Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 07/21/2016FINAL DRAINAGE REPORT
East Ridge Second Filing
Fort Collins, Colorado
Prepared for:
Hartford Homes
4801 Goodman Road
Timnath, Colorado 80547
Phone: (970) 674-1109
Prepared by:
Galloway & Company, Inc.
3760 East 15d' Street, Suite 202
Loveland, Colorado 80538
Phone: (970) 800-3300
Contact: Herman Feissner, PE
' Original Preparation: September 901, 2015
Revised: November 12d', 2015
' Revised: February 15i, 2016
Revised: March 23`d, 2016
Revised: June 30"', 2016
G a o w a
Planning. Architecture, Engineering.
City of fort Collins Approved Plans
Approved by:
��n
1 Ga€oway
Planning. Architecture. Engineering._
1 :TABLE OF CONTENTS
1 TABLE OF CONTENTS. ... *,*,* ........ ............. * .............. * ......... * ........ .......
ONTENTS.................................................................................
I. CERTIFICATIONS..........................................................................................................................3
II. GENERAL LOCATION AND DESCRIPTION..................................................................................4
III. DRAINAGE BASINS AND SUB-BASINS........................................................................................7
IV. DRAINAGE DESIGN CRITERIA.....................................................................................................9
1 V. DRAINAGE FACILITY DESIGN....................................................................:...............................17
VI. EROSION AND SEDIMENT CONTROL MEASURES................:..................................................21
1 VII. CONCLUSIONS ......................................... :.................................................................................. 22
VIII. REFERENCES..............................................................................................................................23
1
APPENDIX A - REFERENCE MATERIALS
1 VICINITY MAP
NRCS SOILS MAP
FEMA FIRMETTE
1 APPENDIX B - HYDROLOGY CALCULATIONS
PROPOSED COMPOSITE RUNOFF CALCULATIONS
PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION CALCULATIONS
1 PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN 2-YEAR
STORM EVENT
PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN 100-YEAR
1 STORM EVENT
APPENDIX C - HYDRAULIC CALCULATIONS
UDFCD INLET CALCULATIONS
1 CDOT TYPE 'R' CURB INLET I DEPTH AND STREET CLASSIFICATION VARIES
NO. 16 COMBINATION INLETS I DEPTH AND STREET CLASSIFICATION VARIES
AREA INLET CALCULATIONS
1 STREET CAPACITY CALCULATIONS
ALLEY SECTION MINOR AND MAJOR STORM EVENTS
STREET SECTIONS MINOR AND MAJOR STORM EVENTS
SWALE CAPACITY CALCULATIONS
1 STORM DRAIN SIZING CALCULATIONS
Storm Drain System A
Storm Drain System B
' Storm Drain System C
Storm Drain System D
Storm Drain System E
Storm Drain System G
' Interim Outfall I Pumping System Details
Ultimate Outfall I Release Rate
' Outlet Protection
DETENTION POND SIZING (EPA SWMM 5.0)
' EDB AND LID SIZING CALCULATIONS
APPENDIX D — SUPPORTING DOCUMENTION
' LAKE CANAL AGREEMENT
BARKER AGREEMENT
APPENDIX D — DRAINAGE MAPS
' DEVELOPED CONDITION DRAINAGE MAP
LID EXHIBIT
Ga"11,oway
Planning. Architecture. Engineering.
2
Galioway
' Planning. Architecture, Engineering.
I. CERTIFICATIONS
' CERTIFICATION OF ENGINEER
"I hereby certify that this report for the final drainage design of,East Ridge Second Filing was
' prepared by me (or under my direct supervision) in accordance with the provisions of the Fort
Collins Stormwater Criteria Manual for the owners thereof."
' ,pG
••� EiEFp'-.
Herman Feissner, PE
' Registered Professional Engineer r) ze
State Of Colorado No. 38066
For and on behalf of Galloway & Company, Inc. rp'ya7
' �FSS%OiVAL�C�G\� .
CERTIFICATION OF OWNER
t "Hartford Homes hereby certifies that the drainage facilities for the East Ridge Second Filing
shall be constructed according to the design presented in this report. We understand that the
City of Fort Collins does not and will not assume liability for drainage facilities designed and/or
' certified by our engineer. We also understand that the City of Fort Collins relies on the
representation of others to establish that drainage facilities are designed and constructed in
compliance with City of Fort Collins guidelines, standards, or specifications. Review by the City
' of Fort Collins can therefore in no way limit or diminish any liability, which we or any other party
may have with respect to the design or construction of such facilities."
1
' L>01&d Homes
Attest: \
ate. aon oat/er
(Name of Responsible Party)
-2�:CLC'�w Tlbr,,�s M:11�
Notary Public
Authorized Signatur
ZACHARY THOMAS MILLER
NOTARY PUBLIC
STATE OF COLORADO
NOTARY ID 20154035691
MY COMMISSION EXPIRES 09/09/2019
M
Gaoway
Planning, Architecture. Engineering.
II. GENERAL LOCATION AND DESCRIPTION
LOCATION
East Ridge Second Filing (hereafter referred to as "the site" or "project site") will be located
southeast of the intersection of East Vine Drive and Timberline Road. It is bounded on north by
the Burlington Northern Railroad and East Vine Drive; on the south by an existing gravel
mining operation (i.e., Barker Property); on the east by undeveloped agricultural land; and on
the west by Timberline Road and Collins Aire Park — a mobile home park. The Larimer-Weld
Canal is located north of the site, and the Lake Canal is located to the south. More specifically,
the site is located in the Northeast Quarter of Section 8, Township 7 North, Range 68 West in
the City of Fort Collins, County of Larimer and State of Colorado.. Refer to Appendix A for a
Vicinity Map.
DESCRIPTION OF PROPERTY
The project site consists of approximately 153.29 . acres. It is currently a vacant and
undeveloped tract of land. The site was used for growing alfalfa. The existing grades in the
north half of the site average one percent, and existing grades in the south half are steeper,
averaging three percent. The existing runoff generally flows to an existing low lying wetland
area in the south central region of the site. The existing low area has no natural outfall.
There are no major drainage ways passing through the project site.
According to the USDA NRCS Web Soil Survey, 'Fort Collins loam, 0 to 3 percent slopes'
covers roughly two-thirds of the project site. This soil is associated with Hydrologic Soil Group
(HSG) 'C'. HSG 'C' soils have a slow infiltration rate when thoroughly wet, and consist chiefly
of soils having a layer that impedes the downward movement of water or soils of moderately
fine texture or fine texture. These soils have a slow rate of water transmission. The remainder
of the site consists.of a mix of HSG 'B' and 'C' soils. Refer to Appendixes A and D for
additional soils information.
CTL I Thompson conducted a geotechnical investigation on May 16`h, 2015. The results of the
preliminary geotechnical investigation are summarized in Preliminary Geotechnical
Investigation
4
Ga€ns oway
Planning. Architecture. Engineering.
East Ridge Subdivision Fort Collins, Colorado (Project.No. FC06953-115 1, Dated: June 19,
2015). The soils encountered across the site "generally consisted of 9'/z feet of interlayered
clay and sand over relatively clean sands and gravels to the depths explored. No bedrock was
encountered." For reference, Figure 1 — Locations of Exploratory Borings and Figure 2 —
Summary Logs of Exploratory Borings are provided in Appendix D, Supporting Documentation.
The site is situated south of the Larimer-Weld Canal and north of the Lake Canal. -In the
interim, the on -site detention pond will release to the Lake Canal at a rate of 5 cfs until the
ultimate outfall to Dry Creek is complete. Refer to Appendix D for a copy of the previous
agreement with the Lake Canal Ditch Company. The developer is finalizing a new agreement
with the Lake Canal Ditch Company to release water into the Canal. We are scheduled to
attend an upcoming board meeting on April 12t', 2016 and anticipate a final agreement to
follow soon after.
The Barker Property, which is situated south of the site, currently receives irrigation water
through the No. 10 Ditch. The irrigation ditch connecting the No. 10 Ditch and the Barker
property runs south from the intersection of Vine Drive and Timberline Road across the project
site, just east of Timberline Road, and to the Barker Property. This. infrastructure will be
abandoned and replaced with a pipe along the alignment shown on.sheets UT03, UT05 and
UT07. In addition.to providing irrigation water to.the Barker Property, the proposed irrigation
line will provide water for the future irrigation pond on the City of Fort Collins Neighborhood
Park site. Refer to Appendix D for a copy of an Agreement dated 12/06/2002. The developer is
finalizing a new agreement; it will be provided when it is finalized.
East Ridge Second Filing Subdivision will be developed in several phases. During the first
phase, approximately 114.73 acres (±75%) of the total project area will be developed.
' Subsequent phases will develop Tract A, Tract B and Tract C as multi -family, single-family
attached and single-family attached, respectively. The current phase will include a mix of
single-family attached, single-family alley loaded and duplex construction. The proposed
residential development will surround a City of Fort Collins Neighborhood Park (Park) and
wetland/natural area. We are uncertain when the Park will develop.
4�
A
Ga€111 oway
Planning. Architecture, Engineering.
During the water quality storm event, excess surface runoff captured by on -site storm drainage
infrastructure will flow into one of several stormwater quality features surrounding the on -site
detention pond. The stormwater quality features include: two Extended Detention Basins
(EDB), Grass Buffers (GB), a Grass Swale (GS) and two Sand Filters (SF). During the minor
(i.e., 2-year) and major (i.e., 100-year) storm events, runoff volume in excess of the water
quality event will drain into the on -site detention pond. In the interim, a pumping system will
move water from the detention pond to the Lake Canal Ditch at a maximum rate of 5cfs. The
permanent outfall will drain west and south to Dry Creek.
6
Gaoway
Planning. Architecture. Engineering.
'III. DRAINAGE BASINS AND SUB -BASINS
MAJOR BASIN DESCRIPTION
The project site is located in the Cooper Slough/Boxelder drainage basins. According to the
City of Fort Collins website (ham://www.fcqov.com/utilities/what-we-dolstormwater/drainage-basins/boxelder-creek-c000er-
slog h), these basins "encompass 265 square miles, beginning north of the Colorado/Wyoming
border and extend southward into east Fort Collins, where they end -at the Cache la Poudre
River. The basins are primarily characterized by farmland with isolated areas of mixed -use
residential development and limited commercial development."
The basin hydrology was studied as part of the Boxelder Creek/Cooper Slough watershed by
the City of Fort Collins and Larimer County in 1981 and 2002. In addition, a drainage master
plan was prepared for the portion of the basin owned by Anheuser-Busch, Inc. in 1984 in
conjunction with development of the brewery site. The 2003 update to the City of Fort Collins
stormwater master plans adopted improvements for the Lower Cooper Slough Basin and
identified the need for the Upper Cooper Slough as an area to be further studied.
A previous final drainage report for the site, Final Drainage Report for East Ridge Second
Filing Subdivision (dated: May 6, 2008), which was prepared TST, Inc. Consulting Engineers
(TST), described off -site flows of 247 cfs (Larimer-Weld Canal) from a future diversion in the
Upper Cooper Slough Basin. At a meeting on January 4, 2016 with the City of Fort Collins
Stormwater Utility Staff, we confirmed that, because of new information and changes that will
be made to the Upper Cooper Slough Master Plan, the spill from the Larimer-Weld Canal will
be reduced to 0 cfs. Therefore, no off -site flow originating from the Larimer-Weld Canal was
accounted for in this final drainage study
The project site is shown on FEMA Map Numbers 08069C0982F and 080690982H (refer to
' Appendix A for FEMA Firmettes). Neither map shows the project impacted by an existing
floodplain/floodway. Refer to Appendix A for a copy of each Firmette.
' SUB- BASIN DESCRIPTION
At the sub -basin level, a t1.5 acre off -site area along the length of the north property line
should have a negligible impact on the developed drainage design. This area spans the length
7
Ga€oway
Planning Architecture. Engineering.
' of the north property line and is comprised of native vegetation and coarse aggregate typical of
a railroad grade. We do not expect this area to develop in the future.
Gaoway
Planning. Architecture. Engineering.
' IV: DRAINAGE DESIGN CRITERIA
REGULATIONS
' This final drainage design presented herein is prepared in accordance with the Fort Collins
Amendments to the Urban Drainage and Flood Control District Criteria Manual (i.e., Urban
' Drainage and Flood Control District Urban Storm Drainage Criteria Manuals Volumes 1, 2 and
3 [Manual]). Together, the requirements are referred to as the Fort Collins Stormwater Criteria
Manual [FCSCM].
DIRECTLY CONNECTED IMPERVIOUS AREA (DCIA)
We developed a strategy for implementing `The Four -Step Process' for stormwater quality
management. Each step is listed below along with a brief narrative describing the
implementation strategy. Refer to Appendix C for the LID and EDB sizing calculations and
Appendix for the LID Exhibit. The exhibit shows the location, type of each stormwater quality
strategy, water surface limits, and tributary area. The following table, which is included on the
LID Exhibit, summarizes basic information about each Stormwater quality strategy. The bold
' number preceding each strategy keys to its location on the LID Exhibit.
Tributary
Release
Stormwater Quality
Tributary Basins
Area
WS Elev.
Volume
Rate
Strategy/Detention
acres
ac-ft
cfs
1 - Bioswale
A Basins Includes: Fut-A
21.92
N/A
N/A
N/A
2 - Sand Filter (SF)
B, EFut-Band F Basins (Includes:
37.46
4933.96
0.75
N/A
3 - Extended Detention Basin
C and D Basins
23.74
4930.99
0.61
40-Hour
EDB
Drain Time
4 - Extended Detention Basin
G and H Basins (Includes: Fut-
30.61
4931.59
0.94
40-Hour
EDB
G, Fut-H and Fut-TL2
Drain Time
5 - Sand Filter (SF)
(Includes Fut-I and
14.28 .
4930.36
0.33
FBasins
N/A
LID feature for Neighborhood
6 - Grass Buffer
Park future parking lot and
21.31
N/A
N/A
N/A
impervious area around
erimeter
7 - Detention Pond 2-Year
Site
153.29
4929.28
2.43
5
7 - Detention Pond 100-Year
Site
153.29
4935.89
35.41
5
Step 1 - Employ runoff reduction practices
Three different Stormwater quality strategies were designed with Step 1 in mind. Developed
runoff from the A series of basins and future developed runoff from Fut-A will flow through a
P1
Ga€€oway
Planning. Architecture. Engineering.
Grass Swale (GS) before entering the on -site detention facility. The UDFCD defines a Grass
Swale as "Densely vegetated drainage way with low-pitched side slopes that collects and
slowly conveys runoff. The design of the longitudinal slope and cross-section size forces the
flow to be slow and shallow, thereby facilitating sedimentation while limiting erosion." The
proposed grass swale has low longitudinal and side slopes and a wide flat bottom (e.g.,
0.25%, 5:1 and 30', respectively). It is designed to convey 2-year storm event runoff in a slow
(i.e., <1 ft/sec) and shallow manner (i.e., normal depth <1 foot). This design encourages
settling and infiltration. Refer to Appendix C and sheet DT04 for additional design and
construction details.
Developed runoff from the B, E and F basins and future developed runoff from Fut-B will drain
into a Sand Filter (SF). Likewise, developed runoff from the I basins and future developed
runoff from Fut-11; Fut-12 and Fut-TO (portion of future Timberline Road alignment) will drain
into a Sand Filter (SF). The UDFCD defines a Sand Filter as "A stormwater quality BMP
consisting of a sand bed and underdrain system. Above the vegetated sand bed is an
' extended detention basin sized to capture the WQCV. A Sand Filter extended detention basin
provides pollutant removal through settling and filtering and is generally suited to off-line, on -
site configurations where there is no base flow and the sediment load is relatively low." Refer
to Appendix C and sheet DT04.for additional design and construction details.
During storm events exceeding the water quality event, the sand filters are designed to fill to
the design volume and spill excess runoff into the detention pond. The incoming runoff to each
will spill through a weir designed to pass the 100-year incoming flows at a flow depth of 0.5'.
The downstream face of each spillway will be protected with North American Green (NAG)
SC250 Turf Reinforcement Mat (TRM). This is a composite TRM of 70% straw and 30%
coconut fiber matrix incorporated into permanent three-dimensional turf reinforcement matting.
The spillway and downstream protection are designed for peak 100-year developed runoff
. entering the sand filter and passing through the respective LID/EDB weir. The downstream
spillway slope is exposed because the water surface elevation in the detention pond has not
reached the weir elevation.
Developed runoff from the lots (B-lot grading configuration) situated in the Wtlnd basin is
designed to flow through a Grass Buffer (GB). These lots flank the east and west sides of the
10
Gaoway
Planning. Architecture. Engineering.
basin. The UDFCD defines a Grass Buffer as a "Uniformly graded and densely vegetated
area, typically turf grass. This BMP requires sheet flow to promote filtration,. infiltration and
settling to reduce pollutants." The maximum cross slope should not exceed 10%.
We anticipate that the future development within the Neighborhood Park will include a paved
parking area. Parking lots are ideally suited for Grass Buffer strips. In a traditional design,
runoff sheet flows to curb and gutter which collects the runoff and directs it to an inlet. An
alternative design involves providing curb cuts or a zero inch curb face along the downstream
edge of the parking lot. The grass buffer strip, which is adjacent to the down gradient edge of
the parking lot, receives the excess surface runoff.
The following table is a summary of the proposed impervious area associated with current and
future development. It breaks down the total area treated by an EDB or an LID feature.
Proposed
Newly Added
Area
Area
Description
Area
Imperviousness
Impervious Area
Treated
Treated
acres
%
Using
Using
acres
LID
EDB
Neighborhood
21.3
-13%
2.80
Park/Detention Area
Current Developed Area
94.8
-670yo
63.2
Future Developed Area
37.2
1
-77%
28.7
Total
153.3
Total
94.7
55.0
39.7
Of the newly added impervious area, 55.0 acres are tributary to an LID feature and 39.7 acres
are tributary to an Extended Detention Basin (EDB). The LID requirement for this site is as
follows: 50% of any newly developed area is required to be treated using LID, and 25% of any
drivable surface is required to be permeable pavement (minimum paver area is 1000 square
feet). Since this project is predominantly single-family residential with public alleys servicing
most areas, the 25% paver obligation is not required. For the areas that are single-family
attached units that are serviced by private alley/driveways, the 25% paver obligation won't be
required in those areas either. The distinction is that pavers typically required for single-family
attached or multi -family dwelling units that are fronted by a parking lot configuration. Since .
there are no parking lots or banked parking areas greater than 1000 square feet at the project
site, the paver obligation is not required. Referring to the above table, the percentage of newly,
11
0
Gaoway
Planning. Architecture. Engineering_
' developed area (i.e., added impervious area 'per Ordinance No. 152, 2012) treated using an
LID is 58% (55.0/94.7).
Step 2 - Implement BMPs that provide a Water Quality Capture Volume (WQCV)
The developed runoff from the C and D basins will drain into an Extended Detention Basin
(EDB). The UDFCD defines an Extended Detention Basin as "An engineered basin with an
outlet structure designed to slowly release urban runoff over an extended time period to
provide water quality benefits and control peak flows for frequently occurring storm events.
The basins are sometimes called "dry ponds" because they are designed not to have a
significant permanent pool of water remaining between storm runoff events. Outlet structures
for extended detention basins are sized to control more frequently occurring storm events."
The developed runoff from the G and H basins as well as and future developed runoff from
Fut-G, Fut-H and Fut-TL3 (portion of future .Timberline Road alignment) will drain into an
Extended Detention Basin (EDB).
During storm events exceeding the water quality event, the Extended Detention Basins (EDBs)
are designed to fill to the design volume and spill excess runoff into the detention pond. The
incoming runoff to each will spill through a weir designed to pass the 100-year incoming flows
at a flow depth of 0.5'. The downstream face of each spillway will be protected with North
American Green (NAG) SC250 Turf Reinforcement Mat (TRM). This is a composite TRM of
70% straw and 30% coconut fiber matrix incorporated into permanent three-dimensional turf
reinforcement matting. The spillway and downstream protection are designed for peak 100-
year developed runoff entering the EDB and passing through the respective LID/EDB weir.
The downstream spillway slope is exposed because the water surface elevation in the
detention pond has not reached the weir elevation.
Step 3 - Stabilize drainageways
Planting within the grass swale will stabilize the drainage way and prevent erosion during
storm events exceeding the 2-year recurrence level. Additionally, measures will be
implemented to protect the Lake Canal receiving outflow from the on -site detention pond.
12
Gaoway
Planning. Architecture. Engineering.
Step 4 - Implement site specific and other source control BMPS
Site specific considerations such as material storage and other site operations are addressed
in the Stormwater Management Plan (SWMP).
DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
The project site has no natural outfall. The interim solution involves pumping water from the
on -site detention pond, at a maximum rate of 5 cfs, into the Lake Canal. The developer is
working with the Lake Canal Ditch Company to finalize a new agreement to release into the
Lake Canal. We are working with a pump design consultant on design that meets the City of
Fort Collins requirements for pump system redundancy in a retention pond. On January 51h,
2016 we met with the City of Fort Collins Stormwater Utility to discuss a design for the
permanent outfall. At a high level this system will drain west to the west side of Timberline
Road, which it will follow south, and outfall into Dry Creek.
HYDROLOGICAL CRITERIA
For urban catchments that are not complex and are generally 160 acres or less in size, it is
acceptable that the design storm runoff be analyzed using the Rational Method. The Rational
Method is often used when only the peak flow rate or total volume of runoff is needed (e.g.,
storm sewer sizing or simple detention basin sizing). The Rational Method was used to
estimate the peak flow at each design point. Routing calculations (i.e., time attenuation) that
aggregate the basins draining to a specific design point are include in the Rational Method
calculations in Appendix B.
The Rational Method is based on the Rational Formula:
Where:
Q=CiA
Q = the maximum rate of runoff, cfs
C = a runoff coefficient that is the ratio between the runoff volume from an area and the
average rate of rainfall depth over a given duration for that area
i = average intensity of rainfall in inches per hour for a duration equal to the Time of
Concentration (Tc)
A = area, acres
13
Ga€oway
Planning. Architecture. Engineering.
The one -hour rainfall Intensity -Duration -Frequency tables for use with the Rational Method of
runoff analysis are provided in Table RA-7 and Table RA-8 (refer to Appendix B).
The 2-year and 100-year storm events serve as the basis for the drainage system design. The
2-year storm is considered the minor storm event. It has a fifty percent probability of
exceedance during any given year. The 100-year storm is considered the major storm event. It
has a one percent probability of exceedance during any given year.
The 2-year drainage system, at a minimum, must be designed to transport runoff from the 2-
year recurrence interval storm event with minimal disruption to the urban environment. The
100-year drainage system, as a minimum, must be designed to convey runoff from the 100-
year recurrence interval flood to minimize life hazards and health, damage to structures, and
interruption to traffic and services.
The project site is greater than 20 acres therefore EPA SWMM 5.0 was used to estimate the 2-
year and 100-year detention storage requirements. Various input parameters were provided by
Table RO-13 and Table RO-14. The interim detention discharge is 5 cfs.
HYDRAULIC CRITERIA
The on -site excess developed runoff within each tributary area begins its journey to one of the
stormwater quality features and, ultimately, the on -site detention pond as overland flow from
residential lot areas (i.e., roof area, concrete hardscape and landscaping). Runoff then flows
from the lots to the adjoining street section. From here, the Stormwater combines with runoff in
a downstream basin or is intercepted by a sump Type 'R' curb inlets. These inlets discharge to
one of the on -site storm drain systems.
There are six on -site storm drain systems: A, B, C, D, E and G. Storm Drain System (SDS) A
discharges to a Sand Filter (SF); SDS B discharges to an Extended Detention Basin (EDB);
SDS C to a Grass Swale (GS); SDSs D and G to a Sand Filter (SF) and SDS E to an Extended
Detention Basin (EDB).
14
GaIto
oway
Planning. Architecture. Engineering.
Street Capacity Analysis
The maximum encroachment for gutter flow, within the respective street sections and during
' the minor storm (Q2) event was, used to establish the street capacity for. The maximum
pavement encroachment standards presented below in Table ST-2. For example, the minor
storm flows within local streets cannot overtop the curb (dmax=0.395' w/Drive-over C&G) or
the crown of the street. During the major storm event (Q100), the street capacities were
' estimated based on the maximum street encroachment standards presented below in Table
ST-3. As an example, the depth of water, for local streets, cannot six-(6) inches at the street
' crown. Street capacity calculations for four-(4) different proposed '/2 street sections and a
range of longitudinal grades are presented in Appendix C.
t Alley (Local) -
• Mixed Drive -Over 15' CL to FL (Local) and Vertical C&G 15' CL to FL (Local)
• Vertical C&G 18' CL to FL (Local)
• Vertical C&G 25' CL to FL (Collector)
Table ST-2 - Pavement Encroachment Standards for the Minor Storm
Street Classification
Maximum Encroachment
No curb overtopping. Flow may spread to crown of
Local
street.
No curb overtopping. Flow spread must leave at
Collector
least one lane free of water.
Table ST-3 - Street Inundation Standards for the Major (i.e., 100-Year) Storm
Street Classification
Maximum Depth and Inundated Area
The depth of water must not exceed the bottom of
the gutter at the median to allow operation of
emergency vehicles, the depth of water over the
Local and Collector
gutter flow line shall not exceed twelve-(12) inches,
and the flow must be contained within the right-of-
way or easements paralleling the right-of-way. The
most restrictive of the three criteria shall govern.
W
Ga. oway
Planning. Architecture. Engineering.
Table ST-4 — Allowable Cross -Street Flow
Street Classification
Initial Storm Flow
Major (100-Year) Storm Flow
Local
6 inches of depth in cross pan.`
18 inches of depth above gutter
flow line.
Where cross pans allowed, depth
12 inches of depth above gutter
Collector
of flow should not exceed 6
flow line.
inches.
The minor storm event street capacity calculations were estimated with the Modified Manning
Equation and Excel. The major storm event street capacity calculations were completed using
Bentley FlowMaster. Refer to Appendix C for the alley and street capacity calculations.
n
Inlet Capacity Analysis
CDOT Type 'R' inlets are proposed throughout the project for removing excess developed
runoff from the right-of-way. All but one inlet (i.e., DP 11) is in a sump. The minor and major
storm event inlet capacities were estimated with LID-Inlet_0.14. The street section geometry
and storm event encroachment limits (i.e., street classification) established the maximum
allowable ponding depth. We determined the inlet length using the rational method flows at the
respective design point and the maximum allowable ponding depth. Appendix C includes
capacity calculations for proposed Type 'R' curb inlets, which range in length from 5' to 20'.
The design calculations included in Appendix Care based on the more conservative ponding
depths (i.e., encroachment of gutter flow) associated with the drive -over curb and gutter.
Storm Drain Capacity Analysis
The storm drain system hydraulic analysis was completed using Bentley StormCAQ V8i. This
software routes flows through each system by looking at the longest upstream tc at the
manhole, calculating the intensity and multiplying it by the upstream CA. Detailed output for
each storm drain system analysis is included in Appendix C.
16
G a € oway
Planning. Architecture. Engineering.
�V__ DRAINAGE FACILITY DESIGN
GENERAL CONCEPT
This, final design presents the detailed ,design of system for collecting and conveying
developed runoff from current and future development at East Ridge Second Filing to the
Stormwater quality features and the on -site detention pond.
The existing site runoff drains to an existing wetland area in the south central region of the
project site. The wetland area has no natural outfall. The proposed design matches this
existing drainage pattern and includes the development of an interim outfall and plans for a
permanent outfall.
Typically, the on -site excess developed runoff will travel overland from residential lot areas into
the adjacent right-of-way. Most of the residential lots drain to a 15' CL to FL section with either
drive -over or vertical curb and gutter. The street section conveys developed runoff to sump
Type `R' curb inlets. These inlets discharge to one of several the on -site storm drain systems
which then discharge into a Grass Swale (LID), Sand Filters (SF) or Extended Detention
Basins (EDBs), and ultimately, the on -site detention pond.
SPECIFIC DETAILS
On -Site Detention Pond
The proposed on -site detention pond was sized using EPA SWMM5.0. The width parameter
was adjusted to target unit release rate from each of the tributary. areas consistent with the
development and timing of runoff.
Two models are included in Appendix C. The first considers runoff from the 2-year storm event
and was used to estimate the 2-year storage volume (2.4 ac-ft) and water surface elevation
(4929.28). This model demonstrates that the stormwater quality features function as intended
during the minor storm event and do' not diminish the functionality of the stormwater. quality
features (e.g., water wasn't ponding back in the Grass Swale).
The second model was used to estimate the 100-year storage volume (35.4 ac-ft) and water
surface elevation (4935.89). In the interim, until the temporary outfall, is replaced, sufficient
17
1
1
I
1
Gaoway
Planning. Architecture. Engineering.
volume is provided in the on -site detention pond to store 2x the 100-year storage volume (70.8
ac-ft I WSEL: 4939.78)
In the interim, there is no passive outfall from the detention pond. In the future, an outfall will
be constructed that will receive flows from this pond. In the interim, the on -site detention pond
will function as a retention facility. Since the retention facility is expected to be temporary, the
City of Fort Collins requires that it be sized to capture two times the two hour 100-year storm
plus one foot of freeboard. The interim design releases flows to the south at 5 cfs (2250 gpm)
into the Lake Canal. Refer to Appendix D for a copy of the release agreement.
The proposed 10' x 20' x 8.5' concrete vault will house 3 pumps. The first would be a small.
maintenance pump that would handle up to 500 gpm flows and operate strictly on a float
switch and would just be an on/off operation. The storage of the vault, approximately 9,000
gallons, would allow the pump to run at least 20 minutes at a time tominimize the starts per
day on the motor. The second pumpwould pump up to 2250 gpm and would have a water
level transducer set at the top of the vault. If the small maintenance pump couldn't keep up
anymore and water started to back up into the detention pond, then the larger pump would
start and operate on a VFD adjusting the output flow between 500 gpm and 2250 gpm based
on the level of water in the pond. The third pump would be a backup in case the 2nd pump
fails. The two larger pumps would operate on a duplex system, alternating the operation
between starts to keep them in running order and allow us to see if one fails so it can be
repaired.
A WaterTronics control system will have two separate VFD's in one panel enclosure and an
alternating relay to swap which VFD/pump is running. A level transducer will control when the
pumps run (settings between high and low levels in the tank). It will include two relays in the
panel for float switches — one for high level shutdown in the ditch and one for relay reset when
the level returns to "normal".
The ultimate outfall, will discharge at ±0.15 cfs/ac (±23 cfs) thorugh an 18" orifice plate .
attached to a headwall. Beyond the headwall, is a 24" RCP outfall system. The system is
currently designed to the west property line. In the future, this system will be extended to Dry
Creek.
18
Gaoway
Planning. Architecture. Engineering.
Split Swale
The split swale receives flow from SDS B and SDS C. Our design is intended to split flow,
during the water quality storm event (up to and including the minor storm event), from two
different tributary areas: the A and Fut-A Basins and the G, H, Fut-G1, Fut-G2 and Fut-H
Basins. During the water quality storm event, excess runoff must flow from each tributary area
into a unique stormwater quality feature. Specifically, the A Basins flow into a Grass Swale
(GS) and the G and H Basins flow into an Extended Detention Basin (EDB). The split swale
accomplishes this with a 1.5' tall berm. The capacity on either side of the berm matches the
minor storm event slow from each tributary area. During the major storm event, sufficient
capacity exists in the swale to convey fully developed flows entering from SIDS B and SDS C
with one foot of freeboard.
A Basins
' These basins comprise approximately 21.92 acres. This area includes the north area (Tract B)
set aside for future single-family attached development. The developed runoff within these
' basins drains into Storm Drain System C (SDS C). The system will discharge into a Grass
Swale (GS) before entering the detention pond. In particular, the downstream end of the
' system discharges into a swale that is graded to keep 2-year flows from the A Basins and the
G and H Basins separate (see above).
B, E and F Basins
These basins comprise approximately 37.46 acres. This area includes the north area set aside
for future single-family attached (Tract D). The developed runoff within the B and F Basins
drains into Storm Drain System D (SDS D). The developed runoff from the E Basins drains into
Storm Drain System G (SDS G). The storm drain systems outfall into a Sand Filter (SF) before
entering the detention pond.
C and D Basins
These basins comprise approximately 23.74 acres. The developed runoff within these basins
drains to Storm Drain System E (SDS E).'The system will discharge to an Extended Detention
Basin (EDB) before entering the detention pond.
19
Gaowa
Planning. Architecture. Engineering-
G. H. Fut-G1. Fut-G2 and Fut-H Basins + Fut-TL2
' These basins comprise approximately 30.61 acres. This area includes the area set aside for
future single-family attached (Tract E) and multi -family (Tract A) development. The developed
' runoff within these basins drains into Storm Drain System B (SDS B). This system will
discharge into an Extended Detention Basin (EDB) before entering the detention pond. In the
interim, runoff from the future developed areas was accounted for in the EDB design. These
future areas are planned to be multi -family and/or commercial and will need to follow LID
criteria. In particular, no less than 50% of any newly added impervious area must be treated
using one or a combination of LID techniques, and no less than 25% of any newly added
pavement areas must be treated using a permeable pavement technology.
I. Fut-I Basins + Fut-TL3
These basins comprise approximately 14.28 acres. The developed runoff within these basins
drains to Storm Drain System A (SDS A). The system will discharge to a Sand Filter (SF)
before entering the detention pond.
J. Fut-TL1 and Fut-TL4
The J Basins will remain largely undeveloped. The Fut-TL1 and Fut-TA Basins are a part of
the development that will occur when Timberline Road is widened. It is unlikely the developed
runoff from these basins will flow to on -site storm infrastructure.
v
K11
Ga10
oway
Planning. Architecture. Engineering.
VI. EROSION AND SEDIMENT CONTROL MEASURES
A General Permit for Stormwater Discharge Associated with Construction Activities issued by
the Colorado Department of Public Health and Environment (CDPHE), Water Quality Control
Division (WQCD); will be acquired for the site. A Stormwater Management Plan (SWMP) was
prepared and is presented under separate cover. It identifies the Best Management Practices
(BMPs) which, when implemented, will meet the requirements of the General Permit.
n
G
0
21
Gaoway
Planning. Architecture. Engineering.
VII. CONCLUSIONS
COMPLIANCE WITH STANDARDS
The design presented in this final drainage report for East Ridge Second Filing has been
prepared in accordance with the design standards and guidelines presented in the Fort Collins
Stormwater Criteria Manual.
VARIANCES
No variances are being requested with the proposed improvements described herein.
DRAINAGE CONCEPT
The proposed East Ridge Second Filing storm drainage improvements should provide
adequate protection for the developed site. The proposed drainage design for the site should
not negatively impact the existing downstream storm drainage system.
0
0
22
Gaoway
Planning. Architecture. Engineering.
Vll. REFERENCES
1. Fort Collins Stormwater Criteria Manual (Addendum to the Urban Storm Drainage
Criteria Manuals Volumes 1, 2 and 3), prepared by City of Fort Collins.
2. Urban Drainage and Flood Control District, Drainage Criteria Manual Volumes 1 and 2,
prepared by Wright -McLaughlin Engineers, dated June 2001 (revised April 2008), and
the Volume 3, prepared by Wright -McLaughlin Engineers, dated September 1992 and
revised November 2010.
23
Ga€oway
Planning. Architecture. Engineering.
APPENDIX A
REFERENCE MATERIAL
Ga€oway
Planning. Architecture. Engineering.
VICINITY MAP
Vicinity Map - East Ridge Second Filing
Not to Scale
G 4111 .11 o w ay
Planning. Architecture. Engineering.
NRCS SOILS MAP
40° 3552'N
4 3S10'N
Hydrologic Soil Group—Larimer County Area, Colorado
(East Ridge Subdivision)
497500 497600 497700 497800 497900 498000 498100 498200 498300
3
6 Map Scale: 1:6,220 a printed on A portrait (8.5" x 11") sheet.
Meters
N
0 50 100 200 300
A r
0 300 fi00 1200 1800
Map projection: Web Mercator Comer coordinates: WGS84 Edge tics: UIM Zone 13N WGS84
USDA Natural Resources Web Soil Survey
Conservation Service National Cooperative Soil Survey
m
40^ 35 52" N
Fi
P
P
8
m
P
Q�
M
N
yP
O
40° 35' 10" N
3
is
7/24/2015
Page 1 of 4
3
z
0
E
«
�
�
0
z
a
«
�
Q
z
0
q
a
«
�
°06
0
\k�}
C6
§�
7
-
E
)§k
`
\
c
p
§)(
)(/
{k)\
(
),
2
/
$2
kkk
r|°
$k§�$
\
}\
\
r
G;\
2 &
o
a
«`mot
k
�2J0
§
#q
�a
m
0<
§:
®#f0
!
\A
ee-,
�{E
ƒ_#!
[$as@
{)
)\
_
rf
^
/
}$(
7 ƒ
{§}\§
)�
)/@
2§<o
cu
()
�t
${)2)
�®
7
:
{{
ƒ\}
{ƒ\k\
{�
}j
/\
`c
3°E=
k]
2
®,
.ee!«
/{
{f
\-
|f2!
/§
/\/
f{)k§
//
A'
)0
3A
(0£s
k
k / )
a
-
-
o S
= !
o ! |w _ m _ : ; :
■ ■
■ o ( \ i
&
$
r
.
0s
$!
2
$,! o a, z
\� $
m= o a z
e
,
2
�«
§ ■
■ ■ ■
/
�
Hydrologic Soil Group—Larimer County Area, Colorado
ti
Hydrologic Soil Group
East Ridge Subdivision
Hydrologic Soil Group— Summary by Map Unit— Larimer County Area, Colorado (CO644)
Map unit symbol
Map unit name
Rating
Acres in AOI
Percent of AOI
5
Aquepts, loamy
A/D
11.7
6.4%
7
Ascalon sandy loam, 0 to
3 percent slopes
B
5.8
3.2%
34
Fort Collins loam, 0 to 1
percent slopes
B _
6.0
3.3%
35
Fort Collins loam, 0 to 3
percent slopes
C
109.7
60.3%
42
Gravel pits
A
10.8
5.9%
53
Kim loam, 1 to 3 percent
slopes
B
17.2
9.5%
73
Nunn Gay loam, 0 to 1
percent slopes
C
6.8
3.7%
74
Nunn Gay loam, 1 to 3
percent slopes
C
6.4
3.5%
94
Satanta loam, 0 to 1
percent slopes
B
0.1
0.0%
102
Stoneham loam, 3 to 5
percent slopes
B
7.3
4.0%
Totals for Area of Interest
181.8
100.0%
USDA Natural Resources Web Soil Survey 7/24/2015
2iiiiiIIII Conservation Service National Cooperative Soil Survey Page 3 of 4
Hydrologic Soil Group—Larimer County Area, Colorado
Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive precipitation
from long -duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly
wet. These consist mainly of deep, well drained to excessively drained sands or
gravelly sands. These soils have a high rate of water transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well drained
soils that have moderately fine texture to moderately coarse texture. These soils
have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of water
transmission.
' Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink -swell
potential, soils that have a high water table, soils that have a claypan or clay layer
at or near the surface, and soils that are shallow over nearly impervious material.
These soils have a very slow rate of water transmission.
' If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in their
natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie -break Rule: Higher
East Ridge Subdivision
USDA Natural Resources Web Soil Survey 7/24/2015
!i Conservation Service National Cooperative Soil Survey Page 4 of 4
FEMA FIRMETTE
Ga€oway
Planning. Architecture. Engineering_
0
>
mm
Ymom�
uLL
LuLL
W�
yW1 t0 �i
do y5�
Eu�oE
G
0' �i
Q
a in
«=oV
LU
z
d
vg
p
o
U.
<LO
W HHe
�a5a
W
c0
��y"I`�
[zl
a
E L?
{WL
J
I� l•�
O
cm a
SS
8
o
J.
U.
W 4u
LU
'M r-B
uj
.
a
a
x
o
U.
o
E�
,g
o�g LL
c
z U
m
$Ez§
8o` =$
O1�1
H
7 C ~
o aLU
U
B
nn
Y
S IL c 4
boy
LL rl
d
z 3§
x�m w
a�pPtE
N
o�yLL.
W� ;cE
.... _
N
and Eao
o moo
�o`�a`
♦
�
1
1
yPC
I
I
1
U w~
fA
a
a'
•� �
U N
w
;To aoo
so
a
w o
O
o
F
1
U
1
1
co
♦
II
N
f
w
I
N
ZI
I
uNnoo U31NWV'l
1
'
ovoa 3Nn8BSWIl
sNmoo laod jo uio
1
0
aI
E
W
cC "Coo
F N rc0
CPL. d F E}[(1 E5 W o �Cpl "$c�E
CDQ x x ➢ 3 m Ol H
O 0y
LU g 5 = LU FN Q Eta E
o�
c o LL E a
O u
0 N D
w a z W Qo �� tip um.E<
J 5 U 'a 5 FB : W i¢�S!
(% �0 a 0 Ji ° _$o2F2 WTA H°�`g o��ULL
N A 0 Q y ¢ BtlB m�.�.nx
0 W w i
lL 14 U 6� 4 S m« u
Q C LL EVAI o
°m$�
O ® B e e a ®9 e ®®® 9 ® 9 °pm.E
IE° y o i
o °uE 0
N mmE3m
mgmm°
F3oaa
LL
co
0
U �)
rn a I
to
0
o
o �
0) O
z'
o
0 000
CD
CD w0 afro
� oo
, w00
C) a0
N
— — avoe 3N1 N3 �
Z
zWW w O
Q W JOC2 >
T
W 0 O _W J
n CDC Z W
i
Q
� � w QO
In
O � J
Ga€oway
Planning. Architecture. Engineering.
APPENDIX_B
HYDROLOGY CALCULATIONS
Gaoway
Planning. Architecture: Engineering.
PROPOSED
COMPOSITE RUNOFF
COEFFICIENTS
a
Table RO-11
Rational Method Runoff Coefficients for Composite Analysis
Character of Surface
Runoff Coefficient
Streets, Parking Lots,
Drives:
Asphalt
0.95
Concrete
0.95
Gravel
0.5
Roofs
0.95
Recycled Asphalt
0.8
Lawns, Sandy Soil:
Flat <2%
0.1
Average 2 to 7%
0.15
Steep >7%
0.2
Lawns, Heavy Soil:
Flat <2%
0.2
Average 2 to 7%
0.25
Steep >7%
0.35
Table RO-12
tRational Method Runoff Coefficients for Composite Analysis
' Storm Return Period Frequency Factor
ears C
2 to 10 1.00
11 to 25 1.10
' 26 to 50 1.20
51 to 100 1.25
Note: The product of C times Cf cannot exceed the value of 1, in the cases where it does a value of
' 1 must be used
T
J
n
ci
fC+
N
o
V+
Cl
N I
�
s
i
i
v
N
O
(n
O
N
C
0
O
w
@
LL
a
W
LL
22�co
U
W
£zmm m
W
Z u d d a
O
m Y
oaLL �v
LL
IL v
Z
W
O
IL
O
U
LL
a
c
0 N
N C
� o
d U
O
LL
co Q
w U
c c
0 0
'y i+
u
a
0
h
M
O
CD
O
(0
c0
r
O
c0
O
n
O
c0
O
N
O
N
O
O
N
m
M
r
M
r
M
N
M
r
c0
N
N
M
aD
Q��
Q
i0
A
c0
t0
V
n
r
c0
c0
c0
0
t
0
0
0
�
0
0
0
0
0
0�
0
0
0
0
0
0
0
0
6 0
0
0
0
0
0
0
6
6
0
666
D
D
m
«
D
m L
O
c0
N
O
N
N
e
m
r
O
N
O
Q
f0
N
N
N
m
c0
N
O
O
r
M
O1
M
e
Q
Q
e
e
e
e
M
p
N
Q
e
Q
N
e
e
Q
M
e
e
M
Q
e
e
N
M
e
J�
3
m
a
qm
O
V
O
h
N
th
m
N
r�
M
�
m
r
c0
N
O
O
N�
aD
tO
r
m
O
N
LL'1
m
ro
m
C
CO)
'
C
�
m
O
���
o
o
m
c6
m
o
W
co
m
co
�o
0
0
o
n
o
m
c0
D
o
m
co
m
co
co
�o
co
o�
J
� O
U
oqm
Cn
emNnm
m
N
m
rmMorn
--mMoQ-0
M
(0
M
O
O
N
Cl!
0m
O
M
R
O
0
M
N
N
N
O
N
O
O
O
m
m
o
0
0
0
0
0
0
0
0
0
0
0
6
0
0
o
O
O
O
O
O
o
6
6
6
6
66
66
N
N
N
N
N
N
m
N
J
�
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
O
U
D
m
L
m
'pc
M
c0
N
N
Q
m
O
W
O>
M
O
e
m
00
N
f0
in
m
O
O
e
N
N
m
t0
N
N
N
Nm
3
m
m
a`
m
u
c
�
O
L°.
m
M
w
O
M
M
N
cD
W
v
N
w
m
O
c0
r
r
M
M
N
N
c0
W
0m
N
U
Cl
N
M
10
N
0O
e
N
Q
(O
e
N
N
10
Q
Q
v,
Q
e
0N
M
N
O
N
N
M
N
+
`
G
G
.G
C
G
G
�-
C
c;
O
C
O
O
a;O
O
C
G
O
C
G
O
O
O
O
O
O
O
O
O
A
a
L
C
m
0
m m
In
In
N
Ln
In
if)
N
�!]
N
N
lA
1n
N
1A
lA
1A
In
N
N
In
1IJ
N
N
u]
N
u]
m
m
m
m
m
m
mom
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
C 0
U
u
m
o
p.
O
Q
ao
m
e
o
m
e
ro
N
n
M
co
o
m
<0
m
Q
N
e
M
m
a
O
O
N
N
N
O
N
e
N
N
O
M
N
M
M
M
0
m
O
m
0
m
0
w
0
r
(V
m
N
N
e
I
M
N
O
M
M
I.-
N
m
O
7
e
7
O�
T
H
a
W
�
m
'm
N
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
67
0]
0]
m
m
m
m
m
m
m
Co
m
m
m
d
m
U
i
O-
O
��
O-'
O
0
0
-
O
--
0
0
0
O-
0
0
0
O
O
O
O
66
O
O
O
O
0
0
O
V
y
m L
W
n
O
O
N
t�1
W
m
m
rn,
W
m
W
rn
th
O
[h
tO
n
W
rn
m
m
0
D
y Ol
t�J
M
Q
Q
Q
Q
Q
th
M
M
M
Q
M
Q
Q
Q
Q
M
O
N
N
N
J
3
m
a
t0
t0
N
O
W
O
N
W,
n
0
0
0-
O
W
yy
W
y
�
O
rn
0
n
rn
W
rn
N
N
N
W. W
O
rn
O>
O
rn
Q
Q
t
W
Q
N
n
W
O
N
�
t7
O
Q
n
W
�
W
W
th
_0
C
y
C
Im
O d
m
n
n
n
n
n
n
n
o
0
0
0
0
0
0
0
0
0
0
0
0
W
W
W
W
cp
W
cD
c0
[O
W
W
W
tp
tp
tD
W
W
W
W
W
O
0 C
U
L
m
Is
V
-y
N
t0
S
O
N
th
�
N
N
N
N
N
N
W
CJ
n
Q
n
3
LL
tl
A
Q
m
S
O O
o
O
o
O
0
o
O
O
O
O
O
0
0
0
0
0
0
0
0
0
0
0
O
O
0
o
O
� O
U
0
L
rn
tq
-y
N
W W
O,
rn W
rn N
M
Q
M
Q
W
n
W
rn
n
M
W
W
W
W
W
y
Q
W
N
N
N
Y
�
M
th
N N
n
N
N
N
N
N
M
fhIo
M�C961
rn
N
tI
N
th
�
N
t+I
W
O
O
O
O
G
O
O
G
O
O
G
G
O
O
G
O
O O
A
Q�i
L
� m
O O
m
N
N
N
to
to
N
O
m
N
to
to
N
O
O
O
to
N
N
N
rn
rn
rn
m
rn
rn
rn
m
m
rn
m
m
m
m
rn
m
rn
rn
m
m
rn
rn
m
rn
rn
rn
rn
w O
U
U
.0..
Op
O
M
WO
y
n
O
V
NOi
N
r
O
O
Nrn
OiOM
W
Q
O
Q
O)
N
�
O
m
u
c
w
w
w
_G
m
m
m
m
co
U
U
U
U
U
U
U
U
U
U
U
"U
U
U
U
U
U
U
fa0
W
W
W
m
M
M
i0
t0
Q
t0
Q
M
N
M
n
Q
M
N
GD
Q
M
OD
O
O
fD
M
M
V
n
n
n
n
fD
n
n
n
m
m
n
n
n
n
n
r
n
m
m
m
r
ao
'000
r
n
000
0 6
- o
0
00
-
o
- o
a5o
o
6
000000
000000
-o
-
a
0
d
a
dy L
n
of
Q
Q
tp M
O
M
rn
rn
fD
rn
O
W
OD
Q
N
n
0
•..
W
N
C
01
M
Q
Q
Q
Q
M
M
N
-
O
.-
O
Q
Q
M
N
�D
�O
N
0
0
0�
O
O
N
O
y
J
Q
3
m
a
E
o
o
N
o
Q
rn
M
N
M
rn
o
o
o
N
O
o
rn
�p
mm,
M
Q
O
O
n
n
O
N
N
O
(
Q
M
N
O
O
O
M
�
O
LL
Coco
O
O
H
O
0
-' O
00
0
0
000
0
.-
-
0
0
0
0
0-
O-
0
0
-
_0
�
QQQ
C
y
.
C
� m
F
r
to
r
cD
n
m
o
m
n
<D
o
0
o
0�
n
n
cD
n
w
o
0
0
r
0
r
0
r
0
n
0
n
0
r
0
r
0
n
0
n
0
n
0
n
0
n
0
r
0
r
0
r
0
r
0
r
J
O
U
a
d
N
N
N
Q
f0
M
M
�O
Q
N
N
N
M
Q
Q
Q
N
M
M
W
V
A
m
�
LL
u
'.
y
d
O
O
O
O
O
0
0
0
O
N
O
N
[7
O
O
0
0
O
0
0
0
0
0
0
0
0
0 0
0
0
0
O
O O
O
co
0
0
0
0
0
0
0
0
0
0
0
0
-'.O
O
O
O
QQQ
0
S
O O
o
0
0
0
O
o
0
o
O
O
O
O
O
O
O
O
O
O
o
0
0
0
0
0
O
0
0
0
J
� N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
il
N
N
N
� O
v
m
s
Im
Yi
m
N
N
N
O N
pp
M
�D. M
t6
rn
M
h.
n
N
Q
N
N
i0
i0
n
n
r
M
O
N
�O
O
>
frnp
N
M
M
Q Q
n
Q
t0
n
M
N
M
N
N
�
iD
n
n
n
Q
N
�
Q
(O
N
A
3
d
m
�
m
U
Y
O
v
N
N
m
N
rn m
Q
M
(+Of.
N
V
O
N
O
M
O
O
M
U
+
y
o
o
G
O
O O
o
O
C
C
OO
O
O O
G
G
O
O
O
O
O
O
O
CR
O
O
O
C
O
O
o
o
(1
O
O
O
d
L
� m
rn
rn
m
rn
rn
rn
rn
rn
m
rn
rn
rn
rn
rn
rn
rn
rn
rn
rn
rn
rn
rn
m
rn
rn
rn
rn
rn
O
U
u
m
O
O
rn
M
(O, rn
O
rn
rnO
m
-
rn
N
N
O
f0
N
Q
Q
O
n'
Q
O
WNO
t0
O
t0
O
Qj N
i0
i0
N
O
-Y eD
Q
M
It
M
O
M
(O
rn
f0
O
n
N
n
e
c
F
a
lV
th
a
n
IG
W
W
W
W
C
N
M
Q
N
N
M
V
N
n
rn0
o
0
S
S
S
S
-
-
_
d
m
0
0
0
t0
O
O
h
0
0
0
0
0
O
0
0
coo
O
0
C,
0
0
0
C, 0
0
0
0
0
0
0
L
0
m
«
,
y ,m
.00
(D
J
Q m
3
m
a
m
E
=°
0
0
0
0
IL
m
O
O
O
N
0
C
N
C
m
m
C
0
00
U
m
N;
V
O
a
N
N
N
y
3
LL
u
y
V
Wp
m
v
y
cc
0
m
R
m
C
� m
o m
J
0
o
N
0
N
0
N
0
N
� O
U
v
m
L
01
m
m
o
0
0
m
3
d
m
�
m
c
U
q
+
m
G
O
O
O
r
m
L
m
ar
O
U
U
m
m
p
�
Q
V
fOO
0
cl
cl
a
O
O
O
N
r
?
N
I
O
N
O
«
yy
N
H
tn0
�Nj?
a
c
CI
a
Q
r
N
i
N
J
J
J
J
m
.,
2
U
LL
IL
1'L
tL
U.
LL
IL
IL
!L
IL
W
W
Ga€oway
Planning. Architecture. Engineering.
PROPOSED
.STANDARD FORM SF=2
TIME OF CONCENTRATION
CALCULATIONS
Z m O T T m
N O g 2 m m q
r L C
LL f Z O s
V) Q 5-6- m U
p O L
R z 1 U U
Ow
LL L)
p z
Q O
p LL
z p
Q LU
U C
H
y
d
A N
m
O
O
W
m �
N
N m
N N
rnNN�A
�A
1`1�
m1`N
m
A N
%
b
N
W
A
O
N
N N
N
N
N m
b W
W A
N mINO
a
~
2
N N
N
r
P
A N
M
m W
W m
A
M P
W W
N M
N
m
A
W
A
W
N
N
d
O
m
O W
N
1•1
N O
W A
O
1� d%
m
3�mm
�
N
M
N
O P
N
ml�m
A
OOd
d
M W
l7 W
W OO
6
m
Om
A
W
m
O
O
C!
m
N m
N
new
rO
W
� OAOm�
> 2
u�
f
O CI
W W
O m
M d
O
m
N
N
M
ry
N
W Q
m
N
N A
m N
m M
O m
N N
f
9
M
O
d
N O
�-
N N
s ry
Y
d d
M N
d N
t7 H
Cl N
N 1V
(V N
t7
C1
(V
[7
C1
V
tY
{V
N M
CI t7
IV (V
N 1N
H N
_
M 2_
C ^t
a
LL
J v
mpr
m l7
OI
N
N(OV
A
W
ON(A9
m
d A
d
N
Cl W
P P
f0m
N M
tmI0
r
W
rb m
Ohm
n d
mN
CCm Cl
pmO
Y) O
pA�
10 O
0f0
M d
W N
d P
CI
N
t�
P
m
M
N
m
W
N
O
A
n
N
��
lQ d
%
N
pOMiN
P
M m
mImV
P m
m �
P d
I+IOS
t'1
a x
i
y
Q
J
U
m
m m
A
O N
m m
= 1p
•
A Vi
0
O
OO
Oi
m •-
v7
VI N
O IN
Oi
ry (V
� A
� 1�
1` A
m A
OO m
A IO
m
0
VI
p
I.
C
Y
M c
p
V b
m 0
0 r
yj o)
Yf C
u y
�
m�f
O
U
N
P
O
b
W W
N
M
N O
m A
0
A d
W m
3
m m
m
[V
t7
Cl
O d
Vl
IG A
m A
O
d d
V m
Cl CI
W G
O Ol
m �
O m
A
m
m
O
O
N
b
P m
N
r
m 1�
O W
e` O
A O
b �
F �
a �
f
O
U
N
N
W b
M
W
rn b
r
W b
m d
A
N O
A
m
m
A
M
M
O
1.1 N
M
O N
O N
b
N N
N
N
W
m
N
Z
N N
O
N
m
d
M 0
N
M OI
CI th
n
n n
m O
b N
N M
m P
lV CI
Oj Oj
d
M
M
d
M
h
� N
(J
N
fV Q
M N
C'1 N
N 1�
M O
f
A
A P
W
M
� M
W A
b Oi
W N
N N
n OI
A
m
m
m
A A
A
O m
N N
N
N A
N m
m m
A N
A m
O m
m O
m
O
N
O
M
N
N �
�
N •-
� t V
N
N
N
N
CI Cj
N
ry N
�
� N
N �
J N
W LL
W
�
f_
J LL
9
s b
M
M
N
O
d M
A d
l'1
O
O O
N m
A m
W n
O� n
N N
i'l
N
N
N
d
A
W
M N
d
W m
O m
CI N
M N
F
i z
N b
m
fG
m
Cl
VI d
O d
N
A r
h O
A m
d r
d Q
d W
m M
M
N
N
m
O
VI
[7 V
N
P
M N
A Q
1` A
N M
M A
i
~ g
o
a�a
o,
LL
N
A
m A
m
m m
N N
P p
U l000
oc
cod
ddddo
ocodc00000d0000
m
m m
m m
m W
W
d
m
W
6
W
do
p�
m
d
m
ood
01 W
W
o
m
oo
m m
o
A W
d d
A
c c
W W
do
m 10
U
V
m m
m
m
m
W
m m
A
AAA
A
m
mmm
6
W,
W W
m A
m N
L
doo
co
00o
ddcod
dcdcod00000000o
d
d
d
od
o
00o
d
dood00000dd
U
e
mmm
b.
mmm
AAA
m
PAA
V
L
c o
0
0
0
...
.....
mmm`.a
d
..........
fOmAAmmA
o d
o 0
A
0
0
M1
0
!pm
0
0
o
r
.66
0
0 0
mmmmfOA
0 0
0 0
0 0
W N
o d
U
2
a
V
a
3
= o
%
m
m
Q m
N
r M
W O
M
rn m
OI
Q
m
' M
m N
O
m
m
P.
N
C1
'O
C a
d 0
�
I V
1 V
[V
� Cl
6
l�! O
� �
N W
6 d
mA
d(
W
V Cl
P,
[ V �
O
t7
� W
� O
d
�
01
� O
O
O
M
O
M
N
N
O
m O
O
OO
�
•-
OO
�
m
2
N
a
d
J
A
W
O
(V t7
(")<ag
0
m_
aaaaa
mmmmmmmmmmmmmm�Q�mM�+^m
obouuu�uu
m
m
-
o
N
,'„m
U
U
mN
N
m tL
N
LL
Ctn
G
K
0
LL
0
Q
O
Z
N
Z
O
Q
z
Z
W
U
Z
0
U
LL
O
CW
G
OO
OO
O
00�
Im
O
N
0
�.�
No'er
C
O-
OO
0.�.
-
-
-
-
$
m
m
b
m
m IA
Y 1 1G
b m
m
.7111,
m
� 1
{j . C
b f p
m
_
_
_
f
117
F
NA
ml
Nm
m
O
p O
LL
�
®m
O
m
0W
V m•
m
m
m
A W
. b
b 0
ElimO
u�
f
O
N
N
N
N m
N
1m
A
b N
A
4
m
m
O m
m d
N 4
O
m O
m ml
N
T
m m
m
n n
f
N�
NN
NNNN
NCIN
N
Rl
O!�
6N
NNNN
CIm�O
GCI
l7ON
IG
t7
OI fU
Z
$
4C
i
i
q
mq
pp QQ
pp
(pp
ry
m
p�
q
Q
J
ON
N
N
bN
W
•
m P
b4mA
1'1
A
Oa
m
m
m
m
mAP
mmm
mMNNN
m
m
OI fG
O1
Im
®
OI (�
U i�
8
t- 2
-
<
F
K
220
4
u
PO
mm
Ol
Nam
-,
N
Qm�
m
b
Nm
O mm
O
m n
A
�Nm
mCI
O
Im
Nm
N
t7O
m
m
d
A
m 0
O
b
N
ry m
m
m
0
m
A m
m m
m m
m
A CI
Cj Cj
m
t7
1`
O m
n
m
O P
N �
_
9 O
U
aE.m
o_
u
E LL
o
LL]
�LL
'_
E E
LL LL
m
3
[� d
A
O
m
0
0
A
InN
m m
D m
O
4 A
A n
.y
m
m N
N
n
2
N
N
N
N
1' 1 N
in
N
Ed
N
6
N
Y
l V
Y] N
N 4
4 t7
t7
P �
4�
1'J
Q
<
2E
Q m[ V
F
m�
REM
2 m
Nb
nOI
d
O�mm
O
Y1NO
� �
mN
b 4mPNm
��N
V PO
m
plain
17
O
� m
m 0
�
pmm
yy
NIV
�
N
�N
"I
N-
NNE
J
N
OO
N
m AF'f
W W
m
p
O
J'
> ~
u
N N
N
N
N
N fl
N
N
N
N N
N
N
N
N NNNN
f
N N
N
O
m
_O O
m >
d
m
m 000
o m
3
F
m
m
O
O
N
O
N 7
O
O
O O
m o
O
a
C^.
m
Ill
OO ^
�
O
O
��_
OO
G G
o
�❑]]]
O O
C 'J
m LL
LL LL�
0
55
J A
LL
I
A
I
-
O m
N
m m
m
m
O
b m
m
M
in
A Y
T O
'- YI
A
m
m m
'O
- '�
tI
t'I A
p
m
$Z
YIN
Q
V
(V
-NO
-1-
e't'1
OON
�N
N
_ G
GG"
O
�N
N
e-O
:s
Z
n N
m
in
N
4
N NIA
N
l7
N 1(1
7
~
F
N a
LL
y N
i
n m
m
(7
m
N
in
A
m
P
m
m m
m
P
m
m
m
ry N
m m
N
m
O
m
O
O
d
m
O N
O En
N
pI
A N
Oi m
m
A
m O
O O
O O
b
O
O
O
Q
m
m Q
N
N
m m
N N
Nl
O
O
O O
O O
O O
O O
O O
O O
O O
O O O
V L6G
cc
c
GGGc
G
Gdo
eGG
GG�
GG
GGG
G
V
e
?Nm
min
min
m
m
-N�b
AA
m
m
A
ama
A
A
m
A
N
A
mom
m
�PN{{yyme
nm11-F-F
Jpomb
n
0
A
9 A
n h
A
A
GGG
AN
c
GGG
GGG
N N
N
c
m
GGGGGGGGCG
0 m
mGG
U
0
R
N
min
m
^
AAA
mryryOb000'ER^
n
Iq
OOOO
OOO
OOO
OO
AmA0mWmmlO
OO OO
OOGOOGO
O
OOOO
GOO
O
CO
0000000
}
u �
$a
g¢
e
V V
V
U
V
2
N
4 u
N N
N
W
m
m
Ofmm0
N
N
m N
O
ER
m l'I
V RO
nfNO
01
m
O
P d
m
N
Omf
P b
EN
Ill
O Q
�G
OO
O
O'er
Gr
O
Or
G
O
G r
�G
aOOG
COO
O
OO
OOP
OGO
H
pYIA
CI PO
�'
(V
d
N m
y� 0
N
WW
N
Pt�:Nm
WLLLLLL
m_m_
Q
m
00
�
LL
LL LL
LL LL
LL LL
IL IL IG
�§
K2
}§
ZLL
§2
e
Gaoway
Planning. Architecture. Engineering.
PROPOSED
STANDARD FORM SF=3
STORM DRAINAGE SYSTEM DESIGN
2-YEAR STORM EVENT
RAINFALL INTENSITY -DURATION -FREQUENCY CURVE
10.00
9.00
8.00
°7.00
s
a
m
t
c 6.00
5.00
w
t-
J
4.00
J
Q
LL
= 3.00
9
2.00
1.00
0.00
0.00 10.00 20.00 30.00 40.00 50.00 60.00
STORM DURATION (minutes)
2-Year Stwm - - - 10-Year Storm -100-Year Storm
' e G Tyr
0 0 m m 0
m
z m d
Y
'o V
� R U
Z
fA w
M W of
LL 0
U) w
N x
O °•
LL to W O
Q =
w
QG Z
Z
LQ 0,0
v' 12
O�
U)
�0
� IL
}
w OU N
c c
0 0 E
N 0
> 0 f/1
O
J] J Im
N
IA 0
O
im
QK
W
K
w
(Ulw)1
2
H
(SC}) A1POIa
w
C'
(N) LOUa
F
(saymUl) ezlg edI
W
a
(Sj0) MOI j UBISO
W
(SIO) m01j laail
w
K
~
(%) adol
N
Q
LL
(sp)
LL
O
2
(J4N1) I
7
O!
a
(ov) v.
O
F
m
(ulw) 0
N
N N
N N
O N N Oi M N N M N N N N
O N
N
NO)
Q M
Q Q
Q In
O O l
q O M
N O I
N M M m 0) O M N r N N y N M O
-q (0 IT N Q N- M qM C l N N (O N N t 0
g
O r
N M
N Q N
f 0 N N
OI
O
Q tO m
t 0 I O V l
[ V N -
N N N N N N——- N N N N N N N
N N
N N N
N
N N N
V
n
N m. m
n
LL
(Ov)V.'J
Q Q O
GOB
t7
M (D Q
�G
N Of n t0 r N r W N OOf N trD O) t0 (O m NNN
GooOG O�� �O �000�00000
r
G O
G GO
O
Q H
GOO
LL
O
NNN
n Q
7 P N
M t p g O l -q r M Q O) N N M N Q (q 7 r r q 01
r�
N N Q
O
O
7'
(Ulw) lea/-Z
m 0 7
N M
N O Q
N t0 r U)
a!
.6
ro O O
N
w w
N (O
z
N NG
MGMGMGNGMG N N M W MGQ
QGN
Q
0
nn Nr
U
�)'ll�J ymn
m
G(
(qmn
G
r n n r (q(o(q(q$mWo(q OwI�
G GG
G
ww
G GG
I
A O Q
OJ Of
Q N N
O M Q N N r M O) O O) f0 O) Q N Q M m N
O w
m M w
M
M m m N
I,
10n"ul
O
NO CiM
MM O mm qrm MQMOMt. o.m •.Q m
O O
M MN
N
wwO
(Ov)ea
0 0
N N
N—"
O-- O O O N N N— N---- O--- O
O
0 0—
m
m
U
QI u1se8
M
`a`�a
Q M
as
(O r M
aaana`¢«a
m O N M N M V N fD
mmm mmmmmmmmmmmQm
e7mMm
UU
U
tJVUU
lulOd UBISOCI
W
w
m
W
Y
Q
W
lY
W
(UIW)1
H
Alo (SdJ) ola
w
Q>
R
M 415ual
F
(sa4oul) ezig adl
W
LL
(%) adol
a
(SJO) MOIJ U5IS2Q
W
(SM —1ZI I—i
W
w
W
U.
(SJO)
LL
Z
Okvu!) I
7
1'
J
(oV) V.
F
(UIW) 3
( p
W N O) W N n Q 0 f 0 t 0 DJ Q N
N N N
t p O.- Q
m
7
O t 7
m N O Q f l M W
—0 1
lw N 1
O .- N N
M
O N N N M N N
(sio) tD
y
m
p
N UO N N N 7 N V N t 0 7 N W N t' l
W N W Q N
y
W t `9 O �
W
Q
y
Q O
H C9 f 0 Q l D M t 7 N
(J4NI) I
N
N N N N N N N N N N N N NN N
N N N N N
N N N N
N
(V
N lV
N N N fV lV N N N
N
N
W W W Q O W p W Q Q W w
n r O W N M W W (O n n r N W W
r W T W n
W Q r Q W
N W N O
N Q O W
Q
r
N N
O N
Q N
Q W Q W W OI
Cl? W r W Q Q W
LL
(?V) V.0
o
o o
c c 1: c
o
00
o 0 0 o c — � o
LL
0
N
W N Q W 1� 7 O h Q 0( W Q O W W
O N- W
N M W 7
W
N
N W
Q W W IT W n r
(ulw) leaA-Z 101
N
n tC n O A G f` ow. C N 6of
H n (G a6 C
w^ w
w
m
w w
r W w N w of N r
f
N
O O N N M (h W t7 r N N W W
W W W0 0 W W W W
Of C) t") N
?
W Q W Q
r n W n
W M
r
N
r
t7 r
W W
Q t7 N W Q t7 W
wrrrrr rr
U
z0
o
0n000 0 0
o 666ci
o coo
d
o
dd
o00000 00
W
W
O
T N
N O W N Q Q
Q
r
I (1
O O Q Q a? h O W Q NM W
N W O Wo
N N0
N N
O
W
Q W
Q N O t' 1 W W W O
(oV) ea
G
—— —— •- .- .- 66
O O � O
G O
00
G .- .- — C .-
N t h Q
N N H f
Q
N
W r
N( 7 Q N W
Q I U I
U
U U U U U U U U U U U U O W W
W LL LL LL LL
LL (J (J V'
0
0
(D (D
2 S S== S
(9
lulod UMSea
W
W
�
K
N
Y
Q
w
K
W
(Ulw) )
F-
W
(sd)) /4PO10
>a
R
M 416ua
F-
(sa46ul) azlg adl
W
a
edol
a
(sp) MOId Also
j
l
(slo) Mold laail
ul
w
y
(%) adol
LL
(s16)
LL
O
Z
(141ul) I
K
J
Q
(OV) V.3
H
O
F
(ulw) O
N Q O O
Cl
l0 N O
M N V
m
M M M m N f0 M M M A 1p
000•-
(sp)
t
0)m'TOJ
WO
V
MMM
R .0 .0
A
wwwwwt wwmVw
NNN"NNNNf0 Of N(�
4 M) Ia
D M M
V)0
(O O N
0 �
O CD
R7^`N
O O O
N
w
(O A M M V— V(O
M V t 0 N M M - � — — O
LL
O
O O O M
O
f 0 0 10
R 9 9
N
0 0 0 0 0 0 0 O A 0 0
Z
N O O m
M
A I 0 W
10 Y) 10
(DO O O O O O O m! O
7
(u l w) J e o k- Z I O
n
K
oom
v
OJ
M M
A
o00
In
INa
OOInO o0o OO
o w w m w w m m m
U
Z�I'�ao�Nouna0000
m m m A
0
A A
000
N N N
ooc
o
0 000 0000000
W
O r r O
O
f0 N N
Q) f0
A O t0 M M Of A OJ
t0
[7
N �T<NN
(Od)ea
CD
O
Do—
000
N
ONrN d0� N�.-O
C
Q m N S== J J J J
(31 I11s6
M< M T
_
A
[O O) O
- N M
N
U C7 F F F F
15
3
LL LLLLLL LLLLLL
IL IL IL IL
lulod u61sa
w
w
K
y
Ga€oway
Planning. Architecture. Engineering.
PROPOSED
STANDARD FORM SF=3
STORM DRAINAGE SYSTEM DESIGN
10.0-YEAR STORM EVENT
n
N O T T 01
E z m CO A
z 0 m m
m
� Y
e a u t
IL O U
U
N
Y
C
W
D:
w
(ulw) )
H
J
(Sd)) 4301e
w
Q�
Q+
(4) yl6ua
H
(seyoul) ez1S ed1
w
a
(�/,) adOIS
IL
(W) molj u61sa
w
(Sp) Mow
iae,l
Ill
K
y
(%) adO1S
(slo)
Eli
m
LL
LL
O
z
(juju!)
J
m
Tiq
F
(oV) V.
O
F
(UIW) 31
m r m
7 m
m N.7
mmmmm O m r O r V m n N 7 M 7 r m r
m n
r O m
O
O m N
(�O)
.
V m0
ON
nrn
N mmm N'm ^ O'r mm'r Ommm
mm m
t7 mpm
Oi
.
mm Oi
mm 1NN
fp
Nm IN'l
m TI�0N OmiN N OOYmf O�tNp NOAtm]00mi
O N
Omi �tp
N
N W m
(, � l) I
m O m
n n
rmr
m O m O m n n n m m � m m m m m m m m m
m mm
m m m
n
m O m
aw
(� V)
h fmp N
nmr
-0-
N mmm m Nmmm m 0<m O mm
O- 0 0 0 O N N--.- C--- G � � G G
m m
G O
t7 O
0 -
Cl!
.mrn
O C O
LL
LL
a?mm
cm
mwm
ommOm r�0inmm ornrnmo Om oo
m
o com
N
mmm
O
r vi
co
of ad
vi vi vi vi vi ai n .= r r r aC r� vi 0 r ui
�c
vi r
O
lri vi N
Z
(ulW)1°°A�lto
m m MIRRN
t'1
m m O
V
l��'yao�youn
m
Oo
om
mm
co
rmr
000000O
m m m m nrmmrmmmmm
OOOOOOOO
0000
m mSm
CO Co
00
m
0
mmm
000
n Qt I l
O
N M
mmm- em
c mO OmnONVN0m0
O O
M
000
O
(oV)eajV
00 ON N N—N—-
O "
00
U
01 u!se
¢`�m¢
O m
mr m
m
m N m Nmrm m0 NMvm
m
m r
m N
m
O mm
.
¢¢
¢¢¢
¢«« mm�mmmmmmmmmmm
m mm
UU
U
UVL)
yu1Od u61sa
W
W
K
N
1
c
'
v
c
O
O
c
LL
a
N
W.
LL
22-i
o
O T T.m
E ..
zmm o
z ; N m
d Y
A
'
a 9�
V
z
0
702
W z
LL �
'(M
Vi w
Lu
0
�
H
O N a
LL 0
W
(� F
Q z
Q
'
Q 0
y �
N
'
c
N
Y
CQ
W
K
W
(UIW)1
F
w
(sdl) Flpole
.
Q>
C'
(U) 416ua
f
(seyoul) ezng adl
W
IL
(%) adol
a
(sp) molj u61se
LU
(Sp) molj leei1S
W
C
adolS
(sp) o'
LL
LL
0
m
N
z
(juju!) I
`
Lq
K
J
m
o
Q
(Ud)
N
F
ds
0
H
O
(Ulw) a
m
0 N m O N g O 17 N W n m
N O m m f7
n m C] N
W.
N
W.
W.
M.
O W. N M. O N
(w)
O
Qi
V tG
< C Qi tG tG
m
m
rmnc�mN rNNnN mm mo
mm NN V NIrrrm Nm mo
m mm vN
m mmr
m mmm
m
n
m
�
�
mwwwNo
nmm my
(�4N�)
of
of of of °i cC °c cC of m of n ai ai ai ai
of oaam
oWnm
a
a
m o
om0000
N O m n— m
(� d) V r
m
O
m m N N N Ci m m m m m t7 r r
0 0 o o o 0 O O 00
a 1D m f0 m
O O O O O
N N C] �
O O
m
O
m
V m
00
Q N m N m n
O- O•- O 1
LL
I L
O
NON M n N m m« O O O O
O O O m
O m 0 0
N
m
t h
N 11 m � 0
O
(UIW)1e0AC04I�
N
N N m mmm r N m'N O m N r n
N N N m n
N n O N
N
m
W m m
m r m N N N m
z
'
rn rn
N �ido
L 0 -1aooyoun
0m 0m
mU
000m
0m 0m 0m
rn m00m
rn
6
m al
m o
o m m m m m
00000
0
LU
fO
a'
K
a o 0 IT v C r� N m m
LQ 10 o ro o
N n n i�
o
.0
a m
o n o n Q m
O
(oy)ea
0
�������o�� �0 00
0 0-0-
o o�
co
0.-
N
U'
Cl UI52
V n
%+ U
m m M_ V_ N_ m_ n_ m_ N N
U U U U U U U U U U U co W W
(7 N HI C
W IL LL LL LL
N N lh
LL 000
N
0
m r
('i (D
N M< N m
2 2 2 m m
a)
lulod U61sa
w
w
m
w i
0 }
lL O
c c
0 0
m •- 0
urn
0
a J m
� m
rn m
O
W
w
(U!W)1
W
(sdl) kPOIa
(U)476ua
(sG4ou!) ez!s ad!
W
0.
(%) adol
a
(sp) melj U61se
W
(sp)molj
lealls
W
w
y
(off) ado!
(sh)
LL
LL
0
z
(G4N!)
K
J
0
l-`
(UIW)3
N
O m O 1 f N
O
Q O O N O N m r m r O N t 7 N m
m N
( )
Qm- - -m
ham' �� m mmr-Mm^m
ON
M (") N M M
P m m m m
Q r� m m T N
m
m
t 7 m N m m m C 1 1 N N n A A n h
Q Cl Q m m m N m m COm m m
m n
m m
(l�')
.
m m m m m W
m
mmm mmm
.
m O I 1 0
O
m O m N O m N m Q m-- t h t h�
m
P O h
t��N r r r m N.-m P ul
NN
(�d1 d.
�0000
O
00- 000 m P NI�NPP N
O
LL
LL
N O O O
O
0 0 O O O N O V l m 0 0 0 0 0
N O
0
I�
.
mWNMNo
m
mNN NmN m ONNOOOOO
mo
Z
(UIW)10AUOt
0 0 0 N
O Cl
m m N N N 00000000
0 0
`���yao�young
m 0 0 0 m
'po
O
o mmm N N N 0 00000000
'
O O
V
0 .=� �o
o0o Doc o
ui
po
M-NO
.NN-.NNr-N Q0,. Q m
O
O
ov)a
-000
0 Ci OOO N
O
0
QI UISe
= N -
_
m m
m _ _ =� -Ni 0
,
j lL LL LL LL LL LL. LL lL
IL IL
>
lu!od U6!sa
w
w
y
Ga€oway
Planning. Architecture. Engineering.
APPENDIX C_-_-J-
HYDRAULIC CALCULATIONS
Ga€®way
Planning. Architecture. Engineering.
AREA INLET CALCULATIONS
■ Note: When specifying/ordering grates, refer to "Choosing the Proper Inlet Grate" on pages 125-126.
For a complete listing of FREE OPEN AREAS and WEIR PERIMETERS of all NEENAH grates, refer to pages 327-332.
R-4349-C
Median Drain Frame, Grate
Heavy Duty
WEIR
SO. PERIMETER
U
For use in narrow median on divided highways, freeways or expressways. Provides large
capacity drainage when required during heavy rainfalls.
R-4349-D
Median Drain
Frame, Grate
Heavy Duty
WEIR
SO. PERIMETER
CATALOG GRATE
FT. LINEAL
NUMBER TYPE
OPEN FEET
R-4349-0 Beehive
5.4 10.2
39'
az ve•
For use in narrow median on divided highways, freeways or expressways. Provides large
capacity drainage when required during heavy rainfalls.
R-4350 Series
Beehive Grate for Sewer Pipe Bell
Heavy Duty
WEIR
SO. PERIMETER
CATALOG GRATE FT- LINEAL
NUMBER TYPE OPEN FEET
R-4350-1 Beehive 0.3 2.7
R-4350-A Beehive 0.3 3.1
R-4350-B Beehive 0.4 3.9
R-43W-C Beehive 0fi 4.0
R-4390-B Beehive 1.0 se
R-4350-E Beehive 1.7 7.0
Bell and spigot vitrified clay and concrete pipe are made under many specifications
and dimensions vary. Check the grate sizes in the table to be sure they will fit the pipe you
are using.
Dimensions in inches
Catalog No. Pipe Size Diameter Thickness at Rim Overall Height
R-4350-1
8
10 3/8
2
4
R-4350-A
10
12
1
4
R-4350-B
12
14 3/4
2 1/2
5 1/2
R-4350-C
15
181/4
21/2
61/4
R-4350-D
18
22
3
7 W
R-4350-E
24
29
3
9
CLICK HERE to return to the Table of Contents
AREA INLET CAPACITY
Location: DP C18
Grate:
P,:.
Number of Grates:
1
Radius (per grate):
12
in
1.00
ft
Open Area (per grate):
346
sq in
2,40
sq ft
Qoen area ratio: 1.0
Open Area (total):
346
sq in
2.4
Weir Length, L
82.8
in
6.9
ft
Open Area, A
346
sq in
2.4
sq ft
Clogging Factor, e
75%
' This ^jeans 25"d of the open area 5 eloggeL'
Stage, Ad
0.10
ft
Weir Calculation:
Orifice Calculation:
0, = C ,Lcl s
C,=C,,Aa(2gd)0s
Cw
Co 0.67
cL
5.2
ft
cN 1.80 ft'
Water Depth, d
ft
Elevation
ft
QW.INLET
cfs
Do.iurrr
cfs
Inflow
cfs
0.00
4940.06
0.00
0.00
0.00
0A0
4940.16
0.49
3.06
0.49
0.20
4940.26
1.39
4.33
1.39
0.30
4940.36
2.55
5.30
2.55
0.40
4940.46
3.93 1
6.12
3.93
0.50
0.70
4940.56
4940.76
5.49
9.09
6.84
8.10
5.49
8.10
0.80
4940.86
11.11
8.66
8.66
0.90
4940.96
13.26
9.18
9.18
1.00
4941.06
15.53
9.68
9.68
1.10
4941.16
17.91
10.15
10.15
1.20
4941.26
20.41
10.60
10.60
1.30
4941.36
23.01
11.03
11.03
1.40
4941.46
25.72
11.45
11.45
1.50
4941.56
28.52
11.85
11.85
Note(s)
1.N/A
30.0
25.0
w 20.0
V
n 15.0
N
u
d
c 10.0
5.0
0.0
0.00
*Proposed top of grate elevation
)Qs=1.6 cfs
>Qtoa=7.2 cfs
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
Depth of Flow, ft
Qw-INLET 0 Qo-INLET -Inflow
Ganmooway
Planning. Architecture. Engineering.
UDFCD INLET CALCULATIONS
Tributary Basins
Inlet
Qz
(cfs)
Q1W
(cfs)
Carryover from
Upstream Inlet
Inlet Type
I(feet)
Inlet Size
100-Year Capacity
(cfs)
Approximate Depth
inches
At
Inlet C11
1.1
4.8
NO
No. 16 Combination Inlet
6
9.5
7.00
A2+A3
Inlet C10.1
3.2
15.4
NO
TypeRCurb Inlet
10
15.2
7.00
A4+A5
Inlet C7.2
515
26.6
NO
No. 16 Combination Inlet
15
19.5
7.00
A6
Inlet C7.1
2.9
13.8
NO
No. 16 Combination Inlet
15
20.2
7.00
A7+A8
Inlet C6.2
4.2
19.3
NO
No. 16 Combination Inlet
15
12.8
6.00
A9
Inlet C6.1
0.6
2.8
NO
No. 16 Combination Inlet
8
2.3
0.00
A10
Inlet C5A
2.5
11.8
NO
T e'R' Curb Inlet
10
12.8
6.50
A11
Inlet C5.1
2.0
9.6
YES
No. 16 Combination Inlet
151
15.9
6.50
Al2
Inlet C3.1
1.8
8.5
NO
No. 16 Combination Inlet
12
10.1
6.00
A13
Inlet C2
1.8
8.6
NO
T e'R' Curb Inlet
10
10.4
6.00
Bt
Inlet D17
1.1
5.0
NO
No. 16 Combination Inlet
9
9.4
6.50
B2
Inlet D16
3.3
15.6
NO
No. 16 Combination Inlet
12
12.6
6.50
B3
Inlet D15
3.5
16.7
NO
No. 16 Combination Inlet
15
15.9
6.50
B4
Inlet D14
2.9
14.0
NO
No. 16 Combination Inlet
15
15.9
6.50
B6
Inlet D13
3.0
14.4
NO
No. 16 Combination'Inlet
15
12.8
6.00
B7
Inlet D12
1.5
7.5
NO
No. 16 Combination Inlet
12
10.1
6.00
B8
Inlet D10
2.1
9.7
NO
No. 16 Combination Inlet
12
10.1
6.00
B9
Inlet D9
1.9
9.2
NO
No. 16 Combination Inlet
12
10.1
6.00
810
Inlet D7.1
2.6
12.1
NO
No. 16 Combination Inlet
12
12.6
6.50
B11
Inlet D6
1.5
7.3
NO
T e'R' Curb Inlet
10
12.9
6.50
B12
Inlet D5
2.1
10.1
NO
No. 16 Combination Inlet
12
10.1
6.00
85+813 thru B17
Inlet D4.1A
8.6
39.1
NO
T e'R' Curb Inlet
15
24.1
7.52
B18
Inlet D4.2
0.8
3.7
NO
T e'R' Curb Inlet
15
20.2
7.00
C1 thru C3
Inlet El
5.8
27.0
NO
No. 18 Combination Inlet
15
15.9
6.50
C4
Inlet E16.1
1.3
6.0
NO
T e'R' Curb Inlet
15
16.7
6.50
C5 thru C7
Inlet E13.1
4.8
22.7
NO
No. 16 Combination Inlet
21
18.0
6.00
C8
Inlet E12
1.8
8.9
NO
No. 16 Combination Inlet
18
15.4
6.00
C9
Inlet E10
2.1
9.5
NO
No. 16 Combination Inlet
12
10.1
6.00
C10
Inlet E9
2.5
11.8
NO
No. 16 Combination Inlet
15
12.8
6.00
C11
Inlet E8
1.9
9.4
NO
No. 16 Combination Inlet
12
10.1
6.00
C12
Inlet E7
2.8
13.2
NO
No. 16 Combination Inlet
12
12.6
6.50
C13
Inlet E6
2.1
10.3
NO
No. 16 Combination Inlet
12
12.6
6.50
C14
Inlet E5
2.5
12.0
NO
No. 16 Combination Inlet
12
12.6
6.50
C15
Inlet E4
1.7
8.1
NO
No. 16 Combination Inlet
9
9.4
6.50
C16
Inlet E3.3
1.4
6.6
NO
No. 16 Combination Inlet
9
7.6
6.00
C17
Inlet E3.2
2.0
9.3
NO
No. 16 Combination Inlet
12
10.1
6.00
Dt
Inlet E2
1.6
7.9
NO
No. 16 Combination Inlet
9
7.6
6.00
D2
Inlet E1-
0.8
3.7
NO
No. 16 Combination Inlet
6
6.2
6.00
E1+E2
Inlet G3
2.8
13.9
NO
No. 16 Combination Inlet
12
12.6
6.50
E3
Inlet G2.1
1.1
4.6
NO
T e'R'Curb Inlet
5
6.4
6.50
F1 thru F4
Inlet D2.2
5.5
26.7
NO
No. 16 Combination Inlet
15
15.9
6.50
F5
Inlet D2.1
0.6
2.7
YES
No. 16 Combination Inlet
12
12.6
6.50
G1 thru G5
Inlet B9.1
8.5
39.9
NO
No. 16 Combination Inlet
15
38.2
9.00
G6+G7
Inlet B9A
2.3
11.2
NO
T e'R' Curb Inlet
10
22.2
9.00
H1
Inlet B6.1
0.9
4.0
NO
T e'R' Curb Inlet
5
5.4
6.00
H2
Inlet B6A
2.2
10.6
NO
No. 16 Combination Inlet
12
10.1
6.00
H3
Inlet B4.1
2.0
9.2
NO
No. 16 Combination Inlet
12
10.1
6.00
H4
Inlet B3.2
2.4
11.3
NO
No. 16 Combination Inlet
15
12.8
6.00
H5
Inlet B3.1
1.3
6.0
NO
No. 16 Combination Inlet
9
7.6
6.00
H6
Inlet B2
3.3
16.5
NO
No. 16 Combination Inlet
9
-4.1
4.80
11
Inlet A4.2
2.8
14.0
NO
No. 16 Combination Inlet
9
5.4
4.80
14
Inlet A7
0.4
1.7
NO
T e'R' Curb Inlet
15
13.5
6.00
15
Inlet A6.1
0.4
1.7
NO
No. 16 Combination Inlet
3
3.9
6.00
12+16
Inlet A4.1
3.3
15.8
NO
T e A Curb Inlet
15
16.7
6.50
13+17
Inlet A4A
0.5
2.1
YES
No. 16 Combination Inlet
9
9.4
6.50
18
Inlet A3.1A
1.6
7.4
NO
T e'R' Curb Inlet
10
10.4
6.00
19
jInIetA3.2
1 0.2
1.0
NO
No. 16 Combination Inlet
61
0.51
2.40
110
linfetAl
1 3.01
15.0
NO
No. 16 Combination Inlet
1 91
5.41
4.80
Gaoway
Planning. Architecture. Engineering.
r
CDOT TYPE `R' CUR6 INLET
DEPTH AND STREET
CLASSIFICATION VARIES
INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Intel ID = T Type'R' Curb Inlet I IT CL to FL
4' Lo (C) {
HCurb
H-Vert
Wo
W
WP
Lo (G)
Deation tryformation Proton
MINOR
MAJOR
Type of Net
Inlet Type=
CDOT Type R Curb Opening
ml Depression (additional to mnmuous gutter depression 'a' from 'Q-AldW)
alas=
3.00
J00
inches
Number of UNt Inlets (Grate pr Curb Operirg) _
No -1
1
1
Water Depth at Revere, (outside of local concession)
Poling Depth =1
5.12
6.50
inelca
cab bdometbn
MINOR
MAJOR
0 �` Ot9ths
Length of a Unil Grate
I,(G)=
N/A
NIA
feel
idth of a Unit Grew
Wo=
N/A
'NIA
feel -
ma Opening Ratio for a Grate (typiml values 0,15-0.90)
A. =
N/A
N/A
'
Clogging Factor for a Single Grote (typical vabo 0.50-0.70)
G(G)=
WA
N/A.
Grata Weir Coefficient (typical vale 2.15-560)
C. (G)=
WA
N/A
vale Onfbe Coefficient (typical vabs 0.60-0.80)
C.(G)=
WA
NIA
Curb Opening Information
MINOR
MAJOR
Length of a Unit Curb Opening
I.(C)=
S.DO
500
feet
Heigh of Vertical Curb Opening in Inches
H, =
6.00
600
inches
Height of Curb Onfice Timal in Inches
Hn„e=
6.00
600
inches
Angle of Threat lose USDCM Figure ST-5)
Thew =
63.40
6340
degrees
Side Width for Depression Pan (typimly the gutter width of 2 feet)
Wo =
2.00
2,00
feel
Clogging Factor for a Single Curb Opening (typical vase 0. 10)
Cr(C)=
0.10
0.10
Cut Opening Weir Coefficient(typical vabe 2.3-3.7)
G.(C)=
3.60
3.60
Curb Opening Orifice Coeffident(lypiml value O.W-0.70)
C.(C)=
0.67
067
(CalculatedGrate Flow Analysis
MINOR
MAJOR
Clogging Coefficient for MJdpie Unb
Cost -1
N/A
NIA
Clogging Factor for Multiple Unw
Clog =
WA
WA
Grab Capacay es a Web (based on UDFCD - CSU 2010 Study)
_
MINOR
MAJOR
Inemeption vihout Clogging
Q.=
WA
WA
do
Interception vnth Clogging
Q.a=
WA
WA
cis
Grata Capacity as a Orfte(based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
Intencencion Wtleut Clogging
Q.
N/A
NIA
cfs
Iraemepbon Wth Clogging
Q.
N/A
N/A
ds
Grab Capacity as based Flow
MINOR
MAJOR
ling Coefficient for MUtipw Units
Zing Factor for Multiple Udw '
Opening ea a Web (based on UDFCD - CSU 2010 Study)
Opening a an OrMra (based on UDFCD -CSU 2010 Study)
option without Clogging
option with Clogging
Opening Capacity as biked Flow
option Wftut Clogging
WA
Cos/=
1.00
1.00
clog =
0.10
0.10
MAJOR
Q..=
_MINOR
4.10
7.11 cis
3.69
6AO cis
MINOR
MAJOR
Q.
905
10,13 do
Q. =
8.14
9.12 ds
Interception with Cbgging
Q„w=
5.10
ds
Resulting Curb Opening Capacity assumsa cloggedcondttbn
Qcw
3.89
Ell`
6.40
cta
Resonant Street Conditions
MINOR
MAJOR
obllhtet Lerg0i
L=
5.00
5.00
feel '
Resultant Street Flow Spread(based on sleet O-Al/ow geometry)
T=
15.0
20.8
fl.>T-Crown
esUwnt Fbw Depth at Street Crown
doe N =j
0.0
1.4
irchas
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
na=
3.69
s.4o
015
Inbl Capacity lS GOOD for Minor and Major Storms(>Q PEAK)
Qw neouefn=
1.00
1.00
do
D
3
HFHLV001.01_UD-Inlet_v3.14_I5 Type R.Asm, Inlet In Sump 3/2112016, 10:32 PM
INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = 10' Type'R' Curb Inlet 115 CL to FL
4' Lo(C) {
MCurb H-Vert
Wo
Wp
W
Lo (G)
Depression (additional to mrtnuom gutter depression'a' from '0-AIloW )
er of Unfit Inlets (Gram or Curb Opening)
r Depth at Fbv&m (outside of local depression)
n hrtormadon
h of a Unit Grate
r of a Unit Gram
Opaing Ratio for a Gate (typcal values 0.15-0.90)
ling Factor for a Single Greta (typical value 0.50 -0.70)
Wait Coefficient (lypiml wine 2.15 - 3.60)
Orifice Coefficient (typical ral a 0.60 - 0.80)
Opening Mormatbn
in of a Unit Curb Opering
rt of Vertical Cub Opening In Irdes
t of Curb Orifice Throat in Inches
r of Throat (see USDCM Figure ST-5)
Width for Depression Pan (typically the gutter width of 2 feat)
ling Fedor fora Sirgle Curb Operurg (typical value 0.10)
Opa ing Weir Coeffidera (ypiml value 2.3.3.7)
ng Coefficient for Multiple Unim
ng Fedor for Multiple Units
Capacity as a Wait (based on UDFCD -CSU 2010 Study)
rption without Clogging
rption with Clogging
Capacity as a OrBts (based on UDFCD - CSU 2010 Study)
rption without Cbggirng
rption with Clogging
Capacity as Mixed Flaw
ption without Clogging
rption with Clogging
lent for Multiple Urim
for Multiple Urns
s a Wait (based on UDFCD - CSU 2010 Study)
>MClogging
Clogging
s an Orilks (based on UDFCD -CSU 2010 Study)
)MClogging
Clogging
�apachy as Mhed Flow
Clogging
Inlet Type
ae.J'
No
Ponding Deph:
L.(G):
W.'
Ar;
Dr(G)'
C. (G):
C.(G):
L.(C):
H,M :
Hw z
Them
W.:
C, P:
C.(C):
CDOT Type R Cub Opmng
3.00
3.00
2
2
5.72
8.00
MINUH
WA
MAIUN
N/A
WA
NfA
WA
NA
WA
WA
WA
NfA
WA
NIA
MINOR MAJOR
5.00 500
6.00
600
6.00
6.00
63.40
6340
2.00
2.00
0.10
0.10
Alas
L Ca
Q Pmide Rpths
let
,at
Cost =I
Clog =
C6
Oo=
MINOR MAJOR
WA
_
WA
WA
WA
MINOR MAJOR
N/A
WA ds
N/A
N/A cis
MINOR MAJOR
WA
WA ds
WA
WA ds
MINOR MAJOR
Omr=
Om.=
N/A
WA cis
N/A
WA cis
Cost =
clog =
Q1=
1.25
1.25
0.06
0.06
MINOR MAJOR
7.21
11.14 ds
6.76
10.44 cis
C. =
Oo=
O„s=
Om.=
MINOR MAJOR
18.10
19.51 ds
15.96
18.29 cis
MINOR MAJOR
10.62
13.71 cis
9.96
12.85 ds
R ... ftent Strest conditions
MINOR
MAJOR
Total ldet Length
L=
10.00
10.00
feet
Resultant Street Flow Spread (based on sheet 0-Abow geometry)
T =
15.0
18.7
U.>T-Cmwn
Resultant Fbw Depth at Street Cm.
tlmowu=
0.0
1 0.9
inches
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
Q. =
6.76
10A4
cfs
Inlet Cepai IS GOOD for Minor and Major Storms(>O PEAK)
Oncicneow .
1.00
1.00
cis
HFHLV001.01 UD-Inlet v3.14 10 Type R.Asm, Inlet In Sump
3121/2016, 10:25 PM
I
INLET IN A SUMP OR SAG LOCATION
Projeel = East Ridge Second Filing
Intel ID = 10' Type'W Curb Inlet 11S CL to FL
!Le (C)A
H-Cu C
H-Vert ,
Wo
W
WP j
Lo (G)
in Information (Inau0
of Inlet
Depression (additional to oonfinuuus gutter depression'a' fmm'O-AnoW)
ter of Unit (Nets (Grata or Cub Opening)
r Depth at Fbwkm (ouloide of local deltressbn)
i Information
h of a Unt Grate -
i of a Unit Grote
Opening Ratio for a Greta (y Poel values 0.1 S-OAO)
ling Facbr for a Single Grate (typical n ue 0.50 -0.70)
: Web Coefficient (ypiml rahe 2.15 -3.60)
: Onfica Coefficient (typical vdbe 0.60-0.60) '
Opening Information
h of a Unit Curb Opening
It of Vertical Curb Opening In Imes
d of Curb Onfice Throat in Incites
: of Tnoel lase USDCM Figure ST-5)
Width for Depression Pan (typicay the gutter willh of 2 feet)
leg Fa=r for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 2.3,17)
ng Coefficient for Multiple Units
ng Facor for Muftiple Units
Capacity as a Wei (based on UDFCD -CSU 2010 Study)
:peon Wf dClogging
:peon with Clogging
Capacity as a Or Vice (based on UDFCD -CSU 2010 Study)
:ption without Clogging
:peon with Clogging
Capacity as Mixed Flow
:peon wifeut Clogging
:peon with Clogging
ing Coefficient for Multiple Units
ing Factor for Multiple Units
Opening as a Weir (based on UDFCD - CSU 2D10 Study)
option without Cloggrig
aption WM Clogging
Opening as an Orifice (based on UDFCD - CSU 2010 Study)
eption without Clogging
eption with Clogging
Opening Capacity as Mbuld Flow
:peon without Clogging
eption with Cbggbg
MINOR MAJOR
Inlet Type =
CDOT Type R Cub Opening
a,=
3.00
3.00
inches
No=
2
2
Poricin:g Depth=
5.12
6.50
irxhc
MINOR MAJOR�a
to(G)=AN/A
NIA
feet
Wo=NIA
feel
7Mo=NIA
G (G)=WA
I
C. (G)=NIA
C.(G)=ENIA
MINOR MAJOR
L.(C)=
5.00
5.00
feet
H,oa=
6.00
6,00
irchos
Hw.,a=
6.00
6.00
inches
Theta
63.40
6340
degrees
; (C) -1
0.10
0.10
...(C)=
3.60
3.60
(C)=
067
0.67
MINOR
MAJOR
Coef=
N/A
WA
Clog =
N/A
WA
MINOR
MAJOR
Q:=
WA
WA ds
Cl-=
WA
WA ds
MINOR
MAJOR
O"=
N/A
WA cis
Cl.=
N/A
WA ds
0-
MINOR
MAJOR
Coef -1
125
1 1.25
clog =
0.06
0.06
MINOR
MAJOR
O., =
7.21
13.69
ds
0..=
8.76
12.83
ds
MINOR
MAJOR
Q. =
16.10
20.26
ds I
Oa =
16.96
19.00
cfs i
MINOR
MAJOR
Om-Q--j
10.62
15.a9
ds
Q. =
9.96
14.52
ds
INet Length
L
hand Street Flow Spread (based an sheet "flow geometry)
T
font Flow Depth at Street Crown
dcsoxn'
d Inlet Interception Capacity (assumes clogged condition)
Qa -
lapacfy IS GOOD for Minor and Major St.(>O PEAK)
Qnusacouua'
e
10.00
10.00
15.0
208
0.0
1.4
set
i
t.-TCrown
noes
ifs
is
a
HFHLV001.01_UD-Inlet_v3.14_10 Type R.1dsm, Inlet In Sump 312112016, 10:25 PM
r
INLET IN A SUMP OR SAG LOCATION
Project - East Ridge Second Filing
Inlet ID = 1S Type'R' Curb Inlet 1 15' CL to FL
{Lo (C){
HCurb
H-Vert
We
W
WP
Depression (additional to continuous guider depression's' trom'O-AIbW)
er of Unit (Nets (Grate or Cub Opening)
r DepM at Flowire (outside of local depression)
i mbmmtion
h of a Unt Grate
i .1 a Unit Grate
Doering Rate for a Grate (typical values 0.15-0.90)
Mg Factor for a Single Gnats (typical ral a 0.50 - 0,70)
Weir CoeHident (typical vale 2.15 - 3.60)
Onfice Coefficient (typical rate 0.60 -0.80)
Opening Mormation
h of a Unit Curb Opurmg
It of Vertical CUT Opening In Incites
t of Curb Orifice Timat in belies
of Ttroat (see USDCM Figure ST-5)
Width for Depression Pan (typically tie gutter width of 2 feet)
ling Factor for a Single Curb Opening (typical raloe 0.10)
Cpering Weir Coefficient (typical vabs 2.3-3.7)
c9 Coefficient for Multiple Units
ng Factor for MiIDple Urals
Capacity as a Wet (based on UDFCD - CSU 2010 Study)
�pbon wined Cloggng
poor, v4th Clogging
Capacity as a Onsce (based on UDFCD - CSU 2010 Study)
ption without Clogging
option with Clogging
Capacity as Mixed Flow
soon without Cbggirg
pion wish Clogging
Coefficient for Multiple Units
Factor for Multiple Urds
mbtg as a Weir (based on UDFCD -CSU 2010 Study)
on without Clogging
on with Clogging
wing as an Office (based on UDFCD -CSU 2010 Study)
on without Clogging
on WM Clogging
mi g Capaciy as Mixed Flow
on waited Clogging
on with Clogging
MINOR MAJOR
INet Type =
atry = 5.09 7.17 COOT Type R Curb Openi
inches
No =
Pending Depth= incite
MINOR MAJOR M - JJe .
L+(G)=
W.=so = A
G(G)=
C. (G)=
C.(G)=
IA
IAIAAIAIA
M
feet
feet
MINOR
MAJOR
L.(C)=
5.00
5.00 fee
H� =
6.00
6.00 1.
Hwa.=
6.00
6.00 Ina
Theta=
63.40
6340 del
W+=
2.D0
2W fee
G(C)=
0.10
0.10
C.(C)=
3.60
3.60
C.(C)=
0.67
0.67
MINOR
MAJOR
Coal =
WA
WA
Clog=
WA
WA
MINOR
MAJOR
Q.
WA
WA ds
WA
WA cis
MINOR
MAJOR
Ca =
N/A
N/A cis
Q.
WA
N/A cis
MINOR
MAJOR
0,,.=
WA
WA ds
0,,,,=
WA
WA cis
Coot =
1.31
1.31
Cog =
DD4
0.04
MINOR
MAJOR
0-
8.80
22A1 cis
0,.+=
8A2
21." cis
MINOR
MAJOR
O.=
27.06
31,85 cis
Da.=
25.88
3046 cis
MINOR
MAJOR
C,--
1a.36
WAS cis
0,�+=
13.73
23,76
Q .u=
6.42
dd.
21.0 of$
at Length
L
A Street Flow Spread (based on sleet "NOW geometry)
T
tt Fbw Depdn at Street Crown
dca N
Inlet Interception Capacity (assumes clogged condition)
Q+'
pacify IS GOOD for Minor and Major Storms (>O PEAK)
O. ae .
15.00
15.00
14.9
23.5
0.0
2.1
t.m 1.W
eat
1.>T-Crown
itches
ng
3.00
3.00
' HFHLV001.01_UD4nlet_J3.14 15 Type R.dsm, Inlet In Sump
3121/2016, 10:22 PM
INLET IN A SUMP OR SAG LOCATION
ProJeet = East Ridge Second Filing
Inlet ID = 15' Type'R' Curb Inlet 115 CL to FL
{Lo (C)-T
H-Curb H-Vert
Wo
W
WP
Lo(G)
an Mfortnatbn fin
of inlet
I Depression (additional to conhsaus gulter depression'a' from'O-AIbW)
aer of Unit Inlets (Grate or Curb Operdig)
n Depth at FlowOre (outside of local depression)
r information
th of a Unlit Grate
t of a Unit Grate
Opening Ratio for a Crate (typical vahes 0.15-0.90)
ling Factor for a Single Grate (typical wine 0.50 - 0.70)
t Weir Coefficient (typical value 2.15 - 3.60)
t Odfica Coefficient (typical value 0.60 - 0.80)
Opening hbrmatbn
th of a Unit Cub Opering
v of Vertical Cub Opening in 1. des
v of Cub Orfice Throat in Inches
J of Throat (see USDCM Figure ST-5)
Width for Depression Pan (typically the gutter width of 2 feel)
ling Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 2.3-3.7)
Opening Onfice Coefficient (typical value 0.60. 0.70)
s Flow Anatolia ICaloulaledl
ling Coefficient for Mdtiplo Units
ling Factor for MWple Units
s Capacity as a Weir (based on UDFCD - CSU 2010 Study)
Orifice (based on UDFCD -CSU 2010 Study)
Flow
Coaffidert for Multiple Units _
Factor for Mull Units
..he as a Weir (based on UDFCD -CSU 2010 Study)
as an cries (based on UDFCD - CSU 2010 Study)
Capacity as Mitred Flow
MINOR MAJOR
Inlet Type =1
CDOT Type R Curb Opwbg
ay=a=
3.00
300
inches
No =1
3
1 3
Pending Depth=
5.12
6.50
inc cs
+
MINOR MAJOR
0 Overde Depths
Le(G)=MNIA
feet
Wo=feet
A.=
G(G)=
MNIA
C. (G)=Co(G)=
,
MINOR MAJOR
L.(C)=
500
500
feet
H�=
6.00
600
inches
Hw'=
Soil
600
indee
Theta=
63AO
6340
degrees
W.=
200
200
feet
G(C)=
0.10
0.10
C. (C) =
3.60
3.60
Goef =I
Clog =
Q_ =
0.-1
Q. =I
MINOR MAJOR
WA
1 WA
WA
WA
MINOR MAJOR
N/A
N/A ds
N/A
N/A cis
MINOR MAJOR
NIA
WA cis
WA
WA cis
I N/A I N/A I
Coef =
1.31
1 31
Cog=
0.04
0.04
MINOR
MAJOR
Ow =
8.97
17.43 ds
0„ =
8.58
16.67 cis
MINOR
MAJOR
Oo=
27A4
30.39 ds
Oa =
25.96
29.07 cis
MINOR
MAJOR
1651
2141 ds
Oo„ =
13.88
20.47 cis
Resultant Street Conditions
MINOR
MAJOR
Total met Length
L=j
15.00
1 15.00
feet
Resultant Street Flow Spread (based an sheet 04 flow geometry)
T =
15.0
20.8
ft .>T.C..
asutant Flow Depan at Street Crown
dceowe =1
0.0
1.4
inches
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
Q c
6.56
16.67
cfs
Inlet Capacity IS GOOD for Mrior and Major Steam(>O PEAK)
Orevr scounro=
1.00
1.00
cis
HFHLV001.01 UD-Inlet_v3.14_15 Type R.dsm, Inlet In Sump 3121/2016, 10:30 PM
INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = 5' Type'R' Curb Inlet 118' CL to Fl.
{-Lo (C)�
HCurb H-Ven
We
WP
W
L. (G)
of Diet
Depression (additional to cordneme gutter depreation'a' from'O-Alow`)
er of Unit Inlets (Grata or Cub Opening)
r Depth at FbwSne (outside of local depression)
, bdonnatlon
h of a Unl Grate _
:of a Unit Grate
Opening Ratio for a Grate (typical values 0.15.0.90)
ling Factor for a Single Gala (typical vahe 0.50 -0.70)
Weir Coefficient (typical vaWe 2.15 - 3.50)
Onfice Coefficient (typical value 0.60 -0.80)
Opening trdormalbn
h of a Unit Curb Opening
it of Vertical Curb Opening in Inches
t of Curb Orifice Tlmal in Inches
of Throat (see USDCM Figure ST-5)
Width for Depression Pan (typically the gutter w dth of 2 feet)
ling Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical vabe 2.3,3.7)
Open. Onifioo C.eRciem ttaical value o.60 - 0.701
ng Coefficient for Multiple Units
rug Factor for Multiple Udts
Capacity as a Wetr (based on UDFCD - CSU 2010 Study)
:ption wi0cla Clogging
:ption with Clogging
Capacity as a Orfto (based on UDFCD - CSU 2010 Study)
:pton withpul Clogging
:ption with Clogging
Capacity as Mead Flow
:piton without Clogging
:ption with Clogging
two Grab Cauackv (assumes clamped condition)
ing Coefficient for Multiple Unts
trig Factor for Multiple Units
Opening as .Wetr (based on UDFCD - CSU 2010 Study)
option without Clogging
option win Clogging
Opening as an OdBos (based on UDFCD -CSU 2010 Study)
option without Clogging
option with Clogging
Opening Capacity as Mixed Flow
option wi0aut Clogging
option with Clogging'
Inlet Length
tam Street Few Spread (bated on sleet O-Agow geometry)
tart Flow Depth at Street Crown
II Inlet Interception Capacity (assumes clogged condition)
Capacity, IS GOOD for Minor and Major Storms (>O PEAK)
MINOR MAJOR
Iniel Type =
a:s.:3.00 = inches
No =
Pestling Depth = Irctco
MINOR MAJOR 0 O�vriOe Depms
Ie(G)=
Wo=
A. _
G(G)=
C. (G)=
C.(G)=
WA
NIA
WA
NIA
WA
WA
WA
WA
N/A
N/A
N/A
NIA
feet
feat
MINOR
MAJOR
Lp(C)=
5.00
5.00
feet
H„m=
6.00
600
inches
Hmoa=
6.00
600
inches
63.40
6140
Theta =
degrees
2.00
2.00
%=
feel
G(C)=
0.10
0.10
C.(C)=
3.60
360
C.(C)=
o.67
067
MINOR
MAJOR
Cost =1
WA
WA
Clog =
WA
WA
MINOR
MAJOR
Oa =
N/A
N/A
cis
N/A
WA
cfs
MINOR
MAJOR
Oo =
N/A
N/A
cis
0-=
N/A
WA
cis
WA
cost =
Clog =
O~=
MINOR MAJOR
1.00
1.00
0.10
As
MINOR MAJOR
5.60
5.96 cis
5.04
5.36 cfs
O>=
Oa=
MINOR MAJOR
9.63
9.75 cts
8,67
8.78 cis
MINOR
MAJOR'
MINOR
MAJOR
L =
5.00
5A0
feet
T=I
18.0
1 8.7
ft>T-Crown
d.. =1
0.0
1 0.2
Irchea
MINOR
MAJOR
0. =
5.04
5.36
CIS
CDOT Typo R Cub Opening
3.00
1 1
5.84 fi.W
' HFHLV001.01 UD-Inlet_v3.14_15 Type Radom. Inlet In Sump
3/21/2016. 10:38 PM
' HFHLV001.01 UD-Inlet_v3.14_15 Type Radom. Inlet In Sump
3/21/2016. 10:38 PM
INLET IN A SUMP OR SAG LOCATION
Project v East Ridge Second Filing
Inlet ID v 10- Typri Curb Inlet 1 18' CL to FL
KLo(C)-/
HCurb
H-Vert
We
Wp
W
Lo (G)
of Intel
Inel Type
Depression (additional to continuum gutter depresslori from,'O-AIbW)
am.;
er of Unit Inlets (Greta or Cub Opening)
No
r Depth at FbMm (outside of local depression)
-
Pending Depth
Information
h of a Unl Grate
Lo (G)
of a Unit Grate
W.
Opening Ratio for a Grew (typical values 0.154.90)
A.
14V Factor for a Single Grate (typical vale 0.50 - 0.70)
Cc (G)
Weir Coefficient (typical value 2.15 - 3.60)
C. (G)
Onfice Coefficient (typical value 0.60 - 0.80)
Co (G)
Opening Information
h of a Unit Curb Opening
L. (C)
a of Vertical Curb Opening in Inches
H.a
a of Curb Orifice Throat in Inches
H•.ea
of Threat (see USDCM Figure ST-5)
Theta
Width for Depression Pan (typically 0e gutter wdth of 2 feet)
%
ling Factor for a Single Curb Opening (typical value 0.10)
Cr (C)
Opening Weir Coefficient (typical value 2.3.3.7)
C. (C)
Deanna Orifice Coefficient (typical value 0.60 -0.70) -
C. (C)
rig Coefficient for Multiple Units
ng Factor for Multiple Unis
capacity as a War (based on UDFCD -CSU 2010 Study)
;peon without Cbggirg
;ptsm with Cbggirg
Capacity, as a critics (based on UDFCD - CSU 2010 Study)
pion w heout Clogging
Potion with Clogging
Capacity as Mixed Flaw -
Potion wihout Clogging
Pptlon w h Clogging
iirg Coefficient for Multiple Units
ling Factor for Multiple Units
Opening as a War (based on UDFCD - CSU 2010 Study)
aptionwiOroutClogging option With Clogging
Opening as an Draw (bald on UDFCD -CSU 2010 Study)
option without Clogging
spoon with Clogging
Opening Capacity as AOsad Flow
apt in wthout Clogging
at Length
nt Street Fbw Spread (based on sleet O-Allow geometry)
nt Fbw Depth at Street Crown
Inlet Interception Capacity (assumes clogged condition)
;pachy IS GOOD for Minor and Major Storms (>Q PEAK)
CDOT Type R Cub Opening
3.00
3.00
2
2
5.84
5.84
Mlrvl1H
N/A
MAJUH
NIA
N/A
NIA
N/A
NIA
N/A
WA
N/A
N/A
WA
NIA
MINOR MAJOR
5,00 500
6.00
6.00
6.00
fi00
63.40
6140
2.00
2.W
rohas
rchoo
Q O.antle Depths
set
set
real=
N/A
WA
Clog =
N/A
WA
MINOR
MAJOR
0.;=
N/A
NIA ' cf.
0-
NIA
WA cis
MINOR
MAJOR
Q.
N/A
WA cis
Q.
N/A
NIA cis
MINOR
MAJOR
0m;=
WA
N/A cis
Om.=
N/A cis
WA
3..
WA cis
WA
MINOR
MAJOR
coo=
1.25
_1.25
Clog =
0.06
0.06
MINOR
MAJOR
Q-=
10.37
10.37 cis
0.. =
9.72
9.72 cis
MINOR
MAJOR
Ce=
19.26
1926 ds
Qs =
18.05
1805 cis
MINOR
MAJOR
13.14
13.14 cis
(3- =1
12.32
/2.32 cis
L'
T'
:CROWN
Q.:
10.00
10.00
18.0
18.0
0.0
D.0
mR 9.722
set
I
xhes
' HFHLV001oI UD-Inlet_v3.14_15 Type R.dsm, Inlet In Sump 3121/2016, 10:46 PM
INLET IN A SUMP OR SAG LOCATION
Project v East Ridge Second Filing
Inlet ID v IT Type'R' Curb Inlet 118' CL to FL
X--Lo (C)A
H-Curb H-Vert
we
Wp
W
-------------------
Lo (G)
1n Information lineu0
of Inlet
Depression (additional to conOrscue guitar depression 'a' from'Q-AIIoW)
oar of Uml Inlets (Grate or Curb Opening)
r Depth at Fbwene (outside of local depression)
o information
n of a Ural Grate
I of a Unit Grate
Clearing Ratio for a Grate (typical values 0.150.90)
lire Factor for a Single Gram (typical vahe 0.50 - 0.70)
I Weir Coefficient (typical value 2.15 - 3.60)
I Onfce Coefficient (typical value 0.60 -0.80)
Opening Indmeaten
It of a Unt Curb Opening
A of Venical Curb Opening in Inches
t Of Cure Onfce Throat in Inches
I of Throat (see USDCM Figure ST-5)
Width for Depression Pan (typically tie gulmr vndth of 2 feet)
)Ug Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 2.33.7)
Opening Orifice Coefficient (typical value 0.60 - 0.70)
t Flaw Analyse ICabulatedl
ling Coefficient for Multiple Units
ling Factor for Multiple Urals
1 Capacity as a Weir (based on UDFCD - CSU 2010 Study)
Orfke (based on UDFCD-CSU 2010 SWdy)
Flow
Coefficient for Multple Units
Factor for MWple Urim
ring as a Weir (based on UDFCD -CSU 2010 Study)
on Wthat Clogging
on with Clogging
.ning as an Orifice (based on UDFCD - CSU 2010 Study)
on W61ou1 Cbgging
on Win Clogging
wing Capacity as Mend Flaw
on WIhout Clogging
on Wth Clogging .
Inlet Type
am.
No
Pending Depth
L.(G)
W.
A.
Ct(G)
C. (G)
C.(G)
)OR
CDOT eni Type R Cure Opng
3.00
3.00
3
3
5.84
fi.00
WA
N/A
WA
N/A
WA
N/A
WA
N/A
WA
N/A
WA
N/A
6.00 6.00
6.to 11 0
ches
chca I
Qi O.arbe Depths
3M
Set
MINOR
MAJOR
Coef -1
NIA
WA
Clog =1
NIA
WA
MINOR
MAJOR
C'm
WA
N/A cfs
0..=
WA
WA cts
MINOR
MAJOR
Oa=
_
WA
- WA are
Q.
WA
WA cts
MINOR
MAJOR
WA
WA cis
O„v=
WA
WA cis
Dom=
WA
WA eh
MINOR
MAJOR
Cost =
1.31
1.31
Clog =
0.04
0.04
MINOR
MAJOR
QM =
13.07
14.08 cis
Q„.=
12.50
1346 cfs
MINOR
MAJOR
Q.=
28.88
29.26 cfs
O®=
27.62
27.98 OIs
MINOR
MAJOR
Q..
18.D7
18.ea cm
a-=
17.28
18.05 cis
esulmM Street Conditions MINOR MAJOR
Total trial
L-I
150o
15.00
feel
Resulmnt Street Flow Spread (leaved on sheet Q-AOow geometry)
T-1
18.0
1 18.7
n.>T-Crown
esWanlFbw Depthal SbeetCroen
da N =1
0.0
0.2
inches
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
Q. =
12.So
13.46
cfs
Inlet Capacity IS GOOD for Mind, and Major Storms(>Q PEAK)
Oer W..em=
1.00
1.00
cfs
Q
HFHLV001.01_UD-Inlet_v3.14_15 Type R.Asm, Inlet In Sump 312112016, 10.43 PM
INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = 1S Type'R' Curb Inlet 118' CL to FL
.F-Lo (C)-f
H-Curb H-Vert
Wo
WP
W
Lo (G)
of Inlet
Inlet Type =
CDOT Type R Curb Opering
Depresuon(additional to mntinuos guitar depression'a'frm'O-AloW)
aba=
3.00
3.00
inches
or of Unit inlets(Grate or Curb Opeing)
No
3
3
r Depth at Flowlire(outside of local depression)
Polling Depth =
5.84
6.50
incic.
O.wdde Depths
�Infomution
h of a Uril Grate
Le (G) =
MINOR
N/A
MAJOR
NIA
feel
of a Unit Grate
W.
N/A
NIA
feel
Opening Ratio for a Grate (typical values 0.15-0.90)
7M=
N/A
WA
ling Fehr for a Single Grote (typical vase 0.50-0.70)
G(G)=
WA
WA
Weir CoefOtlenl(typiral value 2.15-3.60)
C. (G)=
WA
NIA
Orfice Coefficient (typical value 0.60-0.80)
C.(G)=
WA
NIA
Opening Information
MINOR
MAJOR
In of a Urit Curb Opening
I.(C)=
5.00
500
feel
it of Vertical Cub Opefurg in Inches
ft==
6.00
6.00
inches
t of Curb Orifice Throat in Inches
Hwoe =
. 6.00
6,00
inches
of Throat (see USDCM Figure ST-5)
Theta =
63AO
6140
degrees
Width for Depresslon Pan(typioN the gutter wdth of 2 feat)
Ws=
2.00
2.00
feet
ling Factor for a Single Curb Openig(Iypiral value 0.10)
G(C)=
0.10
0.10
Operirg Weir Coefficient (typical slue 2.33.7) .
C.(C)=
3.60
360
Flow Any"Is (Calculated)
MINOR
MAJOR
ng Coefficient for Maple Units
Coef=
WA
WA
ng Factor for Maple Unts
Clog =
NIA
WA
Capacity as a Wet (based on UDFCD - CSU 2010 Study)
MINOR
- MAJOR
iplion without Clogging
0.,=
WA
WA
cis
pplion with Clogging
O„=
WA
WA
ds
Capacity as a Orifice (based on UDFCD-CSU 2010 Study)
_MINOR
MAJOR
option without Clogging
Oa=
WA
WA
cfs
option will Clogging
Oa =
N/A
N/A
cis
Capacity as Mixed Flow
MINOR
MAJOR
option vnftit Clogging
Om,=
NIA
N/A
cis
iption with Clogging
Q-
N/A
WA
is
Curb Opaininip Flow Ana Is(Calculated)
MINOR
MAJOR
Clogging Coefficient for Maple Units
cod=
1.31
1.31
Clogging Factor for Maple Unts
Cbg=
0.04
0.04
Curb Opening as a Weir(based on UDFCD-Call 2010 Study)
MINOR
MAJOR
InlarceptlonwifhoutClogging
0.;=
13.07
17.43
ds
Interception with CloggingQ-
12.50
1667
cfs
Curb Opening as an critics (based on UDFCD - CSU 2010 Studyl
MINOR
MAJOR
IraarreptionwiteutClogging
Q.
28.88
30.39
cfs
Interception with Clogging
Ca=
27.62
29.07
sits
Curb Opening Capacity as Mixed Flow
MINOR
MAJOR
IrterceptionwitoutClogging
0,,,=
18.07
21AI
ds
Intencepdon Wth Clogging
Oma=
17.2B
20.47qdsenin
ResuMng Curb Opg Capacity (assumescogged condition)Oc.e
=
12.50
16.67cis
Of LwgM L
nl Street Flow Spread (based on sieet "Dow geometry) T
M Flow Depth at Street Crown dLPOwn
Inlet Interception Capacity (assumes clogged condition) i Q.:
i-a rC InAn fnr Minns and Main,-5u.-l>O PEANI GpE,w p¢.1Mw.
15.00
15.00
18.0
20a
0.0
a.7
MINOR MAJOR
12.S0 16.67
1
HFHLV001.01_tJD4n1et v3.14 15 Type R.Asm, Inlet In Sump 3/21/2016, 10:45 PM
' INLET IN A SUMP OR SAG LOCATION
ProJeel = East Ridge Second Filing
Intent ID = 15 Type'R' Curb Inlet 1251 to FL
4 Lo (C)-'r
HLurb H-Ved
Wo
yP
W
In hdonneliun Ilnoull
of trim
trial Type
Depression (additiorelto continuous gutter depression'a' tram- w')
a.
er of Unit Inlets (Great or Curb Doe")
No
r Depth at Flowbe (outside of local depression)
Ponc ing Depth
i Infomuron
h of a Unit Grate
L. (G)
i of a Unit Grate
W.
Opening Ratio for a Grate (typical vales 0.15-0.90)
A.
ling Factor for a Single Grate (typical value 0.50 - 0.70)
C, (G)
Weir Coefficient (typical value 2.15 - 3.60)
C. (G)
Onfice Coefficient (typical value 0.60 - 0.80)
C. (G)
Opening Information
h of a Unit Curb Opening
L. (C)
t of Vertical Curb Opening in Imes
Hwn
a of Curb Off" Throat in Inches
Hr
, of Throat (see USDCM Figure ST-5)
Theta
Width for Depression Pan (typically the gutter width of 2 feel)
W.
slog Factor for a Single Curb Opening (typical value 0.10)
G (C)
Clearing Weir Coefficient (typical value 2.3.3.7)
C. A
MINOR MAJOR
COOT Type R Curb Opening
3.00
300
3
3
6.00
7.00
MINUH
WA
Mnrun
NIA
WA
N/A
N/A
aNIA
N/A
N/A
MINOR MAJOR
5.00 600
6.00
6,00
6.00
600
63.40
6340
2.00
2.00
0.10
0.10
"c es
naca
Q override Depths
Bet
eat
Curb Opening Onfice Coefficient (typical value 0.60-0.70)
O. lu1=
0.67 1
067
Grate Flow na"Is fCalculatedl
MINOR
MAJOR
Clogging Coefficient for Multiple Units
Coef=
WA
N/A
Clogging Factor for. Multipie Units
Clog =
WA
N/A
Grate Capacity as a Weir(based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
-•
Interception without Cloggirg
0.,=
NIA
WA•••=
cis
Interception with Clogging
0..=
N/A
WA
ds
Grab Capacity as a Or81es (based on UDFCD - CSU 2010 Study)
MINOR
MAJOR
Interception without Clogging
Oa=
WA
WA
cis
Iniercepton with Clogging
Q.
WA
WA
cis
Grab Capacity as Mixed Flow
MINOR
MAJOR
InercepiionwilhoutClogging
0..=
WA
WA
cis
Interception with Clogging
O,,,a=
WA
WA
cis
Resulting Grate Capacity(assumes clogged condition)
Ga.n=
WA
WA
of.
Curb Orwrilmi Flow An."le lCalculatedl
MINOR
MAJOR
Clogging Coefficient for Multiple Units
Coef =
1.31
1.31
Clogging Fedor for Multiple Units
Clog =
0.D4
0.04
Curb Opening as a Weir (based on UDFCD-CSU 2010 Study)
MINOR
MAJOR
Interception without Clogging
Q.-I
14.08
1 21.10
cis
Interception with Clogging -
0..=
13.46
20.18
cis
Curb Opening man critics (bond on UDFCD -CSU 2010 Study)
MINOR
MAJOR
limrceprmnwithad Clogging r
06-1
29.28
1 3149
ds
Interceptionwith Clogging
Oa=
27.98
30.11
cfs
Curb Opening Capacity as Mixed Flow
MINOR
MAJOR
IrterceptionwithoutClogging
0,.;=
18.88
23.97
cis
Interception with Clogging
0,,,.=
18.05
22.92
ds
Resulting Curb Opening Capacity (amumas clogged concision)
Ocw =
13.46
20.18
cis
1esueant5 dt n
MINOR
MAJOR
Deal Inlet Length
L-1
150D•
15.00
feet
Resutdnt Street Flow Spread (based on sheet O-AOow geometry)
T-1
18.7
US
It
Resultant Flow Depth at Street Crown
dicilOwN =1
0.0
0.0
inches
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
Q. aiI
13.46
20.18
cfs
I.W Capacity IS GOOD for Minor and Major Stoma(>O PEAK)
0rsrwmao 0=1
1.00
1 1.00
lcf.
' HFH1-V001.01_1.0.lnlet_0.14_15 Type R.dsm, Inlet In Sump 3/2112016, 10:28 PM
INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = 10- Type 'Fr Curb Inlet 1 2S CL to FL
4' Lo (C)
HCurb H-Vert
Wo
Wp
W
L.(G)
of [net
Depression (additional to continuous guider depression'a' from'G-AlbW)
uer of Unit Inhas (Grate or Cub Opening)
+Depth at FbMm (outude of local depreasbn)
r 6lfamallon
th of a Unit Grate
r of a Unit Grata .
Opening Ratio for a Grata (typical values 0.15.0.90)
3irg Factor for a Sirgle Grate (typical value 0.50 - 0,70)
I Weir Coefficient (typical value 2.15 - 3.60)
r Orifice Coefficient (typical value 0.60 - 0.80)
opening hdarm#bn
in of a Unt Curb Operirg
p of Vertical Curb Opening In Inches
1 of Curb Office Throat in Inches
f of Throat (see USDCM Figure ST-5)
Width for Depression Pan (typically the gutter Width of 2 feet)
Sing Factor for a Sirgle Curb Opening (typical value 0.10)
Operirg Weir Coefficient (typical value 2.3-3.7)
rg Coefficient for Multiple Units
rg Factor for Multiple Units
Capacity as a Weir (based on UDFCD -CSU 2010 Study)
ption WOgd Clogging
ption with Clogging
Capacity as a Oryics (based on UDFCD -CSU 2010 Study)
ption Without Clogging
ptipn.1h Clogging
Capacity as Mixed Flow
ptbn withoul Clogging
ption with Clogging
MINOR MAJOR
Inlet Type =r
CDOT TypaRCurb Opening
a =
y
3.00
1 3.00
inches
No =1
2
1 2
Posting Depth=
5.12
9.00
inches
MINOR MAJOR
U O.vrde Depths
L.(G)=
WA
N/A
feet
W.=
N/A
NlA
feet
A.
WA
N!A
Cr(G)=
N/A
N/A
C. (G)=
WA
NIA
C.(G)=
WA
NIA
MINOR MAJOR
L.(C)=
sba
5,00
feet
H,.r=
8.00
6,00
inches
Hwur=
8.00
600
inches
Theta
63,40
6310
degrees
WR=
2.00
200
feet
C,(C)=
0.10
0.10
C.(C)=
3.60
3,60
Coer=
N/A
WA
Clog =
N/A
WA
MINOR
MAJOR
Q.
WA
WA cis
G...=
WA
WA cis
MINOR
MAJOR
0.=
WA
WA cis
Ov=
N/A
WA cis
MINOR
MAJOR .
Gm.=
WA
N/A fs
ama=
WA
WA cis
Curb Didentria Flow Analindis lCakuWaM
MINOR_
MAJOR
Clogging Coefficient for MdBpb Unis
Cost=
1.25
_ _1.25
Clogging Factor for Multiple Units
clog =
0.06
0.06
Curb Opening as a Weir (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
Interception Wthnut Clogging
C..
7.21
27.59
cis
Interception win Clogging
0,..=
6.76
25.87
ds
Curb Opening as an critics (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
InlarmptionwllteUGlogging
Q.-I
18.10
1 23,69
ds
Interceptbnwith Clogging
o.=
16.96
2121
cis
Curb Opening Capacity as eased Flow -
MINOR
MAJOR
Interception WOoutcloggirg
Gm,=
10.62
23.78
cts
Interception in Clogging
Gm.=
9.96
22.29
cis
Resutling Curb m Opening Capacity clogged condition)
0..e=
6.76
2221
cis
then Length L
tam Street Flaw Spread (based on sheet O-AOow geometry) T
tars Flow Depth at Street Craven J.".
it Inlet Interception Capacity (assumes clogged condition) Q.
Japacity IS GOOD for Minor and Major Stones(>O PEAK) GRrva RE...
10.00
10.00
15.0
31.2
0.0
1.5
.at
t.>TCmwn
nches
HFHLV001.01 UD4nlet_v3.14_15 Type R.dsm, Inlet In Sump 3/21/2016, 10:36 PM
001
Gaoway
Planning. Architecture. Engineering.
NO. 16 COMBINATION INLETS
DEPTH AND STREET
CLASSIFICATION VARIES
INLET IN A SUMP OR SAG LOCATION
Project = Ent Ridge Second Filing
Inlet ID = Triple No. 16 Combination Inlet 1 15' CL to FL
{Lo (C)T
H-Curb H-Vari
Wo
W
WP
Lo (G)
Depression (addifional to mnOnnus gutter depression'a' from'0-AloW)
er of Unt Inlet; (Grate or Curb Opening)
r Depth at Fbwlms (Outside of local depression)
, Information
h of a Unit Grate
I of a Unt Grate
Opening Ratio for a Grata (typical nkes 0.15-0.90)
ling Factor for a Single Greta (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifice Coefficient (typical value 0.60- 0.80)
Opening Mormatbn
It of a Unt Curb Openng
a of Vertical Curb Opening in Inches
4 of Curb Orifice Throat in Inches
of Throat (sea USDCM Figure ST5)
Width for Depression Pan (typically tie gutter wilth of 2 feet)
ling Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 2.3-3.7)
no Coe0icient for Multiple Units
no Factor for Multiple Units
Capacity as a Weir (based on UDFCD -CSU 2010 Study)
Piton without Clogging
goon with Clogging
Capacity as a Orifice (based on UDFCD -CSU 2010 Study)
piton without Cbgorg
piton with Clogging
Capacity as Mfaed Flow
otbn without Cbggr g
option with Clogging
send for Multiple Units
for Multiple Units
s a Weir (based on UDFCD - CSU 2010 Study)
nit Clogging l
Clogging
s an Office (bused on UDFCD -CSU 2010 Study)
ed Clogging
Clogging
:aoacity as Mixed Flow
Clogging
t Street Flow Spread (based on sheet O,41tow geometry)
t Flow Depth at Street Crown
Inlet Interception Capacity (assumes clogged condition)
pacify IS GOOD for Minor and Major Storms (>Q PEAK)
MINOR MAJOR
trial Type =
a.= inches
No =
PonCiig Depth= inch.
MINOR MAJOR U Ova'ride'...
I. (Q)=
Wo=
h=
Cn(G)=
C. (G)=
C.(G)=
MINOR
MAJOR
L.(C)=
3.00 300 fee
H.
6.50
6.50 I.
Hw
5.25
5.25 im
0.00
0.00 del
Theta =
2.00
2.00 fee
We=
C�(C)=
0.10
0.10
C.(C)=
3.70
3.70
C.(C)=
0.66
0,66
MINOR
MAJOR
Coef=
1.75
1.75
Clog =
0.29
0.29
MINOR
.MAJOR
Q.
4.76
8.51 cis
0-
3.37
6.03 cls
MINOR
MAJOR
0a=
15.58
17AG cis
0m=
11.03
12.37 cfs
MINOR
MAJOR
Qm=
7.75
10A7 cis
Its
Q_=
5,49
7.T]
Q
feel
feet
Cost =
Clog=
Q.,=
a-
01=
Qa=
MINOR_ MAJOR
1.00
1.00
0.D6
006
MINOR_ MAJOR
2.13
4.69 cfs
2.01
4A3 CIS
MINOR MAJOR
16.06
17.55 cis
15.17
76.58 cfs
cl-
Q-=
MINOR MAJOR
6.03
7.80 �cfs
4.75
T37 cis
L
T
d..
Q.
9.00
9.00
5.0
208
0.0
1.4
,at
T-Cmwn
chea
e
v
7 00
1.73
.31
R((,O
.50
760
00
Daman No. i6 Combination
2.00
2.00
3
3
5.12
6.50
HFHLV001.01_UD-lnlet_v3.14_Ouad No 16 Combo-15 CL to FL.vlsm, Inlet In Sump 312212016, 11:43 PM
' INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = Quad No. 16 Combination Inlet 1 15' CL to FL
X-Lo (C)-,1
HLurb
H-tact
Wp
Wp
W
Lo (G)
of Inet
Depression (additional W confruous gutter depressian'a' from')-AJbW)
mr of Unit (Nets (Grate or Cub Opening)
r Depth at Flowline (outside of local depression)
r trrfemednn
T of a Unit Greta
r of a Urdt Greta
Opening Rat. for a Grate (typical values 0.15-0.90)
ling Factor for a Single Grata (typical value 0.50 - 0.70)
i Weir Coefficient (typical value 2.15 - 3.60)
i Orifice Coefficient (typical value 0.60 - 0.80)
Opimi g Information
h of a Uric Curb Opening
A of Vertical Curb Opening in Inn es
it of Curb OnFce Throat in Indies
r of Throat (see USDCM Figure ST-5)
Width for Depession Pan (typically fho gutter WdM of 2 feet)
ling Factor fora Single Curb Opening (Typical wWe 0.10)
Opening Weir Coefficient (typical value 2.3-3.7)
ng CoeOicierd for Multiple Units
ng Factor for Multiple Unts
Capacity as a Well (based on UDFCD - CSU 2010 Study)
rption w its ut Clogging
ipoon with Clogging
Capacity as a Oraka (based on UDFCD - CSU 2010 Study)
rption wfbout Clogging
rption win Clogging
Capacity as Mixed Flow
rption without Clogging
rption with Clogging
thins Grab Ca uscity (assumes cloaaed condalonl
.irg Goeffidert for Multiple Units
ung Factor for Mreiplo Unto
Opening as a Weir (!rased on UDFCD -CSU 2010 Study)
aptionwithoutClogging
Won whir Clogging
Opening as an Drake (based on UDFCD -CSU 2010 Study)
soon.11nout Clogging
option with Clogging
Opening Capacity as Mixed Flow
option w itiout Clogging
option wiM Clogging
train Length
fare Street Flow Spread (based on sheet )-Aaow geometry)
fart Flow Dept, at Street Crown
Inlet Interception Capacity (assumes clogged condition)
Inel Type
a.
No
Ponding Depth
r
41QI
W.
A,
G (G)'
C. (G)
C.(G)
MINOR
MAJOR
Denver No. 16 Combirunon
2.D0
2.00
4
4
5.12
fi.00
MrNnn
uarno
3.00
3,00
1.73
173
0.31
0.31
0.50
0.50
3.60
3,60
0,60
0.60
MINOR MAJOR
3.00 3.00
cMo
Q override Depths
Set
3eI
T(C)=
�(C)=
%=(C)=
0.10
210
370
O66
3.7()
0.66
MINOR MAJOR
Cod 1.88 1Sfi
Clog = 0.24 0.24
MINOR MAJOR
Qr=
Q- =1
Q. =
Q.
5.91
1 8.69 ids
4.52
1 6.65 cis
MINOR MAJOR
20.77
22.40 Ids
15.89
17.14 ids
MINOR
MAJOR
MINOR
MAJOR
Coef=
1.25
1.25
Clog =
0.05
0.05
MINOR
MAJOR
Q.
•••2.84 ••
••-•4.64
cis
)., =
2.69
4.59
cts
MINOR
MAJOR
Q.
21.42
22.70
afs
Qo=
20.30
21.52
cfs
MINOR
MAJOR
'
D- = 6.36 B.
Oa.s = 2.fi9 d.
tune
L
T
dcaowx
aa:
12,00
12.00
ISO
18.7
0.0
0.9
set
t.>TCmwn
robes
IHFHLV001.01_U6lnlet J3.14_Quad No 16 Combol5 CL to FL.Asm, Inlet In Sump 3J2212016, 11:41 PM
' INLET IN A SUMP OR SAG LOCATION
PnoJect = East Ridge Second Filing
trial ID = Quad No. 16 Combination Inlet 115' CL to FL
{--Lo (C)T
' H-Curo
H-Vert
We
Wp
W
'1 L. (G)
of Inlet
I Depression (additional to continuous gutter depression 'a'from'O-AIbW)
as of Unt INits (Grata or Curb Opening)
r Depth at Fbwline (outside of local depression)
1 Intarmation
b of a Unt Grate
I of a Unit Grate
Opening Ratio for a Grote (typleal vabes 0.15-0.90)
1bg Factor for a Single Grate (typical vacs 0.50 - 0.70)
u Weir Coefficient (typical vabe 2.15 - 3.60)
e Orl Ceeffident (typical valve 0.60 - 0.80)
Opening tr/ormazion
:h of a Unit Curb Opening
It of Vertical Curb Opening in Inches
t of Curb Onfio, Times in Inches
I of Throat I. USDCM Figure ST-5)
Width for Depression Pan (typically the gutter wi lth of 2 feet)
14V Factor for a Single Curb Opening typical value 0.10)
Opening Weir Coefficient (typical value 2.3.3.7)
CoeBidentfor M WipleUnits
Factor for Multple Units
pacify ss a Web (lMaed on UDFCD -CSU 2010 Study)
pn without Clogging
sn Wth Clogging
pacify as a Orifice (based on UDFCD - CSU 2010 Study)
3n wif ut Clogging
on with Clogging
pacify as lab ad Fbw .
to without Clogging
,n with Clogging
Inlet Type
sa.
No
Ponding Depth
L.(G).
Wo'
A.
Ce(G).
C. (G)'
C.(G).
MINOR MAJOR
Derwar No. 16 Combina0on
2.00 2.00
4 4
3.00
.73
0.31
0.50
:1.73
3.60
0.60
MINOR MAJOR
3.00 3.00
C. (C) =1 370
law
rFca
at CI
Garde Octets
at
Coed =
1.88
1.88
Clog =
0.24
0.24
MINOR
MAJOR
Ow =
5.91
10.56
cis
4.52
8.08
cfs
MINOR
MAJOR
O' =
20.77
23.28
CIS
Q. 21
15.89
17.81
ds r
MINOR
MAJOR
Curb OparninaAnalysis (Calculat
MINOR.
MAJOR
Cbgging Coefficient for Multiple Units
Coat =
1.25
1.25
Clogging Factor for Multiple Units
Clog =1
0.05
1 0.05
Curb Opening as a Weir(based ran UDFCD -CSU 2010 Study)
MINOR
MAJOR
Interception without Cbgging
G.
2.84
6.25
cis
Interceptionwith Clogging
0..=
2.69
5.93
cis
Curb Opening as an Orifice (bond on UDFCD -CSU 2010 Study)
MINOR
MAJOR
Interception WiMut Clogging
eo=
21A2
23.40
ds
Interception With Clogging
Q.
20.30
22.18
Is
Curb Opening Capacity as Mixed Flow
MINOR
MAJOR
Interception Without Clogging
O,oi=
6.71
10.40
d$
Interception with Cbgging
Om. =
6.36
9.86
cis
Resulting Curb Opening Capacity(assurrlea clogged condition)
On..=
2.69
3.93
cis
Resultant Street Conditions
MINOR
MAJOR
Total Inlet Length
L =
12.00
12.00
feet
esula d Street Flow Spread (based on meet O-Allow geometry)
T =
15.0
20.8
ft.>TCmwn
esultant Flow Depth at Street Crown
dcaowe =1
0.0
1.4
inches
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
Q. =
6.51
12.62
cfe
Is
Inlet Camrev L9 rnnn for Minnr and Maim Stnrma 1>0 PEAKI
Doan emn �rn=
100
100
IHFHLV001.01_UD-iniet_4.14_Duad No 16 Combo-15 CL to FLadsm, Inlet In Sump 3/2212016, 11:42 PM
INLET IN A SUMP OR SAG LOCATION
Project = Easl Ridge Second Filing
Inlet ID = Quint No. 16 Combination Inlet 119 CL to FL
{-Lo (C)-,f
H-Curb H-Vert
We
W
WP
Lo (G)
sn Information limpid)
of Wet
I Depression (additional to continuous guter depression's' frem'Q-Ar*W)
ter of Unit Inlets (Grate or Cub Opening)
r Depth at Fbwlire (outside of local depression)
r Information
in of a Unt Grate
r of a Unit Grate
Opening Ratio for a Grab (typical values 0.15-0.90)
ling Factor for a Single Grate (typical rate 0.50 - 0,70)
h Weir Coefficient (typical value 2.15 - 3.60)
n Orifice CeeRicien (lypiral valve 0.50 -0.80)
Opening Information
M of a Uric Cub Opening
4 of Vertical Curb Openirg In Inches
1 of Curb Orfce Threat in Inches
t of Throat (sea USDCM Figure ST-5)
Width for Depression Pan (typically the gutter width of 2 feet)
)ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical role 233.7)
Operng Orifice Coemtlen (typical value 0.60 -0.70)
a Flow Analysis ICabubtedl
Sing Coefficient for Multiple Units
airg Factor for Mudoe Units
r Capacity as a Wait (based on UDFCD -CSU 2010 Study)
Be a Orals (based on UDFCD -CSU 2010 Study)
out Cbggirg
Clogging
as G7&ad Flow
Coefficient for Multiple Units
Factor for Multiple Unts
anbg as a Weir (based on UDFCD - CSU 2010 Study)
as an Odfica (based on UDFCD - CSU 2010 Study)
Capacity as Mixed Flow
euu Clogging
Clogging
Inlet Type
air
No
Pondirg Depth
L. (G)
W.
A.
Cr(G)
C. (G)
C.(G)
La(C)
H-
Ht_x
Theta
Wp
CG(C)
C. (C)
MINOR MAJOR
Denier No. 16 Combination
2.00
200
5
5
Sd2
B.00
3.00
3,00
1.73
1.73
0.31
0.31
0.50
0.50
3.60
360
0.60
060
0 00 0.00.
2.e0 2.00
ales '
rJco
0 Garide Oeptlrs
Bet
set
Coal =
1.94
Clog=
A
A
0.I
MINOR
MAJOR
Q. =
7.05
10.37 cfs
Q., =
5.68
8.36 ds
MINOR
MAJOR
Q.
25.96
28.00 cfs
C6 =
20.92
22.57 cfs
MINOR
MAJOR
O,o `
12.18
15.34 ds
Qm. =
9.81
12.36 cts
Coef -1
1.31
1.31
Clog=
0.04
O. 4
MINOR
MAJOR
4 =
3.55
6.05 - cis
Q-=
3.40
5.78 cis
MINOR
MAJOR
0.-1
26.77
1 28.38 cfs
0. =
25.60
27.14 uis
MINOR
MAJOR
Ors=
8.39
11.27 cts
Q-=
8.02
10.77 cis
Oca.e =
3.40
5.75 eh
at Length
M Street Flow Spread (based on sheet 0.4gow geometry)
nit Flow Depth at Street Crovm
Inlet Interception Capacity (assumes clogged condition)
ipacity, IS GOOD for Minor and Major Storms (>O PEAK)
L
T
do rl
na ,
ecunso
15.00
/5.00
15.0
18.7
0.0
0.9
Bet
I.>TCmwn
rhes
HFHLVD01.01_UD4nlet_v3.14 Ouint No 16 Combo.tlsm, Inlet In Sump - 3121/2016, 10:50 PM
' INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = Quint No. 16 Combination Inlet 175' CL to FL
4'--Lo (C) t'
' HLurE
H-Vert
We
Wp
W
LO (G)
hifortmation OntollMINOR
MAJOR
Type of Intel
Inlet Type =
Denver No. 16 Cumemation
Local Depristaon(addiOarel to mrnneus gutter degassicin'a'from 'O-Aloes)
a.=
2.00
200
inches
Number of Unl Inats(Grate or Cub Opermg)
No
5
5
Water Depth at Fbwbne(outside of local depression)
Pondlrg Depth=
5.12
6.50
incica
Grata Information
MINOR
MAJOR
0 O.vrEe Depdus
Lergth of a Udt Grate
L. (G) =
3.00
3.00
Ifeet
Width of a Unit Grate
Wu =
1.73
1.73
feet
a Opering Ratio for a Grata (typical values 0. 15-0.90)
A. =
0.31
0.31
logging Factor for a Single Grata (typical vale 0.50-0.70)
G(G)=
0.50
0.50
Grata Weir Coefficient(typical value 2.15-3.60)
C.(G)=
3.60
3.60
Grata Critics Coefficient (typical value 0.60-0.80)
C.(G)=
0.60
0.60
Curb Opening Information
MINOR
' MAJOR
Length of a Unit Curb Opening
L. (C) =
3.00
3.00
feet
Height of Vertical Curb Opening in Inches
H„r=
6.50
6.50
inches
eigN of Curb Orifice Throat In Inches
H. =
5,25
5.25
inches
rgb of Threat (see USDCM Figure ST-5)
Theta =
0.00
0.00
degrees
be Width for Depression Pan(typicaly the gutter width of 2 feet)
We=
2.00
200
feet
logging Factor for a Single Cure Openrg (typical value 0.10)
G (C) =
0.10
0.10
ub Operirg Weir Coefficient(typical value 2.33.7)
C.(C)=
3.70
3.70
ub Operng Ordi Coefficient (typical value 0.60-0.70)
C. (C)=
0.66
0.66
(Cakulanhij
MINOR
MAJOR
logging Coefficient for Multiple UrvN
Coef =
1.94
Clogging Factor for Multiple Unts
Cbg=
0.19
0AS
Grab Capacity as a Weir (based on UDFCD-CSU 2010 Study)
MINOR
MAJOR
Interception.0hout Clogging
O„=
7.05
12.61
cis
Interception with CloWirg
O.a=
5.68
10.16
cis
Grata Capacity as a Oraka (based on UDFCD - CSU 21110 Study)
MINOR
MAJOR
Interception without Clogging
Oa=
25.96
29.09
ids
cts
JrtercepUon with Clogging
=1
20.92
23.45
Grab Capacity as liked Flow
MINOR
MAJOR
Interception without Clogging
Q.
12.18
17.24
cis
Interception with Clogging
Om, =
9 B1
13.89
its
Resublog Grata Capacity (assumes clogged condtbn)
Go,.0 =
5.68
10.16
cb
Curb Opening Flow Jigualvinal,Ca let
MINOR
MAJOR
Cbggirug Coefficient for Multiple Units
Coat =
1.31
1.31
Clogging Factor for Multiple Units
Clog =
0.04
0.04
Curb Opening as a Weir(based on UDFCD-CSU 2010 Study)
MINOR
MAJOR
Interception without Clogging \
l qM=
3.55
7.02
cis
Interception with Clogging
0.,=
3.40
7.48
Lf3
Cum Opening as an Orifice (based! on UDFCD -CSU 2010 Study)
MINOR
MAJOR
INB�CBpllon witleu Clogging
G.=
26.77
29.25
cis
Inteuception with Clogging
Q.
25.60
27.98
cis
Curb Opening Capacity as Mhted Flow
MINOR
MAJOR
Interception wiOeN Cbggirg
On
8.39
13.01
eta
Interception with Clogging
Q--
8.02
12.44
cts
lResukt2 Curb Opening Capacity (assumes clogged condMon)
Our =1
3.40
7.48
cfs
at Length
L
it Street Flow Spread (based on sleet }Allow geometry)
T
it Flow Depth at Street Crown
dcaowr
Inlet Interception Capacity (assumes clogged condition)
�.
pacify l.9 GOOD for Minor and Mapr Storms(-0 PEAK)
Oraviceeouum
15.00
15.00
15.0
20.8
0.0
1.4
i
set
I.>T-Crown
etas
' HFHLV001.01_UD-Intel v9.14_Ouinl No 16 Combo.adsm, Inlet In Sump
312112016, 10:49 PM
INLET IN A SUMP OR SAG LOCATION
Project - East Ridge Second Filing -
Inlet ID - Quint No. 16 Combination Inlet 17S CL to FL
T-Lo (C)-/
HCurE
H-Vert
Wo
Wp
W
La (G)
Depression (additional to cantineus gutter depreesian'a' fmm'O-Ali
er of Unit Inlets (Greta or Curb Opening)
r Depth at Fbwore (outside of local depression)
: Interrelation
h of a Unit Grate
: of a Unit Grew
Opening Ratio for a Grate (typical wiles 0.15-0.90)
ling Factor for a Sirgle Grain (typical vabe 0.50- 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Office Coefficient (typical value 0.60 - 0.80)
Opening Information
h of a Unit Curb Opering
it of Vertical Curb Opening In Inches
t of Curb Orifice Throat in Inches
of Throat (see USDCM Figure ST-5)
Width for Depression Pen (typically the gutter width of 2 feet)
ling Factor fora Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 23.3.7)
ng Coefficient for Multiple Units
ng Factor for Multiple Units
Capacity as a Weir (based on UDFCD - CSU 2010 Study)
obon w itout Clogging
:pion with Clogging
Capacity as a Oreloe (based on UDFCD - CS 2010 Study)
ption wood Clogging
rption with Clogging
Capacity as Mixed Flow
ption widcut Clogging .
:ption with Clogging
ifg Coefficient for Multiple Units
ifg Factor for Multple Urite
Opening Be a Weir (based on UDFCD -CSU 2010 Study)
option without Clogging
option with Clogging
Opening as an Orifice (based on UDFCD - CSU 2010 Study)
.peon w1Mut CloWin, -
Bption Win Clogging
Opening Capacity as Mixed Flow
option wi0put Clogging
spoon with Clogging
[net Length
tent Street Row Spread (bail an sheet O-AOow geometry)
Iniet Type
ate,:
No
Pondifg Depth
L.(G)
We
A.
C, (G)
C (G)
C. (G)
L,(C)
H_ ,
I Hines
Thew
We
G (C)
C. (C)
MINOR MAJOR
Deriver No. 16 Combination
2.00
2,00
5
5
5.12
7.00
3.00
3.00
1.73
1.73
0.31
0,31
0.50
0.50
3.60
3.60
0.60
0 60
5.25 5.25
0.00 0.00
ropes
nchC3
(a Owmrbe Di
Bet
eel
MINOR
MAJOR
Coal=
1.94
1.94
Clog=
0.19
0.19
MINOR
MAJOR
O,
7.05
15.11
cis
Q.. =
5.68
12.18
cts
MINOR
MAJOR
Da =
2596
30.15
cis
Q. =
20192
24.30
cis
MINOR
MAJOR
Om:=
12A8
19.21
cfs
Om. =
9.81
1 15.48
cis
Inlet Interception Capacity (assumes clogged condition)
aacity IS GOOD for Minor and Major Storms (>Q PEAK)
e
Coef=
Cbg=
Q. =
MINOR MAJOR
1.31
1.31
0.01.
0.04
MINOR MAJOR
_
3.55
_
9.86 cw
Q..=
3.40
9.43 cfs
Dy =
Ov°
MINOR MAJOR
26.77
30.10
cis
25.60,
28.79
efS
MINOR
MAJOR
L
T
dcaowx
Qa'
15.00
'- 15.00
15.0
22.8
0.0
1.9
:et
>TCrown
clew
' HFHLV001.01 UD-Inlet_73.14 Quint No 16 Combo.bsm, Inlet In Sump 3/2112016, 10:51 PM
INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID a Triple No. 16 Combination Inlet 118' CL to FL
,f--Lo (C)-K
HCurb
H-Van
We
W
WP
Lo(G)
m Information Onolrtl
of Inlet
Inlet Type'
Depression (additional to wntinuous gutter depession'sfmm'0-AIbW)
aa.i
mr of Unit Inlets (Grata or Curb Opermw
No
r Depth at Flo kits (outside of Jowl depression)
Pending DepU
r bilornatbn
n of a Uric Grate
L, (G)
I of a Unit Great
W.
Opening Ratio for a Grate (typical vales 0.15-0.90)
h.m'
ling Factor for a Single Grata (typical value 0.50 - 0,70)
G (G)
i Web Coefficient (typical value 2.15 - 3,60)
C. (G):
i Onfiw Coefficient (typical value 0.60-0.80)
Co (G)
Opening Information
h of a Unit Curb Opening
L. (C)'
it of Vertical Crab Opening in Inches
H„.:
t of Curb Orifice Tfsoat in Inches
He.s'
i of Thoat (see USDCM Fgure ST-5)
Thera
Width for Depression Pan (typically the guter width of 2 feat)
Wp'
ling Fadur for a Single Curb Opening (typical value 0.10)
Cr (C)
Opining Weir Coefficient (typical value 2.3-3.7)
C. (Cj:
Denver No. 16 Combination
2.00
2.00
3
3
5.84
6 W
3,00
300
1.73
1.73
0.31
0.31
0.50
0.50
3.60
3.60
0.60
0.60
MINOR MAJOR
0.10 0.10
3.70 3.70
Y s
vice
Q Override Depths
3eI
aet
rig Caefficient for Multiple Units
cost -1
1.75
1 1�75
rig Factor for Multiple Units
Clog =
0.29
0.29
Capacity as a Weir(based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
iption without Clogging
d i =
6.55
7.00 ds
iption with Cbggbg
0.. =
4.64
4.96 cfs
Capacity as a Orfte (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
iputen without Clogging
do=
16.58
16.80 ds
iption with Clogging
Q,. =1
11.75
11.90 ds
Capacity es lOsad Fbw
MINOR
MAJOR
:ption without Clogging
0--1
9.38
1 9.76 CIS
iption with Clogging
0„a =1
6.65
1 6.91 ds
Irg Coefficient for MtaJ* units
Coef -1
1.W
1.00
Ing Factor for Maple Units
Clog =1
0.06
if 0.06
Opening w a Weir(based on UDFCD-CSU 2010 Study)
MINOR
MAJOR
eption without Clogging
Q".
3.32
3.63 ds
aplian with Clogging
0„=
3.14
3.43 cis
Opening as an critics (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
sownwithoia Clogging
0.=
16,86
17.03 ds
aphonwilh Clogging
0a=
15.92
16.08 ds
Opening Capacity as Mbwd Flow
MINOR
MAJOR
epticnwiOoui Clogging
2,42
23 ds
sptionwith Clogging
0,,,.=
6.08
6.38 ds
lung Curb Opening Capacity (assumes clogged condition)
0cw =
3.14
- 3A3 cis
Wet Length
L
ant Street Flow Spread (based on sheet O-AOow geometry)
T
aN Flow Depth at Street Crown
dcaawu'
II Inlet Interception Capacity (assumes clogged condition)
G1a'
7awcclty IS GOOD for Minor and Major Storms pit PEAK)
0rrwa eseuao`
9.00
9.00
18.0
18.7
0.0
0.2
MINOR MAJOR
].O1 7.58
1.00 1.00
eet
L>T-Crown
'dws
HFHLV001.01_UD4nlel_v3.14_Trple No 16 Combo.ldsm, Inlet In Sump 3/2212016. 11:51 PM
1
' INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = Quad No. 16 Combination Inlet 118' CL to FL
.f-Lo (C)-�
HCu2
H-Van
Wo
Wp
W
' Lo (G)
ip-InfoLiDffiCgIl,OnwAl
MINOR
MAJOR
of lniel
Inlet Type =
Demer No. 16 Combination
Depression(additional to continuous gutter depression'sfrom'0-AIloW)
era=
2.00
200
inches
or of Unfit Inieb (Grate or Cub Opening)
No =
4
4
r Depm at Fbwkm(outside of local dimmivilon)
Forcing Oeplh=
5.84
5.84
inohco
I1 504 .0 n
MINOR
MAJOR U Qernda Deems
h of a Unit Gials
L.(G)=
3.00
of a Unit Grate
W.
1,73
teat
Opening Ratio for a Grate (typical rah os 0.150.90)
A.v =
0.31
ling Factor for a Single Grate(typical value 0.50-0.70)
G(G)=
0.50
M3,Mfeet
Weir Coemcient(typical vahe 2.15-3.60)
C. (G)=
3.60
Onfice Coefficient(typical value D60-0.80) -
C.(G)=
0.60
Opening Information
MINOR
MAJOR
h of a Unit Cum Opening
L,(C)=
3.00
3.00
feet
a of VeNtal Cub Opening in hoes
H,,. =
6,50
6.50
inches
a of Curb Orifice Throat in Irutes
ll r =
5.25
5.25
irties
of Throat (sae USDCM Figure ST-5)
Theta =
0.00
0.00
degrees
fdihfor Depression Pan(typicay the guitar width of 2 feet)
Wu=
2.00
200
feet
ling Factor for a Single Cub Opening (typical value 0.10)
G (C)=
0.10
0.10
Opening Weir Coefficient(typinal value 2.3-3.7)
C..(C)=
3.70
3.76
ng Coefficient for Multiple Units
ng Factor for Multiple Units
Capacity as a Weir(based on UDFCD - CSU 2010 Study)
pfion without Clogging
pfiin wim Clogging
Capacity as a critics (based on UDFCD -CSU 2010 Shutt)
pion without Clogging
p5on wim Coggin,
Capacity as IAssd Flow
pfion wi0eut Clogging
pdon will, Clogging
Coefficient for Multiple Units
Factor for Mcaipb Units
wining as a Weir(based on UDFCD -CSU 2010 Study)
on wiffeut Clogging
on wim Clogging
aNng as an OrBoe (based on UDFCD - CSU 2010 Study)
on vitrout Coggin,
on with Clogging
anmg Capacity as Mired Flow
on w itout Clogging
on with Clogging
et Lergm
A Street Flow Spread (based on shoal O-AOow geometry)
t Flow Depth at Street Crown
Inlet Interception Capacity (assumes clogged condition)
oecav IS G000 for Minor and Maio, Stoops b0 PEAKI
Coat =
Clog =
0.,=
0..=
Oa=
1.88
1.88
0.24
0.24
MINOR MAJOR
8.13
1 8.13 cts
6.22
6.22 Ors
MINOR MAJOR
22.11
22.11 lds
Q.
16.91
16.91 cfs
MINOR MAJOR
0.-1 12.07 12.07 cis
9.23 923 cfs
622 6.22 efs
_MINOR MAJOR
Coat = 1.25 1.25
clog= 0.05 0,05
0-
MINOR MAJOR
4.43
4,43 cfs
4.20
4.20 cis
Oe=
Oa=
0.,;=
0,..=
MINOR MAJOR
2247
22.47 cts
21.30
21.30 Ors
MINOR MAJOR
8.58
B.SB cis
Its
8.13
8.13
L
T
dCRMN
a.
12.00
12.00
180
18.0
0.0
0.0
set
niches
' HFHLV001.01_Udlnlet_v3.14_Triple No 16 Combo.Asm, Inlet In Sump 3r=016, 11:52 PM
' INLET IN A SUMP OR SAG LOCATION
Project - East Ridge Second Filing
Inlet ID = Quint No. 16 Combination Inlet 118' CL to FL
./Lo (C)-,/
' HCurb
H-Vert
We
Wp
W
' Lo (G)
Depression (additierel to mriti uous gutter depression'a' fmm'0-AIbW)
or of Unit India (Grate or Curb Opening)
r Depth at Fbwtine (outside of bcal depression)
r Infam atbn
h of a Uric Grate
i of a Unt Gate
Openng Ratio for a Graft, (typical rakes 0.15-0.90)
lira Factor for a Single Gate (typical value 0,50 - 0.70)
Weir Coefficient (typical value 2A5 - 3SO)
Orifice Coefficient (typical value 0.60 - 0.80)
Opening Information
h of a Unt Cure Operirg
d of Vertical Curb Opening in Inches
t of Cure Orifice Throat in Inches
of Throat I. USDCM Fig" ST-5)
Width for Demssion Pan (typically the gutter width of 2 feet)
ling Factor for a Single Curb Opening (typical wake 0.10)
Opening Weir Coefficient (typical vale 2.3.3.7)
MINOR MAJOR
Inist Type =
Denver No. 16 Combination
eey=
2.00
1 200
inches
NO =I
5
1 5
Pording Dep[h=
5.84
6,00
inctca
MINOR MAJOR
Qiende Depths
L.(G)=
3.00
3.00
fee
W.
1.73
1.73
feel
A,am=
0.31
0.31
G (G) =
0.50
0.50
C„ (G)=
3.6
33.60
C.(G)=
0.60
'0.60
MINOR MAJOR'
'
L.(C)=
3.00
3.00
feet
H,aa =
6.50
6.50
inches
Ha
5.25
5.25 -
inches
Theta
0.00
000
degrees
Wv=
2.00
2D0
feet
G(C)=
0.10
0.10
C. (C) =
3.70
3.70
Grate Flow Analysis
MINOR
MAJOR
Clogging Coefficient for MWfiple Units
Coef=
1.94
1.94
Cbggirg Factor for Muliple Unts
Clog =
0.19
0.19
Grats Capacity as a Wait (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
InerceptbnwithoutCbggirg
4.=
9.71
10.37
cis
INereption win Cbggbg
tie=
7.82
8.36
ds
Grate Capacity as a OrBbe(based on UDFCD -CSU 2D70 Study)
MINOR
MAJOR
Interception without Clogging
0a=
27.64
28.00
Icts,
Interception Win Cbggbg
0®=
22.28
22.57
cis
Gab Capacity as lased Flow
MINOR
MAJOR
InterceptionwitnoutClogging
G--1
14.74
1 15.34
cis
Interception Win Clogging
0- =1
11.88
1 12.36
cis
Resulting Grate Capacity (assumes clogged condition)
1 =
7.82
8.36
cis
Curb Ooenlno Flow Analysis lCalculated -
MINOR
MAJOR
Clogging Coefficient for Mrlliple Urals
Cost =
1.31
1.31
Clogging Factor for Mucple Unib
clog=
0.04
0.04
Curb Opening as a Weir(based on UDFCD -CSU 2010 Study)
MAJOR
Interception without Clogging
Qw=
_MINOR
5.53
6.05
cis
Interception Win Clogging
0.a=
5.29
5.78
cis
Curb Opening as an Orfice (based on UDFCD-CSU 2010 Study)
MINOR
MAJOR
Interception without Clogging
- Oa=
28.09
28.38
is
terception with Clogging
Q.
26.87
27.16
cis
Openingurb OpeniCapacity as Mbed Flow
MINOR
MAJOR
nterception withoutClogging
[Interception
0,,.=
10.72
11.2]
cis
with Clogging
0,,,,=
10.26
10.77
cis
trial Length
Unit Street Flow Spread (based on sheet O-A low geometry)
Ant Flow Depth at Sli Crown
d Inlet Interception Capacity (assumes clogged condition)
:apacily IS GOOD for Minor and Major Storms (>Q PEAK)
L -1
16.00
1 15.00
feet
T=
18.0
18.7
8.>TCmwn
4x . =1
0.0
0.2
irides
MINOR
MAJOR
Qa =
11.83
12.75
C1S
Q wxae ..
1.00
1.00
cis
' HFHLVD01.01_UD-Inlet v3.14 Tdple No 16 Combo.bsm, Inlet In Sump
312212016, 11:52 PM
INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = Triple No. 16 Combination Inlet 1 25' CL to FL
{-L. (C)-A
HCurb
H-Nett
Wo
Wp
W
Lo (G)
Depression (additional to caminuous gutter devession'a' tram'G-AIbW)
er of Unit (Nets (Grate or Curb Opening)
r Depth at Fbwline (aublde of local depression)
. Information
h of a Unit Grate
i of a Unit Gram
Operng Ratio for a Grate (typical values 0,15-0.90)
ling Factor for a Single Grate (typical raee 0.50-0.70)
Weir Coefficiem (typical vabe 2.15 - 3.W)
r Odfice Coefficient (typical value 0.60 - 0.80)
C onfng Information
h of a Unit Curb Opening
it of Vertical Curb Opening in Inches
t of Curb Orifice Throat in Inches
n
i of Throat (see USDCM Fig. ST-5)
Width for Depression Pan (typically the gutter width of 2 feet)
ling Factor for a Single Curb OWrdnq (typical value 0.10)
Opening Weir Coefficient (typical value 2.3.3.7)
ng Coefficient for Multiple Urim;
ng Factor for Multiple Units
Capacity as a Weir (based on UDFCD -CSU 2010 Study)
rplion without Clogging
rplon with Clogging
Capacity as a Ombe (based on UDFCD - CSU 2010 Study)
rplion widgut Clogging
rplion with Clogging
Capacity as Mired Flow
:lotion wilteM Clogging
rplion with Clogging
i g Coefficient for Multiple Units .
ring Factor for MWiple Ums
Opening as a Weir (baaad on UDFCD - CSU 2010 Study)
spoon without Clogging
sption WM Clogging
Opening as an Critics (based on UDFCD - CSU 2010 Study)
option vriMout Clopping
eption Win Clogging
Opening Capacity as Mired Flow
MINOR MAJOR
Inet Type =
Denver No. l 6 Combiretlon
aaw=
2.W
1 2.00
inches
No =
3
1 3
Pondirg DapM=
6.00
&00
inclv:o
O Uwrloe DepMs
MINOR MAJOR
L.(G)=
300
3.00
feet n
W.=
1.73
173
feet
A.ru=
0.31
0.31
Ci(G)=
0.50
0.50
C. (G)=
3.60
3.60
C.(G)=
O.60
OW
MINOR MAJOR
L. (C) =1
3.00
300
,n. H=
6.50
lem
6.50
nces
11,Oe=5.25
525
nchesTheta=
0.00
0,00
eoreas
Co (c) =1
0.68
I 0=66 1
MINOR
MAJOR
Cost =
1.75
1.76
Clog =
0.29
0.29
MINOR
MAJOR
0.=
7.00
7.W cis
O.. =
4.96
1 4.96 Ids
MINOR
MAJOR
0.
16.80
16.80 cis
Q. =
11.90
11.90 cis
MINOR
MAJOR
Qm,=
9.76
9.76 cis
0.,.=
6.91
6.91 cis
cost =
1.00
too
Cbg=
0.06
O.W
MINOR
MAJOR
Q,a=
3.63
3.63 cis
0„=
3.43
3.43 cfs
MINOR
MAJOR
Qo =
17.03
17.03 cis
Q. =
16.08
16.08 cis
MINOR
MAJOR
Q..I
616
1 6.76 cis
Qom =I
El
1 6.38 cis
Resulting Curb Opening Capacity (assumes clogged condition)
.+o.e `
-J..Jl
a.ea
1.
Rewbanl $"at Conditions
MINOR
MAJOR
Tout Intel Lenglit
L=
9.00
9.00
feat
enson: Street Flow Spread (based! on sheet "Now geometry)
T=
18.7
18.7
it
Resultant, Flow Depth at Street Crown
dcaowu=
OO
0.0
Inches
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
7.56
7.56
Cs
Inlet Capacity IS G0O0 for Minor and Major Starms(>Q PEAK)
O.rwcasounsp=
1.00
1.00
cis
' HFHLVD01.01_UD4nlet_v3.14_Quad No 16 Con l5 CL to FL.dsm, Inlet In Sump 3122/2016, 11:46 PM,
INLET IN A SUMP OR SAG LOCATION
Project = East Ridge Second Filing
Inlet ID = Six No. 16 Combination Inlet 1 25' CL to FL
T-Lo (C)T
HCurb H-Vert
We
Wp
W
L. (G)
Informatimt Ono
MINOR
MAJOR
type of IMet
Inlet Type =
Derwer No. 16 Combination
-ocal Depression(addi8ar21 to oarleneus gutter depression'a'fmm'O-AIbW)
3y -
2.00
200
inches
Number of Unit trials (Grate or Cub Operirp)
No=
6
6
ater Depth at Fbwene (outside of local d epmlo ssn)
Polling Depn =
6.00
6.00
inchcs
Grate Inlemefbn
MINOR
MAJOR
� Depths
Lergn of a Unit Grate
Lo (G) =
3.00
300
feet
dth of a Unit Grate
Wo'
1.73 ,
1.73
feet
me O WNrg Ra0e for a Grate (typical values 0.15-0.90)
A. =
0.31
0.31
Clogging Factor for a Single Grain (typical vale 0.50-0.70)
G(G)=
0.50
0.50
Grate Weir Coefficient (typical vaWa 2.15.3.60)
C„(G)=
3.60
3.60
Grate Onfice Coefficient (typical value 0.60 -0,80)
C. (G) =
0.60
0.60
Curb Opening Information
MINOR
MAJOR
Length of a Unll Cub Opering
L.(C)=
3.D0
300
feet
eight of Vertical Cub Opening in Inches
ff. .
6.50
6.50
inches
Height of Curb Orifice Tlmat in Inches _
Hw,w =
5.25
525
Inches
Angle of Tfroat (see USOCM Fig" ST-5)
Tleta =
0.00
000
degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wc=
2.00
2.00
feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
G(C)=
0.10
0.10
Curb Opening Weir Coefficient (typical value 2.3.3.7)
C.(C)=
3.70
370
Curt, Opening Onfice Caa0idOnt(typical value 0.60-0.70)
C.(C)=
O66
O66
Grate Saw Analysis lCalculateal
MINOR
MAJOR
Cbggirg Coef0ciM for Multiple Units
cost =1
1.97
1 1.97
Clogging Factor for MWpb Units
Clog =
0.16
0.16
Grata Capacity as a Weir (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
Interception winout Clogging
Qw=
12.06
12.06
cis
Interception will Clogging
O„=
1008
10.08
cis
Grab Capacity as a Orifice (based on UDFCD - CSU 2010 Study)
_MINOR
MAJOR
Inerceponn wtbeut Clogging
Q"=
33.60
33.60
cis
Interception with Clogging
Oa=
28.08
28.08
cis
Grab Capacity as Mixed Flow
MINOR
MAJOR
Irteicep0on widen Clogging
Ow =
16.12
11; j2
cis
Interception with Clogging �
0,-=
15.14
15.14
CIS
asu8hng Grab Capacity (assumes clogged coMebn)
Dam =
10.08
10.08
cis
Curb OpentraFbw Analysis (CalculMedl
MINOR
MAJOR
Clogging Coefficient for Multiple Units
Goat =
1.31
L31
Clogging Factor for Multiple Un s
Cbg =
0.04
0.04
Curb Opening as a Weir(based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
Interception w itout Clogging
DM=
'726
7.26
cis
Interception win Cbgging
0,,.=
6.99
6.99
cis
Curb Opening as an Orifice lbaed on UDFCD -CSU 2010 Study)
MINOR
MAJOR
Interception witout Clogging
Ca=
34.06
34.06
cfa
Interception with Clogging
Q.
32.82
32.82
cis
Curb Opening Capacity as Mixed Flow
MINOR
MAJOR
Itemeption without Clogging
Ow=
13.52
13.52
cis
Interception Win Clogging
13.03
13.03
Ms
Resultant Conditions
MINOR
MAJOR
Total Inlet Length
L=1
18.00
18.00
feet
Resultant Street Flaw Spread (bssed on sheet "Now geometry)
T=I
18.7
1 18.7
fl
Resultant Fbw Depth at Street Crown
dcxow.=j
0.0
1 0.0
inches
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
Qc =
15.39
1139
CIS
Inlet Capacity IS GOOD for Minor and Malay Storms(>Q PEAK)
DwxnEauen=
1.00
1.00
is
HFHLV001.01 UD-Inlet v3.14 Quad No 16 Combo-15 CL to FL.xism, Inlet In Sump 312212016, 11:47 PM
INLET IN A SUMP OR SAG LOCATION
Project East Ridge Second Filing
Inlet ID = Seven No. 16 Combination Inlet 1 25' CL to FL
./-Lo (C)-K
H-CurO
H-Ve
we
Wp
W
L. (G)
MINOR MAJOR
of Irist
Inlet Type =
Derwer No. 16 Combination
Depression (additional to continuous gutter depression'ofrom'0-A0oW)
avw=
2.00
1 200
irdes
oer of Unit Inlets (Grata or Cub Opening)
No =
]
1 7
r Dept, at Fbwlne (outside of burl depression)
Pending Depth =
6.00
6.00
and oo
r Information
MINOR
MAJOR 0 O.erride Depths
T of a Unit Grale
- Lo(G)=
3,00
3,00
feel
i of a Unit Grate
W. =
1.73
1.73
feet
Oaring Ratio for a Gran (typial values 0.15.0.90)
A.
0.31
0.31
Ling Fedor for a Single Grate (typical value 0.50-0.70)
G(G)=
0.50
0.50
i We Coeffident(typical value 2.15-160)
C.(G)=
3.60
3.60
i Onfice Coefficient(typiml value 0.60-0.8U)
C.(G)=
0.60
060
Opening bformadun
MINOR
MAJOR
:h of a Unit Curb Doering -
Lo(C)=
3.00
3,00
feet
A of Vertical Cub Opening in Inches
H„wr =
6.50
6.50
inches
t of Curb Orifice Throat in Indsas
Hw,e =
5.25
5.25
inches
, of Throat I. USDCM Figure ST-5)
Theta =
0.00
0.00
degrees
Width for Depression Pan (typically the gutter v dth of 2 feet)
WPM
2.00
2.00
feel
Ping Fedor for a Single Curb Clearing (typical wire 0. 10)
G(C)=
0.10
0.10
Opering Weir Coefficient (typical raA 2.3-3.7)
C,.(C)=
3.70
3.70
rg Coefficient for Multiple Units
ng Fedor for Multiple Units
Capacity n a Weir (based on UDFCD -CSU 2010 Study)
iption Wit,out Cbgging
Iption with Clogging
Capacity as a Orifice (based an UDFCD - CSU 2010 Study)
:ptbn without Clogging
Ipbon wit, Clogging
Capacity as Mixed Fbw
:ption Without CbWing
,lotion with Clogging
Itrg Coefficient for Multiple Units
lug Factor for Multiple Unts
Opening as a Weir (based on UDFCD -CSU M10 Study)
option without Clogging
epibn witn Clogging
Opening man Orviea (based on UDFCD -CSU 2010 Study)
option w avautCbggirg
option with Clogging
Opening Capacity as Mixed Flow
eption withoutClogging
aldion with Clogging
vial Length
lent Street Flow Spread (based an sheet O Arow geometry)
tant Flow Depth at Street Crown
it Inlet Interception Capacity (assumes clogged condition)
rapacity IS GOOD for Minor and Major Storms (>0 PEAK)
Cost =
Clog =
0.=
0-=
Oo =
0„ =
MINOR MAJOR
cis 1
cis
ds
ds
1.98
1.98
0.14
0.14
MINOR MAJOR
13.74
13.74
11.80
11.80
MINOR _ MAJOR
39.20
39.20
33.66
33.66
Cost=
Clog=
0.=
0„=
1.33
1.33
0.03
0.03
MINOR MAJOR
8.47
8.47 cis
Il
8.20 ds
Do=
Ca =
MINOR MAJOR
39.73
39.73 cis
3847
3847 ds
Mcw=I
8.20
I 8.20
id%
L =
MINOR
21.00
MAJOR
21.00
feet
T=I
18.7
18.7
0
cl o . -1
0.0
0.0
inches
MINOR
MAJOR
Q. a
18.03
18.03
CCIS
HFHLV001.01_UD-Inlel_0.14_Ouad No 16 Combo-15 CL to FL.bsm, Inlet In Sump
3rM2016, 11:48 PM
Galloway
Planning. Architecture. Engineering.
STREET CAPACITY CALCULATIONS
Gaoway
Planning. Architecture. Engineering.
ALLEY SECTION
MINOR AND MAJOR STORM EVENTS
ALLEY OPTION I DRAINAGE TO ONE SIDE
6
20 ROW
9
BACK OFCUtB TO
BACKOFCORB
SIDE TRER
OTW
DASED ON NGRCRAO
�u•1l
SEE RD PEP FOR
MORE DETAIL)
I
ENT
PROPOM PAVEMPROPOSIWE
®
MON MR)
OOlALSE ".)
e
U
m
c
1
C
s
E
0
0 x
>
coo
000
000
o
0
.1
0000
O
00
m
a
_m 2,
a u
.mrm
mmm
m a
r
Pn o,mn
r
N
rym
a,
O m
N
N
C N
N
e
N O
N
c+
N
e
N N
tid
N N
r'
vi
mi
N e-
�aU
m
W
.Q
q C
S
O
_q
O DU
T
m
P m
m o
V LL
m
O
C
y
m LLg
m
10 N
0Nm 0tm7
0mN
0Om 0•N-
0mm
0•10-
0OimLl
0r0
0itm�t
0mq
0
O.9�Pqq
2
ZO00
Oq
m
m
r M
6 Tl
m m
m
r m
r
m o,
w
r m
m r
w
N
h m
aU
€sue
=
O I1
•
J O
O
O O
O
C O
O
O
O O
O O
O
O
O O
m m>
0 u
O O
O
O
O O
O O
O
O
00
U
o m
m ..
m fLr
m
-
m
nai
Din
�u
vi
� LL
m
m
m
m
m
m�
m (7
- d
-
- O
-
7m
J
D
O Sq�m
mm
7 rm
mmm
m
N
r,p
(•lmmm
OO
J Q L
m
m
�- m
m
m m
m
m
m
0 w
N
m
O m
C`
❑
D
u
a
o g
O O ij
m o
N N
m
E
7-Do!mcm
^I �
�
.-
N
.-
Cl
vm
N •'
�n
Cl �
nmlom
N
� lV
m
m o
N �'f
u>
O
m m
m
m
m
m m
m
0
gl 9
N m
L
m m
m
g m
aaa
aaa
aaa
a
aaaa
aaaa
as
mmm
mmm
mmm
m
mmmm
mm>mn
mm
aa`a
aaa`
aaa`
a
aa`a�
a`�an.
LLa
w
m
LL U
m m
m Im
m
N
m
m
m m
m m
m
m
m
N
m m
m 1(1
m
Im
m
m
m
m
m m
m Im
L m
m m
m
m m
m
m m
m
m
m m
m m
m
m m
m
m m
Em
m
m
aaa
m
m m
aaa
m
m m
aaa
m
a
m m
aaaa
m m
m
aaaa
m m
m
m m
as
Z
m m
m
m m
m
0 m
0
m
m m
m m
m
m m
ym
m m
O
m m
m
m m
m
m m
N
m
R t0
m m
m
m m
m
m m
C
a
O_
t7
N m
m
m r
m
N
N V
m r
N_
t7 V_
m_
O
m
Q Q
Q
m mm
U U
U
LL
0 (DU'
0
'P
1
Minor and Major Storm Events Alley Section .
;Project Description
Friction Method Manning Formula
Solve For Discharge
Input Data
Channel Slope 0.00600 ft/ft
Normal Depth 0.51 ft
Section Definitions
[ S' tation (ft) Elevation (ft)
-0+08
100.16
0+00
100.00
0+17.4173
99.65
0+18.584
99.54
0+20
99.93
0+28
100.09
Roughness Segment Definitions
Roughness
ffi Start Station Ending Station Coefficient
(-0+08,100.16j (0+28,100.09) 0.016
NOTE:
For the alley section shown on the previous page:
- 99.93 is the top of the curb (i.e., no easement encroachment)
- 100.08 is the approximate water depth at the easement
line with encroachment.
Channel Slope Water Surface Wetted Perimeter
(ft/ft) Elevation (ft) Discharge (ft3/s) Velocity (ft/s) , Flow Area (ft') (ft) Top Width (ft)
Top of Curb
0.00600
99.93
5.59
2.11
2.65
16.71
16.64
0.00600
99.98
7.85
2.18
3.61
21.71
21.64
0.00600
100.03
11.06
2.30
.4.82
26.71
26.64
@ Easement Line
0.00600
100.08
15.32
2.44
6.27
31.71
31.64
0.00650
99.93
5.82
2.20
2.65
16.71
16.64
0.00650
99.98
8.17
2.26
3.61
21.71
21.64
0.00650
100.03
11.51
2.39
4.82
26.71
26.64
0.00650
100.08
15.95
2.54
6.27
31.71
31.64
Bentley Systems, Inc. Haestad Methods SoB kftq:fftwMaster V81 (SELECTseries 1) [08.11.01.03] .
3120/2016 1:37:45 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 1 of 4
J
Minor and Major Storm Events j Alley Section
Input Data
Channel Slope Water Surface Wetted Perimeter
jWft) Elevation (ft) Discharge (ft'/s)` Velocity (ftls) Flow Area (ft') (ft) Top Width (ft)
0.00700
99.93
6.04
2.28
2.65
16.71
16.64
0.00700
99.98
8.48
2.35
3.61
21.71
21.64
0.00700
100.03
11.95
2.48
4.82
26.71
26.64
0.00700
100.08
16.55
2.64
6.27
31.71
31.64
0.00750
99.93
6.25
2.36
2.65
16.71
16.64
0.00750
99.98
8.78
2.43
3.61
.21.71
21.64
0.00750
100.03
12.37
2.57
4.82
26.71
26.64
0.00750
100.08
17.13
2.73
6.27
31.71
31.64
0.00800
99.93
6.46
2.44
2.65
16.71
16.64
0.00800
99.98
9.07
2.51
3.61
21.71 _
21.64
0.00800
100.03
12.77
2.65
4.82
26.71
26.64
0.00800
100.08
17.70
2.82
6.27
31.71
31.64
0.00856
99.93
6.66
2.51
2.65
16.71
16.64
0.00850
99.98
9.34
2.59
3.61
21.71
21.64
0.00850
100.03
13.16
2.73
4.82
26.71
26.64
0.00850
100.08
18.24
2.91
6.27
31.71
31.64
0.00900
99.93
6.85
2.58
2.65
16.71
16.64
0.00900
99.98
9.62
2.66
3.61
21.71
21.64
0.00900
100.03
13.55
2.81
4.82
26.71
26.64
0.00900
100.08
18.77
2.99
6.27
31.71
31.64
0.00950
99.93
7.04
2.65
2.65
16.71
16.64
0.00950
99.98
9.88
2.74
3.61
21.71
21.64
0.00950
100.03
13.92
2.89
4.82
26.71
26.64
0.00950
100.08
19.28
3.07
6.27
31.71
31.64
0.01000
99.93
7.22
2.72
2.65
16.71
16.64
0.01000
99.98
10.14
2.81
3.61
21.71
21.64
0.01000
100.03
14.28
2.96
4.82
26.71
26.64
0.01000
100.08
19.78
3.15
6.27
31.71
31.64
0.01050
99.93 -
7.40
2.79
2.65
16.71
16.64
0.01050
99.98
10.39
2.88
3.61
21.71
21.64
0.01050
100.03
14.63,
3.04
4.82
26.71
26.64
0.01050
100.08
20.27
3.23
6.27
31.71
31.64
0.01100
99.93
7.57
2.86
2.65
16.71
16.64
0.01100
99.98
10.63
2.95
3.61
21.71
21.64
0.01100
100.03
14.98
311
4.82
26.71
26.64
0.01100
100.08
20.75
3.31
6.27
31.71
31.64
0.01150
99.93
7.74
2.92
2.65
16.71
16.64
Bentley Systems, Inc. Haestad Methods So8didI9q:f t6wMaster V8i (SELECTseries 1) [08.11.01.03]
Minor and Major Storm Events I Ailey Section
Input Data
Channel Slope Water Surface Wetted Perimeter
(H!ft) Elevation (ft) Discharge (ft3/s) Velocity (ft/s) Flow Area (ft') (ft) Top W7(ft)
0.01150
99.98
10.87
3.01
3.61
21.71
21.64
0.01150
100.03
15.31
3.18
4.82
26.71
26.64
0.01150
100.08
21.22
3.38
6.27
31.71
31.64
0.01200
99.93
7.91
2.98
2.65
16.71
16.64
0.01200
99.98
11.10
3.08
3.61
21.71
21.64
0.01200
100.03
15.64
3.25
4.82
26.71
26.64
0.01200
100.08
21.67
3.45
6.27
31.71
31.64
0.01250
99.93
8.07
3.04
2.65
16.71
16.64
0.01250
99.98
11.33
3.14
3.61
21.71
21.64
0.01250
100.03
15.96
3.31
4.82
26.71
26.64
0.01250
100.08
22.12
3.53
6.27
31.71
31.64
0.01300
99.93
8.23
3.10
2.65
16.71
16.64
0.01300
99.98
11.56
3.20
3.61
21.71
21.64
0.01300
100.03
16.28
3.38
4.82
26.71
26.64
0.01300
100.08
22.56
3.60
6.27
31.71
31.64
0.01350
99.93
8.39
3.16
2.65
16.71
16.64
0.01350
99.98
11.78
3.26
3.61
21.71
21.64
0.01350
100.03
16.59
3.44
4.82
26.71
26.64
0.01350
100.08
22.99
3.66
6.27
31.71
31.64
0.01400
99.93
8.54
3.22
2.65
16.71
16.64
0.01400
99.98
11.99
3.32
3.61
21.71
21.64
0.01400
100.03
16.89
3.51
4.82
26.71
26.64
0.01400
100.08
23.41
3.73
6.27
31.71
31.64
0.01450
99.93
8.70
3.28
2.65
16.71
16.64
0.01450
99.98
12.21
3.38
3.61
21.71
21.64
0.01450
100.03
17.19
3.57
4.82
26.71
26.64
0.01450
100.08
23.82
3.80
6.27
31.71
31.64
0.01500
99.93
8.84
3.33
2.65
16.71
16.64
0.01500
99.98
12.41
3.44
3.61
21.71
21.64
0.01500
100.03
17.49
3.63
4.82
26.71
26.64
0.01500
100.08
24.23
3.86
6.27
31.71
31.64
0.01550
99.93
8.99
3.39
2.65
16.71
16.64
0.01550
99.98
12.62
3.50
3.61
21.71
21.64
0.01550
100.03
17.78
3.69
4.82
26.71
26.64
0.01550
100.08
24.63
3.93
6.27 '
31.71
31.64
0.01600
99.93
9.13
3.44
2.65
16.71
16.64
0.01600
99.98
12.82
3.55
3.61
21.71
21.64
Bentley Systems, Inc. Haestad Methods SoEMkVeq§ftwMaster V81 (SELECTserles 1) [08.11.01.03]
Minorand.Major.Storm ,Events Alley Section
Input DataIN
Channel Slope Water Surface Wetted Perimeter
Oft) Elevation (ft) ` Discharge (ft3/s) Velocity (fUs) Flow Area (ft') (ft) Top Widthjft)
0.01600 100.03 18.06 3.75 4.82 26.71 26.64
0.01600
100.08
25.02
3.99
6.27
31.71
31.64
0.01650
99.93
9.28
3.50
2.65
16.71
16.64
0.01650
99.98
13.02
3.61
3.61
21.71
21.64
0.01650
100.03
18.34
3.81
4.82
26.71
26.64
0.01650
100.08
25.41
4.05
6.27
31.71
31.64
0.01700
99.93
9.42
3.55
2.65
16.71
16.64
0.01700
99.98
13.22
3.66
3.61
21.71
21.64
0.01700
100.03
18.62
3.87
4.82
26.71
26.64
0.01700
100.08
25.79
4.11
6.27
31.71
31.64
0.01750
99.93
9.55
3.60
2.65
16.71
16.64
0.01750
99.98
13.41
3.71
3.61
21.71
21.64
0.01750
100.03
18.89
3.92
4.82
26.71
26.64
0.01750
100.08
26.17
4.17
6.27
31.71
31.64
0.01800
99.93
9.69
3.65
2.65
16.71
16.64
0.01800
99.98
13.60
3.77
3.61
21.71
21.64
0.01800
100.03
19.16
3.98
4.82
26..71
26.64
0.01800
100.08
26.54
4.23
6.27
31.71
31.64
0.01850
99.93
9.82
3.70
2.65
16.71
16.64
0.01850
99.98
13.79
3.82
3.61
21.71
21.64
0.01850
100.03
19.42
4.03
4.82
26.71
26.64
0.01850
100.08
26.91
4.29
6.27
31.71
31.64
0.01900
99.93
9.95
3.75
2.65
16.71
16.64
0.01900
99.98
13.97
3.87
3.61
21.71
21.64
0.01900
100.03
19.68
4.09
4.82
26.71
26.64
0.01900
100.08
27.27
4.35
6.27
31.71
31.64
0.01950
99.93
10.08
3.80
2.65
16.71
16.64
0.01950
99.98
14.15
3.92
3.61
21.71
21.64
0.01950
100.03
19.94
4.14
4.82
26.71
26.64
0.01950
100.08
27.63
4.40
6.27
31.71
31.64
0.02000
99.93
10.21
3.85
2.65
16.71
16.64
0.02000
99.98
14.33
3.97
3.61
21.71
21.64
0.02000
100.03
20.19
4.19
4.82
26.71
26.64
0.02000
100.08
27.98
4.46
6.27
31.71
31.64
Bentley Systems, Inc. Haestad Methods SoBiaiWey4fto Master V8i (SELECTseries 1) [08.11.01.03]
3/20/2016 1:37:45 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203-755-1666 Page 4 of 4
Gaoway
Planning, Architecture. Engineering.
STREET SECTIONS
MINOR AND MAJOR STORM EVENTS
u
LOCAL STREET
9 ROW
39[3
C
CL
9 43 r r N I 8'
I
22Y% � t75%
I
PROPO®aAse I.
cmac"j
ROLL-MORVERTIGL
OOR AWTrPRM4SE
RD P&PB
PROPOSED PAVEYBO'
Rm f".)
w w w w w ■w w w w w w w w w w w w w w
Street Capacity Calculations
Drive -Over Curb & Gutter - 15' CL to FL
Project: East Ridge Second Fling
Calculations By: H. Feissner
Date: 3/20/2016
I1raAPC�e
it 11 ft 4, 1)R )rt. 10.
(1.n rtJ WEnI
$IK
�
V
DRIVE -OVER CURB. GUTTER AND SIDEWALK
Manning's Formula for flow in shallow triangular channels:
0 = 0.56(Z/n)S lrzya"
Where:
O Theoretical Gutter Capacity, ofs
y Depth of Flow at Face of Gutter, ft
n Roughness Coefficient, see below
So Longitudinal Channel Slope, ft/8
S. Cross -Slope of Gutter Pan, Will
Se Cross -Slope of Gutter Pan, ftit
"
Sc Cross -Slope of Asphalt, Wit
-
Z Reciprocal of Cross -Slope, ftHl
Inputs
n 0.016
S. 27.94 % Z. = 1/S, 3.58
Ze/n 223.69 ,
Se 9.82% Zp=1/Sa 10.18
Zdn 636.46
Sc 2.00 % 4 =1/Sr 50.00
Z,/n 3125.00
FL to FL Distance 15' CL to FL (DO) Select
y 0.3915 water depth at flowline, ft
-
y 0.2766 water depth at EOP, ft
-
Sp = See Below longitudinal slope of street, %
Results
" 0.56(Z/n)y = 84.77
10.27 29.23 11.58 56.84
Developed Develops Long"nudin�
Width FL to GL
Design Point Street Name ft Street Glassifica6on O) d Omo Grade, So
Ca cWated ll Mlnor;FStorm
-' ^+' Reductibn Factor
Capacity
Capacity
8.04 1.00
Allowable,'`:±r'`1'
Capacay
`,cis
Determination
�majoristormlEQe.Dt
;Calculated Capacity"`'_
; ) ` ' 1
1, (FlowMaster)
�1 ,.; .,;
MaJorySt"ormly
ReducaonfFactor
,�,,, d
(UDFCO Fgore N)
Allov able y `-
Capaclry tannin on
Barnstormer . Street
.15 -
Local
1.1
5.6
0.90%
8.0
Okay
21.8
1.00
21.84 Oka
A3
Barnstormer Street
15
Laal
2.1
10.0
0.70%
7.09 1.00
Z7
Okay
19.3
1.00
19.26 Oka
A4.
Yeager Street
15
Laval
2.9
13.8
0.77%
7.44 1.00
7.4
Okay
20.6
1.00
20.59 Oka
AS
Coleman Street
15
Loral
2.6
12.6
0.60%
6.57 1.00
6.6
Okay
17.8
1.00
17.83 Oka
As
Yeager Street l Coleman Street-
15
Laval.
2.8
13.5
0.60%
6.57 1.00
6.6
Okay
17.8
1.00
17.83 Oka
A7
I Navion Lane
15
Loal
IA
6.9
0.60%
6.57 1.00
6.6
1 Okay
17.8
1.00
17.83 Oka
-.AB -
'Novlon.Lane _
15
ap
` Lapel
2.7
12.9
0.60%
6.57 1.00
6.6
Oka
17.8
1.00
17.83 Oka
Bt
Barnstormer Street
15
- Local
1.1
5.1
0,60%
6.57 1.00
6.6
Okay
17.8
1.00
17.8
Oka
B2
Barnstormer Street
15
Loal
3.1
14.7
0.60%
6.57 1.00
6.6
Okay
17.8
1.00
17.8
Oka
63
Bi lane Street
15
Loral
3.3
15.7
0.60%
6.57 1.00
6.6
Okay
17.8
1.00
17.8
Oka
B4
Bi Zane Street
15
Lmal
2.9
14.0
0.60%
6.57 1.00
6.6
Okay
17.8
1.00
17.8
Oka
B5
Marquise Street
15
Loral
2.2
10.5
0.70%
7.09 1.00
7.1
Okay
17.8
1.00
17.8
Oka
B6
Coleman Street
15
Loral
3.0
14.4
0.85%
7.82 1.00
7.8
Okay
19.3
1.00
19.26
Oka
.B7 -
.Coleman Street
15
Local.
1.5
7.5
0.85%
7.82 1.D0
7.8
Okay
21.2
1.00
21.22
Oka
B8
Supercub Lane
15
Local
2.1
9.7
0.60%
6.57 1.00
6.6
Okay
17.8
1.00
17.83
Oka
B9
Supercub'.Lane
15
Waal
1.9
9.2
0.60%
6.57 1.00
6.6
Okay
17.8
1.00
17.83
Oka
_
B10
Conquest Street
15
Loal
2.6
12.1
0.60%
6.57 1.00
1 6.6
Okay
17.8
1.00
17.83
Oka
B11
`Conquest Street
15
Local
1.5
7.3
0.60%
6.57
1.00
1 6.6
Okay
17.8
1.00
17.83
Oka
C1+C2
Conquest Street
15
Loral
3.8
18.1
"1.60%
10.72
1.00
10.7
Okay
29.1
1.00
29.12
Okay
C3
Conquest Street
15
Loal
2.1
9.9
0.60%
6.57
1.00
6.6
Okay
17.8
1.00
17.83
Oka
'. C71
Comet Street
15.
Loal
1.9
9.4
0.90%
8.04
1.00
8.0
Okay
21.8
1.00
21.84
Oka
C12
Reliant Street
15
Local
Z8
13.2
0.60%
6.57
1.00
6.6
Okay
17.8
1.00
17.83
Oka
- C13
Reliant Street
15
Loaf
2.1
1 10.3
0.60%
6.57
1.00
6.6
Okay
17.8
1.00
17.83
Oka
C14
Crusader Street
15
Loral
2.5
12.0
0.60%
6.57
1.00
6.6
Okay
17.8
1.00
1 17.83
Oka
C75
Crusader Street.
15
Local
1.7
8.1
0.60%
6.57
1.00
6.6
Okay
17.8
1.00
17.83
Oka
-D2
Dassault Street
15 -
Loaf
0.8
3.7
0.60%
6.57
1.00
6.6
Okay
17.8
1.00
17.83
Okay
` E1 -
Reliant Street
15
Local
1.4
6.8
'0,65%
6.83
1.00
6.8
Okay
18.6
1.00
18.56
Oka
E2
Reliant Street
15
Local
1.5
7.1
0.65%
6.63
1.00
6.8
Oka
- 18.6
1.00
18.56
Oka
E3
Dassault Street
15
.Loral -
1.1
4.6
0.60%
6.57
1.00
6.6
Okay
17.8
1.00
17.83
Oka
F4
Comet Street
15
Local
1.5
7.3
0.80%
7.58
1.00.
7.6
Okay
20.6
1.00
20.59
Oka
F5
Dassault Street
15
Local
0.6
1 2.7
1 0.60%
6.57
1.00
6.6
key
17.8
1.00
17.83
Oka
G2
Vicot Way
15
Loral
2.2
1 10.5
1 0,60%
6.57
1.00
6.6
Okay
17.8
1 1.00
17.83
Oka
Nolen:
1. Capacity shown is for half -section w flow depth at rghbf-way.
Major Storm Event - Drive Over Curb C&G (Half Section)
IT CL to FL
Project Description "
Friction Method Manning Formula
Solve For Discharge
Input Data �-`
Channel Slope
0.00600 fUk
Normal Depth
0.39 k
Section Definitions
> Station (k) Elevation (k)
0+00 100.00
0+04.5 99.91
0+10.0833 99.80
0+11.5 99.40
0+12.6667 99.52
0+26.5 99.80
Roughness Segment Definitions
;� , Roughness
Start Station Ending Station Coeffcient
(0+00,100.00) (0+04.5, 99.91) 0.016
(0+04.5, 99.91) (0+10.0833, 99.80) 0.025
(0+10.0833, 99.80) (0+26.5, 99.80) 0.016
,.` _ ;�.. `N6"'
..�'}
mv�ir s�yt+um
x t�
s ry �,?•EYnk� �v, ^'cs'
. Wetted
Channel Slope (ft/ft) Discharge (fN/s)"
Velocity (Ws)
Flow Area (ft') Perimeter (ft) `'op Width (ft)'
0.00500
4.88
1.90
2.56
16.41
16.35
0.00550
5.11
2.00
2.56
16.41.
16.35
0.00600
5.34
2.09
2.56
16.41
16.35
0.00650
5.56
2.17
2.56
16.41
16.35
0.00700
5.77
2.25
2.56
16.41
16.35
0.00750
5.97
2.33
2.56
16.41
16.35
Bentley Systems, Inc. Haestad Methods So®Aid Bq§ftwMaster V81 (SELECTseries 1) [08.11.01.03]
' 3117/2016 3:40:44 PM 27 Slemons Company Drive Suite 200 W. Watertown, CT 06795 USA +1.203-755.1666 Page 1 of 2
1
Major Storm Event - Drive Over Curb C&G
(Half Section)
115,
CL to FL
0.00800
6.17
2.41
2.56
16.41
16.35
0.00850
6.36
2.48
2.56
16.41
16.35
0.00900
6.54
2.55
2.56
16.41
16.35
0.00950
6.72
2.62
2.56
16.41
16.35
0.01000
6.90
2.69
2.56
16.41
16.35
0.01050
7.07
2.76
2.56
16.41
16.35
0.01100
7.23
2.82
2.56
16.41
16.35
0.01150
7.40
2.89
2.56
16.41
16.35
0.01200
7.56
2.95
2.56
16.41
16.35
0.01250
7.71
3.01
2.56
16.41
16.35
0.01300
7.86
3.07
2.56
16.41
16.35
0.01350
8.01
3.13
2.56
16.41
16.35
0.01400
8.16
3.19
2.56
16.41
16.35
0.01450
8.31
3.24
2.56
16.41
16.35
0.01500
8.45
3.30
2.56
16.41
16.35 .
0.01550
8.59
3.35
2.56
16.41
16.35
0.01600
8.72
3.41
2.56
16.41
16.35
0.01650
8.86
3.46
2.56
16.41
16.35
0.01700
8.99
3.51
2.56
16.41
16.35
0.01750
9.12
3.56
2.56
16.41
16.35
0.01800
9.25
3.61
2.56
16.41
16.35
0.01850
9.38
3.66
2.56
16.41
16.35
0.01900
9.51
3.71
2.56
16.41
16.35
0.01950
9.63
3.76
2.56
16.41
16.35
0.02000
9.75
3.81
2.56
16.41
16.35
Bentley Systems, Inc. Hassled Methods SoNkftQFilmsrMaster V8i (SELECTseries 1) [08.11.01.03]
3/17/2016 3:40:44 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755.1666 Page 2 of 2
Major Storm Event - Drive Over Curb C&G
(Half Section) 15' CL to FL
Project Description
Friction Method Manning Formula
Salve For Discharge
Input Data_
3
Channel Slope 0.00600
ft(ft
Normal Depth 0.60
ft
Section Definitions
Station (ft) Elevation (ft)
0+00 100.00
0+04.5 99.91
0+10.0833 99.60
0+11.5 99.40
0+12.6667 99.52
0+26.5 99.80
Roughness Segment Definitions
Roughness
Start Station Ending Station fx ' Coefficientt
(0+00, 100.00) (0+04.5, 99.91) 0.016
(0+04.5, 99.91) (0+10.0833, 99.80) 0.025
(0+10.0833, 99.80) (0+26.5, 99.80) 0.016
,.
Channel Slope (fVft) '' Discharge (fN/s) =`=x;°Velocity (fVs) Flow Area (ft') Wetted Perimeter (ft) "Top Width (ft)
0.00500
16.28
2.34
6.95
26.77.
26.50
0.00550
17.07
2.46
6.95
26.77
26.50
0.00600
17.83
2.57
6.95
26.77
26.50
0.00650
18.56
2.67
6.95
26.77
26.50
0.00700
19.26
2.77
6.95
26.77
26.50
0.00750
19.93
2.87
6.95
26.77
26.50
Bentley Systems, Inc. Haestad Methods SoEWWeQfd6wMaster V81(SELECTseries 1) [08.11.01.03]
3/19/2016 2:13:59 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2
Major Storm Event - Drive Over Curb C&G (Half Section) 1151 CL to FL
0.00800
20.59
2.96
6.95
26.77
26.50
0.00850
21.22
3.05
6.95
26.77
26.50
0.00900
21.84
3.14
6.95
26.77
26.50
0.00950
22.44
3.23
6.95
26.77
26.50
0.01000
23.02
3.31
6.95
26.77
26.50
0.01050
23.59
3.40
6.95
26.77
26.50
0.01100
24.14
3.47
6.95
26.77
26.50
0.01150
24.68
3.55
6.95
26.77
26.50
0.01200
25.22
3.63
6.95
26.77
26.50
0.01250
25.74
3.70
6.95
26.77
26.50
0.01300
26.25
3.78
6.95
26.77
26.50
0.01350
26.75
3.85
6.95
26.77
26.50
0.01400
27.24
3.92
6.95
26.77
26.50
0.01450
27.72
3.99
6.95
26.77
26.50
0.01500
28.19
4.06
6.95
26.77
26.50
0.01550
28.66
4.12
6.95
26.77
26.50
0.01600
29.12
4.19
6.95
26.77
26.50
0.01650
29.57
4.26
6.95
26.77
26.50
0.01700
30.01
4.32
6.95
26.77
26.50
0.01750
30.45
4.38
6.95
26.77
26.50
0.01800
30.88
4.45
6.95
26.77
26.50
0.01850
31.31
4.51
6.95
26.77
26.50
0.01900
31.73
4.57
6.95
26.77
26.50
0.01950
32.14
4.63 --
6.95
26.77
26.50
0.02000
32.55
4.69
6.95
26.77
26.50
Bentley Systems, Inc. Haestad Methods SoINkfty:06wMaster V81 (SELECTseries 1) [08.11.01.03]
3119/2016 2:13:59 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 2 of 2.
Major Storm Event - Drive Over Curb C&G
(Full Section) I So CL to FL
Projecf Description
�3' ' 7777
Friction Method
Manning Formula
Solve For
Discharge
jinp61 Data''
77-7`77 77771
Channel Slope
0.00600
ft/ft
Normal Depth
0.60
ft
Section Definitions
q,
Station (ft)"
0+00
100.00
0+04.5
99.91
0+10.0833
99.80
0+11.5
99.40
0+12.6667
99.52
0+26.5
99.80
0+40.3333
99.52
0+41.5
99.40
0+42.9167
99.80
0+48.5
99.61
0+53
100.00
Roughness Segment Definitions
"�,Roughness
'Start Station
Ending Station Coefficient
(0+00, 100.00)
(0+04.5, 99.91) 0.016
(0+04.5, 99.91)
(0+10.0833, 99.80) 0.025
(0+10.0833, 99.80)
(0+42.9167. 99.80) 0.016
(0+42.9167, 99.80)
(0+48.5, 99.91) 0.025
(0+48.5, 99.91)
(0+53, 100.00) 0.016
A
har n-el Slope (fttit)' Discharge Velocity (fVs) Wetted �ft)P
C isch�a (ft3/S) Perimeter :�To Width (ft)'%""-
Bentley Systems, Inc. Haestad Methods SoEMidte;Edt"asterV8!(SELECTseries 1) [08.11.01.031
3/1712016 3:48:00 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +11-203-755-1666 Page 1 of 2
Major Storm Event - Drive Over Curb C&G (Full Section) 15, CL to FL
' Input Data
0.00500
32.69
2.35
13.89
53.13
53.00
0.00550
34.29
2.47
13.89
53.13
53.00
0.00600
35.81
2.58
13.89
53.13
53.00
0.00650
37.27
2.68
13.89
53.13
53.00
0.00700
38.68
2.78
13.89
53.13
53.00
0.00750
40.04
2.88
13.89
53.13
53.00
0.00800
41.35
2.98
13.89
53.13
53.00
0.00850
42.62
3.07
13.89
53.13
53.00
0.06900
43.86
3.16
13.89
53.13
53.00
0.00950
45.06
3.24
13.89
53.13
53.00
0.01000
46.23
3.33
13.89
53.13
53.00
0.01050
47.37
3.41
13.89
53.13
53.00
0.01100
48.49
3.49
13.89
53.13
53.00
0.01150
49.58
3.57
13.89
53.13
53.00
0.01200
50.64
3.64
13.89
53.13
53.00
0.01250
51.69
3.72
13.89
53.13
53.00
0.01300
52.71
3.79
13.89
53.13
53.00
0.01350
53.72
3.87
13.89
53.13
53.00
0.01400
54.70
3.94
13.89
53.13
53.00
0.01450
55.67
4.01
13.89
53.13
53.00
0.01500
56.62
4.08
13.89
53.13
53.00
0.01550
57.56
4.14
13.89
53.13
53.00
• 0.01600
58.48
4.21
13.89
53.13
53.00
0.01650
59.39
4.27
13.89
53.13
53.00
0.01700
60.28
4.34
13.89
53.13
53.00
0.01750
61.16
4.40
13.89
53.13
53.00
0.01800
62.03
4.46
13.89
53.13
53.00
0.01850
62.88
4.53
13.89
53.13
53.00
0.01900
63.73
4.59
13.89
53.13
53.00
0.01950
64.56
4.65
13.89
53.13
53.00
0.02000
65.38
4.71
13.89
53.13
53.00
Bentley Systems, Inc. Haestad Methods So®4idle¢FilOerMaster V8i (SELECTseries 1) [08.11.01.031
3/17/2016 3:48:00 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page2 of 2
m
C
a
�3
O
C1.
m
d
U
Q
W 0 m Q
`mom `O DDm U_
3 U U
r❑ LL' J U U U K
ti
d d ' vY of uf ai ^I
3
o
E
ry
y
W
d
0 0
0
0 000
00
0
O
O
e
0 0
0
m'
m
m
m u
V
m
W^^^
o
m
In
^ a
N
m
a
V m
m
g U
N N
N N
N N
{7 N
N
N
N
N N
N
�' QU
w' `o
u
SSo
SSSo
SS$
$
oo
SS$
,°ice=
p
n Op
m
¢ m
m
q m^^^
V C
m m
O
V
4)
V
< m
m
N
N N
th
No
N N
N N
(mp
(y
y^
{y N
N
N
N
N N
N
LL
W v
O
OW
C.
W
YY
W
m W
Y6111
W W
YY
W
YJCY
1E W
W
Y
W
YY
W
W W
YYY
W
m
0
o00
0000
000
0
00
000
d
0
Wy+
a
nnm
ro
ai
NNNN
Id Win
n
^mm
c
of n
N
N
r
N
NOO
Wi aC
m
s
a
• O LL
0
m O �-y
0 0
000
0
0 0
O O
0 0
O O
0
O
0 0
O O
O
0
O
0
O
0 0
O O
0
O
!C U
^
j
0 O
'mL
W m
mmm
rnm
m
^m
^
m
rn
m
mo
S
a"
m m
ro m
v
Wi
Wi Win
n
V m
of n
Wi
r
Wi
o
Wi
mU
U
Iwo
a m
o s
o
o
o o
v
o e
a°
o
o
v e
o
n
C
tp m
m m
m
P m
m
m
(O
m O
S
o
a
0
p^
m
O CO
O)
0
C
Op
U
m
S
m
J
U
O
LL�
L
mmui
u�mmm
mmm
m
m
n
v�m�
d
d d
A S
W
f° h
m ro
b
m
m
d
E
ro
Z
d"3
mmm
N
m
N
333
d
O Y1
d
EEi
'5 '5
a m
m
m
a
O
o o
EE
Q'N
S
O
2'I
m
m(gN
d
W m
m m2'
W
2
U00
O O
m
m
U
O
58
m
mm
c
O
m
m
LL
Y
t+l
p
m
LL
Major Storm Event - Vertical C&G (Half Section) 1 15' CL to FL
,,Project Description
Friction Method Manning Formula
Solve For Discharge
Input_Data.'
Channel Slope 0.00600 ft/ft
Normal Depth 0.43 ft
Section Definitions
"Station (ft)
Elevation (ft)
0+00
100.00
0+04.5
99.91
0+11
99.78
0+11.5
99.78
0+11.5
99.28
0+13.5
99.45
0+26.5
99.71
Roughness Segment Definitions
'`' Roughness
Start Station
Ending Station Coefficient
(0+00,100.00)
(0+04.5, 99.91) 0.016
(0+04.5, 99.91)
(0+11, 99.78) 0.025
(0+11, 99.78)
(0+26.5, 99.71) 0.016
k
Channel Slope (ff/ft) Discharge (fP/s) Velocity (ft/s) Flaw Area (ft') Wetted Perimeter (ft) - Top Width (ft)
0.00500
4.48 1.89 2.38 15.44
)
15.00
0.00550
4.70 1.98 2.38 15.44
15.00
0.00600
4.91 2.07 2.38 15.44
15.00
0.00650
5.11 2.15 2.38 15.44
15.00
0.00700
5.31 2.23 2.38 15.44
15.00
Bentley Systems, Inc. Haestad Methods So®4i tlegfdOwMaster V81(SELECTseries 1) [08.11.01.03]
3/19/2016 2:20:57 PM
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
Page 1 of 2
Major Storm Event - Vertical C&G (Half Section) I IT CL to FL
Input Data
ChanrielSlope (ft!ft) "Discharge (fNls) Velocity (Ws) Flow Area (ft') Wetted Perimeter (k) "Top W idth (ft) .
0.00750
5.49
2.31
2.38
15.44
15.00
0.00800
5.67
2.39
2.38
15.44
15.00
0.00850
5.85
2.46
2.38
15.44
15.00
0.00900
6.02
2.53
2.38
15.44
15.00
0.00950
6.18
2.60
2.38
15.44
15.00
0.01000
6.34
2.67
2.38
15.44
15.00
0.01050
6.50
2.73
2.38
15.44
15.00
0.01100
6.65
2.80
2.38
15.44
15.00
0.01150
6.80
2.86
2.38
15.44
15.00
0.01200
6.95
2.92
2.38
15.44
15.00
0.01250
7.09
2.98
2.38
15.44
15.00
0.01300
7.23
3.04
2.38
15.44
15.00
0.01350
7.37
3.10
2.38
15.44
15.00
0.01400
•7.50
3.16
2.38
15.44
15.00
0.01450
7.64
3.21
2.38
15.44
15.00
0.01500
7.77
3.27
2.38
15.44
15.00
0.01550
7.89
3.32
2.38
15.44
15.00
0.01600
8.02
3.37
2.38
15.44
15.00
0.01650
8.14
3.43
2.38
15.44
15.00
0.01700
8.27
3.48
2.38
15.44
15.00
0.01750
8.39
3.53
2.38
15.44
15.00
0.01800
8.51
3.58
2.38
15.44
15.00
0.01850
8.62
3.63
2.38
15.44
15.00
0.01900
8.74
3.68
2.38
15.44
15.00
0.01950
8.85
3.73
2.38
15.44
15.00
0.02000
8.97
3.77
2.38
15.44
15.00
Bentley Systems, Inc. Haestad Methods So BAiWa9fik6wMaster V81(SELECTseries 1) [08.11.01.03]
3/1912016 2:20:57 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 2 of 2
Major Storm Event - Vertical C&G (Half Section) 15, CL to FL
[Project Description
`-
Friction Method Manning Formula
Solve For Discharge
Input Data
Channel Slope
0.00600
fUft
Normal Depth
0.72
ft
Section Definitions
4 i .•
Station (ft) Elevation (ft)
0+00 100.00
0+04.5 99.91
0+11 99.78
0+11.5 99.78
0+11.5 99.28
0+13.5 99.45
0+26.5 99.71
Roughness Segment Definitions
:.
`' ` ' Roughness
Start StaUwm Ending Station Coefficient
(0+00, 100.00) (0+04.5, 99.91) 0.016
(0+04.5, 99.91) (0+11, 99.78) 0.025
(0+11, 99.78) (0+26.5, 99.71) 0.016
a � f
Channel Slope(ft/ft) Discharge (ft'/s) Velocity (fUs) Flow' Area (ft=)` Wetted Perimeter (ft) Top Width (ft)
0.00500
20.40
2.52
8.10
27.31
26.50
0.00550
21.39
2.64
8.10
27.31
26.50
0.00600
22.35
2.76
8.10
27.31
26.50
0.00650
23.26
2.87
8.10
27.31
26.50
0.00700
24.14
2.98
8.10
27.31
26.50
Bentley Systems, Inc. Haestad Methods SoEMidleg:fMwMaster V81(SELECTseries 1) [08.11.01.03]
3119/2016 2:18:13 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2
9
Major Storm Event - Vertical C&G (Half Section) 1151 CL to FL
Input Data A. :
0.00750
24.98
3.09
8.10
27.31
26.50
0.00800
25.80 _
3.19
8.10
27.31
26.50
0.00850
26.60
3.29
8.10
27.31
26.50
0.00900
27.37
3.38
8.10
27.31
26.50
0.00950
28.12
3.47
8.10
27.31
26.50
0.01000
28.85
3.56
8.10
27.31
26.50
0.01050
29.56
3.65
8.10
27.31
26.50
0.01100
30.26
3.74
8.10
27.31
26.50
0.01150
30.94
3.82
8.10
27.31
26.50
0.01200
31.60
3.90
8.10
27.31
26.50
0.01250
32.25
3.98
8.10
27.31
26.50
0.01300
32.89
4.06
8.10
27.31
26.50
0.01350
33.52
4.14
8.10
27.31
26.50
0.01400
34.13
4.22
8.10
27.31
26.50
0.01450
34.74
4.29
8.10
27.31
26.50
0.01500
35.33
4.36
8.10
27.31
26.50
0.01550
35.92
4.44
8.10
27.31
26.50
0.01600
36.49
4.51
8.10
27.31
26.50
0.01650
37.06
4.58
8.10
27.31
26.50
0.01700
37.61
4.65
8.10
27.31
26.50
0.01750
38.16
4.71
8.10
27.31
26.50
0.01800
38.70
4.78
8.10
27.31
26.50
0.01850
39.24
4.85
8.10
27.31
26.50
0.01900
39.76
4.91
8.10
27.31
26.50
0.01950
40.28
4.98
8.10
27.31
26.50
0.02000
40.80
5.04
8.10
27.31
26.50
Bentley Systems, Inc. Haestad Methods SoliblidlB9666wMaster VSi (SELECTseries 1) [08.11.01.03]
3/19/2016 2:18:13 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 2 of 2
CONNECTOR LOCAL STREET
PRO
w t-t
CL
10� 1V
PROPOSED SASE
WAM(M4
6 4.5 r98
ROLL-0VERORVERrICAL
Mae&WM(TYP.)Sm
RD PAPS
PROPOSEDPAVENOW
M4
J
LL
C w
O J
m bo
to
m d
U
u U
C
R �
U �
d U
d �
ti
C
U
zi
.e
a
V
�. 1m:•
J
N
.W
z
•
N QI �
y
� m
m
$ggb�r
�T
c
C
U W u m 15 n w
im.. y a
`o U
�
U 3 UUp pop m
p'
fL N C p p ryay
n O O d
F
Ly
F � KOF
J U U U K
d o
m
t
3
IL
a
�
m
m
'n
c
O O gj N
(G
C C C C
IJl IV2 fJZ
:,.
C
I C
C
O S O
Z m
o ^
o '�
d t y
E
a c
N
d d
S
7 3 3 O
[
I I
7
3
J
LL
m
m
n
o e o
0
a
S vi o
Ue�y
C
O m N
m
0 0
d m
s
LL
oa,
m 00
0000
00000000
m
0
m (6p e
n y
N
N
m m
N N
m m
N N
o
N
m m
N O
m m
O N
m
N m
m
N
N
...4443 m
N
N fV
N N
M
N N
N N
N N
N
E !'0 m'
O LL
O
O
O S
O S
S
S
O o
0
N: O LL
Q
O O
O
n y
y a
a
m m
m m
v
M m
g q
q r
q
NNNN
MNN
N
NN
N
NMN
N, G
C'
��
YY
YYYY
YYYYYYYY
m
d
ny�r
r.
r.
rrr
r
Rrmmrn
mn
�¢3-=ai
'k�d:Ti m�
a
oia
of ai
^aim
ai di
ai �
m
• LL �
oo
o
O
O m
9009
o 0
O
O
O O
O O
O
O
O o
O O
0
O
LL
.
f m o
a�
'10 �A,m�
r
r rn
ai ai
r
ai ai
R
11
rmmnr
ai l6
ai ai
a'r
af
ai
U,rU
am
o e
�o
ao
o
eo
o e
e o
p•
N N
m
10 m
(p
N m
to la
10 m
m m
�C
U
o
000
.-000
0 0
0 0
v
!0
8�m�
ol"'Ro
morrmo
v,o
0
O7
m
M m
M
N
V V
O
V [7
�- O
m N
�- O
O
N
U
0
LL
m m
m
m m
m
m m
m mmm
m m
m
d d
y
N
mwuiayi3y33
d d
d d
d
y
>
y d
d
y
m
d d
O Oa
N
N
U
U
N
U
N N
C
a
.41
m r
U U
_
S
N V
2 2
m
x
N m
— —
O N
_ —
m r
--
co
m
0
I
Major Storm Event - Vertical C&G
(Half Section) 18' CL to FL
,Project Description
...,':
Friction Method
Manning Formula
Solve For
Discharge
Input Data
.4=;
Channel Slope
0.00600 fUft
Normal Depth
0.70 ft
Section Definitions
Station (ft)
Elevation (ft)
0+00
100.00
0+04.5
99.91
0+10
99.80
0+10.5
99.80
0+10.5
99.30
0+12.5
99.47
0+28.5
99.79
Roughness Segment Definitions
_.�
Roughness .
Start Station
Ending Station Coeff cient
(0+00, 100.00)
(0+04.5, 99.91) 0.016
(0+04.5, 99.91)
(0+10, 99.80) 0.025
(0+10, 99.80)
(0+28.5, 99.79) 0.016
s €
Channel Slope (ft/ft) Discharge (fN/s) Velocity (ft/s) Flow Area (ftz) " ` Wetted Perimeter (ft) Top Width (ft)
0.00500
20.91
2.52
8.31
29.23
28.50
0.00550
21.93
2.64
8.31
29.23
28.50
0.00600
22.91
2.76
8.31
29.23
28.50
0.00650
23.84
2.87
8.31
29.23
28.50
0.00700
24.74
2.98
8.31
29.23
28.50
Bentley Systems, Inc. Haestad Methods SoEMIndegfdmerMaster V81 (SELECTseries 1) [08.11.01.03]
3/20/201612:34:05 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 1 of 2
Major Storm Event - Vertical C&G (Half Section) 18' CL to FL
Input Data a ` � ` ham, �
o.UUiaU
z5.61
3.08
8.31
29.23
28.50
0.00800
26.45
3.18
8.31
29.23
28.50
0.00850
27.27
3.28
8.31
29.23
28.50
0.00900
28.06
3.38
8.31
29.23
28.50
0.00950
28.82
3.47
8.31
29.23
28.50
0.01000
29.57
3.56
8.31
29.23
28.50
0.01050
30.30
3.65
8.31
29.23
28.50
0.01100
31.02
3.73
8.31
29.23
28.50
0.01150
31.71
3.82.
8.31
29.23
28.50
0.01200
32.40
3.90
8.31
29.23
28.50
0.01250
33.06
3.98
8.31
29.23
28.50
0.01300
33.72
4.06
8.31
29.23
28.50
0.01350
34.36
4.14
8.31
29.23
28.50
0.01400
34.99
4.21
8.31
29.23
28.50
0.01450
35.61
4.29
8.31
29.23
28.50
0.01500
36.22
4.36
8.31
29.23
28.50
0.01550
36.82
4.43
8.31
29.23
28.50
0.01600
37.41
4.50
8.31
29.23
28.50
0.01650'
37.99
4.57
8.31
29.23
28.50
0.01700
38.56
4.64
8.31
29.23
28.50
0.01750
39.12
4.71
8.31
29.23
'28.50
0.01800
39.68
4.78
8.31
29.23
28.50
0.01850
40.22
4.84
8.31
29.23
28.50
0.01900
40.76
4.91
8.31
29.23
28.50
0.01950
41.30
4:97
8.31
29.23
28.50
0.02000
41.82
5.04
8.31
29.23
28.50
I
Bentley Systems, Inc. Haestad Methods SoBdidta46d0erMaster V8i (SELECTseries 1) [08.11.01.03]
312012016 12:34:05 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755-1666 Page 2 of 2
MINOR COLLECTOR
'NOW
2SVSaMPROPMPAVEM
pa®6GunElif�'Pd SEC�ION(IYPa
PRMED &SE
E
E 00
`m
a 0
0
00
O
00
m
O
m: T
3= Im
In
�m am
m m� am
a,
e
m
mm
a
am
� Q U
d
w sy
N�N;,�SS
Soo
8S
8
SS
m d
O m
0
O W W
O J
O
O
'^ d
a
U
YY
1106
O00
00
O
00'{m
10
t0
m r
ro
m m
41
.O
10
a
O LL
O
N O IL O
o
O
O O
O O
O
O
O o
88
o
O
SO
O
O
m# 1.
d t-Sm m
m
m r
m
m m
m
m
m
U U
W
o° o
=°
o° o
v
o
m
y o
o 0
m m
ole
m.-
o m
Iq
N
0
L m
00
m m
O
0
n.
I�p'G�m
,:j
ain
ai
m
ro
'i > o
0
C
a
t
U
9
N
U
O
J
LL'�
N N
NN
m
NNN
N m
m
NN
m
N
N
N Im
NN
5
m
>m >m
>m
>m >d
>an
>d
>d
d m
d
Iloilo
01
.�
a°
NM
�
n m
l w
m
N
m
Major Storm Event - Vertical C&G (Half Section) 25' CL to FL
;Project Description { a
Friction Method Manning Formula
Solve For Discharge
Input Data , - �
Channel Slope 0.00100 ft/ft
Normal Depth 0.75 ft
Section Definitions
Station (ft)
Elevation (ft)
0+00
100.00
0+05
99.90
0+12.5
99.75
0+13
99.75
0+13
99.25
0+15
99.42
0+38 _
99.88
Roughness Segment Definitions
RoughIn s;.-
Start Station
Ending Station Coefficient
(0+00, 100.00)
(0+05, 99.90) 0.016
(0+05, 99.90)
(0+12.5, 99.75) 0.025
(0+12.5, 99.75)
(0+38, 99.88) 0.016
'Channel Slope (ft/ft) Discharge (fN/s) ,. Velocity (ft/s) Flow Area (ft') Wetted Perimeter (ft) Top Width (ft)
0.00500
28.25
2.53
11.15
38.64
38.00
0.00550
29.63
2.66
11.15
38.64
38.00
0.00600
30.95
2.78
11.15
38.64
38.00
0.00650
32.21
2.89
11.15
38.64
38.00
0.00700
33.43
3.00
11.15
38.64
38.00
Bentley Systems, Inc. Haestad Methods So8dlrWeQi16erMaster V81(SELECTseries 1) [08.11.01.03]
31201201612:40:53 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2
Major Storm Event - Vertical C&G (Half Section) 25' CL to FL
InpufpData-
0.00750
34.60
3.10
11.15
38.64
38.00
0.00800
35.73
3.21
11.15
38.64
38.00
0.00850
36.83
3.30
11.15
38.64
38.00
0.00900
37.90
3.40
11.15
38.64
38.00
0.00950
38.94
3.49
11.15
38.64
38.00
0.01000
39.95
3.58
11.15
38.64
38.00
0.01050
40.94
3.67
11.15
38.64
38.00
0.01100
41.90
3.76
11.15
38.64
38.00
0.01150
42.84
3.84
11.15
38.64
38.00
0.01200
43.76
3.93
11.15
38.64
38.00
0.01250
44.67
4.01
11.15
38.64
38.00
0.01300
45.55
4.09
11.15
38.64
38.00
0.01350
46.42
4.16
11.15
38.64
38.00
0.01400
47.27
4.24
11.15
38.64
38.00
0.01450
48.11
4.32
11.15
38.64
38.00
0.01500
48.93
4.39
11.15
38.64
38.00
0.01550
�49.74
4.46
11.15
38.64
38.00
0.01600
50.54
4.53
11.15
38.64
38.00
0.01650
51.32,
4.60
11.15
38.64
38.00
0.01700
52.09
4.67
11.15
38.64
38.00
0.01750
52.85
4.74
11.15
38.64
38.00
0.01800
53.60
4.81
11.15
38.64
38.00
0.01850
54.34
4.87
11.15
38.64
38.00
0.01900
55.07
4.94
11.15
38.64
38.00
0.01950
55.79
5.01
11.15
38.64
38.00
0.02000
56.50
5.07
11.15
38.64
38.00
Bentley Systems, Inc. Haestad Methods So®YN1egfdewMaster V81 (SELECTseries 1) [08.11.01.03]
3/20/2016 12:40:53 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203-755-1666 Page 2 of 2
Ga€€oway
Planning. Architecture. Engineering.
l
SWALE CAPACITY CALCULATIONS
Split Swale I A, G, H. Fut A, Fut-G and Fut-H Basins w/2-Year Runoff
Friction Method Manning Formula
Solve For Discharge
Input Data
Channel Slope 0.00700 fUft
Normal Depth 1.50 ft
Section Definitions
W
Station (ft)
Elevation (ft)
.-
0+00
100.00
0+16
96.00
0+17
96.00
0+23
97.50
0+24
97.50
0+30
96.00
0+36
96.00
0+52
100.00
Roughness Segment Definitions
n
s
..e
Start Station
Ending Station ,.. _
RoughhessCcefficient
(0+00, 100.00) (0+52, 100.00) 0.035
Options
t;urrent Hougnness W eigntea
Pavlovskii's Method
Method
Open Channel Weighting Method
Pavlovskii's Method
Closed Channel Weighting Method -
Pavlovskii's Method
�Resulfs
Discharge
94.22
ft3/s
Elevation Range
96.0000 to 100.0000 ft
Flow Area
28.50
ft2
Wetted Perimeter
31.7386
ft
Hydraulic Radius
0.90
ft
Bentley Systems, Inc. Haestad Methods SoBdiWe96dborMaster V8i (SELECTseries 1) [08.11.01.03]
112512016 7:20:51 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 1 of 2
Split Swale A, G,
H, Fut A,
Fut-G and Fut-H Basins w/2-Year Runoff
Results
Z74
Top Width
31.0000 ft
Normal Depth
1.50 ft
Critical Depth
1.17 ft
Critical Slope
0.02027 f /ft
Velocity
3.31 fVs
Velocity Head
0.17 ft
Specific Energy
1.67 ft
Froude Number
0.61
Flow Type
Subcritical
tGVF Input Data .`
Downstream Depth
0.00 ft
Length
0.0000 ft
Number Of Steps
0
GVF Output Data
Upstream Depth
0.00 ft
Profile Description
Profile Headloss
0.00 ft
Downstream Velocity
Infinity ft/s
Upstream Velocity
Infinity ft/s
Normal Depth
1.50 . ft
Critical Depth
1.17 ft
Channel Slope
0.00700 ft/ft
Critical Slope
0.02027 ft/ft
Bentley Systems, Inc. Haestad Methods SoBdidle¢fibb"aster V81(SELECTserles 1) [08.11.01.03]
112512016 7:20:51 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 2 of 2
Split Swale A, G, H, Fut A, Fut-G and Fut-H Basins w/100-Year Runoff
(Project Description " � `� � � � -
Friction Method Manning Formula
Solve For Normal Depth.
Input`pata
Channel Slope 0.00700 ft/ft
Discharge 311.50 ft3/s
Section Definitions
Station (ft) Elevation (ft)
0+00
100.00
0+16
96.00
0+17
96.00
0+23
97.50
0+24
97.50
0+30
96.00
0+36
96.00
0+52
100.00
Roughness Segment Definitions
Start Station Ending Station Roughness Coefficient
(0+00,100.00) (0+52,100.00) 0.035
Options
t;urrent rtougnness Weigntea
Pavlovskii's Method
Method
Open Channel Weighting Method
Pavlovskii's Method
Closed Channel Weighting Method
Pavlovskii's Method
Normal Depth
2.51
ft
Elevation Range
96.0000 to 100.0000 ft
Flow Area
64.71
ft2
Wetted Perimeter
41.0281,
ft
Hydraulic Radius
1.58
ft
Bentley Systems, Inc. Haestad Methods SoNdldla$FdOerMaster V8i (SELECTseries 1) [08.11.01.031
1/2512016 7:21:31 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2
Split Swale I A, G, H, Fut A, Fut-G and Fut-H Basins w/100-Year Runoff
Top Width
40.0419
ft
Normal Depth
2.51
ft
Critical Depth
2.07
ft
Critical Slope
0.01683
ft/ft
Velocity
4.81
ft/s
Velocity Head
0.36
ft
Specific Energy
2.87
ft
Froude Number
0.67
Flow Type
Subcritical
,GVF InputData
t,�T
Downstream Depth
0.00
ft
Length
0.0000
ft
Number Of Steps
0
IGVF Output Data-777`
a
Upstream Depth
0.00
ft
Profile Description
`
Profile Headloss
0.00
ft
Downstream Velocity
Infinity
ftfs
Upstream Velocity
Infinity
fits
Normal Depth
2.51
ft
Critical Depth
2.07
ft
Channel Slope
0.00700
ft/ft
Critical Slope
0.01683
ft/ft
Bentley Systems, Inc. Haestad Methods SoliMitlheQfdeerMaster V8i (SELECTseries 1) [08.11.01.03]
1/25/2016 7:21:31 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1I666 Page 2 of 2
Gaow' a
t Planning. Architecture. Engineering.
STORM DRAIN SIZING
CALCULATIONS
so ta
Gaoway
Planning. Architecture. Engineering. .
Storm Drain System A
A
sl to l�i, mm��n aumi_mmmnmm
o^• ci ci oimmmm lmv .4. .Norm n`ci �i
Ls
pp1 w Ol Oei Oef T ONi T T pdj m N pyOypff
W � m
m
m
O m
n N
C] n f7
Q O
N
w n
m w
w
w O
w N
w O
m
O
m
m m
m
c m�
00
m
e
m m
d d
m
a a
m m
P d
m w
a P
w
P
m.Y ��oai
`'>>ti.
of eNi,
^unity
¢
�n
m n�v
n am
m•
mnl�i
to �i
�i
v�i
�i c°�c')c°9im
m
�I@r^xwwmmmm
�Iv@OIaaPPeee
mmmmwww
eeeadaa
m'Sw—
0 @^
O O
m CI
omm
a m
C A
N m
O N
N
n Q
�ommm
O m
t'1 w
m n
CD n
Ill n
O n
IT O
�m^ml�immomw
C9
mmmmmmm
mom
@ 5>slco
n
�ZIIS
Lam"vivimm
momim
dl m
mmmmmim
a ev
em
e e
d
a a
a P
P P
a
m�ME
omm
w
a a
a a
e a
e
e a
d a
a a
a
J
O
C7
W
O N
m th�
m T m
m<
Nip
m
m
t")
m
n Cl
m
�p
(h Im
m
w
m
Owl w
m
n ¢)
m
w
m
a@
m
a 5
Ol w
P P
w
e e
w
e d
m
a a
a P
w
d P
w
a P
e
O�
Ql�^
0AN
e,n
c
to
mom�m
C
� We've
w
rl��n
immma
n to m
O w
to
w w
to .o
m m
wc)n
w
e a
aea
a
aaevv
g �OI
aO�
m
V G^wt7
m JJ"IOOm�I.)ln.)nl^xmmmmwm
n@ m y
Im
O) O)
m d
[
w w
NN
w w
n N
�N�O Nm
w w
N m
�mOa
m
w
mm
n
Q, �v@ VIP
Paeeeeeeeedad
P
x0
)�^North
Q
0 v
a O
p pO
O a
a
pO ���)�
m m
wmON
m N
nm
�pO
w m
7
MMM
m N
a O
n n
n
t�iMM
N
m
O) O)
O) w
w w
w w
m w
w w
w w
w
aO
i
A
0
5
o
z
m
=
LL
Z
!
P¢`-!2
w
r 2
S S
2 2
r Q
2 2
2 2
2 2
r
Jp❑
? m
p
w m
Op
m w�
-I W
LL
p ❑OppO-)
Vl w
w mJ
w m�
c
Z
= 5
w
aa�ea�`�a�aa¢a`�aaa
a rxxxxxr¢rrrxrr
J
J
J J
J
W J
LL 2
p a
w 0
p a
w 0
p
0 Z
m
c Z
Z Z
w Z
Z
Gais' oway
Planning. Architecture. Engineering.
Storm Drain System B
m
2
O
0
O
N
m
N
m
m m
t m m
m O
im( f O
m O
m Q
m`
t0 f0
('1
m
m
N N
m t�
r Ul
f0
°mm'
(p fp
n m
m
> o
c I
m
rn m
e e
m
Q Q
m m
d d
w rn
d d
m rn
d d
m m
e e
m m
d e
m
Q Q
m mmm
Q a
d d
m
d
p`
m yp N
yy m yy m
npy py_m
m
NN
m .
N n
mp nyyppppdyp
m N
m m
yp�pp pp�pp
N N
my pppy
N
0
m
? 6
y
Oi Ol
O+ T
Ol m
pN p
OI OI
p
m� m
m mi
01 01
01 01
m Ol
yyyy pm
m m
N
CI
IN 7
O N
m m
O l
0 tO
m mm
Ol mm
O m
O V
lmm
m
v
j YI
m m
m m
m d
m NNss
m m
m m
m N
m m
PN
m
Ol m
m CI
n m
m m
m
m m
m m
m m
m
c g
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m
m
m
m m
O m
m n
N m
m N
m
Ol m
N NIA
N
m
n .20
n
m
m m
N y
m m
m O
m m
N
m
p V ��np
my
S pO
pp yyyy
Olm��m�mQ
m(yV
gymy
N
��
yyyyyy yyypyyyp
pmp pmp
paea Cpvl
pMp mpp
gym}
m��
p p
pQi
ap
p
p p
p pOI
�
W m
O m
Om
O N
m d
O m
m m
m e
m N
m m
n
m
KE,
E C UI
m
m m
m
r N
O m
m m
m mom
mp o
to r
m
"
O
N N
N
p p
f0 f0
y
(� r
y
t0 mm
m C!
10 Imo
e '
mN
CmJ
1mp
m ¢
LL
p
OI
nF911
OmnmNmm
m
nIqNdm
n6
mi
mi l6rnnnn
ain
r
oi0
of
U
E
m
m m
m m
m m
m m
Q Q
d m
m ml0mnnririvlcadoilvrNMM-d
N V
�
N N
N N
N N
v-
c
w
m
mmmmmmmmm
m
m m
m m
m m
m m
m m
m
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0
C�
d
m
a
O
N N
m m
O O
m m
m m
m m
m m
m m
10 (O
10 (O
an d
I1A0
Nd Im�l
m m
N N
N
mmmmmmmmm
eeee
eeeeeeee�e����tE�
mmmmmmmm
m
HIS?
m
1p c
m m
m m
o o$$
o
m m
0 0
m
0
m m
O O
m m
O O
m m
O O
O n
o O
O O
`o o`
O
`o
U
C
C G
C C
G 166060.0000
G
C
r m
N O
� •-
O m
m N
O
m N
n m-
N
m m
n m
m m
a N
n
C
J
O
Z
C
mmrmm
m m
m m
m m
mN�
m m
m
�mmmmrommlj
m mmmmmmmmm
m
D O
mmmmm3m?mummmmmm3mm?m
OOO
J
O J
O W
000000-�
00-�0
c
m
Z
t
m
mxE
m2E
mxf
mmLL
m�W
WOOD
Omxf
Om�x
WN_mUj Omx�
Omx�Omx�
JmrW-
JQwm
�j�Z
mmx�
00
mOmxf
m
Z
Z
m
W
m
ry mm
d+�i
dr
rN
�+�i
m O
�i �immm
mmM�mMmr.
mwrnmmmmrnrn�a+
mQ
mQ vQ
mQ �Q
0
ez
�
Q Q
Q Q
Q d
Q Q
O
Q Q
Q Q
Q Q
Q Q
Q Q
Q
E
m qq mm
m m
m r
m N
O V
m N
m m
m m
O
m
m Q
O
m e
N m
N r
N N
N N
N N
m d
N r
d m
m
0
j T J V�
g�gv
m m
m
a VVe
VVee
VVe VVe
ea��a'�
5,�����vove
mud L°O!
1-1
m m
mmmNmQN
N��
m m
om
m m
m
Q
r N
Im17Q
o m
o O
��Q
m m
m
m N
mmmui
m
MEm
E m
o
o m
N n
a Q
Z
tmm, a
n o
mm
m IOm,
1lq
�m"m
Q
m
m N
m m
N 0
m m
0 0
m mm
m
$y
md,
yy$y
d+d�d�dlm
gg yy
N N
mmmm
N O
O
rcm
mii
c b w ei
e d
Q Q
Q d
d d
d
d d
d d
d d
d d
d d
d
m
�
O
W'
m
r O
N m
m m
m m
r m
m
N m
O+ O
m N
r OI
OI
m
E�
&' L° m^mmwrnrnwrnmrn
Om<V
Q V
nm'
MQ
mm
mgNgCf
d+dl
mmd�
QgNg
NNNOm
mmmmm
v
�'2 L°O�
ddddd
dd
dd
d
d ddddddQ
a Qd
2
Vi m^
.N
Q m
m N
N�
m m
r V
IN�I
m N
O r
m M
m j Ci
m Q
m N
N
O W
m m
Q Q
Q Q
Q Q
m Ny
N O
O
p
a0�p
m
I m r
s f
1 mm,
Or
N
Ir0 N
t0 1 Omi
N N
n M
p
m m
O
nQm�mmmmmmmmmmmmm
mmmmmmmm
(7
T
m m
m m
N m
N mmm
m
O N
O Q
n N
m m
r
wm-mmmmmmmmmm
Q N
mm
m N
m
mmMmm
r O
m
9 CI
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q
- � v
T
N
E
Z
^
5
O
c
Z
o
m m
m m
r m
m m
m d
m m
m N
m m
`m
m mm
m mmmmm
mm
6 m
m
m
m
N
xxxxxrx�xmxxxxxx�xxrx
m m
(A m
m z
m z
m LL
m m
m m
m m
z m
m z
m
c
m
C
m
N
m m
r m
m y
m Nm
N_
ml ml
OI N
IO m
t'1 f7
0
m m
m m
m p]
m m
m m
m m
m Ip
m m
m m
m
xxxxxFx�xm=xx��mr-�F�
m
g
c o
g w
a w a
m
a 0
w
w m
w w
w w
w
LL
al 0
m m
coal
m m
J
m z
O J O
m z m
W
LL
O O
m m
O J
m Z
J W
Z LL
J J
Z Z
J J
2 Z
Ga€oway
Planning. Architecture. Engineering.
Storm Drain System C
• Z_
O
i
lx
N
O
E
0 o
ITNr
r o
m
N O
mmc°%iARA=
m
m O
m
0 O)
m N
r
Ell
n
Z;
2
e�a
ci�m
M
m
�
N
N_ m
_N r
N
m
N m
�g^�.
gmm
N
L. Z�N
m o
m r
o m
n Q
�iP1,1w
m m
Y1 t7
omNrl,
t7e
n
NrNmmmm,m
'c m�...imm—
N
e e
e Q
Q
e e
Q a
a a
m m
In
O m
m y N
N
y m y m
m m
1pp� N
MN
N
y m N;
m N
m
N m
m a
r m
N N
m
N m
N N
N N
J
� N
R
p
'�\^y_l7
p I
O m
Nm
d N
mt7n
m �
ON
m
Q
th t`l
V OO
N mmm
r -qrOmm
O
r (O
r O
m C
O
N W
w (D
M N
N m
N
N m--
N O
O N^
O n
n
n n
In
N N
m W
P m
P N
N m
m
O m
0 W
(V m
dM
,
m m
N t7
N
LL
_T
r/�
m C 2I
N p
1� (D
m m^
e N
(p
O
O r
O m
m N
m n
N O
m N
m
N N
d n
N n
N N
m m
m O
N N
Nc"n
nr
n
nn
n rororomrooirroi
ai airr
E,lle(OONNO
N
O
C) N
C
� V
nmm(nm
n(n
mnn
mmNmm
m(nm
i
O G
O O
G C
ro ro
0 0
G C
0 0
0 0
0 0
0 0
v�
O
Nd aN
p�
a a
11((l)
P P
11l(11 111111
O 0
m m
a m
N C)
a Q
N N
O m
to �
m m
�
m N
(n Q
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
p
m
_
N N
O O
N N
O O
N
O S
y y
O O
y y
O
N N
O O
N m
O O
N O
O
n O
O N
r m
O O
inm—occoocc000ccc000ccoc
U
C O
O O
O 8
O O
O O
O O
O O
O O
C
N M
O i l V
m Q
N Q
p�
O m
O
p
r 1O
m
m m
f V c
N
N l�
N N
mmm
{h N
N
m
O i n
N
W l h
B
Q
o
U C�
UUU
C�
U U
V
U U
U U
U U
U U
U U
h
xxxxxxxrxUxxx�xxxx�x
❑❑
fnNNtO
� O
� O
V)N
� J
(��
D W
N LLNNfnzNNfn
� �
O J
� �
� �
tn?41
-� �
c
o
Z
r
`
A
OO
N
•-•-Q"N
Q
N
m
U
n
Um U
m N
U U
m
� U
N
U 0
0
UU
L) m
UUUUUUU
m N
N m
n r
U
pj
Uxxxxxxx�x/-xr��-rrr-��
LL N
N N
N N
N U1
Z N
2 N
Z Z
Z 2
Z Z
2 Z
f7
O-mmMmn
N N
m m
m N
m r
NN¢
t7
r
nl t7
O r
N m
W m
m m
al Ml�
N n
m
N
m
m �j '3 `J
1m
N[JN
mnn
3m
9181
1
n$gi
5p{dQQQQeQQe
eQeeeQeeee
i
`
E
n
m
C� m
N N
P mmmm
N
N M
m N
C)
n
O
' m
O¢
n
N
m
n N
N m
m
N
mmm
t7m
m (n
Cl
N N
CJ M
N
N
(O
�m
���MMm3
319x329
^m
d
P P
d P
d P
P d
e
Q e
Q e
e e
Q Q
e
WF
O�
g
on
ma
(o
Pa¢
(n
P,
N�
'a
roI
M
lq�
v�
d�d��+mmmm
a P
P P
PPP
P
P
P P
a P
P P
P P
P
N Ur
P
y
N N
¢ tym0
yr (O
yA W
tn+I M
O m
y
m
TP
m
m m
Ol
m
0
m m
x m^
G
N
n
i m
N
(O
m N
m N
N
m
m
m m
m
I,
m.
m
C� ro
mMMm
6
t 7
�i
O
p`�irnmm
h m
o
(g W
di �i��
m M
MR
N
m N
mWA
yg
my1I
01 P
d d
P P
P d
d P
P P
PPP
P
P PPP
P
T mm
CVm
N
O m
m m
Nmm
m
O
m
O N
n mmm
Om
P Wawa
Ptn N
QP
Nm
W
mf
Z�S'1I
n
mN�xmM mm
m m
m
m N
m
,,gg
P P
P P
P P
P P
P P
P P
P P
P P
Q e
P
a
U $�
m
m
m N
O
N m
m ID
m m
m m
N m
n N
n m
N m
m N
r r
m N^
m m
m
N
C 4
m
e m
Mog
n
q
O T
'i Oni,
Imp, W
N
({ pp
pmp pN
yy t+f
pN O
n pm
(pO 1
py N JJ
pN
m yN
�W
a �
T
�
0
Z
m
c
U
�
o
00000
O
D U
U
U U
U U
U U
Q
U U
U
N
xxxxxxxrxc�xxx�xxxxr-x
❑
m
� O
NNm
O O
t0
O �
mf/J
J �
zmLL
W O
Nf/J
O O
tO�NNNtOZN
J O
O O
O J
O
c
a
Z
y
f
UUU
V
U V
U U
U U
U U
U U
U UUU
U
�i
�xuxoouu����
J
J
J
J J
J J
J J
W
LL
O
Nt�fA
O
fnNNNZN2NZ
O O
O
O
O
Z2
Z2Z
ZZ
Gaoway
Planning. Architecture. Engineering.
Storm Drain System D
m
m N'
N
P
m A
m m
Q m
0
P O
m r
S
m
n Om1
N
P
p
rmi
l�nn
I`Qin
°'.yi
r��mnmm�mlyl
mrmi
oNin
C N
Op1 Oylp
v v
O P
v v
O O
O O
O O
P P
O O
Y d<
v
v v
Q e
C�OOm
lyyM
lyh
Vppl
1pV
mpgp
m�
@ Q�
W � N
Q Q�eQp
yTy
pmp pmp
pm
mP and
pN
dm Olm
pv
OI
pv
OI OI
p�p�
pI OI
pO
OIQ
pNp
P P
p�ppNp
PQPQ�
A me
m m
N m
NmA
Q m
pmAOm,
b m
b m
C
umI W
mm�r
O p
CI Of
Ne
o"
gig
eeVV4mmm
m
m
e
Amm
e e
m Nm
d d
Nmy
d P
�m
mmmm
P P
m N
v v
N
Q Q
NmmAm
e
mmG °m
epN
QO'p
NmN
m
P
OONmPi0(1
NQN
mNN�mV
AOVI
AN
NO
OOe
0mmN
PO
a O
m G.
CC
1VfV�
NmO
<
�e
om
i
Cm
rn rn
P v
m m
P P
V
m m
P P
m m
Q Q
O
m m
e O
e
m m
P e
O'O'Q
m 01
d d
Q Oi
v v
Cml
m m
v v
o p
m
m^
O
m A
O
Q m
m N
A m
m N
m
m
e m
m O
N m
m O
A m
N m
m O
m
m N
N O
0 C U
m N
N m
N N
m Qp
Q. m
mmm
m
N m
N O
ly b
A N
M b
p
Z
0 E
C
f A
O
d O
O m
A v
m A
N N
A m
m m
N N
m
e d
0 e
d m
N N
m'
m m
v p
N m
m N
O b
m
m C
A
m
m m
m m
m b
b m
m b
b 0
E p;m
�
mm
Q
m N
O O
N N
N A
N N
m m
m CJ
OevN�v
m V
N
N m
m O
Cl v
YI YI
m A
A m
m O
m m
O O
b b
0 �
OI 1`t
C
mla
g,
o 0000`o
oo
0000000
o oo
o
o o
000
oO
ooc
o o
o o
0000
o00000
0000
,NNNmm�mm��0000mmbbmbQmO
0
mp
F
p p
p p
p p
B u
m�
u u
m m
m m
91 91
SI �
,@U
_'
eeeeee___e
t-pi t-pi
__eeee
ee
m:
U U
U U
U U
U U
U U
U U
U U
U U
1.
a
m^
N N
N m
N m
008�ooSSSSSMM0000mm8
N N
m
N
N
O
M
U
O
O G
G C
C
^IG
N O
N N
O^
N
O O
N N
m
N O
m N
17 A
N
l7 m
N m
m l7
I() Q
N
N m
O m
b
Q O
h m
O
VI N
m
J
ml7
OI
OI o[7
YI
m1f1
NImNNAm
00m
�NNN
m
Q
p
Z
m
0 0
0 o
0 0
0 O
O 0
m o
O$
0 O
0$
0 O
p 0
m
Wr
W W
W W
WW2WW22WWxxxxoxxxx�x
W W
W
W
W
W
m
W
J J
J J
z
J J
O J
N
J O
m
o
O J
m
J O
N
O O
N N
O W
N LL
O O
m N
O O
N N
J O
N
B
Z
a
m
�
N r
N
000000000000p
00000080000
W
O JJJ
N Z22222m22mN??mmNm=N2222
0
00
0000
0
E pIp C^O1vQ
nnNN
�(ym]yN
Nln�mlm'I,�
NNQ�
m�I(1
I(IN
mmu@m^M
AiINdd8i
8i
A8
m
=
8i8i�8imm
2� Vp 5
P d
P P
P P
Q v
v v
P P
PPP
P
Q
e v
e e
e e
qyE @
m O
ty0y7,
tp?
O
N
N Q
N
r
C
.hCj � T J
N N
m m
pmp pOp
m OI
y0
q pi
pm
OI m
yy0 pm
pl 01
y� yA
OI m
y�
OPi m
pm
GI A
A �
p�
OI �
pm p�
OI Of
pO
Of W
O c pm^
V
E m
y
SI
Lq NmCbl
p
Nov
bmN1)mrrtmV
Q�mro
minn
m
}}qmq > > j C^
X �aOVQp
� pmp
mp A
PP �PP
fppD pm
mP
pN pP
mQpl
p< ym
Olm
pNp yNy
m�
pO
OIQVS
m m
A �
p� pO
TOIm
p�p CpI
pl b
Eb
£msS xU@
POO
E m
CAj
O m
pp
P O
QQ
N
N �y
O m
N<
Q
N Q
N<
N P
O b
p,
` om�
mrn
m8i
�i m�m�idmma
y
mmmm2
dim
m�.
�Im
lM C� c
P P
P v
v v
P P
v P
v P
P P
P P
P
P Pee
e e
U
8m �v
W
NOpOvII
NP
A�OpPI
(Pp
m1v0
mNO
Oa
Om9 o
t
CIm�Pn
p
ppOp
ppNA
p
pMPPMPPm
9
Q
MT
_
� V
Wmm
a.m."
pppp ppppl1
pyyp pqpq
fpgpqG yqNpq
CpNCp yp
ym mp
mmm
CyyI pp
O O
0 IG
pN p�
p� a
OIO
pO m
Q
9
O O
Q P
O P
P Q
y Qm
<
Y Y
C Y
1 1
V
Y c,�
m
@
ym
m OI
y y
m Ol
low.
p yy
OI O�
y p
01 OI
p
OI all,
4
N
OI Om1
Gml pm1
N ^
�i
' m
Ti
Cml Cm'I
i
........
v
v
..
vmm v
^
ADO
.......
m0
t7
m mIi
w
r
Ny)
IN�,O
. .
.
vmi, mm
m$
W m
T A
p
ON1 OI
p
9 9
pN
9 m
pN pv
9 9
I
9 0
pN NM
m 9
pO
OI GI
OI 1`
A OI
pN p�
9 m
p� py
Q OI
pO yO
01 Of
Vp C�
P P
e e
e e
e P
P d
d P
d P
P P
P P
P v
P v
v p
y1
E
Z
E
8
�
0
VV�
8
S
�
p
U
O
m
0 0
W W
0 0
W W
0 0
W W
0 0
W
0 0
W
0 0
W
0
W E
Cc
E
0
E y
0
O
0
W
JJJJJJOJJOO-'J000Ow0000J0
Z Z
Z Z
Z Z
N Z
Z m
m Z
Z N
m N
m LL
m m
N N�
N
G
2
00000000000000000000ppOp
xF1-FFf
f x1-1-2i
f-HSSi2
f-xti
ti
O J
JJJ
J
J O
J J
O O
J J
O O
O O
J O
J J
J J
Gaoway
Planning. Architecture. Engineering.
Storm Drain System E
m m
r O
w N
IT
Vi m
m O
N n
N m
n
e m
m m
N N
n O
O m
N O
m n
m
w O
0 m
w n
m O
m m
m m
p
m o
m m
a �'
m N
m m
p
m w
w n
m m
n m
O P
m m
m N
m m
N m
m m
m O
N N
m r
m m
P m
m
m 0
O
a c
0 J¢
1� m
a Q
w m
tC h
v v
w w
YI C
v
m �i
O CI
v v
w w
CI �
Q Q
m m
� Oi
P m
w w
Oi O
m v
...
Oi Oi
m m
M.M.
C) Oi
m m
N n
Q
�i
tV O
v Q
m m
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
-
mmm
w
m
m N
n
n m
w r
o N
o
m
MGM
P
O O
O O
w m
m m
1� Ih
m m
mmm
m m
d
m m
m m
m m
N N
m m
� m
m N
w P
N m
m 0
m
t7 N
m m
m m
N m
m
m m
p w
w m
n n
m O
m w
P m
m m
m m
m m
m m
m N
O m
N m
n m
m N
P m
m n
m m
O
m ��
n n
mm m
YI ro
P P
CpI N
Oi OI
m m
O w
m
01 Oi
m m
N n
pi fV
m O
m oei
Oi odi
aei Oei
oei oei
Oi Oei
m �iw
ww
e
www
w
ic
r O
O m
w N
m m
pp Q
O N
i N
Nmmw
m O
�-
O �NNmm
n Q
m n
W
m
w �
mvmmmmnNwwF
OO
m
NwN m
E
@ F CJ
n mmmr
m m
m m
mm�mmwn
N N
O O
m m
wo
n m
mn
m m
m N
min
w w
w
S m
m I
r nn��n�
nnn�e
�e
�u �c
�c ie
�c of
ai of
yen
m C
m
m
m m
m f0
n n
q 0,
m
C
mmV
m nm
:2
mm
ml
E
o 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
Q
G
T
0 0
0 0
0 0
v'ovv0
0
0
paaaa222
fa
0 0
0 0
0 0
0 0
2
0 0
ave
0 0
0
e v
m
m n
O
r m
O O
m m
O O
m m
O O
e P
O O
P P
O O
Q P
O O
O m
O
P
S O
O
W
O O
O O
00
O O
G
O O
G C
O O
G G
O O
C C
O O
G G
O O
C G
O O
G G
O O
G C
O O
C G
N m
m m
N
N m w
m m
m m
m r
m N
m m
w
O N
v ro.-on
tiro
rioimro
riro
roromm�n
ro�
G
J)
m
8
m m
Q m
N
O
N
w
Q
O
wwww
`w wwwwwwwwwww
w
m r
m m
VON-
m
wwwww
m
m m
Li ti
ru ti
ru�ru
rumi�is
❑ ❑
m m
❑ ❑J
m m
❑J
Z m
2 Z
Z Z
Z Z
❑
Z m
Z Z
W-
u. Z
coca
w m
w w
c
Z
n m
m e
m N
O
W W
W W
W W
W W
w m
WF WF
n m
W W
m Q
WF W
m N
W W
m
W W
�j�
W W
m;;
W W
W
F F
F
E
E
om
Z y
y y
y 2
y Z
Z 2
2 2
Z Z
y Z
Z Z
Z y
Z y
0 C
w
N
N O
Q m
m m
N m
w m
m m
m
N Q
w m
N
m w n
w m m
m=
m m
m m
m
m
m
x m� 0
� m
Q Q
m m
�i
Q Q
m w
d Q
m m
Q m
m m
{mj CmI
w m
w m
m
CwI d
w w
d m
m m w
N i am
�
v
�
m
d N
m e
m N
n N
m m
m e-
d N
m Q
mmm
O d
� A3
v. e
v v°i
mri
Ni��ovm
nnmM�
me
emm
��2w�O�eee���Q'�P'��eeeeeee
eeeve
m
m N
O
pp m^
0
y
m
m m
m m
m m
n
O n
N n
n
m Q
N O
N m
m O
d m N
O
m
x�i ���rn������oei��mmmmmm
mm
Qm mm
o
N n
N m
o m
m m
n Q
m N
r m
m¢
m N
o O n
y n���
�<dd�aei
oei oei
oeimmrnmmmmm
mPm
�mm
33 @�
W
m
nmPd
P N
mQmd
Ndmd
mm
Pm
m dd
m
m
n
O w m
m
N C
V V
1- O
O
OtGro
O17ri16trmw6
Iliz
d
d d d
q 0
m
N
m N
m mmm
w m
O y'
N t0
N
m
m
m m
m m
m e
N
m m
f d
e
n
m m
n r m
O O r
N�
O O
m OI
9 n
n t0
Of a
1� OI U
^ mm
wwwo��iwmmmm
mmm
ww
w�i
m m
Timm
g�o
m C
m
m
m N
m
m m
N N
m
O Q
pp r
m
m Q
m N
N
m mmmm
n n
m m
N
P
m
m m w
O m
�
m
mm
oei �iw
�i
oei mmmm
wwmmm
mwwmm
_ �
y
>
m
N N
I
m
we
m
m
Q�
m
m
nmm0
Ni
O wwmnmm
mrNO
m
n
m
P
emmmovmmeeeeev
m
e
moOm
lun
d
d d
d d
d d
e d d
T
m
_
Z
0
c
Z
mN�mN�O
wmW
Nmm'"
w
U
$
W
W W
W W
W W
w W
w w
w w
wN
��Jwm��i❑❑❑❑
❑
❑❑❑❑❑
m Z
Z Z
Z Z
!E
Z Z
LL
Z w
m m m
c
Z
C
�
1
n
m m
Q m
N
O
_
m
W
W W
W W
W W
m
W W
m r
W W
m m
W W
P m
W W
N
W W
m
W W
t7 m
W W W
w
;�
i
F
w W
F
W J
F F
W W
rui��
w w
2 w 2
2
N y
y CIA
y
Z Z
Z Z
Z Z
Z y
Z Z
Z Z
y Z y
0
Gaoway
Planning. Architecture. Engineering-
0
Storm Drain System G
I
0
ioi
Ga€oway
Planning. Architecture. Engineering.
Ultimate Outfall I Release Rate
Ultimate Outfall
24" Outfall Pipe
Solve For
Discharge
[Input
Headwater Elevation
4935.55
ft
Centroid Elevation
4928.65
ft
Tailwater Elevation
4930.49
ft
Discharge Coefficient
0.65
Diameter
1.50
ft
Results
Discharge
20.73
ft /s
Headwater Height Above CenVoid
6.90
ft
Tailwater Height Above CenVoid
1.84
ft
Flow Area
1.77
ff'
Velocity
11.73
ft/s
l
Bentley Systems, Inc. Haestad Methods SoOdittlaQFil erMaster V81 (SELECTseries 1) [08.11.01.03]
6/212016 10:00:10 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 1 of 1
Ultimate Outfall
24" Outfall Pipe
;Project Description
Solve For Discharge
' Input Data
Headwater Elevation
4935.36
ft
' CenVoid Elevation
4929.00
ft
Tailwater Elevation
4931.97
ft
Discharge Coefficient
0.65
Diameter
2.00
it
iResults
Discharge
30.16
ft /s
Headwater Height Above CenVoid
6.36
ft
Tailwater Height Above CenVoid
2.97
ft
' Flow Area
3.14
ft'
Velocity
r
9.60
ft/s
- Bentley Systems, Inc. Haestad Methods SoBd'idtapffte Master V81 (SELECTseries 1) [08.11.01.03]
112121111:41:11 AM 27 Stemons Company Drive Suite 211 W Watertown, CT 06791 USA +1.203-755-1666' Page 1 of 1
Ga€oway
Planning. Architecture. Engineering.
Interim Outfall I Pumping System
Details
0
0
264P / 35P _,,M Recessed Lift Handle
Bolt Down Locking
w/}' Hex Bolts
,_!,_I J" Diamond Plate
_ I -I -I --I-I-
2'-5�" T-,-I-,-,-1-,-, _ Optional -Nonslip Plate 1
I-�-I-I-I-I-I-I-I-1-I-
I-I-I-I-I-I-I-I-I-I-I
I-�-I-I-I-I-I-I-I-I-I-
1-I-I-I-1-I-
I-I-I-I-1-I-I-1-
I-I---I--I-I-I-I-I-I-I-I-1-I-I-I-I-
I-I------I-I-I-I- I-1-171 1 1 1-III-I
I-1-I-I-I-I-I-I-I-I-I-1 I-I-I-I-I-I-I-I-I-I-I-
--I---I-1-I-I-I-I- I--I-1--1---I-I-I
FRAME and DOORS 10 Gouge Steel Skirt
No. 264P 6 -2
I-I-,-I-I-I-,-,-I-I-1- I-I-I-
-I-1-I-I-I-I-I-I-I-I-I-I I -I -
Frame 74 lbs.
I I I 1 1-I-I-I-1-I-
--1--I---1-I-I
Doors 251 lbs. I-I-I-I-I-I-1- -
-III�I- I
-1- Angle Frame � 2'-Ba"
11"x14"xA" -+
FRAME and DOORS
No. 35P
Frame 60 lbs.
Doors 212 lbs.
4'-10" \
Angle Frame
1}"x13"x{�"
CLEAR OPENING(WxL)
I DOOR SIZE(W.L)
264P
29 i" x 71"
131 r x 36 }"
35P
35" x 55 }"
I37 >i"x 28 }"
Assisted Door
Scale: 1/2' = 1'-0"
cessed Lift Handle
:king Latch Assembly
a" Pentahead Bolts
it" Diamond Plate
Optional -Nonslip Plate
.711 i-
" =1- 10 Gouge Steel Skirt
�Ta1-L I- l
Notes:
- Frames designed to be bolt on.
- Finish:
Hot -dipped galvanized.
Optional NonSlip finish, designate as NS, i.e. 2641a
- Loading: Suitable for H-20 wheel loading in off-street
locations where not subjected to high density traffic.
264P / 35P 264P / 35P
Oldeastle Precast® File Name:020UAH264P35P GAM STEEL
PO Box 323, Wilsonville, Oregon 97070-0323 Issue Date: 2011 ACCESS DOORS
Tel: (503) 682-2844 Fax: (503) 682-2657 oldcastleprecast.com/wilsonville
139.1
DEMING @
www.cranepumps.com
Specifications:
BAF-8; Standard
3" (76mm) Schedule 40 pipe should be used for guides. An intermediate
guide pipe bracket should be used for pipe lengths of 20 feet (6M) or more.
The stationary elbow is designed to be anchored to the floor of the wet well
A stainless steel sealing face on the elbow mates with a cast iron flange.
The pump bolts to the moveable bracket and is then free to ride up and
down the guide rails which are attached to the base elbow at one end and
the underside of the wet well cover at the other end. The guide rails serve
only to guide, they carry none of the pump weight.
CRANE PUMPS & SYSTEMS
e
A Crane Co. Company USA: (937) 778-8947 • Canada: (905) 457-6223
8" Break Away Fitting
Models: BAF78
Bulletin 7365
Demersible Pumps
Model: BAF-8
P/N: 082110A
DESCRIPTION:
THE BREAKAWAY FITTING IS DESIGNED TO
ALLOW THE SUBMERSIBLE PUMP TO BE
INSTALLED OR REMOVED WITHOUT REQUIRING
PERSONNEL TO ENTER THE WET WELL.
SECTION 42A
PAGE 65
DATE 8/12
International: (937) 615-3598
' 8" Break Away Fitting
'Models: BAF-8
Bulletin 7365
j Demersible Pumps
DEMING @
www.cranepumps.com
inches
(mm)
I
{�11.00
I (279)
r�7.50
4.56 I 1191) I
(116)
42.00
1 c (1067)
9.68 O 36.00
(2+6) 1— T (914)
I
18.00
(457)
I
I
18.00 (457)
48.00 (1219) OPENING
54.00 (1372) REF.
L GUIDE RAILS
UPPER GUIDE BRACKET
3" (76) SCH. 40 PIPE
2 REO'D
5.31
(135) 1 1
12.06 �L WE WELL
(306) 51.62
1 (1311)1
I
37.00
(940)
I 1 1 I
8" (203) CLASS 125 I (224 O
24)
DISCHARGE FLANGE 1 1
rl
17.75 — — — 25.00 (635)
(451) MIN. WATER
o
,,.00
6.00 (279)
12.)at:bR D; b 1 p D (152)
(305
30°
?DG 5.00
So 4.00�
102)10.50
T~(279) (267)
' SECTION 4CRAN E PAGE 6
6 PUMPS &SYSTEMS
DATE 8112
ACrane Co. Company. USA: (937) 778-8947 • Canada: (905) 457-6223 - International: (937) 615-3598
Size 8T DEMING°
4" Spherical Solids Handling
7365-823
www.cranepumps.com
Demersible Pumps
#4 Frame Driver
Finches
(MM)
30.11
(764)
12.93
(328)
48.23
(1225) Q
o o 23.13
0
(587)
0 0
STANDARD WITH 30' CORD
Optional Leg Kit - p/n 125506A
6.64
15
(80
PUMPS AND MOTORS ARE FM/CSA EXPLOSION -PROOF TO CLASS I DIVSION 1 GROUPS C&D T4 RATING
Dia.
NEMA
Full
1
Locked
Model No.
Size
inches
HP
Volt
PH
Hz
RPM
Start
Load
Servi ce
Rotor
Driver
Cord Size
(mm)
Code
Amps
Factor
Amps
Frame
Amps
7365-823-32-300
8T
10.43 265
25
208-230
3,
60
1150
G
75.2/70.5
90.8/82.6
354.0
#4
2/4 - 18/4
7365-823-62-300
8T
10.43 (265)
25
460
3
60
1150
G
35.4
41.3
177.0
#4
8/4 - 18/4
7365-823-77-300
8T
10.43 (265)
25
575
3
60
1150
G
28.3
33.0
141.6
#4
8/4 - 18/4
7365-823-33-300
8T
11.02(280)
30
208-230
3
60
1150
E
90.8/82.6
114.9/99.7
354.0
#4
2/4 - 18/4
7365-823-63-300
8T
11.02 (280)
30
460
3
60
1150
E
41.3
49.9
177.0
#4
8/4 - 18/4
7365-823-78-300
8T
11.02 (280)
30
575
3
60
1150
E
33.0
39.9
141.6
#4
8/4 - 18/4
7365-823-49-300
8T
12.21 (310)
40
230
1601
1150
1 E
110.4
131.8
476.0
#4
2/4 - 18/4
(7365=823=64300)
(8T)
'12-.21-(310)
(40)
(460)
j
(3)
(60)
(1150)
(EI
(55-.21
(6_5 9)
(_238-0)
(#4)
1 (6/47--1'8/4)
7365-823-79-300
8T
12.21 (310)l
40
575
3 1
601
11501
E
44.2
52.7
190.4
#4
1 8/4 - 1814
IMPORTANITI
1.) MOISTURE AND TEMPERATURE SENSORS MUST BE CONNECTED TO VALIDATE THE
CSAAND FM
LISTING.
2.) A SPECIAL MOISTURE SENSOR RELAY IS REQUIRED IN THE CONTROL PANEL FOR PROPER OPERATION OF THE MOISTURE SENSORS.
CONTACT CP&S FOR INFORMATION CONCERNING MOISTURE SENSING RELAYS FOR CUSTOMER
SUPPLIED CONTROL PANELS.
3.) THESE PUMPS ARE CSAAND FM LISTED FOR PUMPING WATER AND WASTEWATER.
DO NOT USE
TO PUMP FLAMMABLE LIQUIDS.
NOT SUITABLE FOR ENVIRONMENTS CONTAINING GASOLINE OR HEXANE.
4.) INSTALLATIONS SUCH AS DECORATIVE FOUNTAINS OR WATER FEATURES PROVIDED FOR VISUAL ENJOYMENT MUST BE INSTALLED IN -
ACCORDANCE WITH THE NATIONAL ELECTRIC CODE ANSI/NFPA 70 AND/OR THE AUTHORITY
HAVING
JURISDICTION. THIS PUMP IS NOT
INTENDED FOR USE IN SWIMMING POOLS, RECREATIONAL WATER PARKS, OR INSTALLATIONS IN
WHICH HUMAN CONTACT WITH PUMPED
MEDIA IS A COMMON OCCURRENCE.
5.) A NON -SPARKING BREAKAWAY FITTING MUST BE USED TO VALIDATE THE EXPLOSION PROOF LISTING.
SECTION 54 CRAN E
PAGE 54
DATE 8/12
ACrane Co. Company
PUMPS & SYSTEMS
USA: (937) 778-8947 Canada: (905) 457-6223 • International: (937) 615-3598
EFFLUENTAND SEWAGE
TECHNICAL BROCHURE
BCPCGR
FEATURES
A10-30, 3- X 4" RAIL SYSTEM:
Connects to any pump with a 3", 150# ANSI flanged discharge.
Outlet is a 4" flanged discharge.
A10-40, 4" X 4" RAIL SYSTEM:
Connects to any pump with a 4", 150# ANSI flanged discharge.
Outlet is a 4" flanged discharge.
A10-60, 4" X 6" RAIL SYSTEM:
Connects to any pump with a 4", 150# ANSI flanged discharge.
Outlet is a 6" flanged discharge.
ALL MODELS:
Cast iron construction for standard applications.
Optional bronze pump adapter for applications requiring a
non -sparking disconnect.
Standard kit contains a Base, a Pump Adapter with all required
bolts and fittings and the Upper Guide Rail Positioning Bracket.
Optional intermediate guide rail brackets are available in either
steel or brass for non -sparking applications.
Guide rails are not supplied - they may be sourced locally - 2"
stainless steel guide rails recommended.
Spare pump adapter kits are available for those who want a
back-up pump/adapter ready for an emergency quick change.
RAIL SYSTEMS
Centri Pro
a xylem brand
\A/A cta1Aiata r
3" AND 4" DISCHARGE GUIDE RAIL SYSTEM
• Heavy duty cast iron construction.
• Twin guide rails provide positive alignment with
base.
• No sealing devices required - pump weight provides
sufficient force for proper seal.
• Self cleaning. design. When pump flange engages
base, the shearing action wipes the sealing surfaces
clean.
• System Components Include:
• Base with integral cast elbow.
• Pump adapter - guide assembly with fasteners.
• Upper guide rail positioning bracket. Carbon steel
bracket available as an option in stainless steel.
NOTE: Guide rails not furnished by CentriPro. Lifting
chains and bails ordered seperately. Intermedi-
ate bracket available as seen on page 4 for pits
over 11 feet.
Pump
Discharge
Part
Number
A
Max.
C
H
J
Weig ht
3"
A10-30
4°/16
333A
22'/2
63/a
11+1/4
170lbs.
4"
A10-40
313/16
1 341/4
23
1 73/a
12±1/4
185lbs.
NOTE:
Motor Frame;
Reliance - 180TY
Positioning
Bracket
33/8"
—(2) 2" Pipe Guide Rails
by installer
PAGE
4" DISCHARGE GUIDE RAIL SYSTEM
1� Top View
r -81- — -4E -1-
/Positioning
Bracket
61/r'
(2)
9/I6
0
Holes
Frame
PumDi charge
I Part
Number
A
Weight
210
4"
A10-60
373/4
1851bs.
250
4"
A10-60
431/8
1851bs.
PAGE 3
ki
PUMP ADAPTER KITS
1 K340 - for A10-30 iron
1 K341 - for A10-40 / Al 0-60 iron
1 K447 - for A10-30B brass
1 K448 - for A10-40B / All 0-60B brass
Part numbers are for repairs, component is included in the A10-30, 40
accessory.
INTERMEDIATE GUIDE RAIL BRACKET
A10-30 (B) standard
41<436
Al0-40 (B), 60 (B) standard
41<437
Al 0-'30 304 SS
41<631
Al0-40 304 SS
41<632
Used on pits over 11 feet for extra support.
Must be purchased separately.
MINIMUM BASIN DIAMETER
Minimum
Recommended
Simplex
36"
42"
Duplex
48"
60"
Pump Discharge
Size
Order
Number
ANSI Flanged
Discharge Size
Material of
Positioning Bracket
Used On These Pumps
3"
A10-30
4" 150lb. ANSI
Carbon Steel
3WDA, 3DWS, 3WS, 3888D3, 3SD
3GV, 31VIV, 31VIK
3"
A10-30SS
Stainless Steel
4"
A10-40
Carbon Steel
4WDA, 4DWS, 4DWN, 4WS, 3888D4, 4SD, 4NS
4GV, 41VIV, 41VIK
4"
A10-40SS
Stainless Steel
4"
A10-40SS
6" 150lb. ANSI
4"
A10-60SS
Carbon Steel
I
3" XP
Al0-30B
4"150lb. ANSI
3XWC, 3SDX, 3GVX, 3MVX, 3MKX
4" XP
A10-40B
4XWC, 4XWN, 4SDX, 4GVX,4MVX, 4MKX
4" XP
I A10-606
I 6" 150 Ib. ANSI
4XWC, 4XWN, 4XD, 4SDX, 4GVX, 4MVX, 4MKX
* For 61VIK units, see Conery base elbow CBE6060.
xylem
Let's Solve Water
Xylem, Inc.
2881 East Bayard Street Ext., Suite A
Seneca Falls, NY 13148
Phone: (866) 325-4210
Fax: (888) 322-5877
www.xyleminc.com/brands/centripro
CentnPro is a trademark of Xylem Inc. or one of its subsidiaries.
C 2012 Xylem, lnc. BCPCGR R12 ApH12012
Ga€owa
Planning. Architecture. Engineering_y
Outlet Protection
Determination of Culvert Headwater and Outlet Protection
' Project: East Risge Second Subdivision
Basle ID: Storm Drain C
' �� ixu
b
b I
n
Design Discharge
filar Culvert:
Bartel Diameter. in Inches
Inlet Edge Type (Choose from pull -down list)
Culvert:
Bartel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pulidown list)
Number of Barrels
Inlet Elevation
Outlet Elevation 4@ Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coefficient
Tailwater Surface Elevation
Max Allowable Channel Velocity
Tailwater Surface Height
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Tatwater Depth for Design
Adjusted Diameter2&Adjusted Rise
Expansion Factor
Flow/Diameter25 OR Flow/(Span' Rise")
Fmude Number
Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
HeadwaterlDlameter OR Headwater/Rise Ratio
Minimum Theoretical Riprap Size
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection
Width of Protection
Soil Type:
chw one:
O Sandy
Q Non -Sandy
O = 129.3 cis
.................................. ..._�..- ......_60........... inches
..........
�S4uare End Nojenion � �
Height (Rise) =
Width (Span)=
OR
it
ft
No =
Elev IN =
Bev OUT=
L=
n =
kb=
k. =
Bev Yc=
V =1
It
ft
it
It
ft/s
1
4931.86
4931.01
213.71
0.013
0
1
7
Yt =
2.00
It
AM =
18.47
ft'
A=
1963.
ft`
k. =
0.50
W =
0.78
k. =
2.28
It
Yn =
3.34
It
Y. =
3.25
ft
d =
4.13
ft
D. _
-
ft
1/(2'tan(6))=
5.35
O/DA2.5=
2.31
fey/5
Fr=
0.95
YVD =
0.40
HWi=
5.13
Ift
HWo=
481
99HW= 493
ft
1.03HWID=
d5o =
10
in
d5, =
12
in
Type=
M
b=
23
ft
T=
10
ft
Determination of Culvert Headwater and Outlet Protection
Project: East Risge Second Subdivision
Basin m: Storm Drain D
111 ON wcu
H F-1 e
III— ;
iar
n
Soil Type:
[mare one:
Sandy
Q Nan -sandy
Design Discharge
filar Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull -down list)
Culvert:
Bartel Height (Rise) in Feet
Bartel Width (Span) in Feet
Inlet Edge Type (Choose from pull -down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Fait Loss Coefficient
Tailwater Surface Elevation
Max Allowable Channel Velocity
Tailwater Surface Height
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Tailwater Depth for Design
Adjusted Dlameter2&Adjusted Rise
Expansion Factor
Flow/Diameterz's OR Flow/(Span' Rise")
Froude Number
Tailwater/Adjusted Diameter Qg Tailwater/Adjusted Rise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Minimum Theoretical Riprap Size
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection
Width of Protection
Q= 185.E Cis
66 _ inches
�s4uare End Proieition __ ��
OR
Height (Rise) - 6
Width (Span) = . It
yr = 3.48 ft
AM= 37.12 ft'
A = 23.76
N. = 0.50
14 = 0.61
k. = 2.11 it
Y = 3.97 ft
Y. = 3.81 It
d = 4.66 ft
D. - ft
1/(2'tan(0))= 6.72
CAY2.5= 2.62 ftoe/s
Fr = 0.92
ytlD= 0.63
HW,= 6.20 ft
HWo= 5.90
HW 4.937.95 ft
HWID= 1.13
dm = 7 in
dw = 9 in
Type= L
60 35 ft
T= 11 ft
Determination of Culvert Headwater and Outlet Protection
Project: East Risge Second Subdivision
Basin ID: Storrs Drain E
ABOX cnac
n °
1— I---- _
io
Soil Type:
Choose One:
Q sandy
Q Non -Sandy
v
Design Discharge
0= 117.9 cis
Barrel Diameter in Inches
D = _ _ .60 inches
Inlet Edge Type (Choose from pull4own list)
Square ErN N°jamn
I
OR
Bartel Height (Rise) in Feet
Height (Rise) -
it
Barrel Width (Span) in Feet
Width (Span) =
ft
Inlet Edge Type (Choose from pull-0own list)
Number of Bartels
No =
1
Inlet Elevation -
Elev IN =
4929.71
ft
Outlet Elevation Qa Slope
Elev OUT =
4928.98
ft
Culvert Length
L =
180.61
ft
Manning's Roughness
n =
0.013
Bend Less Coefficient
kb =
0
Exit Loss Coefficient
k =
1
Tailwater Surface Elevation
Elev Y, =
4931.99
it
Max Allowable Channel Velocity
V =1
7
ft/s
tection (Output)
Tailwater Surface Height
Yr=
3.01
ft
Flow Area at Max Channel Velocity
A, =
16.84
ft'
Culvert Cross Sectional Area Available
A =
1963.
W
Entrance Loss Coefficient
k =
0.50
Friction Loss Coefficient
k, =
0.66
Sum of All Losses Coefficients
k =
2.16
it
Culvert Normal Depth
Y„ =
3.11
1t
Culvert Critical Depth
Y.=
3.10
ft
Tailwater Depth for Design
d -
4.05
it
Adjusted Diameter OR Adjusted Rise
D. _
ft
Expansion Factor -
1/(2'tan(0))=
6.69
Flow/Diameters OR Flow/(Span • Rise")
O/13"2.5 =
2.11
nos/s
Froude Number
Fr =
0.99
Tailwater/Adjusted Diameter Tailwater/Adjusted Pisa
YVD =
0.60
Inlet Control Headwater
HWi =
4.80
ft
Outlet Control Headwater
HWo=
4.53
Design Headwater Elevation
HW -
4,934.51
ft
Headwater/Diameter OR Headwaterlftlse Ratio
HWID=
0.96
Minimum Theoretical Riprap Size
dw =
5
in
Nominal Riprap Size
d. =
6
in
UDFCD Riprap Type
Type=
VL
Length of Protection
b =
15
R
Width of Protection
T=
8
ft
Determination of Culvert Headwater and Outlet Protection
Project: East Risge Second Subdivision
Basin ID: Storm Drain G
w
..x ci ac
N F o
w
Design Discharge
Bartel Diameter in Inches
Inlet Edge Type (Choose from pull -down list)
Bartel Height (Rise) in Feet
Bartel Width (Span) in Feet
Inlet Edge Type (Choose from pull -down list)
Number of Bartels
Inlet Elevation
Outlet Elevation Pa Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coefficient
Tailwater Surface Devation
Max Allowable Channel Velocity
TaNvater Surface Height
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Cw ficient
Sum of All Losses Coefficients
Culvert Normal Depth .
Culvert Critical Depth
Tailwater Depth for Design
Adjusted Diameter O&Adjusted Rise
Expansion Factor
Flow/Diameter33 OR Flow/(Span' Rise")
Froude Number
Taihvater/Adjusted Diameter Q$ TaiWater/Adjusted Rise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Minimum Theoretical Riprap Size
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection
Width of Protection
Soil Type:
Choose one:
p sandy _
Q Non -Sandy
Q= 17.8 cfs
Inches
Square Eno Pralecbon
f �
OR
Height (Rise) =
ft
Width (Span) =
ft
No=
1
Elev IN =
4933.62
it
r Elev OUT=
4931.29
ft
L =
155.35
ft
in =
0.013
kb=
0
k. =
1
Elev Yr =
4934.47
ft '
V=1
5
ft/s
Yr= 3.18 ft
AM = 3.56 ft2
A = 3.14 ft`
k. = 0.50
kr= 1.92
k = 3.42 ft
Yn= 1.16 it
Y. = 1.52 ft
d=M201
it
D.ft
1/(2'tan(0))=
Q/Dn2.5 =ftoa/S
Fr=Supercriticall
YVD =
HWi= 2.64 ft
HWo= 1.13
HW — 4,936.26 ft
HWID= 1.32
daq = i in
db = 6 in
Type= VL
b= 6 ft
T= 3 ft
i
Determination of Culvert Headwater and Outlet Protection
' Prolect: East Risge Second Subdivision
Basin ID: SDS A
W
11� �- L--L,
tt
Soil Type:
noose One:
cx _ saner
' O Non sand
MFRM
Supercritical Flowl Using Da to calculate protection type.
Desi n Information In ut
Design Discharge O = gg.4 cis
' Circular Culvert:
Bartel Diameter in Inches D = 54 inches
Inlet Edge Type (Choose from pull -down list) [Square Ene Pml on �Ene vml on ��
Box Culvert: OR
Barrel Height (Rise) in Fast Height (Rise) = ft
' Barrel width (Span) in Feet Width (Span) - If
Inlet Edge Type (Choose from pull -down list) E- I.
Number of Bartels - No = 1
Inlet Elevation Elev IN = 4930.7 it
' Outlet Elevation Q$ Slope Elev OUT= 4928.95 It
Culvert Length L = 156.06 It
Manning's Roughness n = 0.013
Bend Loss Coefficient kb = 0
Exit Loss Coefficient k. = 1
' Tailwater Surface Elevation Elev Y,= 4930.86 it
Max Allowable Channel Velocity V=1 5 ft/s
Re uired Protection (Output):
' Tailwater Surface Height Y,= 1.91 If
Flow Area at Max Channel Velocity A, = 19.88 ft'
Culvert Cross Sectional Area Available A = 15.90 ft`
Entrance Loss Coefficient k. = 0.50
'Friction Loss Coefficient kr= ' 0.65 . Sum of All Losses Coefficients k. = 2.15 It
Culvert Normal Depth Yb = 2.19 ft
Culvert Cnhcal Depth Y. _ 2.93 It
' Tailwater Depth for Design d = 3.72 1t
Adjusted Diameter Q$Adjusted Rise D. = it
Expansion Factor 1/(2'tan(6))= 6.63
Flow/Diamete�'a M Flow/(Span'Rise's) O/DA2.5= 2.31 fes/s
' - Frouds Number Fr= 1.75 Supercriticall
Tailwater/Adjusted Diameter M Tailwater/Adjusted Rise YUD= O57
Inlet Control Headwater HWi= 4.60 it
Outlet Control Headwater HWo= 3.27
Design Headwater Elevation HW - 4,935.30 ft
HeadwaterlDlameter OR Headwater/Rise Ratio HWID = 1.02
Minimum Theoretical Ripmp Sim din= 9 in
t Nominal Riprap Size din = 9 in
UDFCD Riprap Type Type = L
Length of protection LP = 40 ft
Width of Protection T = 11 ft
Determination of Culvert Headwater and Outlet Protection
Project: East Risge Second Subdivision '
Basin ID: Storm Drain B
L
�y si+ac
n � n
v
n.
a
Sail Type:
CIXM one:
Q sandy
Q Non -Sandy
Design Discharge
O = 182.2 cis
Am Culvert:
Barrel Diameter in Inches
.D = _ _6.6_ inches
Inlet Edge Type (Choose from pull -down list)
Csquare End Nojenion
j.
Culvert:
OR
Barrel Height(Rise)in Feet
Height (Rise) -
it
Bartel Width (Span) in Feet
Width (Span) =
it
Inlet Edge Type (Choose from pulldown list)
Number of Barrels
No =
1
Inlet Elevation
Elev IN =
4931.6
it
Outlet Elevation OR Slope
Elev OUT=
4931.01
8
Culvert Length - -
L =
147.76
It
Manning's Roughness
n =
0.013
Bend Loss Coefficient
kb =
0
Exit Loss Coefficient
k. =
1
Tailwater Surface Elevation
Bev Yt=
It
Max Allowable Channel Velocity
V =1
7
fills
Tailwater Surface Height
Yr=
2.20
8
'
Flow Area at Max Channel Velocity
A, =
26.03
ft'
Culvert Cross Sectional Area Available
A =
23.76
ft`
Entrance Loss Coefficient
k. =
0.50
Friction Loss Coefficient
14=
0.47
'
Sum of All Losses Coefficients
k. =
1.97
It
Culvert Normal Depth
Y„=
3.92
It
Culvert Critical Depth
Y. =
3.78
It
Tailwater Depth for Design -
d = 4.64
It
Adjusted Diameter OR Adjusted Rise
Da =
it
Expansion Factor
1/(2'tan(E))=
5.00
Flow/Diameter26 OR Flow/(Span'Rise'°)
O/D"2.5=
257
ft" "is
Froude Number
Fr =
0.93
'
Tailwater/Adjusted Diameter Tailwater/Adjusted Rise
Yt1D =
0.40-
Inlet Control Headwater
HWi =W0.71
ft
Outlet Control Headwater
HWo°
Design Headwater Elevation
HW =ft
'
Headwater0lameter OR HwdwaterfRise Ratio
HWN=
Minknum Theomficai Riprap Size
d. = 12
in
Nominal Riprap Size
deb =
12
in
UDFCD Riprap Type
Type =
M
'
Length of Protection
LP =
32
ft
width of Protection
T =
12
It
Gaoway
Planning. Architecture. Engineering.
DETENTION POND SIZING
(EPA SWMM 5.0)
' 4.1
Intensity -Duration -Frequency Curves for SWMM:
The hyetograph
input option must, be selected when creating SWMM
input files.
Hyetographs for
the 2-, 5-, 10-,
25-, 50-, and
100-year City of
Fort Collins rainfall
events
'
are provided in Table RA-9.
Table RA-9 - City of
Fort Collins
'
Rainfall Intensity -Duration
-Frequency Table
for Use with SWMM
2-Year
5-Year
10-Year
25-Year
50-Year
100-Year
Duration
Intensity
Intensity
Intensity
Intensity
Intensity
Intensity
(min)
(in/hr)
(in/hr)
(in/hr)
(in/hr)
(in/hr)
(in/hr)
'
5
0.29
0.40
0.49
0.63
0.79
1.00
10
0.33
0.45
0.56
0.72
0.90
1.14
15
0.38
0.53
0.65
0.84
1.05
1.33
' 20
0.64
0.89
1.09
1.41
1.77
2.23
25
0.81
1.13
1.39
1.80
2.25
2.84
30
1.57
2.19
2.69
3.48
4.36
5.49
35
2.85
3.97
4.87
6.30
7.90
9.95
'
40
1.18
1.64
2.02
2.61
3.27
4.12
45
0.71
0.99
1.21
1.57
1.97
2.48
50
0.42
0.58
0.71
0.92
1.16
1.46
55
0.35
0.49
0.60
0.77
0.97
1.22
60
0.30
0.42
0.52
0.67
0.84
1.06
65
0.20
0.28
6.39
0.62
0.79
1.00
70
0.19
0.27
0.37
0.59
0.75
0.95
75
0.18
0.25
0.35
0.56
0.72
0.91
80
0.17
0.24
0.34
0.54
0.69
0.87
85
0.17
0.23
0.32
0.52
0.66
0.84
90
0.16
0.22
0.31
0.50
0.64
0.81
95
0.15
0.21
0.30
0.48
0.62
0.78
100
0.15
0.20
0.29
0.47
0.60
0.75
105
0.14
0.19
0.28
0.45
0.58
0.73
110
0.14
0.19
0.27
0.44
0.56
0.71
'
115
0.13
0.18
0.26
0.42
0.54
0.69
120
0.13
0.18
0.25
0.41
0.53
0.67
Table RO-13
SWMM Input Parameters
Depth of Storage on Impervious Areas
0.1 inches
Depth of Storage on Pervious Areas
0.3 inches
Maximum Infiltration Rate
0.51 inches/hour
Minimum Infiltration Rate
0.50 inches/hour
Decay Rate
0. 00 18 inches/sec
Zero Detention Depth
1%
Manning's n Value for Pervious Surfaces
0.025
Manning's n Value for Impervious Surfaces
0.016
Table RO-14
Percent Imperviousness Relationship to Land Use*
PERCENT IMPERVIOUS
LAND USE OR ZONING
Business:
T
20
CCN, CCR, CN
70
E, RDR, CC, LC
80
C, NC, I, D, HC, CS
90
Residential:
RF,UE
30
RL, NCL
45
LMN,NCM
50
MMN, NCB
70
Open Space:
Open Space and Parks (POL)
10
Open Space along foothills ridge
20
(POL,RF)
RC
20
*For updated zoning designations and definitions, please refer to Article Four of the City Land
Use Code, as amended
0
0
' 4
00
n
a
a
0
0
0 1
0 1
J 1
,0 1
1
*
1.J
Ln I
*
ro a
1
#
,ti N 1
D ONO
•HO 1
)
+J N 1
o N o
1
4 M
a,I
o N
II
0
N U. I1
. .01
alv *
Q G I
o00
wrpl
**
o a *
u
I
-u1J
0
1
t
11 G H1*
o 0
z 1
*
O
O I
*
41
1� *
O o
H I
t
H 4J
.i W *
O O
N W 1
H O N fh
W 1
#
ro b+*
E N I
r 0
rNl0
}*
N ifw
'N 1
N OO
(�ON
w I
N 75 -H *
H -i w
I1 w l
?i
0 I I
N
(0 r: *
N N 0 0 0 N O
�
I I
#
H 0 #
0
W 1' 1 U) O
>_I I
I
*'
a U a*
7 N r •• •• O
U 1
i-7 1
*
W N*
0 RC O O O O N
ro l
W' I
*
rl ?4 LJ *
El 81 0 0 00 0
v1 a U Z u,
o • o
O I
*
a)
N.C*
GJ W 000W OOO.N W OOrio W
r4
�. 1
t
O > U*
U ?�zzz Nzzx QUvl0000�>+ooHo
#
U N ro
w I
*
W O
4
(aa w*
*.
I
*
v) o *
o y
* a#
a
I
*
wW*
o0 • •a a
t of
o
1
*
u v1 *
*
m*
w Iv W +j ❑ a •. w •o
* *
w m N
•• O j
>. v O O u m ro
* >, *
ro N O
w I
*
04
*
o*
o *
: te a o > J m m of d
#
F I
t
::J
*
.�,*
r -H
•H � sJ aH.,, o s,m as v
-H
* .j
-H LH
w
1
#
En
<n *
*
*
a s H o O (u
Q a a a, ro c 1:
* w*
01a
a a o
3 1
*
O d
t.
a*
1 41 m m W W ri .� .� E m
. TS r t+ u r.� ro o q ro a1
* (0*
p o q
t
0*
N O*
*
O*
N O H +� ro 0 7 .J -.1 Q W W H v] E f-1 >_I
E
# ro*
0
U Q �
*
N *
*
*
El
wEH •.a) 3 O b?OlWw ro qp E F W N
* *
41
N4J 10 C4'
1
*
,C G 1) t
*
ro o ro a H' ro 0 b+ ❑ N E N N O
* a*
14 10 ro
O I
*
E O m*
*
H*
.1 *
G U) W E G .H O C 'O � ri b) -1 0
F: O
* �*
of ro SJ
F I
*
*
*>#
w 1 14 Ell
H 33 7 3 O v 1i W. Q�
b m A s+ E
* w#
1.1 U
U
v1 I
*
•• b .ri *
*
?� *
Hr.
H J r U El
N .i H O O O G w H rJ g U F E ro E N
*
E O ro
0
I
#
W N *
*
rl *
41
.-i O ro .� 3 14 '.I N O J� .J .J 'O
3 U ro❑ G 0
0*
* o*
-H
a .� w
1
*
F
*
ro*
O O U: fx CO C7 GJ W 3 W O ro v W a W Pr o >_I % ro
D
* G*
J ro SJ
04 I
*
co 0
oroo*
*
c*
a. -I aluororoq
*
0 r
o>a�
w
w 1
*
z.Q a*
*
Ft*
4404 .
kJa Hwmw�Cas❑cJ:>Xzx
)W<O
y*
* a*
FwHv1
1 V
r
N H I
o c o O O O N O O O C1
to
ro 1
0 d o O O m c o o o r
O
�J m I
o o o O O OD M o o o m
H
O
O l0 I
O N 0 0 0 0 0 0 0 0 0
< I
O 1
H I
I
�
•
U U U
N N N
( (h
1
O N 0 0 0 l0 Ol O O'O C
VI N f/1
'-I N
r/ 0
� N I
0 0 c c 0 o r N
O r N
r 0
I
o
O N 0 0 0 10 0 0 0 -O
O
N o
4 1
Ln o o o
N O O O O
O O
0 1
O I 1
COO
0 l0 O O O N H O O O N O
I
N 1
I
-
H Ol O O N O
11 I
ri
U I
ro I
#
N #
+
N *
*
X
+
y +
*
In*
C*
a
# #
#
4-1 *
*
H *
1
* > *
*
*
*
*
*
ro *
v
.H *
.
#
ao s1 b)
rova
* �*
...
*
w*
*
*
ro
*
*
a .1.a
• ow
* C *
(1)dP
*
*
#
*
rl
*
W *
U b4
.._.
* .J *
3 3 3 H � '-'
*
H *
*
fu
ro *
A
*
*
i1
•
*
o 0 0 rc1 0 C
*
*
ro
*
a*
rn
a a a >+ C N
•
* C *
F:
rl .i 3 Vl > H
*
U *
U
.-.
.*
)*
m *
.✓
*
*
N N 'O O >
• o
0
* o #
44 O o O
w w w 3 0 0 0
*
*
cw
*
C *
rn
*
J
t) *
J
a.1 U1 � a) ro .,1 � C
S4
* U#
0
C C C- O H O a 'd it
*
4,
11 *
r
#
H*
*
m*
V] U m N L0 O
N S-I
* *
H H H H w N .7 N S!
*
.i *
H
#
#
N
*
*
13 ro U
W
# b+ *
w JJ C W
*
11 *
*
3 *
Sd
*
N *
N N N � t1
10
ro
* C*
0 0 4)
41 s1 3 C 7 0 C O O N
*
U*
O
*
O*
N
*
H*
E S E N 1
� i,
* .'1 *
N N N O H U a O .11 JO
0)
*
*
ri
#
H *
*
•.1 *
C 1J O
O 41
0
* *
0 J
.0 .0 40 r1 .i 40 O 1H
*
a *
--
*
G-1 *
N
*
F *
El El El
E E E
1) .�
3
# C *
1.1 row H H b+ ro 1)- .:1
*
*
*
*
x
*
#
V] 7
# o*
ro ro 3 C ro ro C (4 N .M V) 7
t 0
*
J *
H
*
J) *
C
*
LT *
N 5 1�
C
* W*
N N 'O H C C tJ ro C
*
COW*
U
*
O*
.H
*
C*
0 Q
C (T C O+ C
H
* *
'd O H-H �p
3 3 C '0 0
*
I*
*
N*
rl
*
*
H ro H N ro N
J
ro-
* 3*
Q) 0) j
0 H ro ro o a.4 p ro-
*
*
x
*
A*
*
4J *H
u U u U
C C
* O *
?4 a) O H 1.+ O ro w .1 C C
*
*
C
*
b+ *
*
=1
7 *
C a/ X s1 al s1
X
1.i O
*� H *
S-I N fJ O X X rl D X C .H O
X
*
*
*
.� *
H
*
O *
••1 'J ro N 'J N
[v U
* G-1 *
O 3 U' C W W u W H G W -1
U [
*
[1 *
.71-1
*
x *
FC
*
W *
E FC £ P+ r-C a1
i
>
u#
ro#
* W 1 M M lfl m l0 N .i w ri
* W 1 H ri C' H C' m m to Ln
0 N I Lo vI N .-I to to l0
.. O 1
:5 U I O o O O O O O O o
G 1
I
fG W W 1 '-I r CD
a) W I M M
m H 0 fl H C O N
a O U 1
L a I N N m N r r W M M
a I st' M ul M N
a 1
I
I
M O M O N ra nN
row ro I cM�M,-lo0o
u O iT 1
O a I o 0 0 o O o 0 0 0
7 < I
a < I
o I
r-I I
ro 44- 1
J W I
O a I
F H I
a a I
ro ro -ri I
0 �
O W
E
I
N
(a a a 1
O I
0 a 1
E+ a I
O O M O M W r C V
N N l0 Lo. l0 H to 1n lfl
0 o O o 0 Co 0 0 0
N N m N m r c r m
C C N C N r N M N
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
Co O O O O O O O O
000000000
0 0 0 O O O o 0 0
W W W W m m m m m
rn m m rn m m m rn rn
0 0 0 0 0 0 0 0 0
I I
I I
I I
I
1 I
I I N
I I a
U)
I I 0
1• ro
I LI I p] d
I a) I a
F I x ro
I' I I
I .0 I N N N N N N VI y
1 U 1 I 1 -fl -rA
1 3-) --H -AA -rl 3 -ri -ri .H
1. o l ro ro ro ro ro x ro ro ro
I A l P] W W W !Y7 sa fA W fA
I a 1 1 1 1 1 1 N 1 1 1
I m 1 pa r.0 0 U H W [u W 0
1 1 3 a) 74
1 O U O
1 H a 74
1 44 ro }4
I H W
I �
I 07
1 'ZJ4 W 1
o c mm Ho
I E+ a O
I a) W a) I
o m m to 0
1 H
aa) I
. . . . . . .
I
1.1 a) 44 1
f-I O H H M M M
I
O Q I
a 1
ro
a
0
rt
1 Si r-I �J
I N W r-i
I X N a
�D W N Lo ri to O
I J) C O
I ro U -ri I
N N H C u) C N
I (t H
a E. I
.. .. .. .. .. .. ..
I a
1 a) •• 1
0 0 N O O O O
I
1 W S4 LI 1
0 0 0 0 0 0 0
1 O N a I
1 a 1
I
I N U a) I
O O o 0 o 0 0
I
I � U �. 1
I X a)
I -ri O ro I
I ro U
I F 'O 1
E a
a)
1 W S
10
m
1 O sa
%D 0
N Q'. \OH
I N U
1 -H Ga 1
W
I• X I
N N N M M M M
-
-fl O
I ro I
Ol Ol 01 O1 O1 m m
I F
I I
1
I
H 3
I .Y
I a lj � a) 11
o 0 m rn r H
w Mcl0HO
m
I N-O
I H fi
�.. ) I
a a
-
I - 0W
I .� N G.1 I
HOH HMMM
I E a
X
1 X Q I
I N Fi
£
I E I
I
I I
1
I
H 3
1 OA U 1
firnrnlnr
1 m o
1 o.0 a)1
r+ooMlnMM
>•i rl
1 ro a O 1
I -ri d w
I a) rr-i I
O O O r-I M N N
I X Ja a
a Q
a)
ro H
>
I
X a
I
I I
f
I
z
1
O a w w w w w
1
H
d i
U 44 a tZ a a a
1 a I
z F O O O O O
I
• ?, I
D D E F E E+ F
I
I F 1
1
17 0 W W W N In
I
I I
*
> #
I
* ro *
#
#
* *
I
YI
*
*
I
# #
ro N
*
m*
* (n
# *
I I
O H
*
3
LL -H*
4 4
O *
I
* lJ *
I I
a 44 'b
*
* *
a
o o a
*
w
* al *
I
-ri 1: CO ro w
*
a
* D#
I
iJ 10Q m❑
#
H#
I
* *
I I
m
a w Iw
*
*
I
* a) *
a) I
H a) 1 144I
*
N*
I
* b*
1
,: 4Jh
*
1
* O*
I O I
w w W w
t-1 a a))w
*
0 #
I
* z*
I z l
t70QH0rYlU
*
z#
I
4J
N I
O O O O O O H
U I
S-I 1
0 0 0 0 0 0 0
N I
I
a 1
I
I
-
I
I
H 1
0Mrin o M 1
ro I
owocNn N
b I
N N • M
O O
I
o o O
< I
O I
� I
I
i
1
Cl O C l0 M 01
(a
ro l
H C N u1 N
U
N N • Mri
o
C
1
0 0 0 O
'O
.0 �. J
< 1
C
41 a)
O I
O I
P.
a Z N
H I
U I
N41 w
❑
1
0
0
as i
G N
C I
r L00000
.0 1
.ri w
-H I
N N C C C C C
b+ I
E
I..
.. .. .. .. .. ..r1
1
• 1
0000000
.0 1
u 1
0 0 0 0 0 0 0
1
C
1
M N
0
v) 1
041I
0000 00
J
IT a)
1
1
u w
ro t
4-41
a)
v U
ro t
o I
x
a I
• >
V] 1
0 0 LO LO m M M
0 1
x 0
w I
o M In M l N W
41 1
(0
U I
E
I
N M M r m w In
(1) 1
I
r N In N M
.0 1
W 1
I
a I
O
> I
a
U) I
O O N N CM M M
0 1
b�
w I
O O N M l (N W
Q I
4) }4
U I
ro l
f4 ro
I
o o rn r m m
1
0 .0
M N N N m M
U I
x u
N
I
rl I
)
�
1
u 1
o a w w w W W
d
1
Hacr��cr��cr��cr��cr��
41 1
a) i
U Gr4
a I
z E+00000
1
a
>. 1❑
D E+ E E E E
C
>,
E I
tD O M W M 0 W
N I
E+
+
m +
3
*
*
N
*
#
t I
*
0 *
I
*
*
U I
I
0)
LI a)
*
a) *
U 1
O I
I
C J-)
I
O rl .W
*
ro *
b) I
I
•.i
I
C w 't1
*
U
I
O 'O C
*
u*
b1
1
.J C (a*
C*
u I
I
lJ Cl ❑ V] 0
*
V7 *
ro I
cn�w�wlw�
•ZJ
LI AJ t7 x W1 ❑
*
b *
1-I I
'O
0 1
H::s a)
�j 1
0
z I
h 00 H 0 M U
-*
z*
0 I
z
0
N
r
0
H
F
U
z
h
L
O 1
G I
1
0 I
I
N I
� I
C 1
a
41 I
ll I
a) I
� I
a) I
3
I
. I
v 1
� I
O 1
C I
1
ro 1
In 1
1
0 I
H 1
W I
Sa I
a) I
>O
1J I
(a I
� I
1� I
I
u I
a) I
W I
3
I
H I
# > # H I
# u # ro 1
# ro #
# # O41 1
1
# # I
# # I
* U+ * a) a) I
# C # W I
# O #
# O # I
* O # tp 1
# H # C 1
# # 1
# 0 0 # 0 1
# 0 # o
# # �-1
# z # w 1
a1 V 0 1
0 0
x o❑ 1
0 0
ro W
E I
I
I
I
H '0 a) H I
ri rl
ro 0 I
C 0
0
O b I
N r
0 H H
F w O< l
o 0
0 1
� I
1
I
1
x w C I
o 0
N •• 1
0 0
W W
0 0
O C 1
�
a) U 1
0 0
>
ro
0o
F O I
I
1
I
a) V
MC
41
U
x i
� a•
x 1
�
ro I
� I
I
I
I
•ti I
N M
fa I
0 C
L4 1
C O 1
r
O O I
H 1
w I
*
> * I
#
S-I * I
*
ro * 1
*
* I
*
* I
#
# I
*
a) * I
*
# I
*
* I
#
H # I
*
o * 1
*
* I
aq
*
a) * I
❑
*
b1 * I
w
*
ro * 1
r W
*
* I
h U
*
U)
� * I
3 m I ormcko
O w I O N m r M
r U I
WI LOc O M o
1J I rl 'i M
C
0 I
U 7
a w
w ro
C U 0
a a
C O
U O
a a
w I
U 7
a w
M i c 0 0
r m r o
r minr n
lD m N O n
r c 10 O M
�n�nM�nm
O H c M N
0 C) ID m
io mtorn
M mM C\lc
m N M
T m c l0 O
Ln M r N W
H c M N
1 34
1 L4 (D
I O 4) 41
1J I C V H
-rl 1 O r1 .11
C 1 a- A w
I O O C
tT I 41 ro ❑ m ❑
o 1 u hex wl❑
41 1 0 W W W W
m 1❑ H 0 [Q U
I H a) rl 1
0
1 0
I ro� ro I
M
I M
I w iT I
m
i m
I O r I
I
E O1
0
1 0
<
I > I
1
1 O I
I
I rl I
I I
I I
I
I
I
1 I
X 3 m i
0
I
i o
I ro o w I
m-
I
I £ I-i44 U 1
I -
I I
1 I
I I
I 1
M
I M
I
I
I
I I
I I
I I
1
I
I
> o w i
m
I w I
I
I I
I I
N
I N
I
I
I
I I
I I
3 v41 1
m
I
I
i ID
1 O N% 1
N
I N
I rl S4 U I
•
I -
w C. a l
r
l r
# T t
r
I H
+ iy t
I I
I
t ro t
1 I
I
# #
I I
I
t #
I I
I
# #
# m #
I I
I
# #
I I
I
t b+#
I I
I
# C t
I I
I
# •ty #
I N I
I
t ro t
o I
I
# o#
I o f
1
t a#
1 z 1
I
# #
1 I
I
t W#
1 W I
H
1 w
# t
I l: I
41I
N
::$
# 0#
0 I
0
l m
i
I\ r J' I N m' c r
I X rl JJ I M
ro a a 1
I$ w d) 1 0 0 o o 0
I ❑ I
I I
I I
I I
i 3 0 O
I X r1 O I o 0
I ro a r1 1
I I
I I
I 1
I
I \D
I U 4 I H
I
H I
1 X 4 JJ 1
I (0 >•w I
I I
I 1
I X 4) C I �D r Ln l0 rl
I faU-•1 I N N Ln Inc can
I C .. 1 .. .. .. .. ..
I 4) •• 1 0 0 0 0 0 0
1 W FSI I OOOOOO
I O N .0 I
I � I
I -i O ro
I
I I
I — m 1. O O m r c ID
M
O I U I . M O m N r
-rl E I
X w I r r M
ro —
I � 1
I I
I I
I I F
I I H
a 1 o a a x x x
Q� I z E H H H H
F i OU w 3 3 3 3
I I
I I
I I
I I
I I H
H
ro
I I w
O
Y1
ro
0
x P
ri 4
V F rl N M c
1
1
1
1
1
1
4J
N 1N 4 1 0
1 0
I I C w I
I I H U 1 0
I I I
I I I
O
1 u •O I O
I I O v I
1 z a 1 0
I N I
N I
I �tl C w I o
U O pI
I D U 1 0
3 1
I O I
'VH I O
a u I
I C p U l o
N Hj I N
H a 4 1 N
I E+ CO U 1 0
w
I O 1J I W
I C 3 t4 1
O O U I o
I w I
ro 3 >, i o
S4 O }4 1
I I
I I I
O
o o i o
I I I
> i o
14 1 0
0 I
I I O
I I
I I
I I
I •O ,G 1 O
I N M L 1 0
L C I
I 41 41 C I rl
1 � I
I I
I I
I I
1 I
I I
1 I
I I
I I
I I
I I
I l
I I
I I
� 1
I 7 1
1 ro 1
C 1
O I 1 U u I U
J 1
1 VI N 1
1 u -H �.� 4J0 l
0•
I O ro� l
1 ro a I
1 U I
I I
I I
3 1
1 r1 O I ,
H .-
7 lu
f4 lu N
Sl (I 1 0
D r r
x O u 1
z
I I
I 1
I I
(a I ri
I I ro l o
N 1 •
I I 11 I O
I I y I
I I C I
I I q I
I I
I r-I I
r co I N
7 ro I rn
[u N 1
1 u I r
I 1J y I
I a a I
I o a 1
I x 1
I I
I I 41 I rl
C 1 •
I I W I O
1 1
I
u + s I 1 0 1
+ ro + I I
+ + I
* a + I
+ + 1
ro+ 1
+ U + I
+ u + I
C
+ (n * I
k JJ + 1
* C + 1
O x I
* U + I
w N C 1 0
W > b) 1 •
O u .,A 1 0
C x 1
N U I
I
.ri a I
H 5 3 I o
O
dP IL a 1 O
u N u I r
N b) C I 10
ao a x
0 3 cn
� U
Cu
I C�c U I O
1 .4 O G4 I O
I x H U I
I FZ4 1 O
I I
I I
I I
I I
I I
1 w V1 1 N
I o a 1 rn
O I N
1- I I
I N 1J I
I u I
I ro 1
I 1) I
1 z U) 1
I I
I I
I 4J TS I r
I C N I OJ
I N N I
1 U I iJ fi I H
I N .J I
I a 4J I
I p I
I I
I
I I
1 1
I I
I I H
1 ro
1 I w
C
O
1 T
I 1 >-1
I 1 ro
1 u
I 1 0
7 I N
1 a I H
lfl LD
rl ri
O O
N N
N N
ri rl
U')�
N N
ri rl U
I'J h N
o v �
- a
H V
.. N
O O
1�
A w a
ro
V! n a)
m m
ro ro 4J0
r.0 r.0 H
h
No Text
1
O 1
1
0
0 1
1
1 *
la #
n 1 #
ro a #
1 #
ro #
-
41 a) I
rn
. #
U I
o w In
� o io LO
tia y
� I #
a a7 #
❑ C I
M O O N
w I #
rota#
#
s -r1 a) #
I #
1) J.) #
o o
I '#
m U)*
o 0
oo
I
O o M
1
a) I
ko O N N
a I #
O 11
N 0 l4
a) I
N
W I #
H#
a) � -#
ri rl W
rl W 1
. .
> I *
T .i#
oo U
O I I
N OODlO
1 #
ro 0 4
1
>Uro
d' M
II1 ##*
rl 0
I I O .. V! O
}J I
n. U a.
> .. •.••
O0
. I1
aI
m v
0400 o LO
W I
-.T4
F3 I I C)C)00
❑ 1
u4 *
m .w azaao ...... O o
O I #
N.C*
W OOOw 000>+'W U) 000 W
£ 1 *
a) U*
v)000.-I Y,
coro
U >+22 z>+z 2 x ❑n
u
*
Urlo
U a (a #
E. 1 *
1 a) #
. . . . . . . . . . . .
* T
2 I *
� rJ #
4
. . . . . . . . . . . . . .
*
-H
w1 *
u O >4
. . . . . . . . . . . . . . . . . . . .
* F:
0 I *
ro aW*
. . . . .
# -H
: : .
z I *
U).
0 U) *
•o -o m . . . . . .
* a *
a
1 *
W N*
0 0 >1 . a
* o*
0.
1 *
T r1 *
w. -o ,C .0 ro n. a) v)
* U *
- 4 U)
I *
u U) 7 *
*
m *
.. W . . . . a) -P ❑ a • a) 4j -o
* *
41 V) w
a I *
ro u V) *
#
C *
• • • 0 • • • 3 T a (1) a) • • +) U) (0
* T *
ro O o
W I *
rl a) *
*
0 *
U C of O 41 £ £ T 41 M V) a) a)
* 1) *
P O W
F I *
7 L4 *
*
- 4 *
ri 7 • >_I C rl -'I a) S4 V) a a a) r1 1-1 U
* -H *
-ri .7 W
I *
n *
*
�*
as ro- HFao)+5 ❑ oa a Ito
* ++*
a ao
a *
y(1)
*
a*
•o4j4j<ro0C(aa) w4JxJ -H -.+Fro
# a*
-.iaoa
I *
u o*
*
O*
U) orl 41 ro �j ::5-H•.+0 41 41 E�U)V)•.I F s4 u
* ro*
o o-ri :j
£ 1 *
a) *
#
*
++£r •H a o o+a+J� (a a-rI F FW a)
�*
a) -A�a
a 1 *
c C 41 *
*
V) *
-H (aa a) 10 a ro �J IT ❑ a) F a) a) a) o H
* a *
>4 41 a
01 *
FOv)#
*-.+#
aM4-4 a-Hus,oa •o e50)1 0
•o
# *
W
a(dsav
S4 U
ElI *
C *
*'
V1 *
V) C H 7 3 a) 11 a -H O a) 11 •.-I -'i C A >4 F
# *
Y
V) I *
•• 'o -r) *
*
T *
a) -H H O O O C t) rl �) C U to E* E+ •H m E a)
* W *
rl O r-i N
I *
w u *
*
r1 *
3 u ro ❑ C P r1 o (a .,A 3 u ., a) O 41 -H "1 •0
* o *
(d P. -A w
E, a)*
*
ro*
o Oa a U)(D 6w a3W O ro•U a-+ R.N TC to K ro
* C*
N (04-4 to
a I *
0 a o*
#
c*
H +4 C .-I xJ C C (1) a) u o ro (0�3 a)
*�:$*
0> a�:s
W 1 *
2A c*
*
C*
u,a, wmw<aa❑a>£zx
* a*
F WHm
a)r 1
O m o o O c O O1O O v
-
N 1
0 LO .0 0 0 )n 0 0 0 0 0
0
rn 1
Om o OO co o OOO)n
r
0
0'o
I
C> c)OOrloo000
< I
rl rl •
0 1
H I
I
m m
O
JJ I
OIOOOOm 0000 � a
0 )n
a) 1
(DOtO 0 G 0000 c 0
[ 0
a) 1
0 C. 0 0 r i O O O O N O
i
W 1
0 o
O
I t
o l0 0 0 0 )n o 0 0 o H o
a) 1
M M
>•1 I
U I
ro I
#
x
• do
#
C x
a� an
#
3 3 k�
4J
0 0
m>rl
t4 -
- x
G+
�3 U) s4
�
coy+
�aG 01-1 0 4'0>
a) L4
#
#
H HH r1 W U) 1-1 (1) S4
b) W
#
b) x
W V U) C to 'O W
(13
x
a#
Ns+u3aa0aooa)
s4>1
#
#
wd(1)0H0a0-HVV 4>1
O ,J
#
x
.c c 41 r -H '-P U) o
a) -4
x
a #
!J aJ ro w .-1 r1 0) aJ ro u .li
U) a
x
O#
ro ro 3 C CO ro C ro f4 rl m a
a) a) 'O H C C .H 34 +) N C
P S4 •O O rl •.i H rl
CO ,J
#
3 x
a H a) a) o a .14 41 (a +J
C C
x
O#
T JJ O H a) O ro 44 -H C C
.i O
#
H#
14 a) p a X X H> X C .11 O
[u U
#
Cu x
!] 3 (7 04 W W W W 41 H W U
U U U
a) a) a)
Ul m U)
H c 0 0 0 0
c r O O O O
H
I
N
# # 41
# f4 # U
# ro x a)
# x a s4
x # ro 0 C
a a
# m # m rn
a >,a a) aaa
+ a) # a) a) a) 'a O
x JJ x 4J 4J a) ro .A C
# mx U)U)U) a)JJ O
# # AJ ro U
x E# H E E+ -H H ,Z
+ G: o a o a
# JJ.x ri L4 H U P U
% £ � X a � a
W W 1 rl H H rl rl r V' m C'
44 V-1 I M M r M r a' r c' r
O N I m m m m m N m m m
C O 1 . . . . ... . . .
aU 1 0 0 0 0 0 0 0 0 0
.Y W m 1 O CO N O CO CO O N
ro W 44 I r v' N l0 r c O N Ol
N O U I
W C
I m o O M v' M N rl
a'. I N N N N N rl
I
I
W H I Ol lO l0 Z 4-4 ro M M N M O M
1 m O m N H M N H
O lT I
0 C •
I N .-1 N rl H .-i O O O
F a <
O I
H I
I
I
H w C 1 1n coLn
Orl H
0 0N0 0N
1 0 0 N N N rl N
w 1
O C 1 M M M M M N M M M
E 7 I
a I
I H H C
I ro 1 'JJ 44 W
I ElH
l w r1 %D . C 0 m 0
O O O O O 14 O O O
1 rl a C 1 0 Co Co 0 0 0 0 0 0
1roro.H1000000000
1 w D I
1 O w I o 0 0 0 0 0 0 0 0
I E I
I I
I I
I I
I I
I I
I rl C 1 0 0 0 0 0 0 0 0 0
I N O. i I o 0 0 0 0 0 0 0 0
1 w C I
I O C I o 0 0 0 0 0 0 0 0
I F a i
I 1
I 1
I I
I I
I I
I
I a C I 10 r r r r r r r r r
I ro .'{ .1i I %D � � l0 l0 l0. lfl l0 l0
1 w U 1
I O N 1 M M M M M M M M M
1 F Ya I
I M
I I
I I
I I
-O .0 i1 I r N o
N 41 N I m m O
1 41 a N I
I P N 44 1
rl O CO
1 O ❑ 1
1 a 1
1 N X I
I x ro 1
I £ I
I I
I I
I X O1 C I
H N N
1 N•• 1
0 0 N
1 W 34 N I
O O O
I O S-1 C I
1
N U v I
0 0 0
m i
O
I E 10 1
I I
I h a w I
Ol N O
17 U N 'I
m m rn
x a 1
.I
mm lO
II
x
N N M
I ro 1
rn rn m
I I
I I
I � a v 1
.
I v[� 1
r1om
1 x ❑ 1
1 ro 1
I £ I
I I
I N F.' w I
m r v'
I 0w v l
arin
ro a N 1
1 u NG, 1
rloc
N ❑
I I
I I
o a w
CD
I I
F 14
44
a i
2 H 0
I E+ 1
I
h0W
# > #
I I
I I
+ u #
I I
# ro #
I I
# #
I I
#
I I
O
# CO#
I IC
# #
O
# C #
W
# w #
C
# a#
O
# N #
I I
�rl
# ❑ #
I I
J�
# #
I I
C
1
4Jw
« 2�
2 i
h 0 0
O U O C 1
0 0
I H C S4 N 1
0 0
[Ga ro S4 U I
r w S4 1
0 0
ro N 1
m W 1
I I
I I
.I
I I
I I
I I
I' H N H
u1 if1
I N o E ro 1
1 4Jb+ 1
rl H
0 44
I W rl I
rl H
I H C OI
I H > < I
1 O I
I H I
I
I
I
1 rl 3 N r1 1
0 0
I ro O V ro I
1 }4 r1 C bl 1
I N W I
I w C O W I
I ro H 9< I
I a O I
I H
1 X N C I
ri N
£ G
N •• 1
0 0
1 W 34 >4 I
O O
1 O S4 C 1
1 N U W I
O O
U ? 1
.- O ro 1
I E 'O I
I I
1 I
H 3 m 1
0 0
1 ro 0 I
o 0
I H. U I
U
0 44
I -HW I
N N
I x F a 1
1 ro H I
I I
I I
H 3 V] 1
00
C ro 0 u 1
0 0
H L+H U I
I 44O
O
X J
I � r I
I ro ro H I
I £ a 1
I I
I I
o a
N I
U G-i
a 1
z F
E+ 1
h 0
# Sa # I
I
# ro # I
1
# # I
I
# #
# # I
m
I
+ 3 +
# o # 1
I
# W # I
1
# C # I
I
# H # I
I
# #
# N #
N
I
1 H
# # 1
10
U 1
0
z: I
zIho
N
O
a'
O
0
v
0
0
a
0
O
w
a
v
v
0
� o w 1
o
H r U I
X w I
Ln
x -1 1
£ O
I I
I I
I I
x v C i
In
£ C r I
I N •• I
N
1 O 14 L I
I C
I N U UI I
o
I . U T 1
I -Ho(a I
I H 0 I
I I
I I
4)
I I
I I
x 41 rl
7
£ U -4 I
'O 1
.0 r4 w I
O M
I W [-4 I
0 1
as v I
r o
U I
N G.i I
I I
1
o c
11 1
0 I
N i
C n
I
I
x
o I
to
1 ro F5 m I
I
I
1 rl I
•-I
I 4J U1 I
N I
i1 C 11 1
O r
1 I
1 O 11
1
m m
1 I
I E+ O l0 1
11 I
0) O N I
m m
I
I >< 1
I
-H to k+ 1
I 1
I O I
w 1
0 U I
o r
I I
I ri I
0 1
x
I
-1 11 0 1
0
I I
a 1
• 7 I
-'i C VI I
0 1
x o 1
1 w U o 1
4J 1
(01
I X CL 14 1
I X $ U) 1
I
x I
I W I
I ro 0 1. 1
N I
I
I
,G I
I
I a 4-1 U1 1
0
Ga I
41 1
1
I ro C VI I
I I
I
I
I •J U O I
I
N I
'0 I
m 0
I w a a I
1
> I
N 1�o
0
1 I
I
0 1
0) I
I I
I I
,Q I
V! 11 I
O O
I 0) 4J rl I
N
I
ro I
ti ro 1
m N
I D C r1 I
N
I b1 3 m I
Vl l
0 0 1
I P1 W 1
.i U I
N I
x u I
I
I Ra
•fI
m l
I I
I I
}I
4 I
I
I I
I I
I
I
v v M 1
m
I I
11 1
r
I I
a)
v I
I
O W
1 (0 C w I
CO
I I
J-I I
I
H
1 '1
1 3 I
ro t
I
F /�
I w 0 0 o I
rl
1 O a) v C I
3 1
1
U
I 'J T O 1
0
I r1 Sa U I
I
a l
0
2 0
0
I O l
r
I Ga Lu W I
C I
T I
O H
I rl I
*
T*
I I
* T*
N I
F I
rJ m
*
T*
I I
+
to #
I I
* SJ *
,C I
I
*
T *
'0
#
i1 *
I I
#
ro *
I I
* CO*
3 1
I
*
u*
•0
* *
U1 1
I
#
*
O
#
#
I I
*
7*
I I
# C#
N I
I
#
* -
O
#
#
I
*
m
* m *
C I
#
*
r-i
*
m *
#
m#
w
# N
* f4 #
I
I
C
*
C
I
# ro*
0 1
0
*
*
v
*
r*
1
0
*
ro#
ro 1
a
#
'6 *
3
#
O*
C I
fL
*
O*
I 0 1
* U*
-H 1
I
C
#
O*
*
#
1
C
*
a*
I z I
# }4 *
01 1
I
O
*
O #
V]
*
*
1
0
#
*
I I
* 73
34 1
I
H
*
ri *
v
#
N *
N 1
-H
*
rl #
I H I
* m *
ro I
I
41
#
[u *
'0
#
b1 #
I 0) 1
JJ
*
rl *
I r1 I
ro t
C
#
ro*
I ro I
* N#
U I
N I
N
*
N*
C
*
it *
I u 1
N
*
W#
I w 1
14
O #
I 0 1
41
*
#
I 41 1
* 0*
C 1
0 1
rl N
*
O#
O
*
lj *
I +1 1
N
#
C#
I 7 1
# z#
m I
z I
f-J ❑
*
z#
z
*
U7 *
m I
0
#
O*
O 1
H 4J
m a
£ w a)
� ri 3
X r-I O
£ w w
N I N
I .
1
1
I
w
T
m
I I
1 1 41 1
1 1 (1) r 1
0
1 1 u 1
0
C 1) 1
I I H U 1
I I I
0
1 1
fl
01
I 1 '41 1
1 0 1-I I
1 N 41 1
_ O
1 Z a 1
0
J
I Sd -'{ 1
0
0
UI I
I H
m
o ro(a 1
0
1 ro a ++ I
o
1 x a
4 'I 1
0
I ro a I
0 0
1 U O u I
I U I
c O
I ❑ U 1
0
I 1
1 3
1 O I
1 3 1
I r1 11 I
O
I rl 0 1
'
I w -.i I
O
I rl ri 1
a u I
4 w 1
I raU l
0
1 m44 I
rh
lfl
I. -I I
u
I rl I
N
c
1
7 N (a l
I a) I
O
I O>E 1
I H ar1 -1
N
I x 1
M
,q0 0
1 [1U U I
o
I FC 1
1
1 w 1
1
I
I O J-i I
O
I I
I A "1 1
W
I I E; I
H
N H
1 CN 1
1 1 (aI
O
a1 M
m
I O U I
o
1 1. a) 1
I -W I
1 1 u 1
O
O O
I J�
1 1 41 I
O O
I U G
0
1 1 I
1 (a 3 T 1 1
O
I 1 r 1
N O N I
1 1 ❑ 1
0 o
I w❑❑ I
o
I 1
I I
I H I
I I I
o
I 14 ro 1
l0
I I T I
O
1 w (1) 1
I 1 a s+ 1
I u I
o
0 0
I I „'. ❑1
O
I N 1l I
m
0 o
u m 1
o
Ln Ln
i i T 1
o
1 o
I u 1
0
1 x 1
❑
I
I t
o
I I m I
H
-
I
T7 I
o
I
1 1 q l
•
I
I I w I
o
E
I •,C 1
o
I I 1
H
#
T#
Q) M
I a) lJ I
O
I I .0 1
0
#
u#
I bl I
I 1 1
❑ W
#
ro#
1 Y) G I
rl
#
T#
I I 0 I
2£
#
#
3 UJ
I N 1
#
#
I I W I
O b
#
#
I n FCC a I
#
(a
ro#
I
U w
#
#
I •U
##
I I
#
m#
I r.4 I
#
#
I I
#
#
#
#
I I
#
G#
I I
#
m#
I I
#•i
#
I I.
#
a) #
I I
.-i
#
1J
I
b#
I I
rl
#
N #
I I
#
l4 #
I I
#
T #
ro
#
U#
#
ro#
#
}a#
W
#
-.i #
I
#
,C #
I I
#
N #
11
#
W#
I I
#
U#
I I
#
#
�
#
•.i #
I 1
#
u #
I I
� #
#
O
#
N#
I
#
7#
I
#
#
T
#
fll #
I I
#
[/) #
I I
#
W #
#
ro #
I 1
#
#
I 1
#
#
(a
ro
#
rl #
I I
#
#
I 41 I
#
tT #
#
U #
-H
-r1
I I
#
-H
-.-1 #
I �.1 I
#
G #
0
#
#
I a I
##
I 7 I
#
-•1 #
a
#
s#
1 ro t
#
ro#
1 b 1
#
a#
N
#
rl #
I O I
rl
#
O#
I o I
#
#
U E
#
w#
1 U I
U
#
o#
1 U I
� U
#
a #
44 N C 1 O
4J > m I
O l4 .H I O
�x1
N U I
I
.l a
E E 3 1 0
4 O I
dP l I O
1
1
I
si O u 1 0
N b 1 d
a ro 1 1 I
oox 1 a,otO
I 'i
. N r I M
J 7 Ol 1 c
O r I
E O w I
> < I
o I
r I
I
I
% 3 m 1 0
ro 0 [u 1 0
£ 1-1 U I
k1 I n
is 3m I o
> O Gi I
< •i U I
Gi C
r 3 m
-4 O G.
>- w U
44 N I
O a I
0 I 1
N 1� 1
ri ri
0 0
N N
rl ri U
7 a)r3 r] UI
a1 ro �
F F V
C C rg
O O ..I
J-1
a ro
rn v Iv
ro G rn
Aa)a
ro
u v W
ro m
>1 > i
10 ro
ro CO 0
< r.0 E+
Detention Pond
Stage -Storage Calculations
Project: East Ridge Second Filing
Project Location: Fort Collins, Colorado Date: 6/1/2016
Calculations By: H. Feissner
Pond Description: Detention Pond
User Input Cell:: Biue Text
Design Storm Required Water Surface
Required Volume, ft' Volume, ac-ft Elevation, ft
Design Point: Outfall
Design Storm: WQCV
Required Volume: 0 ft3
Design Storm: 2-year
Required Volume: 106010 ft3
Design Storm: 1st 100-year
Required Volume: 1542290 ft3
Design Storm': 2nd 100-year
Required Volume: 3084580 ft3 r®c
1. a 100-year storm required per section 3.3.4 Retention Facilities of the FCSCM
Average End Area Method: Conic Volume Method:
V=; H(A+Ai) V=#H(A,+A+ AX )
Contour
Elevation
Contour
Area
Depth
Incremental
Volume
Cummulative
Volume
Incremental
Volume
Cummulative
Volume
Cummulative
Volume
It
ttz
ft
ft3
ft3
ft3
ft3
ac-ft
4927.90
0
0.0
0
0
0
0
4928.00
52186
0.1
2609
2609
1740
1740
0.0
4929.00
95939
1:0
74062
76671
72961
74700
1.7
4930.00
130753
1.0
113346
190017
112897
187598
4.3
4931.001
1535751
1.0
142164
3321811
142011
329609
7.6
4932.00
199953
1.0
176764
508945
176255
505863
11.6
4933.00
248072
1.0
224013
732958
223581
729444
16.7
4934.00
265848
1.0
256960
989918
256909
986353
22.6
4935.00
299738
1.0
282793
1272711
282624
1268977
29.1
4936.00
317685
1.0
308711
1581422
308668
1577645
36.2
4937.00
335725
1.0
326705
1908127
326664
1904308
43.7
4938.00
391300
1.0
363513
2271640
363158
2267467
52.1
4939.00
456515
1.0
423908
2695548
423489
2690956
61.8
4940.00
550814
1.0
503665.
3199213
502927
3193883
73.3
4941.00
784210
1.0
6675121
3866725
6640851
38579681
88.6
9
Stormwater Detention and Infiltration Design Data Sheet
Workbook Protected Worksheet Protected
Stormwater Facility Name: East Ridge Second Filing
Facility Location & Jurisdiction: Fort Collins, Colorado
User (Input) Watershed Characteristics
Watershed Slope =
0.010
ft/ft
Watershed length -to -Width Ratio =
1.00
L:W
Watershed Area =
153.29
acres
Watershed Imperviousness=
70.0%
percent
Percentage Hydrologic Soil Group A =
percent
Percentage Hydrologic Soil Group B =
percent
Percentage Hydrologic Soil Groups C/D =1
100.0%
percent
Location for 1-hr Rainfall Depths (use dropdown):
User Input I V-
User Input: Detention Basin Characteristics
WQCV Design Drain Time =1 40.00 hours
After completing and printing this worksheet to a pdf, go to:
https://maperture.digitaidatasemices.com/gvh/?viewer=cswdi
create a new stormwater facility, and
attach the pdf of this worksheet to that record.
User Defined
Stage [ftl
User Defined
Area [ft-21
User Defined
Stage [ft]
User Defined
Discharge (cfs]
0.00
0
0.00
0.00
0.10
52,186
0.10
0.00
1.10
95,939
1.10
5.00
2.10
130,753
2.10
5.00
3.10
153,575
3.10
1 5.00
4.10
199,953
4.10
5.00
5.10
248,072
5.10
5.00
6.10
265,848
6.10
5.00
7.10
299,738
7.10
5.00
8.10
317,685
8.10
5.00
9.10
335,725
1 9.10
5.00
Routed H dro ra h Results
Design Storm Return Period =
One -Hour Rainfall Depth =
Calculated Runoff Volume =
OPTIONAL Override Runoff Volume =
Inflow Hydrograph Volume =
Time to Drain 97%of Inflow Volume =
Time to Drain 99%of Inflow Volume =
Maximum Ponding Depth =
Maximum Ponded Area =
Maximum Volume Stored =
WQCV
2Year
5Year
SO Year
SOYear
100 Year
6.43
0.88
1.16
1.47
2.48 _
3.05
3.476
7.670
11.202
15.030
28.056
35.813
3.475
7.669
11.200
15.025
28.048
35.812
16.5
22.5
29.5
37.7
66.8
84.7
29.5
34.6
42.2
71.0
98.8
2.92
3.84
4.64
6.82
7.93
L
3.428
4.301
5.177
6.658
7.216
6.991
10.495
1 14.252
27.250
34.972
n
cre-ft
cre-fit
cre-fit
lours
lours
t
icres
cre-ft
' HFHLV0001.01_SDI_Design_Data_v1.03.xlsm, Design Data 6/1/2016, 4:50 PM
Stormwater Detention and Infiltration Design Data Sheet
Ir
—1 . OGYR
oil
SOYR
IOYR
2YR
'41
-M Vi
I
VIA
111
1
ON M
M
NO
OHS
Nw, MIC
m
MEN
1001
s
t
HFHLV0001.01_SDI_Design_Data_v1.03.xtsm, Design Data
6/1/2016, 4:50 PM
oomi
Ga. oway
Planning. Architecmre. Engineering.
EDB AND LID SIZING
CALCULATIONS
March 19,2011
' CITY OF FORT COLLINS
BIORETENTION SAND MEDIA SPECIFICATION
' PART 1 -GENERAL
A. Bioretention Sand Media (BSM) shall be uniformly mixed, uncompacted, free of stones,
' stumps, roots, or other similar objects larger than two inches. No other materials or
substances shall be mixed or dumped within the bioretention area that may be harmful to plant
growth or prove a hindrance to the facility's function and maintenance.
B. BSM shall be free of plant or seed material of non-native, invasive species, or weeds.
C. Fully mixed BSM shall be tested prior to installation and meet the following criteria:
' 1. P-Index of less than 30
2. pH of 5.5-6.5. Should pH fall outside of the acceptable range, it may be modified with
lime (to raise) or iron sulfate plus sulfur (to lower). The lime or iron sulfate must be mixed
uniformly into the BSM prior to use in the bioretention facility.
' 3. Cation Exchange Capacity (CEC) greater than 10
4. Phosphorous (Phosphate, P205) not to exceed 69 ppm
5. BSM that fails to meet the minimum requirements shall be replaced at the Contractor's
expense.
D. BSM shall be delivered fully mixed in a drum mixer. Onsite mixing of piles will not be allowed.
Mixing of the BSM to a.homogeneous consistency shall be done to the satisfaction of the
Owner.
PART 2 - SOIL MATERIALS
A. Sand
1. BSM shall consist of 60-70% sand by volume meeting ASTM C-33.
B. Shredded Paper
1: BSM shall consist of 5-10% shredded paper by volume.
2. Shredded paper shall be loosely packed, approximate bulk density of 50-100 Ibs/CY.
3. Shredded paper shall consist of loose leaf paper, not shredded phone books, and shall
be thoroughly and mechanically mixed to prevent clumping.
Topsoil
1. BSM shall consist of 5-10% topsoil by volume.
2. Topsoil shall be classified as sandy loam, loamy sand, or loam per USDA textural triangle
with less than 5% clay material
3. Onsite, native material shall not be used as topsoil.
4. Textural analysis shall be performed on topsoil, preferably at its source, prior to including
topsoil in the mix. Topsoil shall be free of subsoil, debris, weeds, foreign matter, and any
other material deleterious to plant health.
5. Topsoil shall have a pH range of 5.5 to 7.5 and moisture content between 25-55%.
6. Contractor shall certify that topsoil meets these specifications.
D. Leaf Compost
1. BSM shall consist of 10-20% leaf compost by volume.
2. Leaf compost shall consist of Class 1 organic leaf compost consisting of aged leaf mulch
resulting from biological degradation and transformation of plant -derived materials under
controlled conditions designed to promote aerobic decomposition.
BIORETENTION SAND MEDIA SPECIFICATION
March 19, 2011
3. The material shall be well composted, free of viable weed seeds and contain material of a
generally humus nature capable of sustaining growth of vegetation, with no materials
toxic to plant growth.
4. Compost shall be provided by a local US Composting Council Seal of Testing Assurance
(STA) member. A copy of the provider's most recent independent STA test report shall
be submitted to and approved by the Owner prior to delivery of BSM to the project site.
5. Compost material shall also meet the following criteria:
a. 100 percent of the material shall pass through a 1/2 inch screen
b. PH of the material shall be between 6.0 and 8.4
C. Moisture content shall be between 35 and 50 percent
d. Maturity greater than 80 percent (maturity indicator expressed as percentage of
germination/vigor, 80+/80+)
e. Maturity indicator expressed as Carbon to Nitrogen ration < 12
f. Maturity indicator expressed as AmmoniaN/NitrateN Ratio <4
g. Minimum organic matter shall be 40 percent dry weight basis
h. Soluble salt content shall be no greater than 5500 parts per million or 0-5
mmhos/cm
i. Phosphorus content shall be no greater than 325 parts per million
j. Heavy metals (trace) shall not exceed 0.5 parts per million
k. Chemical contaminants: meet or exceed US EPA Class A standard, 40 CFR
503.13, Tables 1 & 3 levels
I. Pathogens: meet or exceed US EPA Class A standard, 40 CFR 503.32(a) levels _
PART 3 - EXECUTION
A. General
1. Refer to project specifications for excavation requirements.
B. Placement Method
1. BSM material shall be spread evenly in horizontal layers.
2. Thickness of loose material in each layer shall not exceed 9-inches.
3. Compaction of BSM material is not required.
BIORETENTION SAND MEDIA SPECIFICATION 2
j� ROLLMAKM
ROLLED EROSION CONTROL
' I Specification Sheet - VMax° SC2500 Turf Reinforcement Mat
DESCRIPTION
The composite turf reinforcement mat (C-TRM) shall be a ma-
chine -produced mat of 70% straw and 30%coconut fiber matrix
incorporated into permanent three-dimensional turf reinforce-
ment matting. The matrix shall be evenly distributed across the
entire width of the matting and stitch bonded between a heavy
duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 x 1.27 cm)
openings, an ultra heavy UV stabilized, dramatically corrugated
(crimped) intermediate netting with 0.5 x 0.5 inch (1.27 x 1.27 cm)
openings, and covered by an heavy duty UV stabilized nettings
with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings. The middle
corrugated netting shall form prominent closely spaced ridges
across the entire width of the mat. The three nettings shall be
stitched together on 1.50 inch (3.81cm) centers with UV stabilized
polypropylene thread to form permanent three-dimensional turf
reinforcement matting. All mats shall be manufactured with
a colored thread stitched along both outer edges as an overlap
guide for adjacent mats.
The SC250 shall meet Type 5A, SB, and SC specification require
ments established by the Erosion Control Technology Council
(ECTC) and Federal Highway Administration's (FHWA) FP-03
Section 713.18
70%Straw Fiber
0.3516/sq yd
Matrix
(0.19 kg/sm)
j
30%Coconut Fiber
0.151bs/sgyd
Top and Bottom, UV -Stabilized
5lb/1000 sq ft
Polypropylene
(2.44 kg/100 sm)
Netting
Middle, Corrugated UV -Stabilized
241b/1000 sf
Polypropylene
(11.7 kg/too sm)
Thread _
Polypropylene, UV Stable
Standard Rail Sizes
Width . 6.S ft (2.0 m)-_.=_
Length 55.5 ft 015.9 m) /
Weight t 10% 34lbs (15.42 kg)
Area 40 sq yd (33.4 sm)
PropertyIndex
.r
Typical
Thickness
- ASTM D6525
0.62 in. I
(15.75 mm)
Resiliency
ASTM 6524
95.2%
Density--�_ _-w
ASTM D792 �_-
0.891 g/cm' `
Mass/Unit Area
ASTM 6566
16.13 oz/sy
(548 9/sm)
ASTM D4355/
UV Stability
100%
L j
1000HR-________^_.______
I
Porosity
ECTC Guidelines
99%
---------- �
Stiffness
ASTM D1388
222.65 oz-in.
Light Penetration
ASTM D6567
4.1%
f"--
---I
�Tensile Strength - MD"
ASTM 06818
709lbs/ft 4
(10:51 kN/m)
_ !
Elongation - MD
ASTM D6818
23.9%
Tensile Strength - TO ASTM D6818 712 Ibs/ft
(10.56 kN /m)
Elongation - TO ASTM D6818 36.9%
Biomass Improvement' ASTM D7322 441%
Design Permissible
lShort Duration Long Duration
Phase 1: Unvegetated 3.0 psf (144 Pa) 2.5 psf (120 Pa)
Phase 2: Partially Veg.: 8.0 psf (383 Pal 8.0 psf (383 Pa)
Phase 3: Fully Veg. 10.0 psf (480 Pa) 8.0 psf (383 Pa) J
I Unvegetated Velocity 9.5 fps.(2.9 m/s)
Vegetated Velocity 15 fps (4.6 m/s)
Slope
Design 1ata:
C Factors
Roughness s
Slope Gradients (S)
I
I Flow Depth
Manning's n
Slope Length (L)
<- 3:1
3:1 - 2.1 >- 2:1
C 0.60 ft (0.1s M)
0.040
1 s 20 It (6 m)
0.0010
0.0209 0.05007
0.50 - 2.0 ft
0.040-0.012
20.50 ft
0.0081
0.0266 0.0574
>- 2.0 ft (0.60 m)
0.011
I a Sa ft (15.2 rn)
0.0455
0.0555 0.081 I
a
Tensar International Corporation
TensarIntemationalCorporationwarrantsthatatthetimeofdeliverytheproductfurnished
Tensar:. 2500 Northwinds Parkway
hereunder shall conform to the specification stated herein. Any other warranty including
Suite S00
merchantability and fitness for a particular purpose, are hereby executed. If the product
Alharetta, GA 30009
p
does not meet specifications on this page and Tensar is notified prior to installation. Tensar
ex
NORTH AMERICAN GREEN
will replace the proproductat no cost to Me customer. This product specification supersedes
$00-TEN SAR-1
all prior specifications for the product described above and is not applicable to any
tensarmrp.Com
products shipped prior to January 1, 2012.
©2013, Tensar International Corporation
EC RMX MPOS_VMSC2S0 S.13
ELDesign Procedure Form: Grass Swale (GS)
Sheet 1 of 1
Designer. H. Feissner
Company: Galloway
Date: January 24, 2016
Project: East Ridge Second Filing
Location: Fort Collins, Colorado I A and Fut-A Basins
1. Design Discharge for 2-Year Return Period
02 = 27.1 cis
2. Hydraulic Residence Time
A) : Length of Grass Swale
B) Calculated Residence Time (based on design velocity below)
Ls = 450 it
THR=; 8.3 minutes
3. Longitudinal Slope (vertical distance per unit horizontal)
A) Available Slope (based on site constraints)
B) Design Slope
5+= 0.0025 ft / ft
So = 0.0025 ft / ft
4. Swale Geometry
A) Channel Side Slopes (Z = 4 min., hodz. distance per unit vertical)
8) Bottom Width of Swale (enter 0 for triangular section)
Z = 5 ft / ft
We = 30 it
5. Vegetation
A) Type of Planting (seed vs. sod, affects vegetal retardants factor)
fIr Choose One
Q Grass From Seed Grass From Sod
6. Design Velocity (1 it Is maximum)
V2 = 0 91 —Ift / s
7. Design Flow Depth (1 foot maximum)
A) Flow Area
B) Top Width of Swale
C) Froude Number (0.50 maximum)
D) Hydraulic Radius
E) Velocity -Hydraulic Radius Product for Vegetal Retardance
F) Manning's n (based on SCS vegetal retardance curve D for sodded grass)
G) Cumulative Height of Grade Control Structures Required
D2 = 0.87 it
A2 =1 29.9 _-1 sq it
WT = .. 38.7. _. it
F = 0.18.
RH =I p
VR = 0.70
n = 0.068 -
He =F O:p0it
8. Underdrain
(15 an underdrain necessary?)
AN UNDERDWMN Is
One
Choose REQUIRED IF THE
* YES Q NO DESIGN SLOPE < 2.0
9. Soil Preparation
(Describe soil amendment) .
City of Fort Collins Seed Mix
10. Irrigation
i" Choosc Om
I Q Temporary QQ Permanent
Notes:
HFHLV0001.01_UD-BMP_v3.03_Swale_A-Basins.xlsm, GS 1/24/2016, 1:11 PM
Design Procedure Form: Sand Filter (SF)
Sheet 1 of 2
Designer: H. Feissner
Company: Galloway
Date: January 24, 2016
Project: East Ridge Second Filing
Location: Fort Collins, Colorado I B, E, F and Fut-B Basins
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, 4
I, = 68 %
(100% if all paved and roofed areas upstream of sand filter)
B) 7nbutary Area's Imperviousness Ratio (i = I,/100)
i=`0.68 1
C) Water Dually Capture Volume (WOCV) Based on 12-hour Drain Time
WQCV =. 0.241 --1 watershed inches -
WQCV= 0.9' (0.91' i - 1.19' i'+ 0.78' i)
s
D) Contributing Watershed Area (including sand filter area)
Area = 1.631,599 sq ft
E) Water Quality Capture Volume (WQCV) Design Volume
Vwocv= 3r 2,747-1 cu it
Vwocv = WQCV / 12' Area
F) For Watersheds Outside of the Denver Region, Depth of
de = 0.43 in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
Vwwvwr R =, 32,747-1 cu it
Water Quality Capture Volume (WQCV) Design Volume
'
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
VwocvuseR = cu it
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth
Dwa = 2.96 it
B) Sand Filter Side Slopes (Horizontal distance per wit vertical,
Z = 5.00 ft / ft
4:1 or flatter preferred). Use'O' if sand filter has vertical walls.
)
C) Mimimum Filter Area (Flat Surface Area)
AM„=(7277 sq it
D) Actual Filter Area
A�, = 7579 sq ft
E) Volume Provided
Vr = 32747 cu It
I
f Choose One
3. Filter Material
Q 18" CDOT Class C Filter Material
Illl
Q Other (Explain):
4. Underdmin System
A) Are underdrains provided?
-
Choose One
0 yfs .
� NO
B) Underdrain system orifice diameter for 12 hour dmin time
i) Distance From Lowest Elevation of the Storage
y = 1.5 it
Volume to the Center of the Orifice
ii) Volume to Drain in 12 Hours
Vol 12 =, ,32,747 cu ft .
iii) Orifice Diameter, 3/8" Minimum
Dc =i 2 in
<3a'
HFHLV0001.01 UD-BMP v3.03 SF B E and F-Basins.xlsm, SF 1/24/2016, 1:19 PM
Design Procedure Form: Sand Filter (SF) .
Designer: H. Feissner
Company: Galloway
Date: January 24, 2016
Project: East Ridge Second Filing
Location: Fort Collins, Colorado 18, E, F and Fut-B Basins
Sheet 2 of 2
,
5. Impermeable Geomembram Liner and Geotez0le Separator Fabric
A Is an im permeable Inver provided due to proximity
of structures or groundwater contamination?
Choose One
O YES NO
,
6-7. Inlet/ Outlet Works
A) Describe the type of energy dissipation at inlet points and means of
conveying flows in excess of the WQCV through the outlet
- Riprap is desigend at each incoming storm drain to dissipate energy
- A weir with a 6' wide concrete crest is designed to convey excess flows at
a flow depth of 6'
Notes:
0
' HFHLV0001.01_UD-BMP_v3.03_SF_B E and F-Basins.xism, SF 1124/2016, 1:19 PM
Sand Filter (SF) I B, E, F and Fut-B Basins
Stage -Storage Calculations
Project: East Ridge Second Filing
Project Location: Fort Collins, Colorado Date: 1/23/2016
Calculations By: H. Feissner MiRb
-
Pond Description: SF for B, E and F Basins
User Input Cell: Blue Text
Required Volume Water Surface Elevation
Design Point: Outfall
Design Storm: WQCV
Required Volume: 32747 ft3 M. ft
Design Storm: 10-year
Required Volume: 0. ft? �It
Design Storm: 100-year
Required Volume: 0 ft3 �k
Average End Area Method: Conic Volume Method:
V=fH(A,+A,) V=;N(A,+A,+ A,xA,)
Contour
Elevation
Contour
Area
Depth
p
Incremental
Volume
Cummulative
Volume
Incremental
Volume
Cummulative
Volume
Cummulative
Volume
ft
ft,
ft
ft3
ft3
ft3
ft3
ac-ft
4931.00
7579
0.0
0
0
0
0
0.00
4932.00
9862
1.0
8721
8721
8696
8696
0.20
4933.00
12301
1.0
11081
19802
11059
19754
0.45
4934.00
14894
2.0
24756
33476
24583
33279
0.76
4935.001
177331
2.01
49835
29868
49622
1.14
Sand Filter Weir I B, E,
F and Fut-B Basins - Cipolletti
Solve For Headwater Elevation
Input Data
�a
Discharge
203.40 f 3/s
Crest Elevaton
4933.96 It
Tailwater Elevation
4933.96 ft
Weir Coefficient
3.00 US
Crest Length
180.00 ft
,Results
Headwater Elevation
4934.48 ft
Headwater Height Above Crest
0.52 ft
Taihvater Height Above Crest
0.00 ft
' Equal Side Slopes
0.25 ft/ft (H:V)
Flow Area
93.95 ft'
Velocity
2.17 ft/s
Wetted Perimeter
181.08 ft
Top Width
1
180.26 It
i Bentley Systems, Inc. Haestad Methods SoENktto!;f&6vrMaster V81 (SELECTseries 1) (08.11.01.031
3/22/2016 11:31:13 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06785 USA +1-203-755-1666 Page 1 of 1
1
' 1/24/2016
Te
www.ecmcir,.com/priiNamlysis/845MM5,%
NORTHTensar International Corporation
Roa
n a r, AMERICAN 5401 StPoseyvilleCInd ana 47633
0.772.2040
GREEN Fax 80
N22.867.02477
www.nagreen.com
Erosion Control Materials Design Software
Version 5.0
Project Name: East Ridge Second Filing
Project Number: 84589
Spillway Name: Sand Filter I B, E, F and Fut-B Basins
Discharge
203.4
Peak Flow Period
1
Channel Slope
0.25
Channel Bottom Width
200
Left Side Slope
Right Side Slope
Low Flow Liner
Retardance Class
D
Vegtation Type
Mix (Sod & Bunch
Vegetation Density
Fair 50-75%
Soil Type
Loam
P300 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
Discharge
VelocityNormal
Mannings
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
P300 Unvegetated
Straight
203.4
6.4
0.16 ft
0.034
3 lbs/ft2
2.48 lbs/ft2
1.21
STABLE
E
cfs
ft/s
P300 Reinforced
Straight
203.4
4.53
0.22 ft
0.061
8 lbs/ft2
3.51 lbs/ft2
2.28
STABLE
E
Ve etation
cfs
ft/s
Underlying Substrate
traigh
203.4
4.53
0.22 ft
--
2 lbs/ft2
0.442 Ibs/ft2
4.53
TABLE
--
cfs
ft/s
- Class D Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
Discharge
VelocityNormal
annings
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
SC250 Unvegetated
Straight
203.4
5.81
0.18 ft
0.04
3 Ibs/ft2
2.73 Ibs/ft2
1.1
STABLE
E
cfs
ft/s
SC250 Reinforced
Straight
203.4
4.53
0.22 ft
0.061
10 lbs/ft2
3.51 Ibs/ft2
2.85
STABLE
E
Vegetation
cfs
ft/s
Underlying Substrate
Straigh
203.4
4.53
0.22 ft
--
0.8lbs/ft2
0.612 lbs/ft2
1.31
STABLE
--
cfs
ft/s
!; C350 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
Discharge
Velocity
Normal
ManningMannings
Permissible
Calculated .
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
C350 Unvegetated
Straight
203.4
5.72
0.18 ft
0.041
3.21bs/ft2
2.77 lbs/ft2
1.15
TABLE
E
cfs
ft/s
hW./Aovww.ecmds.com/printtanalysis/84589/84590
1/2
1/24/2016
www.ecmds.com/printlanalysis/845M84590
C350 Reinforced
traigh
203.4
4.53
0.22 11
6.061
11 lbs/ft2
3.51 lbs/ft2
3.14
TABLE
E
Ve etation
cfs
ft/s
Underlying Substrate
traigh
203.4
4.53
0.2211
—
1.2 lbs/112
0.643 lbs/ft2
1.87
--
cfs
1 ft/s
1
rTABLE
C 125BN
Phase
Reach
ischargh7.loci
Normal
arming
Permissible Shear
Calculated Shear
Safety
Remarks
Staple
r
T
Depth
N
I Stress
Stress
Factor
Pattern
C 125BN
Straigh
203.4
1 8.32
1 0.12 ft
1 0.022
2.35 Ibs/ft2.
1.91 lbs/ft2
1.23
TABLE
D
Unve etated
I
cfs
ft/s
1
Unreinforced Vegetation - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
Discharge
VelocityNormal
Mannings
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Patteria
Unreinforced
Straight
203.4
4.53
0.22 ft
0.061
3.33 Ibs/ft2
3.51 lbs/ft2
0.95
UNSTABLE
--
Vegetation
cfs
ft/s
Underlying
Straight
203.4
4.53
0.22 ft
--
0.04 lbs/ft2
0.093 lbs/ft2
0.38
UNSTABLE
--
Substrate
I cfs
ft/s
http.//www.ecmds.can/print/analysis/84589/84590 2/2
Design Procedure Form: Extended Detention Basin (EDB)
HFHLV0001.01_UD-BMP_v3.03_EDB_C and D-BasimAsm, EDB - 1/24/2016, 2:14 PM
Design Procedure Form: Extended Detention Basin (EDB)
Sheet 2 of 4
Designer: H. Felssner
Company: Galloway
Date: January 24, 2016
Project: East Ridge Second Filing
Location: Fort Collins, Colorado I C and D-Basins
5.
A) Minimum Volume
VFmN=' 6.015 —! ac$
(VrwN= of the WQCV)
B) Actual Forebay Volume
VF= ac-t
C) Forebay Depth
DF = in
(OF = 18 inch maximum)
D) Forebay Discharge
i) Undetained 100-year Peak Discharge
Q1w = Cis
a) Forebay Discharge Design Flay
cfs
(Op =0.02'Q1w)
E) Forebay Discharge Design
Ctxxxe One
O Serm,Nch Pipe (flow too small for berm w/ pipe)
O Wall with Rect. Notch
Q Wall wkh V-Notch Weir
F) Discharge Ize (minimum 8+rxhes)
Calculated Dp =`- , in
ectangular Notch Width
Calculated WN=�- in -
Choose One PROVIDE A CONSISTENT LONGITUDINAL
6. Trickle Channel
SLOPE FROM FOREBAY TO MICROPOOL
Q Concrete
WITH NO MEANDERING. RIPRAP AND
A) Type of Trickle Channel
Q Soft Bottom SOIL RIPRAP LINED CHANNELS ARE
................................. NOT RECOMMENDED.
MINIMUM DEPTH OF 1.5 FEET
F) Slope of Trickle Channel
S = . 0.0050 4 / If
7. Micrepoo Structure
A) Depth of Micro pocl (2.5feet minimu
DM = 2.5 ft
B) Surface Area of Micr0000l(1042 minimum)
10 sq ft
C) Outlet Type
.
Choose On
Q Orifice Plate
O Omer (Describe):
D) Depth of Design Volume (EURV or 12 WQCV) Based on the Design
H = 2.99 feet
Concept Chosen Under I.E.
E) Volume to Drain Over Prescribed Time
WQCV = . 0.507 ac ft
F) Drain Time
To= 40 hours
(Min To for WQCV= 40 hours; Max To for EURV= 72 hours)
G) Recommended Maximum Outlet Area per Row,(Aj
1.10 square inches
H) Orifice Dimensions: -
i) Circular Orifice Diameter or
Dp =r i -1 / 8 --- I inches
ii)Width of 2- High Rectangular Office
Wo.=. (inches
1) Number of Columns
n.=1 1. -i number
J) Actual Design Outlet Area per Row (Q
A. =. _0.99 square Inches
K) Number of Rows (m)
n, =1 8 -, I number
L) Total Outlet Area(Aa)
Ay= —�8.9 —)square Inches
M) Depth of'.NQCV(Hwov)
HwaN= feet
(Eslimala using actual stage -area -volume relationship and Vwo()
$Y
N) Ensure Minimum 40 Hour Drain Time for WQCV
To wnw =r— hours
HFHLVD001.0l_UD-BMP_v3.03_EOB_C and D-Basins.Asm, EDB ' 1/24/2016, 2:14 PM
Design Procedure Form: Extended Detention Basin (EDB)
- Sheet 3 of 4
Designer. H. Feissner
Company: _Galloway
Data: January 24, 2016
Project: East Ridge Second Filing
Location: Fort Collins, Colorado I C and D-Basins
8. Initial Surcharge Volume
A) Depth of Initial Surcharge Volume
De = in
(Minimum recommended depth is 4 inches)
B) Minimum Initial Surcharge Volume
Via =r ou 1t
(Minimum volume of 0.3% of the WQCV)
C) Initial Surcharge Provided Above Micropod
V,= _f a ft
9. Trash Rack
If Choose One
I Qa Circular (up to 1-1/4" diameter) ,
A) Type of Water Quality Orifice Used
I O Circular (greater than 1-1/4" dwine r) OR Rectangular (2" high)
Ar square Inches
B) Water Quality Screen Open Area: At= Act' 38.5'(e4opm)
C) For 1.1/4—, or Smaller, Circular Opening (See Fad Sheet T-12):
i) Width of Water Quality Screen and Concrete Opening (W,v nne)
W,e.y,r =! 1y,p Inches '
ii) Height of Water Quality Screen (Hm)
H. _(" 83— g--, Inches
6i) Type of Screen. Describe ff *Other'
Oaore 6w
S.S. Well Screen with 60% Open Area-
,
0 0ther(Descnbe):
0) For Circular Opening (greater than 1-1/4' diameter)
OR 2- High Rectangular Opening (See Fact Sheet T-12):
i) Width of Water Quality Screen Opening (W.q)
yy, ran =f—"—j ft
ii) Height of Water Quality Screen (Hrm)
)
Hm =( ft
41) Type of Screen, Describe if "Other
Choose One
Q Muminum Arnica-
0 Other (Describe): —�
v) Cross -bar Spacing
3 finches
m) Minimum Bearing Bar Size
HFHLV0001.01_UD-BMP_v3.03_EDB_C and D-Basins.idsm, EDB 1124/2016, 2:14 PM
Design Procedure Form: Extended Detention Basin (EDB)
Sheet 4 of 4
Designer: H. Feissner
Company: Galloway
Date: January 24, 2016
Project: East Ridge Second Filing
Location: Fort Collins, Colorado j C and D-Basins
10. Overflow Embankment
A) Describe embankment protection for 100year and greater overtopping:
B) Slope of Overflow Embankment
(Horizontal distance per unit vertical, 4:1 or Hader preferred)
Tensar I North American Green RECP
2¢ = 5.00 11
ft
11. Vegetation
d
70Mtipated
12. Access
A) Describe Sediment Removal Procedures
Notes:
HFHLV0001.01_UD-BMP_v3.03_EDB_C and D-Basins.xlsm, EDB - 12412016, 2:14 PM
Extended Detention Basin (EDB) I C and D-Basins
Stage -Storage Calculations
Project: East Ridge Second Filing
Project Location: Fort Collins, Colorado
Calculations By: H. Feissner �yl 1 It
Pond Description: EDB for C and D Basins
Design Storm: WQCV
Required Volume: 26572 ft3 • • ft
Design Storm: 10-year
Required Volume: 0 ft3 �ft
Design Storm: 100-year
Required Volume: 0 ft3 �ft
Average End Area Method: Conic Volume Method:
V=}H(A 4-Az} V=;N(A�+A +JA XA.
Contour
Elevation
Contour
Area
Depth
Incremental
Volume
Cummulative
Volume
Incremental
Volume
Cummulative
Volume
Cummulative
Volume
ft
f?
ft
ft3
ft3
ft3
ft3
ac-ft
4928.00
0
0.0
0
0
0
0
0.00
4929.00
9492
1.0
4746
4746
3164
3164
0.07
4930.00
11778
1.0
10635
15381
10614
13778
0.32
4931.00
14170
1.0
12974
28355
12956
26734
0.61
4932.001
168311
1.01
438561
154T21
42216
0.97
EDB Weir C and D Basins Cipolletti
.,
Project Description
Solve For
Headwater Elevation
r
Discharge
117.90
ft3/s
' Crest Elevation
4930.99
ft
Tailwater Elevation
4930.99
ft
Wei, Coefficient
3.00
US
' Crest Length
110.00
ft
Results' °`
,
Headwater Elevation
4931.49
ft
Headwater Height Above Crest
0.56
ft
Tailwater Height Above Crest
0.00
ft
' Equal Side Slopes
0.25
ft/ft (H:V)
Flow Area
55.45
ft'
Velocity
2.13
Ills
' Wetted Perimeter
111.04
ft
Top Width
110.25
ft
Bentley Systems, Inc. Haestad Methods SoRdlWo9:06"aster VBi (SELECTseries 1) [08.11.01.03]
3/17/201611:19:58 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA ♦1-203-755-1666 Page 1 of 1
1/24/2016
Tenstar,
www.ecm&..com/prinVarkgysis/845M84-r.W
NORTH
AMERICAN
GREEN
Erosion Control Materials Design Software
Version 5.0
Project Name: East Ridge Second Filing
Project Number: 84589
Spillway Name: Sand Filter I C and D Basins
Discharge
117.9
Peak Flow Period
1
Channel Slope
0.2
Channel Bottom Width
120
Left Side Slope
Right Side Slope
Low Flow Liner
Retardance Class
D
Vegtation Type
Mix (Sod & Bunch
Vegetation Density
Fair 50-75%
Soil Type
Loam
P300 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Tensar International Corporation
5401 St. Wendel-Cynthiana Road
Poseyville, Indiana 47633
Tel. 800.772.2040
Fax 812.867.0247
www.nagreen.com
Phase
Reach
Discharge
Velocity
Normal
Manning
Permissible
-Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
P300 Unvegetated
Straight
117.9
5.9
0.17 ft
0.034
3 Ibs/ft2
2.08 Ibs/ft2
1.44
STABLE
E
cfs
ft/s
P300 Reinforced
Straight
117.9
4.13
0.24 ft
0.062
8 lbs/ft2
2.97 lbs/ft2
2.69
STABLE
E
Vegetation
I
I cfs
ft/s
Underlying Substrate
traigh
117.9
4.13
0.24 ft
--
2 lbs/ft2
0.362 lbs/ft2
5.52
TABLE
as
I ft/s
- Class D - Mix (Sod & Bunch) Fair 50-75%
Phase
Reach
Discharge
VelocityNormal
Mannings
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
SC250 Unvegetated
Straight
117.9
5.36
0.18 ft
0.04
3 lbs/112
2.29 lbs/ft2
1.31
STABLE
E
cfs
ft/s
SC250 Reinforced
Straight
117.9
4.13
0.24 ft
0.062
10 lbs/ft2
2.97 Ibs/ft2
3.37
STABLE
E
Vegetation
cfs
ft/s
Underlying Substrate
Straigh
117.9
4.13
0.24 ft
0.8 Ibs/ft2
0.501 lbs/ft2
1.6
STABLE
--
cfs
ft/s
1
U350 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
ischarg
elocit
Normal
anning
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
C350 Unvegetated
Straigh
117.9
15.28
10.19 ft
1 0.041
1 3.2 lbs/ft2
2.33 lbs/ft2
1.38
TABLE
E
cfs
I ft/s
Imp:/twww.ecmds.com/print/analysis/84589/84592 1/2
1/24/2016
www.ecmds,com/print/analysis/84589184592
C350 Reinforced
traigh
117.9
4.13
0.24 ft
0.062
11 lbs/ft2
2.97 lbs/ft2
3.7
TABLE
E
Ve etation
cfs
ft/S
Underlying Substrate
traigh
117.9
4.13
1 0.24 ft
--
1.2 lbs/ft2
0.527 lbs/ft2
2.28
TABL
--
cfs
ft/s
C 125BN
Phase
Reach
ischarg
eloei
Normal
Permissible Shear
Calculated Shear
Safety
Remarks
Staple
Depth
ranningl
Y
Stress
Stress
Factor
Pattern
C125BN
Straigh
117.9
7.67
0.13 ft
1 0.022
2.35 lbs/ft2
1.6 lbs/ft2
1.47
TABLE
D
Unve etated
cfs
ft/s
1
Unreinforced Vegetation - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
Discharge
Velocity
Normal
Manning4
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattery
Unreinforced
Straight
117.9
4.13
0.24 ft
0.062
3.33 lbs/ft2
2.97 lbs/ft2
1.12
STABLE
Vegetation
cfs
ft/s
Underlying
Straight
117.9
4.13
0.24 ft
--
0.04 lbs/ft2
0.076 lbs/ft2
0.46
UNSTABLE
--
Substrate
cfs
ft/S
httpj/www.ecmds.com/prinVanalysis/845MB4592 2/2
Design Procedure Form: Extended Detention Basin (EDB)
Sheet 1 of 4
Designer: H. Felssner
Company: Galloway
Date: January 24, 2016 -
Project: East Ridge Second Filing '
Location: Fort Collins, Colorado I G. H. FutG1, Fut G2 and Fut-H Basins
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, I,
I, = 75 %
B) TributaryArea's Imperviousness Ratio (I = I,/ 100)
i =r- 078
C) Contributing Watershed Area
Area = 30.61 so
0) For Watersheds Outside of the Denver Region, Depth of Average
ds = In
Runoff Producing Storm
Cto se One
E) Design Concept
(Select EURV when also designing for flood control)
Water Quality Capture Volume (WQCV)
O Excess Urban Runoff Volume (EURV)
F) Design Volume (1.2 WQCV) Based on 40-hour Drain Time
(Vpeyoa = (1.0 - (0.91 ' V- 1.19 * 1`+ 0.78*1)/ 12' Area' 1.2)
Voesma=� p,g2 '1 ac-ft
G) For Watersheds Outside of the Denver Region, I
VoesioN o*nea=- -- i ac-ft
Water Quality Capture Volume (WQCV) Design Volume
(Vwowanaa = (da�(Voeaxaa/0.43))
- .
H) User Input of Water Quality Capture Volume (WOCV) Design Volume
Voesicn usci = ac-ft
(Only if a different WQCV Design Volume is desired)
1) Predominant Watershed NRCS Soil Group I
Choose One
O A
OB
J) Excess Urban Runoff Volume (EURV) Design Volume
O CID
For HSG A: EURVA = (0.1878i - 0.0104)'Area
For HSG B: EURVB = (0.1178i - 0.0042)'Area
EURV ='----------
, ac-f t
For HSG CID: EURV. = (0.1043i - 0.0031)•Area
'
2. Basin Shape: Length to Width Ratio
L,: W = 4.0 : 1
(A basin length to width ratio of at least 2:1 will Improve TSS reduction.)
3. Basin Side Slopes
A) Basin Maximum Side Slopes
Z = 5.00 it / It
(Horizontal distance per unit vertical, 4:1 or flader preferred)
4. Inlet
- Riprap Is designed at each incoming stone drain to dissipate energy
-A weir with a 6' wide concrete crest is designed to convey excess flows at
A) Describe means of providing energy dissipation at concentrated
a flow depth of 6"
inflow locations:
HFHLV0D01.01_U0-BMP_v3D3_EDB_G and H-Basirts.xlsm, EDB 1/242016, 2:17 PM
Design Procedure Form: Extended Detention Basin (EDB)
Sheet of4
Designer: H. Feissner
Company: Galloway
Data: January 24, 2016
Project East Ridge Second Filing _
Location: FortCollins, Colorado I G, H, FutG1, Fut G2 and Fut4f Basins
5.
A) Minimum Volume
VFW =(— p,p261 ac-ft
- (Veer = of the WQCV) .
B) Actual Forebay Volume
VF= ac-ft
C) Forebay Depth
DF = in
(DF = 30 inch maximum)
D) Forebay, Discharge
I) Undetained 100-year Peak Discharge
Qxxi = cis
it) Forebay Discharge Design Flow
I cis
(� = 0.02' Qmo)
E) Forebay Discharge Design
One
With PipeO
[0"=n
w. e t Notch
b Wall with V-Notch Weir
F)Discharge ize(minanum 6minches)
Calculated DIP=in
ectangular Notch Width
Calculated WN = In
6. Trickle Channel
Cheese One PROVIDE A CONSISTENT LONGITUDINAL
SLOPE FROM FORESAY TO MICROPOOL
Concrete
WITH NO MEANDERING. RIPRAP AND
A) Type of Trickle Channel
Q soft Bottom SOIL RIPRAP LINED CHANNELS ARE
................ ____......_...... _.... ...... NOTRECOMMENDED.
MINIMUM DEPTH OF 1.5 FEET
F) Slope of Trickle Channel
S = 0.0050 ft / ft
7. Micmpoc Structure
A) Depth of MicropooI (2.5-feet minimu
DN = 2.5 ft
B) Surface Area of Micr0000l (10 fit' miramum)
A - 0 sq ft
C) Outlet Type
Clwose One
Oa onrlre vWte
Q Other (Describe): _--
D) Depth of Design Volume (EURV or 12 WQCV) Based on the Design
H = 3.59 feet
Concept Chosen Under 1.E.
E) Volume to Drain Over Prescribed Time
WQCV = 0.771 - ac-ft
F) Drain Time
To= 40 hours
(Min To for WQCV= 40 hours; Max TD for EURV= 72 hours)
G
G) Recommended Maximum OW et Area par Row, (A,)
Ae =7-1;—square inches
H) Orifice Dimensions:
I) Circular Orifice Diameter or
D� =; 1 - 5- 5 / 16 r Inches
ii) Width of 2- High Rectangular Orifice
W=r.a =: - I inches
I) Numberof Columns
ns=1 1 !number
J) Actual Design Outlet Area per Row (Ao)
A. _, 1.35 - square inches
K) Number of Rows(m)
n, =i— 10- 771number
L) Total Outlet Area(Ad)
Ae=7 - 14.6 .square inches
M) Depth of WQCV (H,,,c)
Hv Q,, = feet
(Estimate using actual stage -area -volume relationship and V.Q.w)
N) Ensure Minimum 40 Hour Drain Time for WQCV
TD wocv hours
HFHLVD001.01_UD-BMP_v3.03_EDB_G and H-Basins.xlsm, EDB 1/24/2016, 2:17 PM
Design Procedure Form: Extended Detention Basin (EDB)
' Sheet 3 of 4
Designer: H. Feissner
Company: Galloway
Date: January 24. 2016
Project East Ridge Second Filing
Location: Fort Collins, Colorado I G. H, Fut-GI, Fut G2 and Fut41 Basins
8. Initial Surcharge Volume
A) Depth of Initial Surcharge Volume
Da = in
(Minimum recommended depth is 4 inches)
B) Minimum Initial Surcharge Volume
Va = cu ft
(Minimum volume of 0.3% of the WQCV)
C) Initial Surcharge Provided Above Mlcropool
cu it
9. Trash Rack
Choose One
Q Circular (up to 1-1/4" diameter)
A) Type of Water Quality Orifice Used
O Orcular (greater than 1-1/4" diameter) OR Rectangular (2' high)
B) Water Quality Screen Open Area: At=Aot'38.5je o"o)
At=square Inches
C) For 1-114'. or Smaller, Circular Opening (See Fact Sheet T-12):
i) Width of Water Quality Screen and Concrete Opening (W„=,,;,,a)
W.-N =j —1 inches
ii) Height of Water Quality Screen (HnJ,
HrR = J ------]inches ,
ui) Type of Screen, Describe if 'Other'
cwoe,, osa
O S.S. Well Screen with 60%Open Area.
O Other (Describe):
D) For Circular Opening (greater than 1-114" diameter)
OR 2' High Rectangular Opening (See Fact Sheet T-12):
i) Width of Water Quality Screen Opening (W,)
W,,r, ---- 1.0 �ft -
e) Height of Water Quality Screen(Hm)
Hm=(— 5.9 ft
lii) Type of Screen, Describe ff "Other"
Choose One
Q Aluminum Amko-loemp SR Series (or equal)
Q Other (Describe):
v) Cross -bar Spacing
r- 2 0 -1 inches
vi) Minimum Bearing Bar Size
[T�Inch z 31-161nch
HFHLV0001.01_UD-BMP_v3.03_EDB_G and H-Basins.idsm, EDB 1124/2016. 2:17 PM
Design Procedure Form: Extended Detention Basin (EDB)
Sheet 4 of 4
Designer: H. Felssner
Company: Galloway
Date: January 24, 2016
Project: East Ridge Second Filing
Location: Fort Collins, Colorado I G, H, Fut-G1, Fut G2 and FuMf Basins
10. Overflow Embankment
A) Describe embankment protection for 100-year and greater overtopping:
B) Slope of Overflow Embankment
(Horizontal distance per unit vertical, 4:1.or flatter preferred)
Tensar I North American Green RECP
ZE = 5.00 ft / ft
11. Vegetation
Chome One
Q Ingated
Q Not Irrigated
12. Access
A) Describe Sediment Removal Procedures
Notes:
HFHLV0001.01_UD-BMP_v3.03_EDB_G and H-Basins.xlsm, EDB 1124/2016, 2:17 PM
Extended Detention Basin (EDB) G, H, Fut-G, Fut-H and Fut-TL2 Basins
Stage -Storage Calculations
Project: East Ridge Second Filing
Project Location: Fort Collins, Colorado Date: 1/23/2C
Calculations By: H. Feissner
Pond Description: EDB for G and H Basins �musimuTe�toasms�srtarasureeas
Design Storm: WQCV
Required Volume: 40946 ft3
Design Storm: 10-year
Required Volume: 0 ft3
Design Storm: 100-year
Required Volume: 0 ft3
Average End Area Method:
V =; H(A, +Az
N/A
Conic Volume Method:
V=H(A,+A,+ A,xA,)
Contour
Elevation
Contour
Area
Depth
p
Incremental
Volume
Cummulative
Volume
Incremental
Volume
Cummulative
Volume
Cummulative
Volume
ft
fe
ft
ft3
ft3
ft3
ft3
ac-ft
4928.00
0
0.0
0
0
0
0
0.00
4929.00
2653
1.0
1326
1326
884
884
0.02
4930.00
15161
1.0
8907
10233
8052
8936
0.21
4931.00
21009
1.0
18085
28318
18005
26942
0.62
4932.001
26520
1.0
237641
520831
237111
506531
1.16
EDB Weir G, H. Fut G1, Fut-G2, Fut H and Fut-TL2 Basins - Cipolletti
' ProjectDescriPtion'7P
Solve For Headwater Elevation
Input Data .£:
Discharge 182.20 ft3/s
' Crest Elevation 4931.59 ft
Tailwater Elevation 4931.59 ft
Weir Coefficient 3.00 US
' Crest Length 170.00 ft
Results
' Headwater Elevation 4932.09 ft
Headwater Height Above Crest 0.50 ft.
Tailwater Height Above Crest 0.00 ft
' Equal Side Slopes 0.25 ft/ft (H:V)
Flow Area 85.66 ft'
' Velocity 2.13 ft/s
Wetted Perimeter 171.04 ft
Top Width 170.25 ft
Bentley Systems, Inc. Haestad Methods SoBdidle4Filb"aster V81 (SELECTseries 1) [08.11.01.03]
31171201611:26:17 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755-1666 Page 1 of 1
1/24/2016 - www.eemds.eom/printlanalysis/845M84593
NORTHTensar International Corporation
Tensar. AMERICAN Saol StPoseyville, Indin a 47633
Tel. 80.772.204
GREEN® Fax 8022.867.0247
www.nagreen.com
Erosion Control Materials Design Software
Version 5.0
Project Name: East Ridge Second Filing
Project Number: 84589
Spillway Name: Sand Filter I G, H, Fut-Gl, Fut-G2, Fut-H and Fut-TL2 Basins
Discharge
182.2
Peak Flow Period
1
Channel Slope
0.2
Channel Bottom Width
200
Left Side Slope
Right Side Slope
Low Flow Liner
Retardance Class
D
Vegtation Type
Mix (Sod & Bunch
Vegetation Density
Fair 50775%
Soil Type
Loam
P300 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
DischargWelocity
Normal
Mannings
Permissible
Calculated
Safety.
Remark
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
P300 Unvegetated
Straight
182.2
5.73
0.16 ft
0.034
3 lbs/ft2
1.98 lbs/ft2
1.51
STABLE
E
cfs
ft/s
P300 Reinforced
Straight
182.2
3.94
0.23 ft
0.063
8 lbs/112
2.89 lbs/ft2
2.77
STABLE
E
Vegetation
cfs
ft/s
Underlying Substrate
traigh
182.2
3.94 1
0.23 ft
--
2 lbs/ft2
0.332 lbs/ft2
6.03
TABLE
--
cfs
ft/s
SC250 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
Dischargc
VelocityNormal
Mannings
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress `
Factor
Pattern
SC250 Unvegetated
StraijW1
182.2
5.2
0.18 ft
0.04
3 lbs/ft2
2.19 Ibs/ft2
1.37
STABLE
E
cfs
ft/s
SC250 Reinforced
Straight
182.2
3.94
0.23 ft
0.063
10 lbs/ft2
2.89 lbs/112
3.46
STABLE
E
Vegetation
cfs
ft/s,
Underlying Substrate
Straigh
182.2
3.94
0.23 ft
--
0.8 lbs/ft2
0.459 lbs/ft2
1.74
TABLE
--
cfs
ft/s
C350 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
ischargeh7elocit
Normal
anning
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
FactorPattern
C350 Unvegetated
Straighq
182.2
1 5.12
1 0.18 ft
1 0.041
1 3.2 lbs/ft2
2.22 lbs/ft2
1.44
TABLE
E
cfs
ft/s
http://www.ecmds.com/print/analysis/84589/84593 1/2
1/24/2016
www.ecmds.com/print/analysis/845B9/84593
C350 Reinforced
traigh
I
182.2
3.94
0.23 ft
0.063
11 lbs/ft2
2.89 lbs/ft2
3.81
TABLE
E
Ve etation
I
cfs
ft/s
Underlying Substrate
traigh
182.2
3.94
0.23 ft
--
1.2 lbs/ft2
0.482 lbs/ft2
2.49
TABLE
--
cfs
ft/s
C 125BN
Phase
Reach
ischarg.,h7elocityl
Normal
Permissible Shear
Calculated Shear
Safety
Remarks
Staple
Depth
ranningl
N
I Stress
Stress
Factor
Pattern
C125BN
Straigh
I
182.2
1 7.44
1 0.12 ft 1
0.022
2.35 lbs/ft2
1.53 lbs/ft2
1.54
TABLE
D
Unve etated
cfs
ft/s
1
1
Unreinforced Vegetation - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
Discharge
VelocityNormal
Manning
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Patterr
Unreinforced
Straight
182.2
3.94
0.23 ft
0.063
3.33 lbs/ft2
2.89 lbs/ft2
1.15 .
STABLE
Vegetation
cfs
ft/s
Underlying
Straight
182.2
3.94
0.23 ft
—
0.041bs/ft2
0.07 lbs/ft2
0.5
UNSTABLE
--
Substrate
cfs
ft/s
http:/Mww.ecmds.com/print/arLalysis/84589/84593 212
Design Procedure Form: Sand Filter (SF)
Sheet 1 of 2
Designer: H. Feissner
Company: Galloway
Date: January 24, 2016
Project: East Ridge Second Filing
Location: Fort Collins, Colorado 11, FuM and Fut-TL3 Basins
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, 4
I, = 75 %
(100% if all paved and roofed areas upstream of sand filter)
B) Tributary Area's Imperviousness Ratio (i = I j100)
i = 0 755 �
C) Water Quality Capture Volume (WQCV) Based on 12-hmr Drain Time
WQCV =-027 --I watershed inches
WQCV= 0.9' (0.91' in- 1.19' e+ 0.78 " i)
D) Contributing Watershed Area (including sand filter area)
Area = 621,891 sq It
E) Water Quality Capture Volume (WQCV) Design Volume
Vwacv =; 147095 cu ft
Vwocv= WQCV / 12' Area
F) For Watersheds Outside of the Denver Region, Depth of
dal = 0.43 in
Average Ruroff Producing Storm
G) For Watersheds Outside of the Denver Region,
VWWVOr R =7-1-4—,0957-1 cu It
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
VWQC USER = cufl
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth
Dwocv = 1.36 It
B) Sand Filter Side Slopes (Horizontal distance per unit vertical,
Z = 5.00 ft / ft
4:1 or flatter preferred). Use "0' it sand filter has vertical wais.
C) Mimimum Filter A(Flat Surface Area)
A,,, =, 3132 sq It
D) Actual Filter Area
A., = 8935 sq It
E) Volume Provided
Vr = 14173 cu It
('noose One
3. Filter Material
QQ 18" COOT Class C Filter Material
Q Other (Explain):
4. Underdmin System
A) Am underdrains provided?
Choose One
* YES .
Q NO
B) Underdrain system orifice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y= 1.5 ft
Volume to the Center of the Orifice
. .
ii) Volume to Drain in 12 Hours
Vol, =F 14,095 —] cu ft
iii) Orifice Diameter, 3/8" Minimum
Do=� 2 --'-I in
HFHLV0001.01_UD-BMP_v3.03_SF_I and TL-Basins.xlsm, SF 1/24/2016, 1:54 PM
Design Procedure Form: Sand Filter (SF)
Sheet 2 of 2
Designer:
H. Feissner
Company:
Galloway
Date:
January 24, 2016
Project:
East Ridge Second Filing
Location:
Fort Collins. Colorado 11. FuM and Fut-TL3 Basins
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
A) Is an impermeable liner provided due to proximity
of structures or groundwater contamination?
6-7. Inlet / Outlet Works
A) Describe the type of energy dissipation at inlet points and means of
conveying flows in excess of the WQCV through the outlet
Choose One
O YES
- Riprap is desigend at each incoming storm drain to dissipate energy I
- A weir with a 6' wide concrete crest is designed to convey excess flows at
a flow depth of 6'
HFHLV0001.01_UD-BMP_v3.03_SF_I and TL-Basins.xlsm, SF 1/24/2016, 1:54 PM
Sand Filter (SF) I I and Fut-TL3 Basins
Stage -Storage Calculations
Project: East Ridge Second Filing
Project Location: Fort Collins, Colorado
Calculations By: H. Feissner n,utary ara:m
Pond Description: SF for I and Fut-TO Basins st'e��iib
Required Volume
Design Point: Outfall
Design Storm: WQCV
Required Volume: 14173 ft3
Design Storm: 10-year
Required Volume: 0 ft3
Design Storm: 100-year
Required Volume: 0 ft3
Average End Area Method:
V=,LH(A, +A,)
4930.36
Conic Volume Method:
V = -L H(A, + A, +,IA X-,t )
Contour
Elevation
Contour
Area
Dept
Incremental
Volume
Cummulative
Volume
Incremental
Volume
Cummulative
Volume
Cummulative
Volume
It
ftz
ft
ft3
ft3
ft3
ft3
ac-ft
4929.00
8935
0.0
0
0
0
0
0.00
4930.00
10887
1.0
9911
9911
9895
9895
0.23
4931.00
12777
1.0
11832
21742
11819
21714
0.50
11
1
Sand Filter Weir I 1 and Fut-TL3 Basins - Cipolletti
Solve For
Headwater Elevation
1 Input Data,
t
b-. 4y
Discharge
99.40 ft'/s
' Crest Elevation
4930.36 It
Tailwater Elevation
4930.36 ft
Weir Coefficient
3.00 US
Crest Length
90.00 ft
Results
1 Headwater Elevation
4930.87 ft
Headwater Height Above Crest
0.51 ft
Tailwater Height Above Crest
0.00 ft
1 Equal Side Slopes
0.25 fl/ft (H:V)
Flaw Area
46.30 ft'
Velocity
2.15 ft/s
' Wetted Perimeter
91.06 ft
Top Width
1
90.26 ft
Bentley. Systems, Inc. Haestad Methods SoENkta!;§ftwMaster V8i (SELECTseries 1) [08.11.01.03]
3/171201611:18:14 AM 27 Siemons Company Drive Suite 200 W. Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1
1/24/2016
Tensar,
www.ecmclsmm/prinVamlysis/845MW91
NORTH
AMERICAN
GREEN®
Tensar International Corporation
5401 St. Wendel-Cynthiana Road
Poseyville, Indiana 47633
Tel. 800.772.2040
Fax 812.867.0247
www.nagreen.com
Erosion Control Materials Design Software
Version 5.0
Project Name: East Ridge Second Filing
Project Number: 84589
Spillway Name: Sand Filter 11, Fut-11, Fut-12 and Fut-TL3 Basins
Discharge
99.4
Peak Flow Period
1
Channel Slope
0.2
Channel Bottom Width
100
Left Side Slope
Right Side Slope
Low Flow Liner
Retardance Class
D
Vegtation Type
Mix (Sod & Bunch
Vegetation Density
Fair 50-75%
Soil Type
Loam
P300 - Class D - Mix (Sod & Bunch) -'Fair 50-75%
Phase
Reach
Discharge
Velociq
Normal
Manning
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
P300 Unvegetated
Straight
99.4 cfs
5.93
0.17 ft
0.034
3 Ibs/ft2
2.09 lbs/ft2
1.43
STABLE
E
ft/s
P300 Reinforced
Straight
99.4 cfs
4.16
0.24 ft
0.061
8 lbs/ft2
2.98 Ibs/ft2
2.68
STABLE
E
Vegetation
I ft/s
Underlying Substrate
traigh
99.4 cfs
4.16
0.24 ft
--
2 lbs/ft2
0.367 lbs/ft2
5.45
TABLE
--
ft/s
SC250 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
Discharge
Velocity
Normal
i laving
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
SC250 Unvegetated
Straight
99.4 cfs
5.38
0.18 ft
0.04
3 lbs/ft2
2.317bs/ft2
1.3
STABLE
E
ft/s
SC250 Reinforced
Straight
99.4 cfs
4.16
0.2411
0.061
10 lbs/ft2
2.98 lbs/ft2
3.35
STABLE
E
Vegetation
ft/s
Underlying Substrate
Straigh
99.4 cfs
4.16
0.24 ft"
=-
0.8 Ibs/ft2
0.508 ibs/ft2
1.57
STABLE
--'
ft/s
C350 - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
ischarg
'elocit
Normal
anning
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattern
C350 Unvegetated
Straigh
99.4 cfs
5.3
0.19 ft
1 0.041
3.2 lbs/ft2
2.341bs/ft2
1.37
TABLE
E
ft/s
http:Nwww.ecmds.o m/prirrVanalysis/845B9/84591 1/2
1/24/2016
www.ecmds.com/print(analysis/84589/84591
C350 Reinforced
IStraigh
I
99.4 cfs
4.16
I
0.24 ft
0.061
11 lbs/112
1 2.98 lbs/ft2
1 3.69
TABLE
E
Ve etation
I
ft/s
Underlying Substrate
traigh
99.4 cfs
4.16
0.24 ft
--
1.2 lbs/ft2
0.534 lbs/ft2
2.25
TABL
--
ft/s
C 125BN
Phase
Reach
ischarg
eloci h
Normal
Tanning
Permissible Shearl
Calculated Shear
Safety
Remarks
Staple
Depth
N
Stress
Stress
Factor
Pattern
C125BN
Straigh
99.4 cfs
7.7
0.13 ft
1 0.022
2.35 lbs/ft2
1.61 lbs/ft2
1.46
TABLE
D
Unve etated
ft/s
'
Unreinforced Vegetation - Class D - Mix (Sod & Bunch) - Fair 50-75%
Phase
Reach
ischarg
elocit)
Normal
Manaingf
Permissible
Calculated
Safety
Remarks
Staple
Depth
N
Shear Stress
Shear Stress
Factor
Pattery
Unreinforced
Straight
99.4 cfs
4.16
0.24 ft
0.061
3.33 Ibs/ft2
2.98 lbs/ft2
1.12
STABLE
Vegetation
ft/s
Underlying
Straight
99.4 cfs
4.16
0.24 ft
--
0.04 lbs/ft2
0.077 Ibs/ft2
0.45
UNSTABLE
--
Substrate I
I ft/s
http://www.ecmds.com/print/analysis/84589/84591 212
Gaoway
Planning. Architecture. Engineering.
APPENDIX D
SUPPORTING DOCUMENTATION
G a € oway
Planning. Architecture. Engineering.
PRELIMINARY GEOTECHNICAL
INVESTIGATION EAST RIDGE
SUBDIVISION FORT COLLINS,
COLORADO
(Project No. FC06953=115 1 Dated:
June 19, 2015)
CTL I THOMPSON
PRELIMINARY
GEOTECHNICAL INVESTIGATION
EAST RIDGE SUBDIVISION
FORT COLLINS, COLORADO
Prepared For:
HARTFORD HOMES
1218 West Ash
Suite A
Windsor, Colorado 80550
Attention: Mr. Landon Hoover
Project No. FC06953=115
June 19, 2015
400 North Link Lane I Fort Collins, Colorado 80524
Telephone:970-206-9455 Fax:970-206-9441
No Text
Z
y N
O O
i
N
O
W
1F
2
N
O ` S
H O
$ ry
i
J
x
NI LL
w
z Q
Z
//0y�
W
8
�W
�i
p
Q
O
w
i
+0
O O
I O
pe
2
w�
u
o
z �
N' =21
yZ
.+
2p
F
r
~
WO
7 F
L
O
02
J N
j
Q
O I WF.
20
y 2 Z
m
W 2
Ea
i i,
W W
H N
�a
O
p
Q
Z Z
H�
00
W O
�i
N
z
O
>W w
p �y
C
O X
(%i W
S= S
W
WQ Q
q
F
Q<
o f
W m
< Y
Q
Q N�%
p Ly
Z
UOr
Za
Kw S
za
0
W
Q
❑
yp�
�>
mO
it
<
m
IpyU
a
x O? w
r2 wW U
W
p
Zm
N N
N_ K
J
W
=
W
u
W
p
Z Z
W W
>> m
W
S
b�tq %
V WW YI r
Q_ i p p a
<Z Oy.
rd
�O
r
W
N
O
Z
Oy
?a
m
O
r
-Tz
U�WOI
pp
z Zy
�i
OR
m W
iw
<
10
n
p
nl
W
w
ypj¢
W
��
W KK O
a
r
w
WNZy
Q2 O j-✓"i
z m
r<n
ip
-w
pF ..
��$+I N `� V
S s 4q
Up
S W
y
W
Z
¢
�j>yO
2y2 W
w
p�
� p m 1 O� J N
6Z
W J
W
W
a
p
Ny'
F�
jO
<F
y41 wyN�wo lm lNy lNy
rrrr rr rr
R' fn U•i
YO z
dz
�N
J
J
yZy'=
W Z
O W
p papa Ba a
Q Ii ❑N
W z
Q
Q
QmQ
U
Oz
OQ
w¢
Z ZZ ZZ ZZZ
Vl f4O
OLL
3
3
'Swo
ap lwy
xx
(Jp3o J_p w
y
FU
W ¢'
r r
N
iO�J1 JN
Ij�f
J
I a a a-NOI1VA313
I
� I
c+
m
H w
N n?=
gig a
0
m
x 1
i o
O I
0
Nf�
xm
~ W
K
� S$
m ��a
L33J NOUVA313
Ga€oway
Planning. Architecture. Engineering..
LAKE CANAL AGREEMENT
Memorandum of Understanding
Between
East Ridge of Fort Collins, LLC and Lame Canal Ditch Company
East Ridge of Fort Collins, LLC is currently planning development of 153 acres of
residential and commercial property in the Northeast Quarter of Section 8, Township 7
North, Range 68 West of the 6� P.M., in the city of Fort Collins, Colorado. Prior
commitments by Lake Canal Ditch Company accommodate discharge of stormwater
from this property into the ditch at a rate not to exceed 5 cfs as the ditch has capacity to
accept the flows. The purpose of this memorandum of understanding is to generally
describe the parameters governing discharge of stormwater into the Lake Canal Ditch.
Reference is made to the attached engineering drawing which graphically represents the
planned conveyance.
The Lake Canal Ditch company owns 160 cfs of decreed water rights, this is the
maximum irrigation flow that can be conveyed through the ditch at any time during the
year. TST, Inc. has performed a survey of the Lake Canal Ditch to determine its general
slope and cross-section configuration. A cross-section of the ditch was taken to
determine the water surface elevation in the ditch assuming the entire decreed irrigation
water is flowing in the ditch. According to the surveyed cross-section and slope, 160 cfs
will flow approximately 2.92 feet deep, or at an elevation of 4933.08. The City of Fort
Collins has included the Lake Canal Ditch within their basin analysis of the Cooper
Slough drainage basin and has determined that the irrigation ditch could flow at a
maximum elevation of 4935.81 during a 100-yr storm event. The proposed discharge
&ystmn from EastBidge_Subdivisiomwill_consider-both-of-these-water-sur-face-elevations --
in the design and operation of the release mechanism into the Lake Canal Ditch.
The proposed drainage facilities planned for the East Ridge Subdivision consist of an
irrigation pond at the southern end of the site that operates with a working water surface
elevation of 4930.00. Stormwater runoff will be stored above the irrigation portion of the
pond, ponding. up to 4934.75 in the 100-yr storm event (totaling approximately 41 ac-ft).
�The pond has sufficient capacity to hold more than two 100-yr storm events above the
y working water surface elevation of 4930.00. The water surface elevation in the pond
would be 4937.11 if the total volume of runoff from two 100-yr storm events were stored.
The proposed discharge system is an 18" RCP storm pipe. The pipe would be installed at
to help in the prevention of erosion as stormwater is released from
the proposed development. A concrete slab 2'/z' high and 3' wide, extending to both
sides of the ditch is proposed to prevent erosion of the ditch bank and flowline. The
kvl concrete slab would effectively be a cut-off wall that would extend beyond the limits of
€a the pipe trench and bedding. The proposed stormwater discharge system is automatic and
will continually measure flow depths in the Lake Canal Ditch and the stormwater
detention pond on the East Ridge site. A pump would operate automatically when flow
depths in the ditch are below 4935.00. When no additional flow can be accepted in the
ditch, the pump automatically shuts off and storm flows would be held in the pond.
It is assumed that the pumping system will be on at all times so that nuisance flows will
be discharged through the pipe into the ditch. Again, the pump would shut off only when
the ditch was flowing at a depth that would not allow additional flow from the detention
pond. The maximum rate of discharge from the pond to the Lake Canal Ditch is 5 cfs. If
a 100-yr storm event did occur and the ditch was unable to accept stormwater runoff, the
pump would shut off. Once the ditch was able to take the stormwater runoff and if the
release rate was 5 cfs, the detention pond would drain in approximately 5 days.
Maintenance of the entire discharge system including the concrete slab, discharge pipe,
pump housing structure and all electronics associated with the automated system will be
These parameters defining the nature of stormwater discharge into the Lake Canal Ditch
from the East Ridge subdivision are generally agreed to by the parties.
ge of BoA Collins, LLC Date
Company
Date
O,A& WOO
-930.
ILI" —,--��ANAL BOTTOM
� WW
rATA_-
0 OT TAP
IS' RCP OUTLET
STA. ID+0r4,S7
KEY MAP
T.G.R.
oamv
SAS./SF.H./D.L
z
L)
NOTES.MW
E CHANNEL
1. BSEWER JOINTS SMALL BE ENCASED IN
ODD7Jtvrn-4.6q
'EZ-WRAP' BUTYL ADHMVE TAPE WITH
ikay
W"OuRif
-U-STIK- NO. 4 PRWER (BY PRESS SEAL
(H; 2.5'-S, 4.9'-N
GASKET CORPORATION)) ORSQUIVALENT.
I V.3' L23')
WHERE STORM PIPE CROSSES OVER A WATER
UNF 10' IN OTHER DIRECTION OF GROSSING.
i � -'ANKS
2. ALL RCP STORM SEWER PIPE SHALL BE
CONSTRUCTIDD OF CLASS ED RCP
1 II
I CONTRACTOR 94ALL APPLY SKAM-32
HI -MOD EPDXY PER MANUFACTURER'S
RECOMMENDATIONS TO THE RASE OF DROP
MANHOLES. EPDXY SHALL BE APPLIED TO
THE MANHOLE BASE AND SIDES (Z ABOVE
THE BASE OF THE MANHOLE).
4. WATER SERVICES THAT CONFLICT VNTH STORY
SEWER AND CANNOT MAINTAIN 4.W OF COVER
AND le VERTICAL SEPARATION SHALL BE
LOWERED TO A UK le BELOW THE STORM
DRAIN AND Z' POLY ENCASED.
5, ALL STORM LINES SHALL HAVE WATER TIGHT
JOINTS 70 CONFORM TO ASIM C443.
-j
LL
B. ALL STORM SEWER NSTALLATION SHALL. BE
INSPECTED BY THE CITY OF FORT COLLINS.
0
ir
7 ALL STORM SEWER IN THE PUBLIC
IL
RIGHT-OF-WAY SHALL HE OWNED AND
MAINTAINED BY THE CITY OF FORT COLLINS.
Q
8, ALL WATERLINE CROSSLNO UNDERNEATH
z
LARGER THAN 18 INCH DIAMETER STORM
SEWER SHALL BE PLACED IN A STEO.
E. SLEEV
w
0
z
c
[
r
LLI
W
0
1w -
City of M Collins. Colorado
UT= PLAN APPROVAL
APPROVED'.
allECgED BY;
CHECKED BY:
abrm w uUm,
CHECKED BY:
CHECKED BY:
CIECKED BT:
uL01m1.
cmo
70
�. 071=�7
F= 9?&MMt
0053.0007.0O
1'.
wa APRIL 2000
cm
100 of 19s
10+00 11:DO
Ga-110 oway
Planning. Architecture. Engineering.
N
BARKER AGREEMENT
.W_10
RCPTN 8 2002132134 12/06/2002 14:28:00 6 PAGES - 29 FEE - $156.00
N RODENBERGER RECORDER, LARINER COUNTY CO STATE DOC FEE - $.00
AGREEMENT
This Agreement is entered into January at.-�, 2001 by and among Tri-Trend, Inc. a Colorado
corporation, P. O. Box 40, Timnath, CO 80547, ("Tri-Trend') and E. H. Barker and Patricia R.
Barker, 142 North Timberline Road, Fort Collins, CO 80524-1402 (the `Barkers'.
Recitals
A. Tri-Trend is the contract purchaser of certain real property located in Larimer County
Colorado specifically described on Exhibit A, attached and incorporated by reference (the "Tri-Tread
Property")-
B. The Barkers own the real property located in Larimer County, Colorado immediately
south of the Tri-Trend Property which is specifically described on Exhibit B, attached and
incorporated by reference (the "Barker Property).
,
C. If Tri-Trend closes on its purchase of the Tri-Trend Property, it intends to develop
the property, subject to the approval by the City of Fort Collins, Colorado, as a multi -use project.
The uses will include both single and multi -family units. The units may be manufactured in an on -
site factory, and transported from the factory to the lots along the interior streets. Phasing for the
single family units will be from the south toward the factory situated in the northeast comer of the
site. A convenience store/commercial comer is proposed along Timberline Road.
D. Uses of the Barker Property may include, but are not limited to, material crushing
operations; storing, servicing and repairing vehicles and equipment; general storage (including
property of others); fanning; recreational uses; and other lawful uses considered desirable by the
Barkers and/or their assigns.
E. By this Agreement the parties wish to resolve various issues relating to Tri-Trend's
development of the Tri-Trend Property in the proximity of the Barker Property.
Agreement
In consideration of the mutual promises set forth in this Agreement and other valuable
consideration, the receipt and sufficiency of which are acknowledged, the parties agree as follows:
I. Disclosures RelatingtoBarker Operations. IfTri-Trend closes on the purchase ofthe
Tri-Trend Property, part of Tri-Trend's development process will include preparation and recording
ofa D eclaration of Covenants, Conditions and Restrictions (the "Declaration's and a subdivision plat
or plats (the "Piaffor the Tri-Trend Property. Tri-Trend agrees to include a notice in the
Declaration containing language substantially similar to the following:
Aner recording return to Richard S. Cast, Myatt Brander & Gut PC, 323 S. College Am, Suite 1, Fort Collin; CO 80524
Notice ltesardine Operations on Barker Prone
The property to the south of the Common Interest
Community (described on Exhibit I attached and
incorporated by reference, and referred to as the "Barker
Property") is or may be used for the following: sand and gravel
mining, material crushing, equipment/vehicle storage and
repairs, general storage (including property of others), farming,
recreational uses and other lawful uses considered desirable by
the owner of the Barker Property (its successors and assigns)
(collectively referred to as the "Operations"). The Operations
may generate noise and dust which may adversely impact the
Owners' use and enjoyment of their Units. By acceptance of a
deed to any Unit, the Owner of that Unit waives any claims
against the Declarant (its successors and assigns), the Association,
and the owner of the Barker Property (its successors and assigns)
arising from Operations on the Barker Property of a nature and
extent which existed at the time the Owner accepted such deed.
In addition, Tri-Trend agrees to include on the Plat a note advising of the operations on the Barker
Property, substantially similar to the following:
Note: The property presently owned by E. H. Barker and Patricia
R Barker (the "Barker Property") located south of the property
described on this Plat is or may be used for the following: sand
and gravel mining, material crushing, equipment/vehicle storage
and repairs, and other lawful uses (collectively referred to as the
"Operations'l. The Operations generate noise and dust which
may adversely impact use and enjoyment of the property
described on this Plat.
Furthermore, Tri-Trend agrees to include a disclosure and waiver provision, similar to the
above provision appearing in the Declaration, in all contracts for the sale of lots on the Tri-Trend
Property by Tri-Trend to the initial third party purchasers of such lots.
2. Buffer. if Tri-Trend closes on the purchase of the Tri-Trend Property, Tri-Trend
agrees to construct, at its sole expense, a five foot high berm with a cedar privacy fence on top of the
berm near the south edge of the Tri-Trend Property as depicted, and in the approximate location
shown, on Exhibit C, attached and incorporated by reference. Tri-Trend will construct the berm
(including landscaping and seeding) and fence in two sections as adjacent phases of Tri-Trend's
development to the north of the berm and fence are completed. The first section of the berm and
fence will include that property known as. the Barker Strip (defined and referenced in Section 4.2
below). Construction of each section of the berm (including landscaping and seeding) and fence will
be completed prior to the issuance of the first Certificate of Occupancy for residences in the
particular development phase adjacent to that section of the berm and fence. In any location where
the berm is constructed on top of the presently existing irrigation ditch running along the north
boundary of the Barker Property, Tri-Trend will install a pipeline of a type and size reasonably
satisfactory to the Barkers so as to convey the irrigation water under the berm. The berm height in
this location will be five feet (after allowing for settlement) above the top of the referenced
irrigation ditch bank. Tri-Trend will be responsible for all maintenance (including irrigation) and
repair of the berm and fence until the community association (the "Association') for Tri-Trend's
project is incorporated, at which time the Association shall have sole responsibility (and Tri-Trend
shall have no further responsibility) for maintenance and repair of the berm and fence as part of the
project common elements. The irrigation of the berm will be by sprinkler system, spaced, zoned and
timed to keep dense pasture grass cover, or whatever other type of groundcover as may be required
by the City of Fort Collins, in a healthy condition during growing season. Tri-Trend or the
Association will furnish and pay for electricity to power the sprinkler system. Tri-Trend or the
Association will water, fertilize and mow, to a maximum 4" of cover unless the City of Fort Collins
requires cover which is typically taller than 4 . Tri-Trend or the Association will prevent noxious
weeds from occurring in the grass cover. A quality, all-weather protective stain or preservative shall
be used on the fence. If Tri-Trend or the Association fails or refuses to either (a) maintain or repair
the berm, the sprinkler system or the fence, or (b) commence and diligently prosecute such
maintenance or repair, within 10 calendar days after receipt of written notice from the Barkers, then
the Barkers may perform such maintenance or repairs at the Barkers' cost and the entity then
responsible for maintenance and repair (either Tri-Trend or the Association) shall promptly
reimburse the Barkers for the reasonable cost of such maintenance or repairs, plus 20% of such cost.
Any reasonable Barker costs for maintenance and repairs not paid within thirty (30) days after receipt
by the responsible entity of a written, itemized bill from the Barkers will bear interest at 21% per
annum.
3. Relocation of Crusher. If Tri-Trend closes on its purchase of the Tri-Trend Property
and if, following such purchase, the Barkers subsequently relocate the rock crusher from its current
location on the Barker Property immediately south of the Tri-Trend Property to another location on
the Barker Property (due to noise complaints or otherwise), Tri-Trend agrees to reimburse the
Barkers for the reasonable costs, not to exceed $3,000, incurred by the Barkers in such relocation.
In the event of such relocation, the Barkers shall provide Tri-Trend with written evidence of the
relocation costs expended by the Barkers and Tri-Trend shall reimburse the Barkers for such costs
within 30 days following receipt of the written evidence. Any amount not reimbursed within the 30
day period will bear interest at 21% per annum. The reimbursement obligation shall be assumed
by the Association following its incorporation, at which time Tri-Trend shall have no further
reimbursement obligation. The reimbursement obligation only applies to relocation of the rock
crusher and not to any other equipment, vehicles or stockpiled materials on the Barker Property.
4. Conveyances.
4.1 By Tri-Trend to Barkers. if Tri-Trend closes on its purchase of the Tri-
Trend Property, then concurrently with such closing Tri-Trend shall convey to the Barkers
that portion of the Tri-Trend Property described on Exhibit D-1, attached and incorporated
by reference (the "Tri-Trend Strip'). Not less than 7 days prior to closing, Tri-Trend shall
provide the Barkers with a title commitment for the Tri-Trend Strip reflecting a policy
amount of $20,000. Tri-Trend's conveyance to the Barkers shall be by special warranty
deed, shall be free of any liens or encumbrances, but shall be otherwise subject to all matters
reflected in the title commitment, all rights of third parties in the Tri-Trend Strip not shown
by the public records, and all building and zoning regulations. Real property taxes for the
year of closing shall not be prorated; Tri-Trend shall be responsible for all such taxes for the
years prior to closing and the Barkers shall be responsible for such taxes for the year of
closing and subsequent years. Prior to closing, Tri-Trend will not take any action with regard
to the Tri-Trend Strip that will impair any right of the Barkers to develop the Tri-Trend Strip
in the future in accordance with applicable laws, ordinances and regulations.
Notwithstanding the foregoing, the parties intend that the conveyance ofthe Tri-Trend Strip
be a Non -Regulated Land Transfer under Article 1.4.7 (B) of the City of Fort Collins Land
Use Code. As such, the conveyance of the Tri-Trend Strip to the Barkers shall not imply or
confer any right to develop, shall not create a new lot upon which development can occur,
and shall not create a non -conformity of any nature whatsoever, or circumvent the intent or
requirements of the City of Fort Collins Land Use Code.
4.2 By.B erstoTri-Trend. Concurrently with the conveyance of the Tri-Trend
Strip by Tri-Trend to the Barkers under Section 4.1 above, the Barkers shall convey to Tri-
Trend that portion of the Barker Property described on Exhibit D-2, attached and
incorporated by reference (the "Barker Strip"). Not less than seven (7) days prior to closing,
the Barkers shall provide Tri-Trend with a title commitment for the Barker Strip reflecting
a policy amount of $5,000. The Barkers' conveyance to Tri-Trend shall be by special
warranty deed, shall be free of any liens or encumbrances, but shall otherwise be subject to
all matters reflected in the title commitment, all rights of third parties in the Barker Strip not
shown by the public records, and all building and zoning regulations. Real property taxes
for the year of closing shall not be prorated; the Barkers shall be responsible for all such
taxes for the years prior to closing and Tri-Trend shall be responsible for such taxes for the
year of closing and subsequent years. The Barker Strip lies within Larimer County and not
within the City of Fort Collins. Tri-Trend shall be responsible, at its sole cost, for any
governmental approvals necessitated by the conveyance and any subsequent development of
the Barker Strip. If such approvals are not granted, or Tri-Trend otherwise determines that
the conveyance of the Barker Strip to Tri-Trend cannot be accomplished in compliance with
applicable subdivision or land transfer regulations, then the Barkers agree, at the time of the
conveyance of the Tri-Trend Strip to the Barkers, to instead (a) grant Tri-Trend a perpetual,
non-exclusive easement over and across the Barker Strip for the purposes of constructing and
maintaining the berm, fence and related improvement as described in Section 2 above, and
4
h
to also (b) amend the description of the storm drainage line easement referenced in Section
5 below and in Exhibit E, if necessary, so as to extend such easement north to the south
boundary line of the Tri-Trend Property. In such event, Tri-Trend or its successors shall pay
the real property taxes for the area of the easement over and across the Barker Strip.
5. Drainag_eEasement. Concurrently with execution ofthisAgreement, the parties shall
execute an easement agreement (the Easement') in the form attached as Exhibit E and incorporated
by reference, which Easement grants Tri-Trend the right to convey storm drainage water from the
Tri-Trend Property across the Barker Property to the Lake Canal running through the southerly
portion of the Barker Property. The drain line specifications are as set forth in the Easement. The
Easement is also referenced and depicted on Exhibit E-1(Utility Exhibit) attached and incorporated
by reference. The parties acknowledge that Exhibit E-1 is subject to change as utility designs are
finalized. After execution, the original Easement (along with the recording fee paid by Tri-Trend)
will be held by Tri-Trend's attorney, Richard S. Gast, and recorded with the Larimer County Clerk
and Recorder at the time of, but immediately following, the conveyances described in Section 4
above. Drain line construction will not commence until after the Easement is recorded.
6. Box Elder Easement. At the time of the conveyances referenced in Section 4 above,
the Barkers shall execute and deliver to Box Elder Sanitation District a Deed of Perpetual Easement
for a sanitary sewer line in substantially the same form as Exhibit F, attached and incorporated by
reference (the `Box Elder Easement"). The Box Elder Easement will be in the same location and
have an identical legal description as the Easement referenced in Section 5 above.
7. Relocation ofhrieationDitch. The Barkers currently receive imgationwaterthrough
the No. 10 Ditch (the "Ditch' presently running south from the intersection of Vine Drive and
Timberline Road across the Tri-Trend Propertyjust east of Timberline Road to the Barker Property.
Tri-Trend, at its sole expense and with the prior approval of the No. 10 Ditch Company, shall
relocate the portion of the Ditch on the Tri-Trend Property in accordance with its development plans,
and the Barkers consent to such relocation, provided that (a) such relocation shall not interrupt the
delivery irrigation water to the Barker Property during irrigation season, and (b) the delivery point
for the irrigation water entering the BarkerPropertyremains in the current location (unless relocation
of the delivery point is first approved in writing by the Barkers). In addition, the Ditch relocation
shall be subject to the prior written or verbal approval of E. H. Barker, which approval shall not be
unreasonably withheld. If Tri-Trend has not received approval or disapproval from E. H. Barker
within twenty (20) days after the effective date of Tri Trend's notice to E. H. Barker notifying him
of the proposed relocation, then E. H. Barker shall be deemed to have approved the requested Ditch
relocation.
8. Contingency for Tri-Trend Obligations. Tri-Trend's obligations under this
Agreement are contingent on Tri-Trend closing on the purchase of all of the Tri-Trend Property. If
Tri-Trend does not close on the purchase of all of the Tri-Trend Property by January 1, 2006, then
this Agreement shall terminate and the parties shall have no further obligations to each other under
this Agreement.
U
9. Entire Aaeement This written document contains the entire Agreementbetweenthe
parties regarding its subject matter, and all prior agreements (whether verbal or written) relating to
the subject matter of this Agreement are merged into this Agreement. This Agreement may not be
modified or amended except in writing signed by all parties.
10. Assimmeri0inding Effect. This Agreement may not be assigned by either party
without the other party's prior, written consent except that, without such consent, Tri-Trend may
assign this Agreement to any entity in which Jeffrey L. Strauss holds an ownership interest, and the
Barkers may assign this Agreement to any entity in which either of the Barkers holds an ownership
interest. Except as so restricted, this Agreement shall inure to the benefit of and be binding on the
parties and their heirs, legal representatives, successors and permitted assigns. The benefits and
burdens of this Agreement shall run with both the Tri-Trend Property and the Barker Property.
Accordingly, this Agreement maybe recorded, at Tri-Trend's expense, with the Clerk and Recorder
of Larimer County, Colorado.
11. Autho i . The persons signing this Agreement on behalf of any entities which may
be parties to this Agreement have full authority to do so and to bind that entity to the terms and
conditions of this Agreement.
12. AttomevsFees. In the event of anydefauh under this Agreement, the defaulting party
shall pay all costs and reasonable attorneys fees incurred by the non -defaulting party as a result of
the default.
13. Barkers' Cooperation. The Barkers agree to reasonably cooperate with Tri-Trend in
the City of Fort Collins submittal requirements for annexation and planning approval of the Tri-
Trend Property, and will promptly sign all documents reasonably necessary in connection with such
annexation and planning approval, provided that the Barkers shall not incur any cost or expense in
doing so.
14. Notice. Any notice provided for under this Agreement shall be in writing and shall
be either hand delivered or mailed by First Class Mail, postage pre -paid. If hand -delivered, the
Notice shall be effective upon delivery. If mailed, the notice shall be effective three (3) days after
being deposited in the mail
Dated the date set forth above.
TRI-TREND, INC. a Colorado corporation
By:
le . Strauss, President
STATE OF COLORADO )
) ss.
COUNTY OF LARIMER )
The for instrument was acknowledged before me this a5 day of ! &L
2001, by Jeffery L. Strauss, as President of Tri-Trend, Inc. a Colorado corporation.
Witness my hand and official seal. /j
My commission expires: 7f �f t o �C
,�. NotaryPublic
61 rt
14OTARY'
UBLVC
' PUBLIC
i' ,. c4 E. H. Barker
OF CO
Patricia R. Barker
D
O)Rstrument was acknowledged before me this�2 r day o
d Patricia R. Barker.
d and official seal.
My commission expires:
My Gmmira Expim3 PAq 2, 200E . .
Publp v�
XWyCjSirnTr VM�xora WftpWjkAGMrewr L1-x I..ra 7
APPENDIX E
DRAINAGE MAPS
0
0
Gaoway
Planning.;r hitecture. Engineering.
9
r
r Gaoway
Planning. Architecture. Engineering.
1
r
r
r DEVELOPED CONDITION DRAINAGE
MAP
r
r
r�
i
r
r
r
r
r
r � .
a
LID EXHIBIT
Gaoway
Planning. Architecture. Engineering.
— _—L I ' \ `-N �- / LEGEND:
i15l1l )'z a Ic?; ,E \�= 1 s 1 • • \ \
\ �1J i \ \ I\ I \ 1 \ —_ NA ___
v
� susmssuassw
\ ! 1 / I wroosEDs.cxPSLVFx
+ " vxmose.srcaAwu,
- `�-�s �1"`°��#-`• � --A vxwossoxcxrarNAY
EAST VINE DRIVE
w_ti- '\ / iii �' (III I: I r/�� _ / I`\ • f ,_1 -•\\/ DRAINAGE SYMBOLS:
I I I:I I IIII I, I .� : ♦ I / .,, o - I
I' e
.00
WOO
ewxrAii; -rDxa..rxxrDrF�w>Exr
1 I I --- I'' v' BECAMEuwaumn•Iwwrvasaen
I I� I - -
V 1 t
I II.I ' /' .� / " .i ' r � i - -- -- - -- -� `\I -- - •�
A Basins (Includes: Fut-A)
' B E and F Basins < < ......
�I�
\Area:
I�- / _ Tributary
I (Includes: Fut-B) , \
IN / / / 2 S ' {�'� 1 �,✓' wsxwo aaw MEaox
Tributary Area: 37.46 acif
f Fp��!
��{� A
a S -�L 11 Mt l i
,_� \ , ., \ ,� �- � � •�. o ;,� �. _© _-_ N TES:
-� t r�\ 1 : /-_ _ i •`� �r � •• I \E I I I z., � ••� —�� OF THE w.za�rsmExi e�irx'"i. �rue�rv.lciLmum
a r F \ )•° I I _ _ _ _ —i 1O BI]5 ETEBUTARYARE EF
(_ ❑I III - J = ' _ -:_i } �,,,, urw,x �s`o s. nuuxs�xxEw✓ cxwvaaysaasc�nl mETIMAM Lxn
aI 11 i I I ``I LID
f .� _ - ��- u vRYxw s DuaalwuDMxmal rm�na,+
�' j I _ - Ip _ - 1 '• A 'I j r W V'
G and H Basins (Includes.
Fut-G, Fut-H and Fut-TL2) �' � � / 7 �r l - -' O FE,D,.e -1 - -x �.D L ,�
7 / s ME�.a°
Tributary Area: 30.61 ac s1 0 �ElrEx,, E
Y- ! / I 1 - ,�. _ L I mu EA +VAH ru-Ixal�arDr xAas xa¢waa -
� I I I I I � .. � I .{ =� EMILEYANDFUE�,y
VaWE up.
i- USED
WINE, IF
r - o aE� FM"w.EER,DFFYCEE .EDx x
•» $/(
�,�� I v I I�1 .I� 1. /'� 11 I - _�, �,..� 4'._ '•'g � _ �-'lµ� v \ � � �I� � � � ssE s�Erorw EmoEr.ow.woonv+cl
e MrENrw+s.ax sos wnrmauumomErsnex:vErxcul
LLU
a __ wL wA+DxeASLcr
EXTENDEDoE,EMx.�.,w�Eex w.,Exa»L,raa�rEx»a,Er,»EI.
xFwem�.mrnP. ALsm IDED
,� I f• \ —. ♦ \ \ \ ?.I _ ( to WESE Fa MIEn.V ANIO.
4• 1II\\�. .JL R \' 11 xMw EEE t\ �t-� JJph J I A V , �¢ wusavEErmmrM
iADazaruL wFMwmxFARE MI
"6 �. -- LID/I AND DETENTION SUMMARY �1
E! , -, I : �"S � B • _ \ � tl _�--•r•D.. nm.♦vmx.wl .nx... rrxwnAr. wsEw.IE»xxx.q vw,x a.w"Iw.
IFOI J�� d • -. M
1 x - i 1 ]♦ AWnO '�M v9E WA WE WA
I- and J-Basins (Includes I '• s
.''.\ z smFw.IEF) aE.mF IErutlawq zzw xREPv.s an WE
' ; Fut-I and Fut-TL 4) F a _ u.m D r m---. "aDax n M -D- a *a MD.x
'i^ . / I -LawJ--\, ¢•gxexu"Olxxlxx.F•i xOxw M.N
Tributary Area:14.28 ac . _ - M" D"M„- "I� A , �Fx� 1 >-, WMA,.,s »
i 1 I i ) rf v v Y A I __ _ s sra m"RI I-4mlu FN wEw.vl ,ux wm-n.BE afl WA
\_ / /� �I III ` r i __ _ A �� 1Mk Y I • I L. , _ t - - - DDmmnmx av Eral .n
'YN/Y*vc ' h, - a-Mx•aez. zm.,.wrudwxm Envxw. x>.I1 WA xP WA
C and D Basins ""'"
1 1'�\ v- )I9 I'IIII �E �\ rxt / _ z.w,.amre,elz-n. me mn a,-rvaa au s
II � , II , , s , � / ) ; I Tributary Area 23.74 ac _ " _. ,
/ asn
1 \ I \
al `
+w o loo +w=. r Clboi Pon COIIIFLs.Ca
I / I Ioil-_ \ .--r _ I » UTILITY PLAN APPROVAL
OVPL
\, v SHELF SIZE 24.36 zrmDEm CMBV�
N.
y trrwr-u D.
t
�.. � lI�'n (Nyy�.� � evzrmrtr mE�cemvn EF
c , 1 I vrI V Id; ' l dl 1 'I �� I - I I. I ,� /P W )'Y . �I v1 �� �.riOil M.
V 1 Ilhl ��--Jh- - 1 off
\ -, i 11 4 --�_ <a T �'� I / �" / �\. '_ '` ` ; I �Gi�_ - - Mx
G
bu Callseloeya elg
�WTANCIT GI
I.. r� ,.rr..r - E.,,,•.x.A.a. EL.
Ga€oway
Ha g. AchrENTre Englnee"It
SUM20t
1,,, tl CO III
90x08DEDnEE 0
pellanmVs.om
EAST RIDGE HOLDINGS
4801 Goodman Rd.
Timnath, CO 80547
970.674.1109
mEeE PMxe ara Ax "arwxexr of
sExVILE/HEIRMEAIEPFOPEarr OF
oLCEDEDCINVAN' CIRREDNIND MAY xorxEOLR1C)UT
�srvosEo wxEPxooucaosxrnwr
,MlnEx coxsExra ME
NGrcECT NTS MILLM51N0
FNNCEMENLB MILL BE ENFIXYCEONIO
PPOBECIIiEa.
0
go
LLO
am
OJW
O
W
CO
U)
W
J
R_;
O
F
Woz
O
o. In
rzeeq a
ozx -u.
SHEET LIRE:
LID
EXHIBIT
DR03
OF 180 SHEETS
DRAINAGE SUMMARY TABLE I DEVELOPED CONDITIONS
Tributent
auD&uN
,y9n
(=
C2
C100
U12-YM
(loin)
h1100.Ys
(Mn)
D2
(III)
all
(cbl
Al
am
On
B2
]A
1.1
IA
A2
ass
a.98
as
$A
12
5.7
AS
am
0.03
Ila
aA
21
ISO
A2eN
Ow
am
Ila
Be
32
111
M
O.M
am
12T
10.1
29
14.1
M
P2.35
O.fl
ON
13A
Tom
2]
1"
MH3
am
On
13A
1"
53
20.a
M
ON
on
III
BA
29
1"
A]
a."
a"
10.7
8.1
1.5
72
AB
OA1
On
142
Ila
2A
111
A7eAA
am
On
I"
Its
42
1"
A9
on
on
0,91
ss
50
Be
2A
AO
131
0.73
0,91
0.a
54
is
Its
All
IN
0.73
Ow
7.9
Ss
2.0
9A
Al2
ON
0.72
ON
0.8
aA
Is
BA
A13
0.98
0l3
- 0A1
7A
as
Is '
aA
BIT
0.52
EAST
0.n
10.7
9.7
12
50
0
2.77
am
0.716
143
121
92
ism
BS
2.0
O.at
0.716
AA
120
35
10]
B1
2.39
0.03
a.n
13.8
Ila
29
AA
115
140
ON
am
BA
TO
23
10.7
B0
2.39
am
Om
1Sb
Its
3A
14A
87
1A6
0.83
0.71)
9.3
Is
is
71
q
_
1.39
_
0.85
041
BA
7.9
21
&T
M
1.31
am
Om
MIA
7.9
1A
92
BID
1st
0.0
EAT
10.6
0.9
as
12I
BIT
ON
0.71
Om
11
7A
IS
7.3
612
1.14
0A1
on
8]
as
2.1
10.1
513
1.13
0.0
Oil
11.7
as
2.0
92
614
1.1a
Om
am
10.E
7A
1s
as
BIB
a."
0.74
0.92
0.9
as
Is
82
011
2.13
0.70
OAT
12.E
9A
3.1
142
816
IN
0.74
0.0
7.7
0.1
1.9
as
95R11134916
3m
Om
am
17.1
1"
4A
212
B 13MBIa
5.97
am
0.ee
17.1
1"
72
33.1
017
IN
Om
0.57
W
0.3
I's
B7
B51&13MO17
].Oa
a89
am
17.1
1"
Ba
M.1
BIa
Om
On
Om
43
5.0
OA-
IT
C1
I'm
ON
Om
102
&1
2.1
9.9
C8
IN
ON
ON
104
7.9
1s
8.9
CIRC2
244
0.0E
am
10.8
8.6
25
18.1
C
IN
0.67
Om
12.E
103
2.1
92
cimm
am
Om
IIA
102
Is
NO
CA
on
aa1
am
as
aA
13
00
Cb
O.77
0.9a
50
6A
1.5
0.6
Ca
on
Om
&0
SA
is
III
CSBCO
0.14
am
Bb
SA
3A
I"
CT
On
p2M
on
Om
62
50
Is
4A
w5 C7
0.74
om
&5
5.a
4s
MT
CB
M71
Om
]2
52
Is
&9W
am
ON
02
fiA
2.1
9.5
CIO
a.n
Om
1A
92
TS
Its
oil
am
0.78
IOs
&1
1.9
9A
012
IN
ON
OTI
82
BA
20
132
C13
1N
a03
O.n
11.1
&]
2.1
103
014
1.75
ON
On
10.E
IS
25
12A
C15
1.041
ON
am
7.7
SA
1.7
&1
CIO
ON
0l3
on
IOA
6.9
1A
aA
C17
1.14
0.67
am
6.9
54
2.9
9s
Cie
1.15
0.51
11.64
Its
10.1
1s
72
D1
I"
am
0.n
IOA
aA
1A
7.9
D2
ON
Om
ON
aA
as
Ds
9]
El
Ory
amPON
9A
]A
1A
&8
EM
ON
am
9s
TO
1.5
7.1
E11F1
IN
am
9A
]A
2s
119
E3
am
am
SA
SA
IA
IA
F1
ON
O.n
12
as
12
OA
F2
IN
0.n
6.1
SD
2.1
94
Be
Om
O.n
04
0.1
12
Os
f1
tA3
Om
10.1
7s
IS
T3
F1 tlry F4
aa8
O.n
1"
71
M
m.7
BE
029
a.n
5.2
aA
Os
27
01
am
0.74
Om
08
Is
to
IA
O2
IN
9N
a.w
I"
Ism
21
1"
D3
1121
0.14
0.0
6.1
SA
21
nz
02W3
IN
am
OAT
I"
121
17
IIA
p1
lAI
0.73
0A2
0A
BE
1A -
9.1
QI+M
1N
0.74
am
BA
52
9A
14A
OB
IN
0.n
am
ab
88
&1
140
OI ON 05
0.18
0.71
am
142
121
Bei
ME
00
am
m
IN
02
6.1
IA
4s
M
am
OAT
ale
&0
W
12
G
1Me07
131
On
0.91
BA
BZ
3.3
ttz
H1
OA2
Ob1
1N
TA
42
01
40
H2
120
0.74
ON
9A
72
22
1"
H3
TAT
0.n
am
03
aA
BE
92
IN
ISE
a.n
0.91
&4
&4
2A
113
HE
am
0.78
am
0.0
5.1
I2
a.0
NO
"1
0.74
m
&7
&1
3.3
1&a
11
1A4
on
OJR
&7
&I
8A
14.0
a
1M
On
0.9]
7.1
88
2.1
9A
D
0.10
0.81
IN
SA
fiA
02
IA
Be
0.17
am
IN
SA
as
OA
1.7
M
0.17
am
1m
5.0
as
OA
1.7
m
0.74
0.75
a%
8.3
64
1A
4A
ONO
1.77
an
ON
03
M
53
1"
O
0.10
ON
1N
BD
BD
03
1.0
all
"I
Om
1N
50
6D
Ob
21
.._, J8. _..
ON
0.n
0.91
Be
&I
... 1s
]A
M
0.12
an
ON
a0
5.0
02
ID
110
1.75
an
0.91
&8
4A
90
IBA
A
ON
ON
Om
OA
am
03
12
ON
am
5.0
6A
02
1A
am
am
am
aA
SA
OA
1A21AI
am
"1
n2
082
8A
IBA
E0,11
4N
Om
1N
IBM
IOA
09
30.1Bill
ON
IN
104
123
93
3&07N
Om
1N
10.E
125
153
"A
2AI
ow
IN
IOA
I"
46
IBA4.51
Om
1N
IOA
1a0
&2
NO
FLNI
4.23
ON
1N
t0A
in
]A
a&9
Fuel
IA1
ON
IN
I"
I"
&8
142
Fal
2.13
a90
1.0E
10.E
le"
48
Ism
Ful
IN
(M
tN
1&7
115
23
at
RLlem
ISF
I
IN
14s
132
2.7
1009
FNHTL4
am
I
IN
IaA
nA
06
22
INLET SUMMARY TABLE
TMYyBNn
MIN
D2
(OM)
D1N
(nM)
Csry
IlMm lr w
-
InIe1TYp
MN909
ONO
M
Mail
1A
AB
NO
No. IB ComblrWbn ll
B
ANAi
HMC1a1
MI"
NO
Toe R'CurblNet
10
MIA5
MBIC72
53
28.8
NO
No. tb tombinat nlNet
No. 18 CumbinafonlNNFIE
M
Mw .1
21
13A
NO
A]IM
tlNC83
42
Tom
w
No.16Cnmelrabonlriet
M
all
03
2A
NO
No. i6 Cumbirmtion lN.t
TIME R CurplN&
A10
INMCBI,
23
114
NO
All
IN Mi
2D
99
Yq
No. 18 Cumbineliwn lNet
Ne.t6CombnuenonlrletA13
Al2
INNC&1
1.8
Ba
NO
111Q
13
BA
NO
T11n R'Curt, INNBt
MN ol?
1.1
SA
NO
No. iB Combination[NotB2
No. 16 Combil Inet
No, 16 Combmaeon mile
Helots
32
1"
NO
BE
H DIS
IS
-16.7
NOT
is
B4
MIN DA
29
14A
NO
No IT Combinauon Inlet
15
b
HN013
3A
14A
NET
No.I6 Combination Inlet
No. 16 Combrnanon[nlat
151
B7
MIN D12
1.5
73
NO
12�
BE
HN all
2i
9.7
NO
No. 16 Comoinallon net
I No. 16 Lentil We
No. 16 Combil INN
12
Ba I
Mat
1 1.0
02
1 NO
12
BIB
lCIA
2A
12.1
NO
12
all
BIB[ m
13
73
Nq
THRE R'Cut Inlet
10
B12
HN DO
IT
III
NO
No, 16 CombinBIM INN
12
B S13svu B17
I"ll
BA
all
NO
THAA'Curol"
16
BIB
Met
03
A7
NO
Tpa R'NNIMN
15
mmm
Mai
68
27..0
NO
HE, IB CmmNm INN
15
C4
HNE16.1
1.3
9A
NO
Type Tv Cure INN
1B
mS w
WE1&1
4A
=1
NO
NO. 18 ComMneeon ll
21
OB
all
is
BA
No
No. IB Cannonenon toter
NM IB CturoMNmn not _
No. 16 Combmallon Inlet
No. 16 Combmonon moat
No. 16 Combmallon inlet
NO, 16 Combmallon Inlet
No-16 Combmallon Intel
No. 16 Combmalon I'll
No. 16 Combination Inlet _
No. 16 Comninmun Intel
No.16Cumbmnoon total
No. 16 CuDmmn9on net
No.16ComNnawYnlNet
Tyq R'Curb INN
10
C9
all
21
&5
NO
12'
C0
NO[0
25
112
NO
15
12
oil
all
1A
as
ND
C12
HNOF
2A
n2
Bar
13'
CO
MIN[ Is
21
103
NO
12
CA
IW1q
23
121)
ND
12
Cis
BIB"
12
0.1
ND
9
9
C18
Net
1A
BS
ND
C17
a m
24
93
NOT
12
D1
lr m
1.0
TO
ND
9'
INNEt
OD
&]
ND
BI
EMF!
H m
2B
18➢
NO
12,
q
INND21
1.1
4s
NET
5
FIMI
YIMD22
a3
ME
NOT
No. 16 CNMlratlan INN
15
PS
B mi
as
2T
1E8
Na 16 CmNAnatil lnel
W l6Conteratlminbl
Ty" A_cut inlet
12
eimm
BY mi
83
90.E
No
15
(MIN
MNBW
23
112
No
10
Nt
WKI
0.9
4A
NU
Into R'Cmb Inlet
M.16CombinatminMl -
5
12
IQ
wm
22
1"
N)
M
HNB41
2D
92
NO
No. 16 CorMlretbn Inlet
12
Ha
9M B32
2A
113
ND
No. 16 Comb[retbn Inlet
15
Is
MBIB&1
1.3
9A
NO
No. 16 GnMmatbnlNel
B
HER
9iNB2
32
183
NO
N0. 16 fmMYratbnlNel
-
B
11
INNM2
29
14A
NET
Nb IBCortLmWnlNN
9
N
HNA)
0A
12
ND
TIRE R Curb Inlet
15
B
INNABI
0.0
12
BIDS
No. 18CwrGnetim total
3
12410
Inal
&3
1Bs
IA
TyRB R Curb Inlet
13
13M
ww
0.5
2.1
M
M,10CmI ill Mlet
B
M
Mel79.M
1A
TA
NO
TSTe 1YCW INN
10
N
INNA&2
02
to
ND
W.18ConrbMlM
8
110
INNM
3A
1&0
NO
N0.18 Cm10MNM9i1
9
RIPRAP TABLE
BbnnPeM
FDBBM.rr
pYRW
wep�el3
H
NbV TKe
Iwo4m9
04
&YN NN¢ep
at)
2-
of
8ldmpeMA
CIMb
BIB
Lall 1HIH)
40
11
1.
BDam ONrtB
C9oW
08'
M(del M )
22
12
BYm pe9tC
CYaIN
W M(4n`12M
)
21
2BYMnpBMo
45ab
SC
L(LL'9MINHO
55
11
1
8bmpe5lE
C9a6
SP
` amenee It
15
0
1
Sbm RBMO
CLwIr
24•
A("tiNI+)
0
5
t
vu uluTr xomCAnCx G®D®10
B
IcnOx R•reb0laW.
Call LBINe you tag.
City Of Foil Collins. Colonel
UTILITY PLAN APPROVAL
rPPRD.m.
br
aDd�.
uex[oev.
WtIF4VYYW�
OM
OrIbu Bv.
CnECI
oN
CHISGICHr.
�
DEnNDM
N�
Ga€€oway
Planning,whivium Engineering.
37M E. t5M S4eel. Srlm el
WVW,J CO weal
970ALL) .3 000
w'.9•Iba.Yus min
EAST RIDGE HOLDINGS
4801 Goodman Rd.
Timnath, CO 80547
970.674.1109
THERE RANG ARE NI IMMU ENT OF
Sol AND ARE E PROPERTY OF
GALLOWAY AND MAY NOT BE DUPLICATED,
DISCLOSED, OR REFRP]VCED WRHDIP
CONSENTTHE WRITTEN OF THE
ARCHITECT COPYRIGHTS AND
INFRINGEMENTS WILL BE ENFORCES ARO
PROSECUOD.
V
Zp
J
Q
LL
Q
a
ZW
OZ
UJW
O
W
00
Clip
Z
p�W
�
0
;
K
QOZ
LLLL
U)
Q
N
oeb
ISSUE I DextlptFn
Init.
HAMS
BMW h MAY
iatiwer, .
M, .._ _- _-. NLIB
SHEET TmE:
PROPOSED
DRAINAGE
DR02
aleasNEETs-----
I \'lid
\I\41
I} i 'fill I, Jill,
It It
�_—eEt VINE DRIVE —
I II I / I��/ - V I �• �
RrllaniMEEM(Y
ArtMA II'
A�
III
IIII
/
V
RmanaWunaY p
. ,
�' ArtFamOWCTq
/'RmPaarnl1111,Iox
I
To
— �Z
�I I
I
gRdA➢a10]ATdI
0P6MITD.VOFR
/`��
1 I IAF
t J\ Ilf I�d
Iv- 1 v p 111
(
i A&�`
I
PETE
5
�. RnEAD TM,R
ON DEAD a a
n
�I
�\
\ Rrmxreoe
pT\anwoLwc
I
� arwen
\,xsa.Faan \
el
`
I \
It
_t-
1 — _ —-a
MB
T U
FE an
A
I r II o r\i'
\
am+a '. la •\ \ I
y
• 4
I
It
WOING ivvms[w[a
a
.AFF PAREART.
NroPDEFn s,aw.:E�EN
aNOwsEv s,ces MER
PROFFOYED
_
FOrus.LD,IaaNE
--
RAINAGE SYMBOLS:
Awo
A
1.000.za
a
0.4a—aamQwW
WavrFcwFFCEn
ast
—wlA silt
RMI caAFFcYPT
i
C9
uSlcNVAN,
......
NMONM�e awrcAP.
IRECTION
E° ICLAt
TO PADUREAM CLEARED
NOTES:
FOR 2 3 4 AMID 5, EACH C�S�NDI� MATCH FRUIT RECOVER THE UNTA
IT THE WATER ORMITY PUMP UTWATER AMOEI mESsrnNS
SOON FLOW a
UPICTH TIC 7 CHATIMELL SLOPE 0 M25 FTAT CERAMIC.VAR a NN11W1 LR
® CANDrILTERIOU XFIT
r
PSINVO0 `. Wnt
WAKE O
eDNVOLUMEaNACIT 0
ixe",mYAFEA D AIC lPAYINSoxCLUMEvrc. wa:eu'
DESIONVOLUMEOCALFT
SANDFILIVI
,abRMT MS. MERCER INCLUDES MD aVwa "M6MNy"
ANDFUT-His
-Ob10NVS.M.:ank.,
ONOW D
OmmulPOwwTmaRFsr<On,mN roe EVEw' -.
O' �ieETDE`i`NiFul w.reNwvO'DmETmucneFww.
wR L rc.wosusxa
g EAlW00E,WK AIXIEWIw,R.OL11nlMETEINCFJB I>RN01
WEN.ETDMFMLP [EI,La D.MRaA9W
�to HiaW MVaIT wF ING OfMTPoCInKILMYIIY DETNL n IMMfD
. xTlcFwceaw,EnvomcuTmuSEarorNPlau,ensxxime
QEWWPW
it xCRTHMWW1C1TRN93iND 7
I ILtl11CWL WMTITOr15FEYF£l �.vNr FIAT
LID/EDB AND DETENTION SUMMARY
W Win>�fw a^
rnevuM1OaY,,. iE'THAT Na.RMINMI
WMN
M�wW
m
I abma
AaPOe1 -AI
21M
AM
FeM
µTA
x.s Fiwin
a i Mn: Pais
YTAa
NW9l n
an
WA
sa.wMoeNmbn enmrml
CZMI)SM",
MEN
vNF n
am
WFIn
4. En.aFa ONmrb°wi.I[Del
t TL2) .:FNa
- I
IMI JITI At I And NlTLA
m
wwWans
saF
4DIIw PYn
TYa
s-sNFampNI
w
vaarsaoa
Ran
WA
s.a.NasF.
�nrt
, Np nd"pWrt A
...a mM
MI
TWA
WA
WA
T-DEWmwel arm
sn
Tom
;_.nn.28
w
s
f.puAbn Pmdl TDaw
a0
naa
TDD,./.nis.a9
aSAT
1 s
_ a City Of End "Ins.
CdwatlD
( AMFEET, UTILITY PLAN APPROVAL
( i-4• I•II; I` �Y, .a.. 1\ NAND.m Dn
w.. .Faa ruN Wa
1A_ 3'�-�«�.��i I. 1 uurnsmro,s�cnnFnoF
CCIdAID
f a I rIED®sa. aW
T ;
pcc At
t it �(J /• o.
WMAP
I III ROTATION 0 a Call meJamD-
CaIlOelWAycyft.
G a E oway
PlYRUJI Redt I -Engar smug.
37ME SUE Street, SHARE We
L Dm C000558
RED am 3300 0
.m wwwWwwCaYLISMET
. PEA.
EAST RIDGE HOLDINGS
4801 Goodman Rd.
Timnam, CO 80547
970.674.11D9
TIESEPWISMEON NSTRVMENTOF
BETMCE AND ARE THE PROPERTY OF
auLDWAv AUTO MAY NOT RE DUPLICATED,
DISCLOSED OR REPRODUCED VVI TXWT
TXE NR ITEN CPVOENT OF LIIE
CE A19
R WILL ILIEEFNFCACEDINO
INFRINGEMENTS
PPOBEWlE9
0
zp
J
LL
Q
p�
niW
O
}U11
rj
LLJ
ca
�2p
z
pI=W
_
;
0
I.E.Woz
0
QQ
LL
fn
Q
/ DRAW
NwelOnvjMlpr
Inn.
CARREP»
I MIAI
OT„
1Ew
aNsoM
en,
TRAW
HAW,!
SLEET TRLE:
PROPOSED
DRAINAGE
DR01
DP Nall SHEETS