Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 07/21/1994
PROPERTY OF FORT COLLINS T1L v W 5 FINAL DRAINAGE REPORT for TIMBERLINE ROAD Fort Collins, Colorado July 15, 1994 Final A�rW4—z spoO -Z . x/ f�- Prepared for: Timberline Road Cooperative Venture Prepared by: Northern Engineering Services, Inc. 420 S. Howes, Suite 202 Fort Collins, Colorado 80521 (303)221-4158 Project Number: 9404.00 Northern Engineering Services, Inc. July 18, 1994 Mr. Basil Hamdan Stormwater Utility City of Fort Collins 235 Mathews P.C. Box 580 Fort Collins, Colorado 80522-0580 RE: Timberline Road Improvements Fort Collins, Colorado Project Number: 9404.00 Dear Basil: Northern Engineering is pleased to submit this Final Drainage Report for Timberline Road for your review. We have addressed your concerns contained in the red -lined Utility Plan and Drainage Report dated June, 1994. If you should have any questions or comments as you review this revised report, please feel free to contact me at your convenience. Sincerely, NORTHERN ENGINEERING SERVICES, INC. 1�\ t3. l v `�`�u��at�naeurur4 0 000 R& Mary B. Wohnra4e, E. I T. !aPEL F Michael F. J I•e•• AL' nnnn' 420 S. Howes • Suite 202 • Fort Collins, Colorado 80521 • (303) 221-4158 • Fax (303) 221-4159 I [1 ,I ,I 1 VICINITY MAP SCALE: 1 " = 2000' NORTHERN ENGINEERING SERVICES, INC. 420 S. Howes, Suite 202, Fort Collins, Colorado (303)221-4158 TIMBERLINE ROAD Final Drainage Report for TIMBERLINE ROAD Fort Collins, Colorado July 15, 1994 I_ GENERAL LOCATION SITE DESCRIPTION General Location This report summarizes the results of a storm drainage investigation for the proposed Timberline Road Improvements. The project is aligned along the East Line of Section 6, Township 6 North, Range 68 West of the 6th Principal Meridian in Fort Collins, Colorado. The project limits extend from approximately 600 feet north of Harmony Road to approximately 300 feet south of McClellands Creek for a total length of 0.85 miles (See Vicinity Map). Site Description The Warren Lake Ditch and McClellands Creek both intersect Timberline Road at the north and south ends of the project limits respectively. The surrounding land use patterns are currently agricultural and low density residential. lI. HISTORIC DRAINAGE Maior Basin Description The majority of the project is located in the McClellands Drainage Basin. This portion of the project extends from Harmony Road south, to McClellands Creek. North of Harmony Road, the project lies in the Fox Meadows Basin. Timberline Road July 15, 1994 Final Drainage Report Page 2 II. HISTORIC DRAINAGE. con't Historic Drainage Patterns Property on both the east and west sides of Timberline Road generally drain to the south-southeast. Harmony Road, running east -west, creates a drainage divide along Timberline Road. Areas north of Harmony drain to the north and, areas south of Harmony drain south into McClellands Creek. Stormwater runoff from Timberline Road south of Harmony Road currently drains to a roadside ditch on both sides of the road and then to McClellands Creek. North of Harmony Road, runoff drains to roadside ditches and then north to either Warren Lake Ditch, an existing double Type-13 inlet in Timberline Lane or a wetlands area located on the west side of Timberline Road. III. DEVELOPED DRAINAGE Developed Conditions The majority of the properties adjacent to the Timberline Road Improvements are currently in various stages of development. Projects south of Harmony Road include Stetson Creek P.U.D., Timber Creek P.U.D., Harmony Crossing P.U.D., the future Poudre Valley Hospital and future Community/Regional Shopping Center. North of Harmony Road, Sunstone Village 8th Subdivision P.U.D. is currently under construction. Timberline Road, an arterial street, is proposed to be widened from two -lanes to four -lanes due to the development of these adjacent properties. Design Criteria and References Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual.(SDDCCS) and Storm Drainage Criteria Manual by the Urban Drainage and Flood Control District have been used for this Final Drainage Study. The McClellands Basin Master Drainage Plan criteria has been referenced in addition to existing drainage reports for surrounding developments (See References). Hydrologic Criteria The Rational Method was used to estimate peak stormwater runoff from the proposed street improvement. An initial 2-year design storm and major 100-year design storm was used to evaluate the proposed drainage system. Rainfall intensity data for the Rational Method was taken from Figure 3-1 of SDDCCS. Timberline Road July 15, 1994 M Final Drainage Report Page 3 III. DEVELOPED DRAINAGE con't Hydraulic Criteria The City of Fort Collins Storm Drainage Design Criteria has been used for all hydraulic calculations. In addition, a HEC-2 analysis has been performed in the design of the proposed concrete box culvert at McClellands Creek crossing. General Drainage Concept Conveyance of off -site drainage includes street runoff from any future extension of Timberline Road from McClellands Creek to a high point approximately 1000 feet south. The curb inlets at the proposed box culvert have been designed in anticipation this future flow. The design of the proposed drainage system for Timberline Road has been in coordination with surrounding proposed developments which include Stetson Creek, Timber Creek, Harmony Crossing, Willow Springs and Sunstone Village. Developed drainage basins for all projects have been extend out to the centerline of Timberline Road and are therefore detaining the majority of the runoff from the street. Developed runoff from Timberline Road adjacent to the future Harmony Village site will be collected in a 25' curb opening near the south end of the future site. Runoff will be conveyed to a permanent grass -lined swale designed by RBD, Inc. for the Harmony Crossing P.U.D.. This drainage swale conveys historic runoff from the Shopping Center site south, across Harmony Crossing to an on - site detention pond. The proposed swale has been designed to accommodate the 100-year historic runoff from the Harmony Village site out to the centerline of Timberline Road. Developed runoff from Timberline Road adjacent to the future Poudre Valley Hospital site will be collected in a 25' Type-R Curb Inlet located near the south end of the future site. Runoff will be conveyed to a proposed temporary drainage swale running east - west along the north propertyline of Timber Creek P.U.D. (also designed by RBD, Inc.). This drainage swale directs historical runoff from the Poudre Valley Hospital site to the east and then south around Timber Creek to a future detention pond and then to ' McClellands Creek. This swale was also designed to accommodate 100-year historic runoff from the future hospital site out to the centerline of Timberline Road. I Timberline Road June 15, 1994 Final Drainage Report Page 4 1 General Drainage Concept. con't Both drainage swales will convey historical stormwater runoff until such time as the Harmony Village and Poudre Valley Hospital sites are fully developed and detention storage can be provided. It is not required that these swales be in place to accept runoff from the proposed Timberline Road improvements. Additional points of discharge from Timberline Road include the curb returns of Stetson Creek, Timber Creek, Galena, and Rockport Drives and the future hospital and shopping center sites. These adjacent property owners have agreed to accept stormwater runoff from points of discharge off of Timberline Road without swales to convey the stormwater to proposed detention sites. Specific Details Properties adjacent to Timberline Road which are currently undeveloped will require collection and conveyance of stormwater runoff from the street. It is anticipated that when these properties are developed they will detain runoff from Timberline Road. These projects would include the future Poudre Valley Hospital and the Harmony Village Shopping Center. Runoff from these areas will be conveyed directly to temporary drainage swales and finally to detention ponds designed by RBD, Inc.. Curb inlets will be required at the low point in Timberline Road which is located at the McClellands Creek crossing. These inlets have been incorporated in the design of the proposed concrete box culvert. The drainage area tributary to these inlets is from McClellands Creek, to a high point 1000' south. It is anticipated that future improvements to Timberline Road in this direction would include the extension of curb and gutter and contributing street flows. Also tributary to these inlets is a portion of Timberline Road to the north. An existing 24-inch diameter CMP located at the McClellands Creek crossing will be replaced with two proposed 4'x 8' concrete box culverts. A HEC-2 analysis originally done by RBD, Inc. and ' modified by Northern Engineering was used to size the culvert for the 100-year developed flows which was determined by RBD, Inc. to be 288 cfs. A detailed hydrological analysis of the McClellands Creek Basin is currently being conducted by RBD, Inc. in conjunction with the Stetson Creek P.U.D.(See Reference 6). C Timberline Road Final Drainage Report Specific Details con't June 15, 1994 Page 5 The HEC-2 model assumes an idealized channel (16' bottom width, 4:1 side slopes and 0.50% bottom slope) exists to the east and west of the proposed culvert (See Exhibit A). These parameters are in accordance with plans proposed by RBD, Inc. Engineering Consultants for the Stetson Creek development. A temporary two(2)- foot rip -rap drop structure will be placed twenty(20)-feet upstream of the proposed culvert. From the drop structure, a concrete apron will extend to the inlet side of the box culvert. Results from the HEC-2 analysis show depths ranging from 1.83 ft to 3.73 ft and velocities of 2.38 fps to 7.40 fps in the channel with the hydraulic grade line below the low chord of the culvert and depths in the channel below the maximum depth of 4.1'. The HEC-2 output has been included in the appendix to this report. Maximum invert elevations on the upstream side of the proposed box culvert have been coordinated with future developments adjacent to McClellands Creek. The Warren Lake Ditch crossing required replacement of an existing 2'x 6' concrete box culvert. Replacement of the existing box has been completed. The approved construction plans prepared by Northern Engineering Inc., for the replacement of the box, specified 127.74' of 38"x 60" RCP arch pipe. The contractor installed a 38"x 60" horizontal elliptical concrete pipe. An analysis of the hydraulics of the pipe has determined the pipe has adequate capacity based on a maximum flow of 60 cfs. The maximum flow of 60 cfs was given by Warren Lake Ditch representative John Moen during a telephone conversation on April 13, 1994. IV. EROSION CONTROL The proposed Timberline Road improvements lie within the Moderate Wind and Rainfall Erodibility Zone as per the City of Fort Collins Erodibility Maps. Temporary sediment control will be provided at all curb inlets through the use of gravel inlet filters. Temporary erosion control in the form of riprap blankets will be provided at all curb returns to proposed developments including Stetson Creek, Timber Creek, and Harmony Crossing P.U.D.'s. Permanent erosion control will consist of riprap outlet protection at Inlets' 03 and 04. Riprap has also been provided at Station 47+90 at the end of the proposed west curb and gutter. I Timberline Road June 15, 1994 Final Drainage Report Page 6 IV. EROSION CONTROL, con't Erosion and sediment control for the proposed drainage swales both temporary and permanent will be as per plans developed by RBD, Inc. for Timber Creek and Harmony Crossing P.U.D.'s. All erosion control methods shall comply with the City of Fort Collins Erosion Control Reference Manual for Construction Sites. V. CONCLUSIONS Compliance with Standards I All drainage analyses have been performed according to the City of Fort Collins Storm Drainage Design Criteria and the Urban Drainage and Flood Control District's Drainage Criteria Manual. A variance from the requirement of developed detention for stormwater runoff from Timberline Road is requested due to the relatively small amounts (Q2= 2.7 and 3.3 cfs, Q100=10.2 and 12.5 cfs at Design Points' 03 and 04 respectively) of anticipated runoff ;�. and the temporary nature of the drainage design along undeveloped sites adjacent to Timberline Road. Detention will inherently be provided in the temporary drainage swales, designed to accommodate runoff from Timberline Road. Summary of Drainage Concept Measures have been taken to ensure adequate drainage facilities have been provided with attention given to both future and proposed adjacent developments. Street runoff from both the initial and major storms have been analyzed to verify compliance with street drainage specifications. Storm drainage facilities within public right-of-ways and the McClellands Drainage Basin will be maintained by the City of Fort Collins. Properties upstream and downstream of the proposed street improvements will not be adversely impacted by developed runoff. The guidelines set forth in the McClellands Basin Master Drainage Plan have been adhered to in the preparation of this report. 1 JpSTR (rpP OF �M E F PROP CTVR2�8+28 2s+a: 25+9 t 24+78 ■ �. 22+78 20+78 18+77 18+05 t7+16i , I15+55� 15+15 14+57 rCROSS-SECTION 13'`98 r STATIONING OO�,NSTREgM � °p of ep 0LD Ll'LfIT £R D"Op) PROPOSED 2-4'x 8' CONCRETE BOX CULVERTS 58.0' 10.0' �6.0' rE�3ERLINE ROAD I I 5.1' MIN. 1' FREEBI MCCLELLANDS CHANNEL IMPROVEMENTS (SEE STETSON CREEK P.U.D CONSTRUCTION PLANS) STETSON CREEK P.U.D. GRASSLINED CHANNEL (SEE STETSON CREEK P.U.D. MCCLELLANDS CHANNEL DETAILS) CROSS-SECTION DEPTH (d) VELOCITY 10+78 1.83 6.74 12+78 3.04 3.35 13+98 2.94 3.52 14+57 2. 11 3.35 15+15 2.86 3.24 15+58 2.84 3.27 17+16 2.99 5.94 17+62 3.10 5.73 18+05 3.73 2.38 18+77 3.46 2.55 20+78 2.96 2.97 22+78 2.77 3.69, 24+78 2.81 3.71 25+94 2.81 3.70 26+48 2.79 4.45 27+12 2.34 6.71 28+12 3.54 3.02 28+28 3.42 1 3.40 28+32 1.86 1 7.40 �Z HEC-2 MAPPING FILE NAME 2-4X8.DAT Scale 1" = 200 ft / PROPOSED GROUTED SLOPING / - BOULDER DROP STRUCTURE (SEE STETSON CREEK P.U.D. 78 MCCLELLANDS CHANNEL DETAILS) EXHIBIT A t Timberline Road Final Drainage Report REFERENCES June 15, 1994 Page 7 1. Storm Drainage Design Criteria and Construction Standards, City of Fort Collins, Colorado, May, 1984. 2. Erosion Control Reference Manual for Construction Sites, City of Fort Collins, Colorado, January, 1991. 3. McClellands Basin Master Drainage Plan, Greenhorne & O'Mara, Inc., June 20, 1986. 4. Final Drainage and Erosion Control Study for Harmony Crossing P.U.D., Fort Collins, Colorado, RBD, Inc. Engineering Consultants, January 28, 1994. 5. Final Drainage and Erosion Control Study for Timber Creek P.U.D. First Filing, Fort Collins, Colorado, RBD, Inc. Engineering Consultants, April 7, 1994. 6. Final Drainage and Erosion Control Study for Stetson Creek P.U.D. First Filing, Fort Collins, Colorado, RBD, Inc. Engineering Consultants, April 7, 1994. Timberline Road June 15, 1994 Final Drainage Report Page 8 APPENDIX PAGE Historical Drainage ........................... 1 - 3 Developed Drainage ............................ 4 - 12 Timberline Road Street Capacity ............... 13 - 27 Design of Inlets .............................. 28 - 34 Design of Culverts ............................ 35 - 52 Erosion and Sediment Control Calculations ..... 53 - 57 HISTORICAL. DRAINAGE oz �o E zoq r-F fA CC) ([VON AKORHVH 8Aiva imocmou amaa NOSIUs a a 0 fag Q z F ��I STo>zfGf+L ��•� 1til i�r+C /af�•Gf+s � =o.-� _ /Z.?���G'i44 ��4'>SGo = D.Z-7<os�L /Z•7s' �' _�• f,8-1 l.l-0.3✓(l.0}� �Z.�S 3.8M �1 �Z Ito �4ioo = 3. 3 w. i.J r r1 •?� M ;J = (3_ I M ice! �1ov� r Itivus L 3 ( { y: t.Zir�Ai� (-'toIke ow-) 15ow-) m =CLC'-ioo � I. L5 �0.�°✓) li.3u ^%Hi ( I . lyHc1 = 3.5 c=} G?��GFGL�i,A= I-o(03i�)�3.9liti�N��l•ly.�c = I•'l�Ff i� t 1,J k 4 43 5-rA - O. 40 ! rc , o, 4<--1 .�) t v.�( 1.s7 ) _ .0.35 . Lc 1275r s Z. I.i✓�(I.1-0.35(�•o)) rT,_is = 4.oM,•.I • L ' � I.8'l ( I . l - o• �S (1 • ZS�� I L,'15' _ 3. S rn rrJ 3 Z'' V = ! • /oo Cps (,=14 a.E 3 Z ern j=,c.�n •� 3�! LL 2.S7.5 j r'�/ham (1 •�i� r+c-� _ ¢.'ii �IoaGCLLIe R 3.4 j,"It,i i-E nS,h1 h-+5 AREAS . ?'oriat- 2,n N oFF CoE Fr f G, ANT G = o.9E F=60- rT-M-= r-s OVErzc-•ti.+� i-w..1 0.-70,A..j 4 =cZ = I. Z M- j ) !/l f e S, e., N n re MI i NJ. Fr --owl Vic. 3-1 C.L= 3.Zvi1,�%h/ L,ou= Ike L�l c O.tiS (I.o 3 .ZF ,'tif I,i ( O.OvSAC, = 0.OZ r---=i Q= O.`i5 � I•ZS)ri.t0 ,'�/ h/ � O,vc75�t1 = O.OSc.�r ioo I DEVELOPED DRAINAGE W" -vm�� 1Jc1/CtpPEI� I�2gii.lA4C ARe ..r . gc�srN of 5-rA. +4L ro 91+ 7-4 = �, s/0 � FRoM ! IM1SCl=LI ti.� T'C Q-OVJ = 17C' 1.14 jjAsl f OL S*A 9G+42, ra 141e,4 �altir a �4+18 Z zz4ft Row = So s`o ('�.arll.l 03 5*�+ I��4�•3 ry GZ+'1`.GI = i, ZL,� � rr�� of TIM�jll _ r� _ ro wESr Rvw• = so' /RYA n I , S I s►L fjs,rl.r 04 = SrA $t>h 4-5.1 TU OS 5-r^4'1� 9o-ro +48.'� = 250.30' w m T %�A iIIJ IN1?C/2✓Ic.�N:,..fL ss I'JAsr,� 05 O. l 8 (� . L ToT7+-tom. Aip-cff/W r O. 2 Z% ^-L = iM i�L2✓IvrlstiiMG�C� = 0.5� (0.1� ) + 0.20 (�.04-••�� = o. BZ 7 �j�azr:l lnnP�2✓lovrnl�sf Arze^s 120� c Wry = 40' (l5 r?�'� 43, S�_o L.�wosc.'►? NG = IO'�t7r�') �4b5r o = o.a A� 1 G = In�1PEa✓ro �s v=Ss = O,qS ! 3� �c� t 0.20 0.34�1.►c� = o,8p (jAf �► 07 Prz` f*sat w.�c�C 40l(-?;_zt4) /43,c� Tori+t� fa,aEA r 2.Sr7 /4G .. _.- - - G- 4-- -• lnnoC2✓iaitgSNEfr,=4.0.�5( �- 2.0¢.+�� i- O.Zo (0.51 ,e.c�' = 0,80 I . Z. S S 44 - /Axe^t AL _ LIaNDfcs.Pi.J4 c !O�(I Z L��) / 4-2 To'rRc_ Fla-c.o = I.SI �*c iq P s i2�A,� c vw�u< = 4o'( lLe%oI ) ! 4�, s>eo = 1.55.�c tc-n Plr JA = 10( lL 1?JL ¢�, S(v0 c O. Q•7J A` 'T—OTAL Aa•GA c I •�6 s.L C, = lnnJCRvrutn5 Cjf = O.Gi� ( 1•SS + O.Lo( d.43 f f .. _ •. f - _ `. ' .. r d� If � - ;1 .1: .., ... 1. �a ,.t..l - _.j _ ry '"" a 'Ti{, � ci. /' � V Tors*C� AaE.4 1-74- c ■ L=ISI T�=1.8-1�1.1—O.��1.0��/51 a Z.ZMI,J z G _ o. 1 _ _ ❑ Z.Z MrJ t L.OMI^I = S.Z M!!J �GIeD � O•%2 M,J i- '(j .(�Mbl C (p .� Ml,.l , Z. - _ GIc tQroa=Gt G lrleoP o 1.25 E /2, vow ' PJASIJ OZ �- WEST '��+tip' OP= ) I nIje-2L.i R-chcaOJ Srsa i4r*/8 TD -le 44-. TO TA c.► �� A = Z.'�� 1 L I5 T aZ = LPG-? (l.l-O.ec:)�I o�� 17r Z.Z MItiI - T _ l:0-1 ( 1.1 - o. eo(I.ZS)) /.e AA ij - - - - - _ _ Z. _ y Z. M r.J � I M /r`1 / ZJ' M rr..l 0.1 l rrU + /O. M,.rJ '= /O. M,. j QZ = G/F'/G 3 1n�w 7 = Q -7 •(-O.P.L71�. yZ. /Z•'� \ �G c %Z5 Zln/L_Z_� r7I"��J_ - - i8.4- ___...QlPO -.LIaC� t I�EVEwPE D I��oFr= i�RS�N b3 (So(nr�1l ivu0 L^+ e oP 77Nu5eXL l.-oo PLO Srt* GZ:5-0 L=15' �`= l•S"J(l.l-O.-7(.(l.o����' = 2.Sn l.� S = 15-s i 3 170 1 G= 0.-16 ( PG_ 4 3 15a cps Mi.J •� - I I HrN t �'1.I M��t a IO. 7-M�� . Imo - I�(yca✓� rl4�n,1L! 3 - I LL 2. j( in/Ll.ao - TIZ1 i-rl __. _..-.. h/ 40-77(i) Z.3`i"�i�( Ql�o = Cr C Ll�o = 1 • 2-5 ( 0.74.) 1 IJCVG I.c�JG� Irv"-101—F' (3AS11J p¢-ra To rr+4.- too O•P;I_MI-J GUrr�rz FiAw V'= Z -l G�rsra �•G = Z- Z An iti1 4- ! Z- I M i.J = 1 4. 3 kn n-J L, lea SIG O.Z _G� GLL �` _ I.O (O.I, Z.14�NI�/_�_) -c7 P�,A-c_ 3.3 GAS._.. OIL=��GLro,A _ 1•Zs(o_7�)G.4 k�rr(.�'�a.�`� _ IZ.7 �F.s.. io Torres Aa.�a = o. u� a� ! =4-4-' ��Z=1.8"1(l.l-D.PjZ(,_o�'V9{+, G= 0.02- (Pa. 3� 3 1. 4 3 - L - - Z.8 4-.0, CSC M"J 4::t- L ■ _.. . I—Ro + �G �(—c 3�� Ly =3-Z`i ,r �fnr ) Ltoo QL = CLGC�i/a -- I.o(o.>3L� 3.y5;w/w ( 0,Z.:-"..4� O.G! r r lop =_I.LZ(o.�L� 9_orti/w-Lz��) No Text 0 DRAINAGE CRITERIA MANUAL RUNOFF 5C 3C I- 20 Z W U D: W 10 Z W Il y5 W ¢ 3 m O U 2 D: W t- 3 1 III ■■III III■���■�■■� �Kmwjm �■W■■ ■I,■■I/�I�1���■■■■� �WMIIW I lmmm■■■■� 5 .1 z 3 5 1 2 3 5 10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING "UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5-1-84 URBAN DRAINAGE & FLOOD CONTROL DISTRICT STREET CAPACITY /3 GA!►G��rT� lS.�-�...ow�.f3c..c �TYl-C�"T Gac�Lf—ICrJ e ��SIG tiJ �eth.J T d I ' 2 rn-o✓, SPac �sf-!✓c�- a r?ter �a - 5 ��o = Oepn-+ oG F-l.o v e 7" .. No Gcamr� .a�2ra1'�I,J4 ✓vK P+ ✓o/G �f✓1 SpR.•�a�SHC�T J'-+-PH i 1�6i(/ \/= 0. 458 f WHr(il-i O - l S L� f C ?'}-fr-.�I / 8 f ✓oIL �4f-.f� tit P='I'iT oZ PGA . 177 4d D•3ro"� f _. I,iO Gf-flag C%�-T-O F�I7frJ ly. �✓Ole �=�o�.� S�I��r� = IZ.00f Wf•r-fu-f rr < l� � '� v� QIeD .- /9j, 4 V,S _ .. ._. _ _ i�%//'��-c�A/1 SPl/tt�`I�S!-'C-�•1- Q^TPIn i 1-!.f . l8. \(6 = �• S�YI/ ' wN-t Gil-% IS 1 Qi �� ✓ Ufa _ _. 7-?-*e C-Q-06~,j IS < (o f ✓c�+L q !4 GA�► Gv!.. I'�-'rC /�tL�O WA i3C-E ST 12c 0 ' .'. t.fo G�ri6 OveZrcaP�NG ✓ oIL rim,., S�rstz.p c 9.Io' w,-�u-I is L t1 Ft ✓orL RtiD WhT ��� JOT r.LcAC-4-4 77--UZ-ow.J ✓ oIG 1�ES14J ' �10 = o.3L'1 � ..'.. No._ _ G-'n-r3 O��Z-ro�?I�G, ✓�� - I=Ww SPP�",� = tO.O' wr+iH-F S G 1-1' ✓off rn-o�•, sin-c._A�s,-+t-�-r- cam; a�,-r t��,. Z� ' ' �c P>?'! L° THt �-0,..�.1 ! S C do �✓ OFL 1 115; a 2�� | ]�[ < ! §a( | { o= 0 § % k �7 f| �k J° F| . oil 12�§� ! ) !!!ter !o a# -|$ , §� k( k k § k)!! 2)2 Hz' M9 -® � E§a§ \§3 §§§I � ff� aa! , 2 /c a o w N U a g Ua o oar o 00 b n " 3 Z �AFiae^G 0 Z§ks to d 0 - Wo n WN H_iWD ~ C O W Qam Wagm A f11 Yp G aso E 'vg8g Sal g N m m Cd Cd a� $ 2 i�7 o�� a 0 O ae. g� tl 3 ^� E x c � m 0 E$3� � Q cE Z �Si 6i v'G 3 z z f 0. uj f E 8 006- $ 8Si8$8 N 33F+4`JReie> 0 I � � ! 2$` � §\/ $ } � §■ ff !% !" 7$ \ik � !f%§, )82 Ia _ 5, kk k 2§«§ ECL z:s |i)£e Z£!©` ow) §k\� §§§ §7®"~BGF Ie § w §r - $ §�[ ci u94 / 0\ \ \ §■ f2 �! f| $� £� 7@| � ° ! e# m I� kn * kZE §§�cj f�®|§ etm §k z/-r2L—° an§ CO 0 2,! ---/6 ■ � f � 0 § w - §§� m ! ! % §/0U[ ° � � ! 0� k % §§ `! § � �! t� �k J� J f@) § §| 7 &|m i to If#! F-// �22 G§�Z §§§N §$E §7a�•9§k ; � � ! @ } / � 22� ou u§r § ) {! § .2 %% !� . &} |' m |® a k 7g�. kzj. tv k r6�« Ilia i!® r- §coo - 9 0 §7®�~■\k Zv 9i C )y V V 1 Y m B O �Op N tl m 8 g c �3 8 a 5 E a q Q C ~ L i y g C4 q Ri CO If Cc�bi W {V m i p O sg� wo z'a�Msc � yQ o z$ w u z FinOO❑ S aE.a maw d H I I 0 a+ In N ^ N O O M M O M LL O M M O O N m m ^ ^ H d m 0 0 0 M - O U &§ � � I I � � � � � � � � a o E �§. a uC4 } \ a§$ @ ! \/2 §Ur.- ° §) !! || �k )' 22| . ` ' !ak 2 ■.! kL ) !!a, & �k m �Z|§ H11; W12 £Z�-° H O §(§ \ ; [ k 2W � � � I � � � § $ §U� u§ �§2 \ ( \ ! /f �u� \� �§ � !- $| � ff$ 2 Wk S} | te/ / #$a wa k #!k � �))■� liza§°§ P. 2■° CLIL � §$§ k §§|§g , .. §7a■®!2# 1 1 1 1 1 o w � �Ux � oU U 9WW Rog a w O�� �UUj8 o b U fs: o o � n >I so w a $9 F � Z .^• RRv'Q 7 0� D .. W$�5 m QZ��$a' WSW o C O O 44- cr M mm�W u S p S N N g O h O O §a` §E� E[\ _ Eby ; x « ! 2 . {} !2 k§ !! !! �| !!r : ° »t, {k}fe 20 z®§ �0]§ §\B§ a}! ?:,7 0 o m o vIo Ne oM wi h M o 0 9 1 I �f�r_sIc tit r ti r� Z-Y�r� Src2✓1 IG--1-r oC 4r�a-3 I,J LCT OPCl.I ,•JG o. moo" trio vi —A e5 c 1= 7 - 4 I N LcT a r�i. car! �til /=•,�•rari r ,z _5 TY°C-12 r,J R sr,.nn� = O_8U QZ � 'iH'C /NC�C—i =J. Pam_ c-� (r�r✓row rl+rs F.u,..� r=p�swY t3c'rwc�rJ T�� 2- 5� ,tir�r=rs �, C�.= I.�i �+r _ __ 4.31 / < �r ✓c/G - p.46=� Vlsc Z- � � IrJLETs e D.P. o L. Cf14 -j Po,,`,T a GAL = 4.'t �-s 10, 4 �s I=2oi✓1 F�rG �_,,ZE b �-(L � ��L = O.iO Lls/ >� %isG/✓1 j o.,j LL .. - 4 I NLf:�j- 12�Dan c..r,u�1 �/'�?'AR- = �`� �o �4�u�✓,4. ,3 GAP.. LrT `� O.'l0 L'Ft,Ft= OS� = O. S `7:5 , Z - 5 D. '� l b ��!'� TYPE � IZ. I • J;� �-= ' T - — - -- _ - - - _ : -- - - - -- ' SI C G+�,zi3 INt-c' s e �ES�c ,I rya s 'i•1;OE lZ I N {.1� r S o fJ /b GoA.rri �JN mo S G z o pE � 17F�1G��1 t�itiT 03 FRu/v-� Se'Rt���fHtZ�T Q�TP✓lT '� PG _ IG) SX = Srrz�e>- GRyu SwPce = Z'7, ,tee7- /cam t5 - 4 0.BS(0.'io c 0.-765 � O. L 3j � s GA a.li! o ✓e�Z Fn onn Srr+.1� Sr�L:L�T _ G rr T �vri C.+o_a Y GL�Z ( A4 Fawn r=+c.�r� S-S � IooS+ t�JK,zc-c�r/o.J IZE 4;)�✓rt-2,,j te�U2 = U. BS Sb So A/.�-owc131..t L>`NG-i7+.=_ _i•IS( 8.5�.-)...__ _`0•.5.. L. = e.5 ' ✓=v2 ,�* 1 C7 � T'1�� 2 t �v �c i e- 0�> mlcf A ZG:' 7-Yr>45-l2 VPc,-jPiJ- Table 5-4 INLET CAPACITY REDUCTION FACTORS Percentage of Drainage Condition Inlet Type Theoretical Capacity Sump or Continuous Grade ........................................... CDOH Type R-Curb Opening 5' 80% 10, 85% 15' 90% Street — Sump.............................................................. 4' Curb Opening 80% Street —Continuous Grade .......................................... 4' Curb Opening 80% Parking Lots, Medians ................................................... Area Inlet 80% The theoretical capacity of inlets in a low point or sump shall be determined from Figures 5-2 and 5-3. The theoretical capacity of curb openings on a continuous grade shall be determined from Figures 5-4, 5-5 and 5-6. PL)-j O ¢ j T�PC- j2 li4LZ-Tf O/, A G1:+..JT 114LA00S L� 17�sIc,J a�wT o4 PG.. - Sx o.oZ 5v- d,,=v.0Z.-(lo'_z') wf ,a, 1.6' T1'PC - R I tit LET o1.J C. wrl i j In otnJ 4,7-^ De _ O. �i o cI 0'6 ) Auy a 3tx_. G.-r-1-c,rY.= G. Pao (o.�ro� c o•-lZ --- - - — Q,;� c o.71-� Q` = O.�Z �3.3 ems) _ Z..Q- �?s _ IS_.=��'n=,zce�'✓-�D . M SPIZ>=A,7 rh�'C1=T dtn'rPvrT Fog CtiA•6-Y 011"fZ_ -� P4 . (� J JA I��fiL 1 Po,�+T 04 Ii1rC 17' d IOC T1�rt- IZ Irrc.cTt. - 31 GA L, Lyt L/LTC Ioo- 'r'L I?�JL- r f..-R 1�^LtTI`, S. 5 i Y?c-l2 IIQl-cTS (N 5<nr P- raonn sPpcs��rrtf=eT UnrPenT j Yc = O, 4Sa' :1 = O:S' (ScC �4.5-Z o.4 a o.so — rP-o.✓� � fir, ti /st � - Z/ C•�P�.crT Y = O.!'t L c�r�� rNt-�r G-vPc rY = D.7GJc r (S l = 3.✓4- � 1+JLe7—S 02-A at o2Pj 5 ' TY?G - �Z I A41 r +J 5e^ M? . h I N t-ET 03 - IO ! 1�' i M'PE- IZ /�J �cT OPE,J,+.I�S o� h �y I�1T1+J {/t OenC GR•�aDC Ott-- Utir Qc�� T= //o. Z ' S = 2- x o.oZ (I(o.Z - 2 = o. 2.34 — 12c+7(nc_rlo�l 1=r+cTo�-� i-o� I� 1n1�cT c U.90 ., INr�ricEar�6.4 �Fs ,�iAt-c-t��.�.TC loo- Y•� 1rJc,.cT C,�.�.�Lr+lES - R�Dtic�rto•J i cTo�2 E=oZ 1t7� INLZI- = O. B7 �Y�55�) Fw� 1,JrE,zaP - C-M:� & r it7 Ir.i r = O.GZ 3.8 c c) = 7- .4 cFS TOTP-L- F-Z�� c-- I.J L-c-T 03 = 6,4 #- Z 1- = v. 6 c s 6- w"-eT o,e 10' E S TYac-i2 1NccTS 1=rzorr Saa-�.�+ r1 �T -e�uT -r= 1-7._G_` J,,,_, C T - y) = 0, 01 (li •% - Z) = 0. 3I L _ ..._ r w I n�'-E2GE?TC C) 13Y T'= /Z.15, S,< = o.oZ S = o. o l CA", = = IZ�oU r�r to.J hr.uro2 i-uri 1�' T/P�, - IZ 1r�L.CT = O.BS v5� 1-ww INT�IZcEiTEi7 ,3� 10 lNLer = O.Sn ( ' , I cfs ) = To rs+-` >=ww 1 FJ r t=ri c-ePr e�o C- I NJ L-c ii 0 4 = "7.4 r 7-1�} = 10. 3 e-ocr ' I.0 12 5 9 11 l0 4 8 ' 10 6 3 9 0 LL 2 4 7 aL ir 6 w 3 z 1.5 a — 6 2 7 of w / _r ? L ! 1 0 / _ ^ .5 z .tiiG.9 -j-.8- w 5.5 ao .8 0."734 w W 5 = z o .7 aL .4 z z .4 z D.G3 L 4.5 z a- 3 c� .6 w t -- ti x ' 4 o .2 0 .5 z z x �- w .3 3.5 a a J 4 0 U. o I cr w .25 3 0 U. .08 ~o .06 (D .3 U. z W - x 2.5 = w .04 cr 25 .2 a .03 P 3 ' a 02 0 .2 2 a x v t- a 15 Oil o .15 L w ' --- -- o 0 iz 1.5 - -- -- -+�-, Yo c a = 2h .10 I .I 1.2 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA No Text I I r 1 1 i 1 1 [] 1 DESIGN OF INLETS r I I 1 I DESIGN OF CULVERTS Rectangular Channel Analysis & Design ' Open Channel - Uniform flow Worksheet Name: TIMBERLINE ROAD Comment: Sidewalk Chase Capacity at Design Point 03 Solve For Depth Given Input Data: ' Bottom Width..... 4.00 ft Manning's n...... 0.015 Channel Slope.... Discharge........ 0.0050 2.70 ft/ft cfs _ Q Z Computed Results: Depth............ 0.26 ft Velocity. 2.62 fps Flow Area........ .1.03 sf Flow Top Width... Wetted Perimeter. 4.00 4.52 ft ft Critical Depth... 0.24 ft Critical Slope... Froude Number.... 0.0061 0.91 ft/ft (flow.is Subcritical) I Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I I r I I Rectangular Channel Analysis & Design . Open Channel - Uniform flow Worksheet Name: TIMBERLINE ROAD Comment: Sidewalk Chase Capacity at Design Point 03 Solve For Depth Given Input Data: Bottom Width..... Manning's n...... Channel Slope.... Discharge........ Computed Results: Depth............ Velocity......... Flow Area........ Flow Top Width... Wetted Perimeter. Critical Depth... Critical Slope... Froude Number.... 4.00 ft 0.015 0.0050 ft/ft 10.20 cfs = 0.61 ft 4.21 fps 2.43 sf 4.00 ft 5.21 ft 0.59 ft 0.0055 ft/ft 0.95 (flow is Subcritical) Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: TIMBERLINE ROAD Comment: Outlet Pipe Capacity at Inlet 04 Solve For Full Flow Capacity Given Input Data: Diameter.......... 1.25 ft Slope ........::::: 0.0100 ft/ft ' Manning's n.. 0.015 Discharge......... 5.60 cfs > 3,3 Computed Results: Full Flow Capacity..... 5.60 cfs Full Flow Depth........ 1.25 ft Velocity...;:::::. Flow Area.. 4.56 fps 1.23 sf Critical Depth.... 0.96 ft Critical Slope.... 0.0114 ft/ft. ' Percent Full...... 100.00 % Full Capacity..... 5.60 cfs QMAX @.94D........ 6.02 cfs Froude Number..... FULL Open Channel Flow Module, Version 3.41 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 r Nor ffiem Engineering CLIENT � OYL %Fr- ?-- jag No. .,--o 'T - -D%7 -%PeMT- Services, Inc. PROJECT CALCULATIONS FOR Fort Collins, Colorado 80521 MADE By E DAM4115 CHECKED BY DATE_ SHEET 1 OF WI, _ [42 tip 25— �-01 !top oIeIlk 17 GJ0 "2 'my) k.;6WF�EA!% DMOO , a L C!, dvs PuNott-K, 47! 3� 1 1 1 1 1 1 1 1 1 1 1 i 1 1 i 1 1 3 terior surface which results in a minimum of frictional resistance to flow is necessary for hydraulic efficiency.. The relative smoothness of concrete pipe enables signifi- cantly greater hydraulic capacity than can be obtained by corrugated metal pipe of equivalent size. DESIGN PROCEDURE The hydraulic design procedures available for de- termining the required size of a culvert vary from empiri- cal formulae to comprehensive mathematical analysis. Most empirical formulae, while easy to use, do not lend themselves to proper evaluation of all factors affecting the flow of water through a culvert. The mathematical solu- tion, while giving precise results, is time consuming. A systematic and simple design procedure for the proper selection of culvert size is provided by Hydraulic Engi- neering Circular No. 5, prepared by the Hydraulics Branch, Bridge Division, Office of Engineering, Federal Highway Administration. Circular No. 5 presents inlet control and outlet control nomographs for the selection of the more com- mon types of culverts. The nomographs take into con- sideration the physical characteristics of the pipe; such as slope, length, surface roughness, size and shape of the culvert and inlet geometry. Although the nomographs provide for the ready selection of culvert size and type, the design procedures presented in Circular No. 5 still require a trial and error solution. Because the designer is basically concerned with providing an adequate pipe capacity to carry a design discharge without exceeding an allowable headwater depth, use of headwater -discharge performance curves greatly facilitate the selection of required pipe size. Fig- ures 3 through 22 present headwater- discharge per- formance curves for horizontal elliptical concrete pipe and corrugated metal pipe arch. The curves are based on nomographs included in Hydraulic Engineering Circular No. 5. To determine the headwater depth under inlet con- trol it is only necessary to project a vertical line from a given design discharge on the horizontal scale to the heavy curved line representing INLET CONTROL. At this intersection the inlet control headwater depth is read directly on the vertical scale. Figure 2 illustrates the energy relationship for cul- verts operating under outlet control with the outlet unsub- merged. The OUTLET CONTROL performance curves presented in Figures 3 through 22 are based on the value H + ho. Since HW + SOL = H + ho it is necessary to sub- tract the product of the slope and the length of the culvert (SOL) from the value given on the vertical scale. Thus, for any given design discharge and culvert slope and length, project a vertical line from the horizontal scale to the OUTLET CONTROL curve representing the given culvert LENGTH. At this intersection read HW -I- SOL on the ver- tical scale. Subtract SOL from this value to obtain the outlet control headwater depth. After determining the headwater depth for both inlet and outlet control, the higher value is used to indi- cate the type of control. The following example illustrates the proper use of curves: Example Given: A highway culvert 400 feet long is to be in- stalled on a 0.75 percent slope. The culvert will be required to carry a design discharge of 200 cubic feet per second within an allowable headwater depth of 7 feet. Find: The size of horizontal elliptical concrete pipe and corrugated metal pipe arch required and the type of control. Solution: Enter Figure 15: 43 X 68-Inch Horizontal Ellip- tical Concrete Pipe, and project a vertical line from O = 200 on the horizontal scale to the INLET CONTROL curve and the OUTLET CON- TROL curve. representing L = 400 feet. At the intersecting points read HW =. 6.9 feet and HW + S L = 9.7 feet on the vertical scale. Answer: The inlet control headwater depth is equal to 6.9 feet. To obtain the outlet control headwater depth, subtract S. X L from the outlet control figure. 9.7 — (0.0075 X 400) _= 6.7 feet Since the inlet control headwater depth of 6.9 feet is larger than the outlet control headwater depth of 6.7 feet, inlet control governs. Repeat the same procedure for corrugated metal pipe arch until a pipe size is found which will handle the design discharge within the allowable headwater depth. From Figures 16, 18 and 20, the following headwater depths are obtained: PMe Equiv. HW Inlet HW Outlet Control Contra Size Circular Control Control Condition HW 40x65 54" 12.5' 29.0-3=26.0' Outlet 1 26.0' 44x72 60" 9.1' 19.1-3=16.1' Outlet 16.1' 49x79 66" 7.3' 13.0-3=10.0' Outlet 10.0' Since all of the controlling headwater depths are considerably higher than the allowable, try the next larger size. Enter Figure 22: 54 X 85-Inch Corrugated Metal Pipe Arch, and project a vertical line from O = 200 on the horizontal scale to the INLET CONTROL curve and the OUTLET CON- TROL curve representing L = 400 feet. At the intersecting points, read HW = 5.5 feet and HW + SOL = 9.9 feet on the vertical scale. The inlet control headwater depth is equal to 5.5 feet. To obtain the outlet control headwater depth, subtract So X L from the outlet control figure. 9.9 — (0.0075 X 400) = 6.9 feet Since the outlet control headwater depth of 6.9 feet is larger than the inlet control headwater depth of 5.5 feet, outlet control governs. A 43 X 68-inch horizontal elliptical concrete pipe (equivalent 54-inch circular) or a 54 X 85- inch corrugated metal pipe arch (equivalent 72-inch circular) would be required. The concrete pipe is operating under inlet control and the corrugated metal pipe is oper- ating under outlet control. m m S2 U. 0 a d d v C O W n a W e O N O L V C 0 40 K W CV) r W fr LL N 1333 NI 102f1N001311no HOj 1•S+MH 30 S3mvA Pie 1333 NI 1081N00131NI 80A MH 30 S3mvA N.wi .Wr v C.;)ODt0 yl IF OIY N O �, 133J NI 1081N001311no H03 7•S+MH 30 S3nivA Pie 1333 NI 102l1N00131NI 803 MH 30 S3mvA z O w N cr a W W W U m U z_ a w 0 2 U to O F LU w J 0 U I In TABLE 6.5. Values of Manning Coefficient for Various Materials ' (ASCE 1982). Conduit Material Manning n (1) (2Y Closed conduits Asbestos -cement pipe 0.011-0.015 Brick 0.013-0.017 Cast von pipe Cement -lined & seal coated 0.011-0.015 Concrete (monolithic) Smooth forms 0.012-0.014 Rough forms 0.015-0.017 ' Concrete pipe 0.011-0.015 Corrugated -metal pipe ('/rin. x 2%-in. corrugations) Plain 0.022-0.026 ' Paved invert 0.018-0.022 Spun asphalt lined 0.011-0.015 Plastic pipe (smooth) 0.011-0.015 Vitrified clay Pipes 0.011-0.015 Liner plates 0.013-0.017 Open channels Lined channels ' a. Asphalt 0.013-0.017 b. Brick 0.012-0.018 c. Concrete 0.011-0.020 Rubble or riprap 0.020-0.035 ' e. Vegetal 0.030-0.406 Excavated or dredged Earth, straight and uniform 0.020-0.030 Earth, winding, fairly uniform 0.025-0.040 Rock 0.030-0.045 Unmaintained 0.050-0.14 Natural channels (minor streams, top width at flood stage < 100 ft) ' Fairly regular section 0.03-0.07 Irregular section with pools 0.04-0.10 'Dimensional units contained in numerical term in formula. bSee References 2, 5, 16. (Vanes with depth and velocity.) Note: 1 in. = 2.54 cm; 1 ft = 0.305 m. 4L jttttiiitflftftfififitiftitiiitttittiiiiititi t HEC-2 WATER SURFACE PROFILES t t t Version 4.6.2; May 1991 t t s t i t RUN DATE IOJUN94 TIME 13:14:04 t t sirestsss:titties:is:f:s:ts::ftffttiftifisi: IOJU194 13:14:04 i O.S. ARMY CORPS OF ENGINEERS t HYDROLOGIC ENGINEERING CENTER i 609 SECOND STREET, SUITE D t DAVIS, CALIFORNIA 95616-4687 t (916) 756-1104 PAGE 1 THIS RUN EXECUTED IOJU194 13:14:04 eetssstsssssteststtstttsssttsssssssts ' HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991 ' ttttfsttttrtautrtfsatttttetfaetet MODEL REVISED OS JUKE 91 1994 BY M.B.T. T1 TIMBERLINE 10I CULVERT - 9404.00 - NORTHERN ENGINEERING SERVICES T2 ANALYSIS FOR 100 YR. FLOODPLAIN ' T3 MCCLILLAIDS BASIN DRAINAGE WAY, HEC-2 DATA FILE NAME: 2-418.DAT JI ICHECI INQ WHY IDIR STRT METRIC HVINS Q ISEL FQ ' 0 2 0 0 -1 0 0 0 4925.83 0 J2 IPROF IPLOT PRFVS XSECV ISECH FN ALLDC IBA CHNIM ITRACE 0 0 NC 0.045 0.045 0.045 .1 .3 QT 1 287 ' DOWNSTREAM STARTING WATER SURFACE ELEVATION IS 4915.83 START WSEL ASSUMES DROP STRUCTURE IS AT CRITICAL DIM TOP OF 2' DROP SECTION 11 1078 4 0 48 0 0 0 ' GR 4918 0 4924 16 4924 32 4928 48 I1 1178 4 0 48 201 199 200 OR 4929 0 4925 16 4925 32 4929 48 START OF 22 DEGREE 110 II 1398 4 0 48 122 122 127 OR 4929.6 0 4925.6 16 4925.6 32 4929.6 48 Il 1457 4 0 53 65 51 58 OR 4929.9 0 4925.9 18 4925.9 34 4919.9 53 II Isis 4 0 58 62 54 58 OR 4930.2 0 4926.2 10 4926.2 36 4930.2 58 BID OF 22 DEGREE BEER II 1558 4 0 58 45 43 44 OR 4930.4 0 4926.4 10 4926.4 36 4930.4 58 Be 0.6 0.8 QT 1 284 DOBRSTREAR [AD OF 16' 13' 10I CULVERT Il 1716 6 29 45 157 157 157 0 0 0 13 10 4933 4933 OR 4932.5 0 4932.5 29 4927.19 29 4927.19 45 4932.5 45 OR 4931.5 75 SC 1.013 0.4 3 0 3 16 46 8.1 4927.42 4927.19 BEG111110 OF 16' I 3' BOI CULVERT Il 1762 6 29 45 46 46 46 I2 0 0 2 4933 13 10 4933 4933 BT -3 0 4933 45 4933 75 4933 OR 4932.5 0 4932.5 29 4927.42 29 4927.42 45 4932.5 45 OR 4932.5 75 Il 1805 4 0 66 43 43 43 OR 4933 0 4927.6 25 4927.6 41 4934 66 Be 0.045 0.045 0.045 0 0 II 1877 4 0 63 70 74 72 OR 4933 0 4928 23 4928 39 4933 63 II 2078 4 0 60 201 201 201 OR 4933 0 4929 21 4929 38 4933 60 0-K 11 2278 4 0 50 200 200 200 OR 4934 0 4930 17 4930 33 4934 50 II 2478 4 0 48 200 200 200 OR 4935 0 4931 16 4931 32 4935 48 Il 2594 4 0 48 120 112 115 OR 4935.6 0 4931.6 16 4931.6 32 4935.6 48 Il 2648 4 16 32 54 54 54 OR 4935.9 0 4931.87 16 4931.87 31 4935.87 48 IC .013 .013 .013 0.3 0.5 QT 1 284 DOBBSTREAM LIMIT OF CULVERT A7 711BERLIBE 21 2712 4 34.6 52.6 64 64 64 13 10 4935.42 4935.42 OR 4940.9 0 4932.22 34.6 4932.22 52.6 4940.85 87.2 QT 1 284 SC 2.013 .4 3 0 4 8 105 11.2 4932.73 4932.2 UPSTREAM LIMIT OF CULVERT AT 711BERLIBE II 2812 10 31.5 50.53 105 105 105 I2 2 4935.93 4940.70 I3 10 4935.93 4935.93 8T -10 0 4940.9 4940.9 32.49 4940.74 4932.73 32.5 4940.74 4935.93 IT 40.50 4940.70 4935.93 40.51 4940.70 4932.73 42.51 4940.70 4931.73 B7 42.52 4940.70 4935.93 $0.52 4940.74 4935.9 50.53 4940.74 4932.73 B7 83.53 4940.9 4940.9 OR 4940.9 0 4932.73 32.49 4932.73 32.5 4932.73 40.5 4932.73 40.51 OR 4932.7 42.S1 4932.73 42.52 4932.73 50.S2 4932.73 50.53 4940.9 83.53 Be .04 .04 .04 0.1 0.3 BOTTOM OF OBE -FOOT DROP STRUCTURE At 1828 4 20 36 16 16 16 OR 4937.8 0 4932.81 20 4932.81 36 4937.81 56 Be .03 .03 .03 TOP OF ORE -FOOT DROP STRUCTURE It 2831 4 20 36 4 4 4 OR 4939.6 0 4934.6 30 4934.6 36 4939.6 56 SECIO DEPTH CISEL CRIIS ISELI EG BV HL OLOSS L-BAIIILEV Q QLOB QCH QROB ROB ACE ARON VOL TWA R-BAK ELEV TILE RON VCR WON III, ITCH INR ITI ELIII SSTA SLOPE ILOBL ILCH ILOBR ITRIAL IDC ICOIT CORAR TOPIID EIDST SPROF I 0 CCHV= .100 CIHV= .300 $SECIO 1078.000 3720 CRITICAL DIM ASSUIED DOIISTRIAI BUNTING NATO SURFACE ELUMOR IS 4925.92 START ISEL ASSUIES DROP STR➢CTUHI IS AT CRITICAL DIM TOP OF 2' DROP SECTION 1078,000 1.83 4925.81 4925.83 4925.83 4926.53 .71 287.0 .0 287.0 .0 .0 42.6 .0 .DO .00 6.74 .00 .000 .045 .000 .027374 0. 0. 0. 0 4 0 0SEC10 1278.000 3301 HV CHAEGID MORE THAI HVIIS .00 .00 4918.00 .0 .0 4918.00 .000 4924.00 8.69 .00 30.61 39.31 3302 TARRING: COIVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, (RATIO = 2.66 1118.000 3.04 4928.04 .00 .00 4928.22 .17 1.63 .05 4929.00 287.0 .0 287.0 .0 .0 85.7 .0 .3 .2 4929.00 .02 .00 3.35 .00 .000 .045 .000 .000 4925.00 3.83 .003863 201. 200. 199. 5 0 0 .00 40.33 44.17 SSECIO 1398.000 START OF 11 DEGREE RIB 1398.000 1.94 4928.54 .00 .00 4928.73 .19 .50 .01 4929.60 287.0 .0 287.0 .0 .0 81.5 .0 .5 .3 4929.60 .03 .00 3.52 .00 .000 .045 .000 .000 4925.60 4.15 .004438 172. 122. 112. 3 0 0 .00 39.49 43.75 *SECIO 1457.000 1457.000 2.91 4928.81 .00 .00 4928.98 .17 .25 .00 4929.90 287.0 .0 287.0 .0 .0 85.6 .0 .6 .3 4929.90 .03 .00 3.35 .00 .000 .045 .000 .000 4925.90 4.92 .004184 65. S8. 51. 1 0 0 .00 42.89 47.81 SIC10 DEPTH MIL CRI1S ISELI IG IV IL OLOSS L-BAIL ELIV Q QLOB QCH QBOB ALOB ACH AND VOL TWA MARL ILIV TIME VLOB VCB VHOB IBL IICH IIR IT1 ELM SSTA SLOPE ILOBL ILCH ILOBR ITRIAL IDC ICOIT CORAR TOPIID [DST 4SEC10 1515.000 1515.000 2.86 4929.06 .00 .00 4929.22 .16 .24 .00 4930.10 287.0 .0 187.0 .0 .0 88.5 .0 .8 .4 4930.20 .04 .00 3.24 .00 .000 .045 .000 .000 4926.20 5.73 .004095 62. 58. 54. 0 0 0 .00 45.98 $1.70 $SSCIO 1558.000 EHD OF 22 DEGREE BIRD 1558.000 2.84 4929.24 .00 .00 4929.40 .17 .18 .00 4930.40 187.0 .0 287.0 .0 .0 87.8 .0 .8 .4 4930.40 .04' .00 3.27 .00 .000 .045 .000 .000 4926.40 5.80 .004185 45. 44. 43. 0 0 0 .00 45.82 51.62 CCHV= .600 CEHV= .800 $SEC10 1716.000 3302 IARBIIG: COIVETAICE CHARGE OUTSIDE OF ACCEPTABLE RAIGE, LRATIO = .60 3495 OVERRAIL AREA ASSURED 101-EFFECTIVB, MIA= 4933.00 ILREA= 4933.00 [AD OF 16' L 3' BOX CULVERT 1116.000 2.99 4930.18 .00 .00 4930.73 .55 1.02 .31 4933.50 284.0 .0 284.0 .0 .0 47.8 .0 1.1 .5 4932.50 .05 .00 5.94 .00 .000 .045 .000 .000 4927.19 19.00 .011460 157. 151. 157. 2 0 0 .00 16.00 45.00 SPECIAL CULVERT SC CUD CUP EITLC COFQ. RDLI1 RISE SPAR COME CURT 1 .013 .40 3.00 .00 3.00 16.00 46.00 8 CHART 8 - BOI CULVERT WITH FLARED IIBGIALLS; 10 IILIT TOP EDGE BEVEL SCALE 1 - IIIGIALLS FLARED 30 TO 75 DEGREES =SECIO 1762.000 SPECIAL CULVERT OUTLET COITROL IGIC = 4930.887 EGOC = 4931.026 PCISE= 4930.180 ELTRD= 4933.000 SCL ELCHD ILCHD 1 4927.42 4927.19 41 SECIO DIM CISEL CHINS ISELI EG RV BL CLOSE L-JAR SLEV Q QLOB QCH QROB ALOB ACB AROB VOL TWA R-BAR ELEV 718E RON VCH VRON I11, ITCH INR IT ELMIN S87A SLOPE 11011, ILCI ILOBR (TRIAL IDC ICOIT COHAN TOPIID EIDS7 SPECIAL CULVERT EGIC EGOC 94 QT1IR QCOLV VCR ACULV ELTRD IEIRLI 4930.89 4931.03 .30 0. 284. 5,731 48.0 4933.00 U. 3495 OVERBANI AREA ASSUMED 101-EFFECTIVE, ELLEA= 4933.OD ELRIA= 4933.00 BEGINNING OF 16' I 3' 101 CULVERT 1762.000 3.10 4930.52 .00 .00 4931.03 .51 .30 .00 4932.50 284.0 .0 284.0 .0 .0 49.5 .0 1.1 .6 4932.50 .05 .00 5.73 .00 .000 .045 .000 .000 4927.42 19.00 .010325 46. 46. 46. 3 0 0 .00 16.00 45.00 $SECIO 1805.000 3302 11111116: CONVEYANCE CHANGE ODTSIDI OF ACCEPTABLE RANGE, F,BATl0 = 2.56 1805.000 3.73 4931.33 .00 .00 4931.4E .09 .14 .25 4933.00 284.0 .0 284.0 .0 .0 119.2 .0 1.2 .6 4934.00 .05 .00 2.38 .00 .000 .045 .000 .000 4927.60 7.72 .001500 43. 43. 43. 2 0 0 .00 47.86 55.58 =SECIO 1877.000 1877.000 3.46 4931.46 .00 .00 4931.56 .10 .13 .01 4933.00 284.0 .0 284.0 .0 .0 111.5 .0 1.4 .7 4933.00 .06 .00 2.55 .00 .000 .045 .000 .000 4928.00 7.10 .002002 70. 72. 74. 3 0 0 .00 48.49 55.59 +SEC10 2078.000 2078.000 2.96 4931.96 .00 .00 4932.10 .14 .51 .03 4933.00 284.0 .0 284.0 .0 .0 95.5 .0 1.9 .9 4913.00 .08 .00 2.97 .00 .000 .045 .000 .000 4929.00 5.72 .003336 201. 101. 201. 2 0 0 .00 48.55 54.28 $SBCIO 2278.000 2278.000 2.17 4932.77 .00 .00 4932.98 .21 .83 .06 4934.00 284.0 .0 284.0 .0 .0 - 76.9 .0 2.3 1.1 4934.00 .10 .00 3.69 .00 .000 .045 .000 .000 4930.00 5.23 .005261 200. 200. 200. 2 0 0 .00 39.54 44.77 9W SICIO DEPTH MEL MIS ISELI EG IV HL OLOSS L-BAR ELEV Q QLOB QCB QROB ALOB ACH AROB VOL TVA R-BABE ELEV TIME VLOB VCR VROB III, EACH III WTI ELMIN SSTA SLOPE ILOBL ILCH 1LOBR ITRIAL IDC ICONT CORAR TOPIID IIDS7 =SECIO 2478.000 1478.000 2.81 4933.81 .00 .00 4934.03 .11 1.04 .00 4935.00 284.0 .0 284.0 .0 .0 76.6 .0 2.6 1.3 4935.00 .11 .00 3.71 .00 .000 .045 .000 .000 4931.00 4.75 .005151 200. 200. 200. 2 0 0 .00 38.50 43.25 $SICBO 1594.000 2594.000 2.81 4934.41 .00 .00 4934.62 .21 .59 .00 4935.60 184.0 .0 284.0 .0 .0 76.7 .0 2.8 1.4 4935.60 .12 .00 3.70 .00 .000 .045 .000 .000 4931.60 4.71 .005132 120. 115. 112. 0 0 0 .00 38.52 43.26 tSEC10 2648.000 2648.000 2.79 4934.66 .00 .00 4934.91 .25 .26 .03 4931.87 284.0 42.5 198.7 42.8 15.5 44.7 15.6 2.9 1.4 4931.87 .12 2.75 4.45 2.75 .045 .045 .045 .000 4931.87 4.92 .004621 54. 54. 54. 2 0 0 .00 38.25 43.16 CCHV= .300 CEHV= .500 tSECIO 2712.000 3302 IARIING: COIPEVAICI CHANGE OUTSIDE OF ACCEPTABLE RANGE, (RATIO = 2.OS 3495 OVERBANI AREA ASSUMED 101-EFFECTIVE, ELL&A= 4935.42 ELRIA= 4935.42 DOVNSTRBAM L1117 OF CULVERT AT TIMBERLINE 2712.000 2.34 4934.56 .00 .00 4935.26 .70 .13 .22 4932.22 184.0 .0 284.0 .0 .0 42.3 .0 3.0 1.5 4932.2E .13 .00 6.71 .00 .000 .013 .000 .000 4932.22 34.60 .001102 64. 64. 64. 2 0 0 .00 18.00 52.60 SPECIAL CULVERT SC CDRO C111V ENTLC COFQ RDLEN RISE ME COME CENT SCL WHO ELM 2 .013 .40 3.00 .00 4.00 8.00 105.00 11 2 4932.73 4932.10 CHART 11 - 101 CULVERT; SIEVED HEADWALL; CHAMFERED OR BEVELED INLET EDGIS SCALE 2 - HEADWALL SIEVED 30 DEGREES; INLET IDGES CHAMFERED 3/4-INCH SICIO DEPTH . CISEL CRIES ISELI EG IV HL GLOSS L-liftIIEV Q QLOB QCH QROB Am ACH AROB VOL TIA R-BAWIILIV TIME VLOB VCH VROB in IRCH IIR ITI ILMIN SSTA SLOPE ILOBL ILCH IIOBR ]TRIAL IDC ICONT CORAR TOPWID IRDST SSECRO 2812.000 SPECIAL CULVERT INLET CORTROL IGIC = 4936.358 IGOC = 4936.333 PCISE= 4934.564 ILTRD: 4940.700 3301 HV CHARGED MORE THAT HVIRS 3302 IARIIBG: CORVEYANCE CHARGE OUTSIDE OF ACCEPTABLE RANGE, (RATIO = 2.90 SPECIAL CULVERT IGIC IGOC H4 QIEIR QCOLV VCH ACULV ILTRD IIIRLN 4936.36 4936.33 1.09 Q. 284. 3.022 64.0 4940.70 0. UPSTREAM LIMIT OF CULVERT AT TIMBERLINE 2812.000 3.54 4936.24 .00 .00 4936.36 .11 1.09 .00 4932.73 284.0 45.8 191.6 46.6 24.6 63.4 24.9 3.2 1.5 4931.73 .14 1.86 3.02 1.87 .013 .013 .013 .000 4932.70 18.51 .000131 105. 105. 105. 2 0 0 .00 46.21 64.73 CCHV: .100 CEHV= .300 SSIC10 2828.000 3302 WARNING: CONVEYABLE CHANGE OUTSIDE OF ACCEPTABLE RANGE, (RATIO = .18 BOTTOM OF ONE -FOGY DROP STRUCTURE 2828.000 3.42 4936.23 .00 .00 4936.37 .14 .01 .01 4932.81 284.0 49.1 185.8 49.0 23.4 54.7 23.4 3.3 1.6 4932.81 .14 2.10 3.40 2.10 .040 .040 .040 .000 4931.81 6.29 .001621 16. 16. 16. 2 0 0 .00 43.39 49.68 +SECIO 1832.000 3301 HV CHARGED MORE HAN HVIIS 3685 20 TRIALS ATTEMPTED ISIL,CISEI 3693 PROBABLE MINIMUM SPECIFIC IRIRGY 3720 CRITICAL DEPTH ASSUMED TOP OF OBE -FOOT DROP STRUCTURE SECNO DEPTH CVSEL CRIBS /SILK IG RV HL GLOSS L-BA/I BLEV Q QLOB QCH QROB ALOB ACH AROB VOL TVA R-BAIL ILEV TIME VLOB VCH VROB I11, INCH In VTI ELMIN SSTA SLOPE ILOBL ILCH ILOBR ITRIAL IBC ICORT CORAR TOPVID BUST 2832.000 1.86 4936.46 4936.46 .00 4937.20 .73 .01 .18 4934.60 284.0 31.7 220.6 31.7 6.9 29.8 6.9 3.3 1.6 4934.60 .14 4.57 1.40 4.57 .030 .030 .030 .000 4934.60 12.54 .009720 4. 4. 4. 10 11 0 .00 30.91 43.46 THIS RON EXECUTED IOJU194 13:14:06 ssstsstttttttsttttttttttstettstttettt HIC-2 van SURFACE PROFILES Version 4.6.2; May 1991 ttsttt:ttttt:ttstttsttss::ssset:stsst NOTE- ASTERISK (t) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE 11 SUMMARY OF ERRORS LIST MCCLILLANDS CREEK SUMMARY PRINTOUT TABLE 150 SICIO ILCH ILTRD ILLC E1,011 Q CVSIL CRIBS IG 10tIS VCR AREA .011 t 1078.000 .00 .00 .00 4924.00 187.00 4925.83 4925.83 4926.53 273.74 6.74 42.57 17.35 t 1778.000 200.00 .00 .00 4925.00 287.00 4928.04 .00 4928.22 38.63 3.35 85.67 46.18 1398.000 122.00 .00 .00 4925.60 287.00 4928.54 .00 4928.73 44.38 3.52 81.48 43.08 1457.000 58.00 .00 .00 4925.90 287.00 4928.31 .00 4928.98 41.84 3.35 ISM 44.37 1515.000 58.00 .00 .00 4926.20 287.00 4929.06 .00 4929.22 40.95 3.24 88.47 44.85 1558.000 44.00 .00 .00 4926.40 187.00 4929.24 .00 4929.40 41.85 3.27 87.78 44.37 t 1716.000 157.00 .00 .00 4927.19 284.00 4930.18 .00 4930.73 114.60 5.94 47.84 26.53 1767.000 46.00 4933.00 .00 4927.42 184.00 4930.52 .00 4931.03 103.25 5.73 49.55 27.95 t 1805.000 43.00 .00 .00 4927.60 204.00 4931.33 .00 4931.42 15.80 2.38 119.18 71.44 1877.000 72.00 .00 .00 4928.00 284.00 4931.46 .00 4931.56 70.02 2.55 111.46 63.47 2078.000 701.00 .00 .00 4929.00 284.00 4931.96 .00 4932.10 33.36 2.97 95.52 49.17 �571 SSCHO SLCH SURD SLLC SLMII Q CISSL CRIAS SO IO;LS 2178.000 200.00 .00 .00 4930.00 284.00 4932.77 .00 4932.98 52.61 2478.000 200.00 .00 .00 4931.00 284.00 4933.81 .00 4934.03 51.53 2594.000 115.00 .00 .00 4931.60 284.00 4934.41 .00 4934.62 51.32 d 2648.000 54.00 .00 .00 4931.87 284.00 4934.66 .00 4934.91 46.21 = 2712.000 64.00 .00 .00 4932.22 284.00 1934.55 .00 4935.26 11.02 $ 2812.000 105.00 4940.70 4935.93 4932.70 284.00 4936.21 .00 4936.36 1.31 = 2828.000 16.00 .00 .00 4932.81 284.00 4936.23 .00 4936.37 16.21 2832.000 4.00 .00 .00 4934.60 284.00 4936.46 4936.46 4937.10 97.20 SUMMARY PRINTOUT TAILS 150 SSCIO Q CISSL DIPISP DIRSS DIPIIS TOPIID ILCH = 1078.000 287.00 4925.83 .00 .00 .00 30.61 .00 + 1278.000 287.00 4918.04 .00 2.22 .00 40.33 200.00 1398.000 287.00 4928.54 .00 .49 .00 39.49 122.00 1457.000 287.00 4928.81 .00 .27 .00 42.89 58.00 1515.000 287.00 4929.06 .00 .75 .00 45.98 58.00 1558.000 287.00 4929.24 .00 AS .00 45.82 44.00 ! 1716.000 284.00 4930.18 .00 .94 .00 16.00 157.00 1762.000 284.00 4930.52 .00 .34 .00 16.00 46.00 = 1805.000 284.00 4931.33 .00 .82 .00 47.86 43.00 1877.000 284.00 4931.46 .00 .13 .00 48.49 72.00 2078.000 284.00 4931.96 .00 .50 .00 48.55 101.00 2278.000 284.00 4932.77 .00 .81 .00 39.54 200.00 2478.000 284.00 4933.81 .00 1.04 .00 38.50 200.00 1594.000 284.00 4934.41 .00 .59 .00 38.52 115.00 VCR ANSI .011 3.69 76.91 39.15 3.71 76.62 39.56 3.70 76.73 39.64 4.45 75.70 41.78 6.71 42.3E 85.53 3.02 112.94 248.12 3.40 101.57 70.55 7.40 43.71 28.81 bV I 11 SUMMARY PRINTOUT TABLE 150 SECIO Q MEL DIFISP DIFNSX DIFIWS TOPWID ELCH 2648.000 284.00 4934.66 .00 .26 .00 38.15 54.00 2712.000 184.00 4934.56 .00 -.10 .00 18.00 64.00 = 2812.000 284.00 4936.24 .00 1.68 .00 46.21 105.00 = 2828.000 284.00 4936.23 .00 -.01 .00 43.39 16.00 = 2832.000 284.00 4936.46 .00 .13 .00 30.91 4.00 SUMRY OF MORS AND SPECIAL ROTES CAUTION SECIO= 1078.000 PROFILE= 1 CRITICAL DIM ASSUMED, IARKIIG SECIO= 1218.000 PROFILE= I CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARRING SECIO= 1716.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECIO= 1805.000 PROFILI= I COIVEYANCE CHARGE OUTSIDE ACCEPTABLE RANGE WARNING SECIO= 2712.000 PROFILE= I CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WANKING SECIO= 2812.000 PROFILI= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE NARHING SECIO= 1828.000 PROFILE= I CONVEYANCE CHARGE OUTSIDE ACCEPTABLE RANGE CAPTION SICIO= 2832.000 PROFILE= I CRITICAL DIM ASSURED CAUTIOI.SECIO= 2832.000 PROFILI= I PROBABLI 1111MUY SPECIFIC ENERGY CAUTION SICIO= 2832.000 PROFILI= 1 10 TRIALS ATTEMPTED TO BALAICI ISEL I 1 EROSION AND SEDIMENT CONTROL CALCULATIONS ' C R�sror.J. d SE�„✓�Er•IT G'a•m�-ot. C�c►Gvit-�rroti/S ' �' IDS IGr rJ moo, rJ T �r7 Qrao = Z.O c-'FS ct SP a-� D .17 ' t=r��., G �,rrt� Fw w" -.e C� ScE U-•r� �r �� , 7,-7 Vas c r yvq N, - ? tr ' rA it l0 ✓FJ1T G�`rL.► CND �}=0 5t7 ! /rn2'! a!` I�fVCG ��T(= • AXI `rt I.2LS f 1 7- F-71 ,:;. S- -7 fits e Trr'E L a ,. r rrA. "J CA- j f> ,mow.! t�-r= c �► v i2„ IL+ P I3c�^--g C T / 3 (W X 5 L 54- G L-C-L,L-A-�t-rlo/-Js 'rlc wl Pol,---jT 03 d loo = 10. 2. t-4S d = IPr7 1 oi- �r=.,--� E? G�rrr�rzs�,,�,� ' L S Ot^T PNT � V 1 'JISLI-�hQ-G.t WiI�L 62�C F!''��M P1 ST�Ni��•fL17 `,TY O)= �G l��i �►.�L.L,r�l s. G-�vep-r 1=oz Vim+-r,�.r� G-riy 4 G� rrcrz. Wlor, � VJ w r C4.d x ono83' F-i �poM 4. Safi-� VXe T-'f e- L 121Pi1-a P F A ollT 31 f�owNrrF@a,✓1 IA tE7 A (o,W x I F IZ1=.Turn-/JS �-t�R� �L.l� t�i1uPos�U Ro,� �S T75 1�I+•o j�p,C C-7� Sfn i�j i7i ✓ I S I �t �..LS � '7 . p MaK "7 •O NV.x T -+ A siN „� lJv n�u a-E t'►i�crJ ' - Io' 7p' P- 7-7-te W /4 O = -7.o W Y r-r 4� (o Yt=o•s�,� ��'0/✓1 ' r�l �.. '� 'r°i (Are TYKE L- Ole A P-,P,2+-*P 1' �,KcT lo'w x 75 DRAINAGE CRITERIA MANUAL E5 RIPRAP ■■■■ ■ ArFAA MENEM,/CIENo. .�� i l�.i? 0 4 = Q�•O 06 .L .4 Yt /D Use Da instead of D whenever flow is supercritical in the barrel. ** Use Type L for a distance of 3D downstream . FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGES FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL E rn 4C O 3 0 20 O' RIPRAP ■■■ MENNEN MEN - ONE ■ ME ■ ���� MENEM ' O .2 .4 .6 .8 10(le 1.0 Yt/H ' Use Ha instead of H whenever culvert has supercritical flow in the barrel. **Use Type L for a distance of 3H downstream. FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR CONDUIT OUTLET. 1 11-15 -82 URBAN DRAINAGE & FLOOD CONTROL DISTRICT Triangular Channel Analysis & Design ' Open Channel - Uniform flow ' Worksheet Name: Comment: 100-year Assumed Flow at Street Entrances ' Solve For Depth Given Input Data: Left Side Slope.. 0.00:1 (H:V) ' Right Side Slope. 12.00:1 (H:V) Manning's n...... 0.016 Channel Slope.... Discharge........ 0.0050 ft/ft 7.00 cfs Computed Results: Depth............ 0.64 ft Velocity.. 2.89 fps Flow Area........ 2.42 sf Flow Top Width... 7.62 ft 1 Wetted Perimeter. 8.28 ft Critical Depth... 0.61 ft Critical Slope... Froude Number.... 0.0062 ft/ft. FULL Open Channel Flow Module, Version 3.42 (c) 1991 ' Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 u 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 $ 0000 0Ln a LO co{000 rnM 0 o O n 0 0 0 0 fl o 0 0 o u n a voouo0 JJ cv 4--C-4 430 a- Q- 0 0 0 0 0 0. 0 a4. fl 0 ;cr C�4 U -; O b m. ww� x ' w .� 0 u� E-4 `r O °0 -� 4.0 0- 0 Of O W o n, U Z ��. U. fl r o: Ul Q. d- O w --� Q. U II ~ O U Z _Z F' N N (n 0 N V) LO Z �.. O_' > m�. a N. N d O w < Q O O Q O� W Z 3 a_ oo x�- r�_ JJ. x 0 a Q ~ g .. W W O Z O O O O = }- i- O U J J L o P O 0_?_ m N a +- J J z p »-j. c a Q Q a`w W o0w0