Loading...
HomeMy WebLinkAboutDrainage Reports - 12/09/2016pA This Drainage Report is consciously provided as a PDF. ' Please consider the environment before printing this document in its entirety. When a hard copy is absolutely necessary, we recommend double -sided printing. October 10, 2016 n The Overlook Fort Collins, Colorado City of Fort Collins Approved Plans Approved by: Date: 12- q - Z Prepared for: Stockover Investments, LLC 1806 Westview Road Fort Collins, CO 80524 970-556-8132 Prepared by: NORTHERN ENGINEERING 301 N. Howes Street, Sune 100 Fort Collins, Colorado 80521 Phone: 970.221.4158 v .northemengirreenng.com Project Number: 1174-001 1 NorthernEngineering.com // 970.221.4158 ! ' W INORTHERN ENGINEERING ! ! RE: Final Drainage and Erosion Control Report for The Overlook Dear Staff: Northern Engineering is pleased to submit this Final Drainage and Erosion Control Report for your review. This report accompanies Final Development Plan submittal for the proposed The Overlook development. This report has been prepared in accordance to Fort Collins Stormwater Criteria Manual (FCSCM), and serves to document the stormwater impacts associated with the proposed project. We understand that review by the City is to assure general compliance with standardized criteria contained in the FCSCM. If you should have any questions as you review this report, please feel free to contact us. Sincerely, NORTHERN ENGINEERING SERVICES, INC. Stephanie Thomas, PE Project Engineer 301 N. Howes Street, Suite 100, Fort Collins, CO 80521 1 970.221.4158 .I www.northernengineering.com I I 1 I 1 1 .V INORTHERN ENGINEERING TABLE OF CONTENTS I. GENERAL LOCATION AND DESCRIPTION................................................................... 1 A. Location.......................................................................................................................................1 B. Description of Property.....................................................................:..........................................2 C. Floodplain....................................................................................................................................3 II. DRAINAGE BASINS AND SUB-BASINS.......................................................................4 A. Major Basin Description...............................................................................................................4 B. Sub -Basin Description..................................................................................................................4 III. DRAINAGE DESIGN CRITERIA .......................................... :........................................ 4 A. Regulations............................................................................................:.....................................4 B. Four Step Process........................................................................................................................4 C. Development Criteria Reference and Constraints.........................................................................5 D. Hydrological Criteria....................................................................................................................5 E. Hydraulic Criteria.........................................................................................................................5 F. Floodplain Regulations Compliance..............................................................................................6 G. Modifications of Criteria..............................................................................................................6 IV. DRAINAGE FACILITY DESIGN..................................................:.................................6 A. General Concept..........................................................................................................................6 B. Specific Details.............................................................................................:...............................8 V. CONCLUSIONS........................................................................................................9 A. Compliance with Standards............................:.............................................................................9 B. Drainage Concept.........................................................................................................................9 References....................................................................................................................... 10 APPENDICES: APPENDIX A — APPENDIX B — B.1 — B.2 — B.3 — BA — B.5 — APPENDIX C — APPENDIX D — APPENDIX E — APPENDIX F — Hydrologic Computations Hydraulic Computations Detention Ponds Water Quality Calculations Storm Sewers Inlets Weir Calculations SWMM Modeling Erosion Control Report LID Exhibit References Final Drainage Report NORTHERN ENGINEERING The Overlook LIST OF TABLES AND FIGURES: Figure1 — Aerial Photograph................................................................................................ 2 Figure2— Proposed Site Plan................................................................................................ 3 Figure 3 — Existing Floodplains..................................... ......................................................... 3 ' MAP POCKET: HDR1 — Historic Drainage Plan ' DR1 - Drainage Exhibit I 1 r ' Final Drainage Report NORTHERN ENGINEERING I. GENERAL LOCATION AND DESCRIPTION A. Location 1. Vicinity Map NORTH VICINITY MAP KV The Overlook ' 2. Located in the western half of Section 36, Township 7 North, Range 69 West of the 611 Prime Meridian, City of Fort Collins, County of Larimer, State of Colorado. The site is a part of Lots 3 and 4, Observatory Heights. 3. Bounded to the north by First National Bank I' PUD, to the west by John F. Kennedy Parkway, to the south by Larimer County Canal, and to the east by a Private Drive and Wharf at the Landings PUD Phase 2 Replat. ' 4. No significant offsite flows are directed into the site. The majority of off -site flows are prevented from entering the site by curb and gutter. 5. The Overlook was originally included in the Revised Master Plan and Supplemental Drainage Report for Fort Collins National Bank PUD, prepared by Cornell Consulting Company, Revised April 4, 1980. ' Final Drainage Report 1 I I I 1 1 J (NORTHERN ENGINEERING B. Description of Property The Overlook 1. The site is approximately 3.29 acres. Approximately 0.23 acres of the 3.29 acres is a parcel of land already developed by the First National Bank PUD; hence this area is included in the original drainage report and accounted for in the existing detention pond. Figure 1 — Aerial Photograph 2. The existing site is comprised of vacant land with natural grasses and vegetation. In the northeast corner of the site exists an existing parking lot. This existing parking lot will be demolished with this project and reconfigured in another location. 3. The majority of the site slopes to the north, while an eastern portion slopes to the east. 4. A report by Earth Engineering Consultants dated December 14, 2015 lists the soils for the area as consisting of lean clay with varying amounts of silt and sand, and sandstone/siltstone bedrock ranging from 2 to 7 feet below the ground surface. 5. A Web Soil Survey Created by the NRCS lists these soils as Hydrologic Soil Group D and have a low infiltration rate. 6. The proposed project site plan is composed of 2 buildings connected by a walkway. These buildings are classified as mixed -use with commercial on the first floor and residential above. This site will employ water quality features and runoff reduction facilities including rain gardens and extended detention basins. Final Drainage Report 2 NORTHERN ENGINEERING The Overlook Figure 2— Proposed Site Plan 7. No existing irrigation facilities are known at this time. 8. The project site is within the First National Bank 1" PUD Master Plan. The proposed project is not requesting a change in the land use. C. Floodplain 1. The subject property is not located in a FEMA or City regulatory floodplain. FCMaps l..nlnn.,a I.epend FAOMUM ..... vavb Cky .rJ .wr.Y�r-wo �oo. . cauwdPWM ... F`p ❑ Glam MiY�11YA Nn e @ Pile j SUOde b rj CYY all.�.r.l l .mue.avp ¢dyy4 t6� e 1 E 1 6.859 s I � e No1K i¢.nM¢¢p�y N..MYbM/YnY¢M LW. Ww M.P✓w/�. 1Mi4_IW}YMJY.Y,JuYy_9V.w. �n9�.W>�InYYM/�.aaw.ls�.w..y1W.. Gbar¢IteM.-Or5 Figure 3 — Existing Floodplains Final Drainage Report 3 ' NORTHERN ENGINEERING The Oyer000l II. DRAINAGE BASINS AND SUB -BASINS ' A. Major Basin Description 1. The Overlook project is located within the Foothills Drainage Basin, which is located ' between Prospect Road and Larimer #2 Canal from north to south and approximately between Shields Street and Zeigler Road from west to east. ' B. Sub -Basin Description 1. The western half of the property generally drains to the center of the property. From there, flows are conveyed north in a swale to the access road bordering the north side ' of the property. Flows within the access road are collected in an inlet at Horsetooth Road. From there, flows are detained and released to Warren Reservoir. 2. The eastern half of the site generally sheet flows to the eastern boundary. From there, ' flows sheet flow to backlot swales and drain pans routing flows around the existing residential buildings. These flows are also collected in downstream inlets and detained prior to be released to Warren Reservoir. ' 3. The proposed plan will generally detain developed flows and release to the detention ponds north of the site, on the First National Bank property. These ponds have been sized and included in the previous drainage report. ' III. DRAINAGE DESIGN CRITERIA A. Regulations There are no optional provisions outside of the FCSCM proposed with The Overlook project. B. Four Step Process The overall stormwater management strategy employed with The Overlook project utilizes ' the "Four Step Process" to minimize adverse impacts of urbanization on receiving waters. The following is a description of how the proposed development has incorporated each ' step. Step 1 — Employ Runoff Reduction Practices Several techniques have been utilized with the proposed development to facilitate the reduction of runoff peaks, volumes, and pollutant loads as the site is developed from the current use by implementing multiple Low Impact Development (LID) strategies including: w Providing rain gardens throughout the site to reduce the overall impervious area and to ' minimize directly connected impervious areas (MDCIA). N= Providing planter boxes with a rain garden filter section at downspout locations from the building to reduce runoff from the rooftops. ' Step 2 — Implement BMPs That Provide a Water Quality Capture Volume (WQCV) with Slow Release The efforts taken in Step 1 will facilitate the reduction of runoff; however, this ' development will still generate stormwater runoff that will require additional BMPs and water quality. The majority of stormwater runoff from the site will ultimately be ' intercepted and treated in proposed water quality ponds. ' Final Drainage Report 4 ■V NORTHERN ENGINEERING ' The Overlook Step 3 — Stabilize Drainageways ' There are no major drainageways within the subject property. This property discharges to existing detention ponds that have been designed to accommodate runoff from this project as a part of the First National Bank 1" PUD Master Plan. ' Step 4 — Implement Site Specific and Other Source Control BM Ps. The proposed project will improve upon site specific source controls compared to historic ' conditions: �►= Localized trash enclosures within the development will allow for the disposal of solid waste. N= Rain gardens and planter boxes for water treatment prior to flows entering the extended detention basins. N= Water Quality measures to protect and prolong the design life of the BMPs delineated in Step 1. C. Development Criteria Reference and Constraints 1. The proposed site is a part of the Revised Master Plan and Supplemental Drainage ' Report for Fort Collins National Bank PUD, prepared by Cornell Consulting Company, Revised April 4, 1980. This report states a release rate of 75% of the 2-year release. This is less than the typical 2-year release requirement. ' 2. This site is subject to the LID requirements per the City of Fort Collins. Please see the LID Exhibit located in the Appendix for calculations concerning LID treatment. The site must either have the following: ' N= 75% of total new impervious areas must be treated through an LID (Low Impact Development) treatment BMP, or ' w 50% of total new impervious areas must be treated through an LID (Low Impact Development) treatment BMP and 25% of new pavement shall be pervious. D. Hydrological Criteria r1. The City of Fort Collins Rainfall Intensity -Duration -Frequency Curves, as depicted in Figure RA-16 of the FCSCM, serve as the source for all hydrologic computations ' associated with the development. Tabulated data contained in Table RA-7 has been utilized for Rational Method runoff calculations. 2. The Rational Method has been employed to compute stormwater runoff utilizing coefficients contained in Tables RO-11 and RO-12 of the FCSCM. 3. EPA SWMM modeling was utilized for detention storage calculations. ' 4. Three separate design storms have been utilized to address distinct drainage scenarios. The first event analyzed is the "Minor," or "Initial" Storm, which has a 2- year recurrence interval. The second event considered is the "Major Storm," which has a 100-year recurrence interval. The third storm computed, for comparison ' purposes only, is the 10-year event. 5. No other assumptions or calculation methods have been used with this development ' that are not referenced by current City of Fort Collins criteria. E. Hydraulic Criteria ' 1. As previously noted, the subject property historically drains to the north and east. The north flows are collected in an existing inlet on the private access drive at Horsetooth Road then conveyed to an existing detention pond that releases to Warren ' Final Drainage Report 5 NORTHERN ENGINEERING The Overloc Reservoir. ' 2. All drainage facilities proposed with The Overlook project are designed in accordance with criteria outlined in the FCSCM and/or the Urban Drainage and Flood Control District's (UDFCD) Urban Storm Drainage Criteria Manual. ' 3. As stated previously, the subject property is not located within a FEMA regulatory floodplain. 4. The Overlook project does not propose to modify any natural drainageways. F. F000dplain Regulations Compliance ' 1. As previously mentioned, all structures are located outside of any FEMA 100-year floodplain, and thus are not subject to any floodplain regulations. G. Modifications of Criteria 1. The proposed development is not requesting any modifications to criteria at this time. IV. DRAINAGE FACILITY DESIGN ' A. General Concept 1. The main objectives of The Overlook drainage design are to maintain the allowable storm runoffs as outlined within the Revised Master Plan and Supplemental Drainage Report for Fort Collins National Bank PUD. '. 2. A list of tables and figures used within this report can be found in the Table of Contents at the front of the document. The tables and figures are located within the ' sections to which the content best applies. 3. Historic runoff from The Overlook project site was evaluated. This evaluation provided the historic 2-yr and 100-yr peak runoff rates for the existing site. ' Basin H1 Basin H1 has an area of 0.23 acres. This basin contains a portion of the existing ' private access road and an existing parking lot. The 2-yr and 100-yr peak runoff rates from Basin H1 are 0.56 cfs and 2.27 cfs, respectively. Basin H1 has been accounted for in previous subdivision drainage designs. Therefore, detention of this area is not proposed. Basin H2 ' Basin H2 has an area of 3.04 acres. This basin contains the majority of The Overlook site. This existing basin contains vacant land. The 2-yr and 100-yr peak runoff rates from Basin H2 are 1.05 cfs and 4.78 cfs, respectively. ' 4. The Overlook project divided the site into three (3) major drainage basins, designated as Basins A, B, and UD. The project further subdivided Basin A in to seven (7) sub - basins, Basin B into five (5) sub -basins, and Basin UD into five (5) sub-bains. The drainage patterns anticipated for each basin and sub -basin are further described below. Basin A ' Basin A is a total of 1.76 acres. Basin A consists of proposed building, parking lot, sidewalk, landscape areas and rain gardens. Runoff from Basins Al, A2, A3 and A4 ' Final Drainage Report 6 J NORTHERN ENGINEERING The Overlook flow via overland flow and gutter to proposed rain gardens. Runoff from Basin A5 is ' collected in trench drains and conveyed to Detention Pond A. Runoff from Basin A7 is collected in a curb inlet and conveyed to Detention Pond A. Basin A7 contains Detention Pond A. Total flow during a 100-yr storm from Basin A is calculated at a ' routed 11.96 cfs. Basin B ' Basin B is a total of 1.05 acres. Basin B consists of proposed building, parking lot, sidewalk, landscape areas and rain gardens. Runoff from Basins B1 and B2 are collected in a storm pipe and curb inlet and are conveyed to a rain garden. Runoff ' from Basins B3 and B4 are collected by curb inlets and are conveyed to Detention Pond B. Basin B5 contains Detention Pond B. Total flow during a 100-yr storm from Basin B is calculated at a routed 5.69 cfs. ' Basin UD Basin UD is a total of 0;50 acres. This basin is undetained and runoff will continue to flow to historic capture points. ' Basin UD1 and UD5 will continue, as historically, to overland flow to the adjacent The Wharf Subdivision. Basins UD1 and UD5 have a percent impervious of 0%. Runoff ' from these basins is considered negligible and similar to historic. Basins UD2, UD3, and UD4 combine for a developed 49% impervious and total combined area of 0.44 acres. These basins flow undetained to either JFK Parkway or the Private Access Road. Flows are conveyed along gutters to an inlet located at the intersection of the Private Access Drive and Horsetooth Road. Total flows during a 100-yr storm from Basins UD2, UD3, and UD4 are a combined routed flow of 2.49 ' cfs. ' 5. Two (2) detention ponds are proposed with The Overlook development. Detention Pond A is located within Basin A and Detention Pond B is located within Basin B. Detention Pond B is routed through Detention Pond A. Release from Detention Pond A is then conveyed to the existing detention pond on the adjacent northern property. ' Detention Pond A Detention Pond A has a total of 0.49 ac-ft storage available. 0.45 ac-ft of storage is required with this project. Water quality control volume for Basin A and Basin B is included in the pond volume. Emergency Overflow from the pond is directed north to the existing access road.. Release rate from Pond A is proposed at 0.55 cfs. ' Detention Pond B Detention Pond B has a total of 0.33 ac-ft storage available. 0.22 ac-ft of storage is required with this project. Water quality control volume for Basin B is included in - ' Detention Pond A. Emergency Overflow from the pond is directed west through the Detention Pond B outlet structure. 0.97 ft of freeboard is provided in Detention Pond B above the 100-yr water surface elevation. Release rate from Pond B is proposed at ' 0.19 cfs. Detention Pond B Clogged Outlet Modeling ' A clogged outlet scenario was conducted utilizing the SWMM modeling program. The Pond B 100-yr orifice was modeled as 100% clogged during a 100-yr event. In this scenario, 0.38 cfs will spill into the emergency overflow (top of the outlet structure). ' Final Drainage Report 7 ' NORTHERN ENGINEERING ' The Overloo Secondly, another scenario was modeled in which that the entire outlet structure is ' clogged, including the emergency spill (top of outlet structure), during a 100-yr event. In this scenario the depth of the water in the pond was shown to rise to elevation 5021.23. This elevation is still 0.77 ft below the top of the berm at elevation ' 5022.00. Lastly, a 500-yr clogged scenario was modeled. This event utilized the Town of Wellington 500-yr storm intensity information. In this scenario, the Pond B orifice was clogged, but the emergency spill was available. In this event, 2.94 cfs was shown to spill into the Pond B emergency spill (top of outlet structure). The ' stormwater within Pond B was shown to rise to an elevation of 5021.29. This is still 0.71 feet below the top of the berm. Pond A was shown to spill north and east, over the berm, into the private access road, at a rate of 11.59 cfs. ' In the catastrophic event that the Pond B emergency spill were to be 100% clogged during a 500-yr event, the maximum flow over the Pond B berm would be no more than 2.94 cfs. In this catastrophic event, the stormwater overflow would be conveyed ' through the existing drainage pans and continue to the Wharf at the Landings Detention Pond. ' Total Stormwater Release from Site The total allowable 100-yr release from the site is a summation of the historic 100-yr ' runoff from Basin H1 (2.27 cfs), plus 75% of the historic 2-yr runoff from Basin H2 (1.05*0.75=0.79 cfs). This totals 3.06 cfs total release allowable from The Overlook site during a 100-yr event. ' Total developed 100-yr release from the site is a combination of the undetained 100- year flows from Basins UD2, UD3, and UD4 (2.49 cfs) plus the 0.55 cfs release from Pond A for a total proposed 3.04 cfs release. ' A full-size copy of the Drainage Exhibit can be found in the Map Pocket at the end of this report. ' B. Specific Details 1. Storm sewers were sized for the 100-yr storm utilizing the program Hydraflow for AutoCAD Extension. 2. Weirs are provided from Rain Garden Ll and L4 to convey the 100-yr storm from the rain garden to their respective detention ponds. Weirs were analyzed by Hydraflow ' Express. 3. Curb cuts were modeled to verify the maximum flow to be conveyed. It was ' determined that the maximum flow will be sufficient to convey the 100-yr storm within each respective basin. Curb cuts were analyzed as weirs with Hydraflow Express. 4. Inlets were sized for the 100-yr event utilizing Urban Drainage spreadsheets and Area ' Inlet calculations spreadsheets. 5. Due to the existing development to the east of the proposed Detention Pond B, the pond outlet structure and downstream piping was upsized to convey the full 100-yr ' emergency overflow from Basin B. ' Final Drainage Report 8 INORTHERN ENGINEERING V. CONCLUSIONS A. Compliance with Standards The Overlook 1. The drainage design proposed with The Overlook project complies with the City of Fort Collins' Stormwater Criteria Manual. 2. The drainage design proposed with The Overlook project complies with the City of Fort Collins' Master Drainage Plan for the Foothills Drainage Basin. 3. There are no regulatory floodplains associated with the development. 4. The drainage plan and stormwater management measures proposed with the development are compliant with all applicable State and Federal regulations governing stormwater discharge. 5. The site achieves the requirements set forth by the City of Fort Collins for Low Impact ' Development (LID) by providing 77% total impervious areas as being treated through an LID treatment. Please see LID Exhibit located in the Appendix. B. Drainage Concept 1. The drainage design proposed with this project will effectively comply with previous studies and will limit any potential damage or erosion associated with its stormwater runoff. All existing downstream drainage facilities are expected to not be impacted negatively by this development 2. The drainage design is anticipated to be very conservative. We have omitted any runoff reduction that will manifest due to infiltration from rain gardens. This is currently unable to be calculated with available soils data. Final Drainage Report 9 I I 11 .1 1 (NORTHERN ENGINEERING References The Overlook 1. Fort Collins Stormwater Criteria Manual, City of Fort Collins, Colorado, as adopted by Ordinance No. 174, 2011, and referenced in Section 26-500 (c) of the City of Fort Collins Municipal Code. 2. Supplemental Drainage Report for Fort Collins National Bank PUD, April 4, 1980, Cornell Consulting Company. 3. Subsurface Exploration Report, JFK Luxury Apartments Fort Collins. Colorado, December 14, 2015, Earth Engineering Consultants, Inc.(EEC Project No. 1152119). 4. Larimer County Urban Area Street Standards, Adopted January 2, 2001, Repealed and Reenacted, Effective October 1, 2002, Repealed and Reenacted, Effective April 1, 2007. 5. Soils Resource Report for Larimer County Area, Colorado, Natural Resources Conservation Service, United States Department of Agriculture. 6. Urban Storm Drainage Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control District, Wright -McLaughlin Engineers, Denver, Colorado, Revised April 2008. Final Drainage Report 10 iJ 11 I 1 1 . � fir.. • — ' NorthernEngineering.com // 970.221.4158 I 1 11 1i y' 2 N y o E E m o m u'e 0 � N c � c A � n U p t A F A O t U y 3 yy z C ti r o Eo U O n U Y j` n C ✓ DJ N N J N E Q U � o 0 V U O0 z W a C 'g A n mwn U A ^ y C H g N M 0 0 l0 0 J � W O m O a z a n c A o y N T z Q V) W z A o o0O ON 0ae0 a m o u 000 y Z u v Om 00Oi N 000 o°a` o o0 d m a 0 o o E a_ O c u c OYO� nmO N N Nm A> 00 0 z' a o 0 6 6 0 666 666 � u 0 L A `o m o m N c q o 0 0 O auV 0 0 0 O 6 _ X W � A L m M U N O N � _ ; € A m Q N C A O U T W L Q _ W ^ u e � E e O jIXa S 9 a W N O n YI N Y A p N m A n U) p N m A V n L v y N U T A t N LL Q IE Q m = U V A K J U D n a d [1 1 I i �I c oo�'E ui `ri p q .ti N C u � a s N � FL- N ~ E z -• I� uu > O � 1O N z G � a gs _ [7 N r. O Q � d iri c v R N E N pro "I^ 2 W u� V 3 Z O LLt y J K TO id pU co I� v p y W ($ li t r• J Uf Z Y x h C O U U C O ? H C N I c m rn m a C p d II II iF y > > E y~ g 3 I o m 0 4 W y m c r y> 3 P 3 0+ V W o u II II W r p' > > 0 9 I I a O 0 N m N cn r r� H Z" ceZ W z = w O= ZW 3 e �00 N h 3 �^ o C! 0) 000 0 o Y 8 N A O O O � o N F � F N � A mo a :o , c u of ui m c 9 u U c to C9 rn m C Ti LO m Y+ c N Z O iQ► 8 O m u" o Z O � N U O O U coo N Q O O Z m T kz oO F- E `n N a 2 o •E `n � F-" N U LL c N 1 E N Q a U 3 E a L N O o m O M in 4 r w CO N C 1 Y N o m H C ° U __ W 2 a 0 N 0 O N 01 N M L 1 11 I T Eg mornmmmmn vrn��'^udi mO�rnm oo m 0 0' U y O .N: � �' 0-�0000 d 0 m000 tpN m mm �n +•+ N o .o ti ti'+00 m ^ � � S o -+O'+�r '+.+0 �-+ O 000 O 00 O 0 (n 0 3 d m N O 8 e s O mm. w W 10nN mm �-+O m�p mNd�+ nm m Vi = '� «�E 01m 0100mmNm 0 m W N10 mmn�O NN n Z = oC§ oo6000GG 000000 6666 00 0 d Pt u' o o c m mmm CWOCWO NCNO mmaD N W m mn b NN n 60000000 000000 0000 00 0 Q NE�g V tt U W o cm'n Nmdmom.+.+NNI�nN oomdmm mmwm woo d i C A S O OOO o, m •-+S OO N V OOO N 00 0 ui a 3« 0 0 0 0 0 0 0 0 606666 0006 66 .+ 0 �9 U � LL O ap de Q N n Q F - Z o Q N Cl V) W m� Z Vi 2O- w ae o .e 0 0 0 N ° °� ^ deo S�n R b u d m S 00000d 0 0 0 0 0 n ono O N O S S n N pop0 0 0 00 09 W N O O O 000 a dO. .A. 00000000 000000 .9 0000 00 O O a E o� nmOno Ono Omn 'Sm V 00000000 000000 0000 00 0 T O� n m d .� N N N m n 0 N 0 0 0 0 0 0 0 0 O O O 0 0 0 0 0 0 0 0 0 O K p O O O O O 0 0 0 O O O Q a 0 0 0 0 0 0 0 0 0 0 06661 O O 00 O O U .616 ti O ti m m pp ff m n m m m n m pO �a u 000000 S N O S 00 O q �+ -! 0000 S S N ao� 00000000 000000 0000 00 G O u O p w-a oodmomoN -.od woo oodd o a Q q A n A 00 m--�O.-� OHO 10 000 N 00.�.� OS O. W d 00000000 000000 0000 00 0 N OHill O a cti m N m� V NO W �O^ MN.+.y NO C? V .0 N = m aq 6 0000000. 00000. O O o O 06 M q O : us c � n � Y LL ¢ S n8n am ` ^Jq LL J B: N p V m 7 a m o dQ Z W i V O N A p 6 � vi V e n fn v@ n L m o0 m m �^- o n co N m `m�¢'N� ¢'N �3 .�, v UU' OC a w U ¢ Nmdr 000p 00 m r a c NmdmtOn ¢ ¢ a ¢ a ¢ O ¢ m Nmd m m m0 m m � > > > > p N S ¢ U I 0 I I I 1 I I I T C 0 lq 0 0 0 an 0 I n 0 0 0-1 Iq cq p 0 OQ 0 0 cc u o f vi m Iri Iri vi mui M 66 Sri uiaa oo o UiLri v , . u S c O'-' an 000'-: ID O 00� O? Lq a LQ 00 M Io c o 'E In 'n Ui m N L6 ui n In 6 In In ui I[i ll 0 np 0 5 00000 ". ID 000� U�'":O 00 IT ^ U "] L ~ � m O C_ QQIna QnQ Qa.--iQQ iDmO QQ ~ E ZZ'+N ZOz Z zOZZ In V N ZZ c a a m¢ Q Q Q Q Q m o m a s U 7 z zti z ZZ ILL z Nz zl,.j zZ NMN U 6 a o 0 0 0 a s a N c > z m M z z z z m z Z Z O N C m 1 + Z 2 J O '� c co 'nMrnr, .�¢ in iovm`n m10m av g E o o.-: -:z Ina mo mni f'Inaa n Q W01.-Opp O nip N N N Z n 0 V Mt 6 IR m N C N'�In O'7n Q CO ON tD nio ~ N E N NN Z 10 V m,'n, IO IO '+ mN Z x.y� N01. d: o o °_.,a iu v allo�arnryz 1� N O m V O Z a OC J m�]O� yyC J 0�01�co N� O O o v o 0 0 o m 0 v M rn O n O o m m m 0 ii .,n — .- 0 0 ..o 000 0o Ly p o TO mO mml0n CO in ON In N 7 In N m �6m W 0000 N Oq Cq con NN W v'Y O O O O O O ac 0 0 0 c oo 0 0 0 0 0 O O a o O Imn �0n mmm mN U 0 0 C C O C C O lr t n uo N 0 0 Z z 0 0 z z 0 0 z z 0 z 0 Z 0 0 Z Z 0 Z 0 Z 0 Z 0 z 0 z 0 0 Z Z A a O N � d N 0 � O n VI Q m V m Z Z Z O u y m Qm C IFO � N J J m J a \( nn0 Nmno mom pm m Ov 0I0n N ` aaaa QW mmmmm- 7OO H OO c N II II 3 c O E �?> a p U\^ y~ (q 30 o E I 0 ~ ` a m O 3' .--r LL w y= Fm z z z 0 y 0 (A m fn w + m J J J J r U N I I w a Q a a O 1 0 0 F O O-� O m m M O N N O .. N M V In tp I- n m F F- 7 7 z c I a m ID 0 N O I ri D00 Om DONS m nOO 0m V O m mm V N V NOl�N miD --+r+tP lO .. mn V OO N'+-+O OON N OO O U M m co � LL N O 000 V O -lOOON 00 O 00 n O s O N O N - A n m�O u 'D V NO wm M�f]Mn m n N M N N m O N O O i0 O O V O~ LL •'+O'+OOOO N 00000 00 0 0 00 V r to O U T r d m � a o _ «._ c m M�mmmmmw c 0 m m m m m m m mmmm mmm t 0 w t 0 �o N nnm n m m n m mm m l0 �o � c u n U � ^ N mm�n n n n m .-+nnn V V nm n n nn V' o_L DO .gym OOmma0 ., NmmeQ -4 in i0 CO N Nm C ma0 m mN m N u m in m V _ 000]W V OD m 000000 O m O cox m c N oo 0-+0000 V O mOOOtO O V O O O O m 0 n 0 0 0 m m V M m n mCL m m c� C o m M CO CO kD n N CO O m i0 if-1 N V .+ m m m m m m m N m N m co m N l D m m n l0 N N n O C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O 0 m N 00 CO mN V N� m U mMmNm almmw mn mN m In mCO m wm coOp N lO mmn w l0 NN n 60060000 O O O O O O 666 O O O O W OCL m a � v T c O F a � f• O � � N � � in � � W ifl tCl lC1 lD l0 N � �P N u� � l0 N LL �0�N0 OD w CD N n-i .-, V V Om m mm m Q o 0000000- O O O O O- O O O O N O V O O O O O N m a U N ¢ m 3 Eo z z z c N N U 0O mm CO m n o J J J D J m V< M < 0 in -. Nm d' �f1 iO nO '+N m V u�O 00000 N 00 O -.-. a¢¢¢¢¢ar- mmm mmf- »>F-> O n q W ^ •• 4 m O 7 o U z Z z L C OD C N C \ C = N 'L Q < Q ~ a m m m m �n ¢ - O c w O o- 0 m m m o N N o r- w ¢ B.1 DETENTION PONDS B.2 WATER QUALITY CALCULATIONS B.3 STORM SEWER B.4 INLET B.5 WEIR CALCULATIONS I 1 I 1 NorthernEngineering.com 11 970.221.4158 I 1 I I I I I I I North ernEngineering.com // 970.221.4158 ■� NORTHERN ENGINEERING SWMM Method The Overlook Project Location: Fort Collins, Colu:auo Calculations By: S. Thomas Date: 10/7/2016 Pond No.: Detention Pond A Input Variables Results Design Point Required Detention Volume Design Storm 100-yr WQCV total 2744 ft° (SEE WQ CALCS) Developed "C" = 1.00 Approx. Rain Garden Vol. 1927 ft3 Area (A)= 1.76 acres WQCV Required 807 ft3 Max Release Rate = 0.55 cfs Quantity Detention 18355 ft3 (per SWMM) Total Volume 19162 ft3 Total Volume 0 ".'ac-ft 10/7/2016 9:14 AM D:IProjectsl1174-001IDrainagelDetention11174-001—Detention Pond A.xIsmlFAA_CoFC idf_Pond 1 I 1 1 1 �I Stage - Storage Calculation Project Number: Project Location: -Font Co,uns, CO Calculations By: S. Thomas Date: 10/7/2016 Pond No.: A Required Volume Water Surface Elevation (WSE) Design Point A% Design Storm 100-yr Require Volume= 0.44 acft Design Storm WQCV Required Volume= 807 ft" ft. �ft. Contour Elevation (Y- values) Contour Area Depth Column Not Used Incremental Volume Total Volume Total Volume ft ft, ft ft ft acre-feet 5,013.20 7.7 0.00 0 0 0 0 5,013.40 244.02 0.20 20 20 0.00 5,013.60 803.75 0.20 99 119 0.00 5,013.80 1,336.01 0.20 212 330 0.01 5,014.00 1,513.83 0.20 285 615 0.01 5,014.20 1,623.22 0.20 313 928 0.02 5,014.40 1,728.93 0.20 335 1263 0.03 5,014.60 1,835.91 0.20 356 1619 0.04 5,014.80 1,945.17 0.20 378 1997 0.05 5,015.00 2,060.80 0.20 400 2397 0,06 5,015.20 2,152.25 0.20 421 2818 0.06 5,015.40 2,240.63 0.20 439 3257 0.07 5,015.60 2,345.811 0.20 458 3715 0.09 5,015.80 2,461.44 0.20 480 4195 0.10 5,016.00 2,582.65 0.20 504 4699 0.11 5,016.20 2,701.38 0.20 528 5227 0.12 5,016.40 2,825.00 0.20 552 5779 0.13 5,016.60 2,955.75 0.20 577 6356 0.15 5,016.80 3,088.04 0.20 604 6960 0.16 5,017.00 3,223.50 0.20 630 7590 0.17 5,017.20 3,343.00 0.20 656 8246 0.19 5,017.40 3,435.81 0.20 677 8924 0.20 5,017.60 3,525.14 0.20 1 695 9619 0,22 5,017.80 3,612.01 0.20 713 10332 0.24 5,018.00 3,696.70 0.20 730 11062 0.25 5,018.20 3,782.44 0.20 747 11809 0.27 5,018.40 3,869.28 0.20 764 12574 0.29 5,018.60 3,968.01 0.20 783 13356 0.31 5,018.80 4,074.34 0.20 803 14160 0.33 5,019.00 4,184.76 0.20 825 14985 0.34 5,019.20 4,297.83 0.20 1 847 15832 0.36 5,019.40 4,414.75 0.20 870 16703 0.38 5,019.60 4,539.08 0.20 894 17597 0.40 5,019.80 4,704.21 0.20 923 18521 0.43 5,020.00 4,897.09 0.20 959 19480 0.45 5,020.20 5,106.76 0.20 999 20479 0.47 5,020.401 5,254.04 0.20 10351 21514 0.49 ' NORTHERN ENGINEERING 1 ' ORIFICE RATING CURVE Pond A Outlet 100-yr Orifice Project: The Overlook Date: 10/7/2016 By: S. Thomas Q=qAo.XH Ao-- Q Cd f2g H 100-yr WSEL= 5019.93 ' Orifice Plate Outflow Q 0.55 cfs Orifice Coefficient Cd 0.65 Gravity Constant g 32.2 ft/s^2 100-year head H 6.78 ft Orifice Area Ao 0.04 ft^2 Orifice Area Ao 5.83 inA2 Radius r 1.4 in Diameter d 2.7 in Orifice Curve Stage (ft) H (ft) Q (cfs) SWMM Stage Note 5013.15 0.00 0.00 0.00 Pond Invert 5013.65 0.50 0.15 0.50 5014.17 1.02 0.21 1.02 WQ WSEL 5014.57 1.42 0.25 1.42 5014.97 1.82 0.28 1.82 5015.37 2.22 0.31 2.22 5015.77 2.62 0.34 2.62 5016.17 3.02 0.37 3.02 5016.57 3.42 0.39 3.42 5016.97 3.82 0.41 3.82 5017.37 4.22 0.43 4.22 5017.77 4.62 0.45 4.62 5018.17 5.02 0.47 5.02 5018.57 5.42 0.49 5.42 5018.97 5.82 0.51 5.82 5019.37 6.22 0.53 6.22 5019.93 6.78 0.55 6.78 100-yr WSEL 5020.50 7.35 0.57 7.35 Overtopping The Overlook 1 10/7/2016 8:46 AM D:IProjeds11174-0010mimgo DefentionV174-001 Orfte A.xlsxlOrifice Sze ■y NORTHERN ENGINEERING The Overlook Project Location: Fort Collins, Colorado Calculations By: S. Thomas Date: 10/7/2016 Pond No.: Detention Pond B Input Variables Results Design Point B Required Detention Volume Design Storm 100-yr WQCV total 915 ft3 Developed "C" = 0.82 Approx. Rain Garden Vol. 457 ft3 Area (A)= 1.05 acres WQCV Required N/A ft3 (POND A) Max Release Rate = 0.19 cfs Quantity Detention 9461 ft3 (per SWMM) Total Volume 9461 ft3 Total Volume; 0.22 ac-ft 10/7/2016 9:15 AM D:IProjectsl1174-001lDrainagelDetentionll174-001 Detention Pond B.XIsmlSWMM CoFC idf Pond 1 I 1 1 t I 1 Stage - Storage Calculation Project Number: Project Location: Fort Co! ina, L�U Calculations By: S. Thomas Date: 10/7/2016 Pond No.: B Required Volume Water Surface Elevation (WSE) Design Point Design Storm 100-yr Require Volume= 0.22 acft Design Storm WQCV Required Volume= N/A ft3 ft. �ft. Contour Elevation (Y- values) Contour Area Depth Column Not Used Incremental Volume Total Volume Total Volume ft. ft ft ft acre-feet 5,016.60 70.7 0.00 0 0 0 0 5,016.80 138.24 0.20 20 20 0.00 5,017.00 263.41 0.20 39 60 0.00 5,017.20 425.28 0.20 68 128 0.00 5,017.40 593.06 0.20 101 229 0.01 5,017.60 766.77 0.20 135 365 0.01 5.017.80 945.97 0.20 171 536 0.01 5,018.00 1,131.00 0.20 207 743 0.02 5,018.20 1,322.21 0.20 245 988 0.02 5,018.40 1,520.35 0.20 284 1271 0.03 5,018.60 1,726.90 0.20 324 1596 0.04 5,018.80 1,935.86 0.20 366 1961 0.05 5,019.00 2,152.26 0.20 1 408 2370 0.05 5,019.20 2,377.59 0.20 452 2822 0.06 5,019.40 2,612.18 0.20 498 3320 0.08 5,019.60 2,857.19 0.20 546 3866 0.09 5,019.80 3,112.57 0.20 596 4463 0.10 5,020.00 3,378.30 0.20 648 5111 0.12 5,020.20 3,664.30 0.20 703 5814 0.13 5,020.40 4,002.98 0.20 766 6580 0.15 5,020.60 4,368.80 0.20 836 7416 0.17 5,020.80 4,743.30 0.20 910 8326 0.19 5,021.00 5,126.16 0.20 986 9312 0.21 5,021.20 5,517.69 0.20 1063 10375 0.24 5,021.40 5,920.44 0.20 1142 11517 0.26 5,021.60 7,322.86 0.20 1321 12838 0.29 5.021.80 7,845.40 0.20 1515 14353 0.33 I NORTHERN ■� ENGINEERING ORIFICE RATING CURVE Q=C29-H ' Pond B Outlet 100-yr Orifice Q Project: The Overlook Ao= Cd 29H ' Date: 10/7/2016 By: S. Thomas 100-yr WSEL= 5021.03 ' Orifice Plate Outflow Q 0.19 cfs Orifice Coefficient Cd 0.65 ' Gravity Constant g 32.2 Ws^2 100-year head H 4.63 ft Orifice Area Ao 0.02 ft^2 Orifice Area Ao 2.44 inA2 ' Radius r 0.9 in Diameter d 1.8 in Orifice Curve Stage (ft) H (ft) Q (cfs) SWMM Stage Note 5016.40 0.00 0.00 0.00 Pond Invert 5016.80 0.40 0.06 0.40 5017.10 0.70 0.07 0.70 5017.40 1.00 0.09 1.00 5017.70 1.30 0.10 1.30 5018.00 1.60 0.11 1.60 5018.30 1.90 0.12 1.90 5018.60 2.20 0.13 2.20 5018.90 2.50 0.14 2.50 5019.20 2.80 0.15 2.80 5019.50 3.10 0.16 3.10 5019.80 3.40 0.16 3.40 5020.10 3.70 0.17 3.70 5020.40 4.00 0.18 4.00 5020.70 4.30 0.18 4.30 5021.00 4.60 0.19 4.60 5021.03 4.63 0.19 4.63 100-yr WSEL The Overlook 1 10/7/2016 9:16 AM D:IPmjects1117"011Dmineg&Detention11174-001 Ofir a B.AsAWke Sd I I 11 1 1 ' NorthernEngineering.com // 970.221.4158 n I i 1 t 1 1 1 t WATER QUALITY CONTROL STRUCTURE PLATE POND A (Water Quality for Basins A and B) Project: The Overlook By: S. Thomas October 4, 2016 REQUIRED STORAGE & OUTLET WORKS: BASIN AREA (acres)= 2.810 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS PERCENT = 68.40 <-- INPUT from impervious calcs BASIN IMPERVIOUSNESS RATIO = 0.6840 <-- CALCULATED Drain Time (hrs) 40 <-- INPUT Drain Time Coefficient 1.0 <-- CALCULATED from Figure Table 3-2 WQCV (watershed inches) = 0.268 <-- CALCULATED from Figure 3-2 WQCV (ac-ft) = 0.063 <-- CALCULATED from UDFCD DCM V.3 Section 6.5 Rain Garden WQCV W) = 1927 <-- CALCULATED Adjusted WQCV (cu-ft) = 807 <-- CALCULATED (minus Rain Garden Treatment Area) WQ Depth (ft) = 0.980 <-- INPUT from stage -storage table AREA REQUIRED PER ROW, a (in2) = 0.080 <-- CALCULATED from Figure EDB-3 CIRCULAR PERFORATION SIZING: dia (in) = 1/3 <-- INPUT from Figure 5 number of rows = 3 t (in) = 0.500 <-- INPUT from Figure 5 number of columns = 1.060 <-- CALCULATED from WQ Depth and row spacing 1 I i 1 I 1 1 J J Design Procedure Form: Rain Garden (RG) 7771 Sheet 1 of 2 Designer: Stephanie Thomas Company: Northern Engineering Date: October 7, 2016 Project: The Overlook Location: Rain Garden L1 1. Basin Storage Volume A) Effective Imperviousness of Tnbutary Area, I, I„ = 85.0 % (100 % if all paved and rooted areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = 1,/100) i= 0,850 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.29 watershed inches (WQCV=0.8-(0,91-i'-119-i'-0.78-i) D) Contributing Watershed Area (including rain garden area) Area = 14,157 sq ft E) Water Quality Capture Volume (WQCV) Design Volume V,,mv = 342 cu ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of do = in Average Runoff Producing Ste" G) For Watersheds Outside of the Denver Region, Vwocv cm,ER = cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER = cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv= 14 in 12-INCH MAXIMUM B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical) Z = 0.00 ft / ft (Use "0" A rain garden has vertical walls) C) Mimtmum Flat Surface Area AM,,, = 241 sq ft D) Actual Flat Surface Area A„,„,v = sq If E) Area at Design Depth (Top Surface Area) Arm = sq ft F) Rain Garden Total Volume Vr= cu ft (Vr ((Arm' Axn,.) / 2) * Depth) 3. Growing Media r Choose One I (* 18" Rein Garden Growing Media Q Other (Explain): 4. Underdrain System Choose One O YES A) Are underdrains provided? O NO B) Underdrain system entice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= 2.0 ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours V0112 = 342 cu ft In) Orfice Diameter. 3/8" Minimum Do = 3a in IUD-BMP_v3.05-Rain Garden L1.xlsm, RG 10/7/2016, 1:30 PM I 1 1 I I 1 1 Design Procedure Form: Rain Garden (RG) Shoot 2 of 2 Designer: Stephanie Thomas Company: Northern Engineering Date: October 7, 2016 Project: The Overlook Location: Rain Garden L1 5. Impermeable Geomembrane Liner and Geotex le Separator Fabric Choose 0" Q YES A) Is an impermeable liner provided due to proximity Q NO of structures or groundwater contamination? 6. Inlet / Outlet Control hoose One 5heet Flow- No Energy Dissipation Required A) Inlet Control Concentrated Flow- Energy Dissipation Provided ro 7. Vegetation Ch One Q = (Plan for frequent weed control) Q Plantings Q Sand Grown or Other High Infiltration Sod S. Irrigation Owomeare (0YES NO SPRINKLER HEADS ON FLAT SURFACE A) Will the rain garden be irrigated? ONO Notes: ' UD-BMP_0.05-Rain Garden L1.x1sm, RG 10f7I2016, 1:30 PM Lli F id r Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 Designer: Stephanie Thomas Company: Northern Engineering Date: October 7, 2016 Project: The Overtook Location: Rain Garden L2 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 90.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio if = I,/100) i = 0.900 C) Water Quality Capture Volume (WQCV) for a 12-tour Drain Time WQCV = 0.32 watershed inches (WQCV=0.8"(0.91" I3- 1.19' I2-0.78' i) D) Contributing Watershed Area (including rain garden area) Area = 23.900 sq If E) Water Quality Capture Volume (WQCV) Design Volume Vwocv = 640 cu it Vol = (WQCV / 12) " Area F) For Watersheds Outside of the Denver Region, Depth of de = in Average Ru off Producing Storm G) For Watersheds Outside of the Denver Region, Vwocv 0TKR = cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume Vwosv UMR = cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwory = 12 in B) Rain Garden Side Slopes (Z = 4 min., from. disl per unit vertical) Z = 0,00 ft / ft (Use "0" if min garden has vertical walls) C) Mimimum Flat Surface Area A,v,,, = 430 sq fl D) Actual Flat Surface Area A.„=I = sq ft E) Area at Design Depth (Top Surface Area) AT, = sq It F) Rain Garden Total Volume Vr= cu ft (Vr ((Arm - Ax.) / 2) " Depth) 3. Growing Media r Choose One I QQ 18" Rain Garden Growing Media Q Odw (Explain): 4. Underdmin System Choose One * YES A) Are underdrains provided? p NO B) Underdmin system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours V0112= N/A cu If iii) Orifice Diameter. 3f8' Minimum Do - N/A in 1 UD-BMP_v3.0SRain Garden L2.xlsm, FIG 1017/2016, 1:30 PM I J I I 1 1 FI l u Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: Stephanie Thomas Company: Northern Engineering Date: October 7, 2016 Project: The Overlook Location: Rain Garden L2 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric Choose One Q YES A) Is an impermeable liner provided due to proximity Q NO of structures or groundwater contamination? 6. Intel / Outlet Control Gaase One Q Sheet Flow- No Energy Dissipation Required A) INeI Control Q Concentrated Flow- Energy Dissipation Provided 7. Vegetation Goose One Q Seed (Plan for frequent weed control) Q Plantings Q Sand Grown or Other High Inflttrabon Sod 8. Irrigation Choose One p YES A) Will the rain garden be irrigated? Q NO Notes: ' UD-BMPy3.05-Rain Garden L2.xlsm, RG 10/712016. 1:30 PM Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 Designer: Stephanie Thomas Company: Northern Engineering Date: October 7, 2016 Project: The Overlook Location: Rain Garden L3 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, J. = 78.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio if = IJ100) 1= 0.780 C) Water Quality Capture Volume (WQCV) for a 12-hour Dram Time WQCV = 0.25 watershed inches (WQCV= 0.8' (0.91' 0- 1.19' 1'+ 0.78' i) D) Contributing Watershed Area (including rain garden area) Area = 23,832 sq If E) Water Quality Capture Volume (WQCV) Design Volume Vwa,,- 502 cu it Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region. Depth of da = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, VWQCV mHER = cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume Vway USER= cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwx,= 12 in B) Rain Garden Side Slopes (Z = 4 min., hors. disc per unit vertical) Z = 0.00 ft / ft (Use "0" if rain garden has vertical walls) C) M mimum Flat Surface Area A. = 372 sq h D) Actual Flat Surface Area Ax = sq h E) Area at Design Depth (Top Surface Area) ATw = sq it F) Rain Garden Total Volume VT= cu It (VT= ((AT. + Ax") / 2) * Depth) 3. Growing Media r Choose one OQ 18" Rain Garden Growing Media O Other (Explain): 4. Underdrain System A) Are underdrains provided? Choose One * YES ONO B) Underdram system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage Y.-ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol,,= NIA cu It iii) Orifice Diameter. 3/8" Minimum Do = WA In UD-BMP_v3.05-Rain Garden L3.xlsm, RG 1017/2016, 1:31 PM I 1 �I J J — Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: Stephanie Thomas Company: Northern Engineering Date: October 7, 2016 Project. The Overlook Location: Rain Garden L3 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric Goose One 0 YFS A) Is an impermeable liner provided due to proximity O NO of structures or groundwater contamination? 6 Intel / Outlel Control Choose One Q Sheet Flow No Energy Dissipation Required A) Inlet Control O Concentrated Flow- Energy Dissipation Provided 7. Vegetation r Choose One I Q Seed (Plan for frequent weed control)) Q Plantings Q Sand Grown or Other High Infiltration Sod 8. Imgalion h0o5e One r0 I A) Will the tin garden be imgated? 0 NO I NO Notes' UD-BMP_v3.05-Rain Garden L3.xism, RG 10/712016, 1:31 PM I 1 1 I 1 1 Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 Designer: Stephanie Thomas Company: Northern Engineering Date: October 7, 2016 Project: The Overlook Location: Rain Garden L4 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, 1„ I„ = 56.0 % (100% H all paved and rooted areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = 1./100) 1 = 0.660 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.21 watershed inches (WQCV= 0.8 - (0.91- 1'- 1.19' 1" 0 78 " i) D) Contributing Watershed Area (including rain garden area) Area = 25,730 sq If E) Water Quality Capture Volume (WQCV) Design Volume Vwacv = 443 cu ft Vol = (WQCV / 12) - Area F) For Watersheds Outside of the Denver Region, Depth of di = in Average Runoff Producing Slomi G) For Watersheds Outside of the Denver Region, VWQCV mHSR = cu It Water Quietly Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWUCv USER = cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwoo, = 13 in 124NCH MAXIMUM B) Ram Garden Side Slopes (Z = 4 min., liar¢. disc per unit vertkap Z = 4.00 ft / N (Use "0" if rain garden has vertical walls) C) Minimum Flat Surface Area AM,,, = 340 sq ft D) Actual Flat Surface Area Ar,,.,,,, = sq ft E) Area at Design Depth (Top Surface Area) AT,,, = sq it F) Rain Garden Total Volume Vr= cu 8 (VT= ((AT. ` A&,.) / 2) - Depth) 3. Growing Media Choose One * 18" Rain Garden Growing Media O Other (Explain): 4 Underdrain System Choose One. Q YES A) Are underdrains provided? O NO B) Underdrain system orifice diameter for 12 four drain time i) Distance From Lowest Elevation of the Storage y= f1 Volume to the Center of the Orifice if Volume to Drain in 12 Hours Vol,; = NIA CU ft ,if) Orifice Diameter. 3/8" Minimum Do = NIA in UD-BMP_v3.05-Rain Garden L4.xlsm, RG 10/7/2016, 1:31 PM Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: Stephanie Thomas Company: Northern Engineering Date: October 7, 2016 Project: The Overtook Location: Rain Garden L4 5. Impermeable Geomembrane Liner and Geotexlile Separator Fabric choose one Oyes A) Is an impermeable liner provided due to proximity O I70 of structures or groundwater contamination? 6. INet / Outlet Control r Choose One I Q Sheet Flow- No Energy Dissipation Required A) in et Control I 0 Concentrated Flow- brergy, Dissipation Provided 7. Vegetation Choose One Q Seed (Plan for frequent weed mrmc1) p Plantings Sand Grown or Other Hlgh InRRrotlon Sod'. 8. Irrigation Choose One OYES A) Will the rain garden be imgated? O NO Notes I tUD-BMP_v3.05-Rain Garden L4.xlsm, RG 10M2016, 1:31 PM I I 1 I I I 1 I I V2/20 - wl"ity 11tw I NorthernEngineering.com !! 970.221.4158 r r I S 1 I I I I 1 I I 1 I I 1 I I I I .1 I I ,11 0 yyyQ C O m 'CC ' CC' CC C m a) a) a) r a) a) N 4) a) a) N N a) m a) H C C C c C C C C C C C C QQa1 G C C m Z Z Z V' 2 C7 C7 C7 U' 0 U' U' C7 Z 2 2 O. N 0 0 m d c w OJ2 N en a m m n m m m n r° ai O LO m N m n n a0 ao N r- a m 0) M 00 ao a0 m _ f0 m m 0) 0) C) O) n aM m R m O D) W K J C O N O N O N O N O N O N O N N (♦) V Y Y O O O N N N N N N N N N N N N S uoi 0 to uoi LO uoi uoi uoi uoi voi LO uoi uoi LO Ln 0NN toO O N S Lc)O LO O O N O O S S Z' C 0 O 0 C G 0 O O G C 0 C O C C O O N • S • S ♦ • • • • • • �•p ♦ �•p prp • r m n a)O0) fNO O r S n S S OOi S J O O O O O O O N N N a p a p O O O O.� N N N N N N NO NO N N N NO N N NO NO NO N di 4)O S=� m O N O u) O m O N O LO o O O O O O O O C O u) O m m u) N N N ♦ c0 m • N • t0 to • N m r f0 • n rn • n • m r a0 • ♦ n • V r �i r O • a� r a0 r c0 • aD 0 d c Oi 0 0 0 (O 0 0 m 0 m 0 rn �i m o_ n Cl) v m v m v' m 0 m 0 rn 0 m J 3 O u) N O N N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O E SO N u1 O O m LO m n of N N O m O O Z n N a0 O 07 O) N T -t a0 O O O O u) M N o G Q O N 0) IT O m O) C CD R .O c0 u) n < I U) n O N u) m le N to m IT O LO O m t- m c 0 J. ci C C O G o N c;ci fV G C G G O O C co N M V m N V i0 n m O N W n 0 m O L+ = V Y u) N N N ui 0) G/ 0/ 0) Oi D7 Oi W m {G 1G a) 0 0 0 0 0 O 0 0 0 0 0 0 0 O 0 0 0 0 c W 0 N N N m LO m m O of O LO N O m m O OD 0 N O aa n {�pp N co m N m O V f0 V M R 1LQ O N Y cc ai v o vi ui ui vi n of of r 0) Oi Oi of co (o ui m o 0 0 0 0 Co 0 0 0 0. 0 0 0 00 0 0 0 C W in m m N N m in in In m m m N L m N in n O O N O O O) m O) O f0 O) 0 O O ui O O o Cl) 4 m m N m 0) m m a0 0) O O O LO CD v CO g o W n a an n o 0 0 m c u) N O N N N N co co N N N V n M J O Cl) C U U U U U U U U U U U U U U U U U U — L J of C D U N N N N N N N O O O O O O O O aD aD N r j c $ a J O O O O O = Y < R Q V N IN ((0 4 n f00 m n Ol 01 O V C O O 0 O 0�0 `' N CCC U.ai N N N O C7 N N O O O O E) U fa } � O Q O ~ dt N I I C N c7 N M C N 0 J t� a0 v n LO< O m cc so ui ui N vi m .¢ n a < < < < < < < a < < a a g n c m m o m m m m m d m d a) ,m d m m d d a a n 'a a 'a n 'a n •a n 'a n a a •a n 'a n •aaa n n n 'a a 'a n 'a n 'a n 'a n •a _m LL N m w a z c d J2 r N ao a m to n m m m a I I I (r L_ I 11 I N M N M m p co ro v r- In (ri (o co N Iri N N vi m r m a a¢ a a a a a a n i i W NO ON 0N 0N N N ON NO NO NO NO NO ? nw m ON ON m ON ON oN 0 oN v I) N 0 E 10 Q� N 'm M N N O) O N O N o In rl rn m rn (D rn rn m m a v a •p (D N (V 0 1 O V O V v g fV C NLn NN NLO NLn N N NO NO N 0 IIn In U) b O � n O Cl) V Iq co co CO � (MD n W M. (ND O n 4m7 n ccq ('1 (n. N O o O C 0 o C N N N V V V 0 0 0 . _ N N N NN NN N N N NNLOInW) N N N N N N N N N LOL N N N m m in It W (mn (ND (� m m rn m rn chi (D'D aMo m rn rn J NNNNNNN N NN N N N NNN1 N S 0 NNNNq w O 0 LnoObInoo to In Ln In In In OD co 0 0 y (D N aa N h (D O N In t` 0) m o < m V o 0 (O N n N m u'i V m h Di m Di - Di M m V rn O m m m N m M m Itvi m m C a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = `o > > In In In In N In In In an 0 0 In In m In InLOo m W m m m N o rn ro r In In m 0 N In In m m a m a OR v 't Io v Io 0 Iri rr rn m 7 I' 7 Di M Di a DS In m o 0 N 0 M w E c C o- o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o Z c p In m N In m m m m m In In In m In In In In In to O O O O O W O r- N m N m N m O O t- o M n n O In In v m It In m In v m v m m m O O O O o 0 N 0 o N o 0 0 O o O 0 ym 0a _a NN N It NN-NO - O O O O O - O - O - aD - m - N -H - M M r r N aC, q N N p N M M M f0 (q r0 cl m M M M M M O O (1) N (D IA r7 N 0 0 o xD a M V m M O M M M m m• N N N M D �{ n a CO I- N II G m. CD I� r (D (D O 0 o a _ m N - - th r• lh m m N t _ N a g g a Im (q E tn M M ° rN. m � m n Dr m b o 0 0 0 0 � �U 11 c � L O O O O O O O O O O O O o O O O O O t) O • O C M O V C N n It O O C M O N m In M 0 0 N 0 Ln y E o 0 o 0 0 0 0 o vi o o 0 n 0 0 0 0 0 0 0 0 O o 0 0 0 0 c c E o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $. E 0 U 0 0 0 0 o 0 0 o 0 0 0 o o 0 0 0 0 0 x m o O 0 0 o O o 0 0 0 0 0 Cl 0 0. 0 0 0 0 `o 0 0 0 0 0 O o 0 0 0 O o 0 0 0 0 0 0 Q c _ o 0 0 0 o 0 0 0 0 0 0 0 o 0 o o 0 0 eq o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 O 0 0 0 0 0 0 O o 0 c U o o 0 o o 0 0 0 0 0 0 o 0 0 0 0 0 0 + E E g o o O O o 0 o O O o o O o 0 0 0 0 0 " b is o 0 0 0 o o O o 0 0 0 0 0 0 0 0 0 o Q m H $ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 m E u u o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p c m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 N o m m m 0) m m m M 0 0 m O O4 O o M a v o Min �i In I. a m O/ W r m M . rm M o O 0 O o W m m m 0 'IF II c _ m 0 � 2: m N IO N m 0 m N 0 m m (0 0 N 0 0 N 1` J N O M N n N N r N N N N O C N t w t- LL C ~ J n W C N c d Z J I N M a In to r` m O � 1n00179LOS 13'nul 91 :ul - Z99 69+£ eiS 0 r � o u18£'9105'13'Aul o 0 ln0 9£'9log '13 '^ul d() o 99 LZOS 13 .PuJ0 o 0 C l :ul - Z90 99+£ e1S o 8 o m o N N O J � ul 6Z'Mg 13 'nul 0 lnp _ 9S 9L ul ul 09LOS 13 Aul0 lnp C :ul ul ln0 01 IZOS 13 TWO5� 9 'ul .�i U1 lnp n N S :ul ul �i lnp j17 9 LOS 13 AUI N Z9 4 :ul N N ul ln0 Z6 r E ul 0 N r U fO O n Iq N UI ln0 CL ZZOG 13 WIHc Z :u u1 ln0 8S 1 :u 0 � J x N u1 90 uepn mollo o 0 0 0 0 0 �- I 7 r N Cl) of � N > O O O O O O W 65 If U) I I I 11 11 I $ 0 0 0 t+pf a$ tp9 pop N pN � p� 0 N o lnO L9'61.O9 '13 'Aul L4'4ZOS'13 uqa SL ul - 17LZ'9L+L IRIS ul SS 61,0913 'Aul In0 99 6 LOG '13 'Aul LWJrZO9'13 Wla OL :ul - bLZ'fiS+L e1S ul ZV61,09'13'Aul 1n0 ZY'61.09 '13 'hut Lh'bZO9'13 W!a £ L: u-1 - 4 L Z'9Z+ L IRIS O N ul 0£'61.09 '13 '^ul 3n0 0£'6 L09 13 'Aul L6"4ZOS'13 Wla ZL :ul - bLL'£O+L eIS c 01 d' ul 9l'61,09'13 'Aul 1nO9L6LOS"13 nul 1,4'4ZOS'13 W!a lL :u-1- 99£'9L+0 IRIS - Ln tI 1 W N — J x ul 61 LLOS l3 .^ul 1n0 49'S LOS '13 '^u1 66.OZOG '13 W!a OO o0+0 els 0 x 0 $ 0 0 v8 P'f N N m L N NoN N ID a0 Y W 1 S o o S o po O N LO O O b O b O � O N O inO N W :ulJOER001011111 N 0 ul 7n0 P,VZO913 WINg 6 :ul 0 rn u1 o 1n0 m li 8 :ul o � r U N O m Y J W W N J = O ul 1n0 ZWJU 0 o o 0 0 0 > o o � N ao o uo N � � W w O O N N O W N N m r C O d d E Z N E N of O 0 0 v ti LL m 2 s JF r n C O 7 F C @C @ CD U U 0 O N m m C O C 3 O CI J 2 W ai ip O c N r*,: V ^ N N x � U) L V f 2 *! G p �♦�pp •pp 01 tD N (7 a o o c 2 uN of - o N C N N N E LO z 20� m CD V) cl m m. rn O C O J N O O m t+ G co O > J cW uI N I O O co m > J ^ cW O O w 1OS.+ O O m a C C J m O m M Ln U V C Co _ .0 J m C co Go C N C W J 4J� Jp N O N m fA m Qi � r Of O O C J N � m km n r E a aLL m 64) m W � o p m a z C O N JZ J 1 ° LO 2; x C C o 0 �n o _ u Y C m to co n N W O k C C O Y m L m n N O m N G C N O m n d dl e N O m O m n J > N fV N N 0 W m N •O W N � m N m W cl m CD fh C �+ O jc ci M m R m o o E L. 2 n � � �i > _ U S a O L DD C C m O O O O C O Cal• J 0 N N O m n C N fV N Cl) cc a fV to N Lf) m i L C C ^W M m m C.) q� C W S Ci � C L O. <n0 (C! O N J C7 m .•. N m m u) 0 0 m � Y h aD d' O c m r uoi voi N o a - N O Y u a Q N n 4 m II m m N C m m LL • •tZ fQ s II � U C N [L J J m 10 f— Cn 11 1 a ' L. 3 E IR a o S o S S O CD N C6 Q (py O O O O O O O O rn 1n0 £L'OZOS l3 'AUI 96'17ZOS'13 Wlb Z lul - 96'48+0 e1S 0 0 0 m o t � U (0 N O Q uI 90'9LO9 '13 'AUI 1n0 SO'BIOS '13 'AUI 4lL£ZO9 13 WR! L ul - 00 ££+0 e1S M 0 O J N � W O J uI 201 WS '13 *AUI L£'9L05'13 PWJ IIeAnO - 00 00+0 e1S 0 v g o 0 0 0 ♦o Pf m co Nco Q n h voi n N uo] W L 1 F F I 1 1 O c 0 G H C O C O C O C O C O C O c O C O C O C O C O tD Z 2 Z Z 2 Z Z Z Z Z Z O N O W m C O C O O CJZ W N l+l v to CD n a0 O ui W O N N O C tm N N CO lY rO x O O O O O O O O O O + 7 S � � O C14 0 O O O O O fD .�- CND O V N It R J O O . O 0 N M O 9 < x 1_ O O O O O CD O O O f+l O 4) C i .... LO IA 1A lA In W) N U) In LO IA ONi O N N GOD a Ci N Cl)aa Ci V Ln N w O c Ir 0 0 0 GJ Cl) m a a O V ^ La � N N N to IOO L Z xo_ O N O n n O O GOD O N O C O 0 10 O O O Ih O O Q J W N O O V G C C] O C O N M C 7 ()i M n O Y a GO : OD 0 N M (t�0 lh N (UM th m O O O O N O O O O O C O 0 c J _ W UO CO LO LO i0 O N co a -7 m rn cl cl c`C�v� n E t+ C I N Cl) � m o I o I 0 I 0 0 m 0 Cl) 0 Cl) 0 CNl) 0 0 0 0 C J �'r _ W.� O CO t0 InLO LO t v co Or :s , � N W O .�. C C 0 cn r- N 0 0 CD m r- N 0 O c J m N O CDGD N n m C J C U U U U U U m U m U m J 0 C Cp C�pp Ip GD m OD m m 0 N 0 NOD N > C� O co o 0 0 o 0 0� R A. A m gay M L O C C 0 L) m ,n E N U � � o � o G Cl) N h II m c o c v C J E T R O U U U U m a m a m a m a m aLD $ m g 4) E a a a a. m a a IL ii W m Q O m c a z C N O) V U) CD N GO CD J Z 'D CD a 1 i I u n 1 u C7 N C C C U N U U p p p J n •a a a a 'a 'a on n 0 > cml m Oo n v 1"o nn C m N N N N an an O n n n n n n n n E � n r N m apop nn mma p a aca ana O to In n n n n n n n n n O L m M N m m n O O M m O 'ItN < W1p �f Ifpp1 C>OOON N yy a N o N 0 N 0 N 0 0 0 0 0 7 O O O O O O O O O O O m W N O Ni0a0NaaMaato i 00 00 OOa J 0)0 o O O "co coo aVa _ s s s so 0 lh 0 0 fh 0 l�l 0 S p C O O O O O O O O O O O _ a �i, •- c��l cl rn c� (ii CQ n s Go m coO N 6 _ O O O O N O O 0 0 O 0 O 0•) O 0 O 0 O C w > O � O O O O O O O O O O O a W a LO O b n OD n N 00 V0 co m CC W (IM f00 0 m E N N fN0 M M > C O O O O O O O O O O O Z C p O O O O O O O O O O O O O O N O O O v N V a n a a N m m m CO m m Nmm mm Nm R x x x N NW O W (7N) M N N Cl)O N f) W 0 m a N N N c`7 Ih O N � � O � x v a m m Cl) V m O Of N m O m I a_ m m m m o o OR m 0 N o 0 0 c s o s o 0 o s OD m u 'V 11 C � L O O O O O O O O O O O V 2_ O O O O O G O C C C G - V O C Ol m r O 01 CO O N n O N E < Y Y V of ro m N N O } II C O O O O O O O O O O O _ _ E 0 0 0 0 0 0 0 0 0 0 0 x OR 0 0 0 o O" 0 0 0 0 0 0 0 ¢ c _ o 0 0 0 0 0 0 0 0 0 0 cqik o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 C �� ci 0 0 0 0 0 0 0 0 0 0 0 + E E u o 0 0 0 0 0 0 0 0 0 o O1• U o 0 0 0 0 0 0 0 0 0 o W F g 0 0 0 0 0 0 0 d 0 d 0 K of 0 0 0 0 0 0 0" 0 0 0 0 m E n o 0 0 0 0 0 0 0 o 0 0 o rn p C v O O O G O O C O C 0 C O N aO O n 0 m O m o pN m O 1 II C /h 10 co W N C/ O m C /n � N m O 0� N N 0 O J N V m m N n C N B H J W N lh a O m n m O CO C rj W N a z M J V/ 0 0 0 0 o g o �o p o M N 1nOZ0'4£OS'13'nul _ LL __ o 0 11 :u o u, 1�0 9C 0l .0 �i a u, Inc, £9 6 .ul u, 1n0 L4 8 ul 19 M u, 1n0 LL L ul QQ u, e� 1n0 BL 9 :ul L U u,13) 1n0 N LB S :u-I u, Inc, £9 17 u u, inn c� SZ' £ ul u, 1�0 SL g p Z ul w u, 1n0 OL' l u Tie IIeprl CD o g o pgp� cop 0 0 U) fp9 lo9 N pNp W i i i 3 N E i i i 3 N E 3 N E i 1 9 1 c 0 u G O � H C O m m c � O C W O m GJ2 � 0 c m C m OD O �3� o o J O ^ C O m x o a c N E N Y a 'o m7 C J _ W N Y c m > J cW� a to OD m W N J m m C� U - L J m � m > m m ^ C N c O to fq J 2 O LL P m 2 "n E a 0 � � o 0 � N n C J � O • O � a r c m a m ILL f/) W 41 o F p m a Z c C J2 8 d m N 1] C O f2 2 0 0 .j u Y m n O o N W O C C Y u m L U ae � Q N w N O LO J � N W m '0 eo i L O N id O v � m a m o E L o Z r 0 N m 2 m t m c m � voi co m C N J co N o N C O J � N (7 m ^ O m r Wto O M Go 0 c jm fA N E fV L r-: O G L_ w a � o � O O J > � m N p G C of C m x N N a OD o 0 II a 4 a C1 m u N m Ul J I I 1 I L N 0 0 0 0 0 0 0 0 0 0 0 0 �6 N o n v h N N h k N O O O Q O L ca Q7 0 7 1n0Et, 9L05'13 Aul ZE OZO9 19 W121 L :ul 9EZ' LE+O e3S 0 N J L7 W J O o � ul 99'£LO9 '13 'Aul 019L0913 PW!J IIeAnO - 00 00+0 elS 0 �c N ri N o N r v a) N Ol9 t0f10f1 1� W I I Y.i 7 0 N � 0 m 0 N N d 0 a s Z N ui 2 cr O U) 0 0 m LL U d I 1 m Im a H n I� c o - c c 7 HT C C ID O t0 (7 z c h Ip 0 U O c�O O c u 0 o K N N x uoi voi O C O G R O N J -a o. N CD o o c R O O m N E JU' voi voi 2 S7� rn o C : N N J fA p ti CL m 7 O O N 00 O O > J C W O v1 r o 0 0 .t. C c J m m N C U U _tm J ao _ co m 0 C N C W S m O 10 E' L l) W L } � O O J N Q7 0. W W E a n a FL 'a mCD C0 W o m c O a z Jz r N I I I L I 0 LO EIn 20 o a 1-1 CR o a0 O J yyyy o a N W O C c co Y u m t CD o m m Q tA� o a p � C � O J > (9.2 N N W m uoi voi 9 (o ) m (o m G 7 ci N q (f NO 00 m C co Ih a+ O a C n a o o E 3 t 2 n Z n rn CD o o� J 7 (V CO N N r ro � Y � c m S w voi 0 0 c 0 °iui CO N I J r o (00 N o O o v h o ao 0 W m N N m CO m o 0 jib m r m e @ U� Ci o < m o 0 G a a m (ro G a m c a _ t7 o o m It m 2 m W N O 1� L W 2 V I� o � R C m u0i N - N _ o m o 4 a v 0 U) nl v r U ro m IL 2 N C N - m m C N IL z J O O O O O O � of m vi r� O O O O O O 1n0 44 Z ul 0 N O O L U O N n J Ul13'AUI w 1n0 4 L ul w u 98' IIeAn o o 0 0 0 0 0 m nS ff of N vi N N n > O O O O O O LU s N m A O m (D m c_ w 0 E m z N 7 0 a LO E z 0 co 0 O v n ui ll N 0 a` I I I / I I I I I I I / [.] I I I / CL it 0 CL @ � � @ � % cn LM t ca E � ca k§ k k k k k) !§■ • _ • k q # § . J ( k Cl) Cl) Cl) k Win£ . . !0cc e § § § § § § 3 � N. 0 m£ k k k k k § . k CIA § § - 0 \m �k£ _ . . ) .! §;/ ; ; ; ; Q 2 . R:# r �& !�£ S S S G S S . . > k_£ S S R S S S . A R @ Ci cc OD Go [ § k . . \f a a G § § § § §'§ LL / / / / / / @ . . ( ) 9 9 o \ \ \ / / / { k a. IL a. a. m . m - 2 § § 2 2 f) , coL \ | | a g g g 3 g n n n n n n v N m Q N CD LL LL LL LL LL LL c J (D mm O. O. 0 O m D) CO M > u) 7 9 n m v m n OD m N a coo Ln 0 0 0 o c v m v w n co Di c E o oi Ln LO u Ln LO La CD m Q o ID Q n _O N Q Lq N N (7 CO 07 m . m p W M N 00 N M C J N N N CO m (1) S p C voi voi voi voi voi N_ CO 0 0 n O Q n Dl O y N fV fV fV Nl l"> C > C N N N N vo1 C _m W o � o n m a N N N N N V) ` E C C O tom LO L N to N z 2 O/ c w co b N Q O m N N N N N •- x a v 1 4 m n a a N N. N N N D• m G3m _ .L ui Ln uuj 0 uuj Ln '4 Ln Lq 0 '4 II m n C L O O O O O O m O _O C CD u) O M O O E co v Ci o o > u � m � o 0 0 0 0 0 •c o o d c o o E x 0 0 0 0 0 0 c Q c o 0 0 0 0 0 o 0 0 0 0 0 0 �C0 � m E o u o 0 0 0 0 o y W Q E o 0 0 0 0 0 C W v O O O O O O N aN rl w Ln co LL N s II co com lco V) a J co COO n N M 0 m m v N � F W N ro Q 0 c w ap m g o y J N co Q ID w Z 0 O 0 N 0 0 n 0 M N 0 N N O 0 OI tLO O N M 1n0 £ 9'U1 �i ScourStopF" DESIGN GUIDE Circular Culvert Outlet Protection III1:&.'irl PERFORMANCE o AESTHETICS NPDES-COMPLIANT o COST-EFFECTIVE .• •. : •. . ................... ................... ... .... .. . ............... .................... .... •..................• •... .. .........:........ .... . ............... .. .... u. ...... .•.:.... . .... .. ...: .... ................... .................... the green edutim to riprap scours op scourstop.com 1. ScourStop mats must be installed over a soil cover: sod, seeded turf reinforcement mat (TRM), geotextile, or a combination thereof. ' 2. For steep slopes (>10%) or higher velocities (>10 ft/sec), sod is the recommended soil cover. 3. Follow manufacturer's ScourStop Installation Guidelines to ensure proper installation. 4. Install ScourStop mats at maximum I-2" below flowline of culvert or culvert apron. (No waterfall impacts onto ScourStop mats.) ' 5. Performance of protected area assumes stable downstream conditions. LENGTH OF PROTECTION LI ' D = CULVERT DIAMETER TRANSITION MAT APRON LENGTH WIDTH OF PROTECTION- rA e1e������.e�e������ree .... .... .......... E••••.•.�A . ' .•.•.. eeB1e1eeeeee� �� .•.,,,,,.•..•.•.,. eeeeeeee eeee ��.eS�ee�e���.ei ►!�&MF#Lk_e.•.i&� L-A Transition mat apron protects culvert outlet. *Width of protection: Bottom width of channel and up both side slopes to a depth at least half the culvert diameter. Protect bare/disturbed downstream soils from erosion with appropriate soil cover. Use normal -depth calculator to compute for downstream protection. ' CULVERT OUTLET PROTECTION — PLAN VIEW MAX. 1 "-2" DROP OUTLET AND CHANNEL SCOUR PROTECTION FROM CULVERT FLOWLINE (TRANSITION MATS) CULVERT FLOWLINE � ONTO SCOURSTOP MATS - ' PROFILE SECTION VIEW AA SOIL COVER VIEW I 1 RECESSED • • • • LWASHOCH v�ER DIRECTIONi • • • TRANSmON MAT OF FLOW • • 38' ANCHOR STRAP BULLET ANCHOR ANCHOR PATTERN ANCHOR ILLUSTRATION Abut transition mats to end of culvert or culvert apron. Adjacent mats abut together laterally and longitudinally. Install anchors per ScourStop Installation Guidelines. Minimum 8 anchors per mat. Minimum depth 24" in compacted, cohesive soil. Extra anchors as needed for loose or wet soils. Minimum depth 30" in loose, sandy, or wet soil. Extra anchors as needed for uneven soil surface. Extra anchors as needed to secure mat tightly over soil cover. �� hL the green solution to riprap HANE�GEO COMP:)f GIJT: A LEADER in the GEOSYNTHETIC and EROSION CONTROL industries seourstop` A eGLOOMl Learn more about our products at: HanesGeo.com 1888.239.4539Ism 1 ©2014 Leggett & Platt, Incorporated 116959_1114 I 11 .1 1 I t I 1 CALCULATIONS FOR SCOURSTOP PROTECTION AT PIPE OUTLETS Date: October 7, 2016 I Calculation by: SJT Scourstop Schedule Pipe Storm Velocity Transition Diameter Line (cfs) Mat W x L in A 24 3.31 8' x 8' B 8 6.30 4' x 4' C 8 2.92 4' x 4' D 12 2.26 4' x 4' E 12 6.37 4' x 4' F 12 0.70 4'x4' I I I 1 1 I NorthernEngineering.com 11 970.221.4158 Area Inlet Performance Curve: Design Point 1 - Inlets A6.1-A6.5 and Inlets A8.1-A8.3 Governing Equations: At low flow depths, the inlet will act like a weir governed by the following equation: • where P= 2(L + W) Q = 3 .0 P H 1 • where H corresponds to the depth of water above the flowfine At higher flow depths, the inlet will act like an orifice governed by the following equation: where A equals the open area of the inlet grate Q = 0.67 A (2 gH ) 0.5 where H corresponds to the depth of water above the centroid of the cross -sectional area (A) The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown. However, what is known, is that the stage -discharge curves of the weir equation and the orifice equation will cross at a certain flow depth. The two curves can be found below. Stage - Discharge Curves 2.00 1.80 Weir Fb 1.60 y,_ Orifice Fbw 'm 1,40 1.20 m CID 1.00 m 0.80 � c 0.60 - - 0.40 0.20 0.00 - 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Stage (ft) If H > 1.792 (A/P), then the grate operates like an orifice; otherwise it operates like a weir. Input Parameters: Type of Grate: 15" ADS Drop In Grate 1501 DI Shape Circular Length of Grate (ft): 1.25 Width of Grate (ft): 1.25 Open Area of Grate (ft): 0.43 Flowline Elevation (ft): 5024.910 Allowable Capacity: 50% vs. Flow: Shallow Orifice Actual Elevation Weir Flow Flow Flow Depth Above Inlet (ft) (ft) (cfs) (cfs) (cfs) 0.00 5024.91 0.00 0.00 0.00 0.05 5024.96 0.07 0.26 0.07 0.10 5025.01 0.19 0.37 0.19 0.15 5025.06 0.34 0.45 0.34 0.20 5025.11 0.53 0.52 0.52 0.25 5025.160 0.74 0.58 0.58 0.30 5025.21 0.97 0.63 0.63 0.35 5025.26 1.22 0.68 0.68 Q100 0.40 5025.31 1.49 0.73 0.73 0.45 5025.36 1.78 0.78 0.78 0.50 5025.410 2.08 0.82 0.82 Inlet at Design Point 1 is designed to intercept the full 100-yr flow of 0.68 cfs (per inlet) at the elevation 5025.31 I I 1 Area Inlet Performance Curve: The Overtook - Design Point 211nlet A6 Governing Equations: At low flow depths, the inlet will act like a weir governed by the following equation: • where P= 2(L + W) 0 = 3. 0 P H • where H corresponds to the depth of water above the llowline ` At higher flow depths, the inlet will act like an orifice governed by the following equation: 0.5 • where A equals the open area of the inlet grate Q = 0.67 A (2 glL7 L \ ' where H corresponds to the depth of water above the centroid of the cross -sectional area (A) 1 The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown. However, what is known, is that the stage -discharge curves of the weir equation and the orifice equation will cross at a certain flow depth. The two curves can be found below: Stage - Discharge Curves 10.00 9.00 -� Weir Flow 8.00 Or�ce Flow 7.00 6.00 a 5.00 t 4.00 � u 3.00 c 2.00 1.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 Stage (ft) If H > 1.792 (A!P), then the grate operates like an orifice; otherwise it operates like a weir. Input Parameters: Type of Grate: Neenah R-4370-27A Shape Rectangular Length of Grate (ft): 3.16 Width of Grate (ft): 3.16 Open Area of Grate (ft2): 2A0 Flowline Elevation (ft): 5021.000 Allowable Capacity: 50% vs. Flow: Shallow Orifice Actual Elevation Weir Flow Flow Flow Depth Above Inlet (ft) (ft) (cfs) (cfs) (cfs) 0.00 5021.00 0.00 0.00 0.00 0.07 5021.07 0.35 1.71 0.35 0.14 5021.14 0.99 2.41 0.99 0.21 5021.21 1.82 2.96 1.82 0.28 5021.28 2.81 3.41 2.81 0.35 5021.350 3.93 3.82 3.82 0.42 5021.42 5.16 4.18 4.18 0.49 5021.49 6.50 4.51 4.51 0.56 5021.56 7.95 4.83 4.83 E Q100 0.63 5021.63 9.48 5.12 5.12 0.70 5021.700 11.10 5.40 5.40 Inlet at Design Point 2 is designed to intercept the full 100-yr flow of 4.73 cfs at the elevation 5021.53. INLET IN A SUMP OR SAG LOCATION Project = Tiis Overlook Inlet ID = Deal,. Pt 5, Inlet B2 /—Lo (C)K H-Cure H-Van we W Lo(G) in Informaten flnoutl of Inlet IMa Type Depression(addMorel to wntlnma gutter depressions 'tmm&AIbW) ter' air of UM Inets (Grab or Curb Opermg) No r Depte at FbWre (outside of local dapreesbn) Pori Oapm r Momelbn h of a Unt Grate L. (G) iof a Unt Grate We' Operi Rate for a Grate (typical value 0. 1S0.W) Ar.' prig Factor for a Sbgb Gate (typ�e t value 0.50 - 0 70) CI (G)' r Weir COeKaent(typ®I value 2.15-3W) C. (G)• Orifice Coefficient (typical value 0 60 - 0.60) C, (G) OpeMg Information IS of a Unit Cue Opemg L. (C)' t of Ventral Cup Openng in In cries t of Curb OrOee Throat In Irctps i of Throat (see USDCM Flgute ST-5) Theo' Width for Depassen Pan (typically that gut wift of 2 feet) W.' )vg Factor for a Smglo Cut Open%(ypkal valve 0.10) C. (C)' Opening Weir Coefficient (Imcal vehe 2.3-3.6) (C)' Openrg OrI . COaffuen (typical vale 0.60 - 0.70) IC C . (C)' rl Inlet Interception Capacity )assumes clogged condition) Q. a capor:tr IS 0000 for Minor and Mahn Stamp (>o PEAK) Dlaacraoulao' MINOR MAJOR CDOT/Oamer 13 Comeiretbn 2.00 rc es 1 8.0 6.0 lichee MINOR MAJOR [3 0`e1n'ce pope, 3.00 feet 1.73 feet 0.43 0.50 0.50 3.30 0.60 3.00 6.50 525 0.00 2.00 0.10 0 10 3.70 0.66 eat rcfes aches agrees eet INLET- Design Pt 5,Asm, Intel In Sump 101712016, 9:22 AM INLET IN A SUMP OR SAG LOCATION Project = The Overlook Inlet ID = Design Pt 7. Inlet E2 {—Lo (C)—/ H-Curb H-Vent Wo w � Lo (0) iDeslon Inbnnetion flnoutl I,, of loer net Type Loral Depression(sedilional to continuous gutter depression'afrom'O-AIbW) 0. Nunlmr of Um Idlers (Grate or Cum Opening) No, Water Depth at Fb ellne (despite of oral depression) Pondirg Dean Grab Informetbn taryM of a Unit Grate 1=(G) Width of a UNI Greta W. Area Opening Ratio for a Grate (typral val:ss 0 15-0 90) A. Cbgging Fedor for a Single (Ireb (typral value 0.W - 0.70) G (G) Grate Wert Coefficient (typical ,aw 2.15 - 3,60) Ce (G) Grote onfra Coefficient (lypiciii value 0.60- 0.60) C. (G) Cub opening Information LegM of a Um Gee Opemg L. (C) Heght of Vertical Cure Opening In IeMae K. Height Of Cub OM¢e Thom in meats K. Angle of Thom pee USDCM Fgre ST-5) Theft Side Width for Depression Pan (lypkaly the gutter seen of 2 faro) Ws Cbgging Fecton for a Single Cub Opening (typral value 0, 10) G (C) Cub Offering Weir Coefficient (typcal vabe 2.3.3.61 Q. (C) Cub Opening Orifice Cdefficiedl (typical vines 0.60. 0.70) C. (C) Total Inlet Interception Capacity (assumes clogged condition) Q. Inbt Caoacev IS GOOD for Al and Major Stones po Pli Drrvaacaamn CDOT/Derrvn 13 Comain.tlon 2.00 a (In IniYw i I 6.0 6.0 lrtrgtx MtliOR MAJOR Q Olerrtle Dabs 3.00 fm 1.73 feel 0.43 0.50 0,50 3.30 0.60 3,00 6.50 525 0.00 2.00 0.10 0.10 3.70 0.66 set rims rJes )agrees set INLET - Desgn Pt 7.vism, Inlet In Sump 107/2016, 9:22 AM INLET IN A SUMP OR SAG LOCATION Projects The Overtook Inlet 10 = Design P1 9, Inlet D2 {—LO(C)� HCuni H-Vert WO IN Lo (G) anon Infarpallon (Input yx at Inlet Inn( Type' awl Depression (wCeioal to co elxem gutter oepressnn'afrom'O-AIIoW) a.. lumber of Unn (Nets (Grate or Curb Opealg) NO Voter Depth at FbW iw (outside of bwl depfa vnr) Pondev Depthr into Infometlen angth of a Unit Grate Lo (G)' VAth of a Unit Grate W. una Opening Rath for a Grate (typical values 0. 15-0.90) Apo' :logging Factor for a Sigle Grote (typical value 0.50 - 0.70) G (G) :rate Weir Coefficient (typical value 215 - 3.W) C„ (G) ;ate Office Coefficient (typical vale 0.60 - 0.80) Ca (G)' :urD Openklg elormatlon ength of a Unit CUD Opening L. (C) IegN of Verecal Caro Opening in Intlgs Hr kagN of Curt, Orifice Tlaoat in Inches Hn.o,u' ngh of Throat (sue USDCM I Vere ST-5) Tleto, 'rode WMM for Depression Pan Itypiray the goner width of 2 feel) Wp' :bggxg Factor for a Skgb Care Opening (typical value 0.10) G (C)' :ub Opervng Weir Cbnfeoert (typal vale 2 3.3 6) C, (C) :UD Opening Orifice Coefficient tfyplal value 0.60 - 0.70) Co (C)' -otel Inlet Interception Capacity (assumes clogged condition) Q. MINOR MAJOR CDOT1Denirer 13 CamGflelbn 2.00 inch 1 Irides MINOR MAJOR 13 CeevlJc DmNs 3.00 '.lnIfeet 1.73 i 7- feet 0.43 0.50 0.50 3.30 0.50 3.00 De 650 525 0.00 2.00 0.10 a 10 3.70 0.56 MINOR MAJOR net ncles aches legrees eet INLET - Design Pt 9.xlsm. Inlet In Sump 101'712016, 9:22 AM C I 1 1 11 1 I 1 1 Area Inlet Performance Curve: The Overlook - Design Point 10/Inlet B3 Governing Equations: At low flow depths, the inlet will act like a weir governed by the following equation: • where P = 2(L + W) Q = 3 .0 P K • where H corresponds to the depth of water above the llowline At higher flow depths, the inlet will act like an orifice governed by the following equation: • where A equals the open area of the inlet grate Q = 0.67 A (2 gH ) 0.5 • where H corresponds to the depth of water above the centroid of the cross -sectional area (A) The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown. However, what is known, is that the stage -discharge curves of the weir equation and the orifice equation will cross at a certain flow depth. The two curves can be found below: 2.50 Stage - Discharge Curves W.,, Flaw 2.00 Orifim Fbw W 1.50 - - - a Cb W 1.00 M N O 0.50 0.00 •' 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Stage (ft) If H > 1.792 (A/P), then the grate operates like an orifice: otherwise it operates like a weir, Input Parameters: Type of Grate: Neenah R-3409 Shape Rectangular Length of Grate (ft): 2.4 Width of Grate (ft): 1.4 Open Area of Grate (ft): 1.50 Flowline Elevation (ft): 5024.950 Allowable Capacity: 50% Depth vs. Flow: Shallow Orifice Actual Elevation Weir Flow Flow Flow Depth Above Inlet (ft) (ft) (cfs) (cfs) (cfs) 0.00 5024.95 0.00 0.00 0.00 0.03 5024.98 0.06 0.70 0.06 0.06 5025.01 0.17 0.99 0.17 0.09 5025.04 0.31 1.21 0.31 0.12 5025.07 0.47 1.40 0.47 0.15 5025.100 0.66 1.56 0.66 0.18 5025.13 0.87 1.71 0.87 0.21 5025.16 1.10 1.85 1.10 - Q100 0.24 5025.19 1.34 1.97 1.34 0.27 5025.22 1.60 2.09 1.60 0.30 5025.250 1.87 2.21 1.87 Inlet at Design Point 10 is designed to intercept the full 100-yr flow of 1.1 cfs at the elevation 5025.16 I I 1 I Area Inlet Performance Curve: The Overlook - Pond B Overflow through Outlet Structure Governing Equations: At low flow depths, the inlet will act like a weir governed by the following equation: • where P = 2(L + W) p = 3 .0 P H • where H corresponds to the depth of water above the flowline At higher flow depths, the inlet will act like an orifice governed by the following equation: ' where A equals the open area of the inlet grate Q - = 0.67 A (2 gH ) 0.5 • where H corresponds to the depth of water above the centroid of the cross -sectional area (A) The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown. However, what is known, is that the stage -discharge curves of the weir equation and the orifice equation will cross at a certain flow depth. The two curves can be found below: Stage - Discharge Curves 25.00 -Weir Flow 20.00 OnBca Fbw N L 15.00 a `m n 0 5.00 0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.80 0.70 0.80 0.90 1.00 Stage (ft) If H > 1,792 (A/P), then the grate operates like an orifice; otherwise it operates like a weir. Input Parameters: Type of Grate: Pond B Outlet Structure Shape Rectangular Length of Grate (ft): 3 Width of Grate (ft): 3 Open Area of Grate (ftz): 7.50 Top of Box Elevation (ft): 5021.030 Allowable Capacity: 50% vs. Flow: Shallow Orifice Actual Elevation Weir Flow Flow Flow Depth Above Inlet (ft) (ft) (cfs) (cfs) (cfs) 0.00 5021.03 0.00 0.00 0.00 0.10 5021.13 0.57 6.37 0.57 0.20 5021.23 1,61 9.01 1.61 0.30 5021.33 2.96 11.04 2.96 0.40 5021.43 4.55 12.75 4.55 0.50 5021.530 6.36 14.25 6.36 F 100-yr 0.60 5021.63 8.37 15.61 8.37 0.70 5021.73 10.54 16.86 10.54 0.80 5021.83 12.88 18.03 12.88 0.90 5021.93 15.37 19.12 15.37 Overtopping 1.00 5022.030 18.00 20.15 18.00 Outlet Structure of Pond B is expected convey the full 100-yr flow from Basin B of 5.69 cfs at elevation 5021.49 I 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 NorthernEngineering.com // 970.221.4158 Weir Report Hydraflow Express Extension for Autodesk0 AutoCAD® Civil 3138 by Autodesk, Inc. 1 Rain Garden L1 Weir Trapezoidal Weir Crest = Sharp ' Bottom Length (ft) = 15.00 Total Depth (ft) = 0.25 ' Side Slope (z:1) = 4.00 Calculations Coeff. Cw = 3.10 'Weir Compute by: Known Q Known Q (cfs) = 2.18 Highlighted Depth (ft) Q (Cfs) Area (sqft) Velocity (ft/s) Top Width (ft) Depth (ft) Rain Garden L1 Weir ' 1.00 0.50 ' 000 ' -0.50 Weir W.S. Monday, Aug 15 2016 = 0.13 = 2.180 = 2.02 = 1.08 = 16.04 Depth (ft) 1.00 0.50 M -0.50 Length (ft) Weir Report Hydraflow Express Extension for Autodesk® AutoCAt& Civil 3130 by Autodesk, Inc. Rain Garden L4 Weir Trapezoidal Weir Crest = Sharp Bottom Length (ft) = 8.00 Total Depth (ft) = 0.50 Side Slope (z:1) = 4.00 Calculations Weir Coeff. Cw = 3.10 Compute by: Known Q Known Q (cfs) = 5.13 ' Depth (ft) 1.00 0.50 AM -0.50 Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (fUs) Top Width (ft) Rain Garden L4 Weir Monday, Aug 15 2016 = 0.33 = 5.130 = 3.08 = 1.67 = 10.64 Depth (ft) 1.00 0.50 MIX -0.50 Length (ft) Weir Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. 2 ft Wide Curb Cut, Max Flow Rectangular Weir Highlighted Crest = Sharp Depth (ft) Bottom Length (ft) = 2.00 Q (cfs) Total Depth (ft) = 0.50 Area (sqft) Velocity (ft/s) Calculations Top Width (ft) Weir Coeff. Cw = 3.33 Compute by: Q vs Depth No. Increments = 5 ' Depth (ft) 0.50 1 0.00 ' -0.50 2 ft Wide Curb Cut, Max Flow 0 .5 1 1.5 2 Weir W.S. 2.5 Monday, Aug 15 2016 = 0.50 = 2.355 = 1.00 = 2.35 = 2.00 Depth (ft) 1.00 1 1I -0.50 3 Length (ft) I I I NorthernEngineering.com 11 970.221.4158 No Text M z LA 3 Y O J LU W 0 l0 to %D m CDm m m 19 m m m W N W N I9 N CD m I9 m Ln J a --I G) O Q 2 l0 I9 %D I9 n (3)r-1 ri e r•1 4 CD H In 3 F- 3 F- N m N m N m m M 19 m 19 m F- S U1 to r-1vA0:z0. .. .. ..19 wF-3� m LL O H W O O N 19 N 19 N M H N I9 m r-4 •• Q 0 1 N i U S Y 0 w Z Z m m m m m N m e1 m m m m m d OG 2 m m .1 to N O W 0 H H M F- �I JI co 0. �I F- z 1, In z O z F- H} F-I F-1 a w ga W Q LA H H W 0 0 OC F- a w W W Q d' W F- Q 3 1 F- l7 w 0 O Z Ln Z OC 4-) F- F- ♦- to IL Z Q F- Z:F- F-Q Q O F- (A I J H I H Q r, a)Z 0 Z W 0 LL 0 M F- 0 F- NI NI F- Z: VI w} �I w w Q Q LLI J w Ir W•n 0•r1OF•-w0J LA I 1F-F-Q H I IQF-F-F-Z HJ Im2O -10 F- L. H ++ I -1I IIn 3 I 0.3H3Y IOa F- F- 0:w 0 F- IL M 0 W 0 0 H w w 0 0 F- Lu Q F- In Ha 0-00LL0zzJH I Iu1w IO I IF- QQaaooww>-m > cr-gUHCID I woczwzz 0 J Z J H H J Y F- F- W W Z z 3 3 w W W w 0 z 0 0 0 W H u •w u ••. LL H LL J r Q 0 0 0 w w w w 000 w 30 w H z LL JZ: e•1 1 c 1 � I I L I 4J 1 7 1 7 1 U 1 m m m 0 1 � 1 1 + I v I a 1 a I O I 1 � 1 1 1 1 1 q* N N O I F- 1. I I 1 4-0 1 1 7 1 L 1 O 1 I d r •rl 1 ei (n m 1 • 3 1 01 ei N 1 1 O > 1 L 1 L 1 I 1 N 1 a + 4J 1 E a mCoal Lnn Ln m 1 z v 1 1 H LL 1 1 1 > 1 W N I m r� M N 1 3 L a N N a 1 w N 1 °1 V 1 (n 1 m 0 L I W 1 I a 0 = 1 � 1 J m In I F- 1 L I W I 1 a I I 1 a l O I 1 E I 1 1 H 1 1 1 1 1 4J 1 N I LL I m ul I m Q U I ri I 0 Q I 1 1••I 1 1 � 1 O O I O a a O 1 m > I 1 > 1 I L I 1 L I I I I I I d I I }J I CS) m I 1 1 1 c 1 I z 1 1 H 1 m I N 1 1 1 (n L I I 1 1 m a) I I tko 1 > I m (n +J I I H mCU 1 L 1 kD oo m In (n m H E M z ei r-i Q. m, I E I w c 1 w w w E I L 1 m L 1 •rI I tj tJ 0 H I m 1 O O I Z m 1 Q Q Q I I a I m Z LL I H oc I 0 l7 0 z 1 1 1 1 1 I 1 1 r"1 I 1 1 W 1 1 (n 1 1 4J I u r-1 G/ z J J m z u l 1 z 1 y 1 Q O O W O L 1 r-I 1 W 1 1 0 m F- F- •F• H 7 1 (n 1 1 1 r m I J W V1 � 0 1 w 1 (n U I Q J 3 3 I Q In 1 F- >- (D 1 U -V H 0 0 0X: (n w I Z J Q I H V 1 W m W F- J J=) O O m I Q Z W N I (1) m I. 1 m V 1 LL LL E F- I Q d } I 1 F- O Z E I e-I U E a 1 1 I 1 0 I I H w Q m l LA I •H m I w m m 3 1 1 m m N m= �X��XCCC1 w} w 0 :� Z} Q Z I t7 m Z 0 1 I m Ln a H 2 0 u CA- m LA J E F- u • y ..1 0 u . •� • •. LV . n (n • w 1 (n In . D 1 ..1 m m m 1 1 1 1 1 I z m m 1 m o z � 1 1 1 1 1 I 1 Qi 1 m O 1 m w w w 1 1 V 1 J J J I Ln I Q1 I m F- 1 E 1 000 0 1 L I I F— I m 1 1 1 Qf I \ 1 x 1 r-I 1 }J 1 a) 1 4J 1 •ri I 7 1 E N 1 In C 1 OC I Z L 1 N 1 I u 1 X I 1 a) I m Q m 1 1 > 1 p p I wi rq r-I `: I m m m 1 L I z z I I 1 o O I uJ I 1 u a d 1 LA . d 1 +.! 1 1 1 w z f6 ' 1 1 W N _ E 1 (J 1 Z 1 1 L - E 1 1 1 Ln C •e-{ 1 1 1 (1) 1 Z •Z� 1 1 J J I Q >> 41 i I F m m m m L 1 I a i ~ f I m I m m I Y 1 t O m 1 Vl H L 1 1 O 4-+ 1 I 3 I 1 d J 1 m 1 1 N 1 1 LU a >, v o Qm I OQ I ai 1 1 1 V I m 1 p 1 1 r-I a-1 }J I +J 1 1 1 p 1 VF C 1 O 4J 1 I Q I 1 H 1 m m 0'0 1 1 p 1 ri I I Z 1 1 O 3 I 1 O 1 1 1 1 F- �O 1 I n. {J I 1 t I 1 m I m 1 1 }J 1 1 O 1 I In V1 In K 1 Qf 1 W Q 1 1 CC I I N N N C I lit In Ln Q 1 W a1 I I I , m m m -r-I I >% I = p p 1 1 1 1 I m m m F- I LL X x I I I I M N 1 bQ 1 I I 1 1 V1 N L 1 I I C 1 1 QJ M I I 1 O 1 1 1 'a L I I I -r-I I 1 1 m N O u I I 4.J I {.J 1 I 1 q* N Z L I I M I m 1 . }J 1 =5 I I Co l0 ID to w 1 > 1 M > m I I 1p M E V1 I 1 p T-1 r-I r-I X I m m m Q) 1 ri (1) IA 1 1 r•I r-I O 1 z (D m m m I r-q I m r-I Id I m m L 1 1 O g I rn rn rn w I In w I In In LL 1 I CL 4 1 N I I 1 4- 1 I W r1 }J I 1 1 O 1 1 m Z C 1 1 I u 1 I w O Q) I 1 •ri I �o 1 1 H N E 1 1 LA I C 1 I W H ,C 1 rl 1 d I W Q V I V7 1 rl I 1 } OC }1 1 J 1 W 1 1 1 1 u (Q 1 J 1 (7 1 r1 1 1 Z J V Q QJ I Q a) 1 N W C 1 1 W 1 1-1.0 1 I LL E I K E fl_ I Co Q K E O I I Q m Q N LL 7 I m Q N F- M I H O M M i 1 p p N M u 1 I W m Co Co I Z LA I m m I D Z 1 H F- Z> 1 I Z Z W-Z '0 1 1 W > > p N •, ., > > p O •, ., V1 •, a) •, I O O 3 •, C •, I g v1 v1 O __ •, •, V) N O •- I •, ., 0 1 J ., LL ., a a I •, w •, I w L m al 1 ' � 1 � 1 U 1 4- 1 I a) al 1 1 0 0 I 1 Z U 1 N I QI 1 m Q rl I \ I w w al I Cl) I U U L 1 r-1 I F-1 H L. 1 m I LL U. m m I H H m m a 1 0 O I rn 1 1 1 m I 1 Q Q E 1 1 w w O I 1 x x al I 1 \ \ (D 1 m m 1 � � a a r ID a I m m I I Q Q 1 E w 1 0 � In I al d w 1 (J 1 m m w 1 H> +J 1 I. In 43) 1 z VI 1 I a 4- 1 4- I 1 ~ O I m m N 1 1 E 1 Y 1 O 1 0 1 al 1 CD 0 1 (p. rn In I J cc I 1 QJ I 1 w 1 I I > 1 1 r1 I O 1 1 m 1 1 1 > 1 Q� QJ 1 1 I I In N m m • CD m O .i z 0 1 0 I 1 o I a 0 I y 1 I O ri 1 1 al 1 O1 In m I 1 0 1 > I In I I I m 1 I X 1 m N m In m In r-1 1 1 al 1 1 Z Z I 'm I w w 1 0 1 1 a s I 0 0 1 Oa W Oa Q m Q ar I I C C c 0 E I 0 0 d I F H al 1 -H •r1 •r1 zO 0 z z m 1 u U a 4-0 ++ 4J L.O I O s 1 w w >% I m m m a LL a a In w w F I W w cl� In LU Q }+ 1 I I m Q I w w w cic m 1 1 1 w w 1 H l7 1 1 1 H H I (g (7 IL w t 1--1 I w w 1 1 1 N I 1 3 3 J J _I r-1 I I z 1 I }} 1 u In 11 0 1 1 UU r, 1 as mm mmm z I— I I m000 H 1 1 zz In I ww ww ulluw w w W c I I HZHZ Hie I I ww ul aJ 1 UU uu uuU - ILD J E O I 1 w w U C 1 I (, 0 > E I H H H H" H" w m H m a I 1 J J w •r1 I 1 = a[ K m I LL LL LL LL LL LL LL w O Z X I I F- H In-J I i w w D Z I H N H H H H H x O •n 4) •n 1= X •w .n iX: X: U •n .n w W w w w w aC w y •n 1 0 0 LI •n w w n o O •n o 0 •, 0 0 0 a) to m a Q. z H 3 to i Y 0 0 J W O N tl1 m 00 N O1 Cn e^Ln rn r-i Ln i 00 N 10 w %D m N m N M w N N H Ct W a --I -ct n 0 m^ kD M M 00 Lf U1 m N m L! '-1 N m m N M rn Q Q Vl Ln %D l0 10 N N n 00 N M M H N N M� 10 Ln Ct � %D w 6 m m m m m m m m m m m m m m m N N W H H H H H H N N N N N N m N N N N N N N N N N N N N N N CJ CJ Ln m Ln 0 Ln 0 Ln 0 Ln 0 Vl 0 to 0 N R* �D '00 N Q %D 00 N Q kO 00 m m m ri ri N N M M-4-4 L 1 L! k0 k0 I� m 0J m- m CJ ei ei 4 r4 r4 N N N N N 00 W C m •r1 L. 4 O LA O p p O p p p p p p p p p p p p w w w w w w w w w w w w w w w w u u u u u u u u u v u u u u u u > > > > > > > > > > > > > > > > p p p p p p p p p p p p p p p p W W W W W W W W W W W W W. W W W � C= CC C:' CC CC 0= CC CL' CC CC CL' CC CC CC CC QQQQQQQQQQQQQQQQ w w w w w w w w w w w w w w w w u u u u u u u u u u u u u u u u H H H H H H H H H H H H H H H H Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL p p p p p p p p p p p p p p p H H H H H H H H H H H H H H H H z z z z z z z z z z z z z z z C' CC CC CL' D: CC CC CC CC O_' Or CC Or OC a' CC 000000000000000 0 0 0 00000000 0 0 0 0 0 a a M M a a a M M a M a a a a 'T d 00 m a i 1 1 1 1 1 I 1 1 1 1 1 1 1 1 Y 0 J m U1 R* H t ri m r-1 -ct LD M m 00 H m LD vi Ln W M 1- m Ln 00 ei m n Ct N m M 1� 00 1� m N m rl ry d' N m N N N M OL c-I LA U1 00 M M U1 U1 N LO N 01 00 1� 01 �' 1� 10 N c-I N m lD m N Ln m N-cT M N ri a% 00 LO w N 00 m A M m m m 00 M Ln M LO Ln in N N N N N N M R* M M M M1 M M" m m M CT -;f 4 v-;t -* Ln m H N it LA 1" m 1-1 rl rl H N It LO m N Nt LO m N It LO m N q* w m N-4 LO 00 N -0 LO 00 M M M M M 4 4 4 4 0 U1 U1 U1 Ul w LD 6 6 6 N m m m m m r1 r1 e; r1 r; N 01 0A 10 L O 4-+ t/L aaaaaaaaa.aaaaaaaaaaaa mmmmmmmmmmm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z 000000000000000000000 00000000000 m a a a a a m m m a a a m a m a a (L a a a •,a a a a a a a a a a a Ti a) bD m a I 3 LA r Y O W 00 N m r-i rri l^A M M m 00 M r-i %D 0000 R* U! N n N n N 00 .4 N 00 M l0 I� m N to cn V1 r� e-1 Vl ri I� W m %D R* N r-I N N Rzt 0) ri Rl to 00 H M k0 m rn I% ri Ln 01 M 00 ri N N N N M rn rn -qt [f R* Li) V1 Ul N n N Ct 1G 00 N ct l0 00 N Rt l0 00 N N N N N M M M M M -4 4-4-4 N Lf m m m m m m m m m m m m m m m m Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z 0000000000000000 a a a m a a a LL LL m m a a a LL a r r r r 7 r M M M to N W 0 N 10 ri r ri M N 00 R* m ri It R N m > r r-I r-I r-I N N Ln (I1 N r-I r-I r-I r-I r r r r r r W r to m rn m Ln m to m to m to m to E m r-I r-IN N M M R* U) Ln ID OJ I- m m m m 19 m m m m m m a-1 r I i i r i r r J r m r f0 r p r r r r r� r � r W r H r W r } } } } } } } } } } } } } V1 O/ r i r r r r r r r I r r r r w E r m m ID 19 ID m m m m. m 19 m m m r m m 19 19 m m m m 19 m 19 m 19 H Z r H H ri H ri ri ri H ri H ri H H •n •n U U U U U U U U U U U U U u •n •n LL LL LL LL LL LL LL LL LL LL LL LL LL I [1 n 0 z z ' H 3 to i Y O J LU W O m C I I� ei 00 to M rl 01 I� M M W W W N N N N tO t0 ' m m m LA m to m to m Ln m ri ei N N M MIct R* M Ln m e; ei ei ;; e; e; 1:4 a ; ;; 1;4 N 1 M LM 00 rn I� N n M H rq 00 t0 N I� V) t00 0 tO rl Ln In Ln %D t0 10 O1 m m H M M Ln 00 m O1 Ln 10 R* M M I� ri Ln Cn Ln m Ln m Ln m Ln m Ln m Ln m Ln m m m Ln m Ln m m m a-i c-I N N M M19t-t M Ln m m e-I r-I N N M M-* m m m m m m m m m m m ;; r; a --I r1 ri r1 %* I t-1 ri r1 m m m m m m m m m m m m m m m m m m m m m Ln Ln In In tf1 lf1 Ll1 Ln Ln Ln tf1 Ln tf1 Ln Ln Ln LA Ln Ln Ln Ln z Z Z z Z Z Z Z Z z z z Z Z Z Z Z Z z Z Z 000000000000000000000 1 } } } } } } } } } } } tD l7 t7 l7 l7 l7 l7 l7 0 l7 l7 l7 l7 l7 l7 l7 l7 l7 l7 l7 l7 i i i i i i i i i Z Z Z z z z Z z Z Z Z Z z Z z Z z Z Z Z Z m m m m m m m m m m m H H H H H H H H H H H H H H H H H H H H H e-1 c-I c-I r-1 ei ei ei rl e-I e-I e-I J J J J J J J J J J J J J J J J J J J J J u LL LL Ii IUvU i LL li LLLLi-LPL. Ivi tUi 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 �l u 00 v biD m a I 1 1 1 1 1 1 1 1 1 1 1 1 1 1` 1 1 1 CD l�0 R* N e•1 r4 Ln CD LLnn Ln m c•1 r•1 N 1 1 1 CD m m Ln U) Ln 000 l7 l7 l7 Z Z Z H H H J J J J J J 3 3 3 N c O J •r1 J a Q CLO z •rl Z: J J r-I }+ ' Ln = J J H L J U Q Q O Q F- w Q Ln In 0. wmF-uwY WWCLZMOZ CC •nz O D O H IJ • H U U1 Z J m m m fD m m CS) '-I m CD 9 19 m m CJ r•I CS) OJ CD m M m c CJ z Ln Z O H r1 :n N r Z LAQ 0. LU u u p M 00 4 to m Ln 00 In in NLn to 00 R* '-1 N LO 0) rYl 1� I Ln 00 O1 I Ci Ci L I N M 01 O I O I m N 00 rn M I 1 00 N X I In m Ln n I 1 1 N 1 W I 1 Q 1 Z i H i 0Z° �zz U 00 fto 10 M 0) N 1� (n a••1 01 N n .4 m R* Ln M Ln 00 00 I fn ICT 0) 'O I m ^ rA L I Ln ci Ln O I O I 00 M m M 1 1 X I q* In 1 I H H I W W rl LA I 3} 3} I'•"I W I U L) C U I Z Z a O H -Y I W W H OO •rl I OZ OO[ J r}I W J I W W H O u... W W O u .1- 0) OA m M LLI i 01 Ct Ln N I 01 o L.i Ln kD m 00 L I\ O O O I� M I� 00 O 00 U I� Ln e-I LO U 1 00 i N N W r, } i to i L. 00 CD Q fn L. O O O 1 m Ln .-i oo O cr U 1 00-cttDCS) U I r� 1 rn ON 00 00 1 1 r-I X N N N (O X I I� i i 4J C i � E L i � 4-0 Ul (0 J i V Q O (V .0 1 m 00 I H 7 i m m Q N (0 I LLJ l/1 Co M Co CA . n M M D 0 • n Q •n •n V1 V) (A M u •w •w LD 11 1 11 r I I � a L H M a D O E 3 (A a4 In Z O H N w w > I J w 0 O E H Z w w zz oc u1 Q 3 O H N Q a w * L n •� ra a � * a) * }) + * L u) * +� O a (D a) E a L ce * 4J i+ * m <9 * VI VI * m Ca * 4J C E i*F m m * O -r-I * C -r-I 4J * CD M *' -rl +.r * CD N * m OA dF M E L* N N CD m m * r-I 0 0* w i mmm * a a* z>m1� * VI a) * O Q N N g rq 0 * •rI >1 L* H 3 CD m m *'0 L * In N N K Z Co. Co CD * a) L* LL w O O O w O O O H w w M Ca r-I * VI > U* U > Z Z Z>- Z Z 2 X lL lL (D m Ca Ca * U a) m * -r-I al * +J 4J* .. • Vt to E * -r-I O * - * +) 'D L * • . • . . . . . * M C 4F * +1 3 * >. rr-I * lF .. .0 = : : M * L VI 3* * VI* • a) +)+) • 0 a to +j Vt * * C * O 3 >% a) (1) (1) * E r-I (L) * * O * • VI C na O +) X X: • >% +) * E 3 L* * -r-I * • r-I 3 L C r-I •rl (L) • L N a a * 3 VI * * +J * • W a' (1) -r-I r-I r-I C W +) 0 (1) a) * VI a) C * * a * ' \ +) +) Q m O C M a/ (1) +) +) * L O* * O* VI O r-I • 4-) M 3 3 -r-I •ri 0 +) +) E N 0 * () * * * ++ 7- r-I • r-I 3 O bb OI +) +) M C •ri * C C +•) * * VI * •rl M • a) 'a W C m 3 to 0 a) H a) N * H O VI * * -r-I * C VI q- E C -r-I L L O C 'O E E * 3 * * to Vt C H 3 3 3 v () ++ d' •rl 00 a) +) •rl •rl * • • �o Ir 1 * * >% * (1) -r-I H O O O C d-) r-I +J C U L H F- LU a) * * r--I * 3 U M 0 C L ri O M •ri 3 L •ri a) O * I- Vt +) * * M O O m m V) kD U- a 3 q- O ra '0 +) a +) >% * O N O* * C* r-I L C r-I +.) C C a) a) L * zm c* * Q* wa HlivlwQa3O r-I a) oa m IL 4J a L M a D O 3 In u v m m ri a v iA N v E •rl H bo C •r•I ++ 3 O w s Io 1 MMOO n +J v kDm -tn%D as %Dm%Dornm * O * O U tA i*E * }� - Io LA - L it ++ * ++ O J 4- L to W *a C i*t •n c O C m iE :3 v � ++ W O 4-) iE CY iE L 4-J m ++ •H * * a m L v 0 3 iE 4- iF ri O r4-J•I m ri ••i * O m a •rI 4- m ++ iE C iE +J m 4- L C c dE 3 iE O> C 3 •rl O 9E w iE H W H Vl LL U * J . . . . . . . * C* 3 3 3 E iE C * r-II r-I-1 r-I-1 3 • VI VI > ri L * O* 4- 4- 4- 3 O to O O O Uit c c c Or -I O J'0> L iE it F-I H H ri 4- W J N L * c* L L L 3 C 7 0 C O O N w iE •rl i(- v v v O H O J 0 ••i ++ L >% +J it L L 4J rI •rl ++ V1 O ++ iE 3 it ++ ++ m 4- r1 ri 00 iJ m ++ •rl * O* m m 3 c m m c m L ri VI 3 iF W jF v v '0 H C C •rI L ++ m C iF ik 3 3 c L L'0 O r-I •rI rI •rI iF 3* 3 H N v O a •rl +J m ++ iE O iF >% 4J O H ++ ++ O m 4- •rl C C iE r-I iF L v L p X X rI > X C •r1 O iE LL iF p 3 l7 IL' W W LL W W H lL u v CA m a u u u w a) al V) N N CD m m m m m m m m m m m V1 U1 U1 e-I e-I c-I * in * al * * X * UJ * .. .. .. .. .. .. * _ 06 Vf * E fa * •ri * * E * +f L OD * 7 E * m a) C * VI * •ri * a) * 7 * d-J a •rl * L * r-1 * VI * V1 hD * 4J m * a* a'aa>%c (V * O* * fn* ++ * a)* (V v a) 'a O > * c* * c * fn * ++ * ++ ++ ++ m •ri C 7 * H* * to V1V10 al++ O * �* u 3* t ai * 4) (D ar N � +f * * O to * E* E E E v 4 c * ri * * •ri -r-I •ri •ri C ++ O * aJ * LL* N * H* i- H H •ri H Z * E * 4-J C * OD * E v E ++ a) 4J v * * of * •ri * c * O OD 7 c 4D C 4J * a) * ri * •rl * E M E a) (a aJ * m * L * * 4J * •ri L •ri u L u * u * OD * ri * 7 * C aJ X L al L * m * •ri * ri * O * •ri > fa a) > (D * 7 EQ�aQa * LA* r o 4- L m v O u 0io m +�0•f o of m F-- � kO < m ri 4- c LO fD 4 r r� +-) O O 'c N H 3 i w i i i i i i r1 rr . C m•r i •r � 00 Wi 4J 4- i O C i m H H. i i i i i m ri a C m m m y ++ > to O w m m � � a i i i i ri C C m (a O -.ri m +) C i O 7 i m H w i i i i r1 a C t\ f0 •ri •H l0 }, u i O ai m a i i i i c � v E � t i v � +f ra 4- 4- . M O 4- 7 i O C a) LA Vt w U 00 N N n C+ a-1 r� Ln r-i %D r/ N rn N � 01 LD LD 1 rn m f V 1'M Ln =5 LO m N I� Ln 00 D I� .._.._.v I 3 Q)• L +J O v O C 1 r 4 C L Q) 1 LL N L v 1 ri W C- m Q) 1 1 I 1 i r-I 3 Q1 ri 1 m O E m 1 {J r-I 3 OA O q- r-I I' ,C +) 1 m m to I C O m I () +J 0) 1 m Ln I N >< I +J a (1) I 1 m 1 L (1) LL 1 m L� 1 I O 0 1 r. I 0. 1 1 Q, X 1 1 1 W LQ 1 1 I I I M O E M I I I L r-I 3 00 1 1 1 (1) q- ri 1 X Q) C 1 m %D 1� 1 +J C O LD I L0 u -r-I 1 m m m I m N>< 1 X: C E I 1 J (D I Q) 1 m N N 1 I 1} L L 1 m m m 1 I O L L 1 1 1 3 I 1 I ar u a 1 mmm I E u >, 1 I X (1) c I •H O N 1 1 LQ v -r-I 1 -0 1 1 C E 1 1 1 1 1 1 4-L L L i I E J }J I m M 00 1 O L t I 3 (JJ (1) 1 m 00 n I 3 I E 2 (V I I 0) v V) I -r-I IL I M m Ol I E v T 1 X 1 r-I N r-I 1 -r-I O L0 I m 1 m aim 1 I I Ln Ln Ln I li . i i E ri 3 to I E L +J I m m LO 1 3 (Q O LL I 3 4J Q) 1 L9 R* Ln 1 E 4J r-I U I E Cl Q) I . 1 •r-I O q- -r-I Q) U- I m Ci LO X p I I M~ N LQ 1 1 li i i i E r-I 3 to 1 QJ L +J I m rn LD 1 3 m O LL 1 00 +J Q) I m r-I . E L r-1 U 1 (Q CL QJ 1 I •r-I Q) q 1 L Q) LL I ai 1-1 N 1 X aJ C 1 (1) Q 1 I IQ m N 1 > I I J 1 1 Q 1 1 1 1 i i 1 1 1 1 1 1 1 1 J W W 1 I I Q Q Q 1 I CL I H O O I CL 1 T 1 M H H 1 T I 1 0 Ln Ln 1 1 I 1 i ih T iF I 1 iF L ib 1 iE L iE 1 1 ib m ib I iF LQ iE I 1 iF E ib 1 iF E iF 1 I iF E iE I iE E iE 1 r iF 3 iE I iE 3 ib I 1 ib Ln iF I ib Ln ib I 1 ib ib 1 iF iE I 1 iF 3 iF 1 � iF t iE 1 1 iF O iE I ib +J iE I I ib r-1 ib I iF CL iE 1 1 iE ib 1 iF Q) iF 1 1 ib C iE I � N iE iF 1 I m Q iE iE I iF Q) iE 1 I ei iE a � 1 � Z Z ib � iF a 1 'a iF O ib I O I M 0 0 ib O iF O ib z ib 1 z I O LL 0. ib z iE z q* n H 0oM to 00 N N m m CD CD ei 00 ai cn 00 Ln }� m I� e-I •rl ' CD m '0 I L E 4J I N m C 1 }I -r-I (V 1 O I a W a) I In V I 0) LL I 0 3 I m m 4J 1 O 1 to I r-I I OD m m t I •C m d' 1 1 rl 1 1 m m m L 1 1 C m m m 1 1 L a� I +J C 4 I %D 00 � m m m 4-) 1 L40 0 00) 1� n a _ I •rl L LL I 4 O I a, u x I %D I 0 I O Q 1 • > I 00 � mv 4J 1 mM �rnml� ar ; �Q ei ei L i I ¢d I I a) 1 1 m m > 1 1 m m I� 00 00 .O I Oa I N m N_ L I 0 L I n t\ m L I r-I r-I (A I O V I al I x L I rl 1 LA 1 L 1 1 1 1 J W W a) I I W W J (7 0 4J I I (7 tD 99I IQiwz 3 v �- 0 0 I Q I 0 0 c 1 > o O V1 0 aE >T aE 0) i H I VI to aE >> aE aE L aE LI I aE >> aE aF L aF at mat 3 I I tat ar * m ae aE E * I aF m * "a aF E * E * to I I * Eat O aF E aE aE 7 iE L I I aE E aF O at• 7 aF aE Vl aF 7 I I iE 7 iF '1 aF Ln aE iF aF V I I aE V) iF 4— aF aE aE 0 aF V I I aE aF it 0 iF aE 0A aE O I I aE 00 * ai at E aE aE L aE I I iF c aE L i! 7 aE at m aF 0A I I iF •ra iF (D aE r-I . aE at L at c I I * * 3 * 0 aE aF v aF •r1 I I aF O iF aF > aF aF L aE 0a I I iF O iF IA aE aE of 7 at L I I aF r—I aF a) aE a! aF aF LA iF m I I aE LL aE •O aE 00 at• c0 Q * * L I I ca Q aF * O mat e-I o o at aJ at V I (U I an ae a) ae C at• L as H Z z aE •C aF L I 'v I Z Z aF •C aE aF O aE 0 0 0 * O ae 0 I O I 0 0 it O al O aE ++ at 0 a a z ae (A I Z I a s z ae 0 aE VI aE Tf v Iw m a E 3 1n 1 0) In 3 O LL I rl Ln E r-I L1 1 •r1 4- 1 m m X 4J 1 m 3 1 X: O 1 1 I 1 1 N U i i m m Cl) 1 N N 4- L L I m m O L M 1 7 I W U 0 1 Q M E v 1 -r-I O m 1 � 1 I I 1 x +J ri 1 o, U 3 1 a LL I 1 1 1 1 E w M 1 ri In E 7 4- 1 M •,i ri 1 X O m 1 a; CD am > m 1 er-I� m ' L 1 H , a , D r-I +.1 of 1 m m O •ri c to 1 4- V O 1 X a - i 3 w ; N G 41 o 1 m m m c 0 1 > U O 1 I pD }J ri 1 %D N > V 3 i ti N a U- 1 1 1 - I 1 ODD E 4JJ I N CA M 3 4- 1 m Ln L r-I 1 d O m I N Q > > m 1 � 1 1 1 1 1 1 1 1 I 4J 1 •r1 1 c 1 1 1 1 b.1 m 1 m Q L 1 p p O 1 Z Z 4J 1 00 0 1 a M 1 X rl 4J 1 m 3 a LL W i 1 1 1 1 ri 3 1 x r-I o X 1 LL LL I , 1 1 E u 3 V 1 I I 0 E O N 1 m m E m 1 l0 I kD l0 kD 1 •ri r-I \ 1 41 3 GD I N I N 1 X (D 4J 1 0 ri 1 1 I m> 4- 1 O W 1 m 1 m 1 — 1 > < 1 1 I 1 CS) I 1 1 I x w c I I m V •H C E 1 I 1X: I X 3 LA 1 1 1 4- L L 1 m O LL 1 kD I k 1 O L L 1 ri :.i 1 • 1 . 1 3 1 LL I M I M I DJ V V) 1 1 1 1 E U >1 I I I 1 •ri O m 1 1 1 1 1 1 1 J LA i W 3 Vl I m i m i 7 3 U- I > O LL 1 M I M 1 U I Q r-I U 1 1 I -H r-I -I I U- 1 m I m I X U- 1 1 1 m — 1 I I 1 I I 1 I I I I I I I 1 I 1 1 1 1 1 3 Cr 4J 1 M I M I 1 O W C I Ln I In 1 I r-i L U I I I (D I LL LL d 1 0) 1 01 1 d * >> * L. 1 1 1 1 * m* 1 I 1 1 * E* 1 1 1 * * 1 * E * 3* 1 1 1 * * 1 * 1n * 1 1 'I * >1 * I * * I I * L * I * OD* 1 I I * m* I * C* I I I * E* I * •rl .J(. I I 1 iF E* 1 * m* I v 1 1 * tn* 1 Z * * m* 1 m 1 I DJ * * 1 * 4- * i 4- I 1••1 1 4J * Y * I Y * 4J * 1 4J I I VI * c* 1 c * 3 * 1 3 I =) I >% * •ri * 1 •H * 0* 1 0 1 0 1 In * J* 1 J T; v to m a 11 1 +J M. L W E E 3 � � r~ W Z m Q LLI F- LU Lu J J W H H X: M W 0 0 %D %D N N N N N N Ln Ln 0) 0) M M V1 Ln ri ri 1� l0 m m 4J 4J u O O VI iF L iF L iE m iE m 7 7 ri * E* v H H v iE 7 at L * VI iF 7 * OD at d O O -H iF L iF L }i i*F t * 3 7 N 'O u * 00 v Iv 3E 7 iF 4J m <U a dE V) iE •ri m iE iE 7 IA IA r-1 iF 4J iF •rl •ri N 7 * O >% Sri -0E iE u ri ri M dE O dE O C C O iF u* Z QQh U! bD m 0. I I L r� I ,z ri m I L m * * L n L ' Ln * (0 0. W I * 01 L ' Ian * J ' U Co * N E O_ v I * L •r1 N H r-I * VI VI * m m D D O z � * O •r1 O-i * •rl 4j * m N E LA I * ++ c* 3 v Io H NI- * mm ' z > * TG4J* M E L* u N N m m m 01 W I I * r•i O O* W I I m m m In > * au a* z>101� W J I * N d* O Q N N ri r-I m m W I * •rl >% L* H 3 I I m m m m w 0 I *-0 L * VI V) VI m Z m m m } O I * w L* IL W 0 0 0 u.1 0 0 0 H W W m m ri I!1 * In > u* U. } z z z} z z 2 ]G IL LL m * u 01 10 m F I * -r-I N W I * N f0 E H W I * t7 * (0 C q- U z * In O VI In LL I * r-I * • Q t L fp IZ H I * L L VI 7* * i•+ • 0 d N z I * ++ Vl * * c* C * O 3 >> 0/ 01 4J 3 O W LU I * E r-I E * VI C : N OD O ++ f E H � * L E 7 L* * rl •rl * r-I 7 L (A L C r-I •rl 41 L V1 Q Q m Q * 7 IA * * iJ * 0) O_ OJ •rl r-I r-I C W 4J 0 Ill N N 3 * In Iv c* * Q. v 4J 4J Q m O C 10 v v +-P ++ E 0 I * L O * * O * In O '-i 4J M 7 7 •r1 •rl 0 4J }+ E V1 V1 •rl ' z Z: I * N * * * 4J M: ri r-I 3 O OD O' 4J ++ M C -r-I H O C I * t C ++ * * In * -r-I M Iv v m C m 7 to 0 Iv H a v IL O I * H O In * * •rl * C VI q- E C •r1 L L O c v E E CD I * O* * In * O N C H 3 7 3 v G1 ++ m •r1 OD 0) 4J •rl 'r-I C 0 Ln I * • • .n * * >% * Cl) -r-I H O O O C ++ r•i ++ C V L H H -r-I W I * W 0/ * * r-I * 3 v M 0 C L r-I O M -r-I 3 L -r-I N O ++ ' l7 Q I * H In 4-+ * * m* O O W W to l7 W a 3 q- O 10 v ++ O_ iJ >% 7 0 w i * zm c* * Q* IUia l-CILLLn1wQ�3o0 J U r-I a) OD m a El 1 a L CD ' 0 u' L o O� m m m to ++ w kO0 l�%0 E m O%D000m000mll O_ L l0 m l0 01 m 00 i m N m m m ei m m m m m r1-4i J 0 rn CD m N 0 0 w 0 0 0 0 m m 0 m m m m 'p U C < ' e-I � a D 0 0) -P ei 0 M N 00 N 0) + CD N .m m m N m m m CD m 01 E 0) � 01 m n m H 10 E N i m m m m m 00 m m m m N m 3 3 ar rn .aoC. . t n .mo. . . . . . . . . . . . ' m m m m m m m m m m m m 00mmm m ' > U) > N i L i L i m m iE X iE * O1 iE it v it iF C iF iF Tit iF .% iF M iE iF iJ it it it it it iE •rl iE it iE it Tit iE iE iF T iE, it 4J it ' iF C iF it iE iE • ri iE iE ' •ri iE iE •riF I 'i 0) iE ri iE it 4-0 it i••� it 3 it E it •ri it iF C iF C iF C . iF 3 O) T2 iE iE O it O E � it m it it U it -r-I LA * +•+ it O O O N O 3 iE 4J iE it iF 4.J Ln LA • L iE C it r-I r•i r1 3 • VI h > r1 L iE kn iE it Tit m in O • O it O it 4- 4- 4- 3 O • N O O O iE C iE iE 4J iE i-J O J 4- L iE U it C C C • O r-I O J-0 > L iF H iF iE •ri iE -r-I J 4- OJ L iF it H H H • r-I 4- to J (J L iF iF it 4J it O. C O 0D Lu it eD it 4- +) N C L v Lu it 3 it c it -rl c O c m it c it L L L 3 c 3 0 C 0 0 (1) it o it iE m it U O •rl 3 L T it •r1 iF O1 01 OJ O H O J O -r-I +) L T it r-I it iE 3 it (D -r-I 41 w O +) iE ++ it L t i-) r-I •rl i-) to O +•) iE LL it iE CY iF L +r m +r •ri it 3 iE +) +) m 4- r-1 ri OD +J m +r -r-I it iF it it a m L v Ln 3 it O it m m 3 C m m C m L ri N 3 it 4J it iF 4- it L a-+ V C it Wit 0/ (1) 'O H C C -r-I L }J m C it In it 4- iF r-I O r-I m r-I •ri it iF 3 3 C L L "O O r-I •rl r-I •rl it 0) it it O it m 0. •ri 4- m +J it 3 it 3 H 0) 0) O G. -r-I +) m +•j it L it it C it ++ m 4- L C C it O it T ++ O H +J ++ O m 4- •rl C C it to it iE 3 iE O> C 3 •ri O iE ri iE L 0) L 0 X X ri > X C -r-I O iF •ri iE iE W it F- uI H (n LL U iE LL iE 03 (D w LLI LLI LL W W H LL U a) 0D m a it L m W 0 l7 O J U H M a f- O E 3 VI aJ ri m +J tA v L m tA Y C 'r.1 r-I r-I ri Q U U V al W al In Ln o .. .. .. .. .. .. .. .. .. .. .. .. LnuiLnmr-I m r-I r-I r-I a iE iF al iF L iF it L iE VI iF E iF E m ai a fl_ •OD iE VI is Ln iF 4- it * CL asza>,c aa) o* it aJ * a) a! a) a O > * C it +J +J +J +J m -r-I C * LA * V, Ln Ln a) ++ O * w * ++ m U +� * a, * a, ai ai in L 4 * E* E E E a)++ * c* * -r-I * -r-I •ri -r-I C ++ O dF a) iE iE H iF H H H -r-I H Z iF E iE 3E 3F iF L iE * W * E ai E ++ al ++ * V iE C iF 7 d4 7 C OD C iF 4•0 iE * •ri * E m E al m a) * m +� iE +J iF •ri L -r-I V L U IF V iF IE 7 i(- C W X L a/ L * m it * �aW�QaQa * V) 1 , Y 4- t00 m 4- U- ti , W m N aJ O U a 6 r c , , , - r-I 4- r-I 00 Ln m 4- m ++ O Oa O c m m H tD , < CD , , , , , �4 4- c , to I� m 4- •r1 +) O O C N M H 7 , , , , , , r-I r-I c 10 M m •ri •rl , 00 O c , i , , r-1 Q C , m m m m r•1 , m m ++ > O W m m H � , , , , ri c c m m m O rl , m m +-+ C i O H c , , , , , , , m rq r-I , 0l0 41 U u , 0 a/ M M H L , a , , , , , , , , , , 4 , c � ai E t , U i 4-) 4- 4- m co � O 4- 3 V1 =) 10 c ar un ut r� ut 00 :3 O , 9= U m m u 1 1 1 1 i 1 1 1 1 1 n N M IR +J L9 Q. L m 0 W m l7 L9 0 O m J U N 1 m � n 1 3 W L+J 100Ln 1 O U O C I m m ri I LL m L U I I r-I W L I m m m 1 m QJ 1 I m a 1 1 I 1 1 1 1 1 1 i N O E N i rr4 0000 Ln ' I {J r I 7 oil 1 -^ r-I I 0 4- ri 1 L9 L9 1 'D 4.J 1 m l0 N 1 C O %D 1 L9 1 LL }J OJ I m LA RT I H > < I L9 1 }J O. (J 1 1 CS) I 1 L of LL I m-*%.D 1 ri I 1 O 0 1 1 1 1 a 1 I I 1 0) X 1 I I � � i i ri 3 O1 ri i r-I 00 ri 1 I 1 m O E m 1 M m Ln 1 I I L r I 7 0O 1 CD ^ r•I 1 1 1 W 4- rI 1 CD 1 X W C 1 m 0 m 1 }I C 0 W I W • CD m •r (D G -CS)i J H i< L CS) i C i I (V I L9 N N I ri 1 1 4- L L 1 m LD m 1 1 1 O L 1 3 1 1 1 1 Cu U 'LA I LD LD L9 1 1 I E U T I I X 0) C 1 m m m O m I •E � c 1 1 1 (U 1 m CS) G 1 1 I 4- L L 1 L9 0 0 I E J 4J 10 0 1 O L L I 1 :3 t' 0) 1 m 07 W 1 3 1 1 E M () 1 I Cl) U Ln I m m m I •rI LL I M m ON I E U T I _ I X I r•I N r•I 1 •r1 0 m I 1 m 1 L9 m LD I' ♦- - I I 1 Ln Ln Ln 1 1 E ri 3 Ln -4 00 00 I E t iJ I m %D N I O m 0 LL I LO O N I 7 iJ W 1 m Ln 1 E 4 J r'I U 1 I E 0. v 1 1 •rI O 4- 1 •r1 CD LL I L9 -4 to 1 X H c I X D - I m H 1 ,. 1 m 1 1 2 I 1 X: 1 1 1 I I 1 1 I 1 I E r I 3 V) 1 N 00 00 1 0) L }J I m m Ol I = M O LL I N m N I DO +J W 1 L9 - 1 E L r I U I I m a Cl) I . I •rI O) 4- I m m I� 1 L Q) L.L 1 CD -4 r•I 1 X .{J C 0) 0 I m mH 1 1 > I I J 1 1 Q I I 1 1 I 1 1 1 I I � I J W W I I J W W I 1 J L•7 LJ 1 I J L' I I Q Q Q I I Q a Q 1 of 1 LL KW I (D 1 LL w 1 Q. I H O O 1 O_ I H O O 1 T I 0 1 T 1 I O LA to 1 H 1 O Ln Ln 1 1 1 1 j( T iE I I iF L iF I I iF Llt 1 1 iE m M m iE I I iF E iF E iE 1 1 iF E * 1 1 * 7# 1 1 * V1 dF I 1 iF V) {E 1 1 iF jt 1 1 iF t in 1 1 iE O {(� 4 J * 1 1 iE ri iE 1 1 jF CL iE 1 1 iF 4- iF 1 1 iF O1 iE 1 1 �F C iF I 1 i4 iE I I m Q it iF I I. m Q iF iF I 0) I r•I 0 0 i( iE I 0) 1 r•I 0 0 {!• � {p a 1 � 1 � Z Z iF a � iF I �o 1 �- Z Z ih 0 I O I =) 0 0 * 0 O 1 M 0 0 �r z* I Z I Oa a z* Z I Oaa a' 4J >a L m 0 w LD 0 J U 1 M a H 0 3 N I E 3 0 1 0 a m V. E r-I-I C-) I .LL 1 'r-I 4- 1 I X iJ I I m 3 I I X: 0 1 1 1 1 1 1 1 i X a) c i In a0 1 M V •ri 1 CD CD 1 c E 1 1 aJ 1 N N 1 4- L L 1 CD 1 O L L 1 1 � 1 m m I E V> i 1 •rl 0 f0 1 1 1 1 1 1 I 4-J X 4J r-I i 01 1D •3 M r� 0a u 7 i 1 I M E iJ 1 N M 1 a LL I C 1 4-0 •rj Q) 1 � ^ 1 I O 1 d oc Q) 1 In 1 . 1 U 1 a) LL 1 1 1 I 0 3 1 m 1. I 4J i O 1 1 E w M 1 a In VI I . ri I 1 7 E }J 1 O N Q) I C W I 1 E 0 W 1 c.{ t 1 •ri' m 1 1 -r-I r-I 1 00 1 I 1 X O m I m •rl 1 1 1 M> m 1 r-I r-I .0 : s 3 N I L00 n N }J 1 M O Q) 1 Ln a 1 1 I •rl L LL I I 1 O 1 m 1 1 In 1 Q) 1 1 r-I }J LA I a) CD Q 1 > 1 1 •ri C (A 1 QJ 0 1 X O 1 I V O I to 4J 1 M M 1 I X d J 1 IQ I Q I 1 w 1 d t 1 1 1 ['L {J 0 I m m {J 1 1 1 M C VI I 1 1 I > u O 1 1 1 m m 1 w d J 1 O I W 1 1 M I VI L 1 ^ ^ I OO }J r-I 1 rn Ln m 1 L M 1 a s 1 > C r-I I ^ r-1 1 7 L t I Q V 7 1 IA I O u 1 1 d LL I QJ 1 = L 1 1 1 {A 1 7 1 1 1 •rl 1. � 1 1 � I L 1 I 1 1 1 1 1 (J Q) M 1 W 00 L I I 1 OO E 4 J 1 In r-I (v I I w w I M 7 4- I a ei +J L r-I 1 M I I Q Q 1 aJ O m I ON M 3 I 1 1 >> 0 I 1 a100 IQ mi c 1 T 1 I 1 iF T iF a) 1 F 1 (A VI jF C- m iE 3 1 I iE L iF a) iF m iF 1 1 lF E iE I I iF N iF 'a iF E it 1 1 * E IA 1 1 jF E iF O !E E IF I I iE 3 iE L 1 I iF E iF O '11' 7 iF 1 I iE V1 iE 7 I 1 iF 7* r-I iF In IF I 1 iF iE u 1 I jF N* 4- {( {( I 1 'iF a) iE u I t it iF t Ql it I I iE W iE O I I iF W iF a) ik E iF 1 I -IE L iE I I iF c iF L it 7* 1 a..J 1 iE m 3F 00 1 1 iF •rl iF a) it r-I * 1 •ri I iE L iE C I I iF iE 3 it O iF 1 c I iE V iE -r-I I- I iF O iE iF > iF 1 M I iE L iE OD I I iE O K VI ii it 1 iF 7 iF L 1 1 iE ri iE () iE a) iE 1 a) 1 iE to iE m 1 1 {1. LL iF 'a is OQ iF 1 00 1 L I I ma * * O Ia* 1 M I ma iE aJ iE u I a) 10 0 iF a) iE C iF L iF 1 L 1 O 0 iF 'a it L 1 1 Z Z iE •O iE iF O iE 1 O I Z Z it O* 3 1 0 1 00 iF O iF O iE 4J iF 1 4J 1 00 * z* LA I Z 1 a a * z* z In N I a a }1 a L m O ul l7 l7 0 J U H a N 0 E 3 (n . 1 \ r-I t I m I X r-I .4J 1 m I M :3 a I LL m 0 ; 1 1 I 1 I X r-I O I X I f0 r-I 1 I L LL � LL I I I I 1 I 1 1 E v I 1 7 V I 1 r-I (U r-I I m 1 m 1 E O V1 I 1 M E M 1 O 1 0) r-I \ I N>q Or -I 0 W CD CD I >< I I I I 1 1 I I X G/ C I V1 m OD - 1 1 1 1 m u •rq 1 m W W C E I 1 1 1 1 Q) •- 1 N m N 1 X 3 to 1 [r I [t I q- L L 1 m m m 1 M O LL I (Q I (Q 1 O L L I 1 g r-I U I . I 1 LL 1 M 1 M 1 4J V to 1 m m m 1 1 1 I E u >% 1 I I 1 I •ri 0 M I 1 1 I 1 1 i i E — LA (O m - 1 3 LA I I Qj I 7 3 LL I m m m 1 LL > O LL I N N N I E O U 1 • a v •X 1 LL I m 1 CD 1 LL 1 1 1 1 I (6 1 1 1 1 I 1 1 1 1 I 1 1 I I I I i 3 6 }J i M i O) 1 O W C I C 1CD 1 1 I r-I L V I 1 I N I w * >> I LL LL d 1 N 1 N I a I H iF L * >> * 1 1 V1 I V1 I >> 1 W =D =3 * (6 Ln * V1OD # aQ * 1 1 1 * (6 * 1 1 * L iE C* I I I * E* 1 I * fp * •ri * 1 I I * E* I 1 � * t* {(� (6 W * L * O iE 1 O I I * * I 13 iE O iE {( J Z 1 1 * 3 * I 1 } * (A * ri * 1 ei 1 I * 1-•i * I 1 Z m Q * 4 J * r-I * 1 r-I 1 I E * LL* I 1 W * -r-I * m * t -M I 1 QJ * iF 1 I (') W W * : * 4- * 1 q- I ri 1 iJ W J J ,* •O {f 4J * 1 {J 1 H I N * C* I C I W H H iF 3* I 3 I M I >j * •rl * 1 •rl I f m m * O * 0* I 0 I 0 1 Ln * J* 1 J I u1 0 0 * U A TW N OA a. 1 1 1 1 1 1 1 1 1 +-) Ca. L m 0 W l7 O J U i H a O E 3 LA Lo to H rq. N N n n m m n n m m 00 00 Ln L m -H •ri H L L L V LL LL V L 7 to N C C E N O O •ri L 4J uJ c 'a OA O ai LA v c Ln m v m Ln Ln r-i •ri •ri N c Ln Ln O V ri ri M ° O z a a F - Im N 00 m a m I m , . * L Ln I * m fl * * ++ 4JA L V1 * O CL 03 0 , * N E Q * 4+ 4J * m m VI to * m m In I * L m a) * m m * ++ C E* m m Z , * O -r-I O- , * •-I 4J * m N W , * 'D 4-)C ko , * a) 7 -r-I * r-I ri > * >,a+J* CD u * N E L* N N m m m a) * r-I 0 0* w I I m m m M * a u M. * Z> to I� J I * V1 a) * O Q N N r-I r-I m m w, * -r-I >% L* F 3 I I m m m m 0, * a L * IA' V) 0 W Z m Ca m •• •• •• 0 * (1)t* LL LU000LU0001- LU w •mmr-I LA E > V } Z Z Z} Z Z S ]L LL LL m m m m ri i * V N* Z , * 4J LU , * A Io E * -r-I O W I * i-) 'D L M C Q , * 4J 7 Z , * IA O IA * -0 -0 to i * >% r4 4- .. . 'a t t Ip Q * L VI 7 * * IA * 4- a) +J 4J 0 0. (1) * M 4-) IA * * c * O . . . 3 >, a) a) Q) ++ w , * E ri a) * * O * In c m O +-) X: X: >, ++ In H I * E 7 L * * •ri * ri 7 • L C ri -r-I a) • L (A Cl Q Q , * :3 IA * * }.r * () W • () •rl ri ri C M +) 0 a) a) a) 3 , * IA a) C * * lZ * v \ • +) +) Q M O C M a) a) +) +) E * L O * * 0 * IA O ri • }r M 7 7 -r-I -r-I 0 {.r }+ E V1 V1 •ri * a) * * * 4-J X r-I • r-i 3 O CW d ++ 4-+ M C -r-I H C 4-) * * VI * -r-I M • a) 'a W C m 7 00 0 a) H a) a) O I * H O IA * * -r-I * C A 4- E C -r-I L L O C 'D E E OD H , * 7 * * V) * M IA C H 3 7 3 'a C) ++ a' -r-I W () ++ •rl •ri C 0 , * • • V •m * * * a) 'r-I H O O O C }I ri +.+ C u L F- F- •rl * UJ () * * ri * 3 u M 0 C L r-I O to -r-I 3 L -r-I a) O +-) Q, * H of i-r * * M* O O W Cr N l7 LL a 3 4- O M-0 4J a ++ >% 3 a , * 0 m O* * c* r-I L c ri +j C c a) a) L O w I - * Z.0 C* * Q* LL M H LL IA w Q 2 3 0 K r-I 4J m L W l7 O J ' U Ln m m E 3 N L VI i M m Lf1 00 V1 - a) ri � f9 M m <9 (9 rl m m f9 m N ++ a) i N m 00 N %D E M i 0 W 0 0 0 M 0 0 0 0 N a t N 0 0 .•-1 m � OD G fn m m 0 N m m m m m a) u i . . . . . . . . . . . . . . . . 0 C m m Tt CD O W I m m m m m m m m m m m < ' (D i W 4J M0WMWkD a)+J I WLnmCS) CS) fnmmmmCS) N E a) W 0 In r1 rl rl 6 a) IOJ rl m m m 01 m m m m N CF w N 0 ri ri 0 ri m ri m m m fb m m m m N ri r1 i i 0 rl m m rl m m O m r-I. m m m m m m m m m m a) N i L i L i M fD * +) * C * * •rl * * C * C • oae * O * O v * U * • VI : : ' •C. J * +i * C O OD W * * a M L a In :3 * 4- * L {-i V c * q * ri O r-I f0 r-I •ri * O * f0 C. •rl 4- f0 ++ * O> C 7 H O * W* H W H In LL U * * * * * * T* * +i * •rl * 3 3 3 ri E * C * r-I r-i r-I 3 • VI Vl > r-I L * O* 4- 4- 4- • 3 O • Vt O O O C C C O r-I O J' L * * H H H r-I 4- Vl J a) L * OA * L. L L 3 C 7 W 0 C O O (D * •ri * a) a) (1) O H O J O •r1 +-) L T * 4J * L L ++ r-I -r-I ++ In O +J * 3 * +J iJ fO 4- r-I ri MO +J M ++ -rl * O* fa m 3 c m f0 c m L ri (A 7 * OC * a) a) '0 H C C -rl L +J f0 c * * 3 3 C L L'0 O r-I •ri r-I •r1 * 3 * M H a) a) O Cl -r-I ++ fa +J * O* T++ O H+++J O fa4--rl C C * r•i * L a) L 0 X X r-I > X C -r-I O * LL* 0 3 l7 w W W LL W W H W U v OD fD a iJ a L W l7 O J Ln 0: } m m E 3 Vt u v v a) a) a) .•Z.•z.•z.•Z.1 W tnmmm.Im H H H a1 it L iF it Lit VI E it N it a) it E it it E it +) L 00 it = it iF E iF m a) C iF Ln iF Na 00 i*t q- i*t iF iE N L it q- it it a it a a a >% c (1) it O it it Nit a) () a) v O > it c it it 4- it ++ 4J ++ to •ri C it it it Ln iE Vt to Vt () +) O it wit it it ++ m v it it it a) it (1) 0) a) to L it 4J it it E it E E E d 4J it c it iF •ri it •ri •ri •ri c +1 O it a) iF iE Hit F- F- F- •ri H Z it E iF it it it t iF iE O0 it E a) E 4-) () 4J it V it iE c * 7 OU 7 c 00 c iF }i iF iE •ri * E M E 0) M 0) iF m iF iE 4J iE •ri L •ri V L V iF U it iE 7 iE C a) X L a) L iF it iE O it •ri. > m a) > a) iF 7 it it wit Q X: a Q • a it to it .hL 4- Ln N t0 V1 m t} t.L i N m N a u c 4 4 to 7 rl N CG i i i r-i 4- r•I Ict ei N m ++ O O0 i O F- 3 %D i < i (!D , i i i ri 4- lf1 rl e-I M 4- •ri i Ol M 00 +) O O c I m 14 rn o: ri r• _ C i 00 Ol N (6 •ri •ri ^ M O) 4J 4- , i i t0 m •rl m m m i-) > i M O W m m m F- a) i OA m a H c c m m m t0 O •ri m m m 4J c O 3 m m m i i i tO ri n n u F- L a i i i i i r i 4-) i i c � aJ i E m u 4J Cf c tea) 0 i Vl 00 V) 0) i :3 O w V m m . }J Q L 0 W LD 0 0 J U cc } m CD L!1 E 3 Ln m ON r` m 3 W L �-J 1 m n N I� C L a i m m a^ -I LL JO L V 1 r-i W L I m m m 1 m a 1 I 1 1 1 1 1 ri 3 aJ ri i ei m I� N 4J rOi 7 W 1 N a -I 1 O 1+ ri 1 1 M L 4J 1 m M n 1 H C O 0 I m m m 1 al }J (V 1 W m 00 I H > < I J +J 0. a) 1 1 m 1 1 L W W 1 0 a LO I r-1 I 1 0 0 1 I I 1 Q 1 I I J a X 1 I I ri 3 a/ ri i Ln m LD 1 I 1 L rOi � OD I ri N 1 X W C 1 m m Ln 1 4J C 0tD 1 . W CD 1 LO U •r1 1 m In 1 m H > < 1 m 1 C E 1 1 J m 1 1 (V 1 m�4 rq 1 H 1 1 J} L L 1 1 1 1 O L C 1 1 1 1 w U N 1 000 1 1 1 E U i1 1 1 X W C I. Ln m m I •rl O LO I I M U •ri I Q Q -4 1 1 C E I I 1 i a) 1 e 4 r-I e 4 • 1 1 J} L L 1. m m m I E J 4J J m M M O L L 1 1 = (p a) 1 m N m 1 1 I E i O) I i W U Ln 1 m m m 1 •H W I m r•I m 1 E U 1 X I r-I N N 1 ri 0 m 1 1 I Ln Ln Ln I 1 I 1 1 E ri 3 In 1 N N I E t 4J 1 m Mr� - 1 = m O LL 1 m N Ln I 3 4-J W I D 00 00 1 E 4J H U I E a W I 1 •r1 O 4 I Ln I •ri al W 1 m Q LQ I X F- C I P•1 P•1 N X 0 1 1 (0 H 1 1 I I E ri 3 Ln 1 Ln N %D 1 a) L {.J I m Ln LD I = M O LL I N N m 1 OO }J y I m m Ln I E L ri U 1 m a w 1 -HaJ 4- I Ln I L W LL I LD Ct rl I X 4-J C 1 ei N I W 0 I I LO 19 H I 1 > 1 J 1 1 Q 1 1 1 1 1 1 1 I I I 1 I 1 1 I J W W 1 I 1 I J W W I 1 J (4' (7 1 1 J (j (j 1 I a) I o_ 1 LL ¢ F-00 1 J (U Q. 1 W J F-00 I T 1 0 F- 1— I T 1 M H F 1 H I O to Ln I H 1 0 N N I 1 I 1 I I 6 1 1 ih >1 jF 1 1 iE iF I 1 iE L iF L iF 1 I jF m i(• I I iF m il• 1 I iE E dE I 1 iF E iE 1 I j( E iE I {1• E {(• � {(. 1 1 iE iE � 1 {1. {(• 1 1 •* 3 iE I 1 iF a is 1 i( 4- it 1 iF 0 * I i iF H iE 1 I {p y 11 1 N 1 H D O * a) aE 1 (U 1 ri 0 0 * O )( I 1 H z Z * 'O * I ' 1 H Z Z O I O 1000 * 0 I 0 1'000 * z I z 100.C>. * z I z 10a0. a) OD N a +J a L w L, l7 0 J U 1 m CD LA 3 LA I E 3 N 1'CT 0 1 7 0 LL 1 M a i 1 E r-I U 1 1 -r-I 4 1 N N - 1 X iJ 1 m = 1 I X: 0 1 1 1 1 1 i 1 X N C i (D Ln 1 m LJ •ri I Ln [f C E I 1 aJ 1 r-I r-I L- L L I m m O L t 1 1 � 1 1 al V N 1 m m i •H O m 1 I 1 i I 1 1 +•I X +•J r-I n •r{ I m C r i I cn O) 7 I V 7 1 1 t E +, I Lb I a LL I C 1 �J -r-I (1) 1 m M M I I' 0 1 Q K aJ 1 r-I r-I I I V 1 aJ LL I I I 1 Q 3 1 m m 1 1 +.J I 0 1 1 E aJ M 1 W to I r q I 1 7 E +J 1 r-I 0 1 C W I I E 7 L}• 1 r-{ aO L I -r-I m I 1 -r-I r-L 1 OD 1 '1 I X O m I N M •rl I I 1 m> m 1 r-I r•{ 1 I 1 ci 1 L i t 3 W i M LSO +J 1 UD 0 (U 1 0000 I 1 1 -r-IL LL 1 1 1 4- I a) U 1 Lp 1 1 O I S 1 1 1 1 aJ 1 I r-I +J o I m m Q 1 •> I 1 •ri C 0 1 O I X O I 1 4- u 0 1 4J 1 m M I 1 X a —i 1 I Q I 1 w 1 1 1 1 1 I 1 1 O_ {J 0 1 m m +J 1 1 I m c to 1 1 1 1 > u 0 I aJ 1 a I- m m 1 w d _J 1 > I aJ 1 m m 1 1 O I M 1 1 1 M I In L 1 ^^ 1 W }J r-II M W m I L m I ct R 1 > C ri I r, r-I 1 7 L 1 I Q u I In I O V I I d LL 1 1 = L 1 1 1 h 1 3 1 1 1 ri I Ln 1 I 1 L I I 1 1 1 1 1 WW M 1 0) W L 1 1 I dO E i-J 1 M m aJ I I w w I m 7 4 I M M +•J L r-i 1 M 1 1 Q Q I W O m I ON M 3 I aJ 1 Gr I >> m 1 I 06100 IQ m1 C I T 1 I-- L m* 3 1 {I L a) m* I I E iF 1 i( m iE 'a iE E iF 1 I E dF of I 1 iF E* 0 * E* I 7 1F L i 1 j(• E ih 0 •IE 7* 1 I N iF 7 I 1 aE 3 iE r-I iE Ln 3E 1 I •k u 1 1 •H• LA it 4- it iF I I aJ iF u I is iE iE aJ iE 1 I OD * 0 1 1 •1E lla -0E aJ iE E •M' 1 I L* 1 1 iE c iE L iF 7 iE 1 }J 1 m 1F UO 1 1 iE •ri 'JE aJ iF r-I iE I •ri I t* c 1 * iF 3 * O.* 1 c 1 u iF ri 1 * 0 iF iF > * I O I L iF OD I % 0 iE In * u I I 7 i! L 1 I io r-I iE aJ iF aJ iE 1 aJ 1 LA i! m 1 I 9t LL i(• -0 i!• UA iF 1 OD I iF L 1 I m Q i! iF 0 iF m iF 1 m 1 m Q aJ iF V 1 aJ I cc * aJ iF C iF L iE 1. L I 00 'O iF L I �. I Z Z iE � i► iF 0 iE I 0 I Z Z 0* :31 O 100 * O* 0 * iJ 1L 1 +.J 1 00 z 0 1 Z I M a ±6 z iF z * Ln Ln I a LL yal w to m a i X r-ii iJ I m m 1 M : a 1 LL m m i Q; 1 1 1 1 X r-I O 1 1 fa M r-I 1 I LL LL 1 1 1 1 1 1 1 1 1 1 E V 1 I r-i of r-4 I H 1 H 1 E O 0 I 1 m E m 1 a 1 q% I -r-I r-I 1 I 1 iJ 7 t I N I N 1 X (L) i..1 1 I O ri I . 1 . 1 m>4- I 1 j— O kO 1 m 1 CD 1 1 I > I 1 1 1 (,IS) 1 1 1 1 1 I I I X W C 1 m Ln m Ln u,amv i C•E L i X 3 VI i Q I Q 14- L i m m m m 1 M O LL I m I m I O L L 1 1 E r-I U I I I 3 1 1 LL I Ln I I V 0 1 m m m m 1 I r-I I r-I 1 E V >i 1 1 1 1 I •ri O N I 1 1 1 1 1 E I Ca 3 to I N 1 N 1 = 3 LL I m m 0 V1 1 > O LL 1 I I E O U I 1 Q r-I U I I 1 'r-I r-I I N t"i e9 m 1 LL I CD I 1 X LL I r-I 1 I I t (a I 1 I 1 1 1 1 I I 1 1 1 I 1 1 1 I 1 1 I 1 1 ' I O a) C 1 r-I 1 ei 1 I I LLLL 0. 1 1 ;t I Q I N N iE L iF iE >1 ip 1 I Ln I Ln 1 >> 1 w w M •N• m iF iF L iF I 1 1 1 H 1 3 3 cc iF E it iE fa iE E '%• 1 1 1 if• iF 1 I i4 iF iE E •% 1 1 I iF iF 1 1 ih to iE iE 3 iE 1 I 1 ih iE i 1 i(• iF ipLniF 1 1 I ih >� if 1 1 ih iF {( {(• 1 1 1 iE L iF 1 1 ih as iE iF Oa iE 1 1 1 . iF m iE 1 1 it L ih iF C iF 1 1 1 ih E if- 1 1 m Q iF m iF iF •ri iE 1 1 1 ih E iF 1 1 OC OC if L if iF 'a iE 1 aJ 1 1 ih 7 •M• 1 1 H H 11• U iF iF m iE 1 -0 1 1 ih LA iE 1 1 u1 u1 iF L iF iF O iE 1 O 1 1 iE iF 1 I ih 3 iF iE iE 1 Z 1 1 ih 3 iF 1 I i1• V1 iF iE iE I I I ih O it I 1 U U i1• iF iE ri iF 1 1-i 1 I iE r-I iE 1 I Z Z e0 Q it 41 iF ip ri iF 1 ri 1 I E if• LL iF 1 I w w H H iE •ri iE iF f0 iE 1 (a 1 I a: iF iF 1 1 10 kD w w iE iE iF 4- iE 1 4- 1 N 1 {J ih -he * 1 Y I W W J J iF v •IF iF iJ iF 1 iJ I f- I Ln iE C * 1 C I w w f- f- iE C * iF 7 iE 1 7 I =) I >> iE •ri * I •r1 I X: E D =) •)I• O iF iF 0* 1 0 1 0 1 LA iE —i* 1 - J I w w 0 0 ih U* r N L L m L U L 7 VI OJ L O1 3 tn 4J c O U O Z 00 00 m m m m N N r-I V-1 CD m }i }i U U U G/ O O VI •r1 -r-I r-I L L LL I1 V N C C E O O •r1 C 4j (V O N OJ C VI m VI 0 r-I •r1 -r-I ar Vt Vt T T r-I r-I r-I m Q Q ~ m ,.P V 1 i 1 1 t 1 . 1 NorthernEngineering.com // 970.221.4158 t..l=l Tw ctlrwx ' ■VINORTHERN ENGINEERING I I The Overlook A comprehensive Erosion and Sediment Control Plan (along with associated details) will be included with the final construction drawings. It should be noted, however, that any such Erosion and Sediment Control Plan serves only as a general guide to the Contractor. Staging and/or phasing of the BMPs depicted, and additional or different BMPs from those included may be necessary during construction, or as required by the authorities having jurisdiction. It shall be the responsibility of the Contractor to ensure erosion control measures are properly maintained and followed. The Erosion and Sediment Control Plan is intended to be a living document, constantly adapting to site conditions and needs. The Contractor shall update the location of BMPs as they are installed, removed or modified in conjunction with construction activities. It is imperative to appropriately reflect the current site conditions at all times. The Erosion and Sediment Control Plan shall address both temporary measures to be implemented during construction, as well as permanent erosion control protection. Best Management Practices from the Volume 3, Chapter 7 — Construction BMPs will be utilized. Measures may include, but are not limited to, silt fencing along the disturbed perimeter, gutter protection in the adjacent roadways and inlet protection at existing and proposed storm inlets. Vehicle tracking control pads, spill containment and clean-up procedures, designated concrete washout areas, dumpsters, and job site restrooms shall also be provided by the Contractor. ' Grading and Erosion Control Notes can be found on Sheet CS2 of the Utility Plans. The Utility Plans at final design will also contain a full-size Erosion Control Plan as well as a separate sheet dedicated to Erosion Control.Details. In addition to this report and the referenced plan sheets, the Contractor shall be aware of, and adhere to, the applicable requirements outlined in any existing Development Agreement(s) of record, as well as the Development Agreement, to be recorded prior to issuance of the Development Construction Permit. Also, the Site Contractor for this project will be required to secure a Stormwater Construction General Permit from the Colorado Department of ' Public Health and Environment (CDPHE), Water Quality Control Division — Stormwater Program, before commencing any earth disturbing activities. Prior to securing said permit, the Site Contractor shall develop a comprehensive StormWater Management Plan (SWMP) pursuant to CDPHE ' requirements and guidelines. The SWMP will further describe and document the ongoing activities, inspections, and maintenance of construction BMPs. 1 ' Preliminary Erosion Control Report I 1 t ' NorthernEngineering.com // 970.221.4158 I I Ll PROPOSED LID COMPUTATIONS Project: The Overlook Calculations By: S. Thomas Date: October 7, 2016 PROPOSED LID TREATED AREA LID BASIN NODE Sub-Basin(s) Area, A (sfl Percent Impervious Impervious Area, A (sfl UD Rain Garden WQCV Required (Cfl Rain Garden WQCV Provided (cfl Ll A4 9,646 87% 8,414 Total Ll 9,646 87% 8,414 342 355 L2 Al 23,900 90% 21,431 Total L2 23,900 90% 21,431 640 750 L3 A3 19,495 93% 18,105 A2 4,337 10% 445 Total L3 23,832 78% .18,549 502 578 L4 131 14,054 46% 6,463 B2 11,676 901 10,508 Total L4 25,730 66% 16 972 443 555 Total Treated 83,108 79% 65,366 1,927 2,238 PROPOSED LID UNTREATED AREA LID BASIN NODE Sub-Basin(s) Area, A (sfl Percent Impervious Impervious Area, A (sfl A5 4,511 81% 3,676 A6 7,798 86% 6,673 A7 6,773 3% 186 B3 4,803 75% 3,594 B4 4,834 76% 3,651 B5 10,285 5% 510 UD2 1,788 13% 225 UD3 4,216 8% 357 UD4 12,769 68% 8,718 UDl 1,133 0% 0 UD5 1,241 0% 0 Total Proposed U ntreated 60,151 46% 27,590 H1 9,932 86% 8,542 Total Existing Untreated 9,932 86% 8,542 LID TREATMENT SUMMARY Total Site Area (sfl 143,259 Total Existing Impervious Area (sfl 8,542 Total Proposed Impervious Area (sfl 92,956 Total Net Proposed Impervious Area (sfl 84,414 75`Y° Required Minimum Area to be Treated by LID measures (sfl 63,311 Rain Garden Treatment Total Volume Required (cfl 1,927 Total Volume Provided (cfl 2,238 Area treated by Rain Gardens (sfl 65 366 Total Treated Impervious Area (sfl Percent Impervious Treated by LIDmeasures 7% f 11 1 1 \ I ----------------- i — —1— — 1 E� 1 .I I ME, 1 1 1 1 1 1 1 1 i 1 r \ 1 1 MJ y MJ1- \ I / I / I / \ 1 / I I / STRAGIAN / I I CONaNGMALPUD 1 � / I 01111OtICIR00LLMNJLE 1 1 LAlYVL11Y00 1 I I I 1 I / 1 I II 1 \ I r/ \ / // /• _ _ ANY )Fr _ • v JOHN F. KENNtDY PARKWAY it vv I `\ Lalongwry \\ 1 I \ \ 'I FIRST COMMUNITY BANK PLAZA 1 \ \ I I {; TOYS-RUS WESTERN OWNER. FOX KXN rl.vn uc / 1 ♦ I I �/ AUTO PUD \ \ 11\Ji � / / I t wvNEawa)o eN*ewRRiJ M: I I �i I LEGEND: INgg9L�Cd1iqIN �y� Ex4911XO1'dIWP 'nll RIpVENry NgWOWY — — — LNe 51N VXWMy ■�������E VI1q+1191O91diM gNtN � uwawce NEfiw mmnu A 1M m .1. wvgN n m I wcw -m FEEL a m x LU Z Y w O O d. J 0 of J w W > > O Lu w d 0 LID I I 1 I 1 L1 I 1 INorthernEngineering.com // 970.221.41SO I CORNED CONSUITINCI COMPANYpo.lxnhdf? (iO3),IV-1WA)W MAWOWNI/f 14W[RINq March 3, 1980 Mr. Bob Smith Assistant City Engineer - Drainage City -of Fort Collins, P.O. Box 580 Fort Collins, Colorado 80522 Dear Bob: We are pleased to submit -this supplemental storm. drainage report for The Fort Collins National Bank P.U.D.. Construction plans based on the hydro- logical analysis presented here are to be submitted•by others. The storm drainage analysis represented by this report was completed in main part by Bill Blackwell, E.I.T., and reviewed by Harry A. Cornell, P.E.. This analysis of storm drainage at the Fort. Collins National Bank P.U.D. is,.to the best of our knowledge, in compliance with the Preliminary Draft Storm Drainage Design C,H teria for the City of Fort Collins dated April 1979• We hope this report aids you in your review_of storm drainage at this site. Sincerely, CORNELL CONSULTING COMPANY a Bill Blackwell Senior Design Engineer Harry A. Cornell, P.E. President BB: HAC/sI Enclosures TABLE OF CONTENTS SCOPE 1 ' BASIN ANALYSIS METHODS AND ASSUMPTIONS 3 ' 4 CONCLUSIONS ' APPENDIX A b B Fold -Out Drawing 1 - 1 1_ SCOPE The purpose of this report is to present the analys.is, assumptions ' and final results of the storm drainage study performed for the Fort Collins National Bank P.U.D.. The site is a ten acre tract of land zoned BP and located in .the northwest quarter of Section 36, Township•7 north, 1 Range 69 west, of the Sixth Principal Meridian. Proposed usage on the site is a drive -up banking facility and a cluster of small commercial ' units. This Report addresses storm drainage related conditions both upstream ' and downstream of the property. It also presents the detention volumes, ' release rates, general location of detention ponds and general storm water routing required at the site. ' The construction plans showing channels, culverts, release structures and detailed grading have been awarded to M. 6 I.Consulting :Engineers. 1 As a result, final designs for these items are not included in this report. 1 BASIN ANALYSIS Location: The site is located approximately 1000 feet upstream from' 1 the western edge of Warren Reservior. Local topography is such that Warren, Reservior is the only feasible ultimate release point for storm water. ' This office has met with Glen Johnson and Gifford Preston of the Warren ' Lake Reservior Company. On their request the release rates from the property have been set at 75% of the historic.2-year event. The ability of War.ren 1 Reservior to pass this storm water'wiII be discussed later. Refer_ to Appendix B (24 x 36 drawing) for a sketch of the sub -basin. ' Upstream conditions: With the exception of commercial strip development along College Avenue the upstream area is presently undeveloped.- Future use 1 -1 n 1 I C C based on zoning indicates a majority of the land will become commercial development with.the remainder being a planned residential zone. ' There is approximately 37 acres upstream of the site; 25 acres upstream and 12 acres downstream of the existing Larimer County Canal No. 2. The western and southern boundaries of the basin shown' on the referenced sketch are high points creating the basin limits. The northern boundary; the centerline of Horsetooth Road, was selected as water flowing into Horsetooth from the north does not 'affect the bank site. Our hydraulic calculation's indicate that the upstream flows from. all 37 acres would be 7.8 cfs for a 2-year storm and 28.5 cfs for a 1.00-year storm. Based on a "C" factor of 0.2, these flows reflect the allowable release rate after development is complete and 100-year runoff in the present condition, respectively. Due to a considerable fall to the north, it.appears that all upstream lands have several options available for release points of the storm runoff. In the absence of a master storm drainage plan for this area it is impossible to predict the amount of flow that will be routed through the bank site. Since the proposed release rates (totaling 1.95 cfs) from the site will not fill the minimum storm culvert required by the design criteria, the remaining capacity allows a buffer for eventual acceptance of upstream detention release. Some off -site storm runoff - can be anticipated to enter the project site from JFK Parkway. This runoff can be routed through the project detention ponds and passed offsite. Measures shall be made to limit storm runoff from flowing down JFK Parkway to Horsetooth Road. •. Downstream Conditions: Two possible rputes deliver storm water tc Warren Reservoir. Storm water may be released into Horsetooth Road', or through the Wharf. Discharge through the Wharf is considered superior .as it would mitigate the nuisance flow in Horsetooth Road. and Landings Drive. Storm water would pass from the Wharf detention pond under Landings Drive and into an open ditch leading to Warren Reservoir. We have indicated to Warren Lake Reservoir Company that we would pass water -2- G I 1 1 1 1 i 1 1 1 1 11 1 1 1 1 1 1 USDA United States Department of Agriculture MRCS Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Larimer County Area, Colorado 1 August 5, 2016 I i i 1 Preface 1 Soil surveys contain information that affects land use planning in survey areas. They 1 highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, 1 community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. i Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on 1 various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area 1 planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nres.usda.govtwps/portal/ 1 nres/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http:// offices.sc.egov.usda.gov/locator/app?agency=nres) or your NRCS State Soil Scientist (http://www.nres.usda.govtwps/portal/nres/detail/soils/contactus/? ' 1 cid=nres142p2_053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic ' tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department 1 of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation 1 Service (NRCS)' has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available ' through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual ' orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means 1 1 for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. K I 1 1 1 1 Contents Preface....................................................................................................................2 1 How Soil Surveys Are Made..................................................................................5 SoilMap..................................................................................................................7 SoilMap................................................................................................................8 Legend..................................................................................................................9 Map Unit Legend................................................................................................10 1 Map Unit Descriptions- ........................................:.............................................10 Larimer County Area, Colorado.................................................I.....................12 1 89—Renohill clay loam, 0 to 3 percent slopes............................................12 90—Renohill clay loam, 3 to 9 percent slopes............................................13 References............................................................................................................15 i 1 1 i i J 1 1 i 4 1 i How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and ' their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of ' the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated.material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other ' living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share ' common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landforrn or with a segment of the landforrn. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable ' degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. ' Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil -vegetation -landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They ' noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). ' Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic ' classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the ' Custom Soil Resource Report individual soils with similar soils in the same taxonomic class in other areas so that ' they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of ' the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of ' resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. ' The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil - landscape model and predictions and to verify the classification of the soils at specific ' locations. Once the soil -landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to ' bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field -observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are ' modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop ' yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such ' variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a ' high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and ' identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil ' map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. 1 [1 7 40' 321TN 40° 375'N Custom Soil Resource Report n Soil Map g RF b ti a 493710 493740 493770 4938M 493830 3 y Map Scale: 1:1,240 M purled on A pwtrA (B.5' x IV J 9iect. N MeieYs 0 15 30 60et 90 A 0 50 100 200 3D0 Map pmlecbm: Web Mefmtor Caner mad ales: WGSB4 Edge tics: LT M Zane 13N vA S 8 493860 g 401 3Y :T N Y gn i gn 2 e 40° 32' S N 4938% 3 b Cf Q N Nm O N N N N y � Lo > do E N m Comm m m 3c m U > O>�� p Cp � d�pp C U CL N y J C U U E m O u ErnET cc, y U p a cli N � Z ,§ m m AoMto p E $ O d0N OE cN n ¢ Q N 3 E m N Z ttl N Z UO E N _� C E tau E O N w m J J a m N m (N(pp c W a cy N o c Eo m m £ c U) 8 tm ala y0J t' o Z ma ° �m Eo N E a O c O O c �vpc 8 —L° m tntudap 0 Ep N a00 d E u m m °� H£H� 3 —Zo vn v : o cm m> p 0 o 3 n ate£ SQ 10 E O a> a Z 7 �oya�Qj L d¢ O« a d N J cc N o N CO . ` £ a m Ol E m E C L m £ m T« 4) m m 3 L `1 N C~ C m J V m m p m« N m ¢ N E m Z O C `�, J C m N d £ 3 C m N �j 9 m L C a N o Emd� _T �m `o= 0 ocomga DO 2Q a� m sv� ,y 5 rn�E£ tuJ �inE yi�cLn 10 nazi c'nm E�' N 0 a 0 yE L m mJciN E N m '0 tb d p d p a°?�m� m O N L H> L y —Z O J _m O— m� m 0 a�Em L f- wEaN dE to'SU avQp H£ (nm too N HuE N m m a LD C c 2 a a C J w y w m O O L K 0Y a `o z m c W C w i 0 m W J N Q ¢ C � 5 N w C CO w W p N a a° y E 3 m $ a c c c L o 3 Q w n we m ¢ O fn O O fn u) O O O m m w O N U U U w A {{>pp (� J J a N co N N N N m a _a o S m o ¢ N J J 1 0 1] n 1 1 Custom Soil Resource Report Map Unit Legend Larimer County Area, Colorado (C0644) Map Unit symbol Map Unit Name Acres In AOI Percent of AOI 89 Renohlll day loam, 0 to 3 percent slopes 0.6 21.0% 90 Renohlll day loam, 3 to 9 percent slopes 2.3 79.0% Totals for Area of Interest 3.0 100.0% Map Unit Descriptions The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landfomt segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If 10 [1 Custom Soil Resource Report intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha -Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha, Beta association, 0 to 2 percent slopes, is an example. ' An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of ' the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. I^ I 1 0 7J Custom Soil Resource Report Larimer County Area, Colorado 89—Renohill clay loam, 0 to 3 percent slopes Map Unit Setting National map unit symbol. jpy5 Elevation: 4,800 to 5,600 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost -free period: 135 to 150 days Farmland classification: Farmland of statewide importance Map Unit Composition Renohill and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transacts of the mapunit. Description of Renohill Setting Landform position (three-dimensional): Side slope Down -slope shape: Linear Across -slope shape: Linear Parent material: Material weathered from sandstone and shale Typical profile H1- 0 to 7 inches: clay loam H2 - 7 to 19 inches: clay loam, clay H2 - 7 to 19 inches. clay loam H3 - 19 to 29 inches: unweathered bedrock H4 - 29 to 33 inches: Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: 20 to 40 inches to paralithic bedrock Natural drainage class: Well drained Runoff class. High Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: More than 80 inches Frequency of flooding. None Frequency of ponding: None Calcium carbonate, maximum in profile: 15 percent Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Available water storage in profile: Moderate (about 6.9 inches) Interpretive groups Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Minor Components Ulm Percent of map unit: 8 percent 12 Custom Soil Resource Report Heldt Percent of map unit: 4 percent Midway ' Percent of map unit. 3 percent 90—Renohill clay loam, 3 to 9 percent slopes Map Unit Setting National map unit symbol. jpy7 Elevation: 4,800 to 5,600 feet ' Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F t Frost -free period. 135 to 150 days Farmland classification: Not prime farmland Map Unit Composition Renohill and similar soils: 85 percent ' Minor components. 15 percent Estimates are based on observations, descriptions, and transacts of the mapunit. ' Description of Renohill Setting ' Landform position (three-dimensional): Side slope Down -slope shape: Linear Across -slope shape: Linear Parent material: Material weathered from sandstone and shale ' Typical profile HI - 0 to 7 inches: clay loam H2 - 7 to 19 inches: Gay loam, clay ' H2 - 7 to 19 inches: clay loam H3 - 19 to 29 inches: unweathered bedrock H4 - 29 to 33 inches: ' Properties and qualities Slope: 3 to 9 percent Depth to restrictive feature: 20 to 40 inches to paralithic bedrock ' Natural drainage class: Well drained Runoff class. Very high Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) ' Depth to water table: More than 80 inches . Frequency of flooding. None Frequency of ponding. None ' Calcium carbonate, maximum in profile: 15 percent Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Available water storage in profile: Moderate (about 6.9 inches) 1 13 1 1 1 1 Custom Soil Resource Report Interpretive groups Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Minor Components Midway Percent of map unit: 6 percent Heldt Percent of map unit: 5 percent Ulm Percent of map unit: 4 percent 14 I I 1 L 1 LI References American Association of State Highwayand Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep -water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nres.usda.gov/wps/portal/nres/ detail national/soils/?cid=n res 142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook436. http:/Avww.nres.usda.govtwps/portal/ nres/detail/national/soils/?cid=nres 142p2_053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service, http://www.nres.usda.govtwps/ portal/nres/detail/national/soils/?cid=n res 142p2_053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nres.usda.gov/wps/portal/nres/detail/soils/ home/?cid=nres 142p2_053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nres.usda.govtwps/portal/nres/ detaiVnationaVlanduse/rangepasture/?cid=stelprdb 1043084 15 Custom Soil Resource Report United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 43041. http://www.nres.usda.govtwps/portal/ nres/detaiVsoils/scientists/?cid=nres 142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www. n res. usda.gov/wps/portal/n res/detail/national/soils/? cid=nres142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/intemeVFSE—DOCUMENTS/nrcsl42p2_052290.pdf 16 1 1 i ' NorthernEngineering.com !! 970.221.4158 1 ,1- -_ 1 I / 1 1 1 I 1 111 lII I I / 1 / I 1 1 1 1 NVId 3.E)VNIVZIO =• 9NI833NIDN3 � MHAON Hooiaano aru 20 �, I I• i E 5¢•� �e �� • F f:��� lib =z pp O S[§ f #te Di �' E• E, Et E E 1 t 1 IIII I t I IIII _ - 1ny lull , , nu, ulll , 1 � mll nl uil ' I , , 1, \ ❑III' '1 , I111 1 , IIII 1 1 I 1 IIII i I n11 i tIj 1 1 I 1 I 1111 � 1 IIII I V ; I � V rlll_ 1 ``II ; 1111 II 11I 1 11 1 1 I , IIII_ 111 I ,11 I - - r-- 1 tt `II II jjlli __r I liii I II u 4 I '.p I � 0 / , I I,r r r I 1 I • y 1 i �_ �:: � _. r: _ t 3l! • t'E:! • EE'� �'� t'E'2a �bl! • _Y_t'1'I!•_�vt_td' i'�tF'.I!•�'��'�tZ't✓•t'd'.� _Y_t:'ia_pit_t'bi'i•t'21!•�'�t'�t'Ere�t'E'.� ORES FOUR CONDO 1ASSOCIATION AT■ \ ORES OFFICE PARK L1111 FAR ■ ■ —��---- yM131 ____ _ ACf£BE M 13 - - - // I � � SHORES OFFICE /��'-T`� / 'F -� PARK PUD - -- I wwEP:+oxwax EEm3 us\m B. w!E smraoo7- ec""� I Ai \ \ wxol as Ac Y ■BE AO, 140K JOHN F. KENNEDY PARKN ■■--r/ \\ \\ \\ \ \\ \\ \ PuzraEvyr vw �wwawlmzu r _____® r OF .®' / 1 J, / / / �7 Nfu / KEYMAP Y LEGEND: of yx I aaF l W9IW CCNIgM nn ZL `I M I MRRIY WARe3I �� F/w�lE � � E%ITIII�GTO Ny3ENEP AL I � �_ I ' PPW«EOBy0PoI3ENEP �� Z� \ ' FLOW PATH �/ Z -- I' l� VI. pWNAGE OA&x01RBIBDES" MOST 1MM T61-IEgplC \�����` NOTES: ■—■�-i 14i ii■ i�i i � i Z w MATCHLINE-SEE BELOW 1 TEBB ARriONiI1NTEYMF THE CO ILACTO6EpMMx36. RSW1l E EXISTENCE OR AD MMEXL IACDCONSTRUCIDOX mF CX*HTRACTO51HANE-SE�EEFRp6lEEpt LMATiN6 0 \ IX>VINYBA9BR \� _ µL ON«Pf iNO VfIUTEe Na e1NLLPF PE3PDXSME EOXPOP ALL UNIUKRAN ADE AN o 5�5 g THE REINAL E wmLowcsrxwTXEPX ExOZEEPw. BATED «roBEP Ho. zola EOP MM FOR DRAINAGE REVIEW ONLY E\ — NOT FOR CONSTRUCTION m UDI uEv 'How`,` ic BI MR AD ♦ \\ f \c • tom_ _ /'ii//// • _ //i / ``WIr2 \ /// ARM M%% J • • ., l/ AM /��ii .w CID �•i i i 1 /i////i�i� ��//ii / G i// z o n n ED 0 / 1 �iip/ 30RO 0H.ET J W /Yl AM of A� y///// GLL OxIrtY IgTMiGiKµ CENFUR of W LU LU e//A% //ME i / O e'Oi/A, / /i / FAA W Z _" - _ • -• o.w Ac - _ - I // _cif/irli[�1.�=-_— S -J / Call Bxa.y / \ a N,.s iX wNANOE ...� na TOM BS SAID E / City of Fort, Collins. Colorado Ar✓'/ �r MM UTILITY PLAN APPROVAL I { nvPnoHA¢ n..r. I t cay mem.e• CHECKED BY PNICE k Wleele• UWay aa. CHECxN BY: CHOCKED BY. BUILT P.a. M Pa...no� wo- Sheet CHECKED By D R 1 CHECKED BY: 90f 29 ShCHDtJ 14 \ — / ------------ /SHOI �i/�--------/—\—�--�SHORES OFFICEI j \\\\\ //DINGS PUD PHASE 2\ ♦\ \/ REPLAT PARK PUDLLc, S FUR CONDO \I I mOE R9•/;OCIATION AT \I I —_T OFFICE PARK I 1I}7}7}7 i�/ / SHORES OFFICE \\ OFFICE PA —I II} awEn.,aaBGNLevu \\ % I H7 i av Ae �''-- QI I [ R, r i 1 \\;: STRACHAN_`\ 1 CONTINENTAL PUD 1 L 1 1 `\ o.SiEi FoxrcowxSRAu , � I Meunw I I I \ NDINGS TIIE LANDINGS PUD / r PHASE 2 REPIAT 1\ ' J- WHARII THE I IANDINGS PUD PHASE 2 REPLAT , Txv OLD 7 -ROD `--/' _ / __ __ W7— — — — — — — — — — — — 9 — — — — — — — — — — — — — Ole Or//. IT g Ad ___________ — / r/iy s9%%/ it ______________ i IANDINGS PUD PHASE 2 REPLAT _ \ \ p/ JOHN F. KENNk)Y PAR&AY TmRuaoFYAa \ 1 \ - I FIRST 60MMILROW I BANKPLAZA OMlaf WFICNFEFW/./ILG / I / / / wcw\If RrowsEocaawR woPEarmlwoAHr — —�' EARN BOUNDARY m OEM En3TRG SHOWN NI PROFOSED VORM SEMEN ALI FLOW PATH DRAINAGE SANN OMBl IM % NOTES: 1 THE GTE TYPE n SPONSOLI wNENSHOTONT�TN TO ERFr T. rt STENE OFE ION! OF ALL- KNOWN UVIUDES ARE COOPEN UNDERGROUND TTMTS NXE FA TOR SHALL WORK BEPoPEC FOR LOCATING NEW NONSUNDERGROUND THE CSAND SHALSHNLSE RESPONSIBLE FDA LOGTNG ALLLUNONUNDE HIS SHALT AS PE3FOV3ElEFpi FDA ALL VXNXOWH YHOERGRgMOYTILNE3. 3. ROPER IN THEOW ARY ERNGENGINEEEPoWD DATEDXCONTROL OCTOBER10. W1RF R MpDRWYNFORMATION FOR FOR DRAINAGE REVIEW ONLY NOT FOR CONSTRUCTION MHz: O a IN I IN FEET) Ii ON=x ET GN.GDL YNOTFlLATIONCENTEROF COL• DRADO ED>..Irt6ebw. ..RiHc « aIMR�exa. AMm, uA,ms m