HomeMy WebLinkAboutDrainage Reports - 01/16/1997 (2)tO t�rr OF final Aroved Report
WORT OOLLDN vra trr�s ate %�
Final Drainage Report
for
Prospect Park P.U.D.
Fort Collins, Colorado
September 22, 1996
N
E N G I N
E E R I N G
SERVICES
INC
1
1
1
1
1
1
1
1
final Drainage Report
for
Prospect Park P.U.D.
Fort Collins, Colorado
September 22, 1996
Prepared For:
Tim Sittema
Ed Mullaney
Prepared By:
Northern Engineering Services, Inc.
420 South Howes, Suite 202
Fort Collins, Colorado 80521
(970)221-4158
Fax (970)221-4159
Project Number: 9520.00
Final Submittal
September 22, 1996
Mr. Glen Schleuter
City of Fort Collins
Stormwater Utility
235 Mathews
Fort Collins, Colorado 80522
RE: Prospect Park P.U.D.
Fort Collins, Colorado
Project Number: 9520.00
Dear Glen:
Northern Engineering is pleased to submit this Revised Final Drainage Report
for Prospect Park P.U.D. for your review. It represents a study of existing and
proposed stormwater characteristics of the project site.
' This report was prepared in compliance with technical criteria set forth in the,
City of Fort Collins, Storm Drainage Design .Criteria and Construction Standards
manual.
' If you should have any questions or comments as you review this revised
report, please feel free to contact me at your convenience.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
J
Roger A. Curtiss,
420 SOUTH HOWES, SUITE 202, FORT COLLINS, COLORADO 80521, (970) 221-4158, FAX (970) 221-4159
PROJECT
COMNIEENT SHEET
City Ofrwt COMM
Current Planning
DATE: 6 - 5 - 9(; DEPT: Stormwater
PROJECT: / 74F-XI
PLANNER: 5�� a.
All comments must be,feceived by:
❑ No Problems
tJ Problems or Concerns (see below or attached)
A written response for each of the following comments must be submitted, with the
redlined plans and report, at time of project resubmittal. The responses must note any
revision"§ or clarifications completed in result of these comments. If responses are not
submitted with the resubmittal, the project will be returned to the applicant without further
review. This procedure will help the review process become more efficient and effective.
Thank you.
1. Please provide a drainage easement for the pan designed to carry the overflow from the
42" stormsewer, which outlets to water quality pond A.
RESPONSE:
W tu, Mb� UP EBMEtJTS _v=>
-j"a Pv'r owl PL,6.7-.
• Date: 6 = 5 . (4 .Sl�l]atUrB:-- E4 ' -
' CHRE
ECK IF YOU WISH TO CEIVE PLAT reCOPIES OF.REVISIONS ❑ STTE Ted k 4WI
❑ LANDSCAPE 41
❑ MM
2. Please specify on the erosion control plans the dimensions, bedding, and gradation to
be used for the proposed grouted riprap at the 42" stormsewer outfall. The Stormwater
Utility prefers ordinary riprap be used to grouted riprap due to the aesthetics of the
location in a natural area. But if constraints do not allow for ordinary riprap, then grouted
may be used. Please also specify that the riprap be grey -colored granite and not pink
granite.
RESPONSE: Ta
��,o..SE� oti V�l�,--Y,, �✓U... SPa=c��y' C��n2
3. Please provide buried riprap for outlet protection into the wetlands for both water
quality pond outlets. Also, overexcavate water quality pond A, so it can be used as a
sediment trap.
RESPONSE: a F=oP—>
SCE - Pc>/-JDs - U.18 /�.D�i✓D t\:D"i�� '}�+A.r 1iJ4�Z- Q1.2�iT'y poIJD
dl7T�-ET ST12l>C3'L�tJ�T 0� GpM���p t�IJTI_S�l� 1S ST��SIIa D
4. Please specify on the plans and in the report the erosion control in phases and provide
just the necessary cost estimate for phases I and II as those are the only phases being
constructed at this time.
RESPONSE: .n.Dz)r-�z lKyrc>
' n vo.Tr TLto.T T+hE UP
-21T2�S?L12>Il_l� t 1�}�Z �Y 1MP�P�[ 1DUS SUP pZ^C
Please refer to the redlined plans for additional review comments
I
r
I
r
I
Final Drainage Report
for
Prospect Park P.U.D.
I. GENERAL LOCATION SITE DESCRIPTION
General Location and Site Description
This report summarizes the results of a storm drainage investigation for the
proposed Prospect Park P.U.D. site. The project is located in the NE Quarter of
Section 22, Township 7 North, Range 69 West of the 6th Principal Meridian in Fort
Collins, Colorado. The project is bounded by W. Prospect Road to the north, S.
Shields Street on the east, Prospect Park PUD and the Northwood Apartments on the
west and the Canal Importation Channel on the south (See Vicinity Map). The 5.92
acre site is located in northwest Fort Collins in a predominately residential area and is
currently vegetated with native grasses and weeds. The surrounding land use
patterns are residential.
II. HISTORIC DRAINAGE
Historically, the site drains from the northwest to the southeast to the Canal
Importation Channel at slopes ranging from 1.03% to 3.54%. Historic flow from the
project site is 3.9 cfs for the 2-year storm and 14.4 cfs for the 100-year storm (see
Appendix). The Canal Importation Basin hydrology, tributary to the Prospect Park site,
(SWMM File No. MULANEYD.0) was conducted by the City of. Fort Collins
Stormwater Utility Department for 100-yr developed conditions. The Prospect Park
P.U.D. site is included in SWMM Subarea 32 and the Canal Importation Channel
identified as Element No. 387.
Areas north of Prospect Road drain to the south onto Prospect Road and are
collected in sump or grade inlets. The inlets are piped together and discharge onto
the project site from the north through a 42" diameter concrete pipe. Based on
information in the report entitled "Hydrologic Analysis and Final Design, West Prospect
Road Drainage, Fort Collins, Colorado" by Lidstone and Anderson (February 4, 1993),
all flow in a 10-year design storm is collected by the inlets. In a 100-year storm, 89
cfs is captured in the storm sewer system while 6 cfs overtops the southern curb
flowing onto the project site. Stormwater from the 42" pipe is currently conveyed in an
open channel east along Prospect and then south along Shields to the Importation
Channel. Historic flow through the project site from offsite sources is 95 cfs.
Calculations for the inlet capacities, road ponding and overtopping are presented in
r
C
11
r
r
r
11
r
I
t
Prospect Park PUD February 29, 1996
Final Drainage Report Page 2
Appendix A. There are no existing irrigation laterals on the site. Per the Greenhorne
and O'Mara Importation flood profiles (sheet 5 of 5), the 100-year water surface
elevation for the Canal Importation Channel is 5015.4.
III. DEVELOPED DRAINAGE
Developed Conditions
' The proposed development of the site includes 4 commercial buildings with
associated parking areas and utility services. Three (3) drive entrances will serve the
' site - off West Prospect Road, from South Shields Street and a shared access with
Prospect 11 P.U.D..
Design Criteria and References
Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design
Criteria Manual.(SDDCM) and Storm Drainage Criteria Manual by the Urban Drainage
and Flood Control District (UDFCD-SDCM) have been used for this Preliminary
Drainage Study. The reports entitled, "Hydrologic Analysis and Final Hydraulic
' Design West Prospect Road Drainage" by Lidstone & Anderson, Inc. and "Final
Design Report for the Canal Importation Channel Phase I Through Phase IV", by
Greenhorne & O'Mara, Inc. have been referenced.
Hydrologic and Hydraulic Criteria
The Rational Method has been used to estimate peak stormwater runoff from
the proposed development. A 10-year and 100-year design storm were used to
evaluate the proposed drainage system. Conveyance structures were sized using a
10-year design storm. Rainfall intensity data for the Rational Method was taken from
Figure 3-1 of SDDCM. The City of Fort Collins Storm Drainage Design Criteria has
been used for all hydraulic calculations.
General Drainage Concept
Off -site flows from Prospect Road and areas north of Prospect Road will be
routed through the site to the Canal Importation Canal via a 42-inch storm sewer.
1 On -site developed stormwater runoff will be conveyed through the Prospect Park site
by overland flow and vertical curb, through two water quality ponds to the Canal
Importation Channel. No detention for flood control purposes are required for this site
due to the proximity of the site to the Canal Importation Channel and the lag in peak
discharge from the proposed site and the Channel (see Appendix).
I
rProspect Park PUD February 29, 1996
Final Drainage Report Page 2
Specific Details
The existing fifteen (15) foot curb inlet in the south flowline of Prospect Road
will require relocation due to the proposed street widening adjacent to the site.
Stormwater from adjacent streets will continue to be conveyed to existing storm sewer
appurtenances in Shields and Prospect. Because the existing inlet is being relocated
and the storm sewers under Prospect extended to the new location, there will be no
reduction in conveyance capacity. An analysis of the proposed 42-inch sewer
extension indicated that the storm sewer extension will pass the Lidstone and
Anderson 100-year flow of 89 cfs. The storm sewer will outlet at,an elevation of
5015.0. The 100-year water surface elevation for the Canal Importation Channel is
' 5015.4. Grouted rip rap will be required for outlet protection.
In the 100-year storm, the inlet on the south side of Prospect controls, causing
ponding on the street. The Prospect Road improvements were designed to create a
pond on the south side of Prospect. Weir flow onto the project site of 6 cfs in the 100
year storm historically occurred at elevation 5025.06. The maximum depth of the
historic weir in a 100-year storm is 0,18 feet, occurring over a weir length of 63 feet
(see L&A Table 4.2). The proposed Prospect Park PUD has designed two locations for
overflow in the 100-year storm. Approximately 1.5 cfs of the overflow will overtop the
highpoint in the incoming entrance lane off Prospect Road. The other 4.5 cfs will flow
onto the site at a weir location near the sump. Flow analyses of cross sections A -A
and B-B across narrow regions of the parking lot indicate that the buildings are at
least one foot higher than the 100-year water surface elevation in the parking lots (see
Appendix).
The developed site was divided into four basins. Basin D1 will convey flow via
a curb cut, swale and culvert to water quality pond A. The roof runoff from half of the
building on the east side of the site will be conveyed directly into the culvert under the
' Shields Street entrance. The 10-year and 100-year design flows for Basin D1 are
3.72 and 5.91 cfs respectively.
Basin D2 flows drain via curb and gutter to water quality pond A. The 10- and
100-year design flows for Basin D2 are 10.81 and 21.57 cfs respectively. No curb and
gutter will exist north of Pond A, so flow from subbasin Dia will sheet flow directly into
the pond. Water quality pond A is designed to capture and store the first flush from
the parking lots. In discussions with the City of Fort Collins it was determined that the
primary water quality concern is from the parking areas. Using criteria presented in
UDFCD-SDCM a water quality capture volume of 3900 cf was determined necessary
to adequately treat the first flush from the parking areas. Approximately 80 percent of
the site drains to water quality pond A, therefore the pond size is approximately 80
percent of the water quality capture volume (3120 cf). All flows to this pond in excess
of the water quality capture volume will be released from the pond via an outlet
r
i
I
I
I
C
I
1
iL
r
Prospect Park PUD February 29, 1996
Final Drainage Report Page 3
structure and overflow weirs to the Canal Importation Channel. The water surface
elevation required for water quality detention is 5017.0 (depth of pond is 2.3 feet).
The overflow pipe elevation is set at 5017. The overflow weirs pass over the sidewalk
to the south of the pond at an elevation of 5017.10. The water quality detention
volume will be released over 40 hours.
The outlet structure for pond A is a modified version of the standard water
quality pond outlet as described in the UDFCD-SDCM (see detail in the Appendix).
The outlet structure consists of a 4-inch perforated PVC pipe per UDFCD standards.
A 12-inch perforated ADS or PVC pipe will be placed around the 4-inch perforated
pipe. Gravel will be poured in the annular region. The 12-inch pipe will be anchored
to a 36-inch round, 2.3 foot high catch basin with a 24-inch opening at the top for
overflow. The overflow entrance will be protected from debris by a grating of No. 4
rebar (see detail in Appendix). In a 100-year storm approximately 30 cfs could be
passed to pond A. With a flow depth of 0.5 feet (WSEL = 5017.5), the pond outlet will
pass approximately 10 cfs. The remaining 20 cfs will pass over the two weirs in the
sidewalk to the south of the pond.
Basin D3 will drain via curb and gutter to a 2-foot sidewalk chase to water
quality pond B. The 10- and 100-year design flows for Basin D3 are 3.58 and 7.32 cfs
respectively. The water surface elevation required for water quality detention is
5019.0 (depth of pond is 2.0 feet). The overflow pipe elevation is set at 5019. No
overflow weirs are necessary. Any overflow from Basin D3 will be passed through the
outlet pipe. The water quality detention volume will be released over 40 hours. The
outlet structure will be similar to that described for pond A.
Basin D4 will drain to the existing private entrance roadway to the west of the
site. Flow will travel by curb and gutter to a road inlet southwest of the site that
outlets into the Canal Importation Channel (there are existing drainage easements
along this route, dedicated by the Prospect 11 replat). Per discussions with the City of
Fort Collins, no water quality control will be required for this basin. The 10- and 100-
year design flows from this basin are 0.83 and 1.36 respectively.
IV. EROSION CONTROL
Erosion control will be of considerable importance on this project due to the
proximity of the site to existing wetlands. The water quality control ponds will be
constructed first and the site graded so that flow will pass through these ponds. A silt
fence will be placed between the two ponds. Permanent vegetative erosion control
will be used in conjunction with landscaping in areas surrounding the buildings and
parking areas. Erosion control calculations and cost estimate are presented in the
Appendix.
I
rProspect Park PUD February 29, 1996
Final Drainage Report Page 4
V. CONCLUSIONS
Compliance with Standards
All drainage analyses have been performed according to the City of Fort Collins
Storm Drainage Design Criteria Manual (SDDCM) and the Urban Drainage and Flood
Control District's Drainage Criteria Manual. A variance is requested for on -site
detention for flood control purposes since on -site detention would add to the flood
peak rather than diminish it.
I
I
I
r
I
REFERENCES
1. Storm Drainage Design Criteria and Construction
Standards, City of Fort Collins, Colorado, May, 1984.
2. Final Design Report for the Canal Importation Channel
Phase I through Phase IV, Greenhorne & O'Mara, Inc.,
September, 1991.
3. Hydrologic Analysis and Final Hydraulic Design, West Prospect Road
Drainage, Fort Collins. Colorado, Lidstone & Anderson, Inc., February 4,
1993.
4. Drainage Criteria Maunal, Urban Drainage and Flood
Control District, Wright -McLaughlin Engineers, Denver,
Colorado, March, 1969.
APPENDIX
PAGE
Historic Drainage ................................................ 1 - 2
Offsite Storm Flow Analysis
Lidstone and Anderson material ................... 3 - 21
UDSEWER output for 42" Sewer Extension. 2 - 24
Developed Drainage .......................................... 25 - 37
Parking lot X-Section Analyses .......................... 38 - 39
Water Quality Pond Analyses ............................ 40 - 52
SWMM Modeling ................................................ 53 - 58
Erosion Control Calculations .............................. 59 - 7<
611
133tus sails �s � � :
C
'arrd U 103dSOLu
M
HISTORIC DRAINAGE
PROSPECT PARK, Fort Collins, Colorado
FilcNumbcr: HSTBSNHI.WQI 23-Apr-95 Calcs
BASIN H1:
DESIGN POINT H 1
TOTAL AREA = A (ac)= 7.09
RUNOFF COEFFICIENTS: (From Table 3-3)
Area of Roofs (ac)= 0.00()U
C for Roofs = 0.95
Area of Streets (ac)= 1.07W
C for Asphalt = 0.95
Area of Gravel Parking (ac)= 0.(1(N)
C for Gravel = 0.50
Area of Lawn & I.andscape(ac) 6.021)
C for lawn = 0.25
COMPOSITE RUNOFF COEFFICIENT:
C = 0.95(L07ac)+ 0.25(6.02ac) = 036
7.09
Cf = 1.00 (Frequency Adjustment Factor; Storm Return Period of 2- Years)
Cf = 1.25 (Frequency Adjustment Factor; Storm Return Period of l(K)- Years)
OVERLAND FLOW: (From Northwest to Southeast Across Site)
Total Overland Flow Length= 5 T2 = 1.87 (1.1 - CCf) SORT(L) = 26.9 min
L (ft) 5W CUBRT(S)
S (%.,) = 25.2-13_6 = 2.32 Tim = 1.87 (1.1 - CCf) SQRT(L) = 24.9 min
5Q) CUBRT(S)
C = 0.25
SWALE FLOW: (To Existing 24" Culvert)
L(ft)30 Ti = L = 0.3 min
S(%)= 13.6-13.17= 1.43 (].()(V)
30
V(fps) = t.&) (From Figure 3-2)
2-YEAR TIME OF CONCENTRATION; = 27.1 min
100-YEAR TIME OF CONCENTRATION; 25.2 min
RAINFALL INTENSITY:
FROM FIGURE 3-1: i2(in/hr) 1.56 il(N)(in/hr) 4.58
Q2(cfs) = CCf x i2 x A 3.9
QI00(cfs) = CCf x i 100 x A 14.4
I
TAFT HILL I ROAD
Wz
N
SHIELDS
0
a
0
LEGEND
O BASIN
CONVEYANCE
ELEMENT
O NODE
115 123 T
203-=SµM1' INLET N.S�e
C� 'PR�LiPtc-GT.
Figure 2.1. SWAM Model Schematic for the Northeast Quadrant (Existing Conditions).
5
LEGEND
O BASIN
F-I ELEMENT
CONVEYANCE
ELEMENT
O NODE
Figure 21.
! cf.+DFL i
SWMM Model Schematic for the Southeast Quadrant (Existing Conditions).
0
conducted. The flow depth and open lane width was computed
.puce instances was cond p p P
ngnormal flow conditions for the nine conveyance elements in question. The results
i.'1aySt:,'s ',:.... •. x 4 �l•
:of:tlits_-analysis indicate that for the conveyance elements which do not meet criteria the
'actuahflow,depths range from 4.9 to 5.9 inches, which are below the top of curb; the actual
open.aane -widths vary from 11.4 to 14.4 feet. The HEC-2 output associated with this
' `analysis i§ contained ir. Appendix F.
In light of these results, a variance is requested for the (initial) storm street capacity
for these nine conveyance element:. Since (initial) storm flow depths would remain below
the top of curb, there would be no impact !ponding or flow) on personal property, and
emergency vehicle access would not be unduly compromised (minimum open lane width of
11.4 feet for half street — 22.8 feet total). Finally, flow depths will not impact access to
parked vehicles as parking will not be allowed along Prospect Road.
Included in the with -project model _was analysis of the impact of ponding at the
east sump on Prospect Road (Nudes 203 and 206) for the 100-year event.. A. ponding
analysis was not required for the 10-year event as the proposed curb inlets are designed to
' - convey the 10-year peak discharges. Therefore, there is no ponding at this location for the
10-year event. For the 100-year event, the potential ponding at each of these nodes (north
' and south side. of the street) was analyzed separately. Water was considered to pond on the
north side of the street before ove. -topping the crown and passing to the south side. Water
entering the south side of the street was considered to pond until overt22ping the south
curb.
,... This analysis identified storage -discharge relationships for the north and south side
of the street based -on the proposed street configuration and drainage facilities. Street
cronq_and curb ove� rtoppir..g flow was considered based or.. the proposed centerline and curb
profiles, resp cps tively`Releases fr��rn tl. a ponding areas via pipe flow were determined based
on the proposed curb inlet configurat.on. Detailed calculations for this analysis are included
in Appendix E.3.
Results of the detention analysis include estimates of: (a) ponding elevations. (b)
lengths over which curb overtopping would occur, and (c) separation of the total discharge
it t tie sumps between pipe flow and street crown or curb overtoppin flow. For the north
side ponding,area, the most significant result is the maximum depth of flow over the street
-own which would be 3 inches. Tl
with
those for the existing condition detention analysis. are summarized inTable 4.2. It is noted
that by improving the on -grade inlets along Prospect Road, the total discharge at the east
sump would be reduced slightly for with -project conditions. This reduction in discharge,
33
Table 4.2. Summary of Ponding Analysis Results for the East Sump Area
(South Side of Prospect Road).
a
............
.... d1h
UL LU
£Event
Condition
a:
th:
10-Year
Existing
5025.56
47
10
37
110
10-Year
with-
No
45
45
0
0
Project
Ponding
100-Year
Existing
5025.76
100
11
.39
T
160
100-Year
With-
5025.24
I
95
8-9-1
6
-1
Project
" Pipe flow — total flow at storm sewer outlet.
b
Weir flow over south curb.
34
i
E3
. Storage -Discharge Curve for
With -Project Conditions, East Sump Area
Lrd�tone & Anderson. Inc.
w Es T --PRO 5 Pa T AS -P;� A fiJ A-6 9:
FEATURE t CHECKED 8Y DATE SHEET OF
I�o�e Z®3- ����y - GAL z/7- I -7
Mp Tr, (ei L//.�C rites - �li� +,I.JtJ Ov« tuba 5�
II J
�leV4 die✓(
co Zs • ��
o.'f 5 D. 9 o
O. q3
Z 5. � o
o. o.•yt�`
So-563
0.73 1.��
7
�I S. / o
O. 052-1 Z
�,��
5025.8o
O, qo I ' S o
Z I
rsi
57G.7
to. o89S3
_
I'-10 ZrZo
L6
z'�•
o, /y39
- �-
y- E/e✓— s'oZ,/9
7_ Co.oz 71 i Z.67 = .3Yff
1
�aM ■ww... W .wY.rw�M C.r..w.
OWNER -PROJECT
By
DATE
PROJECT NO.
I:s-r
7;;2An.)
Dh'I
Z-1-93
CoTr�s7
FEATyRE�
� � I 'f���H PG�nd r
CHECKED BY
DATE
SHEET Z OF,
M
0
Jill
o
N
u
�
ZZ-
M; T
I
v;
NQ
T\ `l Q
V �
0Z
r
.zoo
N
7—
N
N;
G�
i
� I�
�
N
M
P,
T
7 T
M
N
�3
O
M
M
7
�
s N
VI
O
1
?
N-A W
J
°O
%r
o-
0
tM
1
N
a
0
h
Oo N
N op
�1
I
'� r.Z
N
V
1
_._
0
�?
>°
I
►
s ao .�
rv� LA
—
iM.o
x
No
Iv
Q
I
I
N as
I
I
O
v
s
Q
I
o M
I
1
I
s
' 1.0 -- 12 5
10 4
.9 II 8
3
10 6
.8
0 2
3
7 8 W 2 �/� z 1.5 1.�6
i N o
.6 _ 7
1.7 t
Exo� z 1.0
.5 - - 1.0- a.93 z 9 0.90
J_ _ _ W
5.5
o
6
�,- vt . ILL
W 5 = z o 7
a .4 z z .4 ~
? W C9 .6
z - 4.5 z a .3
_ W
W -
4 L = .2 O.2o p 5
0
' Z
W z
.3 3.5 z W .4
a ¢
O p I W
' W u_ p
o.08 t- o.3z
� .25 3 ~o .06 0 .3
U z
W W it .04 0: .25
= 2.5 =
.2 a .03 a
' } 3
F••
a .02 0 .2
o.
2 � �
a
.c
15 .15
' ` .01 0
0
' --- -- - -- -- yo a
1.5 Cr
a=2'h .10
' Figure 5-2
NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2"
Adapted from Bureau of Public Roads Nomograph
MAY 1984 5-10 DESIGN CRITERIA
r.q, Mwr� W �wrwwY CW,Yr,.
OWNER -PROJECT By DATE PR JECT N0.
Wes- ?p �o,►fl���,�� 77I'J z-z-93 �T.
FEATURE CHECKED BY DATE SHEET OF
'CoF1 -Eo SC d eo; /0 Q
e m5s seG;;bn S
E/ev4,70n (f So-o)
CTt�-Ticrl
146 too
z7 00
—
146 4 50
ZG • E;
—
/'t7fov
Zlo•5`j
ZL•17
/`l71-5o
7,S,83
l�ofoo
2G.o3
L5.S7
/`f 8 +Sv
Z5.7�
Z5.3o
I�i9fso
zs,71
zs.'fz
/50foD
Z�•/O
L5.75
/Sot SD
Z�•56
�, 5
/s/ too
Z7.o4
_
—
7.Sz.Foo
CURRENT DATE: 02-01-1993 FILE DATE: 1-28-93
IRRENT TIME: 17:34:27 FILE MANE: RPROSPEG
... FHW1 CULVERT ANALYSIS
ii... HY-8, VERSION 4.0
C SITE DATA CULVERT SHAPE, MATERIAL, INLET °
U
L ° INLET OUTLET CULVERT • BARRELS °
a V o ELEV. ELEV. LENGTH • SHAPE SPAN RISE MANNING INLET
' (FT) (FT) (FT) • MATERIAL (FT) (FT) n TYPE °
1 65021.83 5020.76 75.81 • 1 RCP 2.00 2.00 .013 CONVENTIONAL•
. 2 e • •
3 •
4 e e •
S
.6.
'UMMARY OF CULVERT
FLOWS (CFS)
FILE:
RPROSPEO
DATE:
1-28-93
ELEV (FT)
TOTAL
1
2
3
4
5
6
ROADWAY ITR
0
0
0
0
0
0
0
0 1
'5021.83
5023.52
10
10
0
0
0
0
0
0 1
5025.46
24
24
0
0
0
0
0
0 1
5025.81
36
26
0
0
0
0
0
C2!r-23
5025.88
48
26
0
0
0
0
0
22 13
5025.93
60
26
0
0
0
0
0
33 11
5025.97
72
27
0
0
0
0
0
45 9
5026.01
84
27
0
0
0
0
0
(:�-_57- 8
5026.04
96
27
0
0
0
0
0
68 7
5026.07
1D8
27
0
0
0
0
0
80 7
5026.09
5025.63
120
25
27
25
0
0
0
0
0
0
0
0
0 92 7
0 OVERTOPPING
Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiibi6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SUNMARY OF ITERATIVE SOLUTION ERRORS FILE: RPROSPEO DATE: 1-28-93
L
I
I
I
HEAD
HEAD
TOTAL
FLOW
% FLOW
ELEV(FT)
ERROR(FT)
FLOW(CFS)
ERROR(CFS)
ERROR
5021.83
0.00
0
0
0.00
5023.52
0.00
10
0
0.00
5025.46
0.00
24
0
0.00
5025.81
-0.00
36
0
0.82
5025.88
-0.00
48
0
0.85
5025.93
-0.00
60
0
0.76
5025.97
-0.00
72
1
0.93
5026.01
-0.00
84
1
0.98
5026.04
-0.00
96
1
0.86
5026.07
-0.00
108
1
0.58
5026.09
-0.00
120
1
0.73
<1> TOLERANCE (FT) = 0.010
<b TOLERANCE M = 1.000
T=vfL Qar1�'-'Tln1G /
�,►c-�Sz Flc�.d �d�fL
Q,,,�= ID.2 r ZS• g5� /O. Z2t'r eJ �
U, 'r f-100
el
' 2
CURRENT DATE: 02-01-1993
FILE DATE: 1-28-93
CURRENT TIME: 17:34:27
FILE MAME: RPROSPEQ
6gU;fggg6g4666�66gg6666d66b686d61i1iUlri6661i61iUlUi81igd6Sg6A�1i1iJli6dUi666gdgdggg66�gri6
PERFORMANCE CURVE FOR CULVERT ! 1
- 1 ( 2 BY 2 ) RCP
6fgA61iA1igf6g6dA�A6A66b666dai6666dE61iUl6dUf6Ag61i6�6f66Sf>jUiligUi6li>i6Bi81iUlUiUfUIUIfUiUlUililiUlUi
DIS- HEAD- INLET OUTLET
CHARGE WATER CONTROL CONTROL FLOW NORMAL
FLOW ELEV. DEPTH DEPTH TYPE DEPTH
CRITICAL OUTLET
DEPTH VEL. DEPTH
TAILWATER
VEL. DEPTH
(cfs) (ft) (ft) (ft) 4F4> (ft)
(ft) (fps) (ft)
(fps) (ft)
4��gg6A6iAd6g6E6b6gg66666gg6d66�6gggg6g6&8f6gg6ggggAri61i1ib&f f 6g6gUifAU;ABUlAf
0 5021.83 0.00 0.00 0-NF 0.00
0.00 0.00 0.00
0.00 0."
10 5023.52 1.69 1.69 1-S2n 0.84
1.13 7.79 0.86
0.00 0."
24 5025.46 3.63 3.63 5-S2n 1.48
1.72 9.67 1.48
0.00 0."
5025.81 3.98 3.98 5-S2n 1.57
1.78 9.65 1.59
0.00 0."
'26
26 5025.88 4.D5 4.05 5-S2n 1.59
1.78 9.67 1.60
0.00 0."
26 5025.93 4.10 4.10 5-S2n 1.60
1.79 9.69 1.61
0.00 0."
27 5025.97 4.14 4.14 5-S2n 1.62
1.80 9.71 1.62
0.00 0.44
27 5026.00 4.17 4.17 5-S2n 1.63
1.80 9.72 1.63
0.00 0."
27 5026.04 4.21 4.21 5-S2n 1.64
1.81 9.66 1.66
0.00 0."
27 5026.07 . 4.24 4.24 5-S2n 1.65
1.81 9.66 1.67
0.00 0."
5026.09 4.26 4.26 5-S2n 1.66
1.81 9.66 1.68
0.00 0."
t27
ligg�6g66fggf6fffi4f6g66g6ig6Ag6gB61ig&f6ggfAS8BUi888886igf6rjg6Ulf6g6gf6Ag6UlUi68Sf66
El. inlet face invert 5021.83 ft
El. outlet invert
5020.76 ft
'
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
6�6668S66ggi666�6g66Abg66g�ggUili�f��ffrigggf6g�6U3f�1i6f66�g�ri6Sd6f�ggUlUl
SITE DATA CULVERT INVERT
INLET STATION (FT)
100.00
INLET ELEVATION (FT)
5021.83
OUTLET STATION (FT)
175.80
OUTLET ELEVATION (FT)
5020.76
'
NUMBER OF BARRELS
1
SLOPE (V-FT/H-FT)
0.0141
CULVERT LENGTH ALONG SLOPE (FT)
75.81
•"'* CULVERT DATA SUMMARY
BARREL SHAPE CIRCULAR
BARREL DIAMETER 2.00 FT
BARREL MATERIAL CONCRETE
BARREL MANNINGIS N 0.013
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL
INLET DEPRESSION NONE
�6gf686B86g6g6g66f66g6AfBB866Sggg66f6A8A86f666666g6gAB66ggAg6Ag6866gg66g661iB6ggg
�I
I
r
,CURRENT DATE: 02-01-1993 FILE DATE: 1-28-93
CURRENT TIME: 17:34:27 FILE NAME: RPROSPEO
'666AAWAAAAAAAA66666bbbbbb6666fb6b6bb6Ad..Ebd6$8686666666b6b666bbbbb666$$$bb6
6666$$$6d..6666b666$6666 TAILWATER 66666666666b666666666add"
6666666$66666AAAAA666666Ad.6666666666666...6666666666666666666b6666666...
CONSTANT WATER SURFACE ELEVATION
5021.20
$$66666666b6bb6b66b$$$$$$6 ROADWAY OVERTOPPING DATA $$$$$$$$$$$$$$$$$$$$$$$$$$
ROADWAY SURFACE
PAVED
MS TOP WIDTH (FT)
3.00
VEANKNENT
USER DEFINED ROADWAY PROFILE
CROSS-SECTION X
Y
COORD. NO. (FT)
(FT)
1 600.00
5027.06
2 650.00
5026.81
3 700.00
5026.59
4 750.00
5026.36
5 800.00
5026.03
6 850.00
5025.79
7 900.00
8 950.00
5025.63
5025.79
9 1000.00
5026.10
10 1050.00
5026.56
11 1100.00
5027.04
12 1150.00
5027.48
13 1200.00
5028.06
1,5
vw �«.... r .w....•rr e.rrr.
OWNER -PROJECT
Wr&-r Is-,P'sn- ;Foh:o
n.^l,+cE
By
77/r7
DATE
2'-z-93
PROJECT NO.
&7--1 /s.9
FEATURE/J
s�r4RG ' /lSG��g2
Nto",, � ZOO
CHECKED BY
��lL
DATE
Z/ZJ93
SHEET OF
7
J4ro_ e-
JJ
r4-�\J LVrV_e
/VdoCG ZoC
V
Inr/OaJ
/7.+-,
/vex z0 3
Wtir•. -��ow CiCtovn � -fvr i.� �wJ�iti,
i
/
C� c Ja7jon
� f
Y/
1/
�- Z
Q�. ie f- `tr,J
Q
s
r
9-0zy.85
0.�l5
0.38
50Z506
Z
o.
13,E o
/3�
o,00se
5o z. 3
c
1. 21. Co /Of5
3Zl
o. o i'ff3 3
oZ5,5
0,90
�,go
Z.l zg,� Soo
7B.'f
D.o33g5
5oas,63
J.o3
Z,oG.
2.5 33,g 9�
I27,8
D.ossl�
- Y =
Ele -- So z.•t. L
2- NOMO 9 01410 1(0).
L
�- 0.90
i
I("
Lidelone & Anderson. Inc.
OWNER —PROJECT
Wes,-��osP6GT ZOA-o
By
DATE
Z-2-93
PROJECT NO.
�'o73r S9
FEATURE
�(GNf-
CHECKED BY
DATE
SHEET OF
h
N,
T
?
N\
IJj
N
N o
�n
-
D
Pi
N
M
C
t
M
60
d
_
_
0
I
�
D
°
I N
u`
I -'
o
N
-
7'
o
1 I
O
U1
O
T
O
I
1
0 -
�HNs
I I
1
1
Qbo
0
0
r�
r
�
°g
q
Y �
�l0
O�
1.0 --- 12 5
.9 II 14
8
3
10 6
.8
2
9 0 4 -�
8 w 3 ����/ Z 1.5
.6 7
Exo� z 1.0
0.94 9
.5 - — _ _ a J z
— ——.8— w
_ a ,8
5.5 Cn
= 6 0
LU
W 0 .7
'w .4 z WQ. - c• 3c ~
6
? 4.5 z 0 3 w
' LL
T
4 r 0 2 0 .5
f
0
Uzi z c
w 3 3.5 WEQ.W 4
a .�
0 0 I w
4- w U.
.08 F
.25 3 = c .06 .3
c� c� L z
w W It .04 Cr .25
= 2.5 =
2 0_ .03 a
} 3
a
.02 0 .2
o-
2 v F-
a
.15 .01 0 .15 .
L 0
0
0
Yo
1.5 --- -- — -- -- I
002„ . h .10
i 1.2
Figure 5-2
NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2"
Adapted from Bureau of Public Roads Nomograph
MAY 1984 5-10 DESIGN CRITERIA
I
CURRENT DATE: 02-02-1993
WRRENT TIME: 11:03:51
1
FILE DATE: 1-28-93
FILE NAME: RPROSP-E
FHNA CULVERT ANALYSIS A3Agg66gAggAAg8ggg6gg6gg9A
HY-a, VERSION 4.0 86$3a333gAgg6gAggg&6SgAggS
° C ' SITE DATA ° CULVERT SHAPE, MATERIAL, INLET °
�u �aaaaaa�a�aaaaaaaaaaaaaaaaa�asaaaaa�a:�aaaaa��assaaaaaaaa�$a�aa�aaaaaaaaaa�a�
L ° INLET OUTLET CULVERT ° BARRELS °
° V ° ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET °
° (FT) (FT) (FT) ° MATERIAL (FT) (FT) n TYPE '
1 05021.83 5020.76 75.81 ' 1 RCP 2.00 2.00 .013 CONVENTIONAL°
2 • e
e 3 • a e
e o a
0 6 e e e
aaaa33533aaaASggaa'a�366S353a`65aa536333AAAgg6g64g3396gAAgA$56a3333a�a363a36gA$6$6
MARY OF
CULVERT
FLOWS (CFS)
FILE:
RPROSP-E
DATE:
1-28-93
EV (FT)
TOTAL
1
2
3
4
5
6
ROADWAY ITR
5021.83
0
0
0
0
0
0
0
0 1
9023.52
10
10
0
0
0
0
0
0 1
025.17
24
2j.
0
0
0
0
0
1 28
5025.32
36
23
0
0
0
0
0
`
12 19
48
24
0
0
0
0
0
24 13
f025.39
025.44
60
24
0
0
0
0
0
36 10
025.49
72
24
0
0
0
0
0
47 9
5025.53
84
24
0
0
0
0
0
59 8
025.56
96
25
0
0
0
0
0
71 7
025.59
108
25
0
0
0
0
0
83 7.
5025.62
120
25
0
0
0
0
0
94 6
0025.06
22
22
0
0
0
0
0 OVERTOPPING
�UMMARY OF ITERATIVE SOLUTION
ERRORS FILE:
RPROSP-E DATE:
1-28-93
HEAD
HEAD
TOTAL
FLOW
% FLOW
ELEV(FT)
ERROR(FT)
FLOW(CFS)
ERROR(CFS)
ERROR
5021.83
0.00
0
0
0.00
5023.52
0.00
10
0
0.00
5025.17
-0.00
24
0
0.97
5025.32
-0.00
36
0
0.96
5025.39
-0.00
48
0
0.87
0.00
60
0
0,81
I5025*44
5025.49
-0.00
72
1
0.83
5025.53
-0.00
84
1
0.74
5025.56
-0.00
96
1
0.87
5025.59
-0.00
108
1
0.64
5025.62
-0.00
120
1
0.79
3aaaa33aa33333&3533a�a363AA3333333333a335aa3366gS6366aaa33aS3A3366a33633363gS6a6
TOLERANCE (FT)
= 0.010
<2> TOLERANCE M =
1.000
�1>
aaaa333A668S6B3A36gg35Sa33S3&3A36B6aa6ag6g3ig36gAgSg668a655353g365663g8g6&g6&
IN Od-c- Zo (c
HI-S OJ�tJT 1rO1L
F:L� c v..oQ- TiE
Rp-�- TZswvo
��0�7Y�-1 QuTL'g,
a,,. & 4,>
4Q tr
E�cJ = ys• z{ it
I
9
DATE: 02-02-1993
TIME: 11:03:51
FILE DATE: 1-28-93
FILE NAME: RPROSP-E
PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2 BY 2 ) RCP
WBIS- HEAD- INLET OUTLET
CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER
�LOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH
cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft)
aaaaaaaa6aaaa553aaaSaaS3aaaaaaaa6aaaaiSaaa'aaaaa33aASA5a6A$6a5a3533aa53aaa5636r1a6
0 5021.83 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 -0.56
10 5023.52 1.69 1.69 1-S2n 0.84 1.13 7.79 0.86 0.00 -0.56
22 5025.16 3.33 3.33 5-S2n 1.39 1.68 9.43 1.41 0.00 -0.56
23 1025.32 3.49 3.49 5-S2n 1.44 1.70 9.48 1.46 0.00 -0.56
24 5025.39 3.56 3.56 5-S2n 1.46 1.71 9.51 1.48 0.00 -0.56
24 5025.44 3.61 3.61 5-S2n 1.47 1.72 9.67 1.47 0.00 -0.56
24 5025.48 3.65 3.65 5-S2n 1.48 1.73 9.68 1.48 0.00 -0.56
24 5025.52 3.69 3.69 5-S2n 1.50 1.73 9.69 1.50 0.00 -0.56
25 5025.56 3.73 3.73 5-S2n 1.50 1.74 9.70 1.50 0.00 -0.56
25 5025.59 3.76 3.76 5-S2n 1.51 1.74 9.70 1.51 0.00 -0.56
25 5025.61 3.78 3.78 5-S2n 1.52 1.75 9.71 1.52 0.00 -0.56
El. inlet face invert 5021.83 ft El. outlet invert 5020.76 ft
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
�6aa6Aaaaaaaaaaaaaaa6AAaaaaaaaaa3a5aaAaaaAaa6aAAa66663A6gf6666AAAAaaa6gia8S$66
"••• SITE DATA •••" CULVERT INVERT •rrrrrrrrr:rr:
INLET STATION (FT) 100.00
INLET ELEVATION (FT) 5021.83
OUTLET STATION (FT). 175.80
OUTLET ELEVATION (FT) 5020.76
NUMBER OF BARRELS 1
SLOPE (V-FT/H-FT) 0.0141
CULVERT LENGTH ALONG SLOPE (FT) 75.81
CULVERT DATA SUMMARY ""'*••**•*•*•**•**•*•*
BARREL SHAPE CIRCULAR
BARREL DIAMETER 2.00 FT
BARREL MATERIAL CONCRETE
BARREL MANNING'S N 0.013
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL
INLET DEPRESSION NONE
I�
I
3
IRRENT DATE: 02-02-1993
CURRENT TIME: 11:03:51
FILE DATE: 1-28-93
FILE NAME: RPROSP-E
118333A3333365BeAa3ag3a3a33 TAILWATER BSAgSAS6S68ggaa�3fggA333gS
aaa3333SA33A3A333S3Aaa33AA3AAs3aSa5aaaa�AgA65�533g3ga�633AAggggb363fffgAg335535f
CONSTANT WATER SURFACE ELEVATION
5020.20
ROADWAY OVERTOPPING DATA ggf6Agb8g66ig3gg$6¢ggg3aaa
ROADWAY SURFACE PAVED
EMBANKMENT TOP WIDTH (FT) 6.00
••• USER DEFINED ROADWAY PROFILE
CROSS-SECTION K Y
I COORD. NO. (FT) (FT)
1 700.00 5026.17
2 750.00 5025.83
3 800.00 5025.57
4 850.00 5025.3Q
5 900.00 5025.06_
6 950.00 502.5.42
7 1000.00 5025.75
8 1050.00 5026.50
7
I
I
I
r
l.delone & Anderson. Inc.
WHER—PROJECT By DATE PROJECT H0.
V as-r 7 asPa-r -Zpopo `�tz at�,� ?;;;Ni I -2-Z-`l3 I ci�;s
FEATURE CHECKED BY DATE SHEET OF
/'f
e, i lies. l:�.n• ov 1
—` - ✓�Y 3
L
LCv�TI.�v-� Over o Vv%, _(t-!�,Ls'-l�i;faz j = a3
i_= 63
------------------------------------------------------------------------------
STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL
Developed by Dr. James Gun, Civil Eng. Dept, U. of Colorado at Denver
Metro Denver Cities/Counties A UDFCD Pool Fund Study
-- ---------------------
USER:RORTHERN ERG SERVICES INC-FT COLLINS COLORADO ...........................
ON DATA 09-19-1996 AT TIME 14:39:22 VERSION=03-26-1994
M PROJECT TITLE :MULLANEY PROPERTY; 42" Storm Sewer Extension
M RETURN PERIOD OF FLOOD IS 100 YEARS
RAINFALL INTENSITY FORMULA IS GIVEN
SUMMARY OF HYDRAULICS AT MANHOLES
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA = C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES IRCH/HR CFS FEET FEET
-- -- - - -
-------------------------------------------------
1.00 N/A N/A N/A 89.00 5019.00 5015.40 OK
2.00 H/A H/A R/A 89.00 5021.00 5018.46 OK
3.00 R/A R/A R/A 89.00 5023.90 5019.79 OK
4.00 N/A N/A N/A 89.00 5026.00 5021.86 OK
5.00 R/A N/A N/A 89.00 5024.47 5022.73 OK
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
sx= SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
SEWER MAMBOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING
ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH
ID NO. ID 90. (IN) (FT) (IN) (FT) (IN) (FT) (FT)
-------------------------------------------------------------------------------
1.00 2.00 i.00 ROUND 40.27 42.00 42.00 0.00
2.00 3.00 2.00 ROUND 40.27 42.00 42.00 0.00
3.00 4.00 3.00 ROUND 40.27 42.00 42.00 0.00
4.00 5.00 4.00 ROUND 40.27 42.00 42.00 0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISTING SIZE WAS USED
I
11
i
TZ�v�sE� z3
I
SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT
ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO.
NUMBER CPS CFS FEET FPS FEET FPS FPS
1.0 89.0 99.9 2.57 11.73 2.92 10.39 9.25 1.32 V-OK
2.0 89.0 99.9 2.57 11.73 2.92 10.39 9.25 1.32 V-OK
3.0 89.0 99.9 2.57 11.73 2.92 10.39 9.25 1.32 V-OK
4.0 89.0 99.9 2.57 11.73 2.92 10.39 9.25 1.32 V-OK
FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS
ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM
% (FT) (FT) (FT) (FT)
----------------------------------------------------------------------
1.00 0.98 5015.54 5014.99 1.96 0.51 NO
2.00 0.98 5016.87 5015.74 3.53 1.76 OK
3.00 0.98 5018.94 5017.09 3.56 3.31 OK
4.00 0.98 5019.39 5019.26 1.58 3.24 OK
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET
SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION
FEET FEET FEET FEET FEET FEET
1.00 55.66 0.00 5019.04 5018.49 5018.46 5015.40 JUMP
2.00 115.07 0.00 5020.37 5019.24 5019.79 5018.46 JUMP
3.00 188.64 0.00 5022.44 5020.59 5021.86 5019.79 JUMP
4.00 13.43 0.00 5022.89 5022.76 5022.73 5021.86 JUMP
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
------------------------------------------------------------------------------
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT
1.0 2.00 5020.13 4.73 0.05 0.00 0.00 0.00 1.00 5015.40
2.0 3.00 5021.46 0.80 0.40 0.53 0.00 0.00 2.00 5020.13
3.0 4.00 5023.53 1.54 0.40 0.53 0.00 0.00 3.00 5021.46
4.0 5.00 5024.06 0.00 0.40 0.53 0.00 0.00 4.00 5023.53
BEND LOSS =BEND Ks FLOWING FULL VREAD IN SEWER,
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION,
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=0.
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
I
Z4/
I.
is
I
R
I
Z
O
O In N
OAT N 0O^hN 666 O 0 6 6
S
u
N N M
O C C
,1
1
I
1
i
1
1
.I .2 .3 .5 1
5
3
z
w 2
U
Q:
w
Q.
Z
w 10
a
0
w 5
U
cr
D
0
� 3
w
a
3 2
2 3 5 10 20
0
0
0
3
O
4v
4
� O J
`F O
v 3?y rP
y
I!!I Jr P 0v 0
1�� O
V O 4
hr � N Q4I T
3 P mP 3 W
e _
� ? O
40? 4P yr r�P V?P aP
I
I
50
30
20
10
5
3 _
2
1
.5 .5
I .2 .3 .5 1 2 3 3 10 20
VELOCITY IN FEET/SECOND
Figure 4.4.1.4-1 AVERAGE VELOCITIES FOR ESTIMATING TRAVEL
TIME FOR OVERLAND PLOW.. .
(From : USDA, Soil Conservation Service, 1977)
4.4 --- 1A
50
30
20
10
5
3 _
2
1
.5 .5
I .2 .3 .5 1 2 3 3 10 20
VELOCITY IN FEET/SECOND
Figure 4.4.1.4-1 AVERAGE VELOCITIES FOR ESTIMATING TRAVEL
TIME FOR OVERLAND PLOW.. .
(From : USDA, Soil Conservation Service, 1977)
4.4 --- 1A
No Text
P�"/IS�D ZS 4
1
1
1
1
m C
m
0
-E if g g(�53
0 3 0 0 o 0 0
0
w
a
n
z
�
W E N
G u
O
N
rd
z
m a N m r N a c m m
m O t7 O O
a
FL
m
2 n
r
O
N V O m m
p i
N o N o m m N v of o
g t N
�
O �
P N m r N<< ow
Nam O M m N' m O
S ¢
n N
g
O N
O O O N O � O O O
ui��16`366ui uiwi
((((�OOOO
E m
m b N m H Y) Yf it1
�YppI ��Npp
m< A W A OI m m ap r
UeL'' m
0 0 0 0 0 0 0 0 0 0
0 o m o 0 0 0 0 0 0
Em
E
a
i
F
30
LL
E m
w
e
z F E
x
z g n
Z
N
U U
m m m m
a m a y a a m d d
N N � fV l7 O
a
m
¢ m U m
N w
Q Q
U
d y r
¢co
w
a c Q m
Fxm d= g c
0 3 r o e
a
�o LL o
H N F F crfi F F F F
z
$ � a
a
{p
W 2 N
W
m r m m 0 m o 0 o r
N 6 r
a
O
X m
E v
a @ n
a a
<
m r m m m m o a m r
Ld
hhO
W P
<
N
C
O !C G r m ui n N
<<
W o
Imp Im.. OCR tp V N N N
g
G O O C O C N G 0
RNRRRRRR RR
m
m of m m m m m m m m
O a
c 0 o c o o d o
0 o m o 0 0 0 0 0 0
N N N N H N N
€
w
w �
a F m
a
z
F
rr —
3J
OOLL
E n
�
w
i
g m
i
N
U U
m m m m
Q m¢ y d a m d c
N tV N M d
a
Q m U m
N N l7
1115�9� M 1-P
952d 2S''.c--
Past ;t-- C Cam-, Guv�Tcss
1]
' SAS1N T.:
u c -D2a
1
t� Z-b-
I
0,1- ,
pc�oF��i�cirJG. P�1DSto�nlPn-K- �J.�iB
Goy-•-��i� L � �o..►� X.3� i rLo,��Co.�s� = a.�s
o• c�
Tern.` � �• = o. ►3
�'�6F, PA-(Zw:.tr.tG %=NGSiD�tv1A1�1C' 0.03
?riot: � i�ML.tC_I � r�-tJ.p Gj� Ut-v�l i'n.1C.� = 1 • Z.i
Cam• ��� �-=CCU ►o)C,ale)) z9)(o.�5] = o.'e)t
\ .39
��� {�A(UGI/.f� Ac1YC) StOE�nl/'�IIC =
tT��-r�L 7�ce.p= C..'�. Zz
r aA-= A = O • oSaG
p, ZZ
�¢� P� LT
ln1TEt`-5n-t'/ d C�iG-�t�1�TL/ ic9F1-d��A�1e3t1� 9��ZO �S�e .
SiN Ala
��-E �ivw . = 235.(' A'-v6 S�� = L� i o) C5%� +- (125�C 0 •S`%n � = Z . G �o u = 3. �Ps
' y37
' TcGSm ALA- s
we.
L too
i� -9,� oo • E7•-73 C-C4'
t38s� n i71 L -'c, S min l �o 5.63 Q;o = 0.48c S
�• c boo ' i . 2 `J' e>
00 ��74L p0�fil(�LE t't�v� o �;PE � Q;o = C0�7�o��0;�7%�5•(03�=�'3.i2(�5.
' �Cu-�v�zr uavU� stt���s �2n,�lq,a,= Co.-��7Co,a�) C9;2�LI,zs) =I�• �oc�
C1.1.lrYEYL'i !S (09 LF @ p,�2`�0 —'a IS'� QGP V.1�l.1.. Fj� AOt�VP'r'E,
,6wA�E vi-ow l_et ts-'N YinLn
�G G On n ` I t SC T� = cJ m n _ rj, 4�5 t+. A(L-
too ' '!�7.Z iro/ka-
' Cu Trh - fPON f NG T3c--
Q(0 = Cis
Qwo
S -�cvr C 5 w% N
<f-=xELxn ,-,«JG SmirJ. Vzz
PtYJ A AIL_ C kwsc w� C.P�R `( fio�r� "tb V1 A 2- QUA iTL fr o
l -'FOOT S%C.)6WALA4- GNoSt \,6k i L j- cP4�y ► <L L. -n to
l oo • y�� �-tGu� w � L� c� erz..cp� c �> R.�3 Fro . SouTN , 'F't.cw t N� 1 ��si�
�+t GFk�prL �MPcfLTAT1Or1 GL1�4N(�j>:L ,
1
NT�1J S t TNt E aF1� PRAT 1 oN.CS, CON1�tii�JE O )
��51 rJ -2C
Ti.nrc e� C-orJcewvFu"orJ ,til Min
t
l too WAQ, Qo c 2•05 f .
GwMS ov�-n►i►sy. p �E . , � • S �� l.ontr. CSc� vD, N� ovrPVT� .
�"�ttiE � CDNLtcTli12.1�T��N LS•o,M�n ooltStT`=rJm!n .
h�
' /-'s` --)L.— Ft-Aa CA-tASC 'PPEbS
Cow, P as i �- LAN 0 J a4m p o ACIX A,
' cc C 1 Dc&-�l-e
AVL
t
1 ----------------------------INLET-----HYDARULICS-----------AND------------------------------- 2�
UDINLET: SIZING �
DEVELOPED BY
---------DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
--------- --------- ------- ----------- =---- ---- --------------------
USER:Northern Engineering Services -Ft Collins Colorado .......................
DATE 01-16-1996 AT TIME 20:28:53
*** PROJECT TITLE: INLET DESIGN
*** CURB OPENING INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 10
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
4.00E—
'
HEIGHT OF CURB OPENING
(in)=
6.00
INCLINED THROAT ANGLE
(degree)=
88.60
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
'
SUMP DEPTH
(ft)=
0.18 ,--
Note: The sump depth
is additional depth to flow depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
1.00
'
STREET CROSS SLOPE
STREET MANNING N
M
0.50
0.016
GUTTER DEPRESSION
(inch)=
2.00
GUTTER WIDTH
(ft) =
2.00
'
STREET
FLOW HYDRAULICS:
WATER SPREAD ON STREET
(ft) =
31.38
�orz SUMP
'
GUTTER FLOW DEPTH
(ft) =
0 . 32 E- o t8'
AvP t-Pt l=
FLOW VELOCITY ON STREET
(fps)=
2.24
l eprvi
FLOW CROSS SECTION AREA
GRATE CLOGGING FACTOR
(sq ft)=
M =
2.63
50.00
pvE-rzr�-c��^r�•
CURB OPENNING CLOGGING FACTOR(%)=
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
6.25
BY FAA HEC-12 METHOD:
DESIGN FLOW
(cfs)=
5.91 - Cdjoo
FLOW INTERCEPTED
(cfs)=
5.91—
CARRY-OVER
FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD:
DESIGN FLOW
(cfs)=
5.91
FLOW INTERCEPTED
(cfs)=
5.62
CARRY-OVER
FLOW (cfs)=
0.29
1 F7 Ct-v 7t8 t 1 �-7 � �YL � E O Fitt -r2-AVL='z-s -ro
i
I
u
1
11
1
11
1
Trapezoidal Channel Analysis & Design
Open Channel - Uniform flow
Worksheet Name: PROSPECT PARK PUD
Comment: SWALE ALONG SHIELDS (DESIGN PT D1B)
Solve For Depth
Given Input Data:
Bottom Width.....
0.00 ft
Left Side Slope..
4.00:1 (H:V)
Right Side Slope.
4.00:1 (H:V)
Manning's n......
0.060
Channel Slope....
0.0333 ft/ft
Discharge........
6.89 c f s
Computed Results:
Depth............
0.83 ft-c--
Velocity.........
2.47 fps- T�loccx,VE
Flow Area........
2.79 sf
Flow Top Width...
6.68 ft
Wetted Perimeter.
6.88 ft
Critical Depth...
0.71 ft
Critical Slope...
0.0771 ft/ft
Froude Number....
0.67 (flow is Subcritical)
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
L
I
Trapezoidal Channel Analysis & Design
Open Channel - Uniform flow
Worksheet Name: PROSPECT PARK PUD
Comment: SWALE ALONG SHIELDS (DESIGN PT D1B)
Solve For Depth
Given Input Data:
Bottom Width.....
Left Side Slope..
Right Side Slope.
Manning's n......
Channel Slope....
Discharge........
Computed Results:
Depth............
Velocity.........
Flow Area........
Flow Top Width...
Wetted Perimeter.
Critical Depth...
Critical Slope...
Froude Number....
0.00 ft
4.00:1 (H:V)
4.00:1 (H:V)
0.060
0.0333 ft/ft
9.16 cfst,-- 1.33Q�-pla+'D16
0.93 ft
2.66 fps 6Y4X7c.%ve
3.45 sf
7.43 ft
7.66 ft
0.80 ft
0.0742 ft/ft
0.69 (flow is Subcritical)
MAN 1 •C� � 4 z � � = lam Y�v4f2..-Ve��"1 = p,83�
,fJ 4
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
Circular Channel Analysis & Design
' Solved with Manning's Equation
Open Channel - Uniform flow
I
I
I
C
Worksheet Name: PROSPECT PARK PUD
Comment: CULVERT UNDER SHIELDS ENTRANCE—�DEs�6nl po .vr-DI c
Solve For Actual Depth
Given Input Data:
Diameter.......... 1.50 ft
Slope.. 0.0072 ft/ft
Manning n....0.013 � ?c_p
Discharge . ... 3.72 cfs e. D
Computed Results:
Depth. ...........
Velocity..........
Flow Area.........
Critical Depth....
Critical Slope....
Percent Full......
Full Capacity.....
QMAX @.94D........
Froude Number.....
0.68
ft --e=-
4.82
fps
0.77
sf
0.74
ft
0.0053 ft/ft
45.05
%
8.91
cfs
9.59
cfs
1.18 (flow is Supercritical)
Cu_WEYLT }��aSSc—S \d—y�'w2 S (/1 v�l lilt ZSd/o 17ES�YL�S FjI GCKPC.t .
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
'3v
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name: PROSPECT PARK PUD
'
Comment: CULVERT UNDER SHIELDS
ENTRANCE
Solve For Actual Depth
Given Input Data:
Diameter..........
1.50 ft
Slope .............
0.0072 ft/ft
'
Manning's n.....
0.013 .-
Discharge. ..
7.60 cfs — Q,00
Computed Results:
Depth .............
1.06 fte.
Velocity..........
5.66 fps
'
Flow Area.........
Critical Depth....
1.34 sf d.
1.07 ft
Critical Slope....
0.0071 ft/ft
Percent Full......
70.99 %
Full Capacity.....
8.91 cfs
'
QMAX @.94D........
9.59 cfs
Froude Number.....
1.01 (flow is Supercritical)
r
Ci -we)2!7r +�fa�sES Ico yei:Rrz ca cT -, nl iTjk A ZS% '�C- z�2a 5 '3wc AG C
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
Rectangular Channel Analysis & Design
Open Channel - Uniform flow
Worksheet Name: PROSPECT PARK PUD
Comment: SIDEWALK CHASE FOR
DESIGN POINT D2B
Solve For Depth
Given Input Data:
Bottom Width.....
1.00 ft.�-=
Manning's n......
0.013
Channel Slope....
0.0340 ft/ft
Discharge........
2.43 cfs,._4---Q,0
Comvuted Results:
Depth............ 0.34 ft r- to-y&Arz- IDES►&N -E-�vAkl-u pwsS
Velocity......... 7.23 fps-rRao%jGrk C,*f�sE.
Flow Area........ 0.34 sf
Flow Top Width... 1.00 ft
Wetted Perimeter. 1.67 ft
Critical Depth... 0.57 ft
Critical Slope... 0.0082 ft/ft
Froude Number.... 2.20 (flow is Supercritical)
I
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
r
I
-------------------------------------------- a
UDINLET:-INLET-HYDARULICS-AND-SIZING
DEVELOPED BY
-�---------DR-JAMES-GUO,-CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------ ---------------- ---- --------------------
USER:Northern Engineering Services -Ft Collins Colorado .......................
01 DATE 01-16-1996 AT TIME 00:53:33
*** PROJECT TITLE: INLET DESIGN L Sipes �y__ `L>cs .I PoiiJT Dz6.
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 10
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
1.00.�___
HEIGHT OF CURB OPENING (in)=
6.00
INCLINED THROAT ANGLE (degree)=
88.00
LATERAL WIDTH OF DEPRESSION (ft)=
SUMP DEPTH (ft)=
2.00
0.08 4-
Note: The sump depth is additional
depth to flow depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
2.00
'
STREET CROSS SLOPE M
STREET MANNING N
3.30
0.016
GUTTER DEPRESSION (inch)=
2.00
GUTTER WIDTH (ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
4.94
'
GUTTER FLOW DEPTH (ft) =
0. 3 3 0, C7 TFe=
FLOW VELOCITY ON STREET ( fps) =
4.23 5_yvNP QevTvk
FLOW CROSS SECTION AREA (sq ft)=
GRATE CLOGGING FACTOR M =
0.57
50.00
CURB OPENNING CLOGGING FACTOR(%)=
10.00
I
I
�y
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
BY FAA HEC-12 METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
BY DENVER UDFCD METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
`4ILd
(cfs)=
2.43�
(cfs)=
2.43
(cfs)=
0.00
(cfs)=
2.43
(cfs)=
2.43
(cfs)=
0.00
Gj�o lat C.1Is1SF W�1.� 10 Destc_z
I
I
L
[1
,,
I
I
Rectangular Channel Analysis & Design
Open Channel - Uniform flow
Worksheet Name: PROSPECT PARK PUD
Comment: SIDEWALK CHASE FOR DESIGN POINT D2B
Solve For Depth
Given Input Data:
Bottom Width..... 1.00 ftc—
Manning's n...... 0.013
Channel Slope.... 0.0340 ft/ft
Discharge........ 4.97 cfsd-Q,,�
Computed Results:
Depth............
Velocity.........
Flow Area........
Flow Top Width...
Wetted Perimeter.
Critical Depth...
Critical Slope...
Froude Number....
0.57 ft-r- \ y
8.72 fps
0.57 sf
1.00 ft
2.14 ft
0.92 ft
0.0102 ft/ft
2.04 (flow is Supercritical)
* OY�2-t•=ia�l ��l I l..l_ oY�'VLZOf� t�v2(� Tb Sn.Tt-�i (�'l,w�l W� � NT'U T"EZ'= GA�iJft�
IMPc�'iTF�-Roil Ui'PrNNc'Z .
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
I
1
I
1
I
I
C
H
1
Rectangular Channel Analysis & Design
Open Channel - Uniform flow
Worksheet Name: PROSPECT PARK PUD
Comment: SIDEWALK CHASE FOR BASIN D3
Solve For Depth
Given Input Data:
Bottom Width..... 2.00 ft
Manning's n...... 0.013
Channel Slope.... 0.0625 ft/ft
Discharge........ 7.32 cfs�_eE?,00
Computed Results:
Depth............
Velocity.........
Flow Area........
Flow Top Width...
Wetted Perimeter.
Critical Depth...
Critical Slope...
Froude Number....
0.33 ft
11.22 fps-�—Q�` rIETtocalan> t-�E£C�
0.65 sf
2.00 ft
2.65 ft
0.75 ft
0.0057 ft/ft
3.46 (flow is Supercritical)
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
3�
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
----------DR-JAMES-GUO= CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----- ------- ---------------- ---- --------------------
USER:Northern Engineering Services -Ft Collins Colorado .......................
C DATE 01-16-1996 AT TIME 00:47:15
*** PROJECT TITLE: INLET DESIGN �,o�v.IR2K-St@�a��Gni NOtPST' D�
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
'
INLET ID NUMBER: 10
INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
2.00-4
'
HEIGHT OF CURB OPENING (in)=
6.00
INCLINED THROAT ANGLE (degree)=
90.00 .
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.13 4—
Note: The sump depth is additional
depth to flow
depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
2.50
STREET CROSS SLOPE (%)
STREET MANNING N
2.00
0.016
GUTTER DEPRESSION (inch)=
2.00
GUTTER WIDTH (ft) =
2.00
'
STREET FLOW
HYDRAULICS:
WATER SPREAD ON STREET (ft) =
8.09
'
GUTTER FLOW DEPTH (ft) =
0. 33.&.- 4r�p hflr((a�, o,l 1 Fstir Pvp«�P�F
FLOW VELOCITY ON STREET (fps)=
4.32
gurnP oE�GCN
FLOW CROSS SECTION.AREA (sq ft)=
0.82
GRATE CLOGGING FACTOR (%)=
50.00
CURB OPENNING CLOGGING FACTOR(%)=
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
4.00
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
3.58 4-Q�o
FLOW INTERCEPTED (cfs)=
3.58
CARRY-OVER
FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
3.58
FLOW INTERCEPTED
(cfs)=
3.58
CARRY-OVER
FLOW (cfs)=
0.00
1 o-yeu2- T!C>.jj w1LL pASs TtMiouGt� 5� n �k. c+ 5t" .
-7.13cFs
Dl � (o 4s 71a+ vie + f'5 o-N-R> 5'1 -tom 4 S c �S \Ae t izz N e� 2
'-0-tal -
1.33Qioo = 15.47
Z I� •' �`
�= 1,49
n
15• I6l'
= 3, 96,�z
21.158
P= 15,17+ .5+2,5 = lg 177
A,/,p = TZ = p, Z/, .
Q = (46�3� C Zfo�-z/3 C bOS�yZ
ot3
10
00 ��- / (L wSC�. = 21•�S W p j� W lLL u��YL�LTOP �1Y2
Q "ro ASta- P. _ . 17 + ./oZ t .:,j1 = k. I. Pr--
p = 2 t .415 ,-22 t 24.48
P�P=2=0.0dr
' q = 2,Z5c fS.
' Fizorn T o, OAr .TerL I A•o cwn o)" Atr -I>-Q-riA N qGs> t� = o - I (c,
ion-j��(L WSeL. = 1�.08
046-w •TOPS cl Rd3 alb ORST
� 11�a: Y�`Ltx�i r1 T'rt�x.,o r+ s��-�►or.� - 4,-14 �• 5. {-'�s � i ; :. _
��1'ot�4i�: ��u.2fi'1-efL �vT1•k� 6rt �L��.�1N,31`R-�"'fkN� oF' HhsS�oN ���
�iAnl is A�u..o�.l � 'TU SP2:t,ArO OUR` Mv2E � oe fi,�� IS NeT' ,�u.._Cp�.�iv -
T1L'�i�TJ IN. L}- j7Ai�l• IF USG A 1•.1 CXPp"llk-low 1t'tM-Z
' 'P(LOC.CO U (Z4:VS y fit.{ V4 1 OTF4r TIME Or- S'fl'i L i NS INTO V01140
MAPc)( •rp�� = a4 t a4 ' (_e4:551) -r 2-4 Cvet-) = -7 -.x
5 o z5 c'a7d A = Yz(4)(.L5) + C4)617) +C34)� l�)
/P = IZ = 09(�CoCo
2xP 2P.P { Je- soe-o-
.A '
1
�¢�yeGT' �i+►rc-K �/iSR�2-�._,_v�l.vi'-"` p.l oFZ
(Nr, IJSE=
�OS�,taO�
1eTtV.-
.�c2�S
43J%
I Z
J JO
� Grzvss aa�s 1-�•�su2�L To'-*� Gg�-�2l.inr>- or= p¢aSP@Gi 2o/�d.� .oNp Ss(•,�-1.-05 Szru�E�-.
A�ifc Nor Pc(i..ac--AS 1---X--� 7-;r . �F3�-ic. R.+.Gs-F-� -cF -�r1P^� of P2oS0EtT RAF p.i�t� ��i1�ctD`--��c. •
EL C.s Norz -PZ I L L� 4f r , (I -VT 1277- - Tzur-joct - Try C-
'
1rna+=rzv(oLx:s G1<1 �,✓c lAZ0 a(J�Ir(_DST toil �I n�= Rk Q�t `fl
�e 1 NC-Lt,pefj IN -Tim sJo 1 Mt- E FZV I OAT, C-P<-GU LATE vN-
' CAIY oP fOax c OLU I I 5i�a raW PST 12vTt t� 5r1� F
\N M�'Tlt t'fC1 r� I�'zol:. M�"ET11`Y1iVo�"� �+riE P-C-tft'G
' l f�Qv(R.Ep SToR-A�e = c7� 1� iN�rtcS
' ^1--)E'rt�C70:�1 `ybt1�W/�c f�tCv�2�U s �.;S�r�3Cx rj.92AG = ��b%4PL-�T
IZ IN/FT
*t�ooF'i 3
n
0
Cf•.pn—jRF VotUN',�— CAI QGV� _ 0.74ac•�}
cv _ �ZAv FTC �w4= 2.3 ter.
�e Go2o1 r�1C� `f Gu 2C �J 3 . O. 17
Cater Ntro� -7tt5- c; m
<j0 2l$�-YL piP1i l SAVE _/_ ��PL 8 Pe� -
L'2� s�tz- ��,d--MG�L- = 4 � Ncttr✓S
I
Lj
��� Vb�M� CP �-c-y c,o-'�l cnls — 'C�orvo vau.�►�E �.Lc.v�.A�or1s caul `�*n�, S
vJFYl� � w� ntt'Y� crRfxn--rtt, 9 kra,iw6 Et.-L.
So1"7 CrNv)
c5O t S
S o 1)
Cpt�CTD'J 2
'
So14.1
col 5.c�
O 17. o
1
_7
L
11
Ll
1
���.►tFtcslt�s--
�pisr��-n..2C�cc�Yzo....
vS,. 6 M� cFr-5).
I oc�Z.Co7
10
�ll,e-cY, 'Pa�.,o l,Lr•1Tt t_,.J,s�-L.
5o t-7 • Co
'_ct-At_ \VOL mnE �lPrt � t✓e �cYt 1.� A-t- r2 �x�u'i� D OS
December 20, 1995
Mr. Kevin Mcbride
City of Fort Collins
Stormwater Utility
P.O. Box 580
Fort Collins, Colorado 80522-0580
' Dear Kevin,
Thank you for meeting with us today regarding water quality iasues at the
Prospect Park PUD site. The meeting was quite product;ve in clarifying the
requirements that need to be inet for Final Approval. This latter hopes to summarize
' some key resolutions of today's meeting.
• Prospect Park will have an acceptable level of water quality control if there is
extended detention provided for a water quality capture volume as specified in
the Urban Drainage and Flood Control District Manual.
• The water quality capture volume for the Prospect °ark site may computed
based on the imperviousness of the parking areas only (i.s. the rr.,of areas may
be removed from the percent impervious). In addition, there are areas adjacent
to Prospect and Shields Road and the entrance from the west that will drain to
the roads and therefore not be detained nc,r treated.
• Side slopes for the extended detention ponds; me.y he greater than 4:1 since
the maintenance for the pond will be the responsibii;;y of the developer. A
Ivariance may be necessary for this.
• The extended detention pond(s) may have shrubs and/or trees planted within
the pond. This may help to address a concern of natural resources.
• The extended detention pond(s) must have a properl-/ designed outlet structure
' so that detention is provided for 40 hours. RWention is not an acceptable
alternative.
' • Overflow to the extended detention pond(s) must be via a designed overflow
structure that will minimize bank erosion.
• Offsite drainage passing through the site must have an appropriate outlet
control structure such as grouted rip rap or concrete box with baffle.
Please let me know as soon as possible if there are any changes or additional
concerns with the above resolutions. I will be on vacation from December 21 through
January 2, however the water quality design for Prospect Park will be my first priority
when I return. I hope to meet again with you and Glen the second week of January to
go over the details of the design before submittal. Please let me know what dates
and times would work for you and Glen in that week. Again thank you for your time.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
Cairole Bernstein, E.I.T.
cc: Glen Schleuter
Tim Sittema
Linda Ripley
DRAINAGE CRITERIA MANUAL (V. 3)
STORMWATEF. OUF,L;T'! MANAGEMENT
Cra
0.
3
m
CD
:`
_0 0.:
N
m
cc
DR
C
9-1-1992
UDFCD
i
—
7
i
I
Extenc
10-HOL
ed De
r Draii
entlor
i time
Sasi
(Dry)
�.
'I
1
1
r: I'onj1, ; N(t)
rTl :ie
I
D
14
I
1Lnti
Hour if
i
I
i
u iu zu 30 -32 40 50 60 70 80 90 100
Percent Impervious Area in Tributary Watershed
Source: Urbanos, Guo, Tucker (1989)
Note: Watershed inches of runoff shall apply to the
entire watershed tributary to the BMP Facility.
FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (W(sCV)
DRAINAGE CRITERIA MANUAL(V. 3)
STRUCTURAL BMPS
10.1
6.
4.
2.1
1.1
0.61
m
0.41
m
W
7
> 0.21
m
7
N
U
0.11
W 0.o7
3 0.01
0.04
0.0e'
Required Area p
�e
aSOLUTION:
wm_
M
�
0A
VAJ,
FAA,
PA JFA
W4
PA
VAA
80
, PIA'AA
Ajo
10
MA 0r4AA
0 FAA
Aj
FAD
r
0.01
0.02 0.04 0.06 0.10 0.20 0.10 0.60 1.0 2.0 4.0 6.0
0,17
Required Area per Row (in 2 )
Source: Douglas County Storm Drainage and Technical Criteria, 1986.
FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION
BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME
Rev. 3-1-1994
UDFCD
DRAINAGE CRITERIA MANUAL (V. 3)
STRUCTURAL BMPs
1
1
1
1
1
1
1
1
t
1
1
1
1
1
_I
1
Threaded Cap
Water Quality Capture Volume
Level (including 20% additional
volume for sediment storage)
3
1�
Gravel (1-1/2" to
3' Rock) Around
Perforated Riser
Fabric
Water Quality
Riser Pipe (See Detail)
Notes: 1. The outlet pipe shall be sized to control
overflow into the concrete riser.
2. Altemate designs include a
Hydrobrake outlet (or orifice
designs) as long as the hydraulic
performance matches this
Removable & Lockable
:P•:; Overflow Grate for
Larger Storms
•
:�:
3•'.::::•:
:P
�O
A.
• •
Concrete
"
Access Pit
Outlet Pipe
(Min. 3 ft)
Size Base to Prevent
configuration. OUTLET WORKS Hydrostatic Uplift
NOT TO SCALE
Notes: 1. Minimum number of holes = 8
2. Minimum hole diameter = 1/8" dia.
Maximum umber o! Perforated
1-1/2" diameter Air
Vent in Threaded Cap
Rows O O Water Quality
4 Outlet Holes
O O O
4-
Ductile Iron or
Steel Pipe
WATER QUALITY
RISER PIPE
NOT TO SCALE
Columns
Ma— N�-
Riser 1 Hole Diameter, in.
Diameter
(in.) 1/4' 1/2' 3/4' 1-
4 8 8
6 12 12 9
B 16 16 12 8
10 20 20 14 to
12 24 24 18 12
Hole Diameter Area of Hole
(in.) (in.2 )
1/8 0.013
1 /4 0.049
3/8 0.110
1 /2 n.196
518 0.307
3/4 0.442
7/8 0.601
1 0.785
FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY
s-1-1ss2
EXTENDED DETENTION BASIN
UDFCD
WATER QUALITY
RISER PIPE
NOT TO SCALE
Columns
Ma— N�-
Riser 1 Hole Diameter, in.
Diameter
(in.) 1/4' 1/2' 3/4' 1-
4 8 8
6 12 12 9
B 16 16 12 8
10 20 20 14 to
12 24 24 18 12
Hole Diameter Area of Hole
(in.) (in.2 )
1/8 0.013
1 /4 0.049
3/8 0.110
1 /2 n.196
518 0.307
3/4 0.442
7/8 0.601
1 0.785
FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY
s-1-1ss2
EXTENDED DETENTION BASIN
UDFCD
FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY
s-1-1ss2
EXTENDED DETENTION BASIN
UDFCD
pER p� —� � �
1 ANNULAR SPA FILLED 2SE4EE" TOP HEW _ -
MATH 3 4 GRAVEL5017.0
,
1 ANCHORING COLLAR
24" PVC OR ADS PIPE
�/>
1 SLOPE 0.5%
�g p�4" PVC WI }. INV. ELEV = 5014.7
13IROWS"SPACED 4AORT 1'
{ .
---------------
LIT
Ln
a T r [I,,_ F� 17 111 j��w , i J )T T NTS
POND A OUTLET DETAIL
SIDE VIEW
12" PgtWAAD y4 0 GRATE
ANNULAR Sr FILLED SEE TOP VIEW
1 Min 31 GRAVEI ELEV = 5019.0 -
�.NY
ANCHORING COLLAR
4 PVC WI v�.i.:a�--__
1 13 1 /8 0 HOLES PAR ROW 18" PVC OR ADS PIPE • ; +' ^ --
)LOWS SPACED 4 APART INV. ELEV = 5017.0 ^- '
SLOPE 0.5X
wilI'.._ j
s Mac,
��; NTS
r POND B OUTLET DETAIL.
SIDE VIEW
r
r
1 r---#4 REBAR SPACE 4 TO 5 INCHES APART
OR EQUIVALENT (OPEN AREA = 2.87 F12)
24" PVC OR ADS O S=0.5% (POND A)
4
ANCHORING COLLAR 18" PVC OR ADS O 5=0.5X (POND 8)
12" PERFORATED AD _
ANNULAR FTWITH
3%4 GR
��88" p��4" PVCp
I2OMIS SPACEDS 4'EAPARIT
> NTS
1 POND OUTLET DETAIL
TOP VIFW
ML.P \ I%e1-;;�
'
� � prv.i P�.. jL S P \ u.• W A7/ — •�owr2 lR .
r�/a-x �io,�.t i n�r'b Pv��D - 8.� � c.t^s
�vu,,v,
e�.�.l v�ru c�cr�',r� Srt►L=�.r� t�rr�+� ct
�1.97 cj-5
'i3as�n 7Zt� �Q,
2.05C
pl�rtro�nl p,oE e Z4" RCP @ f= = 1�•0. USE P�DNDIrsz, l�tYrt-I = 17.5
m e GA.io NIET IN SUMP E
t Fr z
��ll Ptf��q vF G([-ATE S
�wo;rir
4 6.13(vo
2.8� 81 �tZ -2.5-7 tz
S-7
1��vc 1� �/1SS '-_ZO•S�� 1N LST Cam,
)nl F1�2 � \SG-l-�m2GE �Q�P�or�1 ;, Q = C �-•.•N3�z + GZ. N�Z
i�i -ITN - 8 vi-� �- = Z, 54 Laa,4 .►c rs�T c f�; E ��).
1O = 2.a�4I-CO,4��/Z- tZ.954 (0,4�5/Z
L= -7.56P ter- ust �5'
s, � (� o • �xZi = . 5ro c.�'s co���y�`� t-o �•{ �i �,.1 E+L.;
C
I
I
0
I
I
1
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name: PROSPECT PARK PUD —RAND ,c,. AtiySS
Comment: CULVERT UNDER SHIELDS ENTRANCE
Solve For Full Flow Capacity
Given Input Data:
Diameter..........
Slope.. ...........
Manning's n.......
Discharge.........
Computed Results:
Full Flow Capacity.....
Full Flow Depth........
Velocity..........
Flow Area.........
Critical Depth....
Critical Slope....
Percent Full......
Full Capacity.....
QMAX @.94D........
Froude Number.....
1.50 ft
0.0072 ft/ft
0.013
8.91 cfs
8.91 cfs e-- M Wnc mvN1 moo . ip� E sc t A�(ZC
1.50 f t F2ow. Gu ur rtr,— V ,.� pc` 2h S
5.04 fps
1.77 s f
1.16 f t
0.0082 ft/ft
100.00 %
8.91 cfs
9.59 cfs
FULL
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
1
0.8
0.7
1L 0.6
fAJ
Z 0.5
cr
0 0.4
x
t-
a 0.3
W
O
C7
Z 0.2
O
Z
O
a 0.1
EXAMPL
0.011111111111111111111111111111111111111111111111
0 1 2 3 4
FLOW INTO INLET PER SO. F-'. OF OP-114 AREA (CFS/FT2)
Figure 5-3
CAPACITY OF GRATED INLET IN SUMP
(From: Wright-McLaughli:l Engineers, 1969)
5
MAY 1984
5-11
DESIGN CRITERIA
5-40 HANIMOOK OF IMMA111.i(K
Table 5-3. Values of C in the Formula Q = I'L UM,e for Brond-
cresled Neirs
bleasured
in
feet.
Breadth of crest of weir in :_ethead -
0.50I0.75I1.00I1.50I2.00I2.5013.00I4.00IE.00I 10.00116.
0.2
2.80
2.75
2.69
2.62
2.54
2.48
2.44
2.38
2.34
2.49
2.8
0.4
2.92
2.80
2.72
2.64
2.61
2.60
2.58
2.54
2.W
2.56
2.7
0.6
3.08
2.89
2.76
2.64
2.61
2.60
2.68
2.69
2.70
2.70
2.7
0.8
3.30
3.04
2.86
2.68
2.60
2.60
2.67
2.68
2.68
2.69
2.64
1.0
3.32
3.14
2.98
2.75
2.66
2.64
2.65
2.67
2.68
2.68
2.63
1.2
3.32
3.20
3.08
2.96
2.70
2.65
2.64
2.67
2.66
2.69
2.64
1.4
3.32
3.26
3.20
2.92
2.77
2.68
2.64
2.65
2.65
2.67
2.04
1.6
3.32
3.20
3.28
3.07
2.89
2.75
2.68
2.66
s.65
2.64
2.63
1.9
3.32
3.32
3.31
3.07
2.98
2.74
2.68
2.66
2.65
2.64
2.63
2.0
3.32
3.31
3.30
3.03
2.85
2.78
2.72
2.68
2.65
2.04
2.62
2.5
3.32
3.32
3.31
3.28
3.07
2.89
2.81
2.72
2.07
2.64
2.
3.0
3.32
3.32
3.32
3.32
3.20
3.05
2.02
2.73
2.66
2.64
2.
3.5
3.32
3.32
3.32
3.32
3.32
3.19
2.97
2.76
2. 68
2.64
2.6
4.0
3.32
3.32
3.32
3.82
3.82
3.32
3.07
2.79
2.70
2.64
2.
4.5
3.32
3.32
3.32
3.32
3.32
3.32
3.32
2.88
2.74
2.04
2.0
5.0
3.32
3.32
3.32.1.32
3.32
3.32
3.32
3.07'2.
79
2.64
2.
5.5
3.32
3.32
3.32
3.12
3.32
3.32
3.3,
3.32'2.88
2.04
2
Table 5-4. Values of C in the Formula Q = CLH94 for Models
of Broad -crested Weirs with Rounded Upstream Corner
Name of
�+
n'
}lead
in
test,
H
experimenter
q'>
° 4
a „
0.4
0.6
0.8
1.0
I .b
2.0
2.5
3.0
4.0
6.0
a°masa
3.D1
2.80
Basin..........
Basin..........
0.33
0.31
2.12
5.50
2.45
2.40
2.93
2.70
2,91
2.82
2.9tl
2.87
3.04
2.92
U. S. Deep
Waterways
0.23
2.42
/.57
2.77
2.80
2.81
2.92
3.00
3.08
3.17
3.34 3.60
...
U.WatS. Deep.
0.33
6.f6
4.56
....
....
...
2.83
2.83
2.83
2.82
2.82
2.82
2.92 2.81
a;
Table 5-5. Values of C in the Formula
crested Weirs with Crests Inclined
(a)
Enen
Crest
0.5 0.6 0.7 O.E
Level ................... 2.78 2.79 2.80 2.81
Slope - 0.004........... 2.95 2.94 2.93 2.9i
Slope - 0.026........... 3.07 3.06 3.05 3.04
(b)
810of I Length Bee
Crest of war
in feet 0.1 10.2 10.3
12 to 1............ 3.0 2."2.87 2.57
18 to 1............ 3.0 2.91 2.92 2.53,
18 to 1............ 10.0 12.8212.08I 2.731
Table 5-0. Values of C in the Formula Q
Triangular Cross Section with Vertica
and Sloping Downstream
81ope of Height Head in fee.
down- of weir
stream in fast,
loos P 0.2 I0.3 I0.4 10.5 I0.6 10.7 IO
I to 1
2.48
d to 1
2,46 3.41
2'co 1
1.64 33.b(
. 8 to 1
13.81
1.64
1
5-n 1
2.46 ....
„ 10 to 1
2.40 ....
LUFQ
V /
Coaveyaaaa F]l�msat Number 387
800.0
n.
i.
i
D
i 600 A
s
h
OL
r _
6
i
a
a
s
1200.0
0.0
40.0 100.0 200.0 900.0 400.0 500.0 600.0 700.0
Time in Minutes
figure
SWMM HYDROGRAPH
CANAL IMPORTATION CHANNEL AT SHIELDS STREET
CANAL IMPORTATION BASIN
l - Y�e a ..CO
ENVIRONMENTAL PROTECTION AGENCY -.STORM PATER MANAGEMENT MODEL - VERSION PC.1
T
DEVELOPED BY METCALF ♦ EDDY, INC.
' UNIVERSITY OF FLORIDA
HATER RESOURCES ENGINEEERS, INC. (SEPTERBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEKBE2 1974)
APE OR DISK ASSIGNMENTS BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
' JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(6) JIN(9) JIN(IO)
2 1 0 0 0 0 0 0 0 0
' JOUT(i) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(B) JOUT(9) JOUT(10)
1 2 0 0 0 0 O 0 0 0
NSCRAT(I) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(S)
3 4 0 0 0
TERSHED PROGRAM CALLED
I
ENTRY WE TO RUNOFF MODEL
CANAL IMPORTATION HYDROLOGY TRIB. TO MULLANEY'S SITE
0-YR. REVEL. COND. 91 INFLOWS FROM CANALS
MBER OF TIME STEPS 120
�TEGRATION TIME INTERVAL (MINUTES) 5.00
1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
OR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
R RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
.60 .96 1.44 1.68 3.00 5.04
'1.20 .84 .60 .48 .36 .36
.24 .24 .12 .12 .00
9.00
3.72
2.16
1.56
.24
.24
.24
.24
r
i
CANAL IMPORTATION HYDROLOGY TRIG. TO MULLANEY'S SITE
f-YR. BEVEL. COND. N/ INFLONS FROM CANALS
BAREA
GUTTER
NIDTH AREA
PERCENT
SLOPE
BER
OR MANHOLE
(FT) (AC)
IMPERV.
(FT/FT)
25
375
1600. 15.2
40.0
.0090
26
.377
5000. 186.8
15.0
.0100
7
383
1600. 18.9
57.0
.0240
27
379
3000. 47.6
29.0
.0150
28
380
3600. 46.5
40.0
.0050
129
383
1000. 6.7
40.0
.0400
30
383
2300. 24.5
15.0
.•.0100
31
305
387
3300. 51.1
2600. 38.8
20 0
40.0
.0200
.0200
ITAL32
TAL BER OF SUBCATCHKENTS,
RIBUTARY
9
AREA (ACRES),
436.10
CANAL
IMPORTATION HYDROLOGY TRIO.
TO MULLANEY'S SITE
r-YR.
DEVEL. COMB. N/ INFLONS FROM CANALS
RESISTANCE FACTOR SURFACE STORAGE(IN)
IMPERV.
PERV.
IMPERV.
PERV.
.016
.250
.100
.300
.016
.250
.100
.300
.016
.250
.100
.300
.016
.250
.100
.300
.016
.250
.100
.300
.016
.250
.100
.300
.016
.250
.100
.300
.016
.250
.100
.300
.016
.250
.100
.300
FCONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSUM2-PC MODEL a:
INFILTRATION RATE(IN/HR) GAGE
WINUM MINIMUM DECAY RATE NO
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180.
1
.51
.50
.00180
1
.51
.50
.00100
1
.51
.SO
.00180
1
.51
.50
.00180
1
.51
.50
.00100
1
IERSHED AREA (ACRES)
436.100
TOTAL RAINFALL (INCHES)
2.890
SAL INFILTRATION (INCHES)
.737
IAL NATERSHED OUTFLON ( INCHES)
1.870
AL SURFACE STORAGE AT END OF STROM (INCHES) .204
JOR IN CONTINUITY, PERCENTAGE OF RAINFALL
.000
AL IMPORTATION HYDROLOGY TRIB. TO MULLANEY'S SITE
-YR. DEVEL. COND. N/ INFLONS FROM CANALS
r
NIDTH
INVERT
SIDE SLOPES
BIER GUTTER HOP NP
OR DIAN
LENGTH
SLOPE
HORIZ
TO VERT
ER CONNECTION
(FT)
(FT)
(FT/FT)
L
R
15 377 0 1
CHANNEL
2.0
BOO.
.0090
33.0
33.0
7 396 0 1
CHANNEL
2.0
2500.
.0100
30.0
30.0
398 383 0 1
CHANNEL
5.0
1890.
.0064
30.0
30.0
363 0 1
CHANNEL
10.0
1600.
.0090
20.0
20.0
�9 83 0 1
CHANNEL
2.0
1800.
.0100
30.0
30.0
OVERBANK/SURCHARGE
MANNING DEPTH IK t
N (FT) t
.016 100.00 0
.040 100.00 .0
.040 100.00 0
.040 100.00 0
.040 100.00 0
i
383
385
0
1
CHANNEL
20.0
1150.
14
385
20
1
CHANNEL
40.0
400.
TIME IN HRS
VS INFLOW
IN CFS
.0
.0
.5 8.2
.6
46.9
1.0
147.7
1.1 150.0
1.2
153.4
2.5
89.7
3.0 70.2
3.5
42.2
8.0
5.7
10.0 .9
385
387
0
1
CHANNEL
50.0
1650.
�6
387
20
1
CHANNEL
40.0
Soo.
TIME IN HRS
VS INFLOW
IN CFS
.0
.0
.5 9.4
.6
43.0
'
1.0
117.8
1.1 116.9
1.2
115.2
2.6
92.8
3.1 87.7
3.5
04.5
9.0
14.7
10.0 10.5
7
227
0
1
CHANNEL ,
80.0
1400.
OAL NUMBER OF BUTTERS/PIPES, 10
1
IAL IMPORTATION HYDROLOGY TRIG. TO MULLANEY'S SITE
100-YR. DEVEL. COND. W/ INFLOWS FROM CANALS
ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
' BUTTER TRIBUTARY GUTTER/PIPE
375 0 0 0 0 0 0 0 0 0 0
377 375 0 0 o 0 0 0 0 0 0
379 .0 0 0 0 0 0 0 0 0 0
380 0 0 0 0 0 0 0 0 0 0
' 383 398 379 380 0 .0 0 0 0 0 0
' 384 0 0 0 0 0. 0 0 0 0 0
385 383 384 0 0 0 0 0 C 0 0
386 0 0 0 0 0 0 0 0 0 0
387 385 386 0 0 0 0 0 0 0 0
398 377 0 0 0 0 0 0 0 0 0
i
At IMPORTATION HYDROLOGY TRIG. TO MULLANEY'S SITE
100 YR. DEVEL. COND. W/ INFLOWS FROM CANALS
"IOBRAPHS ARE LISTED FOR THE FOLLOWING 11 CONVEYANCE ELEMENTS
'THE UPPER NUMBER IS DISCHARGE IN CFS
THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES:
.0100
20.0
20.0
.040
.0060
10.0
10.0
.040
.7
94.0
.8
125.2
1.3
152.4
1.5
139.9
4.0
28.4
4.5
24.3
.0060
20.0
20.0
.040
.0060
4.0
4.0
.040
.7
81.7
.8
105.6 .
1.4
111.8 .
1.6
108.3
4.6
68.4
6.0
50.1
.0060 4.0 4.0 .040
100.00
0
100.00
1
.9 141.2
i
2.0 109.1
5.5 19.4
100.00
0
100:00
1
.9 115.0
'
2.0 102.1
7.5. 34.9
100.00
0
TRIBUTARY SUBAREA
D.A.(AC)
15
0
0
0
0
0
0
0
0
0
15.2
26
0
0
0
0
0
0
0
0
0
202.0
27
0
0
0
0
0
0
0
0
0
47.6
28
0
0
0
0
0
0
0
0
0
46.5
227
29
30
0
0
0
0
0
0
0
346.2
0
0
0
0
0
0
0
0
0
0
.0
31
0
0 -.0
0
0
0
0
0
0
397.3
0
0
0
0
0
0
0
0
0
0
.0
32
0
0
0
0
.0
0
0
0
0
436.1
0
0
0
0
0
0
0
0
0
0
202.0
20.
9 55.
0.
3. 0.
3. 0. 0.
'
.0O
A) A)
A) .00O
( :
19.
•2( )
IMPORTATION
_g
HYDROLOGY TRIB. 10 MULLANEY'S
SITE
100-TR. DEVEL.
CORD. W/ INFLOWS FROM CANALS
tis PEAK FLOWS, STAGES
'
AND STORAGES OF GUTTERS
AND DETENSION DAMS
CONVEYANCE
PEAK
STAGE STORAGE
TIME
ELEMENT
(CFS)
(FT) (AC -FT)
(HR/MIN)
' 375
67.
.6
0 40.
377
204.
1.5
0 45.
108.
1.1
0 40.
'380
379
104.
1.2
0 40.
398
172.
1.4
1 0.
384
154.
1.1
1 15.
424.
1.9
0 50.
'383
386
117.
1.0
1 5.
385
606.
1.9
1 0.
307
762.
2.0
227
762.
(DIRECT FLOW)
1 0.
PROGRAM PROGRAM CALLED
4:2( ) 1:1(I) 6:1()
�p �/
RAINFALL PERFORMANCE STANDARD EVALUATION
PROJECT:
Prospect Park PUD
STANDARD FORM A
COMPLETED BY: Cairole Bernstein
DATE: January 18, 1996
Developed
Erodibility
Asb Lab Ssb
Lb
Sb PS(rable 8-A)
Sub -Basin
Zone
(ac) (ft) (%)
(ft)
(%)
(%)
D1
Moderate
0.87
150
3.33
81.2
D2
-Moderate
2.09
170
2.10
79.4
D3
Moderate
0.74
120
2.50
79.7
Lb = sum (Lsb x Asb) / sum Asb
Sb = sum (Ssb x Asb) / sum Asb
Performance Standard (PS) = See Table 8-A
C:\WP5\DRA1NAGE\STNDFRMB.ERS
EFFECTIVENESS CALCULATIONS
PROJECT: Prospect Park PUD
STANDARD FORM B
COMPLETED BY: Cairole Bernstein
DATE: January 18, 1996
Erosion Control Method
C-Factor
P-Factor
Comment
Roads/Walks
0.01
1.00
All Basins
Hay Mulch
0.06
1.00
All Basins
Gravel Filter
1.00
0.80
N.A.
Straw Bale Barriers
1.00
0.80
Basin D1
Established Grass
0.03
1.00
Ponds A and B
Silt Fence
1.00
0.50
N.A.
Sod Grass
0.01
1.00
All Basins
Major Performance Sub -Basin
Area Calculations
Basin Standard (%)
(Ac)
Di 81.2 0.87 Roads/Walks = 0.51 ac
Hay Mulch = 0.09 ac
Sod Grass = 0.27 ac
Net C Factor = 0.51(0.01)+0.09(0.06)+0.27(0.01)/0.87 = 0.02
Net P Factor = 0.87
EFF = 1-(0.02 x 0.87)x 100= 98.3% > 81.2, OK
D2 79.4 2.09 Roads/Walks = 1.56
Hay Mulch = 0.34 ac
Sod Grass = 0.19
Net C Factor = 1.56(0.01)+0.34(0.06)+0.19(0.01)/2.09 = 0.02
Net P Factor = 2.09
EFF = 1-(0.02 x 2.09)x 100=95.8% > 79.4, OK
D3 79.7 0.74 Roads/Walks = 0.56 ac
Hay Mulch = 0.07 ac
Sod Grass = 0.11 ac
Net C Factor = 0.56(0.01)+0.07(0.06)+0.11(0.01)/0.74 = 0.01
Net P Factor = 0.74
EFF = 1-(0.01 x 0.74)x 100=92.6% > 79.7, OK
C:\WP5\DRA1NAGL\STNDFRMB.ERS
N
z
H
O
U
E
a
W
a f
1 O
W 14
va I'n
E4 0
E
W
W
fU
0 o+al000
In WWWWW
0 0,0+0+0,000000
. . . . . . . . . . .
o vV'aV'WtnW�WW
V' WWWWWWWCID WW
O W0%0%M0%0%0%010►010101000
. ...............
o vvV V V.r�rV�vV v.rinlnln
. ....................
N WWWWWWWWWa0W0000WWWWWWW
0 oM V'In1o1o1010nnnnnnnnnnnn W W W W W W
. . . . . . . . . . . . . . . . . . . . . . . . . . .
"I WWWCID WWWW000OWW00WWWCID WWWWWWWWCID
O WNMV'InInIn 0W%0%01o10nnnnnnnnnnWWW
W W W W W W W W CO W W W W W W CO W W W W W W W W W W
O %D 0 clQ m 10 RW M M In Ww%0101010101o%0%0nnnnnn
. . . . . . . . . . . . . . . . . . . . . . . . . . .
W W W W W W W W W W W W CO W W W W W W W W W W W W W
O V O1riNMMV V V W WW W W W WIllW101010101010n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
wwwWwWwwWWWWWWWWWWWWWWWWWW
O 010 WOrIriNNMMMMV'V'V'V'V'V'iiU' Il111111111010
. ................... .....
W W W W W W W W W W W W W W W W W W W W W W W W W W
O 41NIt)n W 0100r1.-1.-INNNNNMMMMMd'��•?ep
. . . . . . . . . . . . . . . . . . . . . . . . . . .
W
W W W W W W W W W W W W W W W W W W W W W W W W W W
In rl W ri M V'InIn 010nnn W W W W W W 0f010%00000
V' N N A A N1 M I'f M M M M M M M M!•I M M en M M V'v V' V' V'
W W W W W W W W W W W W W W W W W W W W W W W W W W
0 1olnWo.-INMv�Inlnln1o1o1o1o1�nnnnWWWo1o�
. . . . . . . . . . . . . . . . . . . . . . . . . . .
V' rl N N M M M M M M M M M M M M M M M M M M M M M M M
W W W W W W W 9D W W W W W W W W W W W W W W W W W W
W rl rile n W O O rl N N M M M d' at' d' a �? an W In10 1p 1D n n
90 W W W W W W OO OD W W W W W W W W W W W W W W W W W
O MN10 W 010 rINNMMMe1'el'V�a} V'V'LLY In In Il11010101D
W W W W W W W W W W W W W W W W W W W W W W W W W W
Ill InIl101NM V 1111Onnn W W W 010%0%0%0%0%000000
N 01 O O rl ri r♦ ri rl rl 4 rl rl rl rl 4 rl rl rl 4 14 N N N N N N
n W W W W W W W W W W W W W W 00 W W W 90 CO WOO W W W
O V'IAOMIl11D W W C1COCrIrIrIrINNNNMMMMMM
N W 01000OOOOrlrl.irlrlrlrlrlrlrlrl ririri.irl'i
nt WwwwwWWWaoa wwwwWwWWWWWWWWW
M W NIO6 rl V 0nn W M M 00 rI rl rl.i r1 C11 N N M M M M en
rl 10 W-W 01 01 01 01 01 01 01 01 0 0 0 0 0 0 0 0 J 0 0 0 0 0 0
nnlnjnnnnnnnnWWWWWWWWWWWWWWW
O 10MO V'n010rINMl+1 V'arll11f11f11f11p1p1p1pnn10{01D
.� �lonnnnWWWWWWWWWWWWWWWWWWWW
nnnnnnnnnnnnnnnnnnnnnnnnnn
Ill 010V %0nW 00nnn10%0WIn40V'MMNN0110V'r10%%0
O ONNNNNCV NNNNNNNNNNNNCV 41l1;r400
nnnnnnnnnnlnnnnnnnnnnnnnnnn
3E�. o0000000000000000000000000
C7 O O O O O O O O O O O O O O C O O O O O O O O O O O
rINM V In10nMM0rINM V tC-WnODa%oI101110Inq
k. a rl rl rl ri rl rl rl rl vl rl N N M M v v 0
MARCH 1991 8-4 DESIGN CRITERIA
1
1
f
1
1
1
1
1
1
1
i
1
1
i
1
1
SIZE RIPRAP OUTLET PROTECTION
Water Quality Pond A
GIVEN
SLOPE = 0.50 (%)
VELOCITY = 3.18 (fps)
PIPE DIA = 2.00 (feet)
TYPE OF RIPRAP REQUIRED
Q / (D ^ 2.5) = 1.767767
Yt / D = 0.2
FLOW = 10.00 (cfs)
TAILWATER DEPTH = 0.40 (Yt, ft)
Q / (D ^ 1.5) = 3.535534
Per Figure 5.7 (UDFCM) Use Ft Collins Class 6
EXPANSION FACTOR Per Figure 5.9 (UDFCM) Exp Factor (1 /2 tan O) = 2.60
LENGTH OF PROTECTION REQUIRED = (Expansion Factor)*((At/yt)-W) At = QN 3.14
15.24 Length of Protection Required (ft)
Check: Length cannot be less than 3 * Pipe Diameter 3*D = 6
Length cannot be more than 10 * Pipe Diameter 10*0 = 20
WIDTH OF PROTECTION REQUIRED = 3 * Pipe Diameter 6 (ft)
DEPTH OF RIPRAP = 2 * d50 12 (inches)
CONCLUSION
Type of Riprap Required
Length of Riprap bed
Width of Riprap Bed
Minimum Depth
Bedding Material
City of Fort Collins Class 6
15 (ft)
6 (ft)
12 (in)
12" Class B Bedding
C.Sue� aD )
1
1
1
t
1
1
1
1
1
1
1
1
SIZE RIPRAP OUTLET PROTECTION
Water Quality Pond B
GIVEN
SLOPE = 0.50 (`Yo) FLOW = 7.32
(cfs)
VELOCITY = 4.14 (fps) TAILWATER DEPTH — 0.40
(Yt, ft)
PIPE DIA = 1.50 (feet)
TYPE OF RIPRAP REQUIRED
Q / (D - 2.5) = 2.656336 Q / (D -1.5) = 3.984503
Yt / D = 0.266667
Per Figure 5.7 (UDFCM) Use Ft Collins Class 6
EXPANSION FACTOR Per Figure 5.9 (UDFCM) Exp Factor (1/2 tan O) =
2.30
LENGTH OF PROTECTION REQUIRED = (Expansion Factor)*((At/yt)-W)
At = Q/V
1.77
6.72 Length of Protection Required (ft)
Check: Length cannot be less than 3 * Pipe Diameter
3*D =
4.5
Length cannot be more than 10 * Pipe Diameter
10*D =
15
WIDTH OF PROTECTION REQUIRED = 3 * Pipe Diameter
4.5 (ft)
DEPTH OF RIPRAP = 2 * d50
12 (inches)
CONCLUSION
Type of Riprap Required
Length of Riprap bed
Width of Riprap Bed
Minimum Depth
Bedding Material
City of Fort Collins Class 6 62 0,1 E D)
7 (ft)
4.5 (ft)
12 (in)
12" Class B Bedding
SIZE RIPRAP OUTLET PROTECTION
42" Storm Sewer
GIVEN
SLOPE = 0.99 (%) FLOW = 89.00 (cfs)
VELOCITY = 7.70 (fps) TAILWATER DEPTH = 1.75 (Yt, ft)
PIPE DIA = 3.50 (feet)
TYPE OF RIPRAP REQUIRED
Q / (D ^ 2.5) = 3.883469 Q / (D ^ 1.5) = 13.59214
Yt / D = 0.5
Per Figure 8.2 City of Fort Collins Stormwater 18 V*S ^ .17/(Ss-1) ^ .66 = 5.88
EXPANSION FACTOR Per Figure 5.9 (UDFCM) Exp Factor (1 /2 tan O) = 2.30
LENGTH OF PROTECTION REQUIRED = (Expansion Factor)*((At/yt)-W) At = QN 11.56
7.14 Length of Protection Required (ft)
Check: Length cannot be less than 3 * Pipe Diameter 3*D = 10.5
Length cannot be more than 10 * Pipe Diameter 10*D = 35
WIDTH OF PROTECTION REQUIRED = 3 * Pipe Diameter 10.5 (ft)
DEPTH OF RIPRAP = 2 * d50 31.5 (inches)
CONCLUSION
Type of Riprap Required
Length of Riprap bed
Width of Riprap Bed
Minimum Depth
Bedding Material
City of Fort Collins Class 18
10.5 (ft)
10.5 (ft)
31.5 (in)
12" Class B Bedding
i
DRAINAGE CRITERIA MANUAL_ MAJOR DRAINAGE
I
I
I
I
I
r
I
I
0
I
5.6.2 Required kock Size
The required rock size may be selacted frog,: gure 5-7 for circu-
lar conduits and from Figure 5-8 for rectangular conduits. Figure 5-7
is valid for Q/D2.5 of 6.0 or less and Figure 5-8 is valid for Q/WH1.5
of 8.0 or less. The parameters in these two figures are:
a. Q / D1.5 or Q/WH0.5 in which Q is the design discharge in
cubic feet per second and D is a circular conduit diameter
in feet. and W and H are zhe width and height of a
rectangular conduit in feet.
b. Yt/D or Yt / H in -which Yt is the tailwater deoth in feet, D
is the diameter of a circular conduit and His the height of
a rectangular conduit in feet. In cases where Yt is unknown
or a hydraulic jump is suspected downstream of the outlet,
use Yt / D = Yt / H = 0.40 when using Figures 5-7 and 5-8.
C. The riprap size requirements in Figures 5-7 and 5-8 are
based on the non -dimensional parametric equations 5-5 and
5-6 (11)(25).
Circular Culvert:
(d50/D)(Yt/C)I'2 (Q/D2.5) = 0.023 (Equation 5-5)
REctangular C:llvert:
(d50/D)(Yt/H) / (Q/WHYS) = 0.014 (Equation 5-6)
The rock size requirements were determined assuming thi;-c the flow in
the culvert barrel is not supercritical. It is possiblt..to use
Equations 5-5 and 5-6 when the flow in the culvert is le!s than pipe
full and is supercritical if the value of D or H is modified for use
in Figures 5-7 and 5-8. Whenever the flow is supercritical in the
culvert, substitute Da for D and H2 for H, in which Da is defined as
Da = z(D + Yn; (Equation 5-7)
in which maximum Da shall not. exceed D, an,!
Ha = �(H + Yn) (Lquation 5-8)
in which maximum -_,a shall not exceed H, and
Da = A parameter to be used in Figur:? 5-7
i!5OMWA
DRAINAGE CRITERIA MANUAL
6(
2(
RIPRAP
i
Pr
Z .4 .6 .8 1.0
Yt/D
Use Do instead of D whenever flow is supercritical in the barrel.
**Use Type L for a distance of 3D downstream .
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
I
DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE
I
I
I
CJ
1
whenever the c>>lvert flow is supercritical.
D = Diameter of a circular culvert in feet.
Ha = A parameter to be used in Figure 5-8 whenever
the culvert flow is supercritical
H ='Height of a rectangular culvert in feet.
7n = Normal depth of supercritical flow in
the culvert.
5.6.3 Extent of Protection
The length of the riprap protection downstream from the outlet
depends on the degree of protection desired. if it is to prevent all
erosion, the riprap must be continued until the vel-'.;city has been
reduced to an acceptable value. For purposes )f o:;t;et protection
during major floods the acceptable velocity is set at 5.5 fps for very
erosive soils and at 7.7 fps for erosion resistant soils. The rate at
which the velocity of a jet from a conduit outlet decreases is not
well known. For thf. procedure recommended here it is assumed to be
related to the angle of lateral expansions, 9, of the jet. The velo-
city is related to the expansion facf.or, (1/(2tan e)), which may be
determined directly using Figure 5-S' or 5-10.
Assuming that -,:he expanding jet has a rectangular shape:
in which:
L = (1/(2 tan e))(At/Yt - W)
L = length of protection in feet,
(Equation 5-9)
W = width of the conduit in feet (use diameter for circular
conduits),
11-15-82
DRAINAGE CRITERIA MANUAL
r`
7
9 = Ezparsion Angle
pm
ERNA,
MEN%
MAE
0
0
001
'ovad
No 0 1
,
No
1 2 3 A .fj .6 .7 .8
TAILWATER DEPTH/ CONDUIT HEIGHT, Yf/D
RIPRAP
FIGURE 5-9. EXPANSION FACTOR FOR CIR(:'JL-IR CONDUITS
I 1-15-62
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
I
I
11,
[1
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name:
Comment: vELOCITY FROM 18" RCP UNDER SHIELDS
Solve For Actual Depth
Given Input Data:
Diameter..........
Slope.............
Manning's n.......
Discharge.........
Computed Results:
Depth. ...........
Velocity..........
Flow Area.........
Critical Depth....
Critical Slope....
Percent Full......
Full Capacity.....
QMAX @.94D........
Froude Number.....
1.50 ft
0.0067 ft/ft
0.030
3.72 cfs
1.23
ft
2.40
fps E-
1.55
sf
0.74
ft
0.0283 ft/ft
81.82
%
3.73
cfs
4.01
cfs
0.37
(flow is Subcritical)
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
i
r
I
I
Circular Channel Analysis & Design
Solved with Manning's Equation
Open Channel - Uniform flow
Worksheet Name: �PJ2 E�
Comment: �(�-�t���„ �M �<j�� �C.� 1,11. az- Sk-lu'
Solve For Actual Depth
Given Input Data:
Diameter..........
Slope.............
Manning's n.......
Discharge.........
Computed Results:
Depth. ...........
Velocity..........
Flow Area.........
Critical Depth....
Critical Slope....
Percent Full......
Full Capacity.....
QMAX @.94D........
Froude Number.....
r
I
I
1.50 ft
0.0067 ft/ft
0.013
7.60 cfs c-- Q%oo
1.10 ft
5. 49 fps- vL s 5 -ivo LUP 2 aP N2Qc�Ld
1.38 sf
1.07 ft
0.0071 ft/ft
73.07 %
8.60 cfs
9.25 cfs
0.95 (flow is Subcritical)
Open Channel Flow Module, Version 3.42 (c) 1991
Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708
I
y-1-=C>N OF 7:;)eeyyt
� I i7 ' �.1SNZ-
1�.08
Ot l ,
-
C� = . •-� i A. � 5 Qom = 'D�a t �iG�'S WEYSZoV�SvJ � \ ��
n, !
Q To
,-22 Z4,48
��P=2=0•04-
,�
' F( m T�� ADC�-lnC>" At. t�S = o_ I fir
Io0-yE19fL
04OLr010S c'u.Qt3 CTA . �rT
Itie �lt"Ltz�T� Tifz.e7vGr1 St ON
t�rL � ►� cagy Z �..1r.1 >TQ- AIv >r unoN j+�
�t,�vJ is �.C.o�ni El'j -TU �✓(�(Zt�f� OUT` Mb2E � oo FL.p�n( IS 1JbT p.�a_C�r`-tom -
Tf✓fJ I N
-WtOTIF IaT T1'ME Or- SpiLt-ItJ� INT'� 'Pf�lt0-
�WX Sf2Z� - a4 -t- a4 ' Cep s{) -r- 24 Cv,�-�-) = 7�. I
-7 2,
A/p = {< = 09 &Co
t `9•C�lS1 /2 C > Q Ieo
-.ot3
OFFSITE FLOW ROUTED THROUGH SITE
VIA f STORM SEWER LINE A (SEE SHT 3
#mbsamowes a as New* a aseameas a as am a as a*0000009a aa•V saw a as a Am a awns own via Oda seam a Qji RM SEWER = 89 eta LuuuuuamvWaea xauu Wd�aamaaaau
4 WEST PROSPECT ROAD TOTAL a WEIR FLOW ONTO SITE = 6 cfa
♦ A
a 9p M[E IS' RCP
a > EARi. 24' RCPc-
• \
• Pt EAST OTYPE R INLET ,i13.89 LG 93 CL 111 R.C.P. O 0.98E
Nil
a�-I-��� -F SEE DETN�S �/ NV TOUT 5050182E a nq MAMMA iwananuaaaar.mYa�_ Lim
7
l
E
F.F.-22.75
'A]
g� .L
1x� qLC-PIi W15.M
SOi].0 O 0.54
TORE
u
EL . 5019.0
)0 CIF / I SEE
W
4-1H4-1SEE OEFNL THIS SHEET POND INNIEW . S5014.7
TRUCTURE
WEIR ELEVADON. 501 ].1 POND OUTLET IS SINE
T
SEE DETAIL THIS SHEET _
�PERD COLRi L'F J0.38 V 2f RCP 1
WSEL FOR DETENMN = W17
. OLRLEf Gi AT WSEL . W17 dR
a o'
TABLE A PosEO cRAOE
4.1 SIDE SLOPES
C5 CI9
D.� FF=2].50
0.48
m
♦ I• SwEW4R Dw3
x Um 0a in Wi D2p2Xc4
-4.9Tda
a.-
OF IF 2180
♦ Dlo
V W QOG
55.00 LF 15 RCP
AIWE D.45z
AREA INIEr
GR..501].30
( I INV.=501525
FES INV.=5015.00
TnR le
AM
m'�
6. fray of swuxA. _
I GPr{,f
e' WOE SIDE)i F
c9us5 auPE OI TO SI lx
[] IGD-TR CW%L i IMPORT CHnNNNEL = 50154
EMERGENCY OVERFLOW
SPILLWAY OVER SIDEWALK
N
y
4- CURB
Dwalvl Paa4r
aAmrx•
LON
I
1
1N
1
CURB VPNG__Dlb
O196
NA
3,2
6.6
WALE
Die
D1ab,c
t0.20o..74
6
NA
3J2.60
CULVERr
b
.D2b.
0
NA
2.4
5.0D2
laWChW
R
14.43
7DS
03
NA
3.58
1,32
TO POND 8
D4
D4
9
NA
0.83
I.]
I:Ffl11. LWP CHINA
c
D2c
0
0.19
AREA INLET
I
OIJB CIJi POR +GC�4 P(MYT 6L
0' MIN.
100-YR WSEL Y C ACTED
SLOPE - S Sx CLAY DYER
Ip0-rva WSEL DEPTH 083'
PROPOSED svAGE AIAryc SIj18. ,
2.5'
LONG SLOPE . 0.5E
SECTION A -A
same
E
law
W
'r
Vi
�^1
`r
W
_ 22.
z0
1
-VR WSEL
d= 6
waw
LONG SLOPE 1.Bx
-,. E'
ION BTB
LEGEND
EXISTING CONTOUR
-25- PROPOSED CONTOUR
,w Nwa•aYeaae DEVELOPED DROINAGE
BASIN BOUNDARY
PROPERTY BOUNDARY
DEVELOPED I DIRECTION
••�• = WETLAND BOUNI
BASIN DESIGNATOR
G.2
-' AREA IN A.RES
QDESIGN MOW
PRDPOSED STORM SEWER
- - - - - f0O-YEAR ILODI
nY HANDICAP RAMP
NYRLAR 9PAVj rxLFD
Yyy1[[' , OIIAIE
M
1N ]/A LWAKL
f1FV3�501
WO
MOORING 01
a' PVC WTH
138
0AGAON
t
A•
9PHAa'Eo a
x
On
POND A
OUTLET
DETAIL
IM'uPEgAly°NAICDfp1A1L
,N UMTH
qj A rCV wEW
Sr�CAIGKL
ANCHDNING Cy
O�LUR
REV . 5019.0
,
13, /811
0WS
ER V' p�-
, I
-
SPACED
>D,P!
�g p-p---
INV EIEV
5pT10
;OR,
xrs
POND B
OUTLET
DETAIL
Wx w.
WAGE
d
f�OAMVALEE0PEN0ARE"" ')
ANCHOWNG Cg1.W
Cx4' RCP • S.O.Sx'r A)
] s=9POND W
9_
li' RERFMA,DIs
ASPACEFILLED
]m_
WON 3/4' GRAVEL
f vK WITH
NOTE:
I. DRAINAGE IMPROVEMENTS ARE TO
BE CONSTRUC ED DURING PHASE IN
THEIR ENTIRE . N
JO 0 O 90
Srryle - 30 ft
POND OUTLET DETAIL
I
w[cNEO �,L l W�•"L'..i. VV 1-b •9f.
1 au MruN
amw..ln u�i
NoCxcD ffi NA
Nar ALra " x,A
No Revisions ° y Do NORTHERN ENGINEERING SERVICES PfOfeC` 9520.02 P""` Da1e: M.m,,. Sne
IoM.,. PROSPECT PARK P.U.D.
i.::
- --- 30 DRAINAGE PLAN
-- SCALE. 1'=
620 SOUTH HOWES SUITE 202, FT. COLLINS, COLORADO 80621 DESIGNER : C CHECKED 8Y: s."u Ecnylicw eI in,
.,�
-- - (910) 221-4158 DRAFTSMAN: CARD PREPARE0:12 18 96 _f Sheels
OFFSITE FLOW ROOTED THROUGH SITE
•Y///YYyIYOi MLiM IiE YYY/YiY•••Y//••1•'/••YEI//Y•/EIYYr•�'/s•//ir//•EI••Y//YY/•//•Yr II % STORM SEWER LINE A (SEE SHT 3 1
1AAS RM SEWER = 89 cfa Y••/ru•/YYu•uu/ou/LDi u//air WY.WY YY YYuruY
WEST PROSPECT ROAD
TOTAL O WEIR FLOW ONTO SITE = 8 cfs
Y •+• EXIT 1 4'RNmr
• \ *.
•• EXIST 15TYPE R INLET 13.R4 LF 42' CL III R.C.P. 0 0.98E
0 10 BE REL-0C,yIEy IN IN = 5019.39 0 O
SEE DE SHEETINV. OVi 5019.2E /><.�..�. ���- /•s N•l/
el mill "I'vivemn. L Ii
AI
• v A -
.y �• - IpyLp WEIR_s 4.5 ch
Y
• ; a4 2 01wWEIR 31. a
A
F Fa• 5.80 HIT N-
/ Cs DTB
0.68 _
020 • y
s
v 01W Dla-2.tl9
e ♦ _ • YIS
W laR DtD-5.91
1 Ib EI • __ _ ____
1 - • YY•a = e Iii•OY•• __�_
IllLl _ • '{''0 /
4' � '✓ y q LI
6
• a / 2
D3 py 61
r 0.74 "oll F.F.-a
1
• Dffi F.F..23.50 l
sN • 0.48 I F.F. 21.e0
I •
4 `T V QOB
s I - • 55.00 UP IT RCP
• i W • SLOPE 0.45E
T
y _ AREA INLET
n s 4 CULVERT (PHAASEEII) • I I INV�5�015.25
OR D3-J.SO cl IF • • ITS RN.-5015.00
01II 03. ].32 cl 3 f1 ID em
F 4 p
'• a y I• sDDwx aWSi
0 p D2b-243 I 9 m
' 19 • p D26.4.9709cb '
.. WATER We DETER OUALOY -, • t . i+•t11/• 1 - I-��.�+tiK nIF W
POND - INV.- 5015.00 ••�
F.F..22.75 q} p p 0.5E
151N �50i>.0 CPO M D
,1. INV OUT . 5018.E
'P POND 01 STRUCTURE
SEE DETAIL THIS SHEET 4' CURB OPENING
INV . 5017.0 WSEL - 5019.0
POND VOLUME- I000 CIF OVERROW WEIR
SEE DETAIL THIS SHEET POND INVERT - 5014.7
WEIR ELEVATION. 5017.1 POND OUTLET STRUCTURE
T SEE DETAIL THIS SHEET _
F O - • m,willilill,a - � a - "='PBRD OOLNE�O CF - 30.39 V 2C RGP O
WSR FOR DEFINITION = Son -
OUTLET GRAZE AT WSEL - W17 MY IN RA' OUT -
a' -.
1 CRACK
W vuwrr bl)
Sol r.l _-F
Cj ICE1y a� • in 1.
CHOI 5 OPE {N 10 5)� IF
Q IOD-M CWSEL Cal IMPORT CNANxEI 50154
EMERGENCY OVERFLOW
SPILLWAY OVER SIDEWALK
NITS
TABLE A
OY3fa FQIF
•/,N
AR/,\
0
OY
crw
WID
Ere m;
OO1Hr\'HDN
1
1
]
N
1
CURB OPNG
MIT
D19 b
0.78
0.74
NA
3.2
6.8
SWALE
DID
O1 a,bc
0.87
OJB
NA
3.72
7.80
CULVERT
D26
on
0.48
O.b
NA
2.4
5.0
CURB OFING
D2
DIAIDAD1A.6
2.96
0.86
N.A.
14.4
35.4
TO POND A
D3
D3
0.74
0.66
N.A.
3.3E
7.32
TO POND B
04
N
0.20
0.74
N.A
0.0
1.7
CINAL YIP C1MN
c
02c
002
0.90
0.19
MIA INLET
CURB ClR FOR v� PONE DM
8B 0'
ROPOSED GRADE
41 SIDE SLOPES
0' MIN.
100-YR OUSEL
J. PACTED
SLO
PE
DEPI . O.8J uY UTER
IS I6'
2.5' - -
t UDI WSEL
0.6•
•�� LONG. SLOPE - 0.5x
SECTION A -A
yi
W
No
VI
r
0
N
22,_-
TO'
1
-YR OUSEL
LONG SLOPE - 1.SX
SE
TION B-S
NOTE
I DRAINAGE IMF
BE CORT TED
THEIR ENTIRE Y.
Scale F = 30 ft
LEGEND
EXISTING CONTOUR
�25 - PROPOSED CONTOUR
eissomessi/W DEVELOPED DRAINAGE
BASIN BOUNDARY
PROPERtt BOUNDARY
DEVELOPED FLOW DIRECTION
-lm. WETLAND BOUNDARY
BASIN DESIGNATOR
0.2
a
�- AREA IN ACRES
QDESIGN POINT
PROPOSED STORM SEWER
100-YEAR FLOUOPWN
_-/ HANDICAP RAW
pF A p Ap
ANAF�Sj/AfILLE
3f N WyAyIF -F
5[ElEvil.Abl]WOf•
CHOP No Ca A
lJ 4a.0 HGVE5 Vf0 WROW
4- W
ROWS SPACED a MAR
i,.
% .II.EIr
4n
POND A
OUTLET
DETAIL
WX Now
12' 111 AIfO AO
ANNULAR S3 EI EEpp
} p
CCP NEW FOG
1/y WiKI
yE
AxcTHDmxc cola+
ELEV . b 90
�;.
MO 5 SP>fED M4PT
fl
1g .Ev
N
CLCr bV 0
✓1'�In
POND 8 OUTLET DETAIL
WE Aw
4,1�4
CVIEI(WFEW SPACE 4 OS Al
AREAW.E29) iY)
ANCHORING CCLLM' MP Y S.Oa(PWO A)
IV ay RW• S-05F (POND B)ANMMR ACEF91WITH 3 I OR*tPYc In_-_-_-_--
IJR, 1/9' THOLES PER ROW - m
ONi3PACOD 4'_APAR7
POND OUTLET DETAIL
w Now
CITY OF FORT COLLINS, COLORADO
UTILITY PLAN APPROVAL�[_�,�,
APPROVED: �c : o yw - ""
vv
CREWED IN' NA
INC amm NA; mvr Mega an
exeWeD et; '& ---- f
cnEDNEO m:Al
.A.. Aw MCr m am
No.
NORTHERN ENGINEERING SERVICESb0i
420 SOUTH HOWES SUITE 202. FP. COLLINS, CO1lIRADO 80521 (9T0) 221-4158
Print Date:
PROSPECT PARK P.U.D.
DRAINAGE PLAN