Loading...
HomeMy WebLinkAboutDrainage Reports - 01/16/1997 (2)tO t�rr OF final Aroved Report WORT OOLLDN vra trr�s ate %� Final Drainage Report for Prospect Park P.U.D. Fort Collins, Colorado September 22, 1996 N E N G I N E E R I N G SERVICES INC 1 1 1 1 1 1 1 1 final Drainage Report for Prospect Park P.U.D. Fort Collins, Colorado September 22, 1996 Prepared For: Tim Sittema Ed Mullaney Prepared By: Northern Engineering Services, Inc. 420 South Howes, Suite 202 Fort Collins, Colorado 80521 (970)221-4158 Fax (970)221-4159 Project Number: 9520.00 Final Submittal September 22, 1996 Mr. Glen Schleuter City of Fort Collins Stormwater Utility 235 Mathews Fort Collins, Colorado 80522 RE: Prospect Park P.U.D. Fort Collins, Colorado Project Number: 9520.00 Dear Glen: Northern Engineering is pleased to submit this Revised Final Drainage Report for Prospect Park P.U.D. for your review. It represents a study of existing and proposed stormwater characteristics of the project site. ' This report was prepared in compliance with technical criteria set forth in the, City of Fort Collins, Storm Drainage Design .Criteria and Construction Standards manual. ' If you should have any questions or comments as you review this revised report, please feel free to contact me at your convenience. Sincerely, NORTHERN ENGINEERING SERVICES, INC. J Roger A. Curtiss, 420 SOUTH HOWES, SUITE 202, FORT COLLINS, COLORADO 80521, (970) 221-4158, FAX (970) 221-4159 PROJECT COMNIEENT SHEET City Ofrwt COMM Current Planning DATE: 6 - 5 - 9(; DEPT: Stormwater PROJECT: / 74F-XI PLANNER: 5�� a. All comments must be,feceived by: ❑ No Problems tJ Problems or Concerns (see below or attached) A written response for each of the following comments must be submitted, with the redlined plans and report, at time of project resubmittal. The responses must note any revision"§ or clarifications completed in result of these comments. If responses are not submitted with the resubmittal, the project will be returned to the applicant without further review. This procedure will help the review process become more efficient and effective. Thank you. 1. Please provide a drainage easement for the pan designed to carry the overflow from the 42" stormsewer, which outlets to water quality pond A. RESPONSE: W tu, Mb� UP EBMEtJTS _v=> -j"a Pv'r owl PL,6.7-. • Date: 6 = 5 . (4 .Sl�l]atUrB:-- E4 ' - ' CHRE ECK IF YOU WISH TO CEIVE PLAT reCOPIES OF.REVISIONS ❑ STTE Ted k 4WI ❑ LANDSCAPE 41 ❑ MM 2. Please specify on the erosion control plans the dimensions, bedding, and gradation to be used for the proposed grouted riprap at the 42" stormsewer outfall. The Stormwater Utility prefers ordinary riprap be used to grouted riprap due to the aesthetics of the location in a natural area. But if constraints do not allow for ordinary riprap, then grouted may be used. Please also specify that the riprap be grey -colored granite and not pink granite. RESPONSE: Ta ��,o..SE� oti V�l�,--Y,, �✓U... SPa=c��y' C��n2 3. Please provide buried riprap for outlet protection into the wetlands for both water quality pond outlets. Also, overexcavate water quality pond A, so it can be used as a sediment trap. RESPONSE: a F=oP—> SCE - Pc>/-JDs - U.18 /�.D�i✓D t\:D"i�� '}�+A.r 1iJ4�Z- Q1.2�iT'y poIJD dl7T�-ET ST12l>C3'L�tJ�T 0� GpM���p t�IJTI_S�l� 1S ST��SIIa D 4. Please specify on the plans and in the report the erosion control in phases and provide just the necessary cost estimate for phases I and II as those are the only phases being constructed at this time. RESPONSE: .n.Dz)r-�z lKyrc> ' n vo.Tr TLto.T T+hE UP -21T2�S?L12>Il_l� t 1�}�Z �Y 1MP�P�[ 1DUS SUP pZ^C Please refer to the redlined plans for additional review comments I r I r I Final Drainage Report for Prospect Park P.U.D. I. GENERAL LOCATION SITE DESCRIPTION General Location and Site Description This report summarizes the results of a storm drainage investigation for the proposed Prospect Park P.U.D. site. The project is located in the NE Quarter of Section 22, Township 7 North, Range 69 West of the 6th Principal Meridian in Fort Collins, Colorado. The project is bounded by W. Prospect Road to the north, S. Shields Street on the east, Prospect Park PUD and the Northwood Apartments on the west and the Canal Importation Channel on the south (See Vicinity Map). The 5.92 acre site is located in northwest Fort Collins in a predominately residential area and is currently vegetated with native grasses and weeds. The surrounding land use patterns are residential. II. HISTORIC DRAINAGE Historically, the site drains from the northwest to the southeast to the Canal Importation Channel at slopes ranging from 1.03% to 3.54%. Historic flow from the project site is 3.9 cfs for the 2-year storm and 14.4 cfs for the 100-year storm (see Appendix). The Canal Importation Basin hydrology, tributary to the Prospect Park site, (SWMM File No. MULANEYD.0) was conducted by the City of. Fort Collins Stormwater Utility Department for 100-yr developed conditions. The Prospect Park P.U.D. site is included in SWMM Subarea 32 and the Canal Importation Channel identified as Element No. 387. Areas north of Prospect Road drain to the south onto Prospect Road and are collected in sump or grade inlets. The inlets are piped together and discharge onto the project site from the north through a 42" diameter concrete pipe. Based on information in the report entitled "Hydrologic Analysis and Final Design, West Prospect Road Drainage, Fort Collins, Colorado" by Lidstone and Anderson (February 4, 1993), all flow in a 10-year design storm is collected by the inlets. In a 100-year storm, 89 cfs is captured in the storm sewer system while 6 cfs overtops the southern curb flowing onto the project site. Stormwater from the 42" pipe is currently conveyed in an open channel east along Prospect and then south along Shields to the Importation Channel. Historic flow through the project site from offsite sources is 95 cfs. Calculations for the inlet capacities, road ponding and overtopping are presented in r C 11 r r r 11 r I t Prospect Park PUD February 29, 1996 Final Drainage Report Page 2 Appendix A. There are no existing irrigation laterals on the site. Per the Greenhorne and O'Mara Importation flood profiles (sheet 5 of 5), the 100-year water surface elevation for the Canal Importation Channel is 5015.4. III. DEVELOPED DRAINAGE Developed Conditions ' The proposed development of the site includes 4 commercial buildings with associated parking areas and utility services. Three (3) drive entrances will serve the ' site - off West Prospect Road, from South Shields Street and a shared access with Prospect 11 P.U.D.. Design Criteria and References Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design Criteria Manual.(SDDCM) and Storm Drainage Criteria Manual by the Urban Drainage and Flood Control District (UDFCD-SDCM) have been used for this Preliminary Drainage Study. The reports entitled, "Hydrologic Analysis and Final Hydraulic ' Design West Prospect Road Drainage" by Lidstone & Anderson, Inc. and "Final Design Report for the Canal Importation Channel Phase I Through Phase IV", by Greenhorne & O'Mara, Inc. have been referenced. Hydrologic and Hydraulic Criteria The Rational Method has been used to estimate peak stormwater runoff from the proposed development. A 10-year and 100-year design storm were used to evaluate the proposed drainage system. Conveyance structures were sized using a 10-year design storm. Rainfall intensity data for the Rational Method was taken from Figure 3-1 of SDDCM. The City of Fort Collins Storm Drainage Design Criteria has been used for all hydraulic calculations. General Drainage Concept Off -site flows from Prospect Road and areas north of Prospect Road will be routed through the site to the Canal Importation Canal via a 42-inch storm sewer. 1 On -site developed stormwater runoff will be conveyed through the Prospect Park site by overland flow and vertical curb, through two water quality ponds to the Canal Importation Channel. No detention for flood control purposes are required for this site due to the proximity of the site to the Canal Importation Channel and the lag in peak discharge from the proposed site and the Channel (see Appendix). I rProspect Park PUD February 29, 1996 Final Drainage Report Page 2 Specific Details The existing fifteen (15) foot curb inlet in the south flowline of Prospect Road will require relocation due to the proposed street widening adjacent to the site. Stormwater from adjacent streets will continue to be conveyed to existing storm sewer appurtenances in Shields and Prospect. Because the existing inlet is being relocated and the storm sewers under Prospect extended to the new location, there will be no reduction in conveyance capacity. An analysis of the proposed 42-inch sewer extension indicated that the storm sewer extension will pass the Lidstone and Anderson 100-year flow of 89 cfs. The storm sewer will outlet at,an elevation of 5015.0. The 100-year water surface elevation for the Canal Importation Channel is ' 5015.4. Grouted rip rap will be required for outlet protection. In the 100-year storm, the inlet on the south side of Prospect controls, causing ponding on the street. The Prospect Road improvements were designed to create a pond on the south side of Prospect. Weir flow onto the project site of 6 cfs in the 100 year storm historically occurred at elevation 5025.06. The maximum depth of the historic weir in a 100-year storm is 0,18 feet, occurring over a weir length of 63 feet (see L&A Table 4.2). The proposed Prospect Park PUD has designed two locations for overflow in the 100-year storm. Approximately 1.5 cfs of the overflow will overtop the highpoint in the incoming entrance lane off Prospect Road. The other 4.5 cfs will flow onto the site at a weir location near the sump. Flow analyses of cross sections A -A and B-B across narrow regions of the parking lot indicate that the buildings are at least one foot higher than the 100-year water surface elevation in the parking lots (see Appendix). The developed site was divided into four basins. Basin D1 will convey flow via a curb cut, swale and culvert to water quality pond A. The roof runoff from half of the building on the east side of the site will be conveyed directly into the culvert under the ' Shields Street entrance. The 10-year and 100-year design flows for Basin D1 are 3.72 and 5.91 cfs respectively. Basin D2 flows drain via curb and gutter to water quality pond A. The 10- and 100-year design flows for Basin D2 are 10.81 and 21.57 cfs respectively. No curb and gutter will exist north of Pond A, so flow from subbasin Dia will sheet flow directly into the pond. Water quality pond A is designed to capture and store the first flush from the parking lots. In discussions with the City of Fort Collins it was determined that the primary water quality concern is from the parking areas. Using criteria presented in UDFCD-SDCM a water quality capture volume of 3900 cf was determined necessary to adequately treat the first flush from the parking areas. Approximately 80 percent of the site drains to water quality pond A, therefore the pond size is approximately 80 percent of the water quality capture volume (3120 cf). All flows to this pond in excess of the water quality capture volume will be released from the pond via an outlet r i I I I C I 1 iL r Prospect Park PUD February 29, 1996 Final Drainage Report Page 3 structure and overflow weirs to the Canal Importation Channel. The water surface elevation required for water quality detention is 5017.0 (depth of pond is 2.3 feet). The overflow pipe elevation is set at 5017. The overflow weirs pass over the sidewalk to the south of the pond at an elevation of 5017.10. The water quality detention volume will be released over 40 hours. The outlet structure for pond A is a modified version of the standard water quality pond outlet as described in the UDFCD-SDCM (see detail in the Appendix). The outlet structure consists of a 4-inch perforated PVC pipe per UDFCD standards. A 12-inch perforated ADS or PVC pipe will be placed around the 4-inch perforated pipe. Gravel will be poured in the annular region. The 12-inch pipe will be anchored to a 36-inch round, 2.3 foot high catch basin with a 24-inch opening at the top for overflow. The overflow entrance will be protected from debris by a grating of No. 4 rebar (see detail in Appendix). In a 100-year storm approximately 30 cfs could be passed to pond A. With a flow depth of 0.5 feet (WSEL = 5017.5), the pond outlet will pass approximately 10 cfs. The remaining 20 cfs will pass over the two weirs in the sidewalk to the south of the pond. Basin D3 will drain via curb and gutter to a 2-foot sidewalk chase to water quality pond B. The 10- and 100-year design flows for Basin D3 are 3.58 and 7.32 cfs respectively. The water surface elevation required for water quality detention is 5019.0 (depth of pond is 2.0 feet). The overflow pipe elevation is set at 5019. No overflow weirs are necessary. Any overflow from Basin D3 will be passed through the outlet pipe. The water quality detention volume will be released over 40 hours. The outlet structure will be similar to that described for pond A. Basin D4 will drain to the existing private entrance roadway to the west of the site. Flow will travel by curb and gutter to a road inlet southwest of the site that outlets into the Canal Importation Channel (there are existing drainage easements along this route, dedicated by the Prospect 11 replat). Per discussions with the City of Fort Collins, no water quality control will be required for this basin. The 10- and 100- year design flows from this basin are 0.83 and 1.36 respectively. IV. EROSION CONTROL Erosion control will be of considerable importance on this project due to the proximity of the site to existing wetlands. The water quality control ponds will be constructed first and the site graded so that flow will pass through these ponds. A silt fence will be placed between the two ponds. Permanent vegetative erosion control will be used in conjunction with landscaping in areas surrounding the buildings and parking areas. Erosion control calculations and cost estimate are presented in the Appendix. I rProspect Park PUD February 29, 1996 Final Drainage Report Page 4 V. CONCLUSIONS Compliance with Standards All drainage analyses have been performed according to the City of Fort Collins Storm Drainage Design Criteria Manual (SDDCM) and the Urban Drainage and Flood Control District's Drainage Criteria Manual. A variance is requested for on -site detention for flood control purposes since on -site detention would add to the flood peak rather than diminish it. I I I r I REFERENCES 1. Storm Drainage Design Criteria and Construction Standards, City of Fort Collins, Colorado, May, 1984. 2. Final Design Report for the Canal Importation Channel Phase I through Phase IV, Greenhorne & O'Mara, Inc., September, 1991. 3. Hydrologic Analysis and Final Hydraulic Design, West Prospect Road Drainage, Fort Collins. Colorado, Lidstone & Anderson, Inc., February 4, 1993. 4. Drainage Criteria Maunal, Urban Drainage and Flood Control District, Wright -McLaughlin Engineers, Denver, Colorado, March, 1969. APPENDIX PAGE Historic Drainage ................................................ 1 - 2 Offsite Storm Flow Analysis Lidstone and Anderson material ................... 3 - 21 UDSEWER output for 42" Sewer Extension. 2 - 24 Developed Drainage .......................................... 25 - 37 Parking lot X-Section Analyses .......................... 38 - 39 Water Quality Pond Analyses ............................ 40 - 52 SWMM Modeling ................................................ 53 - 58 Erosion Control Calculations .............................. 59 - 7< 611 133tus sails �s � � : C 'arrd U 103dSOLu M HISTORIC DRAINAGE PROSPECT PARK, Fort Collins, Colorado FilcNumbcr: HSTBSNHI.WQI 23-Apr-95 Calcs BASIN H1: DESIGN POINT H 1 TOTAL AREA = A (ac)= 7.09 RUNOFF COEFFICIENTS: (From Table 3-3) Area of Roofs (ac)= 0.00()U C for Roofs = 0.95 Area of Streets (ac)= 1.07W C for Asphalt = 0.95 Area of Gravel Parking (ac)= 0.(1(N) C for Gravel = 0.50 Area of Lawn & I.andscape(ac) 6.021) C for lawn = 0.25 COMPOSITE RUNOFF COEFFICIENT: C = 0.95(L07ac)+ 0.25(6.02ac) = 036 7.09 Cf = 1.00 (Frequency Adjustment Factor; Storm Return Period of 2- Years) Cf = 1.25 (Frequency Adjustment Factor; Storm Return Period of l(K)- Years) OVERLAND FLOW: (From Northwest to Southeast Across Site) Total Overland Flow Length= 5 T2 = 1.87 (1.1 - CCf) SORT(L) = 26.9 min L (ft) 5W CUBRT(S) S (%.,) = 25.2-13_6 = 2.32 Tim = 1.87 (1.1 - CCf) SQRT(L) = 24.9 min 5Q) CUBRT(S) C = 0.25 SWALE FLOW: (To Existing 24" Culvert) L(ft)30 Ti = L = 0.3 min S(%)= 13.6-13.17= 1.43 (].()(V) 30 V(fps) = t.&) (From Figure 3-2) 2-YEAR TIME OF CONCENTRATION; = 27.1 min 100-YEAR TIME OF CONCENTRATION; 25.2 min RAINFALL INTENSITY: FROM FIGURE 3-1: i2(in/hr) 1.56 il(N)(in/hr) 4.58 Q2(cfs) = CCf x i2 x A 3.9 QI00(cfs) = CCf x i 100 x A 14.4 I TAFT HILL I ROAD Wz N SHIELDS 0 a 0 LEGEND O BASIN CONVEYANCE ELEMENT O NODE 115 123 T 203-=SµM1' INLET N.S�e C� 'PR�LiPtc-GT. Figure 2.1. SWAM Model Schematic for the Northeast Quadrant (Existing Conditions). 5 LEGEND O BASIN F-I ELEMENT CONVEYANCE ELEMENT O NODE Figure 21. ! cf.+DFL i SWMM Model Schematic for the Southeast Quadrant (Existing Conditions). 0 conducted. The flow depth and open lane width was computed .puce instances was cond p p P ngnormal flow conditions for the nine conveyance elements in question. The results i.'1aySt:,'s ',:.... •. x 4 �l• :of:tlits_-analysis indicate that for the conveyance elements which do not meet criteria the 'actuahflow,depths range from 4.9 to 5.9 inches, which are below the top of curb; the actual open.aane -widths vary from 11.4 to 14.4 feet. The HEC-2 output associated with this ' `analysis i§ contained ir. Appendix F. In light of these results, a variance is requested for the (initial) storm street capacity for these nine conveyance element:. Since (initial) storm flow depths would remain below the top of curb, there would be no impact !ponding or flow) on personal property, and emergency vehicle access would not be unduly compromised (minimum open lane width of 11.4 feet for half street — 22.8 feet total). Finally, flow depths will not impact access to parked vehicles as parking will not be allowed along Prospect Road. Included in the with -project model _was analysis of the impact of ponding at the east sump on Prospect Road (Nudes 203 and 206) for the 100-year event.. A. ponding analysis was not required for the 10-year event as the proposed curb inlets are designed to ' - convey the 10-year peak discharges. Therefore, there is no ponding at this location for the 10-year event. For the 100-year event, the potential ponding at each of these nodes (north ' and south side. of the street) was analyzed separately. Water was considered to pond on the north side of the street before ove. -topping the crown and passing to the south side. Water entering the south side of the street was considered to pond until overt22ping the south curb. ,... This analysis identified storage -discharge relationships for the north and south side of the street based -on the proposed street configuration and drainage facilities. Street cronq_and curb ove� rtoppir..g flow was considered based or.. the proposed centerline and curb profiles, resp cps tively`Releases fr��rn tl. a ponding areas via pipe flow were determined based on the proposed curb inlet configurat.on. Detailed calculations for this analysis are included in Appendix E.3. Results of the detention analysis include estimates of: (a) ponding elevations. (b) lengths over which curb overtopping would occur, and (c) separation of the total discharge it t tie sumps between pipe flow and street crown or curb overtoppin flow. For the north side ponding,area, the most significant result is the maximum depth of flow over the street -own which would be 3 inches. Tl with those for the existing condition detention analysis. are summarized inTable 4.2. It is noted that by improving the on -grade inlets along Prospect Road, the total discharge at the east sump would be reduced slightly for with -project conditions. This reduction in discharge, 33 Table 4.2. Summary of Ponding Analysis Results for the East Sump Area (South Side of Prospect Road). a ............ .... d1h UL LU £Event Condition a: th: 10-Year Existing 5025.56 47 10 37 110 10-Year with- No 45 45 0 0 Project Ponding 100-Year Existing 5025.76 100 11 .39 T 160 100-Year With- 5025.24 I 95 8-9-1 6 -1 Project " Pipe flow — total flow at storm sewer outlet. b Weir flow over south curb. 34 i E3 . Storage -Discharge Curve for With -Project Conditions, East Sump Area Lrd�tone & Anderson. Inc. w Es T --PRO 5 Pa T AS -P;� A fiJ A-6 9: FEATURE t CHECKED 8Y DATE SHEET OF I�o�e Z®3- ����y - GAL z/7- I -7 Mp Tr, (ei L//.�C rites - �li� +,I.JtJ Ov« tuba 5� II J �leV4 die✓( co Zs • �� o.'f 5 D. 9 o O. q3 Z 5. � o o. o.•yt�` So-563 0.73 1.�� 7 �I S. / o O. 052-1 Z �,�� 5025.8o O, qo I ' S o Z I rsi 57G.7 to. o89S3 _ I'-10 ZrZo L6 z'�• o, /y39 - �- y- E/e✓— s'oZ,/9 7_ Co.oz 71 i Z.67 = .3Yff 1 �aM ■ww... W .wY.rw�M C.r..w. OWNER -PROJECT By DATE PROJECT NO. I:s-r 7;;2An.) Dh'I Z-1-93 CoTr�s7 FEATyRE� � � I 'f���H PG�nd r CHECKED BY DATE SHEET Z OF, M 0 Jill o N u � ZZ- M; T I v; NQ T\ `l Q V � 0Z r .zoo N 7— N N; G� i � I� � N M P, T 7 T M N �3 O M M 7 � s N VI O 1 ? N-A W J °O %r o- 0 tM 1 N a 0 h Oo N N op �1 I '� r.Z N V 1 _._ 0 �? >° I ► s ao .� rv� LA — iM.o x No Iv Q I I N as I I O v s Q I o M I 1 I s ' 1.0 -- 12 5 10 4 .9 II 8 3 10 6 .8 0 2 3 7 8 W 2 �/� z 1.5 1.�6 i N o .6 _ 7 1.7 t Exo� z 1.0 .5 - - 1.0- a.93 z 9 0.90 J_ _ _ W 5.5 o 6 �,- vt . ILL W 5 = z o 7 a .4 z z .4 ~ ? W C9 .6 z - 4.5 z a .3 _ W W - 4 L = .2 O.2o p 5 0 ' Z W z .3 3.5 z W .4 a ¢ O p I W ' W u_ p o.08 t- o.3z � .25 3 ~o .06 0 .3 U z W W it .04 0: .25 = 2.5 = .2 a .03 a ' } 3 F•• a .02 0 .2 o. 2 � � a .c 15 .15 ' ` .01 0 0 ' --- -- - -- -- yo a 1.5 Cr a=2'h .10 ' Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA r.q, Mwr� W �wrwwY CW,Yr,. OWNER -PROJECT By DATE PR JECT N0. Wes- ?p �o,►fl���,�� 77I'J z-z-93 �T. FEATURE CHECKED BY DATE SHEET OF 'CoF1 -Eo SC d eo; /0 Q e m5s seG;;bn S E/ev4,70n (f So-o) CTt�-Ticrl 146 too z7 00 — 146 4 50 ZG • E; — /'t7fov Zlo•5`j ZL•17 /`l71-5o 7,S,83 l�ofoo 2G.o3 L5.S7 /`f 8 +Sv Z5.7� Z5.3o I�i9fso zs,71 zs.'fz /50foD Z�•/O L5.75 /Sot SD Z�•56 �, 5 /s/ too Z7.o4 _ — 7.Sz.Foo CURRENT DATE: 02-01-1993 FILE DATE: 1-28-93 IRRENT TIME: 17:34:27 FILE MANE: RPROSPEG ... FHW1 CULVERT ANALYSIS ii... HY-8, VERSION 4.0 C SITE DATA CULVERT SHAPE, MATERIAL, INLET ° U L ° INLET OUTLET CULVERT • BARRELS ° a V o ELEV. ELEV. LENGTH • SHAPE SPAN RISE MANNING INLET ' (FT) (FT) (FT) • MATERIAL (FT) (FT) n TYPE ° 1 65021.83 5020.76 75.81 • 1 RCP 2.00 2.00 .013 CONVENTIONAL• . 2 e • • 3 • 4 e e • S .6. 'UMMARY OF CULVERT FLOWS (CFS) FILE: RPROSPEO DATE: 1-28-93 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 0 0 0 0 0 0 0 0 1 '5021.83 5023.52 10 10 0 0 0 0 0 0 1 5025.46 24 24 0 0 0 0 0 0 1 5025.81 36 26 0 0 0 0 0 C2!r-23 5025.88 48 26 0 0 0 0 0 22 13 5025.93 60 26 0 0 0 0 0 33 11 5025.97 72 27 0 0 0 0 0 45 9 5026.01 84 27 0 0 0 0 0 (:�-_57- 8 5026.04 96 27 0 0 0 0 0 68 7 5026.07 1D8 27 0 0 0 0 0 80 7 5026.09 5025.63 120 25 27 25 0 0 0 0 0 0 0 0 0 92 7 0 OVERTOPPING Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiibi6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii SUNMARY OF ITERATIVE SOLUTION ERRORS FILE: RPROSPEO DATE: 1-28-93 L I I I HEAD HEAD TOTAL FLOW % FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 5021.83 0.00 0 0 0.00 5023.52 0.00 10 0 0.00 5025.46 0.00 24 0 0.00 5025.81 -0.00 36 0 0.82 5025.88 -0.00 48 0 0.85 5025.93 -0.00 60 0 0.76 5025.97 -0.00 72 1 0.93 5026.01 -0.00 84 1 0.98 5026.04 -0.00 96 1 0.86 5026.07 -0.00 108 1 0.58 5026.09 -0.00 120 1 0.73 <1> TOLERANCE (FT) = 0.010 <b TOLERANCE M = 1.000 T=vfL Qar1�'-'Tln1G / �,►c-�Sz Flc�.d �d�fL Q,,,�= ID.2 r ZS• g5� /O. Z2t'r eJ � U, 'r f-100 el ' 2 CURRENT DATE: 02-01-1993 FILE DATE: 1-28-93 CURRENT TIME: 17:34:27 FILE MAME: RPROSPEQ 6gU;fggg6g4666�66gg6666d66b686d61i1iUlri6661i61iUlUi81igd6Sg6A�1i1iJli6dUi666gdgdggg66�gri6 PERFORMANCE CURVE FOR CULVERT ! 1 - 1 ( 2 BY 2 ) RCP 6fgA61iA1igf6g6dA�A6A66b666dai6666dE61iUl6dUf6Ag61i6�6f66Sf>jUiligUi6li>i6Bi81iUlUiUfUIUIfUiUlUililiUlUi DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL FLOW ELEV. DEPTH DEPTH TYPE DEPTH CRITICAL OUTLET DEPTH VEL. DEPTH TAILWATER VEL. DEPTH (cfs) (ft) (ft) (ft) 4F4> (ft) (ft) (fps) (ft) (fps) (ft) 4��gg6A6iAd6g6E6b6gg66666gg6d66�6gggg6g6&8f6gg6ggggAri61i1ib&f f 6g6gUifAU;ABUlAf 0 5021.83 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0." 10 5023.52 1.69 1.69 1-S2n 0.84 1.13 7.79 0.86 0.00 0." 24 5025.46 3.63 3.63 5-S2n 1.48 1.72 9.67 1.48 0.00 0." 5025.81 3.98 3.98 5-S2n 1.57 1.78 9.65 1.59 0.00 0." '26 26 5025.88 4.D5 4.05 5-S2n 1.59 1.78 9.67 1.60 0.00 0." 26 5025.93 4.10 4.10 5-S2n 1.60 1.79 9.69 1.61 0.00 0." 27 5025.97 4.14 4.14 5-S2n 1.62 1.80 9.71 1.62 0.00 0.44 27 5026.00 4.17 4.17 5-S2n 1.63 1.80 9.72 1.63 0.00 0." 27 5026.04 4.21 4.21 5-S2n 1.64 1.81 9.66 1.66 0.00 0." 27 5026.07 . 4.24 4.24 5-S2n 1.65 1.81 9.66 1.67 0.00 0." 5026.09 4.26 4.26 5-S2n 1.66 1.81 9.66 1.68 0.00 0." t27 ligg�6g66fggf6fffi4f6g66g6ig6Ag6gB61ig&f6ggfAS8BUi888886igf6rjg6Ulf6g6gf6Ag6UlUi68Sf66 El. inlet face invert 5021.83 ft El. outlet invert 5020.76 ft ' El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft 6�6668S66ggi666�6g66Abg66g�ggUili�f��ffrigggf6g�6U3f�1i6f66�g�ri6Sd6f�ggUlUl SITE DATA CULVERT INVERT INLET STATION (FT) 100.00 INLET ELEVATION (FT) 5021.83 OUTLET STATION (FT) 175.80 OUTLET ELEVATION (FT) 5020.76 ' NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0141 CULVERT LENGTH ALONG SLOPE (FT) 75.81 •"'* CULVERT DATA SUMMARY BARREL SHAPE CIRCULAR BARREL DIAMETER 2.00 FT BARREL MATERIAL CONCRETE BARREL MANNINGIS N 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE �6gf686B86g6g6g66f66g6AfBB866Sggg66f6A8A86f666666g6gAB66ggAg6Ag6866gg66g661iB6ggg �I I r ,CURRENT DATE: 02-01-1993 FILE DATE: 1-28-93 CURRENT TIME: 17:34:27 FILE NAME: RPROSPEO '666AAWAAAAAAAA66666bbbbbb6666fb6b6bb6Ad..Ebd6$8686666666b6b666bbbbb666$$$bb6 6666$$$6d..6666b666$6666 TAILWATER 66666666666b666666666add" 6666666$66666AAAAA666666Ad.6666666666666...6666666666666666666b6666666... CONSTANT WATER SURFACE ELEVATION 5021.20 $$66666666b6bb6b66b$$$$$$6 ROADWAY OVERTOPPING DATA $$$$$$$$$$$$$$$$$$$$$$$$$$ ROADWAY SURFACE PAVED MS TOP WIDTH (FT) 3.00 VEANKNENT USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. (FT) (FT) 1 600.00 5027.06 2 650.00 5026.81 3 700.00 5026.59 4 750.00 5026.36 5 800.00 5026.03 6 850.00 5025.79 7 900.00 8 950.00 5025.63 5025.79 9 1000.00 5026.10 10 1050.00 5026.56 11 1100.00 5027.04 12 1150.00 5027.48 13 1200.00 5028.06 1,5 vw �«.... r .w....•rr e.rrr. OWNER -PROJECT Wr&-r Is-,P'sn- ;Foh:o n.^l,+cE By 77/r7 DATE 2'-z-93 PROJECT NO. &7--1 /s.9 FEATURE/J s�r4RG ' /lSG��g2 Nto",, � ZOO CHECKED BY ��lL DATE Z/ZJ93 SHEET OF 7 J4ro_ e- JJ r4-�\J LVrV_e /VdoCG ZoC V Inr/OaJ /7.+-, /vex z0 3 Wtir•. -��ow CiCtovn � -fvr i.� �wJ�iti, i / C� c Ja7jon � f Y/ 1/ �- Z Q�. ie f- `tr,J Q s r 9-0zy.85 0.�l5 0.38 50Z506 Z o. 13,E o /3� o,00se 5o z. 3 c 1. 21. Co /Of5 3Zl o. o i'ff3 3 oZ5,5 0,90 �,go Z.l zg,� Soo 7B.'f D.o33g5 5oas,63 J.o3 Z,oG. 2.5 33,g 9� I27,8 D.ossl� - Y = Ele -- So z.•t. L 2- NOMO 9 01410 1(0). L �- 0.90 i I(" Lidelone & Anderson. Inc. OWNER —PROJECT Wes,-��osP6GT ZOA-o By DATE Z-2-93 PROJECT NO. �'o73r S9 FEATURE �(GNf- CHECKED BY DATE SHEET OF h N, T ? N\ IJj N N o �n - D Pi N M C t M 60 d _ _ 0 I � D ° I N u` I -' o N - 7' o 1 I O U1 O T O I 1 0 - �HNs I I 1 1 Qbo 0 0 r� r � °g q Y � �l0 O� 1.0 --- 12 5 .9 II 14 8 3 10 6 .8 2 9 0 4 -� 8 w 3 ����/ Z 1.5 .6 7 Exo� z 1.0 0.94 9 .5 - — _ _ a J z — ——.8— w _ a ,8 5.5 Cn = 6 0 LU W 0 .7 'w .4 z WQ. - c• 3c ~ 6 ? 4.5 z 0 3 w ' LL T 4 r 0 2 0 .5 f 0 Uzi z c w 3 3.5 WEQ.W 4 a .� 0 0 I w 4- w U. .08 F .25 3 = c .06 .3 c� c� L z w W It .04 Cr .25 = 2.5 = 2 0_ .03 a } 3 a .02 0 .2 o- 2 v F- a .15 .01 0 .15 . L 0 0 0 Yo 1.5 --- -- — -- -- I 002„ . h .10 i 1.2 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA I CURRENT DATE: 02-02-1993 WRRENT TIME: 11:03:51 1 FILE DATE: 1-28-93 FILE NAME: RPROSP-E FHNA CULVERT ANALYSIS A3Agg66gAggAAg8ggg6gg6gg9A HY-a, VERSION 4.0 86$3a333gAgg6gAggg&6SgAggS ° C ' SITE DATA ° CULVERT SHAPE, MATERIAL, INLET ° �u �aaaaaa�a�aaaaaaaaaaaaaaaaa�asaaaaa�a:�aaaaa��assaaaaaaaa�$a�aa�aaaaaaaaaa�a� L ° INLET OUTLET CULVERT ° BARRELS ° ° V ° ELEV. ELEV. LENGTH SHAPE SPAN RISE MANNING INLET ° ° (FT) (FT) (FT) ° MATERIAL (FT) (FT) n TYPE ' 1 05021.83 5020.76 75.81 ' 1 RCP 2.00 2.00 .013 CONVENTIONAL° 2 • e e 3 • a e e o a 0 6 e e e aaaa33533aaaASggaa'a�366S353a`65aa536333AAAgg6g64g3396gAAgA$56a3333a�a363a36gA$6$6 MARY OF CULVERT FLOWS (CFS) FILE: RPROSP-E DATE: 1-28-93 EV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 5021.83 0 0 0 0 0 0 0 0 1 9023.52 10 10 0 0 0 0 0 0 1 025.17 24 2j. 0 0 0 0 0 1 28 5025.32 36 23 0 0 0 0 0 ` 12 19 48 24 0 0 0 0 0 24 13 f025.39 025.44 60 24 0 0 0 0 0 36 10 025.49 72 24 0 0 0 0 0 47 9 5025.53 84 24 0 0 0 0 0 59 8 025.56 96 25 0 0 0 0 0 71 7 025.59 108 25 0 0 0 0 0 83 7. 5025.62 120 25 0 0 0 0 0 94 6 0025.06 22 22 0 0 0 0 0 OVERTOPPING �UMMARY OF ITERATIVE SOLUTION ERRORS FILE: RPROSP-E DATE: 1-28-93 HEAD HEAD TOTAL FLOW % FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 5021.83 0.00 0 0 0.00 5023.52 0.00 10 0 0.00 5025.17 -0.00 24 0 0.97 5025.32 -0.00 36 0 0.96 5025.39 -0.00 48 0 0.87 0.00 60 0 0,81 I5025*44 5025.49 -0.00 72 1 0.83 5025.53 -0.00 84 1 0.74 5025.56 -0.00 96 1 0.87 5025.59 -0.00 108 1 0.64 5025.62 -0.00 120 1 0.79 3aaaa33aa33333&3533a�a363AA3333333333a335aa3366gS6366aaa33aS3A3366a33633363gS6a6 TOLERANCE (FT) = 0.010 <2> TOLERANCE M = 1.000 �1> aaaa333A668S6B3A36gg35Sa33S3&3A36B6aa6ag6g3ig36gAgSg668a655353g365663g8g6&g6& IN Od-c- Zo (c HI-S OJ�tJT 1rO1L F:L� c v..oQ- TiE Rp-�- TZswvo ��0�7Y�-1 QuTL'g, a,,. & 4,> 4Q tr E�cJ = ys• z{ it I 9 DATE: 02-02-1993 TIME: 11:03:51 FILE DATE: 1-28-93 FILE NAME: RPROSP-E PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( 2 BY 2 ) RCP WBIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER �LOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) aaaaaaaa6aaaa553aaaSaaS3aaaaaaaa6aaaaiSaaa'aaaaa33aASA5a6A$6a5a3533aa53aaa5636r1a6 0 5021.83 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 -0.56 10 5023.52 1.69 1.69 1-S2n 0.84 1.13 7.79 0.86 0.00 -0.56 22 5025.16 3.33 3.33 5-S2n 1.39 1.68 9.43 1.41 0.00 -0.56 23 1025.32 3.49 3.49 5-S2n 1.44 1.70 9.48 1.46 0.00 -0.56 24 5025.39 3.56 3.56 5-S2n 1.46 1.71 9.51 1.48 0.00 -0.56 24 5025.44 3.61 3.61 5-S2n 1.47 1.72 9.67 1.47 0.00 -0.56 24 5025.48 3.65 3.65 5-S2n 1.48 1.73 9.68 1.48 0.00 -0.56 24 5025.52 3.69 3.69 5-S2n 1.50 1.73 9.69 1.50 0.00 -0.56 25 5025.56 3.73 3.73 5-S2n 1.50 1.74 9.70 1.50 0.00 -0.56 25 5025.59 3.76 3.76 5-S2n 1.51 1.74 9.70 1.51 0.00 -0.56 25 5025.61 3.78 3.78 5-S2n 1.52 1.75 9.71 1.52 0.00 -0.56 El. inlet face invert 5021.83 ft El. outlet invert 5020.76 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft �6aa6Aaaaaaaaaaaaaaa6AAaaaaaaaaa3a5aaAaaaAaa6aAAa66663A6gf6666AAAAaaa6gia8S$66 "••• SITE DATA •••" CULVERT INVERT •rrrrrrrrr:rr: INLET STATION (FT) 100.00 INLET ELEVATION (FT) 5021.83 OUTLET STATION (FT). 175.80 OUTLET ELEVATION (FT) 5020.76 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0141 CULVERT LENGTH ALONG SLOPE (FT) 75.81 CULVERT DATA SUMMARY ""'*••**•*•*•**•**•*•* BARREL SHAPE CIRCULAR BARREL DIAMETER 2.00 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE I� I 3 IRRENT DATE: 02-02-1993 CURRENT TIME: 11:03:51 FILE DATE: 1-28-93 FILE NAME: RPROSP-E 118333A3333365BeAa3ag3a3a33 TAILWATER BSAgSAS6S68ggaa�3fggA333gS aaa3333SA33A3A333S3Aaa33AA3AAs3aSa5aaaa�AgA65�533g3ga�633AAggggb363fffgAg335535f CONSTANT WATER SURFACE ELEVATION 5020.20 ROADWAY OVERTOPPING DATA ggf6Agb8g66ig3gg$6¢ggg3aaa ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 6.00 ••• USER DEFINED ROADWAY PROFILE CROSS-SECTION K Y I COORD. NO. (FT) (FT) 1 700.00 5026.17 2 750.00 5025.83 3 800.00 5025.57 4 850.00 5025.3Q 5 900.00 5025.06_ 6 950.00 502.5.42 7 1000.00 5025.75 8 1050.00 5026.50 7 I I I r l.delone & Anderson. Inc. WHER—PROJECT By DATE PROJECT H0. V as-r 7 asPa-r -Zpopo `�tz at�,� ?;;;Ni I -2-Z-`l3 I ci�;s FEATURE CHECKED BY DATE SHEET OF /'f e, i lies. l:�.n• ov 1 —` - ✓�Y 3 L LCv�TI.�v-� Over o Vv%, _(t-!�,Ls'-l�i;faz j = a3 i_= 63 ------------------------------------------------------------------------------ STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Gun, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties A UDFCD Pool Fund Study -- --------------------- USER:RORTHERN ERG SERVICES INC-FT COLLINS COLORADO ........................... ON DATA 09-19-1996 AT TIME 14:39:22 VERSION=03-26-1994 M PROJECT TITLE :MULLANEY PROPERTY; 42" Storm Sewer Extension M RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY FORMULA IS GIVEN SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA = C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES IRCH/HR CFS FEET FEET -- -- - - - ------------------------------------------------- 1.00 N/A N/A N/A 89.00 5019.00 5015.40 OK 2.00 H/A H/A R/A 89.00 5021.00 5018.46 OK 3.00 R/A R/A R/A 89.00 5023.90 5019.79 OK 4.00 N/A N/A N/A 89.00 5026.00 5021.86 OK 5.00 R/A N/A N/A 89.00 5024.47 5022.73 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION sx= SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MAMBOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID 90. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 1.00 2.00 i.00 ROUND 40.27 42.00 42.00 0.00 2.00 3.00 2.00 ROUND 40.27 42.00 42.00 0.00 3.00 4.00 3.00 ROUND 40.27 42.00 42.00 0.00 4.00 5.00 4.00 ROUND 40.27 42.00 42.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTING SIZE WAS USED I 11 i TZ�v�sE� z3 I SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CPS CFS FEET FPS FEET FPS FPS 1.0 89.0 99.9 2.57 11.73 2.92 10.39 9.25 1.32 V-OK 2.0 89.0 99.9 2.57 11.73 2.92 10.39 9.25 1.32 V-OK 3.0 89.0 99.9 2.57 11.73 2.92 10.39 9.25 1.32 V-OK 4.0 89.0 99.9 2.57 11.73 2.92 10.39 9.25 1.32 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------------------- 1.00 0.98 5015.54 5014.99 1.96 0.51 NO 2.00 0.98 5016.87 5015.74 3.53 1.76 OK 3.00 0.98 5018.94 5017.09 3.56 3.31 OK 4.00 0.98 5019.39 5019.26 1.58 3.24 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 1.00 55.66 0.00 5019.04 5018.49 5018.46 5015.40 JUMP 2.00 115.07 0.00 5020.37 5019.24 5019.79 5018.46 JUMP 3.00 188.64 0.00 5022.44 5020.59 5021.86 5019.79 JUMP 4.00 13.43 0.00 5022.89 5022.76 5022.73 5021.86 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT 1.0 2.00 5020.13 4.73 0.05 0.00 0.00 0.00 1.00 5015.40 2.0 3.00 5021.46 0.80 0.40 0.53 0.00 0.00 2.00 5020.13 3.0 4.00 5023.53 1.54 0.40 0.53 0.00 0.00 3.00 5021.46 4.0 5.00 5024.06 0.00 0.40 0.53 0.00 0.00 4.00 5023.53 BEND LOSS =BEND Ks FLOWING FULL VREAD IN SEWER, LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION, A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=0. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I Z4/ I. is I R I Z O O In N OAT N 0O^hN 666 O 0 6 6 S u N N M O C C ,1 1 I 1 i 1 1 .I .2 .3 .5 1 5 3 z w 2 U Q: w Q. Z w 10 a 0 w 5 U cr D 0 � 3 w a 3 2 2 3 5 10 20 0 0 0 3 O 4v 4 � O J `F O v 3?y rP y I!!I Jr P 0v 0 1�� O V O 4 hr � N Q4I T 3 P mP 3 W e _ � ? O 40? 4P yr r�P V?P aP I I 50 30 20 10 5 3 _ 2 1 .5 .5 I .2 .3 .5 1 2 3 3 10 20 VELOCITY IN FEET/SECOND Figure 4.4.1.4-1 AVERAGE VELOCITIES FOR ESTIMATING TRAVEL TIME FOR OVERLAND PLOW.. . (From : USDA, Soil Conservation Service, 1977) 4.4 --- 1A 50 30 20 10 5 3 _ 2 1 .5 .5 I .2 .3 .5 1 2 3 3 10 20 VELOCITY IN FEET/SECOND Figure 4.4.1.4-1 AVERAGE VELOCITIES FOR ESTIMATING TRAVEL TIME FOR OVERLAND PLOW.. . (From : USDA, Soil Conservation Service, 1977) 4.4 --- 1A No Text P�"/IS�D ZS 4 1 1 1 1 m C m 0 -E if g g(�53 0 3 0 0 o 0 0 0 w a n z � W E N G u O N rd z m a N m r N a c m m m O t7 O O a FL m 2 n r O N V O m m p i N o N o m m N v of o g t N � O � P N m r N<< ow Nam O M m N' m O S ¢ n N g O N O O O N O � O O O ui��16`366ui uiwi ((((�OOOO E m m b N m H Y) Yf it1 �YppI ��Npp m< A W A OI m m ap r UeL'' m 0 0 0 0 0 0 0 0 0 0 0 o m o 0 0 0 0 0 0 Em E a i F 30 LL E m w e z F E x z g n Z N U U m m m m a m a y a a m d d N N � fV l7 O a m ¢ m U m N w Q Q U d y r ¢co w a c Q m Fxm d= g c 0 3 r o e a �o LL o H N F F crfi F F F F z $ � a a {p W 2 N W m r m m 0 m o 0 o r N 6 r a O X m E v a @ n a a < m r m m m m o a m r Ld hhO W P < N C O !C G r m ui n N << W o Imp Im.. OCR tp V N N N g G O O C O C N G 0 RNRRRRRR RR m m of m m m m m m m m O a c 0 o c o o d o 0 o m o 0 0 0 0 0 0 N N N N H N N € w w � a F m a z F rr — 3J OOLL E n � w i g m i N U U m m m m Q m¢ y d a m d c N tV N M d a Q m U m N N l7 1115�9� M 1-P 952d 2S''.c-- Past ;t-- C Cam-, Guv�Tcss 1] ' SAS1N T.: u c -D2a 1 t� Z-b- I 0,1- , pc�oF��i�cirJG. P�1DSto�nlPn-K- �J.�iB Goy-•-��i� L � �o..►� X.3� i rLo,��Co.�s� = a.�s o• c� Tern.` � �• = o. ►3 �'�6F, PA-(Zw:.tr.tG %=NGSiD�tv1A1�1C' 0.03 ?riot: � i�ML.tC_I � r�-tJ.p Gj� Ut-v�l i'n.1C.� = 1 • Z.i Cam• ��� �-=CCU ►o)C,ale)) z9)(o.�5] = o.'e)t \ .39 ��� {�A(UGI/.f� Ac1YC) StOE�nl/'�IIC = tT��-r�L 7�ce.p= C..'�. Zz r aA-= A = O • oSaG p, ZZ �¢� P� LT ln1TEt`-5n-t'/ d C�iG-�t�1�TL/ ic9F1-d��A�1e3t1� 9��ZO �S�e . SiN Ala ��-E �ivw . = 235.(' A'-v6 S�� = L� i o) C5%� +- (125�C 0 •S`%n � = Z . G �o u = 3. �Ps ' y37 ' TcGSm ALA- s we. L too i� -9,� oo • E7•-73 C-C4' t38s� n i71 L -'c, S min l �o 5.63 Q;o = 0.48c S �• c boo ' i . 2 `J' e> 00 ��74L p0�fil(�LE t't�v� o �;PE � Q;o = C0�7�o��0;�7%�5•(03�=�'3.i2(�5. ' �Cu-�v�zr uavU� stt���s �2n,�lq,a,= Co.-��7Co,a�) C9;2�LI,zs) =I�• �oc� C1.1.lrYEYL'i !S (09 LF @ p,�2`�0 —'a IS'� QGP V.1�l.1.. Fj� AOt�VP'r'E, ,6wA�E vi-ow l_et ts-'N YinLn �G G On n ` I t SC T� = cJ m n _ rj, 4�5 t+. A(L- too ' '!�7.Z iro/ka- ' Cu Trh - fPON f NG T3c-- Q(0 = Cis Qwo S -�cvr C 5 w% N <f-=xELxn ,-,«JG SmirJ. Vzz PtYJ A AIL_ C kwsc w� C.P�R `( fio�r� "tb V1 A 2- QUA iTL fr o l -'FOOT S%C.)6WALA4- GNoSt \,6k i L j- cP4�y ► <L L. -n to l oo • y�� �-tGu� w � L� c� erz..cp� c �> R.�3 Fro . SouTN , 'F't.cw t N� 1 ��si� �+t GFk�prL �MPcfLTAT1Or1 GL1�4N(�j>:L , 1 NT�1J S t TNt E aF1� PRAT 1 oN.CS, CON1�tii�JE O ) ��51 rJ -2C Ti.nrc e� C-orJcewvFu"orJ ,til Min t l too WAQ, Qo c 2•05 f . GwMS ov�-n►i►sy. p �E . , � • S �� l.ontr. CSc� vD, N� ovrPVT� . �"�ttiE � CDNLtcTli12.1�T��N LS•o,M�n ooltStT`=rJm!n . h� ' /-'s` --)L.— Ft-Aa CA-tASC 'PPEbS Cow, P as i �- LAN 0 J a4m p o ACIX A, ' cc C 1 Dc&-�l-e AVL t 1 ----------------------------INLET-----HYDARULICS-----------AND------------------------------- 2� UDINLET: SIZING � DEVELOPED BY ---------DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------- --------- ------- ----------- =---- ---- -------------------- USER:Northern Engineering Services -Ft Collins Colorado ....................... DATE 01-16-1996 AT TIME 20:28:53 *** PROJECT TITLE: INLET DESIGN *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 4.00E— ' HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 88.60 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= 0.18 ,-- Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.00 ' STREET CROSS SLOPE STREET MANNING N M 0.50 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 31.38 �orz SUMP ' GUTTER FLOW DEPTH (ft) = 0 . 32 E- o t8' AvP t-Pt l= FLOW VELOCITY ON STREET (fps)= 2.24 l eprvi FLOW CROSS SECTION AREA GRATE CLOGGING FACTOR (sq ft)= M = 2.63 50.00 pvE-rzr�-c��^r�• CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.25 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.91 - Cdjoo FLOW INTERCEPTED (cfs)= 5.91— CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.91 FLOW INTERCEPTED (cfs)= 5.62 CARRY-OVER FLOW (cfs)= 0.29 1 F7 Ct-v 7t8 t 1 �-7 � �YL � E O Fitt -r2-AVL='z-s -ro i I u 1 11 1 11 1 Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: PROSPECT PARK PUD Comment: SWALE ALONG SHIELDS (DESIGN PT D1B) Solve For Depth Given Input Data: Bottom Width..... 0.00 ft Left Side Slope.. 4.00:1 (H:V) Right Side Slope. 4.00:1 (H:V) Manning's n...... 0.060 Channel Slope.... 0.0333 ft/ft Discharge........ 6.89 c f s Computed Results: Depth............ 0.83 ft-c-- Velocity......... 2.47 fps- T�loccx,VE Flow Area........ 2.79 sf Flow Top Width... 6.68 ft Wetted Perimeter. 6.88 ft Critical Depth... 0.71 ft Critical Slope... 0.0771 ft/ft Froude Number.... 0.67 (flow is Subcritical) Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I L I Trapezoidal Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: PROSPECT PARK PUD Comment: SWALE ALONG SHIELDS (DESIGN PT D1B) Solve For Depth Given Input Data: Bottom Width..... Left Side Slope.. Right Side Slope. Manning's n...... Channel Slope.... Discharge........ Computed Results: Depth............ Velocity......... Flow Area........ Flow Top Width... Wetted Perimeter. Critical Depth... Critical Slope... Froude Number.... 0.00 ft 4.00:1 (H:V) 4.00:1 (H:V) 0.060 0.0333 ft/ft 9.16 cfst,-- 1.33Q�-pla+'D16 0.93 ft 2.66 fps 6Y4X7c.%ve 3.45 sf 7.43 ft 7.66 ft 0.80 ft 0.0742 ft/ft 0.69 (flow is Subcritical) MAN 1 •C� � 4 z � � = lam Y�v4f2..-Ve��"1 = p,83� ,fJ 4 Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 Circular Channel Analysis & Design ' Solved with Manning's Equation Open Channel - Uniform flow I I I C Worksheet Name: PROSPECT PARK PUD Comment: CULVERT UNDER SHIELDS ENTRANCE—�DEs�6nl po .vr-DI c Solve For Actual Depth Given Input Data: Diameter.......... 1.50 ft Slope.. 0.0072 ft/ft Manning n....0.013 � ?c_p Discharge . ... 3.72 cfs e. D Computed Results: Depth. ........... Velocity.......... Flow Area......... Critical Depth.... Critical Slope.... Percent Full...... Full Capacity..... QMAX @.94D........ Froude Number..... 0.68 ft --e=- 4.82 fps 0.77 sf 0.74 ft 0.0053 ft/ft 45.05 % 8.91 cfs 9.59 cfs 1.18 (flow is Supercritical) Cu_WEYLT }��aSSc—S \d—y�'w2 S (/1 v�l lilt ZSd/o 17ES�YL�S FjI GCKPC.t . Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I '3v Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: PROSPECT PARK PUD ' Comment: CULVERT UNDER SHIELDS ENTRANCE Solve For Actual Depth Given Input Data: Diameter.......... 1.50 ft Slope ............. 0.0072 ft/ft ' Manning's n..... 0.013 .- Discharge. .. 7.60 cfs — Q,00 Computed Results: Depth ............. 1.06 fte. Velocity.......... 5.66 fps ' Flow Area......... Critical Depth.... 1.34 sf d. 1.07 ft Critical Slope.... 0.0071 ft/ft Percent Full...... 70.99 % Full Capacity..... 8.91 cfs ' QMAX @.94D........ 9.59 cfs Froude Number..... 1.01 (flow is Supercritical) r Ci -we)2!7r +�fa�sES Ico yei:Rrz ca cT -, nl iTjk A ZS% '�C- z�2a 5 '3wc AG C Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 Rectangular Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: PROSPECT PARK PUD Comment: SIDEWALK CHASE FOR DESIGN POINT D2B Solve For Depth Given Input Data: Bottom Width..... 1.00 ft.�-= Manning's n...... 0.013 Channel Slope.... 0.0340 ft/ft Discharge........ 2.43 cfs,._4---Q,0 Comvuted Results: Depth............ 0.34 ft r- to-y&Arz- IDES►&N -E-�vAkl-u pwsS Velocity......... 7.23 fps-rRao%jGrk C,*f�sE. Flow Area........ 0.34 sf Flow Top Width... 1.00 ft Wetted Perimeter. 1.67 ft Critical Depth... 0.57 ft Critical Slope... 0.0082 ft/ft Froude Number.... 2.20 (flow is Supercritical) I Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I r I -------------------------------------------- a UDINLET:-INLET-HYDARULICS-AND-SIZING DEVELOPED BY -�---------DR-JAMES-GUO,-CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------ ---------------- ---- -------------------- USER:Northern Engineering Services -Ft Collins Colorado ....................... 01 DATE 01-16-1996 AT TIME 00:53:33 *** PROJECT TITLE: INLET DESIGN L Sipes �y__ `L>cs .I PoiiJT Dz6. *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 1.00.�___ HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 88.00 LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= 2.00 0.08 4- Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 2.00 ' STREET CROSS SLOPE M STREET MANNING N 3.30 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 4.94 ' GUTTER FLOW DEPTH (ft) = 0. 3 3 0, C7 TFe= FLOW VELOCITY ON STREET ( fps) = 4.23 5_yvNP QevTvk FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR M = 0.57 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 I I �y INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW `4ILd (cfs)= 2.43� (cfs)= 2.43 (cfs)= 0.00 (cfs)= 2.43 (cfs)= 2.43 (cfs)= 0.00 Gj�o lat C.1Is1SF W�1.� 10 Destc_z I I L [1 ,, I I Rectangular Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: PROSPECT PARK PUD Comment: SIDEWALK CHASE FOR DESIGN POINT D2B Solve For Depth Given Input Data: Bottom Width..... 1.00 ftc— Manning's n...... 0.013 Channel Slope.... 0.0340 ft/ft Discharge........ 4.97 cfsd-Q,,� Computed Results: Depth............ Velocity......... Flow Area........ Flow Top Width... Wetted Perimeter. Critical Depth... Critical Slope... Froude Number.... 0.57 ft-r- \ y 8.72 fps 0.57 sf 1.00 ft 2.14 ft 0.92 ft 0.0102 ft/ft 2.04 (flow is Supercritical) * OY�2-t•=ia�l ��l I l..l_ oY�'VLZOf� t�v2(� Tb Sn.Tt-�i (�'l,w�l W� � NT'U T"EZ'= GA�iJft� IMPc�'iTF�-Roil Ui'PrNNc'Z . Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I I 1 I 1 I I C H 1 Rectangular Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: PROSPECT PARK PUD Comment: SIDEWALK CHASE FOR BASIN D3 Solve For Depth Given Input Data: Bottom Width..... 2.00 ft Manning's n...... 0.013 Channel Slope.... 0.0625 ft/ft Discharge........ 7.32 cfs�_eE?,00 Computed Results: Depth............ Velocity......... Flow Area........ Flow Top Width... Wetted Perimeter. Critical Depth... Critical Slope... Froude Number.... 0.33 ft 11.22 fps-�—Q�` rIETtocalan> t-�E£C� 0.65 sf 2.00 ft 2.65 ft 0.75 ft 0.0057 ft/ft 3.46 (flow is Supercritical) Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 3� UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY ----------DR-JAMES-GUO= CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----- ------- ---------------- ---- -------------------- USER:Northern Engineering Services -Ft Collins Colorado ....................... C DATE 01-16-1996 AT TIME 00:47:15 *** PROJECT TITLE: INLET DESIGN �,o�v.IR2K-St@�a��Gni NOtPST' D� ' *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 10 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 2.00-4­ ' HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 90.00 . LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.13 4— Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 2.50 STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 8.09 ' GUTTER FLOW DEPTH (ft) = 0. 33.&.- 4r�p hflr((a�, o,l 1 Fstir Pvp«�P�F FLOW VELOCITY ON STREET (fps)= 4.32 gurnP oE�GCN FLOW CROSS SECTION.AREA (sq ft)= 0.82 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.00 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.58 4-Q�o FLOW INTERCEPTED (cfs)= 3.58 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.58 FLOW INTERCEPTED (cfs)= 3.58 CARRY-OVER FLOW (cfs)= 0.00 1 o-yeu2- T!C>.jj w1LL pASs TtMiouGt� 5� n �k. c+ 5t" . -7.13cFs Dl � (o 4s 71a+ vie + f'5 o-N-R> 5'1 -tom 4 S c �S \Ae t izz N e� 2 '-0-tal - 1.33Qioo = 15.47 Z I� •' �` �= 1,49 n 15• I6l' = 3, 96,�z 21.158 P= 15,17+ .5+2,5 = lg 177 A,/,p = TZ = p, Z/, . Q = (46�3� C Zfo�-z/3 C bOS�yZ ot3 10 00 ��- / (L wSC�. = 21•�S W p j� W lLL u��YL�LTOP �1Y2 Q "ro ASta- P. _ . 17 + ./oZ t .:,j1 = k. I. Pr-- p = 2 t .415 ,-22 t 24.48 P�P=2=0.0dr ' q = 2,Z5c fS. ' Fizorn T o, OAr .TerL I A•o cwn o)" Atr -I>-Q-riA N qGs> t� = o - I (c, ion-j��(L WSeL. = 1�.08 046-w •TOPS cl Rd3 alb ORST � 11�a: Y�`Ltx�i r1 T'rt�x.,o r+ s��-�►or.� - 4,-14 �• 5. {-'�s � i ; :. _ ��1'ot�4i�: ��u.2fi'1-efL �vT1•k� 6rt �L��.�1N,31`R-�"'fkN� oF' HhsS�oN ��� �iAnl is A�u..o�.l � 'TU SP2:t,ArO OUR` Mv2E � oe fi,�� IS NeT' ,�u.._Cp�.�iv - T1L'�i�TJ IN. L}- j7Ai�l• IF USG A 1•.1 CXPp"llk-low 1t'tM-Z ' 'P(LOC.CO U (Z4:VS y fit.{ V4 1 OTF4r TIME Or- S'fl'i L i NS INTO V01140 MAPc)( •rp�� = a4 t a4 ' (_e4:551) -r 2-4 Cvet-) = -7 -.x 5 o z5 c'a7d A = Yz(4)(.L5) + C4)617) +C34)� l�) /P = IZ = 09(�CoCo 2xP 2P.P { Je- soe-o- .A ' 1 �¢�yeGT' �i+►rc-K �/iSR�2-�._,_v�l.vi'-"` p.l oFZ (Nr, IJSE= �OS�,taO� 1eTtV.- .�c2�S 43J% I Z J JO � Grzvss aa�s 1-�•�su2�L To'-*� Gg�-�2l.inr>- or= p¢aSP@Gi 2o/�d.� .oNp Ss(•,�-1.-05 Szru�E�-. A�ifc Nor Pc(i..ac--AS 1---X--� 7-;r . �F3�-ic. R.+.Gs-F-� -cF -�r1P^� of P2oS0EtT RAF p.i�t� ��i1�ctD`--��c. • EL C.s Norz -PZ I L L� 4f r , (I -VT 1277- - Tzur-joct - Try C- ' 1rna+=rzv(oLx:s G1<1 �,✓c lAZ0 a(J�Ir(_DST toil �I n�= Rk Q�t `fl �e 1 NC-Lt,pefj IN -Tim sJo 1 Mt- E FZV I OAT, C-P<-GU LATE vN- ' CAIY oP fOax c OLU I I 5i�a raW PST 12vTt t� 5r1� F \N M�'Tlt t'fC1 r� I�'zol:. M�"ET11`Y1iVo�"� �+riE P-C-tft'G ' l f�Qv(R.Ep SToR-A�e = c7� 1� iN�rtcS ' ^1--)E'rt�C70:�1 `ybt1�W/�c f�tCv�2�U s �.;S�r�3Cx rj.92AG = ��b%4PL-�T IZ IN/FT *t�ooF'i 3 n 0 Cf•.pn—jRF VotUN',�— CAI QGV� _ 0.74ac•�} cv _ �ZAv FTC �w4= 2.3 ter. �e Go2o1 r�1C� `f Gu 2C �J 3 . O. 17 Cater Ntro� -7tt5- c; m <j0 2l$�-YL piP1i l SAVE _/_ ��PL 8 Pe� - L'2� s�tz- ��,d--MG�L- = 4 � Ncttr✓S I Lj ��� Vb�M� CP �-c-y c,o-'�l cnls — 'C�orvo vau.�►�E �.Lc.v�.A�or1s caul `�*n�, S vJFYl� � w� ntt'Y� crRfxn--rtt, 9 kra,iw6 Et.-L. So1"7 CrNv) c5O t S S o 1) Cpt�CTD'J 2 ' So14.1 col 5.c� O 17. o 1 _7 L 11 Ll 1 ���.►tFtcslt�s-- �pisr��-n..2C�cc�Yzo.... vS,. 6 M� cFr-5). I oc�Z.Co7 10 �ll,e-cY, 'Pa�.,o l,Lr•1Tt t_,.J,s�-L. 5o t-7 • Co '_ct-At_ \VOL mnE �lPrt � t✓e �cYt 1.� A-t- r2 �x�u'i� D OS December 20, 1995 Mr. Kevin Mcbride City of Fort Collins Stormwater Utility P.O. Box 580 Fort Collins, Colorado 80522-0580 ' Dear Kevin, Thank you for meeting with us today regarding water quality iasues at the Prospect Park PUD site. The meeting was quite product;ve in clarifying the requirements that need to be inet for Final Approval. This latter hopes to summarize ' some key resolutions of today's meeting. • Prospect Park will have an acceptable level of water quality control if there is extended detention provided for a water quality capture volume as specified in the Urban Drainage and Flood Control District Manual. • The water quality capture volume for the Prospect °ark site may computed based on the imperviousness of the parking areas only (i.s. the rr.,of areas may be removed from the percent impervious). In addition, there are areas adjacent to Prospect and Shields Road and the entrance from the west that will drain to the roads and therefore not be detained nc,r treated. • Side slopes for the extended detention ponds; me.y he greater than 4:1 since the maintenance for the pond will be the responsibii;;y of the developer. A Ivariance may be necessary for this. • The extended detention pond(s) may have shrubs and/or trees planted within the pond. This may help to address a concern of natural resources. • The extended detention pond(s) must have a properl-/ designed outlet structure ' so that detention is provided for 40 hours. RWention is not an acceptable alternative. ' • Overflow to the extended detention pond(s) must be via a designed overflow structure that will minimize bank erosion. • Offsite drainage passing through the site must have an appropriate outlet control structure such as grouted rip rap or concrete box with baffle. Please let me know as soon as possible if there are any changes or additional concerns with the above resolutions. I will be on vacation from December 21 through January 2, however the water quality design for Prospect Park will be my first priority when I return. I hope to meet again with you and Glen the second week of January to go over the details of the design before submittal. Please let me know what dates and times would work for you and Glen in that week. Again thank you for your time. Sincerely, NORTHERN ENGINEERING SERVICES, INC. Cairole Bernstein, E.I.T. cc: Glen Schleuter Tim Sittema Linda Ripley DRAINAGE CRITERIA MANUAL (V. 3) STORMWATEF. OUF,L;T'! MANAGEMENT Cra 0. 3 m CD :` _0 0.: N m cc DR C 9-1-1992 UDFCD i — 7 i I Extenc 10-HOL ed De r Draii entlor i time Sasi (Dry) �. 'I 1 1 r: I'onj1, ; N(t) rTl :ie I D 14 I 1Lnti Hour if i I i u iu zu 30 -32 40 50 60 70 80 90 100 Percent Impervious Area in Tributary Watershed Source: Urbanos, Guo, Tucker (1989) Note: Watershed inches of runoff shall apply to the entire watershed tributary to the BMP Facility. FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (W(sCV) DRAINAGE CRITERIA MANUAL(V. 3) STRUCTURAL BMPS 10.1 6. 4. 2.1 1.1 0.61 m 0.41 m W 7 > 0.21 m 7 N U 0.11 W 0.o7 3 0.01 0.04 0.0e' Required Area p �e aSOLUTION: wm_ M � 0A VAJ, FAA, PA JFA W4 PA VAA 80 , PIA'AA Ajo 10 MA 0r4AA 0 FAA Aj FAD r 0.01 0.02 0.04 0.06 0.10 0.20 0.10 0.60 1.0 2.0 4.0 6.0 0,17 Required Area per Row (in 2 ) Source: Douglas County Storm Drainage and Technical Criteria, 1986. FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME Rev. 3-1-1994 UDFCD DRAINAGE CRITERIA MANUAL (V. 3) STRUCTURAL BMPs 1 1 1 1 1 1 1 1 t 1 1 1 1 1 _I 1 Threaded Cap Water Quality Capture Volume Level (including 20% additional volume for sediment storage) 3 1� Gravel (1-1/2" to 3' Rock) Around Perforated Riser Fabric Water Quality Riser Pipe (See Detail) Notes: 1. The outlet pipe shall be sized to control overflow into the concrete riser. 2. Altemate designs include a Hydrobrake outlet (or orifice designs) as long as the hydraulic performance matches this Removable & Lockable :P•:; Overflow Grate for Larger Storms • :�: 3•'.::::•: :P �O A. • • Concrete " Access Pit Outlet Pipe (Min. 3 ft) Size Base to Prevent configuration. OUTLET WORKS Hydrostatic Uplift NOT TO SCALE Notes: 1. Minimum number of holes = 8 2. Minimum hole diameter = 1/8" dia. Maximum umber o! Perforated 1-1/2" diameter Air Vent in Threaded Cap Rows O O Water Quality 4 Outlet Holes O O O 4- Ductile Iron or Steel Pipe WATER QUALITY RISER PIPE NOT TO SCALE Columns Ma— N�- Riser 1 Hole Diameter, in. Diameter (in.) 1/4' 1/2' 3/4' 1- 4 8 8 6 12 12 9 B 16 16 12 8 10 20 20 14 to 12 24 24 18 12 Hole Diameter Area of Hole (in.) (in.2 ) 1/8 0.013 1 /4 0.049 3/8 0.110 1 /2 n.196 518 0.307 3/4 0.442 7/8 0.601 1 0.785 FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY s-1-1ss2 EXTENDED DETENTION BASIN UDFCD WATER QUALITY RISER PIPE NOT TO SCALE Columns Ma— N�- Riser 1 Hole Diameter, in. Diameter (in.) 1/4' 1/2' 3/4' 1- 4 8 8 6 12 12 9 B 16 16 12 8 10 20 20 14 to 12 24 24 18 12 Hole Diameter Area of Hole (in.) (in.2 ) 1/8 0.013 1 /4 0.049 3/8 0.110 1 /2 n.196 518 0.307 3/4 0.442 7/8 0.601 1 0.785 FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY s-1-1ss2 EXTENDED DETENTION BASIN UDFCD FIGURE 5-2. WATER QUALITY OUTLET FOR A DRY s-1-1ss2 EXTENDED DETENTION BASIN UDFCD pER p� —� � � 1 ANNULAR SPA FILLED 2SE4EE" TOP HEW _ - MATH 3 4 GRAVEL5017.0 , 1 ANCHORING COLLAR 24" PVC OR ADS PIPE �/> 1 SLOPE 0.5% �g p�4" PVC WI }. INV. ELEV = 5014.7 13IROWS"SPACED 4AORT 1' { . --------------- LIT Ln a T r [I,,_ F� 17 111 j��w , i J )T T NTS POND A OUTLET DETAIL SIDE VIEW 12" PgtWAAD y4 0 GRATE ANNULAR Sr FILLED SEE TOP VIEW 1 Min 31 GRAVEI ELEV = 5019.0 - �.NY ANCHORING COLLAR 4 PVC WI v�.i.:a�--__ 1 13 1 /8 0 HOLES PAR ROW 18" PVC OR ADS PIPE • ; +' ^ -- )LOWS SPACED 4 APART INV. ELEV = 5017.0 ^- ' SLOPE 0.5X wilI'.._ j s Mac, ��; NTS r POND B OUTLET DETAIL. SIDE VIEW r r 1 r---#4 REBAR SPACE 4 TO 5 INCHES APART OR EQUIVALENT (OPEN AREA = 2.87 F12) 24" PVC OR ADS O S=0.5% (POND A) 4 ANCHORING COLLAR 18" PVC OR ADS O 5=0.5X (POND 8) 12" PERFORATED AD _ ANNULAR FTWITH 3%4 GR ��88" p��4" PVCp I2OMIS SPACEDS 4'EAPARIT > NTS 1 POND OUTLET DETAIL TOP VIFW ML.P \ I%e1-;;� ' � � prv.i P�.. jL S P \ u.• W A7/ — •�owr2 lR . r�/a-x �io,�.t i n�r'b Pv��D - 8.� � c.t^s �vu,,v, e�.�.l v�ru c�cr�',r� Srt►L=�.r� t�rr�+� ct �1.97 cj-5 'i3as�n 7Zt� �Q, 2.05C pl�rtro�nl p,oE e Z4" RCP @ f= = 1�•0. USE P�DNDIrsz, l�tYrt-I = 17.5 m e GA.io NIET IN SUMP E t Fr z ��ll Ptf��q vF G([-ATE S �wo;rir 4 6.13(vo 2.8� 81 �tZ -2.5-7 tz S-7 1��vc 1� �/1SS '-_ZO•S�� 1N LST Cam, )nl F1�2 � \SG-l-�m2GE �Q�P�or�1 ;, Q = C �-•.•N3�z + GZ. N�Z i�i -ITN - 8 vi-� �- = Z, 54 Laa,4 .►c rs�T c f�; E ��). 1O = 2.a�4I-CO,4��/Z- tZ.954 (0,4�5/Z L= -7.56P ter- ust �5' s, � (� o • �xZi = . 5ro c.�'s co���y�`� t-o �•{ �i �,.1 E+L.; C I I 0 I I 1 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: PROSPECT PARK PUD —RAND ,c,. AtiySS Comment: CULVERT UNDER SHIELDS ENTRANCE Solve For Full Flow Capacity Given Input Data: Diameter.......... Slope.. ........... Manning's n....... Discharge......... Computed Results: Full Flow Capacity..... Full Flow Depth........ Velocity.......... Flow Area......... Critical Depth.... Critical Slope.... Percent Full...... Full Capacity..... QMAX @.94D........ Froude Number..... 1.50 ft 0.0072 ft/ft 0.013 8.91 cfs 8.91 cfs e-- M Wnc mvN1 moo . ip� E sc t A�(ZC 1.50 f t F2ow. Gu ur rtr,— V ,.� pc` 2h S 5.04 fps 1.77 s f 1.16 f t 0.0082 ft/ft 100.00 % 8.91 cfs 9.59 cfs FULL Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 0.8 0.7 1L 0.6 fAJ Z 0.5 cr 0 0.4 x t- a 0.3 W O C7 Z 0.2 O Z O a 0.1 EXAMPL 0.011111111111111111111111111111111111111111111111 0 1 2 3 4 FLOW INTO INLET PER SO. F-'. OF OP-114 AREA (CFS/FT2) Figure 5-3 CAPACITY OF GRATED INLET IN SUMP (From: Wright-McLaughli:l Engineers, 1969) 5 MAY 1984 5-11 DESIGN CRITERIA 5-40 HANIMOOK OF IMMA111.i(K Table 5-3. Values of C in the Formula Q = I'L UM,e for Brond- cresled Neirs bleasured in feet. Breadth of crest of weir in :_ethead - 0.50I0.75I1.00I1.50I2.00I2.5013.00I4.00IE.00I 10.00116. 0.2 2.80 2.75 2.69 2.62 2.54 2.48 2.44 2.38 2.34 2.49 2.8 0.4 2.92 2.80 2.72 2.64 2.61 2.60 2.58 2.54 2.W 2.56 2.7 0.6 3.08 2.89 2.76 2.64 2.61 2.60 2.68 2.69 2.70 2.70 2.7 0.8 3.30 3.04 2.86 2.68 2.60 2.60 2.67 2.68 2.68 2.69 2.64 1.0 3.32 3.14 2.98 2.75 2.66 2.64 2.65 2.67 2.68 2.68 2.63 1.2 3.32 3.20 3.08 2.96 2.70 2.65 2.64 2.67 2.66 2.69 2.64 1.4 3.32 3.26 3.20 2.92 2.77 2.68 2.64 2.65 2.65 2.67 2.04 1.6 3.32 3.20 3.28 3.07 2.89 2.75 2.68 2.66 s.65 2.64 2.63 1.9 3.32 3.32 3.31 3.07 2.98 2.74 2.68 2.66 2.65 2.64 2.63 2.0 3.32 3.31 3.30 3.03 2.85 2.78 2.72 2.68 2.65 2.04 2.62 2.5 3.32 3.32 3.31 3.28 3.07 2.89 2.81 2.72 2.07 2.64 2. 3.0 3.32 3.32 3.32 3.32 3.20 3.05 2.02 2.73 2.66 2.64 2. 3.5 3.32 3.32 3.32 3.32 3.32 3.19 2.97 2.76 2. 68 2.64 2.6 4.0 3.32 3.32 3.32 3.82 3.82 3.32 3.07 2.79 2.70 2.64 2. 4.5 3.32 3.32 3.32 3.32 3.32 3.32 3.32 2.88 2.74 2.04 2.0 5.0 3.32 3.32 3.32.1.32 3.32 3.32 3.32 3.07'2. 79 2.64 2. 5.5 3.32 3.32 3.32 3.12 3.32 3.32 3.3, 3.32'2.88 2.04 2 Table 5-4. Values of C in the Formula Q = CLH94 for Models of Broad -crested Weirs with Rounded Upstream Corner Name of �+ n' }lead in test, H experimenter q'> ° 4 a „ 0.4 0.6 0.8 1.0 I .b 2.0 2.5 3.0 4.0 6.0 a°masa 3.D1 2.80 Basin.......... Basin.......... 0.33 0.31 2.12 5.50 2.45 2.40 2.93 2.70 2,91 2.82 2.9tl 2.87 3.04 2.92 U. S. Deep Waterways 0.23 2.42 /.57 2.77 2.80 2.81 2.92 3.00 3.08 3.17 3.34 3.60 ... U.WatS. Deep. 0.33 6.f6 4.56 .... .... ... 2.83 2.83 2.83 2.82 2.82 2.82 2.92 2.81 a; Table 5-5. Values of C in the Formula crested Weirs with Crests Inclined (a) Enen Crest 0.5 0.6 0.7 O.E Level ................... 2.78 2.79 2.80 2.81 Slope - 0.004........... 2.95 2.94 2.93 2.9i Slope - 0.026........... 3.07 3.06 3.05 3.04 (b) 810of I Length Bee Crest of war in feet 0.1 10.2 10.3 12 to 1............ 3.0 2."2.87 2.57 18 to 1............ 3.0 2.91 2.92 2.53, 18 to 1............ 10.0 12.8212.08I 2.731 Table 5-0. Values of C in the Formula Q Triangular Cross Section with Vertica and Sloping Downstream 81ope of Height Head in fee. down- of weir stream in fast, loos P 0.2 I0.3 I0.4 10.5 I0.6 10.7 IO I to 1 2.48 d to 1 2,46 3.41 2'co 1 1.64 33.b( . 8 to 1 13.81 1.64 1 5-n 1 2.46 .... „ 10 to 1 2.40 .... LUFQ V / Coaveyaaaa F]l�msat Number 387 800.0 n. i. i D i 600 A s h OL r _ 6 i a a s 1200.0 0.0 40.0 100.0 200.0 900.0 400.0 500.0 600.0 700.0 Time in Minutes figure SWMM HYDROGRAPH CANAL IMPORTATION CHANNEL AT SHIELDS STREET CANAL IMPORTATION BASIN l - Y�e a ..CO ENVIRONMENTAL PROTECTION AGENCY -.STORM PATER MANAGEMENT MODEL - VERSION PC.1 T DEVELOPED BY METCALF ♦ EDDY, INC. ' UNIVERSITY OF FLORIDA HATER RESOURCES ENGINEEERS, INC. (SEPTERBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEKBE2 1974) APE OR DISK ASSIGNMENTS BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) ' JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(6) JIN(9) JIN(IO) 2 1 0 0 0 0 0 0 0 0 ' JOUT(i) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(B) JOUT(9) JOUT(10) 1 2 0 0 0 0 O 0 0 0 NSCRAT(I) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(S) 3 4 0 0 0 TERSHED PROGRAM CALLED I ENTRY WE TO RUNOFF MODEL CANAL IMPORTATION HYDROLOGY TRIB. TO MULLANEY'S SITE 0-YR. REVEL. COND. 91 INFLOWS FROM CANALS MBER OF TIME STEPS 120 �TEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES R RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 '1.20 .84 .60 .48 .36 .36 .24 .24 .12 .12 .00 9.00 3.72 2.16 1.56 .24 .24 .24 .24 r i CANAL IMPORTATION HYDROLOGY TRIG. TO MULLANEY'S SITE f-YR. BEVEL. COND. N/ INFLONS FROM CANALS BAREA GUTTER NIDTH AREA PERCENT SLOPE BER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) 25 375 1600. 15.2 40.0 .0090 26 .377 5000. 186.8 15.0 .0100 7 383 1600. 18.9 57.0 .0240 27 379 3000. 47.6 29.0 .0150 28 380 3600. 46.5 40.0 .0050 129 383 1000. 6.7 40.0 .0400 30 383 2300. 24.5 15.0 .•.0100 31 305 387 3300. 51.1 2600. 38.8 20 0 40.0 .0200 .0200 ITAL32 TAL BER OF SUBCATCHKENTS, RIBUTARY 9 AREA (ACRES), 436.10 CANAL IMPORTATION HYDROLOGY TRIO. TO MULLANEY'S SITE r-YR. DEVEL. COMB. N/ INFLONS FROM CANALS RESISTANCE FACTOR SURFACE STORAGE(IN) IMPERV. PERV. IMPERV. PERV. .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 .016 .250 .100 .300 FCONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSUM2-PC MODEL a: INFILTRATION RATE(IN/HR) GAGE WINUM MINIMUM DECAY RATE NO .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180. 1 .51 .50 .00180 1 .51 .50 .00100 1 .51 .SO .00180 1 .51 .50 .00180 1 .51 .50 .00100 1 IERSHED AREA (ACRES) 436.100 TOTAL RAINFALL (INCHES) 2.890 SAL INFILTRATION (INCHES) .737 IAL NATERSHED OUTFLON ( INCHES) 1.870 AL SURFACE STORAGE AT END OF STROM (INCHES) .204 JOR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 AL IMPORTATION HYDROLOGY TRIB. TO MULLANEY'S SITE -YR. DEVEL. COND. N/ INFLONS FROM CANALS r NIDTH INVERT SIDE SLOPES BIER GUTTER HOP NP OR DIAN LENGTH SLOPE HORIZ TO VERT ER CONNECTION (FT) (FT) (FT/FT) L R 15 377 0 1 CHANNEL 2.0 BOO. .0090 33.0 33.0 7 396 0 1 CHANNEL 2.0 2500. .0100 30.0 30.0 398 383 0 1 CHANNEL 5.0 1890. .0064 30.0 30.0 363 0 1 CHANNEL 10.0 1600. .0090 20.0 20.0 �9 83 0 1 CHANNEL 2.0 1800. .0100 30.0 30.0 OVERBANK/SURCHARGE MANNING DEPTH IK t N (FT) t .016 100.00 0 .040 100.00 .0 .040 100.00 0 .040 100.00 0 .040 100.00 0 i 383 385 0 1 CHANNEL 20.0 1150. 14 385 20 1 CHANNEL 40.0 400. TIME IN HRS VS INFLOW IN CFS .0 .0 .5 8.2 .6 46.9 1.0 147.7 1.1 150.0 1.2 153.4 2.5 89.7 3.0 70.2 3.5 42.2 8.0 5.7 10.0 .9 385 387 0 1 CHANNEL 50.0 1650. �6 387 20 1 CHANNEL 40.0 Soo. TIME IN HRS VS INFLOW IN CFS .0 .0 .5 9.4 .6 43.0 ' 1.0 117.8 1.1 116.9 1.2 115.2 2.6 92.8 3.1 87.7 3.5 04.5 9.0 14.7 10.0 10.5 7 227 0 1 CHANNEL , 80.0 1400. OAL NUMBER OF BUTTERS/PIPES, 10 1 IAL IMPORTATION HYDROLOGY TRIG. TO MULLANEY'S SITE 100-YR. DEVEL. COND. W/ INFLOWS FROM CANALS ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES ' BUTTER TRIBUTARY GUTTER/PIPE 375 0 0 0 0 0 0 0 0 0 0 377 375 0 0 o 0 0 0 0 0 0 379 .0 0 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 0 0 ' 383 398 379 380 0 .0 0 0 0 0 0 ' 384 0 0 0 0 0. 0 0 0 0 0 385 383 384 0 0 0 0 0 C 0 0 386 0 0 0 0 0 0 0 0 0 0 387 385 386 0 0 0 0 0 0 0 0 398 377 0 0 0 0 0 0 0 0 0 i At IMPORTATION HYDROLOGY TRIG. TO MULLANEY'S SITE 100 YR. DEVEL. COND. W/ INFLOWS FROM CANALS "IOBRAPHS ARE LISTED FOR THE FOLLOWING 11 CONVEYANCE ELEMENTS 'THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: .0100 20.0 20.0 .040 .0060 10.0 10.0 .040 .7 94.0 .8 125.2 1.3 152.4 1.5 139.9 4.0 28.4 4.5 24.3 .0060 20.0 20.0 .040 .0060 4.0 4.0 .040 .7 81.7 .8 105.6 . 1.4 111.8 . 1.6 108.3 4.6 68.4 6.0 50.1 .0060 4.0 4.0 .040 100.00 0 100.00 1 .9 141.2 i 2.0 109.1 5.5 19.4 100.00 0 100:00 1 .9 115.0 ' 2.0 102.1 7.5. 34.9 100.00 0 TRIBUTARY SUBAREA D.A.(AC) 15 0 0 0 0 0 0 0 0 0 15.2 26 0 0 0 0 0 0 0 0 0 202.0 27 0 0 0 0 0 0 0 0 0 47.6 28 0 0 0 0 0 0 0 0 0 46.5 227 29 30 0 0 0 0 0 0 0 346.2 0 0 0 0 0 0 0 0 0 0 .0 31 0 0 -.0 0 0 0 0 0 0 397.3 0 0 0 0 0 0 0 0 0 0 .0 32 0 0 0 0 .0 0 0 0 0 436.1 0 0 0 0 0 0 0 0 0 0 202.0 20. 9 55. 0. 3. 0. 3. 0. 0. ' .0O A) A) A) .00O ( : 19. •2( ) IMPORTATION _g HYDROLOGY TRIB. 10 MULLANEY'S SITE 100-TR. DEVEL. CORD. W/ INFLOWS FROM CANALS tis PEAK FLOWS, STAGES ' AND STORAGES OF GUTTERS AND DETENSION DAMS CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 375 67. .6 0 40. 377 204. 1.5 0 45. 108. 1.1 0 40. '380 379 104. 1.2 0 40. 398 172. 1.4 1 0. 384 154. 1.1 1 15. 424. 1.9 0 50. '383 386 117. 1.0 1 5. 385 606. 1.9 1 0. 307 762. 2.0 227 762. (DIRECT FLOW) 1 0. PROGRAM PROGRAM CALLED 4:2( ) 1:1(I) 6:1() �p �/ RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: Prospect Park PUD STANDARD FORM A COMPLETED BY: Cairole Bernstein DATE: January 18, 1996 Developed Erodibility Asb Lab Ssb Lb Sb PS(rable 8-A) Sub -Basin Zone (ac) (ft) (%) (ft) (%) (%) D1 Moderate 0.87 150 3.33 81.2 D2 -Moderate 2.09 170 2.10 79.4 D3 Moderate 0.74 120 2.50 79.7 Lb = sum (Lsb x Asb) / sum Asb Sb = sum (Ssb x Asb) / sum Asb Performance Standard (PS) = See Table 8-A C:\WP5\DRA1NAGE\STNDFRMB.ERS EFFECTIVENESS CALCULATIONS PROJECT: Prospect Park PUD STANDARD FORM B COMPLETED BY: Cairole Bernstein DATE: January 18, 1996 Erosion Control Method C-Factor P-Factor Comment Roads/Walks 0.01 1.00 All Basins Hay Mulch 0.06 1.00 All Basins Gravel Filter 1.00 0.80 N.A. Straw Bale Barriers 1.00 0.80 Basin D1 Established Grass 0.03 1.00 Ponds A and B Silt Fence 1.00 0.50 N.A. Sod Grass 0.01 1.00 All Basins Major Performance Sub -Basin Area Calculations Basin Standard (%) (Ac) Di 81.2 0.87 Roads/Walks = 0.51 ac Hay Mulch = 0.09 ac Sod Grass = 0.27 ac Net C Factor = 0.51(0.01)+0.09(0.06)+0.27(0.01)/0.87 = 0.02 Net P Factor = 0.87 EFF = 1-(0.02 x 0.87)x 100= 98.3% > 81.2, OK D2 79.4 2.09 Roads/Walks = 1.56 Hay Mulch = 0.34 ac Sod Grass = 0.19 Net C Factor = 1.56(0.01)+0.34(0.06)+0.19(0.01)/2.09 = 0.02 Net P Factor = 2.09 EFF = 1-(0.02 x 2.09)x 100=95.8% > 79.4, OK D3 79.7 0.74 Roads/Walks = 0.56 ac Hay Mulch = 0.07 ac Sod Grass = 0.11 ac Net C Factor = 0.56(0.01)+0.07(0.06)+0.11(0.01)/0.74 = 0.01 Net P Factor = 0.74 EFF = 1-(0.01 x 0.74)x 100=92.6% > 79.7, OK C:\WP5\DRA1NAGL\STNDFRMB.ERS N z H O U E a W a f 1 O W 14 va I'n E4 0 E W W fU 0 o+al000 In WWWWW 0 0,0+0+0,000000 . . . . . . . . . . . o vV'aV'WtnW�WW V' WWWWWWWCID WW O W0%0%M0%0%0%010►010101000 . ............... o vvV V V.r�rV�vV v.rinlnln . .................... N WWWWWWWWWa0W0000WWWWWWW 0 oM V'In1o1o1010nnnnnnnnnnnn W W W W W W . . . . . . . . . . . . . . . . . . . . . . . . . . . "I WWWCID WWWW000OWW00WWWCID WWWWWWWWCID O WNMV'InInIn 0W%0%01o10nnnnnnnnnnWWW W W W W W W W W CO W W W W W W CO W W W W W W W W W W O %D 0 clQ m 10 RW M M In Ww%0101010101o%0%0nnnnnn . . . . . . . . . . . . . . . . . . . . . . . . . . . W W W W W W W W W W W W CO W W W W W W W W W W W W W O V O1riNMMV V V W WW W W W WIllW101010101010n . . . . . . . . . . . . . . . . . . . . . . . . . . . wwwWwWwwWWWWWWWWWWWWWWWWWW O 010 WOrIriNNMMMMV'V'V'V'V'V'iiU' Il111111111010 . ................... ..... W W W W W W W W W W W W W W W W W W W W W W W W W W O 41NIt)n W 0100r1.-1.-INNNNNMMMMMd'��•?ep . . . . . . . . . . . . . . . . . . . . . . . . . . . W W W W W W W W W W W W W W W W W W W W W W W W W W W In rl W ri M V'InIn 010nnn W W W W W W 0f010%00000 V' N N A A N1 M I'f M M M M M M M M!•I M M en M M V'v V' V' V' W W W W W W W W W W W W W W W W W W W W W W W W W W 0 1olnWo.-INMv�Inlnln1o1o1o1o1�nnnnWWWo1o� . . . . . . . . . . . . . . . . . . . . . . . . . . . V' rl N N M M M M M M M M M M M M M M M M M M M M M M M W W W W W W W 9D W W W W W W W W W W W W W W W W W W W rl rile n W O O rl N N M M M d' at' d' a �? an W In10 1p 1D n n 90 W W W W W W OO OD W W W W W W W W W W W W W W W W W O MN10 W 010 rINNMMMe1'el'V�a} V'V'LLY In In Il11010101D W W W W W W W W W W W W W W W W W W W W W W W W W W Ill InIl101NM V 1111Onnn W W W 010%0%0%0%0%000000 N 01 O O rl ri r♦ ri rl rl 4 rl rl rl rl 4 rl rl rl 4 14 N N N N N N n W W W W W W W W W W W W W W 00 W W W 90 CO WOO W W W O V'IAOMIl11D W W C1COCrIrIrIrINNNNMMMMMM N W 01000OOOOrlrl.irlrlrlrlrlrlrlrl ririri.irl'i nt WwwwwWWWaoa wwwwWwWWWWWWWWW M W NIO6 rl V 0nn W M M 00 rI rl rl.i r1 C11 N N M M M M en rl 10 W-W 01 01 01 01 01 01 01 01 0 0 0 0 0 0 0 0 J 0 0 0 0 0 0 nnlnjnnnnnnnnWWWWWWWWWWWWWWW O 10MO V'n010rINMl+1 V'arll11f11f11f11p1p1p1pnn10{01D .� �lonnnnWWWWWWWWWWWWWWWWWWWW nnnnnnnnnnnnnnnnnnnnnnnnnn Ill 010V %0nW 00nnn10%0WIn40V'MMNN0110V'r10%%0 O ONNNNNCV NNNNNNNNNNNNCV 41l1;r400 nnnnnnnnnnlnnnnnnnnnnnnnnnn 3E�. o0000000000000000000000000 C7 O O O O O O O O O O O O O O C O O O O O O O O O O O rINM V In10nMM0rINM V tC-WnODa%oI101110Inq k. a rl rl rl ri rl rl rl rl vl rl N N M M v v 0 MARCH 1991 8-4 DESIGN CRITERIA 1 1 f 1 1 1 1 1 1 1 i 1 1 i 1 1 SIZE RIPRAP OUTLET PROTECTION Water Quality Pond A GIVEN SLOPE = 0.50 (%) VELOCITY = 3.18 (fps) PIPE DIA = 2.00 (feet) TYPE OF RIPRAP REQUIRED Q / (D ^ 2.5) = 1.767767 Yt / D = 0.2 FLOW = 10.00 (cfs) TAILWATER DEPTH = 0.40 (Yt, ft) Q / (D ^ 1.5) = 3.535534 Per Figure 5.7 (UDFCM) Use Ft Collins Class 6 EXPANSION FACTOR Per Figure 5.9 (UDFCM) Exp Factor (1 /2 tan O) = 2.60 LENGTH OF PROTECTION REQUIRED = (Expansion Factor)*((At/yt)-W) At = QN 3.14 15.24 Length of Protection Required (ft) Check: Length cannot be less than 3 * Pipe Diameter 3*D = 6 Length cannot be more than 10 * Pipe Diameter 10*0 = 20 WIDTH OF PROTECTION REQUIRED = 3 * Pipe Diameter 6 (ft) DEPTH OF RIPRAP = 2 * d50 12 (inches) CONCLUSION Type of Riprap Required Length of Riprap bed Width of Riprap Bed Minimum Depth Bedding Material City of Fort Collins Class 6 15 (ft) 6 (ft) 12 (in) 12" Class B Bedding C.Sue� aD ) 1 1 1 t 1 1 1 1 1 1 1 1 SIZE RIPRAP OUTLET PROTECTION Water Quality Pond B GIVEN SLOPE = 0.50 (`Yo) FLOW = 7.32 (cfs) VELOCITY = 4.14 (fps) TAILWATER DEPTH — 0.40 (Yt, ft) PIPE DIA = 1.50 (feet) TYPE OF RIPRAP REQUIRED Q / (D - 2.5) = 2.656336 Q / (D -1.5) = 3.984503 Yt / D = 0.266667 Per Figure 5.7 (UDFCM) Use Ft Collins Class 6 EXPANSION FACTOR Per Figure 5.9 (UDFCM) Exp Factor (1/2 tan O) = 2.30 LENGTH OF PROTECTION REQUIRED = (Expansion Factor)*((At/yt)-W) At = Q/V 1.77 6.72 Length of Protection Required (ft) Check: Length cannot be less than 3 * Pipe Diameter 3*D = 4.5 Length cannot be more than 10 * Pipe Diameter 10*D = 15 WIDTH OF PROTECTION REQUIRED = 3 * Pipe Diameter 4.5 (ft) DEPTH OF RIPRAP = 2 * d50 12 (inches) CONCLUSION Type of Riprap Required Length of Riprap bed Width of Riprap Bed Minimum Depth Bedding Material City of Fort Collins Class 6 62 0,1 E D) 7 (ft) 4.5 (ft) 12 (in) 12" Class B Bedding SIZE RIPRAP OUTLET PROTECTION 42" Storm Sewer GIVEN SLOPE = 0.99 (%) FLOW = 89.00 (cfs) VELOCITY = 7.70 (fps) TAILWATER DEPTH = 1.75 (Yt, ft) PIPE DIA = 3.50 (feet) TYPE OF RIPRAP REQUIRED Q / (D ^ 2.5) = 3.883469 Q / (D ^ 1.5) = 13.59214 Yt / D = 0.5 Per Figure 8.2 City of Fort Collins Stormwater 18 V*S ^ .17/(Ss-1) ^ .66 = 5.88 EXPANSION FACTOR Per Figure 5.9 (UDFCM) Exp Factor (1 /2 tan O) = 2.30 LENGTH OF PROTECTION REQUIRED = (Expansion Factor)*((At/yt)-W) At = QN 11.56 7.14 Length of Protection Required (ft) Check: Length cannot be less than 3 * Pipe Diameter 3*D = 10.5 Length cannot be more than 10 * Pipe Diameter 10*D = 35 WIDTH OF PROTECTION REQUIRED = 3 * Pipe Diameter 10.5 (ft) DEPTH OF RIPRAP = 2 * d50 31.5 (inches) CONCLUSION Type of Riprap Required Length of Riprap bed Width of Riprap Bed Minimum Depth Bedding Material City of Fort Collins Class 18 10.5 (ft) 10.5 (ft) 31.5 (in) 12" Class B Bedding i DRAINAGE CRITERIA MANUAL_ MAJOR DRAINAGE I I I I I r I I 0 I 5.6.2 Required kock Size The required rock size may be selacted frog,: gure 5-7 for circu- lar conduits and from Figure 5-8 for rectangular conduits. Figure 5-7 is valid for Q/D2.5 of 6.0 or less and Figure 5-8 is valid for Q/WH1.5 of 8.0 or less. The parameters in these two figures are: a. Q / D1.5 or Q/WH0.5 in which Q is the design discharge in cubic feet per second and D is a circular conduit diameter in feet. and W and H are zhe width and height of a rectangular conduit in feet. b. Yt/D or Yt / H in -which Yt is the tailwater deoth in feet, D is the diameter of a circular conduit and His the height of a rectangular conduit in feet. In cases where Yt is unknown or a hydraulic jump is suspected downstream of the outlet, use Yt / D = Yt / H = 0.40 when using Figures 5-7 and 5-8. C. The riprap size requirements in Figures 5-7 and 5-8 are based on the non -dimensional parametric equations 5-5 and 5-6 (11)(25). Circular Culvert: (d50/D)(Yt/C)I'2 (Q/D2.5) = 0.023 (Equation 5-5) REctangular C:llvert: (d50/D)(Yt/H) / (Q/WHYS) = 0.014 (Equation 5-6) The rock size requirements were determined assuming thi;-c the flow in the culvert barrel is not supercritical. It is possiblt..to use Equations 5-5 and 5-6 when the flow in the culvert is le!s than pipe full and is supercritical if the value of D or H is modified for use in Figures 5-7 and 5-8. Whenever the flow is supercritical in the culvert, substitute Da for D and H2 for H, in which Da is defined as Da = z(D + Yn; (Equation 5-7) in which maximum Da shall not. exceed D, an,! Ha = �(H + Yn) (Lquation 5-8) in which maximum -_,a shall not exceed H, and Da = A parameter to be used in Figur:? 5-7 i!5OMWA DRAINAGE CRITERIA MANUAL 6( 2( RIPRAP i Pr Z .4 .6 .8 1.0 Yt/D Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream . FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT I DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE I I I CJ 1 whenever the c>>lvert flow is supercritical. D = Diameter of a circular culvert in feet. Ha = A parameter to be used in Figure 5-8 whenever the culvert flow is supercritical H ='Height of a rectangular culvert in feet. 7n = Normal depth of supercritical flow in the culvert. 5.6.3 Extent of Protection The length of the riprap protection downstream from the outlet depends on the degree of protection desired. if it is to prevent all erosion, the riprap must be continued until the vel-'.;city has been reduced to an acceptable value. For purposes )f o:;t;et protection during major floods the acceptable velocity is set at 5.5 fps for very erosive soils and at 7.7 fps for erosion resistant soils. The rate at which the velocity of a jet from a conduit outlet decreases is not well known. For thf. procedure recommended here it is assumed to be related to the angle of lateral expansions, 9, of the jet. The velo- city is related to the expansion facf.or, (1/(2tan e)), which may be determined directly using Figure 5-S' or 5-10. Assuming that -,:he expanding jet has a rectangular shape: in which: L = (1/(2 tan e))(At/Yt - W) L = length of protection in feet, (Equation 5-9) W = width of the conduit in feet (use diameter for circular conduits), 11-15-82 DRAINAGE CRITERIA MANUAL r` 7 9 = Ezparsion Angle pm ERNA, MEN% MAE 0 0 001 'ovad No 0 1 , No 1 2 3 A .fj .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yf/D RIPRAP FIGURE 5-9. EXPANSION FACTOR FOR CIR(:'JL-IR CONDUITS I 1-15-62 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT I I 11, [1 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Comment: vELOCITY FROM 18" RCP UNDER SHIELDS Solve For Actual Depth Given Input Data: Diameter.......... Slope............. Manning's n....... Discharge......... Computed Results: Depth. ........... Velocity.......... Flow Area......... Critical Depth.... Critical Slope.... Percent Full...... Full Capacity..... QMAX @.94D........ Froude Number..... 1.50 ft 0.0067 ft/ft 0.030 3.72 cfs 1.23 ft 2.40 fps E- 1.55 sf 0.74 ft 0.0283 ft/ft 81.82 % 3.73 cfs 4.01 cfs 0.37 (flow is Subcritical) Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I i r I I Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: �PJ2 E� Comment: �(�-�t���„ �M �<j�� �C.� 1,11. az- Sk-lu' Solve For Actual Depth Given Input Data: Diameter.......... Slope............. Manning's n....... Discharge......... Computed Results: Depth. ........... Velocity.......... Flow Area......... Critical Depth.... Critical Slope.... Percent Full...... Full Capacity..... QMAX @.94D........ Froude Number..... r I I 1.50 ft 0.0067 ft/ft 0.013 7.60 cfs c-- Q%oo 1.10 ft 5. 49 fps- vL s 5 -ivo LUP 2 aP N2Qc�Ld 1.38 sf 1.07 ft 0.0071 ft/ft 73.07 % 8.60 cfs 9.25 cfs 0.95 (flow is Subcritical) Open Channel Flow Module, Version 3.42 (c) 1991 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I y-1-=C>N OF 7:;)eeyyt � I i7 ' �.1SNZ- 1�.08 Ot l , - C� = . •-� i A. � 5 Qom = 'D�a t �iG�'S WEYSZoV�SvJ � \ �� n, ! Q To ,-22 Z4,48 ��P=2=0•04- ,� ' F( m T�� ADC�-lnC>" At. t�S = o_ I fir Io0-yE19fL 04OLr010S c'u.Qt3 CTA . �rT Itie �lt"Ltz�T� Tifz.e7vGr1 St ON t�rL � ►� cagy Z �..1r.1 >TQ- AIv >r unoN j+� �t,�vJ is �.C.o�ni El'j -TU �✓(�(Zt�f� OUT` Mb2E � oo FL.p�n( IS 1JbT p.�a_C�r`-tom - Tf✓fJ I N -WtOTIF IaT T1'ME Or- SpiLt-ItJ� INT'� 'Pf�lt0- �WX Sf2Z� - a4 -t- a4 ' Cep s{) -r- 24 Cv,�-�-) = 7�. I -7 2, A/p = {< = 09 &Co t `9•C�lS1 /2 C > Q Ieo -.ot3 OFFSITE FLOW ROUTED THROUGH SITE VIA f STORM SEWER LINE A (SEE SHT 3 #mbsamowes a as New* a aseameas a as am a as a*0000009a aa•V saw a as a Am a awns own via Oda seam a Qji RM SEWER = 89 eta LuuuuuamvWaea xauu Wd�aamaaaau 4 WEST PROSPECT ROAD TOTAL a WEIR FLOW ONTO SITE = 6 cfa ♦ A a 9p M[E IS' RCP a > EARi. 24' RCPc- • \ • Pt EAST OTYPE R INLET ,i13.89 LG 93 CL 111 R.C.P. O 0.98E Nil a�-I-��� -F SEE DETN�S �/ NV TOUT 5050182E a nq MAMMA iwananuaaaar.mYa�_ Lim 7 l E F.F.-22.75 'A] g� .L 1x� qLC-PIi W15.M SOi].0 O 0.54 TORE u EL . 5019.0 )0 CIF / I SEE W 4-1H4-1SEE OEFNL THIS SHEET POND INNIEW . S5014.7 TRUCTURE WEIR ELEVADON. 501 ].1 POND OUTLET IS SINE T SEE DETAIL THIS SHEET _ �PERD COLRi L'F J0.38 V 2f RCP 1 WSEL FOR DETENMN = W17 . OLRLEf Gi AT WSEL . W17 dR a o' TABLE A PosEO cRAOE 4.1 SIDE SLOPES C5 CI9 D.� FF=2].50 0.48 m ♦ I• SwEW4R Dw3 x Um 0a in Wi D2p2Xc4 -4.9Tda a.- OF IF 2180 ♦ Dlo V W QOG 55.00 LF 15 RCP AIWE D.45z AREA INIEr GR..501].30 ( I INV.=501525 FES INV.=5015.00 TnR le AM m'� 6. fray of swuxA. _ I GPr{,f e' WOE SIDE)i F c9us5 auPE OI TO SI lx [] IGD-TR CW%L i IMPORT CHnNNNEL = 50154 EMERGENCY OVERFLOW SPILLWAY OVER SIDEWALK N y 4- CURB Dwalvl Paa4r aAmrx• LON I 1 1N 1 CURB VPNG__Dlb O196 NA 3,2 6.6 WALE Die D1ab,c t0.20o..74 6 NA 3J2.60 CULVERr b .D2b. 0 NA 2.4 5.0D2 laWChW R 14.43 7DS 03 NA 3.58 1,32 TO POND 8 D4 D4 9 NA 0.83 I.] I:Ffl11. LWP CHINA c D2c 0 0.19 AREA INLET I OIJB CIJi POR +GC�4 P(MYT 6L 0' MIN. 100-YR WSEL Y C ACTED SLOPE - S Sx CLAY DYER Ip0-rva WSEL DEPTH 083' PROPOSED svAGE AIAryc SIj18. , 2.5' LONG SLOPE . 0.5E SECTION A -A same E law W 'r Vi �^1 `r W _ 22. z0 1 -VR WSEL d= 6 waw LONG SLOPE 1.Bx -,. E' ION BTB LEGEND EXISTING CONTOUR -25- PROPOSED CONTOUR ,w Nwa•aYeaae DEVELOPED DROINAGE BASIN BOUNDARY PROPERTY BOUNDARY DEVELOPED I DIRECTION ••�• = WETLAND BOUNI BASIN DESIGNATOR G.2 -' AREA IN A.RES QDESIGN MOW PRDPOSED STORM SEWER - - - - - f0O-YEAR ILODI nY HANDICAP RAMP NYRLAR 9PAVj rxLFD Yyy1[[' , OIIAIE M 1N ]/A LWAKL f1FV3�501 WO MOORING 01 a' PVC WTH 138 0AGAON t A• 9PHAa'Eo a x On POND A OUTLET DETAIL IM'uPEgAly°NAICDfp1A1L ,N UMTH qj A rCV wEW Sr�CAIGKL ANCHDNING Cy O�LUR REV . 5019.0 , 13, /811 0WS ER V' p�- , I - SPACED >D,P! �g p-p--- INV EIEV 5pT10 ;OR, xrs POND B OUTLET DETAIL Wx w. WAGE d f�OAMVALEE0PEN0ARE"" ') ANCHOWNG Cg1.W Cx4' RCP • S.O.Sx'r A) ] s=9POND W 9_ li' RERFMA,DIs ASPACEFILLED ]m_ WON 3/4' GRAVEL f vK WITH NOTE: I. DRAINAGE IMPROVEMENTS ARE TO BE CONSTRUC ED DURING PHASE IN THEIR ENTIRE . N JO 0 O 90 Srryle - 30 ft POND OUTLET DETAIL I w[cNEO �,L l W�•"L'..i. VV 1-b •9f. 1 au MruN amw..ln u�i NoCxcD ffi NA Nar ALra " x,A No Revisions ° y Do NORTHERN ENGINEERING SERVICES PfOfeC` 9520.02 P""` Da1e: M.m,,. Sne IoM.,. PROSPECT PARK P.U.D. i.:: - --- 30 DRAINAGE PLAN -- SCALE. 1'= 620 SOUTH HOWES SUITE 202, FT. COLLINS, COLORADO 80621 DESIGNER : C CHECKED 8Y: s."u Ecnylicw eI in, .,� -- - (910) 221-4158 DRAFTSMAN: CARD PREPARE0:12 18 96 _f Sheels OFFSITE FLOW ROOTED THROUGH SITE •Y///YYyIYOi MLiM IiE YYY/YiY•••Y//••1•'/••YEI//Y•/EIYYr•�'/s•//ir//•EI••Y//YY/•//•Yr II % STORM SEWER LINE A (SEE SHT 3 1 1AAS RM SEWER = 89 cfa Y••/ru•/YYu•uu/ou/LDi u//air WY.WY YY YYuruY WEST PROSPECT ROAD TOTAL O WEIR FLOW ONTO SITE = 8 cfs Y •+• EXIT 1 4'RNmr • \ *. •• EXIST 15TYPE R INLET 13.R4 LF 42' CL III R.C.P. 0 0.98E 0 10 BE REL-0C,yIEy IN IN = 5019.39 0 O SEE DE SHEETINV. OVi 5019.2E /><.�..�. ���- /•s N•l/ el mill "I'vivemn. L Ii AI • v A - .y �• - IpyLp WEIR_s 4.5 ch Y • ; a4 2 01wWEIR 31. a A F Fa• 5.80 HIT N- / Cs DTB 0.68 _ 020 • y s v 01W Dla-2.tl9 e ♦ _ • YIS W laR DtD-5.91 1 Ib EI • __ _ ____ 1 - • YY•a = e Iii•OY•• __�_ IllLl _ • '{''0 / 4' � '✓ y q LI 6 • a / 2 D3 py 61 r 0.74 "oll F.F.-a 1 • Dffi F.F..23.50 l sN • 0.48 I F.F. 21.e0 I • 4 `T V QOB s I - • 55.00 UP IT RCP • i W • SLOPE 0.45E T y _ AREA INLET n s 4 CULVERT (PHAASEEII) • I I INV�5�015.25 OR D3-J.SO cl IF • • ITS RN.-5015.00 01II 03. ].32 cl 3 f1 ID em F 4 p '• a y I• sDDwx aWSi 0 p D2b-243 I 9 m ' 19 • p D26.4.9709cb ' .. WATER We DETER OUALOY -, • t . i+•t11/• 1 - I-��.�+tiK nIF W POND - INV.- 5015.00 ••� F.F..22.75 q} p p 0.5E 151N �50i>.0 CPO M D ,1. INV OUT . 5018.E 'P POND 01 STRUCTURE SEE DETAIL THIS SHEET 4' CURB OPENING INV . 5017.0 WSEL - 5019.0 POND VOLUME- I000 CIF OVERROW WEIR SEE DETAIL THIS SHEET POND INVERT - 5014.7 WEIR ELEVATION. 5017.1 POND OUTLET STRUCTURE T SEE DETAIL THIS SHEET _ F O - • m,willilill,a - � a - "='PBRD OOLNE�O CF - 30.39 V 2C RGP O WSR FOR DEFINITION = Son - OUTLET GRAZE AT WSEL - W17 MY IN RA' OUT - a' -. 1 CRACK W vuwrr bl) Sol r.l _-F Cj ICE1y a� • in 1. CHOI 5 OPE {N 10 5)� IF Q IOD-M CWSEL Cal IMPORT CNANxEI 50154 EMERGENCY OVERFLOW SPILLWAY OVER SIDEWALK NITS TABLE A OY3fa FQIF •/,N AR/,\ 0 OY crw WID Ere m; OO1Hr\'HDN 1 1 ] N 1 CURB OPNG MIT D19 b 0.78 0.74 NA 3.2 6.8 SWALE DID O1 a,bc 0.87 OJB NA 3.72 7.80 CULVERT D26 on 0.48 O.b NA 2.4 5.0 CURB OFING D2 DIAIDAD1A.6 2.96 0.86 N.A. 14.4 35.4 TO POND A D3 D3 0.74 0.66 N.A. 3.3E 7.32 TO POND B 04 N 0.20 0.74 N.A 0.0 1.7 CINAL YIP C1MN c 02c 002 0.90 0.19 MIA INLET CURB ClR FOR v� PONE DM 8B 0' ROPOSED GRADE 41 SIDE SLOPES 0' MIN. 100-YR OUSEL J. PACTED SLO PE DEPI . O.8J uY UTER IS I6' 2.5' - - t UDI WSEL 0.6• •�� LONG. SLOPE - 0.5x SECTION A -A yi W No VI r 0 N 22,_- TO' 1 -YR OUSEL LONG SLOPE - 1.SX SE TION B-S NOTE I DRAINAGE IMF BE CORT TED THEIR ENTIRE Y. Scale F = 30 ft LEGEND EXISTING CONTOUR �25 - PROPOSED CONTOUR eissomessi/W DEVELOPED DRAINAGE BASIN BOUNDARY PROPERtt BOUNDARY DEVELOPED FLOW DIRECTION -lm. WETLAND BOUNDARY BASIN DESIGNATOR 0.2 a �- AREA IN ACRES QDESIGN POINT PROPOSED STORM SEWER 100-YEAR FLOUOPWN _-/ HANDICAP RAW pF A p Ap ANAF�Sj/AfILLE 3f N WyAyIF -F 5[ElEvil.Abl]WOf• CHOP No Ca A lJ 4a.0 HGVE5 Vf0 WROW 4- W ROWS SPACED a MAR i,. % .II.EIr 4n POND A OUTLET DETAIL WX Now 12' 111 AIfO AO ANNULAR S3 EI EEpp } p CCP NEW FOG 1/y WiKI yE AxcTHDmxc cola+ ELEV . b 90 �;. MO 5 SP>fED M4PT fl 1g .Ev N CLCr bV 0 ✓1'�In POND 8 OUTLET DETAIL WE Aw 4,1�4 CVIEI(WFEW SPACE 4 OS Al AREAW.E29) iY) ANCHORING CCLLM' MP Y S.Oa(PWO A) IV ay RW• S-05F (POND B)ANMMR ACEF91WITH 3 I OR*tPYc In_-_-_-_-- IJR, 1/9' THOLES PER ROW - m ONi3PACOD 4'_APAR7 POND OUTLET DETAIL w Now CITY OF FORT COLLINS, COLORADO UTILITY PLAN APPROVAL�[_�,�, APPROVED: �c : o yw - "" vv CREWED IN' NA INC amm NA; mvr Mega an exeWeD et; '& ---- f cnEDNEO m:Al .A.. Aw MCr m am No. NORTHERN ENGINEERING SERVICESb0i 420 SOUTH HOWES SUITE 202. FP. COLLINS, CO1lIRADO 80521 (9T0) 221-4158 Print Date: PROSPECT PARK P.U.D. DRAINAGE PLAN