2
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Input Data
Channel Slope
0.008000 ft/ft
Elevation range: 0.00 ft to 4.36 ft.
Station (ft) Elevation (ft)
Start Station
-15.90
4.36
-15.90
-3.00
0.06
0.00
0.00
3.00
0.06
15.90
4.36
Discharge
73.20
cfs kk— MAX
' Results
Wtd. Mannings Coefficient
0.035
Water Surface Elevation
1.70
ft
Flow Area
18.05
ft2
Wetted Perimeter
16.36
ft
' Top Width
15.83
ft
Height
1.70
ft
Critical Depth
1.37
ft
Critical Slope
0.018888 ft/ft
'
Velocity
4.05
ft/s
Velocity Head
0.26
ft
Specific Energy
1.95
ft
Froude Number
0.67
Flow is subcritical.
r
End Station Roughness
15.90 0.035
CAPAeiry OF vPs7-kf-A1V\ C-UtVeRT5
'12/18/01 FlowMaster v5.13
12:22:47 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 756-1666 Page 1 of 1
B 8
Swale 2
Cross Section for Irregular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 2
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
1
Water Elevation
Section Data
' Wtd. Mannings Coefficient 0.035
Channel Slope 0.008000 ft/ft
Water Surface Elevation 1.70 ft
Discharge 73.20 cfs
4.5
4.0
3.5
3.0
' 2.5
C
.o
1 N 2.0
lL
'12JI8101
12:23:47 PM
1.5
1.0
0.5
0.0'-
-20.0
-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0
Station (ft)
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B
Swale 2: Q10=97.57 cfs
Worksheet for Irregular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 2
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Input Data
Channel Slope
0.008000 ft/ft
Elevation range:
0.00 ft to 4.36 ft.
Station (ft)
Elevation (ft) Start Station
-15.90
4.36 -15.90
-3.00
0.06
0.00
0.00
3.00
0.06
15.90
4.36
Discharge
97.57 cfs — MAX
Results
Wtd. Mannings Coefficient
0.035
Water Surface Elevation
1.95
ft
Flow Area
22.27
ftz
Wetted Perimeter
17.97
ft
Top Width
17.35
ft
Height
1.95
ft
Critical Depth
1.60
ft
Critical Slope
0.018140 ft/ft
Velocity
4.38
ft/s
Velocity Head
0.30
ft
Specific Energy
2.25
ft
Froude Number
0.68
Flow is subcritical.
End Station Roughness
15.90 0.035
Cr1PA, C 07 !,F vPsTRC-AiY7 (f JLv)-r=RTS X 1,373
12/18/01 FlowMaster v5.13
12:23:25 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B 10
Swale 2
Cross Section for Irregular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale 2
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Section Data
' Wtd. Mannings Coefficient 0.035
Channel Slope 0.008000 ft/ft
Water Surface Elevation 1.95 ft
Discharge 97.57 cfs
1
S
r
12/18/01
12:23:35 Ptv
4.5
4.0
3.G
3.0
2.5
C
0
ca
w 2.0
W
1.5
1.0
0.5
0.01
-20.0
-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0
Station (ft)
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
20.0
FlowMaster v5.13
Page 1 of 1
B 1 1
Project Description
SWALE 7; Q2=1.8 CFS
Worksheet for Triangular Channel
Project File
d:\projects\kec\drainage\flow master\kechter .fm2
Worksheet
SWALE 7
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.010000 ft(ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
1.80 cfs = — D F a
Results
Depth
0.52 ft
Flow Area
1.07 ft2
Wetted Perimeter
4.26 ft
'
Top Width
4.13 ft
Critical Depth
0.42 ft
Critical Slope
0.031345 ft/ft
Velocity
1.69 fits
Velocity Head
0.04 ft
Specific Energy
0.56 ft
Froude Number
0.59
Flow is subcritical.
08/29/01
09:48:53 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
B 12
SWALE 7; Q100=8.2 CFS
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\flow master\kechter .fm2
Worksheet
SWALE 7
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.010000 ftift
'
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
8.20 cfs ---
Results
Depth
0.91 ft
Flow Area
3.33 ft2
Wetted Perimeter
7,52 ft
Top Width
7.30 ft
Critical Depth
0.76 ft
Critical Slope
0.025610 ft/ft
Velocity
2.46 ft/s
Velocity Head
0.09 ft
Specific Energy
1.01 ft
Froude Number
0.64
Flow is subcritical.
08/29/01
09:48:31 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
B 13
SWALE 7; 01 00*1.33=1 0.9 CFS
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\flow master\kechter .fm2
Worksheet
SWALE 7
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.010000 ft/ft
'
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
10.90 cfs
Results
Depth
1.01
ft
Flow Area
4.12
ft2
Wetted Perimeter
8.37
ft
Top Width
8.12
ft
Critical Depth
0.86
ft
Critical Slope
0.024656 ftfft
Velocity
2.65
ftis
Velocity Head
0.11
ft
Specific Energy
1,12
ft
Froude Number
0.66
Flow is subcritical.
08/29/01
09:49:20 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
B 14
t
I
Ci
[1
I
Swale E1: Q=5.8 cfs
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale E1
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient 0.035
Channel Slope 0.045000 ft/ft
Left Side Slope 4.000000 H : V
Right Side Slope 50.000000 H : V
Discharge 5.80 cfs E — Q IV
Results
Depth
0.29
ft
Flow Area
2.32
ftz
Wetted Perimeter
15.87
ft
Top Width
15.83
ft
Critical Depth
0,31
ft
'
Critical Slope
0.033338 ft/ft
Velocity
2.50
ft/s
Velocity Head
0.10
ft
Specific Energy
0.39
ft
Froude Number
1.15
Flow is supercritical.
12/18/01 FlowMaster v5.13
02:53:55 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B 15
Swale E1: Q=7.73 cfs
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Swale E1
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient 0.035
Channel Slope 0.045000 ft/ft
Left Side Slope 4.000000 H : V
Right Side Slope 50.000000 H : V
Discharge 7.73 cfs
Results
Depth
0.33
ft
Flow Area
2,88
ft'
'
Wetted Perimeter
17.67
ft
Top Width
17.63
ft
Critical Depth
0.35
ft
Critical Slope
0.032085 ft/ft
Velocity
2.69
fus
Velocity Head
0.11
ft
Specific Energy
0.44
ft
Froude Number
1.17
Flow is supercritical.
12/18/01 FlowMaster v5.13
' 02:54:31 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B 16
Ditch D1
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Ditch D1
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Mannings Coefficient 0.035
Channel Slope 0.005000 ft/ft
Depth 3.00 ft
Left Side Slope 2.000000 H : V
Right Side Slope 2.000000 H : V
Results
Discharge
65.73
cfs
Flow Area
18.00
ft2
Wetted Perimeter
13.42
ft
Top Width
12.00
ft
Critical Depth
2.32
ft
Critical Slope
0.019715
ft/ft
Velocity
3.65
ft/s
Velocity Head
0.21
ft
Specific Energy
3.21
ft
Froude Number
0.53
Flow is subcritical.
MAX C-APAGIPJ
12/17/01
' 12:26:22 PM
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
B 17
Ditch D2
Worksheet for Triangular Channel
Project Description
Project File
d:\projects\kec\drainage\swales\kec.fm2
Worksheet
Ditch D2
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Mannings Coefficient
0.035
Channel Slope
0.013100 ft/ft
Depth
3.00 ft
Left Side Slope
2.000000 H : V
'
Right Side Slope
2.000000 H : V
Results
Discharge
106.40 cfs — mA X 6A (SAG 17 V
Flow Area
18,00 ftz
Wetted Perimeter
1
13.42 ft
Top Width
12.00 ft
Critical Depth
2.81 ft
' Critical Slope
0.018489 ft/ft
Velocity
5.91 ft/s
Velocity Head
0.54 ft
Specific Energy
3.54 ft
Froude Number
0.85
Flow is subcritical.
1
12/17/01 FlowMaster v5.13
12:27:00 PM Haes tad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
B 18
IN
Kechter Road Culverts I
CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001
CURRENT TIME: 11:54:34 FILE NAME: CR36
�t**:t:t,t+,r****tt****,t:t+r****�*:rt,t*,t,r***�***�*:r*+*t***��+********:r**,t*t•+*:r*t:r**:t*
FHWA CULVERT ANALYSIS **********************r**r
HY-8, VERSION 6.1
C SITE DATA CULVERT SHAPE, MATERIAL, INLET
UI-------------------------------------------------------------------------�
L I INLET OUTLET CULVERT BARRELS
V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET
INO. 1 (ft) (ft) (ft) I MATERIAL (ft) (ft) n TYPE
1 1 12.80 12.30 124.67 i 3 ROPE 2.50 1.58 .013 CONVENTIONAL
2
4
6
SUMMARY OF CULVERT FLOWS (cfs) FILE: CR36 DATE: 12-17-2001
ELEV (ft)
TOTAL
1
2
3
4
5
6
ROADWAY
ITR
12.80
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00
1
13.41
6.0
6.0
0.0
0.0
0.0
0.0
0.0
0.00
1
13.69
12.0
12.0
0.0
0.0
0.0
0.0
0.0
0.00
1
13.92
18.0
18.0
0.0
0.0
0.0
0.0
0.0
0.00
1
14.14
24.0
24.0
0.0
0.0
0.0
0.0
0.0
0.00
1
14.32
30.0
30.0
0.0
0.0
0.0
0.0
0.0
0.00
1
14.50
36.0
36.0
0.0
0.0
0.0
0.0
0.0
0.00
1
14.70
42.0
42.0
0.0
0.0
0.0
0.0
0.0
0.00
1
15.07
48.0
48.0
0.0
0.0
0.0
0.0
0.0
0.00
1
15.00
49.5
49.5
0.0
0.0
0.0
0.0
0.0
0.00
1
15.39
60.0
60.0
0.0
0.0
0.0
0.0
0.0
0.00
1
16.50
78.8
78.8
0.0
0.0
0.0
0.0
0.0 OVERTOPPING
10-YR.
FLOW =
49.5'CFS
SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: CR36
DATE: 12-17-2001
HEAD
HEAD
TOTAL
FLOW
"s FLOW
ELEV (ft)
ERROR (ft)
FLOW (cfs)
ERROR (cfs)
ERROR
12.80
0.000
0.00
0.00
0.00
13.41
0.000
6.00
0.00
0.00
13.69
0.000
- 12.00
0.00
0.00
13.92
0.000
18.00
0.00
0.00
14.14.
0.000
24.00
0.00
0.00
14.32
0.000
30.00
0.00
0.00
14.50
0.000
36.00
0.00
0.00
14.70
0.000
42.00
0.00
0.00
15.07
0.000
48.00
0.00
0.00
15.00
0.000
49.50
0.00
0.00
15.39
0.000
60.00
0.00
0.00
<1> TOLERANCE (ft)
= 0.010
<2> TOLERANCE (%) =
1.000
2
' CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001
CURRENT TIME: 11:54:34 FILE NAME: CR36
++++++++++++++++++++++++++++++*++++++++++*++*+++++++*++*++++++++++++++++++++++*+
' PERFORMANCE CURVE FOR CULVERT 1 - 3( 2.50 (ft) BY 1.58 (ft)) RCPE
++*++*++++++++++++++++++++++++++++++++++++++++++++*++++++++++++++*++++++++++++++
DIS- HEAD- INLET OUTLET
' CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW
FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL.
(cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps)
++*++++++++*++++++++++++++++++++++++++++++++*++++++*+++++++++++++++++++*++++++++
0.00 12.80 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00
6.00 13.41 0.54 0.61 3-Mlt 0.39 0.39 0.72 0.72 1.40 2.90
12.00 13.69 0.79 0.89 3-Mlt 0.57 0.57 0.93 0.93 2.05 3.45
' 18.00 13.92 1.01 1.12 3-Mlt 0.71 0.71 1.09 1.09 2.58 3.82
24.00 14.14 1.21 1.34 3-Mlt 0.84 0.83 1.21 1.21 3.07 4.10
30.00 14.32 1.41 1.52 3-Mlt 0.97 0.94 1.31 1.31 3.52 4.34
36.00 14.50 1.60 1.70 3-Mlt 1.09 1.03 1.41 1.41 4.00 4.54
42.00 14.70 1.81 1.90 3-Mlt 1.23 1.12 1.49 1.49 4.51 4.72
48.00 15.07 2.05 2.27 3-M2t 1.58 1.20 1.57 1.57 5.02 4.88
49.50 15.00 2.11 2.20 3-Mlf 1.58 1.22 1.58 1.59 5.15 4.91
60.00 15.39 2.59 2.49 3-Mlf 1.58 1.33 1.58 1.71 6.24 5.16
El. inlet face invert 12.80 ft El. outlet invert 12.30 ft
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
***** SITE DATA ***** CULVERT INVERT ***********+**
INLET STATION 0.00 ft
' INLET ELEVATION 12.80 ft
OUTLET STATION 124.67 ft
OUTLET ELEVATION 12.30 ft
NUMBER OF BARRELS 3
SLOPE (V/H) 0.0040
CULVERT LENGTH ALONG SLOPE 124.67 ft
CULVERT DATA SUMMARY ******************++**++
BARREL SHAPE ELLIPTICAL
BARREL SPAN 2.50 ft
BARREL RISE 1.58 ft
' BARREL MATERIAL CONCRETE
BARREL MANNING'S n 0.013
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQ. EDGE WITH HEADWALL
INLET DEPRESSION NONE
++++++++++++++++++++++++++++++++++++++++++++++*+++++++++++++++++++++++++++++++*+
C 2
3
' CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001
CURRENT TIME: 11:54:34 FILE NAME: CR36
++++*++*+++++++*++++++++++ TAILWATER ++++++++++++++*+*+++++++++
+++++*+*+++++++++++++++++++++++++++++++++++++++****++++++++++++++++++++++++++++*
REGULAR
CHANNEL CROSS SECTION ****************
SIDE SLOPE H/V (X:1)
4.0
CHANNEL
SLOPE V/H (ft/ft)
0.019
MANNING'S
n (.01-0.1)
0.035
CHANNEL
INVERT ELEVATION
12.30 ft
CULVERT
NO.1 OUTLET INVERT ELEVATION
12.30 ft
UNIFORM
FLOW RATING CURVE
FOR DOWNSTREAM
CHANNEL
FLOW
W.S.E. FROUDE
DEPTH
VEL.
SHEAR
(cfs)
(ft) NUMBER
(ft)
(f/s)
(psf)
0.00
12.30 0.000
0.00
0.00
0.00
6.00
13.02 0.602
0.72
2.90
0.85
12.00
13.23 0.629
0.93
3.45
1.11
' 18.00
13.39 0.645
1.09
3.82
1.29
24.00
13.51 0.657
1.21
4.10
1.43
30.00
13.61 0.666
1.31
4.34
1.56
36.00
13.71 0.674
1.41
4.54
1.67
42.00
13.79 0.680
1.49
4.72
1.77
48.00
13.87 0.686
1.57
4.88
1.86
49.50
13.89 0.687
1.59
4.91
1.88
' 60.00
14.01 0.696
1.71
5.16
2.02
+++++++++++++++*++++++++++*+++++++++++++++++++++++++++++++++++++++++++++++++++++
**************************
ROADWAY OVERTOPPING
DATA ******************++++*+++
ROADWAY SURFACE
GRAVEL
EMBANKMENT
TOP WIDTH
5.00 ft
'
CREST LENGTH
5.00 ft•
OVERTOPPING CREST ELEVATION
16.50 ft
+++++*+++++**+*+++++*++++++*+*+++++**++++++++++++++++++++++++*+++++++++++**+++++
C 3
1 .
KECHTER ROAD STORM CULVERT
1
' PROFILE SCALE:
HORIZ. 1 "=50'
VERT. 1 "=5'
s
_
,
�
�
.,
a -•
•
:-
•
��
I•
•• a
•� ••
N
n
j w
CD
U' 7
z �- c
u
XmW-
W
r
!
/W
!
+
3
o
!
a
N_
N W
(9
5ai
avow 831031Z
- --=—
W
Z m
7J W
onfz
w
zQ0
o
U)�¢
W IM Q
' Ziegler Road Culverts
1
CURRENT DATE: 12-17-2001
FILE DATE:
12-17-2001
CURRENT TIME: 11:58:04
FILE NAME:
CR9
+++++++++++++++++++++++++* FHWA
CULVERT ANALYSIS
++++++++++++++++++++++++++
++++++++++++++++++++++++++
HY-8, VERSION 6.1
++++++++++++++++++++++++++
C
SITE DATA
CULVERT SHAPE,
MATERIAL, INLET
U--------------------------
-----------------------------------------------�
L
INLET OUTLET CULVERT
BARRELS
V
I ELEV. ELEV. LENGTH
I SHAPE SPAN
RISE MANNING
INLET
INO.
1 (ft) (ft) (ft)
MATERIAL (ft)
(ft) n
TYPE
1
I 13.60 13.30 72.18
3 RCPE 2.50
1.58 .013
CONVENTIONAL
2
4
6
SUMMARY OF CULVERT FLOWS (cfs)
FILE: CR9
DATE:
12-17-2001
ELEV (ft) TOTAL 1
2 3 4
5 6
ROADWAY ITR
15.00 0.0 0.0
0.0 0.0 0.0
0.0 0.0
0.00 1
15.01 6.0 6.0
0.0 0.0 0.0
0.0 0.0
0.00 1
15.05 12.0 12.0
0.0 0.0 0.0
0.0 0.0
0.00 1
15.13 18.0 18.0
0.0 0.0 0.0
0.0 0.0
0.00 1
'
15.33 24.0 24.0
0.0 0.0 0.0
0.0 0.0
0.00 1
15.41 30.0 30.0
0.0 0.0 0.0
0.0 0.0
0.00 1
15.51 36.0 36.0
0.0 0.0 0.0
0.0 0.0
0.00 1
15.63 42.0 42.0
0.0 0.0 0.0
0.0 0.0
0.00 1
15.74 47.0 47.0
0.0 0.0 0.0
0.0 0.0
0.00 1
15.92 54.0 54.0
0.0 0.0 0.0
0.0 0.0
0.00 1
16.19 60.0 60.0
0.0 0.0 0.0
0.0 0.0
0.00 1
' 16.93 73.2 73.2
0.0 0.0: 0.0
0.0 0.0 OVERTOPPING
10-YR.
FLOW - 47.0 CFS
SUMMARY OF ITERATIVE SOLUTION
ERRORS FILE: CR9
DATE:
12-17-2001
HEAD HEAD
TOTAL
FLOW
°s FLOW
ELEV (ft) ERROR (ft)
FLOW (cfs)
ERROR (cfs)
ERROR
'
15.00 0.000
0.00
0.00
0.00
15.01 0.000
6.00
0.00
0.00
15.05 0.000
12.00
0.00
0.00
15.13 0.000
18.00
0.00
0.00
15.33 0.000
24.00
0.00
0.00
15.41 0.000
30.00
0.00
0.00
15.51 0.000
36.00
0.00
0.00
'
15.63 0.000
42.00
0.00
0.00
15.74 0.000
47.00
0.00
0.00
15.92 0.000
54.00
0.00
0.00
'
16.19 0.000
60.00
0.00
0.00
<1> TOLERANCE (ft) = 0.010
<2>
TOLERANCE (°s)
= 1.000
C 6
2
' CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001
CURRENT TIME: 11:58:04 FILE NAME: CR9
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
PERFORMANCE CURVE FOR CULVERT 1 - 3( 2.50 (ft) BY 1.58 (ft)) RCPE
++++++++++++++++++++++++++++++++++++++++++++++++++++++*+++++++++++++++++++++++++
DIS- HEAD- INLET OUTLET
' CHARGE WATER CONTROL CONTROL FLOW NORMAL GRIT. OUTLET TW OUTLET TW
FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL.
(cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
' 0.00 15.00 0.00 1.40 0-NF 0.00 0.00 0.00 1.70 0.00 0.00
6.00 15.01 0.54 1.41 1-Slf 0.39 0.39 1.58 1.70 0.62 0.00
12.00 15.05 0.79 1.45 1-Slf 0.56 0.57 1.58 1.70 1.24 0.00
18.00 15.13 1.01 1.53 1-Slf 0.70 0.71 1.58 1.70 1.86 0.00
24.00 15.33 1.21 1.73 3-Mlf 0.83 0.83 1.58 1.70 2.50 0.00
30.00 15.41 1.41 1.81 3-Mlf 0.95 0.94 1.58 1.70 3.12 0.00
36.00 15.51 1.60 1.91 3-Mlf 1.08 1.03 1.58 1.70 3.74 0.00
' 42.00 15.63 1.81 2.03 3-Mlf 1.21 1.12 1.58 1.70 4.37 0.00
47.00 15.74 2.01 2.14 3-Mlf 1.36 1.19 1.58 1.70 4.89 0.00
54.00 15.92 2.30 2.32 3-Mlf 1.58 1.28 1.58 1.70 5.62 0.00
60.00 16.19 2.59 2.49 3-Mlf 1.58 1.33 1.58 1.70 6.24 0.00
El. inlet face invert 13.60 ft El. outlet invert 13.30 ft
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
SITE DATA ***** CULVERT INVERT **************
INLET STATION 0.00 ft
INLET ELEVATION 13.60 ft
OUTLET STATION 72.18 ft
OUTLET ELEVATION 13.30 ft
NUMBER OF BARRELS 3
' SLOPE (V/H) 0.0042
CULVERT LENGTH ALONG SLOPE 72.18 ft
CULVERT DATA SUMMARY ++++++++++++++++++++++++
BARREL SHAPE ELLIPTICAL
BARREL SPAN 2.50 ft
BARREL RISE 1.58 ft
BARREL MATERIAL CONCRETE
BARREL MANNING'S n 0.013
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQ. EDGE WITH HEADWALL
INLET DEPRESSION NONE
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C 7
3
CURRENT DATE: 12-17-2001 FILE DATE: 12-17-2001
CURRENT TIME: 11:58:04 FILE NAME: CR9
+t+t+t++t+++t++t++++++++++++++t+ttttttt++ttt+++tttttttttttt++tttttttt+++tttttt++
+++++++++++++++tt++++++ttt TAILWATER +++tttttttttt++ttttt++tttt
tttttttttttttttttttttttttttttttttttttttttttttttt++++tttttttttttttttttttttttttttt
+tttttttt+t+tt+ttt+ttttt+ttttttttttttttttttttttttttttttt++tttttttttt++tttttttttt
CONSTANT WATER SURFACE ELEVATION
15.00
tt++++++++++++++t++tttttttttttt+tttttttttttttttttttttt+tttttttttt+tttttttt+ttttt
************************** ROADWAY OVERTOPPING DATA **************************
tt++++++t++++tt+t+t++tt+t+t++tttttttttt+ttttt+ttttttttttt+ttttttttttttttttt++ttt
ROADWAY SURFACE PAVED
EMBANKMENT TOP WIDTH 30.00 ft
***** USER DEFINED ROADWAY PROFILE
CROSS-SECTION X Y
COORD. NO. ft ft
1 0.00 17.19
2 50.00 16.94
3 73.77 17.06
4 94.54 16.93
5 147.54 17.13
tttt+tttttttttttttttttttttttttttt++++tttttttttt++tttttttt++tttttttttt+++tttttttt
C 8
ZIEGLER ROAD T
S ORM CULVERT
1
PROFILE SCALE:
HORIZ. 1 "=50'
VERT. 1 "=5'
e
S-S-7iT7ni�30���
•GAO
��
I
'�
■�-►,,:
- ., .
..
p
C�
' m Ln
N.D
! it
i
I O'
DWX
f `
1 1�
r
omc� o +
m O�
m A ��� >
i! f
!
j q!
�•
I rn
02 0 %,
m 0
ZIEGLER ROAD
�*x111A .hZ
fmn D
> V
m / N
A
V
L,
F19
t�ir----------
/I m , 0'"
Culvert 4 1
CURRENT DATE: 08-27-2001 FILE DATE: 08-27-2001
CURRENT TIME: 10:13:43 FILE NAME: CULVERT4
FHWA CULVERT ANALYSIS
HY-8, VERSION 6.1
C
U
I
SITE DATA
I
CULVERT
SHAPE,
MATERIAL, INLET
L
INLET
OUTLET CULVERT
BARRELS
V
ELEV.
ELEV. LENGTH
SHAPE
SPAN
RISE
MANNING INLET
NO.
(ft)
(ft) (ft)
I MATERIAL
(ft)
(ft)
n TYPE
1
90.50
90.00 120.12
1 1 RCP
2.00
2.00
.013 CONVENTIONAL
2
3
4
5
6
SUMMARY OF
CULVERT
FLOWS (cfs)
FILE:
CULVERT4
DATE: 08-27-2001
ELEV (ft)
TOTAL
1
2
3
4
5
6
ROADWAY
ITR
90.50
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00
1
91.44
3.1
3.1
0.0
0.0
0.0
0.0
0.0
0.00
1
91.88
6.2
6.2
0.0
0.0
0.0
0.0
0.0
0.00
1
92.21
9.2
9.2
0.0
0.0
0.0
0.0
0.0
0.00
1
92.54
12.3
12.3
0.0
0.0
0.0
0.0
0.0
0.00
1
92.88
15.4
15.4
0.0
0.0
0.0
0.0
0.0
0.00
1
93.21
18.5
18.5
0.0
0.0
0.0
0.0
0.0
0.00
1
93.95
21.6
21.6
0.0
0.0
0.0
0.0
0.0
0.00
1
94.74
24.6
24.6
0.0
0.0
0.0
0.0
0.0
0.00
1
95.16
27.7
26.4
0.0
0.0
0.0
0.0
0.0
1.07
17
95.27
30.8
26.6
0.0
0.0
0.0
0.0
0.0
3.95
10
95.00
25.7
25.7
0.0
0.0
0.0
0.0
0.0
OVERTOPPING
Design Flow
- 30.8
(100-yr)
SUMMARY OF ITERATIVE
SOLUTION ERRORS
HEAD
HEAD
ELEV (ft)
ERROR (ft)
90.50
0.000
91.44
0.000
91.88
0.000
92.21
0.000
92.54
0.000
92.88
0.000
93.21
0.000
93.95
0.000
94.74
0.000
95.16
-0.004
95.27
-0.003
FILE: CULVERT4 DATE:
08-27-2001
TOTAL
FLOW
% FLOW
FLOW (cfs)
ERROR (cfs)
ERROR
0.00
0.00
0.00
3.08
0.00
.0.00
6.16
0.00
0.00
9.24
0.00
0.00
12.32
0.00
0.00
15.40
0.00
0.00
18.48
0.00
0.00
21.56
0.00
0.00
24.64
0.00
0.00
27.72
0.25
0.90
30.80
0.21
0.68
<1> TOLERANCE (ft) = 0.010 <2> TOLERANCE (%) = 1.000
C 11
2
LCURRENT DATE: 08-27-2001 FILE DATE: 08-27-2001
CURRENT TIME: 10:13:43 FILE NAME: CULVERT4
PERFORMANCE CURVE FOR CULVERT 1 - 1( 2.00 (ft) BY 2.00 (ft)) RCP
DIS- HEAD- INLET OUTLET
CHARGE WATER CONTROL CONTROL FLOW NORMAL CRIT. OUTLET TW OUTLET TW
FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH DEPTH DEPTH VEL. VEL.
(cfs) (ft) (ft) (ft) <F4> (ft) (ft) (ft) (ft) (fps) (fps)
0.00 90.50 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00
3.08 91.44 0.81 0.94 3-Mlt 0.62 0.61 0.64 0.64 3.55 1.85
6.16 91.88 1.26 1.38 2-M2c 0.90 0.87 0.87 0.84 4.67 2.20
' 9.24 92.21 1.62 1.71 2-M2c 1.15 1.08 1.08 0.97 5.33 2.44
12.32 92.54 1.95 2.04 2-M2c 1.40 1.26 1.26 1.08 5.93 2.62
15.40 92.88 2.30 2.38 2-M2c 1.76 1.41 1.41 1.18 6.49 2.77
18.48 93.21 2.71 2.51 2-M2c 2.00 1.54 1.54 1.26 7.12 2.90
21.56 93.95 3.19 3.45 2-M2c 2.00 1.65 1.65 1.34 7.79 3.02
24.64 94.74 3.76 4.24 2-M2c 2.00 1.74 1.74 1.40 8.51 3.12
26.40 95.16 4.12 4.66 2-M2c 2.00 1.79 1.79 1.47 8.89 3.21
26.64 95.27 4.17 4.77 2-M2c 2.00 1.80 1.80 1.53 8.94 3.30
El. inlet face invert 90.50 ft El. outlet invert 90.00 ft
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
***** SITE DATA ***** CULVERT INVERT **************
INLET STATION 120.12 ft
INLET ELEVATION 90.50 ft
OUTLET STATION 0.00 ft
OUTLET ELEVATION 90.00 ft
NUMBER OF BARRELS 1
' SLOPE (V/H) 0.0042
CULVERT LENGTH ALONG SLOPE 120.12 ft
***** CULVERT DATA SUMMARY ************************
BARREL SHAPE CIRCULAR
BARREL DIAMETER 2.00 ft
BARREL MATERIAL CONCRETE
BARREL MANNING'S n 0.013
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL
INLET DEPRESSION NONE
C 12
TAILWATER
******* REGULAR
CHANNEL
CROSS SECTION ****************
SIDE SLOPE H/V
(X:1)
4.0
CHANNEL
SLOPE V/H (ft/ft)
0.009
MANNING'S
n (.01-0.1)
0.035
CHANNEL
INVERT ELEVATION
90.00 ft
CULVERT
NO.1 OUTLET INVERT ELEVATION
90.00 ft
******* UNIFORM
FLOW RATING CURVE
FOR DOWNSTREAM
CHANNEL
FLOW
W.S.E.
FROUDE
DEPTH
VEL.
SHEAR
(cfs)
(ft)
NUMBER
(ft)
(f/s)
(psf)
0.00
90.00
0.000
0.00
0.00
0.00
3.08
90.64
0.407
0.64
1.85
0.36
6.16
90.84
0.425
0.84
2.20
0.47
9.24
90.97
0.436
0.97
2.44
0.55
12.32
91.08
0.444
1.08
2.62
0.61
15.40
91.18
0.450
1.18
2.77
0.66
18.48
91.26
0.455
1.26
2.90
0.71
21.56
91.34
0.460
1.34
3.02
0.75
24.64
91.40
0.464
1.40
3.12
0.79
27.72
91.47
0.467
1.47
3.21
0.82
30.80
91.53
0.470
1.53
3.30
0.86
ROADWAY OVERTOPPING DATA
ROADWAY SURFACE GRAVEL
EMBANKMENT TOP WIDTH 24.00 ft
***** USER DEFINED ROADWAY PROFILE
CROSS-SECTION X Y
COORD. NO. ft ft
1 0.00 95.35
2 20.00 95.00
3 40.00 95.35
Notes: Overtopping is a temporary condition that will be alleviated with the
construction of Fossil Lake Second Filing. Fossil Lake Second Filing will reduce
the amount of flow being directed to Swale 7 and Culvert 4.
0
C 13
- - - - - - - - - -
I
4
C
51:
14
A
CULVERT 4
TYPE L RIPRAP
ENGTH = 13'
IDTH = 16'
DEPTH = 1.5'
ffiURY WITH 6" NA
r- P SOIL & REVI
Go
0
0
PROFILE SCALE:
HORIZ. 1 "=50'
VERT. 1 "=5'
---
- a
- -
L- 1
-
-^_IQ-Y)-
'
_.-...-
1
a
-
V
—_ L
k .._
0-4----------------
- ----------4905
F---
--E
�W =
w
I _
_a�
--- -
�
Op
_Q _._.=4900
4900;-:^
�*
—--_._.
—
�—---
_-
�
—O
��p ;—
--- --
-- --
- - z'
— W
-
—
.�
w
-------
----- }------
--
a arn�—
-- ---�
a
-�
-
NQ o Q �---
.p- �t4»-
--
--
W
_ -
_
i --
-
..__
Wes._-.�G
Lai
�
-
=
4895
4896
IVE- -----
ETATE
-----
--
.._.. _ ..—_-.
— -
-- -
- -- -
-=fI"
4885=__-_:-_�:_:__
-..�_
... -
- -
;-----
—_
C.Ol
TTMI-r-
4STRUCT]ED-Yr-,
'
1
FO
SIL-LAKE SECO
D-FIUNG,
_
P
E 1—.1
�
T
107 24-'
24"-}-CL
CP_ -
-
0 a :
--
-III
_ -= ---PO 4z%
_
--- -
-- -
--
_
_ : - : -.-� -
4880
I©coa
- 1
-
;_
__�
_-._.. i.. _.._
t. N
--
O__-_
4875; .
o
_ _
o o =14875
_ Icc-
4870;
4870
11 +00 10+00
TYPE L RIPRAP
LENGTH = 13'
WIDTH = 16'
DEPTH = 1.5'
BURY WITH 6" K
TOP SOIL & RE%
c is
0
O N
N
T 7
ddd
m E m
c � a
E
00 M
a0i O
coo LLO m
NMD)
= 2 >
d
7 [F V
o
W
0
X) 0 0
N
M O O
CL m
vvv
:3 w
E
o rn N
cc O=
M LO N
O O r
O w
O
O O O
E o
o)No
m E
Lo of
CL m
O r r
vvv
n W
N N N
N N N
Y
O o
> o e
>
= V) v
E �ONoo
m r o o 0 6
a > N 01 O O
3 c > aa<t
O w
O
N m O)
E _ CO O r
O O O
r
m d 1 U U U
n a
EL aaa
d
a d c o 0 0
a c O O O
0 r r r
.L Ln 00 O
of o
J Lf) Lr) r
O M O
6.2
F U. V II II it
8 o S
a a C3
a R d d
2 0 v O O O
Ivvv
d C r r r
p O O O
m L IO Co O
a c
d
m _ O N n
O O r
O Y O D O
A
U
G CD O O I
SF J N N N
O O O
N O O O
o ? a
>
• V ^y O O O
O i, 7
> "
= r T co
CD
> CCD
W d rn
w V V V
= 119T O f.
O d)
(pia vOO
w > O r r
w v v v
C N
O O L
..
m (1)
Co C
3 m
C L
w N O
O N N
(O - m
m -
L N
7 -O
� C
O C N
() D m
U U
C N
N >, L
> co (L)
c 3 _a
a
a)� c
L n m
0. v
a)
na`�U
o a
N 7 L U
N U) F- OO
_O
a m N w
L N ICUO
'm o
o m =
CD
N U ( 6
V C O C
C C fA LLO
�U
3O
o 0
w
W
F-
O
z
C 16
l l j
m=
m
i
1
I I
x /S J
(j
Ii
r
if
11
1
/ J
J
m
/
0o i !t
I-
J
J
I
1 ! t
t
r
m ! !
I
o /
/
,
!
i ill
I
t! i
w
I
m
c 17
C 18
Q
7d
_
in A LL'
IIi
m
II)
IIl
y
N p a O
VI
'
s
Y N
0
0
0
ri6b
0
0
0
0
0
C)
0
0
J a --
-
-
-
@ 11 Co
u
u
u
u
LO ^
O O
19� 03
��"
°
mmvo
o x
88a°
�
V
u
In
lfl
W
O
00
LU
z
z
o
o
�
a
�
QN
a<<
Z
F
Z
Z
Z
Z
in
u (L 7
W
aV.
K �-
JI:
Q
Q
Q
Q
}
Z
Z
Z
Z
^F—
I—/
ca
mcnvo
�
li
m
m
OOOCCC
IL
m
m
CO
133
4/
n
u in
OC
L� u
Co.
co
W
Z
O
<o
r
—
O
O
O
O
-
} 3 u
00
umu
Q
is
U
> M
Z
N
`
u
u 3
�
5
u
m
x
O
In
= V s
>
d
O J
z
u
0000
sL E
00
0
to
O W m
N
N
N—
U
p p
-
O
V
c
O
O m
u
j
L
N
O fi 0
BUM
t
—
_
N u �
6'm
E m
u
V'C
C30
u u 5
u o
d u v
V
V
O
V
u m
- In
N
N
m-
O rL U
O
3
0
I
DRAINAGE CRITERIA MANUAL
i
2F J
N
O
151
p S
• oQV QQ
G!
W W
V1
W
m O ZNZ
W MW
MAJOR DRAINAGE
Table 5-1
CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP
Riprap
% Smaller Than
Intermediate Rock
*
d50
Designation
Given Size
Dimension
By Weight
(Inches)
Inches
Type VL
70-100
12
50-70
9
35-50
6
6**,
2-10
2
Type L
70-100
15
50-70
12
35-50
9
9**
2-10
3
Type M
70-100
21
50-70
18
35-50
12
12
2-10
4
Type H
100
30
50-70
24
35-50
18
18
2-10
6
Type VH
100
42
50-70
33
35-50
24
24
2-10
9
*d50 = Mean particle size
** Bury types VL and L with native top soil and revegetate to protect
from vandalism.
J Za
D 2
No Text
DRAINAGE CRITERIA MANUAL.
G 4C
0
2C
RIPRAP
4�1
fir'{-
--
--- -
---
TYPE L
00
.2 .4 Y /D .6 .8 1.0
t
Use Do instead of D whenever flow is supercritical in ;he barrel.
**Use Type L for o distance of 3D downstream.
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE 6 FLOOD CONTROL. DISTRICT
D 4
DRAINAGE CRITERIA MANUAL
G
7
p = Expansion Angle
N
a�
h
C/
C1
1'
---- ._..._..___
1
I.0,/
.1 .2 .3 .4 .5 .6 / .13
TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D
RIPRAP
FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS
11-15-82
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
D 5
The following pages are printouts of the RIPRAP DESIGN SYSTEM, version 2.0 by
West Consultants, Inc. The program was used to evaluate riprap needs for Swale 1.
The largest recommended D50 was selected as the design riprap. The design values were
taken from the USBR method, suggesting a D50 if 0.41 ft which corresponds closely to
Type VL. However as a conservative approach Type L is being used place of Type VL.
D 6
12/20/01 WEST Consultants, Inc.
2111 Palomar Airport Rd.
Suite 180
Carlsbad, CA 92009-1419
PROGRAM OUTPUT
ASCE Method
Input Parameters:
Run Name: SWALEI Description: Kechter Road Swale 1
Local Depth Averaged Velocity, ft/sec 5.51
Unit Weight of Stone, lbs/cu ft 160.00
Cotangent of Sideslope 4.00
Output Results:
Computed D50, ft
[e]W*a
*** Using Gradation from COE ETL 1110-2-120 ***
Computed D30, ft
0.18
Specific Weight,
pcf
160.00
Layer Thickness,
ft
0.75
Selected Minimum
D30, ft
0.37
Selected Minimum
D90, ft
0.53
Stone Weight, lbs
Percent Lighter by Weight
Minimum Maximum
W100 14 35
W50 7 10
W15 2 5
USER Method
Input Parameters:
Run Name: SWALEI Description: Kechter Road Swale 1
Average Channel Velocity, ft/sec 5.52
Output Results:
Computed D50, ft
0.41
Riprap 2.0
D 7
*** Using Gradation from COE ETL 1110-2-120 ***
Computed D30, ft 0.34
Specific Weight, pcf 160.00
Layer Thickness, ft 0.75
Selected Minimum D30, ft 0.37
Selected Minimum D90, ft 0.53
Stone Weight, lbs
Percent Lighter by Weight Minimum Maximum
W100
W50
W15
14
35
7
10
2
5
Isbash Method
Input Parameters:
Run Name: SWALEI Description: Kechter Road Swale 1
Average Channel Velocity, ft/sec 5.52
Unit Weight of Stone, lbs/cu ft 160.00
Turbulence Level Low
Output Results:
Computed D50, ft 0.21
*** Using Gradation from COE ETL 1110-2-120 ***
Computed D30, ft 0.17
Specific Weight, pcf 160.00
Layer Thickness, ft 0.75
Selected Minimum D30, ft 0.37
Selected Minimum D90, ft 0.53
Stone Weight, lbs
Percent Lighter by Weight Minimum Maximum
W100
W50
W15
14
35
7
10
2
5
D 8
No Text
Sidewalk Chase Performance Curve:
Kechter Road - Design Point E1
Lechter Road with 6" Vertical Curb and Gutter
Governing Equations:
When the depth of water is less than the top of the curb, then the sidewalk chase = r L H ] .5
acts as a horizontal broad -crested weir governed by the following equation: rµ l.•,,
' where H corresponds to the depth of water above the flowtine
When the depth of water is equal to or greater than the top of the curb, then the �o = Co A(2 gH) 0.5
sidewalk chase acts as a rectangular orifice governed by the following equation:
' where H corresponds to the depth of water above the centroid of the cross -sectional area (A)
Also, when the depth of water is greater than the top of the curb, then the spill Qow = Cam, L H 1.5 * 1. 12
overtopping the curb acts as an integrated weir governed by the following equation:
where L corresponds to the width of the water spread across the top of the curb
'where H corresponds to the average depth of water above the top of the curb
*where 1,12 represents the result of integrating the weir equation across the entire section
Input Parameters:
rectangular weir coefficient: Cr,,, = 2.95
overtopping weir coefficient:
Co,,, =
2.95
rectangular orifice coefficient:
Ca =
0.60
width of sidewalk chase (ft):
L =
4.00
height of sidewalk chase (ft):
H =
0.50
slope of left curb -line (ft/ft):
SL =
0.0100
slope of right curb -line (Wit):
SR =
0.0100
flowline elevation (ft):
0.00
Depth vs. Flow:
Rectangular
Orifice
Overtopping
Total
Elevation
Weir Flow
Flow
Weir Flow
Flow
Depth at Flowline (ft)
(ft)
(cfs)
(cfs)
(cfs)
(cfs)
0.00
0.00
0.00
0.00
0.00
0.00
0.04
0.04
0.09
0.00
0.00
0.09
0.08
0.08
0.27
0.00
0.00
0.27
0.12
0.12
0.49
0.00
0.00
0.49
0.16
0.16
0.76
0.00
0.00
0.76
0.20
0.20
1.06
0.00
0.00
1.06
0.23
0.22
1.30
0.00
0.00
1.30 F Q2
0.24
0.24
1.39
0.00
0.00
1.39
0.28
0.28
1.75
0.00
0.00
1.75
0.32
0.32
2.14
0.00
0.00
2.14
0.36
0.36
2.55
0.00
0.00
2.55
0.40
0.40
2.99
0.00
0.00
2.99
0.44
0.44
3.44
0.00
0.00
3.44
0.48
0.48
3.92
0.00
0.00
3.92
0.52
0.52
0.00
5.00
0.01
5.02
0.56
0.56
0.00
5.36
0.21
5.57
0.57
0.57
0.00
5.47
0.33
5.80 FQloo
0.60
0.60
0.00
5.70
0.74
6.44
0.64
0.64
0.00
6.01
1.71
7.73
0.64
0.64
0.00
6.04
1.84
7.88
0.68
0.68
0.00
6.31
3.21
9.53
E
-----------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
--------------------------------------------------------------------
-
SER:Northern Engineering Services -Ft Collins Colorado .......................
N DATE 08-29-2001 AT TIME 15:13:52
I** PROJECT TITLE: DP 2
*** CURB OPENING INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 1
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 10.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 63.43
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.25
Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
STREET
LONGITUDINAL
SLOPE (W) =
0.40
STREET
CROSS SLOPE
M =
2.00
STREET
MANNING N
=
0.016
GUTTER
DEPRESSION
(inch)=
2.00
GUTTER
WIDTH
(ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 25.19
GUTTER FLOW DEPTH (ft) = 0.67
FLOW VELOCITY ON STREET (fps)= 2.89
FLOW CROSS SECTION AREA (sq ft)= 6.51
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(o)= 15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
BY FAA HEC-12 METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
BY DENVER UDFCD METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
22.44
/ Qioo 0
(cfs) =
18.90 DP Z
(cfs)=
18.90
(cfs) =
0.00
(cfs) =
18.90
(cfs)=
18.90
(cfs) =
0.00
E 2
t------------------------------------------------------------------------------
UDINLET: ___________________________________
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------------------------
---------------------------------------
t;-E-R-:-N-o-r-t-h-e-r-n-E-ngineeringServices-Ft Collins Colorado .......................
N DATE 08-29-2001 AT TIME 14:53:02
t** PROJECT TITLE: DP 3
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: f3 2 7
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 5.00
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 63.43
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.12
Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
STREET
LONGITUDINAL
SLOPE (o) =
0.40
STREET
CROSS SLOPE
(%) =
2.00
STREET
MANNING N
=
0.016
GUTTER'DEPRESSION
(inch)=
2.00
GUTTER
WIDTH
(ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 18.63
GUTTER FLOW DEPTH (ft) = 0.54
FLOW VELOCITY ON STREET (fps)= 2.43
FLOW CROSS SECTION AREA (sq ft)= 3.64
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
BY FAA HEC=12 METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
BY DENVER UDFCD METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
10.59
Q 100
(cfs) =
8.90 e CP 3
(cfs)=
8.90
(cfs) =
0.00
(cfs) =
8.90
(cfs)=
8.90
(cfs) =
0.00
E 3
w
i
' The following street capacity calculations have been done in accordance with the City of
Fort Collins Storm Drainage Design Criteria and Construction Standards. Using the
allowable depths based on Tables 4-1 and 4-2 the theoretical street capacities were
calculated with the computer program "F1owMaster v 5.13". A reduction factor from
Figure 4-2 was than applied to the theoretical flow to give the allowable flow. The
' output is presented in the form of street cross -sections that progress through each design
point as follows: 1. Minor Storm Theoretical Flow
2. Minor Storm Actual Flow
' 3. Major Storm Theoretical Flow
4. Major Strom Actual Flow
' The 100-yr flows at Design Points 2 and 3 have been combined due to overtopping.
All street capacities were labeled acceptable based on depth requirements set fourth in
Tables 4-1 and 4-2. Design point 2 did not meet the reduction factor flow for the minor
and major storms, but depth and lane requirements were acceptable, based on that the
street was pronounced acceptable.
1
F
TABLE 4-1
NTIAL STORM - STREET RUNOFF ENCROACFNEhIT
erreer
LOCAL (Includes olaces. alleys No curb -overtopping. *Flow may spread to
marginal access) crown of street.
COLLECTOR No curb -overtopping. ' Flow spread must
leave of least one lone width free of water.
MAJOR ARTERIAL No curb -overtopping. 'Flow spread must
leave of least one-half of roadway
width free of water in each direction.
• Where no curb overtopping exists, encroachment shall not extend over properly lines.
TABLE 4-2
MAJOR STORM - STREET RUNOFF ENCROACf /uENT
a&*" ahmrRlo.eor.
LOCAL (Includes places, alleys Residential dwellings, public,
marginal access, do collector) commercial dnd industrial buildings
shall not be inundated at the ground line
unless buildings .are flood -proofed. The
depth of water over the crown shall not
exceed six (6) inches.
ARTERIAL Residential dwellings, public,
commercial and industrial buildings
shall not be inundated at the ground line
unless buildings are flood -proofed. Depth of
water at the street crown shall not exceed
six (6) inches to allow operation of emergency
vehicles. The depth of water over the
huller flowline shall not exceed 18 inches.
In some cases: the 18 inch depth over the
gutter flowline is more restrictive than the
6 inch depth over the street crown. For
these conditions, the most restrivtive of
the two criteria shall govern.
MAJOR ARTERIAL Residential dwellings, public,
commercial and industrial buildings
shall not be inundated at the ground line
unless buildings are flood -proofed. The street
flow shall not overtop the crown to allow
operation of emergency
vehicles. The depth of water over the
putter flowline shall not exceed 18 inches.
In some cases, the 18 inch depth over the
gutter flowline is more restrictive than the
no overtopping of the street crown. For
these conditions, the most restriAive of
the two criteria shall govern.
REFERENCE:
Cm OF ruin COEUNS. STORINVATER OTUW
SIORN DRI NIGE DESIGN CID117M
AND CONSTRUCTION STMIDMIOS.
AMUARr, I9e7.
Zg
r
F
2
0
.9
.8
.7
.3
.2
Cls=06%
f c 0.8
_N
S'0.4%
IF 0.5
I BELOW MINIMUM
ALLOWABLE
I STREET GRADE
0 2 4 6 8 10 12 14
"SLOPE OF GUTTER M)
Figure 4-2
REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY
Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain
allowable gutter capacity.
(From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
MAY 1984
4-4
DESIGN CRITERIA
F 3
Minor Storm Theoretical Street Capacity (DP 1)
Cross Section for Irregular Channel
Project Description
Project File
d:\projects\kec\drainage\flow master\kechter .fm2
Worksheet
Street Capcity
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Wtd. Mannings Coefficient 0.016
Channel Slope
0.016800 ft(ft
Water Surface Elevation 0.50 ft
Discharge
14.55 cis
0
m
tti
w
08r21101
04:17:47 PM
0.9
0.8
0.7
0.6
0.5 Q
0.4
0.3
0.2
0.1
0.0
-45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Station (ft)
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 4
Minor Storm Actual Street Capacity (DP 1)
Cross Section for Irregular Channel
Project Description
'
Project File
d:\projects\kec\drainage\flow master\kechter .fm2
Worksheet
Street Capcity
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
' Section Data
Wtd. Mannings Coefficient
0.016
' Channel Slope
0.016800 ftfft
Water Surface Elevation
0.38 ft
Discharge
5.50 cfs
3
1
i
1
08/21/01
04:20:16 PM
Theoretical Flow = 14.55 cfs
Reduction Factor = 0.80 (Fig. 4-2)
Allowable Flow = 11.64 cfs
Design Flow = 5.5 cfs
Street Capacity Acceptable
o.a
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Station (ft)
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 5
Major Storm Theoretical Street Capacity (DP 1)
Cross Section for Irregular Channel
Project Description
Project File
d:\projects\kec\drainage\flow master\kechter .fm2
Worksheet
Street Capcity
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Wtd. Mannings Coefficient 0.024
Channel Slope 0.016800 ft(ft
Water Surface Elevation 0.82 ft
Discharge 53.74 cfs
c
0
to
ro
W
1
r
1
r
'08r21/01
04:25:51 PM
r
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Station (ft)
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 6
Major Storm Actual Street Capacity (DP 1)
Cross Section for Irregular Channel
Project File
d:\projectslkec\drainagelflow, masterlkechter .fm2
Worksheet
Street Capcity
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Section Data
Wtd. Mannings Coefficient
0.021
Channel Slope
0.016800 ft/ft
Water Surface Elevation
0.65 ft
Discharge
25.60 cfs
w
08/21ro1
04:26:32 PM
Theoretical Flow = 53.74 cfs
Reduction Factor = 0.80 (Fig. 4-2)
Allowable Flow = 42.99 cfs
Design Flow = 25.60 cfs
Street Capacity Acceptable
0.9
0.8
0.7
O.s
0.5
0.4
0.3
0.2
0.1
1 1 1 1 V, I I I I
0.0
-45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Station (ft)
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 7
Minor Storm Theoretical Street Capacity (DP 2)
Cross Section for Irregular Channel
Project Description
Project File
dAprojects\kec\drainage\flow master\kechter .fm2
Worksheet
Street Capcity
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Wtd. Mannings Coefficient
0.016
Channel Slope
0.004000 f fft
Water Surface Elevation
0.50 ft
Discharge
7.10 cfs
c
0
m
m
W
0&21 /01
04:20:67 PM
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
1 1 1 1 V, I 1 1
0.0
-45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Station (ft)
FlowMaster v5.13
Hassled Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 8
Minor Storm Actual Street Capacity (DP 2)
Cross Section for Irregular Channel
Project Description
Project File
d:lprojects\kec\drainage\flow master\kechter .fm2
Worksheet
Street Capcity
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Section Data
Wtd. Mannings Coefficient
0.016
Channel Slope
0.004000 fttft
Water Surface Elevation
0.43 . ft
Discharge
4.10 cfs
C
0
W
ro
W
1
'08/21/01
04:44:55 PM
1
e
Theoretical Flow = 7.10 cfs
Reduction Factor = 0.50 (Fig. 4-2)
Allowable Flow = 3.5 cfs
Design Flow = 4.1 cfs
Street Capacity Acceptable
(Reduction factor not satisfied, but
no curb overtopping occurs)
0.9
0.8
0.7
0.6
0.5
T
0.4
0.3
0.2
0.1
D.O
-45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Station (ft)
FlowMaster v5.13
Hassled Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 9
Minor Storm Theoretical Street Capacity (DP 3)
Cross Section for Irregular Channel
Project File
Oprojectftec\drainagelflow master\kechter .fm2
Worksheet
Street Cepcity <half>
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Wild. Mannings Coefficient 0.016
' Channel Slope
0.004000 ft/ft
Water Surface Elevation 0.50 ft
Discharge
7.10 cfs
1
oar30/01
07:47:21 AM
1.0
0.9
0.8
0.7
0.6
C
2 0.5
i
m
w 0.4
0.3
0.2
0.1
0.0 t-
-35.0
-30.0 -25.0 -20.0 -15.0 -10.0 -5.0
Station (ft)
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
F 10
Minor Storm Actual Street Capacity (DP 3)
Cross Section for Irregular Channel
Project Description
Project File
d:\projectsXkec\drainage\flow master\kechter .fm2
Worksheet
Street Capcity <halh
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Section Data Theoretical Flow = 7.10 ds
Wtd. Mannings Coefficient 0.016 Reduction Factor = 0.50 (Fig. 4-2)
Channel Slope 0.004000 ft/ft Allowable Flow = 3.5 cfs
Water Surface Elevation 0.35 ft Design Flow = 2.0 cfs
Discharge 2.00 cfs Street Capacity Acceptable
v
C
O
Y
i
W
1
'08130/01
07:47:49 AM
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0
Station (ft)
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 1 1
08/29/01
02:09:41 PM
Major Storm Theoretical Street Capacity at DP 2 & DP3 Combined
Cross Section for Irregular Channel
Project File
dAprojects\kec\drainage\flow master\kechter .fm2
Worksheet
Street Capcity
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Wtd. Mannings Coefficient 0.016
Channel Slope
0.004000 fVft
Water Surface Elevation 1.00 ft
Discharge
154.19 cfs
1.0
0.9
0.8
0.7
OA
c
0 0.!
to
N
W 0.4
0.3
WA
0.1
0.0' ' ° I I I I
-40.0 -30.0 -20.0 -10.0 0.0 10.0
Station (ft)
20.0 30.0 40.0
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Mterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 12
Major Storm Actual Street Capacity at DP 2 & DP3 Combined
Cross Section for Irregular Channel
Project Description
Project File
d:lprojects\kec\drainage\flow masterlkechter .fm2
Worksheet
Street Capcity
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Water Elevation
Section Date
Wtd. Mannings Coefficient 0.016
Channel Slope 0.004000 ft/ft
Water Surface Elevation 0.62 ft Gtioo
Discharge 27.80 cfs
v
C
i+
RI
'08/29/01
03:08:35 PM
Theoretical Flow = 154.19 cfs
Reduction Factor = 0.50 (Fig. 4-2)
Allowable Flow='77.10 cfs
Design Flow = 27.80 cfs
Street Capacity Acceptable
1.0
0.9
0.8
0.7
0.6 s
0.5
0.4
0.3
0.2
0.1
0.0
-40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0
Station (ft)
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
F 13
u
w
Al
2
I
I
Design of
Dry Extended Detention Basins
for
Water Quality
Reference: Urban Storm Drainage Criteria Manual, Volume 3 - Best Management
Practices, Urban Drainage and Flood Control District, September
1999
Project: Fossil Lake Second Filing/ Kechter Road
Location: Pond 1
l) Determine the Design Volume:
1.1) Determine Basin Imperviousness:
Basin Parameters
Basin Area (acres)=
39.300
Area of Roofs (acres)=
2.500
Area of Parking, Walks (acres)=
5.900
Basin Imperviousness (%)=
21
' 1.2) Tributary Area's Imperviousness Ratio (i = Ia/100) = 0.21
1.3) Determine the Water Quality Capture Volume (WQCV) from Figure EDB-
2. WQCV = 0.125 watershed inches
1.4) Determine the Design Volume in ac-ft;
' Design Volume= (WQCV/12)*(Area)*(1.2)
Area= The tributary drainage area upstream of the water quality enhancement
facility in acres
Design Volume = 0.49 ac-ft = 21,398.85 cu-ft
2) Design the Outlet Works:
' 2.1) Outlet Type: Perforated Orifice Plate
2.2) From the Stage -Storage table for Pond 1, at 0.49 ac-ft, Elevation=
4890.85
2.3) Invert Elevation of Outlet Pipe= 4886.00
' 2.4) Depth at the Outlet (DWQ, feet) = 4890.85-4886.00 = 4.85
2.5) From Figure EDB-3, Required Area per Row= 0.385 in2
2.6) From Figure 5, Use (2) 1/2" diameter hole per row,
space rows on 4" centers,
' D:\Projects\Spr\ExDetC ol.wpcl
G 1
STRUCTURAL BEST MANAGEMENT PRACTICES DRAINAGE CRITERIA MANUAL (V. 3)
He)
0.50
0.45
0.40
0.35
d
L
0.30
d
0.25
M
0.20
3 0.15
0.10
0.05
0.00
40-hour Drain Time
Arucled Welland Basin
)ur Drain Time
6-hr drain time a = 0.7 1 1
12-hr drain time a = 0.8 7Ail
24-hr drain time a = 0.9
40-hr drain time a = 1.0
ps,.ro 3 K• yap
Detention and Porous
_ Landscape Detention
12-hour Drain Time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total Imperviousness Ratio (i=1 a1100)
FIGURE EDB-2
Water Quality Capture Volume (WQCV), 801° Percentile Runoff Event .
L-
S-42
9-1-99
Urban Drainage and Flood Control District
G 2
DRAINAGE CRITERIA MANUAL (V.3)
STRUCTURAL BEST MANAGEMENT PRACTICES
H9
10.1
6.(
4.(
2.(
1.(
0.6(
0.410
E
T
0.2(
U
O.OE
0.04
0.02
so
MM
SOL
SOL UTION: Required Area er
'A
j F4OA
ArAA
ra
WQCV
'�40
I�
I�PE
0.011
0.02
U.Uv U.Ub U. i U U.1U 0.40 0.60 1.0 2.0 4.0 6.0
Required Area per Row,a (in.2 )
FIGURE EDB-3
Water Quality Outlet Sizing:
Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume
9-1-99
Urban Drainage and Flood Control Dislric t
S-43
G 3
.H to
Orifice Plate Perforation Sizing
Circular Perforation Sizing
Chart may be applied to orifice plate or vertical pipe outlet.
Hole Dlo
(in) •
Hole Die
(in)
Min. Se
(In)
Area per Row (sq in)
n=1
n=2
n=3
1 4
0.250 _
1
0.05
0.10
0.15
5716
0.313
2
0.08
0.15
0.23
3 8
0.375
2
0.11,
0.22
0.33
7/16
0.438
2
0.15
0.30
0.45
1 /2
0.500
2
0.20
0.39 4-
0.59
9 16
0.563
3
0.25
0.50
0.75
5 8
0.6Z5
3
0.31
0.61
0.92
11 16
0.688
3
0.37
0.74
1.11
3 4
0.750 -
3
0.44
0.88
1.33
13 IG
.._.ILB
_ 15/16
U.B13
.0.015
U.936
3
.._ _3-
3
4
- 4--_0.89
0.52
0.60
0.69
U.79__
-8
I.OM1
1.20
1.30
1.77 ---
1.56
I.80
2.07
2.66 -
1 I 18
1.063
1 t 8
1.125
_ 4
0_99
1.99
2.98
t 3 18_
1_I80
_
4
_
3.J2
_I 1 _4_
I J 8
_1
1 I 2
1 9 16
- 1.25_O._
1.375
1,500
_ 1.563
4
4
-M1 --
_...4 _
4
1_35
-_ 1.M1ff -
I.62
1.77 -
1.92
_ 2.45 _
2.71
-_-� 2.97
3.25
-- 3.53
3.83
_
_ 3.68
_ 4.06
C45 -_-
_ 4.87_
5.30
-_- 5.75
1 5 8
1.625
4
2.07
_
4.15
6.22
1 .11 16
1.688
4
2.24_
4.47
6.71
1 3 4
_ 1.750
_
4
2.41
4.81
7.22
1 13 16
1.813
4
2.58
5.16
7.74
1 7 8
1.875 1
4
2.76
5.52
8.28
1 15 16
1.938 1
4
2.95
5.90
8.84
2 1
2.000 1
3.14
6.28
9.42
n - Number of columns of perforations
Minimum steel
plate thickness
1L4 '
5/16
3/8 "
• Designer may Interpolate to the nearest 32nd Inch
to better match the required area. If desired.
Rectangular Perforation Sizing
Only one column of rectangular perforations allowed.
Rectangular Height = 2 inches
Rectangular Width (inches) = Required Area per Row (sq in)
2"
Urban Drainage and
Flood Control District
Drainage Criteria Manual (V.3)
FlIc Detalls.dwq
-- PoN D 2
Rectangular
Hole Width
Min. Steel
Thickness
5"
1 4
6"
1 4
T
5 32
8"
5/16 "
g"
11 32 "
10"
3/8 "
>10"
1/2 "
Figure 5
WQCV Outlet Orifice
Perforation Sizing
0 4
w
a■
Design of the proposed irrigation system was based on the existing 18" CMP irrigation
pipe under Kechter Road. The capacity of the pipe was analyzed with the program HY8.
' Based on the existing 49 LF of 18" CMP and a maximum ponding elevation of 16.82, the
existing pipe can handle 10 cfs. The supporting HY8 documents follow.
' In addition to basing the design off of the existing culvert both downstream irrigation
users have been contacted for input;
' A phone conversation with Paul Staley, downstream shareholder, on 12/20/01 at
approximately 10:00 am took place. In this conversation the proposed rerouting of the
irrigation flow was discussed. Paul mentioned that he typically runs 4 cfs through the
system, but would like to get 8 cfs. He has been limited to 4 cfs because of the existing
ditch and culvert, which have been in disrepair and sediment lading. The proposed
' system, including the siphon was explained as well as the flows. Paul agreed that the
proposed flows and system would be acceptable and pointed out that the siphon may not
be constructed do to the timing with the school property. The realignment of the ditch
along the north side of Kechter Road would eliminate the siphon. This realignment is
being designed by Nolte Associates.
A phone conversation with Tom Brown, downstream shareholder, on 12/20/01 at 1:15
pm discussed the proposed system as wells as the flow amounts. As mentioned above
Tom agreed that the existing culvert typically allowed for only 4-5 cfs in the past. The
' proposed system was explained, including the inverted siphon. Tom had no reservations
about the layout and agreed that the design flow of 14 cfs was acceptable.
The proposed realignment of the irrigation system will involve rerouting the existing
ditch, southeast of the intersection, to line up with the proposed 19"x30" HERCP
irrigation pipe crossing Kechter Road. From there the flow will travel east through an
inverted siphon under the proposed Swale 1. Upon exiting the siphon the flow will enter
Ditch D1 and be channeled back into the existing irrigation ditch that runs along the east
side of Ziegler Road. The existing ditch runs north and crosses McClellands Channel in
an existing 18" CMP flume. The proposed system has been modeled with Eagle Point
Storm Sewer Module. The system has been designed to handle 14 cfs, which is above the
expected irrigation flow of 8 cfs. Supporting documentation follows.
H
No Text
r
Existing Irrigation Culvert 1
CURRENT DATE: 12-20-2001 FILE DATE: 12-20-2001
CURRENT TIME: 08:18:53 FILE NAME: EX1
+*+++*++++++++++++*+++++++ FHWA CULVERT ANALYSIS +++++++++++++**+**++++++++
++++++++++*++*++++++++++++ HY-8, VERSION 6.1 +*++++++++**++++++++++++++
C I SITE DATA I CULVERT SHAPE, MATERIAL, INLET
U-------------------------------------------------------------------------�
L I INLET OUTLET CULVERT BARRELS
V ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET
INO.I (ft) (ft) (ft) MATERIAL (ft) (ft) n TYPE
1 1 13.38 13.17 49.00 I 1 CSP 1.50 1.50 .024 CONVENTIONAL
2
4
6
SUMMARY OF CULVERT FLOWS (cfs) FILE: EX1 DATE: 12-20-2001
ELEV (ft) TOTAL
1 2
3
4
5
6
ROADWAY ITR
13.38 0.0
0.0 0.0
0.0
0.0
0.0
0.0
0.00 1
14.01 1.0
1.0 0.0
0.0
0.0
0.0
0.0
0.00 1
14.28 2.0
2.0 0.0
0.0
0.0
0.0
0.0
0.00 1
14.50 3.0
3.0 0.0
0.0
0.0
0.0
0.0
0.00 1
14.70 4.0
4.0 0.0
0.0
0.0
0.0
0.0
0.00 1
14.92 5.0
5.0 0.0
0.0
0.0
0.0
0.0
0.00 1
15.09 6.0
6.0 0.0
0.0
0.0
0.0
0.0
0.00 1
15.57 7.0
7.0 0.0
0.0
0.0
0.0
0.0
0.00 1
15.92 8.0
8.0 0.0
0.0
0.0
0.0
0.0
0.00 1
16.41 9.0
9.0 0.0
0.0
0.0
0.0
0.0
0.00 1
16.76 10.0
9.8 0.0
0.0
0.0
0.0
0.0
0.00 30
16.82 10.0
10.0 0.0
0.0
0.0
0.0
0.0 OVERTOPPING
MAX. PONDING
ELEVATION
= 16.82 FT
SUMMARY OF ITERATIVE
SOLUTION ERRORS FILE:
EX1
DATE:
12-20-2001
HEAD
HEAD
TOTAL
FLOW
% FLOW
ELEV (ft)
ERROR (ft)
FLOW (cfs)
ERROR
(cfs)
ERROR
13.38
0.000
0.00
0.00
0.00
14.01
0.000
1.00
0.00
0.00
14.28
0.000
2.00
0.00
0.00
14.50
0.000
3.00
0.00
0.00
14.70
0.000
4.00
0.00
0.00
14.92
0.000
5.00
0.00
0.00
15.09
0.000
6.00
0.00
0.00
15.57
0.000
7.00
0.00
0.00
15.92
0.000
8.00
0.00
0.00
16.41
0.000
9.00
0.00
0.00
16.76
-0.004
10.00
0.16
1.60
<1> TOLERANCE (ft) =
0.010
<2>
TOLERANCE (°s)
= 1.000
H 3
2
CURRENT DATE: 12-20-2001
FILE DATE:
12-20-2001
CURRENT TIME: 08:18:53
FILE NAME:
EX1
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
PERFORMANCE CURVE
FOR CULVERT 1
- 1( 1.50
(ft) BY 1.50 (ft))
CSP
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
DIS- HEAD- INLET
OUTLET
CHARGE WATER CONTROL
FLOW ELEV. DEPTH
CONTROL FLOW
DEPTH TYPE
NORMAL
DEPTH
GRIT. OUTLET TW
DEPTH DEPTH DEPTH
OUTLET
VEL.
TW
VEL.
(cfs) (ft) (ft)
(ft) <F4>
(ft)
(ft) (ft) (ft)
(fps)
(fps)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
0.00 13.38 0.00
0.00 0-NF
0.00
0.00 0.00 0.12
0.00
0.00
1.00 14.01 0.51
0.63 3-Mlt
0.53
0.37 0.64 0.64
1.38
1.82
2.00 14.28 0.74
0.90 3-Mlt
0.78
0.53 0.80 0.80
2.09
2.16
3.00 14.50 0.93
1.12 3-M2t
1.02
0.65 0.91 0.91
2.67
2.39
4.00 14.70 1.11
1.32 3-M2t
1.50
0.76 1.00 1.00
3.19
2.57
5.00 14.92 1.27
1.54 3-M2t
1.50
0.86 1.08 1.08
3.67
2.71
6.00 15.09 1.44
1.71 3-M2t
1.50
0.94 1.15 1.15
4.15
2.84
7.00 15.57 1.62
2.19 3-M2t
1.50
1.02 1.21 1.21
4.59
2.95
8.00 15.92 1.81
2.54 3-M2t
1.50
1.09 1.26 1.26
5.05
3.06
9.00 16.41 2.02
3.03 3-M2t
1.50
1.16 1.32 1.32
5.49
3.15
9.84 16.76 2.21
3.38 3-M2t
1.50
1.21 1.36 1.36
5.82
3.23
El. inlet face invert 13.38
ft
El. outlet invert
13.17
ft
El. inlet throat
invert 0.00
ft
El. inlet crest
0.00
ft
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
SITE DATA ***** CULVERT INVERT **************
INLET STATION
0.00 ft
INLET ELEVATION
13.38 ft
OUTLET STATION
49.00 ft
OUTLET ELEVATION
13.17 ft
NUMBER OF BARRELS
1
'
SLOPE (V/H)
0.0043
CULVERT LENGTH ALONG SLOPE
49.00 ft
***** CULVERT DATA SUMMARY
BARREL SHAPE
BARREL DIAMETER
BARREL MATERIAL
BARREL MANNING'S n
INLET TYPE
INLET EDGE AND WALL
INLET DEPRESSION
++++++++++++++++++++++++
CIRCULAR
1.50 ft
CORRUGATED STEEL
0.024
CONVENTIONAL
SQUARE EDGE WITH HEADWALL
NONE
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
H 4
3
CURRENT DATE: 12-20-2001 FILE DATE: 12-20-2001
CURRENT TIME: 08:18:53 FILE NAME: EX1
********************************************************************************
************************** TAILWATER **************************
******* REGULAR
CHANNEL CROSS SECTION ****************
SIDE SLOPE H/V (X:1)
2.0
CHANNEL
SLOPE V/H (ft/ft)
0.005.
MANNING'S
n (.01-0.1)
0.022
CHANNEL
INVERT ELEVATION
13.29 ft
CULVERT
NO.1 OUTLET INVERT ELEVATION
13.17 ft
******* UNIFORM
FLOW RATING CURVE
FOR DOWNSTREAM CHANNEL
FLOW
W.S.E. FROUDE
DEPTH
VEL.
SHEAR
(cfs)
(ft) NUMBER
(ft)
(f/s)
(psf)
0.00
13.29 0.000
0.00
0.00
0.00
1.00
13.81 0.442
0.52
1.82
0.16
2.00
13.97 0.461
0.68
2.16
0.21
3.00
14.08 0.473
0.79
2.39
0.25
4.00
14.17 0.482
0.88
2.57
0.28
5.00
14.25 0.488
0.96
2.71
0.30
6.00
14.32 0.494
1.03
2.84
0.32
7.00
14.38 0.499
1.09
2.95
0.34
8.00
14.43 0.503
1.14
3.06
0.36
9.00
14.49 0.507
1.20
3.15
0.37
10.00
14.53 0.510
1.24
3.23
0.39
**************************
ROADWAY OVERTOPPING
DATA **************************
********************************************************************************
ROADWAY SURFACE
PAVED
EMBANKMENT
TOP WIDTH
30.00 ft
CREST LENGTH
2O.00 ft
OVERTOPPING CREST ELEVATION
16.82 ft
********************************************************************************
H 5
2
W
co
U) N
m r
Z E COD
`p Y N
r E N
A O
O
,y 0 a` z
Li N
� 0
E
C
OO
cD co
«` J «
>
C =
T
_m
O
m
W
0
A J 0
00 m'
:'. (7 A
(i v
>
CL m
T T
m m
E
c
O cr)
` o
O m c
E m
U) (ri
c>
r r
c)) d)
0 u,
v v
0
E c
M M c
p
m m c
E A
mcnc
>
T T
a� m
m m c
7 W
V 7 ,
r d
>CL
0 e
c y „
V V V:
C) O O
E C r (O M
•m Y N m r
> > r O r
C p
m m m
00 W V V V
c I, 0 0
d it« N r �
> m N h N
> r O r
c� °' mmm
D W V 19T V
a a a
U U U
n n
U U U
a' m 0 0 C)
d E v T T v
N N N
C C IMOMI
w CO
m Ln
O J �
E. cD 0 0
30=ONN
0
0
mt moo
«gam r� o0
d-
C L � N N
7
m c O) O) 00
'.u�. C c O M r
N
U `. (D (D cD
V
75
d
m ti (0M
Y
O O O
A
ci
Y J M cM 0
E
N o y M N cD
00 W It
; ; (6 6 li
O N � N co
T CC) V
couiv
c M M m
J O M r cD
(� m V' Lo U-)
W > T r r
c ( M N V
m V L6 (D
W > r r T
W V V V'
f N M
a n ma a)
N
C N
O .L > >
ca CD CD
cn C U N
C
N O O) O
> C U
O O N
(.) f0 'X C
C .� (D 0 .
C a) a) CO
y O w "O cn
V N L a)O
r -0 . O w
N n O D_ O
m a)
c 3 O m
LCL
w N .Q
U
O L
o m N H w
O Co O
N O y N
c 3 m U
N=3Eco
a ca c � X >
E E c
0 U 0 0 0
-0 >. =
L cc o m co
(D L D
cn a
E L L U a)
,U., N O7 Lo co
7
T E 0L V
3 c Y
2 cn � 2 O
M O
Q O ,
'O N W 3
F- 3 -0 ?:, m
N
W
0
2
1
j
�
1 �
3
! /
1
Z
/
QZ
x
im
1
1
010a0
v
/
/
± Q19
/ w 3
<3
/
1
V�r`
�mor
/
aoiao ao
Ncn
UI
I
ar
I1., ti
11� 1
NI
/I•! I 1 p
1
Omj
m 0-
I
a
_
I
1
1
m
I
I
z
O
W0uj
1
1
1
I
I
J
t
r
f
t
W
Zf
t
I
I
I
1
t
I
1
1
w
z
<=L1� O W,W
o w o
t;3z
8-in
r,
8i
m
N
0
w
r
0
2
0
0
0
2
a
$
$
$
$
$
$
%
0
� �
+
.
.
t ----
F
-W+-
|
�
it
\
,
\
a-
I
Li/
`
�
(.
pr)
\i•
^t.
da
f
o
[
%1
\���
Q.q14
I
FFFFF�
0
^
V
•
+
—
m
g
a
R
•
•
�
A�
�
7
$
0#
\w
:I
a
\
7b
0
Q
ƒ
oLLIk
C
k1
��
ƒr
3§
2/9A
dR
9,•3
o
a
1.
€ N 0
�1
111
lilt
,
,
'
.2
-lJ
\
\§
]
!&
NN
&
o V
L
§
�
��
a
�
\t
m
&
f
�
f
o
k){/(
JX `
)
\\
>
z%§§
o u
..
...
..
..
0
LO
\
/
/
Ln
0
/
ƒ
$
%
$
$
$
$
$
�
�
�
I
8
S
9LSIN !x EXTENDS
FRISW rt D
THE AITIVABLE AREA
REFTRENCE DRUNNAGE
P(MT MR ID
C E G Po
I
o9i� 10-YR E`9rt
el SW F E1-
LXDER SW[WHx
/ x f e, � _ - 116RR p1WM1 PWp 1 i0 �
• xR ` 1 (`i�x ~y -R• L V1[F ACp1D FIUNG CDLKRf R.\` `\ ` X `L'_!! \
_ I 'l � V `I .•a_.J \ YJ T.:l L..� sx � Rc9 rRoa IwvLwEu � me:µ - 1 L
It
j_ f4�iF
TONE
MM
JV1♦H
�
O
OR
WN
Ge
1VN
Gm
m9
CO1NHl1Ol1
INiML�••!
1
1, E1 h E2
14.91
0.36
5.5
-
25.6
MCCIFLIINDS CHANNEL
CdG --> CIXV a --> 1NLF 1 --> LkCIE DS CHANNEL
1
1, EI, E2 8 E3
22.28
OM
5.8
309
MCCUEDEND'S CNMINEL
C8G --> CULVERT ♦ --> ROLY 1 --> MCCIEWIID'S CHANNEL
1
ES
7.87
0.20
1.3
-
8.2
CULVERT 6
SWAIE Z --> C0.VERT 6
2
2
3,22
O.T2
4.1
-
10.9
McCLE1WID'S CHANNEL
C8G --> INLET 1 --> MCCLEEbWO'S CHAWIEL
3
3
2.01
O.W
2.9
-
13.4
MCcL D'S CNwNI4a
CBA --> INIET 27 --> M9QE¢AND'S CNMINEL
El
E1
5.99
0.20
1.3
-
5.8
MCCIEWND'S CHANNEL
PVC OIMW-->4RALE ) --> 'A'OCV --> MCCLEILMDS
F1
FI
0.71
O.T9
1.5
2.5
7.0
WALE ALONG ZIEGLER RUED
SMAIE --> CULVERT --> SYMLE NORM
F2
F2
235
47.0
117.5
SWAIE ALDNG ZIEGIER ROID
CULVERT --> SWNE --> CULVERT NORM --> SWAIE NORM
6'
tl10 =1.40
HIM OF-- TCP a
491853 6WN-4916.50
e'
nBMLNE SLOPE�O.WS
swp�E z
2( MIN
01. =L61'
ROWLINE SLOPF-'I
9OS �.J PFP
SWALE 1
Nis
I2. MIN
I I
tlr =0.91
15' MIN
RDeUNE SLWE-I WS
12
HER, CF
7d-0 -
TW W
a17
BWx�991fi 50 ,N,i.
FLORLINE STORE =045X
nOwuxE SLDPE=I.31%
BW ATL.E
E2
DETW D2
LEC3ErO:
EM151M6 9CITA Sit
PRDPosY.O so1161 SErrtR gyp PRDPosEo cwtt
D ® PF'SOSED sob SEME4 MEET /' ifCtVSED CRVIE AT IIDMIIF
PROPOSE➢ CbRWR L� O IR6JSED SEMW MIE CRIME
p151MG COxIWR
- MD2o EXRIMG It CCMOM �• O RFVJSED W VEL INLET FILTER
PRCIt CURB PRO BUTTER
PRS05E0 n4WUNE 111(f D SLI FENCE
LLLF LLB DELBN DRt MRIINI I qp gp'OEED RIPRID
BASIN DESMIuicR
1
I.IOI AREA IN ILRES Q DESRN MYJT
).ERORD nOw
NOTES:
I. EROVCH CMTRCE SIGWN AND LIBELED M THE tlVtINB " ERE)NCN CONFIRM SNE13
2 EDSNL LVtE SECOND FYINB SYH! 07, MLHRI E. AND WATER gWRY P^AX) II H r0 BE CONSTIM1kTED WIN THE
E[IDW RbD IWRP91FN15.
APPROVAL BLOCKS:
EMRQ:R COUNTY CNGRI88ELRIG
APPROVAL
CHl UTILITY pRY 1qH
WHI IW�Cf COEMIM
}8M0o-922-IM7
RR001 �ME`tEW`
CRT z
m MAME �bQ�e�ib HUNCH
1w 0 150 lCO 45D IM
IN FEET )
1 Tlh. 1SD It
Im1Dlm
rn9 mMRR+
p®® ■Y
u1e T
pm®■W
OLD M��
u