Loading...
HomeMy WebLinkAboutDrainage Reports - 11/18/2009FAIRIOF OF PORT c-Os umnin City of Ft. Collins Ap roved Plans Approved BY Date 11- a 3 - 09 FINAL DRAINAGE REPORT FOR WEST HARMONY ROAD IMPROVEMENTS SENECA TO MASON Prepared for: CITY OF FORT COLLINS 281 North College Avenue Fort Collins, Colorado Prepared by: Interwest Consulting Group 1218 West Ash Street, Unit C Windsor, Colorado 80550 (970) 674-3300 November 18, 2008 Job Number 1046-012-00 INTERWESTM CONSULTING GROUP FINAL DRAINAGE REPORT FOR WEST HARMONY ROAD IMPROVEMENTS SENECA TO MASON Prepared for: CITY OF FORT COLLINS 281 North College Avenue Fort Collins, Colorado Prepared by: Interwest Consulting Group 1218 West Ash Street, Unit C Windsor, Colorado 80550 (970)674-3300 November 18, 2008 Job Number 1046-012-00 INTERWESTM CONSULTING GROUP I November 18, 2008 ' Mr. Wes Lamarque City of Fort Collins Stormwater ' 700 Wood Street Fort Collins, CO 80522-0580 JIF7 INTERWEST I CONSULTING G R O U P ' RE: Final Drainage Report for West Harmony Road Improvements — Seneca to Mason Dear Wes, ' I am pleased to submit for your review this Final Drainage Report for West Harmony Road Improvements. Hydraulic and Hydrologic calculations are per the City of Fort Collins Storm ' Drainage Manual. On May 20t', we received comments from you regarding our first submittal of the Final Drainage ' Report for West Harmony Road Improvements dated May 81h, 2008. We offer the following response for your review. ' Item 1: The major Swale north of Harmony Road and Major Basin D is being altered at the northwest corner of Harmony and Regency. Please show that the Swale can still handle ' the design flow in the master plan. Please refer to Appendix D for this analysis. Item 2: Sub -basin 12 flows currently flow into the swale on the north side of the road and enter the storm sewer at Regency. The design calls for these flows to flow down the new curb and gutter and turn north at Regency drive continuing down the curb and gutter to a set of sump inlets. Please show that these inlets can handle the new flows and that there is street capacity along Regency Drive. ' Our design has been adjusted to match current conditions and Sub -basin 12 flows east along the curb and gutter of Harmony Road to a 4' curb cut that directs flows ' north to the channel which directs flows to the existing storm system at Regency. 1218 WEST ASH, SUITE C WINDSOR, COLORADO 80550 TEL. 970.674.3300 • FAX. 970.674.3303 Item 3: The storm sewer analysis for Storm System A at design points 5 and 6 was not included in the report. 1. The storm system that relates to design points 5 and 6 is Storm System B. Please refer to Appendix F for this analysis. Item 4: Please provide design info on the plans stating the size of the inlet, location, etc. Please refer to the Storm System Plan and Profile Sheets, for this information. Item 5: A drainage easement is needed for the realigned swale downstream of Design Point 1. A temporary construction easement is only being proposed. A drainage easement is not necessary. The swale is within Tract C of The Ridge P.U.D. Item 6: Major Basin C is labeled as D on sheet 3. This has been corrected on sheet 3. _ Item 7: On page 11 'of the report, Appendix H should be I. This has been corrected on page 12 of the report. I appreciate your time and consideration in reviewing this submittal. Please call if you -have any questions. Sincerely, Erika Schneider, P.E. ' Interwest Consulting Group Reviewed by, Robert Almirall, P.E. Interwest Consulting Group oPPpO REG�S � PS Td` U� .'0�'�q' • 9R` a :� 33441 F' 9 �� o��Ss/�NAL EN�\�(v TABLE OF CONTENTS ... TABLE OF CONTENTS............................................................................................................... iii 1. GENERAL LOCATION.AND DESCRIPTION 1.1 Location ............... 1.2 Description of Project ................................................... ........................................... I 2. DRAINAGE BASINS AND SUB -BASINS 2.1 Master Basin Description ............................................. :............................................ 1 ' 2.2 Major and Sub -Basin Description............................................................................2 3. DRAINAGE DESIGN CRITERIA 3.1 Regulations..........................:.........................:..........................................................5 3.2 Development Criteria Reference and Constraints....................................................5 3.3 Hydrologic Criteria..................................................................................................6 3.4 . Hydraulic Criteria....................................................................................................6 4. DRAINAGE FACILITY DESIGN 4.1 General Concept.......................................................................................................6 4.2 Specific Flow Routing.............................................................................................6 5. EROSION CONTROL 5.1 General Concept....................................................................................................13 5.2 Specific Details......................................................................................................13 6. CONCLUSIONS ' 6.1 Compliance with Standards..................................................................................14 6.2 Drainage Concept...................................................................................................14 T. REFERENCES..................................................................................................................15 APPENDICES A Vicinity Map B Overtopping of Shields Analysis C Hydrologic Computations D Hydraulic Computations E Roadside Ditch Analysis and Culvert Crossings at The Ridge (Storm System A) F Storm System B Analysis (Brophy Property to FRCC N. Swale) G FRCC Swale Analysis H Analysis of Hinsdale Culverts and Proposed Inlet (Storm System C) I Culvert Crossing Wakerobin Lane and Roadside Ditch Analysis (Storm System E) J Storm System F Analysis (Pineview Pond to Mail Creek Tributary) K Mail Creek Tributary Analysis (Harmony Roadside Ditch East of Shields) L Mail Creek Master Drainage Plan SWMM Information BACK POCKET DRAINAGE BASIN EXHIBIT 1 1. GENERAL LOCATION AND DESCRIPTION 1.1. Location ' The West Harmony Road. corridor is a main east -west corridor in south Fort Collins. Adjacent development includes commercial areas, residential areas, the Front Range tCommunity College (FRCC), Fort Collins Library and undeveloped property. Please refer to Appendix A for a vicinity map. ' 1.2. Description of Project ' The West Harmony Road improvement project involves 4-lane arterial roadway improvements along the corridor, including geometrical changes such as the addition of ' curb and gutter, sidewalks, auxiliary lanes, raised medians, travel lanes and bike lanes to improve the operation and safety of the corridor. The limits of the project are from ' approximately 600 feet east of Seneca Street, east through the Harmony and Shields intersection, with intersection improvements on the north and south legs of Shields, and continuing east to approximately 500 feet west of Mason Street. 2. DRAINAGE BASINS AND SUB -BASINS 2.1. Master Basin Description This project is within the Mail .Creek master drainage basin. The Mail Creek Basin is located in southwest Fort Collins. The basin drains to Mail Creek/Fossil Creek and ' ultimately to the Fossil Creek Reservoir. The project is specifically located in the South Tributary reach of the Mail Creek Basin. ' The Mail Creek Drainage Basin Master Plan outlines the needs for the Basin and does not show the need for significant improvements to the current system. Most of the existing drainage systems in the area have been designed using the old 100-year rainfall criteria of 2.89 inches. The current and updated estimate for the 50-year storm rainfall is 2.91 ' inches. Therefore, the existing drainage systems that were designed using the old criteria are currently designed to provide protection for the 50-year storm and the existing ' drainage systems in the area are generally considered functional by the City Stormwater Department. According to the City Stormwater Department, because this area is almost completely developed, no additional detention will be required for the road 1 improvements; however, modifications and extensions of the system will be needed with ' this project in order to safely convey flows. The design minimizes impacts to other utilities and properties and maintains the existing functional drainage system with ' minimal improvements. The percent increase in the imperviousness of the entire project was determined for each ' basin and then compared to the baseline hydrology SWMM model in order to determine the impact, if any, to the downstream most detention pond (15). The impact to Pond 15 ' was determined to be negligible with a change in the water surface elevation from 5034.93 ft to 5034.97 ft. Please refer to Appendix L for the baseline SWMM model, the ' determination of the percent increase in imperviousness, the updated SWMM model with the new imperviousness values and a summary of the impact to Pond 15. ' 2.2. Major and Sub -basin Description ' The project has been divided into 27 sub -basins for discussion in this report. Existing flow paths have been maintained when feasible. Please refer to the attached Major Drainage Basins Map for identification_ and location of these basins. The sub -basins can Ibe combined into eight major basins: • Major Basin A is bounded by the Harmony Ridge P.U.D. subdivision to the west and Westbury Drive to the east. It is located south of the Harmony Road centerline and consists of offsite sub -basins OS-1 through OS-6 and sub -basins 1 and 3. ' These Sub -basins include a portion of Harmony Ridge P.U.D. and the Four Square Gospel Church property (OS-1), The Ridge Subdivision (OS-2, OS-3, and OS-4), ' portions of Chippendale Drive (OS-3) and Regency Drive (OS-5 and OS-6), and the south portion of Harmony Road (1, 2 and 3) adjacent to these properties. This ' major basin is also responsible for accepting the release flows from the Harmony Ridge P.U.D. subdivision detention pond D. The majority of the water from this ' major basin will maintain current conditions and will be conveyed via channel and culverts (Storm System A) to The Ridge's detention pond located at the northeast corner of the property. Sub -basin 3 maintains current conditions and flows directly ' onto Westbury Drive. 2 • Major Basin B is located south of the Harmony Road centerline and encompasses the southeastern and southwestern portion of the intersection of Harmony Road and Shields Street. It consists of offsite sub -basin OS-7 and sub -basins 4 through 6. Offsite sub -basin OS-7 consists of about 2.4 acres of the property located at the southwest corner of Harmony Road and Shields Street referred to as the Brophy property. Sub -basin 4 is located to the west of Shields Street and consists of the tsouth half of Harmony Road. Sub -basin 5 consists of the west half of Shields Street and is located to the south of Harmony Road. Sub -basin 6 is located to the east of Shields Street, is adjacent to the FRCC and consists of the south half of Harmony Road. ' Water from this basin will be conveyed via proposed Storm System B and the 1 FRCC's north drainage channel to the FRCC's detention pond. This pond releases to the. drainage channel adjacent to the Coventry Subdivision which is located south of Harmony Road. ' • Major Basin C consists of sub -basins 7 and 8, and includes the south half of Harmony Road. Sub -basin 7 is located north of FRCC and the Coventry Subdivision, Filing One and includes the north portion of Hinsdale Drive. Flow from this basin will be collected via an improved and existing inlet on Hinsdale t Drive (Storm System C). Sub -basin 8 is located north of Coventry Subdivision, Filings One and Two. Flow from 4his basin is collected via the existing curb cuts ' in Crest Road. The water from this major basin will maintain current conditions and be conveyed by culverts, inlets, existing channel and new curb and gutter along the Bouchard property through the private pond on the Bouchard property ' and eventually to the pond (SWMM identification 15) located on the Harmony Hospital for Pets property. Eventually, this water will reach Mail Creek at the ' point that Mail Creek intersects with New Mercer Ditch at the BNSF Railroad ditch crossing. ' • Major Basin D is bounded. by Regency Drive to the east and Arapahoe Farm Townhomes subdivision on the west. It consists of sub -basin 12 and is the north ' half of Harmony Road. Water from this basin will maintain current conditions and drain to the Mail Creek Regional Detention Pond #22 via an existing storm system. ' 3 • Major Basin E encompasses the northwestern portion of the intersection of ' Harmony Road and Shields Street. It is bounded on the south by the centerline of Harmony Road, on the east by the centerline of Shields Street and on the west by Regency Drive. The basin is adjacent to the Fort Collins Second and Harmony P.U.D. and to the Pineview Phase 2 subdivision and consists of 'sub -basins 13 through 15. Sub -basin 13 is adjacent to the Fort Collins Second and Harmony property. Sub -basin 14 is adjacent to Pineview Phase 2 subdivision. Sub -basin 15 is adjacent to the Pineview Phase 1 and 2 subdivisions. The Pineview Phase 1 and 2 subdivisions are platted but not built -out and consist of a rough -graded detention pond located in the southeast corner of Phase 1. This rough pond currently has a ' 36-inch reinforced concrete pipe as its outlet. Major basin E accepts the Pineview pond's release flows. These sub -basins will drain through a combination of ' existing and proposed drainage pipes (Storm System F) to the drainage channel located just north of Harmony Road and adjacent to the Woodlands Condominiums subdivision. ' Major Basin F encompasses the northeastern portion of the intersection of Harmony Road and Shields Street. It is bounded on the south by the centerline of Harmony Road, on the west by the centerline of Shields Street and on the east by the storm system that conveys Mail Creek from the north side of Harmony Road to the south side of Harmony Road. This basin is adjacent to the Woodlands Condominiums P.U.D. and the Woodlands Filing 5 subdivision. No changes are proposed to this basin. • Major Basin G is located at the eastern end of the project and contains sub -basins 9-11, 18 and 19. Sub -basin 9 is located north of the Bouchard and the Harmony Hospital for Pets properties. Sub -basin 10 encompasses area south of the Harmony Road centerline and is adjacent to Arbor Plaza property. Both will drain to a new ' inlet and Storm System D to the New Mercer Ditch located on the north side of Harmony. Sub -basin 18 includes the north half of Harmony Road and a majority of Larkborough P.U.D., while sub -basin 19 includes the north half of Harmony Road and the south portion of Rangeview P.U.D. subdivision. Both will drain to ' an existing 15' Type R inlet and be conveyed north to the New Mercer Ditch. n u ' • Major, Basin H is located in the middle of the project and contains sub -basins 20- ' 22. Sub -basin 20 is located east of the Collins and encompasses the west half of Shields Street. Sub -basin 21 is located south of sub -basin 20 and north of Westbury Street. It is adjacent to Westbury P.U.D. Second Filing and encompasses the west half of Shields Street. Both will drain south to an existing inlet located at the intersection of Westbury and Shields Street. Sub -basin 21 ' includes the east half of Shields Street and is adjacent to FRCC. This basin will drain south the western entrance of FRCC. 3. DRAINAGE DESIGN CRITERIA 3.1. Regulations This report was prepared to meet or exceed the "City of Fort Collins Storm Drainage ' Design Criteria Manual" specifications and the Master Plan. Where applicable, the criteria established in the "Urban Storm Drainage Criteria Manual" (UDFCD), 2001, ' developed by the Denver Regional Council of Governments, has been used. 3.2. Development Criteria Reference and Constraints The runoff from this project will be routed to conform to the Master Drainage Basin and the requirements of adjacent properties. There are two exceptions to this: 1. The FRCC's 1996 design of their north ditch included offsite runoff from Mail ' Creek. A 100-yr flow of 35 cfs was assumed to overtop West Harmony Road at the intersection of South Shields Street and enter the FRCC's north ditch. During discussions with City of Fort Collins Stormwater staff, it has been established that ' the 35 cfs was a value that may have come out of the old master plan and the hydrology today shows that there is no overtopping of the Harmony and Shields ' intersection. Also, with the design of the improvements to this intersection, overtopping will not occur. Therefore, in our analysis of the realignment of this ditch due to acquisition of right-of-way, the 35 cfs was not included. Please refer to Appendix B for analysis of the Shields overtopping which shows that the ' existing 36" pipe under Shields is able to convey 91 cfs and no overtopping occurs. 1 5 ' 2. A small portion of the south side of Harmony Road (sub -basins 9 and 10) near the New Mercer Ditch crossing will. be taken east via a new. 10' Type R Inlet and ' storm pipe to the existing 54" RCP that crosses Harmony Road from north to ' south. This system will convey flows to the south to New Mercer Ditch instead of flowing on to the Harmony Hospital for Pets property. Flows from sub -basin 18 (Larkborough P.U.D) were taken east via curb and gutter to the existing 15' Type ' R Inlet at design point 19 instead of south, across the centerline of Harmony Road to the entrance drive of Harmony Hospital for Pets property. 3.3. Hydrologic Criteria Runoff computations were prepared for the 10-year minor and 100-year major storm frequencies utilizing the Rational Method. All hydrologic calculations associated with the basins are included in Appendix C of this report. 3.4. Hydraulic Criteria All hydraulic calculations within this report have been prepared in accordance with the City of Fort Collins Drainage Criteria and are included in Appendix D of this report. All new storm sewers and inlets have been sized based on the 100-year storm. An exception to this is the new inlet and storm pipe at design point 10 which was sized to convey the 10-year storm. The 100-year storm will overflow via curb and gutter to the west and south via the Harmony Hospital for Pets entrance drive onto this property, which follows current conditions. The culverts of Storm System A have been sized to pass the 10-year storm and allow the 100-year storm to overtop the street. 4. DRAINAGE FACILITY DESIGN 4.1. General Concept ' Proposed flow patterns will match existing patterns or those required by adjacent developments as closely as possible. ' 4.2. Specific Flow Routing ' A summary of the drainage patterns proposed within each basin is provided in the following paragraphs: ' 6 Maior Basin A: Sub -basin OS-1 — includes a 3.45 acre portion of the Harmony Ridge P.U.D. and The International Church of the Four Square Gospel that will drain northeast into a new ' roadside ditch located to the south of Harmony Road. The current roadside ditch will need to be realigned due to the Harmony Road improvements. Sub -basin OS-2 — includes a 1.17 acre portion of The Ridge P.U.D. that also will drain northeast into the new Harmony Road roadside ditch. The release flows from the ' Harmony Ridge subdivision detention pond D will also discharge into this ditch via a modification to the existing storm system which includes realignment and shortening of ' the last 12-inch pipe portion of the system. Flows will be conveyed via the new ditch to two, new 15-inch culverts under Chippendale Drive which will replace the existing 187 ' inch pipe. These culverts are designed to pass the 10-year event. The 100-year event will overtop Chippendale Drive. Please refer to Appendix E for culvert analysis. ' Sub -basin OS-3 — includes a 4.07 acre portion of The Ridge P.U.D. that includes Chippendale Drive. Chippendale Drive does not have curb and gutter and this area will ' drain to a sump located on Chippendale Drive and then into the culverts under Chippendale or to the new.roadside ditch where it will travel east to design point 04. ' Sub -basin OS-4 — includes 8.56 acres of The Ridge P.U.D. subdivision which will drain northeast into the new roadside ditch. Flows will join with offsite Sub -basins OS-1 ' through OS-3. flows and will be conveyed to three, new 15-inch culverts under Regency Drive which will replace the existing 18-inch pipe. 'These culverts are designed to pass ' the 10-year event. The 100-year event will overtop Regency Drive. Please refer to Appendix E for culvert analysis. ' The new roadside ditch will be designed to handle the proposed 100-yr flow. The capacity of the existing ditch is 71 cfs. The total 100-year flow to the new ditch will be 74 cfs. Please refer to Appendix E for the analysis of this ditch. 1 7 Sub -basin OS-5 — includes 1.47 acres and the west half of Regency Drive adjacent to ' The Ridge P.U.D. Regency drive also does not have curb and gutter; therefore, this area will flow north along Regency Drive to the channel located on the west side of the ' intersection of Regency Drive and Harmony Road. This flow will then be conveyed via the culverts under Regency Drive towards The Ridge P.U.D. detention pond. ' Sub -basin OS-6 — includes 0.96 acres and the east half of Regency Drive adjacent to the Ridge P.U.D. This area will flow north along Regency Drive to the channel located on ' the west side of the intersection of Regency Drive and Harmony Road. This flow will join with flow from offsite Sub -basins OS-1 through OS-5 that has passed through the ' Regency culverts and will be conveyed to The Ridge P.U.D. detention pond via a Channel. Sub -basin 1 — includes. the south half of Harmony Road and is adjacent to offsite Sub - basins OS-1 through OS-6. This area will flow east along the curb and gutter of Hannony ' Road to design point 1 where is will be collected by a 4' curb cut and conveyed via a 4' sidewalk culvert and concrete channel to The Ridge P.U.D. detention pond. '• The Ridge detention pond was last reconstructed with the development of the Westbury Second Filing. Please refer to Appendix E for excerpts from this report. The channel and ' culverts associated with Major Basin A are referred to as Storm System A and all analysis regarding this system is in Appendix E. Sub -basin 3 — includes the south half of Harmony .Road and is adjacent to the Ridge P.U.D. detention pond and the Butler property. This area will flow east along the curb and gutter of Harmony Road to Westbury Drive and then flow south as it does today. Maior Basin B: Sub -basin OS-7 — includes 2.40 acres of the Brophy property. Currently, this runoff flows to a low point, located at the northeast corner of the property, which has no outlet. The Master Plan for this area shows the flows from the Brophy property draining east to the FRCC property. Therefore, an area inlet will be added to this sump where .the ' undeveloped 100-year flow of 4.4 cfs will be collected and conveyed in Storm System B to the realigned and redesigned north ditch of the FRCC. Please refer to Appendix L for ' the Mail Creek Master Drainage Plan SWMM information. 1 8 ' Due to the widening of Harmony Road in this area, the FRCC north ditch will be relocated to the south. The existing ditch to the east of the service access area was designed to convey 100 cfs. With the Harmony Road improvements, no assumed ' overtopping of Shields, the addition of the Brophy property (4 cfs) and the reroute of the Ridge's detention pond release (5cfs) through this system, the realigned ditch is designed to convey 104 cfs. Please refer to Appendix G for analysis and information on this ditch. ' Sub -basin 4 — includes the south half of Harmony Road and is adjacent to the Brophy ' property and is 11.3 cfs for the major storm event. The area will flow east along the curb and gutter of Harmony Road to Shields Street where it will flow south to a new 15' Type R sump inlet. This inlet will be a part of Storm System B that will convey the Brophy ' property to the FRCC north ditch. Sub -basin 5 — includes the west portion of Shields Street that is adjacent to the Brophy property and is 3.6 cfs for the major storm event. This area will flow to the same 15' Type R sump inlet and Storm System B of Sub -basin 4. Sub -basin 6 — includes the south half of Harmony Road and is adjacent to the FRCC. '• The area will flow east along the curb and gutter of Harmony Road to 2- 4', on -grade curb cuts and modified sidewalk chase that will convey flow to the FRCC north swale ' and detention pond. Carryover from this curb cut will continue east in the flow line of Harmony Road to Hinsdale Drive where it will be collected by the new, 10' Type R inlet on the west side of the road. Please refer to Appendix F for an analysis of Storm System B and Appendix G for ' analysis of the FRCC north swale (before and after the service access area) and offsite flows. Maior Basin C: ' Sub -basin 7 — includes the south half of Harmony Road and is adjacent to the FRCC and the Coventry Subdivision Filing Two. The area will flow east along the curb and gutter of Harmony Road and will flow south onto Hinsdale Drive where it will be collected by a new 10' Type R sump inlet to be installed on the west side and the existing 5' Type R sump inlet located on the east side of the intersection of Hinsdale Drive and Harmony ' Road. These inlets and storm system will then convey the flow to their existing flow path of the Mail Creek tributary. The new 10' Type R inlet will be installed on top of the 9 existing north 38"x60" HERCP pipe (Storm System C). The flows from this inlet will be included in the culvert flow. The analysis of this system is located in Appendix H. Sub -basin 8 - includes the south half of Harmony Road and is adjacent to the Coventry Subdivision Filing Two and Filing One. The area will flow east along the existing curb and gutter of Harmony Road and will flow south onto Crest Road where it will be collected by the existing chases located in the sump on Crest Road. The water will maintain its existing flow path and be conveyed to the private pond on the Bouchard property. Please refer to Appendix D for an analysis of these chases at design point 8. Maior Basin D• Sub -basin 12 - includes the north half of Harmony Road and is adjacent to the Regency Park Subdivision. The area will flow east along the curb and gutter of Harmony Road to a 4' curb cut located at the northwest intersection of Harmony Road and Regency Drive on Harmony Road. This curb cut will direct flow north onto the channel adjacent to Harmony Road. This channel directs flows to an existing storm system that conveys flow north to the Mail Creek Regional Detention Pond #22. This water maintains its historic path. Maior Basin E: Sub -basin 13 - includes the north half of Harmony Road and is adjacent to the Fort Collins Second and Harmony P.U.D. and the Pineview P.U.D. This area will flow east along the new curb and gutter of Harmony Road. Once this curb and gutter ends at the Pineview P.U.D. property, the water will sheet flow towards a rough graded pond located in the southeast corner of the property. Currently, the outlet structure to this pond is a 36-inch reinforced concrete pipe (a portion of Storm System F) that conveys flows to the east under Shields Street. The flow is then released into the Mail Creek Tributary located to the north of Harmony Road. Due to the improvements to Shields Street, the outlet pipe will be extended to the west. Pineview P.U.D. is currently undeveloped. During development, the city will require that this land be detained to 2-year historic conditions which will require a new outlet structure with orifice plate and will improve downstream conditions to the Mail Creek Tributary. 10 Sub-basin.14 — includes the north half of Harmony Road and is adjacent to the Pineview P.U.D. This area will flow east along Harmony Road where there is no curb and gutter and north towards Pineview P.U.D. where it will then flow overland towards Pineview P.U.D. pond. Sub -basin 15 — includes the west half of Shields Street and is adjacent to the Pineview P.U.D. Flows from this Sub -basin will travel south along the curb and gutter of Shields Street to the a new 15' Type R inlet located at the intersection of Shields and Harmony that will replace the existing 10' Type R inlet that needs to be relocated due to the improvements to Shields Street. The water will be conveyed east via Storm System F to the Mail Creek Tributary located on, the north side of Harmony Road. Flows traveling south in the west roadside ditch of Shields Street will pass .under Wakerobin Lane through the existing culvert that will be modified (Storm System E) due to the improvements to Shields Street. Once through the modified culvert, the flow will then travel through the realigned west.ditch to the Pineview rough graded pond. Analysis of this culvert and ditch are located in Appendix I. Storm System F will convey the street flows and the Pineview pond's discharge flow. The analysis of Storm System F is located in Appendix J. The Mail Creek Tributary will also convey these flows. Analysis of the tributary is located in Appendix K. Maior Basin F: Sub -basin 16 — includes the east half of Shields Street, the north half of Harmony Road and a small portion of the west half of Starflower Drive. Flows from this Sub -basin will maintain current conditions and travel south along the existing curb and gutter of Shields Street to the intersection of Shields and Harmony. It will then travel east along the curb and gutter of Harmony Road to an existing 5' Type R inlet located in the Harmony Road sump near the intersection of Harmony Road and Starflower Drive. This inlet with storm pipe will collect and convey flows to the Mail Creek tributary located along the north side of Harmony Road. Any overflow of this inlet will travel east along the curb and gutter of Harmony Road to the next design point (17). Mail Creek will convey these flows under Starflower Drive via an existing culvert. 11 ' Sub -basin 17 — includes the north half of Harmony Road and a small portion of the east ' half of Starflower Drive. Flows from this Sub -basin will maintain current conditions and will travel east along the existing curb and gutter of Harmony Road to an existing 5' Type ' R, on -grade inlet located in Harmony Road. Any overflow of this inlet will travel east along the curb and gutter of Harmony Road to the next design point (18). ' It is in this area that Mail Creek crosses under Harmony Road from the north to the south via an existing culvert. From discussions with the City of Fort Collins Storm Water ' Department, the City notes that there is a minor amount of overtopping in this area, but the City does not consider it enough to upsize and replace the culvert at this time. ' Therefore, this culvert will remain in place. Maior Basin G: ' Sub -basin 18 — includes the north half of Harmony Road and the majority of the Larkborough P.U.D. This area drains east along the existing curb and gutter of Harmony ' Road to design point 18 where it then joins with sub -basin 19 to the existing 15' Type R sump inlet. Sub -basin 19 — includes the north half of Harmony Road and the south portion of ' Rangeview P.U.D. This area will join with the flows from Sub -basin 18 and drain along the curb and gutter of Harmony Road to an existing 15' Type R inlet in the sump of Harmony Road where it will then be collected and conveyed to the New Mercer Ditch via the existing 54" RCP that crosses Harmony Road from north to south. During the 100-yr event, flows will overtop the centerline of Harmony Road and will be captured by a new ' 10' Type R Inlet at design point 10. Sub -basin 9 — includes the south half of Harmony Road and is adjacent to the Bouchard ' property. The area will flow east along the new curb and gutter of Harmony Road and will join with sub -basin 10. 12 1 Sub -basin 10 — includes the south half of Harmony Road adjacent to Harmony Hospital for Pets. The area will flow along the new curb and gutter of Harmony Road to a new 10' inlet Type R sump inlet that will tie-in to the existing 54" RCP that crosses Harmony ' Road from north to south. This storm system (D) will convey flow south to the New Mercer Ditch and was sized to convey the entire 10-year storm. A small portion of the 100-year storm will overflow west via curb and gutter and south via the Harmony ' Hospital for Pets entrance drive onto this property, which follows current conditions. ' Maior Basin H• Sub -basin 20 — includes the west half of Shields Street. This area will drain south along ' the curb and gutter of Shields Street to design point 20 where it then joins with sub -basin 21 to the existing 5' Type R sump inlet at design point 21. Sub -basin 21 — includes the west half of Shields Street. This area will join with the flows from Sub -basin 20 and drain along the curb and gutter of Shields Street to an existing 5' Type R inlet in the sump of Shields Street where it will then be collected and conveyed east to the FRCC south swale. Sub -basin 22'— includes the east half of Shields Street and will flow south along the new curb and gutter of Shields Street to the west entrance drive aisle of FRCC. 5. EROSION CONTROL 5.1. General Concept This site lies within the Moderate Rainfall and Wind Erodibility Zone per the City of Fort Collins and into adjacent properties. Potential also exists for tracking of mud onto existing streets which could then wash into existing and proposed storm systems. 5.2. Specific Details This project will utilize a variety of Erosion Control devices including Vehicle Tracking Pads, Silt Fence, and Wattles for Inlet Protection and Swale Protection. There will be erosion control on adjacent developments that may take runoff from this project. Erosion Control is shown on the Grading and Erosion Control Plan. A Stormwater Management Plan and permit will be required during construction. 13 6. CONCLUSIONS " 6.1. Compliance with Standards All computations that have been completed within this report are in compliance with the Storm Drainage Design Criteria Manual. 6.2. Drainage Concept The project will drain to Mail Creek/Fossil Creek and ultimately to the Fossil Creek Reservoir through a combination of existing and proposed facilities. The design minimizes impacts to other utilities and properties and maintains the existing functional drainage system through minimal improvements. 0 14 7. REFERENCES 1. City of Fort Collins, "Storm Drainage Criteria Manual", (SDCM), dated March, 1986. 2. Carroll & Lange, Inc., "Final Drainage and Erosion Control Report for Woodlands Family Apartments", dated October 6, 1995, revised January 15, 1996. 3. Stewart & Associates, Inc., "Final Storm Drainage Report for Westbury P.U.D. Second Filing", dated December 18, 1995. 4. Landmark Engineering Ltd., "Final Drainage Study and Erosion Control Report for the Front Range Community College Addition Larimer Campus", dated April 30, 1996. 5. TST, "Final Drainage Report for Harmony Ridge PUD", dated January 20, 1999. 6. City of Fort Collins, Memorandum Re: Pineview PUD, Dated December 15, 1999. 7. Urban Drainage and Flood Control District, "Urban Storm Drainage Criteria Manual", Volumes 1 and 2, dated June 2001 and Volume 3, dated September 2001. 8. Sear -Brown, "Mail Creek Basin Master Drainage Plan Problem Identification Technical Appendix", dated March 26, 2002. 9. Sear -Brown, "Mail Creek Basin Master Drainage Plan Hydrology Technical Appendix", dated April 22, 2002 10. URS, "Selected Plan for Mail Creek Basin", dated March 2003. 11. City of Fort Collins, "Stormwater Basins Map", dated June 1, 2004. 12. JVA Consulting Engineers, "Drainage Summary Letter for Front Range Community College-Larimer Campus", dated March 30, 2006. 15 No Text 3fIN3AV 393"1'lOO zz 3nN3AV 393'YlOO z w 441- z 3nN3"NOSVW w Y asdSNS asASN9 p� 7 av0a ISSHO z a 2� o F �°-, W f �2 m > o W Y < V 7 > N O m 3AIaa ��b ILaz o z iQ F-� �o z z5; .. , 3AIaa o > a tMMO-IAHVIS 3 U D 'Q _ m U 3ONVa1N3 O } 33a3 w Yr w U Cl 3�g LL�U0 wz QU O � a 133a1S Sa'131HS G Om �g w N 'a 3 3AIaa ON393a 3AIaa w AON303a we O-a, lib z Y 3AIaa O w 3"ItlaN3ddIHO & W �IL J� �aa�H 3�OHJ ZW Mw _r APPENDIX B OVERTOPPING OF SHIELDS ANALYSIS Project Name: :# 4& r-A.A.0 L\Q Project No.: I_J T-11 J. ...... Ci ----- --- .... l �e_ a I__ 1 _. I io t Y_ r-4 a �5 r 7-7 Li ( � ! 0 w J ev CD I I j-. I' --T ' I i-.L-I .I -.. ..4-_{.. _I _:..r ME ___ir - i-- T -I---- i .. T__._i-1 M6 N TIE R WE 5 zk 2 F 4 - - - - - - r> II Al-A-k 10 trill LAI T -- ----- ------ 1 I -i ; i1-7 F T 0 ki 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL.970.674.3300 - FAX.970.674.3303 j3- � TM 5-820-4/AFM 88-5, Chap 4 in w x c7 z z - S H W W J U 0 0 w W W f a c •180 10,000 ��� �2) (3) 168 8,000 EXAMPLE 6. 156 6,000 D-42 Inches (3.3 faee) 6. 5,000 0• 120 cr. 5. 144 6. 5. 4,000 - yge NW .132 0 feel 5• 4. . 3,000 (t) z.s ewe 4. - 120 (2) 2.1 7.4 2.000 (3) 2.2 7.7 4. 3� • 106 3. ep in net - 96 1,000 Boo f ---` ,--• - 84 600 500 i 72 400 300 f+j 1.5 I. (!1 K 60 U. 200 1.5 Z w 54 0 a 0 48 W W I 80 Z x 60 x 1 W I.0 I.0 42 a 50 FiW ENTRANCE SCALE a L0 40 p TYPE x 9 Fw- 9 6 30/ F (1) square edge with a headwall •9 33 /20 121 Groove and with W .8 headwall x •8 30 r' 13) Groove end 8 _ projecting . 27 / i 10 7 7 24 , 8 ,7 /'• j 6 To use scale-(2) or (3) project 5 to scald (),then horuse zontallystraight use si ralghl .Inclined lino through 4 D and D stoles, or reverse as .6 .6 /18 3. illustrated. 6 2 15 5 .5 5 1.0 t 12 PREPARED 13Y BUREAU OF PUBLIC ROADS Figure B-2. Headwater depth for concrete pipe culverts with Inlet control. Utilities light & power • stormwater - wastewater - water City of Fort Collins Date: December 15, 1999 To: Mark Taylor — Civil Engineer II Memorandum From: Susan Hayes — Senior Stormwater Enginee Matt Fater— Master Planning Engineer RE: Pineview PUD ' This memorandum is to provide you the information I found regarding the Pineview PUD. First, I was asked to determine how the Pineview Pond would function as shown on the approved ' Pineview PUD-drainage-under_the-new:167':rainfall-criteria: I updated the most current version of the Mail Creek Basin Model to reflect the new rainfall criteria and any problems the new rainfall caused for the model. TheymQde_l ng results.showed a,k 1007year discharge;<storage =and water,surfacea,elevation,of:-81:2 .cfs;-3.9 ac-ft,,and �a : .5084 5 ft =tespectivelyc°l These results are an increase over the original design plans (designed under old rainfall criteria and modeling methods) that showed a 100-year discharge, storage, and water surface elevation. of 62.3 cfs, 2.72 ac-ft, and 5083.2 ft, ' respectively. It should also be noted that with a 100-year water surface of 5084.5 ft, the I pond will overtop the intersection of Shields and Harmony by approximately six inches. This overtopping condition would be a violation of arterial street criteria. After the existing condition analysis, I proceeded to evaluate the possibility of slightly modifying the Pineview PUD plan to contain,,the revised 3.67" rainfall without overtopping. I conceptualized a six inch high berm along Harmony and Shields and ' modified the pond analysis accordingly. The results of the analysis showed a 100-year discharge, storage, and water surface elevation of 66.0 cfs, 4.14 ac-ft, and 5084.25 ft, respectively. This condition would require an extension of the pond drainage easement ' into the adjacent parking lot as well as raising three of the adjacent buildings by a half foot and one of the adjacent buildings by a quarter of'a foot.. The raising of the building is to get one foot of freeboard from the 100-year water surface. However, the City may ' be willing to consider a variance from the parking lot and freeboard criteria in order to eliminate the overtopping of the street. In addition, I will note the development agreement references 2.13 acres to be purchased by the City. This area appears to include the detention pond easement and the channel easement carrying flows from the upstream Regency Pond. These easements are shown on the Pineview Phase 1 and 2 plats. I also spoke to Dave Stringer about the status of Pineview PUD. He said the utility plans are still valid because the developer constructed some of the site utilities giving the developer vested rights. However, if the developer chooses to construct something different than the approved utility plans, then the development would be subject to current City criteria including: Land Use Code and rainfall criteria. I think if the developer chooses to build based on the approved plans, we should encourage the minor changes to the pond to eliminate'the road overtopping. 3-3 700 Wood. St. • I?O. Box 580 - Fort Collins, CO 50522-0580 • (970) 221-6700 - FAX (970) 221-6619 - PAX (970) 221-6593 - TDD (970) 224-600.; e-mail: utilitiesin.ci.tort-collins.co-its • v ww.ri.furt-rntlins ro.nJl ITII 1TIPS e e c� gg��G2 yy A a V:a < QZ SpFW LF ah/ 8Z�a8q¢N£� p W6Z<�''pX�FU �y S� --433&S S0131HS a a !t7;ia 1 "s_ r '� r.�If t I,.M1. ud SO+2'E 96-SI-I 9NlaV89\LL>I\-J n HEC-2 WATER SURFACE PROFILES • U.S. ARMY CORPS OF ENGINEERS ' • HYDROLOGIC ENGINEERING CENTER V8rs10n 4.8.2; May 1991 • 809 SECOND STREET, SUITE D ' ' DAMS. CALIFORNIA 95818A887 RR»UN DDATE. I...&IANBm8 TIME 14..4:33:21 ..».m.» (010) 7566.1104 m....» ..: X X )OOODOO( )0X)(X )0000( x xx x x x x x .xx x x )000000( )o0oc x )ODOX x000( a X XX X X X XX X X X X X )D0000( )0000( )000000( I&J"8 14:33:21 PAGE 1 _ THIS RUN EXECUTED 161AN98 14:33:21 HEG2 WATER SURFACE PROFILES Version 4.8.7, May 1991 T1MA1L CREEK FLOODPIAIN ANALYSIS T2FROM STARFLOWER POND TO SHIELDS WITH REVISED POND ELEVATION - T3NORTH SIDE OF HARMONY ROAD . J1 CHECK NO NINVOR STRT METRIC HANS 0 WSEL FO 3 0 O - 6073.0 J3 VARIABLE CODES FOR SUMMARY PRINTOUT ISO 101 OT 2 Be 79 NC .046 .045 545 0.0 OA NH 2 J145 176 218 1013 X1 711 8 73.4 1913 70.0 70.0 (10.0 ' )3 10 OR 6073.8 OL 5073.5 73A 60895 83.5 5089.2 100.6 5008.8 . 109.7 OR 5088.2 142.9 5088.7 176.0 5072.8 191.3 NH 2 .045 190.1 .018 218.6 X1 :72- 9 188.1 218.6 325 325 315 X3 10 OR 5078.2 0.0 5076.8 62.2 5078.7 112.6 6078.0 188.1 5074.5 179.2 OR 6073.1 1983 5075.6 198.1 5075.2 2M.5 .6070.2 218.6 NH 2 .045 174.0 .016 205.8 X1 <73s 9 120.1 153.E 310 310 310 X3 10 OR 5900.8 0.0 5080.5 73 SOMA 120.1 5078.A 137.3 5080 149 OR 5080.7 153.5 6091.A 162.1 5081A 174.0 5082.2 205.6 15JAN98 14:33:21 PAGE 2 SECNO DEPTH CWSEL CRIWS WSELK EO .HN HL OLOSS LBANK ELEV 0 GLOB OCH OROS ALOE ACH ARDS VOL TWA R•BAHKELEV TIME VLOB VCH VROB XNL )(NCH XNR WTN ELMIN SSTA SLOPE )LOBL XLCH )(LOBR IIRIAL IDC ICONT CORAR TOPWID ENDST *PROF 1 0 1490 NH CARD USED •SECNO 71.000 1630 MMNINGS N VALUES FOR CHANNEL COMPOccSGI TEEc�D 3495 OVERSAW AREA ASSUMED NON -EFFECTIVE, ELLEA= 5073.60 ELREA= 5072.00 71.11M 4.80 5073.00 110 6073M 5073.90 .00 .00 00 5073.60 79.0 .0 79.0 A .0 481.2 .0 .0 .0 6072.80 - AO .00 .17 .00 A00 .042 .000 .000 6068.20 74.08 e-5 200004 70. so. 70. 0 0 0 .00 110.34 191.30 � 4 ?Ad - 3885 20 TROLLS ATTEMPTED WSEL,CWSEL 3893 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED 3485 OVERBANK AREA ASSUMED NON -EFFECTIVE, ELLEA= 5078.50 EIREA= 6078.20 72.000 1.74 6074.84 5074.84 .00 6075.29 .44 .00 AO 6078.60 79.0 0 79.0 0 .0 14.0 A 1.7 .5 6076.20 m .00 5.34 .00 A00 .645 .000 .000 5073.10 177.00 .032238 325. 315. 325. 20 18 0 .00 10.90 193.98 " 1490 NH CARD USED rtiSEplpq�3A0B. 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 2.22 3495 OVERBANK AREA ASSUMED NON -EFFECTIVE, ELLEA= 5080.40ELREA= 5000.70 73.000 2.69 5070.99 .00 .00 6079.14 .16 3.80 .00 5000AD 79.0 .0 79.0 .0 .0 25A .0 1.9 .8 5080.70 - .04 .00 3.11 .011 .000 D45 .000 .000 607BAD 128.14 .008550 310. 310. 310. 7 0 0 .00 19.69 145.73 1 1616N88 14:33:21 HEG2 WATER SURFACE PROFILES Vmbn 4.8.2; May 1991 PAGE 3 THIS RUN EXECUTED 15JAN88 14:33:21 NOTE- ASTERISK C) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST SIDE OF HARMONY ROAD SUMMARY PRINTOUT TABLE 101 SECNO EGOC ELLC EGIC ELTRD OCULV OWEIR CLASS H4 DEPTH CWSEL VCH EG 1 151AN98 14:33:21 PAGE 4 SIDE OF HARMONY ROAD , SUMMARY PRINTOUT TABLE 150 SECN0 XLCH EL ELLC r7g.00 O CWSEL CRANS EO ii•P.000•� .00 .00 .00 088.20 073.00 �073.00 .04 315.00 .00. .00 5073.100 5074.84 6074.04 5075.28 322.3 • T3A0_9, 310.00 .00 .00 078.40078.98 .00 5079.14 85.50 1 15JAN88 14:33:21 SIDE OF HARMONY ROAD SUMMARYPRINTOUT TABLE 150 SECNO 0 CWSEL *TFM 78.00 5073.00 .00 • .7iAU0' 70.00 5074.84 .00 1 .Q3A1110 79.00 5078.99 A0 4. 1 1 &W496 14:33:21 PAGE 5 DIFVVS)rliG.Skro TOPWID )8_CH 00 .00b4 .000 15 .00 PAGE 6 lIrKS VCH AREA A1K 17 481.17 A7 8 6. 14.79 4.40 3.11 25.42 9.76 00, ' APPENDIX C ' HYDROLOGIC COMPUTATIONS W W Q Q D w D N ,W^ V Q NZ LL 1 m � Y d w C d � > N R ll: m LL O � O € yd f N f9Q j Y H i Y c c Z `OE m 0 a° a° W'' o € c c O Z w 3 v N c oa"a c a `o O cdi U ~ U~ N N E E m m3 omo s _ y N m A mA m n Wo O C N n N N O V A O m A O m m O O m O f0 N 1n Of N m N N m m � Vl � jr� m V O m p O p N N N A m m N m < m O m m IO m 0 �E m A d V m N Q NI� O m m m m N N �- CI V m C) m A m � (V a O N t7 m �- m � N N N p m N m m O O m N t7 V m �- V< 7 O m IT0<< m m O m m Cl 11 m O O N Y N �- N- m N m N 1-: O N N N N V O m O O N N m A O N ll p O C A m O O m m'q m C) O N O N m m 11 O N N O � m N m N 1i O O V It E u ee ui r ui mi of mi vi ro m r' r m N 'mvi e d of C m N m O N m A m O N N m m m A 0 0 0 0 m m m m A A R d O Y u E Ol r m N m 0 A N IA A m O N m m Ci N N N (O tq A O O O O m m m m A A V O O O O E m A m m m O r A m A A m O N m l�l O lV N VI m O O O N N N O O O O O O O O O O O O O O O O O O O O O O O O O O O m m N m O O O O O O CI m f0 m 1O N IO lO N N (O m m N A N m V N N tO m A 0 0 0 m m O m m N m N O N m m m m m W m q m m m (O (O m m m m m N N N m m m m R Q C O 'O N N U O O O O O O O O O O O O O O O O O O O O 00 O O O O O O O O O m m m m m m m m m m m m m m m m m N N N VVII m m m m V p Q O O N N U O O O O O O O O O O O 016 O O O O O O O O O O O O O O O O O O V m m m m m N m M O m O m A QQ N N N m M. N O N lh e- N N m N H! O O N m t7 m t7 O N m m m O N V A A O m A m V 1O m O C O 0 w Q m O O O (y V m U m A m m O m N M O N m A m m} O N N N N Vl N Vl N U e- .- m NN N 0000000 LL F? N ? ?.- c c 0 O U c m m m - O N N N N U N U (7 U Q m U U m U A U U w p W G- � RUNOFF COEFFICIENTS & % IMPERVIOUS LOCATION: Harmony PROJECT NO: 1046-012-00 COMPUTATIONS BY: es DATE: 71312007 Recommended Runoff Coefficients from Table 3-3 of City of Fort Collins Design Criteria Recommended % Impervious from Urban Storm Drainage Criteria Manual Single Family: Paved streets (gravel) Paved streets, parking lots (asphalt) Sidewalks (concrete) Roofs Lawns (Flat <2%, heavy soil) Runoff % coefficient Impervious C 0.60 50 0.50 40 0.95 100 0.95 96 0.95 90 0.20 0 Interwest Consulting Group 1218 W. Ash Street, Suite C Windsor, CO 85550 SUBBASIN DESIGNATION TOTAL AREA (ac.) TOTAL AREA (sq.ft) SINGLE FAMILY OR ROOF AREA (sq.ft) PAVED AREA (sq.ft) SIDEWALK AREA (sq.tt) LANDSCAPE - AREA (sq.ft) RUNOFF COEFF. (C) % Impervious 1 1.88 81888 0 61,770 8,622 11,496 0.84 86 3 0.86 37,505 0 27,705 4,200 5,600 0.84 - 85 4 1.28 55,690 0 41,970 5,740 7,980 0.84 85 5 0.36 15,868 0 13,308 Z560 0 0.95 99 4+5 1.64 71,558 0 55,278 81300 7,980 0.87 88 6 1.94 84,515 0 71,074 8,596 4,845 0.91 94 7 1.97 65,989 0 66,057 7,662 IZ270 0.84 85 8 1.34 56,448 0 38,826 8,720 10,900 0.81 81 9 0.62 27,075 0 22,425 Z690 1,960 0.90 92 10 0.32 14,144 0 11,531 1,513 1,100 0.89 92 9+10 0.95 41,219 0 33,956 4,203 3,060 0.89 92 12 1,13 49,052 0 36,942 5,190 6,920 0.84 85 13 1.24 53,877 0 40,927 5,550 7,400 0.85 86 14 1.13 49,335 0 35,815 5,070 8,450 0.82 82 15 2.32 101,029 0 81,029 7,500 IZ500 0.86 87 16 3.25 141,507 0 105,447 17,410 18,650 0.85 86 17 2.03 88,210 0 70,935 7,875 9,400 0.87 89 18 9.20 'See Note 1 0.50 30 19 1.39 60,383 'See Note 2 0.50 .83 18+19 1.39 60,383 'See Note 2 0.50 83 20 0.20 8,589 0 7,004 1,140 445 0.91 94 21 0.69 30,237 0 24,212 3,800 Z225 0.89 92 22 1.09 47,493 0 35,815 7,353 4,325 0.88 90 OS-1 3.45 150,431 'See Note 2 0.50 23 OS-2 - 1.17 50,879 'See Note 2 0.45 23 OS-3 4.07 177,100 'See Note 2 0.45 23 OS-4 8.56 372,606 'See Note 2 0.45 23 OS-5 1.47 63,938 'See Note 2 0.45 23 OS-6 0.96 41,657 'See Note 2 0.45 23 OS-7 2.40 104,455 'See Note 2 0.20 35 FRCC 5.00 217,800 0 0 5,000 21Z800 0.22 35 1. u„ aetemuneo rrom i aoie 4-z, Ni, uto ano urw oetermalea rrom man creeK master uramage Man 2. C. determined from Table 3-2. %1 determined from Mail Creek Master Drainage Plan Equations - Calculated C coefficients & % Impervious are area weighted C=L(Ci Ai) /Al Ci = runoff coefficient for specific area, Ai Ai = areas of surface with runoff coefficient of Ci n = number of different surfaces to consider At = total area over which C is applicable; the sum of all Ai s FC Drainage Calcs.xls �-z o d � ONE c .O �y0 j d C n N U t m y >c 2yN C N W C N N Z 0 A ILLL ~ Z C W Z 00 �U Z LL aO w W g F o m N � a a C a C c {p Y p m K N N a C ryC ryC � m 0 m m U U C C C > > E c c m m U ccp U m N m O N O ON Nr Nr �N tr O O Olqlql IT IT0 C a r m N m O? �- r- .- m Of .12 N N m O O p N N IT N r Elqlq m OI N O� t l y m m 1 I m N q O] T O O O a� N O] N r r r O O p p O b p p p r r N t7 N C) p m m N N O 17 N N o 6 p N 4 :Ep NC] ^ _ V Y N U Z J W m p N p O b y N N N N m m N m N O O N pm N N m m C] N N (=j O F n m N m N (Ol O b N tpD m W N N p (N'1 M N m V ("] trO mN n n N Omi 01 N m m N r m N N N m m m r p p OI m m m U] r p p O N m O , r p r r m O N N N N m �- p 1] V ! 3 N m b r N O N m r m N O M V% r m m M pf r N O O p N N m N r m m O N O E O' r O m N N- m N p m T T m 0 N M N N O N b m b O O O m p 7 O r 7 N M p m LL - J W N g q p p p N m m m m N N O CT 7 m m Y r O r (h b b N m 0 Z z j` m N N N fV N fV N - - N � N N (V C N N - - - - - - - (7 - N N - - a s C Orn o 0 0 0 o O o 0 0 0 0 o O o O o 0 0 0 0 N0 0 0 0 0 O c C 6 6 6 6 0 K c o 0 0 0 0 0 0 o c c c c c o c c o c C C o C C c o c o 0 0 0 0 w �4 N h N N P N N m m r m N cl O m m m N r N b O P m N b ]- O OR^+.... � 0 0 � 0 O o e m H J w 5 m r N O N N N b Ir. R rn n r' O N N O h b V q YNi N h r b ' OPi RRV J H tV (O M IT O] U( IT m r N r r IO p p m p p VI h N 7 0 0 r m m r N O O O o O 0 O O O 0 O m O m ni tV tV tV tV N N N(V NNNNNniNNNN N N N N N N N N NNNNN N N NNNNtV N N N N N�Ni N Oe � 55 O 4z � J J � p y p N r p O m m p N N m N r O o Oo OI m O N N N N N O N Z_ F m m f0 m m N m p th 1O p r 01 W y N f7 m N N N T l7 p [V N N N N N O O OI N f'] O] O !I N OI OI m O N p r r O m r N p Ip O m p O 0 0 0 � N � N H] N Ol 0 0 a z N O N m 6 N N N r U O N p N 4 f0 r m O] O � N N � p N f0 r m O] � O N N N N N 0 w N y V] w O m p m y O O O 0 O O 0 O O LL N z m a y Z o o N N p N b r m m m U m a �] p N N m r m y N N N O 00000 O Sao w u N O G-3 N N a a w a c i0 N m m Y Q Q y C m ryC ryC U m m V C G > > c E m C C O U U N J G V C p g N m O N Ct A m O N N m m W n O O O W m b OI A A Q Q Q Q LL O i Z m C n1 b e- OI N Of M C] m W O1 m N O) O OI O �- O O m N OI N n A A O O V Q m E = b Q Q Q A A N (+I N l7 Q Q Q b N� 1,2 N N N O M O N t+l Q Q Q N lu m O - Y N U = J m Q N Q O m -OoU W N N M N m m N W mw N O O N W N N W O M N N O n W N W m 0 tQ0 N b m m m N N Q l7 C! W N W y Q A C'1 m N N W A N N A N m 01 F u � N N N N W- O O- O N N W Q V+ � -- �- N � � N 3 N W W n O T N O N CO W A b b N O^ W b Q A m Cf N O A � t'1 O O Q N N n W N A W Q m O N O C 'E IF m N 1n W N Oi N N N N m Cf m O W O N O O N Q N O M N 1'] P) m Q m Q Q O Q O- LL J W N (h m Q Q Q N W W m m N N O C t m m Q A Q A t7 '- b N N g O g N N N N N N N N N N N N N - T 2 m j IN 2 U P b m b b m b b W b b W W m m W m W W m m m W N N m N m m N N a c t o 0 0 0 0 `o 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 N N 0 N n 0 n cc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0:o m o � ` I N N M N Q N N W W I� t0 10 M O Ot .0m N A N b O O Ol N Vl d .-...• 0 0 0 O O O O O O N N N N J 5 00 m m N N m N n N W Q W N N Nm W N m cl Q N m N Q N T A N n n W Q Q N Q Q O A N O O 7 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o O o 0 0 0 o m o a N N N N N N N N lV N [V N fV N N N N N N N N N N N N (V N N N O a Vl 0 z 5 o A A [� m m o Q Q NNW N W tO A o 0 o m a n$ W W m �2-� o N N Q Q N N N N N N N N W N N N � � N N N ow,_ W W W � o_ J Q Q Q N A Q O Of m Q N N W N n O O O O1 m O N N N N N O N Q W (J m m m m m m m m m m m m m m m m m N N N w m m N Q Q Q Q Q N N O O O O O O O O O O 010 O O o O o O o o o Z H N U m b W m Q Q A p N N N ON m� Will N m NQ 7 7 NN NN OM NO q NOI NO 'R q OAQ Nb QA�- OWO QON O OHm! 0 0 0 - -N 00- W- �b�# O W QN� NNO WCInm W� N t7 Q N b n m mfv N N N fn (A N O m Q m O O O O O O O LL m z z O O N N Q N W O1 01 m F m O l7 Q N N W n W OI I-H- O 000000 0 Q WO zo rid LL " N O (7 Z O F N LL F Z 111 O Z go W. U LL 0 W W 2 F o rl y N a A a N c N Y Q m m Q c c c N N N W m a] m U U c c p � > > E � N 0 U 0 U 0 J Q C' r 0 0 0 cp ea y IO CI O y O N 0 (O m y N N O N N 0 N Id O O ITQ V LL O 4 m SR N a? N O l7 CI O y O 0 N g q a?r O � O O O N O y r r O O It Q _ p E v 6 Q Q Q r r N m N m Q O O w N N OJ N N O y Q N y Q Q Q ;- 0 i� m V Y N U Z J W2() O Q NNO Qp O� yp N0 yp of r N y N O O y N N Nr W['1 ON yN yy y fp m a= p F- O DO mom, yN �y U 7 n O O Q N N y f0 C1 m y O N O 1p (0 y N N y O N la N as O O y . m y r N (O y O O tp lh l0 w r r � wN O O N t0 O T (n O r � � . r n y r O O of 0 g 0 N 0 to tp W t0 O y 7y_ n N 9 n ea � 0 0 N IT^n N O Q J r E 0 n y y Ip W O OI N y tp 1p lO l0 O N N N y O f7 f7 t'I 1p O Q O LL W N y Cl Q Q Q N W OJ l0 m 1p y O A e- [q m IT� Q N:I Cl e- t0 N y W O _ N N N N N N N N N N N N N y N N >� a 2 () OI lD l0 tD fD f0 t0 f0 l0 l0 l0 tD (D l0 t2 t2 tR tD l0 t2 f2 t2 10 1p y l0 Ip fR lD mm N C c C m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 0 O C JQ � C o o C 0 0 0 o C o o o O G o o C G G o G o 0 0 0 0 0 0 0 0 W Lpnn ui IT y N mmrm in CO mr r mmy rr y mo v,rny in �- (9 od'm y w r v v N m N m o 1p Q l0 n N OJ N a N N N y ('l N y l0 tD lD m lD ^ J F Z m m 0 m f0 qN O 0 0 y 1p n 0 y y tp y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o m o OF N N N N N N N lV N N N N .... N N N N N N N N "N N N N N— fV G w , O^^ C O O n O n Ol Ol O Q Q y N y M N O r O O O Ol Q r$ to c0 O N J 0 O O O O O O O O U 0 0 0 0 0 0 0 0 mm 0 o a N y O O y y y r Z U O O O O O O O O O O O O O O O O O t0 tD G G O O O l0 0 y 1p 0 0 y 0 N N 0 C N N 0 0 K U W > y OJ yy p W W tp OR m m N N h w q h OOON Q W U l%l y y m g W CO CO COtT V<< r � D 'i y N l7 N O N COI N 1p O Q O Ip Q OI Q O N 0 0 0 — N CI CV OI o o li O M o lV N N N z y O O N— Q N— r— m O WIT O N ! N CI v N tQ r U m y Q y a 1p n m 0 '. m N N N O O O O O O O m LL J y 2 m Q Z O O N C) Q y 1p r ea O O N �- CI Q N N N n W O N N N O O O O O O O 7 Q WO ai LL y ❑ I I a) C a7 c rn y a) 0 y C O U 0 LLL 0 Z, U O a) m m L Q � n y Z C U dY 11 y � ❑ U p 0 � U C y E o O N �O N al U � C . C o E m c IO n m W U u y + r a c 0 E c E m D 2 E Eo :c z E Q+ U cy N C U W U w N w N C O U LL C-5 0Uo J N o m u> C7 _0rn y U d N O t O N a > �3 d� LL LL ' O E Z o` � N Y WN ' a o c 2 O F U W Yp ' J ILL Q `o O .2 F U ' � v O p O O CF b L`I yp O N Si L r It U ' m z $ N Q FO sa0o m a N D U d 2 O = m H A d a C Z m E m D pC m v w r E NmN a_ N c c 00.2 N co aN C C m U m m d S C _ d c a c y N N K O: m m m m m�d`o � K111! D�K � o li � F U fF g m m omo���w a�adLL s N N Vf t0 N O C c0 N M V Iq t C O N< O C V N b O N k N g M Of O O Q O �- f O C > E .1 K m 0 w u�N 7 o q'I woo E N N mv o onmvi in c��oem o ommo mho moo N N N N N N N N N N N N N N N N N N N N N N N N N N m C m N d O N w A N O N N W b 0 h1 O O O m �� 1� N r r tC � 1 eN- N �G 1-1 Hq O ems- U m 0 ONE (O O) o of w m o dddd m00 m0 m0a o 0 0 0 0 0 o c o c o Q dm m m N (NCI T t7 oP') ONE N CNI N O M IN'1 N foO O . ON. i O O- O— 0 0.— N M N O CI Cl . O e> O N LL LL p r N J j low N 4 N v m N 000000 O LL v F rn O N M V im VJ I� N M < N O n N OI Of O N U Q R Q U U rn m C Q LL oUo 0 m � U'Nm e y U m c N w 0t U m 5 �a3 mm C N 0 T N r C G O O O n u n n UycF` m y z $ 0 zz� oao0 Y m ' @m 5 m m u C U a U m 2 a LL c Z m m v m O c S f/CC! LL m w a ryry � Y Um K V KU fL S° Z'2'Lii m m �°a � iUg m m 3 m eW fn �n rnn m m m q P U HUrN F E E W KR' K m 3 b m W W I� F¢ LL a o �mnnmmnm v,dm mmmml'?d'�mnd dmm14 '� ,� 10 Vl C m m m t7 N t7 O 16 ti m 1` VI N O N 6 tV t7 0 O f O ^ SU: Q n N N n N O m m W 0 i FF O1 C 3 0 g ` m N U .-. -n rm m m m dd NmmmmNdd I7 mnd dm m?tl �nnd m Ol d tG N l7 N t7 d d m IR N N O N l7 1G IV f7 F m n n o m In n m m m m m n N m N r r m N r m N n n o d m m M d O d d t7 CI t7 d d d d t7 1"1 t7 N t'1 t7 t�l d d t7 rl t7 t7 CI t7 CI t'1 N C m N m O N m n m O N N m m m r O O O m m m m n n d O O O Ol n m m m O n Im n I� m O N N t7 fV N uj Ip O O d N N h U ���mmm�mmmm�m�mmm gi �i,mm� v0i, a eo<ory� U 66 0 0 0 0 0 0 0 0yy 0 0 0 0 cy o 0 0 0 0 0 0 .000000 0 Q q m m N p Cl fm y OI 01 p N] m [ t7 m N { l7 N O CmI Hl N m O d O N 0 p Cm d O 0 0 0 0 0 N th N 0 0 m O m O N m LL LL 0 C Z 7 ry m O mm m N H N v m t4 n U V c �a .6 �Ndm t d mnmm� m !C'Iemmn NNN `m U1 O tAmNmN O O O O O O W W F rc 0 o+ o -� -• iv n 'd a g n m m - N �v N N 60 O O ON O O O LL G= } LL LL E O z o 7 y LL' � Y } n a t m a m m � c 0 ° N `o E s a N U O G c o Z N E m s d m c 41 rn y C L L 2 m m O C m C K U > m j C m C j E N U) (C CC yI 'r m m m m m c Y K _Y m U a E wEt6z a�aawazLL 0 ao 0 0 0 m w O o 0 o ° _ ° m N t0 n �d�og U S d O dd � N M m O O °j t0 t0 ' O _ rvc`im mCi m mmmnvO1i,� m wr n mm moNnve�i,m� m 0 0 w n ui r nIRq r n 0 0 �m m on n n r ItisAQ l� n w C n m O O m m m m � O N m 'R m 11 N N p- m N m N n O O d d m VI IA N m m m m m m n U O O O O O O O O O O O O O O O O O m m O S O m N N m m ill N N U 00 00000000 m 0 y T p Cl N T N N O (OV m m N O B O N Y Omi d O Q tm`! tml m t°iO O N N LL S �Q S K � d m N N N 000000 O LL r U O rc 0 p t7 d N m m r m Of O O N t7 d i0 m n m Of m N N N O O 00000 U O a LL Project Naame:4 f AAt �J4 Roj lM J ---"' V f AA4 ,-JS Project No.: /OyG —OI 2 "OdII Client: L�rc Subject: ��-✓M rl-( ��t 5 �r zJ-0,Ja..-I/ DateB/ I s 1 s ' e By: �s With: � --- — i— - _ _ I i � �Q� 5 tom_ �n 2� l l►�JAE-i E ._f3f� _� ►��� ..;_ __� _ I - I _ � - r ! I r � ' F , f T �- I - - I , �5 4 I ! (.lam_( ---I 1 Q,`l;� !.. -r N .I__.1__ 67 L_— TL I [ I I �f FRL— �l..l �.j i I T 1 1'a ..r� I. 1 R 41,' I q _I I14 .. I- T i --tl! I � I -.. I1 � s LQN I 1 nLE-- -IvNI._._1 i E _ram- Q lT I F vt ,._ _ t i �C• I o � _ � w I� I _ I -s i I-- a(,_._.-,-.1..�rc11_..Ll •---• I�_,Lo✓?.KM .i�. c� 4 — I I 7 ! I I l I i I- f I { iIUA �� I I _. l �.. I- `� _.�..� I I I I! I i ILA ! I _ r 1218 W. ASH, STE C • WINDSOR, COLORADO 80550 TEi.970.674.3300 • FAX.970.674.3303 C-(;� 3.1.6 Runoff Coefficients The runoff coefficients to be used with the Rational Method referred to in Section 3.2 "Analysis Methodology" can be determined based on zoning classifications if the character of the surface is unknown. However, the final drainage study must calculate a composite coefficient using Table 3-3. Table 3-2 lists the runoff.coefficients for the various types of zoning along with 'the zoning definitions. Table 3-3 lists coefficients for the different kinds of surfaces. Since the Land Development Guidance System for Fort Collins allows land development to occur which may vary the zoning requirements and produce runoff coefficients different from those specified in Table 3-2, the runoff coefficients should not be based solely on the zoning classifications. The runoff coefficient used for design should be based on the actual conditions of the proposed development. The Composite Runoff Coefficient shall be calculated, using the following formula: n C= E (CW)/At i=1 ...,_Where C = Composite Runoff Coefficient Ci= Runoff Coefficient for specific area AL Ai- Areas of surface with runoff coefficient of Ci n = Number of different surfaces to be considered At= Total area over which C is applicable; the sum of all Ai's is equal to At Table 3-2 RATIONAL METHOD MINOR STORM RUNOFF FOR ZONING CLASSIFICATIONS Description of Area or Zoning Coefficient Business: BP,BL..................................... 0.85 Business: BG,HB,C................................... 0.95 Industrial: IL,IP..................................... 0.85 Industrial: IG...................................... 0.95 Residential: RE,RLP................................. 0.45 Residential: RL,ML,RP ............................... 0..50 Residential: RLM,RMP................................ 0.60 Residential: RM,MM............................ ... 0.65 Residential: RH....................................... 0.70 Parks, Cemeteries .. 0.25 Playgrounds.... .................... ..... .. 0.35 RailroadYard Areas ................................ 0.40 UnimprovedAreas .................................... 0.20 R-E R-L Zoning Definitions Estate Residential District - a low density residential area primarily in outlying areas with a minimum lot area of 9,000 square feet. Low Density Residential District - low density residential areas located throughout the City with a minimum lot area of 6,000 square feet. R-M Medium Density Residential District - both low .and medium density residential areas with a minimum lot area of 6,000 square feet for one - family or two-family dwellings and 9,000 square feet for a. multiple family dwelling. R-H High Density Residential District - high density residential.areas with a minimum lot area of 6,000 square feet for one -family or two-family dwellings, 9,000 square feet for a multiple family dwelling, and 12,000 square feet for other specified uses. R-P Planned Residential District - designation of areas planned as a unit (PUD) to provide a variation in use and building placements with a minimum lot area of 6,000 square feet. . May 1984 Design Criteria Revised January 1997 3-3 L- ( 0 Table 3-3 RATIONAL METHOD RUNOFF COEFFICIENTS FOR COMPOSITE ANALYSIS p Character of Surface Runoff Coefficient t Streets, Parking Lots, Drives: Asphalt.. 0.95 Concrete ..................................... 0.95 Gravel0.50 ' .......... Roofs.. 0.95 .................................... Lawns, Sandy Soil: ' Flat <28.. 0.10 .............................. Average 2 to 7%.. ... 0.15 Steep>7%..................................... 0.20 ' Lawns: Heavy Soil: Flat <2%. 0.20 Average 2 to 78 .............................. 0.25 Steep>78..................................... 0.35 3.1."7 _._... Time of Concentration In order to use the Rainfall Intensity Duration Curve, the time of ' concentration must be known. The time of concentration, T,, represents the time for water to flow from the most remote part of the drainage basin under consideration to the design point under consideration. The time of ' concentration can be represented by the following equation. T. a to, + to Where: To = Time of Concentration, minutes to, = overland flow time, minutes • t,= travel time in the gutter, swale, or storm sewer, minutes ' The overland flow time, to,, ,can be determined either by the following equation or the "Overland Time of Flow ..Curves" from the Urban Storm Drainage Criteria Manual, included in this report (See Figure 3-2). ' 1.87(7.1-Crf')Dll2 Tav= Sl/3 ' Where: To,Overland F1ow.Time of Concentration, minutes S = Slope, 8 C = Rational Method Runoff Coefficient ' D = Length of Overland Flow, feet'(500' maximum) C= Frequency Adjustment Factor The travel time; tt, in the gutter, Swale, or storm sewer can be estimated with ' the' help of. Figure 3-3. 3.1.8 Adjustment for Infrequent Storms The preceding variables are based on the initial storm, that is, the two to ten year storms. For storms with higher intensities an adjustment of the runoff coefficient is required because of the lessening amount of infiltration, depression retention, and other losses. that have a proportionally smaller effect on storm runoff. These frequency adjustment factors are found in Table 3-4. May 1984 Design Criteria ' Revised January 1997 3-5 C- ' APPENDIX D ' HYDRAULIC COMPUTATIONS 4.2.3 Major Storms ' The determination of the allowable street flow due to the major storm shall be based on the following criteria: ' Theoretical capacity based on allowable depth and inundated area. • Reduced allowable flow due to velocity conditions. 4.2.3.1 Street Encroachment Table 4-2 sets forth the allowable street inundation for the major storm runoff. ' Table 4-2 MAMR STORM - STREET RUNOFF ENCROACHMENT Street Classification Maximum Encroachment ' Local(includes places, Residential dwellings, public, alleys, marginal commercial, and industrial buildings access 6 collector) shall not be inundated at the ground line unless buildings are flood ' proofed. The depth of water over the crown shall not exceed 6 inches. Arterial Major Arterial Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line unless buildings are flood proofed. Depth of water at the street crown shall not exceed 6 inches to- allow operation of emergency vehicles. The depth of water over the gutter flowline shall not exceed 18 inches. In some cases, the 18 inch depth over the gutter flowline is more restrictive than the 6 inch depth over the street crown. For these conditions, the most restrictive of the two criterial shall govern. Residential dwellings, public, commercial and industrial buildings shall not be inundated at the ground line unless buildings are flood proofed. The street flow shall not overtop the crown to allow operation of emergency vehicles. The depth of . water over the gutter flowline shall not exceed 18 inches. In some cases, the 18 inch depth over the gutter flowline is more restrictive than no overtopping of the crown. For these conditions, the most restrictive of the two criteria shall govern. ' May 1981 Revised January 1997 4-5 Design Criteria 4.2.2 Initial Storms The determination of the street runoff carrying capacity shall be based on the following procedure: • Compute the theoretical flow conditions for pavement encroachment. Apply a reduction factor to the theoretical flow rate to take into account • field conditions (See Section 4.2.2.3 "Allowable Gutter Flow"). 4.2.2.1 Street Encroachment The encroachment of gutter flow on the street for the initial storm runoff shall not exceed the specifications set forth in Table 4-1. A storm drainage system shall begin where the encroachment reaches the limits found in this table. Table 4-1 INITIAL STORM -- STREET RUNOFF ENCROACHMENT :.s+ Street classification Maximum Encroachment Local (includes places, alleys, marginal access) Collector No curb -topping. HFlow may spread to crown of street No curb -topping. HFlow spread must leave at least one lane width free of water Major Arterial No curb -topping. HFlow spread must leave at least one-half (1/2) of roadway width free of water in each direction jWhere no curbing exists, encroachment shall not extend over property lines. 4.2.2.2 Theoretical Capacity once the allowable pavement encroachment has been established, theoretical gutter capacity shall be computed using the following revised Manning's equation for flow in shallow triangular channels: Q=0.S6 s1 /2y813 n Where Q = Theoretical Gutter Capacity, cfs y Depth of Flow at Face of Gutter, feet n Roughness Coefficient S = Channel Slope, feet/feet Z Reciprocal of Cross Slope, feet/feet A nomograph based on the previous equation has been developed and is included in Figure 4-1. The graph is applicable for all gutter configurations. An "n" value of 0.016 shall be used for all calculations involving street runoff. 4.2.2.3 Allowable Gutter Flow t In order to calculate the actual flow rate allowable, the theoretical capacity shall be multiplied by a reduction factor. These factors are determined by the curve in Figure 4-2 entitled "Reduction Factors for Allowable Gutter Capacity". The allowable gutter flow calculated thusly is the value to be used in the drainage system calculations. May 1984 ' Revised January 1997 4-2 Design Criteria (�-Z. Worksheet for Future Harmony, 0.5%, Half Full Flow Flow Element: Irregular Section Friction Method: Manning Formula Salve For. Discharge Iriput:t]ataPp Channel Slope: 0.00500 ft/ft Water Surface Elevation: 0.66 It Current Roughness Weighted Meth( ImprovedLotters Open Channel Weighted Roughnes: ImprovedLotters Closed Channel Weighted Roughne Hortons Roughness Coefficient: 0.013 Discharge: 30.63 Elevation Range: 0.00 to 0.81 ft Flow Area: 10.08 Wetted Perimeter. 43.72 Top Width: 43.50 Normal. Depth: 0.66 Critical Depth: 0.68 Critical Slope: 0.00396 Velocity: 3.04 Velocity Head: 0.14 Specific Energy: 0.80 Froude Number. 1.11 Flow Type: Supercritical ft'/s ft' It It ft It ft/ft ft/s It It Worksheet for Future Harmony, 0.5%, Half Full Flow Cross Section for Future Harmony, 0.5%, Half Full Flow Flow Element: Irregular Section Friction Method: Manning Formula Solve For. Discharge SectionData9' Roughness Coefficient: 0.013 Channel Slope: 0.00500 Wit Normal Depth: 0.66 ft " Elevation Range: 0.00 to 0.81 ft Discharge: 30.63 W/s T 0.66 ft 1 �-- 43.50 ft —{ -5 Version 2.14b Released October 2006 Urban Drainage and Flood Control District Denver, Colorado This workbook aids in estimating gutter conveyance capacity and assists In sizing inlets. 1. To calculate the peak runoff flow from a catchment at the location of a proposed inlet. 2. To determine the maximum street gutter hydraulic capacity for both the minor and major events. nt rfi - -�p: The workbook consists of the following 4 worksheets: Use this sheet to determine the peak discharge at your proposed inlet location. The peak is based on rainfall characteristics (return period), imperviousness, overland/gutter lengths and slopes, and existing gutter flows from upstream design points (tarty -over flow). If the peak discharge is already known, enter it at the top of this sheet and the rest of the sheet may be Ignored. :t Q Alldw Use this sheet to determine the maximum allowable discharge for one side of the street at your proposed inlet location. This is based on the regulated maximum flow spread and gutter flowline depth, the street longitudinal and transverse slopes, the gutter section geometry, the street roughness, and any conveyance capacity behind the curb face (e.g. that area above the sidewalk). If a longitudinal slope of zero is entered on this sheet, the condition will "'.-'default to a sump, or sag location. If the maximum allowable discharge at this location is smaller than the peak ' 'discharge determined on the previous sheet, the proposed Inlet location should be moved upstream. .� x ,,:, re P P P P Use this sheet to select the inlet type and number of inlets best suited for your proposed location on a continuous grade, determining the intercepted flow and the bypassed (carry-over) flow. The carry-over flow will need to be applied to the next downstream inlet in addition to the local runoff determined for that inlet. Use this sheet to select the inlet type and number of inlets best suited for your proposed location in a sump, or sag location. The type and number of Inlets in a sump is based on the desired maximum flow depth and spread. There will be no bypassed (carry-over) flow from this inlet. Spreadsheet Development Team: Dr. James C.Y. Guo, P.E. Professor, Department of Civil Engineering, University of Colorado at Denver Ken A. MacKenzie, P.E. Urban Drainage and Flood Control District Wright Water Engineers, Inc. Denver, Colorado Direct all comments regarding this spreadsheet workbook to: UDFCD E-Mail Check for revised versions of this or any other workbook at: Downloads DP 1 10' CURB CUT ON-GRADE.xls, INTRO 517/2008, 9:21.AM p - LIP Design Flow = Gutter Flow + Carry-over Flow 0 OVERLAND I SIDE f OVERLAND FLOW y STREET FLOW <--GUTTER FLOW PLUS CARRY-OVER FLOW Q G UTTER FLOW, INLET INLET 1/2 OF STREET Design Flow. ONLY if already determined through other methods: Minor Storm , Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q 15,40. 1cfs * If you entered a value here, skip the rest of this shoot and proceed to sheet Q-Allow) Geographic Information: (Enter data in the blue cells): Subcatchment Area Percent Imperviousness - % NRCS Soil Type A, B. C. or D Site: (Check Box I c �7 Lengt )a Site is Urban Overland Flow . ...... . . Site Is Non -Urban: Gutter Flow Rainfall Information: Intensity l(inch1hr) = C, P, /(C2+TJ ^C3 Minor Storm Major Storm Design Storm Return Period, T,=": years Return Period One -Hour Precipitation, P, inches C. . . .. . . . . . ... . CZ Ca . . . . . . . . . . . . . . . . User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C, - L Bypass (Carry -Over) Flow from upstream Subcatchments, Q b 7�7 0A0 cis Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C NZA Calculated 5-yr. Runoff Coefficient, C5 :::1:'WA x. A Overland Flow Velocity, Vo = . . . . . . . . . . . . . . . . . fps Gutter Flow Velocity, VG = NJA; fps Overland Flow Time, to- :NtA in es Gutter Flow Time, to = minutes Calculated Time of Concentration, T. N/A A minutes Time of Concentration by Regional Formula, T, NtA minutes Recommended T� NIA ........... ......... ��N I minutes Time of Concentration Selected by User, T, A minutes Design Rainfall Intensity, I NIA inch/hr Calculated Local Peak Flow, QP 1A . . . cls Total Design Peak Flow, Q . . . . . . . . . . . . . . 16.40 cis DP 1 8'CURB CUT ON-GRACE.As, Q-Peak 817/2008,12:00 PM + ' Project: Inlet ID: TBACx TCROWN SACK T,TMAx B W Tx Street _ Crown HcuaB d ' S x a y 3 num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) iing's Roughness Behind Curb of Curb at Gutter Flow Line :e from Curb Face to Street Crown Depression Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) ' Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Towable Spread for Discharge outside the Gutter Section W (T - W) ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W A - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) [Flow aximum Flow Based On Allowable Water Spread Velocity Within the Gutter Section 'd Product: Flow Velocity Times Gutter Flowline Depth xetical Water Spread )mbcal Spread for Discharge outside the Gutter Section W (T - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) dretical Discharge outside the Gutter Section W. carded In Section TxTm at Discharge outside the Gutter Section W. (limited by distance TcaoWN) harge within the Gutter Section W (Od - Qx) harge Behind the Curb (e.g.. sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm , Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) dltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) TeAcx = fir 14.0 it SeAcx = 0.0200 ft. vert. / ft. hodz neAcx = 0.0350 Hcu=...._,. =. 1'6.00 inches TCROWN = 32'5 ft a = % 12.00 inches W =,2.00 ft Sx= W-0.0260 ft. vert./ft. honz So= " +'-0.0083 ft. vert./ft. horiz nsTREST = , 0.0160 T. d. Sw: y d Tx` Eo: Qx' Qw' QBAac ` QT' V V'd = TTN Tx TN' EC: QxrN = Qx= Qw= Qai,cx' Q= V= V'd = R= QdE d= dCRCWN = Ellen, cN..,., Eluln, Ql— "A'20:0 , " 3215 Elvin. QEnr.e ' 0693 0.1093 ,16.9 ,-V-,U1,4:4 Elinor Qf— Elei— Ql— �, t nches {=yes t/ft nches nches t :fs :is :is :fs as fs is B :is :is ps :fs iches fiches Minor Storm Ma or Storm lowable Gutter Capacity Based on Minimumlowable Gutter Capacity Based on Minimum ofO�or p� ,'? �'7:8 „.',,M;+ry36i7. cfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowable caoacity OK - areater than flow atven on sheet'Q-Peak' OP 1 8' CURB CUT ON-GRADE.xIs, O-Allow 8/7/2008, 12:00 PM Mr Street Section with Flow Depths 20 19 — 18 — 17 16 15 - 14 - 13 - x 12 11 10 -A-t A -1-A- A -1 -A JA - --A 7 - 6 -ET 5 - 4 - 3 2 - 1 V 0 - 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Section of 1/2 Street (distance in feet) —Ground elev. -Et-Minor d-max -A- major d-max --x- minor T-max X Major T-max Q= 0.56S513SJII 8/3 sn X I Q == Q.y ; Q., = Q - Q, EO = I 1+- SIP / S�,r 8/3 1 + sip / Sx I (7'IW)-Il DP 1 8'CURB CUT ON-GRADE.As,-0-Allow 817/2008,12:00 PM D_ 2 19 -- 18 17 1 15 1P Q 3 a =C12 O. a) 011 EL-10 i8 CL 0) 3:7 0 LL 2 0 ID 0 2 4 6 8 10 12 14 16 18 20 22 24 Q for 1/2 Street (cfs) --G- Flow Depth (in.) � Flow Spread (ft.) 0 for 1/2 Street (cfs) Flow De Flow Spread 0.25 T-i, ,2403 .55 0 -50 d IN2. 75 A!fIPE,242 .�Vf4126 7 9 :2 2 ZOO 54;09 ,',6.72 225 36 ;2.75 �4 591 1332 375 'aZV�74189 .5 425 '-�5.06 R:�-, 4.50 - 515 OM, "4 .75 Q�,,� fz5.22 0 ; 34 5.00 �,,A5!30 0'58 .5.2 -2 5 37 0.82 1 "5A4 41'0* .5 75 '1,1126 _-'A2 5 3-v --,,-5:64 66 &50 5 71 8 6.75 5 17 ;2,1 Z08L 5M t' ",.12:27, 5'. 8 8 2.46 7'r .50 �6.94 =I 264 775 N' , 6.00 2'82 05 '1100 &25 Srn6JI: t�IT22 13 17 A 8150 u f «6=1.6 ?t: 3133 8.75 -2V 113'50 .."gm �6:26 �J 3.66 9.25 3:8f L 9 �5 Q�Z,16.3 6 3� Z k -A ;9 e9J5 ��6A0j7kk�KK,1,'4.�12 -1 0. 00 ��6�45 1� 4:27, 0-2 5 6 ��jr, j49jr,�, 041: x10150 6 ;' 54, -4.5 6 0 5 4,1658 1 d Z 4iTO 1 00 1,R" "!i6:631,,";, -14184 1.25 667 -�r14.97_,. L' ' 1 1 • 11.75 65.1 k'* 'X21 5"24' x i E 12 �, Ou Ou ca,09 ��5:3T 1 Z 25 :�:`x7a6:z83 5.r49L 12,50 49M6:87^^. ri.$I 5: 6 2 DP 1 WCURB CUT ON-GRADE.xis, 0-Allow 8f7/2008, 12:00 PM �- 10 n INLET„ON-A CONTINUOUS':GRADE���� Project .<,x�;2 bi ,..g:-�;w. ``.�.9ARR�.. HHA M NY,,ROADIMP.ROVEMENTS'i"T�.'„"�f.,.�F...,...��:S. r- ^tY.'S 'E� 9 ,'.'.c Y sk x.'?a` S.. i �,. 5. 'M: , t -�, ,: � u .z�: h: ,3:.i s .'I15- .':AA" ".' F_.. w .w^..`ufi",.rs., k�,�`.� _a i � x.� �, ,.`��'.!�s sk:`a' > ..a9 Inlet ID � .�.4 ��r�-� � _ - ' s'"S'F b ,--Lo (C) ------- r H-Curb H-Vert Wo W WP Lo (G) in (input) MINOR Type of Inlet Local Depression (additional to continuous gutter depresslon'S from'O-AIIow) Total Number of Units in the Inlet (Grate or Curb Opening) Warning 3 Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from O-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Warning Street Hydraulics, WARNING: Q > ALLOWABLE Q FOR MINOR & MA Design Discharge for Half of Street (from Sheet O-Peak) Water Spread Width Water Depth at RovvIne (outside of local depression) Water Depth at Street Crown (or at T.) Ratio of Gutter Flow to Design Flow Discharge outside the Gutter Section W, cared in Section T. DisUarge vnthin the Gutter Section W Discharge Behind the Curb Face Street Rm Area Street Flow Velocity Water Depth for Design Condition Grate Analysis Calculated Total Length of Inlet Grate Opening Ratio of Grate Flow to Design Flow Under No -Clogging Condition Minimum Velocity Where Grate Spash-Over Begins Interception Rate of Frontal Flow Interception Rate of Side Flow Interception Capacity Under Clogging Condition Clogging Coefficient for Multiple -unit Grate Inlet Clogging Factor for Multiple -unit Grate Inlet Effective (unclogged) Length of Multiple -unit Grate Inlet Minimum Velocity Where Grate Spash-Over Begins Interception Rate of Frontal Flow Interception Rate of Side Flow Actual Interception Capacity Carry -Over Flow= %-O. (to be applied to curb opening or next d/s Inlet) Curb or Slotted Inlet Opening Analysis (Calculated Equivalent Slope S. (based on grate carryover) Required Length Lr to Have 100% Interception Under No -Clogging Condition Effective Length of Curb Opening or Slotted Inlet (minimum of L, Lr) Interception Capacity ing Factor for Multiple -unit Curb Opening or Slotted Inlet Ive (Unclogged) Lenglh I Interception Capacity -Over Flow = OgouA n-O. nay, Inlet Interception Capacity Inlet Carry -Over Flow (flow bypassing Inlet) ire Pernentane = 0.10_ _ Warning 3: CDOT Type R unit length should be a multiple of 5'. aldCAL No W. CrG d= dcnoWe = E' _ 0�= 0. _ OeAcx = A. _ V. _ MAJOR MAJOR E. FATe iS x^isF MINOR MAJOR R. v. MINOR MAJOR GrateCoef= ";'a �, c,;,j 2 7-z-",,s'.'E ps is 1A�t4,NIA cfs Ob= ttt3';'av"eN/A`.i;=i-x'�NIA cfs MINOR MAJOR S. `:i +fat ;0.08,18 ,F 0.0652 RM LT MINOR MAJOR ft �i-X",4'OS v"� i6:39 cis MINOR MAJOR CurbCoef :00. ;cox ?„T0.0 CurbClog �CZ1y+W,010 G iT :i010 L, O x ia'"3.73 bpi 5',83 cis R DP 1 8' CURB CUT ON-GRADE.xis, Inlet On Grade n-II 8f712008, 12:01 PM 20 19 18 17 m 16 L u , c 15 L d 14 O LL 13 a 12 U i F 11 eb F 0110 N 9 0 8 u m d 7 $ I m 6 1 m -© m 5 u j 4 0' 3 LIZ 2 ' 1 / d 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15' 16 17 18 19 20 Q for 112 Street(cfs) —4--c 1n respted lots) —0-0 Bypassed(ofs) --a-- Spced T (R), Limited by T-CROW N —o-- Spiced T(0), Not Limited by —1R— Flow Depth d(Inches) TLROWN DP 1 8' CURB CUT ON-GRADE.xIs, Inlet On Grade 8012008, 12:01 PM 0 for 112 Street 0 Intercepted Q Bypassed (cfs) Spread T (ft), Spread T (ft), Not Flow Depth d (cfs) (cfs) Limited Limited by (inches) by T-CROWN T-CROWN 0.00 C, Z �L.ek, 516 �R 6.66 0;00 -6.50 z 6. 66 15:52 .00 -..„,Coo-iiIVM.00 - �a4, -�"AAS 815 Yr--" -�4�42.54 1 50 :.IiI' ,,i 0 '66 .9.90 5!09 .2.001E� -,1190 -,,i�ir222 0:28 2 3 .4 5,;88 r-3.00 �;N(3.50 d 3.43 P : n3.50 1 ,�5ZQ V 2.75 P.v�,70.75 400 228 2 _T0.6172 24.50 5:85' _8 15�85 .9 5 39 .6,1 -�n 16.52 ii, tc Ix 5.50 157 ZA 4 -::'6 j, 75 �1772 42:59 7 27 --L7 k,1827- 17-70 Z9 7.50 `4 Y 22 -ft 3 2 8 1-1,j A-11- "I . ... . . .. ... 9 51 ^20 K :"JiTN�MN�8:30 9.00 t 4.66 Z�7q,4,3 5 0.6 3 5 d .4'78 ;72 Xv!�',�,V"21'05 8:57 '1 MOO• e•-5.09 4 �`121�. 5 5 -',8.69 -10.50 x'TM, 5:04 ',5.46 2JZ� 1:83 21. 3 8 -11 00 16 84 W%g s22 2:1 3, !.f.50 �'�,""A 22'57 iI, 17 E :12,00 W M92 4�9;15 - - -12.50 , f c-IM5.51. , t��23;26 916 .. ......... . -13.00 T, 562 ;38 J.36 ,13:50 .,V�, Q5-73 7 77 23.91 21 1 9 8 _2412 -t-2J24J2 56 450 -s 4 'an"8.56 ,,�,�rj724:53 6.05 24' .83 14203 "1" - 9._T 5 AS 9.35 � ;r"1 f"251311 ��9.75 r 2 2 5 4 1 9-93 -idzb il�MU5 25.70 I,:70 Y,',, ,�25 0.02 6 Ui10.56 97 '25r 17.50 0.96 6 .24 `FjI0 19 "-Z'6.63 j I3I' ' 7, 't' 't,,.-126.51, ,7; �26.61 N-x �612 A� -42617 `,Q�,?it _A9.00 21.03 1;�V 3 - - -------- Il 19.50 '6.90 2�12 7t�. if 27-.28 r, iij$JV�28 b j 0 61 a 6:99 51 2 7 5 3 - ;1�-Q�,T- � 27:53 �4-3l OP 1 8'CURB CUT ON-GRADE.xIs, Inlet On Grade 817/2008,12:01 PM Worksheet for 4' sw chase Flow Element: Rectangular Channel Friction Method: Manning Formula Solve For: Discharge input Oata k y _ _ # ; Roughness Coefficient: 0.013 Channel Slope: 0.02000 ft/ft Normal Depth: 0.50 ft Bottom Width: 4.00 ft Discharge: 1 17.55 C'�- y 5 g ft'/s Flow Area: 2.00 J� �� ft' Wetted Perimeter: 5.00� ft Top Width: 4.00 ` ft Critical Depth: 0.84 ft Critical Slope: 0.00417 ft/ft Velocity: 8.78 fus Velocity Head: 1.20 ft Specific Energy: 1.70 ft Froude Number: 2.19 Flow Type: Supercritical GVF.Inputbata `" " a�I'lit ME .. 41 Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 fGUF,�Outpu%,Data .. Upstream Depth: 0.00 ft Profile Description: N/A Profile Headloss: 0.00 ft Downstream Velocity: 0.00 fus Upstream Velocity: 0.00 ft/s Normal Depth: 0.50 ft Critical Depth: 0.84 ft Channel Slope: 0.02000 ft/ft Critical Slope: 0.00417 ft/ft Cross Section for 4' sw chase Flow Element: Rectangular Channel Friction Method: Manning Formula Solve For: Discharge eCt10❑ Data+.v ,u. Goa , Roughness Coefficient: 0.013 Channel Slope: 0.02000 ft/ft Normal Depth: 0.50 ft Bottom Width: 4.00 ft Discharge: 17.55 ft'/s .00 tt V: i L H: 1 I I Design Flow= Gutter Flow+ Carry-over Flow SIE lI I OVERLAND STREET I V OVFLOWND y ® F GUTTER FLOW PLUS CARRY—OVER FLOW 6--- ® E- GUT -TER FLOW INLET INLET I/2 OF STREET r— r— Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q Cfs *If you entered a value here. skin the rest of this sheet and Droceed to sheet O-Allowl - Site: (Check One Box Only) Site is Urban ,K Site Is Non -Urban Subcatchment Area 1777777777771 Acres Percent Imperviousness % NRCS Soil Type =........:..............: A, B, C, or D ,,,,;Slope R/R Len ft Overland Flaw Gutter Flow Rainfall Information: Intensity I (inchlhr) = Cr * P1 / ( Cz + Tc) ^ C3 ' Design Storm Return Period, Tr = Return Period One -Hour Precipitation, P, _ Cr= 8.3 Cz = (C = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Qp = ' Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, tc = Calculated Time of Concentration, T. _ Time of Concentration by Regional Formula, T. _ Recommended T. _ Time of Concentration Selected by User, T, _ ' Design Rainfall Intensity, I = Calculated Local Peak Flow, Qo Total Design Peak Flow, Q ='i t ' DP 3.xls, Q-Peak 8/7/2008, 12:15 PM ' Project: Inlet ID: 1 1 1 'I TRACK TCROWN BACK T. TNAx W Tx Street C row n y Qw QA —� HcuRe d ' S y a 53 mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) Ting's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Craven (leave blank for no) ' Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W IT - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) ' M" um Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section 'd Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W IT - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W, carried in Section Tx TH ial Discharge outside the Gutter Section W, (limited by distance TcaowN) :harge within the Gutter Section W (Qd - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ie-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm : Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) Tw«= 0.0 ft SBA« _ .6.0200 ft. vert. / ft: h odz naACK = '0 0300 HcuRe= 6,00 inches TCROwN = 32i5 ft a= 200 inches W = 2.00 ft Sx = ft. van. / ft. hodz So=:::,:::::0.0083 ft. van. /ft. horiz nsmEEr= t. `'0.0160 T,,, d.: Sw = y= d= Tx Eo Qx = Qw= QBA« _ QTe V= V•d = TTN = Tx TH = Eo = QX TH = Ox = Qw = QBACK = Q= V= V'd = R= Qd= d= dCRCWN - Minor Storm Major Storm 32.51 6.001 ,8.30. LEN! Minor Storm Major Storm n tf301003'�`,T'y,01093 x 10:74 a x'"(,30.5 30.5 �66 1 .4 Minor Storm Maior Storm 0.8 a s a'',16 2 iz „"0.464 '„';;ssf0.294 r a' 2 � t; 416t7 �7!:All k 46! :74bl0 Am 23:6 ft inches x=yes Wit inches inches ft cis cis cis cfs fps cis cis cis cis cfs fps cfs inches inches Minor Storm Ma or Storm towable Gutter Capacity Based on Minimum of Q. or Q. Q.K. 3:6 c f s STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowable capacity OK - areater than flow given on sheet'Q-Peak' DP 3.xls, Q-Allow 8/7/2008, 122::1166 PM Street Section with Flow Depths 20 19 18 17 16 15 14 y 13 a L cf 12 c_ .c it L a 10 d 9 � 8 2 7 6 — -O- --C�- -- - — —[J- ---- - -- —. 5 4 00000 3 2 1 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Section of 112 Street (distance in feet) —Ground elev. -B Minor d-max -A-Major d-max --x- Minor T-max * Major T-max 0.56 5/3 1/2 8/3 1 Q.. = n S.r SL TV Eo = Sir 1 S 1 C 8/3 Q — 1 QE Q, — 0 — Q., 1 + sl" / SY _ 1 (T/big)-1] DP 3.xls, Q-Allow (-18 8/7/2008, 12:16 PM 20 19 18 17 16 15 U13 C V2 CIL 4) 0 [L-10 m (D O. 7 0 LL 2 0 dF- 0 2 4 6 8 10 12 14 16 18 20 22 24 Q for 1/2 Street (cfs) -0-- Flow Depth (in.) a Flow Spread (ft.) Q for 1/2 Street (cfs) RoW Depth (in.) Flow Spread (ft.) 0.00 - 0 5 A!55 0.50 &0 ,,Z64 C402L'U MO, 2: 2 233 1.25 -7,'�,,M3�5ZJEA�d .03 M 6' 10 .5 &7fl7 6.0 .75 FM 2.25 ,4 i23 7 k:,--,:2,50 �iriD NAM �SIMWYT58 2 7 � 5 rf 4i48 A. 6 3.00 2 '3.25 Rr'`�,T 0 I,,TT,8.65 MO O� .75 127; 9;83 M 15 0 09 4575 �522 r,-�-A10:34 5.00 M�2i,,1,15:30 0�58 525 Mm;,!: 37, A,",*'10.82 M AU6 A. 'U0 '1558 -1-V .4 ,8 M;:Il .68 6.50 635 Pz�' 5�77H,�-,-M;08 .00 rl�,O 5 83 �, MIXI 2 i 2 7, 5 .88 W31 2.46 7.50 N ,IK5.94 "A Z 64, 75 EV76l00 2.82 800 M,:,°'160 ' 5 : > A 3.00 8.25 IQPA' X,` 8. 0 "r- 616 A 3:3 3 -5 �1 A&2 . ",43.50 925 ; `UT 3.82 950 6 36 �,20 3:9 7 9 75 :.10;00 ZPA16.r45 _. vl.:.10_25 :, '6�50 Z' Z'N'14 '42 -10.50 )Kk 6t54 ;B��1-467, 1175 j, V� ItOO n ��,6'6.63 'W-,,�04:85 1,1 25. 11.50 q,,„16!72 n,, 5.13. -11'75 6A U, 1 .0 2 0 'WP,'t6:80 A 2.25 k,4-o6:84 5-.52 A-1:42.50 F, "�115:65 DP 3.xls, Q-Allow 8/7/2008,12:16 PM ' I Design Flow= Gutter Flow+ Carry-over Flow lI II OVERLAND `Y STREEET $ OVERLAND y ' ® F GUTTER FLOW PLUS CARRY—OVER FLOW F ® F- GUTTER FLOW INLET INLET — 1/2 OF STREET (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): If you entered a value here. skin the rest of this sheet and aroceed to she (Enter data in the blue cells): Site: (Check One Box Onl ) Site is Urban Site Is Non -Urban. Mnor Stonn Ma'or Storm 'Q s 3 f0 $:cfs Subcatchment Area Acres Percent Imperviousness % NRCS Soil Type .:I ................ A, B. C, or D Slo a ft/ftLen ft Overland Flow Gutter Flow rtamtau mtormauon: Intensity I (mcrvhr) = U, - F1 / ( Uz + IC ) ^ U3 Design Storm Return Period, T, _ Return Period One -Hour Precipitation, Pr = C,= 4.68 Cz = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS = Bypass (Carry -Over) Flow from upstream Subcatchments, Qy = Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, Tc Time of Concentration by Regional Formula, T. Recommended T. Time of Concentration Selected by User, Tc Design Rainfall Intensity, I Calculated Local Peak Flow, Q, Total Design Peak Flow, Q OF 3 (Westbury).xls, Q-Peak 8/7/2008, 12:11 PM ' Project: Inlet ID: 1 'I TaACK TCROWN SaA�� T. TMAx K W �— Tx street Crown HCURe d y S A a y� mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) '• Gutter Cross Slope (Eq. t Water Depth without Gutterer Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W IT - W) ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) ' Maximum Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section d Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread - oredcal Spread for Discharge outside the Gutter Section W (T - W) :er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W, carried in Section Tx TN fat Discharge outside the Gutter Section W, (limited by distance TcRo") ;harge within the Gutter Section W (Qe - Qx) ;harge Behind the Curb (e.g., sidewalk, driveways, &lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ie-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) TaACK = .` 19;9 ft SanCK = 0.0200 ft. vert./ ft. horiz noNCK = Tr 0.0300 HcuRe= ___....._'-4,68 inches TGy _ ," U ft a = 7. nl.32 inches W= .._".. 117ft Sx= 0.0200 ft. vert./ft. horiz So- ..7n:''_0:0100 ft. vert. I ft. horiz naTREEi = +w,.0.0160 T. dmm Sw: y' d= TK Eo: Ox: OW. QaACK = QT' V V'd = TTN Tx TR' Eo: QxrN' Qx' OW: QBAM O= V= V'd = R= Qa' d= dcROWN \Aron-Cl -m RA.;— O,- -; 468 -" 11:00 Minor Sfnrm Meinr Sfnrm 1140 A 0 1140 s5020'1 =9:6 x 9.6 ,cA :09 �''� STN"'6 a Minor Sfnrm Main, Sfnrm 14.0 +' ...40.3 axta. I: z4z7. d� ww191t2 7,0.8 ,;.w RTC68 A,%,0M7'00 kN A..00 1 nches S =yes t/ft riches riches t :is ;is is fs ]s :is :fs :is :is :fs Ps fs fiches fiches Minor Storm m Towable Gutter Capacity Based an Minimum of QT or Q, Q,ib. _ '" `'„c",i63 ;Majoror St".„j., °t�„�956 cis STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowabla canacity OK - Creator than now Civen on shoot'O-Peak' DP 3 (Westbury).xls, Q-Allow U7/2008, 12:11 PM Street Section with Flow Depths 20 19 18 17 16 15 14 y 13 m t u 12 c_ 5 11 -Il _ -A -A- # .. A.__.. _._A _...A A..... A-k A, A . A.....�.-. � .._ ...__.. t ra 10 d O 9 t m 8 _ 7 6 5 4 3 2 1 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 . 16.0 18.0 20.0 Section of 1/2 Street (distance in feet) —Ground elev. -E}- Minor d-max -A-- Major d-max -X- Minor T-max X . Major T-max I(ll (/�/ 0.56 513 1/2 8/3 1 /�1 �1 y Q- QE, . Qir -Q -Q.s 1+ sill�`Sr 3/3 1 -1 (T/W)-1l ' DP 3 (Westbury).xls, Q-Allow 8/7/2008, 12:11 PM 2 19 18 - 17 - - - 3EB- 16 - - 1 1-44 U13 2 CL W 0 U.10 '0 m CD OL. cn 37 0 -SD 3 2 0 0 2 4 6 a 10 12 14 16 18 20 22 24 Q for 1/2 Street (cfs) -G- Flow Depth (in.) --9- Flow Spread (ft.) Q for 1/2 Street (cfs) Flow Depth (in.) Flow Spread (ft.) =�NT:-:W.00 "0- .0.00 3, 025 ?46 675 �rw ­-2164 _G 1.25 %&VR3.6t, �1.50 �iWT-FV 6 nW66 �1.75 -,FgPY3:29 AM 2.00 A 3.4 1 -�812 2;25 Uet�', 352 19_1 9 2.50 t slmn '.2.75 3.00 i�,M'13'80 3.50 -viu 3.75 Vv�A-04 1,,,Z, A.00 .12 1 1t66 4:25 4A 9 11'. 95 00 +r `25 4-1 :1,12.23 4.75 4� .32 2!50,1 E,5.00 TM �N�38 2.76 525 "M'T3 "4`44 V 325 &.-5575 I';!;7,M4!56 -13.49, 6.00 t 172 6.25 Of 3-95. -650 •: 6:75 Ste. -47,7 .4,& 38 ITOO 4782 14:58 "L:: T25 0P),14179 �7.50 M 4599. .--,_,-7.75 �4. '96 15'18 0 35:37- 1 25 L8. 8:50 15,73 5:14 °,I 519 1: 9.00 5.1 2 16.09 77. '-915 �'.,-*,�I^,5i22 it "%26 9150 9.75 :xN',1,4r5.30 "-R--0�16!59 0.00 'n&34 6:75 U5 - 1 -s-P,"5:38 ��7 z �",I 6'9W 1 M -10M, iP�-Z�11;22 100 1,5.49 O:;1737,, ., l 1.25 7M -1 .50 -�,5.56 L 7.66 Al .75 7!.5.59 1115:63 +ME:il 7.95, 12 25 in mi . �ZL2P5:66 NG fMOO, �.l : - . 250 Z4 'M69 , M 7�M 8.W. 9,� Em DIP 3 (Westbury).xls. Q-Allow 8f7/2008,12:11 PM ' Design Flow= Gutter Flow+ Carry-over Flow OVERLAND SIDE y0 ND `Y � STREET FLOW ' ® F GUTTER FLOW PLUS CARRY—OVER FLOW F ® F GUTTER FLOW INLET INLET 1/2 OF STREET (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T. _ Time of Concentration by Regional Formula, T. _ Recommended T. _ Time of Concentration Selected by User, T, _ Design Rainfall Intensity, I = Calculated Local Peak Flow, Q. = Total Design Peak Flow, Q = DP 5 SUMP.;ds, Q-Peak 10/2212008, 5:53 PM ' Project: Inlet ID: Te.cll TcROWN ' SBACK T. TM A W � T TX ir Street _ Crown Hcuee d y S x a 5f Maximum Allowable Width for Spread Behind Curb ' Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb Height of Curb at Gutter Flow Line ' Distance from Curb Face to Street Crown . Gutter Depression Gutter Width Street Transverse Slope 'Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section Max. Allowable Water Spread for Minor & Major Storm ' Mex. Allowable Depth at Gutter Flow Line for Minor & Major Storm low Flow Depth at Street Crown (leave blank for no) ' Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, 8 lawns) ' Maximum Flow Based On Allowable Water Spread Flow Velocity Within th iie Gutter Section 'd Product: Flow Velocity Times Gutter Flowline Depth ore8cal Water Spread ore8cal Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) ore8cal Discharge outside the Gutter Section W, carried in Section Tx TH hal Discharge outside the Gutter Section W, (limited by distance TCRowN) harge within the Gutter Section W (Qd - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm i Velocity Within the Gutter Section Product. Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) T clA SW. y' d TX' Eo QX' QW' QBACx' QT' V V'd TTH TITH Eo QXTH' Qx' QW' ABACK Q V V'd : R: Qd' d dCRCWN Minnr Srnrm Mainr Srnrm - - 268 •.W0 _ 6.00 6.00 Minor Crnrm Mainr crn— n, `' 0 0903 , 0.0903 .01 LIMP AM— Clnrm Mainr Clnrm Y.� I.�.476 asr+0152 7ri0:152 o- 0.0 MR:.Ao;0 Mi:: O:g sstr 0-.0 era av3x.'0.0 0.0 a�SUMP a 4�zSUMP, "= SUMP, ,`•?6"�.' SUMP„ lxt �w 4 ft inches X =yes lift inches inches it cfs :fs cfs cfs Ips t t ;fs :fs :fs ;is ;fs ps :fs II nches Tches Minor Storm Major Storm towable Gutter Capacity Based on Minimum of Q. or Q. Q,o,,, _ `3SUMP. "i' ,SUMP, cfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' DP 5 SUMP.xIs, Q-Allow 10/22/2008, 5:53 PM Street Section with Flow Depths 20 19 18 17 16 15 14 y 13 d r c 12 c 11 r a 10 d 9 r '-y 6 _ 7 6- 5 4 3 2 1 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Section of 1/2 Street (distance in feet) —Ground elev. fl- Minor d-max Major d-max --X-MinorT-max x Major T-max Q.r = 0.56 ST/3SL/ITV8/3 n Q=1Qx ; QIP=Q—Q.r 0 _ 1 Eo 5,,, Y 1 + / S.s/3 1+ Sir /Sc —1 (Tlfv)-1 DP 5 SUMP.xIs, Q-Allow 10/22/2008, 5:53 PM � - )- L? Project Inlet ID of Inlet i1 Depression (additional to continuous gutter depresslon'a from 'O-Allow) bar of Unit Inlets (Grate or Curb Opening) e Information Ith of a Unit Grate h of a Unit Grate Opening Ratio for a Grate (typical values 0.15-0.90) ging Factor for a Single Grate (typical value 0.50 -0,70) e Weir Coefficient (typical value 3.00) Orifice Coefficient (typical value 0.67) i Opening Information th of a Unit Curb Opening ht of Vertical Curb Opening in Inches ht of Curb Orifice Throat in Inches e of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feet) ging Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficlent (typical value 2.30-3.00) ging Coefficient for Multiple Units ging Factor for Multiple Units e as a Weir Depth at Local Depression without Clogging (0 cfs grate, 6.8 cfs curb) Row Used for Combination Inlets Only Depth at Local Depresclon with Clogging (0 cfs grate, 5.8 cfs curb) Row Used for Combination Inlets Only e as an Orifice - Depth at Local Depression without Clogging (0 cfs grate, 5.8 ds curb) Depth at Local Depression with Clogging (0 cfs grate, 5.8 cfs curb) dting Gutter Flow Depth Outside of Local Depression iltina Gutter Flow Oeoth for Curb Ocenina Inlet Capacity in a Sumo ging Coefficient for Multiple Units ging Factor for Multiple Units as a Weir, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 5.8 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 6.8 cfs curb) as an Orifice, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 5.8 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 6.8 cfs curb) ilting Gutter Flow Depth Outside of Local Depression pant Street Conditions Inlet Length Inlet Interception Capacity (Design Discharge from 0-Peak) Itant Gutter Flow Depth (based on sheet Q-Allow geometry) Itant Street Flow Spread (based on sheet Q-Allow geometry) Itant Flow Depth at Street Crown MINOR MAJOR Type = a«e= W,= Amp C. (G) _ COQ7Type R Ctmt1?;%{ICning.;:,_:: .. ... inches feet feet _.. .-;i800 .... A . .. .......:>i....;30.0. MINOR MAJOR ::,N,l/A .......:.::... (.N/A................. �N?A .::.: ...................NfA - .:... :::.: ........:.:..:...:.: NlkIN A Hw.e= '!.S $6-: Inches Theta = ::S3d 43:+t degree Wp= feet .> .... C.(C)= .... MINOR MAJOR Coef=...`,i?JfA ...................:..:......................... ................................................ Clog = : E"i'<::: 3 :§?ESVA :'::�:>i:::`:E<:>i d.,= ......::.....:<::. NTA ...:..:.:.:��_...:NJA Inches d=,e,,,= N/k t%li inches d.. _ .. ...... N/A .. NfA. inches dN,p.a= ::�i.1+IlA "�:.�..:;t{(ik, Inches dos _ MINOR MAJOR Coef= ;-i 3i 1:3 Clog= . ....,,I;.ti J34 ..:...:....;7.....4d04 ;: .. MINOR MAJOR d„i Inches Inches MINOR MAJOR d = i•391 4i28 Inches d„=2,9d :,::>.,_Aj)3. Inches L Q. d T MAJOR DP 5 SUMP.As, Inlet In Sump ,J_ 10/22/2008, 5:53 PM MMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMOM MMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMM MMMOMMMMOOMMOMMOM MMMMMMMMMMMMMMMMMM MMMMM MMMMMMMMMMMM MMMMMNMMMMMMMM MMMMMMMMOMMMMM MMMMMrMMMMMw•-MM ■MMMM MMwMEN11 MMMMMMMMMMMMM in MMMMMMMMMMMMM J OP 5 SUMPAs, Inlet In Sump • 3^-1-6 10/2212008, 5:53 PM Q Intercepted Curb Weir nFlow Curb Orif, FiFlow Not Used Not Used Reported Design Reported (cfs) Depth (in.) Depth (in.) I FiFlow Depth (in.) DesignFiFlow Spread (ft.) . . .... %..... .. . � .1 �... ,....,......., ...... .....­­_ ,..........................,.............�: . ................ � ............ ................ � ............ _...._ ..... dol...­­ ; I—- 1. ' . .­A� .. ... ... %_ � � ­...............6 . � � .1 .a . . . , ....... ' w 0:'.6 ,1 4 O6 0�.' 1..6 ++"..-. +.,4-,..+..-. ­....- w...._... .. 160-I .6..". H.6M, � ,. .'. 6_ : .dd ::.. . . . .0...6. ....-:. 1+ +4. ....._ - 1.4:,­ . ....4,+.4..6.......'a- �d ­'+.4+, + _'. +.+"'' 0,00d '._._'.'_"d+'_'._'_.. ._:...­- +..,,]+,�++:�:+. ,- ::: :..: :+ abo :��W+, 'X, +.­ :. ,.15� ..0 .." -.6.6:,.........�"'..+ ...... ......-. .:., .0,- ...'�+,.1.".,%.:.:.:.. '....­00 . -: A. . ._ 6. ':..:.:1+... I...I GV+.. . .6 _06I. -.".6. I. .......a... ....M ..:: ._...�..".....a.:.'. ,: ": 66 D -* �. :+ A.w ++++ ::": +0 6"66 �1+-:._ .. ....6 :. .."..­. .­ 1 ­�.-, 016,':Id-.b. -1-1- .... - 6,:J00*+ , : A627+. : +,.0.06-I .' .1 . ... .... :; : :::i��::�i:i� .7 �..,l"I7+ r. -aj 60 + 67,. o�j �:: �6t . aIA4,6 4. g0G,a � �,dr:+ 6...6. . : a._. .. fx..... ..X"­,':. 1 Z66 .+ 6­IA6-.., �,Irr _+..j6do­­ r '­ 1A : .6 , :­: ; a .­+.OAa+--::++, :­.­++ - ''r .,r . .a.._..- . ­�-I +. .......­_ .......... .,n 4+ -a.........-r....-, 6__4.8A_.I_ . .�'+I*. ,,� : ����-- �.+.���..+++ -1-r+rIr --r .... 165,.,r,..­ .-...I 6...�. 1-.. .1..I.,..,��611.11.6.1., r..a ,'", ,,.�'..6....6-16-1.... 23,.1I �-1. ;,.`j.i6._. ,,..: ;izooMa-rj 084. I . I 131 r I1.:6r t3J0 j"fs J,46 3166. :171+.,..' 1.- .+:*.......-.. 14W.�­`­3I7 .. 27 -W� 376+ .,MA+0 .1 +isw4A . ,.,i�6i 4_0, r .25.Mr- ­ 1A _'­444. r­jRO­ :: : : r.+r:+. :-..4L41 2869 .. j.j.. 11,do+ 4-j� 2;O3 :+ j r .b6 11 + :2 . ..,�. .� . 1 M+ 5I0 1:r j 501 U j.- i#'w 5.33 162 5i31-1-1- : -33oo+. . ::"a2006 5A .. :.2* "d .­ a � . 3300. ... .�1.... 1..I.. 2700a € ,­.,,,$6.-+ .I 1'120 r1 S$$ 31. + 4++: , , � 360 6416 31.,. .. rr 9r6..F S.A3: 400 + r. 0,43 ,r413bO ..j 6d+I 330 .....: 2400 Mal 44q d 01I 53Ob ,*26j. 6,4 ; 4'79 &.....�.:6 oot v ;3"_+ � 26'OG: .241 '�d $.21 6 fz4 I, in,w ,...I.. 27M ++ I OQ' ,564.< ­4: +6+ j j .6. r: .-.,:. � 4r. .._��...j 3800 IJot 609 73e .,3300 r 00. -6�dl: #,55 ­.:.j.­I +. .+ : + : .a1­ . ,a,Ql ' nM'jI.`+ -...6...F I.. :.­ 3000. P6i. . 7 5 .r.r. r r ..j .... . j . . ..6.6. . . 6j + 6 .j .j.j .j.. ..6 . ..6 A-26 , 7Tm ++-- . r. . . .jF .... . 31.00 8151 , .. a:.:,. 55 : &51 . a " 33.d6­ &. �.%4. 32j00 8.76 5jo6 .. 0.76 ... . wrW:.: .. + ,00-1. ..... 0,0 d SM : ' jr g A .++,..r . . 33.00 . ... , . - _.. " . . :. 6 + + + . :34M d . ,r . � I 1, . . . + . � . � . . . . . . d � I + + . + : 0 - a & a + . + : :. + , + b .4 . - : �+ .: - .: . a:. . I.r , 2 , I b . . . . . � . . I r . . . - . : gt ...' � . .1 q.+� ++F. 4 r 11 5, :�F:::: +:::, : :: ��* jb..­....... . ­.6. ­­ ... a......,r ....b d.. . d +_::, ,.Fj: r.+: ":::,.+,::! &:::. :j:::_+-.:16::::: . � ... I .­ ... a . . . . . . I d . . . . r . d:. . :.:4:'6.:1 ; Irr; -. ; : ; �: . : � � . , j � :d : :' . 6 . a . j . . . . . _.' ­.. .... .4.... �..��..�.....6..,a....�..,J,...,r........ ...., - d:- rr . . . . . . d + 4 ..d : I . . +. j - . - . .. . . 6 . .... . - a . I � � ,' .j . d . . . � � 1+ , b , . 4 ... . . . . . . . a . .. .a . . .... a.x.ara: 0,2 - r � . � . . .. +.F. +...'.�q�+ I + F d b : . & a . . . . � . a . : a . . a - ..: . , +. .Ooj+,. � .+ :'. , . _ ­ w0q + mya+, . r +1UW, + ..Ww F .6 ... ... 6 r 6 - .. . . w; . :� �� :3 0, ..�..6+. ..... �. �. . jT.. 4 a q � . j + .' �6 a.--j- 6 r ... I :: : �. , . & .. r ­._ . -:.%b. r . F ': :d: :9 A . '.. .+ F: IF I .5 d +d::F . 4 , q + I +1 ... 6b ­­­r : I ... d ,.::.:: q F .6.... ... _.& A : :.: :,.::, : :.: j:':r:q+r . ... . M. .,4.4+.j,�+6..+.r.j.:,.­. ­46. . d I . . � b , . ...... - - ..... 6 ­__. .:.:r Y.:.:d:.!.:4:b:.:.!':.: ... 4:.��r!b;' F:.:+:r ::::. r ­ 1. �.:� r ­­ ­ . F .;+:F . ,r,,;.;,;,;­ .;+ . : � j :: a :�'::::::6:::::: : ::: : ;:+, :::.:::: ..:,.: .r: &. d:F +: r ,+rF'dl+6b':"b :�j 0 ,$ + b,..:.' d.1., .. rd : . 9 ; � : j. r: b .+r 4 + ': ,:;:::::'.+F :::,+: 44 4 1 rr .F;';.;6 64 +'n . ... - YF r:':::::: : DD - 77W777 �. I , .: . +: - , :: : .q , � � j ­.­ 6.. _.. 1 0,61 9, � ��&�+661 jj 6 . j . j- 66Fj4 � ,a. �'++.��6+ :d 4 : ., 7�17%7�7. �+ flt:�:�i54 ��� 1! r,d:.: + . . ... - .... - ::X::::::!:::, +" 4. ++. & 6 . + . r r r - . r ,;r .4+ r '. r ,+, - Ilf' +++ *1 11 * + r:: ­14 :;;;4 + _�11_ , . :j: : - F r...4 ­ _ 6�16d++7 � I d r. . . r. .db.d+.Fdd . ....... � d : :+::�.+.. ;jl�jl;�6i�+j6+��:�+.'��j ��� I F 4+ ,+ j � Ir F dd ...... : � r: + �; 00 ,- � : 1:34; 4:: +: ::, :;: - . ......... I ' + - .q , .+,r:..,...+,.&.ai�.�.:..+6,+, .- r%...3042..,.+a... , ­6 - + b ... 2'Fqljl . Ij ­­r­%1. . , ..',...'+.­+.: 1 4 .... 1 - - 'a .+ -a...a. % .. . - - . j .... � � "::.:� I l� , , 7 . , ... I .... l4 , + .... j '61.. - & .. ... � .... � . 1 . 'tl i + +. .+ r .+F - _+ - - ... il_ + + - + + .++ iill I r..r. Vb .'. 4� i � I ,4. . 1:� + '. :+ '6 , . . i 4: ; :: d :+: -."a +.:;: :; 6 Ij : . ... � . � .d .a. .12 .. - _. - jj jj,.+, . . ,.+ : - + -x , .. a .- ,. r : : . ;3300 . .++ - 00. '_..­­ H�ft*71.0_ I -..... :, 6 6 66 . . %.1 d + , ,..j ..,,_ 5,:::j+,. : . aq . . r . - I r r r ............ . - -AZ79a�.+ �.-.�.-.+.;: ............... ; - ­ . -6 - : 1. :. , . , � � -'. X'�+ - b. . . � . . & .+. :+..: 1+ : ..: j'a'.. a ,..j&6.j 4 .6 a -a ...... ....r .­.. ­6­.' ... . .. ­­ .... .... - b - . . . v X.. _.. , - .:d ,� ,.:6. ..: ++. ++: : + � - W.- 6.. � r 6 .._..4...Sa.+ j& .... � ... - 4:4 .. � X : .� � ... 6 - : ::: � . - � ...... _. A 2 70: 1 .. . � d r: r q.. � ..-.-..& j ... ..­ ++ +W * - - �. . . . . .1 .4 - +*r . .r. - .1 - ..... - ... Do 5 SUMPAs, Inlet In Sump �__)_q 10/22(2008, 5:53 PM ' Design Flow= Gutter Flow+ Carry-over Flow �t•7CC / _ �� �� OVERLAND l ND�j FLOW STREET I STREET YOVFLOW ' ® *—GUTTER FLOW PLUS CARRY-OVER FLOW r ® F— GUTTER FLOW INLET INLET ' 1/2 OF STREET Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus Bow bypassing upstream subcatchments): 'Q ;8 50i5�ZE1'. cfs ' ' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow) Geographic Information: (Enter data in the blue cells): Subcatchment Area Acres Percentimperviousness ' NRCSSoil Type JA, B, C, or D Site: (Check One Box Only) Slope (ftft) Length ft Site is Urban Overland Flow Site Is Non -Urban. Gutter Flow Rainfall Information: IntensityI (inclVhr) = C, • Pr / (C2 + T,) A C3 - Minor Storm Major Storm Design Storm Return Period, Tr years ' Return Period One -Hour Precipitation, P�: inches C, Ca User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = ............. ..... Bypass (Carry -Over) Flow from upstream Subcatchments, Qe :[' Qfl0 O,pO. cis ' Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C NIA NIA; Calculated 5-yr. Runoff Coefficient, CS ': NFA .........::...... NCA Overland Flow Velocity, Vo N!A N/A fps ' Gutter Flow Velocity, Vo i f+I7A fps Overland Flow Time, to = ;:_ _;:;,?:;;? N!R ;;: _i;i;?!:;::!!13!tA minutes Gutter Flow Time, to .;;,N[A...::�'. ,:NtR minutes Calculated Time of Concentration, T. :NIA NJA minutes ' Time of Concentration by Regional Formula, T. :': NTA NTA minutes Recommended T. ?.; NUl NIA: minutes Time of Concentration Selected by User, T� NIBS minutes Design Rainfall Intensity, I = - NIR Nr(A inch1hr ' Calculated Local Peak Flow, Qo = -; NIA NJa cis Total Design Peak Flow, Q = :. <! 0 50 .? .15:20.! is ' DP 8 ON-GRADE.xIs, Q-Peak 8/7/2008, 12:49 PM ' Project: Inlet ID: 'I TBACK TCROWN SaAcK T. TM�x W � Tx Street _ Crown H cu Re d S x a y; mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) zing's Roughness Behind Curb of Curb at Gutter Flow Line ^.e from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition tg's Roughness for Street Section Allowable Water Spread for Minor & Major Storm , Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) Gutter Cross Slope (Eq. ST-8) Sw : ' Water Depth without Gutter Depression (Eq. ST-2) y Water Depth with a Gutter Depression d Allowable Spread for Discharge outside the Gutter Section W IT - W) Tx: Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Ec = ' Discharge outside the Gutter Section W, carried in Section Tx % Discharge within the Gutter Section W (QT - DO Qw = Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) _ Qe�cx = Maximum Flow Based On Allowable Water Spread Or= ' Flow Velocity Within the Gutter Section V = 'd Product: Flow Velocity Times Gutter Flowline Depth V'd = Maximum Gutter Capacity Based on Allowable Gutter Depth Theoretical Water Spread TrN- heoretical Spread for Discharge outside the Gutter Section W IT - W) Txr = Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Ep = Theoretical Discharge outside the Gutter Section W, carried in Section Txre Qx TH - 'Actual Discharge outside the Gutter Section W, (limited by distance TcaowN) Qx = Discharge within the Gutter Section W (Qa - Qx) Qw = Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) QmcK = Total Discharge for Major & Minor Storm Q = Flow Velocity Within the Gutter Section V = 'd Product: Flow Velocity Times Gutter Flowline Depth V d = Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm R = Max Flow Based on Allow. Gutter Depth (Safety Factor Applied) Qa = Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = ' Resultant Flow Depth at Street Crown (Safety Factor Applied) dcRMN = 32.0 , 4T:0 6 Ui— Qf— AAei— QM— AA1461093 x "t0'1093 a 9.98 r12�79 210, koeta =; 8T:4 s'r* LY rw79 ci 'N'.l"M113 RAF— cr,...., RAei— cr,...., 26.8 f 0.8 s yt�,r 24:8 38:0 i zab w .ds7:8 y...:r 53:5 .00 x'A4y 60.00 t aches (=Yes tfft aches aches t :is :is fs fs Ps ;is ;is ;is ;is ;fs ps ;fs aches aches Minor Storm Major Storm '1 Max. Allowable Gutter Capacity Based on Minimum of QT or q„ q,ii,,, = ?{;;.;;,.�'�i7:8 ',�3::='53i5 cfs MINOR STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' MAJOR STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' ' DP 6 ON-GRADE.xis, Q-Allow 81712008, 12:49 PM f->-31 Street Section with Flow Depths 20 19 18 17 16 15 14 y 13 m L C 12 •C 11 cA 10 _....._.._A...__._.._.A_ d 9 L rn 8 S 7 6 -- -- -- - 5 4 3 2 10 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Section of 1/2 Street (distance in feet) —Ground elev. -EI- Minord-max-"®- Majord-max --X-MinorT-max * MajorT-max 0•56S5/3`S11? 8/3 .Y L.Y = z T, 1—Eo Eo = 1 l+ Sill /S.Y 3/3 1+ SirISY —1 DP 6 ON-GRADE.xIs, Q-Allow 8/7/2008, 12:(499PPM 20 19 18 17 15 1-44 Q 3 c 2 CIL (1) O 10 9 rL 0) 7 ILL 3 2 Orl 0 2 4 6 8 10 12 14 16 18 20 22 24 Q for 1/2 Street (cfs) -C- Flow Depth (in.) -9- Flow Spread (ft.) Q for 1/2 Street (cfs) Flow Depth (in.) Flow Spread �ZUO lfgo 00 r,7 400 25 1 6,",203 -Zz-Ai55 0.50 '133 J.25 1�.O iC 3.94 , 116122 2.25 !-'�&'23 :2750 ;:_4,36 2-75 � . l4'.48 4,Agf-T96, • 3.00 4.59 70 E!V�-A,&65 0 k4:80 LF� 819 7, 375 97,27; 4.00 A98 .25 425 V' - 506 VT-F�5:06 .8 9' 3 '5A5 E .4 -75 5.22 O.34 -5 00 5'30 '- 10:58 W 5.25 ­W1082 5.50 sr544 1,1,1046 If26 6 .0 0 5.58 1 :4 6.25 5!64 .1.68 :21-650 5'1,71 EF '^ t1;V89, -675 l:,%7fk�'517 F Z08 7.00 -T25 XA 2 46 1.50 `eZ .94 2 .64 1617J5 9=� 2.82 UO -6;05 11OF . m6H : 1.`t&25 lz I ATIT 48t50 ,k & 16 3 3 3 3: 81 9 M ;, 4t, 6 3 6 3.97. M-"`:9.75 d6:40 -12- I .0 10. 25 'YP,6:49 ..... K-114.4I' 10150 x dz7lr,,A.54,< ri 14`.56 ,101975 .7.z,,vZ6P58 I f 00 la,�--';6.'63 1`^ .14184 ­11.25 6.6T 1-07� j 1.50 ',�ZAV��6�7.1; -1 50 -1.1.75 �Kt ,, 675 5:24 12.00 �6.79 415:371 A�, AZ25 01 12.50 uZ R.,15'62 DP 6 ON-GRADE.xls, Q-Allow 81712008.12:49 PM D -3 Project "%,rrmEre-:arvca-�r,�:-,+r,..;;-.,--rc h,,rzHARMONY.,ROADIMP.ROVEMSNTS �.--,i-,-tt�..<��'s-..._�..-L e�,...�* •x.,��,:9 Inlet ID. ,�—Lo (C)—,f H-Curb H-Vert Wo Wp W Lo (G) Type of inlet Local Depression (addltbnal to condnuuus gutter depmsslon'a' fmm'O-AIIoW) Total Number of Units in the Inlet (Grate or Curb Opening) Warning 3 Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W from O-Allow) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Warning Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR STOF Design Discharge for Half of Street (from Sheet Q-Peak) Ater Spread Width Water Depth at Flowline (outside of local depression) Water Depth at Street Crown (or at Tu") Ratio of Gutter Flow to Design Flow Discharge outside the Gutter Section W, cared in Section T. Discharge w in the Gutter Section W Discharge Behind the Curb Face Street Flow Area Street Flow Velocity Water Depth for Design Condition - Grate Analysis (Calculated) Total Length of Inlet Grate Opening Ratio of Grate Flow to Design Flow Under No -Clogging Condition Minimum Velocity Where Grate Spash-Over Begins Interception Rate of Frontal Flow Interception Rate of Side Flow Interception Capacity Under Clogging Condition Clogging Coefficient for Multiple -unit Grate Inlet Clogging Factor for Multiple -unit Grate Inlet Effective (unclogged) Length of Multiple -unit Grate Inlet Minimum Velocity Where Grate Spash-Over Begins Interception Rate of Frontal Flow Interception Rate of Side Flow Actual Interception Capacity Carry -Over Flow = Q.-%(to be applied to curb opening or next d/s inlet) Curb or Slotted Inlet Opening Analysis C I ula tl Equivalent Slope S. (based on grate tarty -over) Required Length LT to Have 100%Interception Under No -Clogging Condition Effective Length of Curb Opening or Slatted Inlet (minimum of L, LT) Interception Capacity Under Clogging Condition Clogging Coeficient Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet Effective (Unclogged) Length Actual Interception Capacity Inlet Interception Capacity Inlet Carry -Over Flow (pow bypassing Inlet) me Percentaos = 0-10_ = Warning 3: CDOT Type R unit length should be a multiple of 5'. Type ii,, No L. W. Ci-G Q. T d d,o.. Qencr< _ A. V. 1 - L E�TE V. R1 R. Q, GrateCoef GrateClog = L, Ve' R R. Q.' MINOR MINOR MAJOR ..',.f 8.25 sgit 4 fps inch MINOR MAJOR It MINOR MAJOR VWf""n ',.ic:' fps cis MINOR4 MAJOR S. tj,it?? , 0.0804 ,bra ,sN?0.`0654 ft/R LT = c; ^`+,8,9j .'mot i<�Q,14:07 it MINOR MAJOR L.00 it cis MINOR MAJOR CurbCoe( = CurbClog {- hry„"`+r,, 0.06 �,„sx_,'0A6 L. =sue' T --u k7.50 . »�, i.. .i"_7:6U it cis MINOR MAJOR1 O x's a; 'x TF)613 �*•* L5'?ki bA cfs +0 i z�4:73 cfs yi 4* P DP 6 ON-GRAOE.xIs, Inlet On Grade r-�-3`A 877/2008, 12:49 PM 20 19 18 17 i m 16 t c t 15 m t4 3 O LL 13 Q 12 Y I o 11 e! m 10 rn / 0 9 m t7 cY u c m 0 ' 7 i m .a 6 ) O 0 m 5 1 m s I I 4 Cat 3 ' i 2 I i 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Q for 1/2 Street(cfs) -6 Qlrlonpted(cfs)-ii-Oaypeseed (ds) --e- 6pned T(ft), Llmibd by T-OROWN --0- 6pned T (ft), Not Llmlted by - - Flow Depth d Inches) T CROWN DP 6 ON-GRADE.xIs, Inlet On Grade � �35 e1712008,12:49 PM 0 for 112 Street Q Intercepted Q Bypassed (cis) Spread T (ft). Spread T (it), Not Flow Depth d (cfs) (CIS) Limited Limited by (inches) by T-CROWN T-CROW4 0-00 '-,,�,0.00 �,'0.00 i�)T `0.00 0.00 %,0:00 '---6S0 -,0666 0:66 2 .00 "-IrP z�-�l'�Ijo '0.00 �Z&15 !15 1.50 .tii16.66 ��9.90 N 1111-9 6 wLO.00 2 �2.50 �L,2'50 0,1243 :3.00 5� L-, 19 �,i "V'66 i�rii A,,rlt.�° �WA7 A00 !'4.00 2� �_ 0:00 '715A A A 5 A 2 0.00 1 5.85 If % ,�' 1585 .f,"6.95 ,,,16.52 5b j 4 Z 006 1 T14 6.00 5.8 6 - 014 �kMM,' I772 6.50 �24 0!26 --A18.27 827 ;A 7 0 849 1879 -4 56 �696 0.54 1929 9.2 9 ,1;8 2 0 8.00 9. M11 1975 816 �4 ?.61 �J(1.89 26.20 �,20.20 &30 900 -17M Z j.08 ' 4*_c._�tV.120,63 �20-63 -9.501822 .1 'r2l;05 � -1 0.00 8.50 21.45 4 ' 211. _5 ',�8.69 0.50 i7 2 Z, w" 21.83 '-2113 ",j '8.81. -1.1 .00 905 Z21 11 .50 2 931 Mi 119 22.57 .i2267, L A2.00 '9 57 T)2'43 U.92 12.501i, )0;9 82 •�1`2 68 7 ?;2126 2326 Z5,;9:26 113.00 -j,23.59 'A �,,,23. 13:5 0 10 30 3'26 3.9i 9'46 A00 , joS4 2U2 j, 2 4: 2 _9.56 1' 14 50 -U 1 0.�? 6 4 �,,�,,,,',,24.53 124:53 0 �'R 6 5 0.99 14.01 2'24�8 24,".83 9J6 5.50 .2 ��.W 2 9 2513 4 5 8 25A 1 y,-2541 11.63 z,,251.70 �25:70 :5 0.02 �t9 UA - 17.00 ,,4, �5A6,� �,,25 97 �32597, 17M a12:05 Ar., 26. 24 6724 Ij 0:16 a.bo 12 25 P 5-75 0.2T� .44 0' U6 77 i'�26.7,7, -�?�10:35 19.00 J12764 616 2703 q _ la -,s9,;27.03 f'- 610-4.3 ,j 2113 `6 67 j _�27.2 a 1051 '.. " -i � d 1 1 302 d� L:-�6-98 411T.5317 DP 6 ON-GRADE.xIs, Inlet On Grade 8/7/2008, 12:49 PM 4' SW Chase to FRCC Pond Cross Section for 4' sw chase Flow Element: Rectangular Channel Friction Method: Manning Formula Solve For: Discharge SxtoD9 �z _ f= "ta-1 Roughness Coefficient: 0.013 Channel Slope: 0.02000 ft/ft Normal Depth: 0.50 ft Bottom Width: 4.00 r ft Discharge: nn 17.55 7 � V , / O ft'/s 1 OM 11 CAA 1. IJr 4.00 ft T 0,50 tt v:1 N H: 1 r>-75T Roughness Coefficient: 0.013 J ' Channel Slope: 0.02000 ft/ft Normal Depth: 0.50 ft Bottom Width: 4.00 ft ' Rd-�ults' . e g 2 =• .. s1 x,. w <_ Discharge: 17.55 ft'/s Flow Area: 2.00 ft' ' Wetted Perimeter: 5.00 ft Top Width: 4.00 ft Critical Depth: 0.84 ft ' Critical Slope: 0.00417 ft/ft Velocity: 8.78 Ws Velocity Head: 1.20 ft ' Specific Energy: 1.70 ft Froude Number: 2.19 Flow Type: Supercritical Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 Upstream Depth: 0.00 ft Profile Description: N/A ' Profile Headloss: 0.00 ft Downstream Velocity: 0.00 ft/s Upstream Velocity: 0.00 ft/s ' Normal Depth: 0.50 ft Critical Depth: 0.84 ft Channel Slope: 0.02000 ft/ft ' Critical Slope: 0.00417 ft/ft 8' Concrete Channel to FRCC Pond Cross Section for 8' concrete channel Flow Element: Rectangular Channel Friction Method: Manning Formula Solve For: Discharge Q a Roughness Coefficient: 0.013 Channel Slope: 0.07700 fuft Normal Depth: 0.50 ft Bottom Width: 8.00 ft Discharge: 73.89 i 1 Q, _ � � W/s � � . )�oM (,u /b P-A �P C 8.00 t3 I 0.50 ft V: 1 - L H: t Discharge: 73.89 ft'/s Flow Area: 4.00 ft' - Wetted Perimeter: 9.00 ft Top Width: 8.00 ft Critical Depth: 1.38 ft Critical Slope: 0.00328 ft/ft Velocity: 18.47 ft/s Velocity Head: 5.30 ft Specific Energy: 5.80 ft Froude Number: 4.61 Flow Type: Supercritical Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 ' Profile Description: Profile Headloss: Downstream Velocity: ' Upstream Velocity: Normal Depth: Critical Depth: Channel Slope: Critical Slope: 0.00 ft N/A 0.00 ft 0.00 ft/s 0.00 ft/s ' 0.50 ft 1.38 ft 0.07700 ft/ft 0.00328 fUft I .�S"—H0 Ln Roughness Coefficient: 0.013 Channel Slope: 0.00500 ft/ft Normal Depth: 0.50 ft ' Bottom Width: 3.00 ft Discharge: 6.30 ft3/s Flow Area: 1.50 ft' Wetted Perimeter. 4.00 ft ' Top Width: 3.00 ft Critical Depth: 0.52 ft Critical Slope: 0.00455 ft/ft ' Velocity: 4.20 ft/s -Velocity Head: 0.27 ft ' Specific Energy: 0.77 ft Froude Number. 1.05 Flow Type: Supercritical Downstream Depth: 0.00 It ' Length: 0.00 ft Number Of Steps: 0 CVF OutputhData R IM Upstream Depth: 0.00 ft Profile Description: N/A Profile Headloss: 0.00 ft ' Downstream Velocity: 0.00 ft/s Upstream Velocity: 0.00 ft/s ' Normal Depth: 0.50 ft Critical Depth: 0.52 ft Channel Slope: 0.00500 ft/ft tCritical Slope: 0.00455 ft/ft �_Lj I v Cross Section for 3' curb cut on Crest Road ProjectaOes_cription � ;: Flow Element: Rectangular Channel Friction Method: Manning Formula Solve For. Discharge SecMon Data: s� Roughness Coefficient: 0.013 Channel Slope: 0.00500 ft/ft Normal Depth: 0.50 ft Bottom Width: 3.00 ft Discharge: 6.30 ft'/s E 3AI tt T 0.50 n T. V:1 b, It 1 HARMONY ROAD IMPROVEMENTS 10 Design Flow= Gutter Flow+Carry-over Flow OVERLAND SIDE � GVLOWND J' � I STREET I ® F GUTTER FLOW PLUS CARRY —`MOVER FLOW F iffEEJ F— GUTTER FLOW INLET INLET _ ,,,A 112 OF STREET r— r_ Design ow: ONLY it already etermmethrough other methods: Minor Storm Major Storm (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): 'Q = 12.30 8.60 cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information:(Enter datam the blue cells): Subcatchment Area = 0.00 cres Percent Imperviousness = % NRCS Soil Type = , B, C, or D Site: (Check One Box Only) Slope (ft/ft) Length (it) Site is Urban: X - Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall n orma ion: intensity I (inchmr)= U, P, I U, + I C, Minor Storm Major Storm Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C,= Cz = �a Q�=I. 04AZ User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value),.0 = f User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = O Bypass (Carry -Over) Flow from upstream Subcatchments, Qb = 0.00 a 17.70 cis �� I Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C = N/A N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A N/A Overland Flow Velocity, Vo = N/A N/A fps Gutter Flow Velocity, VG = N/A N/A fps Overland Flow Time, to = N/A N/A minutes Gutter Flow Time, to = N/A N/A minutes Calculated Time of Concentration, T. = N/A N/A minutes Time of Concentration by Regional Formula, T. = N/A N/A minutes Recommended T, = N/A N/A minutes Time of Concentration Selected by User, T. = NIAI NIA minutes Design Rainfall Intensity, I = NIA NIA inch/hr Calculated Local Peak Flow, Qp = N/A NIA cfs Total Design Peak Flow, Q = 12.30 26.30 cfs "IF•-tJg ' DP 10 SUMP.xIs, Q-Peak 10/13/2008, 9:27 AM n - ` '5 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) ' (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: HARMONY ROAD IMPROVEMENTS Inlet ID: 10 'BACK TCROWN ' SBACK T. TMAN W � W Tx Street _ Crown Y Qw Qx/ -� HcuRB d S. a 9l Gutter Geometry Enter data in the blue cells Maximum PJlowable Width for Spread Behind Curb TBACK = 6.0 ft 'Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S. = 0.0500 ft. vert. I ft. hodz Manning's Roughness Behind Curb neAa = 0.0160 Height of Curb at Gutter Flow Line Hcum = 6.00 Inches Distance from Curb Face. to Street Craven TCROWN = 31.0 ft Gutter Depression a = 2.00 inches Gutter Width W = 2.00 ft Street Transverse Slope Sx = 0.0200 ft. vert. I ft. horiz 'Street Longitudinal Slope - Enter 0 for sump condition So = 0.0000 ft. van. I ft. hodz Manning's Roughness for Street Section nsraeeT = 0.0160 Minor Storm Major Stomr ' ax. Allowable Water Spread for Minor & Major Storm T� = Max. Allowable Depth at Gutter Flow Line for Minor & Major Storm d. = low Flow Depth at Street Crown (leave blank for no) I 19.0 23.0 inches ft II X = yes 3.50 3.50 I I Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression towable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carded in Section Tx Discharge within the Gutter Section W (GT - OKI Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) ' [Flow aximum Flow Based On Allowable Water Spread Velocity Within the Gutter Section 'd Product Flow Velocity Times Gutter Flowline Depth Tretical Water Spread xetical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) 3refical Discharge outside the Gutter Section W, carried In Sectlon Tx TH at Discharge outside the Gutter Sectlon W, (limited by distance TCROWN) harge within the Gutter Section W (Qd - QK) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) d Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d a 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) SW = Y= d= Tx = E. = Qx= Qw= QBACK _ QT= V= V'd = TTH - Tx TH = Ea = Qx TH = Qx= Qw= ABACK = Q= V= V'd = R= Qd= d= dcRowN 0.1033 0.1033 4.56 5.52 6.56 7.52 17.0 21.0 0.330 0.270 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP 0.0 0.0 o.o 0.0 Minor Storm Major Storm 6.3 6.3 4.3 4.3 0.833 0.833 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP SUMP SUMP ft/ft inches inches ft cis CIS cis cis fps cis cis cis cis cis fps cis inches inches Minor Storm Major Storm lowable Gutter Capacity Based on Minimum of 0. or Q. Q,ia„, =I SUMPI SUMP cfs STORM max. allowable capacity OK - greater than flow given on sheet'0-Peak' STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' DP 10 SUMP.As, Q-Allow 10/1312008, 9:27 AM p-> -`4H Street Section with Flow Depths 20 19 18 17 16 15 14 H 13 m cLi 12 c c 11 a 10 m O 9 M cm 8 X x X W X x x K W X W 7 6 5 4 3 2 1 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Section of V2 Street (distance in feet) —Ground elev. -B-Minor d-max -d Major d-max -X-Minor T-max x Major T-max 0•5� 513 1/? S/3 ' 1 QX = � Sx SL TY E° 1+ Sill JSir (//� 3l3 Q Qy f Q. — L — Q.T S,11l SY. .o Il+(T/W),r -1 DP 10 SUMP.xis, Q-Allow 10/13/2008, 9:27 AM h��t5 Warning 1 Deals. Into.,.- on flngit MINOR MAJOR ype of Inlet Type = CDOT Type R Curb Opening ocal Depression (additional to continuous gutter depression's fmm'Q-AloW) a.m= 3.00 3.00 Inches Number of Unit Inlets (Grate or Curb Opening) - No, 2 2 rate Information MINOR MAJOR ength of a Unit Grate L. (G) = N/A N/A feet idth of a Unit Grate W. = N/A WA feet a Opening Ratio fora Grote (typical values 0.154.90) Awo = N/A N/A logging Factor for a Single Grate (typical value 0.50-0.70) Ci(G)= N/A N/A rate Weir Coefficient (typical value 3.00) C. (G) = WA N/A rate Orifice Coefficient (typical value 0.67) C. (G) = WA N/A Curb Opening information MINOR MAJOR Length of a Unit Curb Opening L. (C) = 5.00 5.00 feet Height of Vertical Curb Opening In Inches H,.r = 6.00 6.00 Inches Height of Curb Or6ice Throat In Inches Hw = 5.95 6.95 Inches Angle of Throat (see USDCM Figure ST3) Theta = 63.4 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W. = 2.00 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) G (C) = 0.10 0.10 Curb Opening Weir Coefficient (typical value 2.303.00) C. (C) = 2.30 2.30 Curb Opening Orifice Coefficient(typical value 0.67 C. (C) = 0.671 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity In a sump MINOR MAJOR Clogging Coefficient for Multiple Units Cost = N/A N/A logging Factor for Multiple Units Clog = N/A ------------ N/A Grate as a Weir ' Flow Depth at Local Depression without Clogging (0 cfs grate, 12.3 cis curb) d., - N/A WA Inches Is Row Used for Combination Inlets Only de,e,,,= WA N/A Inches Flow Depth at Local Depression with Clogging (0 cfs grate, 12.3 cfs curb) d.. = WA WA Inches This Row Used for Combination Inlets Only cf. , = N/A N/A Inches Grate as an Orifice MINOR MAJOR low Depth at Local Depression without Clogging (0 cfs grate, 12.3 cis curb) da = WA WA Inches Flow Depth at Local Depression with Clogging (0 cfs grate, 12.3 cfs curb) d®_ WA WA inches Resulting Gutter Flow Depth Outside of Local Depression d,a,w, = WA WA Inches Result! nq Gutter Flow Depth for CurbG e ni not In let C opacity In a Su me MINOR m®era MAJOR m logging Coefficient for Multiple Units Cost = 1.25 7 25 logging Factor for Multiple Units Clog = 0.06 0.08 urb as a Wair, Grate as an Orifice MINOR MAJOR low Depth at Local Depression without Clogging (0 cfs grata, 12.3 cfs curb) d., _ 6.44 seesess=sees6. 10.69 Inches Flow Depth at Local Depression with Clogging (0 cfs grate, 12.3 cfs curb) d.. = 6.65 11.03 Inches urb as an Orifice, Grate as an Orifice MINOR MAJOR ®-_- Flow Depth at Local Depression without Clogging (0 cfs grate, 12.3 cfs curb) da = 521 14.34 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 12.3 cfs curb) d,. = 5.57 15.95 Inches Resulting Gutter Flow Depth Outside of Local Depression d,r,,,e = 3.65 12.05 Inches Resultant Street Conditions MINOR MAJOR Total Inlet Length L= 10.0 10.0 feet Total Inlet Interception Capacity (Design Discharge from O-Peak) C. = 12.3 26.3 cfs Resultant Gutter Flow Depth (based on chest Q-Allow geometry) d = 3.65 12.95 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 0.9 31.0 It. >T-Crown Resultant Flow Depth at Street Crown dcaowa = 0.00 3.46 Inches Warning 5: Gutterflow, depth Is greater than the DEPTH allowed forthe MAJOR AND MINOR STORM DP 10 SUMP.1ds, Inlet In Sump 10113/2008. 9:27 AM MMMMMMMMMMMAMMMMMM0MMMMMMMMMMMUMMMMMMMMM MMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMM MMMMOMMOMMOMMOMMMMM iMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMNMMM MOMMOMMMMMOMOMMOMMMIM MMMMMMMMMMMMMwMMMMMM MMMOOMMOMMOM��� MOMM MMMMMMOIIMMMM, MMMMMMMMMMMMMMMMMM, MOOMMMMMOM I�ii MMMM MMM MMMMOMWAMMMMAMOMMOMMM MMOMMMMMMOR MMMMMMMM MMMMM ilM MMMMMMMMM ���� MMOME� MMMMMMMMMMiii DP 10 SUMP.bs, Inlet In Sump 10/13/2008, 9:27 AM 4 DP 10 SUMP.)ds, Inlet In Sump P�— to 10/13/2008, 9:27 AM RANGEVIEWrc V .-P.U.D. IsID z w LL z M. x HARMONY ROAD r TaaC 2 CFIMII0 M ;70RM 0 1w L 12.1110. 31A RT. , 't . . I no STA .1*77. M LT I 41 HARMONY m IL I I HOSPrrAL FOR PETS w I ' T ids z do CAD FO -10 m '00 0 Wm 12.w STORM D CITY OF FORT COLLINS, COLORADO c1ty0f Fort Collins ENGINEERING DIVISION Nt�� SD 25 0 50 Im HORaOWA1- SCALE 1'. 50 VEFMCAL SCALE: 111. 5- IN o CM er n2 0" W MT IS ¢ . ". W.IMII? TIDIT .own (oIsnI cujj M MD R STATIwG Ar w T IS QUIFF W Fad W SMIMPIM A' rLLHaNL 4 S STAYI(MIG IS MM W SMCN CONaNiellweei IN LTING GROUP HARMONY ROAD IMPROVEMENTS STORM SEW I ER -PLAN & PROFILE 14 221 1 )n WE N o -0 0 ao h o u y (7 to m rn L6 a c > o U c U€ 0 N 2N C C —T N 0) a)1 0) m O c W VA a CD m O w n M 0 N + 1 ^ ` ¢ U) co n 0 w F o, U o Z my C N a ` � S N U � 0 C it O O � � � Z --tY Q1 n � M — - Ln --IVLi �. o CL 0 T 1 E � N N a E� m 'o ° O. N Eye av¢ Tea COO EO o M O co O G — J � F X O -SO 1 � II O II � 1 II � II V II � II U II II 1 II N rl II I roi v •o O Y > .11 v ao + II > II I H u x -0 p o H ro > II 3 .1 N w a ro II C U C, 3 I I C U U C ✓ W W 1-1 > II A C II N 1 7 l) O II ro mCl) U' II W II II O W W W ' II )i H H H C A A A ai nnn y a 0 H W z W a 4, a U) m a O w >4 1 m O H a a b U a U i I I l o 0 0 1 ) JJ w I ) a W 1 0 0 o I A I I I I i ro o 0 o I ) U w I H W 0 0 0 1 ) a -- 1 1 ) m I I 1 I A 0 0 0 U • I ) C l o 0 o I i U I O O O I 1 -0 I-U 4 -'I W 1 W i I W i I I I T) I I I O O O I N 0 0 0 1 1 3 I I 0 0 I Ill -f N l 0 0 0 1 I a r. U I I W I I 1 a) � I o 0 0 1 v 1 0 0 0 1 W 1 I a -- I o0o I U En1 4 HU I a) U w I I C I I H I I 1 I 1 I I dP dP oW I N- 0 0 0 1 I I o 0 o i O I fi r-I rl 1 I 41 L 41 1 •• H 1 7 7 7 O 1 ro ro ro I R 1 w w w I I U U U I x q O Ll I H U U U I 3 H H H I v v v 1 a aa)i aa)i aa)i i 3 C7 U U' I F --- —I z I I 41 1W I U U U I U w c c c i I H H H I a U I I 5 a I U U U I m H I H H H I U) I v v v I m s a) a) 1 a x C7 C7 (7 I O I I [sl N I ri I ro I U I D 1 N H I U I O H 1 H I � I I m o I I H r-I 3 1 D U U 1 H H z 1 1 I CI Z � I 1 — — — — — oio room J ro I O\ O O ri N i N i N H— I C In M 10 N 1'0 w w I M M M MM a ro W W 1 i H C `-' I 7 U 3 1 O 1 A I I \O Il) r O O ro I m O m H rn 7 'O U .-. I a In m u-) r a ro H 11 1 M M M M M i H w W 1 a b I — — >1 I 4J H M O N P- N a U\ N O H 0 0 A O w H H N 4-4> u U � I a) i N 3 1 0 0 0 0 0 0 0 H w 1 N N O O N >) W U I CO I I — — — — — — — — - — I 0 0 0 0 0 0 0 0 0 0 41 P J4 • W I l0 m M N m 7 I rl H H -- —— I — — H H H H H 1 ro ro ro ro ro U I rl rl H ri H U U U (a I U U .0 I I -I H H H H 1 N I -H -H -rl -ri I I U U U U U — — — — — — — I U U U U U U 1 C C C C C N I -.1 -rl -.i -fl -.I -.i m I V' V' m C ) I LO II) IU HIf) N N H ri ri H H I C I O I 3 W -.i I I I O U U I m I I I I I I I I 1 1 1 1 1 1 I I a a W a a I - — — — — — — — — I o io In r Io O Io LO n r) O N Q N 7 co O r a) O U O O Z C7 n my a, N U m N jr U a N 0 C O 0 m n M u E N C V U i O «O a y ca O 00 >` U. O O U m0 €€m O M N H % o a E co co m N n f") O N u O N C W �o om� v a o a E o 0 UJ J (n O L6 0 m terw'z a, Sap. p 4 7 . rsu ✓I .4rraYS O�i 9�� �'I P mom. u �c a, oo o..G N �e¢ 6.NNO �'c J C J to to G � IM = 0 is 17x' K' xa� a3 w a S�UJ rg 0 N 0 N O 0 ' a 0 O O N — O u y N N rn td a S > a 0 c U U 2N L7 C N C a E to m N N n a7 0 N 11 N a m E� o E N m c Q � w 0 T d DO OF U N C E 0 mow 0 ? Cl) d H x o F--)--53 v 0 C � yaGi2o . z uooi �¢in c�g�: ASS c 0 N O NMI "Fk -M Nm E �Fr� 3i =V-m yj 55JNin ci. C . ice . 1 F p WrnpO dNNO�N eY_q t� I M. a Ye�,,�c Y riY 0 0 N O a E N r Cl) O N 4 U I / O r m U w d � C O WO" Z n m ..QQ aEE 00 J�VJ 00 LO O V < c O N p 0 CR ,i'f•Qyi A C C N Cb 1 cI4 6�L�]]�}�]�^ff'��� �4�tw.. " , pOD O C cOaqq t air xa W s, a d._ IN IN, y ;Ul CO rr• ^G. < x FJiY. Y N 0 m a E O d d 10 t` M N N �, N C u. d E� d o ° ay Eve vc¢ o y of T �100 C O E O Cc CO O Cl Ol 1�-55 1 m E 3 Cl) aN+ M N rl o •• N •• C >1 o A 4J w s4 '0 O N > P0' .r -a) N C Y -.I U 0 N ro O > 3 r N aJ ro ro O C 3 z Fl� N v v U U U C ro ro v w w o 0 Wa) 0 7 v N N > A p C C C O W W U O O O w w w C C C H H H n n n n n n n n n n n n y a 3 F W z W u W a O W a O W a W 0 O ,-i Q a O U a Q U 1 SI 1 0 0 0 1 a) t O. O O I W W W + a W I o o O I C7 ❑ 1 I I I I u ro 1 0 0 0 1 v 10 I OO O I V v 1� I w u w o 0 0 1 I > U I • I U C O O O u v l o 0 0 l Wu U dP ro W U W I I W I I I' I I I O I o 0 0 1 v r o 0 0 0 0 1 r-1 I I R1 N N 1 0 0 0 1 W ro W I O a U I F >i I I m I I I I I I O 1 0 0 0 1 N 1 0 0 0 1 + , r4 a o ro N N 1 1 U 0 W 1 1 0 t1 rl U I I i-I I I C I I H I I I I I I dP oP dP 1 0 0 0 1 I r1 r-I ri I t I W W W 1 H 1 U C 7 I W ro N ro I a) I W W W I C c! H I I I U U U I I .� I 11 SI N I l a) N U I I C C C I I N N N I I U 0 U' I I I I W +J }I I I ID v al I C C C I W I H H H I al N I I C >>1 H I H F i N 3-1 S4 1 I C Cz N I C I I I I 1 ro 1 I C I 1 ro 1 I U I rl I 11 I v 1 v 1 A U 1 ro 1 u 1 1 rn o 1 I N I I H H 2 1 I I - - - - - - - - — 1O W W r1 rl I U ro I 01 N N M M I H N H-P 1 m M M 7 'O 0 W m m 1 M C cP N H C 4-4 l >1 10 U O 1 x ❑ I I I I U 1 O M W ri I -.i IN r m l m O Mm M M I N ro u Y I M C' c v' I SI F W W I I >1 04 x m i --—— - — — — —— >i I M M O M O I v W I a1 W O m -. 1 O� u N I ro \ M M O M O I N O W I r1 H rl I v r W C I 1Z > r4 I o 0 0 0 o I '-I a) J 1 0 0 O O O I ro 41 O N 1 • I w N H W 1 0 0 0 0 O I O >i I. U I N N N I F W N N N I I w 41 o 0 0 0 0 1 0,W C W I W W I al a I ri H rl I I W W S4 N 74 C 1 a m-I ro m O O I •-I rl H H ri .H a I C C C W ro u u 1 0 0 0 U U U ,C 1 to l4 N 4 N U) I U U U U U O I U U U U 0 U -.i v I C C C C C W N I -ri -r{ -rl -.i ­4 nI N tn H N N - - - - - - - N - - I I r-I H H H ri u C 1 U O q w E o 41 I 7 u U I 2 al I W , H I I v I p I l0 N LO ri 1 1 ro I I I I a 1 a w a a a 1 I U I O O M m H v 7 1 • C 'O O - I m m v M O m ro ro Y u u v 4-4I x a I I I U l o m r1 m r-I C I 0N M N H m H 1 . ro ro ) 4 1 M M M ZW C LI 1 I O 0 14 1 > I x , O 1 o�lono r-P 1 0HHo O > W I c FI a) U' r w 1 I -! aa) 3t i 0000 ro w O N I 11 N r1 W 1 0 0 0 0 O >1 [v U 1 N N N H U7 N N N I - - I I rl v A ro a I O I N N N O O a O O U� r O 0 N O N 0Lrja > =o 'w U `E co « o 2N N C N C Ll m m m n 0 O N N 7 m O In m 0 U a or U a m `v a m N C U o 2m Cf G N m N C 0 O 0 m N Cl) E 3 O x v N E 3 v a > o v a I!) Eon vma N 0 N Q c c v o N N Eve m m = 00 y E N «_ o rn F-i6O E C O u U O N O �f] N �-1 c' c' a �o v d o aEE o t19 J�fn O st R 0 0 M J/ 0 ov v ,. Yk} 3 i,��F�aa -FEYP''NNf f' G{ }*Kp'Y.�.•��U7 nS R, dNNO N JG�Jcn I �4 7a .�.j'T Ll 0 0 N N O r i 0 N O X n w W "I /^0 0 LL @ C a) U U) c O C CN � W � C07 0 E o �o o �f •��0.2a�'S o 229�'�i8'� � ¢tn •S c uoi O 0 001-7 N / } s ri iyt.l F, N���p'W .�Y%. v,•S..�ir W O ' :I zt K;s F`Y S-vK W r dG 7 0 -e cb �' EiN�cu r 00 �O) - 1I� 44 41h9 �.4Ht.'i� I .2 i 1 i�4ax S3 YYYr il. �ry'`Y ��Mn Pt Vg 3 =���o E < !rl Fr lx v`ft 3:: II Zt .'.ttALI}t'r!' lek4 X. y- N � � W O O O 0 Do ry N N aNa c > N Q c U o E U 0 2N N C N C a CD n (1 N a I O M � r N O O c�i cor O N O oq E E Ei.4 t$F Co AL tom" i.-04 Z. oOO NO �" {�4x Fhb. u5N Rty dG in oq i,a FY - iv�,�Fy^A a D 'n 4fr I NOCN to to fc O 0 S N N � N O ao 0 � N o u a) a) v4 m m6a N Q c U o E U 0 2N N C N C N N C cC W U N O a` O f0 !0 N O r ci 0 N N O O f0 O nU O 0 a m� N c U m W � W N O C Y m O co ui V C a O Q) N i a N N N 2 0 N O d N ca E 3 y Cl 0 o� a m a o m o 71 N C C V O O N E x N 0 = 00 ti E N — o F N O �_UO Design Flow = Gutter Flow + Carry-over Flow OVERLAND SIDE OVERLAND /�.( ' Y C I ���k FLOW I I STREET FLOW ® -*—GUTTER FLOW PLUS CARRY-OVER FLOW c GUTTER FLOW INLET INLET 1/2 OF STREET MaJor Storm Design Flow. ONLY if already determined through other methods: Minor Storm (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): *Q 0A -.1 0.1cfs • If you entered a value here, skip the rest of this shoot and proceed to sheet Q-Allow) Geographic Information: (Enter data in the blue cells): Subcatchment Area - lAcres Percent Imperviousness1% NRCS Soil Type =1..:_��_� M77777'.; 7777777M A. B. C, or D Site: (Check One Box Ont) Slope (fl/ft) Length (it) Site is Urban Overland Flow= Site Is Non -Urban: Gutter Flow Rainfall Information: Intensity I (inch/hr) = Cr • P1 I C2 + T� ^ C3 Minor Storm Major Sic" Design Storm Return Period, Tr = .................................................. ::::':­`::'..�:'­�:s.'s. ............ .. ... years Return Period One -Hour Precipitation, P, = .......... inches C. ... ........ . C C . . . . . . . . . . User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 - Bypass (Carry -Over) Flow from up's'trearn Subcatchments, Q, U 4C O,o.Q cis Analysis of Flow Time (Time of Concentration) for a Catchment: MinorStomn Major Storm Calculated Design Storm Runoff Coefficient, C .4 Calculated 5-yr. Runoff Coefficient, C 5 . . . . . . . ....... .IWA Overland Flow Velocity, Vo NIA fps Gutter Flow Velocity, VG NIA . . . . . . . . . . . fps Overland Flow Time, to 77� minutes Gutter Flow Time, to minutes Calculated Time of Concentration, T, - ,.,..,.*,i,..:.��,..,NIi9N minutes Time of Concentration by Regional Formula, T. ........ NIA minutes Recommended T. minutes Time of Concentration Selected by User, T, NIA minutes Design Rainfall Intensity, I :RIA .......... inch/hr Calculated Local Peak Flow, Q, ............... ..... ..................... .. .. X N ....... ..... _r cis Total Design Peak Flow, 0 Aar CfS DP 12 ON-GRADE.)ds; Q-Peak 8/7/2008,11:53 AM ' Project: Inlet ID: 'I T6ACK TCROWN Seac_� T. TMA% W T% Street Crown y Qw Q HcuRe d S a 54 mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ung's Roughness Behind Curb of Curb at Gutter Flow Line :e from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) ' Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W (T - W) ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W. carded In Section Tx Discharge within the Gutter Section W (Or - O%) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) ' Maximum Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section 'd Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W IT - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) 3relical Discharge outside the Gutter Section W, carried in Section Tx TH ial Discharge outside the Gutter Section W, (limited by distance TCRCWN) harge within the Gutter Section W (Od - DO harge Behind the Curb (e.g., sidewalk, driveways, & lawns) d Discharge for Major & Minor Storm e Velocity Within the Gutter Section Product: Flow Velocity Times Gutter FioWine Depth �e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) TaACK = e .13:$ It SeACK = 0.0200 ft. vert. / ft. honz neACK = ,,77OA350 HcuRe= ;'6.00 inches TCROWN = S ;" 33:5 4 a EV .00 inches Sx = "0.0220 ft. vert. I ft. hodz Sc = ,>�_=;=-(0.0050 ft. van. I ft. hodz nSTREET = ;`.: k.0,0160 T,,x= d.= Sw: y d= Tx' E. Qx' Qw: QeACK' QT: V= Vd: TTR = TX TH = Ea' QxT Qx= Qw' QSACK = O= V= V•d = R= Qd ` d= dCROWN AAtnnr Clnrm Uninr Clnrm ''25:033:5 6:00 .,, -9,24 - X •' KAI— Q.,.r... RAnlnr A»,.r.n ` W�'011053 "A0A053 :.ado 8:60 _. _„.a10i84 23.0 t 4 )315 rix `;r0:242 "``C''xt,°y0"177, .�° 25:1 a x "A;L?562 AA;— C.— AAu1— CMrm aax15'2 -= HA 12 F.u`0408 ',gam>t0.219 7:0 ;skYKrJ:�`32 3 0%;;s32i3 00 �a924 t nches (=yes Uft nches nches t :is :is is fs os :is . nches nches Minor Storm Ma or Storm lowable Gutter Capacity Based on Minimum of Q. or QA Q,�„„.= �. � �,� `,7;0 �37;3 jcfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max_ allowable capacity OK - oreater than flow Given on sheet'Q-Peak' DP 12 ON-GRADE.xis, Q-Allow 8/7/2008, 11:53 AM Street Section with Flow Depths 20 19 18 17 - 16 - 15 - 14 - 13 - 12 11 tx 10 4) O 9 v-- ij-== -A - ------ -Al - - -A-- A A A--- .Lm 8 7 ;_WW 0000 0000 5 00�O 4 —0000 00-0 3 2 1 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 .14.0 16.0 18.0 20.0 Section of 112 Street (distance in feet) —Ground elev. -0- Minor d-max -A--Majord-max .--X- Minor T-max X MajorT-max 0 0.56n S513SJ17 TV 8/3 L 0 Q.v 2 Q, - EO Eo Sill 5�r 8/3 + sill / S�v (TIW)—il DP 12 ON-GRADE.xis, Q-Allow 817/2008,11:53 AM � - (.,e 3 20 19 18 17 4F 1 15 144 U) U1 3 C W2 j CIL (D Oil 0 jL10 V9 m 7 0 M 5 4 3 2 oc -- 0 2 4 .6 8 10 12 14 16 18 20 22 24 Q for 1/2 Street (cfs) G Flow Depth (in.) -a-Flow Spread (ft.) Q for 1/2 Street (cfs) I'll Flow ::: Depth (in.) Flow Spread (ft.) 0.00 0.00 RxZ M0,00 %EtR2.20 0.50 259 0:75 ,-N'3:23 ,4,.65 R 0 .0 A 15f 74' �.1 25 �L�A- 17 5 �:-�,A 6 62 �":%,-P, 1(60 `c�Q, 3941 -.36 �75 IAU t:t: Al2.25 0 1202,9,ii: W 150 .:9�60 7 Ma2;75 iP'v 14:.65 'r J U5 3.00 76 > -4 1 0.'4 7x 3.25 150 .97j; ,-t1 24 1.75 r e5'.06 '1,1 60 -4.00 `5 5 4 4. 25 Al.- 5;24 2 2 7, _450 .'r5:32 71 215 B. !.., -. MR41-- 4 75 - , e , `N'3�5'40 N " , I k,, K,4 1 2'88: 5.00, x. ,�,5.47. 3."17,, --5.25 5.55 145 Y ?,:5 R 5;50 'AR.'�1; 5X2 Ii�e�*,%13;7,3 5.75 6C� ,I 3:99 &00 6.25 5.82 6;75 IV- -..7.00 V 1610 1 5.20 7.25 j 5�43 T: a 7,.50 6 A 3 V, I)VIV65, 6,18 -15.86 6! 2 4 ',r,,716'.OZ 8.25 ?;„`'�_;16'30 "6108 t8.50 -4�16:35 48 8 5 w61'40 -W AUT 9.25 650 705 .50 -i�C 55 IT .2 7,4 9. -75 MMUOJM�K�iV42 0 5 --7Y 6:69 7�77, 0'50 .7 11 00 6 i 8 2 §,zk7�,1828 25 J"O XP-4A(3:91� rzY18.60 NN.11;75,, 6195 - tzavZ1 8., 7,6 0- 1..-. -l' . : 2; 0 0 6'99 8! 92 2.25 14T' 103 '-r 9'07, `.1 Z50 I LRAI 9 i22 DP 12 ON-GRADE.xls, Q-Allow 8/7/2008,11:53 AM u 44 INLETONA'CONTINUOUS,GRADE Project _, ., .�a�`y,„„a,€ar`i' ' �,�`. ,'.�sHA k0'&!R0�A MPROVEh1E 5 0�`��" �"' ,.„.hw.�u. "..'?e ..' "I walk y��c., `,p;», 4 R t ^`r.: i,4::»":`t a"'" ,i°�.' .M.K sµ%y 6 %`�e1� e�.`fd. AFkYiS.? a.P f '.a4Y MOM? Inlet ID: �i,a _......ar.. .xs-_ _.�.,r v._i�.e�,.,a�a�. .. n mta �.,. .r_..v.Ja"e'w.v 12 �a s6: wr�_.v .S tix- ��€s.. �,,;ax, .. _43L�"a ,�-Lo (C) ' H-Curb H-Vert Wo Wp W - Lo (G) Design Information (input) MINOR MAJOR ' Type of Inlet Type : CDO7 Type R'Curb Opening... Local Depression (additional to continuous gutter depression'a' fmm'QAllow) aL „ 2:0 x '^ Y 42.0 inches Total Number of Units in the Inlet (Grate or Curb Opening) No = Warning 3 Length of a Single Unit Inlet (Grate or Curb Opening) 4 4.00 (- ,;' n 4.00 ft ' Width of a Unit Grate (cannot be greater than W from 0-Allow) W t'N1A nN/A ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) - C,G ": N/A N/A Clogging Factor for a Single Unit-0urb Opening (typical min. value = 0.1) CrC - ^° , 0,10 2 ` :0.10 StreetHydraulics: OK - <maximum allowable from sheet'-Allow' MINOR MAJOR_ ' Design Discharge for Half of Street (from Sheet Q-Peak) D r;F`^ n.r 410 `' ` ^ *: 10:40 cfs Water Spread Width 7 4 ;.� �£y,. `z J21' , v.+t,�„r'�'.j17:9 ft Water Depth at Rowfne (outside of local depression) d = x'-°_'�hL r_?e5 2 F 8:7 inches Depth at Street Crown (or at Tum) dcaown = £ 4 inches 'Water Ratio of Gutter Flow to Design Flow Ee N 0 508 'x. "y „zT 0.345 Discharge outside the Gutter Section W, carried in Section T. 0)nf,M.''a.k 202 ,�,6:80 cfs Discharge within the Gutter Section W 0w- 1',,3,58 cfs Discharge Behind the Curb Face 0encx �t� c a0 00. sz p„ ,,�'0,03 cfs Street RmArea A. y ;�e» 1`i Tt.T,7 z ` ` '';3.66 sq ft Street Flow Velocity V. ' ?, -y�2 321,4} Ysr i.83 fps ' mraie was sis uaicuiarea Total Length of Inlet Grate Opening Ratio of Grate Flow to Design Flow Under No Clogging Condition Minimum Velocity Where Grate Spash-Over Begins Interception Rate of Frontal Flow Interception Rate of Side Flow Interception Capacity Under Clogging Condition Clogging Coefficient for Multiple -unit Grate Inlet Clogging Factor for Multiple -unit Grate Inlet Effective (unclogged) Length of Multiple -unit Grate Inlet Minimum Velocity Where Grate Spash-Over Begins ' Interception Rate of Frontal Flow Interception Rate of Side Flow tual Interception Capacity Carry -Over Flow= 00-0, (to be applied to curb opening or next d/s Curb or Slotted Inlet Opening Analysis Calculated Equivalent Slope S. (based on grate carryover) Required Length LT to Have 100% Interception Under No -Clogging Condition Effective Length of Curb Opening or Slotted Inlet (minimum of L, Li) Interception Capacity Under Clogging Condition Clogging Coefficient ' Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet Effective (Unclogged) Length Actual Interception Capacity Carry -Over Flow= okra-0, 'Isummary otal Inlet Interception Capacity otal Inlet Carry -Over Flow (flow bypassing Inlet) Capture Percentage = 0,10, _ Warning 3: CDOT Type R unit length should be a multiple of 5' MINOR MAJOR L .b.1--^h. ,�3sx--*Es9 v.Yst �a �'d } it Eo- .ire MINOR MAJOR V F:�'Iis:'�'¢�aT 2 ^1 i e r` :Sri fps R. cfs MINOR MAJOR t rU GrateCoef ^) GrateClo9 = "EM-iDN L._-"'a;'a,.. E se ca`av"Ya °PS!:4f5: ft V. =a). .',.,u..a ».. '" Rib,°;4"N' V� fps R. O, MINOR MAJOR S "'.!� g-01067 R t;q° y{ O;U799 Wit LT �,_^,� '. j10.13 '�*.W,,.n1785 g MINOR MAJOR L,X,,4.00 ft .2744 p a` yx-pQ3:60 cis MINOR MAJOR CurbCoef=','ws„p-e,'s.('IftiO 4r 3.80i "u 360 ft 2.24 i. „- ,`e C� 3 46 cfs MINOR MAJOR f1JL ?At4 DP 12 ON-GRADEJds, Inlet On Grade [YU 5 8/7/2008, 11:53 AM 20 19 ,SR 18 �/ 17 ✓ R� m 16 u � e r 15 n m 14 .2 Z 13 / C O 12 Y / r- w 11 a m to N 0 9 LL N `u 8 / O m i M _ VG — 7 T m b 6 9 n I ' m 5 = 4 t7 7 1 a" i _ 3 2 Ei 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Q for 112 Street(cfs) —a O L,brc.pW (C%) � O Syp....d (n.) —e— Sp,..d T (n). L oUW by TCROWN —� Spn.d T IR), Not LIm1fi o by —.— Fb D.pN d (Inch..) TCROWN DP 12 ON-GRADE.xls, Inlet On Grade I � _ u L{ 8f7/2008, 11:53 AM Q for 1/2 Street Q Intercepted Q Bypassed (cfs) Spread T (ft), Spread T (ft), Not Flow Depth d (cfs) left) Limited Limited by (inches) by T-CROWN T-CROWN 0 —:�V�bo 7 06.66 666, 00 6 —60 60d . ....... 0150 r26 'M� i26 100 41T, NAR 9.,W Q­. 1_5() 1:28 ��K' -- ;U-!�,I.RN �,?,0.22 R`4PA :,'Y2 7,36 I ----63e,736 -1 §4 ..... ... ............. .. .. .... 2,00 !l -I4�4�53 5 ,;0-47 5' 4;27, . ...... . ....... L L 2.50 — — -2,113 I -", 41960250 3:00 S4 09 d 60 IJ 51',1 2 4 Y�497: �;V,, I, AV94 11.94 5154!00 ',12.58 �r 2:34 x�- �2.16 5.32 7j, ;_ _ --- 5 00 147, ,�.,,�z2.53 �i 'I, 3 � 7, -m—/, - S 1� 45.48 �'Z.58 '2� .92 �d3 31 `f 373 'r,'5: 6 3 3 4 5 - 6:00 .31 21-79 V_ 311 414 rk'14-14 ',�YtN5.89 7 00 "S , i-.I2.89 I'M` "; ,4. 5.26 . � tE&AS 20 sis b! 7.56 ,§2V -j -e7W 2 XI 5�.65 .6 'It 5 5 A j4'�, & 3 8.00 _,3 C)Z �Iili!07 LA�� -6 Q7, ,&� 8.50 3.16 34 6. "48 8 �6 :35 9.00 4 W7, 9.50 1724 ' Y, Jfi.55 110.00 i 340 660 ITO ':'7 7'(id 6M 3 48 ",J'0 2 828 1'50 �3.62 U0 8.60 6.91 1200 UZS—, A"L' 3 S9 ,zit''-j 0,4,18.92 8 .1�.50.7, ,�Z,,*�3.76 ,�814 - �m 922 6 7 3.00 38 3 917,, 19.52 .i 3.50 3 oWx,'�' -L .90 -��9,60 '�4723 ------ -'�'--14.00 R �1110 .04 -1 Y 20.09 20�09 t,7,.30 -1450 "A 104 7, 0.36 '--20.36 4, ;;,4.09 7''��'-,10 .9I , �,2 0.63 20 3 .6 15.50 "4 15 111135 TZJ20w89 -,H.89 7,.'!i 2 A 2 1 14 4 16WM 4121 6. 0 ,A 4, 2 2:23 21.39 2 1139 1 451 7;65 3 2 1'6 -9 4 ,r 1 -64 11 M—�ZT i.66 M 439 AV67 N � 87 j1,21! 18. 0 4�44 56 tk�l l' '-"22'1'1 JW fV -;18.50 r7 - ;r22.34 '7-90 ....... -""4 66 -'14 45 ' 22 56 3, „,, Tq 6 '----4 61 1,4.89 11.22.,78 2 23.8 ,80 gft0:00 � 53-4 QQ�ffi 2100 0 - ic, - �8.07, DID 12 ON-GRADE.xis, Inlet On Grade 8l712008,11:53 AM Worksheet for Q100 in Regency Park Harmony Road Channel P-rolectpescnphon�' - Flow Element: ' Friction Method: Solve For: � _��, , Trapezoidal Channel Manning Formula Normal Depth Input Data,, ' Roughness Coefficient: 0.030 Channel Slope: 0.04000 ft/ft ' Left Side Slope: 3.00 ft/ft (H:V) Right Side Slope: 2.50 ft/ft (H:V) Bottom Width: 5.60 �roo T�pM ft ' Discharge: 243.00 = Mo ft'/s/ 1 l ' Normal Depth 1.94 ft Flow Area: 21.15 ftZ Wetted Perimeter: 16.94 ft ' Top Width: 16.25 ft Critical Depth: 2.60 ft Critical Slope: 0.01175 ft/ft Velocity: 11.49 ft/s . Velocity Head: 2.05 ft Specific Energy: 3.99 ft Froude Number: t 1.78 Flow Type: Supercritical ' GVF in' ut Data Downstream Depth: 0.00 ft Length: 0.00 ft , ' Number Of Steps: 0 JG[FOutputData� a ' Upstream Depth: 0.00 ft Profile Description: N/A Headloss: 0.00 ft ' Downstream Velocity: 0.00 ft/s Upstream Velocity: 0.00 ft/s Normal Depth: 1.94 ft ' Critical Depth: 2.60 ft Channel Slope: 0.04000 ft/ft Worksheet for Q100 in Regency Park Harmony Road Channel ' Critical Slope: 0.01175 ft/ft 1 r-�—u 01 Cross Section for Q900 in Regency Park Harmony Road Channel Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth Section, Data ��" . r^ low -� Roughness Coefficient: 0.030 Channel Slope: 0.04000 Wit Normal Depth: 1.94 ft Left Side Slope: 3.00 Wit (H:V) Right Side Slope: 2.50 Wit (H:V) Bottom Width: 5.60 ft Discharge: 243.00 ft3/s T 1.94 ft i----S.Boti --� H: 1 r�--W Worksheet for Capacity of Regency Park Harmony Road Channel Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For. Discharge Roughness Coefficient: 0.030 Channel Slope: 0.04000 ft/ft Normal Depth: 3.00 ft Left Side Slope:. 3.00 ft/ft (H:V) Right Side Slope: 2.50 ft/ft (H:V) Bottom Width: 5.60 ft Results x Discharge: 607.63 ft3/s Flow Area: 41.55 ft' Wetted Perimeter: 23.16 ft . Top Width: 22.10 ft Critical Depth:. 4.08 ft Critical Slope: 0.01041 ft/ft Velocity: 14.62 ft/s Velocity Head: 3.32 ft Specific Energy: 6.32 ft Froude Number: 1.88 Flow Type: Supercritical GVF Inpu�Oata- _ Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF QutQut Data - _ Upstream Depth: 0.00 ft Profile Description: N/A Headloss: 0.00 ft Downstream Velocity: 0.00 ft/s Upstream Velocity: 0.00 ft/s Normal Depth: 3.00 ft Critical Depth: 4.08 ft Channel Slope: 0.04000 ft/ft Worksheet for Capacity of Regency Park Harmony Road Channel ' Critical Slope: 0.01041 ft/ft �Z Cross Section for Capacity of Regency Park Harmony Road Channel Roughness Coefficient: 0.030 Channel Slope: 0.04000 ft/ft Normal Depth: 3.00 ft Left Side Slope: 3.00 ft/ft (H:V) Right Side Slope: 2.50 ft/ft (H:V) Bottom Width: 5.60 ft Discharge: 607.63 7 3e-!5 ft3/s T 3.00 ft 1 V: i L H: 1 r--,3, -q-3 ' Design Flow= Gutter Flow+ Carry-over Flow �OV OVERLAND SIDE OVERLAND�FLOWI ' I STREET ® F GUTTER FLOW PLUS CARRY —`MOVER FLOW c ® F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: Minor Stonn a•or Storm (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): 'Q >:3 2U M'10.90' cfs ' If You entered a value here. skip the rest of this sheet and proceed to sheet Q-Allow) Site: (Check One Box Onl Site is Urban Site Is Non -Urban. Rainfall Information: Intensityl (inch/hr) = C, ' P, / (Cz + T, ) A Ca Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, CZ Ca User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb Analysis of Flow Time (Time of Concentration) for a Catchment: Minor: Calculated Design Storm Runoff Coefficient, C .............. ............... Calculated 5-yr. Runoff Coefficient, CS Overland Flow Velocity, VG Gutter Flow Velocity, VG = : y: � Overland Flow Time, to = Gutter Flow Time, tG = Calculated Time of Concentration, T. _ ;;`�; ;�{;`e;; Time of Concentration by Regional Formula, T. Recommended T. Time of Concentration Selected by User, T. Design Rainfall Intensity, I = >t��>>:`�� Calculated Local Peak Flow, QP =; Total Design Peak Flow, Q = 6CN \/1 y-f V IPA. (f, - O� 4 .f d 5 4 o . /iM a �t ✓N1 PN I Imo. 4-7 4 tv is �- Fl� a{s jin ? ir�l{� �.�r n �� 1Z DP 13 Street Capacity.)ds, Q-Peak 8/7/2008, 11:54 AM ---�&4 r ' Project: Inlet ID: TBACK TC ROWN $ CK T. MAX BACK W T. Street Crown y Qw Ox/ —� Hcu RB d S x a 5� mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) zing's Roughness Behind Curb of Curb at Gutter Flow Line -e from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) ' Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W (T - W) ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, B lawns) ' Maximum Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section 'd Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W, carried In Section Tx TH ial Discharge outside the Gutter Section W, (limited by distance TCROWN) harge within the Gutter Section W (Oa - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth �e-Based Depth Safety Reduction Factor for Major & Minor (d > 6') Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) TeACK = 13.5 R SaACK = 0.0200 ft. vert./ft. hariz nBACK = '0.0350 Hcun = - • Bob inches TcRowN = 335 ft a = ...::::._:.-•.1-2!00. inches W = 2;00 ft Sx= ,1;0.0220 ft. vert./ft. horiz Sa= ; 0.0130 ft. vert./ft. horiz nsTResT = ` 0.0160 T,Ax = dmAx = Sw` y' d• T. Eo' Qx' Qw' OBACK' QT' V= V'd - T,: Txm: Eo: OATH 2 Qx' Qw OBACK ` Q V V'd R Qe' d= dcaowN' 31.5 ,.: 60( Smq 4. X Minor gtnrn, Malnr gtnrrn 4��0.1053 =-0.'1053 23.0 ; °z� ,.,`,31 5 .242 r29.5 6 55 r" t K 8.3 5.2 z ''•� :0',4.08 „4,ditgl):219 :6 i ,tZ, d9 ^ 52:1'. t aches C =yes t/ft aches aches I fs is fs is os i :is :fs :fs :fs :fs ps ,is aches aches Minor Storm Major Storm towable Gutter Gutter Capacity on Minimum of Q. or Q�on Minimum of Q. or Q� STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. Alnwahle ranaritv OK - areater than flow alven on shent'D-Peak' DP 13 Street Capacity.xls, Q-Allow 817/2008, 11:54 AM �--,5 Street Section with Flow Depths 20 19 18 17 16 15 14 H 13 m t c 12 .c 11 r a 10 m 9 i IA m 8 2 7 g _0- _ . _..__0 ...___ 0_ _— _ ___...0_ _E _ 5 4 3 2 1 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Section of 112 Street (distance in feet) —Ground elev. -6- Minor d-max -A- Major d-max X Minor T-max X Major T-max Q.e = 0.56 S.t/3SZ 27,Y8/3 n 0=1QE ; Q—Q.� 0 Eo = 1 1 + Sill / Sv 8/3 1+ S,,ISr —1 (T 1W)-1 DP 13 Street Capacity.xls, Q-Allow 817/2008, 1^1:54 AM s J -I ' K 2 19 18 17 16 1 013 c ZI :E12 CL 0 0 E:10 fi CmL U) 07 ILL fi A0 3 2 0 2 4 6 a 10 12 14 16 18 20 22 24 Q for 1/2 Street (cfs) -0-Flow Depth (in.) --9- Flow Spread (ft.) Q for 112 Street (cfs) Flow Depth (in.) Flow Spread 0.00 7V'- 25 �',I 65 -07,146 0.50 U5 �-7Vf�V'256 ,I�-.11.00 n '3.03 � w.--I -1931 -50 ;'3.44 6 2 ---1175 rt3;80 7111. '6f06 Z25 A! :86 4�t'0,7i -06 .2,50 ,Z.'50 -Y.,Z75 3.00 Y� .2 6 z N-.27 .62 ..,A4.36 6F 8,95 1335 9.56 425 %4 .60 M*a'"9'.85 4 6T,50 6 OA 2 .7 5 s i 4i74 �O� 38 ,5.00 G��.'fi,4:80 .8 3 6 26 !34:87, -10� ;88 5.50 575 i, ',f 9 9,.31e1134. 0 -,,4U5:05 k,,i 56 6.25 17SE 4'5 .110 -650 -8,5:221' 12.19 -=:--:-.:-7,25 7 50 5371- 231 2r77, 7-79 5.42 ?'�5 295, .. `�8100. 5 ,-46 3 it 3 "8125, A , 5.5 1 !!M�I 331 8-50 - 3 ;48 8'75 t5'60'. M�A 3.65 -;9:00 5-64 3-81 9' :25 i ',5.69 jl,,3.98 9- .50 5.73p'-�T 1,4' 4; 975 XwW5:77 "16.00 'A 5 : 8 1 �t"A 14.45 210175 5:93 U,1;14.90 15'.97 Ao- ':�15:04 -A ­11.25 ':7 '15.18 e,�,i.,:-qlB.08 5.,46 6 12 05f6o ZLf'�'6 15 zZ� �T,11 5:7 3 01 6 18 - & 8 6 DP 13 Street Capacity.xls, Q-Allow 8r7/2008,11:54 AM Design Flow = Gutter Flow + Carry-over Flowl OVERLAND SIDEI STREET �O FLOW ND ' ® F GUTTER FLOW PLUS CARRY -`OVER FLOW e ® F— GUTTER FLOW INLET INLET 1/2 OF STREET er_ Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): `Q Geographic Information: (Enter Subcatchment Area Acres Percent Imperviousness % NRCS Soil Type : A, B. C, or D User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 Bypass (Carry -Over) Flow from upstream Subcatchments, Qb of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, tc = Calculated Time of Concentration, T. _ Time of Concentration by Regional Formula, T. _ Recommended T. _ Time of Concentration Selected by User, T. _ Design Rainfall Intensity, I = Calculated Local Peak Flow, Q, = Total Design Peak Flow, Q = DP 15 SUMP.xls, Q-Peak 10/2212008, 5^:52 PM ' Project: Inlet ID: "' TBACN TCROWN SeACK .T. TMAx W TA Street _ town. HCuxB d y S x a 5� mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) iing's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) ' Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W (T - W) ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carded in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) ' Maximum Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section 'd Product: Flow Velocity Times Gutter Flowline Depth T.. = 19.5 ft SeACK ` 0,0200 ft. van. / ft. hodz nBACK HcuRe=' ,._. �.. 6.00 inches TCRowN = _- - _ 67,0 ft a = 2.00 inches W = !. .; ZOO ft Sx = . *0:0050 ft. van. / ft. hodz So = ft. van. / ft. hodz nSTREET Minor Storm Ma or Storm T. ;..'251 ft clA = 6:00 inches �'! X=yes SW = y= d= Tx = E. = Qx = Qw= QBACK = QT= V= V•d = 3retical Water Spread TTM = iretical Spread for Discharge outside the Gutter Section W (T - W) Tx TH = er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Ep = 3retical Discharge outside the Gutter Section W. carried in Section TxtH Qx TH = at Discharge outside the Gutter Section W, (limited by distance TCRowN) Qx = harge within the Gutter Section W (Qa - Qx) QW = harge Behind the Curb (e.g., sidewalk, driveways, &lawns) ABACK = it Discharge for Major & Minor Storm Q = , Velocity Within the Gutter Section V = Product: Flow Velocity Times Gutter Flowline Depth - V'd = e-Based Depth Safety Reduction Factor for Major & Minor (d ? 6") Storm R = Flow Based on Allow. Gutter Depth (Safety Factor Applied) Qa = iltant Flow Depth at Gutter Flowline (Safety Factor Applied) d = iltant Flow Depth at Street Crown (Safety Factor Applied) dCROWN = Mirror Storm Major Storm -+N-"' ^,'D.0883 V.; 0.0883 8,8 0.0 a 1':0:0 '-�;sUMP, "%,;SUMP., 'L OA IV � .d00 Minor Storm Maior Storm 10:1,11' :' 0:1:1;1. 1'SUMP„ j •'2sUMP_ ;' SUMP, `:^SUMP, Rift inches inches ft cis cfs cis cfs fps cis cis cfs cfs cfs fps cfs inches inches Minor Storm Major Storm towable Gutter Capacity Based on Minimum of Q, or Q. Q. ,. = FT-�sUMP L ,'IsUMP,, cfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowable capacity OK - oreater than flow alven on sheet'Q-Peak' DP 15 SUMP.xis, Q-Allow 10/22/2008. 55:52 PM q I Project Inlet ID ,F--Lo (C)-----7r H-Curb V v o NN P Le (G) on Information flnoutl MINOR MAJOR of Inlet Type I Depression (additional to continuous gufterdepressIon'&fmm'Q-AJloW) inches bar of Unit Inlets (Grate or Curb Opening) Information MINOR MAJOR th of a Unit Grate —'..WA feet i of a Unit Grate WA ........ .. feet Opening Ratio fare Grote (typical values0.15-0.90) A,, ................................................ g Ing Factor for a Single Grate (typical value 0.50 - 0,70) Of (G) = :! N/A :: N/A r Weir Coefficient (typical value 3.00) C. (G) = NIA f Orlike Coefficient (typical value 0.67) C. (G) = Opening Information MINOR MAJOR th of a Unit Curb Opening L. (C) = .. ....... feet it of Vertical Curb Opening In Inch" H. ........... ... 040 ...... ... .... inches it of Curb Orifice Threat In Inch" H� Inches of Throat (see USDCM Figure ST-5) Theta degree Width for Depression Pan (typically the gutter width of 2 feet) WP feet ging Factor for a Single Curb Opening (typical value 0. 10) C, (C) .... .... 0,40 .. Opening Weir Coefficient (typical value 2 3D-3.00) C. (C) ging Coefficient for Multiple Units ging Factor for Multiple Units a as a Weir Depth at Local Depression without Clogging (0 cfs grate. 6.8 cis curb) Raw Used for Combination Inlets Only Depth at Local Depression with Clogging (0 so grate. 6.8 cis curb) Row Used for Combination Inlets Only B as an Orifice Depth at Local Depres slon without Clogging (0 so grate, 6.8 cis curb) Depth at Local Depression with Clogging (0 efs grate. 6.8 cfs curb) MINOR MAJOR Coef ..: :x — 1"X NtH Clog d. cl=..,., d.. d., ........... tAl MINOR MAJOR d.NIA:::::::::;. ............ d- fiches :ches ches iches Resultina Gutter Flow Death for Curb ODenina Inlet Conocity In aSump MINOR MAJOR �Ioqqlnq Coefficient for Multiple Undo '* Coef - -logging Factor for Multiple Units Oki 'urb as a Weir, Grate as an Orifice MINOR MAJOR -low Depth at Local Depression without Clogging (0 cfs grate, 6.8 cfs curb) clM = inches �low Depth at Local Depression with Clogging (0 eta grate. 6.8 cis curb) d.. = 60 inch:: .u,b as an Orifice, Grate as an Orifice MINOR MAJOR low Depth at Local Depression without Clogging (0 cfs grate, 6.8 so curb) d. 1: .4.80 inches low Depth at Local Depression with Clogging (0 so grate, 6.8 cis curb) d.= inches AAft ;.,h.. Inlet Length Inlet Interception Capacity (Design Discharge from 04%ak) Itant Gutter Flow Depth (based an sheet Q-Allow geometry) Itant Street Flow Spread (based on sheet Q-Allow geometry) L= 0. = d T DP 15 SUMP.)ds, Inlet In Sump f-80 10/22/2008, 5:52 PM 40......... .......... ......... ....... .....................................................................................................:.............................................. 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 w 23 LL_ v 22 A a 21 20 N L 19 V —cam 18 r a 17 w 16 15 14 13 12 11 10 9 8 7 H 6 J, 5 r' 4 r 3 .�.. 2 1 } 0 ' 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q for 112 Street (cfs) - -GLEWi ....... On Oc ... Nd Ul -o Nd Wed • RWWW D.WW-w-R.,WW QW, FbnDad,M) R.Dmdl(hj Fb DepN ei.) Fb S,e (1.) DP 15 SUMP.)ds, Inlet In Sump V> ^a k 10122/2008, 5:52 PM Q Intercepted Curb Weir nFlow Curb Orif. nFlow Not Used Not Used Reported Design Reported (cft) Depth (in.) Depth (in.) nFlow Depth (in.) DesignFiFlow Spread (ft.) 040 % . . ..... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % ... . ... ... 1% OD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................... ..... ....................... ROD. . . . . ... .. ..... ... .......... N ...... —v: - 6-00, .... ....- ........................... -A 7. 0. Wr . F� ...... ......... .... . .. . ..... ........... ....... . .......... ................. ......... .2 ........ do- 3 . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . Y. .1 7' . . . . . . . ................. . . . . . . . . . . X: :2A . ......... ....... 277. M �ww .. .. ........ ...... ..... ..... . ......... . ..... X2 ........... 'X ':V�' . ...... 1300 t. "'W ........... .... ...... . ...... . . . . . . ... . . . . .1 .4 M . q6 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 >`18.00�:A .4 d. 1.6:.::" ........... A 76::::� ........ .. .... .......... ........ ........... ....... . ..... . :A 1-1-1 1 6 . .. . . . . . . 5 ... :.32 : ...:66 :%:. % X . ....... . . ...— 900 , ........... . .... . . - ...... 2000 5.M] X x 59;99 . . . . . . :w. .................... ....... ....... ......... ;n "d .. X.' .... .......... ............. .................. ..... ............................. 54 ....... .......... - ... ............ ............. ...... 67.00. n,00: %240D V96:: V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67A0 77726.00 276 M . . . . . . . . . . . . . . . X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 67,00 , : : . 00B,Qi . . . . . . . . . . . ... - : - - .. X X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j. .4... . . . . . . . . . . . X.: 30.00 . . . . . . . . . 7 05V. . 8 26. . . . . . . . . . . . . . . . . . . . ;00 XX'4"' utr®r . . . . 6 78. . . . . . . . . . . . . . 60 r: F X1 67 34.00 ......... .. 24 !®r ...................... ssAD ................... ...... vv.r v v X.. -.0 v r -x4 .. . ... ....... X 1 37-0Q x ............. r3800V .4 .67. Q,42 X. . ..... 14 4 64: 4'r yY7- .1 DID 15 SUMPAs, Inlet In Sump 10/22t2008, 5:52 PM ' Design Flow= Gutter Flow+ Carry-over Flow OVERLAND SIDE �OVERLAND F I STREET I ® <—GUTTER FLOW PLUS CARRY-OVER FLOW `YQ ® F GUTTER FLOW INLET INLET 1/2 OF STREET r_ r— Design Flow: ONLY if already determined through other methods: Minor Storm Me,r Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q 7.60......,:,;L'i$:9.Q: cfs *If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type - ... JA, B, C, or D Site: (Check One Box Only) Site is Urban Site Is Non -Urban Slo a R/ft Len h ft Ovedand Flow = Gutter Flow = =(:r-P11((:y+Ic)^Us Design Storm Return Period, T, _ Return Period One -Hour Precipitation, Pr = Cr= Cr= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Qy = for a Catchment: Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, Vo Gutter Flow Velocity, VG Overland Flow Time, to Gutter Flow Time, to Calculated Time of Concentration, T. Time of Concentration by Regional Formula, T. Recommended T. Time of Concentration Selected by User, T, Design Rainfall Intensity, I Calculated Local Peak Flow, Q, Total Design Peak Flow, Q DP 16 SUMPAs, Q-Peak 10/13/2008, 8:30 AM ' Project: Inlet ID: '�--Te�cK Tcaown T. TM,x Sack W T, Stre CC rov Re Q Q.HcuRe Gr mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) Ung's Roughness Behind Curti of Curb at Gutter Flow Line ,a from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression vable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W, carried in Section TX harge within the Gutter Section W A - DO harge Behind the Curb (e.g., sidewalk, driveways, & lawns) [mum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth 7feUcal Water Spread 3rel cal Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) )feUcal Discharge outside the Gutter Section W, carried in Section Tx TH 'al Discharge outside the Gutter Section W, (limited by distance TLRMN) harge within the Gutter Section W (Oa - Qx) harge Behnd the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) 195 ft Sa,cx 00200 ft. vert. / ft. horiz HLURB = e " 6.00 inches TcRMN= j t �= 35.0 ft a = "2.00 inches W "2.00 ft SX= J 00240 ft. ven.l ft. horiz So = " .-.a.0.0000 ft. vert. I ft. horiz nsTRSET ?0.0160 Minor Storm M2'or Storm R cl , = inches x =yes �"•'350 z n x Minor Storm Major Storm SN = Rift y = inches of = inches TX = ft Eo = QX = cis Qw = cis Qenox - Cfs QT = cfs V = fps V-d = 0.1073 " �=0..7073 s ' 6.00 � 10!OB 2:08 ,,;.;'SUMP � UMP Minor Storm Major Storm TTH = ft TX TH = ft Eo = QX TH — cis QX = cis Qw = cis Qe = cis Q = cfs V = fps V•d = R= % = cfs d = inches doRMN = inches .0 i1' "'%"SUMPlft+;a",'T SUMP „ Minor Storm Major Storm lowable Gutter Capacity Based on Minimum of Q. or O. Q,o,,, = ° .: ;SUMP. Q",. ,`„':$UMP„ cfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' DP 16 SUMP.xls, Q-Allow 10/13/2008, 8:30 AM ►.-{� D —e)I Project = Inlet ID = f—Lo (C)--�' H-Curb 11 H-Vert w 0 Wp W Lo lGl of Inlet it Depression (additional to continuous gutter depression's fmm'Q-AIIoW) bar of Unit Inlets (Grate or Curb Opening) a Information Ith of a Unit Grate h of a Unit Greta Opening Ratio for a Grate (typical values 0.15-0,90) ging Factor for a Single Grate (typical value 0.50 -0.70) e Weir Coefficient (typical value 3.00) e Orifice Coefficient (typical value 0.67) r Opening Infornmdon Ith of a Unit Curb Opening ht of Vertical Curb Opening In Inches ht of Curb Orifice Throat in Inches e of Threat (see USDCM Figure ST-0) Width for Depression Pan (typically the gutter width of 2 feet) ging Factor for a Single Curb Opening (typical value 0.10) i Opening Weir Coefficient (typical value 2.303.00) i Opening Orifice Coefficient (typical value 0.67) rhlna Gutter Flow Depth for Grate Inlet Capacity in a Sums, ging Coefficient for Multiple Units ging Factor for Multiple Units e as a Weir Depth at Local Depression without Clogging (0 cis grate, 7.6 cis curb) Row Used for Combination Inlets Only Depth at Local Depression with Clogging (0 efe grate, 7.6 cis curb) Row Used for Combination Inlets Only e as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 7.6 cis curb) Depth at Local Depression with Clogging (0 cis grate, 7.6 cfs curb) ;Ing Coefficient for Multiple Units ling Factor for Multiple Units as a Weir, Grate as an Orifice Depth at Local DepresMon without Clogging (0 cis grate, 7.6 cis curb) Depth at Local Depression with Clogging (0 cis grate, 7.6 cfs curb) as an Orifice, Grate as an Orifice Depth at Local Depression without Clogging (0 cis grate, 7.6 cfs curb) Depth at Local Depression with Clogging (0 cis grate, 7.6 cis curb) Juno Gutter Flow Death Outside of Local Depression Inlet Length Inlet Interception Capacity (Design Discharge from Q-Peek) Itant Gutter Flow Depth (based on sheet Q-Allow geometry) Itant Street Flow Spread (based on sheet Q-Allow geometry) Itant Flow Depth at Street Crown Type - +4w= No= Io(G) W. Arco C,(G) C. (G)= C.(G)= L, (C) _ H„a= H. Theta = Wo= G (C) C. (C) MINOR MAJOR log : ............:.:::3 a0 ........:.:. i:i.... $:f)0 Inches MINOR MAJOR NtA feet ...............::SNtA ... ..feet WA NtA fA IX1.11:11:NIA MINOR MAJOR Cost=:::::>::<!E?>i3::N%a:::il:�:'%>:<::::`'N(A Clog = .........:::;.:.;:WA _.:.............. d., _ cl., d.. cl ' = nches nches nches nches MINOR MAJOR .. da = . ...:::,WA -:>:,.: F1YA Inches inches ................................................ I "i1VfA ` -' Htk MINOR MAJOR Coef= Clog=:sags�bu MINOR MAJOR dw= ::': i`+F,67::<:I;;y3;:>,;:B:fi() Inches d..= $82 6`8$ Inches MINOR MAJOR da = ;i3.e4 ...? Inches L= da T= DP 16 SUMP,Ids, Inlet In Sump 10/1312008. 8:30 AM 40......... ........... ......... ......... .......... ......... ......... ......... .......... ......... ......... .......... ......... ......... .......... .......... ......... ...... ............ ......... 39 38 37 35 34 33 32 31 30 29 28 27 i 28 25 24 {L 2.3 V / 22 $ 21 N 20 m t 19 c 18 L / r a 17 i 16 15 14 13 12 11 10 9 7 8 5 4 3 s 2 L� 1 .�s ,cr 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q for 112 Street (cfs) —.�—WbW& •--+•-WN Odf--n•••Ndu1 —o—Nd Used v Rwa Da — Rg WDead, Fl Dlffioo F Dvwch) FI DWN(n_) F Speed(I) DP 16 SUMP.)ds, Inlet In Sump D-tau 10/1312008, 8:30 AM 1 1 1 1 1 1 1 1 1 1� 1 1 1 1 1 DP 16 SUMP.)ds, Inlet In Sump D-13-1- 10/13/2008, 8:30 AM ' Design Flow= Gutter Flow+ Carry-over Flow ❑VND ND STREET I �O FLOW LOW F—GUTTER FLOW PLUS CARRY-OVER FLOW le ® FGUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: Minor Storm Ma or Storm ' (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): 'Q =.449o[ .....Ji> ....i4AA0. cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area Acres ' Percent Imperviousness NRCS Soil Type - A. B, C, or D Site: (Check One Box 0 P AA Slo a ftlft) Length ft ' Site is Urban Overland Flow = Site Is Non -Urban Gutter Flow = Rainfall Information: Intensity 1 finrhlhrl = C, • P. I f C. + T_ 1 A C_ Minor Rtnrm M inr Ctnrm ' Design Storm Return Period, Tr = Return Period One -Hour Precipitation, Pt = Ct= C2= C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS = Bypass (Carry -Over) Flow from upstream Subcatchments, QD = a uarcnmenc: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T. =. Time of Concentration by Regional Formula, T. _ Recommended T. = Time of Concentration Selected by User, T° = Design Rainfall Intensity, I = Calculated Local Peak Flow, Qp = Total Design Peak Flow, Q = ' DP 17 ON-GRADE.Ids, Q-Peak 10/1312008, 9:21 AM Q ' Project: Inlet ID: 'I TBAOR TCROWN SBACK T, TMAx W Tx Street Crown y Qw Qx/ —� H CURB d S a 0� num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) iing's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Dne for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) _ er Depth without Gutter Depression (Eq. ST-2) er Depth with a Gutter Depression Mable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) '.harge outside the Gutter Section W. carded in Section Tx harge within the Gutter Section W (Or - Qx) '.harge Behind the Curb (e.g.. sidewalk, driveways, & lawns) [mum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W (T - W) ter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W, carried in Seaton Tx rH rat Discharge outside the Gutter Section W, (limited by distance TCROWN) Marge within the Gutter Section W A - Qx) ;harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm , v Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ie-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm : Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultant Flow Depth at Street Craven (Safety Factor Applied) TeAac i�.... x.15 ,195 R S ox 02ft. vert. I R. horiz neACK = - # 350 HCUm _ ..................... __. ; �- ,6!00 inches TcaowN = " • • --35D ft _ a = Z'2.00 inches W = 2.00 ft Sx 0.0200 ft. vert. I ft. horiz so- 0.0050 ft. van. / ft. horiz nsTREET — "Y:..,'D.0160 Minor Storm Major Storm TµAx= ,25:0 "R35.0 ft dMAX= 6.00 ` ,18:0- inches X"*4.7- x = yes Sw: y' d: Tx: Ep: Qx: Qw: Qom: QT: V V'd TTN : Tx TH = Eo: OxrH: Qx= ow' ABACK' Q= V= V'd = R= Qa: d= dCROWN _ fi i6:1033 k =`:0:1033 ?i# Tfi.00 Ar ' x8.40 ZA a-v' 06 3,�t. :'.':'A60440 ¢'S�zF:nR23.0 wNWM33`o rY' r� }.6.246 x'�WNt;0:17,1; 6816.4 Uinnr Crnrm Uninr cInrm v ,. ' —' 0 378 ;,245:7 nn 23.;1'. t.�x'.up7:6 ,44736 ;i60 tlft nches nches t ;fs ;is ;fs ;fs as (5 fs fs is fs Us Is fiches fiches Minor Storm Major Storm towable Gutter Capacity Based on Minimum of Q. or QA OMbw' ' `v 7 7:8 ,�,?�''`T5273.% cfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' DP 17 ON-GRADE.xis, O-Allow 10/1312008, 9:21 AM - v t Street Section with Flow Depths 20 19 18-- ---- ___.--.—.. _........_.... ..._a3_._._ .A ..._._.._... . ...._......... ......._._._... —-� -.._..._.. 17 16 15 14 y 13 m L C 12 C 11 r X X X X x% X X a 10 m 0 9 .L Lm 8 2 7 6 ----- ---Q-E7 -- ---[3 — 5 4 3 2 1 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Section of 112 Street (distance in feet) —Ground elev. -Et- Minor d-max -A- Major d-max --X- Minor T-max x Major T-max Qs = 0.56 Sir /3S112T813 n Q=1..E ; Q,P=Q-Q. ° EO _ 1 1 + 8/3 l+ S,r/Sr -1 (T IW)-1 DP 17 ON-GRADE.xis, O-Allow 10113/2008, 9:21 AM —J:21C) 20 1 1 is 17 r 16 15 re I 1-4 U) 0) 013 c -C:%2 CIL 4) if 0 ELIO cc cc O. U) �r 7 0 LL 14 2 I n r I 0 2 4 6 8 10 12 14 16 18 20 22 24 Q for 1/2 Street (cfs) -0- Flow Depth (in.) --B- Flow Spread (ft.) Q for 1/2 Street (cfs) Flow Depth (in.) Flow Spread (ft.) 0 A ,216 1,.7- 6 711 A:Ii 0 .7 5 Q-T 9 '7XV-446 mm% 0 ,oRl 5'0F; "W-S.88 �i -S.88 -;0 7.84 7 ? 5 K, 8i52 `-114'11 9, 9, 4 'X '910 Z50 1021; 235 -56 0:69 AN- 3.00 'J' 6 7, '13 125 V—,*77,F kt4f 56, 3:50 A5'�z--!06 2.33 ";14.00 5.04 -,-.-12.69 04.25 �-M- - 3. 04— �js 450 7ff 5.21 'T 13'3T A Y� 31169, 5.00 1536 W� 5'43 Zftkl'4r30 'n-535 F6. 00 L SIA, --OUN 11.8 5;40, -,,�,'15.76 rz—r-t-fl 5.66 6.7 5 zu5i82 U. - 15.911 7M, --,700 87 5.93 639, 1,1�;IU2 7.7 04 !�n7l&85 0 F, vK,,6'09 . T7 0 , _H8.25.j, -'15 T29 8.50 T,;,6'20 TF j 7:5 1 �l 7:72 9.00 i7: 630 --,'a'4�,AT92 6.35 g1 8.12 �9 �50 '39 V,'� �5`18'32 ' 9.15 K, 44 10.00 Y,�', 6:49 7Q NK O� 5 7 j'_' &62 ram„` `y19i25 100 -1R,,",k-;066 --� I .43. i'll- �2 5 49'U-6:70 ;MK'19.60, V 0 .5 0,�ffA675 .7 8 .75 M,�6:79 jUq 0 2 0 82 R 2i�.?25 1 F 'e', ...a6 .8 7 1 2362.R8 §4 MM 1 Zk g 20:44,1 DP 17 ON-GRADE.xis, Q-Allow 10/1 X2008, 9:21 AM cl . ?z a .3 � r': INLET'ON A.CONTIN000S,GRADE :; T­- Project:r ro *'--'-r£,-^p^,,-C--'*�' �..-4s .msr�rt.r=�.:v.ca., x�..-.c v�.*w;>-rs.;, ,�'FT'•rtrar-w"^a"'"R",�-�- e"<�`s Inlet ID r�t.As: �'�:'.., f+2'r...a'1"«."-. �.,- r. zr 4;L"t 9w ,i--Lo (C) H-Curb H-Vert Wo Wp W Lo (G) of Inlet Type = Depression (additional to continuous gutter depression'a' fmm'O-AIIoW) aLOC. = Number of Units in the Inlet (Grate or Curb Opening) No = h of a Single Unit Inlet (Grate or Curb Opening) L. = of a Unit Grate (cannot be greater than W from Q-Allow) W. _ ling Factor for a Single Unit Grate (typical min. value = 0.5) CrG = ling Factor for a Single Unit Curb Opening (typical min. value = 0.1) CC = t Hydraulics: OK - Q < maximum allowable from sheet'Q-Allow in Discharge for Half of Street (from Sheet Qv -Peak) Q. = r Spread Width T = r Depth at Rowline (outside of local depression) d = r Depth at Street Cra vn (or at T..) dcaoWa = of Gutter Flaw to Design Flow E. = arge outside the Gutter Section W, carried in Section T, Q. = arge within the Gutter Section W Q.,= arge Behind the Cum Face Ce K = I Flow Area A. I Flow Velocity V. Length of Inlet Grille Opening L of Grate Flow to Design Flow E..ca.ra r No -Clogging Condition um Velocity Where Grate Spash-Over Begins V. eption Rate of Frontal Flow Rf - eption Rate of Side Flow R. eption Capacity - Q�- r Clogging Condition ing Coefficient for Multiple -unit Grate Inlet GrateCoef= ing Factor for Multiple -unit Grate inlet GrateClog = ive (unclogged) Length of Multiple -unit Grate Inlet - L. _ um Velocity Where Grate Spash-Over Begins V. _ eption Rate of Frontal Flow Ri = eption Rate of Side Flow R = J Interception Capacity Q. _ -Over Flow= Q.-%(to be applied to curb opening or next d/s inlet) Qb= or Slotted Inlet Oaenino Analysis (Calculated) xlent Slope S. (based on grate carry-over) S. _ red Length LT to Have 100 % Interception - LT = No -Clogging Condition ve Length of Curb Opening or Slotted Inlet (minimum of L, LT) L = :ption Capacity Q.= ' Clogging Condition ing Coefficient CurbCoef = ing Factor for Multiple -unit Curb Opening or Slotted Inlet CurbClog = ve (Unciogged) Length - L. = I Interception Capacity 0. = -Over Flow = QMea.TII-Q. Qb = lam Inlet Interception Capacity Q = Inlet Carry -Over Flow, (Oow bypassing Inlet) Qb = ire Percentage = QJQ_ = C % = MAJOR t } 2 42 ';'.,'tk5.05 sq it .ea0�3:03 fps inchi MINOR MAJOR it MINOR MAJOR+ H �,Wmii,Yz. f fps 77777777777 cis MINOR MAJOR MINOR MAJOR MINOR MAJOR MINOR MAJOR a IT343 '�%a; 572 cis 12d7 ice,"{ a" 9:98 cis O DP 17 ON-GRADE.xIs, inlet On Grade 1 J _ 1� )L 10/1312008. 9:21 AM 20 19 18 17 m 16 c u c 15 t m 14 O LL 13 12 Q Y of 11 / a n a, 10 N 0 9 LL % 8 .u.. ba 0 / b '7 F I m 6 o- to 5 m � - o � 3 2 qq r/ 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 for 1/2 Street(cfs) —e—OmWrc.,W (cM1) --e—QBYM (ch) --s--Spread T (R). U1 by TLRMN Synod T (R). Not UntlW by. oaplh dlNchaa) T{R.N DP 17 ON-GRADE.xis, Inlet On Grade D —q3 1011312008, 9:21 AM Q for 1/2 Street Q Intercepted Q Bypassed (cis) Spread T (II), Spread T (R). Not Flow Depth d (cfs) (cfs) Limited Limited by (inches) by T-CROWN T-CROWN 0.00 N, 0.00 W"O.00 "0-.00 00 F_ 656 ui' 6.50 J.50 l�d v­­ z0.00 11 ------ '2:28 2.28 6.112 Al z 71_�6,12 -_3 47, 1 50 -1:48 �0.02 i7:84 v7.84 w,­Z ,33!88 00 "'i 84 t "ISIN11,14 ;%NMr 4.45 ,­Z39 0.61' v"nti%13 2 _!M 5 '�7ml.n 7X UMN''. 67, 150 --2.61 V . '_�0:89 95 8 Z .109 Yy'i-505 4.50 2-99 I . 5 1, 13:3 7, 1, ? U; V ,"I '.'fT q.3 TK0 15 �185 Mlklllz�41A, V4:00 Yx1,4: 0 0 -jm Tj11& &36 J,, Ez, "5.50k, Z 6.01) 3.45 jz��a' .1 2155 X p 5:j�4 6.50 6.66 l 15.66 _,,tq 15 76 -372 r15 5 88 7:50 1,2^ ^'3.65 .:Z 16.62 L -_w­_�,r.1,16;62 -;5.99 ,8 : 00 V, 403 . ..... .... Q4 X08 7' P.1 :6 .... . . . . ..... ... . . ..... . 9 00 1 '±T,416 -,i461 7§2 92 30 9.50i ' '&4'30 "-1520 ,Fc.1832 _6.401 ---- -- I— `_c'40 -r- 560 '1870 F6.49 ir m� gw*�w �1 .5 0 .5 �'4' 0 -0 1 . 7, 9 X� 1907 .58 6.58 ....... . . . 1100 '19.43 " �9:43 _3K .6666 LA 1150 V 6.80 4y19. 8 P., 12+00 17 41 261,1 & .83 12.50 --"4'8 8 i'� 62 4 Nz",�' 2o.,44 ,,,-:2o:4,4 Ut 43.00 .0 3 �'C 20.716 20 _7 : 6 Ii98 8451�M?g' ,'.,21�06 rVC�k�V,21T(3 " .0 f-,7 5 14:00 -14 8 6 '1206 4 2f36 �'T 3 14�50 5122 28 121�66 2 1 U :20 -A V94 5* Wr'R'r!T# 5: 0 ;,1,5.38 0'12 We_,2222 k�'� �22 22 Al, -,,7 3 AF5:46 110.54 4'� �"222.46 �41� 22.49 -K-MEER-Z-z -J_6__.5_0 z t J5.54 _,.10.96 ',22:76 4,2216 40 .61 'jV39 "1123.02 x11 ;,-9102 ";7;53 17.50 3.26 "A. 8.00 0 k"C5J(3 !!512124 23.53 7_65 �­ .. ...... .. . x-rA ._:A&50 :N „12.67 1 12V7 23. '-A 9.00 5_90 �f' 0".w "4w' , _,�7176 _�-Jq.60 -597 fa;40.13.53 2 4.25 .2 `24 5 ,,7:82 20.00 L -Ei% 04, "v-2 Q _ 1 _t -,24 .48 ��ZJ;88 DP 17 ON-GRADE.xis, Inlet On Grade 1011312008, 9:21 AM ' Design Flow= Gutter Flow+ Carry-over Flow ' ❑ FLOW SIDE �OV ER 'Y I STREET •� ® c GUTTER FLOW PLUS CARRY-OVER FLOW F ® ; GUTTER FLOW INLET INLET 1/2 OF STREET ' II (local peak Bow for 112 of street, plus flow bypassing upstream subcatchments): *If you entered a value here, skip the rest of this sheet and proceed to she Geographic Information: (Enter data in the blue cells): Site: (Check One Box Onl Site is Urban R Site Is Non -Urban: Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( Cz + Te .Q ' Design Storm Return Period, T, _ Return Period One -Hour Precipitation, P, _ C,= Ci= Cs= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Qb = of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T. _ Time of Concentration by Regional Formula, T. _ Recommended T. _ Time of Concentration Selected by User, T, _ Design Rainfall Intensity, I = Calculated Local Peak Flow, Q, = Total Design Peak Flow, Q = ' DP 19 SUMP.xIs, Q-Peak 10/9/2008, 11:55 AM rJ-�5 �TBACx TCROWN T. TMAX SBACI( W T. treat grow _ rown HcuRB d y S a , num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression _ Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor 8 Major Storm Allowable Depth at Gutter Flow Line for Minor 8 Major Storm Flow Depth at Street Crown (leave blank for no) ' Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W IT - W) ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W. carded in Section Tx Discharge within the Gutter Section W (QT - QX) Discharge Behind the Curb (e.g., sidewalk, driveways, 8 lawns) ' Maximum Flow Based On Allowable Wafer Spread Flow Velocity Within the Gutter Section 'd Product: Flow Velocity Times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W IT - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) orefical Discharge outside the Gutter Section W, carried in Section TXTH let Discharge outside the Gutter Section W. (limited by distance TCROWN) :harge within the Gutter Section W (Qd - Qr) ,harge Behind the Curb (e.g., sidewalk, driveways, 8 lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major 8 Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied). ultant Flow Depth at Street Crown (Safety Factor Applied) TRACK >11.3 ft SBACK- _ 00200 ft. van.l ft. h oriz neACK - ,::'" " ' 0 0160 HouRe- 4^`.6.00 inches TcaowN 34'.5 ft a :- 2.00 inches W = Sx = 0.0200 ft. ft. vert. I ft. horiz So = 6.0000 ft. vert. I ft. horiz neTREEr =- a D 0160 TMA,- d� - Sw y d Tx: Eo Qx Qw QBACK Or V Vd TTH TXTH' EC; Qx TH Qx Qw QBACK Q V- V•d' R Qd d dCRCWN MOO •345 .6A0 - 18.00 x . 11, 4 01033 i R!!01033 �. 66.60 ,i 'T 8 28 :?23'0 2:5 SO, �U,r 0:0 :; 'gFd ''r 'r SUMP.. i'iy rsJSUMP„ ftlisump, $ Nc",--SUM1iP_, t Tches (=yes tlR Tches Tches I is is fs is 3s I Its :fs :is :fs :is Ps :fs nches nches Minor Storm Major Storm lowable Gutter Capacity Based on Minimum of Q, or QA Q,d,Y.,= 3'---;r.-,;,,SUMP, �•;�� iumU ., cfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowable caoacity OK - oreater than Flow given on sheet'Q-Peak' DP 19 SUMP.xis, Q-Allow 101912008, 11:55 AM of Inlet I Depression (additional to continuous gutter depression 'a' fmm'Q-AIIoW) bar of Unit Inlets (Grate or Curb Opening) . r Infomation th of a Unit Grate i of a Unit Grate Opening Ratio for a Grate (typical values 0.15-0.90) ling Factor for a Single Grate (typical value 0.50- 0.70) Weir Coefficient (typical value 3.00) t Orifice Coefficient (typical value 0.57) Opening Information th of a Unit Curb Opening it of Vertical Curb Opening In Inches it of Curb Orifice Throat in Inches , of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feet) ling Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 2.303.00) ging Coefficient for Multiple Units ging Factor for Multiple Units a as a Weir Depth at Local Depression without Clogging (0 cfs grate, 14.7 cis curb) Row Used for Combination Inlets Only Depth at Local Depression with Clogging (0 cfs grate, 14.7 ds curb) Row Used for Combination Inlets Only e as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 14.7 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 14.7 cfs curb) ling Coeffic nt for Multiple Units ling Factor for Multiple Units as a Weir. Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 14.7 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 14.7 cfs curb) as an Orifice, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 14.7 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 14.7 cfs curb) Ilina Gutter Flow Depth Outside of Local Depression Inlet Length Inlet Interception Capacity (Design Discharge from Q-Peak) Itant Gutter Flow Depth (based on sheet Q-Allow geometry) Itant Street Flow Spread (based on sheet Q-Allow geometry) Kent Flow Depth at Street Crown Type = aara = No = L. (G) _ W. = Aae= C, (G) _ C. (G)= C. (G) _ L. (C) _ I'1wn = Theta = W, G (C) _ C. (C) _ MINOR MAJOR txyp72jipe RCurti:Opemrg:-_:_ ...............::'>3.?30 ........:..:.....3:00 inches 3 3 NA WA NTA MINOR MAJOR Cost= Clog = "iM1A N7A d, _ da..,,, _ d.. _ d..ee = set set nches nches inches inches MINOR MAJOR da= ....::. ;::::::..:::: :.::.::KA . is run .ltiA MINOR MAJOR Clog= MINOR MAJOR d. _ � .: ;:g,7g �.. :i.:.3@'OZ inches d„= 00 inches MINOR MAJOR da= .: <>4.2tk 2S.a0 inches 9 Inches L=go G.= d=-: T= rea= feet cfs inches it>T-Crown inches 1 id 1)0 (?; 'j2,0@ .........:::;....::.B.S ..:.. .....::: �... i:.... 34;8 -i:On0 ii 1$,BO DP 19 SLIMP.As, Inlet In Sump f — f-� 10/9/2008, 12:23 PM 40......... .......... ......... ............................................. ......... ....................................................................................................... 39 38 37 38 35 34 33 32 31 30 29 28 27 26 25 24 ao 23 LL_ v 22 N a 21 N 20 t 19 0 18 t o, 17 w 13 18 15 .14 13 12 11 10 9 8 7 i 8 ,A' 5 ..r 4 !✓ 3All .E' 2 1 0 2 4 8 8 10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 Q for 112 Street (cfs) —.a-•OUDWv ••..... M6 Olt "•••NMUw --o—Nn Ua * • R,Ww Daps �RVWWD llpn Rw DepM o ) Raw D,Ih (n ) Row DepN pn.) Fb Spre (t.) DP 19 SUMP.)ds, Inlet In Sump Z�_ :� 6 1019/2008, 12:23 PM Q Intercepted Curb Weir nFlow Curb Orif. nFlow Not Used Not Used Reported Design Reported (cfs) Depth (in.) Depth (in.) nFlow Depth (in.) DesignnFlow . Spread (ft.) ** .-*--*� -.:� -�] ��-:.�, . 0,6.0.�. �, , ... � � - -...... � . � ... ....... . a . 00 ..... -- : :��-.-;, - , . - ...... .- �:1 �:,,, .-,.,,.� . � . ... ..... � : 0, . ,::.:: �:, . -:,�, -': 1 .. . . - - -,:..,:.:::. . . I . � . I � . .. ,:..:,:: ::: :;::::::::;;: ,: ::�;::�. . I ,� . ..: � . XY-s. 1. � ... :%,�,:,: :.;::.,:. ::-:::,:::�:: . 7 ��� — ..... ....... O..'ad, . ....... ::;:::�:::,: ::.:-*.::,.:: - ,.: ,.: I ..; ..N.: . ......... �-... .11. A - . ... ...,- ..:,:. . � ..:.�:. .: I � ... I .1 .: I 1. � � .� .,: ..... - ... 4 .. , ... ... ... ...- ...... , ............ � ... � ...... � ...... .; �- - - -.- - .. :1., ..... - %-%.-% � ................ ---- ....... - .... . . . -::,:::. . I 0, � . - :.:: % -,,. -,!� � � . W : ,... I .- , - . � ��. -:;. " , . :. x -�: .: �:. � i . 00 .:., ���:. , .-.. :. :: .. ... ,6 1 � ,.: . . 1. . - �.:: , � : : , � % ::: . �::,. 11 -.*: ,;- , . . .,.,, 4 M . .. . � - ;..;.; ... �..;:;,;:;--;,;:�:; . .... ,". 1 -., �: . .1 ..... - '59 ...... - .: ':,., 1. � - -�-: I .... - .... -1-1--l- � :*.,�*,S.OD ... -�,*.-� - . - - . . . , ;� I :a -1- q.;..,.;..1.1. ,00 ........... 11 --MM-.*,:],-:::-� �..�....--:]:'. . �:: - .... .. ... 1. .. . �.. .. . --- .... .. . �. .. . .. ........ -..., � ............. I.. � .%.. � �, .:�:.:::. .,:s*�::]**,-*,*.*.: d �L 0:& ! v .. . 1. .1.1 .... .. I... I.. - ..... - -.��,i�--�i��.-��,,, -1-: �!�� i � ,i� � , , . . ....'.... ..,. � �. I .... . . - . . , . .. . --..... .. -...... ... , . . . *1. : . : ... -'O'ba ... � ...... . . - -'e.., ... ", � - ': .: -:., . ::., - . ... .. .: * .. I . �b '.�' -' '.' L ' -- , � , & I 4,0.'.�'�'% - .......... I ................ ....... � ..................... ................... I ......... . ,. .- + . +".- L::' -..- . & : 6L_,O­.GI.' . L .:+.10,41: , ,"'....; . . :'L,I:L .' :.....L ...L9$ . . d ,.&� :. :.L,. >.'..'+.", %,.,%:.1. ,-.,.�.. I 0II.r..Lr i.' 4 . .3& +I :# O,8$,­. O'W O."85 069 .''... ,....:.. L:::l I 1 ;21�." + "++: 6�I%-"' ­; ::� :+".+ . J . ,.. L' . 00 L . -1 + I.. I , - I35,.--.I..:.L. ....-�. ..L.6.1m ..L ,- 2.+- - + :0.33 -,:d . ::: .&.: ,-­,X++,+::,L ' :+_2rW .I65I1 . ::: .M +. .- I.I L 1-�,&,& .2:41& ._. -*. QM+1- ._..... .+:_; :I '.: � �+ :, ''­ ­+­"d- , , ,&.­,+­-.,.+­.:. .I t4 .II'L..- �. , ­&''L"'''''' ­ -:. I A...:d,. .......... .. ..... 1_...._'"' ......&&L& ,- &L'1 .a LL" & & t-:%:: : �4�. j::j................. & .,�66�.. b :.. 'L ::�.L :-:. ­ .2.77+ "'"-..-..... ".L+.­3-21,.:­X.- &...d... : X& J !.,��. S.�. Q8 4 3.4.1.+ : �. +. .,... ::13O...:: +: 3,4$ : ;I"O$ I -.++++ . ;.. , I,... %­4,04 :.. -14W 3I8,L +,+I�7 o"W .. 742 , .. Flaw .> ,1Q+.: .I,5I :++ .. ..+ 4,1d F + &76­"... ..�...,. ,+. :1r00 < 41­: ' 7 .. +: . ,% :..... A4,: ,A004, ... ..L ..;L ..d:&.+-Ld.--.'j.�..+---+-. It"*w++. .4,71.& 2;03 .4,11 1120 . ,'...I.. ..:::.IBOG+'L � s;OA L , ;.�2:32 L- .., '. ...'. 5,0j ;! & 12;54 .. I .. ...... jg,M O 161+ 6,m 400 .++:.... , 5 .6d +,..,.,..-.., . I&OOL 21W+ 6,0 : 3A r. : 6:ft 16.17.. .: ....d.+.............�.�....... 2200 .............I...... ........ &J$-, .....�......�..... ....I .... ..0+,' r... ......................... ....�........�.......d...I++ .+- . I16,,+ .................r... ....... jIM dIr. &.+..+.. .23M O*:q, 400 .: 6A43 1�46.. ­. .. .2400 7r, +439 .-r . Ar .. : .Lrr... L: .+­ 1962Lr' K. '++ +,6a ".: %:4,V. 6, 20,T(, .,'.'.,,L... :26. U4,.. .:6.21 7,2 :.L...-..:. .L:.,21n,,r: 27- 7- '+.56 7,50 ,� +....... :,;22%?+ -.. 28 M 7 16."+ 6 Qg . 24,00 rw S01' $ $01:- ... .rL.i.:.... 2�a M 3904 $. . , 31.00 6.5AI'. L:,.54 3200 a J6: 6;,s .... ,. ..+......:. 231I1 r + ::::I .W ::­ ,r 9,I] + , +,.W ,. .. ­ '­ 0;00 '::&:29;17.­., .A2 . .. M(* & 0I24:-. 9j6 *+ k�4 .4U 9, - � .4 . &: -+�- 35.00 gjbd,L. g1,r,',r. + +- + �.,;..., ; ..., 7 1' +17.r .. + : :+ : :: § J'I ,9� L ' ,& ..+ $�21 +..� '.....,.:. &.r -+PBDQ ,97. �" j %1Q30� L ... : . rdr. . r 10.30 . y"..,,34M . .....-.� .d.r.L.L ... ..1.;:� 3700 998: 46" r: ++:::" .Lrrr. & 10%$9 . 345 �...�... .. +...:.3800 ,-,.+, -Lai' 11&1j61 ..L 1 g !. ; ,r,d 1f369 .. ..:'..r ...r :,r 3.:50­ .d r .g:. .39.W 7.Q..'� 42 i ' A214 12�14 ,r ,+.'.. 34w 0 I 10,64 1279 'r 9 1. I277 ". .+ �. 3450 . . �a f3c 1 0 DP 19 SUMPAs, Inlet In Sump - D - Ot 9 10/9/2008, 12:23 PM Inlet Flow Calculation for Area Inlets Project: Harmony Job Number: 1046-012-00 Calculations by: es Date : 8/16/2007 Objective: to find the number of grates required for area inlets in grassy areas WSEL Geometry at inlet: Grate Dimensions and information: Width (W): 2 . feet Length (L): 2.75 feet Opening Ratio (R): 0.62 sq ft/sq ft Reduction Factor (F): 50% Grate Flow: Use the orifice equation Qi = C*A*SQRT(2*g*H) to find the ideal inlet capacity.* 'See Hydraulic Design Handbook by McGraw-Hill for verificaiton of equation use and C value C = Orifice discharge coefficient= 0.67 A = Orifice area (ft) - open area of grate g = gravitational constant = 32.2 ft/S2 H = head on grate centroid, ponding depth (feet) Then multiply by the reduction factor for the allowable capacity. QG = Qj * (1-F) DP 0-4 Brophy Property) Q = 4.4 cfs H= 1 . ft Single Area Inlet A = W*L*R = 3.41 ft2 Qi = C*A*SQRT(2*g*H) = 18.33 cfs QG= Qi*F 9.17 cfs USE: Single Area Inlet Double Area Inlet A = 2*W*L*R = 6.82 fl Qi = C*A*SQRT(2*g*H) = 36.67 cfs QG= Qi*F 18.33 cfs Interwest Consulting Group 1218 W. Ash, Suite C Windsor, CO 80550 Triple Area Inlet A = 3*W*L*R 10.23 ft2 Qi = C*A*SQRT(2*g*H) = 55.00 cfs QG= QI*F = 27.50 cfs C Pagel A fi slip�:m �m411m 0 0 0 0 O O —NEENAH 4890 GRATE (28"07%2") A PLAN VIEW 49 IN. 2•x2 x2' NOTCH 40 IN. FOR,GRATE 8 IN, 33 IN. 8 IN. 24 IN. IN. MIN. a - IN. CIR. O.F. ---CONCRETE INLET GRATE 2 IN. CIR LF. II 04 9AR�PIPE O.D. a�, 3 IN. CIR. O.F. 2 IN. CIR LF. —74 1 B4 O 12 IN. 12 IN CIR. '.r CTRS.(TYP.) /.,':..... •..; ':•'� #4012 IN. I �4 1 N OW LINE OF .j �•. .LAP A CTRS (iYP.) AROUND I INLET AND < .. CONCRETE PIPE , PIPE`/'r I I CONDUIT H I4 . I D I I(I ID .. LDRAPINAGEO R 112 IN MAX. I'I,. IIl STEP . I L \ Lill I I —SPACING14 . �—..IN, — — 8 IN. TYPICAL WALLS AND FLOOR SECTION A -A SECTION B-B GENERAL NOTES: 1. AREA INLETS MAY BE USED FOR DRAINAGEWAY OTHER THAN STREETS. (EXAMPLE, PARKING LOTS, MEDIANDS, SUMP BASINS) AREA INLET ® CITY OF FORT COLLINS STORM WATER APPROVED: DETAIL UTILITIES CONSTRUCTION DETAILS DATE: 12/8/00 D _ 9 ah of Port Comm DRAWN BY: NBJ FREE OPEN AREAS OF NEENAH GRATES (Continued) WEIR WEIR WEIR WEIR CATALOG $0. PERIMETER So. PERIMETER $0. PERIMETER So. PEPoMETEF GRATE FT. LINEAL CATALOG ORATE FT. LINEAL CATALOG ORATE FT. LINEAL CATALOG GRATE FT. LINEAL NUMBER TYPE OPEN FEET NUMBER TYPE OPEN FEET NUMBER TYPE OPEN FEET NUMBER TYPE OPEN FEET R-4821-A C 1.7 8.3 R-4977-4 A 5.3 12.0 R-5901-A G 0.2 2.7 R-6672J A or 2.4 10.0 R-4825 C 1.8 9.0 R-4977-4 B 5.3 12.0 R-5901-B G 0.3 3.5 R-6872-K Amu 2,5 10,8 R-4825-A A 2.1 9.0 R-49775 A 8.0 15.0 R-5901-C G 0.5 4.3 R-6672-M A or 3.0 12.3 R4825-8 C 2.0 9.0 R-4977-5 B 8.0 15.0 R-5901-D G 0.7 4.8 R-6672-Q A or 9.3 18.8 R-4826 A 1.3 8.0 R-5901-E G 1.1 6.8 R-6673-A A 0.8 6.7 R-4828 A 1.9 9.5 R-4990-AA A 0.2 • 2.0 R-5901-F G 1.6 6.6 R-6673-B A 0.9 6.6 R4829 C 2.2 9.5 R-4990-AX A 0.2 • 2.0 R-6901-G G 2.0 7.4 R5873-C A 1.2 7.5 R4832 C 1.5 8.0 C 0.3 • 2.0 R-5901-H G 2.5 8.9 R-6673-D A 2.1 8.8 R-4832-B C 1.8 8.7 P 0.1 • 2.0 "11-5901J G 3.7 ' 10.5 R5673-E A 2.5 9.8 R-4833 A 2.3 8.7 R-4990-BA A 0.3 • 2.0 R-5901-K G 4.8 12.1 R-6673J A 2.8 9.5 R-4837 A 22 9.8 - R-4990-BX A 0.3 • 2.0 R-6873-K A 2.9 10.6 R-4839 A 2.1 9.9 C 0.3 • 2.0 R-6020 G 1.0 5.6 R-6673-L A 3.7 12.6 R4840 C 2.8 10.0 P 0.1 • 2.0 R-6040 G 1.3 8.2 R-6673-N A 3.3 11.6 R-4843 A 2.6 10.0 R-4990-CA A 0.4 • 2.0 R-6070 G 1.5 6.9 R-6673-0 A 4.8 13.5 R4850 c 2.7 9.0 R-4990-CX A 0.4 • 2.0 R-6077 G 2.5 8.3 R-6673-01 A 5.0 14.7 R-4952 C 2.0 9.0 C 0.4 • 2.0 R-6080 G 2.7 8.7 R-7511" Beehive 1.1 5.5 R-4852-A Q 1.8 9.0 P 0.1 • 2.0 R-6110 G 0.9 5.5 A4853 A 2.5 10.6 R-4990-DA A 0.4 • 2.0 . R-6111 G 1.2 6.0 R4853-A A 3.1 11.5 R-4990-DX A 0.4 • 2.0 R-6112 G 1.3 6.0 R-4853-Bl C 3.3 12.5 C 0.5 • 2.0 R-6113 G 0.9 6.3 R-4855 A 2.0 9,3 P 0.2 • 2.G R-6114 G 1.8 7.0 R-4856 c 3.1 "9.7 R-499D-EA A 0.5 • 2.0 R-8115 G 1.7 7.0 R-4857 A 3.1 12.3 19-4990-EX A 0.6 • 2.0 R-6116 G 12 7.6 R4859-C A 2.4 9.1 C 0.5 • 2.0 R-6117 G 1.8 8.5 R4871 B 2.7 9.2 P 0.2 • 2.0 R-6118 G 2.6 9.9 R-4880 C 2.5 9.3 R-4990-FA A 0.6 • 2.0 R-6130 G 0.8 5.4 R488D-C C 22 10.0 R499D-FX A 0.7 • 2.0 R-6131 G 1.0 5.6 R-4882 A 4.0 11.3 - C 0.8 • 2.0 R-6132 G 1.3 6.3 R-4882-A A 2.8 11.3 P 0.5 • 2.0 R-6133 O 1.3 6.5 R-4884-A C 3.3 6.0 R-499G-GX A 0.8 • 2.0 R-6134 G 1.5 6.9 >R-4690 C � 3.4 " 10,8 c 0.7 • 2.0 R-6136 G 2.5 8.3 R-4891 A 3.5 13.0 R-499G-HA A 0.9 • 2.0 R-6137 G 2.7 8.8 R-4893 C 6.0 18.0 R-4990-HX A 0.9 • 2.0 R-6352-A G 0.4 3.4 R-4893-8 C 1.9 11.0 c 0.9 • 2.0 R-6352-B O 0.8 4.2 R-4894 C 3.3 11.5 R-499GJX A 1.0 • 2.0 R5352-D G 0.7 4.9 R4895-2 A 6.6 17.0 C 1.1 • 2.0 R-6352-E G 0.8 5.5 R-4938 A 0.8 6.9 R-4990-KA2 A 0.6 • :2.0 R-6352-G G 1.3 6.5 R-4938-1 A 1.5 8.2 R-499D-KX A 1.1 • 2.0 R-6400-AO G" 0.3 3.1 " R-4938-B A 0.2 3.2 C 0.9 • 2.0 W6400-BO G 0.8 5.0 R-4939-B K 4.7 sq. in. 3.0 R-4990-LX A 12 • 2.0 R-6400-CO G 1.8 7.0 ' R-4941-A B 0.4 4.7 c 1.2 • 2.0 R-640D-DO G 1.2 7.6 R4942-A A 0.7 6.5 R4990-MX A 1.3 • 2.0 W6450-AG G 0.2 2.4 _ R-4943 K 0.3 6.4 C 1.3 • 2.0 R-6450-BG G 0.2 3.1 R-4943-A K 0.3 5.4 R-4990-NX A 1.5 • 2.0 R-8450-CG G 0.4 3.4 - R4943-B K 0.3 5.4 C 1.6 • 2.0 R-6450-DG G 0.5 4.2 R4976-1 A 0.9 3.1 R4990-OA A 2.7 • 2.0 R-6450-EG G 0.7 5.4 R-4976-1 B 0.9 * 3.1 R4990-OX A 1.7 • 2.0 R-6450-FG G 0.1 5.6 R-4976-2 A 1.5 4.2 C NA • 2.0 R-6450-GG G 1.3 6.3 R-4976-2 B 1.5 42 R-4995-Al B 0.2 • 2.0 R-6450-HG G 1.3 6.9 R-4976-3 A 2.5 5.2 C 0.3 • 2.0 R-6450JG G 1.9 8.3 R-4976-3 B 2.5 5.2 R4995-A2 B 0.2 • 2.0 R-6450-KG G 2.7 8.8 R-49764 A 3.7 6.3 R4996-Al Diagonal 0.3 • 2.0 R-6672.1 A or C 0.4 3.9 R49764 B 3.7 6.3 Convex R-6672-A A or C 0.8 4.1 R4976-5 B 5.2 8.1 C 0.3 • 2.0 R-6672-B A or C 0.5 4.6 R4977-1 A 1.5 4.0 R-4996-A2 B 0.2 • 2.0 R5672-C A or C 0.8 6.0 " R4977.1 B 1.5 4.0 R-4996-A3 C 0.3 • 2.0 R-6672-D A or C 1.1 7.3 R4977-2 A 2.0 5.0 194999-Serles Same as R4990 Series R-6672-E A or C 1.8 7.9 R4977-2 B 2.0 6.0 R-4999-1.3 L 0.3 • 2.0 R-6872-F A or C 2.7 8.6 R4977-3 A 3.7 , 10.0 R-4999-LB L 0.8 • 2.0 R-6672-G A or C 2.2 9.0 R-4977-3 B 3.7 10.0 R-4999-1-9 L 0.9 • 2,0 R-6672-H A or 2.1 9.2 • NOTE: On catalog #'s R-4990-AA thru R-4999-1-9, SQ.FT.,OPEN and WEIR PERIMETER are per lineal foot. Type K Indicates "Special" grate style and Is not among standard types Illustrated. Type M Indicates roll -type or mountable curb. sso NEENAH 11 APPENDIX E ROADSIDE DITCH ANALYSIS AND CULVERT CROSSINGS AT THE RIDGE (STORM SYSTEM A) xwpl, a ' HARMONYROAD-------- _ .-- Fo To awF�oI F. Fo .+wnsm n a ��' 6 "= n u _.... u .. ' a�'o'"--T•-. =P-"'^*^ � ^^^ ' 11 ;d .... -_'" .. �_ . {o_ _ -�=. n sri .s. STORM A 6 — — — — 1 5'roRM A »mq a3•r ar e.a �_ _ ea •�_1 ne +a.{o- — _ _ _ :_ _ eq+% BTORM "' Ln ua ..m_ Yl= — _ _ _ _I xwa we eaww n are n.nn. - Is rp d7 W n an ari a.aS 6r— ` — �,� a' m p)' la. m (a �+ " . (nxm ..q are lo.o. (( +°P gIm+�• x.q are W .. '7 Rr Y C ^ r — — — 'ay,O .yy,,,,y'3,�, ,yy, s Ceti}7 -,i• r - - .r-�-.� _ _._ `-..._� + U .I m n.n.v. nasr ar 1L"k e•w j.' ^ , xp..391'a€Nm ,aLI nu a U D i j 1 THE RIDGE P.U.D. y— --- J "a I THE RIDGE P.0d Uw um .D. THE RIDGE P..D. C xeroi wml w I U i v _e w^ u � -+ &ui i ^3 � atxcm naeES F6) slm'� ` i N 3130 al Is (sG xlew• FES) re.0r .leT 466e w w 3-1 •Ra In w/ e � . (LweTx NW FES) exo s• T1TE a Bmpxe - ¢EC Tr.a'ae• T1PE L RdRAP u•�'ae• rwL L Rnm.w SlmMD w/ 6' S0. WaEn A9R/ a• _ _ _ _ _ - -xYao'ae' 5OW 1YPE LPMw/ 6' SQLB pxC 3]SIR•le• rrPF L PASOL COwAE a�5 MPRN .x0 3I ISEC 19+00 18+00 17+00 I6+00 15+00 1a+00 I}+00 12+00 11+00 e' rk aFxR f0+00 9+00 6+00 7+00 3 P V PER( A CITY OF FORT COLLINS, COLORADO ENGINEERING DIVISION Fort Collins 1€ m®mia"Y2a1'f'9'YRl® m®mT19VrZ mom® Tfr'3��"7Fw m= m�mtasr'nvrr-.-nm ZM"M-.Td' m®m6saarr-zram. m®mn-Tcvrsrt;s�� ®I�i6Ti [Fr7=IiFrr :7® rZFZrlw" ,-77'W 7'Rm HORIZONTAL SCALE: 1". 50' VFRTiCAL SCALE 1"n 5' •PIP6 sou M w CM e, W OT w P T coon¢ Z Sr S l Gc wc410C FES RCP Sl . 91Ny K nA w WM ftT IWT "m (mN C n ♦. STARMNO IS MWR cF STRUCI S CW1NM1Cig1 r0 L "laCAnpx w NL mmc um1 90% COMPLETE NOT FOR CONSTRUCTION n1e W.ey.We Mm. Ccbp � PI..�:aRal Tay'A Fc wlgflaO.ga OTv w FgiT CnPtMp Ixreawur coxau Lrtxc agoUn PLAN APPROPPRO VAL W. HARMONY' ROAD IMPROVEMENTS STORM SEWER -PLAN & PROFILE OF u e - Cross Section for S. Harmony Roadside Ditch Capacity —Existing Flow Element: Irregular Section Friction Method: Manning Formula Solve For. Discharge Section Data: ,_ ° Roughness Coefficient: 0.030 Channel Slope: 0.00800 ft/ft Normal Depth: 2.21 It Elevation Range: 10.25 to 12.47 It Discharge: 70.62 d A�U f /s c.4e��- STY T 2.21 ft .1 Worksheet for S. Harmony Roadside Ditch Capacity —Existing ProjecfDescription Flow Element: Irregular Section Friction Method: Manning Formula Solve For. Discharge OpGans Current Roughness Weighted Methi Improvedl-otters Open Channel Weighted Roughnes: Improvedt-otters Closed Channel Weighted Roughne Hortons Roughness Coefficient: 0.030 Discharge: 70.62 Elevation Range: 10.25 to 12.47 ft Flow Area: 14.44 Wetted Perimeter. 12.45 Top Width: 11.49 Normal Depth: 2.21 Critical Depth: 1.96 Critical Slope: 0.01398 Velocity: 4.89 Velocity Head: 0.37 Specific Energy: 2.58 Froude Number: 0.77 Flow Type: Subcritical ft /s ft' ft ft ft ft ft/ft tt/s ft ft ' Worksheet for S. Harmony Roadside Ditch Capacity --Existing Project Name: —Project No.:_ Client: Subject: Date:— By: —With: IF kL f T M. F r _A 1 1 i l 1 I ! ! I � l la� � I �I I i� I 0:0 TJ --------- - . . ........ -4- 4_L_ T 4r I t :94 0s, T_ ca2k _7 -J1 11 IT- - - - - - - - - - - - - - Ti 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL.970.674.3300 - FAX.970.674.3303 ' Worksheet for S. Harmony Roadside Proposed Ditch @ Design Point 02 Project=Description � _ ' Flow Element: Triangular Channel Friction Method: Manning Formula Salve For: Normal Depth ' nnpucguara m Roughness Coefficient: Channel Slope: ' Left Side Slope: Right Side Slope: Discharge: 0.030 0.02000 4.00 4.00 25.00 ft/ft ft/ft (H:V) ft/ft (H:V) ft3/s Results �.; Y-ITT Normal Depth: 1.15 ft Flow Area: 5.27 ft' ' Wetted Perimeter. 9.47 ft Top Width: 9.18 ft ' Critical Depth: 1.19 ft Critical Slope: 0.01622 ft/ft Velocity: 4.74 ft/s ' Velocity Head: 0.35 ft Specific Energy: 1.50 ft Froude Number. 1.10 ' Flow Type: Supercritical GVF Input Data ,W==' ' Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVFOutputData` �- �' Upstream Depth: 0.00 ft Profile Description: N/A Profile Headloss: 0.00 ft Downstream Velocity: 0.00 ft/s ' Upstream Velocity: 0.00 ft/s Normal Depth: 1.15 ft Critical Depth: 1.19 ft ' Channel Slope: 0.02000 f ift Critical Slope: 0.01622 k Wit Cross Section for S. Harmony Roadside Proposed Ditch @ Design Point 02 Project=Descriptions Flow Element: Triangular Channel Friction Method: Manning Formula Solve For. Normal Depth Roughness Coefficient: 0.030 Channel Slope: 0.02000 ft/ft Normal Depth: 1.15 ft Left Side Slope: 4.00 ft/ft (H:V) Right Side Slope: 4.00 ft/ft (H:V) Discharge: 25.00 ft3/s tWorksheet for S. Harmony Roadside Proposed Ditch @ Design Point 04 P„raject Description@NNW Flow Element: Triangular Channel ' Friction Method: Manning Formula Solve For. Normal Depth Input:Data, - Roughness Coefficient: 0.030 Channel Slope: 0.01100 ft/ft Left Side Slope: 4.00 Wit(H:V) ' Right Side Slope: 4.00 ft/ft (H:V) Discharge: 74.00 ft3/s Normal Depth: 1.93 ft Flow Area: 14.89 ft' Wetted Perimeter. 15.91 ft Top Width: 15.43 ft Critical Depth: 1.84 ft Critical Slope: 0.01403 ft/ft Velocity: 4.97 ft/s Velocity Head: 0.38 ft Specific Energy: 2.31 ft Froude Number. 0.89 Flow Type: Subcritical GVF InputxData- - Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF Output Data Upstream Depth: 0.00 Profile Description: N/A ' Profile Headloss: 0.00 Downstream Velocity: 0.00 Upstream Velocity: 0.00 Normal Depth: 1.93 Critical Depth: 1.84 ' Channel Slope: 0.01100 Critical Slope: 0.01403 ft ft ft/s ft/s ft ft tuft ft/ft Cross Section for S. Harmony Roadside Proposed Ditch @ Design Point 04 Pcoject�Descripon Flow Element: Triangular Channel Friction Method:. Manning Formula Salve For: Normal Depth Section -Data � � �_ Roughness Coefficient: 0.030 Channel Slope: 0.01100 ftfft Normal Depth: 1.93 ft Left Side Slope: 4.00 ft/ft (H:V) Right Side Slope: 4.00 fttft (H:V) Discharge: 74.00 ft3/s T 1 v.5 L, Ft 1 Worksheet for S. Harmony Roadside Proposed Ditch @ Ridge Pond Roughness Coefficient: 0.030 Channel Slope: 0.01000 ft/ft Left Side Slope: 4.00 Wit (H:V) ' Right Side Slope: 4.00 ft/ft (H:V) Discharge: 64.00 ft /s. Y'^t- Normal Depth: 2.06 ft Flow Area: 16.97 ft' ' Wetted Perimeter. 16.98 ft Top Width: 16.48 ft ' Critical Depth: 1.94 ft Critical Slope: 0.01380 ft/ft Velocity: 4.95 ft/S ' Velocity Head: 0.38 ft Specific Energy: 2.44 ft Froude Number: 0.86 ' Flow Type: Subcritical GVF Input Data �- Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF Output Data Upstream Depth: 0.00 ft ' Profile Description: N/A Profile Headloss: 0.00 ft Downstream Velocity: 0.00 ft/S Upstream Velocity: 0.00 ft/S Normal Depth: 2.06 ft Critical Depth: 1.94 ft ' Channel Slope: 0.01000 ft/ft Critical Slope: 0.01380 ft/ft E—lO Cross Section for S. Harmony Roadside Proposed Ditch @ Ridge Pond Praject'Description ' � e� �_�- ; Flow Element: Triangular Channel Friction Method: Manning Formula Solve For. Normal Depth Roughness Coefficient: 0.030 Channel Slope: 0.01000 ft/ft Normal Depth: 2.06 ft Left Side Slope: 4.00 ft/ft (H:V) Right Side Slope: 4.00 ft/ft (H:V) Discharge: 84.00 ft3/s T 1 V:5 Ft 1 Project Name: —Project No.: Client: Subject: Date: By: With: LI I � i I I I I I I _ I �Q � r � I f T l. . . . . . -e if A --I-- 7- --- - ----- ­ 121 t --'---I----. 4- !N I N L T�Elh VM i E S T it! S 1 �'r' ---- L u LIP I ------ T- -f- _1 J 7 F t T T J­ - J L I T 7 MIMMW 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL-970.67A.3300 - FAX.970.67A.3303 k 2 a ■��� �a�® k . \ 2kr LL 2Rf� ■»t E ) u ) !ilzf¥ Rka^ `� t \ ( 2 § ` \ 2) C\ 0 /k $§/% m� ®E!w J\;\" �/ 2 �f E � � d \7 zi &c k . � k(D * \� ( /\ ) )k e �« &kof �o 2 3 � q ) / cc ( .cc ) c } ■ !( �r. ( § )� c \ /® /] k ]) [ § da \/ )�)kj §§ -` �2.42 f\\k�j iJ ]\\ «d/k\§3g Nw«� o / )k . \/ . 7g k) . . (� �0 . d §� cc a) (�k§( kt .4.urno �E � ci LO )? —n �2 /k\ ,r 2 K� Cl) �£3 « C'40 LIZ%° Rd a \% 4> /M a. CL � CL 7�¥ CL � 0 LO CL »_® L 0o��� § k S N Project Name: L1J_ k4li e-Ir, /,/ Ail /,✓iS—Project No.: Client: subiect. With: it FJ- L !I A 4 1 L ---- --- II it II � ��� !- ? _I!�5 Ilri IiI ..... 'Ayt-" Jr!" L SrT =k' er _7 -- --- -- T 4- - I I � I I hI I i 1 _i_ !� I_J_ I , i ! i -- f I Mw 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL.970.67A.3300 - FAX-970.67A.3303 a ti FINAL DRAINAGE REPORT FOR HARMONY RIDGE P.U.D. Submitted.to: CITY OF FORT COLLINS January 20, 1999 Lp 1 `•I 1 NaJfM�x(, g` Z 17. .... EX/SANG 57Q4 .....,.. ._. �..,_...... ......... I 184, t O - ._. --- - RA 04 ¢ 1 DRAWN A� D AC •'` r- _ _ _ 8 CHECKED 0.50 Ac a _ .\ DESIGNED ± �•. \ F _ ��, P/ SS 9&rT' I - �'. ,... LEGEND FILENAME FF 5 .75 \ ' aETA72s `31 DETENTION /POND D �` ® BASIN DELINEATION G r 100— YR DISCHARGE = 2 37 CFS ® DESIGN POINT 4 ACRVE VOL UME = 0.20 AC —FT. FLOW DIRECTION '413 / 100= YR W. S. ELEV = 5722 00 PROPOSED 0.50 �'• 1 FREEBOARD = 1.0 FT _ STORM SEWER Ac L i EXISTING STORM SEWER 7 J 0 ! �%j / 1 PROPOSED CONTOUR I � 1. -.. 75 - �! t - 1 \ ,.-. .. EXISTING • I ._ !' ! � � \ � CONTOUR SWALE COBBLE SWALE S' TYPE I4' ,� 02 / 513 �` STRAW BALE --__ •�`� !' f �, _..-\ \ BARRIER -- O 84 �' < 51 O1J \ �� '`I� /FF GRAVEL INLET . � • � � `\iI ... kkk'"'»11 LLJJ FILTER crlY \` .'_� O _.� ;A / 1 ` ,• _� SEDIMENT TRAP SILT FENCE \5'1g.75 SPOT ELEVATION .. —-_....- R HANDICAP RAMP - 4945.0 \ !! �% ' FF FINISHED FLOOR ELEVATION \ 0.84 -•, :, AC II VO7F aromoge Summary rob/e /ocoteo Sheet 2 0.40 7. ' Project Name: Project No.: Client: ' Date: By: With i� ' i- ��� , I I, _��_� i I . t 1 1 1 yt! 1 ! Imo_!_41 �.Lk I ...._ 1 t- (III_. -_ I I _� , n..� I I �R. l i i i I 1 i I iQ�.I- I i -, ( - ,- , - I �► tM � INT -!-?100l i - - I _ i I- __-I M T! 111.._I�, k( �I r`�I �_ r �;f, - I I� • ; r_;,��3 I I i I I___. r-- I r i F I I I ( �.G� .�-- E 's - �� -- �. 2 i Rf I .I_.- TI ; i IrIT; .� i ,, y�I I! -Ilfl i i! I;�i I- ,DTI , i -{-� I I i i I� I= 13 � I r 't'_ � ,i I E; I I i- — ( 1 P , ' 1218 W. ASH, STE C • WINDSOR, COLORADO 80550 TEL.970.674.3300 • FA%.970.674.3303 o UFC 3-230-01 AC 150/5320-5C 8/1 /2006 9/29/2006 Figure 4-2. Headwater Depth for Concrete Pipe Culverts with Inlet Control lea 10,000 188 8,000 EXAMPLE (I ) (2) (3) s. I58 6,000 0a42 Inches (3.5 feat) ^_ 5 5,000 0-120 cfs 144 4,000 HW HW s. 5. 132 D feet 4 3,000 11) 2.5 e.e 5' 4. 120 42) 2.1 7.4 2,000 13) 2.2 7.7 4• 3' 108 3' 'O In feet 96 1,000 3' 800 84 600 500 72 400 [A _ 300 f1 / 1.5 1.5 Z N K 80 IL 200 Z c 54 - a v c 48 100 z > a 80 a u 42 60 W 1.0 1.0 u o 50 HW 5 ALE ENTRANCE O 10 I 40 p TYPE w 9 t- 36 30 11) Square edge with a .9 headwall .9 g O - 33 20 (2) Groove end with 30 headwall = .8 (3) Groove end '8 27 projecting 10 T .T 24 8 T 8 5 To use scale (2) or (3) project 21 horizontally to scale (1). then 4 use straight Incilned fine through O and Q scales, or reverse as Illustrated. 3 18 2 , 15 1.0 `- 12 PREPARED BY BUREAU OF PUBLIC ROADS 120 .5 t- .5 E-- q UFC 3-230-01 AC 150/5320-5C 8/1/2006 9/29/2006 Figure 4-11, Head for Circular Pipe Culverts Flowing Full, n = 0.012 2000 PRESSURE LINE HIS H .4 = W 1000 UNSUBMERGED OUTLET SUBMERGED OUTLET g 800 120 6 600 108 .8 300 98 N. j4j 1.0 400 84 300 72 / 66i- 200 60 fir/" `Op ��/�� W 2 in / O. 54 / yi z 0 0 l z 41 48 pN. �.OA �O Ax 3 � Wo Qtt� /Z 42 �00 4 BO� s 36 y00 3 . 60 dr 33 W0p O 6 00 ►- fr W 30 40 At a 050 O s Is 8 27 •• O tl 30 24 to 10 20 21 18 r2.8204 1+K• 4611.111 A (Q )' EQUATION: H=L 0 +— 10 20 10 13 H = Head In feet Ke = Entrance loss coefficient 9 - D - Diameter of pips In feet n - Manning's roughness coefficient 6 Liz L - Length of culvert In teat Q - Discharge rate in of* s n = 0.012 PREPARED BY 4 BUREAU OF PUBLIC ROADS 131 Project No.: Date: By: With:, I I V- t nil - -TF- I I - 1 LUA i I ! � f i L P I CN4 gp 8 r- Iil I I - - - - -1 - II III kw C-1 T. -- 030 r el IO'_�F I� � I —I— I i , t �� f l �� �.17 LLL L m 1218 W. ASH, STE C • WINDSOR, COLORADO 80550 TE1.970.674.3300 • FAX.970.674.3303 f' UFC 3-230-01 AC 150/5320-5C 8/1 /2006 9/29/2006 Figure 4-2. Headwater Depth for Concrete Pipe Culverts with Inlet Control - ISO 10,000 I68 6,000 EXAMPLE (1) (2) (3) 6. 156 6,000 0.42 Inches (3.5 feet) 144 5,000 0-120 cfs 5 4,000 I - nw 6. (32 3,000 D feet 5. 4. (1) 2.6 8.8 120 (2) 2A 7.4 2,000 (3) 2.2 7.7 4' 3 108 •D In feet 96 1.000 3. Soo 84 600 2. 500 72 400 m 5. 4. 3. _ t�i� 1.5Z60 1.5 t4jW ?W 34WZ j 48 rcW1.01.0 V Wo rnENTRANCE C E TYPE mlAW 36 .99headwall Square edge with< 3 .9 33 Groove end with30headwall = 6•6 Groove andQ7projecting 7 .7 8 7 5 To use scale 12) or (3) project 5 horizontally to scale (1), then 4use straight Incilned line through /P4 O and Q scales, or reverse asillustrated. 3 Y 15 .5 .5 1.0 5 L- 12 PREPARED BY BUREAU OF PUBLIC ROADS 120 '- 2 UFC 3-230-01 AC 150/5320-5C 8/1/2006 9/29/2006 Figure 4-11. Head for Circular Pipe Culverts Flowing Full, n = 0.012 2000 O 2, 1000 �I E00 120 60D 108 500 96 i 400 i 84 300 72 66 200 6O LL 54 t� x 0.44 = 48 O 100 z 42 _ $ 36 y 60 0: 33 - 50 o- ut 30 40 4 4 27 30 24 120 F 2 1 �j PRESSURE LINE HM W UNSUBMERGED OUTLET SUBMERGED OUTLET 5 10 15 6 6 It 5 PREPARED BY 4 BUREAU OF PUB LtC ROADS 1.0 H D W 2 r a y�f z 00 �F, Q 1 w. 4 �00 A00 5 6 rr 8 f �r • tl ie I t r2.5204 1+K 466.18 n2L Q lr t EQUATION: H=r Or + p, '(1g) 20 H - Head In feat Kg - Entrance loss coefficient D - Diameter of pipe in fact n - Manning's roughness coefficient L a Length of culvert In feet Q - Discharge rate In cfs n = 0.012 131 1� PROPERTY OF 112r COLLINS UTmUTI= Final A ®port FINAL. .9m �e i G STORM DRAINAGE REPOR FOR WESTBURY P.U.D. SECOND FILING PREPARED FOR MARK LINDER PREPARED BY STEWART & ASSOCIATES, INC. 103 SOUTH MELDRUM STREET FORT COLLINS, COLORADO 80521 970/482-9331 December 18,1995 STEWART&ASSOCWEs Consulting Engineers and Surveyors December 18, 1995 Mr. Basil Hamdan. Stormwater Utility City of Fort.Collins P.O. Box 580 Fort Collins, CO 80522 Dear Basil: The following drainage and erosion control report for Westbury Second Filing is an addition to the report prepared in September of 1994 for Westbury First Filing. The narrative portion of the 1994 report is included immediately following this cover letter since it provides information about the total Westbury site. . Since the 1994 Westbury First Filing drainage report was made, RBD has made a SWMM Model analysis ofthe Mail Creek Tributary. This SWMM Model indicates that during a 100 year storm 65.8 cfs runoff from the Ridge area will overtop the PV & LC ditch and cross the Westbury_ site. The overflow can be accommodated through the Westbury site in swales between houses and through the streets, but a major problem arises when the flow reaches South Shields Street. The City of Fort Collins Criteria does not allow overtopping of Shields, which is an arterial street. Piping this flow under Shields would be very expensive and impractical due to all the existing utility lines which are, located under Shields and which block the route of the required storm drain pipes. . To mitigate this oveiflow problem, it was decided that the existing detention pond on the Ridge site should be reconstructed to detain the 100 year runoff from the entire Ridge basins which contributed to the PV & LC ditch overflow. Andrea Faucett of Faucett Data modified the SWMM Model and determined that a detention. volume of 4.5 acre feet will be required in the Ridge pond with a maximum release rate of 3.0 cfs. Andrea Faucett also determined that the Westbury detention pond which is located just west of Shields Street will require a volume of 3.6 acre feet with a maximum release of 12 c.£ s.. This volume of 3.6 acre feet requires a high water Tine elevation of 84.4, which is higher than the adjacent curb and catch basin inlet elevation of 82.3 on Shields Street. This catch basin on Shields, which is located at the northwest comer of Westbury Drive and Shields Street, wdl be tied into the existing 15 inch CMP under Shields Street. A new 18 inch RCP will be installed under Shields Street to carry the outflow from the Westburypond. These pipe systems will not be joined so that the detention pond at a high water elevation of 84.4 will not bubble out of the catch basin at elevation 82.3. The maximum depth of the detention pond at the outlet will be 84.4 - 79.8 = 4.6 feet. A variance. from the maximum allowable depth of 4 feet is hereby requested. James H. Stewart and Associates; Inc. 103 S. Meldrum Street P.O. Box 429 R. Collins, CO 80522 303/482-9331 Fax 303/482-9382 December 18, 1995 Page 2 The paved portion of South Shields Street and the east 100 feet of Westbury Drive is lower than the proposed 100 year high water line of the detention pond, so this area will not be piped into the pond but instead will go directly into the existing 15" CUP under Shields Street. Also, the back portion of Lots 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53 and 54 will drain directly into the Pleasant Valley and Lake Canal ditch. The developer has received approval from the ditch company to release this runoff directly into the ditch. The 100 year runoff from Lots 40 through 44 is 2.58 cfs and from Lots 47 through 54 is 5.62 cfs. This total 100 year developed runoff into the ditch of 8.20 cfs is less than the historic 100 year runoff of 9.39 cfs. A variance from the City Storm Drainage Criteria is hereby requested to release these flows undetained. A BEC 2 study ofthe PV & LC ditch was performed by Chris Carlson of AYRES. The BEC 2 study showed that a maximum ditch flow of 99 cfs enters the Thayer property which is located directly south of the Westbury site. The AYRES study shows that there is some potential spill of the ditch in the Westbury site which limits the ditch flow quantity into the Thayer site to 99 cfs, which was determined to be the historic flow. The PV & LC ditch is being relocated and regraded through the Westbury site so the east bank ofthe ditch just north ofBelleview Drive will be lowered to provide a side overflow which will limit the ditch flow to the historic 99 cfs. Normal irrigation flow in the ditch is 15 to 20 cfs. The maximum overflow quantity, per the AYRES report will be 30 efs. Drainage easements are provided across lots 55 and 56 to route the overflow from the ditch to Belleview Drive. Belleview Drive will then carry the overflow to the Westbury detention pond. Any overflow from the pond will be onto public streets and willnot flood private property. Belleview Drive has a minimum capacity of 50 cfs, so it can handle the overflow without a problem The design and calculations of storm drainage and erosion control for Westbury Second Filing complies with City of Fort Collins Criteria. Sincerely, 04+ : 00 Phillip L Robinson, P.E. & L.S. a 4502 Vice President rse oF ,•,ff� f111111 4 �,1 enclosures -U WESTBURY SECOND FILING SITE LOCATION AND INFORMATION Westbury Second Filing is a 16.48 acre tract located in the Northeast 1/4 of Section 3, Township 6 North, Range 69 West of the Sixth P.M., City of Fort Collins, County of Larimer, State of Colorado. The site is about 600 feet south of Harmony Road and borders the west side of Shields Street. Westbury First Filing lies between the site and Harmony Road. OFFSITE FLOWS: The total runoff from Westbury First Filing enters the Second Filing along Westbury Drive and also a small amount enters from the drainage easement at the east side of the First Filing. The flow in Westbury Drive from the First Filing includes runoff generated by the First Filing plus runoff from the 3.1 acre tract lying immediately west of the First Filing plus the 3.0 cfs release from the proposed reconstructed Ridge detention pond. The Ridge pond release will be piped from the pond to the west gutter of Westbury Drive and will enter the gutter just south of Harmony Road. The runoff from the 3.1 acres will flow between Lots 2 and 3 of Westbury First Filing and will enter the west gutter of Westbury Drive. There will be no offsite flow onto the lots located west of the PV & LC ditch because a proposed drainage swale along the east edge of the Ridge property will intercept all flows from the west and direct them north into the proposed Ridge detention pond. SECOND FILING DRAINAGE: Runoff from the First Filing shall be routed through the Second Filing to a detention pond to be constructed along the west side of Shields Street. This detention pond is sized to detain for both Westbury First and Second Filings. The detention pond required capacity of 3.6 acre feet and release rate of 12 cfs was determined by the SWMM Model prepared by RBD and modified by Andrea Faucett. Release from the detention pond is under Shields through a new 18 inch pipe and then east across the Larimer Community College in an existing swale in a dedicated easement. This Swale will carry about 50 cfs before overtopping. SECOND FILING DESIGN: Runoff generated by the Second Filing will be carried by the streets and storm drain piping to the detention pond, except for the rear yards ofLots 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53 and 54, which will drain directly into the PV & LC ditch. Also, runoff from the pavement via Shields Street and the Shields and Westbury intersection cannot enter the detention pond since the high water line of the pond is approximately 1.5 feet above the curb flow line at this intersection. This Shields runoff will enter the catch basins to be constructed on the west curb line of Shields. The catch basin to be constructed by this project on the west side of Shields will drain to the east Final Storm Drainage Report Westbury P.U.D., Second Filing Page 2 under Shields Street through an existing 15" CN P. The Second Filing is divided into 13 basins, and the runoff from each of these basins, as well as the combined flows at critical points, are shown on the plan included with this report. Runoff from the basins and critical point flows are shown on the calculation sheets in this report. Also, calculations of the Ridge pond and release pipe are included, along with a plan of the Ridge pond and outlet pipe. EROSION: The Westbury development is located in a high rainfall erodibility zone and in a moderate wind erodibility zone. The Second Filing consists of 5.92 acres above the PV & LC ditch and 10.56 acres below the ditch. The area below the ditch will drain to the detention pond where a sediment trap shall be installed. Grading will take place on the area above the ditch before the bridge and curbs are constructed to carry flows across the ditch, so a silt fence will be placed along the west side of the PV & LC ditch to intercept flows and sediment. The detention pond area and disturbed portions of rear yards will be seeded and mulched. Straw bales will be placed along the swale on the north side of Lots 1 through 14 and along the swales through the detention pond. Gravel inlet filters will be placed around all catch basins and sidewalk culverts. The 200 foot barrier spacing for wind erosion control will be provided by the curbs and rainfall erosion control procedures. All erosion control measures shall comply with City of Fort Collins Criteria. APPENDIX F STORM SYSTEM B ANALYSIS (BROPHY PROPERTY TO FRCC N. SWALE) 1 5' BENOI ].3' VARIES Z' VARIES '7.5' 11'i Td EL pWNO11't VAPoESATd E2 0RO0x0 x zs � CC LA,6 ,T+ IwE I.ENcm BEAgmG I 6 .. u3 tam ss 1w tlee OtDO x 1.33 - 13 OFS ] Oi OD x Im . 131 crs Lzn ,2•n ] •. w SLOPE-1.OS SLOPE-0.n \-. r+ I l2] MVYELOOtt-1.8 FPS - 2U' 1rEl0Ott-L] FPS ♦J +,8' - ue 432 N9 w.3' 1Y13p 1.10 N 1' ,w 1 RELpSn MINE R mNG ''JpECDNBrR MINE RIPR1 6t0 N Y.' w dANNEL IIbNG dN+NEL uwml31 ]].Y3 .1' 'N Ex mI 2+• DEEP QTH Ex RIPRM 2,' DEEP M1ly Bann Y ' w 8' T E n BEDDING 8' TYPE II BEDDING ly 88.fM{ Napwlrw CROSS-SECTION A -A CROSS-SECTION B• 3 1'• '3J•mw1g., N :.n y �. / • iA ll.b. 'el. a nA o.enn. ua�lr ��/� b• D' la _ — — — _ — — — _— — _ . —k 4 _ _ - _ • �'L R� STORM - 1: IRwC.Im 4061 (T1) _ _ _MPasID NNe14,r n-\ , Iqs f,n Sp.L znr f _. _- ._- •i n ..i E uQPo>m.NAwp..n�__ _ 'N.Q _ _m_A_-_ ' e ' i •- - sow p7m,uw.•e.,wne3mmQww 111. 10O1.01 eQwlm n P -G ~ .RPoso ,w R zewi .xu' . SND]m Y w[ mwR r I n Sr xnnzn •sqr R Fo ¢F4 O no a"o oN� s(s.amxwwwQe ��—i. II I9. . I' w w _ __ �— — —w — — w __ — w — — w — — —w — N _ -STORM B=._ A'. _ -B• -- _ -�. '1•'1. STORMS ....� -'•0 —E� •11..w DINE GNE- )� — — —— — --, _•y I— —,=— � C ,q •i - 6R- — — — — — — — — — — — — — m!N — , A � tii: - - - - - - - — "B � _ - • ,,•,,• n VAN r ean. ..n. ♦ _ i�e es frTl n.! t •. • I r• �) a Nm�n,wiurµmlDl) T lsumi4 Rr x YwQt mlao — — • n nA Sun,> x31' w1• P ...•' - \ J '• i r] XNIML.1A R}/ Wn QR 1\. 1lIn3P ✓.� y rX���A qM(' ��� �, QOMIRYCI[D /� I �.I Cdld P wlri SrI. I.... 100 T. ISM pm,m .('r~6 SrA n sb W.Slw. M]r .1 1 IC / • 6 u. Im1] PIT FRONTRANGE f COMMUNITY COLLEGE;=' s .y R 3•`� ]P.O TeMoga B 5090 -_ sa Xorz 5 Eo S a S n f ) ElfCl 8^ 8 SEE),` d oe ]om As`Ea (Tw) -�SIR pAOE .P 1 _ _ Tw. 33 Q�33 131 P 6 24' pIy a not _ _ d SEE NOTE 3 # iF g 6 L 3 nw. n• Bt> 23: v w 24'R�OI.Sq 3oro etn _ JIr 4>8x \\ w sv ISP v3r RP ens3 OLNCM MpI0L3 ep) SEE MOrE 3 �.�/ - < SC[ 5 'gFll%'87 N. 01AR _ ` T ]Y.Pp w yy _ RELDGIE FO 14• Yw. CEM fCAS MMA G3J . 1WATER„'0 -}I ]n• uN CvfA SEE x4,E s 3°50 - QCON1;mCiEO RIPRAP pNINEL YNC10 SrA ]+W BEON KO STR4Cnp P (lYP) _ EX w M N' OFEP wm a' TPE o BFp0w0 RZ YAIIN�E NLJN`G ' 19+00 18+00 17+00 18+00 15+00 14+00 13+OD 12+00 11+00 10+00 9+00 5+00 7+00 6+00 STORM B I CITY OF FORT COLLINS, COLORADO City of Fort Collins ENGINEERING DIVISION '�f� HOED owN SCALE 1'- W. SCALF I'- 1� PIPEE GTHS. 8E INSP[<rEn Br mE a,r P r<qr ,xrlw4 2 Rr S SE,ww LENGTHS N w 0 e TH J. WA 31UW PALL 9< M35 4 WM wAlEq TIGHT JI:wR (ASr11 CN]} I S0"b O 6 CpI1ER P SINVCNE. I <p,gA<TDR TO vwn L4uTlp P Au EnsnlQ uTunE4 taew.An,uec wwze,ISbW my PNPswn,l n+.aoo Pc ry,Ol n..an INi3,w3,] CO XOYLTINO GROUP MR. K DQ� YQy 90% COMPLETE OttPPUNTAP�PROV�'AD4 NOT FOR CONSTRUCTION APROhD W. HARMONY ROAD IMPROVEMENTS STORM SEWER -PLAN & PROFILE OF Scenario: Includes Ridge Pond 100-yr Release (5 cfs) lam.-l�a 1 �.,.�ttJ/t ljpN c►. �T�tir�l • �f, .//./ry LA - t �SSOC Ridge Pond Release P-11 J-6 P-10 J-5 P-g J-7 P-8 0 a. BROPHY INLETS J-4 � 1P PE R INLET MH-2 P-2 MH-3 P-5 MH-4 P? 6 OUTLET TO FRCC N SWALE Title: Haromy Road x:\..\starm a (brophy to frcc) update.stm 05/07/08 12:59:07 PM Intenwest Consulting Group ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Interwest Consulting Group StormCAD v5.5 [5.5005] Page 1 of 1 r U z W O F H W E H O •• y •• C m AN 0 O m 3 m 4 O H w m m W O -H > z a0 -rl aHJ W y C U �G -m U 4 ro G+ Z a 3 a m O a) m U v U U C ro ro U > w w oa 4 4 H FC O A CO U) U) m U O W W W E H H H a 5 A A A U A n n K4 A A A U O. N N 0 0 0 N C N m '5Na _ y > C 0 O Q U U w E m 0 y N c I I N H 1 0 0 0 1 m w w +1 I I O) .1-I 01 W I O O O I a: W U' ❑ I 1 I I 4'O 1 000 1 d m m-- I o00 1 w a) w 1 I 4 W 1 0 o O I - l:J a C7 m N I >1 I O O O I y) U 1 I N m C 0 0 0 1 f a -H I i H H I 1 0 w U dP 1 0 d M O N 0 n r N 0 N 1 N a -rl I I U N I r O m H .-1 ro W -r a + U W I I ri m 4 I O H H V) H H N m I W I I 4 J 1 a 'U Y 1) W m M r r r r r m m m m I I I N NM W I a O O O O O O O O O O 1 Q - - -.- - - - i b v 1 1 N. LD 3 In In 0 In 0 In 0 In 0 ui 7 'O 10 0 o I >1 O 1 1 O o 0 i x ❑ i i m 0 n m y O m I o O O I - - - - - - - - - - - - - - - - I w (OH w 1 1 1 0 O Oa C++ U I I U I H C o m l0 M r ri H H lD I F E >1 I I -H r� I m m r C m 1p m N ri m 0 U R7 I I H a) m • 1 6 O Z` I 1 a H 4 w w I o 0 0 0 0 0 0 0 0 0 0 1 t? n m 1 0 0 1 3 U' a) `-' I >1+ a I 0 1 N 0 ul 1f) 1n 1n U) to 0 0 1n I .0 I . I m rowayl 1 z ————— —————— — — — — — I W U O W I I I I U y p O N ri U I I U >1 I H H r r r Ol r lD 1n M N I -ri 41 O V E+ m G+ `-' I U m 4j m m m 1D 01 O O 0 r 0 1 ri m a U ro0 w a IT -r y • 1 a -O O m U w 1n I ro ro d' H I I 4 0 11 I 1 4 4 m I O m ri W I I 'O 0 G x y C ---- --- i E V i d y I �> I x a C O I dP dP oW I H 1 I I o 0 0 1 W•, — — — — — — — — — — — — — — — — 1 — — — c I o0o I a' I I m I H H H I H l 0 0 0 0 0 0 0 0 0 0 0 1 U o I -rl C 1 1� w w I O m v O 0 1 • I H m H I ri H r1 I - w N ri W 1 c a c cc M N N 1n N N 1 a -O I n a a 1 •• O >1 G. U 1 N N N N N 1 ro ro m w I ro ro ro I F E m I 4 4 C m 1 W W W I O 1 I O C7 -4 H 1 -4 a) m 1 O. ----- - - - - - - - - - - - I >1 a Ul c ❑ ❑ ❑ I a x p I ri U U I x w I O O O O O O O O O O O I --- 1 -rl -11 -W 1 E 4J b1 w 1 • I - a) I- 4 4 4 1 H C W I m 1n 0 M M 1n r m 1 C 1 I c N m 1 C C C I 3 al `-' 1 a I m N r-I r V1 " In N M m m O N ri N N H N N rn N I O 'O -r1 9 1 m m (D 1 `..0 I I C 4J .-. m C7 U' U' i a - - - - - - - - - - - - - - - 0 I O > W Cl ---- - 3 1 4 4 H H H 4 4 4 4 4 4 1 4 a) m I I E C I m m roro m m m m m m m 1 0 H 2 I J.) 11 4-1 1 W O a) I H H H H ri ri ri ri ri H H 1 W I m (L) a) I Z 'A a 1 a a a a a a a a a a a I I H r-I r I w m I U U U U U U U U U O U 1 --- I C C C 1 W U r 1 H H 4 4 H 4 4 H H H H 1 V I H H H I U a) N I -rl -H -rl -H -11 -H -H -rl -rl -H .H I (va) I I Kc N I U U U U U U U U U U U I H m 3 r I Oa I U U U I [L I 1 ro w O Y E C >1 I H F I -H -r7 -rl I 4 4 4 1 a D - - - - - I - ---------- I I m H O >1 W y I a) m a) I m C I .0 .0 .0 .0 .0 .0 I C C C I R O I U U u U U U U U U U U U I a) m a) I l7 a) I C C C C C C C C C C I --- I C7 C7 C7 I N 4JJ N I -H -H -rl -H -11-H -1-1 -H -H -H. -rl I I I .) -ri 1 U 1 c - - - - - I a m mI to N N 1fl 0I O I O Vl N M M N N N N H H H H H N G+ I I) I m - 2 4 C 1 I 1 H I m O I I c I m I a) ££ W I I H I a W a i N 41 O U a - ro p 0. V m a a 1 O H>1 1 O T 1 HCl) / L I H - - - - - - - - - - - - - - - - 1 1 a I >1 '-' I E I I O o+wun a w i i `oCO I i O I O A I Ma' or1 H m N m G' r m m H H 1 m 2 i ii -rl a w I U m I ri I I 1 I I I 1 I I I W I a m❑ 1 a a I M W al0.1 W CL d W a a a I d N O - - - - I - - - I U - - - - - - - - - - - - - - - I - - - H x - 14 m E E 7 cNN a4 1 J C O m 3 _V U ------------ Inrl P ommmr r1 �-+r-Im r m�orPm�ornN'-I m �n -� l oorlPmorl �-P mrn� a� I r r r r r m m m m m m rn W I 0 0 0 C C C 0 C C 1 C 0 �• I I m I(1 m o N In In N I In m N I N P (n �O N Ol In r N l0 N r f r o m rl rl In r rI P ri ,-I m 1 0 r H Ili M r' N P m P to l J-I I r r r r r m m m m m m m I 41 1 0 0 0 0 0 0 0 0 0 0 O 0 1 I Lo to o In I() lit In In In N o Ifl I — — — — — — — — — — — — i I tD In O O O O O O O O O O I I r-I N f"1 f-I P O P t`l In P N P I I I I r-I rl (rl r m m m P r mal r rV I 1 r r r r m m m m m rn o 1 1 0 C C 0 0 0 O O O O o '-I I I I IIl In to In In In N N N.N In N I I I — — I 1 0 0 0 0 0 0 0 0 0 0 0 a 1 O O O O O 1 N I 1 W 1 P P P P P P O� In In to In N 1 U I N N N N N N 1 — — — — — — — — — — — I I I W I I a 1 I � I v1 14 N 1 W II1 I 2 a ro t I Z N I I U H r1 I Cti 0: E+ C I 0 a Z G E+ >+ H 0 1 E. E >1 w w x rol I a cmN In 134 bt l I E+ m l I I .0 P r In l0 'd 1 I D 1 5 5 z a a I I I -I -.i I I o n£££❑ W n n n n x I — — — — — — — — — — — — — I �5 N O o O () W] N O1 o O CL C N N N > C � O U Q U w E o C a ro m N N !7 O N u TLC '-LA i t 1 dO ' 9 ¢7OMd RODM O fA 1 Title: Haromy Road x:l..\storrn a (bypass first Swale on frcc).stm 08/04/08 07:48:24 AM Profile Scenario: Bypass first swal Profile: Profile = 1 Scenario: Bypass first swat Interwest Consulting Group ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 ]� 5 uArePERUS Rr"PLEr noon O MM M13ft 5.ms.mn A ON ar (m Project Engineer: Interwest Consulting Group Storm CAD v5.5 (5.5005] Page 1 of 1 t= 5 OD i or a i>u°° VIM :NOUXI&SNOO YOd 03AONddV .m..•1 mea .�.�wrsa °nr ana. �nnitrvu>a 0 gym" 0pp° iea�> ant ao o.na.aan � sNolsln3a icce-Qw(°ta) iQo°a oovdaw>'s>roa wnt •ulua netlQl3n 5 ro� aaa'Wla> �� tent � � •-+ j 6YOl9AN06 ONY S&IMJN3 OMLIM03 tY.P9>L9af vnd.uneisa _ t S3 LVIOOSSV 2 i1 IVM31S I 1 a ! � k a ! ` 4 � u a 9 ! a tu ' u°e [ I FI I • - ge k rya ^ I ' to a £• a fit`; b= ra^ely ° Z I •°� U - 3�3:— a � E o i a g I 1 ? F' e 1 {A a go a aio t ads fi . a. .El. yt ;za �o° //i 1 Y o• yt nts ur ¢i W €'� �;•;', ^:` j �, s' f 5 � Yk °'i •=9 �'o Fp: ids •' •'D''d' � .1`4 yUj, � - J aQ Oa . Vie♦ .: +/ � �� lY E ¢F fp p$ FEo oQ) N'�HA • xa 0447 Zv u O ° a :e `• .O! y4 S° \ Za^, z€ fie°e, Y Fay�t, l 8s En: at YRY ceF r :: ��•- `� { •_ I _ � ¢� Za ' v`Is a I 'gyp �"• r�'vt°d�`�I / '' � /n •/ ai � k "' I "Fas. .•♦ n�iOL �' '1t / 7i i aka `�' `✓;e ' -,iij 't?' Fa a \\l. n_. `iy+ ,.•._.. J°0yy Jy �yy_.� // ,0g1��.. 9 i . - - /• roPl 'in _. '" Y. "pia ii •I • ��� s ♦ 1 : �... a✓'' . r- No Text APPENDIX G FRCC SWALE ANALYSIS It'd sr+ gene. — t t sA iwro 1 r• s.n_ +1• a m m.an.,-1, a an x.mw • aiw FRONTRANGE ":q^ COMMUNITY COLLEGE,,'' l bb bap ze .; �i3 bm bA SU 1+" AWp3m � lamxsillcilox a mnv aun¢ IpmN' ep ass w1w pWsmc NECASrIWCRp I�RY WAMNE� Np q[aOlaIPUCIF➢ Q pELa.'ATC 1C w r0 L L. n(K OIANN0. .J V U R<p O cmYAIER'Lpif]aNp apl0 apyp +00 0 00 STORM G THE WOODLANDS FlLING5 HARMONY ROAD YRlli Y[ ("p4 _ n ne TWs a (ssc>�a rl \1. Pepe K COVENTRY SUBDIVISION eroRM� n srA n.Ym n.er en W FLING 2 fpKLi m Oeanlp J'i0' m" (sa mss eo¢m) Q � O menAnse m WJen' xmmerK N ❑ >K�istrr woo � ACQJQW�nT Z I CITY OF FORT COLLINS, COLORADO ENGINEERING DIVISION 4a�buC: •rues, - _ _ _r S k S a n tk� nr) COVENTRY SUBDIVISION FILING 2 e a ^ � e w e oP C ed PRpPp¢p _ > 3 SaK Ape Y J�j bb +OaU • ,y apb Lll>LI� JiO-IQV .e. a0W bep 11+00 10+00 STORM C Fort Collins IP 1WZ R MILi .I mB-SDMi a ] YW R•bala] I b I 0.Ymp' ] NUfCP (119) �• 11. mt e m W z 6' aCl 2 R BAg WALLJ ARwm Np 0vsimc PIP[ 'q su I I I I 1 Rar ru ExGNArwN v-3•— um 6 61NB I aV Mlle¢ -- Oxc m' I flF 1 A T MAU 1 O' TYPE R INL Lr ON 38^3(60^ HERCP AT HINSDALE DRIVE I� I AWPO MORRONTAL SCALE: I -- W VERTICAL SCALE: V'- B 90% COMPLETE NOT FOR CONSTRUCTION 1}le W.M aeYC ML.✓. Crt �b e�'p PbP'IeiOI R+.V.e Orr ar Pper �S C1pRApp rPeMNn+mm PLAN APPROVAL IMTeI1t NaT Cp Ni UtTIN6 ONOUP 1 AFRpThD' _ 1 W. HARMONY ROAD IMPROVEMENTS STORM SEWER —PLAN & PROFILE OF Project Name: Client: Subject: Date: By: With: I -lei I -------- 4- - Pik 4-r II �,II f ---- =-EIS--f--� &4 - - I it-E-1 I r-1 10 I_ L -Al J- 9, T - T Pf T E IR WIE it T .1 J T P F— UJOA—._ _ I !_ I__ I -F _ + ( !_ I _ __ _ __ I G_ _ j I _ _ CID ff i I J F 444 J, LI -- - ---- 777 II L-71 --T 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL.970.674.3300 - FAX.970.674.3303 CULVERTS CU-54 DRAINAGE CRITERIA MANUAL (V. 2) 160 10,000 From BPQ EXAMPLE (I) (2) (3) 168 9,000 156 6 000 0.42 Inches (3.e feet) 6. 6 144 e1000 ' - a.120 of$ - 5 4.000 URe Her8• 6. 132 D fast 4. 3,000 (t) 2.e e.6. 6' 4. 120 19) 2.1 7.4 2,000 (3) 2.2 7.7 4 - 3. 100 so In fast 3' 96 1,000 3, / Boo 84 600 / . 2. 2- 600 A 72 400 ILI _ 60 n 200 r F 1.5 Z / f.' W c 34 at K 0 �W 100". 2 48 K e0 J v Q 60 I 1.0 1.0 c 42 tzi c 60 HW -ENTRANCE 40 SCALE TYPE D w to N 36 30/, ., Square edge Bills - 9 9 us � ' hs6dwa11 3 -.9 0 33 (21 Groove and with _ a LLi . 30 �s i headwall S .e .e (� (3) Groove and .e 2T projecting . _ 10 •T .r Rai/ 6. To use scale (2) or 131 project 6 horltontall7 to scale (1), then 21 4 use straight loclined line through - D and D Bogies, at favors* an 6 3 Illustrated. g •6 IB 2 16 1.0 ' 6 i2 --- ---- --- Figure CU-27—Headwater Depth for Concrete Pipe Culverts With Inlet Control 07/2001 Urban Drainage and Flood Control District CULVERTS DRAINAGE CRITERIA MANUAL (V. 2) 2000 1000 B00 600 500 400 300 40 30 20 0 Le z 120 108 96 84 72 66 60 S4 N D•4B W 48— x / z j 42 z 36 V 33 W UA 30 a 27 0 24 a N HW he W SIo06 S 2 SUBMERGED OUTLET CULVERT FLOWING FULL J HW- H♦ b—LS For outlet cro.e ml submnNO, eoempuh HW by nmfho4 described to Ih6 OWM proctilm - 110 yO .ne 1 .4 1.0 2 Ply LL q00 v 3 e t bop S 4 'b00 600 S BOO 600 6 0" s 8 It 06 .6 0 a 'to 10 4.1 IS 6 I 6 12 S 4 Figure CU-30—Head for Concrete Pipe Culverts Flowing Full n = 0.012 07/2001 Urban Drainage and Flood Control District CU-57 V) 0 OFFSITE FLOV -, -- ecu 77 A.crftitN Y R 0 A Q 17 . �4x Y. 7— - C; 0'a< s. W74.7' % .1 11 Q:T. �T I 5LDc ' EXIST. it DETENTION POND PAT BL 61 SPEAK FAZNT-al'12 de IO0AW,VOL Ren - 88.975 CU. FL VOLUME PROVIDED m.89;833-CU.-Fr. 0.- 100 YR. MATER SURFACE ELEVATION - SOMM 100 YR. I DEPTH 4.0 Fr. ----------- N, /7w, imss I \,\ I � / sme. i I I ' Nnf v EXISTING 8153, 'A' •CURRENF CONDITION - 4'.77 1 0." 1 23.7. 42�7 68.6 fflt\ PRO06SED UNDEIAINED 4n2l) 1 0 �3 1 17.6/ 31.7 - \\I PROPOSED DEIAINED j 17.57 17J 7I-j 64.6 4''-w id'. x x City of Fort Collins, Colorado UTILITY PLAN REVIEW D: �i! �' c L. // ` X \\ \\p _ V Lf: / - / i�~ DrwWr of 8 Vt4.W� D.4 CHECKED BY: Sso)mwUr UtMity Dw % 0. s la GRAPHIC.. SCALE FORT COWNS/1-OVELAND WATER DISTRICT SOUTH FORT COWNS SANITATION DISTRICT UTILITY PLAN REVIEW REVIEWED: MANAGER REVIEWED: DATE: SYSTEMS ENGINn'W- R m > Z m E Z .2 W z o APPROVED- JRL to Ld 0 ILLI uJ Ld 0 L) 0 L) t= z 0 0 L61 0 L) LLI x z 0 Lu z Lai z z z 0 .4c w cr cr C3 5 JOB N Worksheet for Trapezoidal Channel - 2' Bottom Width --before maintenance culvert ProlecfDescnp hi- Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth Roughness Coefficient: 0.078 Channel Slope: 0.01000 ft/ft ' Left Side Slope: 3.00 ft/ft (H:V) Right Side Slope: 4.00 ft/ft (H:V) Bottom Width: 2.00 ft ' Discharge: 10.00 ft/s Results, a' ' Normal Depth .. 1.15 ,Q ft Flow Area: 6.89 ft' Wetted Perimeter: 10.35 ft ' Top Width: 10.02 ft Critical Depth: 0.64 ft Critical Slope: 0.12291 ft/ft ' Velocity: 1.45 ft/s Velocity Head: 0.03 ft Specific Energy: 1.18 ft Froude Number: 0.31 Flow Type: Subcritical ' GVF Input<Data { ' �•�€ >'`� . ��x. *',';' ti� ;. Upstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVFQutput�Data _- Downstream Depth: 0.00 ft Profile Description: N/A Headloss: 0.00 ft ' Downstream Velocity: 0.00 ft/s Upstream Velocity: 0.00 ft/s Normal Depth: 1.15 ft ' Critical Depth: 0.64 ft Channel Slope: 0.01000 ft/ft 6 -Q Worksheet for Trapezoidal Channel - 2' Bottom Width --before maintenance culvert ' Critical Slope: 0.12291 ft/ft Cross Section for Trapezoidal Channel - 2' Bottom Width --before maintenance culvert Project�l]escription ��� Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth Roughness Coefficient: Channel Slope: Normal Depth: Left Side Slope: Right Side Slope: Bottom Width: Discharge: 0.078 0.01000 1.15 3.00 4.00 2.00 10.00 �-2.00 ft —] ft/ft ft ft/ft (H:V) ft/ft (H:V) ft ft'/s Worksheet for Trapezoidal Channel - 2' Bottom Width --before maintenance culvert (Plus 33%) Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth �r Roughness Coefficient: 0.078 Channel Slope: 0.01000 Rift Left Side Slope: 3.00 ft/ft (H:V) Right Side Slope: 4.00 ft/ft (H:V) Bottom Width: - 2.00 ft Discharge: 13.30 ft3/s Normal Depth: 1.30 c�/ 1_ ft Flow Area: 8.52 ft' Wetted Perimeter: 11.47 ft Top Width: 11.10 ft Critical Depth: 0.74 ft Critical Slope: 0.11820 U� 1 ft/ft Velocity: 1.56 /� (� li� V A4 f /s Velocity Head: 0.04 ft Specific Energy: 1.34 ft Froude Number: 0.31 Flow Type: Subcritical " GVF Input�Data Upstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF�Output�Data i Downstream Depth: 0.00 ft Profile Description: N/A Headloss: 0.00 ft Downstream Velocity: 0.00 ft/s Upstream Velocity: 0.00 ft/s Normal Depth: 1.30 ft Critical Depth: 0.74 ft Channel Slope: 0.01000 ft/ft t.A— I Worksheet for Trapezoidal Channel - 2' Bottom Width --before maintenance culvert (Plus 33%) Critical Slope: 0.11820 ft/ft Cross Section for Trapezoidal Channel - 2' Bottom Width --before maintenance culvert (Plus 33%) P�rotect�Descnphonr Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth Roughness Coefficient: Channel Slope: Normal Depth: Left Side Slope: Right Side Slope: Bottom Width: Discharge: 0.078 0.01000 1.30 3.00 4.00 2.00 13.30 1-2.00 tt --] ft/ft ft, ft/ft (H:V) ft/ft (H:V) ft ft'/s u 1,30 ft V.1 C-0 l Worksheet for Trapezoidal Channel - 6' Bottom Width --after maintenance culvert Poject Description Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth Roughness Coefficient: 0.078 Channel Slope: 0.00800 ft/ft Left Side Slope: 2.50 ft/ft (H:V) Right Side Slope: 2.50 ft/ft (H:V) Bottom Width: 6.00 ft Discharge: 98.74 ft'/s Results r � Normal Depth: 2.94 ft Flow Area: 39.21 ft' Wetted Perimeter: 21.82 ft Top Width: 20.69 ft Critical Depth: 1.62 ft Critical Slope: 0.08959 ft/ft Velocity: 2.52 ft/s Velocity Head: 0.10 ft Specific Energy: 3.04 ft Froude Number: 0.32 Flow Type: Subcritical Upstream Depth: 0.00 Length: 0.00 Number Of Steps: 0 Downstream Depth: 0.00 Profile Description: N/A Headloss: 0.00 Downstream Velocity: 0.00 Upstream Velocity: 0.00 Normal Depth: 2.94 Critical Depth: 1.62 Channel Slope: 0.00800 ft ft ft ft fus ft/s ft ft ft/ft Worksheet for Trapezoidal Channel - 6' Bottom Width --after maintenance culvert Critical Slope: 0.08959 ft/ft Cross Section for Trapezoidal Channel - 6' Bottom Width --after maintenance culvert Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth Section Data "� Roughness Coefficient: 0.078 Channel Slope: 0.00800 ft/ft Normal Depth: 2.94 ft Left Side Slope: 2.50 ft/ft (H:V) Right Side Slope: 2.50 ft/ft (H:V) Bottom Width: 6.00 ft Discharge: 98.74 ft'/s f --- _6,0v ft ---d T 2.94 ft V:I N H: 1 Worksheet for Trapezoidal Channel - 6' Bottom Width --after maintenance culvert (Plus 33%) Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth Roughness Coefficient: 0.078 Channel Slope: 0.00800 ft/ft Left Side Slope: 2.50 ft/ft (H:V) Right Side Slope: 2.50 ft/ft (H:V) Bottom Width: 6.00 ft Discharge: 131.00 , ft3/s Normal Depth: 3.36 O ,� ft Flow Area: 48.32 , ft' Wetted Perimeter: 24.08 J. i J. ft Top Width: Critical Depth: 22.79 1.88 /' _ ft ft Critical Slope: 0.08617 �%� V % ft/ft , Velocity: 2.71 ft/s Velocity Head: 0.11 ft Specific Energy: 3.47 ft Froude Number: 0.33 Flow Type: Subcritical Upstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 GVF OLtp"ut�Data , '�o ` � Downstream Depth: 0.00 ft Profile Description: N/A Headloss: 0.00 ft Downstream Velocity: 0.00 ft/s Upstream Velocity: 0.00 f /S Normal Depth: 3.36 ft Critical Depth: 1.88 ft Channel Slope: 0.00800 ft/ft c No Text Cross Section for Trapezoidal Channel - 6' Bottom Width --after maintenance culvert (Plus 33%) Flow Element: • Trapezoidal Channel Friction Method: Manning Formula Solve For: Normal Depth MOR Section Data,zj& Roughness Coefficient: 0.078 Channel Slope: 0.00800 tuft Normal Depth: 3.36 ft Left Side Slope: 2.50 ft/ft (H:V) Right Side Slope: 2.50 ft/ft (H:V) Bottom Width: 6.00 ft Discharge: 131.00 ft'/s . -s.00 ft -- T 3.36 ft i V;1 N; 1 Worksheet for Ex. Trapezoidal Channel - 6' Bottom Width --after maintenance culvert PtojectDescripfion `�` ��MEN 0,1- ' Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge Ilriput Data-" `. • � ��°, Roughness Coefficient: Channel Slope: Normal Depth: Left Side Slope: ' Right Side Slope: Bottom Width: .$�� � V � 0.070 0.00770 3.00 6.00 6.00 20.00 ��. ���F,. _ "' �, x.� � ft/ft ft ft/ft (H:V) ft/ft (H:V) ft Results,8 � -Discharge: 1 3 339.08 ft'!s Flow Area: 114.00 ft' - Wetted Perimeter: 56.50 ft ' Top Width: 56.00 ft Critical Depth: 1.73 ft Critical Slope: 0.06620 ft/ft Velocity: le 2.97 ft/s Velocity Head: 0.14 ft Specific Energy: 3.14 ft ' Froude Number: 0.37 Flow Type: Subcritical s� m..%., fil rr ., r � -•�. . Upstream Depth: 0.00 ft Length: 0.00 ft ' Number Of Steps: 0 GVFOutput®atas=":� Vyy� �� I"=�, N t'a . 3,:. a �. Downstream Depth. 0.00 ft Profile Description: N/A Headloss: 0.00 ft ' Downstream Velocity: 0.00 fps Upstream Velocity: 0.00 ft/s Normal Depth: 3.00 ft . ' Critical Depth: 1.73 ft Channel Slope: 0.00770 ft/ft Worksheet for Ex. Trapezoidal Channel - 6' Bottom Width --after maintenance culvert Critical Slope: 0.06620, ft/ft 0 Cross Section for Ex. Trapezoidal Channel - 6' Bottom Width --after maintenance culvert I PRotechDescFs ,ptwn Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For: Discharge Roughness Coefficient: 0.070 Channel Slope: 0.00770 ft/ft Normal Depth: 3.00 ft Left Side Slope: 6.00 ft/ft (H:V) Right Side Slope: 6.00 ft/ft (H:V) Bottom Width: 20.00 ft " Discharge: 339.08 ft'/s 3.00 ft Y' l L H; t n C-7'2O Project No.: /Zl"g BY: 5 With: Q i I �- ; I i I I I t lag � d.+sris� �K', •�� y ��. _ y�.`L�O_[r� _• 4�.%(Iui , 1 i i i I I� i I I • i ce I_ I I rt i i C I I I � I_ l_ �__ �__ I V r-- I I I I I — I I I I - I i I ��— ra- , I I I I I ; _ Ir;ILA ... - r I I t - . 2 N I I 1218 W. ASH, STE C • WINDSOR, COLORADO 80550 TEL.970.674.3300 • FAX.970.674.3303 6--7J2 CULVERTS CU-54 DRAINAGE CRITERIA MANUAL (V. 2) 180 10,000 From BPR (I) (2) (3) 168 8,000 EXAMPLE S. 156 6 000 D•42 Inches (3.5 r«q 5. 5,000 Q-120On 144 4,000 Hie • Hot 6. 5. 132 D foet 3,000 (1) 2.5 9.9 5' 4. 4. 120 12) 2.1 7.4 4• 2,000 -(3) 2.2 7.7 3. 108 OD in fell 3, 96 1,000 3 -800 84 800 500 400 0 2. 72 6 ILI 300 +j/ 1.5 1.5 U Z U) K 1.5 U.200 60 i?(/ W Z Z / ��' W 0 V 54 v r a W r'c 100 Z W 48 80 _ 1.0 1.0 o 60 W 44// 2 50ENTRANCE -10 G in 1.ZI!W SCALE cc A0 D TYPE ' W n- f 38 4$ ,� _ 30 pl- sau.•wa..uh 9 W _ 33 % headwall in Q ep .121 <, Groove and with W G /i headwall = -8 .8 30 (;) Groove and '8 - Projecting 2T 10 - .7 .T .r 24 8 6 To use seals (2) Of (3) grolect 5 hori=anlalry to .Gala (1), then 21 4 use straight Inclined line through D and a stolen, or reverse as •g .6 3 Illustrated. 6 IB 2 IS 5 3 .s Iwo Figure CU-27—Headwater Depth for Concrete Pipe Culverts With Inlet Control 0712001 Urban Drainage and Flood Control District A J 1 1 Fr t J h i n. J , Pit 7 jj q t !1 k F 1 ry�l 31. FINAL DRAINAGE STUDY AND EROSION CONTROL REPORT FOR r P. THE FRONT RANGE COMMUNrMCOLLEGE ADDITION CAMPUS LARIMER { 1 pp J ' {� 1i Prepared For � 1 The Front Range Community College V a z: �i t�k,�, �, fit•^" ' 4616 South Shields Fort Collins; C0 80527 ' - - -v.- r .. 1 �s 1° 1; :r 7 1 1 CONSULTING ENGINEER': Landmark Engineering Ltd.;,, 3521.West Eisenhower Boulevard Loveland, Colorado 80537 i x l N N N SSS N N N 000 ,no O .a. ^aa fV (4 44 N{V CI P.� j �,em .�., c-o�.c,�" �.�ri,�- c✓t= ,3�vey fj ¢i G veueia« m 4/, */3 /-:�; fgc, 5;1.s Ov e,.eLoAon.+rp /1--47 c.� L,.. - Z-,Eic.,4)77,0 = z 8 0' aGi t /7 �r �2 = Z, /Z QZ C•t f4`' = O,J��o X Z. / Z x S!. y3 = vr' Z G G J s x :i! S/3 = 9. 3 G) cj's USE Z4'�Gl� 'C. �.✓`l �QC4P/ro.0yGT9 ) �r " ;GUjZI,�F I.c./iLC, SU.e�h*E'.� FCOW 77> . tNG�T, /2V,01n4"mac /A2I-�iq = 0.886 ,9c /Od/v �wo� c=o.9,r 7e .9.oO�,T1n�v.�c �Go w�f Z ve = O, ySx Z,/z O, E'$G r ./> 7e c co Y,e = U•9S x 3.75 xa.8.�'G = 3. /G cis /o[J y% = cd, 9S- ZY,e = S,Z6 t/, 78 = 70y cis /vye = 930 t3, = /Z,1/G cf� Cd0 Y,e = /B. 6 G. 3 / = Z 44, 9/ t 61;rlC �44 i. le G14P @ s = 0, 5 ,) l d C. 61, 1'-A v G�fLV/Cti'Tu,voF2 /�-.er?��..Y. /�-GNN,o .f�wT�P.�`�,•ci< (� !OY/t piaw = 3 /•3/ �o Q oft./ ;,i\ /uric Fcu,�i Gy.6v 3s.Z= 99. Ser9" - .7 Z Gi j ' P4G� %� Z - �o y' C/y � 3 �• 3I L� O/� •3 6, cjj Iv�GL �vC c?7v/' Qe/vE G/s E ? - z 7 "le & a. s '2; 62Coe = Z Z c•, = G/Yc, 7 3/, 3-/ : • O/C 3 S: 2 c 0,07 =G.o7 �C3 = Z O � FT �,Ei'7?�' fit-^ ,.C'c a v✓ _ �. � Fj ' APPENDIX H ' ANALYSIS OF HINSDALE CULVERTS AND PROPOSED INLET (STORM SYSTEM C) 1 C� Y ww�w.�.wrwwr��e�-sYi00�tE1nrA&9�^.�N+t 1 \� BTG— YAlnl O ROR.V /. .` ea lo.n- OMS' n sTrai.xm.f., n su Sma17>" FRONTRANGE COMMUNITY COLLEGEv AA - Soso � a SOuo � eke sg •D'g eA u a�: — _ _ laa Ylt N0. _ 'i.xs soro wro STA lo.72 rR�� OEM REC0151R Tm a RRIAr CNMNR 1Arwa rD nu WTCH ExISIwC RECONSTNVCTF➢ MMN WAn EwNc ELocArz ScowsrSucnn ro CNMNm cx IS• MN, =M uwwc N V IA• RO 0 A7% wA1EN'LORORNG IE• Yw, pum so5o bOw ita00 1D 00 STORM G THE WOODLANDS FILING5 HARMONY ROAD_---�—Nu�v a_ f� _ .. NS.5 a S �['�.� 7..m S — S+.aaa`�� 5 b fIR Tw[ x I4C101 Y) c Y.v ./7 COVENTRY SUBDIVISION mOnR Or wlEr zr:o.e'�s FILING 2 OareO¢r mS1. ". m i (36 LFiYL mm. m1TYLn}1 1O 1OlT ..M .I) a rwa ro zrmc M MLT Nq NAnSi ACWYInY CITY OF FORT COLLINS, COLORADO ENGINEERING DIVISION nRMC COVENTRY i SUBDIVISION 0 FILING 2 m O 2 I M a O 2 211 8 Soso Savo 3 � morasm AaE' m�.N•K.y SaSO -A'A. }J IF6b� ST ao'Nov •r. ry -AW SOAO 11.00 10.00 STORM C City of Fort Collins �'1% �. la rrrE R w1ET Tae.Saxax ' S• Ir ImO n-Sa>15x Ex b•ao• � Ix Nwv (rm) c Ir wl wv.bep.xi �PVE m .= / b•.50• NERD Dw0O9fM R 8aS 2 i9NN BAY uq R4L5 ARoIwD EPSTWa RKVA pI IR O T 1 na. Eu EXGVAn Tor RAnf I n a55 I > Rn1UNE1 wswutr t T I I ELAM an 1 O' TYPE R INLET ON 38'X60^ HERCP AT HINSDALE DRIVE FOR 4,. UR'fit "a ; . ; .,r,, 1 a.._ Ww0%RK BY OTHIERSS �G C YC[ NOOOd CWRf 50 25 O 50 100 HORROMT'AL scA :I". 50' v ncA Sr. c.I"- 5' NOTES. L K SI w VN E NS C= R THE CITY 6 i T LVllp> 1 ST S L GN .n r 1 RO 5T SN E n M W M MM MHT i M (AST11 CU3). A. STAT NG M Mn M SMCT c > N TRA = m K L nM d ILL Eirwc UTUn 90% COMPLETE NOT FOR CONSTRUCTION Irew.Ae.wrc vONaY.cY..ea evm Ecrym,eli ewm aTr s rw PROS caaRAoo PLAN APPROVAL IYieeweeT CO Ne VLTINa aROVP IrM01f➢: W. HARMONY' ROAD IMPROVEMENTS -SHEET CHECKED BY: IDAM STORM SEWER -PLAN & PROFILE °F Design Flow = Gutter Flow + Carry-over Flow OVERLAND SIDE OVERLAND FLOW STREET FLOW GUTTER FLOW PLUS CARRY-OVER FLOW <= GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): Q A ds *If you entered a value hem, skip the rest of this sheet and proceed to sheet Q-Allow) Geographic Information: (Enter data in the blue cells): Subcatchment Area Acres Percent Imperviousness - NRCS Soil Type A, B, C, or D Box Site: (Check 02 B 0 1 lope (fult) LenElh (ft) Site is Urt:.: .2 Overland Flow Site Is Non -Urban: I Gutter Flow ....... ... .......... ­... ........ . .... .... ....... Rainfall Information: Intensity l(inclVhr)=Ct*Pl/(C2+T, )A C3 Minor Storm Major Storm Design Storm Return Period, T, . .. .... ............ ....... years Return Period One -Hour Precipitation, P, ... ....... ........ % . : ­­­ ........ ­ ........... ....... inches C'=.......... C'= ........... ...... ...... C, ........ ... � User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C ­ ... . . ..... .............. ... ......... .. ...... . User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C, ... ..... ..... . . ...... .......... ... Bypass (Carry -Over) Flow from upstream Subcatchments, Q, is J6A e (A Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm Calculated Design Storm Runoff Coefficient, C NIA WA Calculated 5-yr. Runoff Coefficient, C5 Overland Flow Velocity, VG fps Gutter Flow Velocity, VG MA fps Overland Flow Time, to = minutes Gutter Flow Time, tG = minutes Calculated Time of Concentration, T. = ...... ............. . .. minutes Time of Concentration by Regional Formula, T, = minutes Recommended T. = minutes Time of Concentration Selected by User, T. = AdA minutes Design Rainfall Intensity, I= .......... . - ... NIA inch/hr Calculated Local Peak Flow, CIP WA cfs Total Design Peak Flow, 0 . . .. ..... ... : 627 cis P DP 7.)ds, Q-Peak 8/7/2008,12:52 PM Project: Inlet 10: f_ BS1 TCBOWN SBgC�— T, TMPx W T* Street _ Crown y Qw Qx� H cu RB d S a yf mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) zing's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ig's Roughness for Street Section Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W (T - W) ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carded in Section Tx Discharge within the Gutter Section W A - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, &lawns) Maximum Flow Based On Allowable Water Spread ' Flow Velocity Within the Gutter Section •d Product: Flow Velocity Times Gutter Flowline Depth iretical Water Spread Tretical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Tretical Discharge outside the Gutter Section W. carded in Section Tx TH at Discharge outside the Gutter Section W, (limited by distance Tca N) harge within the Gutter Section W (Qa - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) TBACK = :. 7.$ ft SBACK = 0.0200 ft. vert. / ft. horiz negcK = 0 0300 HcuRe= ,,4.:...:.::.:::',6.00 inches TCROWN- .. 42.7 ft a = .. ':2.00 inches W= .i-2.00ft Sx = 0.0260 ft. vert. / ft. horiz SO = ._.........'.:6.0683 ft. vert. / ft. horiz nBTRear 0.0160 T. = d. SW = y= d= Tx' Eo' cl ' Qw= QBACK Or= V= V•d = TTH' Tx TH' Ee: Qxrn' Qx' Qv: OBACK Q= V= V•d' R' Qe' d= clCROWN " ,-' z 427. 35 Ll:nnr C.nrm Uninr Clnrm °t 01093 FM_V01093 s z�,'Lti936 XA�03.31 28:0 ';.0.194 i ''�!, O'134 ,bD'a f -52`6 ' "'t.,, ta1:42 3 ;:12 7 fir,... ',,. ? 22.0 19 rnnnr e.n,.., eeninr c.nr.., 017o * /r.7:1'.00 .v r -'r#00 I fiches = yes Vft nches nches t :fs :fs :fs :fs ps I :fs :fs ds :ft :fs Ps :fs nches nches Minor Storm Major Storm towable Gutter Capacity Based on Minimum of Q. or Q. Q,iaw= u.r"�?y,2 16.0 "` 10V cfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' ' DP 7.xls, O-Allow 8/7/2008, 12:52 PM Street Section with Flow Depths 20 19 18 17 16 * X 15 14 aNi13A L k i—A— -- -------- _ --- --- -------- —.._._. .._...... _..-- --- ---- tk---- AA--'--- c 12 c 11 r a 10 m O 9 L m 8 2 7 6 0000 5 4 3 2 or 1 0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Section of 112 Street (distance in feet) —Ground elev. --9- Minor d-max-..e..- Major d-max --X—Minor T-max * Major T-max L.Y = 0.56 S.Y13SL 1T 8/3 n Q.Y O = O — Q = ' — tiO .� 1—Ea _ 1 Eo 7+ Si 1, SX 1 8/3 II + Sil? /SY —1 (TIW)-1 ' DP 7.xls, Q-Allow - 80/2008, 12:52 PM 2 19 18 17 1 15 IP ,44 01 3 C =1 =01 2 M 0 ELMO '13 CL U) 3: 7 0 LL 2 0 0 2 4 6 8 io 12 14 16 18 20 22 24 Q for 1/2 Street (cfs) -G- Flow Depth (in.) -El- Flow Spread (ft.) DP 7.xls, Q-Allow 0 for 1/2 Street (cfs) Flow Depth (in.) Flow Spread 0.00 0,,-MUO IZOPIOMO 02-5 'i 263 0.75 �J-2?72 100 e 26 1.25 -,Y95:03 1.5 0 1!7.:,n7'2.77 La :67, A.75 3g4, ZOO E�.'O 9 —R ,i�,612 2.25 7.,,17 2:50 zN `s.4:36 R7:58 2� —4.48 3.00 7K�4:59 8M 3.25 'K4-.70 KE-S1065 3:50 U7F'riZ4'80 ',4,'28':97, 375 4:89 27, R' - 4.00 ---4.98 ;;, ,9.55 4.25 V-;?,�ifi-06 -w'9:83 4�50 Kt' 515 ,'!il'510:09 5;22 '1,f 0f3 5.00 -KZ,s_"10 -. 5 8 :5;25 �-'Mrt&37 W: 082 5.50 '0 15A' - 4 10 4, 5�75 5.51; 6.00 '-5:58 1 .8 ­Iaz'?5.64 6.50 kKM5!71- ::-635 5g77 Ar--2;08 % .7.00 :5M 12`�E' � .27, 9 '5:88 -12- -461 50 ill&-.15.94 R16:00 --8:00 �4 , .'.''iEi.O 5 3'00 &25 O'Y 13.17, B'50 N�M,EiA 6 3:33 8.75 3'509 9.25 :3 1; 3:8 1 -9 �50 !-&2,13: 9 935 �2*-A16:40 2 MOO EIIT`;.'`.' 6145 �4:27e 6.1616'..910.25 `l �:; 14i55 10 75 Zf,-,4fr-'6;58 16',,,Zms,t�! 4.6 -11 0 V Y16.62 p 483 'V t,-1 A'g 7: Jr1.50 -7.11 i 5z10, -:!I 175 vMT66!.7 5 � ,15:23 W 619 536 M2.25 ;;f 6 .83 5 411 if.50 A- is 8/7/2008,12:52 PM ' II Design Flow= Gutter Flow+ Carry-over Flow yOVERLAND SIDE L__j I ,MSTREET OVERLAND FLOW ' ®E-GUTTER FLOW PLUS CARRY-OVER FLOW F ® F-GUTTER FLOW INLET INLET 112 OF STREET r_ Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): ' . If you entered a value here, skip the rest of this sheet and proceed to sheet G Geographic Information: (Enter data in the blue cells): Site: (Check One Box Onl ' Site is Urban Site Is Non -Urban Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type - »:€;»:>;;>::;»: A, B, C, or D Sloe ft/ft) Lengt h ft Overland Flow Gutter Flow Rainfall Information: Intensity I (inchlhr) = C, ' P1 I (CZ + T.) " C3 Design Storm Return Period, T, _ Return Period One -Hour Precipitation, P, _ C,= Cz= 1 C3_ User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), CS = Bypass (Carry -Over) Flow from upstream Subcatchments, QD = a Catchment: Calculated Design Storm Runoff Coefficient, C = Calculated 5-yr. Runoff Coefficient, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Overland Flow Time, to = Gutter Flow Time, to = Calculated Time of Concentration, T. _ Time of Concentration by Regional Formula, T. _ Recommended T. _ Time of Concentration Selected by User, T, _ Design Rainfall Intensity, I = Calculated Local Peak Flow, Q, = Total Design Peak Flow, Q = ' DP 7 SUMP (Hinsdale).xls, Q-Peak k - tic 8t7/2008, 12:50 PM TBAcx Tceow $BA�� T. TMAx K W Tx $treal _ CrpWn y Qw Qr/ -- HcuRe d $ x a 9J rum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb it SBACK = 0.0200 ft. vert. / ft. h oriz nBACK = 0.0130 of Curb at Gutter Flow Line HcuRB = 6.00 inches ce from Curb Face to Street Crown TCROWN = ., 20.0 ft Depression a = ....,-..__2.00 inches Width W = 2.00 ft Transverse Slope Sx = 0.0200 ft. vert. / ft. horiz Longitudinal Slope - Enter 0 for sump condition So===;;;.,0.0000 ft. vert. / ft. hertz ig's Roughness for Street Section nsTReeT = „. 0.0160 Allowable Water Spread for Minor & Major Storm Allowable Depth at Gutter Flow Line for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Cross Slope (Eq. ST-8) er Depth without Gutter Depression (Eq. ST-2) or Depth with a Gutter Depression vable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Section W. carded in Section Tx harge within the Gutter Section W (Or - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Water Spread r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth tretical Water Spread rretical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) rretical Discharge outside the Gutter Section W, carried in Section Tx TH al Discharge outside the Gutter Section W, (limited by distance TCROWN) harge within the Gutter Section W (Qa - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm r Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allow. Gutter Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) T.; diyx, Sw = y= d= Tx = Eo = Qx = Ow = ABACK _ Or= V= V'd = TTH = Tx TH = Eo = Qx TH = Qx= Qw = ABACK = Q= V= V'd = R= QB= d= dCROWN = liner Storm Major Storm 20i0 X �. Minor Storm Major Storm y, 0.1033 i s.,0:1033 r;18.0 f '7' ; 78.0 0i0 '0.0 ;SUMP Minor Storm Major Storm 38:8 0.378 t, r W145 i "a":0'0 "L.'ra00 t o li o`o .,,.,..SUMP. igQ=isuMB u—f"'+SUMP, ft inches X =yes Poft inches inches ft cis cis cis cis fps cis cis cis cis cfs fps cfs inches inches in Storm Ma or Storm lowable Gutter Capacity Based on Minimum of Q, or Q. Q,ib,v = ,;,^:SUMP 7 SUMP cfs STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' STORM max. allowable capacity OK - greater than flow given on sheet'Q-Peak' DP 7 SUMP (Hinsdale).xls, Q-Allow P^ 1 817/2008, 12:50 PM ,�—Lo (C)�(' H-Curb H-Vert wo Wp W Lp (G) of Inlet I Depression (additional to continuous gutter depression's' hom'G-NloW) her of Unit Inlets (Grate or Curb Opening) a Information th of a Unit Grate i of a Unit Grate Opening Rath for a Grate (typical values 0. 15-0.90) Sing Factor for a Single Grate (typical value 0.60 - 0.70) t Weir Coefficient (typical value 3.00) t Orifice Coefficient (typical value 0.67) Opening Information th of a Unit Curb Opening it of Venhal Curb Opening in Inches it of Curb Orilke Throat in Inches e of Throat (sea USDCM Figure ST5) Width for Depression Pan (typically the gutter width of 2 feet) Ling Factor fora Single Curb Opening (typical value 0. 10) Opening Weir Coefficient (typical value 2.30-3.00) ging Coefficient for Multiple Units ging Factor for Multiple Units e as a Weir i Depth at Local Depression without Clogging (0 cfs grate, 6.27 cfs curb) Row Used for Combination Inlets Only r Depth at Local Depression with Clogging (0 cfs grate, 6.27 cfs curb) - Row Used for Combination Inlets Only e as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 6.27 cfs curb) F Depth at Local Depression with Clogging (0 cfs grate, 6.27 cfs curb) Atinq Gutter Flow Depth Outside of Local Depression ling Coefficient for Multiple Units ling Factor for Multiple Units as a Weir, Grate as an Orifice Depth at Local Depression without Clogging (0 cfs grate, 6.27 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 6.27 cfs curb) as an Orifice, Grata as an Orifice Depth at Local Depression without Clogging (0 its grate, 6.27 cfs curb) Depth at Local Depression with Clogging (0 cfs grate, 6.27 cfs curb) Itine Gutter Flow Depth Outside of Local Depression Inlet Length Inlet Interception Capacity (Design Discharge from O-Peak) Itant Gutter Flow Depth (based on sheet Q-Allow geometry) Itant Street Flow Spread (based on sheet Q-Allow geometry) Itant Flow Depth at Street Crown MINOR MAJOR Type 0007TypeR Curti ORemng ............ .......:.......:2:60 inches No 7 MINOR MAJOR Le (G) W. A,m. - G (G) C (G) C>(G) L. (C) H it H� a Theta We Cr(C) C (C) .:. .; .: .::. '.:. : MA: �NtA- ,.: :, NT MINOR MAJOR Cost =NfA tttA Clog = ::. NtA ......... iNTa ...:.. is .. de feet feet inches inches Inches inches MINOR MAJOR Coef -:itZ6 9;26 Clog MINOR MAJOR d„= At4 $85 inches d„= .ai+32q 9, 14 Inches >T-Crown DP 7 SUMP (Hinsdale),Ids, Inlet In Sump H —5 8f7/2008, 12:50 PM 40......... .......... ......... ............................................:................... 39 36 37 36 35 34 33 t 32 31 30 r 29 28 r 27 26 r 25 24 a 23 V t r m 22 n 21 N 20 i m L 19 U t c 18 L a 17 N 16 i i 15 l 14 13 gi 12 �� 11 .. I 10 a 9 8 7 i 6 5 4 3 10 1 0 .. .... 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q for 112 Street (cfs) -ts-Curb Wee -+-C bOdf. -R Nduva -a Ndux W R,o De qrt - Repw Ddo flaw D,h(h.) Fx Dan (h) Flow Dephpn.) R. sprad(ft.) DP 7 SUMP (Hinsdale).)ds, Inlet In Sump 0r0� 8/7/2008, 12:50 PM DP 7 SUMP (Hinsdale).)ds, Inlet In Sump H-to 817/2008, 12:50 PM Culvert Calculator Re ort Hinsdale Culver` Solve For: Discharge Culvert Summary Allowable HW Elevation 54.56 It Headwater Depth/Height 1.57 Computed Headwater Elev: 54.56 ft Discharge 329.81 cfs e — ?j 8 /C 0 Inlet Control HW Elev. 54.56 It Tailwater Elevation 48.23 It Outlet Control HW Elev. 54.36 It Control Type Inlet Control Grades Upstream Invert 49.56 It Downstream Invert 48.23 ft Length 81.00 It Constructed Slope 0.016420 ft/it Hydraulic Profile Profile S2 Depth, Downstream 1.92 It Slope Type Steep Normal Depth 1.70 It Flow Regime Supercritical Critical Depth 2.60 It Velocity Downstream 13.35 Itts Critical Slope 0.005253 ft/ft Section Section Shape Horizontal Ellipse Mannings Coefficient 0.013 Section Material . Concrete Span 5.00 It Section Size 3840 inch Rise 3.19 It Number Sections (((/ 3 /l Outlet Control Properties Outlet Control HW Elev. 54.36 It _ Upstream Velocity Head 1.46 It Ke 0.50 Entrance Loss 0.73 It Inlet Control Properties Inlet Control HW Elev. 54.56 It Flow Control Submerged Squardrdglypfth headwall (horizontal ellipse) Area Full 38.7 ft K 0.01000 HDS 5 Chart 29 M 2.00000 HDS 5 Scale 1 C 0.03980 Equation Form 1 Y 0.67000 nA Svc AA AA M p I S . \A \V t ✓' s Gor.P.l.( \�f —+to I(A�fJ/� I gGTS �o� I�JI'r I 7 = q0M •i� 'l. c CS / c4, 4c, i rJ L( Z -+-s 20M " r/ Project Engineer: Interwest Consulting Group x:\ ..\drainage\culvertmaster\hinsdale.cvm Interwest Consulting Group CulvertMaster v3.0 [3.00031 04/16/08 11:22:48 AM ® Haestad Methods, Inc.. 37 Brookside Road Waterbury. CT 06708 USA +1-203-755-16W Pagel 1 of 1 �A— I ` 1 Culvert Calculator Report ' Hinsdale Culver+ Solve For. Discharge Culvert Summary Allowable HW Elevation 54.56 It Headwater Depth/Height 1.57 Computed Headwater Elew 54.56 It Discharge 109.94 cts ' Inlet Control HW Elev. 54.56 ft Tailwater Elevation 48.23 ft Outlet Control HW Elev. 54.36 It Control Type Inlet Control ' Grades Upstream Invert 49,56 It Downstream Invert 48,23 It ' Length 81.00 It Constructed Slope 0.016420 Wit ' Hydraulic Profile Profile S2 Depth, Downstream 1.92 ft Slope Type Steep Normal Depth 1.70 ft Flow Regime Supercritical Critical Depth 2.60 ft Velocity Downstream 13.35 ft/s Critical Slope 0.005253 tuft ' Section Section Shape Horizontal Ellipse Mannings Coefficient 0.013 Section Material Concrete Span 5.00 It ' Section Size 38x60 i Rise 3.19 ft Number Sections Outlet Control Properties Outlet Control HW Elev. 54.36 ft Upstream Velocity Head 1.46 It Ke 0.50 Entrance Loss 0.73 It Inlet Control Properties 1 Inlet Control HW Elev. 54.56 ft Flow Control Submerged SquanlydelgEypBh headwall (horizontal ellipse) Area Full 12.9 ft K 0.01000 HDS 5 Chart 29 M 2.00000 HDS 5 Scale 1 ' C 0.03980 Equation Form 1 Y 1 0.67000 ' x:X..Wrainagetculvertmasterthinsdale.cvm Interwest Consulting Group 04/16/08 11:23:03 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA j - 3g 1 KGO" Project Engineer. Interwest Consulting Group CulvertMaster v3.0 [3.0003] +1_203-755-1666 Page 1 of 1 H-1)- 9 t d 7 U d N C 2 K w m d :.i U) r O aF 0 o 0 aIq - m _U)m a N � C O Q U U � E d 0 m N c a L r m m N N n M O N 0 1 A- k3 Profile Scenario: Base Profile: Profile - 1 Scenario: Base Label: 1-1 Label: 0-1 Rim: 55.00 ft Rim: 54.36 ft Sump: 49.56 ft Sump: 48.23 ft -1 +00 55.00 50.00 Elevation (ft) 45.00 0+00 Station (ft) Title: Harmony Road Improvements Project Engineer: Interwest Consulting Group x:\...\hinsdale culvert without new inletrstm Interwest Consulting Group StormCAD v5.5 [5.5005] 05/08/08 11:10:49 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Calculation Results Summary Scenario: Base 1 »» Info: Subsurface Network Rooted by: 0-1 »» Info: Subsurface Analysis iterations: 1 1 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS 1 I Label I Inlet I Inlet I Total I Total I Capture I Gutter I Gutter I I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I Flow I Flow I M I (ft) I (ft) I I I 1 I -------I--------------- I I ---------------------- ------------- (cfs) I (cfs) ---------- I I -------- I I -------- I I-1 I Generic Inlet Generic Default 100% 0.00 0.00 I------------ I 100:0 I 1 0.00 I 1 1 0.00 1 i-------------------------------------------------------------------------------------------------------- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 1 0-1 I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I of I Size I Shape I (ft) I System Velocity I Grade I Grade I I Sections I Flow I (ft/s) I Upstream I Downstree ' I I ------I---------- I (cfs) I --------I----------I-----------I---------- I (ft) I (ft) I- I P-1 1 -------------- ------------I-------------------- 1 1 38x60 inch I Horizontal Ellipse ------------------------------------------------------------------------------------------- -------- I 93.00 1103.70 I 14.36 1 52.09 1 51.2 I Label I Total I Ground I Hydraulic I Hydraulic I System I Elevation I Grade Grade I I 1 Flow (ft) I Line In Line Out I I I (cfs) I (ft) (ft), -----=----------------I I I-------I------------------- 1 0-1 1103.70 54.36 51.23 '51.23 I I I-1 1103.70 1 ------------------------------------------------------ I 55.00 53.80 I 52.09 I 1 Completed: OS/OS/2008 11 10 03 AM Title: Harmony Road Improvements Project Engineer: Interwest Consulting Group 1 x:\...\hinsdale culvert without new inlet.stm Interwest Consulting Group StormCAD v5.5 [5.5005] 05/08/08 11:10:12 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 a^ N O 20 O r U N m�0 N N a N C � O Q U U ;€ o w � c `w w c 'm c W N 0 a` CD L6 N n M 0 N Q N co O n N O F QU 0 2 N _(D om U N ., o N a N �N C O O m n O U C N V O t y co N d l0 E N r C N Gl E m j N O C aL Eat r m€Q O o Ln o r CO =�0 DW —xo Profile Scenario: Ex. Hinsdale Culvert with new inlet ..Profile: Profile - 1 Scenario: Ex. Hinsdale Culvert with new inlet Label: 0-1 Rim: 54.36 ft -1+00 Label: P-2 gyp. Invert. 49.17 ft Dn. Invert, 48.23 ft L: 66.00 ft Size: 38x6A� u�R Station (ft) Sump: 49 Label: 1-1 Rim: 55.00 ft Sump: 49.56 ft . A 55.00 50.00 Elevation (ft) Label: P 9 56 ft Dp, lnvert 9* ft Dn. Invert. L 38 60 nch S ,. 4444 ftlft S: 0.01 J 45.00. 0+00 Title: Harmony Road Improvements _ Project Engineer: Interwest Consulting Group x:\...\drainage\stormcad\hinsdale culvert.stm Interwest Consulting Group StormCAD v5.5 [5.5005] 05/08/08 11:15:43 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Calculation Results Summary ------------- Scenario: Ex. Hinsdale Culvert with new inlet »» Info: Subsurface Network Rooted by: 0-1 »» Info: Subsurface Analysis iterations: 1 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I Inlet I Inlet I Total I Total I Capture Gutter I Gutter I I I Type I I Intercepted I Bypassed Efficiency I Spread I Depth I I I Flow I Flow I M I (ft) I (ft) I I ------I---------------I---------------------- (cfs) I -------------I---------- (cfs) I I ---------=-- -------- I I -------- I- I I-2 I Generic Inlet I Generic Default 100% 0.00 I 0.00 I I 1 100.0 1 0.00 I I 1 0.00 1 I I-1 I Generic Inlet -------------------------------------------------------------------------------------------------------- Generic Default 100% I 0.00 0.00 1 100.0 1 0.00 1 0.00 1 CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 0-1 I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I of Size I Shape (ft) I System 1 Velocity Grade I Grade I I Sections I I I Flow (ft/s) I Upstream I Downstree I I -------I----------I------------I-------------------- I --------I--=----- I (cfs) I ---------- (ft) I (ft) 1 P-2 I 1 1 38x60 inch 1 Horizontal Ellipse 1 66.00 1103.70 I----------- I 14.34 1 I---------- 51.70 I 51.2 I P-1 I 1 1 38x60 inch --------------------------------------------------------------------------------------------------------- I Horizontal Ellipse I 27.00 103.70 I 8.04 1 52.92 1 52.E I Label I Total I Ground I Hydraulic Hydraulic I I System Elevation Grade I Grade I I Flow I (ft) Line In I Line:but I I (cfs) I (ft) I (ft) I I---------------I-----------I-----------I-----------I 1 0-1 1 103.70. I 54.36 I 51.23 I 51.23 I. I I-2 1103.70 I 53.92 I 52.80 I 51.70 I I 1-1 ------------------------------------------------------ 1103.70 I 55.00 I 54.18 52.92 1 -------------------------------- -- - - - ----- Completed: 05/08/2008 11:14:53 AM Title: Harmony Road Improvements Project Engineer: Interwest Consulting Group x:\...\drainage\storrncad\hinsdale culvert.stm Interwest Consulting Group StormCAO v5.5 [5.5005] 05/08/08 11:15:02 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Added Flow to Inlet Profile: Profile - 1 Scenario: Added Flow to Inlet Label: 0-1 Rim: 54.36 ft Samq:4-8:23 Label: 4917 ft gyp. Invert: 48.23 ft pn. Invert: b: 66.00 ft Size: 38x60,� ��h -1 +00 Label:)-2 Label:)-1 Rim: 55.00 ft TS p: 49.56 ft 155.00 50.00 Elevation (ft) Label: 49.56 ft pp. Invert ft on. InVe� .b0 ft 4911 L.2 � Slze'. 38x60 inch S: p.p1d�444ft1ft --' ' 45.00 0+00 Station (ft) 1 4 _ o� Title: Harmony Road Improvements Project Engineer: Interwest Consulting Group x:\...\drainage\stormcad\hinsdale culvert.stm. Intenvest Consulting Group StormCAD v5.5 [5.5005] 05/08/08 11:16:09 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Calculation Results Summary Scenario: Added Flow to Inlet - ' »» Info: Subsurface Network Rooted by: 0-1 »» Info: Subsurface Analysis iterations: 1 ' »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I- Inlet I Inlet I Total I Total I Capture I Gutter I Gutter I I I Type 1 Intercepted I Bypassed I Efficiency I Spread I Depth I I I I Flow I Flow I M I (ft) I (ft) I I I -------I---------------I----------------------I-------------i---------- I I (cfs) I (cfs) I I ------------ I I -------- I I I -------- I I I-2 1 Generic Inlet I Generic Default 100% p 0.00 0.00 1 100.0 1 0.00 1 0.00 1 ' I I-1 I ----------------------------------------- Generic Inlet I Generic Default -1008-I -----0.00 --------- 0.00-1------100_0-1 0.00 ------------------ 1 0.00 1 CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 0-1 I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade ' I I Sections I I Flow I (ft/s) I Upstream I Downstrea I I I I (cfs) I I (ft) I (ft) I-------I----------I------------I--------------------I--------I--------I---------- I P-2 1 1 1 38x60 inch I Horizontal Ellipse 66.00 1130.70 I 15.30 I----------- 1 51.97 I---------- 1 51.2 '• I P-1 1 1 1-38x60 inch ------------- --- I Horizontal Ellipse 1 ---------- -------- ---- 27.00 ----- --------- 1 103.70-1-----8.04 1 53.56 1-- 53.4 ' I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In I Line:but I I I (cfs) I I (ft) I (ft) I I-------1 1 0-1 -------- 1 130.70 I ----------- I 1 54.36 1 ----------- 1 51.23 1 ---- .------- I 51.23 1 1 1-2 1 130.70 1 53.92 1 53.44 1 51.97 1 ' 1-1 ------------------------------------------------------ 1 103.70 1 55.00 1 54.81 1 53.56 1 Completed: 05/08/2008 11:15:52 AM ' Title: Harmony Road Improvements Project Engineer: Interwest Consulting Group x:\...\drainage\stormcad\hinsdale culvert.stm Interwest Consulting Group Storm CAD v5.5 [5.5005] 05/08/08 11:15:57 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 1 APPENDIX I 1 CULVERT CROSSING WAKEROBIN LANE ' AND ROADSIDE DITCH ANALYSIS (STORM SYSTEM E) M M M_ 6' SDMH SHIELDS STREET STA .16+65.9=� �7 ■ e.. f W C• EL 1 EX 29"r45"� _ E HE FES _I I EX 29"r45" y 6' SDMH STA 16+69.20. 8.46' LT= \ \ CL STA 55+66.04, 78.72' RT O m :OPOSED HEADWALL EE DETAIL PER SHT XX) V 5085=A 1 j 12 LF 29"T45" HE SD L ES I c, 15, LF 9"x45" HE ` 0 5095 W 5095 t� WO 't ur xC� • m o Lr 4 CS 30 'n �_j Z w I r, OD f II +�CS cc `avh < III 17 CQII > I"I—w , N= w If io it z ? w 1n x 5090 �WW 5090 J 1 EX/577N El GROU � 5085 — — — — '5085 02 LF (6) AND go EF (W OF EX 29 x45" HERCP 0.6$ J� Ji�� PR POSED GRADE E5 15 LF (W). 0.33% OF 29"x45" HERCP 5080 5080 AND E6 12 LF (E) 0.42% A-18" TYPE L RIPRAP PAD DEEP W/ 6". SOIL COVER AND 6" TYPE II BEDDING 2' CU OFF WALL 18+00 17+ )0 16+00 Computer File Information Creation Date: 11/12/07 Initials: JDL Last Modification Date: 8/15/08 Initials: JDL Full Path: Drawing File Name: 104601200FOR—PP—STRM.dwg Acad Ver. 2007 Scale: H-1:50 V-1:5 Units: ENGLISH ons Cityof Fort Collins 281 North College Avenue Fort Collins, CO 80522 Phone: (970) 221-5605 FAX: (970) 221-6378 HARMONY ROAD m U e � I FRRCC 80% COMPLETE NOT FOR CONSTRUCTION MATCH EX. r 25 O 25 50 HORIZONTAL SCALE: 1"" 50' VERTICAL SCALE: 1"= 5' �---20.5' 23.5'--{ 2% y. 1 2' MIN Q100 X 1.33 = 238 CFS �' BENCH ® 2% SLOPE=1.0% a — VELOCITY=6.4 FPS 1 I CROSS-SECTIION A•A N.T.S. NOTE: 1. REMOVE EXISTING TYPE R INLET. REMOVE THROAT INLET AND POUR NEW DECK AND SOLID FLAT TOP WITH STANDARD ACCESS MANHOLE RAISED TO FINISHED GRADE. 2. ALL STORM PIPES SHALL BE INSPECTED BY THE CITY OF FORT COLLINS. 3. RCP STORM SHALL BE CLASS III WITH WATER TIGHT JOINTS (ASTM C443). 4. CL AND FL STATIONING AT INLET IS CENTER OF FACE OF STRUCTURE AT FLOWLINE. 5. ALL OTHER STATIONING IS CENTER OF STRUCTURE. 1420 2nd Street Greeley, CO 80631 Phone: (970) 350-2126 FAX: (970) 350-2198 Region 4 PJG As Constructed No Revisions: Revised: Void: STORM SEWER PLAN & PROFILE Designer. J. LOFTON Detailer: J. LOFTONI r Project No./Code AQC M455-074 15572 If 2 Sheet Number X T7_ l Project Name: A —Project No.: Client: Subject: Date:.4/�`:Vo By:_A 15 —With: 24'i 1AA I'vIt VIJ )LI Co" 7-1 A fill F ----- 9 ---- - ----- _T_ i _77 -1 FT ------- 4 _40 Of —T-1i Jr T: E IR Will --- -T - _T F T__ I _ _._k I - Ala$ � f �, , T' ATI I ic 7 T t "J f-J-3 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL.970.674.3300 - FAX.970.674.3303 T - 2 UFC 3-230-01 AC 150/5320-5C 811 /2006 9/29/2006 Figure 4-4. Headwater Depth for Oval Concrete Pipe Culverts Long Axis Horizontal with Inlet Control 151 a 97 3000 EXAMPLE Size: 76" x 4811 O = 300 CIS I36 x 87 2000 Hw• Hw D (feet) I 4.0 121 a 77 0) 2.8 11.2 (2) 2.2 8.8 4"D 3.0 3.0 113x72 1000 (3) 2.3 9.2 106x68 Boo 'b In feet 30 -- 600 2.0 98 a 63 500 20 400 �X'% 2.0 91 : 58 d 001.5 ��' ' � z 200 z 6a48 W To use scale (2► or (3) W LL drew a straight line d 68 x 43 U. p too through known values �""^ size and discharge's U. J Z 6o of to Intersect acalelt). 1,0 1.0 �[ _ From point.on`scale (1) to 1.0 > ^ pro)act•horizontally to = 60 a 38 60 solution on either scale j� 9 IR. W / (2) or (3). W t' .9 0 .. t� '' 501" (� s 53 a 34 6 sr 2 r C 30: a %n� % /Zl�i7) Z Z 1 76'(Y) T T d 20 7 9 m HWID ENTRANCE 1- N 42a27 SCALE. TYPE ; .6 .B to (1) Square edge with c W •8 38 x 24 6 headwall _ (2) Groove end with 6 headwall ,5 .5 5 131 Groove and .5 • projecting 4 30x 19 3 2 4 .4 .4 b 10 D _ PREPARED BY 23 a 14 BUREAU OF PUBLIC ROADS 122 Worksheet for Irregular Section - 7 Current Roughness Weighted Meth( Improvedl-otters Open Channel Weighted Roughnes! Improvedl-otters Closed Channel Weighted Roughne Hortons Roughness Coefficient: 0.030 Discharge: 127.94 Elevation Range: 0.00 to 2.63 ft Flow Area: 30.79 Wetted Perimeter. 23.83 Top Width: 23.32 Normal Depth: 2.25 Critical Depth: 1.82 Critical Slope: 0.01307 Velocity: 4.16 Velocity Head: 0.27 Specific Energy: 2.52 Froude Number. 0.64 Flow Type: Subcritical ft3/s ft' ft It ft ft ft/ft ft/s It ft T ^�—i Worksheet for Irregular Section - 7 1-5 Cross Section for Irregular Section - 7 jjectDescription Flaw Element: Irregular Section Friction Method: Manning Formula Solve For. Discharge Section`Datao � a Roughness Coefficient: 0.030 Channel Slope: 0.00500 ft/ft Normal Depth: 2.25 ft Elevation Range: 0.00 to 2.63 ft Discharge: 127.94 ft'Is 23.32 ft T 226 ft T V2 K1 Z_(j , q.1 fit L N-2 I ij U S..-- jj-1 N. W- /I X142 big Liu rc .0 CL (D Ix u5j; ft 0 uj Axin ! ey � �. XYI�F�.�- ,xFFul � ��`; /off . o it %L1L1mrr 9=3 V P 4 Worksheet for WakeRobin Swale Q100 /' fi (/ bpr^ h � (� IV f / Flow Element:. Irregular Section Friction Method: Manning Formula Solve For: Normal Depth Channel Slope: 0.01000 ft/ft Discharge: 179.00 ft'/s Current Roughness Weighted Meth( ImprovedLotters Open Channel Weighted Roughnes: ImprovedLotters Closed Channel Weighted Roughne Hortons Roughness Coefficient: 0.030 Water Surface Elevation: 2.26 Elevation Range: 0.00 to 5.25 ft Flow Area: 30.27 Wetted Perimeter: 23.21 Top Width: 22.68 Normal Depth: 2.26 Critical Depth: 2.15 Critical Slope: 0.01245 Velocity: 5.91 Velocity Head: 0.54 Specific Energy: 2.80 Froude Number: 0.90 Flow Type: Subcritical ft ft' ft ft ft ft ft/ft ft/s ft ft -F- — 9 Worksheet for WakeRobin Swale Q100 cjs i Z-10 Cross Section for WakeRobin Swale Q100 Project°Descnption e, b 77MOM Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Normal Depth Roughness Coefficient: 0.030 Channel Slope: 0.01000 ft/ft Normal Depth: 2.26 ft Elevation Range: 0.00 to 5.25 ft Discharge: 179.00 W/s `----22,68 ft T 2,26 ft V:1 L H: 1 - I 1 Worksheet for WakeRobin Swale Q100*1.33 Flaw Element: Irregular Section Friction Method: Manning Formula Solve For. Normal Depth Channel Slope: 0.01000 ft/ft Discharge: 238.00 ft3/s Current Roughness Weighted Meth( ImprovedLotters Open Channel Weighted Roughnes: ImprovedLotters Closed Channel Weighted Roughne Hortons ;Results -`- a 1 Roughness Coefficient: 0.030 Water Surface Elevation: 2.55 ft Elevation Range: 0.00 to 5.25 ft Flow Area: 37.42 ftz Wetted Perimeter: 25.72 ft Top Width: 25.12 ft Normal Depth: 2.55 ft Critical Depth: 2.46 ft Critical Slope: 0.01199 ft/ft Velocity: 6.36 ft/s Velocity Head: 0.63 ft Specific Energy: 3.18 ft Froude Number: 0.92 Flow Type: Subcritical Worksheet for WakeRobin Swale Q700*1.33 T-t3 Cross Section for WakeRobin Swale Q100*1.33 Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Normal Depth Section Data E ,m.v ti h`tia+ ; :�zim w Roughness Coefficient: 0.030 Channel Slope: 0.01000 ft/ft Normal Depth: 2.55 ft Elevation Range: 0.00 to 5.25 ft Discharge: 238.00 ft'/s f---25.12 tt i T 2.55 ft i__ V'.1 L H: 1 Worksheet for WakeRobin plus SWMM El 21 Swale Q100 Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Normal Depth Input Data `'vMU Channel Slope: 0.01000 ft/ft Discharge: 188.00 ft3/s Current Roughness Weighted Methc ImprovedLotters Open Channel Weighted Roughnes: ImprovedLotters Closed Channel Weighted Roughne Hortons Roughness Coefficient: 0.016 Water Surface Elevation: 1.75 ft Elevation Range: 0.00 to 5.25 ft Flow Area: 19.84 ft' Wetted Perimeter: 18.97 ft Top Width: 18.56 ft Normal Depth: 1.75 ft Critical Depth: 2.20 ft Critical Slope: 0.00359 ft/ft Velocity: 9.48 ft/s Velocity Head: 1.40 ft Specific Energy: 3.14 ft Froude Number: 1.62 Flow Type: Supercritical T_1s Worksheet for WakeRobin plus SWMM El 21 Swale Q100 P�/ r-j I C,Q T-I Le Cross Section for WakeRobin plus SWMM El 21 Swale Q100 Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Normal Depth Roughness Coefficient: 0.016 Channel Slope: 0.01000 Normal Depth: 1.75 Elevation Range: 0.00 to 5.25 ft Discharge: 188.00 I-1a.56ft --� 0 ft/ft ft ft'/s 1.75 ft __ — Worksheet for WakeRobin plus SWMM El 21 Swale Q100*1.33 Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Normal Depth Inp6t = t W' a . ..: gw Channel Slope: 0.01000 ft/ft Discharge: 250.00 W/s Current Roughness Weighted Meth( ImprovedLotters Open Channel Weighted Roughnes! ImprovedLotters Closed Channel Weighted Roughne Hortons R�esu Roughness Coefficient: 0.030 Water Surface Elevation: 2.61 ft Elevation Range: 0.00 to 5.25 ft Flow Area: 38.82 ft' Wetted Perimeter: 26.18 ft Top Width: 25.56 ft Normal Depth: 2.61 ft Critical Depth: 2.51 ft Critical Slope: 0.01191 ft/ft Velocity: 6.44 ft/s Velocity Head: 0.64 ft Specific Energy: 3.25 ft Froude Number: 0.92 Flow Type: Subcritical e Worksheet for WakeRobin plus SWMM El 21 Swale Q100*1.33 Cross Section for WakeRobin plus SWMM El 21 Swale Q100*1.33 Flow Element: Irregular Section Friction Method: Manning Formula Solve For: Normal Depth a, .. ta ,fix ?• „pia ,:;b � �<,�.�,s..Y '��"" a-'�`�.'. �� � pt.# �=� �- .i-. Roughness Coefficient: 0.030 Channel Slope: 0.01000 fift Normal Depth: 2.61 ft Elevation Range: 0.00 to 5.25 ft Discharge: 250.00 ft'!S T Z64 ft li APPENDIX J STORM SYSTEM E ANALYSIS (PINEVIEW POND TO MAIL CREEK TRIBUTARY) b Im i -- — —5060 mp- S SAD vv rill THE WOODLANDS F, CONDOMINIUMS P.U.D. - 36' FES 15' TYPE "R" INLET ? t, STA 12+15= ,• ' STA 11+66=/ CL STA 51+20.79, 109.35 LT CL STA 50+89.37. 75.00' LT= F STA 50+89.38p� / 25 0 25 50 O . __ n •SCTION _ 14.1 HORIZONTAL ODI'IEDJUNC SEE NOTE 1)� f SCALE: I"- TA 12836FES VERTICAL L STA 50+71.68, 42.35' LT SCALE:1 ' S' o FO 80% COMPLETE fi EX SD MHr EX SD MHNOT FOR CONSTRUCTION 0 ZM Z oH 5090 —to a: 0 _ o D L � 5090— 1 11 M II ^ Ncc I,o1N \ N + �^ ±Q w Nwo < Of In (D 8M> o �= o�h <LIf)N 4N �Uz v1 �= lL N2 Z ��—W WW W�W �WQW � 5085 5085 PROPOSED _ GRADE I 100- I P \ \ L-XIS77NG GL W \ GROUND H GAS II Ii FO ELEC \\ \ 5080 I - AS \ 5080— 81 I.F6" EX F2 ! RCP ®z 09 II I 70 LF OF EX 1 44 LF OF 36" RCP ® 0.6% (LENGTH INCLUDES FFi) F4 u 20 LF OF EX ~ 5075 36" RCP 0 3.57 - 5075— ZO LF OF EX 3U RCP ® 1. 9% 12+00 11 +00 10+00 Computer File Information Index of Revisions Clty of Creation. Dote: 11 /12/07 Initials: JDL F_ art Collins Lost Modification Dote: 8 15 08 Initials: JDL Full Path: 281 North College Avenue Drawing File Name: 104601200FOR-PP-STRM.dwq Fort Collins, CO 80522Phone: (970) 221-6605 Acad Ver. 2007 Scale: H-1:50 V-1:5 Units: ENGLISH FAX: (970) 221-6378 MATCH EX. 0100 X SL VELD( CROSS-SECTION &B N.T.S. NOTE: 1. REMOVE EXISTING TYPE R INLET. REMOVE THROAT INLET AND POUR NEW DECK AND SOLID FLAT TOP WITH STANDARD ACCESS MANHOLE RAISED TO FINISHED GRADE. 2. ALL STORM PIPES SHALL BE INSPECTED BY THE CITY OF FORT COLLINS. 3. RCP STORM SHALL BE CLASS III WITH WATER TIGHT JOINTS (ASTM C443). 1 4. CL AND FL STATIONING AT INLET IS CENTER OF FACE OF STRUCTURE AT FLOWLINE. 5. ALL OTHER STATIONING IS CENTER OF STRUCTURE. Greeley, CO 80631 Phone: (970) 350-2126 FAX: (970) 350-2198 Region 4 PJG As Constructed No Revisions: Revised: Void: STORM SEWER' PLAN & PROFILE Designer: J. LOFTON Detailer: J. I ni TnN Sheet:: 2% Project No./Code AQC M455-074 15572 Sheet Number X Y ^N W U co O Qi y.. O N x w LO ^^1 1..1.E cc1 G /� TT cn co L n r ^,V W V` CDJ � Z C O N Q nJ C d a F 0 0 0 mLid C f0 Imo �>a c C 0 O Q U U N E m 0 m N C U m O a` V (U m aCOCl) (U v o �00 00 O a m > 00 w N t`r UN ;�� W c+7-H c� a� CD d > a) o CO Cn awn a)--.r yo ..00 N a 0 CD CD � L1C� N_ J�OJ00i � J � Cn W 000 n o O 4-1 cc c C) C'i i Cn n W Cl) n 0 a E E J IY Cn O CD 2 n ri J N cc O cc Eq (n �� O00 co f` r UO N C 00 a N dOCOCn .. > COCMD N — — p .-CD 04 0 E N N O JD0LCnCn m o O C C 00 -- > > CO , C CD . N N O -coo D C N .J O J Cn Cn v C O cn m r LO LO L i` ^ UO CD C N CL Cu o CO M > > C7MO — N O N �m :j0nuj O O N O 0 C? a 0 0 0 U I r Ono c N m �6a N > o O U U m E 0 Cu N c a O O O N f` M N N + I 4 1 0 0 1 w w J +1 aw t o o I C9 C] I I H O I — O O I I a) w I I +J uw I 4 oo I a I I m I I I I > - _ O O I 1 u a) C 0 0 1 4 N 0 0 1 a a+ U ov 1 I a ' ro w I 1 U w I I W I I I I O o ro In 0 a) 1 0 0 I 1 w ro r-i w I I t6 O ar.4 U I H v G P7 l I — I I I a o i v Y ,-+ ro a3 y 1 I al w U O W 1 1 4 O 4 H U 1 1 U F al) k+ `-' I I 1� I I fi N C ri LL H I I ro ;N II i as as I N II a) o o I If a) 4J II a) 1 H H I m �•% II U I +J w I w II 1 rl H 1 a II rl 17 a I O ' U I II E i a) a) E+ Q Q II O H I O II w H H I 5 II a) I a1 N I F II J- rl I N N 3 It ❑ 1 0 U' 1 It O •• 1 1 W 1 r II 'O ro 3 I C C I z II a) 4 'O H V I H H I II 1) m a) W a) N I W II O w > Z H a pool U II O -rl C >. 1 -r-ri I � ' II a -H W H H 1 H H I G+ -M II O >ro a I U(7 I W II 3 ri y O I— I 5 4-1 ro --- — m 30 I I ' II a) a) U IL 1 ro I I. 01i ro (aa0 » i r i p£$H 0 b 1 C N I p II a a 0 W A 1 O 1 m m m u a i a, i z z II O 1 3 I O II • 0 0 0 O O O H l a) I H II O w W w H I -H I H ' I -H C C C FCC I > E+ I a' II fa H H H 1 N W 1 m 1 z D i U II C A A A U -r14 H o n n n a i° 1 a II In A A A U — — — — — —— I U — — — — - — — — — — O m O r N U N O N C N N a v N✓ I 1—w m m m m ro ro y w 4 4 C 1 U >1 O 1 x 0 I ---------- 1 U I C N l0 -1 l0 C l0 m w w a) ro I a aN 01 O N ro ro F1 J-1 1 r m M m m M m 4 4 -1 W I O C7 C m — — — — — >I O u IO IO a) M- y ro U \ I al O, 11 Ol C1 H O 4J 1 a) r-1 W I v > - - - - - - - - - - I r-I aa)) 3r i o0000 ro 1-I O M I w M H W 1 c V m c V O >r [v U I �w w w l H In I I — — — _ _ — — — _ — I C I o 0 0 0 0 1-1 4J I O O O O O 4J C W I C O m 0 0 c' a I — 1 4 4 H H 4 C 1 (0 ro ro ro ro O a) I rl r-I r l r-i "H -ri a I a a a a a U C 1 4 4 4 H H a) m I -It -ri -ri .11 -ri m I U U U U U — — — C 1 — — .0 .0 .0 . O 1 0 0 0 0 U u U I Cr C C C 41 N w I -ra -ri -rl .r{ -ri U - a m 0 m 1 rnm m m m rn M 0 1 ri r-I r-I ri H 4 C 1 a) O 1 w -H Q O w a U z a) I m I r-i 1 1 m I -Q 1 LD N C N f'1 I ro I I I I 6 1 1 1-7 1 a a a a W I ----------1 I w I O lD m w [T 110 O — I m m O H N I ro A f r r W m W Ca C W a I I o m In r N C I O N C N N D H I 0. . H N f'. I ro 0 w 1 r m m m m 4 C w 1 a I I 1 — 1 — — — — — C O O O O O O w I N M m m Iron Immmm > w I I N I ri 1 w I I ? N N 0 0 O 0 � N N ,L6a y > C Q O Q y C O y N c I1 I O N N 26 `o Q IA N 0 m C 0 m 6 11 a > C Q O Q U U w E 2 O y N c IL ro co m If1 0 n M O N Q N 7 0 0 n f0 0 nU (7 n rn `m c m a c U m �y2 O C � m D m N C Y O O m co a D O m D m N m 2 E H D c O a d C a E a w m m � �a N N D E o € m 0 '3 1= m o �N H X O �-5 Project Name: Project No.: Client: Subject: Date: By: -With: 77 7 T �rWF�WA OR ll. E L J h! TIE R `I&iT '0 - L J 4-- 4.1 d "J. A F F 01 A -at fA ------ ----- _J 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL.970.674.3300 - FAX.970.674.3303 CULVERTS CU-54 DRAINAGE CRITERIA MANUAL (V. 2) l60 10,000 From BPR 168 8,000 EXAMPLE 156 6 000 D•42 Inches (3.3 toal) 6. 6 5 144 5 000 0. 120 of 4,000 Ira Hw 8• b. 132 0 feN 4. 120 l21 2.1 7.4 2.000 (3) 2.2 7.7 4• 3• 108 aD In fast 3' 96 100 3. 800 84 600 500 72 400 In / / = 300 t� j 1.5 1.5 2 to i K I.5 2 60 p 200 /' f • c 2 54 a 0 W �W 48 100�' Z > ¢ 80' o / i� _ 60 0~ 1.0 1.0 42 Us 50 HW ENTRANCE c 0 SCALE 40 D TYPE m 1.0 30 (1) Square edge with i .9 .9 33 hwdwall G •9 a 20 . (2) : Groove end with a 30 T hwdwall 2 •8 .8 13) Groove and .8 27 protecting 10 8 7 .7 24 .7 6 To use scale (2) or 431 Project 21 5 horizontally to wale (q,lhon 4 use straight Inclined line through D and 0 tnalee, at reverse an 8 Illustrated.. 3 8 .6 18 2 IS 5 1.0 .s .s Figure CU-27—Headwater Depth for Concrete Pipe Culverts With Inlet Control 07/2001 Urban Drainage and Flood Control District APPENDIX K MAIL CREEK ANALYSIS (HARMONY ROADSIDE DITCH EAST OF SHIELDS) ' Worksheet for Mail Creek-100-yr Project=Description, ' R� ` " ..�c Flow Element: Trapezoidal Channel ' Friction Method: Manning Formula Salve For. Normal Depth Roughness Coefficient: 0.035 Channel Slope: 0.01100 Wit Left Side Slope: 3.00 ft/ft (H:V) ' Right Side Slope: 3.00 ft/ft (H:V) Bottom Width: 6.00 ft ' Discharge: 99.30 ft3/s Normal Depth: 1.78 ft Flow Area: 20.12 ft' Wetted Perimeter. 17.23 ft ' Top Width: 16.66 Ao-MMcN i ft Critical Depth: 1.57 O It Critical Slope: 0.01812 Wit '• Velocity: 4.94 ft/s Velocity Head: 0.38 ft Specific Energy: 2.15 ft ' Froude Number. 0.79 Flow Type: Subcritical GVF=Input°Data " , Downstream Depth: 0.00 It Length: 0.00 ft ' Number Of Steps: 0 GVF Output'Dataa ' Upstream Depth: 0.00 ft. Profile Description: N/A Headloss: 0.00 ft Downstream Velocity: 0.00 ft/s Upstream Velocity: 0.00 ft/s Normal Depth: 1.78 ft ' Critical Depth: 1.57 ft Channel Slope: 0.01100 ft/ft Kl. ' Worksheet for Mail Creek-100-yr ' Critical Slope: 0.01812 ft/ft Cross Section for Mail Creek--100-yr Pioject�Descnption° � ' �� �- s Flow Element: Trapezoidal Channel Friction Method: Manning Formula Solve For. Normal Depth SectionrData,=� Roughness Coefficient: 0.035 Channel Slope: 0.01100 ft/ft Normal Depth: 1.78 It Left Side Slope: 3.00 ft/ft (HAI) Right Side Slope: 3.00 ft/ft (H:V) Bottom Width: 6.00 ft Discharge: 99.30 = Q \oIM ft3/s Wood �A,. As �C�oo u \ �N4Vi1vJ S�-o�,M A" '[?di r� C— Sy s±tn.� L9 4S ---6,00 ft ao C--Jps qOt C� ok 1,78 it K3 E FINAL DRAINAGE AND EROSION CONTROL REPORT FOR WOODLANDS FAMILY APARTMENTS JN: 1477 October 6, 1995 Revised January 15, 1996 Prepared for: Kaufman & Broad Multi -Housing Group, Inc. Attn: Kipling S. Sheppard 109909 Wilshire Boulevard Los Angeles, CA 90024 (fax) 231-4260 (310) 231-4000 Prepared by Carroll &Lange, Inc. ® 165 South Union Blvd., Suite 156 Lakewood, Colorado 80228 (FAX) 980-6917 (303) 980-0200 K- H e VN 3�CC'm�s O ��.3 Za FEd v.�< bl zWON @ � Sa5N��z6k' b ff��g;aF�. gs i���u�s�ui my a] -L33&S SO-131HS ' uc SOOZ�E 96-SI-f 9N7Qtl89\LL01\O/ ("� t APPENDIX L MAIL CREEK MASTER DRAINAGE PLAN SWMM INFORMATION 0 750 1500 3000 SCALE IN FEET 1225 17TH STREET SUITE 200 URSDENVER, C0.80202 Tel:303-293-8080, Fox:303-299-8711 CITY OF FORT COLLINS MAIL CREEK BASIN SUB -BASIN DIAGRAM FIGURE E-2 DIAVxsam ar a n swe aTa muc¢ i+/07/m oX.., er: ar Xwa G OIEO3➢ BT. PM iERi. 9FET XQ 1 6 1 91FEi$ L 1 No Text BASELINE MODEL M1l/-->- /7G<(S. 2 1 1 2 3 4 IATERSHED anhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STORM, DEVELOPED CONDITIONS 2002 F-qED 31, March, 2005 ICON ENGINEERING 576 000 5. 1 1. 1 5, 1.0 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.0 .95 .91 .87 .84 .81 .78 .75 .73 .71 .69 .67 Prepared for: City of Fort Collins SWMM developed condition, existing facilities, 100-yr recurrence interval -2 .016 .250 .1 .3 .51 .5 .0018 1 51 104309. 87.1 30.7 .040 '1 151 1506675,58.21 30.0 .023 1 52 113717. 38.4 17.0 .064 1 53 2113630. 35.0 24.5 .032 1 153 1526377.46.85 35.0 .014 1 54 142895. 18.6 95.0 .048 1 55 26121,10, 12.8 95.0 .016 '1 56 567665. 93.3 95.0 .016 1 57 571908. 12.7 95.0.0088 1 120 1204538. 37.5 95.0.0088 1 121 1216757. 60.5 95.0.0088 1 122 1222659. 17.7 95.0.0088 ' 1 58 1112242. 29.3 28.9 .032 _ 1 59 161214. 9.2 30.0.0134 1- 159 331725. 6.3 83.3 .01 1 60 357608. 57.6 35.0 .016 1 61 422308. 19.6 30.0 .016 ' 1 62 386572. 47.4 37.6 .016 1 162 3622465. 27.2 42.0 .015 1 163 3791498. 4.29 80.0 .010 1 401 3671863. 0.63100.0 .015 1 63 9002763. 18.2 95.0 .010 ' 1 165 3654581. 29.4 37.0 .016 1 166 3664325. 27.8 47.8 .01 1 167 3673647. 17.6 37.0 .01 1 168 3681188. 6.0 95.0 .01 _ 1 169 3681836. 1.3100.0 .02 1 170 3703640. 33.4 36.5 .01 171 3712315. 23.4 47.8 .01 172 3722304. 4.2 72.4 .01 1 173 3734663. 36.4 32.0 .01 1 164 3642093. 23.5 65.3 .01 1 402 4122594. 9.43 80.0 .01 1 403 4321241. 0.76100.0 .015 1 65 2103960. 20.0 37.6 .064 1 67 367462. 39.4 36.0.0088 1 68 326758. 54.3 32.0 .016 ' 1 69 3182756. _ 8.9 49_ 8 .011 1 70 2543289. 15.1 53.9 .016 - 1 71 181536. 5.3 36.7 0143 1 72 6015055. 44.1 _6_0.0020 1 801 139 997 8.7 5.0 .020 ' 1 73 292908. 20.0 35.0 .035 1 74 27 543. 4.0 35.0.0104 1 75 255341.'51.5 45.3.0134 1 175 243143. 10.1 50.0-.015 1 76 2214804. 38.6 38.0 .016 ' 1 176 -.,-374011.-13.8 53.5 .019 1 77 441780. 16.3 35.0 .012 1 177 462043. 16.4 38.0 .02 1 78 4910616 65.8 25.0 .016 ' WESTFIELD PARK ' 1 178 481271, 15.5 25.0 .035 1 79 395615. 36.1 35.0 .019 1 179 2803390. 23.4 50.0 .020 1 80 314208. 19.3 35.0 .032 1 186 263004. 13.8 35.0 .032 1 81 2042482, 24.5 30.0 .016 1 181 2033570. 16.4 30.0 .016 1 182 2063144. 15.9 35.0 .016 1 82 2013022. 33.3 59.9.0091 DIVIDE BASIN 83 TO REFLECT FLOW TO POND 831 - 1 83 3477115, 29.4 35.0 .02 1 831 8311711. 5.5 35.0 .02 1 84 843065. 24.6 38.0.0072 1 85 1852138. 17.2 38.0 .016 86 345330. 30.6 40.0 .032 ' 87 2871938. 34.5 23.0 .02 i 88 28 813. 8.0 23.0.0154 1 89 411283. 5.9 95.0 .032 1 180 514243. 26.3 38.0 .012 1 90 288 788. 7.8 23.0 .020 1 189 3873647. 25.1 35.0 .013 - 0 y-3 1 13 1 58 - 59 69 70 71 72 74 75 76 87 189 90 159 10 1 0 1 10.0 3400. .011 4.0 4.0 .044 12.0 ' 150 10 0 1 48.0 1850. .015 50.0 50.0 .020 5.0 11 10 0 1 10.0 1900. .013 2.5 2.5 .060 16.0 12 210 0 1 10.0 1000. .011 2.0 2.0 .060 12.0 152 11 0 1 48.0 1850. .020 50.0 50.0 .020 5.0 13 12 0 2 8.0 1000. .011 0.0 0.0 .013 8.0 ' 14 13 0 1 10.0 200. .0159 2.0 2.0 .060 12.0 15 14 6 2 .1 1. .005 0.0 0.0 .013 0.1 .0 .0 .001 3.0 .1 103.6 .4 233.4 1.1 460.4 1.6 643.8 16 15 0 1 10.0 1400. .011 4.0 4.0 .035 5.0 ' Ill 16 9 2 .1 1. .005 0.0 0.0 .013 0.1 .0 .0 .24 .72 .79 1.55 1.39 2.02 2.06 2.4 2.78 2.72 3.18 2.87 3.59 21.58 4.46 99.73 17 16 0 1 2.0 900. .005 4.0 4.0 .035 5.0 FRONT RANGE COMMUNITY COLLEGE DETENTION FACILITY 701 17 4 2 1. 0.0 0.0 2.06 6.12 2.78 41.32 4.02 552. 601 701 0 3 1. 18 601 0 1 2.0 1750. .014 4.0 4.0 .035 5.0 ' 19 107 0 1 5.0 900. .011 3.0 3.0 .035 6.0 20 320 0 3 1. 21 20 0 1 10.0 1200. .005 4.0 4.0 .035 5.0 ' REGENCY REGIONAL DETENTION FACILITY 22 21 10 2 0.1 1. .005 0.0 0.0 .013 0.1 ' 0.0 0.0 0.28 3.5 1.55 8.9 3.96 12.0 7.65 14.0 13.06 17.5 19.95 20.0 27.46 21.0 35.31 22.8 43.48 66. 23 39 0 1 12.0 800. .0056 4.0 4.0 .030 5.0 WOODRIDGE DETENTION POND - 230 24 10 2 0.0 50. .005 0.0 0.0 .013 0.0 0.0 0.0 0.38 3.65 1.49 30.05 3.42 94.52 4.66 132.0 5.91 171.66 7.38 212.0 8.86 251.08 9.59 269.54 10.33 288.0 SENECA STREET/REGENCY DRIVE CULVERTS AND CHANNEL 24 222 0 1 8.0 1150. .01 4.0 4.0 .035 5.0 25 222 0 1 8.0 1250. .005 4.0 4.0 .035 5.0 26 23 0 1 1.0 850. .02 10.0 5.0 .035 5.0 27 18 0 1 2.0 600. .012 4.0 4.0 .035 5.0 288 287 0 1 1.0 900. .013 2.5 2.5 .035 5.0 287 87 0 1 1.0 1325. .016 2.5 2.5 .035 5.0- E DETENTION POND 87 387 5 2 0.0 1. .005 0.0 0.0 .013 0.0 0.0 0.0 1.1 1.0 2.5 2.0 4.5 3.0 8.0 56.0 28 29 0 1 10.0 600. 10.0 10.0 .035 5.0 -> 387 189 0C 48.0 1300. .020 .005 50.0 50.0 .020 5.0 _ WESTBURY DETENTION POND MOPFi L- 189 30 7 2 0.0 1. .005 0.0 0.0 .013! 0.0 0.0 0.0 0.19 4.5 0.81 7.8 1.82 9.7 - ' 3.04 11.4 4.4 12.8 5.76 87.8 29 30 0 1 10.0 1250. .020 10.0 10.0 .035 5.0 139 17 0 1 2.0 2400. .011 4.0 4.0 .035 5.0 30 139 0 3 1. 31 23 U 5 2,75 900. .013 0.0 0.0 .013 2,75 70.0 900. .006 50.0 50.0 .020 5.0 ' 32 105 0 1 48.0 2600. .007 50.0 50.0 .020 5.0 33 14 0 3 1. 34 23 0 1 48.0 1650. .006 50.0 50.0 .020 5.0 35 102 0 4 0.5 1300, .0164 12.0 12.0 .016 .5 10.0 1300. .0164 20.0 20.0 .035 10. ' 36 321 0 1 48.0 1500. .007 50.0 50.0 .020 5.0 37 24 0 1 48.0 700. .0149 50.0 50.0 .020 5.0 38 245 0 1 4.0 1000. .01 4.0 4.0 .035 5.0 POND 230 INFLOW 39 230 0 3 1. 90 375 375 0 1 70.0 800. .011 50.0 50.0 .020 5.0 FUTURE WOODRIDGE COMMERCIAL DETENTION POND 41 31 0 1 48.0 500. _.013 50.0 50.0 .013 5.0 42 102 0 5 2.0 1250. .115 0.0 0.0 .013 2.0 48.0 1250. .015 50.0 50.0 .020 5.0 TROUTMAN PARK REGIONAL DETENTION POND 43 42 11 2 0.1 1. .005 0.0 0.0 .013 0.1 0.0 0.0 0.69 4.75 2.64 12.01 5.15 16.2 8.55 18.92 13.14 20.75 18.84 22.07 25.58 23.39 28.93 24.05 30.61 46.78 32.29 213.46 ' 84 45 0 3 1. 45 347 0 1 2.0 1000. .005 4.0 4.0 .035 5.0 46 347 0 1 2.0 1250. .005 4.0 4.0 .035 5.0 44 47 0 1 4.0 1300. .01 4.0 4.0 .035 5.0 47 48 0 2 5.0 342. .0102 0 0 .013 5.0 ' 48 50 0 1 6.0 400. .0089 6.0 8.0 .035 5.0 49 48 0 1 48.0 1150. .005 50.0 50.0 .020 5.0 • SENECA STREET CULVERT 50 378 0 2 7.1 156 .031 0.0 0.0 .013 7.1 51 378 0 1 48.0 600. .008 50.0 50.0 .020 5.0 ' 261 12 0 5 3.5 550. .003 0.0 0.0 .013 3.5 35.0 550. .003 2.0 50.0 .020 5.0 56 262 6 2 0.1 1. 0.1 0 0 .1 .1 t 0.0 0.0 4.92 17.8 8.5 30.3 16.0 81.3 19.75 134.3 21.63 231.3 262 261 0 5 3.0 3650. .0025 0.0 0.0 .013 3.0 35.0 3650. .0025 2.0 50.0 .020 5.0 100 11 12 2 .1 1. .001 0.0 0.0 .013 0.1 ' 0.0 0.0 3.9 51.0 5.9 96. 7.6 140. 11.0 260.0 12.7 300.0 14.5 340. 17. 390. 20.0 490.0 22.6 740.0 25.0 1070. 27.5 1626. 101 211 7 2 .1 1. .001 .013 0.1 0.0 0.0 0.7 - 13.2 1.4 74.9 2.1 141.1 ' 2.8 288.9 4.3 831.5 5.9 1742.9 211 100 0 3 1. 102 303 9 2 0.1 1. 0.1 0.0 0.0 .024 0.1 0.0 0.0 0.4 3.8 1.4 10.5 4.4 16.0 7.7 20.0 11.1 24.0 13.3 25.0 15.9 36.1 ' 19.7 1910.0 MANHATTHATTAN POND 103 302 7 2 0.1 1. 0.1 0.0 0.0 .024 0.1 0.0 0.0 4.82 0.00 6.29 7.2 12.02 10.20 18.95 13.2 26.32 15.80 34.09 228.0 ' 104 38 10 2 .1 10. .1 0.0 0.0 .1 .1 0. 0. .80 6. 2.6 10.5 5.24 -13.5 8.84 16. 11.0 16.5 13.0 17. 15.64 18. 19.82 45. 24.07 76.4 105 319 5 2 0.1 50. 0.01 0.0 0.0 .013 0.1 0.0 0.0 1.5 2.8 3.9 4.5 6.7 6.1 9.9 196.9 107 318 7 2 0.1 1. 0.1 0.0 0.0 .020 0.1 0.0 0.0 0.11 19.0 0.35 35.0 0.68 50.0 1.06 62.0 1.5 72.0 2.01 80.0 185 22 0 1 48.0 850. .010 50.0 50.0 .020 5.0 210 101 0 3 1. 222 22 0 3 1. 243 43 0 3 1. 244 104 0 3 1. ' 210 3 1. - 20000 49 49 0 1 20.0 1600. .005 20.0 20.0 .060 5.0 202 208 0 1 2.0 1000. .01 4.0 4.0 .035 2.0 201 200 0 1 2.0 1900. .005 4.0 4.0 .035 5.0 203 207 0 1 48.0 500. .018 50.0 50.0 .020 5.0 ' 204 208 0 1 2.0 600. .005 4.0 4.0 .035 3.0 205 204 6 2 0 100. .08 0.0 0.0 .024 0 0.0 0.0 0.33 0.0 0.68 2.93 1.06 7.69 1.47 10.0 1.91 100.0 206 205 0 1 48.0 850. .020 50.0 50.0 .020 5.0 207 202 4 2 01 50. .010 0.0 0.0 .024 0 0.0 0.0 0.94 0.0 1.31 3.99 1.70 100.0 208 200 0 3 1. 221 20 0 1 2.0 1300. .610 4.0 4.0 .035.' 5.0 MOUNTAINRIDGE REGIONAL DETENTION POND 247 AND 831 (AS -BUILT -- 21'OCT 97) ' 347 247 0 3 1, 831 347 9 2" .1 .1 .005 0.0 0.0 .013 .1 0.0 0.0 0.03 3.16 0.22 10.45 0.40 18.63 0.65 24.50 0.90 28.68 1.22 31.20 1.54 33.70 1.79 41.62 ' 247 366 14 2 0 193. .0026 0.0 0.0 .013 0 0.0 0.0 2.03 0.61 3.78 7.97 6.67 17.94 10.12 25.67 14.06 - 28.18 18.32 29.94 22.84 31.62 27.61 33.30 32.63 34.97 37.92 36.97 43.51 40.05 46.54 41.55 49.57 211.15 ' 254 107 0 4 0.5 1250. .004 12.0 12.0 "Ill 0.5 10. 1250. .004 20.0 20.0 .020 10. 122 270 6 2 0.1 1. 0.1 0 0 .1 .1 0.0 0.0 1.06 2.7 1.77 4.6 3.01 15.4 3.63 68.4 3-.94 165.4 270 272 0 1 12.0 1100. .001 1.5 1.5 .045 6.0 ' LARIMER U2 CANAL INFLOW HYDROGRAPH -1 271 291 3 3 1. 0.0 155. 0.5 155. 15.0 155. 57 272 6 2 0.1 1. 0.1 0 0 .1 .1 0.0 0.0 0.76 1.9 1.27 3.3 2.16 11.0 " t 2.61 64.0 2.84 161.0 272 12 0 2 8.59 900. .001 0 0 .013 8.59 MOUNTAINRIDGE REGIONAL DETENTION POND 278--PROPOSED INCLUDES RATING CURVE FOR ' WESTFIELD PARK BACKWATER ZONE 378 278 0 3 1. 278 347 14 2 0.0 360. .0063 0.0 0.0 .013 0.0 0.0 0.0 1.20 36.06 2.78 45.17 4.52 53.40 6.41 61.62 8.46 68.45 10.69 75.27 13.13 81.06 15.79 86.85 18.71 90.93 21.98 95.02 25.56 99.11 9.37 103.19 31.38 200.72 ' 279 46 6 2 0.1 50. .005 0.0 0.0 .013 0.1 0. 0. 0.16 4. 0.71 13. 1.67 20. 2.63 73.0 3.59 170.0 280 279 0 1 2.0 1200. .01 4.0 4.0 .035 5.0 120 291 6 2 0.1 1. 0.1 0 0 .1 .1 ' 0.0 0.0 2.25 5.6 3.75 9.75 6.38 32.6 7.7 85.6 8.36 182.6 �5 291 571 0 1 12.0 1800. .001 1.5 1.5 ' LARIMER #2 CANAL SPLIT ' 500 571 290 3 3 - 1. 0.0 0.0 155. 0.0 300. 145.0 121 290 6 2 0.1 1. 0.1 0 0 0.0 0.0 3.63 9.1 6.05 15.7 .2.41 105.6 13.47 202.6 '290 270 0 1 12.0 1450. .001 1.5 1.5 NEW MERCER DITCH INFLOW HYDROGRAPH - 100 YEAR INFLOW -1 300 301 8 3 1. 0.0 80.0 0.60 80.0 0.77 80.0 2.60 80.0 3.35 80.0 5.60 80.0 ' 301 302 0 1 12.0 2100. '.0007 1.0 1.0 302 303 0 1 12.0 1700. .0007 1.0 1.0 303 33 0 1 12.0 1400. .0007 3.0 3.0 318 319 0 1 3.0 1550. :011 3.0 3.0 319 16 0 3 - 1. 320 19 7 2 .1 10. .1 0.0 0.0 0. 0. .18 16. .65 30. 2.39 54. 3.75 62. 5.1 208. 321 35 13 2 .1 10. .1 0.0 0.0 0. 0. .06 5. .12 10. ' .41 22. .59 33. .76 45. 1.17 70. 1.41 82.5 1.64 97.6 2.1 247.6 362 375 0 1 48.0 850. .008 50.0 50.0 412 422 9 2 .1 50. .01 0.0 0.0 ' 0. 0. .01 .15 .17 .31 .92 .55 1.38 .68 1.89 .78 2.75 27.35 422 432 0 3 1. 432 370 0 1 48.0 860. .008 50.0 50.0 ' 379 367 8 2 .1 50. .01 0.0 0.0 0. 0. .03 .56 .14 .80 .41 1.29 .57 1.52 .76 1.67 364 399 0 1 2.0 1000. .008 50.0 50.0 365 369 0 1 48.0 1350. .007 50.0 50.0 ' 366 371 0 1 4.0 2050. .005 4.0 4.0 367 244 0 1 5.0 1900. .010 10.0 10.0 368 372 0 1 70.0 1050. .011 50.0 50.0 369 244 0 1 5.0 700. .005 4.0 4.0 370 244 0 5 2.5 700. .007 0.0 0.0 ' 48.0 700. .007 50.0 50.0 371 243 0 1 17.0 700. .005 3.0 3.0 372 40 0 1 70.0 1350. .011 50.0 50.0 373 243 0 5 2.5 2050. .010 0.0 0.0 48.0 2050. .010 50.0 50.0 375 245 0 5 3.0 1700. .002 0.0 0.0 48.0 1700. .004 50.0 50.0 399 370 0 3 1. 900 901 0 3 1. 901 903 8 2 .1 10. .1 0.0 0.0 0. 0. .OS 0. .45 0. 2.69 0. 4.26 0. 5.65 0. 0 0 0 �NDPROGRAM 045 6.0 .1 10.29 045 1.00 7.93 045 045 045 035 1 1.4 1 .27 .97 1.87 020 .15 .51 2.46 020 .15 .25 .95 035 020 035 035 020 035 013 020 035 020 013 020 013 020 .1 1.35 5.66 .1 52.6 6.0 80.0 80.0 5.0 7.0 7.0 6.0 .1 45. .1 13. 55. 150.6 5.0 .1 43 .85 5.0 .1 1.04 1.82 5.0 5.0 5.0 3.0 5.0 5.0 2.5 5.0 5.0 5.0 2.5 5.0 3.0 5.0 1 0. 1000 L- Le ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) ' HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) 'TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4)- JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 ' JOUT(1) JOUT(2) J0UT(3) J0UT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) ' 3 4 0 0 0 'WATERSHED PROGRAM CALLED NFRY MADE TO RUNOFF MODEL •.. Manhattan Pond Final Design (176c£s Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2005 ICON ENGINEERING NUMBER OF TIME STEPS 576 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1,14 1,33 2.23 2.84 5,41 9,95 4,12 2,48 1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .73 .71 .69 .67 Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2005 ICON ENGINEERING SUBAREA GUTTER WIDTH AREA PERCENT SLOPE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) -2 0 .0 .0 .0 .0300 51 10 4309.0 87.1 30.7 .0400 151 150 6675.0 58.2 30.0 .0230 52 11 3717.0 38.4 17.0 .0640 53 211 3630.0 35.0 24.5 .0320 153 152 6377.0 46.9 35.0 .0140 54 14 2895.0 18.6 95.0 .0480 55 261 2150.0 12.8 95.0 .0160 56 56 7665.0 93.3 95.0 .0160 57 57 1908.0 12.7 95.0 .0088 120 120 4538.0 37.5 95.0 .0088 121 6757.0 60.5 95.0 .0088 122 2659.0 17.7 95.0 .0088 ill 2242.0 29.3 28.9 .0320 59 16 1214.0 9.2 30.0 .0134 159 33 1725.0 6.3 83:3 .0100 60 35 7608.0 57.6 35.0 .0160 61 42 2308.0 19.6 30.0 .0160 62 38 6572.0 47.4 37.6 .0160 162 362 2465.0 27.2 42.0 .0150 RESISTANCE FACTOR SURFACE STORAGE(IN) IMPERV. PERV. IMPERV. PERV. .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 - .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 1.46 .75 INFILTRATION RATE(IN/HR) GAGE MAXIMUM MINIMUM DECAY RATE NO .51 .50 .00180 . .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 -.51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51, .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 163 379 1498.0 4.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 401 367 1863.0 .6 99.9 .0150 .016 .250 .100 .300 .51 .50 .00180 1 63 900 2763.0 18.2 95.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 165 365 4581.0 29.4 37.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 166 366 4325.0 27.8 47.8 .0100 .016 .250 .100 .300 .51 .50 .00180 1 367 3647.0 17.6 37.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 368 1188.0 6.0 95.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 io9 368 1836.0 1.3 99.9 .0200 .016 .250 .100 .300 .51 .50 .00180 1 170 370 3640.0 33.4 36.5 .0100 .016 .250 .100 .300 .51 .50 .00180 1 171 371 2315.0 23.4 47.8 .0100 .016 .250 .100 .300 .51 .50 .00180 1 172 372 2304.0 4.2 72.4 .0100 .016 .250 .100 .300 .51 .50 .00180 1 173 373 4663.0 36.4 32.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 364 2093.0 23.5 65.3 .0100 .016 .250 .100 .300 .51 .50 .00180 1 '164 402 412 2594.0 9.4 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 403 432 1241.0 .8 99.9 .0150 .016 .250 .100 .300 .51 .50 .00180 1 65 210 3960.0 20.0 37.6 .0640 .016 .250 .100 .300 .51 .50 .00180 1 67 36 7462.0 39.4 36.0 .0088 .016 .250 .100 .300 .51 .50 .00180 1 32 6758.0 54.3 32.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 '68 69 318 2756.0 8.9 49.8 .0110 .016 .250 -.100 .300 .51 .50 .00180 1 70 254 3289.0 15.1 53.9 .0160 .016 .250 .100 .300 .51 .50 .00180 1 71 18 1536.0 5.3 36.7 .0143 .016 .250 .100 .300 .51 .50 .00180 1 72 601 5055.0 44.1 60.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 139 997.0 8.7 '5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 '801 73 29 2908.0 20.0 35.0 .0350 .016 .250 .100 .300 .51 .50 .00180 1 74 27 543.0 4.0 35.0 .0104 .016 .250 .100 .300 .51 .50 .00180 1 75 25 5341.0 51.5 45.3 .0134 ..016 .250 .100 .300 .51 .50 .00180 1 175 24 3143.0 10.1 50.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 221 4804.0 38.6 38.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 '76 176 37 4011.0 13.8 53.5 .0190 .016 .250 .100 .300 .51 .50 .00180 1 77 44 1780.0 16.3 35.0 .0120 .016 .250 .100 .300 .51 .50 .00180 1 177 46 2043.0 16.4 38.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 78 49 10616.0 65.8 25.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 48 1276.0 15.5 25.0 .0350 .016 .250 .100 .300 .51 .50 .00180 1 '178 79 39 5615.0 36.1 35.0 .0190 .016 .250 .100 .300 .51 .50 .00180 1 179 280 3390.0 23.4 50.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 80 31 4208.0 19.3 35.0 .0320 .016 .250 .100 .300 .51 .50 .00180 1 186 26 3004.0 13.8 35.0 .0320 .016 -.250 .100 .300 .51 .50 .00180 1 204 2482.0 24.5 30.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 '81 181 203 3570.0 16.4 30.0 - .0160 .016 .250 .100 .300 .51 .50 .00180 1 182 206 3144.0 15.9 35.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 82 201 3022.0 33.3 59.9 .0091 .016 .250 .100 .300 .51 .50 .00180 1 83 347 7115.0 29.4 35.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 831 831 1711.0 5.5 35.0 .0200 - .016 .250 .100 .300 .51 .50 .00180 1 ' 84 3065.0 24.6. 38.0 .0072 .016 .250 .100 .300 .51 .50 .00180 1 185 2138.0 17.2 38.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 ..0 34 5330.0 30.6 40.0_ .0320 .016 .250 .100 .300 .51 .50 .00180 1 87 287 1938.0 34.5 23.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 28 813.0 8.0 23.0 .0154 .016 .250 .100 .300 .51 .50 .00180 1 '88 89 41 1283.0 5.9 95.0 .0320 .016 .250 .100 .300 .51 .50 .00180 1 180 51 4243.0 26.3 38.0 .0120 .016 .250 .100 .300 .51 .50 .00180 1 90 288 788.0 7.8 23.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 189 387 3647.0 25.1 35.0 .0130 .016 -'.250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 71 ' TOTAL TRIBUTARY AREA (ACRES), 1796.99 Manhattan Pond Final Design 1176CIS Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2005 ICON ENGINEERING HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS ' TIME(HR/MIN) 58 59 69 70 . 71 72 74 75 76 87 0 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 10. 1.3 .4 .8 1.3 .5 2.7 .2 2.3 2.1 1.0 0 '0 15. 8.7 2.9 5.2 8.6 2.5 20.6 1.3 17.9 14.2 7.0 0 20. 15.2 .5.0 8.3 14.8 3.7 42.1 2.4 36.9 25.8 13.4 0 25. 23.1 7.6 12.5 22.4 5.7 66.8 3.7 58.7 39.4 20.8 0 30. 45.9 15.2 25.3 43.9 12.4 124.4 7.3 110.0 76.7 40.1 0 35. 106.8 35.5 57.0 97.2 .29.5 267.4 16.5 240.8 173.9 91.4 0 40. 112.5 37.2 51.7 88.8 28.4 259.0 17.0 245.8 176.5 98_�6 0 45. 79.6 26.0 28.4 48.2 17.5 145.E 11.4 154.5 115.0 72.1 0 50. 67.1 21.7 20.6 34.8 13.1 103.6 9.3 119.4 91.9 63.7 0 55. 54.1 17.2 14.2 24.3 9.0 75.1 7.4 92.9 71.1 55.1 0. 46.0 14.4 11.3 19.4 7.2 60.4 6.2 77.3 58.8 49.3 1 '1 5. 39.7 12.4 9.4 16.3 5.9 51.2 5.3 66.5 50.0 44.6 1 10. 35.0 10.8 8.3 14.4 5.1 45.3 4.7 58.8 43.8 40.8 ' 15. 31.2 9.6 7.5 13.0 4.5 41.0 4.2 52.9 39.0 37.6 20. 28.1 8.6 6.8 11.9 4'.0 37.7 3.8 48.1 35.1 34.7 25.6 7.8 6.3 11.0 3:7 35.0 3.4 44.2 32.0 32.1 '25. 1 30. 23.4 7.2 5.9 10.3 3.4 32.8 3.1 40.9 29.4 29.8 1 35. 21.5 6.6 5.5 9.7 3.1 30.8 2.9 38.0 27.1 27.8 1 40. 19.8 6.1 5.2 9.2 2.9 29.1 2.7 35.4 25.1 25.9 1 45. 18.4 5.6 4.9 8.7 2.7 27.6 2.5 33.1 23.4 24.2 50. 17.1 5.2 4.7 8.3 2.6 26.3 2.3 31.2 22.0 22.7 1 '1 55. 16.0 4.9 4.5 7.9 2.4 25.1 2.2 29.5 20.7 21.3 1 2 0. 15.0 4.6 4.3 7.6 2.3 24.0 2.1 27.9 19.5 20.0 2 5, 11,1 3.5 2.7 4.9 1.5 17.0 1.6 21.1 14.4 16.7 2 10. 8.2 2.4 1.3 2.3 .8 9.3 1.1 13.6 9.2 13.3 ' 2 15. 6.8 2.0 .8 1.5 .6 6.2 .8 10.3 7.1 11.5 20. 5.8 1.7 .6 1.1 .5 4.6 .7 8.4 5.9 10.2 25. 5.0 1.4 .5 .9 .4 3.6 .6 7.0 5.0 9.2 4.4 1.2 .4 .7 .3 2.9 .5 6,0 4.3 8,3 2 35. 3.9 1.1 .3 .6 .3 2.4 .5 5.2 3.7 7.5 '30, 2 40. 3.5 1.0 .3 .5 .2 2.0 .4 4.6 3.3 6.9 2 45. 3.1 .9 .2 .4 .2 1.7 .4 4.0 2.9 6.3 2 50. 2.8 .8 .2 .3 .2 1.4 .3 3.6 2.5 5.8 2 55. 2.5 .7 .1 .3 .1 1.2 .3 .3.2 2.2 5.3 0. 2.3 .6 .1 .2 .1 1.0 .3 2.8 2.0 4.9 '3 3 5. 2.1 .6 .1 .2 .1 .9 .2 2.5 1.8 4.6 3 10. 1.9 .5 .1 .2 .1 .8 .2 2.3 1.6 4.2 3 15. 1.7 .5 .1 .1 .1 .7 .2 2.1 1.4 3.9 3 20. 1.5 .4 .1 .1, .1 .6 .2 1.9 1.3 3.6 25. 1.4 .4 .0 .1 .0 .5 .2 1.7 1.2 3.4 '3 3 30. 1.3 .3 .0 .1 .0 .4 .1 1.5 1.0 3.2 3 35. 1.2 .3 .0 .1 .0 .4 .1 1.4 .9 2.9 3 40. 1.1 .3 .0 .0 .0 .3 .1 1.3 .8 2.7 3 45. 1.0 .3 .0 .0 .0 .3 .1 1.1 .8 2.6 50. .9 .2 .0 .0 .0 .2 .1 1.0 .7 2.4 '3 3 55. .8 .2 .0 .0 .0 .2 .1 .9 .6 2.2 4 0. .7 .2 .0 .0 .0 .2 .1 .9 .6 2.1 4 5. .7 .2 .0 .0 .0 .2 .1 .8 .5 2.0 4 10. .6 .2 .0 .0 .0 .1 .1 .7 .4 1.8 15. .6 .1 .0 .0 .0 .1 .1 .6 .4 1.7 4 t4 20. .5 .1 .0 .0 .0 .1 .1 .6 .4 1.6 4 25. .5 .1 .0 .0 .0 .1 .0 ..5 .3 1.5 4 30. .4 .1 .0 .0 .0 .1 .0 .5 .3 1.4 4 35. .4 .1 .0 .0 .0 .0 .0 .4 .2 1.4 40. .4 .1 .0 .0 .0 .0 .0 .4 .2 1.3 4 '4 45. .3 .1 .0 .0 .0 .0 .0 .3 .2 1.2 4 50. .3 .1 .0 .0 .0 .0 .0 .3 .2 1.1 4 55. .3 .1 .0 .0 .0 .0 .0 .3 .1 1.1 5 0. .2 .1 .0 .0 .0 .0 .0 .2 .1 1.0 5. .2 .0 .0 .0 .0 .0 .0 .2 .1 .9 5 '5 10. .2 .0 .0 .0 .0 .0 .0 .2 .1 .9 5 15. .2 .0 .0 .0 .0 .0 .0 .2 .1 .8 5 20. .2 .0 .0 .0 .0 .0 .0 .1 .1 .8 5 25. .1 .0 .0 .0 .0 .0 .0 .1 .0 .7 5 30. .1 .0 .0 .0 .0 .0 .0 .1 .0 .7 . .1 .0 .0 .0 .0 .0 .0 .1 .0 6 40 40. .1 .0 .0 .0 .0 .0 .0 .1 .0 .6 45. .1 .0 .0 .0 .0 .0 .0 .1 .0 .6 5 50. .1 .0 .0 .0 .0 .0 .0 .0 .0 .5 55. .1 .0 .0 .0 .0- - .0 .0 .0 .0 .5 6 '5 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 6 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .4 6 10. .0 .0 .0 .0 .0 .,0 .0 .0 .0 .4 6 15. .0 .0 .0 .0 .0 :0 .0 .0 .0 .4 6 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .4 6 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 6 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 6 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 6 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 45, .0 .0 .0 .0 .0 .0 .0 .0 A .2 6 '6 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 6 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 7 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 7 S. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 10, .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 7 15. .0 .0 .0 -.0 .0 .0 .0 .0 .0 .2 t7 7 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 35, .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 8 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 '8 8 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 '8 8 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ..0 .0 '55. 9 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 9 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 9 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 9 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 9 20. .0 .0 .0 .0 .0 .0 .0 .0 ..0 .0 9 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 1 47 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 47 5. .0 .0 .0 - .0 .0 .0 .0 A .0 .0 47 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 47 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 47 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ., 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 47 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 47 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 47 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 47 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 48 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 Manhattan Pond Final DeSign (176CfS Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR 'REVISED 31, March, 2005 ICON ENGINEERING HYDROGRAPHS'ARE LISTED FOR THE FOLLOWING 3 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS 'TIME(HR/MIN) 90 159 189 0 5. .0 ..0 .0 0 10. .3 .6 1.4 . . 4.5 . '0 203 0 20. .3 8.8 15.8 0 25. 5.0 13.6 24.0 0 30. 10.5 24.8 47.5 0 35. 25.2 50.6 109.1 0 4. 27.4 . 111.E ' 0 95. 20.6 18 18. 8 8 74.4 0 50. 17.9 12.6 60.2 0 55. 14.6 8.7 46.6 1 0. 12.5 7.2 38.6 1 5. 1...6 ' 1 10. .5 9 5.9 2828.6 1 15. 8.4 5.5 25.4 1 20. 7.6 5.3 22.8 1 25. 6.9 5.0 20.7 1 35. 4.6 1.5 5.7 . '40 4. 17. 40. 40. 5.3 4.4 16.2 45. 4.9 4.3 15.0 1 50. 4.5 4.1 14.1 1 55, 4. 4. 1. 2 0. 3.9 3.9 12.4 2 5. 3.1 2.5 9.2 2 10. 2.3 1.0 6.0 2 15. 1.9 .6 4.7 2. 1. .4 3. 2 255. 1.5 .2 3.3 '2 2 30. 1.3 .2 2.9 2 35. 1.1 .1 2.5 2 40. 1.0 .1 2.2 2 .9 .1 1. 2 50. .8 50. .1 1.7 2 55. .7 .0 1.5 3 0. .7 .0 1.3 3 5. .6 .0 1.2 3 10. .6 .0 1.1 .5 .0 1. '3 20. 3 20. .5 .0 .9 3 25. .4 .0 .8 3 30. .4 .0 .7 , 3 35. .4 .0 .6 4. .3 .0 . 3 455. .3 '3 .0 .5 3 50. .3 .0 .5 3 55. .2 .0 .4 4 0. .2 .0 .4 5. .2 .0 .3 4 10. .2 '4 .0 .3 4 15. .2 .0 .3 4 20. .2 .0 .2 4 25. .1 .0 .2 4 3. .1 .0 .2 4 355. .1 .0 .2 4 40. .1 .0 .1 ^ 45. .1 .0 .1 50. .1 .0 .1 5. .1 .0 .1 _ 0 5 0. .1 .0 .1 5 5. .1 .0 .1 5 10. .1 .0 .1 5 15. .1 .0 .0 2. .0 .0 .0 5 255. .0 '5 .0 .0 43 0 ' 43 5 43 10 43 15 20 25 ' 30 3 35 3i3 40 43 45. 43 50, 43 55, 44 0. 44 5. 44 10. 44 15. 44 20. 44 25, 44 30. 44 35. 44 40. 44 . 50 44 50. 44 55. 45 0. 45 5. 45 1. 45 155. 45 20. 45 25. 45 30. 45 35. ' 45 4. 45 455. 45 50. 45 55. ' 46 0. 96 5. 46 10. 46 15. 46 20. 46 25. 0. 35. 4 40. 46 45. 46 50. 46 5. 0 47 0. 47 5. 47 10. 47 15, 47 20. 47 25. 47 30. 47 35. 47 40. 47 45. 47 50. 47 55. 48 0. Manhattan Pond Final Design (176CfS Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2005 ICON ENGINEERING ***.CONTINUITY CHECK FOR BOBCAT CHMEMT ROUTING IN UDSWM2-PC MODEL '** WATERSHED AREA (ACRES) 1796.990 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .752 ,TOTAL WATERSHED OUTFLOW (INCHES) 2.871 Tn-AL SURFACE STORAGE AT END OF STROM (INCHES) .046 -- .( IN CONTINUITY, PERCENTAGE OF RAINFALL .000 Manhattan Pond Final Design (176CfS Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR ,REVISED 31, March, 2005 ICON ENGINEERING WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE ' GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 1 0 1 CHANNEL 10.0 3400. .0110 4.0 4.0 .044 12.00 0 10 0 1 CHANNEL 48.0 1850. .0150 50.0 50.0 .020 5.00 0 ',.�0 11 10 0 1 CHANNEL 10.0 1900. .0130 2.5 2.5 .060 16.00 0 12 210 0 1 CHANNEL 10.0 1000. .0110 2.0 2.0 .060 12.00 0 152 11 0 1 CHANNEL 48.0 1850. .0200 50.0 50.0 .020 5.00 0 13 12 0 2 PIPE 8.0 1000. .0110 .0 .0 .013 8.00 0 14 13 0 1 CHANNEL 10.0 200. .0159 2.0 2.0 .060 12.00 0 ' 15 14 6 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .001 3.0 .100 103.6 .400 233.4 1.100 460.4 1.600 643.8 16 15 0 1 CHANNEL 10.0 1400. .0110 4.0 4.0 .035 5.00 0 111 16 9 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .240 .7 .790 1.6 1.390 2.0 2.060 2.4 2.780 2.7 3.180 2.9 3.590 21.6 4.460 99.7 17 16 0 1 CHANNEL 2.0 900. .0050 4.0 4.0 .035 5.00 0 701 17 4 2 PIPE .0 1. .0010 .0 .0 .001 .00 - 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.060 6.1. 2.780 41.3 4.020 552.0 601 701 0 3 .0 1. .0010 .0 .0 .001 10.00 0 18 601 0 1 CHANNEL 2.0 1750. .0140 4.0 4.0 .035 5.00 0 107 0 1 CHANNEL 5.0 900. .0110 .3.0 3.0 .035 6.00 0 '19 20 320 0 3 .0 1. .0010 .0 .0 .001 10.00 0, 21 20 0 1 CHANNEL 10.0 1200. .0050 4..0 4.0 .035 5.00 0 22 21 10 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .280 3.5 1.550 8.9 3.960 12.0 7.650 14.0 13.060 17.5 ' 19.950 20.0 27.460 21.0 35.310 22.8 43.480 66.0 23 39 0 1 CHANNEL 12.0 800. .0056 4.0 4.0 .030 5.00 0 230 24 10 2, PIPE .0 50. .0050 .0 .0 .013 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .380 3.6 1.490 30.1 3.420 94.5 4.660 132.0 5.910 171.7 7.380 212.0 8.860 251.1 9.590 269.5 10.330 288.0 24 222 0 1 CHANNEL 8.0 1150. .0100 4.0 4.0 .035 5.00 0 25 222 0 1 CHANNEL 8.0 1250. .0050 4.0 4.0 .035 5.00 0 26 23 0 1 CHANNEL 1.0 850. .0200 10.0 5.0 .035 5.00 0 27 18 0 1 CHANNEL 2.0 600. .0120 4.0 4.0 .035 5.00 0 ' 287 0 1 CHANNEL 1.0 900. .0130 2.5 2.5 .035 5.00 0 87 0 1 CHANNEL 1.0 1325. .0160 2.5 2.5 .035 5.00 0 _i 387 5 2 PIPE .0 1. .0050 .0 .0 .013 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW - .000 .0 1.100 1.0 2.500 2.0 4.500 3.0 8.000 56.0 28 29 0 1 CHANNEL 10.0 600. .0200 10.0 10.0 .035 5.00 0 387 189 0 1 CHANNEL 48.0 1300. .0050 50.0 50.0 .020 5.00 0 189 30 7 2 PIPE .0 1 1. .0050 .0 .0 .013 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .190 4.5 .810 7.8 1.820 9.7 3.040 11.4 4.400 12.8 5.760 87.8 29 30 0 1 CHANNEL 10.0 1250. .0200 10.0 10.0 .035 5.00 0 139 17 0 1 CHANNEL 2.0 2400. .0110 4.0 4.0 .035 5.00 0 30 139 0 3 .0 1. .0010 .0 .0 .001 10.00 0 31 23 0 5 PIPE 2.8 900. .0130 .0 .0 .013 2,75 0 OVERFLOW 70.0 900. .0130 50.0 50.0 .020 5.00 ' 32 105 0 1 CHANNEL 48.0 2600. .0070 50.0 50.0 .020 5.00 0 33 14 0 3 .0 1. .0010 .0 .0 .001 10.00 0 34 23 0 1 CHANNEL 48.0 1650. .0060 50.0 50.0 .020 5.00 0 35 102 0 4 CHANNEL .5 1300. .0164 12.0 12.0 .016 .50 0 10.0 1300. _ .0164 20.0 20.0 .035 10.00 'OVERFLOW 36 321 0 1 CHANNEL 48.0 1500. .0070 50.0 50.0 .020 5.00 0 37 24 0 1 CHANNEL 48.0 700. .0149 50.0 50.0 .020 5.00 0 38 245 0 1 CHANNEL 4.0 1000. .0100 4.0 4.0 .035 5.00 0 39 230 0 3 .0 1. .0010 .0 .0 .001 10.00 0 375 0 1 CHANNEL 70.0 800. .0110 50.0 50.0 .020 5.00 0 '40 41 31 0 1 CHANNEL 48.0 500. .0130 50.0 50.0 .013 5.00 0 42 102 0 5 PIPE 2.0 1250. .0150 .0 .0 .013 2.00 0 OVERFLOW 48.0 1250. .0150 50.0 50.0 .020 5.00 43 42 11 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .690 4.8 2.640 12.0 5.150 16.2 8.550 18.9 13.140 20.8 18.840 22.1 25.580 23.4 28.930 24.1 30.610 46.8 32.290 .213.5 84 45 0 3 .0 1. .0010 .0 .0 .001 10.00 0 45 347 0 1 CHANNEL 2.0 1000. .0050 4.0 4.0 .035 5.00 0 46 347 0 1 CHANNEL 2.0 1250. .0050 4.0 4.0 .035 5.00 0 44 47 0 1 CHANNEL 4.0 1300. .0100 4.0 4.0 .035 5.00 0 47 48 0 2 PIPE 5.0 342. .0102 .0 .0 .013 5.00 0 '8 50 0 1 CHANNEL 6.0 400. .0089 6.0 8.0 .035 5.00 0 48 0 1 CHANNEL 48.0 1150. .0050 50.0 50.0 .020 5.00 0 378 0 2 PIPE 7.1 156. .0310 .0 .0 .013 7.10 0 51 378 0 1 CHANNEL 48.0 600. .0080 50.0 50.0 .020 5.00 0 261 12 0 5 PIPE 3.5 550. .0030 .0 .0 .013 3.50 0 OVERFLOW 35.0 550. .0030 2.0 50.0 .020 5.00 56 262 6 2 PIPE .1 1. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 4.920 17.8 8.500 30.3 16.000 81.3 19.750 134.3 21.630 231.3 262 261 0 5 PIPE 3.0 3650. .0025 .0 .0 .013 3.00 0 ' 100 211 102 103 ' 104 105 107 185 210 ' 222 243 244 245 200 20 201 203 204 205 a ' 208 221 347 831 247 254 122 270 271 ' 57 272 ' 78 278 279 291 571 ' 121 OVERFLOW 35.0 3650. .0025 2.0 50.0 .020 11 12 2 PIPE .1 1. .0010 .0 .0 .013 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 3.900 51.0 5.900 96.0 7.600 140.0 11.000 260.0 14.500 340.0 17.000 390.0 20.000 490.0 22.600 740.0 25.000 1070.0 211 7 2 PIPE .1 1. .0010 .0 .0 .013 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .700 13.2 1.400 74.9 2.100 141.1 2.800 288.9 5.900 1742.9 100 0 3 .0 1. .0010 .0 .0 .001 303 9 2 PIPE .1 1. .1000 .0 .0 .024 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .400 3.8 1.400 10.5 4.400 16.0 7.700 20.0 13.300 25.0 15.900 36.1 19.700 1910.0 302 7 2 PIPE .1 1. .1000 .0 .0 .024 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 4.820 .0 6.290 7.2 12.020 10.2 18.950 13.2 34.090 228.0 38 10 2 PIPE -.1 10. .1000 .0 .0 .100 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .800 6.0 2.600 10.5 5.240 13.5 8.840 16.0 13.000 17.0 15.640 18.0 19.820 45.0 24.070 76.4 319 5 2 PIPE .1 50. .0100 .0 .0 .013 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.500 2.8 3.900 4.5 6.700 6.1 9.900 196.9 318 7 2 PIPE .1 1. .1000 .0 .0 .020 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .110 19.0 .350 35.0 .680 50.0 1.060 62.0 2.010 80.0 22 0 1 CHANNEL 48.0 850. .0100 50.0 50.0 .020 101 0 3 .0 �1. .0010 .0 .0 .001 22 0 3 .0 1. .0010 .0 .0 .001 43 0 3 .0 1. .0010 .0 .0 .001 104 0 3 .0 1. .0010 .0 .0 .001 103 0 - 3 .0 1. .0010 .0 .0 .001 49 0 1 CHANNEL 20.0 1600. .0050 20.0 20.0 .060 208 0 1 CHANNEL 2.0 1000. .0100 4.0 4.0 .035 200 0 1 CHANNEL 2.0 1900. .0050 4.0 4.0 .035 207 0 1 CHANNEL 48.0 500. .0180 50.0 50.0 .020 208 0 1 CHANNEL .2.0 600. .0050 4.0 4.0 .035 204 6 2 PIPE .0 100. .0800 .0 .0 .024 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .330 .0 .680 2.9 1.060 7.7 1.470 10.0 205 0 1 CHANNEL 48.0 850. .0200 50.0 50.0 .020 202 4 2 PIPE .0 50. .0100 .0 .0 .024 RESERVOIR.STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .940 .0 1.310 4.0 1.700 100.0 200 0 3 .0 1. .0010 .0 .0 .001 20 0 1 CHANNEL 2.0 1300. .0100 4.0 4.0 .035 247 0 3 .0 ' 1. .0010 .0 .0 .001 347 9 2 PIPE .0 1. .0050 .0 .0 .013 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .030 3.2 .220 10.4 .400 18.6 .650 24.5 1.220 31.2 1.540 33.7 1.790 41.6 366 14 2 PIPE .0 193. .0026 .0 .0 .013 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.030 .6 3.780 8.0 6.670 17.9 10.120 25.7 18.320 29.9 22.840 31.6 27.610 33.3 32.630 35.0 37.920 37.0 46.540 41.5 49.570 211.2 107 0 4 CHANNEL .5 1250. .0040 12.0 12.0 .016 OVERFLOW 10.0 1250. .0040 20.0 20.0 .020 270 6 2 PIPE .1 1. .1000 .0 .0 .100 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.060 2.7 1.770 4.6 3.010 15.4 3.630 68.4 272 0 1 CHANNEL 12.0 1100. .0010 1.5 1.5 .045 291 3 3 .0 1. .0010 .0 .0 .001 TIME IN HRS VS INFLOW IN CPS .000 155.0 .500 155.0 15.000 155.0 272 6 2 PIPE .1 1. .1000 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .760 1.9 1.270 3.3 2.160 12 0 2 PIPE 8.6 900. .0010 278 0 3 .0 1. .0010 347 14 2 PIPE .0 360. .0083 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.200 36.1 2.780 45.2 4.520 10.690 75.3 13.130 81.1 15.790 86.8 18.710 29.370 103.2 31.380 200.7 46 6 2 PIPE .1 50. .0050 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .160 4.0 .710 13.0 1.670 279 0 1 CHANNEL 2.0 1200. .0100 291 6 2 PIPE .1 1. .1000 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.250 5.6 3.750 9.8 6.380 571 0 1 CHANNEL 12.0 1800. .0010 290 3 3 .0 1. .0010 DIVERSION TO GUTTER NUMBER 500 - TOTAL Q VS DIVERTED Q IN CPS .000 .0 155.000 .0 300.000 145.0 290 6 2 PIPE .1 1. .1000 .0 .0 11.0 2.610 .0 .0 .0 .0 .0 .0 53.4 6.410 90.9 21.980 .0 .0 20.0 2.630 4.0 4.0 .0 .0 32.6 7.700 1.5 1.5 .0 .0 100 64.0 .013 .001 .013 61.6 95.0 .013 73.0 .035 .100 85.6 .045 .001 5.00 .10 0 12.700 300.0 27.500 1626.0 .10 0 4.300 831.5 10.00 0 .10 0 11.100 24.0 .10 0 26.320 15.8 .10 0 11.000 16.5 .10 0 10 1.500 72.6 5.00 10.00 10.00 10.00 10.00 10.00 5.00 2.00 5.00 5.00 3.00 .00 1.910 100.0 5.00 .00 10.00 5.00 10.00 .10 .900 28.7 .00 14.060 28.2 43.510 40.0 .50 10.00 .10 3.940. 165.4 6.00 10.00 .10 2.840 161.0 8.59 10.00 .00 8.460 68.5 25.560 99.1 .10 3.590 170.0 5.00 .10 8.360 182.6 6.00 10.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 500 0 .0 .100 .10 0 l3 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 3.630 9.1 6.050 15.7 10.290 52.6 12.410 105.6 13.470 202.6 '.000 290 270 0 1 CHANNEL 12.0 1450. .0010 1.5 1.5 .045 6.00 0 300 301 8 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN MRS VS INFLOW IN CPS .000 80.0 .600 80.0 .770 80.0 1.000 80.0 2.600 80.0 3.350 80.0 80.0 7.930 80.0 '5.600 301 302 0 1 - CHANNEL 12.0 2100. .0007 1.0 1.0 .045 5.00 0 302 303 0 1 CHANNEL 12.0 1700. .0007 1.0 1.0 .045 7.00 0 303 33 0 1 CHANNEL 12.0 1400. .0007 3.0 3.0 .045 7.00 0 318 319 0 1 CHANNEL 3.0 1550. .0110 3.0 3.0 .035 6.00 0 319 16 0 3 .0 1. .0010 .0 .0 .001 10.00 0 , 320 t 19 7 2 PIPE .1 10. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .180 . 16.0 .650 30.0 1.400 45.0 2.390 54.0 3.750- 62.0 5.100 208.0 321 35 13 2 PIPE .1 10. .1000 .0 .0 .100 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .060 5.0 .120 10.0 .270 13.0 .410 22.0 .590 33.0 .760 45.0 .970 55.0 1.170 70.0 1.410 82.5 1.640 97.6 1.870 150.6 2.100 247.6 362 375 0 1 CHANNEL 48.0 850. .0080 50.0 50.0 .020 5.00 0 ' 412 422 9 2 PIPE .1 50. .0100 .0 .0 .150 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .010 .1 .170 .3 .510 .4 .920 .6 1.380 .7 1.890 .8 2.460 .8 2.750 27.4 , 432 0 3 .0 1 1. .0010 .0 .0 .001 10.00 0 '422 432 370 0 1 CHANNEL 48.0 860. .0080 50.0 50.0 .020 5.00 0 379 367 8 2 PIPE .1 50. .0100 .0 .0 .150 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW - - .000 .0 .030 .6 .140 .8 .250 1.0 .410 1.3 .570 1.5 .760 1.7 .950 1.8 ' 364 399 0 1 CHANNEL CH 2.0 1000. .0080 50.0 50.0 .035 5.00 D 365 369 0 1 CHANNEL 48.0 1350. .0070 50.0 50.0 .020 5.00 0 366 371 0 1 CHANNEL 4.0 2050. .0050 4.0 4.0 .035 5.00 0 367 244 0 1 CHANNEL 5.0 1900. .0100 10.0 10.0 .035 3.00 0 372 0 1 CHANNEL 70.0 1050. .0110 50.0 50.0 .020 5.00 0 '368 369 244 0 1 CHANNEL 5.0 700. .0050 4.0 4.0 .035 5.00 0 370 244 0 5 PIPE 2.5 700. .0070 .0 .0 .013 2.50 0 OVERFLOW 48.0 700. .0070 50.0 50.0 .020 5.00 243 0 1 CHANNEL 17.0 700. .0050 3.0 3.0 .035 5.00 0 40 0 1 CHANNEL 72.5 .0100 50.0 SD.0 .013 0 �3371 243 0 5 PIPE 2.5 2050. 2050. .0100 .0 .0 .013 2.50 2.50 0 OVERFLOW 48.0 2050. .0100 50.0 50.0 .020 5.00 �J►5 245 0 5 PIPE 3.0 1700. .0020 .0 .0 .013 3.00 0 OVERFLOW 48.0 1700. .0020 50.0 50.0 .020 5.00 399 370 0 3 .0 1. .0010 .0 .0 .001 10.00 0 900 901 0 3 .0 1. .0010 .0 .0 .001 10.00 0 901 903 8 2 PIPE .1 10. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .050 .0 .450 .0 1.350 .0. 2.690 .0 4.260 .0 5.650 .0 5.660 100.0 ' TOTAL NUMBER OF GUTTERS/PIPES, 127 Manhattan Pond Final Design 1176Cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR ' REVISED 31, March, 2005 ICON ENGINEERING ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES ' GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 10 150 11 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0 0 1778.8 11 152 100 0 0 0 0 0 0 0 0 52 0 0 0 0 0 0 0 0 0 1633.5 12 13 261 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1493-2 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1258.7 ' 14 15 33 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0 1258.7 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 511.2 16 ill 17 319 0 0 0 0 0 0 0 59 0 0 0 0 0 0 0 0 0 511.2 17 701 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157.5 18 27 0 0 0 0 0 0 0 0 0 71 0 .0 0 0 0 0 0 0 0 9.3 ' 19 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 236.9 20 21 221 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 236.9 21 22 0 0- 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198.3 22 185 222 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 198.3 23 26 31 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69.6 ' 24 230 37 0 0 0 0 0 0 0 0 175 0 0 0 0 0 0 0 0 0 129.6 25 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 51.5 26 0 0 0 0 0 0 .0 0 0 0 186 0 0 0 0 0 0 0 0 0 13.8 27 0 0 0 0 0 0 0 0 0 0 74 0 0 0 0 0 0 0 0 0 4.0 28 0 0 0 0 0 0 0 0 0 0 88 0 0 0 0 0 0 0 0 0 8.0 ' 29 28 0 0 0 0 0 0 0 0 0 73 0 0 0 0 0 0 0 0 0 28.0 30 189 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95.4 31 41 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 25.2 32 0 0 0 0 0 0 0 0 0 - 0 68 0 0 0 0 0 0 0 0 0 54.3 33 303 0 0 0 0 0 0 0 0 0 159 0 0 0 0 0 0 0 0 0 728.9 34 0 0 0 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 30.6 35 321 - 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 97.0 al 36 0 0 0 0 0 0 0 0 0 0 67 0 37 0 0 0 0 0 0 0 0 0 0 176 0 ' 38 104 0 0 0 0 0 0 0 0 0 62 0 39 23 0 0 0 0 0 0 0 0 0 79 0 40 372 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 89 0 42 43 0 0 0 0 0 0 0 0 0 61 0 43 243 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 77 0 45 84 0 0 0 0 0 0 0 0 0 0 0 46 279 0 0 0 0 0 0 0 0 0 177 0 47 44 0 0 0 0 0 0 0 0 0 0 0 ' 48 47 49 0 0 0 0 0 0 0 0 178 0 49 200 0 0 0 0 0 0 0 0 0 78 0 50 48 0 0 0 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0 0 0 180 0 56 0 0 0 0 0 0 0 0 0 0 56 0 ' 57 0 0 0 0 0 0 0 0 0.0 57 0 84 0 0 0 0 0 0 0 0 0 0 84 0 87 287 0 0 0 0 0 0 0 0 0 0 0 100 211 0 0 0 0 0 0 0 0 0 0 0 101 210 0 0 0 0 0 0 0 0 0 0 0 102 35 42 0 0 0 0 0 0 0 0 0 0 103 245 0 0 0 0 0 0 0 0 0 0 0 104 244 0 0 0 0 0 0 0 0 0 0 0 105 32 0 0 0 0 0 0 0 0 0 0 0 107 19 254 0 0 0 0 0 0 0 0 0 0 ' ill 0 0 0 0 0 0 0 0 0 0 58 0 120 0 0 0 0 0 0 0 0 0 0 120 0 121 0 0 0 0 0 0 0 0 0 0 121 0 122 0 0 0 0 0 0 0 0 0 0 122 0 139 30 0 0 0 0 0 0 0 0 0 801 0 ' 150 0 0 0 0 0 0 0 0 0 0 151 0 152 0 0 .0 0 0 0 0 0 0 0 153 -0 185 0 0 0 0 0 0 0 0 0 0 85 0 189 387 0 0 0 0 0 0 0 0 0 0 0 200 201 208 0 0 0 0 0 0 0 0 0 0 ' 201 0 0 0 0 0 0 0 0 0 0 82 0 202 207 0 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0. 0 0 0 181 0 204 205 0 0 0 0 0 0 0 0 0 -81 0 205 206 0 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 0 182 0 207 203 0 0 0 0 0 0 0 0 0 0 0 208 202 204 0 0 0 0 0 0 0 0 0 0 210- 12 0 0 0 0 0 0 0 0 0 65 0 211 101 0 0 0 0 0 0 0 0 0 53 0 ' 221 0 0 0 0 0 0 0 0 0 0 76 0 222 24 25 0 0 0 0 0 0 0 0 0 0 230 39 0 0 0 0 0 0 0 0 0 0 0 243 371 373 0 0 0 0 0 0 0 0 0 0 244 367 369 370 0 0 0 0 0 0 0 0 0 ' 245 38 375 0 0 0 0 0 0 0 0 0 0 247 347 0 0 0 0 0 0 0 0 0 0 0 254 0 0 0 0 0 0 0 0 0 0 70 0 261 262 0 0 0 0 0 0 0 0 0 55 0 262 56 0 0 0 0 0 0 0 0 0 0 0 270 122 290 0 0 0 0 0 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 0 0 0 272 270 57 0 0 0 0 0 0 0 0 0 0 278 378 0 0 0 0 0 0 0 0 0 0 0 279 210 0 0 0 0 0 0 0 0 0 0 0 280 0 0 0 0 0 0 0 0 0 0 179 0 ' 287 288 0 0 0 0 0 0 0 0 0 87 0 288 0 0 0 0 0 0 0 0 0 0 90 0 290 571 121 0 0 0 0 0 0 0 0 0 0 291 271 120 0 0- 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 301 300 0 0 0 0 0 0 0 0 0 0 0 302 103 301 0 0 0 0 0 0 0 0 0 0 303 102 302 0 0 0 0 0 0 0 0 0 0 318 107 0 0 0 0 0 0 0 0 0 69 0 319 105 318 0 0 0 0 0 0 0 0 0 0 ' 320 20 0 0 0 0 0 0 0 0 0 0 0 321 36 0 0 0 0 0 0 0 0 0 0 0 347 45 46 831 278 0 0 0 0 0 0 83 0 362 0 0 0 0 0 0 0 0 0 0 162 0 364 0. 0 0 0 0 0 0 0 0 0 164 0 ' 365 0 0 0 0 0 0 0 0 0 0 165 0 366 247 0 0 0 0 0 0 0 0 0 166 0 367 379 0 0 0 0 0 0 0 0 0 401 167 368 0 0 0 0 0 0 0 0 0 0 168 169 369 365 0 0 0 0 0 0 0 0 0 0 0 ' 370 432 399 0 0 0 0 0 0 0 0 170 0 371 366 0 0 0 0 0 0 0 0 0 171 0 372 368 0 0 0 0 0 0 0 0 0 172' 0 373 0 0 0 0 0 0 0 0 0 0 173 0 375 40 362 0 0 0 0 0 0 0 0 0 0 ' 378 50 51 0 0 0 0 0 0 0 0 0 0 379 0 0 0 0 0 0 0 0 0 0 163 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39.4 0 13.8 0 166.4 0 105.7 0 11.5 0 5.9 0 420.5 0 400.9 0 16.3 0 24.6 0 39.8 0 16.3 0 187.7 0 155.9 0 187.7 0 26.3 0 93.3 0 12.7 0 24.6 0 42.3 0 1548.2 0 1513.2 0 517.5 0 205.1 0 119.0 0 54.3 0 252.0 0 29.3 0 37.5 0 60.5 0 17.7 0 104.1 0 58.2 0 46.9 0 17.2 D 67.4 D 90.1 D 33.3 D 16.4 0 16.4 0 40.4 0 15.9 D 15.9 3 16.4 J 56.8 J 1513.2 1548.2 38.6 7 181.1 ] 105.7 400.9 ] 119.0 7 205.1 313.3 15.1 106.1 93.3 115.7 7 .0 128.4 214.0 23.4 23.4 42.3 7.8 98.0 37.5 .0 .0 205.1 722.6 260.9 315.2 236.9 39.4 313.3 27.2 23.5 29.4 341.1 22.5 7.3 29.4 67.1 364.5 11.5 36.4 38.7 214.0 4.3 -1 387 87 0 0 0 0 0 0 0 0 0 189 0 0 0 0 0 0 0 0 0 67.4 399 364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.5 412 0 t 0 0 0 0 0 0 0 0 0 402 0 0 0 0 0 0 0 0 0 9.4 422 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.4 432 422 0 0 0 0 0 0 0 0 0 403 0 0 0 0 0 0 0 0 0 10.2 571 291 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37.5 601 18 0 0 0 0 0 0 0 0 0 72 0 0 0 0 0 0. 0 0 0 53.4 ' 701 601 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 53.4 831 0 0 0 0 0 0 0 0 0 0 831 0 0 0 0 0 0 0 0 0 5.5 900 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 0 0 0 18.2 901 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.2 Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2005 ICON ENGINEERING PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS "` NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY 'CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CPS) (FT) (AC -FT) (HR/MIN) 1:3 1001.8 (DIRECT FLOW) 1 45. 10:1 1001.8 4.8 1 45. ' 11:1 907.5 5.8 1 45. 12:1 837.4 6.1 1 35. 13:2 533.8 4.3 0 55. 14:1 515.2 4.4 0 50. 15:2 445.1 .1 1.1:D 0 50^._„__ ' 16:1 457.5 3.0 0 45. 17:1 349.9 4:0 0 45. 18:1 38.6 1.3 0 40. 19:1 61.7 1.5 1 15. 20:3 183.1 (DIRECT FLOW) 0 40. ' 21:1 44.2 1.1 2 40. 22:2 44.4 .1 39.4_D 2 35. 23:1 351.5 2.8 0 40. 24:1 285.6 2.6 0 50. 2:1 28.4 .8 0 ' 267 :1 8.5 1 .4 35. 0 35. 27:1 17.0 .9 0 40. 28:1 27.0 .5 0 40. 29:1 123.9 1.2 0 40. 30:3 132.1 (DIRECT FLOW) 0 40. 31:5 146.7 3.0 0 40. 32:1 158.5 .6 0 40. 33:3 220.7 (DIRECT FLOW) 1 35. 34:1 140.4 .6 0 40. 3:4 . 1. 0 40. :1 160.9 36160 .66 0 40. ' 37:1 98.8 .4 0 35. 38:1 233.1 2.7 0 40. 39:3 522.8 (DIRECT FLOW) 0 40. 4:1 5. .3 0 5. 41:1 50.8 .2 0 35. 3 ' 42:5 81.7 2.3 0 40. 43:2 38.2 .1 30.0:1) 9 55. 44:1 63.2 1.5 0 40. 45:1 99.3 2.4 0 40. 46:1 88.9 2.3 0 50. ' 47:2 57.5 1.6 0 40. 48:1 446.9 3.0 0 45. 49:1 329.6 .9 0 50. 50:2 433.3 3.0 '0 50. 51:1 125.8 .5 0 35. ' 56:2 93.7 .1 16.9:D 1 10. 57:2 19.1 .1 2.2:D 0 55. 84:3 102.6 (DIRECT FLOW) 0 40. 87:2 24.0 .0 5.9:D 2 0. 100:2 858.7 .__..._._..1 23.S71 ".._.,, ,...40...._._... ' 101:2 849.4 .1 4.3:D 1 35. 102:2 206.3 .1 16.2:D 1 15. 103:2 16.6 .1 26.3:D 8 15. 104:2 43.9 .1 19.7:D 2 10. 105:2 50.9 .1 1 30. ' 107-2 77.3 -7.5:D .1 1.g-.D_!1 10_ 111:2 32.7 .1 3.7:D 1 10. 120:2 45.2 .1 6.7:D 1 0. 21:2 67.2 .1 10.9:D 1 5. .22:2 25.1 .1 3.1:D 0 55. 139:1 124.1 2.2 0 45. 150:1 225.7 .6 0 40. 152:1 195.0 .5 0 40. 185:1 77.6 .4 0 40. 189:2 31.4 .0 4.7:D 2 10_ 200:1 193.1 1.8 0 55. 201:1 151.9 2.9 0 40. 202:1 42.5 1.5 0 55. 203:1 79.4 .3 0 40. ' 204:1 99.8 2.4 0 40. 205:2 40.2 .0 1.6:D 0 50. 16:1 78.4 .3 0 40. 7:2 48.6 .0 1.5:D 0 45. 125.4 (DIRECT FLOW) 0 55. '208:3 210:3 848.5 (DIRECT FLOW) 1 35. 211:3 874.0 (DIRECT FLOW) 1 0. 221:1 174.3 2.6 0 40. 222:3 519.7 (DIRECT FLOW) 0 40. 230:2 242.0 .0 8.5:D 0 55. 243:3 •330.1 (DIRECT FLOW) 0 40. 244:3 435.3 (DIRECT FLOW) 0 40. 245:3 304.1 (DIRECT FLOW) 0 40. 247:2 57.5 .0 46.8:D 6 15. 85.4 1.1 0 40. '254:4 261:5 105.8 4.0 0 40. 262:5 84.6 3.5 1 '50. 270:1 237.7 5.2 1 20. 271:3 155.0 (DIRECT FLOW) 0 5. 250.0 5.4 1 20. '272:2 278:2 101.0 .0 27.3:D 2 10. 279:2 54.9 .1 2.3:D 0 50. 280:1 128.0 2.3 0 40. 287:1 123.0 2.6 0 40. 27.1 1.5 0 40. '288:1 290:1 220.0 5.0 1 15. 291:1 196.6 4.7 1 15. 300:3 80.0 (DIRECT FLOW) 0 5. 301:1 80.0 3.3 3 25. 96.6 3.7 8 30. '302:1 303:1 216.1 4.7 1 35. 318:1 95.7 2:1 0 40. 319:3 133.7 (DIRECT FLOW) 1 30. 320:2 61.8 .1 3. D]� 15„ 119.6 .1 1.7:D 0 50. '321:2 347:3 409.6 (DIRECT FLOW) 0 40. 362:1 120.7 .5 0 40. 364:1 120.0 1.0 0 40. 365:1 126.5 .5 0 40. 366:1 123.8 2.4 0 40. 72.7 1.2 0 40. 07:1 8:1 48.7 .2 0 40. 69:1 114.6 2.2 0 45. 370:5 250.0 3.2 0 40. 223.0 2.2 0 40. '371:1 372:1 64.8 .3 0 40. 373:5 107.1 2.8 0 40. 375:5 110.3 3.6 0 50. 378:3 496.6 (DIRECT FLOW) 0 50. 319:2 1.8 .1 .9:D 2 0, 387:1 �399:3 96.0 .5 0 40. " 120.0 (DIRECT FLOW) 0 40. 412:2 1.6 .1 2.5:D 2 5. 422:3 1.6 (DIRECT FLOW) 2 5. :1 4. .1 0 . 571:3 571 196.6 (DIRECT FLOW) 1 15 15. ' 601:3 297.6 .(DIRECT FLOW) 0 40. 701:2 310.9 .0 3.4:D 0 40. 831:2 17.5 .0 - .4:D 0 45.� 900:3 138.1 (DIRECT FLOW) 0 35. 901:2 .0 .1 5.3:D 8 40. ' 903:3 .0 (DIRECT FLOW) 0 5. 'ENDPROGRAM PROGRAM CALLED Project Name: Project Client: Subject: Date: By: With: ---- - - Akiww�&A_.Av_�� . . . . . . ff F -A - 55 _Fi ------ ----- T_ -1 r - --------- - T--- T. - 4 I J_ I `4 T_ Ir J IL E IR: R T N S, J I 1 1 N 1 E + '7 T­ TF F -F ci:2 T--- FJ C1 Z)Lti AD r) 97, to 0 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL.970.6743300 - FAX.970.674.3303 �_ ( s Project Name: i—i .� i eA o. ,�{ �� I M l An Client: Subject: Date: By: With: I c, a! _I E —,i TERWI T � �I � 3Ti ,!�� i I h ,� 1VICI `'_G' of _ _ -►s ---6-I_ ; , _I - I L! IAA- �- $� � I --! -- � ---� I - L. - !-- i r -; 1 - I = f� - I I y� /I _ �.5.1 _ S I_.. _- i_ - _ A. Al _._ it ,I -I Ir _ ! s� I 1218 W. ASH, STE C • WINDSOR, COLORADO 80550 _ �- I TEL.970.674.3300 • FAX.970.674.3303 Project Name: Project Date:. By: 5 With: L If 1-7- f 1 t'['r I' 0 T---- T 7 7 I T T 111111 4 Ar r - 4lj J- E-;M N r - - -4- -4- 4- --4-- .-J. t ------ . ........ . I -4- ' }__� _� _�_� _I T _--t i IFT 73-3 1-4 I L T -T-T L-L-L 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL.970.674.3300 - FAX.970.67A.3303 UPDATED MODEL (INCREASED PERCENT IMPERVIOUSNESS) HA-r-Igbcc -s.,/'j 2 1 1 2 3 9 JATERSHED anhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STORM, DEVELOPED CONDITIONS 2002 F"'9ED 31, March, 2008 for Harmony Road Improvements INTERWEST CONSULTING GROUP 288 000 5. 1 1. 1 5, 1.0 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.0 .95 .91 .87 .84 .81 .78 .75 .73 .71 .69 .67 Prepared for: City of Fort Collins ,* SWMM developed condition, existing facilities, 100=yr recurrence interval -2 .016 .250 .1 .3 .51 .5 .0018 1 51 104309. 87.1 30.7 .040 1 151 1506675.58.23 30.0 .023 1 52 113717. 38.4 17.0 .064 ' 1 53 2113630. 35.0 24.5 .032 1 153 1526377.46.85 35.0 .014 1 54 142895. 18.6 95.0 .048 1 55 2612150. 12.8 95.0 .016 1 56 567665. 93.3 95.0 .016 ' 1 57 571908. 12.7 95.0.0086 1 120 1204538. 37.5 95.0.0088 1 121 1216757. 60.5 95.0.0088 1 122 1222659. 17.7 95.0.0088 1 58 1112242. 29.3 30.3_032 ' _1_„_ 59 161214.9.2, 30 _0..0134 . 1 159 331725.___ 6.3 83.7 .01 1 60 357608. 57.6 '35.0 .016 1 61 422308. 19.6 30.0 .016 1 62 386572. 47.4 37.6 .016 ' 1 162 3622465. 27.2 42.0 .015 1 163 3791498. 4.29 80.0 .010 1 401 3671863. 0.63100.0 .015 1 63 9002763. 18.2 95.0 .010 1 165 3654581. 29.4 37.0 .016 1 166 3664325. 27.8 47.8 .01 1 167 3673647. 17.6 37.0 .01 1 168 3681188. 6.0 95.0 .01 1 169 3681836. 1.3100.0 .02 170 3703640. 33.4 36.5 .01 "1 171 3712315. 23.4 47.8 .01 172 3722304. 4.2 72.4 .01 1 173 3734663. 36.4 32.0 .01 1 164 3642093. 23.5 65.3 .01 1 402 4122594. 9.43 80.0 .01 ' 1 403 4321241. 0.76100.0 .015 1 65 2103960. 20.0 37.6 .064 1 67 367462. 39.4 36.0.0088 1 68 326758. 54.3 32.0 .016 ' 1- 69 3182756, 8.,9 50.4 011 1 70 25g128,9115. _. 1,_54. 3 .016 1 71 191536_ 5.3 53.0.0143 1 72 6015055. 94.1 60.7 .020 1 8039 1 6 1 .._ -1997�.����8.7� ... .._._.._.. .. 1 73 292908. 20.0 35.0 .035 1_ 74 27 543. 4.0 49.5.0104 ' 1 75 _ 255391.S1.5 46 5. 0134 1 175 243143. 10.1 50.0 .015� 1 76 2214804. 38.6 40.0 .016 1 176 371011, 13.8 53.5 .019 1 77 441780. 16.3 35.0 .012 1 177 462043. 16.4 38.0 .02 1 78 4910616 65.8 25.0 .016 * WESTFIELD PARK 1 178 481276, 15.5 25.0 .031 1 79 395615. 36.1 35.0 .019 ' 1 179 2803390. 23.4 50.0 .020 1 80 314208. 19.3 35.0 .032 1 186 263004. 13.8 35.0 .032 1 81 2042482. 24.5 30.0 .016 1 181 2033570. 16.4 30.0 .016 ' 1 182 2063144. 15.9 35.0 .016 1 82 2013022. 33.3 55.9.0091 DIVIDE BASIN 83 TO REFLECT FLOW TO POND 831 1 83 3477115. 29.4 35.0 .02 1 831 8311711. 5.5 35.0 .02 ' 1 84 843065. 24.6 38.0.0072 1 85 1852138. 17.2 38.0 .016 86 345330. 30.6 40.0 .032 87 2871938. 34.5 25.0 .02 88 28 813. 8.0 23.0.0154 ' 1 89 411283. 5.9 95.0 .032 1 180 514243. 26.3 36.0 .012 1 90 288 788. 7.8 23.9 .020 1 189 3873647. 25.1 36.1 .013 ' 0 13 1 58 59 69 10 11 72 74 75 76 81 111 90 111 10 1 0 1 10.0 3400. .011 4.0 4.0 .044 12.0 ' 150 10 0 1 48.0 1850. .015 50.0 50.0 .020 5.0 11 10 0 1 10.0 1900. .013 2.5 2.5 .060 16.0 12 210 0 1 10.0 1000. .011 2.0 2.0 .060 12.0 152 11 0 1 48.0 1850. .020 50.0 50.0 .020 5.0 13 12 0 2 8.0 1000. .011 0.0 0.0 .013 8.0 ' 14 13 0 1 10.0 200. .0159 2.0 2.0 .060 12.0 15 14 6 2 .1• 1. .005 0.0 0.0 .013 0.1 .0 .0 .001 3.0 .1 103.6 .4 233.4 1 460.9 1.6 693.8 16 16 15 0 1 10.0 1900. .011 9.0 -9.0 .035 5.0 ' 111 16 9 2 .1 1. .005 0.0 0.0 .013 0.1 .0 .0 .24 .72 .79 1.55 1.39 2.02 2.06 2.4 2.78 2.72 3.18 2.87 3.59 21.58 4.46 99.73 17 16 0 1 2.0 900. .005 4.0 4.0 .035 5.0 ' FRONT RANGE COMMUNITY COLLEGE DETENTION FACILITY 701 17 4 2 1. 0.0 0.0 2.06 6.12 2.78 41.32 4.02 552. 601 101 0 3 1. 18 601 0 1 6.0 900. . 014 _ 3.0_____ 9_ 6 , 035 Q,..,Q�' �rLL C t4. S vela -L ' 19 107 0 1 5.0 900. .Ol1 3.0 3.0 .035 6.0 20 320 0 3 1. 21 20 0 1 10.0 1200. .005 4.0 4.0 .035 _ 5.0 * REGENCY REGIONAL DETENTION FACILITY 22 21 10 2 0.1 1. .005 0.0 0.0 .013 0.1 ' 0.0 0.0 0.28 3.5 1.55 8.9 3.96 12.0 7.65 14.0 13.06 17.5 19.95 20.0 27.46 21.0 35.31 22.8 43.48 66. 23 39 0 1 12.0 800. .0056 4.0 4.0 .030 - 5.0 WOODRIDGE DETENTION POND ' 230 24 10 2 0.0 50. .005 0.0 0.0 .013 0.0 0.0 0.0 0.38 3.65 1.49 30.05 3.42 94.52 4.66 132.0 5.91 171.66 7.38 212.0 8.86 251.08 9.59 269.54 10.33 288.0 SENECA STREET/REGENCY DRIVE CULVERTS AND CHANNEL ' 24 222 0 1 8.0 1150. .01 4.0 4.0 .035 5.0 25 222 0 1 8.0 1250. .005 4.0 4.0 .035 5.0 26 23 0 1 1.0 850. .02 10.0 5.0 .035 5.0 27 18 0 2 2.0 400. .007 0.0 0.0 .013 288 287 0 1 __.�._._.._..._._._._.__.____....._.._..___.__._..._._.._._...-__.__ 1.0 .013 900. .013 2.5 2.5 .035 5.00 287 87 0 1 1.0 1325. .016 2.5 2.5 .035 5.0 GE DETENTION POND 87 387 5 2 0.0 1. .005 0.0 0.0 .013 0.0 0.0 0.0 1.1 1.0, 2.5 2.0 4.5 3.0 8.0 56.0 28 29 0 1 10.0 600. .020 10.0 10.0 .035 5.0 387 189 0 1 48.01300.:005 �0:0SO,,Q�-Q29_,_._._5.0 o�N{1e�. R arc Parma WESTBURY DETENTION POND l a ALS 189 30 7 2 0.0 1. .005 0.0 0.0 .013 0.0 0.0 0.0 0.19 4.5 0.81 7.8 1.82 9.7 3.04 11.4 4.4 12.8 5.76 87.8 ' 29 30 0 1 10.0 1250. .020 10.0 10.0 .035 5.0 139 17 0 1 2.0 2400. .011 4.0 4.0 .035 5.0 30 139 0 3 1. 31 23 0 5 2.71 101, .013 0,0 0.0. .013 2,75 70.0 900. .006 50.0 50.0 .020 5.0 ' 32 105 0 1 48.0 2600. .007 50.0 50.0 .020 5.0 33 14 0 3 1. 34 23 0 1 48.0 1650. .006 50.0 50.0 .020 5.0 35 112 0 9 0,5 1300. .0169 12.0 12.0 .016 .5 10.0 1300. .0164 20.0 20.0 .035 10. ' 36 321 0 1 48.0 1500. .007 50.0 50.0 .020 5.0 37 24 0 1 48.0 700. .0149 50.0 50.0 .020 5.0 38 245 0 1 .4.0 1000. .01 4.0 4.0 .035 5.0 POND 230 INFLOW 39 230 0 3 1. 40 375 0 1 70.0 800. .011 50.0 50.0 .020 5.0 FUTURE WOODRIDGE COMMERCIAL DETENTION POND 41 31 0 1 48.0 500. .013 50.0 50.0 .013 5.0 42 102 0 5 2.0 1250. .015 0,0 1*0 .013 2.0 48.0 1250. .015 50.0 50.0 .020 5.0 ' TROUTMAN PARK REGIONAL DETENTION POND 43 42 11 2 0.1 1. .005 0.0 0.0 .013 0.1 0.0 0.0 0.69 4.75 2.64 12.01 5.15 16.2 8.55 16.92 13.14 20.75 18.84 22.07 25.58 23.39 28.93 24.05 30.61 46.78 32.29 213.46 ' 84 45 0 3 1- 45 347 0 1 2.0 1000. .005 4.0 4.0 .035 5.0 46 347 0 1 2.0 1250. .005 4,0 4.0 .035 5.0 44 47 0 1 4.0 1300. .01 4.0 4.0 .035 5.0 47 48 0 2 5.0 342. .0102 0 0 .013 5.0 48 50 0 1 6.0 400. .0089 6.0 8.0 .035 5.0 49 48 0 1 48.0 1150. .005 50.0 50.0 .020 5.0 * SENECA STREET CULVERT 50 378 0 2 7.1 156 .031 0.0 0.0 .013 _ 7.1 51 378 0 1 48.0 600. .008 50.0 50.0 .020 5.0 ■ 261 12 0 5 3.5 550. .003 0.0 0.0 .013 3.5 L-�Z- 35.0 550. .003 2.0 50.0 .020 5.0 56 262 6 2 0.1 1, 0.1 0 0 .1 .1 0.0 0.0 4.92 17.8 8.5 30.3 16.0 81.3 ' 19.75 134.3 21.63 231.3 262 261 0 5 3.0 3650. .0025 0.0 0.0 .013 3.0 35.0 3650. .0025 2.0 50.0 .020 5.0 100 11 12 2 .1 1. .001 0.0 0.0 .013 0.1 0.0 0.0 3.9 51.0 5.9 96. 7.6 140. 11.0 260.0 12.7 300.0 14..5 340. 17. 390. 20.0 490.0 22.6 740.0 25.0 1070. 27.5 1626. 101 211 7 2 .1 1. .001 .013 0.1 0.0 0.0 0.7 13.2 1.4 74.9 2.1 111.1 2.8 288.9 4.3 831.5 5.9 1742.9 ' 211 100 0 3 1. 102 303 9 2 0.1 1. 0.1 0.0 0.0 .024 0.1 0.0 0.0 0.4 3.8 1.4 10.5 4.4 16.0 7.7 20.0 11.1 24.0 13.3 25.0 15.9 36.1 19.7 1910.0 ' ' MANHATTAN POND 103 302 7 2 0.1 1. 0.1 0.0 0.0 .024 0.1 , 0.0 0.0 4.82 0.00 6.29 7.2 12.02 10.20 18.95 13.2 26.32 15.80 34.09 228.0 104 38 10 2 .1 10. .1 0.0 0.0 .1 .1 ' 0. 0. .80 6. 2.6 10.5 5.24 13.5 8.84 16. 11.0 16.5 13.0 17. 15.64 18. 19.82 45. 24.07 76.4 105 319 5 2 0.1 50. 0.01 0.0 0.0 .013 _ 0.1 0.0 0.0 1.5 2.8 3.9 4.5 6.7 6.1 ' 9.9 196.9 107 318 7 2 0.1 1. 0.1 0.0 0.0 .020 0.1 0.0 0.0 0.11 19.0 0.35 35.0 0.68 50.0 1.06 62.0 1.5 72.0 2.01 80.0 165 22 0 1 48.0 850. .010 50.0 50.0 .020 5.0 - - ' 210 101 0 3 1. 222 22 0 3 1. 243 43 0 3 1. 244 104 0 3 1. 2 10 3 1. 20000 49 49 0 1 20.0 1600. .005 20.0 20.0 .060 5.0 202 208 0 1 2.0 1000. .01 4.0 4.0 .035 2.0 201 200 0 1 2.0 1900. .005 4.0 4.0 .035 5.0 203 207 0 1 48.0 500. .018 50.0 50.0 .020 5.0 204 208 0 1 2.0 600. .005 4.0 4.0 .035 3.0 205 204 6 2 0 100. .06 0.0 0.0 .024 0 0.0 0.0 0.33 0.0 0.68 - 2.93 1.06 7.69 1.47 10.0 1.91 100.0 206 205 0 1 48.0 850. .020 50.0 50.0 .020 5.0 207 202 4 2 0 50. .010 0.0 0.0 .024 0 0.0 0.0 0.94 0.0 1.31 3.99 1.70 100.0 208 200 0 3 1. 221 20 0 1 2.0 1300. .010 4.0 4.0 .035,? 5.0 * MOUNTAINRIDGE REGIONAL DETENTION POND 247 AND 831 (AS -BUILT -- 21'OCT 97) 347 247 0 3 1, 831 347 '9 2 .1 .1 .005 0.0 0.0 .013 .1 0.0 0.0 0.03 3.16 0.22 10.45 0.40 18.63 0.65 24.50 0.90 28.68 1.22 31.20 1.54 33.70 1.79 41.62 241 366 19 2 0 193. .0026 0.0 0.0 .013 0 0.0 0.0 2.03 0.61 3.78 7.97 6.67 17.94 ' 10.12 25.67. 14.06 28.18 18.32 29.94 22.84 31.62 27.61 33.30 32.63 34.97 37.92 36.97 43.51 40.05 46.54 41.55 49.57 211.15 254 107 0 4 0.5 1211, .001 12.0 12.0 .016 0.5 10. 1250. .004 20.0 20.0 .020 10. 122 270 6 2 0.1 1. 0.1 0 0 .1 .1 0.0 0.0 1.06 2.7 1.77 4.6 3.01 15.4 3.63 68.4 3.94 165.4 270 272 0 1 12.0 1100, .001 1.5 1*1 .045 6.0 ' k2 CANAL INFLOW HYDROGRAPH ' �LARIMER -1 271 291 3 3 1. 0.0 155. 0.5 155. 15.0 155. 57 272 6 2 0.1 1. 0.1 0 0 .1 .1 0.0 0.0 0.76 1.9 1,27 1*3 2,16 11.0 2.61 64.0 2.84 161.0 272 12 0 2 8.59 900. .001 0 0 .013 8.59 MOUNTAINRIDGE REGIONAL DETENTION POND 278--PROPOSED INCLUDES RATING CURVE FOR * WESTFIELD PARK BACKWATER ZONE 378 278 0 3 1. 278 347 14 2 0.0 360. .0083 .0.0 0.0 .013 0.0 ' 0.0 0.0 1.20 36.06 2.76 45.17 4.52 53.40 6.41 61.62 8.46 68.45 10.69 75.27 13.13 81.06 15.79 86.85 18,71 90.93 21.98 95.02 25.56 99.11 ?9.37 103.19 31.38 200.72 279 46 6 2 0.1 50. .005 0.0 0.0 .013 0.1 ' 0. 0. 0.16 4. 0.71 13. 1.67 20. 2.63 73.0 3.59 170.0 280 279 0 1 2.0 1200. .01 4.0 4.0 .035 5.0 120 291 6 2 0.1 1. 0.1 0 0. .1 .1 0.0 0.0 2.25 5.6 3.75 9.75 6.38 32.6 ' 7.7 85.6 8.36 182.6 L- 291 571 0 1 12.0 1800. .001 1.5 * LARIMER #2 CANAL SPLIT 500 571 290 3 3 1. 0.0 0.0 155. 0.0 300. 121 290 6 2 0.1 1. 0.1 0 0.0 0.0 3.63 9.1 6.05 ' 12.41 105.6 13.47 202.6 290 270 0 1 12.0 1450. .001 1.5 NEW MERCER DITCH INFLOW HYDROGRAPH - 100 YEAR INFLOW -1 300 301 8 3 1. 0.0 80.0 0.60 80.0 0.77 ' 2.60 80.0 3.31 10.0 5.60 301 302 0 1 12.0 2100. .0007 1.0 302 303 0 1 12.0 1700. .0007 1.0 303 33 0 1 12.0 1400. .0007 3.0 318 319 0 1 3.0 1550. .011 3.0 ' 319 16 0 3 1. 320. -19 7 2 .1 10. .1 0.0 0. 0. .18 16. .65 2.39 54. 3.75 62.. 5.1 321 35 13 2 .1 10. .1 0.0 0. 0. .06 5. .12 ' .41 22. .59 33. .76 1.17 70. 1.41 62.5 1.64 2.1 247.6 362 375 0 1 48.0 850. .008 50.0 412 422 9 2 .1 50. .01 0.0 0. 0. ... 17 .92 .55 1.38 38 .68 68 1.8989 2.75 27.35 422 432 0 3 1. 432 370 0 1 48.0 860. .008 50.0 ' 379 367 8 2 .1 50. .01 0.0 0. 0. .03 .56 .14 .41 1.29 .57 1.52 .76 364 399 0 1 2.0 1000. .008 50.0 365 369 0 1 48.0 1350. .007 50.0 ' 366 371 0 1 4.0 2050. .005 4.0 367 244 0 1 5.0 1900. .010 10.0 368 372 0 1 70.0 1050. .011 50.0 369 244 0 1 5.0 700. .005 4.0 ' 370 244 0 5 2.5 700. .007 0.0 48.0 700. .007 50.0 372 243 0 1 .0 700. .0.0 70 372 90 0 1 70.0 135350. .01111 500.0 373 243 0 5 2.5 2050. .010 0.0 48.0 2050. .010 50.0 ' 375 245 0 5 3.0 1700. .002 0.0 48.0 1700. .004 50.0 399 370 0 3 1. 900 901 0 3 1. 901 903 8 2 .1 10. .1 0.0 ' 0. 0. .0. .5 2.69 0. 4.26 26 -0. 5.65 0 0 0 �NDPROGRAM 1.5 .045 6.0 145.0 0 .1 .1 15.7 10.29 52.6 1.5 .045 6.0 80.0 1.00 80.0 80.0 7.93 80.0 1.0 .045 5.0 1.0 .045 7.0 3.0 .045 7.0 3.0 .035 6.0 0.0 30. 208. 0.0 10. 45. 97.6 50.0 0.0 .31 .78 50.0 0.0 .80 1.67 50.0 50.0 4.0 10.0 50.0 4.0 0.0 50.0 3.0 50.0 0.0 50.0 0.0 50.0 0.0 0. 0. .1 .1 1.4 45. 1 .1 .27 13. .97 55. 1.87 150.6 020 5.0 .15 .1 .51 .43 2.46 .85 020 .15 .25 .95 035 020 035 035 020 035 013 020 035 020 013 020 013 020 .1 1.35 5.66 5.0 .1 1.04 1.62 1 0. 1000 NAT- TUcfs . ,0:.-AIL ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY ' TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) 2 1 0 JOUT(1) JOUT(2) JOUT(3) 1 2 0 NSCRAT(1) 1 3 ' WATERSHED PROGRAM CALLED :NTRY MADE TO RUNOFF MODEL ... UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(SO) 0 0 0 0 0 0 0 JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 0 0 0 0 0 0 0 NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 4 0 0 0 Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2008 for Harmony Road Improvements INTERWEST CONSULTING GROU NUMBER OF TIME STEPS 288 INTEGRATION TIME INTERVAL (MINUTES) 5.00 ' 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1,00 1.11 1.33 2,23 2,11 5,11 1,95 4.12 1.22 1.06 1.00 .95 .91 .87 .84 .81 .73 .71 .69 .67 'Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2008 for Harmony Road Improvements INTERWEST CONSULTING GROU SUBAREA GUTTER WIDTH NUMBER OR MANHOLE (FT) -2 0 .0 51 10 4309.0 15 1.0 52 11 11 37173717.0 ' 53 211 3630.0 153- 152 6377.0 54 14 2895.0 55 2.0 56 56 56 7665 7665.0 ' 57 57 1908.0 120 120 4538.0 ' 121 6757.0 122 2659.0 112.0 59 16 121414.0 159 33 1725.0 60 35 7608.0 61 42 2308.0 62 38 .0 ' 162 362 2465 2965.0 AREA (AC) .0 87.1 58.2 38.4 35.0 46.9 18.6 12.8 93.3 12.7 37.5 60.5 17.7 29.3 9.2 6.3 57.6 19.6 47.4 27.2 PERCENT SLOPE IMPERV. (FT/FT) .0 .0300 30.7 .0400 30.0 .0230 17.0 - .0640 24.5 .0320 35.0 .0140 95.0 .0480 95.0 .0160 95.0 .0160 95.0 .0088 95.0 .0088 95.0 .0088 95.0 .0088 30.3 .0320 30.0 .0134 83.7 .0100 35.0 .0160 30.0 .0160 37.6 .0160 42.0 .0150 2.48 .78 RESISTANCE FACTOR SURFACE STORAGE(IN) IMPERV. PERV. IMPERV. DERV. .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016* .250 .100 .300 .016 .250 .100 .300 .016 .250 ..100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 1.46 .75 INFILTRATION RATE(IN/HR) GAGE MAXIMUM MINIMUM DECAY RATE NO .51 .50 .00180 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 163 379 1498.0 4.3 80.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 401 367 1863.0 .6 99.9 .0150 .016 .250 .100 .300 .51 .50 .00180 1 63 900 2763.0 18.2 95.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 165 365 4581.0 29.4 37.0 .0160 .016 .250 .100 .300 .51- .50 .00160 1 ' 1 366 4325.0 27.8 47.8 .0100 .016 .250 .100 .300 .51 .50 .00180 1 367 3647.0 17.6 37.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 368 1188.0 6.0 95.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 169 368 1836.0 1.3 99.9 .0200 .016 .250 .100 .300 .51 .50 .00180 1 170 370 3640.0 33.4 36.5 .0100 .016 .250 .100 .300 .51 .50 .00180 1 171 371 2315.0 23.4 47.8 .0100 .016 .250 .100 .300 .51 .50 .00180 i 172 372 2304.0 4.2 72.4 .0100 .016 .250 .100 .300 .51 .50 ..00180 1 113 373 4663,0 36,4 32,0 .0100 .011 .250 .100 .300 .51 .50 .00180 1 364 2093.0 23.5 65.3 .0100 .016 .250 .100 .300 .51 .50 .00180 1 '164 402 412 2594.0 9.4 80.0 .0100 .016 .250 .100 -300-1 .51 .50 .00180 1 403 432 1241.0 .8 99.9 .0150 .016 .250 .100 .300 .51 .50 .00180 1 65 210 3960.0 '20.0 37.6 .0640 .016 .250 .100 .300 .51 .50 .00180 1 36 7462,0 31*1 36.0 .00BB .016 .250 .100 .300 .51 .10 .00110 1 68 32 6758.0 54.3 32.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 '67 69 318 2756.0 8.9 50.4 .0110 .016 .250 .100 .300 .51 .50 .00180 1, 70 254 3289.0 15.1 54.3 .0160' .016 .250 .100 .300 .51 .50 .00180 1 71 18 1536.0 5.3 53.0 .0143 .016 .250 .100 .300 .51 .50 .00180 1 72 601 5055,0 44,1 60.7 .0200 .016 .250 .100 .300 .51 .50 .00180 1 139 997.0 8.7 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 '801 73 29 2908.0 20.0 35.0 .0350 .016 .250 .100 .300 .51 .50 .:00180 1 74 27 543.0 4.0 49.5 .0104 .016 .250 .100 .300 .51 .50 .00180 1 75 25 5341.0 51.5 46.5 .0134 .016 .250 .100 .300 .51 .50 .00180 1 175 24 3143.0 10.1 50.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 221 4804.0 38.6 40.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 '76 176 37 4011.0 13.8 53.5 .0190 .016 .250 .100 .300 .51 .50 .00180 1 77 44 1780.0 16.3 35.0 .0120 .016 .250 .100 .300 .51 .50 .00180 1 177 46 2043.0 16.4 38.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 78 49 10616.0 65.8 25.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 48 1276.0 15.5 25.0 .0350 .016 .250 .100 .300 .51 .50 .00180 1 '178 79 39 5615.0 36.1 35.0 .0190 .016 .250 .100 .300 .51 .50 .00180 1 179 280 3390.0 23.4 50.0 .0200 .016, .250 .100 .300 .51 .50 .00180 i 80 31 4208.0 19.3 35.0 .0320 .016 .250 .100 .300 .51 .50 .00180 1 186 26 3004.0 13.8 35.0 .0320 .016 .250 .100 .300 .51 .50 .00180 1 81 204 2482.0 24.5 30.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 181 203 3570.0 16.4 30.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 182 206 3144.0 15.9 35.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 82 201 3022.0 33.3 59.9 .0091 .016 .250 .100 .300 .51 .50 .00180 1 83 347 7115.0 29.4 35.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 8"1 831 1711.0 5.5 35.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 ' 84 3065.0 24.6 38.0 .0072 .016 .250' .100 .300 .51 .50 .00180 1 185 2138.0 17.2 38.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 e6 34 5330.0 30.6 40.0 .0320 .016 .250 .100 .300 .51 .50 .00180 1 87 287 1936.0 34.5 25.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 28 813.0 8.0 - 23.0 .0154 .016 .250 .100 .300 .51 .50 .00180 1 '86 89 41 1283.0 5.9 95.0 .0320 .016 .250 .100. .300 .51 .50 .00180 1 180 51 4243.0 26.3 38.0 .0120 .016 .250 .100 .300 .51 .50 .00180 1 90 288 788.0 7.8 23.9 .0200 .016 .. 250 .100 .300 .51 .50 .00180 1 189 367 3647.0 25.1 36.1 .0130 .016 '.250 .100 .300 .51 .50 .00180 1 NUMBER OF SUBCATCHMENTS, 71 'TOTAL TOTAL TRIBUTARY AREA (ACRES)., 1796.99 'Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2008 for Harmony Road Improvements INTERWEST CONSULTING GROU HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS ' TIME(HR/MIN) 58 59 69 70 71 72 74 75 76 87 5. .0 .0 .0 .0 .0 .0 •0 .0 .0 .0 10. 1.3 .4 .9 1.3 .5 2.7 .2 2.4 2.1 1.0 15. 6.9 2.9 5.2 8.7 3.3 20.7 1.6 18.1 14.6 7.3 20. 15.8 5.0 8.4 14.9 5.2 42.4 3.2 37.6 26.9 14.3 25. 24.1 7.6 12.6 22.5 7.9 67.4 5.0 60.0 41.2 22.3 30. 47.6 15.2 25.6 44.1 16.0 125.5 9.4 112.2 79.7 42.7 35. 110.0 35.5 57.4 97.6 35.6 269.4 20.6 245.0 179.6 96.5 40. 115.1 37.2 51.9 89.0 31.6 260.7 20.6 249.7 181.2 103.5 45. 80.4 26.0 28.3 48.1 16.7 145.9 12.5 156.0 116.2 74.3 50. 67.3 21.7 20.6 34.8 12.0 103.5 9.5 119.8 91.9 64.7 55. 54.1 17.2 14.1 24.2 8.1 74.9 7.2 92.8 70.7 55.5 0. 45.8 14.4 11.3 19.3 6.5 60.2 5.9 77.1. 58.3 49.5 S. 39.5 12.4 9.4 16.2 5.5 51.0 - 5.0 66.2 49.6 44.7 10. 34.8 10.8 8.3 14.3 4.8 45.2 4.4 58.6 43.4 40.9 15. 31.1 9.6 7.4 13.0 4.4 40.9 4.0 52.7 38.7 37.6 20. 28.0 8.6 -6.8 11.9 4.0 37.6 3.6 48.0 34.9 34.6 25. 25.5 7.8 6.3 11.0 3.7 35.0 3.3 44.0 31.8 32.1 30. 23.3 7.2 5.9 10.3 3.5 32.8 3.1 40.8 29.3 29.8 35. 21.5 6.6 5.5 9.7 3.3 30.9 2.9 37.9 27.1 27.8 40. 19.8 6.1 5.2 9.2 3.1 29.1 2.7 35.4 25.1 25.9 45. 16.4 5.6 4.9 8.7 3.0 27.6 2.5 33.1 23.5 24.2 50. 17.1 5.2 4.7 8.3 2.8 26.3 2.4 31.3 22.0 22.7 55. 16.0 4.9 4.5 7.9 2.7 25.2 2.3 29.6 20.8 21.3 1 2 0. 15.0 4.6 4.3 7.6 2.6 24.1 2.1 28.0 19.6 20.1 5, 11.6 3.5 2.7 4.9 1.6 17.0 1.6 21.1 14.4 16.7 2 10. 8.1 2.4 1.2 2.3 .7 9.3 1.0 13.5 9.1 13.1 '2 2 15. 6.6 2.0 .8 1.5 .5 6.2 .7 10.2 6.9 11.2 ' 20. 5.6 1.7 .6 1.1 .3 4.5 .5 8.2 5.7 9.9 25. 4.9 1.4 .5 .9 .3 3.5 .4 6.9 4.8 8.9 4.3 1.2 .4 .7 .2 2.8 .4 5.8 4.1 8.0 2 35. 3.8 1.1 .3 .6 .2 2.3 .3 5.1 3.5 7.3 '30. 2 40. 3.4 1.0 .3 .5 .1 1.9 .3 4.4 3.1 6.6 2 45. 3.0 .9 .2 .4 .1 1.6 .2 3.9 2.7 6.1 2 50. 2.7 .8 .2 .3 .1 1.4 .2 3.4 2.4 5.6 55. 2.4 .7 .1 .3 .1 1.2 .2 3.1 2.1 5.1 3 0. 2.2 .6 .1 .2 .1 1.0 .2 2.7 1.9 4.7 '2 3 5. 2.0 .6 .1 .2 .0 .9 .1 2.5 1.7 4.4 3 10. 1.8 .5 .1 .2 .0 .8 .1 2.2 1.5 4.0 3 15. 1.6 .5 .1 .1 .0 .7 .1 2.0 1.3 3.7 3 20. 1.5 .4 .1 .1 .0 .6 .1 1.8 2.2 3.5 25. 1.3 .4 .0 .1 .0 .5 .1 1.6 1.1 3.2 '3 3 30. 1.2 .3 .0 .1 .0 .4 .1 1.5 1.0 3.0 3 35. 1.1 .3 .0 .1 .0 .4 .1 1.3 .9 2.8 3 40. 1.0 .3 .0 .0 .0 .3 .1 1.2 .8 2.6 3 45. .9 .3 .0 .0 .0 .3 .1 1.1 .7 2.4 50. .9 .2 .0 .0 ..0 .2 .1 1.0 .6 2.3 3 '3 55. .8 .2 .0 .0 .0 .2 .0 .9 .6 2.1 4 0. .7 .2 .0 .0 .0 .2 .0 .8 .5 2.0 4 5. .7 .2 .0 .0 .0 .1 .0 .7 .5 1.9 4 10. .6 .2 .0 .0 .0 .1 .0 .7 .4 1.7 15. .5 .1 .0 .0 .0 .1 .0 .6 .4 1.6 4 '4 20. .5 .1 .0 .0 .0 .1 .0 .5 .3 1.5 4 25. .5 .1 .0 .0 .0 .1 .0 .5 .3 1.4 4 30. .4 .1 .0 .0 .0 .1 .0 .4 .2 1.4 4 35. .4 .1 .0 .0 .0 .0 .0 .4 .2 1.3 40. .3 .1 .0 .0 .0 .0 .0 .4 .2 1.2 4 '4 45. .3 .1 .0 .0 .0 .0 .0 .3 .2 1.1 4 50. .3 .1 .0 .0 .0 .0 .0 .3 .1 1.1 4 55. .3 .1 .0 .0 .0 .0 .0 .2 .1 1.0 5 0. .2 .1 .0 .0 .0 .0 .0 .2 .1 .9 5. .2 .0 .0 .0 .0 .0 .0 .2 .1 .9 5 '5 10. .2 .0 .0 .0 .0 .0 .0 .2 .1 .8 5 15. .2 .0 .0 .0 .0 .0 .0 .1 .1 .8 5 20. .1 .0 .0 .0 .0 .0 .0 .1 .0 .7 5 25. .1 .0 .0 .0 .0 .0 .0 .1 .0 .7 3. .1 .0 .0 .0 .0 .0 .0 .1 .0 .6 355. .1 .0 .0 .0 .0 .0 .0 .1 .0 .6 40. .1 .0 .0 .0 .0 .0 .0 .1 .0 .6 45. .1 .0 .0 .0 .0 .0 .0 .0 .0 .5 5 50. .1 .0 .0 .0 .0 .0 .0 .0 .0 .5 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 6 '5 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .4 6 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .4 6 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .4 6 15. .0 .0 .0 .0 .0 :0 .0 .0 .0 .4 20. .0 .0 .0 0 .0 .0 .0 .0 6 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 '6 6 30. .0 .0 .0 .0 .0 -.0 .0 .0 .0 .3 6 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 6 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 6 50: .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 '6 6 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 7 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 7 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 '7 7 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 35. .0 .0 .0 .0 0 .0 .0 .0 .1' 7 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 '7 7 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 7 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 '8 8 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 '8 8 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 8 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 '55. 9 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 9 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 9 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 9 15. .0 .0 -.0 .0 .0 .0 .0 .0 - .0 .0 20. .0 .0. .0 .0 .0 .0 .0 .0 .0 .0 9 '9 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS 'HR/MIN) 90 159 189 0 5. .0 .0 .0 - 0 10. .3 .6 1.4 0 15. 2.1 4.5 9.2 0 20. 3.4 8.8 16.2 21 0 30. 30. 0.2 10.8 24.9 24.9 48.6 98.6 '0 0 35. 25.8 50.7 111.2 0 40. 27.9 42.5 113.2 , 0 45. 20.8 18.8 74.8 0 50. 17.9 - 12.6 60.2 55. 14.6 8.7 46.5 '0 1 0. 12.4 7.2 38.4 1 5. 10.7 6.3 32.6 1 10. 9.4 5.9 28.5 1 15. 8.4 5.5 25.3 20. 7.6 5.3 22.7 1 '1 25. 6.8 5.0 20.7 1 30. 6.2 4.8 18.9 1 35. 5.7 4.6 17.5 1 40. 5.3 4.4 16.2 45. 4.9 4.3 15.0 1 '1 50. 4.5 4.1 14.1 1 55. 4.2 4.0 13.2 2 0. 3.9 3.9 12.5 2 5. 3.1 2.5 9.2 2 1. 2. 1.. - 2 155. 1.9 .66 4.6 2 20. 1.6 .4 3.8 2 25. 1.4 .2 3.2 2 30. 1A .2 2.8 2 1. .1 2. 2 40. 40. 1.0 .1 2.1 2 45. .9 .1 1.9 2 50. .8 .1 1.7 2 55. .7 .0 1.5 3 0. .7 .0 1. ' 5. .6 .0 1.2 10. .5 .0 1.0 15. .5 .0 .9 3 20. .4 .0 .8 . . .0 .8 - 3 t3 30. 30 .94 .0 .7 . 3 35. .3 .0 .6 3 40. .3 .0 .5 3 45. .3 .0 .5 3 5. .3 .0 . 3 555. .2 .0 .94 4 0. .2 .0 .4 4 5. .2 .0 .3 4 10. .2 .0 .3 4 . .2 .0 .3 4 20 20. .2 .0 .2 ' 4 25. .1 .0 .2 4 30. .1 .0 .2 4 35. .1 .0 .2 4 4. .1 9 95. .1 � .0 .1 ' 4 50. .1 .0 .1 4 55. .1 .0 .1 5 0. .1 .0 .1 .1 .0 .1 5 0, .1 .0 .0 'S 5 15. -.1 .0 .0 5 25 20. . .0 .0 .0 5 25. .0 .0 .0 3. .0 .0 .0 5 355. .0 .0 .0 'S 5 40. .0 .0 -.0 5 45. .0 .0 .0 5 50. .0 .0 .0 5 55. .0 .0 .0 0. .0 .0 .0 '6 6 5. .0 .0 .0 6 10. .0 .0 .0 15. .0 .0 .0 20. .0 .0 .0 , . .0 .0 .0 ' 6 30. 30 .0 .0 .0 6 35. .0 .0 .0 6 40. .0 .0 .0 6 45. .0 .0 .0 6 '6 5. 555. .0 .0 .0 .0 .0 .0 0. .0 .0 .0 5. .0 .0 .0 10. .0 .0 .0 15. .0 .0 .0 20. .o .0 .0 25. .0 .0 .0 30. .0 .0 .0 35. .0 .0 .0 40. .0 .0 .0 45. .0 .0 .0 50. .0 .0 .0 55. .0 .0 .0 0. .0 .0 .0 5. .0 .0 .0 10. .0 .0 .0 15. .0 .0 .0 20. .0 .0 .0 25. .0 .0 .0 30. .0 .0 .0 35. .0 .0 .0 40. .0 .0 .0' 45. - .0 .0 .0 50. .0 .0 .0 55. .0 .0 .0 0. .0 .0 .0 'Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR REVISED 31, March, 2008 for Harmony Road Improvements INTERWEST CONSULTING GROU *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 1796.990 'TOTAL RAINFALL (INCHES) 3.669 ' TOTAL INFILTRATION (INCHES) .748 WATERSHED OUTFLOW (INCHES) 2.875 ,TOTAL . SURFACE STORAGE AT END OF STROM (INCHES) .046 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 ,Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN,.100-YEAR STOR REVISED 31, March, 2008 for Harmony Road Improvements INTERWEST CONSULTING GROU ' WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK CONNECTION (FT) (FT) (FT/FT) L R N (FT) 'NUMBER 10 1 0 1 CHANNEL 10.0 3400. .0110 4.0 4.0 .044 12.00 0 150 10 0 1 CHANNEL 48.0 1850. .0150 50.0 50.0 .020 5.00 0 11 10 0 - 1 CHANNEL 10.0 1900. .0130 2.5 2.5 .060 16.00 0 210 0 1 CHANNEL 10.0 1000. .0110 2.0 2.0 .060 12.01 0 152 11 0 1 CHANNEL 48.0 1850. .0200 50.0 50.0 .020 5.00 0 '12 13 12 0 2 PIPE 8.0 1000. .0110 .0 .0 .013 8.00 0 14 13 0 1 CHANNEL 10.0 200. .0159 2.0 2.0 .060 12.00 0 15 14 6 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .001 3.0 .100 103.6 .400 233.4 1.100 460.4 1.600 643.8 ' 16 15 0 1 CHANNEL 10.0 1400. .0110 4.0 4.0 .035 5.00 0 ill 16 9 2 PIPE .1 1. .0050 :0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .240 .7 .790 1.6 1.390 2.0 2.060 2.4 2.780 2.7 3.180 2.9 3.590 21.6 4.460 99.7 17 16 0 1 CHANNEL 2.0 900. .0050 4.0 4.0 .035 5.00 0 701 17 4 2 PIPE .0 1. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.060 6.1 2.780 41.3 4.020 552.0 701 0 3 .0 1. .0010 .0 .0 .001 10.00 0 '601 18 601 0 1 CHANNEL 6.0 900. .0140 3.0 4.6 .035 4.00 0 19 107 0 1 CHANNEL 5.0 900. .0110 3.0 3.0 .035 6.00 0 320 0 3 .0 1. .0010 .0 .0 .001 10.00 0 20 0 1 .CHANNEL 10.0 1200. .0050 4.0 4.0 .035 5.00 0 _ 21 10 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .280 3.5 1.550 8.9 3.960 12.0 7.650 14.0 13.060 17.5 19.950 20.0 27.460 .21.0 35.310 22.8 43.480 66.0 23 39 0 1 CHANNEL 12.0 800. .0056 4.0 4.0 .030 5.00 0 230 24 10 2 PIPE .0 50. .0050 .0 .0 .013 .00 0 ' RESERVOIR STORAGE IN ACRE-FEET VS -SPILLWAY OUTFLOW ^/ 24 25 287 87 28 387 189 29 139 30 31 ' 32 33 34 35 ' 36 37 38 39 40 41 42 43 84 45 46 ' 44 49 50 51 261 56 262 100 t 211 102 102 ' 103 ' 109 105 ' 107 ' 210 222 243 244 ' 245 200 - .000 .0 .380 3.6 1.490 30.1 7.380 212.0 8.860 251.1 9.590 269.5 222 0 1 CHANNEL 8.0 1150 222 0 1 CHANNEL 8.0 1250 23 0 1 CHANNEL 1.0 850 18 0 2 PIPE 2.0 400 287 0 1 CHANNEL 1.0 900 87 0 1 .CHANNEL 1.0 1325 387 5 2 PIPE .0 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.100 1.0 2.500 2.0 29 0 1 CHANNEL 10.0 600 189 0 1 CHANNEL 48.0 1300 30 7 2 PIPE .0 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .190 4.5 .810 7.8 5.760 87.8 30 0 1 CHANNEL 10.0 1250 17 0 1. CHANNEL 2.0 2400 139 0 3 .0 1 23 0 5 PIPE 2:8 900 OVERFLOW 70.0 900 105 0 1 CHANNEL 48.0 2600 14 0 3 .0 1 23 0 1 CHANNEL 48.0 1650 102 0 4 CHANNEL .5 1300 OVERFLOW 10.0 1300 321 0 1 CHANNEL 48.0 1500 24 0 1 CHANNEL 48.0 700 245 0 1 CHANNEL 4.0 1000 230 0 3 .0 1 375 0 1 CHANNEL 70.0 800 31 0 1 CHANNEL 48.0 500 102 0 5 PIPE 2.0 1250 ' OVERFLOW 48.0 1250 42. 11 2 PIPE .1 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .690 4.8 2.640 12.0 18.840 22.1 25.560 23.4 28.930 24.1 45 0 3 .0 1 347 0 1 - CHANNEL 2.0 1000 347 0 1 CHANNEL 2.0 1250 47 0 1 CHANNEL 4.0 1300 48 0 2 PIPE 5.0 342 50 0 1 CHANNEL 6.0 400 48 0 1 CHANNEL 48.0 1150 378 0 2 PIPE 7.1 156 378 0 1 CHANNEL 48.0 600 12 0 5 PIPE 3.5 550 OVERFLOW 35.0 550 262 6 2 PIPE .1 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 4.920 17.8 8.500 30.3 261 0 5 PIPE 3.0 3650 OVERFLOW 35.0 3650 11 12 2 PIPE .1 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 3.900 51.0 5.900 96.0 14.500 340.0 17.000 390.0 20.000 490.0 211 7 2 PIPE .1 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .700 13.2 1.400 74.9 5.900 1742.9 100 0 3 .0 1 303 9 2 PIPE .1 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .400 3.8 1.400 10.5 13.300 25.0 15.900 36.1 19.700 1910.0 302 7 2 PIPE .1 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 4.820 .0 6.290 7.2 34.090 228.0 38 10 2 PIPE .1 10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .800 6.0 2.600 10.5 13.000 17.0 15.640 18.0 19.820 45.0 319 1 5 2 PIPE .1 50 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.500 2.8 3.900 4.5 318 7 2 PIPE .1 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .110 19.0 .350 35.0 2.010 80.0 22 0 1 CHANNEL 48:0 850 101 0 3 .0 1 22 0 3 .0 1 43 0 3 .0 1 104 0 3 .0 1 103 0 3 .0 1 49 0 1 CHANNEL 20.0 1600 3.420 94.5 4.660 132.0 10.330 288.0 .0100 4.0 4.0 .035 .0050 4.0 4.0 .035 .0200 10.0 5.0 .035 .0070 .0 .0 .013 .0130 2.5 2.5 .035 .0160 2.5 2.5 .035 .0050 .0 .0 .013 4.500 3.0 8.000 56.0 .0200 10.0 10.0 .035 .0050 50.0 50.0 .020 .0050 .0 .0 .013 1.820 9.7 3.040 11.4 .0200 10.0 10.0 .035 .0110 4.0 4.0 .035 .0010 .0 .0 .001 .0130 .0 .0 .013 .0130 50.0 50.0 .020 .0070 50.0 50.0 .020 .0010 .0 .0 .001 .0060 50.0 50.0 .020 .0164 12.0 12.0 .016 .0164 20.0 20.0 .035 .0070 50.0 50.0 .020 .0149 50.0 50.0 .020 .0100 4.0 4.0 .035 .0010 .0 .0 .001 .0110 50.0 50.0 .020 .0130 50.0 50.0 .013 .0150 .0 .0 .013 .0150 50.0 50.0 .020 .0050 .0 .0 .013 5.150 16.2 8.550 18.9 30.610 46.8 32.290 213.5 .0010 .0 .0 .001 .0050 4.0 4.0 .035 .0050 4.0 4.0 .035 .0100 4.0 4.0 .035 .0102 .0 .0 .013 .0089 6.0 8.0 .035 .0050 50.0 50.0 .020 .0310 .0 .0 .013 .0080 50.0 50.0 .020 .0030 .0 .0 .013 .0030 2.0 50.0 .020 .1000 .0 .0 .100 16.000 81.3 19.750 134.3 .0025 .0 .0 .013 .0025 2.0 50.0 .020 .0010 .0 .0 .013 7.600 140.0 11.000 260.0 22.600 740.0 25.000 1070.0 .0010 .0 .0 .013 2.100 141.1 2.800 288.9 .0010 .0 .0 .001 .1000 .0 .0 .024 4.400 16.0 7.700 20.0 .1000 .0 .0 .024 12.020 10.2 18.950. 13.2 .1000 1 .0 .0 .100 5.240 13.5 8.840 16.0 24.070 76.4 .0100 .0 .0 .013 6.700 6.1 9.900 196.9 .1000 .0 .0 .020 .680 50.0 1.060 62.0 .0100 50.0 50.0 .020 .0010 .0 .0 .001 .0010 .0 .0 .001 .0010 .0 .0 .001 .0010 .0 .0 .001 .0010 .0 .0 .001 .005020.0 20.0 .060 5.910 171.7 5.00 5.00 5.00 2.00 5.00 5.00 .00 5.00 5.00 .00 4.400 12.8 5.00 5.00 10.00 2.75 5.00 5.00 10.00 5.00 .50 10.00 5.00 5.00 5.00 10.00 5.00 5.00 2.00 5.00 .10 13.140 20.8 10.00 5.00 5.00 5.00 5.00 5.00 5.00 7.10 5.00 3.50 5.00 .10 21.630 231.3 3.00 5.00 .10 12.700 300.0 27.500 1626.0 .10 4.300 831.5 10.00 .10 11.100 24.0 .10 26.320 15.8 .10 11.000 16.5 .10 .10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.500 72.0 5.00 0 10.00 0 10.00 0 10.00 0 10.00 0 10.00 0 5.00 0 i--- 3---,9 202 208 0 1 CHANNEL 2.0 1000. .0100 4.0 4.0 .035 2.00 0 201 200 0 1 CHANNEL - 2.0 1900. .0050 4.0 4.0 .035 5.00 0 203 207 0 1 CHANNEL 48.0 500. .0180 50.0 50.0 .020 5.00 .0 204 208 0 1 CHANNEL 2.0 600. .0050 4.0 4.0 .035 3.00 0 's 204 6 2 PIPE .0 100. .0800 .0 .0 .024 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .330 .0 .680 2.9 1.060 7.7 1.470 10.0 1.910 100.0 206 205 0 1 CHANNEL 48.0 850. .0200 50.0 50.0 .020 5.00 0 207 202 4 2 PIPE .0 50. .0100 .0 .0 .024 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .940 .0 1.310 4.0 1.700 100.0 - 201 200 0 3 .0 1. .0010 .0 .0 .001 10.00 0 221 20 0 1 CHANNEL 2.0 1300. .0100 4.0 4.0 .035 5.00 0 347 247 0 3 .0 1. .0010 .0 .0 .001 10.00 0 831 347 9 2 PIPE .0 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY,OUTFLOW .000 .0 .030 3.2 .220 10.4 .400 18.6 .650 24.5 .900 28.7 1.220 31.2 1.540 33.7 1.790 41.6 ' 247 366 14 2 PIPE .0 193. .0026 .0 .0 .013 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2:030 • .6 3.780 8.0 6.670 .17.9 10.120 25.7 14.060 28.2 18.320 29.9 22.840 31.6 27.610 33.3 32.630 35.0 37.920 37.0 43.510 40.0 46.540 41.5 49.570 211.2 ' 254 107 0 4 CHANNEL .5 1250. .0040 12.0 12.0 .016 .50 0 OVERFLOW 10.0 1250. .0040 20.0 20.0 .020 10.00 122 270 6 2 PIPE .1 1. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 1.060 2.7 1.770 4.6 3.010 15.4 3.630 68.4 3.940 165.4 '.000 270 272 0 1 CHANNEL 12.0 1100. .0010 1.5 1.5 .045 6.00 0 271 291 3 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS .000 155.0 .500 155.0 15.000 155.0 - 57 272 6 2 PIPE .1 1. .1000 .0 .0 .100 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .760 1.9 1.270 3.3 2.160 11.0 2.610 64.0 2.840 161.0 272 12 0 2 PIPE 8.6 900. .0010 .0 .0 .013 8.59 0 378 278 0 3 .0 1. .0010 .0 .0 .001 10.00 0 278 347 14 2 PIPE .0 360. .0083 .0 .0, .013 .00 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 1.200 - 36.1 2.780 45.2 4.520 53.4 6.410 61.6 8.460 68.5 10.690 75.3 13.130 81.1 15.790 86.8 18.710 90.9 21.980 95.0 25.560 99.1 29.370 103.2 31.380 200.7 979 46 6 2. PIPE .1 50. .0050 .0 .0 .013 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .160 4.0 .710 13.0 1.670 20.0 2.630 73.0 3.590 170.0 280 279 0 1 CHANNEL 2.0 1200. .0100 4.0 4.0 .035 5.00 0 120 291 6 2 PIPE .1 1. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 2.250 5.6 3.750 9.8 6.380 32.6 7.700 85.6 8.360 182.6 291 571 0 1 CHANNEL 12.0 1800. .0010 1.5 1.5 .045 6.00 0 571 290 3 3 .0 1. .0010 .0 .0 .001 10.00 500 DIVERSION TO GUTTER NUMBER 500 - TOTAL Q VS DIVERTED Q IN CFS - .000 .0 155.000 .0 300.000 145.0 121 290 6 2 PIPE .1 1. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 3.630 9.1 6.050 15.7 10.290 52.6 12.410 105.6 13.470 202.6 290 270 0 1 CHANNEL 12.0 1450. .0010 1.5 1.5 .045 6.00 0 300 301 8 3 .0 1. .0010 .0 .0 .001 10.00 -1 ' TIME IN HRS VS INFLOW IN CFS .000 80.0 .600 80.0 .770 80.0 1.000 90.0 2.600 80.0 3.350 80.0 5.600 80.0 7.930 80.0 301 302 0 1 CHANNEL 12.0 2100. .0007 1.0 1.0 .045 5.00 0 303 0 1 CHANNEL 12.0 1700. .0007 1.0 1.0 .045 7.00 0 303 33 0 1 CHANNEL 12.0 1400. .0007 3:0 3.0 .045 7.00 0 '302 318 319 0 1 CHANNEL 3.0 1550. .0110 3.0 3.0 .035 6.00 0 319 16 0 3 .0 1. .0010 .0 .0 .001 10.00 0 320 19 7 2 PIPE .1 10. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .000 .0 .180 16.0 .650 30.0 1.400 45.0 2.390 54.0 3.750 62.0 5.100 208.0 321 - 35 13 2 PIPE .1 10. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .060 5.0 .120 10.0 .270 13.0 .410 22.0 590 33.0 .760 45.0 .970 55.0 1.170 70.0 1.410 B2.5 1.640 97.6 1.870 150.6 ' 2.100 247.6 362 375 0 1 CHANNEL 48.0 850. .0080 50.0 50.0 .020 5.00 0 412 422 9 2 PIPE .1 50. .0100 .0 .0 .150 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .010 .1 .170 .3 .510 .4 .920 .6 1.380 .7 ' . 1.890 .8 2.460 .8 2.750 27.4 422 432 0 3 .0 1. .0010 .0 .0 .001 10.00 0 370 0 1 CHANNEL 48.0 860. .0080 50.0 50.0 .020 5.00 0 367 8 2 PIPE .1 50, .0100 .0 .0 .150 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .000 .0 .030 .6 .140 .8 .250 1.0 .410 1.3 .570 1.5 .760 1.7 .950 1.8 364 399 0 1 CHANNEL 2.0 1000. .0080 50.0 50.0 .035 5.00 0 365 369 0 1 CHANNEL 48.0 1350. .0070 50.0 50.0 .020 5.00 0 366 371 0 1 CHANNEL 4.0 2050. .0050 4.0 4.0 .035 5.00 0 367 244 0 1 CHANNEL 5.0 1900. .0100 10.0 10.0 .035 3.00 0 368 372 0 1 CHANNEL 70.0 1050. .0110 50.0 50.0 .020 5.00 0 369 244 0 1 CHANNEL 5.0 700. .0050 4.0 4.0 .035 5.00 0 ' 370 244 0 5 PIPE 2.5 700. .0070 .0 .0 .013 2.50 0 OVERFLOW 48.0 700. .0070 50.0 50.0 .020 5.00 243 0 1 CHANNEL 17.0 700. .0050 3.0 3.0 .035 5.00 0 40 0 1 CHANNEL 70.0 1350. .0110 50.0 50.0 .020 5.00 0 243 0 5 PIPE 2.5 2050. .0100 .0 .0 .013 2.50 0 OVERFLOW 48.0 2050. .0100 50.0 50.0 .020 5.00 375 245 0 5 PIPE 3.0 1700. .0020 .0 .0 .013 3.00 0 OVERFLOW 48.0 1700. .0020 56.0 50.0 .020 5.00 399 370 0 3 .0 1. .0010 .0 .0 .001 10.00 0 900 901 0 3 .0 1. .0010 .0 .0 .001 10.00 0 ' 901 903 8 2 PIPE .1 10. .1000 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .000 .0 .050 .0 .450 .0 1.350 .0 2.690 .0 4.260 .0 5.650 .0 5.660 100.0 'TOTAL NUMBER OF GUTTERS/PIPES, 127 Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR ,REVISED 31, March, 2008 for Harmony Road Improvements INTERWEST CONSULTING GROU ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) ' 10 150 11 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0 0 1778.8 11 152 100 0 0 0 0 0 0 0 0 52 0 0 0 0 0 0 0 0 0 1633.5 12 13 261 272 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 1493.2 13 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1258.7 14 15 33 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0 1258.7 ' 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 511.2 16 ill 17 319 0 0 0 0 0 0 0 59 0 0 0 0 0 0 0 0 0 511.2 17 701 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157.5 18 27 0 0 0 0 0 0 0 0 0 71 0 0 0 0 0 0 0 0 0 9.3 19 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 236.9 20 21 221 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 236.9 21 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198.3 22 185 222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198.3 23 26 31 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69.6 24 230 37 0 0 0 0 0 0 0 0 175 0 0 0 0 0 0- 0 0 0 129.6 ' 25 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 51.5 26 0 0 0 0 0 0 0 0 0 0 186 0 0 0 0 0 0 0 0 0 13.8 27 0 0 0 0 0 0 0 0 0 0 74 0 0 0 0 0 0- 0 0 0 4.0 28 0 0 0 0 0 0 0 0 0 0 88 0 0 0 0 0 0 0 0 0 8.0 29 28 0 0 0 0 0 0 0 0 0 73 "0 0 0 0 0 0 0- 0 0 28.0 30 189 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95.4 31 41 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 25.2 32 0 0 0 0 0 0 0 0 0 0 68 0 0 0 0 0 0 0 0 0 54.3 33 303 0 0 0 0 0 0 0 0 0 159 0 0 0 0 0 0 0 0 0 728.9 34 0 0 0 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 30.6 ' 35 321 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 97.0 36 0 0 0 0 0 0 0 0 0 0 67 0 0 0 0 0 0 0 0 0 39.4 37 0 0 0 0 0 0 0 0 0 0 176 0 0 0 0 0 0 0 0 0 13.8 38 104 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 166.4 39 23 0 0 0 0 0 0 0 0 0 79 0 0 0 0 0 0 0 0 0 105.7 40 372 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 11.5 41 0 0 0 0 0 0 0 0 0 0 89 0 0 0 0 0 0 0 0 0 5.9 42 43 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 420.5 43 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 400.9 44 0 0 0 0 0 0 0 0 0 0 77 0 0 0 0 0 0 0 0 0 16.3 45 84 0 0 0 0 0 0 0 0 0 0 0 0 '0 0 0 0 0 0 0 24.6 46 279 0 0 0 0 0 0 0 0 0 177 0 0 0 0 0 0 0 0 0 39.8 47 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16.3 48 47 49 0 0 0 0 0 0 0 0 178 0 0 0 0 0 0 0 0 0 187.7 49 200 0 0 0 0 0 0 0 0 0 78 0 0 0 0 0 0 0 0 0 155.9 ' 50 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 187.7 51 0 0 0. 0 0 0 0 0 0 0 180 0 0 0 0 0 0 0 0 0 26.3 56 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 93.3 57 0 0 0 0 0 0 0 0 0 0 57 0 0 0 0 0 0 0 0 0 12.7 84 0 0 0 0 0 0 0 0 0 0 84 0 0 0 0 0 0 0 0 0 24.6 87 287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42.3 100 211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1548.2 101 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1513.2 102 35 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 517.5 103 245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205.1 104 244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119.0 105 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54.3 107 19 254 0 0 0 0 0 0 0 0 ` 0 0 0 0 0 0 0 0 0 0 252.0 ill 0 0 0 0 0 0 0 0 0 0 58 0 0 0 0 0 0 0 0 0 29.3 120 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 37.5 121 0 0 0 0 0 0 0 0 0 0 121 0 0 0 0 0 0 0 0 0 60.5 122 0 0 0 0 0 0 0 0 0 0 122 0 0 0 0 0 0 0 0 0 17.7 139 30 0 0 0 0 0 0 0 0 0 801 0 0 0 0 0 0 0 0 0 104.1 150 0 0 0 0 0 0 0 0 0 0 151 0 0 0 0 0 0 0 0 0 58.2 112 0 0 0 0 0 0 0 0 0 0 153 0 0 0 . 0 0 0 0 0 0 46.9 185 0 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.2 67.4 189 387 0 0 0 0 0 0 0 0 0 �_, 3 �2- 200 201 208 0 0 0 0 0 201 0 0 0 0 0 0 0 202 207 0 0 0 0 0 0 ' 203 0 0 0 0 0 0 0 204 205 0 0 0 0 0 0 205 206 0 0 0 0 0 0 206 0 0 0 0 0 0 .0 207 203 0 0 0 0 0 0 ' 208 202 204 0 0 0 0 0 210 12 0 0 0 0 0 0 211 101 0 0 0 0 0 0 221 0 0 0 0 0 0 0 222 29 25 0 0 0 0 0 ' 230 39 0 0 0 0 0 0 243 371 373 0 0 0 0 0 244 367 369 370 0 0 0 0 245 38 375 0 0 0 0 0 297 347 0 0 0 0 0 0" ' 254 0 0 0 0 0 0 0 261 262 0 0 0 0 0 0 262 56 0 0 0 0 0 0 270 122 290 0 0 0 0 0 271 0 0 0 0 0 0 0 272 t 270 57 0 0 0 0 0 278 378 0 0 0 0 0 0 279 280 0 0 0 0 0 0 280 0 0 0 0 0 0 0 287 288 0 0 0 0 0 0 ' 288 0 0 0 0 0 0 0 290 571 121 0 0 0 0 0 291 271 120 0 0 0 0 0 300 0 0 0 0 0 0 0 301 300 0 0. 0 0 0 0 ' 302 103 301 0 0 0 0 0 303 102 302 0 0 0 0 0 318 107 0 0 0 0 0 0 319 105 318 0 0 0 0 0 320 20 0 0 0 0 0 0 ' 321 36 0 0 0 0 0 0 347 45 46 831 278 0 0 0 362 0 0 0 00 0 0 364 0 0 0 0 0 0 0 365 0 0 0 0 0 0 0 ' 366 247 0 0 0 0 0 0 367 379 0 0 0 0 0 0 368 0 0 0 0 0 0 0 369 365 0 0 0 0 0 0 370 432 399 0 0 0 0 0 371 366 0 0 0 0 0 0 372 368 0 0 0 0 0 0 373 0 0 0 0 0 0 0 375 40 362 0 0 0 0 0 378 50 51 0 0 0 0 0 ' 379 0 0 0 0 0 0 0 387 87 0 0 0 0 0 0 399 364 0 0 0 0 0 0 412 0 0 0 0 0 0 0 422 42 0 0 0 0 0 0 432 922 0 0 0 0 0 0 ' 571 291 0 0 0 0 0 0 601 18 0 0 0 0 0 0 701 601 0 0 0 0 0 0 131 0 0 0 0 0 0 0 900 0 0 0 0 0 0 0 901 900 0 0 0 0 0 0 THE FOLLOWING CONVEYANCE ELEMENTS WERE SURCHARGED DURING THE SIMULATION. THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 27 THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC DURING THE SIMULATION. 'OSCILLLATIONS 13 14 15 102 104 701 0 0 0 0 0 0 0 0 0 0 0 0 0 90.1 0 0 0 82 0 0 0 0. 0 0 0 0 0 33.3 0 0 0 0 0 0 0 0 0 0 0 0 0 16.4 0 0 0 181 0 0 0 0 0 0 0 0 0 16.4 0 0 0 81 0 0 0 0 0 0 0 0 0 40.4 0 0 0 0 0 0 0 0 0 0 0 0 0 15.9 0 0 0 182 0 0 0 0 0 0 0 0 0 15.9 0 0 0 0 0 0 0 0 0 0 0 0 0 16.4 0 0 0 0 0 0 0 0 0 0 0 0 0 56.8 0 0 0 65 0 0 0 0 0 0 0 0 0 1513.2 0 0 0 53 0 0 0 0 0 0 0 0 0 1548.2 0 0 0 76 0 0 0 0 0 0 0 0 0 38.6 0- 0 0 0 0 0 0 0 0 0 0 0 0 161.1 0 0 0 0 0 0 0 0 0 0 0 0 0 105.7 0 0 0 0 0 0 0 0 0 0 0 0 0 400.9 0 0 0 0 0 0 0 0 0 0 0 0 0 119.0 0 0 0 0 0 0 0 0 0 0 0 0 0 205.1 0 0 0 0 0 0 0 0 0 0 0 0 0 313.3 0 0 0 70 0 0 0 0 0 0 0 0 0 15.1 0 0 0 55 0 0 0 0 - 0 0 0 0 0 106.1 0 0 0 0 0 0 0 0 0 0 0 0 0 93.3 0 0 0 0 0 0 0 0 0 0 0 0 0 115.7 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 128.4 0 0 0 0 0 0 0 0 0 0 0 0 0 214.0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.4 0 0 0 179 0 0 0 0 0 0 0 0 0 23.4 0 0 0 87 0 0 0 0 0 0 0 0 0 42.3 0 0 0 90 0 0 0 0 0 0 0 0 0 7.8 0 0 0 0 0 0 0 0 0 0 0 0 0 98.0 0 0 0 0 0 0 0 0 0 0 0 0 0 37.5 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 205.1 0 0 0 0 0 0 0 0 0 0 0 0 0 722.6 0 0 0 69 0 0 0 0 0 0 0 0 0 260.9 0 0 0 0 0 0 0 0 0 0 0 0 0 315.2 0 0 0 0 0 0 0 0 0 0 0 0 0 236.9 0 0 0 0 0 0 0 0 0 0 0 0 0 39.4 0 0 0 83 0 0 0 0 0 0 0 0 0 313.3 0 0 0 162 0 0 0 0 0 0 0 0 0 27.2 0 0 0 164 0 0 0 0 0 0. 0 0 0 23.5 0 0 0 165 0 0 0 0 0 0 0 0 0 29.4 0 0 0 166 0 0 0 0 0 0 0 0 0 341.1 0 0 0 401 167 0 0 0 0 0 0 0 0 22.5 0 0 0 168 169 0 0 0 0 0 0 0 0 7.3 0 0 0 0 0 0 0 0 0 0 0 0 0 29.4 0 0 0 170 0 0 0 0 0 0 0 0 0 67.1 0 0 0 171 0 0 0 0 0 0 0 0 0 364.5 0 0 0 172 0 0 0 0 0 0 0 0 0 11.5 0 0 0 173 0 0 0 0 0 0 0 0 0 36.4 0 0 0 0 0 0 0 0 0 0 0 0 0 38.7 0 0 0 0 0 0 0 0 0 0 0 0 0 214.0 0 0 0 163 0 0 0 0 0 0 0 0 0 4.3 0 0 0 189 0 0 0 0 0 0 0 0 0 67.4 0 0 0 0 0 0 0 0 0 0 0 0 0 23.5 0 0 0 402 0 0 0 0 0 0 0 0 0 9.4 0 0 0 0 0 0 0 0 0- 0 0 0 0 9.4 0 0 0 403 0 0 0 0 0 0 0 0 0 10.2 0 0 0 0 0 0 0 0 0 0 0 0 0 37.5 0 0 0 72 0 0 0 0 0 0 0 0 0 53.4 0 0 0 0 0 0 0 0 0 0 0 0 0 53.4 0 0 0 831 0 0 0 0 0 0 0 0 0 5.5 0 0 0 63 0 0 0 0 0 0 0 0 0 18.2 0 0 0 0 0 0 0 0 0 0 0 0 0 19.2 Manhattan Pond Final Design (176cfs Tailwater) - MAIL CREEK BASIN, 100-YEAR STOR ' REVISED 31, March, 2008 for Harmony Road Improvements INTERWEST CONSULTING GROU PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** 'NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 1:3 1009.5 (DIRECT FLOW) 1 40. ' 10:1 1009.5 4.8 1 40. L- 3 3 11:1 913.1 5.8 1 40. 12:1 833.1 6.1 1 30. 13:2 542.9 4.3 0 55. 14:1 534.6 4.5 0 50. 15:2 459.2 .1 1.1:D 0 50. 16:1 479.9 3.1 0 45. 17:1 360.3 4.0 0 45. 18:1 51.9 1.2 0 40. 19:1 63.6 1.5 1 15. 20:3 188.1 (DIRECT FLOW) 0 40. 21:1 44.5 1.1 2 40. 22:2 44.7 .1 39.4:D 2 35. 23:1 351.5 2.8 0 40. 24:1 285.6 2.6 0 50. 25:1 242.5 2.9 0 40. 2 6 : 1 78.5 1.4 0 35. 27:2 20.4 2.0 .O:S 0 40. 28:1 27.0 .5 0 40. 29:1 123.9 1.2 0 40. 30:3 132.2 (DIRECT FLOW) 0 40. 31:5 146.7 3.0 0 40. 32:1 158.5 .6 0 40. 33:3 220.7 (DIRECT FLOW) 1 35. 34:1 140.4 .6 0 40. 35:4 314.1 1.5 0 40. 36:1 160.9 .6 0 40. 37:1 98.8 .4 0 35. 38:1 233.1 2.7 - 0 40. 39:3 522.8 (DIRECT FLOW) 0 40. 40:1 59.0 .3 0 45. 41:1 50.8 .2 0 35. 42:5 81.7 2.3 0 40. 43:2 38.2 .1 30.0:D 9 55. 44:1. 63.2 1.5 0 40. 45:1 99.3 2.4 0 40. 46:1 88.9 2.3 0 50. 47:2 57.5 1.6 0 40. 48:1 446.9 3.0 0 45. 49:1 329.6 .9 0 50. 50:2 433.3 3.0 0 50. 51:1 125.8 .5 - 0 35. 56:2 93.7 .1 16.9:D 1 10. 57:2 191.1 .1 2.2:D 0 55. 94:3 102.6 (DIRECT FLOW) 0 40, 37:2 24.6 .0 5.9:D 2 0. 100:2 860.6 .1 23.5:D 1 40. 101:2 844.6 .1 4.3:D 1 35. 102:2 206.3 .1 16.2:D 1 15. 103:2 16.6 .1 26.3:D 8 15. 104:2 43.9 .1 19.7:D 2 10. 105:2 50.9 .1 7.5:D 1 30. 107:2 77.8 .1 1.9:D 1 15. 111:2 33.5 .1 3.7:D 1 10. 120:2 45.2 .1 6.7:D 1 0. 121:2 67.2 .1 10.9:D 1 5. 122:2 25.1 .1 3.1:D 0 55. 139:1 124.2 2.2 0 45. 150:1 225.7 .6 0 40. 152:1 195.0 .5 0 40. 185:1 77.6 .4 0 40. 189:2 33.0 .0 4.8:D 2 10. 200:1 193.1 1.8 0 55. 201:1 151.9 2.9 0 40. 202:1 42:5 1.5 0 55. 203:1 79.4 .3 0 40. 204:1 99.8 2.4 0 40. 205:2 40.2 .0 1.6:D 0 50. 206:1 78.4 .3_ 0 40. 207:2 48.6 .0 1.5:D 0 45. 208:3 125.4 (DIRECT FLOW) 0 55. 210:3 845.0 (DIRECT FLOW) 1 30. 211:3 881.3 (DIRECT FLOW) 1 0. 221:1 179.2 2.7 0 40. 222:3 523.8 (DIRECT FLOW) 0 40. 230:2 242.0 .0 8.5:D 0 55. 243:3 330.1 (DIRECT FLOW) 0 40. 244:3 435.3 (DIRECT FLOW) 0 40. 245:3 304.1 (DIRECT FLOW) 0 40. 247:2 57.5 .0 46.8:D 6 15. 254:4 85.7 1.1 0 40. 261:5 105.8 4.0 0 40. `62:5 84.6 3.5 1 50. !0:1 237.7 5.2 1 20. ,71:3 155.0 (DIRECT FLOW) 0 S. 272:2 250.0 5.4 1 20. 278:2 101.0 .0 27.3:0 2 10. 279:2 54.9 .1 2.3:D 0 50. 280:1 128.0 2.3 0 40. 287:1 128.6 2.6 0 40. 288:1 27.6 1.5 0 40. 290:1 220.0 5.0 1 15. 196.6 4.7 1 15.. '291:1 300:3 80.0 (DIRECT FLOW) 0 5. 301:1 80.0 3.3 3 25. 102:1 96.6 3.7 8 30. '3:1 216.1 4.7 1 35. 1:1 . 0 0. 319:3 13434.3 (DI (DIRECT FLOW) 1 30. ' 320:2 63.7 .1 3.8:D 1 10. 321:2 119.6 .1 1.7:D 0 56. 347:3 409.6 (DIRECT FLOW) 0 40. 120.7 .5 0 40. 364:1 120.0 "1.0 0 40. '362:1 365:1 126.5 .5 0 40. 366:1 123.8 2.4 _ 0 40. 367:1 72.7 1.2 0 40. 368:1 48.7 .2 0 40. 369:1 114.6 2.2 0 45. ' 370:5 250.0 3.2 0 40. 371:1 223.0 2.2 0 40. 372:1 64.8 .3 0 40. 373:5 107.1 2.8 0 40. 110.3 3.6 0 50. '375:5 378:3 496.6 (DIRECT FLOW) 0 50. 379:2 1.8 .1 .9:D 2 0. �- 387:1 97.8 .5 0 40. - 399:3 120.0 (DIRECT FLOW) 0 40. 1.6 .1 �2.5:D 2 5. '412:2 422:3 1.6 (DIRECT FLOW) 2 5. 432:1 4.7 .1 0 40. 571:3 196.6 (DIRECT FLOW) 1 15. 601:3 318.2 (DIRECT FLOW) O 35. 325.9 .0 3.5:D 0 40. '701:2 831:2 17.5 .0 .4:D 0 45. 900:3 138.1 (DIRECT FLOW) 0 35. 901:2 .0 .1 5.3:D 8 40. 903:3 .0 (DIRECT FLOW) 0 S. IENDPROGRAM PROGRAM CALLED IProject With: 4-- L F _F_ r 4A I... �. �_I -+ - -1 _4_ F-1 -71 Ll I -7 ZJ: U IP Le I l',,r ic k4 IT T L C L I __j� . _- - --i -j TIF Q11 II 1 1 1 1 I T I 1 1218 W. ASH, STE C - WINDSOR, COLORADO 80550 TEL,970.674.3300 - fAX.970.674.3303 Project Name: Fil A 4 i v I 01\1 Client: Su No.: With: 1218 W. ASH, STE C • WINDSOR, COLORADO 80550 7EL.970.67A.3300 • FAx.970.674.3303 From: Bob Almirall FW Harmony Road Improvements.txt ' sent: Monday, August 07, 2006 4:33 PM To: Jon Lofton Subject: FW: Harmony Road Improvements ' -----Original Messa a----- From: Sue Paquette ?mailto:spaquette@fcgov.com] Sent: Friday, July 28, 2006 8:04 AM To: Dean Klingner; Bob Almirall Cc: Glen Schlueter Subject: Harmony Road Improvements Bob and Dean, here are the hydrology model and design report from the Manhattan pond project. The model is the most current SWMM for the Mail creek Basin. The subbasin and schematic maps are also attached. The following is the rating curve for,pondA5f- the pond at the sw corner of the intersection of Harmony and BNRR: (elev, ac-ft, cfs) 5031, 0, 0 5032, 0.001, 3 5033, 0.1, 103.6 5034, 0.4, 233.4 5035, 1.07, 460.4 5035.6, 1.6, 643.8 s O1 0`=year WSEL; 503.4� 9 @ 3 11 ac'WfztvandLd scharge_fiof 445w1In f-s H53•,L � t s You can see there is not a lot of storage, but it does serve a purpose. Please let me know if you need anything else. Sue Paquette .1 o% ". 3 Stormwater Engineer City of Fort Collins, utilities �Z ' ? �z (970) 221-6700 spaquette@fcgov.com f X1 X, �( -y z ,. Page 1 0<-f4 U Z 0 Q= Z� 0 Z 0 LL 0 N N \\\ w w _> Ln w LJ N LEGEND 5_I w,a9..m1u.m6R1 4. 5 6.am➢v,ava..s.2.mnw6bermww N Prows`UMRwR¢01012gv1z JC �pWW4[sa9xM a ctssivvlf Vi/ PMq..ma1NCTOxtiovEMxO1IOx Q➢6vwwxR 0 0� DRAINAGE SUMMARY TABLE m6p. Pob9 TW yyb AN, I CO) clm] Cil" WIA nbl bnN mb bnap YI a91b1 N] a16XM I+ 41mRN INI aMYMR mmm 2e pBYuu IM OM IW 99 09 B) 156 •O20Ivb6'Eb+W Tm6blM BiW ] OM ob OM 1m )J 72 p0 IB Ss tip V4W]4m1 am am tm BB as xs o113 s s P» oa Pw m s➢ 50 so to v sp p g6lvbdl WS p B IM Im Ipl 1y 0® OM Pfi ON Olt Om 091 Im 1m 1m p1 109 09 10,9 14 pp 105 108 }� }B p5 IJ 5B ps 53 }B + 15.3 106 102 fOtp RYM pONWN}fBLLVWONbbimLRaq 1nTy RMlbM O &3-SOiNdYmpml RfN e p OB] am Im BB 0.057 On ON on 100 SO 0 50 Op 19 no 10 IbtlWr�9N 10 Om am ON 1m +3 p5 21 }8 we IOryyR0 12 12 11> I.b 113 ON 1 OUR Om 0.N Om OR Om ON Too 100 W IW 71 BB R t2p )2 126 ]9 lie Ip 30 21 9.0 p0 l.5 Bd 10.0 178 90 IOU &. NYxWOMrlm leRv Mb]MtM lbtl n1g6ry N'MbRwM'RN M.Iu'&. MmanorI MICTyPRSM is m ]a oe aps I" 1pe x1 +a 189 ar1]9.RUN n s xm On 1m u) m 5p 1u 6.F' RW a ises Pm Pm 00 to 00 OLD e9.5 m 19 NI,I 1n 90 am am 0m ON am ON 120 1 00 120 110 102 Iai 14xp 14 57 lO 9. ITPR9Ww1b d1Y man P01 IN so 50 50 Ps OR Clwal 21 T ON ON OUR IN5e 1B 51 16 64 a wwm 22 22 IOUON ON 11A 106 IT }9 02 6. BtlmN ON Cia1 sM ON Om am ROB 106 92 }p 64 R♦ a¢NW m f62 11+ 06 065 ON Ine 109 ee II 1e u VMWIPMs1 pJ :] 407 04 04 am 11+ 102 sB Ile 116 N+ N 6.5 Bm 0.6 OIS Om 67 ] ]] R6 916 NW I5 (yy 04 ON 126 110 29 BI OYb1 Od w smy lb+ MF ON x1l 5m 06 Bm os 0.M a20 0]2 Pm am an 24 1.0 Qp 1I ➢ ION 10 11 v 1➢ u v RN Rw NM Ib Obm Ym6 Fl60Y1b1b4b+1'asbm rrb oMO CITY OF FORT COLLINS9 COLORADO �City of rf� ! Whns ENGINEERING DIVISION _ 100 W O 100 2W SCALE, I"- I W' MUST CON INTRR !Rr S U I T IN 0 OR 0 UP (VEST HARMONY ROAD IMPROVEMENTS g MAJOR DRAINAGE BASINS / ///// DO BASIN H SEE SHEET 1 FOR CONTINUATION �u= •. v le I a a f�'--j WWII � SEE SHEET 3 FOR CONTINUATION City OF E9GNEBY CITY OF FORT COLLINS, COLORADO Fort Collins DES ENGINEERING DMSION ���� 10-1nr ..e Fg T�_�4�� 1 LEGEND a. s mmmmmmmm DRUPROGE SUGAR NU EGER DESOMMOONT ® 0 i o� o IW SO O IW 2W SCALE: 1 1 W' WEST HARMONY ROAD IMPROVEMENTS 2 3 MAJOR DRAINAGE BASINS CITY OF FORT COLLINS, COLORADO cftyof rt Fort Collins ENGINEERING DIVISION �i I w w w w u) 100 50 0 100 20C WENT CON INTIRR Ir 6 UP IT ING ORO UP WEST HARMONY ROAD IMPROVEMENTS MAJOR DRAINAGE BASINS OF 3