Loading...
HomeMy WebLinkAboutDrainage Reports - 05/12/1995 (3)Final Appruved Report p"PT-T OF FIN -:i DRAINAGE AND EROSION CONTROL STUDY FOR RIDGEWOOD HILLS R.U.D. FI'PST FILING FORT COLLINS, COLORADO FINY' :L DRAINAGE AND EROSION CONTROL STUDY FOR RIDGEWOOD MILLS P.IJ.D. FIPST FILING FORT COLLINS, COLORADO March 3, 1995 Prepared for: d. Jensen Enterprises P.O. Box 1007 Fort Collins, CO 80522 Prepared by: RBD, Inc. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 (303) 482-5922 RBD Job No. 014-047 ISOINC. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 303/482-5922 FAX:303/482-6368 March 3, 1995 Mr. Basil Hamdan City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 RE: Final Drainage and Erosion Control Study for Ridgewood Hills P.U.D. First Filing Dear Basil: We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion Control Study for Ridgewood Hills P.U.D. First Filing. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, y..42 .s RBD Inc. Engineering Consultants47 Prepared By: Tim J. BXt1y Design'Engineer Andrea H. Faucett P.E. Design Engineer Reviewed By: Water Resource: Project Manager Denver303/458-5526 TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION 1 A. LOCATION 1 B. DESCRIPTION OF PROPERTY 1 II. DRAINAGE BASINS 1 A. MAJOR BASIN DESCRIPTION 1 III. DRAINAGE DESIGN CRITERIA 2 A. REGULATIONS 2 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2 C. HYDROLOGICAL CRITERIA 2 D. HYDRAULIC CRITERIA 2 E. VARIANCES FROM CRITERIA 2 IV. DRAINAGE FACILITY DESIGN 3 A. GENERAL CONCEPT 3 B. SPECIFIC DETAILS 3 V. STORM WATER QUALITY 7 A. GENERAL CONCEPT 7 B. SPECIFIC DETAIL 7 VI. EROSION CONTROL 8 A. GENERAL CONCEPT 8 B. SPECIFIC DETAILS 8 VI 1. CONCLUSIONS 8 A. COMPLIANCE WITH STANDARDS 8 B. DRAINAGE CONCEPT 9 C. STORM WATER QUALITY 9 D. EROSION CONTROL CONCEPT 9 REFERENCES 9 APPENDIX VICINITY MAP 1 HYDROLOGY 2 DETENTION PONDS 17 CAPACITY OF EXISTING ROADSIDE DITCH WEST OF SITE 45 2 YEAR HISTORIC FLOWS TO TRILBY ROAD EAST OF SITE 58 SWMM MODEL 73 DESIGN OF INLETS AND SWALES 85 DESIGN OF STORM SEWERS AND RIPRAP 112 INCREASE IN VOLUME OF ROBERT BENSON RESERVOIR 137 EROSION CONTROL 149 CHARTS, FIGURES AND TABLES 158 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR RIDGEWOOD HILLS P.U.D. FIRST FILING FORT COLLINS, COLORADO N1:h11:1;fff0 K414LAX1161amp] �•�IiilI�P►1 The Ridgewood Hills P.U.D. development is located in the southern part of Fort Collins, south of Trilby Road, north of County Road 32 (extended), west of College Avenue, and east of Shields Street. A vicinity map of the proposed site is included in the appendix. More particularly, the site is situated in the north half of Section 14, Township 6 North, Range 68 West of the 6th P.M., City of Fort Collins, Larimer County, Colorado. The Ridgewood Hills P.U.D. First Filing contains 60.6 acres more or less with off -site contributions. The area is currently open pasture land covered with native vegetation and is being proposed for a combination of single-family residential, multi -family residential construction and an area with a convenience center. The site generally slopes from the west to the east at approximately 3.5%. Runoff has historically been a fairly constant sheet flow across the site towards Highway 287. A majority of the First Filing site historically drains into an existing sump area located east of the site. Flow along Trilby Road to the east has historically drained underneath the road through a culvert and discharged into a detention area north of Trilby, which discharges through a 24" CMP culvert underneath College Avenue. DRAINAGE BASINS The site is located within the Fossil Creek Drainage Basin. No major drainageways exist within the site. 1 if .I ILWIMA . A. Regulations All regulations as established by the City of Fort Collins Stormwater Utility will be used for this Final Drainage Study. B. Development Criteria Reference and Constraints The Fossil Creek Master Drainage Plan criteria and constraints are being utilized in this Final Drainage Study. Drainage criteria not specified in the Fossil Creek Drainage plan will be in accordance with the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual. The Fossil Creek Master Plan does not require any on -site detention, although the site is being limited to the 2 year historic runoff rates or less. C. Hydrological Criteria ' The Rational method is being used to determine runoff peak flows from the site. The 2 and 100 year rainfall criteria, which was obtained from ' the City of Fort Collins, is the criteria which was utilized. The rainfall criteria is included in the appendix. A SWMM model has been included in the appendix for sizing of the detention ponds. D. Hydraulic Criteria All calculations within this study prepared have been in accordance with ' the City of Fort Collins Drainage Criteria. E. Variances from Criteria A variance is being requested to allow for no detention of Basins 105, 109, and 305. Basin 105 is to sheet flow off the back of lots and down the hillside to the west of the site and into Lang Gulch. The flow being released down the hillside will be less than the historical flow, calculations are included in the appendix. Basin 109 consists of the northern end of Holyoke and the west end of Trilby Road. The road is lower than the ponds making it impossible to capture the runoff and direct into the pond. Basin 305 is the east end of Trilby Road. The road is lower than the water surface of the pond making it impossible to ' capture the water and direct into the pond. Another variance is being requested to allow for Pond 14 to release higher than the 2 year �i ' historical rate. The size of the pond has been maximized and an orifice releasing only 0.77 cfs would have a high probability of becoming clogged. The increased release rate of 1.5 cfs decreases the chances of clogging and when combined with the release from Basin 109 is still below the capacity of the existing roadside ditch along Trilby Road. DRAINAGEMM IV. A. General Concept Permanent detention ponds (#14,#19,#25 and #28) are planned along the north of the site, adjacent to Trilby Road. Outfall from ponds #14 and #28 will enter into roadside ditches along Trilby Road. Pond #19 discharges into pond #25 and Pond #25 discharges into pond #28. Another detention pond (#39) is planned to the southeast of the site. This pond is sized for an interim condition for the First Filing, and then is to be enlarged with the Second Filing. Outfall from this pond is through a 21 " pipe which will convey the flow in an easement to Highway 287 and to an existing 24" culvert, which outfalls into Robert Benson Lake. A SWMM model is included in the appendix for sizing and routing of the detention ponds. B. Specific Details A SWMM analysis was done of this site to more accurately determine the detention volume requirements. The table below shows the SWMM basin parameters that were used for each sub -basin. It should be noted that the Basin Width parameter was calculated by taking the sub -basin area and dividing by an average of ten overland flow lengths from the back of the lot to the street. SWMM SUB -BASIN PARAMETERS SUB -BASIN CONVEYANCE ELEMENT DRAINING SUB -BASIN BASIN WIDTH BASIN AREA (ACRES) % IMPERVIOUS SLOPE 150 15 3032 3.48 42 .02 200 20 3111 8.57 39 .02 250 25 1067 2.45 37 .02 300 30 6279 17.3 64 .02 400 40 7006 19.3 35 .04 411 41 1539 5.3 10 .07 3 Pond #14 will discharge to the West into the existing roadside ditch ' along Trilby Road. At the point where pond #14 outlets, the existing roadside ditch will be carrying 15.06 cfs for the 100 year storm from Trilby Road, inluding flowby past inlets 1 E and 1 G. This flow is not ' being detained within the Ridgewood site due to elevation restrictions etc. Pond #14 will discharge an additional 1.5 cfs into the ditch. The 1.5 cfs is above the historical release rate of 0.77 cfs, however the pond volume has been maximized, and an orifice sized for only 0.77 cfs would surely clog. The total flow in the Trilby roadside ditch will be 16.56 cfs. The capacity of the ditch at this point was checked and found to be approximately 40 cfs. This flow will be conveyed within the ditch adjacent to Trilby Rd. through the box culvert under the Railroad Crossing and into Lang Gulch. The calculations for the capacity of the Trilby Roadside ditch are included in the appendix. Ponds #19 and #25 will discharge into pond #28. Pond #28 will discharge to the east along Trilby Road. The total 2 year historic flow for Ponds #19, #25 and #28 is 6.57 cfs. The discharge frorn Pond #28 into the Trilby Roadside ditch will be 4.3 cfs. Even though the Tri!by Roadside ditch is being improved with the Ridgewood subdivision the available capacity is still only 12.11 cfs at the smallest section. This is why the release rate from Pond #28 was held to the minimum which was physically possible. The flows from pond #28 will cross under Trilby Rd. in an existing 18" culvert and eventually be conveyed to Fossil Creek. The outlet for pond #39 will be a 21 " pipe which will convey the flow in an easement a!I the way until it reaches Highway 287, and outlet just upstream of an existing 24" culvert which crosses under the highway and discharges into Robert Benson Lake. The allowable release rate for pond #39 is not based on the historical release rate but rather on a pro- rated capacity of the existing 24" culvert under Highway 287 for the entire drainage area. The total drainage area to the 24" culvert is equal to 125 acres. The 2 year historical flow rate for this 125 acres equa!s 23.7 cfs. An analysis was done to see if the existing 24" culvert has the capacity to convey this 2.3.7 cfs. Based on this analysis which is shown in the appendix the 24" culvert can convey the 23.7 cfs. Therefore, the allowable release rate from pond #39 during Phase I was determined by taking the 2 year historical flow and dividing by the total drainage area which gave an allowable flow per acre of .19cfs. This figure was then multiplied by the total drainage area of Phase I which equals 24.6 acres for an allowable release rate of 4.7cfs. The allowable release rate for pond #39 with the inclusion of Phase II will be 82.2 acres x 0.19cfs/acre for a total of 15.6 cfs. The 100 year flow rates at the 24" culvert were compared in the existing condition and after the M � I Ridgewood subdivision was built. In the existing condition the 100 year flow at the 24" culvert is 87.5 cfs. After the Ridgewood subdivision with the flow from Ridgewood being held to the 2 year historical rate the 100 year flow at the 24" culvert will be 45.6 cfs. This amounts to a reduction in the 100 year flow of 41.9cfs. All of the calculations for the 2 and 100 year flow rates are included in the appendix. A check was done on the impact that the increased volume from the first two filings of Ridgewood Hills would have on Robert Benson Reservoir and it was determined that that water surface would increase by less than an inch. Ultimately, pond #39 will be expanded to provide detention for Phase it ' as well. Phase it will have 57.6 acres contributing to pond #39. Therefore, the total allowable release rate from both Phase I and II will be 15.6 cfs. In the interim the 21" pipe will have a throttle plate to control the release to 4.7 cfs. If the outlet from ponds #14, or #28 should clog during a 100 year storm the flows from those ponds will discharge over their weirs into Trilby Rd. The overflow from pond #19 will flow into pond #25, and the overflow from pond #25 will discharge into pond #28. If the outlet ' from pond #39 should become clogged the pond has been oversized to contain all of the additional volume needed and not to allow any water to be released from the site. Basins 100, 102, 106, and 107 are designed to mostly drain into Detention Pond #19 located in the northwest corner of the site. The 2 and 100 year storm events have been designed to be transported overland via the street systems, 100 year storm sewer systems, and grass lined swales to the storm water detention pond. A series of on grade inlets are to be installed along the east side of Holyoke Court to intercept as much of the flow as possible and route it to the detention pond and to keep as little flow as possible from entering onto Trilby Road. The inlets are able to intercept 7.32 cfs of the 2 year storm while allowing 0.12 cfs of flowby. During the 100 year storm event 22.74 cfs is intercepted with 5.47 cfs of flowby. This flowby is to be released undetained from the site onto Trilby Road where it is to flow to the west and into Lang Gulch. Basins 103, 108 and 110 are designed to mostly drain to detention Pond # 14 located in the far northwest corner of the site. The 2 and 100 year storm events have been designed to be transported overland via the street systems and storm sewers to the detention pond. On grade inlets have been installed along Holyoke to intercept as much of the 100 year flows as possible and to transport them through a storm sewer system to the detention pond. The pond is to outlet into an existing roadside ditch alongside Trilby Road which is to carry flows to the west into an existing drainageway. The inlets are able to intercept 3.73 cfs of the 2 5 ' year storm while allowing 0.05 cfs of flowby. During the 100 year storm event 13.20 cfs is intercepted with 1.04 cfs of flowby. The flowby is to be released from the site undetained onto Trilby Road which transports ' it to the west into Lang Gulch. Basin 109 consists of the west half of Holyoke Court north of inlet #1 G, the east half of Holyoke Court north of inlet #1 E, and the south half of Trilby Road from the high point east of Holyoke Court to the western edge of the property. Flow from this basin is to be released undetained to the west down Trilby Road and into the existing roadside ditch. ' Basin 105 consists of the back half of the lots along the western boundary of the site. Developed flow is to sheet flow across the lots and release undetained down the hillside to the west of the site and into ' Lang Gulch. Release from basin 105 is 15.57cfs for the 100 year storm event. The 100 year historic release down the hillside has been calculated to be 20.4cfs, caicualtions are included in the appendix. ' Basin 111 consists of the back half of the lots along the southwest boundary of the site and Timpas Drive. Runoff is to enter into an existing ' sump area at the end of Timpas Drive. This flow will continue to the south along Timpas Drive when the Second Filing is developed. An easement is being obtained for this sump area in the interim condition. Basins 200 and 201 are designed to drain into detention Pond #25. The 2 and 100 year storm events have been designed to be transported overland via the street systems, sidewalk culverts, and grass lined swales to the storm water detention pond. Flow at the end of Yuma Place is to be released through a sidewalk culvert into the detention ' pond. The capacity of the culvert is exceeded during the 100 year storm event, 4.38 cfs is to overtop the curb at a depth of 0.14' and flow into ' the pond. The release from Pond #25 is through a 15" culvert. The culvert outlets upstream of Pond #28 and flows enter into Pond #28. Basins 300, 301, 302, 303, 304, 202, 203, 204, 205, 206, 211 and 212 are designed mostly to drain into Detention Pond #28 located in the northeast corner of the site. The 2 and 100 year storm events have ' been designed to be transported overland via the street systems, storm sewer systems, and grass lined swales to the storm water detention pond. Basin 304, along Trilby Road is to have an on -grade inlet installed ' to intercept as much water as possible. This inlet is to intercept 3.32 cfs from a 100 year storm while allowing only 1.00 cfs of flowby. Outfail from pond #28 is to enter into an existing roadside ditch which is to ' transport flow to the east along Trilby Road through an existing 15" CMP which crosses the irrigation ditch, and then underneath Trilby Road ' through an existing 18" CMP. From there the water is conveyed in a northeast direction towards College Avenue (Highway 287) where there 1 6 is an existing 24" CMP culvert under College Avenue. Basin 305 consists of the south half of Trilby Road from inlet #3E to the eastern boundary of the site. Flow is to be released undetained into the swale along Trilby Road. ' Basins 400, 401, 402, 403, 404, 405, 406, 407, 408, 409 and 410 are designed to drain into Detention Pond #39 located southeast of the site. The 2 and 100 year storm events have been designed to be transported ' overland via the street systems, 2 and 100 year storm sewer systems, and grass lined swales to the storm water detention pond. When the Second Filing is completed flow 405,408, and 409 will continue to the south along Avondale Drive instead of entering into swale #406. T his flow will be directed to pond #39 through a storm sewer system to be designed in the future with the Second Filing. Pond #39 is currently being sized for runoff from the First Filing only. When the Second Filing is developed the pond size will be increased. V. STORM WATER QUALITY A. General Concept It is anticipated that the water quality of stormwater runoff will eventually be required to be addressed on all final design utility plans. Therefore for this study, we have sought to find various Best Management Practices for the treatment of storm water quality runoff. B. Specific Details Flows through most of the site are to be released through the detention ponds. These ponds help somewhat in allowing the suspended particles to settle out of the water. The grass lined swales are being designed without concrete pans to allow for the filtering of pollutants from the runoff and are an important water quality feature. •O • 0 •• A. General Concept The Ridgewood Hills P.U.D. is in the Low, Moderate and High Rainfall and Moderate Wind Erodibility Zones per the City of Fort Collins zone maps. The potential exists for erosion problems during construction, and ' after construction until the disturbed ground is again vegetated, ' Per the City of Fort Collins Erosion Control Reference Manual for Construction Sites, and related calculations included in the appendix, the erosion control performance standard for the site is 81.5% during construction and 96.0% after construction. From the calculations in the appendix, the effectiveness of the proposed erosion control plan is 88.1 % during the construction portion of this project, and 99.0% after I construction, therefore the erosion control plan will meet the City of Fort Collins requirements. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES Permit will be required before any construction grading can begin. After the overlot grading has been completed, all areas not in a roadway, shall have a temporary vegetation seed applied per the City of Fort Collins specification. After seeding, a hay or straw mulch shall be applied over the seed at a rate of 2 tons/acre, minimum, and the mulch shall be adequately anchored, tacked or crimped into the soil per the methods shown on the Drainage and Erosion Control Plan. After the utilities have been installed, the roadway surfaces should receive the pavement structure. After installation of the curb inlets, the inlets shall be filtered with a combination of concrete blocks, 1 /2 inch wire screen, and a 3/4 inch course gravel. The estimate of probable costs for erosion control is ($33,000)x(1 .5) _ $43,250 for an escrow amount. A. Compliance with Standards All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. Variances have been requested for areas where runoff can't be captured and detained. The proposed drainage concepts adequately provide for detention of developed runoff from the Ridgewood Hills site. The size of the detention ponds will allow the site to develop in conformance with allowable release rates. The detention ponds are provided with 1 foot of freeboard and an emergency overflow weir in the event that the outlet structure pipe should become plugged. : Because storm water quality has become a requirement, the plan has sought to address this storm water aspect by using various best management practices. D. Erosion Control Concept The City of Fort Collins Erosion Control Standards and Specifications will be utilized during and after construction to minimize the impacts of the development of this site. 1 . Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, Revised January 1992. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991. 3. Fossil Creek Drainage Basin Master Drainageway Planning Study, by Simons, Li & Associates, Inc., August 1982 4. Preliminary Drainage and Erosion Control Study for Ridgewood Hills P.IJ.D. First Filing, Fort Collins, Colorado, by RBD, Inc. Engineering Consultants, June 1994. 9 J APPENDIX J R PROJECT SUE TRI ROAD j o 9 R B�FR 0 o z COUNTY ROAD 32 x f- U rr co N VICINITY MAP Z// HYDROLOGY Ridgewood Hills, First Filing Drainage / Composite "c" values. PEC 10-21-94 rev. 1-11-95 Design Area Impervious "C" Pervious "C" A,total (ac.) A,imp (ac.) Percent Impervious Percent Pervious Composite "C" 100 0.95 0.25 3.01 0.56 18.60 81.40 0.38 102 0.95 0.25 2.73 1.32 48.35 51.65 0.59 103 0.95 0.25 2.80 1.49 53.21 46.79 0.62 105 0.95 0.25 2.84 1.02 35.92 64.08 0.50 106 0.95 0.25 2.08 1.19 57.21 42.79 0.65 107 0.95 0.25 0.85 0.46 54.12 45.88 0.63 108 0.95 0.25 0.12 0.07 58.33 41.67 0.66 109 0.95 0.25 1.08 0.70 64.81 35.19 0.70 110 0.95 0.25 0.56 0.03 5.36 94.64 0.29 111 0.95 0.25 0.91 0.30 32.97 67.03 0.48 200 0.95 0.25 1.28 0.28 21.88 78.13 0.40 201 0.95 0.25 1.17 0.90 76.92 23.08 0.79 202 0.95 0.25 2.04 1.01 49.51 50.49 0.60 203 0.95 0.25 1.13 0.67 59.29 40.71 0.67 204 0.95 0.25 1.06 0.33 31.13 68.87 0.47 205 0.95 0.25 2.54 0.91 35.83 64.17 0.50 206 0.95 0.25 0.74 0.46 62.16 37.84 0.69 211 0.95 0.25 1.14 0.90 78.95 21.05 0.80 212 0.95 0.25 0.63 0.53 84.13 15.87 0.84 300 0.95 0.25 3.91 2.20 56.27 43.73 0.64 301 0.95 0.25 2.14 1.52 71.03 28.97 0.75 302 0.95 0.25 1.91 0.61 31.94 68.06 0.47 304 0.95 0.25 0.48 0.39 81.25 18.75 0.82 305 0.95 0.25 0.25 0.21 84.00 16.00 0.84 400 0.95 0.35 1.23 0.53 43.09 56.91 0.61 401 0.95 0.25 3.06 0.94 30.72 69.28 0.47 402 0.95 0.35 2.13 0.55 25.82 74.18 0.50 403 0.95 0.35 1.31 0.78 59.54 40.46 0.71 404 0.95 0.35 1.10 0.65 59.09 40.91 0.70 405 0.95 0.25 2.62 1.11 42.37 57.63 0.55 406 0.95 0.35 1.40 0.40 28.57 71.43 0.52 407 0.95 0.35 0.38 0.16 42.11 57.89 0.60 408 0.95 0.35 0.78 0.04 5.13 94.87 0.38 409 0.95 0.35 3.36 1.43 42.56 57.44 0.61 410 0.95 0.25 1.23 0.06 4.88 95.12 0.28 411 0.95 0.25 5.30 0.00 0.00 100.00 0.25 412 1 0.95 0.25 1 0.57 1 0.36 63.16 36.84 0.69 I RINC Engineering Consultants CLIENT J�ti.�`j ((�I"�� JOBNO.014 - 047 PROJECT'- ��%�-�'Xf� "t y^� CALCULATIONS FOR L01 MADE BY DATE CHECKED BY DATE SHEET OF 5/ RINC Engineering Consultants CLIENT JOB NO. �'T 4-7 PROJECT % '~� J' �� CALCULATIONS FOR MADE BY DATE CHECKED BY DATE SHEET OF Z J LL i--- Z IY O_EL- LL F- LL .O Z Z a m LLI C/) Z --� U JOt- O = w LL ❑ W°Oa ui Lu >- F- (� CV N LL N O LL Q a U) O O N O O O W «r LO CD r- U) CO 1- co O I` LC) O O CD O ti M CM Uf + Ln N Lo I` N ti Lf) Ln M I` M I � C ) (6 t` O CD O CD co IU ,� r- ti � O Lf) 0 00 Ln L! CD O N LO N 0 0 0 d' O M M ,C: E CO co O CD N . O CO mt mt N Cl) It N I` M N LO M 00 co CM CY) r- C-R N M -7 CM N Il- CO ? CD- N - N N N �- N C'M N N N C'M 4- F-- N Ln N N � Id, N N CO CO CO NCO r- I-- LO LO N U) o O N N CN CV O r- N N O N E 1- Olno ooOOln 0 o0LOLO00000 t U) 0p CD to O) co N I` I` In O 00 U') N I` LO LO �t N M' t U') LO M Ltd CN I`t N It > CQ N F- J CO r- N LO 00 N CD N 0 I- M It I- N CD CD M O O N Cn CD cO I` Lo Ln 4 4 N I— I-- M 4 C`') '-t CD 4 N M � ,c: E N N N N Cl Cl N N N N N N LO N CD N N N CN N cu Cn o F- C!) > 0 LO Ln O LC) L!) O O O O O LO LO LO O LC) O LC) N O O M (0 ti ti ti L!) LO LO O t- L1) L1) t` N LO LO L1) M co h r- N C J M (A N O Ln M co O O w O O m O d M U') CD LC) CD CO CD ti N d' � I` CD (fl d" U') co 00 00 CD U O O O O O O O O O O O O O O O O O O O O cu M 0 `1' M LC) N M 0 T- M I- It M CD mt d' � M — cu CII O O I` CD co O MCDLO O N r- 0 O LO r- r- CD M ❑ Q m c'M N N N CV O 0 -,-- 0 0 N r- N O r- O M C N O N M LO CD I- M O 0 —0 Mq4- LO CD O co O C O O O O O O O O r r 0 0 0 0 0 0 0 c- — O m CT 'rj) x-- T- c- � r- ' r- r- C N N CV N N N N N N CO � om LO a Z _J LL H Z U) 0 L.L F.- LL O Z E-- za�m UicnZ� ZJ0E— L = W ❑ LLJ O < LL! } N LL O LL Q a rn E LO o � U cv E a) co .r Cl? O N co co o o �- 'I- U') CO N N Un 'I' + 0 00 m co lqr fl- 00 f- f` Cfl U) O CD M Cn CD O U) . LL � M r- t~ O O O O 'It O fl- N Q) O CD O t` •E -t CD M N r M N N CD M �-- O f-� O N M f` t` t` 00 �t 00 U) Un 00 00 co O 00 O 00 '1' _ CV M M U) U) C`) N 4- H Ln N (.fl co U) 't CD U) U) 00 CO 144- O M O 00 't ooCl) H000000oocnO0000000 0 00 M O 'qt 'r- U) M — N"qr d' N U) f` N CT U) CD M N It ti d f,- CD f-- f` m 00 'I CV cu O N U) M't O, U) N w m -,t N U) N 00 M ti N N U) CD U7 U) 4 00 O 4 M f-- (fl f-- ',t (N N CN CN CV 'KT W) N N " CO N U) CO 'It 00 N CA CU � > O O CD CD LO U7 O O O U7 O U) O O O O O O to CO CO M Un (D cD O Un r- t` CO 00 It oo O Ut) p) r- N r- N U) C J U) f` CN It O O U) N O M r- 00 U) O U f` V- 00 co CD V- U) f` Un U) CD co co N N CD O O O O O O O O O O O O O O O O O CII �t r M L!) M O M r- O N O 00 00 (0 co O f` Cu r- O 'd' N N O 'r- M CD d' M f-- M N M Un ❑ Q N �- O O r co N N �-- O O co r- U7 O C C N V" 0 0 M 't U) CD f- CO CT O r- N (a O O O O O O O O O O O CD O O co M M CY) �t �f �t d 't 'I- It It � 'a' It �t d' I 0 fn a Z Q 1 ' Z J U- Z �_ LL O LL• O f-• Z H D Wn- Z Om ' Z W O .J a w° >- ' LLI O N i O N N c c c E .E E LO `II LO cn C) O II O N II II U *k *k F-70 �- coU N 0 a) N O N U: O N O (n � 0 .. N M-7 mU? m �t O m N LQ co CD O 1` O m Un It CD O m U) O W) co M CO 04 L6 1` LO Cfl co d co "Cr m C+ 'U •� LL � O Lo O M Lq U? Cfl O 0 00 Nt CD M M C� E CD CD m CD N O �- Co �t � N M N N ti M N �- LO O 00 M M M�- �- M N M r M N 1` M _ U N Q N �- N N N N M N M N M N LO N N.t `ti N N co M M N 07 t` coo O N N N N CV r- O e- N F- O to O O O O O u') CD 0 0 LO LO O O O O O �. Ln co CD � U') m co N 1` m (fl t` 1` U') m co LO N N cm t` to V) � N M d• Lo tf) Co Lo N t` 'It `t co W M M Itt m d• m N co N C`') O 1� N 10 m N M 00 'ct m M M N N 0 CD CD —1l M M M U-)N O V- I- E C N N N N N N N N N N N N N CD N N N N N _ � o ~ 9 OU-) to O U•) U) O O O O O In lt) cc tf) O Lo N O O w CD I- 1� I- U-) U') In CD1l- LO U-)t` co W) W) to M CD I� ` N Co v C J w m N O LO M Cfl O m w O m O I` Il_ O m O .t � M LO CD U-) O O co 1` N 'd �t f- CD O d" Lq CD (DJ OO CD U ca O O O O O O O O O O O O O O O O O O O O N N r- M O �t CO V) N w O , 00 I` � M CO � d d M �- U V O ti co co O M OU-) m N O O to 1'- - CD m QQ co CO N N N N O O 0 0 O O M V5 to C O N M CDti co m 0 r• O r- N M `t O �- N O m m .- 0 0 0 0 0 CD 0 0 O OCOOCCT O •55 N � 'r- T- T- r- r- T-- N N CV N N N N N N M Ln o In LO z a Z LL F— Z LLL LL O H Z i-- D Z m -� Z J W 0— LL ❑ Q Lu O W o Cr) N 1 LL In n It LL cl Z U) (nLO to E E E E LO U) co LO cn n n n n c`o a) E m > > D .� CD (D O CD 00 O `t N CN r- O Itt CO CO Cfl + ) co N 4 N LC) t` (DLn It M 00 Ln � N� C) M _ , E � � r- ii F-- m ti t` O O O O"Rt m L` N m O CD O ti s 4 CD M N r M N, N r- CD co O f` O N �- E t` fl- M It M U) LO m 00 M O 00 O m tt Lo CV r- M M Lf ) L1j �- M �- N F— LO N CD (fl Lq `t CD Lf) U( 00 CD O 00 O 00 [t U) o C) 0 co s` ti O �,.t O I— O O O O O O O O Ln 0 0 CD 0 0 0 0 0 L CA 00 00 O "t r- Ln 00 — N 4- It N LO t` LC) CD co N I t f` � t' CD t` ti CM 00 d N m w L J O O O O f` C) 0 0IRT CD C) r- �t N 00 Lf LC) : Ln O O M 'Ct 4 M N CD �t M LC) v' V- CD V- N E N N N N LC) N N N M CV Lo m "t 00 N _ � o a) I— > O O CD CD U*) U')O O O U')O LO CD O O O OO CD O M M O O O W) ti M Vt U') N N O co C J Ln t` N t~ O O U) N O CO v- 00 LC) m U t` l4t 00 O CD It Ln r- t~ V) L() O M O N N co N 6 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 ca m M Lfi M CD M r O N O M M CD M O t` ❑ a) C j- O �t N N O M r CD d' M ti M N M Ltd Q N O O .- M N - N O O Ce) r- LO O e- N 'ql- LO O v-- N M It LO CD t` CO C) O — N �] cm .c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � � v- ' M M M M d' ';t 'Rt 14' � 'Kt � It 'qt 'tt �t �t 4t cu p C� U k I (A sp ljounu I __.uollouwjwns uo!iojluoouo:) 10 Cull.L 11111 J a 1�� AI .. loss HIM I ME I I I Ill IN Sol IN 1-01119,1 oil NONE 11101 u �j Z w z �cn N W CD v .z a S _I O F- I � INCH loll 1' I loin I HIRAI H limil I ON Hill Elm Hill min 11 min 111 loin I M-1 11 MINIMUM MINIMUM loin NEI 1 NO IIIII-111 HIM I MINIMUM 1111111 ISO MIN limil I oil in 11111111 .Mil MIN 0 I 11 1 no =I IS i I IN 111 IS 11, 1, n 4_, milli SJO ;IOU r, 8 loin 11111111 goal... CLIENT J�7G� 71�, ` JOB NO14-647 ANC PROJECT �/7�q���ZP��+� I�S CALCULATIONS FOR KV�6�� Engineering Consultants MADEBY !^DATE)ALZ_?__XECKEDBY DATE SHEET OF No Text 1 ICI C DETENTION PONDS u 1 Ql 9 CLIENT v,��I S ��I / JOOBN-yO. I� WINC PROJECT J� I 4 �u.16��t, 1 ? CALCULATIONS FOR Engineering Consultants MADEBY� l DATELQ]L-UCHECKED BY- DATE SHEET OF i I" F T�DINC Engineering Consultants CLIENT P_v-,, S 1° P, j �/ JOB NO. ®% PROJECT�7��.//� �WO��19 1ST CALCULATIONS FOR SAP / {_ew) ��B VI MADEBYDATEccyy�__e4CHECKEDBY DATE SHEET OF T ' 20 CLIENT JOB NO. 1 Isom PROJECT V.;A41,�Qj CALCULATIONS FOR Engineering Consultants MADE BY4__DATE lCHECKED BY- DATE SHEET OF { t9 3 04CC5 gnu Z = 24-6 I _.. I - 12-S min _ j l a l Tom, : 23,S-t Q 5 1 1 .j _ o.zoC W.3>(24,6) 6A � fi Wk,c.' - 4dW175 ?,a- �Im-j wr&l- &Atey, Ave— io yi I 7L o. 23:2 32.0 m I� - t .95 1 Q2_ Co«2;C o•9s i2s�= 25-1 cfa lv.2�C�.�.s1Cz:S�Ciz�� { v.►94 lack-0— ro�IAYl,�.1�5 1 ' 2 100 yam- =4�c� No Text il.! !!,� 17 o 0 zt o ji o ' I.l�j Rf �— —)-�i 0000,l 1 10, 02 per. t0.. -;- ' i -���•'� II ; .� � l � i�ik'I Re •jl ��,;j�0 j:;l: !I' ': _ � � of II ! i , i I ii Ilil 'il •� IF ,--+' •, LIo 77 $ If oon.o'A,.� �'�'�;I .•'tee\` ..Coi�,.i 5"fr/eodZ4:r96'�� I' I I rr,- -.C9��— o =34 efs » l < 3 yet -- �t�� ,Qepy, ryoeiT%zE/ �� 'P. Ccnc�r,'i�y to o I� stingy 24'A!'P C�..r C.lv�i iletliny 10 eyisli�� 14'.Plp ss Cv/✓etl a>. Sla 3O3f/S v Oelai/I q'x -7S' `? - to '96 22� jl { Jsl k.� I h ? pV I� I I I II �I I I �I i II I, Rm1w, 0 Engineering Consultants y CLIENT PROJECT MADE BY DATE JOB NO. CALCULATIONS FOR CHECKED BY DATE SHEET OF _ N W LU W A 1100-13A LL co .Z 13�1�0 r N S IS Lo W m NOUTA373 LLJ (yJ F a0 I CMO VMH 1081 NO lI1 .. J W c W W a w W Oso W L a L!� v w j w < I= �� a (� G' w s N N > W of > N O C� co Q- L U 0 11_ a s X Z O ¢ a h W = 7 tI N y =/ W J C w O C t. 0 p p J W ¢ Z �l U CJ. - L W O z Q ! 1... o 3 n ( J = 30= W H U U np \ V, - 3 ¢ = _ d 00 ¢W O - W Wa W < J� . s a: 3 w W r- y O .`- 0 0- O J U T a a ¢ < . Q a O y O 1 () \ v lJ N W l'j c=.� C N W J ❑ ❑ 3 (� �� a o < O W J y fi Li J p '- O to N .J ¢�¢ a W to z W.. wJ- JCa ¢ < O F o= zp z EL s F O J O ¢ W> _—O lL y¢j�l-U j O a LaZ } Z Z .. _ Z 1- C 7 to N Li O O I J � 3 _ (1 W 3$ z H F- W a - N x p O J J 0 3 C 1 U 0 z Q \ c— 3F ❑ ❑ ❑ ❑ Li(`41 = w J (J C W 0 J H _V N 3 C 1J WyQjW��¢C a S1HS l,00V 33s O U ., U �- H 11 �1 1 c � � c2� c�i 6. 6 S.- 6. ` S. 4. 4. 3. 3. 3 • � Ia Ls N W LS t— W O 1 a _ I,O:,,� LO 0 T �. L0 3 .9 _ •s .s .s f •T .T .7 .s .s i s s .s DEPTH FOR PIPE CULVERTS H INLET CONTROL Preceding page blank CHART ISO 10,000 168 8,000 EXAMPLE 156 6,000 D•42 inch" (3.5 feet) 5,000 c•120 ef• 144 4,000 +► tttl 132 3,000 D feet 120 (2) 2.1 7.4 2,000 (3) 2.2 7.7 108 00 is feet 96 1,000 800 84 600 500 T2 400 2. = 300 U Z N 60 U. 200 / Z Z 0 54 a W ` 100 > 48 / 80 = 6 U. �Q UUJI N 0 0 HW ENTRANCE SCALE 4 ; p TYPE UJI W 1—/3"(1) Square adge with W hoodwell Q20 (2) Groove cad anth G(3) Groove end projectleg 10 8 6 To was scale (2) or (3) project 21 5 horizontally to scale (m, thos 4 we* straight inclined line threegh D sold 0 sealse, w reverse as 3 illustrated. .f I8 .- 2 -• s Lo It HEADWATER CONCRETE HEADWATER SCALES 253 REVISED MAY 1964 WITH BUREAU Of ►UBLIC ROA03 JAIL it" t 181 OCHART 4 3 2 1 0 s- Ic e 6 4 c BUREAU OF PUBLIC ROADS JAN. 1964 DISCHARGE-Q-CFS ry 80 90 100 8 7 F-- w 6 w w v a. w O J Q DISCHARGE-Q-CFS rvo 800 900 10002 DISCHARGE-Q-CFS ouuu 4000 CRITICAL DEPTH 184 CIRCULAR PIPE U %v ��y RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA WEIR FLOW OVER HWY. 287 Qoiler—U,�e'tir;= a7,s-4=47,1;es WEIR COEF. 3.000 STA ELEV �z. Iv /e - - - - - - - - - - 0.0 5020.60 Z-- 68 . 0 5019.50 1 5, 136.0 5020.60 50l9�5 4DI t6w� S� ELEVATION DISCHARGE ' (feet) --------- (cfs) --------- ' 5019.50 5019.60 0.0 0.4 5019.70 2.4 5019.80 6.5 5019.90 13.3 ' 5020.00 23.2 5020.10 36.7 6 x SOzO,( ' 5020.20 5020.30 53.9 75.2 5020.40 5020.50 101.0 131.4 = 4 j,G cS -7Panti"�3OD ' 5020.60 167.0 Sec. /•3 AS C�'IS?"L'C�ED iS.W. �a Set. /3 ENOjEVISHIO(iS 0 F.EviSED VOID F . T. 6 N., R. 691Y. Y Or W, d/on9 s:lnyfega� r-T-� I i F Temp. Zosemen/-2 •LT �lc'�—=�C—r--��—_t -- � +ter - - �— S O'06'W*_-- __---`-- — — � `LANiAX•fi>nlinP/�csl.SeePr�l.Yi) ----- �—�--r.t—c—.--r--��—�--�(— a. y V V �E�Jtm�nf� � \.e .�. \• � Q lb YY N��/iw ✓I Rx Ji .las-/o 20'7em�asen�ea�-j- h .S. E, i Sec. /4 ,r6 A(, R. 69f _ — -i l I ^'lOA Similar /b'!A �i3-ASfHl7.9T f0�- 116C �1-ffljl-- w —„ wig i. _ _:_ =-=- - -1 _ ! i �CdA-Svniar • L. L: = 30.:-. f ( .: •.. - '*IOC ! I 6C __: ! .::.:--: _:_ - - •• - - • - - - -- _,. _ s,CJe-Simi/or/a sD 'JC-: A• 63 7.61) (i 45 1279,-O'd Al 26 x'7o :_ -•— 20 8d0 VC.' C06-0o0171. Ir -17 ay .�S -•�,-_�� 2 fiv_� Muc.F Ex cavaficr 9 err.?:;.; .... - .. ... . STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 1401 WEIR FLOW COEFFICIENTS SHAPE COEFFICIENT COMMENTS Sharp Crested - Projection Ratio (H/P = 0.4) 3.4 H 4 1.0 Projection Ratio (H/P = 2.0) 4.0 H> 1 0 W/Sharp`U/S Corner 2.6 Minimum Value W/Rounded U/S Corner 3.1 Critical Depth Triangular Section - A) Vertical U/S Slope - 1:l D/S Slope 3.8 H > 0.7 4 1-DL S5- o 3.2 H> 0.7 10:1 D/S Slope 2.9 H> 0.7 B) 1:1 U/S Slope - 1:1 D/S Slope 3.8 H >0.5 3:1 D/S Slope 3.5 H >0.5 Trapezoidal Section 1:1 U/S Slope, 2:1 D/S Slope 3.4 H> 1.0 2:1 U/S Slope, 2:1 D/S Slope 3.4 H >1.0 Road Crossings Gravel 3.0 H>1.0 Paved 3.1 H>-1.0 7TT. 1 t -4- � I . . ... U . L) Y U .1 •.i Y o(.'([ o/ SU.M(IRS(NCIE w ADJUSTMENT FOR TAILWATER SCHEMATIC t _ a o .v Date: NOV 1984 I REFERENCE: King & Brater, Handbook of Hydraulics, McGraw Hill R ev: Book Company, 1963 - Design of Small Dams, Bureau of Reclam.,1977 � I Isom Engineering Consultants CLIENT PROJECT MADE BY DATE NO. CALCULATIONS FOR CHECKED BY DATE -SHEET-OF � I 3� RIDGEWOOD HILLS Detention Pond Orifice Restriction JOB NO. 014-047 POND #14 Radius: R = 0.625 ft Orifice Equation Depth: D = 7.5 ft Qo = c A (2gH)^0.5 C = 0.6 h/R h alpha C C' A H Q (ft) (rad) (ft) (ft) (ft2) ------------ (ft) ------------ (cfs) ----------------------- 0 0.000 ------------------ 1.571 ------------ 0.265 0.360 ------------ 0.61 7.140 7.89 0.25 0.156 1.318 0.306 0.319 0.51 7.181 6.64 p�-o - �,� Q,0.�f� le- 0.5 0.313 1.047 0.345 0.280 0.41 7.220 5.29 1 ford- sie is re5'�rIG�� � i 0.75 0.469 0.723 0.381 0.244 0.28 7.256 3.66not 0.9 0.563 0.451 0.403 0.222 0.18 7.278 2.29 + �fP 0.95 0.594 0.318 0.410 0.215 0.12 7.285 1.61 b _c3 0.96 0.600 0.284 0.411 0.214 0.11 7.286 1.44 �n^-i + oukleF` lei ���,, 0.97 0.606 0.246 0.412 0.213 0.10 7.287 1.25 k Nr-r-e-�. 0.975 0.609 0.224 0.413 0.212 0.09 7.288 1.14 ��� kx�;,�,-o,-77Xs 0.98 0.613 0.200 0.414 0.211 0.08 7.289 1.02 1 0.625 0.000 ERR ERR 0.00 ERR ERR b t5 m K, 5 cl 104 L� ,e, 71,`�{-F l na\ Note sly Centroid of circular sector of radius R assumes orifice plate covers top half or more of circular opening. Variable Definitions ve-0 �Th R = pipe radius ki :t06 -n-1 - D = maximum head at pipe invert h = distance from centerline of pipe to limit of orifice plate C = centroid from center of circle ��= d `� S ; ` h= .597=7• l�`� C' = centroid from invert of pipe Tfw! Le��� �, o e,r� -�� �1'a c = orifice coefficient = 13, s 4- 7,1 A = flow area beneath orifice plate H = head on orifice Ar,� F Q = orifice discharge G '=p, Z l 93, 5 -t0,zc = 83,-! RBD, Inc. RIDGEWOOD HILLS Detention Pond Orifice Restriction JOB NO. 014-047 POND #19 Radius: R = 0.625 ft Orifice Equation Depth: D = 5.5 ft Qo = c A (2gH) ^ 0.5 C = 0.6 h/R h alpha C C' A H Q --------------- (ft) (rad) (ft) (ft) (ft2) (ft) (cfs) --------------- 0 --------------- 0.000 --------------- 1.571 --------------- 0.265 0.360 --------------- 0.61 ------------------------------ 5.140 6.70 0.25 0.156 1.318 0.306 0.319 0.51 5.181 5.64 0.5 0.313 1.047 0.345 0.280 0.41 5.220 4.50 0.75 0.469 0.723 0.381 0.244 0.28 5.256 3.12 0.9 0.563 0.451 0.403 0.222 0.18 5.278 1.95 0.95 0.594 0.318 0.410 0.215 0.12 5.285 1.37 0.96 0.600 0.284 0.411 0.214 0.11 5.286 1.23 0.97 0.606 0.246 0.412 0.213 0.10 5.287 1.06 0.975 0.609 0.224 0.413 0.212 0.09 5.288 0.97 0.98 0.613 0.200 0.414 0.211 0.08 5.289 0.87 1 0.625 -0.000 0.417 0.208 -0.00 5.292 -0.00 Note Centroid of circular sector of radius R assumes orifice plate covers top half or more of circular opening. Variable Definitions R = pipe radius D = maximum head at pipe invert h = distance from centerline of pipe to limit of orifice plate C = centroid from center of circle C' = centroid from invert of pipe c = orifice coefficient A = flow area beneath orifice plate H = head on orifice � k, �"A -� Q = orifice discharge RBD, Inc. RIDGEWOOD HILLS Detention Pond Orifice Restriction JOB NO. 014-047 POND #25 Radius: R = 0.625 ft Orifice Equation Depth: D = 5 ft Qo = c A (2gH) ^ 0.5 C = 0.6 h/R h alpha C C' A H Q (ft) (rad) (ft) (ft) (ft2) (ft) (cfs) ------------------------------ 0 --------------- 0.000 --------------- 1.571 0.265 --------------- 0.360 --------------- 0.61 ------------------------------ 4.640 6.36 0.25 0.156 1.318 0.306 0.319 0.51 4.681 5.36 0.5 0.313 1.047 0.345 0.280 0.41 4.720 4.28 0.75 0.469 0.723 0.381 0.244 0.28 4.756 2.96 0.9 0.563 0.451 0.403 0.222 0.18 4.778 1.85 0.95 0.594 0.318 0.410 0.215 0.12 4.785 1.31 2yr • h s}��,C�( �"'� 0.96 0.600 0.284 0.411 0.214 0.11 4.786 1.17`''S 0.65•'_vcr� 0.65cf� 0.97 0.606 0.246 0.412 0.213 0.10 4.787 1.01 0.975 0.609 0.224 0.413 0.212 0.09 4.788 0.92 0.98 0.613 0.200 0.414 0.211 0.08 4.789 0.82 55. 1 0.625 -0.000 0.417 0.208 -0.00 4.792 -0.00 W iII �p,vG Q 1r�5.�. !�� � 27r• h;s�'a-cal Note Centroid of circular sector of radius R assumes orifice plate covers top half or more of circular opening. Variable Definitions R = pipe radius D = maximum head at pipe invert h = distance from centerline of pipe to limit of orifice plate C = centroid from center of circle C' = centroid from invert of pipe c = orifice coefficient A = flow area beneath orifice plate H = head on orifice ! oi- O� �' CGL J Q = orifice discharge 1 A 2 RBD, Inc. 3� RIDGEWOOD HILLS Detention Pond Orifice Restriction JOB NO. 014-047 POND #28 Radius: R = 0.625 ft Orifice Equation Depth: D = 10 ft Qo = c A (2gH) ^ 0.5 C = 0.6 h/R h alpha C C' A H Q (ft) (rad) (ft) (ft) (ft2) (ft) (cfs) ------------------------------ 0 --------------- 0.000 --------------- 1.571 --------------- 0.265 0.360 --------------- 0.61 ------------------------------ 9.640 9.17 0.25 0.156 1.318 0.306 0.319 0.51 9.681 7.71 0.5 0.313 1.047 0.345 0.280 0.41 9.720 6.14 0.75 0.469 0.723 0.381 0.244 0.28 9.756 4.25 0.9 0.563 0.451 0.403 0.222 0.18 9.778 2.65 0.95 0.594 0.318 0.410 0.215 0.12 9.785 1.87 0.96 0.600 0.284 0.411 0.214 0.11 9.786 1.67 0.97 0.606 0.246 0.412 0.213 0.10 9.787 1.44 0.975 0.609 0.224 0.413 0.212 0.09 9.788 1.32 0.98 0.613 0.200 0.414 0.211 0.08 9.789 1.18 1 0.625 -0.000 0.417 0.208 -0.00 9.792 -0.00 Note Centroid of circular sector of radius R assumes orifice plate covers top half or more of circular opening. Variable Definitions R = pipe radius D = maximum head at pipe invert h = distance from centerline of pipe to limit of orifice plate C = centroid from center of circle C' = centroid from invert of pipe c = orifice coefficient A = flow area beneath orifice plate H = head on orifice � 63y\ C1+03 O� Or,�C.e. Q = orifice discharge RBD, Inc. RIDGEWOOD HILLS Detention Pond Orifice Restriction JOB NO. 014-047 POND #39 Radius: R = 0.625 ft Orifice Equation Depth: D = 8 ft Qo = c A (2gH) ^ 0.5 C = 0.6 h/R h alpha C C' A H Q (ft) (rad) (ft) (ft) (ft2) (ft) --------------- (cfs) ------------------------------ 0 --------------- 0.000 --------------- 1.571 --------------- 0.265 0.360 --------------- 0.61 --------------- 7.640 8.17 0.25 0.156 1.318 0.306 0.319 0.51 7.681 6.87 0.5 0.313 1.047 0.345 0.280 0.41 7.720 5.47 4-, 0.75 0.469 0.723 0.381 0.244 0.28 7.756 3.79 0.9 0.563 0.451 0.403 0.222 0.18 7.778 2.37 0.95 0.594 0.318 0.410 0.215 0.12 7.785 1.67 0.96 0.600 0.284 0.411 0.214 0.11 7.786 1.49 0.97 0.606 0.246 0.412 0.213 0.10 7.787 1.29 0.975 0.609 0.224 0.413 0.212 0.09 7.788 1.18 0.98 0.613 0.200 0.414 0.211 0.08 7.789 1.05 1 0.625 -0.000 0.417 0.208 -0.00 7.792 -0.00 Note Centroid of circular sector of radius R assumes orifice plate covers top half or more of circular opening. Variable Definitions R = pipe radius D = maximum head at pipe invert h = distance from centerline of pipe to limit of orifice plate C = centroid from center of circle C' = centroid from invert of pipe c = orifice coefficient A = flow area beneath orifice plate H =head on orifice C�n�vj�� OC pr. Q = orifice discharge T� RBD, Inc. RIDGEWOOD POND #14 014-047 Detention Pond Rating Curve Cumulative Elev Area Storage (ft) (ac) (ac-ft) ------------------------ 83.5 0 ------------ 0 V = d/3*(A+B+(AB)^0.5) 84.0 0.01 0.00 86.0 0.03 0.04 88.0 0.08 0.15 90.0 0.19 0.41 I00 91.0 0.24 0.621--- Area -Capacity Curve 0.25 0.2 U A 0.15 d Q 0.05 0 -I- 82 u.1 0.6 0.5 C 0.4 a _T. U 0.3 c 0.2 0.1 10 84 86 88 90 92 Stage (ft el) i Area + Capacity 40 Yam- w -4 c 70, ¢ Ridgewood Pond #19 014-047 Detention Pond Rating Curve Cumulative Elev Area Storage (ft) ---------------------------- (ac) (ac-ft) -------------- 85.5 0 0 V = d/3* (A+ B+ (AB) ^ 0.5) 86.0 0.14 0.02 88.0 0.29 0.44 90.0 0.42 1.15 o✓ 91.0 0.48 1.60 Ifb'^ �` `'' ` "�e'"`�n 0 0. 0 0. m m 0. Q 0. ro 0. 0.1 0. 0. Area -Capacity Curve .s 1.s 1.4 q.............................•----------------------------------------•---•---------------------- .....---•--. 35--•..................................................•-------------•----- ....................� .............. 1.2 3---------------------------------------------------------- --------------------•-- -----•------ --•-•--------- 1 25............................................. .•--............................................�............... 8 2................................. ................•-------•-----------------------------------i............... .6 0.4 1 --------------- ........................... ..............................•--•----------------- --------------- 05 .................--------------....................................I...............�.2 0 i 8s 8s 87 88 89 90 91 Stage (ft el) -0 Area — Capacity 100 37/ RIDGEWOOD POND #25 Detention Pond Rating Curve 014-047 Cumulative Elev Area Storage (ft) (ac) (ac-ft) •------------------------------------- 78.0 0 0 V = d/3*(A+ B+ (AB) ^ 0.5) 80.0 0.08 0.05 82.0 0.15 0.28 84.0 0.28 0.70 ! �� Y2- o✓<�nw ti 0.254-- Area -Capacity Curve 4c ea Stage (tt el) — Area t Capacity .7 .6 .5 vow. Q—ce�w 2� = on Aym-( Nm Swrnrh) �ouyQ �vs�� 81_00 RIDGEWOOD POND #28 Detention Pond Rating Curve Elev (ft) 63.0 64.0 66.0 68.0 70.0 72.0 73.0 Area (ac) 0.6 0. 0. 0. r 0 0.14 0.22 0.32 0.45 0.52 0.57 014-047 Cumulative Storage (ac-ft) -------------- 0 V = d/3* (A+ B+ (AB) ^ 0.5) 0.05 0.40 0.94 1.71 2.68 3.22 ! tyo y2 owrla, i vim; r- r Area -Capacity Curve 4 3 2 3 5........................................................................................................... ... 2.5 -••...................................•---------............................................................... 2 .......................................................... .....................•-•---.......................... 1.5 ............................... ........................................••--------••------..................... 1 63 64 65 66 67 68 69 70 71 72 Stage (ft el) — Area -+- Capacity )OCR y� wsci_ - '73..0O G� / RIDGEWOOD POND #39 014-047 Detention Pond Rating Curve Cumulative Elev Area Storage (ft) (ac) (ac-ft) 49.0 0 0 V = d/3*(A+B+(AB)^0.5) 50.0 0.07 0.02 52.0 0.46 0.50 54.0 0.73 1.68 56.0 0.92 3.32 57.0 1.04 4.30 1.2 160.8 !0 <y 0.6 U t 0.4 0.2 0 Area -Capacity Curve s 4 C 3 6 U 2ry U 1 0 48 50 52 54 56 58 Stage (ft eI) + Area -- Capacity 1f D ( u M ©Q `fear 4V RIDGEWOOD HILLS Detention Pond Rating Curve Job No. 014-047 Pond #14 Elev. Storage H Inlet Cap. Ac-ft Q= ----------------- -------------------------- 83.5 0 0 0 86 0.04 2.29 0.87 88 0.15 4.29 1.20 ' 90 0.38 6.29 1.45 91 0.54 7.29 1.56 Variable Definitions: 'H=Distance from water surface elevation to centroid of openi (location of centroid calculated on previous Orifice sheets) ' Q=cA(2gH)^0.5 Where: c=0.6 A=Area of opening not covered by orifice plate (see previous Orifice talc. sheets) 2g=64.4 CLIENT D.�u\� (1 JOB NO. INC PROJECT K��AlyOW CALCULATIONS FOR U�NU Engineering Consultants MADE BY DATE 4CHECKED BY DATE SHEET OF 4% REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 02-06-1995 AT TIME 14:48:34 *** PROJECT TITLE : pond #14 outlet pipe *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION --------------- -------MINUTES- INCH/HR CFS FEET FEET 1.00 0. 1.70 5078.00 50T7.37 OK ' 2.00 0.00 0.00 1.70 5080.13 5077.40 OK 3.00 0.00 .4 0.00 1.70 5090.20 5084.03 OK 4.00 5� 9.48 1.70 5090.20 50a4.04 OK OK MEANS WATER ELEVATION IS LOWER THAN GR ND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 10.00 2.00 1.00 ROUND 9.31 15.00 15.00 0.00 20.00 3.00 2.00 ROUND 6.34 15.00 15.00 0.00 30.00 4.00 3.00 ROUND 6.34 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT 1D FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 10.0 1.7 6.1 0.45 4.24 0.53 3.45 1.39 1.29 V-OK 20.0 1.7 16.9 0.27 8.83 0.53 3.45 1.39 3.59 V-OK 30.0 1.7 16.9 0.27 8.83 0.53 3.45 1.39 3.59 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 10.00 0.88 5076.87 5076.22 2.01 0.53 NO 20.00 6.84 5083.50 5076.87 5.45 2.01 OK 30.00 6.84 5083.50 5083.49 5.45 5.46 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 10.00 74.00 0.00 5078.12 5077.47 50T7.40 5077.37 JUMP 20.00 97.00 0.00 5084.75 5078.12 5084.03 5077.40 JUMP 30.00 0.10 0.00 5084.75 5084.74 5084.04 50a4.03 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 10.0 2.00 5077.43 0.03 1.00 0.03 0.00 0.00 1.00 5077.37 20.0 3.00 5084.06 6.62 0.40 0.01 0.00 0.00 2.00 50T7.43 30.0 4.00 5064.07 0.00 0.50 0.01 0.00 0.00 3.00 5084.06 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. -------------------------------- DETENTION POND SIZING BY FAA METHOD Developed by Dr. James Guo, Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado ------------------------------------ USER=KEVIN GINGERY RBD INC FT. COLLINS COLORADO .............................. EXECUTED ON 01-09-1995 AT TIME 16:32:48 PROJECT TITLE: RIDGEWOOD HILLS SUMP AREA AT END OF TIMPAS **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 1.00 BASIN AREA (acre)= 2.74 RUNOFF COEF = 0.36 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.0 7.3 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1.5 1.2 1.0 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 0 CFS OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 0 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT ----------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 5.00 9.00 0.06 0.00 0.06 10.00 7.30 0.10 0.00 0.10 15.00 6.25 0.13 0.00 0.13 20.00 5.20 0.14 0.00 0.14 25.00 4.70 0.16 0.00 0.16 30.00 4.20 0.17 0.00 0.17 35.00 3.85 0.18 0.00 0.18 40.00 3.50 0.19 0.00 0.19 45.00 3.25 0.20 0.00 0.20 50.00 3.00 0.21 0.00 0.21 55.00 2.80 0.21 0.00 0.21 60.00 2.60 0.21 0.00 0.21 65.00 2.47 0.22 0.00 0.22 70.00 2.35 0.23 0.00 0.23 75.00 2.22 0.23 0.00 0.23 80.00 2.10 0.23 0.00 0.23 85.00 2.00 0.23 0.00 0.23 90.00 1.90 0.23 0.00 0.23 95.00 1.80 0.23 0.00 0.23 100.00 1.70 0.23 0.00 0.23 105.00 1.65 0.24 0.00 0.24 110.00 1.60 0.24 0.00 0.24 115.00 1.55 0.24 0.00 0.24 120.00 1.50 0.25 0.00 0.25 125.00 1.45 0.25 0.00 0.25 130.00 1.40 0.25 0.00 0.25 135.00 1.35 0.25 0.00 0.25 140.00 1.30 0.25 0.00 0.25 145.00 1.25 0.25 0.00 0.25 150.00 1.20 0.25 0.00 0.25 155.00 1.17 0.25 0.00 0.25 160.00 1.13 0.25 0.00 0.25 165.00 1.10 0.25 0.00 0.25 ----------------------------------------------------- � .IOL THE REQUIRED POND SIZE = .2496825 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 135 MINUTES WAAF ' INC Engineering Consultants CLIENT Ye► %5`A JOB NO. `2 14 -O4 PROJECT��l�I' L�pp�/S CALCULATIONSFOR MADE BY IODATE f"r CHECKED BY DATE -SHEET-OF S U Z9�t,zs�- Valo(oz, iKeq� d`x- (), Z S Cn ►..�' o � �- Q�reA.. V e L � tee. V_t,,,, D. Z-7 a,c, d, f C ac -- -t j I l ac - - -t- 45� CAPACITY OF EXISTING ROADSIDE DITCH ALONG TRILBY ROAD WEST OF SITE No Text r M. RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION EXISTING SWALE ALONG TRILBY RD. WEST OF THE SITE STA ELEV ----- 0.00 ------ 5079.50 6.00 5078.00 12.00 5079.50 IN' VALUE - - 0.060 i I q �✓� I6'f-G2pzZ'6r- 14 SLOPE (ft/ft) rHf 0.0830 ScQ r-4,15 /\ ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) --------- (sq ft) ------- (fps) -------- (cfs) --------- NO. --'---- 5078.10 0.0 1.0 0.04 0.75 5078.20 0.2 1.5 0.24 0.84 5078.30 0.4 2.0 0.72 0.90 5078.40 0.6 2.4 1.54 0.95 5078.50 1.0 2.8 2.79 0.98 5078.60 1.4 3.1 4.54 1.01 5078.70 2.0 3.5 6.85 1.04 5078.80 2.6 3.8 9.78 1.06 5078.90 3.2 4.1 13.38 1.08 5079.00 4.0 4.4 17.72 1.10 5079.10 4.8 4.7 22.85 1.12 ( �- 3' �� Z cy 5079.20 5.8 5.0 28.81 1.14 Q SD 7`l•( b 5079.30 6.8 5.3 35.67 1.15 5079.40 7.9 5.5 43.46 1.16 D = f r (o Pi-occ,n;v& ,1, n RIDGEWOOD HILLS Detention Pond Rating Curve Job No. 014-047 Pond #19 Elev. Storage H Inlet Cap. Ac-ft Q = -------------- 85.5 ---------------------------- 0 0 -------------- 0 86 0.02 0.28 0.46 88 0.44 2.28 1.31 90 1.55 4.28 1.80 91 1.6 5.28 2.00 Variable Definitions: H=Distance from water surface elevation to centroid of opening (location of centroid calculated on previous Orifice sheets) Q=cA(2gH) ^ 0.5 Where: c=0.6 A=Area of opening not covered by orifice plate (see previous Orifice calc. sheets) 2g = 64.4 No Text I S � REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER COLORADO ** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 11-22-1994 AT TIME 15:27:11 *** PROJECT TITLE : ' pond #19 outfall *** RETURN PERIOD OF FLOOD IS 5 YEARS 1 RAINFALL INTENSITY FORMULA IS GIVEN 1** SUMMARY OF HYDRAULICS AT MANHOLES -------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ----------------------------------------------------------------------------- 1.00 0. 0.00 .00 1.70 5085.39 5085.01 OK 2.00 0.00 Ar 9.9 0.00 1.70 5090.00 5085.90 OK 3.00 0.00 IV 41 0.00 1.70 5086.75 5086.12 OK 4.00 5.00 19.48 0.34 1.70 5086.75 5086.17 OK ,K MEANS WATER ELE ION IS LOWER T GROUND ELEVATION ** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) D1A(HIGH) WIDTH ------------------------------------------------------------------------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 1 10.00 20.00 2.00 3.00 1.00 2.00 ROUND ROUND 11.33 11.40 15.00 15.00 15.00 15.00 0.00 0.00 30.00 4.00 3.00 ROUND 11.40 15.00 15.00 0.00 IMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES IMENSION UNITS FOR BOX SEWER ARE IN FEET EQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. , 'OR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, XISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 10.0 1.7 3.6 0.60 2.89 0.53 3.45 1.39 0.74 V-LOW '20.0 1.7 3.5 0.61 2.86 0.53 3.45 1.39 0.73 V-LOW 30.0 1.7 3.5 0.61 2.86 0.53 3.45 1.39 0.73 V-LOW FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS --------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM - - % (FT) (FT) (FT) (FT) -------------------------- ---------- 10.00 0.31 5085.27 5084.16 3.48 0.02 NO 20.00 0.30 5085.50 5085.27 0.00 3.48 NO 30.00 0.30 5085,50 5085.50 0.00 0.00 No `K MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET 1** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ----------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 10.00 --------- 359.00 ------------- 0.00 ---------- 5086.52 ------- 5085.41 ------------- 5085.90 ------- 5085.01 --------- SUBCR 20.00 76.00 0.00 5086.75 5086.52 5086.12 5085.90 SUBCR 30.00 0.10 0.00 5086.75 5086.75 5086.17 5086.12 SUBCR IRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- '10.0 2.00 5085.93 0.89 1.00 0.03 0.00 0.00 1.00 5085.01 20.0 3.00 5086.15 0.21 0.21 0.01 0.00 0.00 2.00 5085.93 30.0 4.00 5086.20 0.03 0.50 0.01 0.00 0.00 3.00 5086.15 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. ' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 RIDGEWOOD HILLS Detention Pond Rating Curve Job No. 014-047 Pond #25 Elev. Storage H Inlet Cap. Ac-ft Q = -------------- 78 ---------------------------- 0 0 -------------- 0 80 0.05 1.76 1.79 82 0.28 3.76 2.62 83 0.7 4.76 2.95 Variable Definitions: H==Distance from water surface elevation to centroid of opening (location of centroid calculated on previous Orifice sheets) Q=cA(2gH) ^ 0.5 Where: c=0.6 A=Area of opening not covered by orifice plate (see previous Orifice calc. sheets) 2g = 64.4 RIDGEWOOD HILLS Detention Pond Rating Curve Job No. 014-047 Pond #28 Elev. Storage H Inlet Cap. Ac-ft Q = ----------- 63 -------------- 0 -------------- 0 -------------- 0 64 0.05 0.756 1.17 66 0.38 2.756 2.24 68 0.88 4.756 2.94 70 1.58 6.756 3.51 72 2.48 8.756 3.99 73 3.01 9.756 4.22 Variable Definitions: H=Distance from water surface elevation to centroid of opening (location of centroid calculated on previous Orifice sheets) Q=cA(2gH) ^ 0.5 Where: c=0.6 A=Area of opening not covered by orifice plate (see previous Orifice calc. sheets) 2g = 64.4 � I � I � I � I e5% ` CLIENT Ztn5t JOB NO. 41+ '' 1 � II RINC PROJECT f `JIxIb �,Ais CALCULATIONS FOR Engineering Consultants MADEBY-A__ DATE AI CHECKED BY DATE SHEET OF � I � I � I REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO -------------------------------------------------------------- ** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 11-22-1994 AT TIME 15:06:10 *** PROJECT TITLE : I pond #25 outlet pipe *** RETURN PERIOD OF FLOOD IS 5 YEARS ' RAINFALL INTENSITY FORMULA IS GIVEN 1** SUMMARY OF HYDRAULICS AT MANHOLES --------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- ' 1.00 0. 0.00 0 4.30 5062.25 5062.02 OK 2.00 0.00 2.14 0.00 4.30 5068.00 5062.84 OK 3.00 0.00 Ni 0.00 4.30 5081.00 5063.84 OK 4.00 5.00 21.89 .86 4.30 5081.00 5063.93 OK 'K MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING 'ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 10.00 2.00 1.00 ROUND 12.55 15.00 15.00 0.00 20.00 3.00 2.00 ROUND 12.61 15.00 15.00 0.00 30.00 4.00 3.00 ROUND 12.61 15.00 15.00 0.00 IMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES IMENSION UNITS FOR BOX SEWER ARE IN FEET QUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, IISITNG SIZE WAS USED 1 15�l ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS --------------------- 10.0 4.3 6.9 0.71 5.96 0.84 4.91 3.50 1.38 V-OK 20.0 4.3 6.9 0.72 5.90 0.84 4.91 3.50 1.35 V-OK - 30.0 4.3 6.9 0.72 5.90 0.84 4.91 3.50 1.35 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS -------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM (FT) IFTI (FT) (FT) ------------------- ---------- ---------- -------------------- 10.00 1.15 5062.00 5061.00 4.75 0.00 NO 20.00 1.12 5063.00 5062.00 16.75 4.75 OK 30.00 1.12 5063.00 5063.00 16.75 16.75 OK lK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET 1** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS - IRSSIED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW 1** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 10.0 2.00 5063.03 0.82 1.00 0.19 0.00 0.00 1.00 5062.02 '20.0 3.00 5064.03 0.91 0.48 0.09 0.00 0.00 2.00 5063.03 30.0 4.00 5064.12 0.00 0.50 0.10 0.00 0.00 3.00 5064.03 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. 'LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. ' FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I 51/ CAPACITY CHECK OF NEW ROADSIDE DITCH ON TRILBY RD. EAST OF RIDGEWOOD HILLS SITE . .t �� -191 J, �s 61 Y O C- t+7 N L 0 :dj AItDIDA N ET a a s1D - o!soc] N Q sd} O < f,I tDOID/� N p s}� u61soo m — — (n AlloDdoo — W — p m ut a a ortS - < odolS - Z z .}o /,IIDDd D: olgDh%olly — — — — J / W v odolS — n s}D }}ouna uoliow ung — W S}, — �. }}ouna N . M Jo410 %- 5}D }}ouna = v yoon0 w OIDD V,, O Q z 14/'ul. l M �IlsuDlul I}� Q „0 .1 IuolDl}}oo0 m N p ulw 4 uolloilumuoo r- _ CC }o owll O viw ~ od1d IT M F o ww u.. }oojiS N — — - •uiw _ ---- - _ Dwll lolul c ----- 'I} 416uo-1 ----- ---- ----- ---- SU1S D8 N - f_ o O D_ u � O P J z v \ Liz,r� �, . ` � �; w N v H W � O0 K i Uri. t •� � o- • U O 4 1 � M 1 LL A it N. O }_ < o t o �-- y w uJ 0X 0- W O }' > LL. L.L. U y w i ^ C] `' w p qcr oo N �a Q U t- � ^i o LL Z O Q) cc Q W z U. ►� O w F . r_ w _ m J ' U z o o r j J � ti z iL -j O �- f ow to <N 4 y 1 L' fir. u `•o. Z w N z Q ~ 14A W _n a •. C/7 Q Q "_ ' Li Q 1 Q - W � N - o LO y I sk N '� RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION CAPACITY OF PROPOSED ROADSIDE DITCH TO THE EAST OF RIDGEWOOD HILLS STA 0.00 3.00 6.00 ' 'N' VALUE ' 0.060 ELEVATION AREA (feet) l6q ft) ' -- 98.60 0.0 98.70 0.1 98.80 0. ' 98.90 0.3 99.00 0.5 99.10 0.7 99.20 1.0 99.30 1.3 99.40 1.6 99.50�_ 2.0 99.60 2.4 99.70 99.80 3. .4 99.90 3.9 100.00 4.5 1 1 1 1 ELEV 100.00 98.50 100.00 1 � SLOPE (ft/ft) 0.0200 VELOCITY DISCHARGE FROUDE (fps) (cfs) NO. 0.4 0.01 0.35 0.7 0.06 0.39 0.9 0.17 0.42 1.1 0.36 0.44 1.3 0.65 0.46 1.5 1.05 0.47 1.6 1.59 0.48 1.8 2.27 0.49 1.9 3.10 0.50 2.1 4.11 Z613A, 0.51 2.2 5.30 0.52 2.3 6.68 0.53 2.4 8.27 0.53 2.6 10.08 0.54 2.7 12.11 0.55 /UD �- f 1�n� -� c�-�- �x r`ee�A- 30D P i`o s i o C� ►�-�-�-o l dab r� �.- c� � � � �� ���...'�- �,.I Q � 401 RIDGEWOOD HILLS Detention Pond Rating Curve Job No. 014-047 Pond #39 Elev. Storage H Inlet Cap. Ac-ft Q = •---------- 49 ---------------------------- 0 0 -------------- 0 50 0.03 0.74 1.40 52 0.47 2.74 2.70 54 1.4 4.74 3.55 56 2.64 6.74 4.23 57 3.36 7.74 4.53 Variable Definitions: H=Distance from water surface elevation to centroid of opening (location of centroid calculated on previous Orifice sheets) Q=cA(2gH) ^ 0.5 Where: c=0.6 A=Area of opening not covered by orifice plate (see previous Orifice calc. sheets) 2g = 64.4 No Text REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY.......... ............................... ON DATA 01-10-1995 AT TIME 16:03:37 *** PROJECT TITLE : Ridgewood Hills Pond #39 21" outlet pipe *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 --0. 0 0.00 0.00 15.60 5021.44 5023.04 NO 3.00 0.0 13.34 0 15.60 5035.40 5026.89 OK 5.00 0.00 .5 0.00 15.60 5038.18 5030.56 OK 6.00 0.00 �11. 0.00 15.60 5051.52 5038.89 OK 7.00 0.00 1 . 1 0.00 15.60 5048.00 5042.39 OK 8.00 0.00 .22 0.00 15.60 5050.67 5046.39 OK 9.00 0.0 10.00 00 15.60 5057.00 5050.45 OK 10.00 .01 5.00 1560� 15.60 5057.00 5050.62 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 10.00 3.00 1.00 ROUND 20.88 24.00 21.00 0.00 30.00 5.00 3.00 ROUND 20.88 24.00 21.00 0.00 50.00 6.00 5.00 ROUND 18.17 21.00 21.00 0.00 60.00 7.00 6.00 ROUND 20.88 24.00 21.00 0.00 70.00 8.00 7.00 ROUND 20.88 24.00 21.00 0.00 80.00 9.00 8.00 ROUND 17.32 18.00 21.00 0.00 90.00 10.00 9.00 ROUND 17.32 18.00 21.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 10.0 15.6 15.9 1.41 7.53 1.45 7.31 6.49 1.09 V-OK 30.0 15.6 15.9 1.41 7.53 1.45 7.31 6.49 1.09 V-OK 50.0 15.6 23.0 1.06 10.29 1.45 7.31 6.49 1.93 V-OK 60.0 15.6 15.9 1.41 7.53 1.45 7.31 6.49 1.09 V-OK 70.0 15.6 15.9 1.41 7.53 1.45 7.31 6.49 1.09 V-OK ' 80.0 15.6 26.2 0.97 11.35 1.45 7.31 6.49 2.25 V-OK 90.0 15.6 26.2 0.97 11.35 1.45 7.31 6.49 2.25 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ' % (FT) (FT) (FT) (FT) -------- 10.00 --- 1.00 5025.44 5021.44 8.21 -1.75 NO 30.00 1.00 5029.11 5025.44 7.32 8.21 OK 50.00 2.10 5037.44 5029.06 12.33 7.37 OK ' 60.00 1.00 5040.94 5037.44 5.31 12.33 OK 70.00 1.00 5044.94 5040.94 3.98 5.31 OK 80.00 2.71 5049.00 5044.94 6.25 3.98 OK 90.00 2.71 5049.00 5049.00 6.25 6.25 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 10.00 400.00 0.00 5027.19 5023.19 5026.89 5023.04 JUMP 30.00 367.00 0.00 5030.86 5027.19 5030.56 5026.89 JUMP 50.00 399.00 29.25 5039.19 5030.81 5038.89 5030.56 JUMP 60.00 350.00 0.00 5042.69 5039.19 5042.39 5038.89 JUMP 70.00 400.00 0.00 5046.69 5042.69 5046.39 5042.39 JUMP ' 80.00 150.00 0.00 5050.75 5046.69 5050.45 5046.39 JUMP 90.00 0.10 0.00 5050.75 5050.75 5050.62 5050.45 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUSCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 10.0 3.00 5027.55 3.85 1.00 0.65 0.00 0.00 1.00 5023.04 30.0 5.00 5031.22 3.64 0.05 0.03 0.00 0.00 3.00 5027.55 50.0 6.00 5039.55 7.47 1.32 0.86 0.00 0.00 5.00 5031.22 60.0 7.00 5043.05 3.47 0.05 0.03 0.00 0.00 6.00 5039.55 70.0 8.00 5047.05 3.97 0.05 0.03 0.00 0.00 7.00 5043.05 80.0 9.00 5051.11 4.03 0.05 0.03 0.00 0.00 8.00 5047.05 90.0 10.00 5051.27 0.00 0.25 0.16 0.00 0.00 9.00 5051.11 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. ML QRINC �gineering Consultants CLUEKT dOBNO . 'ADJECT at. -D3j CALCULATIONS FOR MADE BY " DATE '7!+ CHECKED BY DATE SMEET OF RIPRALP DESIGN CULVERT Poi;, = 39 GIVEN: SIZE=2Z] TYPE= 2.:P V=`�,3`� Q=��.�o ' FIND: The required riprap at the outlet of culvert Solution: Use DD & FCD criteria Step 1: Determine the required type of riprap for erosion protection. Q/D^2.5 = 3, 65 L- G Yt/D = 0.4(if unknown) Q/D^1.5 = 6*7 ' From Fig. 5-7 use �,.�� „- f ,OMP Pns. 1 Step 2: Determine the expansion factdr-. (1/2 tan 8) Q/D^2 . 5 = 3. 1�S From, Fig. 5-9 ; 1/2 tan 9 = 6., ' Step 3: Determine the length of riprap protection. '-t=Q/-i (v=5fps or less) _ ��.� =3.../Z .6 L=(1/2 tan 8) (At/Yt - w) ' L=(6.�)('3.izlo-I—I.' J �9, 1 Step 4 . C-eck i = Max. or .din . l i illit governs L can not be less than 3D L does not feed to exceed 10D L=3D= !S,2!S ' •=IOD= ("�.� use) 7. 5 .,,q• 10(- PA ' SteD S: Determine max riprap death (from 5-6) 1- x. depth = 2d50 = Iti u -e �9- `Fig. I YC Ans. ' 6: Determine bedding Step material. Qu- ri GAT, ' Step 7: Determine RipraD width = 3D min. 3D= 3(�-15> = S. use 6 - \IVIDLe Ans. J �/ RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA QP0 : 1-7-�76;(� % SYymm n1 i rwn w/ Ridgewood Pond #14 100 year overflow weir WEIR COEF. 3.100 STA ELEV 0.0 92.00 4.0 91.00 29.0 91.00 33.0 92.00 ELEVATION DISCHARGE (feet) --------- (cfs) --------- 91.00 0.0 91.10 2.5 91.20 7.1 91.30 13.2 —� 91.40 20.5 91.50 28.9 91.60 38.5 91.70 49.0 91.80 60.5 91.90 72.9 92.00 86.3 RDJ: I irl USES Q GLH3f2 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Ridgewood Pond #19 100 year overflow, weir WEIR COEF. 3.100 STA ELEV 0.0 92.00 4.0 91.00 44.0 91.00 48.0 92.00 ELEVATION DISCHARGE (feet) --------- (cfs) --------- 91.00 0.0 91.10 3.9 91.20 11.2 91.30 20.8 91.40� y� 32.3 Z� 91.50 45.4 91.60 60.1 91.70 76.2 91.80 93.7 91.90 112.6 92.00 132.8 Fatyzm uses a ` LLB 7- C,too= 383�s (�, Swmm rt-41 � o � ply ��44�I RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Ridgewood Pond #25 100 year overflow weir WEIR COEF. 3.100 STA ELEV 0.0 84.00 4.0 83.00 84.0 83.00 88.0 84.00 ELEVATION DISCHARGE (feet) (cfs) --------- 83.00 --------- 0.0 83.10 7.9 83.20 22.3 83.30 41.2 83.40 63.6 83.50�_ 89. 83.60 117.7 83.70 148.8 83.80 182.5 83.90 218.5 84.00 256.8 'Prop w\ us 5 0. = GZt} j' 5J) R8D INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Ridgewood Pond #28 100 year overflow weir WEIR COEF. 3.100 STA ELEV 0.0 74.00 4.0 73.00 104.0 73.00 108.0 74.00 ELEVATION DISCHARGE (feet) (cfs) ------------------ 73.00 0.0 73.10 9.8 73.20 27.9 73.30 51.4 73.40 79.3 73.50/ 111.12.6c�� 73.60 146.5 73.70 185.1 73.80 226.8 73.90 271.4 74.00 318.8 E- 1cd -�i �NC Iineering Consultants CLIENT T�S�[� 1 JOB N0. �iA <4-7 �2r w�d�1 �ROJfCT � CALCULATIONS FOR v MADE BY )ATE-2/?�' CHECKED BY DATE SHEET OF RIPRAP DESIGN 6Q/ CULVERT t�:r -' ;'P' 4� '�s-j) GIVEN: '.. SIZE= Is TYPE= V= I .'4 Q= t.7 GS ' FIND: The required riprap at the outlet of culvert Solution: Use UD & FCD criteria Step 1: Determine the required type of riprap for erosion protection. Q/D^2.5 = is 91 L � Ok- ' Yt/D = 0.4(if unknown) Q/D^1.5 = 1.2 From Fig. 5-7 use GIGS An . Step 2: Determine the expansion factor (1/2 tan 9) Q/D^2.5 = O.9-] From Fig. 5-9 ; 1/2 tan 9 = G-] ' Step 3: Determine the length of riprap protection. ' At=Q/v (v=5fps or less) = = 1:1/1¢ L=(1/2 tan 6) (At/Yt - w) ' L = �.25) L= T-7 Step 4: Check if Max. or :din. limit governs L can not be less than 3D ' L does not need to exceed 10D L=3D= 3.75 L=10D= 12.5 use e) 1' L Dr1A Ans . Step 5: Determine max riprap depth (from Fig. 5-6) i.ax. depth = %d50 = 1 � u^e Ans. 6: bedding Step Determine material. C-Mor 61,,�R iStep 7: Determine Riprap width = 3D min. 3D= '�� �,1s���` use h"I V411, Ans . ILIIIIIIIIII11k 415IMC 'gineering Consultants CUEaT �P-nScr1 JOB NO. 2;%WECT I d4�..� CALCULATIONS FOR MADE BY DATE3LIFiCHECKED BY DATE SHEET OF r- .... ..- . - - -- RIPRAP DESIGN ' CULVERT # ?01'1 Jl 19 - I, "'j' , GIVEN: SIZE= %S" TYPE= PLP v- I FIND: The recuired riprap at the outlet of culvert Solution: Use L"D & FCD criteria Step 1: Determine the for required type of riprap erosion protection. ' Q/DA2.5 = 0.9 L- Yt/D = 0.4 (if unk~:cwn) ' Q/DAl. 5 = I.I 1 From Fig. 5-7 use g G ! - � P ns. Step 2: Determine the excansion factpr -- (1/2 tan 6) Q/DA2 . -5 = 0.9 From Fig. 5-9 ; 1/2 tan 9 length Step 3: Determine the of riprap protection. . At=Q/v (v=5fps or less) = I.b j13 = ,.T6 L= (1/-2 tan 6) (At/Yt - w) / L= -3_t 4. Step a: Check i= Max. or 'Min. limit governs L can not be less than 3D L does not need to exceed 10D L=3D= 1.75 L=10D= I-S use Ans . Step 5: Determine max riprap depth (troll Fig. 5-6) - 11 LSe 2" IK. Ans. Step 6: Determine bedai-g material. Step 7: Determine Riprap width = 3D min. 3D= '31j use 4'I • "I Ans. 7/ � I � I � I � I 1I � I INC ineering Consultants CULVERT ?A --# 26. oA,+ CLIENT JOB NO. °RD.IECT -L, a CALCULATIONS FOR MADE BY DATE 9/4/* CHECKED BY DATE SHEET OF RIPR-P DESIGN GIVEN: -..SIZE- 1:;P TYPE- %GP V-2.I f es FIND: The required riprap at the outlet of culvert Solution: Use UD & FCD criteria Step 1: Determine the required type of riprap for erosion protection. Q/D-2.5 = 1 .6 /- G . Yt/D = 0.4(if unkncwn) Q/D^1.5 = I.©. From Fig. 5-7 use �' Glass P_ns Step 2: Determine the expansion facto--_ (1/2 tan 8) Q/D-2.5 = 1.5 From Fig. 5-9 ; 1/2 tan 9 = 7 9 Step 3: Determine the length of riprap protection. pt=Q/-a (v=5fps or less) = 2ZL12 1 = 1-1 L= (1/2 tan 8) (At/Yt - w) L= (5,9) (i •2/0.5 — 1.15) L= ti7 Z Step 4: Check if Max. or .din. limit governs L can not be less than 3D L does not need to exceed 10D -sa. L=3D= L=10D= 123 use lorw? rns . v ' Step 5: Determine male riprap depth (frog Fig. 5-6) :`3ax. d-eptA = 2d50 use 1 .,h� "J v'ly�C Ans. ' Step G: Determine bedding material. ' Step 7: Determine Riprap width - 3D min. 3D= use �/y 1 An . %y IL ir:wlw,- Igineering Consultants CL7EtiT `Q JOB N0. d� -L-)F7 2Ar.IECT ^����- CALCULATIONS FOR MADE BY 47 DATE CHECKED BY DATE SHEET _ OF RIPRP.P DESIGN 7% CULVERT Y P - i - # �L I-, GIVEN: SIZE= 15" '3vPE- 4�,P V= Q= 43� 1 FIND: The required riprap at the outlet of culvert Solution: Use UD & FCD criteria 1 Step 1: Determine the required type of riprap for erosion protection. 1 Q/D-2.5 = 2.-6- 1- I Yt/D = 0 . d (i f unknown) 1 Q/D^1.5 ' Fromm Fig. 5-7 use Step 2: Determine the expansion factUY' (1/2'tan 9) 1 Q/D-2.5 = 2.6 _ From Fig. 5-9 ; 1/2 tan 9 Step 3: Determine the length of riprap protection. At=Q/-a (v=5fps or less) = �.3�3 = (.2 L= (1/2 tan 9) (At/Yt` - w) L.= ( S. 2) ( L-1/0.5 -12s) L= S 9'b Step 4: Check if Max. or :din. limit governs L can not be less than 3D L does not :feed to exceed 10D L=3 D= L=1CD= 12.5 use Pns. Step 5: Determine max riprap depth (from Fig. 5-6) 11 Max. depth = 3d5�? - use i 211 1 ..•-- H Ans . Step 6: Determine bedding material. Pt r' G j y v GbT c"s A Tf, & . } .� �n�• (Y--+4_4A Step 7: ,Determine Rioraa width = 3D min. 3D= '� C1.2�! '�:}j use -,r-�-. ,Y;&, Ans. '. 1 SWMM MODEL 1 7j 14) 31 8 cu 7/ 2 1 1 2 3 4 WATERSHED 1/0 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT 50 0 0 5.0 1 1.0 1 25 5 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 -2 .016 .250 0.1 0.5 0.5 0.5 .0018 1 150 15 3032 3.48 42 .02 1 200 20 3111 8.67 39 .02 1 250 25 1067 2.45 37 .02 1 300 30 6279 17.7 64 .02 1 400 40 7006 19.3 35 .04 1 411 41 1539 5.3 35 .07 0 0 15 14 0 4 0 1800 0.020 0 50 0.016 0.4 18.0 1800 0.02 20 20 .02 10.0 0 14 13 5 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 0.04 0.87 0.15 1.20 0.41 1.45 0.62 1.56 13 0 0 1 0 1000 0.035 4 4 0.060 4.0 20 19 0 4 0 1800 0.020 50 0 0.016 0.4 18.0 1800 0.02 20 20 .02 10.0 0 19 18 5 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 0.02 0.50 0.44 1.31 1.55 1.80 1.60 2.00 18 25 0 4 0 550 0.020 4 4 0.060 3.0 10 550 0.02 4 4 0.06 10.0 0 25 24 4 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 0.05 1.79 0.28 2.62 0.70 2.95 24 29 0 2 1.25 110 0.005 0 0 0.013 1.25 30 29 0 4 0 900 0.035 0 50 0.016 0.4 18.0 900 0.035 20 20 0.02 10.0 29 28 0 4 0 650 0.020 50 50 0.016 0.4 36.0 650 0.02 20 20 0.02 10.0 0 28 27 7 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 0.05 1.20 .38 2.20 .88 2.90 1.58 3.50 2.48 4.00 3.01 4.20 27 0 0 1 0 500 0.025 4 4 0.060 4.0 40 39 0 4 0 1550 0.045 0 50 0.016 0.4 18.0 1550 0.045 20 20 0.02 10.0 41 39 0 1 10.0 800 0.069 20 20 0.04 1.0 0 39 38 6 2 0.1 1 0.0001 0.013 0.1 0.0 0.0 .02 1.41 0.50 2.71 1.68 3.56 3.32 4.25 4.30 4.55 38 0 0 1 0 500 0.025 4 4 0.060 4.0 0 3 5 40 39 38 ENDPROGRAM v ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED 1/PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 1.20 .84 .60 .48 .36 .36 .24 .24 .12 .12 .00 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT 9.00 3.72 2.16 1.56 .24 .24 .24 .24 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 .0 .0 .0 .00180 150 15 3032.0 3.5 42.0 .00180 1 200 20 3111.0 8.7 39.0 .00180 1 250 25 1067.0 2.5 37.0 .00180 1 300 30 6279.0 17.7 64.0 .00180 1 400 40 7006.0 19.3 35.0 .00180 1 411 41 1539.0 5.3 35.0 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 6 TOTAL TRIBUTARY AREA (ACRES), 56.90 .0300 .016 .250 .100 .500 .50 .50 .0200 .016 .250 .100 .500 .50 .50 .0200 .016 .250 .100 .500 .50 .50 .0200 .016 .250 .100 .500 .50 .50 .0200 .016 .250 .100 .500 .50 .50 .0400 .016 .250 .100 .500 .50 .50 .0700 .016 .250 .100 .500 .50 .50 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 56.900 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .458 TOTAL WATERSHED OUTFLOW (INCHES) 2.130 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .302 ERROR 1N CONTINUITY, PERCENTAGE OF RAINFALL .000 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 15 14 0 4 CHANNEL .0 1800. .0200 .0 50.0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 14 13 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .9 .1 1.2 .4 1.5 .6 1.6 13 0 0 1 CHANNEL .0 1000. .0350 4.0 4.0 .060 4.00 0 20 19 0 4 CHANNEL .0 1800. .0200 50.0 .0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 19 18 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .4 1.3 1.6 1.8 1.6 2.0 18 25 0 4 CHANNEL .0 550. .0200 4.0 4.0 .060 7aV 3.00 0 OVERFLOW 10.0 550. .0200 4.0 4.0 .060 10.00 25 24 4 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.8 .3 2.6 .7 3.0 24 29 0 2 PIPE 1.3 110. .0050 .0 .0 .013 1.25 0 30 29 0 4 CHANNEL .0 900. .0350 .0 50.0 .016 .40 0 OVERFLOW 18.0 900. .0350 20.0 20.0 .020 10.00 29 28 0 4 CHANNEL .0 650. .0200 50.0 50.0 .016 .40 0 OVERFLOW 36.0 650. .0200 20.0 20.0 .020 10.00 28 27 7 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .4 2.2 .9 2.9 1.6 3.5 2.5 4.0 3.0 4.2 27 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 0 40 39 0 4 CHANNEL .0 1550. .0450 .0 50.0 .016 .40 0 OVERFLOW 18.0 1550. .0450 2.0 20.0 .020 10.00 41 39 0 1 CHANNEL 10.0 800. .0690 2.0 20.0 .040 1.00 0 39 38 6 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.4 .5 2.7 1.7 3.6 3.3 4.3 4.3 4.5 38 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 0 TOTAL NUMBER OF GUTTERS/PIPES, 16 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 15 0 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 3.5 18 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.7 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.7 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 8.7 24 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.1 25 18 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 11.1 27 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 28 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 29 24 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 30 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 17.7 38 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.6 39 40 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.6 40 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0 0 19.3 41 0 0 0 0 0 0 0 0 0 0 411 0 0 0 0 0 0 0 0 0 5.3 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 38 39 40 0 5. .00 .00 .00 .01( ) .00(S) .01( ) 0 30. 1.98 2.39 33.06 .55( ) .38(S) .43( ) 0 55. 4.07 4.15 28.89 .72( ) 3.08(S) .41( ) 1 20. 4.31 4.32 5.71 .74( ) 3.54(S) .22( ) 1 45. 4.32 4.32 2.58 .74( ) 3.55(S) .17( ) 2 10. 4.31 4.30 .76 .74( ) 3.48(S) .11( ) 2 35. 4.27 4.26 .16 .74( ) 3.35(S) .06( ) 3 0. 4.21 4.21 .03 .73( ) 3.21(S) .03( ) 3 25. 4.15 4.15 .01 .73( ) 3.07(S) .02( ) 3 50. 4.09 4.09 .00 .72( ) 2.93(S) .01( ) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 14 19 24 25 28 29 30 39 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 13 14 1.5 1.5 .5 .1 1 30. .5 1 20. ��- PO V� t4 l 66' 1 r, 15 17.7 .4 0 40. 18 19 1.7 1.7 .5 .1 1 1.3 1 45. 11 40,`�' f9 /00 ` , W S L = 9Q, ZQ 20 38.3 .5 0 40. 24 25 2.6 2.6 .7 .1 1 .3 1 5. 10.E-- Po h� �r /OD Yr, 1 J$;= L- 27 28 4.3 4.3 .7 .1 2 3.2 2 5. 5. ;28 /00 Y,� ; 29 114.5 .6 0 40. 30 132.6 .7 0 35. 38 39 4.3 4.3 .7 .1 1 3.6 1 35. 30 . E- Fo � �`� ld 0 yI-, J j = 5(0 Z � 40 98.5 .6 0 35. . 41 28.5 .4 0 35. ENDPROGRAM PROGRAM CALLED <3 I/ yt-, -e:, L3 H H ui/ ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED 1/PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.pIg 11/16/94 NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 1.20 .84 .60 .48 .36 .36 .24 .24 .12 .12 .00 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.pIg 11/16/94 9.00 3.72 2.16 1.56 .24 .24 .24 .24 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 .0 .0 .0 .00180 150 15 3032.0 3.5 42.0 .00180 1 200 20 3111.0 8.7 39.0 .00180 1 250 25 1067.0 2.5 37.0 .00180 1 300 30 6279.0 17.7 64.0 .00180 1 400 40 7006.0 19.3 35.0 .00180 1 411 41 1539.0 5.3 10.0 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 6 TOTAL TRIBUTARY AREA (ACRES), 56.90 .0300 .016 .250 .100 .500 .50 .50 .0200 .016 .250 .100 .500 .50 .50 .0200 .016 .250 .100 .500 .50 .50 .0200 .016 .250 .100 .500 .50 .50 .0200 .016 .250 .100 .500 .50 .50 .0400 .016 .250 .100 .500 .50 .50 .0700 .016 .250 .100 .500 .50 .50 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.pLg 11/16/94 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 56.900 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .478 TOTAL WATERSHED OUTFLOW (INCHES) 2.101 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .311 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.pIg 11/16/94 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 15 14 0 4 CHANNEL .0 1800. .0200 .0 50.0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 14 13 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .1 .0 .4 .0 .6 .0 13 0 0 1 CHANNEL .0 1000. .0350 4.0 4.0 .060 4.00 0 20 19 0 4 CHANNEL .0 1800. .0200 50.0 .0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 19 18 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .4 .0 1.6 .0 1.6 .0 18 25 0 4 CHANNEL .0 550. .0200 4.0 4.0 .060 S31 3.00 0 OVERFLOW 10.0 550. .0200 4.0 4.0 .060 10.00 25 24 4 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .3 .0 .7 .0 24 29 0 2 PIPE 1.3 110. .0050 .0 - .0 .013 1.25 0 30 29 0 4 CHANNEL .0 900. .0350 .0 50.0 .016 .40 0 OVERFLOW 18.0 900. .0350 20.0 20.0 .020 10.00 29 28 0 4 CHANNEL .0 650. .0200 50.0 50.0 .016 .40 0 OVERFLOW 36.0 650. .0200 20.0 20.0 .020 10.00 28 27 7 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .4 .0 .9 .0 1.6 .0 2.5 .0 3.0 .0 27 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 0 40 39 0 4 CHANNEL .0 1550. .0450 .0 50.0 .016 .40 0 OVERFLOW 18.0 1550. .0450 2.0 20.0 .020 10.00 41 39 0 1 CHANNEL 10.0 800. .0690 2.0 20.0 .040 1.00 0 39 38 6 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .5 .0 1.7 .0 3.3 .0 4.3 .0 38 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 0 TOTAL NUMBER OF GUTTERS/PIPES, 16 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.ptg 11/16/94 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 15 0 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 3.5 18 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.7 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.7 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 8.7 24 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.1 25 18 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 11.1 27 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 28 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 29 24 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.8 30 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 17.7 38 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.6 39 40 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.6 40 0 0 0 0 0 0 0 0 0 0 400 0 0 A 0 0 0 0 0 0 19.3 41 0 0 0 0 0 0 0 0 0 0 411 0 0 0 0 0 0 0 0 0 5.3 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.pIg 11/16/94 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 13 14 15 18 19 20 24 25 27 28 0 5. .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00( ) .00( ) .01( ) .00( ) .00( ) .01( ) .01( ) .00(S) .00( .00( ) 0 30. .00 .00 5.26 .00 .00 12.56 .00 .00 .00 .00 .02( ) .05(S) .25( ) .02( ) .12(S) .35( ) .01( ) .07(S) .02( .44(S) 0 55. .00 .00 6.03 .00 .00 17.18 .00 .00 .00 .00 .02( ) .46(S) .27( ) .03( ) 1.05(S) .40( ) .01( ) .34(S) .02( 2.77(S) 1 20. .00 .00 1.32 .00 .00 3.75 .00 .00 .00 .00 .02( ) .56(S) .15( ) .03( ) 1.34(S) .22( ) .01( ) .39(S) .02( 3.23(S) 1 45. .00 .00 .54 .00 .00 1.55 .00 .00 .00 .00 .02( ) .59(S) .11( ) .03( ) 1.42(S) .16( ) .01( ) .41(S) .02( 3.37(S) 2 10. .00 .00 .21 .00 .00 .63 .00 .00 .00 .00 .02( ) .60(S) .08( ) .03( ) 1.46(S) .11( ) .01( ) .41(S) .02( 3.46(S) 2 35. .00 .00 .06 .00 .00 .19 .00 .00 .00 .00 .02( ) .61(S) .05( ) .03( ) 1.47(S) .07( ) .01( ) .41(S) .02( 3.47(S) 3 0. .00 .00 .02 .00 .00 .07 .00 .00 .00 .00 .02( ) .61(S) .03( ) .03( ) 1.48(S) .05( ) .01( ) .41(S) .02( 3.48(S) 3 25. .00 .00 .01 .00 .00 .02 .00 .00 .00 .00 .02( ) .61(S) .02( ) .03( ) 1.48(S) .03( ) .01( ) .41(S) .02( 3.48(S) 3 50. .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .02( ) .61(S) .02( ) .03( ) 1.48(S) .03( ) .01( ) .41(S) .02( 0 I) 3.48(S) RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.pIg 11/16/94 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 5 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 29 30 38 39 40 0 5. .00 .00 .00 .00 .00 .00( ) .01( ) .01( ) .00(S) .01( ) 0 30. 44.17 56.52 .00 .00 33.06 .42( ) .51( ) .02( ) .36(S) .43( ) 0 55. 27.85 23.54 .00 .00 28.89 .36( ) .40( ) .03( ) 3.09(S) .41( ) 1 20. 6.05 5.39 .00 .00 5.71 .21( ) .23( ) .03( ) 3.72(S) .22( ) 1 45. 3.14 3.08 .00 .00 2.58 .16( ) .19( ) .03( ) 3.88(S) .17( ) 2 10. 1.19 .74 .00 .00 .76 .11( ) .11( ) .03( ) 3.95(S) .11( ) 2 35. .18 .10 .00 .00 .16 .05( ) .05( ) .03( ) 3.97(S) .06( ) 3 0. .05 .03 .00 .00 .03 .03( ) .03( ) .03( ) 3.98(S) .03( ) 3 25. .02 .01 .00 .00 .01 .02( ) .02( ) .03( ) 3.98(S) .02( ) 3 50. .01 .01 .00 .00 .00 .02( > .02( ) .03( ) 3.98(S) .01( ) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 14 19 28 29 30 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.pLg 11/16/94 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 13 .0 .0 6 1 10. PpfJ 14 -7 �7 iDd uq 6 u.� = � !� ! �j 15 17.7 .4 0 40.�� J 18 19 20 .0 .0 38.3 .0 .1 1.5 0 4 0 45. 10.I�D� 40.Z-- pp c( �� U = 3g� 3L5 24 .0 .5 .0 1 40. 25 .0 .1 .4 3 10. 27 28 29 .0 .0 112.3 .0 .1 3.5 0 4 0 40. 10. 13c 40. �-�- ?" to 30 132.6 .6 .7 0 35. 44- �AV� ,z lot) j-, --� I6 U-L 38 .0 .0 0 40. 3-0 39 .0 .1 40 98.5 .6 41 24.6 .4 endprogram PROGRAM CALLED CORRECT CNAME NOT FOUND endprogram 4 0 0 35. �-- �� ►1� 3 1 1%b l? MG (" d, lJ-� 0 40. S� DESIGN OF INLETS AND SWALES ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------------------------------- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 11-23-1994 AT TIME 08:26:28 �* PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)- 15.00 REQUIRED CURB OPENING LENGTH (ft)= 15.73 IDEAL CURB OPENNING EFFICIENCY = 1.00 ' ACTURAL CURB OPENNING EFFICIENCY - 0.97 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.80 STREET CROSS SLOPE (%) - 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)- 2.00 GUTTER WIDTH (ft) 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) - 8.19 GUTTER FLOW DEPTH (ft) - 0.33 FLOW VELOCITY ON STREET (fps)- 3.68 FLOW CROSS SECTION AREA (sq ft)- 0.64 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 10.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)- 3.05 BY FAA REC-12 METHOD: DESIGN FLOW (cfs)- 3.06 FLOW INTERCEPTED (cfs)- 2.97 ' CARRY-OVER FLOW (cfs)- 0.09 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)- 3.06 FLOW INTERCEPTED (cfs)= 2.74 ' CARRY-OVER FLOW (cfs)- 0.32 S�/ ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING I DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 11-23-1994 AT TIME 08:28:04 ** PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 REQUIRED CURB OPENING LENGTH (ft)= 34.96 ' IDEAL CURB OPENNING EFFICIENCY = 0.64 ACTURAL CURB OPENNING EFFICIENCY = 0.58 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.80 STREET CROSS SLOPE (%) = 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)- 2.00 GUTTER WIDTH (ft) 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.44 GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 4.67 FLOW CROSS SECTION AREA (sq ft)= 2.55 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 7.55 BY FAA 14EC-12 METHOD: DESIGN FLOW (cfs)= 11.88 FLOW INTERCEPTED (cfs)= 6.94 1 CARRY-OVER FLOW (cfs)= 4.94 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.88 FLOW INTERCEPTED (cfs)= 6.79 CARRY-OVER FLOW (cfs)= 5.09 r✓1 /e t �G g?j ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------------------- Is- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................. ON DATE 11-23-1994 AT TIME 08:29:08 '** PROJECT TITLE: INLET DESIGN ••• CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft). 15.00 REQUIRED CURB OPENING LENGTH (ft)= 17.44 IDEAL CURB OPENNING EFFICIENCY = 0.97 ACTURAL CURB OPENNING EFFICIENCY = 0.93 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.40 STREET CROSS SLOPE (%) - 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.00 ' GUTTER FLOW DEPTH (ft) - 0.37 FLOW VELOCITY ON STREET (fps)= 3.43 FLOW CROSS SECTION AREA (sq ft)- 1.17 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)- 10.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.88 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)- 4.00 FLOW INTERCEPTED (cfs)= 3.72 CARRY-OVER FLOW (cfs)= 0.28 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 4.00 FLOW INTERCEPTED (cfs)= 3.50 CARRY-OVER FLOW (cfs)- 0.50 g8I ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------------------- Is- ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 11-23-1994 AT TIME 08:29:53 ** PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)- 15.00 REQUIRED CURB OPENING LENGTH (ft)- 43.66 IDEAL CURB OPENNING EFFICIENCY = 0.53 ' ACTURAL CURB OPENNING EFFICIENCY = 0.49 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.40 STREET CROSS SLOPE W = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) - 19.84 ' GUTTER FLOW DEPTH (ft) = 0.56 FLOW VELOCITY ON STREET (fps)= 4.71 FLOW CROSS SECTION AREA (sq ft)= 4.10 GRATE CLOGGING FACTOR W = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 10.26 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 19.32 FLOW INTERCEPTED (cfs)= 9.39 CARRY-OVER FLOW (cfs)= 9.93 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 19.32 FLOW INTERCEPTED (cfs)- 9.24 ' CARRY-OVER FLOW (cfs)= 10.08 Z✓l le-'�- -0 / a /d o yea 1 4�� ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING 1 DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-07-1994 AT TIME 07:35:37 I*** PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE STREET CROSS SLOPE STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: 15.00 14.71 1.00 0.99 0.80 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 10.94 GUTTER FLOW DEPTH (ft) = 0.39 FLOW VELOCITY ON STREET (fps)= 2.68 FLOW CROSS SECTION AREA (sq ft)= 1.36 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: /NET Rio z yEAr, IDEAL INTERCEPTION CAPACITY (cfs)= 3.68 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.68 FLOW INTERCEPTED (cfs)= 3.64 CARRY-OVER FLOW (cfs)= 0.04 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.68 FLOW INTERCEPTED (cfs)= 3.31 CARRY-OVER FLOW (cfs)= 0.37 I<? " -- ------------------------------------------------------------------------ --- UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-07-1994 AT TIME 07:37:22 '*** PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 REQUIRED CURB OPENING LENGTH (ft)= 31.96 IDEAL CURB OPENNING EFFICIENCY = 0.68 ACTURAL CURB OPENNING EFFICIENCY = 0.63 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.80 STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 19.47 GUTTER FLOW DEPTH (ft).= 0.56 FLOW VELOCITY ON STREET (fps)= 3.52 FLOW CROSS SECTION AREA (sq ft)= 3.96 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.48 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 13.93 FLOW INTERCEPTED (cfs)= 8.74 CARRY-OVER FLOW (cfs)= 5.19 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 13.93 FLOW INTERCEPTED (cfs)= 8.53 CARRY-OVER FLOW (cfs)= 5.40 1------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY 1 DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD �---K-E-V-I---G-1-N-G-E-R-Y---R ------------SER:N DB INC FT. COLLINS COLORADO...............:............. N DATE 11-23-1994 AT TIME 08:30:45 ** PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 15.00 REQUIRED CURB OPENING LENGTH (ft)= 9.67 1 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 2.10 STREET CROSS SLOPE M = 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) - 2.00 1 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 4.00 ' GUTTER FLOW DEPTH (ft) - 0.25 FLOW VELOCITY ON STREET UPS). 3.69 FLOW CROSS SECTION AREA (sq ft)= 0.33 GRATE CLOGGING FACTOR (%-)- 50.00 1 CURB OPENNING CLOGGING FACTOR()- 10.00 INLET INTERCEPTION CAPACITY: 1 IDEAL INTERCEPTION CAPACITY (cfs)- 1.20 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.20 FLOW INTERCEPTED (cfs)= 1.20 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)- 1.20 FLOW INTERCEPTED (cfs)= 1.08 CARRY-OVER FLOW (cfs)= 0.12 ------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ' SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ ER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. DATE 11-23-1994 AT TIME 08:31:10 *** PROJECT TITLE: INLET DESIGN qZ� q/ *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 REQUIRED CURB OPENING LENGTH (ft)= 36.65 IDEAL CURB OPENNING EFFICIENCY = 0.61 ACTURAL CURB OPENNING EFFICIENCY = 0.56 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 2.10 STREET CROSS SLOPE 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 15.06 GUTTER FLOW DEPTH (ft) = 0.47 FLOW VELOCITY ON STREET (fps)= 4.98 FLOW CROSS SECTION AREA (sq ft)= 2.44 GRATE CLOGGING FACTOR (&)= 50.00 CURB OPENNING CLOGGING FACTOR(%)- 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 7.46 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)- 12.18 FLOW INTERCEPTED (cfs)- 6.85 CARRY-OVER FLOW (cfs)- 5.33 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 12.18 FLOW INTERCEPTED (cfs)- 6.71 CARRY-OVER FLOW (cfs)= 5.47 Zn le �d/r- 16 © year..(" ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR, JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ---------SUPPORTED -BY- METRO -DENVER-CITIES/COUNTIES AND UD&FCD 'USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-07-1994 AT TIME 07:36:48 1*** PROJECT TITLE: INLET DESIGN CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE M = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= 1 ICJ L,—E- T "14 ;z_ YEAT, 15.00 5.27 1.00 1.00 1.10 2.00 0.016 2.00 2.00 1.92 0.20 2.48 0.19 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 0.47 (cfs)= 0.47 (cfs) = 0.47 (cfs) = 0.00 (cfs)= 0.47 (cfs) = 0.42 (cfs)= 0.05 qS ---------------------------------------------------------------------------�- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------------------- IU SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 09-07-1994 AT TIME 07:38:35 1*** PROJECT TITLE: INLET DESIGN L CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE STREET CROSS SLOPE STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR (%)= CURB OPENNING CLOGGING FACTOR(%)= IAUL-EET T. /oo yLAF_ 15.00 20.42 0.91 0.86 1.10 2.00 0.016 2.00 2.00 12.44 0.42 3.30 1.71 50.00 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 5.19 (cfs)= 5.71 (cfS)= 4.90 (cfs) = 0.81 (cfS) = 5.71 (cfs)= 4.67 (cfs) = 1.04 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER ---------SUPPORTED -BY- METRO -DENVER -CITIES/COUNTIES AND UD&FCD ------------------------ USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 10-07-1994 AT TIME 09:03:58 1*** PROJECT TITLE: INLET DESIGN *** � I � I � I � I CURB OPENING INLET HYDRAULICS AND SIZING: r_+l z L INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) _ STREET CROSS SLOPE (%) _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: 10.00 53.76 0.31 0.27 0.70 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 29.69 GUTTER FLOW DEPTH (ft) = 0.76 FLOW VELOCITY ON STREET (fps)= 4.23 FLOW CROSS SECTION AREA (sq ft)= 8.98 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 11.72 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 37.85 FLOW INTERCEPTED CARRY-OVER FLOW (cfs)= (cfs)= 10.08 27.77 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 37.85 FLOW INTERCEPTED (cfs)= 9.96 OVER -OVER FLOW CARRY- (cfs)= 27.89 ------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY ' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ 'USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 10-07-1994 AT TIME 09:04:23 I*** PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: 7r- GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 24.93 IDEAL CURB OPENNING EFFICIENCY = 0.60 ACTURAL CURB OPENNING EFFICIENCY = 0.53 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.70 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 17.13 GUTTER FLOW DEPTH (ft) = 0.51 FLOW VELOCITY ON STREET (fps)= 3.07 FLOW CROSS SECTION AREA (sq ft)= 3.10 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 5.72 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 9.50 FLOW INTERCEPTED (cfs)= 5.01 CARRY-OVER FLOW (cfs)= 4.49 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 9.50 FLOW INTERCEPTED (cfs)= 4.87 CARRY-OVER FLOW (cfs)= 4.63 g� I ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER -------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 11-23-1994 AT TIME 08:32:16 ** PROJECT TITLE: INLET DESIGN I*** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)- 15.00 REQUIRED CURB OPENING LENGTH (ft)- 11.40 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 1.00 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (U - 4.00 STREET CROSS SLOPE M - 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)- 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ICn 31! e2— -\�a-� WATER SPREAD ON STREET (ft) = 2.59 GUTTER FLOW DEPTH (ft) = 0.22 FLOW VELOCITY ON STREET (fps)- 5.00 FLOW CROSS SECTION AREA (sq ft)- 0.23 GRATE CLOGGING FACTOR (1k)- 50.00 CURB OPENNING CLOGGING FACTOR M - 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.17 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)- 1.17 FLOW INTERCEPTED (cfs)= 1.17 ' CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 1.17 FLOW INTERCEPTED (cfs)= 1.05 ----------- FLOW (cfs)=------0.12 ----------------------CARRY-OVER -------------------- UDINLET: INLET HYDARULICS AND SIZING ----------- DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------- ------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. N DATE 11-23-1994 AT TIME 08:32:32 '** PROJECT TITLE: INLET DESIGN ' «.« CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 15.00 REQUIRED CURB OPENING LENGTH (ft)- 22.85 ' IDEAL CURB OPENNING EFFICIENCY = 0.85 ACTURAL CURB OPENNING EFFICIENCY = 0.80 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) - 4.00 STREET CROSS SLOPE (t) - 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) - 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 7.91 ' GUTTER FLOW DEPTH (ft) - 0.32 FLOW VELOCITY ON STREET (fps)= 5.44 FLOW CROSS SECTION AREA (sq ft)- 0.79 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)- 10.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.69 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)- FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)- BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (c£s)= ' CARRY-OVER FLOW (cfs)= 4.32 3.45 0.87 4.32 3.32 1.00 CLIENT - S� , 1 JOB NO. O 14-014 7 R��jj 'Ii I Icy INC PROJECT 'Tf` ���0� NI IS- s CALCULATIONS FOR � QM fl ZiL LL-I Engineering Consultants MADEBY DATE��+CHECKEDBY DATE SHEET OF ui F L 1 L� ' CLIENT �✓� 5 ©� JOB NO..}0 I4) -�<FJ� INC PROJECT CALCULATIONS FOR S0M.P -L r✓\ 1 G Engineering Consultants MADE BY T_` DATE 9 HECKED BY DATE SHEET OF 1 r 1 v,� 1 e.`F 1 1 !d/ RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA CURB OVERTOPPING AT END OF YUMA PLACE a flP 2.6 WEIR COEF. 3.000 STA ELEV 0.0 0.21 50.0 0.00 100.0 0.21 ELEVATION DISCHARGE (feet) --------- (cfs) --------- 0.00 0.0 0.10 1.6 0.20 9.0 .14 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA CROWN OVERFLOW ON AVONDALE DRIVE Qp � ��s zH � z..L D�s►g ri WEIR COEF. 3.000 STA ELEV 0.0 0.50 55.0 0.00 106.0 0.50 ELEVATION DISCHARGE (feet) --------- (cfs) --------- 0.00 0.0 0 .20 0.7 4.0 �ioo Gt'culn z7,59' cis �_ .�,43i 0.30 11.1 0.40 22 0.50 39.E � I INC Engineering Consultants la�l CLIENT �✓` JOBNO. 6 `4- D 7 5 PROJECT / �� c,�,jD� -� CALCULATIONS FOR Ai�0�-• MADE BY / �3 DATE CHECKED BY DATE SHEET OF �_:_ J_._ 10� RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION RIDGEWOOD HILLS FIRST FILING - SWALE #402 STA ELEV 0.00 1.50 9.00 0.00 18.00 1.50 'N' VALUE ---------- SLOPE ------------- (ft/ft) 0.060 0.0600 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) --------- (sq ft) ------- (fps) -------- (cfs) --------- NO. ------ 0.10 0.1 0.8 0.05 0.65 0.20 0.2 1.3 0.31 0.72 0.30 0.5 1.7 0.92 0.78 0.40 1.0 2.1 1.98 0.81 0.50 1.5 2.4 3.59 0.84 0.60 2.2 2.7 5.84 0.87 0.70 2.9 3.0 8.81 0.89 0.80 3.8 3.3 12.57 0.91 15. c Fs @, O. 9 E6 0.90 4.9 3.5 17.21 0.93 1.00 6.0 3.8 22.79 0.95 1.10 7.3 4.0 29.39 0.96 1.20 8.6 4.3 37.06 0.98 1.30 10.1 4.5 45.88 0.99 1.40 11.8 4.8 55.90 1.00 Cam. c�.77 ,oreo ' D.861 ***************************************** ***** CHANNEL LINING ANALYSIS ***** ***** North American Green ***** ***************************************** DESIGNER: TJB PROJECT: RIDGEWOOD HILLS STATION: DRAINAGE AREA: 0.0 Acres CHANNEL DESCRIPTION: Bottom Width: 0.00 ft Left Side Slope: 6.0 Right Side Slope: 6.0 Min. Lining Permissible Discharge Recommended Shear (lb/sf) (cfs) C125/C 2.15 15.3 Normal Area Velocity Depth (ft) (sf) (ft/sec) -------------------------- 0.50 1.50 10.22 DATE: 11-22-1994 PROJECT NO.: 014-047 TO STATION: DESIGN FREQUENCY: %100 Years CHANNEL SLOPE: 0.060 ft/ft Hydraulic Radius (ft) 0.24 Calculated Shear (lb/sf) ------------- 1.87 Manning Coefficient 0.014 Remarks ------------ Stable ion STAPLE PATTERN "C" 2 staples per sq. yd. using 6-inch, 11 ga. wire "U" staples. 8-inch staples and longer may be used for loose soils. 9 ga. staples or heavier may be necessary in hard or rocky soils. --- x----------- x----------- x 1 2' 1- 4' -- X 4' X --- X X -- ---- 3'----I 4' X 11 --- X X X *-----X-----------X-----* --------- 6.5'---------I l oy RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION SWALE #406 STA 0.00 6.00 14.00 20.00 'N' VALUE 0.060 ELEV 1.50 0.00 0.00 1.50 SLOPE (ft/ft ------------ 0.0850 1 I as = 37, 1 3 G3 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) --------- (sq ft) ------- (fps) -------- (cfs) --------- NO. ------ 0.10 0.8 1.5 1.27 0.86 0.20 1.8 2.3 4.10 0.96 0.30 2.8 3.0 8.22 1.02 0.40 3.8 3.5 13.55 1.06 0.50 5.0 4.0 20.07 1.10 t 0.60 6.2 4.5 27.78 1.12 QtOD` 37 G S @ s lO 0.70 7.6 4.9 36.71 1.15 0.80 9.0 5.2 46.87 1.17 0.90 10.4 5.6 58.29 1.19 1.00 12.0 5.9 71.01 1.20 Qieet3 °. = 49, 36� 1.10 13.6 6.2 85.05 1.22 _ 1.20 15.4 6.5 100.45 1.23 1.30 17.2 6.8 117.24 1.25 1.40 19.0 7.1 135.47 1.26 w ***** CHANNEL LINING ANALYSIS ***** ***** North American Green ***** ***************************************** DESIGNER: TJB PROJECT: RIDGEWOOD HILLS STATION: DRAINAGE AREA: 0.0 Acres CHANNEL DESCRIPTION: Bottom Width: 8.00 ft Left Side Slope: 4.0 Right Side Slope: 4.0 Min. Lining Permissible Discharge Recommended Shear (lb/sf) (cfs) --------------------------------- C125/C 2.15 37.1 Normal Depth (ft) 0.40 Area (sf) 3.86 Velocity (ft/sec) 9.61 DATE: 12-29-1994 PROJECT NO.: 014-047 TO STATION: DESIGN FREQUENCY: %100 Years CHANNEL SLOPE: 0.085 ft/ft Hydraulic Radius (ft) 0.34 Calculated Shear (lb/sf) ------------- 2.13 Manning Coefficient 0.021 Remarks ------------ Stable RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION RIDGEWOOD HILLS FIRST FILING - SWALE #407 STA ELEV 0.00 1.50 6.00 0.00 12.00 1.50 'N' VALUE SLOPE (ft/ft) ---------- ------------- 0.060 0.0400 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) --------- (sq ft) ------- (fps) -------- (cfs) --------- NO. ------ 0.10 0.0 0.7 0.03 0.52 0.20 0.2 1.1 0.17 0.59 0.30 0.4 1.4 0.50 0.63 0.40 0.6 1.7 1.07 0.66 0.50 1.0 1.9 1.93 0.68 0.60 1.4 2.2 3.14 0.70 0.70 2.0 2.4 4.74 0.72_ 0.80 2.6 2.6 6.77 0.74 0.90 3.2 2.9 9.27 0.75 1.00 4.0 3.1 12.27 0.76 1.10 4.8 3.3 15.82 0.78 1.20 5.8 3.5 19.95 0.79 1.30 6.8 3.7 24.70 0.80 1.40 7.8 3.8 30.09 0.81 r � � Q goo = 2. 51 ' aep 3.4Z c,Fs (2 D. GZr ***************************************** ***** CHANNEL LINING ANALYSIS ***** ***** North American Green ***** ***************************************** DESIGNER: TJB PROJECT: RIDGEWOOD HILLS STATION: DRAINAGE AREA: 0.0 Acres CHANNEL DESCRIPTION: Bottom Width: 0.00 ft Left Side Slope: 4.0 Right Side Slope: 4.0 Min. Lining Permissible Discharge Recommended Shear (lb/sf)--(cfs)-- ------------------------ SC150/C 1.70 3.4 Normal Depth (ft) 0.46 Area (sf) 0.86 Velocity (ft/sec) 3.99 DATE: 11-22-1994 PROJECT NO.: 014-047 TO STATION: DESIGN FREQUENCY: %100 Years CHANNEL SLOPE: 0.040 ft/ft Hydraulic Radius(ft) - 0.22 Calculated Shear (lb/sf) ------------- 1.15 Manning Coefficient 0.027 Remarks ------------ Stable DESIGN OF STORM SEWER AND RIPRAP 1 _ fly CLIENT V �l��t� i� / t� JOB NO. `� ` _ 0 1 T�DINC PROJECT �� e�O� /// S CALCULATIONS FOR C�DS1EL,J F-T-- Engineering Consultants MADEBY DATE�:16�CHECKED BY- DATE SHEET OF � I to F �, 1 1 r i+ REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 01-05-1995 AT TIME 14:24:25 *** PROJECT TITLE : RIDGEWOOD HILLS FIRST FILING *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 0 0.00 0 22.74 93.00 90.20 OK 2.00 0.00 11 14 0.00 22.74 91.71 90.92 OK 3.00 0.00 0.00 16.03 92.80 91.97 OK 4.00 0.00 .2 0.00 16.03 98.80 97.60 OK 5.00 0.0 10.00 00 6.79 100.00 99.38 OK 6.00 . 1 5.00 679.0 6.79 100.00 99.50 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 11.00 2.00 1.00 ROUND 28.56 30.00 30.00 0.00 12.00 3.00 2.00 ROUND 24.02 27.00 24.00 0.00 13.00 4.00 3.00 ROUND 17.71 18.00 18.00 0.00 14.00 5.00 4.00 ROUND 14.94 18.00 15.00 0.00 15.00 6.00 5.00 ROUND 14.89 18.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT I (% ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 11.0 22.7 26.0 1.81 5.97 1.62 6.76 4.63 0.81 V-OK 12.0 16.0 16.0 2.00 5.10 1.42 9.56 5.10 0.04 V-OK 13.0 16.0 16.8 1.17 10.81 1.40 9.34 9.07 1.74 V-OK 14.0 6.8 6.9 1.01 6.39 1.04 14.67 5.53 1.09 V-OK 15.0 6.8 6.9 1.00 6.45 1.04 6.21 5.53 1.11 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 11.00 0.40 88.00 87.46 1.21 3.04 NO 12.00 0.50 88.68 88.00 2.12 1.71 NO 13.00 2.54 96.20 88.68 1.10 2.62 NO 14.00 1.13 97.25 96.20 1.50 1.35 NO 15.00 1.15 97.25 97.25 1.50 1.50 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 11.00 135.00 60.00 90.50 89.96 90.92 90.20 SUBCR 12.00 135.00 135.00 90.68 90.00 91.97 90.92 PRSS'ED 13.00 296.00 38.43 97.70 90.18 97.60 91.97 JUMP 14.00 93.00 86.45 98.50 97.45 99.38 97.60 JUMP 15.00 0.10 0.10 98.50 98.50 99.50 99.38 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 11.0 2.00 91.25 0.72 1.00 0.33 0.00 0.00 1.00 90.20 12.0 3.00 92.37 0.67 1.10 0.44 0.00 0.00 2.00 91.25 13.0 4.00 98.88 6.44 0.05 0.06 0.00 0.00 3.00 92.37 14.0 5.00 99.85 0.95 0.05 0.02 0.00 0.00 4.00 98.88 15.0 6.00 99.97 0.00 0.25 0.12 0.00 0.00 5.00 99.85 BEND LOSS =BEND .K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS-- OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. No Text ' WINi ' Engineering Consultants 1 CLIENT 'A sevi JOB NO. 0 14 - V � + PROJECT I d�1ev �Dod. fZl I `S —1 S CALCULATIONS FOR UQ5E✓J MADE BY�6 DATE9-�- 94 CHECKED BY DATE SHEET OF 1-0 REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 11-22-1994 AT TIME 10:06:23 *** PROJECT TITLE : RIDGEWOOD HILLS FIRST FILING *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 0.0 0 13.20 93.00 90.10 OK 2.00 0.00 0.00 13.20 90.90 90.75 OK 3.00 0.00 0.00 8.53 92.20 91.49 OK 4.00 .00 THAN 8.53 92.20 91.54 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. 1D NO. (1N) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 11.00 2.00 1.00 ROUND 23.29 24.00 21.00 0.00 12.00 3.00 2.00 ROUND 17.95 21.00 21.00 0.00 13.00 4.00 3.00 ROUND 17.90 21.00 21.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORMML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 11.0 13.2 10.0 1.75 5.49 1.35 6.62 5.49 0.00 V-OK 12.0 8.5 13.0 1.03 5.77 1.08 8.46 3.55 1.10 V-OK 13.0 8.5 13.1 1.03 5.80 1.08 5.47 3.55 1.11 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 11.00 0.40 89.05 88.53 0.10 2.72 NO 12.00 0.67 89.60 89.05 0.85 0.10 NO 13.00 0.68 89.60 89.60 0.85 0.85 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION ' FEET- FEET FEET FEET FEET- FEET- - 11.00 - - 130.00 - ----- 0.00 -------------- 90.80 ---------- 90.28 90.75 - 90.10 - - ----- PRSS'ED 12.00 82.00 71.72 91.35 90.80 91.49 90.75 JUMP ' 13.00 0.10 0.10 91.35 91.35 91.54 91.49 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 11.0 2.00 91.21 0.65 1.00 0.47 0.00 0.00 1.00 90.10 12.0 3.00 91.68 0.21 1.34 0.26 0.00 0.00 2.00 91.21 13.0 4.00 91.73 0.00 0.25 0.05 0.00 0.00 3.00 91.68 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. No Text � I Iz� R ' INC Engineering Consultants CLIENT e- \ JOB NO. PROJECT e l��a i / �/ S -/ 5 rCALCULATIONS FOR MADE BY SDATEN-M CHECKED BY- DATE SHEET OF t z z/ REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. I ON DATA 12-29-1994 AT TIME 15:03:10 *** PROJECT TITLE : ' RIDGEWOOD HILLS FIRST FILING *** SUMMARY OF HYDRAULICS AT MANHOLES -----------------------------------r------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 00 0.00 . 0 53.38 79.00 77.17 OK 2.00 0. 10.43 0.00 53.38 81.00 79.83 OK 3.00 0.00 10.00 0.00 11.02 83.84 82.06 OK 4.00 0.00 0 0.00 50.78 83.84 81.07 OK 5.00 0.00 0.00 8.08 84.10 82.15 OK 6.00 0.00 10. 0.00 8.08 85.32 83.36 OK 7.00 0.01 5.00 808.00 8.08 85.32 83.53 OK 8.00 0.0 10.00 .00 2.60 79.00 80.76 NO 9.00 0 1 5.00 26 0 2.60 79.00 80.77 NO 10.00 .01 5.00 1102.0 11.02 84.30 82.11 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 11.00 2.00 1.00 ROUND 34.54 36.00 36.00 0.00 12.00 4.00 2.00 ROUND 30.20 33.00 36.00 0.00 13.00 3.00 4.00 ROUND 19.76 21.00 24.00 0.00 14.00 5.00 4.00 ROUND 13.45 18.00 15.00 0.00 15.00 6.00 5.00 ROUND 15.01 18.00 15.00 0.00 16.00 7.00 6.00 ROUND 15.01 18.00 15.00 0.00 17.00 8.00 2.00 ROUND 10.81 18.00 15.00 0.00 18.00 9.00 8.00 ROUND 12.66 18.00 15.00 0.00 33.00 10.00 3.00 ROUND 19.76 21.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET I 1 r? ' REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ' ------------------------------------------------------------------------------- SEWER DESIGN FLOW ID FLOW Q FULL Q NORMAL DEPTH NORMAL VLCITY CRITIC CRITIC FULL DEPTH VLCITY VLCITY FROUDE NO. COMMENT NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 11.0 53.4 59.8 2.21 9.57 2.37 8.91 7.55 1.16 V-OK 12.0 50.8 81.4 1.72 12.15 2.32 9.11 7.18 1.80 V-OK 13.0 11.0 18.6 1.11 6.16 1.19 5.67 3.51 1.15 V-OK 14.0 8.1 10.8 0.80 9.68 1.10 44.24 6.58 2.04 V-OK 15.0 8.1 8.1 1.02 7.51 1.10 7.04 6.58 1.25 V-OK 16.0 8.1 8.1 1.02 7.51 1.10 7.04 6.58 1.25 V-OK 17.0 2.6 6.2 0.56 4.86 0.65 12.42 2.12 1.30 V-OK ' 18.0 2.6 4.1 0.72 3.54 0.65 4.00 2.12 0.81 V-OK 33.0 11.0 18.6 1.11 6.16 1.19 1.34 3.51 1.15 V-OK ' FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ' % (FT) (FT) ---------- (FT) -------------------- (FT) ------------------------------ 11.00 0.80 ---------- 77.46 74.52 0.54 1.48 NO 12.00 1.48 78.75 77.46 2.09 0.54 NO ' 13.00 0.67 79.11 78.75 2.73 3.09 OK 14.00 2.80 81.05 78.75 1.80 3.84 NO 15.00 1.56 82.26 81.06 1.81 1.79 NO 16.00 1.56 82.26 82.26 1.81 1.81 NO 17.00 0.93 78.00 77.46 -0.25 2.29 NO 18.00 0.40 78.00 78.00 -0.25 -0.25 NO 33.00 0.67 80.13 80.13 2.17 1.71 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ' ------------------------------------------------------------------------------- SEWER ID NUMBER SEWER SURCHARGED LENGTH LENGTH UPSTREAM CROWN ELEVATION DNSTREAM WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 11.00 368.00 0.00 80.46 77.52 79.83 77.17 JUMP 12.00 87.00 22.65 81.75 80.46 81.07 79.83 JUMP ' 13.00 54.00 54.00 81.11 80.75 82.06 81.07 PRSS'ED 14.00 82.00 43.80 82.30 80.00 82.15 81.07 JUMP 15.00 77.00 0.00 83.51 82.31 83.36 82.15 JUMP 16.00 0.10 0.10 83.51 83.51 83.53 83.36 PRSS'ED ' 17.00 58.00 58.00 79.25 78.71 80.76 79.83 PRSS'ED 18.00 0.10 0.10 79.25 79.25 80.77 80.76 PRSS'ED 33.00 0.10 0.00 82.13 82.13 82.11 82.06 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- ' UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE � I SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT -------------------------- 11.0 2.00 80.72 2.66 1.00 0.89 0.00 0.00 1.00 77.17 12.0 4.00 81.87 0.27 1.10 0.88 0.00 0.00 2.00 80.72 13.0 3.00 82.25 0.13 1.32 0.25 0.00 0.00 4.00 81.87 14.0 5.00 82.83 0.92 0.05 0.03 0.00 0.00 4.00 81.87 15.0 6.00 84.04 1.14 0.10 0.07 0.00 0.00 5.00 82.83 - 16.0 7.00 84.21 0.00 0.25 0.17 0.00 0.00 6.00 84.04 17.0 8.00 80.82 0.09 0.20 0.01 0.00 0.00 2.00 80.72 18.0 9.00 80.84 0.00 0.25 0.02 0.00 0.00 8.00 80.82 33.0 10.00 82.30 0.00 0.25 0.05 0.00 0.00 3.00 82.25 ' BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. ' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I 1 1 1 1 - 'Z 1 CLIENT-�5�ti1 JOBNO.D 14 -647 I INC PROJECT �� 5 CALCULATIONS FOR Engineering Consultants MADE BY 1 `` -DATE �2 _aHECKED BY DATE -SHEET-OF la , NYc14L- ****** HYCHL ****** (Version 2.0) ****** Commands Read From File: N:%HYDRO%MCTRANS\HYCHL%RIDGEWD.CHL JOB RIDGEWOOD HILLS UNI 0 ** UNITS PARAMETER = 0 (ENGLISH) BEN 40 CHL .11 54.1 TRP 5.67 4 4 ** LEFT SIDE SLOPE 4.0 AND RIGHT SIDE SLOPE 4.0 ** THE BASE WIDTH OF THE TRAPEZOID (FT) 5.67 N .03 .03 ** LOW FLOW N VALUE= .030 ** SIDE SLOPE N VALUE= .030 LRR -1.5 2 0 2.5 .15 ** STABILITY FACTOR 1.50 ** SPECIFIC GRAVITY 2.50 ** SHIELDS PARAMETER .150 END ***************END OF COMMAND FILE************ RIDGEWOOD HILLS ------------ INPUT REVIEW ------------ DESIGN PARAMETERS: DESIGN DISCHARGE (CFS): 54.10 CHANNEL SHAPE: TRAPEZOIDAL CHANNEL SLOPE (FT/FT): .110 RADIUS OF CURV. FOR BEND (FT): 40.0 ----------------------------------------- HYDRAULIC CALCULATIONS USING NORMAL DEPTH ----------------------------------------- DESIGN FLOW (CFS) 54.10 MAX DEPTH (FT) .65 AREA (FT^2) 5.33 WETTED PERIMETER (FT) 11.00 HYDRAULIC RADIUS (FT) .49 AVG VELOCITY (FT/SEC) 10.14 MANNINGS N (LOW FLOW) .030 Davg / D50 1.03 REYNOLDS NUMBER (10^5) .72 ------------- RIPRAP DESIGN ------------- Date 12-22-94 LINING PERMIS SHR CALC. SHR STAB. CONDITION TYPE (LB/FT^2) (LB/FT^2) FACTOR D50(FT) --------- ------ BOTTOM; STRAIGHT RIPRAP ---------- 6.70 --------- 4.44 ------ 1.50 ------- .48 BOTTOM; BEND RIPRAP 6.70 5.74 1.50 .62 SIDE; STRAIGHT RIPRAP 6.23 4.13 1.50 .48 SIDE; BEND RIPRAP 6.23 5.33 1.50 .62 SUPER ELEVATION (FT) .87 L LENGTH OF PROTECTION (FT) .00 ' RATIO OF SHEAR IN BEND TO SHEAR IN STRAIGHT CHANNEL = 1.29 *** NORMAL END OF HYCHL *** I .z CLIENT Qa e_y\ se h I n JOB NO. 6 I 4 -6 4, 7 T:IINC (� PROJECT l� ��t�U-9o� , 1 l S CALCULATIONS FOR r0.4� 1�0 Kd.8 terns Engineering Consultants MADE BY= DATE141Z- CHECKEDBY DATE SHEET / OF z- � � �-E-�-- � �-; P ►-� ram.. d 5 I D V%. I' V"e s¢, r Dz-5 5,4 _ �� Z Dee r-►W ►,e.- ����� �. s� t-� p c--�. � r-�� _ ____ � �.._ ___ _� � � 61V- s6= lO,gz Yt .T (( 2,b5 — 3� 7,Z� —� D, a- 1� L N.a w= ID p = /O C3� = 30 r r 3� L�nqA-�k ne.e_aLeL f� Sfep 4- V -" ('-per U Se— L=1�g i Z4- n,k,r S4►` 5'd o for ►-lz " nk� i ; LL J CLIENT \ -A 5e-YIL JOB NO. "D14-!4 7 �NC PROJECT 9:-4e066k !Z! �l S CALCULATIONS FOR Engineering Consultants MADE BY-7 DATE12 HECKED BY DATE SHEET Z OF Z i _ ��e� � 5 k�f�G� a �� P�e%�or�• T o..ri5 � '�i c c� re�'� -� r- �.t—� .� o� �� 1%f�f-"✓� i ►'� �t n"f � e �e S t Qil Gm ►'��� � �c� i-1 C� K/PRAP �ffl IJ6 t-'ji,- A, rv, mot- i r a n ��GU M rY� KC�I a t 9/l S Ll/ CLIENT ` �% e_f\ se► I` uI JOB NO. 014 _� 47 MfMINC PROJECT K11�: q LJ9LVrL !! 1llS / 5 CALCULATIONS FOR Q D SEA LIZ- Engineering Consultants MADE BYLLGDATE9�CHECKED BY- DATE -SHEET-OF t f 04 7Q 3: � I � I -I L- REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 12-28-1994 AT TIME 09:48:48 *** PROJECT TITLE : RIDGEWOOD HILLS FIRST FILING *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 1.00 0 0.00 0 53.24 60.00 57.00 OK 2.00 0.00 0.1 0.00 53.24 65.90 59.85 OK 3.00 0.00�.001154.00 34.49 65.90 64.37 OK 4.00 0.00 11.54 65.25 64.87 OK 5.00 1 11.54 65.25 64.96 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 11.00 2.00 1.00 ROUND 29.95 33.00 30.00 0.00 12.00 3.00 2.00 ROUND 28.12 30.00 30.00 0.00 13.00 4.00 3.00 ROUND 19.78 21.00 21.00 0.00 14.00 5.00 4.00 ROUND 19.78 21.00 21.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTTNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 11.0 53.2 53.6 2.03 12.45 2.30 11.28 10.85 1.48 V-OK 12.0 34.5 41.1 1.75 9.39 1.99 12.69 7.03 1.31 V-OK 13.0 11.5 13.6 1.24 6.34 1.24 18.94 4.80 1.04 V-OK 14.0 11.5 13.6 1.24 6.34 1.24 6.34 4.80 1.04 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 11.00 1.70 57.55 55.00 5.85 2.50 OK 12.00 1.00 62.20 61.80 1.20 1.60 NO 13.00 0.73 62.31 62.20 1.19 1.95 NO 14.00 0.73 62.31 62.31 1.19 1.19 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 11.00 150.00 0.00 60.05 57.50 59.85 57.00 JUMP 12.00 40.00 3.83 64.70 64.30 64.37 59.85 JUMP 13.00 15.00 15.00 64.06 63.95 64.87 64.37 PRSS'ED 14.00 0.10 0.10 64.06 64.06 64.96 64.87 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUSCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 11.0 2.00 61.67 2.85 1.00 1.83 0.00 0.00 1.00 57.00 12.0 3.00 65.13 3.42 0.05 0.04 0.00 0.00 2.00 61.67 13.0 4.00 65.23 0.08 0.05 0.02 0.00 0.00 3.00 65.13 14.0 5.00 65.32 0.00 0.25 0.09 0.00 0.00 4.00 65.23 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. � I RANC Engineering Consultants (37� CLIENT 1 e4 `S �� 1 , '11 /' /7 f� /� /I j� JOB NO. T -O�-F / PROJEC-T�JLI�gE4t�9�92�! �/! S ST CALCULATIONS FOR l MADE BYT� DATE71_ CHECKED BY DATE SHEET OF n9SOINC Engineering Consultants 1 J r CLIENT 9 ��S�h JOBNOI.e514-647 PROJECT ��QG'R��� 1 �5 / CALCULATIONS FOR C MADE BY DATE// �%�CHECKED BY DATE SHEET OF ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 11-22-1994 AT TIME 14:25:29 *** PROJECT TITLE : RIDGEWOOD HILLS FIRST FILING *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS t ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ------------ ----- ---MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------ 1.00 0.00 0.00 0.00 3.32 75.00 73.00 OK ' 2.00 0.00 10.00 0.00 3.32 73.00 73.10 NO 3.00 0.01 5.00 332.00 3.32 73.00 73.13 NO OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (1N) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 11.00 2.00 1.00 ROUND 8.51 18.00 15.00 0.00 12.00 3.00 2.00 ROUND 8.51 18.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 11.0 3.3 15.1 0.40 9.85 0.73 4.44 2.71 3.23 V-OK 12.0 3.3 15.1 0.40 9.85 0.73 4.44 2.71 3.23 V-OK f�. iFROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------- SEWER ----- SLOPE -- ----- ---- ---- INVERT ELEVATION ------------------------- BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) 11.00 5.42 68.50 64.00 3.25 9.75 OK 12.00 5.42 68.50 68.49 3.25 3.26 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION ' FEET FEET FEET FEET FEET FEET -- --- -- 11.00 -- 83.00 --- -------------------------------------------------- 83.00 69.75 65.25 73.10 73.00 PRSS'ED ' 12.00 0.10 0.10 69.75 69.74 PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; 73.13 73.10 SUBCR=SUBCRITICAL PRSS'ED FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 11.0 2.00 73.22 0.22 0.00 0.00 0.00 0.00 1.00 73.00 12.0 3.00 73.25 0.00 0.25 0.03 0.00 0.00 2.00 73.22 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. CLIENT �J Yet hSev- I / JOB NO. ©�-""``i INC PROJECT !� �p0�1� �� g��) f' V S i s CALCULATIONS FOR Engineering Consultants MADEBY /STD DATE Ika__ GtECKEDBV DATE SHEET r OF � I t 3:�/ � I I INCREASE IN VOLUME OF ROBERT BENSON RESERVOIR I J r 13y � I ' INC Engineering Consultants CLIENT d , G'- r, s � JOBQNO.01+-f t;' PROJECT Z` �� p��"AV, CALCULATIONS FOR t�l»1 G MADE BY � DATE � CHECKED BY- DATE SHEET OF 13q j � I � I � I I I � I 1 RMIINC Engineering Consultants CLIENTyE=►15 tJ ==A, lu+_•' JOB NO.CS1-4-2-_,1% PROJECT'- I'-- _ (�1-- .!, g rL_L g � "CALCULATIONS FOR i MADEBYlLDATEr-7-, CHECKEDBV DATE SHEET OF I �r r�A Lam\ �� \1 / ,� �►�_ �` b' ne -orne OR d a 4980, ems, _. , O ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA ' WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) ' HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS ' JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) J0UT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) J0UT(8) JOUT(9) J0UT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 ' WATERSHED 1/PROGRAM CALLED ' *** ENTRY MADE TO RUNOFF MODEL *** RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 '1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 .00 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT 'SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 2 0 .0 .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 15-0 15 3032.0 3.5 42.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 L I 14ze ' 200 20 3111.0 8.7 39.0 250 25 1067.0 2.5 37.0 '300 30 6279.0 17.7 64.0 400 40 560.0 19.3 10.0 411 41 308.0 5.3 10.0 TOTAL NUMBER OF SUBCATCHMENTS, 6 TOTAL TRIBUTARY AREA (ACRES), 56.90 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0200 .016 .250 .100 .500 .50 .50 .00180 1 .0400 .016 .250 .100 .500 .50 .50 .00180 1 .0700 .016 .250 .100 .500 .50 .50 .00180 1 RIDGEWOOD HILLS 100 YEAR STORM EVENT ' FN:RIDGE.DAT *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** ' WATERSHED AREA (ACRES) 56.900 ' TOTAL RAINFALL TOTAL INFILTRATION (INCHES) (INCHES) 2.890 .549 TOTAL WATERSHED OUTFLOW (INCHES) 1.894 ' TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .448 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 1 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE ' GUTTER NUMBER GUTTER NDP CONNECTION NP OR DIAM (FT) LENGTH (FT) SLOPE (FT/FT) HORIZ L TO VERT R MANNING N DEPTH (FT) JK 15 14 0 4 CHANNEL .0 1800. .0200 .0 50.0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 14 13 6 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .8 .0 1.1 .1 1.4 .4 1.6 .5 1.7 13 0 0 1 CHANNEL .0 1000. .0350 4.0 4.0 C60 4.00 0 20 19 0 4 CHANNEL OVERFLOW 0 18.0 1800. 1800. 0200 .0200 50.0 20.0 .0 20.0 .016 .020 .40 10.00 0 19 18 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .4 1.3 1.6 1.8 1.6 2.0 18 25 0 4 CHANNEL .0 550. .0200 4.0 4.0 .060 3.00 0 ' OVERFLOW 10.0 550. .0200 4.0 4.0 .060 10.00 25 24 4 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' 24 .0 29 0 .0 2 .1 1.8 PIPE .3 1.3 2.6 110. .7 .0050 3.0 .0 .0 .013 1.25 0 30 29 0 4 CHANNEL .0 900. .0350 .0 50.0 .016 .40 0 OVERFLOW 18.0 900. .0350 20.0 20.0 .020 10.00 29 28 0 4 CHANNEL .0 650. .0200 50.0 50.0 .016 .40 0 OVERFLOW 36.0 650. .0200 20.0 20.0 .020 10.00 t 28 27 7 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .4 2.2 .9 2.9 1.6 3.5 2.5 4.0 4.2 27 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 0 '3.0 40 39 0 4 CHANNEL .0 1550. .0450 .0 50.0 .016 .40 0 OVERFLOW 18.0 1550. .0450 2.0 20.0 .020 10.00 41 39 0 1 CHANNEL 10.0 800. .0690 2.0 20.0 .040 1.00 0 39 38 6 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .0 .0 38 0 0 1 CHANNEL ' TOTAL NUMBER OF GUTTERS/PIPES, 16 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT .5 .0 1.4 .0 2.6 .0 3.4 .0 0 500. .0250 4.0 4.0 .060 4.00 0 OF SUBCATCHMENTS AND GUTTERS/PIPES 'ARRANGEMENT GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 18 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 ' 24 25 25 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 27 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 24 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 38 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 40 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 411 0 0 0 0 0 RIDGEWOOD HILLS 100 YEAR STORM EVENT ' FN:RIDGE.DAT ' HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET ' (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 38 39 40 0 5. .00 .00 .00 .00( ) .00( ) .00( ) ' 0 30. .00 .00 7.52 .02( ) .09(S) .25( ) 0 55. .00 .00 18.55 ' 1 20. .02( ) 1.02(S) .35( ) .00 .00 11.85 .02( ) 1.74(S) .30( ) 1 45. .00 .00 7.99 .02( ) 2.16(S) .25( ) 2 10. .00 .00 5.46 ' .02( ) 2.44(S) .22( ) 2 35. .00 .00 3.88 .02( ) 2.63(S) .19( ) ' 3 0. 00 .00 2.88 .02( ) 2.76(S) .17( ) 3 25. .00 .00 2.19 .02( ) 2.86(S) .16( ) 3 50. .00 .00 1.70 .02( ) 2.93(S) .14( ) ' THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL D.A.(AC) 0 0 3.5 0 0 3.5 0 0 3.5 0 0 8.7 0 0 8.7 0 0 8.7 0 0 11.1 0 0 11.1 0 0 28.8 0 0 28.8 0 0 28.8 0 0 17.7 0 0 24.6 0 0 24.6 0 0 19.3 0 0 5.3 14�1 STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. ' 14 19 24 25 28 29 30 39 1 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** '*** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 13 1.7 .5 1 25. ' 14 1.7 .1 .4 1 15. 15 17.7 .4 0 40. 18 1.7 .5 1 45. 19 1.7 .1 1.3 1 40. 20 38.3 .5 0 40. 24 2.6 .7 1 5. 25 2.6 .1 .3 1 10. 27 4.3 .7 2 5. 28 4.3 .1 3.2 2 5. ' 29 114.5 .6 0 40. 30 132.6 .7 0 35. 38 .0 .0 0 40. ` 39 40 .0 23.1 .1 3.0 4 10. 0 40.' ' .4 L`:%lON 41 10.5 .2 0 40. I ENDPROGRAM PROGRAM CALLED I ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY UPDATED BY TAPE OR DISK ASSIGNMENTS METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) ' 1 2 NSCRAT(1) 0 0 NSCRAT(2) 0 0 NSCRAT(3) 0 0 NSCRAT(4) 0 0 NSCRAT(5) 3 4 0 0 0 IWATERSHED 1/PROGRAM CALLED ' *** ENTRY MADE TO RUNOFF MODEL *** ' RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT NUMBER OF TIME STEPS 50 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 60 .96 1.44 1.68 3.00 5.04 1.20 .84 .60 .48 .36 .36 .24 .24 .12 .12 .00 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT 9.00 3.72 2.16 1.56 .24 .24 .24 .24 �s ' SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 2 0 .0 .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 150 15 3032.0 3.5 42.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 14/ 200 20 3111.0 8.7 39.0 250 25 1067.0 2.5 37.0 '300 30 6279.0 17.7 64.0 400 40 7006.0 19.3 35.0 411 41 1923.0 5.3 35.0 TOTAL NUMBER OF SUBCATCHMENTS, 6 TOTAL TRIBUTARY AREA (ACRES), 56.90 0200 .016 .250 .100 .500 .50 .50 .00180 1 0200 .016 .250 .100 .500 .50 .50 .00180 1 0200 .016 .250 .100 .500 .50 .50 .00180 1 0400 .016 .250 .100 .500 .50 .50 .00180 1 0700 .016 .250 .100 .500 .50 .50 .00180 1 RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** tWATERSHED AREA (ACRES) 56.900 TOTAL RAINFALL (INCHES) 2.890 ' TOTAL INFILTRATION (INCHES) .458 TOTAL WATERSHED OUTFLOW (INCHES) 2.130 ' TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .302 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 ' RIDGEWOOD HILLS 100 YEAR STORM EVENT FN:RIDGE.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK CONNECTION (FT) (FT) (FT/FT) L R N (FT) 14 0 4 CHANNEL .0 1800. .0200 .0 50.0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 13 6 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .8 .0 1.1 .1 1.4 .4 1.6 .5 1.7 0 0 1 CHANNEL .0 1000. .0350 4.0 4.0 .060 4.00 0 19 0 4 CHANNEL .0 1800. .0200 50.0 .0 .016 .40 0 OVERFLOW 18.0 1800. .0200 20.0 20.0 .020 10.00 18 5 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .4 1.3 1.6 1.8 1.6 2.0 25 0 4 CHANNEL .0 550. .0200 4.0 4.0 .060 3.00 0 OVERFLOW 10.0 550. .0200 4.0 4.0 .060 10.00 24 4 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.8 .3 2.6 .7 3.0 29 0 2 PIPE 1.3 110. .0050 .0 .0 .013 1.25 0 29 0 4 CHANNEL .0 900. .0350 .0 50.0 .016 .40 0 OVERFLOW 18.0 900. .0350 20.0 20.0 .020 10.00 28 0 4 CHANNEL .0 650. .0200 50.0 50.0 .016 .40 0 OVERFLOW 36.0 650. .0200 20.0 20.0 .020 10.00 27 7 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .4 2.2 .9 2.9 1.6 3.5 2.5 4.0 3.0 4.2 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 .060 4.00 0 39 0 4 CHANNEL .0 1550. .0450 .0 50.0 .016 .40 0 OVERFLOW 18.0 1550. .0450 2.0 20.0 .020 10.00 39 0 1 CHANNEL 10.0 800. .0690 2.0 20.0 .040 1.00 0 38 6 2 PIPE .1 1. .0001 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 1 .0 .0 .0 .0 .5 .0 1.4 .0 2.6 38 0 0 1 CHANNEL .0 500. .0250 4.0 4.0 TOTAL NUMBER OF GUTTERS/PIPES, 16 1 RIDGEWOOD HILLS 100 YEAR STORM EVENT ' FN:RIDGE.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES 1 GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA 13 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 ' 18 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 200 0 0 0 0 0 24 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 18 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 ' 27 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 24 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 30 38 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 39 40 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 411 0 0 0 0 0 RIDGEWOOD HILLS 100 YEAR STORM EVENT ' FN:RIDGE.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 CONVEYANCE ELEMENTS 1 THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN (S) DENOTES STORAGE IN AC -FT FOR FEET DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER ' TIME(HR/MIN) 38 39 40 0 5. .00 .00 .00 ' 0 30. .01( ) .00(S) .01( ) .00 .00 33.06 .02( ) .42(S) .43( ) 0 55. .00 .00 28.89 .03( ) 3.26(S) .41( ) 1 20. .00 .00 5.71 1 .03( ) 3.86(S) .22( ) 1 45. .00 .00 2.58 .03( ) 4.02(S) .17( ) 1 2 10. 00 .00 .76 .03( ) 4.09(S) .11( ) 2 35. .00 .00 .16 .03( ) 4.11(S) .06( ) 3 0. .00 .00 .03 .03( ) 4.11(S) .03( ) ' 3 25. .00 .00 .01 .03( ) 4.12(S) .02( ) 3 50. .00 .00 .00 .03( ) 4.12(S) .01( ) ' THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL 14/ .0 3.4 .0 060 4.00 0 D.A.(AC) 0 0 0 0 3.5 0 0 0 0 3.5 0 0 0 0 3.5 0 0 0 0 8.7 0 0 0 0 8.7 0 0 0 0 8.7 0 0 0 0 11.1 0 0 0 0 11.1 0 0 0 0 28.8 0 0 0 0 28.8 0 0 0 0 28.8 0 0 0 0 17.7 0 0 0 0 24.6 0 0 0 0 24.6 0 0 0 0 19.3 0 0 0 0 5.3 ' STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 14 19 24 25 28 29 30 RIDGEWOOD HILLS 100 YEAR STORM EVENT ' FN:RIDGE.DAT *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** ' CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 13 1.7 .5 1 5. 14 1.7 .1 .4 1 1 5. ' 15 17.7 .4 0 40. 18 1.7 .5 1 45. 19 1.7 .1 1.3 1 40. 20 38.3 .5 0 40. ' 24 2.6 .7 1 5. 25 2.6 .1 .3 1 10. 27 4.3 .7 2 5. 28 4.3 .1 3.2 2 5. 29 114.5 .6 0 40. 30 38 132.6 .0 .7 .0 0 35. 0 40. Vol 39 .0 .1 4.1 4 10. 40 98.5 .6 0 35. ' 41 30.5 .4 0 35. IENDPROGRAM PROGRAM CALLED r-� 17 �7 L 14�1 EROSION CONTROL 1 s/ RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: y/USf��T ,r/L;/�jG� STANDARD FORM A COMPLETED BY: 7--7-l?5 DATE: f-6 DEVELOPED SUBBAI�IN ERODIBILITY ZONE Asb (ac) Lsb (ft) Ssb M Lb (feet) Sb M PS M )Dz Z,44 !D� 344 1D7 /0 ll o,s� ;7-z ).28 4z.D z- v Z�I /,/7 545 �ort It 4z5 z.3 5/Z 3�3 6,(7 435 3 d4 10, "7 3 i l (,:�) D, % MARCH 1991 8-14 DESIGN CRITERIA RAINFALL PERFORMANCE STANDARD EVALUATION rsy PROJECT: f � J_4 OD IV fG 45 �je 5 % STANDARD FORM A COMPLETED BY: T.T DATE: l -� DEVELOPED SUBBAgIN ERODIBILITY ZONE Asb (ac) Lsb (ft) Ssb ($) Lb (feet) Sb ($) PS M 40-o /, z 3 4%5 3, o /l7� c' 4 1403 !. 3/ 970 7,0 4 a�L /, /a ��� 7- / 2,e :3 e40 3,7 40 7 ),59 375 3• g 4M D- H �Z OD 5.0 46? 3, z ?66 1, D �/D 1, Z3 57.�� v����` Uri Cn r 717� ;�4o >✓i MARCH 1991 8-14 DESIGN CRITERIA EFFECTIVENESS CALCULATIONS PROJECT: �icl�eu� p N; ;I g r�,'t`5� F-�'Ii n� STANDARD FORM B J COMPLETED BY: TS DATE: Erosion Control C-Factor P-Factor Method Value Value Comment L e- MAJOR PS SUB AREA BASIN ($) BASIN (Ac) CALCULATIONS 5 7, 67 r o 3asiv. 3v4 Ili —� �, I16 Io6--:7u�p 4 67, 3e0; 3'-1� r0 ) C7Y"avG IeJe:t F���ei S� S�r-o Icaf 3,44,- Tmp, �'e I��Z�— TAP• �l� �'c�.� balEs, (6)+3,44 4 15,9z - 5 7- - D, z zd- �9� 7- S7- 7 �►15�rUc�ipJ\, '.Satc MARCH 1991 8-15 DESIGN CRITERIA EFFECTIVENESS CALCULATIONS PROJECT: ��d��� �'I S'�1 F�'%�'vt� STANDARD FORM B COMPLETED BY: DATE: Erosion Control C-Factor P-Factor Method Value Value Comment ` Q,6 ►, � MAJOR BASIN PS ($) SUB BASIN AREA (Ac) CALCULATIONS 3z. C;q L?o-ems �� � .► ��s, 7 7, 7 ��-e, S7- �7 MARCH 1991 8-15 DESIGN CRITERIA 'CONSTRUCTION SEQUENCE PROJECT: RI dq STANDARD FORM C ' SEQUENCE FOR 19 r ONLY COMPLETED BY: DATE: Indicate by use of a bar line or symbols when erosion control measures will be installed. modifications to an approved schedule may require submitting a new schedule for 'Major approval by the City Engineer. I Iq YEAR MONTH OVERLOT GRADING ' WIND EROSION CONTROL Soil Roughening ' Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other ' RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters ' Straw Barriers Silt Fence Barriers Sand Bags ' Bare Soil Preparation Contour Furrows Terracing ' Asphalt/Concrete Paving Other ' VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting ' Sod Installation Nettings/Hats/Blankets Other 1 ' STRUCTURES: INSTALLED BY MAINTAINED BY VEGETATION/MULCHING CONTRACTOR I DATE SUBMITTED I� L_ APPROVED BY CITY OF FORT COLLINS ON I MARCH 1991 8-16 DESIGN CRITERIA O 0101000 o el' to Lo In In ggqqq O 01010101000000 O lq:r 'w .9v v to to lfl to to In d' q q ggqqqqqq O gc1O111Q1c111c10111011� O d'd'sr�'d'd'd'd'd'd'd'eTLolllln M g q q q q q q q q q q q q q q O h q q q 1. 01 01 c► 01 01 01 01 01 01 01 01 01 01 01 01 . . . . . . . • . O . . . . vvv V vItr v v1-41 Ts7"a'vvv N g q q q q q q q q q q q q q q q q q q q O 0mv0lD%0%D0hhhhhhhhhhhhgCococococo . . . . . . . . . . . . . . . Q . O . . . 1; ;.4;et srd';q;;d';4;sTq'444 V'd'ep4d'.4; O ri googqqqqqqqqqqqqqqqqqqqqqqq 0 coNMRPLOInU)t %0%D%00IDhhhhhhhhhhggq Q a 01 cri�a���v O OD co co co coggqqqqqqqqqqqqqqqqqcoco U O 1D O N M d d Uf Ln Ln Ll! 1O 1O 1O 1� 10 1G 1O 1O 1O h h h h h h . . . . . . . . . . . . . . . . . . z g q q q q q q q q q q q q q co g q q q q q q q q q q H 0 0 d'01r-1NMM"r41ir v :rLoLnLoLotoLnLnLoIn%D%0tCt01010h La U g q q q q q q q q q q q q q q q q q q q q q q q 0D q [-4 O 010gOr1.iNNMMMMd'et'�'�0'd's!'d'aTU1Lnl11lf11pt0 . . . . . . . . . . . . . . . LL g q q q q q q q q q q q q q q q q q q q q q q q CO W lnNlf'1hg0100e-ir-Ir�NNNNNMMMMMd'�!'sTsTe7' to . ....... .......... . ... qL*r `-'LO NMMMMMd'a -WvIgd W -1lwv Wle Kr V vd 1-crRr v v co co co co co co co co g co co co g q CD co co co co co co co co co co CD W vI W all 134In rigr-lM.'LnIn%D%Dr- ,hgcOggqq010,0100000 a 34 4NMMMMMMMMMMMMMMMMMMM44444 H D. cA g q q q q q q q q q q q q q q q q q q q q q q q q co O 00w0HNc• qr v to 0 0 0w%Dt0t0hhtl-Nww Dmm H. . . . . . . . . . . . . . . lA �Q' riNNMMMMMMMMMMMMMMMMMMMMMMM \ ggqqqqqqqqqqqqqqqqqqqqCOqq00 W LAU to r-4ralnhdWdo gOOr-INNMMM"tvvU�m0 0t010hh M r•i N N N N M M M M M M M M M M M M M M M M M M M M M ggqqqqqqqqCOqqqqqqqqqqqqqqq ,�/� W O O MN1OgG10HNNMMM'Q'vvv-tr V LO n0 m 00tDt0 IYr M 44C4NNNNNNNNNNNNNNNNNNNN W 00tOgggq00qCOqqq0000q00C30000COCO000DqCDCO clVi W LNn LOLo01NMd 0hhhggcoa%m010010%0000001 ,a .................. 000iiHri riHHriHHHHiHrIHHNNNNNN h g co q co co co q q co co co co co co co co g q co co co co co q OD LV .Z O .0In0Cl) In%DggOl000riririr4NNNNMMMMMM N c 0 c0 0 0 0 0 r1 4 4 ri ri ri ri r-; rl 4 r-I 4 e-I ri ri ri 4 ht-OOggq ggqqqqqqqqqqqqqqqqq �^ � w Ln c Nc rc �! Lf)hr:c Qc O100rir�.-irir-INNNMMMMM ri 1D co q 0101010%m0101010000000000C; C; v h h h h h h h h h h l- g q q q q q q q q q q q q q co O %0M0d'h010r-iNmm1-cr11U)LnInLn%DtD%DtDhh1D01D � LI ri 1DhhhhggqqqqqqqqqqqqCOqqqqq hhhlhhhhhhhhhhhhhhhhhhhhhhh V� Ln 010d'tOhgghhhtD00LO-;rVMMNNM%D V v-1MW . O . . . . . . . . . . . . . . . . . . . . . . . . . . O NNNN NNNNNNNNNNNc Nr Nr lr-lriri00 h h h h h h h h h h h h h h h h h h h h h h h h h h x` 3E4•• 00000000000000000000000000 OOH 00000000000000000000000000 ,.az�, riNM�Y'Ln10hg010r-INM�t'lntDhg010lnOlf101nO Ix. ririrlrIr4Hr-4HT-4 iNNMMtf v n a 8-4 DESIGN MARCH 1991 CRITERIA � ss/ iI 1 � I November 23, 1994 Mr. Basil Hamdan City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 Re: Ridgewood Hills First Filing Erosion Control Estimate of Probable Costs Dear Basil: i This letter is intended to satisfy the City of Fort Collins requirements for an erosion control security deposit for the Ridgewood Hills First Filing. The City of Fort Collins ' current cost factors will be used for this estimate. There will be approximately 57.67 acres disturbed within this project. Using the City criteria of $500 per acre for construction sites over 10 acres, and using a 150% contingency, the total obligation for a security deposit would be: (57.67 acres) * ($500.00 per acre) * (150% contingency) = $43,250 An estimate was prepared using all improvements shown on the construction plans ' using current bid prices. The amount estimated was $22,200 (see attached cost breakdown). Using the City criteria of 150% of estimated costs, the total obligation would be $33,300. Therefore the total obligation required will be $43 250 9 Please call if you have any questions regarding this estimate. ' Respectfully, RBD Inc. Engineering Consultants 1 Tim J. Ba /eyAl::--:� L RIDGEWOOD HILLS FIRST FILING EROSION CONTROL ESTIMATE OF PROBABLE COSTS EROSION CONTROL ITEM QUANTITY UNIT COST TOTAL COST Gravel Inlet Filters 12 Each $200 $2,400 Hay or Straw Mulch w/ Temporary Seed 46.98 Acres $400 $181792 Straw Bale Check Dams 1 10 Each 1 $100 1 $1000 Total = $22,192 + 150% Contingency = $33,288 CHARTS, TABLES AND FIGURES No Text INTERPOLATED VALUES FOR 100 YEAR INTENSITIES Tc Value 'j. A4 5.00 9.0 5.10 9.0 5.20 8.9 5.30 8.9 5.40 8.9 5.50 8.8 5.60 8.8 5.70 8.7 5.80 8.7 5.90 8.7 6.00 8.6 6.10 8.6 6.20 8.6 6.30 8.5 6.40 8.5 6.50 8.5 6.60 8.4 6.70 8.4 6.80 8.4 6.90 8.3 7.00 8.3 7.10 8.2 7.20 8.2 7.30 8.2 7.40 8.1 7.50 8.1 7.60 8.1 7.70 8.0 7.80 8.0 7.90 8.0 8.00 7.9 8.10 7.9 8.20 7.8 8.30 7.8 8.40 7.8 8.50 7.7 8.60 7.7 8.70 7.7 8.80 7.6 8.90 7.6 9.00 7.6 9.10 7.5 9.20 7.5 9.30 7.5 9.40 7.4 9.50 7.4 9.60 7.3 9.70 7.3 9.80 7.3 9.90 7.2 10.00 7.2 DRAINAGE CRITERIA MANUAL RUNOFF t,> 50 IE I-- 20 Z w U w a. 10 w 0- O 5 N Lt1 LO O U 2 L:J H Q 1 /I ! II I � I we I o w 2 �e I y of c 1vl c,• Ti ` I L I I I ti 11:` o l 1' o O Q� 1 1 7 1I I i I I I I I I t 1 I 1 /11 I I I ' ! I I I .2 .3 • .5 1 2 3 5 10 20 VELOCITY 'IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING 'IUNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5-1-84 URBAN DRAINAGE & FLOOD CONTROL DISTRICT 7 L TORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 803 . MANHOLE AND JUNCTION LOSSES 2A ==� !ra C/ Ptf4 o, A LE EQUATION 001 � `_ K � ECTIQN kOTC f.a 1•T TIN •t i-lot. CASE I INLET ON FAIN LINE or- \o .Pt AN. JIE EQUATION 005 =-K.`' ;L cj; s e C 1 =L 1:_77 %PRH_ USE EQUATION 005 o� ! ` k Viz ..,� ,:z SECTION CASE II INLET ON WAIN LINE WITH BRANCH LATERAL o. . PLAN USE EQUATION 001 u i 0. •� SECTION . SECTIQN CASE �_ NAN}iOLE QN PAIN LINE ,CASE h0. WITH 9' 6RF� ANCH LAT� ca INLET OR MANHOLE AT BEGINNING OF LINE K a� k=1.zs CASE III K. 9° ,�K. 0.'05 22-11/z 0. Y 0.25 .45 0.50 1.25 60 0.35 90 0.25 No LateralSca Case I D eNOV 198�4. REFERENCE:. Y. APWA Special Report No. 49, 1981 M DRAINAGE DESIGN AND TECHNICAL CRITERIA I TA B L E 8 d 2 C JORM SEWER ENERGY LOSS COEFFICIENT (BENDS AT MANHOLES) 1.1 r: ,• 3' f r•'1 I ' r•Z•r I 12 f r.t t IX4 I !. ate! I I ' 1.0 Bend al Manhole, I no Spoclal Shepinp I 0 0 Gb day Dorloclor I -j 0" 6 curved I I . 1 Bond at Minhole. I Curved or Defteclorl 0.� r Manhole I J•SZ I . 0.2 ! I J.lc, I I p.I Z. 1 ' 0.�v 0.0 i I ` 0' 20' 60' 80' DO' 100' DelfeelfonMple Y.Degisca ' NOTE: Heod loss applied of oullel of manhole. '' 1 9 8 8 REFERENCE: Modern Sewer Design, AISI, Woshinglon D.C., 1980. DRAINAGE CRITERIA MANUAL r O N F CC 0 I- L U z o LO z a CL X W 9 = Expansion Angle -T At• RIPRAP .l .2 .3 .4 .5 .6 I ..7 .8 i TAILWATER DEPTH/ CCNDUIT HEIGHT,Yt / D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE & FLOOD CONTROL DISTRICT At• RIPRAP .l .2 .3 .4 .5 .6 I ..7 .8 i TAILWATER DEPTH/ CCNDUIT HEIGHT,Yt / D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE & FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL XM h 0 4c a KI RIPRAP /1� $,/ -Z Q� J\-�' I ' TYPE I• � I 00 YI/D Use Da insleod of D whenever flow is supercritical in the borrel. *Use Type L for a disicnce of 3D downstreom. z.s FIGURE 5.7."RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FL000 CONTROL DISTRICT I Table 83 C-Factors and P-Factors for Evaluating EFF Values. Treatment C-Factor ?-Factor BARE SOIL Packedand smooth................................................................ 1.00 1.00 Freshlydisked........................................................................ 1.00 0.90 Rough irregular surface........................................................... 1.00 0.90 SEDIMIENT BASIN/TRAP ................................................................. 1.00 0.50,11 STRANY BALE BARRIER, GRAVEL FILT ER, SAND BAG ........................ 1.00 0.80. SILTFENCE BARRIER..................................................................... 1.00 0.50 ASPHALTICONCRETE PAVEMENT ................................................... 0.01 1.00 ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A 1.00 SODGRASS................................................................................. 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS .................................... 0.451=1. 1.00 HYDRAULIC MIULCH @ 2 T ONSIACRE........................................... 0.100' 1.00 SOILSEALANT....................................................................0.01.0.60'`11 1.00 EROSION CONTROL MATSIBLANKE T S............................................. 0.10 1.00 GRAVEL MULCH h1ulch shall consist of gravel having a diameter of approximately 114" to 1 112" and applied at a rate of at least 135 tonslacre.............. 0.05 1.00 HAY OR STRAW DRY MULCH After plantinq crass seed, apply mulch at a rase of 2 tonslacre (minimum) and adequately anchor, tack or crimp material into the soil. Slope (°�) 1 to 05.............................................................................0.05 1.00 6..........................................•............0.06 1.00 11 to 15.............................................................................0.07- 1.00 16 to 20............................................................................. 0.11 1.00 21 to 25............................................................................. 0.14 1.00 25 to 33............................................................................0.17 1.00 >33.......................................................................... 0.20 1.00 NOTE: Usa cf at er C-Fac-,or a P-Factor values reep:ned in his able must be- subs a-miatcd by docurr�--rrBiion. (1) t✓,ust be constructed as the iirst step in overlot grading. (2) Assumes planting by dates identifsed in Table 11-4, thus dry or hydraulic mulches are not required. (3) Hydraulic mulches shall be used only bei%%een Miarch 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. MARCH 1991 E-6 DESIGN CRITERIA M .7 .3 .2 WE O 2 4 6 8 10 12 14 SLOPE OF GUTTER Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gu"er capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 DESIGN CRITERIA CLIENT c---' Ty 0= t--^� r �^' ' ' VG J09 NO. INC PROJECT CALCULATIONS FOR e-nt Engineering Consultants W.AOEEY_5_DATE2Tc CHECKED BY DATE SHEET -OF j �bi.>_�GTCZ . �/.: � Il V `2i'1l ^, � t >Z.r3 •�•. C�.Uri�•.-•'� � _ � :.:_ ; : . (0:3�•. Z! t:-�•�i_�C� l�.J�.Y. • ' - • �Jt_:i--�.at1.1 11 jt.51=. • . i c� _ . �L.� tl! 11 u ` ---- i- -�• —----•--� TIo►J' . �� Z.Z:Z. t=l.Ty. o,=- ,=aaz . c_cx UkjS v-jts Fes. . - , • ..: •.. - : -- ..: :. __ { � -> ,�' -�. ;. moo„_; � � F� � o r- c�.u-r-r�-� . �� : • •• � - . 7. • - _ ...-: � - f7��~ SZ^�y._L.;+ESS ���-+=c=1U;=ui'. �I t_:s�..:o.�(6 _. _. ! .. • • �•' : ' � = z�c�����`��, c= -czoss • mot.--n�� T•-1/�-� ' .. ... _ . I j • : .. ... M� j 1 =. :3•:SS jam• .' KA 1TJ-O2 y-, Cc>.Cy Es f41, CLIENTS '� c = �T Lim? � _' > c _ nC Rm-- ! FRC.:ECT CALCULATIONSFCF (I �" _7 f1 V Engineering Consultants 6CADEEY :7-1 DATE 7 CYECKEDEY .A'E SHEET 7 OF 7L _.�li�L?�� �LS./.��"_\l.-Z:1C��.._C:Lz3__•L—GU.1 1-�Z;._ '------_�7 ! �U—U.U../�3l—� _S� � 2.e=�-"T_•C�'�?.G.C�T 1, �S_—�-�_ ---- -- - '--- —� --- -'- --��— Ln 77--' - ----- -- - - - - - - - - - - - -- i= - -71 ._... �,.�,!C? .5i�?�'�f_.:- � � �? � .--��--L1.1bTZ� DV=�__�G.zat.r►.!_ 51' ^' ' . Vcr, .- C. r == == C �Co :7)( .���:►m S6!�":����s�=�� _ •- . - - --_ .. 2 3 do•- T-.'j=•? _-. C off? = SI'�� OILY, .._.. ----r ...- .__..: ....---- - •� ---- Al .-;-- �1•0: �.CI(�>- _ ��_".?!.� _ C.035 a__d.7._ - - - --- - - -- -i -- - -- j i_ -- - S_- - - - - -- -- -- --- - -- : �Tflt _i�TlZttJl�t: ✓S-:--«-.C_•.S: _o�S..-_31:.5-=_.57.5- -'- --- - _Y`LL��.. L..l � l..S--•� Z. 1T ! _— — _ /S�%._�tiS_.. � •�•.. r?'i..._...... i.�._..._. _ �!a,.►�{pis:-�AT,ou_._c�= 7-7 ----' 1 - '- - - I - - - _i7 1 --- -- --- }C S I_.r_ +�-1 i 1 1 j ' 1 1:�: t j •_ � i v 1 1 i!! •_: I,!:- 11 —.17 �J I ' __ �LL —1—�_— T--- -7-- 1�1 �_-_— i !'- i— i i i— 1 I -- • I! i —i i 1 __ _—': ± 1 s I i i ]�1 i :__ '— ��t i7 i (S •• :� : i 1 _ -1 �� i alculations for Curb Capacities and Velocities '/.ajor and minor Storrs per City of Fort Collins Storm Drainage Design Criteria 'COLLECTOR x/ 6" Vertical curb and cutter Prepared by: KSD, Inc. Q is for one side of the road only February 28, 1992 V is based on theoretical capacities Area = 3.55 sq.ft. Area = 28.96 sq.ft. Minor Storm . Valor Storm slope Red. , Parlor , 0 V . Valor . 0 V (X) :Factor . X . (cfs) . (fps) . X . (cfs) . (fps) 0.40 . 0.50 . 135.32 , 4.28 . 2.41 . 1129.59 . 35.72 . 2.47 0.50 , 0.65 . 135.32 : 6.22 . 2.70 : 1129.59 . 51.92 : 2.76 : 0.60 . 0.60 . 135.32 , 8.39 . 2.95 . 1129.59 . 70.00 . 3.C2 . 0.70 , 0.60 . 135.32 : 9.06 , 3.19 : 1129.57 . 75.61 . 3.26 0.80 . O.EO . 135.32 .. 9.63 . 3.41 , 1129.59 . 83.£3 , 3.49 . 0.90 : 0.80 . 135.32 : 10.27 : 3.62 : 1129.59 . E5.73 . 3.70 1.00 0.63 135.32 : 10.83 . 3.81 . 1129.59 93.37 : 3.90 . 1.25 O.FO 135.32 : 12.10 . 4.26 : 1129.59 101.03 4.36 . 1.50 0.80 135.32 : 13.26 . 4.67 : 1129.59 110.68 4.78 . 1.75 0.83 135.32 14.32 . 5.04 . 1129.59 119.54 5.16 . 2.00 0.80 135.32 : 15.31 , 5.39 : 1129.59 127.80 5.52 . 2.25 . 0.78 . 135.32 . 15.E3 , 5.72 . 1129.59 132.16 5.E5 . 2.51 : 0.76 . 135.32 : 16.26 : 6.C3 : 1129.59 135.74 6.17 : 2.75 . 0.74 . 135.32 . 16.61 . 6.32 . 1129.59 138.62 . 6.47 . 3.00 . 0.72 . 135.32 : 16.E8 : 6.60 : 1129.59 140.E7 : 6.76 : 3.25 . 0.69 . 135.32 : i6.E3 . 6.S7 : 1129.59 , 140.51 . 7.03 . 3.50 . 0.66 . 135.32 . 16.71 . 7.13 , 1129.59 . 139.48 : 7.30 . MS . 0.63 . 135.32 . 16.51 . 7.38 . 1129.59 137.E1 7.55 . 4.DO : 0.60 . 135.32 : 16.24 . 7.62 : 1129.59 135.55 7.8D . 4.25 . 0.58 . i35.32 16.18 : 7.£.6 1129.59 135.07 8.04 . 4.50 . 0.54 . 135.32 : 15.50 . 8.09 : 1129.59 129.40 : 8.27 : 4.75 . 0.52 . 135.32 . 15.34 . 8.31 . 1129.59 i2S.02 : 8.50 5.00 , 0.49 . 135.32 : 14.E3 . S.52 : 1129.59 123.77 : 8.72 . 5.25 . 0.46 . 135.3Z . 14.26 . 8.73 . 1129.59 119.05 . 8.94 5.50 . 0.44 . 135.32 . 13.95 , 8.=4 , 1129.59 116.56 . 9.15 . 5.75 . 0.42 . 135.32 . 13.63 . 9.14 . 1129.59 . 113.76 : 9.35 . 6.00 . 0.40 . 135.32 : 13.26 . 9.34 . 1129.59 11i0.68 : 9.55 . r 7 CLIENT i ' C = )CE NO. ' !!Y PFOJECT CLLCULJTIONS FOP(f-UT-? 1Z?� Engineering Consuiian`s SHEET I OF ��Si�'._��_I�.�'---y�"-�2�v�_ov.>��ei:�za;yi�'-r_-T���,=�s,��'✓�-1 -�c�_�,=.�u.� '- -_ 36�—r=-c.=a.�:.11...,:a��-.a'=i�:�iJ.1J:U.�-� _�_ : -=-- •--�_r:._----- � JJNJ C�us�aS_��SN.I_`s��s.iit:---.T_.; Cd LL-, Ly"--= ?-,:-C�?dGS'iY-� Lt ! -_ . _ ... �;-- •- -- - j1. - 2JC-•�-,-i ,J cSS: _ Ct� �.�. a=-1 U �J.1Z'--- � •tom 5 � • tom.: � 1 C� - - . - --- ' SLr--: fR:cltl. :.Tort. o:39! _1.- --_ • .. _ ... .i .71 �lZ) •�xi .� ��I:�1X'")----! 2-7:3�_ )1ti.'7_l.._ ::`5=43%?+ ----- - j r-.111`t��T_`V__ = a.C%�' 55 • _ _ '_,�._�_—I_ � = —�l'7 r.�t� �: 11_7 ?_1 f i-i—_: , : 1 ! ! _1 1 1— � • i �:.__ ' _ ` ' �; � : i i i ? ' J 1 : _t i I ; I _i ! , • - ' < ,� 1 j• i i � '' i } a i I • � : - •-�- :__- I ' --- ' '- c, Z.� - 1 .D.. S L-a __ 1.0_fc0__ � =7 g'`g�'� t 1 ! _--•��2: •1�i_'�J•.---- � 1-- ..s i (i + •l -�� g_ i° 7ti�_- -'--- '-: - ! 1 9 ' I! �yI�t 1 1 1 1 1! 1 T'j � J s t I tJ: _�: )_i I ?i.? ?_ice i ! I! 1 i! 1 t, 1 1 1 j_I I 17 1 1}' I�': ITt'�•-r` ;_1 i : 1 Lam_. � .�.�' • '_ , •1_ _t��•i_ !_! ,-..1.-1 : l, i: i i! 1 , : 1 �_ ) i 1 % S i, l •i ;__�_--' =� Engincrering Consultants CLiZKT e-!,= JOB KID. FAOJECT W.LCULAI, SONS FCRr---J MAIDE SY =ZM -3.�DIOE� CHECKE.-SY Dk-, E SHEET Z OF T 71 f V ON N. t C, 7 7 Zox. --7 -7 L) �z`�s•Cc�:� -.si�_.o=_�s=r�Er.a:J�:7� �. C�z�!:�:-o :tc�:c�X�4S:i7:-Z3:1'T� i -7- t _... (�Zx:11Xj-. li,_:� 7x Z. T_ ' • EF. �E,. i �7..7 C>' C:Z- � . . ......... :. 7 77 7 T 17i L I ZS _,_.... 77, 77 1 --L2 T i I 11TJ-.1"1111 !113 is . -'ILL T'j 'i LIT-, -11 f -T T. F. ...-L L J T J r�� i calculations for Curb Capacities and velocities Major ar�d Minor Storrs per City of Fort Collins Storm Drairace Design Criteria 1E1IDE�;i:FL with drive over curb erd Sv;ter Prepared by: RED, :nc. 0 is fcr one side cf the rcad only February 28, 1992 v is !:.zsed on theoretical capacities ' •Area v 2.63 sq.fr. Arta = 20.11 sq.ft: Minor Storm • Y.ajor Storm Slope Red. . Yin:r Q v . Kejor . Q v (X) :Factor . X . (cfs) . (fps) . X . (cfs) . (fps) 0.40 . 0.50 . ES.71 . 2.74 . 2.C9 . 696.73 . 22.03 2.19 . ' 0.50 : 0.65 : Ed.71 : 3.99 : 2.:3 : 696.73 : :2.C2 2.45 0.60 0.EO Eb.71 5.:7 2.55 696.73 43.17 2.6-3 0.70 . 0.80 . &S.71 . 5.80 . 2.76 . 696.73 . 46.63 2.93 . 0.60 . 0.80 . 85.71 6.20 . 2.95 . 696.73 . 49.E5 3.10 . 0.90 : 0.ED : ES.71 : 6.58 : 3.13 : 696.73 : 52.E8 : 3.29 1.00 0.60 M.71 6.94 3.10 696.73 55.74 3.46 1.25 . 0.ED . &S.71 . 7.76 . 3.69 : 696.73 62.32 3.E7 . ' 1.50 : 0.80 : E6.71 : 8.50 : 4.04 : 696.73 : 63.27 : 4.24 1.15 0.E0 E5.71 9.18 4,25 696.73 73.73 4.58 2.03 . D.ED . E6.71 . 9.81 . 4.66 . 696.73 78.E3 . 4.90 . 2.25 : D.78 . E6.71 . 10.15 . 4.95 . 696.73 E1.52 5.20 . ' 2.50 . 0.76 . 66.71 : 10.42 : 5.21 : 696.73 : E3.72 5.48 2.75 . D.74 . ES.71 10.64 5.47 696.73 E5.5D 5.75 . 3.00 : 0.72 . ES.71 . 13.E1 . 5.71 . 676.73 . ES.E9 6.00 . 3.25 : 0.69 : 66.71 : 10.79 : 5.94 : 636.73 : E5.67 : 6.25 3.5D 0.66 F5.71 10.71 6.17 696..73 E<03 .6.43 3.15 . 0.63 . E6.71 10.58 . 6.:8 . 696.73 . E5.00 . 6.71 . 4,00 . 0.60 E6.71 10.41 6.59 696.73 E3.61 6.93 . 4.25 : 0.53 : E5.71 10.37 6.E0 696.73 : E3.31 7.14 4.50 . 0.54 E.5.71 9.93 6.99 696.73 7?.E1 7.35 . 4.75 . 0.52 E.5.71 9.83 7.19 696.73 75.96 7.55 . ' 5.0) : 0.49 : Eb.71 : 9.50 7.?7 696.73 : 76.34 : 7. To 5.25 0.45 E5.71 9.14 . 7.:5 . 676.73 73.43 7.94 5.50 . 0.44 . ES.71 8.95 . 7.73'. 696.73 . 71.E9 . S.13 . '5.75 : 0.42 : ES.71 : S.73 : 7.91 : 696.73 : 70.17 : S.31 6.00 0.40 E6.71 8.50 8.08 696.73 63.27 8.49 1 . 110 15" RCP `- 056AC �\ POND CLASS 6 RIPRAP-" 121 x VW • 12" THK BY/ 12" SYPE II BEDDING 108 0.12AC - 15CURB - INLET y1D 15' CURB' LET ere 15' CURB 1 wLET MIC� Sr-5 SCALE 1'=ITY m WI M GOOD iSa i 55 8 RIPtANWARITAN ACC F SKYV� -ACl1Ba 8•W 12_ P swonnwv Dw/ 12" TYPE II NINCREETE filCBn.r cera 15' CURB SIDEGAI CULVERT INLET d2H �w4o !m ee7m III \"+'IQn 2hhl�ll� i® - 15 CURB INLET IT 3E 3D5 LEGEND - ' -'-- E215TNG CONTOUR PROPOSED CONTOUR REDWINE - -" DIRECTION OF FLOW DESGN POINT �••�••- DRAINAGE BASIN SWNDART ST-4 BASIN NUMBER 1'1AC a BASIN AREA H.P. HIGH POINT LP. LOW POINT 2t•x AVERAGE STREET SLOPE PROPOSED CROSSPAN -P�- SWALE/DITCH W/ FLOW ARROW OGRAVEL INLET FILTER CALL UTILITY NOTIFICATION STRAW BALE CHECK DAM CENTER OF CMORAUO 1-800-922-1987 PROPOSED STORM DRAIN PIPE as 534=6700 100 YR. INUNEATON AREA AFTER THE OVERLOT GRADING HAS BEEN COMPLETED, ALL AREAS NOT IN A ROADWAY, SHALL HAVE A TEMPORARY VEGETATION SEED APPLIED PER THE CITY ON FORT OMENS SPECIFICATION. AFTER SEEDING, A HAY ON STRAW MULCH SHALL BE APPLIED OVER THE SEED AT A RATE OF 2 TONS/ACRE, MINIMUM, AND THE MULCH SHALL BE ADEQUATELY ANCHORED, TACKED. OR CRIMPED INTO THE SOIL PER THE METHODS SHOWN ON THE DRAINAGE 8 EROSION CONTRW PLAN. AFTER THE UTILITIES HAVE BEEN INSTALLED, THE ROADWAY SURFACES SHOULD RECEIVE THE PAVEMENT STRUCTURE. AFTER INSTALLATION OF THE CURB INLETS. THE INLETS SHALL BE FILTERED WIN A COABINATION OF CONCRETE BLOCKS, 1/2 INCH CURE SCREEN, AND A 3/4 INCH COARSE GRAVEL. DEVELOPED SITE HYDROLOGY DESIGN RONr F 1A BA51N I 1W AREA (cc) 3.01 "C" 0.W (COI) 241 ()'. CING 8.73 102,106 4.51 0.62 6.74 26.11 _1B 1C 108 2.08 0.65 3.011 11.88 1D 103 2.BO 0.02 3.68 1193 1E 1021p8.107 5.68 0.52 7.44 28.21 1F 105 2.64 0.50 3.99 15.57 1G 103,108 2.92 0.62 178 14.24 1H TW 1-W OJO 2.38 K 11 100.102.106,107 _ 1187 1.7 1.7 1K 103,108.110 3.40 IJ 1.7 1L _ 111 0.91, BY"1:22 4.70 2n 2W,201 TEAS DR% 3.14 11.75 2B _ 201 1.17 0.79 253 9.98 2C 202,203,204,205,205 7.51 0.56 9.50 37.85 20 203.204.205.206 5.47 0.55 6.98 2Z93 TEE _ 203,205,206 4.41 0.5) IW 2{.11 2F 201 3.28 0.54 4.39 17.62 20 206 0,74 0.09 1.45 5.73 2H 2O2-206.211 8,65 0.59 11.02 46.09 0 202-206.211,212 9.28 0.61 12.23 507 2J 200,201 2,45 12Y4 062 2.6 2.6 3A 202-206.211.212.WO 302 21.70 85.28 30 301 _ 302 2.14 075 4.33 1 17.30 3C 3E 1.91 047 1.97 1.17 7.28 W4_ Y-0 082 4.32 3F -- _ 305 0.25 084 0_68 3.18 DG 202,203204,205,206,211, 212.3 12 300.J01,3 17.73 4.3 4.3 M 400 104,{12 9.48 D.SB 14.6J 53.24 48 401,402.403,412 7.07 6.54 10.19 36.95 4C 4U 402 - 403 213 1.51 OW 102 11.54 '0,71 2.54 'a IMM-_ AE 404 1.10 OJO 2.29 8.71 4F -4G 405,409- COS _ _-- 408 5.98 S58 7.28 27.85 2.82 0.55 3.03 1L53 4H O 78 0.38 0.66 25B M 405,406,408,409 9.39 0.55 9.86 37.13 IJ -- -- -467 0.38 0.60 0.67 Z57 IK 400-412 25.40 0.49 22.10 8274 K 400.401,402,403,404,405 B,IW,406,In,N0,411,41 21.8 4.5 4.5 4M 4DD-410 5.W 0.25 2.39 8.77 AN _ 412 _ _ 0.57 0.69 1.25 4.41 L .. / n• -- POND 14 4 1 +• • �SWALE /107 DRAINED AREA = 3.5 ACRES + 2 i _ SEE SB ET 6 1W YR. WS4EL 90.4 074 C •� ° 4D2... / ppc VOL. PROVIDED = 0.62AACfFT '.T \ TOP OF BERM - 920D I 211AC ° a 9 \ /� 0 n 2 YR. HISTORICAL RELEASE RATE = .77 cfe ACTUAL SURFACERA EASE R0.21 AC eh F We�• 1 • I + yI •H•+. H i0: ',, - ( e• M i d, POND i \\ / - _�1 . '� ua• / �/ I /-CLASS 6'Rx 12* I N- NED AREA 8.0. ACRES m / _ 1 j 1+ -� J6 -- _ LJIF • y+'� 4 / THK W/ 12" TYPE II VOL. REOUFED =93 AC -FT / / / 1 11 1 4" • BEDDING WE. PROWDED 1.60 AC -FT la 6 •axa, ,N, TOP BERM = 92.00 . 1 r4.•J/"� 111 e ACTUAL IRELEASE RATE =STORICAL 9E1 )ACIA W 1.73 ch �•. _ _ - .°` n• _ �• ••x g SURFACE AREA - 0.0 AC l Be'� '1 •r • a +1 • POND 25 �u,ra�s••� • �1, 1 �Pn" LOB '• •4 R a l �r t2lAC DRAINED AREWSEE815 ACRES ac' - afi P 1.40n - m= .r•• Wt. REWIRED 0.3 AC -FT me POND 39 VC.. PRONDED 0.6 AC -FT . a• xm 1 4 ..,�'•• a TOP OF BERM 84.00 �.r•• . \ 2 YR. LRELE SE RELEASE RATE = 0.65 cls SWAIF d406- •p Y; ACTUAL RELEASE R.2 = 2.6 ON 4 SEE SHEET 6 1 /- _ _ er-\4•' SURFACE AREA 0. AC 21 i Y F ..-POND 2B A0 �--�.-.�.-- 1' DRAINED AREA 17.3 ACRES 7.1 lief -_- 1 _ _.ON YR. WSEL - 73.00- QUIRED - 3.2 AC -FT A:H ST-I WL. PRONDED 3.2 AC -FT +MH ST-6 TOP OF BERM - 74.00 -a Beaks " -. ez we�I of I �oL XBIM rPA _.. e6 SOON w,N • ,�.,....,, o GROGGIN COB+Bo RmoenrN -. wemdBm- m Mmn,ga SO S, mt Auer PROPERTY LINE fAINFALLm ARGON a1i S+TRUCA AL ..-_ S.3mn1 DNpA... ..+m=, WRE MESH-' 4..SBvR1 flag, �dfY� .re T ORB, G,..a x.,.m L . m¢umxp,NBm,,t 1 BOOR wn.,,. MIN. T T- 0.5' CLEAR BETWEEN ++.1"s :E RESTRICTION OET i,A bw L FLOWLINE OF SWALE AND %�,'NN,OY`Rw,, BOTTOM QU PENCE (FOR SWAIES #401 (SIN JBB M TM DR.1YM DESIGNED FE�5 APPROVED DAIS Engineering Consultant M L ud✓ S4si 2450 n. l6IAW.. B14. C. SY, W I D C. A17M•eA GR,,f. CUSS ]OS 7,Nii68'J1'.i RIPRAP AT POND CUTLETS POND 14 CLASS 6 RIPRAP, 8 FT. LONG, 4 FT. WOE 12" THICK ON TYPE 11 BEDDING POND 19 CLASS 6 RIPRAP, 8 FT. LONG. 4 FT, WIDE 12' THICK W TYPE 11 BEDDING POND '15 CLASS 6 RIPRAP, 8 FT. LONG. 4 FT. WIDE 12' THICK ON TYPE 11 BEDDING POND H CLASS 5 RIPRAP, 6 FT. LONG 4 FT. WIDE 12" THICK ON TYPE II BEDDING POND 39 CLASS 6 RIPRAP, 17.5 FT LONG. 6 FT. WIDE 12' THICK ON TYPE 11 BEDDING RIDGEWOOD HILLS P.U.D. FIRST FILING FORT COLLINS, COLORADO 2 YR. HISTORICAL RELEASE RATE 4.33 cte ACTUAL RELEASE RATE - 4.3 oft SURFACE AREA = 0.57 AC POND 99 NOTE: FOR DETAILS ON ORIFICE DRAINED AREA = 24.6 ACRES PLATES AND OVERFLOW SPILLWAYS IN YR. WSEL - 56.2 VOL. REWIRED = 3.6 AC -FT SEE SHEET B. VOL- PROWDEO - 4.3 AC -FT TOP OF BERM - MM 2 YR. HISTORICAL RELEASE RATE ♦.7 cle ACTUAL RELEASE RATE - 4.3 CAB NOTE: SURFACE AREA = 0.94 AC OFFSITE TOPO INFORMATION FROM CITY OF FORT COLLINS CONTOUR MAP City 9f Fort Collins, Colorado IFF M PLAN APPROVAL APPROVED: DBDI of Byleeeeft Dete FORT COLLINS - LOWI-AND WATER DISTRICT SOUTH FORT COLLINS SANITATION DISTRICT CHECKED BY: Water h xeeLeeater UUBty Date UTILITY PLAN APPROVAL CHECKED BY: BWmaater Duty Dete APPROVED MANAGER CHECKED BY: DATE Puhe h ReereaUov Date CHECKED BY: APPROVED ASIA SYSTEMS ENGINEER DAIS CHECKED BY: Cate SHEETS SHEET DRAINAGE AND EROSION CONTROL 1 54 7 PLAN NO. I BT � - I,, - - - ----------- - I -- -"--" - - - - ��---A ---- - - - --- --- _random WIDTH TAILBY-ROAD ---\---�--- urtV 3sss --- _-- — -- —• tr leAX 1 ---� - --- —' - — -- add --- - -T •w -.- _ - - --- v 3/4WASHED NOD¢ It l - + NFAW WtV 36 RCP - , " ... I H - _ P0.ITO M- I1E ERAA u-N. ADS N12 LP HRK)MU) I Ir�OSAMD `WIR I4*045 ALTER FRIRC OR EQUAL fitO OVERFI WEIR r r UNDERDRAIN _ _4 I DETENTION POND r28 --;' CONCRETE TRICKLE CHANNEL. SEE DETAIL SHEET 8. HORIZONTAL ALIGNMENT TO BE DETERMINED IN FIELD, T 2P RCP' I - I � Q car mm IN ••�••�•-�••_••i- u \ ,'- n+ RAMP DETAILS' O / p • / MM I t / WSTAU. NOR N WEMCAN CAEEN d,•N �"� u \ I N' y - PW EPOSON C04TN0. FQRC. x& Q0 / / °" / I \ I / RRECO•nENNDDAPER naiFAcnNEns ° - g 3/4• WASHED RCCM If • - -. _-. - -Y TOPSOIL r '-\ FTA823A L` A8 rJ� f<` \ l.; 10 I e / $ DAY CARE 8 `'�` / '� • . . FACILITY �Nr'sW / ,b �, ° ' 2V s' PERGG2AlEp PIPE Itt FIE 76 14nx�s �y�y� UNNDERDRAIN DAYLIGHT DETAIL �lop esv � CENTER OF COLORADO r — a1534 -6700 -9 / � a° �. 4 j5,\ \•. � � *JW I � a.snr.�^^a„ma's. J•-d/T \ � _ 1 � ../ AAA, '•/ r_ -_ -- I I SCALE I'=30' City of Fort Collins, Colorado NC A vmrrr Purr AP vu Avvvovm:•r LEGEND CHECKED BY: A//% Danny _. -- _ / -. - -. �•. v� y „•;. - - CHECKED BY. 91mm M ❑ t 4-�a F. .86 / / � � E%4TNG CONTOUR o ) C r / DAnIDHr / DIN, PROPOSED CONTOUR CHECKED BY: ✓� � � C n - • I / P.r6 a R°eNAIIRW 6 •\ F.88.03 y , 1 B! UNDERDRAIN PPE / / I DIRECTION OF ROW \ \ \ •�" ^ `'.. ' - `{T / / CHECKED By. h aN i / INFLOW CURB k CUTTER _ H C ECKEDY` B q (MENDUNDE AINETAIL SHEET \ --_- `•`\ ` -- 448 - / ;• � O \ \ / \ / I / WTGALL CURB k CUTTFA - I- - Y x — -J — — —FORT COWNS - LOVELAND WATER DISTRICT K \ \ - F.dl.9) \/ / / — 1 F.F.FFINISHED ROOR ELEVA110N SOUTH EMT COLLINS SANITATION DISTRICT EXISTING SPOT ELEVAnGN UTILITY PLAN APPROVAL PROPOSED SPOT ELEVATION APPROVED MANAGER ��" — \ �.. 100 WAR HWL FOR DETENTION POND DALE 3•12•60. j \ I APPROVED — _ _ I _ - \ UNDERDRAIN DATE ss¢N LNGwEER AW DKD SHEETS H T DRAIN IXSc D ceaED Engineering Consultants RIDGEWOOD HILLS P.U.D. FIRST FILING DAY CARE / 4-PLEX I FEB. tw +9 a-p�7 Ina . P°9'= "• T11"tH' ^-woR x'u'A'"®y c R„H. TSD FORT COLLINS, COLORADO 54 12 No. BY DATE RENSIGN DESCRIPTION AwRav£D DAM PRIAEDT Ko. wN /.e2-Hn wN/.N-am GRADING PLAN I t 9 \ a FM hm 151 _RV — 8131 B •. / �/ � 1 Mq�,d=V 7e887 r 148 /45 iF=BZ2 1F b A . 154 - - 155- IF=64.1 TF-909 132 aloe. .I 133 LL - m ySmog, t S gJ -) m f1 e 137 19 1314 O.a 0. 136 � ,h.89D, 1F.84? iF-79. I 2 136 F�4B n 9 134 �A988 ROAD 1, .A�r,:� _ 9 9 172 171 92M� — epir 9 173 I WF 8�3 1F-78.9 174 TF=9UN 1 r 175 �-ACS a h n n OB 1E-9T,9 0 0 % AO 0 FI G«S e BEGIN. SWALE NO. BT ,9� I k3 A I D, q A 158 B 159 1G=81J T[RBZ.1 � / 1 A Rt / I 160 157 161 TB - A 158 1F=T9.8 I _I �- --I n j2� )RIVE + 7D- B I' 1F=7L8 >4 - 143 164 IF=72.2 -OWE 142 � B ARE_ R�NLE� rt/ / A Ilea /, 169 POND a39 MPM TA MAO CE90HED OUT Engineering Consultants AN �P Rleum SMrtH }WO a. 16!n art.. IV; E, i'!. dt FEB. 1995 4-047 >I Cd ,R o W5T Demo. WORR emll APPRO ED DAM OECT NO . _ w / Aes-x22 w / Aye-S52e I SWAIE T//iE FAa] an SIRE a 10' CURB INLET OF CURB INLET 04A FZ,! U 1. ALL OVERLOT DRAINAGE SHALL BE GRADED 9. SANITARY SEWER SERVICE LINES SHALL BE TO A MINIMUM SLOPE OF 2A INSTALLED WTH A MINIMUM SLOPE OF 2% TO THE SANITARY SEVER MAIN. 2. ALL LOTS SHALL BE GRADED WITH A MINIMUM FALL OF 0.5IN THE FIRST 10' AWAY FROM 10. THE MAXIMUM DRIVEWAY CENTERUNE GRADE FOUNDATIONS. SHALL BE 10% UNLESS SEPARATE SIDEWALK i0 THE HOUSE IS INSTALLED AT 8.3% IN WHICH CASE 3. THE MINIMUM COVER FOR FINISHED GRADE TO MAXIMUM DRIVEWAY CENTERLINE GRADE SHALL LOWEST EXTREMITY OF FOUNDATION WALL BE 14% SHABE 35'. LL 11. THE MINIMUM DISTANCE FROM HOUSE FINISHED ,. THE FINISHED GRADE AROUND THE LOWER END FLOOR ELEVATION TO SANITARY SEWER MAIN OF HOUSES ON STEEP STREETS MAY BE INVERT SHALL BE 12' VERTICALLY. DROPPED TO MINIMIZE THE SLOPE DOWN TO PROTECTIVE SWALES AS LONG AS 36" MINIMUM 12. THE FINISHED GRADE AND FINISHED TOP OF COVER IS MAINTAINED. FOUNDATION ELEVATIONS ARE BASED W1 A SCALED BUILDING SETBACK SHOWN FROM 5. THE MINIMUM FOUNDATION EXPOSURE ABOVE PROPERTY LINE AND AN ASSUMED HOUSE FINISHED GRADE SHALL BE B', ENVELCPE OF AS SHOWN. ANY VARIATION OF SETBACK OR BUILDING SIZE ENLARGEMENT MAY 8. SLOPES OF 3:1 0R GREATER SHALL BE SODDED ESOMINIMIZE :1O R G REQUIRE THE FINISHED GRADE AND FINISHED i0 TOP OF FOUNDATION ELEVATORS TO CHANGE. 7. THE DRIVEWAY SHALL BE CONSTRUCTED ON THE HIGH SIDE OF THE LOT IN ALL CASES UNLESS LOT GRADING IS SPECIFICALLY DESIGNED TO ALLOW DRIVEWAY CONSTRUCTION OTHERWSE, B. ALL LOTS WTH OVERLOT GRADING FILLS OF 8' OR GREATER SHALL BE CONSTRUCTED IN ACCORDANCE WITH DATA SHEET 79G (FHA). LEGEND EXISTING CONTOUR -�- 04--_ PROPOSED FINISHED N.P. HIGH POINT L.P. LOW PONT T.F. TOP OF CONCRETE I iI SPOT ELEVATION (P Ya SPOT ELEVATICN (E FLOW DIRECTION mOPOSED STORM 1 EXISTING STORM OR A w B FHA GRADING DESC RIDGEWOOD HILLS P.U.D. FIRST FILING FORT COLLINS, COLORADO I WALL SCALE 1"-50' City Of Fort Coition, Colorado UMnY PLAN APPROVAL APPROVED: Db for M eMW Ale CHELRED BY Ielu d tleelaaeter UUBLT pate CHECKED BY: 9tarmaeb LWIL7 pNe CHECKED BY: Pub A Reueetbv pate CALL UTILITY NOTIFICATaN CHECKED BY: CENTER OF COLORADO DMe 1-800-922-1987 CHECKED BY: W 584=8700 = aM FoRT COLUMS _ LOVELA„D WATER DISTRICT roR SOUTH FORT COLLINS SANITATION DISTRICT rye UTILITY PLAN APPROVAL APPROKD MANAGER DATE APPROVED SF EMS ENavEER DATE $HE T$ HEfT GRADING PLAN (EAST) 54 �� u _ N SEE _-_-- ----r - 4 0 �D ^D SFE ET RMINNEEEDDLM Y J LD • ffE SNEETB/ .�. L _ _ _ _ TRYf1L pYlAn - - - _ - - - - - _ - _ _ - _ _ - T - - BIBRAe_ 1_ ---------" ,gym' - AFTER INSTALLATION W SESU 8 -uxclrinsra¢ ROBm-A[�LICAA 1 .>'- -SD 93'1 - - - - _ - _ GREEN P 300 EROSION DWTR0. PER Ij�NUF. SP_ECIF , I —__ - _ 2 88 . g Be hl 40EWAlK r36' RCP -'88 90 I <B7 k T P / I Rto 1F�90.fi 'W Wr B 7 POND SCALE AM 1'=50' J. •re 2,8 6 a o 12s 24 e BOP } / / CONETR TRI \Y z 6' \ B 1 I / 8 B4 BO ' R \- VE FLOW W 82 n pt adz 11 I $ ovEHFLow walR LEGEND CHANNEL. SFf DE xF�923 I a 5 { + Bo' p! SHEET B. HORI ,A �' I E%19TNG CONTOUR �i _ a a4 �B9.e / I Z RLY. 3 5.. -9°j •3 \ -\``_ _ , I ^` TF� __ __ I 21 x / Q / / �— 04— PROPOSED FINISHED CONTOUR M.P. HIGH PONT 6 L P. LOW POINT , 83 pm / p / � 59 My / t` 1a ,l � ' / / T.F. TOR OF CONCRETE FOUNDATION WALL A, m s - / / _ /. h. _ -�... _1 PUMA CO v5 I ^I� 1 �/ r - saor ttEVAnoN (PRoaosfD) l.gx FLOW DIRECTION (EXISTING) 6 ♦ /'/ T 18 /4M1, -- � � s°' �� ��V i� / FLOW W2ECTION PROPOSED STORM DRAW EXISTING STORM DRAIN F% 22 iF-92.0 `. \ A or B FHA GRADING DESIGNATION 23 2AN 25D9 Q.// p�33 ;l p 1 NOTEB ,Q ) $B $ / m °'' j a r \` _m ` 30 2a 28 / 1. ALL ON RLOT DRAINAGE SHALL RE GRADED 9. SANITARY SEWER SERNCE LINES SMALL BE , Y+9 TO A MINIMUM SLOPE OF 2a'. INSTALLED WTI A MINIMUM AWE OF 2% TO m A TR�00.8 9 TF-98.8 .TF-98.2 2. ALL LOTS SHALL 8E GRADED WITH A MINIMUM THE SANITARY SEWER MAIN FALL W 0.5' IN THE FIRST 10' AWAY FROM 10 THE MAXIMUM DRIVEWAY CENTERLINE GRADE FOUNDATIONS. SHALL BE 1OX UNLESS SEPARATE SIDEWALK TO m NO 6 \ �'�, ~1 _ _ / / 3. THE MINIMUM COVER FOR FINISHED GRADE TO THE HOUSE IS INSTALLED AT B 34 1N WIN CASE m 875 - nRr ,. 65g' pY I' 8 m s,"38 / /� \ WALIA COURT -- -s - sr Aa /. / LOWEST EXTREMITY W FOUNDATION WALL BE %14WM DRIVEWAY CENTERLINE GRADE SMALL m k / / / \ --_.-. .- - - __3.2x__ _\ -� % \ SHA1 BE W'. 11, THE MINIMUM DISTANCE FROM HOUSE FINISHED �_ y' 4. THE FIN[MI[MISMATCH FINISHED GRADE AROUND THE LONER END FLOOR [MISMATCH TO UNITARY SEWER MAIN ffi �94 ex- /?. \ OF HOUSES ON STEEP STREETS MAY BE INVERT SHALL BE 12' VERTICALLY. W b /( � A F �S� \ DROPPED TO MINIMIZE THE SLOPE DOWN TO PROTECTIVE SWALES AS LONG AS 36' MINIMUM 12. THE FINISHED GRADE AND FINISHED TOP OF g OT / / 4O I I 41 I A \ COVER IS MAINTAINED. FOUNDATIW ELEVATIONS ARE BASED ON A �b29 - 42 43 I I� 44 / SCALED BUILDING SETBACK SHOWN FROM 64 0 - /\ r 1F-02.5 TR+01 8 TR+99.1 O' S. THE MINIMUM FOUNDATION EXPOSURE ABOVE PROPERTY LINE AND AN ASSUMED HOUSE l7ob U 'l m - T w 53 m ql / • / I ! TP+9>.o / / FINISHED GRADE SHALL BE 8', ENVELOPE W AS SHOWN. ANY VARIATION W SETBACK OR BUILDING SIZE ENLARGEMENT MAY / _ 04T u \ I IaRr� � / \\ S. SLOPES W 3:1 OR GREATER SHALL BE SODDED REOUIRE THE FINISHED GRADE AND FINISHED TOP OFW TO MINIMIZE EROSION. TFNDATON ELEVATIONS i0 CHANCE. _ I i %. I I _ 1. THE DRIVEWAY SHALL BE CONSTRUCTED ON THE / / HIGH 4DE OF LOT IN ALL CASES UNLESS > - AID - � _. Y" -.'R9LOT sRNonac'T9 SPECIFICALLY DESIGNED TO51 __._.._ xuTw.RlvfwAYeWBTRDCTrON OTHERWSF._---.- I; a Au LOTS oLOT T UCof r lr I I IT 722 o ; ,�p.M\IIY/Oa e• �R GREATER NISHALL BE CONSTE T1 DATA SHEET 96 (FHA). n I 121 0 01 \ ACC R µ m k 4r A / 29 \ City of Fort Collins, Colorado -- - UTII.TTY PLAN APPROVAL S v - _ _ APPROVED: f� I n.Ds. i .A F TE_DB.o �F-am I � ! �' — ��� ate +�9 4 _\ \ \ T Diu CHECKED BY: IAIu a ule W GUl1l1 role � M i a 71-� I• < i /124 CHECKED BY: sw.m.M.. IItlSIT rote \ O� CHECKED BY. ti125 A,. t30 \ __ I evloaR.a..Boa ale CHECKED BY: rote r� B 129 I I CHECKED BY: Ole / / \ \ '4T•9 127. 128 TE.OB.T TF-as e �-� 1 - - - SOUTH FORTCOLLINS SANITATION DISTRICT CALL UTILITY NOTFICATKIN CENTER OF COLORADO EMT DOWNS LOME ND WATER DISTRICT \ / I 1 800 922 1987 C011' O1 534-6700 ®x•I UTILITY PLAN APPROVAL D - rw APPROVED I MEMBER UrureA MANAGER DATE II - i 11 r III APPROVED SYSTEMS MOMEER DATE WM T,B SHEETS SHEET MAW M5GNED am ��� ANGAEngAMa s C[ 2460ant9 RIDGEWOOD HILLS P.U.D. FIRST FILING I ,mc:rrM,N,,. M% Dorn._Dorm AlA-,it <.s„I.N= GRADING PLAN (NORTHWEST( 54 9 NO. By DATE REMSICN DESCRIPTION APIHOK DAM P CT NO. AU/412- R��I AT/4M5SN�1 FORT COLLINS, COLORADO CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP ZSY.WP RRVP mm MT sN SE earl fAW.'AIEN am go (N PCU ) (NOES) Dubai 20-1e0 IS N-M 35 25-59 10 6 2-10 0 DUN 12 70-I00 MO So-m 225 2lb a 12 Po 3 DUMB 19 IN 1225 W-70 loss 2YA ITT 16 2-10 10 CURB 14 IN SSIN 50-20 Ire 25-50 65 N 2-le L tft aMLPNMR SIZE T OF M MABE SS 9 5106 AT UE11 in 11TEN01EKi }}9Ar OR 4 ToI W9 N NOIT ROM F RAPID ACE SRDW. GRADATION FOR FILTER MATERIAL Z BY NAIT PASSNB SQUARE MASH of TYPE 1 In4 e (=I 6WMR LM SFFORGON 6tlt MS A gW SIR (MNTO AN) SEMI MCI) MN MIN) Y ... 90-I00 I-I/1' ... 11.1 A-N IN n R e5-I00 0-20 PP po 10-N Pw 2-10 (p o-2 0-3 N _TOP OF MIR C BOTTOM EIFVEal N ,-0 NOTE: TRENCH FOR WEIR Ol lBT STRUCTURE USING NATIVE MOUND AS FORM WORK. CONSTRUCT WEIR 80 MINIMUM THICKNESS. UPON COMPLETION OF TRENCHING, PUCE TEMPERATURE STEEL AND CONCRETE IMMEDIATELY. FORM TOP 4". Tab:e It 2. .need ear,," aplcnt rom of 5 far T. pMWY uwatarone wd/p co awM5 e. sp .w E W MCi newest Pd,na/Acre Annuls RTwmcs Carol N PathCod 70 Clear RE, coal w 40 Wreat - Sprce Cod 60 Barley Cal w X�d s n win, 19 Sargnum Warn 10 cant nano, indoor, adz maw wit .wlnq� xn Wm retie ant'ry Behr in d wmm 11 P dates far phronneal end ary%enerncrrap washes oar IA. Painting Mates far Pwennld and TerpvvarY/Coe Clear Gams. PERFNNIAL TEMPORAR;XOP"R OAR GRASSES CROP GRA4LS Cool Wpm Cql rWhile m Or- Fee2a Mau Of - May 15 No Yen May 16 - May 31 c No Yes N Jun 01 - ml dl No Yen No Aug 01 - us, JI No no No Yes Sep 01 - Sea M No No No res M 01 - Dec 31 Ym lee No No Uulchmg WaIr be used to a fid In edWciN^hm 1 of wgelatbn, p e o- ae o the f0in h; mole Nall be used .IA a Pycne grass a it trained. or a lempppy Real or row c ion Accent We Of Appeca(n Rate Mae uw __ _ She, w M Jw 01 - ad 31 2 Im N ANwllc (head ang per) Ran is -MmIS 2 Ionne, Ines/one NOTES: n.NPOES 3. fall HOW 5Td2MWATER Pd UORON PREKxnDA: I. SIZE IKSCsvnCN: a. Cludon Are SM'went caned.: a. Rnidw.Na hands s <mMrv[\m n water, mdm ae.0 n1lity cm.eu<iare is Warne <n se. Em,her (anal Yale, and Southern, Tare this .nee\. Mn rile b. Ma\eride Handling old wadi Florentine: b. The mop a<NNnen, we plu..ea n the fala.hq Over grading utility nsltIloU n, eel warm aura be uncle tt,ken to creed buildb rtdininw. mtl rnkle,tiol here, cm c.m. enterrdr and easier a epasol oasphalt and w RebM how C. r 54.05 waLLed +Rich ins 9m ossireUa nhult c�nta dAveremm rY undego chal a dal and rrwe Mgarveia and <mnup ey Real should rat be grading" horgedrN exceedingMilleror aptem c inlet an Neuld N enter f wwh ih Crack Reean RoberInternalI. Ralval -[C = 0.20 thetas conducted ReturnedReturned'C' = Benson Les, In \heal a l of csell fron, the site into an X9 offer c t ID .t - existing street Wpm rem s»tom err rode niprov le gh Ra n1W Encri Zone add the Meet d mmm ere Mh,ed be undertaken mmeyattlr to rewriter in, E,odal\ z maps tea w• t m o Rare d Win Ue ell 1 q 1 Y BE 15% Ne Is, acp"ccy g mprommens, Allsubjected to both end dine ralnMs np . 4 st N SOUMUZATICIN AND LMG 1EFM STORMWANN MANAGEMENT', e 1he wine lots e,r,w\ r nn,iMa of uIRiPAW1 hurl see Erosion CmM,e d stdizm to central "Whole , r No Warn Toothily par atkn cartes are anted near the lam men dbmv That < bhNlatim at the .ad, cbe fits, An W^ 4 let, nB leaned rpm a Wing sere of e \. Umntul dry old 0l each q The hernaewn receiving venter is, he Robot Benson LIMA. M undertaen (o olapnatanta the rani Creek Rese wY and the\CMe to Paudre Rhw. c ntrol pre this eheeldanld Shares eater nnWN then the site .11 Wrmattl` the Allen. Fani CM referwir rere d Me he, to Awedr hear. 5. OMAN CWTRQS: Sarin water Peat Hem the dshonest Pw1an of this site rA be trmywted to the detention panda by het , a. Mea�cm NwN^ a undetar" to remora eccex ante era need chal They daen`a bonds What n either .ao ham the ate and dispose of these waste FxN Olson p RMat BTmn s unhm Wy. Materidlo o -dls si an appap cote manes, l Ri o-� or ....... .roam be a,ds ake, to Rnn an -,-ter n Me -A1pm . rem anmm dam w Won and backing of mud area Mbis (wawa lonloks the M irrigator ratan ease o subject it,. Pillage eeaJng the Alto rem that fed d aMrb we not Par ding eadedeoye and Islas" to .hire non-prdecNd np d drainagowhin CROWN silo Poaf Crete ReawoF 2, 5T MAP: as Rohn Benue Lake. a. See R,i,on a Erosion Contra! Paw (this Aeet). 6. INSPECTION AND MAINTENANCE', o. respective and m me should b, nakw mnmcn rof regular b Swarm 6 th dmr and of Cahmrbn. the cops General Poini Emea, awtry (mat, p blal Jan 01 - Cie 31 Not WRA'able Hay a, NO, mu:N seal be b . ~1 end of Irel er M 5 1 al be 10 n a el new g wllb nlnw e gross a y on o sabre IT'Wo . �uighaNtl'. mania; Material IT ^wm urm c nMmore" may be afedm pdlmMar 5 through SeatwnOw ]O 1n8' (MIN.) "�, MUKn q 1 PayOrsrl muMl n be aNaed m to Ina N by a e the Ibe lnawkq mdrads:n air down 0.77' laeo mare In (a) A'E .t YN. 1L_ J1 Dow. 11.54 eft lmemthe t the f mow '.nt; m^ eA. ]OM ° ° sear be 0 h Nm w mono n CH. 5 se (b) Mawlmefh,omd<h noting „dd..lhe a A,. r leaning to ma m[twhd nh e SWALE M402 (c) Tacldpe0 remind We themdel to the mawf:urer,,[pemen me. 2. All sta, or nay must be tee of no Iwo ewde. -- AD 2-/5 BARS THICKNESS ` 2-05 BARS n J =MM®MM M®MMMM SECTION D-D CONCRETE WEIR OVERFLOW STRUCTURE ELEVATION NTs Ii 01 T 3 TRICKLE CHANNEL (IN XMNDON PONOS)n' NOTE: SWALES 4102 a 408 TO USE NORTH AMERICAN OREM C125 EROSION CONTROL MAT. SWALE 402 TO USE x15a BOLTS TO BE 1/2- to' MIN. SWALE MOB S.Y MIN YM 1L Jt CAN 0.55' 4 � 01N er 2.51 PM1 s -wax (I'll A (WE TABLE) SWALE M40T I /f C�nCE PLATE lY) BE 1-4 1/4- GALVANIZE rAFTER FABRICATION 11/2 I h eI 11/2_ 3' 3' I WEN AREA lir; LAP B SEE TABW ALL POND O.XET PIPES ARE TO BE Ir RW WITH SWARE EDGED HEADWALL AND MRM PLATE ATTACHED AS SHOWN NOTE: CONTRACTOR SMALL USE MILE ANCHORING STUDS AND SHALL all STUDS TO PRDVIDE SPECIFIED CLEARANCES. POND] 14 19 25 20 39 A 20.62 M 20.25 In 19.1 in 19.1 in 21.2 in B 21 in 21 in 21 In 21 In 27 N C 156 15m 15 in 15 MI 21 In M ire 0.12 No 0.18 fle 0.28 fF 0.28 if 0.34 AT ORIFICE PLATE DETAIL NITS IQ BERM R.O.W. TRILBY ROAD -13" TOP OF WEIR I"_5'"'I PUCE 6- TOPSOIL ON 11D East-91'0 / 12 MWLAR BOULDERS. OUSEL-90.2 ', BOULDERS ARE ON TOP M PLASTIC FILTER CUOTH, 4 ( CONCRETE TAIfl OUTLET STRUCTURE (BEE DETAIL MIS SHEET) 2' FLAT SECTION B-B POND M18 xq Sf.NE j Iq BERM R.O.W. TRILBY ROAD 1 TOP CAP WEIp I"5'I'{ PUCE TOPSOIL ON IN ER. ELEv.-91,0 /�I2' ANGULAR LAR BOULDERS. 4 kxc .r ..c nu cheat RAT SECTION B-B POND =14 NO N dlN = 0.70' 01N A, 27.13 On TL BERM R.O.W. AVMDALE ROAD S 8.59 n' TOP OF WEIR �-5e- --"-PLACE 8' TOPSOIL ON \ 1W YR. ELEV_-"tO 12' ANGULAR BOULDERS. " BOULDERS ARE ON TOP WSELerB1.07MME71MMUIDITORE 4 OF PLASTIC FILTER CLOTH, \ 2 (BEE DETAIL THIS SHEET) ....2' RAT SECTION B-B POND M25 No SCALE I O BERM R.O.W. TRILBY ROAD ELEV. OF TOP OF READWALLel - -�ORIFICE- P\ PLATE --r- INVERT PIPE-F l 6 POND/ 14 19 25 28 39 D 16' RCP 15a RCP 15- RW 15- RM 21' RCP E B375 8T25 T9.T5 64.75 51.25 F 8200 M.50 78M 63.M 49.00 HEADWALL CALL UTILITY NOTFICATION CENTER OF COLORADO 111800-922-1987 N 534-6700 VJUWv YOU M w°".oi CIR ITYRRRVAVATE FOR 11E WIRMA OF IR6AWI}Rp IBea 1nanE6. 100 Yli. WSEL�T3.0 OUTLET STRUCTURE (SEE DETAIL THIS SHEET) 2' MT SECTION B-B POND a28 ix Y.NE NOTE: ALL EMBANKMENT MATERIAL ON PONDS 014, 19. 25. 28. AND 39 SHALL BE COMPACTED TO 100% STANDARD PROCTOR DENSITY 1NWIN 12% OF OPTIMUM MOISTURE CONTENT. FMT COLONS - LOVELMD WATER 01STRICT SOUTH EMT COLLINS SANTATIM DISTRICT UTILITY PLAN APPROVAL APPROVED MANAGER DATE APPROVED S 4EM4 FNCINEER DAIS City of Fort Collins, Colorado UTIIA'I'Y PLAIT APPROVAL APPROVED: DDWdbf of FltglparlPR Bole CHECKS) BY: Iota a IeMreW IItitiLT OeG CHECKED BY: BGymtater UWBy Odle CHECKED BY: Perk Al Recreation Den CHECKED BY: aM CHECKED BY: hi .G9 TM MAO DEPG[D l_1995 APPROVED DATE Engineering Consultants 2N SeM Mddun SWxt 2stO R. Am Aloe, BM; C. e,w 4U Inc . Ten LNaraao e0sn o..ew. wnaa am11 My/ oft RIDGEWOOD HILLS P.U.D. FIRST FILING FORT COLLINS, COLORADO DRAINAGE NOTES AND DETAILS 1 54 1 8 I I f ( L 1 / NOTES 1. ALL OWILOT DRAINAGE SHALL BE GRADED 9. SANITARY SEWER SERVICE LINES SHALL BE Ry TO A MINMUM SLWE OF 24 INSTALLED WITH A MINIMUM SLOE OF 2% TO THE SANITARY SEWER MAIN. \ \ f 2. ALL LOTS SHALL SE GRADED WITH A MINIMUM _L. 51 B d% \ FALL O .5' IN THE FIRST 10' AWAY FROM 10 SHALL MAXIMUM UUNIWWASEPARATEINE GRACE TO 72,°p' I I 1T8 , lT9 I / \ \ t FOUNDP S. THE HOUSE IS INSTALLED AT 8.3 N MICH CASE J. THE MMI UM COVER FOR FINISHED GRADE i0MAXIMUM A Y O FOUNDATION WALL DRIVEWAY CENTERLINE MADE SHALL V LOWEST KTREMIT BE 14X SHALL B W'. °t. I 1 ¢E �� �:� / / A A t I • �� — II. FTHELOP R ELEVATOR DISTANCE FROMSANITARY HOUSE AMAIN 4. OF FIN ED GRADE AROUND THE LOWER END FLOOR SITUATION TO SANITARY SEWER MAIN • T� $"`� \ _ O DR HOE S M STEEP STREETS MAY BE INVERT SHALL BE 12' VFATCALLT. TER PUMP 0 )1,. 11 // 1 / \ \ \ \ =I y = _ �A _ = I DROPS TO AIDES E THE SLOE DOWN i0 rf sov - SITE \ / •0> / 4 ` \ A e — — f — -.� N�,� I PROTECT "AIDES AS LONG AS JB' MINIMUM 12. THE RNISHED GRADE AND FINISHED TOP OF II _ rr COVER I MAINTAINED. FWNDAnW ELEVATORS ARE BASED ON A SCA EDD BUILDING SETBACK SHOWN FROM r N d" ! /� // ' a I A, S THE MIN UM FOUNDATION EXPOSURE ABOVE ( 78 "- r- I PROPERTY OF AND AN ASSUMED HOUSE vV} =d. J - / / 1 IQ g F ry� p FINISHED MADE SHALL BE B'. ENV0.OE OF UI S40MN, ANY VARIATION M / � wp �/M -`2 / I I h I 8. SLOES F J:1 O GREATER SHALL BE SODDED SETBACK OR BUILDING SIZEMA ENLARGEMENT ANFINISH MAY I ;IA 114 r M I� 7 I A ' > I REWIRE THE FINISHED GRADE AND FINISHED i J y 108 I ` �O TO MINI ZE EROSION. / , \� 1 % I A I TOP OF FOUNDATION ELEVATIONS TO CHANGE. I ����' I 7. THE ORI WAY SHALL BE CONSTRUCTED ON THE °� V` \ 0 113 I A 117 lie I 8, HIGH 51 OF THE LOT IN ALL CASES UNLESS T W _ rj _ o %� 99 Q� A D?4 1 112 �I I�a0 I — bm •' LOT OR INO IS SPECIFICALLY DESIGNED TO ALLOW IWWAY CONSTRUCTION OTHERWISE. 5 \ q00 a -\ q� \ 0.S R �}r J. ALL LO WITH OVEBLL CONSTRUCTED FILLS OF 1 8' Oft G EATER SHALL BE CMSiRUC1ED IN NO>0 A s \ \ � �OP� 57� � ACCORD�CE MAN DATA SHEET 79G (FHA). 101 75 R°a5J 1.0703 25 25 25 01. cTYPICAL LOT SWALES J 1F"04,4 o/ BETWEEN Lors e9 rnaoucH 95 �077% A\� ��Tr �00 JJ ��� _v -� 04 it OB \ 0> AI \ ,7B..� 0 `'—\��--�.08 N Da 1s3 7 If 97. 4RZ J 7 e SCALE 1•=50' _. a LEGEND HP b k+ EXISTING CONTOUR J 03 A / xI --04— PROPOSED FINISHED CONTOUR H,P. HIGH POINT \ 2 84 86 q \'f LP. LOW POINT \ J / B b ,�AryN rp / "j d i.F. TO O CONCRETE FWNDAT ON WALL >.0 e � "+' x. �`-.�eyyr.T 1 , l� SPOT ELEVATION (EXISTING) ) .'. V.' 21. FLOW DIRECTION \ PROPOSED STORM DRAIN EXISTING STORM DRAIN A or B FHA GRADING DESIGNATION CALL UTILITY NOMCAT1ON CENTER CfF C�OO/LL�ORA//D��O LOTS 89 THRWGH 96 MLL REWIRE-VOO-92/.-1e7�7 OADING CERTFlCAT M PRIGS TO OCCUPANCY AN Y GERTRDA GF IA 534-6700 OCCUPANCY MIRIoN YOCALL 2 BUSINESS m I ONEXCA"v TE FOR THE wren OF NNWYAX1An City of Fort Collins, Colorado - ee.., OrAPRW UTHM PLAN APPROVAL APPROVED: r FORT COLLINS -LOWLAND Duec[or meeerlN pek SSARI WATER IST DISTRICT SOUTH FORT GOWNS SANITATION DISTRICT CHECKED BY: Ifeler a 1feMeler UUti[y pe4 UTILITY PLAN APPROVAL CHECKED BY. sAm. epBuy a. APPRO ED MANAGER CHECKED BT: DATE Perlo k P eetiw pate T `q APPROVED CHECKED BY: _ SYSIFus ENGNEEP ale DATE CHECKED BY: Deb ?� S-.EC'S SHEET pEvcNTD cKeD"" ��+ Engineering Consultants RIDGEWOOD HILLS P.U.D. FIRST FILING GRADING PLAN (SOUTHWEST) V 2460e "``'m4`�'1e n` FORT COLLINS, COLORADO 54 70 FEB. 1995 4-047 - .ca..mo mxl - ). BY DALE RENSIW DESON+TON 4PPPWE� DAZE OJECi NO /esessxe LEGEND ----50% ---- EXISTING CONTOUR W PROPOSED FINISHED CONTOUR MISMINMFFM DRAINAGE BASIN BOUNDARY BASIN NUMBER BASN AREA DE&GN POINT H.P. NIGH POINT LP. LOW PENT - T.F. TOP OF CONCRETE FOUNDATION W SPOT ELEVANON (PROPOSED) '0n SPOT ELEVATION (EXISTING) EXISTING TELEPHONE PEDESTAL SIN EXISTING CABLE TV PEDESTAL 0 ,EXISTING LANDSCAPE SPRINKLER I MOUSE 5\8' X 2'-6' X 4'-6• WALIf RAISED PATTERN NON- PLACE FIRST SCREW SKID. GALVANIZED PAN ].22' 6' FROM FRONT EDGE STEEL PLATE (AASHTO M-111) SEE 6 PLATE. 5 DENT 10 MATCH DETAIL 'A' 0.42% SLOPE AN } 3/8' BRASS SCREW - 18"O.C. 5/8' GALVANIZEG W/ COUNTERSUNK HEAD 21 PIAIE w5H W/ PLATE SLOPE 2:1 BEN E 1/4' 3- X 2- X 3/8" GALVANIZED ANGLE NO. 3 RI INCHOR - 18'O.C. DETAIL 'A' METAL SIDEWALK CULVERT \ J 0.8Z N\ \\ , \ \ � 84 CONTROL A%Ir \ ,� POINT \ \ WS \ \ . y e�H i�H�i i il♦ �f O 'I BID e�l0s~ -- _ -- SE eNN� X : STA 3A00 I SOT _ 8' CLINT �12C" _ END CURB -` ;je^' I1 _ LEFT SIDE 1 ii I I I NOTE: TO BE "WEDDED REMOVE E FIND UNDERONAIN FROM STA GO TO STA .4 I I _-_--E---___-----. ----J NOTES: GRADE TO CONCRETE TRICKLE PAN AT NO GREATER MAN SET ROPE GRADE FOR MINIMAL IMPACT IN LANDSCAPE AREA. STA 2+85.91 6' CURB STA \g�y s0B) °Y METAL SIDEWALK SIFICATK)N AND GRADATION OF ORDINARY RIPRAP VDARr MISS,S9WIG MMI RE OtIDMwN SMINE9II PN POOLS) Stilt (mm D/SS itt m 100 Do 50-m n aw 10 6 2-Io 0 PASS 12 )0-IW NO SOLD) 215 25-w O 12 2-10 3 CLASS IS 1m 12M bm SM 25-50 2R In 2-10 m GAS N ml SVY WID 12w bSO Sw 24 2-10 35 "Do PARNUE92E ATUWU wAVOINT GIREIM 9WL SEsws [GUL 10 GI VApM MNI nNs . H WNr p1 N 101 SIDE aMXs u NwNTMT ROOKma P Bows M[ s1Ne01 VARIES FROM EI TO 3'-0• 5 X 6- W 14 X W 14 ' $ PROMDE CONTROL JOINTS O 10' INTERVALS i CONCRETE TRICKLE PAN 6 X 6 - W214XW1� I CONCRETE TRICKLE PAN —F 3 D T I D 2 -o• � '• r D• 1 , 6 i 6- W 14 X W 14 CONTROL PROVIDE COITROL O 10' INTERVALS JOINTS O 10' INTERVALS IB ONE SIDE CONCRETE TRICKLE PAN WITH CURB BOTH SIDES STA 5♦18.34 SCALE V• 20' \) FINISHED / TOWNHOME F.F.- 'SO112.19 UNDER PAN ry (SEE DETARI I .X fill f --- t� — k ST mao-- 0--- - STA PAN PAN5+49,09 AND _ y END D 1RA.YSI110N-- i/ !NBEGN CURB \ END TRAM /F+b �ii�ury mN i RIG 1RANGTION STA 5f25.2> 6'i I END CURB RIGHT SIDE , BEGIN IN TRANSITION • � iI �a I STA 4a51.81 N TOP OF, I NEON TRANSITION BERM t 1 TO 3' PAN V/ GIBB- + \ / "qb• ii --_--- —) I STA 3t6062 FINISHED END 1RANGTION HONE I CLASS 12 RIPRAP DEEP, CDOi CLASS A DING MATERIAL II' DEEP. ----\ "--- RIPRAP DETAIL GRADATION FOR FILTER MATERIAL i B! (RE PAlyXf AMNp M919EMS (KOa mwxR wo p[firwtnN ( GA4 SSE9II (Aglm IN) YClgl R}01) s M1 20\M/ r NI-IW 1-I/Y .._ .... ve .... 2o-90 ( IN .... N 25-100 o-m Ri N as F5 10-w nm 2-10 .... M0 o-t o-3 DEVELOPEDSITE HYDROLOGY DESION POINT BASIN MEA (a) C (h) A 302A 0.89 O.Q 4.92 B ]02A,302B 0.2] 0.5E 5.83 H�ua♦tt�Fi(♦1 FINISHED HOME so)e / I I I I I / 1 I / I I I w I C UTILITY BOADO CENTER OF COL.O LL 1-800-922-1987 IN �34-6700 NI`IND POEM D"DAYS IN ramemVAM m�wiBlNs City of Fort Collins, Colorado UTILITY PLAN APPROVAL APPROI arecbr of Eopvwrw9 Oeb CHECKED BY: Tefc W peMeeater UIWt2 Daum Or CHECKED BY: SlmmeMer UUDl1 Deb CHECKED BY: Pens a 9seee0on Deb CHECKED BY: Deb CHECKED BY: Oeb 140 140 I9,m11 m Z 0 W PMAELT No 014-047 DflAWNG Na 11A- 54