Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 05/18/2010
O T Y OF Cry of Ft. Colli ��u P ,ti6 MT COE LDW Date � By Date_. FINAL DESIGN DRAINAGE STATEMENT FOR COLLEGE AVENUE/WILLOX LANE IMPROVEMENTS PROJECT Prepared for: CITY OF FORT COLLINS 281 North College Avenue Fort Collins, Colorado Prepared by: Interwest Consulting Group 1218 West Ash Street, Unit C Windsor, Colorado 80550 (970) 674-3300 May 13, 2010 Job Numbs 1090-012-01 INTERWEST.rA CONSULTING GROUP 11 v ' INTERWEST C O N S U L T I N G G R O U P May 13, 2010 ' Mr. Wes Lamarque, City of Fort Collins Stormwater 700 Wood Street ' Fort Collins, CO 80522-0580 RE: Final Design Drainage Statement for College Avenue/Willox Lane Improvements ' Project Dear Wes, ' Please accept this letter as the Final Drainage Design Statement for the above project. Attached are all of the drainage calculations for the project. Attached to this letter are three appendices: ' a Appendix A: Vicinity Map and Overall Drainage Plan a Appendix B: Hydrologic Computations ' e Appendix C: Hydraulic Computations ' The project will improve the intersection of Willox Lane and College Avenue and the adjacent properties. ' Improvements to College Avenue include installing detached sidewalks, modifying the CDOT Access Control Plan to provide continued access to properties on the west side of College, significant frontage and cross access improvements to these properties and median work. ' Improvements to Willox include a roundabout at the access to the adjacent properties. The project is in the Dry Creek Master Drainage Basin and has an ultimate discharge to the Dry ' Creek which is a tributary of the Cache la Poudre River. Please refer to Appendix A for the Vicinity Map. ' 1218 WEST ASH, SUITE C WINDSOR, COLORADO 80550 TEL 970.674.3300 • FAX. 970,674.3303 I Existing Conditions: The frontages of the adjacent properties on the west side of College Avenue north of Willox and the north and south sides of Willox, west of the intersection, all drain to an existing storm system that conveys flows south where the system eventually daylights to an existing drainage swale and culvert system. The eastern half of College Avenue north of Willox sheet flows to the property to the east of College Avenue that is currently being developed as the North College Marketplace. The north half of Willox east of College flows east along the curb and gutter to a 5' type R inlet located at the intersection of Willox and Blue Spruce Drive. The south half of Willox east of College, flows east along the curb and gutter to Blue Spruce Drive where it then flows south. The east and west sides of College Avenue south of Willox flow south along the existing curb and gutter. On the west side, inlets, culverts and a roadside swale convey water south. On the east side, water is collected by a curb cut and conveyed east. Proposed Conditions: The project has been divided into six (6) basins for design. Please refer to Appendix A for the drainage plan and Appendix B for hydrologic analysis of proposed conditions. Basin A (3.20 acres) —includes the west half of College on the north side of the intersection and also includes land from the properties west of College. This basin is further split into 9 sub - basins: A-1 through A-9. Sub -basin A-1 consists of land from the Lamplighter Lodge and Legends Holdings properties. Water from this basin flows to the single, Type 13 combination sump inlet at design point Al located on the Lamplighter property. Sub -basin A-2 consists of a portion of Legends Holdings land and the west side of College. Water drains south along the curb and gutter of College to an on -grade 5' Type R inlet at design point A2. Cary -over from this inlet travels south along the curb and gutter to the inlet at design point A-4. Sub -basin A-3 consists of a portion of the Lamplighter (south) and Mini Mart (north) properties. Water from this basin flows to the single, Type 13 combination sump inlet at design point A3 located on the drive aisle of the Lamplight property. Sub -basin A-4 is a small portion of the western half of College adjacent to the Lamplighter property. Water drains south along the curb and gutter of College to an on -grade 5' Type R inlet at design point A4. Carry-over from this inlet travels south along the curb and gutter to the inlet at design point A-5. Sub -basin A-5 consists of the western half of College adjacent to the Mini Mart property. Water drains south along the curb and gutter of College to an on -grade 5' Type R inlet at design point A5. This inlet will still accept flows from the 8" PVC with 4-1/2" orifice plate system from the Mini Mart. The release rate of this system was determined to be 0.57 cfs during the major storm per the Revised Drainage Report for Mini -Mart P. U.D. report. Carry-over from this inlet travels south and then west along the curb and gutter to the proposed Willox inlet at design point A-6. Sub -basin A-6 consists of the western half College at the northwest intersection of College and Willox adjacent to the Mini Mart property. Water drains to a double, Type 13 combination sump inlet at design ' point A6 which will replace an existing sump inlet at this location. Sub -basin A-7 is a small ' portion of the western half of College at the southwestern half of the intersection of College and Willox adjacent to the McDonald's property. Water drains to an existing sump inlet located on the southwest comer of the intersection at design point A7. Sub -basin A-8 includes the western half of College adjacent to the McDonald's property just south of Willox. This water flows south along the curb and gutter of College to where the curb and gutter ends where it then flows into an existing swale located on the west side of College. Finally, sub -basin A-9 consists of the ' south half of Willox east of the intersection adjacent to the McDonald's property. Water from this basin follows its current path west along the curb and gutter of Willox to an existing 5' type R sump inlet. Once captured by the proposed inlets, the 100-year flows will be conveyed in a new southbound storm system (Storm System A) located in College north of Willox. This system will replace the existing 24" CMP system located just east of the new alignment. Storm System A will tie-in to the existing system at the proposed manhole located just north of existing junction box #4, in the southwest comer of the intersection. The design of the storm system was determined using StormCAD computer program and assumed a tailwater of 4980.70 feet. The tailwater was based on the elevation of the top of the existing 24" RCP pipe. Please refer to Appendix C for proposed inlet and storm system analysis. The proposed system is higher than the Master Plan system to the west. ' Basin B-1 (035 acres) —includes the eastern half of College adjacent to Lots 1 and 3 of Country Club Corners Third just south of Willox. This water continues its current flow path south along ' the curb and gutter of College to an existing curb cut located at design point 131. Basin C (0.50 acres) —includes the east half of College just south of the existing bridge. This ' basin is further split into 2 sub -basins: C-1 and C-2. Sub -basin C-1 is the east half of College adjacent to the intersection of Grape Street. Water flows south along the curb and gutter to a 5' on -grade Type R inlet located at design point Cl (designed with the North College Marketplace ' project). Carry-over from this inlet will travel south. Sub -basin C-2 is just south of C-1 and also includes the east half of College. Water also flows south along the curb and gutter to a 5' Type R inlet located at design point C2 (designed with the North College Marketplace project). ' Carry-over from this inlet will travel south along the curb of College and then east along the curb and gutter of Willox to design point D1. Once captured by the inlets, the flows from the above basins will be conveyed via storm lines G and L designed with the North College Marketplace project. This water will be treated for water quality as a part of the North College Marketplace project. Basin D (2.61 acres) —includes Willox east of the intersection.. This basin is further split into 5 ' sub -basins: D-1 through D-5. Sub -basin D-1 is the east half of College and the north half of Willox adjacent to the southwest portion of the North College Marketplace project. Water from this sub -basin flows south along the curb and gutter of College and then east along the curb and gutter of Willox to a 10' Type R sump inlet located just west of the roundabout at design point ' D1. Sub -basin D-2 is the south half of Willox east of the intersection and west of the ' roundabout. Water flows along the curb and gutter to a 5' Type R sump inlet located just west of the roundabout at design point D2. Sub -basin D-3 is the northwest portion of the roundabout and drains north to the North College Marketplace project's sump inlet on storm line K. Sub - basin D4 is the northeast portion of the roundabout and also drains north to the North College Marketplace project's sump inlet on storm line G. Finally sub -basin D-5 is the north half of Willox just east of the roundabout. Water flows east along the curb and gutter to an inlet at design point D5 (designed with the North College Marketplace project) and into the development's water quality and detention systems. ' Basin OS-1 (0.60 acres} —includes the Haas and Perez properties on the northeast portion of the intersection of College and Willox. This basin follows current conditions and sheet flows south and west to Willox where it will then join with flows from sub -basin D-1 and travel east along ' the curb and gutter of Willox to the 10' Type R sump inlet of design point D 1. Once captured by the inlets, the flows from the above basins will be conveyed via storm lines J, K and G designed with the North College Marketplace project. All of the water captured in the North College Marketplace storm systems will be treated for water quality. ' Basin E-1 (0.80 acres) —includes the south half of Willox east of the proposed roundabout including the southeast portion of the roundabout. Water follows current conditions and flows ' east in the curb and gutter to Blue Spruce Drive where it then flows south. Design Discussion: The project will ultimately drain to Dry Creek, a tributary of the Cache la Poudre River, through a combination of existing and proposed facilities. The design minimizes impacts to other utilities and properties. All new storm sewers and inlets have been sized to convey the 100-year storm. ' Erosion Control: This site lies within the Moderate Rainfall and Wind Erodibility Zone per the City of Fort Collins ' and into adjacent properties. Potential also exists for tracking of mud onto existing streets which could then wash into existing and proposed storm systems. This project will utilize a variety of Erosion Control devices including Vehicle Tracking Pads, Silt Fence and Wattles for Inlet Protection. There will be erosion control on adjacent developments that may take runoff from this project. Erosion Control is shown on the Erosion Control Plan located in the back pocket of this report. A Stormwater Management Plan and State of Colorado Stormwater Discharge for Construction Activities permit will be required during construction. These will be obtained by the Contractor. Conclusion: No stormwater detention will be designed specifically for the roadway improvements. The roadway water in areas that are likely to develop will need to have detention provided by the developer for their share of the adjacent street upon future development. All computations that have been completed with this letter are in compliance with the City of ' Fort Collins "Storm Drainage Criteria Manual". This report was prepared to meet or exceed the "City of Fort Collins Storm Drainage Design Criteria Manual" specifications and the Master Plan. Where applicable, the criteria established in the "Urban Storm Drainage Criteria Manual" ' (UDFCD), 2001, developed by the Denver Regional Council of Governments, has been used. The rainfall intensities used in the computation of runoff were obtained from the Rainfall ' Intensity Duration Curves for the City of Fort Collins, Figure 3-1 of the City of Fort Collins Storm Drainage Design Criteria Manual. Please refer to Appendix B for this figure. Runoff computations were prepared for the 10-year minor and 100-year major storm frequencies utilizing the Rational Method. All hydrologic calculations associated with the basins are included in Appendix B of this report. I appreciate your time in reviewing this information. Please call me if you have any questions or need any additional information (970-674-3300, Ext. 103). Sincerely, Interwest Consulting Group Erika Schneider, P.E. 0 � 7 Reviewed by, Interwest Consulting Group Michael, Oberlander, P.E., LEED AP l 1 1 1 1 REFERENCES 1. Parsons and Associates Consulting Engineers, "Revised Drainage Report for Mini - Mart P.U.D.", dated June, 1984. 2. City of Fort Collins, "Storm Drainage Criteria Manual", (SDCM), dated March, 1986. 3. RBD, Inc. Engineering Consultants, "Final Drainage and Erosion Control Study for Stone Ridge P.U.D. Fourth Filing, Phase I", dated March, 1995. 4. R & R Engineers — Surveyors, Inc., "Final Drainage Report And Erosion Control Study for Willox Crossing Final P.U.D. McDonalds/Amoco Site at Willox Lane and . College Avenue, Fort Collins, Colorado', dated October, 1998. 5. Urban Drainage and Flood Control District, "Urban Storm Drainage Criteria Manual", Volumes 1 and 2, dated June 2001 and Volume 3, dated September 2001. 6. City of Fort Collins, "Stormwater Basins Map", dated June 1, 2004. No Text ®�ii 1 �Pdw .. Or EnQ.EEN DAX CHECKED BY: ..... P1Ex. � xnsrExgEx Oran wrz ,. 90% SUBMITTAL CHECKED BY: sNnux.rFF OTJrY DerE ..' CHECKED By. . vuxs • xcwunw wlf PROJ. NO. IO9006200 .' NOT FOR CONSTRUCTION CHECKED BY: . iRlirrC ExGxEEX D.rE - OF 1 - 'CHECKED BY: '- .. oA No Text co m m a Buisness (Neighborhood Areas) Runoff % Coefficient Impervious C 0.85 85. 0.50 .. ' 40 0.95 ' .c.. 100" 0.95. `. 96: " 0.95 0 0.20 0 :. - SUBBASIN .. DESIGNATION . - ..TOTAL AREA (ac.):' TOTAL AREA . .. (s9.ft) SINGLE FAMILY OR ROOF AREA (sG-ft) PAVED: -. AREA: (s0.ft) . SIDEWALK AREA:. - (s9.ft) LANDSCAPE .AREA (sG.ft) - RUNOFF- COEFF. (C) _ % Impervious -A-1 0.47 20557 0 47,473 1,028 Z056 0.88 9D A-2 1.01 44064 0 37,454 Z203 4,406 0.88 90 A-3 0.19 8287 0 7,044. 414 629 0.88 90 --A-4 .-0.18 7868 0 6.687 393- -787 0.88 90 A-5 0.30 12928 0 10,988 646 1,293 0.88 90. q-6 0.23 9835 0 8,360 492 984 0.88 90 A-7 0.10 4307 0 3,661 215 - 431 0.88 90 A-8 0.31 13568 0 11,533 678 1,357 0.88 90 A-9 0.41 17863 0 15,183 - 893 1,786 -0.88 90 --5-1 0.35 15039 0 12,783.- 752 1,504 0.88 90 C-t 021 9212 0 7,830 461 921 0.88 90 -C-2 0.29 12646 0 10,749 632 1,265 0.88 1 90 D-1 1.22- 53248 0 45,260 Z662 � 5.325 0.88 90 0.2 0.50 21787 0 18,519 1,089 - 2, 179 0.88 90 D-3 0.23 - 10056 0 8,548 . 503 1,006 0.88 90 - Dom- 0.15 6376 0 5,419 319 -- 638 0.88 90 D-5 1.05 " 45851 0 38,973 Z293 4,585 - 0.88 90 - E-1 0.90 39344 - 0 33,443. - 1,967 - 3,934 0.88 90 OS-1 0!11 - 35423 - 0 30,110 1,771- 3,542 0.88 90 m 75 G rn 9. _ .. .. .. d � C � Z F.' Q LL N H � Z W O Z 00 c V LL QO N W 3 V O o p CD II } Vm z O' m a Q O C O _� N Q O N O O O O O O O O O O t7 m O O O O O C LL, + m = Z N m E.� m u ; Y N ' ^ P O n N (7 t7 N N m O m N n P m m m O� O m m 17 N l7 n O P m O of LL J W O 1�l m m d P Z m.` m N N N �- N N N Q- r O C C; O O O O O O O O O O O O O O O O O O O C C Ci C C 0 0 0 0 C C O C C O 0 0 0 C O t7 O b m m 10 p b O N m A 10 l0 b b p 0 o 000.-.=00 0 0 o C.- O o e m N W yJj Ot^ m b m b t'I b n m A b O N O O O YI n' �- J Fg'= n m � f7 Ot O O h N N O N P m m n n b OI E � � � � N f0 �'- b o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o b o� m - N hl lV tV N lV N fV N N N N N hi N (V N N N O" Z m'� p m m n p O N �- b 17 � M b [V M m g N � O W ' J'= U- R. m m m m m m m m m m m m m m b m m m m m m m m m m m m m m m m m m m m m m m o 0 0 0 0 0 0 0 0 o c o 0 0 0 0 0 0 0 F W Z P O [7 N M P N N N N m N O m m O � 0 0 0 0 6 0 0 0 6 0 0 0 0 0 0 m -J a N (7 4 m m n m m N N M g m N p� -¢¢ 0 0 0¢¢¢ 6 U U U a.0 0 0 0 w O ? a 1 N O O 7 . C , G y N 0 . C O LL O V � O M y.. LL v � o � W V LL � C N W . m.E. 11 t N N o �j E Q.NII ., ... .. .. W U N + � E . - -.. M-E.. ... .. - x fn Z Eui Q E �. Q a ,n o m �i= ° WO LL Q ' C N w. C1 Z 0 f M N � P Z W O " Z p o .Q U. , U. 9 0 wcWc G F G 3 C O rn C U =_v= n: } m . ' m' - Z O F•wa o ' _ U O y W Y a ' f' 1' J Q✓ C Q - ONO O O O O O O O O O m m 0 0 0 y y W m m m m W m m m 6� m W N d Cl O m t7 Q O m m m y j m Imo. Y N N W m tOV ^ m O 0 r I1 Q m ImD m M W A t00 frV W m N t7 d N m m W V N W c7 W m O O O r W W � N (7 N M l7 Q d t7 y O y y Q N � N j > C Q -' O r W N N t7 CJ (7 N WO WO N y W O ni N r d W Wm W W O Ol W N r O O m LL � l7 C � •- N I7 � � . J O y m W d IT IT Q ti Q O N r r d Q Q p d Z N � N S. . a' O c O [7 O W m y W W d W O N m r W m m m d _ e- C7 ohm y W - yJl W-- myy y ny r m r movlo oomr d J N< K H � r W cl Oi O O m m m O N d W m r r W W E m o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o m 5 T' m p W W Q O y y W N W O O m m r 0 W y O n O W W m m m m m m m m m m m m m m W m m m m m CO m yl o 0 0 0 0 0 0 0 0 0 o c o 0 0 o c o 0 H m-m N Q O M N W Q N N N W N O W m O O C O O O O O c; G O O 0 0 0 - Ci G z mQ aaaa¢aa<¢hood000dwo m y Q. m F m 0 w C l9 .N C.i... t 11 .. 6 .' T - U .. m t+f m. O � O V - � V LL U) o U O a E. o o . l6 � a .. t0' C LO CC! W'tl 0 � E U) 'U c Q N L o y?. n' c��Co. _o ' m m S O U L U N c ' m m co . O O Z . N m ~ Z W C LL Z 0.O � U O LL a0 C O toLU V O •N U rAco: y z 0o E Zz¢ O F.F c" 1 p.UO. ti -0 cu .0 im �- . r Y K w - K . O O O O O m 0 0 0 O LL N vi vi vi vi N vi vi vi of 0.6 vi o vi - 2 O Om C l7 lV 6 t7 n m IA m N Q f7 O 1A m Q r M m m m p Q p m 0 ,N Y 0 7 n N O A O m V7 n 0 A A IA N m V + C G � -... C O n m Cl!t7 N m (7 f7 m N 17 N Vh O O m N m A vim Oi O m O� m (7 N V7 n O Q m O O N t7 N a F LL J W O l7 m m Q e e e l7 Q O N n A Q e e Q Q U ai mmmmmmmmmmmmmmmmmmm F.: O t7 O fp 1A N IA lA Q IA O N m n IA Q 0 0 0 0 0 0 0 � � 0 0 0 c; ci 0 0 o 0 N ... W N A N m m m m m n n m O m A n N N n m E m 0 0 0 0 0 0 0l 0 0m 0:. NNNNN N T N I N fV N N fV N N y, - t.-: - .: -: ' cce J , vie om<�vi t•') Nm OOmulA o ninon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q U J w > m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m � U Q w . � .. A . mina M "- m m �..v v C O O O O TIM 0 6 6 6 6 0 Q TI'CN2"M10 V QN lh Q m 9 A ! m 7 � N N T q m N m Q Q Q Q Q Q Q Q Q m U U O a O O 0 w. m N_ << a a °.- m o .gym .. .. C C 0 m C' . LL - - O Cl) N rn' m' : -t3 dY LL. ? U � � .O m E L i N m " V .�L-•'J.. C a v =. C.� _. n.Q 11 CO. LLI := Y Ir...c o E c E - x � E c O Y_o E ci .Q W LL R R N o:m L o. m m _o a ro U _ y7.'O.!.O O��- m 1 m C C14 LL LL O �. - Z- � w ..... , Y � _ W. 4 IL rn C 0 _ .'O H U W � LL Q O Z .. O w. 3 co -t i� m y. '. N O Z Z. U p F O,a O q t0 4_ m LL v Q N .- -.n rn — c O 0 LL m Z.. m V . S E 9 0'. w y h m r m m - m w a) mm N0.0 o'oaci ern' cc f0' O 'Q w- C m c' 2 u il. II u Q m ti v U - m II m CY ., LL m 0 ry .. aU o `o mo. (7 � co o ` r C ..(n W �� Lu O N m m ti O V th A In O N O O O m N M In E F z ° � ,m a� > m� - _ Q o N o a �. cWG - - O m tO m UnQ � Q. O- N Q O O '- O .- O .- v N .- O m N m LL m cQmmmmm Ammc inmm O . v Q v v v v Q v Q Q, v v Di v v . �. ni ni v T � E . ;o o ' E ici ui iri Sri in iri iti vimmvi ui�u��ri ui��� - N w.N .L .. U Ummmmaommmmmmmmmmeommm mm o m m mmmmm m m m m mm m m m m N m- ca m N 3 U 0 0 0 0 0 0 0 0 0 0 0 0 o c o 0 0 o w o> m Co . c p Cl O .. 00 nl O O Q_ O A Q O O� m O t0 e� N O cl Q O t0 N O� N N N O O th N .- m O O O ma). m C cr w C - C. . 11 '.. Z Am ^ N f9 m x >" O. ]> y v m V _Ca .wF-m U � O o - O ZZ¢ o p m -0 F F F V - c O! C � U LL ... U'p F o` ¢¢¢¢¢ N tq Q Ui m Q¢¢¢ n m m m o N U o N 0 m 0 Q o O O w - o a° -.. 0. A 0O a A N: CL 0 o m In. c�cn� m : - C _o f C fA fOd 1 O 'O 00 LL LL O� w 7 Y � W o a� c `0. c U Lu G J C LL Q 4- Z 0. U LO N a N' N', U. . .N W.-LLI U p M F D.C. O s m L m. O m LL � II N — C O _ U 0 LL 0 U 0 w w L m . . cm a) - Co - _w �. f0 U rn N L C N N., a) . V C tm C Iv C C @ EL2 m o. II IIIp m X Q U U m C7 `m 0 ". U .. U. rn. , O N � 'b N'. r• W N 0 11 I Ila :sue. �`C "Kr"� y; s r a V W C 7 0 O V o, 'B C a°fi O .m C p ' � C IL m � Q IL O C ll. O O C ' Y CL V C L a 1 W C w� O 'V U O LL - Q d .- e5-�" � ,5%14 �u `��Y` y� t ��Lki Sl�l.lL�T �Jq�y�y,3�E.n� ' _l�P i .y��YN=i`.Y-t•`'�£��T" ' Y���� § aM' x y��t Ts � t�v/S• [ r jr!S�✓ + .:3•�p - � XLSy� n"C,'A...Ms �(�.•�':,5._YryA•� "" �.r %r �,.ex �.^�t'`i^ �Y y 3� '• xlt��K✓Ri%"�� il_.��Y�: 4 {t�Y�Rft; t"'� _fit Y� i�nl �� �•.$� j Y. o ..�y . � l L C .C�e'�}� - � � a�`^�M•ry � _ ��y�S�Mf��ii++:�. O c H 3 C C O f N r1 No Text `STREET AND INLET HYDRAULICS '* ,. h ,+::..cW a Version 2.14c. Released September,2007 . Urban Drainage and Flood Control District Denver,`Col' do Purpose This workbook aids in estimating gutter conveyance capacity and assists in sizing inlets. Functwn , , r ` 1..To calculate The peak runoff flow from a catchment at the location of a proposed: inlet:, x 2. To determine the maximum street utter h draulie ca t ' r , g y pacity for both the minor and major events. a'- 3. To determine the flow condition on street and to size inlets to capture that flow. Content 'k x The workbook consists of the following 4 worksheets y Q Peak Use this sheet to detennme.the peak discharge at your proposed inlet locabon.. The peak is based on rainfall characteristics (return period), imperviousness, overland/gutter lengths and slopes, and existing gutter flows from upstream design points (carry-over flow)..: If the peak discharge is already known; enter it at the top of this sheet and the. rest of the sheet maybe ignored. a4 Q Allow Use this sheet to determine the maximum allowable discharge for one side of the street at your proposed inlet location: This• is based on the regulated.maximum flow spread and gutter flowline depth, the street longitudinal and transverse slopes, the gutter section geometry, the street roughness, and any conveyance capacity behind the curb face (e.g. that area above the sidewalk)..If a longitudinal slope of zero is entered on this sheet, the condition will default to a sump, orsag location. if the maximum allowable discharge at this location is smaller than the peak. discharge deterrnined on the previous sheet, the proposed inlet location should be moved upstream. :.. Inlet On Grade' Use this sheet to select the inlet type and number of inlets best suited for your proposed location on a continuous grade, determining the intercepted flow and the bypassed (carry-over) . 9 9yp ( rry-over) flow. The carryover flow will need to be ' applied to the next downstream inlet in addition to the local runoff determined for that inlet. s Inlet In Sump* Use this.sheet to select the inlet type and number of inlets best suited for yourproposed location in a sump, or sag location. The type and number of inlets in a sump is based on the desired maximum flow depth and spread. There will be no bypassed (carryover) flow from this inlet. Acknowledgements Spreadsheet Development. Team ' . Dr. James C.Y. Guo, P.E. ` Professor, Department of Civil Engineering,. University of Colorado at Denver Ken A. MacKenzie, P.E. Urban Drainage and Flood Control District Wright Water Engineers, Inc: r F.rDenvw, Colorado W. ' m Coments? `''Direct all comments:regardmg this spreadsheet workbook to : UDFCD E-Mail ReSisrons2 .. - „Check for revised versions of this or any other.workbook at: Downloads UD-InletDID A-IlAs INTRO 12/7/2009, 11:54 AM DESIGN PEAK FLOW FOR ONE-HALF:OF STREET BY THE RATIONAL METHOD . ' College and Willox , A-1 Design Flow;= Gutter Flow + Carty -over Flow ,•„ '.,I.OVERLAND �:' I SIDE _ ,. - I - - OVERLAND - FLOW i c-r orr-r , � •: r'rn , � ..Kaintall Inrormiffion: Intensity, 1 (mcrijhr)- + a Minor Storm Major Storm ".. - - Design Storm Retum Period, Tr = yeam Return Period One -Hour PrectpRahon, P r inches .. .. _ ...C' ... C3- ' User Defined Storm Runoff Coefficient (leave this blank to. accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C s = Bypass (Carry -Over) Flow from upstream Subcatchments, Qp =1 0.00 - 0.00 cis Analysis of Flow Time (Time of Concentration) for a Catchment:Minor Storm Majors Storm "Calculated DesigrcStonn Runoff Coefficient; C _ Calwlated 5ww. Runoff Coefficient; CS -....-.. " Overland flowVelocity, Vc Gutter Flow Velocity, Vs Overland Flow Time, to - - GutterFlow Time;tc CalculatedTimeofConcentration; T,..= ' •T, Titre of Concentration try RegiorialFortnula .Recommended T� Timeof Concentration Selected by User, T. = Design Rainfall intensi{y, l = ' Calculated Local Peak. Flow, Q. = Total Design Peak Flow, Q = '% WA = - - WA WA WA - WA- WA WA WA -N/A WA - .WA." WA WA WA WA I WA . WA WA WA WA WA WA WA _ WA - 1.20 - 4.70 f mi minutes minutes minutes minutes minutes minutes inchlhr cls cfs It fl - Gutter Gross Slope (Eq,ST-8) " ....Sw Water Depth without Gutter Depression (Eq ST 2) -_ 9 Water Depth VA Gutter Depression .,. , .. .` :..: - .� d ..Allowable Spread for Discharge outside the Gutter Section W (T W) Tx " Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) - Ec = - Dischargeoutside the Golfer Section W. tamed in Section Tx - ." '' Qx Discharge within the Gutter Section W (Or Qx) . Qw . Discharge Behind the Curb (e.g.; sidewalk, driveways, & lawns) ,,. QeAcx Maximum Flow Based On Allowable Water Spread- -. - Flow Velocity Within the Gutter Section - ". V ' d Product Flow. Velocity Times Gutter Flowlme Depth 1 V•d 20.0 : 20.0 6.00 . 9.00 _ 0.0734 0.0734 - 2.42 2.42 3.94 3.94 18.0 18.0 : 0.346 0.346 0.0 0.0 0.0 0.0 0.0 0.0 -.SUMP SUMP 0.0 - 0.0 '0.0 - ... 0.0 . Maximum Gutter Capacity Based on Allowable Gutter Depth - Mmor,Stonn Major Storm II . heoretical Water Spread :. -._ :` , :., • .TrH 'Theorebcal Spread for Discharge outside the Gutter Section W (T -.W) Tx;H . Gutter. Flow to Design Flow Ratio by FHWA HEC 22 method (Eq. ST-7) E' ' retical Discharge outside; the Gutter Section W. carried in Section TxTM Qx rx I Discharge outside the Gutter Section W. (limited by distance T c' oW Ox Discharge within. the: Gutter Section W (Qd' QO - Qw - Discharge Behind the Curb (e.g.. sidewalk, driveways, .&, lawns)Qencx - otal Discharge for Major & Minor Storm - Q = - ... - Flow Velocity Within the Gutter Section - - .. V = d.Product Flow VelocityThmes'Guti r Ftowlme Depth.. - - V'd.= ' - Slope -Based Depth Safety Reduction Factor for Major Minor (d > 6') "Storm R = Max Flow Based on Allow. Gutter Depth (Safety, Factor Applied) Od = - Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) :' d = Resultant Flow. Depth at Sheet Crown (Safety factor Applied) dCRnwN = 37.0--61.7. 35.0 59.7 . 7 0:174 - 0.098 0.0 - .0.0 " 00 - 0.0 00 0.0 .. _. 0.0 - ; 0.0 - 0.0 0.0 0.0 0.0 SUMP ""SUMP SUMP .. SUMP i i . Maximum Gutter Capacity Based on Allowable Gutter Depth - Mmor,Stonn Major Storm II . heoretical Water Spread :. -._ :` , :., • .TrH 'Theorebcal Spread for Discharge outside the Gutter Section W (T -.W) Tx;H . Gutter. Flow to Design Flow Ratio by FHWA HEC 22 method (Eq. ST-7) E' ' retical Discharge outside; the Gutter Section W. carried in Section TxTM Qx rx I Discharge outside the Gutter Section W. (limited by distance T c' oW Ox Discharge within. the: Gutter Section W (Qd' QO - Qw - Discharge Behind the Curb (e.g.. sidewalk, driveways, .&, lawns)Qencx - otal Discharge for Major & Minor Storm - Q = - ... - Flow Velocity Within the Gutter Section - - .. V = d.Product Flow VelocityThmes'Guti r Ftowlme Depth.. - - V'd.= ' - Slope -Based Depth Safety Reduction Factor for Major Minor (d > 6') "Storm R = Max Flow Based on Allow. Gutter Depth (Safety, Factor Applied) Od = - Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) :' d = Resultant Flow. Depth at Sheet Crown (Safety factor Applied) dCRnwN = 37.0--61.7. 35.0 59.7 . 7 0:174 - 0.098 0.0 - .0.0 " 00 - 0.0 00 0.0 .. _. 0.0 - ; 0.0 - 0.0 0.0 0.0 0.0 SUMP ""SUMP SUMP .. SUMP i i Resultant Flow. Depth at Sheet Crown (Safety factor Applied) dCRnwN = 37.0--61.7. 35.0 59.7 . 7 0:174 - 0.098 0.0 - .0.0 " 00 - 0.0 00 0.0 .. _. 0.0 - ; 0.0 - 0.0 0.0 0.0 0.0 SUMP ""SUMP SUMP .. SUMP i i - an blormatbn(inwd) - - ... MINOR of Inter .. Type= I.Depressbn(addiliorial to continuous gutter depression'sm i_m'O-AIIow') - 4oy= xrd Unit Inlets (Gmte_or Curb Opening)-'... No= r IMorrrstbn MINOR Length of Unit Gross, -- ... L. (G) _ -khh of a Unit Grate -- a Opening Ratio Tor a Grate (typ=l valxs 0.1".g0) Clogging Faclorfora Single Grate (typical value 0.50-070) :- Cr(G)= Grate Weir Coeffickm(typical value 3,00) - .. - ,..,. - ., '. :. C.(G)= Grate Orifice Coefficient (typical value 0.67). - - ' .. .. ., C. (G) ati - CDOT/Derrver l3 Combinon 2.00 - 2.00 1 1 3.00 3.00 3.00 1.73- 1.73 0.47 - 0.47 0.50 0.50 3.00 3.00 - 0.67 0.67 set set Opening bdorrnatlon - - MINOR MAJOR thofa..Untt Curb Opening r ' .:- ... .. - .. L.(C)= '.: '3.00 3.00 feet 1t of Vertical Curb Opening In Inches6.50 6.50 inchr. it of Curb Critics Throat in Inches Nu.ne=' 6.25. 5.251nche: : ofThrow (we USDCM Figure STfi) - --.. Theta= 0.0 0.0 define Width fw Depession.pan (typically the gutter width d 2 feet) - ,' W. =. 2.00 - 2.00 fast ging Facbrfor a Single Curb Opening (typical value 0.10) C, (C) _ 0.10 0.10 Opening Weir Coefficieni(typical value 2.303.00),, - .. - C. (C) - 2.30 2.30 n-nlm nnfien CnnR .lent rNnMal-Lee n 971 � " . ' CJCI e - n a> n a> Resuffina Gutter Flow Depth for Grate Inlet Capacity Ina Su -'MINOR MAJOR Clogging CoeRctem for Multiple Units Coef= ' .1.00 - 1.00 Clogging Facterfor M_ultiple.Units - _ Clog= 0.50 0.50 Grab es a Weir. _ The Controlling Factor Will Be:' - Curb Opening as Weir Curb Opening As Vertical Orifice Flow Depth at Local Depression without Clogging (1.2 cfs grate. 0 cle curb): Flow Depth (Curb Opening Only) without Clogging (0 ofs grate, 1.2 cis curb) Flow Depth at Local Depression with Cbging (1.2 efs grate, 0 cfs curb).. -d., _ Flow Depth (Curb Opening Only) with Clogging (0 cis grate. 1.2 cis curb) tl� _ 2.21 J644 228 7.54 mhos rwhes Inches inches Grate as an Orifice _ : MINOR . MAJOR Flow Depth at Local Depression wi0fout Clogging (1:2 ds grate, 0 ds curb)' - cla=j 1.37 3.27 Inches Flow Depth at Local Depression with Clogging (1:2 cis grate, 0 cis curb) d. =1 2.171 3.97 Inches Resulting Gutter Flow Depth Outside of Local Depnasion :' - - " 'tl,a,e; a 0281 54 inchas - Raculting GuflarFlowDepth forCurbOpenim Inlat Capacity in a Su - _ MINOR MAJOR Clogging Coefliclem for Multiple Units Coef- 1.00 1.00 Clogging Factorfor MuPople Units .. _ ., '' C g-1 0.101 0.10 Curb as a Weir, Grate as an Orifice - MINOR MAJOR - FlowDepth at Local Depression without Clogging (0.82 ifs grate, 0.38 cfs curb) d.i = 1.061 2.61 Imhas Flow Depth at Local Depression with Clogging (0.65 cfs grate_.0.55 cis curb) _, d., _1 '1.441 3.55 inches Curb as an OrfOca, Grrta as an Orifice - .. - "MINOR MAJOR Flow Depth at Local Depression without Clogging (1.2 cis grate, 0 cis curb) . _ - bid = - 1.37 327 Inches Flow . Depth at Local Depression with Clogging( cfs grate,.0 cis curb) �' d,. _. " -'2.17 . '3.97 Inches Resultng Gutter Flow Depth Outside of Local Depression' ' '' d,c.,, _ " " - - 0.17 -." 1.07 Inches Resultant StmtConditiom - - ,', _ MINOR MAJOR oral Inlet Length..- '. .. L= 3.0 3.0 feet , Total Inlet Interception Capacity (Design Discharge from O-Poak). - Q, 1.2 4.7 do ResuhaM Gutter Flow Depth (baeed on shoat Q-Aflow geometry)„ - d a 0281 4.51 irrohes . Resultant Street Flow Sproad(based on shoatQ-Aflow.geometry) - _.T.a 0.3 '.24.7 feet ` Resonant FlowDepth at Street Cn dcawm = ` ' 0.00 .'. - 0.00 inches I. (local peak_ flow for 1f2 of street, plus flow bypassing upstream subcatchments) - ' ...' - 'Q - 2.401 77q efs .._ f • If you entered a value here; skipthe rest of this sheet andproceed to sheet Q-Allow) Geographic n ormation:(Enter data in the blue calls):_ .. _ 'SubcatchmentArea= Acres " Percentlmperviousness= NRCS Soil Type .= A B, C, or D :Site: (Check One Box Only) Slope (ftlft) Length (ft) _ Site is Urban X - - Overland Flow = Site Is Non -Urban. . Gutter Flow= . : n ens i -Minor Major Stormm n rma on Design Storm Return Period, T, _ years .Return Period One our Precipitation, P _ inches '. - .. _ - User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C -User-Defined 5-yr. Runoff Coefficient (leave this blank to'accept a calculated value), C, Bypass(Carry-0ver) Flow from upstream"Subeatchments,Qb= 0.00 0.00 cite Analysis of Flow Time (Time of concentration) for a Catchment: - Minor Storrs Major Storm Calculated Design Storrs Runoff Coefficient, C = ". Calculated 5-yr. Runoff Coef .cient, C5 = - Overland Flow Velocity; Vo = - Gutter: Flow Velocity, VG = Overland Flow Time, to = - Gutter Flow Time, to= . Calculated Time of Concentration; T , _ - - Time of Concentration by Regional. Formula, T, _ . .. .`. Recommended T, _ Time of concentration Selected by User, T, _ . - Design Rainfall Intensity, I = ... �r Calculated Local Peak Flow Qo = Total Design Peak Flow, Q- WA NIA WA WA WA WA N/A -"WA WA WA . N/A WA - N/A - WA WA WA - N/A - WA WA W ' . WA - WA N/A WA -2.40 10.10 fps fps minutes minutes minutes minutes . minutes minutes inc✓hr cfs cfs Gutter Geometry (Enter data in the blue cells) �Maximum Allowable Width for Spread Behind Curb 5 5 ft - Side Slope Behind Curb (leave blank for no conveyance credit behind curb) SsncK 0.0200 it. vert. I R. honz ManningsRoughness Behind Curb '. nancK 0.0160 Height of Curb at Gutter Flow Lrne ,.. Hcuas 6.00 inches" Distance from Curb Face to Street. Crown . : Tca _ ' .. 47.0 ft :...:.. .. _;... " Gutter Depression . - ... "-. -. - " . , . ; . a = - 1.52 inches . . .. Gutter Width". .. . W . ' 2.00 ft ... Street Transverse Slope S. 0.0231 ft. vert f ft. honz treet Longitudinal Slope - Enter 0 for sump"cbndit on '-, - .So =. • : 0.0040 R'vert. I ft. horiz Manning's oughnessforSireet Section ", ..,..... '.` - _. .. ':. nsia¢Ff=. .. 0.0160 .. Minor Storm- Major Storrs Max. Allowable Water Spread for Minor 8 Major Storrs :Tn =.J 35:0 35.0 ft " Max ;Allowable Depth at Gutter Flow Line for Minor 8 Major Storm. -. d� = inches low Flow Depth at Street Crown (leave blank for no) X =yes ' ' 6.00 9.00 �ry Gullet Cross Slope (Eq. S7-8). Sw,= Water Depth without Gutter.Depression(Eq.ST•2). y= Water Depth with a Gutter Depression tl = Towable Spread for Discharge outside the Gutter Section W (T - W) Tx = Gutter Flow to Design Flow Ratio by FHWA HEC-22method (Eq.ST-7) - - E. Discharge outside the Gutter Section W, carried in Section Tz,Qx = Discharge within the Golfer Section rW(Or-O>J Ow= Discharge Behind the Curb (e.g., sidewalk, driveways, 8 lawns) Maximum Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section V = d Product Flow Velocity Times Golfer Flowline Depth V•d = ftnl inches inches ft cts cis cfs .. cfs fps Maximum Gutter CaoacllY Based on Allowable Gutter Depth Minor Storm Major Storm" eorearal Water Spread Theoretical Spread for Discharge outside the Gutter Section W,(T Tx,u= Golfer Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo �_ Theoretical Discharge outside the Gutter Section W, carried in Section Txre . Qx rH= Discharge outside the Gutter Section W, (limited by distance T criowN) Ox = Discharge within the Gutter Section W (Qe r Qx)' Ow = Discharge Behind the Curb (e.g., sidewalk, driveways, 8lawns) Qai,cx= Total Discharge for Major 8 Minor Storm O = Flow Velocity Within the Gutter Section v = B Product: Flow Velocity Times Gutter Flowline Depth-. "V'd = Slope -Based Depth Safety Reduction Factor for Major 8 Minor.(tl > 6 ).Stdnn- R = Max Flow Based on Allow. Gutter Depth (Safety Factor Applied) _ QeP Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) it = Resultant Flow Depth at Street Cmxm (Safety Factor Applied). 0:0864 9.70 1112 1D.162 . 33.0 0.162 465 9.0 9.0 .: 6.5 6.5 62.0 go 5.3 5.0 5.0 ft _ ft cis' cis cis cis cis fps cis inches inches. Minor Storm .'Major Storrs Max. AllowableGutterCa c' Based on Minimum of - or Q .. O,a,.= -7.6 - 30.3 cis INOR STORM max. allowable capacity OK,=greater than flow given on sheet'O-Peak' - _ - - MAJOR STORMmax. allowable capacity OK - greater than flow given on sheet'O-Peak'- 162 - 27.0 . � 142 25.0 .0.359 "0.213 4.9 22.1 . 4.9 22.1 2.7 6.0 0.0 2.2 '-7.6 30.3 3.3 4.5 1.7 3.4 .1.00 1.00 7.6 30:3 • "• 6.00 9.00 1 znrzoos, 1 z:oa PM Design, Information In - MINOR - MAJOR . Type of Inlet Type =' ` : CDOT Type R Curb Opening -L-1 Depression (additional to car*nbs gutter depmion'a' kam'o-Anove) aj= ..2.0 2.0 inches. Total Number of Units in the Inlet (Grate or Curb Opening) „ i - 'No = Length at a Single Unit Inlet (Grate or Curb Opening). - ,. 'L.:= 5.00 5.00 ft ,. .. .:- , Width of a Unit Grate (cannot be greater than W from O-Alow)' - .. .. -.,: W. = WA _' _ WA fl Clogging Factor for a Single Unit Grate (typical min. value = 0.5) CrG = WA - 'WA ' . Clogging Factor for a Single Unit Curb Opening (typical min; value = Oct) ' - CrC = 0.10 0.10 - Street Hydraulics, OK - 0 < maximum allowable from sheet IIoW MINOR MAJOR " Design Discharge for Half of Street (from Sheet 0-Peak) '... .. ..... : O, _ cis ' ...: - ' 2.40 10.10 Water Spread WiidN - . .. 10.0 18:1ft Ater Depth at Flowline (outside of local depression) inches 4.3 '6.5 ater Depth at Street Crown (or at Tr w ". dGmm.. _ inches 0.0 0.0 Ratio of GuterFlow to Design Flow .. ., E;= .: -0.565 0.321 Discharge outside the Gutter Section W, carded in Section T," . - 0.= cfs " 1.04 6.84 Discharge within the Gutter Section W -: O. _ cis 1.36 324 Discharge Behind the Curb Face. - Oeecx= cis 0.00 0.03 Street Flow Area.. sit ft - 127 3:91 Street Flow Velocity .. V. _ 1.891 2.59 fps Water Depth for Design Condition- : tlL� = - 6.31 8.5 inces Grate Analysis Calculated _ - MINOR MAJOR Total Length of Inlet Grate Opening .. - ., L _ '. " It Ratio of Grate Flow to Design Flow xm.= Under No -Clogging Condition.: - - MINOR MAJOR Minimum VelocityWhere Grate Spash-OverBegins. - V.= fps Interception Rate of Frontal Flow - - ... Rr = Interception Rate of Side Flow R. p .. Interception Capacity . .. .... - . 4' ,. ... CIS Under Clogging Condition: _ :, MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet ,' GrsteCoef= Clogging Factor for Multi leunit Grate Inlet "- 9g 9 P ��- : GrateClog = ' Effective (unciogged) Length of MulOple-unit Grate Inlet., p Minimum Velocity Where Grate Spash-Over Begins.: : V. - fps - ... _ Interception Rate of Frontal Flow- " - . ' . Rr - Interception Rate of Side Flow'.'_fZ_ cbwl Intercepum Capacity _ O. _ : " . WA WA cfs Caffj-0ver Flow= p.-p, (to be applied to with opening or next d/s inlet) = WAI WA rya . Curb m Slotted Inlet nin Analysis (Calculated),. _ . MINOR-. -' _ MAJOR - Equivalent Slope S. (based on grate carrycver). "- _. _ - .. S. =1 0.10601 0.0702 %11 - Required Length L, In Have 100%Interception . - L, - 7.60 17.78 ft. - Under No -Clogging Condition MINOR : MAJOR - Effective Length of Curb Opening or Slotted Inlet (minimum of L: L,) ... ', L = ` 5.001 5.00 ft Interception Capacity .. '0,= -' ',2.05. . .4.51 cfs Under Clogging Condition - . - .:. -. - MINOR - 'MAJOR Clogging Coefficient CurOCoef= ._. ., 1.00 1.00 Clogging Factor for Multiple -unit Curb Opening or Slotted Inlet' - - CurbCl Effective,(Uncioggetl) Length. ,. L. .. 4.50 450It Interception. Capacity .. Q. : - ; 1.92 _. 4.12 cis . . ,Actual Carry -Over Floaiw=Ohyahn,tl-0. .Ou= OA8 . 596 cfs Summary '.. ". - - .. - �. MINOR" - MAJOR TOW Inlet Interception Capacity � - cfs. 4.12 y,.�I /A�-./1� 1 O, Total Inlet Carry -Over Flow(flow bypassing mkt) cis 0:48 598 Capture percentage = ojO, C•h = % .: ... , 80.1 . 409 Design ow:;ONLY IT tenormed.througho rme s: - Minor Storm - Major Storm (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments) . *Q = .. 0s01.90 as ' If you entered a value here skip the rest of this sheet and roceed to sheet Q Allow) - - Geographic Information: mer date in the blue calls):. . SubeatchmeritArea- Acres Percentlmperviousness= % . - NRCS-Soil Type =A. B, C, or D. Site: (Check One Box Only) .. - Sbpe.(ft/ft) Ler jth{ft) - Site is Urban X ,:. Overland Plow site Is Non -Urban. .. . Gutter Flow Hainfill Inrorm-aflon: intertsffyi(inCrifhr)=L;,.-v,7(C,+,l,j5RC7, Minor Storm MajorStonn -' - - Design Storm Return Period, T. = years - - Return Period One -Hour precipitation, P = - inches C2 ' .. C3- User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = - .' User -Defined Syr. Runoff Coefficient (leave this blank.to accept a calculated value), C s = Bypass (Carry-0ver) Flow from upstream Subcatchments, Qp = 0.00 0.001efs Analysis of Flow Time (Time of Concentration) for a Catchment: - Minor Storm Major Storm - Calculated Design Storm Runoff Coefficient, C Calculated 5-yr. Runoff Coefficient, C5 - - Overland Flow Velocity,Vo= Gutter Flow Velocity,.VG = _ Overland Flow Time,.to = ` Gutter Flow Time, tc = _ Calculated Time of Concentration, T. = Time of Concentration by Regional Formula, T, = '. Recommended T, - Time of Concentration Selected by User, T,' = Design Rainfall Intensity; I - - _ Calculated Local Peak.Flow, QP = .. - Total.Design. Peak Flow, Q = NIA - N/A NIA NIA - NIA .. .NIA - N/A NIA NIA N/A N/A. NIA N/A -- NIA N/A NIA • N/A : - N/A NIA N/ N/A :. N/A . ...: N/A -. N/A 0.50 1.90 fps fps minutes minutes minutes minutes minutes minutes . inchft cis cis Gutter Geom Enter data in the blue cells " - - - Maximum Allowable Width for Spread Behind Curb TwcxI 22 0 R - Side Slope Behind Curb Oeave blank for no conveyance credit behind curb) " Seacx --0.0200 R verL I R horiz Manning's Roughness Behind Curb neAcx =1 0.0300 . Heigh ofCurti at Golfer Flow Llne "' Hcuaa = 6.00 inches - Distance from Curb Face to Street Crown. _'. '.... '::, ; . �TceonN = -. 17.0 R ... -" Gutter. Depression, 1.52 mches".... Gutter Width '. :::-:. : '.. ..,• ,:: W.= --2.00 R :..._ . .. .:.. Street Transverse Slope - Sx = .. 0.0329 .. . R vert.l ft. horiz Street Longitudinal Slope- Enter 0 for sump condition - . - .. So = 0.0000 R: vent. I R horiz - Manning's Roughness for Street Saction "..:•; ' - - .. j ' , , "' '.. -` :. nsraeer= :...-: 0.0160 .. .._ _ Max. Allowable Water Spread for Minor.B.Major Stonrt ': -_" - " _ - -'Minor Stodn Major Storm - .Jwoc= fi 10.0 1.0 � � 0 0.0962 Maximum Ginter uppacrin, uaseci Un Allowable Water S read - . Minor Storm Major Storm 'II Gutter Cross Slope (Eq. STD) SW = Water Depth without Gutter Depression (Eq. ST-2) y = Water Depth with a Gutter Depression tl = Allowable Spread for Discharge outside the Gutter Section W.(T - W) �. Tx = Gutter Flow to. Design Flow Ratio by FHWA HEC-22 method.(Eq. ST-7) Eo = Discharge outside the Gutter Section W, wined in Section .Tx Discharge within the Gutter Section W (Or - Ox). ... .. - ... Ow.= Discharge Behind the Curb (e.g., sidewalk; driveways, & law ns) ,; OexcK= Maximum Flow Based On Allowable Water Spread - Or = Flow Velocity Within the Gutter Section V = - d Product Flow Velocity Times Gutter Flowline Depth' V•d = inches inches R cfs cfs cfs efs fps Martimldn Gutter Cacactne Based on Allowable Gutter Depth - 'Minor Stonm Major Storm heoretrral Water Spread TrN= Theoretical SPreatl.tor Discharge outside the Gutter Section W (T - W) . Gutter Flow to Design Design Flow Rafio by FHWA HEG22.methotl (Eq. ST-7). Ea= Theoretical Discharge outside the GulterSection W. canied in Section Txnf Actual Discharge outside the Gutter Section W,(limited by distance T.ceowr).O*= Discharge within the Gutter Section W (Od - Ox) Discharge Behind the Curb (e.g.. sidewalk, driveways, &dawns) Cexck= otal Discharge for Major 8 Minor Storm O = Flow Velocity Within the Gutter Section •. - - V = d Product Flow Velocity Times Gutter Flowline Depth V'd = Slope -Based Depth Safety Reduction factor for Major &Minor (d.>$") Storm ` R = Max Flow Based on Allow. Gutter Depth (Safety Factor. Applied):Qe' Resultant Flow Deptbat Gutter Flowline (Safety factor Applied) . ".it = Resultant Flow Depth at Sheet Crowri (Safety,FactocApplied) dcaowe = Wit 0.099 3.95 3.95 5.47 -` 5.47 8.0 8.0 0.532 0.532 0.0 0.0 0.0 0.0 0.0 0.0 -SUMP - SUMP -- 0.0 0.0 0.0 - 0.0 ft it cfs Cf5 cfs CIS cfs cis inches inches. . Minor Stbmt Major Storm Max. Allowable Gutter Ca ae'Basetl on Minimum of or �O,ir,= SUMP - ..SUMP cfs MINOR STORM max. allowable capacity OK : greater,)tian Bow given on sheet`O-Peak' " MAJOR STORM max. allowable capacity OK - greater4han flow given on sheet'O-Peak'- 11.3 . � -. 18.9 - 9.3 .16.9 - 0.476 � .0292 0.0 ., 0.0 -0.0 .0.0 0.0 0.0 0.0 - - 0.0 0.0 0.0 -0.0 - 0.0fps SUMP SUMP --.SUMP "SUMP .. Length of a Unit Grate .,. .. .. .. .. .. " L.(G)= .. .. - -Width of a Unit Grate ... .. i. _:. _. W.= :.: _ a Opening Ratio fore Grate (typical haloes 0.15-0g0) Clogging Factorfor a Single Graft (typical value 0.50 0.70) Ci (G) Orate Weir CoefBclent (typical value 3,00) :Cw•(G) - Grate OdBce Coefficient (typical value 0.67) Co (G) CDOT/Derrver.13 Combination 2.00 2.00 1: 1 3.00 3.00 1.73 -1.73 0.47 0.47 0.50 0.50 3.00 3.00 - 0.67 - 0.67 feet feet .. ... ---.. ... .. Curb Opening lMorrietfon _, .. ... .... .. .MINOR . MAJOR'. .. .. Length of a Unit Curb Opening - .. .. L.-(C) _ 3.00 - 3.00 feet - ' . - Height of Vertical Curb Opening in Inches ,' H,'.= 6.50 6.50 inches - .. _. Height of Curb Critics Threat in Inches 5.25 5.25 inches -_ Angle of Throw (me USDCM Figure.ST-6) - , - Theta= ' : 0.0 .' 0.0 degrees . Side Width for Depression Pan (typically the gutter width of 2 feet) _ Wp = .2A0 2.00 feet - - ' Clogging Factorfor a Single Curti Opening (typical vslue 0.10) C, (C) _ - 0.10 . 0.10 - Curb 0peNrg Weir Coefficient (typical value 2.303.00) .. ... C. (C) - 2.30 2.30 - Curb Oxninc Orifice Coefficient fNoloal value 0 671 .. - �C-(C)=l n A71 n si - - Resulfino Gutter Flow De th for Grab Inlet Capacity In a Sump MINOR MAJOR - Clogging Coefficient for Multiple Units. ,Coef= - 1.00 1.00 Clogging Factorfor Multiple Units - Clog = .0.50 0.50 _ Greta esa Weir. The Controlling Factor Will Be: - Curb Opening as Weir Curb Opening As Weir Flow Depth at Local Depression without Clogging (0.5 cfs grate, 0 cis curb) '. d.i = Flow Depth (Curb Opening Only) without Clogging (0 cis grate, 0.5 cis curb) da,,;,,, Flow Depth at Local Depression with Clogging (0.5 cis grate, 0 cis, curb)_ - d., o ' Flow Depth (Curb Opening Only) with Clogging (0 cfsgrate, 0.5'efs curb) day = 5.88 123 3.00 4.54 8.16 3.10 inches inches inches - inches _ - Orate es an'OH6ca.. '- 'MINOR IN . MAJOR OR3.021nches Flow Depth at Local Depression without Clogging (0 cis grate, 0.5 cis curb) .... da 125 .. ... Flow Depth at Local Depression with Clogging (0 cis grate, 0.5 cis curb) d„ 1-.34 324 Inches ' Resulting Gutter Flow Depth Outside of Lecal'Depraml,in. clo . -. 0:00 1.24inches - Resutting Gutter Fbw DpthforCurb Openino InlatCamolty In a Surnp MINOR ' ' MAJOR Clogging CoefOciem for Multiple Units '.' Coef 1.001 ', - 1.00 - CloggingFactorforMultipleUnits Cbq,=1 0.101 0.10 _ Curbsea WeirGrate asan Orifid' .:< ,...' ,: '� - - MINOR..:-.. MAJOR - Flow Depth at Local Depression without Clogging (0 cfs grate, 0.5 cfs curb) d. "- . ,T25 _ 3.02 inches ' Fbw Depth at Local Depression with Clogging (0 cis grate 0.5 cfs curb)- 4 1.341 324 inches Curb sc an Orifice, Grab as an Orifice, MINOR. .MAJOR Flow Depth W Local Depression without Clogging (0 cfs grate, 0.5 ifs curb): cl . ' 1.23 - 3.00 Inches . Flow Depth at Local Depression with Clogging (0 cis grate 0.5 ifs curb) d„ _ . 7 27 _ 3.10 inches Resulting Gutter Flow Depth Outside of Local Depression dA = 0.00 124 inches . Resultant Street Conditions MINOR-- MAJOR Total Inlet Length."'... .1: r. "•:. L= ': 3.0 - -3.0 feet Total Inlet Interception Capacity (Design Discharge .frem 0-Peek). Qa= 1 05 ': "' -1.O d¢ ' _- Resultant Guitar Flow Depth (based on cheat O-Allow geermtry) .- d - 0.00 1.10 hxhes Resultant Street Flow Spread(based on sliest .G-Albw.gognt ry) _ - T- '.LO 1to loot- - Resultant Flow Depth at Street C rown _ dcaov.= '. -0.00 0.00 Inches Design ow ONLY.if already determinedthrough_ o r.me - - Minor Storm . Major Storm - (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): (i=1 ozol efe • If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow) \vnuau sum waum,. unc un� , puwvu, / - v\. , 1 � \ "i � c 1 YJ rvnnm atvnn v, Jm .� Design Storm Return Penod, T, _ years . . .. .. .ReturnPeriod One -Hour: Precipitation. P \ = inches "LCI . -�Cz= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined 5-yr. Runoff Coefficient (leave this -blank to accept a calculated value), C s = . " BypasS.(Carry-Over) Flow from upstream Subeatchments,,Qb= 0.481 5.98 efs Analysis of Flow Time (Time of Concentration) for a Catchment: - " - - .Calculated Design Storrs Runoff Coefficient, C = - - - - Calculated 5-yr. Runoff Coefficient, C5 = -"" - OvedandFlow Velocity, Vo.= - ` Gutter Flow Velocity, VG = - - Overland Flow Time: to = . Gutter Flow Time; tG'= CalculatedTime of Concentration, T , _ "Time of Concentration by Regional Formula, Tc = ..-. " ... - RecommendedT,= : - Time of Concentration Selected by User. T� _ WA WA WA WA :.WA WA WA WA WA WA WA WA WA WA WA WA NIA WA NIA WA WA WA WA WA 0.98 - - 7.78 PS P ninutes ninutes ninutes ninutes ninutes ninutes nc /hr ;fs :fs " ' UD-Inlet DP A=4 )ds Q-Peak 121712009, 12:09 PM - _ Gutter Cross Slope (Eq. ST-8) _Water Depth without Guttei'.Depression (Eq. ST 2) " y = '. -.Water Depth with a Gutter Depression: d = Allowable Spread for Discharge outside the Gutter Section W (T - W) Tx = - Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) - Eo = Discharge outside the Gutter Section W. carried in.Section Tx Qx = ' Discharge within the Gutter Section W (Or'- Q,) Qw = Discharge Behind the Curb (e.g:, sidewalk. driveways,:& lawns) OaAcx= - Maximum Flow Based On Allowable Water Spread_ - - ;' OT = Flow Velocity Within the Gutter Section �.. .. _ V . V = ' d Product Flow Velocity Times Gutter Flow ine Depth, ... V'd = 45.01 .45.0 6.001 9.00 0.0839 0.0839 11.12 11.12 12.64 12.64 43-0 43.6 .0.126 0.126 77.8 77.8 .11.2 11.2 11.0 11.0 - 99.9 . 99.9 5.81 5.8 6.1 6.1 - Maximum Gutter Caoacltv Based on Allowable Gutter Depth - Minor Storm -Major Storm . -Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T W) Tx Tr _. Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq ST-7) -Eo = ., Theoretical Discharge Section outside the Gutter Section W, carried in Tx TH -' - - Ox T.= Actual Discharge outside the Gutter Section W, (limited by distance T ceom) ' : ox = Disciarge within the Gutter Section W (Oa.= Ox) Discharge Behind the Curb (e.g sidewalk, driveways, 8 dawns) {�,A M._ Total Discharge for Major li Minor Storm Q = - - - Flow Velocity Within the Gutter Section .' -: .V = - d Pmduct: Flow Velocity. Times Gutter Flowline Depth N'tl - ' - Slope -Based Depth Safety Reduction Factor for Major 8 Minor (d > 6") Storm R = Max Flow Based on Allow. Gutter'Depth (Safety Factor Applied) . " Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) - - .. -d = ■. I�Resultant Flow Depth. at Street Crown (Safety Factor Applied) .. . ' ticaowe _ - 18.1 -- 30.3 _ - 16.1 28.3 0.327 0.192 5.7 - 25.4 -5.7 - 25.4 2.8 - " 6.0 0.0 2.3 ' 8.4 . 33.7 ' 3.3 4.5 1.7 .3A 700 1.00 " 8.4 33.7 6.00 9.00 0.00 0.00 Wit inches inches 8 cis cis cis cis fps R 8 cis cis cis cis cis fps cis inches, inches Wit inches inches 8 cis cis cis cis fps R 8 cis cis cis cis cis fps cis inches, inches Design Irdormafion In - MINOR MAJOR _ Type of Inlet • ' Type = ' CDOT Type R Curb Opening . Loral Depression (addniorW to mrNmIDrs gutter depressbn'a' from'D-AIbW). - a.a.L = . 2.0 - 2.0 inches otal Number of Units in the Inlet (Grate or Curb Opening),' ` - - " No = 1 1 Length of Single Unit Inlet (Grate or Curb Opening) - . L.= - r '5.00 - 5.00 If . Width of a Unit Grate (cannot be greater than W from O-Allow) .. W. = WA . - - WA ft .. ' Clogging Factor for a Single Unit Grate (typical min. value = 0.5).• - -': CrG = WA `. WA Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1 j - ". CrC = ' 0.10 0.10 Street Hydraulics: OK- Q C maalmum allowable from sheet-Allovie - MINOR MAJOR 0.98 •.-' 7.78 Design Discharge for Nalf of Street (from Sheet Q-Peak) .-,':'-' .. '' - -.' .. Q = cis- :. - - 6.9 17.6 Water Spreatl Wirth - - _ ' T= It . .32 -� Water Depth at Flowline (outside of local depression) :. -- - -0 = inches - 0.0 - 0.0 Water Depth at Street Crovm (arat Tsw�� .. .. .. acsays = inches . 0.754 0.338 Ratio at Gutter Flax to Design Flow...... ,.. -,. Ee . = '' 024 5.15 Discharge outside the Gutfer Section W, carried in Section T. Q = ds Discharge within the Gutter Section W' -. .. - Q. 0.74 2.63 cis - 0.00 0.00 Discharge Behind the Curb Face t - - '- Oeex = cis :. ..0.62 3.30 Street Flow Area h = so It 1.581 2.36 Street Flow Velocity ... V. = fps . - 5.21 7.9 Water Depth for Design Condition - - - - - dWi�u: _ inches Grate Ana"Is Calcul -- - ., MINOR - MAJOR' . [Total Length of Inlet Grate Opening. -- .. ... .. _ 1l Ratio of Grate Row to Design Rm .Under No -Clogging Condition ..,.. - _ Minimum Velocity Where Grate Spash-Over Begins ' " ' - V.= MINOR - MAJOR lips Interception Rate of FrontalAow . .. - W = . Interception Rate of Side Row. Interception Capacity_ R- cis Under Clogging Condition'- - MINOR MAJOR Clogging Coefficient for Multiple -unit Grate Inlet GrataCod = Clogging Factor for Multple-unit Grate Inlet . .:.. • GmteClog = Effective(unrJogged) Length of Multiple -unit Grate Inlet G= "" It Minimum Velocity Where Grate SpashOver.Begins.. V. _ fps .. Interception Rate of Frontal Flow .' ' -.'' . ' ' . .... _ . -• .. :: .. R = - Interception Rate of Side Flow ; .. R. Actual Interception Capacity . .. - .. .. Q. = - . ... WA : WA cis Carry -Over Floor= Q.-Q. (to be applied to Curb opening w next d/s inlet) Qy = NIA - WA cfa Curb or Slotted Inlet Ovenina Analysis(Calculated) - . ", _ : 'MINOR MAJOR Equivalent Slope S. (based on gmle carry-over) •' S. _ - 0.13121 0.0707 ft/ft Required Length LTtoNave lOD%Interception - '. Cr= - 4.591 15.96ft Under No -Clogging Conmtion MINOR MAJOR Effective LengN dCurb .Opening or Slot(etl Inlet (minimum of L, LT) L = 6.58 5.00 ft Interception Capacity • .. - 4= .0.98 - 3.83 cis Under Clogging Condition - ... MINOR - MAJOR.. ' Clogging Ccattcient- - .- CurbCod= - 1.00 -1.00 Clogging Factor for Multiple�unit Curb Opening or Slotted Inlet .. :. , . CurbClog:.- ` 0.10 _0.10 Effective(Unclogged) Length ,', '. 'L.= 4.50 "4.50it Actual Interception Capacity - - Q.= :.. - - 0.98 3.49 cfs Garry -Over Flow=Opoau_.-0. Oe' 0A0. - 429 cis Summa ;.' t. :.' _ ...:. ... ... .. .. '... .. ,. "'. MINOR . MAJOR otal Inlet interception Capacity,., ... ': Dial Inlet Carry -Over Fim(gow bypassing inlet) ; -}'p. .. A Q ck ..OS8 . - 0:00 3,49 cfs - 429 ifs ... Capture Pemerda9e=QIQ.= :::. ..'. .. .: L%=:::: .'99.9 - '44.9% - n you entered ayame nere, amp me real or mrs sheet ana proeeea to sheet Q-Allow) - - - Geographic Information:(Enter data to the ffue cells):- - Subcatchment Area - Acres Percent Imperviousness = % NRCS_Soil Type - JA, B, C, or D Site: (Check One Box Only) - - Slope (ft/ft) . " Length (ft) Site is Urban ... • X - .. " "Overland Flow - - SiteIsNon-Urban .., Gutter Flow= Rainfallnone on: intensity I (inchlhr)= , • , z + a Minor Storm Major Stone _ .. Design Stone Return Period, Tr = - years Aetum Period One+lour Precipitation, P r = inches Cr= - Ct=. .... -- C3= User -Defined Stone Runoff Coefficient (leave this blank to accept acalculated value), C = - .User -Defined 5•yr. Runoff Coefficient (leave, this blank to accept a calculated value), C c = Bypass (Carry -Over) Flow from upstream Su catchments, c,� " 0.00 . - 4.29 cis .. -gD X4 NA - Analysis of Flow Time (Time of Concentration) for a Catchment:Minor Stone Major Storm Calculated Design Storm Runoff Coefficient,.C.�=. - - - -. Calculated 5-,yr. Runoff Coetficient,'C5 = " Overland Flow Velocity, Vo . .. " . .. Gutter Flow Velocity: Vc = .. - Overland Flow Time; to Gutter Flow Time, to = Calculated Time of Concentration,:T *,= Time of Concentration"by Regional Formula; T _ Recommended T�,- Time of Concentration' Selected by User; Tc = . - Design Rainfall Intensity, I = ' Calculated Local. Peak Flow, Qp . _ Total Design Peak Flow, Q WA _ - WA WA WA WA WA ' N/A WA WA - WA WA WA WA WA N/A - N/A WA WA WA WA WA WA WA WA 0.70 7:29 f minutes minutes . minutes " minutes minutes . . minutes inch1hr cis cfs 1217/2009, 12:13 PM . .,, _._; ALL'OWABLE-:CAPACITY;F,.OR:ONE?HALF OFSTRE,ET;(Minor&,Major.Storrti) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) - ' Project; - College and Willox Inlet ID, A 5 T BACK CROWN Sec-� � _ T, Tue� _ -W Streer r - _ own 6. x.. ' - Gutter Geometry Enter data in the blue cells Maximum Allowable Width for Spread Behind Curb -TBACK 6 0 ft - . Side Slope Behind Curb (leave blank forno conveyance credit behind curb) - SeacK :' 0.0200 R van. / 8. hodz . Manning's Roughness Behind Curb - naACK 0.01 00 - - '. Height of Curb at Gutter Flow Lrne -Hcuae = 6.00 inches Distance from Curb Face to Street Crown, Tcxovm = 37.0 ft ' Gutter Depression a.= 1.52 inches,.... Gutter Width.. W = 2.06 If . Street Transverse Slope .. - S. = 0.0181 R verC / ft. hodz Street Longihrdmal Slope - Enter 0 for sump condition - = So-' 0.0040 ft vert / R.hor¢ - ' Marming's Roughness for Street Section nsraeer= 0.0160 . Minor Stone - Major Storm Max. Allowable Water Spread for Minor B Major Storm' - _ TM�x= -45.01 45.0 ft Max. Allowable Depth at Gutter Flow Line for Minor &-Major Store dmim =1 6.001 inches low Flow Depth at Street Crown (leave blank for no) - X = yes Maximum Gutter Capacity Based On Allowable Water Spread - Minor Store Maor Storm - Gutter Cross Slope (Eq. S7-8) .- Sw= Water Depth. without Gutter Depression (Eq S7 2) y = ' ater Depth With a Gutter Depression -Alloveable Spread for Discharge outside the Gutter Section W (T W) Tx = - Gutter Flow to Design Flow. Ratio by FHWA HEC-22 method (Eq. ST-7). - _ - 'Eo= Discharge outside the Gutter Section W. tamed in Section Tx. _ _. Qx_ Discharge within the Gutter Section W,(Qr - Qx)' QW _ . Discharge Behind the Curb (e.g., sidewaiK ddveways,.8 lawns) - Maximum Flow Based On Allowable Water Spread 101= Flow Velocity Wrttan the Gutter Section_ . `y p. d Product Flow Velody Times Gutter Flowline Depth V'd = Oflt inches inches It cis cis cfs cfs fps Maximum Gutter Caoacitv Based on Allowable Gutter Depth - .. Minor Store Major Storm " .Theoretical Water Spread .. - �. .._. .- . , .- 7TM= Theoretical Spread for Discharge outside the Gutter Section W CT - W) Tx ra = Gutter Flow to Design Flow Ratio by FHWA HEC 22,method (Eq. ST-7) Ec = Theoretical Discharge outside the Gutter Section W. oaried in Section,Tx*H Qx1H = -Actual Discharge outside the Gutter Section W (limited by distance T CROWN) . - Ox = Discharge within the Gutter Section'W A - Ox) .. - QW = ' Discharge Behind the Curb (e.gsidewalk,. driveways; & lawns) QB�CK- otal Discharge for Major 8 Minor Storm Q = ' - Flow Velocity.Within the Gutter Section .. V = d Product Flow Velocity Times Gutter Flowline Depth. V'd = Slope -Based Depth Safety Reduction Factor for Major 8 Minor (d > 6") Stone , - R = Max Flow Based on Allow. Gutter Depth (Safety Factor Applied)'.:. Od = . Resultant Flow Depth at Gutter Rowline (Safety Factor Applied) `- d = ■ _ _ = IlResultant Flow Depthat Street Crown (Safety Factor Applied) dcaoWn 0.0B14 0.0814 9.77 S.77 11.29 1129 43.0 41 0.128 0.12a 62.7 621 9.2 9.2 ' 7.1 7:1 79.0 79.0 5.3 5.3 5.01 5.0 . 20.6 34.4 18.6 32.4 -0293 : - 0.170 6.7- 6.7 29.6 2.8 6.1 -.0.0 2.3 9.5 37.9 - 3.3 .: 4.5 1.7 3.4 1.00 1.00 9.5 37.9 6.00.' -.. 9.00 '0.00 it It cis cfs cis CIS cfs fps cfs inches inches ' vrrnncr yr n-o.am �.-rviuw .. .. .121712009, 12:13 PM Desian Information In - MINOR'. MAJOR Type of Inlet - - Type = CDOT Type R Curb Opening Loral Depression (additional in mrNwian 9" deprenn Whom �Galaw). - .. awc.� _ .. - 2.0 2.0 inches Total Number of Units in the Inlet (Grate or Curb Opening)' - . • _ No = Length of a Single Unit Inlet (Grate or Curb Opening) .. L.= .'5.00 - 5.00 ft . Width, of a Unit Grate (cannot be greater than W from Q-Allovo _" W. _ WA WA ft Clogging Factor for a Single Unit Grate (typical _min. value = 0.5) - CrG = WA WA . Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) CC = : 0.10 - - 0.10 Street draulics: OK- Q <maximumallowaMefrom sheet IIoW - 'MINOR. - MAJOR - Design Discharge for HaK:of Street (from Sheet O-Paak) `. "O, _ 0.70 729 cis, 6.2 : - '18.6It cuterSpread Wilth-.. .: ., - ;'.- .:"" .T= . . ^2.9 5.6 Water Depth at Flowline (outside of local depression) - - d = inches . 0.0 0.0 Water Depth at Street Crown (w atT ) dciiam = inches - -- 0.816 - 0.327 Ratio of Gutter Flow to Design Flax E; _ - 0.13 4.91 Discharge outside the Gutter Section W, carried in Section. ; - Q. _ cis 0.57-' 2.38 Discharge within the Gutter Section W, Q. _ cis - 0.00 0.00 Discharge Behintl Me CurbFace. "' '" -dear= cis , 0.48 " 324 Street Flow Area A = so ft 1.471. -:' 225 Street Flow Velocity , . - .. V. _ fps 4.91 7.6 star Depth for Design Condition - d inches Grate Analysis (CalculateM- _ - MINOR MAJOR Total Length of Intel Grate Opening - .. L = - it _ Ratio of Grate Flow to Design -Flow .. - : :; -. ' ` • ...... ' r .....` ' . F4rners = . - ... - Under No -Clogging Condition MINOR MAJOR Minimum Velocity Where Grate SpashOver Begins V. - fps Interception Rate of Frontal Flow "" W = .. - InterceptionRateofSideFlow . ... - - .. -' _ R.-. ... - Interception Capacity Q(= cis . Under Clogging Condition'. -'MINOR MAJOR "- Clogging Coefficient for Multipl"nit Grate Inlet - - GrateCoef - _ Clogging Factor for MultiplerdnitGrate Inlet. GrateClog= Effective (unclogged),Length of Multipl"nit Grate Inlet . L. _ 8 Minimum Velocity Where Grate Spash-Over Begins V. = - - - 'fps, Interception Rate of Frontal Flow. Interception Rate of Side Flow'R,= .. . Actuall Interception Capacity. .''. "- - Q. WA WA cis Carty -Over Flow= O,-0. (to be applied to curb opening or next E/s inlet) • 'O. .1 WA - - WA cfa' Curb w Slotted Inlet Openinla Analysis Calculate - .. . MINOR "MAJOR ' Equivalent Slope S. (based on grate carry-over) ; "- S. _�j 0.13781 0.0660 11M " Required Length LT to Have 100% Interception - ' - - ... 1: =1 3.871. 16.10 it Under No -Clogging Condition - , "MINOR MAJOR - Effective Length of Curb Opening or Slotted Inlet (minimum of L, Lr) ' L=j 3.86 • .5.00 it Interception Capacity:.. :. .. -: ::. " . . :. - .' .. " Q = '., - .'. 0.701 3.56 efs Under Clogging CondDuo n MINOR- "."-MAJOR " Clogging Coefficient .. . ,_ ' _. .... :. - ' . .' CurbCoef = _`... . - 1.00 .... " .. .:., 1.00 - Clogging Factor for Multiple -unit Curb Opening or Slotted. Inlet - CurbClog = - ' 0.10 0.10 " "' Effective(Unclogged) Length - ..-" .: ..-. ..... • :... .: .. ,. ;.4=. "'. 3.86 .. .. 4.50It tual Interception Capacity - 0.70 ':. _ :325 cis Carry -Over Flow = O,tiaurn-0. .. Q, _ .. - 0.00 - 4.04 cis Summam MINOR - MAJOR - 0.70 .325 Dial Inlet Interception Capacity. r - l " 0= gist Inlet Carry -Dyer Flow (flaw bypassing Inlet); L� L f>. Qe= !~ cis cis ..0.00 '- 4.04 _ 100.0 44.6X DapWre Percentage=0.10.= -{"' 'CX=' 1217n009,12:13 PM Z (local peak flow for 112 of street, plus flow.bypassing upstream subcatchments): `Q z:l 0.60 220 as If you entered a value here, - a . ldp I the I rest I of this s . hoot and proceed to shoot Q-Allow) Geog.niphic Infonnatio-n-FTn—ter am in trietAue calls): Subcatchment Area = Acres I Percent Imperviousness = % NRCS Soil Type =1 IA. B. C, or D She: (Check One Box Only) Slope (ftIft) Length (11) She is Urban: x Overland Flow Ile-ls Ion4Jrban: .Gutter Flow-1 ...... -.1 -3 minorbiorm Majors Design Storm Return Period, T, = Return Period One -Hour Precipitation; P, = C, C, Ca= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blarik.to accept a calculated value), C Bypass (Carry -Over) Flow from upsl;ream.Subcatchments, a, =1 0.001 Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Majors Calculated Design Storm Runoff Coefficient, C Calculated .5-yr. Runoff Coefficient, C5 qvertapd Flow Velocity, V6 Gutter Flow Velocity, Vc Overland Flow Time, t, Gutter Flow Time, to Calculated Time of Concentration; T Time of Concentration b I y Regional Formula, T. Rec ornmended T' Time of Concenti a on Selected by User, t. Design Rainfall lritensity; I Calculated Local Peak Flow, Q, Total Design Peak Flow, Q NIA N/A NIA NIA N/A N/A N/A N/A NIA NIA N/A NIA N/A NIA NIA N/A N/A N/A NIA NIA NIA N/A N/A NIA 0.60 6.24 ninutes ninutes ninutes ninutes ninutes ninutes nchthr IS Ir. - Gutter Cross Slope (Eq.ST-8) - - Sw Water Depth without Gutter Depression (Eq. ST 2) : , . - Y _ ater Depth with aGutter Depression' d = lovable Spread for Discharge outside the Gutter.Section W (T - W) -_ Tx = ' Gutter Flow to Design Flow Ratio by FHWA HEG-22 method (Eq: ST-7) E. = Discharge outside the Gutter Section W, earned in Section Tx %= Discharge within the Gutter Section W (C1T - Qx) Qw= . . - - Discharge Behind the Curb (e.g., sidewalk, .dnveways, 8 lawns) _ CIBACK _ aximum Flow Based On Allowable Water Spread Qr = Flow Velocity Within the Gutter Section - : - V = ' tl Product Flow Velocity Times Gutter Flowline Depth V•d = 20.0 - 20.0 6.00 s.00 - 0.0690 0.0690 . 1.37 1.37 - 2.89 2.89 18.0 - 18.0 0.418 - 0.418 00 ' 0.0 0.0 0.0 0.0 0.0 SUMP - SUMP 0.01 0.0 0.01 0.0 Maximum Gutter Capacity Based on Allowable Gutter Depth Minor Storm: Major Storm Theoretical Water Spread, :. .. . - :. TTTr Theoretical Spread for. Discharge outside the Gutter Section W (T - W)'.. Tx Tti Gutter Flow to Design Flow Ratio by FHWA HEC-72 method (Eq.ST-7) E. = - . ecraticel Discharge outside me Gutter Section W, carried in Section TxTH . _ QxTH' - - al Discharge outside the Gutter Section W. (limited by distance TCRO.) QxP . - Discharge within the Gutter Section W (Qd : Qx) ..:.. Qw = Discharge Behind the Curb (e .,.sidewalk, driveways, 8 lawns) g - Total Discharge for Major & Minor Storm .. - Flow Velocity Within the Gutter Section. ' V = - ' d Product Flow VelocityYimes Gutter Flowime Depth., - V•d = ' Slope Basetl:Depth.Safety Reduction Factor for -Major & Minor (d > 6") Storm : R = Max Flow Based on Allow. Gutter Depth (SafetyFaetor Applied). _.. Qd = Resultant Flow Depth at Gutter.Flowline (Safety Factor Applied) - . - d = IlResultant Flow Depth at Street Crown (Safety Factor Applied) dLROwN _ = 63.5 107.4 0.101 0.056 . 0.0 .0.0 .0.0 F0 . 0.0 0.0 0.0 0.0 0.0 0.0 . 0.0 0.0 0.0 7 0.0 .SUMP SUMP SUMP - SUMP Wit: inches inches ft cis cfs CIS efs fps ft ft cis CIS cis. CB cfs fps., cfs inches inches ' UD-Inlet DP Af.xls Q-Allow .lZ712609, 12:28'PM Wit: inches inches ft cis cfs CIS efs fps ft ft cis CIS cis. CB cfs fps., cfs inches inches ' UD-Inlet DP Af.xls Q-Allow .lZ712609, 12:28'PM H-Curb - H-Vert )N - Lo lG1 sign Information (input) pe of Inlet .. - Type cal Depression (additional to continuous gutter depreeMon'a from'O-Allovn 4eer ` mber of Unit Inlets (Grate or Curb Opening) -, '_ ` ..No - ate Information ; _ ,� ngth of a Unit Grate (G)' dth of a Unit Grate - - - - Wo= ea Opening Ratio for a Grme (ypical values 0.15-0.g0). . - ... , , -. .: -. ,.:. ' ' .... :` :' '• Ace egging Facbrforn Single Gmte,(typiealvalue 0.50 070) .Cr (G)- ate Weir Coefficient (typical value 3,00) .' ` C. (G) = ate Orifice Coeffclerrt (typical value 0.67) - -:.Cie (G) " ab Opening Infomedion -.. ngth of a Unit Curb Opening: .. 4 (C) F tight of Vertical Curb Opening in Inches - H_,, tight of Curb OrBbe Threat in inches H"'Oa = igle of Threat (see USDCM Figure ST45) _ - Theta = :he Wirth for Depression Pan (ypirairy the gutter width of 2 feet): .. Wo = ogging Factorfor a Single Curb Opening (typical value 0.10). - G (C) _ ab Opening Weir Coefficient (typical value 2.303.00) '_ _, .'' .' . ,...C. (C) _ nb Orient. OrificeCoe6icieni ftvoicel value 0.67) - C. (C) _ 'CDOT/Derwer l3 Combinatior, 2.00 2.00 .2 2 3.00 - 3.00 " . 1.73 - - 1.73 0.47 - 0.47 0.50 - .0.50 3.00 3.00 0.57 0.67 MINOR MAJOR 3.00 3.00 f 1 0.101 0.101 multina Gutter Flow Death for Gran Inlet Capacity in a Sumo - MINOR MAJOR oggtng Coefficient for Multiple Units `. :;- ; :....• .. Cost = 1.50 - 1.50 ' ogging Factorfor Multiple Units - Clog= 0.38 0.38 : an as a Weir- The Controlling Factor Will Be::.. Curb Opening as Weir Curb Opening As Weir. aw Depth at Local Depression without Clogging (0.6 efs grate; 0 cis curb) ew Depth (Curb Opening Only) without Clogging (0 sfs grate, 0.8 cfs curb)' )w Depth at Local Depression with Clogging (0.6 aft gran, 0 cfs curb). - '. : d.. _ ow Depth (Curb Opening Ony) with Clogging (0 cis greet, 0.6 cis curb) '., dw. 6.10 5.17 7.71 6.31 inches inches inches inches '.-MINOR MAJOR - Fbw Depth el Local Depression without Ciogging (OS cis grate. 0 cis curb) : "d„ 0.54 2.54 inches Flow c w Depth at Local Depression with Clogging (0.lsgrate..0 cis curb), • .: - dw = 0.74 3.28 arches Resulting Gutter Flow Depth Outside or Local Depression � ' - d,o.+, = :0.00 3.31 inches Resuftinte Gutter Flow Depth for Curb G ni Inlst Capacity in a Sum MINOR `MAJOR - CbggingCoefficientforMWBdeUnits � - Coef= - 125 - � 1.25 _ Clogging Facbrfor Multiple Units clog =1 0.06 Curb as a -Weir, Gate as an Orifice. - .. • MINOR 'MAJOR Flow Depth at Local Depression without Clogging (0.46 cis grate, 0.14 cis curb) - da = 0.45 - - 2.09 Inches - Flow Depth at Local Depression with Cbggmg (0.4 efs grate. 0.2 cis curb) . ', �, _ '.0.661 2.63 inches Curb as an OMes. Grate u an OMca_ - MINOR MAJOR Flow Depth at Local Depression without Clogging (0.6 cis grate, 0 cis curb), dw = 0.54 2.54 inches Flow Depth at Local Depression with Clogging (0.6 ofs grate, 0 ds curb) de, _ _" 0.74 - ' 3.28 inches Resulting Gutter Flow Depth Outside of Local Depression: d.i.n = 0.001 128 inches Raaulnnt Strsat Condit'cns . .. .. _ - MINOR. •. .MAJOR . Total Inlet Length _ `: :. :.•: .:- .- L= 6.0 - 6.0 feet . oral Inlet Interception Capacity (Design Discharge from Q-Peak)' ., _„ �0.�=- 0.6 6.2 cis ." .... F!"uhant Gutter Flow Depth (based on shoot Q-Allow ..::. 'd= - . ..'•0.00 3.31 inches. _ - Reculnnt Street Flow Spread (based on shoat Q•Allow geometry): :.T - - OA .. 28.2 feat Resultant Flow Depth at Street Crown' - " dcawnr=' 0.00 0.00 inches - ' - 12J72009, 12:28 PM .'UD-Inlet DP A-6.xls, Inlet In Sliinp No Text O n. w IM ID i � Lo m > v'Q' q E m o " m in m m c . of W m o i IL m m F I O o o 0 o 0 0. 1 _ . .. J.1 i� 11 .`.I �o •. I .. ' a a 4-4' �I o o N .- .Ln M i� b �. i o o o o 0 0 0 i E i�".c M .M Lo 0 m ro— r-I y m Yl . 'I ... ... r l H a) I t . . . . . .. . W' I.O O'O O O -1 a) H 1 O'ri-H N N.M M M I . - 7.0.—. I 1 7.'O Ji'JJ.'. I: m m-m m m m m m I. A '-I G O O D O O O I Y' ''❑� I '. I O U I •' I 0000000:1 I I — I - r .,m H m .1-O O O"O O O.O. I 'H..--1 I "c P .O G 7 ,I �-- �. I r-1 .--1 '-I '-L:rl' 1 U� �.' I `. m C Lo m C m m I ~ r IO mI r m l0 m N -O M I .. . . I O. U . .ro W 11 Z. m I:'.--If-1.-1NN M.M M 1 7 N U W I I ro.(0 H -W.I m m m m m m m m 1 G] H H W W I, ... 1 OO.O.00 OO 1 - .I 1 m I N' 1tl N O' W: 1 O O O O O O O I'. I M .--I u-) M N" O m O 11 N '-I N.+P 'I'. r Lo,r �O IO m O l0 I. m O-.o LL O am U. 'I ,- I b,-i m I I C E >, `-' 1 ..-, ,.-_-. I -. ro U\ - 1 r-M In m O' N H N .I, W II O I..m:'-1 H: O W m- • — .-- - I .' •O .I O O O'-O O'OO.I I � I � p m l 0 00 0 0 0' o I —.- -- - — — —— - 1 0 - ".--I - I O O--O' O O O I -. r1-- � '� ':' I'.r O r -r O O O O 1 .. -� ro'G) m 3 m ;O' I I .i- .-I -m 3. 1 N N. O N N m Ol r 1 _ h O IP -O y.0 O W': H H U. I - 1 '1 -. I O ro 1) O m i 11 m .i W .1 •. • I C �Dm O'a' m .--I c I II E m 1-4 . � .1 I ... O G+ U P 1 .... E E. m —,— — — — — I H 'm II - '.I ''-I .'P' •. .i. �. - - I 7'0 W ' II — --- --- --'1 .C'-�. .. I00000�000l. roro� 0 H - m I - 1 U' 0 0 0 0 0 0 0 0 O: I 1 0•> H C''W -1. 01 1- m.N .[T m 0 1 A "'m H' m .. . II = •• C-- : co '1 H.H,ri I .- H''-I .r-l:5 .: O ..1.. '. . I - 11 '>1 O- �5 - .. z I Z. 7"7 7°7 I {� ..I'• H H`.H-H.H H H H 1 -.I m .i - fl� - '+J I m ro ro.'m- ro' Ira ro I F `C.:. . I m m m ro• m ro ro ro I .1 m 2 O m -. I w w w w w W W i W O m 1 H H--H H -:--I .-i :--I H' I 7 'O II •0: m .: 3 r1 - I m m- m m -m' m m l _ Z - -H a .'1 7 7 .7 : 7 7 7 7 7 1 -ro m II - m H 'O E '- C I❑❑ 0' ❑ ❑, ❑❑ 1 -P ro I' U U U U U U U U 1 H H - -- 11 1J m m .. W, - -H "1 ' , .... I r `U W U .0 .. •.1 H H H'H. H H H H 1 - •O U u o w> .-' z I: U U: o U U U 1 U m ,m H-a -a -.� -H -H -H -H 1 >, E II 0,.•+ m 1.-.I- --li -H-- -H 1.. a m UU.000UUy I. m •'I . I H HFH 1 1 m ' U I m a) m..m m- 1 - C. — - — — _ — —I - E0 rC 1 C C'-CC C C C O. 1 01 O L .. m m m:m m m m. I 0 tJD 0 UO. u m C _. t 0', I U U U .F U U U U O m_ O - .. 1 I. O- -d m I .. C" C C U C C C C I -O •H T, m ro ro- : N — — — — — - — — — — I _m - u N '. I'^rl -:i--.i C -H -1 -H -.i 1 C W - II m: C 3 E II za z wW. �N,,J+ I a 0 cn m vm�'-aam.ml o> o II: m m m m m1 . O' CO, I N f-I N m'N N H H I H, m II m m -U [s. ,'I '-I 'i r-I H '-I '-i .-I- I Ga I I U` -1 m- II U U C- I C C C"C C. C- C: I r II W W ai m m - I H H H - : -' -• H a '. -I U U U.-i U , �. .a) C '.. I'. .. f .. O m' m > H E ,i: -H I H H H.. H H -H I £ W .i I I N = - ...0 A C O _ .H :I m m m--m m m-m. I 'b E 0.41 1 .. I .i ro L v_a m 11 o 7 7 O '. cIf). C C C. C C. C. 1 N 7'i., U I' 1 4J m U IO 1 . n 'o m. m U -I m m m_m m m m' I z m 1 .1 0 >, v E 0. 1.0 (9 U..(9 u C7 U•:I -O m .. E m' Cm o H "H H H 'a ml :I a m - -.'I I m O.q 0 II.m �• D A I r t0 M.'.I N v �q:-I .' O' A l .N r N m.M c lD a) I A U m 0 11 G n n n U ro I I. I I :I I I I I U ro I I I I I. I I- I I 1 faD t` a H t<C:taQ;a a a m�N ..' n U n..nn a I 1 ..-.-�' ';. I;waammwmm I' IIm :n .n n. -. U _.-----. I .U'-. —, --. _, _.-.- --- ----. -- F x�. a� N 0 o�- 0 0 (7, � .. M k N m �1;a N > C 0 O Q N E': m o c m m lL a CD CD CD • N N N O C. CRC O CL N C9 a am C .. o 3 W N C n 0� m it I O m v'-c' In m e m.m '1- II - Y I r O r m l0 m N O'M1 ' II o " O '. ".-., '.W I m m m-m m..m.w-m mil - II .. _- O W- I i II � � . .t-• n. I O N N M M M M 'I ' m m-M w m m m. m m m m. l 44 1 C W' - I. .I6 - I C r-I M m i0 In m . •..� I M-M'M"M M N M M'•:I "- :II. 1 m w m m m w m m m 1_ m It. N E W I ' . I II '-1 _ . 0 .. ' N I I II' O - m co XO 0 N N m 01 r,1' II'O '„ ->_9qa _ . .-I W 1 a.. C l0 -m O C m r-I I II N > O N 0 OCN 1: I' II •m O N 0l I ri'ri`t0 N r c N M r-1 1' . II, rl U m 0 onFCC 'CC a.aa.a.1 u•.e d :o LO a c O O O J�fn O �C O y'€ ' � C apO:OpOOV� rpp Z .Qw-- c is •.N =.:j ,.. N t � NO �OJ C M1aopor ���� OCM � '' yLr �afNN � - to {r NO J J�O ice, _0co N oO m - tp' r Wit} LL R yy A' O O ` L �F 'Si O - . a [ j U o'. x m a CD CD OfrnO C� cn fn ,,GC 06 AE V ' � d _ a MiE Lluai f7 (i`tA. G Q(n'W �0 .. - � .. - O U •_ - ' Qo �rnrn i �3 3 c000- IL o C,5 .. y: O O G� ,. E ii --�E� N r` 0 ch N CD n 0 Q:M .. .. 00 Q CD CD. a): ca; - - .. .. O .. 00 00, LO r- p 'tot t rOOC CN: O, a ro00ocoo C 1 L.L cc. p Irr� i�� ,C C rn r.�_ N 'S.Y :gym > ) cnu�. co U Y. w C O N M i FIF0 o LO o,0 0U� 1 L� a W �>a N > o Q -. .. 0cc N€ 1 m o . .. p: W .. LO 1 _0 a W C. m Cl CD i LO CO c 00 LO o , a _. o 0 1 sIVD m. n 1 i m r + 1 co �p �'� c- co°'�" �` a �.. 1 L � L O •O u L ,< � a 1 0 Co 5 0 0 0 Cl rl00 CL N 9' m 1 .. E - N N 1 T N O i N m m 1 0 -D 3�(. o DEN 1 CL zol o c o N � 00 m C N g,6 a c U . N 1 - _ a oco V i � .....: .. �F CD: CD LU `Al N �, .. coO. + � � E CD Cl O;.' ._ m. - lA .. m O.. co a. O O - 1 LU) 1 � ' O m O. o O U o, o 2 C7 0 m� 3 a. ob U w o a m m � C O � Ill tll 9 O y a N' d m Co O t T � O t•N O' 20 c0a N . 4) N a) C ' D) m. .. �, O EL : 0o0o000I (D . 11W L I '. 'L1 aW LO .. -I- I'O I 1 -'1 0 0 0 00, 0.0 :1 1 "E I 1 O -N fa: ', I. O O O O O O' O I U N I O� N N m(`-1 • .... 1) H W " I O O ^O O O O 1 H a)' H 1� M 0 0 0 0 0 0 I . : .: - -'a •�. .' ,0 I ,:.. I 7 D w., 4-1;, 1 r .m m'•m m'm m m' I . .: _ ——' 1 1 T:... .. .. G. . - - -• •. 7 -H:—: "I U' :I N O M Lo m '-1.--1. 1 N U dP 1: -,:: Ei. 1 ..1 a) CO --_I O N'N.IO'LO m r m I . . . . . . . I 1.0 O U W I '. I : -ro H W ' .I m m m m m m m m I _ O W 1,4 H H-M W,I" �a i'.iJ.. 04 -I --- 'N- al aJ O 1/1'- 10 0 0 o C) 0 C) 1 '1 1.— 1. I� C- r Ol r M .-i.1 M .1- I C .. JJ ro .-1 " 1 .a1 .41 .I . N -lO o.lO r o ,Ol c 1 LL II E T 1 I 'to U-\ 1 • C. 'H 'O W IIt f a)m2 O 1.0 0 0 0 0 0 - — I_ O II II ':. 4-1 Ha �'IoOO.00.O.oI , 'H1 C.I`r or.r o 0001' m 3 a1:I - 'I .. 1 r1 .a).3 :-. I v' W m N H_N N I - I_ w U o w :I I 'O ro W. O m 1 1 - 'll O H .i U' I' I JJ W: rl W" I ... l0 O 10 O C t`') o H I -- 'it l 41 : f : 1 E' E+ m `-' I I- U O C P l 'S. � W .-. •.I, O O C]_O -0-O O O I .. H H II. I, op tlP:tlP dP W tlP dP' I H b+ 1.1 'I 1 r II � 1 00000.0'O I -H CW 'I �r 01N mtnC mO 1 T : '. .. : ...I . II � . W �. - l - � .. :. I - _ W '.J '. ; .. C — — _ _ _ _ — _ _ — _ _ 1 �• • _C " m. I-"rl '-I H,H H ri,H •.'I O � t'I - ': 1 U m ' "II '(0 -0_. (a 10 M CO ro ro ro (0 (0 ro,'I El. __ 1- (a. co (a ro I ro H al i w w w' w w w w 1 w O N 1 1: 1 1' f % 1 1 rl ` .--1 .Z .-1 rP .-i .=1 I a -O II' •O. N 3 H I a) m; d" a) a) a1 N" I Z -.i a - I'. 71 7 7 7 7 7 1 ro ro II N H •a) - E - C :.I ❑❑❑❑ ❑'O'❑ 1 W.ro .'1, 0 0 L) U U U U U U U U I H H W:N N'--- - W. - H. 1- - .' '1 W . a) r.... .I' H- H tl"H H N H• H I •O C9 n oWa) z rUo'!_HU:o.or c am I' -H - -a- -a -a - - 1 T E II - -. O .a a) '- I .i -'4 -.-I 'f4 -H. I Q,' N. It - .a -ri4 w 14 W H H I l H H H" H [u I. f ... m .C::. U : a) :'I -a) a) N.a) a) a) aY:a(Y. — — _ — _ — - — — — — t — — II 4 V),I ro - -' . -C C C. C C: C C 1 -1, a) N m"a1 N N '() 'I - U) -N' I. C. - I 1 ' .0 .0 .0 A'F L t I C. m O T 0 > C+ a -I U.U,C7 .0 L9 0 0 1, '. W.. O. - - I U U U t U U U U 1, -C' O.. r .. ." d :.-• .. :: 1 - O - 4 a) `.. I C C .U"C. C C C 'I V •.-1 m - II N.. ro . N' U) — — — _ —..— — — I . U) y- N. - i -.�. -H _H " G -'I -.♦ -It ' 1 .1 ' - G W u. oC3_ " ' 0- oro E ... f rJJ ,� w, aJ -0 w.w-'..1 :-a (1)'1c, -" m v' c a m m' 1 o > al O I.a)' N N N a) a) N-I O. m .I'-N H N m'NN H H I Ha) N .11 a) N U • .. Ga - 11'.' _:: .0 U C - i t C.C: C C C C I - — I w . .O! II. ro'ro a) >a 1l I I - .. II - • W W O a a) a) I 1 LL'' ,' m I .ra H .-1 .y . N ri .-V ti• I — — N H. H H . 1 a '. I U U' U U U U C) a H- -. C I I K 8 -. . 7 .7 a) > - C T ? .i .i -. -H rI H H 1 H H 'H. H H 1-1 "'41 I ,.. $' a) O 1 A w I- - I O i . ' It m .a) V) A A C: D - H E ''I .1 N a), a):N a) a) a) 1 .�: .:3 .i E 0. 1� 1 '. 1 ro iJ N.a '... �. 11' >+' _ 7 7 O '.W -1 •C C C.0 C n I. m m U (I),- I . ar:d a) a) .a) N,-I z d r o T a E Lo -1 C9 C9'.C9 '17 U' C9:.:(.7 I .. Z '- W P I E. m c 6: . O - I p II. 0 0 0 _ _ —. _ __ — _ _ — — _ I — — O N -.0 C C ... ..� N O) O If ro O A " '-I• r lI lI rI N C' II �I O A I- rI r N m. (+) _L1 -1 1'. A (D it Ann -Uro I' I I,II 11 I 1 U ro 1, I I' 11 f• 1 I I •I I, ro �r N - n n n r7 t7 '1 H.a a a a �-. I :' t7. i-7 . I' .d d a Oc'a 'd LL. d I .7 m O .II U'-,. nnn_ .. '�.•1. L) O) ui m Lo m p . c m c c d a _ n ICID 1. Lh 0 04 .. Q �' '. W ..-• •• L CD O a U 8r �3 W v 10 " 00.. II. O ° I II ' 1 O N O m In m fi '-I H. Y 1 O. O N N LO m r m I _�°' m m :m;m m m m m -:' e - . N W I ,r ,I :: 'll :. _ L - C. I itit -- ----.---.-- N 1 'N m.000.N OO O O 1 II - - . m%m,m m m mm 1 II It - - - J-I I m m.'m m m.m m.m'm I'• II N - .. E - 44 I '1• Il��o m. m m . m.N', l0 H N'N-_I, IC-O —'O d , Ifl Dc f`') O H', I II N E' 1D. f� — --- --- I II _ al Q) m a. H' m In :r C'. N f`'/ . - I.10 h. 4c r1 H' aC<<<. J 1 CL LO �U)L. HL6a O (D :. ) �MFjco 1 f, . _ .. .. CLI co O '- . .. Cl) Cl 1 - . ui '. .. � � n . IL CD m: 0 1 _ N 1 = jc �r co o O� O � r n M = o, C) co L� � �' N o CL o� a w O. a c •y—_ N 0 o� m 'o nn c o. O o co o - o C3 N E N 1 E m ' 1 N a;� -Da 1 O' 3 u o . o, v E77 1 aN� �o N .N.. m C N CO O N d m > - - L) m o ' 1 c a c _ W U m '. a c m ro. 0 W r'?..o o Q�� 1 ..00 Q. N. -CD co, CDO O fD O 0 1 Lfi co CD to Q; LO d��oo0orn Co O HO CD N_ N ^ Q �I co .0 C9 a m"Jp co r 1 0 E0 0 0 co `. $ m ... i U 0 L = 1 m _ m m m 1 0 T- E w 1 - m ' T � 1 m m .. Design ow:.ONLY [falready determinedother me " Minor Storm - Major Storm _ (local peak flow for 112 of street, plus flow bypassing upstream subcatchments): : - - : `Q = 0.501 2.10 efs If you entered a value here, skip the rest of this sheet and proceed to shoot Q-Allow)' -Geographic n ormatlon: nter data. in the blue calls):. Sub catchment Area -Aces - - Percent Imperviousness = % - NRCS Sol[ Type = A, B, C, or D :.Site: (Check One Box Only) - Slope (ft/ft) Leng[h (ft) Site is Urban: X -Overland Flow = Site is Non -Urban: .' .. _ - , Gutter.Flow . --IUffirall Information:.Intensity I (mch/hr)= ., _ , C2 +: 3, _ .-.Minor Storm MajorStonn ' . Design Stonn Retum Period, T, _ .. years Retum Period One Hour Precipitation, P, _ . - iris ... .. Cz= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value),;C = User -Defined Syr. Runoff Coefficient (leave this blank to'accept a calculated value), C a = - .: ` _Bypass (CarywOver) Flovirfromupstream Subcatchments, Qs = - Rol 0.00 cfs Analysis of Flow Time (rime of. Concentration) for a Catchment::... Misr Storm Major Storm _ - Calculated Design Storm Runoff Coefficient, C = -Calculated Syr.. Runoff Coefficient, C5 = ' - Overland Flow Velocity, Vo = Gutter Flow Velocity, VG " Overland Flow Time, to = Gutter Flow Time, tc = .. Calculated.Time of Concentration; T � - _ Time of Concentration by Regional Formula, T� _ Recommended T� _ - " . ✓ .Time of Concentration Selected by User, T, _ .. r::Design Rainfall lntensity,.l= .Calculated Lail Peak Flow. Qp.= ... Total Peak Flow,'Q = NIA N/A N/A NIA N/A , - N/A N/A N/A N/A N/A - 'N/A N/A .' N/A - N/A N/A NIA - ; N/A : - " N/A NIA NI N/A " NIA N/A - N/A 0.50 . 2.10 fps " fps . minutes minutes minutes minutes minutes minutes inch/hr efs ' cfs 12/8/2009, 11:56 AM . Gutter Cross .Slope (Eq. ST-8) -: Sw= 'Water Water Depth without Gutter Depression (Eq. ST-2) _. y Depth with a Gutter Depression. • . ... ..'d'= -Allowable Spread for Discharge outside the Gutter Section W (T -W) - " ` TX = " - Gutter Flow to Design Flow Ratio by FHWA HEC 22 method (Eq. ST-7) Eo _ ' - Discharge outside the Gutter. Section W. carried in Section Tx Ox - Discharge within the Gutter Section W (Q;', Qx) Qw = . Discharge Behind the Curb (e.g., sidewalk, driveways, 8 lawns), " OencK= .. Maximum Flow Based On Allowable Water Spread: - .; QT - Flow Velocity Within the Gutter Section. ' d Product Flow Velocity Times. Gutter Flowline Depth V•d = 35.0 35.0 6.00 9.00 0.0842 - 0.0842 8.78 8.78 .10.30 10.30 33.0 33.0 -0.164 - 0.164 39.3 39.3 7.7 _- 7.7 45 - - 4.5 '-Slit - .'� 51.5 .-5.0. 5.0 ' 4.3 ". 4.3 Wit inches . inches R- - cis cfs CIS cis fps Maximum Gutter Capacity Based on Allowable Gutter Depth - Minor Storm Major Storm - Water Spread TTi = 'Theoretical eoretical.Spreatl .for Discharge outside the Gutter Section W (T.- W) TxTM= Gutter Flow to Design. Flow. Ratio by FHWA HEC-22 method'(Eq. ST-7) .. E. = . : reticat.Discharge outside the Gutter. Section W, tarred in Section T xis QXTH _Actual Discharge outside the 6tier Section W (limited by distance. T ) Qx-= Discharge within the Gutter.Secoon W (Oa - Qx) Qw = Discharge Behind the Curb (e.g., sidewalk, driveways, 8 lawns) 08AM = -Total Discharge for Major& Minor Storm Flow Velocity Within the Gutter Section > -'. "' _ V = d. Product Flow Velocity Times Gutter. Flowline Depth V•d= Slope -Based Depth Safety Reduction Factor for Major:&Minor (d > 6') Storm R = Max Flow Based on Allow. Gutter Depth (Safety Factor, Applied),., Qa= . Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) . ., d = Resultant Flow Depth at Street C own (Safety Factor Applied) dca' = 179 29.8 15.9 . 27.8 7-.•.0.331 ,0.194 5.6 25.0 5.6 - 25.0 2.8 6.6 0.0 - 2.2 8.3 - '33.1 '.3.3 .. 4.5 " -1.7 - -" 3.4 '• 1.00 1.00 8.3 . - ..33.1 r 6.00 _ 9.00 0.00 ' 0.00 R R cis cis cis cis cis . fps cis inches inches . Deskm Informatlon MINOR MAJOR Type of Inlet Type - CDOT Type R Curb Opening �'a'from'O-Alow) Local Depression(addNoral to cantimus gutter depression .' ', aL = . " 2.0 2.0 inches Total Number of Units in the Inlet (Grate or Curb Opening)' - ' .No = '.1 •.1 Length of a Single Unit Inlet (Grate or Curb Opening), -, _ - _ __ to = 5.00 - 5.00 ft htlth of a Unit Grate (cannot be greater than W from O-Allow)' " W; _ .WA WA ft Clogging Factor for a Single Unit Grate (typical min. value = 0.5) . , ErG = WA -- WA logging Factor for a Single Unit Curb Opening (typical min. value = 0.1) ' - 'CrC = " - . 0.10 " 0.10 Street draulics: OK - 0 c maximum allowable from shee love - - MINOR MAJOR ' Design Discharge for Half of Street (from Sheet Q-Peak) ,. .. , . 0.= .. cfs . 0.50 2.10 Water Spread Width .. .. ` .T = ft . . 4.5 .. .. 10.0 Ater Depth at Flowline (outside of local depression) inches _ 2.7 4.0 Water Depth at Street Crown (or at Tom) - - - ticsoan = inches - 0.0 0.0 Ratio of Gutter Flow to Design Flow - - . .' _ 0.918 - 0.574 Discharge outside the Gutter Section W, canied in Section T. C. = cis . 0.04 - • 0.90 Discharge within the Gutter Section W . " 0. = cfs 0.46 121 Discharge Behind the Curb Face .. cis . U. .0.00 Street Flow Area .. .. -. . A _ . sq ft. . U.34 1.17 Street Flow Velocity ... - - - V._ . 1.47 - 1.80 fps . Ater Depth for Design Condition .. - dmci = inches 4.71 6.0 Grate Analysis(Calculated) - MINOR MAJOR Total Length of Inlet Grate Opening . ..-. .. Ratio of Grate Flow to Design Flow. - . F-ocaeTs= - ... .. ' r Under No -Clogging Conmtlon -MINOR ' MAJOR Minimum Velocity Where Grate Spash-Over Begins . V. = - fps. Interception Rate of Frontal Flaw Interception. Rate of Side Flow: R _ " Interception Capacitycis Under Clogging Condition MINOR • MAJOR Clogging Coefficient for Multiple -unit Grate Inlet ', . " :' GrateCoef = - - Clogging Factor for Multiple -unit Grate Inlet- ,. "" GrateClog= Effect" (uncogged) Length of Muttiple-unit Grate Inlet ft Minimum Velocity WhereGrate SpashOver Begins Ve fps Interception Rate of Frontal Flax: W = - Interception Rate of Side Flow: - .. R._ Actual Interception Capacity q e . �. WA - WA ctt - Car -OV r Flow = Q.-O. (to be applied to cum opening or next des inlet) Oe - " N/Al N/A cfs Curb or Slotted Inlet Opening Analysis Calculate ,,. .' ..MINOR'' MAJOR - Equivalent Slope S. (based on grate cartyover) _ _ ,. ..- g� _ 0.15551 0.1051 flB Required Length LT to Have 100% Interception ' Lr =1 3.121 7.22 ft Under No Clogging Condition - - - MINOR , :MAJOR. Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT) L 3.111 5.00 ft Interception Capacity - , - - .. a = 0.50 - : 1.85 cis . . Under Clogging Condition' MINOR .. MAJOR - - _ ... _ .. - Clogging Coefficient: : - . ' .. - CurbCoef = 1.00 • ..1.00 - Clogging Factor for Multiple -unit Cum Opening or Slotted Inlet - CurbClog = 0.10 - - - 0:10 " Effective(Undogged).Length __.. .. .4' - '.3:11 4.50ft . _ ,.. ... Actual interception Capacity Q. = :. 0.50 . ' - 1.74 cfs' . Carry -Over Flow=Qp $ De= .. 0.00 0.36 cite Summary- MINOR MAJOR , Total Inlet Interception Capacity r .....' .. Q = otal Inlet Ca y-Over Flow (flow bypassing In �'lp �'A. " :.�� L2 Qi= cis ft o4 : -0.50 .1.74 0.00 - -. 0.36 Capture Percentage=O,IQ,= :.... .:. ' �-` . : ". :,..;: � ' �' � '.. CX= % � ". � �100.0 � . - �..: ;' 82.7 12/a2009, 11:56 AM DESIGN PEAK FLOW'FOR ONE HALF OF STREET BYTHE RATI(?NAL METHOD Site is Urban: X Overland Flow = Site Is - _ GufterFlow—1 I- Rainfalln rma on: Intensity I (inch/hr)= , + a' Minor Storm Major Storm Design Storm Return Period, T. = years - - : - Return Period One -Hour Precipitation, P, j= inches C,' .. - . C= - :- C3= . User -Defined Stotm,Runoff Coefficient (leave this Blank to accept a calculated value), C = - - • User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated.value), C s = .. Bypass (Ca -0ver) Flow from u ' ream Subeatehments, %= 0,001 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: - Minor Storm . Major Storm .. Calculated Design Storm Runoff Coefficient, C:= Calculated Sryr.,Runoff Coefficient; 65 =. Overland Flow Velocity,.Vo = Gutter Flow Velocity, Vc = . Overland Flow ,Tirne, to = Gutter Flow Time, to = - - - Calculated Time of &mcentmtion, T on om = Time ofConcentrati by Regional Formula, J, _ .. Recommended T. = - Time of Concentration Selected by User, T. = Design Rainfall Intensity, I = . Calculated Local Peak Flow, QP�= Total Design Peak Flow, Q = WA WA 1WA WA WA WA WA WA WA WA •-'WA - WA '. N/A WA WA WA WA 77A WA WA WA WA WA WA 0.70 3.26 f fps minutes minutes minutes minutes minutes minutes inch/hr cis cfs UD-Inlet DP. C-2 nds, Q-Peak 12/812009, 11:59 AM . -- _ . - - t...=.moo .ay na a mono aim nnuwam= rauw aicpm auu upreaut - projeet < -: - College and Wiilox - InletlUE .- - C-2- .. .., TB/,CK. TCROWR Sex��. T. T.A. K W-�-T Hcuae _Matreet .. town S ..d r. Gutter Geometry Enter data in the blue cells _ .. Maximum Allowable Width for Spread Behind Curb - Tmm 5.5 It _ - Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Sever 0.0200 ft vert I ft horiz - ' - Manning's Roughness Behind Cum . _ K D .. - . Height of Curb at Gutter Flow Line .. H m- 6.00 inches - Distance from Curb Few to Street Crowd Tcaoxri = 3Z0 R - . Gutter Depression a 1.52 inches" ' Gutter Width ..W :..2.00 ft.. .. .. . _. Street Transverse Slope - Sx O.D204 ft. vert 7 ft honz . Street LongitudinalSlope-Enter 0 for sump condition' ` • So = ' 0.0040 It. vert / ft. hortz ' - Morning's Rougfinessfor Street Section - ny-mem 0.0160 - .. Minor Storm Major Storm Maz.'AllowaDle Water Spread for Minor& Major Storm - - T. = 35.0 35.0 ft' Max. Allowable Depth at Gutter Flow Line,for Minor & Major Storm d,,=1 6.001 9.00 inches low Flow Depth at Street Crown (leave blank for no) i X = yes Maximum Gutter Capacity Based On Allowable Water Spread - " Minor Stonn "Major Storm , Gutter Cross Slope (Eq .ST-8) , _ Sw Water Depth without Gutter Depression (Eq ST 2) - y Water Depth with a Gutter Depression d Allowable Spred for Discharge outside the Gutter Section W (f - W) .. _ Tx = - Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) ..EO = - t Discharge outside. the Gutter Section W, tamed in Section T x - Discharge within the Gutter Section W (O7 Ox) Uw = _ - Discharge Behind the Curb (e.g.. sidewalk, driveways, & lawns) ... Qeecx - Maximum Flow Based On. Allowable Water Spread.. Qr= - - Flow Velocity Within the Gutter Section '; - . V ' d product Flow Velocity Times Gutter Flowime Depth, V'd RM inches inches ft cis cis cis cis fps MmimumGutL;iCanaeftyBesadonAlloviableOutterDeotfi Minor Storm - Major Storm - Theoretical Walls. Spread '. .. .". . .. - -.. Tin Theoretical Spread for Discharge outside the Gutter Section W.(T:-, W) .. Tx in = . Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) .. Eo = Theoretical Discharge outside the Gutter Section W. Carried in Section Tz1H.-, '. .:DzrH = Actual Discharge outside 1fie Gutter Section W (limited by distance T CRovm) , ,. Ox . Discharge within the Gutter Section W (Oe Ox) Ow = Discharge Behind the Curb (e.g., sidewalk, driveways. .8 lawns), 'OeeCK = . .-Total Discharge for Major & Minor Storm -- - Q = - Flow Velocity Within the Gutter Section._ -:V d Product Flow Velocity Times Guaer FlovAm Depth V'd - Slope -Based Depth Safety Reduction Factor for Major & Minor (d 2 6') Storm - . R = - Max Flow Based on Allow. Gutter Depth (Safety Factor Applied) ".., - - -Oe = - Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d . Resultant Flow Depth at Street Crown (Safety Factor Applied) - dCROw 0.0837 0.0837 . 8.57 '8.57 -� 10.09 - -.1 C.D9 - - 33.0 33.0 0.165 - 0.165 37.8 37.8 7.4 7.4 4.1 4.1 49.3 49.3 4.9 4.9 4.1 4.1 - : 18.3 - 30.6 16.3 28.6 0.324 - - .0:190 5.8 25.7 -. 5.8 25.7 2.8 :. 6.0 0.0 - 2.2 8.5 33.9 3.3 4.5 17 3.4 -1.00 1.00 8.5 33.9 6.0 - 9.00 7-7 0.00 " 0.0 fl ft Cfs . cis cis cis Cis fps Cis inches inches bastion Information (Invi MINOR MAJOR . Type of Inlet.. Type = . COOT Type R Cum Opening Local Depression (additional to mntlnuous guaer cepressbn'a' fmm'Q:Allovt) aLaµ 2.0 2.0 inches otal Number of Units in the Inlet (Grate or Cum Opening)' . • . -... - - ' No Length of a Single Unit Inlet (Grate or Curb Opening) . _ ..L.= 5.00 S.00ft Width of a Unit Grate (cannot be greater than W from Q-Allow) W. _ - " WA WA R Clogging Factor for .a Single Unit Grate (typical min. value .= 0.5) Ci G = WA WA Clogging Factor for a Single Unit Cum Opening (typical min. value = 0.1) - CrC = 0.10 - 0.10 Street Hydraulics, OK - 0 <maxlmum allowable from sheet Ilor✓ .. - MINOR . "MAJOR - 0.70 3.26 Design Discharge for Half of Street (from Sheet Ofeak) ,... " Q, = cfa --5.8 12.3it Water Spread Wilth ::. :-; : .., .; `_ .. :'. ..: ... :: T=. 2.9 4.5 afar Depth at Flowline (outside of local depression) - d = inches -- 0.0 0.0 Water Deem at Street Crown (or at T,,,,x) : -- d _ inches - .. 0.837 0.478 Ratio of Gutter Flow to Design Flow .. .. F- _ " 0.11 1.70 Discharge outside the Gutter Section W. carded in Saction _ Q, _ cfs Discharge within the utter Section W Cy = - 0-59 '1.56 cfs - 0.00 0.00 Discarge Behind the Cum Face " ' - - - ^ O . = cis - - 0.46 1.67 treat Flow Area - - - - A. sq ft . 1.51 195 Street Flow Velocity V. _ •tli� fps - 4.9 6.5 ater Depth for Design Condition - ... = inches' Grate Analysis Calculated 'MINOR MAJOR Total Length of Inlet Grate Opening L - It .. .... Ratio of Grate Row to Design Row . ` ". .I ........ .:.. . - E.,,- UnderNoLbggingCondition MINOR- MAJOR' Minimum Velocity Where Grate Spash-Over Begins, V.= fps Interception Rate of Frontal Flow _ Rr = Interception Rate of Side Flow - R. = Interception Capacity .. - ... . - .. Q` cfs . �... Under Clogging Condition. ": .. -" ', . : -. MINOR: �... MAJOR. _ Clogging Coefficient for Multiple -unit Crate Inlet GrateCoef Clogging Factor for Multiple -unit Grata Inlet - GrataClog = Effective (undogged) Length of Multiple -unit, Grate Inlet.. - L. = - It Minimum Velocity Where Grate Spash-Over Begins - V.= 1ps - Interception Rate of Frontal Flow.' .. .. .. R = . Interception. Rate of Side Row. .. .. - .. ' : R. = - I trrterception Capacity .. :..0. _ WA :.. W cfs Carry -Over Flow= Q.4. (to be applied to curb opening or next dis inlet) Op =1 WA WAICIls Curb or Slotted Inlet Opening Analysis (CalculatedY MINOR . MAJOR Equivalent Slope S. (based on grate1. carry-over) - - S. _ 0.14321 0.0906 ft/tt Required Length Lr to Have 100% Interception - .. LT : - 3.781 9.50 it _ . Under No- Clogging Condition. -.. MINOR - MAJOR' " Effective Length of Cum Opening or Slotted Inlet (minimum of L, Lr) t = 3.77 S.00 ft Interception Capacity. "R= . '0.70 - '2.41 cis Under Clogging Conditlon. - .. MINOR - _ MAJOR' Clogging Coefficient " - CurbCoef - 1-.00 : - 1-00 Clogging Factor for Multipleimit Cum Opening or Slotted inlet - : " CurbClog= .0.10 0.10 _ Effective (Unctogged) Length: ....: - .. - 4= .: ... 3.77 ... .. 4.50 If Actual Interception Capacity .. ` . -.. '. .. .' . .: .' ..... ,. ,0. �" - 0.70 . -.' 213 cfs- Carry-Over Flow = QWi M-Q . , .. .. .. Qe = - -.. 0.00 1.03 cfs Summary MINOR - MAJOR - - 0.70 ' 223 otalInlet Interception Capacity r .•I Q? Total Inlet Carry Flow (flow bypassing C/0..'0 A.` �-,. Oe = cfe cfs . ' 0.00 . 1.03 - ..100.0 68.5 Capture Percentage = Q.IQ. _. .. CX = % DesignFlow. ONLY if eternrned through other mes:. - Minor Storm Major Storm . (local peak flow for M of street,plus flow bypassing upstream subcetchments) - '"Q =1 2.401 9.70 cfs `. If you entered a value hire,skipthe restof this sheet and Proceed to sheet Q-Allow) Geograp rc Information: (Enter data in the -blue Calls): - - . - Subcatchmerd Area .= Acres _ Percent.lmp S Soisness =�% NRCS Soil Type = A, B. C, or D� d. Site: (Check One Box Only) - Slope (W8) .. Length (it) . _ Site is Urban: X . Overland Flow - Site is NorflJrban: Gutter Flow= Rainfalln rm on: Intensityl (Inch/hr)= r Pi.. z * I C3 _ Minor Storm ' Major Storrn Design Stone Return Period, Tr = years .Return Period O.ne+lourPrecipitation, Pinches' - _ - C2= - . C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated valuej, C - User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C 5.= " Bypass.(Carry-Over) Flow from upstream Subcatchments, Qe = 200 - 8.10 cfs - CIM AA Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm Major Storm . . Calculated Design Storm Runoff Coefficient, C = - . Calculated 5-yr. Runoff Coel`666nt, C5 = Overland Flow Velocity, Vo = Gutter Flow Velocity, VG = Ovedend Flow Time, to = Gutter Flow Time, tc = -a Calculated Time of Concentration,T, = - Time of Concentration by Regional Formula, T� _ Recommended T. _ - Time of. Coneentration Selected by User, T,= Design RainfellIntensity; I = - .. .'Calculated Local Peak Flow, Qp= Total Design Peak Flow, Q = - NIA N/A N/A NIA N/A .. NIA N/A NIA NIA N/A NIA NIA NIA - N/A N/A N/A -N/A ... N/A NIA NI " - NIA NIA NIA NIA . 4.40 .... ... 18.80 fps fps minutes minutes minutes minutes minutes minutes inch/hr cis cis - Hal tit of Curb at GutterFlowLI - - H.., 9 ne:- CUFU, .. .. 6.00 inches _ Distancerom Curb Face to.Soeet Crown` - TCeovm 28.0 ft ' Gutter Depression.a. ,. 1.52 inches . Gutter Width W - 2.00 ft - - beet Transverse Slope,'.Sx ,77 0.0321 fL veR / ft horiz Street Longitudinal Slope -;Enter 0 for sump condition: -5ii= 0.0000 Rvert / R' horiz Mannmg's Roughness for Street Section , , nsrner:r0.0160 - •. Minor Storm-. Major Storm- , Max. Allowable Water Spread for Minor & Major Stone. - - - T. = - 16.0 16.0 ft _ Max. Allowable Depth at.Gutter Flow Line for Minor & Ma/or Storm d� = 1 9.00 inches -Allow Flow Depth at Street. Crown (reeve blank for no) - X = yes Maximum Gutter Ca ac Based On Allowable Water Spread Minor Storm Major Stone. Gutter Cross Slope (Eq. SD8)' ...,:.- .. :.,-.;,. -... Sw = -Water Depth without Gutter Depression (Eq. ST-2) . - y= - -Water Depth with a Gutter Depression .. d,= Allowable Spread for Discharge outside the Gutter Section W (1'.= W) - .. Tx = - Gutter_Flowto Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) '. - Eo= - Discharge outside the Gutter Section W, carded in Section Tx .Ox = Discharge within the Gutter Section W(Or -Ox).. - -'- Ow= . _ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Water Spread Or = Flow Velocity Within the Guth Section - - y = - d Product Flow Velocity.Timas Gutter Flowline Depth, V'd = Wit inches inches ft cis cis cis cis fps-. - Maximum Gutter C . aoacitv Besad on All Gutter Deoith Minor Storm.' Major Stone - ...Theoretical Water Spread.`:. ' eoretical Spread for Discharge outside the' GuherSection W (T - W) Tx TH = - -- Gutter Flow to -Design Flow Ratio by-FHWA HEC-22 method (Eq, ST-7) ..:._.. ,.... - .Eo = Theoretical Discharge outside the Gutter Section W, carved in Section Tx*H - Dx TH = al. Discharge outside the GutterSection W (limited by distanceT eaom) - Ox = ' Discharge within the Gutter Section W (Od - DO Qw = . Discharge Behind the Curb (e.g.'. sidewalk, driveways, 8 lawns) ,. .. QeAcx = -_Total Discharge for Major & Minor Storm Flow Velocity Within the Gutter Section ' - V'd product Flow Velocity Times Gutter Flowline Depth.,: V•d =. - Slope -Based: Depth Safety,Reduclion Factor for Major:& Minor (d > 6") Stone R = -. Max Flow Based on Allow. Gutter. Depth (Safety Factor Applied)' :, .. Od = Resultant Flow Depth at Gutter .Flowline (Safety.Factor Applied):'. ..:. ":; - . d = Resultant Flow Depth at Street Crown (Safety Factor Applied) dcaowH = 0.0954 i 0.0954 - -6.16 6.16 . 7.68 - 7.68 ' --14.0 14.0 . 0.346 .. 0.346 0.0 0.0 0.0 0.0 . 0.0 0.0 .'SUMP SUMP 0.0 0.0 -0.0 0.0 11 6 19.4 96 17.4 0.467 "0.286 0.0-. 0.0 0.0 0.0 0 0 0.0 0.0 0.D ' 0.0 0.0 0.0 : 0.0 00 0.0 SUMP- SUMP SUMP SUMP ft it cis cis cfs cis cfs fps cis . inches inches all ' - UD-Inlet DP D-1 (sump) xisQ-Allow 12/8/2009, 12:01 PM _IlLengthdaUntl Grate .- - .. _. :. Le(G)= - idih of a Unit Grate. _ _ _ ,. W.= -Are& Opening Rate for a Grids (typical values0.16-090) - '. Clogging Factorfor a Single Grate .(typical value 0.50 0 70) -. , Cr (G) Grate Weir Coefficlard (typical value 300) -. C.(G) - Grate Orifice Coef6ciem (typit;6A afue 0.67).. - - - .. C; (G) _. CDOT Type R.Curb Opening z.o0 z.00 2 2 N/A N/A N/A - 'N/A N/A N/A N/A - WA .N/A N/A N/A WA feet feet ' - Curb Opening Information _ ": MINOR : MAJOR Length of a Unit Curb Opening - _ 4 (C) = 5.00 5.00 feet . Height of Vertical Curb Opening in Inches H.=, 5.00 - 5.00 Inches _ - Heigh of Curb Orifice Throat in Inches _ - '.h4sos = - 4.95 4.➢5 Inches & at Throw(see USDCMFigum ST-6) '- - ', Theta= 634 63.4 degrees SideWidth forDepressbn Pan (typically the guher width of 2 feet) Wp =. 2.00 2.00 feet - ' CbggingFaotorfora Single Curb Ope ning (typical value 0.10) C((C)= 0.10 '. 0.10 .. Curb Opening Weir Coefficient(typical value 2.303.00) - .:Cr,(C)= '.2.30 2.30 _ Curb Opening Orifice Coefficient(typical value 0.67) C.(C)= 0.671 0.67 Resulting Gutter Flow Depth for Grata Inlet Capacity in a Sump I MINOR . MAJOR ' Clogging Coefficient for Multiple Units. Coef=. .N/A N/A Clogging Factorfor Multiple Units _ _- - _ " Cbg= - N/A WA Greta as a Weir - ... .. . ' Flow Depth at Local Depression without Clogging (0 ds grate; 4.4 cfs curb) This Row Used for Combination Inlets Only da,e,,,, _ - Flow Depth st Local Depression with Clogging (0 ots grate, 4.4 cis curb)_ - d..= 's Row Used for Combination Inlets Only - .. day = - N/A N/A N/A N/A N/A N/A Inches inches inches inches Gress as an Orifice , . '. ': • . - .. - ... MINOR. MAJOR ' _ 4 Flow Depth at Local Depression without Clogging (0 ds grate, .4 cis curb): .. d = N/Al N/A inches Flow Depth at Local Depression vAth Clogging (o cfs gate, 4.4 cfs curb) .. dq = N/Al N/A Inches Resulting Gutter Flow Depth Outside of Local Depnsssion' - - - =d,me,= N/Al WA inches - Resulting Gutter Flow Depth for Curb G ni Inlet Capacityin a Sump q MINOR. MAJOR - '' Clogging Coefficient for Multiple Units - .. ... '. .. Coef= 1-261 125 - .. .- ... Clogging Factorfor Multiple Units . � �- � �. '� - ' :. ` ... . �Cbg= :.. - ' 0.06 _ ... .. 0.06 . ' - Curb as a Weir, Grate as an Drill", _ - 'MINOR' - MAJOR . Flow Depth at Local Depression without Clogging (0 ds grate; 4A cis curb) - - 4. 3.25 . 8.55 inches - '" . Flow Depth of Local Depression with Clogging (0 cis grate 4.4 ds curb) d., 3.351 8.82 Inches - Curb as an Orifice, Grate as as Orifloa .. ,. .. •. • .. '.:, MINOR.. MAJOR - Flow Depth at Local Depression without Clogging (0 cis grate, 4.4 cis curb) d- _ 2.691 10.83 inches Fbw Depth at Local Depression with Clogging (0 cfs gate; 4.4 cis curb) d 2.75 12.02 Inches , ' Resulting Gutter Flow Depth Outside of Local Depression d.�„A - --1-.35 10.02 inches - ' .. Resultant Street Conditions _ MINOR MAJOR- - otel lnlettength'.:..' . -L= 10.0 10.0 feet otal Inlet Interception Capacity (Design Discharge from 04%ak) Q - -4.4 -. 182 ds ' - Resultant Gutter Flow Depth(based on shoot 0-Allow ge-by) d- 1.35 10.02 inches Resultant Street Flow Spread (based on shoeI Q-Allow geometry) - T = -12 22.1 feat - - Resultant Flow Depth at Street Crown- - �' dc,rn;N - 0.00' 0.00 Inches ' UD•Inlet DP D-1 (sump).xis, Inlet In Sump 12/82009, 12:01 PM' _ ' _ . -_. .. .. - - . , mnwr owrm rvraJor awrm ' II (local peak now for 1/2.of street, plus flow bypasamg upstream subcatehments) •Q = . 120 5.00 cfs '.Mga value here slip the rest of this sheet and proceed to sheet Q Allow) p rc n ormation.(triter data in the blue ce . - .. .._... „ SubcatchmentArea.7 - - Acres . ' - Percent Imperviousness= NRCS Soil Type = A. B, C, or D Site: (Check One Box Only) -' Slope (ft/ft) ' Length (ft) Site is Urban X , .Overland Flow - - Site Is Nonllrban. :. GutterFIc - - m n rm on: ens r r = it Minor Storm Major Storm . _ .. . Design Stonii'Retum Period, T, _ -years • Return Period O "our Precipitation, P I = _ _ .- inches Cz= .. Cs User -Defined Stomr Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), C 5 = - _ Bypass (Cant' -Over) Flow from upstream Subcatchments, Qb is :0.0010.00 cfs r enn t r ime oT �oncentrauonl ror a catchment: - .Minor Storm Major Storm - Calculated Design Storm Runoff,Coefficerd, C = _ Calculated Syr. Runoff Coefficient, CS .:...Overland Flow Velocity, Vo Gutter Flow Velocity, Vo Overland. Flow Time, to . Gutter Flow Time, to Calculated Time of Concenbation,.T - Time:of Concentration by Regional Formula, T, = . : .. .. .. Recommended T,= Time of ConcentrationT Selectad by User;, _ -- - Design Rainfall Intensity, I = - ' Calculated Local Peak Flow; Qp = TotafDesign Peak Flow, Q= I WA _ = = = - WA N/A WA WA WA WA NIA WA WA WA WA WA.- 'WA WA . " WA _. .WA. WA WA WA ' WA- WA WA - WA 1.20 - 5.00 p Ps ninutes ninutes ninutes ninutes. ninutes ninutes !cltRv fs .. Gutter Cross Slope (Eq. ST-8).:� :'. .. - Sw = Water Depth without Gutter Depression (Eq. ST-2) - • y= - afar Depth with a Gutter Depression - `. d = lowable Spread for Discharge outside the Gutter Section. W (T- W)- Tx = _ Gutter flow to Design Flow Ratio by FHWA.HEC-22.method (Eq. ST-7) :.Eo = Discharge outside the Gutter Section W. carried in Section T x " Qx = Discharge within the Gutter Section W (QT - Ox) .. .. ':`. Qw = Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) , Qm& = Maximum Flow Based On Allowable Water Spread. pT = Flow Velocity Within the Gutter Section V _ d Product, Flow Velocity Times Gutter Flowline Depth- V•d = 16.0 16.0 6.001i9.00 X 0.0837 0.0837 - 3.92 3.92 `- 5.44 5.44 .14.0 14.0 - 0.371 0.371 0.0 0.0 0.0 '. 0.0 0.0 0.0 P SUM _ SUMP 1. 0.0 0.0 0.0 0.0 ItIR inches inches it cis cis cis cis fps Maximum Gutter Canacity Based on Allowable Gutter Depth _ - Minor Stomr Major Stoon II .TheoreticalWater Spread ... : T ne - Theoretical Spread for Discharge outside the Guber.Section W (T - W)..:,' TzTH = Gutter Flow to Design Flow Ratio by FHWA'HEC-22 method (Eq. ST-7)' E. = carried Theoretical Discharge outside the Gutter Section W. in Section T X TH ' Qx Tr, Actual Discharge outside the Gutter Section W. (limited by distance T cmowm)' 'Qx = . .. Discharge within the Gutter Section W (Qd - Qx) - ,Qw = Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major,& Minor Storm Q e " Flow Velocity Within the Gutter Section " - - .. V = " d Product, Flow Velocity Times. Gutter Flowline Depth.. -," V'd = Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm R = Max Flow Based on Allow. Gutter Depth (Safety Factor Applied) Qd = Resultant Flow Depth at Gutter Flowline (Safetyfactor Applied)', Resultant Flow.Depth at Street Crown (Safety Factor Applied) .`' : dcROW4 it it cis cis cis cis cis fps offs inches inches MinorStorm. 'Major Storm- Mai. Allowable Gutter Ce pac 'Based on Minimum�of or "O Q.m.= SUMPI SUMP cfs MINOR STORM max. allowable capacity OK - greater,that flow given on Sheet'Q-Peak' : MAJOR STORM max: allowable capac OK - greater than.flow givemon sheet'Q-Peak' -, i _ 18.3 30.6 16.3 : 28.6 -- .0.324 0.190 0.0 0.0 0.0 D.0 0.0 .: 0.0 7 0.0-: - 0.0 0.0 0.0 0.0 '0.0 0.0 0.0 SUMP ` SUMP " : SUMP .. SUMP of Inlet :.. ... .TYa= Depression (additional to continuous gutter depression'e from'O-Allox� 4,d = mrof Unit Inlets (Grate or Curb Opening) _ No_ :Information. : .. •i .. .MINOR h of a Unit Grate ., .. _ .' L,(a)= of a Unit Grate ', .' Wo= Opening Rabofore Grata(typkal3alues0.15-000)._ - Ara. ling Factor for a Single Grate (typicei rlue 6.60 - 0.70): 'G'(G) = Weir Coefficem(typical value 3.00);".. :; -. ..' - .. O.:(G)' .. . Orifice Coefficlem (typical value 0.67):: .. . • ua.ina " N/A N/A N/A N/A N/A - N/A WA WA N/A N/A N/A N/A Opening Information - MINOR - M h of a Urut Curb Opening ,. - .. - L. (C) ` 5.00 it of Vertical Curb OpeninginInches .. : H: = .6.00 Rd Curb Orifice Throat In Inches', line.= 4.95 of Throat (see USDCM Figure STS) Theta= '63.4 ' Nidth for Depression Pen (typically the gutter width of 2 feet) : - . Wp = 2.00 lmg Factorfor a Single Curb Opening (typical value 0.10). 'Cr (C) = ` 0.10 Opening Weir Coefficient (typioat value 2.30.3.00) .:.... .. ... .: .... Q. (C) = 2.30 . Doenin9 Orin- a Cmfrcient (tvoieal vWm o.67) Ca fC1=I net Resulthra Gutter Flow Depth for Grab Inlet Capacity in a Sump MINOR MAJOR ' Clogging Coefficard for MuNple Unite. _ Coef= N/A N/A Clogging Factorfor Multiple Uncle Clog = - N/A N/A ' Grab as a Weir '. Flow.Depth at Local Depression without Clogging (0 cfs grate, 1.2 cfs curb) ". - d„ r= - his Row Used for Combination Inlets Only.: - - d;,,=,,,,_ Flow Depth at Local Depression with Clogging (0 cis grate; 1.2 cfs curb) - .. .. du ' his Row Used for Combination Inlets Only -- - �d=;, = N/A N/A N/A N/A N/A N/A N/A N/A nches aches aches aches Grate as an Orifice MINOR MAJOR ' Flow Depth at Local Depression without Clogging (0 ds grate, 1.2 cis curb) _ eta = . ' WA N/A inches . FlowDepth at Local .Depressbn with Clogging (0 cis grate, 1.2 she curb) de: = N/A N/A inches Resulting Gutter Fbw Depth Outside of Local Depression E.o,+,'= WA WA inehee Resulting Gutter Flow Depth for Curb D ni Inlet Capacity In a Sum MINOR '. : MAJOR - Cbgg'ug Coefficient for Multiple Units ' •Cat= '1.00 1.00 Clogging Factorfor Multiple Unb Clog = : 0.101 0.10 Curb as Weir, Grate as an Orifice.MINOR MAJOR Flow Depth at Local Depression without Clogging (0 cis grate,, 12 ds curb) : . dW-- ` . 1.85 4.80 irhes . ' Flow Depth at Local Depression with Clogging (0 cfs grate, 1.2 cfs curb) , d. = 1.93 4.99 Inches Curb as an Orifice, Grate as an Orifics MINOR MAJOR . Fbw Depth at Local Depre ion without Clogging (0 ds grate, 1.2 ds curb) . _ cld=j 2.35 ` 4.65 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 1.2 cis curb) Id - 2.39 5.22 Inches Resulting Gutter Flow Depth Outside H Local Depression d= 0.39 322 Inches Resultant Strut Conditions _ ., .. .MINOR- 'MAJOR Total Inlet Length: _ '.L= -5.0 5.0 feet . -Total Inlet Imerceplion Capacity (Design Discharge from O-Peak) - Q. : 1.2 5.0 cis ' - Resultant Gutter Film Depth (based on cheat 0-Allow geometry), '. do 0.39 322 inches OK Resultant Streat Flow Spread tested on shoat O-Allow.geometry) , . - T= 0.4 89 feet Resultant Flow Depth H Stmet Crown. dcsomi= 0.00 0.00 inches ' UDinlet DP.D-2)ds Inlet In:Sump 12/72009, 12:42 PM CD07 Type R Curb Opening z.00 2.00 1 i o 0. O Wpm 1 � �U)a 00 U U _ m d o. c W a. o 1�.. Jo 1 _(D LO N 1 N J � � Q N Rl O n .m } M.� m d P-4 O m2 CN 1 C Y qr J n 1 O C N D O D N Vk 1 O. _ ...IL 1 �y I .. .. ;.'. U r o C H r� - x o 0 0. V3o m : o - N "' N N ; 00 O m �a E H lu -`- a -: =H — N .a ^'I O O CD J.J 1J 1 I I m J.J a W N _ N ro U m' I v"v' In In I V H W • :' I C) I - H N H I cD In 11 (a m m w 1 Q. H H:C ' >I I 1 1 0 0 I ?I :O I �.. ❑. I I I m 3. ro W C ro ro H iJ I'r`r r r I m y ".. - -I i •. >;O m. ' �o � N- 10 0 o M. I o 0. 1�.: ?i. 1 0 M -c '1 � .. Cp 9 ' N Co. H w • 1 1 N 1J 1 M M o «LL o-a�'o 0 II - m I. ..I H O 1J I I m .. i D N n o 0 0 1 o m N "3 m..l I Y U O Wi I O ro -O m .I U II O 14 rU 'I I w +J m H, t In `LO '-1 .1 . - _ __ _ _ _ _ _ — I II E+ N Iu I I. O D,' I. U 1 I. I I ' II J-J ' "I I F E7 N. "-' I U 1 O l0 m -H A.J I C c cp In In I O" --- -- --- 7''U O'--• - I — ---- O I -I m ro- J-J 1 r r r r r I II - `I .. I' x 9.J "I -O O O_O H' H W W. 1- I LO.. ' II .I dP ow l-. ..' F 0111 I •'I :O :U'C�I I m II � 'I'00 I H: � CW I ' OOMM I' 'N `I ?I -H 1I II rf N - '- I O O I' • 3 N .' I O� M O� S � r-� I 1 m 11 mJ .I.. ' Rai--_—_ I 1 I y II ••G _ m -IHH.I O' - I-. I U...: -'_ IO lOCmc.I N II %+ O Y� I 7 7 1' 3 I 44 H 74 'H. 1 -1 C 1 V' c. 10 IO In I ro ' H I m: m -1 E,C I m (a ro ro I '-1 N H I . I = II 4J O Ol .I W W I. W O' N I .-I .-I H .-i : 1 7 'O - 1 II D fa _ H • 1 0 N I 2 H 0L .. 1 71.7 7 7 I' m ro N W I r r r r r I II - UJ H -O E-- C 11:1❑ 1 iJ ro. I U U U U' 1 H H C W I I II 11 a) N - w.. - H I .I . W U'J: 1 H'`u. u' M4 I -O U'.., `-' I I . II- O -P D, 2 :. 'I -U U_ U.. -a)' V) -H -H -H --H I T a 1 I I U U U U I T 1 W I H H.1 [ci '. I 11 I — - — — — _ _ _ _ H U a I C C'I II H m- fa. - . G. _ I UI N .0 O A a'. ..:1 .U' U' 1,.. P7 O •: -' 1 U.o o U'+1.' - o. 1 m �O t0 m C 1 tli II. $ .-I :m D '. _ ..1 1-. :. p HIU.: 1 C ' C. C:q' 1. -O -rp - I . . . . . I 3 .W ro= fa".. m _ _ _._ _ _ _:. I.-". m ..' 4J'. N I -rJ'-H -H:-H 1, C.W �- I m O O m m I dl IU - C. 3 I : i U H I Y ro 1J I r m m r r I •" 1-1 iJ 1 a a) N I a c v m I 0 b w- I I. ' N, .I . O m _ I. u' Q) O N N U Cv ,'I 'I Ga': I .'I' C9',H 1 . -I - : IP ro as (D .' i+ -..4J "I H H'1' W - w 0) a Ill N -` — -- — — — — — I - 3 H H H U. 1 a H '' C I I +" I I x E N O: 1 f : �.:. I o O O O O I . O II m. m D H F 1 I I '. 'H -1 ' E W: H I I r-I N 3 I tD to v N I N a ux AAC o' NN1'- o o+J 1 .1 roaoml' 11 :iJ O 7. O N I C C -1- m .. a U. I I, sJ m .'i W I In In In V' '-I 'I y m II I m m U -1 N. N :I 2 N 1 1 O >1 u I I. � 7: 2 _ - ..(..C7 U"1.` 2" ..rn 1 j'.. .. F m`. -- 1 I. E — — — 1 —— — — — — — — — — I a)O 7 O ` W W W' E. I 1- F I '_ 1 I. I N K 'H - --N ""'1 9. I i - O 00 11. H H H FZI N I A 1. - 'I N'.. I I -'1 p U .3 '. II C II' N n n n - n'. n n U a ro c.. •7 .,"' I- I I l` -1 ❑ Cl - I - U .7 :: - ro I r7 •, I 1'-J I A L4 d d 61 ..1 ro t r7 ,. 1 I I I I I 0' h 1'] ❑ ❑ I m 0 No Text 0 0 .� 0 0 0 ui c p' o Q H. E m N ` N LU N O' a` •_ . co Lo L cq CD r. O co CV n M ., co LO .. N � � 9 > >.N N Cl f0 C..J. N O .. + y :o _� o o CDJ�.. o o� o CO .. fn o . CD m . .. ,,.,. - O '- - x 4= Cl) m 00 O •` - L •� — .. CL O D @:�m� m . �: Q „." m` co CD c N . - - N . O CD f0 41 O N O •� 26 O N m W �> IL 0 00 m E ` m o d N' d m c_ 0 LU . a st }I _ 'o O I CD mto cn - r I E 4 O' A f: m ro 1 '.: 0 0 1 m 1 1+ -' w m wI u w •. H '4 L,�O;r m m I - .0 ., 1 I m 1 T -. I o o` I 2 ❑ I� I ' I o n L - cc .. .' U 1 m C I I O O'1'. ... - --- I.—.— I — 1 - m . .. - I '� N �. a H I r-I H � E ,� 0.V 1 '.3 U W I J ro ro 4 w 1• t> r r r 4 a•,ww m- y m 3 Ia m m I' .0. V ro a1. -1 m . 0. Q' 4 o p1. o I rn- •m -'I m� - m ca 4' O O n > m-- 1 •.- •yj — 1 I I. L • II I 1 9 I. I. 0 I O O I r - — — — 1 O. ... 1 m... O.p ' I — 7 11 _ - J� I -I O NT 1I m m mN. (0 m H IiI mC wU.0'44 I 'Om 1 w m'-1W 1. CI:M . — — — — — — — — — II U OE- ' [iu U N r• Orm m F. E+ m ..I ..O . m. r m Ol m I. vi I.' O.p. O O,If .N (�bO+l I rrrrr I p - II '. I 5,p _w I. O O O O•. I` 4 40 1 F ' O M to 1to II 'C W. 1. O 1 lD (D �. r. m 11 m II I.. I $4 4 4 4 I i'a_r lO II :4 :1 .Z- r ro' ro ro ro l H . . ' x w I W W I I W O I •-1 H H .i L :5 v "-� I J� .. m �1..'a 17 a a'a 1 W I rr II •O ro .3 �• U U `V ' .0 -O �• I 4 -O I. I U .C. - I'. '4 4 '4 4 I U' -.i. II m m J. W W u .. I" -,I -H -H -H. I T -11 > :Z - -U1. 1 .a m'N I U U U.0 - p .i .m -,. I 4 4 I -'' -- -- -- ------ ; E II II .?G H U_. Q m, m..1 �''� i x ;v❑i.. — q... L'.0 A .CA. I - C' I O 40- ro'. a .Q1 O L. o U U U I O I mO O 01 01 I .- W. — — — —.— —. ., m .y.: N' .. -ri -rl `1 C w. :a 1 II w ro ro N C 3 1,. 1 O: U,-rl m..m I-- I C C',m I C ,ro .. O' b 44 W- 1': - M a' JJ w• I m I'NNN•-1.1 4m`-' -I p 1 I ,..f�. "I _ '.I U . H I n m m U• .. I fi rl. — Dafo - II U U C W W 0) a yJ I H H' , I ' . m ly '.. C I .-I '-I ri. r-I I I ------ — 1 -- O y - II : 4 .4 'u" .Oi O. U..U',i m4W I E 1 0 0 0 0 0 I �. ;. H F .' I. 4 4 1.. O .1 '-I.m$ "-. I Y'.O-N I m m m m O • 1 Td � C G i ' � u, .'I I. 1 .ro. Y m .-i w l (n m min l- w n . ' 11 o. !. a a 0 m .I t❑/] N N H " m V] U. .. i'. C9 C7 I '..Z .. 11 O 1 1 O — .1 — — — — — — — —. — d N . _ O O O 1...1 I H — — — 1 I m x C.C- a -F. ..' .... _ - 4 11 II.ro w a h ❑ I .. CL _o m o V c - ~ o �Na m _ > uJ hi _ CD c04 CDm m E `o co u'� � � n o...- o c o. _ ' o o o c o .. c w Ti m .o a m m � .. n M O N Q y D C O n o :. C ": U a or (9 a 3 m U m mZ�0 V C G o �o o m 0 q 0 L m . + m N y m CA y >i O O L ' X E o m 3 0 a0 'a C E m O 77 � y N m X O O p W + m ". U' o P X o � 0 0 0 LO m �,m L6 IL c p U :.. � E m c c. d c. m c W a 0 CD Lo m >- CD ` Nam• Ur W O' 00 N Lo r C) Co. ' N O.J..—:O + _ Lo. co -, . cc.Ui. CD ,- 6.+ _ O co m CV C, a } oz O O •� O..CD a. O v C coo v ' O co :A P .. U O O L LL : a N .., ... 0 wo sNos ' 00 HMo/N¢s. LLC J 00 00 00 -� goo I I B K-0 PAW BOt I 1„ L. i 1 MAP v 101 F ,ME 13 CG6` II L.Ntt/cNmx ar LOOG/Ny /MC. II Lu.I I I I mI 3d3d3d K-0 PwLa 9ui. e bh L� Will Mon. --T-,= II �• u — MIN n------- 11� h•�HLmI I � In $CKKABLE I cLNNnxw/. P.uD. I l q I 11 iI Lll� 110 hi LOlI PLEA u _ Iw 1o4�,/ a\�� oRwGlaoe aurEaarrAeEe I \; I ` gig \ U:f�/ O7 III — J 1 B � �7 LOI/ I A ta>wTrr nL. I Lor 1,2 J YCWMIEY Q(M N I cwoY.R. ZAMI; LYGameE TNAlB I croF ®on.m I K(/GnrA ICP II , � EvpcRLwPALY Aavu.n�a a _ I ��T� I � I I I I EVLELEmwPAKw I I I I I LEGEND o.s T.a wowsn�.x..x�xww� I m InOOD SO 40 0 80 160 C �. D a" N LLato 0 SCALE: V = 80' O O (� �� v°w 0� g 9 CALL UTILITY NORRCATION CENTER aF mm,hl)O 811 G(1L a -BUSINESS DI.K IN IDVNICE BFM T E M.I DNOVE. MgiRMNDE fqi nIF MUSING jn UN[fMAWNO NEwew ununEs OTY Oi FORT GOWNS. CO-MADO UTILITY PLAN APPROVAL APPROVED: _ cry EmaN CHECKED BY: _ wnan 4 wasrzwaTw uTIJTr CHECKED BY: aICINN'.EIER VNIY CHECKED BY: ----FMKS 4 REMAnM CHECKED BY: mnrnD CHECKED BY: z TIT g a D 0 Wa z > ° wz J J x It UJ > J O 3 � S N _ z m F U w 0 0 0 PROJ. N0, 1090U6200 1 OF 1 MATCHLINE BRECKENRIDGE CONTRACTOR TO PROVIDE CONSTRUCTION ENTRANCE(S) It g CONCRETE WASHOUT(S) AS NECESSARY f\ L LAMPLIGHTER : I'%''il`i ' \ 11T LODGING, INC.- R30 15 O 30 60 a SCALE: 1"- 30' I I � 'A• �I I II w�L � � ' - I � I� � ) m I i PI LEGEND 0 1 1� a ~ I III I f ROW DIRECnON n __ __ •� r ,Iln I E%ISnNG PIPES ® PROPOSED STORM PIPE IN PROPOSED INM LOCAnON B II / ____ ____ E%ISnNO 1' CIXITWR J l \� \I \ — I I } / I ---- — E%ISTI5' CONTOUR —r— I _ !Bp®yDlq 5 s PROPOSED I' CONTOUR \ LLC �wm— PROPOSED S'CONTOUR IN IN w moo SILT FENCE LOT! CIXJSTRUCnON ENTRANCE PEREZ a ©w II a w SUS I I m INLET PROTECTIXJ (NEED TO BE C •,0/ Lr I) H 1 O NSTALYSD�; CITY PRIM TO 11 J OR ANGE CALL LUOCAnOAIP% FENCE MiPi MART ]W 1 _ _ _ (APPRO%IMATE LN) 666 Mg, P.U.O. q P Pf liHAAS F � y '. L""I I s— / I I' � 'S; � l I p CA UYUYY N0lMCAVCN __ _0______ / I 1 w CQITER 7 COLIXUDO r P� INE S HE fT' 811 EPON RYOU G . DAY. W ACYANCE EXCAVA I I i BFOR T E M GU MODE. G EMIOUNO Eqf ME YNMXD OF n UXCfgaialND E E YEYEq UTUTF3. IN A FF / $�•� 'EAST W/L.LOXLN. HA ADDn70N .4 w w T `mow • _ —� I I O ,� is r f W {,. •.i. r I I�� I W „ r -- L "m RM WAPNxooeoam I I\'ll T CON SO LTING GROUP O"\'{)p(r—J ab ___ I I a \ I T LOT ! 11 Y I ( I LOT / I g wq •arr a Y mI AP RMVALOO_ONAC0 LOLOX % _ _ ��I I I I77 PC mwn vmxaw unuTY RAN MPROVAL CROs5/NG P.UD. % / l l y 1 ) I� _ Q COUNTRY CLUB ar,o� R \qI^� C CORNERS THIRD NSPRGwn \ I I I l r .. I 1 j. I I I RE •sr w acam en a m A WMENAM uM. mm i \ S I 1 �.. 4 G \ I I I• 11 Im I' --1 ) I) —_. _. CHECNmBY. rz s 1 N E cXEIXm or, I I MATCHLINE •. w w /MAL of DXEIXm er. E� y ------� cXEIXm .T. RENSIONS: DAM1 City of EacNED BY IgLAwN ar: APPROVED Br: COLLEGE/WI LOX IMPROVEMENTS PROJECT 325 CITY QF FORT COLLINS, COLORADO Fort Collins MPG ES I s`" l "" `° BY °" EROSION CONTROL PLAN —COLLEGE 65 ENGINEERING DIVISION`��- ("=aG' oa 2s 10 I LOT! E. W/LLOX K _ CRoss/NO P.U.D. • I H 99 0 !fl N L O EX., ROW1IF MAiC IN w� w _ _ ._ — — �- / I I f J P a \ / SEESHEET25 l �— — ----- eAr---- , R. �EABTW/LLoXL I;ANSI DEST DEST �, .1 w N N . B N N N If If w N .. I \t �� •ram —a - R l I L---- f r. =__ = ---- -= I I f \ LOT 1 I I 0. COUNT Cum I I CORNER57H/RD 1I I I I I i. II I ! •� I I \ I CONTRACTOR TO PROVIDE CONSTRUCTION ENTRANCE(S) & CONCRETE WASHOUT(S) AS NECESSARY _ _____ +.� _T ' _ ��—-- — T T' T T i - - ---- _ _ __ _ __________________________ D — EAST � �� T ---- -'A"-"_-_.. -�—_ __ ____� "T— �� _ T- __lT —__i T� u \ wW w��N _ —_114410\ _ FRED IT IS 1 _ W _ _ BY / w— ITBY Aw If / y�, s �� I\ I LOT I, 9LK2 REP[wTNO. I OF EYERGREENPARK I I CITY OF FORT COLLINS, COLORADO ENGINEERING DIVISION ! E E RN_ of FOi'[S T N E C A •. BE iFy:+♦yo•�lF O� -- -- I—Ae)-(� —s A E�E __ E D•• — f —} E E E ---------- ------ LOT2 1 COUNTRY CLUB LO" CORNERS THIRD 1 COUNT/PY CLUO 1 I CORNER97}//RO I I --- STANDARD EROSION AND SEgMENT CONTROL COIISTRUCTCN B. WEN TEMPORARY EPEROM ¢xiB0. MEASURES ME REMOVED. M PLAN NOTES CONTRACTOR Sx ERESPONSBLE PM ME MEAN VP AND REARM OF L101®1. fi] 0 i CNALL DRI INFRASTRUCTURE AND OTHER 1, ME COMMONDRAWN. KNf<rtB BEERBEADOPTED AT UNIT NEAR INILIn[z. MENTY-FOUR ON) MAIN P9M ro ANY COMEAMMIN ON 7R9 SIX 9. ME CONTRACTOR MALL YYEOUmr MEAN UP ANY CONTRACTOR! 1`::v.!'-- MEPL Arnxn TERMS MLYM T-Y INVOKED M EBmxG STREET. SBENY%B. M .w.JE1q mlr—=IIII�G WryCE ME UNITS G� FRAMTL PI HTS OF NAY, AND ARM SAS STREETS AM WAUIWNS ARE MSNM IN ox M AC®Tm ILWS. E ANN XlYgN4 DAY. ]. ALL MMM MMM EST YAI CMSWVCnW rtxaxD WALL Q ID ML RVAMED FDWENTS PKnCUARLY TANK M MKD MACKAY WMAI£o PARK M MY LAND IMAGING ACnMM (STOCKPILING. STARING, SMFARS 5"uL BE MOM AND PYOQo Q IN A WAGES YC ORAEWU EX) MLLTHER BOOM MOOON ME CONTRA. MEASURES WALL BEE LOCATOR GO AS NOT M CAUSE MM RELGY AM MY WATERS OF ME DNEER±ETIME SOESTATES yM M MEAPPANOM PROV CHM CONSTRUCTR PLANz AS UNITED MAWS. REPORT. NO SOIL STOnIE ANNUL TE IMED N (10) MET w QWNT. ALL YA STOCKPILES KIYL BE PROTECRD Mw SEDIMENT WANPDYT BY SUWAQ ♦ TRACTOR SHA1L BE CUCXNNI"r�WAMENG. ML MANOR SILT TENONS SCIL MACHINE MORO 9RC FOR NAKANO WHO CMMgLI CONTRACTOR NOUN MONGERS R MC RR THIRTY (]O) DATE KIALL BE 4EQD AND YVLMIm 0.OW KEEPING MOMENT ME CONTRACTORSHALLtSHALL ALSO BE M RRIMAC FOR IB. WY MIAMI AND COLORADO DISCHARGE MWT STSTEY (MPS) \ O WO MMNTANIXO ALL EROSM MAI FAMINE EAGER HEM. REQUIREMENTS MARE IT ARMSFUL N PS 2 OR ALLOW ME DISCDISCHARGE!NAR S. PRE-DISNRBAVCE VEGETATION NI BE PROTECTED AND REMAINED P01UTµR AMOK GAT ARE NONT OR TEVYIhD TO PSCMCmWATER MGM TRUCTINBlWNO WS. `wE\ 'MB.4fMR P M P E �OR WTURNACE OF MONEY FOR IMMEDIATE IXNZTRNCTCX TIER � sMYC MY W SM MEIT ECN AtIOR SHALL AT Al TIMES TAKE KIYL BE UNIRD ro ME u CPDIATMz, AND FOR M[ 91M291 PRACTCM PEKO OF ME µD1OSP MEASURES ARE NECESSARY 10 IN A ME MGM QHLYNAND ALL ANUC R[ MCI TANTSSRAM M FEDERAL ERA w NCMDµQ AM ANr AND B. (WRONG, SgUT EXPOSED GUM"c LYIO C DOMAINS RULING. ACGE I SNU K L STALE ANo FFOEu REVunoxs NA A ROUGHEMEDD ITY MANTONN BY IvPING OR c' NISA ALONG OWN) C NT NET PERMANENT BAN WB CMTaRs 1H. A QSIWA2o �A� MB�PBE CON TR SIRE MR S M CON AN SAM, MI OTHER URBAN S IXT y.S WASH WAIL E CONSTRUCTED M zD AS ro Y MCA AM INSTALSO NO RE M NEWS w19DC LAND SMOKING WASHOUT III µIN EGUC D AT LEAONSCWNE ION MET AWAY ECM µY RGHMORE THAN WAY SHALL REMAIN EROyD BY ED WORM10 R TONPERN EN AMMYEY ME CO CWSERVCTW. RE C VEIN AND Y THIRTY (.Vj DATA UN. IREMREO 1EWEMY q ALLED. Xt PROPERLY ME CONCRETE WASHOUT TO E AREA PEAL Q REMOTAKE. Y10 —' FUSION CMTRtt (E.P. OVED BY A IµDSCA%N0. E1CJ IS MRVI20. PR`V91`Y LYSOQD E EW TO ME ARE KING RETMEO. MESS DMENSF APPROVED BY ME O1Y. NO CMMTMS M is FIELD MAY HAREM S THE CCORWO. MEASURES SMI 1N IN ALOE TO GRAM EROSION POMNTM ALL TEYPCNIIY PTRUCMRM) NORMA WHATEVER IS SHAM M METE PLANS A Y. AS IRECT BE EDBM ¢nTROL MEASURES MA,- BY Mf CITY. MEASURES ARE D[rtRYIXFD NECESSARY. AS KMCrtD AFTER"BE I sPEi � AND NT STOR ORM EVENT OD AT A MINIMUM N. °X6 EMERY Tw to Nma No K ESVRE THEIR CONNUEUED P` AMNAYKK CTED OF AS NECESSARY IN EAE M ACTOR D REMAIN IN KAM UNTIL SUCH THE AS ALL ME SVMMREMO DAMAGED AREAS ME 96DO�RY STABNIDD AS DETERMINED BY 9 090N MAKES ME ECTCP NO . BE REMOM AFTER ME h HAS NE S FFlpphY STABUM AS DEMBI By AC ANECIOEOKan cCXTRx CAFOR LL U11UTY N0ITFlCATON ',N , ARM v CENTER UP COLORADO P )Brw00 Tax 1 GIBTLSKG / 811 IyYpSFyT CONBV Li I xG GROUP _ umm EROD DIISs DAYS DEI IN ADVANCE EXCAVA itl BVCNE ME DIG. CAFE. OR EXCAVAR FOR ME MEMBER MARKED M uNDELAWxo YfuBER vnunEs. on 6 MIT R UTILITY PLAINN APPROVAL I I YPPUWQ APPROVED: Ow DAEMONmm j/�y'REBA9A�`(n CHECKED SM _ �U�CT MaTEeR a M NECKED 81:�AMWUW NX 74Em C' accrceo ar:�.�N�� SO 15 0 w SO •Q'1l EYP!' CHECKED Bw SCALES" 30' CHECIM EY. RATE COLLEGE/WILLOX IMPROVEMENTS PROJECT 26 EROSION CONTROL PLAN-WILLOX 65