Loading...
HomeMy WebLinkAboutDrainage Reports - 04/21/1992r OF Final Approved Report Date FINAL DRAINAGE AND EROSION CONTROL STUDY FOR THE QUAIL HOLLOW SIXTH FILING FINAL DRAINAGE AND EROSION CONTROL STUDY FOR THE QUAIL HOLLOW SIXTH FILING April 13, 1992 Prepared for: d. Jensen Enterprises 2903 Blue Leaf Drive P.O. Box 1007 Fort Collins, Colorado 80526 Prepared by: RBD, Inc. Engineering Consultants 2900 South College Avenue Fort Collins, Colorado 80525 (303) 226-4955 RBD Job No. 014-040 RMINC. Engineering Consultants 2900 South College Avenue Fort Collins, Colorado 80525 303/226-4955 FAX:303/226-4971 April 13, 1992 Ms. Susan Hayes City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Co. 80522 RE: Final Drainage and Erosion Control Study for the Quail Hollow Sixth Filing RBD Job. No. 014-040 Dear Susan: ' We are pleased to resubmit to you, for your review and approval, this Final Drainage and Erosion Control Study for the Quail Hollow Sixth Filing. All computations within this report have been ' completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. Thank you for your time and consideration of this submittal. ' Please call if you have any questions. Respectfully, RBD Inc. Engineering Consultants Kevin W. Gingery, P.E. Project Engineer CC: Mr. Dan Jensen - d. Jensen Enterprises Other offices: Denver 303/458-5526 • Vail 303/476-6340 • Longmont 303/678-9584 TABLE OF CONTENTS ' DESCRIPTION I. GENERAL LOCATION AND DESCRIPTION A. LOCATION B. DESCRIPTION OF PROPERTY II. DRAINAGE BASINS AND SUB -BASINS ' A. MAJOR BASIN DESCRIPTION B. SUB -BASIN DESCRIPTION III. DRAINAGE DESIGN CRITERIA A. REGULATIONS B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS C. HYDROLOGICAL CRITERIA ' D. HYDRAULIC CRITERIA E. VARIANCES FROM CRITERIA IV. DRAINAGE FACILITY DESIGN A. GENERAL CONCEPT B. SPECIFIC DETAILS V. EROSION CONTROL A. GENERAL CONCEPT B. SPECIFIC DETAILS VI. CONCLUSIONS A. COMPLIANCE WITH STANDARDS ' B. DRAINAGE CONCEPT C. EROSION CONTROL CONCEPT ' REFERENCES APPENDIX VICINITY MAP OFFSITE HYDROLOGY FILING NO. 6 HYDROLOGY DETENTION. DESIGN OF INLETS, STORM SEWER AND SWALES RIPRAP DESIGN SPRING CREEK FLOODPLAIN DATA INFORMATION ' EROSION CONTROL CHARTS, TABLES, AND FIGURES ' APRIL 13, 1992 REVISIONS 1. Minor text changes. ' 2. Add to Vicinity Map 3. Change to Time of Conc. Calculation in Basin 4 4. Change to Hydrology in Basin 4 5. Modifications to Storm Sewer Systems ' 6. Modifications to Erosion Control Calculations PAGE 1 2 2 2 2 3 3 3 5 5 6 6 6 2 7 10 12 30 33 37 41 .1 FINAL DRAINAGE AND ' EROSION CONTROL STUDY FOR THE QUAIL HOLLOW SIXTH FILING ' I. GENERAL LOCATION AND DESCRIPTION A. Location The Quail Hollow Subdivision is located east of the southerly extension of Overland Trail and south of ' Yorkshire and Michener Streets in southwest Fort Collins, Colorado. The site is shown on the Vicinity Map in Appendix A. More particularly, the site is described as Quail Hollow, Sixth Filing, and is situated in the ' Northwest 1/4 of Section 28, Township 7 North,' Range 69 West of the Sixth P.M., City of Fort Collins, Larimer County, Colorado. ' B. Description'of Property The.Quail Hollow Sixth Filing contains 12.8 acres more or ' less of which all of the area is currently y undeveloped and being proposed for . residential development. The majority of the property has.consisted of cultivated farm land. Topography at the site is generally sloping from northwest to southeast at approximately 1.2%. A tributary to Spring Creek traverses through the Quail ' Hollow site from a northwest to southeasterly direction. Within this tributary to Spring Creek exists a substantial cattail outcropping/wetlands area in an existing detention pond. There are two existing ' detention ponds adjacent to the Sixth Filing of Quail Hollow. Spring Creek traverses across the southeastern ' comer of the Quail Hollow Subdivision as it flows in a northeasterly direction. The 100 year floodplain of CTYIMf. I1Y�I'9L l l/1 fMe'Y ii17}/llf �a;���w} }_ }L... C 44. u Filing of Quail Hollow as shown on the drainage plan in the back pocket of this report. II. DRAINAGE BASINS AND SUB -BASINS ' A. Major Basin Description ' No major drainageway exists in the Sixth Filing of the Quail Hollow Subdivision. The Quail Hollow Subdivision does drain into Spring Creek per the Spring Creek Major 1 ' Drainageway Plan by Gingery Associates, Inc. dated August 1980. The City of Fort Collins is planning a regional detention pond on the southwest corner of Drake Road and Taft Hill Road in the future. B. Sub -Basin Description Historic drainage patterns on the subject site are southeasterly across the site to Spring Creek. Several ' off -site basins lying west of Overland Trail contribute storm water runoff which crosses the Quail Hollow Subdivision. Off -site basins from future Quail Hollow Seventh Filing and Burns Ranch (located west of Overland ' Trail) must be routed through the Sixth Filing of Quail Hollow and into the existing detention pond. All off - site flows are currently at historic conditions, but construction of the First Filing of Burns Ranch is beginning on March 2, 1992. III. DRAINAGE DESIGN CRITERIA A. Regulations The City of Fort Collins Storm Drainage Design Criteria is being used for the subject site. B. Development Criteria Reference and Constraints Several drainage reports were previously completed for the subject site and adjacent lands as referenced in this report. The Final Drainage Study for the Quail Hollow Fifth Filing developed the design criteria for the existing on -site detention ponds. The City of Fort Collins is planning a regional detention pond on the southwest corner of Drake Road and Taft Hill Road in the future. Until the regional detention pond is ' constructed, storm water runoff from the Sixth Filing of Quail Hollow and from off -site lands lying west of Overland Trail must be diverted into the existing ' detention ponds. C. Hydrological Criteria The rational method was used to determine runoff peak flows from the site and the surrounding off -site tributary areas. The 2 and 100 year rainfall criteria, which was obtained from the City of .Fort Collins, is the criteria which was utilized. This criteria is included in the Appendix. 2 D. Hydraulic Criteria All calculations within this study have been prepared in accordance with the City of Fort' Collins Drainage Criteria. E. Variances from Criteria No variances are being sought for the proposed project site. ' IV. DRAINAGE FACILITY DESIGN ' A. General Concept As development occurs within the Sixth Filing of Quail ' Hollow, all on -site fully developed flows will flow southeasterly into one of the two existing detention ponds.. Off -site runoff (from west of Overland Trail) will be directed around the south side of the Sixth ' Filing of Quail Hollow and northeasterly into the existing detention pond. Included in the back.pocket of this report is the Sixth Filing drainage plan. ' B. Specific Details Two year developed storm water runoff from basins 1 through 4 is proposed to be collected in storm sewer systems at the low areas (sumps) in each street and redirected into the existing detention ponds adjacent to the Sixth Filing of Quail Hollow. Flows in excess of the ' 2 year storm runoff will pond up at the sump locations and eventually over top the sidewalks and be redirected by overflow swales between the lots to the existing ' detention ponds. Included in the appendix are the hydraulic calculations for each storm sewer system, the overflow swales, and related street over topping calculations. A concrete trickle pan is proposed. to carry" low flows from the Teal Eve Court storm sewer system to the outlet of existing detention pond no. 2. ' The�f off -site future fully developed runoff from the Seventh Filing of Quail Hollow and Burns Ranch subdivisions must be redirected around the Sixth Filing of Quail Hollow. The 100 year developed storm water runoff from the off -site areas lying west of Overland Trail is proposed to be collected in a storm sewer system ' at the south property line of the Sixth Filing of Quail Hollow and redirected easterly in a swale into existing detention pond no. 1. Due to the location of this storm sewer system and its 100 year design, in the event that the upstream end becomes plugged, storm water will pond up and over top onto overland Trail and flow in a 1 3 southerly direction to the eventual low point at the Spring Creek future crossing of Overland Trail. For the Sixth Filing of Quail Hollow, approximately one half of the storm sewer system will be constructed. In order to ensure that the entire storm sewer system will function as intended, the hydraulic design was completed for the entire system and will need to be reviewed and updated as the Seventh Filing of Quail Hollow is developed in the future. Within existing detention pond no. 1 there is an existing wetlands/wildlife area. This area has been created in the natural tributary to Spring Creek over the years. The Sixth Filing of Quail Hollow will discharge storm water runoff into the existing wetlands/wildlife area. Storm' water runoff will pass through the wetlands/wildlife area and eventually be transported to Spring Creek. It is the intent of this Sixth Filing development to keep the existing. wetland/wildlife area as natural as possible in order to not affect the wetlands area. The runoff generated from this development will pass through the existing detention pond no. 1 with little to no impact upon the area. No drainage construction is anticipated directly within the existing cattail outcroppings of the wetlands area. Care should be taken when constructing the storm sewer and swale which connect into existing pond no. 1. If for some unforeseen reason the cattail outcropping is disturbed, a U.S. Army Corps of Engineers 404 permit may be required to complete the work, but this is not anticipated to be needed. Coordination of a 404 permit would need to be done with the local regional office of the U.S. Army Corps of Engineers in Denver. Adequate detention volume has been provided in the existing detention ponds no. 1 and 2 for the Sixth Filing ' of Quail Hollow per the Fifth Filing of Quail Hollow approved drainage report. ' The groundwater table is close to the surface of the ground in the Sixth Filing of Quail Hollow and is expected to be pumped, piped and redirected during the course of construction. Therefore a Colorado Department ' of�Health Construction Dewatering Permit will be required before any construction can begin on the Sixth Filing of Quail Hollow. 4 V. EROSION CONTROL A. General Concept The Sixth Filing of Quail Hollow lies within the both the ' Low and High Rainfall Erodibility Zone and both the Low and Moderate Wind Erodibility Zone per the City of Fort Collins zone maps. Due to the existing site slopes of around 1%, the potential exists for minor erosion problems after the Sixth Filing improvements are completed and the ground is bare. It is anticipated that the Sixth Filing improvements will be completed during ' the summer of 1992. Thus the new improvements will be subjected to both wind and rainfall erosion. Per _the City of Fort Collins Erosion Control Reference Manual for Construction Sites and related calculations in the appendix, the erosion control performance standard for the subject site is 78.9 %. From the calculations in ' the appendix, the effectiveness of the proposed erosion control plan is 95.9 %. Therefore the erosion control plan as specifica�JY detailed below, most nearly meets the City of Fort Collins requirements. B. Specific Details ' For basins 1,2,3 and 4, after the overlot grading has been completed, all disturbed areas, not in a roadway, should have a temporary vegetation seed applied. After ' seeding, a hay or straw mulch should be applied over the seed at a rate of 2 tons/acre minimum and the mulch should be adequately anchored, tacked, or crimped into the soil. After the utilities have been installed, the roadway surfaces should receive the pavement structure. After installation of the curb inlets, the inlets should be filtered with a combination of concrete blocks, 1/2" ' wire screen and coarse gravel (3/411). The overflow channels, southern channel and all offsite ' disturbed areas should have a permanent vegetation seed applied. After seeding, a hay or straw mulch should be applied over the seed at a rate of 2 tons/acre minimum ' and the mulch should be adequately anchored, tacked, or crimped into the soil. Erosion bale check dams and sediment collection barriers should be installed immediately after the improvements they protect have been ' constructed, as shown on the drainage plan in the back pocket of this report. 1 5 vi. A. Compliance with standards All computations within this report have been completed ' in compliance with the City of Fort Collins Storm Drainage Design Criteria. ' B. Drainage Concept The existing detention ponds adequately provide for the ' detention of developed on -site flows from the Sixth Filing of Quail Hollow. By utilizing the temporary detention ponds in the Fifth Filing of Quail Hollow, the t developed storm water runoff has been controlled in order to eliminate off -site downstream damage from the 2 year and 100 year storm events. The proposed drainage concepts presented in this report ' and shown on the drainage plan are in compliance with the City of Fort Collins drainage criteria. C. Erosion Control Concept The proposed erosion control concepts adequately provide t for the control of wind and rainfall erosion from the Sixth Filing of Quail Hollow. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standards will be met. The ' proposed erosion control concepts presented in this report and shown on the erosion control plan are in compliance with the City of Fort Collins erosion control ' criteria. Hay or straw mulch is being proposed as it has recently proven to be the most economical and efficient method available to control erosion. 1 ' REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by ' the City of Fort Collins, Colorado May 1984. 2. Quail Hollow Subdivision, Filings 4 through 7, Preliminary Drainage Report by RBD, Inc., Engineering Consultants, ' November 1989. 3. Final Drainage Report for Quail Hollow P.U.D., Third Filing by ' RBD Inc., Engineering Consultants, May 1988. 1 6 ' 4. Quail Hollow Subdivision, Filing 4 Final Drainage Report by RBD, Inc., Engineering Consultants, March 1990. ' 5. Preliminary Drainage Report for the Burns Ranch at Quail Ridge by RBD, Inc., Engineering Consultants, December 21, 1990. ' 6. Report of a Geotechnical Investigation for Quail Hollow P.U.D. Fourth, Fifth, Sixth & Seventh Filings'by Empire Laboratories, Inc., November 3, 1989. 7. Spring Creek Major Drainageway Plan for the City of Fort Collins, Larimer County Colorado by Gingery Associates,.Inc., August 1980. 8. Final Drainage Study for the Quail Hollow Fifth Filing by RBD Inc. Engineering Consultants, May 10, 1991. 9. Final Drainage and Erosion Control Study for Burns Ranch at Quail Ridge First Filing by RBD Inc. Engineering Consultants, August 2, 1991. 7 I APPENDIX 11 1 ' Dr. Hughes Stadium 0 SI. W Ever La Rectlo Cl. a �Knoleood Ct Dr V W. Prospect R0. a`' r a`�•'�ca.`a ' t.' r. ,.[SWOIfI Cr. Mt Ct. Neil Dr ,'.' ul f1 L MDr an Delpion p 9 Perna , Ct F 1. fi (• `. Oo� Pipestale Dr. O o Dr. A) s rde^ y, on doll, a valby 0,90 Dr. v 0 o G g _ m o $ & N G toys Dc Q� •$ �tiQ = = • — Bluepross Dr. o v s o o Mt. C1 N '" W. Drake Road URNS ... .�.vo atron nr (ZRNCH e sub• , �°,w ,FI TH FILING I{ QURIL `Y LLDW J Molfel Drive FILING 7 Primrose I Lr, PROJECT SITE SIXTH FILING =J City of Fort Colll \Pa r ks Property I W. R, • wHorsetooth DmVI. N8 2 prwell Cation r Pl. . o. 3aler pl. vine CfIN Ceaeb Read d Dom N C t or Dr c c' _ c F" CI e ` w W. Lpyd e _ W Like O PJ Sl m � — O St Cooper Cn, PL. >ort�y Y x c? VfDn9e(( PO,t P10-4-a0 W. Stwrtrk- 51 i °s ah Dr. a O. V[ oppp Cl 'dear) 31. 1 Q• O gij •NOo4`�h• rreC6J n. . SanO> GM nrond Dr ~"r%e10 DI' V y m ClU f, ibe e -. . +O $ Q w O Coal wla`t l Cl. Sca r�ouyn c Cr II. r r wv errrunttnen , bi Dr Q :�.:• �` NvV ao C.....::::•Qe. 6 ♦ Y �..�^••illy h b f Q War+ Cr r ^ ' .'1 Ct. C,itn a]tln ] C C i Fro mono c �° St Cl. [, c v.+ E u i N m :n z n o V v St. Q` Gne Dr. v.c._ F VICINITY MAP 2/514 OFFSITE HYDROLOGY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r 0 �IIIIIIIIIIIIIIIAl11Y1N11N111111111 . 91111111111111111111111111111A111111111 �IIIIIIIIIIIIIIIYIIININIIIIIIIIIIIIII @IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIiI �BIIIIIIIIIIIIIIIYIIIAIAl11Y111111111 . IN 111111 1111112 111 �B�I�IS1�1�1�111�11�16N�11�1�11111111111 • I 1N111Y111119Y11 oil 11111111 • 111W O I 11 11111111111 ■1�1�1�1�1111111111 oil 111111111111 �OIIIIIIIIIIIIIIIAIIIYIIIIIIIIIIIIIIIII �011111111111111111111111Y111N111111111 �LIIIIIIIIIIIIIIINIINIIIIIIIIIIIIIIIII �UNION IIIIIIIIIIIIfI1N111A111111111 m0 RIVER I1 N1111111191111111111111 i�I�I�I�I�I�iII���I�A���l�Alllllllll C, 315fo Q 0 z 0 LiJ CD 0 } Q z� CD J r IL a a. W0) I_ c L1J }� Lb �L LL cm Z a o� c� o CO� crU_ 0 LL 2 cr 0 J Q U a MAY 1984 5-3'651n DESIGN CRITERIA t'1--3/y 4 -OyD y 8 iKs e a � I 1 1 1 1 V1 t � ' �BIIIIIIIIIIIIIIIIIIIIIIBIIIII�III �0��@@1��1911���I�I�ID�IF�111111111 . MIN CIOE�9��1��1�11����1��161��1�111111111 �CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII �01�1�1�@IIIII�1�1@�11111111111111111 �0����I��Ifi11����1��IC1��1�6111111111 Q 0 z 0 U) W 0 Z Q, J UJ (r � a� :E_ W0) ~u T �� W 0) :3 (D :3 QJ a Z c) Q� �L O m 'C 0 cr LL 0 U- i 0 LL U a F- o)4-oyo Z1 z 1 MAY 1984 .5-3 DESIGN CRITERIA LJ b6-tJ Gi%LCOLAT70AI S ---I* e•� •r c C _ -°ems CIL III 11 1 n F r O M II 3 jy Cl T i N N ec a n J r c + F F T th o o f ti n; •� CO sal N ( ry.1B^ N a a GID Q r � Qsa �I?olep �� o e, Z as uBrse Q m v S N M Ir = l� oofN Nm s Ur = to sp w 0 a „ ens cc Q Z .� Gams m •� 9 C n I- slo lJrxee� T T - M S .9 �i •l• J �' �yI. N mGeMmitl 0- Ih T Y to -•. m _ h oaog V U m N „ aSw7nb 06 m 0 m m C I LI 513 pouny n Vl .s 3+ O r 3 F,•. U04eVnllfls Q ` T M \ in sly IIOYnH u410 N O 4. T 1y� N N { S W (� sla Ilomd J N y - o; S M �O tD m �p + am + Q geJlp C N m r T Ill {7.) �- = T Z Q em.y. easy Im c N N S m S m H -OCR N m N S N J• �• W a r ? — m 1n �1 m m m b a r 1n pOz � ._�Q �� o �_ n Yl zcc n?•:mn 0 NM.I. :lKUmYI 1n °i S N h a $? O Q V O `� pl p V 1, J V y 19 OIuen!IIaoO'J m ?_ �• T lNn T Z �• I/? In S 1� H ? F— - Y uaiequaouo3 ^ M �l �1 N 1- O 1r` Vl O In O W Io euey � T `° I` � e W M m r ._ N m E uw edid m 3 u. 'mw I"ils N euny l%�1 •� „ D) v,eYei 0 smseg "' N 1^ 1rl f11 If) N h > > Vl Y1 v ut In d Q a ss �4y1 Y m c ��m 'Kam , WN ° CQ 6_ C Q — $ $ 84 N N N N Nli n ' MAY 1984 5.3 DESIGp-CRITERIA I I 1 FILING NO. 6 HYDROLOGY a 4 I vl � N � m JIB N -Z 11 f�J V U N Z O ' -- w lL C F' cc F— Ir s < O w tL U 3 p Q p Z Z U uL O V QQr V) w m �-- 2 0 Lu H a J 0 � m U � J V7 Q U a o 14 o a a W° CC N ri N N o c J c M N N O v r r C4 0 w ° U z 0 w e- r-- N V ao as U OU c � .0 V N mkA Hr N ar Mni a w F- J co 9 Ms tno o my >IL��° `q J J \ N N N N N N V w -• ul 2 CC a J o m \0 _ Z r• o vol (1 o ool c,�" � o a w v) ?c V m M to ZZ sr m IIZI �r Q Is a s Is 7B >v O v7 a w try `'' try N N N 1— F' 0LLI J U OC �„ 1 O � V V) (A In y b yl In f ( Z - - - Wj N CD p Q Q v try N In N r � L CD � p o u U z C� Z w w _Z Z W U a t= ��BIIIIIIIillllllllllllllllllillllllll ���BIB1�1�1161�161�1111111111111111111 �9�191�1�11�1�1�1�1111111111111111111 �BIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIN 011111111111111111111111111111111111 ��8�1�1�1�110191�1�1111111ll111111111 �99191�19119161�1�11111111�1111111111 �BIIIIIIIIIIIIIIilllllllllEIIIIIIIIII 9111111111111111111111111 � 1111111111 �9�191�1�11�16161�11�1�111:1111111111 �B�I�I�I�II�I�I�I�IIEI�IiIf�l111111111 �C�I�I�I�II�I�I�I�II�I�IIEAllllllllll �091�I�I�II�IA1�1�11�1�11111111111111 �011111111111111111111111111111111111 �0�1�1�1�119181�1�1111111111111111111 �06191BI�II�IAIA1�1111111111111111111 �O�IBIAIAl1�lA101�1111111111111111111 �O�Ie1�lEllelm1�1�11@I@IIIIIIIIIIIIII �����I�I�II�I�I�I�II�I�III�I�IIIIIIII MAY 1984 N c 5 3 ^' $ r Q Z 0 w 0 Z, J c d d C w m ~w < co LL Z-i Q, L cm a3 o � cc LL � 0 LL cc 0 U- J Q U a FF— DESIGN CRITERIA ID/5i� DETENTION No Text I 1 1 u 1 DESIGN OF INLETS, STORM SEWER AND SWALES ' CLIENT n/ 0/y-DZL JOB NO. ' a RINC PROJECT ( VACL IfOLcow FIUA)6 6 CALCULATIONS FOR rNGE-TS Engineering Consultants MADEBYKW6 DATEZ-/I-9z-CHECKED BY DATE SHEET 13 OF 56 U i CLIENT JOB NO. RWINC PROJECT CALCULATIONS FOR Engineering Consultants MADEBY DATE z CHECKED BY- DATE SHEET 17 OF 2 `)e STORM SP-Wc-k 5 Y_'S7 ivl DES/GN 1 -1 - - ,�� 00 2 -- r _i ... o LF ..IS 2CP I - - _�- >zcP I - `- crt 27) L IPo+JD-�lo - f 1_ `J �2L/tN� 7�Ale..:70W'9e S P0'OvO%UO�I :(0 r4_7 TEDES/6N= ! -o � I j-- _ 11lI 1 a o � ljnnrl_� �s�d � 3 O5 PIPE q ,�J ! a. Z0 - Sevisept aly-oy0 z/y z VS/S1, ---------------------------------- ' REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER•MODEL VERSION 3 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE ' DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA ON DATA 02-20-1992 AT TIME 13:16:02 PROJECT TITLE : STORM SEWER FROM BLUE LEAF COURT TO DETENTION POND 1 ** RETURN PERIOD OF FLOOD IS 2 YEARS tRAINFALL INTENSITY FORMULA IS GIVEN *** SUMMARY OF HYDRAULICS AT MANHOLES ••••'...•••••••••••••.....•••••••••••••....................................... MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS 1D NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------- 1.00 N/A N/A N/A 7.80 12.50 11.50 OK 2.00 N/A N/A N/A 7.80 15.72 14.34 OK ' 3.00 N/A N/A N/A 6.20 15.72 14.96 OK 4.00 N/A MIA N/A 6.20 15.72 15.12 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 2 HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 3 IT SEEMS THE GIVEN RUNOFF IS TOO HIGHI ** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 -..---- •••••••••••••••••••••••.....•••••••• SEWER MAMHOLE NUMBER SEWER ................................. REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. 1D NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 1.00 2.00 1.00 ROUND 17.61 18.00 15.00 0.00 2.00 3.00 2.00 ROUND 16.16 18.00 15.00 0.00 3.00 4.00 3.00 ROUND 16.16 18.00 15.00 0.00 IIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES ' DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, ' EXISITNG SIZE IS USED ••••••...••••••••••••••..........••••••••••• SEWER DESIGN 0 P-FULL 0 ................................... DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS ID NUMBER IN CFS IN CFS YN FEET YC FEET IN FPS NUMBER 1.00 7.80 5.10 •• .... ...................................... 1.25 1.09 6.36 0.00 V-OK ' 2.00 3.00 6.20 6.20 5.10 5.10 1.25 1.25 1.00 1.00 5.05 5.05 0.00 0.00 V•OK V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) ••.......•••••••• (FT) (FT) (FT) 1.00 0.62 12.71 ............................... 11.49 1.76 -0.24 NO 2.00 0.62 12.96 12.71 1.51 1.76 OK 3.00 0.62 12.96 12.96 1.51 1.51 OK IOK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS :•••••.... ..... •••......... ....• •••. SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 1.00 196.00 .... -•--••••••-•••-- 196.00 13.96 .... . 12.74 ..... 14.34 ....... 11.50 PRSS'ED 2.00 40.00 40.00 14.21 13.96 14.96 14.34 PRSS'ED 3.00 0.10 0.00 14.21 14.21 15.12 14.96 PRSS'ED 'PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW F** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS .........•••..........•••......••••........••• SEWER UPSTREAM MANHOLE FRICTION ................................. DOWNSTREAM MANHOLE ' ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY ••••••........••••••......•••••.....••••••••...• ID NO. ELEV FT ELEV FT FT ID K K LOSS FT 1.00 2.00 14.97 14.34 2.84 ............................... 1.00 1.00 0.00 0.63 11.50 2.00 3.00 15.35 14.96 0.37 2.00 0.05 0.00 0.02 14.97 3.00 4.00 15.51 15.12 0.06 3.00 0.25 0.00 0.10 15.35 BEND LOSS =BEND K* VHEAD IN SEWER. 'MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES DROP AT MANHOLE Stnsevn of 4-oqo 7-A 2 1("15 , 3-en Seri oly-oYo REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 3 DEVELOPED BY ' JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT - DENVER, COLORADO *** EXECUTED BY DENVER LID AND FCD POOL FUND STUDY - DENVER METRO AREA ON DATA 04-09-1992 AT TIME 16:01:29 *** PROJECT TITLE : STORM SEWER FROM OVERLAND TRAIL TO POND NO. *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ------------ MINUTES -"'---------.'--------------------------------------- INCH/HR CFS FEET FEET 1.00 N/A N/A N/A 93.30 19.30 15.91 OK 2.00 N/A N/A N/A 93.30 20.00 17.49 OK 3.00 N/A N/A N/A 93.30 20.50 18.06 OK 4.00 N/A N/A N/A 93.30 20.60 19.25 OK ' 5.00 N/A N/A N/A 93.30 20.50 19.55 OK 6.00 N/A N/A N/A 93.30 22.80 20.56 OK 7.00 N/A N/A N/A 93.30 22.50 20.91 OK 'OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS ' NOTE: ----- THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 --------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH .... ID NO. ---"-..---- ID NO. ----- (IN) (FT) ..." (IN) (FT) (IN) (FT) (FT) 1.00 2.00 1.00 ROUND 45.84 -----'-" 48.00 ----- 48.00 ---- 0.00 2.00 3.00 2.00 ROUND 45.84 48.00 48.00 0.00 3.00 4.00 3.00 ARCH 45.68 48.00 34.00 53.00 ' 4.00 5.00 4.00 ARCH 45.68 48.00 34.00 53.00 5.00 6.00 5.00 ROUND 45.68 48.00 42.00 0.00 6.00 7.00 6.00 ROUND 45.68 48.00 42.00 0.00 'DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL ,FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE IS USED oiy-otie j8/sue 1114 Z ------------------------------------------------------------------------------- SEWER DESIGN 0 P-FULL 0 DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS ID NUMBER IN CFS IN CFS YN FEET YC FEET 1N FPS NUMBER 1.00 93.30 105.84 2.92 2.93 9.51 1.01 V-OK 2.00 93.30 105.84 2.92 2.93 9.51 1.01 V-OK 3.00 93.30 82.15 3.63 2.97 9.04 0.00 V-OK 4.00 93.30 82.15 3.63 2.97 9.04 0.00 V-OK 5.00 93.30 74.82 3.50 2.97 9.70 0.00 V-OK t 6.00 93.30 74.82 3.50 2.97 9.70 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS --------------------------------------------------------------------" SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ----------- % (FT) ------------------------------------------------- (FT) (FT) (FT) 1.00 0.54 14.56 14.21 1.44 1.09 OK 2.00 0.54 15.13 14.57 1.37 1.43 OK 3.00 0.55 16.43 15.71 1.34 1.96 OK ' 4.00 0.55 16.62 16.44 1.05 1.33 OK 5.00 0.55 17.02 16.62 2.28 0.38 NO 6.00 0.55 17.02 17.02 1.98 2.28 OK ' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION ------------------------------------------------------------------------------- FEET FEET FEET FEET FEET FEET 1.00 65.00 0.00 18.56 18.21 17.49 15.91 JUMP ' 2.00 104.00 0.00 19.13 18.57 18.06 17.49 JUMP 3.00 131.00 131.00 19.26 18.54 19.25 18.06 PRSSIED 4.00 33.00 33.00 19.45 19.27 19.55 19.25 PRSSIED 5.00 73.00 73.00 20.52 20.12 20.56 19.55 PRSSIED 6.00 0.10 0.00 20.52 20.52 20.91 20.56 PRSSIED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS '------------------------------ SEWER ------------------------------------------------ UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY ---- ' ID NO. ---- ELEV FT ELEV FT FT ID K K LOSS FT 1.00 2.00 -----'..----- 18.89 17.49 ---- 1.58 ---- 1.00 ---- 1.00 ---- ' 0.00 ---- 1.40 ----- 15.91 2.00 3.00 19.46 18.06 0.40 2.00 0.12 0.00 0.17 18.89. 3.00 4.00 20.52 19.25 0.93 3.00 0.10 0.00 0.13 19.46 5.00 20.82 19.55 0.23 4.00 0.05 0.00 0.06 20.52 '4.00 5.00 6.00 22.02 20.56 0.62 5.00 0.40 0.00 0.58 20.82 6.00 7.00 22.37 20.91 0.06 6.00 0.20 0.00 0.29 22.02 'BEND LOSS =BEND K* VHEAD IN SEWER. MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE 1S LESS THAN ZERO FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES DROP AT MANHOLE 1 SenSer 19 oi4-oqo Sb 2�q2 RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION DRAINAGE CHANNEL FROM BLUE LEAF DRIVE TO DETENTION POND NO. 1 STA ELEV 0.00 30.00 12.00 26.00 24.00 30.00 'N' VALUE .......... SLOPE (ft/ft) ............. 0.035 0.0132 Z9 .3 c s ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) (sq ft) ......... ....... (fps) ........ (cfs) ......... NO. ...... 26.20 0.1 1.0 0.12 0.57 26.40 0.5 1.6 0.78 0.64 26.60 1.1 2.1 2.29 0.68 26.80 1.9 2.6 4.93 0.71 27.00 3.0 3.0 8.93 0.74 27.20 4.3 3.4 14.52 0.76 27.40 5.9 3.7 21.90 0.78 27.60 7.7 4.1 31.26 0.80 27.80 9.7 4.4 42.79 0.82 F-MERt e:Mc:t�� 28.00 12.0 4.7 56.67 0.83 28.20 14.5 5.0 73.06 0.85 28.40 17.3 5.3 92.14 0.86 28.60 20.3 5.6 114.06 0.87 28.80 23.5 5.9 138.97 0.88 29.00 27.0 6.2 167.04 0.89 29.20 30.7 6.5 198.40 0.90 29.40 34.7 6.7 233.20 0.91 29.60 38.9 7.0 271.59 0.92 29.80 43.3 7.2 313.70 0.93 Calcu/affOnS vsc Mann in15 EA. q=� Ry3S zA iooVR. wse� ,�/ r'eEE3oL�QA i.o' RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Ten se� o i'f -oyo ZD/5 �o Z/9 z 100 YEAR FLOW OVER BLUE LEAF DRIVE AT SUMP WEIR COEF. 3.000 STA ELEV 0.0 16.70 19.0 16.45 38.0 16.27 57.0 16.17 71.0 16.23 85.0 16.29 99.0 16.35 113.0 16.41 127.0 16.47 142.0 16.53 160.0 16.61 178.0 16.69 ELEVATION DISCHARGE (feet) --------- --------- (cfs) 16.2 0.0 16.3 1.5 16.4 8.6 16.5 22.9 -Z ifs 16.6 46.0 �- 16.7 78.4 Calcvjsk&n5 bdSed o.• 0=CCN3/z Qioo= 29.3 cis Durin% a " -or SivrM +tie. d cf+- , of wa+er- aver 4hc ertW n" Shall no'f exceed G , Max. ele✓ � 16,53 mIN, e lev = 16,17 0, 3fo' 41.3 L(o'0K) RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA 100 YR. FLOW OVER SIDEWALK AT SUMP ON BLUE LEAF DRIVE WEIR COEF. 3.000 STA ELEV 0.0 17.00 63.0 16.70 71.0 16.30 79.0 16.70 143.0 16.70 200.0 17.00 ELEVATION DISCHARGE ( feet) --------- (cfs) --------- 16.3 0.0 16.4 0.1 16.5 0.8 16.6 2.1 16.7 4.3 16.8 15.3 29.3 efs 16.9 36.9 $ 17.0 69.4 -ale u1,+lons Basel on Q=CLN'/Z- We',r -Plows o'F Q,oa=Z9,3cf5 80 ouu- eideuual k ¢- lawns -o read+ oue�ow Swale be-iween lofs . Cro:s s jec{-ion fa Ken Alen) prole-'17 Line aarFN-A gradrnl f!an , Max. elev,7- 16,86 IF alev= 1501Z /,/y i MA- PerCi1� or,feria- l max, l� �onclinq 15 /,S " , 11 /,/Ll�L/,S�(eK-) RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION OVERLOOK TO POND 1 ' ELEVATION (feet) 4.50 5.00 ' .0 6.00 6.50 7.0 7.50 8.00 8.50 ' 9.00 9.50 10.00 � S- lF.vr� 4r II i-a S)c15r LQaDE STA ELEV 10.00 10.00 34.00 4.00 44.00 4.00 68.00 10.00 ON' VALUE SLOPE (ft/ft) .......... ............. 0.035 0.0050 SwACE F"AA 0✓E12LRA1jQ 7i2,9/L TD POND NO , / AREA VELOCITY DISCHARGE FROUDE (sq ft) ....... (fps) ........ (cfs) ......... NO. ...... 6.0 1.7 10.21 0.46 14.0 2.5 35.33 0.50 24.0 3.2 75.71 0.53_ 36.0 3.7 132.92 0.55 50.0 4.2 208.67 0.57 66.0 4.6 304.64 0.58 84.0 5.0 422.50 0.60 104.0 5.4 563.89 0.61 126.0 5.8 730.36 0.62. 150.0 6.2 923.47 0.63 176.0 6.5 1144.69 0.63 204.0 6.8 1395.50 0.64 .a , lo' ._lag FRE1=L o�D Ten5er, oty-oyo Z/9� 21A�56 93. 3 =a = `C 106 �a55ume6 beacK to+ flows have rAs5eot 1-7.6 �o�I S-7. Z I 111111110 a; "1;A47) - Engineering Consultants f- CLIENT Ter'Sf"7- 1 JOB NO. D/y'DyO PROJECT P✓a� I-EcIIE to CALCULATIO NS FOR O✓erPow Swale {0 MADE BY KIP& DATE Z 121 CHECKED BY DATE SHEET ZZ OF 57(0 e_ PiGE i✓um6FR i7 Tr RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA TEnl- EYE 100 YEAR FLOW OVER SIDEWALK AT SUMP IN COURT WEIR COEF. 3.000 STA ELEV 0.0 5112.00 7.0 5111.40 27.0 5111.30 33.0 5112.00 ELEVATION DISCHARGE ( feet) (cfs) 5111.3 0.0 5111.4 0.7 5111.5 3.7 5111.6 8.2 5111.7 14.0 /6.7 c.5 5111.8 40 21.0 5111.9 29.3 5112.0 38.7 ca I c (afion s BaSeoC on Q= CLN 31Z Z-emssn 014-040 2/9 z 231sto wear -Plows 04 Qoo° /6.7ci5✓ �o over sidew4lk4 lawns +v mac- Swale b e-+v--c e n /cis , Cross se4ion +aKtn'Fror" IZ Cpn+oa(' on �tla,01ir9 p/an, iy,iN/� E[Fu= 5//D,bo Az der- C;-/,/ Cr-,-ter—amr�.r,o�c, Tense.n O1 y-600 zY/s� REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 3 DEVELOPED BY ' JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA ON DATA 04-03-1992 AT TIME 16:21:15 *** PROJECT TITLE : ' STORM SEWER FROM TEAL EYE COURT INTO DET. POND 2 *** RETURN PERIOD OF FLOOD IS 2 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 N/A N/A N/A 4.50 5110.00 5109.20 OK 2.00 N/A N/A N/A 4.50 5111.10 5109.45 OK 3.00 N/A N/A N/A 4.50 5111.10 5109.61 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 -----------------------------------"'-----------...-----"........_.._._...... MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING 'SEWER ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH -----------------------------------------------------'"-"'--"_._.._-.___..-- 1D NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 1.00 2.00 LOD ROUND 14.20 15.00 18.00 0.00 ' 2.00 3.00 2.00 ROUND 14.20 15.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES 'DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE;,OTHERWISE, EXISITNG SIZE IS USED MerSe..n a I •{-DYD y19Z ZS�Slo ------------------------------------------------------------------------------- SEWER DESIGN Q P-FULL Q DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS ID NUMBER IN CFS IN CFS YN FEET YC FEET IN FPS NUMBER 1.00 4.50 8.49 0.78 0.82 4.88 1.10 V-OK 2.00 4.50 8.49 0.78 0.82 4.88 1.10 V-OK ' FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS 1D NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM x---- ---- ---- ---- 1.00 0.65 5108.63 5107.75 0.97 0.75 NO 2.00 0.65 5108,63 5108.63 0.97 0.97 NO ' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW 1D NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 1.00 136.00 0.00 5110.13 5109.25 5109.45 5109.20 JUMP 2.00 0.10 0.00 5110.13 5110.13 5109.61 5109.45 JUMP ' PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- ' SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY ID NO. ELEV FT ELEV FT FT ID K K LOSS FT ------------------------------------------------------------------------------- 1.00 2.00 5109.82 5109.45 0.62 1.00 0.00 0.00 0.00 5109.20 '2.00 3.00 5109.97 5109.61 0.D6 2.00 0.25 0.00 0.09 5109.82 BEND LOSS =BEND K* VHEAD IN SEWER. MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD 'JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES DROP AT MANHOLE TMINC ' Engineering Consultants 1 t CLIENT �1.5 Ey, - JOBNO. OPY—O'16 PROJECT .QJa"I NcI�dW #%`Cv CALCULATIONS FOR 00f.r-r-10W Po.�l �SateA -fo MADE BY K��Dy Z ATE Z CHECKED BY-' DATE SHEET OF 5L k1 b RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Tens cr Ol14 -OvO Z/q z 27/3-4 100 YEAR FLOW OVER SIDEWALK AT SUMP IN DIXON CREEK LANE WEIR COEF. 3.000 STA ELEV 0.0 5115.00 12.0 .5114.00 17.0 5114.00 30.0 5115.00 ELEVATION DISCHARGE (feet) --------- --------- (Cfs) 5114.0 0.0 5114.1 0.6 5114.2 1.8 5114.3 3.8 5114.4 6.5 q,8cf3 5114.5 10.0 �- 5114.6 14.4 5114.7 19.7 5114.8 26.0 5114.9 33.3 5115.0 41.6 C a lC uIaT IOrns Based on Q=CI_H 312 WE/R -p/Ouw o'F Qmo= 9.Scrs Ja 0 er 5rdewal fc 9L lawn; -fa reach o'e.r-pl a w -� wd-l e b ef-u,eeV lots. �! Cross sec�7on 'fae'e" -4vr� IS ",?-1,ur cn Araal my P/a,1, _ e/.Sa Max, ele✓, Per C;'7 Cr; ier> a) rnaY , Pond>r+7 %S l,S ) &KJ Ten s a.I Al -,0'/O ad Z 20156 REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 3 DEVELOPED BY ' JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ' *** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA ON DATA 02-21-1992 AT TIME 17:00:17 *** PROJECT TITLE : DIXON CREEK LANE STORM SEWER SYSTEM *** RETURN PERIOD OF FLOOD IS 2 YEARS *** SUMMARY OF HYDRAULICS AT MANHOLES 1---------------------------------------"'------- -------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ' MINUTES INCH/HR CFS FEET FEET ---------------------------------------------------- 1.00 N/A N/A N/A 2.70 5110.50 5109.20 OK 2.00 N/A N/A N/A 2.70 5114.30 5111.67 OK 3.00 N/A N/A N/A 2.70 5114.30 5112.28 OK ' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION 'CHECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 2 1T SEEMS THE GIVEN RUNOFF IS TOO HIGH! '*** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MANHOLE ----------------- NUMBER SEWER ------ REQUIRED ------------------------ SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ---------------------------------------------------------------------"-------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 1.00 2.00 1.00 ROUND 9.19 15.00 15.00 0.00 ' 2.00 3.00 2.00 ROUND 12.32 15.00 15.00 0.00 'DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE IS USED 1 ------------------------------------------------------------------------------- SEWER DESIGN 0 P-FULL 0 DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS ID NUMBER IN CFS 1N CFS YN FEET YC FEET IN FPS NUMBER 1.00 2.70 10.01 0.44 0.67 6.93 2.14 V-OK 2.00 2.70 4.58 0.69 0.67 3.89 0.92 V-OK , FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ...................................................................... SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM 1.00 ---------- 2.39 ---------- 5111.00 5107.61 ------.... -------------------- 2.05 1.64 OK 2.00 0.50 5111.00 5111.00 2.05 2.05 OK ' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ' 1.00 142.00 0.00 5112.25 5108.86 5111.67 5109.20 JUMP . 2.00 0.10 0.00 5112.25 5112.25 5112.28 5111.67 SUBCR , PRSSIEO=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY ID NO. ELEV FT ELEV FT FT ID K K LOSS FT ------------------ ------- ------------------- 1.00 2.00 5112.41 5111.67 3.21 1.00 0.00 0.00 0.00 5109.20 '2.00 3.00 5112.52 5112.28 0.05 2.00 0.25 0.00 0.06 5112.41 BEND LOSS =BEND K* VHEAD IN SEWER. MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES DROP AT MANHOLE a M 1^ y' 111 N a mI W vl� ^ o A110013A W J v Y Y Z 1311n0 '- '�` CC LA ¢� NOUVA313 �"' M to ' ' W F N I Q m N W 0 ItQ C I p tl31VM0V3H 10tl1N00 * ..I) ? tt J W .. < z \ \ I J 4 f W W ¢ Q r W w to `1 cp p N Zr u i�l m J H a Z LL W N (,) N N 2W co W Q I V mI (Y1 W I 0 M W w N cA U O J y 3 PP o 3 =` ¢ U Q V O N J I _uJ O y h O `q J I IW J ~ 'O O O LL J 1 —I e Q p L tzt_ V I V O 1_ vI L S W J O 0 m ; N N \ O _ N r Q h = a` w_ O J S a F- W J W h �/1 , J i 0 Q w J J 2 > N z z % O .. N N n LL J S V W J¢ W C O N Ln N J S N S V HOW z � ca J W m 0 Q N o m v O V H e = ¢ IW _ J — _ N � ` LL \- _ w 39 y�j ISO M 0 H W W 3 a V \I J ` 1 ❑ ❑ N �Wj W WN O fQ.l V O 3 M J ,•/ O Q ¢ V O Yl y O w W O i W Z (A ¢ a W c ^. Q= W O W LL N = N Y W J C ¢O h zu } S a S C¢ Z % O v = �ti u N m cz o < W z i =` O = e w <■ = OOW a .. h _ Q rani �,S y Q 1L IOL 'Z I O W V b==✓� Q Q O O u a b m S 6 WI it W ¢ Q, Z J OWIIO11GOhJ O S N 2 Q U) NLJW WWJS� 'S1HS'1,OOV 33S J h rJ e: . 240 Z4 A156 0/1/-04o zensen 30159 I ' RIPRAP DESIGN 1 L No Text No Text 3313z, SPRING CREEK FLOODPLAIN DATA INFORMATION v W J a o W W a 0 Fa.. CD Q W ' o Z H Z Q W a. 1 US gJ m ' W W 40 311 3 F m m 7 m— tD — N N N tD N O O Q O m �' CA N 7 Cm CA CD ui Q) tD m O> O W CA m m m 0 0 0 0-- 0 N m J ton to n u� t0o to n, n u� to to to Ln to W W Q 3= O to M O N m=p m N O O J —N t tmp O to N N U. — Z O w P tO W ID t7 — O tb O O — tD 7 O }(� W MmMMOOO--- Oo O O Oo o an M —N — —toJ to to W Z QO WF orn 0:o11CD to n CD�—tD Q O N m — I m CA of to CA T m m 0 0 0 o 0 0--" m OO W ton too ton ton to to to to to to to to _ J W Z !2 Q W H to 7 m w 7 tD to to to m aD tD Of N m Cp 7 CO. m CA 7 CA to m OD to Q) M p 0 00 0-- N M O W o 0 0 0 — to to tD u) to to in ---- to to to to to u") J W �z Q O W A tD N m 7 In N N N 7 p m m Q CD — N m — 7 m a0 to J' Cn to M !' CD CA CA Cm 0 0 0 0 0— N M O W O O O O to to � to to to � to — to — to — — to U; to — J W CD Z W O 3 p O to 0 n O— O N to ^ O N J Q tD 10 m to n 0 N m N n N N Q W O O C. O N m 0 O O CS, O O an to to to to to to to to to to to �n � J W Z O Zg a0000aDao�tn000mo co 0) Lc)tetw Co Q7 1,00DC00(n . H O m m m M m m m M m m m m m Q Z O vto po _ CCpp Cl) mmCm =I-=1 77777 O— — — — — — — — — — — — — c.> 0 -33- 3.6'/, b -36/5L EROSION CONTROL I I I 3015to RAINFALL PERFORMANCE STANDARD EVALUATION --------------------------------------------------------------------- PROJECT: QoA/L h{O(,COW F lt-/4)6 G STANDARD FORM A COMPLETED BY: Kw 6 P R$D OILI-090 DATE: 2 -//-9 Z --------------------------------------------------------------------- DEVELOPEDIERODIBILITYI Asb I Lsb I Ssb I Lb I Sb I PS SUBBASIN I (ft). I I(feet) I (b) I (a) ---------I--------- kAZ�Eac�-I-(ac)--I I I -------I- -(p) -----I-------I-------I------- 1 I �vl6H Ix s,7s I eos I /,6 I I i I 3 I Lout Ir2,/O9 y Il how I'y7z /yzS I /,o I I I H•62 I I I /oyy I /,z I 79.9 L{�_ 5✓m CLsb x4:5Ij Sun ,45b I i I I Lb = (Bos 5•�s)+SSS(/,vc�+//so(z•65 /YzsCy� ' ly Ca2 us i, L6 = Ioy y ft I i Tbl 56 = Sum 6-5sy X A5b )/S 'o 95b 56'/•� /y,` I ! 56 = A 2 ,k ArCA5 u fain i-l-lons o1F I I I I Quaff I Fiat ow , lIn5 S. C OK— r sec end resuFF, X li C/JPue. %ham n IL fure E boI In Z-4,5 show on -% e. drai aye- p/an) rn /in9 S dram di %! r i 4o F'l / n� 6 seta ra baste cal tue nodona �° Q n i Fi l i lv a�p a S. [p 7� I7xL ero Ior '�/ nbP�svrCsi he{h IPA/e p 3Q '}fie I E�ici :rl: f n L roe "n4-, ,, plan II tug 11 61� All '1 %1�. r,14 ------------------------------------- --------- =---------------------- )I/SF-A:1989 -EFFECTIVENESS CALCULATIONS -------------------------------------- (PROJECT: 009/L. #06Z.Oul F/L/N6 C; STANDARD FORM 8 1COMPLETED BY: Ka)6 aR.QD Oly-ogp DATE: Z-//-9z ' Erosion Control C-Factor P-Factor Method Value . Value Comment 995--7vR-8 ------------O0-- -------- -TOT 0 ---------P --- ' 6RVEL F/LjE25 I /r 00 O r80 .9-T rNGETS H,fY D/2 SreAIV DiO6 /r00 mucu+ w/ 7'5-MA -----------------------------------------------=----------------------I MAJOR( PS SUB AREA BASIN W +BASIN, (Ac) CALCULATIONS ----- ------ ----- ------ S7S --------------------------------- 0/05 q- cvkh;e.h 6S A e y (;; Zi FR;; - C,V172F A SEEOj Mucc/f y,/o AG NET C FOCrO,P= Nr--i-P FAtroR = /C•8) _ ,8o yy I EFF= (/-c;c.p)XrOac 2 /,H6 ,2ogo5 C ci,e8 z O,S Rc d ra,e.l Fil-fer I niuLLN z D,9(eRc Cu//TFmP•SEED) I n/ErL Fvc7uk = o,SC or) t •96 (o%) = 0,0 V /,vro NErP Fgc709= the) ,80 I _ 9G•b% ' EFF= Ci'cxP)xroo=(I-C•o9x.ko))xrOo 3 Z,G9 pegD5 a cYze /.2SAc q (a rot c Frr Et77J I I p1JLGN = /,yy,4c Cw/TEMP• FslcToR= /,ZSC•or)tI,YYGob)__ p,py I ' ' AerCc NEr P FPcroR= lC s)=•So xroo= 4ro.890 EFF= C�-cxP)xroo =(I-C DYX•So)) ' IJI /,7 Z "RIPO a CUR x /, 6 fJc ¢ [Gravel Frl 3;IZ (kO 727nP• SEED I J w� o /rvL a 1 .9c. NET C F*C-rooe = /, G Ga r) t 3 12 6L* = 0,0 ,t ' % or� NErP FRC,TOR= IC,B)= EFF=(l-CXP)X10o= &-(,0gx.e))Xi0o=94•890 *(XcN -2:. q,-7G Ac [w/ rEmP. 5EE0 NET C FACTOQ = .7 y7 b . N EY i F9 cra,e = 9'/,o9e✓ EFt-=(/_czP)Xl00 CI-(lot.xl))x)00 EFFuet = 9G(5.75 t9c,g ,Yc f %,8 2L9)�9L• 7Z f y , ' I 19.38 I I 95'. 9 ) 78.9 (oK) EFFNef = 95', 91 NOTE' s The. im7a r/- is 4v use- o- Seel har wif-h -khe. e- sfnw m¢0r,•7Q 017.S; ¢ aeas. Per.�a�erfouenFbw Swa/es rchanne/a/44�� I---------------------------------- AN OPFs;{e d•sfi,r•bei areas w;ll reeeiutl ' 0. Per------T - -- wii� }%� hay or• -I HDT/SF-6:1989&A V1510 CONSTRUCTION SEQUENCE PROJECT: 0091L WLtoW FiL/A/6 G sEQuENcE. FOR 19 9Z ONLY COMPLETED BY: KW6 031ZBD STANDARD FORM C DATE: Z ////9Z 'Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. ' YEAR -MONTH- , OVERLOT GRADING WIND EROSION CONTROL ' Soil Roughing Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation Nettings/Mats/Blankets Other STRUCTURES: INSTALLED BY /99z ,,9 I m l.Sl Tl R 1 5 1 0 Al I I I I -------------- ------------------------------------------I VEGETATION/MULCHING CONTRACTOR DATE SUBMITTED HDI/SF-C:1989 ----------------------------------------------------� MAINTAINED BY APPROVED BY CITY OF FORT COLLINS.ON CHARTS, TABLES AND FIGURES 4 56 DRAINAGE CRITERIA MANUAL RUNOFF 50 30 1— 20 z w 0 tr W a 10 z w IL 0 5 W ¢ 3 0 0cr 2 W Q 3 1 _-■111 IWA M3111F"_ MEN1111 FA FAII ►-BE FAN MINES NINON! • , r •, ' Il I' 2 .3 .5 1 2 3 5 10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING"UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55. USDA, SCS Jan. 1975. 5-1-84 URBAN DRAINAGE d FLOOD CONTROL DISTRICT No Text qY/5�q i 1 1 MAY 1984 U- 0 .9 M .7 .3 .2 fil s=06'/ F= 0.8 --N s : 0.4 % F=0.5 1 N1 I I BELOW MINIMUM ALLOWABLE - STREET GRADE: I I iI II• . Jilf�: O 2 4 6 8 10 12 14 SLOPE OF GUTTER Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA CLIENT �LhS�VI1' rr /' JOB NO. 6I,-I -0 �O ■��INC PROJECT 42/V0.1( W01160) b CALCULATIONS FOR .7iY_i'i1 �.�t aL4)/ ' Engineering Consultants MADEBY �Wb DATE 4-al CHECKED BY DATE -SHEET- OF o: e a ' (tooYEAR)j SURFACE UM/T i � � 1 t ..._... ,. p% .. I M;/A/oR sToRM .('ZyEifR) SURFACE G/m/ri �-- _ fiLGOWABCE .STREET us)0Ad/rY j Ty, 'RO.W �33, PA✓E,h1En/T'WiDT//CROLLovER eq� ' li=0,0/Co .(fen Minor 5fOr ) p nP.rncf} O.o75Cz47+a.0 /G �3•YBJj P=33.30�, I /tPs .Y7.Y8 O.02G:%fmaT Equation used: MANNINCS EQUATION Q = c/n A R 2/3 S1/2 Q = Discharge ,- ..._.._ ...... ' C = Chezy Coefficient 1.486 n = Roughness factor A = Area R = Hydraulic Radius = Area/WP WP = Wetted Perimeter ' S = Slope Let X C/n AR/3 _ then Q = X SV2 Minor storm (one side of road only). Area = 2.63 ft2 Mannings "n" = 0.016 ' Wetted Perimeter = 16.65 ft. Hydraulic = 0.16 ft. X = 71.99 Major storm ' (both sides of road) Area = 42.52 ft2 Mannings "n" (composite) ' (37.17ft)(0.016) + (24.25ft)(0 0351 = 0.026 47.42 ....... . ......... ........ Wetted Perimeter 94.96 Hydraulic radius = 0.45 X = 1427.08 To find "Q", multiply "X" by the square root of the slope and then by the reduction factor, Fig. 4.2 P. 4-4, of Fort Collins, specs. - j Nqs6 1 0 is for both gutters combined Reduction factor is included ' Minor Storm Major Storm Slope M V (fps) 0 (cfs) V (fps) 0 (cfs) RF 0.40 1.4 4.6 1.9 45.1 0.50 0.50 1.7 6.6 2.1 65.5 0.65 0.60 2.0 8.9 2.4 88.3 0.80 0.70 2.1 9.6 2.6 95.4 0.80 0.80 2.3 10.3 2.8 102.0 0.80 0.90 2.4 10.9 3.0 108.2 0.80 1.00 2.6 11.5 3.2 114.0 0.80 1.10 2.7 12.1 3.3 119.6 0.80 1.20 2.8 12.6 3.5 124.9 0.80 1.30 2.9 13.1 3.6 130.0 0.80 1.40 3.0 13.6 3.7 134.9 0.80 1.50 3.1 14.1 3.9 139.6 0.80 1.60 3.2 14.6 40 144.2 0.80 1.70 3.3 15.0 4.1 148.6 0.80 1.80 3.4 15.4 4.2 152.9 0.80 1.90 3.5 15.9 4.3 157.1 0.80 2.00 3.6 16.3 4.5 161.20 0.80 2.25 3.8 16.8 4.7 166.7 0.78 2.50 4.0 17.3 4.9 171.2 0.76 2.75 4.1 17.7 5.1 174.9 0.74 3.00 4.3 17.9 5.3 177.7 0.72 3.25 4.4 17.9 5.4 177.3 0.69 3.50 4.5 17.8 5.5 176.0 0.66 3.75 4.6 17.6 5.6 173.9 0.63 4.00 4.7 17.3 5.7 171.0 0.60 4.25 4.7 17.2 5.8 170.4 0.58 4.50 4.8 16.5 5.8 163.2 0.54 4.75 4.8 16.3 5.9 161.5 0.52 5.00 4.8 15.8 5.9 156.1 .049 5.25 4.9 15.2 6.0 150.2 0.46 5.50 4.9 14.8 6.0 147.0 0.44 5.75 4.9 14.5 6.0 143.5 0.42 6.00 4.9 14.1 6.1 139.6 0.40 Minor: n = 0.016 A = 5.26 ft2 R = 0.16 C = 143.89 Major: n = 0.026 A = 42.47ft2 R = 0.45 ft C = 1,425.02 0 = 1.48 AR2/3S1/2 C = 1.486 AR2/3 n n 0 = CS1/2[RF) V = 0/A V/56 1.0 12 5 9 II 10 4 8 10 3 .8 6 9 0 4 ' -N 2 7 w 8 W 3 �� a i z 1.5 6 P a ID, ti o 7 \Qy j � z_ 1.0 5 Example, Part a I'0 Z .9 — — — - "j w 5.5 CY F- W 6 t� o U_ W 5 s z o .7 � .4 z z .4 ►- ? 45 0 3 6 . Z. w L .U. s v o 4 2 p 5 co s z_ z ►- .3 z W 3.5 w T 4 O a _j a= O I w 0 0 .08 ~ .25 3 0 s s O .06 3 c� c� U z .04 2.5 wa w .25 .2 .03 �- a 3 a .02 0 .2 d s 2 U F a .15 .01 0 .15 L W 0 0 --- -- yo a a=2° h 10 I 1.2 Q Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2- U Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA 3 1510 CHART 1O ISO 10,000 168 8,000 EXAMPLE (2) (3) 6. 156 6,000 D•42 inches (3.5 feet) 6 5. 5,000 O.120 cfs 144 6. 5. 4,000 jiS • NM 132 D fad 4 3,000 (1) 2.5 6.8 5' 4. 120 (2) 2.1 7.4 2,000 (3) 2 2 1.7 4• 3' I08 - 3' e0 in feet 96 1,000 3. Boo 84 600 S00 72 400 a 2. / 3 300 c* 1.5 1.5 / U. 60 0 200 � 1.5 Z Z W 0 54 a a a W 100 Z > 48 / 1z 80 1.0 o Q 0 60 W 1.0 U. /2 _11 SO HW ENTRANCE c L0 c 40 0 SCALE TYPE W 36 < 9 .9 I— 30 (1) Slivers edge with 3 Whoadeall .9 a_ 33 20 12) Greece anal with 4 a W C 30 headwall x •6 .8 (3) Groove and .8 projecting 27 10 8 24 .7 6 To use scale (2) or (3) project 21 5 horizontally to scale (1), then 4 use straight Inclined line through o and o scale$, or reverse an .6 3 illustrated. 8 .6 18 2 IS I 1.0 L .5 5 L .S L 12 HEADWATER DEPTH FOR HEADWATER SCALES 283 CONCRETE PIPE CULVERTS REVISED MAY1964 WITH INLET CONTROL BUREAU Of PUBLIC ROADS JAIL 1963 181 Preceding page blank Nl5to DRAINAGE CRITERIA MANUAL RIPRAP Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE B- FLOOD CONTROL DISTRICT s615b DRAINAGE CRITERIA MANUAL 9 = Expansion Angle RIPRAP mmmmmmmm ormadvs iEFRENd mal - O .l - 2 .6 .4 ' .D o r .o TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 6 FLOOD CONTROL DISTRICT O O Q C O J O U In Z J J O v O U_ w 0 W IN 0 Q O Z Q H N LU U Z Q C O lL CC w Ct. PAGE 23 1 0 1 o,rnpoo 1 O I wMMCOM 1 0 1 o,rnrn'ON cc0000 c I ccccI co cc CO =0000 000coCO 1 c I cOrno,rnrnrnrno+rnrno+rn000 oM i Cococoo4oxo�omocococccoco=coo"o 1 0 I nCoOC Co CINOl 01 C1%01 Qt 01 Ol Qt Qt Ot 01 CIt Cl 01 Ol I i co co Co a co co Co co co Co 0000000000 Co Co Co Co Co co 1 O 1 O M c' to lO t0 tD tO 1-I t, t., 1., I� tl t-I 1" 1-I t-I I" t-I co CO C0 CO co CO 1 w co 000 co co CO CO Co co 00 00 Co Co 000 co 00 co CC co c0 1 O ; CoNM .ti'I V7 t(J t0 to lO to t01� 1� �n nf\n f\n!� 070 . 0'. 1 co co co co co co 00 c00003 c0 c0 co c0 co c0 co c0 c0 c0 co co co c0 co co 1 O 1 t0 ON M d'�In U7 U'f In t0 tO t0 tD tO t0 tO t0 t0 t01� 1%� 1%, n nn 1 CC 1 c0000000 w 00 co 00 co co co co c0 c0 c0 c0 co c0000000 w 00 00 Coco 1 O 1 . Qt r+ N M M s . �' t.['. Un. to t1'. t1'. t1'. ti'f to In t0 lO tO tO lO t0 I� I 1 co c0 co c0 co c0 c0 c0 0o 00 0000 00 c0 w CO. co /b co co co co c0 co c0 w 1 O 1 Cl t0 co . •--I - .. N N . . . . . d' � � � � e' �' to � to � � � 1 1 0000 Ow WOOD co co co co co 00 co co c0 00 00 co 00 c0 co 00 co co �O 1 U7N to I., Co Ot00.--1 r+•-'INNNNN M M M M M �r d' d"7 v U'1 I NMMMMM.0,d' d' --*' d' d' d' of -:I- d' d' d' d-d'd'���d' 1 co co 00 c0 woo woo CoCo COOL COCO.=C* Coco Coc00000c0c0 oom w 1 CD - 1 .,co.. . . . .tct. . . .c00000xc0000+o+rn00000 -cr I N N m M m M M M M M m M M M co M M M t% IM M 4 cY 4 4 d' N 1 co co co CO co O 00 co coo 00 co CO co co 00 c0 co co co co CO co co co Coco I 0 1 t0 U7 CO O 1- M d' d' to 1n In t0 tO tO tO tO 1-I 1l n f\ 00 Co Co G1 Qt 1 Co 000700 Co CO Co CO Co Co Co Co Co CO Co CO Co CO Co 00 Co 0000 CO 0000 1 U) I .-+.--1 u) I� C000.--IN NMMMd"�e!'d'd'tn to U'f to to tO 1�1� M 1 co co CQ co OONIb co co co co 00000000 000o co co co co co w COO I O I MNtO co �O•--1NNMMM'7 d'� d' d' d' Ln In In In tO tO tO tD I _ M 1 _ _ _ NOQ co co co co 00 co OO/b co co co w co w co co co co co Co CO OO 1 to I Inu7 CTNMd'In tO 1—t,I-,0000 co Cn CJ1 O1TQt CT000000 1 N 1 01OO co co=co co co co co co co 000000 co co co NNNNNN 1 n00OOOCO 00OOOCO COOOCOO 00OOOCOO 07 CO 07O 1 O I d'U'fO MLn tOCoCoCIiOOO.-+14'-�NNNNMMMMMM I _ N 1 rlr\ co co co 00 co co CO co co co co CO 00 c0 co 0o co co Co co co c0 co 1 u7 1 ONCO d'tn 1,t�CoCJ%C7%00.-I .�.--I .rNNNMMMMM •-a 1 t0O CO O1 cot cot 01 Q; Q+O; cot O p 0 00 O O O p O o O o O O 1 f-I1-11%l1%l1, 1�l 1-I 1, 1\ 1` n co O 00 co co c0 co w c0 co co co 00O I O 1 t0 M O d I . 0. ..-'I . ("Y M cY . lf'. t!'. U . 1!'f tO l0 t0 tO 1� 1' tO tO tO .-I 1 d' tO 1-- I -I 1-I 1l CO co CO CO CO CO Co CO CO Co 00 00 00 00 Co cO CO CO cO C0 1 nn nn n I\ n 1\ n n I\ n 11% 1, 1� n 1\nI--nn 1\nn 1\n 1 to 1 cot 0 C to n 0 N n r� p, tO tO lO t1'1 -4d' M M N N cot tO d' r+CT tD 1 O I O N N N N N N N N N N N N N N N N N N N.--1.%l .--I •O O I t\ n f\ n n n t\^ n t` n n n n n n n t\ n n n f\^ t%l\ t\ n I 2 1 13 1-� ^ 1 0 0 0 0 O O O O O O O O O O p 0 0 o 0 C 0 0 0 6 0 0 CDCD—looppoOoop0000000000p000000 1 JZtL 1 NMv In t01, co of O 1- •--1 r Ln%0 �wmNN OM MC Lnto I U-wv 1 . TABLE 5.1 �Slo PAGE 24 Table 5.2 C-Factors and P-Factors for Evaluating EFF Values. Treatment C-Factor P-Factor_ BARE SOIL. Packed and smooth . . . . . . . . . . . . 1.00 1.00 Freshly disked. . ... . . . . . . . 1.00 0.90 Rough irregular surface . . . . . . . . . 1.00 0.90 SEDIMENT BASIN/TRAP. . . . . . . . . . . . . . 1.00 0.500) ' STRAW BALE BARRIER, GRAVEL FILTER, SAND 'BAG. .'1.00 0.80 SILT FENCE BARRIER . . . . . . . . . 1.00 0.50 ' ASPHALT/CONCRETE PAVEMENT. . . 0.01 1.00 ' ESTABLISHED DRY LAND (NATIVE) GRASS. . See Figure 1.00 SOD GRASS. . . . . . . . . . . . . . . . . . 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS . . . . . 0.45(2) 1.00 HYDRAULIC MULCH @ 2 TONS/ACRE. . . . . . . . . 0.10(3) 1.00 ' SOIL SEALANT . . . . .. . . . . . . 0.01-0.60(4) 1.00 EROSION CONTROL MATS/BLANKETS. . . . . . . . . 0.10 1.00 ' HAY OR STRAW DRY MULCH After planting grass seed, apply mulch at a rate of Z tons acre (minimum) and adequately anchor, tack or crimp material into the soil. ' Maximum Slope Length M (feet) 1 to 5 4U0 . . . . . . . . . 0.06 1.00 ' 6 to 10 200 ... . . . . . . . 0.06 1.00 11 to 15 150 0.07 1.00. 16 to 20 100 . . . . . . . . . 0.11 1.00 21 to 25 75 . . . . . . . . . 0.14 1.00 ' 25 to 33 50 0.17 1.00 > 33 35 0.20 1.00 ' NOTE: Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. (1) Must be constructed as.the first step in overlot grading. ' (2) Assumes planting by dates identified in Table 7.4 thus dry or hydraulic mulches are not required. (3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. 1 1 1 1 1 1 1 i 1 1 i 1 1 1 1 1 1 1 0.40 0.35 0.30 0 0.25 Q 0.20 0.15 0.10 0.05 PAGE 26 ESTABUSBED GRASS AND C-FACTORS FORT COMS, COLDRADO ........................I.........i................�........ �..........I.......... ........ _............................. _....... :... ............... l................... I ............. ............. .............. �...........:.I............. i : ............. _I ............. a.............. ............. �o 20 30 as 50 60 70 80 90 goo ESTABLSHfD (SASS GROUND COVER (7) FIGURE 5.1 13/6 TABLE 12 - ENTRANCE LOSS COEFFICIENTS Outlet Control, Full or Partly Full Entrance head loss H" = k" V2 2g Type of Structure and Design of Entrance Coefficient k- Pioe. Concrete Projecting from fill, socket end (groove -end) . . . . . . . 0.2 ;.. Projecting from fill, sq. cut end . . . . . . . . . . . 0.5 Headwall or headwall and wingwalls, ' Socket end of pipe (groove -end) 0. Square -edge 0.55 Rounded (radius - 1/12D) . . . . . . . . . . . 0.2 Mitered to conform to fill slope 0. ' *End -Section conforming to fill slope . . . . . . . . . . 0.55 Beveled edges, 33.70 or 450 bevels . . . . . . . . . . . 0.2 0.2 U4 Side or slope -tapered inlet . . . . . . . . . . . . . .. Pine or Pioe-Arch. Corrugated Metal _ Projecting from fill (no headwall) . . . . . . . . . . . 0.9 ' Headwall or headwall and wingwalls square -edge . 0.5 Mitered to conform to fill slope, paved or unpaved slope . . . 0.7 *End -Section conforming to fill slope .. . . . . . . . . . 0.5 Beveled edges, 33.7° or 45° bevels 0.2 Side -or slope -tapered inlet 0.2 Box. Reinforced Concrete Headwall parallel to embankment (no wingwalls) Square -edged on 3 edges . . . . 0.5 Rounded on 3 edges to radius of 1/12 barrel dimension, or beveled edges on 3 sides . . . 0.2 Wingwalls at 300 to 750 to barrel Square -edged at crown 0.4 Crown edge rounded to radius of 1/12 barrel dimension, or beveled top edge . . . . . . . . . . 0.2 Wingwall at 10° to 250 to barrel Square -edged at crown . • . . . . . 0.5 Wingwalls parallel (extension of sides) Square -edged at crown . . . . . . ... . . . . . 0.7 Side -or slope-tapered inlet . . . . . . . . . . . . . 0.2 *Note: "End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydrau- 'n1.,lgi lic tests they are equivalent in operation to a headwall in qut1 control. Some end sections, incorporating a closed ThTatter both and in taper their sections can be design have a superior hydraulic performance. ese 179 0 CHART 29 151 If 97 EXAMPLE k C 3000 Site; 76'a48' O. 300 cta 21 136 x• 6T 2000 (3) W Is, Nw D (fast) 4.0 121 x 7 T (1) 2.8 n.2 (2) 2.2 8.6 4.0 3.0 113 x 72 1000 (3) 2.3 9.2 3.0 800 D in feet 3.0 106Is68 - -- 600 2.0 98 x 63 500 2.0 400 �Fp 2.0 91x58 N _,--Soo I.S 1.5 W 83If53 S 3 1.5 O / 200 = = 6x48 W To use scale (2)or(3) _N W Orow a straight Tina R 06 N d 68 x 43 O 100 through known values LL of size and discharge O J = 80 to intersect scale 11). L0 ot From point on scale 111 N 1.0 g13 O 60 x 38 60 project noritonmll .9 .9 C LIJ N 50 12 orlon on v sep W .9 F H 53x34 a a = 8 .8 .8 ¢ y) 30 Is .49x32 o p .T .7 a 45 x 29' 20 7 HW ID ENTRANCE G W 42If2T SCALE TYPE 3 .6 .6 N O .6 N 10 Iry sgaen edge with W 38 x 24 haed.oll S 8 (2) Groove and with 6 haed.oll ,S .S 5 (3) Grove and S 4 projecting . 30 x 19 3 2 - T 1.4 .4 .4 e D I.0 - 231 14 HEADWATER DEPTH FOR `OVAL CONCRETE PIPE CULVERTS LONG AXIS HORIZONTAL WITH INLET CONTROL BUREAU OF PUBLIC ROADS JAN. 1963 209 S5/5� 1 1 1 1 1 [STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA T A B L E :80:2:C STORM SEWER ENERGY LOSS COEFFICIENT (BENDS AT MANHOLES) 1.4 ►:3 i. i 1.2 ►,16 l,oa 1.cq 1.0 D:`1Z o°.< v,N Y 0.8 c 0,7s m u ;�1 o 0 4b Deflector s6/,CIP STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 803 E AND JUNCTION LOSSES o,,•, ----- 24L ,/. NOTE fa AAj TTy of 1.1.1. USE EQUATION 801 SECTION 14t_ K � CASE I �U INLET ON MAIN LINE yr k= v!CS M ._I I_ >.. �o 8 USE EQUATION 805 1 It N— d-kVf 3 gg K=%P,10)52C. {,�Mle' Ou•� AN oy PLAN USE EQUATION 805 z 0• VI vzw 5 O&VA SECTION CASE II INLET ON MAIN LINE PLAN USE EQUATION 801 'L i o.o k=!•z5 SECTION CASE IZ INLET OR MANHOLE AT 4 BEGINNING OF LINE -SECTION CASE M MANHOLE ON MAIN LINE CASE N0. K . eoCASE III K. WITH Go BRANCH LATERAL I 5 22-1/2 0.75 II 0.25 45 0..50 IV 1.25 60 0.35 90 0.25, No Lateral See Case I Date: NOV 1984 I REFERENCE:. Rev APWA Special Report No. 49, 1981 TWO, 71 Pwvrvnmem 5pem vq ANALnnIYM of VpeYbe End/or Cwv OepM, SUMAS Sn"i WW RAmd au CAN m DRAW w+ n ea GH Cea AS HisnsRT COUP! Me Nt .R --- Hal swam Wom I15 11 M &eTW7.nxN p.Rmy NWA j I, ieeie l.. fl.nWq dw. In Pe,enNL And Tem}uvr/f ,Gup Gral I4va YnwlMkA TWOWW i / i V/ i \\��a` ���_\ �mia` \\` �. % % / 1. may Nr wish May mo m.mnmmi a IN all LY we a me tm n aemoee: PEPFNNLLLGPASSEG GIiYGIV55F5 // / O/ / aa�a� 4i���` I I 0 MiE we, CAN wmR S� //' i 44i/L / �7� �?3g� z,y� / / / N Aw olwwnmeoO meUp re0 ro.,mwmmn„ �qa�w so,]. Gi'/ / / ��� rmlmwmTnINIter s hnismweemsem. Jm al �Fwn Yee VAR No NO / r / // / / �Z\Ya \ ��ca�/ / / N em•wlm m., m. n.rm.ue,,.®mme w,ol. My is Y.em Yee Ne re. / /r o / �i / \�� / a a ���1/(,s fia aL\\ f / wm:le,lemem.m.wwmewe ".nl, , / / _ _a H i / / I y Tmun.,. a .ma " m. ",exm..w,.Y. .Nerve w vm NE �/i C9`j 44i/� \ / / ? aaa NfA �i ����l l mm..."."e.�a"e. ,he 01-AA 31 ... eb NO Ym ro // r �" r 4ii / l . I \ ���� ��_a_a ��/7/ asal...,031 AN Yes w r.e // N?' r r / 'Z_aaa V_ / \ t nw«alw MAN be xmm"oaoee ».eae. $mal-amm NE NE m Ym i ¢+ '� / - //r — — / / / �aa zz ���J r / / ovol.Bmm 7w YEN - m !mi // i/. .-.11 !1. i/ti—���t�- ! ������$�a=_` n' I�`li ` S/r it I it :�' i OlIAa HOLLOW I <I II II Ii j FIFTH FILINGII 111 +11 III II I I I I + III rr 1 Ia: • IIII II w� Iljlll I Tr —err 1 5.15 AC IIII Ij elj I��II iII II \` 1' II II Iljj___— .13II:. .5 III /A] `RYA , /j / GUAIL HOLLOW \ ON 1396 pill / FIFTH FILING / ,v 0AX .� 111 Pit laill WAS. I SA His" \,\\ .. ,_L1. L a" TAS 12 Ail ZC I MAN I= 1plT .....1�. ...��,. mAGO\1 w m W CN ON eAI.EY FOR B I \ GI I3.0 �iye�,3 \� TMaI Nee: 1243<DC C \ \\\ `. � ReSonel'C': LEGEND \_ TOtel Flow. fo none No. 1: OTC 159 de OWN EGA ds\ �_TObI FlOw3b Pa,d No.O da a 14.9 de \— / BASIN DESIGNATION .1 OT`AOT 1.06 AL WIN AREA BASIN BOUNDARY QDESIGN POINT DEVELOPED SITE HYg10LOGV DeSon Pont Basin ARe (ea) C' OT (de) O,m (ds) I 1 5.75 1 0.90 1 6.2 n4 2 2 i.e9 0.50 1-0 BB 3 3 169 0.50 17 93 e e 4.7z 0.5U e.5 1D7 es f �0 ACAN AN OkIlaw MA M I'l ®MIymt ! l/Iw ISITl n�3I_e`_x_IOI [ .%rye. — 5 / .I...,. INLET \\ i -- / / ".'LYI r.,. •• ' J _ ; AN"Was I N ' AIR Mr mew, .e oeMPTION PoNG � •P='�"T II 11 .. nns w, NO . EE.$ / mm I On p x,, vela. ww NDZ ply 11IroYR. NSF1.• / ER3510N DALE —.,,.5 / CWLCIC Mae \\\ EnlOf+l d WIDE CONCRETE uevecN CONTROL No TRICKLE CHANNEL a IM . HAS as" w L=W, 5EE DETAIL SHT. rIALL nxcx ALL DISTUREED ARMOB, MIT IN N ROMINUT, exIE,. UT Una IF HAVE A TEMPORARY VEGETATION BRED APPLIED THIB BREAK. OVER THE SEED AT A DATE In No. a SEEDING, A WAY OR STRAW MULCR �L Do (I0 LT�IACRE M) ow METHODS 00 THIS $KINIT. AFTER THE UTILITIES HAVE S IMITALLED, THE ROADWAY BURINCER SHOULD CEIVE INSTALLA ION URB INLETS, THE INLETA k" j EX15T. WEIMALL IR($PILLWAY TACKED. CA CMIMPED IWO THE MOIL PER ?US CONCRETE(e,o�pEITH A COMBINATION OF 31',CWIRE BCRUJI ROD COMBAT COReuo TO FAR '[TALL o4)WHY AT.ALL mum "ERB, ALL OTHER DIRTVA34D "Us SMALL KATE PE�� (OVIRFLON SNAIRS, GEED APPLIM PER INS SPECIFICATION US THEM CHANNEL, RAW WHEAT. AFTER GREDING, A MAY OR STRAW HOLDS DISTURBED AR }e 0 HALL BE APPLIED OVER THE DIED AT A RUCTE Of 2 OUTSIDE OF woRL it. ADEQUATELY ANCHORED, THE BOIL PAR TRE KETRODO ON THIS SHE=. EROSION BALE CHECK DBMS LLED xv THEY OONNAETexcoxesau IIII AVERAGE STREET SLOPE DRAINAGE BASIN STATISTICS % If if I III1 II EXISTING CONTOUR Gross Planed Nee: 12e4&c EKIn(.'WeIR,WAY ����_, PRELIMINARY III $Cfll l., = 60' Gross Area'C: Net Planed Area: 0.50 9735w \��� Do NOT use for - w v lw �15� PROPOSED CONTOUR Net Plane!Are. C: 037 ��� FLOOD PLAIN Pl1G5traCtIm OrvSlte DelentlCn: 13,01E Ci./en IG EDS ING PO IDSAPPPOICIMATE DEVELOPMENT \\1� 00`(C.(shilsevis4 IIII III : 1•Z3.A SEXISTING \ APR 13 N921 RUJ DRAWN KW& DESIGNED CHECKED Engineering Consultants Sao CUM, Sale am mmzsa. ep B'S01 alm,•ae QUAIL HOLLOW SHEETS ISHEET APPROVED ANOL IAA2 GATE mat-oAo PROJECT MO.2es WHO BRNln College Male ss MAY JOhnmR B1,E.Gulm wB eaO,.00 eosn TCaby.9Bra0apewmas C°Iwveo B'90i ssB S Re. wem. Ke.Wo,aeo 9,651 Case zn SIXTH FILING DRAINAGE &EROSION CONTROL PLAN 17 5 NO. BY GATE REVISION DESCRIPTION