HomeMy WebLinkAboutDrainage Reports - 04/21/1992r OF Final Approved Report
Date
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR THE
QUAIL HOLLOW
SIXTH FILING
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR THE
QUAIL HOLLOW
SIXTH FILING
April 13, 1992
Prepared for:
d. Jensen Enterprises
2903 Blue Leaf Drive
P.O. Box 1007
Fort Collins, Colorado 80526
Prepared by:
RBD, Inc. Engineering Consultants
2900 South College Avenue
Fort Collins, Colorado 80525
(303) 226-4955
RBD Job No. 014-040
RMINC.
Engineering Consultants
2900 South College Avenue
Fort Collins, Colorado 80525
303/226-4955
FAX:303/226-4971
April 13, 1992
Ms. Susan Hayes
City of Fort Collins
Utility Services Stormwater
235 Mathews
Fort Collins, Co. 80522
RE: Final Drainage and Erosion Control
Study for the Quail Hollow Sixth Filing
RBD Job. No. 014-040
Dear Susan:
' We are pleased to resubmit to you, for your review and approval,
this Final Drainage and Erosion Control Study for the Quail Hollow
Sixth Filing. All computations within this report have been
' completed in compliance with the City of Fort Collins Storm
Drainage Design Criteria.
Thank you for your time and consideration of this submittal.
' Please call if you have any questions.
Respectfully,
RBD Inc. Engineering Consultants
Kevin W. Gingery, P.E.
Project Engineer
CC: Mr. Dan Jensen - d. Jensen Enterprises
Other offices: Denver 303/458-5526 • Vail 303/476-6340 • Longmont 303/678-9584
TABLE OF CONTENTS
' DESCRIPTION
I. GENERAL LOCATION AND DESCRIPTION
A. LOCATION
B. DESCRIPTION OF PROPERTY
II. DRAINAGE BASINS AND SUB -BASINS
' A. MAJOR BASIN DESCRIPTION
B. SUB -BASIN DESCRIPTION
III. DRAINAGE DESIGN CRITERIA
A. REGULATIONS
B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
C. HYDROLOGICAL CRITERIA
' D. HYDRAULIC CRITERIA
E. VARIANCES FROM CRITERIA
IV. DRAINAGE FACILITY DESIGN
A. GENERAL CONCEPT
B. SPECIFIC DETAILS
V. EROSION CONTROL
A. GENERAL CONCEPT
B. SPECIFIC DETAILS
VI. CONCLUSIONS
A. COMPLIANCE WITH STANDARDS
' B. DRAINAGE CONCEPT
C. EROSION CONTROL CONCEPT
' REFERENCES
APPENDIX
VICINITY MAP
OFFSITE HYDROLOGY
FILING NO. 6 HYDROLOGY
DETENTION.
DESIGN OF INLETS, STORM SEWER AND SWALES
RIPRAP DESIGN
SPRING CREEK FLOODPLAIN DATA INFORMATION
' EROSION CONTROL
CHARTS, TABLES, AND FIGURES
' APRIL 13, 1992 REVISIONS
1. Minor text changes.
' 2. Add to Vicinity Map
3. Change to Time of Conc. Calculation in Basin 4
4. Change to Hydrology in Basin 4
5. Modifications to Storm Sewer Systems
' 6. Modifications to Erosion Control Calculations
PAGE
1
2
2
2
2
3
3
3
5
5
6
6
6
2
7
10
12
30
33
37
41
.1
FINAL DRAINAGE AND
' EROSION CONTROL STUDY
FOR THE
QUAIL HOLLOW SIXTH FILING
' I. GENERAL LOCATION AND DESCRIPTION
A. Location
The Quail Hollow Subdivision is located east of the
southerly extension of Overland Trail and south of
'
Yorkshire and Michener Streets in southwest Fort Collins,
Colorado. The site is shown on the Vicinity Map in
Appendix A. More particularly, the site is described as
Quail Hollow, Sixth Filing, and is situated in the
'
Northwest 1/4 of Section 28, Township 7 North,' Range 69
West of the Sixth P.M., City of Fort Collins, Larimer
County, Colorado.
'
B. Description'of Property
The.Quail Hollow Sixth Filing contains 12.8 acres more or
'
less of which all of the area is currently y undeveloped
and being proposed for . residential development. The
majority of the property has.consisted of cultivated farm
land. Topography at the site is generally sloping from
northwest to southeast at approximately 1.2%. A
tributary to Spring Creek traverses through the Quail
'
Hollow site from a northwest to southeasterly direction.
Within this tributary to Spring Creek exists a
substantial cattail outcropping/wetlands area in an
existing detention pond. There are two existing
'
detention ponds adjacent to the Sixth Filing of Quail
Hollow. Spring Creek traverses across the southeastern
'
comer of the Quail Hollow Subdivision as it flows in a
northeasterly direction. The 100 year floodplain of
CTYIMf. I1Y�I'9L l l/1 fMe'Y ii17}/llf �a;���w} }_ }L... C 44. u
Filing of Quail Hollow as shown on the drainage plan in
the back pocket of this report.
II. DRAINAGE BASINS AND SUB -BASINS
' A. Major Basin Description
' No major drainageway exists in the Sixth Filing of the
Quail Hollow Subdivision. The Quail Hollow Subdivision
does drain into Spring Creek per the Spring Creek Major
1
' Drainageway Plan by Gingery Associates, Inc. dated August
1980. The City of Fort Collins is planning a regional
detention pond on the southwest corner of Drake Road and
Taft Hill Road in the future.
B. Sub -Basin Description
Historic drainage patterns on the subject site are
southeasterly across the site to Spring Creek. Several
' off -site basins lying west of Overland Trail contribute
storm water runoff which crosses the Quail Hollow
Subdivision. Off -site basins from future Quail Hollow
Seventh Filing and Burns Ranch (located
west of
Overland
'
Trail) must be routed through the Sixth
Filing
of Quail
Hollow and into the existing detention
pond.
All off -
site flows are currently at historic
conditions, but
construction of the First Filing of
Burns
Ranch is
beginning on March 2, 1992.
III. DRAINAGE DESIGN CRITERIA
A. Regulations
The City of Fort Collins Storm Drainage Design Criteria
is being used for the subject site.
B. Development Criteria Reference and Constraints
Several drainage reports were previously completed for
the subject site and adjacent lands as referenced in this
report. The Final Drainage Study for the Quail Hollow
Fifth Filing developed the design criteria for the
existing on -site detention ponds. The City of Fort
Collins is planning a regional detention pond on the
southwest corner of Drake Road and Taft Hill Road in the
future. Until the regional detention pond is
' constructed, storm water runoff from the Sixth Filing of
Quail Hollow and from off -site lands lying west of
Overland Trail must be diverted into the existing
' detention ponds.
C. Hydrological Criteria
The rational method was used to determine runoff peak
flows from the site and the surrounding off -site
tributary areas. The 2 and 100 year rainfall criteria,
which was obtained from the City of .Fort Collins, is the
criteria which was utilized. This criteria is included
in the Appendix.
2
D. Hydraulic Criteria
All calculations within this study have been prepared in
accordance with the City of Fort' Collins Drainage
Criteria.
E. Variances from Criteria
No variances are being sought for the proposed project
site.
' IV. DRAINAGE FACILITY DESIGN
' A. General Concept
As development occurs within the Sixth Filing of Quail
' Hollow, all on -site fully developed flows will flow
southeasterly into one of the two existing detention
ponds.. Off -site runoff (from west of Overland Trail)
will be directed around the south side of the Sixth
' Filing of Quail Hollow and northeasterly into the
existing detention pond. Included in the back.pocket of
this report is the Sixth Filing drainage plan.
' B. Specific Details
Two year developed storm water runoff from basins 1
through 4 is proposed to be collected in storm sewer
systems at the low areas (sumps) in each street and
redirected into the existing detention ponds adjacent to
the Sixth Filing of
Quail Hollow.
Flows in excess of the
'
2 year storm runoff
will pond up
at the sump locations
and eventually over
top the sidewalks and be redirected
by overflow swales
between the
lots to the existing
'
detention ponds.
Included in
the appendix are the
hydraulic calculations for each storm sewer system, the
overflow swales,
and related
street over topping
calculations. A
concrete
trickle pan is
proposed. to
carry" low flows
from the
Teal Eve Court
storm sewer
system to the outlet of existing
detention
pond no. 2.
'
The�f off -site future
fully
developed runoff from the
Seventh Filing
of Quail
Hollow and
Burns Ranch
subdivisions must
be redirected
around the
Sixth Filing
of Quail Hollow.
The 100
year developed
storm water
runoff from the off -site areas lying west of Overland
Trail is proposed to be collected in a storm sewer system
' at the south property line of the Sixth Filing of Quail
Hollow and redirected easterly in a swale into existing
detention pond no. 1. Due to the location of this storm
sewer system and its 100 year design, in the event that
the upstream end becomes plugged, storm water will pond
up and over top onto overland Trail and flow in a
1
3
southerly direction to the eventual low point at the
Spring Creek future crossing of Overland Trail. For the
Sixth Filing of Quail Hollow, approximately one half of
the storm sewer system will be constructed. In order to
ensure that the entire storm sewer system will function
as intended, the hydraulic design was completed for the
entire system and will need to be reviewed and updated as
the Seventh Filing of Quail Hollow is developed in the
future.
Within existing detention pond no. 1 there is an existing
wetlands/wildlife area. This area has been created in
the natural tributary to Spring Creek over the years.
The Sixth Filing of Quail Hollow will discharge storm
water runoff into the existing wetlands/wildlife area.
Storm' water runoff will pass through the
wetlands/wildlife area and eventually be transported to
Spring Creek. It is the intent of this Sixth Filing
development to keep the existing. wetland/wildlife area as
natural as possible in order to not affect the wetlands
area. The runoff generated from this development will
pass through the existing detention pond no. 1 with
little to no impact upon the area. No drainage
construction is anticipated directly within the existing
cattail outcroppings of the wetlands area. Care should
be taken when constructing the storm sewer and swale
which connect into existing pond no. 1. If for some
unforeseen reason the cattail outcropping is disturbed,
a U.S. Army Corps of Engineers 404 permit may be required
to complete the work, but this is not anticipated to be
needed. Coordination of a 404 permit would need to be
done with the local regional office of the U.S. Army
Corps of Engineers in Denver.
Adequate detention volume has been provided in the
existing detention ponds no. 1 and 2 for the Sixth Filing
' of Quail Hollow per the Fifth Filing of Quail Hollow
approved drainage report.
' The groundwater table is close to the surface of the
ground in the Sixth Filing of Quail Hollow and is
expected to be pumped, piped and redirected during the
course of construction. Therefore a Colorado Department
' of�Health Construction Dewatering Permit will be required
before any construction can begin on the Sixth Filing of
Quail Hollow.
4
V. EROSION CONTROL
A. General Concept
The Sixth Filing of Quail Hollow lies within the both the
' Low and High Rainfall Erodibility Zone and both the Low
and Moderate Wind Erodibility Zone per the City of Fort
Collins zone maps. Due to the existing site slopes of
around 1%, the potential exists for minor erosion
problems after the Sixth Filing improvements are
completed and the ground is bare. It is anticipated that
the Sixth Filing improvements will be completed during
' the summer of 1992. Thus the new improvements will be
subjected to both wind and rainfall erosion.
Per _the City of Fort Collins Erosion Control Reference
Manual for Construction Sites and related calculations in
the appendix, the erosion control performance standard
for the subject site is 78.9 %. From the calculations in
' the appendix, the effectiveness of the proposed erosion
control plan is 95.9 %. Therefore the erosion control
plan as specifica�JY detailed below, most nearly meets
the City of Fort Collins requirements.
B. Specific Details
' For basins 1,2,3 and 4, after the overlot grading has
been completed, all disturbed areas, not in a roadway,
should have a temporary vegetation seed applied. After
' seeding, a hay or straw mulch should be applied over the
seed at a rate of 2 tons/acre minimum and the mulch
should be adequately anchored, tacked, or crimped into
the soil. After the utilities have been installed, the
roadway surfaces should receive the pavement structure.
After installation of the curb inlets, the inlets should
be filtered with a combination of concrete blocks, 1/2"
' wire screen and coarse gravel (3/411).
The overflow channels, southern channel and all offsite
' disturbed areas should have a permanent vegetation seed
applied. After seeding, a hay or straw mulch should be
applied over the seed at a rate of 2 tons/acre minimum
' and the mulch should be adequately anchored, tacked, or
crimped into the soil. Erosion bale check dams and
sediment collection barriers should be installed
immediately after the improvements they protect have been
' constructed, as shown on the drainage plan in the back
pocket of this report.
1 5
vi.
A. Compliance with standards
All computations within this report have been completed
' in compliance with the City of Fort Collins Storm
Drainage Design Criteria.
' B. Drainage Concept
The existing detention ponds adequately provide for the
' detention of developed on -site flows from the Sixth
Filing of Quail Hollow. By utilizing the temporary
detention ponds in the Fifth Filing of Quail Hollow, the
t developed storm water runoff has been controlled in order
to eliminate off -site downstream damage from the 2 year
and 100 year storm events.
The proposed drainage concepts presented in this report
'
and shown on the drainage plan are in compliance with the
City of Fort Collins drainage criteria.
C. Erosion Control Concept
The proposed erosion control concepts adequately provide
t
for the control of wind and rainfall erosion from the
Sixth Filing of Quail Hollow. Through the construction
of the proposed erosion control concepts, the City of
Fort Collins performance standards will be met. The
'
proposed erosion control concepts presented in this
report and shown on the erosion control plan are in
compliance with the City of Fort Collins erosion control
'
criteria. Hay or straw mulch is being proposed as it has
recently proven to be the most economical and efficient
method available to control erosion.
1
'
REFERENCES
1. Storm Drainage Design Criteria and
Construction
Standards by
'
the City of Fort Collins, Colorado
May 1984.
2. Quail Hollow Subdivision, Filings
4 through 7,
Preliminary
Drainage Report by RBD, Inc.,
Engineering
Consultants,
'
November 1989.
3. Final Drainage Report for Quail Hollow P.U.D., Third Filing by
'
RBD Inc., Engineering Consultants,
May 1988.
1 6
' 4. Quail Hollow Subdivision, Filing 4 Final Drainage Report by
RBD, Inc., Engineering Consultants, March 1990.
' 5. Preliminary Drainage Report for the Burns Ranch at Quail Ridge
by RBD, Inc., Engineering Consultants, December 21, 1990.
' 6. Report of a Geotechnical Investigation for Quail Hollow P.U.D.
Fourth, Fifth, Sixth & Seventh Filings'by Empire Laboratories,
Inc., November 3, 1989.
7. Spring Creek Major Drainageway Plan for the City of Fort
Collins, Larimer County Colorado by Gingery Associates,.Inc.,
August 1980.
8. Final Drainage Study for the Quail Hollow Fifth Filing by RBD
Inc. Engineering Consultants, May 10, 1991.
9. Final Drainage and Erosion Control Study for Burns Ranch at
Quail Ridge First Filing by RBD Inc. Engineering Consultants,
August 2, 1991.
7
I
APPENDIX
11
1
'
Dr.
Hughes
Stadium
0
SI. W Ever
La Rectlo Cl. a �Knoleood Ct Dr
V
W. Prospect R0.
a`' r
a`�•'�ca.`a '
t.'
r.
,.[SWOIfI Cr.
Mt
Ct.
Neil Dr ,'.' ul f1 L
MDr an Delpion p 9
Perna
,
Ct
F
1.
fi
(•
`. Oo�
Pipestale
Dr.
O o
Dr.
A) s rde^
y, on doll,
a
valby
0,90 Dr. v
0
o
G
g _ m o
$ & N G
toys Dc Q�
•$ �tiQ =
= • —
Bluepross Dr.
o v s o
o
Mt.
C1
N
'"
W. Drake Road
URNS
...
.�.vo
atron nr
(ZRNCH
e
sub•
,
�°,w
,FI TH FILING
I{
QURIL
`Y
LLDW
J
Molfel Drive
FILING 7
Primrose I Lr,
PROJECT
SITE
SIXTH FILING
=J
City of Fort Colll
\Pa r ks
Property
I
W. R,
•
wHorsetooth
DmVI.
N8
2
prwell Cation
r
Pl.
. o.
3aler
pl.
vine CfIN
Ceaeb Read
d
Dom
N C
t or Dr c c' _ c F"
CI
e ` w W. Lpyd e _ W Like
O
PJ Sl m
� — O
St
Cooper Cn,
PL.
>ort�y Y x
c? VfDn9e(( PO,t
P10-4-a0 W. Stwrtrk-
51
i
°s ah Dr. a O. V[ oppp Cl
'dear) 31. 1 Q• O gij •NOo4`�h•
rreC6J n. .
SanO>
GM nrond Dr ~"r%e10 DI'
V y
m
ClU
f, ibe e -. .
+O $ Q w O Coal wla`t l
Cl. Sca r�ouyn c
Cr II. r r wv errrunttnen ,
bi Dr Q :�.:• �`
NvV ao C.....::::•Qe.
6 ♦ Y �..�^••illy
h
b
f Q War+ Cr
r
^ '
.'1 Ct. C,itn
a]tln ] C C i
Fro mono c �°
St Cl. [, c v.+
E u i N
m
:n z
n o V v St. Q`
Gne Dr. v.c._ F
VICINITY MAP
2/514
OFFSITE HYDROLOGY
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
r
0
�IIIIIIIIIIIIIIIAl11Y1N11N111111111
.
91111111111111111111111111111A111111111
�IIIIIIIIIIIIIIIYIIININIIIIIIIIIIIIII
@IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIiI
�BIIIIIIIIIIIIIIIYIIIAIAl11Y111111111
.
IN
111111
1111112
111
�B�I�IS1�1�1�111�11�16N�11�1�11111111111
•
I
1N111Y111119Y11
oil
11111111
•
111W
O
I
11
11111111111
■1�1�1�1�1111111111
oil
111111111111
�OIIIIIIIIIIIIIIIAIIIYIIIIIIIIIIIIIIIII
�011111111111111111111111Y111N111111111
�LIIIIIIIIIIIIIIINIINIIIIIIIIIIIIIIIII
�UNION
IIIIIIIIIIIIfI1N111A111111111
m0
RIVER
I1
N1111111191111111111111
i�I�I�I�I�I�iII���I�A���l�Alllllllll
C, 315fo
Q
0
z
0
LiJ
CD
0
}
Q
z�
CD
J r
IL
a
a.
W0)
I_ c
L1J
}�
Lb �L
LL cm
Z a
o�
c�
o
CO�
crU_
0
LL
2
cr
0
J
Q
U
a
MAY 1984
5-3'651n DESIGN CRITERIA
t'1--3/y
4 -OyD
y 8 iKs
e
a �
I
1
1
1
1
V1
t
�
'
�BIIIIIIIIIIIIIIIIIIIIIIBIIIII�III
�0��@@1��1911���I�I�ID�IF�111111111
.
MIN
CIOE�9��1��1�11����1��161��1�111111111
�CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
�01�1�1�@IIIII�1�1@�11111111111111111
�0����I��Ifi11����1��IC1��1�6111111111
Q
0
z
0
U)
W
0
Z Q,
J
UJ
(r �
a�
:E_
W0)
~u
T ��
W 0)
:3 (D :3
QJ
a Z c)
Q�
�L
O m
'C
0
cr LL
0
U-
i
0
LL
U
a
F-
o)4-oyo
Z1 z
1 MAY 1984 .5-3 DESIGN CRITERIA
LJ
b6-tJ Gi%LCOLAT70AI S ---I*
e•�
•r
c
C
_
-°ems
CIL
III
11
1
n
F
r
O
M
II
3
jy
Cl
T
i
N
N
ec
a
n
J
r
c
+
F
F
T
th
o
o
f
ti
n;
•�
CO
sal
N
(
ry.1B^
N
a
a
GID
Q
r
�
Qsa
�I?olep
��
o
e,
Z
as
uBrse
Q
m v
S
N
M
Ir
=
l�
oofN
Nm
s
Ur
=
to
sp
w
0
a
„
ens
cc
Q
Z
.�
Gams
m
•�
9
C
n
I-
slo
lJrxee�
T
T
-
M
S
.9
�i
•l•
J
�'
�yI.
N
mGeMmitl
0-
Ih
T
Y
to
-•.
m
_
h oaog
V
U
m
N
„
aSw7nb
06
m
0
m
m
C
I LI
513 pouny
n
Vl
.s
3+
O
r
3
F,•.
U04eVnllfls
Q
`
T
M
\
in
sly
IIOYnH
u410
N
O
4.
T
1y�
N
N
{
S
W
(�
sla
Ilomd
J
N
y
-
o;
S
M
�O
tD
m
�p
+
am
+
Q
geJlp
C
N
m
r
T
Ill
{7.)
�-
=
T
Z
Q
em.y.
easy
Im
c N
N
S
m
S
m
H
-OCR
N
m
N
S
N
J•
�•
W
a
r
?
—
m
1n
�1
m
m
m
b
a
r
1n
pOz
�
._�Q
��
o
�_
n
Yl
zcc
n?•:mn
0
NM.I.
:lKUmYI
1n
°i S
N
h
a
$?
O
Q
V
O
`�
pl
p
V
1,
J
V
y
19
OIuen!IIaoO'J
m ?_
�•
T
lNn
T
Z
�•
I/?
In
S
1�
H
?
F—
-
Y
uaiequaouo3
^ M
�l
�1
N
1-
O
1r`
Vl
O
In
O
W
Io euey
�
T
`°
I`
�
e
W
M
m
r
._
N
m
E
uw
edid
m
3
u.
'mw
I"ils
N
euny l%�1
•�
„
D)
v,eYei
0
smseg
"' N 1^
1rl
f11
If)
N
h
>
>
Vl
Y1
v
ut
In
d
Q
a
ss
�4y1
Y
m
c
��m
'Kam
,
WN
°
CQ
6_
C
Q
—
$
$
84
N
N
N
N
Nli
n
' MAY 1984 5.3
DESIGp-CRITERIA
I
I
1
FILING NO. 6 HYDROLOGY
a
4
I
vl
�
N �
m
JIB
N
-Z 11
f�J V U
N
Z
O
'
--
w
lL
C
F'
cc
F—
Ir
s
<
O
w
tL
U
3
p
Q
p
Z
Z
U
uL
O
V
QQr
V)
w
m
�--
2
0
Lu
H
a
J
0
�
m
U
�
J
V7
Q
U
a
o
14
o
a
a
W°
CC
N
ri
N
N
o
c
J
c
M
N
N
O
v
r
r
C4
0
w
°
U
z
0
w
e- r--
N
V
ao
as
U OU
c �
.0
V
N
mkA
Hr
N
ar
Mni
a
w
F-
J co
9
Ms
tno
o
my
>IL��°
`q
J
J
\ N
N
N
N
N
N
V
w -•
ul
2
CC
a
J o
m
\0
_
Z r•
o vol
(1
o ool
c,�"
�
o
a
w
v)
?c
V
m M
to
ZZ
sr
m
IIZI
�r
Q
Is
a
s
Is
7B
>v
O v7
a
w
try `''
try
N
N
N
1— F'
0LLI
J
U
OC
�„
1
O �
V
V)
(A
In
y
b
yl
In
f
(
Z
-
-
-
Wj
N
CD p
Q Q v
try
N
In
N
r
� L
CD
� p
o
u
U
z
C�
Z
w
w
_Z
Z
W
U
a
t=
��BIIIIIIIillllllllllllllllllillllllll
���BIB1�1�1161�161�1111111111111111111
�9�191�1�11�1�1�1�1111111111111111111
�BIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIN
011111111111111111111111111111111111
��8�1�1�1�110191�1�1111111ll111111111
�99191�19119161�1�11111111�1111111111
�BIIIIIIIIIIIIIIilllllllllEIIIIIIIIII
9111111111111111111111111
�
1111111111
�9�191�1�11�16161�11�1�111:1111111111
�B�I�I�I�II�I�I�I�IIEI�IiIf�l111111111
�C�I�I�I�II�I�I�I�II�I�IIEAllllllllll
�091�I�I�II�IA1�1�11�1�11111111111111
�011111111111111111111111111111111111
�0�1�1�1�119181�1�1111111111111111111
�06191BI�II�IAIA1�1111111111111111111
�O�IBIAIAl1�lA101�1111111111111111111
�O�Ie1�lEllelm1�1�11@I@IIIIIIIIIIIIII
�����I�I�II�I�I�I�II�I�III�I�IIIIIIII
MAY 1984 N c 5 3 ^' $
r
Q
Z
0
w
0
Z,
J
c
d
d
C
w m
~w
< co
LL Z-i
Q,
L
cm
a3
o
�
cc LL
�
0
LL
cc
0
U-
J
Q
U
a
FF—
DESIGN CRITERIA
ID/5i�
DETENTION
No Text
I
1
1
u
1
DESIGN OF INLETS,
STORM SEWER AND SWALES
' CLIENT n/ 0/y-DZL
JOB NO.
' a RINC PROJECT ( VACL IfOLcow FIUA)6 6 CALCULATIONS FOR rNGE-TS
Engineering Consultants MADEBYKW6 DATEZ-/I-9z-CHECKED BY DATE SHEET 13 OF 56
U
i
CLIENT JOB NO.
RWINC PROJECT CALCULATIONS FOR
Engineering Consultants MADEBY DATE z CHECKED BY- DATE SHEET 17 OF
2 `)e STORM SP-Wc-k 5 Y_'S7 ivl DES/GN
1
-1
-
-
,��
00
2 -- r _i ...
o LF ..IS 2CP
I - -
_�-
>zcP
I
-
`-
crt
27)
L
IPo+JD-�lo
-
f 1_
`J
�2L/tN� 7�Ale..:70W'9e
S P0'OvO%UO�I :(0 r4_7 TEDES/6N=
!
-o
�
I
j--
_
11lI
1
a o �
ljnnrl_�
�s�d
�
3
O5
PIPE
q
,�J
!
a. Z0
-
Sevisept
aly-oy0
z/y z
VS/S1,
----------------------------------
' REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER•MODEL VERSION 3
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
' DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA
ON DATA 02-20-1992 AT TIME 13:16:02
PROJECT TITLE :
STORM SEWER FROM BLUE LEAF COURT TO DETENTION POND 1
** RETURN PERIOD OF FLOOD IS 2 YEARS
tRAINFALL INTENSITY FORMULA IS GIVEN
*** SUMMARY OF HYDRAULICS AT MANHOLES
••••'...•••••••••••••.....•••••••••••••.......................................
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
1D NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
-------------
1.00 N/A N/A N/A 7.80 12.50 11.50 OK
2.00 N/A N/A N/A 7.80 15.72 14.34 OK
' 3.00 N/A N/A N/A 6.20 15.72 14.96 OK
4.00 N/A MIA N/A 6.20 15.72 15.12 OK
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 2
HECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 3
IT SEEMS THE GIVEN RUNOFF IS TOO HIGHI
** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
-..---- •••••••••••••••••••••••.....••••••••
SEWER
MAMHOLE
NUMBER
SEWER
.................................
REQUIRED
SUGGESTED
EXISTING
ID
NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
ID NO.
1D NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
1.00
2.00
1.00
ROUND
17.61
18.00
15.00
0.00
2.00
3.00
2.00
ROUND
16.16
18.00
15.00
0.00
3.00
4.00
3.00
ROUND
16.16
18.00
15.00
0.00
IIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
' DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL
FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
' EXISITNG SIZE IS USED
••••••...••••••••••••••..........•••••••••••
SEWER
DESIGN 0
P-FULL 0
...................................
DEPTH CRTC DEPTH
VELOCITY
FROUDE
COMMENTS
ID
NUMBER
IN CFS
IN CFS
YN FEET
YC FEET
IN FPS
NUMBER
1.00
7.80
5.10
•• .... ......................................
1.25
1.09
6.36
0.00
V-OK
'
2.00
3.00
6.20
6.20
5.10
5.10
1.25
1.25
1.00
1.00
5.05
5.05
0.00
0.00
V•OK
V-OK
FROUDE NUMBER=O INDICATES THAT A
PRESSURED
FLOW OCCURS
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID
NUMBER
UPSTREAM DNSTREAM UPSTREAM
DNSTREAM
%
(FT)
••.......••••••••
(FT)
(FT)
(FT)
1.00
0.62
12.71
...............................
11.49
1.76
-0.24
NO
2.00
0.62
12.96
12.71
1.51
1.76
OK
3.00
0.62
12.96
12.96
1.51
1.51
OK
IOK
MEANS BURIED DEPTH
IS GREATER
THAN REQUIRED
SOIL
COVER OF
1 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
:•••••....
..... •••.........
....• •••.
SEWER
SEWER SURCHARGED
CROWN ELEVATION
WATER ELEVATION FLOW
ID NUMBER
LENGTH
LENGTH
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM CONDITION
FEET
FEET
FEET
FEET
FEET
FEET
1.00
196.00
.... -•--••••••-•••--
196.00
13.96
.... .
12.74
.....
14.34
.......
11.50 PRSS'ED
2.00
40.00
40.00
14.21
13.96
14.96
14.34 PRSS'ED
3.00
0.10
0.00
14.21
14.21
15.12
14.96 PRSS'ED
'PRSS'ED=PRESSURED
FLOW;
JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
F** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
.........•••..........•••......••••........•••
SEWER
UPSTREAM MANHOLE
FRICTION
.................................
DOWNSTREAM MANHOLE
' ID NO.
MANHOLE
ENERGY
WATER
LOSS
MANHOLE
BEND
MAIN
JCT
ENERGY
••••••........••••••......•••••.....••••••••...•
ID NO.
ELEV FT
ELEV FT
FT
ID
K
K
LOSS
FT
1.00
2.00
14.97
14.34
2.84
...............................
1.00
1.00
0.00
0.63
11.50
2.00
3.00
15.35
14.96
0.37
2.00
0.05
0.00
0.02
14.97
3.00
4.00
15.51
15.12
0.06
3.00
0.25
0.00
0.10
15.35
BEND LOSS =BEND K* VHEAD IN SEWER.
'MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES DROP AT MANHOLE
Stnsevn
of 4-oqo
7-A 2 1("15 ,
3-en Seri
oly-oYo
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 3
DEVELOPED
BY
' JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
- DENVER, COLORADO
*** EXECUTED BY DENVER LID AND FCD POOL FUND STUDY - DENVER METRO AREA
ON DATA 04-09-1992 AT TIME 16:01:29
*** PROJECT TITLE :
STORM SEWER FROM OVERLAND TRAIL TO POND NO.
*** SUMMARY OF HYDRAULICS AT MANHOLES
MANHOLE
CNTRBTING
RAINFALL
RAINFALL
DESIGN
GROUND
WATER
COMMENTS
ID NUMBER
AREA * C
DURATION
INTENSITY
PEAK FLOW ELEVATION
ELEVATION
------------
MINUTES
-"'---------.'---------------------------------------
INCH/HR
CFS
FEET
FEET
1.00
N/A
N/A
N/A
93.30
19.30
15.91
OK
2.00
N/A
N/A
N/A
93.30
20.00
17.49
OK
3.00
N/A
N/A
N/A
93.30
20.50
18.06
OK
4.00
N/A
N/A
N/A
93.30
20.60
19.25
OK
'
5.00
N/A
N/A
N/A
93.30
20.50
19.55
OK
6.00
N/A
N/A
N/A
93.30
22.80
20.56
OK
7.00
N/A
N/A
N/A
93.30
22.50
20.91
OK
'OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
*** SUMMARY OF SEWER HYDRAULICS
'
NOTE:
-----
THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
---------------------------------------------------------------
SEWER
MAMHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID
NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
....
ID NO.
---"-..----
ID NO.
-----
(IN) (FT)
..."
(IN) (FT)
(IN) (FT)
(FT)
1.00
2.00
1.00
ROUND
45.84
-----'-"
48.00
-----
48.00
----
0.00
2.00
3.00
2.00
ROUND
45.84
48.00
48.00
0.00
3.00
4.00
3.00
ARCH
45.68
48.00
34.00
53.00
'
4.00
5.00
4.00
ARCH
45.68
48.00
34.00
53.00
5.00
6.00
5.00
ROUND
45.68
48.00
42.00
0.00
6.00
7.00
6.00
ROUND
45.68
48.00
42.00
0.00
'DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL
,FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE IS USED
oiy-otie j8/sue
1114 Z
-------------------------------------------------------------------------------
SEWER
DESIGN 0
P-FULL 0
DEPTH CRTC DEPTH
VELOCITY
FROUDE
COMMENTS
ID NUMBER
IN CFS
IN CFS
YN FEET
YC FEET
1N FPS
NUMBER
1.00
93.30
105.84
2.92
2.93
9.51
1.01
V-OK
2.00
93.30
105.84
2.92
2.93
9.51
1.01
V-OK
3.00
93.30
82.15
3.63
2.97
9.04
0.00
V-OK
4.00
93.30
82.15
3.63
2.97
9.04
0.00
V-OK
5.00
93.30
74.82
3.50
2.97
9.70
0.00
V-OK
t 6.00
93.30
74.82
3.50
2.97
9.70
0.00
V-OK
FROUDE NUMBER=O INDICATES THAT A
PRESSURED
FLOW OCCURS
--------------------------------------------------------------------"
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM DNSTREAM UPSTREAM
DNSTREAM
-----------
%
(FT)
-------------------------------------------------
(FT)
(FT)
(FT)
1.00
0.54
14.56
14.21
1.44
1.09
OK
2.00
0.54
15.13
14.57
1.37
1.43
OK
3.00
0.55
16.43
15.71
1.34
1.96
OK
'
4.00
0.55
16.62
16.44
1.05
1.33
OK
5.00
0.55
17.02
16.62
2.28
0.38
NO
6.00
0.55
17.02
17.02
1.98
2.28
OK
' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET
' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
------------------------------------------------------------------------------
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
-------------------------------------------------------------------------------
FEET
FEET
FEET
FEET
FEET
FEET
1.00
65.00
0.00
18.56
18.21
17.49
15.91
JUMP
'
2.00
104.00
0.00
19.13
18.57
18.06
17.49
JUMP
3.00
131.00
131.00
19.26
18.54
19.25
18.06
PRSSIED
4.00
33.00
33.00
19.45
19.27
19.55
19.25
PRSSIED
5.00
73.00
73.00
20.52
20.12
20.56
19.55
PRSSIED
6.00
0.10
0.00
20.52
20.52
20.91
20.56
PRSSIED
PRSS'ED=PRESSURED
FLOW;
JUMP=POSSIBLE HYDRAULIC JUMP;
SUBCR=SUBCRITICAL FLOW
SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
'------------------------------
SEWER
------------------------------------------------
UPSTREAM MANHOLE
FRICTION
DOWNSTREAM MANHOLE
ID NO.
MANHOLE
ENERGY
WATER
LOSS
MANHOLE
BEND
MAIN
JCT
ENERGY
---- '
ID NO.
----
ELEV FT
ELEV FT
FT
ID
K
K
LOSS
FT
1.00
2.00
-----'..-----
18.89
17.49
----
1.58
----
1.00
----
1.00
---- '
0.00
----
1.40
-----
15.91
2.00
3.00
19.46
18.06
0.40
2.00
0.12
0.00
0.17
18.89.
3.00
4.00
20.52
19.25
0.93
3.00
0.10
0.00
0.13
19.46
5.00
20.82
19.55
0.23
4.00
0.05
0.00
0.06
20.52
'4.00
5.00
6.00
22.02
20.56
0.62
5.00
0.40
0.00
0.58
20.82
6.00
7.00
22.37
20.91
0.06
6.00
0.20
0.00
0.29
22.02
'BEND LOSS =BEND K* VHEAD IN SEWER.
MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE 1S LESS THAN ZERO
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES DROP AT MANHOLE
1
SenSer 19
oi4-oqo Sb
2�q2
RBD INC. ENGINEERING
CONSULTANTS
CHANNEL RATING INFORMATION
DRAINAGE CHANNEL FROM BLUE LEAF DRIVE
TO DETENTION
POND NO. 1
STA
ELEV
0.00
30.00
12.00
26.00
24.00
30.00
'N' VALUE
..........
SLOPE (ft/ft)
.............
0.035
0.0132
Z9 .3 c s
ELEVATION AREA
VELOCITY
DISCHARGE
FROUDE
(feet) (sq ft)
......... .......
(fps)
........
(cfs)
.........
NO.
......
26.20 0.1
1.0
0.12
0.57
26.40 0.5
1.6
0.78
0.64
26.60 1.1
2.1
2.29
0.68
26.80 1.9
2.6
4.93
0.71
27.00 3.0
3.0
8.93
0.74
27.20 4.3
3.4
14.52
0.76
27.40 5.9
3.7
21.90
0.78
27.60 7.7
4.1
31.26
0.80
27.80 9.7
4.4
42.79
0.82
F-MERt e:Mc:t��
28.00 12.0
4.7
56.67
0.83
28.20 14.5
5.0
73.06
0.85
28.40 17.3
5.3
92.14
0.86
28.60 20.3
5.6
114.06
0.87
28.80 23.5
5.9
138.97
0.88
29.00 27.0
6.2
167.04
0.89
29.20 30.7
6.5
198.40
0.90
29.40 34.7
6.7
233.20
0.91
29.60 38.9
7.0
271.59
0.92
29.80 43.3
7.2
313.70
0.93
Calcu/affOnS vsc
Mann in15 EA.
q=� Ry3S zA
iooVR.
wse� ,�/ r'eEE3oL�QA i.o'
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
Ten se�
o i'f -oyo ZD/5 �o
Z/9 z
100 YEAR FLOW OVER BLUE LEAF DRIVE AT SUMP
WEIR COEF.
3.000
STA ELEV
0.0
16.70
19.0
16.45
38.0
16.27
57.0
16.17
71.0
16.23
85.0
16.29
99.0
16.35
113.0
16.41
127.0
16.47
142.0
16.53
160.0
16.61
178.0
16.69
ELEVATION
DISCHARGE
(feet)
---------
---------
(cfs)
16.2
0.0
16.3
1.5
16.4
8.6
16.5
22.9 -Z ifs
16.6
46.0 �-
16.7
78.4
Calcvjsk&n5 bdSed o.• 0=CCN3/z
Qioo= 29.3 cis
Durin% a " -or SivrM
+tie. d cf+- , of wa+er- aver
4hc ertW n" Shall no'f
exceed G
,
Max. ele✓ � 16,53
mIN, e lev = 16,17
0, 3fo' 41.3 L(o'0K)
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
100 YR. FLOW OVER SIDEWALK AT SUMP ON BLUE LEAF DRIVE
WEIR COEF.
3.000
STA ELEV
0.0
17.00
63.0
16.70
71.0
16.30
79.0
16.70
143.0
16.70
200.0
17.00
ELEVATION
DISCHARGE
( feet)
---------
(cfs)
---------
16.3
0.0
16.4
0.1
16.5
0.8
16.6
2.1
16.7
4.3
16.8
15.3 29.3 efs
16.9
36.9 $
17.0
69.4
-ale u1,+lons Basel on
Q=CLN'/Z-
We',r -Plows o'F Q,oa=Z9,3cf5
80 ouu- eideuual k ¢- lawns
-o read+ oue�ow Swale
be-iween lofs .
Cro:s s jec{-ion fa Ken Alen)
prole-'17 Line aarFN-A
gradrnl f!an ,
Max. elev,7- 16,86
IF alev= 1501Z
/,/y i MA-
PerCi1� or,feria- l max,
l� �onclinq 15 /,S " ,
11 /,/Ll�L/,S�(eK-)
RBD INC. ENGINEERING CONSULTANTS
CHANNEL RATING INFORMATION
OVERLOOK TO POND 1
' ELEVATION
(feet)
4.50
5.00
' .0
6.00
6.50
7.0
7.50
8.00
8.50
' 9.00
9.50
10.00
� S-
lF.vr�
4r
II
i-a S)c15r
LQaDE
STA ELEV
10.00
10.00
34.00
4.00
44.00
4.00
68.00
10.00
ON' VALUE SLOPE (ft/ft)
.......... .............
0.035 0.0050
SwACE F"AA 0✓E12LRA1jQ 7i2,9/L
TD POND NO , /
AREA
VELOCITY
DISCHARGE
FROUDE
(sq ft)
.......
(fps)
........
(cfs)
.........
NO.
......
6.0
1.7
10.21
0.46
14.0
2.5
35.33
0.50
24.0
3.2
75.71
0.53_
36.0
3.7
132.92
0.55
50.0
4.2
208.67
0.57
66.0
4.6
304.64
0.58
84.0
5.0
422.50
0.60
104.0
5.4
563.89
0.61
126.0
5.8
730.36
0.62.
150.0
6.2
923.47
0.63
176.0
6.5
1144.69
0.63
204.0
6.8
1395.50
0.64
.a , lo' ._lag
FRE1=L o�D
Ten5er,
oty-oyo
Z/9� 21A�56
93. 3 =a = `C 106
�a55ume6 beacK to+
flows have rAs5eot
1-7.6 �o�I
S-7. Z I
111111110
a; "1;A47)
-
Engineering Consultants
f-
CLIENT Ter'Sf"7- 1 JOB NO. D/y'DyO
PROJECT P✓a� I-EcIIE to CALCULATIO NS FOR O✓erPow Swale {0
MADE BY KIP& DATE Z 121 CHECKED BY DATE SHEET ZZ OF 57(0
e_ PiGE i✓um6FR i7 Tr
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
TEnl- EYE
100 YEAR FLOW OVER SIDEWALK AT SUMP IN COURT
WEIR COEF.
3.000
STA ELEV
0.0 5112.00
7.0 5111.40
27.0 5111.30
33.0 5112.00
ELEVATION
DISCHARGE
( feet)
(cfs)
5111.3
0.0
5111.4
0.7
5111.5
3.7
5111.6
8.2
5111.7
14.0 /6.7 c.5
5111.8
40
21.0
5111.9
29.3
5112.0
38.7
ca I c (afion s BaSeoC on Q= CLN 31Z
Z-emssn
014-040
2/9 z 231sto
wear -Plows 04 Qoo° /6.7ci5✓
�o over sidew4lk4 lawns
+v mac- Swale
b e-+v--c e n /cis ,
Cross se4ion +aKtn'Fror"
IZ Cpn+oa(' on �tla,01ir9 p/an,
iy,iN/� E[Fu= 5//D,bo
Az
der- C;-/,/ Cr-,-ter—amr�.r,o�c,
Tense.n
O1 y-600
zY/s�
REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER-MODEL VERSION 3
DEVELOPED
BY
' JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
*** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA
ON DATA 04-03-1992 AT TIME 16:21:15
*** PROJECT TITLE :
' STORM SEWER FROM TEAL EYE COURT INTO DET. POND 2
*** RETURN PERIOD OF FLOOD IS 2 YEARS
*** SUMMARY OF HYDRAULICS AT MANHOLES
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
1.00 N/A N/A N/A 4.50 5110.00 5109.20 OK
2.00 N/A N/A N/A 4.50 5111.10 5109.45 OK
3.00 N/A N/A N/A 4.50 5111.10 5109.61 OK
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
' *** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
-----------------------------------"'-----------...-----"........_.._._......
MANHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
'SEWER
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
-----------------------------------------------------'"-"'--"_._.._-.___..--
1D NO.
ID NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
1.00
2.00
LOD
ROUND
14.20
15.00
18.00
0.00
'
2.00
3.00
2.00
ROUND
14.20
15.00
18.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
'DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL
FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE;,OTHERWISE,
EXISITNG SIZE IS USED
MerSe..n
a I •{-DYD
y19Z ZS�Slo
-------------------------------------------------------------------------------
SEWER DESIGN Q P-FULL Q DEPTH CRTC DEPTH VELOCITY FROUDE COMMENTS
ID NUMBER IN CFS IN CFS YN FEET YC FEET IN FPS NUMBER
1.00 4.50 8.49 0.78 0.82 4.88 1.10 V-OK
2.00 4.50 8.49 0.78 0.82 4.88 1.10 V-OK
' FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
----------------------------------------------------------------------
SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS
1D NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM
x---- ---- ---- ----
1.00 0.65 5108.63 5107.75 0.97 0.75 NO
2.00 0.65 5108,63 5108.63 0.97 0.97 NO
' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
1D NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET FEET FEET FEET FEET FEET
1.00 136.00 0.00 5110.13 5109.25 5109.45 5109.20 JUMP
2.00 0.10 0.00 5110.13 5110.13 5109.61 5109.45 JUMP
' PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
' SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE
ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY
ID NO. ELEV FT ELEV FT FT ID K K LOSS FT
-------------------------------------------------------------------------------
1.00 2.00 5109.82 5109.45 0.62 1.00 0.00 0.00 0.00 5109.20
'2.00 3.00 5109.97 5109.61 0.D6 2.00 0.25 0.00 0.09 5109.82
BEND LOSS =BEND K* VHEAD IN SEWER.
MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
'JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES DROP AT MANHOLE
TMINC
' Engineering Consultants
1
t
CLIENT �1.5 Ey, - JOBNO. OPY—O'16
PROJECT .QJa"I NcI�dW #%`Cv CALCULATIONS FOR 00f.r-r-10W Po.�l
�SateA -fo
MADE BY K��Dy Z ATE Z CHECKED BY-' DATE SHEET OF 5L
k1
b
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
Tens cr
Ol14 -OvO
Z/q z 27/3-4
100 YEAR FLOW OVER SIDEWALK AT SUMP IN DIXON CREEK LANE
WEIR COEF.
3.000
STA ELEV
0.0
5115.00
12.0
.5114.00
17.0
5114.00
30.0
5115.00
ELEVATION
DISCHARGE
(feet)
---------
---------
(Cfs)
5114.0
0.0
5114.1
0.6
5114.2
1.8
5114.3
3.8
5114.4
6.5 q,8cf3
5114.5
10.0 �-
5114.6
14.4
5114.7
19.7
5114.8
26.0
5114.9
33.3
5115.0
41.6
C a lC uIaT IOrns Based on Q=CI_H 312
WE/R -p/Ouw o'F Qmo= 9.Scrs
Ja 0 er 5rdewal fc 9L lawn;
-fa reach o'e.r-pl a w -� wd-l e
b ef-u,eeV lots. �!
Cross sec�7on 'fae'e" -4vr�
IS ",?-1,ur cn Araal my P/a,1,
_ e/.Sa
Max, ele✓,
Per C;'7 Cr; ier> a) rnaY ,
Pond>r+7 %S l,S )
&KJ
Ten s a.I
Al -,0'/O
ad Z 20156
REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER-MODEL VERSION 3
DEVELOPED
BY
' JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
' *** EXECUTED BY DENVER UD AND FCD POOL FUND STUDY - DENVER METRO AREA
ON DATA 02-21-1992 AT TIME 17:00:17
*** PROJECT TITLE :
DIXON CREEK LANE STORM SEWER SYSTEM
*** RETURN PERIOD OF FLOOD IS 2 YEARS
*** SUMMARY OF HYDRAULICS AT MANHOLES
1---------------------------------------"'------- --------------
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
' MINUTES INCH/HR CFS FEET FEET
----------------------------------------------------
1.00 N/A N/A N/A 2.70 5110.50 5109.20 OK
2.00 N/A N/A N/A 2.70 5114.30 5111.67 OK
3.00 N/A N/A N/A 2.70 5114.30 5112.28 OK
' OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
'CHECK THE GIVEN PEAK RUNOFF AT MANHOLE ID= 2
1T SEEMS THE GIVEN RUNOFF IS TOO HIGH!
'*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
SEWER
MANHOLE
-----------------
NUMBER
SEWER
------
REQUIRED
------------------------
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
---------------------------------------------------------------------"--------
ID NO.
ID NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
1.00
2.00
1.00
ROUND
9.19
15.00
15.00
0.00
'
2.00
3.00
2.00
ROUND
12.32
15.00
15.00
0.00
'DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER = COMPUTED; SUGGESTED DIAMETER = COMMERCIAL
FOR A NEW SEWER, FLOW IS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE IS USED
1
-------------------------------------------------------------------------------
SEWER
DESIGN 0
P-FULL 0
DEPTH CRTC
DEPTH
VELOCITY
FROUDE COMMENTS
ID NUMBER
IN CFS
1N CFS
YN FEET YC
FEET
IN FPS
NUMBER
1.00
2.70
10.01
0.44
0.67
6.93
2.14 V-OK
2.00
2.70
4.58
0.69
0.67
3.89
0.92 V-OK
, FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
......................................................................
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM DNSTREAM
UPSTREAM
DNSTREAM
1.00
----------
2.39
----------
5111.00
5107.61
------.... --------------------
2.05
1.64
OK
2.00
0.50
5111.00
5111.00
2.05
2.05
OK
'
OK
MEANS BURIED
DEPTH
IS GREATER
THAN REQUIRED
SOIL
COVER OF
1 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET FEET FEET FEET FEET FEET
' 1.00 142.00 0.00 5112.25 5108.86 5111.67 5109.20 JUMP
. 2.00 0.10 0.00 5112.25 5112.25 5112.28 5111.67 SUBCR
, PRSSIEO=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
SEWER UPSTREAM MANHOLE FRICTION DOWNSTREAM MANHOLE
ID NO. MANHOLE ENERGY WATER LOSS MANHOLE BEND MAIN JCT ENERGY
ID NO. ELEV FT ELEV FT FT ID K K LOSS FT
------------------ ------- -------------------
1.00 2.00 5112.41 5111.67 3.21 1.00 0.00 0.00 0.00 5109.20
'2.00 3.00 5112.52 5112.28 0.05 2.00 0.25 0.00 0.06 5112.41
BEND LOSS =BEND K* VHEAD IN SEWER.
MAINLINE LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
JUNCTURE LOSS= 0 IF THE ABOVE DIFFERENCE IS LESS THAN ZERO
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES DROP AT MANHOLE
a
M
1^
y'
111 N
a
mI
W
vl�
^
o
A110013A
W
J v
Y
Y
Z
1311n0
'-
'�`
CC
LA
¢�
NOUVA313
�"'
M
to
' ' W
F
N I
Q
m
N
W
0
ItQ
C
I
p
tl31VM0V3H
10tl1N00
* ..I)
?
tt
J W
.. < z
\ \
I J
4 f
W
W ¢ Q
r
W w
to `1
cp p
N
Zr
u i�l m
J
H a
Z
LL
W
N
(,)
N N 2W
co W
Q I V mI
(Y1
W
I 0 M
W
w N cA
U
O
J
y
3
PP o
3
=`
¢
U
Q
V
O
N
J
I _uJ
O
y
h
O
`q
J I
IW J
~
'O
O O
LL
J
1 —I e
Q
p L
tzt_
V
I
V
O
1_
vI
L S W
J
O
0 m
;
N
N
\ O
_
N r
Q
h =
a`
w_
O
J
S
a
F- W
J
W
h
�/1
,
J
i
0
Q w
J J
2
> N z
z % O
..
N N
n
LL
J
S
V
W
J¢ W
C
O
N
Ln
N
J
S
N
S V HOW
z
�
ca
J W m 0 Q
N
o
m
v
O
V
H
e =
¢
IW
_
J
—
_ N
�
`
LL \-
_
w
39
y�j
ISO
M
0
H W W 3
a
V
\I
J ` 1 ❑ ❑ N
�Wj
W WN
O
fQ.l V O 3 M
J ,•/
O
Q
¢
V
O Yl
y
O w
W
O
i
W
Z
(A ¢ a
W c ^. Q=
W
O W LL N
= N
Y
W J
C ¢O
h
zu
}
S a S C¢
Z % O v
= �ti u
N
m
cz
o < W z i
=`
O = e
w <■ = OOW a
..
h _ Q
rani
�,S y
Q
1L IOL 'Z I
O W V b==✓�
Q Q O
O u a
b
m S
6
WI
it
W ¢
Q,
Z J
OWIIO11GOhJ
O
S N 2 Q
U)
NLJW WWJS�
'S1HS'1,OOV 33S
J h
rJ e:
. 240
Z4 A156
0/1/-04o
zensen
30159
I
' RIPRAP DESIGN
1
L
No Text
No Text
3313z,
SPRING CREEK FLOODPLAIN
DATA INFORMATION
v
W
J
a
o
W
W
a
0
Fa..
CD Q
W
'
o Z
H Z Q
W
a.
1 US
gJ
m
' W
W
40
311
3 F
m m 7 m— tD — N
N N tD N O
O Q
O m �' CA N 7 Cm CA
CD ui Q) tD m
O>
O W
CA m m m 0 0 0 0--
0
N m
J
ton to
n u� t0o to n, n u�
to to to Ln to
W W
Q
3=
O
to M
O N
m=p
m N O O
J
—N t tmp O
to
N N
U.
—
Z
O
w P
tO W ID t7 — O tb
O
O — tD 7 O
}(�
W
MmMMOOO---
Oo O O Oo o an
M
—N —
—toJ to to
W
Z
QO
WF
orn 0:o11CD to
n
CD�—tD
Q
O N m — I m
CA of
to CA T m m 0 0 0
o 0
0--" m
OO W
ton too ton ton to to to
to
to to to to
_ J
W
Z
!2
Q
W H
to 7 m w 7 tD to
to
to m aD tD
Of N m Cp 7 CO.
m
CA 7 CA to m
OD to Q) M p 0 00
0-- N M
O W
o 0 0 0 —
to to tD u) to to
in
----
to to to to to
u") J
W
�z
Q O
W
A tD N m 7 In N
N
N 7 p m m
Q
CD — N m — 7 m
a0
to J' Cn to M
!'
CD CA CA Cm 0 0 0
0
0— N M
O W
O O O O
to to � to to to �
to
— to — to — —
to U; to
— J
W
CD Z
W O
3 p
O to 0 n O—
O
N to ^ O N
J Q
tD 10 m to n 0 N
m
N n N N
Q W
O O
C.
O N m
0
O O CS, O O
an to to to to to to
to
to to to to �n
� J
W
Z
O
Zg
a0000aDao�tn000mo
co 0) Lc)tetw
Co
Q7
1,00DC00(n .
H O
m m m M m m m
M
m m m m
m
Q
Z
O
vto
po _
CCpp
Cl)
mmCm =I-=1
77777
O—
— — — — — — —
— — — — —
c.>
0
-33-
3.6'/, b
-36/5L
EROSION CONTROL
I
I
I
3015to
RAINFALL PERFORMANCE STANDARD
EVALUATION
---------------------------------------------------------------------
PROJECT:
QoA/L h{O(,COW
F lt-/4)6
G
STANDARD FORM A
COMPLETED
BY: Kw 6 P R$D OILI-090
DATE: 2 -//-9 Z
---------------------------------------------------------------------
DEVELOPEDIERODIBILITYI Asb
I Lsb I
Ssb
I Lb
I Sb
I PS
SUBBASIN
I
(ft). I
I(feet)
I (b)
I (a)
---------I---------
kAZ�Eac�-I-(ac)--I
I
I -------I-
-(p)
-----I-------I-------I-------
1
I �vl6H
Ix s,7s
I eos I
/,6
I
I
i
I
3
I Lout
Ir2,/O9
y
Il how
I'y7z
/yzS I
/,o
I
I
I
H•62
I I
I /oyy
I /,z
I 79.9
L{�_ 5✓m
CLsb x4:5Ij Sun
,45b
I
i
I
I
Lb = (Bos 5•�s)+SSS(/,vc�+//so(z•65 /YzsCy� '
ly Ca2 us i,
L6 = Ioy y ft I i Tbl
56 = Sum 6-5sy X A5b )/S 'o 95b
56'/•�
/y,` I !
56 = A 2
,k ArCA5 u fain i-l-lons o1F I I I I
Quaff I Fiat ow , lIn5 S. C OK— r
sec end resuFF, X li
C/JPue. %ham n IL fure E boI In Z-4,5
show on -% e. drai aye- p/an) rn
/in9 S dram
di %! r i 4o F'l / n� 6 seta ra
baste cal tue nodona �°
Q n i Fi l i lv a�p a S. [p 7� I7xL
ero Ior '�/ nbP�svrCsi he{h IPA/e
p 3Q '}fie I E�ici :rl: f
n L
roe "n4-, ,, plan II tug 11 61�
All '1 %1�. r,14
------------------------------------- --------- =----------------------
)I/SF-A:1989
-EFFECTIVENESS CALCULATIONS
--------------------------------------
(PROJECT:
009/L. #06Z.Oul F/L/N6 C; STANDARD FORM 8
1COMPLETED BY: Ka)6 aR.QD Oly-ogp DATE: Z-//-9z
'
Erosion Control
C-Factor
P-Factor
Method
Value
. Value Comment
995--7vR-8 ------------O0--
--------
-TOT 0 ---------P ---
'
6RVEL F/LjE25
I
/r 00
O r80 .9-T rNGETS
H,fY D/2 SreAIV
DiO6
/r00
mucu+ w/ 7'5-MA
-----------------------------------------------=----------------------I
MAJOR(
PS
SUB
AREA
BASIN
W
+BASIN,
(Ac)
CALCULATIONS
-----
------
-----
------
S7S
---------------------------------
0/05 q- cvkh;e.h 6S A e y (;; Zi FR;; -
C,V172F A SEEOj
Mucc/f y,/o AG
NET C FOCrO,P=
Nr--i-P FAtroR = /C•8) _ ,8o
yy I
EFF= (/-c;c.p)XrOac
2
/,H6
,2ogo5 C ci,e8 z O,S Rc d ra,e.l Fil-fer I
niuLLN z D,9(eRc Cu//TFmP•SEED)
I
n/ErL Fvc7uk = o,SC or) t •96 (o%) = 0,0 V
/,vro
NErP Fgc709= the) ,80 I
_ 9G•b%
'
EFF= Ci'cxP)xroo=(I-C•o9x.ko))xrOo
3
Z,G9
pegD5 a cYze /.2SAc q (a rot c Frr
Et77J
I
I
p1JLGN = /,yy,4c Cw/TEMP•
FslcToR= /,ZSC•or)tI,YYGob)__ p,py I
'
'
AerCc
NEr P FPcroR= lC s)=•So xroo= 4ro.890
EFF= C�-cxP)xroo =(I-C DYX•So))
'
IJI
/,7 Z
"RIPO a CUR x /, 6 fJc ¢ [Gravel Frl
3;IZ (kO 727nP• SEED
I
J
w�
o
/rvL a 1 .9c.
NET C F*C-rooe = /, G Ga r) t 3 12 6L* = 0,0 ,t
'
%
or�
NErP FRC,TOR= IC,B)=
EFF=(l-CXP)X10o= &-(,0gx.e))Xi0o=94•890
*(XcN -2:. q,-7G Ac [w/ rEmP. 5EE0
NET C FACTOQ = .7 y7 b
.
N EY i F9 cra,e
= 9'/,o9e✓
EFt-=(/_czP)Xl00 CI-(lot.xl))x)00
EFFuet = 9G(5.75 t9c,g ,Yc f %,8 2L9)�9L• 7Z f y ,
'
I
19.38 I
I
95'. 9 ) 78.9 (oK) EFFNef = 95', 91
NOTE' s The. im7a r/- is 4v use- o- Seel
har
wif-h -khe. e- sfnw m¢0r,•7Q 017.S; ¢
aeas. Per.�a�erfouenFbw Swa/es rchanne/a/44��
I----------------------------------
AN OPFs;{e d•sfi,r•bei areas w;ll reeeiutl
'
0. Per------T - -- wii� }%� hay or• -I
HDT/SF-6:1989&A
V1510
CONSTRUCTION SEQUENCE
PROJECT: 0091L WLtoW FiL/A/6 G
sEQuENcE. FOR 19 9Z ONLY COMPLETED BY: KW6 031ZBD
STANDARD FORM C
DATE: Z ////9Z
'Indicate by use of a bar line or symbols when erosion control measures will be installed.
Major modifications to an approved schedule may require submitting a new schedule for
approval by the City Engineer.
' YEAR
-MONTH-
, OVERLOT GRADING
WIND EROSION CONTROL
' Soil Roughing
Perimeter Barrier
Additional Barriers
Vegetative Methods
Soil Sealant
Other
RAINFALL EROSION CONTROL
STRUCTURAL:
Sediment Trap/Basin
Inlet Filters
Straw Barriers
Silt Fence Barriers
Sand Bags
Bare Soil Preparation
Contour Furrows
Terracing
Asphalt/Concrete Paving
Other
VEGETATIVE:
Permanent Seed Planting
Mulching/Sealant
Temporary Seed Planting
Sod Installation
Nettings/Mats/Blankets
Other
STRUCTURES: INSTALLED BY
/99z
,,9 I m l.Sl Tl R 1 5 1 0 Al I I I I
-------------- ------------------------------------------I
VEGETATION/MULCHING CONTRACTOR
DATE SUBMITTED
HDI/SF-C:1989
----------------------------------------------------�
MAINTAINED BY
APPROVED BY CITY OF FORT COLLINS.ON
CHARTS, TABLES
AND FIGURES
4 56
DRAINAGE CRITERIA MANUAL
RUNOFF
50
30
1— 20
z
w
0
tr
W
a 10
z
w
IL
0 5
W
¢ 3
0
0cr
2
W
Q
3 1
_-■111
IWA
M3111F"_
MEN1111
FA FAII
►-BE
FAN
MINES
NINON!
• , r
•,
'
Il I'
2 .3 .5 1 2 3 5 10 20
VELOCITY IN FEET PER SECOND
FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR
USE WITH THE RATIONAL FORMULA.
*MOST FREQUENTLY OCCURRING"UNDEVELOPED"
LAND SURFACES IN THE DENVER REGION.
REFERENCE: "Urban Hydrology For Small Watersheds" Technical
Release No. 55. USDA, SCS Jan. 1975.
5-1-84
URBAN DRAINAGE d FLOOD CONTROL DISTRICT
No Text
qY/5�q
i
1
1
MAY 1984
U-
0
.9
M
.7
.3
.2
fil
s=06'/
F= 0.8
--N
s : 0.4 %
F=0.5
1 N1
I
I BELOW MINIMUM
ALLOWABLE -
STREET GRADE:
I I iI
II• .
Jilf�:
O 2 4 6 8 10 12 14
SLOPE OF GUTTER
Figure 4-2
REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY
Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain
allowable gutter capacity.
(From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
4-4
DESIGN CRITERIA
CLIENT �LhS�VI1' rr /' JOB NO.
6I,-I -0 �O
■��INC PROJECT 42/V0.1( W01160) b CALCULATIONS FOR .7iY_i'i1 �.�t aL4)/
' Engineering Consultants MADEBY �Wb DATE 4-al CHECKED BY DATE -SHEET- OF
o: e
a
' (tooYEAR)j
SURFACE UM/T i �
� 1
t ..._... ,. p% .. I
M;/A/oR sToRM .('ZyEifR)
SURFACE G/m/ri
�-- _
fiLGOWABCE .STREET us)0Ad/rY j Ty, 'RO.W �33, PA✓E,h1En/T'WiDT//CROLLovER eq�
' li=0,0/Co .(fen Minor 5fOr ) p nP.rncf} O.o75Cz47+a.0 /G �3•YBJj
P=33.30�, I /tPs .Y7.Y8 O.02G:%fmaT
Equation used:
MANNINCS EQUATION
Q = c/n A R 2/3 S1/2
Q = Discharge ,- ..._.._ ......
' C = Chezy Coefficient 1.486
n = Roughness factor
A = Area
R = Hydraulic Radius = Area/WP
WP = Wetted Perimeter
' S = Slope
Let X C/n AR/3 _
then Q = X SV2
Minor storm
(one side of road only).
Area = 2.63 ft2
Mannings "n" = 0.016
' Wetted Perimeter = 16.65 ft.
Hydraulic = 0.16 ft.
X = 71.99
Major storm
' (both sides of road)
Area = 42.52 ft2
Mannings "n"
(composite)
' (37.17ft)(0.016) + (24.25ft)(0 0351 = 0.026
47.42 ....... . ......... ........
Wetted Perimeter 94.96
Hydraulic radius = 0.45
X = 1427.08
To find "Q", multiply "X" by the square root of the slope
and then by the reduction factor, Fig. 4.2 P. 4-4, of
Fort Collins, specs. -
j
Nqs6
1
0 is for both gutters combined
Reduction factor is included '
Minor Storm
Major Storm
Slope M
V (fps)
0 (cfs)
V (fps)
0 (cfs)
RF
0.40
1.4
4.6
1.9
45.1
0.50
0.50
1.7
6.6
2.1
65.5
0.65
0.60
2.0
8.9
2.4
88.3
0.80
0.70
2.1
9.6
2.6
95.4
0.80
0.80
2.3
10.3
2.8
102.0
0.80
0.90
2.4
10.9
3.0
108.2
0.80
1.00
2.6
11.5
3.2
114.0
0.80
1.10
2.7
12.1
3.3
119.6
0.80
1.20
2.8
12.6
3.5
124.9
0.80
1.30
2.9
13.1
3.6
130.0
0.80
1.40
3.0
13.6
3.7
134.9
0.80
1.50
3.1
14.1
3.9
139.6
0.80
1.60
3.2
14.6
40
144.2
0.80
1.70
3.3
15.0
4.1
148.6
0.80
1.80
3.4
15.4
4.2
152.9
0.80
1.90
3.5
15.9
4.3
157.1
0.80
2.00
3.6
16.3
4.5
161.20
0.80
2.25
3.8
16.8
4.7
166.7
0.78
2.50
4.0
17.3
4.9
171.2
0.76
2.75
4.1
17.7
5.1
174.9
0.74
3.00
4.3
17.9
5.3
177.7
0.72
3.25
4.4
17.9
5.4
177.3
0.69
3.50
4.5
17.8
5.5
176.0
0.66
3.75
4.6
17.6
5.6
173.9
0.63
4.00
4.7
17.3
5.7
171.0
0.60
4.25
4.7
17.2
5.8
170.4
0.58
4.50
4.8
16.5
5.8
163.2
0.54
4.75
4.8
16.3
5.9
161.5
0.52
5.00
4.8
15.8
5.9
156.1
.049
5.25
4.9
15.2
6.0
150.2
0.46
5.50
4.9
14.8
6.0
147.0
0.44
5.75
4.9
14.5
6.0
143.5
0.42
6.00
4.9
14.1
6.1
139.6
0.40
Minor: n = 0.016 A = 5.26 ft2 R = 0.16 C = 143.89
Major: n = 0.026 A = 42.47ft2 R = 0.45 ft C = 1,425.02
0 = 1.48 AR2/3S1/2 C = 1.486 AR2/3
n n
0 = CS1/2[RF) V = 0/A
V/56
1.0 12
5
9 II 10 4
8
10 3
.8 6
9 0 4 ' -N 2
7
w
8 W 3 ��
a i z 1.5
6 P a ID, ti o
7 \Qy j �
z_ 1.0
5 Example, Part a I'0 Z .9
— — — - "j w
5.5 CY
F- W 6 t� o
U_
W
5 s z o .7
� .4 z z .4 ►-
? 45 0 3 6
.
Z. w
L .U. s
v o
4 2 p 5
co s
z_ z ►-
.3 z
W 3.5 w T 4
O a _j a=
O I w
0 0 .08 ~
.25 3 0
s s O .06 3
c� c� U z
.04
2.5 wa w .25
.2 .03
�- a
3
a .02 0 .2
d
s
2 U F
a
.15 .01 0 .15
L W
0
0
--- -- yo a
a=2° h 10
I 1.2
Q
Figure 5-2
NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2-
U Adapted from Bureau of Public Roads Nomograph
MAY 1984 5-10 DESIGN CRITERIA
3
1510
CHART 1O
ISO
10,000
168
8,000
EXAMPLE
(2)
(3)
6.
156
6,000
D•42 inches (3.5 feet)
6
5.
5,000 O.120 cfs
144
6.
5.
4,000
jiS • NM
132
D fad
4
3,000
(1) 2.5 6.8
5'
4.
120
(2) 2.1 7.4
2,000
(3) 2 2 1.7
4•
3'
I08
-
3'
e0 in feet
96
1,000
3.
Boo
84
600
S00
72
400
a
2.
/
3
300
c*
1.5
1.5
/
U.
60 0
200 � 1.5
Z
Z
W
0
54
a
a
a
W
100
Z
>
48
/ 1z
80
1.0
o
Q
0
60 W
1.0
U.
/2
_11
SO HW ENTRANCE
c
L0
c
40
0 SCALE TYPE
W
36
<
9
.9
I—
30
(1) Slivers edge with
3
Whoadeall
.9
a_
33
20
12) Greece anal with
4
a
W
C
30
headwall
x
•6
.8
(3) Groove and
.8
projecting
27
10
8
24
.7
6
To use scale (2) or (3) project
21
5
horizontally to scale (1), then
4
use straight Inclined line through
o and o scale$, or reverse an
.6
3
illustrated.
8
.6
18
2
IS I
1.0
L .5
5 L .S
L 12 HEADWATER DEPTH FOR
HEADWATER SCALES 283 CONCRETE PIPE CULVERTS
REVISED MAY1964 WITH INLET CONTROL
BUREAU Of PUBLIC ROADS JAIL 1963
181
Preceding page blank
Nl5to
DRAINAGE CRITERIA MANUAL
RIPRAP
Use Do instead of D whenever flow is supercritical in the barrel.
**Use Type L for a distance of 3D downstream.
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE B- FLOOD CONTROL DISTRICT
s615b
DRAINAGE CRITERIA MANUAL
9 = Expansion Angle
RIPRAP
mmmmmmmm
ormadvs
iEFRENd
mal
-
O .l - 2 .6 .4 ' .D o r .o
TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D
FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS
11-15-82
URBAN DRAINAGE 6 FLOOD CONTROL DISTRICT
O
O
Q
C
O
J
O
U
In
Z
J
J
O
v
O
U_
w
0
W
IN
0
Q
O
Z
Q
H
N
LU
U
Z
Q
C
O
lL
CC
w
Ct.
PAGE 23
1
0 1 o,rnpoo
1
O I wMMCOM
1
0 1 o,rnrn'ON cc0000
c I ccccI co cc CO =0000 000coCO
1
c I cOrno,rnrnrnrno+rnrno+rn000
oM i Cococoo4oxo�omocococccoco=coo"o
1
0 I nCoOC Co CINOl 01 C1%01 Qt 01 Ol Qt Qt Ot 01 CIt Cl 01 Ol
I
i co co Co a co co Co co co Co 0000000000 Co Co Co Co Co co
1
O 1 O M c' to lO t0 tD tO 1-I t, t., 1., I� tl t-I 1" 1-I t-I I" t-I co CO C0 CO co CO
1 w co 000 co co CO CO Co co 00 00 Co Co 000 co 00 co CC co c0
1
O ; CoNM .ti'I V7 t(J t0 to lO to t01� 1� �n nf\n f\n!� 070 .
0'. 1 co co co co co co 00 c00003 c0 c0 co c0 co c0 co c0 c0 c0 co co co c0 co co
1
O 1 t0 ON M d'�In U7 U'f In t0 tO t0 tD tO t0 tO t0 t0 t01� 1%� 1%, n nn
1
CC 1 c0000000 w 00 co 00 co co co co c0 c0 c0 c0 co c0000000 w 00 00 Coco
1
O 1 . Qt r+ N M M s . �' t.['. Un. to t1'. t1'. t1'. ti'f to In t0 lO tO tO lO t0 I�
I
1 co c0 co c0 co c0 c0 c0 0o 00 0000 00 c0 w CO. co /b co co co co c0 co c0 w
1
O 1 Cl t0 co . •--I - .. N N . . . . . d' � � � � e' �' to � to � � �
1
1 0000 Ow WOOD co co co co co 00 co co c0 00 00 co 00 c0 co 00 co co
�O 1 U7N to I., Co Ot00.--1 r+•-'INNNNN M M M M M �r d' d"7
v U'1 I NMMMMM.0,d' d' --*' d' d' d' of -:I- d' d' d' d-d'd'���d'
1 co co 00 c0 woo woo CoCo COOL COCO.=C* Coco Coc00000c0c0 oom
w 1
CD - 1 .,co.. . . . .tct. . . .c00000xc0000+o+rn00000
-cr I N N m M m M M M M M m M M M co M M M t% IM M 4 cY 4 4 d'
N 1 co co co CO co O 00 co coo 00 co CO co co 00 c0 co co co co CO co co co Coco
I
0 1 t0 U7 CO O 1- M d' d' to 1n In t0 tO tO tO tO 1-I 1l n f\ 00 Co Co G1 Qt
1 Co 000700 Co CO Co CO Co Co Co Co Co CO Co CO Co CO Co 00 Co 0000 CO 0000
1
U) I .-+.--1 u) I� C000.--IN NMMMd"�e!'d'd'tn to U'f to to tO 1�1�
M 1 co co CQ co OONIb co co co co 00000000 000o co co co co co w COO
I
O I MNtO co �O•--1NNMMM'7 d'� d' d' d' Ln In In In tO tO tO tD
I _
M 1 _ _ _ NOQ co co co co 00 co OO/b co co co w co w co co co co co Co CO OO
1
to I Inu7 CTNMd'In tO 1—t,I-,0000 co Cn CJ1 O1TQt CT000000
1
N 1 01OO co co=co co co co co co co 000000 co co co NNNNNN
1 n00OOOCO 00OOOCO COOOCOO 00OOOCOO 07 CO 07O
1
O I d'U'fO MLn tOCoCoCIiOOO.-+14'-�NNNNMMMMMM
I _
N 1 rlr\ co co co 00 co co CO co co co co CO 00 c0 co 0o co co Co co co c0 co
1
u7 1 ONCO d'tn 1,t�CoCJ%C7%00.-I .�.--I .rNNNMMMMM
•-a 1 t0O CO O1 cot cot 01 Q; Q+O; cot O p 0 00 O O O p O o O o O O
1 f-I1-11%l1%l1, 1�l 1-I 1, 1\ 1` n co O 00 co co c0 co w c0 co co co 00O
I
O 1 t0 M O d I . 0. ..-'I . ("Y M cY . lf'. t!'. U . 1!'f tO l0 t0 tO 1� 1' tO tO tO
.-I 1 d' tO 1-- I -I 1-I 1l CO co CO CO CO CO Co CO CO Co 00 00 00 00 Co cO CO CO cO C0
1 nn nn n I\ n 1\ n n I\ n 11% 1, 1� n 1\nI--nn 1\nn 1\n
1
to 1 cot 0 C to n 0 N n r� p, tO tO lO t1'1 -4d' M M N N cot tO d' r+CT tD
1
O I O N N N N N N N N N N N N N N N N N N N.--1.%l .--I •O O
I t\ n f\ n n n t\^ n t` n n n n n n n t\ n n n f\^ t%l\ t\ n
I 2 1
13 1-� ^ 1 0 0 0 0 O O O O O O O O O O p 0 0 o 0 C 0 0 0 6 0 0
CDCD—looppoOoop0000000000p000000
1 JZtL 1 NMv In t01, co of O 1- •--1 r Ln%0 �wmNN OM MC Lnto
I U-wv 1 .
TABLE 5.1
�Slo
PAGE 24
Table 5.2 C-Factors and P-Factors for Evaluating EFF Values.
Treatment
C-Factor
P-Factor_
BARE SOIL.
Packed and smooth . . . . . . . . .
. . . 1.00
1.00
Freshly disked. . ... . . . .
. . . 1.00
0.90
Rough irregular surface . . . . . .
. . . 1.00
0.90
SEDIMENT BASIN/TRAP. . . . . . . . . . .
. . . 1.00
0.500)
' STRAW BALE BARRIER, GRAVEL FILTER, SAND
'BAG. .'1.00
0.80
SILT FENCE BARRIER . . . . . . . . .
1.00
0.50
'
ASPHALT/CONCRETE PAVEMENT. .
. 0.01
1.00
' ESTABLISHED DRY LAND (NATIVE) GRASS. .
See Figure
1.00
SOD GRASS. . . . . . . . . . . . . . .
. . . 0.01
1.00
TEMPORARY VEGETATION/COVER CROPS . .
. . . 0.45(2)
1.00
HYDRAULIC MULCH @ 2 TONS/ACRE. . . . . .
. . . 0.10(3)
1.00
' SOIL SEALANT . . . . .. . . . . .
. 0.01-0.60(4)
1.00
EROSION CONTROL MATS/BLANKETS. . . . . .
. . . 0.10
1.00
'
HAY OR STRAW DRY MULCH
After planting grass seed, apply mulch
at
a rate of Z tons acre (minimum) and
adequately
anchor, tack or crimp material into
the soil.
' Maximum
Slope Length
M (feet)
1 to 5 4U0 . . . . . .
. . . 0.06
1.00
' 6 to 10 200 ... . . . .
. . . 0.06
1.00
11 to 15 150
0.07
1.00.
16 to 20 100 . . . . . .
. . . 0.11
1.00
21 to 25 75 . . . . . .
. . . 0.14
1.00
'
25 to 33 50
0.17
1.00
> 33 35
0.20
1.00
' NOTE: Use of other C-Factor or P-Factor
values reported
in this
table must be substantiated by documentation.
(1) Must be constructed as.the first step
in overlot grading.
'
(2) Assumes planting by dates identified
in Table 7.4
thus dry
or hydraulic mulches are not required.
(3) Hydraulic mulches shall be used only
between March
15 and
May 15 unless irrigated.
(4) Value used must be substantiated by
documentation.
1
1
1
1
1
1
1
i
1
1
i
1
1
1
1
1
1
1
0.40
0.35
0.30
0
0.25
Q
0.20
0.15
0.10
0.05
PAGE 26
ESTABUSBED GRASS AND C-FACTORS
FORT COMS, COLDRADO
........................I.........i................�........
�..........I..........
........
_.............................
_....... :...
...............
l...................
I
.............
.............
..............
�...........:.I.............
i
: ............. _I
............. a..............
.............
�o 20 30
as
50
60 70 80 90 goo
ESTABLSHfD
(SASS
GROUND
COVER (7)
FIGURE 5.1
13/6
TABLE 12 - ENTRANCE LOSS COEFFICIENTS
Outlet Control, Full or Partly Full Entrance head loss
H" = k" V2
2g
Type of Structure and Design of Entrance Coefficient k-
Pioe. Concrete
Projecting from fill, socket end (groove -end) . . . . .
. . 0.2
;..
Projecting from fill, sq. cut end . . . . . . . . .
. . 0.5
Headwall or headwall and wingwalls,
' Socket end of pipe (groove -end)
0.
Square -edge
0.55
Rounded (radius - 1/12D) . . . . . . . . .
. . 0.2
Mitered to conform to fill slope
0.
'
*End -Section conforming to fill slope . . . . . . . .
. . 0.55
Beveled edges, 33.70 or 450 bevels . . . . . . . . .
. . 0.2
0.2 U4
Side or slope -tapered inlet . . . . . . . . . . .
. .
.. Pine or Pioe-Arch. Corrugated Metal _
Projecting from fill (no headwall) . . . . . . . . .
. . 0.9
'
Headwall or headwall and wingwalls square -edge .
0.5
Mitered to conform to fill slope, paved or unpaved slope .
. . 0.7
*End -Section conforming to fill slope .. . . . . . . .
. . 0.5
Beveled edges, 33.7° or 45° bevels
0.2
Side -or slope -tapered inlet
0.2
Box. Reinforced Concrete
Headwall parallel to embankment (no wingwalls)
Square -edged on 3 edges . . . .
0.5
Rounded on 3 edges to radius of 1/12 barrel
dimension, or beveled edges on 3 sides . .
. 0.2
Wingwalls at 300 to 750 to barrel
Square -edged at crown
0.4
Crown edge rounded to radius of 1/12 barrel
dimension, or beveled top edge . . . . . . . . .
. 0.2
Wingwall at 10° to 250 to barrel
Square -edged at crown . • . . . .
. 0.5
Wingwalls parallel (extension of sides)
Square -edged at crown . . . . . . ... . . . .
. 0.7
Side -or slope-tapered inlet . . . . . . . . . . . .
. 0.2
*Note: "End Section conforming to fill slope," made of either metal or concrete,
are the sections commonly available from manufacturers. From limited hydrau-
'n1.,lgi
lic tests they are equivalent in operation to a headwall in
qut1 control. Some end sections, incorporating a closed
ThTatter
both and
in
taper their
sections can be
design have a superior hydraulic performance. ese
179
0
CHART 29
151 If 97 EXAMPLE
k
C 3000 Site; 76'a48'
O. 300 cta 21
136 x• 6T 2000 (3)
W Is, Nw
D (fast) 4.0
121 x 7 T (1) 2.8 n.2
(2) 2.2 8.6 4.0 3.0
113 x 72 1000 (3) 2.3 9.2 3.0
800 D in feet 3.0
106Is68 - --
600 2.0
98 x 63 500 2.0
400 �Fp 2.0
91x58
N _,--Soo I.S 1.5
W 83If53
S 3 1.5
O / 200 =
= 6x48 W
To use scale (2)or(3) _N
W Orow a straight Tina R
06 N
d 68 x 43 O 100 through known values LL
of size and discharge O
J = 80 to intersect scale 11). L0
ot From point on scale 111 N 1.0 g13
O 60 x 38 60 project noritonmll .9 .9
C LIJ N 50 12 orlon on v sep W .9
F
H 53x34 a a = 8 .8 .8
¢ y) 30
Is .49x32
o p .T .7
a 45 x 29' 20 7
HW ID ENTRANCE G
W 42If2T SCALE TYPE 3 .6 .6
N O .6
N 10
Iry sgaen edge with W
38 x 24 haed.oll S
8
(2) Groove and with
6 haed.oll ,S .S
5 (3) Grove and S
4 projecting .
30 x 19 3
2 - T
1.4 .4 .4
e D
I.0 -
231 14
HEADWATER DEPTH FOR
`OVAL CONCRETE PIPE CULVERTS
LONG AXIS HORIZONTAL
WITH INLET CONTROL
BUREAU OF PUBLIC ROADS JAN. 1963
209
S5/5�
1
1
1
1
1
[STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA
T A B L E :80:2:C
STORM SEWER ENERGY LOSS
COEFFICIENT
(BENDS AT MANHOLES)
1.4
►:3
i. i
1.2
►,16
l,oa
1.cq
1.0
D:`1Z
o°.<
v,N
Y 0.8
c 0,7s
m
u ;�1
o 0 4b
Deflector
s6/,CIP
STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 803
E AND JUNCTION LOSSES
o,,•, ----- 24L
,/.
NOTE fa AAj TTy
of 1.1.1.
USE EQUATION 801 SECTION
14t_ K � CASE I
�U INLET ON MAIN LINE yr
k= v!CS M ._I I_ >..
�o
8
USE EQUATION 805
1 It
N— d-kVf
3 gg
K=%P,10)52C.
{,�Mle' Ou•�
AN
oy PLAN
USE EQUATION 805
z
0•
VI vzw
5
O&VA
SECTION
CASE II
INLET ON MAIN LINE
PLAN
USE EQUATION 801
'L
i o.o k=!•z5
SECTION
CASE IZ
INLET OR MANHOLE AT
4 BEGINNING OF LINE
-SECTION
CASE M
MANHOLE ON MAIN LINE CASE N0. K . eoCASE III K.
WITH Go BRANCH LATERAL
I 5 22-1/2 0.75
II 0.25 45 0..50
IV 1.25 60 0.35
90 0.25,
No Lateral See Case I
Date: NOV 1984 I REFERENCE:.
Rev APWA Special Report No. 49, 1981
TWO, 71
Pwvrvnmem 5pem vq ANALnnIYM of
VpeYbe End/or Cwv OepM,
SUMAS
Sn"i WW
RAmd
au
CAN
m
DRAW
w+
n
ea
GH
Cea
AS
HisnsRT
COUP!
Me
Nt
.R ---
Hal swam
Wom I15
11 M &eTW7.nxN p.Rmy NWA j
I,
ieeie l.. fl.nWq dw. In Pe,enNL And Tem}uvr/f ,Gup Gral I4va YnwlMkA
TWOWW i / i V/ i \\��a` ���_\ �mia` \\` �. % % / 1. may Nr wish May mo m.mnmmi a IN all LY we a me tm n aemoee:
PEPFNNLLLGPASSEG GIiYGIV55F5 // / O/ / aa�a� 4i���` I I 0
MiE we, CAN wmR S� //' i 44i/L / �7� �?3g� z,y� / / / N Aw olwwnmeoO meUp re0 ro.,mwmmn„ �qa�w so,].
Gi'/ / / ��� rmlmwmTnINIter s hnismweemsem.
Jm al �Fwn Yee VAR No NO / r / // / / �Z\Ya \ ��ca�/ / / N em•wlm m., m. n.rm.ue,,.®mme
w,ol. My is Y.em Yee Ne re. / /r o / �i / \�� / a a ���1/(,s fia aL\\ f / wm:le,lemem.m.wwmewe ".nl, , / / _ _a H i / / I y Tmun.,. a .ma " m. ",exm..w,.Y.
.Nerve w vm NE �/i C9`j 44i/� \ / / ? aaa NfA �i ����l l mm..."."e.�a"e.
,he 01-AA 31 ... eb NO Ym ro // r �" r 4ii / l . I \ ���� ��_a_a ��/7/
asal...,031 AN Yes w r.e // N?' r r / 'Z_aaa V_ / \ t nw«alw MAN be xmm"oaoee ».eae.
$mal-amm NE NE m Ym i ¢+ '� / - //r — — / / / �aa zz ���J r / /
ovol.Bmm 7w YEN - m !mi // i/. .-.11 !1. i/ti—���t�- ! ������$�a=_`
n' I�`li ` S/r
it I it :�' i OlIAa HOLLOW I
<I II II Ii j FIFTH FILINGII 111
+11 III II I I I I + III
rr 1 Ia:
• IIII II
w�
Iljlll I Tr —err 1 5.15 AC IIII Ij elj
I��II iII II \` 1' II II Iljj___— .13II:.
.5
III /A]
`RYA , /j / GUAIL HOLLOW
\ ON 1396 pill / FIFTH FILING /
,v 0AX .� 111
Pit
laill WAS. I SA His"
\,\\ .. ,_L1. L a"
TAS 12 Ail
ZC I
MAN I=
1plT .....1�. ...��,. mAGO\1
w m W CN ON eAI.EY FOR
B I \ GI I3.0 �iye�,3
\� TMaI Nee: 1243<DC C \ \\\ `.
� ReSonel'C':
LEGEND \_ TOtel Flow. fo none No. 1: OTC 159 de OWN EGA ds\
�_TObI FlOw3b Pa,d No.O da a 14.9 de \— /
BASIN DESIGNATION .1 OT`AOT
1.06 AL
WIN AREA
BASIN BOUNDARY
QDESIGN
POINT
DEVELOPED SITE HYg10LOGV
DeSon
Pont
Basin
ARe
(ea)
C'
OT
(de)
O,m
(ds)
I
1
5.75
1 0.90
1 6.2
n4
2
2
i.e9
0.50
1-0
BB
3
3
169
0.50
17
93
e
e
4.7z
0.5U
e.5
1D7
es f
�0
ACAN
AN
OkIlaw
MA M
I'l
®MIymt ! l/Iw ISITl n�3I_e`_x_IOI [
.%rye. —
5 / .I...,.
INLET \\ i -- / / ".'LYI r.,. ••
' J _ ; AN"Was I
N
'
AIR
Mr mew, .e
oeMPTION PoNG � •P='�"T II 11 .. nns w, NO . EE.$ / mm I On
p x,, vela. ww
NDZ
ply 11IroYR. NSF1.• / ER3510N DALE
—.,,.5 / CWLCIC Mae
\\\ EnlOf+l d WIDE CONCRETE uevecN CONTROL No
TRICKLE CHANNEL a IM . HAS as" w L=W,
5EE DETAIL SHT. rIALL nxcx ALL DISTUREED ARMOB, MIT IN N ROMINUT, exIE,.
UT Una IF HAVE A TEMPORARY VEGETATION BRED APPLIED THIB BREAK.
OVER THE SEED AT A DATE In No. a SEEDING, A WAY OR STRAW MULCR �L Do (I0 LT�IACRE M)
ow
METHODS 00 THIS $KINIT. AFTER THE UTILITIES
HAVE
S IMITALLED, THE ROADWAY BURINCER
SHOULD
CEIVE
INSTALLA
ION
URB INLETS, THE INLETA
k" j EX15T. WEIMALL IR($PILLWAY TACKED. CA CMIMPED IWO THE MOIL PER ?US
CONCRETE(e,o�pEITH A COMBINATION OF
31',CWIRE BCRUJI ROD COMBAT
COReuo TO FAR
'[TALL o4)WHY AT.ALL mum "ERB, ALL OTHER DIRTVA34D "Us SMALL KATE PE��
(OVIRFLON SNAIRS, GEED APPLIM PER INS SPECIFICATION US THEM
CHANNEL, RAW WHEAT. AFTER GREDING, A MAY OR STRAW HOLDS
DISTURBED AR
}e
0 HALL BE APPLIED OVER THE DIED AT A RUCTE Of 2
OUTSIDE OF woRL
it. ADEQUATELY ANCHORED,
THE BOIL PAR TRE KETRODO ON THIS SHE=.
EROSION
BALE CHECK
DBMS
LLED xv THEY
OONNAETexcoxesau
IIII
AVERAGE STREET SLOPE
DRAINAGE BASIN
STATISTICS
%
If
if
I III1
II
EXISTING CONTOUR
Gross Planed Nee:
12e4&c
EKIn(.'WeIR,WAY
����_,
PRELIMINARY
III
$Cfll
l., = 60'
Gross Area'C:
Net Planed Area:
0.50
9735w
\���
Do NOT use for
- w v
lw �15�
PROPOSED CONTOUR
Net Plane!Are. C:
037
���
FLOOD PLAIN
Pl1G5traCtIm
OrvSlte DelentlCn:
13,01E Ci./en
IG EDS ING PO IDSAPPPOICIMATE
DEVELOPMENT
\\1� 00`(C.(shilsevis4
IIII
III
:
1•Z3.A
SEXISTING
\
APR 13 N921
RUJ
DRAWN
KW&
DESIGNED
CHECKED
Engineering Consultants
Sao CUM, Sale am
mmzsa. ep B'S01
alm,•ae
QUAIL HOLLOW
SHEETS
ISHEET
APPROVED
ANOL IAA2
GATE
mat-oAo
PROJECT MO.2es
WHO BRNln College Male ss MAY JOhnmR B1,E.Gulm wB
eaO,.00 eosn TCaby.9Bra0apewmas C°Iwveo B'90i
ssB S Re. wem.
Ke.Wo,aeo 9,651
Case zn
SIXTH FILING
DRAINAGE &EROSION CONTROL PLAN
17
5
NO. BY
GATE
REVISION DESCRIPTION