Loading...
HomeMy WebLinkAboutDrainage Reports - 08/21/2002 (2)Phase III Drainage Report For Willow Brook Filing No. 2 JN: 2608 April 24, 2002 Rev: July 23, 2002 164 •1: Prepared for: Village Homes 310 Lashley Street #108 Longmont, CO 80501 (303) 776-3214 (FAX) 772-3445 Prepared by: Thomas Henrikson 1"llvsr••�� � - FORT COLLMs UTiLiT1Fa Carroll & Lange, Inc. 165 South Union Blvd., Suite 156 " Lakewood, Colorado -80228 (FAX) 980-0917 (303) 980-0200 CERTIFICATION This Phase III drainage report for Willow Brook Filing No. 2 was prepared under my direct supervision in accordance with the provisions of the City of Fort Collins Storm Drainage Design Criteria and Construction Standards (SDDC), and was designed to comply with the provisions thereof. I understand that the City of Fort Collins does not and will not assume liability for drainage facilities designed by others. Nicholas S. Rollo, P.E. Colorado P.E. Number 32179 For and on behalf of Carroll & Lange, Inc. Phase III Drainage Report For Willow Brook Filing No. 2 INTRODUCTION The purpose of this report is to analyze the final storm runoff patterns and identify any problems that may affect the development of Willow Brook Filing No. 2. This multifamily site is located in the northeast corner of the Willow Brook Filing No. 1 development, more specifically in the Southeast Quarter of Section 4, Township 6 North, Range 68 West of the 6th Principal Meridian, Larimer County, Colorado. This site falls within the McClellands Creek Master Drainage Basin and is bounded by Willow Brook Filing No. 1 on all sides. The approximately 7.6-acre development consists of 29 multifamily lots with streets and alleyways and a central neighborhood park. The City of Fort Collins has previously approved the plat, drainage and construction plans for Willow Brook Filing No. 1. EXISTING SITE CONDITIONS This site is currently in the process of being graded for over -excavation. The surrounding streets and utilities are presently under construction. DESIGN CRITERIA The majority of the site will be developed for multifamily homes, with the exception of a small landscaped tract centrally located within the site. Drainage infrastructure for this site consists of streets and alleyways collecting sheet flows until gutter capacities have been exceeded or until a sump condition is reached. Storm inlets capture the gutter flows, which are then conveyed via the storm sewer system within design capacities and requirements of the City of Fort Collins Storm Drainage Design Criteria and Construction Standards (SDDC). The storm sewer system conveys the majority of the runoff from' this site into the existing detention pond directly east of the site. A small amount of runoff flows offsite and is conveyed via the existing storm sewer from Willow Brook Filing No. 1 to the same detention pond. The off -site detention volume and pond design are detailed in the Final Drainage Report for Willow Brook, prepared by TST, Inc. After concurrence with the City, the Fort Collins Storm Drainage Design Criteria and Construction Standards was used in conjunction with the Urban Drainage Flood Control District Regulations for calculating runoff, street capacities, and storm sewer sizing requirements. The minor and Phase III Drainage Report For Willow Brook Filing No. 2 Page 2 major design frequencies utilized were the 2 and 100-years storms, respectively. The Rational Method for hydrologic computations was employed in determining the amount of storm water runoff. This procedure equates the design flow to the total area, amount of rainfall in the area, and a coefficient that is determined by the physical characteristics of the area. Q = CFCIA Where Q = Storm runoff in cubic feet per second (cfs) A = Drainage area in acres I = Rainfall intensity in inches per hour C = Runoff coefficient CF = Storm Frequency Adjustment Factor The runoff intensity is based on the time of concentration (storm duration) and was obtained from the "City of Fort Collins Rainfall Intensity -Duration - Frequency Table" as specified in the SDDC. The time of concentration is composed of two components. The first component consists of the travel time for overland flow across the site to reach the street or channel. The second component consists of the flow time within the street or channel. From the flow volumes calculated with the Rational Method, SDDC criteria was followed in locating and sizing all storm sewer systems. Refer to Appendix A for hydrologic calculations. DRAINAGE PLAN The site's proposed drainage patterns are generally consistent with the Final Drainage Report for Willow Brook, by TST, Inc. The site is divided into fifteen (15) basins: A-1 through A-15. These basins have been delineated using the proposed overlot-grading concept and are shown on sheet DRN01, included with this report. Generally, drainage basin lines are shown at street centerlines; the middle of split -draining lots; and ridges within open space. The basin flows are routed downstream, using the aforementioned Rational Method, to detention ponds. Once the detention ponds have attenuated the flows, they will be released offsite in general conformance with the Final Drainage Report for Willow Brook, by TST, Inc. Phase III Drainage Report For Willow Brook Filing No. 2 Page 3 Drainage Basin The drainage basin for this site corresponds to basin C12 and portions of C13 and C3.1 of the TST report. The proposed grading for the Filing No. 2 site caused some very minor basin transfer for the three previously mentioned basins delineated by TST. This is expected to have no adverse impacts, as shown in the calculations included as Appendix C of this report. The proposed detention facility to the east, TST's pond C, has been sized to provide necessary detention for the Filing No. 2 major storm runoff. The street inlets at design points 2, 3 and 4 collect the majority of flows and convey these flows by storm sewer into pond C. These inlets were sized using the methods described in the SDCC and were determined to be a 5' type-R, 15' type-R and a 9' combination type-13 respectively. These inlets were sized for the 100-year design storm. In the event of inlet failure or plugging an over -flow swale between buildings 8 and 14 as well as buildings 12 and 13 has been designed to convey the 100-year flow of 21 cfs. The remaining site flows (approximately 4.9cfs) are collected by the existing Southern Cross and Galileo streets, conveyed to the inlets at the intersection of Galileo and Cinquefoil to the west, and carried via the storm sewer back east to pond C. The. runoff from basin A-15 is carried by Rock Creek Drive and Northern Lights Drive, collected by inlets along Rock Creek and attenuated in detention pond C. EROSION CONTROL AND SEDIMENT CONTROL / BMP's A comprehensive Erosion Control Plan has been prepared and submitted under a separate cover. CONCLUSIONS Drainage flows within the site are consistent with the basin delineation. and flow calculations presented in the Final Drainage Report for Willow . Brook, by TST, Inc. All storm water runoff, collected both onsite and Phase III Drainage Report For Willow Brook Filing No. 2 Page 4 offsite, will be conveyed via streets and alleyways, collected by street inlets and attenuated in the detention pond to the east. Phase III Drainage Report For Willow Brook Filing No. 2 Page 5 REFERENCES 1. City of Fort Collins Storm Drainage Design Criteria and Construction Plans, May 1984, revised January 1997. 2. Urban Storm Drainage Criteria Manual Volumes 1, ll and Ill, Urban Drainage and Flood Control District, June 2001. 3. Final Drainage Report For Willow Brook, TST, Inc., October, 2000. 4. Larimer County Urban Area Street Standards, January 2, 2001. WILLOW BROOK F I L I N G NO. 2 PHASEIII DRAINAGE REPORT TABLE OF CONTENTS PAGE INTRODUCTION 1 EXISTING SITE CONDITIONS 1 DESIGN CRITERIA 1 DRAINAGE PLAN 2 EROSION AND SEDIMENT CONTROL 3 CONCLUSIONS 3 LIST OF REFERENCES 4 APPENDIX A. HYDROLOGIC CALCULATIONS B. HYDRAULIC CALCULATIONS i. RATIONAL METHOD ii. STORMCAD iii. INLET/STREET CAPACITIES C. DRAINAGE IMPACT CALCULATIONS TO WILLOW BROOK FILING NO. 1 D. MAPS / MISCELLANEOUS APPENDIX A HYDROLOGIC CALCULATIONS 0 Y < a N w W K J a Z « LL � � ro W �(O Ni0 �O f0 (O tOrruiN 0 m = N Nr r.-ao of ON W V 0f0 N O O � N 6 6 z 3 to m U W O x W LL.i NMMtr�M� �ON�N U N $ Nf'M)� y z a o f0 K n N N O M M fp ap f0 p 9-- rcOcovimava<ocovir��ao U p (DONO ONf0< M. �O O « `G�� -� w m rorr000rrrnMvou�v,r > N N N N NNN I It f L W Q v a O.e m^ 000000u��n�nNoo� r o r o o o r r m cq Un C! o x � � LL �n O �n0000000000000 N N N N M O N N Z W J N _= nrnrn�vMrm�wvu�.-�c� 0 Z 5 .. a W QN N o r o o r o 0 o r m o o f o r o Neff �(G LLY��fD t7 Y)N MtD V a f_ z x LL v h�oOD�aOD Mt00 V ht00h�NNr Z W J 0 LL4 n V or- inrv�o�ninv��oaco�n ITrD M(DIt W V ItaI- a cU) 000000000000000 U Z a, Q.N.. MIf arD V �aMNfONHM V �� fn 0 � D a o00000000000000 Z Z �NMvt0 ff�7r a0 Q)0��M�� Wm�aaaaaaaaaQQaaaa 0 Page 1 of 1 DATE: 06/18/02 CALCULATED BY: TJH CHECKED BY: SZ STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE) DIRECT RUNOFF JOB No: 2608 PROJECT: Willow Brook #2 DESIGN STORM: 2-Year AREA DESIGN AREA Ac RUNOFF COEFF tc min (C)X(A) A'C I in/hr Q cfs A-1 0.36 0.56 7.3 0.20 3.2 0.6 A-2 0.57 0.70 6.9 0.40 3.3 1.3 A-3 0.87 0.47 8.1 0.41 3 1.2 A-4 0.48 0.69 5.0 0.33 3.5 1.2 A-5 0.78 0.59 6.5 0.46 3.3 1.5 A-6 0.45 0.53 5.0 0.24 3.5 0.8 A-7 0.39 0.53 5.0 0.21 3.5 0.7 A-8 0.24 0.60 5.0 0.14 3.5 0.5 A-9 0.61 0.49 6.5 0.30 3.3 1.0 A-10 0.51 0.66 6.6 0.34 3.3 1.1 A-11 0.57 0.53 5.3 0.30 3.4 1.0 A-12 0.37 0.54 7.3 0.20 3.2 0.6 A-13 0.49 0.48 7.6 0.24 3.1 0.7 A-14 0.15 0.71 5.0 0.11 3.5 0.4 A-15 0.77 0.43 8.6 0.33 Average = 0.57 Page 1 of 1 DATE: 06/18/02 CALCULATED BY: TJH CHECKED BY: SZ STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE) DIRECT RUNOFF JOB No: 2608 PROJECT: Willow Brook #2 DESIGN STORM: 100-Year AREA DESIGN AREA Ac RUNOFF COEFF tc min) (C)X(A) (A*C) I (in/hr Q cfs A-1 0.36 0.70 7.3 0.25 8.4 2.1 A-2 0.57 0.88 6.9 0.50 8.6 4.3 A-3 0.87 0.59 8.1 0.51 8.1 4.1 A-4 0.48 0.86 5.0 0.41 9.4 3.9 A-5 0.78 0.74 6.5 0.58 8.8 5.1 A-6 1 0.45 0.66 5.0 0.30 9.4 2.8 A-7 0.39 0.66 5.0 0.26 9.4 2.4 A-8 0.24 0.75 5.0 0.18 9.4 1.7 A-9 0.61 0.61 6.5 0.37 8.8 3.3 A-10 0.51 0.83 6.6 0.42 8.7 3.7 A-11 0.57 0.66 5.3 0.38 9.3 3.5 A-12 0.37 0.68 7.3 0.25 8.4 2.1 A-13 0.49 0.60 7.6 0.29 8.3 2.4 A-14 0.15 0.89 5.0 0.13 9:4 1.2 A-15 0.77 0.54 8.6 0.42 7.9 3.3 Average = 0.71 a 3.1.6 Runoff Coefficients The runoff coefficients to be used with the Rational Method referred to in Section 3.2 "Analysis Methodology" can- be determined based on zoning classifications if the character of the surface is unknown. However, the final drainage study must calculate a composite coefficient using Table 3-3. Table 3-2 lists the runoff coefficients for the various types of zoning along with the zoning definitions. Table 3-3 lists coefficients for the different kinds of surfaces. Since the Land Development Guidance System for Fort Collins allows land development to occur which may vary the zoning requirements and produce runoff coefficients different from those specified in Table 3-2, the runoff coefficients should not be based solely on the zoning classifications. The runoff coefficient used for design should be based on the actual conditions of the proposed development. The Composite Runoff Coefficient shall be calculated using the following formula: n C = E (CiAi) / At i=1 Where C = Composite Runoff Coefficient Ci= Runoff Coefficient for specific area A; Ai= Areas of surface with runoff coefficient of Ci n = Number of different surfaces to be considered At= Total area over which C is applicable; the sum of all Ails is equal to At Table 3-2 RATIONAL METHOD MINOR STORM RUNOFF COEFFICIENTS FOR ZONING CLASSIFICATIONS Descrivtion'of Area or Zonino Coefficient Business: BP,BL..................................... 0.85 Business: BG,HB,C................................... 0.95 Industrial: IL,IP................................... 0.85 Industrial: IG...................................... 0.95y Residential: RE,RLP................................. 0.45 Residential: RL,ML,RP ............................... 0.50 Residential: RLM,RMP................................ 0.60. Residential: RM,MM.................................. 0.65 Residential: RH..................................... 0.70, Parks, Cemeteries .................................. 0.25 Playgrounds ........................................ 0.35 Railroad Yard Areas ............................... 0.40 Unimproved Areas .................................... 0.20 Table 3-3 RATIONAL METHOD RUNOFF COEFFICIENTS FOR COMPOSITE ANALYSIS Character of Surface Runoff Coefficient Streets, Parking Lots, Drives: Asphalt ...................................... 0.95 Concrete..................................... 0.95 Gravel ....................................... 0.50 Roofs.......................................... 0.95 Lawns, Sandy Soil: Flat<28..................................... 0.10 Average 2 to 7%.............................. 0.15 Steep>7%.................................... 0.20 Lawns, Heavy Soil: Flat<28..................................... 0.20 Average 2 to 7%.............................. 0.25 Steep>7%..................................... 0.35 City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method (5 minutes - 30 minutes) Figure 3-1a Duration (minutes) 2-year Intensity in/hr 10-year Intensity in/hr 100-year Intensity in/hr 5.00 2.85 4.87 9.95 6.00 2.67 4.56 9.31 7.00 2.52 4.31 8.80 . 8.00 2.40 4.10 8.38 9.00 2.30 3.93 8.03 10.00 .2.21 3.78 7.72 11.00 2.13. 3.63 7.42 12.00 2.05 3.50 7.16 13.00 1.98 3.39 6:92 14.00 1.92 3.29 6.71 15.00 1.87 3.19 6.52 16.00 1.81 3.08 6.30 17.00 1.75 2.99 6.10 18.00 1.70 2.90 5.92 19.00 1.65 2.82 5.75 20.00 1.61 2.74 5.60 21.00 1.56 2.67 5.46 22.00 1.53 2.61 5.32 23.00 1.49 2.55 5.20 .24.00 1.46 2.49 5.09 25.00 1.43 2.44 4.98 26.00 1.40. 2.39 4.87 27.00 1.37 2.34 4.78 28.00 1.34 2.29 4.69 29.00 1.32 2.25 4.60 30.00 1.30 2.21 4.52 City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method (31 minutes - 60 minutes) Figure 3-1 b Duration (minutes) 2-year Intensity in/hr 10-year Intensity in/hr 100-year Intensity in/hr 31.00 1.27 2.16 4.42 32.00 1.24 2.12 4.33 33.00 1.22 2.08 4.24 34.00 1.19 2.04 4.16 35.00 1.17 2.00 4.08 36.00 1.15 1.96 4.01 37.00 1.13 1.93 3.93 38.00 1.11 1.89 3.87 39.00 1.09 1.86 3.80 40.00 1.07 1.83 3.74 41.00 1.05 1.80 3.68 42.00 1.04 1.77 3.62 43.00 1.02 1.74 3.56 44.00 1.01 1.72 3.51 45.00 0.99 1.69 3.46 46.00 0.98 1.67 3.41 47.00 0.96 1.64 3.36 48.00 0.95 1.62 3.31 49.00 0.94 1.60 3.27 50.00 0.92 1.58 3.23 51.00 0.91 1.56 3.18 52.00 0.90 1.54 3.14 53.00 0.89 1.52 3.10 54.00 0.88 1.50 3.07 55.00 0.87 1.48 3.03 56.00 0.86 1.47 2.99 57.00 0.85 1.45 2.96 58.00 0.84 1.43 2.92 59.00 0.83 1.42 2.89 60.00 0.82 1.40 2.86 No Text DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF 50 30 t- 20 W ¢ 3 0 U 2 W H 3 1 5 �nnnn1111I///�/►1111I ��n1111 MIN Im mill r/ I ' i�■■� - ' ' � �� iiiii� �� ►n i milli �■nni �n FA FA 0 �WAMNEIA�I/���������� MWAMIAMIAnr,�w��������� � 1 .2 .3 .5 1 2 3 5 to zU VELOCITY IN FEET PER SECOND FIGURE RO-1 Estimate of Average Overland Flow Velocity for Use With the Rational Formula 06/2001 RO-13 Urban Drainage and Flood Control District APPENDIX B HYDRAULIC CALCULATIONS J W of U C N m C (0 J 06 0 t m U Q 0 0 in N O �V N I— C) 3 v BLDG. 14 TGB 100.32 BLDG. 8 TGB 101.35 100—YR WSEL=98.36 Q=21.0 cfs S=2.0% QF' ��O 1 24" RCP I� 6.0' WALK SECTION A -A HORIZ 1"=20' VERT 1"=2' BLDG. 13 TGB 100—YR WSEL=97.86 100.32 Q=21.0 cfs S=5.0% BLDG. 12 TGB 99.7 �0. ') SCOAF �O<v 0.26' 24" RCP �f — 6.0' WALK SECTION B-B HORIZ 1"=20' VERT 1"=2' Section B-B Overflow Worksheet for Irregular Channel Project Description Worksheet Section B-B Over Flow Element Irregular Channel Method Manning's Formu Solve For Channel Depth Input Data Slope. 050000 ft/ft Discharge 21.00 cfs Options Current Roughness Metho ved Lotter's Method Open Channel Weighting ved Lotter's Method Closed Channel Weighting Horton's Method Results Mannings Coefficien 0.014 Water Surface Eleva 97.86 ft Elevation Range .60 to 100.32 Flow Area 2.5 ft' Wetted Perimeter 12.25 ft Top Width 12.22 ft Actual Depth 0.26 ft Critical Elevation 98.11 It Critical Slope 0.003874 ft/ft Velocity 8.37 ft/s Velocity Head 1.09 ft Specific Energy 98.95 It Froude Number 3.26 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.00 0+25.00 0.030 0+25.00 0+32.00 0.013 0+32.00 0+40.00 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.00 100.32 0+00.00 99.82 0+10.00 99.00 0+20.00 98.00 0+25.00 97.60 0+32.00 97.60 0+35.00 98.00 0+38.00 99.00 0+40.00 99.20 0+40.00 99.70 Title: untitled Project Engineer: Jerald D. Lange p:\2608\construction\drainage\flowmstr\strtoap.fm2 Carroll S Lange Inc FlowMaster v6.1 [614o) 07/24/02 10:37:19 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Section B-B Overflow Cross Section for Irregular Channel Project Description Worksheet Section B-B Over Flow Element Irregular Channel Method Manning's Forrnu Solve For Channel Depth Section Data Mannings Coefficien 0.014 Slope 0.050000 ft/ft Water Surface Eleva 97.86 ft Elevation Range .60 to 100.32 Discharge 21.00 cis fI1i11&111 99.50 4.1411 97.50 - -. - .. 0+00.00 0+05.00 0+10.00 0+15.00 0+20.00 0+25.00 0+30.00 0+35.00 0+40.00 V:2.0❑ HA NTS Title: untitled Project Engineer: Jerald D. Lange p:t2608konstruction[drainage\flowmstrlstrtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [614o] 07/24/02 10:37:47 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Section A -A Overflow Worksheet for Irregular Channel Project Description Worksheet Section A -A Over Flow Element Irregular Channel Method Manning's Formu Solve For Channel Depth Input Data Slope 020000 ft/ft Discharge 21.00 cis Options Current Roughness Metho ved Lotter's Method Open Channel Weighting ved Lotter's Method Closed Channel Weighting Horton's Method Results Mannings Coefficien 0.015 Water Surface Eleva 98.36 ft Elevation Range .00 to 101.35 Flow Area 3.6 ft' Wetted Perimeter 13.99 ft Top Width 13.95 ft Actual Depth 0.36 ft Critical Elevation 98.53 ft Critical Slope 0.004420 ft/ft Velocity 5.82 ft/s Velocity Head 0.53 ft Specific Energy 98.89 ft Froude Number 2.02 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.00 0+20.00 0.030 0+20.000+26.00 0.013 0+26.00 0+58.00 0.030 Natural Channel Points Station Elevation (ft) (ft) 0+00.00 100.32 0+00.00 99.82 0+10.00 99.00 0+20.00 98.00 0+26.00 98.00 0+38.00 99.00 0+49.00 100.00 0+58.00 100.85 0+58.00 101.35 Title: untitled Project Engineer: Jerald D. Lange p:\2608\construction\drainage\0owmstr\strtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [614o] 07/24/02 10:33:49 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Section A -A Overflow Cross Section for Irregular Channel Project Description Worksheet Section A -A Over Flow Element Irregular Channel Method Manning's Formu Solve For Channel Depth Section Data Mannings Coefficien 0.015 Slope 0.020000 ft/ft Water Surface Eleva 98.36 ft Elevation Range .00 to 101.35 Discharge 21.00 cfs �T 10 9 9 0+00.00 0+10.00 0+20.00 0+30.00 0+40.00 0+50.00 0+60.00 V:2.0❑ HA NTS Title: untitledProject Engineer: Jerald D. Lange p:\2608\construction\drainage\flowmstr\strtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [614o] 07/24/02 10:33:12 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 RATIONAL METHOD MENEM Ml In on man so 10 �16 some I ININIS Ml is son I 0 R. loss 1 Iffloolls some so 0 son on so I so Slillm me Ciplamil 119111 1 MUNIFIRMIR H oil CISIGINER man on GIRINEIR-1��UlappililC CCi�pCCaC�� ONE some INS on 100 MEN son 11 loss z mossommons MM LL v on son lox son Ell Damon IF a son so Ell MIGH Sol 0 Sol HIRE STORMCAD . . .. ........ cn O cli cr)- 0 IL 14-x LL _j ce)OC) 4J 0 A i W Lb 6 a. a) Ti 41 ri) x LU (D (D (D 0 C? + < . ....... 00 0 (D 09 a 0 0 0 O 0 00 W V V V c O 19 e O O O N 0 O 0, 00 00 000 000 V 00 ,or -IfR 0 co W V 0 0 Ni 00 R 0 co co O N + N LO 1 CD ro m N N n M O N Q V) ro 0 co co 0 H U u �c o, 3 J �cc 6 O o: U v N Y O O m rr U C r® ---------------------------------------------------------- Scenario: Willow Brook #2, 100 yr - »» Info: Subsurface Analysis iterations: 2 >>>> Info: Convergence was achieved. ----------------------------------------------------------------- Gravity subnetwork discharging at: Outfall to Pond (Exist.) ----------------------------------------------------------------- >>>> Info: Loading and hydraulic computations completed successfully. >>>> Warning: 5' STMMH NO. 1 Pipe invert is below structure. >>>> Warning: 94 LF -24" RCP @ 0.5% Pipe fails minimum cover constraint. >>>> Warning: 94 LF -24" RCP @ 0.5% Pipe discharge is above full flow capacity. >>>> Warning: 38' LF -18" RCP @ 0.5% Pipe fails minimum cover constraint. >>>> Warning: 38' LF -18" RCP @ 0.5% Pipe fails minimum velocity constraint. >>>> Info: 56 LF -24" RCP @ 7.7% Hydraulic jump formed. >>>> Info: 56 LF -24" RCP @ 7.7% Critical depth assumed upstream. >>>> Warning: 56 LF -24" RCP @ 7.7% Pipe fails minimum cover constraint. »» Warning: 36" RCP (Exist.) Pipe fails minimum cover constraint. CALCULATION SUMMARY FOR SURFACE NETWORKS Label Inlet Inlet Total Total Capture Gutter Type Intercepted Bypassed Efficiency Spread Flow Flow CH (ft) (cfs) (cfs) ------------ --------- 5' STMMH NO. 1 --------------- Generic Inlet --- Generic ---------- Default 1001- ------------- 0.00 ---------- 0.00 100.0 --------�- 0.00 Inlet No. 3 Generic Inlet Generic Default 100% 0.00 0.00 100.0 0.00 Inlet No. 2 Generic Inlet Generic Default 100% 0.00 0.00 100.0 0.00 Inlet No. 1 Generic Inlet Generic Default loot 0.00 0.00 100.0 0.00 CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: Outfall to Pond (Exist.) Label Number Section Section Length Total Average Hydraulic Hydra of . Size Shape (ft) System Velocity Grade Gra Sections Flow (ft/s) Upstream Downs (cfs) (ft) (f ------------------------ 36" RCP (Exist.) ---------- 1 --------- 36 inch ---------- Circular -------- 131.00 -------- 22.39 ---------- 3.17 ----------- 4,890.05 ------ 4,8 56 LF -24" RCP @ 7.7% 1 24 inch Circular 56.00 22.50 7.55 4,892.62 4,8 94 LF -24" RCP @ 0.5% 1 24 inch Circular 94.00 16.21 5.19 4,893.54 4,8 38' LF -18" RCP @ 0.5% --------------------------------------------------------------------------------------------------------- 1 18 inch Circular 38.00 2.19 1.24 4,893.81 4,8 Label Total Ground System Elevation Flow (ft) (cfs) --------------------------------------------- Outfall to Pond (Exist.) 21.79 4,886.00 5' STMMH NO. 1 22.39 4,895.60 Inlet No. 3 22.50 4,896.70 Inlet No. 2 16.21 4,896.50 Grade Line In (ft) 4,889.90 4,890.13 4,893.11 4,893.79 Hydraulic Grade Line Out (ft) ----------- 4,889.90 4,890.05 4,892.62 4,893.54 Title: Willow Brook, Filing No. 2 Project Engineer: Nicholas S. Rollo, P.E. p:%2608\construction\drainage\stormead\2608-sc.stm Carroll & Lange, Inc. StormCAD v4.1.1 [4.2014a] 07/24/02 02:33:24 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 2 Inlet No. 1 1 2.19 1 4,896.50 1 4,893.81 1 4,893.81 1 ------------------------------------------------------------------------- ----------------------------------------------------------------- ----------------------------------------------------------------- Completed: 07/24/2002 02:33:09 PM Title: Willow Brook, Filing No. 2 Project Engineer: Nicholas S. Rollo, P.E. p:t2608tconstruction\drainage\stormcadt2608-sc.stm Carroll & Lange, Inc. StormCAD v4.1.1 [4.2014a] 07/24/02 02:33:24 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 2 of 2 E c o �D (Do C>. N , CD lM OOO CO COD CO c a-W vvvv c m C rn O Cl) n N CO O) N > > 0) O) W co n C N OO cO c0 co W V V V > Cl) O CO N LL Co U n (NO 01 CO U OI Cl) Cl) Cl) Cl) C O O 00 C C c O O O O m C O y U U U U N C C C C N N co M U) 0)O O IT O O CO C L N t0 W 0 O O n y C F O O O O O O O O O t O O O O CD c OD V CD N J Cl) O) U) Cl) W O O) �O y_ 3 N N C7 O N N fD N N F- TL— N N E q CD OD n I,- Ct tt) r r r N co O _0 N O CO OD V U O N N N UE M om O1 u) 5 a O O o O d N Q d O O O O N c U U n cc ? O O O O c_ O O O O —f6a) E c 'u 000 0 m.2 m � � MIX O n U CD_ , y O O O O O O 00 N d m d O O O O y C Q U O. W E O c d m Z N 0 aO N (+I = .O. GZ Z Z 2 m O m d U c c in 0 O E Z Ny N c) _ V nZ Z Z Z D N N N V1 c S S in G A a a a U U U y c W X a co ;it a W J N N d U LL -) J J OD V CO fO m O) N co N O Z rn c LL . O O m 3 O 4 Headloss Coefficients for Manholes and Junctions These are typical headloss coefficients used in the standard method for estimating headloss through manholes and junctions. Type of Manhole Diagram Headloss Coefficient Trunkline only with no bend � 0.5 at the junction Trunkline only with 45 0.6 degree bend at junction �P Trunkline only with 90 0.8 degree bend at junction — I Trunkline with one lateral Small 0.6 Large 0.7 Two roughly equivalent 0.8 entrance lines with angle of < — 90 degrees between lines / Two roughly equivalent 0.9 entrance lines with angle of > 90 degrees between lines 15 Three or more entrance lines 1.0 INLET/STREET CAPACITIES C O C O C O C C C C C O U O O U U U m m m a E a E a E u 2 N C C o V) m U) -0 N N N d 7 0 O O F 0 W C 7 (0 m O U O a� C C N C 03 N (0 O O O I o a) m C a�i a�i rn rn N 00Nx LL —0C C C W W O Z X X X Q a) � N d D x x x C (0 J w O m _ W O Q o O R N N m O � N 0 11 3 x o m m Q) m O Na V (O (D r V Lf) m c0 C O cc O_ f) 0 j 00 O O co O N O OD O O 0 -� a O � U 1 a � ILL l0 Q _ U w 111 N .V.. a O N O N QD Q = n 0 (0 n f- o to N N N a CL a 2 n N N N W O C O C O O ry 0 LL N -Cali L (n O m v v v v v U' a) o X o 00 00 Ic" 0 CL E d iN tN 1N5 ca i i 0)G' owo` ONNE d 0 0 W 0) 0L (n F O O O J O O 0 o m d U U U U U � d m c a c U) U J O Ol w N N L N L O N O y E 2 y Y Y fa 0 W U �- a) J N J C 'E f0 V) z E❑ (U (U0 Q Ua`) C �) C (D Q N._ ._ T N Y L Y O L a) o(nCi a) 0 (nc9a 0 7 a ¢ of �zwz O O N Of C Q O 0 7 C Cl) F O E-m I� L Q O1 0 Q Q Q '0 comd o N W Q C14 Q N Q Q MIt Q Q 0 Q zoa =. 0 z z C m m m N 0 N 0) v Ln 0 W00 oa f / k r ) 0 0 jrof cl / / w fG° a e c \ CID co & \ a _7 a/¥ a co [ Cl) �)q S m$ J�o Gf � a o 4) § (t¥ ui {�\ o a� f& � /k \h § § or -°k aLL a cl te § e § 7§t 3 R w =04 ° *�g@ � ( a)\ a $ C 2 A df ® $ E § ) A)= £ ¥ 2 ) k 2R Ia. -e \}\ �� - !C $$ƒ _§�/ Rm«� A pw� mz�a `- omzo a� ��� n NT c�� STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA FIGURE 904 ALLOWABLE INLET CAPACITY SUMP CONDITIONS - ALL INLETS u, J — F- .. m Q 12 Q � LL Z - Z U -�. O w 6 J0 O mF ¢LL �: U O Q o TYPE C INLET 4 Q U Q n. :2 W 0 0.2 0.4 0.6 0.8 1.0 U DEPTH OF FLOW (FT) 50 = F- a ut 0 00 O U v u- } Q W F- _ F- U F- O Q30 U J F- m ui J Z w20 J In a rp Street Cap - 2% X-Slope - 0A Depth Cross Section for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet 4.75" R-0 Curb - 2% X-Slope - 0.4' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.016 Channel Slope 0.020000 fUft Water Surface Elevation 0.40 ft Discharge 19.39 cfs 0.45 77 JA K7 O. 0.35 0.3 0.25 C 0 w m a>i 0.2 W 0.15 0.1 0.05 0.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 Station (ft) 01/29/02 FlowMaster v5.15 10:12:08 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Street Cap - 2% X-Slope - 0.4' Depth Worksheet for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet 4.75" R-O Curb - 2% X-Slope - 0.4' Depth Flow Element Irregular Channel . Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.020000 ft/ft Water Surface Elevation 0.40 ft Elevation range: 0.00 ft to 0.44 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 0.40 0.00 32.84 0.016 1.42 0.00 2.59 0.11 16.42 0.44 30.25 0.11 31.42 0.00 32.84 0.40 Results Wtd. Mannings Coefficient 0.016 Discharge 19.39 cfs Flow Area 4.90 ft2 Wetted Perimeter 29.62 ft Top Width 29.49 ft Height 0.40 ft Critical Depth 0.47 ft Critical Slope 0.006237 ft/ft Velocity 3.96 fus Velocity Head 0.24 ft Specific Energy 0.64 ft Froude Number 1.71 Flow is supercritical. Flow is divided. 01/29/02 FlowMaster v5.15 10:12:52 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Street Cap - 2% Cross Slope - 0A Depth Rating Table for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet Street Cap - 2% X-Slope - 0.4' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Constant Data Water Surface Elevation 0.40 ft Data Minimum Maximum Increment Channel Slope 0.005000 0.030000 0.001000 ft/ft Rating Table Channel Slope Wtd. Mannings Discharge Velocity (ft/ft) Coefficient (cfs) (ft/s) 0.005000 0.016 9.70 1.98 0.006000 0.016 10.62 2.17 0.007000 0.016 11.47 2.34 /0 Q = �t q c�S 0.008000 0.016 12.27 2.50 �Y � q _ 12.3 C'K 0.009000 0.016 13.01 2.66 0.010000 0:016 13.71 2.80 0.011000 0.016 14.38 2.94 S t t g� / O `� cat ` 0.012000 0.016 15.02 3.07 5- 1 2S r Q = 15.33 eE1 0.013000 0.016 15.64 3.19 0.014000 0.016 16.23 3.31 0.015000 0.016 16.80 3.43 0.016000 0.016 17.35 3.54 0.017000 0.016 17.88 3.65 0.018000 0.016 18.40 3.76 0.019000 0.016 18.90 3.86 0.020000 0.016 19.39 3.96 0.021000 0.016 19.87 4.06 0.022000 0.016 20.34 4.15 0.023000 0.016 20.80 4.24 0.024000 0.016 21.25 4.34 0.025000 0.016 21.68 4.43 0.026000 0.016 22.11 4.51 0.027000 0.016 22.53 4.60 0.028000 0.016 22.95 4.68 0.029000 0.016 23.35 4.77 0.030000 0.016 23.75 4.85 01/29/02 FlowMaster v5.15 11:37:59 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Street Cap - 2% X-Slope - 0.5' Depth Cross Section for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet 4.75" R-O Curb - 2% X-Slope - 0.5' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.016 Channel Slope 0.020000 ft/ft Water Surface Elevation 0.50 ft Discharge 41.71 cfs C O Q Y (V W 0.577 .45 0. .35 0.3 .25 0.2 .15 0.1 .05 0.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 Station (ft) 01 /29/02 10:03:49 AM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Street Cap - 2% X-Slope - 0.5' Depth Worksheet for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet 4.75" R-O Curb - 2% X-Slope - 0.5' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.020000 fUft Water Surface Elevation 0.50 ft Elevation range: 0.00 ft to 0.44 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 0.40 0.00 32.84 0.016 1.42 0.00 2.59 0.11 16.42 0.44 30.25 0.11 31.42 0.00 32.84 0.40 Results Md. Mannings Coefficient 0.016 Discharge 41.71 cfs Flow Area 8.12 ft2 Wetted Perimeter 33.17 ft Top Width. 32.84 ft Height 0.50 ft Critical Depth 0.62 ft Critical Slope 0.005323 ft/ft Velocity 5.14 fus Velocity Head 0.41 ft Specific Energy 0.91 ft Froude Number 1.82 Flow is supercritical. Water elevation exceeds lowest end station by 0.10 ft. 01/29/02 FlowMaster v5.15 10:10:39 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Street Cap - 2% X-Slope - 0.5' Depth Rating Table for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet 4.75" R-O Curb - 2% X-Slope - 0.5' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Constant Data Water Surface Elevation 0.50 It Input Data Minimum Maximum Increment Channel Slope 0.005000 0.030000 0.001000 ft/ft Rating Table Channel Slope Wtd. Mannings Discharge Velocity (fvft) Coefficient (cfs) (fvs) 0.005000 0.016 20.85 2.57 0.006000 0.016 22.84 2.81 0.007000 0.016 24.67 3.04 0.008000 0.016 26.38 3.25 S- cpz u. cj t(s 0.009000 0.016 27.98 3.45 0.010000 0.016 29.49 3.63 `� 0.011000 0.016 30.93 3.815=1•10`10/ 0.012000 0.016 32.31 3.98 5 t 259'v Q e 3'i QS 4s 0.013000 0.016 33.63 4.14 0.014000 0.016 34.89 4.30 (+ 3�"'tC�S 0.015000 0.016 36.12 4.45 S=1•ScD% = 0.016000 0.016 37.30 4.60 0.017000 0.016 38.45 4.74 0.018000 0.016 39.57 4.87 0.019000 0.016 40.65 5.01 0.020000 0.016 41.71 5.14 0.021000 0.016 42.74 5.27 0.022000 0.016 43.74 5.39 0.023000 0.016 44.73 5.51 0.024000 0.016 45.69 5.63 0.025000 0.016 46.63 5.74 0.026000 0.016 47.55 5.86 0.027000 0.016 48.46 5.97 0.028000 0.016 49.35 6.08 0.029000 0.016 50.22 6.19 0.030000 0.016 51.08 6.29 01/29/02 FlowMaster v5.15 10:11:29 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Alley Cap - 2% X-Slope - 0.4' Depth Cross Section for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet Alley Cap - 2% X-Slope - 0.4' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Md. Mannings Coefficient 0.016 Channel Slope 0.020000 ft/ft Water Surface Elevation 0.40 ft Discharge 11.18 cfs 0. 0.35 0.3 0.25 C 0 0.2 Y a) W 0.15 0.1 0.05 0.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 Station (ft) 01/29/02 FlowMaster v5.15 10:32:29 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06706 (203) 755-1666 Page 1 of 1 Alley Cap - 2% X-Slope - 0.4' Depth Worksheet for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet Alley Cap - 2% X-Slope - 0.4' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope Water Surface Elevation Elevation range: 0.00 ft to 0.40 ft. Station (ft) Elevation (ft) 0.00 0.40 1.42 0.00 2.59 0.11 ' 15.01 0.36 16.01 0.40 Results 0.020000 ft/ft 0.40 ft Start Station End Station Roughness 0.00 16.01 0.016 Wtd. Mannings Coefficient 0.016 Discharge 11.18 cfs Flow Area 2.76 ft' Wetted Perimeter 16.07 ft Top Width 16.01 ft Height 0.40 ft Critical Depth 0.48 ft Critical Slope 0.006049 ft/ft Velocity 4.05 ft/s Velocity Head 0.26 ft Specific Energy 0.66 ft Froude Number 1.72 Flow is supercritical. ov29/02 10:36:34 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 Alley Cap - 2% X-Slope - 0.4' Depth Rating Table for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet Alley Cap - 2% X-Slope - 0.4' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Constant Data Water Surface Elevation 0.40 ft Input Data Minimum Maximum Increment Channel Slope 0.005000 0.030000 0.001000 ft/ft Rating Table Channel Slope Wtd. Mannings Discharge Velocity (ft/ft) Coefficient (cfs) (ft/s) 0.005000 0.016 5.59 2.03 0.006000 0.016 6.12 2.22 0.007000 0.016 6.61 2.40 0.008000 0.016 7.07 2.56 0.009000 0.016 7.50 2.72 0.010000 0.016 7.90 2.87 0.011000 0.016 8.29 3.01 0.012000 0.016 8.66 3.14 0.013000 0.016 9.01 3.27 0.014000 0.016 9.35 3.39 ct •% ers 0.015000 0.016 9.68 3.51 S = \.S090 , ©= 0.016000 0.016 10.00 3.63 0.017000 0.016 10.31 3.74 0.018000 0.016 10.60 3.85 0.019000 0.016 10.89 3.95 0.020000 0.016 11.18 4.05 0.021000 0.016 11.45 4.15 0.022000 0.016 11.72 4.25 0.023000 0.016 11.99 4.35 0.024000 0.016 12.24 4.44 0.025000 0.016 12.50 4.53 0.026000 0.016 12.74 4.62 0.027000 0.016 12.99 4.71 0.028000 0.016 13.23 4.80 0.029000 0.016 13.46 4.88 0.030000 0.016 13.69 4.97 01/29/02 FlowMaster v5.15 10:35:52 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Alley Cap - 2% X-Slope - 0.5' Depth Cross Section for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet Alley Cap - 2% X-Slope - 0.5' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.016 Channel Slope 0.020000 fttft Water Surface Elevation 0.50 ft Discharge 23.78 cfs 0.01 II I I I 1 1 I 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 .16.0 18.0 Station (ft) 01/29/02 FlowMaster v5.15 10:40:39 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Alley Cap - 2% X-Slope - 0.5'Depth Worksheet for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet Alley Cap - 2% X-Slope - 0.5' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.020000 ft/ft Water Surface Elevation 0.50 ft Elevation range: 0.00 ft to 0.40 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 0.40 0.00 16.01 0.016 1.42 0.00 2.59 0.11 15.01 0.36 16.01 0.40 Results Wtd. Mannings Coefficient 0.016 Discharge 23.78 cfs Flow Area 4.36 ftZ Wetted Perimeter 16.27 ft Top Width 16.01 ft Height 0.50 ft Critical Depth 0.64 ft Critical Slope 0.005251 ft/ft Velocity 5.46 ft/s Velocity Head 0.46 ft Specific Energy 0.96 ft Froude Number 1.84 Flow is supercritical. Water elevation exceeds lowest end station by 0.10 ft. 01/29/02 FlowMaster v5.15 10:42:04 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Alley Cap - 2% X-Slope - 0.5' Depth Rating Table for Irregular Channel Project Description Project File p:\2608\construction\drainage\flowmstr\strtcap.fm2 Worksheet Alley Cap - 2% X-Slope - 0.5' Depth Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Constant Data Water Surface Elevation 0.50 ft Input Data Minimum Maximum Increment Channel Slope 0.005000 0.030000 0.001000 ft/ft Rating Table Channel Slope Wtd. Mannings Discharge Velocity (ft/ft) Coefficient (cfs) (ft/s) 0.005000 0.016 11.89 2.73 0.006000 0.016 13.02 2.99 0.007000 0.016 14.07 3.23 0.008000 0.016 _ 15.04 3.45 0.009000 0.016 15.95 3.66 0.010000 0.016 16.81 3.86 0.011000 0.016 17.64 4.05 0.012000 0.016 18.42 4.23 0.013000 0.016 19.17 4.40 0.014000 0.016 19.90 4.57 0.015000 0.016 20.59 _ 4.73 0.016000 0.016 21.27 4.88 0.017000 0.016 21.92 5.03 0.018000 0.016 22.56 5.18 0.019000 0.016 23.18 5.32 0.020000 0.016 23.78 5.46 0.021000 0.016 24.37 5.59 0.022000 0.016 24.94 5.72 0.023000 0.016 25.50 5.85 0.024000 0.016 26.05 5.98 0.025000 0.016 26.59 6.10 0.026000 0.016 27.11 6.22 0.027000 0.016 27.63 6.34 0.028000 0.016 28.14 6.46 0.029000 0.016 28.63 6.57 0.030000 0.016 29.12 6.68 01/29/02 FlowMaster v5.15 10:41:25 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 a•] .9 W7 .7 .3 IWA valm Cls=0.6 % F = 0.8 -N s=0.4% F=0.5 I I I I BELOW MINIMUM ALLOWABLE I STREET GRADE O 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) MAY 1984 4-4 DESIGN CRITERIA 1.0 .9 .8 7 .6 .5 1- w U- .4% z U z z .3 w a 0 .2 - ..15 12 5 II 10 4 8 10 6 3 w o 2 9 U- 4 -F- �� w 8 w cr 3 �� z 1.5 a - 2� \ 1.ZS= 7 Ex /ey jam- Z Om _ 1.0 Example, Part a 1.0 .9 z _. ye_ _-- w 5.5 o ---- oa .8 to .6 w 0 .7 5 is z z z_ z .4 F 4.5 z (L 6 .3 w w = 4 0 2 0 .5 t- c� � z - 0 3.5 w w r .4 a_ -.1 I Or 0 3 0 U. .08 0 .06 cD .3 = o z 2.5 = w .04 w .25 a` .03 > Q � 3 uw- a .02 0 .2 0- 2 U H a_ 01 0 .15 L 1L 0 0 1.5 --- -- ---y-•�-. Yo - - .10 1 -A- 1. 2 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA Table 5-4 INLET CAPACITY REDUCTION FACTORS Percentages of Drainage Condition Inlet Type Theoretical Capacity' Sump or Continuous Grade CDOH Type R-Curb Opening 5 80% 10' 85% 15' 90% Street - Sump 4' Curb Opening 80% Street - Continuous Grade 4' Curb Opening 80% Parking Lots, Medians Area Inlet 80% The theoretical capacity of inlets in a low point or sump shall be determined from Figures 5-2 and 5-3. The theoretical capacity of curb openings on a continuous grade shall be determined from Figures 5-4, 5-5 and 5-6. The standard curb -opening is illustrated by Figure 5-4 and is defined as having a gutter depression apron W feet wide at the inlet opening which extends W feet upstream and downstream from the opening, has a depression depth (a) equal to W/12 feet at the curb face, and a curb opening height (h) of at least 0.5 feet. The graph as presented by Figure 5-5 is based on a depression apron width (W) equal to 2 feet and depression width (a) equal to 2 inches. The pavement cross-section is straight to the curb face; however, a street section with gutters cross -sloped steeper than the street can also be analyzed using Figure 5-6. Since the figures are based on an inlet opening free of obstructions, the reduction factors listed previously shall be utilized. APPENDIX C DRAINAGE IMPACT CALCULATIONS FOR WILLOW BROOK FILING NO. 1 OFIS Carroll a Lange %ihh6� 165 South Union Blvd., Suite 156 Lakewood,LakColorado 60228 303/980-0200 Fax: 303/980-0917 Job. NO. Date PROJECT Sheet _ I of Z Subject %SST ZU .4tZ: s,'nns By 'S -'2� DaS:/{S� � /� ',� /h`" / / a-/l�� /Dr--' 6 i.i! (/6`e:rG'�'lr/�•-ti��/. / 1.,� ..._ 's wm -I eco%a�� fr�iN/OrJ Oi'Oi✓Gt QNo/ (.�✓� G Go�d'�.e%�y' avi .:. 000, za l:✓rcr/ ��� (�('+ 1 F ;� sird�/ ✓'N/1.0cp .i1.._aLirr.__.._.t_ %S-T 2y,0 r� co&' O ij" OL Qa 4�'y fC4/¢' S . 1 ' ..i • F 1 ' i 1 t ' Carroll & Lange " 165 South Union Blvd., Suite 156 Lakewood,LakColorado 80226 303/980-0200 Fax:303/980-0917 PROJECT U, low /I.-,o/l Subject TS'T a Job. No. 4�0 Date 06' / 05' Sheet 2 ofsq By SO - i J—bvovG Of , t ., ...fie �� A OF19% Carroll a Lange " 165 South Union Blvd., Suite 156 Lakewood,LakColorado 80228 303/980-0200 Fax: 303/980-0917 Job. No. Z 60B Date PROJECT IoU=116uJdet-0�� Sheet 3 of 2� Subject TST B 5 Y 3. L y4cy, GZ : 0. C,o, _ ©•8a; Gz -- .. y j Ca �c u �� ✓� w C.d2rc-c�'v c /�� n.��i'-- w/ /l/a w G � � /�mi�"�`; C d a • N g MIMI ' Agof � , ® BLDG. 23 1 1.I 1 BLDG. 21 A-3 8L 24 j II 0 m m 0.137 057 1 aet,BLDG. 20 h 4R! 'aw �i li qT H.P. PRI E �j II VA7 p 1 am owe A-2 J II LDG. , �i 0.57 0.70 v �. II AC. 0.8819 p s ii1 1.0% — 1 0.78 0.59 \ IVATF QRIVE-Bi AC. 0.74 \ A-12 I Oq' 0.37 0.54 !' N .; ;SK G LANE ` 1 AC. 0.68 Q r H.P. S i m , 3'.0.` 490 H.P. / pg00 II A-6 I L.P of 0.45 0.53 ® �� + 0a '\ AC. 0.66 ° 2 rn L.P. - f0 I I BLDG. \ 3 ' \ ;° 2 — / c II Q PRIVA 90 �o a)' r- I os DRIVE—G — — �_ f' ! c� I I .Il A-11 I BLDG. 8!f!!I in BLDG. 6 AC. 0.66 o / ,,. A-7 ; t ``` ZCDi PRIVATE DRIVE -A a A-10 DI �13 I�l 4kf ... .._.._ 0.51 0.66 / 1 BL.. AC. 0.83 r II' BLDG. it1�' m s Mae BL G. 7 BLDG. 9 - oI 0.24 0.60 - - -�- - -_ — 0.61 0 49 AC FFAC. 0.6161 Mai LTY._I _ LOCI _i�� 3TII7 i �7 Q T — __----------- �.. 0.75% Q. 0.65% - - ` - TST GUTTER CAPACITY RECREATED - 0.7% Worksheet for Irregular Channel Project Description Worksheet TST-RECREAT Flow Element Irregular Chann Method Manning's Form Solve For Discharge Input Data Slope 007000 ft/ft Water Surface Eleva 0.39 ft Options Current Roughness Metho ved Lotter's Method Open Channel Weighting ved Lotter's Method Closed Channel Weighting Horton's Method Results Mannings Coeffic 0.016 Elevation Range .00 to 0.39 ��/ 7ycls' Discharge 5.92 cfs X 0• _ —/, Flow Area 2.6 ft' AF Wetted Perimeter 16.48 ft Top Width 16.42 ft Actual Depth 0.39 ft Critical Elevation 0.39 ft Critical Slope 0.006917 ft/ft Velocity 2.27 ft/s Velocity Head 0.08 ft Specific Energy 0.47 ft Froude Number 1.01 Flow Type upercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.00 0+16.42 0.016 Natural Channel Points Station Elevation (ft) (ft) 0+00.00 0.39 0+01.42 0.00 0+02.59 0.11 0+16.42 0.39 ile. 5-0�- 4 Title: untitled Project Engineer: Jerald D. Lange p:\2608\construction\drainage\flowmstr\strtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [614o] 06/05/02 02:19:30 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Cross Section - TST Gutter Cap. Recreated - 0.7% Cross Section for Irregular Channel Project Description Worksheet TST-RECREAT Flow Element Irregular Charm Method Manning's Form Solve For Discharge Section Data Mannings Coefficien 0.016 Slope 0.007000 ft/ft Water Surface Eleva 0.39 ft Elevation Range .00 to 0.39 Discharge 5.92 cfs CO S-q ZC�S. (w R. r- agl 0.40; �r -zq azrftp �- y 7yc-PS) VA0.0❑ HA NTS Title: untitled Project Engineer: Jerald D. Lange p:\2608\construction\drainage\flowmstrlstrtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [61401 06/05/02 02:19:46 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 OFIN Carml I & Lange " 165 South Union Suite 156 Lakewood,LakColorado 80228 303/980-0200 Fax:303/980-0917 PROJECT lyp-odle Subject TsT Job. No. Z60 r Date 06 / o 5-- / o z Sheet 7 of By s Z Cu✓vertl._ Se��J �' a�u�%ea 1 �$ a.c �y &L-"L9sC'C;�S Vtoe,Gle-c« / Qcop dee .— y, 7/ o As. vS e- flow /tit-rlev A -�e e /!o vv M oc r/ 7� /7: 0.03 6doss. f� lr�eceT A C,04 "fkc-r eY�mN. C�� 7i7 ///a,'Nf�r✓1 7LE ��% e�s d`�w i r/ /%E New Flow Depth - 0.7% irg of ZN Worksheet for Irregular Channel f Project Description Worksheet Revised Flow D Flow Element Irregular Chann Method Manning's Form s Solve For Channel Depth hs p.o/3 came. Input Data Slope . 000 fUft Disc rge 6.19 cfs Options Current Roughness Metho ved Lotter's Method Open Channel Weighting ved Lotter's Method y Closed Channel Weighting Horton's Method Results Mannings Coefficien 0.014 Water Surface Eleva 0.38 It Elevation Range .00 to 0.39 Flow Area 2.5 ft' Wetted Perimeter 16.05 It Top Width 15.99 It Actual Depth 0.38 It Critical Elevation 0.40 It Critical Slope 0.005454 ft/ft Velocity 2.50 ft/s Velocity Head 0.10 It Specific Energy 0.48 It Froude Number 1.12 Flow Type upercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00.00 0+02.59 0.013 Co✓rcr 0+02.59 0+16.42 0.016 Jcpa Natural Channel Points Station Elevation (ft) (ft) 0+00.00 0.39 0+01.42 0.00 0+02.59 0.11 0+16.42 0.39 Title: untitled Project Engineer: Jerald D. Lange p:\2608\construction\drainage\flowmstr\strtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [614o] 06/05/02 02:39:23 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Cross Section - New Flow Depth - 0.7% Cross Section for Irregular Channel 1 Project Description ' Worksheet Revised Flow D Flow Element Irregular Chann Method Manning's Form Solve For Channel Depth Section Data Mannings Coefficien 0.014 Slope 0.007000 ft/ft Water Surface Eleva 0.38 ft Elevation Range .00 to 0.39 Discharge 6.19 cfs V:10.0❑ H:1 NTS a Title: untitled Project Engineer: Jerald D. Lange p:\2608\construction\drainage\Flowmstr\strtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [6140] 06/05/02 02:39:32 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 New Flow Depth w/ TST Assump. Worksheet for Irregular Channel Project Description Worksheet New Depth w/ TST Assu Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Input Data Slope 007000 ft/ft Discharge 6.19 cfs Options Current Roughness Metho ved Lotter's Method Open Channel Weighting ved Lotter's Method Closed Channel Weighting Horton's Method Results Mannings Coefficien 0.017 Water Surface Eleva 0.40 ft Elevation Range .00 to 0.49 Flow Area 2.8 ft' Wetted Perimeter 17.70 ft Top Width 17.64 It Actual Depth 0.40 ft Critical Elevation 0.40 ft Critical Slope 0.007418 ft/ft Velocity 2.20 ft/s Velocity Head 0.08 ft Specific Energy 0.48 ft Froude Number 0.97 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient -0+05.00 0+00.00 0.030 0+00.00 0+21.42 0.016 Natural Channel Points Station Elevation (ft) (ft) -0+05.00 0.49 0+00.00 0.39 0+01.42 0.00 0+02.59 0.11 0+16.42 0.39 0+21.42 0.49 �4i0 0J-zV yf_ 0.A6 Foe Co NG ,4{S,.df/ja # % t sr "-s&4JW %/ x. s r,ee �0.�io� �=0-0 7yf.cis6 � o r r r,� S'r�Y1tGF•�,on/� Title: untitled Project Engineer: Jerald D. Lange p:\2608\construction\drainage\flowmstr\strtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [6140) O6/05/02 02:42:40 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Cross Section - New Depth w/ TST Assump. Cross Section for Irregular Channel Project Description Worksheet New Depth w/ TST Assu Flow Element Irregular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficien 0.017 Slope 0.007000 ft/ft Water Surface Eleva 0.40 R Elevation Range .00 to 0.49 Discharge 6.19 cis VA 0.0 El HA NTS Title: untitled Project Engineer: Jerald D. Lange p:\2608\construction\drainage\flowmstr\strtcap.fm2 Carroll & Lange Inc FlowMaster v6.1 [6140] 06/05/02 02:43:15 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA. (203) 755-1666 Page 1 of 1 ' Carroll a Lange " 165 South Union Blvd., Suite 156 Lakewood,LakColorado 80228 303/980-0200 Fax:303/980-0917 PROJECT l v: lj6w drool[ Subject 7TS V- 5 Job. No. 2.60$ Date e / 09"- /o Z Sheet /2 of -L By S 12- 5lae'.IO Y- CS 6 s / G+T idFcn/��SG�Wit Qe �/ d✓ 4 , , T5 7 css fUe/ 71"cj6-cl'iccd!vJOEi &1'�o 0. 0/ le sloe too 22. 7 e�'r x. de✓ rLcv�c a �fra s?� .7O/a / C!" lav r iol C-ZI//co el a Le el%114 sum o� c Z, c3e 32.00 f 0,294s 32.' 9 c Vs. ✓' u � j 7 ��' S" r �. � e. %% �� kTt+t/ �� ��%CTwa .�ir��- GQ�Y%� rpi� OFIN Carroll & Lange South Union Blvd., Suite 158 Lakewood,LakColorado 80228 "165 303/980-0200 Fax:303/980-0917 PROJECT IN Y"ale Subject %ST I%rarc�� �eals �nI` Job. No. Z 60 8 Date / 0r /a Z Sheet /3 of M By S-2� / O/a / Qico - s 9"1 f- 0.,5-9car, cSs CS. jCS-). Q/oa 768.3cir. x y X UA„A r�s //Gva� ✓hose IAQil /lam %6-4?2at's a A0 C�V o' eC f' /0 Avll/S // eCCJ .x� rY No Text LO Lo ti ui 00 0 .O fl E 0) O � Ln Ln O O Q Cc2 � -i U) V- cr- 0 0 N O M �- O 00 O a E O N Lj ,.O E J � C O cc n O O O 0 O O O 0 d' 0 0 N O O 00 00 00 0 J 0 0 � O O O 0 0 0 f lrok `27 cr- = ti It 000 0c0 00 Ln't't0 't N NOOM N c COF`O W N QCN NO JZ)oJ(T)0 v 14" It (D 0 0O0 0000 U 0't-t0•-0 �t 0 CY) N NOOd• N.EE0--0 (6 fl-�'t NO •N 0r.- 00000 -60 M� C$ �O N > >00(Do /� C C(DO Q ti C ,,.N .. J• D O J U) U) Mti /N�� 00 00 y U) C-4 O •� 0 T N NOO'h ) CY) 0 o m o a c o W N O U d Z a m c_ Q rn E c W �° co a M co Lh N n M O N P O a d a E v on n o rn (o ui tri of m 0) CD co -0> 0Uw m o o o 0 0 0 S o n o d O> C V (0 N CP N O > Q) CD 0) O) a� d w m c VO O r N to V Cl) Cl) w m m m CO M co w O = m c o t0 V V co n (D o r d (Dm - N C> ro tri v of O O O CO N O.— W > n N N r N O L m w � v v (D 0 CD O O U m 0 co 0 Cl) = O O O O C= O O O O m = 0 O U U U U N C = C = m!n co co(00 W m co O (O p 16 n O N o —0 co v v v 0 0 0 0 p 0 0 0 0 L O O O O C� O O O O N N N N m y 3 y n r r r O N L Y N N N N F co tL .� (n (n (_� (_e) �oo0 E� h � O O O >`Cv O O O O m o 0 0 0 �jEm E n m d N h n o Q Q ¢ y Q d o Z Z Z N C U m O. m m O Q Q Q c d) O Z Z Z o E _ .a C0.2 E T m m w o' O C. U o Q Q Q d y o Z 2 2 N C Q O m a FZ O 't M N m (moo (O It Cl) N J V Cl) N O N N y o� Z 2 V w-0 0 N 0 m O a z� mU E W Ti p w y o a` h ¢ 0 r 0 0 U 'N � u � c a N N � J C O O V p m n M If E N N O N C p p z oa o n a O` 30 N co 30 co O (OD 0 d�o F- 5. o t r.1 0 .n U N d .d0 (O (o Cl) 0 LQ N (O (O .-. (p Of cD th (O v` TU` oo co co ao S J l`0 N C J Of cD OD aD _ ca (o (O h O d ao(oNn r �0 ui to cm 3 0 o(o(o1� m W co to N N 0 C cli vi (o (o CIO � 17� y y A E N N O N � p p zoa onv `O N m_ o Go (000 ui� o F 0 tua�u -c>,rxaa7uu�nc��zar�xY � 1L .TExx o:q _o-i �.zLara nr><�ax.�ar 'eTa�ic¢ - - - / _. -- �>r� .._. ... — �>[F.m..L1T .L L�LF:t:l. - 7. 1. _ i TIC.R +!9✓ r _ _ _ _ _ .. — _ ._ - "`La-t�` •-... IL7 E.RiY:17:i H]L ..t u.._ .a �. ...��, .. _ [ 4? zy ` . .... _ iY - - _• _. ._ .Ail too 481 � � R -'' — I, i 1 •,' 22 1 ti \' rJ �IILOV(two I � b I � 9� 43,fiG•�iS P.iRC& F i� PARCRoV I I ?4�+tc: ` L40 k 6 1 1 f ' :' - / / �'+ •� ..` / ` 7 20 VWSO _� ' 1 ♦` I. � .I PARCEL -a - ( V/2 � � e =_'4 t / "� • , � nvw / ! j / " ! � 9 r _k 314 k. r I 7 � - � � � >�ri 20 �'1 • �� �`\ \ •- fo 16 1 I Cf3 I t :r'` ` PAR C /4MC lt♦41 7 t `V�� \ \�� to or -. 1.17k: — —/ — — — ,— — - t ''q% t ♦ \ �Ak .. _. J+��,✓ .. .c s:. i.:p &R. - fi -+ .. ;...n+. .: C _R..nY -' :�--=---;'•-1 , ram'=. -- — i I--- _; — -- — -- --- - --- '-.—_ _ '"v�I, y. ,( — — — itr- I / a 1 {2.` '?244 242 /t _ - 11 ( 1 + rarl- i !PARCEL C2PAAM I TJ I } 'tcn' rr .esaar - •emm rtr- .eAnee >� a+..0.+>:a 7cF +ef7 f 1 1 04 y ( I t r r waitr ' ro ±M� / 5iaxn 1 PARGLxZ / ! I 1 I 244 ,J45 246 148 749 ' 251- 252 `t { ' .!efft !a•,entn _ a 7V+,;SM., For Ie9),J Mr. 7LK ,eK71 A>A, PARCEL ✓ I — - - — — _ —7 _ _ - 10 , { aorta r ♦ fae> tr>ac t ! 9M ' '� { 11 / _ I ,,._ . ,eJe • , . i 257 �� 258 rff- ' t / 1 54 I m aooara 1O'` 7 � ' 7 I 259 240' 261 2 _ 26J 264 2 1 p _ � +afl[er tlDKiF� -MI -07AY M- 7../7 wr- I Zff /e _ -v iq ay-zy J m F 5� - fyi�,{_ F O N n r 0 S N^ 0 0 0 r• p C C O r. H O H n O O n O n G O G yj o 0 0 O n n r p 0 !"# � n- tl n H n n O' ri n �O b vpi n- .Ofl m n �O - O n g ri r ` m; ICI M- M1 � i ro •o b M1 r. O m C• n 0 O 6 n n O C O H M1 n- tY'�Mf� - •O n P n n- ♦� ' lat 7 P P T T n I I n P rr Il T I 4 �p O O n- T n T G-n yy .Ire• ,ry b n r- rr r- Y1 b y Ip H P �1 A P a 1 fj rl n- b fl f'1 II !1 !1 T fl' rl O CC N n n H N •'! i O a O O n - _ 7 �{�i -�kT�. y1f�.,. -. h O P n n � P P--„ n n n n P T I �I O Y. . 'O � w N m O Y! I V T- I I T b 'O n O b b i' Q O N-- U n N N T Li P- I n U rl m T� 11 � p P b nm � •O O� m .O m •O .Q�i'. !i }'u � fh •/� .O •O fD - T F •p IN � r •Q •p m IM1 p r. T T f1 � � Y� Yi T T T f, T n - fl n � •O T H m •D f� M IV p N N ^ •rl 4a�i�':s_5 +Myw y}A IV f� 1.1 rl f1 fJ fi M N r� rl rl r1 f•� fl rl f� fl (J fl j fl !1 fl fl I'I f� r. fl II fl II Iti ('i fl II II fl I'1 I� fl r� fl rl 14 ry ry N - "n aG: PP .� •p tr99 w o - rl o o p p �i g Q N N n p - p O o O Y� rnnnnnryr N ry N 1 n ! V. •!n!n f r.H ry N II n.11�• r II N fl I f� f� fl N N fl fl II I 14 N fl I� f1 fl v�r� f1 fJ nn N N Hymn ri N M N i p�p - 9a-�_ o$g$g$oo,og$gg gggg. . . .goopo $$88aR8 u ,€$ c .$ o oO .$ o $$8 0 8S 00,0 8 yMR.- - - - - - -- -_ �.a,. gya, 2 V b N�IDv�•o N Ol r r T- •omn.e n- •oo O n.o�b •O Yp $�•ob•o n b n O r Ip •O rlHr O O r O br p P. n r O •o m m n r O $ h ^Q—••po C O O d Ci fj G Ci O p G G G G O C G •c C C .� 0' m N G G m 0' m n N G O C I� q - N m P O b b v n nl d f I P W b O• w rmi P rt f O b r •D OO OO - > rl a II r� r r fl Ci OO Iry Iry T fi l 4 •i 'f'�w'}�. - N n 4 n n n •p 1p n r n O_ �! M_ _n n n_ _n T_ T_ O- - N ! IN I'I n II !1 T r fl b II m fl P p• n � i)vl C-ti}s I fl I fl rp1 n 4 4 n 4 4 V3 _ ri{ 1� fi n n b } :m4!4� '(6 4 26'C mm0mm m � 1 U V -rl U tJL pp.. o rill;- mmmm UiJ CiU UU-W UUU m W 00000 OOOOOO b L w UFw ��7 /0 ? Qyzy k ot FL ri r p a ;C1 2OA nn P T .NP nnW G C n ri v y Y.� G•_ O N T N O W^ N `O P e Y{ O^ O N N .q W F v n n- p .p N F N'. n q f '? b rq P .p 'yyL�� e4�vJ Ip P ri lV t` n n P CY h n •p N F n I� M 'O r •C n a P M t` F Y- rq .p p}; w P P P A' � W ri .0 F W ri r G P Oi r0 f{ fym .'t W n Cr W F R ry 7 fV n n II II II O V q a (. 1 1 II . r .Y, ; fi n fj N O �YY p..0 v. �I SIP =1 fl T_ O O. _ q - r• T _ II .G O_ W rn.{ O T r R' ci P Cl I � 1a �' W f{ n .p w N n n �p .p r .p `• b O 7W l! W I O- T W M q m 0 n y w T .yS P Lr rn'I U l a A tl •O O n O> P W A 1 '� '� 'O 16 O_ ad o d -i q P r �•\. ♦ I� n p W n C. O tl M1 OO P n n M - .r J q W �oo ::-+ Nbtl tltlF FF P tltltl N-OtlFgOw-nO tlbtltl tlP b?.n0 tltl tlbybF 1pP Ci oeo oc o p 000 c v- b . .� I N ( < f 2( ? ?. ?. m - rl �J illl VIN. o ' • �•,• A I 4. LL LL lTi. INi. 4 m T ? mlmmlm �I�m�ml Grid I ij% UU�,;, �..: `JIF OUC14 lu I W W W 00000 0 i I n 0 V • w• ' • � • •� � O � , 1 ' �] � T T y M N n GI Ibn ^ 'O Q f•1 � b rbn +`n'l"'f(. a m0 , 'i - a ��� y .. n..... T P ri � n +r PNq ni •p � � P in V� n :TP hi n - - rAnw T w w :r: T - - .ri %� •p llM1 .1 w T .q ar tc r m i n M M r•qw � M fl .gym rl T- 'nabYlM n- b •O = N i r 1 -r r.i TT s F t �^ U d: e n !•1 b m T d - C n rJ b ' d .� ' I M r I r` m - o0 ' -_- u• n T n n r � T T - M !I n n T 1^n U - e m ' . O -� a,�•V a n :bfl�ll ^ a ••O n r .O n •Y,f n r �P r V� rn•On q I C G 1 f-."'b 1 Y• rn V� qq V� rfl � fl •bn•O n q b�.'• 1fA O Q nn a .N..Iv Q T •O r ?, y ^ T T Y� T Y .n -1 m T q !C T T 'O b b b .D T •O r h T T f+; - •y i fA - ! 1 n dj .n b .j M c Y. T- ri b b n G e r 1-- r 1 eI - di.4 J, - ry m. - U Ob. w m w m w w m m w w w m DpV c c c o 0 o c o 0 o c c w w o C m m o 0 m o m m C C w c• m w G____ w w w m;Ja C m m C ww m w w m w m m w m w w m ;6 o c d C o C C o o C c c c � W s W:w .�. oo$ o oh `: $ �� rm^� w�,$ o o S O Grl b V G o'Qp` n 1� OY, n V Y, •r, b b o00pp rl n n b 0 b Qp b 000 r r 0 coo b b b �f -_ •'•� 0 0 V O V yy V V C j V Y Q ` 9 Q O,�0 O V QQO 8 V 8 0 0 a N 9 1 1 YN1 Yy V y N ] j m �+ G m m m m a` V m= V` _C �p jp U UV U Q m C C C _C mG .III. C, m m r y m Y� m m 0 _ U_ U__ U• __ V V U U, V V od rcn. I r1. U U T Vm_�Tn_n_ rr rrl!11W n q M1� � Y ? � � m � m b l•e (a U U� n V u- U U U U f•1 Z li_�J• I .1c UZ n I T Y TIT b n n r r I rl n n M n ,1 rl M - n fll rl rl rl rl v n pp�� q O'. � r1 n ,.:G• f I I - f l n I � LA I 10 0 Z Z Z Z iF,oz 3-6 g Al Oi G Obv A A ID v ^ r C r T M OC r(— rJ ad r.l �I M N O M m m pa� h Id r4 riT GI r^I ri, n b pj C M W M fi id4ai M ,° I.1 Vr pp�� — .- f.l qfi 8m /� r J�,4 N1O rD M M !I Q T M1 O Y .f Y; R ! N R R O M Y T' 'I p P T f I V h n Lp O� , �p O I� �p h r,YJ ' rC 1� rC b Yi .. __ -•1 fJ f1 =J fr m i O � � T I1 14 ! Yj N h Y Vr M -1 11MM Yr Ir R R ri OV 12- O R T _ _ • - Yr R V (fiR!{ ln f1 f1 n t iO p fllfl to fi O f1 fJ W W f{ - T V Y n iT n f� n � b f --—-- �i In 1� O: i a �,G - - .. rG t� n Yi✓r�� Vr Yr INr✓ �' • H — fi — !J — f•1 f{ to — — f-1 (J!Y — — f r !'r f l f I!V lJ IV !r 1 I•� fJ !J I I Yr fi rf ! � y f � Y I � Y f-r � fJ VrYr f•1 f� !J Yr fV Y yrry f� f•1r -' ti ����;'� 888888fi$88 $88858$8 �$888�8�88888 $8 �S8 ry M M n h rp �Ipp M Ii h ,Ipp �eIr Y •� V ry i h Y O b h w O m b w n n O n b f 1 n O h I° n- n h Irk b ,° Yr m M- fV M w fi . •`1\nN iM T' ,• I° 'G T b T b P �pf O q Yr M n N P b w M O. b m M n Yi IT G p f 1 T ,a b 1 IIpp O W T 8 gq M1 T m p r{ P O b b f� ('1 b �Tf O O. pp rrpp V P m R� 1m•1 - Oi ri ✓i io Oi �I fJ T - FJ (1 q R q M Ip A M M IO f.i rry M Yr rrf Cg w y T T I I rwT f` OC - �� `� a It f{ h iL o N n• L 0 0 r m Id � q m a ro ^I a a a Z" :° a ii rr 4 a off" rr .T b ;m q- I.} p r. V o o Op m m m� m O O a U�;,UaOa Y. Uw, O f�Uria -� r r rJ M M la, 4 4 -� rt r a _f. v q Lr —(.(YrP ;;mmmm_ n ° C I omo OCU �u4uu o_ ICY: flfa_ v' f.ruo as oa 000 mrl $ mcaca _mmmm rim �c;u�0. LUW o00 u �r !S (� n b ✓. i i T fJ .� le W. R O_ Ii fl Y. f V1 T � f1 fl II l r '1 f•1 fi Z f l i1 f-I _ f 1 M m R h R TAULF.S. SUMMARY OFSTORNI SIRWER DFRICN LINE rHom (DOWNSTREAM) To (UPSTREAM) D&SICN rLow cO 1,111E DIAMRTRR ru'E MATRRIAL , RT-I FOSSIL CRFOC INLET DTfCII MII IA 32.73 36 RCP MH IA Nil 16 .11.75 36 RCP MH 10 60i IC _ - 31.75 36 RCP MN IC Mil ID 32.75 36 RCP MH ID 6011E 32.75 34 RCP MH IE POW A 13.02 31 RCP MH IF. MII IF 19." 30 RCP M11 IF MII 10 _ 10.1A 30 RCP MH 10 POND 19.7.1 . 30 RCP ST-2 POND INLET 2A 23.34 30 RCP INLET 2A INLET 211 14.12 RCP _ _24 ST_3 POND A M14 3A - _ 37. W {± Rcr MII 3A MINNA 37 76 62 RCP Mll30 No 13C 5734 42 RCP MH 3C IMEf 3A _ _ Res 36 RCP M11 SC INIAT311 211.48 36 RCP STa PONUA _ INLFTiA 37,71 - i2 •-- RCP INLFTdA MII4A 43.23 SIA.181-LIP '• _ RCP MIIAA _ INLET68 IAA3 34 RCP N014A MI90 _ 71.8E _ W RCP MH 60 IF0Ef6C 14.93 27 RCP MH 6D INLET 4D 14A3 27 RCP ST-S POND R - M11 SA WAA 72 RCA Nil 5A _ _ 61H 511 _ IR7.1A _ T RCP . MH 30 _ _iNUeTSA_-_- _ Ii11' -- -li _. 26 _. RCP MHM INLET 511. MII 5C ?.� I110A2 � _.1 ffi _ RCP RCP Mil Sfl MH SC: MET SC 14.23 _ ±i RCP __ _... MH SC .__.. _ ..._ INIAT M, -_ 60I Sp IL'1 i137_lx _� _ _ 14n30 FIS_II' RCP _ MII Kt _ � Mil SD 137�y 60 RCP ._. _. __•_ _ H Y .._. _._ M._._._ .... MII 6RI St' _.. __ MHSF __,•___ MII SO __ __...._ Mil RF .__._._ ... ... IMF.T W. •-� MI7 SO _ 137.3R_ 60 RCP N 53. N lS 48•70 .... _. �!..._..._ M 3"f ._.._RCT � RCP RCP IMLT 56 _ 1t H - -_.v, ,V _ RCP _._.. MH SCI _,,. INLET NI _ 3/.33 ...__ b RCP ST-6 POND C , _-_ MI 16A - MH 6A _ _ --_ MII fill IS I.83 MCI' _ 131.C1 T(A - 4U- - - RCP 1604 mi _ MH6c _ 131.R.1 4l1 RCP M116C _ MH 6D �I]I.R3 _ GO RCP IM 61t - _ IMbT 6A 18." 2A RQ' MH 61)� _IM.ET 6R--� - IN.W _ _ 24 RCP _ MH GO Nil I GE -^ "As 48 _ RCP MH GE INLET 6C 4197 34 - RCP . _ INLET 6C FtrrURE M.F. .19.03 _-_ 36 RCP MH 6E INLET60 -� - Is," 27 RCP. .... MH 6E - _, 601 AF' MH CF MII6C 46.91 4.9736 M. __._ _.�.._. 3a Rd _ RCP RW GL' 1.50 IS _ RCP ....... .__.... _.. _.._.... Nil All .. .... ..._ _ -.. _.._. �8141,. .... _ _ MI141 __. INLET fill _..-_ •- _INIEf _ .. ... 60141 .. ... . INLI7 M' _ IM.L•T&r._....... .. IF03:T 614 _ ...:�cM__. f.il ._...._..____ _ 11.11 27.0 -. .... 70 .._ ...._.... 15 ..._..___....�_.._.___ ,10 • - !7 �- Rn' RCP RW RCP IMFf fill _ MII N _ _ M1161 _._. MII SAS WAS 18 IS _ _ RCP RCT _ INLET 61 ..... .....9AS IR RCP _ ST-7 _ POND D2 nmaui MF,• 41,19 M RCP ` i _ _ Sfi POND DI IMEf 10A _ INLET IOA _ • INLET 1011. _• _ A,211 _ _+7.211 _ 30 ^ _ 3.1 _ - .�_ -- 54 RCN �_ RCP --RCP ST-9 FOSSIL CREEK IM.EI'DITC11 Mf19A�•164.62 ._..__ ..__ MH 9A MII 90 Ni.4• 4 R(Y F1rM11Mi DET. POND' 21.311 =__._ _. RO .•Y.__. .. .._ kill go MI19C ,,.__•_�AU191) MH 4G _ MH 9F _ FMIRE DET. IH,INLI �. .... MI 190 •„ , _ ..... � 1141911 _ •• . MII91 12.1.12 IYAS 19.•IS 19A3 _ 5•,1 Vl 70 JO ._._V._----RCP 51 ..... � f1 54 _ RCP RCP RCP RCA' - _ MH 9C M119P � A419C• , ,., _ .. 6019E .�_ MH 9C . _ .. Nil on _ PAS 141.63 _ _ _ I03.W 103.63 RCP RCP RCP ... MH 91 ..._. 04191� MH 9P MI19M , ._ .. MII!q: _ POND ____RCN INLET 14A_ _._ MCCLFS.LANDS CREIS: . _..__. MH ISA _ MH ISR �..._ Fl?URE 10:T. M1M)._. ._ ._ .. MII 91 M9R ...._. .._. ,_ 111T111,tE UET. POND FU7'IRtL'DL•T. I'l')N11 _INLET 1411.__ _ MII 15A.IS If0 MH _ ..... 0.50 �..__.__.._.._._.�....._ RLIS M1.11 ._.. 77.YU _.-31_42._ 4.33 .__ _ `./ SI _..... }�.. ._. 2i r... J%.... .. __„•77,- _ RCP RCP Rn' Rl2' RCP - RCP RCP ._. _.. _. S7-M ST•IS . •._ _ B. , _ RCP �a2yOF Ll TST, INC CUNSULTINC ENCINEE'RS 13 lo767oo 738063_Eydl.xL APPENDIX D MAPS / MISCELLANEOUS 11lllllii:::et: nllll�`�11IIILIII11111� 1i::!I 11 i.!1111111 11111111111111111111111111t1111111111111111111111111 RIM III II .I -I Ir � . 1 I 'I`WINN wl11111 � , •,0110, ,INAll , �� VO I.I n: ■IIIII. .r Iw I�� III IUl i it►�: /IW'lf �h�®�� L■II�II ` fi m rg Ws Y■■ oul �m m NE Jn �y. .3eym `a @m9@ cape gLON pUG a _O 2 �m U ♦ B 9ww owx ale Lmm.) I.' 3 Ir - I I E ``\`.� e Ice co N e n^ 1� `1 ,1 °- rr sluhiN!�a - I 1 1 xci tir \ U 6maYm WLiM DI l� A I'� I;Iv,G:-1•t i __ �___ I I i i I D@gention \ IAOG. 14 7w N _ ♦ ��Irl .� ,�I�� Pf1hd "C" toa32 o-2,o awg[�-9a38 ,\ 1� ft ♦VG. 2 oa 1� BLDG ay11No iii s l I i I I 4 5-2Ox 0 IU ♦ ♦' `\BLDG. 6 pa n. ��illr \ i` i 1 I , `IT' Iv/> w. naa '♦1 ♦♦..w ww 04ww w, ♦ (I/,' _ \ I, 1' 1� I I¢ ION / L. ♦ ♦ . I ' I 1 1 ` \ I N' RCP -I iB.O. N - WI 2 p rIW-A-A Z 0_ �� rr I ♦ __ __ r ---r. 1 y ♦ A - wwr r-� (D W _ Q r _ ♦ A-10 ___ _` , ♦Y/r ♦ \��� `�_ ,\1 \ \ ``t H 1oo.3z o-ao cwM1seL zgfi Z C9 ♦ ___ 1 r ' //♦ r!> rl ♦ ♦ \ I\ a 7GB s-5.ox glna 1z Z / ?MiGlsi Aa au .I" K ♦ �1 /r %/ ♦ ,\\ `` \ `` 1 99.7 Q BLDG w> www1. ww.� ..w BLDG. .i/BLDG.'1LY�1 BID4�i 1\ \ \ \\\\ a Y Q. '_ -1' - ♦ .r - BLDG: 7 BLDG. 9 �ir�>/ 1, `\; 1`\, > O I W IM r °' 28' zd• RCP �� I I-g.o' wAu< 3 Q V -I SECTION B-B u S _ r xwez r-m e a CL _______ ___ _ ` Nsecti\ war r-z nam7E[ n a .... _. / 1 /' `\ IiMaR 6 LQIPIDD y------- \ O \� �` \ \\ `\ o 0 Date: oz/n/oz 1u m¢r ♦m>, ,1I C/li_- __ _-_-____-mraare aus /- L \ e'twe�a�ia'a om'"a..rz YiL I�L` 1/ 1 % a ID5116.7 \ \ \ 1` \ I rm maNpa,eamra SCALE: 1' = 30' ne No. 2e08-DIM01 DRIVFu i �« _. __--_-_. _---_._. _ 1 1 \ \\ 1 aaaau MAxM wu€ Spxt 1 0 1 gap Boain Area (aa) 0 2-Year (cfe) Coeff. of Perrn. 2-Year 0-100 Year (cfe) Coeff. oA Penn. 100-Ye q_1 0.38 0.6 0.5g 2.1 0.70 p_2 0.57 1.3 0.]0 4.3 0.88 A-3 OD7 1.2 0.47 4.1 O.S9 1.2 0.g9 3.9 0.86 1.5 0.59 5.1 0.74 p-g 0.45 a8 0.53 2.8 0.56 A-7 . D. 0.7 0.53 2.4 0.66 A-8 0.24 0.5 0.60 1.7 0.75 A-9 0.61 1.0 0.49 3.3 0.61 A-10, 0.5/ 1.1 0.66 3.7 0.83 A-11 0.57 1.0 0.53 3.5 0.65 A-12 0.37 0.6 0.54 2.1 0.68 A-13 0.49 0.7 0.48 7.4 O.fiO A-14 0.15 0.4 A-15 0.7] 1.0 0.43 3.3 0.54 I tc011919 aora, rwaa w yq�5Fp pi a'grM Bwa�,r�rrwrwr a�ar.awrrrrrrvrrrar ararrr.�rw y nDM l2ClpH 91i RNtE wrrrrr.rr.ws w.r.r.�YM .Mr.r.rr rvaa._r it v��.� Onn 510iY 5p2a —ar— ��aw.`4Y••wrwv�w..,'•r•.� ���rw•Y w'r••ir.rr� r�" i, rr rwr wfrrrr r_a«wrrE r�rY 51 xwcn 3W'LY�EiIKa 50EM1.��rr".wa".ati•w"w,µ.�wlrrHr..rr�.rway.w+w.l..ra.,.....'aww/r.«w,+•nwww.rr.rv.Ywwwn..wn•ww WOO? .Y�wlwi.wr�r _w•�y•'rr' rt�{wr.r�»Y.. •a.jr�.r.r.trw.w•..rw.rMr,,yy.lrlO,rrr.r,+. nMEW..r rr aa.rrwY.rRwr .�. rL•r -a EN131rG raar_rrr� � MY._.Y I.r .�. MryMnlr..rYr.r ..` •YYr wrwY (Ir M 1 Yy[ YUYY yyY•a row*oVR Wm ocuuuroR a"f �w �':"'�.,.^'� •••�rYra .. �..rr•'w�"•"ai`�w a rry rrrrwrw r,raw SIRFw BV£ �w.,�.w �i�'•� �• .wy r nMsa i'e'� anrRRl[R N oEawFOlalr"a"'•�rsairr.r...•'w..ur«,r'r•�•wa«�r.,.+�E.,4w+M.�.rr�yw.I,..F iiL/�.+rs«u".LSl-'�'rr."" ++.....,""r Rr•rr r^. ."."" �rvEl ixLn iF a915.D EIS Im�ELOort SEDV r moo r � • -I 1� fl — -- - ----1-�--- I " -�� i .'•�, .wry i A�A 1 _ I I J' I I I 1 `�• II M MA EASE lam, peg m�. Era ��- iB►91�:,►�, Mo��. ® y;•�_�•-mom.: �_ MEMO IN MATCHUNE SEE laaeaa alalwclwasllevmBmlrlwa+as npiar. _,omsey .eorvYs NSP«ACi/A n. FPR M,s W F�I,•YwwYw `�� ,,. I rvnam m m,mm m w•ra.m.. maem. ,e•oasrawwraA vcw � yp[Y y6 /.w.w "v wrm[ M— Willow QomooK Fell I 14 For Rs;co wmm ooly I. II' x z U O ccZ m O O co ¢ J W >J_ a 7 Z a ,Wr V Q Z cc \ _ City of FL Calling. Colorado Co«uBl�q weffi, T% n«n UTTIM PLAN APPROVAL t M rw1 paa aPPRD�ED: s c aml8a--OKY rr rn, pWe•v O'ena CXELXED Br � a.1.w a arl.ele mIRLr 0`i' ,ar D EC¢ED BY: p E"D)BY: p°• krrx 100 0 1m 1W D EMED BY: araNEMOD �}Y 93 OF 93 __— —�— vrr_Aaa�w�71a�111TAa\T .ito8 r MATCHLINE SEE SHEET 93 enm r..KF. LE40V I SAS. �'► now dRF m — v— XT FENCE Dow V S&" 3' N . STORM SENER AOEN.4R i PICPoSED . MY£IT COMWR =-- EMNG COKM C ® BMW DEUMDUM AG�Fi MW B BAWER r1 OESOx "W IER ixU7 PP 4945.0 MHM [LL"TON" d x y SEMY 1 �:k City of Ft. Collins, Colorado 7sT,M UTILITY PLAN APPROVAL D9R•un�rq llLnin«n 'a ren==D APMOVED: PiD-EPE-01�1 a1Y WmK! Dsl. CHECKED BY: w B- 71br k P�U! VW14 M1� CHECKED BY: �'� !�' Se,m�tl�! VU1fy V0.V CHECKED BY: IMY PVW k RauMWn aH Mn r CHECKED BY: 1}lnle EnPInMe 0.Ur °�' CHECKED BY: gto 92 of 93 ...... W% ,..•.• ..E! IH.A609.... ..