HomeMy WebLinkAboutDrainage Reports - 04/25/2016April 15, 2016
City of Fo Collins Approve Plans
Approved by:
Date: 4/zs zo l to
FINAL DRAINAGE AND
EROSION CONTROL REPORT FOR
Walnut -Chestnut Subdivision Second Filing
Fort Collins, Colorado
AThis Drainage Report is consciously provided as a PDF.
Please consider the environment before printing this document in its entirety.
When a hard copy is absolutely necessary, we recommend double -sided printing.
Prepared for:
Bohemian Companies
Mcwhinney
Prepared by:
NORTHERN
ENGINEERING
200 South College Avenue, Suite 10
Fort Collins, Colorado 80524
Phone: 970.221.4158 Fax: 970.221.4159
w .northemengineering.conn
Project Number: 947-002
NorthernEngineering.com // 970.221.4158
NORTHERN
ENGINEERING
April 15, 2016
City of Fort Collins
Stormwater Utility
700 Wood Street
Fort Collins, Colorado 80521
RE: Final Drainage and Erosion Control Report for
Walnut -Chestnut Subdivision Second Filing
Dear Staff:
Northern Engineering is pleased to submit this Final Drainage and Erosion Control Report for your
review. This report accompanies the Project Development Plan submittal for the proposed
Walnut -Chestnut Subdivision Second Filing.
This report has been prepared in accordance to Fort Collins Stormwater Criteria Manual (FCSCM),
and serves to document the stormwater impacts associated with the proposed project. We
understand that review by the City is to assure general compliance with standardized criteria
contained in the FCSCM.
If you should have any questions as you review this report, please feel free to contact us.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
ama.
Aaron Cvar, PE
Project Engineer
301 N. Howes Street, Suite 100, Fort Collins, CO 80521 1 970.221.4158 1 www.northernengineering.com
■V I NORTHERN
ENGINEERING
Walnut -Chestnut Subdivision Second
TABLE OF CONTENTS
I.
GENERAL LOCATION AND DESCRIPTION................................................................... 1
A.
Location.............................................................................................................................................1
B.
Description of Property.....................................................................................................................2
C.
Floodplain..........................................................................................................................................3
II.
DRAINAGE BASINS AND SUB-BASINS.......................................................................
4
A.
Major Basin Description....................................................................................................................4
B.
Sub -Basin Description.......................................................................................................................5
III.
DRAINAGE DESIGN CRITERIA...................................................................................
5
A.
Regulations........................................................................................................................................5
B.
Four Step Process..............................................................................................................................5
C.
Development Criteria Reference and Constraints............................................................................6
D.
Hydrological Criteria.........................................................................................................................6
E.
Hydraulic Criteria..............................................................................................................................6
F.
Modifications of Criteria...................................................................................................................6
IV.
DRAINAGE FACILITY DESIGN................................:...................................................
6
A.
General Concept...............................................................................................................................6
B.
Specific Details..................................................................................................................................8
V.
CONCLUSIONS......................................................................................................10
A.
Compliance with Standards............................................................................................................10
B.
Drainage Concept............................................................................................................................10
APPENDICES:
APPENDIX A.1
APPENDIX A.2
APPENDIX B.1
APPENDIX B.2
APPENDIX C.1
APPENDIX D.1
APPENDIX E.1
- Developed Conditions Hydrologic Computations
- LID Supplemental Information
- Inlet Design Calculations
- Storm Line Design Calculations
- Stormwater Alternative Compliance/Variance Application (Floodplain Freeboard)
- Erosion Control Report
- Base Flood Elevation Analysis
Final Drainage Report
(NORTHERN
ENGINEERING Walnut -Chestnut Subdivision Secl
Fili
LIST OF FIGURES:
Figure 1 — Aerial Photograph................................................................................................ 2
Figure2- Proposed Site Plan................................................................................................ 3
Figure 3 — Existing Floodplains.............................................................................................. 4
MAP POCKET:
Proposed Drainage Exhibit
Final Drainage Report
NORTHERN
ENGINEERING
I. GENERAL LOCATION AND DESCRIPTION
A. Location
Walnut -Chestnut Subdivision Second
Vicinity Map
1. The project site is located in the southwest quarter of Section 12, Township 7 North,
Range 69 West of the 6`h Principal Meridian, City of Fort Collins, County of Larimer,
State of Colorado.
2. The project site is located just north of the intersection of Walnut Street and Mountain
Avenue.
3. The project site lies within the Old Town Basin. A small portion of the site drains to
the storm sewer system in Walnut Street, which is conveyed south to Oak Street and
then the Udall water quality treatment area. The majority of the site drains into the
existing storm sewer system in Chestnut Street, which conveys flows into the Cache
La Poudre River. The Downtown River District Final Design Report, by Ayres 2012
(Ref. 5), shows the majority of the site conveyed via sheet flow into the Chestnut
Street storm system (Basin 106). As long as existing site runoff rates are not
increased, detention is not required for the site. However, the site still must provide
meet current City Low Impact Design (LID) requirements. Several water quality
treatment methods are proposed for the site, and are described in further detail
Final Drainage Report
NORTHERN
ENGINEERING Walnut -Chestnut Subdivision Second Filing
below.
4. As this is an infill site, the area surrounding the site is fully developed.
5. No offsite flows enter the site from the south, west, or east. A small area to the
northwest of the site sheet flows onto the site. This area has been broken into two
offsite basins, which is described further in Section IV.A, below.
B. Description of Property
1. The development area is roughly 2.4 net acres.
Figure 1 — Aerial Photograph
2. The subject property is currently composed of existing buildings, and landscaped
areas. Existing ground slopes are mild to moderate (i.e., 1 - 6±%) through the
interior of the property. General topography slopes from northwest to southeast.
3. According to the United States Department of Agriculture (USDA) Natural Resources
Conservation Service (NRCS) Soil Survey website:
http://websoilsurvey. nres.usda.gov/app/WebSoi [Survey.aspx,
the site consists of Paoli fine sandy loam (Hydrologic Soil Group A), and Santana
loam (Hydrologic Soil Group B).
4. The proposed project site plan is composed of the development of a hotel and parking
garage. Associated site work, water, and sewer lines will be constructed with the
development. Current City Low Impact Design (LID) requirements will be
implemented with the project, and will consist of several LID features which are
discussed in Section IV, below.
Final Drainage Report 2
NORTHERN
ENGINEERING
Walnut -Chestnut Subdivision Second Filing
Figure 2— Proposed Site Plan
S. There are no known irrigation laterals crossing the site.
6. The proposed land use is a downtown hotel development.
C. Floodplain
1. The project site is not encroached by any City or FEMA designated 100-year
floodplain. However, the City of Fort Collins Stormwater Utility has identified areas
adjacent to the site as a 100-year flood risk zone. The adjacent Walnut Street and
Chestnut Street have been studied for flood risk, and base flood elevation in these
adjacent streets has been analyzed. Appendix C provides a summary of the analysis
performed to determine base (100-year) flood elevation in adjacent street Right of
Way, which is intended to be utilized for the design of finished floor elevation or flood
proofing at Final design.
Final Drainage Report 3
.V NORTHERN
E HE ItEERIWE Walnut -Chestnut Subdivision Second Filin
FEMA High Risk - Floodway
FEMA High Risk - 100 Year
NORTH C] FEMA Moderate Risk - 100 / 500
Figure 3 —Area Floodplain Mapping
2. A minimum of 6-inches of freeboard (a variance from the 12-inches of freeboard
requirement has been requested, please see variance request copy in Appendix E.2)
(100-year) flood elevation in adjacent Right of Way. This freeboard level will be
applied to either the design of finished floor elevations, or the minimum level of flood
proofing measures.
II. DRAINAGE BASINS AND SUB -BASINS
A. Major Basin Description
1. The project site lies within the Old Town Basin. Generally, detention requirements for
this basin are to detain the difference between the 100-year developed inflow rate
and the historic 2-year release rate. However, a portion of the site drains to the storm
sewer system in Walnut Street, which is conveyed south to Oak Street and then the
Udall water quality treatment area. The remainder of the site drains into the existing
storm sewer system in Chestnut Street, which conveys flows into the Cache La Poudre
River. As long as existing site runoff rates are not increased, detention is not required
for the site. The site still must meet current City Low Impact Design (LID)
requirements. Several LID treatment methods are proposed for the site, and are
described in further detail below.
Final Drainage Report 4
■� I NORTHERN
ENGINEERING
B. Sub -Basin Description
Walnut -Chestnut Subdivision Second
1. The subject property historically drains overland from northwest to southeast. Runoff
from the majority of the site has historically been collected in existing inlets located
within Walnut Street and Chestnut Street.
2. A more detailed description of the project drainage patterns is provided below.
III. DRAINAGE DESIGN CRITERIA
A. Regulations
There are no optional provisions outside of the FCSCM proposed with the proposed
project.
B. Four Step Process
The overall stormwater management strategy employed with the proposed project utilizes
the "Four Step Process" to minimize adverse impacts of urbanization on receiving waters.
The following is a description of how the proposed development has incorporated each
step.
Step 1 — Employ Runoff Reduction Practices
Several techniques have been utilized with the proposed development to facilitate the
reduction of runoff peaks, volumes, and pollutant loads as the site is developed from the
current use by implementing multiple Low Impact Development (LID) strategies including:
N- Conserving existing amenities in the site including the existing vegetated areas.
-
Nf Providing vegetated open areas throughout the site to reduce the overall impervious
area and to minimize directly connected impervious areas (MDCIA).
N^ Routing flows, to the extent feasible, through vegetated swales to increase time of
concentration, promote infiltration and provide initial water quality.
Step 2 — Implement BMPs That Provide a Water Quality Capture Volume (WQCV) with
Slow Release
The efforts taken in Step 1 will facilitate the reduction of runoff; however, urban
development of this intensity will still generate stormwater runoff that will require
additional BMPs and water quality. The majority of stormwater runoff from the site will
ultimately be intercepted and treated using raingardens.
Step 3 — Stabilize Drainageways
There are no major drainageways within the subject property. While this step may not
seem applicable to proposed development, the project indirectly helps achieve stabilized
drainageways nonetheless. By providing water quality treatment, where none previously
existed, sediment with erosion potential is removed from downstream drainageway
systems. Furthermore, this project will pay one-time stormwater development fees, as
well as ongoing monthly stormwater utility fees, both of which help achieve City-wide
drainageway stability.
Step 4 — Implement Site Specific and Other Source Control BMPs.
The proposed project will improve upon site specific source controls compared to historic
conditions:
N7 The proposed development will provide LID features which enhance water quality;
thus, eliminating sources of potential pollution previously left exposed to weathering
and runoff processes.
Final Drainage Report 5
.� I NORTHERN
ENGINEERING
C. Development Criteria Reference and Constraints
Walnut -Chestnut Subdivision
The subject property is surrounded by currently developed properties. Thus, several
constraints have been identified during the course of this analysis that will impact the
proposed drainage system including:
Nr Existing elevations along the property lines will generally be maintained.
N' As previously mentioned, overall drainage patterns of the existing site will be
maintained.
Nr Elevations of existing downstream facilities that the subject property will release to
will be maintained.
D. Hydrological Criteria
1. The City of Fort Collins Rainfall Intensity -Duration -Frequency Curves, as depicted in
Figure RA-16 of the FCSCM, serve as the source for all hydrologic computations
associated with the proposed development. Tabulated data contained in Table RA-7
has been utilized for Rational Method runoff calculations.
2. The Rational Method has been employed to compute stormwater runoff utilizing
coefficients contained in Tables RO-11 and RO-12 of the FCSCM.
3. Three separate design storms have been utilized to address distinct drainage
scenarios. A fourth design storm has also been computed for comparison purposes.
The first design storm considered is the 80`h percentile rain event, which has been
employed to design the project's water quality features. The second event analyzed is
the "Minor," or "Initial" Storm, which has a 2-year recurrence interval. The third
event considered is the "Major Storm," which has a 100-year recurrence interval.
The fourth storm computed, for comparison purposes only, is the 10-year event.
4. No other assumptions or calculation methods have been used with this development
that are not referenced by current City of Fort Collins criteria.
E. Hydraulic Criteria
1. As previously noted, the subject property maintains historic drainage patterns.
2. All drainage facilities proposed with the project are designed in accordance with
criteria outlined in the FCSCM and/or the Urban Drainage and Flood Control District
(UDFCD) Urban Storm Drainage Criteria Manual.
3. As stated above, the subject property is not located in a City or FEMA designated
floodplain. The proposed project does not propose to modify any natural
drainageways.
F. Modifications of Criteria
1. The proposed development is requesting a variance for the 12-inch floodplain
freeboard requirement (Please see Variance Request provided in Appendix).
IV. DRAINAGE FACILITY DESIGN
A. General Concept
1. The main objectives of the project drainage design are to maintain existing drainage
patterns, and to ensure no adverse impacts to any adjacent properties.
Final Drainage Report 6
INORTHERN
ENGINEERING
Walnut-Chestn
Second
2. Onsite LID features will be provided and will enhance water quality. These measures
are discussed further below.
3. Drainage patterns for proposed drainage basins as shown in the Drainage Exhibit are
described below.
Basin la
Basin la consists of a small portion of back alleyway, west of the proposed hotel
building which will sheet flow into the existing north flowline of Walnut Street and
then be conveyed into the existing storm drain system within Walnut Street. A trench
drain will capture 100-year flows, and convey via a proposed storm line into the
existing Walnut Street storm system.
Basin lb
Basin lb consists of Firehouse Alley and a portion of landscaped area just to the north
of the alleyway. A trench drain will capture 10-year flows, and convey via a proposed
storm line into the existing Chestnut Street storm system. 100-year flow will be
conveyed via surface flows (Firehouse Alley inverted crown and Chestnut Street curb
and gutter) into the existing dual combination inlet at the northwest corner of Chestnut
and Jefferson.
Basin lc
Basin lc consists of the rooftop of the proposed hotel building. Drainage from the
hotel rooftop will be captured within a roof drain system, which will tie to the existing
storm drain system within Chestnut Street.
Basin 2
Basin 2 consist primarily of a parking garage. 100-year flows from Basin 2 will be
conveyed into the existing storm line in via the parking garage interior storm piping
system.
Basins OS1, OS2
Basins OS1 and OS2 consist of areas to the north of the project site which sheet flow
towards the site. Basin OS1 will be conveyed through the site via the existing
alleyway (which will be improved) running in between the hotel portion of the site and
the parking area. A trench drain will capture 10-year flows, and convey via a
proposed storm line into the existing Chestnut Street storm system. 100-year flow will
be conveyed via surface flows (Firehouse Alley inverted crown and Chestnut Street
curb and gutter) into the existing dual combination inlet at the northwest corner of
Chestnut and Jefferson.
Basin OS2 will be conveyed along the north side of the proposed parking area and
flow north into a proposed inlet and storm line that will tie to the existing Jefferson
Street storm system. This proposed inlet will capture nuisance flows, and the 100-
year flow will be conveyed via surface flows into the curb and gutter of Jefferson St.
Basins OS3 through OS5
Basins OS3 through OS5 consist of adjacent Rights of Way of Walnut Street, Chestnut
Street, and Mountain Avenue. Basin OS3 will drain via sheet flow and curb and gutter
into an improved inlet to be constructed in Walnut Street, which will tie to the existing
storm line in Chestnut Street.
Final Drainage Report 7
INORTHERN
ENGINEERING
Walnut -Chestnut Subdivision Second
Basin OS4a will drain via sheet flow and curb and gutter into improved inlets to be
constructed in Chestnut Street, which will tie to the existing storm line in Chestnut
Street. We are removing a portion of the crowned section of Chestnut Street, and in
doing so there will be an addition of 2094 square feet (0.048 Ac.) draining to the
southeast flowline of Chestnut Street. Basin OS4b incorporates this additional area
which will create an addition of 0.12 cfs in the 2-year event and 0.49 cfs in the 100-
year event to the southeast flowline of Chestnut. Street capacity will not be affected
by this increase, as the total 2-year flow in the southeast flowline of Chestnut Street is
1.3 cfs (including the 0.12 cfs addition), while street capacity is 4.9 cfs. The existing
inlet now experiences 4.88 cfs in a 100-year event (including the 0.49 cfs addition).
This inlet has capacity in a 100-year event for 7.0 cfs with 9-inches of ponding depth.
The 4.88 cfs will pass the existing inlet with 6.5-inches of depth. Please see
Appendix A.1 for the aforementioned street capacity and inlet calculations.
Basin OS5 will drain via sheet flow and curb and gutter into the existing curb and
gutter of Mountain Avenue.
A full-size copy of the Drainage Exhibit can be found in the Map Pocket at the end of
this report. Runoff computations for these basins based on the Rational Method is
provided in Appendix A.1.
B. Specific Details
1. Low Impact Development (LID) measures will be incorporated into the site
design which will consist of rain gardens and tree wells at locations shown on
the Final plans. The rain gardens have been designed with drain systems that
outfall to the existing Walnut Street and Chestnut Street storm drain systems.
Details of this design are provided within the Final plan set.
An "area trade" has been discussed and agreed to, in which public right of
way area will be treated by the proposed rain gardens and tree wells. An
equivalent onsite area has been calculated based on 50% of the site
impervious area, and this amount of public right of way is to be treated with
the proposed rain gardens and tree wells.
There are a total of eight proposed rain gardens that function in series to treat
the right of way area that has been "traded" for onsite area that would be
required to receive LID treatment.
Two rain gardens are proposed in Walnut St. right of way, noted as
"Northwestern Rain Garden on Walnut St." and "Southeastern Rain Garden on
Walnut St." on plan sheet #C4O3 (Please see Appendix A.2). These two
raingardens act in series with "Southwestern Rain Garden on Chestnut St.".
The contributory area to Walnut Street is substantial, and Walnut Street acts
as a floodplain. Storm events will fill the rain gardens on Walnut Street and
spill into the adjacent raingarden on Chestnut Street. We consider all three of
these raingardens to act in conjunction and treat public right of way drainage
in series with one another.
Five additional rain gardens are proposed in Chestnut St. right of way, noted
Final Drainage Report 8
WINORTHERN
ENGINEERING
Walnut -Chestnut Subdivision Second
as "Rain Gardens at Old Firehouse Alley on Chestnut St.", "Rain Gardens at
Entrance to Parking Garage" and "Rain Garden at Intersection of Chestnut and
Jefferson Streets". These five raingardens act in series, as runoff from
Chestnut Street will fill each of these and overflow to the next downstream
rain garden, with flow generally traveling northeast to the intersection of
Chestnut and Jefferson Street.
The total required area to be treated in this area trade is 31,330 Sq.Ft. An
area of public right of way equivalent to this will be treated with the eight
proposed rain gardens. The following table summarizes rain gardens and
areas that each rain garden is sized to treat.
Table 1 — Rain Garden Summary and Treatment Sizing Areas
Rain Garden
Treatment Area
Rain Garden-Chestnut/Hotel South
7562
Sq. Ft.
Rain Garden-Chestnut/Hotel North
4818
Sq. Ft.
Rain Garden -Chestnut North #1
1791
Sq. Ft.
Rain Garden -Chestnut North #2
2246
Sq. Ft.
Rain Garden -Chestnut North #3
2751
Sq. Ft.
Rain Garden -Chestnut North #4
3838
Sq. Ft.
Rain Garden -Walnut South
4761
Sq. Ft.
Rain Garden -Walnut North
3563
Sq. Ft.
Total Run-on area for Rain Gardens
31330
Sq. Ft.
The design spreadsheet "Design Procedure Form: Rain Garden (RG)" by the
Urban Drainage and Flood Contol District (UDFCD) has been utilized to
compute required LID treatment areas, and design sheets are provided in
Appendix A.2. These sheets show that the rain gardens are sized to treat
31330, which meets the requirement shown in Table 1. Please also see
additional information provided in the LID Requirement Table provided in
Appendix A.2.
Seven tree wells within Jefferson Street right of way will be constructed and
will receive runoff from sidewalk area equal to the 3360 Sq.Ft. as outlined in
the LID Requirement Table. The tree wells, combined with the eight rain
gardens will provide treatment for 34,690 Sq.Ft. as outlined in the LID
Requirement Table, and this will bring the percentage of proposed impervious
area to be treated to a value of 52%, which exceeds the City of Fort Collins'
required 50% level.
2. Standard Operating Procedures (SOP) Manual shall be provided by the City of
Fort Collins and included in the site Development Agreement.
Final Drainage Report 9
■� INORTHERN
ENGINEERING Walnut -Chestnut Subdivision Second Filing
V. CONCLUSIONS
A. Compliance with Standards
1. The drainage design proposed with the proposed project complies with the City of Fort
Collins' Stormwater Criteria Manual.
2. The drainage design proposed with this project complies with requirements for the Old
Town Basin.
3. The drainage plan and stormwater management measures proposed with the
proposed development are compliant with all applicable State and Federal regulations
governing stormwater discharge.
B. Drainage Concept
1. The drainage design proposed with this project will effectively limit any potential
damage associated with its stormwater runoff by compliance with requirements set
forth in current City master plans.
2. The drainage concept for the proposed development is consistent with requirements
for the Old Town Basin and the Downtown River District Final Design Report.
Final Drainage Report 10
.V INORTHERN
ENGINEERING
References
Second Fili
1. Fort Collins Stormwater Criteria Manual, City of Fort Collins, Colorado, as adopted by Ordinance No.
174, 2011, and referenced in Section 26-500 (c) of the City of Fort Collins Municipal Code.
2. Larimer County Urban Area Street Standards, Adopted January 2, 2001, Repealed and
Reenacted, Effective October 1, 2002, Repealed and Reenacted, Effective April 1, 2007.
3. Soils Resource Report for Larimer County Area, Colorado, Natural Resources Conservation
Service, United States Department of Agriculture.
4. Old Town Master Drainage Plan, Baseline Hydraulics, Volume II, Anderson Consulting,
July 15, 2003.
5. Downtown River District Final Design Report, Ayres, February 2012.
6. Urban Storm Drainage Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control
District, Wright -McLaughlin Engineers, Denver, Colorado, Revised August 2013.
Final Drainage Report 11
APPENDIX A.1
DEVELOPED CONDITIONS HYDROLOGIC COMPUATIONS
DEVELOPED COMPOSITE % IMPERVIOUSNESS AND RUNOFF COEFFICIENT CALCULATIONS
Rung
laereentaga
CHARACTER OF SURFACE
CoeBkknt
Impervious
Rolm:
947-002
Shaeb, Perim lob,
Raols. Alleys, and Ontres:
Calculations By.
ATC
AsMet...........................................................................................................
0.95
100%
Date:
Apd16, 2016
0.95
9D%
Calcrete.........................................................................................................
( nwal....................................................................................
I......................
0.50
40%
RaOh....................
-....... ........ ..........................
..... ............................
..........
0.95
90%
Pavers..........................................................................................................
0.40
22%
ms and landfcepfrq
SandiSoil.................................................................................................
0.15
0%
Clagy Shc.................................................................................................
0.25
0%
2ymrG-1.00
100.1arG-1.00
100-M,G-1.25
RUM CotllideMa an bMenlmnlM
Ciytl Frl
Cdlim Sbml palro pei Catrla
eM DrIYNCIpI SIa,daNa,
Tade
%lrnMMoualakmimm
UDFCDWDCa1,Wlumel.
Area of
2-year
10-year
100-year
Basin Area
Basin Area
Am of
Alen of
Arm of
Area of
lawn, Rain
Composite
Composite
Composite o
Basin ID
(s.i.l
lae)
Asphalt
Concrete
Ranh
Grovel
Garden, or
Runoff
Runoff
Runoff
Composite
(ac)
(ac)
(ac)
(ac)
landscaping
% Imperv.
(ac)
Coefficient
Coefficient
coefficient Caeenl
la
1363
0.03
0.00
0.03
0.00
0.00
0.00
0.92
0.92
1.00
86.3%
Its
10019
0.23
0.00
0.17
0.00
0.00
0.06
0.77
0.77
1.00
66.5%
lc
34057
0.78
0.00
0.00
0.78
0.00
0.00
0.95
0.95
1.00
89.8%
2
45302
1.04
0.00
1.03
0.00
0.00
0.01
0.94
0.94
1.00
89.1%
051
18920
0.43
0.43
0.00
0.00
0.00
0.00
0.95
0.95
1.00
100.0%
OS2
]0772
0.25
0.25
0.00
0.00
0.00
0.00
0.95
0.95
1.00
100.0%
OS3
16862
0.39
0.36
0.00
0.00
0.00
0.03
0.90
0.90
I.00
92.3%
054a
1 13504
1 0.31
Jug
10.02
lo.m
lo.m
1O.W
1 0.95
1 0.95
I.00
99.4%
OS4D
1 21344
1 0.49
10.16
10.33
lo.m
10.00
10.00
1 0.95
1 0.95
1.00
93.3%
OS5
1 5138
1 0.12
10.09
10.02
10.00
0.00
JO.Di
1 0.89
1 0.89
1 1.00
89.8%
DEVELOPED TIME OF CONCENTRATION COMPUTATIONS
Overland Flow. Time of Concentration:
1.87(1.1 - C• • Cf ` v'
PmlecL•
947-002
7• _ /V
:,�. a_*
Calculations
By:
ATC
1/
SY3
.1.aoca"e
.
Date:
April 6, 2016
Guher/Swale Flow. Time of Concentration:
T, = T; + T, (Equation RO-2)
a
rn 1e
1:00
Velocity (Gutter Flow), V = 20Sw
(Equation RO-4)
11 N as
2 m iou
1.10
1.ii
Velocity (Swale Flow), V = 15.Sn
wse,
Tye ve0ovo0 Of C el.e..c, ene11 eec uceea 1.00
ROTE: Lvalue pxaerbn0 n0ns ov eresw surfaces; C = 025
Overland Flow
Gutter Flow
Swale Flow
Time d Concentration
Design
C•Cf
C*Cr
C*C1
Length,
Slope,
Ti
- T.
Ti
Length,
Slope,
Velocity.
Length,
Slope,
Velocity,
2-yr
10-yr
Imirr
Point
Basin
Is Length
(2-yr
(10-yr
(100-yr
L
S
2-yr
10-yr
100-yr
L
S
V
Tr
L
S
V
Tr
Tr
T.
Tr
>SOOT
Cr=1.00)
G=1.00)
Cr=1.25)
(W
(%)
(min)
(min)
(min)
(81
(%)
MIS)
(min)
(W
(%)
(Wsl
(min)
(min)
(min)
(min)
la
la
No
0.95
0.95
1.00
20
2.00%
1.0
1.0
0.7
53
1.00%
2.00
0.4
0
0.00%
WA
WA
5
5
5
lb
lb
No
0.95
0.95
1.00
20
2.00%
1.0
1.0
0.7
307
1.00%
2.00
2.6
0
0.00%
WA
WA
5
5
5
1C
1C
No
0.95
0.95
1.00
45
1.00%
1.9
1.9
1.3
183
1.00%
2.00
1.5
0
0.00%
WA
WA
5
5
5
2
2
No
0.95
0.95
1.00
108
2.00%
2.3
2.3
1.5
189
0.50%
1.41
2.2
0
0.00%
WA
WA
5
5
5
OS]
OSl
No
0.95
0.95
1.00
45
1.00%
1.9
1.9
1.3
112
0.50%
1.41
1.3
0
0.00%
WA
WA
5
5
5
No
0.95
0.95
1.00
30
1.00%
1.5
1.5
1.0
144
0.50%
1.41
1.7
0
0.00%
WA
WA
5
5
5
FOS2
S3
CS3
No
0.95
0.95
1.00
30
2.00%
1.2
1.2
0.8
124
0.50%
1.41
1.5
0
0.00%
1 WA
WA
5
5
1 5
la
OS4a
No
0.95
1 0.95
1 1.00
1 40
2.00%
1 1.4
1 1.4
0.9
1 286
0,50%
1.41
3.4
0
0.00%
WA
WA
5
5
5
{b
054b
No
0.95
0.95
1.00
40
2.00%
1.4
1.4
0.9
320
0.50%
1.41
3.8
0
0.00%
WA
WA
5
5
5
JS5
OS5
No
0.95
0.95
1.00
30
1 2.00%
1 1.2
1 1.2
1 0.8
1 56
1 0,50%
1 1.41
1 0.7
0
0.00%
1 WA
WA
5
5
5
DEVELOPED RUNOFF COMPUTATIONS
Rational Method Eaua0on:
m 1. 2-a
Project:
947-002
Q _ C J (CXiXA)
/l /l
a a.�
a.Kee
a:.am�
naGa
Calculations By:
ATC
Date:
April 6, 2016
Fran Secbw 3.2.1 of the CFMDX
2 G le
11 If25
21 G So
1.00
1.10
1.20
Rainfall a
!t G I00
aOG: TM KOdO= of C . S ce sua
1.25
oot a2GM 1.00
Rainfall Inteftty taM h wn the My at Fo4 Collis Slaem
Deainoge O
Criteria fCFC50DC), Figlne 3.1
2-yr
10-yr
100-yr
Intensity,
Intensity,
Intensity,
Flow,
Flow,
Flow,
gn
Point
Basin(s)
Gres)
T.
Te
T.
C2
CIO
CIm
12
I
IN
400
02
010
OIcS
(min)
(min)
(min)
(inlbr)
(iruhr)
(InBIr)
(CIS)
WS)
(cts)
la
la
0.03
5
5
5
0.92
0.92N1.002.85.85
4.87
9.95
0.08
0.14
0.31
1b
1b
0.23
5
5
5
0.77
0.7
.85
4.87
9.95
0.50
0.86
2.29
lc
lc
0.78
5
5
5
0.95
0.95.85
4.87
9.95
2.11
3.61
7.78
2
2
1.04
5
5
5
0.94
0.94.85
4.87
9.95
2.80
4.78
10.35
OSl
OSl
0.43
5
5
5
0.95
0.95.85
4.87
9.95
1.18
2.01
4.32
OS2
OS2
0.25
5
5
5
0.95
0.952.85
4.87
9.95
0.67
1.14
2.46
OS3
OS3
0.39
5
5
5
0.90
0.902.85
4.87
9.95
0.99
1.69
3.85
OS4a
054a
0.31
5
5
5
0.95
0.952.85
4.87
9.95
0.84
1.43
3.08
OS4b
O ao
0.49
5
5
5
0.95
0.952.85
4.87
9.951.33
2.27
4.88
OS5
OS5
0.12
5
5
5
0.89
0.892.85
4.87
1 9.95
0.30
1 0.51
1 1.17
11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11
Project: 947-002
Inlet ID: Design Point OS4-Chestnut SE Flowline Capacity
T Ti,,,at Tk:aovx
-�•��aarr W,�� Tic'
Street
:_ Crown
Qw Qx
• o �
mum Allowable Width for Spread Behind Cum I secs -
Slope Behind Cum (leave blank for no conveyance credit behind cum) Ssncs -
ring's Roughness Behind Cum narks =
it of Cum at Gutter Flow Line House =
rice from Cum Face to Street Crown Tcaovnr =
it Width W =
,t Transverse Slope Sx =
Ir Cross Slope (typically 2 inches over 24 inches or 0.083 Will S. =
it Longitudinal Slope - Enter 0 for sump condition So =
zing's Roughness for Street Section ns, =
10.5
Inches
It
It
fttft
ftlft
Wit
0.020
0.016
3.90
17,0
1.44
0.020
0.060
0.008
0.016
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMax = 17.0 17.0
Allowable Depth at Gutter Flowline for Minor & Major Stone dmm = 3.9 12-0 inches
Flow Depth at Street Crown (leave blank for no) �i _ check = yes
IR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Stone
)R STORM Allowable Capacity is based on Depth Criterion Q.11a. = 4.9 1282 cis
r storm max ahawan ;treater than flow given on sheet 'Q-Peak'
,form mar allnw.i l-.Ir -. rent, than flaw Given nn theM '7-Prak'
dpOS4-StrtCap-UDFCD.xlsm, O-Allow
12/2112015, 12.3l PM
INLET IN A SUMP OR SAG LOCATION
Project = 947-002
Inlet ID = FxIsL Inial -Chestnut St. -SE comer of Ch muHJeHerson
.�— Lo (C){
H-Curb H-Ven
Wo
Wp
w
Lo (c)
Warning
MINOR MAJOR
ype of her
Intel Type=
Local D9pmeslon(additwmilowNiv epldweepraealon'a'tmm'QAWW)
4ou'
Inches
umbw of Unit ki (Grate or Cub OpeNrg)
No =
Ater Depot at Fbwtre (outside of coal depression)
Fbw Depth =
inches.
Grate etfomvtbn
MINOR MAJOR
Lwglh of a Unit Grate
L, (G) = (eel
cot of a Draft Grate
wa=
feat
Am Opening Ratio for a Grate (typical value 0 15-0 90)
A.=
bggug Factor for a Single Grate (ypccal value 0.50 - 0 70)
C (G) _
Grate Wen, Coefficient (typical value 2 15 - 3.60)
C. (G) _
Grate Orl Coefficient (typical vats 0.80 - 0.W)
Ca (G) _
Curb Opening Mormseen
MINOR MAJOR
Length of a Unit Cunt Opening
Le (C) = feet
HeIgN of Vertical Curb Opening In Inctes
H,,.I=
hones
Helga of Cub Ori(ke TNoat in Inmor
Hnn,a =
inches
n0k of Throst (see USOCM Figure ST-5)
ThsW =
degrees
1 Side Wish for Depression Pan (typically lk gutter mole of 2 feet)
we=
eel
Iol Factor for a Sege Curb Opening (typical value 0.10)
C (C) _
ub Opening Water Coefflcbnt (typ l value 2.3-3.6)
C. (C) _
Con, Opening OW" Coefhaan (typcal vats 0.80 - 0.70)
Co (C)
MINOR MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
G1. =
4.3 7.0 cfs
Inlet Ceaacrty IS GOOD for Firma, and Mmm St.-,, 1>0 PEAK;
Ocernasoueeo =
1.5 49 cfs
W arri I Dimenswn enlaRq o no' I ""c'.0 dimentiion fni rw type specified
Denier No. 18 Comoiralion
2.00
1
8.0
9.0
3.00
1.73
0.31
0.50
0.50
S80
r.
O.BO
3.00
6.50
5.25
0.00
2.00
0.10
0 t0
3.70
0.88
UD Inlet 3.1-combanlet-OS4.xlsm, Inlet In Sump
12/2112015, 1241 PM
I
r
INLET IN A SUMP OR SAG LOCATION
Project = 947-002
Inlet ID = EXISI- Inlet - Chestnut SLSE comer of Chestnut/Jefferson
,r Lo (C) 'r
H-Curb R Van
We
WP
W
Lo (G)
of Inal
that Type
Depression(aEEttgrpl to continuous grater deprapbn'e'imm'O~)
ama
ier of Und Inlets (Gres, or Cub Opening)
No
r Depth at FlcMm (outside of ecal depression)
Flew Depth
i Information
In of a Unit Grate
Le (G)
l of a Unit Grate
W.
Opentrg Ratio for a Grate (typical values 0.15-0.90)
A.
ling Fedor for a Sngle Gmte (tygral value 0.50 - 0 70)
Cr (G)
Weir Coefficient (lyp®I value 2.15 - 3.60)
C. (G)
Onfice Coefficient rMcal Valle 0 60 - 0 80)
C. (G)
Opening Yrfomutfon
h of a Unit Curb Opening
i� (C)
i of Ventral Curb Opening In I.Itrai
NM
L of C W Orifice Tt.oal M Inches
He..a
of Throat (see USDCM Fyne ST-5)
Theta
Wioth for Depression Pan (typicaly the gutter wldM of 2 feet)
W.
ling Fedor for a Single Cub Opening (typical value 0.10)
Cr (C)
Opening Welt Coefficient (typical vela¢ 2.33.6)
C. (C)
Operug OrMra CoeNldent (typical value 0,60 - 0.70)
C. (C)
it Inlet Interception Capacity (assumes clogged condition)
Q.'
OLLiesLairm
Oerwer No. 16 Comblre0on
2.00 indi
1
6.0 6.5 lrchac
MINOR MAJOR
3.00 ? nn teal
1.73 1 '3 feel
0.31
0.50 0 50
3.60
0.60
EriMno LIe lAW
3.00
6.50
5.25
0.00
2.00
0.10
0.10
3.70
0.66
eat
richer.
nines
log.
eat
UD Inlet 3.1-comboinlet-OS4.slam. Inlet In Sump
12121l2015, 12:42 PM
APPENDIX A.2
LID SUPPLEMENTAL INFORMATION
S
p
a
r
N
N
O
M
O1
h
!�
n
•ti
01
n
H
QO
M
aC
M
o,
n
Qo
j
n
N
ti
Ln
O~i
H
ti
H
O•
C
c
N
C
W
E
d
'7
LL
LL
LL
lyL
LL
LL
LL
LL
LL
LL
LLL
LL
y
C
ti
Q
u
Q
u
Q
ti
Q
&
Ln
&
Vn
O'
V1
&
Vf
0'
V1
&
N
C
Ln
O'
vt
0'
Vf
&
Ln
&
V)
Q
N
Q
(n
V1
N
W
.--I
ID
r-4
W
ci
M
O
O
CD
O
%C
J
h1
Ln
n
O
Lo
1-1
m
a
0
M
UD
kD
m
kD
lD
m
M
M
N
h
n
n
n
w
n
ti
ry
n
w
n
m
m
m
w
w
n
N
O
p
e
n
v
N
N
m
v
m
m
cn
cn
M
-*
cs
a+
e
a
E
m
N
u
a
M
�
Y
Ln
o`
dv
0
N
w
of
u
F �
O
u
ra
N
C
w
p
L
L
Qi
-D
O
ra
VI
Z
u
YL
YL
YL
Ln
+-+
f0
y
N
+0'
�0
L
t'
L
t'
L
L
t'
a
c0
m
L
L
Ql
Q
u
c
G=
2
Z
Z
Z
Z
O
O
O
IIOnn
0
G7
w'
Z
V
c
-
''�
Ql
L
m
d
m
0
c
0
O
Ol
O.
o
c
c
c
c
c
c
N
1
•
O
N
y�
H
N
vYi
N
N
VY1
c
c
C
N
�
hU
C
2,Q
v
m
m
N
..
N
7
0
Q
,'o
0
E
avucL���v33r°
i-
m
v
Q
.�
o
O
N
c
c
c
c
c
c
c
c
a
n
o
�-
OQj
C
OL
=
d
N
v
-o
-000
-a
-00`
'00`
-000
"O
O
N
0
O
d
w
O
O.
O
Q
a
m
m
m
m
m
m
m
m
G
a
3
G
Q
'2
a
a.
a
l7
l7
0
C7
l7
0
0
0
Q
c,
v
O
N
d
w
J
o
v
Q
c
c
c
c
c
c
c
c
Q
F
c
'o
E
o
O
o
Ct
z
s=
z
s
z
a
°^
'o
vCL
o
Q'
is
u
a I a• Iv v _
RAIN OMOEN AT INTERSECTION OF
.— r =: o—:.��.. � • ' �Y'Y pl a � /FT�OIIE6TNUT6 tEFFEH90N STREETS
ri
ON W /i\ 80UTNE118TE IN MIN fiFROEN ON WALNUT SWEET
M __}• El _• 4,_
v a �, ! 4 r-..•:w...•.. � I• V .F.v °� v. Nv i � 1.,...
2Q AMR Lu.a
.�.�..
O W
f•'-
JI
Jo
�j O Zm
U
m._
y
O +7
—00
J �F
O Qo
QU3
�Ii \ + � .fir F a-•
R anrw �r
1mmwgSTERN MM GvtmN ON awwo STRUT
yl N \ \ \-- M y a o. .rcu.4 e. � + ._sw. �' � i •� .w.. 4111—CduNe ��QP�
��e_=�urv ` w�,Swvppvy,rNvao
\ y
'L MN GMOENS AT ENTRNICE iO PWbLING!Q) CNN OMOENS AT OLD FIREHOUSE OLlEV ON CHESTNUT STREET_ . �'—'
�w�
o.w ¢� _r
I�
Designer:
Company:
Date:
Project
Location:
ATC
Northern Engineering
January 18, 2016
947-002
Raingarden-Chestnut'Hotel South
Design Procedure Form: Rain Garden (RG)
Sheet 1 of 2
1, Basin Storage Volume
A) Effective Imperviousness of Tributary Area, 1„
1„ =
100.0 %
(100% if all paved and roofed areas upstream of rain garden)
B) Tdbulary Area's Imperviousness Ratio (i = I,/100)
i =
1.000
C) Water Quality Capture Volume (WOCV) for a 12-hour Drain Time
WQCV =
0.40 watershed inches
(WQCV=0.8' (0.91' I'- 1.19 - ? + 0.78 - i)
D) Contributing Watershed Area (Including rain garden area)
Area =
4.818 sq ft
E) Water Quality Capture Volume (WQCV) Design Volume
Vwocv =
161 cu ft
Vol = (WQCV / 12)' Area
F) For Watersheds Outside of the Denver Region, Depth of
Ci =
in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
Vwccv oTHea =
0.0 cu R
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
Vwocv uss =
cu f1
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth (12-inch maximum)
D,.,ocv =
12 in
B) Rain Garden Side Slopes (Z = 4 min., honz. disc per unit vertical)
Z =
4.D0 ff / fl
(Use'0' if rein garden has vertical walls)
C) Mimimum Flat Surface Area
AM,� =
107 sq ft
D) Actual Flat Surface Area
A„I.ui.1, =
525 sq ft
E) Area at Design Depth (Top Surface Area)
ATq =
sq ft
F) Rain Garden Total Volume
Vr
ou ft
(Vr= ((AT. + Ate) 12) * Depth)
3. Growing Media
Chow One
O 18' Rain Garde Growing Metlb
O other (Explain):
4. Underdrain System
A) Are underdrains provided?
1r Oxxrse ate
1 Q YES
l ONO
B) Underdmin system orifice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y=
ff
Volume to the Center of the Ortfice
if) Volume to Drain in 12 Hours
Vol,z=
N/A cu ft
iii) Orifice Diameter. 318" Minimum
Do =
WA in
UD-BMP_v3.02_Rngdn-ChestnuW-S.xls, RG
1 /1812016, 2:58 PM
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ATC
Company: Northern Engineering
Date: January 18, 2016
Project: 947-002
Location: Raingarden-Chestnut/Hotel South
5. Impermeable Geomembrane Liner and Geotextile Separator Patine
at"i 0% One
A) Is an impermeable liner provided due to proximity
ONO
of structures or groundwater contamination?
6. Inlet /Outlet Control
Choose one
Q Sheet Flow- No Energy Dissipation Required
A) Inlet Control
Q ConrmtrateE Flow- Energy Dissipation Provided
Choose One
7. Vegetation
O Seee (Plan for frequent weed controp
C) Plantings
[C)
Sand Grown or Other High In6ltrabon Sod
8. Irrigation
awe One
Q YES
A) Will the rain garden be irrigated?
ONO
Notes
UD-BMP_v3.02_Rngdn-ChestnutH-S.xls, RG 1/1812016, 2:58 PM
Design Procedure Form: Rain Garden (RG)
Sheet 1 of 2
Designer: ATC
Company:
Northern Engineering
Date:
January 16, 2016
Project:
947-002
Location:
Raingarden-ChestnutMotel North
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, 1,
I, =
100.0 %
(1G0% if all paved and roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = I,/1D0)
=
1.000
C) Water Quality Capture Volume (WQCV) for a 12-tour Drain Time
WQCV =
0.40 watershed inches
(WQCV= 0.8' (0.91' is- 1.19 - ?+ 0.78 - I)
D) Contributing Watershed Area (including rain garden area)
Area =
7,562 sq ff
E) Water Quality Capture Volume (WQCV) Design Volume
V,,,;_„ =
252 cu it
Vol = (WQCV 1 12) ' Area
F) For Watersheds Outside of the Denver Region, Depth of
or =
in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
VwocV orris =
0.0 cu If
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
VwocV user+ =
cu it
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth (12-inch maximum)
Dwocv =
12 In
B) Rain Garden Side Slopes (Z = 4 min., honz. disl per unit vertical)
Z =
4.00 ft 1 fl
(Use'0' If rain garden has vertical walls)
C) Mimimum Flat Surface Area
A., =
lea sq ff
D) Actual Flat Surface Area
Ak,,,p =
546 sq it
E) Area at Design Depth (Top Surface Area)
A,. =
sq it
F) Rain Garden Total Volume
V,=
cu it
(VT= ((Arno + Ae ")12)' Depth)
3. Growing Media
Choose One
O 16" Pain Garden Growing Media
O Other (Explain):
4. Underdrain System
A) Are underdrains provided?
Choose One
Oya
ONO
B) Underdrain system orifice diameter for 12 hour dram time
it Distance From Lowest Elevation of the Storage
y=
8
Volume to the Center of the Orifice
ii) Volume to Drain in 12 Hours
Vol;_ =
WA cu it
iii) Orifice Diameter, 3/8" Minimum
D„ =
N/A in
UD-BMP_v3.02_Rngdn-ChestnutH-N.xls, FIG
1/18/2016, 2:46 PM
C
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ATC
Company: Northern Engineering
Date: January 16, 2016
Project: 947-002
Location: Raingarden-Chestnut/Hotel North
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
r Choose One
O Es
A) Is an impermeable liner provided due to proximity
O NO
of structures or groundwater contamination?
6. Inlet / Outlet Control
j' Choose One
O Sheet Flow- No Energy Dissipation Required
A) Inlet Control
O Concentrated Flow- Energy Dissipation Provided
7. Vegetation
One
(Plan for frequent weed control)
[&Ew
Oings
O Sand Grown or Other High InORration Sod
8. Irrigation
ChooseOAe
O YES
A) Will the rain garden be imgaled?
ONO
7
Notes:
UD-BMP_v3.02_Rngdn-ChestnutH-N.xis, RG
1/16/2016, 2:46 PM
Design Procedure Form: Rain Garden (RG)
Sheet 1 of 2
Designer:
Company:
Date:
Project:
ATC
Northern Engineering
January 18, 2016
947-002
Location: Raingarden-Chestnut North #1
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, 1„
I, =
100.0 %
(100% if all paved and Roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = 1J100)
=
1.000
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time
WQCV =
0.40 watershed inches
(WQCV=0.8"(0.91"i3-1.19'h 0.78, i)
D) Contributing Watershed Area (including rain garden area)
Area =
1,791 sq If
E) Water Quality Capture Volume (WQCV) Design Volume
Vwccv =
60 cu f1
Vol = (WOCV / 12) - Area
F) For Watersheds Outside of the Denver Region. Depth of
dF =
in
Average Runoff Producing Stem
G) For Watersheds Outside of the Denver Region,
VwoeV OTHER =
0.0 cu it
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
VWOOV USER =
cu f1
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A) WOCV Depth (12-inch maximum)
Dwow =
12 in
B) Rain Garden Side Slopes (Z = 4 min., honz. dist per unit vertical)
Z =
4.00 f1 / ft
(Use "0" if rain garden has vertical walls)
C) Mimimum Flat Surface Area
Au,,, =
40 sq If
D) Actual Flat Surface Area
A� =
164 sq ft
E) Area at Design Depth (Top Surface Area)
ATE =
sq ft
F) Rain Garden Total Volume
VT=
cu ft
(Vr((AT.-Aw )/2)"Depth)
3. Growing Media
Choose One
O 18" Rain Garden Growing Media
O Other (Explain):
4. Underdmin System
A) Are undertlrains provided?
_
One
Q NES
B) Underdrain system orifice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y=
fl
Volume to the Center of the Orifice
ii) Volume to Drain in 12 Hours
Vol„ =
N/A cU ft
iii) Orifice Diameter, 3Z' Minimum
D;, =
N/A m
UD-BMP_v3.02_Rngdn-ChestnutNl.xls, RG
1 /113/2016. 2.57 PM
C-
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ATC
Company: Northern Engineering
Date: January 18, 2016
Project: 947-002
Location: Raingarden-Chestnut North #1
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
ChooseQ One
YES
A) Is an impermeable liner provided due to proximity
ONO
of structures or groundwater contamination?
- - —
6. Inlet / Outlet Control
Choose One
Q Sheet Flow- No Energy Dissipation Required
A) Inlet Control
Q Concentrated flow- Energy Dissipation Provided
One
7 Vegetation
eed (Plan for frequent weed control)
[OhSoww
Pantings
O Send Grown or Other High Infiltration Sod
8 Irrigation
Choose One
p YES
A) Will the rain garden be irrigated?
ONO
Notes
UD-BMP_v3.02_Rngdn-ChestnutNl.xls, RG
1/18/2016, 2:57 PM
Designer:
Company:
Dale:
Project:
Location:
ATC
Northern Engine,
January 18, 2016
947-002
Raingarden-Chesmut North #2
Design Procedure Form: Rain Garden (RG)
Sheet 1 of 2
1 Basin Storage Volume
A) Effective Imperviousness of Tributary Area, I,
1„ =
100.0
(100% if all paved and rooted areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = I,/100)
=
1.000
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time
WQCV =
0.40 watershed inches
(WQCV= 0.8' (0.91' i3- 1.19' i' * 0.78' i)
D) Contributing Watershed Area (including rain garden area)
Area =
2,246 sq If
E) Water Quality Capture Volume (WQCV) Design Volume
Vwocv =
75 cu ft
Vol = (WQCV / 12) " Area
F) For Watersheds Outside of the Denver Region, Depth of
de =
in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
V.QCV OTHEB =
0.0 cu ft
Water Quality Capture Volume (WQCV) Design Volume
H) Use Input of Water Quality Capture Volume (WQCV) Design Volume
Vn.ocv uSEn =
cu ft
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A)WQCV Depth (12-inch maximum)
Dwocv=
12 in
B) Ram Garden Side Slopes (Z = 4 min., honz. disl per unit vertical)
Z =
4.00 fl I fl
(Use "0" 0 rain garden has vertical walls)
C) Mimimum Flat Surface Area
Au,,, =
50 sq ft
D) Actual Flat Surface Area
A,,, =
145 so It
E) Area at Design Depth (Top Surface Area)
Arw =
sq It
F) Rain Garden Total Volume
V,=
cu ft
(V,= ((AT. - AxIw) l2)' Depth)
Growing Media
Choose One
d 18" Rain Garden Growing Media
O Other (Explain):
4. Underdrain System
A) Are underdrains provided?
Choose One
YES
OO
O NNO
B) Undercram system once diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y=
ft
Volume to the Center of the Orifice
III Volume to Drain in 12 Hours
VoT, =
N/A cu if
iii) Orifice Diameter, 318" Minimum
D,r =
NIA in
UD-BMP_v3.02_Rngdn-CheslnutN2.xls, RG 1/18/2016, 2M PM
Design Procedure Form: Rain Garden (RG)
sheet 2 of 2
Designer: ATC
Company: Northern Engineering
Date: January 18, 2016
Project: 947-002
Location: Raingarden-Chestnut North #2
5. Impermeable Geomembrane Liner and Geolexlile Separator Fabric
Choose One °YES
A) Is an impermeable liner provided due to proximity
ONO
f
of structures or groundwater contamination?
6. Inlet I Outlet Control
Chcose One
Q Sheet Row- No Energy Dissipation Required
A) Inlet Control
Q Concentrate0 Fbw- Energy Dissipation ProWded
7. Vegetation
Choose One
Q Seed (Plan for /requent weed mnbol)
O Plantings
0 Send Grown or Other High in8ttratlon Sod
8. Irrigation
Chow One
Q YES
A) Will the rain garden be irngaled?
O NO
Notes:
UD-BMP_v3.02_Rngdn-ChestnutN2.xls, RG 1/18/2016. 2:59 PM
11 Design Procedure Form: Rain Garden (RG) 11
Designer:
Company:
Date:
Project:
Location:
ATC
Northern Engineering
January 18, 2016
947-002
Raingarden-Chestnut North #3
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, I,
I, =
100.0
(100 % if all paved and roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = I,J100)
i =
1.000
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time
WQCV =
0.40 watershed inches
(WQCV= 0.8' (0.91. i3 - 1.19' i°+ 0,78 - it
D) Contributing Watershed Area (including ram garden area)
Area =
2.751 sq ft
E) Water Quality Capture Volume (WQCV) Design Volume
VWOCV =
92 cu ft
Vol = (WQCV / 12)' Area
F) For Watersheds Outside of the Denver Region, Depth of
d,; =
in
Average Runoff Producing Stone
G) For Watersheds Outside of the Denver Region,
Vwucv OrRER =
0.0 cu ft
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
V.UCV USER =
CU fI
(Only H a different WQCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth (12-inch maximum)
Dwocv =
12 in
B) Rain Garden Side Slopes (Z = 4 min., honzdist per unit vertical)
Z =
4.00 ft / ft
(Use "D- if rain garden has vertical walls)
C) Minimum Flat Surface Area
At," =
61 sq ft
D) Actual Flat Surface Area
AK,. =
190 sq ft
E) Area at Design Depth (Top Surface Area)
Ala, =
sq ft
F) Rain Garden Total Volume
Vr
cu ft
(Vr ((Arm + Am,.) 12) * Depth)
3. Growing Media
Oxxne the
0 18" Rain Garden Growing Media
0 other (Fxplaln):
4. Underdraln System
A) Are uMerdrains provided?
Choose One
O YES
ONO
B) Underdrain system orifice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y=
ft
Volume to the Center of dne Ortfice
ii) Volume to Drain in 12 Hours
Vol,; =
WA cu If
iii) Orifice Diameter, 3/8" Minimum
U,, =
N/A in
UD-BMP_v3.02_Rngdn-ChestnutN3.xls. RG 1/1812016, 3.03 FM
C
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ATC
Company: Northern Engineering
Date: January 18, 2016
Project: 947-002
Location: RaingardenChestnut North #3
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
OCR
A) Is an impermeable liner provided due to proximity
ONO
of structures or groundwater contamination?
6. Intel/ Outlet Control
Chacse
Sheet Flow- No Energy Dissipation Required
A) Inlet Control
�Q
Q Concentrated Flow- Energy Dissipation Provided
7. Vegetation
Choose Orre
Q Seed (Plan for frequent weed control)
Q P anti
Q Sand Grown or Dither High In81tril Sod
8. Irrigation
r Choose One
O yEs
A) Will the rein garden be irrigated?
O NO
Notes:
UO-BMP_v3.02_Rngdn-ChestnutU xis, RG
Ill 812016, 3:03 PM
Designer:
Company:
Date:
Project:
Location:
ATC
Northern Engineering
January 18, 2016
947-002
Rainganden-Chestnut North 94
Design Procedure Form: Rain Garden (RG)
Sheet 1 of 2
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area. I,
I„ =
100.0
%
(100 % if all paved and roofed areas upstream of rain garden)
8) Tributary Area's Imperviousness Ratio (i = 1.1100)
=
1.D00
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time
WQCV =
0.40
votershed inches
(WQCV= 0.8' (0.91' i°- 1.19' i'- 0 78' i)
D) Contributing Watershed Ares (including rain garden area)
Area =
3.838
sq If
E) Water Quality Capture Volume (WQCV) Design Volume
Vwpw =
128
cu It
Vol = (WQCV 112)' Area
F) For Watersheds Outside of the Denver Region, Depth of
tle =
in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
Vwocv OTaEa =
0.0
cu ft
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
VwQN osee =
cu h
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth (12-inch maximum)
Dwucv =
12
in
B) Rain Garden Side Slopes (Z = 4 min., hertzdist per unit vertical)
Z =
4.00
hill
(Use "0" if rain garden has vertical wails)
C) Mimimum Flat Surface Area
A,,,,,, =
85
sq If
D) Actual Flat Surface Area
A, ,,u =
183
sq ft
E) Area at Design Depth (Top Surface Area)
A,,,,, =
sq ft
F) Rain Garden Total Volume
VT=
cu h
(VT= ((AT. + Ares) l 2) * Depth)
3. Growing Media
Choose One
O 18" Rain Garden Growing Nedis
O Other (Explain):
4. Underdrain System
Choose One
018
A) Are undertlrains provided?
ONO
B) Underdrain system once diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y =
It
Volume to the Center of the Once
it) Volume to Dram in 12 Hours
Vol; =
WA
cu It
iii) Orifice Diameter, 3/8' Minimum
D„ =
N/A
in
UD-BMP_v3.02_Rngdn-ChestnulN4.xls. RG
1 /18/2016, 3:04 PM
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ATC
Company: Northern Engineering
Date: January 18, 2016
Project: 947-002
Location: RaingardenChestnut North$4
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
Choose Dne
O vE6
A) Is an impermeable finer provided due to proximity
O NO
of structures or groundwater contamination?
6. Inlet / Outlet Control
�oo� One
Q Sheet flow- No Energy Dissipation Required
A) Inlet Control
Q Concentrated Flow- Energy Dissipation Provided
7. Vegetation
Oxxaa one O
O Seed (Plan for frequent weed mnttro0
Q plantings
O Sand Grown a Otl1v Nigh RAltradom Sod
8. Irrigation
CC)h— One
Q YES
A) Will the rain garden be imgated?
ONO
Notes:
UD-BMP_v3.02_Rngdn-ChestnutN4.xls. FIG 1/1812016, 3:04 PM
Designer:
Company:
Date:
Project:
Location:
ATC
Northern Engineering
January 18. 2016
947-002
Raingarden-Walnut South
Design Procedure Form: Rain Garden (RG)
Sheet 1 of 2
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, I,
1, =
100.0 %
(1000/ H all paved and roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = IJ100)
=
1.000
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time
WQCV =
0.40 watershed inches
(WQCV= 0.8' (0.91' 1'- 1.19 - i1- 0.78 - i)
D) Contributing Watershed Area (including rain garden area)
Area =
4,761 sq ft
E) Water Quality Capture Volume (WQCV) Design Volume
Vwur;V =
159 cu h
Vol = (WQCV / 12)' Area
F) For Watersheds Outside of the Denver Region, Depth of
di; =
in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
Vwecv oTaER =
GO cu h
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
VwQCV USER =
cu h
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A)WQCV Depth(12-inchmattrnum)
Dwocv=
12 in
B) Rain Garden Side Slopes (Z = 4 min., hor¢disc per unit vertical)
Z =
4.00 ft / ft
(Use'0' drain garden has vertical walls)
C) Mimimum Flat Surface Area
Ay„ =
106 sq If
D) Actual Flat Surface Area
A�,,,a =
430 sq fl
E) Area at Design Depth (Top Surface Area)
AT,,,, =
sq h
F) Rain Garden Total Volume
Vr=
cu It
(Vr= ((Arm - Axwa) / 2)' Depth)
3. Growing Media
Choose One
C) 18" Rain Garden Growing Media
0 Other (Explain):
4 Underdmin System
A) Are underdrains provide0
Choose One
O YES
ONO
B) Underdrain system onfice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y=
ft
Volume to the Center of the Orifice
it) Volume to Dram ,n 12 Hours
V0112 =
WA cu h
iii) Orifice Diameter. 3/8" Minimum
Do =
N/A to
UD-BMP_v3.02_Rngdn-Walnut South.xls, RG 1/18/2016, 3:06 PM
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ATC
Company: Northern Engineering
Date: January 18, 2016
Project: 947-002
Location: Raingarden-Walnut South
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
Choose One
S Q YE
A) Is an impermeable liner provided due to proximity
ONO
cf structures or groundwater contamination?
6. Inlet I Outlet Control
Choose one
Q sheet Flow- No Energy Dissipation Required
A) Inlet Control
Q Concentrated Flow- rmergy Dissipation Provided
7. Vegetation
One
O seed (Plan for frequent weed control)
[Chose
O Plandngs
O sand Grown or OtIter High IMlkradon Sod
8. Irrigation
Choose
O yEs One
A) Will the min garden be irrigated?
ONO
Notes:
UD-BMP_v3.02_Rngdn-Walnut South.xls, RG 1/18/2016, 3:06 PM
Design Procedure Form: Rain Garden (RG) 11
Sheet 1 of 2
Designer:
Company:
Date:
Project:
ATC
Northern Engineering
January 18, 2016
947-002
Location: Raingarden-Walnut North
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, I,
I„ = 100.0 %
(10000 6 all paved and roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = I J1 DO)
= 1.000
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time
WQCV = 0.40 watershed inches
(WQCV= 0.8 ' (0,91' 1' - 1.19 - i' - 0.78 - i)
D) Contributing Watershed Area (including rain garden area)
Area = 3563 sq It
E) Water Quality Capture Volume (WQCV) Design Volume
V,.�_,: = 119 cu If
Vol = (WQCV / 12)' Area
F) For Watersheds Outside of the Denver Region, Depth of
d„ = in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region,
VWQCV o.HER = 0.0 cu 0
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
VWQCV USER' ee If
(Only it a different WQCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth (12-inch maximum)
Dwocv = 12 in
B) Rain Garden Side Slopes (Z = 4 min., horizdist per unit vertical)
Z = 4.00 It / ft
(Use "0" d rain garden has vertical walls)
C) Minimum Flat Surface Area
Am, = 79 sq ft
D) Actual Flat Surface Area
A„r,,,. = 302 sq f1
E) Area at Design Depth (Top Surface Area)
A„„, = sq It
F) Rain Garden Total Volume
V.= cu It
(Vr= ((A„_ I A�nw) 12) * Depth)
3 Growing Media
Choose One
O 18" Rain Garden Growing Media
O Other (Explain):
4. Underdram System
A) Are unclerdrains provided?
Choose One
Q YES
ONO
B) Uoderdrain system orifice diameter for 12 hour drain time
it Distance From Lowest Elevation of the Storage
y= ff
Volume to the Center of the Orifice
U) Volume to Drain in 12 Hours
Vol,. = N/A Cu It
Ut Orifice Diameter. 3/8' Minimum
D„= WA in
UD-BMP_v3.02_Rngdn-Walnut North.xls. RG 1/18/2016. 3:08 PM
C
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: ATC
Company: Northern Engineering
Date: January 18. 2016
Project: 947-002
Location: Raingarden-Walnut North
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric
Otooae Dne
O y6
A) Is an impermeable liner provided due to proximity
Q ND
of structures or grourdwater contamination?
6. Inlet / Outlet Control
oose One
Shea[ Flow- No Energy Dissipation Required
r
A) Inlet Control
Concentrated Flow- Energy Dissipation Provided
7. Vegetation
Choose One
O Seed (Plan for frequent weed control)
O Planbngs
0 Sand Grown or Other High Infiltration Sod
8. Imgahon
Choose One
O rEs
A) Will the rain garden be imgated�
O NO
Notes:
UD-BMP_v3.02_Rngdn-Walnut North.xls, RG
1/18/2016, 3:08 PM
APPENDIX B.1
INLET DESIGN CALCULATIONS
Area Inlet Performance Curve:
Design Point 1a
Trench Drain
Governing Equations:
Al low flow depths, the inlet will act like a weir governed by the following equation: = 3 .0 P H ) 5
' where P=2(L+W)
' where H corresponds to the depth of water above the flowline
At higher flow depths, the inlet will act like an orifice governed by the following equation: Q = 0.67 A (2 gH ) 0.5
• where A equals the open area of the inlet grate
• where H corresponds to the depth of water above the centroid of the cross -sectional area (A)
The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown.
However, what is known, is that the stage -discharge curves of the weir equation and the orifice equation
will cross at a certain flow depth. The two curves can be found below:
Stage -Discharge Curves
zo.00
6.00 Weir Flow
1600 Orifice Flow
14.00
12.00
� 10.00
t 6.00
a�i 6 00
2.00
0.00
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Stage (ft)
If H > 1.792 (A/P), then the grate operates like an orifice; otherwise it operates like a weir
Input Parameters:
Type of Grate:
Trench Drain Grate
Length of Grate (ft):
20
Width of Grate (ft):
0.8
Open Area of Grate (ft):
11.20
Flowline Elevation (ft):
100.000
Allowable Capacity:
50%
Depth vs. Flow:
Shallow
Orifice
Actual
Elevation
Weir Flow
Flow
Flow
Depth Above Inlet (ft)
(ft)
(cfs)
(cfs)
(cfs)
0.00
100.00
0.00
0.00
0.00
0.03
100.03
0.32
5.21
0.32
0.10
100.10
1.97
9.52
1.97
0.15
100.15
3.63
11.66
3.63
0.25
100.25
7.80
15.05
7.80
0.30
100.30
10.25
16.48
10.25
0.35
100.35
12.92
17.80
12.92
0.40
100.40
15.79
19.03
15.79
Q100=0.3 cfs
Area Inlet Performance Curve:
Design Point 1b
Trench Drain
Governing Equations:
At low flow depths, the inlet will act like a weir governed by the following equation: = 3 .0 P H ) 5
• where P = 2(L + W)
• where H corresponds to the depth of water above the flowline
At higher flow depths, the inlet will act like an orifice governed by the following equation: n = 0.67 A ( 2 gH ) 0.5
` where A equals the open area of the inlet grate L
• where H corresponds to the depth of water above the centroid of the cross -sectional area (A)
The exact depth at which the inlet ceases to act like a weir, and begins to act like an orifice is unknown.
However, what is known, is that the stage -discharge curves of the weir equation and the orifice equation
will cross at a certain flow depth. The two curves can be found below:
Stage -Discharge Curves
zo 00
8.00 --*-Weir Flow
16.00 -♦-Orifice Flow
14.00
40
12.00
�10.00
t 6.00
m
6.00
2.00
0.00
0.00 0.05 0.10 0.15 0.20 025 30 .0.0.35 0 40 0.45
Stage Mt)
If H > 1.792 (A/P), then the grate operates like an orifice: otherwise it operates like a weir
Input Parameters:
Type of Grate:
Trench Drain Grate
Length of Grate (ft):
20
Width of Grate (ft):
0.8
Open Area of Grate (ft):
11.20
Flowline Elevation (ft):
100.000
Allowable Capacity:
50%
Depth vs. Flow:
Shallow
Orifice
Actual
Elevation
Weir Flow
Flow
Flow
Depth Above Inlet (ft)
(ft)
(cfs)
(cfs)
(cfs)
0.00
100.00
0.00
0.00
0.00
0.05
100.05
0.70
6.73
0.70
0.10
100.10
1.97
9.52
1.97
0.11
100.11
Z28
9.98
Z28
0.15
100.15
3.63
11.66
3.63
0.25
100.25
7.80
15.05
7.80
0.30
100.30
10.25
16.48
10.25
0.35
100.35
12.92
17.80
12.92
0.40
100.40
15.79
19.03
15.79
Q100=2.2 cfs
APPENDIX B.2
STORM LINE DESIGN CALCULATIONS
Hydraflow Plan View
Outfam
Project File: SlormLine-Basinla.stm No. Lines: 1 01-19-2016
HyWalbwS s Ms
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
Hydraulic Grade Line Computations
Page 1
Una
Size
(in)
D
(ds)
Downstream
Len
(ft)
upstream
Check
JL
col
Minor
loss
(ft)
Invert
elev
(H)
HGL
elev
(ft)
Depth
(ft)
Area
(soft)
Vol
(Ns)
Vol
head
(ft)
EGL
elev
(H)
Sf
IN
Invert
elev
(ft)
HGL
elev
(ft)
Depth
(ft)
Area
(saH)
Vol
(Ills)
Vol
head
(H)
EGL
elm
(It)
Sf
(W
Ave
Sf
(xd
Enrgy
loss
(f)
(K)
1
10
0.31
4971.71
4971.92
0.21
0.11
2.85
0.13
4972.05
0.543
66.8
4972.38
4972.63
0.25"
0.14
2.28
0.08
4972.71
0.543
0.543
rJa
1.00
n/a
Project File: StamLins-Basinlastm
Number of lines: 1
Run Date: 01-19-2016
Notes:: " Critical depth.
Hkaan>. s ae we zoos
You created this PDF from an application that is not licensed to print to novaPDF printer (hftp:/twww.novapdf.com)
Hydraflow Plan View
OWN
Project File: Storm Lin"asinlb.stm No. Lines: 1 01-19-2016
Hyd Strom s ms Zoos
You created this PDF from an application that is not licensed to print to novaPDF printer (http:/Avww.novapdf.com)
Hydraulic Grade Line Computations
Page 1
Line
Size
(in)
G
(ns)
Downstream
Len
(ff)
Upstream
eck
JL
coeff
Minor
loss
(ff)
Invert
slev
(ff)
HGL
elev,
(ff)
Depth
(ff)
Area
(1 Qff)
Val
(Ns)
Val
head
(ff)
EGL
elev
(ff)
Sf
(
Invert
elev
Iff)
HGL
at"
(R)
Depth
(ff)
Area
(sgff)
Vel
(fffs)
Vel
head
(ff)
EGL
elev
(n)
Sf
(%)
rAve
Enrgy
loss
(ff)
(K)
1
10
0.85
4970.05
4970.31
0.26
0.15
5.85
0.53
4970.84
0.636
26.8
4970.99
4971.40
0.41"
0.27
3.18
0.16
4971.56
0.637
nta
1.00
0.16
Project Fle: StomlLlne-Basinlb.stm
Number of lines: 1
Run Date: 01-19-2016
Notes:; " critical depth.
You created this PDF from an application that is not licensed to print to novaPDF printer (http:/twww.novapdf.com)
Hydraflow Plan View
omreu
Project File: Storm Line-BasinOS2.stm No. Lines: 1 01-19-2016
xre�esow smno s..m. zoos
You created this PDF from an application that is not licensed to print to novaPDF printer (http:/hvww.novapdf.com)
Hydraulic Grade Line Computations
Pape 1
Line
Size
(in)
Q
(afs)
Downstream
Len
(ft)
upstream
Check
JL
eoeff
Minor
loss
Ifi1
Invert
elev
(fi)
KGL
el"
(fi)
Depth
(fi)
Area
(s9fQ
Val
(file)
Vol
head
(ft)
EGL
elev
(fi)
Sf
(W
Invert
elev
(ft)
KGL
elev
(ft)
Depth
(ft)
Area
(sgfQ
Val
(ftle)
Val
head
(fi)
EGL
elev
(fil
$f
N
Ave
Sf
N
Enrpy
loss
(it)
(K)
1
15
0.34
4970.29
4970.48
0.19
0.12
2.80
0.12
4970.61
0.478
46.2
4970.75
4970.98
0.23"
0.16
2.15
0.07
4971.06
0.478
0.478
nla
1.00
0.07
Prc*Wt He: StonnLine-BasinOS2sbm
Number of lines: 1
Run Data. 01-19-2016
Notes: ; " Critical depth.
nymanow so sv. zoos
You created this PDF from an application that is not licensed to print to novaPDF printer (hftp://www.novapdf.com)
APPENDIX C.1
STORMWATER ALTERNATIVE COMPLIANCENARIANCE APPLICATION (FLOODPLAIN FREEBOARD)
Stormwater
Alternative ComplianceNariance Application
City of Fort Collins Water Utilities Engineering
a 11r'l 1cm IYG111fd_'weI vVal
970-221-4158
Street Address 301 N. Howes, Suite 100
City Tort Lolltns
State CO Zip 80521
Owner Name Bohemian Companies Phone 970-490-2626
Street Address 262 E. Mountain Ave.
City Fort Collins stars CO
Project Name Fort Collins Hotel
io 80524
Project/Application Number from Development Review (i.e. FDP123456) FDP 150033
Legal description and/or address of property SW Quarter Section 12, Township 7 North, Range 69
West of 6th P.M.
Description of Project Infill hotel development
Existing Use (check one): f' residential Co' non-residential (" mixed -use 1" vacant ground
Proposed Use (check one); r residential t: non-residential (- mixed -use r other
If non-residential or mixed use, describe in detail Development of downtown hotel and associated
utility work, parkina. roadwav imnrnvamnnto
State the requirement from which alternative compliance/variance is sought. (Please include
applicable Drainage Criteria Manual volume, chapter and section.)
Variance from 12-inch floodplain freeboard requirement
What hardship prevents this site from meeting the requirement?
Hardship involving elevation of building finished floor and entryways and at the same time achieving
entryways that are not elevated excessively from adjoining sidewalks. Flood levels are mimimal at
this location, public safety will not be jeopardized by providing a minimum of 6" of freeboard.
What alternative is proposed for the site? Attach separate sheet if necessary
Lowering finished floor to a level (with min. 6" freeboard) that enables matching more closely to
existing sidewalk grades.
Attach separate sheet it necessary
page 2
The owner agrees to comply with the provisions of the zoning ordinance, building code and all other
applicable sections of the City Code, Land Use Code, City Plan and all other laws and ordinances
affecting the construction and occupancy of the proposed building that are not directly approved by
this variance. The owner understands that if this variance is approved, the structure and its occupants
may be more susceptible to flood or runoff damage as well as other adverse drainage issues.
Signature of
• Z- Ay-1 S
The engineer hereby certifies that the above information, along with the reference plans and project
descriptions is correct.
Signature of engi
Date complete application submitted:
Date of approval/denial: Variance: ❑ approved ❑ denied
Staffj ustification/notes/conditions:
Approved
Entered in UtilityFile Database? (]yes ❑no
12/zg,//y
PE STAMP
APPENDIX D.1
EROSION CONTROL REPORT
INORTHERN
ENGINEERING
EROSION CONTROL REPORT
Walnut -Chestnut Subdivision
A comprehensive Erosion and Sediment Control Plan (along with associated details) HAS BEEN
PROVIDED BY SEPARATE DOCUMENT. It should be noted, however, that any such Erosion and
Sediment Control Plan serves only as a general guide to the Contractor. Staging and/or phasing of
the BMPs depicted, and additional or different BMPs from those included may be necessary during
construction, or as required by the authorities having jurisdiction.
It shall be the responsibility of the Contractor to ensure erosion control measures are properly
maintained and followed. The Erosion and Sediment Control Plan is intended to be a living
document, constantly adapting to site conditions and needs. The Contractor shall update the
location of BMPs as they are installed, removed or modified in conjunction with construction
activities. It is imperative to appropriately reflect the current site conditions at all times.
The Erosion and Sediment Control Plan shall address both temporary measures to be implemented
during construction, as well as permanent erosion control protection. Best Management Practices
from the Volume 3, Chapter 7 — Construction BMPs will be utilized. Measures may include, but are
not limited to, silt fencing along the disturbed perimeter, gutter protection in the adjacent roadways
and inlet protection at existing and proposed storm inlets. Vehicle tracking control pads, spill
containment and clean-up procedures, designated concrete washout areas, dumpsters, and job site
restrooms shall also be provided by the Contractor.
Grading and Erosion Control Notes can be found on the Utility Plans. The Final Plans contain a
full-size Erosion Control sheet as well as a separate sheet dedicated to Erosion Control Details. In
addition to this report and the referenced plan sheets, the Contractor shall be aware of, and adhere
to, the applicable requirements outlined in the Development Agreement for the development. Also,
the Site Contractor for this project will be required to secure a Stormwater Construction General
Permit from the Colorado Department of Public Health and Environment (CDPHE), Water Quality
Control Division — Stormwater Program, prior to any earth disturbance activities. Prior to securing
said permit, the Site Contractor shall develop a comprehensive StormWater Management Plan
(SWMP) pursuant to CDPHE requirements and guidelines. The SWMP will further describe and
document the ongoing activities, inspections, and maintenance of construction BMPs.
Final Erosion Control Report
APPENDIX E.1
BASE FLOOD ELEVATION ANALYSIS
NORTHERN
ENGINEERING
July 15, 2015
City of Fort Collins
Stormwater Utility
Attn: Mr. Shane Boyle, PE
700 Wood Street
Fort Collins, Colorado 80521
RE: 100-Year Flood Elevation Determination for
Fort Collins Hotel
Mr. Boyle:
Northern Engineering is pleased to submit this 100-Year Flood Elevation Determination for the
proposed Fort Collins Hotel for your review. The project is located just north of the intersection
of Walnut and Chestnut and Walnut Street.
VICINITY MAP North
301 N. Howes Street, Suite 100, Fort Collins, CO 80521 1 970.221.4158 1 www. northernengi nee ri ng.conn
The City of Fort Collins has identified Walnut Street and Chestnut Street as potential flooding
areas, and has requested we perform floodplain modeling to further define flood potential
within these adjacent roadways by determining 100-year flood elevations.
The project site is located just north of a previous project site, the "Mitchell Block", for which
we conducted similar hydraulic modeling. This modeling was summarized in our previous
report entitled "Final Drainage Report for Mitchell Block", dated February 25, 2009. However,
for the purposes of the Mitchell Block project, the previous modeling separated out flows in the
adjacent south half -street of Walnut Street, and determined a 100-year peak flow rate of 36.3
cfs.
In 2009, we obtained effective HEC-RAS files from the City of Fort Collins in order to set up base
hydraulic modeling. We added several cross -sections to the effective HEC-RAS model in the
streets adjacent to the Mitchell Block project (Mountain Avenue and Walnut Street). Please
see the effective model workmap in Appendix 2.1.
For current modeling efforts, the base modeling obtained from the City of Fort Collins in 2009
for the Mitchell Block was utilized as our starting point for modeling Walnut Street and
Chestnut Street. However, in order to model the flow split at Walnut and Chestnut, we needed
to create a separate truncated model because HEC-RAS does not allow a flow split junction to
have multiple reaches entering and exiting the junction. The truncated model we created is
named "Walnut —NE" and is provided in Attachment 3.2. Additionally, in order to model
Jefferson Street and Firehouse Alley, we created two separate models. The Jefferson Street
model "Jeff —NE" is provided in Appendix 3.3; the firehouse Alley model "Alley_NE", is provided in
Appendix 3.4.
The Walnut Street model focuses on the flow split that occurs at the Walnut Street, Chestnut
Street, and Mountain Avenue confluence. We used the effective model peak 100-year flow in
Walnut of 60.0 cfs, and we also utilized the effective model water surface elevation in
Mountain Avenue near section 11+00 of 4976.18 as a starting water surface elevation in
Mountain Ave. This water surface elevation is conservative, as it is based on 100% of the flow
from Walnut St. entering Mountain Ave., resulting in slightly higher water surface elevations
within our area of interest. The starting water surface elevation was converted from NGVD-29
to NAVD-88 utilizing a conversion factor of 3.18-ft, based on City of Fort Collins Bechmark No.
5-00.
Several cross -sections were added within Walnut Street, Chestnut Street, and Mountain
Avenue in order to define the flow split that occurs at the intersection. We utilized the same
parameters found in the effective HEC-RAS model, with n-values in both channel and overbank
of 0.016. A hydraulic modeling workmap for the current hydraulic modeling is provided in
Appendix 3.1. Table 1, below provides a summary of our modeling results.
2
TABLE 1— HEC-RAS MODELING RESULTS
Street Section ID 100-Yr 300-Yr WSEL
Discharge (Ft-NAVD88)
(CFS)
Walnut St.
10
60
4977.13
Walnut St.
20
60
4978.81
Chestnut St.
5
22.08
4973.71
Chestnut St.
10
22.08
4974.08
Chestnut St.
20
22.08
4975.3
Chestnut St.
30
19.58
4976.69
Mountain Ave.
10
40.42
4976.18
Mountain Ave.
20
40.42
4976.71
Jefferson St.
10
24.1
4972.84
Jefferson St.
20
24.1
4973.71
Jefferson St.
30
24.1
4974.74
Jefferson St.
40
24.1
4975.91
Firehouse
Alley
10
9.5
4975.26
Firehouse
Alley
20
9.5
4975.68
Firehouse
Alley
30
9.5
4978.19
In order to determine peak 100-year flow rates in Jefferson Street and Firehouse Alley, as well
as to determine the local basin flow contribution to Chestnut Street, we obtained the current
effective SWMM model associated with the Downtown River District Final Design Report, by Ayres
2012 (Appendix 1.1). We modified this model by breaking Basin 106 into three sub -basins, "Basin
106a", "Basin 106b", and "Basin 106c", and we named this model "DTRD-NEmod-100yr". A modified
basin map, along with all SWMM output is provided in Appendix 1.2.
Hydraulic modeling for Jefferson Street and Firehouse Alley has been done in two separate models.
Model "Jeff —NE" is provided in Appendix 3.2; Model "Alley_NE" is provided in Appendix 3.3. We
utilized the same parameters found in the effective HEC-RAS model for Walnut Street, with n-
values in both channel and overbank of 0.016. A hydraulic modeling workmap for the current
model "Oak—NEmod", is provided in Appendix 2.1. Table 1, below provides a summary of our
modeling results.
3
Please find attached the following model output and exhibits:
Attachment 1.1— Current Effective SWMM Output
Attachment 1.2 — Modified SWMM Exhibit and Output
Attachment 2.1— Effective HEC-RAS Modeling Workmap - Walnut Street
Attachment 3.1— Proposed Condition HEC-RAS Modeling Workmap
Attachment 3.2 — Proposed Condition HEC-RAS Modeling Output — Walnut and Chestnut Street
Attachment 3.3 — Proposed Condition HEC-RAS Modeling Output — Jefferson Street
Attachment 3.4— Proposed Condition HEC-RAS Modeling Output- Firehouse Alley
If you should have any questions as you review this, please feel free to contact us at your
earliest convenience.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
Aaron Cvar, PE
Project Engineer
4
ATTACHMENT 1.1
Current Effective SWMM Output
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 )Build 5.0.022)
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
.........................................................
................
Analysis Options
................
Flow Units ...............
CFS
Process Models:
Rainfall/Runoff ........
YES
Snowmelt ...............
NO
Groundwater ............
NO
Flow Routing ...........
YES
Pending Allowed ........
YES
Water Quality ..........
NO
Infiltration Method ......
HORTON
Flow Routing Method ......
DYNWAVE
Starting Date ............
MAR-17-2006 00:00:00
Ending Date ..............
MAR-17-2006 23:00:00
Antecedent Dry Days ......
0.0
Report Time Step .........
00:01:00
Wet Time Step ............
00:05:00
Dry Time Step ............
01:00:00
-uting Time Step ........
1.00 set
...WING 02: maximum depth increased for Node CustomInlet-River
WARNING 02: maximum depth increased for Node E%MH_B1
Element Count
Number
of rain gages ......
1
Number
of subcatchments ...
93
Number
of nodes ...........
76
Number
of links ...........
69
Number
of pollutants ......
0
Number
of land uses .......
0
Raingage
................
Summary
Data
Recording
Name
Data
Source
Type
Interval
-------------------------------------------------------------
1
300-year
INTENSITY
5 in.
....................
Subcatchment Summary
SWMM 5 Page 1
Name
Area
Width
%Impery
%Slope
Rain Gage
Outlet
---------------------------------------------'
100
1.20
185.00
95.00
---------------------------------------------"'
0.8000
1
INLET-B1B
101
2.30
337.00
95.00
0.3400
1
INLET-B2B
102
2.90
423.00
95.00
1.0800
1
INLET-C2B
103
0.80
582.00
95.00
0.8000
1
INLET-B3B
104
4.50
2930.00
95.00
0.4800
1
EXMH B1
105
1.20
2197.00
95.00
0.6600
1
EXINLET-B4B
106
3.70
537.00
95.00
0.6600
1
EXINLET-B3C
107
0.80
524.00
95.00
0.7100
1
EXINLET-B4C
108
1.90
274.00
95.00
0.3200
1
INLET-B10A
109
0.80
1618.00
60.00
0.2900
1
INLET-B5A
110
2.00
289.00
80.00
1.2600
1
INLET-A3B
111
0.90
124.00
10.00
1.0600
1
213
112
1.30
191.00
90.00
0.8900
1
0112
113
1.80
265.00
95.00
1.7200
1
0113
114
3.50
502.00
95.00
2.0800
1
0114
115
2.80
407.00
95.00
3.5700
1
0115
116
0.20
582.00
95.00
0.7900
1
INLET-B2A
117
1.20
459.00
95.00
0.5400
1
EXINLET-B3A
118
1.80
258.00
95.00
0.9000
1
INLET-B7A
119
3.60
880.00
90.00
0.4200
1
MH B13
120
0.40
743.00
95.00
1.2800
1
INLET-A3A
121
0.30
456.00
95.00
1.2000
1
INLET-B1A
122
0.60
1177.00
95.00
0.2800
1
INLET-C1A
123
0.30
527.00
95.00
1.0400
1
CustomInlet-River
124
0.70
603.00
95.00
2.1400
1
INLET-AIA
125
0.50
893.00
95.00
0.9100
1
INLET-C2A
126
5.00
184.00
95.00
1.2400
1
EXMH Cl
127
2.30
328.00
95.00
1.5000
1
INLET-C1B
-9
0.30
1406.00
95.00
2.1100
1
INLET-A2A
0.30
252.00
95.00
1.6900
1
EXINLET-B10B
0.20
271.00
95.00
0.9600
1
EXINLET-B9B
.2
0.40
420.00
95.00
1.4200
1
INLET-B9A
203
0.30
447.00
95.00
0.3900
1
EXINLET-B8A
204
0.40
203.00
95.00
0.0300
1
203
205
0.10
121.00
95.00
0.8700
1
INLET-M
206
0.20
102.00
90.00
1.2200
1
INLET -MA
207
0.90
1123.00
95.00
0.4400
1
EXINLET-B5B
208
0.70
327.00
95.00
0.6500
1
EXSTUB-B6
210
2.90
414.00
80.00
0.6200
1
INLET-D2B
211
0.20
224.00
95.00
0.4700
1
INLET-D2A
212
0.60
918.00
95.00
0.5700
1
INLET-D3A
213
1.20
360.00
95.00
0.7100
1
INLET-D3B
300
2.20
325.00
95.00
1.7300
1
0300
Node Summary
Invert
Max.
Ponded
External
Name
Type
Elev.
Depth
Area
Inflow
--___
CustomInlet-River
----____
JUNCTION
--------------------------------------
4956.94
5.91
0.0
EXINLET-B10B
JUNCTION
4972.71
3.71
0.0
EXINLET-B3A
JUNCTION
4960.63
9.45
0.0
EXINLET-B3C
JUNCTION
4963.76
6.34
0.0
EXINLET-B4B
JUNCTION
4971.23
2.42
0.0
EXINLET-B4C
JUNCTION
4972.04
2.29
0.0
EXINLET-B5B
JUNCTION
4971.25
2.42
0.0
SWMM 5
Page 2
EXINLET-BBA
JUNCTION
4971.38
3.08
0.0
EXINLET-B9B
JUNCTION
4971.42
4.24
0.0
EXMH B1
JUNCTION
4959.16
11.13
0.0
EXMH C1
JUNCTION
4956.26
9.15
0.0
EXSTUB-B6
JUNCTION
4970.40
3.00
0.0
INLET-AIA
JUNCTION
4955.50
3.02
0.0
INLET-A2A
JUNCTION
4955.01
7.94
0.0
INLET-A3A
JUNCTION
4965.04
3.40
0.0
INLET-A3B
JUNCTION
4962.01
6.48
0.0
INLET-A4A
JUNCTION
4969.60
2.65
0.0
INLET-B10A
JUNCTION
4972.40
2.99
0.0
INLET-B1A
JUNCTION
4960.79
4.02
0.0
INLET-B1B
JUNCTION
4960.92
4.08
0.0
INLET-02A
JUNCTION
4964.00
3.80
0.0
INLET-B2B
JUNCTION
4963.85
3.86
0.0
INLET-B3B
JUNCTION
4960.96
8.28
0.0
INLET-B4A
JUNCTION
4965.45
7.45
0.0
INLET-B5A
JUNCTION
4971.06
2.50
0.0
INLET-B7A
JUNCTION
4970.39
3.50
0.0
INLET-B9A
JUNCTION
4971.49
3.65
0.0
INLET-C1A
JUNCTION
4957.82
5.00
0.0
INLET-C1B
JUNCTION
4958.34
5.12
0.0
INLET-C2A
JUNCTION
4961.50
2.98
0.0
INLET-C2B
JUNCTION
4960.76
4.14
0.0
INLET-D1
JUNCTION
4960.24
7.94
0.0
INLET-D2A
JUNCTION
4963.74
4.00
0.0
INLET-D2B
JUNCTION
4963.78
4.87
0.0
INLET-D3A
JUNCTION
4964.00
1.88
0.0
INLET-D3B
JUNCTION
4964.28
4.13
0.0
MR Al
JUNCTION
4942.03
15.03
0.0
' A2
JUNCTION
4950.07
9.37
0.0
%3
JUNCTION
4953.34
9.94
0.0
A-MH D1
JUNCTION
4959.59
9.05
0.0
_ A5
JUNCTION
4961.21
7.65
0.0
MR B10
JUNCTION
4967.11
8.78
0.0
MR Bll
JUNCTION
4968.41
8.65
0.0
MR B12
JUNCTION
4969.47
9.06
0.0
MR B13
JUNCTION
4970.00
9.39
0.0
MR B2
JUNCTION
4957.32
7.71
0.0
MR B3
JUNCTION
4958.62
9.59
0.0
MR B3A
JUNCTION
4960.86
9.60
0.0 Yes
MR B4
JUNCTION
4958.88
10.22
0.0
MR B4A
JUNCTION
4965.42
7.83
0.0
MR B4B
JUNCTION
4966.41
8.22
0.0
MR B5
JUNCTION
4960.52
9.87
0.0
MR B6
JUNCTION
4963.34
10.85
0.0
MR B7
JUNCTION
4963.58
10.62
0.0
MR B7A
JUNCTION
4969.79
5.39
0.0
MR B8
JUNCTION
4963.76
10.62
0.0
MR B9
.UNCTION
4965.12
10.25
0.0
MR C1
JUNCTION
4941.23
7.06
0.0
MR C2
JUNCTION
4942.08
6.69
0.0
MR C3
JUNCTION
4945.12
14.60
0.0
MR C4/B1
JUNCTION
4946.00
17.83
0.0
MR C5
JUNCTION
4954.89
7.75
0.0
MR C6
JUNCTION
4955.47
9.01
0.0
MR C7
JUNCTION
4956.24
8.23
0.0
MR D2
JUNCTION
4959.98
8.30
0.0
MR D3
JUNCTION
4960.65
7.21
0.0
MH D4
JUNCTION
4961.91
5.11
0.0
SWMM 5 Page 3
M4T STRT
JUNCTION
4973.00
1.00
0.0 Yes
0112
JUNCTION
0.00
0.00
0.0
0113
JUNCTION
0.00
0.00
0.0
0114
JUNCTION
DAD
0.00
0.0
0115
JUNCTION
0.00
0.00
0.0
0300
JUNCTION
0.00
0.00
0.0
Al POUDRE
OUTFALL
4949.89
3.00
0.0
FESB1-POUDRE
OUTFALL
4953.73
4.00
0.0
FESC1-UDALL POND
OUTFALL
4941.03
2.00
0.0
Link Summary
Name
From Node
To Node
Type
Length
%Slope
Roughness
________
Al
MH Al
______________
Al POUDRE
CONDUIT
---__________--------___-___
73.0
0.1781
0.0130
A2
MH A2
MH Al
CONDUIT
27.0
0.0741
0.0130
A3
MH A3
MH A2
CONDUIT
173.0
1.8905
0.0130
A4
MH A4-MH_DI
M1 A3
CONDUIT
325.0
1.9050
0.0130
A5
MH A5
MH A4-MH D1
CONDUIT
65.5
1.4342
0.0130
B1
MH C4/B1
FE5B1-POUDRE
CONDUIT
139.0
1.4966
0.0130
B2
MH B2
MH C4/01
CONDUIT
100.0
1.5102
0.0130
B3
MH B3
MH B2
CONDUIT
353.0
0.3683
0.0130
B4
MH B4
MH B3
CONDUIT
74.0
0.3514
0.0130
B5
MH B5
MH B4
CONDUIT
470.0
0.3489
0.0130
B6
MH B6
MH B5
CONDUIT
485.0
0.5815
0.0130
B7
MH B7
MH B6
CONDUIT -
68.0
0.3529
0.0130
B8
MH B8
MH B7
CONDUIT
74.5
0.2470
0.0130
B9
MH B9
MH B8
CONDUIT
367.0
0.3695
0.0130
MH B10
MHB9CONDUIT
63.0
0.7778
0.0130
MH B11
MH BID
CONDUIT
165.0
0.7879
0.0130
MH B12
MH all
CONDUIT
134.0
0.7911
0.0130
_1
MH B13
MH B12
CONDUIT
33.0
1.6063
0.0130
C1
MH C1
FESCI-UDALL_PONDCONDUIT
34.0
0.5882
0.0130
C2
MH C2
MH Cl
CONDUIT
138.0
0.6160
0.0130
C3
MH C3
Mi C2
CONDUIT
494.0
0.6154
0.0100
C4
MH C4/BI
MI C3
CONDUIT
144.0
0.6111
0.0130
C5
M7 C5
MH C4/B1
CONDUIT
45.0
0.3111
0.0130
C6
MH C6
MH C5
CONDUIT
194.0
0.2990
0.0130
C7
MH C7
MN C6
CONDUIT
274.0
0.2810
0.0130
D2
MH D2
MH A4-MH_D1
CONDUIT
74.0
0.5270
0.0130
D3
MH D3
MH D2
CONDUIT
173.0
0.3873
0.0130
D4
MH D4
MH D3
CONDUIT
322.0
0.3913
0.0130
EXLAT-B3C
EXINLET-B3C
MH B3A
CONDUIT
36.0
2.1116
0.0130
EXLAT-B4B
EXINLET-B4B
MH B4B
CONDUIT
34.4
2.2415
0.0130
EXLAT-B4C
EXINLET-B4C
MH B4B
CONDUIT
29.0
5.4564
0.0130
LAT-AIA
INLET-AlA
MH A2
CONDUIT
41.0
1.2684
0.0130
LAT-A2A
INLET-A2A
MH A3
CONDUIT
25.0
2.6009
0.0130
LAT-A3A
INLET-A3A
MI A5
CONDUIT
21.0
2.8106
0.0130
LAT-A3B
INLET-A30
MH A5
CONDUIT
46.0
0.9348
0.0130
LAT-MA
INLET -MA
MH B6
CONDUIT
104.0
0.2596
0.0130
LAT-B1A
INLET-B1A
MH B2
CONDUIT
32.0
0.6563
0.0130
LAT-BIB
INLET -BIB
MH B2
CONDUIT
11.0
3.0924
0.0130
LAT-B2A
INLET-B2A
MH B3
CONDUIT
45.0
0.8000
0.0130
LAT-B2B
INLET-52B
MH B3
CONDUIT
14.0
1.5002
0.0130
LAT-B3A
EXINLET-B3A
MH B5
CONDUIT
45.0
0.2444
0.0130
LAT-B3B
INLET-B3B
MH B3A
CONDUIT
36.0
0.2778
0.0130
LAT-B3C
MH B3A
MH B5
CONDUIT
57.0
0.5965
0.0130
LAT-B4A
INLET-B4A
MH B4A
CONDUIT
19.0
0.1579
0.0130
SWMM 5 Page 4
LAT-B4B
MH_B4A
MH B6
CONDUIT
92.0
0.3043
0.0130
LAT-B4C
MH B4B
MH B6
CONDUIT
52.0
2.0004
0.0130
LAT-B5A
INLET-B5A
MH B7
CONDUIT
39.0
1.4617
0.0130
LAT-B5B
EXINLET-B5B
MN B7
CONDUIT
20.0
1.6002
0.0130
LAT-B6A
EXSTUB-B6
MH-B8
CONDUIT
21.0
1.5049
0.0130
LAT-B7A
INLET-B7A
MH-B7A
CONDUIT
25.0
2.4007
0.0130
LAT-B7C
MH B7A
MH-B9
CONDUIT
71.0
1.0001
0.0130
LAT-B8A
EXINLET-B8A
MH-B7A
CONDUIT
38.5
4.1334
0.0130
LAT-B9A
INLET-B9A
MH B10
CONDUIT
32.0
2.4695
0.0130
LAT-B9B
EXINLET-B9B
MH B10
CONDUIT
36.0
2.0004
0.0130
LAT-B10A
INLET-BIOA
MH Bll
CONDUIT
30.0
1.9003
0.0130
LAT-B10B
EXINLET-B10B
MH Bll
CONDUIT
44.0
2.0004
0.0130
LAT-B11A
EXMH B1
MH B4
CONDUIT
61.0
0.4590
0.0130
LAT-CIA
INLET-ClA
MH C5
CONDUIT
36.0
0.3889
0.0130
LAT-C1B
INLET-C1B
MH C5
CONDUIT
33.0
2.0004
0.0130
LAT-C2A
INLET-C2A
MH C7
CONDUIT
55.0
1.7821
0.0130
LAT-C2B
INLET-C2B
MH C7
CONDUIT
12.0
2.0004
0.0130
LAT-C3A
EXMH Cl
MH C7
CONDUIT
18.0
0.1111
0.0130
LAT-D2A
INLET-D2A
MH D3
CONDUIT
51.0
0.4510
0.0130
LAT-D2B
INLET-D2B
MH D3
CONDUIT
14.0
1.9289
0.0130
LAT-D3A
INLET-D3A
MH D4
CONDUIT
40.0
0.5000
0.0130
LAT-D3B
INLET-D3B
MH D4
CONDUIT
24.0
2.0004
0.0130
MT STRT
M4T STRT
EXMH B1
CONDUIT
720.0
0.4458
0.0160
12DIP
CustomInlet-RiVerMH
92
CONDUIT
80.6
6.1031
0.0130
LAT-D1
INLET-D1
MH D2
CONDUIT
13.0
2.9243
0.0130
.....................
Cross Section Summary
Full
Full
Hyd.
Max.
No. of
Full
suit
Shape
Depth
Area
Rad.
Width
Barrels
Flow
----------------------------------------------------------------------'
CIRCULAR
3.00
7.07
0.75
3.00
1
28.15
A2
CIRCULAR
3.00
7.07
0.75
3.00
1
18.15
A3
CIRCULAR
3.00
7.07
0.75
3.00
1
91.71
A4
CIRCULAR
3.00
7.07
0.75
3.00
1
92.06
A5
CIRCULAR
2.00
3.14
0.50
2.00
1
27.09
B1
RECT CLOSED
4.00
24.00
1.20
6.00
1
378.99
B2
RECT CLOSED
4.00
28.00
1.27
7.00
1
461.92
B3
RECT CLOSED
4.00
28.00
1.27
7.00
1
228.11
B4
RECT CLOSED
4.00
28.00
1.27
7.00
1
222.81
B5
RECT CLOSED
4.00
24.00
1.20
6.00
1
183.00
B6
CIRCULAR
4.00
12.57
1.00
4.00
1
109.53
B7
CIRCULAR
4.00
12.57
1.00
4.00
1
85.34
B8
CIRCULAR
4.00
12.57
1.00
4.00
1
71.39
B9
CIRCULAR
4.00
12.57
1.00
4.00
1
87.31
B10
CIRCULAR
3.50
9.62
0.88
3.50
1
88.73
ell
CIRCULAR
3.50
9.62
0.88
3.50
1
89.31
B12
CIRCULAR
3.00
7.07
0.75
3.00
1
59.32
813
CIRCULAR
3.00
7.07
0.75
3.00
1
84.53
Cl
CIRCULAR
2.00
3.14
0.50
2.00
1
17.35
C2
CIRCULAR
2.00
3.14
0.50
2.00
1
17.75
C3
CIRCULAR
2.00
3.14
0.50
2.00
1
23.07
C4
CIRCULAR
2.00
3.14
0.50
2.00
1
17.68
C5
CIRCULAR
4.00
12.57
1.00
4.00
1
80.12
C6
CIRCULAR
4.00
12.57
1.00
4.00
1
78.54
C7
CIRCULAR
3.50
9.62
0.88
3.50
1
53.33
D2
CIRCULAR
3.00
7.07
0.75
3.00
1
48.42
D3
CIRCULAR
3.00
7.07
0.75
3.00
1
41.51
SWMM 5 Page 5
D4 CIRCULAR
2.50
4.91
0.63
2.50
1
25.66
EXLAT-B3C CIRCULAR
2.50
4.91
0.63
2.50
1
59.60
EXLAT-B4B CIRCULAR
1.25
1.23
0.31
1.25
1
9.67
EXLAT-B4C CIRCULAR
1.25
1.23
0.31
1.25
1
15.09
LAT-AIA CIRCULAR
1.50
1.77
0.38
1.50
1
11.83
LAT-A2A CIRCULAR
1.50
1.77
0.38
1.50
1
16.94
LAT-A3A CIRCULAR
1.50
1.77
0.38
1.50
1
17.61
LAT-A3B CIRCULAR
1.50
1.77
0.38
1.50
1
10.16
LAT-A4A CIRCULAR
1.00
0.79
0.25
1.00
1
1.82
LAT-B1A CIRCULAR
1.50
1.77
0.38
1.50
1
8.51
LAT-B1B CIRCULAR
1.50
1.77
0.38
1.50
1
18.47
LAT-B2A CIRCULAR
1.50
1.77
0.38
1.50
1
9.40
LAT-B2B CIRCULAR
2.00
3.14
0.50
2.00
1
27.71
LAT-B3A CIRCULAR
2.00
3.14
0.50
2.00
1
11.18
LAT-B3B CIRCULAR
2.50
4.91
0.63
2.50
1
21.62
LAT-B3C CIRCULAR
3.00
7.07
0.75
3.00
1
51.51
LAT-B4A CIRCULAR
2.00
3.14
0.50
2.00
1
8.99
LAT-B4B CIRCULAR
2.00
3.14
0.50
2.00
1
12.46
LAT-B4C CIRCULAR
2.50
4.91
0.63
2.50
1
58.01
LAT-135A CIRCULAR
1.50
1.77
0.38
1.50
1
12.70
LAT-B5B CIRCULAR
1.50
1.77
0.38
1.50
1
13.29
LAT-B6A CIRCULAR
1.33
1.39
0.33
1.33
1
9.35
LAT-B7A CIRCULAR
2.00
3.14
0.50
2.00
1
35.05
LAT-B7C CIRCULAR
3.50
9.62
0.88
3.50
1
100.61
LAT-B8A CIRCULAR
1.50
1.77
0.38
1.50
1
21.36
LAT-B9A CIRCULAR
1.50
1.77
0.38
1.50
1
16.51
LAT-B9B CIRCULAR
1.50
1.77
0.38
1.50
1
14.86
LAT-B10A CIRCULAR
2.00
3.14
0.50
2.00
1
31.19
LAT-B10B CIRCULAR
1.50
1.77
0.38
1.50
1
14.86
LAT-B11A CIRCULAR
4.00
12.57
1.00
4.00
1
97.32
-T-CIA CIRCULAR
1.50
1.77
0.38
1.50
1
6.55
-C1B CIRCULAR
1.50
1.77
0.38
1.50
1
14.86
-C2A CIRCULAR
1.50
1.77
0.38
1.50
1
14.02
.,T-C2B CIRCULAR
2.00
3.14
0.50
2.00
1
32.00
LAT-C3A CIRCULAR
2.00
3.14
0.50
2.00
1
7.54
LAT-D2A CIRCULAR
1.50
1.77
0.38
1.50
1
7.05
LAT-D2B CIRCULAR
1.50
1.77
0.38
1.50
1
- 14.59
LAT-D3A CIRCULAR
1.50
1.77
0.38
1.50
1
7.43
LAT-D3B CIRCULAR
1.50
1.77
0.38
1.50
1
14.86
MT STRT TRAPEZOIDAL
0.50
62.50
0.42
150.00
1
216.21
12DIP CIRCULAR
1.00
0.79
0.25
1.00
1
8.80
LAT-D1 CIRCULAR
2.00
3.14
0.50
2.00
1
38.69
.....................«,.
Volume
Depth
Runoff Quantity Continuity
..................... .....
acre-feet
inches
Total Precipitation ......
---------
18.407
-------
3.669
Evaporation Loss .........
0.000
0.000
Infiltration Loss ........
0.605
0.121
Surface Runoff ...........
17.471
3.483
Final Surface Storage ....
0.461
0.092
Continuity Error M .....
-0.702
.......:. ................
Volume
Volume
Flow Routing Continuity
................«.«.«..
acre-feet
---------
10-6 gal
---------
Dry Weather Inflow .......
0.000
0.000
SWMM 5 Page 6
Wet Weather Inflow .......
17.471
5.693
Groundwater Inflow .......
0.000
0.000
RDII Inflow ..............
0.000
0.000
External Inflow ..........
3.507
1.143
External Outflow .........
17.561
5.722
Internal Outflow .........
0.000
0.000
Storage Losses ...........
0.000
0.000
Initial Stored Volume ....
0.039
0.013
Final Stored Volume ......
0.040
0.013
Continuity Error (%) .....
16.257
...........................
Time -Step Critical Elements
None
Highest Flow Instability Indexes
................................
All links are stable.
.........................
Routing Time Step Summary
.........................
Minimum Time Step 0.50 sec
Average Time Step 1.00 sec
Maximum Time Step 1.00 sec
scent in Steady State 0.00
cage Iterations per Step 2.04
Subcatchment Runoff Suvwary
Total
Total
Total
Total
Total
Total
Peak
Runoff
Precip
Runon
Evap
Infil
Runoff
Runoff
Runoff
Coeff
Subcatchment
in
in
in
in
in
10"6 gal
______________----
CFS
____________________________________________
100
3.67
0.00
0.00
____________
0.07
3.53
0.12
11.13
0.963
101
3.67
0.00
0.00
0.07
3.53
0.22
19.84
0.962
102
3.67
0.00
0.00
0.07
3.53
0.28
27.19
0.963
103
3.67
0.00
0.00
0.07
3.53
0.08
7.99
0.962
104
3.67
0.00
0.00
0.07
3.53
0.43
44.74
0.963
105
3.67
0.00
0.00
0.07
3.53
0.12
12.01
0.962
106
3.67
0.00
0.00
0.07
3.53
0.36
34.23
0.963
107
3.67
0.00
0.00
0.07
3.53
0.08
7.98
0.962
108
3.67
0.00
0.00
0.07
3.53
0.18
16.24
0.962
109
3.67
0.00
0.00
0.55
3.09
0.07
7.65
0.842
110
3.67
0.00
0.00
0.29
3.33
0.18
17.94
0.908
111
3.67
0.00
0.00
1.53
2.14
0.05
2.68
0.583
112
3.67
0.00
0.00
0.14
3.47
0.12
11.96
0.945
113
3.67
0.00
0.00
0.07
3.53
0.17
17.25
0.963
114
3.67
0.00
0.00
0.07
3.53
0.34
33.71
0.963
115
3.67
0.00
0.00
0.07
3.53
0.27
27.41
0.963
116
3.67
0.00
0.00
0.07
3.53
0.02
2.00
0.962
SWMM 5 Page 7
117
3.67
0.00
0.00
0.07
3.53
0.12
11.76
0.963
118
3.67
0.00
0.00
0.07
3.53
0.17
16.67
0.963
119
3.67
0.00
0.00
0.14
3.47
0.34
33.64
0.945
120
3.67
0.00
0.00
0.07
3.53
0.04
4.00
0.962
121
3.67
0.00
0.00
0.07
3.53
0.03
3.00
0.962
122
3.67
0.00
0.00
0.07
3.53
0.06
6.00
0.962
123
3.67
0.00
0.00
0.07
3.53
0.03
3.00
0.962
124
3.67
0.00
0.00
0.07
3.53
0.07
7.00
0.962
125
3.67
0.00
0.00
0.07
3.53
0.05
5.00
0.962
126
3.67
0.00
0.00
0.07
3.52
0.48
35.38
0.960
127
3.67
0.00
0.00
0.07
3.53
0.22
21.86
0.963
128
3.67
0.00
0.00
0.07
3.53
0.03
3.00
0.961
200
3.67
0.00
0.00
0.07
3.53
0.03
3.00
0.962
201
3.67
0.00
0.00
0.07
3.53
0.02
2.00
0.962
202
3.67
0.00
0.00
0.07
3.53
0.04
4.00
0.962
203
3.67
4.71
D.00
0.08
8.23
0.07
4.75
0.982
204
3.67
0.00
0.00
0.07
3.53
0.04
3.47
0.962
205
3.67
0.00
0.00
0.07
3.53
0.01
1.00
0.962
206
3.67
0.00
0.00
0.14
3.47
0.02
1.99
0.945
207
3.67
0.00
0.00
0.07
3.53
0.09
9.00
0.962
208
3.67
0.00
0.00
0.07
3.53
0.07
6.93
0.963
210
3.67
0.00
0.00
0.29
3.32
0.26
24.60
0.906
211
3.67
0.00
0.00
0.07
3.53
0.02
2.00
0.962
212
3.67
0.00
0.00
0.07
3.53
0.06
6.00
0.962
213
3.67
1.61
0.00
0.07
5.13
0.17
12.69
0.973
300
3.67
0.00
0.00
0.07
3.53
0.21
21.09
0.963
Node Depth Summary
_______-_
Average
____________________
Maximum
Maximum
Time of Max
Depth
Depth
HGL
Occurrence
Node
Type
Feet
___________________
Feet
Feet
days hr:min
___-
_________
CustomInlet-River
JUNCTION
4.88
5.31
4962.25
0 00:40
EXINLET-B10B
JUNCTION
0.02
0.58
4973.29
0 00:40
EXINLET-B3A
JUNCTION
0.13
8.25
4968.88
0 00:38
EXINLET-B3C
JUNCTION
0.06
6.34
4970.10
0 00:38
EXINLET-B4B
JUNCTION
0.04
1.69
4972.92
0 00:39
EXINLET-B4C
JUNCTION
0.03
1.10
4973.14
0 00:40
EXINLET-B5B
JUNCTION
0.04
1.58
4972.83
0 00:39
EXINLET-B8A
JUNCTION
0.02
0.55
4971.93
0 00:43
EXINLET-139B
JUNCTION
0.02
0.46
4971.8B
0 00:40
EXMH B1
.UNCTION
0.14
6.39
4965.55
0 00:40
EXMH Cl
JUNCTION
0.18
6.51
4962.77
0 00:40
EXSTUB-B6
JUNCTION
0.03
1.06
4971.46
0 00:40
INLET-AIA
JUNCTION
0.03
0.96
4956.46
0 00:40
INLET-A2A
JUNCTION
0.03
4.77
4959.78
0 00:38
INLET-A3A
JUNCTION
0.02
0.73
4965.77
0 00:40
INLET-A3B
JUNCTION
0.08
4.46
4966.47
0 00:39
INLET-A4A
JUNCTION
0.03
0.95
4970.55
0 00:40
INLET-B10A
JUNCTION
0.06
1.67
4974.07
0 00:40
INLET-B1A
JUNCTION
0.03
0.80
4961.59
0 00:40
INLET-B1B
JUNCTION
0.05
1.69
4962.81
0 00:39
INLET-B2A
JUNCTION
0.02
0.56
4964.56
0 00:40
INLET-B2B
JUNCTION
0.08
2.32
4966.17
0 00:39
INLET-B3B
JUNCTION
0.13
8.27
4969.23
0 00:38
SWMM 5 Page 8
INLET-B4A
JUNCTION
0.03
4.53
4969.98
0
00:39
INLET-B5A
JUNCTION
0.03
1.21
4972.27
0
00:40
INLET-B7A
JUNCTION
0.05
1.68
4972.07
0
00:40
INLET-B9A
JUNCTION
0.02
0.70
4972.19
0
00:40
INLET-C1A
JUNCTION
0.05
3.04
4960.86
0
00:40
INLET-ClB
JUNCTION
0.07
4.85
4963.19
0
00:40
INLET-C2A
JUNCTION
0.03
1.04
4962.54
0
00:40
INLET-C2B
JUNCTION
0.08
3.24
4964.00
0
00:40
INLET-D1
JUNCTION
0.18
2.95
4963.19
0
00:41
INLET-D2A
JUNCTION
0.02
0.66
4964.40
0
00:40
INLET-D2B
JUNCTION
0.06
2.02
4965.80
0
00:39
INLET-D3A
JUNCTION
D.04
1.36
4965.36
0
00:40
INLET-D3B
JUNCTION
0.06
2.25
4966.53
0
00:39
MH Al
JUNCTION
9.47
11.83
4953.86
0
00:41
MH A2
JUNCTION
1.46
6.10
4956.17
0
00:41
MH A3
JUNCTION
0.09
6.27
4959.61
0
00:38
MH A4-MH D1
JUNCTION
0.08
2.41
4962.00
0
00:41
MH A5
JUNCTION
0.05
1.56
4962.77
0
00:40
MH B10
JUNCTION
0.11
4.59
4971.70
0
00:42
MH Bll
JUNCTION
0.09
3.67
4972.08
0
00:42
MN B12
JUNCTION
0.07
2.86
4972.33
0
00:42
MH-B13
JUNCTION
0.06
2.39
4972.39
0
00:42
MH-B2
JUNCTION
0.10
4.10
4961.42
0
00:41
MH B3
JUNCTION
0.14
5.43
4964.05
0
00:41
MH B3A
JUNCTION
0.15
7.94
4968.80
0
00:38
MH B4
JUNCTION
0.15
6.05
4964.93
0
00:40
MH B4A
JUNCTION
0.03
4.07
4969.49
0
00:39
MH B4B
JUNCTION
0.04
3.17
4969.58
0
00:41
MH B5
JUNCTION
0.14
7.79
4968.31
0
00:38
MH B6
JUNCTION
0.14
6.13
4969.47
0
00:41
"B7
JUNCTION
0.15
6.32
4969.90
0
00:41
97A
JUNCTION
0.05
1.31
4971.10
0
00:42
38
JUNCTION
0.15
6.44
4970.21
0
00:41
. B9
JUNCTION
0.13
6.00
4971.12
0
00:42
MH Cl
JUNCTION
2.35
10.20
4951.43
0
00:00
MH C2
JUNCTION
1.77
6.61
4948.69
0
00:40
MH C3
JUNCTION
0.74
10.68
4955.80
0
00:40
MH C4/B1
JUNCTION
0.97
14.23
4960.23
0
00:40
MH C5
JUNCTION
0.20
5.77
4960.66
0
00:40
MH C6
JUNCTION
0.16
5.63
4961.10
0
00:40
MH C7
JUNCTION
0.16
6.12
4962.36
0
00:40
MH D2
JUNCTION
0.11
3.21
4963.19
0
00:41
MH D3
JUNCTION
0.10
3.36
4964.01
0
00:41
MH D4
JUNCTION
0.07
2.78
4964.69
0
00:41
MNT STRT
JUNCTION
0.01
0.37
4973.37
0
00:37
0112
JUNCTION
0.00
0.00
0.00
0
00:10
0113
JUNCTION
0.00
0.00
0.00
0
00:10
0114
JUNCTION
0.00
0.00
0.00
0
00:10
0115
JUNCTION
0.00
0.00
0.00
0
00:10
0300
JUNCTION
0.00
0.00
0.00
0
00:10
Al POUDRE
OUTFALL
1.59
2.67
4952.56
0
00:41
FESB1-POUDRE
OUTFALL
0.07
3.27
4957.00
0
00:39
FESCI-UDALL POND
OUTFALL
2.47
2.47
4943.50
0
00:00
...................
Node Inflow Summary
...................
SWMM 5 Page 9
Maximum
Maximum
Lateral
Total
Lateral
Total
Time
of
Max
Inflow
Inflow
Inflow
Inflow
Occurrence
Volume
Volume
Node
Type
CFS
CFS
days
hr:min
30"6 gal
10"6 gal
-------------------------------------------------------------------------------------
CustomInlet-River
JUNCTION
3.00
3.00
0
00:40
0.029
0.029
EXINLET-B10B
JUNCTION
3.00
3.00
0
00:40
0.029
0.029
EXINLET-B3A
JUNCTION
11.75
11.75
0
00:40
0.115
0.115
EXINLET-B3C
JUNCTION
34.21
34.21
0
00:40
0.355
0.355
EXINLET-B4B
JUNCTION
12.00
12.00
0
00:40
0.115
0.115
EXINLET-B4C
JUNCTION
7.97
7.97
0
00:40
0.077
0.077
EXINLET-B5B
JUNCTION
8.99
8.99
0
00:40
0.086
0.086
EXINLET-B8A
JUNCTION
4.75
4.75
0
00:40
0.067
0.067
EXINLET-B9B
JUNCTION
2.00
2.00
0
00:40
0.019
0.019
EXMH B1
JUNCTION
44.71
158.08
0
00:38
0.432
1.019
EXMH Cl
JUNCTION
35.37
35.37
0
00:40
0.478
0.478
EXSTUB-B6
JUNCTION
6.93
6.93
0
00:40
0.067
0.067
INLET-AIA
JUNCTION
7.00
7.00
0
00:40
0.067
0.067
INLET-A2A
JUNCTION
3.00
3.00
0
00:40
0.029
0.029
INLET-A3A
JUNCTION
4.00
4.00
0
00:40
0.038
0.038
INLET-A3B
JUNCTION
17.93
17.93
0
00:40
0.181
0.181
INLET-A4A
JUNCTION
1.99
1.99
0
00:40
0.019
0.019
INLET-Bl OA
JUNCTION
16.24
16.24
0
00:40
0.182
0.182
INLET-B1A
JUNCTION
3.00
3.00
0
00:40
0.029
0.029
INLET -BIB
JUNCTION
11.13
11.13
0
00:40
0.115
0.115
INLET-B2A
JUNCTION
2.00
2.00
0
00:40
0.019
0.019
INLET-B2B
JUNCTION
49.83
19.83
0
00:40
0.221
0.221
INLET-B3B
JUNCTION
7.98
7.98
0
00:40
0.077
0.077
INLET-B4A
JUNCTION
1.00
3.97
0
00:39
0.010
0.010
INLET-B5A
JUNCTION
7.65
7.65
0
00:40
0.067
0.067
'SET-B7A
JUNCTION
16.66
16.66
0
00:40
0.173
0.173
ZT-B9A
JUNCTION
4.00
4.00
0
00:40
0.038
0.038
ET -CIA
JUNCTION
6.00
6.00
0
00:40
0.058
0.058
.LET-C1B
JUNCTION
21.85
21.85
0
00:40
0.221
0.221
INLET-C2A
JUNCTION
5.00
5.00
0
00:40
0.048
0.048
INLET-C2B
JUNCTION
27.18
27.18
0
00:40
0.278
0.278
INLET-D1
JUNCTION
0.00
0.14
0
00:36
0.000
0.000
INLET-D2A
JUNCTION
2.00
2.00
0
00:40
0.019
0.019
INLET-D2B
JUNCTION
24.59
24.59
0
00:40
0.262
0.262
INLET-D3A
JUNCTION
6.00
6.00
0
00:40
0.058
0.058
INLET-D3B
JUNCTION
12.68
12.66
0
00:40
0.167
0.167
MH Al
JUNCTION
0.00
71.43
0
00:41
0.000
0.862
MH A2
JUNCTION
0.00
71.49
0
00:41
0.000
0.855
MH A3
JUNCTION
0.00
62.88
0
00:41
0.000
0.754
MH A4-MH D1
JUNCTION
0.00
61.37
0
00:40
0.000
0.725
MH A5
JUNCTION
0.00
21.91
0
00:40
0.000
0.219
MH-B10
JUNCTION
0.00
57.28
0
00:40
0.000
0.607
MH-B11
JUNCTION
0.00
52.49
0
00:40
0.000
0.550
MH-B12
JUNCTION
0.00
33.61
0
00:40
0.000
0.339
MH B13
JUNCTION
33.62
33.62
0
00:40
0.339
0.339
MHB2
JUNCTION
0.00
318.11
0
00:40
0.000
3.778
MH B3
JUNCTION
0.00
309.39
0
00:38
0.000
3.634
MH B3A
JUNCTION
10.00
48.91
0
00:40
0.539
0.970
MH B4
JUNCTION
0.00
290.08
0
00:38
0.000
3.393
MH 54A
JUNCTION
0.00
4.62
0
00:39
0.000
0.010
MH B4B
JUNCTION
0.00
19.91
0
00:40
0.000
0.192
MH B5
JUNCTION
0.00
152.08
0
00:43
0.000
2.373
MH B6
JUNCTION
0.00
102.78
0
00:43
0.000
1.288
MH B7
JUNCTION
0.00
87.30
0
00:44
0.000
1.067
MH B7A
JUNCTION
0.00
21.40
0
00:40
0.000
0.240
SWMM 5 Page 10
MH B8
JUNCTION
0.00
73.34
0 00:44
0.000
0.914
MH B9
JUNCTION
0.00
73.84
0 00:39
0.000
0.846
MH Cl
JUNCTION
0.00
33.57
0 00:41
0.000
1.761
MH C2
JUNCTION
0.00
33.57
0 00:41
0.000
1.758
MH C3
JUNCTION
0.00
33.57
0 00:41
0.000
1.749
MH C4/B1
JUNCTION
0.00
406.58
0 00:40
0.000
4.864
MH C5
JUNCTION
0.00
92.33
0 00:40
0.000
1.085
MH C6
JUNCTION
0.00
65.00
0 00:40
0.000
0.805
MH C7
JUNCTION
0.00
67.13
0 00:40
0.000
0.804
MH D2
JUNCTION
0.00
41.17
0 00:41
0.000
0.506
MH D3
JUNCTION
0.00
42.29
0 00:40
0.000
0.506
MH D4
JUNCTION
0.00
18.61
0 00:40
0.000
0.225
MNT STRT
JUNCTION
169.16
169.16
0 00:35
0.586
0.586
0112
JUNCTION
11.96
11.96
0 00:40
0.122
0.122
0113
JUNCTION
17.24
17.24
0 00:40
0.173
0.173
0114
JUNCTION
33.69
33.69
0 00:40
0.336
0.336
0115
JUNCTION
27.40
27.40
0 00:40
0.269
0.269
0300
JUNCTION
21.08
21.08
0 00:40
0.211
0.211
Al PDUDRE
OUTFALL
0.00
71.44
0 00:41
0.000
0.863
FESB1-POUDRE
OUTFALL
0.00
369.74
0 00:39
0.000
3.116
FESC1-UDALL POND
OUTFALL
0.00
33.57
'0 00:41
0.000
1.761
Node Surcharge Summary
Surcharging occurs
when water
rises above
the
top
of the highest
conduit.
---------------------------------
-_______-----------______--
Max.
Height
Min.
Depth
Hours
Above
Crown
Below Rim
e
Type
Surcharged
Feet
Feet
____________________________
_..INLET-B3A
JUNCTION
0.27
--______----------_______---
6.246
1.204
EXINLET-B3C
JUNCTION
0.07
3.840
0.000
EXINLET-B4B
JUNCTION
0.04
0.444
0.726
E%INLET-B5B
JUNCTION
0.01
0.081
0.839
EXMH Cl
JUNCTION
0.30
4.510
2.640
INLET-A2A
JUNCTION
0.10
3.269
3.171
INLET-A3B
JUNCTION
0.22
2.960
2.020
INLET-B1B
JUNCTION
0.05
0.390
2.190
INLET-B2B
JUNCTION
0.07
0.325
1.535
INLET-B3B
JUNCTION
0.18
5.769
0.011
INLET-B4A
JUNCTION
0.09
2.530
2.920
INLET -CIA
JUNCTION
0.12
1.539
1.961
INLET-C1B
JUNCTION
0.15
3.353
0.267
INLET-C2B
JUNCTION
0.12
1.239
0.901
INLET-D1
JUNCTION
0.12
0.832
4.988
INLET-D2B
JUNCTION
0.12
0.518
2.852
INLET-D3B
JUNCTION
0.10
0.748
1.882
MH Al
JUNCTION
0.14
0.815
3.195
MH A3
JUNCTION
0.10
3.209
3.671
MH B3A
JUNCTION
0.09
3.304
1.656
MH B4
JUNCTION
0.13
2.050
4.170
MH B4A
JUNCTION
0.09
2.074
3.756
MH B5
JUNCTION
.0.11
3.794
2.076
MH Cl
JUNCTION
22.99
8.198
0.000
MH C2
JUNCTION
2.12
4.611
0.079
MH C3
JUNCTION
1.93
8.681
3.919
MH C4/B1
JUNCTION
0.05
0.423
3.597
SWMM 5 Page 11
I
MH C5
JUNCTION
0.13
1.476
1.984
MH C6
JUNCTION
0.12
1.626
3.384
MH D2
JUNCTION
0.04
0.212
5.088
0112
JUNCTION
23.00
0.000
0.000
0113
JUNCTION
23.00
0.000
0.000
0114
JUNCTION
23.00
0.000
0.000
0115
JUNCTION
23.00
0.000
0.000
0300
JUNCTION
23.00
0.000
0.000
Node Flooding Summary
Flooding refers to all water that overflows a node, whether it ponds or not
Total Maximum
Maximum Time of Max Flood Ponded
Hours Rate Occurrence Volume Depth
Node Flooded CFS days hr:min 10-6 gal Feet
----------------------------------------------- _-__________--
E%INLET-B3C 0.01 6.32 0 00:38 0.000 6.34
Outfa11 Loading Summary
Flow
Avg.
Max.
Total
Freq.
Flow
Flow
Volume
fall Node
Prot.
CFS
CFS
30.6 gal
________________________________________________________
_ POUDRE
71.40
2.02
71.44
0.863
FESB1-POUDRE
7.95
66.34
369.74
3.116
FESC1-UDALL POND
100.00
2.88
33.57
1.761
System 59.78 71.23 470.72 5.740
Link Flow Summary
Maximum
Time
of
Max
Maximum
Max/
Max/
IFIOwI
Occurrence
IVelocl
Full
Full
Link
Type
CFS
days
hr:min
ft/sec
Flow
Depth
________
Al
_________________________________________________________
CONDUIT
71.44
0
00:41
10.33
2.54
0.95
A2
CONDUIT
71.43
0
00:41
10.11
3.94
1.00
A3
CONDUIT
62.88
0
00:41
8.90
0.69
1.00
A4
CONDUIT
60.42
0
00:41
11.58
0.66
0.90
A5
CONDUIT
21.80
0
00:40
8.92
0.80
0.81
B1
CONDUIT
369.74
0
00:39
17.47
0.98
0.90
B2
CONDUIT
314.62
0
00:40
12.54
0.68
1.00
B3
CONDUIT
304.31
0
00:40
11.28
1.33
1.00
B4
CONDUIT
290.05
0
00:38
10.36
1.30
1.00
B5
CONDUIT
152.10
0
00:43
6.84
0.83
1.00
B6
CONDUIT
109.56
0
00:44
8.76
1.00
1.00
SWMM 5 Page 12
B7
CONDUIT
89.08
0
00:44
7.16
1.04
1.00
B8
CONDUIT
78.88
0
00:44
6.28
1.10
1.00
B9
CONDUIT
69.82
0
00:44
5.80
0.80
1.00
B10
CONDUIT
53.13
0
00:39
7.31
0.60
1.00
B11
CONDUIT
51.36
0
00:40
6.38
0.58
1.00
B12
CONDUIT
33.41
0
00:40
6.28
0.56
0.98
B13
CONDUIT
33.61
0
00:40
7.32
0.40
0.87
Cl
CONDUIT
33.57
0
00:41
10.69
1.93
1.00
C2
CONDUIT
33.57
0
00:41
10.69
1.89
1.00
C3
CONDUIT
33.57
0
00:41
10.69
1.46
1.00
C4
CONDUIT
33.57
0
00:41
10.69
1.90
1.00
C5
CONDUIT
92.28
0
00:40
7.34
1.15
1.00
C6
CONDUIT
64.98
0
00:40
5.29
0.83
1.00
C7
CONDUIT
65.00
0
00:40
6.76
1.22
1.00
D2
CONDUIT
41.19
0
00:41
6.87
0.85
0.90
D3
CONDUIT
41.17
0
00:41
6.97
0.99
1.00
D4
CONDUIT
17.41
0
00:41
3.63
0.68
1.00
EXLAT-B3C
CONDUIT
34.23
0
00:40
11.75
0.57
1.00
EXLAT-B4B
CONDUIT
12.01
0
00:40
9.79
1.24
1.00
EXLAT-B4C
CONDUIT
7.94
0
00:40
8.71
0.53
0.70
LAT-AIA
CONDUIT
6.92
0
00:40
6.54
0.58
0.71
LAT-A2A
CONDUIT
3.29
0
00:38
5.11
0.19
1.00
LAT-A3A
CONDUIT
3.99
0
00:40
5.92
0.23
0.41
LAT-A3B
CONDUIT
17.93
0
00:40
10.15
1.77
1.00
LAT-MA
CONDUIT
1.92
0
00:40
2.95
1.05
0.77
LAT-B1A
CONDUIT
2.98
0
00:40
3.64
0.35
0.55
LAT-B1B
CONDUIT
11.14
0
00:40
7.53
0.60
0.78
LAT-B2A
CONDUIT
1.98
0
00:40
3.69
0.21
0.34
LAT-B2B
CONDUIT
19.84
0
00:40
7.25
0.72
0.81
LAT-B3A
CONDUIT
11.76
0
00:40
3.74
1.05
1.00
'T-B3B
CONDUIT
8.10
0
00:38
1.65
0.37
1.00
-B3C
CONDUIT
48.91
0
00:40
7.39
0.95
1.00
-B4A
CONDUIT
3.03
0
00:39
1.75
0.34
1.00
.T-B4B
CONDUIT
4.62
0
00:39
1.91
0.37
1.00
LAT-B4C
CONDUIT
19.74
0
00:40
10.18
0.34
1.00
LAT-B5A
CONDUIT
7.61
0
00:40
5.95
0.60
0.68
LAT-B5B
CONDUIT
9.00
0
00:40
5.93
0.68
0.80
LAT-B6A
CONDUIT
6.91
0
00:40
6.49
0.74
0.72
1,AT-B7A
CONDUIT
16.65
0
00:40
6.91
0.48
0.73
UT-B7C
CONDUIT
21.39
0
00:40
7.84
0.21
0.47
UT-B8A
CONDUIT
4.86
0
00:40
5.48
0.23
0.60
LAT-B9A
CONDUIT
3.98
0
00:40
6.06
0.24
0.50
UT-B9B
CONDUIT
1.99
0
00:40
4.97
0.13
0.44
LAT-B10A
CONDUIT
16.19
0
00:40
7.20
0.52
0.67
UT -BIOS
CONDUIT
2.98
0
00:40
5.55
0.20
0.34
LAT-B13A
CONDUIT
158.58
0
00:38
12.62
1.63
1.00
UT -CIA
CONDUIT
6.00
0
00:39
3.84
0.92
1.00
UT-C1B
CONDUIT
21.85
0
00:40
12.36
1.47
1.00
LAT-C2A
CONDUIT
5.04
0
00:39
5.80
0.36
0.85
LAT-C2S
CONDUIT
27.19
0
00:40
9.34
0.85
0.96
LAT-C3A
CONDUIT
35.40
0
00:40
11.27
4.69
1.00
LAT-D2A
CONDUIT
1.97
0
00:40
3.04
0.28
0.39
UT-D2B
CONDUIT
24.61
0
00:40
13.92
1.69
1.00
LAT-D3A
CONDUIT
5.95
0
00:40
4.09
0.80
0.77
LAT-D3B
CONDUIT
12.69
0
00:40
7.88
0.85
0.86
MT STRT
CONDUIT
121.88
0
00:37
2.95
0.56
0.70
12DIP
CONDUIT
2.99
0
00:40
10.13
0.34
0.40
UT -DI
CONDUIT
0.17
0
00:45
0.34
0.00
1.00
SWMM 5 Page 13
Flaw Classification Summary
Adjusted
---
Fraction of
Time in Flow
Class
----
Avg.
Avg.
/Actual
Up
Down
Sub
Sup
Up
Down
Fronde
Flow
Conduit
--------------
Length
Dry
Dry
-_____________________-----________
Dry
Crit
Crit
Crit
Crit
Number
Change
_------
Al
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.04
0.0001
A2
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.03
0.0001
A3
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.06
0.0000
A4
1.00
0.00
0.00
0.00
0.00
0.01
0.00
0.99
1.32
0.0000
A5
1.00
0.01
0.00
0.00
0.00
0:00
0.00
0.99
0.87
0.0000
B1
1.00
0.92
0.00
0.00
0.00
0.08
0.00
0.00
0.15
0.0000
B2
1.00
0.00
0.00
0.00
0.00
0.03
0.00
0.97
1.08
0.0000
B3
1.00
0.00
0.00
0.00
0.87
0.13
0.00
0.00
0.61
0.0000
B4
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.44
0.0000
B5
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.35
0.0000
B6
1.00
0.00
0.00
0.00
0.79
0.21
0.00
0.00
0.70
O.DDOO
B7
1.00
0.00
0.01
0.00
0.99
0.00
0.00
0.00
0.47
0.0000
B8
1.00
0.01
0.00
0.00
0.99
0.00
0.00
0.00
0.42
0.0000
B9
1.00
0.01
0.00
0.00
0.99
0.00
0.00
0.00
0.42
0.0000
B10
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.80
0.0000
Bll
1.00
0.01
0.00
0.00
0.89
0.10
0.00
0.00
0.54
0.0000
B12
1.00
0.01
0.00
0.00
0.92
0.08
0.00
0.00
0.47
0.0000
B13
1.00
0.01
0.00
0.00
0.83
0.16
0.00
0.00
0.75
0.0000
Cl
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.00
0.0001
C2
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.01
0.0001
C3
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.03
0.0000
1.00
0.00
0.00
0.00
0.79
0.21
0.00
0.00
0.80
0.0001
1.00
0.00
0.00
0.00
0.08
0.00
0.00
0.92
0.61
0.0000
1.00
0.00
0.00
0.00
1.00
D.00
0.00
0.00
0.37
0.0000
1.00
0.00
0.00
0.00
1.00
D.00
0.00
0.00
0.50
0.0000
D2
1.00
0.00
0.00
0.00
0.88
0.12
0.00
0.00
0.57
0.0000
D3
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.48
0.0000
D4
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.22
0.0000
EXLAT-B3C
1.00
0.00
0.00
0.00
0.00
0.00
0.00
0.99
1.36
0.0000
EXLAT-B4B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.45
0.0000
EXLAT-B4C
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.73
0.0000
LAT-AlA
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.30
0.0000
LAT-A2A
1.00
0.01
0.00
0.00
0.01
0.00,
0.00
0.98
0.20
0.0000
LAT-A3A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.30
0.0000
LAT-A3B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.74
0.0000
LAT-MA
1.00
O.D1
0.00
0.00
0.00
0.00
0.00
0.99
0.16
0.0000
LAT-B1A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.16
0.0000
LAT-BIB
1.58
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.17
0.0000
LAT-B2A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.15
0.0000
LAT-B2B
1.20
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.16
0.0000
LAT-B3A
1.00
0.00
0.01
0.00
0.99
0.00
0.00
0.00
0.18
0.0000
LAT-B3B
1.00
0.00
0.13
0.00
0.87
0.00
0.00
0.00
0.03
0.0000
LAT-B3C
1.00
0.00
0.00
0.00
0.83
0.17
0.00
0.00
0.68
0.0000
LAT-B4A
1.00
0.01
0.11
0.00
0.89
0.00
O.OD
0.00
0.07
0.0000
LAT-B4B
1.00
0.01
0.00
0.00
0.01
0.00
0.00
0.98
0.11
0.0000
LAT-B4C
1.00
0.00
0.00
0.00
0.01
0.00
0.00
0.99
0.56
0.0000
LAT-B5A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.25
0.0000
LAT-B5B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.37
0.0000
LAT-B6A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.51
0.0000
LAT-B7A
1.00
0.01
0.00
0.00
0.80
0.19
0.00
0.00
0.80
0.0000
LAT-B7C
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.87
0.0000
SWMM 5 Page 14
LAT-B8A
1.00
0.01
0.00
0.00
0.84
0.15
0.00
0.00
0.63
0.0000
LAT-B9A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.32
0.0000
LAT-B9B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.26
0.0000
LAT-B10A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.29
0.0000
LAT-B10B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.30
0.0000
LAT-BllA
1.00
0.00
0.01
0.00
0.86
0.13
0.00
0.00
0.62
0.0000
LAT-C1A
1.00
0.01
0.00
0.00
0.01
0.00
0.00
0.98
0.19
0.0000
LAT-C1B
1.00
0.01
0.00
0.00
0.01
0.00
0.00
0.98
1.15
0.0000
LAT-C2A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.27
0.0000
LAT-C2B
1.52
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.16
0.0000
LAT-C3A
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.43
0.0001
LAT-D2A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.17
0.0000
LAT-D2B
1.09
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.28
0.0000
UT-D3A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.19
0.0000
LAT-D3B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.82
0.0000
MNT STRT
1.00
0.02
0.00
0.00
0.00
0.00
0.00
0.98
0.34
0.0000
12DIP
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.44
0.0000
LAT-D1
1.56
0.00
0.91
0.00
0.09
0.00
0.00
0.00
0.00
0.0000
Conduit Surcharge Summary
Hours
Hours
---------
Hours Full
--------
Above Full
Capacity
Conduit
Both Ends
Upstream
Dnstream
Normal Flow
Limited
----------------------------------------------------------------------------
Al
0.01
0.01
0.01
0.30
0.01
'
0.14
0.14
0.14
0.45
0.14
0.10
0.10
0.10
0.01
0.01
0.02
0.02
0.02
0.01
0.01
0.02
0.02
0.02
0.15
0.02
B4
0.10
0.10
0.10
0.15
0.10
B5
0.10
0.10
0.10
0.01
0.08
B6
0.10
0.10
0.10
0.01
0.05
B7
0.10
0.10
0.10
0.04
0.09
B8
0.10
0.10
0.10
0.06
0.09
B9
0.09
0.09
0.09
0.01
0.01
B10
0.07
0.07
0.07
0.01
0.06
Bll
0.02
0.02
0.02
0.01
0.01
Cl
22.99
22.99
22.99
1.98
2.04
C2
2.12
2.12
2.12
1.97
2.02
C3
1.93
1.93
1.93
1.87
1.88
C4
1.93
1.93
1.93
1.96
1.93
C5
0.15
0.15
0.15
0.06
0.15
C6
0.12
0.12
0.12
0.01
0.01
C7
0.15
0.15
0.15
0.09
0.11
D3
0.04
0.04
0.04
0.01
0.04
D4
0.03
0.03
0.03
0.01
0.01
EXLAT-B3C
0.07
0.07
0.07
0.01
0.01
EXLAT-B4B
0.03
0.03
0.03
0.06
0.03
LAT-A2A
0.10
0.10
0.10
0.01
0.01
LAT-A3B
0.02
0.02
0.02
0.15
0.02
LAT-A4A
0.01
0.01
0.01
0.03
0.01
LAT-B3A
0.27
0.27
0.27
0.02
0.02
LAT-B3B
0.18
0.18
0.18
0.01.
0.01
LAT-B3C
0.16
0.16
0.16
0.01
0.01
LAT-B4A
0.09
0.09
0.09
0.01
0.01
SWMM 5 . Page 15
LAT-B4B
0.09
0.09
0.09
0.01
0.01
LAT-B4C
0.05
0.05
0.05
0.01
0.01
LAT-B13A
0.13
0.13
0.13
0.14
0.10
LAT-CIA
0.12
0.12
0.12
0.01
0.06
LAT-C1B
0.13
0.13
0.13
0.11
0.13
LAT-C3A
0.29
0.29
0.29
0.62
0.29
UT-D2B
0.11
0.11
0.11
0.15
0.11
LAT-DI
0.12
0.12
0.12
0.01
0.01
Analysis begun on: Mon Jun 29 14:12:08 2015
Analysis ended on: Mon Jun 29 14:12:22 2015
Total elapsed time: 00:00:14
SWMM 5 Page 16
ATTACHMENT 1.2
Modified SWMM Exhibit and Output
FIGURE 2.1
BASIN MAP
JWFE5
ASSOCIATES
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)
--------------------------------------------------------------
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
Analysis Options
................
Flow Units ...............
CFS
Process Models:
Rainfall/Runoff ........
YES
Snowmelt ...............
NO
Groundwater ............
NO
Flow Routing ...........
YES
Ponding Allowed ........
YES
Water Quality ..........
NO
Infiltration Method ......
HORTON
Flow Routing Method ......
DYNWAVE
Starting Date ............
MAR-17-2006 00:00:00
Ending Date ..............
MAR-17-2006 23:00:00
Antecedent Dry Days ......
0.0
Report Time Step .........
00:01:00
Wet Time Step ............
00:05:00
Dry Time Step ............
01:00:00
Routing Time Step ........
1.00 sec
SING 02: maximum depth increased for Node CustomInlet-River
WARNING 02: maximum depth increased for Node E%MH_BI
Element Count
Number
of
rain gages .... 1
Number
of
subcatchments ... 95
Number
of
nodes ........... 76
Number
of
links ........... 69
Number
of
pollutants ...... 0
Number
of
land uses ....... 0
................
Raingage Summary
Data Recording
Name Data Source Type Interval
-------------------------------------------------------------
I 100-year INTENSITY 5 in.
....................
Subcatchment Summary
....................
Name Area Width %Impery %Slope Rain Gage _ Outlet
-------------------------------------------------------------------------------------------------------
SWMM 5 Page 1
206
207
208
210
211
212
213
300
106b
106C
Node Summary
1.20
185.00
95.00
0.8000
1
INLET-B1B
2.30
337.00
95.00
0.3400
1
INLET-B2B
2.90
423.00
95.00
1.0800
1
INLET-C2B
0.80
582.00
95.00
0.8000
1
INLET-B3B
4.50
2930.00
95.00
0.4800
1
EXMH B1
1.20
2197.00
95.00
0.6600
1
EXINLET-B4B
1.32
191.00
95.00
0.6600
1
EXINLET-B3C
0.80
524.00
95.00
0.7100
1
EXINLET-B4C
1.90
274.00
95.00
0.3200
1
INLET-B10A
0.80
1618.00
60.00
0.2900
1
INLET-B5A
2.00
289.00
80.00
1.2600
1
INLET-A35
0.90
124.00
10.OD
1.0600
1
213
1.30
191.00
90.OD
0.8900
1
0112
1.80
265.00
95.00
1.7200
1
0113
3.50
502.00
95.00
2.0800
1
0114
2.80
407.00
95.00
3.5700
1
0115
0.20
582.00
95.00
0.7900
1
INLET-B2A
1.20
459.OD
95.00
0.5400
1
EXINLET-83A
1.80
258.00
95.00
0.9000
1
INLET-B7A
3.60
880.00
90.00
0.42DO
1
MH 513
0.40
743.00
95.00
1.2800
1
INLET-A3A
0.30
456.00
95.00
1.2000
1
INLET-B1A
0.60
1177.00
95.00
0.2800
1
INLET-C1A
0.30
527.00
95.00
1.0400
1
CustomInlet-River
0.70
603.00
95.00
2.1400
1
INLET-AIA
0.50
893.00
95.00
0.9100
1
INLET-C2A
5.OD
184.00
95.00
1.2400
1
EXMH C1
2.30
328.00
95.00
1.5000
1
INLET-C1B
0.30
1406.00
95.00
2.1100
1
INLET-A2A
0.30
252.00
95.00
1.6900
1
EXINLET-B10B
0.20
271.00
95.00
0.9600
1
EXINLET-B9B
0.40
420.00
95.00
1.4200
1
INLET-B9A
0.30
447.00
95.00
0.3900
1
EXINLET-BBA
0.40
203.00
95.00
0.0300
1
203
0.10
121.00
95.00
0.8700
1
INLET-B4A
0.20
102.00
90.00
1.2200
1
INLET -MA
0.90
1123.00
95.00
0.4400
1
EXINLET-B5B
0.70
327.00
95.00
0.6500
1
EXSTUB-B6
2.90
414.00
80.00
0.6200
1
INLET-D2B
0.20
224.00
95.00
0.4700
1
INLET-D2A
0.60
918.00
95.00
0.5700
1
INLET-D3A
1.20
360.00
95.00
0.7100
1
INLET-D3B
2.20
325.00
95.00
1.7300
1
0300
1.03
150.00
95.00
0.8600
1
EXINLET-B3C
1.35
196.00
95.00
0.8600
1
EXINLET-B3C
Name
Type
----------------------------.
CustomInlet-River
JUNCTION
EXINLET-510B
JUNCTION
EXINLET-B3A
JUNCTION
EXINLET-B3C
JUNCTION
EXINLET-B4B
JUNCTION
EXINLET-B4C
JUNCTION
EXINLET-B5B
JUNCTION
EXINLET-BBA
JUNCTION
EXINLET-B9B
JUNCTION
Invert
Max.
Ponded External
Elev.
Depth
Are. Inflow
---------------------------------------
4956.94
5.91
0.0
4972.71
3.71
0.0
4960.63
9.45
0.0
4963.76
6.34
0.0
4971.23
2.42
0.0
4972.04
2.29
0.0
4971.25
2.42
0.0
4971.38
3.08
0.0
4971.42
4.24
0.0
SWMM 5 Page 2
EXMH Bl
JUNCTION
4959.16
11.13
0.0
EXMH Cl
JUNCTION
4956.26
9.15
0.0
EXSTUB-B6
JUNCTION
4970.40
3.00
0.0
INLET-AlA
JUNCTION
4955.50
3.02
0.0
INLET-A2A
JUNCTION
4955.01
7.94
0.0
INLET-A3A
JUNCTION
4965.04
3.40
0.0
INLET-A3B
JUNCTION
4962.01
6.48
0.0
INLET -MA
JUNCTION
4969.60
2.65
0.0
INLET-B10A
JUNCTION
4972.40
2.99
0.0
INLET-B1A
JUNCTION
4960.79
4.02
0.0
INLET -BIB
JUNCTION
4960.92
4.08
0.0
INLET-B2A
JUNCTION
4964.00
3.80
0.0
INLET-B2B
JUNCTION
4963.85
3.86
0.0
INLET-B3B
JUNCTION
4960.96
8.28
0.0
INLET-B4A
JUNCTION
4965.45
7.45
0.0
INLET-B5A
JUNCTION
4971.06
2.50
0.0
INLET-B7A
JUNCTION
4970.39
3.50
0.0
INLET-B9A
JUNCTION
4971.49
3.65
0.0
INLET -CIA
JUNCTION
4957.82
5.00
0.0
INLET-CIB
JUNCTION
4958.34
5.12
0.0
INLET-C2A
JUNCTION
4961.50
2.98
0.0
INLET-C2B
JUNCTION
4960.76
4.14
0.0
INLET -DI
JUNCTION
4960.24
7.94
0.0
INLET-D2A
JUNCTION
4963.74
4.00
0.0
INLET-D2B
JUNCTION
4963.78
4.87
0.0
INLET-D3A
JUNCTION
4964.00
1.88
0.0
INLET-D3B
JUNCTION
4964.28
4.13
0.0
MH Al
JUNCTION
4942.03
15.03
0.0
MH A2
JUNCTION
4950.07
9.37
0.0
MH A3
JUNCTION
4953.34
9.94
0.0
MH_A4-MH Dl
JUNCTION
4959.59
9.05
0.0
A5
JUNCTION
4961.21
7.65
0.0
310
JUNCTION
4967.11
8.78
0.0
all
JUNCTION
4968.41
8.65
0.0
.., B12
JUNCTION
4969.47
9.06
0.0
MH B13
JUNCTION
4970.00
9.39
0.0
MH B2
JUNCTION
4957.32
7.71
0.0
MH B3
JUNCTION
4958.62
9.59
0.0
MH B3A
JUNCTION
4960.86
9.60
0.0 Yes
MH B4
JUNCTION
4958.88
10.22
0.0
MH B4A
JUNCTION
4965.42
7.83
0.0
MH 54B
JUNCTION
4966.41
8.22
0.0
MH B5
JUNCTION
4960.52
9.87
0.0
MH B6
JUNCTION
4963.34
10.85
0.0
MH B7
JUNCTION
4963.58
10.62
0.0
MH B7A
JUNCTION
4969.79
5.39
0.0
MH B8
JUNCTION
4963.76
10.62
0.0
MH B9
JUNCTION
4965.12
10.25
0.0
MH C1
JUNCTION
4941.23
7.06
0.0
MH C2
JUNCTION
4942.08
6.69
0.0
MH C3
JUNCTION
4945.12
14.60
0.0
MH C4/B1
JUNCTION
4946.00
17.83
0.0
MH C5
JUNCTION
4954.89
7.75
0.0
MH C6
JUNCTION
4955.47
9.01
0.0
MH C7
JUNCTION
4956.24
8.23
0.0
MH D2
JUNCTION
4959.98
8.30
0.0
MH D3
JUNCTION
4960.65
7.21
0.0
MH D4
JUNCTION
4961.91
5.11
0.0
MNT STRT
JUNCTION
4973.00
1.00
0.0 Yes '
0112
JUNCTION
0.00
0.00
0.0
0113
JUNCTION
0.00
0.00
0.0
0114
JUNCTION
0.00
0.00
0.0
SWMM 5 Page 3
0115
JUNCTION
0.00
0.00
0.0
0300
JUNCTION
0.00
0.00
0.0
Al POUDRE
OUTFALL
4949.89
3.00
0.0
FMB1-POUDRE
OUTFALL
4953.73
4.00
0.0
FESC1-UDALL
POND OUTFALL
4941.03
2.00
0.0
Link•Summary
Name"•••"'
From Node
To Node
Type
Length
%Slope Roughness
------------------------------------------------------------------------------------------
A1
MH Al
Al POUDRE
CONDUIT
73.0
0.1781
0.0130
A2
MH A2
MH Al
CONDUIT
27.0
0.0741
0.0130
A3
MH A3
MH A2
CONDUIT
173.0
1.8905
0.0130
A4
MH A4-MH D1
MH A3
CONDUIT
325.0
1.9050
0.0130
AS
MH AS
MH A4-MH D1
CONDUIT
65.5
1.4342
0.0130
B1
MH C4/B1
FESB1-POUDRE
CONDUIT
139.0
1.4966
0.0130
B2
MHB2MH
C4/B1
CONDUIT
100.0
1.5102
0.0130
B3
MH B3
MH B2
CONDUIT
353.0
0.3683
0.0130
B4
MH-B4
MN B3
CONDUIT
74.0
0.3514
0.0130
B5
MH B5
MH B4
CONDUIT
470.0
0.3489
0.0130
B6
MH B6
MH B5
CONDUIT
485.0
0.5815
0.0130
B7
MH B7
MH B6
CONDUIT
68.0
0.3529
0.0130
BE
MH B8
MH B7
CONDUIT
74.5
0.2470
0.0130
B9
MH-B9
MH BE
CONDUIT
367.0
0.3695
0.0130
B10
MH 010
MH B9
CONDUIT
63.0
0.7778
0.0130
B11
MH B11
MH B10
CONDUIT
165.0
0.7879
0.0130
B12
MH-B12
MH B11
CONDUIT
134.0
0.7911
0.0130
B13
MH B13
MH-B12
CONDUIT
33.0
1.6063
0.0130
Cl
MH Cl
FMCl-UDALL_PONDCONDUIT
34.0
0.5882
0.0130
MH C2
MH Cl
CONDUIT
138.0
0.6160
0.0130
MH C3
MH C2
CONDUIT
494.0
0.6154
0.0100
MH C4/B1
MH C3
CONDUIT
144.0
0.6111
0.0130
MH C5
MH C4/el
CONDUIT
45.0
0.3111
0.0130
C6
MH C6
MH C5
CONDUIT
194.0
0.2990
0.0130
C7
MH C7
MH C6
CONDUIT
274.0
0.2810
0.0130
D2
MH D2
MH A4-MH_D1
CONDUIT
74.0
0.5270
0.0130
D3
MH D3
MH D2
CONDUIT
173.0
0.3873
0.0130
D4
MH D4
MH D3
CONDUIT
322.0
0.3913
0.0130
EXLAT-B3C
EXINLET-B3C
MH B3A
CONDUIT
36.0
2.1116
0.0130
EXLAT-B4B
EXINLET-B4B
MH B4B
CONDUIT
34.4
2.2415
0.0130
EXLAT-B4C
EXINLET-B4C
MH B4B
CONDUIT
29.0
5.4564
0.0130
LAT-AIA
INLET-AIA
MH A2
CONDUIT
41.0
1.2684
0.0130
LAT-A2A
INLET-A2A
MH A3
CONDUIT
25.0
2.6009
0.0130
LAT-A3A
INLET-A3A
MH AS
CONDUIT
21.0
2.8106
0.0130
LAT-A3B
INLET-A35
MH A5
CONDUIT
46.0
0.9348
0.0130
LAT-A4A
INLET-A4A
MH B6
CONDUIT
104.0
0.2596
0.0130
LAT-B1A
INLET-B1A
MH B2
CONDUIT
32.0
0.6563
0.0130
LAT-BIB
INLET -BIB
MH B2
CONDUIT
11.0
3.0924
0.0130
LAT-B2A
INLET-B2A
MH B3
CONDUIT
45.0
0.8000
0.0130
LAT-B2B
INLET-B2B
MH 53
CONDUIT
14.0
1.5002
0.0130
LAT-B3A
EXINLET-B3A
MH B5
CONDUIT
45.0
0.2444
0.0130
LAT-B3B
INLET-M
MH BA
CONDUIT
36.0
0.2778
0.0130
LAT-B3C
MN B3A
MH 85
CONDUIT
57.0
0.5965
0.0130
LAT-B4A
INLET-B4A
MH B4A
CONDUIT
19.0
0.1579
0.0130
LAT-134B
MH B4A
MH B6
CONDUIT
92.0
0.3043
0.0130
LAT-B4C
MH B4B
MH B6
CONDUIT
52.0
2.0004
0.0130
LAT-B5A
INLET-B5A
MH B7
CONDUIT
39.0
1.4617
0.0130
LAT-B5B
EXINLET-B5B
MH B7
CONDUIT
20.0
1.6002
0.0130
LAT-136A
EXSTUB-B6
MH B6
CONDUIT
21.0
1.5049
0.0130
LAT-B7A
INLET-B7A
MH B7A
CONDUIT
25.0
2.4007
0.0130
SWMM 5 Page 4
LAT-B7C
MI B7A
MH B9
CONDUIT
71.0
1.0001
0.0130
LAT-B8A
EXINLET-B8A
MH B7A
CONDUIT
38.5
4.1334
0.0130
LAT-B9A
INLET-B9A
MH BID
CONDUIT
32.0
2.4695
0.0130
LAT-B9B
EXINLET-B9B
MH B10
CONDUIT
36.0
2.0004
0.0130
LAT-B10A
INLET-B10A
MH Bll
CONDUIT
30.0
1.9003
0.0130
LAT-B10B
EXINLET-B10B
MH all
CONDUIT
44.0
2.0004
0.0130
LAT-B11A
EXMi B1
MH B4
CONDUIT
61.0
0.4590
0.0130
LAT-C1A
INLET-C1A
MH C5
CONDUIT
36.0
0.3889
0.0130
LAT-CSB
INLET-C1B
MH C5
CONDUIT
33.0
2.0004
0.0130
LAT-C2A
INLET-C2A
MH C7
CONDUIT
55.0
1.7821
0.0130
LAT-C2B
INLET-C2B
MH C7
CONDUIT
12.0
2.0004
0.0130
LAT-C3A
EXMH Cl
MH C7
CONDUIT
18.0
0.1111
0.0130
LAT-D2A
INLET-D2A
MH D3
CONDUIT
51.0
0.4510
0.0130
LAT-D2B
INLET-D2B
MH D3
CONDUIT
14.0
1.9289
0.0130
LAT-D3A
INLET-D3A
MH D4
CONDUIT
40.0
0.5000
0.0130
LAT-D3B
INLET-D3B
MH D4
CONDUIT
24.0
2.0004
0.0130
M.NT STRT
MNT STRT
EXMH B1
CONDUIT
720.0
0.4458
0.0160
12DIP
CustomInlet-RiverMH
A2
CONDUIT
80.6
6.1031
0.0130
LAT-D1
INLET-D1
M1 D2
CONDUIT
13.0
2.9243
0.0130
Cross Section summary
Full
Full
Hyd.
Max.
No. of
Full
Conduit
Shape
Depth
Area
Rad.
Width
Barrels
Flow
---------------------------------------------------------------------------------------
Al
CIRCULAR
3.00
7.07
0.75
3.00
1
28.15
A2
CIRCULAR
3.00
7.07
0.75
3.00
1
18.15
A3
CIRCULAR
3.00
7.07
0.75
3.00
1
91.71
A4
CIRCULAR
3.00
7.07
0.75
3.00
1
92.06
CIRCULAR
2.00
3.14
0.50
2.00
1
27.09
RECT CLOSED
4.00
24.00
1.20
6.00
1
378.99
RECT CLOSED
4.00
28.00
1.27
7.00
1
461.92
..a
RECT CLOSED
4.00
28.00
1.27
7.00
1
228.11
B4
RECT CLOSED
4.00
28.00
1.27
7.00
1
222.81
B5
RECT CLOSED
4.00
24.00
1.20
6.00
1
183.00
B6
CIRCULAR
4.00
12.57
1.00
4.00
1
109.53
B7
CIRCULAR
4.00
12.57
1.00
4.00
1
85.34
B8
CIRCULAR
4.00
12.57
1.00
4.00
1
71.39
B9
CIRCULAR
4.00
12.57
1.00
4.00
1
87.31
BID
CIRCULAR
3.50
9.62
0.88
3.50
1
88.73
Bll
CIRCULAR
3.50
9.62
0.88
3.50
1
89.31
B12
CIRCULAR
3.00
7.07
0.75
3.00
1
59.32
B13
CIRCULAR
3.00
7.07
0.75
3.00
1
84.53
Cl
CIRCULAR
2.00
3.14
0.50
2.00
1
17.35
C2
CIRCULAR
2.00
3.14
0.50
2.00
1.
17.75
C3
CIRCULAR
2.00
3.14
0.50
2.00
1
23.07
C4
CIRCULAR
2.00
3.14
0.50
2.00
1
17.68
C5
CIRCULAR
4.00 -
12.57
1.00
4.00
1
80.12
C6
CIRCULAR
4.00
12.57
1.00
4.00
1
78.54
C7
CIRCULAR
3.50
9.62
0.88
3.50
1
53.33
D2
CIRCULAR
3.00
7.07
0.75
3.00
1
48.42
D3
CIRCULAR
3.00
7.07
0.75
3.00
1
41.51
D4
CIRCULAR
2.50
4.91
0.63
2.50
1
25.66
EXLAT-B3C
CIRCULAR
2.50
4.91
0.63
2.50
1
59.60
EXLAT-B4B
CIRCULAR
1.25
1.23
0.31
1.25
1
9.67
EXLAT-B4C
CIRCULAR
1.25
1.23
0.31
1.25
1
15.09
LAT-AlA
CIRCULAR
1.50
1.77
0.38
1.50
1
11.83
LAT-A2A
CIRCULAR
1.50
1.77
0.38
1.50
1
16.94
LAT-A3A
CIRCULAR
1.50
1.77
0.38
1.50
1
17.61
LAT-A3B
CIRCULAR
1.50
1.77
0.38
1.50
1
10.16
SWMM 5 Page 5
LAT-MA CIRCULAR
1.00
0.79
0.25
1.00
1
1
LAT-B1A CIRCULAR
1.50
1.77
0.3B
1.50
1
8
LAT-B1B CIRCULAR
1.50
1.77
0.38
1.50
1
18
LAT-B2A CIRCULAR
1.50
1.77
0.38
1.50
1
9
LAT-B2B CIRCULAR
2.00
3.14
0.5D
2.00
1
27
LAT-B3A CIRCULAR
2.00
3.14
0.50
2.00
1
11
LAT-B3B CIRCULAR
2.50
4.91
0.63
2.50
1
21
LAT-B3C CIRCULAR
3.00
7.07
0.75
3.00
1
51
LAT-B4A CIRCULAR
2.00
3.14
0.50
2.00
1
8
LAT-B4B CIRCULAR
2.00
3.14
0.50
2.00
1
12
LAT-B4C CIRCULAR
2.50
4.91
0.63
2.50
1
58
LAT-B5A CIRCULAR
1.50
1.77
0.38
1.50
1
12
LAT-B5B CIRCULAR
1.50
1.77
0.38
1.50
1
13
LAT-B6A CIRCULAR
1.33
1.39
0.33
1.33
1
9
LAT-B7A CIRCULAR
2.00
3.14
0.50
2.00
1
35
LAT-B7C CIRCULAR
3.50
9.62
0.88
3.50
1
100
LAT-BBA CIRCULAR
1.50
1.77
0.38
1.50
1
21
LAT-B9A CIRCULAR
1.50
1.77
0.38
1.50
1
16
LAT-B9B CIRCULAR
1.50
1.77
0.38
1.50
1
14
LAT-BIOA CIRCULAR
2.00
3.14
0.50
2.00
1
31
LAT-B10B CIRCULAR
1.50
1.77
0.38
1.50
1
14
LAT-B11A CIRCULAR
4.00
12.57
1.00
4.00
1
97
LAT-C1A CIRCULAR
1.50
1.77
0.38
1.50
1
6
LAT-C1B CIRCULAR
1.50
1.77
0.38
1.50
1
14
LAT-C2A CIRCULAR
1.50
1.77
0.38
1.50
1
14
LAT-C2B CIRCULAR
2.00
3.14
0.50
2.00
1
32
LAT-C3A CIRCULAR
2.00
3.14
0.50
2.00
1
7
LAT-D2A CIRCULAR
1.50
1.77
0.38
1.50
1
7
LAT-D2B CIRCULAR
1.50
1.77
0.38
1.50
1
14
LAT-D3A CIRCULAR
1.50
1.77
0.38
1.50
1
7
LAT-D3B CIRCULAR
1.50
1.77
0.38
1.50
1
14
'T STRT TRAPEZOIDAL
0.50
62.50
0.42
150.00
1
216
ip CIRCULAR
1.00
0.79
0.25
1.00
1
8
-Dl CIRCULAR
2.00
3.14
0.50
2.00
1
38
..................
Volume
Depth
Runoff Quantity Continuity
..........................
acre-feet
---------
inches
-------
Total Precipitation ......
18.407
3.669
Evaporation Loss .........
0.000
0.000
Infiltration Loss ........
0.605
0.121
Surface Runoff ...........
17.471
3.483
Final Surface Storage ....
0.461
0.092
Continuity Error (%) .....
-0.702
••••,,••••••,•••,•••,:,•••
volume
Volume
Flow Routing Continuity
.............................
acre-feet
---------
30^6 gal
---------
Dry Weather Inflow .......
0.000
0.000
Wet Weather Inflow .......
17.471
5.693
Groundwater Inflow .......
0.000
0.000
RDII Inflow ..............
0.000
0.000
External Inflow ..........
3.507
1.143
External Outflow .........
17.561
5.722
Internal Outflow .........
0.000
0.000
Storage Losses ...........
0.000
0.000
Initial Stored Volume ....
0.039
0.013
Final Stored Volume ......
0.040
0.013
Continuity Error (8) .....
16.257
SWMM 5 Page 6
...........................
Time -Step Critical Elements
None
Highest Flow Instability Indexes
All links are stable.
.........................
Routing Time Step Summary
Minimum Time Step 0.50 see
Average Time Step 1.00 sec
Maximum Time Step 1.00 sec
Percent in Steady State 0.00
Average Iterations per Step 2.04
...........................
Subcatchment Runoff Summary
Total
Total
Total
Total
Total
Total
Peak
Runoff
Precip
Runon
Evap
Infil
Runoff
Runoff
Runoff
Coeff
`)catchment
in
in
in
in
in
' 30"6 gal
CFS
---------------------------------------------------------------------------------------
3.67
0.00
0.00
0.07
3.53
0.12
11.13
___
0.963
3.67
0.00
0.00
0.07
3.53
0.22
19.84
0.962
102
3.67
0.00
0.00
0.07
3.53
0.28
27.19
0.963
103
3.67
0.00
0.00
0.07
3.53
0.08
7.99
0.962
104
3.67
0.00
0.00
0.07
3.53
0.43
44.74
0.963
105
3.67
0.00
0.00
0.07
3.53
0.12
12.01
0.962
106a
3.67
0.00
0.00
0.07
3.53
0.13
12.21
0.963
107
3.67
0.00
0.00
0.07
3.53
0.08
7.98
0.962
108
3.67
0.00
0.00
0.07
3.53
0.18
16.24
0.962
109
3.67
0.00
0.00
0.55
3.09
0.07
7.65
0.842
110
3.67
0.00
0.00
0.29
3.33
0.16
17.94
0.908
ill
3.67
0.00
0.00
1.53
2.14
0.05
2.68
0.583
112
3.67
0.00
0.00
0.14
3.47
0.12
11.96
0.945
113
3.67
0.00
0.00
0.07
3.53
0.17
17.25
0.963
114
3.67
0.00
0.00
0.07
3.53
0.34
33.71
0.963
115
3.67
0.00
0.00
0.07
3.53
0.27
27.41
0.963
116
3.67
0.00
0.00
0.07
3.53
0.02
2.00
0.962
117
3.67
0.00
0.00
0.07
3.53
0.12
11.76
0.963
lie
3.67
0.00
0.00
0.07
3.53
0.17
16.67
0.963
119
3.67
0.00
0.00
0.14
3.47
0.34
33.64
0.945
120
3.67
0.00
0.00
0.07
3.53
0.04
4.00
0.962
121
3.67
0.00
0.00
0.07
3.53
0.03
3.00
0.962
122
3.67
0.00
0.00
0.07
3.53
0.06
6.00
0.962
123
3.67
0.00
0.00
0.07
3.53
0.03
3.00
0.962
124
3.67
0.00
0.00
0.07
3.53
0.07
7.00
0.962
125
3.67
0.00
0.00
0.07
3.53
0.05
5.00
0.962
126
3.67
0.00
0.00
0.07
3.52
0.48
35.38
0.960
127
3.67
0.00
0.00
0.07
3.53
0.22
21.86
0.963
128
3.67
0.00
0.00
0.07
3.53
0.03
3.00
0.961
SWMM 5 Page 7
200
3.67
0.00
0.00
0.07
3.53
0.03
3.00
0.962
201
3.67
0.00
0.00
0.07
3.53
0.02
2.00
0.962
202
3.67
0.00
0.00
0.07
3.53
0.04
4.00
0.962
203
3.67
4.71
0.00
0.08
8.23
0.07
4.75
0.982
204
3.67
0.00
0.00
0.07
3.53
0.04
3.47
0.962
205
3.67
0.00
0.00
0.07
3.53
0.01
1.00
0.962
206
3.67
0.00
0.00
0.14
3.47
0.02
1.99
0.945
207
3.67
0.00
0.00
0.07
3.53
0.09
9.00
0.962
208
3.67
0.00
0.00
0.07
3.53
0.07
6.93
0.963
210
3.67
0.00
0.00
0.29
3.32
0.26
24.60
0.906
211
3.67
0.00
0.00
0.07
3.53
0.02
2.00
0.962
212
3.67
0.00
0.00
0.07
3.53
0.06
6.00
0.962
213
3.67
1.61
0.00
0.07
5.13
0.17
12.69
0.973
300
3.67
0.00
0.00
0.07
3.53
0.21
21.09
0.963
106b
3.67
0.00
0.00
0.07
3.53
0.10
9.53
0.963
306c
3.67
0.00
0.00
0.07
3.53
0.13
12.49
0.963
Node Depth Summary
Average
Maximum
Maximum
Time
Of
Max
Depth
Depth
HGL
Occurrence
Node
Type
Feet
Feet
Feet
days
hr:min
---------------------------------------------------------------------
Custominlet-River
JUNCTION
4.88
5.31
4962.25
0
00:40
EXINLET-B10B
JUNCTION
0.02
0.58
4973.29
0
00:40
EXINLET-B3A
JUNCTION
0.13
8.25
4968.88
0
00:38
EXINLET-B3C
JUNCTION
0.06
6.34
4970.10
0
00:38
'NLET-B4B
JUNCTION
0.04
1.68
4972.91
0
00:39
ILET-B4C
JUNCTION
0.03
1.10
4973.14
0
00:40
NLET-B5B
JUNCTION
0.04
1.58
4972.83
0
00:39
_„INLET-B8A
JUNCTION
0.02
0.55
4971.93
0
00:43
EXINLET-B9B
JUNCTION
0.02
0.46
4971.88
0
00:40
EXMH BI
JUNCTION
0.14
6.39
4965.55
0
00:40
EXMH Cl
JUNCTION
0.18
6.50
4962.76
0
00:40
EXSTUB-B6
JUNCTION
0.03
1.06
4971.46
0
00:40
INLET-AIA
JUNCTION
0.03
0.96
4956.46
0
00:40
INLET-A2A
JUNCTION
0.03
4.77
4959.78
0
00:38
INLET-A3A
JUNCTION
0.02
0.73
4965.77
0
00:40
INLET-A3B
JUNCTION
0.08
4.47
4966.48
0
00:39
INLET-A4A
JUNCTION
0.03
0.95
4970.55
0
00:40
INLET-B10A
JUNCTION
0.06
1.67
4974.07
0
00:40
INLET-B1A
JUNCTION
0.03
0.80
4961.59
0
00:40
INLET -BIB
JUNCTION
0.05
1.90
4962.82
0
00:39
INLET-B2A
JUNCTION
0.02
0.56
4964.56
0
00:40
INLET-B2B
JUNCTION
0.08
2.33
4966.18
0
00:39
INLET-B3B
JUNCTION
0.13
8.27
4969.23
0
00:38
INLET-B4A
JUNCTION
0.03
4.53
4969.98
0
00:39
INLET-B5A
JUNCTION
0.03
1.21
4972.27
0
00:40
INLET-B7A
JUNCTION
0.05
1.68
4972.07
0
00:40
INLET-B9A
JUNCTION
0.02
0.70
4972.19
0
00:40
INLET-C1A
JUNCTION
0.05
3.03
4960.85
0
00:40
INLET-C1B
JUNCTION
0.07
4.85
4963.19
0
00:40
INLET-C2A
JUNCTION
0.03
1.04
4962.54
0
00:40
INLET-C2B
JUNCTION
0.08
3.24
4964.00
0
00:39
INLET-D1
JUNCTION
0.18
2.95
4963.19
0
00:41
INLET-D2A
JUNCTION
0.02
0.66
4964.40
0
00:40
INLET-D2B
JUNCTION
0.06
2.01
4965.79
0
00:39
INLET-D3A
JUNCTION
0.04
1.36
4965.36
0
00:40
SWMM 5 Page 8
INLET-D3B
JUNCTION
0.06
2.25
4966.53
0
00:39
MH Al
JUNCTION
9.47
11.84
4953.87
0
00:41
MH A2
JUNCTION
1.46
6.10
4956.17
0
00:41
MH A3
JUNCTION
0.09
6.27
4959.61
0
00:38
MH A4-MH D1
JUNCTION
0.08
2.41
4962.00
0
00:41
MH A5
JUNCTION
0.05
1.56
4962.77
0
00:40
MH B10
JUNCTION
0.11
4.59
4971.70
0
00:42
MH B11
JUNCTION
0.09
3.67
4972.08
0
00:42
MH B12
JUNCTION
0.07
2.86
4972.33
0
00:42
MH B13
JUNCTION
0.06
2.39
4972.39
0
00:42
MH B2
JUNCTION
0.10
4.10
4961.42
0
00:41
MH B3
JUNCTION
0.14
5.43
4964.05
0
00:41
MH B3A
JUNCTION
0.15
7.94
4968.80
0
00:38
MH B4
JUNCTION
0.15
6.05
4964.93
0
00:40
MH B4A
JUNCTION
0.03
4.07
4969.49
0
00:39
MH B4B
JUNCTION
0.04
3.17
4969.58
0
00:41
MH B5
JUNCTION
0.14
7.79
4968.31
0
00:38
MH B6
JUNCTION
0.14
6.14
4969.48
0
00:41
MH B7
JUNCTION
0.15
6.32
4969.90
0
00:41
MH B7A
JUNCTION
0.05
1.31
4971.10
0
00:42
MH B8
JUNCTION
0.15
6.44
4970.21
0
00:41
MH B9
JUNCTION
0.13
6.00
4971.12
0
00:42
MH Cl
JUNCTION
2.35
10.20
4951.43
0
00:OD
MH C2
JUNCTION
1.77
6.60
4948.68
0
00:40
MH C3
JUNCTION
0.74
10.68
4955.60
0
00:40
MH C4/B1
JUNCTION
0.97
14.23
4960.23
0
00:40
MH C5
JUNCTION
0.20
5.76
4960.65
0
00:40
MH C6
JUNCTION
0.16
5.62
4961.09
0
00:40
MH C7
JUNCTION
0.16
6.12
4962.36
0
00:40
MH D2
JUNCTION
0.11
3.21
4963.19
0
00:41
MH_D3
JUNCTION
0.10
3.36
4964.01
0
00:41
D4
JUNCTION
0.07
2.78
4964.69
0
00:41
STRT
JUNCTION
0.01
0.37
4973.37
0
00:37
2
JUNCTION
0.00
0.00
0.00
0
00:10
,,.13
JUNCTION
0.00
0.00
0.00
0
00:10
0114
JUNCTION
0.00
0.00
0.00
0
00:10
0115
JUNCTION
0.00
0.00
0.00
0
00:10
0300
JUNCTION
0.00
0.00
0.00
0
00:10
Al POUDRE
OUTFALL
1.59
2.67
4952.56
0
00:41
FESB1-POUDRE
OUTFALL
0.07
3.27
4957.00
0
00:39
FESCI-UDALL POND
OUTFALL
2.47
2.47
4943.50
0
00:00
Node Inflow Summary
...................
Maximum
Maximum
Lateral
Total
Lateral
Total
Time
of Max
Inflow
Inflow
Inflow
Inflow
Occurrence
Volume
Volume
Node
Type
CFS
CFS
days
hr:min
10-6 gal
30-6 gal
-------------------------------------------------------------------------------------
CustomInlet-River
JUNCTION
3.00
3.00
0
00:40
0.029
0.029
EXINLET-B10B
JUNCTION
3.00
3.00
-0
00:40
0.029
0.029
EXINLET-B3A
JUNCTION
11.75
11.75
0
00:40
0.115
0.115
EXINLET-B3C
JUNCTION
34.21
34.21
0
00:40
0.355
0.355
E%INLET-B4B
JUNCTION
12.00
12.00
0
00:40
0.115
0.115
E%INLET-B4C
JUNCTION
7.97
7.97
0
00:40
0,077
0.077
EXINLET-B5B
JUNCTION
8.99
8.99
0
00:40
0.086
0.086
EXINLET-BBA
JUNCTION
4.75
4.75
0
00:40
0.067
0.067
EXINLET-B9B
JUNCTION
2.00
2.00
0
00:40
0.019
0.019
SWMM 5 Page 9
EXMH Bl
JUNCTION
44.71
158.08
0
00:38
0.432
1.019
EXMH Cl
JUNCTION
35.37
35.37
0
00:40
0.478
0.478
EXSTUB-B6
JUNCTION
6.93
6.93
0
00:40
0.067
0.067
INLET-AlA
JUNCTION
7.00
7.00
0
00:40
0.067
0.067
INLET-A2A
JUNCTION
3.00
3.00
0
00:40
0.029
0.029
INLET-A3A
JUNCTION
4.00
4.00
0
00:40
0.038
0.038
INLET-A3B
JUNCTION
17.93
17.93
0
00:40
0.181
0.181
INLET-A4A
JUNCTION
1.99
1.99
0
00:40
0.019
0.019
INLET-BIOA
JUNCTION
16.24
16.24
0
00:40
0.182
0.182
INLET-B1A
JUNCTION
3.00
3.00
0
00:40
0.029
0.029
INLET -BIB
JUNCTION
11.13
11.13
0
00:40
0.115
0.115
INLET-B2A
JUNCTION
2.00
2.00
0
00:40
0.019
0.019
INLET-B2B
JUNCTION
19.83
19.83
0
00:40
0.221
0.221
INLET-B3B
JUNCTION
7.98
7.98
0
00:40
0.077
0.077
INLET-B4A
JUNCTION
1.00
3.97
0
00:39
0.010
0.010
INLET-85A
JUNCTION
7.65
7.65
0
00:40
0.067
0.067
INLET-B7A
JUNCTION
16.66
16.66
0
00:40
0.173
0.173
INLET-B9A
JUNCTION
4.00
4.00
0
00:40
0.038
0.038
INLET -CIA
JUNCTION
6.00
6.00
0
00:40
0.058
0.058
INLET-C1B
JUNCTION
21.85
21.85
0
00:40
0.221
0.221
INLET-C2A
JUNCTION
5.00
5.00
0
00:40
0.048
0.048
INLET-C2B
JUNCTION
27.18
27.18
0
00:40
0.278
0.278
INLET-D1
JUNCTION
0.00
0.14
0
00:36
0.000
0.001
INLET-D2A
JUNCTION
2.00
2.00
0
00:40
0.019
0.019
INLET-D2B
JUNCTION
24.59
24.59
0
00:40
0.262
0.262
INLET-D3A
JUNCTION
6.00
6.00
0
00:40
0.058
0.058
INLET-D3S
JUNCTION
12.68
12.68
0
00:40
0.167
0.167
MH Al
JUNCTION
0.00
71.44
0
00:41
0.000
0.862
MH A2
JUNCTION
0.00
71.51
0
00:41
0.000
0.855
MH A3
JUNCTION
0.00
62.88
0
00:41
0.000
0.754
MH_A4-MH D1
JUNCTION
0.00
61.39
0
00:40
0.000
0.725
A5
JUNCTION
0.00
21.91
0
00:40
0.000
0.219
'.10
JUNCTION
0.00
57.28
0
00:40
0.000
0.607
111
JUNCTION
0.00
52.49
0
00:40
0.000
0.550
... B12
JUNCTION
0.00
33.61
0
00:40
0.000
0.339
MH B13
JUNCTION
33.62
33.62
0
00:40
0.339
0.339
MH B2
JUNCTION
0.00
318.10
0
00:40
0.000
3.778
MH B3
JUNCTION
0.00
309.39
0
00:38
0.000
3.634
MH B3A
JUNCTION
10.00
48.88
0
00:40
0.539
0.970
MH B4
JUNCTION
0.00
290.08
0
00:38
0.000
3.393
MH B4A
JUNCTION
0.00
4.62
0
00:39
0.000
0.010
MH B4B
JUNCTION
0.00
19.91
0
00:40
0.000
0.192
MH B5
JUNCTION
0.00
152.07
0
00:43
0.000
2.373
MH B6
JUNCTION
0.00
102.79
0
00:43
0.000
1.288
MH B7
JUNCTION
0.00
87.31
0
00:44
0.000
1.067
MH B7A
JUNCTION
0.00
21.40
0
00:40
0.000
0.240
MH B8
JUNCTION
0.00
73.33
0
00:44
0.000
0.914
MH B9
JUNCTION
0.00
73.84
0
00:39
0.000
0.846
MH Cl
JUNCTION
0.00
33.57
0
00:41
0.000
1.761
MH C2
JUNCTION
0.00
33.57
0
00:41
0.000
1.758
MH C3
JUNCTION
0.00
33.57
0
00:41
0.000
1.749
MH C4/B1
JUNCTION
0.00
406.59
0
00:40
0.000
4.864
MH CS
JUNCTION
0.00
92.31
0
00:40
0.000
1.085
MH C6
JUNCTION
0.00
65.01
0
00:40
0.000
0.605
MN C7
JUNCTION
0.00
67.13
0
00:40
0.000
0.804
MN D2
JUNCTION
0.00
41.18
0
00:41
0.000
0.506
MH D3
JUNCTION
0.00
42.2B
0
00:40
0.000
0.506
MH D4
JUNCTION
0.00
18.61
0
00:40
0.000
0.225
N.NT STRT
JUNCTION
169.16
169.16
0
00:35
0.586
0.5B6
0112
JUNCTION
11.96
11.96
0
00:40
0.122
0.122
0113
JUNCTION
17.24
17.24
0
00:40
0.173
0.173
0114
JUNCTION
33.69
33.69
0
00:40
0.336
0.336
SWMM 5 Page 10
0115 JUNCTION 27.40 27.40 0 00:40 0.269 0.269
0300 JUNCTION 21.08 21.08 0 00:40 0.211 0.211
Al POUDRE OUTFALL 0.00 71.44 0 00:41 0.000 0.863
FE501-POUDRE OUTFALL 0.00 369.75 0 00:39 0.000 3.116
FESC1-UDALL POND OUTFALL 0.00 33.57 0 00:41 0.000 1.761
Node Surcharge Summary
Surcharging occurs when water rises above the top of the highest conduit
Max. Height
Min. Depth
Hours
Above Crown
Below Rim
Node
Type
Surcharged
Feet
Feet
---------------------------------------------------------------------
EXINLET-B3A
JUNCTION
0.27
6.246
1.204
EXINLET-B3C
JUNCTION
0.07
3.840
0.000
EXINLET-B4B
JUNCTION
0.04
0.435
0.735
EXINLET-B5B
JUNCTION
0.01
0.081
0.839
EXMH Cl
JUNCTION
0.30
4.504
2.646
INLET-A2A
JUNCTION
0.10
3.269
3.171
INLET-A3B
JUNCTION
0.22
2.971
2.009
INLET -BIB
JUNCTION
0.05
0.395
2.185
INLET-52B
JUNCTION
0.07
0.326
1.534
INLET-B3B
JUNCTION
0.18
5.769
0.011
INLET-B4A
JUNCTION
0.09
2.530
2.920
INLET-ClA
JUNCTION
0.12
1.534
1.966
INLET-C1B
JUNCTION
0.15
3.352
0.268
INLET-C2B
JUNCTION
0.12
1.241
O.B99
',ET -DI
JUNCTION
0.12
0.834
4.986
ET-D25
JUNCTION
0.12
0.514
2.856
.ET-D3B
JUNCTION
0.10
0.748
1.882
-a Al
JUNCTION
0.14
0.815
3.195
MH A3
JUNCTION
0.10
3.209
3.671
MH 03A
JUNCTION
0.09
3.304
1.656
MH B4
JUNCTION
0.13
2.048
4.172
MH B4A
JUNCTION
0.09
2.074
3.756
MH B5
JUNCTION
0.11
3.794
2.076
MH Cl
JUNCTION
22.99
8.198
0.000
MH C2
JUNCTION
2.12
4.603
0.087
MH C3
JUNCTION
1.93
8.684
3.916
MH C4/B1
JUNCTION
0.05
0.420
3.600
MH C5
JUNCTION
0.13
1.473
1.987
MH C6
JUNCTION
0.12
1.622
3.388
MH D2
JUNCTION
0.04
0.213
5.087
0112
JUNCTION
23.00
0.000
0.000
0113
JUNCTION
23.00
0.000
0.000
0114
JUNCTION
23.00
0.000
0.000
0115
JUNCTION
23.00
0.000
0.000
0300
JUNCTION
23.00
0.000
0.000
Node Flooding Summary
.....................
Flooding refers to all water that overflows a node, whether it ponds or not.
--------------------------------------------------------------------------
Total Maximum
Maximum Time of Max Flood Ponded
SWMM 5 Page 11
Hours Rate Occurrence Volume Depth
Node Flooded CFS days hr:min 10^6 gal Feet
______________ _-______--________------__-__________-_------__---
EXINLET-B3C 0.01 6.32 0 00:38 0.000 6.34
.......................
Outfall Loading Summary
.......................
Flow
Avg.
Max.
Total
Freq.
Flow
Flow
Volume
Outfall Node
Pcnt.
CFS
CFS
10"6 gal
-----------------------------------------------------------
Al MOORE
72.44
1.99
71.44
0.863
FESB1-POUDRE
7.96
66.38
369.75
3.116
FESC1-UDALL POND
100.00
2.88
33.57
1.761
---___
--------------------------------------------
System
60.13
71.25
470.72
1 5.740
Link Flow Summary
....................
Maximum
Time
of Max
Maximum
Max/
Max/
IFlowl
Occurrence
IVelocl
Full
Full
Link
Type
CFS
days
hr:min
ft/sec
Flow
--__-___-
Depth
-----------------------------------------------------------
CONDUIT
71.44
0
00:41
10.33
2.54
0.95
CONDUIT
71.44
0
00:41
10.11
3.94
1.00
CONDUIT
62.88
0
00:41
8.90
0.69
1.00
CONDUIT
60.42
0
00:41
11.58
0.66
0.90
A5
CONDUIT
21.80
0
00:40
8.92
0.80
0.81
B1
CONDUIT
369.75
0
00:39
17.46
0.98
0.90
B2
CONDUIT
314.61
0
00:40
12.53
0.68
1.00
B3
CONDUIT
304.31
0
00:40
11.28
1.33
1.00
B4
CONDUIT
290.05
0
00:38
10.36
1.30
1.00
B5
CONDUIT
152.10
0
00:43
6.84
0.83
1.00
B6
CONDUIT
109.56
0
00:44
6.76
1.00
1.00
B7
CONDUIT
89.09
0
00:44
7.16
1.04
1.00
B8
CONDUIT
78.86
0
00:44
6.28
1.10
1.00
B9
CONDUIT
69.81
0
00:44
5.60
0.80
1.00
B10
CONDUIT
53.13
0
00:39
7.31
0.60
1.00
B11
CONDUIT
51.36
0
00:40
6.38
0.58
1.00
B12
CONDUIT
33.41
0
00:40
6.28
0.56
0.98
B13
CONDUIT
33.61
0
00:40
7.32
0.40
0.87
Cl
CONDUIT
33.57
0
00:41
10.69
1.93
1.00
C2
CONDUIT
33.57
0
00:41
10.69
1.89
1.00
C3
CONNDUIT
33.57
0
00:41
10.69
1.46
1.00
C4
CONDUIT
33.57
0
00:41
10.69
1.90
1.00
C5
CONDUIT
92.28
0
00:40
7.34
1.15
1.00
C6
CONDUIT
64.98
0
00:40
5.29
0.83
'1.00
C7
CONDUIT
65.01
0
00:40
6.76
1.22
1.00
D2
CONDUIT
41.20
0
00:41
6.87
0.85
0.90
D3
CONDUIT
41.18
0
00:41
6.97
0.99
1.00
D4
CONDUIT
17.41
0
00:41
3.63
0.68
1.00
EXLAT-B3C
CONDUIT
34.20
0
00:40
11.75
0.57
1.00
EXLAT-B4B
CONDUIT
12.01
0
00:40
9.79
1.24
1.00
EXLAT-B4C
CONDUIT
7.94
0
00:40
8.71
0.53
0.70
SWMM 5 Page 12
LAT-AlA
CONDUIT
6.92
0
00:40
6.54
0.58
0.71
LAT-A2A
CONDUIT
3.29
0
00:38
5.11
0.19
1.00
LAT-A3A
CONDUIT
3.99
0
00:40
5.92
0.23
0.41
LAT-A3B
CONDUIT
17.94
0
00:40
10.15
1.77
1.00
LAT-MA
CONDUIT
1.92
0
00:40
2.95
1.05
0.77
LAT-B1A
CONDUIT
2.98
0
00:40
3.64
0.35
0.55
LAT-B1B
CONDUIT
11.14
0
00:40
7.53
0.60
0.78
LAT-B2A
CONDUIT
1.98
0
00:40
3.69
0.21
0.34
LAT-B2B
CONDUIT
19.84
0
00:40
7.25
0.72
0.81
LAT-B3A
CONDUIT
11.77
0
00:40
3.75
1.05
1.00
LAT-B313
CONDUIT
8.10
0
00:38
1.65
0.37
1.00
LAT-B3C
CONDUIT
48.93
0
00:40
7.39
0.95
1.00
LAT-B4A
CONDUIT
3.03
0
00:39
1.75
0.34
1.00
LAT-B4B
CONDUIT
4.62
0
00:39
1.91
0.37
1.00
LAT-B4C
CONDUIT
19.74
0
00:40
10.18
0.34
1.00
LAT-135A
CONDUIT
7.61
0
00:40
5.95
0.60
0.68
LAT-B5B
CONDUIT
9.00
0
00:40
5.93
0.68
0.80
LAT-136A
CONDUIT
6.91
0
00:40
6.49
0.74
M2
LAT-137A
CONDUIT
16.65
0
00:40
6.91
0.48
0.73
LAT-B7C
CONDUIT
21.39
0
00:40
7.84
0.21
0.47
LAT-B8A
CONDUIT
4.86
0
00:40
5.48
0.23
0.60
LAT-139A
CONDUIT
3.98
0
00:40
6.06
0.24
0.50
LAT-B9B
CONDUIT
1.99
0
00:40
4.97
0.13
0.44
LAT-B10A
CONDUIT
16.19
0
00:40
7.20
0.52
0.67
LAT-B10B
CONDUIT
2.98
0
00:40
5.55
0.20
0.34
LAT-1311A
CONDUIT
158.58
0
00:38
12.62
1.63
1.00
LAT-C1A
CONDUIT
6.00
0
00:40
3.84
0.92
1.00
LAT-C1B
CONDUIT
21.85
0
00:40
12.37
1.47
1.00
LAT-C2A
CONDUIT
5.04
D
00:39
5.80
0.36
0.85
LAT-C2B
CONDUIT
27.21
0
00:40
9.34
0.85
0.96
LAT-C3A
CONDUIT
35.39
0
00:40
11.26
4.69
1.00
T-D2A
CONDUIT
1.97
0
00:40
3.04
0.28
0.39
-D2B
CONDUIT
24.59
0
00:40
13.92
1.69
1.00
-D3A
CONDUIT
5.95
0
00:40
4.09
0.80
0.77
,T-D3B
CONDUIT
12.69
0
00:40
7.88
0.85
0.86
MT SINT
CONDUIT
121.88
0
00:37
2.95
0.56
0.70
12DIP
CONDUIT
2.99
0
00:40
10.13
0.34
0.40
LAT-DI
CONDUIT
0.20
0
00:45
0.34
0.01
1.00
Flow Classification Summary
Adjusted
---
Fraction of
Time in Flow
Class
----
Avg.
Avg.
/Actual
Up
Down
Sub
Sup
Up
Down
Fronde
Flow
Conduit
Length
Dry
Dry
Dry
Crit
Crit
Crit
Crit
Number
Change
______
______________
Al
_________------_--________________--------_______
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.04
0.0001
A2
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.03
0.0001
A3
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.06
0.0000
A4
1.00
0.00
0.00
0.00
0.00
0.01
0.00
0.99
1.32
0.0000
A5
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.87
0.0000
B1
1.00
0.92
0.00
0.00
0.00
0.08
0.00
0.00
0.15
0.0000
B2
1.00
0.00
0.00
0.00
0.00
0.03
0.00
0.97
1.08
0.0000
B3
1.00
0.00
0.00
0.00
0.87
0.13
0.00
0.00
0.61
0.0000
B4
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.44
0.0000
B5
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.35
0.0000
B6
1.00
0.00
0.00
0.00
0.79
0.21
0.00
0.00
0.70
0.0000
B7
1.00
0.00
0.01
0.00
0.99
0.00
0.00
0.00
0.47
0.0000
B8
1.00
0.01
0.00
0.00
0.99
0.00
0.00
0.00
0.42
0.0000
SWMM 5 Page 13
B9
1.00
0.01
0.00
0.00
0.99
0.00
0.00
0.00
0.42
0.0000
B10
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.80
0.0000
Bll
1.00
0.01
0.00
0.00
0.89
0.10
0.00
0.00
0.54
0.0000
B12
1.00
0.01
0.00
0.00
0.92
0.08
0.00
0.00
0.47
0.0000
B13
1.00
0.01
0.00
0.00
0.83
0.16
0.00
0.00
0.75
0.0000
C1
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.00
0.0001
C2
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.01
0.0001
C3
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.03
0.0000
C4
1.00
0.00
0.00
0.00
0.79
0.21
0.00
0.00
0.80
0.0001
C5
1.00
0.00
0.00
0.00
0.08
0.00
0.00
0.92
0.61
0.0000
C6
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.37
0.0000
C7
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.50
0.0000
D2
1.00
0.00
0.00
0.00
0.88
0.12
0.00
0.00
0.57
0.0000
D3
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.48
0.0000
D4
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.22
0.0000
EXLAT-WC
1.00
0.00
0.00
D.DO
0.00
0.00
0.00
0.99
1.36
0.0000
EXLAT-B4B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.45
0.0000
EXLAT-B4C
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.73
0.0000
UT-AlA
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.30
0.0000
UT-A2A
1.00
0.01
0.00
0.00
0.01
0.00
0.00
0.98
0.20
0.0000
LAT-A3A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.30
0.0000
LAT-A3B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.74
0.0000
LAT-MA
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.16
0.0000
LAT-B1A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.16
0.0000
LAT-BIB
1.58
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.17
0.0000
LAT-B2A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.15
0.0000
LAT-B2B
1.20
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.16
0.0000
LAT-B3A
1.00
0.00
0.01
0.00
0.99
0.00
0.00
0.00
0.18
0.0000
LAT-B3B
1.00
0.00
0.13
0.00
0.87
0.00
0.00
0.00
0.03
0.0000
LAT-B3C
1.00
0.00
0.00
0.00
0.83
0.17
0.00
0.00
0.68
0.0000
LAT-B4A
1.00
0.01
0.11
0.00
0.89
0.00
0.00
0.00
0.07
0.0000
T-B4B
1.00
0.01
0.00
0.00
0.01
0.00
0.00
0.98
0.11
0.0000
-B4C
1.00
0.00
0.00
0.00
0.01
0.00
0.00
0.99
0.56
0.0000
-B5A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.25
0.0000
,T-BSB
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.37
0.0000
UT-B6A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.51
0.0000
LAT-B7A
1.00
0.01
0.00
0.00
0.80
0.19
0.00
0.00
0.79
0.0000
LAT-B7C
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
O.B7
0.0000
LAT-B8A
1.00
0.01
0.00
0.00
0.84
0.15
0.00
0.00
0.63
0.0000
LAT-M
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.32
0.0000
LAT-B%
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.26
0.0000
LAT-B10A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.29
0.0000
LAT-B10B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.30
0.0000
LAT-B11A
1.00
0.00
0.01
0.00
0.86
0.13
0.00
0.00
0.62
0.0000
UT-C1A
1.00
0.01
0.00
0.00
0.01
0.00
0.00
0.98
0.19
0.0000
UT-C1B
1.00
0.01
0.00
0.00
0.01
0.00
0.00
0.98
1.15
0.0000
UT-C2A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.27
0.0000
LAT-C2B
1.52
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.16
0.0000
LAT-C3A
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.43
0.0001
LAT-D2A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.17
0.0000
LAT-D2B
1.09
0.01
0.00
0.00
0.00
0.00
0.00
0.99
1.28
0.0000
LAT-D3A
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.19
0.0000
LAT-D3B
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.82
0.0000
MNT STRT
1.00
0.02
0.00
0.00
0.00
0.00
0.00
0.98
0.34
0.0000
12DIP
1.00
0.01
0.00
0.00
0.00
0.00
0.00
0.99
0.44
0.0000
LAT-Dl
1.56
0.00
0.91
0.00
0.09
0.00
0.00
0.00
0.00
0.0000
COnduil Surcharge Summary
SWMM 5 Page 14
Hours
Hours
---------
Hours Full
--------
Above Full
Capacity
Conduit
Both Ends
Upstream
Dnstream
Normal Flow
Limited
-------------------------------
Al
0.01
0.01
---------------
0.01
0.30
0.01
A2
0.14
0.14
0.14
0.45
0.14
A3
0.10
0.10
0.10
0.01
0.01
B2
0.02
0.02
0.02
0.01
0.01
B3
0.02
0.02
0.02
0.15
0.02
B4
0.10
0.10
0.10
0.15
0.10
B5
0.10
0.10
0.10.
0.01
0.08
B6
0.10
0.10
0.10
0.01
0.05
B7
0.10
0.10
0.10
0.04
0.09
B8
0.10
0.10
0.10
0.06
0.09
B9
0.09
0.09
0.09
0.01
0.01
B10
0.07
0.07
0.07
0.01
0.06
511
0.02
O.D2
0.02
0.01
0.01
Cl
22.99
22.99
22.99
1.98
2.04
C2
2.12
2.12
2.12
1.97
2.02
C3
1.93
1.93
1.93
1.87
1.88
C4
1.93
1.93
1.93
1.96
1.93
C5
0.15
0.15
0.15
0.06
0.15
C6
0.12
0.12
0.12
0.01
0.01
C7
0.15
0.15
0.15
0.09
0.11
D3
0.04
0.04
0.04
0.01
0.04
D4
0.03
0.03
0.03
0.01
0.01
EXLAT-83C
0.07
0.07
0.07
0.01
0.01
EXLAT-B4B
0.03
0.03
0.03
0.06
0.03
LAT-A2A
0.10
0.10
0.10
0.01
0.01
LAT-A3B
0.02
0.02
0.02
0.15
0.02
T-A4A
0.01
0.01
0.01
0.03
0.01
-B3A
0.27
0.27
0.27
0.02
0.02
:-B3B
0.18
0.18
0.18
0.01
0.01
,T-B3C
0.16
0.16
0.16
0.01
0.01
UT-B4A
0.09
0.09
0.09
0.01
0.01
UT-B48
0.09
0.09
0.10
0.01
0.01
LAT-B4C
0.05
0.05
0.05
0.01
0.01
UT-B11A
0.12
0.12
0.13
0.14
0.10
LAT-C1A
0.12
0.12
0.12
0.01
0.06
LAT-C1B
0.13
0.13
0.13
0.11
0.13
LAT-C3A
0.29
0.29
0.29
0.62
0.29
UT-D2B
0.11
0.11
0.11
0.15
0.11
UT -DI
0.12
0.12
0.12
0.01
0.01
Analysis begun on: Mon Jun 29 12:44:41 2015
Analysis ended on: Mon Jun 29 12:44:59 2015
Total elapsed time: 00:00:18
SWMM 5 Page 15
ATTACHMENT 2.1
Effective HEC-RAS Modeling Workmap - Walnut Street
No Text
ATTACHMENT 3.1
Proposed Condition HEC-RAS Modeling Workmop
ATTACHMENT 3.2
Proposed Condition HEC-RAS Modeling Output — Walnut and Chestnut Street
G
AD w 1W FM
IN TEEil
NN NR ® NORTH
LEGEND:
N9ROXY.S2 11111115 OF CdBIMC1YJ1IIIIs
EMNING RIWi-OF-NX.Y/PRfRFM1 UE
E TSMNG CURB k GUI
"SING CONCIWW
PROPOSED CONCRETE PN`pEM
PROPOSED
AAMI PIII
LIHGSCAR AYCNIRrn
PROPOSES W. IPRIICA-
CURB h CURTER SCOTCH
167ANING WNL
EXISTING TREES
EXII MAJOR CCRWR
EXISDNC MINOR CONTOUR
PRCPoSFD CONKERS
1. RESER To ME -FINAL MENAGE ROSSI FOR
WALRUT-FNESMUT SUBwNSIM REEL BY INK IdI
E]WUNEFRING. DATES MRR M 20e FOR ADDM AI
NODRI
P. A L EREVATO S ARE RFIATED M TE NANDI AERnCA1
DI
IyI:IpIII :riVay�
OWN& FIRM SURER
HOiIXWU ENGINEERING BARGES M
PROJECT NUMER, 947-003
DAIS: DECEMEER 3014
G1LUN:v COLORADO m1161M
SARAM rsbBIOW.
Call DRIyRE ft.
gago Architecture Inc
PARIMHGBNMPE
WAMrsSEnsq LLc
OWES
ME MOUNTAIN AW
FCPo COLLINS, CO MVE
r. TRRSOOS%
NOFEEONIIERI
RYW4 LLC
DEVELOPER
2135 RC Y MOUNTAIN AVE STE M]
.CO KSEe
ICI
sr0s AGO
ARCHRINCT
HMO ARCNIECOPURE INC
dWI RI NOSBY COURT SUITE 117
DEWER, CON2I6
1101SIR A]W
CML
NORTHERN ENGINEERING, WC
M S COLLEGE AVE
FORTCOLUNS, CO 90S4
5 fW3MDIIS
WIOSGAFE
RUSIELLIMILOTWOKS
141 SGO IEOE AVE
FORT COLLINS CO M24
1970.W U55 f 970 2214 1
PAEOMGGMWE aAxlmle
1RrIAABUMrtAL
Ye OEIOIIICM MR
HYDRAULIC MODELING
WORKIA P
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 1 of 11
HEC-RAS Version 4.1.0 Jan 2010
U.S. Army Corps of Engineers
Hydrologic Engineering Center
609 Second Street
Davis, California
X X XXXXXX XXXX XXXX XX XXXX
X X X X X X X X X X
X X X X X X X X X
XXXXXXX XXXX X XXX XXXX XXXXXX XXXX
X X X X X X X X X
X X X X X X X X X X
X X XXXXXX XXXX X X X X XXXXX
PROJECT DATA
Project Title: Walnut Street - 100yr-Proposed
Project File : Walnut NE.prj
Run Date and Time: 7/21/2015 12:07:20 PM
Project in English units
PLAN DATA
Plan Title: P1an01 Chestnut Split
Plan File : d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06-
02\Walnut NE.p01
Geometry Title: Chestnut Split Flow
Geometry File d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-
2015-06-02\Walnut NE.g01
Flow Title Flow 01
Flow File :'d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-
2015-06-02\Walnut NE.f01
Plan Summary Information:
Number of: Cross Sections = 8 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 0 Lateral Structures = 0
Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor - = 0.001
Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow
FLOW DATA
Flow Title: Flow 01
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 2 of 11
Flow File
: d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-PAS-Proposed Cond-2015-06-
02\Walnut_NE.f01
Flow Data
(cfs)
River
Reach
RS
PF 1
Chestnut
Split
1
30
10
Chestnut
Split
1
20
12.5
Mountain
Split
1
20
50
Walnut
1
20
60
Boundary Conditions
River Reach Profile Upstream
Downstream
Chestnut Split 1 PF 1 Known WS =
4973.71
Mountain Split 1 PF 1 Known WS =
4976.18
GEOMETRY DATA
Geometry Title: Chestnut Split Flow
Geometry File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06-
02\Walnut NE.g01
Reach Connection Table
River Reach Upstream Boundary Downstream Boundary
Chestnut Split 1 Split-1
Mountain Split 1 Split-1
Walnut 1 Split—1
JUNCTION INFORMATION
Name: Split 1
Description:
Energy computation Method
Length across Junction Tributary
River Reach River
Walnut 1 to Chestnut Split 1
Walnut 1 to Mountain Split 1
CROSS SECTION
RIVER: Chestnut Split
REACH: 1
RS: 30
INPUT
Description:
Station Elevation Data
num=
6
Sta Elev Sta
Elev
Sta
Elev
0 4977.14 23
4976.68
23.05
4976.18
46 4977.2
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta
n Val
0 .016 .0
.016
46
.016
Reach Length Angle
154
70.4
Sta Elev Sta Elev
41 4976.54 41.05 4977.04
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 3 of 11
Bank Sta: Left Right
Lengths: Left Channel Right
Coeff Contr.
Expan.
0 46
224.9
224.9 224.9
.1
.3
CROSS SECTION OUTPUT
Profile #PF 1
E.G. Elev (ft)
4976.86
Element
Left OB
Channel
Right OB
Vel Head (ft)
0.17
Wt. n-Val.
0.016
W.S. Elev (ft)
4976.69
Reach Len. (ft)
224.90
224.90
224.90
Crit W.S. (ft)
4976.69
Flow Area (sq ft)
6.00
E.G. Slope (ft/ft)
0.005847
Area (sq ft)'
6.00
Q Total (cfs)
19.58
Flow (cfs)
19.58
Top Width (ft)
18.67
Top Width (ft)
18.67
Vel Total (ft/s)
3.26
Avg. Vel. (ft/s)
3.26
Max Chl Dpth (ft)
0.51
Hydr. Depth (ft)
0.32
Conv. Total (cfs)
256.0
Conv. (cfs)
256.0
Length Wtd. (ft)
224.90
Wetted Per. (ft)
19.27
Min Ch E1 (ft)
4976.18
Shear (lb/sq ft)
0.11
Alpha
1.00
Stream Power (lb/ft s)
46.00
0.00
0.00
Frctn Loss (ft)
1.38
Cum Volume (acre-ft)
0.10
0.00
C 6 E Loss (ft)
0.01
Cum SA (acres)
0.34
0.00
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
for the water surface and continued on with the calculations.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate the
need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program
defaulted to critical depth.
CROSS SECTION
RIVER: Chestnut Split
REACH: 1
RS: 20
INPUT
Description:
Station Elevation Data
num=
7
Sta Elev Sta
Elev
Sta Elev Sta
Elev Sta
Elev
0 4975.45 10
4975.25
10.05 4974.75 27
4975.4 44
4974.75
44.05 4975.25 54
4975.45
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta . n Val
0 .016 0
.016
54 .016
Bank Sta: Left Right
Lengths:
Left Channel Right
Coeff Contr.
Expan.
0 54
113.1
113.1 113.1
.1
.3
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
4975.42
Element
Left OB
Channel
Vel Head (ft)
0.12
Wt. n-Val.
0.016
W.S. Elev (ft)
4975.30
Reach Len. (ft)
113.10
113.10
Crit W.S. (ft)
4975.30
Flow Area (sq ft)
7.89
E.G. Slope (ft/ft)
0.006369
Area (sq ft)
7.89
Q Total (cfs)
22.08
Flow (cfs)
22.08
Top Width (ft)
33.04
Top Width (ft)
33.04
Vel Total (ft/s)
2.80
Avg. Vel. (ft/s)
2.80
Max Chl Dpth (ft)
- 0.54
Hydr. Depth (ft)
0.24
Conv. Total (cfs)
276.6
Conv. (cfs)
276.6
Right OB
113.10
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 4 of 11
Length Wtd.
(ft)
113.10
Wetted Per. (ft)
33.97
Min Ch E1 (ft)
4974.75
Shear (lb/sq ft)
0.09
Alpha
1.00
Stream Power (lb/ft s) 54.00
0.00 0.00
Frctn Loss
(ft)
0.71
Cum Volume (acre-ft)
0.07 0.00
C & E Loss
(ft)
0.00
Cum SA (acres)
0.21 0.00
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate the
need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a -valid
subcritical answer. The program
defaulted to critical depth.
CROSS SECTION
RIVER: Chestnut Split
REACH: 1
RS: 10
INPUT
Description:
Station Elevation Data
num=
36
Sta Elev Sta
Elev
Sta Elev Sta
Elev Sta
Elev
0 4981 .1
4974.78
3.76 4974.66 6.16
4974.7 6.45
4974.71
7.98 4974.52 10.34
4974.24
10.6 4974.09 10.87
4973.88 12.36
4973.95
23.84 4974.25 24.64
4974.27
25.25 4974,27 48.43
4974.49 48.98
4974.49
61.12 4974.31 67.12
4974.22
84.73 4973.44 85.39
4973.42 85.42
4973.42
86.39 4973.5 86.52
4973.36
86.71 4973.68 86.85
4973.85 86.88
4973.85
86.97 4973.81 86.98
4973.81
67.05 4973.81 87.08
4973.81 89.84
4973.88
93.27 4974.09 95.28
4974.27
96.53 4974.34 97.34
4974.36 98.5
4974.38
98.6 4981
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
0 .016 3.76
.016
96.53 .016
Bank Sta: Left Right
Lengths:
Left Channel Right
Coeff Contr.
Expan.
3.76 96.53
92.8 92.8 92.8
.1
.3
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
4974.21
Element
Left OB
Channel
Right OB
Vel Head (ft)
0.13
Wt. n-Val.
0.016
W.S. Elev (ft)
4974.08
Reach Len. (ft)
92.80
92.80
92.80
Crit W.S. (ft)
4974.08
Flow Area (sq ft)
7.61
E.G. Slope (ft/ft)
0.006118
Area (sq ft)
7.61
Q Total (cfs)
22.08
Flow (cfs)
22,08
Top Width (ft)
29.74
Top Width (ft)
-
29.74
Vel Total (ft/s)
2.90
Avg. Vel. (ft/s)
2.90
Max Chi Dpth (ft)
0.72
Hydr. Depth (ft)
0.26
Conv. Total (cfs)
282.3
Conv. (cfs)
282.3
Length Wtd. (ft)
92.80
Wetted Per. (ft)
30.17
Min Ch El (ft)
4973.36
Shear (lb/sq ft)
0.10
Alpha
1.00
Stream Power (lb/ft
s) 98.60
0.00
0.00
Frctn Loss (ft)
0.04
Cum Volume (acre-ft)
0.05
0.00
C & E Loss (ft)
0.04
Cum SA (acres)
0.13
0.00
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 5 of 11
for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than 1.4.
This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program
defaulted to critical depth. _
CROSS SECTION
RIVER: Chestnut Split
REACH: 1
RS: 5
INPUT
Description:
Station Elevation Data
num=
38
Sta Elev Sta
Elev
Sta Elev Sta
Elev Sta
Elev
0 4984 .1
4974.3
.35 4974.3 .56
4974.29 2.23
4974.12
2.42 4974.11 6.07
4973.84
12.55 4973.47 12.65
4973.33 13.17
4972.86
13.47 4972.87 13.88
4972.91
14.63 4972.96 15.38
4973.06 15.4
4973.07
25 4973.46 28.59
4973.55 -30.63
4973.56 37.17
4973.56 50.1
4973.57
50.37 4973.57 51.25
4973.58
68.28 4973.4 69.81
4973.38 73.77
4973.17
86.76 4972.5 88.44
4972.37
88.89 4972.35 89.35
4973.03 89.41
4973.12
90.25 4972.91 91.76
4972.98'
93.98 4973.3 95.38
4973.3 96.53
4973.35
99.83 4973.44 100.1
4973.45
100.2 4984
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
0 .016 6.07
.016
96.53 .016
Bank Sta: Left Right
Coeff Contr.
Expan.
6.07 96.53
.1 .3
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
4973.72
Element
Left OB
Channel
Right OB
Vel Head (ft)
0.01
Wt. n-Val.
0.016
0.016
W.S. Elev (ft)
4973.71
Reach Len. (ft)
Crit W.S. (ft)
4973.15
Flow Area (sq ft)
35.50
1.11
E.G. Slope (ft/ft)
0.000145
Area (sq ft)
35.50
1.11
Q Total (cfs)
22.08
Flow (cfs) '
-
21.53
0.54
Top Width (ft)
91.76
Top Width (ft)
88.18
3.57
Vel Total (ft/s)
0.60
Avg. Vel. (ft/s)
0.61
0.49
Max Chl Dpth (ft)
1.36
Hydr. Depth (ft)
0.40
0.31
Conv. Total (cfs)
1832.6
Conv. (cfs)
1787.3
45.2
Length Wtd. (ft)
Wetted Per. (ft)
88.95
3.83
Min Ch El (ft)
4972.35
Shear (lb/sq ft)
0.00
0.00
Alpha
1.00
Stream Power (lb/ft s) 100.20
0.00
0.00
Frctn Loss (ft)
Cum Volume (acre-ft)
C & E Loss (ft)
Cum SA (acres]
CROSS SECTION
RIVER: Mountain Split
REACH: 1 RS: 20
INPUT
Description:
Station Elevation Data num= 37
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
7.25 4978.23 11.84 4978.11 12.27 4978.08 12.74 4978.03 18.87 4977.05
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 6 of 11
18.95 4976.97 19.39
4976.54
19.68 4976.56 21.38
4976.68 26.56
4976.67
38.06 4976.66 38.09
4976.66
38.1 4976.66 38.53
4976.67 38.93
4976.68
39.8 4976.68 39.85
4976.63
40 4976.63 41.56
4976.64 45.49
4976.46
49.69 4976.39 52.51
4976.38
62.19 4976.2 64.02
4976.18 65.86
4975.88
66.23 4975.83 66.56
4975.83
66.78 4976.08 67.15
4976.5 69.14
4976.51
71.09 4976.52 71.24
4976.5
72.64 4976.36 73.48
4976.41 74.36
4976.47
75.62 4976.53 80
4976.68
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
7.25 .016 11.84
.016
75.62 .016
Bank Sta: Left Right
Lengths:
Left Channel Right
Coeff Contr.
Expan.
11.84 75.62
179.3
179.3 179.3
.1
.3
CROSS SECTION OUTPUT Profile NPF 1
E.G. Elev (ft)
4976.85
Element
Left OB
Channel
Right OB
Vel Head (ft)
0.14
Wt. n-Val.
0.016
0.016
W.S. Elev (ft)
4976.71
Reach Len. (ft)
179.30
179.30
179.30
Crit W.S. (ft)
4976.71
Flow Area (sq ft)
13.25
0.48
E.G. Slope (ft/ft)
0.007216
Area (sq ft)
13.25
0.48
Q Total (cfs)
40.42
Flow (cfs)
39.57
0.85
Top Width (ft)
60.79
Top Width (ft)
56.41
4.38
Vel Total (ft/s)
2.95
Avg. Vel. (ft/s)
2.99
1.79
Max Chl Dpth (ft)
0.88
Hydr. Depth (ft)
0.23
0.11
Conv. Total (cfs)
475.9
Conv. (cfs)
465.8
10.0
Length Wtd. (ft)
179.30
Wetted Per. (ft)
56.86
4.42
Min Ch E1 (ft)
4975.83
Shear (lb/sq ft)
0.10
0.05
Alpha
1.01
Stream Power (lb/ft
s) 80.00
0,00
0.00
Frctn Loss (ft)
0.15
Cum Volume (acre-ft)
0.00
0.12
0.00
C S E Loss (ft)
0.04
Cum SA (acres)
0.00
0.33
0.01
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
for the water surface and continued on with the calculations.
Warning: The cross-section end points had to be extended vertically for the computed water
surface.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than 1.4.
This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program
defaulted to critical depth.
CROSS SECTION
RIVER: Mountain Split
REACH: 1 RS: 10
INPUT
Description:
Station Elevation Data num= 61
Sta Elev Sta Elev Sta Elev
0 4981 _ .1 4975.92 1.42 4975.93
14.56 4975.4 16.97 4975.33 17.37 4975.03
19.58 4975.01 19.61 4975 22.89 4975.25
27.47 4975.48 32.38 4975.69 34.39 4975.78
35.44 4975.8 39.92 4975.91 41.77 4975.94
58.88 4976.26 60.92 4976.22 62.38 4976.23
65.81 4976.23 67.99 4976.22 69.08 4976.19
74.69 4977.01 75.43 4976.95 76.47 4976.87
79.89 4976.19 79.99 4975.98 83.06 4976
Sta Elev Sta Elev
9.93 4975.63 12.88 4975.5
17.58 4974.86 19.22 4974.97
23.47 4975.28 27.21 4975.47
34.67 4975.79 35.43 4975.78
48.53 4976.15 53.97 4976.21
63.6 4976.25 64.06 4976.25
74.15 4975.99 74.66 4976.96
77.6 4976.84 79.53 4977.05
94.01 4976.12 100.59 4975.94
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 7 of 11
106.07 4975.78 110.29
4975.67 112.77
4975.61 121.21 4975.39
121.8
4975.34
123.21 4975.22 123.36
4975.36 123.71
4975.72 126.88 4975.77
128.14
4975.78
128.27 4975.79 128.62
4975.78 128.76
4975.8 128.87 4976.13
128.91
4975.79
129 4981
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
0 .016 1.42
.016 126.88
.016
Bank Sta: Left Right
Coeff Contr.
Expan.
1.42 126.88
.1
.3
CROSS SECTION OUTPUT Profile BPF 1
E.G. Elev (ft)
4976.19
Element
Left OB
Channel
Right
OB
Vel Head (ft)
0.01
Wt. n-Val.
0.016
0.016
0.016
W.S. Elev (ft)
4976.18
Reach Len. (ft)
Crit W.S. (ft)
4975.77
Flow Area (sq ft)
0.34
43.52
0.79
E.G. Slope (ft/ft)
0.000302
Area (sq ft)
0.34
43.52
0.79
Q Total (cfs)
40.42
Flow (cfs)
0.19
39.70
0.53
Top Width (ft)
105.12
Top Width (ft)
1.33
101.76
2.04
Vel Total (ft/s)
0.91
Avg. Vel. (ft/s)
0.58
0.91
0.67
Max Chl Dpth (ft)
1.32
Hydr. Depth (ft)
0.25
0.43
0.39
Conv. Total (cfs)
2325.6
Conv. (cfs)
11.2
2284.1
30.3
Length Wtd. (ft)
Wetted Per. (ft)
1.58
102.45
2.96
Min Ch El (ft)
4974.86
Shear (lb/sq ft)
0.00
0.01
0.01
Alpha
1.01
Stream Power (lb/ft s)
129.00
0.00
0.00
Frctn Loss (ft)
Cum Volume (acre-ft)
C & E Loss (ft)
Cum SA (acres)
Warning: Divided flow computed for this cross-section.
CROSS SECTION
RIVER: Walnut
REACH: 1
RS: 20
INPUT
Description: Effective Model Section 2+58
Station Elevation Data
num=
13
Sta Elev Sta
Elev
Sta Elev Sta
Elev Sta
Elev
100 4981.18 100.1
4979.08
106.2 4978.78 116
4978.32 116.2
4977.9
118.3 4977.77 141.2
4979.02
153.9 4979.2 165.7
4979.02 191.3
4978.48
191.6 4978.98 203.6
4979.18
203.7 4981.18
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
100 .016 106.2
.016
203.6 .016
Bank Sta: Left Right
Lengths:
Left Channel Right
Coeff Contr.
Expan.
106.2 203.6
183.3
183.3 183.3
.1
.3
CROSS SECTION OUTPUT Profile @PF 1
E.G. Elev (ft)
.4979.00
Element
Left OB
Channel
Vel Head (ft)
0.19
Wt. n-Val.
0.016
0.016
W.S. Elev (ft)
4978.81
Reach Len. (ft)
183.30
183.30
Crit W.S. (ft)
4978.81
Flow Area (sq ft)
0.01
11.12
E.G. Slope (ft/ft)
0.005516
Area (sq ft)
0.01
17.12
Q Total (cfs)
60.00
Flow (cfs)
0.00
60.00
Top Width (ft)
47.36
Top Width (ft)
0.56
46.80
Vel Total (ft/s)
3.50
Avg. Vel. (ft/s)
0.39
3.50
Max Chl Dpth (ft)
1.04
Hydr. Depth (ft)
0.01
0.37
Conv. Total (cfs)
807.8
Conv. (cfs)
0.0
807.8
Length Wtd. (ft)
183.30
Wetted Per. (ft)
0.56
47.30
Right OB
183.30
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 8 of 11
Min Ch El (ft) 4977.77 Shear (lb/sq ft) 0.00 0.12
Alpha 1.00 Stream Power (lb/ft s) 203.70 0.00 0.00
Frctn Loss (ft) 0.92 Cum Volume (acre-ft) 0.00 0.11 0.01
C & E Loss (ft) 0.02 Cum SA (acres) 0.00 0.24 0.03
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate the
need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program
defaulted to critical depth.
CROSS SECTION
RIVER: Walnut
REACH: 1
RS: 10
INPUT
Description:
Station Elevation Data
num=
49
Sta Elev
Sta
Elev
Sta Elev Sta
Elev Sta
Elev
0 4981
1.02
4977.13
1.14 4977.1 8.14
4976.98 8.64
4976.96
10.44 4976.82
11.7
4976.81
11.94 4976.8 12.29
4976.37 12.38
4976.28
12.92 4976.23
14.83
4976.19
19.29 4976.53 20.24
4976.59 21.78
4976.67
28.24 4976.97
38.58
4977.18
44.11 4977.29 46.18
4977.32 46.6
4977.31
54.9 4977.12
62.06
4976.91
66.97 4976.8 67.12
4976.8 68.6
4976.75
71.42 4976.67
72.77
4976.6
74.13 4976.51 74.79
4976.84 74.98
4976.96
74.99 4976.98
76.48
4977.16
77.63 4976.94 78.24
4976.93 80.15
4976.93
80.23 4976.79
80.25
4976.78
81.82 4976.85 82.66
4976.89 83.28
4976.93
86.58 4976.93
89.45
4976.96
91.08 4976.92 91.47
4976.92 92.26
4976.92
98.6 4976.88
99.55
4976.88
101.6 4976.89 101.7
4981
Manning's n Values
num=
3
Sta n Val
Sta
n Val
Sta n Val
0 .016
1.02
.016
89.45 .016
Bank Sta: Left Right
Coeff Contr.
Expan.
1.02 89.45
.1 .3
CROSS SECTION OUTPUT
Profile #PF 1
E.G. Elev (ft)
4977.24
Element
Left OB
Channel
Right OB
Vel Head Ift)
0.11
Wt. n-Val.
0.016
0.016
W.S. Elev (ft)
4977.13
Reach Len. (ft)
Crit W.S. (ft)
4977.11
Flow Area (sq ft)
19.78
2.73
E.G. Slope (ft/ft)
0.004606
Area (sq ft)
19.78
2.73
Q Total (cfs)
60.00
Flow (cfs)
53.74
6.26
Top Width (ft)
81.54
Top Width (ft)
69.38
12.16
Vel Total (ft/s)
2.67
Avg. Vel. (ft/s)
2.72
2.30
Max Chl Dpth (ft)
0.94
Hydr. Depth (ft)
0.29
0.22
Conv. Total (cfs)
884.1
Conv. (cfs)
791.8
92.3
Length Wtd. (ft)
Wetted Per. (ft)
69.91
12.39
Min Ch E1 (ft)
4976.19
Shear (lb/sq ft)
0.08
0.06
Alpha
1.01
Stream Power (lb/ft
s) 101.70
0.00
0.00
Frctn Loss (ft)
0.38
Cum Volume (acre-ft)
0.04
0.00
C & E Loss (ft)
0.00
Cum SA (acres)
Warning: Divided flow computed for this cross-section.
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 9 of 11
Warning: A flow split was encountered.
The program first
calculated the momentum of both
channels below the junction. An
energy balance was performed
across
the junction
from the stream with the highest
momentum downstream to the
section upstream.
SUMMARY OF MANNING'S N VALUES
River:Chestnut Split
Reach River Sta.
nl
n2
n3
1 30
.016
.016
.016
1 20
.016
.016
.016
1 10
.016
.016
.016
1 5
.016
.016
.016
River:Mountain Split
Reach River Sta.
nl
n2
n3
1 20
.016
.016
.016
1 10
.016
.016
.016
River:Walnut
Reach River Sta.
nl
n2
n3
1 20
.016
.016
.016
1 10
.016
.016
.016
SUMMARY OF REACH LENGTHS
River: Chestnut Split
Reach River Sta
1 30
1 20
1 10
1 5
River: Mountain Split
Reach River Sta
1 20
1 10
River: Walnut
Reach River Sta
1 20
1 10
Left Channel Right
224.9 224.9 224.9
113.1 113.1 113.1
92.8 92.8 92.8
Left Channel Right
179.3 179.3 179.3
Left Channel Right
183.3 183.3 183.3
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 10 of 11
SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: Chestnut Split
Reach
River Sta.
Contr.
Expan.
1
30
.1
.3
1
20
.1
.3
1
10
.1
.3
1
5
.1
.3
River:
Mountain
Split
Reach
River Sta.
Contr.
Expan.
1
20
.1
.3
1
10
.1
.3
River:
Walnut
Reach
River Sta.
Contr.
Expan.
1
20
.1
.3
1
10
.1
.3
Profile Output Table - Standard Table 1
River Reach River Sta Profile Q Total
W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width
(cfs)
(ft) (ft) (ft/ft) (ft/s) (sq ft) (ft)
Chestnut Split 1 5 PF 1 22.08
4973.15 4973.72 0.000145 0.61 36.61 91.76
Chestnut Split 1 10 PF 1 22.08
4974.08 4974.21 0.006118 2.907.61 29.74
Chestnut Split 1 20 PF 1 22.08
4975.30 4975.42 0.006369 2.80 7.89 33.04
Chestnut Split 1 30 PF 1 19.58
4976.69 4976.86 0.005847 3.26 6.00 18.67
Mountain Split 1 10 PF 1 40.42
4975.77 4976.19 0.000302 0.91 44.65 105.12
Mountain Split 1 20 PF 1 40.42
4976.71 4976.85 0.007216 2.99 13.72 60.79
Walnut 1 10 PF 1 60.00
4977.11 4977.24 0.004606 2.72 22.51 81.54
Walnut 1 20 PF 1 60.00
4978.81 4979.00 0.005516 3.50 17.13 47.36
Min Ch E1 W.S. Elev
Froude # Chl
(ft) (ft)
4972.35 4973.71
0.17
4973.36 4974.08
1.01
4974.75 4975.30
1.01
4976.18 4976.69
1.01
4974.86 4976.18
0.25
4975.83 4976.71
1.09
4976.19 4977.13
0.90
4977.77 4978.81
1.02
Profile Output Table - Standard
Table 2
River
-
Reach
River Sta
Profile
E.G. Elev
W.S. Elev
Vel Head
Frctn Loss
C s E
Loss Q Left
Q Channel Q Right
Top Width
(ft)
(ft)
(ft)
(ft)
(ft)
(cfs)
(cfs)
(cfs)
(ft)
Chestnut
Split
1
5
PF 1
4973.72
4973.71
0.01
21.53
0.54
91.76
Chestnut
Split
1
10
PF 1
4974.21
49714.08
0.13
0.04
0.04
22.08
29.74
Chestnut
Split
1
20
PF 1
4975.42
4975.30
0.12
0.71
0.00
22.08
33.04
Crit
FORT COLLINS HOTEL
WALNUT STREET AND CHESTNUT STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; July 15, 2015
Page 11 of 11
Chestnut
Split
1
30
PF 1
4976.86
4976.69
0.17
1.38
0.01
19.58
18.67
Mountain
Split
1
10
PF 1
4976.19
4976.18
0.01
0.19
39.70
0.53
105.12
Mountain
Split
1
20
PF 1
4976.85
4976.71
0.14
0.15
0.04
39.57
0.85
60.79
Walnut
1
10
PF 1
4977.24
4977.13
0.11
0.38
0.00
53.74
6.26
81.54
Walnut
1
20
PF 1
4979.00
4978.81
0.19
0.92
0.02
0.00
60.00
47.36
ATTACHMENT 3.3
Proposed Condition HEC-RAS Modeling Output — Jefferson Street
FORT COLLINS HOTEL
JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 1 of 6
HEC-RAS Version 4.1.0 Jan 2010
U.S. Army Corps of Engineers
Hydrologic Engineering Center
609 Second Street
Davis, California
X X XXXXXX XXXX XXXX XX XXXX
X x x x x x x x x x
X X X X X X X X X
XXXXXXX XXXX X XXX XXXX XXXXXX XXXX
X X X X X X X X X
X X X X X X X X X X
X X XXXXXX XXXX X X X X XXXXX
PROJECT DATA
Project Title: Jefferson Street - 100yr-Proposed
Project File : Jeff NE.prj
Run Date and Time: 6/29/2015 1:31:30 PM
Project in English units
PLAN DATA
Plan Title: Plan 01
Plan File : d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06-
02\Jeff NE.p01
Geometry Title: Jefferson Street
Geometry File : d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-
2015-06-02\Jeff NE.g01
Flow Title : Jefferson Street-100yr
Flow File : d:\Projects\997-002\Drainage\Modeling\HEC-RAS\HEC-PAS-Proposed Cond-
2015-06-02\Jeff NE.f01
Plan Summary Information:
Number of: Cross Sections = 9 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 0 Lateral Structures = 0
Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001
Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance -
Computational Flow Regime: Subcritical Flow
FLOW DATA
Flow Title: Jefferson Street-100yr
FORT COLLINS HOTEL
JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 2 of 6
Flow File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06-
02\Jeff_NE.f01
Flow Data (cfs)
River Reach, RS PF 1
Jefferson 1 40 24.1
Boundary Conditions
River Reach Profile Upstream
Downstream
Jefferson 1 PF 1 Normal S =
0.0076
GEOMETRY DATA
Geometry Title: Jefferson Street
Geometry File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06-
02\Jeff NE.g01
CROSS SECTION
RIVER: Jefferson
REACH: 1 RS: 40
INPUT
Description:
Station Elevation Data num= 62
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 4976.32 8.91 4976.14 8.96 4976.12 9.35 4976.04 11.03 4975.87
15.82 4976.56 16.19 4976.56 27.93 4976.13 28.19 4976.13 28.47 4976.09
28.5 4976.09 28.9 4975.52 28.94 4975.44 29 4975.51 29.3 4975.42
29.38 4976.1 29.44 4976.13 29.62 4976.13 29.8 4976.12 29.85 4975.8
47.44 4976.12 49 4976.14 50.2 4976.02 51.93 4975.94 58.12 4975.88
58.96 4975.88 64.3 4975.72 65.03 4975.7 68.09 4975.78 68.29 4975.78
69.11 4975.8 70.45 4975.79 70.73 4975.51 71.02 4975.29 71.75 4975.26
72.86 4975.26 81.5 4975.71 84.96 4975.89 89.21 4975.98 100 4976.21
100.19 4976.21 105.26 4976.17 109.83 4976.15 125.19 4975.73 127.61 4975.63
129.03 4975.58 129.37 4975.57 129.39 4975.59 129.43 4975.6 130.13 4975.89
130.64 4975.91 133.67 4976.01 141.4 4976.28 141.41 4976.32 143.56 4976.26
151.65 4976.31 164.98 4976.7 172.53 4976.68 187.79 4976.56 194.5 4976.55
196.66 4976.56 200 4976.58
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .016 68.09 .016 133.67 .016
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
68.09 133.67 151 151 151 .1 .3
Blocked Obstructions num= 2
Sta L Sta R Elev Sta L Sta R Elev
0 64 4984 141 200 4984
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft) 4976.04 Element Left OB Channel Right OB
Vel Head (ft) 0.13 Wt. n-Val. 0.016 0.016
W.S. Elev (ft) 4975.91 Reach Len. (ft) 151.00 151.00 151.00
Crit W.S. (ft) 4975.91 Flow Area (sq ft) 0.74 7.69
E.G. Slope (ft/ft) 0.006199 Area (sq ft) 0.74 7.69
FORT COLLINS HOTEL
JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 3 of 6
Q Total (cfs)
24.10
Flow (cfs)
1.67
22.43
Top Width (ft)
34.34
Top Width (ft)
4.09
30.25
Vel Total (ft/s)
2.86
Avg. Vel. (ft/s)
2.26
2.92
Max Chl Dpth (ft)
0.65
Hydr. Depth (ft)
0.18
0.25
Conv. Total (cfs)
306.1
Conv. (cfs)
21.2
284.9
Length Wtd. (ft)
151.00
Wetted Per. (ft)
4.28
30.53
Min Ch E1 (ft)
4975.26
Shear (lb/sq ft)
0.07
0.10
Alpha
1.01
Stream Power (lb/ft s)
200.00
0.00 0.00
Frctn Loss (ft)
0.88
Cum Volume (acre-ft)
0.00
0.08 0.01
C S E Loss (ft)
0.00
Cum SA (acres)
0.03
0.31 0.03
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate the
need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program
defaulted to critical depth.
CROSS SECTION
RIVER: Jefferson
REACH: 1 RS: 30
INPUT
Description:
Station Elevation Data num= 33
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
63.9 4984 64 4974.57 65.12 4974.58 69.52 4974.67 70.39 4974.63
70.4 4974.58 70.58 4974.5 71 4974.17 71.92 4974.1 72.69 4974.14
80.06 4974.45 85.13 4974:69 85.31 4974.7 96.96 4975.03 100 4975.05
100.04 4975.05 103.48 4975.04 105.43 4974.98 109.65 4974.84 122.4 4974.58
122.48 4974.63 124.48 4974.52 127.25 4974.32 128.28 4974.26 129.17 4974.2
129.39 4974.47 129.68 4974.79 130.15 4974.71 130.23 4974.71 132.98 4974.87
135.57 4974.96 141 4975.04 141.1 4984
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
63.9 .016 69.52
.016 132.98 .016
Bank Sta: Left Right
Lengths: Left Channel Right
Coeff Contr.
Expan.
69.52 132.98
135 135 135
.1
.3
CROSS SECTION OUTPUT Profile
$PF 1
E.G. Elev (ft)
4974.85
Element
Left OB
Channel
Right OB
Vel Head (ft)
0.11
Wt. n-Val.
0.016
0.016
W.S. Elev (ft)
4974.74
Reach Len. (ft)
135.00
135.00
135.00
Crit W.S. (ft)
4974.74
Flow Area (sq ft)
0.69
6.40
E.G. Slope (ft/ft)
0.005478
Area (sq ft)
0.69
8.40
Q Total (cfs)
24.10
Flow (cfs)
1.16
22.94
Top Width (ft)
38.55
Top Width (ft)
5.52
33.03
Vel Total (ft/s)
2.65
Avg. Vel. (ft/s)
1.68
2.73
Max Chl Dpth (ft)
0.64•
Hydr. Depth (ft)
0.12
0.25
Conv. Total (cfs)
325.6
Conv. (cfs)
15.7
309.9
Length Wtd. (ft)
135.00
Wetted Per. (ft)
5.69
33.50
Min Ch E1 (ft)
4974.10
Shear (lb/sq ft)
0.04
0.09
Alpha
1.03
Stream Power (lb/ft s)
141.10
0.00
0.00
Frctn Loss (ft)
0.74
Cum Volume (acre-ft)
0.00
0.05
0.01
C S E Loss (ft)
0.00
Cum SA (acres)
0.01
0.20
0.03
FORT COLLINS HOTEL
JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 201S
Page 4 of 6
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate the
need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program
defaulted to critical depth.
CROSS SECTION
RIVER: Jefferson
REACH: 1 RS: 20
INPUT
Description:
Station Elevation Data - num= 27
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
63.9 4984 64 4974.15 66.18 4973.98 68.96 4973.95 70.58 4973.88
70.89 4973.4 71.12 4973.12 72.51 4973.17 72.87 4973.18 85.09 4973.67
93.85 4973.86 99.78 4973.99 100 4973.99 110.73 4973.9 110.89 4973.9
110.94 4973.9 125.63 4973.42 126.52 4973.37 127.59 4973.29 127.9 4973.26
128.73 4973.22 128.93 4973.43 129.32 4973.63 131.52 4973.59 132.56 4973.58
141 4973.43 141.1 4984
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
63.9 .016 68.96
.016 131.52
.016
Bank Sta: Left Right
Lengths:
Left Channel Right
Coeff Contr.
Expan.
68.96 131.52
148 148 148
.1
.3
CROSS SECTION OUTPUT Profile
$PF 1
E.G. Elev (ft)
4973.81
Element
Left OB
Channel
Right OB
Vel Head (ft)
0.10
Wt. n-Val.
0.016
0.016
W.S. Elev (ft)
4973.71
Reach Len. (ft)
146.00
148.00
148.00
Crit W.S. (ft)
4973.69
Flow Area (sq ft)
7.50
1.86
E.G. Slope (ft/ft)
0.005509
Area (sq ft)
7.50
1.86
Q Total (cfs)
24.10
Flow (cfs)
19.86
4.24
Top Width (ft)
40.50
Top Width (ft)
31.01
9.48
Vel Total (ft/s)
2.58
Avg. Vel. (ft/s)
2.65
2.28
Max Chl Dpth (ft)
0.59
Hydr. Depth (ft)
0.24
0.20
Conv. Total (cfs)
324.7
Conv. (cfs)
267.5
57.2
Length Wtd. (ft)
148.00
Wetted Per. (ft)
31.48
9.76
Min Ch E1 (ft)
4973.12
Shear (lb/sq ft)
0.08
0.07
Alpha
1.01
Stream Power (lb/ft s)
141.10
0.00
0.00
Frctn Loss (ft)
0.83
Cum Volume (acre-ft)
0.00
0.03
0.00
C S E Loss (ft)
0.00
Cum SA (acres)
0.00
0.10
0.02
Warning: Divided flow computed for this cross-section.
CROSS SECTION
RIVER: Jefferson
REACH: 1 RS: 10
INPUT
FORT COLLINS HOTEL
JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; TUNE 15, 2015
Page 5 of 6
Description:
Station Elevation Data num= 42
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
63.9 4983 64 4973.25 64.95 4972.84 67.88 4972.66 69.52 4972.6
70.7 4972.62 70.75 4972.7 71.02 4972.15 72.48 4972.32 72.76 4972.35
78.64 4972.65 88.5 4973.12 93.88 4973.23 99.79 4973.35 100 4973.35
113.85 4973.03 115.34 4972.99 116.12 4972.95 127.15 4972.35 128.54 4972.27
128.76 4972.44 128.89 4972.43 128.91 4972.44 128.99 4972.45 129.3 4972.33
129.74 4972.38 130.08 4972.51 130.8 4972.72 131.29 4972.77 132.43 4972.87
132.54 4972.88 133.73 4972.86 134.24 4972.87 138.19 4973.02 138.3 4973.03
138.42 4973.01 138.91 4972.96 139.04 4973.12 140.93 4973.32 140.95 4973.32
141 4973.33 141.1 4983
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
63.9 .016 67.68 .016 132.43 .016
Bank Sta: Left Right Coeff Contr. Expan.
67.88 132.43 .1 .3 -
CROSS SECTION OUTPUT Profile 9PF 1
E.G. Elev (ft) 4972.98 Element Left OB Channel
Vel Head (ft) 0.13 Wt. n-Val. 0.016 0.016
W.S. Elev (ft) 4972.84 Reach Len. (ft)
Crit W.S. (ft) 4972.84 Flow Area (sq ft) 0.27 8.04
E.G. Slope (ft/ft) 0.005663 Area (sq ft) 0.27 8.04
Q Total (cfs) 24.10 Flow (cfs) 0.38 23.72
Top Width (ft) 31.69 Top Width (ft) 2.93 28.75
Vel Total (ft/s) 2.90 Avg. Vel. (ft/s) 1.41 2.95
Max Chl Dpth (ft) 0.69 Hydr. Depth (ft). 0.09 0.28
Conv. Total (cfs) 320.3 Conv. (cfs) 5.0 315.2
Length Wtd. (ft) Wetted Per. (ft) 2.94 29.33
Min Ch E1 (ft) 4972.15 Shear (lb/sq ft) 0.03 0.10
Alpha 1.02 Stream Power (lb/ft s) 141.10 0.00
Frctn Loss (ft) Cum Volume (acre-ft)
C 6 E Loss (ft) Cum SA (acres)
Right OB
0.00
Warning: Divided flow computed for this cross-section.
Warning: Slope too steep for slope area to converge during supercritical flow calculations
(normal depth is below critical depth).
Water surface set to critical depth.
SUIM•]ARY OF MANNING' S N VALUES
River:Jefferson
Reach
River Sta.
nl
n2
n3
1
40
.016
.016
.016
1
30
.016
.016
.016
1
20
.016
.016
.016
1
10
.016
.016
.016
SUMMARY OF REACH
LENGTHS
River: Jefferson
Reach
River Sta.
Left
Channel
Right
1
40
151
151
151
FORT COLLINS HOTEL
JEFFERSON STREET HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 6 of 6
1 30 135 135 135
1 20 148 148 148
1 10
SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: Jefferson
Reach River Sta. Contr. Expan.
1 40 .1 .3
1 30 .1 .3
1 20 .1 .3
1 10 .1 .3
Profile Output Table - Standard Table 1
Reach
River
Sta Profile Q Total
Min Ch E1
W.S. Elev
Crit W.S.
E.G. Elev
E.G. Slope
Vel Chnl
Flow Area
Top Width
Froude # Chl
(cfs)
(ft)
(ft)
(ft)
(ft)
(ft/ft)
(ft/s)
(sq ft)
(ft)
1
10
PF 1
24.10
4972.15
4972.84
4972.84
4972.98
0.005663
2.95
8.31
31.69
0.98
1
20
PF 1
24.10
4973.12
4973.71
4973.69
4973.81
0.005509
2.65
9.36
40.50
0.95
1
30
PF 1
24.10
4974.10
4974.74
4974.74
4974.85
0.005478
2.73
9.08
38.55
0.96
1
40
PF 1
24.10
4975.26
4975.91
4975.91
4976.04
0.006199
2.92
8.43
34.34
1.02
Profile Output Table - Standard Table 2
Reach
River Sta
Profile
E.G. Elev
W.S. Elev
Vel Head.
Frctn Loss C & E
Loss Q
Left
Q Channel
Q Right
Top Width
(ft)
(ft)
(ft)
(ft)
(ft)
(cfs)
(cfs)
(cfs)
(ft)
1
10
PF 1
4972.98
4972.84
0.13
0.38
23.72
31.69
1
20
PF 1
4973.81
4973.71
0.10
0.83
0.00
19.86
4.24
40.50
1
30
PF 1
4974.85
4974.74
0.11
0.74
0.00
1.16
22.94
38.55
1
40
PF 1
4976.04
4975.91
0.13
0.88
0.00
1.67
22.43
34.34
ATTACHMENT 3.4
Proposed Condition HEGRAS Modeling Output - Firehouse Alley
FORT COLLINS HOTEL
FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 1 of 5
HEC-RAS Version 4.1.0 Jan 2010
U.S. Army Corps of Engineers
Hydrologic Engineering Center
609 Second Street
Davis, California
X X XXXXXX XXXX XXXX XX XXXX
X X X X X X X X X X
X X X X X X X X X
XXXXXXX XXXX X XXX XXXX XXXXXX XXXX
X X X X X X X X X
X X X X X X X X X X
X X XXXXXX XXXX X X X X XXXXX
PROJECT DATA
Project Title: Alley - 100yr-Proposed
Project File : Alley_NE.prj
Run Date and Time: 6/29/2015 1:32:05 PM
Project in English units
PLAN DATA
Plan Title: Plan 01
Plan File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06-
02\Alley NE.p01
Geometry Title: Alley
Geometry File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-
2015-06-02\Alley NE.g02
Flow Title : Alley-100yr
Flow File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-
2015-06-02\Alley NE.f01
Plan Summary Information:
Number of: Cross Sections = 3 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 0 Lateral Structures = 0
Computational Information
Water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20
Maximum difference tolerance = 0.3
Flow tolerance factor = 0.001
Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow
FLOW DATA
Flow Title: Alley-100yr
FORT COLLINS HOTEL
FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 2 of 5
Flow File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06-
02\Alley NE.f01
Flow Data (cfs)
River Reach
RS PF 1
Alley 1
30 9.5
Boundary Conditions
River Reach
Profile Upstream
Downstream
Alley 1
PF 1 Known WS =
4975.26
GEOMETRY DATA
Geometry Title: Alley
Geometry File : d:\Projects\947-002\Drainage\Modeling\HEC-RAS\HEC-RAS-Proposed Cond-2015-06-
02\Alley NE.g02
CROSS SECTION
RIVER: Alley
REACH: 1 RS: 30
INPUT
Description:
Station Elevation Data num= 19
Sta Elev Sta Elev Sta Elev
.9 4988 1 4977.85 4.51 4977.83
11 4978 12.87 4978.07 16.55 4978.11
20.89 4978.21 214978.214 28.89 4978.52
32.32 4978.59 33.42 4978.62 34.23 4978.6
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
.9 .016 1 .016 21 .016
Bank Sta: Left Right Lengths: Left Channel
1 21 155 155
Blocked Obstructions num= 1
Sta L Sta R Elev
21 41 4988
CROSS SECTION OUTPUT Profile $PF 1
Sta Elev Sta Elev
4.97 4977.89 9.26 4977.94
19.64 4978.23 19.69 4978.24
29.94 4978.55 31.47 4978.58
41 4978.68
Right Coeff Contr. Expan.
155 .1 .3
E.G. Elev (ft)
4978.29
Element
Vel Head (ft)
0.10
Wt. n-Val.
W.S. Elev (ft)
4978.19
Reach Len. (ft)
Crit W.S. (ft)
4978.19
Flow Area (sq ft)
E.G. Slope (ft/ft)
0.006350
Area (sq ft)
Q Total (cfs)
9.50
Flow (cfs)
Top Width (ft)
17.58
Top Width (ft)
Vel Total (ft/s)
2.60
Avg. Vel. (ft/s)
Max Chi Dpth (ft)
0.36
Hydr. Depth (ft)
Conv. Total (cfs)
119.2
Conv. (cfs)
Length Wtd. (ft)
155.00
Wetted Per. (ft)
Min Ch E1 (ft)
4977.83
Shear (lb/sq ft)
Alpha
1.00
Stream Power (lb/ft s)
Frctn Loss (ft)
1.00
Cum Volume (acre-ft)
Left OB
Channel
Right
OB
0.000
0.016
155.00
155.00
155.00
0.00
3.66
0.00
3.66
0.00
9.50
17.57
0.10
2.60
0.17
0.21
0.0
119.2
0.34
17.58
0.08
41.00
0.00
0.00
0.00
0.03
0.00
FORT COLLINS HOTEL
FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 3 of 5
C S E Loss (ft) 0.00 Cum SA (acres) 0.11
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
for the water surface and continued on with the calculations.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross
section. This may indicate the
need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program
defaulted to critical depth.
CROSS SECTION
RIVER: Alley
REACH: 1 RS: 20
INPUT
Description:
Station Elevation Data
num=
19
Sta Elev Sta
Elev
Sta Elev Sta Elev
Sta
Elev
0 4975.67 3.99
4975.59
10.37 4975.51 16.01 4975.49
16.04
4975.49
204975.468 26.87
4975.43
26.98 4975.49 30 4975.49
31.13
4975.5
32.27 4975.52 32.91
4975.5
34.63 4975.5 404975.547
40.28
4975.55
40.72 4975.5 51.87
4975.73
54.86 4975.84 60 4975.82
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
0 .016 20
.016
40 .016
Bank Sta: Left Right
Lengths:
Left Channel Right Coeff
Contr.
Expan.
20 40
92 92 92
.1
.3
Blocked Obstructions
num=
2
Sta L Sta R Elev
Sta L
Sta R Elev
0 20 4985
40
60 4985
CROSS SECTION OUTPUT Profile #PF 1
E.G. Elev (ft)
4975.78
Element Left
OB
Channel
Right OB
Vel Head (ft)
0.10
Wt. n-Val.
0.016
W.S. Elev (ft)
4975.68
Reach Len. (ft)
92.00
92.00
92.00
Crit W.S. (ft)
4975.68
Flow Area (sq ft)
3.83
E.G. Slope (ft/ft)
0.006617
Area (sq ft)
3.83
Q Total (cfs)
9.50
Flow (cfs)
9.50
Top Width (ft)
20.00
Top Width (ft)
20.00
Vel Total (ft/s)
2.48
Avg. Vel. (ft/s)
2.48
Max Chl Dpth (ft)
0.25
Hydr. Depth (ft)
0.19
Conv. Total (cfs)
116.8
Conv. (cfs)
116.8
Length Wtd. (ft)
92.00
Wetted Per. (ft)
20.36
Min Ch E1 (ft)
4975.43
Shear (lb/sq ft)
0.08
Alpha
1.00
Stream Power (lb/ft s)
60.00
0.00
0.00
Frctn Loss (ft)
0.06
Cum Volume (acre-ft)
0.02
0.00
C & E Loss (ft)
0.02
Cum SA (acres)
0.04
Warning: The energy equation could not be balanced within the specified number of iterations.
The program used critical depth
for the water surface and continued on with the calculations.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less
than 0.7 or greater than 1.4.
This may indicate the need for additional cross sections.
Warning: During the standard step iterations, when the assumed water surface was set equal to
critical depth, the calculated water
FORT COLLINS HOTEL
FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 4 of 5
surface came back below critical depth. This indicates that there is not a valid
subcritical answer. The program
defaulted to critical depth.
CROSS SECTION
RIVER: Alley
REACH: 1 RS: 10
INPUT
Description:
Station Elevation Data
num=
14
Sta Elev Sta
Elev
Sta Elev Sta Elev
Sta
Elev
0 4974.69 5.32
4974.82
10.5 4974.79 11.24 4974.78
12.94
4974.72
204974.693 23.41
4974.68
26.3 4974.69 30 4974.73
30.06
4974.73
34.01 4974.76 38.97
4974.78
40 4974.83 40.1 4984
Manning's n Values
num=
3
Sta n Val Sta
n Val
Sta n Val
0 .016 20
.016
40 .016
Bank Sta: Left Right
Coeff Contr. Expan.
20 40
.1 .3
Blocked Obstructions
num=
1
Sta L Sta R Elev
0 20 4984
CROSS SECTION OUTPUT Profile 8PF 1
E.G. Elev (ft)
4975.27
Element
Left OB
Channel
Right OB
Vel Head (ft)
0.01
Wt. n-Val.
0.016
0.000
W.S. Elev (ft)
4975.26
Reach Len. (ft)
Crit W.S. (ft)
4974.92
Flow Area (sq ft)
10.61
0.00
E.G. Slope (ft/ft)
0.000224
Area (sq ft)
10.61
0.00
Q Total (cfs)
9.50
Flow (cfs)
9.50
0.00
Top Width (ft)
20.00
Top Width (ft)
20.00
Vel Total (ft/s)
0.89
Avg. Vel. (ft/s)
0.90
0.02
Max Chl Dpth (ft)
0.58
Hydr. Depth (ft)
0.53
0.21
Conv. Total (cfs)
634.2
Conv. (cfs)
634.2
0.0
Length Wtd. (ft)
Wetted Per. (ft)
20.57
0.43
Min Ch El (ft)
4974.68
Shear (lb/sq ft)
0.01
Alpha
1.00
Stream Power (lb/ft s)
40.10
0.00
0.00
Frctn Loss (ft)
Cum Volume (acre-ft)
C & E Loss (ft)
Cum SA (acres)
SUMMARY OF MANNING'S N VALUES
River:Alley
Reach River Sta
1 30
1 20
1 10
SUMMARY OF REACH LENGTHS
River: Alley
Reach River Sta
nl n2
n3
.016 .016
.016
.016 .016
.016
.016 .016
.016
Left Channel Right
FORT COLLINS HOTEL
FIREHOUSE ALLEY HYDRAULICS; PROPOSED CONDITION MODEL
NORTHERN ENGINEERING; JUNE 15, 2015
Page 5 of 5
1 30 155 155 155
1 20 92 92 92
1 10
SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: Alley
Reach River Sta. Contr. Expan.
1 30 .1 .3
1 20 .1 .3
1 10 .1 .3
Profile Output Table - Standard Table 1
Reach River Sta Profile Q Total Min Ch E1 W.S. Elev Crit W.S. E.G. Elev
E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl
(cfs) (ft) (ft) (ft) (ft)
(ft/ft) (ft/s) (sq ft) (ft)
1 10 PF 1 9.50 4974.68 4975.26 4974.92 4975.27
0.000224 0.90 10.62 20.00 0.22
1 20 PF 1 9.50 4975.43 4975.68 4975.68 4975.78
0.006617 2.48 3.83 20.00 1.00
1 30 PF 1 9.50 4977.83 4978.19 4978.19 4978.29
0.006350 2.60 3.66 17.58 1.00
Profile Output Table - Standard Table 2
Reach River Sta Profile E.G. Elev W.S. Elev Vel Head Frctn Loss C 6 E
Loss Q Left Q Channel Q Right Top Width
(ft) (ft) (ft) (ft)
(ft) (cfs) ICES) (cfs) (ft)
1 10 PF 1 4975.27 4975.26 0.01
9.50 0.00 20.00
1 20 PF 1 4975.78 4975.68 0.10 0.06
0.02 9.50 20.00
1 30 PF 1 4978.29 -4978.19 0.10 1.00
0.00 0.00 9.50 17.58
MAP POCKET
DRAINAGE EXHIBITS
1
m a TO
H RiGNIH m.�rLET
6
111xe3A21111
EXII SAM A, BUFFER
LANDSCAPE MOMENT)
MY
aXHs a WTIw gcnox
IETAWXG MAIL.
EmlwO
EXISTING FUNDING
EXISTING
—W
METING MAJOR CONTOUR -5015-
ERSTNG MINOR CONTOUR -----501--
FAWUSED CONTOURS m—
B
Etla PONT Q
PWn ARROW �1111L
DRAINAGE BASIN LABEL
IW
DRAINAGE BASIN BOUNDARY
NOTES
T. ERVIN UNDERGROUND AN CAMMAD WBUG AND gNVAIE
DOLO Es AS SHOW ARE INOCATEO ACCEPTING M THE BEV
INFORMATION AVALLABLE TO THE ENGINEER. TINE ENONEER
DOES NOT GUARANTEE THE ACCURACY W BUSH INFORMAnoN.
EwsnuG JMTY MAINS AND MOAMS MAY NOT BE STRAIGHT
NINES OR As INDICATED M THEY DRAWMCS. ME
CONTRACTOR SMALL BE RESPONSIBLE T1 CALL NL GOUTY
COMPANIES QPU&LC AND PRIVATE) PROR TO µY
CONSTRUCTOR TO WUFY pOGT UPI LMAIMS.
2. RERR TO THE -FINAL MARINADE REPORT FOR
EGiC@NG.RTNUT SUMMSION RI BY RWTV£IIX
NIDATED APRIL 153016 FOR ACOTORu NWMADONS. PLEASE REFFRENCF APPROM) NDNON ARCHITECTURAL
DRANNGS BY {NO FOR PROPOSED RETAIL FINISH FLOOR
EN£VATONs ALONG THE CAST SOF OF THE HOTEL. ME WEST
SIX W THE PARKING GARAGE. AND THE EAST WE W THE
BARpxD GARAGE WERE MF PRLPoSFlI RHISH FLOOR
ENEVATONS OD NOT MEET FINE NNIMUM B-INCHES W
REMAIN FRGN THE OTYS NW -YEAR BAY R0.T
ELEVATOR (B2) AS DE➢ICTED ON THE APPROIED GOAL
NAMINGS AT TESE: LOCATIONS THE HJNNNG ARpNITECT
zw WLL BE FLOOD PR0.MNG THE SUIUMNG.
FIELD SURVEY BY
OMONAL TOLD SURVEY
NORTHERN PRODUCT NUMBER ENGINEERING
91MJ-W2N�S IN
BALE DEWHBER 2014
CAUDUTY NOTIFICATION CENTER OF
City of Fort Collins, Colorado
UTILITY PLAN APPROVAL
BY:TIer ma r y
BY.
Y
BY:
BY:-KnIetr
mMMitams
4z4o Architecture Inc
ORION DAMAGE WRLXIIIBIPFEi AE,LLL
GINNER GO E MOUNTAIN AYE
LLORTGOUNS, GO MIA
970<97.M26
NIELOWNERI FGMM,LLC
OEVELWEM 2725 ROCKY MOUNTAIN AVE SEEM
L ROSS.µo
ARCHITECT AiW AMCMIECNREIXC
DUST RIMSBY G0U2T SIRE m
GINGER. Cone
t M292NY
ONAL NORTHERN ENIXEERM. ING
2W S COIEGE AVE
FOTILOUNS, CO M4
t910WSP5 fX32923115
WWCAPE RVBMELL�NW 6IGOR
UISMIL1EMAW
FORT MUM, CO MON
t 9NM1HId tBN91I159
Z
J_
LL
N
Z Dto
FIRMZ z o
W�wo
W U Uj
(M) U) z
Z 0 F-o
J zit
Q Q LI_
Q �
m
D
DRAINAGE PLAN
C500