Loading...
HomeMy WebLinkAboutDrainage Reports - 07/21/2016FINAL DRAINAGE REPORT East Ridge Second Filing Fort Collins, Colorado Prepared for: Hartford Homes 4801 Goodman Road Timnath, Colorado 80547 Phone: (970) 674-1109 Prepared by: Galloway & Company, Inc. 3760 East 15d' Street, Suite 202 Loveland, Colorado 80538 Phone: (970) 800-3300 Contact: Herman Feissner, PE ' Original Preparation: September 901, 2015 Revised: November 12d', 2015 ' Revised: February 15i, 2016 Revised: March 23`d, 2016 Revised: June 30"', 2016 G a o w a Planning. Architecture, Engineering. City of fort Collins Approved Plans Approved by: ��n 1 Ga€oway Planning. Architecture. Engineering._ 1 :TABLE OF CONTENTS 1 TABLE OF CONTENTS. ... *,*,* ........ ............. * .............. * ......... * ........ ....... ONTENTS................................................................................. I. CERTIFICATIONS..........................................................................................................................3 II. GENERAL LOCATION AND DESCRIPTION..................................................................................4 III. DRAINAGE BASINS AND SUB-BASINS........................................................................................7 IV. DRAINAGE DESIGN CRITERIA.....................................................................................................9 1 V. DRAINAGE FACILITY DESIGN....................................................................:...............................17 VI. EROSION AND SEDIMENT CONTROL MEASURES................:..................................................21 1 VII. CONCLUSIONS ......................................... :.................................................................................. 22 VIII. REFERENCES..............................................................................................................................23 1 APPENDIX A - REFERENCE MATERIALS 1 VICINITY MAP NRCS SOILS MAP FEMA FIRMETTE 1 APPENDIX B - HYDROLOGY CALCULATIONS PROPOSED COMPOSITE RUNOFF CALCULATIONS PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION CALCULATIONS 1 PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN 2-YEAR STORM EVENT PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN 100-YEAR 1 STORM EVENT APPENDIX C - HYDRAULIC CALCULATIONS UDFCD INLET CALCULATIONS 1 CDOT TYPE 'R' CURB INLET I DEPTH AND STREET CLASSIFICATION VARIES NO. 16 COMBINATION INLETS I DEPTH AND STREET CLASSIFICATION VARIES AREA INLET CALCULATIONS 1 STREET CAPACITY CALCULATIONS ALLEY SECTION MINOR AND MAJOR STORM EVENTS STREET SECTIONS MINOR AND MAJOR STORM EVENTS SWALE CAPACITY CALCULATIONS 1 STORM DRAIN SIZING CALCULATIONS Storm Drain System A Storm Drain System B ' Storm Drain System C Storm Drain System D Storm Drain System E Storm Drain System G ' Interim Outfall I Pumping System Details Ultimate Outfall I Release Rate ' Outlet Protection DETENTION POND SIZING (EPA SWMM 5.0) ' EDB AND LID SIZING CALCULATIONS APPENDIX D — SUPPORTING DOCUMENTION ' LAKE CANAL AGREEMENT BARKER AGREEMENT APPENDIX D — DRAINAGE MAPS ' DEVELOPED CONDITION DRAINAGE MAP LID EXHIBIT Ga"11,oway Planning. Architecture. Engineering. 2 Galioway ' Planning. Architecture, Engineering. I. CERTIFICATIONS ' CERTIFICATION OF ENGINEER "I hereby certify that this report for the final drainage design of,East Ridge Second Filing was ' prepared by me (or under my direct supervision) in accordance with the provisions of the Fort Collins Stormwater Criteria Manual for the owners thereof." ' ,pG ••� EiEFp'-. Herman Feissner, PE ' Registered Professional Engineer r) ze State Of Colorado No. 38066 For and on behalf of Galloway & Company, Inc. rp'ya7 ' �FSS%OiVAL�C�G\� . CERTIFICATION OF OWNER t "Hartford Homes hereby certifies that the drainage facilities for the East Ridge Second Filing shall be constructed according to the design presented in this report. We understand that the City of Fort Collins does not and will not assume liability for drainage facilities designed and/or ' certified by our engineer. We also understand that the City of Fort Collins relies on the representation of others to establish that drainage facilities are designed and constructed in compliance with City of Fort Collins guidelines, standards, or specifications. Review by the City ' of Fort Collins can therefore in no way limit or diminish any liability, which we or any other party may have with respect to the design or construction of such facilities." 1 ' L>01&d Homes Attest: \ ate. aon oat/er (Name of Responsible Party) -2�:CLC'�w Tlbr,,�s M:11� Notary Public Authorized Signatur ZACHARY THOMAS MILLER NOTARY PUBLIC STATE OF COLORADO NOTARY ID 20154035691 MY COMMISSION EXPIRES 09/09/2019 M Gaoway Planning, Architecture. Engineering. II. GENERAL LOCATION AND DESCRIPTION LOCATION East Ridge Second Filing (hereafter referred to as "the site" or "project site") will be located southeast of the intersection of East Vine Drive and Timberline Road. It is bounded on north by the Burlington Northern Railroad and East Vine Drive; on the south by an existing gravel mining operation (i.e., Barker Property); on the east by undeveloped agricultural land; and on the west by Timberline Road and Collins Aire Park — a mobile home park. The Larimer-Weld Canal is located north of the site, and the Lake Canal is located to the south. More specifically, the site is located in the Northeast Quarter of Section 8, Township 7 North, Range 68 West in the City of Fort Collins, County of Larimer and State of Colorado.. Refer to Appendix A for a Vicinity Map. DESCRIPTION OF PROPERTY The project site consists of approximately 153.29 . acres. It is currently a vacant and undeveloped tract of land. The site was used for growing alfalfa. The existing grades in the north half of the site average one percent, and existing grades in the south half are steeper, averaging three percent. The existing runoff generally flows to an existing low lying wetland area in the south central region of the site. The existing low area has no natural outfall. There are no major drainage ways passing through the project site. According to the USDA NRCS Web Soil Survey, 'Fort Collins loam, 0 to 3 percent slopes' covers roughly two-thirds of the project site. This soil is associated with Hydrologic Soil Group (HSG) 'C'. HSG 'C' soils have a slow infiltration rate when thoroughly wet, and consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. The remainder of the site consists.of a mix of HSG 'B' and 'C' soils. Refer to Appendixes A and D for additional soils information. CTL I Thompson conducted a geotechnical investigation on May 16`h, 2015. The results of the preliminary geotechnical investigation are summarized in Preliminary Geotechnical Investigation 4 Ga€ns oway Planning. Architecture. Engineering. East Ridge Subdivision Fort Collins, Colorado (Project.No. FC06953-115 1, Dated: June 19, 2015). The soils encountered across the site "generally consisted of 9'/z feet of interlayered clay and sand over relatively clean sands and gravels to the depths explored. No bedrock was encountered." For reference, Figure 1 — Locations of Exploratory Borings and Figure 2 — Summary Logs of Exploratory Borings are provided in Appendix D, Supporting Documentation. The site is situated south of the Larimer-Weld Canal and north of the Lake Canal. -In the interim, the on -site detention pond will release to the Lake Canal at a rate of 5 cfs until the ultimate outfall to Dry Creek is complete. Refer to Appendix D for a copy of the previous agreement with the Lake Canal Ditch Company. The developer is finalizing a new agreement with the Lake Canal Ditch Company to release water into the Canal. We are scheduled to attend an upcoming board meeting on April 12t', 2016 and anticipate a final agreement to follow soon after. The Barker Property, which is situated south of the site, currently receives irrigation water through the No. 10 Ditch. The irrigation ditch connecting the No. 10 Ditch and the Barker property runs south from the intersection of Vine Drive and Timberline Road across the project site, just east of Timberline Road, and to the Barker Property. This. infrastructure will be abandoned and replaced with a pipe along the alignment shown on.sheets UT03, UT05 and UT07. In addition.to providing irrigation water to.the Barker Property, the proposed irrigation line will provide water for the future irrigation pond on the City of Fort Collins Neighborhood Park site. Refer to Appendix D for a copy of an Agreement dated 12/06/2002. The developer is finalizing a new agreement; it will be provided when it is finalized. East Ridge Second Filing Subdivision will be developed in several phases. During the first phase, approximately 114.73 acres (±75%) of the total project area will be developed. ' Subsequent phases will develop Tract A, Tract B and Tract C as multi -family, single-family attached and single-family attached, respectively. The current phase will include a mix of single-family attached, single-family alley loaded and duplex construction. The proposed residential development will surround a City of Fort Collins Neighborhood Park (Park) and wetland/natural area. We are uncertain when the Park will develop. 4� A Ga€111 oway Planning. Architecture, Engineering. During the water quality storm event, excess surface runoff captured by on -site storm drainage infrastructure will flow into one of several stormwater quality features surrounding the on -site detention pond. The stormwater quality features include: two Extended Detention Basins (EDB), Grass Buffers (GB), a Grass Swale (GS) and two Sand Filters (SF). During the minor (i.e., 2-year) and major (i.e., 100-year) storm events, runoff volume in excess of the water quality event will drain into the on -site detention pond. In the interim, a pumping system will move water from the detention pond to the Lake Canal Ditch at a maximum rate of 5cfs. The permanent outfall will drain west and south to Dry Creek. 6 Gaoway Planning. Architecture. Engineering. 'III. DRAINAGE BASINS AND SUB -BASINS MAJOR BASIN DESCRIPTION The project site is located in the Cooper Slough/Boxelder drainage basins. According to the City of Fort Collins website (ham://www.fcqov.com/utilities/what-we-dolstormwater/drainage-basins/boxelder-creek-c000er- slog h), these basins "encompass 265 square miles, beginning north of the Colorado/Wyoming border and extend southward into east Fort Collins, where they end -at the Cache la Poudre River. The basins are primarily characterized by farmland with isolated areas of mixed -use residential development and limited commercial development." The basin hydrology was studied as part of the Boxelder Creek/Cooper Slough watershed by the City of Fort Collins and Larimer County in 1981 and 2002. In addition, a drainage master plan was prepared for the portion of the basin owned by Anheuser-Busch, Inc. in 1984 in conjunction with development of the brewery site. The 2003 update to the City of Fort Collins stormwater master plans adopted improvements for the Lower Cooper Slough Basin and identified the need for the Upper Cooper Slough as an area to be further studied. A previous final drainage report for the site, Final Drainage Report for East Ridge Second Filing Subdivision (dated: May 6, 2008), which was prepared TST, Inc. Consulting Engineers (TST), described off -site flows of 247 cfs (Larimer-Weld Canal) from a future diversion in the Upper Cooper Slough Basin. At a meeting on January 4, 2016 with the City of Fort Collins Stormwater Utility Staff, we confirmed that, because of new information and changes that will be made to the Upper Cooper Slough Master Plan, the spill from the Larimer-Weld Canal will be reduced to 0 cfs. Therefore, no off -site flow originating from the Larimer-Weld Canal was accounted for in this final drainage study The project site is shown on FEMA Map Numbers 08069C0982F and 080690982H (refer to ' Appendix A for FEMA Firmettes). Neither map shows the project impacted by an existing floodplain/floodway. Refer to Appendix A for a copy of each Firmette. ' SUB- BASIN DESCRIPTION At the sub -basin level, a t1.5 acre off -site area along the length of the north property line should have a negligible impact on the developed drainage design. This area spans the length 7 Ga€oway Planning Architecture. Engineering. ' of the north property line and is comprised of native vegetation and coarse aggregate typical of a railroad grade. We do not expect this area to develop in the future. Gaoway Planning. Architecture. Engineering. ' IV: DRAINAGE DESIGN CRITERIA REGULATIONS ' This final drainage design presented herein is prepared in accordance with the Fort Collins Amendments to the Urban Drainage and Flood Control District Criteria Manual (i.e., Urban ' Drainage and Flood Control District Urban Storm Drainage Criteria Manuals Volumes 1, 2 and 3 [Manual]). Together, the requirements are referred to as the Fort Collins Stormwater Criteria Manual [FCSCM]. DIRECTLY CONNECTED IMPERVIOUS AREA (DCIA) We developed a strategy for implementing `The Four -Step Process' for stormwater quality management. Each step is listed below along with a brief narrative describing the implementation strategy. Refer to Appendix C for the LID and EDB sizing calculations and Appendix for the LID Exhibit. The exhibit shows the location, type of each stormwater quality strategy, water surface limits, and tributary area. The following table, which is included on the LID Exhibit, summarizes basic information about each Stormwater quality strategy. The bold ' number preceding each strategy keys to its location on the LID Exhibit. Tributary Release Stormwater Quality Tributary Basins Area WS Elev. Volume Rate Strategy/Detention acres ac-ft cfs 1 - Bioswale A Basins Includes: Fut-A 21.92 N/A N/A N/A 2 - Sand Filter (SF) B, EFut-Band F Basins (Includes: 37.46 4933.96 0.75 N/A 3 - Extended Detention Basin C and D Basins 23.74 4930.99 0.61 40-Hour EDB Drain Time 4 - Extended Detention Basin G and H Basins (Includes: Fut- 30.61 4931.59 0.94 40-Hour EDB G, Fut-H and Fut-TL2 Drain Time 5 - Sand Filter (SF) (Includes Fut-I and 14.28 . 4930.36 0.33 FBasins N/A LID feature for Neighborhood 6 - Grass Buffer Park future parking lot and 21.31 N/A N/A N/A impervious area around erimeter 7 - Detention Pond 2-Year Site 153.29 4929.28 2.43 5 7 - Detention Pond 100-Year Site 153.29 4935.89 35.41 5 Step 1 - Employ runoff reduction practices Three different Stormwater quality strategies were designed with Step 1 in mind. Developed runoff from the A series of basins and future developed runoff from Fut-A will flow through a P1 Ga€€oway Planning. Architecture. Engineering. Grass Swale (GS) before entering the on -site detention facility. The UDFCD defines a Grass Swale as "Densely vegetated drainage way with low-pitched side slopes that collects and slowly conveys runoff. The design of the longitudinal slope and cross-section size forces the flow to be slow and shallow, thereby facilitating sedimentation while limiting erosion." The proposed grass swale has low longitudinal and side slopes and a wide flat bottom (e.g., 0.25%, 5:1 and 30', respectively). It is designed to convey 2-year storm event runoff in a slow (i.e., <1 ft/sec) and shallow manner (i.e., normal depth <1 foot). This design encourages settling and infiltration. Refer to Appendix C and sheet DT04 for additional design and construction details. Developed runoff from the B, E and F basins and future developed runoff from Fut-B will drain into a Sand Filter (SF). Likewise, developed runoff from the I basins and future developed runoff from Fut-11; Fut-12 and Fut-TO (portion of future Timberline Road alignment) will drain into a Sand Filter (SF). The UDFCD defines a Sand Filter as "A stormwater quality BMP consisting of a sand bed and underdrain system. Above the vegetated sand bed is an ' extended detention basin sized to capture the WQCV. A Sand Filter extended detention basin provides pollutant removal through settling and filtering and is generally suited to off-line, on - site configurations where there is no base flow and the sediment load is relatively low." Refer to Appendix C and sheet DT04.for additional design and construction details. During storm events exceeding the water quality event, the sand filters are designed to fill to the design volume and spill excess runoff into the detention pond. The incoming runoff to each will spill through a weir designed to pass the 100-year incoming flows at a flow depth of 0.5'. The downstream face of each spillway will be protected with North American Green (NAG) SC250 Turf Reinforcement Mat (TRM). This is a composite TRM of 70% straw and 30% coconut fiber matrix incorporated into permanent three-dimensional turf reinforcement matting. The spillway and downstream protection are designed for peak 100-year developed runoff . entering the sand filter and passing through the respective LID/EDB weir. The downstream spillway slope is exposed because the water surface elevation in the detention pond has not reached the weir elevation. Developed runoff from the lots (B-lot grading configuration) situated in the Wtlnd basin is designed to flow through a Grass Buffer (GB). These lots flank the east and west sides of the 10 Gaoway Planning. Architecture. Engineering. basin. The UDFCD defines a Grass Buffer as a "Uniformly graded and densely vegetated area, typically turf grass. This BMP requires sheet flow to promote filtration,. infiltration and settling to reduce pollutants." The maximum cross slope should not exceed 10%. We anticipate that the future development within the Neighborhood Park will include a paved parking area. Parking lots are ideally suited for Grass Buffer strips. In a traditional design, runoff sheet flows to curb and gutter which collects the runoff and directs it to an inlet. An alternative design involves providing curb cuts or a zero inch curb face along the downstream edge of the parking lot. The grass buffer strip, which is adjacent to the down gradient edge of the parking lot, receives the excess surface runoff. The following table is a summary of the proposed impervious area associated with current and future development. It breaks down the total area treated by an EDB or an LID feature. Proposed Newly Added Area Area Description Area Imperviousness Impervious Area Treated Treated acres % Using Using acres LID EDB Neighborhood 21.3 -13% 2.80 Park/Detention Area Current Developed Area 94.8 -670yo 63.2 Future Developed Area 37.2 1 -77% 28.7 Total 153.3 Total 94.7 55.0 39.7 Of the newly added impervious area, 55.0 acres are tributary to an LID feature and 39.7 acres are tributary to an Extended Detention Basin (EDB). The LID requirement for this site is as follows: 50% of any newly developed area is required to be treated using LID, and 25% of any drivable surface is required to be permeable pavement (minimum paver area is 1000 square feet). Since this project is predominantly single-family residential with public alleys servicing most areas, the 25% paver obligation is not required. For the areas that are single-family attached units that are serviced by private alley/driveways, the 25% paver obligation won't be required in those areas either. The distinction is that pavers typically required for single-family attached or multi -family dwelling units that are fronted by a parking lot configuration. Since . there are no parking lots or banked parking areas greater than 1000 square feet at the project site, the paver obligation is not required. Referring to the above table, the percentage of newly, 11 0 Gaoway Planning. Architecture. Engineering_ ' developed area (i.e., added impervious area 'per Ordinance No. 152, 2012) treated using an LID is 58% (55.0/94.7). Step 2 - Implement BMPs that provide a Water Quality Capture Volume (WQCV) The developed runoff from the C and D basins will drain into an Extended Detention Basin (EDB). The UDFCD defines an Extended Detention Basin as "An engineered basin with an outlet structure designed to slowly release urban runoff over an extended time period to provide water quality benefits and control peak flows for frequently occurring storm events. The basins are sometimes called "dry ponds" because they are designed not to have a significant permanent pool of water remaining between storm runoff events. Outlet structures for extended detention basins are sized to control more frequently occurring storm events." The developed runoff from the G and H basins as well as and future developed runoff from Fut-G, Fut-H and Fut-TL3 (portion of future .Timberline Road alignment) will drain into an Extended Detention Basin (EDB). During storm events exceeding the water quality event, the Extended Detention Basins (EDBs) are designed to fill to the design volume and spill excess runoff into the detention pond. The incoming runoff to each will spill through a weir designed to pass the 100-year incoming flows at a flow depth of 0.5'. The downstream face of each spillway will be protected with North American Green (NAG) SC250 Turf Reinforcement Mat (TRM). This is a composite TRM of 70% straw and 30% coconut fiber matrix incorporated into permanent three-dimensional turf reinforcement matting. The spillway and downstream protection are designed for peak 100- year developed runoff entering the EDB and passing through the respective LID/EDB weir. The downstream spillway slope is exposed because the water surface elevation in the detention pond has not reached the weir elevation. Step 3 - Stabilize drainageways Planting within the grass swale will stabilize the drainage way and prevent erosion during storm events exceeding the 2-year recurrence level. Additionally, measures will be implemented to protect the Lake Canal receiving outflow from the on -site detention pond. 12 Gaoway Planning. Architecture. Engineering. Step 4 - Implement site specific and other source control BMPS Site specific considerations such as material storage and other site operations are addressed in the Stormwater Management Plan (SWMP). DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS The project site has no natural outfall. The interim solution involves pumping water from the on -site detention pond, at a maximum rate of 5 cfs, into the Lake Canal. The developer is working with the Lake Canal Ditch Company to finalize a new agreement to release into the Lake Canal. We are working with a pump design consultant on design that meets the City of Fort Collins requirements for pump system redundancy in a retention pond. On January 51h, 2016 we met with the City of Fort Collins Stormwater Utility to discuss a design for the permanent outfall. At a high level this system will drain west to the west side of Timberline Road, which it will follow south, and outfall into Dry Creek. HYDROLOGICAL CRITERIA For urban catchments that are not complex and are generally 160 acres or less in size, it is acceptable that the design storm runoff be analyzed using the Rational Method. The Rational Method is often used when only the peak flow rate or total volume of runoff is needed (e.g., storm sewer sizing or simple detention basin sizing). The Rational Method was used to estimate the peak flow at each design point. Routing calculations (i.e., time attenuation) that aggregate the basins draining to a specific design point are include in the Rational Method calculations in Appendix B. The Rational Method is based on the Rational Formula: Where: Q=CiA Q = the maximum rate of runoff, cfs C = a runoff coefficient that is the ratio between the runoff volume from an area and the average rate of rainfall depth over a given duration for that area i = average intensity of rainfall in inches per hour for a duration equal to the Time of Concentration (Tc) A = area, acres 13 Ga€oway Planning. Architecture. Engineering. The one -hour rainfall Intensity -Duration -Frequency tables for use with the Rational Method of runoff analysis are provided in Table RA-7 and Table RA-8 (refer to Appendix B). The 2-year and 100-year storm events serve as the basis for the drainage system design. The 2-year storm is considered the minor storm event. It has a fifty percent probability of exceedance during any given year. The 100-year storm is considered the major storm event. It has a one percent probability of exceedance during any given year. The 2-year drainage system, at a minimum, must be designed to transport runoff from the 2- year recurrence interval storm event with minimal disruption to the urban environment. The 100-year drainage system, as a minimum, must be designed to convey runoff from the 100- year recurrence interval flood to minimize life hazards and health, damage to structures, and interruption to traffic and services. The project site is greater than 20 acres therefore EPA SWMM 5.0 was used to estimate the 2- year and 100-year detention storage requirements. Various input parameters were provided by Table RO-13 and Table RO-14. The interim detention discharge is 5 cfs. HYDRAULIC CRITERIA The on -site excess developed runoff within each tributary area begins its journey to one of the stormwater quality features and, ultimately, the on -site detention pond as overland flow from residential lot areas (i.e., roof area, concrete hardscape and landscaping). Runoff then flows from the lots to the adjoining street section. From here, the Stormwater combines with runoff in a downstream basin or is intercepted by a sump Type 'R' curb inlets. These inlets discharge to one of the on -site storm drain systems. There are six on -site storm drain systems: A, B, C, D, E and G. Storm Drain System (SDS) A discharges to a Sand Filter (SF); SDS B discharges to an Extended Detention Basin (EDB); SDS C to a Grass Swale (GS); SDSs D and G to a Sand Filter (SF) and SDS E to an Extended Detention Basin (EDB). 14 GaIto oway Planning. Architecture. Engineering. Street Capacity Analysis The maximum encroachment for gutter flow, within the respective street sections and during ' the minor storm (Q2) event was, used to establish the street capacity for. The maximum pavement encroachment standards presented below in Table ST-2. For example, the minor storm flows within local streets cannot overtop the curb (dmax=0.395' w/Drive-over C&G) or the crown of the street. During the major storm event (Q100), the street capacities were ' estimated based on the maximum street encroachment standards presented below in Table ST-3. As an example, the depth of water, for local streets, cannot six-(6) inches at the street ' crown. Street capacity calculations for four-(4) different proposed '/2 street sections and a range of longitudinal grades are presented in Appendix C. t Alley (Local) - • Mixed Drive -Over 15' CL to FL (Local) and Vertical C&G 15' CL to FL (Local) • Vertical C&G 18' CL to FL (Local) • Vertical C&G 25' CL to FL (Collector) Table ST-2 - Pavement Encroachment Standards for the Minor Storm Street Classification Maximum Encroachment No curb overtopping. Flow may spread to crown of Local street. No curb overtopping. Flow spread must leave at Collector least one lane free of water. Table ST-3 - Street Inundation Standards for the Major (i.e., 100-Year) Storm Street Classification Maximum Depth and Inundated Area The depth of water must not exceed the bottom of the gutter at the median to allow operation of emergency vehicles, the depth of water over the Local and Collector gutter flow line shall not exceed twelve-(12) inches, and the flow must be contained within the right-of- way or easements paralleling the right-of-way. The most restrictive of the three criteria shall govern. W Ga. oway Planning. Architecture. Engineering. Table ST-4 — Allowable Cross -Street Flow Street Classification Initial Storm Flow Major (100-Year) Storm Flow Local 6 inches of depth in cross pan.` 18 inches of depth above gutter flow line. Where cross pans allowed, depth 12 inches of depth above gutter Collector of flow should not exceed 6 flow line. inches. The minor storm event street capacity calculations were estimated with the Modified Manning Equation and Excel. The major storm event street capacity calculations were completed using Bentley FlowMaster. Refer to Appendix C for the alley and street capacity calculations. n Inlet Capacity Analysis CDOT Type 'R' inlets are proposed throughout the project for removing excess developed runoff from the right-of-way. All but one inlet (i.e., DP 11) is in a sump. The minor and major storm event inlet capacities were estimated with LID-Inlet_0.14. The street section geometry and storm event encroachment limits (i.e., street classification) established the maximum allowable ponding depth. We determined the inlet length using the rational method flows at the respective design point and the maximum allowable ponding depth. Appendix C includes capacity calculations for proposed Type 'R' curb inlets, which range in length from 5' to 20'. The design calculations included in Appendix Care based on the more conservative ponding depths (i.e., encroachment of gutter flow) associated with the drive -over curb and gutter. Storm Drain Capacity Analysis The storm drain system hydraulic analysis was completed using Bentley StormCAQ V8i. This software routes flows through each system by looking at the longest upstream tc at the manhole, calculating the intensity and multiplying it by the upstream CA. Detailed output for each storm drain system analysis is included in Appendix C. 16 G a € oway Planning. Architecture. Engineering. �V__ DRAINAGE FACILITY DESIGN GENERAL CONCEPT This, final design presents the detailed ,design of system for collecting and conveying developed runoff from current and future development at East Ridge Second Filing to the Stormwater quality features and the on -site detention pond. The existing site runoff drains to an existing wetland area in the south central region of the project site. The wetland area has no natural outfall. The proposed design matches this existing drainage pattern and includes the development of an interim outfall and plans for a permanent outfall. Typically, the on -site excess developed runoff will travel overland from residential lot areas into the adjacent right-of-way. Most of the residential lots drain to a 15' CL to FL section with either drive -over or vertical curb and gutter. The street section conveys developed runoff to sump Type `R' curb inlets. These inlets discharge to one of several the on -site storm drain systems which then discharge into a Grass Swale (LID), Sand Filters (SF) or Extended Detention Basins (EDBs), and ultimately, the on -site detention pond. SPECIFIC DETAILS On -Site Detention Pond The proposed on -site detention pond was sized using EPA SWMM5.0. The width parameter was adjusted to target unit release rate from each of the tributary. areas consistent with the development and timing of runoff. Two models are included in Appendix C. The first considers runoff from the 2-year storm event and was used to estimate the 2-year storage volume (2.4 ac-ft) and water surface elevation (4929.28). This model demonstrates that the stormwater quality features function as intended during the minor storm event and do' not diminish the functionality of the stormwater. quality features (e.g., water wasn't ponding back in the Grass Swale). The second model was used to estimate the 100-year storage volume (35.4 ac-ft) and water surface elevation (4935.89). In the interim, until the temporary outfall, is replaced, sufficient 17 1 1 I 1 Gaoway Planning. Architecture. Engineering. volume is provided in the on -site detention pond to store 2x the 100-year storage volume (70.8 ac-ft I WSEL: 4939.78) In the interim, there is no passive outfall from the detention pond. In the future, an outfall will be constructed that will receive flows from this pond. In the interim, the on -site detention pond will function as a retention facility. Since the retention facility is expected to be temporary, the City of Fort Collins requires that it be sized to capture two times the two hour 100-year storm plus one foot of freeboard. The interim design releases flows to the south at 5 cfs (2250 gpm) into the Lake Canal. Refer to Appendix D for a copy of the release agreement. The proposed 10' x 20' x 8.5' concrete vault will house 3 pumps. The first would be a small. maintenance pump that would handle up to 500 gpm flows and operate strictly on a float switch and would just be an on/off operation. The storage of the vault, approximately 9,000 gallons, would allow the pump to run at least 20 minutes at a time tominimize the starts per day on the motor. The second pumpwould pump up to 2250 gpm and would have a water level transducer set at the top of the vault. If the small maintenance pump couldn't keep up anymore and water started to back up into the detention pond, then the larger pump would start and operate on a VFD adjusting the output flow between 500 gpm and 2250 gpm based on the level of water in the pond. The third pump would be a backup in case the 2nd pump fails. The two larger pumps would operate on a duplex system, alternating the operation between starts to keep them in running order and allow us to see if one fails so it can be repaired. A WaterTronics control system will have two separate VFD's in one panel enclosure and an alternating relay to swap which VFD/pump is running. A level transducer will control when the pumps run (settings between high and low levels in the tank). It will include two relays in the panel for float switches — one for high level shutdown in the ditch and one for relay reset when the level returns to "normal". The ultimate outfall, will discharge at ±0.15 cfs/ac (±23 cfs) thorugh an 18" orifice plate . attached to a headwall. Beyond the headwall, is a 24" RCP outfall system. The system is currently designed to the west property line. In the future, this system will be extended to Dry Creek. 18 Gaoway Planning. Architecture. Engineering. Split Swale The split swale receives flow from SDS B and SDS C. Our design is intended to split flow, during the water quality storm event (up to and including the minor storm event), from two different tributary areas: the A and Fut-A Basins and the G, H, Fut-G1, Fut-G2 and Fut-H Basins. During the water quality storm event, excess runoff must flow from each tributary area into a unique stormwater quality feature. Specifically, the A Basins flow into a Grass Swale (GS) and the G and H Basins flow into an Extended Detention Basin (EDB). The split swale accomplishes this with a 1.5' tall berm. The capacity on either side of the berm matches the minor storm event slow from each tributary area. During the major storm event, sufficient capacity exists in the swale to convey fully developed flows entering from SIDS B and SDS C with one foot of freeboard. A Basins ' These basins comprise approximately 21.92 acres. This area includes the north area (Tract B) set aside for future single-family attached development. The developed runoff within these ' basins drains into Storm Drain System C (SDS C). The system will discharge into a Grass Swale (GS) before entering the detention pond. In particular, the downstream end of the ' system discharges into a swale that is graded to keep 2-year flows from the A Basins and the G and H Basins separate (see above). B, E and F Basins These basins comprise approximately 37.46 acres. This area includes the north area set aside for future single-family attached (Tract D). The developed runoff within the B and F Basins drains into Storm Drain System D (SDS D). The developed runoff from the E Basins drains into Storm Drain System G (SDS G). The storm drain systems outfall into a Sand Filter (SF) before entering the detention pond. C and D Basins These basins comprise approximately 23.74 acres. The developed runoff within these basins drains to Storm Drain System E (SDS E).'The system will discharge to an Extended Detention Basin (EDB) before entering the detention pond. 19 Gaowa Planning. Architecture. Engineering- G. H. Fut-G1. Fut-G2 and Fut-H Basins + Fut-TL2 ' These basins comprise approximately 30.61 acres. This area includes the area set aside for future single-family attached (Tract E) and multi -family (Tract A) development. The developed ' runoff within these basins drains into Storm Drain System B (SDS B). This system will discharge into an Extended Detention Basin (EDB) before entering the detention pond. In the interim, runoff from the future developed areas was accounted for in the EDB design. These future areas are planned to be multi -family and/or commercial and will need to follow LID criteria. In particular, no less than 50% of any newly added impervious area must be treated using one or a combination of LID techniques, and no less than 25% of any newly added pavement areas must be treated using a permeable pavement technology. I. Fut-I Basins + Fut-TL3 These basins comprise approximately 14.28 acres. The developed runoff within these basins drains to Storm Drain System A (SDS A). The system will discharge to a Sand Filter (SF) before entering the detention pond. J. Fut-TL1 and Fut-TL4 The J Basins will remain largely undeveloped. The Fut-TL1 and Fut-TA Basins are a part of the development that will occur when Timberline Road is widened. It is unlikely the developed runoff from these basins will flow to on -site storm infrastructure. v K11 Ga10 oway Planning. Architecture. Engineering. VI. EROSION AND SEDIMENT CONTROL MEASURES A General Permit for Stormwater Discharge Associated with Construction Activities issued by the Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Division (WQCD); will be acquired for the site. A Stormwater Management Plan (SWMP) was prepared and is presented under separate cover. It identifies the Best Management Practices (BMPs) which, when implemented, will meet the requirements of the General Permit. n G 0 21 Gaoway Planning. Architecture. Engineering. VII. CONCLUSIONS COMPLIANCE WITH STANDARDS The design presented in this final drainage report for East Ridge Second Filing has been prepared in accordance with the design standards and guidelines presented in the Fort Collins Stormwater Criteria Manual. VARIANCES No variances are being requested with the proposed improvements described herein. DRAINAGE CONCEPT The proposed East Ridge Second Filing storm drainage improvements should provide adequate protection for the developed site. The proposed drainage design for the site should not negatively impact the existing downstream storm drainage system. 0 0 22 Gaoway Planning. Architecture. Engineering. Vll. REFERENCES 1. Fort Collins Stormwater Criteria Manual (Addendum to the Urban Storm Drainage Criteria Manuals Volumes 1, 2 and 3), prepared by City of Fort Collins. 2. Urban Drainage and Flood Control District, Drainage Criteria Manual Volumes 1 and 2, prepared by Wright -McLaughlin Engineers, dated June 2001 (revised April 2008), and the Volume 3, prepared by Wright -McLaughlin Engineers, dated September 1992 and revised November 2010. 23 Ga€oway Planning. Architecture. Engineering. APPENDIX A REFERENCE MATERIAL Ga€oway Planning. Architecture. Engineering. VICINITY MAP Vicinity Map - East Ridge Second Filing Not to Scale G 4111 .11 o w ay Planning. Architecture. Engineering. NRCS SOILS MAP 40° 3552'N 4 3S10'N Hydrologic Soil Group—Larimer County Area, Colorado (East Ridge Subdivision) 497500 497600 497700 497800 497900 498000 498100 498200 498300 3 6 Map Scale: 1:6,220 a printed on A portrait (8.5" x 11") sheet. Meters N 0 50 100 200 300 A r 0 300 fi00 1200 1800 Map projection: Web Mercator Comer coordinates: WGS84 Edge tics: UIM Zone 13N WGS84 USDA Natural Resources Web Soil Survey Conservation Service National Cooperative Soil Survey m 40^ 35 52" N Fi P P 8 m P Q� M N yP O 40° 35' 10" N 3 is 7/24/2015 Page 1 of 4 3 z 0 E « � � 0 z a « � Q z 0 q a « � °06 0 \k�} C6 §� 7 - E )§k ` \ c p §)( )(/ {k)\ ( ), 2 / $2 kkk r|° $k§�$ \ }\ \ r G;\ 2 & o a «`mot k �2J0 § #q �a m 0< §: ®#f0 ! \A ee-, �{E ƒ_#! [$as@ {) )\ _ rf ^ / }$( 7 ƒ {§}\§ )� )/@ 2§<o cu () �t ${)2) �® 7 : {{ ƒ\} {ƒ\k\ {� }j /\ `c 3°E= k] 2 ®, .ee!« /{ {f \- |f2! /§ /\/ f{)k§ // A' )0 3A (0£s k k / ) a - - o S = ! o ! |w _ m _ : ; : ■ ■ ■ o ( \ i & $ r . 0s $! 2 $,! o a, z \� $ m= o a z e , 2 �« § ■ ■ ■ ■ / � Hydrologic Soil Group—Larimer County Area, Colorado ti Hydrologic Soil Group East Ridge Subdivision Hydrologic Soil Group— Summary by Map Unit— Larimer County Area, Colorado (CO644) Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 5 Aquepts, loamy A/D 11.7 6.4% 7 Ascalon sandy loam, 0 to 3 percent slopes B 5.8 3.2% 34 Fort Collins loam, 0 to 1 percent slopes B _ 6.0 3.3% 35 Fort Collins loam, 0 to 3 percent slopes C 109.7 60.3% 42 Gravel pits A 10.8 5.9% 53 Kim loam, 1 to 3 percent slopes B 17.2 9.5% 73 Nunn Gay loam, 0 to 1 percent slopes C 6.8 3.7% 74 Nunn Gay loam, 1 to 3 percent slopes C 6.4 3.5% 94 Satanta loam, 0 to 1 percent slopes B 0.1 0.0% 102 Stoneham loam, 3 to 5 percent slopes B 7.3 4.0% Totals for Area of Interest 181.8 100.0% USDA Natural Resources Web Soil Survey 7/24/2015 2iiiiiIIII Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—Larimer County Area, Colorado Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. ' Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. ' If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie -break Rule: Higher East Ridge Subdivision USDA Natural Resources Web Soil Survey 7/24/2015 !i Conservation Service National Cooperative Soil Survey Page 4 of 4 FEMA FIRMETTE Ga€oway Planning. Architecture. Engineering_ 0 > mm Ymom� uLL LuLL W� yW1 t0 �i do y5� Eu�oE G 0' �i Q a in «=oV LU z d vg p o U. <LO W HHe �a5a W c0 ��y"I`� [zl a E L? {WL J I� l•� O cm a SS 8 o J. U. W 4u LU 'M r-B uj . a a x o U. o E� ,g o�g LL c z U m $Ez§ 8o` =$ O1�1 H 7 C ~ o aLU U B nn Y S IL c 4 boy LL rl d z 3§ x�m w a�pPtE N o�yLL. W� ;cE .... _ N and Eao o moo �o`�a` ♦ � 1 1 yPC I I 1 U w~ fA a a' •� � U N w ;To aoo so a w o O o F 1 U 1 1 co ♦ II N f w I N ZI I uNnoo U31NWV'l 1 ' ovoa 3Nn8BSWIl sNmoo laod jo uio 1 0 aI E W cC "Coo F N rc0 CPL. d F E}[(1 E5 W o �Cpl "$c�E CDQ x x ➢ 3 m Ol H O 0y LU g 5 = LU FN Q Eta E o� c o LL E a O u 0 N D w a z W Qo �� tip um.E< J 5 U 'a 5 FB : W i¢�S! (% �0 a 0 Ji ° _$o2F2 WTA H°�`g o��ULL N A 0 Q y ¢ BtlB m�.�.nx 0 W w i lL 14 U 6� 4 S m« u Q C LL EVAI o °m$� O ® B e e a ®9 e ®®® 9 ® 9 °pm.E IE° y o i o °uE 0 N mmE3m mgmm° F3oaa LL co 0 U �) rn a I to 0 o o � 0) O z' o 0 000 CD CD w0 afro � oo , w00 C) a0 N — — avoe 3N1 N3 � Z zWW w O Q W JOC2 > T W 0 O _W J n CDC Z W i Q � � w QO In O � J Ga€oway Planning. Architecture. Engineering. APPENDIX_B HYDROLOGY CALCULATIONS Gaoway Planning. Architecture: Engineering. PROPOSED COMPOSITE RUNOFF COEFFICIENTS a Table RO-11 Rational Method Runoff Coefficients for Composite Analysis Character of Surface Runoff Coefficient Streets, Parking Lots, Drives: Asphalt 0.95 Concrete 0.95 Gravel 0.5 Roofs 0.95 Recycled Asphalt 0.8 Lawns, Sandy Soil: Flat <2% 0.1 Average 2 to 7% 0.15 Steep >7% 0.2 Lawns, Heavy Soil: Flat <2% 0.2 Average 2 to 7% 0.25 Steep >7% 0.35 Table RO-12 tRational Method Runoff Coefficients for Composite Analysis ' Storm Return Period Frequency Factor ears C 2 to 10 1.00 11 to 25 1.10 ' 26 to 50 1.20 51 to 100 1.25 Note: The product of C times Cf cannot exceed the value of 1, in the cases where it does a value of ' 1 must be used T J n ci fC+ N o V+ Cl N I � s i i v N O (n O N C 0 O w @ LL a W LL 22�co U W £zmm m W Z u d d a O m Y oaLL �v LL IL v Z W O IL O U LL a c 0 N N C � o d U O LL co Q w U c c 0 0 'y i+ u a 0 h M O CD O (0 c0 r O c0 O n O c0 O N O N O O N m M r M r M N M r c0 N N M aD Q�� Q i0 A c0 t0 V n r c0 c0 c0 0 t 0 0 0 � 0 0 0 0 0 0� 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 6 6 0 666 D D m « D m L O c0 N O N N e m r O N O Q f0 N N N m c0 N O O r M O1 M e Q Q e e e e M p N Q e Q N e e Q M e e M Q e e N M e J� 3 m a qm O V O h N th m N r� M � m r c0 N O O N� aD tO r m O N LL'1 m ro m C CO) ' C � m O ��� o o m c6 m o W co m co �o 0 0 o n o m c0 D o m co m co co �o co o� J � O U oqm Cn emNnm m N m rmMorn --mMoQ-0 M (0 M O O N Cl! 0m O M R O 0 M N N N O N O O O m m o 0 0 0 0 0 0 0 0 0 0 0 6 0 0 o O O O O O o 6 6 6 6 66 66 N N N N N N m N J � N N N N N N N N N N N N N N N N N N N N N O U D m L m 'pc M c0 N N Q m O W O> M O e m 00 N f0 in m O O e N N m t0 N N N Nm 3 m m a` m u c � O L°. m M w O M M N cD W v N w m O c0 r r M M N N c0 W 0m N U Cl N M 10 N 0O e N Q (O e N N 10 Q Q v, Q e 0N M N O N N M N + ` G G .G C G G �- C c; O C O O a;O O C G O C G O O O O O O O O O A a L C m 0 m m In In N Ln In if) N �!] N N lA 1n N 1A lA 1A In N N In 1IJ N N u] N u] m m m m m m mom m m m m m m m m m m m m m m m m m m m m C 0 U u m o p. O Q ao m e o m e ro N n M co o m <0 m Q N e M m a O O N N N O N e N N O M N M M M 0 m O m 0 m 0 w 0 r (V m N N e I M N O M M I.- N m O 7 e 7 O� T H a W � m 'm N Q Q Q Q Q Q Q Q Q Q Q Q 67 0] 0] m m m m m m m Co m m m d m U i O- O �� O-' O 0 0 - O -- 0 0 0 O- 0 0 0 O O O O 66 O O O O 0 0 O V y m L W n O O N t�1 W m m rn, W m W rn th O [h tO n W rn m m 0 D y Ol t�J M Q Q Q Q Q th M M M Q M Q Q Q Q M O N N N J 3 m a t0 t0 N O W O N W, n 0 0 0- O W yy W y � O rn 0 n rn W rn N N N W. W O rn O> O rn Q Q t W Q N n W O N � t7 O Q n W � W W th _0 C y C Im O d m n n n n n n n o 0 0 0 0 0 0 0 0 0 0 0 0 W W W W cp W cD c0 [O W W W tp tp tD W W W W W O 0 C U L m Is V -y N t0 S O N th � N N N N N N W CJ n Q n 3 LL tl A Q m S O O o O o O 0 o O O O O O 0 0 0 0 0 0 0 0 0 0 0 O O 0 o O � O U 0 L rn tq -y N W W O, rn W rn N M Q M Q W n W rn n M W W W W W y Q W N N N Y � M th N N n N N N N N M fhIo M�C961 rn N tI N th � N t+I W O O O O G O O G O O G G O O G O O O A Q�i L � m O O m N N N to to N O m N to to N O O O to N N N rn rn rn m rn rn rn m m rn m m m m rn m rn rn m m rn rn m rn rn rn rn w O U U .0.. Op O M WO y n O V NOi N r O O Nrn OiOM W Q O Q O) N � O m u c w w w _G m m m m co U U U U U U U U U U U "U U U U U U U fa0 W W W m M M i0 t0 Q t0 Q M N M n Q M N GD Q M OD O O fD M M V n n n n fD n n n m m n n n n n r n m m m r ao '000 r n 000 0 6 - o 0 00 - o - o a5o o 6 000000 000000 -o - a 0 d a dy L n of Q Q tp M O M rn rn fD rn O W OD Q N n 0 •.. W N C 01 M Q Q Q Q M M N - O .- O Q Q M N �D �O N 0 0 0� O O N O y J Q 3 m a E o o N o Q rn M N M rn o o o N O o rn �p mm, M Q O O n n O N N O ( Q M N O O O M � O LL Coco O O H O 0 -' O 00 0 0 000 0 .- - 0 0 0 0 0- O- 0 0 - _0 � QQQ C y . C � m F r to r cD n m o m n <D o 0 o 0� n n cD n w o 0 0 r 0 r 0 r 0 n 0 n 0 r 0 r 0 n 0 n 0 n 0 n 0 n 0 r 0 r 0 r 0 r 0 r J O U a d N N N Q f0 M M �O Q N N N M Q Q Q N M M W V A m � LL u '. y d O O O O O 0 0 0 O N O N [7 O O 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O co 0 0 0 0 0 0 0 0 0 0 0 0 -'.O O O O QQQ 0 S O O o 0 0 0 O o 0 o O O O O O O O O O O o 0 0 0 0 0 O 0 0 0 J � N N N N N N N N N N N N N N N N N N N N N N N N N N il N N N � O v m s Im Yi m N N N O N pp M �D. M t6 rn M h. n N Q N N i0 i0 n n r M O N �O O > frnp N M M Q Q n Q t0 n M N M N N � iD n n n Q N � Q (O N A 3 d m � m U Y O v N N m N rn m Q M (+Of. N V O N O M O O M U + y o o G O O O o O C C OO O O O G G O O O O O O O CR O O O C O O o o (1 O O O d L � m rn rn m rn rn rn rn rn m rn rn rn rn rn rn rn rn rn rn rn rn rn m rn rn rn rn rn O U u m O O rn M (O, rn O rn rnO m - rn N N O f0 N Q Q O n' Q O WNO t0 O t0 O Qj N i0 i0 N O -Y eD Q M It M O M (O rn f0 O n N n e c F a lV th a n IG W W W W C N M Q N N M V N n rn0 o 0 S S S S - - _ d m 0 0 0 t0 O O h 0 0 0 0 0 O 0 0 coo O 0 C, 0 0 0 C, 0 0 0 0 0 0 0 L 0 m « , y ,m .00 (D J Q m 3 m a m E =° 0 0 0 0 IL m O O O N 0 C N C m m C 0 00 U m N; V O a N N N y 3 LL u y V Wp m v y cc 0 m R m C � m o m J 0 o N 0 N 0 N 0 N � O U v m L 01 m m o 0 0 m 3 d m � m c U q + m G O O O r m L m ar O U U m m p � Q V fOO 0 cl cl a O O O N r ? N I O N O « yy N H tn0 �Nj? a c CI a Q r N i N J J J J m ., 2 U LL IL 1'L tL U. LL IL IL !L IL W W Ga€oway Planning. Architecture. Engineering. PROPOSED .STANDARD FORM SF=2 TIME OF CONCENTRATION CALCULATIONS Z m O T T m N O g 2 m m q r L C LL f Z O s V) Q 5-6- m U p O L R z 1 U U Ow LL L) p z Q O p LL z p Q LU U C H y d A N m O O W m � N N m N N rnNN�A �A 1`1� m1`N m A N % b N W A O N N N N N N m b W W A N mINO a ~ 2 N N N r P A N M m W W m A M P W W N M N m A W A W N N d O m O W N 1•1 N O W A O 1� d% m 3�mm � N M N O P N ml�m A OOd d M W l7 W W OO 6 m Om A W m O O C! m N m N new rO W � OAOm� > 2 u� f O CI W W O m M d O m N N M ry N W Q m N N A m N m M O m N N f 9 M O d N O �- N N s ry Y d d M N d N t7 H Cl N N 1V (V N t7 C1 (V [7 C1 V tY {V N M CI t7 IV (V N 1N H N _ M 2_ C ^t a LL J v mpr m l7 OI N N(OV A W ON(A9 m d A d N Cl W P P f0m N M tmI0 r W rb m Ohm n d mN CCm Cl pmO Y) O pA� 10 O 0f0 M d W N d P CI N t� P m M N m W N O A n N �� lQ d % N pOMiN P M m mImV P m m � P d I+IOS t'1 a x i y Q J U m m m A O N m m = 1p • A Vi 0 O OO Oi m •- v7 VI N O IN Oi ry (V � A � 1� 1` A m A OO m A IO m 0 VI p I. C Y M c p V b m 0 0 r yj o) Yf C u y � m�f O U N P O b W W N M N O m A 0 A d W m 3 m m m [V t7 Cl O d Vl IG A m A O d d V m Cl CI W G O Ol m � O m A m m O O N b P m N r m 1� O W e` O A O b � F � a � f O U N N W b M W rn b r W b m d A N O A m m A M M O 1.1 N M O N O N b N N N N W m N Z N N O N m d M 0 N M OI CI th n n n m O b N N M m P lV CI Oj Oj d M M d M h � N (J N fV Q M N C'1 N N 1� M O f A A P W M � M W A b Oi W N N N n OI A m m m A A A O m N N N N A N m m m A N A m O m m O m O N O M N N � � N •- � t V N N N N CI Cj N ry N � � N N � J N W LL W � f_ J LL 9 s b M M N O d M A d l'1 O O O N m A m W n O� n N N i'l N N N d A W M N d W m O m CI N M N F i z N b m fG m Cl VI d O d N A r h O A m d r d Q d W m M M N N m O VI [7 V N P M N A Q 1` A N M M A i ~ g o a�a o, LL N A m A m m m N N P p U l000 oc cod ddddo ocodc00000d0000 m m m m m m W W d m W 6 W do p� m d m ood 01 W W o m oo m m o A W d d A c c W W do m 10 U V m m m m m W m m A AAA A m mmm 6 W, W W m A m N L doo co 00o ddcod dcdcod00000000o d d d od o 00o d dood00000dd U e mmm b. mmm AAA m PAA V L c o 0 0 0 ... ..... mmm`.a d .......... fOmAAmmA o d o 0 A 0 0 M1 0 !pm 0 0 o r .66 0 0 0 mmmmfOA 0 0 0 0 0 0 W N o d U 2 a V a 3 = o % m m Q m N r M W O M rn m OI Q m ' M m N O m m P. N C1 'O C a d 0 � I V 1 V [V � Cl 6 l�! O � � N W 6 d mA d( W V Cl P, [ V � O t7 � W � O d � 01 � O O O M O M N N O m O O OO � •- OO � m 2 N a d J A W O (V t7 (")<ag 0 m_ aaaaa mmmmmmmmmmmmmm�Q�mM�+^m obouuu�uu m m - o N ,'„m U U mN N m tL N LL Ctn G K 0 LL 0 Q O Z N Z O Q z Z W U Z 0 U LL O CW G OO OO O 00� Im O N 0 �.� No'er C O- OO 0.�. - - - - $ m m b m m IA Y 1 1G b m m .7111, m � 1 {j . C b f p m _ _ _ f 117 F NA ml Nm m O p O LL � ®m O m 0W V m• m m m A W . b b 0 ElimO u� f O N N N N m N 1m A b N A 4 m m O m m d N 4 O m O m ml N T m m m n n f N� NN NNNN NCIN N Rl O!� 6N NNNN CIm�O GCI l7ON IG t7 OI fU Z $ 4C i i q mq pp QQ pp (pp ry m p� q Q J ON N N bN W • m P b4mA 1'1 A Oa m m m m mAP mmm mMNNN m m OI fG O1 Im ® OI (� U i� 8 t- 2 - < F K 220 4 u PO mm Ol Nam -, N Qm� m b Nm O mm O m n A �Nm mCI O Im Nm N t7O m m d A m 0 O b N ry m m m 0 m A m m m m m m A CI Cj Cj m t7 1` O m n m O P N � _ 9 O U aE.m o_ u E LL o LL] �LL '_ E E LL LL m 3 [� d A O m 0 0 A InN m m D m O 4 A A n .y m m N N n 2 N N N N 1' 1 N in N Ed N 6 N Y l V Y] N N 4 4 t7 t7 P � 4� 1'J Q < 2E Q m[ V F m� REM 2 m Nb nOI d O�mm O Y1NO � � mN b 4mPNm ��N V PO m plain 17 O � m m 0 � pmm yy NIV � N �N "I N- NNE J N OO N m AF'f W W m p O J' > ~ u N N N N N N fl N N N N N N N N N NNNN f N N N O m _O O m > d m m 000 o m 3 F m m O O N O N 7 O O O O m o O a C^. m Ill OO ^ � O O ��_ OO G G o �❑]]] O O C 'J m LL LL LL� 0 55 J A LL I A I - O m N m m m m O b m m M in A Y T O '- YI A m m m 'O - '� tI t'I A p m $Z YIN Q V (V -NO -1- e't'1 OON �N N _ G GG" O �N N e-O :s Z n N m in N 4 N NIA N l7 N 1(1 7 ~ F N a LL y N i n m m (7 m N in A m P m m m m P m m m ry N m m N m O m O O d m O N O En N pI A N Oi m m A m O O O O O b O O O Q m m Q N N m m N N Nl O O O O O O O O O O O O O O O O O O O V L6G cc c GGGc G Gdo eGG GG� GG GGG G V e ?Nm min min m m -N�b AA m m A ama A A m A N A mom m �PN{{yyme nm11-F-F Jpomb n 0 A 9 A n h A A GGG AN c GGG GGG N N N c m GGGGGGGGCG 0 m mGG U 0 R N min m ^ AAA mryryOb000'ER^ n Iq OOOO OOO OOO OO AmA0mWmmlO OO OO OOGOOGO O OOOO GOO O CO 0000000 } u � $a g¢ e V V V U V 2 N 4 u N N N W m m Ofmm0 N N m N O ER m l'I V RO nfNO 01 m O P d m N Omf P b EN Ill O Q �G OO O O'er Gr O Or G O G r �G aOOG COO O OO OOP OGO H pYIA CI PO �' (V d N m y� 0 N WW N Pt�:Nm WLLLLLL m_m_ Q m 00 � LL LL LL LL LL LL LL IL IL IG �§ K2 }§ ZLL §2 e Gaoway Planning. Architecture. Engineering. PROPOSED STANDARD FORM SF=3 STORM DRAINAGE SYSTEM DESIGN 2-YEAR STORM EVENT RAINFALL INTENSITY -DURATION -FREQUENCY CURVE 10.00 9.00 8.00 °7.00 s a m t c 6.00 5.00 w t- J 4.00 J Q LL = 3.00 9 2.00 1.00 0.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 STORM DURATION (minutes) 2-Year Stwm - - - 10-Year Storm -100-Year Storm ' e G Tyr 0 0 m m 0 m z m d Y 'o V � R U Z fA w M W of LL 0 U) w N x O °• LL to W O Q = w QG Z Z LQ 0,0 v' 12 O� U) �0 � IL } w OU N c c 0 0 E N 0 > 0 f/1 O J] J Im N IA 0 O im QK W K w (Ulw)1 2 H (SC}) A1POIa w C' (N) LOUa F (saymUl) ezlg edI W a (Sj0) MOI j UBISO W (SIO) m01j laail w K ~ (%) adol N Q LL (sp) LL O 2 (J4N1) I 7 O! a (ov) v. O F m (ulw) 0 N N N N N O N N Oi M N N M N N N N O N N NO) Q M Q Q Q In O O l q O M N O I N M M m 0) O M N r N N y N M O -q (0 IT N Q N- M qM C l N N (O N N t 0 g O r N M N Q N f 0 N N OI O Q tO m t 0 I O V l [ V N - N N N N N N——- N N N N N N N N N N N N N N N N V n N m. m n LL (Ov)V.'J Q Q O GOB t7 M (D Q �G N Of n t0 r N r W N OOf N trD O) t0 (O m NNN GooOG O�� �O �000�00000 r G O G GO O Q H GOO LL O NNN n Q 7 P N M t p g O l -q r M Q O) N N M N Q (q 7 r r q 01 r� N N Q O O 7' (Ulw) lea/-Z m 0 7 N M N O Q N t0 r U) a! .6 ro O O N w w N (O z N NG MGMGMGNGMG N N M W MGQ QGN Q 0 nn Nr U �)'ll�J ymn m G( (qmn G r n n r (q(o(q(q$mWo(q OwI� G GG G ww G GG I A O Q OJ Of Q N N O M Q N N r M O) O O) f0 O) Q N Q M m N O w m M w M M m m N I, 10n"ul O NO CiM MM O mm qrm MQMOMt. o.m •.Q m O O M MN N wwO (Ov)ea 0 0 N N N—" O-- O O O N N N— N---- O--- O O 0 0— m m U QI u1se8 M `a`�a Q M as (O r M aaana`¢«a m O N M N M V N fD mmm mmmmmmmmmmmQm e7mMm UU U tJVUU lulOd UBISOCI W w m W Y Q W lY W (UIW)1 H Alo (SdJ) ola w Q> R M 415ual F (sa4oul) ezig adl W LL (%) adol a (SJO) MOIJ U5IS2Q W (SM —1ZI I—i W w W U. (SJO) LL Z Okvu!) I 7 1' J (oV) V. F (UIW) 3 ( p W N O) W N n Q 0 f 0 t 0 DJ Q N N N N t p O.- Q m 7 O t 7 m N O Q f l M W —0 1 lw N 1 O .- N N M O N N N M N N (sio) tD y m p N UO N N N 7 N V N t 0 7 N W N t' l W N W Q N y W t `9 O � W Q y Q O H C9 f 0 Q l D M t 7 N (J4NI) I N N N N N N N N N N N N N NN N N N N N N N N N N N (V N lV N N N fV lV N N N N N W W W Q O W p W Q Q W w n r O W N M W W (O n n r N W W r W T W n W Q r Q W N W N O N Q O W Q r N N O N Q N Q W Q W W OI Cl? W r W Q Q W LL (?V) V.0 o o o c c 1: c o 00 o 0 0 o c — � o LL 0 N W N Q W 1� 7 O h Q 0( W Q O W W O N- W N M W 7 W N N W Q W W IT W n r (ulw) leaA-Z 101 N n tC n O A G f` ow. C N 6of H n (G a6 C w^ w w m w w r W w N w of N r f N O O N N M (h W t7 r N N W W W W W0 0 W W W W Of C) t") N ? W Q W Q r n W n W M r N r t7 r W W Q t7 N W Q t7 W wrrrrr rr U z0 o 0n000 0 0 o 666ci o coo d o dd o00000 00 W W O T N N O W N Q Q Q r I (1 O O Q Q a? h O W Q NM W N W O Wo N N0 N N O W Q W Q N O t' 1 W W W O (oV) ea G —— —— •- .- .- 66 O O � O G O 00 G .- .- — C .- N t h Q N N H f Q N W r N( 7 Q N W Q I U I U U U U U U U U U U U U U O W W W LL LL LL LL LL (J (J V' 0 0 (D (D 2 S S== S (9 lulod UMSea W W � K N Y Q w K W (Ulw) ) F- W (sd)) /4PO10 >a R M 416ua F- (sa46ul) azlg adl W a edol a (sp) MOId Also j l (slo) Mold laail ul w y (%) adol LL (s16) LL O Z (141ul) I K J Q (OV) V.3 H O F (ulw) O N Q O O Cl l0 N O M N V m M M M m N f0 M M M A 1p 000•- (sp) t 0)m'TOJ WO V MMM R .0 .0 A wwwwwt wwmVw NNN"NNNNf0 Of N(� 4 M) Ia D M M V)0 (O O N 0 � O CD R7^`N O O O N w (O A M M V— V(O M V t 0 N M M - � — — O LL O O O O M O f 0 0 10 R 9 9 N 0 0 0 0 0 0 0 O A 0 0 Z N O O m M A I 0 W 10 Y) 10 (DO O O O O O O m! O 7 (u l w) J e o k- Z I O n K oom v OJ M M A o00 In INa OOInO o0o OO o w w m w w m m m U Z�I'�ao�Nouna0000 m m m A 0 A A 000 N N N ooc o 0 000 0000000 W O r r O O f0 N N Q) f0 A O t0 M M Of A OJ t0 [7 N �T<NN (Od)ea CD O Do— 000 N ONrN d0� N�.-O C Q m N S== J J J J (31 I11s6 M< M T _ A [O O) O - N M N U C7 F F F F 15 3 LL LLLLLL LLLLLL IL IL IL IL lulod u61sa w w K y Ga€oway Planning. Architecture. Engineering. PROPOSED STANDARD FORM SF=3 STORM DRAINAGE SYSTEM DESIGN 10.0-YEAR STORM EVENT n N O T T 01 E z m CO A z 0 m m m � Y e a u t IL O U U N Y C W D: w (ulw) ) H J (Sd)) 4301e w Q� Q+ (4) yl6ua H (seyoul) ez1S ed1 w a (�/,) adOIS IL (W) molj u61sa w (Sp) Mow iae,l Ill K y (%) adO1S (slo) Eli m LL LL O z (juju!) J m Tiq F (oV) V. O F (UIW) 31 m r m 7 m m N.7 mmmmm O m r O r V m n N 7 M 7 r m r m n r O m O O m N (�O) . V m0 ON nrn N mmm N'm ^ O'r mm'r Ommm mm m t7 mpm Oi . mm Oi mm 1NN fp Nm IN'l m TI�0N OmiN N OOYmf O�tNp NOAtm]00mi O N Omi �tp N N W m (, � l) I m O m n n rmr m O m O m n n n m m � m m m m m m m m m m mm m m m n m O m aw (� V) h fmp N nmr -0- N mmm m Nmmm m 0<m O mm O- 0 0 0 O N N--.- C--- G � � G G m m G O t7 O 0 - Cl! .mrn O C O LL LL a?mm cm mwm ommOm r�0inmm ornrnmo Om oo m o com N mmm O r vi co of ad vi vi vi vi vi ai n .= r r r aC r� vi 0 r ui �c vi r O lri vi N Z (ulW)1°°A�lto m m MIRRN t'1 m m O V l��'yao�youn m Oo om mm co rmr 000000O m m m m nrmmrmmmmm OOOOOOOO 0000 m mSm CO Co 00 m 0 mmm 000 n Qt I l O N M mmm- em c mO OmnONVN0m0 O O M 000 O (oV)eajV 00 ON N N—N—- O " 00 U 01 u!se ¢`�m¢ O m mr m m m N m Nmrm m0 NMvm m m r m N m O mm . ¢¢ ¢¢¢ ¢«« mm�mmmmmmmmmmm m mm UU U UVL) yu1Od u61sa W W K N 1 c ' v c O O c LL a N W. LL 22-i o O T T.m E .. zmm o z ; N m d Y A ' a 9� V z 0 702 W z LL � '(M Vi w Lu 0 � H O N a LL 0 W (� F Q z Q ' Q 0 y � N ' c N Y CQ W K W (UIW)1 F w (sdl) Flpole . Q> C' (U) 416ua f (seyoul) ezng adl W IL (%) adol a (sp) molj u61se LU (Sp) molj leei1S W C adolS (sp) o' LL LL 0 m N z (juju!) I ` Lq K J m o Q (Ud) N F ds 0 H O (Ulw) a m 0 N m O N g O 17 N W n m N O m m f7 n m C] N W. N W. W. M. O W. N M. O N (w) O Qi V tG < C Qi tG tG m m rmnc�mN rNNnN mm mo mm NN V NIrrrm Nm mo m mm vN m mmr m mmm m n m � � mwwwNo nmm my (�4N�) of of of of °i cC °c cC of m of n ai ai ai ai of oaam oWnm a a m o om0000 N O m n— m (� d) V r m O m m N N N Ci m m m m m t7 r r 0 0 o o o 0 O O 00 a 1D m f0 m O O O O O N N C] � O O m O m V m 00 Q N m N m n O- O•- O 1 LL I L O NON M n N m m« O O O O O O O m O m 0 0 N m t h N 11 m � 0 O (UIW)1e0AC04I� N N N m mmm r N m'N O m N r n N N N m n N n O N N m W m m m r m N N N m z ' rn rn N �ido L 0 -1aooyoun 0m 0m mU 000m 0m 0m 0m rn m00m rn 6 m al m o o m m m m m 00000 0 LU fO a' K a o 0 IT v C r� N m m LQ 10 o ro o N n n i� o .0 a m o n o n Q m O (oy)ea 0 �������o�� �0 00 0 0-0- o o� co 0.- N U' Cl UI52 V n %+ U m m M_ V_ N_ m_ n_ m_ N N U U U U U U U U U U U co W W (7 N HI C W IL LL LL LL N N lh LL 000 N 0 m r ('i (D N M< N m 2 2 2 m m a) lulod U61sa w w m w i 0 } lL O c c 0 0 m •- 0 urn 0 a J m � m rn m O W w (U!W)1 W (sdl) kPOIa (U)476ua (sG4ou!) ez!s ad! W 0. (%) adol a (sp) melj U61se W (sp)molj lealls W w y (off) ado! (sh) LL LL 0 z (G4N!) K J 0 l-` (UIW)3 N O m O 1 f N O Q O O N O N m r m r O N t 7 N m m N ( ) Qm- - -m ham' �� m mmr-Mm^m ON M (") N M M P m m m m Q r� m m T N m m t 7 m N m m m C 1 1 N N n A A n h Q Cl Q m m m N m m COm m m m n m m (l�') . m m m m m W m mmm mmm . m O I 1 0 O m O m N O m N m Q m-- t h t h� m P O h t��N r r r m N.-m P ul NN (�d1 d. �0000 O 00- 000 m P NI�NPP N O LL LL N O O O O 0 0 O O O N O V l m 0 0 0 0 0 N O 0 I� . mWNMNo m mNN NmN m ONNOOOOO mo Z (UIW)10AUOt 0 0 0 N O Cl m m N N N 00000000 0 0 `���yao�young m 0 0 0 m 'po O o mmm N N N 0 00000000 ' O O V 0 .=� �o o0o Doc o ui po M-NO .NN-.NNr-N Q0,. Q m O O ov)a -000 0 Ci OOO N O 0 QI UISe = N - _ m m m _ _ =� -Ni 0 , j lL LL LL LL LL LL. LL lL IL IL > lu!od U6!sa w w y Ga€oway Planning. Architecture. Engineering. APPENDIX C_-_-J- HYDRAULIC CALCULATIONS Ga€®way Planning. Architecture. Engineering. AREA INLET CALCULATIONS ■ Note: When specifying/ordering grates, refer to "Choosing the Proper Inlet Grate" on pages 125-126. For a complete listing of FREE OPEN AREAS and WEIR PERIMETERS of all NEENAH grates, refer to pages 327-332. R-4349-C Median Drain Frame, Grate Heavy Duty WEIR SO. PERIMETER U For use in narrow median on divided highways, freeways or expressways. Provides large capacity drainage when required during heavy rainfalls. R-4349-D Median Drain Frame, Grate Heavy Duty WEIR SO. PERIMETER CATALOG GRATE FT. LINEAL NUMBER TYPE OPEN FEET R-4349-0 Beehive 5.4 10.2 39' az ve• For use in narrow median on divided highways, freeways or expressways. Provides large capacity drainage when required during heavy rainfalls. R-4350 Series Beehive Grate for Sewer Pipe Bell Heavy Duty WEIR SO. PERIMETER CATALOG GRATE FT- LINEAL NUMBER TYPE OPEN FEET R-4350-1 Beehive 0.3 2.7 R-4350-A Beehive 0.3 3.1 R-4350-B Beehive 0.4 3.9 R-43W-C Beehive 0fi 4.0 R-4390-B Beehive 1.0 se R-4350-E Beehive 1.7 7.0 Bell and spigot vitrified clay and concrete pipe are made under many specifications and dimensions vary. Check the grate sizes in the table to be sure they will fit the pipe you are using. Dimensions in inches Catalog No. Pipe Size Diameter Thickness at Rim Overall Height R-4350-1 8 10 3/8 2 4 R-4350-A 10 12 1 4 R-4350-B 12 14 3/4 2 1/2 5 1/2 R-4350-C 15 181/4 21/2 61/4 R-4350-D 18 22 3 7 W R-4350-E 24 29 3 9 CLICK HERE to return to the Table of Contents AREA INLET CAPACITY Location: DP C18 Grate: P,:. Number of Grates: 1 Radius (per grate): 12 in 1.00 ft Open Area (per grate): 346 sq in 2,40 sq ft Qoen area ratio: 1.0 Open Area (total): 346 sq in 2.4 Weir Length, L 82.8 in 6.9 ft Open Area, A 346 sq in 2.4 sq ft Clogging Factor, e 75% ' This ^jeans 25"d of the open area 5 eloggeL' Stage, Ad 0.10 ft Weir Calculation: Orifice Calculation: 0, = C ,Lcl s C,=C,,Aa(2gd)0s Cw Co 0.67 cL 5.2 ft cN 1.80 ft' Water Depth, d ft Elevation ft QW.INLET cfs Do.iurrr cfs Inflow cfs 0.00 4940.06 0.00 0.00 0.00 0A0 4940.16 0.49 3.06 0.49 0.20 4940.26 1.39 4.33 1.39 0.30 4940.36 2.55 5.30 2.55 0.40 4940.46 3.93 1 6.12 3.93 0.50 0.70 4940.56 4940.76 5.49 9.09 6.84 8.10 5.49 8.10 0.80 4940.86 11.11 8.66 8.66 0.90 4940.96 13.26 9.18 9.18 1.00 4941.06 15.53 9.68 9.68 1.10 4941.16 17.91 10.15 10.15 1.20 4941.26 20.41 10.60 10.60 1.30 4941.36 23.01 11.03 11.03 1.40 4941.46 25.72 11.45 11.45 1.50 4941.56 28.52 11.85 11.85 Note(s) 1.N/A 30.0 25.0 w 20.0 V n 15.0 N u d c 10.0 5.0 0.0 0.00 *Proposed top of grate elevation )Qs=1.6 cfs >Qtoa=7.2 cfs 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Depth of Flow, ft Qw-INLET 0 Qo-INLET -Inflow Ganmooway Planning. Architecture. Engineering. UDFCD INLET CALCULATIONS Tributary Basins Inlet Qz (cfs) Q1W (cfs) Carryover from Upstream Inlet Inlet Type I(feet) Inlet Size 100-Year Capacity (cfs) Approximate Depth inches At Inlet C11 1.1 4.8 NO No. 16 Combination Inlet 6 9.5 7.00 A2+A3 Inlet C10.1 3.2 15.4 NO TypeRCurb Inlet 10 15.2 7.00 A4+A5 Inlet C7.2 515 26.6 NO No. 16 Combination Inlet 15 19.5 7.00 A6 Inlet C7.1 2.9 13.8 NO No. 16 Combination Inlet 15 20.2 7.00 A7+A8 Inlet C6.2 4.2 19.3 NO No. 16 Combination Inlet 15 12.8 6.00 A9 Inlet C6.1 0.6 2.8 NO No. 16 Combination Inlet 8 2.3 0.00 A10 Inlet C5A 2.5 11.8 NO T e'R' Curb Inlet 10 12.8 6.50 A11 Inlet C5.1 2.0 9.6 YES No. 16 Combination Inlet 151 15.9 6.50 Al2 Inlet C3.1 1.8 8.5 NO No. 16 Combination Inlet 12 10.1 6.00 A13 Inlet C2 1.8 8.6 NO T e'R' Curb Inlet 10 10.4 6.00 Bt Inlet D17 1.1 5.0 NO No. 16 Combination Inlet 9 9.4 6.50 B2 Inlet D16 3.3 15.6 NO No. 16 Combination Inlet 12 12.6 6.50 B3 Inlet D15 3.5 16.7 NO No. 16 Combination Inlet 15 15.9 6.50 B4 Inlet D14 2.9 14.0 NO No. 16 Combination Inlet 15 15.9 6.50 B6 Inlet D13 3.0 14.4 NO No. 16 Combination'Inlet 15 12.8 6.00 B7 Inlet D12 1.5 7.5 NO No. 16 Combination Inlet 12 10.1 6.00 B8 Inlet D10 2.1 9.7 NO No. 16 Combination Inlet 12 10.1 6.00 B9 Inlet D9 1.9 9.2 NO No. 16 Combination Inlet 12 10.1 6.00 810 Inlet D7.1 2.6 12.1 NO No. 16 Combination Inlet 12 12.6 6.50 B11 Inlet D6 1.5 7.3 NO T e'R' Curb Inlet 10 12.9 6.50 B12 Inlet D5 2.1 10.1 NO No. 16 Combination Inlet 12 10.1 6.00 85+813 thru B17 Inlet D4.1A 8.6 39.1 NO T e'R' Curb Inlet 15 24.1 7.52 B18 Inlet D4.2 0.8 3.7 NO T e'R' Curb Inlet 15 20.2 7.00 C1 thru C3 Inlet El 5.8 27.0 NO No. 18 Combination Inlet 15 15.9 6.50 C4 Inlet E16.1 1.3 6.0 NO T e'R' Curb Inlet 15 16.7 6.50 C5 thru C7 Inlet E13.1 4.8 22.7 NO No. 16 Combination Inlet 21 18.0 6.00 C8 Inlet E12 1.8 8.9 NO No. 16 Combination Inlet 18 15.4 6.00 C9 Inlet E10 2.1 9.5 NO No. 16 Combination Inlet 12 10.1 6.00 C10 Inlet E9 2.5 11.8 NO No. 16 Combination Inlet 15 12.8 6.00 C11 Inlet E8 1.9 9.4 NO No. 16 Combination Inlet 12 10.1 6.00 C12 Inlet E7 2.8 13.2 NO No. 16 Combination Inlet 12 12.6 6.50 C13 Inlet E6 2.1 10.3 NO No. 16 Combination Inlet 12 12.6 6.50 C14 Inlet E5 2.5 12.0 NO No. 16 Combination Inlet 12 12.6 6.50 C15 Inlet E4 1.7 8.1 NO No. 16 Combination Inlet 9 9.4 6.50 C16 Inlet E3.3 1.4 6.6 NO No. 16 Combination Inlet 9 7.6 6.00 C17 Inlet E3.2 2.0 9.3 NO No. 16 Combination Inlet 12 10.1 6.00 Dt Inlet E2 1.6 7.9 NO No. 16 Combination Inlet 9 7.6 6.00 D2 Inlet E1- 0.8 3.7 NO No. 16 Combination Inlet 6 6.2 6.00 E1+E2 Inlet G3 2.8 13.9 NO No. 16 Combination Inlet 12 12.6 6.50 E3 Inlet G2.1 1.1 4.6 NO T e'R'Curb Inlet 5 6.4 6.50 F1 thru F4 Inlet D2.2 5.5 26.7 NO No. 16 Combination Inlet 15 15.9 6.50 F5 Inlet D2.1 0.6 2.7 YES No. 16 Combination Inlet 12 12.6 6.50 G1 thru G5 Inlet B9.1 8.5 39.9 NO No. 16 Combination Inlet 15 38.2 9.00 G6+G7 Inlet B9A 2.3 11.2 NO T e'R' Curb Inlet 10 22.2 9.00 H1 Inlet B6.1 0.9 4.0 NO T e'R' Curb Inlet 5 5.4 6.00 H2 Inlet B6A 2.2 10.6 NO No. 16 Combination Inlet 12 10.1 6.00 H3 Inlet B4.1 2.0 9.2 NO No. 16 Combination Inlet 12 10.1 6.00 H4 Inlet B3.2 2.4 11.3 NO No. 16 Combination Inlet 15 12.8 6.00 H5 Inlet B3.1 1.3 6.0 NO No. 16 Combination Inlet 9 7.6 6.00 H6 Inlet B2 3.3 16.5 NO No. 16 Combination Inlet 9 -4.1 4.80 11 Inlet A4.2 2.8 14.0 NO No. 16 Combination Inlet 9 5.4 4.80 14 Inlet A7 0.4 1.7 NO T e'R' Curb Inlet 15 13.5 6.00 15 Inlet A6.1 0.4 1.7 NO No. 16 Combination Inlet 3 3.9 6.00 12+16 Inlet A4.1 3.3 15.8 NO T e A Curb Inlet 15 16.7 6.50 13+17 Inlet A4A 0.5 2.1 YES No. 16 Combination Inlet 9 9.4 6.50 18 Inlet A3.1A 1.6 7.4 NO T e'R' Curb Inlet 10 10.4 6.00 19 jInIetA3.2 1 0.2 1.0 NO No. 16 Combination Inlet 61 0.51 2.40 110 linfetAl 1 3.01 15.0 NO No. 16 Combination Inlet 1 91 5.41 4.80 Gaoway Planning. Architecture. Engineering. r CDOT TYPE `R' CUR6 INLET DEPTH AND STREET CLASSIFICATION VARIES INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Intel ID = T Type'R' Curb Inlet I IT CL to FL 4' Lo (C) { HCurb H-Vert Wo W WP Lo (G) Deation tryformation Proton MINOR MAJOR Type of Net Inlet Type= CDOT Type R Curb Opening ml Depression (additional to mnmuous gutter depression 'a' from 'Q-AldW) alas= 3.00 J00 inches Number of UNt Inlets (Grate pr Curb Operirg) _ No -1 1 1 Water Depth at Revere, (outside of local concession) Poling Depth =1 5.12 6.50 inelca cab bdometbn MINOR MAJOR 0 �` Ot9ths Length of a Unil Grate I,(G)= N/A NIA feel idth of a Unit Grew Wo= N/A 'NIA feel - ma Opening Ratio for a Grate (typiml values 0,15-0.90) A. = N/A N/A ' Clogging Factor for a Single Grote (typical vabo 0.50-0.70) G(G)= WA N/A. Grata Weir Coefficient (typical vale 2.15-560) C. (G)= WA N/A vale Onfbe Coefficient (typical vabs 0.60-0.80) C.(G)= WA NIA Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening I.(C)= S.DO 500 feet Heigh of Vertical Curb Opening in Inches H, = 6.00 600 inches Height of Curb Onfice Timal in Inches Hn„e= 6.00 600 inches Angle of Threat lose USDCM Figure ST-5) Thew = 63.40 6340 degrees Side Width for Depression Pan (typimly the gutter width of 2 feet) Wo = 2.00 2,00 feel Clogging Factor for a Single Curb Opening (typical vase 0. 10) Cr(C)= 0.10 0.10 Cut Opening Weir Coefficient(typical vabe 2.3-3.7) G.(C)= 3.60 3.60 Curb Opening Orifice Coeffident(lypiml value O.W-0.70) C.(C)= 0.67 067 (CalculatedGrate Flow Analysis MINOR MAJOR Clogging Coefficient for MJdpie Unb Cost -1 N/A NIA Clogging Factor for Multiple Unw Clog = WA WA Grab Capacay es a Web (based on UDFCD - CSU 2010 Study) _ MINOR MAJOR Inemeption vihout Clogging Q.= WA WA do Interception vnth Clogging Q.a= WA WA cis Grata Capacity as a Orfte(based on UDFCD -CSU 2010 Study) MINOR MAJOR Intencencion Wtleut Clogging Q. N/A NIA cfs Iraemepbon Wth Clogging Q. N/A N/A ds Grab Capacity as based Flow MINOR MAJOR ling Coefficient for MUtipw Units Zing Factor for Multiple Udw ' Opening ea a Web (based on UDFCD - CSU 2010 Study) Opening a an OrMra (based on UDFCD -CSU 2010 Study) option without Clogging option with Clogging Opening Capacity as biked Flow option Wftut Clogging WA Cos/= 1.00 1.00 clog = 0.10 0.10 MAJOR Q..= _MINOR 4.10 7.11 cis 3.69 6AO cis MINOR MAJOR Q. 905 10,13 do Q. = 8.14 9.12 ds Interception with Cbgging Q„w= 5.10 ds Resulting Curb Opening Capacity assumsa cloggedcondttbn Qcw 3.89 Ell` 6.40 cta Resonant Street Conditions MINOR MAJOR obllhtet Lerg0i L= 5.00 5.00 feel ' Resultant Street Flow Spread(based on sleet O-Al/ow geometry) T= 15.0 20.8 fl.>T-Crown esUwnt Fbw Depth at Street Crown doe N =j 0.0 1.4 irchas MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) na= 3.69 s.4o 015 Inbl Capacity lS GOOD for Minor and Major Storms(>Q PEAK) Qw neouefn= 1.00 1.00 do D 3 HFHLV001.01_UD-Inlet_v3.14_I5 Type R.Asm, Inlet In Sump 3/2112016, 10:32 PM INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = 10' Type'R' Curb Inlet 115 CL to FL 4' Lo(C) { MCurb H-Vert Wo Wp W Lo (G) Depression (additional to mrtnuom gutter depression'a' from '0-AIloW ) er of Unfit Inlets (Gram or Curb Opening) r Depth at Fbv&m (outside of local depression) n hrtormadon h of a Unit Grate r of a Unit Gram Opaing Ratio for a Gate (typcal values 0.15-0.90) ling Factor for a Single Greta (typical value 0.50 -0.70) Wait Coefficient (lypiml wine 2.15 - 3.60) Orifice Coefficient (typical ral a 0.60 - 0.80) Opening Mormatbn in of a Unit Curb Opering rt of Vertical Cub Opening In Irdes t of Curb Orifice Throat in Inches r of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feat) ling Fedor fora Sirgle Curb Operurg (typical value 0.10) Opa ing Weir Coeffidera (ypiml value 2.3.3.7) ng Coefficient for Multiple Unim ng Fedor for Multiple Units Capacity as a Wait (based on UDFCD -CSU 2010 Study) rption without Clogging rption with Clogging Capacity as a OrBts (based on UDFCD - CSU 2010 Study) rption without Cbggirng rption with Clogging Capacity as Mixed Flaw ption without Clogging rption with Clogging lent for Multiple Urim for Multiple Urns s a Wait (based on UDFCD - CSU 2010 Study) >MClogging Clogging s an Orilks (based on UDFCD -CSU 2010 Study) )MClogging Clogging �apachy as Mhed Flow Clogging Inlet Type ae.J' No Ponding Deph: L.(G): W.' Ar; Dr(G)' C. (G): C.(G): L.(C): H,M : Hw z Them W.: C, P: C.(C): CDOT Type R Cub Opmng 3.00 3.00 2 2 5.72 8.00 MINUH WA MAIUN N/A WA NfA WA NA WA WA WA NfA WA NIA MINOR MAJOR 5.00 500 6.00 600 6.00 6.00 63.40 6340 2.00 2.00 0.10 0.10 Alas L Ca Q Pmide Rpths let ,at Cost =I Clog = C6 Oo= MINOR MAJOR WA _ WA WA WA MINOR MAJOR N/A WA ds N/A N/A cis MINOR MAJOR WA WA ds WA WA ds MINOR MAJOR Omr= Om.= N/A WA cis N/A WA cis Cost = clog = Q1= 1.25 1.25 0.06 0.06 MINOR MAJOR 7.21 11.14 ds 6.76 10.44 cis C. = Oo= O„s= Om.= MINOR MAJOR 18.10 19.51 ds 15.96 18.29 cis MINOR MAJOR 10.62 13.71 cis 9.96 12.85 ds R ... ftent Strest conditions MINOR MAJOR Total ldet Length L= 10.00 10.00 feet Resultant Street Flow Spread (based on sheet 0-Abow geometry) T = 15.0 18.7 U.>T-Cmwn Resultant Fbw Depth at Street Cm. tlmowu= 0.0 1 0.9 inches MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Q. = 6.76 10A4 cfs Inlet Cepai IS GOOD for Minor and Major Storms(>O PEAK) Oncicneow . 1.00 1.00 cis HFHLV001.01 UD-Inlet v3.14 10 Type R.Asm, Inlet In Sump 3121/2016, 10:25 PM I INLET IN A SUMP OR SAG LOCATION Projeel = East Ridge Second Filing Intel ID = 10' Type'W Curb Inlet 11S CL to FL !Le (C)A H-Cu C H-Vert , Wo W WP j Lo (G) in Information (Inau0 of Inlet Depression (additional to oonfinuuus gutter depression'a' fmm'O-AnoW) ter of Unit (Nets (Grata or Cub Opening) r Depth at Fbwkm (ouloide of local deltressbn) i Information h of a Unt Grate - i of a Unit Grote Opening Ratio for a Greta (y Poel values 0.1 S-OAO) ling Facbr for a Single Grate (typical n ue 0.50 -0.70) : Web Coefficient (ypiml rahe 2.15 -3.60) : Onfica Coefficient (typical vdbe 0.60-0.60) ' Opening Information h of a Unit Curb Opening It of Vertical Curb Opening In Imes d of Curb Onfice Throat in Incites : of Tnoel lase USDCM Figure ST-5) Width for Depression Pan (typicay the gutter willh of 2 feet) leg Fa=r for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 2.3,17) ng Coefficient for Multiple Units ng Facor for Muftiple Units Capacity as a Wei (based on UDFCD -CSU 2010 Study) :peon Wf dClogging :peon with Clogging Capacity as a Or Vice (based on UDFCD -CSU 2010 Study) :ption without Clogging :peon with Clogging Capacity as Mixed Flow :peon wifeut Clogging :peon with Clogging ing Coefficient for Multiple Units ing Factor for Multiple Units Opening as a Weir (based on UDFCD - CSU 2D10 Study) option without Cloggrig aption WM Clogging Opening as an Orifice (based on UDFCD - CSU 2010 Study) eption without Clogging eption with Clogging Opening Capacity as Mbuld Flow :peon without Clogging eption with Cbggbg MINOR MAJOR Inlet Type = CDOT Type R Cub Opening a,= 3.00 3.00 inches No= 2 2 Poricin:g Depth= 5.12 6.50 irxhc MINOR MAJOR�a to(G)=AN/A NIA feet Wo=NIA feel 7Mo=NIA G (G)=WA I C. (G)=NIA C.(G)=ENIA MINOR MAJOR L.(C)= 5.00 5.00 feet H,oa= 6.00 6,00 irchos Hw.,a= 6.00 6.00 inches Theta 63.40 6340 degrees ; (C) -1 0.10 0.10 ...(C)= 3.60 3.60 (C)= 067 0.67 MINOR MAJOR Coef= N/A WA Clog = N/A WA MINOR MAJOR Q:= WA WA ds Cl-= WA WA ds MINOR MAJOR O"= N/A WA cis Cl.= N/A WA ds 0- MINOR MAJOR Coef -1 125 1 1.25 clog = 0.06 0.06 MINOR MAJOR O., = 7.21 13.69 ds 0..= 8.76 12.83 ds MINOR MAJOR Q. = 16.10 20.26 ds I Oa = 16.96 19.00 cfs i MINOR MAJOR Om-Q--j 10.62 15.a9 ds Q. = 9.96 14.52 ds INet Length L hand Street Flow Spread (based an sheet "flow geometry) T font Flow Depth at Street Crown dcsoxn' d Inlet Interception Capacity (assumes clogged condition) Qa - lapacfy IS GOOD for Minor and Major St.(>O PEAK) Qnusacouua' e 10.00 10.00 15.0 208 0.0 1.4 set i t.-TCrown noes ifs is a HFHLV001.01_UD-Inlet_v3.14_10 Type R.1dsm, Inlet In Sump 312112016, 10:25 PM r INLET IN A SUMP OR SAG LOCATION Project - East Ridge Second Filing Inlet ID = 1S Type'R' Curb Inlet 1 15' CL to FL {Lo (C){ HCurb H-Vert We W WP Depression (additional to continuous guider depression's' trom'O-AIbW) er of Unit (Nets (Grate or Cub Opening) r DepM at Flowire (outside of local depression) i mbmmtion h of a Unt Grate i .1 a Unit Grate Doering Rate for a Grate (typical values 0.15-0.90) Mg Factor for a Single Gnats (typical ral a 0.50 - 0,70) Weir CoeHident (typical vale 2.15 - 3.60) Onfice Coefficient (typical rate 0.60 -0.80) Opening Mormation h of a Unit Curb Opurmg It of Vertical CUT Opening In Incites t of Curb Orifice Timat in belies of Ttroat (see USDCM Figure ST-5) Width for Depression Pan (typically tie gutter width of 2 feet) ling Factor for a Single Curb Opening (typical raloe 0.10) Cpering Weir Coefficient (typical vabs 2.3-3.7) c9 Coefficient for Multiple Units ng Factor for MiIDple Urals Capacity as a Wet (based on UDFCD - CSU 2010 Study) �pbon wined Cloggng poor, v4th Clogging Capacity as a Onsce (based on UDFCD - CSU 2010 Study) ption without Clogging option with Clogging Capacity as Mixed Flow soon without Cbggirg pion wish Clogging Coefficient for Multiple Units Factor for Multiple Urds mbtg as a Weir (based on UDFCD -CSU 2010 Study) on without Clogging on with Clogging wing as an Office (based on UDFCD -CSU 2010 Study) on without Clogging on WM Clogging mi g Capaciy as Mixed Flow on waited Clogging on with Clogging MINOR MAJOR INet Type = atry = 5.09 7.17 COOT Type R Curb Openi inches No = Pending Depth= incite MINOR MAJOR M - JJe . L+(G)= W.=so = A G(G)= C. (G)= C.(G)= IA IAIAAIAIA M feet feet MINOR MAJOR L.(C)= 5.00 5.00 fee H� = 6.00 6.00 1. Hwa.= 6.00 6.00 Ina Theta= 63.40 6340 del W+= 2.D0 2W fee G(C)= 0.10 0.10 C.(C)= 3.60 3.60 C.(C)= 0.67 0.67 MINOR MAJOR Coal = WA WA Clog= WA WA MINOR MAJOR Q. WA WA ds WA WA cis MINOR MAJOR Ca = N/A N/A cis Q. WA N/A cis MINOR MAJOR 0,,.= WA WA ds 0,,,,= WA WA cis Coot = 1.31 1.31 Cog = DD4 0.04 MINOR MAJOR 0- 8.80 22A1 cis 0,.+= 8A2 21." cis MINOR MAJOR O.= 27.06 31,85 cis Da.= 25.88 3046 cis MINOR MAJOR C,-- 1a.36 WAS cis 0,�+= 13.73 23,76 Q .u= 6.42 dd. 21.0 of$ at Length L A Street Flow Spread (based on sleet "NOW geometry) T tt Fbw Depdn at Street Crown dca N Inlet Interception Capacity (assumes clogged condition) Q+' pacify IS GOOD for Minor and Major Storms (>O PEAK) O. ae . 15.00 15.00 14.9 23.5 0.0 2.1 t.m 1.W eat 1.>T-Crown itches ng 3.00 3.00 ' HFHLV001.01_UD4nlet_J3.14 15 Type R.dsm, Inlet In Sump 3121/2016, 10:22 PM INLET IN A SUMP OR SAG LOCATION ProJeet = East Ridge Second Filing Inlet ID = 15' Type'R' Curb Inlet 115 CL to FL {Lo (C)-T H-Curb H-Vert Wo W WP Lo(G) an Mfortnatbn fin of inlet I Depression (additional to conhsaus gulter depression'a' from'O-AIbW) aer of Unit Inlets (Grate or Curb Operdig) n Depth at FlowOre (outside of local depression) r information th of a Unlit Grate t of a Unit Grate Opening Ratio for a Crate (typical vahes 0.15-0.90) ling Factor for a Single Grate (typical wine 0.50 - 0.70) t Weir Coefficient (typical value 2.15 - 3.60) t Odfica Coefficient (typical value 0.60 - 0.80) Opening hbrmatbn th of a Unit Cub Opering v of Vertical Cub Opening in 1. des v of Cub Orfice Throat in Inches J of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feel) ling Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 2.3-3.7) Opening Onfice Coefficient (typical value 0.60. 0.70) s Flow Anatolia ICaloulaledl ling Coefficient for Mdtiplo Units ling Factor for MWple Units s Capacity as a Weir (based on UDFCD - CSU 2010 Study) Orifice (based on UDFCD -CSU 2010 Study) Flow Coaffidert for Multiple Units _ Factor for Mull Units ..he as a Weir (based on UDFCD -CSU 2010 Study) as an cries (based on UDFCD - CSU 2010 Study) Capacity as Mitred Flow MINOR MAJOR Inlet Type =1 CDOT Type R Curb Opwbg ay=a= 3.00 300 inches No =1 3 1 3 Pending Depth= 5.12 6.50 inc cs + MINOR MAJOR 0 Overde Depths Le(G)=MNIA feet Wo=feet A.= G(G)= MNIA C. (G)=Co(G)= , MINOR MAJOR L.(C)= 500 500 feet H�= 6.00 600 inches Hw'= Soil 600 indee Theta= 63AO 6340 degrees W.= 200 200 feet G(C)= 0.10 0.10 C. (C) = 3.60 3.60 Goef =I Clog = Q_ = 0.-1 Q. =I MINOR MAJOR WA 1 WA WA WA MINOR MAJOR N/A N/A ds N/A N/A cis MINOR MAJOR NIA WA cis WA WA cis I N/A I N/A I Coef = 1.31 1 31 Cog= 0.04 0.04 MINOR MAJOR Ow = 8.97 17.43 ds 0„ = 8.58 16.67 cis MINOR MAJOR Oo= 27A4 30.39 ds Oa = 25.96 29.07 cis MINOR MAJOR 1651 2141 ds Oo„ = 13.88 20.47 cis Resultant Street Conditions MINOR MAJOR Total met Length L=j 15.00 1 15.00 feet Resultant Street Flow Spread (based an sheet 04 flow geometry) T = 15.0 20.8 ft .>T.C.. asutant Flow Depan at Street Crown dceowe =1 0.0 1.4 inches MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Q c 6.56 16.67 cfs Inlet Capacity IS GOOD for Mrior and Major Steam(>O PEAK) Orevr scounro= 1.00 1.00 cis HFHLV001.01 UD-Inlet_v3.14_15 Type R.dsm, Inlet In Sump 3121/2016, 10:30 PM INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = 5' Type'R' Curb Inlet 118' CL to Fl. {-Lo (C)� HCurb H-Ven We WP W L. (G) of Diet Depression (additional to cordneme gutter depreation'a' from'O-Alow`) er of Unit Inlets (Grata or Cub Opening) r Depth at FbwSne (outside of local depression) , bdonnatlon h of a Unl Grate _ :of a Unit Grate Opening Ratio for a Grate (typical values 0.15.0.90) ling Factor for a Single Gala (typical vahe 0.50 -0.70) Weir Coefficient (typical vaWe 2.15 - 3.50) Onfice Coefficient (typical value 0.60 -0.80) Opening trdormalbn h of a Unit Curb Opening it of Vertical Curb Opening in Inches t of Curb Orifice Tlmal in Inches of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter w dth of 2 feet) ling Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical vabe 2.3,3.7) Open. Onifioo C.eRciem ttaical value o.60 - 0.701 ng Coefficient for Multiple Units rug Factor for Multiple Udts Capacity as a Wetr (based on UDFCD - CSU 2010 Study) :ption wi0cla Clogging :ption with Clogging Capacity as a Orfto (based on UDFCD - CSU 2010 Study) :pton withpul Clogging :ption with Clogging Capacity as Mead Flow :piton without Clogging :ption with Clogging two Grab Cauackv (assumes clamped condition) ing Coefficient for Multiple Unts trig Factor for Multiple Units Opening as .Wetr (based on UDFCD - CSU 2010 Study) option without Clogging option win Clogging Opening as an OdBos (based on UDFCD -CSU 2010 Study) option without Clogging option with Clogging Opening Capacity as Mixed Flow option wi0aut Clogging option with Clogging' Inlet Length tam Street Few Spread (bated on sleet O-Agow geometry) tart Flow Depth at Street Crown II Inlet Interception Capacity (assumes clogged condition) Capacity, IS GOOD for Minor and Major Storms (>O PEAK) MINOR MAJOR Iniel Type = a:s.:3.00 = inches No = Pestling Depth = Irctco MINOR MAJOR 0 O�vriOe Depms Ie(G)= Wo= A. _ G(G)= C. (G)= C.(G)= WA NIA WA NIA WA WA WA WA N/A N/A N/A NIA feet feat MINOR MAJOR Lp(C)= 5.00 5.00 feet H„m= 6.00 600 inches Hmoa= 6.00 600 inches 63.40 6140 Theta = degrees 2.00 2.00 %= feel G(C)= 0.10 0.10 C.(C)= 3.60 360 C.(C)= o.67 067 MINOR MAJOR Cost =1 WA WA Clog = WA WA MINOR MAJOR Oa = N/A N/A cis N/A WA cfs MINOR MAJOR Oo = N/A N/A cis 0-= N/A WA cis WA cost = Clog = O~= MINOR MAJOR 1.00 1.00 0.10 As MINOR MAJOR 5.60 5.96 cis 5.04 5.36 cfs O>= Oa= MINOR MAJOR 9.63 9.75 cts 8,67 8.78 cis MINOR MAJOR' MINOR MAJOR L = 5.00 5A0 feet T=I 18.0 1 8.7 ft>T-Crown d.. =1 0.0 1 0.2 Irchea MINOR MAJOR 0. = 5.04 5.36 CIS CDOT Typo R Cub Opening 3.00 1 1 5.84 fi.W ' HFHLV001.01 UD-Inlet_v3.14_15 Type Radom. Inlet In Sump 3/21/2016. 10:38 PM ' HFHLV001.01 UD-Inlet_v3.14_15 Type Radom. Inlet In Sump 3/21/2016. 10:38 PM INLET IN A SUMP OR SAG LOCATION Project v East Ridge Second Filing Inlet ID v 10- Typri Curb Inlet 1 18' CL to FL KLo(C)-/ HCurb H-Vert We Wp W Lo (G) of Intel Inel Type Depression (additional to continuum gutter depresslori from,'O-AIbW) am.; er of Unit Inlets (Greta or Cub Opening) No r Depth at FbMm (outside of local depression) - Pending Depth Information h of a Unl Grate Lo (G) of a Unit Grate W. Opening Ratio for a Grew (typical values 0.154.90) A. 14V Factor for a Single Grate (typical vale 0.50 - 0.70) Cc (G) Weir Coefficient (typical value 2.15 - 3.60) C. (G) Onfice Coefficient (typical value 0.60 - 0.80) Co (G) Opening Information h of a Unit Curb Opening L. (C) a of Vertical Curb Opening in Inches H.a a of Curb Orifice Throat in Inches H•.ea of Threat (see USDCM Figure ST-5) Theta Width for Depression Pan (typically 0e gutter wdth of 2 feet) % ling Factor for a Single Curb Opening (typical value 0.10) Cr (C) Opening Weir Coefficient (typical value 2.3.3.7) C. (C) Deanna Orifice Coefficient (typical value 0.60 -0.70) - C. (C) rig Coefficient for Multiple Units ng Factor for Multiple Unis capacity as a War (based on UDFCD -CSU 2010 Study) ;peon without Cbggirg ;ptsm with Cbggirg Capacity, as a critics (based on UDFCD - CSU 2010 Study) pion w heout Clogging Potion with Clogging Capacity as Mixed Flaw - Potion wihout Clogging Pptlon w h Clogging iirg Coefficient for Multiple Units ling Factor for Multiple Units Opening as a War (based on UDFCD - CSU 2010 Study) aptionwiOroutClogging option With Clogging Opening as an Draw (bald on UDFCD -CSU 2010 Study) option without Clogging spoon with Clogging Opening Capacity as AOsad Flow apt in wthout Clogging at Length nt Street Fbw Spread (based on sleet O-Allow geometry) nt Fbw Depth at Street Crown Inlet Interception Capacity (assumes clogged condition) ;pachy IS GOOD for Minor and Major Storms (>Q PEAK) CDOT Type R Cub Opening 3.00 3.00 2 2 5.84 5.84 Mlrvl1H N/A MAJUH NIA N/A NIA N/A NIA N/A WA N/A N/A WA NIA MINOR MAJOR 5,00 500 6.00 6.00 6.00 fi00 63.40 6140 2.00 2.W rohas rchoo Q O.antle Depths set set real= N/A WA Clog = N/A WA MINOR MAJOR 0.;= N/A NIA ' cf. 0- NIA WA cis MINOR MAJOR Q. N/A WA cis Q. N/A NIA cis MINOR MAJOR 0m;= WA N/A cis Om.= N/A cis WA 3.. WA cis WA MINOR MAJOR coo= 1.25 _1.25 Clog = 0.06 0.06 MINOR MAJOR Q-= 10.37 10.37 cis 0.. = 9.72 9.72 cis MINOR MAJOR Ce= 19.26 1926 ds Qs = 18.05 1805 cis MINOR MAJOR 13.14 13.14 cis (3- =1 12.32 /2.32 cis L' T' :CROWN Q.: 10.00 10.00 18.0 18.0 0.0 D.0 mR 9.722 set I xhes ' HFHLV001oI UD-Inlet_v3.14_15 Type R.dsm, Inlet In Sump 3121/2016, 10:46 PM INLET IN A SUMP OR SAG LOCATION Project v East Ridge Second Filing Inlet ID v IT Type'R' Curb Inlet 118' CL to FL X--Lo (C)A H-Curb H-Vert we Wp W ------------------- Lo (G) 1n Information lineu0 of Inlet Depression (additional to conOrscue guitar depression 'a' from'Q-AIIoW) oar of Uml Inlets (Grate or Curb Opening) r Depth at Fbwene (outside of local depression) o information n of a Ural Grate I of a Unit Grate Clearing Ratio for a Grate (typical values 0.150.90) lire Factor for a Single Gram (typical vahe 0.50 - 0.70) I Weir Coefficient (typical value 2.15 - 3.60) I Onfce Coefficient (typical value 0.60 -0.80) Opening Indmeaten It of a Unt Curb Opening A of Venical Curb Opening in Inches t Of Cure Onfce Throat in Inches I of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically tie gulmr vndth of 2 feet) )Ug Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 2.33.7) Opening Orifice Coefficient (typical value 0.60 - 0.70) t Flaw Analyse ICabulatedl ling Coefficient for Multiple Units ling Factor for Multiple Urals 1 Capacity as a Weir (based on UDFCD - CSU 2010 Study) Orfke (based on UDFCD-CSU 2010 SWdy) Flow Coefficient for Multple Units Factor for MWple Urim ring as a Weir (based on UDFCD -CSU 2010 Study) on Wthat Clogging on with Clogging .ning as an Orifice (based on UDFCD - CSU 2010 Study) on W61ou1 Cbgging on Win Clogging wing Capacity as Mend Flaw on WIhout Clogging on Wth Clogging . Inlet Type am. No Pending Depth L.(G) W. A. Ct(G) C. (G) C.(G) )OR CDOT eni Type R Cure Opng 3.00 3.00 3 3 5.84 fi.00 WA N/A WA N/A WA N/A WA N/A WA N/A WA N/A 6.00 6.00 6.to 11 0 ches chca I Qi O.arbe Depths 3M Set MINOR MAJOR Coef -1 NIA WA Clog =1 NIA WA MINOR MAJOR C'm WA N/A cfs 0..= WA WA cts MINOR MAJOR Oa= _ WA - WA are Q. WA WA cts MINOR MAJOR WA WA cis O„v= WA WA cis Dom= WA WA eh MINOR MAJOR Cost = 1.31 1.31 Clog = 0.04 0.04 MINOR MAJOR QM = 13.07 14.08 cis Q„.= 12.50 1346 cfs MINOR MAJOR Q.= 28.88 29.26 cfs O®= 27.62 27.98 OIs MINOR MAJOR Q.. 18.D7 18.ea cm a-= 17.28 18.05 cis esulmM Street Conditions MINOR MAJOR Total trial L-I 150o 15.00 feel Resulmnt Street Flow Spread (leaved on sheet Q-AOow geometry) T-1 18.0 1 18.7 n.>T-Crown esWanlFbw Depthal SbeetCroen da N =1 0.0 0.2 inches MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Q. = 12.So 13.46 cfs Inlet Capacity IS GOOD for Mind, and Major Storms(>Q PEAK) Oer W..em= 1.00 1.00 cfs Q HFHLV001.01_UD-Inlet_v3.14_15 Type R.Asm, Inlet In Sump 312112016, 10.43 PM INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = 1S Type'R' Curb Inlet 118' CL to FL .F-Lo (C)-f H-Curb H-Vert Wo WP W Lo (G) of Inlet Inlet Type = CDOT Type R Curb Opering Depresuon(additional to mntinuos guitar depression'a'frm'O-AloW) aba= 3.00 3.00 inches or of Unit inlets(Grate or Curb Opeing) No 3 3 r Depth at Flowlire(outside of local depression) Polling Depth = 5.84 6.50 incic. O.wdde Depths �Infomution h of a Uril Grate Le (G) = MINOR N/A MAJOR NIA feel of a Unit Grate W. N/A NIA feel Opening Ratio for a Grate (typical values 0.15-0.90) 7M= N/A WA ling Fehr for a Single Grote (typical vase 0.50-0.70) G(G)= WA WA Weir CoefOtlenl(typiral value 2.15-3.60) C. (G)= WA NIA Orfice Coefficient (typical value 0.60-0.80) C.(G)= WA NIA Opening Information MINOR MAJOR In of a Urit Curb Opening I.(C)= 5.00 500 feel it of Vertical Cub Opefurg in Inches ft== 6.00 6.00 inches t of Curb Orifice Throat in Inches Hwoe = . 6.00 6,00 inches of Throat (see USDCM Figure ST-5) Theta = 63AO 6140 degrees Width for Depresslon Pan(typioN the gutter wdth of 2 feat) Ws= 2.00 2.00 feet ling Factor for a Single Curb Openig(Iypiral value 0.10) G(C)= 0.10 0.10 Operirg Weir Coefficient (typical slue 2.33.7) . C.(C)= 3.60 360 Flow Any"Is (Calculated) MINOR MAJOR ng Coefficient for Maple Units Coef= WA WA ng Factor for Maple Unts Clog = NIA WA Capacity as a Wet (based on UDFCD - CSU 2010 Study) MINOR - MAJOR iplion without Clogging 0.,= WA WA cis pplion with Clogging O„= WA WA ds Capacity as a Orifice (based on UDFCD-CSU 2010 Study) _MINOR MAJOR option without Clogging Oa= WA WA cfs option will Clogging Oa = N/A N/A cis Capacity as Mixed Flow MINOR MAJOR option vnftit Clogging Om,= NIA N/A cis iption with Clogging Q- N/A WA is Curb Opaininip Flow Ana Is(Calculated) MINOR MAJOR Clogging Coefficient for Maple Units cod= 1.31 1.31 Clogging Factor for Maple Unts Cbg= 0.04 0.04 Curb Opening as a Weir(based on UDFCD-Call 2010 Study) MINOR MAJOR InlarceptlonwifhoutClogging 0.;= 13.07 17.43 ds Interception with CloggingQ- 12.50 1667 cfs Curb Opening as an critics (based on UDFCD - CSU 2010 Studyl MINOR MAJOR IraarreptionwiteutClogging Q. 28.88 30.39 cfs Interception with Clogging Ca= 27.62 29.07 sits Curb Opening Capacity as Mixed Flow MINOR MAJOR IrterceptionwitoutClogging 0,,,= 18.07 21AI ds Intencepdon Wth Clogging Oma= 17.2B 20.47qdsenin ResuMng Curb Opg Capacity (assumescogged condition)Oc.e = 12.50 16.67cis Of LwgM L nl Street Flow Spread (based on sieet "Dow geometry) T M Flow Depth at Street Crown dLPOwn Inlet Interception Capacity (assumes clogged condition) i Q.: i-a rC InAn fnr Minns and Main,-5u.-l>O PEANI GpE,w p¢.1Mw. 15.00 15.00 18.0 20a 0.0 a.7 MINOR MAJOR 12.S0 16.67 1 HFHLV001.01_tJD4n1et v3.14 15 Type R.Asm, Inlet In Sump 3/21/2016, 10:45 PM ' INLET IN A SUMP OR SAG LOCATION ProJeel = East Ridge Second Filing Intent ID = 15 Type'R' Curb Inlet 1251 to FL 4 Lo (C)-'r HLurb H-Ved Wo yP W In hdonneliun Ilnoull of trim trial Type Depression (additiorelto continuous gutter depression'a' tram- w') a. er of Unit Inlets (Great or Curb Doe") No r Depth at Flowbe (outside of local depression) Ponc ing Depth i Infomuron h of a Unit Grate L. (G) i of a Unit Grate W. Opening Ratio for a Grate (typical vales 0.15-0.90) A. ling Factor for a Single Grate (typical value 0.50 - 0.70) C, (G) Weir Coefficient (typical value 2.15 - 3.60) C. (G) Onfice Coefficient (typical value 0.60 - 0.80) C. (G) Opening Information h of a Unit Curb Opening L. (C) t of Vertical Curb Opening in Imes Hwn a of Curb Off" Throat in Inches Hr , of Throat (see USDCM Figure ST-5) Theta Width for Depression Pan (typically the gutter width of 2 feel) W. slog Factor for a Single Curb Opening (typical value 0.10) G (C) Clearing Weir Coefficient (typical value 2.3.3.7) C. A MINOR MAJOR COOT Type R Curb Opening 3.00 300 3 3 6.00 7.00 MINUH WA Mnrun NIA WA N/A N/A aNIA N/A N/A MINOR MAJOR 5.00 600 6.00 6,00 6.00 600 63.40 6340 2.00 2.00 0.10 0.10 "c es naca Q override Depths Bet eat Curb Opening Onfice Coefficient (typical value 0.60-0.70) O. lu1= 0.67 1 067 Grate Flow na"Is fCalculatedl MINOR MAJOR Clogging Coefficient for Multiple Units Coef= WA N/A Clogging Factor for. Multipie Units Clog = WA N/A Grate Capacity as a Weir(based on UDFCD -CSU 2010 Study) MINOR MAJOR -• Interception without Cloggirg 0.,= NIA WA•••= cis Interception with Clogging 0..= N/A WA ds Grab Capacity as a Or81es (based on UDFCD - CSU 2010 Study) MINOR MAJOR Interception without Clogging Oa= WA WA cis Iniercepton with Clogging Q. WA WA cis Grab Capacity as Mixed Flow MINOR MAJOR InercepiionwilhoutClogging 0..= WA WA cis Interception with Clogging O,,,a= WA WA cis Resulting Grate Capacity(assumes clogged condition) Ga.n= WA WA of. Curb Orwrilmi Flow An."le lCalculatedl MINOR MAJOR Clogging Coefficient for Multiple Units Coef = 1.31 1.31 Clogging Fedor for Multiple Units Clog = 0.D4 0.04 Curb Opening as a Weir (based on UDFCD-CSU 2010 Study) MINOR MAJOR Interception without Clogging Q.-I 14.08 1 21.10 cis Interception with Clogging - 0..= 13.46 20.18 cis Curb Opening man critics (bond on UDFCD -CSU 2010 Study) MINOR MAJOR limrceprmnwithad Clogging r 06-1 29.28 1 3149 ds Interceptionwith Clogging Oa= 27.98 30.11 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR IrterceptionwithoutClogging 0,.;= 18.88 23.97 cis Interception with Clogging 0,,,.= 18.05 22.92 ds Resulting Curb Opening Capacity (amumas clogged concision) Ocw = 13.46 20.18 cis 1esueant5 dt n MINOR MAJOR Deal Inlet Length L-1 150D• 15.00 feet Resutdnt Street Flow Spread (based on sheet O-AOow geometry) T-1 18.7 US It Resultant Flow Depth at Street Crown dicilOwN =1 0.0 0.0 inches MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Q. aiI 13.46 20.18 cfs I.W Capacity IS GOOD for Minor and Major Stoma(>O PEAK) 0rsrwmao 0=1 1.00 1 1.00 lcf. ' HFH1-V001.01_1.0.lnlet_0.14_15 Type R.dsm, Inlet In Sump 3/2112016, 10:28 PM INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = 10- Type 'Fr Curb Inlet 1 2S CL to FL 4' Lo (C) HCurb H-Vert Wo Wp W L.(G) of [net Depression (additional to continuous guider depression'a' from'G-AlbW) uer of Unit Inhas (Grate or Cub Opening) +Depth at FbMm (outude of local depreasbn) r 6lfamallon th of a Unit Grate r of a Unit Grata . Opening Ratio for a Grata (typical values 0.15.0.90) 3irg Factor for a Sirgle Grate (typical value 0.50 - 0,70) I Weir Coefficient (typical value 2.15 - 3.60) r Orifice Coefficient (typical value 0.60 - 0.80) opening hdarm#bn in of a Unt Curb Operirg p of Vertical Curb Opening In Inches 1 of Curb Office Throat in Inches f of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter Width of 2 feet) Sing Factor for a Sirgle Curb Opening (typical value 0.10) Operirg Weir Coefficient (typical value 2.3-3.7) rg Coefficient for Multiple Units rg Factor for Multiple Units Capacity as a Weir (based on UDFCD -CSU 2010 Study) ption WOgd Clogging ption with Clogging Capacity as a Oryics (based on UDFCD -CSU 2010 Study) ption Without Clogging ptipn.1h Clogging Capacity as Mixed Flow ptbn withoul Clogging ption with Clogging MINOR MAJOR Inlet Type =r CDOT TypaRCurb Opening a = y 3.00 1 3.00 inches No =1 2 1 2 Posting Depth= 5.12 9.00 inches MINOR MAJOR U O.vrde Depths L.(G)= WA N/A feet W.= N/A NlA feet A. WA N!A Cr(G)= N/A N/A C. (G)= WA NIA C.(G)= WA NIA MINOR MAJOR L.(C)= sba 5,00 feet H,.r= 8.00 6,00 inches Hwur= 8.00 600 inches Theta 63,40 6310 degrees WR= 2.00 200 feet C,(C)= 0.10 0.10 C.(C)= 3.60 3,60 Coer= N/A WA Clog = N/A WA MINOR MAJOR Q. WA WA cis G...= WA WA cis MINOR MAJOR 0.= WA WA cis Ov= N/A WA cis MINOR MAJOR . Gm.= WA N/A fs ama= WA WA cis Curb Didentria Flow Analindis lCakuWaM MINOR_ MAJOR Clogging Coefficient for MdBpb Unis Cost= 1.25 _ _1.25 Clogging Factor for Multiple Units clog = 0.06 0.06 Curb Opening as a Weir (based on UDFCD -CSU 2010 Study) MINOR MAJOR Interception Wthnut Clogging C.. 7.21 27.59 cis Interception win Clogging 0,..= 6.76 25.87 ds Curb Opening as an critics (based on UDFCD -CSU 2010 Study) MINOR MAJOR InlarmptionwllteUGlogging Q.-I 18.10 1 23,69 ds Interceptbnwith Clogging o.= 16.96 2121 cis Curb Opening Capacity as eased Flow - MINOR MAJOR Interception WOoutcloggirg Gm,= 10.62 23.78 cts Interception in Clogging Gm.= 9.96 22.29 cis Resutling Curb m Opening Capacity clogged condition) 0..e= 6.76 2221 cis then Length L tam Street Flaw Spread (based on sheet O-AOow geometry) T tars Flow Depth at Street Craven J.". it Inlet Interception Capacity (assumes clogged condition) Q. Japacity IS GOOD for Minor and Major Stones(>O PEAK) GRrva RE... 10.00 10.00 15.0 31.2 0.0 1.5 .at t.>TCmwn nches HFHLV001.01 UD4nlet_v3.14_15 Type R.dsm, Inlet In Sump 3/21/2016, 10:36 PM 001 Gaoway Planning. Architecture. Engineering. NO. 16 COMBINATION INLETS DEPTH AND STREET CLASSIFICATION VARIES INLET IN A SUMP OR SAG LOCATION Project = Ent Ridge Second Filing Inlet ID = Triple No. 16 Combination Inlet 1 15' CL to FL {Lo (C)T H-Curb H-Vari Wo W WP Lo (G) Depression (addifional to mnOnnus gutter depression'a' from'0-AloW) er of Unt Inlet; (Grate or Curb Opening) r Depth at Fbwlms (Outside of local depression) , Information h of a Unit Grate I of a Unt Grate Opening Ratio for a Grata (typical nkes 0.15-0.90) ling Factor for a Single Greta (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifice Coefficient (typical value 0.60- 0.80) Opening Mormatbn It of a Unt Curb Openng a of Vertical Curb Opening in Inches 4 of Curb Orifice Throat in Inches of Throat (sea USDCM Figure ST5) Width for Depression Pan (typically tie gutter wilth of 2 feet) ling Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 2.3-3.7) no Coe0icient for Multiple Units no Factor for Multiple Units Capacity as a Weir (based on UDFCD -CSU 2010 Study) Piton without Clogging goon with Clogging Capacity as a Orifice (based on UDFCD -CSU 2010 Study) piton without Cbgorg piton with Clogging Capacity as Mfaed Flow otbn without Cbggr g option with Clogging send for Multiple Units for Multiple Units s a Weir (based on UDFCD - CSU 2010 Study) nit Clogging l Clogging s an Office (bused on UDFCD -CSU 2010 Study) ed Clogging Clogging :aoacity as Mixed Flow Clogging t Street Flow Spread (based on sheet O,41tow geometry) t Flow Depth at Street Crown Inlet Interception Capacity (assumes clogged condition) pacify IS GOOD for Minor and Major Storms (>Q PEAK) MINOR MAJOR trial Type = a.= inches No = PonCiig Depth= inch. MINOR MAJOR U Ova'ride'... I. (Q)= Wo= h= Cn(G)= C. (G)= C.(G)= MINOR MAJOR L.(C)= 3.00 300 fee H. 6.50 6.50 I. Hw 5.25 5.25 im 0.00 0.00 del Theta = 2.00 2.00 fee We= C�(C)= 0.10 0.10 C.(C)= 3.70 3.70 C.(C)= 0.66 0,66 MINOR MAJOR Coef= 1.75 1.75 Clog = 0.29 0.29 MINOR .MAJOR Q. 4.76 8.51 cis 0- 3.37 6.03 cls MINOR MAJOR 0a= 15.58 17AG cis 0m= 11.03 12.37 cfs MINOR MAJOR Qm= 7.75 10A7 cis Its Q_= 5,49 7.T] Q feel feet Cost = Clog= Q.,= a- 01= Qa= MINOR_ MAJOR 1.00 1.00 0.D6 006 MINOR_ MAJOR 2.13 4.69 cfs 2.01 4A3 CIS MINOR MAJOR 16.06 17.55 cis 15.17 76.58 cfs cl- Q-= MINOR MAJOR 6.03 7.80 �cfs 4.75 T37 cis L T d.. Q. 9.00 9.00 5.0 208 0.0 1.4 ,at T-Cmwn chea e v 7 00 1.73 .31 R((,O .50 760 00 Daman No. i6 Combination 2.00 2.00 3 3 5.12 6.50 HFHLV001.01_UD-lnlet_v3.14_Ouad No 16 Combo-15 CL to FL.vlsm, Inlet In Sump 312212016, 11:43 PM ' INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = Quad No. 16 Combination Inlet 1 15' CL to FL X-Lo (C)-,1 HLurb H-tact Wp Wp W Lo (G) of Inet Depression (additional W confruous gutter depressian'a' from')-AJbW) mr of Unit (Nets (Grate or Cub Opening) r Depth at Flowline (outside of local depression) r trrfemednn T of a Unit Greta r of a Urdt Greta Opening Rat. for a Grate (typical values 0.15-0.90) ling Factor for a Single Grata (typical value 0.50 - 0.70) i Weir Coefficient (typical value 2.15 - 3.60) i Orifice Coefficient (typical value 0.60 - 0.80) Opimi g Information h of a Uric Curb Opening A of Vertical Curb Opening in Inn es it of Curb OnFce Throat in Indies r of Throat (see USDCM Figure ST-5) Width for Depession Pan (typically fho gutter WdM of 2 feet) ling Factor fora Single Curb Opening (Typical wWe 0.10) Opening Weir Coefficient (typical value 2.3-3.7) ng CoeOicierd for Multiple Units ng Factor for Multiple Unts Capacity as a Well (based on UDFCD - CSU 2010 Study) rption w its ut Clogging ipoon with Clogging Capacity as a Oraka (based on UDFCD - CSU 2010 Study) rption wfbout Clogging rption win Clogging Capacity as Mixed Flow rption without Clogging rption with Clogging thins Grab Ca uscity (assumes cloaaed condalonl .irg Goeffidert for Multiple Units ung Factor for Mreiplo Unto Opening as a Weir (!rased on UDFCD -CSU 2010 Study) aptionwithoutClogging Won whir Clogging Opening as an Drake (based on UDFCD -CSU 2010 Study) soon.11nout Clogging option with Clogging Opening Capacity as Mixed Flow option w itiout Clogging option wiM Clogging train Length fare Street Flow Spread (based on sheet )-Aaow geometry) fart Flow Dept, at Street Crown Inlet Interception Capacity (assumes clogged condition) Inel Type a. No Ponding Depth r 41QI W. A, G (G)' C. (G) C.(G) MINOR MAJOR Denver No. 16 Combirunon 2.D0 2.00 4 4 5.12 fi.00 MrNnn uarno 3.00 3,00 1.73 173 0.31 0.31 0.50 0.50 3.60 3,60 0,60 0.60 MINOR MAJOR 3.00 3.00 cMo Q override Depths Set 3eI T(C)= �(C)= %=(C)= 0.10 210 370 O66 3.7() 0.66 MINOR MAJOR Cod 1.88 1Sfi Clog = 0.24 0.24 MINOR MAJOR Qr= Q- =1 Q. = Q. 5.91 1 8.69 ids 4.52 1 6.65 cis MINOR MAJOR 20.77 22.40 Ids 15.89 17.14 ids MINOR MAJOR MINOR MAJOR Coef= 1.25 1.25 Clog = 0.05 0.05 MINOR MAJOR Q. •••2.84 •• ••-•4.64 cis )., = 2.69 4.59 cts MINOR MAJOR Q. 21.42 22.70 afs Qo= 20.30 21.52 cfs MINOR MAJOR ' D- = 6.36 B. Oa.s = 2.fi9 d. tune L T dcaowx aa: 12,00 12.00 ISO 18.7 0.0 0.9 set t.>TCmwn robes IHFHLV001.01_U6lnlet J3.14_Quad No 16 Combol5 CL to FL.Asm, Inlet In Sump 3J2212016, 11:41 PM ' INLET IN A SUMP OR SAG LOCATION PnoJect = East Ridge Second Filing trial ID = Quad No. 16 Combination Inlet 115' CL to FL {--Lo (C)T ' H-Curo H-Vert We Wp W '1 L. (G) of Inlet I Depression (additional to continuous gutter depression 'a'from'O-AIbW) as of Unt INits (Grata or Curb Opening) r Depth at Fbwline (outside of local depression) 1 Intarmation b of a Unt Grate I of a Unit Grate Opening Ratio for a Grote (typleal vabes 0.15-0.90) 1bg Factor for a Single Grate (typical vacs 0.50 - 0.70) u Weir Coefficient (typical vabe 2.15 - 3.60) e Orl Ceeffident (typical valve 0.60 - 0.80) Opening tr/ormazion :h of a Unit Curb Opening It of Vertical Curb Opening in Inches t of Curb Onfio, Times in Inches I of Throat I. USDCM Figure ST-5) Width for Depression Pan (typically the gutter wi lth of 2 feet) 14V Factor for a Single Curb Opening typical value 0.10) Opening Weir Coefficient (typical value 2.3.3.7) CoeBidentfor M WipleUnits Factor for Multple Units pacify ss a Web (lMaed on UDFCD -CSU 2010 Study) pn without Clogging sn Wth Clogging pacify as a Orifice (based on UDFCD - CSU 2010 Study) 3n wif ut Clogging on with Clogging pacify as lab ad Fbw . to without Clogging ,n with Clogging Inlet Type sa. No Ponding Depth L.(G). Wo' A. Ce(G). C. (G)' C.(G). MINOR MAJOR Derwar No. 16 Combina0on 2.00 2.00 4 4 3.00 .73 0.31 0.50 :1.73 3.60 0.60 MINOR MAJOR 3.00 3.00 C. (C) =1 370 law rFca at CI Garde Octets at Coed = 1.88 1.88 Clog = 0.24 0.24 MINOR MAJOR Ow = 5.91 10.56 cis 4.52 8.08 cfs MINOR MAJOR O' = 20.77 23.28 CIS Q. 21 15.89 17.81 ds r MINOR MAJOR Curb OparninaAnalysis (Calculat MINOR. MAJOR Cbgging Coefficient for Multiple Units Coat = 1.25 1.25 Clogging Factor for Multiple Units Clog =1 0.05 1 0.05 Curb Opening as a Weir(based ran UDFCD -CSU 2010 Study) MINOR MAJOR Interception without Cbgging G. 2.84 6.25 cis Interceptionwith Clogging 0..= 2.69 5.93 cis Curb Opening as an Orifice (bond on UDFCD -CSU 2010 Study) MINOR MAJOR Interception WiMut Clogging eo= 21A2 23.40 ds Interception With Clogging Q. 20.30 22.18 Is Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception Without Clogging O,oi= 6.71 10.40 d$ Interception with Cbgging Om. = 6.36 9.86 cis Resulting Curb Opening Capacity(assurrlea clogged condition) On..= 2.69 3.93 cis Resultant Street Conditions MINOR MAJOR Total Inlet Length L = 12.00 12.00 feet esula d Street Flow Spread (based on meet O-Allow geometry) T = 15.0 20.8 ft.>TCmwn esultant Flow Depth at Street Crown dcaowe =1 0.0 1.4 inches MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Q. = 6.51 12.62 cfe Is Inlet Camrev L9 rnnn for Minnr and Maim Stnrma 1>0 PEAKI Doan emn �rn= 100 100 IHFHLV001.01_UD-iniet_4.14_Duad No 16 Combo-15 CL to FLadsm, Inlet In Sump 3/2212016, 11:42 PM INLET IN A SUMP OR SAG LOCATION Project = Easl Ridge Second Filing Inlet ID = Quint No. 16 Combination Inlet 119 CL to FL {-Lo (C)-,f H-Curb H-Vert We W WP Lo (G) sn Information limpid) of Wet I Depression (additional to continuous guter depression's' frem'Q-Ar*W) ter of Unit Inlets (Grate or Cub Opening) r Depth at Fbwlire (outside of local depression) r Information in of a Unt Grate r of a Unit Grate Opening Ratio for a Grab (typical values 0.15-0.90) ling Factor for a Single Grate (typical rate 0.50 - 0,70) h Weir Coefficient (typical value 2.15 - 3.60) n Orifice CeeRicien (lypiral valve 0.50 -0.80) Opening Information M of a Uric Cub Opening 4 of Vertical Curb Openirg In Inches 1 of Curb Orfce Threat in Inches t of Throat (sea USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feet) )ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical role 233.7) Operng Orifice Coemtlen (typical value 0.60 -0.70) a Flow Analysis ICabubtedl Sing Coefficient for Multiple Units airg Factor for Mudoe Units r Capacity as a Wait (based on UDFCD -CSU 2010 Study) Be a Orals (based on UDFCD -CSU 2010 Study) out Cbggirg Clogging as G7&ad Flow Coefficient for Multiple Units Factor for Multiple Unts anbg as a Weir (based on UDFCD - CSU 2010 Study) as an Odfica (based on UDFCD - CSU 2010 Study) Capacity as Mixed Flow euu Clogging Clogging Inlet Type air No Pondirg Depth L. (G) W. A. Cr(G) C. (G) C.(G) La(C) H- Ht_x Theta Wp CG(C) C. (C) MINOR MAJOR Denier No. 16 Combination 2.00 200 5 5 Sd2 B.00 3.00 3,00 1.73 1.73 0.31 0.31 0.50 0.50 3.60 360 0.60 060 0 00 0.00. 2.e0 2.00 ales ' rJco 0 Garide Oeptlrs Bet set Coal = 1.94 Clog= A A 0.I MINOR MAJOR Q. = 7.05 10.37 cfs Q., = 5.68 8.36 ds MINOR MAJOR Q. 25.96 28.00 cfs C6 = 20.92 22.57 cfs MINOR MAJOR O,o ` 12.18 15.34 ds Qm. = 9.81 12.36 cts Coef -1 1.31 1.31 Clog= 0.04 O. 4 MINOR MAJOR 4 = 3.55 6.05 - cis Q-= 3.40 5.78 cis MINOR MAJOR 0.-1 26.77 1 28.38 cfs 0. = 25.60 27.14 uis MINOR MAJOR Ors= 8.39 11.27 cts Q-= 8.02 10.77 cis Oca.e = 3.40 5.75 eh at Length M Street Flow Spread (based on sheet 0.4gow geometry) nit Flow Depth at Street Crovm Inlet Interception Capacity (assumes clogged condition) ipacity, IS GOOD for Minor and Major Storms (>O PEAK) L T do rl na , ecunso 15.00 /5.00 15.0 18.7 0.0 0.9 Bet I.>TCmwn rhes HFHLVD01.01_UD4nlet_v3.14 Ouint No 16 Combo.tlsm, Inlet In Sump - 3121/2016, 10:50 PM ' INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = Quint No. 16 Combination Inlet 175' CL to FL 4'--Lo (C) t' ' HLurE H-Vert We Wp W LO (G) hifortmation OntollMINOR MAJOR Type of Intel Inlet Type = Denver No. 16 Cumemation Local Depristaon(addiOarel to mrnneus gutter degassicin'a'from 'O-Aloes) a.= 2.00 200 inches Number of Unl Inats(Grate or Cub Opermg) No 5 5 Water Depth at Fbwbne(outside of local depression) Pondlrg Depth= 5.12 6.50 incica Grata Information MINOR MAJOR 0 O.vrEe Depdus Lergth of a Udt Grate L. (G) = 3.00 3.00 Ifeet Width of a Unit Grate Wu = 1.73 1.73 feet a Opering Ratio for a Grata (typical values 0. 15-0.90) A. = 0.31 0.31 logging Factor for a Single Grata (typical vale 0.50-0.70) G(G)= 0.50 0.50 Grata Weir Coefficient(typical value 2.15-3.60) C.(G)= 3.60 3.60 Grata Critics Coefficient (typical value 0.60-0.80) C.(G)= 0.60 0.60 Curb Opening Information MINOR ' MAJOR Length of a Unit Curb Opening L. (C) = 3.00 3.00 feet Height of Vertical Curb Opening in Inches H„r= 6.50 6.50 inches eigN of Curb Orifice Throat In Inches H. = 5,25 5.25 inches rgb of Threat (see USDCM Figure ST-5) Theta = 0.00 0.00 degrees be Width for Depression Pan(typicaly the gutter width of 2 feet) We= 2.00 200 feet logging Factor for a Single Cure Openrg (typical value 0.10) G (C) = 0.10 0.10 ub Operirg Weir Coefficient(typical value 2.33.7) C.(C)= 3.70 3.70 ub Operng Ordi Coefficient (typical value 0.60-0.70) C. (C)= 0.66 0.66 (Cakulanhij MINOR MAJOR logging Coefficient for Multiple UrvN Coef = 1.94 Clogging Factor for Multiple Unts Cbg= 0.19 0AS Grab Capacity as a Weir (based on UDFCD-CSU 2010 Study) MINOR MAJOR Interception.0hout Clogging O„= 7.05 12.61 cis Interception with CloWirg O.a= 5.68 10.16 cis Grata Capacity as a Oraka (based on UDFCD - CSU 21110 Study) MINOR MAJOR Interception without Clogging Oa= 25.96 29.09 ids cts JrtercepUon with Clogging =1 20.92 23.45 Grab Capacity as liked Flow MINOR MAJOR Interception without Clogging Q. 12.18 17.24 cis Interception with Clogging Om, = 9 B1 13.89 its Resublog Grata Capacity (assumes clogged condtbn) Go,.0 = 5.68 10.16 cb Curb Opening Flow Jigualvinal,Ca let MINOR MAJOR Cbggirug Coefficient for Multiple Units Coat = 1.31 1.31 Clogging Factor for Multiple Units Clog = 0.04 0.04 Curb Opening as a Weir(based on UDFCD-CSU 2010 Study) MINOR MAJOR Interception without Clogging \ l qM= 3.55 7.02 cis Interception with Clogging 0.,= 3.40 7.48 Lf3 Cum Opening as an Orifice (based! on UDFCD -CSU 2010 Study) MINOR MAJOR INB�CBpllon witleu Clogging G.= 26.77 29.25 cis Inteuception with Clogging Q. 25.60 27.98 cis Curb Opening Capacity as Mhted Flow MINOR MAJOR Interception wiOeN Cbggirg On 8.39 13.01 eta Interception with Clogging Q-- 8.02 12.44 cts lResukt2 Curb Opening Capacity (assumes clogged condMon) Our =1 3.40 7.48 cfs at Length L it Street Flow Spread (based on sleet }Allow geometry) T it Flow Depth at Street Crown dcaowr Inlet Interception Capacity (assumes clogged condition) �. pacify l.9 GOOD for Minor and Mapr Storms(-0 PEAK) Oraviceeouum 15.00 15.00 15.0 20.8 0.0 1.4 i set I.>T-Crown etas ' HFHLV001.01_UD-Intel v9.14_Ouinl No 16 Combo.adsm, Inlet In Sump 312112016, 10:49 PM INLET IN A SUMP OR SAG LOCATION Project - East Ridge Second Filing - Inlet ID - Quint No. 16 Combination Inlet 17S CL to FL T-Lo (C)-/ HCurE H-Vert Wo Wp W La (G) Depression (additional to cantineus gutter depreesian'a' fmm'O-Ali er of Unit Inlets (Greta or Curb Opening) r Depth at Fbwore (outside of local depression) : Interrelation h of a Unit Grate : of a Unit Grew Opening Ratio for a Grate (typical wiles 0.15-0.90) ling Factor for a Sirgle Grain (typical vabe 0.50- 0.70) Weir Coefficient (typical value 2.15 - 3.60) Office Coefficient (typical value 0.60 - 0.80) Opening Information h of a Unit Curb Opering it of Vertical Curb Opening In Inches t of Curb Orifice Throat in Inches of Throat (see USDCM Figure ST-5) Width for Depression Pen (typically the gutter width of 2 feet) ling Factor fora Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 23.3.7) ng Coefficient for Multiple Units ng Factor for Multiple Units Capacity as a Weir (based on UDFCD - CSU 2010 Study) obon w itout Clogging :pion with Clogging Capacity as a Oreloe (based on UDFCD - CS 2010 Study) ption wood Clogging rption with Clogging Capacity as Mixed Flow ption widcut Clogging . :ption with Clogging ifg Coefficient for Multiple Units ifg Factor for Multple Urite Opening Be a Weir (based on UDFCD -CSU 2010 Study) option without Clogging option with Clogging Opening as an Orifice (based on UDFCD - CSU 2010 Study) .peon w1Mut CloWin, - Bption Win Clogging Opening Capacity as Mixed Flow option wi0put Clogging spoon with Clogging [net Length tent Street Row Spread (bail an sheet O-AOow geometry) Iniet Type ate,: No Pondifg Depth L.(G) We A. C, (G) C (G) C. (G) L,(C) H_ , I Hines Thew We G (C) C. (C) MINOR MAJOR Deriver No. 16 Combination 2.00 2,00 5 5 5.12 7.00 3.00 3.00 1.73 1.73 0.31 0,31 0.50 0.50 3.60 3.60 0.60 0 60 5.25 5.25 0.00 0.00 ropes nchC3 (a Owmrbe Di Bet eel MINOR MAJOR Coal= 1.94 1.94 Clog= 0.19 0.19 MINOR MAJOR O, 7.05 15.11 cis Q.. = 5.68 12.18 cts MINOR MAJOR Da = 2596 30.15 cis Q. = 20192 24.30 cis MINOR MAJOR Om:= 12A8 19.21 cfs Om. = 9.81 1 15.48 cis Inlet Interception Capacity (assumes clogged condition) aacity IS GOOD for Minor and Major Storms (>Q PEAK) e Coef= Cbg= Q. = MINOR MAJOR 1.31 1.31 0.01. 0.04 MINOR MAJOR _ 3.55 _ 9.86 cw Q..= 3.40 9.43 cfs Dy = Ov° MINOR MAJOR 26.77 30.10 cis 25.60, 28.79 efS MINOR MAJOR L T dcaowx Qa' 15.00 '- 15.00 15.0 22.8 0.0 1.9 :et >TCrown clew ' HFHLV001.01 UD-Inlet_73.14 Quint No 16 Combo.bsm, Inlet In Sump 3/2112016, 10:51 PM INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID a Triple No. 16 Combination Inlet 118' CL to FL ,f--Lo (C)-K HCurb H-Van We W WP Lo(G) m Information Onolrtl of Inlet Inlet Type' Depression (additional to wntinuous gutter depession'sfmm'0-AIbW) aa.i mr of Unit Inlets (Grata or Curb Opermw No r Depth at Flo kits (outside of Jowl depression) Pending DepU r bilornatbn n of a Uric Grate L, (G) I of a Unit Great W. Opening Ratio for a Grate (typical vales 0.15-0.90) h.m' ling Factor for a Single Grata (typical value 0.50 - 0,70) G (G) i Web Coefficient (typical value 2.15 - 3,60) C. (G): i Onfiw Coefficient (typical value 0.60-0.80) Co (G) Opening Information h of a Unit Curb Opening L. (C)' it of Vertical Crab Opening in Inches H„.: t of Curb Orifice Tfsoat in Inches He.s' i of Thoat (see USDCM Fgure ST-5) Thera Width for Depression Pan (typically the guter width of 2 feat) Wp' ling Fadur for a Single Curb Opening (typical value 0.10) Cr (C) Opining Weir Coefficient (typical value 2.3-3.7) C. (Cj: Denver No. 16 Combination 2.00 2.00 3 3 5.84 6 W 3,00 300 1.73 1.73 0.31 0.31 0.50 0.50 3.60 3.60 0.60 0.60 MINOR MAJOR 0.10 0.10 3.70 3.70 Y s vice Q Override Depths 3eI aet rig Caefficient for Multiple Units cost -1 1.75 1 1�75 rig Factor for Multiple Units Clog = 0.29 0.29 Capacity as a Weir(based on UDFCD -CSU 2010 Study) MINOR MAJOR iption without Clogging d i = 6.55 7.00 ds iption with Cbggbg 0.. = 4.64 4.96 cfs Capacity as a Orfte (based on UDFCD -CSU 2010 Study) MINOR MAJOR iputen without Clogging do= 16.58 16.80 ds iption with Clogging Q,. =1 11.75 11.90 ds Capacity es lOsad Fbw MINOR MAJOR :ption without Clogging 0--1 9.38 1 9.76 CIS iption with Clogging 0„a =1 6.65 1 6.91 ds Irg Coefficient for MtaJ* units Coef -1 1.W 1.00 Ing Factor for Maple Units Clog =1 0.06 if 0.06 Opening w a Weir(based on UDFCD-CSU 2010 Study) MINOR MAJOR eption without Clogging Q". 3.32 3.63 ds aplian with Clogging 0„= 3.14 3.43 cis Opening as an critics (based on UDFCD -CSU 2010 Study) MINOR MAJOR sownwithoia Clogging 0.= 16,86 17.03 ds aphonwilh Clogging 0a= 15.92 16.08 ds Opening Capacity as Mbwd Flow MINOR MAJOR epticnwiOoui Clogging 2,42 23 ds sptionwith Clogging 0,,,.= 6.08 6.38 ds lung Curb Opening Capacity (assumes clogged condition) 0cw = 3.14 - 3A3 cis Wet Length L ant Street Flow Spread (based on sheet O-AOow geometry) T aN Flow Depth at Street Crown dcaawu' II Inlet Interception Capacity (assumes clogged condition) G1a' 7awcclty IS GOOD for Minor and Major Storms pit PEAK) 0rrwa eseuao` 9.00 9.00 18.0 18.7 0.0 0.2 MINOR MAJOR ].O1 7.58 1.00 1.00 eet L>T-Crown 'dws HFHLV001.01_UD4nlel_v3.14_Trple No 16 Combo.ldsm, Inlet In Sump 3/2212016. 11:51 PM 1 ' INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = Quad No. 16 Combination Inlet 118' CL to FL .f-Lo (C)-� HCu2 H-Van Wo Wp W ' Lo (G) ip-InfoLiDffiCgIl,OnwAl MINOR MAJOR of lniel Inlet Type = Demer No. 16 Combination Depression(additional to continuous gutter depression'sfrom'0-AIloW) era= 2.00 200 inches or of Unfit Inieb (Grate or Cub Opening) No = 4 4 r Depm at Fbwkm(outside of local dimmivilon) Forcing Oeplh= 5.84 5.84 inohco I1 504 .0 n MINOR MAJOR U Qernda Deems h of a Unit Gials L.(G)= 3.00 of a Unit Grate W. 1,73 teat Opening Ratio for a Grate (typical rah os 0.150.90) A.v = 0.31 ling Factor for a Single Grate(typical value 0.50-0.70) G(G)= 0.50 M3,Mfeet Weir Coemcient(typical vahe 2.15-3.60) C. (G)= 3.60 Onfice Coefficient(typical value D60-0.80) - C.(G)= 0.60 Opening Information MINOR MAJOR h of a Unit Cum Opening L,(C)= 3.00 3.00 feet a of VeNtal Cub Opening in hoes H,,. = 6,50 6.50 inches a of Curb Orifice Throat in Irutes ll r = 5.25 5.25 irties of Throat (sae USDCM Figure ST-5) Theta = 0.00 0.00 degrees fdihfor Depression Pan(typicay the guitar width of 2 feet) Wu= 2.00 200 feet ling Factor for a Single Cub Opening (typical value 0.10) G (C)= 0.10 0.10 Opening Weir Coefficient(typinal value 2.3-3.7) C..(C)= 3.70 3.76 ng Coefficient for Multiple Units ng Factor for Multiple Units Capacity as a Weir(based on UDFCD - CSU 2010 Study) pfion without Clogging pfiin wim Clogging Capacity as a critics (based on UDFCD -CSU 2010 Shutt) pion without Clogging p5on wim Coggin, Capacity as IAssd Flow pfion wi0eut Clogging pdon will, Clogging Coefficient for Multiple Units Factor for Mcaipb Units wining as a Weir(based on UDFCD -CSU 2010 Study) on wiffeut Clogging on wim Clogging aNng as an OrBoe (based on UDFCD - CSU 2010 Study) on vitrout Coggin, on with Clogging anmg Capacity as Mired Flow on w itout Clogging on with Clogging et Lergm A Street Flow Spread (based on shoal O-AOow geometry) t Flow Depth at Street Crown Inlet Interception Capacity (assumes clogged condition) oecav IS G000 for Minor and Maio, Stoops b0 PEAKI Coat = Clog = 0.,= 0..= Oa= 1.88 1.88 0.24 0.24 MINOR MAJOR 8.13 1 8.13 cts 6.22 6.22 Ors MINOR MAJOR 22.11 22.11 lds Q. 16.91 16.91 cfs MINOR MAJOR 0.-1 12.07 12.07 cis 9.23 923 cfs 622 6.22 efs _MINOR MAJOR Coat = 1.25 1.25 clog= 0.05 0,05 0- MINOR MAJOR 4.43 4,43 cfs 4.20 4.20 cis Oe= Oa= 0.,;= 0,..= MINOR MAJOR 2247 22.47 cts 21.30 21.30 Ors MINOR MAJOR 8.58 B.SB cis Its 8.13 8.13 L T dCRMN a. 12.00 12.00 180 18.0 0.0 0.0 set niches ' HFHLV001.01_Udlnlet_v3.14_Triple No 16 Combo.Asm, Inlet In Sump 3r=016, 11:52 PM ' INLET IN A SUMP OR SAG LOCATION Project - East Ridge Second Filing Inlet ID = Quint No. 16 Combination Inlet 118' CL to FL ./Lo (C)-,/ ' HCurb H-Vert We Wp W ' Lo (G) Depression (additierel to mriti uous gutter depression'a' fmm'0-AIbW) or of Unit India (Grate or Curb Opening) r Depth at Fbwtine (outside of bcal depression) r Infam atbn h of a Uric Grate i of a Unt Gate Openng Ratio for a Graft, (typical rakes 0.15-0.90) lira Factor for a Single Gate (typical value 0,50 - 0.70) Weir Coefficient (typical value 2A5 - 3SO) Orifice Coefficient (typical value 0.60 - 0.80) Opening Information h of a Unt Cure Operirg d of Vertical Curb Opening in Inches t of Cure Orifice Throat in Inches of Throat I. USDCM Fig" ST-5) Width for Demssion Pan (typically the gutter width of 2 feet) ling Factor for a Single Curb Opening (typical wake 0.10) Opening Weir Coefficient (typical vale 2.3.3.7) MINOR MAJOR Inist Type = Denver No. 16 Combination eey= 2.00 1 200 inches NO =I 5 1 5 Pording Dep[h= 5.84 6,00 inctca MINOR MAJOR Qiende Depths L.(G)= 3.00 3.00 fee W. 1.73 1.73 feel A,am= 0.31 0.31 G (G) = 0.50 0.50 C„ (G)= 3.6 33.60 C.(G)= 0.60 '0.60 MINOR MAJOR' ' L.(C)= 3.00 3.00 feet H,aa = 6.50 6.50 inches Ha 5.25 5.25 - inches Theta 0.00 000 degrees Wv= 2.00 2D0 feet G(C)= 0.10 0.10 C. (C) = 3.70 3.70 Grate Flow Analysis MINOR MAJOR Clogging Coefficient for MWfiple Units Coef= 1.94 1.94 Cbggirg Factor for Muliple Unts Clog = 0.19 0.19 Grats Capacity as a Wait (based on UDFCD -CSU 2010 Study) MINOR MAJOR InerceptbnwithoutCbggirg 4.= 9.71 10.37 cis INereption win Cbggbg tie= 7.82 8.36 ds Grate Capacity as a OrBbe(based on UDFCD -CSU 2D70 Study) MINOR MAJOR Interception without Clogging 0a= 27.64 28.00 Icts, Interception Win Cbggbg 0®= 22.28 22.57 cis Gab Capacity as lased Flow MINOR MAJOR InterceptionwitnoutClogging G--1 14.74 1 15.34 cis Interception Win Clogging 0- =1 11.88 1 12.36 cis Resulting Grate Capacity (assumes clogged condition) 1 = 7.82 8.36 cis Curb Ooenlno Flow Analysis lCalculated - MINOR MAJOR Clogging Coefficient for Mrlliple Urals Cost = 1.31 1.31 Clogging Factor for Mucple Unib clog= 0.04 0.04 Curb Opening as a Weir(based on UDFCD -CSU 2010 Study) MAJOR Interception without Clogging Qw= _MINOR 5.53 6.05 cis Interception Win Clogging 0.a= 5.29 5.78 cis Curb Opening as an Orfice (based on UDFCD-CSU 2010 Study) MINOR MAJOR Interception without Clogging - Oa= 28.09 28.38 is terception with Clogging Q. 26.87 27.16 cis Openingurb OpeniCapacity as Mbed Flow MINOR MAJOR nterception withoutClogging [Interception 0,,.= 10.72 11.2] cis with Clogging 0,,,,= 10.26 10.77 cis trial Length Unit Street Flow Spread (based on sheet O-A low geometry) Ant Flow Depth at Sli Crown d Inlet Interception Capacity (assumes clogged condition) :apacily IS GOOD for Minor and Major Storms (>Q PEAK) L -1 16.00 1 15.00 feet T= 18.0 18.7 8.>TCmwn 4x . =1 0.0 0.2 irides MINOR MAJOR Qa = 11.83 12.75 C1S Q wxae .. 1.00 1.00 cis ' HFHLVD01.01_UD-Inlet v3.14 Tdple No 16 Combo.bsm, Inlet In Sump 312212016, 11:52 PM INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = Triple No. 16 Combination Inlet 1 25' CL to FL {-L. (C)-A HCurb H-Nett Wo Wp W Lo (G) Depression (additional to caminuous gutter devession'a' tram'G-AIbW) er of Unit (Nets (Grate or Curb Opening) r Depth at Fbwline (aublde of local depression) . Information h of a Unit Grate i of a Unit Gram Operng Ratio for a Grate (typical values 0,15-0.90) ling Factor for a Single Grate (typical raee 0.50-0.70) Weir Coefficiem (typical vabe 2.15 - 3.W) r Odfice Coefficient (typical value 0.60 - 0.80) C onfng Information h of a Unit Curb Opening it of Vertical Curb Opening in Inches t of Curb Orifice Throat in Inches n i of Throat (see USDCM Fig. ST-5) Width for Depression Pan (typically the gutter width of 2 feet) ling Factor for a Single Curb OWrdnq (typical value 0.10) Opening Weir Coefficient (typical value 2.3.3.7) ng Coefficient for Multiple Urim; ng Factor for Multiple Units Capacity as a Weir (based on UDFCD -CSU 2010 Study) rplion without Clogging rplon with Clogging Capacity as a Ombe (based on UDFCD - CSU 2010 Study) rplion widgut Clogging rplion with Clogging Capacity as Mired Flow :lotion wilteM Clogging rplion with Clogging i g Coefficient for Multiple Units . ring Factor for MWiple Ums Opening as a Weir (baaad on UDFCD - CSU 2010 Study) spoon without Clogging sption WM Clogging Opening as an Critics (based on UDFCD - CSU 2010 Study) option vriMout Clopping eption Win Clogging Opening Capacity as Mired Flow MINOR MAJOR Inet Type = Denver No. l 6 Combiretlon aaw= 2.W 1 2.00 inches No = 3 1 3 Pondirg DapM= 6.00 &00 inclv:o O Uwrloe DepMs MINOR MAJOR L.(G)= 300 3.00 feet n W.= 1.73 173 feet A.ru= 0.31 0.31 Ci(G)= 0.50 0.50 C. (G)= 3.60 3.60 C.(G)= O.60 OW MINOR MAJOR L. (C) =1 3.00 300 ,n. H= 6.50 lem 6.50 nces 11,Oe=5.25 525 nchesTheta= 0.00 0,00 eoreas Co (c) =1 0.68 I 0=66 1 MINOR MAJOR Cost = 1.75 1.76 Clog = 0.29 0.29 MINOR MAJOR 0.= 7.00 7.W cis O.. = 4.96 1 4.96 Ids MINOR MAJOR 0. 16.80 16.80 cis Q. = 11.90 11.90 cis MINOR MAJOR Qm,= 9.76 9.76 cis 0.,.= 6.91 6.91 cis cost = 1.00 too Cbg= 0.06 O.W MINOR MAJOR Q,a= 3.63 3.63 cis 0„= 3.43 3.43 cfs MINOR MAJOR Qo = 17.03 17.03 cis Q. = 16.08 16.08 cis MINOR MAJOR Q..I 616 1 6.76 cis Qom =I El 1 6.38 cis Resulting Curb Opening Capacity (assumes clogged condition) .+o.e ` -J..Jl a.ea 1. Rewbanl $"at Conditions MINOR MAJOR Tout Intel Lenglit L= 9.00 9.00 feat enson: Street Flow Spread (based! on sheet "Now geometry) T= 18.7 18.7 it Resultant, Flow Depth at Street Crown dcaowu= OO 0.0 Inches MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) 7.56 7.56 Cs Inlet Capacity IS G0O0 for Minor and Major Starms(>Q PEAK) O.rwcasounsp= 1.00 1.00 cis ' HFHLVD01.01_UD4nlet_v3.14_Quad No 16 Con l5 CL to FL.dsm, Inlet In Sump 3122/2016, 11:46 PM, INLET IN A SUMP OR SAG LOCATION Project = East Ridge Second Filing Inlet ID = Six No. 16 Combination Inlet 1 25' CL to FL T-Lo (C)T HCurb H-Vert We Wp W L. (G) Informatimt Ono MINOR MAJOR type of IMet Inlet Type = Derwer No. 16 Combination -ocal Depression(addi8ar21 to oarleneus gutter depression'a'fmm'O-AIbW) 3y - 2.00 200 inches Number of Unit trials (Grate or Cub Operirp) No= 6 6 ater Depth at Fbwene (outside of local d epmlo ssn) Polling Depn = 6.00 6.00 inchcs Grate Inlemefbn MINOR MAJOR � Depths Lergn of a Unit Grate Lo (G) = 3.00 300 feet dth of a Unit Grate Wo' 1.73 , 1.73 feet me O WNrg Ra0e for a Grate (typical values 0.15-0.90) A. = 0.31 0.31 Clogging Factor for a Single Grain (typical vale 0.50-0.70) G(G)= 0.50 0.50 Grate Weir Coefficient (typical vaWa 2.15.3.60) C„(G)= 3.60 3.60 Grate Onfice Coefficient (typical value 0.60 -0,80) C. (G) = 0.60 0.60 Curb Opening Information MINOR MAJOR Length of a Unll Cub Opering L.(C)= 3.D0 300 feet eight of Vertical Cub Opening in Inches ff. . 6.50 6.50 inches Height of Curb Orifice Tlmat in Inches _ Hw,w = 5.25 525 Inches Angle of Tfroat (see USOCM Fig" ST-5) Tleta = 0.00 000 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wc= 2.00 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) G(C)= 0.10 0.10 Curb Opening Weir Coefficient (typical value 2.3.3.7) C.(C)= 3.70 370 Curt, Opening Onfice Caa0idOnt(typical value 0.60-0.70) C.(C)= O66 O66 Grate Saw Analysis lCalculateal MINOR MAJOR Cbggirg Coef0ciM for Multiple Units cost =1 1.97 1 1.97 Clogging Factor for MWpb Units Clog = 0.16 0.16 Grata Capacity as a Weir (based on UDFCD -CSU 2010 Study) MINOR MAJOR Interception winout Clogging Qw= 12.06 12.06 cis Interception will Clogging O„= 1008 10.08 cis Grab Capacity as a Orifice (based on UDFCD - CSU 2010 Study) _MINOR MAJOR Inerceponn wtbeut Clogging Q"= 33.60 33.60 cis Interception with Clogging Oa= 28.08 28.08 cis Grab Capacity as Mixed Flow MINOR MAJOR Irteicep0on widen Clogging Ow = 16.12 11; j2 cis Interception with Clogging � 0,-= 15.14 15.14 CIS asu8hng Grab Capacity (assumes clogged coMebn) Dam = 10.08 10.08 cis Curb OpentraFbw Analysis (CalculMedl MINOR MAJOR Clogging Coefficient for Multiple Units Goat = 1.31 L31 Clogging Factor for Multiple Un s Cbg = 0.04 0.04 Curb Opening as a Weir(based on UDFCD -CSU 2010 Study) MINOR MAJOR Interception w itout Clogging DM= '726 7.26 cis Interception win Cbgging 0,,.= 6.99 6.99 cis Curb Opening as an Orifice lbaed on UDFCD -CSU 2010 Study) MINOR MAJOR Interception witout Clogging Ca= 34.06 34.06 cfa Interception with Clogging Q. 32.82 32.82 cis Curb Opening Capacity as Mixed Flow MINOR MAJOR Itemeption without Clogging Ow= 13.52 13.52 cis Interception Win Clogging 13.03 13.03 Ms Resultant Conditions MINOR MAJOR Total Inlet Length L=1 18.00 18.00 feet Resultant Street Flaw Spread (bssed on sheet "Now geometry) T=I 18.7 1 18.7 fl Resultant Fbw Depth at Street Crown dcxow.=j 0.0 1 0.0 inches MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Qc = 15.39 1139 CIS Inlet Capacity IS GOOD for Minor and Malay Storms(>Q PEAK) DwxnEauen= 1.00 1.00 is HFHLV001.01 UD-Inlet v3.14 Quad No 16 Combo-15 CL to FL.xism, Inlet In Sump 312212016, 11:47 PM INLET IN A SUMP OR SAG LOCATION Project East Ridge Second Filing Inlet ID = Seven No. 16 Combination Inlet 1 25' CL to FL ./-Lo (C)-K H-CurO H-Ve we Wp W L. (G) MINOR MAJOR of Irist Inlet Type = Derwer No. 16 Combination Depression (additional to continuous gutter depression'ofrom'0-A0oW) avw= 2.00 1 200 irdes oer of Unit Inlets (Grata or Cub Opening) No = ] 1 7 r Dept, at Fbwlne (outside of burl depression) Pending Depth = 6.00 6.00 and oo r Information MINOR MAJOR 0 O.erride Depths T of a Unit Grale - Lo(G)= 3,00 3,00 feel i of a Unit Grate W. = 1.73 1.73 feet Oaring Ratio for a Gran (typial values 0.15.0.90) A. 0.31 0.31 Ling Fedor for a Single Grate (typical value 0.50-0.70) G(G)= 0.50 0.50 i We Coeffident(typical value 2.15-160) C.(G)= 3.60 3.60 i Onfice Coefficient(typiml value 0.60-0.8U) C.(G)= 0.60 060 Opening bformadun MINOR MAJOR :h of a Unit Curb Doering - Lo(C)= 3.00 3,00 feet A of Vertical Cub Opening in Inches H„wr = 6.50 6.50 inches t of Curb Orifice Throat in Indsas Hw,e = 5.25 5.25 inches , of Throat I. USDCM Figure ST-5) Theta = 0.00 0.00 degrees Width for Depression Pan (typically the gutter v dth of 2 feet) WPM 2.00 2.00 feel Ping Fedor for a Single Curb Clearing (typical wire 0. 10) G(C)= 0.10 0.10 Opering Weir Coefficient (typical raA 2.3-3.7) C,.(C)= 3.70 3.70 rg Coefficient for Multiple Units ng Fedor for Multiple Units Capacity n a Weir (based on UDFCD -CSU 2010 Study) iption Wit,out Cbgging Iption with Clogging Capacity as a Orifice (based an UDFCD - CSU 2010 Study) :ptbn without Clogging Ipbon wit, Clogging Capacity as Mixed Fbw :ption Without CbWing ,lotion with Clogging Itrg Coefficient for Multiple Units lug Factor for Multiple Unts Opening as a Weir (based on UDFCD -CSU M10 Study) option without Clogging epibn witn Clogging Opening man Orviea (based on UDFCD -CSU 2010 Study) option w avautCbggirg option with Clogging Opening Capacity as Mixed Flow eption withoutClogging aldion with Clogging vial Length lent Street Flow Spread (based an sheet O Arow geometry) tant Flow Depth at Street Crown it Inlet Interception Capacity (assumes clogged condition) rapacity IS GOOD for Minor and Major Storms (>0 PEAK) Cost = Clog = 0.= 0-= Oo = 0„ = MINOR MAJOR cis 1 cis ds ds 1.98 1.98 0.14 0.14 MINOR MAJOR 13.74 13.74 11.80 11.80 MINOR _ MAJOR 39.20 39.20 33.66 33.66 Cost= Clog= 0.= 0„= 1.33 1.33 0.03 0.03 MINOR MAJOR 8.47 8.47 cis Il 8.20 ds Do= Ca = MINOR MAJOR 39.73 39.73 cis 3847 3847 ds Mcw=I 8.20 I 8.20 id% L = MINOR 21.00 MAJOR 21.00 feet T=I 18.7 18.7 0 cl o . -1 0.0 0.0 inches MINOR MAJOR Q. a 18.03 18.03 CCIS HFHLV001.01_UD-Inlel_0.14_Ouad No 16 Combo-15 CL to FL.bsm, Inlet In Sump 3rM2016, 11:48 PM Galloway Planning. Architecture. Engineering. STREET CAPACITY CALCULATIONS Gaoway Planning. Architecture. Engineering. ALLEY SECTION MINOR AND MAJOR STORM EVENTS ALLEY OPTION I DRAINAGE TO ONE SIDE 6 20 ROW 9 BACK OFCUtB TO BACKOFCORB SIDE TRER OTW DASED ON NGRCRAO �u•1l SEE RD PEP FOR MORE DETAIL) I ENT PROPOM PAVEMPROPOSIWE ® MON MR) OOlALSE ".) e U m c 1 C s E 0 0 x > coo 000 000 o 0 .1 0000 O 00 m a _m 2, a u .mrm mmm m a r Pn o,mn r N rym a, O m N N C N N e N O N c+ N e N N tid N N r' vi mi N e- �aU m W .Q q C S O _q O DU T m P m m o V LL m O C y m LLg m 10 N 0Nm 0tm7 0mN 0Om 0•N- 0mm 0•10- 0OimLl 0r0 0itm�t 0mq 0 O.9�Pqq 2 ZO00 Oq m m r M 6 Tl m m m r m r m o, w r m m r w N h m aU €sue = O I1 • J O O O O O C O O O O O O O O O O O m m> 0 u O O O O O O O O O O 00 U o m m .. m fLr m - m nai Din �u vi � LL m m m m m m� m (7 - d - - O - 7m J D O Sq�m mm 7 rm mmm m N r,p (•lmmm OO J Q L m m �- m m m m m m m 0 w N m O m C` ❑ D u a o g O O ij m o N N m E 7-Do!mcm ^I � � .- N .- Cl vm N •' �n Cl � nmlom N � lV m m o N �'f u> O m m m m m m m m 0 gl 9 N m L m m m g m aaa aaa aaa a aaaa aaaa as mmm mmm mmm m mmmm mm>mn mm aa`a aaa` aaa` a aa`a� a`�an. LLa w m LL U m m m Im m N m m m m m m m m m N m m m 1(1 m Im m m m m m m m Im L m m m m m m m m m m m m m m m m m m m m m Em m m aaa m m m aaa m m m aaa m a m m aaaa m m m aaaa m m m m m as Z m m m m m m 0 m 0 m m m m m m m m ym m m O m m m m m m m m N m R t0 m m m m m m m m C a O_ t7 N m m m r m N N V m r N_ t7 V_ m_ O m Q Q Q m mm U U U LL 0 (DU' 0 'P 1 Minor and Major Storm Events Alley Section . ;Project Description Friction Method Manning Formula Solve For Discharge Input Data Channel Slope 0.00600 ft/ft Normal Depth 0.51 ft Section Definitions [ S' tation (ft) Elevation (ft) -0+08 100.16 0+00 100.00 0+17.4173 99.65 0+18.584 99.54 0+20 99.93 0+28 100.09 Roughness Segment Definitions Roughness ffi Start Station Ending Station Coefficient (-0+08,100.16j (0+28,100.09) 0.016 NOTE: For the alley section shown on the previous page: - 99.93 is the top of the curb (i.e., no easement encroachment) - 100.08 is the approximate water depth at the easement line with encroachment. Channel Slope Water Surface Wetted Perimeter (ft/ft) Elevation (ft) Discharge (ft3/s) Velocity (ft/s) , Flow Area (ft') (ft) Top Width (ft) Top of Curb 0.00600 99.93 5.59 2.11 2.65 16.71 16.64 0.00600 99.98 7.85 2.18 3.61 21.71 21.64 0.00600 100.03 11.06 2.30 .4.82 26.71 26.64 @ Easement Line 0.00600 100.08 15.32 2.44 6.27 31.71 31.64 0.00650 99.93 5.82 2.20 2.65 16.71 16.64 0.00650 99.98 8.17 2.26 3.61 21.71 21.64 0.00650 100.03 11.51 2.39 4.82 26.71 26.64 0.00650 100.08 15.95 2.54 6.27 31.71 31.64 Bentley Systems, Inc. Haestad Methods SoB kftq:fftwMaster V81 (SELECTseries 1) [08.11.01.03] . 3120/2016 1:37:45 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 1 of 4 J Minor and Major Storm Events j Alley Section Input Data Channel Slope Water Surface Wetted Perimeter jWft) Elevation (ft) Discharge (ft'/s)` Velocity (ftls) Flow Area (ft') (ft) Top Width (ft) 0.00700 99.93 6.04 2.28 2.65 16.71 16.64 0.00700 99.98 8.48 2.35 3.61 21.71 21.64 0.00700 100.03 11.95 2.48 4.82 26.71 26.64 0.00700 100.08 16.55 2.64 6.27 31.71 31.64 0.00750 99.93 6.25 2.36 2.65 16.71 16.64 0.00750 99.98 8.78 2.43 3.61 .21.71 21.64 0.00750 100.03 12.37 2.57 4.82 26.71 26.64 0.00750 100.08 17.13 2.73 6.27 31.71 31.64 0.00800 99.93 6.46 2.44 2.65 16.71 16.64 0.00800 99.98 9.07 2.51 3.61 21.71 _ 21.64 0.00800 100.03 12.77 2.65 4.82 26.71 26.64 0.00800 100.08 17.70 2.82 6.27 31.71 31.64 0.00856 99.93 6.66 2.51 2.65 16.71 16.64 0.00850 99.98 9.34 2.59 3.61 21.71 21.64 0.00850 100.03 13.16 2.73 4.82 26.71 26.64 0.00850 100.08 18.24 2.91 6.27 31.71 31.64 0.00900 99.93 6.85 2.58 2.65 16.71 16.64 0.00900 99.98 9.62 2.66 3.61 21.71 21.64 0.00900 100.03 13.55 2.81 4.82 26.71 26.64 0.00900 100.08 18.77 2.99 6.27 31.71 31.64 0.00950 99.93 7.04 2.65 2.65 16.71 16.64 0.00950 99.98 9.88 2.74 3.61 21.71 21.64 0.00950 100.03 13.92 2.89 4.82 26.71 26.64 0.00950 100.08 19.28 3.07 6.27 31.71 31.64 0.01000 99.93 7.22 2.72 2.65 16.71 16.64 0.01000 99.98 10.14 2.81 3.61 21.71 21.64 0.01000 100.03 14.28 2.96 4.82 26.71 26.64 0.01000 100.08 19.78 3.15 6.27 31.71 31.64 0.01050 99.93 - 7.40 2.79 2.65 16.71 16.64 0.01050 99.98 10.39 2.88 3.61 21.71 21.64 0.01050 100.03 14.63, 3.04 4.82 26.71 26.64 0.01050 100.08 20.27 3.23 6.27 31.71 31.64 0.01100 99.93 7.57 2.86 2.65 16.71 16.64 0.01100 99.98 10.63 2.95 3.61 21.71 21.64 0.01100 100.03 14.98 311 4.82 26.71 26.64 0.01100 100.08 20.75 3.31 6.27 31.71 31.64 0.01150 99.93 7.74 2.92 2.65 16.71 16.64 Bentley Systems, Inc. Haestad Methods So8didI9q:f t6wMaster V8i (SELECTseries 1) [08.11.01.03] Minor and Major Storm Events I Ailey Section Input Data Channel Slope Water Surface Wetted Perimeter (H!ft) Elevation (ft) Discharge (ft3/s) Velocity (ft/s) Flow Area (ft') (ft) Top W7(ft) 0.01150 99.98 10.87 3.01 3.61 21.71 21.64 0.01150 100.03 15.31 3.18 4.82 26.71 26.64 0.01150 100.08 21.22 3.38 6.27 31.71 31.64 0.01200 99.93 7.91 2.98 2.65 16.71 16.64 0.01200 99.98 11.10 3.08 3.61 21.71 21.64 0.01200 100.03 15.64 3.25 4.82 26.71 26.64 0.01200 100.08 21.67 3.45 6.27 31.71 31.64 0.01250 99.93 8.07 3.04 2.65 16.71 16.64 0.01250 99.98 11.33 3.14 3.61 21.71 21.64 0.01250 100.03 15.96 3.31 4.82 26.71 26.64 0.01250 100.08 22.12 3.53 6.27 31.71 31.64 0.01300 99.93 8.23 3.10 2.65 16.71 16.64 0.01300 99.98 11.56 3.20 3.61 21.71 21.64 0.01300 100.03 16.28 3.38 4.82 26.71 26.64 0.01300 100.08 22.56 3.60 6.27 31.71 31.64 0.01350 99.93 8.39 3.16 2.65 16.71 16.64 0.01350 99.98 11.78 3.26 3.61 21.71 21.64 0.01350 100.03 16.59 3.44 4.82 26.71 26.64 0.01350 100.08 22.99 3.66 6.27 31.71 31.64 0.01400 99.93 8.54 3.22 2.65 16.71 16.64 0.01400 99.98 11.99 3.32 3.61 21.71 21.64 0.01400 100.03 16.89 3.51 4.82 26.71 26.64 0.01400 100.08 23.41 3.73 6.27 31.71 31.64 0.01450 99.93 8.70 3.28 2.65 16.71 16.64 0.01450 99.98 12.21 3.38 3.61 21.71 21.64 0.01450 100.03 17.19 3.57 4.82 26.71 26.64 0.01450 100.08 23.82 3.80 6.27 31.71 31.64 0.01500 99.93 8.84 3.33 2.65 16.71 16.64 0.01500 99.98 12.41 3.44 3.61 21.71 21.64 0.01500 100.03 17.49 3.63 4.82 26.71 26.64 0.01500 100.08 24.23 3.86 6.27 31.71 31.64 0.01550 99.93 8.99 3.39 2.65 16.71 16.64 0.01550 99.98 12.62 3.50 3.61 21.71 21.64 0.01550 100.03 17.78 3.69 4.82 26.71 26.64 0.01550 100.08 24.63 3.93 6.27 ' 31.71 31.64 0.01600 99.93 9.13 3.44 2.65 16.71 16.64 0.01600 99.98 12.82 3.55 3.61 21.71 21.64 Bentley Systems, Inc. Haestad Methods SoEMkVeq§ftwMaster V81 (SELECTserles 1) [08.11.01.03] Minorand.Major.Storm ,Events Alley Section Input DataIN Channel Slope Water Surface Wetted Perimeter Oft) Elevation (ft) ` Discharge (ft3/s) Velocity (fUs) Flow Area (ft') (ft) Top Widthjft) 0.01600 100.03 18.06 3.75 4.82 26.71 26.64 0.01600 100.08 25.02 3.99 6.27 31.71 31.64 0.01650 99.93 9.28 3.50 2.65 16.71 16.64 0.01650 99.98 13.02 3.61 3.61 21.71 21.64 0.01650 100.03 18.34 3.81 4.82 26.71 26.64 0.01650 100.08 25.41 4.05 6.27 31.71 31.64 0.01700 99.93 9.42 3.55 2.65 16.71 16.64 0.01700 99.98 13.22 3.66 3.61 21.71 21.64 0.01700 100.03 18.62 3.87 4.82 26.71 26.64 0.01700 100.08 25.79 4.11 6.27 31.71 31.64 0.01750 99.93 9.55 3.60 2.65 16.71 16.64 0.01750 99.98 13.41 3.71 3.61 21.71 21.64 0.01750 100.03 18.89 3.92 4.82 26.71 26.64 0.01750 100.08 26.17 4.17 6.27 31.71 31.64 0.01800 99.93 9.69 3.65 2.65 16.71 16.64 0.01800 99.98 13.60 3.77 3.61 21.71 21.64 0.01800 100.03 19.16 3.98 4.82 26..71 26.64 0.01800 100.08 26.54 4.23 6.27 31.71 31.64 0.01850 99.93 9.82 3.70 2.65 16.71 16.64 0.01850 99.98 13.79 3.82 3.61 21.71 21.64 0.01850 100.03 19.42 4.03 4.82 26.71 26.64 0.01850 100.08 26.91 4.29 6.27 31.71 31.64 0.01900 99.93 9.95 3.75 2.65 16.71 16.64 0.01900 99.98 13.97 3.87 3.61 21.71 21.64 0.01900 100.03 19.68 4.09 4.82 26.71 26.64 0.01900 100.08 27.27 4.35 6.27 31.71 31.64 0.01950 99.93 10.08 3.80 2.65 16.71 16.64 0.01950 99.98 14.15 3.92 3.61 21.71 21.64 0.01950 100.03 19.94 4.14 4.82 26.71 26.64 0.01950 100.08 27.63 4.40 6.27 31.71 31.64 0.02000 99.93 10.21 3.85 2.65 16.71 16.64 0.02000 99.98 14.33 3.97 3.61 21.71 21.64 0.02000 100.03 20.19 4.19 4.82 26.71 26.64 0.02000 100.08 27.98 4.46 6.27 31.71 31.64 Bentley Systems, Inc. Haestad Methods SoBiaiWey4fto Master V8i (SELECTseries 1) [08.11.01.03] 3/20/2016 1:37:45 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203-755-1666 Page 4 of 4 Gaoway Planning, Architecture. Engineering. STREET SECTIONS MINOR AND MAJOR STORM EVENTS u LOCAL STREET 9 ROW 39[3 C CL 9 43 r r N I 8' I 22Y% � t75% I PROPO®aAse I. cmac"j ROLL-MORVERTIGL OOR AWTrPRM4SE RD P&PB PROPOSED PAVEYBO' Rm f".) w w w w w ■w w w w w w w w w w w w w w Street Capacity Calculations Drive -Over Curb & Gutter - 15' CL to FL Project: East Ridge Second Fling Calculations By: H. Feissner Date: 3/20/2016 I1raAPC�e it 11 ft 4, 1)R )rt. 10. (1.n rtJ WEnI $IK � V DRIVE -OVER CURB. GUTTER AND SIDEWALK Manning's Formula for flow in shallow triangular channels: 0 = 0.56(Z/n)S lrzya" Where: O Theoretical Gutter Capacity, ofs y Depth of Flow at Face of Gutter, ft n Roughness Coefficient, see below So Longitudinal Channel Slope, ft/8 S. Cross -Slope of Gutter Pan, Will Se Cross -Slope of Gutter Pan, ftit " Sc Cross -Slope of Asphalt, Wit - Z Reciprocal of Cross -Slope, ftHl Inputs n 0.016 S. 27.94 % Z. = 1/S, 3.58 Ze/n 223.69 , Se 9.82% Zp=1/Sa 10.18 Zdn 636.46 Sc 2.00 % 4 =1/Sr 50.00 Z,/n 3125.00 FL to FL Distance 15' CL to FL (DO) Select y 0.3915 water depth at flowline, ft - y 0.2766 water depth at EOP, ft - Sp = See Below longitudinal slope of street, % Results " 0.56(Z/n)y = 84.77 10.27 29.23 11.58 56.84 Developed Develops Long"nudin� Width FL to GL Design Point Street Name ft Street Glassifica6on O) d Omo Grade, So Ca cWated ll Mlnor;FStorm -' ^+' Reductibn Factor Capacity Capacity 8.04 1.00 Allowable,'`:±r'`1' Capacay `,cis Determination �majoristormlEQe.Dt ;Calculated Capacity"`'_ ; ) ` ' 1 1, (FlowMaster) �1 ,.; .,; MaJorySt"ormly ReducaonfFactor ,�,,, d (UDFCO Fgore N) Allov able y `- Capaclry tannin on Barnstormer . Street .15 - Local 1.1 5.6 0.90% 8.0 Okay 21.8 1.00 21.84 Oka A3 Barnstormer Street 15 Laal 2.1 10.0 0.70% 7.09 1.00 Z7 Okay 19.3 1.00 19.26 Oka A4. Yeager Street 15 Laval 2.9 13.8 0.77% 7.44 1.00 7.4 Okay 20.6 1.00 20.59 Oka AS Coleman Street 15 Loral 2.6 12.6 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka As Yeager Street l Coleman Street- 15 Laval. 2.8 13.5 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka A7 I Navion Lane 15 Loal IA 6.9 0.60% 6.57 1.00 6.6 1 Okay 17.8 1.00 17.83 Oka -.AB - 'Novlon.Lane _ 15 ap ` Lapel 2.7 12.9 0.60% 6.57 1.00 6.6 Oka 17.8 1.00 17.83 Oka Bt Barnstormer Street 15 - Local 1.1 5.1 0,60% 6.57 1.00 6.6 Okay 17.8 1.00 17.8 Oka B2 Barnstormer Street 15 Loal 3.1 14.7 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.8 Oka 63 Bi lane Street 15 Loral 3.3 15.7 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.8 Oka B4 Bi Zane Street 15 Lmal 2.9 14.0 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.8 Oka B5 Marquise Street 15 Loral 2.2 10.5 0.70% 7.09 1.00 7.1 Okay 17.8 1.00 17.8 Oka B6 Coleman Street 15 Loral 3.0 14.4 0.85% 7.82 1.00 7.8 Okay 19.3 1.00 19.26 Oka .B7 - .Coleman Street 15 Local. 1.5 7.5 0.85% 7.82 1.D0 7.8 Okay 21.2 1.00 21.22 Oka B8 Supercub Lane 15 Local 2.1 9.7 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka B9 Supercub'.Lane 15 Waal 1.9 9.2 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka _ B10 Conquest Street 15 Loal 2.6 12.1 0.60% 6.57 1.00 1 6.6 Okay 17.8 1.00 17.83 Oka B11 `Conquest Street 15 Local 1.5 7.3 0.60% 6.57 1.00 1 6.6 Okay 17.8 1.00 17.83 Oka C1+C2 Conquest Street 15 Loral 3.8 18.1 "1.60% 10.72 1.00 10.7 Okay 29.1 1.00 29.12 Okay C3 Conquest Street 15 Loal 2.1 9.9 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka '. C71 Comet Street 15. Loal 1.9 9.4 0.90% 8.04 1.00 8.0 Okay 21.8 1.00 21.84 Oka C12 Reliant Street 15 Local Z8 13.2 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka - C13 Reliant Street 15 Loaf 2.1 1 10.3 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka C14 Crusader Street 15 Loral 2.5 12.0 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 1 17.83 Oka C75 Crusader Street. 15 Local 1.7 8.1 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka -D2 Dassault Street 15 - Loaf 0.8 3.7 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Okay ` E1 - Reliant Street 15 Local 1.4 6.8 '0,65% 6.83 1.00 6.8 Okay 18.6 1.00 18.56 Oka E2 Reliant Street 15 Local 1.5 7.1 0.65% 6.63 1.00 6.8 Oka - 18.6 1.00 18.56 Oka E3 Dassault Street 15 .Loral - 1.1 4.6 0.60% 6.57 1.00 6.6 Okay 17.8 1.00 17.83 Oka F4 Comet Street 15 Local 1.5 7.3 0.80% 7.58 1.00. 7.6 Okay 20.6 1.00 20.59 Oka F5 Dassault Street 15 Local 0.6 1 2.7 1 0.60% 6.57 1.00 6.6 key 17.8 1.00 17.83 Oka G2 Vicot Way 15 Loral 2.2 1 10.5 1 0,60% 6.57 1.00 6.6 Okay 17.8 1 1.00 17.83 Oka Nolen: 1. Capacity shown is for half -section w flow depth at rghbf-way. Major Storm Event - Drive Over Curb C&G (Half Section) IT CL to FL Project Description " Friction Method Manning Formula Solve For Discharge Input Data �-` Channel Slope 0.00600 fUk Normal Depth 0.39 k Section Definitions > Station (k) Elevation (k) 0+00 100.00 0+04.5 99.91 0+10.0833 99.80 0+11.5 99.40 0+12.6667 99.52 0+26.5 99.80 Roughness Segment Definitions ;� , Roughness Start Station Ending Station Coeffcient (0+00,100.00) (0+04.5, 99.91) 0.016 (0+04.5, 99.91) (0+10.0833, 99.80) 0.025 (0+10.0833, 99.80) (0+26.5, 99.80) 0.016 ,.` _ ;�.. `N6"' ..�'} mv�ir s�yt+um x t� s ry �,?•EYnk� �v, ^'cs' . Wetted Channel Slope (ft/ft) Discharge (fN/s)" Velocity (Ws) Flow Area (ft') Perimeter (ft) `'op Width (ft)' 0.00500 4.88 1.90 2.56 16.41 16.35 0.00550 5.11 2.00 2.56 16.41. 16.35 0.00600 5.34 2.09 2.56 16.41 16.35 0.00650 5.56 2.17 2.56 16.41 16.35 0.00700 5.77 2.25 2.56 16.41 16.35 0.00750 5.97 2.33 2.56 16.41 16.35 Bentley Systems, Inc. Haestad Methods So®Aid Bq§ftwMaster V81 (SELECTseries 1) [08.11.01.03] ' 3117/2016 3:40:44 PM 27 Slemons Company Drive Suite 200 W. Watertown, CT 06795 USA +1.203-755.1666 Page 1 of 2 1 Major Storm Event - Drive Over Curb C&G (Half Section) 115, CL to FL 0.00800 6.17 2.41 2.56 16.41 16.35 0.00850 6.36 2.48 2.56 16.41 16.35 0.00900 6.54 2.55 2.56 16.41 16.35 0.00950 6.72 2.62 2.56 16.41 16.35 0.01000 6.90 2.69 2.56 16.41 16.35 0.01050 7.07 2.76 2.56 16.41 16.35 0.01100 7.23 2.82 2.56 16.41 16.35 0.01150 7.40 2.89 2.56 16.41 16.35 0.01200 7.56 2.95 2.56 16.41 16.35 0.01250 7.71 3.01 2.56 16.41 16.35 0.01300 7.86 3.07 2.56 16.41 16.35 0.01350 8.01 3.13 2.56 16.41 16.35 0.01400 8.16 3.19 2.56 16.41 16.35 0.01450 8.31 3.24 2.56 16.41 16.35 0.01500 8.45 3.30 2.56 16.41 16.35 . 0.01550 8.59 3.35 2.56 16.41 16.35 0.01600 8.72 3.41 2.56 16.41 16.35 0.01650 8.86 3.46 2.56 16.41 16.35 0.01700 8.99 3.51 2.56 16.41 16.35 0.01750 9.12 3.56 2.56 16.41 16.35 0.01800 9.25 3.61 2.56 16.41 16.35 0.01850 9.38 3.66 2.56 16.41 16.35 0.01900 9.51 3.71 2.56 16.41 16.35 0.01950 9.63 3.76 2.56 16.41 16.35 0.02000 9.75 3.81 2.56 16.41 16.35 Bentley Systems, Inc. Hassled Methods SoNkftQFilmsrMaster V8i (SELECTseries 1) [08.11.01.03] 3/17/2016 3:40:44 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755.1666 Page 2 of 2 Major Storm Event - Drive Over Curb C&G (Half Section) 15' CL to FL Project Description Friction Method Manning Formula Salve For Discharge Input Data_ 3 Channel Slope 0.00600 ft(ft Normal Depth 0.60 ft Section Definitions Station (ft) Elevation (ft) 0+00 100.00 0+04.5 99.91 0+10.0833 99.60 0+11.5 99.40 0+12.6667 99.52 0+26.5 99.80 Roughness Segment Definitions Roughness Start Station Ending Station fx ' Coefficientt (0+00, 100.00) (0+04.5, 99.91) 0.016 (0+04.5, 99.91) (0+10.0833, 99.80) 0.025 (0+10.0833, 99.80) (0+26.5, 99.80) 0.016 ,. Channel Slope (fVft) '' Discharge (fN/s) =`=x;°Velocity (fVs) Flow Area (ft') Wetted Perimeter (ft) "Top Width (ft) 0.00500 16.28 2.34 6.95 26.77. 26.50 0.00550 17.07 2.46 6.95 26.77 26.50 0.00600 17.83 2.57 6.95 26.77 26.50 0.00650 18.56 2.67 6.95 26.77 26.50 0.00700 19.26 2.77 6.95 26.77 26.50 0.00750 19.93 2.87 6.95 26.77 26.50 Bentley Systems, Inc. Haestad Methods SoEWWeQfd6wMaster V81(SELECTseries 1) [08.11.01.03] 3/19/2016 2:13:59 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Major Storm Event - Drive Over Curb C&G (Half Section) 1151 CL to FL 0.00800 20.59 2.96 6.95 26.77 26.50 0.00850 21.22 3.05 6.95 26.77 26.50 0.00900 21.84 3.14 6.95 26.77 26.50 0.00950 22.44 3.23 6.95 26.77 26.50 0.01000 23.02 3.31 6.95 26.77 26.50 0.01050 23.59 3.40 6.95 26.77 26.50 0.01100 24.14 3.47 6.95 26.77 26.50 0.01150 24.68 3.55 6.95 26.77 26.50 0.01200 25.22 3.63 6.95 26.77 26.50 0.01250 25.74 3.70 6.95 26.77 26.50 0.01300 26.25 3.78 6.95 26.77 26.50 0.01350 26.75 3.85 6.95 26.77 26.50 0.01400 27.24 3.92 6.95 26.77 26.50 0.01450 27.72 3.99 6.95 26.77 26.50 0.01500 28.19 4.06 6.95 26.77 26.50 0.01550 28.66 4.12 6.95 26.77 26.50 0.01600 29.12 4.19 6.95 26.77 26.50 0.01650 29.57 4.26 6.95 26.77 26.50 0.01700 30.01 4.32 6.95 26.77 26.50 0.01750 30.45 4.38 6.95 26.77 26.50 0.01800 30.88 4.45 6.95 26.77 26.50 0.01850 31.31 4.51 6.95 26.77 26.50 0.01900 31.73 4.57 6.95 26.77 26.50 0.01950 32.14 4.63 -- 6.95 26.77 26.50 0.02000 32.55 4.69 6.95 26.77 26.50 Bentley Systems, Inc. Haestad Methods SoINkfty:06wMaster V81 (SELECTseries 1) [08.11.01.03] 3119/2016 2:13:59 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 2 of 2. Major Storm Event - Drive Over Curb C&G (Full Section) I So CL to FL Projecf Description �3' ' 7777 Friction Method Manning Formula Solve For Discharge jinp61 Data'' 77-7`77 77771 Channel Slope 0.00600 ft/ft Normal Depth 0.60 ft Section Definitions q, Station (ft)" 0+00 100.00 0+04.5 99.91 0+10.0833 99.80 0+11.5 99.40 0+12.6667 99.52 0+26.5 99.80 0+40.3333 99.52 0+41.5 99.40 0+42.9167 99.80 0+48.5 99.61 0+53 100.00 Roughness Segment Definitions "�,Roughness 'Start Station Ending Station Coefficient (0+00, 100.00) (0+04.5, 99.91) 0.016 (0+04.5, 99.91) (0+10.0833, 99.80) 0.025 (0+10.0833, 99.80) (0+42.9167. 99.80) 0.016 (0+42.9167, 99.80) (0+48.5, 99.91) 0.025 (0+48.5, 99.91) (0+53, 100.00) 0.016 A har n-el Slope (fttit)' Discharge Velocity (fVs) Wetted �ft)P C isch�a (ft3/S) Perimeter :�To Width (ft)'%""- Bentley Systems, Inc. Haestad Methods SoEMidte;Edt"asterV8!(SELECTseries 1) [08.11.01.031 3/1712016 3:48:00 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +11-203-755-1666 Page 1 of 2 Major Storm Event - Drive Over Curb C&G (Full Section) 15, CL to FL ' Input Data 0.00500 32.69 2.35 13.89 53.13 53.00 0.00550 34.29 2.47 13.89 53.13 53.00 0.00600 35.81 2.58 13.89 53.13 53.00 0.00650 37.27 2.68 13.89 53.13 53.00 0.00700 38.68 2.78 13.89 53.13 53.00 0.00750 40.04 2.88 13.89 53.13 53.00 0.00800 41.35 2.98 13.89 53.13 53.00 0.00850 42.62 3.07 13.89 53.13 53.00 0.06900 43.86 3.16 13.89 53.13 53.00 0.00950 45.06 3.24 13.89 53.13 53.00 0.01000 46.23 3.33 13.89 53.13 53.00 0.01050 47.37 3.41 13.89 53.13 53.00 0.01100 48.49 3.49 13.89 53.13 53.00 0.01150 49.58 3.57 13.89 53.13 53.00 0.01200 50.64 3.64 13.89 53.13 53.00 0.01250 51.69 3.72 13.89 53.13 53.00 0.01300 52.71 3.79 13.89 53.13 53.00 0.01350 53.72 3.87 13.89 53.13 53.00 0.01400 54.70 3.94 13.89 53.13 53.00 0.01450 55.67 4.01 13.89 53.13 53.00 0.01500 56.62 4.08 13.89 53.13 53.00 0.01550 57.56 4.14 13.89 53.13 53.00 • 0.01600 58.48 4.21 13.89 53.13 53.00 0.01650 59.39 4.27 13.89 53.13 53.00 0.01700 60.28 4.34 13.89 53.13 53.00 0.01750 61.16 4.40 13.89 53.13 53.00 0.01800 62.03 4.46 13.89 53.13 53.00 0.01850 62.88 4.53 13.89 53.13 53.00 0.01900 63.73 4.59 13.89 53.13 53.00 0.01950 64.56 4.65 13.89 53.13 53.00 0.02000 65.38 4.71 13.89 53.13 53.00 Bentley Systems, Inc. Haestad Methods So®4idle¢FilOerMaster V8i (SELECTseries 1) [08.11.01.031 3/17/2016 3:48:00 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page2 of 2 m C a �3 O C1. m d U Q W 0 m Q `mom `O DDm U_ 3 U U r❑ LL' J U U U K ti d d ' vY of uf ai ^I 3 o E ry y W d 0 0 0 0 000 00 0 O O e 0 0 0 m' m m m u V m W^^^ o m In ^ a N m a V m m g U N N N N N N {7 N N N N N N N �' QU w' `o u SSo SSSo SS$ $ oo SS$ ,°ice= p n Op m ¢ m m q m^^^ V C m m O V 4) V < m m N N N th No N N N N (mp (y y^ {y N N N N N N N LL W v O OW C. W YY W m W Y6111 W W YY W YJCY 1E W W Y W YY W W W YYY W m 0 o00 0000 000 0 00 000 d 0 Wy+ a nnm ro ai NNNN Id Win n ^mm c of n N N r N NOO Wi aC m s a • O LL 0 m O �-y 0 0 000 0 0 0 O O 0 0 O O 0 O 0 0 O O O 0 O 0 O 0 0 O O 0 O !C U ^ j 0 O 'mL W m mmm rnm m ^m ^ m rn m mo S a" m m ro m v Wi Wi Win n V m of n Wi r Wi o Wi mU U Iwo a m o s o o o o v o e a° o o v e o n C tp m m m m P m m m (O m O S o a 0 p^ m O CO O) 0 C Op U m S m J U O LL� L mmui u�mmm mmm m m n v�m� d d d A S W f° h m ro b m m d E ro Z d"3 mmm N m N 333 d O Y1 d EEi '5 '5 a m m m a O o o EE Q'N S O 2'I m m(gN d W m m m2' W 2 U00 O O m m U O 58 m mm c O m m LL Y t+l p m LL Major Storm Event - Vertical C&G (Half Section) 1 15' CL to FL ,,Project Description Friction Method Manning Formula Solve For Discharge Input_Data.' Channel Slope 0.00600 ft/ft Normal Depth 0.43 ft Section Definitions "Station (ft) Elevation (ft) 0+00 100.00 0+04.5 99.91 0+11 99.78 0+11.5 99.78 0+11.5 99.28 0+13.5 99.45 0+26.5 99.71 Roughness Segment Definitions '`' Roughness Start Station Ending Station Coefficient (0+00,100.00) (0+04.5, 99.91) 0.016 (0+04.5, 99.91) (0+11, 99.78) 0.025 (0+11, 99.78) (0+26.5, 99.71) 0.016 k Channel Slope (ff/ft) Discharge (fP/s) Velocity (ft/s) Flaw Area (ft') Wetted Perimeter (ft) - Top Width (ft) 0.00500 4.48 1.89 2.38 15.44 ) 15.00 0.00550 4.70 1.98 2.38 15.44 15.00 0.00600 4.91 2.07 2.38 15.44 15.00 0.00650 5.11 2.15 2.38 15.44 15.00 0.00700 5.31 2.23 2.38 15.44 15.00 Bentley Systems, Inc. Haestad Methods So®4i tlegfdOwMaster V81(SELECTseries 1) [08.11.01.03] 3/19/2016 2:20:57 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Major Storm Event - Vertical C&G (Half Section) I IT CL to FL Input Data ChanrielSlope (ft!ft) "Discharge (fNls) Velocity (Ws) Flow Area (ft') Wetted Perimeter (k) "Top W idth (ft) . 0.00750 5.49 2.31 2.38 15.44 15.00 0.00800 5.67 2.39 2.38 15.44 15.00 0.00850 5.85 2.46 2.38 15.44 15.00 0.00900 6.02 2.53 2.38 15.44 15.00 0.00950 6.18 2.60 2.38 15.44 15.00 0.01000 6.34 2.67 2.38 15.44 15.00 0.01050 6.50 2.73 2.38 15.44 15.00 0.01100 6.65 2.80 2.38 15.44 15.00 0.01150 6.80 2.86 2.38 15.44 15.00 0.01200 6.95 2.92 2.38 15.44 15.00 0.01250 7.09 2.98 2.38 15.44 15.00 0.01300 7.23 3.04 2.38 15.44 15.00 0.01350 7.37 3.10 2.38 15.44 15.00 0.01400 •7.50 3.16 2.38 15.44 15.00 0.01450 7.64 3.21 2.38 15.44 15.00 0.01500 7.77 3.27 2.38 15.44 15.00 0.01550 7.89 3.32 2.38 15.44 15.00 0.01600 8.02 3.37 2.38 15.44 15.00 0.01650 8.14 3.43 2.38 15.44 15.00 0.01700 8.27 3.48 2.38 15.44 15.00 0.01750 8.39 3.53 2.38 15.44 15.00 0.01800 8.51 3.58 2.38 15.44 15.00 0.01850 8.62 3.63 2.38 15.44 15.00 0.01900 8.74 3.68 2.38 15.44 15.00 0.01950 8.85 3.73 2.38 15.44 15.00 0.02000 8.97 3.77 2.38 15.44 15.00 Bentley Systems, Inc. Haestad Methods So BAiWa9fik6wMaster V81(SELECTseries 1) [08.11.01.03] 3/1912016 2:20:57 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 2 of 2 Major Storm Event - Vertical C&G (Half Section) 15, CL to FL [Project Description `- Friction Method Manning Formula Solve For Discharge Input Data Channel Slope 0.00600 fUft Normal Depth 0.72 ft Section Definitions 4 i .• Station (ft) Elevation (ft) 0+00 100.00 0+04.5 99.91 0+11 99.78 0+11.5 99.78 0+11.5 99.28 0+13.5 99.45 0+26.5 99.71 Roughness Segment Definitions :. `' ` ' Roughness Start StaUwm Ending Station Coefficient (0+00, 100.00) (0+04.5, 99.91) 0.016 (0+04.5, 99.91) (0+11, 99.78) 0.025 (0+11, 99.78) (0+26.5, 99.71) 0.016 a � f Channel Slope(ft/ft) Discharge (ft'/s) Velocity (fUs) Flow' Area (ft=)` Wetted Perimeter (ft) Top Width (ft) 0.00500 20.40 2.52 8.10 27.31 26.50 0.00550 21.39 2.64 8.10 27.31 26.50 0.00600 22.35 2.76 8.10 27.31 26.50 0.00650 23.26 2.87 8.10 27.31 26.50 0.00700 24.14 2.98 8.10 27.31 26.50 Bentley Systems, Inc. Haestad Methods SoEMidleg:fMwMaster V81(SELECTseries 1) [08.11.01.03] 3119/2016 2:18:13 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 9 Major Storm Event - Vertical C&G (Half Section) 1151 CL to FL Input Data A. : 0.00750 24.98 3.09 8.10 27.31 26.50 0.00800 25.80 _ 3.19 8.10 27.31 26.50 0.00850 26.60 3.29 8.10 27.31 26.50 0.00900 27.37 3.38 8.10 27.31 26.50 0.00950 28.12 3.47 8.10 27.31 26.50 0.01000 28.85 3.56 8.10 27.31 26.50 0.01050 29.56 3.65 8.10 27.31 26.50 0.01100 30.26 3.74 8.10 27.31 26.50 0.01150 30.94 3.82 8.10 27.31 26.50 0.01200 31.60 3.90 8.10 27.31 26.50 0.01250 32.25 3.98 8.10 27.31 26.50 0.01300 32.89 4.06 8.10 27.31 26.50 0.01350 33.52 4.14 8.10 27.31 26.50 0.01400 34.13 4.22 8.10 27.31 26.50 0.01450 34.74 4.29 8.10 27.31 26.50 0.01500 35.33 4.36 8.10 27.31 26.50 0.01550 35.92 4.44 8.10 27.31 26.50 0.01600 36.49 4.51 8.10 27.31 26.50 0.01650 37.06 4.58 8.10 27.31 26.50 0.01700 37.61 4.65 8.10 27.31 26.50 0.01750 38.16 4.71 8.10 27.31 26.50 0.01800 38.70 4.78 8.10 27.31 26.50 0.01850 39.24 4.85 8.10 27.31 26.50 0.01900 39.76 4.91 8.10 27.31 26.50 0.01950 40.28 4.98 8.10 27.31 26.50 0.02000 40.80 5.04 8.10 27.31 26.50 Bentley Systems, Inc. Haestad Methods SoliblidlB9666wMaster VSi (SELECTseries 1) [08.11.01.03] 3/19/2016 2:18:13 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 2 of 2 CONNECTOR LOCAL STREET PRO w t-t CL 10� 1V PROPOSED SASE WAM(M4 6 4.5 r98 ROLL-0VERORVERrICAL Mae&WM(TYP.)Sm RD PAPS PROPOSEDPAVENOW M4 J LL C w O J m bo to m d U u U C R � U � d U d � ti C U zi .e a V �. 1m:• J N .W z • N QI � y � m m $ggb�r �T c C U W u m 15 n w im.. y a `o U � U 3 UUp pop m p' fL N C p p ryay n O O d F Ly F � KOF J U U U K d o m t 3 IL a � m m 'n c O O gj N (G C C C C IJl IV2 fJZ :,. C I C C O S O Z m o ^ o '� d t y E a c N d d S 7 3 3 O [ I I 7 3 J LL m m n o e o 0 a S vi o Ue�y C O m N m 0 0 d m s LL oa, m 00 0000 00000000 m 0 m (6p e n y N N m m N N m m N N o N m m N O m m O N m N m m N N ...4443 m N N fV N N M N N N N N N N E !'0 m' O LL O O O S O S S S O o 0 N: O LL Q O O O n y y a a m m m m v M m g q q r q NNNN MNN N NN N NMN N, G C' �� YY YYYY YYYYYYYY m d ny�r r. r. rrr r Rrmmrn mn �¢3-=ai 'k�d:Ti m� a oia of ai ^aim ai di ai � m • LL � oo o O O m 9009 o 0 O O O O O O O O O o O O 0 O LL . f m o a� '10 �A,m� r r rn ai ai r ai ai R 11 rmmnr ai l6 ai ai a'r af ai U,rU am o e �o ao o eo o e e o p• N N m 10 m (p N m to la 10 m m m �C U o 000 .-000 0 0 0 0 v !0 8�m� ol"'Ro morrmo v,o 0 O7 m M m M N V V O V [7 �- O m N �- O O N U 0 LL m m m m m m m m m mmm m m m d d y N mwuiayi3y33 d d d d d y > y d d y m d d O Oa N N U U N U N N C a .41 m r U U _ S N V 2 2 m x N m — — O N _ — m r -- co m 0 I Major Storm Event - Vertical C&G (Half Section) 18' CL to FL ,Project Description ...,': Friction Method Manning Formula Solve For Discharge Input Data .4=; Channel Slope 0.00600 fUft Normal Depth 0.70 ft Section Definitions Station (ft) Elevation (ft) 0+00 100.00 0+04.5 99.91 0+10 99.80 0+10.5 99.80 0+10.5 99.30 0+12.5 99.47 0+28.5 99.79 Roughness Segment Definitions _.� Roughness . Start Station Ending Station Coeff cient (0+00, 100.00) (0+04.5, 99.91) 0.016 (0+04.5, 99.91) (0+10, 99.80) 0.025 (0+10, 99.80) (0+28.5, 99.79) 0.016 s € Channel Slope (ft/ft) Discharge (fN/s) Velocity (ft/s) Flow Area (ftz) " ` Wetted Perimeter (ft) Top Width (ft) 0.00500 20.91 2.52 8.31 29.23 28.50 0.00550 21.93 2.64 8.31 29.23 28.50 0.00600 22.91 2.76 8.31 29.23 28.50 0.00650 23.84 2.87 8.31 29.23 28.50 0.00700 24.74 2.98 8.31 29.23 28.50 Bentley Systems, Inc. Haestad Methods SoEMIndegfdmerMaster V81 (SELECTseries 1) [08.11.01.03] 3/20/201612:34:05 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 1 of 2 Major Storm Event - Vertical C&G (Half Section) 18' CL to FL Input Data a ` � ` ham, � o.UUiaU z5.61 3.08 8.31 29.23 28.50 0.00800 26.45 3.18 8.31 29.23 28.50 0.00850 27.27 3.28 8.31 29.23 28.50 0.00900 28.06 3.38 8.31 29.23 28.50 0.00950 28.82 3.47 8.31 29.23 28.50 0.01000 29.57 3.56 8.31 29.23 28.50 0.01050 30.30 3.65 8.31 29.23 28.50 0.01100 31.02 3.73 8.31 29.23 28.50 0.01150 31.71 3.82. 8.31 29.23 28.50 0.01200 32.40 3.90 8.31 29.23 28.50 0.01250 33.06 3.98 8.31 29.23 28.50 0.01300 33.72 4.06 8.31 29.23 28.50 0.01350 34.36 4.14 8.31 29.23 28.50 0.01400 34.99 4.21 8.31 29.23 28.50 0.01450 35.61 4.29 8.31 29.23 28.50 0.01500 36.22 4.36 8.31 29.23 28.50 0.01550 36.82 4.43 8.31 29.23 28.50 0.01600 37.41 4.50 8.31 29.23 28.50 0.01650' 37.99 4.57 8.31 29.23 28.50 0.01700 38.56 4.64 8.31 29.23 28.50 0.01750 39.12 4.71 8.31 29.23 '28.50 0.01800 39.68 4.78 8.31 29.23 28.50 0.01850 40.22 4.84 8.31 29.23 28.50 0.01900 40.76 4.91 8.31 29.23 28.50 0.01950 41.30 4:97 8.31 29.23 28.50 0.02000 41.82 5.04 8.31 29.23 28.50 I Bentley Systems, Inc. Haestad Methods SoBdidta46d0erMaster V8i (SELECTseries 1) [08.11.01.03] 312012016 12:34:05 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755-1666 Page 2 of 2 MINOR COLLECTOR 'NOW 2SVSaMPROPMPAVEM pa®6GunElif�'Pd SEC�ION(IYPa PRMED &SE E E 00 `m a 0 0 00 O 00 m O m: T 3= Im In �m am m m� am a, e m mm a am � Q U d w sy N�N;,�SS Soo 8S 8 SS m d O m 0 O W W O J O O '^ d a U YY 1106 O00 00 O 00'{m 10 t0 m r ro m m 41 .O 10 a O LL O N O IL O o O O O O O O O O o 88 o O SO O O m# 1. d t-Sm m m m r m m m m m m U U W o° o =° o° o v o m y o o 0 m m ole m.- o m Iq N 0 L m 00 m m O 0 n. I�p'G�m ,:j ain ai m ro 'i > o 0 C a t U 9 N U O J LL'� N N NN m NNN N m m NN m N N N Im NN 5 m >m >m >m >m >d >an >d >d d m d Iloilo 01 .� a° NM � n m l w m N m Major Storm Event - Vertical C&G (Half Section) 25' CL to FL ;Project Description { a Friction Method Manning Formula Solve For Discharge Input Data , - � Channel Slope 0.00100 ft/ft Normal Depth 0.75 ft Section Definitions Station (ft) Elevation (ft) 0+00 100.00 0+05 99.90 0+12.5 99.75 0+13 99.75 0+13 99.25 0+15 99.42 0+38 _ 99.88 Roughness Segment Definitions RoughIn s;.- Start Station Ending Station Coefficient (0+00, 100.00) (0+05, 99.90) 0.016 (0+05, 99.90) (0+12.5, 99.75) 0.025 (0+12.5, 99.75) (0+38, 99.88) 0.016 'Channel Slope (ft/ft) Discharge (fN/s) ,. Velocity (ft/s) Flow Area (ft') Wetted Perimeter (ft) Top Width (ft) 0.00500 28.25 2.53 11.15 38.64 38.00 0.00550 29.63 2.66 11.15 38.64 38.00 0.00600 30.95 2.78 11.15 38.64 38.00 0.00650 32.21 2.89 11.15 38.64 38.00 0.00700 33.43 3.00 11.15 38.64 38.00 Bentley Systems, Inc. Haestad Methods So8dlrWeQi16erMaster V81(SELECTseries 1) [08.11.01.03] 31201201612:40:53 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Major Storm Event - Vertical C&G (Half Section) 25' CL to FL InpufpData- 0.00750 34.60 3.10 11.15 38.64 38.00 0.00800 35.73 3.21 11.15 38.64 38.00 0.00850 36.83 3.30 11.15 38.64 38.00 0.00900 37.90 3.40 11.15 38.64 38.00 0.00950 38.94 3.49 11.15 38.64 38.00 0.01000 39.95 3.58 11.15 38.64 38.00 0.01050 40.94 3.67 11.15 38.64 38.00 0.01100 41.90 3.76 11.15 38.64 38.00 0.01150 42.84 3.84 11.15 38.64 38.00 0.01200 43.76 3.93 11.15 38.64 38.00 0.01250 44.67 4.01 11.15 38.64 38.00 0.01300 45.55 4.09 11.15 38.64 38.00 0.01350 46.42 4.16 11.15 38.64 38.00 0.01400 47.27 4.24 11.15 38.64 38.00 0.01450 48.11 4.32 11.15 38.64 38.00 0.01500 48.93 4.39 11.15 38.64 38.00 0.01550 �49.74 4.46 11.15 38.64 38.00 0.01600 50.54 4.53 11.15 38.64 38.00 0.01650 51.32, 4.60 11.15 38.64 38.00 0.01700 52.09 4.67 11.15 38.64 38.00 0.01750 52.85 4.74 11.15 38.64 38.00 0.01800 53.60 4.81 11.15 38.64 38.00 0.01850 54.34 4.87 11.15 38.64 38.00 0.01900 55.07 4.94 11.15 38.64 38.00 0.01950 55.79 5.01 11.15 38.64 38.00 0.02000 56.50 5.07 11.15 38.64 38.00 Bentley Systems, Inc. Haestad Methods So®YN1egfdewMaster V81 (SELECTseries 1) [08.11.01.03] 3/20/2016 12:40:53 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203-755-1666 Page 2 of 2 Ga€€oway Planning. Architecture. Engineering. l SWALE CAPACITY CALCULATIONS Split Swale I A, G, H. Fut A, Fut-G and Fut-H Basins w/2-Year Runoff Friction Method Manning Formula Solve For Discharge Input Data Channel Slope 0.00700 fUft Normal Depth 1.50 ft Section Definitions W Station (ft) Elevation (ft) .- 0+00 100.00 0+16 96.00 0+17 96.00 0+23 97.50 0+24 97.50 0+30 96.00 0+36 96.00 0+52 100.00 Roughness Segment Definitions n s ..e Start Station Ending Station ,.. _ RoughhessCcefficient (0+00, 100.00) (0+52, 100.00) 0.035 Options t;urrent Hougnness W eigntea Pavlovskii's Method Method Open Channel Weighting Method Pavlovskii's Method Closed Channel Weighting Method - Pavlovskii's Method �Resulfs Discharge 94.22 ft3/s Elevation Range 96.0000 to 100.0000 ft Flow Area 28.50 ft2 Wetted Perimeter 31.7386 ft Hydraulic Radius 0.90 ft Bentley Systems, Inc. Haestad Methods SoBdiWe96dborMaster V8i (SELECTseries 1) [08.11.01.03] 112512016 7:20:51 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 1 of 2 Split Swale A, G, H, Fut A, Fut-G and Fut-H Basins w/2-Year Runoff Results Z74 Top Width 31.0000 ft Normal Depth 1.50 ft Critical Depth 1.17 ft Critical Slope 0.02027 f /ft Velocity 3.31 fVs Velocity Head 0.17 ft Specific Energy 1.67 ft Froude Number 0.61 Flow Type Subcritical tGVF Input Data .` Downstream Depth 0.00 ft Length 0.0000 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.50 . ft Critical Depth 1.17 ft Channel Slope 0.00700 ft/ft Critical Slope 0.02027 ft/ft Bentley Systems, Inc. Haestad Methods SoBdidle¢fibb"aster V81(SELECTserles 1) [08.11.01.03] 112512016 7:20:51 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 2 of 2 Split Swale A, G, H, Fut A, Fut-G and Fut-H Basins w/100-Year Runoff (Project Description " � `� � � � - Friction Method Manning Formula Solve For Normal Depth. Input`pata Channel Slope 0.00700 ft/ft Discharge 311.50 ft3/s Section Definitions Station (ft) Elevation (ft) 0+00 100.00 0+16 96.00 0+17 96.00 0+23 97.50 0+24 97.50 0+30 96.00 0+36 96.00 0+52 100.00 Roughness Segment Definitions Start Station Ending Station Roughness Coefficient (0+00,100.00) (0+52,100.00) 0.035 Options t;urrent rtougnness Weigntea Pavlovskii's Method Method Open Channel Weighting Method Pavlovskii's Method Closed Channel Weighting Method Pavlovskii's Method Normal Depth 2.51 ft Elevation Range 96.0000 to 100.0000 ft Flow Area 64.71 ft2 Wetted Perimeter 41.0281, ft Hydraulic Radius 1.58 ft Bentley Systems, Inc. Haestad Methods SoNdldla$FdOerMaster V8i (SELECTseries 1) [08.11.01.031 1/2512016 7:21:31 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Split Swale I A, G, H, Fut A, Fut-G and Fut-H Basins w/100-Year Runoff Top Width 40.0419 ft Normal Depth 2.51 ft Critical Depth 2.07 ft Critical Slope 0.01683 ft/ft Velocity 4.81 ft/s Velocity Head 0.36 ft Specific Energy 2.87 ft Froude Number 0.67 Flow Type Subcritical ,GVF InputData t,�T Downstream Depth 0.00 ft Length 0.0000 ft Number Of Steps 0 IGVF Output Data-777` a Upstream Depth 0.00 ft Profile Description ` Profile Headloss 0.00 ft Downstream Velocity Infinity ftfs Upstream Velocity Infinity fits Normal Depth 2.51 ft Critical Depth 2.07 ft Channel Slope 0.00700 ft/ft Critical Slope 0.01683 ft/ft Bentley Systems, Inc. Haestad Methods SoliMitlheQfdeerMaster V8i (SELECTseries 1) [08.11.01.03] 1/25/2016 7:21:31 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1I666 Page 2 of 2 Gaow' a t Planning. Architecture. Engineering. STORM DRAIN SIZING CALCULATIONS so ta Gaoway Planning. Architecture. Engineering. . Storm Drain System A A sl to l�i, mm��n aumi_mmmnmm o^• ci ci oimmmm lmv .4. .Norm n`ci �i Ls pp1 w Ol Oei Oef T ONi T T pdj m N pyOypff W � m m m O m n N C] n f7 Q O N w n m w w w O w N w O m O m m m m c m� 00 m e m m d d m a a m m P d m w a P w P m.Y ��oai `'>>ti. of eNi, ^unity ¢ �n m n�v n am m• mnl�i to �i �i v�i �i c°�c')c°9im m �I@r^xwwmmmm �Iv@OIaaPPeee mmmmwww eeeadaa m'Sw— 0 @^ O O m CI omm a m C A N m O N N n Q �ommm O m t'1 w m n CD n Ill n O n IT O �m^ml�immomw C9 mmmmmmm mom @ 5>slco n �ZIIS Lam"vivimm momim dl m mmmmmim a ev em e e d a a a P P P a m�ME omm w a a a a e a e e a d a a a a J O C7 W O N m th� m T m m< Nip m m t") m n Cl m �p (h Im m w m Owl w m n ¢) m w m a@ m a 5 Ol w P P w e e w e d m a a a P w d P w a P e O� Ql�^ 0AN e,n c to mom�m C � We've w rl��n immma n to m O w to w w to .o m m wc)n w e a aea a aaevv g �OI aO� m V G^wt7 m JJ"IOOm�I.)ln.)nl^xmmmmwm n@ m y Im O) O) m d [ w w NN w w n N �N�O Nm w w N m �mOa m w mm n Q, �v@ VIP Paeeeeeeeedad P x0 )�^North Q 0 v a O p pO O a a pO ���)� m m wmON m N nm �pO w m 7 MMM m N a O n n n t�iMM N m O) O) O) w w w w w m w w w w w w aO i A 0 5 o z m = LL Z ! P¢`-!2 w r 2 S S 2 2 r Q 2 2 2 2 2 2 r Jp❑ ? m p w m Op m w� -I W LL p ❑OppO-) Vl w w mJ w m� c Z = 5 w aa�ea�`�a�aa¢a`�aaa a rxxxxxr¢rrrxrr J J J J J W J LL 2 p a w 0 p a w 0 p 0 Z m c Z Z Z w Z Z Gais' oway Planning. Architecture. Engineering. Storm Drain System B m 2 O 0 O N m N m m m t m m m O im( f O m O m Q m` t0 f0 ('1 m m N N m t� r Ul f0 °mm' (p fp n m m > o c I m rn m e e m Q Q m m d d w rn d d m rn d d m m e e m m d e m Q Q m mmm Q a d d m d p` m yp N yy m yy m npy py_m m NN m . N n mp nyyppppdyp m N m m yp�pp pp�pp N N my pppy N 0 m ? 6 y Oi Ol O+ T Ol m pN p OI OI p m� m m mi 01 01 01 01 m Ol yyyy pm m m N CI IN 7 O N m m O l 0 tO m mm Ol mm O m O V lmm m v j YI m m m m m d m NNss m m m m m N m m PN m Ol m m CI n m m m m m m m m m m m c g m m m m m m m m m m m m m m m m m m m m m m m m m O m m n N m m N m Ol m N NIA N m n .20 n m m m N y m m m O m m N m p V ��np my S pO pp yyyy Olm��m�mQ m(yV gymy N �� yyyyyy yyypyyyp pmp pmp paea Cpvl pMp mpp gym} m�� p p pQi ap p p p p pOI � W m O m Om O N m d O m m m m e m N m m n m KE, E C UI m m m m r N O m m m m mom mp o to r m " O N N N p p f0 f0 y (� r y t0 mm m C! 10 Imo e ' mN CmJ 1mp m ¢ LL p OI nF911 OmnmNmm m nIqNdm n6 mi mi l6rnnnn ain r oi0 of U E m m m m m m m m m Q Q d m m ml0mnnririvlcadoilvrNMM-d N V � N N N N N N v- c w m mmmmmmmmm m m m m m m m m m m m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C� d m a O N N m m O O m m m m m m m m m m 10 (O 10 (O an d I1A0 Nd Im�l m m N N N mmmmmmmmm eeee eeeeeeee�e����tE� mmmmmmmm m HIS? m 1p c m m m m o o$$ o m m 0 0 m 0 m m O O m m O O m m O O O n o O O O `o o` O `o U C C G C C G 166060.0000 G C r m N O � •- O m m N O m N n m- N m m n m m m a N n C J O Z C mmrmm m m m m m m mN� m m m �mmmmrommlj m mmmmmmmmm m D O mmmmm3m?mummmmmm3mm?m OOO J O J O W 000000-� 00-�0 c m Z t m mxE m2E mxf mmLL m�W WOOD Omxf Om�x WN_mUj Omx� Omx�Omx� JmrW- JQwm �j�Z mmx� 00 mOmxf m Z Z m W m ry mm d+�i dr rN �+�i m O �i �immm mmM�mMmr. mwrnmmmmrnrn�a+ mQ mQ vQ mQ �Q 0 ez � Q Q Q Q Q d Q Q O Q Q Q Q Q Q Q Q Q Q Q E m qq mm m m m r m N O V m N m m m m O m m Q O m e N m N r N N N N N N m d N r d m m 0 j T J V� g�gv m m m a VVe VVee VVe VVe ea��a'� 5,�����vove mud L°O! 1-1 m m mmmNmQN N�� m m om m m m Q r N Im17Q o m o O ��Q m m m m N mmmui m MEm E m o o m N n a Q Z tmm, a n o mm m IOm, 1lq �m"m Q m m N m m N 0 m m 0 0 m mm m $y md, yy$y d+d�d�dlm gg yy N N mmmm N O O rcm mii c b w ei e d Q Q Q d d d d d d d d d d d d d d d m � O W' m r O N m m m m m r m m N m O+ O m N r OI OI m E� &' L° m^mmwrnrnwrnmrn Om<V Q V nm' MQ mm mgNgCf d+dl mmd� QgNg NNNOm mmmmm v �'2 L°O� ddddd dd dd d d ddddddQ a Qd 2 Vi m^ .N Q m m N N� m m r V IN�I m N O r m M m j Ci m Q m N N O W m m Q Q Q Q Q Q m Ny N O O p a0�p m I m r s f 1 mm, Or N Ir0 N t0 1 Omi N N n M p m m O nQm�mmmmmmmmmmmmm mmmmmmmm (7 T m m m m N m N mmm m O N O Q n N m m r wm-mmmmmmmmmm Q N mm m N m mmMmm r O m 9 CI Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q - � v T N E Z ^ 5 O c Z o m m m m r m m m m d m m m N m m `m m mm m mmmmm mm 6 m m m m N xxxxxrx�xmxxxxxx�xxrx m m (A m m z m z m LL m m m m m m z m m z m c m C m N m m r m m y m Nm N_ ml ml OI N IO m t'1 f7 0 m m m m m p] m m m m m m m Ip m m m m m xxxxxFx�xm=xx��mr-�F� m g c o g w a w a m a 0 w w m w w w w w LL al 0 m m coal m m J m z O J O m z m W LL O O m m O J m Z J W Z LL J J Z Z J J 2 Z Ga€oway Planning. Architecture. Engineering. Storm Drain System C • Z_ O i lx N O E 0 o ITNr r o m N O mmc°%iARA= m m O m 0 O) m N r Ell n Z; 2 e�a ci�m M m � N N_ m _N r N m N m �g^�. gmm N L. Z�N m o m r o m n Q �iP1,1w m m Y1 t7 omNrl, t7e n NrNmmmm,m 'c m�...imm— N e e e Q Q e e Q a a a m m In O m m y N N y m y m m m 1pp� N MN N y m N; m N m N m m a r m N N m N m N N N N J � N R p '�\^y_l7 p I O m Nm d N mt7n m � ON m Q th t`l V OO N mmm r -qrOmm O r (O r O m C O N W w (D M N N m N N m-- N O O N^ O n n n n In N N m W P m P N N m m O m 0 W (V m dM , m m N t7 N LL _T r/� m C 2I N p 1� (D m m^ e N (p O O r O m m N m n N O m N m N N d n N n N N m m m O N N Nc"n nr n nn n rororomrooirroi ai airr E,lle(OONNO N O C) N C � V nmm(nm n(n mnn mmNmm m(nm i O G O O G C ro ro 0 0 G C 0 0 0 0 0 0 0 0 v� O Nd aN p� a a 11((l) P P 11l(11 111111 O 0 m m a m N C) a Q N N O m to � m m � m N (n Q m m m m m m m m m m m m m m m m m m m m p m _ N N O O N N O O N O S y y O O y y O N N O O N m O O N O O n O O N r m O O inm—occoocc000ccc000ccoc U C O O O O 8 O O O O O O O O O O C N M O i l V m Q N Q p� O m O p r 1O m m m f V c N N l� N N mmm {h N N m O i n N W l h B Q o U C� UUU C� U U V U U U U U U U U U U h xxxxxxxrxUxxx�xxxx�x ❑❑ fnNNtO � O � O V)N � J (�� D W N LLNNfnzNNfn � � O J � � � � tn?41 -� � c o Z r ` A OO N •-•-Q"N Q N m U n Um U m N U U m � U N U 0 0 UU L) m UUUUUUU m N N m n r U pj Uxxxxxxx�x/-xr��-rrr-�� LL N N N N N N U1 Z N 2 N Z Z Z 2 Z Z 2 Z f7 O-mmMmn N N m m m N m r NN¢ t7 r nl t7 O r N m W m m m al Ml� N n m N m m �j '3 `J 1m N[JN mnn 3m 9181 1 n$gi 5p{dQQQQeQQe eQeeeQeeee i ` E n m C� m N N P mmmm N N M m N C) n O ' m O¢ n N m n N N m m N mmm t7m m (n Cl N N CJ M N N (O �m ���MMm3 319x329 ^m d P P d P d P P d e Q e Q e e e Q Q e WF O� g on ma (o Pa¢ (n P, N� 'a roI M lq� v� d�d��+mmmm a P P P PPP P P P P a P P P P P P N Ur P y N N ¢ tym0 yr (O yA W tn+I M O m y m TP m m m Ol m 0 m m x m^ G N n i m N (O m N m N N m m m m m I, m. m C� ro mMMm 6 t 7 �i O p`�irnmm h m o (g W di �i�� m M MR N m N mWA yg my1I 01 P d d P P P d d P P P PPP P P PPP P T mm CVm N O m m m Nmm m O m O N n mmm Om P Wawa Ptn N QP Nm W mf Z�S'1I n mN�xmM mm m m m m N m ,,gg P P P P P P P P P P P P P P P P Q e P a U $� m m m N O N m m ID m m m m N m n N n m N m m N r r m N^ m m m N C 4 m e m Mog n q O T 'i Oni, Imp, W N ({ pp pmp pN yy t+f pN O n pm (pO 1 py N JJ pN m yN �W a � T � 0 Z m c U � o 00000 O D U U U U U U U U Q U U U N xxxxxxxrxc�xxx�xxxxr-x ❑ m � O NNm O O t0 O � mf/J J � zmLL W O Nf/J O O tO�NNNtOZN J O O O O J O c a Z y f UUU V U V U U U U U U U U U UUU U �i �xuxoouu���� J J J J J J J J J W LL O Nt�fA O fnNNNZN2NZ O O O O O Z2 Z2Z ZZ Gaoway Planning. Architecture. Engineering. Storm Drain System D m m N' N P m A m m Q m 0 P O m r S m n Om1 N P p rmi l�nn I`Qin °'.yi r��mnmm�mlyl mrmi oNin C N Op1 Oylp v v O P v v O O O O O O P P O O Y d< v v v Q e C�OOm lyyM lyh Vppl 1pV mpgp m� @ Q� W � N Q Q�eQp yTy pmp pmp pm mP and pN dm Olm pv OI pv OI OI p�p� pI OI pO OIQ pNp P P p�ppNp PQPQ� A me m m N m NmA Q m pmAOm, b m b m C umI W mm�r O p CI Of Ne o" gig eeVV4mmm m m e Amm e e m Nm d d Nmy d P �m mmmm P P m N v v N Q Q NmmAm e mmG °m epN QO'p NmN m P OONmPi0(1 NQN mNN�mV AOVI AN NO OOe 0mmN PO a O m G. CC 1VfV� NmO < �e om i Cm rn rn P v m m P P V m m P P m m Q Q O m m e O e m m P e O'O'Q m 01 d d Q Oi v v Cml m m v v o p m m^ O m A O Q m m N A m m N m m e m m O N m m O A m N m m O m m N N O 0 C U m N N m N N m Qp Q. m mmm m N m N O ly b A N M b p Z 0 E C f A O d O O m A v m A N N A m m m N N m e d 0 e d m N N m' m m v p N m m N O b m m C A m m m m m m b b m m b b 0 E p;m � mm Q m N O O N N N A N N m m m CJ OevN�v m V N N m m O Cl v YI YI m A A m m O m m O O b b 0 � OI 1`t C mla g, o 0000`o oo 0000000 o oo o o o 000 oO ooc o o o o 0000 o00000 0000 ,NNNmm�mm��0000mmbbmbQmO 0 mp F p p p p p p B u m� u u m m m m 91 91 SI � ,@U _' eeeeee___e t-pi t-pi __eeee ee m: U U U U U U U U U U U U U U U U 1. a m^ N N N m N m 008�ooSSSSSMM0000mm8 N N m N N O M U O O G G C C ^IG N O N N O^ N O O N N m N O m N 17 A N l7 m N m m l7 I() Q N N m O m b Q O h m O VI N m J ml7 OI OI o[7 YI m1f1 NImNNAm 00m �NNN m Q p Z m 0 0 0 o 0 0 0 O O 0 m o O$ 0 O 0$ 0 O p 0 m Wr W W W W WW2WW22WWxxxxoxxxx�x W W W W W W m W J J J J z J J O J N J O m o O J m J O N O O N N O W N LL O O m N O O N N J O N B Z a m � N r N 000000000000p 00000080000 W O JJJ N Z22222m22mN??mmNm=N2222 0 00 0000 0 E pIp C^O1vQ nnNN �(ym]yN Nln�mlm'I,� NNQ� m�I(1 I(IN mmu@m^M AiINdd8i 8i A8 m = 8i8i�8imm 2� Vp 5 P d P P P P Q v v v P P PPP P Q e v e e e e qyE @ m O ty0y7, tp? O N N Q N r C .hCj � T J N N m m pmp pOp m OI y0 q pi pm OI m yy0 pm pl 01 y� yA OI m y� OPi m pm GI A A � p� OI � pm p� OI Of pO Of W O c pm^ V E m y SI Lq NmCbl p Nov bmN1)mrrtmV Q�mro minn m }}qmq > > j C^ X �aOVQp � pmp mp A PP �PP fppD pm mP pN pP mQpl p< ym Olm pNp yNy m� pO OIQVS m m A � p� pO TOIm p�p CpI pl b Eb £msS xU@ POO E m CAj O m pp P O QQ N N �y O m N< Q N Q N< N P O b p, ` om� mrn m8i �i m�m�idmma y mmmm2 dim m�. �Im lM C� c P P P v v v P P v P v P P P P P P P Pee e e U 8m �v W NOpOvII NP A�OpPI (Pp m1v0 mNO Oa Om9 o t CIm�Pn p ppOp ppNA p pMPPMPPm 9 Q MT _ � V Wmm a.m." pppp ppppl1 pyyp pqpq fpgpqG yqNpq CpNCp yp ym mp mmm CyyI pp O O 0 IG pN p� p� a OIO pO m Q 9 O O Q P O P P Q y Qm < Y Y C Y 1 1 V Y c,� m @ ym m OI y y m Ol low. p yy OI O� y p 01 OI p OI all, 4 N OI Om1 Gml pm1 N ^ �i ' m Ti Cml Cm'I i ........ v v .. vmm v ^ ADO ....... m0 t7 m mIi w r Ny) IN�,O . . . vmi, mm m$ W m T A p ON1 OI p 9 9 pN 9 m pN pv 9 9 I 9 0 pN NM m 9 pO OI GI OI 1` A OI pN p� 9 m p� py Q OI pO yO 01 Of Vp C� P P e e e e e P P d d P d P P P P P P v P v v p y1 E Z E 8 � 0 VV� 8 S � p U O m 0 0 W W 0 0 W W 0 0 W W 0 0 W 0 0 W 0 0 W 0 W E Cc E 0 E y 0 O 0 W JJJJJJOJJOO-'J000Ow0000J0 Z Z Z Z Z Z N Z Z m m Z Z N m N m LL m m N N� N G 2 00000000000000000000ppOp xF1-FFf f x1-1-2i f-HSSi2 f-xti ti O J JJJ J J O J J O O J J O O O O J O J J J J Gaoway Planning. Architecture. Engineering. Storm Drain System E m m r O w N IT Vi m m O N n N m n e m m m N N n O O m N O m n m w O 0 m w n m O m m m m p m o m m a �' m N m m p m w w n m m n m O P m m m N m m N m m m m O N N m r m m P m m m 0 O a c 0 J¢ 1� m a Q w m tC h v v w w YI C v m �i O CI v v w w CI � Q Q m m � Oi P m w w Oi O m v ... Oi Oi m m M.M. C) Oi m m N n Q �i tV O v Q m m e e e e e e e e e e e e e e e e e e e e - mmm w m m N n n m w r o N o m MGM P O O O O w m m m 1� Ih m m mmm m m d m m m m m m N N m m � m m N w P N m m 0 m t7 N m m m m N m m m m p w w m n n m O m w P m m m m m m m m m m N O m N m n m m N P m m n m m O m �� n n mm m YI ro P P CpI N Oi OI m m O w m 01 Oi m m N n pi fV m O m oei Oi odi aei Oei oei oei Oi Oei m �iw ww e www w ic r O O m w N m m pp Q O N i N Nmmw m O �- O �NNmm n Q m n W m w � mvmmmmnNwwF OO m NwN m E @ F CJ n mmmr m m m m mm�mmwn N N O O m m wo n m mn m m m N min w w w S m m I r nn��n� nnn�e �e �u �c �c ie �c of ai of yen m C m m m m m f0 n n q 0, m C mmV m nm :2 mm ml E o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q G T 0 0 0 0 0 0 v'ovv0 0 0 paaaa222 fa 0 0 0 0 0 0 0 0 2 0 0 ave 0 0 0 e v m m n O r m O O m m O O m m O O e P O O P P O O Q P O O O m O P S O O W O O O O 00 O O G O O G C O O G G O O C C O O G G O O C G O O G G O O G C O O C G N m m m N N m w m m m m m r m N m m w O N v ro.-on tiro rioimro riro roromm�n ro� G J) m 8 m m Q m N O N w Q O wwww `w wwwwwwwwwww w m r m m VON- m wwwww m m m Li ti ru ti ru�ru rumi�is ❑ ❑ m m ❑ ❑J m m ❑J Z m 2 Z Z Z Z Z ❑ Z m Z Z W- u. Z coca w m w w c Z n m m e m N O W W W W W W W W w m WF WF n m W W m Q WF W m N W W m W W �j� W W m;; W W W F F F E E om Z y y y y 2 y Z Z 2 2 2 Z Z y Z Z Z Z y Z y 0 C w N N O Q m m m N m w m m m m N Q w m N m w n w m m m= m m m m m m m x m� 0 � m Q Q m m �i Q Q m w d Q m m Q m m m {mj CmI w m w m m CwI d w w d m m m w N i am � v � m d N m e m N n N m m m e- d N m Q mmm O d � A3 v. e v v°i mri Ni��ovm nnmM� me emm ��2w�O�eee���Q'�P'��eeeeeee eeeve m m N O pp m^ 0 y m m m m m m m n O n N n n m Q N O N m m O d m N O m x�i ���rn������oei��mmmmmm mm Qm mm o N n N m o m m m n Q m N r m m¢ m N o O n y n��� �<dd�aei oei oei oeimmrnmmmmm mPm �mm 33 @� W m nmPd P N mQmd Ndmd mm Pm m dd m m n O w m m N C V V 1- O O OtGro O17ri16trmw6 Iliz d d d d q 0 m N m N m mmm w m O y' N t0 N m m m m m m m e N m m f d e n m m n r m O O r N� O O m OI 9 n n t0 Of a 1� OI U ^ mm wwwo��iwmmmm mmm ww w�i m m Timm g�o m C m m m N m m m N N m O Q pp r m m Q m N N m mmmm n n m m N P m m m w O m � m mm oei �iw �i oei mmmm wwmmm mwwmm _ � y > m N N I m we m m Q� m m nmm0 Ni O wwmnmm mrNO m n m P emmmovmmeeeeev m e moOm lun d d d d d d d e d d T m _ Z 0 c Z mN�mN�O wmW Nmm'" w U $ W W W W W W W w W w w w w wN ��Jwm��i❑❑❑❑ ❑ ❑❑❑❑❑ m Z Z Z Z Z !E Z Z LL Z w m m m c Z C � 1 n m m Q m N O _ m W W W W W W W m W W m r W W m m W W P m W W N W W m W W t7 m W W W w ;� i F w W F W J F F W W rui�� w w 2 w 2 2 N y y CIA y Z Z Z Z Z Z Z y Z Z Z Z y Z y 0 Gaoway Planning. Architecture. Engineering- 0 Storm Drain System G I 0 ioi Ga€oway Planning. Architecture. Engineering. Ultimate Outfall I Release Rate Ultimate Outfall 24" Outfall Pipe Solve For Discharge [Input Headwater Elevation 4935.55 ft Centroid Elevation 4928.65 ft Tailwater Elevation 4930.49 ft Discharge Coefficient 0.65 Diameter 1.50 ft Results Discharge 20.73 ft /s Headwater Height Above CenVoid 6.90 ft Tailwater Height Above CenVoid 1.84 ft Flow Area 1.77 ff' Velocity 11.73 ft/s l Bentley Systems, Inc. Haestad Methods SoOdittlaQFil erMaster V81 (SELECTseries 1) [08.11.01.03] 6/212016 10:00:10 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 1 of 1 Ultimate Outfall 24" Outfall Pipe ;Project Description Solve For Discharge ' Input Data Headwater Elevation 4935.36 ft ' CenVoid Elevation 4929.00 ft Tailwater Elevation 4931.97 ft Discharge Coefficient 0.65 Diameter 2.00 it iResults Discharge 30.16 ft /s Headwater Height Above CenVoid 6.36 ft Tailwater Height Above CenVoid 2.97 ft ' Flow Area 3.14 ft' Velocity r 9.60 ft/s - Bentley Systems, Inc. Haestad Methods SoBd'idtapffte Master V81 (SELECTseries 1) [08.11.01.03] 112121111:41:11 AM 27 Stemons Company Drive Suite 211 W Watertown, CT 06791 USA +1.203-755-1666' Page 1 of 1 Ga€oway Planning. Architecture. Engineering. Interim Outfall I Pumping System Details 0 0 264P / 35P _,,M Recessed Lift Handle Bolt Down Locking w/}' Hex Bolts ,_!,_I J" Diamond Plate _ I -I -I --I-I- 2'-5�" T-,-I-,-,-1-,-, _ Optional -Nonslip Plate 1 I-�-I-I-I-I-I-I-I-1-I- I-I-I-I-I-I-I-I-I-I-I I-�-I-I-I-I-I-I-I-I-I- 1-I-I-I-1-I- I-I-I-I-1-I-I-1- I-I---I--I-I-I-I-I-I-I-I-1-I-I-I-I- I-I------I-I-I-I- I-1-171 1 1 1-III-I I-1-I-I-I-I-I-I-I-I-I-1 I-I-I-I-I-I-I-I-I-I-I- --I---I-1-I-I-I-I- I--I-1--1---I-I-I FRAME and DOORS 10 Gouge Steel Skirt No. 264P 6 -2 I-I-,-I-I-I-,-,-I-I-1- I-I-I- -I-1-I-I-I-I-I-I-I-I-I-I I -I - Frame 74 lbs. I I I 1 1-I-I-I-1-I- --1--I---1-I-I Doors 251 lbs. I-I-I-I-I-I-1- - -III�I- I -1- Angle Frame � 2'-Ba" 11"x14"xA" -+ FRAME and DOORS No. 35P Frame 60 lbs. Doors 212 lbs. 4'-10" \ Angle Frame 1}"x13"x{�" CLEAR OPENING(WxL) I DOOR SIZE(W.L) 264P 29 i" x 71" 131 r x 36 }" 35P 35" x 55 }" I37 >i"x 28 }" Assisted Door Scale: 1/2' = 1'-0" cessed Lift Handle :king Latch Assembly a" Pentahead Bolts it" Diamond Plate Optional -Nonslip Plate .711 i- " =1- 10 Gouge Steel Skirt �Ta1-L I- l Notes: - Frames designed to be bolt on. - Finish: Hot -dipped galvanized. Optional NonSlip finish, designate as NS, i.e. 2641a - Loading: Suitable for H-20 wheel loading in off-street locations where not subjected to high density traffic. 264P / 35P 264P / 35P Oldeastle Precast® File Name:020UAH264P35P GAM STEEL PO Box 323, Wilsonville, Oregon 97070-0323 Issue Date: 2011 ACCESS DOORS Tel: (503) 682-2844 Fax: (503) 682-2657 oldcastleprecast.com/wilsonville 139.1 DEMING @ www.cranepumps.com Specifications: BAF-8; Standard 3" (76mm) Schedule 40 pipe should be used for guides. An intermediate guide pipe bracket should be used for pipe lengths of 20 feet (6M) or more. The stationary elbow is designed to be anchored to the floor of the wet well A stainless steel sealing face on the elbow mates with a cast iron flange. The pump bolts to the moveable bracket and is then free to ride up and down the guide rails which are attached to the base elbow at one end and the underside of the wet well cover at the other end. The guide rails serve only to guide, they carry none of the pump weight. CRANE PUMPS & SYSTEMS e A Crane Co. Company USA: (937) 778-8947 • Canada: (905) 457-6223 8" Break Away Fitting Models: BAF78 Bulletin 7365 Demersible Pumps Model: BAF-8 P/N: 082110A DESCRIPTION: THE BREAKAWAY FITTING IS DESIGNED TO ALLOW THE SUBMERSIBLE PUMP TO BE INSTALLED OR REMOVED WITHOUT REQUIRING PERSONNEL TO ENTER THE WET WELL. SECTION 42A PAGE 65 DATE 8/12 International: (937) 615-3598 ' 8" Break Away Fitting 'Models: BAF-8 Bulletin 7365 j Demersible Pumps DEMING @ www.cranepumps.com inches (mm) I {�11.00 I (279) r�7.50 4.56 I 1191) I (116) 42.00 1 c (1067) 9.68 O 36.00 (2+6) 1— T (914) I 18.00 (457) I I 18.00 (457) 48.00 (1219) OPENING 54.00 (1372) REF. L GUIDE RAILS UPPER GUIDE BRACKET 3" (76) SCH. 40 PIPE 2 REO'D 5.31 (135) 1 1 12.06 �L WE WELL (306) 51.62 1 (1311)1 I 37.00 (940) I 1 1 I 8" (203) CLASS 125 I (224 O 24) DISCHARGE FLANGE 1 1 rl 17.75 — — — 25.00 (635) (451) MIN. WATER o ,,.00 6.00 (279) 12.)at:bR D; b 1 p D (152) (305 30° ?DG 5.00 So 4.00� 102)10.50 T~(279) (267) ' SECTION 4CRAN E PAGE 6 6 PUMPS &SYSTEMS DATE 8112 ACrane Co. Company. USA: (937) 778-8947 • Canada: (905) 457-6223 - International: (937) 615-3598 Size 8T DEMING° 4" Spherical Solids Handling 7365-823 www.cranepumps.com Demersible Pumps #4 Frame Driver Finches (MM) 30.11 (764) 12.93 (328) 48.23 (1225) Q o o 23.13 0 (587) 0 0 STANDARD WITH 30' CORD Optional Leg Kit - p/n 125506A 6.64 15 (80 PUMPS AND MOTORS ARE FM/CSA EXPLOSION -PROOF TO CLASS I DIVSION 1 GROUPS C&D T4 RATING Dia. NEMA Full 1 Locked Model No. Size inches HP Volt PH Hz RPM Start Load Servi ce Rotor Driver Cord Size (mm) Code Amps Factor Amps Frame Amps 7365-823-32-300 8T 10.43 265 25 208-230 3, 60 1150 G 75.2/70.5 90.8/82.6 354.0 #4 2/4 - 18/4 7365-823-62-300 8T 10.43 (265) 25 460 3 60 1150 G 35.4 41.3 177.0 #4 8/4 - 18/4 7365-823-77-300 8T 10.43 (265) 25 575 3 60 1150 G 28.3 33.0 141.6 #4 8/4 - 18/4 7365-823-33-300 8T 11.02(280) 30 208-230 3 60 1150 E 90.8/82.6 114.9/99.7 354.0 #4 2/4 - 18/4 7365-823-63-300 8T 11.02 (280) 30 460 3 60 1150 E 41.3 49.9 177.0 #4 8/4 - 18/4 7365-823-78-300 8T 11.02 (280) 30 575 3 60 1150 E 33.0 39.9 141.6 #4 8/4 - 18/4 7365-823-49-300 8T 12.21 (310) 40 230 1601 1150 1 E 110.4 131.8 476.0 #4 2/4 - 18/4 (7365=823=64300) (8T) '12-.21-(310) (40) (460) j (3) (60) (1150) (EI (55-.21 (6_5 9) (_238-0) (#4) 1 (6/47--1'8/4) 7365-823-79-300 8T 12.21 (310)l 40 575 3 1 601 11501 E 44.2 52.7 190.4 #4 1 8/4 - 1814 IMPORTANITI 1.) MOISTURE AND TEMPERATURE SENSORS MUST BE CONNECTED TO VALIDATE THE CSAAND FM LISTING. 2.) A SPECIAL MOISTURE SENSOR RELAY IS REQUIRED IN THE CONTROL PANEL FOR PROPER OPERATION OF THE MOISTURE SENSORS. CONTACT CP&S FOR INFORMATION CONCERNING MOISTURE SENSING RELAYS FOR CUSTOMER SUPPLIED CONTROL PANELS. 3.) THESE PUMPS ARE CSAAND FM LISTED FOR PUMPING WATER AND WASTEWATER. DO NOT USE TO PUMP FLAMMABLE LIQUIDS. NOT SUITABLE FOR ENVIRONMENTS CONTAINING GASOLINE OR HEXANE. 4.) INSTALLATIONS SUCH AS DECORATIVE FOUNTAINS OR WATER FEATURES PROVIDED FOR VISUAL ENJOYMENT MUST BE INSTALLED IN - ACCORDANCE WITH THE NATIONAL ELECTRIC CODE ANSI/NFPA 70 AND/OR THE AUTHORITY HAVING JURISDICTION. THIS PUMP IS NOT INTENDED FOR USE IN SWIMMING POOLS, RECREATIONAL WATER PARKS, OR INSTALLATIONS IN WHICH HUMAN CONTACT WITH PUMPED MEDIA IS A COMMON OCCURRENCE. 5.) A NON -SPARKING BREAKAWAY FITTING MUST BE USED TO VALIDATE THE EXPLOSION PROOF LISTING. SECTION 54 CRAN E PAGE 54 DATE 8/12 ACrane Co. Company PUMPS & SYSTEMS USA: (937) 778-8947 Canada: (905) 457-6223 • International: (937) 615-3598 EFFLUENTAND SEWAGE TECHNICAL BROCHURE BCPCGR FEATURES A10-30, 3- X 4" RAIL SYSTEM: Connects to any pump with a 3", 150# ANSI flanged discharge. Outlet is a 4" flanged discharge. A10-40, 4" X 4" RAIL SYSTEM: Connects to any pump with a 4", 150# ANSI flanged discharge. Outlet is a 4" flanged discharge. A10-60, 4" X 6" RAIL SYSTEM: Connects to any pump with a 4", 150# ANSI flanged discharge. Outlet is a 6" flanged discharge. ALL MODELS: Cast iron construction for standard applications. Optional bronze pump adapter for applications requiring a non -sparking disconnect. Standard kit contains a Base, a Pump Adapter with all required bolts and fittings and the Upper Guide Rail Positioning Bracket. Optional intermediate guide rail brackets are available in either steel or brass for non -sparking applications. Guide rails are not supplied - they may be sourced locally - 2" stainless steel guide rails recommended. Spare pump adapter kits are available for those who want a back-up pump/adapter ready for an emergency quick change. RAIL SYSTEMS Centri Pro a xylem brand \A/A cta1Aiata r 3" AND 4" DISCHARGE GUIDE RAIL SYSTEM • Heavy duty cast iron construction. • Twin guide rails provide positive alignment with base. • No sealing devices required - pump weight provides sufficient force for proper seal. • Self cleaning. design. When pump flange engages base, the shearing action wipes the sealing surfaces clean. • System Components Include: • Base with integral cast elbow. • Pump adapter - guide assembly with fasteners. • Upper guide rail positioning bracket. Carbon steel bracket available as an option in stainless steel. NOTE: Guide rails not furnished by CentriPro. Lifting chains and bails ordered seperately. Intermedi- ate bracket available as seen on page 4 for pits over 11 feet. Pump Discharge Part Number A Max. C H J Weig ht 3" A10-30 4°/16 333A 22'/2 63/a 11+1/4 170lbs. 4" A10-40 313/16 1 341/4 23 1 73/a 12±1/4 185lbs. NOTE: Motor Frame; Reliance - 180TY Positioning Bracket 33/8" —(2) 2" Pipe Guide Rails by installer PAGE 4" DISCHARGE GUIDE RAIL SYSTEM 1� Top View r -81- — -4E -1- /Positioning Bracket 61/r' (2) 9/I6 0 Holes Frame PumDi charge I Part Number A Weight 210 4" A10-60 373/4 1851bs. 250 4" A10-60 431/8 1851bs. PAGE 3 ki PUMP ADAPTER KITS 1 K340 - for A10-30 iron 1 K341 - for A10-40 / Al 0-60 iron 1 K447 - for A10-30B brass 1 K448 - for A10-40B / All 0-60B brass Part numbers are for repairs, component is included in the A10-30, 40 accessory. INTERMEDIATE GUIDE RAIL BRACKET A10-30 (B) standard 41<436 Al0-40 (B), 60 (B) standard 41<437 Al 0-'30 304 SS 41<631 Al0-40 304 SS 41<632 Used on pits over 11 feet for extra support. Must be purchased separately. MINIMUM BASIN DIAMETER Minimum Recommended Simplex 36" 42" Duplex 48" 60" Pump Discharge Size Order Number ANSI Flanged Discharge Size Material of Positioning Bracket Used On These Pumps 3" A10-30 4" 150lb. ANSI Carbon Steel 3WDA, 3DWS, 3WS, 3888D3, 3SD 3GV, 31VIV, 31VIK 3" A10-30SS Stainless Steel 4" A10-40 Carbon Steel 4WDA, 4DWS, 4DWN, 4WS, 3888D4, 4SD, 4NS 4GV, 41VIV, 41VIK 4" A10-40SS Stainless Steel 4" A10-40SS 6" 150lb. ANSI 4" A10-60SS Carbon Steel I 3" XP Al0-30B 4"150lb. ANSI 3XWC, 3SDX, 3GVX, 3MVX, 3MKX 4" XP A10-40B 4XWC, 4XWN, 4SDX, 4GVX,4MVX, 4MKX 4" XP I A10-606 I 6" 150 Ib. ANSI 4XWC, 4XWN, 4XD, 4SDX, 4GVX, 4MVX, 4MKX * For 61VIK units, see Conery base elbow CBE6060. xylem Let's Solve Water Xylem, Inc. 2881 East Bayard Street Ext., Suite A Seneca Falls, NY 13148 Phone: (866) 325-4210 Fax: (888) 322-5877 www.xyleminc.com/brands/centripro CentnPro is a trademark of Xylem Inc. or one of its subsidiaries. C 2012 Xylem, lnc. BCPCGR R12 ApH12012 Ga€owa Planning. Architecture. Engineering_y Outlet Protection Determination of Culvert Headwater and Outlet Protection ' Project: East Risge Second Subdivision Basle ID: Storm Drain C ' �� ixu b b I n Design Discharge filar Culvert: Bartel Diameter. in Inches Inlet Edge Type (Choose from pull -down list) Culvert: Bartel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pulidown list) Number of Barrels Inlet Elevation Outlet Elevation 4@ Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient Tailwater Surface Elevation Max Allowable Channel Velocity Tailwater Surface Height Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Tatwater Depth for Design Adjusted Diameter2&Adjusted Rise Expansion Factor Flow/Diameter25 OR Flow/(Span' Rise") Fmude Number Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation HeadwaterlDlameter OR Headwater/Rise Ratio Minimum Theoretical Riprap Size Nominal Riprap Size UDFCD Riprap Type Length of Protection Width of Protection Soil Type: chw one: O Sandy Q Non -Sandy O = 129.3 cis .................................. ..._�..- ......_60........... inches .......... �S4uare End Nojenion � � Height (Rise) = Width (Span)= OR it ft No = Elev IN = Bev OUT= L= n = kb= k. = Bev Yc= V =1 It ft it It ft/s 1 4931.86 4931.01 213.71 0.013 0 1 7 Yt = 2.00 It AM = 18.47 ft' A= 1963. ft` k. = 0.50 W = 0.78 k. = 2.28 It Yn = 3.34 It Y. = 3.25 ft d = 4.13 ft D. _ - ft 1/(2'tan(6))= 5.35 O/DA2.5= 2.31 fey/5 Fr= 0.95 YVD = 0.40 HWi= 5.13 Ift HWo= 481 99HW= 493 ft 1.03HWID= d5o = 10 in d5, = 12 in Type= M b= 23 ft T= 10 ft Determination of Culvert Headwater and Outlet Protection Project: East Risge Second Subdivision Basin m: Storm Drain D 111 ON wcu H F-1 e III— ; iar n Soil Type: [mare one: Sandy Q Nan -sandy Design Discharge filar Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull -down list) Culvert: Bartel Height (Rise) in Feet Bartel Width (Span) in Feet Inlet Edge Type (Choose from pull -down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient Fait Loss Coefficient Tailwater Surface Elevation Max Allowable Channel Velocity Tailwater Surface Height Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Tailwater Depth for Design Adjusted Dlameter2&Adjusted Rise Expansion Factor Flow/Diameterz's OR Flow/(Span' Rise") Froude Number Tailwater/Adjusted Diameter Qg Tailwater/Adjusted Rise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Minimum Theoretical Riprap Size Nominal Riprap Size UDFCD Riprap Type Length of Protection Width of Protection Q= 185.E Cis 66 _ inches �s4uare End Proieition __ �� OR Height (Rise) - 6 Width (Span) = . It yr = 3.48 ft AM= 37.12 ft' A = 23.76 N. = 0.50 14 = 0.61 k. = 2.11 it Y = 3.97 ft Y. = 3.81 It d = 4.66 ft D. - ft 1/(2'tan(0))= 6.72 CAY2.5= 2.62 ftoe/s Fr = 0.92 ytlD= 0.63 HW,= 6.20 ft HWo= 5.90 HW 4.937.95 ft HWID= 1.13 dm = 7 in dw = 9 in Type= L 60 35 ft T= 11 ft Determination of Culvert Headwater and Outlet Protection Project: East Risge Second Subdivision Basin ID: Storrs Drain E ABOX cnac n ° 1— I---- _ io Soil Type: Choose One: Q sandy Q Non -Sandy v Design Discharge 0= 117.9 cis Barrel Diameter in Inches D = _ _ .60 inches Inlet Edge Type (Choose from pull4own list) Square ErN N°jamn I OR Bartel Height (Rise) in Feet Height (Rise) - it Barrel Width (Span) in Feet Width (Span) = ft Inlet Edge Type (Choose from pull-0own list) Number of Bartels No = 1 Inlet Elevation - Elev IN = 4929.71 ft Outlet Elevation Qa Slope Elev OUT = 4928.98 ft Culvert Length L = 180.61 ft Manning's Roughness n = 0.013 Bend Less Coefficient kb = 0 Exit Loss Coefficient k = 1 Tailwater Surface Elevation Elev Y, = 4931.99 it Max Allowable Channel Velocity V =1 7 ft/s tection (Output) Tailwater Surface Height Yr= 3.01 ft Flow Area at Max Channel Velocity A, = 16.84 ft' Culvert Cross Sectional Area Available A = 1963. W Entrance Loss Coefficient k = 0.50 Friction Loss Coefficient k, = 0.66 Sum of All Losses Coefficients k = 2.16 it Culvert Normal Depth Y„ = 3.11 1t Culvert Critical Depth Y.= 3.10 ft Tailwater Depth for Design d - 4.05 it Adjusted Diameter OR Adjusted Rise D. _ ft Expansion Factor - 1/(2'tan(0))= 6.69 Flow/Diameters OR Flow/(Span • Rise") O/13"2.5 = 2.11 nos/s Froude Number Fr = 0.99 Tailwater/Adjusted Diameter Tailwater/Adjusted Pisa YVD = 0.60 Inlet Control Headwater HWi = 4.80 ft Outlet Control Headwater HWo= 4.53 Design Headwater Elevation HW - 4,934.51 ft Headwater/Diameter OR Headwaterlftlse Ratio HWID= 0.96 Minimum Theoretical Riprap Size dw = 5 in Nominal Riprap Size d. = 6 in UDFCD Riprap Type Type= VL Length of Protection b = 15 R Width of Protection T= 8 ft Determination of Culvert Headwater and Outlet Protection Project: East Risge Second Subdivision Basin ID: Storm Drain G w ..x ci ac N F o w Design Discharge Bartel Diameter in Inches Inlet Edge Type (Choose from pull -down list) Bartel Height (Rise) in Feet Bartel Width (Span) in Feet Inlet Edge Type (Choose from pull -down list) Number of Bartels Inlet Elevation Outlet Elevation Pa Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient Tailwater Surface Devation Max Allowable Channel Velocity TaNvater Surface Height Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Cw ficient Sum of All Losses Coefficients Culvert Normal Depth . Culvert Critical Depth Tailwater Depth for Design Adjusted Diameter O&Adjusted Rise Expansion Factor Flow/Diameter33 OR Flow/(Span' Rise") Froude Number Taihvater/Adjusted Diameter Q$ TaiWater/Adjusted Rise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Minimum Theoretical Riprap Size Nominal Riprap Size UDFCD Riprap Type Length of Protection Width of Protection Soil Type: Choose one: p sandy _ Q Non -Sandy Q= 17.8 cfs Inches Square Eno Pralecbon f � OR Height (Rise) = ft Width (Span) = ft No= 1 Elev IN = 4933.62 it r Elev OUT= 4931.29 ft L = 155.35 ft in = 0.013 kb= 0 k. = 1 Elev Yr = 4934.47 ft ' V=1 5 ft/s Yr= 3.18 ft AM = 3.56 ft2 A = 3.14 ft` k. = 0.50 kr= 1.92 k = 3.42 ft Yn= 1.16 it Y. = 1.52 ft d=M201 it D.ft 1/(2'tan(0))= Q/Dn2.5 =ftoa/S Fr=Supercriticall YVD = HWi= 2.64 ft HWo= 1.13 HW — 4,936.26 ft HWID= 1.32 daq = i in db = 6 in Type= VL b= 6 ft T= 3 ft i Determination of Culvert Headwater and Outlet Protection ' Prolect: East Risge Second Subdivision Basin ID: SDS A W 11� �- L--L, tt Soil Type: noose One: cx _ saner ' O Non sand MFRM Supercritical Flowl Using Da to calculate protection type. Desi n Information In ut Design Discharge O = gg.4 cis ' Circular Culvert: Bartel Diameter in Inches D = 54 inches Inlet Edge Type (Choose from pull -down list) [Square Ene Pml on �Ene vml on �� Box Culvert: OR Barrel Height (Rise) in Fast Height (Rise) = ft ' Barrel width (Span) in Feet Width (Span) - If Inlet Edge Type (Choose from pull -down list) E- I. Number of Bartels - No = 1 Inlet Elevation Elev IN = 4930.7 it ' Outlet Elevation Q$ Slope Elev OUT= 4928.95 It Culvert Length L = 156.06 It Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k. = 1 ' Tailwater Surface Elevation Elev Y,= 4930.86 it Max Allowable Channel Velocity V=1 5 ft/s Re uired Protection (Output): ' Tailwater Surface Height Y,= 1.91 If Flow Area at Max Channel Velocity A, = 19.88 ft' Culvert Cross Sectional Area Available A = 15.90 ft` Entrance Loss Coefficient k. = 0.50 'Friction Loss Coefficient kr= ' 0.65 . Sum of All Losses Coefficients k. = 2.15 It Culvert Normal Depth Yb = 2.19 ft Culvert Cnhcal Depth Y. _ 2.93 It ' Tailwater Depth for Design d = 3.72 1t Adjusted Diameter Q$Adjusted Rise D. = it Expansion Factor 1/(2'tan(6))= 6.63 Flow/Diamete�'a M Flow/(Span'Rise's) O/DA2.5= 2.31 fes/s ' - Frouds Number Fr= 1.75 Supercriticall Tailwater/Adjusted Diameter M Tailwater/Adjusted Rise YUD= O57 Inlet Control Headwater HWi= 4.60 it Outlet Control Headwater HWo= 3.27 Design Headwater Elevation HW - 4,935.30 ft HeadwaterlDlameter OR Headwater/Rise Ratio HWID = 1.02 Minimum Theoretical Ripmp Sim din= 9 in t Nominal Riprap Size din = 9 in UDFCD Riprap Type Type = L Length of protection LP = 40 ft Width of Protection T = 11 ft Determination of Culvert Headwater and Outlet Protection Project: East Risge Second Subdivision ' Basin ID: Storm Drain B L �y si+ac n � n v n. a Sail Type: CIXM one: Q sandy Q Non -Sandy Design Discharge O = 182.2 cis Am Culvert: Barrel Diameter in Inches .D = _ _6.6_ inches Inlet Edge Type (Choose from pull -down list) Csquare End Nojenion j. Culvert: OR Barrel Height(Rise)in Feet Height (Rise) - it Bartel Width (Span) in Feet Width (Span) = it Inlet Edge Type (Choose from pulldown list) Number of Barrels No = 1 Inlet Elevation Elev IN = 4931.6 it Outlet Elevation OR Slope Elev OUT= 4931.01 8 Culvert Length - - L = 147.76 It Manning's Roughness n = 0.013 Bend Loss Coefficient kb = 0 Exit Loss Coefficient k. = 1 Tailwater Surface Elevation Bev Yt= It Max Allowable Channel Velocity V =1 7 fills Tailwater Surface Height Yr= 2.20 8 ' Flow Area at Max Channel Velocity A, = 26.03 ft' Culvert Cross Sectional Area Available A = 23.76 ft` Entrance Loss Coefficient k. = 0.50 Friction Loss Coefficient 14= 0.47 ' Sum of All Losses Coefficients k. = 1.97 It Culvert Normal Depth Y„= 3.92 It Culvert Critical Depth Y. = 3.78 It Tailwater Depth for Design - d = 4.64 It Adjusted Diameter OR Adjusted Rise Da = it Expansion Factor 1/(2'tan(E))= 5.00 Flow/Diameter26 OR Flow/(Span'Rise'°) O/D"2.5= 257 ft" "is Froude Number Fr = 0.93 ' Tailwater/Adjusted Diameter Tailwater/Adjusted Rise Yt1D = 0.40- Inlet Control Headwater HWi =W0.71 ft Outlet Control Headwater HWo° Design Headwater Elevation HW =ft ' Headwater0lameter OR HwdwaterfRise Ratio HWN= Minknum Theomficai Riprap Size d. = 12 in Nominal Riprap Size deb = 12 in UDFCD Riprap Type Type = M ' Length of Protection LP = 32 ft width of Protection T = 12 It Gaoway Planning. Architecture. Engineering. DETENTION POND SIZING (EPA SWMM 5.0) ' 4.1 Intensity -Duration -Frequency Curves for SWMM: The hyetograph input option must, be selected when creating SWMM input files. Hyetographs for the 2-, 5-, 10-, 25-, 50-, and 100-year City of Fort Collins rainfall events ' are provided in Table RA-9. Table RA-9 - City of Fort Collins ' Rainfall Intensity -Duration -Frequency Table for Use with SWMM 2-Year 5-Year 10-Year 25-Year 50-Year 100-Year Duration Intensity Intensity Intensity Intensity Intensity Intensity (min) (in/hr) (in/hr) (in/hr) (in/hr) (in/hr) (in/hr) ' 5 0.29 0.40 0.49 0.63 0.79 1.00 10 0.33 0.45 0.56 0.72 0.90 1.14 15 0.38 0.53 0.65 0.84 1.05 1.33 ' 20 0.64 0.89 1.09 1.41 1.77 2.23 25 0.81 1.13 1.39 1.80 2.25 2.84 30 1.57 2.19 2.69 3.48 4.36 5.49 35 2.85 3.97 4.87 6.30 7.90 9.95 ' 40 1.18 1.64 2.02 2.61 3.27 4.12 45 0.71 0.99 1.21 1.57 1.97 2.48 50 0.42 0.58 0.71 0.92 1.16 1.46 55 0.35 0.49 0.60 0.77 0.97 1.22 60 0.30 0.42 0.52 0.67 0.84 1.06 65 0.20 0.28 6.39 0.62 0.79 1.00 70 0.19 0.27 0.37 0.59 0.75 0.95 75 0.18 0.25 0.35 0.56 0.72 0.91 80 0.17 0.24 0.34 0.54 0.69 0.87 85 0.17 0.23 0.32 0.52 0.66 0.84 90 0.16 0.22 0.31 0.50 0.64 0.81 95 0.15 0.21 0.30 0.48 0.62 0.78 100 0.15 0.20 0.29 0.47 0.60 0.75 105 0.14 0.19 0.28 0.45 0.58 0.73 110 0.14 0.19 0.27 0.44 0.56 0.71 ' 115 0.13 0.18 0.26 0.42 0.54 0.69 120 0.13 0.18 0.25 0.41 0.53 0.67 Table RO-13 SWMM Input Parameters Depth of Storage on Impervious Areas 0.1 inches Depth of Storage on Pervious Areas 0.3 inches Maximum Infiltration Rate 0.51 inches/hour Minimum Infiltration Rate 0.50 inches/hour Decay Rate 0. 00 18 inches/sec Zero Detention Depth 1% Manning's n Value for Pervious Surfaces 0.025 Manning's n Value for Impervious Surfaces 0.016 Table RO-14 Percent Imperviousness Relationship to Land Use* PERCENT IMPERVIOUS LAND USE OR ZONING Business: T 20 CCN, CCR, CN 70 E, RDR, CC, LC 80 C, NC, I, D, HC, CS 90 Residential: RF,UE 30 RL, NCL 45 LMN,NCM 50 MMN, NCB 70 Open Space: Open Space and Parks (POL) 10 Open Space along foothills ridge 20 (POL,RF) RC 20 *For updated zoning designations and definitions, please refer to Article Four of the City Land Use Code, as amended 0 0 ' 4 00 n a a 0 0 0 1 0 1 J 1 ,0 1 1 * 1.J Ln I * ro a 1 # ,ti N 1 D ONO •HO 1 ) +J N 1 o N o 1 4 M a,I o N II 0 N U. I1 . .01 alv * Q G I o00 wrpl ** o a * u I -u1J 0 1 t 11 G H1* o 0 z 1 * O O I * 41 1� * O o H I t H 4J .i W * O O N W 1 H O N fh W 1 # ro b+* E N I r 0 rNl0 }* N ifw 'N 1 N OO (�ON w I N 75 -H * H -i w I1 w l ?i 0 I I N (0 r: * N N 0 0 0 N O � I I # H 0 # 0 W 1' 1 U) O >_I I I *' a U a* 7 N r •• •• O U 1 i-7 1 * W N* 0 RC O O O O N ro l W' I * rl ?4 LJ * El 81 0 0 00 0 v1 a U Z u, o • o O I * a) N.C* GJ W 000W OOO.N W OOrio W r4 �. 1 t O > U* U ?�zzz Nzzx QUvl0000�>+ooHo # U N ro w I * W O 4 (aa w* *. I * v) o * o y * a# a I * wW* o0 • •a a t of o 1 * u v1 * * m* w Iv W +j ❑ a •. w •o * * w m N •• O j >. v O O u m ro * >, * ro N O w I * 04 * o* o * : te a o > J m m of d # F I t ::J * .�,* r -H •H � sJ aH.,, o s,m as v -H * .j -H LH w 1 # En <n * * * a s H o O (u Q a a a, ro c 1: * w* 01a a a o 3 1 * O d t. a* 1 41 m m W W ri .� .� E m . TS r t+ u r.� ro o q ro a1 * (0* p o q t 0* N O* * O* N O H +� ro 0 7 .J -.1 Q W W H v] E f-1 >_I E # ro* 0 U Q � * N * * * El wEH •.a) 3 O b?OlWw ro qp E F W N * * 41 N4J 10 C4' 1 * ,C G 1) t * ro o ro a H' ro 0 b+ ❑ N E N N O * a* 14 10 ro O I * E O m* * H* .1 * G U) W E G .H O C 'O � ri b) -1 0 F: O * �* of ro SJ F I * * *># w 1 14 Ell H 33 7 3 O v 1i W. Q� b m A s+ E * w# 1.1 U U v1 I * •• b .ri * * ?� * Hr. H J r U El N .i H O O O G w H rJ g U F E ro E N * E O ro 0 I # W N * * rl * 41 .-i O ro .� 3 14 '.I N O J� .J .J 'O 3 U ro❑ G 0 0* * o* -H a .� w 1 * F * ro* O O U: fx CO C7 GJ W 3 W O ro v W a W Pr o >_I % ro D * G* J ro SJ 04 I * co 0 oroo* * c* a. -I aluororoq * 0 r o>a� w w 1 * z.Q a* * Ft* 4404 . kJa Hwmw�Cas❑cJ:>Xzx )W<O y* * a* FwHv1 1 V r N H I o c o O O O N O O O C1 to ro 1 0 d o O O m c o o o r O �J m I o o o O O OD M o o o m H O O l0 I O N 0 0 0 0 0 0 0 0 0 < I O 1 H I I � • U U U N N N ( (h 1 O N 0 0 0 l0 Ol O O'O C VI N f/1 '-I N r/ 0 � N I 0 0 c c 0 o r N O r N r 0 I o O N 0 0 0 10 0 0 0 -O O N o 4 1 Ln o o o N O O O O O O 0 1 O I 1 COO 0 l0 O O O N H O O O N O I N 1 I - H Ol O O N O 11 I ri U I ro I # N # + N * * X + y + * In* C* a # # # 4-1 * * H * 1 * > * * * * * * ro * v .H * . # ao s1 b) rova * �* ... * w* * * ro * * a .1.a • ow * C * (1)dP * * # * rl * W * U b4 .._. * .J * 3 3 3 H � '-' * H * * fu ro * A * * i1 • * o 0 0 rc1 0 C * * ro * a* rn a a a >+ C N • * C * F: rl .i 3 Vl > H * U * U .-. .* )* m * .✓ * * N N 'O O > • o 0 * o # 44 O o O w w w 3 0 0 0 * * cw * C * rn * J t) * J a.1 U1 � a) ro .,1 � C S4 * U# 0 C C C- O H O a 'd it * 4, 11 * r # H* * m* V] U m N L0 O N S-I * * H H H H w N .7 N S! * .i * H # # N * * 13 ro U W # b+ * w JJ C W * 11 * * 3 * Sd * N * N N N � t1 10 ro * C* 0 0 4) 41 s1 3 C 7 0 C O O N * U* O * O* N * H* E S E N 1 � i, * .'1 * N N N O H U a O .11 JO 0) * * ri # H * * •.1 * C 1J O O 41 0 * * 0 J .0 .0 40 r1 .i 40 O 1H * a * -- * G-1 * N * F * El El El E E E 1) .� 3 # C * 1.1 row H H b+ ro 1)- .:1 * * * * x * # V] 7 # o* ro ro 3 C ro ro C (4 N .M V) 7 t 0 * J * H * J) * C * LT * N 5 1� C * W* N N 'O H C C tJ ro C * COW* U * O* .H * C* 0 Q C (T C O+ C H * * 'd O H-H �p 3 3 C '0 0 * I* * N* rl * * H ro H N ro N J ro- * 3* Q) 0) j 0 H ro ro o a.4 p ro- * * x * A* * 4J *H u U u U C C * O * ?4 a) O H 1.+ O ro w .1 C C * * C * b+ * * =1 7 * C a/ X s1 al s1 X 1.i O *� H * S-I N fJ O X X rl D X C .H O X * * * .� * H * O * ••1 'J ro N 'J N [v U * G-1 * O 3 U' C W W u W H G W -1 U [ * [1 * .71-1 * x * FC * W * E FC £ P+ r-C a1 i > u# ro# * W 1 M M lfl m l0 N .i w ri * W 1 H ri C' H C' m m to Ln 0 N I Lo vI N .-I to to l0 .. O 1 :5 U I O o O O O O O O o G 1 I fG W W 1 '-I r CD a) W I M M m H 0 fl H C O N a O U 1 L a I N N m N r r W M M a I st' M ul M N a 1 I I M O M O N ra nN row ro I cM�M,-lo0o u O iT 1 O a I o 0 0 o O o 0 0 0 7 < I a < I o I r-I I ro 44- 1 J W I O a I F H I a a I ro ro -ri I 0 � O W E I N (a a a 1 O I 0 a 1 E+ a I O O M O M W r C V N N l0 Lo. l0 H to 1n lfl 0 o O o 0 Co 0 0 0 N N m N m r c r m C C N C N r N M N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Co O O O O O O O O 000000000 0 0 0 O O O o 0 0 W W W W m m m m m rn m m rn m m m rn rn 0 0 0 0 0 0 0 0 0 I I I I I I I 1 I I I N I I a U) I I 0 1• ro I LI I p] d I a) I a F I x ro I' I I I .0 I N N N N N N VI y 1 U 1 I 1 -fl -rA 1 3-) --H -AA -rl 3 -ri -ri .H 1. o l ro ro ro ro ro x ro ro ro I A l P] W W W !Y7 sa fA W fA I a 1 1 1 1 1 1 N 1 1 1 I m 1 pa r.0 0 U H W [u W 0 1 1 3 a) 74 1 O U O 1 H a 74 1 44 ro }4 I H W I � I 07 1 'ZJ4 W 1 o c mm Ho I E+ a O I a) W a) I o m m to 0 1 H aa) I . . . . . . . I 1.1 a) 44 1 f-I O H H M M M I O Q I a 1 ro a 0 rt 1 Si r-I �J I N W r-i I X N a �D W N Lo ri to O I J) C O I ro U -ri I N N H C u) C N I (t H a E. I .. .. .. .. .. .. .. I a 1 a) •• 1 0 0 N O O O O I 1 W S4 LI 1 0 0 0 0 0 0 0 1 O N a I 1 a 1 I I N U a) I O O o 0 o 0 0 I I � U �. 1 I X a) I -ri O ro I I ro U I F 'O 1 E a a) 1 W S 10 m 1 O sa %D 0 N Q'. \OH I N U 1 -H Ga 1 W I• X I N N N M M M M - -fl O I ro I Ol Ol 01 O1 O1 m m I F I I 1 I H 3 I .Y I a lj � a) 11 o 0 m rn r H w Mcl0HO m I N-O I H fi �.. ) I a a - I - 0W I .� N G.1 I HOH HMMM I E a X 1 X Q I I N Fi £ I E I I I I 1 I H 3 1 OA U 1 firnrnlnr 1 m o 1 o.0 a)1 r+ooMlnMM >•i rl 1 ro a O 1 I -ri d w I a) rr-i I O O O r-I M N N I X Ja a a Q a) ro H > I X a I I I f I z 1 O a w w w w w 1 H d i U 44 a tZ a a a 1 a I z F O O O O O I • ?, I D D E F E E+ F I I F 1 1 17 0 W W W N In I I I * > # I * ro * # # * * I YI * * I # # ro N * m* * (n # * I I O H * 3 LL -H* 4 4 O * I * lJ * I I a 44 'b * * * a o o a * w * al * I -ri 1: CO ro w * a * D# I iJ 10Q m❑ # H# I * * I I m a w Iw * * I * a) * a) I H a) 1 144I * N* I * b* 1 ,: 4Jh * 1 * O* I O I w w W w t-1 a a))w * 0 # I * z* I z l t70QH0rYlU * z# I 4J N I O O O O O O H U I S-I 1 0 0 0 0 0 0 0 N I I a 1 I I - I I H 1 0Mrin o M 1 ro I owocNn N b I N N • M O O I o o O < I O I � I I i 1 Cl O C l0 M 01 (a ro l H C N u1 N U N N • Mri o C 1 0 0 0 O 'O .0 �. J < 1 C 41 a) O I O I P. a Z N H I U I N41 w ❑ 1 0 0 as i G N C I r L00000 .0 1 .ri w -H I N N C C C C C b+ I E I.. .. .. .. .. .. ..r1 1 • 1 0000000 .0 1 u 1 0 0 0 0 0 0 0 1 C 1 M N 0 v) 1 041I 0000 00 J IT a) 1 1 u w ro t 4-41 a) v U ro t o I x a I • > V] 1 0 0 LO LO m M M 0 1 x 0 w I o M In M l N W 41 1 (0 U I E I N M M r m w In (1) 1 I r N In N M .0 1 W 1 I a I O > I a U) I O O N N CM M M 0 1 b� w I O O N M l (N W Q I 4) }4 U I ro l f4 ro I o o rn r m m 1 0 .0 M N N N m M U I x u N I rl I ) � 1 u 1 o a w w w W W d 1 Hacr��cr��cr��cr��cr�� 41 1 a) i U Gr4 a I z E+00000 1 a >. 1❑ D E+ E E E E C >, E I tD O M W M 0 W N I E+ + m + 3 * * N * # t I * 0 * I * * U I I 0) LI a) * a) * U 1 O I I C J-) I O rl .W * ro * b) I I •.i I C w 't1 * U I O 'O C * u* b1 1 .J C (a* C* u I I lJ Cl ❑ V] 0 * V7 * ro I cn�w�wlw� •ZJ LI AJ t7 x W1 ❑ * b * 1-I I 'O 0 1 H::s a) �j 1 0 z I h 00 H 0 M U -* z* 0 I z 0 N r 0 H F U z h L O 1 G I 1 0 I I N I � I C 1 a 41 I ll I a) I � I a) I 3 I . I v 1 � I O 1 C I 1 ro 1 In 1 1 0 I H 1 W I Sa I a) I >O 1J I (a I � I 1� I I u I a) I W I 3 I H I # > # H I # u # ro 1 # ro # # # O41 1 1 # # I # # I * U+ * a) a) I # C # W I # O # # O # I * O # tp 1 # H # C 1 # # 1 # 0 0 # 0 1 # 0 # o # # �-1 # z # w 1 a1 V 0 1 0 0 x o❑ 1 0 0 ro W E I I I I H '0 a) H I ri rl ro 0 I C 0 0 O b I N r 0 H H F w O< l o 0 0 1 � I 1 I 1 x w C I o 0 N •• 1 0 0 W W 0 0 O C 1 � a) U 1 0 0 > ro 0o F O I I 1 I a) V MC 41 U x i � a• x 1 � ro I � I I I I •ti I N M fa I 0 C L4 1 C O 1 r O O I H 1 w I * > * I # S-I * I * ro * 1 * * I * * I # # I * a) * I * # I * * I # H # I * o * 1 * * I aq * a) * I ❑ * b1 * I w * ro * 1 r W * * I h U * U) � * I 3 m I ormcko O w I O N m r M r U I WI LOc O M o 1J I rl 'i M C 0 I U 7 a w w ro C U 0 a a C O U O a a w I U 7 a w M i c 0 0 r m r o r minr n lD m N O n r c 10 O M �n�nM�nm O H c M N 0 C) ID m io mtorn M mM C\lc m N M T m c l0 O Ln M r N W H c M N 1 34 1 L4 (D I O 4) 41 1J I C V H -rl 1 O r1 .11 C 1 a- A w I O O C tT I 41 ro ❑ m ❑ o 1 u hex wl❑ 41 1 0 W W W W m 1❑ H 0 [Q U I H a) rl 1 0 1 0 I ro� ro I M I M I w iT I m i m I O r I I E O1 0 1 0 < I > I 1 1 O I I I rl I I I I I I I I 1 I X 3 m i 0 I i o I ro o w I m- I I £ I-i44 U 1 I - I I 1 I I I I 1 M I M I I I I I I I I I 1 I I > o w i m I w I I I I I I N I N I I I I I I I 3 v41 1 m I I i ID 1 O N% 1 N I N I rl S4 U I • I - w C. a l r l r # T t r I H + iy t I I I t ro t 1 I I # # I I I t # I I I # # # m # I I I # # I I I t b+# I I I # C t I I I # •ty # I N I I t ro t o I I # o# I o f 1 t a# 1 z 1 I # # 1 I I t W# 1 W I H 1 w # t I l: I 41I N ::$ # 0# 0 I 0 l m i I\ r J' I N m' c r I X rl JJ I M ro a a 1 I$ w d) 1 0 0 o o 0 I ❑ I I I I I I I i 3 0 O I X r1 O I o 0 I ro a r1 1 I I I I I 1 I I \D I U 4 I H I H I 1 X 4 JJ 1 I (0 >•w I I I I 1 I X 4) C I �D r Ln l0 rl I faU-•1 I N N Ln Inc can I C .. 1 .. .. .. .. .. I 4) •• 1 0 0 0 0 0 0 1 W FSI I OOOOOO I O N .0 I I � I I -i O ro I I I I — m 1. O O m r c ID M O I U I . M O m N r -rl E I X w I r r M ro — I � 1 I I I I I I F I I H a 1 o a a x x x Q� I z E H H H H F i OU w 3 3 3 3 I I I I I I I I I I H H ro I I w O Y1 ro 0 x P ri 4 V F rl N M c 1 1 1 1 1 1 4J N 1N 4 1 0 1 0 I I C w I I I H U 1 0 I I I I I I O 1 u •O I O I I O v I 1 z a 1 0 I N I N I I �tl C w I o U O pI I D U 1 0 3 1 I O I 'VH I O a u I I C p U l o N Hj I N H a 4 1 N I E+ CO U 1 0 w I O 1J I W I C 3 t4 1 O O U I o I w I ro 3 >, i o S4 O }4 1 I I I I I O o o i o I I I > i o 14 1 0 0 I I I O I I I I I I I •O ,G 1 O I N M L 1 0 L C I I 41 41 C I rl 1 � I I I I I I I 1 I I I 1 I I I I I I I I I I l I I I I � 1 I 7 1 1 ro 1 C 1 O I 1 U u I U J 1 1 VI N 1 1 u -H �.� 4J0 l 0• I O ro� l 1 ro a I 1 U I I I I I 3 1 1 r1 O I , H .- 7 lu f4 lu N Sl (I 1 0 D r r x O u 1 z I I I 1 I I (a I ri I I ro l o N 1 • I I 11 I O I I y I I I C I I I q I I I I r-I I r co I N 7 ro I rn [u N 1 1 u I r I 1J y I I a a I I o a 1 I x 1 I I I I 41 I rl C 1 • I I W I O 1 1 I u + s I 1 0 1 + ro + I I + + I * a + I + + 1 ro+ 1 + U + I + u + I C + (n * I k JJ + 1 * C + 1 O x I * U + I w N C 1 0 W > b) 1 • O u .,A 1 0 C x 1 N U I I .ri a I H 5 3 I o O dP IL a 1 O u N u I r N b) C I 10 ao a x 0 3 cn � U Cu I C�c U I O 1 .4 O G4 I O I x H U I I FZ4 1 O I I I I I I I I I I 1 w V1 1 N I o a 1 rn O I N 1- I I I N 1J I I u I I ro 1 I 1) I 1 z U) 1 I I I I I 4J TS I r I C N I OJ I N N I 1 U I iJ fi I H I N .J I I a 4J I I p I I I I I I 1 1 I I I I H 1 ro 1 I w C O 1 T I 1 >-1 I 1 ro 1 u I 1 0 7 I N 1 a I H lfl LD rl ri O O N N N N ri rl U')� N N ri rl U I'J h N o v � - a H V .. N O O 1� A w a ro V! n a) m m ro ro 4J0 r.0 r.0 H h No Text 1 O 1 1 0 0 1 1 1 * la # n 1 # ro a # 1 # ro # - 41 a) I rn . # U I o w In � o io LO tia y � I # a a7 # ❑ C I M O O N w I # rota# # s -r1 a) # I # 1) J.) # o o I '# m U)* o 0 oo I O o M 1 a) I ko O N N a I # O 11 N 0 l4 a) I N W I # H# a) � -# ri rl W rl W 1 . . > I * T .i# oo U O I I N OODlO 1 # ro 0 4 1 >Uro d' M II1 ##* rl 0 I I O .. V! O }J I n. U a. > .. •.•• O0 . I1 aI m v 0400 o LO W I -.T4 F3 I I C)C)00 ❑ 1 u4 * m .w azaao ...... O o O I # N.C* W OOOw 000>+'W U) 000 W £ 1 * a) U* v)000.-I Y, coro U >+22 z>+z 2 x ❑n u * Urlo U a (a # E. 1 * 1 a) # . . . . . . . . . . . . * T 2 I * � rJ # 4 . . . . . . . . . . . . . . * -H w1 * u O >4 . . . . . . . . . . . . . . . . . . . . * F: 0 I * ro aW* . . . . . # -H : : . z I * U). 0 U) * •o -o m . . . . . . * a * a 1 * W N* 0 0 >1 . a * o* 0. 1 * T r1 * w. -o ,C .0 ro n. a) v) * U * - 4 U) I * u U) 7 * * m * .. W . . . . a) -P ❑ a • a) 4j -o * * 41 V) w a I * ro u V) * # C * • • • 0 • • • 3 T a (1) a) • • +) U) (0 * T * ro O o W I * rl a) * * 0 * U C of O 41 £ £ T 41 M V) a) a) * 1) * P O W F I * 7 L4 * * - 4 * ri 7 • >_I C rl -'I a) S4 V) a a a) r1 1-1 U * -H * -ri .7 W I * n * * �* as ro- HFao)+5 ❑ oa a Ito * ++* a ao a * y(1) * a* •o4j4j<ro0C(aa) w4JxJ -H -.+Fro # a* -.iaoa I * u o* * O* U) orl 41 ro �j ::5-H•.+0 41 41 E�U)V)•.I F s4 u * ro* o o-ri :j £ 1 * a) * # * ++£r •H a o o+a+J� (a a-rI F FW a) �* a) -A�a a 1 * c C 41 * * V) * -H (aa a) 10 a ro �J IT ❑ a) F a) a) a) o H * a * >4 41 a 01 * FOv)# *-.+# aM4-4 a-Hus,oa •o e50)1 0 •o # * W a(dsav S4 U ElI * C * *' V1 * V) C H 7 3 a) 11 a -H O a) 11 •.-I -'i C A >4 F # * Y V) I * •• 'o -r) * * T * a) -H H O O O C t) rl �) C U to E* E+ •H m E a) * W * rl O r-i N I * w u * * r1 * 3 u ro ❑ C P r1 o (a .,A 3 u ., a) O 41 -H "1 •0 * o * (d P. -A w E, a)* * ro* o Oa a U)(D 6w a3W O ro•U a-+ R.N TC to K ro * C* N (04-4 to a I * 0 a o* # c* H +4 C .-I xJ C C (1) a) u o ro (0�3 a) *�:$* 0> a�:s W 1 * 2A c* * C* u,a, wmw<aa❑a>£zx * a* F WHm a)r 1 O m o o O c O O1O O v - N 1 0 LO .0 0 0 )n 0 0 0 0 0 0 rn 1 Om o OO co o OOO)n r 0 0'o I C> c)OOrloo000 < I rl rl • 0 1 H I I m m O JJ I OIOOOOm 0000 � a 0 )n a) 1 (DOtO 0 G 0000 c 0 [ 0 a) 1 0 C. 0 0 r i O O O O N O i W 1 0 o O I t o l0 0 0 0 )n o 0 0 o H o a) 1 M M >•1 I U I ro I # x • do # C x a� an # 3 3 k� 4J 0 0 m>rl t4 - - x G+ �3 U) s4 � coy+ �aG 01-1 0 4'0> a) L4 # # H HH r1 W U) 1-1 (1) S4 b) W # b) x W V U) C to 'O W (13 x a# Ns+u3aa0aooa) s4>1 # # wd(1)0H0a0-HVV 4>1 O ,J # x .c c 41 r -H '-P U) o a) -4 x a # !J aJ ro w .-1 r1 0) aJ ro u .li U) a x O# ro ro 3 C CO ro C ro f4 rl m a a) a) 'O H C C .H 34 +) N C P S4 •O O rl •.i H rl CO ,J # 3 x a H a) a) o a .14 41 (a +J C C x O# T JJ O H a) O ro 44 -H C C .i O # H# 14 a) p a X X H> X C .11 O [u U # Cu x !] 3 (7 04 W W W W 41 H W U U U U a) a) a) Ul m U) H c 0 0 0 0 c r O O O O H I N # # 41 # f4 # U # ro x a) # x a s4 x # ro 0 C a a # m # m rn a >,a a) aaa + a) # a) a) a) 'a O x JJ x 4J 4J a) ro .A C # mx U)U)U) a)JJ O # # AJ ro U x E# H E E+ -H H ,Z + G: o a o a # JJ.x ri L4 H U P U % £ � X a � a W W 1 rl H H rl rl r V' m C' 44 V-1 I M M r M r a' r c' r O N I m m m m m N m m m C O 1 . . . . ... . . . aU 1 0 0 0 0 0 0 0 0 0 .Y W m 1 O CO N O CO CO O N ro W 44 I r v' N l0 r c O N Ol N O U I W C I m o O M v' M N rl a'. I N N N N N rl I I W H I Ol lO l0 Z 4-4 ro M M N M O M 1 m O m N H M N H O lT I 0 C • I N .-1 N rl H .-i O O O F a < O I H I I I H w C 1 1n coLn Orl H 0 0N0 0N 1 0 0 N N N rl N w 1 O C 1 M M M M M N M M M E 7 I a I I H H C I ro 1 'JJ 44 W I ElH l w r1 %D . C 0 m 0 O O O O O 14 O O O 1 rl a C 1 0 Co Co 0 0 0 0 0 0 1roro.H1000000000 1 w D I 1 O w I o 0 0 0 0 0 0 0 0 I E I I I I I I I I I I I I rl C 1 0 0 0 0 0 0 0 0 0 I N O. i I o 0 0 0 0 0 0 0 0 1 w C I I O C I o 0 0 0 0 0 0 0 0 I F a i I 1 I 1 I I I I I I I I a C I 10 r r r r r r r r r I ro .'{ .1i I %D � � l0 l0 l0. lfl l0 l0 1 w U 1 I O N 1 M M M M M M M M M 1 F Ya I I M I I I I I I -O .0 i1 I r N o N 41 N I m m O 1 41 a N I I P N 44 1 rl O CO 1 O ❑ 1 1 a 1 1 N X I I x ro 1 I £ I I I I I I X O1 C I H N N 1 N•• 1 0 0 N 1 W 34 N I O O O I O S-1 C I 1 N U v I 0 0 0 m i O I E 10 1 I I I h a w I Ol N O 17 U N 'I m m rn x a 1 .I mm lO II x N N M I ro 1 rn rn m I I I I I � a v 1 . I v[� 1 r1om 1 x ❑ 1 1 ro 1 I £ I I I I N F.' w I m r v' I 0w v l arin ro a N 1 1 u NG, 1 rloc N ❑ I I I I o a w CD I I F 14 44 a i 2 H 0 I E+ 1 I h0W # > # I I I I + u # I I # ro # I I # # I I # I I O # CO# I IC # # O # C # W # w # C # a# O # N # I I �rl # ❑ # I I J� # # I I C 1 4Jw « 2� 2 i h 0 0 O U O C 1 0 0 I H C S4 N 1 0 0 [Ga ro S4 U I r w S4 1 0 0 ro N 1 m W 1 I I I I .I I I I I I I I' H N H u1 if1 I N o E ro 1 1 4Jb+ 1 rl H 0 44 I W rl I rl H I H C OI I H > < I 1 O I I H I I I I 1 rl 3 N r1 1 0 0 I ro O V ro I 1 }4 r1 C bl 1 I N W I I w C O W I I ro H 9< I I a O I I H 1 X N C I ri N £ G N •• 1 0 0 1 W 34 >4 I O O 1 O S4 C 1 1 N U W I O O U ? 1 .- O ro 1 I E 'O I I I 1 I H 3 m 1 0 0 1 ro 0 I o 0 I H. U I U 0 44 I -HW I N N I x F a 1 1 ro H I I I I I H 3 V] 1 00 C ro 0 u 1 0 0 H L+H U I I 44O O X J I � r I I ro ro H I I £ a 1 I I I I o a N I U G-i a 1 z F E+ 1 h 0 # Sa # I I # ro # I 1 # # I I # # # # I m I + 3 + # o # 1 I # W # I 1 # C # I I # H # I I # # # N # N I 1 H # # 1 10 U 1 0 z: I zIho N O a' O 0 v 0 0 a 0 O w a v v 0 � o w 1 o H r U I X w I Ln x -1 1 £ O I I I I I I x v C i In £ C r I I N •• I N 1 O 14 L I I C I N U UI I o I . U T 1 I -Ho(a I I H 0 I I I I I 4) I I I I x 41 rl 7 £ U -4 I 'O 1 .0 r4 w I O M I W [-4 I 0 1 as v I r o U I N G.i I I I 1 o c 11 1 0 I N i C n I I x o I to 1 ro F5 m I I I 1 rl I •-I I 4J U1 I N I i1 C 11 1 O r 1 I 1 O 11 1 m m 1 I I E+ O l0 1 11 I 0) O N I m m I I >< 1 I -H to k+ 1 I 1 I O I w 1 0 U I o r I I I ri I 0 1 x I -1 11 0 1 0 I I a 1 • 7 I -'i C VI I 0 1 x o 1 1 w U o 1 4J 1 (01 I X CL 14 1 I X $ U) 1 I x I I W I I ro 0 1. 1 N I I I ,G I I I a 4-1 U1 1 0 Ga I 41 1 1 I ro C VI I I I I I I •J U O I I N I '0 I m 0 I w a a I 1 > I N 1�o 0 1 I I 0 1 0) I I I I I ,Q I V! 11 I O O I 0) 4J rl I N I ro I ti ro 1 m N I D C r1 I N I b1 3 m I Vl l 0 0 1 I P1 W 1 .i U I N I x u I I I Ra •fI m l I I I I }I 4 I I I I I I I I v v M 1 m I I 11 1 r I I a) v I I O W 1 (0 C w I CO I I J-I I I H 1 '1 1 3 I ro t I F /� I w 0 0 o I rl 1 O a) v C I 3 1 1 U I 'J T O 1 0 I r1 Sa U I I a l 0 2 0 0 I O l r I Ga Lu W I C I T I O H I rl I * T* I I * T* N I F I rJ m * T* I I + to # I I * SJ * ,C I I * T * '0 # i1 * I I # ro * I I * CO* 3 1 I * u* •0 * * U1 1 I # * O # # I I * 7* I I # C# N I I # * - O # # I * m * m * C I # * r-i * m * # m# w # N * f4 # I I C * C I # ro* 0 1 0 * * v * r* 1 0 * ro# ro 1 a # '6 * 3 # O* C I fL * O* I 0 1 * U* -H 1 I C # O* * # 1 C * a* I z I # }4 * 01 1 I O * O # V] * * 1 0 # * I I * 73 34 1 I H * ri * v # N * N 1 -H * rl # I H I * m * ro I I 41 # [u * '0 # b1 # I 0) 1 JJ * rl * I r1 I ro t C # ro* I ro I * N# U I N I N * N* C * it * I u 1 N * W# I w 1 14 O # I 0 1 41 * # I 41 1 * 0* C 1 0 1 rl N * O# O * lj * I +1 1 N # C# I 7 1 # z# m I z I f-J ❑ * z# z * U7 * m I 0 # O* O 1 H 4J m a £ w a) � ri 3 X r-I O £ w w N I N I . 1 1 I w T m I I 1 1 41 1 1 1 (1) r 1 0 1 1 u 1 0 C 1) 1 I I H U 1 I I I 0 1 1 fl 01 I 1 '41 1 1 0 1-I I 1 N 41 1 _ O 1 Z a 1 0 J I Sd -'{ 1 0 0 UI I I H m o ro(a 1 0 1 ro a ++ I o 1 x a 4 'I 1 0 I ro a I 0 0 1 U O u I I U I c O I ❑ U 1 0 I 1 1 3 1 O I 1 3 1 I r1 11 I O I rl 0 1 ' I w -.i I O I rl ri 1 a u I 4 w 1 I raU l 0 1 m44 I rh lfl I. -I I u I rl I N c 1 7 N (a l I a) I O I O>E 1 I H ar1 -1 N I x 1 M ,q0 0 1 [1U U I o I FC 1 1 1 w 1 1 I I O J-i I O I I I A "1 1 W I I E; I H N H 1 CN 1 1 1 (aI O a1 M m I O U I o 1 1. a) 1 I -W I 1 1 u 1 O O O I J� 1 1 41 I O O I U G 0 1 1 I 1 (a 3 T 1 1 O I 1 r 1 N O N I 1 1 ❑ 1 0 o I w❑❑ I o I 1 I I I H I I I I o I 14 ro 1 l0 I I T I O 1 w (1) 1 I 1 a s+ 1 I u I o 0 0 I I „'. ❑1 O I N 1l I m 0 o u m 1 o Ln Ln i i T 1 o 1 o I u 1 0 1 x 1 ❑ I I t o I I m I H - I T7 I o I 1 1 q l • I I I w I o E I •,C 1 o I I 1 H # T# Q) M I a) lJ I O I I .0 1 0 # u# I bl I I 1 1 ❑ W # ro# 1 Y) G I rl # T# I I 0 I 2£ # # 3 UJ I N 1 # # I I W I O b # # I n FCC a I # (a ro# I U w # # I •U ## I I # m# I r.4 I # # I I # # # # I I # G# I I # m# I I #•i # I I. # a) # I I .-i # 1J I b# I I rl # N # I I # l4 # I I # T # ro # U# # ro# # }a# W # -.i # I # ,C # I I # N # 11 # W# I I # U# I I # # � # •.i # I 1 # u # I I � # # O # N# I # 7# I # # T # fll # I I # [/) # I I # W # # ro # I 1 # # I 1 # # (a ro # rl # I I # # I 41 I # tT # # U # -H -r1 I I # -H -.-1 # I �.1 I # G # 0 # # I a I ## I 7 I # -•1 # a # s# 1 ro t # ro# 1 b 1 # a# N # rl # I O I rl # O# I o I # # U E # w# 1 U I U # o# 1 U I � U # a # 44 N C 1 O 4J > m I O l4 .H I O �x1 N U I I .l a E E 3 1 0 4 O I dP l I O 1 1 I si O u 1 0 N b 1 d a ro 1 1 I oox 1 a,otO I 'i . N r I M J 7 Ol 1 c O r I E O w I > < I o I r I I I % 3 m 1 0 ro 0 [u 1 0 £ 1-1 U I k1 I n is 3m I o > O Gi I < •i U I Gi C r 3 m -4 O G. >- w U 44 N I O a I 0 I 1 N 1� 1 ri ri 0 0 N N rl ri U 7 a)r3 r] UI a1 ro � F F V C C rg O O ..I J-1 a ro rn v Iv ro G rn Aa)a ro u v W ro m >1 > i 10 ro ro CO 0 < r.0 E+ Detention Pond Stage -Storage Calculations Project: East Ridge Second Filing Project Location: Fort Collins, Colorado Date: 6/1/2016 Calculations By: H. Feissner Pond Description: Detention Pond User Input Cell:: Biue Text Design Storm Required Water Surface Required Volume, ft' Volume, ac-ft Elevation, ft Design Point: Outfall Design Storm: WQCV Required Volume: 0 ft3 Design Storm: 2-year Required Volume: 106010 ft3 Design Storm: 1st 100-year Required Volume: 1542290 ft3 Design Storm': 2nd 100-year Required Volume: 3084580 ft3 r®c 1. a 100-year storm required per section 3.3.4 Retention Facilities of the FCSCM Average End Area Method: Conic Volume Method: V=; H(A+Ai) V=#H(A,+A+ AX ) Contour Elevation Contour Area Depth Incremental Volume Cummulative Volume Incremental Volume Cummulative Volume Cummulative Volume It ttz ft ft3 ft3 ft3 ft3 ac-ft 4927.90 0 0.0 0 0 0 0 4928.00 52186 0.1 2609 2609 1740 1740 0.0 4929.00 95939 1:0 74062 76671 72961 74700 1.7 4930.00 130753 1.0 113346 190017 112897 187598 4.3 4931.001 1535751 1.0 142164 3321811 142011 329609 7.6 4932.00 199953 1.0 176764 508945 176255 505863 11.6 4933.00 248072 1.0 224013 732958 223581 729444 16.7 4934.00 265848 1.0 256960 989918 256909 986353 22.6 4935.00 299738 1.0 282793 1272711 282624 1268977 29.1 4936.00 317685 1.0 308711 1581422 308668 1577645 36.2 4937.00 335725 1.0 326705 1908127 326664 1904308 43.7 4938.00 391300 1.0 363513 2271640 363158 2267467 52.1 4939.00 456515 1.0 423908 2695548 423489 2690956 61.8 4940.00 550814 1.0 503665. 3199213 502927 3193883 73.3 4941.00 784210 1.0 6675121 3866725 6640851 38579681 88.6 9 Stormwater Detention and Infiltration Design Data Sheet Workbook Protected Worksheet Protected Stormwater Facility Name: East Ridge Second Filing Facility Location & Jurisdiction: Fort Collins, Colorado User (Input) Watershed Characteristics Watershed Slope = 0.010 ft/ft Watershed length -to -Width Ratio = 1.00 L:W Watershed Area = 153.29 acres Watershed Imperviousness= 70.0% percent Percentage Hydrologic Soil Group A = percent Percentage Hydrologic Soil Group B = percent Percentage Hydrologic Soil Groups C/D =1 100.0% percent Location for 1-hr Rainfall Depths (use dropdown): User Input I V- User Input: Detention Basin Characteristics WQCV Design Drain Time =1 40.00 hours After completing and printing this worksheet to a pdf, go to: https://maperture.digitaidatasemices.com/gvh/?viewer=cswdi create a new stormwater facility, and attach the pdf of this worksheet to that record. User Defined Stage [ftl User Defined Area [ft-21 User Defined Stage [ft] User Defined Discharge (cfs] 0.00 0 0.00 0.00 0.10 52,186 0.10 0.00 1.10 95,939 1.10 5.00 2.10 130,753 2.10 5.00 3.10 153,575 3.10 1 5.00 4.10 199,953 4.10 5.00 5.10 248,072 5.10 5.00 6.10 265,848 6.10 5.00 7.10 299,738 7.10 5.00 8.10 317,685 8.10 5.00 9.10 335,725 1 9.10 5.00 Routed H dro ra h Results Design Storm Return Period = One -Hour Rainfall Depth = Calculated Runoff Volume = OPTIONAL Override Runoff Volume = Inflow Hydrograph Volume = Time to Drain 97%of Inflow Volume = Time to Drain 99%of Inflow Volume = Maximum Ponding Depth = Maximum Ponded Area = Maximum Volume Stored = WQCV 2Year 5Year SO Year SOYear 100 Year 6.43 0.88 1.16 1.47 2.48 _ 3.05 3.476 7.670 11.202 15.030 28.056 35.813 3.475 7.669 11.200 15.025 28.048 35.812 16.5 22.5 29.5 37.7 66.8 84.7 29.5 34.6 42.2 71.0 98.8 2.92 3.84 4.64 6.82 7.93 L 3.428 4.301 5.177 6.658 7.216 6.991 10.495 1 14.252 27.250 34.972 n cre-ft cre-fit cre-fit lours lours t icres cre-ft ' HFHLV0001.01_SDI_Design_Data_v1.03.xlsm, Design Data 6/1/2016, 4:50 PM Stormwater Detention and Infiltration Design Data Sheet Ir —1 . OGYR oil SOYR IOYR 2YR '41 -M Vi I VIA 111 1 ON M M NO OHS Nw, MIC m MEN 1001 s t HFHLV0001.01_SDI_Design_Data_v1.03.xtsm, Design Data 6/1/2016, 4:50 PM oomi Ga. oway Planning. Architecmre. Engineering. EDB AND LID SIZING CALCULATIONS March 19,2011 ' CITY OF FORT COLLINS BIORETENTION SAND MEDIA SPECIFICATION ' PART 1 -GENERAL A. Bioretention Sand Media (BSM) shall be uniformly mixed, uncompacted, free of stones, ' stumps, roots, or other similar objects larger than two inches. No other materials or substances shall be mixed or dumped within the bioretention area that may be harmful to plant growth or prove a hindrance to the facility's function and maintenance. B. BSM shall be free of plant or seed material of non-native, invasive species, or weeds. C. Fully mixed BSM shall be tested prior to installation and meet the following criteria: ' 1. P-Index of less than 30 2. pH of 5.5-6.5. Should pH fall outside of the acceptable range, it may be modified with lime (to raise) or iron sulfate plus sulfur (to lower). The lime or iron sulfate must be mixed uniformly into the BSM prior to use in the bioretention facility. ' 3. Cation Exchange Capacity (CEC) greater than 10 4. Phosphorous (Phosphate, P205) not to exceed 69 ppm 5. BSM that fails to meet the minimum requirements shall be replaced at the Contractor's expense. D. BSM shall be delivered fully mixed in a drum mixer. Onsite mixing of piles will not be allowed. Mixing of the BSM to a.homogeneous consistency shall be done to the satisfaction of the Owner. PART 2 - SOIL MATERIALS A. Sand 1. BSM shall consist of 60-70% sand by volume meeting ASTM C-33. B. Shredded Paper 1: BSM shall consist of 5-10% shredded paper by volume. 2. Shredded paper shall be loosely packed, approximate bulk density of 50-100 Ibs/CY. 3. Shredded paper shall consist of loose leaf paper, not shredded phone books, and shall be thoroughly and mechanically mixed to prevent clumping. Topsoil 1. BSM shall consist of 5-10% topsoil by volume. 2. Topsoil shall be classified as sandy loam, loamy sand, or loam per USDA textural triangle with less than 5% clay material 3. Onsite, native material shall not be used as topsoil. 4. Textural analysis shall be performed on topsoil, preferably at its source, prior to including topsoil in the mix. Topsoil shall be free of subsoil, debris, weeds, foreign matter, and any other material deleterious to plant health. 5. Topsoil shall have a pH range of 5.5 to 7.5 and moisture content between 25-55%. 6. Contractor shall certify that topsoil meets these specifications. D. Leaf Compost 1. BSM shall consist of 10-20% leaf compost by volume. 2. Leaf compost shall consist of Class 1 organic leaf compost consisting of aged leaf mulch resulting from biological degradation and transformation of plant -derived materials under controlled conditions designed to promote aerobic decomposition. BIORETENTION SAND MEDIA SPECIFICATION March 19, 2011 3. The material shall be well composted, free of viable weed seeds and contain material of a generally humus nature capable of sustaining growth of vegetation, with no materials toxic to plant growth. 4. Compost shall be provided by a local US Composting Council Seal of Testing Assurance (STA) member. A copy of the provider's most recent independent STA test report shall be submitted to and approved by the Owner prior to delivery of BSM to the project site. 5. Compost material shall also meet the following criteria: a. 100 percent of the material shall pass through a 1/2 inch screen b. PH of the material shall be between 6.0 and 8.4 C. Moisture content shall be between 35 and 50 percent d. Maturity greater than 80 percent (maturity indicator expressed as percentage of germination/vigor, 80+/80+) e. Maturity indicator expressed as Carbon to Nitrogen ration < 12 f. Maturity indicator expressed as AmmoniaN/NitrateN Ratio <4 g. Minimum organic matter shall be 40 percent dry weight basis h. Soluble salt content shall be no greater than 5500 parts per million or 0-5 mmhos/cm i. Phosphorus content shall be no greater than 325 parts per million j. Heavy metals (trace) shall not exceed 0.5 parts per million k. Chemical contaminants: meet or exceed US EPA Class A standard, 40 CFR 503.13, Tables 1 & 3 levels I. Pathogens: meet or exceed US EPA Class A standard, 40 CFR 503.32(a) levels _ PART 3 - EXECUTION A. General 1. Refer to project specifications for excavation requirements. B. Placement Method 1. BSM material shall be spread evenly in horizontal layers. 2. Thickness of loose material in each layer shall not exceed 9-inches. 3. Compaction of BSM material is not required. BIORETENTION SAND MEDIA SPECIFICATION 2 j� ROLLMAKM ROLLED EROSION CONTROL ' I Specification Sheet - VMax° SC2500 Turf Reinforcement Mat DESCRIPTION The composite turf reinforcement mat (C-TRM) shall be a ma- chine -produced mat of 70% straw and 30%coconut fiber matrix incorporated into permanent three-dimensional turf reinforce- ment matting. The matrix shall be evenly distributed across the entire width of the matting and stitch bonded between a heavy duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings, an ultra heavy UV stabilized, dramatically corrugated (crimped) intermediate netting with 0.5 x 0.5 inch (1.27 x 1.27 cm) openings, and covered by an heavy duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings. The middle corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81cm) centers with UV stabilized polypropylene thread to form permanent three-dimensional turf reinforcement matting. All mats shall be manufactured with a colored thread stitched along both outer edges as an overlap guide for adjacent mats. The SC250 shall meet Type 5A, SB, and SC specification require ments established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.18 70%Straw Fiber 0.3516/sq yd Matrix (0.19 kg/sm) j 30%Coconut Fiber 0.151bs/sgyd Top and Bottom, UV -Stabilized 5lb/1000 sq ft Polypropylene (2.44 kg/100 sm) Netting Middle, Corrugated UV -Stabilized 241b/1000 sf Polypropylene (11.7 kg/too sm) Thread _ Polypropylene, UV Stable Standard Rail Sizes Width . 6.S ft (2.0 m)-_.=_ Length 55.5 ft 015.9 m) / Weight t 10% 34lbs (15.42 kg) Area 40 sq yd (33.4 sm) PropertyIndex .r Typical Thickness - ASTM D6525 0.62 in. I (15.75 mm) Resiliency ASTM 6524 95.2% Density--�_ _-w ASTM D792 �_- 0.891 g/cm' ` Mass/Unit Area ASTM 6566 16.13 oz/sy (548 9/sm) ASTM D4355/ UV Stability 100% L j 1000HR-________^_.______ I Porosity ECTC Guidelines 99% ---------- � Stiffness ASTM D1388 222.65 oz-in. Light Penetration ASTM D6567 4.1% f"-- ---I �Tensile Strength - MD" ASTM 06818 709lbs/ft 4 (10:51 kN/m) _ ! Elongation - MD ASTM D6818 23.9% Tensile Strength - TO ASTM D6818 712 Ibs/ft (10.56 kN /m) Elongation - TO ASTM D6818 36.9% Biomass Improvement' ASTM D7322 441% Design Permissible lShort Duration Long Duration Phase 1: Unvegetated 3.0 psf (144 Pa) 2.5 psf (120 Pa) Phase 2: Partially Veg.: 8.0 psf (383 Pal 8.0 psf (383 Pa) Phase 3: Fully Veg. 10.0 psf (480 Pa) 8.0 psf (383 Pa) J I Unvegetated Velocity 9.5 fps.(2.9 m/s) Vegetated Velocity 15 fps (4.6 m/s) Slope Design 1ata: C Factors Roughness s Slope Gradients (S) I I Flow Depth Manning's n Slope Length (L) <- 3:1 3:1 - 2.1 >- 2:1 C 0.60 ft (0.1s M) 0.040 1 s 20 It (6 m) 0.0010 0.0209 0.05007 0.50 - 2.0 ft 0.040-0.012 20.50 ft 0.0081 0.0266 0.0574 >- 2.0 ft (0.60 m) 0.011 I a Sa ft (15.2 rn) 0.0455 0.0555 0.081 I a Tensar International Corporation TensarIntemationalCorporationwarrantsthatatthetimeofdeliverytheproductfurnished Tensar:. 2500 Northwinds Parkway hereunder shall conform to the specification stated herein. Any other warranty including Suite S00 merchantability and fitness for a particular purpose, are hereby executed. If the product Alharetta, GA 30009 p does not meet specifications on this page and Tensar is notified prior to installation. Tensar ex NORTH AMERICAN GREEN will replace the proproductat no cost to Me customer. This product specification supersedes $00-TEN SAR-1 all prior specifications for the product described above and is not applicable to any tensarmrp.Com products shipped prior to January 1, 2012. ©2013, Tensar International Corporation EC RMX MPOS_VMSC2S0 S.13 ELDesign Procedure Form: Grass Swale (GS) Sheet 1 of 1 Designer. H. Feissner Company: Galloway Date: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins, Colorado I A and Fut-A Basins 1. Design Discharge for 2-Year Return Period 02 = 27.1 cis 2. Hydraulic Residence Time A) : Length of Grass Swale B) Calculated Residence Time (based on design velocity below) Ls = 450 it THR=; 8.3 minutes 3. Longitudinal Slope (vertical distance per unit horizontal) A) Available Slope (based on site constraints) B) Design Slope 5+= 0.0025 ft / ft So = 0.0025 ft / ft 4. Swale Geometry A) Channel Side Slopes (Z = 4 min., hodz. distance per unit vertical) 8) Bottom Width of Swale (enter 0 for triangular section) Z = 5 ft / ft We = 30 it 5. Vegetation A) Type of Planting (seed vs. sod, affects vegetal retardants factor) fIr Choose One Q Grass From Seed Grass From Sod 6. Design Velocity (1 it Is maximum) V2 = 0 91 —Ift / s 7. Design Flow Depth (1 foot maximum) A) Flow Area B) Top Width of Swale C) Froude Number (0.50 maximum) D) Hydraulic Radius E) Velocity -Hydraulic Radius Product for Vegetal Retardance F) Manning's n (based on SCS vegetal retardance curve D for sodded grass) G) Cumulative Height of Grade Control Structures Required D2 = 0.87 it A2 =1 29.9 _-1 sq it WT = .. 38.7. _. it F = 0.18. RH =I p VR = 0.70 n = 0.068 - He =F O:p0it 8. Underdrain (15 an underdrain necessary?) AN UNDERDWMN Is One Choose REQUIRED IF THE * YES Q NO DESIGN SLOPE < 2.0 9. Soil Preparation (Describe soil amendment) . City of Fort Collins Seed Mix 10. Irrigation i" Choosc Om I Q Temporary QQ Permanent Notes: HFHLV0001.01_UD-BMP_v3.03_Swale_A-Basins.xlsm, GS 1/24/2016, 1:11 PM Design Procedure Form: Sand Filter (SF) Sheet 1 of 2 Designer: H. Feissner Company: Galloway Date: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins, Colorado I B, E, F and Fut-B Basins 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, 4 I, = 68 % (100% if all paved and roofed areas upstream of sand filter) B) 7nbutary Area's Imperviousness Ratio (i = I,/100) i=`0.68 1 C) Water Dually Capture Volume (WOCV) Based on 12-hour Drain Time WQCV =. 0.241 --1 watershed inches - WQCV= 0.9' (0.91' i - 1.19' i'+ 0.78' i) s D) Contributing Watershed Area (including sand filter area) Area = 1.631,599 sq ft E) Water Quality Capture Volume (WQCV) Design Volume Vwocv= 3r 2,747-1 cu it Vwocv = WQCV / 12' Area F) For Watersheds Outside of the Denver Region, Depth of de = 0.43 in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwwvwr R =, 32,747-1 cu it Water Quality Capture Volume (WQCV) Design Volume ' H) User Input of Water Quality Capture Volume (WQCV) Design Volume VwocvuseR = cu it (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth Dwa = 2.96 it B) Sand Filter Side Slopes (Horizontal distance per wit vertical, Z = 5.00 ft / ft 4:1 or flatter preferred). Use'O' if sand filter has vertical walls. ) C) Mimimum Filter Area (Flat Surface Area) AM„=(7277 sq it D) Actual Filter Area A�, = 7579 sq ft E) Volume Provided Vr = 32747 cu It I f Choose One 3. Filter Material Q 18" CDOT Class C Filter Material Illl Q Other (Explain): 4. Underdmin System A) Are underdrains provided? - Choose One 0 yfs . � NO B) Underdrain system orifice diameter for 12 hour dmin time i) Distance From Lowest Elevation of the Storage y = 1.5 it Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol 12 =, ,32,747 cu ft . iii) Orifice Diameter, 3/8" Minimum Dc =i 2 in <3a' HFHLV0001.01 UD-BMP v3.03 SF B E and F-Basins.xlsm, SF 1/24/2016, 1:19 PM Design Procedure Form: Sand Filter (SF) . Designer: H. Feissner Company: Galloway Date: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins, Colorado 18, E, F and Fut-B Basins Sheet 2 of 2 , 5. Impermeable Geomembram Liner and Geotez0le Separator Fabric A Is an im permeable Inver provided due to proximity of structures or groundwater contamination? Choose One O YES NO , 6-7. Inlet/ Outlet Works A) Describe the type of energy dissipation at inlet points and means of conveying flows in excess of the WQCV through the outlet - Riprap is desigend at each incoming storm drain to dissipate energy - A weir with a 6' wide concrete crest is designed to convey excess flows at a flow depth of 6' Notes: 0 ' HFHLV0001.01_UD-BMP_v3.03_SF_B E and F-Basins.xism, SF 1124/2016, 1:19 PM Sand Filter (SF) I B, E, F and Fut-B Basins Stage -Storage Calculations Project: East Ridge Second Filing Project Location: Fort Collins, Colorado Date: 1/23/2016 Calculations By: H. Feissner MiRb - Pond Description: SF for B, E and F Basins User Input Cell: Blue Text Required Volume Water Surface Elevation Design Point: Outfall Design Storm: WQCV Required Volume: 32747 ft3 M. ft Design Storm: 10-year Required Volume: 0. ft? �It Design Storm: 100-year Required Volume: 0 ft3 �k Average End Area Method: Conic Volume Method: V=fH(A,+A,) V=;N(A,+A,+ A,xA,) Contour Elevation Contour Area Depth p Incremental Volume Cummulative Volume Incremental Volume Cummulative Volume Cummulative Volume ft ft, ft ft3 ft3 ft3 ft3 ac-ft 4931.00 7579 0.0 0 0 0 0 0.00 4932.00 9862 1.0 8721 8721 8696 8696 0.20 4933.00 12301 1.0 11081 19802 11059 19754 0.45 4934.00 14894 2.0 24756 33476 24583 33279 0.76 4935.001 177331 2.01 49835 29868 49622 1.14 Sand Filter Weir I B, E, F and Fut-B Basins - Cipolletti Solve For Headwater Elevation Input Data �a Discharge 203.40 f 3/s Crest Elevaton 4933.96 It Tailwater Elevation 4933.96 ft Weir Coefficient 3.00 US Crest Length 180.00 ft ,Results Headwater Elevation 4934.48 ft Headwater Height Above Crest 0.52 ft Taihvater Height Above Crest 0.00 ft ' Equal Side Slopes 0.25 ft/ft (H:V) Flow Area 93.95 ft' Velocity 2.17 ft/s Wetted Perimeter 181.08 ft Top Width 1 180.26 It i Bentley Systems, Inc. Haestad Methods SoENktto!;f&6vrMaster V81 (SELECTseries 1) (08.11.01.031 3/22/2016 11:31:13 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06785 USA +1-203-755-1666 Page 1 of 1 1 ' 1/24/2016 Te www.ecmcir,.com/priiNamlysis/845MM5,% NORTHTensar International Corporation Roa n a r, AMERICAN 5401 StPoseyvilleCInd ana 47633 0.772.2040 GREEN Fax 80 N22.867.02477 www.nagreen.com Erosion Control Materials Design Software Version 5.0 Project Name: East Ridge Second Filing Project Number: 84589 Spillway Name: Sand Filter I B, E, F and Fut-B Basins Discharge 203.4 Peak Flow Period 1 Channel Slope 0.25 Channel Bottom Width 200 Left Side Slope Right Side Slope Low Flow Liner Retardance Class D Vegtation Type Mix (Sod & Bunch Vegetation Density Fair 50-75% Soil Type Loam P300 - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach Discharge VelocityNormal Mannings Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern P300 Unvegetated Straight 203.4 6.4 0.16 ft 0.034 3 lbs/ft2 2.48 lbs/ft2 1.21 STABLE E cfs ft/s P300 Reinforced Straight 203.4 4.53 0.22 ft 0.061 8 lbs/ft2 3.51 lbs/ft2 2.28 STABLE E Ve etation cfs ft/s Underlying Substrate traigh 203.4 4.53 0.22 ft -- 2 lbs/ft2 0.442 Ibs/ft2 4.53 TABLE -- cfs ft/s - Class D Mix (Sod & Bunch) - Fair 50-75% Phase Reach Discharge VelocityNormal annings Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern SC250 Unvegetated Straight 203.4 5.81 0.18 ft 0.04 3 Ibs/ft2 2.73 Ibs/ft2 1.1 STABLE E cfs ft/s SC250 Reinforced Straight 203.4 4.53 0.22 ft 0.061 10 lbs/ft2 3.51 Ibs/ft2 2.85 STABLE E Vegetation cfs ft/s Underlying Substrate Straigh 203.4 4.53 0.22 ft -- 0.8lbs/ft2 0.612 lbs/ft2 1.31 STABLE -- cfs ft/s !; C350 - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach Discharge Velocity Normal ManningMannings Permissible Calculated . Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern C350 Unvegetated Straight 203.4 5.72 0.18 ft 0.041 3.21bs/ft2 2.77 lbs/ft2 1.15 TABLE E cfs ft/s hW./Aovww.ecmds.com/printtanalysis/84589/84590 1/2 1/24/2016 www.ecmds.com/printlanalysis/845M84590 C350 Reinforced traigh 203.4 4.53 0.22 11 6.061 11 lbs/ft2 3.51 lbs/ft2 3.14 TABLE E Ve etation cfs ft/s Underlying Substrate traigh 203.4 4.53 0.2211 — 1.2 lbs/112 0.643 lbs/ft2 1.87 -- cfs 1 ft/s 1 rTABLE C 125BN Phase Reach ischargh7.loci Normal arming Permissible Shear Calculated Shear Safety Remarks Staple r T Depth N I Stress Stress Factor Pattern C 125BN Straigh 203.4 1 8.32 1 0.12 ft 1 0.022 2.35 Ibs/ft2. 1.91 lbs/ft2 1.23 TABLE D Unve etated I cfs ft/s 1 Unreinforced Vegetation - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach Discharge VelocityNormal Mannings Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Patteria Unreinforced Straight 203.4 4.53 0.22 ft 0.061 3.33 Ibs/ft2 3.51 lbs/ft2 0.95 UNSTABLE -- Vegetation cfs ft/s Underlying Straight 203.4 4.53 0.22 ft -- 0.04 lbs/ft2 0.093 lbs/ft2 0.38 UNSTABLE -- Substrate I cfs ft/s http.//www.ecmds.can/print/analysis/84589/84590 2/2 Design Procedure Form: Extended Detention Basin (EDB) HFHLV0001.01_UD-BMP_v3.03_EDB_C and D-BasimAsm, EDB - 1/24/2016, 2:14 PM Design Procedure Form: Extended Detention Basin (EDB) Sheet 2 of 4 Designer: H. Felssner Company: Galloway Date: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins, Colorado I C and D-Basins 5. A) Minimum Volume VFmN=' 6.015 —! ac$ (VrwN= of the WQCV) B) Actual Forebay Volume VF= ac-t C) Forebay Depth DF = in (OF = 18 inch maximum) D) Forebay Discharge i) Undetained 100-year Peak Discharge Q1w = Cis a) Forebay Discharge Design Flay cfs (Op =0.02'Q1w) E) Forebay Discharge Design Ctxxxe One O Serm,Nch Pipe (flow too small for berm w/ pipe) O Wall with Rect. Notch Q Wall wkh V-Notch Weir F) Discharge Ize (minimum 8+rxhes) Calculated Dp =`- , in ectangular Notch Width Calculated WN=�- in - Choose One PROVIDE A CONSISTENT LONGITUDINAL 6. Trickle Channel SLOPE FROM FOREBAY TO MICROPOOL Q Concrete WITH NO MEANDERING. RIPRAP AND A) Type of Trickle Channel Q Soft Bottom SOIL RIPRAP LINED CHANNELS ARE ................................. NOT RECOMMENDED. MINIMUM DEPTH OF 1.5 FEET F) Slope of Trickle Channel S = . 0.0050 4 / If 7. Micrepoo Structure A) Depth of Micro pocl (2.5feet minimu DM = 2.5 ft B) Surface Area of Micr0000l(1042 minimum) 10 sq ft C) Outlet Type . Choose On Q Orifice Plate O Omer (Describe): D) Depth of Design Volume (EURV or 12 WQCV) Based on the Design H = 2.99 feet Concept Chosen Under I.E. E) Volume to Drain Over Prescribed Time WQCV = . 0.507 ac ft F) Drain Time To= 40 hours (Min To for WQCV= 40 hours; Max To for EURV= 72 hours) G) Recommended Maximum Outlet Area per Row,(Aj 1.10 square inches H) Orifice Dimensions: - i) Circular Orifice Diameter or Dp =r i -1 / 8 --- I inches ii)Width of 2- High Rectangular Office Wo.=. (inches 1) Number of Columns n.=1 1. -i number J) Actual Design Outlet Area per Row (Q A. =. _0.99 square Inches K) Number of Rows (m) n, =1 8 -, I number L) Total Outlet Area(Aa) Ay= —�8.9 —)square Inches M) Depth of'.NQCV(Hwov) HwaN= feet (Eslimala using actual stage -area -volume relationship and Vwo() $Y N) Ensure Minimum 40 Hour Drain Time for WQCV To wnw =r— hours HFHLVD001.0l_UD-BMP_v3.03_EOB_C and D-Basins.Asm, EDB ' 1/24/2016, 2:14 PM Design Procedure Form: Extended Detention Basin (EDB) - Sheet 3 of 4 Designer. H. Feissner Company: _Galloway Data: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins, Colorado I C and D-Basins 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume De = in (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume Via =r ou 1t (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropod V,= _f a ft 9. Trash Rack If Choose One I Qa Circular (up to 1-1/4" diameter) , A) Type of Water Quality Orifice Used I O Circular (greater than 1-1/4" dwine r) OR Rectangular (2" high) Ar square Inches B) Water Quality Screen Open Area: At= Act' 38.5'(e4opm) C) For 1.1/4—, or Smaller, Circular Opening (See Fad Sheet T-12): i) Width of Water Quality Screen and Concrete Opening (W,v nne) W,e.y,r =! 1y,p Inches ' ii) Height of Water Quality Screen (Hm) H. _(" 83— g--, Inches 6i) Type of Screen. Describe ff *Other' Oaore 6w S.S. Well Screen with 60% Open Area- , 0 0ther(Descnbe): 0) For Circular Opening (greater than 1-1/4' diameter) OR 2- High Rectangular Opening (See Fact Sheet T-12): i) Width of Water Quality Screen Opening (W.q) yy, ran =f—"—j ft ii) Height of Water Quality Screen (Hrm) ) Hm =( ft 41) Type of Screen, Describe if "Other Choose One Q Muminum Arnica- 0 Other (Describe): —� v) Cross -bar Spacing 3 finches m) Minimum Bearing Bar Size HFHLV0001.01_UD-BMP_v3.03_EDB_C and D-Basins.idsm, EDB 1124/2016, 2:14 PM Design Procedure Form: Extended Detention Basin (EDB) Sheet 4 of 4 Designer: H. Feissner Company: Galloway Date: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins, Colorado j C and D-Basins 10. Overflow Embankment A) Describe embankment protection for 100year and greater overtopping: B) Slope of Overflow Embankment (Horizontal distance per unit vertical, 4:1 or Hader preferred) Tensar I North American Green RECP 2¢ = 5.00 11 ft 11. Vegetation d 70Mtipated 12. Access A) Describe Sediment Removal Procedures Notes: HFHLV0001.01_UD-BMP_v3.03_EDB_C and D-Basins.xlsm, EDB - 12412016, 2:14 PM Extended Detention Basin (EDB) I C and D-Basins Stage -Storage Calculations Project: East Ridge Second Filing Project Location: Fort Collins, Colorado Calculations By: H. Feissner �yl 1 It Pond Description: EDB for C and D Basins Design Storm: WQCV Required Volume: 26572 ft3 • • ft Design Storm: 10-year Required Volume: 0 ft3 �ft Design Storm: 100-year Required Volume: 0 ft3 �ft Average End Area Method: Conic Volume Method: V=}H(A 4-Az} V=;N(A�+A +JA XA. Contour Elevation Contour Area Depth Incremental Volume Cummulative Volume Incremental Volume Cummulative Volume Cummulative Volume ft f? ft ft3 ft3 ft3 ft3 ac-ft 4928.00 0 0.0 0 0 0 0 0.00 4929.00 9492 1.0 4746 4746 3164 3164 0.07 4930.00 11778 1.0 10635 15381 10614 13778 0.32 4931.00 14170 1.0 12974 28355 12956 26734 0.61 4932.001 168311 1.01 438561 154T21 42216 0.97 EDB Weir C and D Basins Cipolletti ., Project Description Solve For Headwater Elevation r Discharge 117.90 ft3/s ' Crest Elevation 4930.99 ft Tailwater Elevation 4930.99 ft Wei, Coefficient 3.00 US ' Crest Length 110.00 ft Results' °` , Headwater Elevation 4931.49 ft Headwater Height Above Crest 0.56 ft Tailwater Height Above Crest 0.00 ft ' Equal Side Slopes 0.25 ft/ft (H:V) Flow Area 55.45 ft' Velocity 2.13 Ills ' Wetted Perimeter 111.04 ft Top Width 110.25 ft Bentley Systems, Inc. Haestad Methods SoRdlWo9:06"aster VBi (SELECTseries 1) [08.11.01.03] 3/17/201611:19:58 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA ♦1-203-755-1666 Page 1 of 1 1/24/2016 Tenstar, www.ecm&..com/prinVarkgysis/845M84-r.W NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: East Ridge Second Filing Project Number: 84589 Spillway Name: Sand Filter I C and D Basins Discharge 117.9 Peak Flow Period 1 Channel Slope 0.2 Channel Bottom Width 120 Left Side Slope Right Side Slope Low Flow Liner Retardance Class D Vegtation Type Mix (Sod & Bunch Vegetation Density Fair 50-75% Soil Type Loam P300 - Class D - Mix (Sod & Bunch) - Fair 50-75% Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com Phase Reach Discharge Velocity Normal Manning Permissible -Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern P300 Unvegetated Straight 117.9 5.9 0.17 ft 0.034 3 Ibs/ft2 2.08 Ibs/ft2 1.44 STABLE E cfs ft/s P300 Reinforced Straight 117.9 4.13 0.24 ft 0.062 8 lbs/ft2 2.97 lbs/ft2 2.69 STABLE E Vegetation I I cfs ft/s Underlying Substrate traigh 117.9 4.13 0.24 ft -- 2 lbs/ft2 0.362 lbs/ft2 5.52 TABLE as I ft/s - Class D - Mix (Sod & Bunch) Fair 50-75% Phase Reach Discharge VelocityNormal Mannings Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern SC250 Unvegetated Straight 117.9 5.36 0.18 ft 0.04 3 lbs/112 2.29 lbs/ft2 1.31 STABLE E cfs ft/s SC250 Reinforced Straight 117.9 4.13 0.24 ft 0.062 10 lbs/ft2 2.97 Ibs/ft2 3.37 STABLE E Vegetation cfs ft/s Underlying Substrate Straigh 117.9 4.13 0.24 ft 0.8 Ibs/ft2 0.501 lbs/ft2 1.6 STABLE -- cfs ft/s 1 U350 - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach ischarg elocit Normal anning Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern C350 Unvegetated Straigh 117.9 15.28 10.19 ft 1 0.041 1 3.2 lbs/ft2 2.33 lbs/ft2 1.38 TABLE E cfs I ft/s Imp:/twww.ecmds.com/print/analysis/84589/84592 1/2 1/24/2016 www.ecmds,com/print/analysis/84589184592 C350 Reinforced traigh 117.9 4.13 0.24 ft 0.062 11 lbs/ft2 2.97 lbs/ft2 3.7 TABLE E Ve etation cfs ft/S Underlying Substrate traigh 117.9 4.13 1 0.24 ft -- 1.2 lbs/ft2 0.527 lbs/ft2 2.28 TABL -- cfs ft/s C 125BN Phase Reach ischarg eloei Normal Permissible Shear Calculated Shear Safety Remarks Staple Depth ranningl Y Stress Stress Factor Pattern C125BN Straigh 117.9 7.67 0.13 ft 1 0.022 2.35 lbs/ft2 1.6 lbs/ft2 1.47 TABLE D Unve etated cfs ft/s 1 Unreinforced Vegetation - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach Discharge Velocity Normal Manning4 Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattery Unreinforced Straight 117.9 4.13 0.24 ft 0.062 3.33 lbs/ft2 2.97 lbs/ft2 1.12 STABLE Vegetation cfs ft/s Underlying Straight 117.9 4.13 0.24 ft -- 0.04 lbs/ft2 0.076 lbs/ft2 0.46 UNSTABLE -- Substrate cfs ft/S httpj/www.ecmds.com/prinVanalysis/845MB4592 2/2 Design Procedure Form: Extended Detention Basin (EDB) Sheet 1 of 4 Designer: H. Felssner Company: Galloway Date: January 24, 2016 - Project: East Ridge Second Filing ' Location: Fort Collins, Colorado I G. H. FutG1, Fut G2 and Fut-H Basins 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 75 % B) TributaryArea's Imperviousness Ratio (I = I,/ 100) i =r- 078 C) Contributing Watershed Area Area = 30.61 so 0) For Watersheds Outside of the Denver Region, Depth of Average ds = In Runoff Producing Storm Cto se One E) Design Concept (Select EURV when also designing for flood control) Water Quality Capture Volume (WQCV) O Excess Urban Runoff Volume (EURV) F) Design Volume (1.2 WQCV) Based on 40-hour Drain Time (Vpeyoa = (1.0 - (0.91 ' V- 1.19 * 1`+ 0.78*1)/ 12' Area' 1.2) Voesma=� p,g2 '1 ac-ft G) For Watersheds Outside of the Denver Region, I VoesioN o*nea=- -- i ac-ft Water Quality Capture Volume (WQCV) Design Volume (Vwowanaa = (da�(Voeaxaa/0.43)) - . H) User Input of Water Quality Capture Volume (WOCV) Design Volume Voesicn usci = ac-ft (Only if a different WQCV Design Volume is desired) 1) Predominant Watershed NRCS Soil Group I Choose One O A OB J) Excess Urban Runoff Volume (EURV) Design Volume O CID For HSG A: EURVA = (0.1878i - 0.0104)'Area For HSG B: EURVB = (0.1178i - 0.0042)'Area EURV ='---------- , ac-f t For HSG CID: EURV. = (0.1043i - 0.0031)•Area ' 2. Basin Shape: Length to Width Ratio L,: W = 4.0 : 1 (A basin length to width ratio of at least 2:1 will Improve TSS reduction.) 3. Basin Side Slopes A) Basin Maximum Side Slopes Z = 5.00 it / It (Horizontal distance per unit vertical, 4:1 or flader preferred) 4. Inlet - Riprap Is designed at each incoming stone drain to dissipate energy -A weir with a 6' wide concrete crest is designed to convey excess flows at A) Describe means of providing energy dissipation at concentrated a flow depth of 6" inflow locations: HFHLV0D01.01_U0-BMP_v3D3_EDB_G and H-Basirts.xlsm, EDB 1/242016, 2:17 PM Design Procedure Form: Extended Detention Basin (EDB) Sheet of4 Designer: H. Feissner Company: Galloway Data: January 24, 2016 Project East Ridge Second Filing _ Location: FortCollins, Colorado I G, H, FutG1, Fut G2 and Fut4f Basins 5. A) Minimum Volume VFW =(— p,p261 ac-ft - (Veer = of the WQCV) . B) Actual Forebay Volume VF= ac-ft C) Forebay Depth DF = in (DF = 30 inch maximum) D) Forebay, Discharge I) Undetained 100-year Peak Discharge Qxxi = cis it) Forebay Discharge Design Flow I cis (� = 0.02' Qmo) E) Forebay Discharge Design One With PipeO [0"=n w. e t Notch b Wall with V-Notch Weir F)Discharge ize(minanum 6minches) Calculated DIP=in ectangular Notch Width Calculated WN = In 6. Trickle Channel Cheese One PROVIDE A CONSISTENT LONGITUDINAL SLOPE FROM FORESAY TO MICROPOOL Concrete WITH NO MEANDERING. RIPRAP AND A) Type of Trickle Channel Q soft Bottom SOIL RIPRAP LINED CHANNELS ARE ................ ____......_...... _.... ...... NOTRECOMMENDED. MINIMUM DEPTH OF 1.5 FEET F) Slope of Trickle Channel S = 0.0050 ft / ft 7. Micmpoc Structure A) Depth of MicropooI (2.5-feet minimu DN = 2.5 ft B) Surface Area of Micr0000l (10 fit' miramum) A - 0 sq ft C) Outlet Type Clwose One Oa onrlre vWte Q Other (Describe): _-- D) Depth of Design Volume (EURV or 12 WQCV) Based on the Design H = 3.59 feet Concept Chosen Under 1.E. E) Volume to Drain Over Prescribed Time WQCV = 0.771 - ac-ft F) Drain Time To= 40 hours (Min To for WQCV= 40 hours; Max TD for EURV= 72 hours) G G) Recommended Maximum OW et Area par Row, (A,) Ae =7-1;—square inches H) Orifice Dimensions: I) Circular Orifice Diameter or D� =; 1 - 5- 5 / 16 r Inches ii) Width of 2- High Rectangular Orifice W=r.a =: - I inches I) Numberof Columns ns=1 1 !number J) Actual Design Outlet Area per Row (Ao) A. _, 1.35 - square inches K) Number of Rows(m) n, =i— 10- 771number L) Total Outlet Area(Ad) Ae=7 - 14.6 .square inches M) Depth of WQCV (H,,,c) Hv Q,, = feet (Estimate using actual stage -area -volume relationship and V.Q.w) N) Ensure Minimum 40 Hour Drain Time for WQCV TD wocv hours HFHLVD001.01_UD-BMP_v3.03_EDB_G and H-Basins.xlsm, EDB 1/24/2016, 2:17 PM Design Procedure Form: Extended Detention Basin (EDB) ' Sheet 3 of 4 Designer: H. Feissner Company: Galloway Date: January 24. 2016 Project East Ridge Second Filing Location: Fort Collins, Colorado I G. H, Fut-GI, Fut G2 and Fut41 Basins 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume Da = in (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume Va = cu ft (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Mlcropool cu it 9. Trash Rack Choose One Q Circular (up to 1-1/4" diameter) A) Type of Water Quality Orifice Used O Orcular (greater than 1-1/4" diameter) OR Rectangular (2' high) B) Water Quality Screen Open Area: At=Aot'38.5je o"o) At=square Inches C) For 1-114'. or Smaller, Circular Opening (See Fact Sheet T-12): i) Width of Water Quality Screen and Concrete Opening (W„=,,;,,a) W.-N =j —1 inches ii) Height of Water Quality Screen (HnJ, HrR = J ------]inches , ui) Type of Screen, Describe if 'Other' cwoe,, osa O S.S. Well Screen with 60%Open Area. O Other (Describe): D) For Circular Opening (greater than 1-114" diameter) OR 2' High Rectangular Opening (See Fact Sheet T-12): i) Width of Water Quality Screen Opening (W,) W,,r, ---- 1.0 �ft - e) Height of Water Quality Screen(Hm) Hm=(— 5.9 ft lii) Type of Screen, Describe ff "Other" Choose One Q Aluminum Amko-loemp SR Series (or equal) Q Other (Describe): v) Cross -bar Spacing r- 2 0 -1 inches vi) Minimum Bearing Bar Size [T�Inch z 31-161nch HFHLV0001.01_UD-BMP_v3.03_EDB_G and H-Basins.idsm, EDB 1124/2016. 2:17 PM Design Procedure Form: Extended Detention Basin (EDB) Sheet 4 of 4 Designer: H. Felssner Company: Galloway Date: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins, Colorado I G, H, Fut-G1, Fut G2 and FuMf Basins 10. Overflow Embankment A) Describe embankment protection for 100-year and greater overtopping: B) Slope of Overflow Embankment (Horizontal distance per unit vertical, 4:1.or flatter preferred) Tensar I North American Green RECP ZE = 5.00 ft / ft 11. Vegetation Chome One Q Ingated Q Not Irrigated 12. Access A) Describe Sediment Removal Procedures Notes: HFHLV0001.01_UD-BMP_v3.03_EDB_G and H-Basins.xlsm, EDB 1124/2016, 2:17 PM Extended Detention Basin (EDB) G, H, Fut-G, Fut-H and Fut-TL2 Basins Stage -Storage Calculations Project: East Ridge Second Filing Project Location: Fort Collins, Colorado Date: 1/23/2C Calculations By: H. Feissner Pond Description: EDB for G and H Basins �musimuTe�toasms�srtarasureeas Design Storm: WQCV Required Volume: 40946 ft3 Design Storm: 10-year Required Volume: 0 ft3 Design Storm: 100-year Required Volume: 0 ft3 Average End Area Method: V =; H(A, +Az N/A Conic Volume Method: V=H(A,+A,+ A,xA,) Contour Elevation Contour Area Depth p Incremental Volume Cummulative Volume Incremental Volume Cummulative Volume Cummulative Volume ft fe ft ft3 ft3 ft3 ft3 ac-ft 4928.00 0 0.0 0 0 0 0 0.00 4929.00 2653 1.0 1326 1326 884 884 0.02 4930.00 15161 1.0 8907 10233 8052 8936 0.21 4931.00 21009 1.0 18085 28318 18005 26942 0.62 4932.001 26520 1.0 237641 520831 237111 506531 1.16 EDB Weir G, H. Fut G1, Fut-G2, Fut H and Fut-TL2 Basins - Cipolletti ' ProjectDescriPtion'7P Solve For Headwater Elevation Input Data .£: Discharge 182.20 ft3/s ' Crest Elevation 4931.59 ft Tailwater Elevation 4931.59 ft Weir Coefficient 3.00 US ' Crest Length 170.00 ft Results ' Headwater Elevation 4932.09 ft Headwater Height Above Crest 0.50 ft. Tailwater Height Above Crest 0.00 ft ' Equal Side Slopes 0.25 ft/ft (H:V) Flow Area 85.66 ft' ' Velocity 2.13 ft/s Wetted Perimeter 171.04 ft Top Width 170.25 ft Bentley Systems, Inc. Haestad Methods SoBdidle4Filb"aster V81 (SELECTseries 1) [08.11.01.03] 31171201611:26:17 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755-1666 Page 1 of 1 1/24/2016 - www.eemds.eom/printlanalysis/845M84593 NORTHTensar International Corporation Tensar. AMERICAN Saol StPoseyville, Indin a 47633 Tel. 80.772.204 GREEN® Fax 8022.867.0247 www.nagreen.com Erosion Control Materials Design Software Version 5.0 Project Name: East Ridge Second Filing Project Number: 84589 Spillway Name: Sand Filter I G, H, Fut-Gl, Fut-G2, Fut-H and Fut-TL2 Basins Discharge 182.2 Peak Flow Period 1 Channel Slope 0.2 Channel Bottom Width 200 Left Side Slope Right Side Slope Low Flow Liner Retardance Class D Vegtation Type Mix (Sod & Bunch Vegetation Density Fair 50775% Soil Type Loam P300 - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach DischargWelocity Normal Mannings Permissible Calculated Safety. Remark Staple Depth N Shear Stress Shear Stress Factor Pattern P300 Unvegetated Straight 182.2 5.73 0.16 ft 0.034 3 lbs/ft2 1.98 lbs/ft2 1.51 STABLE E cfs ft/s P300 Reinforced Straight 182.2 3.94 0.23 ft 0.063 8 lbs/112 2.89 lbs/ft2 2.77 STABLE E Vegetation cfs ft/s Underlying Substrate traigh 182.2 3.94 1 0.23 ft -- 2 lbs/ft2 0.332 lbs/ft2 6.03 TABLE -- cfs ft/s SC250 - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach Dischargc VelocityNormal Mannings Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress ` Factor Pattern SC250 Unvegetated StraijW1 182.2 5.2 0.18 ft 0.04 3 lbs/ft2 2.19 Ibs/ft2 1.37 STABLE E cfs ft/s SC250 Reinforced Straight 182.2 3.94 0.23 ft 0.063 10 lbs/ft2 2.89 lbs/112 3.46 STABLE E Vegetation cfs ft/s, Underlying Substrate Straigh 182.2 3.94 0.23 ft -- 0.8 lbs/ft2 0.459 lbs/ft2 1.74 TABLE -- cfs ft/s C350 - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach ischargeh7elocit Normal anning Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress FactorPattern C350 Unvegetated Straighq 182.2 1 5.12 1 0.18 ft 1 0.041 1 3.2 lbs/ft2 2.22 lbs/ft2 1.44 TABLE E cfs ft/s http://www.ecmds.com/print/analysis/84589/84593 1/2 1/24/2016 www.ecmds.com/print/analysis/845B9/84593 C350 Reinforced traigh I 182.2 3.94 0.23 ft 0.063 11 lbs/ft2 2.89 lbs/ft2 3.81 TABLE E Ve etation I cfs ft/s Underlying Substrate traigh 182.2 3.94 0.23 ft -- 1.2 lbs/ft2 0.482 lbs/ft2 2.49 TABLE -- cfs ft/s C 125BN Phase Reach ischarg.,h7elocityl Normal Permissible Shear Calculated Shear Safety Remarks Staple Depth ranningl N I Stress Stress Factor Pattern C125BN Straigh I 182.2 1 7.44 1 0.12 ft 1 0.022 2.35 lbs/ft2 1.53 lbs/ft2 1.54 TABLE D Unve etated cfs ft/s 1 1 Unreinforced Vegetation - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach Discharge VelocityNormal Manning Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Patterr Unreinforced Straight 182.2 3.94 0.23 ft 0.063 3.33 lbs/ft2 2.89 lbs/ft2 1.15 . STABLE Vegetation cfs ft/s Underlying Straight 182.2 3.94 0.23 ft — 0.041bs/ft2 0.07 lbs/ft2 0.5 UNSTABLE -- Substrate cfs ft/s http:/Mww.ecmds.com/print/arLalysis/84589/84593 212 Design Procedure Form: Sand Filter (SF) Sheet 1 of 2 Designer: H. Feissner Company: Galloway Date: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins, Colorado 11, FuM and Fut-TL3 Basins 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, 4 I, = 75 % (100% if all paved and roofed areas upstream of sand filter) B) Tributary Area's Imperviousness Ratio (i = I j100) i = 0 755 � C) Water Quality Capture Volume (WQCV) Based on 12-hmr Drain Time WQCV =-027 --I watershed inches WQCV= 0.9' (0.91' in- 1.19' e+ 0.78 " i) D) Contributing Watershed Area (including sand filter area) Area = 621,891 sq It E) Water Quality Capture Volume (WQCV) Design Volume Vwacv =; 147095 cu ft Vwocv= WQCV / 12' Area F) For Watersheds Outside of the Denver Region, Depth of dal = 0.43 in Average Ruroff Producing Storm G) For Watersheds Outside of the Denver Region, VWWVOr R =7-1-4—,0957-1 cu It Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQC USER = cufl (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth Dwocv = 1.36 It B) Sand Filter Side Slopes (Horizontal distance per unit vertical, Z = 5.00 ft / ft 4:1 or flatter preferred). Use "0' it sand filter has vertical wais. C) Mimimum Filter A(Flat Surface Area) A,,, =, 3132 sq It D) Actual Filter Area A., = 8935 sq It E) Volume Provided Vr = 14173 cu It ('noose One 3. Filter Material QQ 18" COOT Class C Filter Material Q Other (Explain): 4. Underdmin System A) Am underdrains provided? Choose One * YES . Q NO B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= 1.5 ft Volume to the Center of the Orifice . . ii) Volume to Drain in 12 Hours Vol, =F 14,095 —] cu ft iii) Orifice Diameter, 3/8" Minimum Do=� 2 --'-I in HFHLV0001.01_UD-BMP_v3.03_SF_I and TL-Basins.xlsm, SF 1/24/2016, 1:54 PM Design Procedure Form: Sand Filter (SF) Sheet 2 of 2 Designer: H. Feissner Company: Galloway Date: January 24, 2016 Project: East Ridge Second Filing Location: Fort Collins. Colorado 11. FuM and Fut-TL3 Basins 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable liner provided due to proximity of structures or groundwater contamination? 6-7. Inlet / Outlet Works A) Describe the type of energy dissipation at inlet points and means of conveying flows in excess of the WQCV through the outlet Choose One O YES - Riprap is desigend at each incoming storm drain to dissipate energy I - A weir with a 6' wide concrete crest is designed to convey excess flows at a flow depth of 6' HFHLV0001.01_UD-BMP_v3.03_SF_I and TL-Basins.xlsm, SF 1/24/2016, 1:54 PM Sand Filter (SF) I I and Fut-TL3 Basins Stage -Storage Calculations Project: East Ridge Second Filing Project Location: Fort Collins, Colorado Calculations By: H. Feissner n,utary ara:m Pond Description: SF for I and Fut-TO Basins st'e��iib Required Volume Design Point: Outfall Design Storm: WQCV Required Volume: 14173 ft3 Design Storm: 10-year Required Volume: 0 ft3 Design Storm: 100-year Required Volume: 0 ft3 Average End Area Method: V=,LH(A, +A,) 4930.36 Conic Volume Method: V = -L H(A, + A, +,IA X-,t ) Contour Elevation Contour Area Dept Incremental Volume Cummulative Volume Incremental Volume Cummulative Volume Cummulative Volume It ftz ft ft3 ft3 ft3 ft3 ac-ft 4929.00 8935 0.0 0 0 0 0 0.00 4930.00 10887 1.0 9911 9911 9895 9895 0.23 4931.00 12777 1.0 11832 21742 11819 21714 0.50 11 1 Sand Filter Weir I 1 and Fut-TL3 Basins - Cipolletti Solve For Headwater Elevation 1 Input Data, t b-. 4y Discharge 99.40 ft'/s ' Crest Elevation 4930.36 It Tailwater Elevation 4930.36 ft Weir Coefficient 3.00 US Crest Length 90.00 ft Results 1 Headwater Elevation 4930.87 ft Headwater Height Above Crest 0.51 ft Tailwater Height Above Crest 0.00 ft 1 Equal Side Slopes 0.25 fl/ft (H:V) Flaw Area 46.30 ft' Velocity 2.15 ft/s ' Wetted Perimeter 91.06 ft Top Width 1 90.26 ft Bentley. Systems, Inc. Haestad Methods SoENkta!;§ftwMaster V8i (SELECTseries 1) [08.11.01.03] 3/171201611:18:14 AM 27 Siemons Company Drive Suite 200 W. Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 1/24/2016 Tensar, www.ecmclsmm/prinVamlysis/845MW91 NORTH AMERICAN GREEN® Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com Erosion Control Materials Design Software Version 5.0 Project Name: East Ridge Second Filing Project Number: 84589 Spillway Name: Sand Filter 11, Fut-11, Fut-12 and Fut-TL3 Basins Discharge 99.4 Peak Flow Period 1 Channel Slope 0.2 Channel Bottom Width 100 Left Side Slope Right Side Slope Low Flow Liner Retardance Class D Vegtation Type Mix (Sod & Bunch Vegetation Density Fair 50-75% Soil Type Loam P300 - Class D - Mix (Sod & Bunch) -'Fair 50-75% Phase Reach Discharge Velociq Normal Manning Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern P300 Unvegetated Straight 99.4 cfs 5.93 0.17 ft 0.034 3 Ibs/ft2 2.09 lbs/ft2 1.43 STABLE E ft/s P300 Reinforced Straight 99.4 cfs 4.16 0.24 ft 0.061 8 lbs/ft2 2.98 Ibs/ft2 2.68 STABLE E Vegetation I ft/s Underlying Substrate traigh 99.4 cfs 4.16 0.24 ft -- 2 lbs/ft2 0.367 lbs/ft2 5.45 TABLE -- ft/s SC250 - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach Discharge Velocity Normal i laving Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern SC250 Unvegetated Straight 99.4 cfs 5.38 0.18 ft 0.04 3 lbs/ft2 2.317bs/ft2 1.3 STABLE E ft/s SC250 Reinforced Straight 99.4 cfs 4.16 0.2411 0.061 10 lbs/ft2 2.98 lbs/ft2 3.35 STABLE E Vegetation ft/s Underlying Substrate Straigh 99.4 cfs 4.16 0.24 ft" =- 0.8 Ibs/ft2 0.508 ibs/ft2 1.57 STABLE --' ft/s C350 - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach ischarg 'elocit Normal anning Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattern C350 Unvegetated Straigh 99.4 cfs 5.3 0.19 ft 1 0.041 3.2 lbs/ft2 2.341bs/ft2 1.37 TABLE E ft/s http:Nwww.ecmds.o m/prirrVanalysis/845B9/84591 1/2 1/24/2016 www.ecmds.com/print(analysis/84589/84591 C350 Reinforced IStraigh I 99.4 cfs 4.16 I 0.24 ft 0.061 11 lbs/112 1 2.98 lbs/ft2 1 3.69 TABLE E Ve etation I ft/s Underlying Substrate traigh 99.4 cfs 4.16 0.24 ft -- 1.2 lbs/ft2 0.534 lbs/ft2 2.25 TABL -- ft/s C 125BN Phase Reach ischarg eloci h Normal Tanning Permissible Shearl Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern C125BN Straigh 99.4 cfs 7.7 0.13 ft 1 0.022 2.35 lbs/ft2 1.61 lbs/ft2 1.46 TABLE D Unve etated ft/s ' Unreinforced Vegetation - Class D - Mix (Sod & Bunch) - Fair 50-75% Phase Reach ischarg elocit) Normal Manaingf Permissible Calculated Safety Remarks Staple Depth N Shear Stress Shear Stress Factor Pattery Unreinforced Straight 99.4 cfs 4.16 0.24 ft 0.061 3.33 Ibs/ft2 2.98 lbs/ft2 1.12 STABLE Vegetation ft/s Underlying Straight 99.4 cfs 4.16 0.24 ft -- 0.04 lbs/ft2 0.077 Ibs/ft2 0.45 UNSTABLE -- Substrate I I ft/s http://www.ecmds.com/print/analysis/84589/84591 212 Gaoway Planning. Architecture. Engineering. APPENDIX D SUPPORTING DOCUMENTATION G a € oway Planning. Architecture. Engineering. PRELIMINARY GEOTECHNICAL INVESTIGATION EAST RIDGE SUBDIVISION FORT COLLINS, COLORADO (Project No. FC06953=115 1 Dated: June 19, 2015) CTL I THOMPSON PRELIMINARY GEOTECHNICAL INVESTIGATION EAST RIDGE SUBDIVISION FORT COLLINS, COLORADO Prepared For: HARTFORD HOMES 1218 West Ash Suite A Windsor, Colorado 80550 Attention: Mr. Landon Hoover Project No. FC06953=115 June 19, 2015 400 North Link Lane I Fort Collins, Colorado 80524 Telephone:970-206-9455 Fax:970-206-9441 No Text Z y N O O i N O W 1F 2 N O ` S H O $ ry i J x NI LL w z Q Z //0y� W 8 �W �i p Q O w i +0 O O I O pe 2 w� u o z � N' =21 yZ .+ 2p F r ~ WO 7 F L O 02 J N j Q O I WF. 20 y 2 Z m W 2 Ea i i, W W H N �a O p Q Z Z H� 00 W O �i N z O >W w p �y C O X (%i W S= S W WQ Q q F Q< o f W m < Y Q Q N�% p Ly Z UOr Za Kw S za 0 W Q ❑ yp� �> mO it < m IpyU a x O? w r2 wW U W p Zm N N N_ K J W = W u W p Z Z W W >> m W S b�tq % V WW YI r Q_ i p p a <Z Oy. rd �O r W N O Z Oy ?a m O r -Tz U�WOI pp z Zy �i OR m W iw < 10 n p nl W w ypj¢ W �� W KK O a r w WNZy Q2 O j-✓"i z m r<n ip -w pF .. ��$+I N `� V S s 4q Up S W y W Z ¢ �j>yO 2y2 W w p� � p m 1 O� J N 6Z W J W W a p Ny' F� jO <F y41 wyN�wo lm lNy lNy rrrr rr rr R' fn U•i YO z dz �N J J yZy'= W Z O W p papa Ba a Q Ii ❑N W z Q Q QmQ U Oz OQ w¢ Z ZZ ZZ ZZZ Vl f4O OLL 3 3 'Swo ap lwy xx (Jp3o J_p w y FU W ¢' r r N iO�J1 JN Ij�f J I a a a-NOI1VA313 I � I c+ m H w N n?= gig a 0 m x 1 i o O I 0 Nf� xm ~ W K � S$ m ��a L33J NOUVA313 Ga€oway Planning. Architecture. Engineering.. LAKE CANAL AGREEMENT Memorandum of Understanding Between East Ridge of Fort Collins, LLC and Lame Canal Ditch Company East Ridge of Fort Collins, LLC is currently planning development of 153 acres of residential and commercial property in the Northeast Quarter of Section 8, Township 7 North, Range 68 West of the 6� P.M., in the city of Fort Collins, Colorado. Prior commitments by Lake Canal Ditch Company accommodate discharge of stormwater from this property into the ditch at a rate not to exceed 5 cfs as the ditch has capacity to accept the flows. The purpose of this memorandum of understanding is to generally describe the parameters governing discharge of stormwater into the Lake Canal Ditch. Reference is made to the attached engineering drawing which graphically represents the planned conveyance. The Lake Canal Ditch company owns 160 cfs of decreed water rights, this is the maximum irrigation flow that can be conveyed through the ditch at any time during the year. TST, Inc. has performed a survey of the Lake Canal Ditch to determine its general slope and cross-section configuration. A cross-section of the ditch was taken to determine the water surface elevation in the ditch assuming the entire decreed irrigation water is flowing in the ditch. According to the surveyed cross-section and slope, 160 cfs will flow approximately 2.92 feet deep, or at an elevation of 4933.08. The City of Fort Collins has included the Lake Canal Ditch within their basin analysis of the Cooper Slough drainage basin and has determined that the irrigation ditch could flow at a maximum elevation of 4935.81 during a 100-yr storm event. The proposed discharge &ystmn from EastBidge_Subdivisiomwill_consider-both-of-these-water-sur-face-elevations -- in the design and operation of the release mechanism into the Lake Canal Ditch. The proposed drainage facilities planned for the East Ridge Subdivision consist of an irrigation pond at the southern end of the site that operates with a working water surface elevation of 4930.00. Stormwater runoff will be stored above the irrigation portion of the pond, ponding. up to 4934.75 in the 100-yr storm event (totaling approximately 41 ac-ft). �The pond has sufficient capacity to hold more than two 100-yr storm events above the y working water surface elevation of 4930.00. The water surface elevation in the pond would be 4937.11 if the total volume of runoff from two 100-yr storm events were stored. The proposed discharge system is an 18" RCP storm pipe. The pipe would be installed at to help in the prevention of erosion as stormwater is released from the proposed development. A concrete slab 2'/z' high and 3' wide, extending to both sides of the ditch is proposed to prevent erosion of the ditch bank and flowline. The kvl concrete slab would effectively be a cut-off wall that would extend beyond the limits of €a the pipe trench and bedding. The proposed stormwater discharge system is automatic and will continually measure flow depths in the Lake Canal Ditch and the stormwater detention pond on the East Ridge site. A pump would operate automatically when flow depths in the ditch are below 4935.00. When no additional flow can be accepted in the ditch, the pump automatically shuts off and storm flows would be held in the pond. It is assumed that the pumping system will be on at all times so that nuisance flows will be discharged through the pipe into the ditch. Again, the pump would shut off only when the ditch was flowing at a depth that would not allow additional flow from the detention pond. The maximum rate of discharge from the pond to the Lake Canal Ditch is 5 cfs. If a 100-yr storm event did occur and the ditch was unable to accept stormwater runoff, the pump would shut off. Once the ditch was able to take the stormwater runoff and if the release rate was 5 cfs, the detention pond would drain in approximately 5 days. Maintenance of the entire discharge system including the concrete slab, discharge pipe, pump housing structure and all electronics associated with the automated system will be These parameters defining the nature of stormwater discharge into the Lake Canal Ditch from the East Ridge subdivision are generally agreed to by the parties. ge of BoA Collins, LLC Date Company Date O,A& WOO -930. ILI" —,--��ANAL BOTTOM � WW rATA_- 0 OT TAP IS' RCP OUTLET STA. ID+0r4,S7 KEY MAP T.G.R. oamv SAS./SF.H./D.L z L) NOTES.MW E CHANNEL 1. BSEWER JOINTS SMALL BE ENCASED IN ODD7Jtvrn-4.6q 'EZ-WRAP' BUTYL ADHMVE TAPE WITH ikay W"OuRif -U-STIK- NO. 4 PRWER (BY PRESS SEAL (H; 2.5'-S, 4.9'-N GASKET CORPORATION)) ORSQUIVALENT. I V.3' L23') WHERE STORM PIPE CROSSES OVER A WATER UNF 10' IN OTHER DIRECTION OF GROSSING. i � -'ANKS 2. ALL RCP STORM SEWER PIPE SHALL BE CONSTRUCTIDD OF CLASS ED RCP 1 II I CONTRACTOR 94ALL APPLY SKAM-32 HI -MOD EPDXY PER MANUFACTURER'S RECOMMENDATIONS TO THE RASE OF DROP MANHOLES. EPDXY SHALL BE APPLIED TO THE MANHOLE BASE AND SIDES (Z ABOVE THE BASE OF THE MANHOLE). 4. WATER SERVICES THAT CONFLICT VNTH STORY SEWER AND CANNOT MAINTAIN 4.W OF COVER AND le VERTICAL SEPARATION SHALL BE LOWERED TO A UK le BELOW THE STORM DRAIN AND Z' POLY ENCASED. 5, ALL STORM LINES SHALL HAVE WATER TIGHT JOINTS 70 CONFORM TO ASIM C443. -j LL B. ALL STORM SEWER NSTALLATION SHALL. BE INSPECTED BY THE CITY OF FORT COLLINS. 0 ir 7 ALL STORM SEWER IN THE PUBLIC IL RIGHT-OF-WAY SHALL HE OWNED AND MAINTAINED BY THE CITY OF FORT COLLINS. Q 8, ALL WATERLINE CROSSLNO UNDERNEATH z LARGER THAN 18 INCH DIAMETER STORM SEWER SHALL BE PLACED IN A STEO. E. SLEEV w 0 z c [ r LLI W 0 1w - City of M Collins. Colorado UT= PLAN APPROVAL APPROVED'. allECgED BY; CHECKED BY: abrm w uUm, CHECKED BY: CHECKED BY: CIECKED BT: uL01m1. cmo 70 �. 071=�7 F= 9?&MMt 0053.0007.0O 1'. wa APRIL 2000 cm 100 of 19s 10+00 11:DO Ga-110 oway Planning. Architecture. Engineering. N BARKER AGREEMENT .W_10 RCPTN 8 2002132134 12/06/2002 14:28:00 6 PAGES - 29 FEE - $156.00 N RODENBERGER RECORDER, LARINER COUNTY CO STATE DOC FEE - $.00 AGREEMENT This Agreement is entered into January at.-�, 2001 by and among Tri-Trend, Inc. a Colorado corporation, P. O. Box 40, Timnath, CO 80547, ("Tri-Trend') and E. H. Barker and Patricia R. Barker, 142 North Timberline Road, Fort Collins, CO 80524-1402 (the `Barkers'. Recitals A. Tri-Trend is the contract purchaser of certain real property located in Larimer County Colorado specifically described on Exhibit A, attached and incorporated by reference (the "Tri-Tread Property")- B. The Barkers own the real property located in Larimer County, Colorado immediately south of the Tri-Trend Property which is specifically described on Exhibit B, attached and incorporated by reference (the "Barker Property). , C. If Tri-Trend closes on its purchase of the Tri-Trend Property, it intends to develop the property, subject to the approval by the City of Fort Collins, Colorado, as a multi -use project. The uses will include both single and multi -family units. The units may be manufactured in an on - site factory, and transported from the factory to the lots along the interior streets. Phasing for the single family units will be from the south toward the factory situated in the northeast comer of the site. A convenience store/commercial comer is proposed along Timberline Road. D. Uses of the Barker Property may include, but are not limited to, material crushing operations; storing, servicing and repairing vehicles and equipment; general storage (including property of others); fanning; recreational uses; and other lawful uses considered desirable by the Barkers and/or their assigns. E. By this Agreement the parties wish to resolve various issues relating to Tri-Trend's development of the Tri-Trend Property in the proximity of the Barker Property. Agreement In consideration of the mutual promises set forth in this Agreement and other valuable consideration, the receipt and sufficiency of which are acknowledged, the parties agree as follows: I. Disclosures RelatingtoBarker Operations. IfTri-Trend closes on the purchase ofthe Tri-Trend Property, part of Tri-Trend's development process will include preparation and recording ofa D eclaration of Covenants, Conditions and Restrictions (the "Declaration's and a subdivision plat or plats (the "Piaffor the Tri-Trend Property. Tri-Trend agrees to include a notice in the Declaration containing language substantially similar to the following: Aner recording return to Richard S. Cast, Myatt Brander & Gut PC, 323 S. College Am, Suite 1, Fort Collin; CO 80524 Notice ltesardine Operations on Barker Prone The property to the south of the Common Interest Community (described on Exhibit I attached and incorporated by reference, and referred to as the "Barker Property") is or may be used for the following: sand and gravel mining, material crushing, equipment/vehicle storage and repairs, general storage (including property of others), farming, recreational uses and other lawful uses considered desirable by the owner of the Barker Property (its successors and assigns) (collectively referred to as the "Operations"). The Operations may generate noise and dust which may adversely impact the Owners' use and enjoyment of their Units. By acceptance of a deed to any Unit, the Owner of that Unit waives any claims against the Declarant (its successors and assigns), the Association, and the owner of the Barker Property (its successors and assigns) arising from Operations on the Barker Property of a nature and extent which existed at the time the Owner accepted such deed. In addition, Tri-Trend agrees to include on the Plat a note advising of the operations on the Barker Property, substantially similar to the following: Note: The property presently owned by E. H. Barker and Patricia R Barker (the "Barker Property") located south of the property described on this Plat is or may be used for the following: sand and gravel mining, material crushing, equipment/vehicle storage and repairs, and other lawful uses (collectively referred to as the "Operations'l. The Operations generate noise and dust which may adversely impact use and enjoyment of the property described on this Plat. Furthermore, Tri-Trend agrees to include a disclosure and waiver provision, similar to the above provision appearing in the Declaration, in all contracts for the sale of lots on the Tri-Trend Property by Tri-Trend to the initial third party purchasers of such lots. 2. Buffer. if Tri-Trend closes on the purchase of the Tri-Trend Property, Tri-Trend agrees to construct, at its sole expense, a five foot high berm with a cedar privacy fence on top of the berm near the south edge of the Tri-Trend Property as depicted, and in the approximate location shown, on Exhibit C, attached and incorporated by reference. Tri-Trend will construct the berm (including landscaping and seeding) and fence in two sections as adjacent phases of Tri-Trend's development to the north of the berm and fence are completed. The first section of the berm and fence will include that property known as. the Barker Strip (defined and referenced in Section 4.2 below). Construction of each section of the berm (including landscaping and seeding) and fence will be completed prior to the issuance of the first Certificate of Occupancy for residences in the particular development phase adjacent to that section of the berm and fence. In any location where the berm is constructed on top of the presently existing irrigation ditch running along the north boundary of the Barker Property, Tri-Trend will install a pipeline of a type and size reasonably satisfactory to the Barkers so as to convey the irrigation water under the berm. The berm height in this location will be five feet (after allowing for settlement) above the top of the referenced irrigation ditch bank. Tri-Trend will be responsible for all maintenance (including irrigation) and repair of the berm and fence until the community association (the "Association') for Tri-Trend's project is incorporated, at which time the Association shall have sole responsibility (and Tri-Trend shall have no further responsibility) for maintenance and repair of the berm and fence as part of the project common elements. The irrigation of the berm will be by sprinkler system, spaced, zoned and timed to keep dense pasture grass cover, or whatever other type of groundcover as may be required by the City of Fort Collins, in a healthy condition during growing season. Tri-Trend or the Association will furnish and pay for electricity to power the sprinkler system. Tri-Trend or the Association will water, fertilize and mow, to a maximum 4" of cover unless the City of Fort Collins requires cover which is typically taller than 4 . Tri-Trend or the Association will prevent noxious weeds from occurring in the grass cover. A quality, all-weather protective stain or preservative shall be used on the fence. If Tri-Trend or the Association fails or refuses to either (a) maintain or repair the berm, the sprinkler system or the fence, or (b) commence and diligently prosecute such maintenance or repair, within 10 calendar days after receipt of written notice from the Barkers, then the Barkers may perform such maintenance or repairs at the Barkers' cost and the entity then responsible for maintenance and repair (either Tri-Trend or the Association) shall promptly reimburse the Barkers for the reasonable cost of such maintenance or repairs, plus 20% of such cost. Any reasonable Barker costs for maintenance and repairs not paid within thirty (30) days after receipt by the responsible entity of a written, itemized bill from the Barkers will bear interest at 21% per annum. 3. Relocation of Crusher. If Tri-Trend closes on its purchase of the Tri-Trend Property and if, following such purchase, the Barkers subsequently relocate the rock crusher from its current location on the Barker Property immediately south of the Tri-Trend Property to another location on the Barker Property (due to noise complaints or otherwise), Tri-Trend agrees to reimburse the Barkers for the reasonable costs, not to exceed $3,000, incurred by the Barkers in such relocation. In the event of such relocation, the Barkers shall provide Tri-Trend with written evidence of the relocation costs expended by the Barkers and Tri-Trend shall reimburse the Barkers for such costs within 30 days following receipt of the written evidence. Any amount not reimbursed within the 30 day period will bear interest at 21% per annum. The reimbursement obligation shall be assumed by the Association following its incorporation, at which time Tri-Trend shall have no further reimbursement obligation. The reimbursement obligation only applies to relocation of the rock crusher and not to any other equipment, vehicles or stockpiled materials on the Barker Property. 4. Conveyances. 4.1 By Tri-Trend to Barkers. if Tri-Trend closes on its purchase of the Tri- Trend Property, then concurrently with such closing Tri-Trend shall convey to the Barkers that portion of the Tri-Trend Property described on Exhibit D-1, attached and incorporated by reference (the "Tri-Trend Strip'). Not less than 7 days prior to closing, Tri-Trend shall provide the Barkers with a title commitment for the Tri-Trend Strip reflecting a policy amount of $20,000. Tri-Trend's conveyance to the Barkers shall be by special warranty deed, shall be free of any liens or encumbrances, but shall be otherwise subject to all matters reflected in the title commitment, all rights of third parties in the Tri-Trend Strip not shown by the public records, and all building and zoning regulations. Real property taxes for the year of closing shall not be prorated; Tri-Trend shall be responsible for all such taxes for the years prior to closing and the Barkers shall be responsible for such taxes for the year of closing and subsequent years. Prior to closing, Tri-Trend will not take any action with regard to the Tri-Trend Strip that will impair any right of the Barkers to develop the Tri-Trend Strip in the future in accordance with applicable laws, ordinances and regulations. Notwithstanding the foregoing, the parties intend that the conveyance ofthe Tri-Trend Strip be a Non -Regulated Land Transfer under Article 1.4.7 (B) of the City of Fort Collins Land Use Code. As such, the conveyance of the Tri-Trend Strip to the Barkers shall not imply or confer any right to develop, shall not create a new lot upon which development can occur, and shall not create a non -conformity of any nature whatsoever, or circumvent the intent or requirements of the City of Fort Collins Land Use Code. 4.2 By.B erstoTri-Trend. Concurrently with the conveyance of the Tri-Trend Strip by Tri-Trend to the Barkers under Section 4.1 above, the Barkers shall convey to Tri- Trend that portion of the Barker Property described on Exhibit D-2, attached and incorporated by reference (the "Barker Strip"). Not less than seven (7) days prior to closing, the Barkers shall provide Tri-Trend with a title commitment for the Barker Strip reflecting a policy amount of $5,000. The Barkers' conveyance to Tri-Trend shall be by special warranty deed, shall be free of any liens or encumbrances, but shall otherwise be subject to all matters reflected in the title commitment, all rights of third parties in the Barker Strip not shown by the public records, and all building and zoning regulations. Real property taxes for the year of closing shall not be prorated; the Barkers shall be responsible for all such taxes for the years prior to closing and Tri-Trend shall be responsible for such taxes for the year of closing and subsequent years. The Barker Strip lies within Larimer County and not within the City of Fort Collins. Tri-Trend shall be responsible, at its sole cost, for any governmental approvals necessitated by the conveyance and any subsequent development of the Barker Strip. If such approvals are not granted, or Tri-Trend otherwise determines that the conveyance of the Barker Strip to Tri-Trend cannot be accomplished in compliance with applicable subdivision or land transfer regulations, then the Barkers agree, at the time of the conveyance of the Tri-Trend Strip to the Barkers, to instead (a) grant Tri-Trend a perpetual, non-exclusive easement over and across the Barker Strip for the purposes of constructing and maintaining the berm, fence and related improvement as described in Section 2 above, and 4 h to also (b) amend the description of the storm drainage line easement referenced in Section 5 below and in Exhibit E, if necessary, so as to extend such easement north to the south boundary line of the Tri-Trend Property. In such event, Tri-Trend or its successors shall pay the real property taxes for the area of the easement over and across the Barker Strip. 5. Drainag_eEasement. Concurrently with execution ofthisAgreement, the parties shall execute an easement agreement (the Easement') in the form attached as Exhibit E and incorporated by reference, which Easement grants Tri-Trend the right to convey storm drainage water from the Tri-Trend Property across the Barker Property to the Lake Canal running through the southerly portion of the Barker Property. The drain line specifications are as set forth in the Easement. The Easement is also referenced and depicted on Exhibit E-1(Utility Exhibit) attached and incorporated by reference. The parties acknowledge that Exhibit E-1 is subject to change as utility designs are finalized. After execution, the original Easement (along with the recording fee paid by Tri-Trend) will be held by Tri-Trend's attorney, Richard S. Gast, and recorded with the Larimer County Clerk and Recorder at the time of, but immediately following, the conveyances described in Section 4 above. Drain line construction will not commence until after the Easement is recorded. 6. Box Elder Easement. At the time of the conveyances referenced in Section 4 above, the Barkers shall execute and deliver to Box Elder Sanitation District a Deed of Perpetual Easement for a sanitary sewer line in substantially the same form as Exhibit F, attached and incorporated by reference (the `Box Elder Easement"). The Box Elder Easement will be in the same location and have an identical legal description as the Easement referenced in Section 5 above. 7. Relocation ofhrieationDitch. The Barkers currently receive imgationwaterthrough the No. 10 Ditch (the "Ditch' presently running south from the intersection of Vine Drive and Timberline Road across the Tri-Trend Propertyjust east of Timberline Road to the Barker Property. Tri-Trend, at its sole expense and with the prior approval of the No. 10 Ditch Company, shall relocate the portion of the Ditch on the Tri-Trend Property in accordance with its development plans, and the Barkers consent to such relocation, provided that (a) such relocation shall not interrupt the delivery irrigation water to the Barker Property during irrigation season, and (b) the delivery point for the irrigation water entering the BarkerPropertyremains in the current location (unless relocation of the delivery point is first approved in writing by the Barkers). In addition, the Ditch relocation shall be subject to the prior written or verbal approval of E. H. Barker, which approval shall not be unreasonably withheld. If Tri-Trend has not received approval or disapproval from E. H. Barker within twenty (20) days after the effective date of Tri Trend's notice to E. H. Barker notifying him of the proposed relocation, then E. H. Barker shall be deemed to have approved the requested Ditch relocation. 8. Contingency for Tri-Trend Obligations. Tri-Trend's obligations under this Agreement are contingent on Tri-Trend closing on the purchase of all of the Tri-Trend Property. If Tri-Trend does not close on the purchase of all of the Tri-Trend Property by January 1, 2006, then this Agreement shall terminate and the parties shall have no further obligations to each other under this Agreement. U 9. Entire Aaeement This written document contains the entire Agreementbetweenthe parties regarding its subject matter, and all prior agreements (whether verbal or written) relating to the subject matter of this Agreement are merged into this Agreement. This Agreement may not be modified or amended except in writing signed by all parties. 10. Assimmeri0inding Effect. This Agreement may not be assigned by either party without the other party's prior, written consent except that, without such consent, Tri-Trend may assign this Agreement to any entity in which Jeffrey L. Strauss holds an ownership interest, and the Barkers may assign this Agreement to any entity in which either of the Barkers holds an ownership interest. Except as so restricted, this Agreement shall inure to the benefit of and be binding on the parties and their heirs, legal representatives, successors and permitted assigns. The benefits and burdens of this Agreement shall run with both the Tri-Trend Property and the Barker Property. Accordingly, this Agreement maybe recorded, at Tri-Trend's expense, with the Clerk and Recorder of Larimer County, Colorado. 11. Autho i . The persons signing this Agreement on behalf of any entities which may be parties to this Agreement have full authority to do so and to bind that entity to the terms and conditions of this Agreement. 12. AttomevsFees. In the event of anydefauh under this Agreement, the defaulting party shall pay all costs and reasonable attorneys fees incurred by the non -defaulting party as a result of the default. 13. Barkers' Cooperation. The Barkers agree to reasonably cooperate with Tri-Trend in the City of Fort Collins submittal requirements for annexation and planning approval of the Tri- Trend Property, and will promptly sign all documents reasonably necessary in connection with such annexation and planning approval, provided that the Barkers shall not incur any cost or expense in doing so. 14. Notice. Any notice provided for under this Agreement shall be in writing and shall be either hand delivered or mailed by First Class Mail, postage pre -paid. If hand -delivered, the Notice shall be effective upon delivery. If mailed, the notice shall be effective three (3) days after being deposited in the mail Dated the date set forth above. TRI-TREND, INC. a Colorado corporation By: le . Strauss, President STATE OF COLORADO ) ) ss. COUNTY OF LARIMER ) The for instrument was acknowledged before me this a5 day of ! &L 2001, by Jeffery L. Strauss, as President of Tri-Trend, Inc. a Colorado corporation. Witness my hand and official seal. /j My commission expires: 7f �f t o �C ,�. NotaryPublic 61 rt 14OTARY' UBLVC ' PUBLIC i' ,. c4 E. H. Barker OF CO Patricia R. Barker D O)Rstrument was acknowledged before me this�2 r day o d Patricia R. Barker. d and official seal. My commission expires: My Gmmira Expim3 PAq 2, 200E . . Publp v� XWyCjSirnTr VM�xora WftpWjkAGMrewr L1-x I..ra 7 APPENDIX E DRAINAGE MAPS 0 0 Gaoway Planning.;r hitecture. Engineering. 9 r r Gaoway Planning. Architecture. Engineering. 1 r r r DEVELOPED CONDITION DRAINAGE MAP r r r� i r r r r r r � . a LID EXHIBIT Gaoway Planning. Architecture. Engineering. — _—L I ' \ `-N �- / LEGEND: i15l1l )'z a Ic?; ,E \�= 1 s 1 • • \ \ \ �1J i \ \ I\ I \ 1 \ —_ NA ___ v � susmssuassw \ ! 1 / I wroosEDs.cxPSLVFx + " vxmose.srcaAwu, - `�-�s �1"`°��#-`• � --A vxwossoxcxrarNAY EAST VINE DRIVE w_ti- '\ / iii �' (III I: I r/�� _ / I`\ • f ,_1 -•\\/ DRAINAGE SYMBOLS: I I I:I I IIII I, I .� : ♦ I / .,, o - I I' e .00 WOO ewxrAii; -rDxa..rxxrDrF�w>Exr 1 I I --- I'' v' BECAMEuwaumn•Iwwrvasaen I I� I - - V 1 t I II.I ' /' .� / " .i ' r � i - -- -- - -- -� `\I -- - •� A Basins (Includes: Fut-A) ' B E and F Basins < < ...... �I� \Area: I�- / _ Tributary I (Includes: Fut-B) , \ IN / / / 2 S ' {�'� 1 �,✓' wsxwo aaw MEaox Tributary Area: 37.46 acif f Fp��! ��{� A a S -�L 11 Mt l i ,_� \ , ., \ ,� �- � � •�. o ;,� �. _© _-_ N TES: -� t r�\ 1 : /-_ _ i •`� �r � •• I \E I I I z., � ••� —�� OF THE w.za�rsmExi e�irx'"i. �rue�rv.lciLmum a r F \ )•° I I _ _ _ _ —i 1O BI]5 ETEBUTARYARE EF (_ ❑I III - J = ' _ -:_i } �,,,, urw,x �s`o s. nuuxs�xxEw✓ cxwvaaysaasc�nl mETIMAM Lxn aI 11 i I I ``I LID f .� _ - ��- u vRYxw s DuaalwuDMxmal rm�na,+ �' j I _ - Ip _ - 1 '• A 'I j r W V' G and H Basins (Includes. Fut-G, Fut-H and Fut-TL2) �' � � / 7 �r l - -' O FE,D,.e -1 - -x �.D L ,� 7 / s ME�.a° Tributary Area: 30.61 ac s1 0 �ElrEx,, E Y- ! / I 1 - ,�. _ L I mu EA +VAH ru-Ixal�arDr xAas xa¢waa - � I I I I I � .. � I .{ =� EMILEYANDFUE�,y VaWE up. i- USED WINE, IF r - o aE� FM"w.EER,DFFYCEE .EDx x •» $/( �,�� I v I I�1 .I� 1. /'� 11 I - _�, �,..� 4'._ '•'g � _ �-'lµ� v \ � � �I� � � � ssE s�Erorw EmoEr.ow.woonv+cl e MrENrw+s.ax sos wnrmauumomErsnex:vErxcul LLU a __ wL wA+DxeASLcr EXTENDEDoE,EMx.�.,w�Eex w.,Exa»L,raa�rEx»a,Er,»EI. xFwem�.mrnP. ALsm IDED ,� I f• \ —. ♦ \ \ \ ?.I _ ( to WESE Fa MIEn.V ANIO. 4• 1II\\�. .JL R \' 11 xMw EEE t\ �t-� JJph J I A V , �¢ wusavEErmmrM iADazaruL wFMwmxFARE MI "6 �. -- LID/I AND DETENTION SUMMARY �1 E! , -, I : �"S � B • _ \ � tl _�--•r•D.. nm.♦vmx.wl .nx... rrxwnAr. wsEw.IE»xxx.q vw,x a.w"Iw. IFOI J�� d • -. M 1 x - i 1 ]♦ AWnO '�M v9E WA WE WA I- and J-Basins (Includes I '• s .''.\ z smFw.IEF) aE.mF IErutlawq zzw xREPv.s an WE ' ; Fut-I and Fut-TL 4) F a _ u.m D r m---. "aDax n M -D- a *a MD.x 'i^ . / I -LawJ--\, ¢•gxexu"Olxxlxx.F•i xOxw M.N Tributary Area:14.28 ac . _ - M" D"M„- "I� A , �Fx� 1 >-, WMA,.,s » i 1 I i ) rf v v Y A I __ _ s sra m"RI I-4mlu FN wEw.vl ,ux wm-n.BE afl WA \_ / /� �I III ` r i __ _ A �� 1Mk Y I • I L. , _ t - - - DDmmnmx av Eral .n 'YN/Y*vc ' h, - a-Mx•aez. zm.,.wrudwxm Envxw. x>.I1 WA xP WA C and D Basins ""'" 1 1'�\ v- )I9 I'IIII �E �\ rxt / _ z.w,.amre,elz-n. me mn a,-rvaa au s II � , II , , s , � / ) ; I Tributary Area 23.74 ac _ " _. , / asn 1 \ I \ al ` +w o loo +w=. r Clboi Pon COIIIFLs.Ca I / I Ioil-_ \ .--r _ I » UTILITY PLAN APPROVAL OVPL \, v SHELF SIZE 24.36 zrmDEm CMBV� N. y trrwr-u D. t �.. � lI�'n (Nyy�.� � evzrmrtr mE�cemvn EF c , 1 I vrI V Id; ' l dl 1 'I �� I - I I. I ,� /P W )'Y . �I v1 �� �.riOil M. V 1 Ilhl ��--Jh- - 1 off \ -, i 11 4 --�_ <a T �'� I / �" / �\. '_ '` ` ; I �Gi�_ - - Mx G bu Callseloeya elg �WTANCIT GI I.. r� ,.rr..r - E.,,,•.x.A.a. EL. Ga€oway Ha g. AchrENTre Englnee"It SUM20t 1,,, tl CO III 90x08DEDnEE 0 pellanmVs.om EAST RIDGE HOLDINGS 4801 Goodman Rd. Timnath, CO 80547 970.674.1109 mEeE PMxe ara Ax "arwxexr of sExVILE/HEIRMEAIEPFOPEarr OF oLCEDEDCINVAN' CIRREDNIND MAY xorxEOLR1C)UT �srvosEo wxEPxooucaosxrnwr ,MlnEx coxsExra ME NGrcECT NTS MILLM51N0 FNNCEMENLB MILL BE ENFIXYCEONIO PPOBECIIiEa. 0 go LLO am OJW O W CO U) W J R_; O F Woz O o. In rzeeq a ozx -u. SHEET LIRE: LID EXHIBIT DR03 OF 180 SHEETS DRAINAGE SUMMARY TABLE I DEVELOPED CONDITIONS Tributent auD&uN ,y9n (= C2 C100 U12-YM (loin) h1100.Ys (Mn) D2 (III) all (cbl Al am On B2 ]A 1.1 IA A2 ass a.98 as $A 12 5.7 AS am 0.03 Ila aA 21 ISO A2eN Ow am Ila Be 32 111 M O.M am 12T 10.1 29 14.1 M P2.35 O.fl ON 13A Tom 2] 1" MH3 am On 13A 1" 53 20.a M ON on III BA 29 1" A] a." a" 10.7 8.1 1.5 72 AB OA1 On 142 Ila 2A 111 A7eAA am On I" Its 42 1" A9 on on 0,91 ss 50 Be 2A AO 131 0.73 0,91 0.a 54 is Its All IN 0.73 Ow 7.9 Ss 2.0 9A Al2 ON 0.72 ON 0.8 aA Is BA A13 0.98 0l3 - 0A1 7A as Is ' aA BIT 0.52 EAST 0.n 10.7 9.7 12 50 0 2.77 am 0.716 143 121 92 ism BS 2.0 O.at 0.716 AA 120 35 10] B1 2.39 0.03 a.n 13.8 Ila 29 AA 115 140 ON am BA TO 23 10.7 B0 2.39 am Om 1Sb Its 3A 14A 87 1A6 0.83 0.71) 9.3 Is is 71 q _ 1.39 _ 0.85 041 BA 7.9 21 &T M 1.31 am Om MIA 7.9 1A 92 BID 1st 0.0 EAT 10.6 0.9 as 12I BIT ON 0.71 Om 11 7A IS 7.3 612 1.14 0A1 on 8] as 2.1 10.1 513 1.13 0.0 Oil 11.7 as 2.0 92 614 1.1a Om am 10.E 7A 1s as BIB a." 0.74 0.92 0.9 as Is 82 011 2.13 0.70 OAT 12.E 9A 3.1 142 816 IN 0.74 0.0 7.7 0.1 1.9 as 95R11134916 3m Om am 17.1 1" 4A 212 B 13MBIa 5.97 am 0.ee 17.1 1" 72 33.1 017 IN Om 0.57 W 0.3 I's B7 B51&13MO17 ].Oa a89 am 17.1 1" Ba M.1 BIa Om On Om 43 5.0 OA- IT C1 I'm ON Om 102 &1 2.1 9.9 C8 IN ON ON 104 7.9 1s 8.9 CIRC2 244 0.0E am 10.8 8.6 25 18.1 C IN 0.67 Om 12.E 103 2.1 92 cimm am Om IIA 102 Is NO CA on aa1 am as aA 13 00 Cb O.77 0.9a 50 6A 1.5 0.6 Ca on Om &0 SA is III CSBCO 0.14 am Bb SA 3A I" CT On p2M on Om 62 50 Is 4A w5 C7 0.74 om &5 5.a 4s MT CB M71 Om ]2 52 Is &9W am ON 02 fiA 2.1 9.5 CIO a.n Om 1A 92 TS Its oil am 0.78 IOs &1 1.9 9A 012 IN ON OTI 82 BA 20 132 C13 1N a03 O.n 11.1 &] 2.1 103 014 1.75 ON On 10.E IS 25 12A C15 1.041 ON am 7.7 SA 1.7 &1 CIO ON 0l3 on IOA 6.9 1A aA C17 1.14 0.67 am 6.9 54 2.9 9s Cie 1.15 0.51 11.64 Its 10.1 1s 72 D1 I" am 0.n IOA aA 1A 7.9 D2 ON Om ON aA as Ds 9] El Ory amPON 9A ]A 1A &8 EM ON am 9s TO 1.5 7.1 E11F1 IN am 9A ]A 2s 119 E3 am am SA SA IA IA F1 ON O.n 12 as 12 OA F2 IN 0.n 6.1 SD 2.1 94 Be Om O.n 04 0.1 12 Os f1 tA3 Om 10.1 7s IS T3 F1 tlry F4 aa8 O.n 1" 71 M m.7 BE 029 a.n 5.2 aA Os 27 01 am 0.74 Om 08 Is to IA O2 IN 9N a.w I" Ism 21 1" D3 1121 0.14 0.0 6.1 SA 21 nz 02W3 IN am OAT I" 121 17 IIA p1 lAI 0.73 0A2 0A BE 1A - 9.1 QI+M 1N 0.74 am BA 52 9A 14A OB IN 0.n am ab 88 &1 140 OI ON 05 0.18 0.71 am 142 121 Bei ME 00 am m IN 02 6.1 IA 4s M am OAT ale &0 W 12 G 1Me07 131 On 0.91 BA BZ 3.3 ttz H1 OA2 Ob1 1N TA 42 01 40 H2 120 0.74 ON 9A 72 22 1" H3 TAT 0.n am 03 aA BE 92 IN ISE a.n 0.91 &4 &4 2A 113 HE am 0.78 am 0.0 5.1 I2 a.0 NO "1 0.74 m &7 &1 3.3 1&a 11 1A4 on OJR &7 &I 8A 14.0 a 1M On 0.9] 7.1 88 2.1 9A D 0.10 0.81 IN SA fiA 02 IA Be 0.17 am IN SA as OA 1.7 M 0.17 am 1m 5.0 as OA 1.7 m 0.74 0.75 a% 8.3 64 1A 4A ONO 1.77 an ON 03 M 53 1" O 0.10 ON 1N BD BD 03 1.0 all "I Om 1N 50 6D Ob 21 .._, J8. _.. ON 0.n 0.91 Be &I ... 1s ]A M 0.12 an ON a0 5.0 02 ID 110 1.75 an 0.91 &8 4A 90 IBA A ON ON Om OA am 03 12 ON am 5.0 6A 02 1A am am am aA SA OA 1A21AI am "1 n2 082 8A IBA E0,11 4N Om 1N IBM IOA 09 30.1Bill ON IN 104 123 93 3&07N Om 1N 10.E 125 153 "A 2AI ow IN IOA I" 46 IBA4.51 Om 1N IOA 1a0 &2 NO FLNI 4.23 ON 1N t0A in ]A a&9 Fuel IA1 ON IN I" I" &8 142 Fal 2.13 a90 1.0E 10.E le" 48 Ism Ful IN (M tN 1&7 115 23 at RLlem ISF I IN 14s 132 2.7 1009 FNHTL4 am I IN IaA nA 06 22 INLET SUMMARY TABLE TMYyBNn MIN D2 (OM) D1N (nM) Csry IlMm lr w - InIe1TYp MN909 ONO M Mail 1A AB NO No. IB ComblrWbn ll B ANAi HMC1a1 MI" NO Toe R'CurblNet 10 MIA5 MBIC72 53 28.8 NO No. tb tombinat nlNet No. 18 CumbinafonlNNFIE M Mw .1 21 13A NO A]IM tlNC83 42 Tom w No.16Cnmelrabonlriet M all 03 2A NO No. i6 Cumbirmtion lN.t TIME R CurplN& A10 INMCBI, 23 114 NO All IN Mi 2D 99 Yq No. 18 Cumbineliwn lNet Ne.t6CombnuenonlrletA13 Al2 INNC&1 1.8 Ba NO 111Q 13 BA NO T11n R'Curt, INNBt MN ol? 1.1 SA NO No. iB Combination[NotB2 No. 16 Combil Inet No, 16 Combmaeon mile Helots 32 1" NO BE H DIS IS -16.7 NOT is B4 MIN DA 29 14A NO No IT Combinauon Inlet 15 b HN013 3A 14A NET No.I6 Combination Inlet No. 16 Combrnanon[nlat 151 B7 MIN D12 1.5 73 NO 12� BE HN all 2i 9.7 NO No. 16 Comoinallon net I No. 16 Lentil We No. 16 Combil INN 12 Ba I Mat 1 1.0 02 1 NO 12 BIB lCIA 2A 12.1 NO 12 all BIB[ m 13 73 Nq THRE R'Cut Inlet 10 B12 HN DO IT III NO No, 16 CombinBIM INN 12 B S13svu B17 I"ll BA all NO THAA'Curol" 16 BIB Met 03 A7 NO Tpa R'NNIMN 15 mmm Mai 68 27..0 NO HE, IB CmmNm INN 15 C4 HNE16.1 1.3 9A NO Type Tv Cure INN 1B mS w WE1&1 4A =1 NO NO. 18 ComMneeon ll 21 OB all is BA No No. IB Cannonenon toter NM IB CturoMNmn not _ No. 16 Combmallon Inlet No. 16 Combmonon moat No. 16 Combmallon inlet NO, 16 Combmallon Inlet No-16 Combmallon Intel No. 16 Combmalon I'll No. 16 Combination Inlet _ No. 16 Comninmun Intel No.16Cumbmnoon total No. 16 CuDmmn9on net No.16ComNnawYnlNet Tyq R'Curb INN 10 C9 all 21 &5 NO 12' C0 NO[0 25 112 NO 15 12 oil all 1A as ND C12 HNOF 2A n2 Bar 13' CO MIN[ Is 21 103 NO 12 CA IW1q 23 121) ND 12 Cis BIB" 12 0.1 ND 9 9 C18 Net 1A BS ND C17 a m 24 93 NOT 12 D1 lr m 1.0 TO ND 9' INNEt OD &] ND BI EMF! H m 2B 18➢ NO 12, q INND21 1.1 4s NET 5 FIMI YIMD22 a3 ME NOT No. 16 CNMlratlan INN 15 PS B mi as 2T 1E8 Na 16 CmNAnatil lnel W l6Conteratlminbl Ty" A_cut inlet 12 eimm BY mi 83 90.E No 15 (MIN MNBW 23 112 No 10 Nt WKI 0.9 4A NU Into R'Cmb Inlet M.16CombinatminMl - 5 12 IQ wm 22 1" N) M HNB41 2D 92 NO No. 16 CorMlretbn Inlet 12 Ha 9M B32 2A 113 ND No. 16 Comb[retbn Inlet 15 Is MBIB&1 1.3 9A NO No. 16 GnMmatbnlNel B HER 9iNB2 32 183 NO N0. 16 fmMYratbnlNel - B 11 INNM2 29 14A NET Nb IBCortLmWnlNN 9 N HNA) 0A 12 ND TIRE R Curb Inlet 15 B INNABI 0.0 12 BIDS No. 18CwrGnetim total 3 12410 Inal &3 1Bs IA TyRB R Curb Inlet 13 13M ww 0.5 2.1 M M,10CmI ill Mlet B M Mel79.M 1A TA NO TSTe 1YCW INN 10 N INNA&2 02 to ND W.18ConrbMlM 8 110 INNM 3A 1&0 NO N0.18 Cm10MNM9i1 9 RIPRAP TABLE BbnnPeM FDBBM.rr pYRW wep�el3 H NbV TKe Iwo4m9 04 &YN NN¢ep at) 2- of 8ldmpeMA CIMb BIB Lall 1HIH) 40 11 1. BDam ONrtB C9oW 08' M(del M ) 22 12 BYm pe9tC CYaIN W M(4n`12M ) 21 2BYMnpBMo 45ab SC L(LL'9MINHO 55 11 1 8bmpe5lE C9a6 SP ` amenee It 15 0 1 Sbm RBMO CLwIr 24• A("tiNI+) 0 5 t vu uluTr xomCAnCx G®D®10 B IcnOx R•reb0laW. Call LBINe you tag. City Of Foil Collins. Colonel UTILITY PLAN APPROVAL rPPRD.m. br aDd�. uex[oev. WtIF4VYYW� OM OrIbu Bv. CnECI oN CHISGICHr. � DEnNDM N� Ga€€oway Planning,whivium Engineering. 37M E. t5M S4eel. Srlm el WVW,J CO weal 970ALL) .3 000 w'.9•Iba.Yus min EAST RIDGE HOLDINGS 4801 Goodman Rd. Timnath, CO 80547 970.674.1109 THERE RANG ARE NI IMMU ENT OF Sol AND ARE E PROPERTY OF GALLOWAY AND MAY NOT BE DUPLICATED, DISCLOSED, OR REFRP]VCED WRHDIP CONSENTTHE WRITTEN OF THE ARCHITECT COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCES ARO PROSECUOD. V Zp J Q LL Q a ZW OZ UJW O W 00 Clip Z p�W � 0 ; K QOZ LLLL U) Q N oeb ISSUE I DextlptFn Init. HAMS BMW h MAY iatiwer, . M, .._ _- _-. NLIB SHEET TmE: PROPOSED DRAINAGE DR02 aleasNEETs----- I \'lid \I\41 I} i 'fill I, Jill, It It �_—eEt VINE DRIVE — I II I / I��/ - V I �• � RrllaniMEEM(Y ArtMA II' A� III IIII / V RmanaWunaY p . , �' ArtFamOWCTq /'RmPaarnl1111,Iox I To — �Z �I I I gRdA➢a10]ATdI 0P6MITD.VOFR /`�� 1 I IAF t J\ Ilf I�d Iv- 1 v p 111 ( i A&�` I PETE 5 �. RnEAD TM,R ON DEAD a a n �I �\ \ Rrmxreoe pT\anwoLwc I � arwen \,xsa.Faan \ el ` I \ It _t- 1 — _ —-a MB T U FE an A I r II o r\i' \ am+a '. la •\ \ I y • 4 I It WOING ivvms[w[a a .AFF PAREART. NroPDEFn s,aw.:E�EN aNOwsEv s,ces MER PROFFOYED _ FOrus.LD,IaaNE -- RAINAGE SYMBOLS: Awo A 1.000.za a 0.4a—aamQwW WavrFcwFFCEn ast —wlA silt RMI caAFFcYPT i C9 uSlcNVAN, ...... NMONM�e awrcAP. IRECTION E° ICLAt TO PADUREAM CLEARED NOTES: FOR 2 3 4 AMID 5, EACH C�S�NDI� MATCH FRUIT RECOVER THE UNTA IT THE WATER ORMITY PUMP UTWATER AMOEI mESsrnNS SOON FLOW a UPICTH TIC 7 CHATIMELL SLOPE 0 M25 FTAT CERAMIC.VAR a NN11W1 LR ® CANDrILTERIOU XFIT r PSINVO0 `. Wnt WAKE O eDNVOLUMEaNACIT 0 ixe",mYAFEA D AIC lPAYINSoxCLUMEvrc. wa:eu' DESIONVOLUMEOCALFT SANDFILIVI ,abRMT MS. MERCER INCLUDES MD aVwa "M6MNy" ANDFUT-His -Ob10NVS.M.:ank., ONOW D OmmulPOwwTmaRFsr<On,mN roe EVEw' -. O' �ieETDE`i`NiFul w.reNwvO'DmETmucneFww. wR L rc.wosusxa g EAlW00E,WK AIXIEWIw,R.OL11nlMETEINCFJB I>RN01 WEN.ETDMFMLP [EI,La D.MRaA9W �to HiaW MVaIT wF ING OfMTPoCInKILMYIIY DETNL n IMMfD . xTlcFwceaw,EnvomcuTmuSEarorNPlau,ensxxime QEWWPW it xCRTHMWW1C1TRN93iND 7 I ILtl11CWL WMTITOr15FEYF£l �.vNr FIAT LID/EDB AND DETENTION SUMMARY W Win>�fw a^ rnevuM1OaY,,. iE'THAT Na.RMINMI WMN M�wW m I abma AaPOe1 -AI 21M AM FeM µTA x.s Fiwin a i Mn: Pais YTAa NW9l n an WA sa.wMoeNmbn enmrml CZMI)SM", MEN vNF n am WFIn 4. En.aFa ONmrb°wi.I[Del t TL2) .:FNa - I IMI JITI At I And NlTLA m wwWans saF 4DIIw PYn TYa s-sNFampNI w vaarsaoa Ran WA s.a.NasF. �nrt , Np nd"pWrt A ...a mM MI TWA WA WA T-DEWmwel arm sn Tom ;_.nn.28 w s f.puAbn Pmdl TDaw a0 naa TDD,./.nis.a9 aSAT 1 s _ a City Of End "Ins. CdwatlD ( AMFEET, UTILITY PLAN APPROVAL ( i-4• I•II; I` �Y, .a.. 1\ NAND.m Dn w.. .Faa ruN Wa 1A_ 3'�-�«�.��i I. 1 uurnsmro,s�cnnFnoF CCIdAID f a I rIED®sa. aW T ; pcc At t it �(J /• o. WMAP I III ROTATION 0 a Call meJamD- CaIlOelWAycyft. G a E oway PlYRUJI Redt I -Engar smug. 37ME SUE Street, SHARE We L Dm C000558 RED am 3300 0 .m wwwWwwCaYLISMET . PEA. EAST RIDGE HOLDINGS 4801 Goodman Rd. Timnam, CO 80547 970.674.11D9 TIESEPWISMEON NSTRVMENTOF BETMCE AND ARE THE PROPERTY OF auLDWAv AUTO MAY NOT RE DUPLICATED, DISCLOSED OR REPRODUCED VVI TXWT TXE NR ITEN CPVOENT OF LIIE CE A19 R WILL ILIEEFNFCACEDINO INFRINGEMENTS PPOBEWlE9 0 zp J LL Q p� niW O }U11 rj LLJ ca �2p z pI=W _ ; 0 I.E.Woz 0 QQ LL fn Q / DRAW NwelOnvjMlpr Inn. CARREP» I MIAI OT„ 1Ew aNsoM en, TRAW HAW,! SLEET TRLE: PROPOSED DRAINAGE DR01 DP Nall SHEETS