Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 10/10/2016
1 11 r September 30, 2016 City of Ft. CollinNsrov Plans. Approved By�'l Date FINAL DRAINAGE AND EROSION CONTROL REPORT FOR Bucking Horse Filing Four Fort Collins, Colorado r Prepared for: Bucking Horse LLC 3702 Manhattan Avenue, Suite 201 Fort Collins, Colorado 80526 Prepared by: NORTHERN ENGINEERING 200 South College Avenue, Sub 10 Fart Collins, Colorado 80524 Phone: 970.221.4158 Fax: 970.221.4159 www.norDiemmoneering.com This Drainage Report Is consciously provided as a PDF. Please consider the environment before printing this document In Its entirety. . When a hard copy Is absolutely necessary, we recommend doable -aided printing. Project Number: 687-004 NorthernEnnineerina.com // 970.221.4159 I ' INORTHERN ENGINEERING September 30, 2016 City of Fort Collins Stormwater Utility 700 Wood Street Fort Collins, Colorado 80521. RE: Final Drainage and Erosion Control Report for BUCKING HORSE FILING FOUR tDear Staff: ' Northern Engineering is pleased to submit this Final Drainage and Erosion Control Report for your review. This report accompanies the Final Plan submittal for the proposed Bucking Horse Filing Four development. This report has been prepared in accordance to Fort Collins Stormwater Criteria Manual (FCSCM), and serves to document the stormwater impacts associated with the proposed project. We understand that review by the City is to assure general compliance with standardized criteria contained in the FCSCM. If you should have any questions as you review this report, please feel free to contact us. Sincerely, NORTHERN ENGINEERING SERVICES, INC. amox. Aaron Cvar, PhD, PE Senior Project Engineer . 301 N. Howes Street, Suite 100, Fort Collins, CO 80521 1 970.221.4158 1 www.northernengineering.com A ' INORTHERN ENGINEERING Bucking Horse Filing Four TABLE OF CONTENTS I. GENERAL LOCATION AND DESCRIPTION................................................................... 1 ' A. Location.............................................................................................................................................1 B. Description of Property.....................................................................................................................2 ' C. Floodplain..........................................................................................................................................4 II. DRAINAGE BASINS AND SUB-BASINS.......................................................................4 ' A. Major Basin Description....................................................................................................................4 B. Sub -Basin Description............................................................................:..........................................4 ' III. DRAINAGE DESIGN CRITERIA................................................................................... 5 A. Regulations ........................................................................................................................................5 B. Four Step Process..............................................................................................................................5 tC. Development Criteria Reference and Constraints............................................................................5 D. Hydrological Criteria.........................................................................................................................6 E. Hydraulic Criteria..............................................................................................................................6 F. Modifications of Criteria...................................................................................................................6 ' IV. DRAINAGE FACILITY DESIGN.................................................................................... 6 A. General Concept...............................................................................................................................6 B. Specific Details..................................................................................................................................7 V. CONCLUSIONS........................................................................................................8 ' A. Compliance with Standards..............................................................................................................8 B. Drainage Concept..............................................................................................................................8 APPENDICES: APPENDIX A — Hydrologic Computations ' APPENDIX B — Stormwater Management Model (SWMM) APPENDIX C — Erosion Control Report APPENDIX D — LID Design Information ' APPENDIX E — Inlet Computations APPENDIX F — Storm Line Computations APPENDIX G — Riprap Computations APPENDIX H = Swale Computations Final Drainage Report ■� NORTHERN ENGINEERING Buckine Horse Filine Foui LIST OF FIGURES: Figure1 — Aerial Photograph........................................................................................:....... 2 Figure 2— Proposed Site Plan................................................................................................ 3 Figure 3 — Existing Floodplains............................................................................................. 4 MAP POCKET: Proposed Drainage Exhibit m Final Drainage Report ' ■v NORTHERN ENGINEERING Horse I. GENERAL LOCATION AND DESCRIPTION A. Location 1. Vicinity Map 1 IL FI 2. The project site is located in Section 20, Township 7 North, Range 68 West of the 6"' Principal Meridian, City of Fort Collins, County of Larimer, State of Colorado 3. The project site is located just east of Gooseberry Lane between existing Bucking Horse Filing 2 and Bucking Horse Filing 1. ' 4. The Bucking Horse Filing 1 development exists just to the west of the site, and the Bucking Horse Filing 2 development exists just to the south and east of the site. An ' existing major drainage swale runs along the north boundary of the project site and serves as the major conveyance for all onsite runoff, directing water into the existing detention pond designed with Bucking Horse Filing 1 ('Detention Pond 215"). This ' drainage swale conveys storm runoff from the existing Bucking Horse Filing 1 site and was intended to also convey runoff from the current site. 5. Some offsite flow enters the site from the west and the south from the existing ' Bucking Horse Filing 1 and Filing 2 sites. Offsite Basins OS1 through OS4, as shown on the Drainage Exhibit, define these offsite areas. Final Drainage Report 1 ' NJ NORTHERN ENGINEERING Bucking Horse Filing Four B. Description of Property 1. The project area is roughly 18.3 net acres. 0a 1 1 1 1 0, J Figure 1 — Aerial Photograph ' 2. The subject property is an undeveloped parcel with native ground cover. Existing ground slopes are mild to moderate (i.e., 1 - 6±%) through the interior of the property. General topography slopes from southwest to northeast. ' 3. A soils report (EEC Project No. 1122025C) was completed by Earth Engineering Consultants, Inc. (EEC) on July 19, 2012. The report contains the results of a complete geotechnical subsurface exploration as well as pertinent geotechnical ' recommendations. The boring logs show that USCS soil group CL is predominant on - site. These soils are inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays and lean clays. ' 4. The proposed project site plan is composed of apartment complexes and parking areas. Associated roadways, water and sewer lines will be constructed with the development. Please see Figure 2, below, showing the proposed site plan. �l 1 Final Drainage Report 2 W INORTHERN ENGINEERING Buckiniz Horse Filing Four NORTH Figure 2— Proposed Site Plan 5. There are no known irrigation laterals crossing the site. 6. The proposed land use is residential. Final Drainage Report 3 NORTHERN ENGINEERING Bucking Horse Filing Four I 1 1 C. Floodplain 1. The project site is not encroached by any City or FEMA 100-year or 500-year floodplain. The FEMA •fit �...- a i' FEMA High Risk- Ficiodway 0 FEId4,Hign Risk- 1CC rear n FEI.14 6lcoerate Risk - 1 CC `00 Figure 3 —Area Floodplain Mapping DRAINAGE BASINS AND SUB -BASINS A. Major Basin Description 1. Bucking Horse Filing 4 is located in the Foothills Drainage Basin. All of Bucking Horse Filing 4 was intended to be conveyed into existing "Detention Pond 215", designed and approved with Bucking Horse Filing 1. The pond currently provides approximately 32.4 ac-ft of storage volume. The pond is also designed as a 40-hour dry extended detention basin (EDB), providing approximately 3.4 ac-ft of water quality capture volume (WQCV). B. Sub -Basin Description 1. The subject property historically drains overland from southwest to northeast. Runoff from the majority of the site has historically been collected in the existing major drainage swale designed with Bucking Horse Filing 1, which runs along the north side of the site, conveys historic runoff from the site southeast into the existing detention pond discussed above, "Detention Pond 215", designed with Bucking Horse Filing 1. A more detailed description of the project drainage patterns follows in Section IV.A.4., Final Drainage Report 4 (NORTHERN ENGINEERING Horse Filing Four ' below. III. DRAINAGE DESIGN CRITERIA A. Regulations There are no optional provisions outside of the FCSCM proposed with the proposed project. ' B. Four Step Process The overall stormwater management strategy employed with the proposed project utilizes the "Four Step Process" to minimize adverse impacts of urbanization on receiving waters. t The following is a description of how the proposed development has incorporated each step. Step 1 — Employ Runoff Reduction Practices ' Several techniques have been utilized with the proposed development to facilitate the reduction of runoff peaks, volumes, and pollutant loads as the site is developed from the current use by implementing multiple Low Impact Development (LID) strategies including: ' w Conserving existing amenities in the site including the existing vegetated areas. N2 Providing vegetated open areas throughout the site to reduce the overall impervious area and to minimize directly connected impervious areas (MDCIA). ' ru Routing flows, to the extent feasible, through vegetated swales to increase time of concentration, promote infiltration and provide initial water quality. ' Step 2 — Implement BMPs That Provide a Water Quality Capture Volume (WQCV) with Slow Release The efforts taken in Step 1 will facilitate the reduction of runoff; however, urban development of this intensity will still generate stormwater runoff that will require additional BMPs and water quality. The majority of stormwater runoff from the site will ' ultimately be intercepted and treated using extended detention methods prior to exiting the site. ' Step 3 — Stabilize Drainageways There are no regional drainageways within the subject property. While this step may not seem applicable to proposed development, the project indirectly helps achieve stabilized drainageways nonetheless. By providing water quality where none previously existed, ' sediment with erosion potential is removed from the downstream drainageway systems. Furthermore, this project will pay one-time stormwater development fees, as well as ongoing monthly stormwater utility fees, both of which help achieve City-wide drainageway ' stability. Step 4 — Implement Site Specific and Other Source Control BMPs. The proposed project will improve upon site specific source controls compared to historic conditions: Trash, waste products, etc. that were previously left exposed with the historic trailer park will no longer be allowed to exposure to runoff and transport to receiving drainageways. The proposed development will eliminate these sources of potential pollution. ' C. Development Criteria Reference and Constraints The subject property is surrounded by currently developed properties. Thus, several Final Drainage Report 5 ■y (NORTHERN ENGINEERING Horse Filine Four 1 t 1 1 1 1 1 1 constraints have been identified during the course of this analysis that will impact the proposed drainage system including: m Existing elevations along the property lines will generally be maintained. Nm As previously mentioned, overall drainage patterns of the existing site will be maintained. Elevations of existing downstream facilities that the subject property will release to will be maintained. D. Hydrological Criteria 1. The City of Fort Collins Rainfall Intensity -Duration -Frequency Curves, as depicted in Figure RA-16 of the FCSCM, serve as the source for all hydrologic computations associated with the proposed development. Tabulated data contained in Table RA-7 has been utilized for Rational Method runoff calculations. 2. The Rational Method has been employed to compute stormwater runoff utilizing coefficients contained in Tables RO-11 and RO-12 of the FCSCM. 3. Three separate design storms have been utilized to address distinct drainage scenarios. A fourth design storm has also been computed for comparison purposes. The first design storm considered is the 80`h percentile rain event, which has been employed to design the project's water quality features. The second event analyzed is the "Minor," or "Initial" Storm, which has a 2-year recurrence interval. The third event considered is the "Major Storm," which has a 100-year recurrence interval. The fourth storm computed, for comparison purposes only, is the 10-year event. 4. No other assumptions or calculation methods have been used with this development that are not referenced by current City'of Fort Collins criteria. E. Hydraulic Criteria 1. As previously noted, the subject property maintains historic drainage patterns. 2. All drainage facilities proposed with the project are designed in accordance with criteria outlined in the FCSCM and/or the Urban Drainage and Flood Control District (UDFCD) Urban Storm Drainage Criteria Manual. 3. As stated above, the subject property is not located in a City or FEMA regulatory floodplain. 4. The proposed project does not propose to modify any natural drainageways. F. Modifications of Criteria 1. The proposed development is not requesting any modifications to criteria at this time. IV. DRAINAGE FACILITY DESIGN A. General Concept 1. The main objectives of the project drainage design are to maintain existing drainage patterns, and to ensure no adverse impacts to any adjacent properties. 2. The site has been broken into 5 onsite sub -basins for preliminary design purposes. Anticipated drainage patterns for proposed drainage basins are described below. Final Drainage Report 6 ' INORTHERN ENGINEERING Bucking Horse Filing Fo ' Basins 1 through 3a.3b Basins 1 through 3 consist of apartment complexes, a clubhouse and parking/drives. ' These basins will generally drain via overland flow and curb and gutter flow into LID features which are discussed below, and will then drain via internal storm piping systems generally northeast into the existing major drainage swale along the northern boundary of the project. The existing major drainage swale designed with Bucking Horse Filing 1, conveys historic runoff from the site into the existing detention pond designed with Bucking Horse Filing 1 as discussed above. ' Basin 4 Basin 4 consist primarily of apartment complexes, and backs of lots. This basin will generally drain via overland flow into a grass lined' swale, and will then drain via internal storm piping systems generally northeast into the existing major drainage swale along the northern boundary of the project. ' Basin 5 Basin 5 consist primarily of apartment complexes, and a parking area. This basin will ' generally drain via overland flow through rain gardens, and will then drain via internal storm piping systems generally northeast into the existing major drainage swale along the northern boundary of the project. ' Basins OS1 through OS4 Basins OS1 through OS4, as shown on the Drainage Exhibit, consist of portions of Bucking Horse Filing 1 and Bucking Horse Filing 2 that drain onto the current Filing 4 ' site. Runoff from these basins will not be required to receive LID treatment, and detention for these areas has already been accommodated for in the existing "Detention Pond 215". The current Filing 4 site design will safely convey 100-year ' flows through the site into the existing major drainage swale running along the north boundary of the site. A full-size copy of the Drainage Exhibit can be found in the Map Pocket at the end of this report. ' B. Specific Details 1. All of Bucking Horse Filing 4 was intended to be conveyed into existing ' "Detention Pond 215", designed and approved with Bucking Horse Filing 1. The pond currently provides approximately 32.4 ac-ft of storage volume. The pond is also designed as a 40-hour dry extended detention basin (EDB), ' providing approximately 3.4 ac-ft of water quality capture volume (WQCV). 2. The Filing 4 project involves the anticipated build -out of a portion of the overall Bucking Horse development with an apartment complex. The ' proposed apartment complex area was anticipated in earlier submittals related to the Bucking Horse development, and was incorporated in the SWMM model reviewed and approved with the Bucking Horse Filing 2 t project ("Final Drainage Report for Bucking Horse Filing 2", December 17, 2012, by Northern Engineering). 3. The proposed Filing 4 project will modify basin percentage ' imperviousness for SWMM Basin 105 as identified in the original Filing 2 report and modeling efforts. This previously approved SWMM model Final Drainage Report 7 ' (NORTHERN ENGINEERING Horse Filine Four n showed this basin with a percent impervious value of 75%. With the proposed site plan for Bucking Horse Filing 4, the averaged percent impervious value will be reduced siginificantly, from 75% down to 63%. This will be beneficial for the storm system design and detention pond design by creating a small decrease in both peak 100-year runoff rates and volumes. 4. LID features have been incorporated in the design of the overall site. The site plan currently shows LID measures proposed with the development plan consisting a "treatment train" involving, rain gardens, bioswales, and landscape buffers. Please see the LID Design Information provided in Appendix D. 5. Final design details, construction documentation, and Standard Operating Procedures (SOP) Manual shall be provided by the City of Fort Collins in the Development Agreement for the project. 6. The drainage features associated with the proposed project are all private facilities, located on private property. V. CONCLUSIONS A. Compliance with Standards 1. The drainage design proposed with the proposed project complies with the City of Fort Collins' Stormwater Criteria Manual. 2. The drainage design proposed with this project complies with requirements for the Foothills Basin. 3. The drainage plan and stormwater management measures proposed with the proposed development are compliant with all applicable State and Federal regulations governing stormwater discharge. B. Drainage Concept 1. The drainage design proposed with this project will effectively limit any potential damage associated with its stormwater runoff by providing detention and water quality mitigation features. 2. The drainage concept for the proposed development is consistent with requirements for the Foothills Basin. 1 Final Drainage Report s ' ■V NORTHERN ENGINEERING Buckine Horse Filins Four References 1. City of Fort Collins Landscape Design Guidelines for Stormwater and Detention Facilities, November 5, 2009, BHA Design, Inc. with City of Fort Collins Utility Services. 2. Fort Collins Stormwater Criteria Manual, City of Fort Collins, Colorado, as adopted by Ordinance No. 174, 2011, and referenced in Section 26-500 (c) of the City of Fort Collins Municipal Code. 3. Larimer County Urban Area Street Standards, Adopted January 2, 2001, Repealed and Reenacted, Effective October 1, 2002, Repealed and Reenacted, Effective April 1, 2007. 4. Soils Resource Report for Larimer County Area, Colorado, Natural Resources Conservation Service, United States Department of Agriculture. 5. Urban Storm Drainage Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control District, Wright -McLaughlin Engineers, Denver, Colorado, Revised April 2008. 6. Preliminary Geotechnical Exploration Report, Bucking Horse Development - Southeast (Johnson Farm. Workine Farm, Urban Estate). Fort Collins. Colorado, July 19, 2012, Earth Engineering Consultants, Inc. (EEC Project No. 1122025C) CIS 1 1 Fri ' Final Drainage Report 9 I APPENDIX A Hydrologic Computations 1 t 1 n [] u I L' W ci 2e N O To e¢'o i P Cc o a19O v 00mco t mac d 0 T6C nnnnm�o �oNinn J m o 03E ddddddddd6 Q S V o ci 'qqs E S m-.vvmrnmv �m o Wd N i.n C G i. i. C C mm C G to Ln G G N i. d 0 1= N U O O LL S C V " E W m� W W y u N, tD OOp 1W�1�OOr m GG .O-N NN-0 2 Y N 'o Q W Y a°�dQ O O O aE O N aR E S "" W� 0000000000 0 0 0 0 0 0 0 0 0 0 ROE OOf aO�N OO K � W G GCO GOG O GC Q CL — ri m W>W 6 H W Y W cn O N 0 0 0 O N� SW row" NAOO 00000 00 w OOOO60 0TNt� 6N OO V N O o-:amo fcmNo C oO U R' L O O O N N V O N O CAI C W Q Q Q[ O O y W ayy m mN�D m Nai� q9 vm m � g � W v .- pj �j �+j e- N V O fV G 2 � w������� M G C m.�i .mid .aw G e-- cc m c y g C O 0000 12 j=� tgO K a q Nc3 W m Q ; � Ci N rc F 1 F 0 1 C H $ O N 00 00 Cl) 0\ 00 tO O1 O A H u C d F N Ot Ot ti ti O co �NNr ^ O .+ O E .+ N O V N O O .Ld-� N E N Ol �1 .�. N co 00 U ) Q two m ^c Q a a Q o Q QQ¢Q CL k u - a , Q Q Q Q 0 Q Q Q Q Q g ri > m ai ae ae ae ae ae oe ae ae � � _ O O O O O O O O 0 0 r N 0 0 0 0 LO 00 000 t � J 0 0 0 0co 00 000 0 y J 2 0 C N .--� m M Q WO m l0 'O ^ T y 00100101 N N N N N N N N N Z o e e n O.�ryN VCF O H ae 0 0 0 0 0 0 0 0 0 0 M Z J J m W 7 N co OD 0^0 0^0 0000 t0 m 0000 M a` s H d m rn Un � r.mUaoa Z A a"a U O n a o Q C N M M A D N O O O N N u� N G �'• m a .-i .. .-i N M N N N�ryee Q ~ N E N 6.N..M. t0 N O Of N 0 La .M. .a-i .�. .�. .N. .4 m o ae a ae ale ae ae ae 9 ae _ y 0 0 0 0 000000 jo ae W H N N N N N N N N N N Q O e m J r .. a .. O 00 O 07 O w � .... O 0 0 M .. O "r d s � .. .. .. U .Oy II O O 00 O MMMMM 00000 r f.f L � 0 S. O O O O O 0 O N Q c 0' .-i N N N N N N N N N N N N N N N .. O A U v 1 0 0 0 0 0 0 0 0 0 0 W V N fr e r� N N N N N N N LO N N N C1 - 0 0 0 O O O O O O O p O N N C 0 0 0 0 0 0 0 0 0 0 N S Ir> "� z z z z z zzzzz E w$ C C C N� ry W O O L m> j 3 m 0000 M000 T�ll r �..19 1 0 0 S > y6Na`i G O� F•"> z I I J I g `° °D r* o },'�' to Di 0 V: Oo It It 00 It N N — LLQ 00 '. m 00 m 0 Nm Vro N tD I, to '+ 2 Oi u'i m .� tD O cr N �n t0 t0 4 O ti�� .. O .-� O .Or 00 C O L V6 m V '. tD m N '. U Q to T m _ W y Q L C Soz.r C $ n m 0 0 N m In I� 0 00 m to N N n d 0— _ to tci o to to In. W- a to is 9 — u r — '. eM tD N ro N oo N d' m m � N N O m N N m N - n N .� n f i C N m 00 00 to O m .. rl Z = ca to to to m tD � m tD .I N o o C — M s m N N N 00 to O tD O aI_ o coo y Oommmo0000tDtOm o00006 ... . o..4 e v a 00 m 00 .to m D O ... �, ci n o n 0 N 0 N 0 m 0 tD 0 0 0 to 0 n 0 Z u . v v m m CO ..mtD e nt•t• W q�p C 0 0 0 0 0 00nn. 0 0 1011c, m Yp S S S S ao m v 0.�` C t 00 00 m m 00 LO m O o � U w C t0f N m m a 0 00 N '. NN N '. 0 T C F tD N m m V O 00 N O '. m� N E N N . N N .. N - Q _� L" N Ln 00 mNO M yW m O� m .y O tD M 'i qi N ID O C G t° � U C y m G U $ v N cn } {m, W m m 0000 9 •h Y i< In Z a ° U a `ti C u Sot y C^Il E `e Cho . NM m a nO O O O € It V/ i r K DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF 50 1- 2 0 W V W 4 10 Z W a 0 5 W ¢ 3 0 V 2 cc W Q mom %///11►-,M ,' , ►n loll ___ �IN 0001�� �MM M , .5 1 .2 .3 .5 1 2 3 5 10 20 VELOCITY IN FEET PER SECOND Figure RO-1—Estimate of Average Overland Flow Velocity for Use With the Rational Formula 2007-01 Urban Drainage and Flood Control District RO-13 DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF Table RO-3—Recommended Percentage Imperviousness Values Land Use or Surface Characteristics Percentage Imperviousness Business: Commercial areas 95 Neighborhood areas 85 Residential: Single-family Multi -unit (detached) 60 Multi -unit (attached) 75 Half -acre lot or larger Apartments 80 Industrial: Light areas 80 Heavy areas 90 Parks, cemeteries 5 Playgrounds 10 Schools . 50 Railroad yard areas 15 Undeveloped Areas: Historic flow analysis 2 Greenbelts, agricultural 2 Off -site flow analysis (when land use not defined) 45 Streets: Paved 100 Gravel (packed) 40 Drive and walks 90 Roofs 90 Lawns, sandy soil 0 Lawns, clayey soil 0 * See Figures RO-3 through RO-5 for percentage imperviousness. CA = KA + (1.31i' -1.44i 2 + 1.135i - 0.12) for CA z 0, otherwise CA = 0 CcD= KcD+ (0.858i' - 0.786i 2 + 0.774i + 0.04) c CB = (CA + Ccn )12 2007-01 Urban Drainage and Flood Control District (RO-6) (RO-7) RO-9 DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF Table RO-5- Runoff Coefficients, C Percentage Imperviousness Type C and D NRCS Hydrologic Soil Groups 2- r 5- r 10- r 25- r 50- r 1 00-r 0% 0.04 0.15 0.25 0.37 0.44 0.50 5% 0.08 0.18 0.28 0.39 0.46 0.52 10% 0.11 0.21 0.30 0.41 0.47 0.53 15% 0.14 0.24 0.32 0.43 0.49 0.54 20% 0.17 0.26 0.34 0.44 0.50 0.55 25% 0.20 0.28 0.36 0.46 0.51 0.56 30% 0.22 0.30 0.38 0.47 0.52 0.57 35% 0.25 0.33 0.40 0.48 0.53 0.57 40% 0.28 0.35 0.42 0.50 0.54 0.58 45% 0.31 0.37 0.44 0.51 0.55 0.59 50% 0.34 0.40 0.46 0.53 0.57 55% 0.37 0.43 0.48 0.55 0.58 0.62 60% 0.41 0.46 0.51 0.57 0.60 0.63 65% 0.45 0.49 0.54 0.59 0.62 0.65 70% 0.49 0.53 0.57 0.62 0.65 0.68 75% 0.54 0.58 0.62 0.66 0.68 0.71 80% 0.60 0.63 0.66 0.70 0.72 0.74 85% 0.66 0.68 0.71 0.75 0.77 0.79 90% 0.73 0.75 0.77 0.80 0.82 0.83 95% 0.80 0.82 0.84 0.87 0.88 0.89 100% 0.89 0.90 0.92 0.94 0.95 0.96 TYPE B NRCS HYDROLOGIC $OILS GROUP 0% 0.02 0.08 0.15 0.25 0.30 0.35 5% 0.04 0.10 0.19 0.28 0.33 0.38 10% 0.06 0.14 0.22 0.31 0.36 0.40 15% 0.08 0.17 0.25 0.33 0.38 0.42 20% 0.12 0.20 0.27 0.35 0.40 0.44 25% 0.15 0.22 0.30 0.37 0.41 0.46 30% 0.18 0.25 0.32 0.39 0.43 0.47 35% 0.20 0.27 0.34 0.41 0.44 0.48 40% 0.23 0.30 0.36 0.42 0.46 0.50 45% 0.26 0.32 0.38 0.44 0.48 0.51 50% 0.29 0.35 0.40 0.46 0.49 0.52 55% 0.33 0.38 0.43 0.48 0.51 0.54 60% 0.37 0.41 0.46 0.51 0.54 0.56 65% 0.41 0.45 0.49 0.54 0.57 0.59 70% 0.45 0.49 0.53 0.58 0.60 0.62 75% 0.51 0.54 0.58 0.62 0.64 0.66 80% 0.57 0.59 0.63 0.66 0.68 0.70 85% 0.63 0.66 0.69 0.72 0.73 0.75 90% 0.71 0.73 0.75 0.78 0.80 0.81 95% 0.79 0.81 0.83 0.85 0.87 0.88 100% 0.89 0.90 0.92 0.94 0.95 0.96 2007-01 RO-11 Urban Drainage and Flood Control District RUNOFF DRAINAGE CRITERIA MANUAL (V. 1) TABLE RO-5 (Continued) -Runoff Coefficients, C Percentage Imperviousness Type A NRCS Hydrologic Soils Group 2- r 5- r 10- r 25- r 50- r 1 00-r 0% 0.00 0.00 0.05 0.12 0.16 0.20 5% 0.00 0.02 0.10 0.16 0.20 0.24 10% 0.00 0.06 0.14 0.20 0.24 0.28 15% 0.02 0.10 0.17 0.23 0.27 0.30 20% 0.06 0.13 0.20 0.26 0.30 0.33 25% 0.09 0.16 0.23 0.29 0.32 0.35 30% 0.13 0.19 0.25 0.31 0.34 0.37 35% 0.16 0.22 0.28 0.33 0.36 0.39 40% 0.19 0.25 0.30 0.35 0.38 6.41 45% 0.22 0.27 0.33 0.37 0.40 0.43 50% 0.25 0.30 0.35 0.40 0.42 0.45 55% 0.29 0.33 0.38 0.42 0.45 0.47 60% 0.33 0.37 0.41 0.45 0.47 0.50 65% 0.37 0.41 0.45 0.49 0.51 0.53 70% 0.42 0.45 0.49 0.53 0.54 0.56 75% 0.47 0.50 0.54 0.57 0.59 0.61 80% 0.54 0.56 0.60 0.63 0.64 0.66 85% 0.61 0.63 0.66 0.69 0.70 0.72 90% 0.69 0.71 0.73 0.76 0.77 0.79 95% 0.78 0.80 0.82 0.84 0.85 0.86 100% 0.89 0.90 0.92 0.94 0.95 0.96 RO-12 2007-01 Urban Drainage and Flood Control District DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF F 90 80 70 40 30 20 10 so 5,000.sq. fthP4,000 • sq. it. homes0000 / 3,000 sq. ft. hones do • / 10 / ♦ 2,000 sq. ft. homes • .. ,, / / 1,000 sq. ft. homes /. / • r 000, �� / • OF 000 0 0 1 2 3 4 5 6 Single Family Dwelling Units per Acre Figure 110-3— Watershed Imperviousness, Single -Family Residential Ranch Style Houses 2007-01 RO-15 Urban Drainage and Flood Control District RUNOFF DRAINAGE CRITERIA MANUAL (V. 1) M [:] 70 60 7 O t E 5D m 40 d 0 30 20 10 0 0 5,000 sq. R homes 000 ' ,000 sq. R homes • 0000, 3.000 sq. Tt. homes / w w / do w 00 0000 • ' 2,000 sq. tL homes 0 • op l wow / 1,000 sq. ft. homes. i • • / /0 0000 171 i 1 2 3 4 5 6 Single Family Dwelling Units per Acre Figure RO-4—Watershed Imperviousness, Single -Family Residential Split -Level Houses RO-16 2007-01 Urban Drainage and Flood Control District DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF go 70 g 60 0 2 0 50 C @ 40 d 0 ~ 30 20 10 r 5,000 sq. ft. homes owl • ' 4,000 sq. ft. homes r • 3,000 sq. ft. homes op I op r 00"• J • • 2,000000 Sq. ft. homes / r / 1.000 sq. ft. homes r •• .0" igo 0 0 1 2 3 4 5 6 Single Family Dwelling Units per Acre Figure 110-5—Watershed Imperviousness, Single -Family Residential Two -Story Houses 1.00 010 0.50 0,70 0.60 0.50 U 0.40 o: 0.30 0.20' 0.10 0.0o I 12-yr 0% 10% 20% 30% 40% 50% 60% 70% 80% 00% 100% watereha0 Porwntago Impemlousnoss Figure RO-fi^Runoff Coefficient, C, vs. Watershed Percentage Imperviousness NRCS Hydrologic Soil Group A ' 2007-01 Urban Drainage and Flood Control District RO-17 RUNOFF DRAINAGE CRITERIA MANUAL (V. 1) 1.00 0.90 0.80 0.70 U � 0.60 0.50 U 0 � 0.40 o: 0.30 0.20 0.10 000 0% 10% 20% 30% 40% 5D% 80% 70% 80% 90% 100% Watershed Percentage Imperviousness �ioo-yr t 50-yr t 25yr ter— f 0-yr M- 5-yr t2-yr Figure R0-7—Runoff Coefficient, C, vs. Watershed Percentage Imperviousness NRCS Hydrologic Soil Group B 1.00 0.90 0.80 0.70 - U � 0.60 0.50 U O � 0.40 0: 0.30 0.20 0,10 000 1 1 H 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Watershed Percontage Imperviousness Figure RO-8—Runoff Coefficient, C, vs. Watershed Percentage Imperviousness NRCS Hydrologic Soil Groups C and D RO-18 2007-01 Urban Drainage and Flood Control District I 1 l� 1 APPENDIX B Stormwater Management Model (SWMM) 1 1 1 1 1 1 r mz A O G o 0 c N S ' (NORTHERN ENGINEERING HORSE FILING ONE 1 11 1 POND STAGE STORAGE TABLE POND 1 Project: 687-002 Date: 8/10/2012 By: ATC ELEV (FT) AREA (SF) CONIC INC. VOL. (CF) CONIC TOTAL VOL. (CF) CONIC TOTAL VOL. (AC -FT) RELEASE RATE (CFS) 4,892.20 290.6 N/A 0 0.000 0.00 4,893.00 5,325.40 820.27 1388.14 0.044 17.65 4,894.00 20,349.39 3928.21 14969.46 0.364 39.71 4,895.00 23,733.29 4678.97 37022.52 1.062 61.76 4,896.00 27,183.58 5366.54 62470.13 1.875 83.82 4,897.00 30,767.39 6080.5 91433.46 2.786 105.88 4,898.00 34,509.61 16825.44 124056.85 13.798 127.94 4,899.00 138,462.43 17611.32 1160522.88 14.916 1150.00 1 Drainage Report ■v I NORTHERN ENGINEERING HOR$E FILING ONE POND STAGE STORAGE TABLE POND 2 Project: 687-002 Date: 8/10/2012 By: ATC ELEV (FT) AREA (SF) CONIC INC. VOL. (CF) CONIC TOTAL VOL. (CF) CONIC TOTAL VOL. (AC -FT) RELEASE RATE (CFS) 4,913.00 229.06 N/A 0 0.000 0.00 4,914.00 6,193.18 1110.85 2955.18 0.024 0.00 4,915.00 8,332.88 1636.84 10475.91 0.172 46.90 4,916.00 9,874.89 1943.25 19571.39 0.364 60.10 4,917.00 11,516.51 2269.59 30258.7 0.592 72.10 4,918.00 14,396.21 2818.67 43186.37 0.856 82.80 4,919.00 118,427.08 13600.67 1595S8.33 11.161 92.30 4,920.00 122,765.40 14461.93 180112.31 1.507 101.20 4,921.00 116,590.28 13340.76 197763.88 11.898 1111.00 Drainage Report ■V INORTHERN ENGINEERING HORSE FILING ONE POND STAGE STORAGE TABLE POND 3 Project: Date: By: 687-002 8/10/2012 ATC ELEV (FT) AREA (SF) CONIC INC. VOL. (CF) CONIC TOTAL VOL. (CF) CONIC TOTAL VOL. (AC -FT) RELEASE RATE (CFS) 4,900.40 0.04 N/A 0 0.000 0.00 4,901.00 1,444.99 213.56 ,320.96 0.008 3.21 4,902.00 12,666.38 2493.21 15798.17 0.108 8.57 4,903.00 14,923.56 2935.87 29556.98 0.363 13.93 4,904.00 17,607.88 3464.48 45789.34 0.676 19.29 4,905.00 20,084.65 3950.69 60840.53 1.034 24.64 4,906.00 11S,942.03 13594.7 64435.23 11.441 130.00 0 Drainage Report u PROPOSED EFFECTIVE MODEL - BUCKINGHOR NORTHERN ENGINEERING, AUGUST 10, 2012 100-YEAR STORM EVENT Page 1 of 7 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMEER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIM(4) JIN(5) JIN(6) JIN(7) JIN(8) JIM(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED 1/PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** SIDEHILL FILING 2 6 3 SWMM ANALYSIS INPUT, JR ENGINEERING, 30-27-04, ES 3.67" RAINFALL DATA, 100 YEAR STORM EVENT; NORTHERN ENG. MODIFIED, 8/10/12 NUMBER OF TIME STEPS 480 INTEGRATION TIME INTERVAL (MINUTES) 1.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 12.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .75 .73 .71 .69 .67 SIDEHILL FILING 2 6 3 SWMN ANALYSIS INPUT, JR ENGINEERING, 10-27-04, ES 3.67" RAINFALL DATA, 100 YEAR STORM EVENT; NORTHERN ENG. MODIFIED, 8/10/12 SUBAREA GUTTER WIDTH AREA PERCENT NUMBER OR MANHOLE (FT) IAC) IMPERV. 100 903 1742.0 12.0 70.0 101 901 2265.0 15.6 49.8 102 902 4705.0 32.4 53.9 103 302 1350.0 9.3 50.9 104 303 1343.0 9.6 55.4 105 304 3049.0 21.0 75.0 106 0 1.0 .1 1.0 107 306 11340.0 78.1 28.9 108 4 3150.0 21.7 55.0 109 4 2076.0 14.3 55.0 TOTAL NUMBER OF SUBCATCHMENTS, 10 TOTAL TRIBUTARY AREA (ACRES), 214.10 SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO .0260 .016 .250 .100 .300 .51 .50 .00180 1 .0040 .016 .250 .100 .300 .51 .50 .00180 1 .0220 .016 .250 .100 .300 .51 .50 .00180 1 .0220 .016 .250 .100 .300 .51 .50 .00180 1 .0300 .016 .250 .100 .300 .51 .50 .00180 1 .0210 .016 .250 .100 .300 .51 .50 .00180 1 .0260 .016 .250 .100 .300 .51 .50 .00180 1 .0150 .016 .250 .100 .300 .51 .50 .00180 1 .0010 .035 .250 .100 .300 .51 .50 .00180 1 .0010 .035 .250 .100 .300 .51 .50 .00180 1 ' SIDEHILL FILING 2 6 3 SWMM ANALYSIS INPUT, JR ENGINEERING, 10-27-04, ES 3.67" RAINFALL DATA, 100 YEAR STORM EVENT; NORTHERN ENG. MODIFIED, 8/10/12 1 PROPOSED EFFECTIVE MODEL--BUCRINGHORSE NORTHERN ENGINEERING, AUGUST 10, 2012 ' 100-YEAR STORM EVENT Page 2 of 7 ' HYDROGRAPHSARE LISTED FOR THE FOLLOWING 9 SUBCATCHNENTS - AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN( 101 102 103 104 105 106 107 108 109 0 1. .0 .0 .0 .0 .0 .0 .0 .0 .0 0 6. .0 .1 .0 .0 .1 .0 .2 .0 .0 0 11. 3.0 11.6 3.2 3.7 8.3 .0 18.8 1.2 .8 0 16. 7.9 23.4 6.4 7.3 19.0 .0 32.9 4.2 2.7 0 21. 15.1 39.3 10.7 12.1 33.6 .0 53.0 10.6 7.0 0 26. 24.5 64.0 17.6 19.8 53.7 .0 90.9 21.0 13.8 0 31. 52.2 142.2 39.3 44.1 113.4 .0 216.9 48.0 31.6 0 36. 85.7 216.9 60.3 66.2 166.5 .0 358.9 93.7 61.8 0 41. 56.1 131.4 37.3 39.3 89.4 .0 266.8 79.4 52.3 0 46. 41.1 89.8 25.9 26.4 56.2 .0 210.4 62.7 41.4 0 51. 30.6 61.5 17.9 17.8 36.3 .0 161.4 48.7 32.1 0 56. 25.1 47.8 14.0 13.8 28.0 .0 132.0 39.8 26.3 1 1. 21.3 39.2 11.4 11.3 23.3 .0 110.4 33.7 22.2 1 6. 18.8 34.0 9.9 9.8 20.8 .0 95.2 29.5 19.4 1 11. 17.0 30.4 8.8 8.8 19.1 .0 83.6 26.4 17.4 1 16. 15.5 27.6 8.0 8.0 17.8 .0 74.5 24.0 15.8 1 21. 14.2 25.4 7.3 7.4 16.8 .0 67.0' 22.1 14.6 1 26. 13.2 23.7 6.8 6.9 16.0 .0 60.9 20.5 13.5 1 31. 12.3 22.2 6.3 6.5 15.2 .0 55.7 19.2 12.7 1 36. 11.5 20.8 5.9 6.1 14.5 .0 51.2 18.0 11.9 1 41. 10.8 19.6 5.6 5.8 13.9 .0 47.3 17.0 11.2 1 46. 10.2 18.6 5.3 5.5 13.4 .0 44.0 16.1 10.6 1 51. 9.6 17.8 5.0 5.2 12.9 .0 41.0 15.3 10.1 1 56. 9.1 16.9 4.8 5.0 12.5 .0 38.4 14.5 9.6 2 1. 8.3 14.8 4.2 4.3 11.0 .0 33.7 13.6 9.0 2 6. 5.3 7.1 2.0 2.0 4.9 .0 21.2 10.8 7.1 2 11. 3.9 4.6 1.3 1.2 2.8 .0 16.6 8.8 5.8 ' 2 16. 3.1 3.3 1.0 .9 1.8 .0 13.8 7.4 4.9 2 21. 2.6 2.6 .8 .7 1.3 .0 11.8 6.3 4.1 2 26. 2.2 2.1 .6 .5 .9 .0 10.2 5.4 3.6 2 31. 1.9 1.7 .5 .4 .7 .0 8.9 4.7 3.1 2 36. 1.6 1.4 .4 .4 .5 .0 7.8 ' 4.2 2.8 2 41. 1.4 1.2 .4 .3 .4 .0 6.9 3.7 2.5 ' 2 46. 1.3 1.0 .3 .2 .3 .0 6.1 3.3 2.2 2 51. 1.1 .8 .3 .2 .3 .0 5.4 3.0 2.0 2 56. 1.0 .7 .2 .2 .2 .0 4.9 2.7 1.8 3 1. .9 .6 .2 .1 .2 .0 4.3 2.5 1.6 3 6. .8 .5 .2 .1 .1 .0 3. 2. 1. 3 11. .8 .5 .1 .1 .1 .0 3.5 2.1 1.94 ' 3 16. .7 .4 .1 .1 .1 .0 3.1 1.9 1.3 3 21. .6 .3 .1 .1 .1 .0 2.8 1.8 1.2 3 26. .6 .3 .1 .1 .1 .0 2.5 1.6 1.1 3 31. .5 .2 .1 .1 .1 .0 2.3 1.5 1.0 3 36. .5 .2 .1 .0 .0 .0 . 1..9 3 91. .9 .2 .1 .0 .0 .0 1 1.99 1.33 .9 3 46. .4 .1 -.0 .0 .0 .0 1.7 1.2 .8 3 51. .4 .1 .0 .0 .0 .0 1.5 1.1 .7 3 56. .3 .1 .0 .0 .0 .0 1.4 1.0 .7 4 1. .3 .1 .0 .0 .0 .0 1.2 1.0 .6 4 6. .3 .1 .0 .0 .0 .0 1. .9 .6 4 11. .3 .0 .0 .0 .0 .0 1.00 .9 .6 4 16. .2 .0 .0 .0 .0 .0 .9 .8 .5 4 21. •.2 .0 .0 .0 .0 .0 .8 .8 .5 4 26. .2 .0 .0 .0 .0 .0 .7 .7 .5 4 31. .2 .0 .0 .0 .0 .0 .6 .7 .4 4 . .2 .0 .0 .0 .0 .0 .5 .6 .4 9 41. 41 .2 .0 .0 .0 .0 .0 .5 .6 .4 ' 4 46. .1 .0 .0 .0 .0 .0 .4 .5 .4 4 51. .1 .0 .0 .0 .0 .0 .4 .5 .3 4 56. .1 .0 .0 .0 .0 .0 .3 .5 .3 5 1. .1 .0 .0 .0 .0 .0 .3 .5 .3 S 6. .1 .0 .0 .0 .0 .0 .2 .4 .3 ' 5 11. .1 .0 .0 .0 .0 .0 .2 .9 .3 5 16. .1 .0 .0 .0 .0 .0 .1 .4 .3 5 21. .1 .0 .0 .0 .0 .0 .1 .4 .2 5 26. .1 .0 .0 .0 .0 .0 .1 .3 .2 5 31. .1 .0 .0 .0 .0 .0 .1 .3 .2 S . .0 .0 .0 .0 .0 .0 .0 .3 .2 ' 5 41. - 41 .0 .0 .0 .0 .0 .0 .0 .3 .2 5 46. .0 .0 .0 .0 .0 .0 .0 .3 .2 5 51. .0 .0 .0 .0 .0 .0 .0 .3 .2 5 56. .0 .0 .0 .0 .0 .0 .0 .2 .2 6 1. .0 .0 .0 .0 .0 .0 .0 .2 .1 6 6. .0 .0 .0 .0 .0 .0 .0 .2 .1 ' 6 11. .0 .0 .0 .0 .0 .0 .0 .2 .1 6 16. .0 .0 .0 .0 .0 .0 .0 .2 .1 6 21. .0 .0 .0 .0 .0 .0 .0 .2 .1 6 26. .0 .0 .0 .0 .0 .0 .0 .2 .1 6 31. .0 .0 .0 .0 .0 .0 .0 .2 .1 6 . .0 .0 .0 .0 .0 .0 .0 .1 .1 ' 6 41. 41 .0 .0 .0' .0 .0 .0 .0 .1 .1 6 46. .0 .0 .0 .0 .0 .0 .0 .1 .1 6 51. .0 .0 .0 .0 .0 .0 .0 .1 .1 6 56. .0 .0 .0 .0 .0 .0 .0 .1 .1 7 1. .0 .0 .0 .0 .0 .0 .0 .1 .1 ' 7 6. .0 .0 .0 .0 .0 .0 .0 .1 .1 PROPOSED EFFECTIVE MODEL - BUCKINGHORSE NORTHERN ENGINEERING, AUGUST 10, 2012 100-YEAR STORM EVENT Page 3 of 7 7 11. .0 .0 .0 .0 .0 .0 .0 .1 .1 7 16. .0 .0 .0 .0 .0 .0 .0 .1 .1 \ 7 21. .0 .0 .0 .0 .0 .0 .0 .1 .1 7 26. .0 .0 .0 .0 .0 -.0 .0 .1 .0 7 31. .0 .0 .0 .0 .0 .0 .0 .1 .0 7 36. .0 .0 .0 .0 .0 .0 .0 .1 .0 7 41. .0 .0 .0 .0. .0- .0 .0 .1 .0 7 46. .0 .0 .0 .0 .0 .0 .0 .1 .0 7 51. .0 .0 .0 .0 .0 .0 .0 .0 .0 7 56. .0 .0 .0 .0 .0 .0 .0 .0 .0 SIDEHILL FILING 2 6 3 SWMM ANALYSIS INPUT, JR ENGINEERING, 10-27-04, ES 3.67" RAINFALL DATA, 100 YEAR STORM EVENT; NORTHERN ENG. MODIFIED, 8/10/12 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 214.100 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .604 TOTAL WATERSHED OUTFLOW (INCHES) 2.886 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .179 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 SIDEHILL FILING 2 6 3 SWMM ANALYSIS INPUT, JR ENGINEERING, 10-27-04, ES 3.67" RAINFALL DATA, 100 YEAR STORM EVENT; NORTHERN ENG. MODIFIED, 8/10/12 WIDTH INVERT SIDE SLOPES OVEREANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIE TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 201 302 0 2 PIPE 4.0 266. .0040 .0 .0 .013 4.00 0 202 901 0 1 CHANNEL 7.0 55. .0050 .0 .0 .013 7.00 0 203 303 0 1 CHANNEL 20.0 505. .0040 3.0 3.0 _ .030 6.00 0 204 304 0 1 CHANNEL 20.0 482. .0040 3.0 3.0 .030 6.00 0 205 305 0 1 CHANNEL 20.0 260. .0040 3.0 3.0 .030 6.00 0 206 306 0 1 CHANNEL 14.0 95. .0040 1.0 1.0 .013 4.00 0 301 3 0 3 .0 0. .0010 .0 .0 .001 10.00 0 302 203 0 3 .0 0. .0010 .0 .0 .001 10.00 0 303 204 0 3 .0 0.' .0010 .0 .0 .001 10.00 0 304 205 0 3 .0 0. .0010 .0 .0 .001 10.00 0 305 206 0 3 .0 0. .0010 .0 .0 .001 10.00 0 306 215 0 3 .0 0. .0010 _.0 .0 .001 10.00 0 901 1 0 3 .0 0. .0010 .0 .0 .001 10.00 0 902 2 0 3 .0 0. .0010 .0 .0 .001 10.00 0 903 3 0 3 .0 0. .0010 .0 .0 .001 10.00 0 1 201 4 2 PIPE .1 1000. .0050 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 39.7 1.9 83.8 4.9 150.0 2 202 7 2 PIPE .1 1000. .0050 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 46.9 .6 72.1 .9 82.9 1.2 92.3 1.5 101.2 1.9 111.0 3 901 4 2 PIPE .1 1000. .0050 .0, .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 13.9 1.0 24.6 1.4 30.0 4 901 4 2 PIPE .1 1000. .0050 .0 .0 .100 .10 0 0 8 I 0 1 PROPOSED EFFECTIVE MODEL - BUCRINGHOR NORTHERN ENGINEERING, AUGUST 10, 2012 100-YEAR STORM EVENT Page 4 of 7 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 1.0 4.0 3.0 10.0 6.0 16.0 '215 0 9 2 PIPE .1 1000. .0050 .0 .0 .100 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 2.3 37.0 6.2 54.4 15.6 68.7 26.3 81.2 41.5 92.1 52.7 102.0 64.3 111.1 TOTAL NUMBER OF GUTTERS/PIPES, 20 SIDEHILL FILING 2 6 3 SWMH ANALYSIS INPUT, JR ENGINEERING, 10-27-04, ES 3.67" RAINFALL DATA, 100 YEAR STORM EVENT; NORTHERN ENG. MODIFIED, 8/10/12 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE D.A.(AC) 1 901 0 0 0 0 0 0 0 0 0 96.0 2 902 0 0 0 0 0 0 0 0 '0 32.4 3 301 903 0 0 0 0 0 0 0 0 12.0 4 0 0 0 0 0 0 0 0 0 0 36.0 201 1 0 0 0 0 0 0 0 0 0 96.0 202 2 0 0 0 0 0 0 0 a 0 32.4 203 302 0 0 0 0 0 0 0 0 0 105.3 204 303 0 0 0 0 0 0 0 0 0 114.9 205 304 0 0 0 0 0 0 0 0 0 135.9 206 305 0 0 0 0 0 0 0 0 0 135.9 215 306 0 0 0 0 0 0 0 0 0 214.0 SIDEHILL FILING 2 6 3 SWMM ANALYSIS INPUT, JR ENGINEERING, 10-27-04, ES 3.67" RAINFALL DATA, 100 YEAR STORM EVENT; NORTHERN ENS. MODIFIED, 8/10/12 TRIBUTARY SUBAREA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 108 109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 6 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CPS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CPS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 201 202 203 204 205 206 0 1. .0 .0 .0 .0 .0 .0 .00( ) .00( 1 .00( ) .00( 1 .00( ) .00( ) 0 6. .0 .0 .0 .0 .0 .0 .01( ) .01( ) .004 ) .00( ) .00( ) .00( ) 0 11. 1.1 5.6 .5 .6 3.9 2.6 .30( 1 .26( 1 .051 ) .06( I .19( ) .11( 1 0 16. 10.0 16.8 6.7 5.8 19.9 18.7 .89( 1 .51( 1 .26( ) .24( ) .50( ) .36( 1 0 21. 26.1 31.3 25.1 24.6 51.4 47.7 1.47( 1 .76( ) .57( ) .56( ) .87( ) .64( 1 0 26. 42.1 49.4 50.5 56.5 100.9 93.2 1.91( ) 1.02( ) .86( ) .91( ) 1.28( ) .96( 1 0 31. 54.1 68.6 81.6 108.1 209.0 191.8 2.22( 1 1.27( ) 1.13( ) 1.33( I 1.93( ). 1.47( ) 0 36. 77.8 99.3 130.2 187.4 350.5 363.9 2.85( 1 1.63( I 1.48( ) 1.82( ) 2.57( ) 2.16( ) 0 41. 95.9 107.6 131.3 172.6 265.2 263.2 3.53( ) 1.731 ) 1.49( ) 1.741 ) 2.21( ) 1.78( 1 0 46. 97.7 106.9 125.4 155.7 215.3 216.7 .05(0) 1.72( ) 1.454 ) 1.64( ) 1.97( ) 1.59( 1 0 51. 97.7 101.0 117.0 138.0 177.0 177.7 .17(01 1.65( ) 1.39( ) 1.53( ) 1.76( ) 1.41( 1 0 56. 97.7 93.2 112.4 128.1 157.6 158.0 .35(0) 1.56( ) 1.364 ) 1.47( ) 1.65( ) 1.31( 1 1 1. 97.7 83.5 109.6 122.1 146.3 146.6 .56(0) 1.45( ) 1.34( ) 1.43( ) 1.584 1 1.25( 1 1 6. 97.7 72.1 107.9 118.5 139.8 -140.0 0 0 0 11 1 k I 1 �j L PROPOSED EFFECTIVE MODEL - BIICKINGHORSE NORTHERN ENGINEERING, AUGUST 10, 2012 100-YEAR STORM EVENT Page 5 of 7 .7840) 1. 314 ) 1.33( I 1.40( 1 1.54( ) 1.22( ) 1 11. 97.7 58.5 106.7 116.0 135.5 135.6 1.0010) 1.141 ) 1.324 ) 1.39( 1 1.51( ) 1.20( ) 1 16. 97.7 48.3 105.8 114.3 132.4 132.5 1.2110) 1.011 ) 1.314 ) 1.37( ) 1.49( ) 1.18( ) 1 21. 97.7 31.7 105.1 112.9 129.9 130.0 1.3910) .764 ) 1.31( ) 1.36( ) 1.48( ) 1.17( ) 1 26. 97.7 25.2 104.6 111.7 127.9 128.0 1.5210) .66( ) 1.31( ) 1.36( ) 1.47( ) 1.16( ) 1 31. 97.7 22.9 104.1 110.8 126.2 126.3 1.6210) .62( ) 1.30( ) 1.35( ) 1.45( ) 1.15( ) 1 36. 97.7 21.4 103.7 110.0 124.7 124.8 1.6740) .59( ) 1.30( ) 1.34( ) 1.44( ) 1.14( ) 1 41. 97.7 20.1 103.3 109.3 123.3 123.4 1.69(0) .57( ) 1.301 ) 1.34( ) 1.43( ) 1.13( ) 1 46. 97.7 19.1 103.0 108.7 122.2 122.2 1.67(0) .55( ) 1.29( ) 1.33( ) 1.43( ) 1.12( ) 1 51. 97.7 18.1 102.8 108.1 121.1 121.2 1.61(0) .53( ) 1.29( ) 1.33( ) 1.42( ) 1.12( ) 1 56. 97.7 17.3 102.5 107.6 120.2 120.2 1.53(0) .52( ) 1.29( ) 1.33( ) 1.41( ) 1.11( ) 2 1. 97.7 16.2 102.1 106.9 118.4 118.7 1.41(0) .50( ) 1.29( ) 1.32( I 1.40( ) 1.11( ) 2 6. 97.7 9.8 100.1 103.0 108.8 109.1 1.26(0) .36( ) 1.27( ) 1.29( ) 1.34( ) 1.05( ) 2 11. 97.7 5.8 99.2 100.8 104.0 104.1 1.06(0) .26( ) 1.27( ) 1.28( ) 1.30( ) 1.02( ) 2 16. 97.7 4.0 98.8 99.8 101.8 101.9 .82(0) .21( ) 1.26( ) 1.274 ) 1.29( ) 1.01( ) 2 21. 97.7 3.0 98.5 99.3 100.7 100.7 .54(0) .17( ) 1.26( ) 1.27( ) 1.28( ) 1.00( ) 2 26. 97.7 2.3 98.3 99.0 100.0 100.0 .22(0) .15( ) 1.26( ) 1.27( ) 1.27( ) 1.00( ) 2 31. 43.1 1.9 78.3 92.2 96.6 97.1 1.94( ) .13( ) 1.11( ) 1.21( ) 1.25( ) .98( ) 2 36. 40.5 1.5 45.2 53.5 59.5 60.5 1.87( ) .121 ) .801 ) .89( ) .94( ) .74( ) 2 41. 31.3 1.3 36.1 40.6 43.4 43.9 1.62( ) .101 ) .704 ) .751 ) .78( ) .61( ) 2 46. 25.3 1.1 28.5 32.0 34.2 34.6 1.44( ) .094 I .61( ) .66( ) .68( ) .53( ) 2 51. 21.9 .9 24.0 26.4 27.9 28.2 1.34( ) .09( I .55( ) .59( ) .61( ) .47( ) 2 56. 20.0 .8 21.4 22.9 24.0 24.2 1.281 ) .08( ) .521 ) .54( ) .55( ) .42( ) 3 1. 18.8 .7 19.7 20.8 21.5 21.6 1.23( ) .07( ) .491 ) .51( ) .52( ) .40( ) .3 6. 17.9 .6 18.6 19.4 19.9 20.0 1.20( ) .06( 1 .48( ) .49( ) .50( ) .38( ) 3 11. 17.3 .5 17.8 18.4 18.8 18.9 1.18( ) .06( ) .46( ) .47( ) .48( ) .37( ) 3 16. 16.7 .4 17.2 17.7 18.0 18.0 1.16( ) .05( ) .45( ) .46( ) .47( 1 .36( ) 3 - 21. 16.3 .4 16.7 17.1 17.3 17.4 1.15( ) .05( ) .45( ) .45( ) .46( ) .35( ) 3 26. 15.9 '.3 16.2 16.6 16.8 16.8 1.13( 1 .04( ) .44( ) .444 ) .45( ) .34( ) 3 31. 15.5 .3 15.8 16.1 16.3 16.3 1.12( 1 .041 ) .43( ) .44( ) .44( ) .34( ) 3 36. 15.2 .2 15.5 15.7 15.9 15.9 1.11( ) .04( ) .43( ) .43( ) .43( ) -33( ) 3 41. 14.9 .2 15.2 15.4 15.5 15.6 1.10( ) .03( ) .421 1 .431 ) .43( ) .33( ) 3 46. 14.6 .2 14.9 15.1 15.2 15.2 1.091 ) .03( ) .424 ) .42( ) .42( ) .32( 1 3 51. 14.4 .1 14.6 14.8 14.9 14.9 1.081 ) ..03( I .414 ) .42( ) .42( ) .32( 1 3 56. 14.1 .1 14.3 14.5 14.6 14.6 1.074 ) .02( I .411 1 .41( ) .41( ) '.31( ) 4 1. 13.9 .1 14.1 14.2 14.3 14.4 1.061 ) .02( ) .40( 1 .41( ) .41( ) .31( ) 4 6. 13.7 .1 13.8 14.0 14.1 14.1 1.051 I .02( ) .40( ) .40( ) .40( ) .31( ) 4 11. 13.4 .1 13.6 13.8 13.9 13.9 1.041 I, .02( ) .40( ) .40( ) .40( ) .30( ) 4 16. 13.2 .0 13.4 13.5 13.6 13.6 1.03( ) .01( ) .391 ) .39( ) .40( I .30( ) 4 21. 13.0 .0 13.2 13.3 13.4 13.4 1.02( ) .01( ) .391 ) .39( ) .39( I .30( ) 4 26. 12.8 .0 13.0 13.1 13.2 13.2 1.02( ) .01( ) .38( ) .39( ) .39( I .30( ) 4 31. 12.7 .0 12.8 12.9 13.0 13.0 1.01( ) .01( ) .381 ) .38( ) .39( ) .29( ) 4 36. 12.5 .0 12.6 12.7 12.8 12.8 1.00( ) .01( ) .384 ) .38( ) .38( ) .29( ) 4 41. 12.3 .0 12.4 12.5 12.6 12.6 ' .99( I .01( ) .38( ) .38( ) .38( ) .29( ) 4 46. 12.1 - .0 12.2 12.4 12.4 12.4 .991 ) .01( ) .37( ) .37( ) .38( ) .28( ) 4 51. 12.0 .0 12.1 12.2 12.3 12.3 [_1 PROPOSED EFFECTIVE MODEL - BUCKINGHORSE NORTHERN ENGINEERING, AUGUST 10, 2012 100-YEAR STORM EVENT Page 6 of 7 .98( 1 .011 I .37( ) .37( 1 .37( 1 .28( ) 4 56. 11.8 .0 11.9 12.0 12.1 12.1 . 971 ) .001 ) .37 ( ) .374 1 .37( ) .281 ) 5 1. 11.6 .0 11.7 11.9 11.9 11.9 .971 j .001 ) .36( ) .36( 1 .37( ) .281 ) 5 6. 11.5 .0 11.6 11.7 11.8 11.8 .96( ) .00( ) .36( ) .364 ) .36( ) .28( ) 5 11. 11.3 .0 11.4 11.5 11.6 11.6 . 951 ) .001 ) .36( ) .36( ) .36( ) .27( ) 5 16. 11.2 .0 11.3 11.4 11.4 11.5 .951 ) .001 ) - .35( ) .36( ) .36( ) .27( ) 5 21. 11.0 .0 11.1 11.2 11.3 11.3 .94( ) .00( ) .35( ) .35( I .351 ) .27( ) 5 26. 10.9 .0 11.0 11.1 11.1 11.1 .93( ) .00( ) .351 I .35( ) .35( ) .27( ) 5 31. 10.7 .0 10.8 10.9 11.0 11.0 .93( 1 .00( ) .35( ) .35( ) .35( ) .26( ) 5 36. 10.6 .0 10.7 10.8 10.8 10.8 .92( 1 .00( ) . 34 1 ) . 34 1 ) .35( ) .26( ) 5 41. 10.4 .0 10.5 10.6 10.7 10.7 .92( I .00( ) . 34 1 ) .341 ) .34( ) .26( ) 5 46. 10.3 .0 10.4 10.5 10.5 10.6 .91( ) .00( ) .341 ) .341 ) .34( ) .26( ) 5 51. 10.1 .0 10.2 10.3 - 10.4 10.4 .90( ) .00( ) .33( ) .34( ) .34( ) .26( ) 5 56. 10.0 .0 .10.1 10.2 10.3 10.3 .89( I .00( ) .33( ) .33( ) .33( ) .25( ) 6 1. 9.8 .0 9.9 10.0 10.1 10.1 .89( ) .00( ) .334 ) .33( ) .33( ) .25( ) 6 6. 9.6 .0 9.7 9.9 9.9 9.9 .881 ) .00( ) .32( ) .33( ) .33( ) .25( ) 6 11. 9.4 .0 9.5 9.7 9.7 9.8 .871 ) .001 I .324 ) .324 ) .32( ) .25( ) 6 16. 9.2 .0 9.4 9.5 9.6 9.6 .86( ) .001 I .32( ) .324 ) .32( ) .24( ) 6 21. 9.0 .0 9.2 9.3 9.4 9.4 .85( ) .00( ) .31( ) .324 ) .32( ) .24( ) 6 26. 8.9 .0 9.0 9.1 9.2 9.2 .84( ) .001 ) .31( ) .31( ) .31( ) .24( ) 6 31. 8.7 .0 8.8 8.9 9.0 9.0 .84( ) .00( ) .31( ) .314 ) .31( ) .23( ) 6 36. 8.5. .0 8.6 8.8 8.8 8.8 .83( ) .001 ) .30( I .30( ) .31( ) .23( ) 6 41. 8.3 .0 8.5 8.6 8.7 8.7 .821 ) .001 ) .30( ) .30( ) .30( ) .23( ) 6 46. 8.2 .0 8.3 8.4 8.5 8.5 .81( ) .00( ) .291 I .30( ) .30( ) .231 I 6 51. 8.0 .0 8.1 8.3 8.3 8.3 .80( ) .00( ) .29( ) .29( ) .30( ) .22( ) 6 56. 7.8 .0 8.0 8.1 8.2 8.2 .79( ) .00( ) .29( ) .29( ) .29( ) .221 I 7 1. 7.7 .0 7.8 7.9 8.0 8.0 .79( 1 -00( ) .281 ) .29( ) .29( ) .221 I 7 6. 7.5 .0 7.7 7.8 7.8 7.9 .78( 1 .00( ) .281 ) .28( ) .29( ) .22( ) 7 11. 7.4 .0 7.5 7.6 7.7 7.7 .771 I .00( ) .28( ) .28( ) .28( ) .21 ( ) 7 16. 7.2 .0 7.4 7.5 7.5 7.5 .761 ) .00( ) .27( ) .281 ) .28( ) .211 I 7 21. 7.1 ' .0 7.2 7.3 7.4 7.4 .76( 1 .00( ) .27( ) .271 ) .281 I .211l I 7 26. 6.9 .0 7.1 7.2 7.2 7.3 .75( 1 .00( ) .27( ) .27( ) .271 I .211 I 7 31. 6.8 .0 6.9 7.0 7.1 7.1 .74( 1 .00( ) .26( ) .27( ) .271 I .20( ) 7 36. 6.7 .0 6.8 6.9 7.0 7.0 .73( 1 - .00( ) .264 ) .26( ) .271 I .201 I 7 41. 6.5 .0 6.7 6.8 6.8 6.8 .731 ) .00( ) .26( ) .26( ) .26( ) .20( ) 7 46. 6.4 .0 6.5 6.6 6.7 6.7 .721 ) .001 I .26( ) .26( ) .26( ) .20( ) 1 51. 6.3 .0 6.4 6.5 6.6 6.6 .711 1 .00( ) .25( ) .25( ) .26( ) .19( ) 7 56. 6.2 .0 6.3 6.4 6.4 6.4 .701 I .00( ) .25( ) .25( ) .25( ) .19( ) THE FOLLOWING CONVEYANCE ELEMENTS WERE SURCHARGED DURING THE SIMULATION. THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 201 THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 206 SIDEHILL FILING 2 6 3 SWMM ANALYSIS INPUT, JR ENGINEERING, 30-27-04, ES 3.67" RAINFALL DATA, 100 YEAR STORM EVENT; NORTHERN ENG. MODIFIED, 8/10/12 ' PROPOSED EFFECTIVE MODEL - SIICRINGHOR NORTHERN ENGINEERING, AUGUST 10, 2012 100-YEAR STORM EVENT Page 7 of 7 "` PEAR FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY ' CONVEYANCE PEAK ELEMENT:TYPE (CPS) STAGE (FT) STORAGE (AC -FT) TIME (HR/MIN) 1:2 130.4 .1 4.0:D 1 5. 2:2 108.0 .1 1.8:D 0 42. 3:2 28.4 .1 1.3:D 0 46. :2 201:2 .1 97 97.7 .1 9.0 6.:D 1.7:5 2 S. 1 41. ' 202:1 108.0 1.7 0 42. 203:1 131.3 1.5 0 41. 204:1 187.4 1.8 0 36. 205:1 354.0 2.6 0 35. 2: 21515:2 33. 83.6 2.2 .1 29. 6:D 0 3. 2 34. 301:3 .0 (DIRECT FLAW) 0 0. 302:3 139.2 (DIRECT FLAW) 0 35. 303:3 199.4 ,(DIRECT FLOW) 0 35. 304:3 365.5 (DIRECT FLAW) 0 35. 305:3 354.0 (DIRECT FLOW) 0 35. 306:3 722.8 (DIRECT FLOW) 0 36. ' 901:3 215.1 (DIRECT FLOW) 0 36. 902:3 240.4 (DIRECT FLOW) 0 35. 903:3 104.1 (DIRECT FLOW) 0 35. ENDPROGRAM PROGRAM CALLED 1 I� J APPENDIX C Erosion Control Report ' NORTHERN ENGINEERING Bucking Horse Filing Four ' EROSION CONTROL REPORT t A comprehensive Erosion and Sediment Control Plan (along with associated details) HAS BEEN PROVIDED BY SEPARATE DOCUMENT. It should be noted, however, that any such Erosion and Sediment Control Plan serves only as a general guide to the Contractor. Staging and/or phasing of ' the BMPs depicted, and additional or different BMPs from those included may be necessary during construction, or as required by the authorities having jurisdiction. It shall be the responsibility of the Contractor to ensure erosion control measures are properly maintained and followed. The Erosion and Sediment Control Plan is intended to be a living document, constantly adapting to site conditions and needs. The Contractor shall update the ' location of BMPs as they are installed, removed or modified in conjunction with construction activities. It is imperative to appropriately reflect the current site conditions at all times. ' The Erosion and Sediment Control Plan shall address both temporary measures to be implemented during construction, as well as permanent erosion control protection. Best Management Practices from the Volume 3, Chapter 7 -Construction BMPs will be utilized. Measures may include, but are ' not limited to, silt fencing along the disturbed perimeter, gutter protection in the adjacent roadways and inlet protection at existing and proposed storm inlets. Vehicle tracking control pads, spill containment and clean-up procedures, designated concrete washout areas, dumpsters, and job site ' restrooms shall also be provided by the Contractor. . Grading and Erosion Control Notes can be found on the Utility Plans. The Final Plans will contain a ' full-size Erosion Control sheet as well as a separate sheet dedicated to Erosion Control Details. In addition to this report and the referenced plan sheets, the Contractor shall be aware of, and adhere to, the applicable requirements outlined in the Development Agreement for the development. Also, ' the Site Contractor for this project will be required to secure a Stormwater Construction General Permit from the Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Division — Stormwater Program, prior to any earth disturbance activities. Prior to securing said permit, the Site Contractor shall develop a comprehensive Storm Water Management Plan ' (SWMP) pursuant to CDPHE requirements and guidelines. The SWMP will further describe and document the ongoing activities, inspections, and maintenance of construction BMPs. II t Final Erosion Control Report 1 i 1 1 1 1 1 1 1 1 1 1 1 i 1 i 1 APPENDIX D LID Design Information GREAT WESTERN RAILROAD 111 1 ( I 1 OUIRED 164 c ;t 'I'OVIDEO.I Sii itWO VOLUME REDI iIR/TI7II 1/Q �I1III vAUIT3 ,176 3 t AD VOLUME [ ED 1,201 cu tt :,It ei VAI !0 6 e fl --- -------------- L �L_ J(1 1 w'' I r D 1,z01 —_-- .----- _ —.---- LD L G ; ; L I 1 RARUN L ICIAR I3 SF i RA' t 46 TR AR TREATMENT AREA 109.452P rl 'I; UME'2T2B.11cu It ci, It CUTTING HORSE DRIVE V3 .III I L G , .. LD 7 ♦ - I 1 SLID 10 J � LD G5 -- U30ic • - I •' REATMENT AREA: 10.307 SF - — r w Vm n / LIJb i ILOUIREDVOLUME270ain v:OVIDED VOLUME 3621u It MILES HOUSE AVENUE 1 G� RAIN GARDEN 4 — VAULT 1: — h 1 i RG ARCH 1,331 SF 'RPATMENT RHEA: 249665E I T TREATMENT AREA: 503955E :.. 10 UME REQUIRED. 760 cu tt 1 REQUIRED VOLUME. 1, 63cu. It NOVOLUME PR0 DIED . 762 o•fl. PROVIDED VOLUME_ 1, 120 ti b SC 310 VAULTS IE129.3 an. if � r I / l ll RQ AREA a66 SE ` TREATMENTAREAE1.219.3824 5 t J PROVIDED VOLUM-350.. f / � PROVIDED VOLUME: 360w fl / ♦ 0-14R1 • �I ox i I AIN GARDEN;' RU AREA. 277,.E IREAIMENT AREA:4717 Si- L_ — REQUIRED VOLUME. 174 cu tl PROVIDED VOLUME. 195 cuff -��`t" `— _ 'I -' • y/� / ;01 '1—/8105WALEAREA.1910 SF (920 LF, 2' WIDE) 14.380 SF RUN-ON NUN-014 RA110•B1 September 30, 2016 NORTHERN ENGINEERING P:IeROlF[TbI68)004\%VODRMP89>OD1 llaDel6 4 100 0 100 Feel (IN FEET) 1 Inch -100 ft. On -Site LID Treatment Project Summary Total Impervious Area 504,257 sf Target Treatment Percentage 75% Minimum Amu to b Treated by LID measures 378,192.45 sf Bio-Swale Treatment Blo-Swale Bottom Area (4' wide x 850' long) 1,840 sf Total Blo-swale Treatment Area 14,380 sf Run-on Ratio (10:1 max) 7.8 :1 Rain Garden Treatment Rain Garden Area 5,981 sf Run-on area for Rail Garden 188,195 sf Total Rain Garden Treatment Area 194,176 sf Overall Run-on Ratio for Rain Garden (50:1 Max) 313 :1 Infiltration GoReryl fr dercmuod Vaults Vault Area 3,100 sf Total Vault Treatment Area 253,212 sf Overall Run-on ratio for Vaults 49A :1 Total Treatment Am 361,768 sf Percent Total Project Area Treated 71.7% BUCKING HORSE APARTMENTS FORT COLLINS, C( I 1 1 1 u I I 1 On -Site LID Treatment Project Summary Total Impervious Area 504,257 sf Target Treatment Percentage 75% Minimum Area to be Treated by LID measures 378,192.45 sf Bio-Swale Treatment Bio-Swale Bottom Area (4' wide x 850' long) 1,840 sf Total Bio-swale Treatment Area .14,380 sf Run-on Ratio (10:1 max) 7.8 :1 Rain Garden Treatment Rain Garden Area 5,981 sf Run-on area for Rain Garden 188,195 sf Total Rain Garden Treatment Area 194,176 sf Overall Run-on Ratio for Rain Garden (50:1 Max) 31.5 :1 Infiltration Gallery/Underground Vaults Vault Area 3,100 sf Total Vault Treatment Area 153,212 sf Overall Run-on ratio for Vaults 49.4 :1 Total Treatment Area 361,769 sf Percent Total Project Area Treated 71.7% I I I I I I I I I I I I I I I I / I ■ ■E E G � { . E §$,ammmia0 § « : . \ / ) CT §E 000.700 � £§� Ell N N,Om�_ s ; a C5CSS;;QD; � k / �}k2�^.Qo„mom_ ;;Q;; §§§01010 101 ,| \ f 0,O##„ ,Ak ,E e ! !ƒ ; 2I, § � §§§§§§§ o= LU2 § 0-) }2\ 5@@mm-:11 % a ! OA ::..: ))! ; ■J� IiCR 00000000 q l q ® !!:[� 4@gmfq■e - � LU ' - La` ow - 0 � - o k$CSox1 �| - I I I I I I I I I / I � % I I I I I I � I ! cow.e�=�= k00 - < 2 !m-I���:�2�� cm - cr £�! ��! ��� - �$ 7g77}g»j IL! 73 � ■i»/&g&g}}&§ $�§0000000; 2 o - �ƒ 2 Q;£ q % ■ ' )§NCM o � / N0M§§0« §]]§| � a,* : - cli d 6 , 6 mmm 01 kg�aGNgo I a | \ \\R �„ �2!»�- cl?ll - ��W00 $ _®©a LU �#kQQjk6co 4 14� -2[§(§[[§2 & '� §spaGo -aG;®°= !� «�#22a§mq;§ �f ao 7 �I?mmgmmm$m 5 =f00000000 LI # / &2§mm$m;mmm a ao , ' 6_ | s; \ �� ir \ \ | ! 2 z !_## ! § k - In \ jE _ /{# a k/}�� 6 s, 00 0CLCD [I I% LI 1 F1 L 7 1 7 l J O to O m N 00 m n--t + m 0 n W �t N 0o 3 M O O O $ a E O M O" NCJMMa ILI W E ; o v 00 m o ry 00 o co N Q O o M 2 a` tho w_E a� E oQn ' � co m n vrn� LL W O o N O M N ••� U � m Q (wmn m P m p CO in to to in in — 00 T 0; n O; k0 6 n W 7 U e m rn n oO n 00 to v nmvn oO O v Wn — ai v v m a m v m h c 2 Q C= O M N in 00 N in 00 N N O N. O co N.- 00 to N O N O o C �I MLO co O O n ro e, rn o, O o a o rnn 000e. U o o o .+ .+ O o 0 IA. uonnn0 ti ri M'I C 2 o V n 'O n 00 n N OR O oO M n 00 n Io 00000000 �. W D C e ^�o�cqoq��kq o 0 0 0 0 000 W gg eftoo m ri Q ,�nna Se L^ Y oo F E Co Ln in in w w 0 Cl in in CO in '�° n tj g 0 NE m m in Ln n C4 .M. S 0 CO v o CO in m In N m M In V N S m 0 0 .-+ O N C 0 LL Q . 0 U G y m E C ." N M V 0 In co N M of of cV C is V $ W C '+ N m --T u7NM� G y K K � � � > > > LL K z .� a% ° D _ Ch § ® • - e a , - ~ Ek_� 0_. m 2 ■ �b7 ` k 2# ch� 2 2 ■ £ - » S o ; k f \ 2 ■ ; � e � § 0 0 0 0 i 2 £ E § § § cc c a . � 9 ) 0, 0, 0, 0, c � » � ■ . _ . � � � to 1 . E / \ \ \ � 2 # m [ 0 k' IF B § / c I2 ■ . ' t NORTHERN ENGINEERING StormTech Chamber Data Chamber Dimensions SC-310 I SC-740 Width (in) 34.00 51.00 Length (in) 85.40 85.40 Height (in) 16.00 30.00 Floor Area (sf) 20.16 30.25 Chamber Volume (cf) 14.70 45.90 Chamber/Aggregate Volume (cf) 29.30 74.90 Chamber Flow Rate Conversion (gpm/sf to cfs) Flow Rate" 0.35 gpm/sf 1 cf = 7.48052 gal 1 gallon = 0.133681 cf 1 GPM = 0.002228 cfs "Flow rate based on 1/2 of Nov 07 QM. in Figure 17 of UNH Testing Report Chamber Flow Rate I SC-310 I SC-740 Flow Rate/chamber (cfs) 1 0.0157241 0.023586 I 1 I 11 ■� 'NORTHERN ENGINEERING Vault Volume Calculation I FAA Method Project: Bucking Horse - Fourth Filing Project Location: Fort Collins, Colorado Calculations By: A. Reese Date: September 30, 2016 Pond No.: Vault 1 Input Variables Results Design Point V1 Design Storm WQ Developed "C" = 0.74 Area (A)= 3.58 acres Max Release Rate = 0.86 cfs Required Detention Volume Quantity Detention 1552 ft3 Time Time Ft.Collins WQ Intensity Q100 Inflow (Runoff) Volume Outflow (Release) Volume Storage Detention Volume (mins) (secs) (in/hr) (cfs) Fri(ft) (ft ) 5 300 1.43 3.8 1133 258 875 10 600 1.11 2.9 1756 516 1240 15 900 0.94 2.5 2229 774 1455 20 1200 0.81 2.1 2559 1032 1527 25 1500 0.72 1.9 2841 1290 1551 30 1800 0.65 1.7 3100 1548 1552 35 2100 0.59 1.5 1 3255 1806 1449 40 2400 0.54 1.4 3402 2064 1338 45 2700 0.50 1.3 3541 2322 1219 50 3000 0.46 1.2 3656 2580 1076 55 3300 0.44 1.2 3803 2838 965 60 3600 0.41 1.1 3910 3096 814 65 3900 0.39 1.0 3978 3354 624 70 4200 0.37 1.0 1 4061 3612 449 75 4500 0.35 0.9 4113 3870 243 80 4800 0.33 0.9 4196 4128 68 85 5100 0.32 0.8 4256 4386 -130 90 5400 0.31 0.8 4363 4644 -281 95 5700 1 0.29 0.8 4379 4902 -523 100 6000 0.28 0.7 4451 5160 -709 105 6300 0.27 0.7 4506 5418 -912 110 6600 0.26 0.7 1 4546 5676 -1130 115 6900 0.3 0.7 4661 5934 -1273 120 7200 0.25 0.6 4673 6192 -1519 I D:IProjectsl687-0041DrainagelLlDlVaultsl687-004 FAA Vault l.xlsml IF1 II 7 1 I 1 LJ I ■� NORTHERN ENGINEERING Vault Volume Calculation I FAA Method Project: Bucking Horse - Fourth Filing Project Location: Fort Collins, Colorado Calculations By: A. Reese Date: September 30, 2016 Pond No.: Vault 2 Input Variables Results Design Point V2 Design Storm WQ Developed "C" = -0.7--- Area (A)= 2.58 acres Max Release Rate = 0.61 cfs Required Detention Volume Quantity Detention 1106 ft3 Time Time Ft.Collins WQ Intensity Q100 Inflow (Runoff) Volume Outflow (Release) Volume Storage Detention Volume (mins) (secs) (in/hr) (cfs) (ft) (ft) (ff ) 5 300 1.43 2.7 805 183 622 10 600 1.11 2.1 1249 366 883 15 900 0.94 1.8 1585 549 1036 20 1200 0.81 1.5 1819 732 1087 25 1500 0.72 1.3 2020 915 1105 30 1800 0.65 1.2 2204 1098 1106 35 2100 0.59 1.1 2314 1281 1033 40 2400 0.54 1.0 2418 1464 954 45 2700 0.50 0.9 2517 1647 870 50 3000 0.46 0.9 2599 1830 769 55 3300 0.44 0.8 2704 2013 691 60 3600 0.41 0.8 2780 2196 584 65 3900 0.39 0.7 2828 2379 449 70 4200 0.37 0.7 2887 2562 325 75 4500 0.35 0.6 2924 2745 179 80 4800 0.33 0.6 2983 2928 55 85 5100 0.32 0.6 3026 3111 -85 90 5400 0.31 0.6 3102 3294 -192 95 5700 0.29 0.5 3113 3477 -364 100 6000 0.28 0.5 3164 3660 -496 105 6300 0.27 1 0.5 3204 3843 -639 110 6600 0.26 0.5 3232 4026 -794 115 6900 0.3 0.5 3314 4209 -895 120 7200 0.25 0.5 3322 4392 -1070 D:IProjects1687-0041DrainagelLlDIVaults 1687-004_FAA_Vault 2.xlsml I Design Procedure Form: Rain Garden (RG) ' Sheet 1 of 2 Designer: Andy Reese Company: Northern Engineering Dots: September 30, 2016 ' Project: Bucking Horse Apartments Location: Vault 2 I 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, le I, = 67.0 (100 h if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = IJ100) i = 0.670 C) Water Quality Capture Volume (WQCV) for a 12-tour Drain Time WQCV = 0.21 watershed inches (WQCV= 0.8' (0.91• i- 1,19" �- 0.78' i) D) Contributing Watershed Area (including rain garden area) Area = 112.595 sq it E) Water Quality Capture Volume (WQCV) Design Volume Vwocv = 1,967 cu it Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of da = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwxv wren = 0.0 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume Vwocv uses = cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) DwocV = 12 in B) Rain Garden Side Slopes (Z = 4 min., hors. dirt per unit vertical) Z = 4A0 ft / ft (Use "0" it rein garden has vertical walls) C) Minimum Flat Surface Area Asa„ = 1312 sq ft D) Actual Flat Surface Area Ate,,, = 4500 sq ft E) Area at Design Depth (Top Surface Area) ATw = 4500 sq ft F) Rain Garden Total Volume VT= 4,500 Cu ft (VT= ((AT. ` A�) 12) * Depth) 3. Growing Media r Choose One O 18" Rain Garden Growing Media Q Other (Explain): 4. Underdmin System Choose One YES A) Are untlertlrair¢ provided? Q NO B) Under -dram system orifice diameter for 12 tour drain time i) Distance From Lowest Elevation of the Storage y= 1.5 ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Volr,= N/A cu ft lii) Orifice Diameter, 3/8' Minimum Do = NIA in ' Vault 2_UD-BMP_v3.02.xls, RG 10/4/2016, 2:32 PM I 1 1 t I 1 1 1 1 ■� i NORTHERN ENGINEERING Vault Volume Calculation I FAA Method Project: Bucking Horse - Fourth Filing Project Location: Fort Collins, Colorado Calculations By: A. Reese Date: September 30, 2016 Pond No.: Vault 2 Input Variables Results Design Point V2 Design Storm WQ Developed "C" = 0.73 Area (A)= 2.58 acres Max Release Rate = 0.61 cfs Required Detention Volume Quantity Detention 1106 ft3 Time Time Ft.Coliins WQ Intensity Q100 Inflow (Runoff) Volume Outflow (Release) Volume Storage Detention Volume (mins) (secs) (in/hr) (cfs) (ft) (ft) (ft ) 5 300 1.43 2.7 805 183 622 10 600 1.11 2.1 1249 366 883 15 900 0.94 1.8 1585 549 1036 20 1200 0.81 1.5 1819 732 1087 25 1500 0.72 1.3 2020 915 1105 30 1800 0.65 1.2 2204 1098 1106 35 2100 0.59 1 1.1 2314 1281 1033 40 2400 0.54 1.0 2418 1464 954 45 2700 0.50 0.9 2517 1647 870 50 3000 0.46 0.9 2599 1830 769 55 3300 0.44 0.8 2704 2013 691 60 3600 0.41 0.8 2780 2196 584 65 3900 0.39 0.7 2828 2379 449 70 4200 0.37 1 0.7 2887 2562 325 75 4500 0.35 1 0.6 2924 2745 179 80 4800 0.33 1 0.6 2983 2928 55 85 5100 0.32 1 0.6 3026 3111 -85 90 5400 0.31 0.6 3102 3294 -192 95 5700 0.29 0.5 3113 3477 -364 100 6000 0.28 0.5 3164 3660 -496 105 6300 0.27 0.5 3204 3843 -639 110 6600 0.26 0.5 3232 4026 -794 115 6900 1 0.3 0.5 3314 4209 -895 120 1 7200 1 0.25 1 0.5 3322 4392 -1070 I D:IProjects 1687-0041DrainagelLIDIVaults 1687-004_FAA_Vault 3.xlsml Design Procedure Form: Rain Garden (RG) ' sneer 1 at e Designer: Andy Reese Company: Northam Engineering Date: September 30, 2016 ' Project: Bucking Hone Apartments Location: Vault 3 I I 1 I 1_ Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 71.0 % (100 % 8 all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = IJ100) i = 0.710 C) Water Ouality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.22 watershed inches (WQCV= 0.8 - (0.91' i'- 1,19 • P- 0.78' i) D) Contribu0ng Watershed Area (including rain garden area) Area = 63,093 sq ft E) Water Quafrty Capture Volume (WQCV) Design Volume VWocy = 1.176 cu ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of ds = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwocv o�n = 0.0 W it Water Quality Capture Volume (WOCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWooyoWEp = cu ft (Only d a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv = 12 in B) Rain Garden Side Slopes (Z = 4 min., horn. dist per unit vertical) Z = 4,00 ft / it (Use'V if rain garden has vertical walls) C) Mimimum Flat Surface Area Aw, = 784 sq ft D) Actual Flat Surface Area A� = 4500 sq ft E) Area at Design Depth (Top Surface Area) Afro = 4500 sq ft F) Rain Garden Total Volume Vr= 4,500 cu ft (VT= ((Arm+A. ) 12)' Depth) 3. Growing Media r Choose One Q 18" Rain Garden Growing Media 0 Other (Explain): 4. Underdmin System Choose One O YES A) Are underdmins provided? Q NO B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Center of the Orifice li) Volume to Drain in 12 Hours Voltz= N/A cu ft iii) Oros Diameter, 3/8' Minimum Do = N/A in ' Vault 3_UD-13MP_0.02.xis, RG 10/412016, 2:33 PM I I 1 1 !NORTHERN ENGINEERING Vault Volume Calculation I FAA Method Project: Bucking Horse - Fourth Fi'inlo Project Location: Fort Collins, Colorado Calculations By: A. Reese Date: September 30, 2016 Pond No.: Vault 4 Input Variables Results Design Point V4 Design Storm WQ Developed "C" = 0.61 Area (Aj= 1.29 acres Max Release Rate = 0.41 cfs Required Detention Volume Quantity Detention 293 ft3 Time Time Ft.Collins WQ Intensity Q100 Inflow (Runoff) Volume Outflow (Release) Volume Storage Detention Volume (mins) (secs) (in/hr) (cfs) (ft) (ft) (ft ) 5 300 1.43 1.1 336 123 213 10 600 1.11 0.9 522 246 276 15 900 0.94 0.7 662 369 293 20 1200 0.81 0.6 760 492 268 25 1500 0.72 0.6 844 615 229 30 1800 0.65 0.5 921 738 183 35 2100 0.59 0.5 967 861 106 40 2400 0.54 1 0.4 1010 984 26 45 2700 0.50 0.4 1052 1107 -55 50 3000 0.46 0.4 1086 1230 -144 55 3300 0.44 0.3 1130 1353 -223 60 3600 0.41 0.3 1161 1476 -315 65 3900 0.39 0.3 1182 1599 -417 70 4200 0.37 0.3 1206 1722 -516 75 4500 1 0.35 0.3 1222 1845 -623 80 4800 0.33 0.3 1246 1968 -722 85 5100 0.32 0.2 1264 2091 -827 90 5400 0.31 0.2 1296 2214 -918 95 5700 0.29 0.2 1301 2337 -1036 100 6000 0.28 0.2 1322 2460 -1138 105 6300 0.27 0.2 1339 2583 -1244 110 6600 1 0.26 0.2 1350 2706 -1356 115 6900 0.3 0.2 1385 2829 -1444 120 7200 0.25 0.2 1388 2952 -1564 D:IProjects1687-0041Drainage JUDIVaults 1687-004_FAA_Vault 4.xfsml Design Procedure Form: Rain Garden (RG) ' Sheet 1 of 2 Designer: Andy Reese Company: Northern Engineering Date: September 30, 2016 ' Project: Bucking Home Apartments Location: Vault 4 t 1 1 1 1 1 P 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 46.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = 191100) i = 0.460 C) Water Quality Capture Volume (WQCV) for a 12-Four Drain Time WQCV = 0.16 watershed Inches (WQCV= 0.8' (0.91" i°- 1.19 - ?+ 0.78 • i) D) Contributing Watershed Area (including rain garden area) Area = 58,285 sq ft E) Water Quality Capture Volume (WQCV) Design Volume Vwocv = 760 w ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of d. = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwoava .A = 0.0 cu it Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWMV usra = cu ft (Only H a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv= 12 in B) Rain Garden Side Slopes (Z = 4 min., hors. dist per unit vertical) 2 = 4.00 ft/ ft (Use "0" if min garden has vertical walls) C) Minimum Fiat Surface Area AMA, = 507 sq ft O) Actual Flat Surface Area Aw = 4500 sq ft E) Area at Design Depth (Top Surface Area) AT, = 4500 sq ft F) Ruin Gamen Total Volume VT= 4,500 Cu h M1. (•((ATC - w ) / 2) • Depth) T 3. Growing Media r Choose One I p 18" Rain Garden Growing Media O Other (Explain): 4. Underdmin System Choose One O YES A) Are underdmirhs provided? Q NO B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Carter of the Orifice ii) Volume to Drain in 12 Hours V0112 = N/A cu ft III) Orifice Diameter, 3/8' Minimum Do = NIA in ' Vault 4_UD-BMP_v3.02.x1s, RG 10/4/2016, 2:33 PM I Design Procedure Forrn: Rain Garden (RG) ' Sheet 1 of 2 Designer: A Reese Company: Northern Engineering Date: Spetember 30, 2016 ' Project: Bucking Morse Apartments Location: Rain Garden 1 1 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 67.0 % (100% 8 all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = I,/1DO) i = 0.670 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.21 watershed inches (WQCV= D.8' (0.91' l3- 1.19' l2. 0.78' i) D) Contributing Watershed Area (including rain garden area) Area = 156,103 so It E) Water Quality Capture Volume (WQCV) Design Volume Vwocv = 2,728 w ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of dr = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwocv C�a = w ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume Vwocv usEa = Cu It (Only If a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv = 12 In B) Ram Garden Side Slopes (Z = 4 min., honz. dist par unit vertical) Z = 4.00 it / ft (Use'0' H rain garden has vertical walls) C) Mimimum Flat Surface Area Au„ = 1818 so It D) Actual Flat Surface Area Ate, = 780 SG ft ACTUAL FLAT AREA < MINIMUM FLAT AREA E) Area at Design Depth (Top Surface Area) AT, = 1456 so ft F) Rain Garden Total Volume Vr= 1,118 Cu ft TOTAL VOLUME <DESIGN VOLUME (V,= ((Arm' A, ) / 2)' Depth) 3. Growing Media Choose One �O 18" Rain Garden Growing Media O Other (Explain): 4. Underdrain System Choose One Q YES A) Are underdrains provided? Q NO 8) Underdmin system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Carter of the Orifice ii) Volume to Drain in 12 Hours Vol,,= N/A w it iii) Onfice Diameter, 318' Minimum On = NIA in ' RG01_UD-BMP_v3.03.idsm, RG 1014/2016, 12:48 PM r I Design Procedure Form,: Rain Garden (RG) r Sheet t of 2 Designer: A. Reese Company: Northern Engineering Date: September 30, 2016 r Project: Bucking Horse Aparbnents Location: Rain Garden 2 r r r r r r r r r r r r r r r 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 72.0 % (100% d all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = V100) i = 0.720 C) Water Quality Capture Volume (WQCV) for a 12-taw Drain Time WQCV = 0.23 watershed inches (WOCV= 0.8 - (0.91• P- 1.19 " 12+ 0.78 " i) D) Contributing Watershed Area (including rain garden area) Area = 9,178 sq It E) Water Quality Capture Volume (WOCV) Design Volume Vwoty = 174 cu ft Vol = (WOCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of da = in Average Runoff Producing Stoml G) For Watersheds Outside of the Denver Region, VWQc OHEe = cu it Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume Vwocvussn = cu 0 (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv= 12 In B) Ram Garden Side Slopes (Z = 4 min., horiz- dist per unit vertical) Z = 4.D0 fl / ft (Use "0" if rain garden has vertical wars) C) Minimum Flat Surface Area AM„ = 116 sq it D) Actual Flat Surface Area A� = 113 sq it ...: „u F"T AREA < rw:rtuv,;r;, . E) Area at Design Depth (Top Surface Area) AT, , = 277 sq fl F) Rain Garden Total Volume Vr= 195 cu It (Vr ((Ay. + An ) 12) * Depth) 3. Growing Media r Qaose One I p 18" Rain Garden Growing Media Q Other (Explain): 4. Underdmin System Choose One O YES A) Are underdmins provided? O NO 8) Underdrain system orifice diameter for 12 hour drain time 1) Distance From Lowest Elevation of the Storage y= R Volume to the Center of the Orifice li) Volume to Drain in 12 Hours V0112= N/A cu ft iii) Orifice Diameter, 3/8' Minimum Do = N/A in rRG02_UD-BMP_v3.03.1dsm, RG 10/412016, 12:49 PM I I Design Procedure Form: Rain Garden (RG) II ' Sheet 1 of 2 Designer: A- Reese company: Northam Engineering Date: September 30, 2016 ' Project: Bucking Hone Apartments Location: Rain Garden 3 11 1 1 1 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, i, = 75.0 (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (I = V100) i = 0.750 C) Wafer Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.24 watershed inches (WQCV=0.8'(0.91'-1.19'�-0.78'it D) Contributing Watershed Area (including rain garden area) Area = 14,900 sq it E) Water Quality Capture Volume (WQCV) Design Volume Vwocv = 298 cu ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of da = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwav 0T = cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VwQCv uses = cu It (Only If a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv = 12 in B) Rain Garden Side Slopes (Z = 4 min., homi disl per unit vertical) Z = 4.00 ft / ft (Use'0' if rain garden has vertical walls) C) Mimimum Fiat Surface Area AM" = 198 sq ft D) Actual Flat Surface Area Ar = 233 sq ft E) Area at Design Depth (fop Surface Area) AT,, = 466 sq ft F) Rain Garden Total Volume VT= 350 cu ft (VT= ((AT. Mn,,.i) / 2)' Depth) 3 Growing Media j" Choose One * 18" Rain Garden Crowing Media 0 Other (Explain): 4. Underdrain System Choose One # YES A) Are underdraire provided? p NO B) Underdmin system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ff Volume to the Carter of the Orifice ii) Volume to Drain In 12 Hours Vol,, = N/A cu it iii) Orifice Diameter, 3t8' Minimum Dc = NIA in ' RG03_UD-BMP_v3.03.1dsm, RG 10/412016, 12:50 PM IL Design Procedure Form: Rain Garden (RG) II ' Sheet 1 of 2 Designer: A_ Reese Company: Northam Engineering Date: September 30, 2016 ' Project: Bucking Horne Apartments Location: Rain Garden 4 I C 1 t t 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 80.0 % (1 DO% if all paved and roofed areas upstream of rain garden) 8) Tributary Area's Imperviousness Ratio (i = IJ100) i = 0.800 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 026 watershed inches (WQCV= 0.8' (0.91. 13- 1.19' `- 0.78' i) D) Contribu8ng Watershed Area (including rain garden area) Area = 61,373 sq It E) Water Quality Capture Volume (WQCV) Design Volume VwMV = 1,343 cu ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of de = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, VWQCv (M ER = cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input o1 Water Quality Capture Volume (WQCV) Design Volume Vwocv usEe = cu ft (Only M a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv= 12 in B) Rain Garden Side Slopes (Z = 4 min., horn. dist per unit vertical) Z = 4.DO ft I ft (Use "0" it rain garden has vertical walls) C) Mimimum Flat Surface Area Ann = 896 sq ft D) Actual Flat Surface Area A� = 909 sq ft E) Area at Design Depth (Top Surface Area) A,,,, = 1331 eq ft F) Rain Garden Total Volume VT= 1,120 cu A TOTAL VOLUME <DESIGN VOLUME (VT= ((AT. - An ) 12) * Depth) 3. Growing Media Ir Choose One Ip 18" Rain Garden Growing Media Q Other (Explain): 4. Underdram System Choose One O YES A) Are underdralns provided? p NO B) Underdmin system orifice diameter for 12 how drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Career of the Orifice ii) Volume to Drain in 12 Hours Vol,,= NIA cu ft iii) Orifice Diameter, 318" Minimum Do = NIA in ' RG04_UD-BMP_v3.03.xlsm, RG 10/4/2016, 12:52 PM Design Procedure Forth: Rain Garden (RG) Sheet 1 of 2 Designer: A. Reese Company: Northam Engineering Date: September 30, 2016 ' Project: Bucking Norse Apartments Location: Rain Garden 5 1 1 I 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 77.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tdbulary Area's Impervtousness Ratio (i = 1./100) 1= 0.770 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.25 watershed inches (WQCV= 0.8' (0.91' 13- 1.19 " i2+ (L78' i) D) Contributing Watershed Area (including rain garden area) Area = 13.044 sq ft E) Water Quality Capture Volume (WQCV) Design Voume Vwocv = 270 cu ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of de = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwocv o�R = cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume Vwoov UMR = our it (Only if a different WQCV Desgn Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwoov = 9 in B) Rain Garden Side Slopes (Z = 4 min., hors. dist per unit verdcal) Z = 4.00 It/ft (Use "0" if rain garden has vertical walls) C) Mlmimum Flat Surface Area Au,„ = 180 sq ft D) Actual Flat Surface Area A�„ d = 314 sq ft E) Area at Design Depth (Top Surface Area) A,,,, = 705 sq It F) Garden Total Volume Vr= 382 cu ft /Rain �� ( T= ((Arm' Avw) / 2)' Depth) 3. Growing Media r Oro One I QQ 18" Rain Garden Growing Media Q Omer (Explain): 4. Underdram System Choose One * 1E5 A) Are underdrains provided? Q NO B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Center of the Orifice ll) Volume to Drain in 12 Hours Volrz= N/A cu ft iii) Orifice Diameter, 3/8' Minimum Do = N/A in ' RG05_U0.8MP_v3.03.xlsm, RG 1014/2016, 12:53 PM APPENDIX E Inlet Computations E I t 1 t 1 INLET CAPACITY SUMMARY Project: 687-004 By: ATC Date: 7/15/2016 Inlet ID Design Point(s) Inlet Type Street Name Inlet Condition Design Storm Design Flow (CFS) Inlet Capacity (CFS) Al OS1 Double Combination Cutting Horse Dr. Sump 100-Yr 1.00 1.10 A2 OS3' Double Combination Cutting Horse Dr. Sump 100-Yr 25.40 27.00 Al2 OS2 Double Combination Yearling Dr. Sump 10-YR 112.00 12.00 B1 Portion of 5 Single Area Inlet Parking Area Sump 2-Yr 1.30 4.00 B4 1,2 Double Area Inlet Cutting Horse Dr. Sump 100-Yr 23.50 26.00 C1 Portion of S Single Area Inlet Parking Area Sump 2-Yr 1.30 4.00 C4 OS4, 3b Double Combination Yearling Dr. Sump 10-Yr 14.70 16.00 C6 3b ISingle Combination I Private Drive JSump I 10-Yr 4.00 17.10 C7 3b ISingle Combination I Private Drive JSump I 10-Yr 14.00 17.10 D4 3a I Double Combination Icutting Horse Dr. JSump I 10-Yr 17.50 17.50 INLET IN A SUMP OR SAG LOCATION project = 667-004 Inlet ID = Inlet A2 H-Curb H-Vert Wo W WP La IG) an Information WPM of Inbt Irtet Type' I Depression (additional to continuous guitar depre"on's' Imm'O-AlbW) tLw' aer of Unt Irby (Grate or Cub Opening) No or Depth at RoM a (outside of oral delon anion) Fbw Depth t Information th of a Unit Grate (G)' 1 of a Unit Grate We' Cpanng I for a Grate (typical vales 0.15-0.90) A. gong Factor for a Sonya Greta (typical vale 0.50 - 0.70) Cn (G)' Weir Coefficient (typical value 2.15 - 3.60) Cr (G)' i Onfica Coefficient (typical vale 0.60 - 0.60) C. (G) Opanhg Information Ih of a Und Cub Opening 4 (C)' Y of Vertical Curb Opening in Inchon; Fk.' A of Cub Orifice Throat in Ircles Ha. i of Throat (see USDCM Figue ST-5) That, Width for Depression Pan (too* do guiter twdth of 2 feet) W.' gong Factor for a Single Cub Opening (typical vale 0, 10) Cr (C)' Opening Weir Coefficient (typcal vale 2.3-3.6) Ce (C)' Operng Onfica CnafOdart (typical valve 0.60-0.70) Coo (C)' at Inlet Interception Capacity (assumes clogged condition) Q. a O.aauaaw' UD Inlet 3.1comboinlet-sump-A2.ldsm, Inlet In Sump MINOR MAJOR Dewar No. 16 Combire6pn ji Zoo 2 1.0 3.0 3.00 zoo 0.31 0.50 0.so 3.D 0.60 3.00 6.50 5.25 0.00 ZOO 0.10 0.10 3.70 0.56 Iles rhos sal oat set rles rhos egmas set 5/212016. 2:42 PM INLET IN A SUMP OR SAG LOCATION project= _ 687.ON _ Inlet ID = lnlet A3 N-cum M-vent We w Lo (0) I¢Information b WN of Met Inlet Type Depression (additional to wntf n s gutter depramon'aImm'O-,U1t W) a.: ar of Unit blots (Grate or CUD Opening) No r Depth at Floeane (oulaide of local depression) Row DepN' i Information h of a Unt Grate L. IG)' . of a Um Grate W. Opening Ratio for a Grate (typical nikes 0.15.0.90) Aee.: ling Factor for a Single Grate (typical value 0.50 - 0.70) Cn (G)' Weir Coefficient (typical a e2.15-3.60) C. (G)' Onfica Coefficient (typcal value 0.80 - 0.80) C. (G)' Opening Monrrledon h of a Um Cum Opening 4 (C)' it of Vertical Cum Opening in Ira N.w' it of Cum Orifice Threat in Irches Nw.a' of Thole (see USDCM Figure S7-5) Theo' Width for Depression Pan (typically the gutter Wdth of 2 feet) W.' ling Factor for a Single Cub Opening tMt;al value 0.10) CI (C)' Doering Weir Coeffloen ftno.1 vaue 2.3 6) C. (C)' Opening Orifice Coeff,.,M ltypcal value 0.60 - 070) Co (C) 11 Inlet Interception Capacity (assumes clogged condition) 0.. Oauseeawao I MINOR MAJOR Derxer No. 16 Combination 2A0 mo es 3 ind al 6.0 9.5 MINOR MAJOR 3.00 301: feat Zoo 20L feet 0.31 0.? 0.50 060 3.60 0.w 3.00 6.50 5.25 0.00 2.00 0.10 0.10 3.70 0.66 set notes nctes legreea eet UD Inlet 3. 1-combolnlet-sump-A3.aan, Inlet In Sump 5/212016. 2:44 Phi INLET IN A SUMP OR SAG LOCATION Project - 687-004 Inlet 10 = Inlet A6 ,l`Lo(C) r H{ueb H-Vat We W � Lo (0) on Mometbn lerentl of Iriet b" Two: I Depression (aMtorel to cor4nnre facer deaession'a' from O-AIoW) ale' oar of Uric Mats (Grate or Cub Opening) No: Depth at Flow6ne (otAside of local depression) Flow De01b' t MonrwOon N of a l)rtt Gate i of a Unit Grate W. Opening Ratio for a Grate (typical vales 0.15-0.90) A : gtrg Factor for a Single Grate (typical vale 050 - 0.70) Q (0)' i Weir Coeffiaerf (typical vale 2.15 - 3.60) C. (G)' e Onifica Coefficient (typical vein 0.60 - 0.80) C. (G)' Opening Ydarmadon ar of a Uric CW Opening L. (C)' 10 of Vertical Cub Opening In Incfes H.w' K of Cub Orifice Throat M Inches He.a' I of Tfnoat (see USDCM Fig" ST5) Tteb , Width for Depression Pan (typically the gWer Wdth of 2 feet) WP' ging Factor for a Single Cub Opening (typical vale 0.10) Cr (C)' Opening Weir Doeffident (typloal vale 2.3-3 6) Cr (G)' Openng Onfice Coefficient (typcal value 0.60 - 0.70) C. (C)' at Inlet Interception Capacity (assumes clogged condition) CapacityM GOOD for MNorarM MAJ. Storms PO PEAK) OPswaeeraan' e m. 1 nin.nsion ant,md Is not a typikal dYnaesbn for Mal type spee0fed. Das'ar No. 16 Cornbkle8orl 200 4allw 3 WNOR MAJOR 3.00 feel 200 feel 0.31 0.50 0.50 3.60 0.60 3.OD 6.60 S25 0.00 2.00 0.10 0-10 3.70 0.66 set sches ,des legmes set UO Inlet 3.l- banlel-sump-A6 dsm, Inlet In Sump 5/212016. 2:38 PM INLET IN A SUMP OR SAG LOCATION project = 867-0114 _ Inlet ID a Inlet C3 H•Cune N-vwt .we W Lo (G) Iamtorrifellanlin of bier Inlet Type' Depm reson(additional to continuous Surer depressi on'a' from'C-Alli 81: mr of Unit Inlets (Grate or CUD Opening) No r DepN at Flowme (.Nude of local depresvon) Flow Daplb' , Information n of a Unit Grate L. (G)' i of a Unit Grate We Cperng Ratio for a Grate (typical paws 0.15-0,90) tiro' ling Factor for a Single Grate (typical vats 0,50 - 0.70) Q (G)' Weir Coaffiaerl (typical value 2.15 - 3.60) C. (G)' Dnfim Coefflamt (typical vats 0.60 - 0.80) C. (G)' Opining Momu ton D of a Unit Curb Opening i of Vertical CUB Operg In Ircf H . . i of Cub Orifice Tlroar in Inches Haw I of Throat (see USOCM Figure STS) Thee' WieBi for Depression Pan (typically the gulter width of 2 feel) W. ling Factor for a Single Cut, Opening (typical value 0.10) Cn (C)' Opening Weir Coefficient (typical vets 2.3-3 6) C. (C)' Opening Onfice Coefflae at (typcal value 0.60 - 0.701 C. (C)' it Inlet Interception Capacity (assumes clogged Ioltdltion) Q. Oliva,"aeam' :ape spxelsd. MINOR MAJOR Drner No. 16 Comkinabon 2A0 ircfss 2 5.0 8.0 irclss MINOR MAJOR 3.00 eat zoo feat 0.31 0.50 0.50 3.80 0.60 3.00 6.50 5.25 0.00 2 00 0.10 0.10 3.70 0.68 UD Inlet 3.1-comboinlst-sump-C3.dsm, Inlet In Sump 5/212016, 2:45 PM INLET IN A SUMP OR SAG LOCATION PloleC • 667-M Inlet ID • Inlet tit ,P--Lo (C) ------- Y N-Curb N-Van We W Lo (G) on kdprmerI (Input( of InIct Inei Type : I Depression (edditioral to continuous gWer depiession'a' fmm'O-AIbv2) �z+' nor of Unit Were (Grate or Curb Opening) No Ir Depth al FloMne (outside of local depression) Flow Dephh' t Information th of a uric Ovate L. (G)' of a Unt Grote Wo' Openng Rato for a Grate (typical values 0.15-0.90) Ar.' g'ng Factor for a Single Grate (typical value 0.50 - 0.70) C,(G)' e Weir Coef ateet (IrMcal vale 2.16 - 3.60) C,, (G)' h Onfice Caeffaerf (typical value 0.60 - 0.80) C. (G)' Opening Fdmrrfbn M of a Unt Cub Opening L. (C)' I of Vertical Curb Coanng in Imes K. Ile of Cub Wise Tnoat in Incclies tone' 1 of Thoat (see USDCM Figure ST-5) Tie%, Width for Depression pan (typcaly the gutter width of 2 feet) We ging Factor for a Single Cub 0Ps ng (typical value 0.10) Cn (C)' OPmeng Weir Coefficient (typical vale 2.3-3.6) C. (CI' Opening Onfice Coefficient (typical vale 0.60 - 0.70) Ce (C)' III Inlet Interception Capacity (assumes clopped condition) Q.. -ns (>Q PEAK) O.va.eo aaro' , typial o.nanslen for Inlet type spaceYd. Denwar, No. 16 Combination 2.00 Incline 2 6.0 6.0 Inches MINOR MAJOR 3.00 feet 2.00 feel 0.31 0.50 0.50 3.50 0.80 3.00 650 5.25 0.00 zoo 0.10 0.10 3.70 0.85 UD Intel 3.1combolntel-sump-03.1dsm, Inlet In Sump 51212016. 2:47 PM APPENDIX F ' Storm Line Computations No Text I 1 1 o c» C J 5 ^ W W w W N w W O O W O 0 N O OOO O w NL� c_ v A CO t0 � m o L O N M M M M M M M M M � M r N Go M r M r M r M r M r M r M r M r M r M r I C J� V t0 O 01 0 r 1r v O N m Wm m � � � N aO0 a0D aO0 aO0 aO0 aO0 0Of 001 0Of L 0 m A N N r,A N N r N r N A N In N A N A N rn N A O O G G O O O O O O O O N WP.v td tto tc tti td td td tti td tc — I rn n rz r n rz rz r r a v cl) E L+ Z O O U O W O V N � 10 0 t� Lq J> r v A M to M O N CD N r M O w OR r r M N w w N V m �^. a m N CDNNNOO O = m" w w w w G) CD w w w w 0 O w v v v v v v v v v v v v �+ O w M to CD CD w w w A M v , O O w V w w w w > m 0 0 rn rn rn gi gi L6 6 m 6 r,:e m.. ao w w w w w w w w w w w c � O rn to w m v Oa v, w cop J � N ar0 � tw0 fw7 � t0 n C0'7 CC N w M N M M M M M M M M M M n N tcl to N N O COD two N t7 J V m C m tti w r Co Oo w 0) 0 1 W O) 0)0/ 0) 07 w 0)0 O O - 9 N N N N N N N N N N w A A A A A A A A A A Wno v w w w to w w to to w w 3 v 0 th � L CL m A o O o O w O to O w O U� O to O to O w O an o to O to O.... N Nr- J O M v O w O v w N M w a w to A w N IT 0 w V m C 0Nj T Owf CNp CNp T O O W N two M O N c m w w w w w w w w w w w w O v O O O O O O O O O O O O O O O O O O O O O O y. Q a0 C9 N N � � � fV tV tV N IV N N C m U) w w w w w w w w w w LL m m O C J � NM V 0 w r w W � . � d 11 I I Q N 0 C J O Z 0 • III I- w m _ m Y_ mR • m 11 I H w J C W E VJ E .O L a I I I I I I I I I I 0§ E 4% C■E \ C2— & % G./ . § ■ i k k \ k § § § § ■ > _ \ � - ' k /C6 ) oi oi ci J 0 . XC# ) ) ) ) �» G 4 m k k B B B E 2 ( » § k k k k �2 k k k k ■.0 f Go Go Go k 3 § w 3 | ` t E J I . o c o— k k k m R A �» . k� k B B B . 9 U) \ f 2 N n � N I 1 1 1 1 1 1 r— 19 • N. N n r �1 0 rJ V U S_ 1 V U ' r � i N L6 C) 1 I C I [1 , Ea C to O N O O J Y N or r M o u c o c c c o o 0 m a�a CO N W cn N O N O n1 10LO C Z' 2v b 0 0 W o 0 0 0 o 0 0 m o L m t oco r LO N N w N co O M In O C U)e r co OD w N w N w w O G O O O C C C J M N 0) ao co O co M rn - m " (9 m CD C LOR M M cl O O .. G C O O O r E m > (O cc N m N m N rn 10 cO LO co f- N a1 c m c ice- n n n n n � CD a o 0 o E z r z m Q= in N N LO O O O M ao ao ao c0 A> N LO o 0 N w co (9 m S m co ao 0) ao o w o m 0 m - m v v v v v v v w c m coo Goo coo aaoo Goo w — v v v v v v v m ao O a O> J w N m M N W w q w N N O O O O O C C C coo M M V t0 W m w w aaoo co aoo cOo co v v v v It IT v m ^m 7 co N N O) N O N Of w LQ w In r N E W 0 * t V N N C mm N rl r r r r O O t n m N LO 0 0 O O O - O J O N � N fN m m 2 m � v v v v v v v co Lo o O v n M o N M _ m— v v v v v v v E O c n o 0 o O v r- aD ao ao N N E U) N C m U) — aD a0 O O N N N jy m AD �O C J � N M v 0 c0 P d It M m E 'Y^ V/ lL 15 m O a I I I I I I I I I I | ■ E ƒ ƒ @ § M.2 — o . �© . c / co 7 uj-- Q G % o § a 2■/ ■ E .. . q a § UJ 0« § § co �=o« § § § § ■ » cc _ \ C �k £ I k 2 S E �>E ( co § � . ;£co F-vor> co co . c E ( 2 2 § . ■ E >E 2 co co § U a�k § CO CO CO > k [ § § § § 2 E k R ' [ ■ I . a 6 o ��# § ) Go § 0> k . ca « . ' i f 2 § ?! CO)— § CD ' \ o CV n V . / )� 0 APPENDIX G Riprap Computations I / I I I / [] I I [I I I I I I I I I I d§§§ /k7£ \o2`® d\§§ )Do ° § %q =� 2 ){\§®M\ § ; �z '!! i%§4rmgm i2\ ;,.., o a \ zz� ct &` ! C f \ §§§§ LL. kLZ 2 � log Q !) §§q§ ! 2 ) kkk) \ APPENDIX H Swale Computations �j RATING CURVE FOR TRAPEZOIDAL CHANNEL ' Qepffl b. FWW iw ' 00 nsn wn F�(00 Bottom Width Left Side Slope ' Right Side Slope Manning's n or SCS Retardance Curve Longitudinal Slope B = 0.00 feet Z 1 = 5.00 ft/ft Z2 = 12.00 ft/ft n = 0.035 S = 0.0075 ft/ft Flow Depth Y ft) Manning's Roughness n Flow Area A (sq ft Wetted Perimeter P ft Hydraulic Radius R ft Flow Velocity V (fps) Flow rate Q cfs Froude Number Fr 0.00 0.0350 0.00 0.00 0.00 0.0 0.0 0.00 0.10 0.0350 0.09 1.71 0.051 0.5 0.0 0.39 0.20 0.0350 0.34 3.43 0.10 0.8 0.3 0.44 0.30 0.0350 0.77 5.14 0.15 1.0 0.8 0.47 0.40 0.0350 1.36 6.86 0.20 1.3 1.7 0.49 0.50 0.0350 2.13 8.57 0.25 1.5 3.1 0.51 0.60 0.0350 3.06 10.28 0.30 1.61 5.0 0.53 0.70 0.0350 4.17 12.00 0.35 1.8 7.6 0.54 0.80 0.0350 5.44 13.71 0.40 2.0 10.8 0.55 0.90 0.0350 6.89 15.43 0.45 2.1 14.8 0.56 1.00 0.0350 8.50 17.14 0.50 2.3 19.6 0.57 1.10 0.0350 10.29 18.85 0.55 2.5 25.2 0.58 1.20 0.0350 12.24 20.57 0.601 2.6 31.8 0.59 1.301 0.0350 14.37 22.28 0.64 2.7 39.4 0.60 1.40 0.0350 16.66 24.00 0.69 2.9 48.0 0.61 1.50 0.0350 19.13 25.71 0.74 3.0 57.7 0.61 1.60 0.0350 21.76 27.42 0.79 3.2 68.6 0.62 1.70 0.0350 24.57 29.14 0.84 3.31 80.6 0.63 1.80 0.0350 27.54 30.85 0.89 3.4 93.9 0.63 1.90 0.0350 30.69 32.57 0.941 3.5 108.4 0.64 2.001 0.0350 34.001 34.28 0.991 3.7 124.3 0.64 ' SWALE 1 - Q100=4.8 CFS; DEPTH=0.6FT ' LID-Channels_0.04.x1s, Rating 5/2/2016, 3:41 PM �I � o 4.0 ' 3.5 m a E 3.0 z 2.5 ' a 2.0 LL 1.5 Q. ' 1.0 0 0.5 > ' 0.0 0.00 ' 0 4.0 3.5 ' 0 z 3.0 4) 2.5 U. a 2.0 w 1.5 u 0 1.0 ' 0.5 L d 0.0 0 ' 0 LL RATING CURVE FOR TRAPEZOIDAL CHANNEL Velocity, Froude Number, & Manning's n vs. Flow Depth VR Product 0.5 1 1.5 2 2.5 3 3.5 4 0.040 0.035 0.030 0.025 c 0.020 C 0.015 0.010 0.005 0.000 0.50 1.00 1.50 2.00 2.50 Flow Depth (ft) +Velocity (fps)-&-Froude Number --e-Manning's n Velocity, Flow Depth, Froude Number & Manning's n vs. Discharge' VR Product 0.5 1 1.5 2 2.5 3 3.5 4 20 40 60 80 100 120 Flow Rate in cfs --*-Flow Depth --a-Velocity -*.-Froude No. --e-Manning's n ' UD-Channels_v1.04.xls, Rating 0.040 0.035 0.030 0.025 c O7 0.020 e c 0.015 0.010 0.005 0.000 140 5/2/2016, 3:41 PM MAP POCKET DRAINAGE EXHIBITS 3 OnIMURTr�M InYruARnsy sw,m W Twin Tim"In ihe . .. as, ea wxMesron nwrawuom.«... mum e w.zwr. WSwkBURNM ...WnA'nra 14 VUereStl I AMp Y .. lirpotoonAw, AM a l'Nal'.) 7.9 tna wm 0 0"NJI RI uIS21 Mv1 ee�Ni �VMO ]MIND M VwK Ann, ma Tool Ease TMI ;kw,uvu e onfill III NE, far VII nA A aA M a PxvMraYl MOTaY/ MCFe 3 ® NORTH m o m m M r INCH r eo FEET LEGEND PROPOYo STORM SEWER essI PRCPOEEO II PROPOSED COMUR —93 E%TMG CONI----1B53---- PROPOSED S E — PR(POSED WRB h CUTTER — FRCPHI RaxDeRY — — CESICH POINT Q FLOW ARROW an DRAINAGEBASN LABEL Z iKi miMNAGE BASIN BOUNDARY FRWO£D swA MICRON NOTES: 1. REFER TO THE FINAL wJHNnoE REPORT LHUCKING HOME PAIMnT3, O9EPME R]n Are FOR ADDITIONAL DDI NALIxEORI MED i TRAC OA ISi30YTRUE FEELMR35MWIx.E NsxS. xOiMPROv[uExISPAE BENCHMARK Polam DSWm: NGVo 2B UMgm1eB (CM City of FM Collins Dmum) £Ib of Fort Collins MancBmem<-0] Southwest Comer of TimEetline Rd. and B°er Mountain CC tlue wm M new µ'TIN building on the Houlmeat mrmr 0a mtm m&n. ElevI=C939ME City of Fan Collins BarMimaM1 17-92 3W MISwN mNe wumwe3lmmerofEnt DreFn RE. eMTmberlix Il m uw tap m an itrigaeon an ch a. Eler°tion=493551 Note: I1 W HI 00 DeWm is npulr°C or any purpose Me MMviry pmmns a1Wtl Ce uwG RAW 55 = NGVo 29 Unadjusted , 3.19 (1 BM "7) IUVD ME=NGVo N Unadjusted! ♦ 3.19 (FOR 111141]A2) Beare of Begrime The NOMenI line of Tract M, BUCRing Hone FWq pp ME merlrq South Og' 30W' East (aewmn oeanng). FOR DRAINAGE REVIEW ONLY NOT FOR CONSTRUCTION CALL MEY NOTIFICARON CENTER OF ORPOO 15 I what§below. Call IS IAENMOIpea city or tort Collins, Colorado UTILITY PLAN APPROVAL ASPRmm: Ht 6oaleye 0M CHECKED BY: Esur Y Wsaysbr YWttr BSY CHECKED BY: —giro etee�l ltry Ab CHECKED By 0.M pEIX D BY: ��M s B�bm M4 CHECKED BY rr 0 LL C7 Z J_ CL W Z Sheet DR Of 39 Sheets