HomeMy WebLinkAboutDrainage Reports - 03/03/20179
FINAL DRAINAGE REPORT
Columbine Residences -Lot 1,
Centre for Advanced Technology 241h Filing
City of Fort Collins Approved Plans
Approved by. _ -
Dak-A — 3 -17
Prepared for:
R4 Architects
226 Remington Street, Unit 3
Fort Collins, CO 80524
970-224-0630
Prepared by:
Interwest Consulting Group
1218 West Ash, Suite A
Windsor, Colorado 80550
(970)460-8488
January 11, 2017
Job Number 1278-069-00
INTERWEST . CONSULT I N G GROUP
December 23, 2016
Ms. Heather McDowell
City of Fort Collins Stormwater
700 Wood Street
Fort Collins, CO 80522-0580
RE: Final Drainage Report for Columbine Residences -Lot 1
Dear Heather,
I am pleased to submit for your review and approval, this Final Drainage Report for the
Columbine Residences -Lot 1 development. I certify that this report for the drainage design was
prepared in accordance with the criteria in the City of Fort Collins Storm Drainage Manual with
variance request as noted.
Review comments dated December 2, 2016 from the City of Fort Collins Stormwater
Engineering Department have been addressed in this report.
I appreciate your time and consideration in reviewing this submittal. Please call if you have any
questions.
' Sincerely,
Erika Schneider, P.E.
Colorado Professional
tEngineer No. 41777
Reviewed By:
Michael Oberlander, P.E., LEED AP
Colorado Professional
Engineer No. 34288
' 1218 WEST ASH, SUITE C WINDSOR, COLORADO 80550
tit. 970.674.3300 • FAX. 970.674.3303
TABLE OF CONTENTS
TABLEOF CONTENTS............................................................................................................ iii
' 1. GENERAL LOCATION AND DESCRIPTION................................................................ 1
1.1 Location...........................................................................................................................1
1.2 Description of Property................................................................................................. 1
' 2. DRAINAGE BASINS AND SUB-BASINS.......................................................................... 2
2.1 Major Basin Description................................................................................................ 2
2.2 Sub -Basin Description................................................................................................... 2
' 3. DRAINAGE DESIGN CRITERIA...................................................................................... 2
3.1 Regulations......................................................................................................................2
3.2 Directly Connected Impervious Area (DCIA) Discussion .......................................... 2
3.3 Development Criteria Reference and Constraints...................................................... 3
3.4 Hydrologic Criteria........................................................................................................ 4
3.5 Hydraulic Criteria.......................................................................................................... 4
' 3.6 Floodplain Regulations Compliance............................................................................. 5
3.7 Modifications of Criteria .... :.......................................................................................... 5
' 4. DRAINAGE FACILITY DESIGN....................................................................................... 5
4.1 General Concept............................................................................................................. 5
4.2 Specific Flow Routing.................................................................................................... 5
4.3 Drainage Summary........................................................................................................ 6
' 5. CONCLUSIONS....................................................................................................................7
5.1 Compliance with Standards.......................................................................................... 7
5.2 Drainage Concept ......................... :..................................................... ............................ 7
6. REFERENCES...................................................................................................................... 7
' APPENDIX A VICINITY MAP AND DRAINAGE PLAN
APPENDIX B HYDROLOGIC COMPUTATIONS
' APPENDIX C HYDRAULIC COMPUTATIONS
APPENDIX D WATER QUALITY AND LID CALCULATIONS
APPENDIX E DETENTION POND CALCULATIONS
' APPENDIX F SOILS INFORMATION, FEMA FIRMETTE, FIGURES & TABLES
iii
1. GENERAL LOCATION AND DESCRIPTION
1.1 Location
' The proposed project is located northeast of the intersection of Centre Avenue and
Worthington Circle in Fort Collins, Colorado and is the Centre for Advanced Technology
24"' Filing. More specifically it is in the SW 1/4 of Section 23, Township 7 North, Range
69 West of the 6`h P.M., City of Fort Collins, County of Larimer, State of Colorado.
Please refer to the vicinity map in Appendix A.
Larimer Canal No. 2 bounds the site on the north and the New Mercer Ditch on the south
and west. CSURF property is located to the east of the site.
1.2 Description of Property
The property is approximately 8.2 acres in size and will consist of 17 single family paired
homes. The site will be served by a private drive which accounts for the majority of the
proposed pavement area.
The land currently slopes to the northeast at about 0.6%. The majority of the land is
currently vacant. The majority of the ground cover is native grasses. There are no offsite
flows onto the property.
The existing soil type on -site consists of Altvan-Satanta loams (21 %) and Nunn clay loam
(79%) which are classified as Type B and C, respectively, by the Natural Resources
Conservation Service. Soil information is located in Appendix G.
The property is not located within a City of Fort Collins Floodplain or FEMA 100-year
floodplain (FEMA FIRM Panel 08069C0987G, effective May 2, 2012).
1
2. DRAINAGE BASINS AND SUB -BASINS
' 2.1 Major Basin Description
' The proposed development lies within the Spring Creek Master Drainage Basin.
' 2.2 Sub -basin Description
The existing site drains to the northeast and discharges directly into Larimer Canal No. 2.
3. DRAINAGE DESIGN CRITERIA
' 3.1 Regulations
' This report was prepared to meet or exceed the "City of Fort Collins Storm Drainage
Design Criteria Manual' specifications. Where applicable, the criteria established in the
' "Urban Storm Drainage Criteria Manual' (UDFCD), developed by the Denver Regional
Council of Governments, has been used.
3.2 Directly Connected Impervious Area (DCIA) Discussion
' Urban Drainage and Flood Control District (UDFCD) recommends a Four Step Process
for receiving water protection that focuses on reducing runoff volumes, treating the water
' quality capture volume (WQCV), stabilizing drainageways and implementing long-term
source controls. The Four Step Process applies to the management of smaller, frequently
' occurring events.
' Step 1: Employ Runoff Reduction Practices
To reduce runoff peaks, volumes, and pollutant loads from urbanizing areas, implement
Low Impact Development (LID) strategies, including Minimizing Directly Connected
' Impervious Areas (MDCIA).
' Runoff for the majority of the site will be routed through rain gardens before entering the
water quality and detention pond thereby reducing runoff from impervious surfaces over
' permeable areas to slow runoff and increase the time of concentration and promote
infiltration.
1 2
' 'Step 2: Implement BMPs that Provide a Water Quality Capture Volume with Slow
Release
The rain gardens help reduce total runoff by allowing the water to infiltrate. The water
' quality and detention pond located to the east of the project is designed to allow
sediments to settle while incorporating a slow release.
Step 3: Stabilize Drainageways
Natural Drainageways are subject to bed and bank erosion due to increases in frequency,
duration, rate and volume of runoff during and following development. Because the site
will drain to a proposed water quality and detention pond and release into an existing
storm system in Centre Avenue, bank stabilization is unnecessary with this project.
Step 4: Implement Site Specific and Other Source Control BMPs
Proactively controlling pollutants at their source by preventing pollution rather than
removing contaminants once they have entered the stormwater system or receiving waters
is important when protecting storm systems and receiving waters. This can be
accomplished through site specific needs such as construction site runoff control, post -
construction runoff control and pollution prevention / good housekeeping. It will be the
responsibility of the contractor to develop a procedural best management practice for the
site.
3.3 Development Criteria Reference and Constraints
The runoff from this site has been routed to conform to the requirements of the City
Stormwater Department. Water quality facilities are required for the new construction
proposed on the site. Water quality will be met through the use of two rain gardens and a
water quality pond.
Fifty percent of the site runoff is required to be treated using the standard water quality
treatment as described in the Fort Collins Stormwater Manual, Volume 3 Best
' Management Practices (BMPs) and runoff reduction practices (LID techniques) are also
required. No less than seventyfive percent (75%) of any newly developed or redeveloped
area, and any modification on a previously developed area for which a construction
permit is required under City codes and regulations, must be treated using one or a
combination of LID techniques.
' 3
' The project adds 149,824 sf of new impervious area. Using the rain garden LID
' technique, 113,464 sf of new impervious area (76%) will be treated which exceeds the
50% water quality treatment and the 75% LID treatment requirements. In addition, 100%
of the entire site will be treated with standard water quality capture volume in the water
' quality and extended detention pond.
Please refer to Appendix D for LID calculations and.
3.4 Hydrologic Criteria
The City of Fort Collins Rainfall Intensity -Duration —Frequency Curves (Figure RA-16 of
' the City of Fort Collins Storm Drainage Design Criteria Manual) is used for all
hydrologic computations associated with this project. Runoff computations were
' prepared for the 2-year and 10-year minor and 100-year major storm frequency utilizing
the rational method. All hydrologic calculations associated with the basins are included
' in Appendix B of this report. Please refer to Appendix A for the Drainage Plan depicting
drainage basins and design points.
' Water quality volume was calculated using the method recommended in the "Urban
Storm Drainage Criteria Manual". Water quality capture volume calculations are located
' in Appendix D.
' 3.5 Hydraulic Criteria
All hydraulic calculations are prepared in accordance with the City of Fort Collins
' Drainage Criteria. All calculations are included in Appendix C of this. Storm systems
were analyzed using StormCAD software.
1 4
4.
3.6 Floodplain Regulations Compliance
The site is not within a City of Fort Collins floodway or a FEMA special flood hazard
area (Panel 08069C0987G). Therefore, a completed "City of Fort Collins Floodplain
Review Checklist for 50% Submittals" has not been included with this report.
3.7 Modifications of Criteria
There are no modifications to criteria for this project at this time.
DRAINAGE FACILITY DESIGN
4.1 General Concept
The majority of the proposed development will be collected and conveyed to the
proposed water quality and detention pond on the eastern most portion of the site. The
pond outfall will discharge to a 15-inch storm pipe and into the existing storm sewer in
Centre Avenue located east of the site. This system discharges into Spring Creek. An
emergency overflow spillway will be constructed and will be designed to pass the 100-
year flow.
The driveway is located over the New Mercer Ditch where a box culvert will be installed
to maintain flow for the ditch. The roadside ditch adjacent to Worthington Circle along
the ditch will pass through the proposed culvert under the driveway. The box culvert is
sized to match the downstream culvert at Centre.
4.2 Specific Flow Routing
A summary of the drainage patterns within each basin is provided in the following
paragraphs.
Basin A includes the middle portion of the site. Runoff from this basin will sheet to a 2-
foot wide concrete pan that directs flow to Rain Garden A located at design point A. The
rain garden will discharge to storm system A that will convey flow to the water quality
and detention pond located to the east.
E
Basins B-E includes the portion of the site adjacent to the drive aisle. These basins sheet
flow to the drive aisle where flow will be conveyed to Rain Garden B via a 4' sidewalk
culvert. This rain garden will discharge to storm system A that will convey flow to the
water quality and detention pond located to the east. These basins account for all of the
new pavements proposed.
Basins F and G are adjacent to the outer boundary of the site. These two basins sheet to
the 2-foot wide concrete pans located at the back side of the duplexes. The pans direct
flow to the detention pond located to the east.
' Basin H is located to the east and includes the water quality and detention pond. Runoff
from this basin will sheet to the pond. The pond outfall will discharge to a 15-inch
storm system (B) and into the existing storm sewer in Centre Avenue located east of the
site. This system discharges into Spring Creek. The hydraulic grade line at the existing
system was assumed to be the top of the existing pipe (5037.5 ft.).
' 76% of the sites runoff will be treated for water quality in the rain gardens. 100 % of the
site will be treated using standard water quality capture volume in the onsite water quality
and extended detention pond. Onsite detention is provided for the runoff volume
difference between the 100-year developed inflow rate and the 2-year historic release rate.
' The historic release rate is for this basin is 2.4 cfs. Water will be released through an
orifice plate to a storm system that enters the existing storm system in Centre Ave and
' eventually into Spring Creek. Please refer to Appendix D for water quality capture and
detention volume calculations and pond volume table.
4.3 Drainage Summary
Drainage facilities located outside of the right of way (including, water quality and
detention pond, rain gardens, proposed storm drain systems, and the pond outlet system)
will be maintained by the property owners.
6
' S. CONCLUSIONS
' 5.1 Compliance with Standards
All computations that have been completed within this report are in compliance with the
City of Fort Collins Erosion Control Reference Manual for Construction Sites and the
Storm Drainage Design Criteria Manual.
5.2 Drainage Concept
The proposed drainage concepts presented in this report and on the construction plans
adequately provide for stormwater quantity and quality treatment of proposed impervious
areas. Conveyance elements will be designed during the final report to pass required
' flows and to minimize future maintenance.
' The design minimizes impacts to other utilities and properties and maintains the existing
drainage flow paths as much as possible. The design will effectively control damage
from storm runoff originating from the site. The recommended BMPs are sufficient to
' reduce runoff peaks, volumes and pollutant loads from the impervious areas of the site.
' If, at the time of construction, groundwater is encountered, a Colorado Department of
Health Construction Dewatering Permit will be required.
6. REFERENCES'
' 1. City of Fort Collins, "Storm Drainage Criteria Manual", (SDCM), dated March,
2011.
2. Urban Drainage and Flood Control District, "Urban Storm Drainage Criteria
' Manual", Volumes 1 and 2, dated June 2001, and Volume 3 dated September
1999.
II
APPENDIX A
VICINITY MAP
AND
DRAINAGE PLAN
0
A
❑ O \v/
0
❑ 0
SITE
���� _ 1100 MEN
u
WORTHIGTON AVENUE RESIDENCES
VICINITY MAP
SCALE: 1 "=800'
-'/
Np.2
NA�
♦" ��'�.���
UNPLA 77ED
ECA
-//-/ /!��♦,
_
\�-�
RIMR
'
UACE
2' WIDE-�
MTURK CONCRETE PAN
--�� ♦ aw j
♦, tow\
\ \ \ \ 40 V
HABITAT i �'
BUFFER � �
Flow�L
` \ OQOFMOY OAORDW
\ 9BLMY
-- - -
ZONE _
----' _, f�
/ 00 ow
F
\ F1EV-M.3
Opp
4*0
or 101111"
op too
00
/.... _
r
/
1W 6 B[RY
EIEV-N.]
GONOKIE
`
r
t
1.13 w74
,
[' 0=mm■Y
Flo
I � I
r ♦♦
♦ ♦ 1' wT1cv wsa-eos7.7
• ` wTlcv�w,s ACrR
J RAN A.. tOD-YR WeMe0AQ3 I I
B TOTAE vaUYE-1.16 AC-R I I
♦ 1 I _ Q RESEAOTS UNPLA7TBD
♦ cOH I I
Z' VIDE y SPRLwAY-IXM-e010.J
Tor a eats I I
III ♦ ♦ vAN
♦ N j l
�► A i PROPERTY UWE I
` a 1.10 w
UNDE Ds7 IT
m I �
♦ ♦ II
♦ _1/ 1 —I 1 I I
1 N
O N. IR iI STORM B
Ru y
c
HABITAT
so BUFFER
DOME
00
20' UWE
DRANIIQ •
AN IMMON NBNW MDIo AERAER MP \ UOLRY EA$DMI#T. \ // /
CONCRETE WIDE _ PAN— i _ \ \ \ //'
Iuww. \ \ ° / �j
s$iE •r 1�`_ R C.A.T. T17/ \ \ \o ' / '
aS EASCIENT n'
LEGEND
C£NTR EN EVUE PROPOSED ONNW.GE BASW DN0El1NE \ \ / /
r_ D"NA�MN-RGE B0.5R--FEB
• . OO O !% \ • D..S B MINORSfONM RUNOFF COEFFCIEM
. r` I `` OflNNAGE BA91NAflEA
DESIGN POINT
w \ DION OF
OVREAND D
'///
PRELIMINARY � Q
NOT FOR CONSTRUCTION
12.456
SF
�
(7
Za
N
. p m
m O
W
W �0c�v
Im.008
SF
Retl'm WO/DrlenUon Puntll
)
N
rctm
= z z 0
a
0
U Jm
z
0La
IL
p Z U Z
Nores.
W a a
I. SEE LANDSCAPE PIAN FOR PLANINGSTHROUGHOUT
THESRE
X 0
LL
p
N
2. THE TDP OF FOUNDATION ELEVATION SHOWN 15
HIGHER
N
THAN THE MINIMUM ELEVATION REOUINCp FOR PROTECN
itO
FROM THE IDOYR STORM
w
z
J
z LL
w
U =
N
o
z�
�
IV)
o
a
U O
40 20 O 40
BO
Z
SCALE'. 1' = 40
t ILI
2
IwIEnE
V
?
NEow
a
w W
z
z
m ?
7.0
J d
CALL UTILITY NOTIFICATION
CENTER OF COLORADO
O
oil
U O
GALL 2-BUSINESS DAYS IN ADVANCE
LL
BEFORE YOU DIG, GRADE. OR EXCAVATE
FDR THE MARKING D UNDERGROUND
MEMBER UTIUTES
r
a
Z
w
L
APPROVED BY THE NEW MERCER DITCH
COMPANY
_
CZ
G
Q
N
m
W
RANDY OUSTAFSON, PRESIDENT DALE
a
IJy
Z
N
O
y
W
u
CITY OF FORT COLLINS, COLORAD0
UTILITY PLAN APPROVAL
APPROVED:
REQY
•
CITY On NORM
.0
DATE
CHECKED BY:
342M
WATER * WASTEMIER URUn
DATE
CHECKED BY:
'^
F��Sh�
STONYWATER UTILITYDATE
CHECKED BY:
PANS • RECREARON
DATE
PROD. NO. 127"GB
CHECKED BY:
TRAFFw ��
DATE
15
CHECKED BY:
ENVIRONMENTAL PLANNER
DATE
APPENDIX B
HYDROLOGIC COMPUTATIONS
0
J
'
m
Q
MM~
li
}
CQ
G
N
W
'
Q
_Z
Q
(A
Y
R
Q
W
R
C
C
C
C
C
m
N
a)
N
N
U
0
UU"O'D
w
w
0
w
0
Id
fL1
0f0
C7
(7
C7
C7
C7
co
IC
fC
f0
fC
fC
�
O
N
M
CO
CO
n
a
COM
_0 V
7
Y]
I-:
OI
O
O
N
4
N
Q
O
0^ W
N
M
O
V
M
n
tD
n
V
N
M
O
0
m
n
m
m
o
(P
n
m
N G1
O
O
O
O
t0
O
O C
O
O)
CM
p
a
0'?
0
M
E
ui
co
r�
r1l
co
vi
M
ui
r
u
C
GD
N
GD
IO
<O
<O
N
O
M
E
N
m
CO
O
O
IO
M
ui
n
V
O
n
O]
O)
m
O)
f0
t0
M
n
O
O
O
O
O
O
O
O
O
U
O
tV
O)
N
f0
O
OD
m
O
W
In
n
n
t0
n
Id:
7
M
If1
U
o
0
0
0
0
0
0
0
0
CO
N
ID
O
Y
Ncc
W
O
to
W
n
Q
.
O
O
O
O
CO
C
� W
Q
a
<
m
U
a
W
lL
(7
2
F-
FO
N
C
� C
C
a
o
co
d
N
a
Interest Consulting Group
RUNOFF COEFFICIENTS & % IMPERVIOUS
LOCATION: Worthington Residences (CSURF)
PROJECT NO: 1278-069-00
COMPUTATIONS BY: as
DATE: 3/16(2016
Recommended Runoff Coefficients from Table RO-11 of City of Fort Collins Stormwater Code, Volume I
Recommended % Impervious from Table RO-3 Urban Storm Drainage Criteria Manual, Volume I
coefficient
Impervious
C
0.95
100
0.95
96
0.95
90
0.50
40
0.20
0
Type C Soils Runoff
Streets, parking lots (asphalt)
Sidewalks (concrete)
Roofs
Pavers
Heavy Soil (Flat, <2%)
SUBBASIN
DESIGNATION
TOTAL
AREA
(ac.)
TOTAL
AREA
(sq.ft)
ROOF
AREA
(sgJQ
PAVED
AREA
(sq.ft)
PAVERS
AREA
(sq.ft)
SIDEWALK
AREA
(sq.ft)
LANDSCAPE
AREA
(sq.ft)
RUNOFF
COEFF.
(C)
%
Impervious
REMARKS
Existing
Lot
6.75
293.818
0
0
0
0
293,818
0.20
0
Historic %I
Proposed
Lot
6.75
293.818
88.921
27,865
0
33,038
143,994
0.58
48
Calc'd % I
Total New Impervious Area. 149,825 at
1 Equations
- Calculated C coefficients & % Impervious are area weighted
C=L(Ci Ai)/At
Ci = runoff coefficient for specific area, Ai
Ai = areas of surface with runoff coefficient of Ci
n = number of different surfaces to consider
At - total area over which C is applicable; the sum of all Ai's
1 12.12.16 Final FC FIowCSURF.xIs
Interwest Consulting Group
RUNOFF COEFFICIENTS & % IMPERVIOUS
LOCATION: Worthington Residences (CSURF)
PROJECT NO: 1278-069-00 -
COMPUTATIONS BY: es
DATE: 1211212016
Recommended Runoff Coefficients from Table RC-11 of City of Fort Collins Stormwater Code, Volume I
Recommended % Impervious from Table RO-3 Urban Storm Drainage Criteria Manual, Volume I
coefficient
Impervious
C
0.95
100
0.95
96
0.95
90
0.50
40
0.20
0
Type C Soils Runoff
Streets, parking lots (asphalt)
Sidewalks (concrete)
Roofs
Gravel or Pavers
Landscape Areas (Flat, heavy)
SUBBASIN
DESIGNATION
TOTAL
AREA
(ac.)
TOTAL
AREA
(w.n)
ROOF
AREA
(sq.f0
PAVED
AREA
(sQ.h)
GRAVEUPAVERS
AREA
(w.lt)
SIDEWALK
AREA
(s4.lp
LANDSCAPE
AREA
(W In
RUNOFF
COEFF.
(C)
%
Impemlous
REMARKS
E%LOT
6.75
M'818
0
0
0
0
293,818
0.20
0
Used to Determine 2- r Historic
A
0.57
24,828
12,206
0
0
250
12,372
0.5B
45
Rain Garden
B
0.60
26,214
4,634
7,145
0
8,830
5.605
0.79
76
C
1.00
43,422
13,565
7,M
0
9,633
13,135
0.72
66
D
0.54
23,398
4,487
5,712
0
4,105
9,093
0.66
59
E
1.13
49,325
17,669
7,919
0
10,220
13,518
0.74
68
F
1.15
50,076
18,829
0
0
0
31,248
048
34
G
0.66
28,713
11,095
0
0
0
17,619
0,49
35
H
1.10
47,842
6,438
0
0
0
41,404
0.30
12
6-E
3.27
142,358
40.355
27.865
32,788
41,351
0.73
67
Rain Garden
A-E
3.64
167.187
52.560
27,865
0
33,038
53.723
0.71
64
Developed Area Treated by LID
TOTAL
6.75
293,818
$8.921
27,865
0
33,038
143.994
0.58
48
Total Lot
Equations
- Calculated C coefficients 8 % Impervious are area weighted
C=£(Ci Ai)/At
Ci = runoff coefficient for specific area, At
Ai = areas of surface with runoff coefficient of Ci
n = number of different surfaces to consider
At = total area over which C is applicable; the sum of all At's
12-12-16 Final FC Flow-CSURF.xis
a
LL
N Z
W
O C%
LL z
op
aU
C LL
F O
N W
F
A
}
m
z E
z `o
O m
Pula �
O
¢1 p
Oce0< Co
.j a. Ua N
Y
Q
W
¢
O
N
N N
N
t0
"
t0th
q 0
r m
Q u
C a
�G
N
Oi OG
0)
0)
h
z
E
LL
V
N
O W
O
N
'0 N
N
(0 N
O
�e
t2 fV
N
V
N
V
.-
l2 n
4
=
m C t7
� E
m
ti
m
"
YN
o
o
v>o
0
00
0o
OO
= Co
u �
n
o)
N N
i0
t0
O r
O
n n
U
3
c
n
e
minrNqNra
�cq
m0
�o
O
�i
vi uiv
LL
w
W
o
a
v,o
a
oNN
vq
v 0
Q
¢
U
m
n
ccc
'C
o
---m
0 0
0
0
O
C
06
0
O O
N O
o
0 0
0
0
0
W
`
w
v�
ho
hrn
00
00000N
60
(7
o e N
W
O
N
n �
L6
O
N M
tp
O n
G .-.
C6
OJ N
N
N
Of W
N h
m
o
0 0
0
0
0 0
0
0 0
m
0 o N
O
N
N N
N
N
N N
N
N N
0
o�n000000
00
O
az:
=
J
J
¢
W
O
N
A N
N
O
N O)
O
N N
Nnn(onovm
nN
O
0
0 0
0
0
0 0
0
0 0
LU
t m
zP
n
i(
t00 O
N
O
O fN0
O
N n
d N
O
0
0 -:
O
C
m
z
H
J
mQCo
L)
0
w
(D
a:
co
m
w
7
co
z
yz_
Q
m
Z
m. f
0
N 0
N
L U
V
m
L
� a
o a
N m
N
Z
U
U LL
N
U O
C N
N E
N O
N N
C
N �
� C
E
aN
m n
� r
o E
E
E_
C
E
V
N
w
N
N
r
O
0
T
Z
_O
F
Q
N M
(wA F
Z
¢ W
LL Z
O
5U
a LL
40
w W
H
(c. N
a O
V Q
v _d
N ro
G
9 E
04
L
N
0 N N r
m —
II
U
as
z
O
zzz< F`o
Ou0. `
Uo O F O
7 ce a OV 0
0
Y
W
d
O
W
m
10
d
ID
IA
O
N
m
Ic
vi
cc
l�rac
ui
of
vi
mr
n
Z
E
Q
N
O
C�
d
CD
N
ID
m
O
w
t7
N
N
(h
IA
6
6
l7
n
#
_
E m
E
�
m
C
'2
Y W
o
o
N
0
0
0LU
0
0
0
0
0
N
N
N
Q
tp
O
t0
m
ID
m
as
V ¢
F
u �
o
mmm<oQ
N
W
W
NN
II '••'
Q
10
h
h
N
N
N
V
N
N
V #
3
C
n
O
CiU
nu
mNnQ
-0
O
O^
(V
IA
IN
Q
n
O
m
n
N
E
a
J
W
O
Q
Q
d
Q
Q
N
N
N
d
0
m
-
C
C
Z
Q
j
x
c,
m
fc
lc
m�orommm
mm
U
¢
c t
O
0
0
0
O
O
C c O
0
O
O
c
g
c
0
c
q
c
O
O
O
0
o
0
c 2
N o
O
W
�
N
N
N
N
N
N
N
m
0
N
IT
N
O
C
a
C
O
C
O
O
tV
O
O
N ...
W
f
b
O
n
W
O
N
O
a
O
Na
J
L
N
N
Q
d
m
tp
W
IA
m
tp
N
W
c n
H Z
J
m
N
Q
<G
N
7
Q
N
N
N
m
N--
m
n
n
N
'E t0
N
N
o
0
0
0
0
0
0
0
0
0
m
O e N
O
N
N
N
N
N
N
N
IA
N
(V
N
o
O
N
0
0
0
0
0
0
0
0
cr a
O
N
O
O
N
m
O
N
N
m
N
N
n
m
m
0p
Cl
f0
fp
m
m
n
U
o
0
0
0
0
0
0
0
o
c
o
O
Z
U
J
W
o
N
m
N
ro
Q
N
m
O
m
m
J
U t7
N
N
n
n
W
n
d
d
m
n
m
Q W
O
O
O
O
O
O
O
a
a
O
O
3m
N
noodm
In
�-
goo
nN
0
J
m
¢mUow
W
(ryx
m0
x
m
w
7
N
2
Z F
C7
mfro0
ma
ua
m•-
L
a
o a
N O
N
N
Z
J
U
V LL
N �
U O
G N
m E
O
N G1
ro�
� C
E
c Ln
ro II
� r
o E
E
E
E
U
N
X
LL
Q
N
U
0
LL
N
c
lL
(D
I
N
LL
LL
Z
¢ N
Y Y
Q
W N
a Vl
C C
OE
= O
F U
cW
G Q
J LL
O
z
O Z
U
h
�
V
V
d
a
p
C
`4
c
c�
coy�
L
3—„—
u
U
O
¢ N
z
O N
O
zz¢
OU O
7 a OU a
N
Y
¢
Q
g
w
`o
N
Q
f
V
U
N
O
O 1-
o
0
N m
O
F
6
O
0
�
¢
E �' c
o 0
Q
U
F
0
b
y
(01 t?
N N
pm,�
N r
2
lV
N N
cm N
.- .-
N
(V
C
e
m
N m
0.
m
0
n N
V
m
VI
Ol b
pi pi
� m
1
0 n
U
$
1gi
n nmena
e0i
U
c
o
c c
o 0
0 0
0
0.
¢ m
n
1np
$ 8;Ai
?1"Sg
�
Nn
1e
o
o .=o
�
moo-
vile
LL
prr C
�
OJ
J
¢
n.6
¢
m UO
W
LLC7S
m0
U
F y
W
F
c
❑ LL
Q
U
U
11
LL
z E
o
Z N
�
>
Q
W
IL
O N
O
F O
LU V
G V
LL
Q
Z O
O >.
U
U
V
v
K
C O �
O
CD T
L O N
O
O
N
u
U
E
O
(b
N
z
z
o°
o
zz¢
u0
p
a00
N
Y
Q
f
W
2
1-6
H
�
O
f
O b
d V
o
m
o
h o
= a
a
o
U
m n
� m
N�
N
m �-
OI
O _
F
pO
O
N
SI Omi
0
'
y
C)
m
Oni,
m<
N
N
C
O
m
N m
N
m m
m O
n
11
V
U
o
N
m
N
m N
m
a m
m o
N
m
n
m
N
U
o
0
0
00.0
0
0
N
p0
yy0
N
n
Q
INS,
O
N
ID
m
m
LL
LL
C
Z
m m
O
W
Q
0
m
0 o
o a
OF
V
V
N.
Mc
N
N
N
LL E
O
2 0
7 N
Y >
Q o
w o
EL
G N
OS
_ —
CwU
G `
J I0
Q
_
O °
z
H �
U
a
U
N
U
9
a
h
t O N
N
O � N
3 N v
u
U
}
Q
G]
N
z
Z
Q 0
O
O
zza
o�a
w0
] A. U L]
.9
N
Y
¢
Q
W
¢
0
O N
N
J
m
N
m
n V
N 4
^
m
� U
O
V
N
n
m
N O
N V
N
N
O
°
H
'y
_O
U
¢
O
W
0
°
i
C
E m 'c-
¢
O m 'o
OQ[
O a
U
O
O
N
n
m
m O
N<
N
N
Q
N
N
O
O
m
O O
m m
m N
N N
f0
N
b
O
_
tG
Oi
m
m
m
m t0
tp OI
Oi
IG
YIR
N O
N
m
E
tO
N
o
n
n
m
N
w
I`
U
N
N
N
n
m
N
O
O
N
N
m O
O ID
N
(O m
NM
M.
n
U
0
0
c
o
0
0 0
00
00
o
n
No
rN
Q
—
n
N
N
0
10
0
O
0--0-
_mN
1D
N
m
r
w
0
=
C
-1
0
W
J
d 'x
Q
C]
U
O
W LL
(J m
H
F
a o
w
m
0
U
W
¢
G
o a
M�
APPENDIX C
HYDRAULIC CALCULATIONS
0
0
3
Worksheet for 4' SW Culvert
Flow Element:
Rectangular Channel
Friction Method:
Manning Formula
Solve For:
Discharge
Input Data
`"
Roughness Coefficient:
0.013
Channel Slope:
0.02000
ft/ft
Normal Depth:
0.60
ft
Bottom Width:
4.00
ft
Discharge:
23.17
ft'/s
Flow Area:
2.40
ft'
Wetted Perimeter:
5.20
ft
Top Width:
4.00
ft
Critical Depth:
1.01
ft
Critical Slope:
0.00424
ft/ft
Velocity:
9.65
ft/s
Velocity Head:
1.45
ft
Specific Energy:
2.05
ft
Froude Number:
2.20
Flow Type:
Supercritical
GVF Input Data
Downstream Depth:
0.00
ft
Length:
0.00
ft
Number Of Steps:
0
GVF Output Data
Upstream Depth:
0.00
ft
Profile Description:
N/A
Profile Headloss:
0.00
ft
Downstream Velocity:
0.00
ft/s
Upstream Velocity:
0.00
ft/s
Normal Depth:
0.60
ft
Critical Depth:
1.01
ft
Channel Slope:
0.02000
ft/ft
Critical Slope:
0.00424
ft/ft
Cross Section for 4' SW Culvert
Project Description
Flow Element:
Rectangular Channel
Friction Method:
Manning Formula
Solve For:
Discharge
Section Data
Roughness Coefficient:
0.013
Channel Slope:
0.02000
ftfft
Normal Depth:
0.60
ft
Bottom Width:
4.00
ft
Discharge:
23.17
ft /s
0.60 tt
4 nn it j
V' 5 Q
M: 1
' Interwest Consulting Group
1218 W. Ash, Suite C
' Inlet Flow Calculation for Area Inlets Windsor, CO 80550
Project: Columbine Residences
' Job Number: 1278-069-00
Calculations by : es
Date : 12/15/2016
Objective: to determine capacity of Type C area inlet with close mesh grate
NZ WSEL
Geometry at inlet
' Grate Dimensions and information: Close Mesh Grate
Width (W): 2.625 feet
Length (L): 3.3542 feet
' Open Area (A): 6.6944 sq It
Reduction Factor (F): 50%
Grate Flow:
' Use the orifice equation Q; = C*A*SQRT(2*g*H) to find the ideal inlet capacity.*
*See Hydraulic Design Handbook by McGraw-Hill for verificaiton of equation use and C value
' C = Orifice discharge coefficient= 0.67
A = Orifice area (ft) - open area of grate
g = gravitational constant = 32.2 fUs2
H = head on grate centroid, ponding depth (feet)
' Then multiply by the reduction factor for the allowable capacity.
QG = Qi * (1-F)
At Rain Garden
' DETERMINE CAPACITY OF TYPE C INLET AT DP A
H = 0.5 It
Single Type C Inlet
A= 1*A
= 6.69 ft2
' Q; = C*A*SQRT(2*g*H)
25.45 cfs
QG= Q;*F
= 12.73 cfs
USE : Single Type C Inlet
Pagel
Worksheet for Basin F 2' pan and swale
Flow Element:
Irregular Section
Friction Method:
Manning Formula
Solve For:
Normal Depth
Input Data
Channel Slope:
0.00400 ft/ft
Discharge:
4.40 ft3/s
Current Roughness Weighted Methc ImprovedLotters
Open Channel Weighted Roughnes: ImprovedLotters
Closed Channel Weighted Roughne Hortons
Roughness Coefficient:
0.014
Water Surface Elevation:
0.49
ft
Elevation Range:
0.00 to 1.08 It
Flow Area:
1.50
ft'
Wetted Perimeter:
5.08
ft
Top Width:
4.96
ft
Normal Depth:
0.49
ft
Critical Depth:
0.47
ft
Critical Slope:
0.00451
ft%ft
Velocity:
2.94
fus
Velocity Head:
0.13
ft
Specific Energy:
0.62
ft
Froude Number:
0.95
Flow Type:
Subcritical
(-0+05.0, 1.08) (-0+01.0, 0.08) 0.030
(-0+0170 0:08)_(0+01 0.008) 0013r '�� "
(0+01.0, 0.08) (0+03.5, 0.84) 0.030
' Worksheet for Basin F 2' pan and swale
-0+05.0
1.08
0+00 0
0.00
0+03.5
0.84
Cross Section for Basin F 2' pan and swale
Project Description
Flow Element:
Irregular Section
Friction Method:
Manning Formula
Solve For:
Normal Depth
Section Data
Roughness Coefficient:
0.014
Channel Slope:
0.00400 ft/ft
Normal Depth:
0.49 ft
Elevation Range:
0.00 to 1.08 ft
Discharge:
4.40 ft'/S
0 49 ft
I
i446tt
V 5 L
H: 1
n
Z
W
cl
M
H
W
J
Z
i'
w
a-
}
H
N
a
C'd
O' N
O 0 O
(9 N
Din d
C N A
j a
N >
C 0
U Q
U
m€
0
yc
N
C
C
LLI
d
O
a
N
N
n
Cl)
O
N
■0
N
C 10 07
�Uia
y >
C �
U Q
E
O
mN
d
c
c
W
'
N
O
1
a`
u
I o 0 0 1
wr-•
I o0o I
+� aw
1 00o I
C9 ❑
I I
I I
�
Ht7
i o0o i
�
0) ro --•
l 0 0 0 l
N
t U
1 I
$4
J� H W
O O O
n
U co
1 1
0
— — — —
I — — — I
I
N
U
I
U ro
I M� r
0) G
1 0 0 O I
�.i wI
I
Q
a.i
I H r1 H
a 'O W w
1 C c cr
2
rJ U op
I
roro N W
1 0 0 0
a.�
ro
H H C
Ico
I
>. O
C
W
z ❑
O
C
1 I
I I
I I
I I
H
6U
'O
1 0 0 o I
U
N t0 O I
7
y
0)
1 00o I+
E
1 W�ON1
0 2`
2
H 3
1 I
rl 0) ro
I I
�
tl1
0 0
ro 0 N
1 0 0 0 I
a O 0—
1 0 r N
W ro H w
m
O a W U
I I
I I
ro ro to W
H H W W
1Im
1 0 0 0 0
r A
�
H
fA
I I
x D
I I
N
o 0 o
l
T
r N C
0
J�
'-I a
1 1
1 0 0 O
N 0)
-H .( N
1
. . .
I I
N
11
ro 0) S N
1 1
❑
ro
ro U
1 01 N M 1
II
w
It
U O W
I 1
Z
H O U
I I
II
G p
II
0 H rl U
I
O
W
.-1 W
> (L)
I I
--------
— I
I I
II
II
O
:i
II
II
W
C
I I
Q >I
U
I O to O I
I M N I
II
II
m
I
I I
Cl)----
I--
❑
a O v ^
ro ro a.�
I O O N I
I C C a' C I
II
II
I I
Cl
H 0) 3
1 co r1 1
H u 0) W
I o 0 0 0 l
II
U
II
cp d^ eW I
3
0
ro 11 O N
1 . I
'U U G `-'
I 1
II
II
I O O O I
W N .i W
w C C I
>1.1
I ul in in �n I
II
C
II
000 I
O >.W U-
i
II
❑
I
.-1 H .-I I
F
F W
II
<L
1
'-I •-I '-I I
a.
I
I
U
I O M M O 1
II
N
II
II
F
I
A I
a a a I
ro ro ro I
x
.G
J-1 -J
1 0 0 0 I
I in M in
-.i G
H 0) H
I M in r N I
I
II
II
II
W
0) I
W w w I
F
b+ W
I I
a '6
II
.-�
C 1❑❑❑
3
0) �-
I M w `-1
H H G W
I o O o O I
II
y
n
a
H
a
H I
r
1
n
m
II
3 ••
I
U' U U
�'
>. 14
I u1 u) �n in
II
N
— — —
x
1
II
2
I
G
N
I
H H
H
O
1
I I
I
II
>i O
Y.
I
0) 0)
3
H H H I
— --
— -- — I
II
II
A ft
W
1
c
C G I
F
G
I ro (a (a I
I I
II
II
as
O
1
0) 0) 0) I
W
O 0)
I .-1 H .-i 1
C
1 0 0 0 I
II
II
'6 (aI
f7 C7 U' I
Z
. a
1 a a a 1
O
w
1 .- I
II
II
0 H '6
H H
I
J.)J (0.
U U U 1
.. .
I I
11
II
01
W
----
H H H I
G 1� ---
I rl N N N I
II
II
0 w>
Z -
I
I
U
0) to
I 1
aW
I C c C C I
II
II
O .i 0)
1
0) W W 1
Q
N
1 0 0 0 1
u u u
O> W
1 0 0 0 O I
II
'
II
fx
W
I
0) 0) I
N
W
I I
H 0) —
I I
II
II
N a
A
U
I
.i H H I
a.
--
—
C7 .i
1 N ifl N N I
II H
E
II
-0 U
Q
I
G G G I
❑
I
II
w
H> N
W
A I
H H H I
N
G
I A A F
I I
II
(?
n
o>
a
v d
I
ro
o
I o u o 1
I
n o,
II
3 H u)
O
H a
U U U I
I G G G
I 1
II
II
ro ro
�/)
G >. I
.1 1
U)
N
N
W N
1 .i .i .i 1
E
I O O O O I
II ••
E
E
II
0) G 3
w
H H I
W k
H H H 1
U .i
I 1
10 0) 3
1 a ' - '- I
II O
O
'
II
Z Q
1
0) 0) 0) 1
0) In
I m 1n 1
N✓ 0
O
. . . .
1 I
II O
y
II
0
1
C C G I
0
N
I N .-I rl I
N
w V) r1 W
W a'
1 00 C
II
!Q
II
0l N U U
W
I
0) 01 0) 1
W
I I
O Wu
I N N
II to
0)
II
U U G
I
C7 0 0I
--------
I
E.m `-'
I I
II H
U
II
roro
>+
!+
I
1
II O
E
II
W W ol
P:
— — — — —
— — — I
W
N
I '-I '-I '-I I
— — — —
— — — — I
II N
�
I
H H H
H G
I
1
I
O
II u
01 O
'
II I
A A C
❑
I
F F F
b
E O W
H F H I
II
II O
a a 0
O
I
W W W
c/)
a U
Z
I ❑ W W W 1
II N
N
II O
N to U
I
I
0)
I I
1 Z I
II r1
II
•• •• ••
Z
O
r) 1
W 1
z z z
Z z 2
H H H
Z
O
W
1 1
a)
0)
1 O Z Z Z I
z z z
I W H H H 1
II
II ••
C p pi
d N
II ••
O O O
H
A I
I
H
— — ——
I
A
I I
II 'O
E p
'
II O
II.I
W w W
G G C
F
Q
N I
..7 I
U U U 1
1
F
Q
H
I---
I I
I I
ro
..7
I H U U U I
I W I
II 0)
11 U
7 C
II H
H H H
a
I
w w w I
1-1
w
I
I❑ w w w I
u
o
II ro
O
I
R, , I
W
n
A
I rl N I
1\ a a IL I
II rl
Q
II G
n n n
U
I
>I
U
U
ro
I I I 1
a >+ I
II a
II 0)
II U
n n n
n n n
.7
Q
I
I
H H H I
F
I
a
a
W L) 13
I . W
I I
H H E. I
1
II E
II
d N
« a
II U)----
n n n
U
— — — — —
— — — I
U
— — — —
— — — — I
— — — —
— 1
11 U
H x
H
W
Z
Z �
U�
W oq ai
d C-; o
i>-oCn
-�
o E
Co
0 J fn
U7
CN
F-
LU
J
Z_
Urn
W o 00
} C-4 o
u-i Q
� � E
JiECn
M
W
Z_
U a
W O 00
a-N� O
OO ui
Co F
Q
Z
O
a
L
W O Oo
O co
a � o
��LL
c;
Ul
Co iCn
c
O
N
n
O
O
LO
m
O
O
D co
r rn
�o
7LO� ULO
»LoLO
- C U-5 O
1C�,N
O
J�J(n Cn
V
m 0o
0 0
LOLO VO
J L -E cm)
>>00 M,C)
C COOO a)O
0 C _N
J(n fn
0
� �
V N
00 co
0 0 a?
U') LO U�
N 0) O V u 7
C C U N O
CL C fh _N O +
�m Jfn(i N
O
0
M
CL
oo'o
0 N
C l0 N
3Li(L
r >
C
U Q
U
v E
do
U)
c
0
a`
N
v7
N
n
m
C\j
N
Q
N
ao
r
Co
0
H
p• U
00 2
C7 n
C d
O
n 3
c
C� m
O
xm CL
C U
O N
C0
O
O
m
rn
m
u
E
b
E
ro
U
N
C Q
N
Cl)
C -0 a)
Q1 In
E 0 o
C
p
Dto
UC
�Xa
Lh
N
n
f7
O
N
X
W
ir
F
U
cr
F-
cn
cn
W
J
F
O
II
E
II
w
II
F
II
N
II
N
N
II
H
I I
X
II
w ••
II
•• C N
'
It
Q ° %
It
11
a m S
II
U/ to a F
I I
W N v W
1
O W > Z
It
KC
n
u ro w
°a >1
�
m
u
„ ro ro N
a
'
vvi
z � a
II ro
N O
II U
N w U
H
U U c
u
(U
a
w o a
n
u u u
'
o
A7 7
II
O co
I o
U) U)
Z
O O O H
t4
H H H 7
n ro
o
C
n n U
u v
A n n a
II U
n n n
' II N
U n n n
I
S1 I O I
v C o
W W W I I
W¢ W I O I
0 o v
I I
u a 1 0 1
w ro— I o 1
W IU
a3 u w 0 1
7
I I
I I
U I I
IU C o l
to UJ I o I
a� U on I I
N W
U W I I
W I I
1 I
� I
a 1 0 1
W o
H m 3
ro M O y 1 0 1
oawvH >1
Q1 I I
I I
a I O I
U1 I O I
H a I O 1
ro v a m l
W U o w 1 1
O Sa H U I I
W I I
C I I
H I I
I I
I I
I o 1
I O I
I r-I I
I I
I W I
I H I
I 7 I
W W I
ri I v I
H I I
I U 1
I �r1 I
I H I
I v 1
I c I
I W I
I U I
I I
I I
I W I
I N I
I H I
I C I
W I H I
H ¢ U 1
H F I 31 I
I I
1 G I
1 v 1
I 0 I
I I
I I
I w 1
I a 1
I � I
I H I
I U I
I O I
N I H I
A I fn I
ro I 1
I W I
I a 1
I H I
1 0 1
I o 1
I I
U N 1 N r o
N 1
H N S-I I r r W
a a W W I M M M
ro ro r W I
P 14
U 0 0 0
a 3 1 N N N
O 1
x0 1
1
H N ro 1
a a v ^ 1 r W
ro N H W I M M M
H 3-I W W I O O O
T U ¢ v I N N N
x a
— I
>1 N o
ro IH H
H O W I
U W
> ) � v I
— — I
a. a. V.
ro W O N
V U H W N N N
O T w U I
H � I
I
W4J OON
0 N 0
tP W
c v I N C N
U1 I N o� H
r7 r-I H
1 u 4 14 1
G
I ro ro ro I
a
i a a a
W ro
I U U U I
U .c
1 1414 14 1
n
1 0 0 0 I
I I
c
I I
1 G G c I
O
I U U U I
�.i U/
I C C C I
U
N
N w
I N N N I
N
I H H H I
1 I
V
I I
H H H
41 C
A W
O W
I
7 U
I
Z N
I
N
I 1
I 1
H I I
N 1
A I H N M 1
ro 1 1 I 1 I
a I w a w 1
U O N 0
..i W I N r 0 0 1
H N a
7 a 0 r r m I
ro ro m a 1 M M M 1
11 lJ N W I OOOO I
a c7 c --- 1 1
14 14
x a I 1
I I
I I
as •- I rrmm I
ro ro N W I M M M M I
� U M W I O Cl Cl O
>1 a 1 N N N N I
x 1 I
I I
c 1 0 0 0 0 1
O I N O M N I
'C: I
C Ir lil o H
O> W o 0 0 0 l
LI CD I I
C7 r-1 I N N N N I
W I I
1 I
H N 3 0 1 a. . V. a.
ro W O -4 1
W N W H 1 N N N N
O 1.0 l
F N
I I
1 I
a
I � I
I F 1
I U I
I O I
A I W m I
ro H H N
7 N O O F I
I N I I W I
I N £ £ F I
1 X E. H O 1
I W N N O I
i
O
v �
c
coo
co
uh
N
n
M
N
Q
W
m
r
N
0
U
a
0 2
C7 a
c v
�3
to
N
m �
v
V
m N
C 0
O
m
n
Cl)
I
f
�i
O
O
57
h;
W
Ir
U O
f
ft y
y w
J Nu')
� C
`8i m
O O
In IA UN
0_ N NNIn
pNp
D dcN- NO
J��Jfn (n
p
pOp
(7
O
� O
0
0
C
m
m
N
N
N
n
O
N
u
1
' I o
1
1 �
0
l li
�PAN
CONdIETE I Ilk)
I � �
STORM STA A: 1D100.0
24' FES )
N 14A55N.59 I(
[ 3114,6;3.55 .�
\ I I IJ
\ aEo
\ I NAIRN
\DARDEN B — S,
II -TYPE C I
W/ CLOR
\ 1 A AIOaJ66 N 14 5
E 3114M
\ 11 W/ at. Rua
N 1gX5555.52
\ \\ \ I /E 311 MM
v v J
� \ i
STORM SYSTEM A PLAN
STORM SYSTEM A PROFILE
CARDEN A
Fsµ2 ---- --
S101N STA A12440.3rflif I
r CLAREA
INE MMH GRAZE
N 1//5725.57
E 311N71.7q
� A S<A 1H5'LIfomm
I I
\ rRAcr6 /
\ C.A. T. 7TN /
p�T� NOW union
II
DIRW COMPANY
IWGATIUN
LATERAL E�Poray
Tod / I
'RA OtY100,0 LAI�N59A110N
10 BE RET10�' 3
(W 12%`30N1
m.rm t1F Rv
CAI TD vairY L0GAt10Q 3
I M' DRANAGE• ..ID
0
"+OD _ TIE 13114�9115050
51�51 STA RI145s
to 31d111 ul-a
E 31150114.71
LSTDNt B STA 10a353 • 10Lga9 1RRwAT1oN ` PRwmTM(1 P,
UTILITY CROSSINGS LATERAL Pros �� \
TO BE NNO ED \
I� \
UNP/a TTEO
I,\
1
STORM SYSTEM B PLAN
AMA
•
STORK B S7AIDa3B3
Nil
EX TELE
PRWGGTD
5010
Sz:
(XtAOE
I
STmm B STA
EX GAS
0t10.9
100-TR
iq
mss v 1s' RCP
• S-0.3R
1512 LF 15
RCP a 5.0.3i
1A•3aaD
1G.q
LF 15' RCP
e S-a3R
50Xt
10100
11a00
12a00
13.00
STORM SYSTEM B PROFILE
40 20 O 40 90
HORIZONTAL
SCALE: 1 " = 40
VERTICAL
SCALE: I"= 4'
/ { NDrEs:
�/ 1. RCPSTORM SHALL BECLAS4111WRN WATER i1G1li JOINi5 UBrM Cgg31 BEDDING PER
STORM WATER pETAIL D I. CL.tiS B It0 PPE MIDPoIMI.
2. CL STATIONINGANDNORTHNGMNOE NGSATFESISMIDP WOFENDOF
/ SFRUCTUREATMCNVLNE
3 ALL OTHER STATIONING AND NORDIING AND EASTMJGS IS CENTER OF STRUCTURE
q EXVTUI INFORMATRNJTOBEWRIFIEDBYCONiR MRPRRMTOCONSiRUC N
\ 5 PIPE LENGIRSINCWDE FES.
S ALL STORM SEWERS ARE PRVATE
>. ALL STORMWATER FACILITIES WIP AP. STORM SEWER. MANHOLES AND BEDDING) SMALL
BE CONSTRUCTED IN ACCORDANCE W Dll CITY OF FORTCOIlINS STANDARDSAND
SPECIFICATIONS.
B. SEE UTILITY RAN FOR OUTER BOLJNDARY COORDINATES.
m
F V
Z
0 °m
DO
C O
w0.4
µl FUN
C N N N
C = Z Z 0
d U 07m
a p Ld
IL a z U Z
a CFO
IAI ¢ a
CrO
t0 LL
N
N
z�
w�
UE
.. RI
Ot
�
J
a W `
GZ
o p
rc
a N
0� L
w (
Z_ i
m:
7t
w
J
O
m
IL
Qb
J
IL
W
N
N
i
iY
fA
CAu UTILITY NOTIFICATION
CENTER CC CaoRADO
O QA
O
CALL 2-WSTNE55 DAYS IN ADVANCE
LL
BEFORE YW DIG. GRADE. OR EXCAVATE
FOR THE NAMING OF UNDERGRDLND
MEMBER UTRJTIES.
a
b
II
II
APPROVED BY THE NEW MERCER DITCH
n
COMPANY
W
J
ee
G
®
O
Id
2
O
m
WDW
Y
U
RANDY WSTAFSON, PRESIDENT DATE
CITY OF FORT COLLINS, COLORADO
a
uUi
a
O
U
UTILITY PLAN APPROVAL
APPROVED:YR.....
CITY ENGINEER
DATE
.Y O
CHECKED BY:
3A2r0
WATER A WASTEWATER UDLITY
DATE
`
.� c
CHECKED BY:
~FORA -`
gt
sTIIWAIER UTILITY
NEMAL
CHECKED BY:
PROD. NO. 12713UB9
PARKS A RECREATION DALE
CHECKED BY:
TRAFTTC ENGNCER
DAIS
CHECKED BY:
ENVIRONMENTAL PLANNER
DATE
NORTHTensar International Corporation
' 5401 St. Wendel-Cynthiana Road
TensaE, AMERICAN Poseyville, Indiana 47633
GREEN® Tel. 800.772.2040
Fax 812.867.0247
www.nagreen.com
Erosion Control Materials Design Software
Version 5.0
Channel Computations
Project Parameters
Specify nnin 's n:
.03
Discharge:
4.7
Peak eriod:
4
hane:
02
Bottomth:
eft Slo e:
.25
i htSlo e:
.25
xistiannel Bend:end
icient Kb :100
etarClass A - Ee
etT
ix Sod & Bunche
etDensit :
ood 75-95%
Soil Type:
lay Loam
Channel Lining Options
Protection Type Pennanent
Material Type
Matting Type
P300
Mannin 's N value for selected Product
0.03
Cross -Sectional Area (A)
A=AL+AB+AR=
4.4
AL = 1/2 * De th2 * ZL =
0.13
AB = Bottom Width * Depth =
4.13
AR = 1/2 * De th2 * ZR =
0.13
Wetted Perimeter (P)
P=PL+PB+PR=
6.13
PL = Depth * ZL2 + 1)0.5 =
1.06
PB = Channel Bottom Width =
4
PR = Depth * ZR2 + 1)0.5
1.06
Hydraulic Radius (R)
R=A/P= 0.72
Flow (Q)
= 1.486 / n * A * R2/3 * S1/2 = 24.7
Velocity (V)
V= /A= 5.62
Channel Shear Stress (Te)
Td = 62.4 * Depth * Slope =
1.29
Channel Safety Factor = T / Td
1.55
Effective Stress on Blanket(Tdb)
Te = Td * 0-CF * ns/n 2 =
1.21
CF =
0
ns =
0.03
Soil Safety Factor
Allowable Soil Shear (Ta)
0
Soil Safet Factor = Ta / Te =
0
Conclusion: Stabilit of Mat
STABLE
Conclusion: Stability of Underlying soil
STABLE
Material Type
Matting Type I
P300
Mannin 's N value for selected Product 1
0.03
Cross -Sectional Area (A)
A=AL+AB+AR= 1
4.4
AL = 1/2 * De th2 * ZL =
0.13
AB = Bottom Width * Depth =
4.13
AR = 1/2 * De th2 * ZR =
0.13
Wetted Perimeter (P)
P=PL+PB+PR=
6.13
PL = Depth * ZL2 + 1)0.5 =
1.06
PB = Channel Bottom Width =
4
PR = Depth * ZR2 + 1)0.5
1.06
Hydraulic Radius (R)
R 0.72
=A/P=
Flow (Q)
=1.4861n*A*R2/3*S1/2= 24.7
Velocity (V)
V = / A = 5.62
Channel Shear Stress (Te)
Td = 62.4 * Depth * Slope =
1.29
Channel Safety Factor = T / Td
6.2
Effective Stress on Blanket(Tdb)
Te = Td * 1-CF * ns/n 2 =
0.3
CF =
0.75
ns =
0.03
Soil Safety Factor
Allowable Soil Shear (Ta)
2
Soil Safet Factor = Ta / Te
Conclusion: Stability of Mat
TABLE
Conclusion: Stability of Underlying soil
TABLE
' I Side Slope Liner Resul
11
APPENDIX D
WATER QUALITY
AND
LID CALCULATIONS
10
No Text
I
LID Table
75% On -Site Treatment by LID Requirement
New Impervious Area 149,824 SF
Required Minimum Impervious Area to be Treated by LID (75%) 112,368 SF
Rain Garden A
Impervious Area Treated by Rain Garden (Basin A) 12,456 SF
Rain Garden B
Impervious Area Treated by Rain Garden (Basins B-E) 101,008 SF
Actual % of New Impervious Area Treated by LID (100% of site treated in WQ/Detention Pond) 76 %
Design Procedure Form: Rain Garden (RG) II
Sheet 1 of 2
Designer:
ES
Company:
INTERWEST
Date:
December 15, 2016
'
Project:
Worthington Residences (CSURF)
Location:
RAIN GARDEN A (Center of Site)
I. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, I,
1 =
45.0
(100% if all paved and roofed areas upstream of rain garden)
8) Tributary Area's Imperviousness Ratio (i . I,/100)
0.450
C) Water Quality Capture Volume (WOCV) for a 12-hour Drain Time
WQCV =
0.15
watershed inches
(WQCV=0.8"(0.91" h- 1A9-1°. 0.78- it
D) Contributing Watershed Area (including rain garden area)
Area =
24,828
sq ft
E) Water Quality Capture Volume (WQCV) Design Volume
Vwocv =
319
cu it
Vol . (WQCV / 12) ' Area
F) For Watersheds Outside of the Denver Region, Depth of
da.
in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
VWOCVO,nER =
cu h
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
VwWv USER.
cu ft
(Only if a different WOCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth (12-inch maximum)
Dwoc,.
12
in
B) Rain Garden Side Slopes (Z = 4 min., horiz. disc per unit vertical)
Z -
0.00
ft / R
(Use "0" 4 rain garden has vertical walls)
C) Mimimum Flat Surface Area
AM,,, =
213
sq It
D) Actual Flat Surface Area
Am w, -
256
sq It
E) Area at Design Depth (Top Surface Area)
A,e, .
817
sq It
F) Rain Garden Total Volume
V,=
537
cu It
(VT= ((A,w + Awe ) / 2) " Depth)
3 Growing Media
Choose One
O 1S" Rain
Garden Growing media
other (Explain):
4. Underdrain System
rChonre Me
0 YES
A) Are underdrains provided?
Q NO
B) Underdrain system orifice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y =
3.4
It
Volume to the Center of the Orifice
ii) Volume to Drain in 12 Hours
Vol,_ =
328
cu ft
iii) Orifice Diameter, 3/8" Minimum
Dr, =
0.37
in MININUM oIAME-FP
' 12-12-16 RG A (center).xlsm, RG
12121/2016, 8:04 AM
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ES
Company: INTERWEST
Date: December 15. 2016
Project: Worthington Residences (CSURF)
Location: RAIN GARDEN A (Center of Site)
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
Choosy—
Q YES
A) Is an impermeable liner provided due to proximity
Q NO
of structures or groundwater contamination?
6. Inlet / Outlet Control
Choose One
Q Sheet Row- No Energy Dissipation Required
A) Inlet Control
Q Concentrated Flow- Energy Dissipation Provided
I
Chnnse One
7. Vegetation
Q Seed (Plan for frequent weed control)
Q Plantings
Q Sand Grown or Other High Infiltration Sod
B. Irrigation
Choose One
Q YES
A) Will the rain garden be irrigated?
Q NO
Notes:
12-12-16 RG A (center).xlsm, RG
12/21/2016, 8:04 AM
II Design Procedure Form: Rain Garden (RG) II
Sheet 1 of 2
Designer: ES
Company: INTERWEST
1 Date: December 15, 2017
Project: Worthington Residences (CSURF)
Location: RAIN GARDEN B-E (Drive Aisle Area)
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, I,
I„ =
67.0 %
(100% 0 all paved and roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = I,/100)
=
0.670
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time
WQCV .-
0.21 watershed inches
(WQCV- 0.8' (0.91- i3- 1.19 - i2. 0.76 - i)
D) Contributing Watershed Area (including rain garden area)
A ea =
142.358 sq It
E) Water Quality Capture Volume (WQCV) Design Volume
V. _ -
2,488 cu It
Vol = (WOCV / 12) ' Area
F) For Watersheds Outside of the Denver Region. Depth of
d, =
in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
VwocvoTRER =
cu ft
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
Vwocv USER ^
cu ft
(Only if a different WOCV Design Volume is desired)
2. Basin Geometry
A) WOCV Depth (12-inch maximum)
Dwocv =
12 in
B) Rain Garden Side Slopes (Z - 4 min., hortz. dist per unit vertical)
Z =
4.00 It / ft
(Use "0" if rain garden has vertical walls)
C) Mimimum Flat Surface Area
Aw„ =
1658 sq ft
D) Actual Flat Surface Area
Ate„ =
2100 sq ft
E) Area at Design Depth (Top Surface Area)
A,a, =
3400 sq ft
F) Rain Garden Total Volume
VT-
2.750 cu It
(VT- ((ATM - Ar M,) / 2) ' Depth)
3. Growing Media
Goose One
O Ir Rain Garden Growing Media
Q Other (Explaln):
4. Underdrain System
A) Are urxlerdrains provided
Oxwse One
YES
Q NO
B) Underdrain system orifice diameter for 12 four drain time
i) Distance From Lowest Elevation of the Storage
y-
3A ft
Volume to the Center of the Orifice
ii) Volume to Drain in 12 Hours
Vol,,=
2,568 cu It
iii) Orifice Diameter, 318" Minimum
De =
1.05 in
1 12-12-16 RG B (Drive Aisle area).xlsm, RG 1212112016, 8:04 AM
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ES
Company: INTER W EST
Date: December 15. 2017
Project: Worthington Residences (CSURF)
Location: RAIN GARDEN B-E (Drive Aisle Area)
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
Chmw o1e
Q YES
A) Is an impermeable liner provided due to proximity
Q NO
of structures or groundwater contamination7
_ ---
6. Inlet / Outlet Control
Choose One
Q Sheet Flow- No Energy Dissipation Required
A) Inlet Control
Q Concentrated Flow- Energy Dissipation Provided
rhnn, one
7. Vegetation
Seed (Plan for frequent weed control)
Q Plantings
�Q
Q Sand Crown or Other High Infiltration Sod
B. Irrigation
Choose One
Q YES
A) Will the rain garden be irrigated?
Q NO
Notes:
1 12.12.16 RG B (Drive Aisle area).xlsm, RG
12/21/2016, 8:04 AM
e
RAIN GARDEN SUMMARY
Project Name:
Project Number:
Company:
Designer:
Date:
WORTHINGTON AVENUE RESIDENCES
1278-069-00
INTERWEST CONSULTING GROUP
ES
12/20/2016
RAIN GARDEN SUMMARY
RAIN
RAIN
GARDEN
RAIN
GARDEN
RAIN
GARDEN
RAIN
RAIN
FLAT AREA
FLAT AREA
GARDEN
BASIN
TOTAL
GARDEN
GARDEN
REQUIRED
PROVIDED
VOLUME
VOLUME
DEPTH
(SAND AREA)
(SAND AREA)
PROVIDED
REQUIRED
SF
CF
SF
INCH
CF
A
A
219
319
256
12
537
B-E
B
1658
2488
2100 1
12
2750
`NU I t: rULL WA I 1=11 UUALI I Y h'hUVIUtU IN F'UNU; I MtFirUFit, NU I HLA I t UN KU VIVLb
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
POND
Project Name: Worthington Residences (CSURF)
Project Number: 1278-069-00
Company: INTERWEST CONSULTING GROUP
Designer: ES
Date: 12/15/2016
1. Basin Storage Volume
A) Tributary Area's Imperviousness Ratio (i=la/100)
B) Contributing Watershed Area (Area)
C) Water Quality Capture Volume (WQCV)
(WQCV =1.0`(0.91'f3-1.19`i2+0.78i))
D) Design Volume: Vol = WQCV/12 ` Area ` 1.2
2. Outlet Works
A) Outlet Type (Check One)
B) Depth at Outlet Above Lowevst Perforations (H)
C) Required Maxiumum Outlet Area per Row, (Ao)
(Figure EDB-3)
D) Perforation Dimensions (enter one only)
i) Circular Perforation Diameter OR
ii) 2" Height Rectangular Perforation Width
E) Number of Columns (nc, See Table 6a-1 for Maximum)
F) Actual Design Outlet Area per Row (Ao)
G) Number of Rows (nr) r
u
H) Total outlet Area (Aot)�
3. Trash Rack
A) Needed Open Area:
At = 0.5 ` (Figure 7 Value) ` Aot
B) Type of Outlet Opening (Check One)
C) For 2", or Smaller, Round Opening (Ref: Figure 6a)
1) Width of Trash Rack and Concrete Opening (Wconc)
from Table 6a-1
ii) Height of Trash Rack Screen (HTR)
= H - 2" for flange of top support
iii) Type of Screen Based on Depth H)
Describe if "other"
iv) Screen Opening Slot Dimension,
Describe if "other"
v) Spacing of Support Rod (O.C.)
Type and Size of Support rod (Ref: Table 6a-2)
vi) Type and size of Holding Frame (Ref: Table 6a-2)
la = 48 %
i = 0.475
A = 6.75 acres 100% of the site
WQCV = 0.199533 watershed inches
Vol. = 0.134685 ac-ft
x Orifice Plate
Perforated Riser Pipe
Other:
H= 1.7ft
Ao = 0.4 square inches
D =
3/4 inches, OR
W =
inches
nc =
1 number
Ao =
0.44 square inches
nr =
5 number
Act =
2.2 square inches
At = 74.82227 square inches
x < 2" Diameter Round
2" High Rectangular
Other:
Wconc = 3 inches
HTR = 18.4 inches
x S.S. #93 VE Wire (US Filter)
Other:
x 0.139" (US Filter)
Other:
3/4 inches
#156 VEE
3/8" x 1.0" flat bar
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of rectangular Opening (W)
W =
inches
'
ii) Width of Perforated Plate Opening (Wconc=W+12")
Wconc =
12 inches
iii) Width of Trashrack Opening (Wopening)
Wopening =
inches
t
from Table 6b-1
iv) Height of Trash Rack Screen (HTR)
HTR =
inches
v) Type of Screen (based on Detph H)
KlempTM KPP Series Alumin,
(Describe if "other)
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP
inches
Grating). Describe if "other"
Other:
vii) Minimum Bearing Bar Size (KlempTM Series, Table 6b-2)
(Based on depth of WQCV surcharge)
'
4.
Detention Basin length to width ratio
(LAN)
5.
Pre -sedimentation Forebay Basin - Enter design values
A) Volume (5 to 10% of the Design Volume in 1 D)
acre-feet
B) Surface Area
acres
C) Connector Pipe Diameter
inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides
yes/no
'
6.
Two -Stage Design
A) Top Stage (DWQ = 2' minumum)
DWQ =
feet
Storage =
acre-feet
B) Bottom Stage (DBS = DWQ + 1.5' min, DWQ + 3.0' max.
DBS =
feet
Storage = 5% to 15% of Total WQCV)
Storage =
acre-feet
Surf. Area =
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth =
feet
0.5"Top Stage Depth or 2.5 feet)
Storage =
acre-feet
'
Surf. Area =
acres
D) Total Volume: Voltot = Storage from 5A + 6A + 6B
Voltot =
0 acre-feet
Must be > Design Volume in 1 D
'
7.
Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, flatter preferred
' 8.
Dam Embankment Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, flatter preferred
9.
Vegetation (Check the method or describe "other")
x
Native Grass
Irrigation Turf Grass
Other:
DRAINAGE CRITERIA MANUAL (V.3)
STRUCTURAL BEST MANAGEMENT PRACTICES
1
1
ami O.E
w
m
c 0.4
E
d
0.2
M.
M
0.02
�i
SOLUTION: Required Area er
WQCV
i
FAR
0.01 i
0.
v.v-r U.w U. 1 V U.ZU U.4u U.bu 1.0 2.0 4.0, 6.0
Required Area p
FIGURE EDB-3
Water Quality Outlet Sizing:
Dry Extended Detention Basin With a 40=1-lour Drain Time of the Capture Volume
9-1-99
Urban Drainage and Flood Control Distrld. S43
Orifice 'Plate Perforation Sizina
Circular Perforation Sizing
Chart may be applied to orifice plate or vertical pipe outlet.
Hole Die
(in) •
Hole Die
(in)
Min. Sc
(in)
Area per Row (sq In)
n=i 7
n=2
.n=3
1 4
0.250
1
0.05
0.10
0.15
5 16
0.313
2
0.08
0.15
0.23
3 B
0.375
2
0.11
0.22
0.33
7 16
0.438
2
0.15
0.30
0.45
172
0.500
2
- 0.20
0.39
0.59
9 16
0.563
3
0.25
0.50
0.75
5 8
0:625 i
3
0.31
0.61
0.92
11 16
0.688
3
0.37
0.74
1.11
3 4
0.750
3
J2.40.88
1:33
13 16
0.813
3
0.52
1.04
1.56
7 8
0.875
3
0.60
1.20
1.80
15 16
0.938
3
0.69
1.38
2.07,
1
1.000
4
0.79
1.57
2.36
1 1 16
1.063
1 4
0.89
1.77
:2.68
1 1 8
1.125
4
0.99
1.99
2.98
1 3 16
1.188
4
1.11
2.22
3.32
1 1 4
1.250
4
1.23
2.45
3.68
1 5 16
.1.313
4
1.35
2.71
4.06.
1 3 8
1.375
4
1.48
Z97
4.45
1 7 16
1.438
4
1.62
3.25
4.87
1 '1 2
1.5D0 _
4
1.77
153
5.30
1 9 16
1.563
4
1.92
3.83
5.75
1 5 8
1.625 1
4
2.07
4.15
6.22
1 11 16
1.688
4
2.24
4:47'
6.71
1 :3 4
1.750
4
2.41
4.81
7.22,
1 1316
1.813
4
2.58
5.16
7.74
1 7 8
1.875
4
2.76
5.52
8.28
1 15 16
1.938
4
2.95
5:90
9.84
2
2.000
4
3.14
6.28
9.42'
n =. Number of columns of perforations
Minimum steel
plate thickness.
1/4'
5/16 '
3/8.'
*-Designer may interpolate to ;the nearest -32ndinch
to better "match the ;required area. 'If desired.
Rectangular Perforation Sizina
Only one column of rectangular perforations allowed.
Rectangular Height = 2 inches
Rectangular Width (inches) -. Required Area per Row (sq in
2"
Urban Drainage and
Flood Control District
Drainage Criteria Manual (V.3)
n* Dstal1&de9
Rectan ular
Hole Width
.-
Min. Steel
Thickness
5"
1 4
6»
1 4
7"
5 32
8"
5/16. "
Figure 5
WQCV Outlet Orifice
Perforation Sizing
Table 6a-1: Standardized WQCV Outlet Design Using 2" Diameter Circular Openings.
Minimum Width (Wco„ .) of Concrete Opening fora Well -Screen -Type Trash Rack.
See Figure 6-a for Explanation of Terns.
Maximum Dia.
Width of TZ11Per
Column
of Holes
as a Function of
Water Depth H
of Circular
Maximum
��°g
(inches)
H=2.0'=4.0'
H=5.0'
H=6.0'
Number of
Columns
< 0.25,
3 in.3
in.
34n=ini
3 i4<
0.
3 in.
in
3 in.4_<
0.75
3'
in.
6 in.7<
1.00
6 in..in
9 in.<
1.25
9 in.2<
1.50
12 in.
15 in.
18 in
18 in<
1.75
18 in.
21 in.
21 in.
24 inI<
2.00
21 in.
24 in.
27 in.
30 ini
Table 6a-2: Standardized WQCV Outlet Design Using 2" Diameter. Circular Openings.
US FilterTM Stainless Steel We117Screen (or.equal) Trash Rack Design
Specifications.
Max. Width
Screen #93 VEE
Support Rod
Support RMod,Carbon
Steel Frame
of Opening
Wire Slot Opening
Type
On-Cent
Type
Spacing
9"
0.139
#156 VEE
'/."'/,'k1.01latbar
18"0.139
TE.074"x.50"
1"24"
0.139
TE.074' x05"
I"1.0"x
! %"anle
2T'
0.139
TE,.074"x.75"
1"
1:03"
1.0"x 1'r4"an le
30"
0.139
TE..074"X1.0"
1"
1.155"
1'/.`kl%"an e
36"
0.139
TE.074"x1.0"
F,
1;155"
1 !/,`k li4"an e
42"
0.139
TE .105"z1A"
1"
1.155"
1 '/.`k ", _ e
US Filter, St.
Paul, Minnesota, USA
DESIGN EXAMPLE:
Given: A, WQCV outlet with three columns of 5/8 inch (0.625 in) diameter openings:
Water Depth Wabove the lowest opening of 3.5 feet
Find: The dimensions for a well screen trash rack within the mounting frame.
Solution From Table 6a-1 with an outlet opening diameter of 0.75 inches (i.e., rounded up fro& 5/8'.inch
actual diameter of the opening) and the Water Depth H = 4 feet (i.e., rounded up from 3.5 feet). The.
minimum width for each column of openings is 6 incligs. Thus, the total width is W Can. .= 36. = 18 inches.
The total height, after adding the 2 feet below the lowest row of openings, and subtracting 2 inches for the
flange of the top support channel, is 64 inches, Thus,
Trash rack dimensions within the mounting frame =18 inches wide x 64 inches high
From Table 66-2 select the ordering specifications for an 18", or less, wide opening trash rack using -US'
Filter (or equal). stainless steel well -screen with #93 VEE wire, 0. 139" openings between wires, TE
.074" x .5tY'support rods on 1.0" on -center spacing; total rack thickness of 0.655" and'/." x 1.0" welded
carbon steel frame.
' Table 6a
No Text
APPENDIX E
DETENTION POND CALCULATIONS
E
Interwest Consulting Group
DETENTION VOLUME CALCULATIONS
Rational Volumetric (FAA) Method
100-Year Event
LOCATION:
Worthington Residences (CSURF)
PROJECT NO:
1278-069-00
COMPUTATIONS BY: es
DATE:
12/15/2016
Equations:
Area trib. to pond =
6.75 acre
Developed flow = Qp = CIA
C (100) =
0.73
Vol. In = Vi = T C I A = T Qp
Developed C A =
4.9 acre
Vol. Out = Vo =K QPo T
Release rate, Opo =
2.40 cfs
storage = S = Vi - Vo
K =
1 (from fig 2.1)
Rainfall intensity
from City of Fort Collins IDF Curve
with updated (3.67) rainfall
Storm
Duration, T
(min)
Rainfall
Intensity, 1
(in/hr)
Qp
(cfs)
Vol. In
Vi
(ft)
Vol. Out
Vo
(ft)
Storage
S
(ft)
Storage
S
(ac-ft)
5
9.95
49.0
14698
720
13978
0.32
10
7.77
38.2
22944
1440
21504
0.49
20
5.62
27.7
33210
2880
30330
0.70
30
4.47
22.0
39603
4320
35283
0.81
40
3.74
18.4
44196
5760
38436
0.88
50
3.23,
15.9
47768
7200
40568
0.93
60
2.86
14.1
50691
8640
42051
0.97
70
2.57
12.7
53166
10080
43086
0.99
80
2.34
11.5
55313
11520
43793
1 1.01
90
2.15
10.6
57212
12960
44252
1.02
100
1.99
9.8
58916
14400
44516
1.02
110
1.86
9.2
60463
15840
44623
1.02
120
1.75
8.6
61881
17280
44601
1.02
130
1.65
8.1
63191
18720
44471
1.02
140
1.56
7.7
64408
20160
44248
1.02
150
1.48
7.3
65547
21600
43947
1.01
160
1.41
6.9
66617
23040
43577
1.00
170
1.35
6.6
67626
24480
43146
0.99
180
1.29
6.4
68583
25920
42663
0.98
190
1.24
6.1
69491
1 27360
42131
0.97
200
1.19
5.9
70357
28800
41557
0.95
210
1.15
5.6
71184
30240
40944
0.94
Required Storage Volume: 44623 ft3
1.02 acre-ft
12-13-16 Final Detention-CSURF (100 perc wq) - Copy.xls,FAA-100yr
Proposed Detention Pond - Stage/Storage
LOCATION:
Worthington Residences (CSURF)
PROJECT NO:
1278-069-00
COMPUTATIONS BY:
es
SUBMITTED BY:
INTERWEST CONSULTING GROUP
DATE:
12/15/2016
V=1/3d(A+B+sgrt(A'B))
where V = volume between contours, ft3
d = depth between contours, ft
A = surface area of contour
wOCV-
100-yr INSEL (Spillway) -
Top of Berm -
POND
Stage
(ft)
Surface
Area
(ft2)
Incremental
Storage
(ac-ft)
Total
Storage
(ac-ft)
Detention
Storage
(ac-ft)
36.0
0
37.0
3500
0.03
0.03
37.7
9800
0.10
0.13
38.0
13100
0.08
0.21
0.00
38.5
17000
0.17
0.38
0.17
39.0
18700
0.20
0.59
0.38
40.0
22100
0.47
1.05
0.84
40.1
22500
0.05
1.10
0.90
40.2
22800
0.05
1.16
0.95
40.3
23200
0.07
1.23
1.02
41.3
27400
0.56
1.79
1.58
REQUIRED DETENTION VOL = 1.02 AC -FT
TOTAL REQUIRED WQCV= 0.13 AC -FT
12-13-16 Final Detention-CSURF (100 perc wq) - Copy.xls
Stormwater Detention and Infiltration Design Data Sheet
Columbine Residences
Stormwater Facility Name:
Facility Location & Jurisdiction: Fort Collins, Colorado
User (Input) Watershed Characteristics
Watershed Slope =
0.009
Wit
Watershed length -to -Width Ratio =
3.00
L:W
Watershed Area =
6.75
acres
Watershed Imperviousness=
48.0%
percent
Percentage Hydrologic Soil Group A =
0.0%
percent
Percentage Hydrologic Soil Group 8 =
21.0%
percent
Percentage Hydrologic Soil Groups C/D =
79.0%
percent
User Input: Detention Basin Characteristics
WQCV Design Drain Time = 40.00 hours
After completing and printing this worksheet to a pdf, go to:
https://mapenure.digitaldotasemices.com/vh/?viewer=cswdif,
create a new Stormwater facility, and
attach the pdf of this worksheet to that record.
Design Storm Return Period -
Two -Hour Rainfall Depth =
Calculated Runoff Volume =
OPTIONAL Override Runoff Volume =
Inflow Hydrograph Volume =
Time to Drain 97%of Inflow Volume =
Time to Drain 99%of Inflow Volume =
Maximum Paneling Depth
Maximum Forded Area
Maximum Volume Stared =
User Defined
Stage (ftl
User Defined
Area Ift-21
User Defined
Stage Iftl
User Defined
Discharge Icfs1
0.00
0
0.00
0.00
1.00
3,500
4.30
2.40
1.70
9,800
5.30
29.80
2.00
13,100
2.50
17,000
3.00
18,700
4.00
22,100
4.10
22,500
4.20
22,800
4.30
23,200
5.30
27,400
Routed Hvdroeraoh Results
WQCV
2 YearR03368'
10 Year
25 Year
50 Year
100 Year
0.53
0.98
1.71
2.31
2,91
3,67
0.112
0,246
0,605
0.940
1.249
1.677
0.112
0.246
0.605
0.940
1.248
1.676
3
4
7
9
10
12
3
5
8
10
11
13
1.16
1.72
2.60
3.26
3.81
4.40
0.112
0.228
0.398
0.449
0.493
0.542
0.055
0.150
1 0.293
1 0.436
1 0.715
1 0.977
1.281
In
acre ft
acre-ft
acre-ft
hours
hours
it
acres
acre-ft
SOI_Design Data_FC Rainfall Columbine.xlsm, Design Data 2/15/2017, 7:16 AM
Stormwater Detention and Infiltration Design Data Sheet
35
30
25
30
5
0
0.1 1 10
TIME [hr]
5
4.5
a
3.5
F 3
e
V
z 2.5
0
z
S
2
1.5
1
0.5
0
0.1
1 30 100
DRAIN TIME (hr)
SDI Design Data_FC_Rainfall Columbinenlsm, Design Data 2/15/2017, 7:16 AM
Stormwater Detention and Infiltration Design Data Sheet
Columbine Residences
Stormwater Facility Name:
Facility Location &Jurisdiction: Fort Collins, Colorado
User (Input) Watershed Characteris
Watershed Slope=
Watershed Length -to -Width Ratio=
Watershed Area =
Watershed Imperviousness=
Percentage Hydrologic Soil Group A=
Percentage Hydrologic Soil Group B=
Percentage Hydrologic Soil Groups C/D =
0.009
3.00
6.75
48.0%
0.0%
21.0%
79.0%
User Input: Detention Basin Characteristics
WQCV Design Drain Time = 40.00 hours
After completing and printing this worksheet to a pdf, go to:
h"os://mayerture.digitaldatasemices.com/vh/?viewer=cswdlf.
create a new stormwater facility, and
attach the pdf of this worksheet to that record.
Design Storm Return Period
Two -Hour Rainfall Depth
Calculated Runoff Volume
OPTIONAL Override Runoff Volume
Inflow Hydrograph Volume
rime to Drain 97%of Inflow Volume:
Time to Drain 99%of Inflow Volume
Maximum Pending Depth
Maximum Fondled Area+
Maximum Volume Stored
User Defined
Stage Ift)
User Defined
Area Ift^2)
User Defined
Stage [ftl
User Defined
Discharge ids]
0.00
0
0.00
0.00
1.00
3,500
4.30
2.40
1.70
9,800
5.30
29.80
2.00
13,1D0
2.50
17,000
3.00
18,700
4.00
22,100
4.10
22,500
4.20
22,800
4.30
23,200
5.30
27,400
Rnutpd Hvdrnpranh RpcuAc
W QCV
2 Year
5 Year
10 Year
25 Year
50 Year
100 Year
D.53
0.98
1.36
1.71
2.31
2.91
3.67
0.112
0.246
0.430
0.605
0.940
1.249
1.677
0.112
0.246
0.430
0,605
0.940
1.248
1.676
3
4
6
7
9
10
12
3
5
6
8
10
11
13
1.16
1.72
2.21
2.60
3.26
3.81
4.40
0.112
0.228
0.338
0.398
0.449
0,493
0.542
0.055
0.150
0.293
0.436
1 0,715
1 0.977
1.281
n
acre-ft
acre-ft
acre-ft
lours
lours
t
cres
acre-ft
SDI_Design_Data_FC Rainfall Columbine.xlsm, Design Data 2115/2017, 7:16 AM
Stormwater Detention and Infiltration Design Data Sheet
e
50YR IN
SOYR OUT
—25YR IN
10YR IN
6
■ . iv
COC=C�C:
C'
7■■111110■■
u
■■11111
■■■11111.��■■1111
■■11111
■■■11111�\\�1111
■■oll
^\�1111
0■■11111
EPA,
�\6I4,
►11VM111111111111
M1��1���nnv1�■■■1■
,
���
ul�►1�,�►111,V1�■■■■1■
■1��►vvav�
SDI Design Data FC_Rainfall Columbine.xlsm, Design Data 2/15/2017, 7:16 AM
POND
100-yr Event, Outlet Sizing
' LOCATION: Worthington Residences (CSURF)
PROJECT NO: 1278-069-00
COMPUTATIONS BY: es
SUBMITTED BY: INTERWEST CONSULTING GROUP
DATE: 12/15/2016
Submerged Orifice Outlet:
' release rate is described by the orifice equation,
Qo = COAO sgrt( 2g(h-E,))
where Q. = orifice ouff low (cfs)
' Co = orifice discharge coefficient
g = gravitational acceleration = 32.20 1t/s
Ao = effective area of the orifice (ft`)
Eo = greater of geometric center elevation of the orifice or d/s HGL (ft)
h = water surface elevation (ft)
Qo = 2.40 cfs
outlet pipe dia = D = 15.0 in
' Invert elev. = 5035.96 ft (inv. "D" on outlet structure)
Eo = 5038.04 ft (downstream HGL for peak 100 yr flow - from FlowMaster)
h = 5040.30 ft - 100 yr WSEL
Co = 0.65
solve for effective area of orifice using the orifice equation
' Ao = 0.306 ft'
44.1 in`
orifice dia. = d = 7.49 in
' Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering)
d/ D = 0.50
kinematic viscosity, v = 1.22E-05 ft2/s
Reynolds no. = Red = 4Q/(7tdv) = 4.01E+05
Co = (K in figure) = 0.65 check
Use d = 7.5 in
A,, = 0.307 n` = 44.18 in
Qmax = 2.41 cfs
orifice - 100yr, 12-13-16 Final Detention-CSURF (100 perc wq) - Copy.xls
LOCATION:
PROJECT NO:
COMPUTATIONS BY
SUBMITTED BY:
DATE:
Detention Pond
Emergency Overflow Spillway Sizing
Worthington Residences (CSURF)
1278-069-00
es
INTERWEST CONSULTING GROUP
12/15/2016 top of berm
Equation for flow over a broad crested weir
Q=CLH"'
where C = weir coefficient = 2.6
H = overflow height
L = length of the weir
b
4 spill elevation
o L —♦
The pond has a spill elevation equal to the maximum water surface elevation in the pond
Design spillway with 0.5 ft flow depth, thus H = 0.5 ft
Size the spillway assuming that the pond outlet is completely clogged.
Pond
Q (100) =
29.8
cfs (peak flow into pond)
Spill elev =
5040.30
ft
Min top of berm elev.=
5041.30
Weir length required:
L =
32
ft
Use L =
32
ft
v = 1.66 ft/s
Ispillway, 12-13-16 Final Detention-CSURF (100 perc wq) - Copy.xls
�ILw.sii� ae°°I
r L,
rs
'I
..waRp
�Ya�u
1oIalnM PLAN
r D
.IA LL rN A B D
9
1��.IY.R Wltla 0p0 eI
�rwu a�wlw+l � 1 •�
III PWe'.1wb w
C TIED munL ass
I '�)uae 1• • .I ROE � NA am
1..
I I nw
I e4 WW�uR�e •I.. J
I nlp.wnT I• • H
I �n I••H.
RM[
MCA P AL
MI Mo
WEIR NIEEN $♦SEAT[
SECTION BA
,r LJ
`
""
E*9'
«, Do
- To
r of AB
SECTION 0-0 J
a
.. , laB®IL7�
INN
____— _ —
vEwwwawaw aw.a<.aeew.
:a: w
i
A roa s marn.n wu
N .I w'-.+U+^..
4lMY
r 1� IRA
11. wiNlr.
a iii `iiwesiWs wx.""a'wma+ro- wm r..
f�
IS
wrznn
VICE..
.Awraw. rNau n.uR nw .Raa�
—
AgaNr. vNATauw � �,«
WATER QUALITY
yW�i w w as.w w ar a n .m +wo
iwr
Prr +
��FC
OUTLET STRUCTURE
DETAILS
�,F �rR�,
.�•a�•��
CITY OF FORT COLLINS UTILITIES
ST08Yn me WAER CONSTNUCTiDv DhTAllS
F.o. Boll eRo, rom cowus. Lro. eo5xz
(11w) 221-67M Iasi
ao
w .wr Pe
M
MRYY .WME MIUM POMP
MT d,.6oMa3
0' NIOEII RIBOI W/
P NRAzn ovisom NG
100-M
MIL 9 z
NNorth American
Pipe Corporation
AS SY M lr TYPE L WORM
PM .U® ./ R• VETETATD Sll
ANa .EDDm WIN e- rYP a .
r WOE IXNOER
7 IM Y OOFMIJ QT aTxml �1
WpNR AND rAq G oanaW
EMERGENCY OVERFLOW SPILLWAY
W/ CONCRETE RIBBON
NTS
ASTM F768 PVC Highway Underdrain Pipe
SOLVENT YIELD
MUNICIPAL
w ,aa m am nnm I WI
fi }.al6t M
OaSa am
r . ]P.Tws WrM TYl
r av Ivr m oueo uaw uTee
0]l4 :fill
F NM. P.Iw .NeMIMEWn I,w
I HOLES ROTATED
IOC (FACING LP)
IP P
L —F.
Y lI
♦ R \ y
- Tor
FLOW CONTROL PLATE DETAIL
NTS
nan�ngio '
wMP. snNeTe
— O ema•
Nm0
n
S^NTure
HOPE nbnE
Ge14
12- MWlrp DeoM
b
Inlmum lY6
KW
M No.etentmnSena Near
NIIsena
MI IRTn
Clty OF.rl CO1Mh)
Inlmum 6- TM[Y Lave, a
M Gm i O.IMOam
A'.. COOT
W. a A9anG.Re/\ b• `
Aawe eM
mmnm r rnNA La" a
IN, \.
PVC NPe
COOT NP . ANngelc
. uoftW.Y II II
Inlmum.-PMp�yea
HNC M, MOP1Mn.1
OepeMin, on UrWMPnO
SIMI Cohih S)
BIORETENTION / BIOSWALE CROSS SECTION
CkyR�—QI'L_a1
f-^T? C.OIIIfIs �� STORMWAIER
! M E
IMTE: "./I1J DCIAIL
LjS
--� w�a CONSTRUCTION DE,
p —
r STEEL ldl-YR
f7fr
CE PLATE
15' PIT, CUTLET
PIPE
2I —dAMEMR
OkIiICE
100-YR OUTLET
ORIFICE PLATE DETAIL
NTS
Cfl'1. OF FORT COLLINS
BIORETENTION SAND MEDIA SPECIFICATION
PART 1 - CENTRAL
A BIOREIENTKN SANG MEDIA (GSM) SHALL BE UNIFORMLY WDED. UNOGPACIED. FREE OF STO M STU PS. ROOTS. OR OTHER SKIM OB.ECTS
LARGET TIM 1MO NCMES. NO OTHER MATERIALS OR SIASTAMDES SHALL SE MB® OR DUMPED YTIN THE BIOETDNTGN AREA THAT MAY BE
HARMFUL TO PLANT GROWTH OR PROVE A M.MIDRANCE TO THE FARITYS FUNCTION AND MAINTENANCE-
B. BSI SHALL WE FREE Of RANT OR S® MATERIAL OF NON-NATIVE, INVASIVE SPECIES OR WEEDS
G FULLY MOED ISM SHALL BE TESTED PRIOR TO INSTALLATION! AND MEET THE FOLLCWING CRITERIA:
1. P-NDEX OF LESS THAN JO
2. PH U 15-6.5. SHOULD PH FALL OUTSIDE M THE ACCEPTABLE RANGE IT MAY BE MOORED WIN LYE (TO RAISE) OR IRON SU RATE PLUS
SULFUR (TO LOITER). THE LIE OR WON SULFATE MUST BE MIXED UNIFORMLY NTO THE BSI PRIOR TO USE N THE BIIETENTION FACILITY.
S CATION EXOHAKE WACTY (MC) GREATER TIMN 10
.. PNosoEHpRGUs (PHOSPHATE PllG6) NOT To E%LEEBD 69 PPM
} BSM THAT FAILS TO MEET THE MINIMUM REOVNOIENTS SMALL LE REPLACED AT THE CONMACTOWS EI(PENg
D. BSM SMALL BE CONSISTENCY
MLY WORD E A DRUM MIXER. TION THE
O' PEES WLL MOT H ALLONED. w)SMNG O' TE BSI ro A
HGIIomcOus coNssTTNcr SMALL BE GOrE ro nE vTlsrAcnw of TIE OWNER.
PART 2 - SDI!. MATERIALS
A SAND
1. BSI SMALL CONSIST Of 61 SAND BY WOUME MEETING ASTM C-JJ.
B. SHREDDED PAPER
1. BSI SMALL CONSIST OF 5-IM SHREDDED PAPER BY WLUE.
I SHREDDED PAPER SHALL E LOOSELY PACKED. APPROXIMATE BUIX DENST' OF 50-100 LIS/CY.
3. SHREDDED PARR SHALL COMW OF LOOSE LEW PAPER, HOT SHREDDED PHONE BOOKS. AND SHALL BE TIORC1p0.Y AND MECHANICALLY
AND M
THESE
D.
OR LOAM PER USDA TETRIIRN. MIANGE WIN LEA THAN = GAY MATERIAL
RABLY AT ITS SOURM PRIOR TO INQLANO TOPSOIL N THE MDL TOPSOE
D ANY OTHER MATERIAL OELE1ElRKK5 TO RANT HEALTH.
2. LEAF CGMPOJT SHALL CGNSTBT a OA55 1 OROAMC LEAF cwwsr CdLSSTNG R AGED LE.VF M1ACH RESULTING TRW B0.000AL
DEGRADATION AND MANSORUATI N OF PLANT-OERIVCp MATERIALS UNDER CONTROLLED CONDITIONS OE9QNED TO PROMOTE AEROBIC DECOMPOSITION.
I THE MATERIAL SHALL BE WELL W1POSIFD. FREE OF VASE WEED SEEDS AND CONTAIN MATERIAL OF A GENERALLY HIARA NATURE
CAPABE OF SUSTAINING GROWTH R VEGETATION. WITH NO MATERIALS TD)X TO PUNT GROWTH.
A. COMPOST SHALL S: PROALUED BY A LOCAL US COMPOSTING COUNCIL SEAL OF TESTING ASSURANCE (STA) MEMBER. A COPY OF ME
PNDNOEWS MOST RECENT INDEPENDENT STA TEST REPORT SMALL IN SUBMITTED TO AND APPROVED BY THE OWNER PRIOR TD DELVERY OF BSH TO
THE PROJECT SITE
I CNP(16T MATERIAL SHALL ALSO MEET THE FOLLOMNG CRITERIk
a IM PERCENT OF THE MATERIAL SHALL PASS THROUGH! A 1/2 INCH SCREEN
0. PH OF THE MATERIAL SHALL BE BETWEEN &0 AND BA
c. MOISTURE CONTENT SMALL BE BETWEEN 35 AND PA PERCENT Iw
a MATURITY GREATER TUN BO PERCNT WT)RITYINOGEITIR E4 ER% AS PERCENTAGE 0' GEMINATON/MGOR. ICI+/IOa)
• MATURITY INOCAIOR [%PRESSED AS TO M1.pOp1 RAIMaI < T2
1. MATURITY INOCATOR D%PRESSED AS AMYOMM/MIIRATETI RAIL <A
n. MININKIM LToP�Eµ�T BASS SOLUBLE SALCONlENT S AUI BE NGREATER THAN 5BPARTS PER MLLGN OR o-5 MMMos/CM
1. PHOSPHORUS CONTENT SHALL IN NO GREATER THAN J26 PARTS PER MILLION
j HEAVY METALS (MACE) SHALL NOT DCC® 0.5 PARTS PER M6LUN
4. CNEMICA CONTAMINANTS, MEET OR EXCEED HIS EPA CLASS A STAMIDARD. Q CAR 5 13. TABLE I a J IE IEL.S
I. PATHOGENS, MEET OR EXCEED US EPA 0A55 A STANDARD. AO O 50132(A) LEVELS
PART J - EXECUTION
A GENERAL
1. REFER TO PRo.EGT SPECUTCATONS FOR EXCAVATION REQUIREMENTS. CITY OF FORT COLLINS. COLORADO
RMETHOD
i BLS! MATE AL SHALL BE SPREAD EVENLY N HGOZONTAL LAYERS, UTILITY PLAN APPROVAL
z THICKNESS OF LOOSE MATERIAL IN EACH DYER SMALL HOT EXCEED 91
I COMPACTION OF BSM MATERIAL IS HOT REG RTIOD
CALL UTILITY NOTIFICATION
CENTER OF COLORADO
811
LALL 2-BUSINESS DAYS IN ADVANCE
BEFORE YOU DIG, MADE. OR EXCAVATE
FOR THE MARKING 01 UNDERGROUND
MEMBER UTILITIES.
APPROVED BY THE NEW MERCER DITCH
COMPANY
RANDY GUSTAFSON. PRESIDENT DATE
APPROVED:
CITY ENGINEER
CHECKED BY:
WATER a WASTEWATER UTLITY
CHECKED BY:
STWMWATER UTUTY
CHECKED BY:
PARKS a RECREATION
CHECKED BY:
TRAFFIC ENGINEER
CHECKED BY:
ENNRCNMENTAL PLANER
Hn
za
ZF)o 0
N W W
W
W O N
IN
Cr = Z z
6< u 0 ED
¢ <U'QW
a ? z U Z
S
CIF 0
(0 U.
N
N
W U
LL Z
H J
Z W
W =
U F
N—
I.. N
O�
(n
< W 0
z U
U Z =
LU
W
U
0 0 W
I �.
Wp
0: W
_Z Z
Cm a
G
D
-J Q
0�
U OW
PROD. NO. 127"6500
21
APPENDIX F
SOILS INFORMATION, FEMA FIRMETTE, FIGURES, TABLES
' AND
EXCERPTS FROM REPORTS
1
L
11
II
IJ
11
11
11
II
11
11
F
11
z
gM
3
00669r
M 1T 5 .507
M.aS s50[
�La8:n' OZL69VV 0896Rtt OV96R" 00969tt
z
e
0.�
S
09S68V6
M1I5 eSOT
z z
n
f0 V
N
2
m O
�
Z d
Rf
O m
0
U
O
l0
Z
�n
E
S
¢i
X
iy
v
8�
u
y
R
'o c
O
y
d
7 b
Z�
C
m O
Z U
M.Ef S oSOI
C.
�6
z
0
r
«
�
�
0
z
CL
�
a
z
w
0
w
-j
IL
�
ko
® \
§ |\22
� CL
$ 7rtk
2 {ff0
o
E k\aw
£ EC
\ E
f 'm
J ui
\RZ/
ƒ
°�
`
§j
)
-
§(I
ƒf//
:
ca
p
_
§
\mE
k �k
{ §\
\
km
r
\
<
r
\;)
Co
0j2
;0 a)Z
\§
���t
a4e
2 /§
!$
k
§_§
:
f 2
§
CL
;
4£Ek
(Da
('0
{)
/c
£
m
«!
§)
}
CL
a
7 f
\§\{�
0-0
)k(
k2<0C
�_
�'
/
-
�a
4f);3
k
�a
7
_
®
C�
o
!0
-
-
{|
I2\
Z'\£6
\\
})
§e;Cr
[ƒ
{
CL M
k2
�§
!)B|)
��
)�
\/
/-
}}(}
�2
/kJ
ƒ{k2)
/f
)3
A�
3k
&S=o
\
/
m
k
\
\
!
ƒ
)
-
e o=
z
2 2_
m!
O o
Q ❑
} / !
J
&
�
{
\
\
�!
Ak
_LD
m
m<
2= 2
o S
Clz
m< $ CO
S
e S
o\
/< 2, y
7!
2 q
�\ /
/ / /
/ /
/
/
$ •
| ,
/ O a o
(
\I
0
o
e
O
O
O
W
O
N
)-
O
Q
�
O
C
C
m
m
IL
O
v
O
co
Of
A
(V
I-:
O!
-0
U
Q
Q
•N
m
T
Q
c
0
0
U
m
E
J
rn
C
C
3
o.
m
-a
a]
U
m
E
m
M
k�C7r
,e6
� a
N
gym.
Ica
Q
Z
N
O.
O
m
T_
O.
c
=
E
e
mm
N
C
Q
7
O
CL
w
Im
N
A
7
n
H
C
T
N
Cc
L- O
V
c
p) O
3N
C
'y O m
.6
c
ai'Cc(n
a)
c`3
co o
m
a) t .5
3
iri
m
o
N
m
a) 3
L— CO
N
w
cc a)
3
'C O
w v1°i
H m
W
N p O.
N D
C '0
y 3 H
N p
�0 N 0 3
c" co
'O
N N>
L
3 o a)
H C 03
C C N 'Z
L
U
N
_C
O
N
N E y
.0+ L T N
N
;a c
m N
w
.3.
L X
m
a7
3>
CL
t cOi E
❑ L
..
Q�
0)a
N
c L a7
U
0. a)
w� N
O� N
L E
i
N
C cn
ohm
a3.
av
aNm
=N�
3
=)oco
2c°>af6i
_
o —
c
o
O 3
m`
o X
N c'
L T
0 3 0
L
0) Cc N
°
N
m
mL
0) in
o m
3
C
c 3 N
cp
��w o
`�
L a3
0 as 3
o a) m
o 0
t
3
a) a)
N d N
L °0L
�' N 3
a o
°
L
o rn
3v V
° N o
to '0
o�
3 0~
c`a
ti°
cEn
m
ate)
p o
aa))�
cV O L
'0 )
a) R
Cp E O C
E
0) d
cn
N
O N L
N
O N
"O C
C a)
c~
Co
`
p
c`a N O n
ca 3
`-0 X
f0 0)
w
O) j O)
"
to al
0) r:
C— L
L
.. a) co
C N
o Q
,F
.-• O
m
N
V N
0 0 0
U
p 3
c o c
N
taEc
c> y M
o
o N aoi
cNa
a o
a) X
w
3 cc L
o.
a)
C N>
N a)
cc
C L O
(n
N O
M
cc
N tl) N
a) O- 0)
cc
(n
V =
'O C
L
in al O
L 0 a
L 0>
OI
N
O O
O >`
a) C CU 'O
O
y
��> N
�0 m
co
r T
N
N T
E.. 3
�O
wcv X
>p cN
3 0
v
a) C L E
a) C
N E .0+
ca aS "'
a) O > M
Z'
a)
ao�N
�a
a)
�o0Y
0) N
0) =�t�>
°��
y C
C
�E�
L
E O c`°
N> T
N c
a)
as `N
O
a p
cn
=
> y
'in-
>
E ::
L L
L~ 3>
C C
N O
tNo
L
L o
w
w
w
Q
.O o Q (6
y v
N T> N
M y W
tl) a) N d
c
.� N
++
CL
a) w. 3
O
C
g" c
o m Cc -0
o.0 v c
fn
o 3'o L
(n
co ca `o
ca
O
•L
U C V
N N y
� L L p
N O _O
T co
-p O
Im
U N C
O N
N 7
Q L T
m N E
U O .N
N y
upi
C V
ai
OCL
E
N
~_
y
O) N
N
3 >
O
3 N y N
O
3 uEi
O
3 0
0
O
L
O O
O O a3
L O ca
O
a7
._ O
2 ai fpo `
...
iD 3 0)
U 0 N L
U 0 co .`.
(D aL.. Q a)
H
.� C
No Text
W
F �m
W �`a
�c r Cry
W i CLLS �A W r p. am
=im roE
C ppj _' m CO O X °O g
C S ° Y g SN 00 W«ri
r
WZZO
a
b O F?
[Q7 a yy yp
Z ¢F� E$c$
IIG J Q Q fIg/O�� �P N LL pp� V r o E E LL
rLO Z ��+ W I� wy �x 9°`d W w C �y.Qa
W i 5 CO) Q W 0p �r �cc�tW
Q f� Z OG O Z 8 2 C E 9 w
N Qli w W KO 2-
UiEm0
IL < {JL dN 9� °c°m�
a«m
C aVE�m�
L G 3 U U m 0,
�OE ep ®®®® ® m EvM
FE
L a
••• i i � l •.1151.:.j. '
co cm ir
N
;:.. ,M.,c>.:�s..�y. '��%�� may,• G �p
'1005
�b
3
0
s
p
F-
O z
z
Qp2 r=-
0
� J O
LO
J
n =
co
I?
L G
a I~i
o
o p
v In
u
10.00
9.00
8.00
t 7.00
m
r
rc 6.00
t
2 5.00
f
x 4.00
J
J
Q
LL
Z 3.00
2.00
1.00
0.00 4-
0.00
RAINFALL INTENSITY -DURATION -FREQUENCY CURVE.
10.00 20.00 30.00 40.00 50.00
STORM DURATION (minutes)
—2-Year Storm - - - 10-Year Storm 100-Year Storm
Figure RA-16 - City of Fort Collins
Rainfall Intensity -Duration -Frequency Curves
60.00
t (C)
Volume 1, Chapter S - Runoff:
(1)
Section 1.0 is deleted in its entirety.
(2)
A new Section 1.1 is added, to read as follows:
t 1.1
Runoff Methodologies
(a) There are two runoff determination methodologies that are approved by the City, the Rational Method and the
Stormwater Management Model (SWMM). The City is the determining authority with respect to the appropriate
'
methodology to use under different circumstances. Early contact with the City is encouraged for the timely determi-
nation of the appropriate runoff methodology to use.
(b) The Rational Method may only be used to determine the runoff from drainage basins that are less than ninety (90)
'
acres in size. The Stormwater Management Model (SWMM) must be used to model drainage basin areas of ninety
(90) acres or more.
(c) All runoff calculations made in the design of both 2-year and 100-year drainage systems must be included with
the Storm Drainage Report and all storm drainage facilities designed must be shown on Storm Drainage Plans.
(3)
A new Section 2.8 is added, to read as follows:
' 2.8
Rational Method Runoff Coefficients
(a) The runoff coefficients to be used in the Rational Method can be determined based on either zoning classifica-
tions or the types of surfaces on the drainage area. Zoning classifications may be used to estimate flow rates and vol-
umes for an Overall Drainage Plan (ODP) submittal, if the types of surfaces are not known. Table RO-10 lists the
runoff coefficients for common types of zoning classifications in the city of Fort Collins.
27
DRAINAGE CRITERIA MANUAL (V. 1)
RUNOFF
Table RO-3—Recommended Percentage Imperviousness Values
Land Use or
Surface Characteristics
Percentage
Imperviousness
Business:
Commercial areas
95
Neighborhood areas
85
Residential:
Single-family
Multi -unit (detached)
60
Multi -unit (attached)
75
Half -acre lot or larger
'
Apartments
80
Industrial:
Light areas
80
Heavy areas
90
Parks, cemeteries
5
Playgrounds
10
Schools
50
Railroad yard areas
15
Undeveloped Areas:
Historic flow analysis
2
Greenbelts, agricultural
2
Off -site flow analysis
(when land use not defined)
45
Streets:
Paved
100
Gravel (packed)
40
Drive and walks
90
Roofs
90
Lawns, sandy soil
0
Lawns, clayey soil
0
' See Figures RO-3 through RO-5 for percentage imperviousness.
C,, = K, + (1.31i3-1.44i2 + 1.135i - 0.12) for CA >: 0, otherwise CA = 0
CCD = KCD + (0.858i3 - 0.786i2 + 0.774i + 0.04)
CB = (CA + CCD )12
(RO-6)
(RO-7)
2007-01
Urban Drainage and Flood Control District
I. .
(b) For a Project Plan or Final Plan submittal, runoff coefficients based on the proposed land surface types must be
used. Since the actual runoff coefficients may be different from those specified in Table RO-10, Table RO-11 lists
coefficients for the different types of land surfaces. The runoff coefficient used for design must be based on the actual
conditions of the proposed site.
Table RO-10
Rational Method Minor Storm Runoff Coefficients for Zoning Classifications
Description ofArea or Zoning
Coefficient
R-F
0.3
U-E
0.3
L-M-In
0.55
R-L, N-C-L
0.6
M-M-N, N-C-M
0.65
N-C-B
0.7
Business:
C-C-N, C-C-R, C-N, N-C, C-S
0.95
R-D-R, C-C, C-L
0.95
D, C
0.95
H-C
0.95
C-S
0.95
Industrial:
E
0.85
1
0.95
Undeveloped:
R-C, T
0.2
P-O-L
0.25
For guidance regarding zoning districts and classifications of such districts please refer to Article Four of the City Land Use Code, as amended.
Table RO-I1
Rational Method Runoff Coefficients for Composite Analysis
Character of Surface
Runoff Coefficient
Streets, parking lots, drives:
Asphalt
0.95
Concrete
0.95
Gravel
0.5
Roofs
0.95
Recycled asphalt
0.8
Lawns, sandy soil:
Flat <2%
0.1
Average 2 to 7%
0.15
Steep >7%
0.2
Lawns, heavy soil:
Flat <2%
0.2
Average 2 to 7%
0.25
Steep >7%
0.35
(4) A new Section 2.9 is added, to read as follows:
28
2.9 Composite Runoff Coefficient
Drainage sub -basins are frequently composed of land that has multiple surfaces or zoning classifications. In such cas-
es a composite runoff coefficient must be calculated for any given drainage sub -basin.
The composite runoff coefficient is obtained using the following formula:
n
t i * Ai
C = � ( (RO-8)
A$
Where:
C = Composite Runoff Coefficient
Ci = Runoff Coefficient for Specific Area (A)
Ai = Area of Surface with Runoff Coefficient of Ci, acres or feet?
n = Number of different surfaces to be considered
A, = Total Area over which C is applicable, acres or feet?
(5) Anew Section 2.10 is added, to read as follows:
2.10 Runoff Coefficient Adjustment for Infreauent Storms
The runoff coefficients provided in tables RO-10 and RO-11 are appropriate for use with the 2-year storm event. For
storms with higher intensities, an adjustment of the runoff coefficient is required due to the lessening amount of infil-
tration, depression retention, evapo-transpiration and other losses that have a proportionally smaller effect on storm
runoff. This adjustment is applied to the composite runoff coefficient.
These frequency adjustment factors are found in Table RO-12.
Table RO-12
Rational Method Runoff Coefficients for Composite Analysis
Stone Return Period (years)
Frequency Factor Cf
2 to 10
1.00
11 to25
1.10
26 to 50
1.20
51 to 100
1.25
Note: The product of C times Cf cannot exceed the value of l; in the cases where it does, a value of 1 must be used.
' (6) Section 3.1 is deleted in its entirety.
(7) Section 3.2 is deleted in its entirety.
(8) Section 3.3 is deleted in its entirety.
(9) A new Section 4.3 is added, to read as follows:
4.3 Computer Modeline Practices
' (a) For circumstances requiring computer modeling, the design storm hydrographs must be determined using the
Stormwater Management Model (SWMM). Basin and conveyance element parameters must be computed based on
the physical characteristics of the site.
(b) Refer to the SWAM Users' Manual for appropriate modeling methodology, practices and development. The Us-
ers' Manual can be found on the Environmental Protection Agency (EPA) website
(http://www.MeQN /ednnnmUmodels/swmmlindex.hUn).
' (c) It is the responsibility of the design engineer to verify that all of the models used in the design meet all current
City criteria and regulations.
29