Loading...
HomeMy WebLinkAboutDrainage Reports - 04/25/2016April 15, 2016 City of Fo Collins Approve Plans Approved by: Date: 4/zs zo l to FINAL DRAINAGE AND EROSION CONTROL REPORT FOR Walnut -Chestnut Subdivision Second Filing Fort Collins, Colorado AThis Drainage Report is consciously provided as a PDF. Please consider the environment before printing this document in its entirety. When a hard copy is absolutely necessary, we recommend double -sided printing. Prepared for: Bohemian Companies Mcwhinney Prepared by: NORTHERN ENGINEERING 200 South College Avenue, Suite 10 Fort Collins, Colorado 80524 Phone: 970.221.4158 Fax: 970.221.4159 w .northemengineering.conn Project Number: 947-002 NorthernEngineering.com // 970.221.4158 NORTHERN ENGINEERING April 15, 2016 City of Fort Collins Stormwater Utility 700 Wood Street Fort Collins, Colorado 80521 RE: Final Drainage and Erosion Control Report for Walnut -Chestnut Subdivision Second Filing Dear Staff: Northern Engineering is pleased to submit this Final Drainage and Erosion Control Report for your review. This report accompanies the Project Development Plan submittal for the proposed Walnut -Chestnut Subdivision Second Filing. This report has been prepared in accordance to Fort Collins Stormwater Criteria Manual (FCSCM), and serves to document the stormwater impacts associated with the proposed project. We understand that review by the City is to assure general compliance with standardized criteria contained in the FCSCM. If you should have any questions as you review this report, please feel free to contact us. Sincerely, NORTHERN ENGINEERING SERVICES, INC. ama. Aaron Cvar, PE Project Engineer 301 N. Howes Street, Suite 100, Fort Collins, CO 80521 1 970.221.4158 1 www.northernengineering.com ■V I NORTHERN ENGINEERING Walnut -Chestnut Subdivision Second TABLE OF CONTENTS I. GENERAL LOCATION AND DESCRIPTION................................................................... 1 A. Location.............................................................................................................................................1 B. Description of Property.....................................................................................................................2 C. Floodplain..........................................................................................................................................3 II. DRAINAGE BASINS AND SUB-BASINS....................................................................... 4 A. Major Basin Description....................................................................................................................4 B. Sub -Basin Description.......................................................................................................................5 III. DRAINAGE DESIGN CRITERIA................................................................................... 5 A. Regulations........................................................................................................................................5 B. Four Step Process..............................................................................................................................5 C. Development Criteria Reference and Constraints............................................................................6 D. Hydrological Criteria.........................................................................................................................6 E. Hydraulic Criteria..............................................................................................................................6 F. Modifications of Criteria...................................................................................................................6 IV. DRAINAGE FACILITY DESIGN................................:................................................... 6 A. General Concept...............................................................................................................................6 B. Specific Details..................................................................................................................................8 V. CONCLUSIONS......................................................................................................10 A. Compliance with Standards............................................................................................................10 B. Drainage Concept............................................................................................................................10 APPENDICES: APPENDIX A.1 APPENDIX A.2 APPENDIX B.1 APPENDIX B.2 APPENDIX C.1 APPENDIX D.1 APPENDIX E.1 - Developed Conditions Hydrologic Computations - LID Supplemental Information - Inlet Design Calculations - Storm Line Design Calculations - Stormwater Alternative Compliance/Variance Application (Floodplain Freeboard) - Erosion Control Report - Base Flood Elevation Analysis Final Drainage Report (NORTHERN ENGINEERING Walnut -Chestnut Subdivision Secl Fili LIST OF FIGURES: Figure 1 — Aerial Photograph................................................................................................ 2 Figure2- Proposed Site Plan................................................................................................ 3 Figure 3 — Existing Floodplains.............................................................................................. 4 MAP POCKET: Proposed Drainage Exhibit Final Drainage Report NORTHERN ENGINEERING I. GENERAL LOCATION AND DESCRIPTION A. Location Walnut -Chestnut Subdivision Second Vicinity Map 1. The project site is located in the southwest quarter of Section 12, Township 7 North, Range 69 West of the 6`h Principal Meridian, City of Fort Collins, County of Larimer, State of Colorado. 2. The project site is located just north of the intersection of Walnut Street and Mountain Avenue. 3. The project site lies within the Old Town Basin. A small portion of the site drains to the storm sewer system in Walnut Street, which is conveyed south to Oak Street and then the Udall water quality treatment area. The majority of the site drains into the existing storm sewer system in Chestnut Street, which conveys flows into the Cache La Poudre River. The Downtown River District Final Design Report, by Ayres 2012 (Ref. 5), shows the majority of the site conveyed via sheet flow into the Chestnut Street storm system (Basin 106). As long as existing site runoff rates are not increased, detention is not required for the site. However, the site still must provide meet current City Low Impact Design (LID) requirements. Several water quality treatment methods are proposed for the site, and are described in further detail Final Drainage Report NORTHERN ENGINEERING Walnut -Chestnut Subdivision Second Filing below. 4. As this is an infill site, the area surrounding the site is fully developed. 5. No offsite flows enter the site from the south, west, or east. A small area to the northwest of the site sheet flows onto the site. This area has been broken into two offsite basins, which is described further in Section IV.A, below. B. Description of Property 1. The development area is roughly 2.4 net acres. Figure 1 — Aerial Photograph 2. The subject property is currently composed of existing buildings, and landscaped areas. Existing ground slopes are mild to moderate (i.e., 1 - 6±%) through the interior of the property. General topography slopes from northwest to southeast. 3. According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Survey website: http://websoilsurvey. nres.usda.gov/app/WebSoi [Survey.aspx, the site consists of Paoli fine sandy loam (Hydrologic Soil Group A), and Santana loam (Hydrologic Soil Group B). 4. The proposed project site plan is composed of the development of a hotel and parking garage. Associated site work, water, and sewer lines will be constructed with the development. Current City Low Impact Design (LID) requirements will be implemented with the project, and will consist of several LID features which are discussed in Section IV, below. Final Drainage Report 2 NORTHERN ENGINEERING Walnut -Chestnut Subdivision Second Filing Figure 2— Proposed Site Plan S. There are no known irrigation laterals crossing the site. 6. The proposed land use is a downtown hotel development. C. Floodplain 1. The project site is not encroached by any City or FEMA designated 100-year floodplain. However, the City of Fort Collins Stormwater Utility has identified areas adjacent to the site as a 100-year flood risk zone. The adjacent Walnut Street and Chestnut Street have been studied for flood risk, and base flood elevation in these adjacent streets has been analyzed. Appendix C provides a summary of the analysis performed to determine base (100-year) flood elevation in adjacent street Right of Way, which is intended to be utilized for the design of finished floor elevation or flood proofing at Final design. Final Drainage Report 3 .V NORTHERN E HE ItEERIWE Walnut -Chestnut Subdivision Second Filin FEMA High Risk - Floodway FEMA High Risk - 100 Year NORTH C] FEMA Moderate Risk - 100 / 500 Figure 3 —Area Floodplain Mapping 2. A minimum of 6-inches of freeboard (a variance from the 12-inches of freeboard requirement has been requested, please see variance request copy in Appendix E.2) (100-year) flood elevation in adjacent Right of Way. This freeboard level will be applied to either the design of finished floor elevations, or the minimum level of flood proofing measures. II. DRAINAGE BASINS AND SUB -BASINS A. Major Basin Description 1. The project site lies within the Old Town Basin. Generally, detention requirements for this basin are to detain the difference between the 100-year developed inflow rate and the historic 2-year release rate. However, a portion of the site drains to the storm sewer system in Walnut Street, which is conveyed south to Oak Street and then the Udall water quality treatment area. The remainder of the site drains into the existing storm sewer system in Chestnut Street, which conveys flows into the Cache La Poudre River. As long as existing site runoff rates are not increased, detention is not required for the site. The site still must meet current City Low Impact Design (LID) requirements. Several LID treatment methods are proposed for the site, and are described in further detail below. Final Drainage Report 4 ■� I NORTHERN ENGINEERING B. Sub -Basin Description Walnut -Chestnut Subdivision Second 1. The subject property historically drains overland from northwest to southeast. Runoff from the majority of the site has historically been collected in existing inlets located within Walnut Street and Chestnut Street. 2. A more detailed description of the project drainage patterns is provided below. III. DRAINAGE DESIGN CRITERIA A. Regulations There are no optional provisions outside of the FCSCM proposed with the proposed project. B. Four Step Process The overall stormwater management strategy employed with the proposed project utilizes the "Four Step Process" to minimize adverse impacts of urbanization on receiving waters. The following is a description of how the proposed development has incorporated each step. Step 1 — Employ Runoff Reduction Practices Several techniques have been utilized with the proposed development to facilitate the reduction of runoff peaks, volumes, and pollutant loads as the site is developed from the current use by implementing multiple Low Impact Development (LID) strategies including: N- Conserving existing amenities in the site including the existing vegetated areas. - Nf Providing vegetated open areas throughout the site to reduce the overall impervious area and to minimize directly connected impervious areas (MDCIA). N^ Routing flows, to the extent feasible, through vegetated swales to increase time of concentration, promote infiltration and provide initial water quality. Step 2 — Implement BMPs That Provide a Water Quality Capture Volume (WQCV) with Slow Release The efforts taken in Step 1 will facilitate the reduction of runoff; however, urban development of this intensity will still generate stormwater runoff that will require additional BMPs and water quality. The majority of stormwater runoff from the site will ultimately be intercepted and treated using raingardens. Step 3 — Stabilize Drainageways There are no major drainageways within the subject property. While this step may not seem applicable to proposed development, the project indirectly helps achieve stabilized drainageways nonetheless. By providing water quality treatment, where none previously existed, sediment with erosion potential is removed from downstream drainageway systems. Furthermore, this project will pay one-time stormwater development fees, as well as ongoing monthly stormwater utility fees, both of which help achieve City-wide drainageway stability. Step 4 — Implement Site Specific and Other Source Control BMPs. The proposed project will improve upon site specific source controls compared to historic conditions: N7 The proposed development will provide LID features which enhance water quality; thus, eliminating sources of potential pollution previously left exposed to weathering and runoff processes. Final Drainage Report 5 .� I NORTHERN ENGINEERING C. Development Criteria Reference and Constraints Walnut -Chestnut Subdivision The subject property is surrounded by currently developed properties. Thus, several constraints have been identified during the course of this analysis that will impact the proposed drainage system including: Nr Existing elevations along the property lines will generally be maintained. N' As previously mentioned, overall drainage patterns of the existing site will be maintained. Nr Elevations of existing downstream facilities that the subject property will release to will be maintained. D. Hydrological Criteria 1. The City of Fort Collins Rainfall Intensity -Duration -Frequency Curves, as depicted in Figure RA-16 of the FCSCM, serve as the source for all hydrologic computations associated with the proposed development. Tabulated data contained in Table RA-7 has been utilized for Rational Method runoff calculations. 2. The Rational Method has been employed to compute stormwater runoff utilizing coefficients contained in Tables RO-11 and RO-12 of the FCSCM. 3. Three separate design storms have been utilized to address distinct drainage scenarios. A fourth design storm has also been computed for comparison purposes. The first design storm considered is the 80`h percentile rain event, which has been employed to design the project's water quality features. The second event analyzed is the "Minor," or "Initial" Storm, which has a 2-year recurrence interval. The third event considered is the "Major Storm," which has a 100-year recurrence interval. The fourth storm computed, for comparison purposes only, is the 10-year event. 4. No other assumptions or calculation methods have been used with this development that are not referenced by current City of Fort Collins criteria. E. Hydraulic Criteria 1. As previously noted, the subject property maintains historic drainage patterns. 2. All drainage facilities proposed with the project are designed in accordance with criteria outlined in the FCSCM and/or the Urban Drainage and Flood Control District (UDFCD) Urban Storm Drainage Criteria Manual. 3. As stated above, the subject property is not located in a City or FEMA designated floodplain. The proposed project does not propose to modify any natural drainageways. F. Modifications of Criteria 1. The proposed development is requesting a variance for the 12-inch floodplain freeboard requirement (Please see Variance Request provided in Appendix). IV. DRAINAGE FACILITY DESIGN A. General Concept 1. The main objectives of the project drainage design are to maintain existing drainage patterns, and to ensure no adverse impacts to any adjacent properties. Final Drainage Report 6 INORTHERN ENGINEERING Walnut-Chestn Second 2. Onsite LID features will be provided and will enhance water quality. These measures are discussed further below. 3. Drainage patterns for proposed drainage basins as shown in the Drainage Exhibit are described below. Basin la Basin la consists of a small portion of back alleyway, west of the proposed hotel building which will sheet flow into the existing north flowline of Walnut Street and then be conveyed into the existing storm drain system within Walnut Street. A trench drain will capture 100-year flows, and convey via a proposed storm line into the existing Walnut Street storm system. Basin lb Basin lb consists of Firehouse Alley and a portion of landscaped area just to the north of the alleyway. A trench drain will capture 10-year flows, and convey via a proposed storm line into the existing Chestnut Street storm system. 100-year flow will be conveyed via surface flows (Firehouse Alley inverted crown and Chestnut Street curb and gutter) into the existing dual combination inlet at the northwest corner of Chestnut and Jefferson. Basin lc Basin lc consists of the rooftop of the proposed hotel building. Drainage from the hotel rooftop will be captured within a roof drain system, which will tie to the existing storm drain system within Chestnut Street. Basin 2 Basin 2 consist primarily of a parking garage. 100-year flows from Basin 2 will be conveyed into the existing storm line in via the parking garage interior storm piping system. Basins OS1, OS2 Basins OS1 and OS2 consist of areas to the north of the project site which sheet flow towards the site. Basin OS1 will be conveyed through the site via the existing alleyway (which will be improved) running in between the hotel portion of the site and the parking area. A trench drain will capture 10-year flows, and convey via a proposed storm line into the existing Chestnut Street storm system. 100-year flow will be conveyed via surface flows (Firehouse Alley inverted crown and Chestnut Street curb and gutter) into the existing dual combination inlet at the northwest corner of Chestnut and Jefferson. Basin OS2 will be conveyed along the north side of the proposed parking area and flow north into a proposed inlet and storm line that will tie to the existing Jefferson Street storm system. This proposed inlet will capture nuisance flows, and the 100- year flow will be conveyed via surface flows into the curb and gutter of Jefferson St. Basins OS3 through OS5 Basins OS3 through OS5 consist of adjacent Rights of Way of Walnut Street, Chestnut Street, and Mountain Avenue. Basin OS3 will drain via sheet flow and curb and gutter into an improved inlet to be constructed in Walnut Street, which will tie to the existing storm line in Chestnut Street. Final Drainage Report 7 INORTHERN ENGINEERING Walnut -Chestnut Subdivision Second Basin OS4a will drain via sheet flow and curb and gutter into improved inlets to be constructed in Chestnut Street, which will tie to the existing storm line in Chestnut Street. We are removing a portion of the crowned section of Chestnut Street, and in doing so there will be an addition of 2094 square feet (0.048 Ac.) draining to the southeast flowline of Chestnut Street. Basin OS4b incorporates this additional area which will create an addition of 0.12 cfs in the 2-year event and 0.49 cfs in the 100- year event to the southeast flowline of Chestnut. Street capacity will not be affected by this increase, as the total 2-year flow in the southeast flowline of Chestnut Street is 1.3 cfs (including the 0.12 cfs addition), while street capacity is 4.9 cfs. The existing inlet now experiences 4.88 cfs in a 100-year event (including the 0.49 cfs addition). This inlet has capacity in a 100-year event for 7.0 cfs with 9-inches of ponding depth. The 4.88 cfs will pass the existing inlet with 6.5-inches of depth. Please see Appendix A.1 for the aforementioned street capacity and inlet calculations. Basin OS5 will drain via sheet flow and curb and gutter into the existing curb and gutter of Mountain Avenue. A full-size copy of the Drainage Exhibit can be found in the Map Pocket at the end of this report. Runoff computations for these basins based on the Rational Method is provided in Appendix A.1. B. Specific Details 1. Low Impact Development (LID) measures will be incorporated into the site design which will consist of rain gardens and tree wells at locations shown on the Final plans. The rain gardens have been designed with drain systems that outfall to the existing Walnut Street and Chestnut Street storm drain systems. Details of this design are provided within the Final plan set. An "area trade" has been discussed and agreed to, in which public right of way area will be treated by the proposed rain gardens and tree wells. An equivalent onsite area has been calculated based on 50% of the site impervious area, and this amount of public right of way is to be treated with the proposed rain gardens and tree wells. There are a total of eight proposed rain gardens that function in series to treat the right of way area that has been "traded" for onsite area that would be required to receive LID treatment. Two rain gardens are proposed in Walnut St. right of way, noted as "Northwestern Rain Garden on Walnut St." and "Southeastern Rain Garden on Walnut St." on plan sheet #C4O3 (Please see Appendix A.2). These two raingardens act in series with "Southwestern Rain Garden on Chestnut St.". The contributory area to Walnut Street is substantial, and Walnut Street acts as a floodplain. Storm events will fill the rain gardens on Walnut Street and spill into the adjacent raingarden on Chestnut Street. We consider all three of these raingardens to act in conjunction and treat public right of way drainage in series with one another. Five additional rain gardens are proposed in Chestnut St. right of way, noted Final Drainage Report 8 WINORTHERN ENGINEERING Walnut -Chestnut Subdivision Second as "Rain Gardens at Old Firehouse Alley on Chestnut St.", "Rain Gardens at Entrance to Parking Garage" and "Rain Garden at Intersection of Chestnut and Jefferson Streets". These five raingardens act in series, as runoff from Chestnut Street will fill each of these and overflow to the next downstream rain garden, with flow generally traveling northeast to the intersection of Chestnut and Jefferson Street. The total required area to be treated in this area trade is 31,330 Sq.Ft. An area of public right of way equivalent to this will be treated with the eight proposed rain gardens. The following table summarizes rain gardens and areas that each rain garden is sized to treat. Table 1 — Rain Garden Summary and Treatment Sizing Areas Rain Garden Treatment Area Rain Garden-Chestnut/Hotel South 7562 Sq. Ft. Rain Garden-Chestnut/Hotel North 4818 Sq. Ft. Rain Garden -Chestnut North #1 1791 Sq. Ft. Rain Garden -Chestnut North #2 2246 Sq. Ft. Rain Garden -Chestnut North #3 2751 Sq. Ft. Rain Garden -Chestnut North #4 3838 Sq. Ft. Rain Garden -Walnut South 4761 Sq. Ft. Rain Garden -Walnut North 3563 Sq. Ft. Total Run-on area for Rain Gardens 31330 Sq. Ft. The design spreadsheet "Design Procedure Form: Rain Garden (RG)" by the Urban Drainage and Flood Contol District (UDFCD) has been utilized to compute required LID treatment areas, and design sheets are provided in Appendix A.2. These sheets show that the rain gardens are sized to treat 31330, which meets the requirement shown in Table 1. Please also see additional information provided in the LID Requirement Table provided in Appendix A.2. Seven tree wells within Jefferson Street right of way will be constructed and will receive runoff from sidewalk area equal to the 3360 Sq.Ft. as outlined in the LID Requirement Table. The tree wells, combined with the eight rain gardens will provide treatment for 34,690 Sq.Ft. as outlined in the LID Requirement Table, and this will bring the percentage of proposed impervious area to be treated to a value of 52%, which exceeds the City of Fort Collins' required 50% level. 2. Standard Operating Procedures (SOP) Manual shall be provided by the City of Fort Collins and included in the site Development Agreement. Final Drainage Report 9 ■� INORTHERN ENGINEERING Walnut -Chestnut Subdivision Second Filing V. CONCLUSIONS A. Compliance with Standards 1. The drainage design proposed with the proposed project complies with the City of Fort Collins' Stormwater Criteria Manual. 2. The drainage design proposed with this project complies with requirements for the Old Town Basin. 3. The drainage plan and stormwater management measures proposed with the proposed development are compliant with all applicable State and Federal regulations governing stormwater discharge. B. Drainage Concept 1. The drainage design proposed with this project will effectively limit any potential damage associated with its stormwater runoff by compliance with requirements set forth in current City master plans. 2. The drainage concept for the proposed development is consistent with requirements for the Old Town Basin and the Downtown River District Final Design Report. Final Drainage Report 10 .V INORTHERN ENGINEERING References Second Fili 1. Fort Collins Stormwater Criteria Manual, City of Fort Collins, Colorado, as adopted by Ordinance No. 174, 2011, and referenced in Section 26-500 (c) of the City of Fort Collins Municipal Code. 2. Larimer County Urban Area Street Standards, Adopted January 2, 2001, Repealed and Reenacted, Effective October 1, 2002, Repealed and Reenacted, Effective April 1, 2007. 3. Soils Resource Report for Larimer County Area, Colorado, Natural Resources Conservation Service, United States Department of Agriculture. 4. Old Town Master Drainage Plan, Baseline Hydraulics, Volume II, Anderson Consulting, July 15, 2003. 5. Downtown River District Final Design Report, Ayres, February 2012. 6. Urban Storm Drainage Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control District, Wright -McLaughlin Engineers, Denver, Colorado, Revised August 2013. Final Drainage Report 11 APPENDIX A.1 DEVELOPED CONDITIONS HYDROLOGIC COMPUATIONS DEVELOPED COMPOSITE % IMPERVIOUSNESS AND RUNOFF COEFFICIENT CALCULATIONS Rung laereentaga CHARACTER OF SURFACE CoeBkknt Impervious Rolm: 947-002 Shaeb, Perim lob, Raols. Alleys, and Ontres: Calculations By. ATC AsMet........................................................................................................... 0.95 100% Date: Apd16, 2016 0.95 9D% Calcrete......................................................................................................... ( nwal.................................................................................... I...................... 0.50 40% RaOh.................... -....... ........ .......................... ..... ............................ .......... 0.95 90% Pavers.......................................................................................................... 0.40 22% ms and landfcepfrq SandiSoil................................................................................................. 0.15 0% Clagy Shc................................................................................................. 0.25 0% 2ymrG-1.00 100.1arG-1.00 100-M,G-1.25 RUM CotllideMa an bMenlmnlM Ciytl Frl Cdlim Sbml palro pei Catrla eM DrIYNCIpI SIa,daNa, Tade %lrnMMoualakmimm UDFCDWDCa1,Wlumel. Area of 2-year 10-year 100-year Basin Area Basin Area Am of Alen of Arm of Area of lawn, Rain Composite Composite Composite o Basin ID (s.i.l lae) Asphalt Concrete Ranh Grovel Garden, or Runoff Runoff Runoff Composite (ac) (ac) (ac) (ac) landscaping % Imperv. (ac) Coefficient Coefficient coefficient Caeenl la 1363 0.03 0.00 0.03 0.00 0.00 0.00 0.92 0.92 1.00 86.3% Its 10019 0.23 0.00 0.17 0.00 0.00 0.06 0.77 0.77 1.00 66.5% lc 34057 0.78 0.00 0.00 0.78 0.00 0.00 0.95 0.95 1.00 89.8% 2 45302 1.04 0.00 1.03 0.00 0.00 0.01 0.94 0.94 1.00 89.1% 051 18920 0.43 0.43 0.00 0.00 0.00 0.00 0.95 0.95 1.00 100.0% OS2 ]0772 0.25 0.25 0.00 0.00 0.00 0.00 0.95 0.95 1.00 100.0% OS3 16862 0.39 0.36 0.00 0.00 0.00 0.03 0.90 0.90 I.00 92.3% 054a 1 13504 1 0.31 Jug 10.02 lo.m lo.m 1O.W 1 0.95 1 0.95 I.00 99.4% OS4D 1 21344 1 0.49 10.16 10.33 lo.m 10.00 10.00 1 0.95 1 0.95 1.00 93.3% OS5 1 5138 1 0.12 10.09 10.02 10.00 0.00 JO.Di 1 0.89 1 0.89 1 1.00 89.8% DEVELOPED TIME OF CONCENTRATION COMPUTATIONS Overland Flow. Time of Concentration: 1.87(1.1 - C• • Cf ` v' PmlecL• 947-002 7• _ /V :,�. a_* Calculations By: ATC 1/ SY3 .1.aoca"e . Date: April 6, 2016 Guher/Swale Flow. Time of Concentration: T, = T; + T, (Equation RO-2) a rn 1e 1:00 Velocity (Gutter Flow), V = 20Sw (Equation RO-4) 11 N as 2 m iou 1.10 1.ii Velocity (Swale Flow), V = 15.Sn wse, Tye ve0ovo0 Of C el.e..c, ene11 eec uceea 1.00 ROTE: Lvalue pxaerbn0 n0ns ov eresw surfaces; C = 025 Overland Flow Gutter Flow Swale Flow Time d Concentration Design C•Cf C*Cr C*C1 Length, Slope, Ti - T. Ti Length, Slope, Velocity. Length, Slope, Velocity, 2-yr 10-yr Imirr Point Basin Is Length (2-yr (10-yr (100-yr L S 2-yr 10-yr 100-yr L S V Tr L S V Tr Tr T. Tr >SOOT Cr=1.00) G=1.00) Cr=1.25) (W (%) (min) (min) (min) (81 (%) MIS) (min) (W (%) (Wsl (min) (min) (min) (min) la la No 0.95 0.95 1.00 20 2.00% 1.0 1.0 0.7 53 1.00% 2.00 0.4 0 0.00% WA WA 5 5 5 lb lb No 0.95 0.95 1.00 20 2.00% 1.0 1.0 0.7 307 1.00% 2.00 2.6 0 0.00% WA WA 5 5 5 1C 1C No 0.95 0.95 1.00 45 1.00% 1.9 1.9 1.3 183 1.00% 2.00 1.5 0 0.00% WA WA 5 5 5 2 2 No 0.95 0.95 1.00 108 2.00% 2.3 2.3 1.5 189 0.50% 1.41 2.2 0 0.00% WA WA 5 5 5 OS] OSl No 0.95 0.95 1.00 45 1.00% 1.9 1.9 1.3 112 0.50% 1.41 1.3 0 0.00% WA WA 5 5 5 No 0.95 0.95 1.00 30 1.00% 1.5 1.5 1.0 144 0.50% 1.41 1.7 0 0.00% WA WA 5 5 5 FOS2 S3 CS3 No 0.95 0.95 1.00 30 2.00% 1.2 1.2 0.8 124 0.50% 1.41 1.5 0 0.00% 1 WA WA 5 5 1 5 la OS4a No 0.95 1 0.95 1 1.00 1 40 2.00% 1 1.4 1 1.4 0.9 1 286 0,50% 1.41 3.4 0 0.00% WA WA 5 5 5 {b 054b No 0.95 0.95 1.00 40 2.00% 1.4 1.4 0.9 320 0.50% 1.41 3.8 0 0.00% WA WA 5 5 5 JS5 OS5 No 0.95 0.95 1.00 30 1 2.00% 1 1.2 1 1.2 1 0.8 1 56 1 0,50% 1 1.41 1 0.7 0 0.00% 1 WA WA 5 5 5 DEVELOPED RUNOFF COMPUTATIONS Rational Method Eaua0on: m 1. 2-a Project: 947-002 Q _ C J (CXiXA) /l /l a a.� a.Kee a:.am� naGa Calculations By: ATC Date: April 6, 2016 Fran Secbw 3.2.1 of the CFMDX 2 G le 11 If25 21 G So 1.00 1.10 1.20 Rainfall a !t G I00 aOG: TM KOdO= of C . S ce sua 1.25 oot a2GM 1.00 Rainfall Inteftty taM h wn the My at Fo4 Collis Slaem Deainoge O Criteria fCFC50DC), Figlne 3.1 2-yr 10-yr 100-yr Intensity, Intensity, Intensity, Flow, Flow, Flow, gn Point Basin(s) Gres) T. Te T. C2 CIO CIm 12 I IN 400 02 010 OIcS (min) (min) (min) (inlbr) (iruhr) (InBIr) (CIS) WS) (cts) la la 0.03 5 5 5 0.92 0.92N1.002.85.85 4.87 9.95 0.08 0.14 0.31 1b 1b 0.23 5 5 5 0.77 0.7 .85 4.87 9.95 0.50 0.86 2.29 lc lc 0.78 5 5 5 0.95 0.95.85 4.87 9.95 2.11 3.61 7.78 2 2 1.04 5 5 5 0.94 0.94.85 4.87 9.95 2.80 4.78 10.35 OSl OSl 0.43 5 5 5 0.95 0.95.85 4.87 9.95 1.18 2.01 4.32 OS2 OS2 0.25 5 5 5 0.95 0.952.85 4.87 9.95 0.67 1.14 2.46 OS3 OS3 0.39 5 5 5 0.90 0.902.85 4.87 9.95 0.99 1.69 3.85 OS4a 054a 0.31 5 5 5 0.95 0.952.85 4.87 9.95 0.84 1.43 3.08 OS4b O ao 0.49 5 5 5 0.95 0.952.85 4.87 9.951.33 2.27 4.88 OS5 OS5 0.12 5 5 5 0.89 0.892.85 4.87 1 9.95 0.30 1 0.51 1 1.17 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 Project: 947-002 Inlet ID: Design Point OS4-Chestnut SE Flowline Capacity T Ti,,,at Tk:aovx -�•��aarr W,�� Tic' Street :_ Crown Qw Qx • o � mum Allowable Width for Spread Behind Cum I secs - Slope Behind Cum (leave blank for no conveyance credit behind cum) Ssncs - ring's Roughness Behind Cum narks = it of Cum at Gutter Flow Line House = rice from Cum Face to Street Crown Tcaovnr = it Width W = ,t Transverse Slope Sx = Ir Cross Slope (typically 2 inches over 24 inches or 0.083 Will S. = it Longitudinal Slope - Enter 0 for sump condition So = zing's Roughness for Street Section ns, = 10.5 Inches It It fttft ftlft Wit 0.020 0.016 3.90 17,0 1.44 0.020 0.060 0.008 0.016 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMax = 17.0 17.0 Allowable Depth at Gutter Flowline for Minor & Major Stone dmm = 3.9 12-0 inches Flow Depth at Street Crown (leave blank for no) �i _ check = yes IR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Stone )R STORM Allowable Capacity is based on Depth Criterion Q.11a. = 4.9 1282 cis r storm max ahawan ;treater than flow given on sheet 'Q-Peak' ,form mar allnw.i l-.Ir -. rent, than flaw Given nn theM '7-Prak' dpOS4-StrtCap-UDFCD.xlsm, O-Allow 12/2112015, 12.3l PM INLET IN A SUMP OR SAG LOCATION Project = 947-002 Inlet ID = FxIsL Inial -Chestnut St. -SE comer of Ch muHJeHerson .�— Lo (C){ H-Curb H-Ven Wo Wp w Lo (c) Warning MINOR MAJOR ype of her Intel Type= Local D9pmeslon(additwmilowNiv epldweepraealon'a'tmm'QAWW) 4ou' Inches umbw of Unit ki (Grate or Cub OpeNrg) No = Ater Depot at Fbwtre (outside of coal depression) Fbw Depth = inches. Grate etfomvtbn MINOR MAJOR Lwglh of a Unit Grate L, (G) = (eel cot of a Draft Grate wa= feat Am Opening Ratio for a Grate (typical value 0 15-0 90) A.= bggug Factor for a Single Grate (ypccal value 0.50 - 0 70) C (G) _ Grate Wen, Coefficient (typical value 2 15 - 3.60) C. (G) _ Grate Orl Coefficient (typical vats 0.80 - 0.W) Ca (G) _ Curb Opening Mormseen MINOR MAJOR Length of a Unit Cunt Opening Le (C) = feet HeIgN of Vertical Curb Opening In Inctes H,,.I= hones Helga of Cub Ori(ke TNoat in Inmor Hnn,a = inches n0k of Throst (see USOCM Figure ST-5) ThsW = degrees 1 Side Wish for Depression Pan (typically lk gutter mole of 2 feet) we= eel Iol Factor for a Sege Curb Opening (typical value 0.10) C (C) _ ub Opening Water Coefflcbnt (typ l value 2.3-3.6) C. (C) _ Con, Opening OW" Coefhaan (typcal vats 0.80 - 0.70) Co (C) MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) G1. = 4.3 7.0 cfs Inlet Ceaacrty IS GOOD for Firma, and Mmm St.-,, 1>0 PEAK; Ocernasoueeo = 1.5 49 cfs W arri I Dimenswn enlaRq o no' I ""c'.0 dimentiion fni rw type specified Denier No. 18 Comoiralion 2.00 1 8.0 9.0 3.00 1.73 0.31 0.50 0.50 S80 r. O.BO 3.00 6.50 5.25 0.00 2.00 0.10 0 t0 3.70 0.88 UD Inlet 3.1-combanlet-OS4.xlsm, Inlet In Sump 12/2112015, 1241 PM I r INLET IN A SUMP OR SAG LOCATION Project = 947-002 Inlet ID = EXISI- Inlet - Chestnut SLSE comer of Chestnut/Jefferson ,r Lo (C) 'r H-Curb R Van We WP W Lo (G) of Inal that Type Depression(aEEttgrpl to continuous grater deprapbn'e'imm'O~) ama ier of Und Inlets (Gres, or Cub Opening) No r Depth at FlcMm (outside of ecal depression) Flew Depth i Information In of a Unit Grate Le (G) l of a Unit Grate W. Opentrg Ratio for a Grate (typical values 0.15-0.90) A. ling Fedor for a Sngle Gmte (tygral value 0.50 - 0 70) Cr (G) Weir Coefficient (lyp®I value 2.15 - 3.60) C. (G) Onfice Coefficient rMcal Valle 0 60 - 0 80) C. (G) Opening Yrfomutfon h of a Unit Curb Opening i� (C) i of Ventral Curb Opening In I.Itrai NM L of C W Orifice Tt.oal M Inches He..a of Throat (see USDCM Fyne ST-5) Theta Wioth for Depression Pan (typicaly the gutter wldM of 2 feet) W. ling Fedor for a Single Cub Opening (typical value 0.10) Cr (C) Opening Welt Coefficient (typical vela¢ 2.33.6) C. (C) Operug OrMra CoeNldent (typical value 0,60 - 0.70) C. (C) it Inlet Interception Capacity (assumes clogged condition) Q.' OLLiesLairm Oerwer No. 16 Comblre0on 2.00 indi 1 6.0 6.5 lrchac MINOR MAJOR 3.00 ? nn teal 1.73 1 '3 feel 0.31 0.50 0 50 3.60 0.60 EriMno LIe lAW 3.00 6.50 5.25 0.00 2.00 0.10 0.10 3.70 0.66 eat richer. nines log. eat UD Inlet 3.1-comboinlet-OS4.slam. Inlet In Sump 12121l2015, 12:42 PM APPENDIX A.2 LID SUPPLEMENTAL INFORMATION S p a r N N O M O1 h !� n •ti 01 n H QO M aC M o, n Qo j n N ti Ln O~i H ti H O• C c N C W E d '7 LL LL LL lyL LL LL LL LL LL LL LLL LL y C ti Q u Q u Q ti Q & Ln & Vn O' V1 & Vf 0' V1 & N C Ln O' vt 0' Vf & Ln & V) Q N Q (n V1 N W .--I ID r-4 W ci M O O CD O %C J h1 Ln n O Lo 1-1 m a 0 M UD kD m kD lD m M M N h n n n w n ti ry n w n m m m w w n N O p e n v N N m v m m cn cn M -* cs a+ e a E m N u a M � Y Ln o` dv 0 N w of u F � O u ra N C w p L L Qi -D O ra VI Z u YL YL YL Ln +-+ f0 y N +0' �0 L t' L t' L L t' a c0 m L L Ql Q u c G= 2 Z Z Z Z O O O IIOnn 0 G7 w' Z V c - ''� Ql L m d m 0 c 0 O Ol O. o c c c c c c N 1 • O N y� H N vYi N N VY1 c c C N � hU C 2,Q v m m N .. N 7 0 Q ,'o 0 E avucL���v33r° i- m v Q .� o O N c c c c c c c c a n o �- OQj C OL = d N v -o -000 -a -00` '00` -000 "O O N 0 O d w O O. O Q a m m m m m m m m G a 3 G Q '2 a a. a l7 l7 0 C7 l7 0 0 0 Q c, v O N d w J o v Q c c c c c c c c Q F c 'o E o O o Ct z s= z s z a °^ 'o vCL o Q' is u a I a• Iv v _ RAIN OMOEN AT INTERSECTION OF .— r =: o—:.��.. � • ' �Y'Y pl a � /FT�OIIE6TNUT6 tEFFEH90N STREETS ri ON W /i\ 80UTNE118TE IN MIN fiFROEN ON WALNUT SWEET M __}• El _• 4,_ v a �, ! 4 r-..•:w...•.. � I• V .F.v °� v. Nv i � 1.,... 2Q AMR Lu.a .�.�.. O W f•'- JI Jo �j O Zm U m._ y O +7 —00 J �F O Qo QU3 �Ii \ + � .fir F a-• R anrw �r 1mmwgSTERN MM GvtmN ON awwo STRUT yl N \ \ \-- M y a o. .rcu.4 e. � + ._sw. �' � i •� .w.. 4111—CduNe ��QP� ��e_=�urv ` w�,Swvppvy,rNvao \ y 'L MN GMOENS AT ENTRNICE iO PWbLING!Q) CNN OMOENS AT OLD FIREHOUSE OLlEV ON CHESTNUT STREET_ . �'—' �w� o.w ¢� _r I� Designer: Company: Date: Project Location: ATC Northern Engineering January 18, 2016 947-002 Raingarden-Chestnut'Hotel South Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 1, Basin Storage Volume A) Effective Imperviousness of Tributary Area, 1„ 1„ = 100.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tdbulary Area's Imperviousness Ratio (i = I,/100) i = 1.000 C) Water Quality Capture Volume (WOCV) for a 12-hour Drain Time WQCV = 0.40 watershed inches (WQCV=0.8' (0.91' I'- 1.19 - ? + 0.78 - i) D) Contributing Watershed Area (Including rain garden area) Area = 4.818 sq ft E) Water Quality Capture Volume (WQCV) Design Volume Vwocv = 161 cu ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of Ci = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwccv oTHea = 0.0 cu R Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume Vwocv uss = cu f1 (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) D,.,ocv = 12 in B) Rain Garden Side Slopes (Z = 4 min., honz. disc per unit vertical) Z = 4.D0 ff / fl (Use'0' if rein garden has vertical walls) C) Mimimum Flat Surface Area AM,� = 107 sq ft D) Actual Flat Surface Area A„I.ui.1, = 525 sq ft E) Area at Design Depth (Top Surface Area) ATq = sq ft F) Rain Garden Total Volume Vr ou ft (Vr= ((AT. + Ate) 12) * Depth) 3. Growing Media Chow One O 18' Rain Garde Growing Metlb O other (Explain): 4. Underdrain System A) Are underdrains provided? 1r Oxxrse ate 1 Q YES l ONO B) Underdmin system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ff Volume to the Center of the Ortfice if) Volume to Drain in 12 Hours Vol,z= N/A cu ft iii) Orifice Diameter. 318" Minimum Do = WA in UD-BMP_v3.02_Rngdn-ChestnuW-S.xls, RG 1 /1812016, 2:58 PM Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: ATC Company: Northern Engineering Date: January 18, 2016 Project: 947-002 Location: Raingarden-Chestnut/Hotel South 5. Impermeable Geomembrane Liner and Geotextile Separator Patine at"i 0% One A) Is an impermeable liner provided due to proximity ONO of structures or groundwater contamination? 6. Inlet /Outlet Control Choose one Q Sheet Flow- No Energy Dissipation Required A) Inlet Control Q ConrmtrateE Flow- Energy Dissipation Provided Choose One 7. Vegetation O Seee (Plan for frequent weed controp C) Plantings [C) Sand Grown or Other High In6ltrabon Sod 8. Irrigation awe One Q YES A) Will the rain garden be irrigated? ONO Notes UD-BMP_v3.02_Rngdn-ChestnutH-S.xls, RG 1/1812016, 2:58 PM Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 Designer: ATC Company: Northern Engineering Date: January 16, 2016 Project: 947-002 Location: Raingarden-ChestnutMotel North 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, 1, I, = 100.0 % (1G0% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = I,/1D0) = 1.000 C) Water Quality Capture Volume (WQCV) for a 12-tour Drain Time WQCV = 0.40 watershed inches (WQCV= 0.8' (0.91' is- 1.19 - ?+ 0.78 - I) D) Contributing Watershed Area (including rain garden area) Area = 7,562 sq ff E) Water Quality Capture Volume (WQCV) Design Volume V,,,;_„ = 252 cu it Vol = (WQCV 1 12) ' Area F) For Watersheds Outside of the Denver Region, Depth of or = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, VwocV orris = 0.0 cu If Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VwocV user+ = cu it (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv = 12 In B) Rain Garden Side Slopes (Z = 4 min., honz. disl per unit vertical) Z = 4.00 ft 1 fl (Use'0' If rain garden has vertical walls) C) Mimimum Flat Surface Area A., = lea sq ff D) Actual Flat Surface Area Ak,,,p = 546 sq it E) Area at Design Depth (Top Surface Area) A,. = sq it F) Rain Garden Total Volume V,= cu it (VT= ((Arno + Ae ")12)' Depth) 3. Growing Media Choose One O 16" Pain Garden Growing Media O Other (Explain): 4. Underdrain System A) Are underdrains provided? Choose One Oya ONO B) Underdrain system orifice diameter for 12 hour dram time it Distance From Lowest Elevation of the Storage y= 8 Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol;_ = WA cu it iii) Orifice Diameter, 3/8" Minimum D„ = N/A in UD-BMP_v3.02_Rngdn-ChestnutH-N.xls, FIG 1/18/2016, 2:46 PM C Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: ATC Company: Northern Engineering Date: January 16, 2016 Project: 947-002 Location: Raingarden-Chestnut/Hotel North 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric r Choose One O Es A) Is an impermeable liner provided due to proximity O NO of structures or groundwater contamination? 6. Inlet / Outlet Control j' Choose One O Sheet Flow- No Energy Dissipation Required A) Inlet Control O Concentrated Flow- Energy Dissipation Provided 7. Vegetation One (Plan for frequent weed control) [&Ew Oings O Sand Grown or Other High InORration Sod 8. Irrigation ChooseOAe O YES A) Will the rain garden be imgaled? ONO 7 Notes: UD-BMP_v3.02_Rngdn-ChestnutH-N.xis, RG 1/16/2016, 2:46 PM Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 Designer: Company: Date: Project: ATC Northern Engineering January 18, 2016 947-002 Location: Raingarden-Chestnut North #1 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, 1„ I, = 100.0 % (100% if all paved and Roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = 1J100) = 1.000 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.40 watershed inches (WQCV=0.8"(0.91"i3-1.19'h 0.78, i) D) Contributing Watershed Area (including rain garden area) Area = 1,791 sq If E) Water Quality Capture Volume (WQCV) Design Volume Vwccv = 60 cu f1 Vol = (WOCV / 12) - Area F) For Watersheds Outside of the Denver Region. Depth of dF = in Average Runoff Producing Stem G) For Watersheds Outside of the Denver Region, VwoeV OTHER = 0.0 cu it Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWOOV USER = cu f1 (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WOCV Depth (12-inch maximum) Dwow = 12 in B) Rain Garden Side Slopes (Z = 4 min., honz. dist per unit vertical) Z = 4.00 f1 / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area Au,,, = 40 sq If D) Actual Flat Surface Area A� = 164 sq ft E) Area at Design Depth (Top Surface Area) ATE = sq ft F) Rain Garden Total Volume VT= cu ft (Vr((AT.-Aw )/2)"Depth) 3. Growing Media Choose One O 18" Rain Garden Growing Media O Other (Explain): 4. Underdmin System A) Are undertlrains provided? _ One Q NES B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= fl Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol„ = N/A cU ft iii) Orifice Diameter, 3Z' Minimum D;, = N/A m UD-BMP_v3.02_Rngdn-ChestnutNl.xls, RG 1 /113/2016. 2.57 PM C- Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: ATC Company: Northern Engineering Date: January 18, 2016 Project: 947-002 Location: Raingarden-Chestnut North #1 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric ChooseQ One YES A) Is an impermeable liner provided due to proximity ONO of structures or groundwater contamination? - - — 6. Inlet / Outlet Control Choose One Q Sheet Flow- No Energy Dissipation Required A) Inlet Control Q Concentrated flow- Energy Dissipation Provided One 7 Vegetation eed (Plan for frequent weed control) [OhSoww Pantings O Send Grown or Other High Infiltration Sod 8 Irrigation Choose One p YES A) Will the rain garden be irrigated? ONO Notes UD-BMP_v3.02_Rngdn-ChestnutNl.xls, RG 1/18/2016, 2:57 PM Designer: Company: Dale: Project: Location: ATC Northern Engine, January 18, 2016 947-002 Raingarden-Chesmut North #2 Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 1 Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, 1„ = 100.0 (100% if all paved and rooted areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = I,/100) = 1.000 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.40 watershed inches (WQCV= 0.8' (0.91' i3- 1.19' i' * 0.78' i) D) Contributing Watershed Area (including rain garden area) Area = 2,246 sq If E) Water Quality Capture Volume (WQCV) Design Volume Vwocv = 75 cu ft Vol = (WQCV / 12) " Area F) For Watersheds Outside of the Denver Region, Depth of de = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, V.QCV OTHEB = 0.0 cu ft Water Quality Capture Volume (WQCV) Design Volume H) Use Input of Water Quality Capture Volume (WQCV) Design Volume Vn.ocv uSEn = cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A)WQCV Depth (12-inch maximum) Dwocv= 12 in B) Ram Garden Side Slopes (Z = 4 min., honz. disl per unit vertical) Z = 4.00 fl I fl (Use "0" 0 rain garden has vertical walls) C) Mimimum Flat Surface Area Au,,, = 50 sq ft D) Actual Flat Surface Area A,,, = 145 so It E) Area at Design Depth (Top Surface Area) Arw = sq It F) Rain Garden Total Volume V,= cu ft (V,= ((AT. - AxIw) l2)' Depth) Growing Media Choose One d 18" Rain Garden Growing Media O Other (Explain): 4. Underdrain System A) Are underdrains provided? Choose One YES OO O NNO B) Undercram system once diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Center of the Orifice III Volume to Drain in 12 Hours VoT, = N/A cu if iii) Orifice Diameter, 318" Minimum D,r = NIA in UD-BMP_v3.02_Rngdn-CheslnutN2.xls, RG 1/18/2016, 2M PM Design Procedure Form: Rain Garden (RG) sheet 2 of 2 Designer: ATC Company: Northern Engineering Date: January 18, 2016 Project: 947-002 Location: Raingarden-Chestnut North #2 5. Impermeable Geomembrane Liner and Geolexlile Separator Fabric Choose One °YES A) Is an impermeable liner provided due to proximity ONO f of structures or groundwater contamination? 6. Inlet I Outlet Control Chcose One Q Sheet Row- No Energy Dissipation Required A) Inlet Control Q Concentrate0 Fbw- Energy Dissipation ProWded 7. Vegetation Choose One Q Seed (Plan for /requent weed mnbol) O Plantings 0 Send Grown or Other High in8ttratlon Sod 8. Irrigation Chow One Q YES A) Will the rain garden be irngaled? O NO Notes: UD-BMP_v3.02_Rngdn-ChestnutN2.xls, RG 1/18/2016. 2:59 PM 11 Design Procedure Form: Rain Garden (RG) 11 Designer: Company: Date: Project: Location: ATC Northern Engineering January 18, 2016 947-002 Raingarden-Chestnut North #3 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I, = 100.0 (100 % if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = I,J100) i = 1.000 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.40 watershed inches (WQCV= 0.8' (0.91. i3 - 1.19' i°+ 0,78 - it D) Contributing Watershed Area (including ram garden area) Area = 2.751 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWOCV = 92 cu ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of d,; = in Average Runoff Producing Stone G) For Watersheds Outside of the Denver Region, Vwucv OrRER = 0.0 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume V.UCV USER = CU fI (Only H a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv = 12 in B) Rain Garden Side Slopes (Z = 4 min., honzdist per unit vertical) Z = 4.00 ft / ft (Use "D- if rain garden has vertical walls) C) Minimum Flat Surface Area At," = 61 sq ft D) Actual Flat Surface Area AK,. = 190 sq ft E) Area at Design Depth (Top Surface Area) Ala, = sq ft F) Rain Garden Total Volume Vr cu ft (Vr ((Arm + Am,.) 12) * Depth) 3. Growing Media Oxxne the 0 18" Rain Garden Growing Media 0 other (Fxplaln): 4. Underdraln System A) Are uMerdrains provided? Choose One O YES ONO B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Center of dne Ortfice ii) Volume to Drain in 12 Hours Vol,; = WA cu If iii) Orifice Diameter, 3/8" Minimum U,, = N/A in UD-BMP_v3.02_Rngdn-ChestnutN3.xls. RG 1/1812016, 3.03 FM C Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: ATC Company: Northern Engineering Date: January 18, 2016 Project: 947-002 Location: RaingardenChestnut North #3 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric OCR A) Is an impermeable liner provided due to proximity ONO of structures or groundwater contamination? 6. Intel/ Outlet Control Chacse Sheet Flow- No Energy Dissipation Required A) Inlet Control �Q Q Concentrated Flow- Energy Dissipation Provided 7. Vegetation Choose Orre Q Seed (Plan for frequent weed control) Q P anti Q Sand Grown or Dither High In81tril Sod 8. Irrigation r Choose One O yEs A) Will the rein garden be irrigated? O NO Notes: UO-BMP_v3.02_Rngdn-ChestnutU xis, RG Ill 812016, 3:03 PM Designer: Company: Date: Project: Location: ATC Northern Engineering January 18, 2016 947-002 Rainganden-Chestnut North 94 Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area. I, I„ = 100.0 % (100 % if all paved and roofed areas upstream of rain garden) 8) Tributary Area's Imperviousness Ratio (i = 1.1100) = 1.D00 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.40 votershed inches (WQCV= 0.8' (0.91' i°- 1.19' i'- 0 78' i) D) Contributing Watershed Ares (including rain garden area) Area = 3.838 sq If E) Water Quality Capture Volume (WQCV) Design Volume Vwpw = 128 cu It Vol = (WQCV 112)' Area F) For Watersheds Outside of the Denver Region, Depth of tle = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwocv OTaEa = 0.0 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VwQN osee = cu h (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwucv = 12 in B) Rain Garden Side Slopes (Z = 4 min., hertzdist per unit vertical) Z = 4.00 hill (Use "0" if rain garden has vertical wails) C) Mimimum Flat Surface Area A,,,,,, = 85 sq If D) Actual Flat Surface Area A, ,,u = 183 sq ft E) Area at Design Depth (Top Surface Area) A,,,,, = sq ft F) Rain Garden Total Volume VT= cu h (VT= ((AT. + Ares) l 2) * Depth) 3. Growing Media Choose One O 18" Rain Garden Growing Nedis O Other (Explain): 4. Underdrain System Choose One 018 A) Are undertlrains provided? ONO B) Underdrain system once diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y = It Volume to the Center of the Once it) Volume to Dram in 12 Hours Vol; = WA cu It iii) Orifice Diameter, 3/8' Minimum D„ = N/A in UD-BMP_v3.02_Rngdn-ChestnulN4.xls. RG 1 /18/2016, 3:04 PM Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: ATC Company: Northern Engineering Date: January 18, 2016 Project: 947-002 Location: RaingardenChestnut North$4 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric Choose Dne O vE6 A) Is an impermeable finer provided due to proximity O NO of structures or groundwater contamination? 6. Inlet / Outlet Control �oo� One Q Sheet flow- No Energy Dissipation Required A) Inlet Control Q Concentrated Flow- Energy Dissipation Provided 7. Vegetation Oxxaa one O O Seed (Plan for frequent weed mnttro0 Q plantings O Sand Grown a Otl1v Nigh RAltradom Sod 8. Irrigation CC)h— One Q YES A) Will the rain garden be imgated? ONO Notes: UD-BMP_v3.02_Rngdn-ChestnutN4.xls. FIG 1/1812016, 3:04 PM Designer: Company: Date: Project: Location: ATC Northern Engineering January 18. 2016 947-002 Raingarden-Walnut South Design Procedure Form: Rain Garden (RG) Sheet 1 of 2 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, 1, = 100.0 % (1000/ H all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = IJ100) = 1.000 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.40 watershed inches (WQCV= 0.8' (0.91' 1'- 1.19 - i1- 0.78 - i) D) Contributing Watershed Area (including rain garden area) Area = 4,761 sq ft E) Water Quality Capture Volume (WQCV) Design Volume Vwur;V = 159 cu h Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of di; = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, Vwecv oTaER = GO cu h Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VwQCV USER = cu h (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A)WQCV Depth(12-inchmattrnum) Dwocv= 12 in B) Rain Garden Side Slopes (Z = 4 min., hor¢disc per unit vertical) Z = 4.00 ft / ft (Use'0' drain garden has vertical walls) C) Mimimum Flat Surface Area Ay„ = 106 sq If D) Actual Flat Surface Area A�,,,a = 430 sq fl E) Area at Design Depth (Top Surface Area) AT,,,, = sq h F) Rain Garden Total Volume Vr= cu It (Vr= ((Arm - Axwa) / 2)' Depth) 3. Growing Media Choose One C) 18" Rain Garden Growing Media 0 Other (Explain): 4 Underdmin System A) Are underdrains provide0 Choose One O YES ONO B) Underdrain system onfice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= ft Volume to the Center of the Orifice it) Volume to Dram ,n 12 Hours V0112 = WA cu h iii) Orifice Diameter. 3/8" Minimum Do = N/A to UD-BMP_v3.02_Rngdn-Walnut South.xls, RG 1/18/2016, 3:06 PM Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: ATC Company: Northern Engineering Date: January 18, 2016 Project: 947-002 Location: Raingarden-Walnut South 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric Choose One S Q YE A) Is an impermeable liner provided due to proximity ONO cf structures or groundwater contamination? 6. Inlet I Outlet Control Choose one Q sheet Flow- No Energy Dissipation Required A) Inlet Control Q Concentrated Flow- rmergy Dissipation Provided 7. Vegetation One O seed (Plan for frequent weed control) [Chose O Plandngs O sand Grown or OtIter High IMlkradon Sod 8. Irrigation Choose O yEs One A) Will the min garden be irrigated? ONO Notes: UD-BMP_v3.02_Rngdn-Walnut South.xls, RG 1/18/2016, 3:06 PM Design Procedure Form: Rain Garden (RG) 11 Sheet 1 of 2 Designer: Company: Date: Project: ATC Northern Engineering January 18, 2016 947-002 Location: Raingarden-Walnut North 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I, I„ = 100.0 % (10000 6 all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = I J1 DO) = 1.000 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.40 watershed inches (WQCV= 0.8 ' (0,91' 1' - 1.19 - i' - 0.78 - i) D) Contributing Watershed Area (including rain garden area) Area = 3563 sq It E) Water Quality Capture Volume (WQCV) Design Volume V,.�_,: = 119 cu If Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of d„ = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, VWQCV o.HER = 0.0 cu 0 Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER' ee If (Only it a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv = 12 in B) Rain Garden Side Slopes (Z = 4 min., horizdist per unit vertical) Z = 4.00 It / ft (Use "0" d rain garden has vertical walls) C) Minimum Flat Surface Area Am, = 79 sq ft D) Actual Flat Surface Area A„r,,,. = 302 sq f1 E) Area at Design Depth (Top Surface Area) A„„, = sq It F) Rain Garden Total Volume V.= cu It (Vr= ((A„_ I A�nw) 12) * Depth) 3 Growing Media Choose One O 18" Rain Garden Growing Media O Other (Explain): 4. Underdram System A) Are unclerdrains provided? Choose One Q YES ONO B) Uoderdrain system orifice diameter for 12 hour drain time it Distance From Lowest Elevation of the Storage y= ff Volume to the Center of the Orifice U) Volume to Drain in 12 Hours Vol,. = N/A Cu It Ut Orifice Diameter. 3/8' Minimum D„= WA in UD-BMP_v3.02_Rngdn-Walnut North.xls. RG 1/18/2016. 3:08 PM C Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: ATC Company: Northern Engineering Date: January 18. 2016 Project: 947-002 Location: Raingarden-Walnut North 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric Otooae Dne O y6 A) Is an impermeable liner provided due to proximity Q ND of structures or grourdwater contamination? 6. Inlet / Outlet Control oose One Shea[ Flow- No Energy Dissipation Required r A) Inlet Control Concentrated Flow- Energy Dissipation Provided 7. Vegetation Choose One O Seed (Plan for frequent weed control) O Planbngs 0 Sand Grown or Other High Infiltration Sod 8. Imgahon Choose One O rEs A) Will the rain garden be imgated� O NO Notes: UD-BMP_v3.02_Rngdn-Walnut North.xls, RG 1/18/2016, 3:08 PM APPENDIX B.1 INLET DESIGN CALCULATIONS Area Inlet Performance Curve: Design Point 1a Trench Drain Governing Equations: Al low flow depths, the inlet will act like a weir governed by the following equation: = 3 .0 P H ) 5 ' where P=2(L+W) ' where H corresponds to the depth of water above the flowline At higher flow depths, the inlet will act like an orifice governed by the following equation: Q = 0.67 A (2 gH ) 0.5 • where A equals the open area of the inlet grate • where H corresponds to the depth of water above the centroid of the cross -sectional area (A) The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown. However, what is known, is that the stage -discharge curves of the weir equation and the orifice equation will cross at a certain flow depth. The two curves can be found below: Stage -Discharge Curves zo.00 6.00 Weir Flow 1600 Orifice Flow 14.00 12.00 � 10.00 t 6.00 a�i 6 00 2.00 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 Stage (ft) If H > 1.792 (A/P), then the grate operates like an orifice; otherwise it operates like a weir Input Parameters: Type of Grate: Trench Drain Grate Length of Grate (ft): 20 Width of Grate (ft): 0.8 Open Area of Grate (ft): 11.20 Flowline Elevation (ft): 100.000 Allowable Capacity: 50% Depth vs. Flow: Shallow Orifice Actual Elevation Weir Flow Flow Flow Depth Above Inlet (ft) (ft) (cfs) (cfs) (cfs) 0.00 100.00 0.00 0.00 0.00 0.03 100.03 0.32 5.21 0.32 0.10 100.10 1.97 9.52 1.97 0.15 100.15 3.63 11.66 3.63 0.25 100.25 7.80 15.05 7.80 0.30 100.30 10.25 16.48 10.25 0.35 100.35 12.92 17.80 12.92 0.40 100.40 15.79 19.03 15.79 Q100=0.3 cfs Area Inlet Performance Curve: Design Point 1b Trench Drain Governing Equations: At low flow depths, the inlet will act like a weir governed by the following equation: = 3 .0 P H ) 5 • where P = 2(L + W) • where H corresponds to the depth of water above the flowline At higher flow depths, the inlet will act like an orifice governed by the following equation: n = 0.67 A ( 2 gH ) 0.5 ` where A equals the open area of the inlet grate L • where H corresponds to the depth of water above the centroid of the cross -sectional area (A) The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown. However, what is known, is that the stage -discharge curves of the weir equation and the orifice equation will cross at a certain flow depth. The two curves can be found below: Stage -Discharge Curves zo 00 8.00 --*-Weir Flow 16.00 -♦-Orifice Flow 14.00 40 12.00 �10.00 t 6.00 m 6.00 2.00 0.00 0.00 0.05 0.10 0.15 0.20 025 30 .0.0.35 0 40 0.45 Stage Mt) If H > 1.792 (A/P), then the grate operates like an orifice: otherwise it operates like a weir Input Parameters: Type of Grate: Trench Drain Grate Length of Grate (ft): 20 Width of Grate (ft): 0.8 Open Area of Grate (ft): 11.20 Flowline Elevation (ft): 100.000 Allowable Capacity: 50% Depth vs. Flow: Shallow Orifice Actual Elevation Weir Flow Flow Flow Depth Above Inlet (ft) (ft) (cfs) (cfs) (cfs) 0.00 100.00 0.00 0.00 0.00 0.05 100.05 0.70 6.73 0.70 0.10 100.10 1.97 9.52 1.97 0.11 100.11 Z28 9.98 Z28 0.15 100.15 3.63 11.66 3.63 0.25 100.25 7.80 15.05 7.80 0.30 100.30 10.25 16.48 10.25 0.35 100.35 12.92 17.80 12.92 0.40 100.40 15.79 19.03 15.79 Q100=2.2 cfs APPENDIX B.2 STORM LINE DESIGN CALCULATIONS Hydraflow Plan View Outfam Project File: SlormLine-Basinla.stm No. Lines: 1 01-19-2016 HyWalbwS s Ms You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) Hydraulic Grade Line Computations Page 1 Una Size (in) D (ds) Downstream Len (ft) upstream Check JL col Minor loss (ft) Invert elev (H) HGL elev (ft) Depth (ft) Area (soft) Vol (Ns) Vol head (ft) EGL elev (H) Sf IN Invert elev (ft) HGL elev (ft) Depth (ft) Area (saH) Vol (Ills) Vol head (H) EGL elm (It) Sf (W Ave Sf (xd Enrgy loss (f) (K) 1 10 0.31 4971.71 4971.92 0.21 0.11 2.85 0.13 4972.05 0.543 66.8 4972.38 4972.63 0.25" 0.14 2.28 0.08 4972.71 0.543 0.543 rJa 1.00 n/a Project File: StamLins-Basinlastm Number of lines: 1 Run Date: 01-19-2016 Notes:: " Critical depth. Hkaan>. s ae we zoos You created this PDF from an application that is not licensed to print to novaPDF printer (hftp:/twww.novapdf.com) Hydraflow Plan View OWN Project File: Storm Lin"asinlb.stm No. Lines: 1 01-19-2016 Hyd Strom s ms Zoos You created this PDF from an application that is not licensed to print to novaPDF printer (http:/Avww.novapdf.com) Hydraulic Grade Line Computations Page 1 Line Size (in) G (ns) Downstream Len (ff) Upstream eck JL coeff Minor loss (ff) Invert slev (ff) HGL elev, (ff) Depth (ff) Area (1 Qff) Val (Ns) Val head (ff) EGL elev (ff) Sf ( Invert elev Iff) HGL at" (R) Depth (ff) Area (sgff) Vel (fffs) Vel head (ff) EGL elev (n) Sf (%) rAve Enrgy loss (ff) (K) 1 10 0.85 4970.05 4970.31 0.26 0.15 5.85 0.53 4970.84 0.636 26.8 4970.99 4971.40 0.41" 0.27 3.18 0.16 4971.56 0.637 nta 1.00 0.16 Project Fle: StomlLlne-Basinlb.stm Number of lines: 1 Run Date: 01-19-2016 Notes:; " critical depth. You created this PDF from an application that is not licensed to print to novaPDF printer (http:/twww.novapdf.com) Hydraflow Plan View omreu Project File: Storm Line-BasinOS2.stm No. Lines: 1 01-19-2016 xre�esow smno s..m. zoos You created this PDF from an application that is not licensed to print to novaPDF printer (http:/hvww.novapdf.com) Hydraulic Grade Line Computations Pape 1 Line Size (in) Q (afs) Downstream Len (ft) upstream Check JL eoeff Minor loss Ifi1 Invert elev (fi) KGL el" (fi) Depth (fi) Area (s9fQ Val (file) Vol head (ft) EGL elev (fi) Sf (W Invert elev (ft) KGL elev (ft) Depth (ft) Area (sgfQ Val (ftle) Val head (fi) EGL elev (fil $f N Ave Sf N Enrpy loss (it) (K) 1 15 0.34 4970.29 4970.48 0.19 0.12 2.80 0.12 4970.61 0.478 46.2 4970.75 4970.98 0.23" 0.16 2.15 0.07 4971.06 0.478 0.478 nla 1.00 0.07 Prc*Wt He: StonnLine-BasinOS2sbm Number of lines: 1 Run Data. 01-19-2016 Notes: ; " Critical depth. nymanow so sv. zoos You created this PDF from an application that is not licensed to print to novaPDF printer (hftp://www.novapdf.com) APPENDIX C.1 STORMWATER ALTERNATIVE COMPLIANCENARIANCE APPLICATION (FLOODPLAIN FREEBOARD) Stormwater Alternative ComplianceNariance Application City of Fort Collins Water Utilities Engineering a 11r'l 1cm IYG111fd_'weI vVal 970-221-4158 Street Address 301 N. Howes, Suite 100 City Tort Lolltns State CO Zip 80521 Owner Name Bohemian Companies Phone 970-490-2626 Street Address 262 E. Mountain Ave. City Fort Collins stars CO Project Name Fort Collins Hotel io 80524 Project/Application Number from Development Review (i.e. FDP123456) FDP 150033 Legal description and/or address of property SW Quarter Section 12, Township 7 North, Range 69 West of 6th P.M. Description of Project Infill hotel development Existing Use (check one): f' residential Co' non-residential (" mixed -use 1" vacant ground Proposed Use (check one); r residential t: non-residential (- mixed -use r other If non-residential or mixed use, describe in detail Development of downtown hotel and associated utility work, parkina. roadwav imnrnvamnnto State the requirement from which alternative compliance/variance is sought. (Please include applicable Drainage Criteria Manual volume, chapter and section.) Variance from 12-inch floodplain freeboard requirement What hardship prevents this site from meeting the requirement? Hardship involving elevation of building finished floor and entryways and at the same time achieving entryways that are not elevated excessively from adjoining sidewalks. Flood levels are mimimal at this location, public safety will not be jeopardized by providing a minimum of 6" of freeboard. What alternative is proposed for the site? Attach separate sheet if necessary Lowering finished floor to a level (with min. 6" freeboard) that enables matching more closely to existing sidewalk grades. Attach separate sheet it necessary page 2 The owner agrees to comply with the provisions of the zoning ordinance, building code and all other applicable sections of the City Code, Land Use Code, City Plan and all other laws and ordinances affecting the construction and occupancy of the proposed building that are not directly approved by this variance. The owner understands that if this variance is approved, the structure and its occupants may be more susceptible to flood or runoff damage as well as other adverse drainage issues. Signature of • Z- Ay-1 S The engineer hereby certifies that the above information, along with the reference plans and project descriptions is correct. Signature of engi Date complete application submitted: Date of approval/denial: Variance: ❑ approved ❑ denied Staffj ustification/notes/conditions: Approved Entered in UtilityFile Database? (]yes ❑no 12/zg,//y PE STAMP APPENDIX D.1 EROSION CONTROL REPORT INORTHERN ENGINEERING EROSION CONTROL REPORT Walnut -Chestnut Subdivision A comprehensive Erosion and Sediment Control Plan (along with associated details) HAS BEEN PROVIDED BY SEPARATE DOCUMENT. It should be noted, however, that any such Erosion and Sediment Control Plan serves only as a general guide to the Contractor. Staging and/or phasing of the BMPs depicted, and additional or different BMPs from those included may be necessary during construction, or as required by the authorities having jurisdiction. It shall be the responsibility of the Contractor to ensure erosion control measures are properly maintained and followed. The Erosion and Sediment Control Plan is intended to be a living document, constantly adapting to site conditions and needs. The Contractor shall update the location of BMPs as they are installed, removed or modified in conjunction with construction activities. It is imperative to appropriately reflect the current site conditions at all times. The Erosion and Sediment Control Plan shall address both temporary measures to be implemented during construction, as well as permanent erosion control protection. Best Management Practices from the Volume 3, Chapter 7 — Construction BMPs will be utilized. Measures may include, but are not limited to, silt fencing along the disturbed perimeter, gutter protection in the adjacent roadways and inlet protection at existing and proposed storm inlets. Vehicle tracking control pads, spill containment and clean-up procedures, designated concrete washout areas, dumpsters, and job site restrooms shall also be provided by the Contractor. Grading and Erosion Control Notes can be found on the Utility Plans. The Final Plans contain a full-size Erosion Control sheet as well as a separate sheet dedicated to Erosion Control Details. In addition to this report and the referenced plan sheets, the Contractor shall be aware of, and adhere to, the applicable requirements outlined in the Development Agreement for the development. Also, the Site Contractor for this project will be required to secure a Stormwater Construction General Permit from the Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Division — Stormwater Program, prior to any earth disturbance activities. Prior to securing said permit, the Site Contractor shall develop a comprehensive StormWater Management Plan (SWMP) pursuant to CDPHE requirements and guidelines. The SWMP will further describe and document the ongoing activities, inspections, and maintenance of construction BMPs. Final Erosion Control Report APPENDIX E.1 BASE FLOOD ELEVATION ANALYSIS NORTHERN ENGINEERING July 15, 2015 City of Fort Collins Stormwater Utility Attn: Mr. Shane Boyle, PE 700 Wood Street Fort Collins, Colorado 80521 RE: 100-Year Flood Elevation Determination for Fort Collins Hotel Mr. Boyle: Northern Engineering is pleased to submit this 100-Year Flood Elevation Determination for the proposed Fort Collins Hotel for your review. The project is located just north of the intersection of Walnut and Chestnut and Walnut Street. VICINITY MAP North 301 N. Howes Street, Suite 100, Fort Collins, CO 80521 1 970.221.4158 1 www. northernengi nee ri ng.conn The City of Fort Collins has identified Walnut Street and Chestnut Street as potential flooding areas, and has requested we perform floodplain modeling to further define flood potential within these adjacent roadways by determining 100-year flood elevations. The project site is located just north of a previous project site, the "Mitchell Block", for which we conducted similar hydraulic modeling. This modeling was summarized in our previous report entitled "Final Drainage Report for Mitchell Block", dated February 25, 2009. However, for the purposes of the Mitchell Block project, the previous modeling separated out flows in the adjacent south half -street of Walnut Street, and determined a 100-year peak flow rate of 36.3 cfs. In 2009, we obtained effective HEC-RAS files from the City of Fort Collins in order to set up base hydraulic modeling. We added several cross -sections to the effective HEC-RAS model in the streets adjacent to the Mitchell Block project (Mountain Avenue and Walnut Street). Please see the effective model workmap in Appendix 2.1. For current modeling efforts, the base modeling obtained from the City of Fort Collins in 2009 for the Mitchell Block was utilized as our starting point for modeling Walnut Street and Chestnut Street. However, in order to model the flow split at Walnut and Chestnut, we needed to create a separate truncated model because HEC-RAS does not allow a flow split junction to have multiple reaches entering and exiting the junction. The truncated model we created is named "Walnut —NE" and is provided in Attachment 3.2. Additionally, in order to model Jefferson Street and Firehouse Alley, we created two separate models. The Jefferson Street model "Jeff —NE" is provided in Appendix 3.3; the firehouse Alley model "Alley_NE", is provided in Appendix 3.4. The Walnut Street model focuses on the flow split that occurs at the Walnut Street, Chestnut Street, and Mountain Avenue confluence. We used the effective model peak 100-year flow in Walnut of 60.0 cfs, and we also utilized the effective model water surface elevation in Mountain Avenue near section 11+00 of 4976.18 as a starting water surface elevation in Mountain Ave. This water surface elevation is conservative, as it is based on 100% of the flow from Walnut St. entering Mountain Ave., resulting in slightly higher water surface elevations within our area of interest. The starting water surface elevation was converted from NGVD-29 to NAVD-88 utilizing a conversion factor of 3.18-ft, based on City of Fort Collins Bechmark No. 5-00. Several cross -sections were added within Walnut Street, Chestnut Street, and Mountain Avenue in order to define the flow split that occurs at the intersection. We utilized the same parameters found in the effective HEC-RAS model, with n-values in both channel and overbank of 0.016. A hydraulic modeling workmap for the current hydraulic modeling is provided in Appendix 3.1. Table 1, below provides a summary of our modeling results. 2 TABLE 1— HEC-RAS MODELING RESULTS Street Section ID 100-Yr 300-Yr WSEL Discharge (Ft-NAVD88) (CFS) Walnut St. 10 60 4977.13 Walnut St. 20 60 4978.81 Chestnut St. 5 22.08 4973.71 Chestnut St. 10 22.08 4974.08 Chestnut St. 20 22.08 4975.3 Chestnut St. 30 19.58 4976.69 Mountain Ave. 10 40.42 4976.18 Mountain Ave. 20 40.42 4976.71 Jefferson St. 10 24.1 4972.84 Jefferson St. 20 24.1 4973.71 Jefferson St. 30 24.1 4974.74 Jefferson St. 40 24.1 4975.91 Firehouse Alley 10 9.5 4975.26 Firehouse Alley 20 9.5 4975.68 Firehouse Alley 30 9.5 4978.19 In order to determine peak 100-year flow rates in Jefferson Street and Firehouse Alley, as well as to determine the local basin flow contribution to Chestnut Street, we obtained the current effective SWMM model associated with the Downtown River District Final Design Report, by Ayres 2012 (Appendix 1.1). We modified this model by breaking Basin 106 into three sub -basins, "Basin 106a", "Basin 106b", and "Basin 106c", and we named this model "DTRD-NEmod-100yr". A modified basin map, along with all SWMM output is provided in Appendix 1.2. Hydraulic modeling for Jefferson Street and Firehouse Alley has been done in two separate models. Model "Jeff —NE" is provided in Appendix 3.2; Model "Alley_NE" is provided in Appendix 3.3. We utilized the same parameters found in the effective HEC-RAS model for Walnut Street, with n- values in both channel and overbank of 0.016. A hydraulic modeling workmap for the current model "Oak—NEmod", is provided in Appendix 2.1. Table 1, below provides a summary of our modeling results. 3 Please find attached the following model output and exhibits: Attachment 1.1— Current Effective SWMM Output Attachment 1.2 — Modified SWMM Exhibit and Output Attachment 2.1— Effective HEC-RAS Modeling Workmap - Walnut Street Attachment 3.1— Proposed Condition HEC-RAS Modeling Workmap Attachment 3.2 — Proposed Condition HEC-RAS Modeling Output — Walnut and Chestnut Street Attachment 3.3 — Proposed Condition HEC-RAS Modeling Output — Jefferson Street Attachment 3.4— Proposed Condition HEC-RAS Modeling Output- Firehouse Alley If you should have any questions as you review this, please feel free to contact us at your earliest convenience. Sincerely, NORTHERN ENGINEERING SERVICES, INC. Aaron Cvar, PE Project Engineer 4 ATTACHMENT 1.1 Current Effective SWMM Output EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 )Build 5.0.022) NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ......................................................... ................ Analysis Options ................ Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Pending Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ MAR-17-2006 00:00:00 Ending Date .............. MAR-17-2006 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:05:00 Dry Time Step ............ 01:00:00 -uting Time Step ........ 1.00 set ...WING 02: maximum depth increased for Node CustomInlet-River WARNING 02: maximum depth increased for Node E%MH_B1 Element Count Number of rain gages ...... 1 Number of subcatchments ... 93 Number of nodes ........... 76 Number of links ........... 69 Number of pollutants ...... 0 Number of land uses ....... 0 Raingage ................ Summary Data Recording Name Data Source Type Interval ------------------------------------------------------------- 1 300-year INTENSITY 5 in. .................... Subcatchment Summary SWMM 5 Page 1 Name Area Width %Impery %Slope Rain Gage Outlet ---------------------------------------------' 100 1.20 185.00 95.00 ---------------------------------------------"' 0.8000 1 INLET-B1B 101 2.30 337.00 95.00 0.3400 1 INLET-B2B 102 2.90 423.00 95.00 1.0800 1 INLET-C2B 103 0.80 582.00 95.00 0.8000 1 INLET-B3B 104 4.50 2930.00 95.00 0.4800 1 EXMH B1 105 1.20 2197.00 95.00 0.6600 1 EXINLET-B4B 106 3.70 537.00 95.00 0.6600 1 EXINLET-B3C 107 0.80 524.00 95.00 0.7100 1 EXINLET-B4C 108 1.90 274.00 95.00 0.3200 1 INLET-B10A 109 0.80 1618.00 60.00 0.2900 1 INLET-B5A 110 2.00 289.00 80.00 1.2600 1 INLET-A3B 111 0.90 124.00 10.00 1.0600 1 213 112 1.30 191.00 90.00 0.8900 1 0112 113 1.80 265.00 95.00 1.7200 1 0113 114 3.50 502.00 95.00 2.0800 1 0114 115 2.80 407.00 95.00 3.5700 1 0115 116 0.20 582.00 95.00 0.7900 1 INLET-B2A 117 1.20 459.00 95.00 0.5400 1 EXINLET-B3A 118 1.80 258.00 95.00 0.9000 1 INLET-B7A 119 3.60 880.00 90.00 0.4200 1 MH B13 120 0.40 743.00 95.00 1.2800 1 INLET-A3A 121 0.30 456.00 95.00 1.2000 1 INLET-B1A 122 0.60 1177.00 95.00 0.2800 1 INLET-C1A 123 0.30 527.00 95.00 1.0400 1 CustomInlet-River 124 0.70 603.00 95.00 2.1400 1 INLET-AIA 125 0.50 893.00 95.00 0.9100 1 INLET-C2A 126 5.00 184.00 95.00 1.2400 1 EXMH Cl 127 2.30 328.00 95.00 1.5000 1 INLET-C1B -9 0.30 1406.00 95.00 2.1100 1 INLET-A2A 0.30 252.00 95.00 1.6900 1 EXINLET-B10B 0.20 271.00 95.00 0.9600 1 EXINLET-B9B .2 0.40 420.00 95.00 1.4200 1 INLET-B9A 203 0.30 447.00 95.00 0.3900 1 EXINLET-B8A 204 0.40 203.00 95.00 0.0300 1 203 205 0.10 121.00 95.00 0.8700 1 INLET-M 206 0.20 102.00 90.00 1.2200 1 INLET -MA 207 0.90 1123.00 95.00 0.4400 1 EXINLET-B5B 208 0.70 327.00 95.00 0.6500 1 EXSTUB-B6 210 2.90 414.00 80.00 0.6200 1 INLET-D2B 211 0.20 224.00 95.00 0.4700 1 INLET-D2A 212 0.60 918.00 95.00 0.5700 1 INLET-D3A 213 1.20 360.00 95.00 0.7100 1 INLET-D3B 300 2.20 325.00 95.00 1.7300 1 0300 Node Summary Invert Max. Ponded External Name Type Elev. Depth Area Inflow --___ CustomInlet-River ----____ JUNCTION -------------------------------------- 4956.94 5.91 0.0 EXINLET-B10B JUNCTION 4972.71 3.71 0.0 EXINLET-B3A JUNCTION 4960.63 9.45 0.0 EXINLET-B3C JUNCTION 4963.76 6.34 0.0 EXINLET-B4B JUNCTION 4971.23 2.42 0.0 EXINLET-B4C JUNCTION 4972.04 2.29 0.0 EXINLET-B5B JUNCTION 4971.25 2.42 0.0 SWMM 5 Page 2 EXINLET-BBA JUNCTION 4971.38 3.08 0.0 EXINLET-B9B JUNCTION 4971.42 4.24 0.0 EXMH B1 JUNCTION 4959.16 11.13 0.0 EXMH C1 JUNCTION 4956.26 9.15 0.0 EXSTUB-B6 JUNCTION 4970.40 3.00 0.0 INLET-AIA JUNCTION 4955.50 3.02 0.0 INLET-A2A JUNCTION 4955.01 7.94 0.0 INLET-A3A JUNCTION 4965.04 3.40 0.0 INLET-A3B JUNCTION 4962.01 6.48 0.0 INLET-A4A JUNCTION 4969.60 2.65 0.0 INLET-B10A JUNCTION 4972.40 2.99 0.0 INLET-B1A JUNCTION 4960.79 4.02 0.0 INLET-B1B JUNCTION 4960.92 4.08 0.0 INLET-02A JUNCTION 4964.00 3.80 0.0 INLET-B2B JUNCTION 4963.85 3.86 0.0 INLET-B3B JUNCTION 4960.96 8.28 0.0 INLET-B4A JUNCTION 4965.45 7.45 0.0 INLET-B5A JUNCTION 4971.06 2.50 0.0 INLET-B7A JUNCTION 4970.39 3.50 0.0 INLET-B9A JUNCTION 4971.49 3.65 0.0 INLET-C1A JUNCTION 4957.82 5.00 0.0 INLET-C1B JUNCTION 4958.34 5.12 0.0 INLET-C2A JUNCTION 4961.50 2.98 0.0 INLET-C2B JUNCTION 4960.76 4.14 0.0 INLET-D1 JUNCTION 4960.24 7.94 0.0 INLET-D2A JUNCTION 4963.74 4.00 0.0 INLET-D2B JUNCTION 4963.78 4.87 0.0 INLET-D3A JUNCTION 4964.00 1.88 0.0 INLET-D3B JUNCTION 4964.28 4.13 0.0 MR Al JUNCTION 4942.03 15.03 0.0 ' A2 JUNCTION 4950.07 9.37 0.0 %3 JUNCTION 4953.34 9.94 0.0 A-MH D1 JUNCTION 4959.59 9.05 0.0 _ A5 JUNCTION 4961.21 7.65 0.0 MR B10 JUNCTION 4967.11 8.78 0.0 MR Bll JUNCTION 4968.41 8.65 0.0 MR B12 JUNCTION 4969.47 9.06 0.0 MR B13 JUNCTION 4970.00 9.39 0.0 MR B2 JUNCTION 4957.32 7.71 0.0 MR B3 JUNCTION 4958.62 9.59 0.0 MR B3A JUNCTION 4960.86 9.60 0.0 Yes MR B4 JUNCTION 4958.88 10.22 0.0 MR B4A JUNCTION 4965.42 7.83 0.0 MR B4B JUNCTION 4966.41 8.22 0.0 MR B5 JUNCTION 4960.52 9.87 0.0 MR B6 JUNCTION 4963.34 10.85 0.0 MR B7 JUNCTION 4963.58 10.62 0.0 MR B7A JUNCTION 4969.79 5.39 0.0 MR B8 JUNCTION 4963.76 10.62 0.0 MR B9 .UNCTION 4965.12 10.25 0.0 MR C1 JUNCTION 4941.23 7.06 0.0 MR C2 JUNCTION 4942.08 6.69 0.0 MR C3 JUNCTION 4945.12 14.60 0.0 MR C4/B1 JUNCTION 4946.00 17.83 0.0 MR C5 JUNCTION 4954.89 7.75 0.0 MR C6 JUNCTION 4955.47 9.01 0.0 MR C7 JUNCTION 4956.24 8.23 0.0 MR D2 JUNCTION 4959.98 8.30 0.0 MR D3 JUNCTION 4960.65 7.21 0.0 MH D4 JUNCTION 4961.91 5.11 0.0 SWMM 5 Page 3 M4T STRT JUNCTION 4973.00 1.00 0.0 Yes 0112 JUNCTION 0.00 0.00 0.0 0113 JUNCTION 0.00 0.00 0.0 0114 JUNCTION DAD 0.00 0.0 0115 JUNCTION 0.00 0.00 0.0 0300 JUNCTION 0.00 0.00 0.0 Al POUDRE OUTFALL 4949.89 3.00 0.0 FESB1-POUDRE OUTFALL 4953.73 4.00 0.0 FESC1-UDALL POND OUTFALL 4941.03 2.00 0.0 Link Summary Name From Node To Node Type Length %Slope Roughness ________ Al MH Al ______________ Al POUDRE CONDUIT ---__________--------___-___ 73.0 0.1781 0.0130 A2 MH A2 MH Al CONDUIT 27.0 0.0741 0.0130 A3 MH A3 MH A2 CONDUIT 173.0 1.8905 0.0130 A4 MH A4-MH_DI M1 A3 CONDUIT 325.0 1.9050 0.0130 A5 MH A5 MH A4-MH D1 CONDUIT 65.5 1.4342 0.0130 B1 MH C4/B1 FE5B1-POUDRE CONDUIT 139.0 1.4966 0.0130 B2 MH B2 MH C4/01 CONDUIT 100.0 1.5102 0.0130 B3 MH B3 MH B2 CONDUIT 353.0 0.3683 0.0130 B4 MH B4 MH B3 CONDUIT 74.0 0.3514 0.0130 B5 MH B5 MH B4 CONDUIT 470.0 0.3489 0.0130 B6 MH B6 MH B5 CONDUIT 485.0 0.5815 0.0130 B7 MH B7 MH B6 CONDUIT - 68.0 0.3529 0.0130 B8 MH B8 MH B7 CONDUIT 74.5 0.2470 0.0130 B9 MH B9 MH B8 CONDUIT 367.0 0.3695 0.0130 MH B10 MHB9CONDUIT 63.0 0.7778 0.0130 MH B11 MH BID CONDUIT 165.0 0.7879 0.0130 MH B12 MH all CONDUIT 134.0 0.7911 0.0130 _1 MH B13 MH B12 CONDUIT 33.0 1.6063 0.0130 C1 MH C1 FESCI-UDALL_PONDCONDUIT 34.0 0.5882 0.0130 C2 MH C2 MH Cl CONDUIT 138.0 0.6160 0.0130 C3 MH C3 Mi C2 CONDUIT 494.0 0.6154 0.0100 C4 MH C4/BI MI C3 CONDUIT 144.0 0.6111 0.0130 C5 M7 C5 MH C4/B1 CONDUIT 45.0 0.3111 0.0130 C6 MH C6 MH C5 CONDUIT 194.0 0.2990 0.0130 C7 MH C7 MN C6 CONDUIT 274.0 0.2810 0.0130 D2 MH D2 MH A4-MH_D1 CONDUIT 74.0 0.5270 0.0130 D3 MH D3 MH D2 CONDUIT 173.0 0.3873 0.0130 D4 MH D4 MH D3 CONDUIT 322.0 0.3913 0.0130 EXLAT-B3C EXINLET-B3C MH B3A CONDUIT 36.0 2.1116 0.0130 EXLAT-B4B EXINLET-B4B MH B4B CONDUIT 34.4 2.2415 0.0130 EXLAT-B4C EXINLET-B4C MH B4B CONDUIT 29.0 5.4564 0.0130 LAT-AIA INLET-AlA MH A2 CONDUIT 41.0 1.2684 0.0130 LAT-A2A INLET-A2A MH A3 CONDUIT 25.0 2.6009 0.0130 LAT-A3A INLET-A3A MI A5 CONDUIT 21.0 2.8106 0.0130 LAT-A3B INLET-A30 MH A5 CONDUIT 46.0 0.9348 0.0130 LAT-MA INLET -MA MH B6 CONDUIT 104.0 0.2596 0.0130 LAT-B1A INLET-B1A MH B2 CONDUIT 32.0 0.6563 0.0130 LAT-BIB INLET -BIB MH B2 CONDUIT 11.0 3.0924 0.0130 LAT-B2A INLET-B2A MH B3 CONDUIT 45.0 0.8000 0.0130 LAT-B2B INLET-52B MH B3 CONDUIT 14.0 1.5002 0.0130 LAT-B3A EXINLET-B3A MH B5 CONDUIT 45.0 0.2444 0.0130 LAT-B3B INLET-B3B MH B3A CONDUIT 36.0 0.2778 0.0130 LAT-B3C MH B3A MH B5 CONDUIT 57.0 0.5965 0.0130 LAT-B4A INLET-B4A MH B4A CONDUIT 19.0 0.1579 0.0130 SWMM 5 Page 4 LAT-B4B MH_B4A MH B6 CONDUIT 92.0 0.3043 0.0130 LAT-B4C MH B4B MH B6 CONDUIT 52.0 2.0004 0.0130 LAT-B5A INLET-B5A MH B7 CONDUIT 39.0 1.4617 0.0130 LAT-B5B EXINLET-B5B MN B7 CONDUIT 20.0 1.6002 0.0130 LAT-B6A EXSTUB-B6 MH-B8 CONDUIT 21.0 1.5049 0.0130 LAT-B7A INLET-B7A MH-B7A CONDUIT 25.0 2.4007 0.0130 LAT-B7C MH B7A MH-B9 CONDUIT 71.0 1.0001 0.0130 LAT-B8A EXINLET-B8A MH-B7A CONDUIT 38.5 4.1334 0.0130 LAT-B9A INLET-B9A MH B10 CONDUIT 32.0 2.4695 0.0130 LAT-B9B EXINLET-B9B MH B10 CONDUIT 36.0 2.0004 0.0130 LAT-B10A INLET-BIOA MH Bll CONDUIT 30.0 1.9003 0.0130 LAT-B10B EXINLET-B10B MH Bll CONDUIT 44.0 2.0004 0.0130 LAT-B11A EXMH B1 MH B4 CONDUIT 61.0 0.4590 0.0130 LAT-CIA INLET-ClA MH C5 CONDUIT 36.0 0.3889 0.0130 LAT-C1B INLET-C1B MH C5 CONDUIT 33.0 2.0004 0.0130 LAT-C2A INLET-C2A MH C7 CONDUIT 55.0 1.7821 0.0130 LAT-C2B INLET-C2B MH C7 CONDUIT 12.0 2.0004 0.0130 LAT-C3A EXMH Cl MH C7 CONDUIT 18.0 0.1111 0.0130 LAT-D2A INLET-D2A MH D3 CONDUIT 51.0 0.4510 0.0130 LAT-D2B INLET-D2B MH D3 CONDUIT 14.0 1.9289 0.0130 LAT-D3A INLET-D3A MH D4 CONDUIT 40.0 0.5000 0.0130 LAT-D3B INLET-D3B MH D4 CONDUIT 24.0 2.0004 0.0130 MT STRT M4T STRT EXMH B1 CONDUIT 720.0 0.4458 0.0160 12DIP CustomInlet-RiVerMH 92 CONDUIT 80.6 6.1031 0.0130 LAT-D1 INLET-D1 MH D2 CONDUIT 13.0 2.9243 0.0130 ..................... Cross Section Summary Full Full Hyd. Max. No. of Full suit Shape Depth Area Rad. Width Barrels Flow ----------------------------------------------------------------------' CIRCULAR 3.00 7.07 0.75 3.00 1 28.15 A2 CIRCULAR 3.00 7.07 0.75 3.00 1 18.15 A3 CIRCULAR 3.00 7.07 0.75 3.00 1 91.71 A4 CIRCULAR 3.00 7.07 0.75 3.00 1 92.06 A5 CIRCULAR 2.00 3.14 0.50 2.00 1 27.09 B1 RECT CLOSED 4.00 24.00 1.20 6.00 1 378.99 B2 RECT CLOSED 4.00 28.00 1.27 7.00 1 461.92 B3 RECT CLOSED 4.00 28.00 1.27 7.00 1 228.11 B4 RECT CLOSED 4.00 28.00 1.27 7.00 1 222.81 B5 RECT CLOSED 4.00 24.00 1.20 6.00 1 183.00 B6 CIRCULAR 4.00 12.57 1.00 4.00 1 109.53 B7 CIRCULAR 4.00 12.57 1.00 4.00 1 85.34 B8 CIRCULAR 4.00 12.57 1.00 4.00 1 71.39 B9 CIRCULAR 4.00 12.57 1.00 4.00 1 87.31 B10 CIRCULAR 3.50 9.62 0.88 3.50 1 88.73 ell CIRCULAR 3.50 9.62 0.88 3.50 1 89.31 B12 CIRCULAR 3.00 7.07 0.75 3.00 1 59.32 813 CIRCULAR 3.00 7.07 0.75 3.00 1 84.53 Cl CIRCULAR 2.00 3.14 0.50 2.00 1 17.35 C2 CIRCULAR 2.00 3.14 0.50 2.00 1 17.75 C3 CIRCULAR 2.00 3.14 0.50 2.00 1 23.07 C4 CIRCULAR 2.00 3.14 0.50 2.00 1 17.68 C5 CIRCULAR 4.00 12.57 1.00 4.00 1 80.12 C6 CIRCULAR 4.00 12.57 1.00 4.00 1 78.54 C7 CIRCULAR 3.50 9.62 0.88 3.50 1 53.33 D2 CIRCULAR 3.00 7.07 0.75 3.00 1 48.42 D3 CIRCULAR 3.00 7.07 0.75 3.00 1 41.51 SWMM 5 Page 5 D4 CIRCULAR 2.50 4.91 0.63 2.50 1 25.66 EXLAT-B3C CIRCULAR 2.50 4.91 0.63 2.50 1 59.60 EXLAT-B4B CIRCULAR 1.25 1.23 0.31 1.25 1 9.67 EXLAT-B4C CIRCULAR 1.25 1.23 0.31 1.25 1 15.09 LAT-AIA CIRCULAR 1.50 1.77 0.38 1.50 1 11.83 LAT-A2A CIRCULAR 1.50 1.77 0.38 1.50 1 16.94 LAT-A3A CIRCULAR 1.50 1.77 0.38 1.50 1 17.61 LAT-A3B CIRCULAR 1.50 1.77 0.38 1.50 1 10.16 LAT-A4A CIRCULAR 1.00 0.79 0.25 1.00 1 1.82 LAT-B1A CIRCULAR 1.50 1.77 0.38 1.50 1 8.51 LAT-B1B CIRCULAR 1.50 1.77 0.38 1.50 1 18.47 LAT-B2A CIRCULAR 1.50 1.77 0.38 1.50 1 9.40 LAT-B2B CIRCULAR 2.00 3.14 0.50 2.00 1 27.71 LAT-B3A CIRCULAR 2.00 3.14 0.50 2.00 1 11.18 LAT-B3B CIRCULAR 2.50 4.91 0.63 2.50 1 21.62 LAT-B3C CIRCULAR 3.00 7.07 0.75 3.00 1 51.51 LAT-B4A CIRCULAR 2.00 3.14 0.50 2.00 1 8.99 LAT-B4B CIRCULAR 2.00 3.14 0.50 2.00 1 12.46 LAT-B4C CIRCULAR 2.50 4.91 0.63 2.50 1 58.01 LAT-135A CIRCULAR 1.50 1.77 0.38 1.50 1 12.70 LAT-B5B CIRCULAR 1.50 1.77 0.38 1.50 1 13.29 LAT-B6A CIRCULAR 1.33 1.39 0.33 1.33 1 9.35 LAT-B7A CIRCULAR 2.00 3.14 0.50 2.00 1 35.05 LAT-B7C CIRCULAR 3.50 9.62 0.88 3.50 1 100.61 LAT-B8A CIRCULAR 1.50 1.77 0.38 1.50 1 21.36 LAT-B9A CIRCULAR 1.50 1.77 0.38 1.50 1 16.51 LAT-B9B CIRCULAR 1.50 1.77 0.38 1.50 1 14.86 LAT-B10A CIRCULAR 2.00 3.14 0.50 2.00 1 31.19 LAT-B10B CIRCULAR 1.50 1.77 0.38 1.50 1 14.86 LAT-B11A CIRCULAR 4.00 12.57 1.00 4.00 1 97.32 -T-CIA CIRCULAR 1.50 1.77 0.38 1.50 1 6.55 -C1B CIRCULAR 1.50 1.77 0.38 1.50 1 14.86 -C2A CIRCULAR 1.50 1.77 0.38 1.50 1 14.02 .,T-C2B CIRCULAR 2.00 3.14 0.50 2.00 1 32.00 LAT-C3A CIRCULAR 2.00 3.14 0.50 2.00 1 7.54 LAT-D2A CIRCULAR 1.50 1.77 0.38 1.50 1 7.05 LAT-D2B CIRCULAR 1.50 1.77 0.38 1.50 1 - 14.59 LAT-D3A CIRCULAR 1.50 1.77 0.38 1.50 1 7.43 LAT-D3B CIRCULAR 1.50 1.77 0.38 1.50 1 14.86 MT STRT TRAPEZOIDAL 0.50 62.50 0.42 150.00 1 216.21 12DIP CIRCULAR 1.00 0.79 0.25 1.00 1 8.80 LAT-D1 CIRCULAR 2.00 3.14 0.50 2.00 1 38.69 .....................«,. Volume Depth Runoff Quantity Continuity ..................... ..... acre-feet inches Total Precipitation ...... --------- 18.407 ------- 3.669 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 0.605 0.121 Surface Runoff ........... 17.471 3.483 Final Surface Storage .... 0.461 0.092 Continuity Error M ..... -0.702 .......:. ................ Volume Volume Flow Routing Continuity ................«.«.«.. acre-feet --------- 10-6 gal --------- Dry Weather Inflow ....... 0.000 0.000 SWMM 5 Page 6 Wet Weather Inflow ....... 17.471 5.693 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 3.507 1.143 External Outflow ......... 17.561 5.722 Internal Outflow ......... 0.000 0.000 Storage Losses ........... 0.000 0.000 Initial Stored Volume .... 0.039 0.013 Final Stored Volume ...... 0.040 0.013 Continuity Error (%) ..... 16.257 ........................... Time -Step Critical Elements None Highest Flow Instability Indexes ................................ All links are stable. ......................... Routing Time Step Summary ......................... Minimum Time Step 0.50 sec Average Time Step 1.00 sec Maximum Time Step 1.00 sec scent in Steady State 0.00 cage Iterations per Step 2.04 Subcatchment Runoff Suvwary Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10"6 gal ______________---- CFS ____________________________________________ 100 3.67 0.00 0.00 ____________ 0.07 3.53 0.12 11.13 0.963 101 3.67 0.00 0.00 0.07 3.53 0.22 19.84 0.962 102 3.67 0.00 0.00 0.07 3.53 0.28 27.19 0.963 103 3.67 0.00 0.00 0.07 3.53 0.08 7.99 0.962 104 3.67 0.00 0.00 0.07 3.53 0.43 44.74 0.963 105 3.67 0.00 0.00 0.07 3.53 0.12 12.01 0.962 106 3.67 0.00 0.00 0.07 3.53 0.36 34.23 0.963 107 3.67 0.00 0.00 0.07 3.53 0.08 7.98 0.962 108 3.67 0.00 0.00 0.07 3.53 0.18 16.24 0.962 109 3.67 0.00 0.00 0.55 3.09 0.07 7.65 0.842 110 3.67 0.00 0.00 0.29 3.33 0.18 17.94 0.908 111 3.67 0.00 0.00 1.53 2.14 0.05 2.68 0.583 112 3.67 0.00 0.00 0.14 3.47 0.12 11.96 0.945 113 3.67 0.00 0.00 0.07 3.53 0.17 17.25 0.963 114 3.67 0.00 0.00 0.07 3.53 0.34 33.71 0.963 115 3.67 0.00 0.00 0.07 3.53 0.27 27.41 0.963 116 3.67 0.00 0.00 0.07 3.53 0.02 2.00 0.962 SWMM 5 Page 7 117 3.67 0.00 0.00 0.07 3.53 0.12 11.76 0.963 118 3.67 0.00 0.00 0.07 3.53 0.17 16.67 0.963 119 3.67 0.00 0.00 0.14 3.47 0.34 33.64 0.945 120 3.67 0.00 0.00 0.07 3.53 0.04 4.00 0.962 121 3.67 0.00 0.00 0.07 3.53 0.03 3.00 0.962 122 3.67 0.00 0.00 0.07 3.53 0.06 6.00 0.962 123 3.67 0.00 0.00 0.07 3.53 0.03 3.00 0.962 124 3.67 0.00 0.00 0.07 3.53 0.07 7.00 0.962 125 3.67 0.00 0.00 0.07 3.53 0.05 5.00 0.962 126 3.67 0.00 0.00 0.07 3.52 0.48 35.38 0.960 127 3.67 0.00 0.00 0.07 3.53 0.22 21.86 0.963 128 3.67 0.00 0.00 0.07 3.53 0.03 3.00 0.961 200 3.67 0.00 0.00 0.07 3.53 0.03 3.00 0.962 201 3.67 0.00 0.00 0.07 3.53 0.02 2.00 0.962 202 3.67 0.00 0.00 0.07 3.53 0.04 4.00 0.962 203 3.67 4.71 D.00 0.08 8.23 0.07 4.75 0.982 204 3.67 0.00 0.00 0.07 3.53 0.04 3.47 0.962 205 3.67 0.00 0.00 0.07 3.53 0.01 1.00 0.962 206 3.67 0.00 0.00 0.14 3.47 0.02 1.99 0.945 207 3.67 0.00 0.00 0.07 3.53 0.09 9.00 0.962 208 3.67 0.00 0.00 0.07 3.53 0.07 6.93 0.963 210 3.67 0.00 0.00 0.29 3.32 0.26 24.60 0.906 211 3.67 0.00 0.00 0.07 3.53 0.02 2.00 0.962 212 3.67 0.00 0.00 0.07 3.53 0.06 6.00 0.962 213 3.67 1.61 0.00 0.07 5.13 0.17 12.69 0.973 300 3.67 0.00 0.00 0.07 3.53 0.21 21.09 0.963 Node Depth Summary _______-_ Average ____________________ Maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type Feet ___________________ Feet Feet days hr:min ___- _________ CustomInlet-River JUNCTION 4.88 5.31 4962.25 0 00:40 EXINLET-B10B JUNCTION 0.02 0.58 4973.29 0 00:40 EXINLET-B3A JUNCTION 0.13 8.25 4968.88 0 00:38 EXINLET-B3C JUNCTION 0.06 6.34 4970.10 0 00:38 EXINLET-B4B JUNCTION 0.04 1.69 4972.92 0 00:39 EXINLET-B4C JUNCTION 0.03 1.10 4973.14 0 00:40 EXINLET-B5B JUNCTION 0.04 1.58 4972.83 0 00:39 EXINLET-B8A JUNCTION 0.02 0.55 4971.93 0 00:43 EXINLET-139B JUNCTION 0.02 0.46 4971.8B 0 00:40 EXMH B1 .UNCTION 0.14 6.39 4965.55 0 00:40 EXMH Cl JUNCTION 0.18 6.51 4962.77 0 00:40 EXSTUB-B6 JUNCTION 0.03 1.06 4971.46 0 00:40 INLET-AIA JUNCTION 0.03 0.96 4956.46 0 00:40 INLET-A2A JUNCTION 0.03 4.77 4959.78 0 00:38 INLET-A3A JUNCTION 0.02 0.73 4965.77 0 00:40 INLET-A3B JUNCTION 0.08 4.46 4966.47 0 00:39 INLET-A4A JUNCTION 0.03 0.95 4970.55 0 00:40 INLET-B10A JUNCTION 0.06 1.67 4974.07 0 00:40 INLET-B1A JUNCTION 0.03 0.80 4961.59 0 00:40 INLET-B1B JUNCTION 0.05 1.69 4962.81 0 00:39 INLET-B2A JUNCTION 0.02 0.56 4964.56 0 00:40 INLET-B2B JUNCTION 0.08 2.32 4966.17 0 00:39 INLET-B3B JUNCTION 0.13 8.27 4969.23 0 00:38 SWMM 5 Page 8 INLET-B4A JUNCTION 0.03 4.53 4969.98 0 00:39 INLET-B5A JUNCTION 0.03 1.21 4972.27 0 00:40 INLET-B7A JUNCTION 0.05 1.68 4972.07 0 00:40 INLET-B9A JUNCTION 0.02 0.70 4972.19 0 00:40 INLET-C1A JUNCTION 0.05 3.04 4960.86 0 00:40 INLET-ClB JUNCTION 0.07 4.85 4963.19 0 00:40 INLET-C2A JUNCTION 0.03 1.04 4962.54 0 00:40 INLET-C2B JUNCTION 0.08 3.24 4964.00 0 00:40 INLET-D1 JUNCTION 0.18 2.95 4963.19 0 00:41 INLET-D2A JUNCTION 0.02 0.66 4964.40 0 00:40 INLET-D2B JUNCTION 0.06 2.02 4965.80 0 00:39 INLET-D3A JUNCTION D.04 1.36 4965.36 0 00:40 INLET-D3B JUNCTION 0.06 2.25 4966.53 0 00:39 MH Al JUNCTION 9.47 11.83 4953.86 0 00:41 MH A2 JUNCTION 1.46 6.10 4956.17 0 00:41 MH A3 JUNCTION 0.09 6.27 4959.61 0 00:38 MH A4-MH D1 JUNCTION 0.08 2.41 4962.00 0 00:41 MH A5 JUNCTION 0.05 1.56 4962.77 0 00:40 MH B10 JUNCTION 0.11 4.59 4971.70 0 00:42 MH Bll JUNCTION 0.09 3.67 4972.08 0 00:42 MN B12 JUNCTION 0.07 2.86 4972.33 0 00:42 MH-B13 JUNCTION 0.06 2.39 4972.39 0 00:42 MH-B2 JUNCTION 0.10 4.10 4961.42 0 00:41 MH B3 JUNCTION 0.14 5.43 4964.05 0 00:41 MH B3A JUNCTION 0.15 7.94 4968.80 0 00:38 MH B4 JUNCTION 0.15 6.05 4964.93 0 00:40 MH B4A JUNCTION 0.03 4.07 4969.49 0 00:39 MH B4B JUNCTION 0.04 3.17 4969.58 0 00:41 MH B5 JUNCTION 0.14 7.79 4968.31 0 00:38 MH B6 JUNCTION 0.14 6.13 4969.47 0 00:41 "B7 JUNCTION 0.15 6.32 4969.90 0 00:41 97A JUNCTION 0.05 1.31 4971.10 0 00:42 38 JUNCTION 0.15 6.44 4970.21 0 00:41 . B9 JUNCTION 0.13 6.00 4971.12 0 00:42 MH Cl JUNCTION 2.35 10.20 4951.43 0 00:00 MH C2 JUNCTION 1.77 6.61 4948.69 0 00:40 MH C3 JUNCTION 0.74 10.68 4955.80 0 00:40 MH C4/B1 JUNCTION 0.97 14.23 4960.23 0 00:40 MH C5 JUNCTION 0.20 5.77 4960.66 0 00:40 MH C6 JUNCTION 0.16 5.63 4961.10 0 00:40 MH C7 JUNCTION 0.16 6.12 4962.36 0 00:40 MH D2 JUNCTION 0.11 3.21 4963.19 0 00:41 MH D3 JUNCTION 0.10 3.36 4964.01 0 00:41 MH D4 JUNCTION 0.07 2.78 4964.69 0 00:41 MNT STRT JUNCTION 0.01 0.37 4973.37 0 00:37 0112 JUNCTION 0.00 0.00 0.00 0 00:10 0113 JUNCTION 0.00 0.00 0.00 0 00:10 0114 JUNCTION 0.00 0.00 0.00 0 00:10 0115 JUNCTION 0.00 0.00 0.00 0 00:10 0300 JUNCTION 0.00 0.00 0.00 0 00:10 Al POUDRE OUTFALL 1.59 2.67 4952.56 0 00:41 FESB1-POUDRE OUTFALL 0.07 3.27 4957.00 0 00:39 FESCI-UDALL POND OUTFALL 2.47 2.47 4943.50 0 00:00 ................... Node Inflow Summary ................... SWMM 5 Page 9 Maximum Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence Volume Volume Node Type CFS CFS days hr:min 30"6 gal 10"6 gal ------------------------------------------------------------------------------------- CustomInlet-River JUNCTION 3.00 3.00 0 00:40 0.029 0.029 EXINLET-B10B JUNCTION 3.00 3.00 0 00:40 0.029 0.029 EXINLET-B3A JUNCTION 11.75 11.75 0 00:40 0.115 0.115 EXINLET-B3C JUNCTION 34.21 34.21 0 00:40 0.355 0.355 EXINLET-B4B JUNCTION 12.00 12.00 0 00:40 0.115 0.115 EXINLET-B4C JUNCTION 7.97 7.97 0 00:40 0.077 0.077 EXINLET-B5B JUNCTION 8.99 8.99 0 00:40 0.086 0.086 EXINLET-B8A JUNCTION 4.75 4.75 0 00:40 0.067 0.067 EXINLET-B9B JUNCTION 2.00 2.00 0 00:40 0.019 0.019 EXMH B1 JUNCTION 44.71 158.08 0 00:38 0.432 1.019 EXMH Cl JUNCTION 35.37 35.37 0 00:40 0.478 0.478 EXSTUB-B6 JUNCTION 6.93 6.93 0 00:40 0.067 0.067 INLET-AIA JUNCTION 7.00 7.00 0 00:40 0.067 0.067 INLET-A2A JUNCTION 3.00 3.00 0 00:40 0.029 0.029 INLET-A3A JUNCTION 4.00 4.00 0 00:40 0.038 0.038 INLET-A3B JUNCTION 17.93 17.93 0 00:40 0.181 0.181 INLET-A4A JUNCTION 1.99 1.99 0 00:40 0.019 0.019 INLET-Bl OA JUNCTION 16.24 16.24 0 00:40 0.182 0.182 INLET-B1A JUNCTION 3.00 3.00 0 00:40 0.029 0.029 INLET -BIB JUNCTION 11.13 11.13 0 00:40 0.115 0.115 INLET-B2A JUNCTION 2.00 2.00 0 00:40 0.019 0.019 INLET-B2B JUNCTION 49.83 19.83 0 00:40 0.221 0.221 INLET-B3B JUNCTION 7.98 7.98 0 00:40 0.077 0.077 INLET-B4A JUNCTION 1.00 3.97 0 00:39 0.010 0.010 INLET-B5A JUNCTION 7.65 7.65 0 00:40 0.067 0.067 'SET-B7A JUNCTION 16.66 16.66 0 00:40 0.173 0.173 ZT-B9A JUNCTION 4.00 4.00 0 00:40 0.038 0.038 ET -CIA JUNCTION 6.00 6.00 0 00:40 0.058 0.058 .LET-C1B JUNCTION 21.85 21.85 0 00:40 0.221 0.221 INLET-C2A JUNCTION 5.00 5.00 0 00:40 0.048 0.048 INLET-C2B JUNCTION 27.18 27.18 0 00:40 0.278 0.278 INLET-D1 JUNCTION 0.00 0.14 0 00:36 0.000 0.000 INLET-D2A JUNCTION 2.00 2.00 0 00:40 0.019 0.019 INLET-D2B JUNCTION 24.59 24.59 0 00:40 0.262 0.262 INLET-D3A JUNCTION 6.00 6.00 0 00:40 0.058 0.058 INLET-D3B JUNCTION 12.68 12.66 0 00:40 0.167 0.167 MH Al JUNCTION 0.00 71.43 0 00:41 0.000 0.862 MH A2 JUNCTION 0.00 71.49 0 00:41 0.000 0.855 MH A3 JUNCTION 0.00 62.88 0 00:41 0.000 0.754 MH A4-MH D1 JUNCTION 0.00 61.37 0 00:40 0.000 0.725 MH A5 JUNCTION 0.00 21.91 0 00:40 0.000 0.219 MH-B10 JUNCTION 0.00 57.28 0 00:40 0.000 0.607 MH-B11 JUNCTION 0.00 52.49 0 00:40 0.000 0.550 MH-B12 JUNCTION 0.00 33.61 0 00:40 0.000 0.339 MH B13 JUNCTION 33.62 33.62 0 00:40 0.339 0.339 MHB2 JUNCTION 0.00 318.11 0 00:40 0.000 3.778 MH B3 JUNCTION 0.00 309.39 0 00:38 0.000 3.634 MH B3A JUNCTION 10.00 48.91 0 00:40 0.539 0.970 MH B4 JUNCTION 0.00 290.08 0 00:38 0.000 3.393 MH 54A JUNCTION 0.00 4.62 0 00:39 0.000 0.010 MH B4B JUNCTION 0.00 19.91 0 00:40 0.000 0.192 MH B5 JUNCTION 0.00 152.08 0 00:43 0.000 2.373 MH B6 JUNCTION 0.00 102.78 0 00:43 0.000 1.288 MH B7 JUNCTION 0.00 87.30 0 00:44 0.000 1.067 MH B7A JUNCTION 0.00 21.40 0 00:40 0.000 0.240 SWMM 5 Page 10 MH B8 JUNCTION 0.00 73.34 0 00:44 0.000 0.914 MH B9 JUNCTION 0.00 73.84 0 00:39 0.000 0.846 MH Cl JUNCTION 0.00 33.57 0 00:41 0.000 1.761 MH C2 JUNCTION 0.00 33.57 0 00:41 0.000 1.758 MH C3 JUNCTION 0.00 33.57 0 00:41 0.000 1.749 MH C4/B1 JUNCTION 0.00 406.58 0 00:40 0.000 4.864 MH C5 JUNCTION 0.00 92.33 0 00:40 0.000 1.085 MH C6 JUNCTION 0.00 65.00 0 00:40 0.000 0.805 MH C7 JUNCTION 0.00 67.13 0 00:40 0.000 0.804 MH D2 JUNCTION 0.00 41.17 0 00:41 0.000 0.506 MH D3 JUNCTION 0.00 42.29 0 00:40 0.000 0.506 MH D4 JUNCTION 0.00 18.61 0 00:40 0.000 0.225 MNT STRT JUNCTION 169.16 169.16 0 00:35 0.586 0.586 0112 JUNCTION 11.96 11.96 0 00:40 0.122 0.122 0113 JUNCTION 17.24 17.24 0 00:40 0.173 0.173 0114 JUNCTION 33.69 33.69 0 00:40 0.336 0.336 0115 JUNCTION 27.40 27.40 0 00:40 0.269 0.269 0300 JUNCTION 21.08 21.08 0 00:40 0.211 0.211 Al PDUDRE OUTFALL 0.00 71.44 0 00:41 0.000 0.863 FESB1-POUDRE OUTFALL 0.00 369.74 0 00:39 0.000 3.116 FESC1-UDALL POND OUTFALL 0.00 33.57 '0 00:41 0.000 1.761 Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit. --------------------------------- -_______-----------______-- Max. Height Min. Depth Hours Above Crown Below Rim e Type Surcharged Feet Feet ____________________________ _..INLET-B3A JUNCTION 0.27 --______----------_______--- 6.246 1.204 EXINLET-B3C JUNCTION 0.07 3.840 0.000 EXINLET-B4B JUNCTION 0.04 0.444 0.726 E%INLET-B5B JUNCTION 0.01 0.081 0.839 EXMH Cl JUNCTION 0.30 4.510 2.640 INLET-A2A JUNCTION 0.10 3.269 3.171 INLET-A3B JUNCTION 0.22 2.960 2.020 INLET-B1B JUNCTION 0.05 0.390 2.190 INLET-B2B JUNCTION 0.07 0.325 1.535 INLET-B3B JUNCTION 0.18 5.769 0.011 INLET-B4A JUNCTION 0.09 2.530 2.920 INLET -CIA JUNCTION 0.12 1.539 1.961 INLET-C1B JUNCTION 0.15 3.353 0.267 INLET-C2B JUNCTION 0.12 1.239 0.901 INLET-D1 JUNCTION 0.12 0.832 4.988 INLET-D2B JUNCTION 0.12 0.518 2.852 INLET-D3B JUNCTION 0.10 0.748 1.882 MH Al JUNCTION 0.14 0.815 3.195 MH A3 JUNCTION 0.10 3.209 3.671 MH B3A JUNCTION 0.09 3.304 1.656 MH B4 JUNCTION 0.13 2.050 4.170 MH B4A JUNCTION 0.09 2.074 3.756 MH B5 JUNCTION .0.11 3.794 2.076 MH Cl JUNCTION 22.99 8.198 0.000 MH C2 JUNCTION 2.12 4.611 0.079 MH C3 JUNCTION 1.93 8.681 3.919 MH C4/B1 JUNCTION 0.05 0.423 3.597 SWMM 5 Page 11 I MH C5 JUNCTION 0.13 1.476 1.984 MH C6 JUNCTION 0.12 1.626 3.384 MH D2 JUNCTION 0.04 0.212 5.088 0112 JUNCTION 23.00 0.000 0.000 0113 JUNCTION 23.00 0.000 0.000 0114 JUNCTION 23.00 0.000 0.000 0115 JUNCTION 23.00 0.000 0.000 0300 JUNCTION 23.00 0.000 0.000 Node Flooding Summary Flooding refers to all water that overflows a node, whether it ponds or not Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Depth Node Flooded CFS days hr:min 10-6 gal Feet ----------------------------------------------- _-__________-- E%INLET-B3C 0.01 6.32 0 00:38 0.000 6.34 Outfa11 Loading Summary Flow Avg. Max. Total Freq. Flow Flow Volume fall Node Prot. CFS CFS 30.6 gal ________________________________________________________ _ POUDRE 71.40 2.02 71.44 0.863 FESB1-POUDRE 7.95 66.34 369.74 3.116 FESC1-UDALL POND 100.00 2.88 33.57 1.761 System 59.78 71.23 470.72 5.740 Link Flow Summary Maximum Time of Max Maximum Max/ Max/ IFIOwI Occurrence IVelocl Full Full Link Type CFS days hr:min ft/sec Flow Depth ________ Al _________________________________________________________ CONDUIT 71.44 0 00:41 10.33 2.54 0.95 A2 CONDUIT 71.43 0 00:41 10.11 3.94 1.00 A3 CONDUIT 62.88 0 00:41 8.90 0.69 1.00 A4 CONDUIT 60.42 0 00:41 11.58 0.66 0.90 A5 CONDUIT 21.80 0 00:40 8.92 0.80 0.81 B1 CONDUIT 369.74 0 00:39 17.47 0.98 0.90 B2 CONDUIT 314.62 0 00:40 12.54 0.68 1.00 B3 CONDUIT 304.31 0 00:40 11.28 1.33 1.00 B4 CONDUIT 290.05 0 00:38 10.36 1.30 1.00 B5 CONDUIT 152.10 0 00:43 6.84 0.83 1.00 B6 CONDUIT 109.56 0 00:44 8.76 1.00 1.00 SWMM 5 Page 12 B7 CONDUIT 89.08 0 00:44 7.16 1.04 1.00 B8 CONDUIT 78.88 0 00:44 6.28 1.10 1.00 B9 CONDUIT 69.82 0 00:44 5.80 0.80 1.00 B10 CONDUIT 53.13 0 00:39 7.31 0.60 1.00 B11 CONDUIT 51.36 0 00:40 6.38 0.58 1.00 B12 CONDUIT 33.41 0 00:40 6.28 0.56 0.98 B13 CONDUIT 33.61 0 00:40 7.32 0.40 0.87 Cl CONDUIT 33.57 0 00:41 10.69 1.93 1.00 C2 CONDUIT 33.57 0 00:41 10.69 1.89 1.00 C3 CONDUIT 33.57 0 00:41 10.69 1.46 1.00 C4 CONDUIT 33.57 0 00:41 10.69 1.90 1.00 C5 CONDUIT 92.28 0 00:40 7.34 1.15 1.00 C6 CONDUIT 64.98 0 00:40 5.29 0.83 1.00 C7 CONDUIT 65.00 0 00:40 6.76 1.22 1.00 D2 CONDUIT 41.19 0 00:41 6.87 0.85 0.90 D3 CONDUIT 41.17 0 00:41 6.97 0.99 1.00 D4 CONDUIT 17.41 0 00:41 3.63 0.68 1.00 EXLAT-B3C CONDUIT 34.23 0 00:40 11.75 0.57 1.00 EXLAT-B4B CONDUIT 12.01 0 00:40 9.79 1.24 1.00 EXLAT-B4C CONDUIT 7.94 0 00:40 8.71 0.53 0.70 LAT-AIA CONDUIT 6.92 0 00:40 6.54 0.58 0.71 LAT-A2A CONDUIT 3.29 0 00:38 5.11 0.19 1.00 LAT-A3A CONDUIT 3.99 0 00:40 5.92 0.23 0.41 LAT-A3B CONDUIT 17.93 0 00:40 10.15 1.77 1.00 LAT-MA CONDUIT 1.92 0 00:40 2.95 1.05 0.77 LAT-B1A CONDUIT 2.98 0 00:40 3.64 0.35 0.55 LAT-B1B CONDUIT 11.14 0 00:40 7.53 0.60 0.78 LAT-B2A CONDUIT 1.98 0 00:40 3.69 0.21 0.34 LAT-B2B CONDUIT 19.84 0 00:40 7.25 0.72 0.81 LAT-B3A CONDUIT 11.76 0 00:40 3.74 1.05 1.00 'T-B3B CONDUIT 8.10 0 00:38 1.65 0.37 1.00 -B3C CONDUIT 48.91 0 00:40 7.39 0.95 1.00 -B4A CONDUIT 3.03 0 00:39 1.75 0.34 1.00 .T-B4B CONDUIT 4.62 0 00:39 1.91 0.37 1.00 LAT-B4C CONDUIT 19.74 0 00:40 10.18 0.34 1.00 LAT-B5A CONDUIT 7.61 0 00:40 5.95 0.60 0.68 LAT-B5B CONDUIT 9.00 0 00:40 5.93 0.68 0.80 LAT-B6A CONDUIT 6.91 0 00:40 6.49 0.74 0.72 1,AT-B7A CONDUIT 16.65 0 00:40 6.91 0.48 0.73 UT-B7C CONDUIT 21.39 0 00:40 7.84 0.21 0.47 UT-B8A CONDUIT 4.86 0 00:40 5.48 0.23 0.60 LAT-B9A CONDUIT 3.98 0 00:40 6.06 0.24 0.50 UT-B9B CONDUIT 1.99 0 00:40 4.97 0.13 0.44 LAT-B10A CONDUIT 16.19 0 00:40 7.20 0.52 0.67 UT -BIOS CONDUIT 2.98 0 00:40 5.55 0.20 0.34 LAT-B13A CONDUIT 158.58 0 00:38 12.62 1.63 1.00 UT -CIA CONDUIT 6.00 0 00:39 3.84 0.92 1.00 UT-C1B CONDUIT 21.85 0 00:40 12.36 1.47 1.00 LAT-C2A CONDUIT 5.04 0 00:39 5.80 0.36 0.85 LAT-C2S CONDUIT 27.19 0 00:40 9.34 0.85 0.96 LAT-C3A CONDUIT 35.40 0 00:40 11.27 4.69 1.00 LAT-D2A CONDUIT 1.97 0 00:40 3.04 0.28 0.39 UT-D2B CONDUIT 24.61 0 00:40 13.92 1.69 1.00 LAT-D3A CONDUIT 5.95 0 00:40 4.09 0.80 0.77 LAT-D3B CONDUIT 12.69 0 00:40 7.88 0.85 0.86 MT STRT CONDUIT 121.88 0 00:37 2.95 0.56 0.70 12DIP CONDUIT 2.99 0 00:40 10.13 0.34 0.40 UT -DI CONDUIT 0.17 0 00:45 0.34 0.00 1.00 SWMM 5 Page 13 Flaw Classification Summary Adjusted --- Fraction of Time in Flow Class ---- Avg. Avg. /Actual Up Down Sub Sup Up Down Fronde Flow Conduit -------------- Length Dry Dry -_____________________-----________ Dry Crit Crit Crit Crit Number Change _------ Al 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.04 0.0001 A2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0001 A3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.06 0.0000 A4 1.00 0.00 0.00 0.00 0.00 0.01 0.00 0.99 1.32 0.0000 A5 1.00 0.01 0.00 0.00 0.00 0:00 0.00 0.99 0.87 0.0000 B1 1.00 0.92 0.00 0.00 0.00 0.08 0.00 0.00 0.15 0.0000 B2 1.00 0.00 0.00 0.00 0.00 0.03 0.00 0.97 1.08 0.0000 B3 1.00 0.00 0.00 0.00 0.87 0.13 0.00 0.00 0.61 0.0000 B4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.44 0.0000 B5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.35 0.0000 B6 1.00 0.00 0.00 0.00 0.79 0.21 0.00 0.00 0.70 O.DDOO B7 1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.47 0.0000 B8 1.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.42 0.0000 B9 1.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.42 0.0000 B10 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.80 0.0000 Bll 1.00 0.01 0.00 0.00 0.89 0.10 0.00 0.00 0.54 0.0000 B12 1.00 0.01 0.00 0.00 0.92 0.08 0.00 0.00 0.47 0.0000 B13 1.00 0.01 0.00 0.00 0.83 0.16 0.00 0.00 0.75 0.0000 Cl 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0001 C2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0001 C3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 1.00 0.00 0.00 0.00 0.79 0.21 0.00 0.00 0.80 0.0001 1.00 0.00 0.00 0.00 0.08 0.00 0.00 0.92 0.61 0.0000 1.00 0.00 0.00 0.00 1.00 D.00 0.00 0.00 0.37 0.0000 1.00 0.00 0.00 0.00 1.00 D.00 0.00 0.00 0.50 0.0000 D2 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.57 0.0000 D3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.48 0.0000 D4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.22 0.0000 EXLAT-B3C 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 1.36 0.0000 EXLAT-B4B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.45 0.0000 EXLAT-B4C 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.73 0.0000 LAT-AlA 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.30 0.0000 LAT-A2A 1.00 0.01 0.00 0.00 0.01 0.00, 0.00 0.98 0.20 0.0000 LAT-A3A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.30 0.0000 LAT-A3B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.74 0.0000 LAT-MA 1.00 O.D1 0.00 0.00 0.00 0.00 0.00 0.99 0.16 0.0000 LAT-B1A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.16 0.0000 LAT-BIB 1.58 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.17 0.0000 LAT-B2A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.15 0.0000 LAT-B2B 1.20 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.16 0.0000 LAT-B3A 1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.18 0.0000 LAT-B3B 1.00 0.00 0.13 0.00 0.87 0.00 0.00 0.00 0.03 0.0000 LAT-B3C 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.68 0.0000 LAT-B4A 1.00 0.01 0.11 0.00 0.89 0.00 O.OD 0.00 0.07 0.0000 LAT-B4B 1.00 0.01 0.00 0.00 0.01 0.00 0.00 0.98 0.11 0.0000 LAT-B4C 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.56 0.0000 LAT-B5A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.25 0.0000 LAT-B5B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.37 0.0000 LAT-B6A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.51 0.0000 LAT-B7A 1.00 0.01 0.00 0.00 0.80 0.19 0.00 0.00 0.80 0.0000 LAT-B7C 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.87 0.0000 SWMM 5 Page 14 LAT-B8A 1.00 0.01 0.00 0.00 0.84 0.15 0.00 0.00 0.63 0.0000 LAT-B9A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.32 0.0000 LAT-B9B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.26 0.0000 LAT-B10A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.29 0.0000 LAT-B10B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.30 0.0000 LAT-BllA 1.00 0.00 0.01 0.00 0.86 0.13 0.00 0.00 0.62 0.0000 LAT-C1A 1.00 0.01 0.00 0.00 0.01 0.00 0.00 0.98 0.19 0.0000 LAT-C1B 1.00 0.01 0.00 0.00 0.01 0.00 0.00 0.98 1.15 0.0000 LAT-C2A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.27 0.0000 LAT-C2B 1.52 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.16 0.0000 LAT-C3A 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.43 0.0001 LAT-D2A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.17 0.0000 LAT-D2B 1.09 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.28 0.0000 UT-D3A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.19 0.0000 LAT-D3B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.82 0.0000 MNT STRT 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.98 0.34 0.0000 12DIP 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.44 0.0000 LAT-D1 1.56 0.00 0.91 0.00 0.09 0.00 0.00 0.00 0.00 0.0000 Conduit Surcharge Summary Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ---------------------------------------------------------------------------- Al 0.01 0.01 0.01 0.30 0.01 ' 0.14 0.14 0.14 0.45 0.14 0.10 0.10 0.10 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.15 0.02 B4 0.10 0.10 0.10 0.15 0.10 B5 0.10 0.10 0.10 0.01 0.08 B6 0.10 0.10 0.10 0.01 0.05 B7 0.10 0.10 0.10 0.04 0.09 B8 0.10 0.10 0.10 0.06 0.09 B9 0.09 0.09 0.09 0.01 0.01 B10 0.07 0.07 0.07 0.01 0.06 Bll 0.02 0.02 0.02 0.01 0.01 Cl 22.99 22.99 22.99 1.98 2.04 C2 2.12 2.12 2.12 1.97 2.02 C3 1.93 1.93 1.93 1.87 1.88 C4 1.93 1.93 1.93 1.96 1.93 C5 0.15 0.15 0.15 0.06 0.15 C6 0.12 0.12 0.12 0.01 0.01 C7 0.15 0.15 0.15 0.09 0.11 D3 0.04 0.04 0.04 0.01 0.04 D4 0.03 0.03 0.03 0.01 0.01 EXLAT-B3C 0.07 0.07 0.07 0.01 0.01 EXLAT-B4B 0.03 0.03 0.03 0.06 0.03 LAT-A2A 0.10 0.10 0.10 0.01 0.01 LAT-A3B 0.02 0.02 0.02 0.15 0.02 LAT-A4A 0.01 0.01 0.01 0.03 0.01 LAT-B3A 0.27 0.27 0.27 0.02 0.02 LAT-B3B 0.18 0.18 0.18 0.01. 0.01 LAT-B3C 0.16 0.16 0.16 0.01 0.01 LAT-B4A 0.09 0.09 0.09 0.01 0.01 SWMM 5 . Page 15 LAT-B4B 0.09 0.09 0.09 0.01 0.01 LAT-B4C 0.05 0.05 0.05 0.01 0.01 LAT-B13A 0.13 0.13 0.13 0.14 0.10 LAT-CIA 0.12 0.12 0.12 0.01 0.06 LAT-C1B 0.13 0.13 0.13 0.11 0.13 LAT-C3A 0.29 0.29 0.29 0.62 0.29 UT-D2B 0.11 0.11 0.11 0.15 0.11 LAT-DI 0.12 0.12 0.12 0.01 0.01 Analysis begun on: Mon Jun 29 14:12:08 2015 Analysis ended on: Mon Jun 29 14:12:22 2015 Total elapsed time: 00:00:14 SWMM 5 Page 16 ATTACHMENT 1.2 Modified SWMM Exhibit and Output FIGURE 2.1 BASIN MAP JWFE5 ASSOCIATES EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options ................ Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date ............ MAR-17-2006 00:00:00 Ending Date .............. MAR-17-2006 23:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:05:00 Dry Time Step ............ 01:00:00 Routing Time Step ........ 1.00 sec SING 02: maximum depth increased for Node CustomInlet-River WARNING 02: maximum depth increased for Node E%MH_BI Element Count Number of rain gages .... 1 Number of subcatchments ... 95 Number of nodes ........... 76 Number of links ........... 69 Number of pollutants ...... 0 Number of land uses ....... 0 ................ Raingage Summary Data Recording Name Data Source Type Interval ------------------------------------------------------------- I 100-year INTENSITY 5 in. .................... Subcatchment Summary .................... Name Area Width %Impery %Slope Rain Gage _ Outlet ------------------------------------------------------------------------------------------------------- SWMM 5 Page 1 206 207 208 210 211 212 213 300 106b 106C Node Summary 1.20 185.00 95.00 0.8000 1 INLET-B1B 2.30 337.00 95.00 0.3400 1 INLET-B2B 2.90 423.00 95.00 1.0800 1 INLET-C2B 0.80 582.00 95.00 0.8000 1 INLET-B3B 4.50 2930.00 95.00 0.4800 1 EXMH B1 1.20 2197.00 95.00 0.6600 1 EXINLET-B4B 1.32 191.00 95.00 0.6600 1 EXINLET-B3C 0.80 524.00 95.00 0.7100 1 EXINLET-B4C 1.90 274.00 95.00 0.3200 1 INLET-B10A 0.80 1618.00 60.00 0.2900 1 INLET-B5A 2.00 289.00 80.00 1.2600 1 INLET-A35 0.90 124.00 10.OD 1.0600 1 213 1.30 191.00 90.OD 0.8900 1 0112 1.80 265.00 95.00 1.7200 1 0113 3.50 502.00 95.00 2.0800 1 0114 2.80 407.00 95.00 3.5700 1 0115 0.20 582.00 95.00 0.7900 1 INLET-B2A 1.20 459.OD 95.00 0.5400 1 EXINLET-83A 1.80 258.00 95.00 0.9000 1 INLET-B7A 3.60 880.00 90.00 0.42DO 1 MH 513 0.40 743.00 95.00 1.2800 1 INLET-A3A 0.30 456.00 95.00 1.2000 1 INLET-B1A 0.60 1177.00 95.00 0.2800 1 INLET-C1A 0.30 527.00 95.00 1.0400 1 CustomInlet-River 0.70 603.00 95.00 2.1400 1 INLET-AIA 0.50 893.00 95.00 0.9100 1 INLET-C2A 5.OD 184.00 95.00 1.2400 1 EXMH C1 2.30 328.00 95.00 1.5000 1 INLET-C1B 0.30 1406.00 95.00 2.1100 1 INLET-A2A 0.30 252.00 95.00 1.6900 1 EXINLET-B10B 0.20 271.00 95.00 0.9600 1 EXINLET-B9B 0.40 420.00 95.00 1.4200 1 INLET-B9A 0.30 447.00 95.00 0.3900 1 EXINLET-BBA 0.40 203.00 95.00 0.0300 1 203 0.10 121.00 95.00 0.8700 1 INLET-B4A 0.20 102.00 90.00 1.2200 1 INLET -MA 0.90 1123.00 95.00 0.4400 1 EXINLET-B5B 0.70 327.00 95.00 0.6500 1 EXSTUB-B6 2.90 414.00 80.00 0.6200 1 INLET-D2B 0.20 224.00 95.00 0.4700 1 INLET-D2A 0.60 918.00 95.00 0.5700 1 INLET-D3A 1.20 360.00 95.00 0.7100 1 INLET-D3B 2.20 325.00 95.00 1.7300 1 0300 1.03 150.00 95.00 0.8600 1 EXINLET-B3C 1.35 196.00 95.00 0.8600 1 EXINLET-B3C Name Type ----------------------------. CustomInlet-River JUNCTION EXINLET-510B JUNCTION EXINLET-B3A JUNCTION EXINLET-B3C JUNCTION EXINLET-B4B JUNCTION EXINLET-B4C JUNCTION EXINLET-B5B JUNCTION EXINLET-BBA JUNCTION EXINLET-B9B JUNCTION Invert Max. Ponded External Elev. Depth Are. Inflow --------------------------------------- 4956.94 5.91 0.0 4972.71 3.71 0.0 4960.63 9.45 0.0 4963.76 6.34 0.0 4971.23 2.42 0.0 4972.04 2.29 0.0 4971.25 2.42 0.0 4971.38 3.08 0.0 4971.42 4.24 0.0 SWMM 5 Page 2 EXMH Bl JUNCTION 4959.16 11.13 0.0 EXMH Cl JUNCTION 4956.26 9.15 0.0 EXSTUB-B6 JUNCTION 4970.40 3.00 0.0 INLET-AlA JUNCTION 4955.50 3.02 0.0 INLET-A2A JUNCTION 4955.01 7.94 0.0 INLET-A3A JUNCTION 4965.04 3.40 0.0 INLET-A3B JUNCTION 4962.01 6.48 0.0 INLET -MA JUNCTION 4969.60 2.65 0.0 INLET-B10A JUNCTION 4972.40 2.99 0.0 INLET-B1A JUNCTION 4960.79 4.02 0.0 INLET -BIB JUNCTION 4960.92 4.08 0.0 INLET-B2A JUNCTION 4964.00 3.80 0.0 INLET-B2B JUNCTION 4963.85 3.86 0.0 INLET-B3B JUNCTION 4960.96 8.28 0.0 INLET-B4A JUNCTION 4965.45 7.45 0.0 INLET-B5A JUNCTION 4971.06 2.50 0.0 INLET-B7A JUNCTION 4970.39 3.50 0.0 INLET-B9A JUNCTION 4971.49 3.65 0.0 INLET -CIA JUNCTION 4957.82 5.00 0.0 INLET-CIB JUNCTION 4958.34 5.12 0.0 INLET-C2A JUNCTION 4961.50 2.98 0.0 INLET-C2B JUNCTION 4960.76 4.14 0.0 INLET -DI JUNCTION 4960.24 7.94 0.0 INLET-D2A JUNCTION 4963.74 4.00 0.0 INLET-D2B JUNCTION 4963.78 4.87 0.0 INLET-D3A JUNCTION 4964.00 1.88 0.0 INLET-D3B JUNCTION 4964.28 4.13 0.0 MH Al JUNCTION 4942.03 15.03 0.0 MH A2 JUNCTION 4950.07 9.37 0.0 MH A3 JUNCTION 4953.34 9.94 0.0 MH_A4-MH Dl JUNCTION 4959.59 9.05 0.0 A5 JUNCTION 4961.21 7.65 0.0 310 JUNCTION 4967.11 8.78 0.0 all JUNCTION 4968.41 8.65 0.0 .., B12 JUNCTION 4969.47 9.06 0.0 MH B13 JUNCTION 4970.00 9.39 0.0 MH B2 JUNCTION 4957.32 7.71 0.0 MH B3 JUNCTION 4958.62 9.59 0.0 MH B3A JUNCTION 4960.86 9.60 0.0 Yes MH B4 JUNCTION 4958.88 10.22 0.0 MH B4A JUNCTION 4965.42 7.83 0.0 MH 54B JUNCTION 4966.41 8.22 0.0 MH B5 JUNCTION 4960.52 9.87 0.0 MH B6 JUNCTION 4963.34 10.85 0.0 MH B7 JUNCTION 4963.58 10.62 0.0 MH B7A JUNCTION 4969.79 5.39 0.0 MH B8 JUNCTION 4963.76 10.62 0.0 MH B9 JUNCTION 4965.12 10.25 0.0 MH C1 JUNCTION 4941.23 7.06 0.0 MH C2 JUNCTION 4942.08 6.69 0.0 MH C3 JUNCTION 4945.12 14.60 0.0 MH C4/B1 JUNCTION 4946.00 17.83 0.0 MH C5 JUNCTION 4954.89 7.75 0.0 MH C6 JUNCTION 4955.47 9.01 0.0 MH C7 JUNCTION 4956.24 8.23 0.0 MH D2 JUNCTION 4959.98 8.30 0.0 MH D3 JUNCTION 4960.65 7.21 0.0 MH D4 JUNCTION 4961.91 5.11 0.0 MNT STRT JUNCTION 4973.00 1.00 0.0 Yes ' 0112 JUNCTION 0.00 0.00 0.0 0113 JUNCTION 0.00 0.00 0.0 0114 JUNCTION 0.00 0.00 0.0 SWMM 5 Page 3 0115 JUNCTION 0.00 0.00 0.0 0300 JUNCTION 0.00 0.00 0.0 Al POUDRE OUTFALL 4949.89 3.00 0.0 FMB1-POUDRE OUTFALL 4953.73 4.00 0.0 FESC1-UDALL POND OUTFALL 4941.03 2.00 0.0 Link•Summary Name"•••"' From Node To Node Type Length %Slope Roughness ------------------------------------------------------------------------------------------ A1 MH Al Al POUDRE CONDUIT 73.0 0.1781 0.0130 A2 MH A2 MH Al CONDUIT 27.0 0.0741 0.0130 A3 MH A3 MH A2 CONDUIT 173.0 1.8905 0.0130 A4 MH A4-MH D1 MH A3 CONDUIT 325.0 1.9050 0.0130 AS MH AS MH A4-MH D1 CONDUIT 65.5 1.4342 0.0130 B1 MH C4/B1 FESB1-POUDRE CONDUIT 139.0 1.4966 0.0130 B2 MHB2MH C4/B1 CONDUIT 100.0 1.5102 0.0130 B3 MH B3 MH B2 CONDUIT 353.0 0.3683 0.0130 B4 MH-B4 MN B3 CONDUIT 74.0 0.3514 0.0130 B5 MH B5 MH B4 CONDUIT 470.0 0.3489 0.0130 B6 MH B6 MH B5 CONDUIT 485.0 0.5815 0.0130 B7 MH B7 MH B6 CONDUIT 68.0 0.3529 0.0130 BE MH B8 MH B7 CONDUIT 74.5 0.2470 0.0130 B9 MH-B9 MH BE CONDUIT 367.0 0.3695 0.0130 B10 MH 010 MH B9 CONDUIT 63.0 0.7778 0.0130 B11 MH B11 MH B10 CONDUIT 165.0 0.7879 0.0130 B12 MH-B12 MH B11 CONDUIT 134.0 0.7911 0.0130 B13 MH B13 MH-B12 CONDUIT 33.0 1.6063 0.0130 Cl MH Cl FMCl-UDALL_PONDCONDUIT 34.0 0.5882 0.0130 MH C2 MH Cl CONDUIT 138.0 0.6160 0.0130 MH C3 MH C2 CONDUIT 494.0 0.6154 0.0100 MH C4/B1 MH C3 CONDUIT 144.0 0.6111 0.0130 MH C5 MH C4/el CONDUIT 45.0 0.3111 0.0130 C6 MH C6 MH C5 CONDUIT 194.0 0.2990 0.0130 C7 MH C7 MH C6 CONDUIT 274.0 0.2810 0.0130 D2 MH D2 MH A4-MH_D1 CONDUIT 74.0 0.5270 0.0130 D3 MH D3 MH D2 CONDUIT 173.0 0.3873 0.0130 D4 MH D4 MH D3 CONDUIT 322.0 0.3913 0.0130 EXLAT-B3C EXINLET-B3C MH B3A CONDUIT 36.0 2.1116 0.0130 EXLAT-B4B EXINLET-B4B MH B4B CONDUIT 34.4 2.2415 0.0130 EXLAT-B4C EXINLET-B4C MH B4B CONDUIT 29.0 5.4564 0.0130 LAT-AIA INLET-AIA MH A2 CONDUIT 41.0 1.2684 0.0130 LAT-A2A INLET-A2A MH A3 CONDUIT 25.0 2.6009 0.0130 LAT-A3A INLET-A3A MH AS CONDUIT 21.0 2.8106 0.0130 LAT-A3B INLET-A35 MH A5 CONDUIT 46.0 0.9348 0.0130 LAT-A4A INLET-A4A MH B6 CONDUIT 104.0 0.2596 0.0130 LAT-B1A INLET-B1A MH B2 CONDUIT 32.0 0.6563 0.0130 LAT-BIB INLET -BIB MH B2 CONDUIT 11.0 3.0924 0.0130 LAT-B2A INLET-B2A MH B3 CONDUIT 45.0 0.8000 0.0130 LAT-B2B INLET-B2B MH 53 CONDUIT 14.0 1.5002 0.0130 LAT-B3A EXINLET-B3A MH B5 CONDUIT 45.0 0.2444 0.0130 LAT-B3B INLET-M MH BA CONDUIT 36.0 0.2778 0.0130 LAT-B3C MN B3A MH 85 CONDUIT 57.0 0.5965 0.0130 LAT-B4A INLET-B4A MH B4A CONDUIT 19.0 0.1579 0.0130 LAT-134B MH B4A MH B6 CONDUIT 92.0 0.3043 0.0130 LAT-B4C MH B4B MH B6 CONDUIT 52.0 2.0004 0.0130 LAT-B5A INLET-B5A MH B7 CONDUIT 39.0 1.4617 0.0130 LAT-B5B EXINLET-B5B MH B7 CONDUIT 20.0 1.6002 0.0130 LAT-136A EXSTUB-B6 MH B6 CONDUIT 21.0 1.5049 0.0130 LAT-B7A INLET-B7A MH B7A CONDUIT 25.0 2.4007 0.0130 SWMM 5 Page 4 LAT-B7C MI B7A MH B9 CONDUIT 71.0 1.0001 0.0130 LAT-B8A EXINLET-B8A MH B7A CONDUIT 38.5 4.1334 0.0130 LAT-B9A INLET-B9A MH BID CONDUIT 32.0 2.4695 0.0130 LAT-B9B EXINLET-B9B MH B10 CONDUIT 36.0 2.0004 0.0130 LAT-B10A INLET-B10A MH Bll CONDUIT 30.0 1.9003 0.0130 LAT-B10B EXINLET-B10B MH all CONDUIT 44.0 2.0004 0.0130 LAT-B11A EXMi B1 MH B4 CONDUIT 61.0 0.4590 0.0130 LAT-C1A INLET-C1A MH C5 CONDUIT 36.0 0.3889 0.0130 LAT-CSB INLET-C1B MH C5 CONDUIT 33.0 2.0004 0.0130 LAT-C2A INLET-C2A MH C7 CONDUIT 55.0 1.7821 0.0130 LAT-C2B INLET-C2B MH C7 CONDUIT 12.0 2.0004 0.0130 LAT-C3A EXMH Cl MH C7 CONDUIT 18.0 0.1111 0.0130 LAT-D2A INLET-D2A MH D3 CONDUIT 51.0 0.4510 0.0130 LAT-D2B INLET-D2B MH D3 CONDUIT 14.0 1.9289 0.0130 LAT-D3A INLET-D3A MH D4 CONDUIT 40.0 0.5000 0.0130 LAT-D3B INLET-D3B MH D4 CONDUIT 24.0 2.0004 0.0130 M.NT STRT MNT STRT EXMH B1 CONDUIT 720.0 0.4458 0.0160 12DIP CustomInlet-RiverMH A2 CONDUIT 80.6 6.1031 0.0130 LAT-D1 INLET-D1 M1 D2 CONDUIT 13.0 2.9243 0.0130 Cross Section summary Full Full Hyd. Max. No. of Full Conduit Shape Depth Area Rad. Width Barrels Flow --------------------------------------------------------------------------------------- Al CIRCULAR 3.00 7.07 0.75 3.00 1 28.15 A2 CIRCULAR 3.00 7.07 0.75 3.00 1 18.15 A3 CIRCULAR 3.00 7.07 0.75 3.00 1 91.71 A4 CIRCULAR 3.00 7.07 0.75 3.00 1 92.06 CIRCULAR 2.00 3.14 0.50 2.00 1 27.09 RECT CLOSED 4.00 24.00 1.20 6.00 1 378.99 RECT CLOSED 4.00 28.00 1.27 7.00 1 461.92 ..a RECT CLOSED 4.00 28.00 1.27 7.00 1 228.11 B4 RECT CLOSED 4.00 28.00 1.27 7.00 1 222.81 B5 RECT CLOSED 4.00 24.00 1.20 6.00 1 183.00 B6 CIRCULAR 4.00 12.57 1.00 4.00 1 109.53 B7 CIRCULAR 4.00 12.57 1.00 4.00 1 85.34 B8 CIRCULAR 4.00 12.57 1.00 4.00 1 71.39 B9 CIRCULAR 4.00 12.57 1.00 4.00 1 87.31 BID CIRCULAR 3.50 9.62 0.88 3.50 1 88.73 Bll CIRCULAR 3.50 9.62 0.88 3.50 1 89.31 B12 CIRCULAR 3.00 7.07 0.75 3.00 1 59.32 B13 CIRCULAR 3.00 7.07 0.75 3.00 1 84.53 Cl CIRCULAR 2.00 3.14 0.50 2.00 1 17.35 C2 CIRCULAR 2.00 3.14 0.50 2.00 1. 17.75 C3 CIRCULAR 2.00 3.14 0.50 2.00 1 23.07 C4 CIRCULAR 2.00 3.14 0.50 2.00 1 17.68 C5 CIRCULAR 4.00 - 12.57 1.00 4.00 1 80.12 C6 CIRCULAR 4.00 12.57 1.00 4.00 1 78.54 C7 CIRCULAR 3.50 9.62 0.88 3.50 1 53.33 D2 CIRCULAR 3.00 7.07 0.75 3.00 1 48.42 D3 CIRCULAR 3.00 7.07 0.75 3.00 1 41.51 D4 CIRCULAR 2.50 4.91 0.63 2.50 1 25.66 EXLAT-B3C CIRCULAR 2.50 4.91 0.63 2.50 1 59.60 EXLAT-B4B CIRCULAR 1.25 1.23 0.31 1.25 1 9.67 EXLAT-B4C CIRCULAR 1.25 1.23 0.31 1.25 1 15.09 LAT-AlA CIRCULAR 1.50 1.77 0.38 1.50 1 11.83 LAT-A2A CIRCULAR 1.50 1.77 0.38 1.50 1 16.94 LAT-A3A CIRCULAR 1.50 1.77 0.38 1.50 1 17.61 LAT-A3B CIRCULAR 1.50 1.77 0.38 1.50 1 10.16 SWMM 5 Page 5 LAT-MA CIRCULAR 1.00 0.79 0.25 1.00 1 1 LAT-B1A CIRCULAR 1.50 1.77 0.3B 1.50 1 8 LAT-B1B CIRCULAR 1.50 1.77 0.38 1.50 1 18 LAT-B2A CIRCULAR 1.50 1.77 0.38 1.50 1 9 LAT-B2B CIRCULAR 2.00 3.14 0.5D 2.00 1 27 LAT-B3A CIRCULAR 2.00 3.14 0.50 2.00 1 11 LAT-B3B CIRCULAR 2.50 4.91 0.63 2.50 1 21 LAT-B3C CIRCULAR 3.00 7.07 0.75 3.00 1 51 LAT-B4A CIRCULAR 2.00 3.14 0.50 2.00 1 8 LAT-B4B CIRCULAR 2.00 3.14 0.50 2.00 1 12 LAT-B4C CIRCULAR 2.50 4.91 0.63 2.50 1 58 LAT-B5A CIRCULAR 1.50 1.77 0.38 1.50 1 12 LAT-B5B CIRCULAR 1.50 1.77 0.38 1.50 1 13 LAT-B6A CIRCULAR 1.33 1.39 0.33 1.33 1 9 LAT-B7A CIRCULAR 2.00 3.14 0.50 2.00 1 35 LAT-B7C CIRCULAR 3.50 9.62 0.88 3.50 1 100 LAT-BBA CIRCULAR 1.50 1.77 0.38 1.50 1 21 LAT-B9A CIRCULAR 1.50 1.77 0.38 1.50 1 16 LAT-B9B CIRCULAR 1.50 1.77 0.38 1.50 1 14 LAT-BIOA CIRCULAR 2.00 3.14 0.50 2.00 1 31 LAT-B10B CIRCULAR 1.50 1.77 0.38 1.50 1 14 LAT-B11A CIRCULAR 4.00 12.57 1.00 4.00 1 97 LAT-C1A CIRCULAR 1.50 1.77 0.38 1.50 1 6 LAT-C1B CIRCULAR 1.50 1.77 0.38 1.50 1 14 LAT-C2A CIRCULAR 1.50 1.77 0.38 1.50 1 14 LAT-C2B CIRCULAR 2.00 3.14 0.50 2.00 1 32 LAT-C3A CIRCULAR 2.00 3.14 0.50 2.00 1 7 LAT-D2A CIRCULAR 1.50 1.77 0.38 1.50 1 7 LAT-D2B CIRCULAR 1.50 1.77 0.38 1.50 1 14 LAT-D3A CIRCULAR 1.50 1.77 0.38 1.50 1 7 LAT-D3B CIRCULAR 1.50 1.77 0.38 1.50 1 14 'T STRT TRAPEZOIDAL 0.50 62.50 0.42 150.00 1 216 ip CIRCULAR 1.00 0.79 0.25 1.00 1 8 -Dl CIRCULAR 2.00 3.14 0.50 2.00 1 38 .................. Volume Depth Runoff Quantity Continuity .......................... acre-feet --------- inches ------- Total Precipitation ...... 18.407 3.669 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 0.605 0.121 Surface Runoff ........... 17.471 3.483 Final Surface Storage .... 0.461 0.092 Continuity Error (%) ..... -0.702 ••••,,••••••,•••,•••,:,••• volume Volume Flow Routing Continuity ............................. acre-feet --------- 30^6 gal --------- Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 17.471 5.693 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 3.507 1.143 External Outflow ......... 17.561 5.722 Internal Outflow ......... 0.000 0.000 Storage Losses ........... 0.000 0.000 Initial Stored Volume .... 0.039 0.013 Final Stored Volume ...... 0.040 0.013 Continuity Error (8) ..... 16.257 SWMM 5 Page 6 ........................... Time -Step Critical Elements None Highest Flow Instability Indexes All links are stable. ......................... Routing Time Step Summary Minimum Time Step 0.50 see Average Time Step 1.00 sec Maximum Time Step 1.00 sec Percent in Steady State 0.00 Average Iterations per Step 2.04 ........................... Subcatchment Runoff Summary Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff `)catchment in in in in in ' 30"6 gal CFS --------------------------------------------------------------------------------------- 3.67 0.00 0.00 0.07 3.53 0.12 11.13 ___ 0.963 3.67 0.00 0.00 0.07 3.53 0.22 19.84 0.962 102 3.67 0.00 0.00 0.07 3.53 0.28 27.19 0.963 103 3.67 0.00 0.00 0.07 3.53 0.08 7.99 0.962 104 3.67 0.00 0.00 0.07 3.53 0.43 44.74 0.963 105 3.67 0.00 0.00 0.07 3.53 0.12 12.01 0.962 106a 3.67 0.00 0.00 0.07 3.53 0.13 12.21 0.963 107 3.67 0.00 0.00 0.07 3.53 0.08 7.98 0.962 108 3.67 0.00 0.00 0.07 3.53 0.18 16.24 0.962 109 3.67 0.00 0.00 0.55 3.09 0.07 7.65 0.842 110 3.67 0.00 0.00 0.29 3.33 0.16 17.94 0.908 ill 3.67 0.00 0.00 1.53 2.14 0.05 2.68 0.583 112 3.67 0.00 0.00 0.14 3.47 0.12 11.96 0.945 113 3.67 0.00 0.00 0.07 3.53 0.17 17.25 0.963 114 3.67 0.00 0.00 0.07 3.53 0.34 33.71 0.963 115 3.67 0.00 0.00 0.07 3.53 0.27 27.41 0.963 116 3.67 0.00 0.00 0.07 3.53 0.02 2.00 0.962 117 3.67 0.00 0.00 0.07 3.53 0.12 11.76 0.963 lie 3.67 0.00 0.00 0.07 3.53 0.17 16.67 0.963 119 3.67 0.00 0.00 0.14 3.47 0.34 33.64 0.945 120 3.67 0.00 0.00 0.07 3.53 0.04 4.00 0.962 121 3.67 0.00 0.00 0.07 3.53 0.03 3.00 0.962 122 3.67 0.00 0.00 0.07 3.53 0.06 6.00 0.962 123 3.67 0.00 0.00 0.07 3.53 0.03 3.00 0.962 124 3.67 0.00 0.00 0.07 3.53 0.07 7.00 0.962 125 3.67 0.00 0.00 0.07 3.53 0.05 5.00 0.962 126 3.67 0.00 0.00 0.07 3.52 0.48 35.38 0.960 127 3.67 0.00 0.00 0.07 3.53 0.22 21.86 0.963 128 3.67 0.00 0.00 0.07 3.53 0.03 3.00 0.961 SWMM 5 Page 7 200 3.67 0.00 0.00 0.07 3.53 0.03 3.00 0.962 201 3.67 0.00 0.00 0.07 3.53 0.02 2.00 0.962 202 3.67 0.00 0.00 0.07 3.53 0.04 4.00 0.962 203 3.67 4.71 0.00 0.08 8.23 0.07 4.75 0.982 204 3.67 0.00 0.00 0.07 3.53 0.04 3.47 0.962 205 3.67 0.00 0.00 0.07 3.53 0.01 1.00 0.962 206 3.67 0.00 0.00 0.14 3.47 0.02 1.99 0.945 207 3.67 0.00 0.00 0.07 3.53 0.09 9.00 0.962 208 3.67 0.00 0.00 0.07 3.53 0.07 6.93 0.963 210 3.67 0.00 0.00 0.29 3.32 0.26 24.60 0.906 211 3.67 0.00 0.00 0.07 3.53 0.02 2.00 0.962 212 3.67 0.00 0.00 0.07 3.53 0.06 6.00 0.962 213 3.67 1.61 0.00 0.07 5.13 0.17 12.69 0.973 300 3.67 0.00 0.00 0.07 3.53 0.21 21.09 0.963 106b 3.67 0.00 0.00 0.07 3.53 0.10 9.53 0.963 306c 3.67 0.00 0.00 0.07 3.53 0.13 12.49 0.963 Node Depth Summary Average Maximum Maximum Time Of Max Depth Depth HGL Occurrence Node Type Feet Feet Feet days hr:min --------------------------------------------------------------------- Custominlet-River JUNCTION 4.88 5.31 4962.25 0 00:40 EXINLET-B10B JUNCTION 0.02 0.58 4973.29 0 00:40 EXINLET-B3A JUNCTION 0.13 8.25 4968.88 0 00:38 EXINLET-B3C JUNCTION 0.06 6.34 4970.10 0 00:38 'NLET-B4B JUNCTION 0.04 1.68 4972.91 0 00:39 ILET-B4C JUNCTION 0.03 1.10 4973.14 0 00:40 NLET-B5B JUNCTION 0.04 1.58 4972.83 0 00:39 _„INLET-B8A JUNCTION 0.02 0.55 4971.93 0 00:43 EXINLET-B9B JUNCTION 0.02 0.46 4971.88 0 00:40 EXMH BI JUNCTION 0.14 6.39 4965.55 0 00:40 EXMH Cl JUNCTION 0.18 6.50 4962.76 0 00:40 EXSTUB-B6 JUNCTION 0.03 1.06 4971.46 0 00:40 INLET-AIA JUNCTION 0.03 0.96 4956.46 0 00:40 INLET-A2A JUNCTION 0.03 4.77 4959.78 0 00:38 INLET-A3A JUNCTION 0.02 0.73 4965.77 0 00:40 INLET-A3B JUNCTION 0.08 4.47 4966.48 0 00:39 INLET-A4A JUNCTION 0.03 0.95 4970.55 0 00:40 INLET-B10A JUNCTION 0.06 1.67 4974.07 0 00:40 INLET-B1A JUNCTION 0.03 0.80 4961.59 0 00:40 INLET -BIB JUNCTION 0.05 1.90 4962.82 0 00:39 INLET-B2A JUNCTION 0.02 0.56 4964.56 0 00:40 INLET-B2B JUNCTION 0.08 2.33 4966.18 0 00:39 INLET-B3B JUNCTION 0.13 8.27 4969.23 0 00:38 INLET-B4A JUNCTION 0.03 4.53 4969.98 0 00:39 INLET-B5A JUNCTION 0.03 1.21 4972.27 0 00:40 INLET-B7A JUNCTION 0.05 1.68 4972.07 0 00:40 INLET-B9A JUNCTION 0.02 0.70 4972.19 0 00:40 INLET-C1A JUNCTION 0.05 3.03 4960.85 0 00:40 INLET-C1B JUNCTION 0.07 4.85 4963.19 0 00:40 INLET-C2A JUNCTION 0.03 1.04 4962.54 0 00:40 INLET-C2B JUNCTION 0.08 3.24 4964.00 0 00:39 INLET-D1 JUNCTION 0.18 2.95 4963.19 0 00:41 INLET-D2A JUNCTION 0.02 0.66 4964.40 0 00:40 INLET-D2B JUNCTION 0.06 2.01 4965.79 0 00:39 INLET-D3A JUNCTION 0.04 1.36 4965.36 0 00:40 SWMM 5 Page 8 INLET-D3B JUNCTION 0.06 2.25 4966.53 0 00:39 MH Al JUNCTION 9.47 11.84 4953.87 0 00:41 MH A2 JUNCTION 1.46 6.10 4956.17 0 00:41 MH A3 JUNCTION 0.09 6.27 4959.61 0 00:38 MH A4-MH D1 JUNCTION 0.08 2.41 4962.00 0 00:41 MH A5 JUNCTION 0.05 1.56 4962.77 0 00:40 MH B10 JUNCTION 0.11 4.59 4971.70 0 00:42 MH B11 JUNCTION 0.09 3.67 4972.08 0 00:42 MH B12 JUNCTION 0.07 2.86 4972.33 0 00:42 MH B13 JUNCTION 0.06 2.39 4972.39 0 00:42 MH B2 JUNCTION 0.10 4.10 4961.42 0 00:41 MH B3 JUNCTION 0.14 5.43 4964.05 0 00:41 MH B3A JUNCTION 0.15 7.94 4968.80 0 00:38 MH B4 JUNCTION 0.15 6.05 4964.93 0 00:40 MH B4A JUNCTION 0.03 4.07 4969.49 0 00:39 MH B4B JUNCTION 0.04 3.17 4969.58 0 00:41 MH B5 JUNCTION 0.14 7.79 4968.31 0 00:38 MH B6 JUNCTION 0.14 6.14 4969.48 0 00:41 MH B7 JUNCTION 0.15 6.32 4969.90 0 00:41 MH B7A JUNCTION 0.05 1.31 4971.10 0 00:42 MH B8 JUNCTION 0.15 6.44 4970.21 0 00:41 MH B9 JUNCTION 0.13 6.00 4971.12 0 00:42 MH Cl JUNCTION 2.35 10.20 4951.43 0 00:OD MH C2 JUNCTION 1.77 6.60 4948.68 0 00:40 MH C3 JUNCTION 0.74 10.68 4955.60 0 00:40 MH C4/B1 JUNCTION 0.97 14.23 4960.23 0 00:40 MH C5 JUNCTION 0.20 5.76 4960.65 0 00:40 MH C6 JUNCTION 0.16 5.62 4961.09 0 00:40 MH C7 JUNCTION 0.16 6.12 4962.36 0 00:40 MH D2 JUNCTION 0.11 3.21 4963.19 0 00:41 MH_D3 JUNCTION 0.10 3.36 4964.01 0 00:41 D4 JUNCTION 0.07 2.78 4964.69 0 00:41 STRT JUNCTION 0.01 0.37 4973.37 0 00:37 2 JUNCTION 0.00 0.00 0.00 0 00:10 ,,.13 JUNCTION 0.00 0.00 0.00 0 00:10 0114 JUNCTION 0.00 0.00 0.00 0 00:10 0115 JUNCTION 0.00 0.00 0.00 0 00:10 0300 JUNCTION 0.00 0.00 0.00 0 00:10 Al POUDRE OUTFALL 1.59 2.67 4952.56 0 00:41 FESB1-POUDRE OUTFALL 0.07 3.27 4957.00 0 00:39 FESCI-UDALL POND OUTFALL 2.47 2.47 4943.50 0 00:00 Node Inflow Summary ................... Maximum Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence Volume Volume Node Type CFS CFS days hr:min 10-6 gal 30-6 gal ------------------------------------------------------------------------------------- CustomInlet-River JUNCTION 3.00 3.00 0 00:40 0.029 0.029 EXINLET-B10B JUNCTION 3.00 3.00 -0 00:40 0.029 0.029 EXINLET-B3A JUNCTION 11.75 11.75 0 00:40 0.115 0.115 EXINLET-B3C JUNCTION 34.21 34.21 0 00:40 0.355 0.355 E%INLET-B4B JUNCTION 12.00 12.00 0 00:40 0.115 0.115 E%INLET-B4C JUNCTION 7.97 7.97 0 00:40 0,077 0.077 EXINLET-B5B JUNCTION 8.99 8.99 0 00:40 0.086 0.086 EXINLET-BBA JUNCTION 4.75 4.75 0 00:40 0.067 0.067 EXINLET-B9B JUNCTION 2.00 2.00 0 00:40 0.019 0.019 SWMM 5 Page 9 EXMH Bl JUNCTION 44.71 158.08 0 00:38 0.432 1.019 EXMH Cl JUNCTION 35.37 35.37 0 00:40 0.478 0.478 EXSTUB-B6 JUNCTION 6.93 6.93 0 00:40 0.067 0.067 INLET-AlA JUNCTION 7.00 7.00 0 00:40 0.067 0.067 INLET-A2A JUNCTION 3.00 3.00 0 00:40 0.029 0.029 INLET-A3A JUNCTION 4.00 4.00 0 00:40 0.038 0.038 INLET-A3B JUNCTION 17.93 17.93 0 00:40 0.181 0.181 INLET-A4A JUNCTION 1.99 1.99 0 00:40 0.019 0.019 INLET-BIOA JUNCTION 16.24 16.24 0 00:40 0.182 0.182 INLET-B1A JUNCTION 3.00 3.00 0 00:40 0.029 0.029 INLET -BIB JUNCTION 11.13 11.13 0 00:40 0.115 0.115 INLET-B2A JUNCTION 2.00 2.00 0 00:40 0.019 0.019 INLET-B2B JUNCTION 19.83 19.83 0 00:40 0.221 0.221 INLET-B3B JUNCTION 7.98 7.98 0 00:40 0.077 0.077 INLET-B4A JUNCTION 1.00 3.97 0 00:39 0.010 0.010 INLET-85A JUNCTION 7.65 7.65 0 00:40 0.067 0.067 INLET-B7A JUNCTION 16.66 16.66 0 00:40 0.173 0.173 INLET-B9A JUNCTION 4.00 4.00 0 00:40 0.038 0.038 INLET -CIA JUNCTION 6.00 6.00 0 00:40 0.058 0.058 INLET-C1B JUNCTION 21.85 21.85 0 00:40 0.221 0.221 INLET-C2A JUNCTION 5.00 5.00 0 00:40 0.048 0.048 INLET-C2B JUNCTION 27.18 27.18 0 00:40 0.278 0.278 INLET-D1 JUNCTION 0.00 0.14 0 00:36 0.000 0.001 INLET-D2A JUNCTION 2.00 2.00 0 00:40 0.019 0.019 INLET-D2B JUNCTION 24.59 24.59 0 00:40 0.262 0.262 INLET-D3A JUNCTION 6.00 6.00 0 00:40 0.058 0.058 INLET-D3S JUNCTION 12.68 12.68 0 00:40 0.167 0.167 MH Al JUNCTION 0.00 71.44 0 00:41 0.000 0.862 MH A2 JUNCTION 0.00 71.51 0 00:41 0.000 0.855 MH A3 JUNCTION 0.00 62.88 0 00:41 0.000 0.754 MH_A4-MH D1 JUNCTION 0.00 61.39 0 00:40 0.000 0.725 A5 JUNCTION 0.00 21.91 0 00:40 0.000 0.219 '.10 JUNCTION 0.00 57.28 0 00:40 0.000 0.607 111 JUNCTION 0.00 52.49 0 00:40 0.000 0.550 ... B12 JUNCTION 0.00 33.61 0 00:40 0.000 0.339 MH B13 JUNCTION 33.62 33.62 0 00:40 0.339 0.339 MH B2 JUNCTION 0.00 318.10 0 00:40 0.000 3.778 MH B3 JUNCTION 0.00 309.39 0 00:38 0.000 3.634 MH B3A JUNCTION 10.00 48.88 0 00:40 0.539 0.970 MH B4 JUNCTION 0.00 290.08 0 00:38 0.000 3.393 MH B4A JUNCTION 0.00 4.62 0 00:39 0.000 0.010 MH B4B JUNCTION 0.00 19.91 0 00:40 0.000 0.192 MH B5 JUNCTION 0.00 152.07 0 00:43 0.000 2.373 MH B6 JUNCTION 0.00 102.79 0 00:43 0.000 1.288 MH B7 JUNCTION 0.00 87.31 0 00:44 0.000 1.067 MH B7A JUNCTION 0.00 21.40 0 00:40 0.000 0.240 MH B8 JUNCTION 0.00 73.33 0 00:44 0.000 0.914 MH B9 JUNCTION 0.00 73.84 0 00:39 0.000 0.846 MH Cl JUNCTION 0.00 33.57 0 00:41 0.000 1.761 MH C2 JUNCTION 0.00 33.57 0 00:41 0.000 1.758 MH C3 JUNCTION 0.00 33.57 0 00:41 0.000 1.749 MH C4/B1 JUNCTION 0.00 406.59 0 00:40 0.000 4.864 MH CS JUNCTION 0.00 92.31 0 00:40 0.000 1.085 MH C6 JUNCTION 0.00 65.01 0 00:40 0.000 0.605 MN C7 JUNCTION 0.00 67.13 0 00:40 0.000 0.804 MN D2 JUNCTION 0.00 41.18 0 00:41 0.000 0.506 MH D3 JUNCTION 0.00 42.2B 0 00:40 0.000 0.506 MH D4 JUNCTION 0.00 18.61 0 00:40 0.000 0.225 N.NT STRT JUNCTION 169.16 169.16 0 00:35 0.586 0.5B6 0112 JUNCTION 11.96 11.96 0 00:40 0.122 0.122 0113 JUNCTION 17.24 17.24 0 00:40 0.173 0.173 0114 JUNCTION 33.69 33.69 0 00:40 0.336 0.336 SWMM 5 Page 10 0115 JUNCTION 27.40 27.40 0 00:40 0.269 0.269 0300 JUNCTION 21.08 21.08 0 00:40 0.211 0.211 Al POUDRE OUTFALL 0.00 71.44 0 00:41 0.000 0.863 FE501-POUDRE OUTFALL 0.00 369.75 0 00:39 0.000 3.116 FESC1-UDALL POND OUTFALL 0.00 33.57 0 00:41 0.000 1.761 Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- EXINLET-B3A JUNCTION 0.27 6.246 1.204 EXINLET-B3C JUNCTION 0.07 3.840 0.000 EXINLET-B4B JUNCTION 0.04 0.435 0.735 EXINLET-B5B JUNCTION 0.01 0.081 0.839 EXMH Cl JUNCTION 0.30 4.504 2.646 INLET-A2A JUNCTION 0.10 3.269 3.171 INLET-A3B JUNCTION 0.22 2.971 2.009 INLET -BIB JUNCTION 0.05 0.395 2.185 INLET-52B JUNCTION 0.07 0.326 1.534 INLET-B3B JUNCTION 0.18 5.769 0.011 INLET-B4A JUNCTION 0.09 2.530 2.920 INLET-ClA JUNCTION 0.12 1.534 1.966 INLET-C1B JUNCTION 0.15 3.352 0.268 INLET-C2B JUNCTION 0.12 1.241 O.B99 ',ET -DI JUNCTION 0.12 0.834 4.986 ET-D25 JUNCTION 0.12 0.514 2.856 .ET-D3B JUNCTION 0.10 0.748 1.882 -a Al JUNCTION 0.14 0.815 3.195 MH A3 JUNCTION 0.10 3.209 3.671 MH 03A JUNCTION 0.09 3.304 1.656 MH B4 JUNCTION 0.13 2.048 4.172 MH B4A JUNCTION 0.09 2.074 3.756 MH B5 JUNCTION 0.11 3.794 2.076 MH Cl JUNCTION 22.99 8.198 0.000 MH C2 JUNCTION 2.12 4.603 0.087 MH C3 JUNCTION 1.93 8.684 3.916 MH C4/B1 JUNCTION 0.05 0.420 3.600 MH C5 JUNCTION 0.13 1.473 1.987 MH C6 JUNCTION 0.12 1.622 3.388 MH D2 JUNCTION 0.04 0.213 5.087 0112 JUNCTION 23.00 0.000 0.000 0113 JUNCTION 23.00 0.000 0.000 0114 JUNCTION 23.00 0.000 0.000 0115 JUNCTION 23.00 0.000 0.000 0300 JUNCTION 23.00 0.000 0.000 Node Flooding Summary ..................... Flooding refers to all water that overflows a node, whether it ponds or not. -------------------------------------------------------------------------- Total Maximum Maximum Time of Max Flood Ponded SWMM 5 Page 11 Hours Rate Occurrence Volume Depth Node Flooded CFS days hr:min 10^6 gal Feet ______________ _-______--________------__-__________-_------__--- EXINLET-B3C 0.01 6.32 0 00:38 0.000 6.34 ....................... Outfall Loading Summary ....................... Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. CFS CFS 10"6 gal ----------------------------------------------------------- Al MOORE 72.44 1.99 71.44 0.863 FESB1-POUDRE 7.96 66.38 369.75 3.116 FESC1-UDALL POND 100.00 2.88 33.57 1.761 ---___ -------------------------------------------- System 60.13 71.25 470.72 1 5.740 Link Flow Summary .................... Maximum Time of Max Maximum Max/ Max/ IFlowl Occurrence IVelocl Full Full Link Type CFS days hr:min ft/sec Flow --__-___- Depth ----------------------------------------------------------- CONDUIT 71.44 0 00:41 10.33 2.54 0.95 CONDUIT 71.44 0 00:41 10.11 3.94 1.00 CONDUIT 62.88 0 00:41 8.90 0.69 1.00 CONDUIT 60.42 0 00:41 11.58 0.66 0.90 A5 CONDUIT 21.80 0 00:40 8.92 0.80 0.81 B1 CONDUIT 369.75 0 00:39 17.46 0.98 0.90 B2 CONDUIT 314.61 0 00:40 12.53 0.68 1.00 B3 CONDUIT 304.31 0 00:40 11.28 1.33 1.00 B4 CONDUIT 290.05 0 00:38 10.36 1.30 1.00 B5 CONDUIT 152.10 0 00:43 6.84 0.83 1.00 B6 CONDUIT 109.56 0 00:44 6.76 1.00 1.00 B7 CONDUIT 89.09 0 00:44 7.16 1.04 1.00 B8 CONDUIT 78.86 0 00:44 6.28 1.10 1.00 B9 CONDUIT 69.81 0 00:44 5.60 0.80 1.00 B10 CONDUIT 53.13 0 00:39 7.31 0.60 1.00 B11 CONDUIT 51.36 0 00:40 6.38 0.58 1.00 B12 CONDUIT 33.41 0 00:40 6.28 0.56 0.98 B13 CONDUIT 33.61 0 00:40 7.32 0.40 0.87 Cl CONDUIT 33.57 0 00:41 10.69 1.93 1.00 C2 CONDUIT 33.57 0 00:41 10.69 1.89 1.00 C3 CONNDUIT 33.57 0 00:41 10.69 1.46 1.00 C4 CONDUIT 33.57 0 00:41 10.69 1.90 1.00 C5 CONDUIT 92.28 0 00:40 7.34 1.15 1.00 C6 CONDUIT 64.98 0 00:40 5.29 0.83 '1.00 C7 CONDUIT 65.01 0 00:40 6.76 1.22 1.00 D2 CONDUIT 41.20 0 00:41 6.87 0.85 0.90 D3 CONDUIT 41.18 0 00:41 6.97 0.99 1.00 D4 CONDUIT 17.41 0 00:41 3.63 0.68 1.00 EXLAT-B3C CONDUIT 34.20 0 00:40 11.75 0.57 1.00 EXLAT-B4B CONDUIT 12.01 0 00:40 9.79 1.24 1.00 EXLAT-B4C CONDUIT 7.94 0 00:40 8.71 0.53 0.70 SWMM 5 Page 12 LAT-AlA CONDUIT 6.92 0 00:40 6.54 0.58 0.71 LAT-A2A CONDUIT 3.29 0 00:38 5.11 0.19 1.00 LAT-A3A CONDUIT 3.99 0 00:40 5.92 0.23 0.41 LAT-A3B CONDUIT 17.94 0 00:40 10.15 1.77 1.00 LAT-MA CONDUIT 1.92 0 00:40 2.95 1.05 0.77 LAT-B1A CONDUIT 2.98 0 00:40 3.64 0.35 0.55 LAT-B1B CONDUIT 11.14 0 00:40 7.53 0.60 0.78 LAT-B2A CONDUIT 1.98 0 00:40 3.69 0.21 0.34 LAT-B2B CONDUIT 19.84 0 00:40 7.25 0.72 0.81 LAT-B3A CONDUIT 11.77 0 00:40 3.75 1.05 1.00 LAT-B313 CONDUIT 8.10 0 00:38 1.65 0.37 1.00 LAT-B3C CONDUIT 48.93 0 00:40 7.39 0.95 1.00 LAT-B4A CONDUIT 3.03 0 00:39 1.75 0.34 1.00 LAT-B4B CONDUIT 4.62 0 00:39 1.91 0.37 1.00 LAT-B4C CONDUIT 19.74 0 00:40 10.18 0.34 1.00 LAT-135A CONDUIT 7.61 0 00:40 5.95 0.60 0.68 LAT-B5B CONDUIT 9.00 0 00:40 5.93 0.68 0.80 LAT-136A CONDUIT 6.91 0 00:40 6.49 0.74 M2 LAT-137A CONDUIT 16.65 0 00:40 6.91 0.48 0.73 LAT-B7C CONDUIT 21.39 0 00:40 7.84 0.21 0.47 LAT-B8A CONDUIT 4.86 0 00:40 5.48 0.23 0.60 LAT-139A CONDUIT 3.98 0 00:40 6.06 0.24 0.50 LAT-B9B CONDUIT 1.99 0 00:40 4.97 0.13 0.44 LAT-B10A CONDUIT 16.19 0 00:40 7.20 0.52 0.67 LAT-B10B CONDUIT 2.98 0 00:40 5.55 0.20 0.34 LAT-1311A CONDUIT 158.58 0 00:38 12.62 1.63 1.00 LAT-C1A CONDUIT 6.00 0 00:40 3.84 0.92 1.00 LAT-C1B CONDUIT 21.85 0 00:40 12.37 1.47 1.00 LAT-C2A CONDUIT 5.04 D 00:39 5.80 0.36 0.85 LAT-C2B CONDUIT 27.21 0 00:40 9.34 0.85 0.96 LAT-C3A CONDUIT 35.39 0 00:40 11.26 4.69 1.00 T-D2A CONDUIT 1.97 0 00:40 3.04 0.28 0.39 -D2B CONDUIT 24.59 0 00:40 13.92 1.69 1.00 -D3A CONDUIT 5.95 0 00:40 4.09 0.80 0.77 ,T-D3B CONDUIT 12.69 0 00:40 7.88 0.85 0.86 MT SINT CONDUIT 121.88 0 00:37 2.95 0.56 0.70 12DIP CONDUIT 2.99 0 00:40 10.13 0.34 0.40 LAT-DI CONDUIT 0.20 0 00:45 0.34 0.01 1.00 Flow Classification Summary Adjusted --- Fraction of Time in Flow Class ---- Avg. Avg. /Actual Up Down Sub Sup Up Down Fronde Flow Conduit Length Dry Dry Dry Crit Crit Crit Crit Number Change ______ ______________ Al _________------_--________________--------_______ 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.04 0.0001 A2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0001 A3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.06 0.0000 A4 1.00 0.00 0.00 0.00 0.00 0.01 0.00 0.99 1.32 0.0000 A5 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.87 0.0000 B1 1.00 0.92 0.00 0.00 0.00 0.08 0.00 0.00 0.15 0.0000 B2 1.00 0.00 0.00 0.00 0.00 0.03 0.00 0.97 1.08 0.0000 B3 1.00 0.00 0.00 0.00 0.87 0.13 0.00 0.00 0.61 0.0000 B4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.44 0.0000 B5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.35 0.0000 B6 1.00 0.00 0.00 0.00 0.79 0.21 0.00 0.00 0.70 0.0000 B7 1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.47 0.0000 B8 1.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.42 0.0000 SWMM 5 Page 13 B9 1.00 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.42 0.0000 B10 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.80 0.0000 Bll 1.00 0.01 0.00 0.00 0.89 0.10 0.00 0.00 0.54 0.0000 B12 1.00 0.01 0.00 0.00 0.92 0.08 0.00 0.00 0.47 0.0000 B13 1.00 0.01 0.00 0.00 0.83 0.16 0.00 0.00 0.75 0.0000 C1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0001 C2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.0001 C3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 C4 1.00 0.00 0.00 0.00 0.79 0.21 0.00 0.00 0.80 0.0001 C5 1.00 0.00 0.00 0.00 0.08 0.00 0.00 0.92 0.61 0.0000 C6 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.37 0.0000 C7 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.50 0.0000 D2 1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.57 0.0000 D3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.48 0.0000 D4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.22 0.0000 EXLAT-WC 1.00 0.00 0.00 D.DO 0.00 0.00 0.00 0.99 1.36 0.0000 EXLAT-B4B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.45 0.0000 EXLAT-B4C 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.73 0.0000 UT-AlA 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.30 0.0000 UT-A2A 1.00 0.01 0.00 0.00 0.01 0.00 0.00 0.98 0.20 0.0000 LAT-A3A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.30 0.0000 LAT-A3B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.74 0.0000 LAT-MA 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.16 0.0000 LAT-B1A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.16 0.0000 LAT-BIB 1.58 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.17 0.0000 LAT-B2A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.15 0.0000 LAT-B2B 1.20 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.16 0.0000 LAT-B3A 1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.18 0.0000 LAT-B3B 1.00 0.00 0.13 0.00 0.87 0.00 0.00 0.00 0.03 0.0000 LAT-B3C 1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.68 0.0000 LAT-B4A 1.00 0.01 0.11 0.00 0.89 0.00 0.00 0.00 0.07 0.0000 T-B4B 1.00 0.01 0.00 0.00 0.01 0.00 0.00 0.98 0.11 0.0000 -B4C 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.56 0.0000 -B5A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.25 0.0000 ,T-BSB 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.37 0.0000 UT-B6A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.51 0.0000 LAT-B7A 1.00 0.01 0.00 0.00 0.80 0.19 0.00 0.00 0.79 0.0000 LAT-B7C 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 O.B7 0.0000 LAT-B8A 1.00 0.01 0.00 0.00 0.84 0.15 0.00 0.00 0.63 0.0000 LAT-M 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.32 0.0000 LAT-B% 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.26 0.0000 LAT-B10A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.29 0.0000 LAT-B10B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.30 0.0000 LAT-B11A 1.00 0.00 0.01 0.00 0.86 0.13 0.00 0.00 0.62 0.0000 UT-C1A 1.00 0.01 0.00 0.00 0.01 0.00 0.00 0.98 0.19 0.0000 UT-C1B 1.00 0.01 0.00 0.00 0.01 0.00 0.00 0.98 1.15 0.0000 UT-C2A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.27 0.0000 LAT-C2B 1.52 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.16 0.0000 LAT-C3A 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.43 0.0001 LAT-D2A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.17 0.0000 LAT-D2B 1.09 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.28 0.0000 LAT-D3A 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.19 0.0000 LAT-D3B 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.82 0.0000 MNT STRT 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.98 0.34 0.0000 12DIP 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.44 0.0000 LAT-Dl 1.56 0.00 0.91 0.00 0.09 0.00 0.00 0.00 0.00 0.0000 COnduil Surcharge Summary SWMM 5 Page 14 Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ------------------------------- Al 0.01 0.01 --------------- 0.01 0.30 0.01 A2 0.14 0.14 0.14 0.45 0.14 A3 0.10 0.10 0.10 0.01 0.01 B2 0.02 0.02 0.02 0.01 0.01 B3 0.02 0.02 0.02 0.15 0.02 B4 0.10 0.10 0.10 0.15 0.10 B5 0.10 0.10 0.10. 0.01 0.08 B6 0.10 0.10 0.10 0.01 0.05 B7 0.10 0.10 0.10 0.04 0.09 B8 0.10 0.10 0.10 0.06 0.09 B9 0.09 0.09 0.09 0.01 0.01 B10 0.07 0.07 0.07 0.01 0.06 511 0.02 O.D2 0.02 0.01 0.01 Cl 22.99 22.99 22.99 1.98 2.04 C2 2.12 2.12 2.12 1.97 2.02 C3 1.93 1.93 1.93 1.87 1.88 C4 1.93 1.93 1.93 1.96 1.93 C5 0.15 0.15 0.15 0.06 0.15 C6 0.12 0.12 0.12 0.01 0.01 C7 0.15 0.15 0.15 0.09 0.11 D3 0.04 0.04 0.04 0.01 0.04 D4 0.03 0.03 0.03 0.01 0.01 EXLAT-83C 0.07 0.07 0.07 0.01 0.01 EXLAT-B4B 0.03 0.03 0.03 0.06 0.03 LAT-A2A 0.10 0.10 0.10 0.01 0.01 LAT-A3B 0.02 0.02 0.02 0.15 0.02 T-A4A 0.01 0.01 0.01 0.03 0.01 -B3A 0.27 0.27 0.27 0.02 0.02 :-B3B 0.18 0.18 0.18 0.01 0.01 ,T-B3C 0.16 0.16 0.16 0.01 0.01 UT-B4A 0.09 0.09 0.09 0.01 0.01 UT-B48 0.09 0.09 0.10 0.01 0.01 LAT-B4C 0.05 0.05 0.05 0.01 0.01 UT-B11A 0.12 0.12 0.13 0.14 0.10 LAT-C1A 0.12 0.12 0.12 0.01 0.06 LAT-C1B 0.13 0.13 0.13 0.11 0.13 LAT-C3A 0.29 0.29 0.29 0.62 0.29 UT-D2B 0.11 0.11 0.11 0.15 0.11 UT -DI 0.12 0.12 0.12 0.01 0.01 Analysis begun on: Mon Jun 29 12:44:41 2015 Analysis ended on: Mon Jun 29 12:44:59 2015 Total elapsed time: 00:00:18 SWMM 5 Page 15 ATTACHMENT 2.1 Effective HEC-RAS Modeling Workmap - Walnut Street No Text ATTACHMENT 3.1 Proposed Condition HEC-RAS Modeling Workmop ATTACHMENT 3.2 Proposed Condition HEC-RAS Modeling Output — Walnut and Chestnut Street G AD w 1W FM IN TEEil NN NR ® NORTH LEGEND: N9ROXY.S2 11111115 OF CdBIMC1YJ1IIIIs EMNING RIWi-OF-NX.Y/PRfRFM1 UE E TSMNG CURB k GUI "SING CONCIWW PROPOSED CONCRETE PN`pEM PROPOSED AAMI PIII LIHGSCAR AYCNIRrn PROPOSES W. IPRIICA- CURB h CURTER SCOTCH 167ANING WNL EXISTING TREES EXII MAJOR CCRWR EXISDNC MINOR CONTOUR PRCPoSFD CONKERS 1. RESER To ME -FINAL MENAGE ROSSI FOR WALRUT-FNESMUT SUBwNSIM REEL BY INK IdI E]WUNEFRING. DATES MRR M 20e FOR ADDM AI NODRI P. A L EREVATO S ARE RFIATED M TE NANDI AERnCA1 DI IyI:IpIII :riVay� OWN& FIRM SURER HOiIXWU ENGINEERING BARGES M PROJECT NUMER, 947-003 DAIS: DECEMEER 3014 G1LUN:v COLORADO m1161M SARAM rsbBIOW. Call DRIyRE ft. gago Architecture Inc PARIMHGBNMPE WAMrsSEnsq LLc OWES ME MOUNTAIN AW FCPo COLLINS, CO MVE r. TRRSOOS% NOFEEONIIERI RYW4 LLC DEVELOPER 2135 RC Y MOUNTAIN AVE STE M] .CO KSEe ICI sr0s AGO ARCHRINCT HMO ARCNIECOPURE INC dWI RI NOSBY COURT SUITE 117 DEWER, CON2I6 1101SIR A]W CML NORTHERN ENGINEERING, WC M S COLLEGE AVE FORTCOLUNS, CO 90S4 5 fW3MDIIS WIOSGAFE RUSIELLIMILOTWOKS 141 SGO IEOE AVE FORT COLLINS CO M24 1970.W U55 f 970 2214 1 PAEOMGGMWE aAxlmle 1RrIAABUMrtAL Ye OEIOIIICM MR HYDRAULIC MODELING WORKIA P FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 1 of 11 HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California X X XXXXXX XXXX XXXX XX XXXX X X X X X X X X X X X X X X X X X X X XXXXXXX XXXX X XXX XXXX XXXXXX XXXX X X X X X X X X X X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX PROJECT DATA Project Title: Walnut Street - 100yr-Proposed Project File : Walnut NE.prj Run Date and Time: 7/21/2015 12:07:20 PM Project in English units PLAN DATA Plan Title: P1an01 Chestnut Split Plan File : d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06- 02\Walnut NE.p01 Geometry Title: Chestnut Split Flow Geometry File d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond- 2015-06-02\Walnut NE.g01 Flow Title Flow 01 Flow File :'d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond- 2015-06-02\Walnut NE.f01 Plan Summary Information: Number of: Cross Sections = 8 Multiple Openings = 0 Culverts = 0 Inline Structures = 0 Bridges = 0 Lateral Structures = 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor - = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow FLOW DATA Flow Title: Flow 01 FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 2 of 11 Flow File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-PAS-Proposed Cond-2015-06- 02\Walnut_NE.f01 Flow Data (cfs) River Reach RS PF 1 Chestnut Split 1 30 10 Chestnut Split 1 20 12.5 Mountain Split 1 20 50 Walnut 1 20 60 Boundary Conditions River Reach Profile Upstream Downstream Chestnut Split 1 PF 1 Known WS = 4973.71 Mountain Split 1 PF 1 Known WS = 4976.18 GEOMETRY DATA Geometry Title: Chestnut Split Flow Geometry File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06- 02\Walnut NE.g01 Reach Connection Table River Reach Upstream Boundary Downstream Boundary Chestnut Split 1 Split-1 Mountain Split 1 Split-1 Walnut 1 Split—1 JUNCTION INFORMATION Name: Split 1 Description: Energy computation Method Length across Junction Tributary River Reach River Walnut 1 to Chestnut Split 1 Walnut 1 to Mountain Split 1 CROSS SECTION RIVER: Chestnut Split REACH: 1 RS: 30 INPUT Description: Station Elevation Data num= 6 Sta Elev Sta Elev Sta Elev 0 4977.14 23 4976.68 23.05 4976.18 46 4977.2 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .016 .0 .016 46 .016 Reach Length Angle 154 70.4 Sta Elev Sta Elev 41 4976.54 41.05 4977.04 FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 3 of 11 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 46 224.9 224.9 224.9 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4976.86 Element Left OB Channel Right OB Vel Head (ft) 0.17 Wt. n-Val. 0.016 W.S. Elev (ft) 4976.69 Reach Len. (ft) 224.90 224.90 224.90 Crit W.S. (ft) 4976.69 Flow Area (sq ft) 6.00 E.G. Slope (ft/ft) 0.005847 Area (sq ft)' 6.00 Q Total (cfs) 19.58 Flow (cfs) 19.58 Top Width (ft) 18.67 Top Width (ft) 18.67 Vel Total (ft/s) 3.26 Avg. Vel. (ft/s) 3.26 Max Chl Dpth (ft) 0.51 Hydr. Depth (ft) 0.32 Conv. Total (cfs) 256.0 Conv. (cfs) 256.0 Length Wtd. (ft) 224.90 Wetted Per. (ft) 19.27 Min Ch E1 (ft) 4976.18 Shear (lb/sq ft) 0.11 Alpha 1.00 Stream Power (lb/ft s) 46.00 0.00 0.00 Frctn Loss (ft) 1.38 Cum Volume (acre-ft) 0.10 0.00 C 6 E Loss (ft) 0.01 Cum SA (acres) 0.34 0.00 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: Chestnut Split REACH: 1 RS: 20 INPUT Description: Station Elevation Data num= 7 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 4975.45 10 4975.25 10.05 4974.75 27 4975.4 44 4974.75 44.05 4975.25 54 4975.45 Manning's n Values num= 3 Sta n Val Sta n Val Sta . n Val 0 .016 0 .016 54 .016 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 54 113.1 113.1 113.1 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4975.42 Element Left OB Channel Vel Head (ft) 0.12 Wt. n-Val. 0.016 W.S. Elev (ft) 4975.30 Reach Len. (ft) 113.10 113.10 Crit W.S. (ft) 4975.30 Flow Area (sq ft) 7.89 E.G. Slope (ft/ft) 0.006369 Area (sq ft) 7.89 Q Total (cfs) 22.08 Flow (cfs) 22.08 Top Width (ft) 33.04 Top Width (ft) 33.04 Vel Total (ft/s) 2.80 Avg. Vel. (ft/s) 2.80 Max Chl Dpth (ft) - 0.54 Hydr. Depth (ft) 0.24 Conv. Total (cfs) 276.6 Conv. (cfs) 276.6 Right OB 113.10 FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 4 of 11 Length Wtd. (ft) 113.10 Wetted Per. (ft) 33.97 Min Ch E1 (ft) 4974.75 Shear (lb/sq ft) 0.09 Alpha 1.00 Stream Power (lb/ft s) 54.00 0.00 0.00 Frctn Loss (ft) 0.71 Cum Volume (acre-ft) 0.07 0.00 C & E Loss (ft) 0.00 Cum SA (acres) 0.21 0.00 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a -valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: Chestnut Split REACH: 1 RS: 10 INPUT Description: Station Elevation Data num= 36 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 4981 .1 4974.78 3.76 4974.66 6.16 4974.7 6.45 4974.71 7.98 4974.52 10.34 4974.24 10.6 4974.09 10.87 4973.88 12.36 4973.95 23.84 4974.25 24.64 4974.27 25.25 4974,27 48.43 4974.49 48.98 4974.49 61.12 4974.31 67.12 4974.22 84.73 4973.44 85.39 4973.42 85.42 4973.42 86.39 4973.5 86.52 4973.36 86.71 4973.68 86.85 4973.85 86.88 4973.85 86.97 4973.81 86.98 4973.81 67.05 4973.81 87.08 4973.81 89.84 4973.88 93.27 4974.09 95.28 4974.27 96.53 4974.34 97.34 4974.36 98.5 4974.38 98.6 4981 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .016 3.76 .016 96.53 .016 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 3.76 96.53 92.8 92.8 92.8 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4974.21 Element Left OB Channel Right OB Vel Head (ft) 0.13 Wt. n-Val. 0.016 W.S. Elev (ft) 4974.08 Reach Len. (ft) 92.80 92.80 92.80 Crit W.S. (ft) 4974.08 Flow Area (sq ft) 7.61 E.G. Slope (ft/ft) 0.006118 Area (sq ft) 7.61 Q Total (cfs) 22.08 Flow (cfs) 22,08 Top Width (ft) 29.74 Top Width (ft) - 29.74 Vel Total (ft/s) 2.90 Avg. Vel. (ft/s) 2.90 Max Chi Dpth (ft) 0.72 Hydr. Depth (ft) 0.26 Conv. Total (cfs) 282.3 Conv. (cfs) 282.3 Length Wtd. (ft) 92.80 Wetted Per. (ft) 30.17 Min Ch El (ft) 4973.36 Shear (lb/sq ft) 0.10 Alpha 1.00 Stream Power (lb/ft s) 98.60 0.00 0.00 Frctn Loss (ft) 0.04 Cum Volume (acre-ft) 0.05 0.00 C & E Loss (ft) 0.04 Cum SA (acres) 0.13 0.00 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 5 of 11 for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. _ CROSS SECTION RIVER: Chestnut Split REACH: 1 RS: 5 INPUT Description: Station Elevation Data num= 38 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 4984 .1 4974.3 .35 4974.3 .56 4974.29 2.23 4974.12 2.42 4974.11 6.07 4973.84 12.55 4973.47 12.65 4973.33 13.17 4972.86 13.47 4972.87 13.88 4972.91 14.63 4972.96 15.38 4973.06 15.4 4973.07 25 4973.46 28.59 4973.55 -30.63 4973.56 37.17 4973.56 50.1 4973.57 50.37 4973.57 51.25 4973.58 68.28 4973.4 69.81 4973.38 73.77 4973.17 86.76 4972.5 88.44 4972.37 88.89 4972.35 89.35 4973.03 89.41 4973.12 90.25 4972.91 91.76 4972.98' 93.98 4973.3 95.38 4973.3 96.53 4973.35 99.83 4973.44 100.1 4973.45 100.2 4984 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .016 6.07 .016 96.53 .016 Bank Sta: Left Right Coeff Contr. Expan. 6.07 96.53 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4973.72 Element Left OB Channel Right OB Vel Head (ft) 0.01 Wt. n-Val. 0.016 0.016 W.S. Elev (ft) 4973.71 Reach Len. (ft) Crit W.S. (ft) 4973.15 Flow Area (sq ft) 35.50 1.11 E.G. Slope (ft/ft) 0.000145 Area (sq ft) 35.50 1.11 Q Total (cfs) 22.08 Flow (cfs) ' - 21.53 0.54 Top Width (ft) 91.76 Top Width (ft) 88.18 3.57 Vel Total (ft/s) 0.60 Avg. Vel. (ft/s) 0.61 0.49 Max Chl Dpth (ft) 1.36 Hydr. Depth (ft) 0.40 0.31 Conv. Total (cfs) 1832.6 Conv. (cfs) 1787.3 45.2 Length Wtd. (ft) Wetted Per. (ft) 88.95 3.83 Min Ch El (ft) 4972.35 Shear (lb/sq ft) 0.00 0.00 Alpha 1.00 Stream Power (lb/ft s) 100.20 0.00 0.00 Frctn Loss (ft) Cum Volume (acre-ft) C & E Loss (ft) Cum SA (acres] CROSS SECTION RIVER: Mountain Split REACH: 1 RS: 20 INPUT Description: Station Elevation Data num= 37 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 7.25 4978.23 11.84 4978.11 12.27 4978.08 12.74 4978.03 18.87 4977.05 FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 6 of 11 18.95 4976.97 19.39 4976.54 19.68 4976.56 21.38 4976.68 26.56 4976.67 38.06 4976.66 38.09 4976.66 38.1 4976.66 38.53 4976.67 38.93 4976.68 39.8 4976.68 39.85 4976.63 40 4976.63 41.56 4976.64 45.49 4976.46 49.69 4976.39 52.51 4976.38 62.19 4976.2 64.02 4976.18 65.86 4975.88 66.23 4975.83 66.56 4975.83 66.78 4976.08 67.15 4976.5 69.14 4976.51 71.09 4976.52 71.24 4976.5 72.64 4976.36 73.48 4976.41 74.36 4976.47 75.62 4976.53 80 4976.68 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 7.25 .016 11.84 .016 75.62 .016 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 11.84 75.62 179.3 179.3 179.3 .1 .3 CROSS SECTION OUTPUT Profile NPF 1 E.G. Elev (ft) 4976.85 Element Left OB Channel Right OB Vel Head (ft) 0.14 Wt. n-Val. 0.016 0.016 W.S. Elev (ft) 4976.71 Reach Len. (ft) 179.30 179.30 179.30 Crit W.S. (ft) 4976.71 Flow Area (sq ft) 13.25 0.48 E.G. Slope (ft/ft) 0.007216 Area (sq ft) 13.25 0.48 Q Total (cfs) 40.42 Flow (cfs) 39.57 0.85 Top Width (ft) 60.79 Top Width (ft) 56.41 4.38 Vel Total (ft/s) 2.95 Avg. Vel. (ft/s) 2.99 1.79 Max Chl Dpth (ft) 0.88 Hydr. Depth (ft) 0.23 0.11 Conv. Total (cfs) 475.9 Conv. (cfs) 465.8 10.0 Length Wtd. (ft) 179.30 Wetted Per. (ft) 56.86 4.42 Min Ch E1 (ft) 4975.83 Shear (lb/sq ft) 0.10 0.05 Alpha 1.01 Stream Power (lb/ft s) 80.00 0,00 0.00 Frctn Loss (ft) 0.15 Cum Volume (acre-ft) 0.00 0.12 0.00 C S E Loss (ft) 0.04 Cum SA (acres) 0.00 0.33 0.01 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The cross-section end points had to be extended vertically for the computed water surface. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: Mountain Split REACH: 1 RS: 10 INPUT Description: Station Elevation Data num= 61 Sta Elev Sta Elev Sta Elev 0 4981 _ .1 4975.92 1.42 4975.93 14.56 4975.4 16.97 4975.33 17.37 4975.03 19.58 4975.01 19.61 4975 22.89 4975.25 27.47 4975.48 32.38 4975.69 34.39 4975.78 35.44 4975.8 39.92 4975.91 41.77 4975.94 58.88 4976.26 60.92 4976.22 62.38 4976.23 65.81 4976.23 67.99 4976.22 69.08 4976.19 74.69 4977.01 75.43 4976.95 76.47 4976.87 79.89 4976.19 79.99 4975.98 83.06 4976 Sta Elev Sta Elev 9.93 4975.63 12.88 4975.5 17.58 4974.86 19.22 4974.97 23.47 4975.28 27.21 4975.47 34.67 4975.79 35.43 4975.78 48.53 4976.15 53.97 4976.21 63.6 4976.25 64.06 4976.25 74.15 4975.99 74.66 4976.96 77.6 4976.84 79.53 4977.05 94.01 4976.12 100.59 4975.94 FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 7 of 11 106.07 4975.78 110.29 4975.67 112.77 4975.61 121.21 4975.39 121.8 4975.34 123.21 4975.22 123.36 4975.36 123.71 4975.72 126.88 4975.77 128.14 4975.78 128.27 4975.79 128.62 4975.78 128.76 4975.8 128.87 4976.13 128.91 4975.79 129 4981 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .016 1.42 .016 126.88 .016 Bank Sta: Left Right Coeff Contr. Expan. 1.42 126.88 .1 .3 CROSS SECTION OUTPUT Profile BPF 1 E.G. Elev (ft) 4976.19 Element Left OB Channel Right OB Vel Head (ft) 0.01 Wt. n-Val. 0.016 0.016 0.016 W.S. Elev (ft) 4976.18 Reach Len. (ft) Crit W.S. (ft) 4975.77 Flow Area (sq ft) 0.34 43.52 0.79 E.G. Slope (ft/ft) 0.000302 Area (sq ft) 0.34 43.52 0.79 Q Total (cfs) 40.42 Flow (cfs) 0.19 39.70 0.53 Top Width (ft) 105.12 Top Width (ft) 1.33 101.76 2.04 Vel Total (ft/s) 0.91 Avg. Vel. (ft/s) 0.58 0.91 0.67 Max Chl Dpth (ft) 1.32 Hydr. Depth (ft) 0.25 0.43 0.39 Conv. Total (cfs) 2325.6 Conv. (cfs) 11.2 2284.1 30.3 Length Wtd. (ft) Wetted Per. (ft) 1.58 102.45 2.96 Min Ch El (ft) 4974.86 Shear (lb/sq ft) 0.00 0.01 0.01 Alpha 1.01 Stream Power (lb/ft s) 129.00 0.00 0.00 Frctn Loss (ft) Cum Volume (acre-ft) C & E Loss (ft) Cum SA (acres) Warning: Divided flow computed for this cross-section. CROSS SECTION RIVER: Walnut REACH: 1 RS: 20 INPUT Description: Effective Model Section 2+58 Station Elevation Data num= 13 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 100 4981.18 100.1 4979.08 106.2 4978.78 116 4978.32 116.2 4977.9 118.3 4977.77 141.2 4979.02 153.9 4979.2 165.7 4979.02 191.3 4978.48 191.6 4978.98 203.6 4979.18 203.7 4981.18 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 100 .016 106.2 .016 203.6 .016 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 106.2 203.6 183.3 183.3 183.3 .1 .3 CROSS SECTION OUTPUT Profile @PF 1 E.G. Elev (ft) .4979.00 Element Left OB Channel Vel Head (ft) 0.19 Wt. n-Val. 0.016 0.016 W.S. Elev (ft) 4978.81 Reach Len. (ft) 183.30 183.30 Crit W.S. (ft) 4978.81 Flow Area (sq ft) 0.01 11.12 E.G. Slope (ft/ft) 0.005516 Area (sq ft) 0.01 17.12 Q Total (cfs) 60.00 Flow (cfs) 0.00 60.00 Top Width (ft) 47.36 Top Width (ft) 0.56 46.80 Vel Total (ft/s) 3.50 Avg. Vel. (ft/s) 0.39 3.50 Max Chl Dpth (ft) 1.04 Hydr. Depth (ft) 0.01 0.37 Conv. Total (cfs) 807.8 Conv. (cfs) 0.0 807.8 Length Wtd. (ft) 183.30 Wetted Per. (ft) 0.56 47.30 Right OB 183.30 FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 8 of 11 Min Ch El (ft) 4977.77 Shear (lb/sq ft) 0.00 0.12 Alpha 1.00 Stream Power (lb/ft s) 203.70 0.00 0.00 Frctn Loss (ft) 0.92 Cum Volume (acre-ft) 0.00 0.11 0.01 C & E Loss (ft) 0.02 Cum SA (acres) 0.00 0.24 0.03 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: Walnut REACH: 1 RS: 10 INPUT Description: Station Elevation Data num= 49 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 4981 1.02 4977.13 1.14 4977.1 8.14 4976.98 8.64 4976.96 10.44 4976.82 11.7 4976.81 11.94 4976.8 12.29 4976.37 12.38 4976.28 12.92 4976.23 14.83 4976.19 19.29 4976.53 20.24 4976.59 21.78 4976.67 28.24 4976.97 38.58 4977.18 44.11 4977.29 46.18 4977.32 46.6 4977.31 54.9 4977.12 62.06 4976.91 66.97 4976.8 67.12 4976.8 68.6 4976.75 71.42 4976.67 72.77 4976.6 74.13 4976.51 74.79 4976.84 74.98 4976.96 74.99 4976.98 76.48 4977.16 77.63 4976.94 78.24 4976.93 80.15 4976.93 80.23 4976.79 80.25 4976.78 81.82 4976.85 82.66 4976.89 83.28 4976.93 86.58 4976.93 89.45 4976.96 91.08 4976.92 91.47 4976.92 92.26 4976.92 98.6 4976.88 99.55 4976.88 101.6 4976.89 101.7 4981 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .016 1.02 .016 89.45 .016 Bank Sta: Left Right Coeff Contr. Expan. 1.02 89.45 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4977.24 Element Left OB Channel Right OB Vel Head Ift) 0.11 Wt. n-Val. 0.016 0.016 W.S. Elev (ft) 4977.13 Reach Len. (ft) Crit W.S. (ft) 4977.11 Flow Area (sq ft) 19.78 2.73 E.G. Slope (ft/ft) 0.004606 Area (sq ft) 19.78 2.73 Q Total (cfs) 60.00 Flow (cfs) 53.74 6.26 Top Width (ft) 81.54 Top Width (ft) 69.38 12.16 Vel Total (ft/s) 2.67 Avg. Vel. (ft/s) 2.72 2.30 Max Chl Dpth (ft) 0.94 Hydr. Depth (ft) 0.29 0.22 Conv. Total (cfs) 884.1 Conv. (cfs) 791.8 92.3 Length Wtd. (ft) Wetted Per. (ft) 69.91 12.39 Min Ch E1 (ft) 4976.19 Shear (lb/sq ft) 0.08 0.06 Alpha 1.01 Stream Power (lb/ft s) 101.70 0.00 0.00 Frctn Loss (ft) 0.38 Cum Volume (acre-ft) 0.04 0.00 C & E Loss (ft) 0.00 Cum SA (acres) Warning: Divided flow computed for this cross-section. FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 9 of 11 Warning: A flow split was encountered. The program first calculated the momentum of both channels below the junction. An energy balance was performed across the junction from the stream with the highest momentum downstream to the section upstream. SUMMARY OF MANNING'S N VALUES River:Chestnut Split Reach River Sta. nl n2 n3 1 30 .016 .016 .016 1 20 .016 .016 .016 1 10 .016 .016 .016 1 5 .016 .016 .016 River:Mountain Split Reach River Sta. nl n2 n3 1 20 .016 .016 .016 1 10 .016 .016 .016 River:Walnut Reach River Sta. nl n2 n3 1 20 .016 .016 .016 1 10 .016 .016 .016 SUMMARY OF REACH LENGTHS River: Chestnut Split Reach River Sta 1 30 1 20 1 10 1 5 River: Mountain Split Reach River Sta 1 20 1 10 River: Walnut Reach River Sta 1 20 1 10 Left Channel Right 224.9 224.9 224.9 113.1 113.1 113.1 92.8 92.8 92.8 Left Channel Right 179.3 179.3 179.3 Left Channel Right 183.3 183.3 183.3 FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 10 of 11 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Chestnut Split Reach River Sta. Contr. Expan. 1 30 .1 .3 1 20 .1 .3 1 10 .1 .3 1 5 .1 .3 River: Mountain Split Reach River Sta. Contr. Expan. 1 20 .1 .3 1 10 .1 .3 River: Walnut Reach River Sta. Contr. Expan. 1 20 .1 .3 1 10 .1 .3 Profile Output Table - Standard Table 1 River Reach River Sta Profile Q Total W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width (cfs) (ft) (ft) (ft/ft) (ft/s) (sq ft) (ft) Chestnut Split 1 5 PF 1 22.08 4973.15 4973.72 0.000145 0.61 36.61 91.76 Chestnut Split 1 10 PF 1 22.08 4974.08 4974.21 0.006118 2.907.61 29.74 Chestnut Split 1 20 PF 1 22.08 4975.30 4975.42 0.006369 2.80 7.89 33.04 Chestnut Split 1 30 PF 1 19.58 4976.69 4976.86 0.005847 3.26 6.00 18.67 Mountain Split 1 10 PF 1 40.42 4975.77 4976.19 0.000302 0.91 44.65 105.12 Mountain Split 1 20 PF 1 40.42 4976.71 4976.85 0.007216 2.99 13.72 60.79 Walnut 1 10 PF 1 60.00 4977.11 4977.24 0.004606 2.72 22.51 81.54 Walnut 1 20 PF 1 60.00 4978.81 4979.00 0.005516 3.50 17.13 47.36 Min Ch E1 W.S. Elev Froude # Chl (ft) (ft) 4972.35 4973.71 0.17 4973.36 4974.08 1.01 4974.75 4975.30 1.01 4976.18 4976.69 1.01 4974.86 4976.18 0.25 4975.83 4976.71 1.09 4976.19 4977.13 0.90 4977.77 4978.81 1.02 Profile Output Table - Standard Table 2 River - Reach River Sta Profile E.G. Elev W.S. Elev Vel Head Frctn Loss C s E Loss Q Left Q Channel Q Right Top Width (ft) (ft) (ft) (ft) (ft) (cfs) (cfs) (cfs) (ft) Chestnut Split 1 5 PF 1 4973.72 4973.71 0.01 21.53 0.54 91.76 Chestnut Split 1 10 PF 1 4974.21 49714.08 0.13 0.04 0.04 22.08 29.74 Chestnut Split 1 20 PF 1 4975.42 4975.30 0.12 0.71 0.00 22.08 33.04 Crit FORT COLLINS HOTEL WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; July 15, 2015 Page 11 of 11 Chestnut Split 1 30 PF 1 4976.86 4976.69 0.17 1.38 0.01 19.58 18.67 Mountain Split 1 10 PF 1 4976.19 4976.18 0.01 0.19 39.70 0.53 105.12 Mountain Split 1 20 PF 1 4976.85 4976.71 0.14 0.15 0.04 39.57 0.85 60.79 Walnut 1 10 PF 1 4977.24 4977.13 0.11 0.38 0.00 53.74 6.26 81.54 Walnut 1 20 PF 1 4979.00 4978.81 0.19 0.92 0.02 0.00 60.00 47.36 ATTACHMENT 3.3 Proposed Condition HEC-RAS Modeling Output — Jefferson Street FORT COLLINS HOTEL JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 1 of 6 HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California X X XXXXXX XXXX XXXX XX XXXX X x x x x x x x x x X X X X X X X X X XXXXXXX XXXX X XXX XXXX XXXXXX XXXX X X X X X X X X X X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX PROJECT DATA Project Title: Jefferson Street - 100yr-Proposed Project File : Jeff NE.prj Run Date and Time: 6/29/2015 1:31:30 PM Project in English units PLAN DATA Plan Title: Plan 01 Plan File : d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06- 02\Jeff NE.p01 Geometry Title: Jefferson Street Geometry File : d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond- 2015-06-02\Jeff NE.g01 Flow Title : Jefferson Street-100yr Flow File : d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-PAS-Proposed Cond- 2015-06-02\Jeff NE.f01 Plan Summary Information: Number of: Cross Sections = 9 Multiple Openings = 0 Culverts = 0 Inline Structures = 0 Bridges = 0 Lateral Structures = 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance - Computational Flow Regime: Subcritical Flow FLOW DATA Flow Title: Jefferson Street-100yr FORT COLLINS HOTEL JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 2 of 6 Flow File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06- 02\Jeff_NE.f01 Flow Data (cfs) River Reach, RS PF 1 Jefferson 1 40 24.1 Boundary Conditions River Reach Profile Upstream Downstream Jefferson 1 PF 1 Normal S = 0.0076 GEOMETRY DATA Geometry Title: Jefferson Street Geometry File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06- 02\Jeff NE.g01 CROSS SECTION RIVER: Jefferson REACH: 1 RS: 40 INPUT Description: Station Elevation Data num= 62 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 4976.32 8.91 4976.14 8.96 4976.12 9.35 4976.04 11.03 4975.87 15.82 4976.56 16.19 4976.56 27.93 4976.13 28.19 4976.13 28.47 4976.09 28.5 4976.09 28.9 4975.52 28.94 4975.44 29 4975.51 29.3 4975.42 29.38 4976.1 29.44 4976.13 29.62 4976.13 29.8 4976.12 29.85 4975.8 47.44 4976.12 49 4976.14 50.2 4976.02 51.93 4975.94 58.12 4975.88 58.96 4975.88 64.3 4975.72 65.03 4975.7 68.09 4975.78 68.29 4975.78 69.11 4975.8 70.45 4975.79 70.73 4975.51 71.02 4975.29 71.75 4975.26 72.86 4975.26 81.5 4975.71 84.96 4975.89 89.21 4975.98 100 4976.21 100.19 4976.21 105.26 4976.17 109.83 4976.15 125.19 4975.73 127.61 4975.63 129.03 4975.58 129.37 4975.57 129.39 4975.59 129.43 4975.6 130.13 4975.89 130.64 4975.91 133.67 4976.01 141.4 4976.28 141.41 4976.32 143.56 4976.26 151.65 4976.31 164.98 4976.7 172.53 4976.68 187.79 4976.56 194.5 4976.55 196.66 4976.56 200 4976.58 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .016 68.09 .016 133.67 .016 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 68.09 133.67 151 151 151 .1 .3 Blocked Obstructions num= 2 Sta L Sta R Elev Sta L Sta R Elev 0 64 4984 141 200 4984 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4976.04 Element Left OB Channel Right OB Vel Head (ft) 0.13 Wt. n-Val. 0.016 0.016 W.S. Elev (ft) 4975.91 Reach Len. (ft) 151.00 151.00 151.00 Crit W.S. (ft) 4975.91 Flow Area (sq ft) 0.74 7.69 E.G. Slope (ft/ft) 0.006199 Area (sq ft) 0.74 7.69 FORT COLLINS HOTEL JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 3 of 6 Q Total (cfs) 24.10 Flow (cfs) 1.67 22.43 Top Width (ft) 34.34 Top Width (ft) 4.09 30.25 Vel Total (ft/s) 2.86 Avg. Vel. (ft/s) 2.26 2.92 Max Chl Dpth (ft) 0.65 Hydr. Depth (ft) 0.18 0.25 Conv. Total (cfs) 306.1 Conv. (cfs) 21.2 284.9 Length Wtd. (ft) 151.00 Wetted Per. (ft) 4.28 30.53 Min Ch E1 (ft) 4975.26 Shear (lb/sq ft) 0.07 0.10 Alpha 1.01 Stream Power (lb/ft s) 200.00 0.00 0.00 Frctn Loss (ft) 0.88 Cum Volume (acre-ft) 0.00 0.08 0.01 C S E Loss (ft) 0.00 Cum SA (acres) 0.03 0.31 0.03 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: Jefferson REACH: 1 RS: 30 INPUT Description: Station Elevation Data num= 33 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 63.9 4984 64 4974.57 65.12 4974.58 69.52 4974.67 70.39 4974.63 70.4 4974.58 70.58 4974.5 71 4974.17 71.92 4974.1 72.69 4974.14 80.06 4974.45 85.13 4974:69 85.31 4974.7 96.96 4975.03 100 4975.05 100.04 4975.05 103.48 4975.04 105.43 4974.98 109.65 4974.84 122.4 4974.58 122.48 4974.63 124.48 4974.52 127.25 4974.32 128.28 4974.26 129.17 4974.2 129.39 4974.47 129.68 4974.79 130.15 4974.71 130.23 4974.71 132.98 4974.87 135.57 4974.96 141 4975.04 141.1 4984 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 63.9 .016 69.52 .016 132.98 .016 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 69.52 132.98 135 135 135 .1 .3 CROSS SECTION OUTPUT Profile $PF 1 E.G. Elev (ft) 4974.85 Element Left OB Channel Right OB Vel Head (ft) 0.11 Wt. n-Val. 0.016 0.016 W.S. Elev (ft) 4974.74 Reach Len. (ft) 135.00 135.00 135.00 Crit W.S. (ft) 4974.74 Flow Area (sq ft) 0.69 6.40 E.G. Slope (ft/ft) 0.005478 Area (sq ft) 0.69 8.40 Q Total (cfs) 24.10 Flow (cfs) 1.16 22.94 Top Width (ft) 38.55 Top Width (ft) 5.52 33.03 Vel Total (ft/s) 2.65 Avg. Vel. (ft/s) 1.68 2.73 Max Chl Dpth (ft) 0.64• Hydr. Depth (ft) 0.12 0.25 Conv. Total (cfs) 325.6 Conv. (cfs) 15.7 309.9 Length Wtd. (ft) 135.00 Wetted Per. (ft) 5.69 33.50 Min Ch E1 (ft) 4974.10 Shear (lb/sq ft) 0.04 0.09 Alpha 1.03 Stream Power (lb/ft s) 141.10 0.00 0.00 Frctn Loss (ft) 0.74 Cum Volume (acre-ft) 0.00 0.05 0.01 C S E Loss (ft) 0.00 Cum SA (acres) 0.01 0.20 0.03 FORT COLLINS HOTEL JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 201S Page 4 of 6 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: Jefferson REACH: 1 RS: 20 INPUT Description: Station Elevation Data - num= 27 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 63.9 4984 64 4974.15 66.18 4973.98 68.96 4973.95 70.58 4973.88 70.89 4973.4 71.12 4973.12 72.51 4973.17 72.87 4973.18 85.09 4973.67 93.85 4973.86 99.78 4973.99 100 4973.99 110.73 4973.9 110.89 4973.9 110.94 4973.9 125.63 4973.42 126.52 4973.37 127.59 4973.29 127.9 4973.26 128.73 4973.22 128.93 4973.43 129.32 4973.63 131.52 4973.59 132.56 4973.58 141 4973.43 141.1 4984 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 63.9 .016 68.96 .016 131.52 .016 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 68.96 131.52 148 148 148 .1 .3 CROSS SECTION OUTPUT Profile $PF 1 E.G. Elev (ft) 4973.81 Element Left OB Channel Right OB Vel Head (ft) 0.10 Wt. n-Val. 0.016 0.016 W.S. Elev (ft) 4973.71 Reach Len. (ft) 146.00 148.00 148.00 Crit W.S. (ft) 4973.69 Flow Area (sq ft) 7.50 1.86 E.G. Slope (ft/ft) 0.005509 Area (sq ft) 7.50 1.86 Q Total (cfs) 24.10 Flow (cfs) 19.86 4.24 Top Width (ft) 40.50 Top Width (ft) 31.01 9.48 Vel Total (ft/s) 2.58 Avg. Vel. (ft/s) 2.65 2.28 Max Chl Dpth (ft) 0.59 Hydr. Depth (ft) 0.24 0.20 Conv. Total (cfs) 324.7 Conv. (cfs) 267.5 57.2 Length Wtd. (ft) 148.00 Wetted Per. (ft) 31.48 9.76 Min Ch E1 (ft) 4973.12 Shear (lb/sq ft) 0.08 0.07 Alpha 1.01 Stream Power (lb/ft s) 141.10 0.00 0.00 Frctn Loss (ft) 0.83 Cum Volume (acre-ft) 0.00 0.03 0.00 C S E Loss (ft) 0.00 Cum SA (acres) 0.00 0.10 0.02 Warning: Divided flow computed for this cross-section. CROSS SECTION RIVER: Jefferson REACH: 1 RS: 10 INPUT FORT COLLINS HOTEL JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; TUNE 15, 2015 Page 5 of 6 Description: Station Elevation Data num= 42 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 63.9 4983 64 4973.25 64.95 4972.84 67.88 4972.66 69.52 4972.6 70.7 4972.62 70.75 4972.7 71.02 4972.15 72.48 4972.32 72.76 4972.35 78.64 4972.65 88.5 4973.12 93.88 4973.23 99.79 4973.35 100 4973.35 113.85 4973.03 115.34 4972.99 116.12 4972.95 127.15 4972.35 128.54 4972.27 128.76 4972.44 128.89 4972.43 128.91 4972.44 128.99 4972.45 129.3 4972.33 129.74 4972.38 130.08 4972.51 130.8 4972.72 131.29 4972.77 132.43 4972.87 132.54 4972.88 133.73 4972.86 134.24 4972.87 138.19 4973.02 138.3 4973.03 138.42 4973.01 138.91 4972.96 139.04 4973.12 140.93 4973.32 140.95 4973.32 141 4973.33 141.1 4983 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 63.9 .016 67.68 .016 132.43 .016 Bank Sta: Left Right Coeff Contr. Expan. 67.88 132.43 .1 .3 - CROSS SECTION OUTPUT Profile 9PF 1 E.G. Elev (ft) 4972.98 Element Left OB Channel Vel Head (ft) 0.13 Wt. n-Val. 0.016 0.016 W.S. Elev (ft) 4972.84 Reach Len. (ft) Crit W.S. (ft) 4972.84 Flow Area (sq ft) 0.27 8.04 E.G. Slope (ft/ft) 0.005663 Area (sq ft) 0.27 8.04 Q Total (cfs) 24.10 Flow (cfs) 0.38 23.72 Top Width (ft) 31.69 Top Width (ft) 2.93 28.75 Vel Total (ft/s) 2.90 Avg. Vel. (ft/s) 1.41 2.95 Max Chl Dpth (ft) 0.69 Hydr. Depth (ft). 0.09 0.28 Conv. Total (cfs) 320.3 Conv. (cfs) 5.0 315.2 Length Wtd. (ft) Wetted Per. (ft) 2.94 29.33 Min Ch E1 (ft) 4972.15 Shear (lb/sq ft) 0.03 0.10 Alpha 1.02 Stream Power (lb/ft s) 141.10 0.00 Frctn Loss (ft) Cum Volume (acre-ft) C 6 E Loss (ft) Cum SA (acres) Right OB 0.00 Warning: Divided flow computed for this cross-section. Warning: Slope too steep for slope area to converge during supercritical flow calculations (normal depth is below critical depth). Water surface set to critical depth. SUIM•]ARY OF MANNING' S N VALUES River:Jefferson Reach River Sta. nl n2 n3 1 40 .016 .016 .016 1 30 .016 .016 .016 1 20 .016 .016 .016 1 10 .016 .016 .016 SUMMARY OF REACH LENGTHS River: Jefferson Reach River Sta. Left Channel Right 1 40 151 151 151 FORT COLLINS HOTEL JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 6 of 6 1 30 135 135 135 1 20 148 148 148 1 10 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Jefferson Reach River Sta. Contr. Expan. 1 40 .1 .3 1 30 .1 .3 1 20 .1 .3 1 10 .1 .3 Profile Output Table - Standard Table 1 Reach River Sta Profile Q Total Min Ch E1 W.S. Elev Crit W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl (cfs) (ft) (ft) (ft) (ft) (ft/ft) (ft/s) (sq ft) (ft) 1 10 PF 1 24.10 4972.15 4972.84 4972.84 4972.98 0.005663 2.95 8.31 31.69 0.98 1 20 PF 1 24.10 4973.12 4973.71 4973.69 4973.81 0.005509 2.65 9.36 40.50 0.95 1 30 PF 1 24.10 4974.10 4974.74 4974.74 4974.85 0.005478 2.73 9.08 38.55 0.96 1 40 PF 1 24.10 4975.26 4975.91 4975.91 4976.04 0.006199 2.92 8.43 34.34 1.02 Profile Output Table - Standard Table 2 Reach River Sta Profile E.G. Elev W.S. Elev Vel Head. Frctn Loss C & E Loss Q Left Q Channel Q Right Top Width (ft) (ft) (ft) (ft) (ft) (cfs) (cfs) (cfs) (ft) 1 10 PF 1 4972.98 4972.84 0.13 0.38 23.72 31.69 1 20 PF 1 4973.81 4973.71 0.10 0.83 0.00 19.86 4.24 40.50 1 30 PF 1 4974.85 4974.74 0.11 0.74 0.00 1.16 22.94 38.55 1 40 PF 1 4976.04 4975.91 0.13 0.88 0.00 1.67 22.43 34.34 ATTACHMENT 3.4 Proposed Condition HEGRAS Modeling Output - Firehouse Alley FORT COLLINS HOTEL FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 1 of 5 HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California X X XXXXXX XXXX XXXX XX XXXX X X X X X X X X X X X X X X X X X X X XXXXXXX XXXX X XXX XXXX XXXXXX XXXX X X X X X X X X X X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX PROJECT DATA Project Title: Alley - 100yr-Proposed Project File : Alley_NE.prj Run Date and Time: 6/29/2015 1:32:05 PM Project in English units PLAN DATA Plan Title: Plan 01 Plan File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06- 02\Alley NE.p01 Geometry Title: Alley Geometry File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond- 2015-06-02\Alley NE.g02 Flow Title : Alley-100yr Flow File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond- 2015-06-02\Alley NE.f01 Plan Summary Information: Number of: Cross Sections = 3 Multiple Openings = 0 Culverts = 0 Inline Structures = 0 Bridges = 0 Lateral Structures = 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow FLOW DATA Flow Title: Alley-100yr FORT COLLINS HOTEL FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 2 of 5 Flow File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06- 02\Alley NE.f01 Flow Data (cfs) River Reach RS PF 1 Alley 1 30 9.5 Boundary Conditions River Reach Profile Upstream Downstream Alley 1 PF 1 Known WS = 4975.26 GEOMETRY DATA Geometry Title: Alley Geometry File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06- 02\Alley NE.g02 CROSS SECTION RIVER: Alley REACH: 1 RS: 30 INPUT Description: Station Elevation Data num= 19 Sta Elev Sta Elev Sta Elev .9 4988 1 4977.85 4.51 4977.83 11 4978 12.87 4978.07 16.55 4978.11 20.89 4978.21 214978.214 28.89 4978.52 32.32 4978.59 33.42 4978.62 34.23 4978.6 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val .9 .016 1 .016 21 .016 Bank Sta: Left Right Lengths: Left Channel 1 21 155 155 Blocked Obstructions num= 1 Sta L Sta R Elev 21 41 4988 CROSS SECTION OUTPUT Profile $PF 1 Sta Elev Sta Elev 4.97 4977.89 9.26 4977.94 19.64 4978.23 19.69 4978.24 29.94 4978.55 31.47 4978.58 41 4978.68 Right Coeff Contr. Expan. 155 .1 .3 E.G. Elev (ft) 4978.29 Element Vel Head (ft) 0.10 Wt. n-Val. W.S. Elev (ft) 4978.19 Reach Len. (ft) Crit W.S. (ft) 4978.19 Flow Area (sq ft) E.G. Slope (ft/ft) 0.006350 Area (sq ft) Q Total (cfs) 9.50 Flow (cfs) Top Width (ft) 17.58 Top Width (ft) Vel Total (ft/s) 2.60 Avg. Vel. (ft/s) Max Chi Dpth (ft) 0.36 Hydr. Depth (ft) Conv. Total (cfs) 119.2 Conv. (cfs) Length Wtd. (ft) 155.00 Wetted Per. (ft) Min Ch E1 (ft) 4977.83 Shear (lb/sq ft) Alpha 1.00 Stream Power (lb/ft s) Frctn Loss (ft) 1.00 Cum Volume (acre-ft) Left OB Channel Right OB 0.000 0.016 155.00 155.00 155.00 0.00 3.66 0.00 3.66 0.00 9.50 17.57 0.10 2.60 0.17 0.21 0.0 119.2 0.34 17.58 0.08 41.00 0.00 0.00 0.00 0.03 0.00 FORT COLLINS HOTEL FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 3 of 5 C S E Loss (ft) 0.00 Cum SA (acres) 0.11 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: Alley REACH: 1 RS: 20 INPUT Description: Station Elevation Data num= 19 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 4975.67 3.99 4975.59 10.37 4975.51 16.01 4975.49 16.04 4975.49 204975.468 26.87 4975.43 26.98 4975.49 30 4975.49 31.13 4975.5 32.27 4975.52 32.91 4975.5 34.63 4975.5 404975.547 40.28 4975.55 40.72 4975.5 51.87 4975.73 54.86 4975.84 60 4975.82 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .016 20 .016 40 .016 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 20 40 92 92 92 .1 .3 Blocked Obstructions num= 2 Sta L Sta R Elev Sta L Sta R Elev 0 20 4985 40 60 4985 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4975.78 Element Left OB Channel Right OB Vel Head (ft) 0.10 Wt. n-Val. 0.016 W.S. Elev (ft) 4975.68 Reach Len. (ft) 92.00 92.00 92.00 Crit W.S. (ft) 4975.68 Flow Area (sq ft) 3.83 E.G. Slope (ft/ft) 0.006617 Area (sq ft) 3.83 Q Total (cfs) 9.50 Flow (cfs) 9.50 Top Width (ft) 20.00 Top Width (ft) 20.00 Vel Total (ft/s) 2.48 Avg. Vel. (ft/s) 2.48 Max Chl Dpth (ft) 0.25 Hydr. Depth (ft) 0.19 Conv. Total (cfs) 116.8 Conv. (cfs) 116.8 Length Wtd. (ft) 92.00 Wetted Per. (ft) 20.36 Min Ch E1 (ft) 4975.43 Shear (lb/sq ft) 0.08 Alpha 1.00 Stream Power (lb/ft s) 60.00 0.00 0.00 Frctn Loss (ft) 0.06 Cum Volume (acre-ft) 0.02 0.00 C & E Loss (ft) 0.02 Cum SA (acres) 0.04 Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water FORT COLLINS HOTEL FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 4 of 5 surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. CROSS SECTION RIVER: Alley REACH: 1 RS: 10 INPUT Description: Station Elevation Data num= 14 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 4974.69 5.32 4974.82 10.5 4974.79 11.24 4974.78 12.94 4974.72 204974.693 23.41 4974.68 26.3 4974.69 30 4974.73 30.06 4974.73 34.01 4974.76 38.97 4974.78 40 4974.83 40.1 4984 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .016 20 .016 40 .016 Bank Sta: Left Right Coeff Contr. Expan. 20 40 .1 .3 Blocked Obstructions num= 1 Sta L Sta R Elev 0 20 4984 CROSS SECTION OUTPUT Profile 8PF 1 E.G. Elev (ft) 4975.27 Element Left OB Channel Right OB Vel Head (ft) 0.01 Wt. n-Val. 0.016 0.000 W.S. Elev (ft) 4975.26 Reach Len. (ft) Crit W.S. (ft) 4974.92 Flow Area (sq ft) 10.61 0.00 E.G. Slope (ft/ft) 0.000224 Area (sq ft) 10.61 0.00 Q Total (cfs) 9.50 Flow (cfs) 9.50 0.00 Top Width (ft) 20.00 Top Width (ft) 20.00 Vel Total (ft/s) 0.89 Avg. Vel. (ft/s) 0.90 0.02 Max Chl Dpth (ft) 0.58 Hydr. Depth (ft) 0.53 0.21 Conv. Total (cfs) 634.2 Conv. (cfs) 634.2 0.0 Length Wtd. (ft) Wetted Per. (ft) 20.57 0.43 Min Ch El (ft) 4974.68 Shear (lb/sq ft) 0.01 Alpha 1.00 Stream Power (lb/ft s) 40.10 0.00 0.00 Frctn Loss (ft) Cum Volume (acre-ft) C & E Loss (ft) Cum SA (acres) SUMMARY OF MANNING'S N VALUES River:Alley Reach River Sta 1 30 1 20 1 10 SUMMARY OF REACH LENGTHS River: Alley Reach River Sta nl n2 n3 .016 .016 .016 .016 .016 .016 .016 .016 .016 Left Channel Right FORT COLLINS HOTEL FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL NORTHERN ENGINEERING; JUNE 15, 2015 Page 5 of 5 1 30 155 155 155 1 20 92 92 92 1 10 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Alley Reach River Sta. Contr. Expan. 1 30 .1 .3 1 20 .1 .3 1 10 .1 .3 Profile Output Table - Standard Table 1 Reach River Sta Profile Q Total Min Ch E1 W.S. Elev Crit W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl (cfs) (ft) (ft) (ft) (ft) (ft/ft) (ft/s) (sq ft) (ft) 1 10 PF 1 9.50 4974.68 4975.26 4974.92 4975.27 0.000224 0.90 10.62 20.00 0.22 1 20 PF 1 9.50 4975.43 4975.68 4975.68 4975.78 0.006617 2.48 3.83 20.00 1.00 1 30 PF 1 9.50 4977.83 4978.19 4978.19 4978.29 0.006350 2.60 3.66 17.58 1.00 Profile Output Table - Standard Table 2 Reach River Sta Profile E.G. Elev W.S. Elev Vel Head Frctn Loss C 6 E Loss Q Left Q Channel Q Right Top Width (ft) (ft) (ft) (ft) (ft) (cfs) ICES) (cfs) (ft) 1 10 PF 1 4975.27 4975.26 0.01 9.50 0.00 20.00 1 20 PF 1 4975.78 4975.68 0.10 0.06 0.02 9.50 20.00 1 30 PF 1 4978.29 -4978.19 0.10 1.00 0.00 0.00 9.50 17.58 MAP POCKET DRAINAGE EXHIBITS 1 m a TO H RiGNIH m.�rLET 6 111xe3A21111 EXII SAM A, BUFFER LANDSCAPE MOMENT) MY aXHs a WTIw gcnox IETAWXG MAIL. EmlwO EXISTING FUNDING EXISTING —W METING MAJOR CONTOUR -5015- ERSTNG MINOR CONTOUR -----501-- FAWUSED CONTOURS m— B Etla PONT Q PWn ARROW �1111L DRAINAGE BASIN LABEL IW DRAINAGE BASIN BOUNDARY NOTES T. ERVIN UNDERGROUND AN CAMMAD WBUG AND gNVAIE DOLO Es AS SHOW ARE INOCATEO ACCEPTING M THE BEV INFORMATION AVALLABLE TO THE ENGINEER. TINE ENONEER DOES NOT GUARANTEE THE ACCURACY W BUSH INFORMAnoN. EwsnuG JMTY MAINS AND MOAMS MAY NOT BE STRAIGHT NINES OR As INDICATED M THEY DRAWMCS. ME CONTRACTOR SMALL BE RESPONSIBLE T1 CALL NL GOUTY COMPANIES QPU&LC AND PRIVATE) PROR TO µY CONSTRUCTOR TO WUFY pOGT UPI LMAIMS. 2. RERR TO THE -FINAL MARINADE REPORT FOR EGiC@NG.RTNUT SUMMSION RI BY RWTV£IIX NIDATED APRIL 153016 FOR ACOTORu NWMADONS. PLEASE REFFRENCF APPROM) NDNON ARCHITECTURAL DRANNGS BY {NO FOR PROPOSED RETAIL FINISH FLOOR EN£VATONs ALONG THE CAST SOF OF THE HOTEL. ME WEST SIX W THE PARKING GARAGE. AND THE EAST WE W THE BARpxD GARAGE WERE MF PRLPoSFlI RHISH FLOOR ENEVATONS OD NOT MEET FINE NNIMUM B-INCHES W REMAIN FRGN THE OTYS NW -YEAR BAY R0.T ELEVATOR (B2) AS DE➢ICTED ON THE APPROIED GOAL NAMINGS AT TESE: LOCATIONS THE HJNNNG ARpNITECT zw WLL BE FLOOD PR0.MNG THE SUIUMNG. FIELD SURVEY BY OMONAL TOLD SURVEY NORTHERN PRODUCT NUMBER ENGINEERING 91MJ-W2N�S IN BALE DEWHBER 2014 CAUDUTY NOTIFICATION CENTER OF City of Fort Collins, Colorado UTILITY PLAN APPROVAL BY:TIer ma r y BY. Y BY: BY:-KnIetr mMMitams 4z4o Architecture Inc ORION DAMAGE WRLXIIIBIPFEi AE,LLL GINNER GO E MOUNTAIN AYE LLORTGOUNS, GO MIA 970<97.M26 NIELOWNERI FGMM,LLC OEVELWEM 2725 ROCKY MOUNTAIN AVE SEEM L ROSS.µo ARCHITECT AiW AMCMIECNREIXC DUST RIMSBY G0U2T SIRE m GINGER. Cone t M292NY ONAL NORTHERN ENIXEERM. ING 2W S COIEGE AVE FOTILOUNS, CO M4 t910WSP5 fX32923115 WWCAPE RVBMELL�NW 6IGOR UISMIL1EMAW FORT MUM, CO MON t 9NM1HId tBN91I159 Z J_ LL N Z Dto FIRMZ z o W�wo W U Uj (M) U) z Z 0 F-o J zit Q Q LI_ Q � m D DRAINAGE PLAN C500