Loading...
HomeMy WebLinkAboutDrainage Reports - 12/16/1994FORT COLLINS UTILi rMS Final Approval ROPOO FINAL DRAINAGE REPORT FOR THE WINDTRAIL ON SPRING CREEK P.U.D. (SINGLE-FAMILY HOMES SITE) FINAL DRAINAGE REPORT FOR THE WINDTRAIL ON SPRING CREEK P.U.D. (SINGLE-FAMILY HOMES SITE) PREPARED FOR: City of Fort Collins Stormwater Utility 235 Mathews Fort Collins, CO 80524 r PREPARED BY: Lidstone & Anderson, Inc. 736 Whalers Way, F-200 Fort Collins, CO 80525 (LA Project No. CO-TST-18.2) April 6, 1994 LIDSTONE & ANDERSON, INC. Water Resources and Environmental Consultants 736 Whalers Way, Suite F-200 Fort Collins, Colorado 80525 (303) 226-0120 April 6, 1994 ' Mr. Basil Hamdan City of Fort Collins Stormwater Utility ' 235 Mathews Street Fort Collins, CO 80524 ' Re: Final Drainage Report for the Windtrail on Spring Creek P.U.D., Single -Family Homes Site (LA Project No. CO-TST-18.2) Dear Basil, Lidstone & Anderson, Inc. (LA) is pleased to submit herewith the revised Final Drainage Report for the Single -Family Homes portion of the Windtrail on Spring Creek P.U.D. for your review. The hydraulic and hydrologic evaluation of the site was performed in accordance with the ' specifications set forth in the City of Fort Collins Storm Drainage Design and Criteria Manual. Furthermore, the drainage design for the single-family development site was performed in accordance with the conditions defined in the "Preliminary Drainage Report for the Windtrail ' P.U.D." [LA, 1994]. If you have any questions regarding the procedures and results given in this report, please feel ' free to call us. Since ely, Christo er L. Doherty, EIT Project neer i Gre ry och, PE Senior Hnaineer ' CLDitlt Branch Office: Box 27, Savery, Wyoming 82332 TABLE OF CONTENTS I. INTRODUCTION ....................................... 1 1.1 Background ....................................... 1 1.2 Purpose and Scope of Study ............................. 1 II. EXISTING DRAINAGE CONDITIONS .......................... 3 III. FINAL DRAINAGE PLAN FOR THE WINDTRAIL P.U.D. TOWNHOIM SITE ................................ 4 3.1 General ........... ' ............................... 4 3.2 Proposed Drainage Plan ................................ 5 3.3 Hydrologic Analysis of Proposed Drainage Conditions ............. 7 3.4 Design of Drainage Improvements ........................ 10 3.4.1 General .................................... 10 3.4.2 Allowable Street Capacities ........................ 10 3.4.3 Curb Inlet Design 11 3.4.4 Storm Sewer Design ............................ 11 3.4.5 Drainage Swale Design ........................... 13 3.4.6 Spring Creek Trail Culvert Design .................... 13 IV. SPRING CREEK FLOODPLAIN CONSIDERATIONS ................ 15 V. EROSION CONTROL PLAN ............................... 17 VI. REFERENCES ........................................ 22 FIGURES/TABLES/APPENDICES/SHEETS FIGURES Figure 1.1. Vicinity Map for the Windtrail Development . .................. 2 i TABLE OF CONTENTS (CONTINUED) 1 1 11 TABLES Table 3.1. Summary of Design Flows at all Design Points . ................ Table 3.2. Summary of Developed Condition Discharges and Allowable Street Flows ............................... Table 3.3. Summary of Storm Sewer Pipe Design Requirements . ............ Table 5.1. Rainfall Performance Standard Evaluation . ................... Table 5.2. Effectiveness Calculations . ............................ . Table 5.3. Construction Sequence . .............................. . Table 5.4. Erosion Control Cost Estimate . .......................... APPENDICES Appendix A: Hydrologic Calculations Appendix B: Street Capacity Calculations Appendix C: Curb Inlet Hydraulic Design Calculations Appendix D: Pipe Hydraulic Design Calculations Appendix E: Swale Design Calculations Appendix F: Culvert Design Calculations Appendix G: Riprap Sizing Calculations Appendix H: Floodplain Documentation Appendix I: Erosion Control Plan Calculations Sheet 1: Overall Drainage Plan Sheet 2: Final Grading, Drainage and Erosion Control Plan Sheet 3: Final Details for Proposed Drainage Facilities L7 11 12 18 19 20 21 ii I. INTRODUCTION ' 1.1 Background ' The Windtrail P.U.D. is a proposed residential development located in the northwest quarter of Section 23, Township 7 North, Range 69 West, in the City of Fort Collins, Colorado. ' The proposed development would consist of both single- and multi -family dwellings. The single- family tract would be the second phase of the development. The development site is bounded on the west by the Hill Pond and Sundering Townhomes developments, on the south by an undeveloped tract, and on the north and east by the Spring Creek Trail. Along the north and east, the trail is located between the Windtrail development, and Spring Creek and Arthur's Ditch, respectively. This area is part of the Spring Creek drainage basin and, consequently, is subject to the conditions specified in the Spring Creek Master Drainageway Plan [EPI, 1988]. Figure 1.1 is a vicinity map of the project site. This report specifically addresses issues pertaining to the final drainage plan for the single-family portion of the development; as shown on Sheet 2, this site includes approximately ' 12.3 acres of the northern portion of the Windtrail area. The drainage plan presented herein conforms to the specifications and criteria defined in the, "Preliminary Drainage Report for the ' Windtrail P.U.D." [LA, 1994]. That report describes the overall drainage plan for the entire Windtrail development, accounting for all on -site and upstream runoff. As documented in the ' preliminary report, the overall plan meets the requirements of the Spring Creek Master Drainage Plan. 1 1.2 Purpose and Scope of Study This study defines the proposed final drainage plan for the single-family site within the Windtrail P.U.D. in the context of the conditions and requirements of the preliminary drainage plan [LA, 1994]. This plan includes consideration for all on -site and tributary off -site runoff, as well as 100-year flood levels in Spring Creek. Included in this plan is the design of all ' drainage facilities required within the single-family site. All drainage facilities designed herein meet the specifications and requirements set forth in the City of Fort Collins Storm Drainage ' Design Criteria and Construction Standards (SDDC) Manual. 1 ORADO, ST lord t ■I owns �UNIVE] tsiT ia En tat 81a A F Li -1 14-3 F-1 -k ILI!❑❑ $ ca a High Sch-, ar T PRI:�SP C h TrIT, B - 6666 ....... . ........----- - s 2� 50 ,OR I NG ERE Ato :Sprg Thv Lm RTHUR'S D ,jrk CRWO 'PAD NDT '777 atal 0 W w DE J z w r. > LLI 1 � `2 ti) rakes `�_�`-° ° ; ' al� E O"M Figure 1.1. Vicinity Map for the Windmil Development. 2 U. EXISTING DRAINAGE Since the Spring Creek Master Plan does not require detention for this site, all hydrologic calculations for this study were conducted for developed conditions. However, existing ' development and drainage patterns have a significant influence on the drainage facilities required for the Windtrail area. The relevant issues concerning existing conditions and their impact on the proposed development are discussed in the preliminary drainage report; they are briefly summarized below. With the exception of a strip of Shields Street to the south, all contributing subbasins are shown on Sheet 1 As documented in -the drainage report, off -site flows from Shields Street are generated along the east side of the street beginning at Shire Court and extending south for a distance of approximately 1,600 feet. Sheet 1 serves as an overall view which defines existing off -site conditions, identifies subbasins associated with the proposed development, and indicates the location of major drainage facilities. Sheet 2 displays more detailed information concerning on -site subbasin delineation, and the final grading and drainage plan. Existing drainage patterns within Windtrail are generally west to east, with an average existing ground slope of 0.6 percent. Off -site to the west of Windtrail, both Shire Court and Hill Pond Road convey undetained runoff from the Hill Pond and Sundering Townhome developments to the east end of the existing Hill Pond Road. At this point, the runoff reverts to overland flow as it commingles with off -site flows from the undeveloped area south of the site, before entering Arthur's Ditch. The runoff which enters Arthur's Ditch was historically tributary to Spring Creek, but the construction of a berm along the south side of the Spring Creek Trail through this reach directs flows away from the creek. A swale was designed in conjunction with the Hill Pond ' development to re-establish historical drainage patterns whereby all tributary runoff was conveyed to Spring Creek. However, this swale has not yet been constructed (according to Mr. Glen Schlueter of the City Stormwater Utility, funds for its construction remain in escrow) and, consequently, runoff is currently directed east to. Arthur's Ditch rather than north to Spring Creek. An existing low area within the Windtrail property, south of the proposed development ' footprint directs runoff to the east into Arthur's Ditch. The major swale designed in conjunction with the townhome development would follow an alignment different than that originally designed. However, the swale would serve the previously intended purpose, that is, conveying runoff from the Hill Pond area to Spring Creek, as well as conveying all Windtrail tributary on - and off -site flows to Spring Creek. The casement for the previously designed swale is being abandoned as part of the single-family homes site documentation; this is indicated on the plat. 3 ' M. FINAL DRAINAGE PLAN FOR THE WINDTRAIL ON SPRING CREEK P.U.D. 3.1 General The final drainage plan for the Windtrail P.U.D. single-family site has been developed to provide a drainage system that is compatible with flood conditions along Spring Creek. This has been accomplished by utilizing existing drainage patterns to the extent possible and providing the major outfall swale for the contributing drainage area to Spring Creek. Sheet 2 shows the grading and drainage plan for the Windtrail development. Included on the sheet are the proposed location of all storm drainage facilities; i.e., curb inlets, storm sewer pipes, and overflow swales. In addition, all facilities designed for the townhome development are also shown on Sheet 2. Typical cross sections for all swales, as well as riprap protection details are provided on Sheet 3. The major drainage facilities for the Windtrail property are two relatively wide, shallow swales running generally west to east along the south development boundary. These swales would collect 100-year runoff from: (a) the undeveloped tract south of Windtrail, (b) the Hill Pond and Sundering Townhomes developments, and (c) the Windtrail Townhomes development. The two swales would confluence east of Shadowmere Court, forming a single swale. As this swale turns to the north, at the east end of the Windtrail single-family area, it would collect 100- year flows from the east portion of the single-family development, which are to be conveyed along Gilgalad Way to a concrete sidewalk culvert at the end of the street. North of the sidewalk culvert, the major swale would also collect flow from the proposed backlot swale located along the north side of the single-family development. The total 100-year flow in the swale would then be conveyed through a concrete box culvert under the Spring Creek Trail. The culvert would outlet into HillPond on Spring Creek upstream of the Arthur's Ditch weir. Minor drainage facilities, in the form of curb inlets and storm sewers and a sidewalk culvert, would be required to provide drainage relief for: (a) the western portion of Gilgalad Way, which would outlet to Spring Creek via inlets at Design Points #7a and #7b and storm sewer; and (b) the eastern end of Gilgalad Way, which would outlet to the major drainage swale by way of a concrete sidewalk culvert at Design Point #8a. The Rational Method was used to determine both 2- and 100-year flows for the subbasins indicated on Sheets 1 and 2. A detailed description of the hydrologic analysis is provided in Section 3.2. It is noted that since the Spring Creek Master Plan does not require detention for this development site, the hydrologic analysis was conducted for developed conditions only. The resulting 100-year runoff values were used to define design discharges at design points identified on Sheet, 2; i.e., along streets, at low points, and along the major drainage swales. 4 ' 3.2 Proposed Drainage Plan A qualitative summary of the drainage patterns within each subbasin and at each design point is provided in the following paragraphs. Discussion of the detailed design of drainage facilities which are introduced in this section, is included in Section 3.4. It is noted that compared to the Preliminary Drainage Report, Subbasins H, I and J have been subdivided in order to more accurately assess design flows within the single-family site. All changes in hydrology caused by the subbasin modifications are incorporated herein. For discussion of the runoff from Subbasins A through G, refer to the Preliminary Drainage Report and the Final Drainage Report for the Townhomes Site. Runoff from these subbasins would be tributary to the major drainage swale, which would be located on the southern perimeter of the single-family site. It is noted that runoff generated on the back of the lots on the southern portion of the single-family development would be included as a part of Subbasins E and G. Runoff from Subbasin Hl (Wilderland Townhomes) would be conveyed easterly to Gilgalad Way at the western end of the single-family development (Design Point #6). All flow would then be conveyed along the northern half of Gilgalad Way to the sump area associated with Design Point #7b. Although this area is currently undeveloped, it has been platted for townhome development. Therefore, the site was assumed to be fully developed for all hydrologic calculations. Runoff from Subbasin H2 (Wilderland Townhomes) would be conveyed easterly to the backlot swale at the western end of the. single-family development (Design Point #6a). All flow would then be conveyed in the Swale along the northern boundary of the single-family site to the confluence with the major swale at Design Point #8b. Subbasin Il is the local area tributary to the southern half of Gilgalad Way on the western half of the single-family development. Runoff would be conveyed as street flow to the low point associated with Design Point Va. Both the 2- and 100-year discharge would then be diverted across the street to Design Point #7b by way of a curb inlet and storm sewer. Subbasin 12 is the local area tributary to the northern portion of Gilgalad Way on the western half of the single-f� devopmnt. Runoff would be joined by the flow from Subbasin 1 at�tlieJlow point in the street associated with Design Point #7b. Street flow would be collected by a curb inlet operating in a sump condition. All discharge from Subbasins HI, I1 and 12 would then be conveyed to Spring Creek by way of a reinforced concrete outfall pipe. 61 1 Runoff from Subbasin 13 would be directed to the backlot swale by overland flow from the back of the northern lots and the open space area alongside of the Spring Creek Trail. Flow from Subbasins H2 and 13 would then be conveyed easterly in the swale toward the major drainage swale. aA J 0• P. 6,6 - Subbasin Ji is the local area tributary to the eastern half of Gilgalad Way within the single-family development. Runoff would be conveyed by way of the street and crosspans to the low point at the east end of the cul-de-sac, which is associated with Design Point #8a. The 2-year discharge would be diverted to the major swale by way of a sidewalk culvert; the portion of the 100-year flow not diverted by the sidewalk culvert would overtop the curb and flow directly into the Swale. Subbasin J2 is the local area tributary to the eastern portion of the backlot swale. Runoff from the basin would be conveyed to the swale by overland flow. Flow from Subbasins 112, 13 and J2 would then be conveyed to the major swale at the northeast comer of the development, associated with Design Point #8b. As shown on the drainage plan presented on Sheet 2, two curb inlets (8- and 12-foot lengths) would be placed at Inlets #3A and #3B, respectively. These inlets would operate in a sump condition and have sufficient capacity to pass the 100-year discharge at Design Points #7a and #7b. Flow collected by the inlets would be conveyed by a storm sewer pipe to Hill Pond on Spring Creek. This RCP would vary in size from 21- to 30-inches. This system is designed to carry runoff from both the 2- and 100-year events without exceeding street criteria. In the event that the storm sewer system would become clogged, flow would overtop the high point in Gilgalad Way east of the inlets and continue down the street to the major swale. The sidewalk culvert located at the eastern end of Gilgalad Way would have a length of 12 feet. It would convey the 2-year runoff directly to the major swale. A portion of the 100- year discharge would be conveyed by the sidewalk culvert; the remaining discharge would overtop the curb and flow directly into the Swale. The width of the overflow would be 50 feet for the 100-year event; the entire width of the 100-year overflow would be contained within the easements provided. In order to facilitate movement of runoff through the street system, (Moot wide cross pans are specified along Gilgalad Way at the location of the eastern cul-de-sac. In addition, a high point has been designed in the stubbed out street to the south of Gilgalad Way (as shown on Sheet 2) to prevent 100-year flows along Gilgalad Way from exiting the roadway at that location. Ci 1 3.3 Hydrologic Analysis of Proposed Drainage Conditions The Rational Method was used to determined both 2- and 100-year peak runoff values for each Subbasin A through J as shown on Sheets 1 and 2. As shown on the City of Fort Collins Zoning Map, the entire tributary drainage area is zoned "RP". This zoning designation is commensurate with a rational method runoff coefficient of 0.50; this coefficient was adopted for the single-family portion of the proposed development. For the areas within Sundering Townhomes, Hill Pond, Wilderland and Windtrail which currently (or would) consist of multi- family dwellings, a slightly more conservative runoff coefficient of 0.60 was adopted. A runoff rcoefficient of 0.20 was used for the undeveloped portions of Subbasins A, F and G. For all off -site subbasins, including both developed and undeveloped areas, the requisite geometric parameters were taken from the City of Fort Collins' topographic aerial photograph shown on Sheet 1. The geometric parameters for all on -site subbasins were defined based on the proposed grading plan shown on Sheet 2. The undeveloped area to the south of the Windtrail property is part of the Centre for Advanced Technology, Special Improvement District (SID). A drainage study for this SID was conducted in 1987 by RBD Inc. The associated drainage report indicates that detention is proposed for the area of Subbasins A, F and G, south of the Windtrail property line. In the RBD report, detention was designed at a conceptual level to detain the 100-year developed condition runoff while releasing at the 2-year historical runoff rate. The portion of the RBD ' drainage report, including the final drainage plan map, which documents the runoff and detention calculations for this area (Subbasin E in the RBD report) was included in the appendix of the preliminary drainage report. rAll design calculations for the Windtrail drainage facilities were based on the 100-year existing condition runoff from the undeveloped area to the south. This ensures that the facilities would have adequate capacity both prior to and after development of Subbasin E of the Centre for Advanced Technology. Before development, the area would contribute the undeveloped 100- year runoff during the 100-year storm; after development, the area would contribute flow at the 2-year undeveloped rate during the 100-year storm (with the implementation of detention as designed). As shown on Sheet 1, off -site flow is being contributed to Subbasin B from the east side of Shields Street to the south. The magnitude of flow entering Subbasin B is impacted by the interception capability of two existing curb inlets. Documentation of the flow which passes the inlets was provided in the preliminary drainage report. As noted in that report, it was determined that the existing inlets would provided 100 percent interception of the Shields Street flows associated with the 2-year event; for the 100-year event, 3.6 cfs would pass the inlets. As stated above, the Rational Method was used to conduct all hydrologic analyses for the Windtrail Townhomes Site. The Rational Method utilizes the SDDC Manual equation: Q = CfCIA (1) A. where Q is the flow in cfs, A is the total area of the basin in acres, C f is the storm frequency adjustment factor, C is the runoff coefficient, and I is the rainfall intensity in inches per hour. tThe runoff coefficients were assigned as described above. The frequency adjustment factor, Cf, is 1.0 for the initial (2-year) storm and 1.25 for the major (100-year) storm. The appropriate rainfall intensity information was developed based on the rainfall intensity duration curves m the SDDC Manual (SDDC Figure 3-1 which is included in Appendix A of this report). To obtain the rainfall intensity, the time of concentration must be determined. The following equation was utilized to determine the time of concentration: Ito=t;+tt (2) where t C is the time of concentration in minutes, t i is the initial or overland flow time in minutes, and t , is the travel time in the ditch, channel, or gutter in minutes. The initial, or overland flow time was calculated with the SDDC Manual equation: ' t i = (1.87(1.1 - CC f)L0.5j1(S)0.33 (3) where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the raverage basin slope in percent, and C and C f are as previously defined. This procedure for computing time of concentration allows for overland flow as well as travel time for runoff ' collected in streets, gutters, channels, pipes, or ditches. All hydrologic calculations associated with Subbasins A through J are included in Appendix A. Table 3.1 provides a summary of the design flows for all design points within the single-family development and the off -site tributary drainage area. In defining design flows for the 100-year event for the inlets and pipes along Hill Pond Road and the major drainage swale, the 3.6 cfs contribution from Shields Street was added, where appropriate, directly to the runoff values resulting from the hydrologic analysis. It is noted that the design of the major swale and the box culvert under the Spring Creek trail were designed in conjunction with the townhome development. The design of these facilities assumed that the entire runoff from Subbasins H and I would be tributary. Since a portion of these subbasins would be diverted directly to Spring Creek, the design discharge for these facilities is conservatively high. 8 Table 3.1. Summary of Design Flows at all Design Points. 5 A-G 65.6 0.35 1.25 3.65 28.7 108.0) 6 HI 2.5 0.60 2.6 7.0 3.9 13.1 6a H2 1.1 0.60 2.9 7.0 1.9 5.8 7b I1 1.4 0.50 2.5 7.0 1.8 6.1 7b 12 1.5 0.50 2.5 7.0 1.9 6.6 7b H1,12 4.0 0.56 2.5 7.0 5.6 19.6 7 H19 Il, 12 5.4 0.55 2.5 7.0 7.4 26.0 7c I3 1.8 0.50 2.2 6.5 2.0 7.3 7c H2,I3 2.9 0.53 2.2 6.5 3.4 12.5 8a 11 3.8 0.50 2.1 6.1 4.0 14.5 8b J2 3.0 0.50 2.0 5.8 3.0 10.9 8b H22 13, J2 5.9 0.52 2.0 5.8 6.1 22.2 8 A-G,H2,I3, J 75.3 0.37 1.25 3.65 34.8 130.7(`) (a) Includes 3.6 cfs runoff from Shields Street. 0 1 3.4 Design of Drainage Improvements 11 3.4.1 General The proposed drainage plan for the Windtrail on Spring Creek Site consists of a combination of street flow, curb inlets, a sidewalk culvert, storm sewers, swales and a box culvert. Final lot grading details will ensure that each lot is graded and landscaped to provide positive drainage around and away from building foundations. In addition, final grading must ensure that all finished floor elevations are a minimum of 18 inches higher than the adjacent base flood elevations indicated on the current FEMA mapping. The base flood elevations are shown on Sheet 2. Within the site, drainage easements have been provided where necessary to ensure that overland flows can be collected and conveyed through well-defined drainage swales or storm sewers. Reference is made to the plat, where all easements are identified. 3.4.2 Allowable Street Capacities An analysis of Gilgalad Way was performed in order to determine the allowable flow L capacity. Gilgalad Way is considered a local street. It incorporates a roadway width (flowline to flowline) of 36 feet and is further characterized by a 2 percent cross slope and a City of Fort Collins standard 4.75-inch rollover curb. Allowable gutter flows and maximum street encroachments for both the initial and major storms were estimated and evaluated based on the specifications set forth in the SDDC Manual. Allowable street capacity calculations were made at three locations along Gilgalad Way: (a) directly west of the low point associated with Design Point Va; (b) directly east of this same low point; and (c) at the eastern end of Gilgalad Way. During the initial storm, runoff was not allowed to overtop either the curb or street crown. Per the SDDC Manual, maximum street runoff criteria during the major storm event limits the depth of water over the crown to 6 inches for local streets. tA normal depth analysis of the allowable street capacities was performed using HEC-2 [U.S. Army Corps of Engineers, 19911. The single cross section, normal depth option was used to find the flow rate associated with the allowable depth. The results of the street capacity analysis are summarized in Table 3.2. Street capacities would not be violated at any location on Gilgalad Way for either the 2- or 100-year events. All calculations associated with the street capacity analysis, including the HEC-2 results, are provided in Appendix B. 10 Table 3.2. Summary of Developed Condition Discharges and Allowable Street Flows. Developed Conditum Altowabie Street Flow I:orat<on Side of Dtscltarge (cfs) {cfs} 51 .. ::> ..:.::..... . ....... . Z Year 1OQ-dear. 2:Year' Oeat Gilgalad Way West South 1.2 4.1 6.4 of Inlets # 3A and 3B 180 North 4.6 16.2 6.4 Gilgalad Way East of South 0.6 2.0 2.3 Inlets #3A and 3B 160 North 1.0 3.4 2.3 Gilgalad Way West South 4.6 of Inlet #4 4.0 14.5 118 North 4.6 (a) Half -Street Capacity (b) Full -Street Capacity 3.4.3 Curb Inlet Design As indicated in the previous section, on -grade curb inlets would not be necessary at any location on Gilgalad Way in order to meet street capacity requirements. Two curb sump inlets and one sidewalk culvert would be required within the single-family site. Both sump inlets would be located at the low point on Gilgalad Way, associated with Design Points #7a and #7b. An 8-foot inlet would be required on the southern side of the street (Inlet #3A). The inlet on the northern side of the street would have a length of 12 feet (Inlet #3B). A 12-foot sidewalk culvert would be required at the low point at the eastern end of Gilgalad Way (Inlet #4). Per SDDC Manual guidelines, the theoretical capacities of the curb inlets were reduced by 15 percent, which is based on the length of each inlet. All inlet locations and sizes are shown on Sheet 2. The calculations associated with the curb inlet design task are provided in Appendix C. 3.4.4 Storm Sewer Design The capacity of the pipe flowing from Inlet #3A to Inlet #3B across Gilgalad Way was designed for the theoretical capacity of Inlet #3A during the 100-year event. The pipe from Inlet 11 #3B to the outlet in Spring Creek was sized based on the total 100-year discharge at Design Point #7. The initial design of all storm sewer pipes was accomplished using Manning's equation and assuming full pipe flow conditions. All storm sewers were designed as reinforced concrete pipes (RCP's). The required minimum invert slope for all pipes within the single-family site is 0.8 percent. . A detailed hydraulic analysis and hydraulic grade line determination of the final pipe design was performed using the UDSewer pipe hydraulic analysis model, developed by the Urban Drainage and Flood Control District. The downstream tailwater elevation was assumed to be commensurate with 100-year water surface elevation in Spring Creek at the outlet of the pipe system. The results of the analysis indicate that the hydraulic grade line in the pipe system is below the ground elevation at all manholes and at Inlet #3B. The hydraulic grade line at Inlet #3A would be 0.1 feet above the flowline elevation which is lower than the ponded water surface at the inlet. The hydraulic grade line would be above the pipe crown at all locations within the tstorm sewer. Therefore, all pipe joints must have a press application which complies with ASTM Standard 361. It is noted that the energy grade line is below the ponded water surface elevation at both inlets. A summary of the final design of the storm sewer is given in Table 3.3. In addition, the hydraulic grade lines computed by this analysis are shown on the Utility Plans. All storm sewer design calculations are provided in Appendix D. Table 3.3. Summary of Storm Sewer Pipe Design Requirements. ReacSa Descnptan Pipe Drameter Mutimum 51opee Materral ......... .:............:.. es ...__..........._........._ ...................................................__...................._. �$)< ... ........... ._....... :.::............: Inlet #3A to Inlet #3B 21 1.0 14.0 RCP Inlet #3B to MH #3-1 27 0.8 26.0 RCP MH #3-1 to Outlet 30 0.8 26.0 RCP t At storm sewer outlet #3, (shown on Sheet 2), riprap outlet protection is proposed to reduce the potential for erosion. The riprap was sized based on procedures given in the Urban Storm Drainage and Criteria Manual and the SDDC Manual. All outlets are designed as buried riprap installations using Class 6 riprap (City of Fort Collins SDDC Manual gradation). Details and specifications for all storm sewer outlet protection installations are provided on Sheet 3. All riprap design calculations are given in Appendix G. 12 i�. t, 3.4.5 Drainage Swale Design MBased on the design discharges shown in Table 3.2, sizing of the backlot swale was accomplished assuming normal flow conditions. In order to conform to the overall site grading, the swale was designed with a 0.7 percent bed slope and depths varying from 1.3 to 1.4 feet; side slopes are specified at 4H:1V. Flow velocities associated with the major storm would be relatively small (less than 3 fps), thereby normally requiring either a trickle channel or runderdrain. However, a variance is requested to not include a trickle channel or underdrain in order to maintain a natural appearance along the northern perimeter of the site and enhance wildlife habitat. The intention is to encourage wetland establishment in the swales. Correspondingly, a Manning's n value of 0.060 was used in the design of the swales. For these conditions, the bottom width of the backlot swale would vary from 2 to 5 feet, with a 100- year flow depth of 1.2 feet. A summary of swale design results is provided on Sheet 3. All swale design calculations are given in Appendix E. Class 6 riprap protection would be placed at the confluence with the major swale at the northeastern corner of the development. Sizing calculations showed that protection was not necessary at the confluence; nevertheless, protection would be placed as a precautionary erosion control measure. Riprap design calculations are given in Appendix G; a detail of the riprap protection is shown on Sheet 3. 3.4.6 Spring Creek Trail Culvert Design Culverts would be required at two locations across the swales in the vicinity of the single- family development. First, a culvert would be required at the north end of the major swale to pass flows under the trail and into the Spring Creek pond. The double 12'W x 4'H reinforced concrete box culvert was designed in conjunction with the townhomes development. The design of the culvert assumed that the entire runoff from Subbasins H and I would be tributary. Since a portion of these subbasins would be diverted directly to Spring Creek, the design discharge for these facilities is conservatively high. It is noted that the 100-year water surface elevation in Spring creek at the culvert outlet would be 4998.0 (per the revised FIS, 1994). This would represent an increase of 0.6 feet compared to the downstream water surface elevation used in the design calculations. The culvert was re -analyzed using the revised discharge and tailwater conditions. The results of the analysis indicate that there would be a minimum of 1.2 feet of freeboard in the major swale at the upstream end of the box culvert. A second culvert crossing would be required for the backlot swale at the central open space easement along the north side of Gilgalad Way, to provide access to the bike trail. The design for the culvert was performed using the HY-8 computer model. Results of the culvert V 13 I sizing indicated that a triple 18-inch RCP culvert installation would be required to pass the 100- year flow. This culvert design was based on a maximum headwater depth of 1.5 feet, to ensure that the entire flow would be contained within the swale. With this configuration, sufficient freeboard is provided to ensure an additional one-third capacity for the culverts during the 100- year event. Riprap would be placed at both the upstream and downstream ends of this culvert. Riprap sizing calculations were performed in accordance with the design procedures given in the SDDC Manual. The sizing analysis indicates that an installation of buried Class 6 rock will be required. All culvert design calculations are provided in Appendix F; Rprap calculations are provided in Appendix G. IIV. SPRING CREEK FLOODPLAIN CONSIDERATIONS tThe Spring Creek 100-year floodplain boundary, as delineated on the Flood Insurance Rate Map (FIRM) dated 1979, is shown on Sheets 1 and 2. This is the floodplain boundary currently recognized by FEMA; however, it is associated with 1979 hydrologic and channel conditions. It is noted that several modifications have been made to the channel since the floodplain was mapped for the 1979 FIRM. As a result, the floodplain delineations are no longer indicative of existing channel conditions. The 1979 FIRM indicates that the flood elevation at the location of the proposed box culvert is approximately 4997.5 feet. It is expected that FEMA will approve a revised floodplain boundary in the spring of 1994, prior to the development of the single-family phase of the Windtrail P.U.D. The 100-year floodplain boundary and base flood elevations associated with the revised Flood Insurance Study is shown on Sheet 2. The results of the analysis in the revised FIS indicates that the floodplain would wrap around the east end of the Windtrail development and pond to an elevation of approximately 4998.0 feet at the south end of the development. There is a drop structure located on Spring Creek near the western end of the development (see Sheet 1). The results of the Master Plan analysis indicate a water surface elevation of 5001.3 and 5003.3 feet upstream and downstream of the drop structure, respectively. Topographic mapping for the area indicates that the southern bank elevation is at least 5006 feet near the toe of the drop structure and 5008 feet on the upstream side. This would provide a minimum of 4.7 feet of freeboard at the western end of the development. Additional discussion and documentation of the Spring Creek floodplain was included in the Preliminary Drainage Report for the Windtrail P.U.D. [LA, 1994]. In order to accommodate the potential 100-year water surface elevation at the eastern end of the development, proposed grading within the future single-family development, as shown on Sheet 2, specifies a minimum ground elevation of 5000.0 feet along the lot boundaries at the eastern end of the development. It is noted that final grading throughout the development must ensure that all finished floor elevations are a minimum of 18 inches higher than the adjacent base flood elevation. The grading plan would provide a minimum of 2 feet of freeboard between the individual lots and the developed condition 100-year water surface elevation. The floodplain mapping for the revised FIS indicates that the eastern portion of the single-family development would be in a fringe flood area (Zone AE). As previously noted, the grading for the site will ensure that all finished floor elevations will be a minimum of 2 feet above adjacent base flood elevations. Therefore, all houses within the single-family development site will be removed from the contiguous floodplain. A floodplain use permit is requested to fill and build residential structures in the flood fringe area as delineated on the FIS floodplain mapping. 1 15 If the 100-year storm occurs in the area tributary to Windtrail without extending throughout the entire upstream Spring Creek watershed, the swale system has been designed to convey the local 100-year flow while providing freeboard in the form of additional capacity of at least one-third of the 100-year discharge. During the 100-year event along Spring Creek, the maximum ponding elevation adjacent to the downstream end of the development is 4998.0 feet. Under this condition, the proposed swale would act as additional storage for the pond with a maximum standing water surface elevation of 4998.0 feet. 16 V. EROSION CONTROL PLAN The Erosion Control Plan for this site was designed in accordance with the criteria set forth in the SDDC manual. Transportation of sediment from the site would be controlled by the implementation of a silt fence around the perimeter of the site at the start of construction. Inlet filters would be installed shortly after construction on all proposed inlets to trap any sediment which may be transported prior to seeding. It is also noted that the site would be reseeded and mulched immediately following final grading of the swale. Because of the relatively flat slope of the proposed swale, any sediment produced on the construction site is likely to be deposited in the swale. Straw bale barriers would be added at the downstream end of the backlot swale to further inhibit the motion of sediment toward Spring Creek. To ensure that any sediment collected in the swale would not reduce the capacity of the swale, the final ground surface would be marked by stakes at two locations within the backlot swale as an indicator of sedimentation in the channel. If there is any sediment accumulation in the channel, the contractor would be required to regrade the swale to restore the designed final ground slope. The contractor would be responsible for maintaining all erosion control facilities for as long as they are required. In addition, erosion control facilities placed in the major swale for the townhome development shall be maintained in conjunction with the single-family development. Erosion control effectiveness calculations were performed for Subbasins I and J within the Windtrail single-family site. Within Subbasins I and J, sediment will be controlled by: (a) a silt fence along the southern, northern and eastern perimeters of the development; (b) inlet filters on all proposed inlets and sidewalk culverts; (c) reseeding and mulching of the single- family site; and (d) straw bale barriers in the major and backlot swales. It is noted that the erosion control effectiveness calculations are greater than the performance standard for the overall development. Wind erosion within the Windtrail single-family site would be controlled primarily by soil roughing which would be applied in a southwest to northeast direction, perpendicular to the prevailing wind direction. Existing trees to the west and northwest of the site would further �i reduce the local wind velocities and wind erosion potential on the site. Tables 5.1 and 5.2 detail the rainfall performance and effectiveness of this Erosion Control Plan, respectively; associated calculations can be found in Appendix H. Table 5.3 outlines the construction sequence for the Erosion Control Plan; this table is also included on Sheet 2. The erosion control cost estimate for the single-family development is provided in Table 5.4. The cost estimate results indicate that a total security of $12,000 would be required for the single-family site. 17 I Table 5.1. Rainfall Performance Standard Evaluation. PROJECT: Windtrail Single -Family (CO-TST-18.2) STANDARD FORM A COMPLETED BY: CLD DATE: 3/3194 DEVELOPED ERODIBMM Asb Lsb Ssb Lb Sb PS SUBBASIN ZONE (acre) (feet) (%) (feet) M M 11,12 2.9 530 1.5 13, J2 4.8 1380 0.9 J1 3.8 880 0.7 I, J 11.5 1000 1.0 78.3 18 I I I 11 I I Table 5.2. Effectiveness Calculations. PROJECT: Windtrail Single -Family (CO-TST-18.2) STANDARD FORM B COMPLETED BY: CDL DATE: 3/3/94 EROSION CONTROL C-FACTOR P-FACTOR COMMENT METHOD VALUE VALUE STRAW BALE BARRIER 1.00 0.80 GRAVEL INLET FILTER 1.00 0.80 SILT FENCE 1.00 0.50 ASPHALT/CONCRETE PAVEMENT 0.01 1.00 RESEED & MULCH 0.06 1.00 MAJOR PS SUB AREA CALCULATIONS BASIN (%) BASIN (AC) (CALCULATIONS ARE SHOWN IN APPENDIX) 78.3 11,12 2.9 Gravel Inlet filter = 100% Pavement 1.3 acres (45 %) Reseed/Mulch = 1.6 acres (55 %) Weighted C Factor = [(1.3 x 0.01)+ (1.6 x 0.10)]/2.9 = 0.06 Weighted P Factor = 0.80 Effectiveness = [1 - (0.8 x 0.06)] x 100 = 95.2% I3, J2 4.8 Straw Bale Barrier = 100% Silt Fence = 1.1 acres (23 %) Reseed/Mulch = 100% Weighted C Factor = 0.10 Weighted P Factor = [(1.1)(0.8)(0.5) + (3.7)(0.8)1/4.8 = 0.71 Effectiveness = [(1 - (0.10 x 0.71)] x 100 = 92.9% Jl 3.8 Gravel Inlet filter = 100% Straw Bale Barrier = 100% Pavement 1.2 acres (32%) Reseed/Mulch = 2.6 acres (68 %) Weighted C Factor = [(1.2 x 0.01)+ (2.6 x 0.10)]/3.8 = 0.07 Weighted P Factor = [(3.8)(0.5)(0.8)]/3.8 = 0.40 Effectiveness = [1 - (0.7 x 0.40)] x 100 = 97.2% I, J 11.5 Overall Effectiveness E = 1(2.9 x 95.2) + (4.8 x 92.9) + (3.8 x 97.2)l 11.5 E = 94.9% I 19 Table 5.3. Construction Sequence. Project: Windtrail Single Family P.U.D. Standard Form C Sequence for 1994 Only Completed By: KGS Date: 3/7/94 Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. Year 94 Month Apr May Jun Jul Aug Sep Oct Nov Dec Demolition Overlot Grading Wind Erosion Control: Soil Roughing Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other Rainfall Erosion Control Structural: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other Vegetative: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation Nettings/MatsBlankets Other Structures: Installed by CONTRACTOR Maintained by OWNER Vegetation/Mulching Contractor To Be Decided by Bid Date Submitted: 3/7/94 Approved by City of Fort Collins on FA Table 5.4. Erosion Control Cost Estimate. Client: Project: Wmdtrail Single -Family Job No.: CO-TST-18.12 By: CLD Date: 3/4/94 Sheet 1 of 1 No. Item Quantity I Units Unit Cost Total Comments EROSION CONTROL i Reseed/Mulch 12.3 A.C. $ 1,742.40 $ 21,400.00 $0.04 per S.F. 2 Silt Fence 2,100 L.F. $ 3.00 $ 6,300.00 3 Gravel Inlet Filter 3 EA. $ 300.00 $ 900.00 CONSTRUCTION COST $ 28,600.00 1.5 X (CONST. COST) $ 42,900.00 TOTAL SECURITY $ 42,900.00 CITY RESEEDING COST 1 Reseed/Mulch 12.3 1 A.C. 1 $ 649.04 1 $ 8,000.00 $0.0149 per S.F. CONSTRUCTION COST $ 8,000.00 1.5 X (CONST. COST) $ 12,000.00 TOTAL SECURITY $ 12,000.00 21 VI. REFERENCES 1. Engineering Professionals, Inc., March 1988. "Spring Creek Master Drainageway Plan". Prepared for the City of Fort Collins. ' 2. Lidstone & Anderson, Inc., January, 1994. "Preliminary Drainage Report for the Windtrail P.U.D.". Prepared for City of Fort Collins, Stormwater Utility, Fort Collins, ' Colorado. ' 3. Lidstone & Anderson, Inc., February, 1994. "Final Drainage Report for the Windtrail P.U.D., Townhomes Site". Prepared for City of Fort Collins, Stormwater Utility, Fort Collins, Colorado. 4. National Flood Insurance Program, July 16, 1979. "Flood Insurance Rate Map for the City of Fort Collins, Colorado, Community Number 080102, Panel Number 0003 and ' 00048. U.S. Department of Housing and Urban Development, Federal Insurance Administration. ' 5. RBD, Inc., February, 1987. "Drainage Report for the Centre for Advance Technology S.I.D." ' 6. U.S. Army Corps of Engineers, Hydrologic Engineering Center, September 1990. "HEC-2 Water Surface Profiles". ' 22 APPENDIX A HYDROLOGIC CALCULATIONS Lidstone & Anderson. Inc. • 5fe -Ple. fiA 42,- fbps r-fDo5ilti, &, 7ooj 8 OWNER -PROJECT By DATE PROJECT NO. Wind {rill CLD OOT7_16 FE TURE CHECKED BY DATE SHEET OF -Tto � CZ NX) rig Qz Mi zi- n 4 t ! M m s V'N VN czv- V) V, <j__ ci'l 40 c-- rz flzs CIS TO Vo rz6 1A �G cis VN cr cis 40 kA Cr 3 -JJ -7Zr- M i Q) t V\ %p C76 ! 4- r3 10 O O O eZ) V(R u e-Q\l 09 a o V C6 C-6 zb ci C16 4z, �Ilo4zM�;'!;!�i8 lid;, --- Tt "-) JQ ik b 1 Lidslone & Anderson. Inc. OWNER —PR J BY DATE PROJECT NO. WMJ40AII Sln le F4mll CL7) I- CDT5T18.a FEATURE Ra�onu(Mefl�c� G�Icuia��t5 CHECKED BY DATE SHEET OF f� a q CIS _ 4 T � M � - � ; vl 1 ' V) = g O t n _ \ 1 00 V� V1 c-s v'S vi— o V) s V-\ IL N ? O r T cam( cad C6 nt c�-c K �'6 c� c�6 C6 C_ p V O -13 4O O 46 O O O o O 'L o O p O 1 1 Q 1 Q O 1 u ci C15 ri CIS , 0 c ci vi cri H H ►� = H �-► z h vs 9 ra 1�— r-D— s F,.jT� co c It W jfro,II ru« �•.•r.•. w .•.rw.a., e...rnr. CLI) I q q j I Co%STiC-z? FEATURE 5 (h(70 Cu K. 4ia I CHECKED BY 1 Me t c-J DATE I SHEET I k 5 OF 9 l �VU�'Sin j* �= a�•3UCIP5 C = G,ao (exi5fin�, 9arg5lt; Lop = -500 4 ; ',oc = �,� 1'0 Sobb6i(i j it = 1 a, 3 riC.e5 C : 040 (7a MkOMCI) Loc.10t>44 ; 5of =a?,0 S)bbzIVI C A-; � / 5 a(r-m C-a,(9-T) L of = god{ r 5 o6 L E 80CQ 5c, = b A I5o +reef fk,j 5obbci5(n b Pr' 0 .O, Xre� (A 6.4544L /' A(hw t,,^q)=1,55") + (J.35�ib•Lo1j = 0, 7.' ?•0 I- Op % W4 a5o 11150 ; 5+rer-f�Iowl 51)bbc151r1 E '1 ;R(open) 0,7Qr) (o,7)Ca,ao)��5,`i = Or S$ L vF = /D,,Po�f S of �70 G =qwr+ j 56; r0456 i Cra55 LineJ5.-)cqle 5obbcr5rn ��— �} = 8,9 acres 040 L or-;: 3754�4 L c,, = &00�f 561: 0,45o j GAUSS LInPclSmle L,dstone & Anderson. Inc. MR r.r.. a....... r c.rrr.. el-? -aP -I s I Co757-iO FEATURE CHECKED BY DATE SHEET OF q 9 5066651el 6 rt q = /o, 54e C�%Q[nk 9,5At ; RC�a dtr lya� Aee414)1=o,%ce,e C = 01)(ad0*(o,axc,5, (Io,S) = O,ou Lo<= 500 j 5oF= 5,&o o Sc,5so ; Sdvr{9rus5 (nofe(,cnncltzed� �1S1n N a 3, & cic/e5 (PtnPen = 3•lcc kjr^pe v) a)+ (o•SYo.g 5)) /;.G - 0,3 cbf sow • 2,350 Le=a &A6451r, Z X5�k/ o,soLao:eorf4 : 450F+ � 50 ; 54reef f fo.J lrlt ; Sc, ; 5+,-eef Pleau /efirr fo Pcje5 45 and f 6 JEEMENtr.mm Lid,tone & Anderson. Inc. St T W MAING W \WWIMrYGWIIGM� CHECKED Co sobl7m5n F T&kI h(ea = 3,( Litres Tn 4e pre6,)11�42v i r��+,'C eoe��icr4 was �. secl.on ex,s�h,, eoaA4oas, l♦owew, -Final, assumed �v►ly �evebpeJ �o4 )on (�IgWed for +home Jeveb�mm+). 50bb i5,rn HI (TrtbAry 4-o 1bP 6t ITAIrd Wuy) rCa = J,Sgcre5 = 0.40 (Icwnllo►nes) Lo; = loofk ; SD:: a,o% Ls = 350P� ; 5e. ,r}/asw = a,aho Sfree+ Flow (TnJevclopeJGxJ,f7oi) SLVo%i n N A (Trl bu%ary fo Da &, a , $acklo+ Swale) 4(-e4 = 1,1 au es C= 0110D 0& M hams ) GoF:106F+ ; 5=-a-05b L E = asoff ; 56 = s'�,'/asofk : 3.a5u We (455vm ed) '5*k*sin 11 (TrnbAnvyfo b. #(ea = 1. q acres C = 0,50 (Stw)le Fam i}y) Lor- 804 , 5=d,07o /-& = c15W ; 5c l , q; o 50b6b,n 1 a (Tr, bo4wy fo f rea = 1-5 ctcrrS C = 0.50 C5nlle FALi„ly) LOF: =86f+ 1 5:a,050 LG = ycv f+; 56 =1, 410 P. 74 ; G,19alud �Ay, 5*4� 5(de) 5-Iree� Flovo D, P. b ; CiIr14l Dray No6 5iJe 5obbas,ri 13 (Trt bv-lur +o �• R /�-re4 :. ), S Acres Y C= 0,50 (smile-F'aMlly) L or- =,Sod+ ; 5 ; �,05o LQ : 7o04 ; 56, : 0, 8 % 5+(ee+ 1%lo i lc, , Back to+500 (c (1ra55cd 5,,aale 5 6•a 1 L,cl�tone & Andeison. Inc. IM AMM M Y �M C� WNER—PROJECT BY DATE PROJECT NO. Wi md Sile Famil ^u) 1-a5-7 e07-5TI64 EATURE I II CHECKED BY DATE SHEET OF "tia �elrio0%tLola i oo5 5L)bba51n J1 (Tr,W-bo y io'DP fie. E. end of 61T4W W4y) f }rea z 3.8a4re5 C= b- 50 (5tr9e Farnt 0 l-or = 80ff 5 = A 5e L80o 4 ; 5s, = d.(o`!a ; 54-reef Flow 5obb,51,1 Ta (Tnbo�ary 4o 'DIP Sb backloi'Sak�G� �reoa = 3 - o GcreS Cc61So (StfyIG FA�'t11 Lor- = E30N 5:o? to SG = 6, $ `)o G(-s5eJ li .)ale 1 DRAINAGE CRITERIA MANUAL fawe l T dic Velon y Compv�Ofi , 5( 3C 1.- 2C Z W U cc a 10 Z . W a O 5 W c(nc 3 O v 2 cc W 3 1� 5 .1 -I'%9 RUNOF _ moll WRIVA■rIIIN l �Wmilli (— ���lII�F� I■Ifi91I�L� Ii�L4�,1 WAMMAN ���I�II■I,■■IIIIt /Ill ■1111���■■■■� �I �I��rI ■'/■11//1,1■11�1111���■■■■� 2 .3 .5 1' 1 It 1211113 5 10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING"UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5 -1-84 URBAN DRAINAGE & FLOOD CONTROL DISTRICT No Text No Text I APPENDIX B STREET CAPACITY CALCULATIONS 1 Licttitone & Anderson. Inc. � W.I. •.r.w. w ..ww..,u o . IWlfl&fu1I 51r1 � Faft CLD I I-d6-oj. C0;5TI8.a FEATURE I ---] L CHECKED BY DATE SHEET OF ,+(eA CG c17 Am61� C.—L a/-7 lq4 a 1 /a Toiird Ama :1,gacre5 West 4rea t 0,554c(6 Li D,P. ?4 O 4scf's) (o,q%4o) = I ,acf5 - (I- I r) /CA,5 ti I r "e; 5fteef1Cu r{ye4lwb;td 1�aSCclpn a slo�eoF 1.377o, ,4A04J'J1vPew,l1 be9rtAfer. lbeee4re, ihetilla.-mete C 5 5ieeefer(>wCIN I-j r-M,}e,--1P4AfAecglc0L-,1edvaIJa. too- , C /.A4 - . 7htetsacanervaAvi eacwleolRhon- lllo,able cyge( - Cala)Wej b -a �Otmed bep'4h Arw11515 Slope _ o 1,577a �eeJx6o� rkdvr Ya a"ble - 0.39 fl &rb;oll) Qa (416wtQ 4-oc-p)(0,8) = G, c�5 ✓ok - re;er �;o o,+p, 4 Ole Wr5F -a►I, OUT (i)5 B q/ 1,2) YJOU4l"AbIC = Or95g (41"weiemw„) ; 000 (aII�.,Gbic)- (o1a5eF5)Co-8) = ISC7cfs ✓vk -refu lo N-4puf Gle Wr5r-loo•ooT (NIB 8/1a) G11 a� lid Wes✓ � No/�h 51de , WeSf �F D.P. ' b 5L)bbawm N 1 and .Za 7b I greei = q • 0 Ac re5 West- 4re4 = 3, 3 uc• ,5 r! D.P. ib atop -- (w,kf�) (3-140 = I (V -a Cf5 5e4op o- A15 p49e Qa (Q Ilo,,,rble) _ 6,4 cls ✓ok Olao (allow4e) = 160cA ✓ok L itl�lone 8 llnderson. Inc. MNN N... W C.. Windfrar I Si 416 FGmi I CL-D I I-Z-19g41 I iaTIT-P, FEATURE ICHECKED BY --i DATE SHEET OF '5[iee� C'aoau fr 4nal 8 a is (�' �gci�lad_Wa� �,,,�h 51cI e Easi of D, P. 7a 5ubbast.l S1- Tofed kee, = I.q acres F_as+ Area = 0,�5 acres .960� DP,,7q Qroo° i!o-1 cFs)(�r,�) = a,ocf> Movable Cq ,<<fy C�,Icolq��e by H>;C-a A6e"41 Np+k E}n411515 Slope : 6- 0 90 II �rQ�JCt'7on Fnc roe ya (allowgble)= 0,3q(co(b-Full) (allowablc Cfs) k refer �o ovfW+ Pole WTSF-Aq,out (py8&/ia) y1Du (tillowr,ble)= 6.9S.;:f (6"above crow^�; Qrco (allowable): (110 C�s�(6�5) _ %Oe�S ✓ok - reftr16ou�pu4 Ale WnF- Ioo.00r Cpy aio/ra) fIgnlot d W4� ' k0k5rde sae, cF D,P, 7b 5ublx Sup H 1 anj za Toia I Heea = y o ac re5 Echo- Ada : b,?acrl5 map-Ib See +Fof a Alto peL9C as 616%,mb16 k Qroo (albwable) = 60 K, Ljclstone & Anderson. Inc. OWNER —PROJECT BY DATE PROJECT NO. UnJ+rail 51 Ic Fumi I C L), 1 1-07(0- (96)q OOTIMAJ FEATURE ICHECKED BY DATE SHEET OF Stiee+ c I fine 1915 ►3 3 lgal� Waj 1-kIf (re-,bAr�+o b.A aa) S�bl�,n 11 Qa= ,4,Dcf5 (on bo(k 5tcles of,+,reef) Qtoo` ►q6 C4;5 41lowable ('u�GcI% - Calcuk+cby HFC-2 t,6(mGl Dept f}nalrSis Slope = d,(o ho � a��,ho„ caefia. is (a(low4ble� = b• 35Gf L+oaofuvib) Qa (a lbwable) : (5, 7 C4;s (o a) _ q,locf5 ✓vk - ieFrr fo �o{ �(� llTSF-aA. OJT (pg 3 S /�a) yioo(allo.w,ble, = 0,95ff ((o'abou ProA Ghoo (Fibwable) = Oqg c,f5) 0, 8) - IIG Cf5 ✓ok -nfei }o oo- f+It wnr--too, oor (ry i3 °I / la ) 26JAN94 07:50:10 I-(IT5Fovr Wu,d+roll S,n�lr+avnll� HEC-2 WATER SURFACE PROFILES - FIEC-a No(maI Depth Version 4.6.0; February 1991 IT WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1/26/1994 T2 FLOW FOR THE ALLOWABLE 2-YR DEPTH (CURB FULL) LIDSTONE 8 ANDERSON, INC. T3 GILGALAD WAY S=1.37% 11 ICHECK ING NINV IDIR STRT METRIC HVINS 0 2 1 0.0137 J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW 1 -1 02 �T 3 8.0 5.7 4.6 NC 0.016 0.016 0.016 0.1 0.3 t1 1 6 98.58 118.01 10 10 10 R 2 98.58 0.39 98.59 0 100.00 0.11 GR 2 118.01 26JAN94 07:50:10 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL 0 GLOB 0CH GROB ALOE ACH AROB VOL TIME VLOB VCH VROB XNL XNCH XNR WTN SLOPE XLOBL XLCH XLOBR [TRIAL IDC ICONT CORAR PROF 1 5= I.311b CCHV= .100 CEHV= .300 Aflo.ieble DeA 6,Nff ISECNO 1.000 l}IIoYz,blC /9�`�:A��S 1.000 .39 .39 .43 .50 .54 .15 .00 8.0 .0 8.0 .0 .0 2.5 .0 .0 00 .00 3.14 .00 .000 .016 .000 .000 .013597 0. 0. 0. 0 12 6 .00 B`/,a PAGE 1 THIS RUN EXECUTED 26JAN94 07:50:10 WSEL FO .50 CHNIM ITRACE 101.17 0.45 118.00 OLOSS L-BANK ELEV TWA R-BANK ELEV ELMIN SSTA TOPWID ENDST .00 2.00 .0 2.00 .00 98.60 16.24 114.85 PAGE 2 r 26JAN94 07:50:10 PAGE 3 T1 WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1/26/1994 T2 �T3 FLOW FOR THE GILGALAD WAY ALLOWABLE 2-YR DEPTH S=0.60% (CURB FULL) LIDSTONE 8 ANDERSON, INC. J1. ICHECK INO NINV IDIR STRT METRIC HV1NS 0 WSEL FO 3 0 0.0060 .50 NPROF ]PLOT PRFVS XSECV XSECH FN ALLDC IBW CHNIM ITRACE �J2 2 -1 I 26JAN94 07:50:10 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 OLOB OCH OROB ALOE ACH ARDS VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *PROF 2 5 = L 50 CHV= .100 CEHV= .300 Aila-x bldPfF A zOIN j *SECNO 1.000 Alto. 4& -.Y.1 wye - 5 7Q . 1.000 .39 .39 .00 .50 .46 .07 .00 .00 2.00 5.7 .0 5.7 .0 .0 2.7 .0 .0 .0 2.00 .00 .00 2.12 .00 .000 .016 .000 .000 .00 98.59 .005973 10. 10. 10. 0 0 6 .00 16.68 115.27 PAGE 4 A 26JAN94 07:50:10 f-i WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1/26/1994 T2 FLOW FOR THE ALLOWABLE 2-YR DEPTH (CURB FULL) LIDSTONE 8 ANDERSON, INC. 13 GILGALAD WAY 5=0.40% J1 ICHECK INO NINV IDIR STRT METRIC HVINS 0 1 4 0 0.0040 V 92 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW 15 -1 r 26JAN94 07:50:10 1 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL G OLOB CCH OROB ALOB ACH AROB VOL TIME VLOB VCH VROB XNL XNCH XNR WTN SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR PROF 3 5=OAlo CHV= .100 CEHV= .300 fill,.-bklitPf4+> 0'31H SECNO 1.000 Flo Jgb({ t)i%jwTe - +loA 1.000 .39 .3 ..00 .50 .44 .05 .00 4.6 .0 14,6 .0 .0 2.7 .0 .0 .00 .00 1.73 .00 .000 .016 .000 .000 .003981 10. 10. 10. 0 0 6 .00 WSEL FO .50 CHNIM ]TRACE OLOSS L-BANK ELEV TWA R-BANK ELEV ELMIN SSTA TOPWID ENDST .00 2.00 .0 2.00 .00 98.59 16.61 115.20 PAGE 5 PAGE 6 26JAN94 07:50:10 PAGE 7 �rrww►r:frrrrrww►f:f:fffrrrrrw►w:f►►►► THIS RUN EXECUTED 26JAN94 07:50:10 HEC-2 WATER SURFACE PROFILES Version 4.6.0; February 1991 wrf►f:f:frrrrw»:ff:f:ffrfwwwrw►w►►►► NOTE- ASTERISK (r) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST IGILGALAD WAY S=1.37X SUMMARY PRINTOUT TABLE 150 SECNO XLCH ELTRD ELLC ELMIN 0 CWSEL CRIWS EG 10fKS VCH AREA .01K 1.000 .00 .00 .00 .00 8.00 .39 .43 .54 135.97 3.14 2.55 .69 1.000 .00 .00 .00 .00 5.70 .39 .00 .46 59.73 2.12 2.69 .74 1.000 .00 .00 1 .00 .00 4.60 .39 .00 .44 39.81 1.73 2.67 .73 t26JAN94 07:50:10 PAGE 8 �GILGALAD WAY S=1.37% SUMMARY PRINTOUT TABLE 150 SECNO 0 CWSEL DIFWSP DIFWSX DIFKSS TOPWID XLCH 1.000 8.00 .39 .00 .00 -.11 16.24 .00 1.000 5.70 .39 .01 .00 -.11 16.68 .00 1.000 4.60 .39 .00 .00 -.11 16.61 .00 26JAN94 07:50:10 PAGE 9 SUMMARY OF ERRORS AND SPECIAL NOTES BS/2 26JAN94 08:06:56 PAGE 1 WiSF - ioo . aor �ffwwww**rrfrr*ffrrrffrfrrffrff►f►www THIS RUN EXECUTED 26JAN94 08:06:56 NEC 2 WATER SURFACE PROFILES �E� a N lft2f DeA Anal Version 4.6.0; February 1991 rrfrfwf:wwwwxrrrrrf:ff►f:wwwxwwrrfrf 11 WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1-26-1994 T2 FLOW FOR THE ALLOWABLE 100-YR DEPTH (6" OVER CROWN) LIDSTONE 8 ANDERSON �T3 GILGALAD WAY S=1.37% J1 ICHECK INO NINV IDIR STRT METRIC HVINS 0 WSEL FO 1 2 1 0.0137 .50 J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW CHNIM ITRACE 1 -1 0100 IT 3 225 148 120 NC 0.016 0.016 0.016 0.1 0.3 1 1 9 98.57 137.43 10 10 10 R 2 98.57 0.39 98.58 0 100.00 0.11 101.17 0.45 118.00 GR 0.11 134.83 0 136.00 0.39 137.42 2 137.43 26JAN94 08:06:56 PAGE 2 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 OLOB OCH OROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST PROF 1 Al�ouhblt�tIcD ti5f� CCHV= .100 CEHV= .300 AlloJab�f Dl l ISECNO 1.000 �e+aa5� 1.000 .95 .95 1.27 .50 2.04 1.08 .00 .00 2.00 225.0 .0 225.0 .0 .0 27.0 .0 .0 .0 2.00 00 .00 8.35 .00 .000 .016 .000 .000 .00 98.58 .013721 0. 0. 0. 0 20 6 .00 38.85 137.42 26JAN94 08:06:56 3�Aa PAGE 3 T1 WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1-26-1994 2 FLOW FOR THE ALLOWABLE 100-YR DEPTH (6" OVER CROWN) LIDSTONE 8 ANDERSON 3 GILGALAD WAY S=0.60% 1 ICHECK INO NINV IDIR STRT METRIC HVINS 0 WSEL FO J 3 1 0.0060 .50 2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW CHNIM ITRACE 2 1 26JAN94 08:06:56 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 OLOB OCH OROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST PROF 2 5 -Z 0.60 50 Al"WeDep46 0,9 5P �HV= .100 SECNO CEHV= .300 l}lb,�bk 17lSGhA/gC > I�is(,F6 1.000 1.000 .95 .95 1.03 .50 1.42 .47 .00 .00 2.00 148.0 .00 .0 .00 148.0 5.51 .0 .00 .0 26.9 .0 .000 .016 .000 .0 .000 .0 .00 2.00 98.58 .006009 0. 0. 0. 0 17 6 .00 38.85 137.42 PAGE 4 26JAN94 08:06:56 IT1 WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1-26-1994 T2 FLOW FOR THE ALLOWABLE 100-YR DEPTH (6" OVER CROWN) LIDSTONE & ANDERSON t3 GILGALAD WAY S=0.40% J1 ICHECK INO NINV IDIR STRT METRIC HVINS 0 �. 4 0 0.0040 2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW 15 -1 26JAN94 08:06:56 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL 0 OLOB OCH 0R08 ALOE ACH AROB VOL TIME VLOB VCH VROB XNL XNCH XNR WTN SLOPE XLOSL XLCH XLOBR ITRIAL IDC ICONT CORAR PROF 3 sto,4% CHV= .100 CEHV= .300 *I.ble DerA- b-g5fi SECNO 1.000 Miow ble DIsce = jAoCA 1.000 .95 .95 .00 .50 1.26 .31 .00 120.0 .0 120.0 .0 .0 26.7 .0 .0 .00 .00 4.49 .00 .000 .016 .000 .000 .004006 10. 10. 10. 0 0 6 .00 i WSEL FO .50 CHNIM ITRACE OLOSS L-BANK ELEV TWA R-BANK ELEV ELMIN SSTA TOPWID ENDST .00 2.00 .0 2.00 .00 98.58 38.85 137.42 PAGE 5 PAGE 6 6n �a 26JAN94 08:06:56 PAGE 7 �ffffiffftfttfftftfffffflffftffffffft THIS RUN EXECUTED 26JAN94 08:06:57 HEC 2 WATER SURFACE PROFILES lVersion 4.6.0; February 1991 ffttlfffffffttfttffftftfltffttffttttt NOTE- ASTERISK (f) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST 1ILGALAD WAY S=1.37% tMMARY PRINTOUT TABLE 150 SECNO XLCH ELTRD ELLC ELMIN 0 CWSEL CRIWS EG 10*KS VCH AREA .01K 1.000 .00 .00 .00 .00 225.00 .95 1.27 2.04 137.21 8.35 26.95 19.21 1.000 .00 .00 .00 .00 148.00 .95 1.03 1.42 60.09 5.51 26.85 19.09 1.000 .00 .00 .00 .00 120.00 .95 .00 1.26 40.06 4.49 26.74 18.96 t26JAN94 08:06:56 PAGE 8 ILGALAD WAY S=1.37% UMMARY PRINTOUT TABLE 150 SECNO 0 CWSEL DIFWSP DIFWSX DIFKWS TOPWID XLCH 1.000 225.00 .95 .00 .00 .45 38.85 .00 1.000 148.00 .95 .00 .00 .45 38.85 .00 1.000 120.00 .95 .00 .00 .45 38.85 .00 26JAN94 08:06:56 PAGE 9 �UM14ARY OF ERRORS AND SPECIAL NOTES , 9 .8 7 U. o .6 c.� a z 0 .5 U 0 O W .4 0: .3 'C's-06 0.8 tF- `S L I. d8 jf s-0.4% F -.0.5 I BELOW ALLOWABLE STREET MINIMUM GRAOE I .00 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) MAY 1984 4-4 DESIGN CRITERIA 1-1 1 APPENDIX C CURB INLET HYDRAULIC DESIGN CALCULATIONS I I QIVr rql 15 F le ,l i I CI-D 1-16-1994 eoTSrts.a FEATURE CHECKED BY DATE SHEET OF Curbirt1>.51 h. I 1 3/7194 1C 1 TnW -�- 3a - a� D-n 7a - AikaIcI Way 5DAern Sid c 5omp ootljlf on Oa= 1-8CA 0100<611cf�5 Al loveable -plvj Jep+, 9-yr, = 0,39 ff (+op 4 Cvib) l oo ryr = o, g 5 Ff (&"odu crovvn) hergh� aopeniny: 0-5 4. - a-yr t(lW c�ticuhhom S hoviever-, 4rJehtyn, (ne depfA- 0,75 F- �or aci,jvAal yo/h _ a. 3yos - = D, 78 see nomol ruph , pt�,q e Ca Q D, 78 cf5 (R. Fcy-6 `I-441aef : G2= (0,78 P) (0-So) = i'sCA — 100-yr in f�� CaICJIG �OA-S ; yolk = 6,11 ,5 = 1,50 See ooMo e-tip, , pele Ca a /1-- 1.75 Fora y-�oo4 ►nle� : Q= (i �s/}) (�I Ff) (a, go) For4n f3-�ooF ►�Icf ; Q- (1,15dyq (8ff) ok poi a-ye.r C (S /7A(44rye el7WJ t - I R d5 o k Zr too -year I;e a ell a Forf eeollm3 5�dj 6(h,InlA - mn4l6(j. lobe 04la7. r,1k+134, 1.0 -- 12 5 Ca�q 10 4 9 II 8 3 10 6 ' .8 F: o 2 9 0 4 i t_ .7 x 3 8 w z 1.5 0. vi 2� r 6 7 z i P e, Part a 1'0 z .9 5 w 5.5 `.6 LL w o o .7 w 5 x z Uj u. .4 z w '4 6 ? 4.5 0. z 0 .3 _ W S 4 r o 2 0 •5 z z ►- c� 0 w •3 3.5 w w _ .4 4_ a x -1 0 0 I w W u_ U. .08 .25 3 0 o .06 .3 x x o z w o — w w x .04 Cr..25 _ 2.5 x a - I-- .2 r a c� 02 wo 2 a a 2 f) ~ O. .15 01 0 .15 U. L O 0 Yo FZ 1.5 --- - -- -- x a=2'h 10 I 1.2 Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph M' MAY 1984 5-10 DESIGN CRITERIA i 'IAwnw ••••w••• w 4.v.wnY Cw•.rx• G I I S1nol le ;"II 1J I C`D DATE b in le% De5tqv1 In lef k 3 b - a� U,', 16 , 111 Iqa Iod W4% Nor&(n Sete Sum,,f Coed 161 0; - 5-(p cf5 0100= 19.&d5 19Iq I CorSTIs•a C3 Allowable flo) depf ► a-yr = 0.M ff (-6pz4wt6) 100-Ir :MSP (& ✓e,- C(a.;,%) ; ho,vve% vote depf'--6,75ff 4f OAdIhona,cyacdy he(I4of opeattil - b, 5 R. a-yr ► fed calculcihoo b 3Y,so : 0,�8 d, 78 cfs /� Forgn 8'f�`��►le�; Q= Cb,78�f/f) i8ff� (n.85) = 5,3c�s rvrA iI(e (�= i0.1B`��t�Uaff)(o,85�_ $,Ocf5 - IDo-yr. ��rlef ealcola�ions yo d/,-= 1-,7 5 cis/1. Fora U-P'oofmlef 0= (1175cfi'ft) (lay) (0,05) hv_ � ��ye encwj�• • dk �� a For the Its -year e✓etit, 4,,) will ove(- op crown; 4e(e4re 1445 N and 310 wjll be Qc,� 0 a 5(mlle inkFina 5wnp eonPioei. 0100 (•Al)= a&Cfs CD,pr 5eG liy&61091LCQIC-0144�*AS,p4G 41) Qcapac;�'y = 11,gc-r5 (rr,leHb) + 11,9 c�5 (rnlefU) = aJ.,S-'✓ok for too -yea.. o , I%SCA CI%ldf �WMi%�io5 Si4nao� i . ('ivb�Ak� -hbalfird io be la�l• l�9' clef +3b . I ru& Anderson. Inc. YINw ��� W �M1�rr14 CWII�W� t indt(eiII SI le 1 t I Cl-1 1-a6-lggLl COTjT16.2 EATURE CHECKED BY DATE SHEET OF I curb Tvllef be91gVI I I C `i q � Icf#3a and 43b OverP6j The mIA5 have been det)tgwd to We ex6e5!5 cApau�in fAe e✓en+of �yihal bloekayqc, 7he Inlef- cofrx i y a+ depot., = U 75 �ee{ (pklcA IS lave.}tiuei allo�Gblej 17 aq8 C4,- Th1-1 pro✓Ides an dlfional IS 5o e4p4C,I+y in 4e mlef,s. The a%".(�CPS}arnnejereapaclly i:5 916 e-fs, kotilch repre5,en45 on addlontil 70-cAllocic1 , Tn 4�e even+4a� 4�e 5formsel.)er s tewl ,xuld becov+e alockeelI �loj ww�l be hill ved over e AIgti point ih 'Il�,lad �441 a4 dep� aF ba feel.over 4e isle+ Plaa line. ru& Anderson. Inc. WIM ref/ 514 le FM] II Cu I -A- Mid I ODTC)ns..� FEATURE CHECKED BY DATE SHEET OF Corb Tnlef eSigkl C s 9 Lvilef #4 (SiaetdGlk CoIver+) �� D� 8a � >�a5f �n��F �tl�alu� ►�la� 50m? Cond t -hon Na = 1I,0CF5 Qtoo = I � , 5 cf-5 �}�I able �Lw De f- a-yr = 0, 51 f} (+op �.pcurb 121" = O•gSF+ (&"over uoan� helghf �Fopehr� = 0,5�4• - a -yam A6 ealcolc fi6v75 yo/t, = o r 1 B Q/L: o•1s have✓er, u5c 6r5l ff (backofwalk) fodeftrrhine eapacvf j)rtor+o over{vpp,n) lllfo major.', ale. Tvrar� S�4inlet: Q= �xBff)(0,asj = 5,3cf.5 ak for a-yr - lo0-yr in ealcokTon5 � yo /A : pr5/o,5 -- I: oa Q/c - 1,15c4;W roran e-foo4-,nlff : a = CI�ISCfs/ff)(Sft� (010 _ 7r8 efs lo,-7 Cf5 would overfop the cvrb to l�e nlr yr swul e,, 05e a �rjer 114ewal kwljtetf rar le 55 ove• fop p) fte. . TorI la-f�rF,rile�, 0= (145cfhlf4)01f-�)(O,35)= a•8 C(5 ,aoolA over -top lHe 5,Je w4lk . An Ifs 8 anel SIti was FW4rmeJ �o�t�trmt�e ;4e 6W1-pjjoJep4 Depfk o� 6verf(aJ = 0o15 feed Wlclfh4 over Flow 50fee� , over-(Iow6con�ute� wij}jri -ea5emenf5 T-AIDeA of how= 0,51 feef t d.l5feet Or(�(o�ecf la's�aewulk e�rerf ,5 0l<• r 05eCA 04- cI cofward SJevalk Mom fve-lT I of -44, 1 �RRENT DATE: 01-26-1994 1 IRRENT TIME: 10:23:17 J FHWA CULVERT ANALYSIS HY-8, VERSION 4.0 FILE DATE: 01-26-1994 FILE NAME: WTSF-OT 4gAaaaaAgA68Ei6666g&gA6Ag6f AA6Ab6�gAAg8B6&&8�88&&g�bA WT-5; - OT. PRN Av_g arwly515 +o�e-&,;;,Ne �c�fhof ole.-toPP,n7 a � „ end cW AlgaW WAI, C ° SITE DATA ° CULVERT SHAPE, MATERIAL, INLET ° U uaa5aaa33AAA&eaAaS43353aaaa@A3AAfiAAAA6S86�66aa6ag66g&4gA&A&&6666&5aa6&6ggAAf, ° L ° INLET OUTLET CULVERT ° BARRELS ° ELEV. ELEV. LENGTH ° SHAPE SPAN RISE MANNING INLET ° ° (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE ° 1 ° 99.00 98.99 100.00 ° 1 RCP 0.01 0.01 .100 CONVENTIONAL° �- N�roMAI CJlvee+ will epnvel v1('611y 2 , a o noflovi) Allflvw woad beeooeyed vlcl over_47#A 5ecr;vn, '5' �MARY OF CULVERT FLOWS (CFS) FILE: WTSF-OT DATE: 01-26-1994 --LEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR it 99.00 0 0 0 0 0 0 0 0 1 1100.09 1 0 0 0 0 0 0 1 30 100.13 2 0 0 0 0 0 0 2 28 Q°T " ;,e d'5 DG�+h = d. � S fee 100.15 3 0 0 0 0 0 0 3 20 61a il'fl�pe� 100.18 4 0 0 0 0 0 0 4 16 oVe/iopp'n, 9uAGSlope ° 04 /0 100.19 5 0 0 0 0 0 0 5 13 0,afk o�aef,flovJ : Sa+ee%- 100.21 6 0 0 0 0 0 0 6 11 100.22 7 0 0 0 0 0 0 7 10 100.23 8 0 0 0 0 0 0 8 9 100.24 9 0 0 0 0 0 0 9 8 100.25 10 0 0 0 0 0 0 10 8 100.00 0 0 0 0 0 0 0 OVERTOPPING AAA86SAaaaAAAA666AaAAAA&S&aAaa66Fi6&6�AA&a&&&gA8g6a64A6AAA&Ei46g66gAgAA66AB668g6g& V SUMMARY OF ITERATIVE SOLUTION ERRORS HEAD HEAD ELEV(FT) ERROR(FT) 99.00 0.00 100.09 -0.00 - 100.13 -0.00 100.15 -0.00 100.18 -0.00 J 100.19 -0.00 100.21 -0.00 100.2 -0.00 100.23 -0.00 100.24 -0.00 _ 100.25 -0.00 FILE: WTSF-OT DATE: 01-26-1994 TOTAL FLOW(CFS) 0 - 1 2 3 4 5 6 7 8 9 10 FLOW ERROR(CFS) 0 0 0 0 0 0 0 0 0 0 0 % FLOW ERROR 0.00 25.49 1.26 0.84 1.00 0.90 0.94 0.85 0.82 0.87 0.66 'S1> TOLERANCE (FT) = 0.010 Q> TOLERANCE (X) = 1.000 aaaaaaaaaaaaaAAAA&aaAA&86A�6aaeAaAAA66FiaS6�6&66aaaa64gAAAAAaaa5S88S8�4�s66gg&g8& t C-71q . 2 �1RRENT DATE: 01-26-1994 FILE DATE: 01-26-1994 CURRENT TIME: 10:23:17 FILE NAME: WTSF-OT Aa;�aa>33AAA6a5�aa>3A&6a6aaaa5& �&AaAa�6S&��AAAA>3AAg8��aaa�>;A6Sa3�5a��,3AA6S6ga55 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( .01 BY .01 ) RCP aAgAaa5555A3ASaaa338S6aaaaaSAAAA>3a�68�gBAAA�AAA>3+)6S635a3AAA8>3�6��gaiA6gg�ga>3s� DIS- HEAD- INLET OUTLET #HARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER LOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 99.00 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.01 0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 t0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 99.00 0.00 0.00 3-Mlf 0.00 0.00 0.00 0.01 0.00 0.01 0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 99.00 0.00 0.00 3-MIf 0.00 0.00 0.00 0.01 0.00 0.01 0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 \Y 0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 99.00 0.00 0.00 3-Mlf 0.00 0.00 0.00 0.01 0.00 0.01 0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 �sAAa�eaa35a63AAAAAA66��gaSa>35AAgAaaagAAAg�s3�a3a3A&AAAAAAe6�6��&AAAAAA,36gg�aa El. inlet face invert 99.00 ft EL. outlet invert 98.99 ft (�I El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft i�ggAAAAAS�g��S�aaa�&A�eaaaa5�>3�aaaaa�>3�AA66aaa6a3ggg��>3a�gA�b6��>3a��gAg&ga>3� ••* SITE DATA ***** CULVERT INVERT ***•*•******** INLET STATION (FT) 0.00 INLET ELEVATION (FT) 99.00 OUTLET STATION (FT) 100.00 OUTLET ELEVATION (FT) 98.99 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0001 CULVERT LENGTH ALONG SLOPE (FT) 100.00 •••** CULVERT DATA SUMMARY rr»rrrrrrrrrrrrrr»rrrr rBARREL SHAPE CIRCULAR BARREL DIAMETER 0.01 FT BARREL. MATERIAL CONCRETE BARREL MANNING'S N 0.100 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE I 3 tRRENT DATE: 01-26-1994 CURRENT TIME: 10:23:17 TAILWATER CONSTANT WATER SURFACE ELEVATION 99.00 FILE DATE: 01-26-1994 FILE NAME: WTSF-OT B86g66&6gg�gAg6AA666g636Ag ROADWAY OVERTOPPING DATA B665aaaa6gAA6gAaA6$6$6�6a� r\ WEIR COEFFICIENT EMBANKMENT TOP WIDTH (FT) • " USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. (FT) (FT) 1 50.00 100.30 2 100.00 100.00 3 150.00 100.30 0 1_11 Ll I 2.60 �--- 10.00 5dMs-alope t 6, (a 90 (§qvc4l fosiree4 s lope) I I -5.3.5 Grates for Pipes Where a clear and present danger exists such as a siphon, a drop in elevation adjacent to a sidewalk or road. a long pipe with one or more manholes, or at pipes which are near play- grounds, parks, and residential areas, a grate may be required. For most culverts through embankments and crossing streets, grates will not be required. When called for on the plans, grates shall meet the following requirements: a. Grating shall be constructed of steel bars with a minimum diameter of 518". Reinforcing bars shall not be used. , b. Welded connections shall be 1/4" minimum. c. Spacing between bars shall normally be 6" unless site conditions are prohibitive. d. All exposed steel shall be galvanized in accordance with AASHTO M 111. e. Welded joints shall be galvanized with a rust preventive paint. f. Grates shall be secured to the headwall or end section by removable devices such as bolts or hinges to allow maintenance access, prevent vandalism, and prohibit entrance by children. '5.4 Inlets Storm inlets shall be installed where sump (low -spot) conditions exist or street runoff -carrying capacities are exceeded. The curb inlets shown in the Standard Details, pages D-7, 8,12 & 13, shall be used in all City Streets. If larger inlets are required, the Colorado Department of Highways Type R Curb Inlet, Standard M-604- 12, shall be used. For drainageways other than streets (for example, parking lots, medians, sump basins) an Area Inlet similar to the detail on page D-9 shall be used. The outlet pipe of the storm inlet shall be sized on the basis of the theoretical capacity of the inlet, with a minimum diameter of 15 inches, or 12 inches if elliptical or arch pipe is used. All curb openings shall be installed with the opening at least 2 inches below the flow line elevation. The minimum transition length shall be 3'6" as shown on the standard details previously listed. Because of debris plugging, pavement overlaying, parked vehicles, and other factors which decrease inlet capacity, the reduction factors listed in Table 5-4 shall be utilized. Table 5-4 INLET CAPACITY REDUCTION FACTORS Percentage of Drainage Condition Inlet Type Theoretical Capacity Sump or Continuous Grade ........................................... CDOH Type R-Curb Openin �I - 80% -7' 419' 85% 151 a 90% Street— Sump.............................................................. Street — Continuous Grade .......................................... Parking Lots, Medians ................................................... 4' Curb Opening 80% 4' Curb Opening 80% Area Inlet 80% The theoretical capacity of inlets in a low point or sump shall be determined from Figures 5-2 and 5-3. The theoretical capacity of curb openings on a continuous grade shall be determined from Figures 5-4, 5-5 and 5-6. The standard curb -opening is illustrated by Figure 5-4 and is defined as having a gutter depression apron W feet wide at the inlet opening which extends W feet upstream and downstream from the open- ing, has a depression depth (a) equal to W/12 feet at the curb face, and a curb opening height (h) of at least 0.5 feet. The graph as presented by Figure 5-5 is based on a depression apron width (W) equal to 2 feet and depression width (a) equal to 2 inches. The pavement cross-section is straight to the curb MAY 1984 5-8 DESIGN CRITERIA I I APPENDIX D PIPE HYDRAULIC DESIGN CALCULATIONS I !, l rutone & Anderson. Inc. wa W.w •«w... w ........r.. Gw . C c-D SnI fia I P( ?pe -Pram Isnlef *3ti +o I-nlef I5b e-Reduciten Fr cl a/- GCOO (Aeorehcal) _ �Il.gef,)/(o•85)0cfs lissome 5= 1.0 °lo (minimum) (he rnanr m) t j ahw (iedtxed for ,pe f',,If fly) � � n jP9) 5 Pipe From Tdef 43b +v OJ+4 QAOO U*I) = d6,OG-(S (D.n, 1i*ame 5 = 0•15 90 GAL Lil) _ 0(, \113/$ a�,(acfs ro�3 '��cf= 0•g9a I-Z-19gH I COnTr8•a 3/-7 Ji4 I -- D 1 to v5e a a l '" KcF . toe a d 7 " 0 qcp 5mrn = 0,7510 Indtrail Single Family Storm Sewer Analysis -Inlets 3A & 38 COTST18.2 2-28-94 L&A Inc. CLD File: WTSF-1.DAT 12 20 2 2 , 1 , .85 500 500 , .2 , N 100 1.4 , 28.5 10 .786 (40, 490 ,5.4, 6 .1 4041, 0 0 , 0 0� Oul4< I O5p/iIoleiee ((41 6.41, 5004.0 ,4041, 1 ,4142, 0 , 0 , 0 Mai hole 3-I 6.0,0 5.4,.6000000 2, 5005.0 ,4142, 1 ,4243, 0 0 0 L ')IQ iWe �f _ 26.0,0, 2.0, .60 , 0 , 0 0 00 3, 5002.8 ,4243, 2 ,4344,4353,0 0 L I�Ie� 2 a 6.0,0, 2.0,.6000000 J 53, 5002.8 ,4353, 0 0 0 0 , 0 L hlC f `055 &i -To �JQ 14 1, 0 , 2.0 , .60 , 0 , 0 , 0 0 0 I 7 R4, 5002.8 ,4344, 1 ,"54, 0, 0, 0 1.9, 0, 2.0 ,. 6 0, 0, 0, 0, 0 0 �07 tOO) 54, 5002.8 ,4454, 0 0 , 0 , 0 0 t1.9,0, 2.0, .600,0000 f I 4041, 38.1, 0.8, 4998.41 .013 , 1 0 1 30 , 0 — 30" RCT" Fian C)Aei +o M4 3-1 �.142,220.8, 0.8, 5000.13 , .013 ,0.46 , 0 1 , 27 , 0 — a7" RCP �'iom MA5-1 #c MA 3'd 243,176.6, 0.8, 5001.74 .013 ,0.46 0 1 27 , 0 — d 7" RCP - a m MA 544c, Sn1cf 36 4344, 36.0, 1.0, 5001.75 , .013 ,0.05 , 0 1 21 0 — p " RCp pOA Snlef 3 3 +o s#4e 3A f'4353, 1 , 0.8, 5001.74 .013 ,0.25 0 1 27 0 — *Snl-e� Lo55 aa1' 5113 54, 1 , 1.0, 5001.75 .013 ,0.25 0 1 21 0 — * Ink+ LoS6 art V 1 t t Dais Wod Tr411 51179 1'e G'.I. I J U75eww/ Nru(YSi� 1 I P3�0 ------------------------------- ------------------------------------- - ' REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL 2-10-1993 DEVELOPED BY 'JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO I '** EXECUTED BY LIDSTONE AND ANDERSON.................................................... ' ON DATA 02-28-1994 AT TIME 15:42:18 "* PROJECT TITLE : WindtraiL Single Family Storm Sewer Analysis -Inlets 3A 8 3B '* RETURN PERIOD OF FLOOD IS 100 YEARS ' RAINFALL INTENSITY FORMULA IS GIVEN FSUMMARY OF SUBBASIN RUNOFF PREDICTIONS k/7-5F- a .00r WirKl+,-c,J SfiJ IC rq,;II!I , _______________________________________________________________fir. TIME OF CONCENTRATION MANHOLE B OVERLAND GUTTER BASIN RA I PEAK FLOW e C� ,,��i„e t„ L QS s1,o-jti be:' 'J NUMBER AREA * To (MIN) Tf (MIN) TC (MINA INCHAR CFS JI .Y �T - ------------- ----- ----------------------- 40.00 3.24 0.00 0.Ov 0.00 4.75 15.39 41.00 3.24 0.00 �.- 0.00 4.75 15.39 42.00 1.20 0.OQ 0.00 0.00 4.75 5.70 43.00 1.2? 0.00 0.00 0. 4.75 5.70 53.00 .20 0.00 0.00 5.00 75 14.10 ' 44.00 1.20 0.00 0.00 0.00 4. 5.70 00 1.20 0.00 0.00 5.00 9.92 0 FSHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES VER REGIONAL DRAINAGE CRITERIA WAS NOT USED TO CHECK COMPUTATION OF TIME OF CONCENTRATION �* SUMMARY OF HYDRAULICS AT MANHOLES J MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS �D NUMBER AREA • C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION 9AA4 W S bq lco-if !'�5 r-el' MINUTES INCH/HR CFS FEET FEET In 5/n Cmek [+t��r10" , O7 Oo -------------------- ---------------...._._.------------ 40.00 0.00 0.00 0.00 26.00 4995.60 4 NO CDei II9gH) (9,,p1,Y1IA '41.00 0.00 5.92 0.00 26.00 5004:00 4999:75 OK Water 5v[fA[e elev"704 15 bela.,-;[cunj 42.00 0.00 5.46 0.00 26.00 soos.00 5001.11 0K eledabon -,1 MN 9-1 , MH 3; 43.00 0.00 5.09 0.00 26.00 5002.80 5002* OK 53.00 1.20 5.00 11.75 14.10 5002.80 5002.90 NO 44.00 0.00 5.00 0.00 11.90 5002.80 5002.88 NO Wlfei 17 54.00 1.20 5.00 9.92 11.90 5002.80 5002.98 NO W5elev• of .Znle4 3A (aWax. 5003,Wo) MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER S1ZE RATIO= .85 ----------------------------------------------------------------------------- SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ' 10 NO. ID N0. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 4041.00 41.00 40.00 ROUND --- 26.37 -------------- 27.00 ----- 30.00 ---- 0.00 4142.00 42.00 41.00 ROUND 26.37 27.00 27.00 0.00 4243.00 43.00 42.00 ROUND 26.37 27.00 27.00 0.00 4344.00 44.00 43.00 ROUND 18.87 21.00 21.00 0.00 53.00 43.00 ROUND 20.96 21.00 27.00 0.00 '4353.00 4454.00 54.00 44.00 ROUND 18.87 21.00 21.00 0.00 MENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES MENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. �GGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. R A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS � 71pe GJ1I o,,iW Uelvclfv / ------ --- 26.0 --- 36.8 ---- 1.55 ---- 8.13 --.._._ 1.77 --- 7.00 --- 5.30 1.25 V-OK '4041.0 4142.0 26.0 27.8 1.73 7.94 1.78 7.71 6.54 1.07 V-OK 4243.0 26.0 27.8 1.73 7.94 1.78 7.71 6.54 1.07 V-OK 4344.0 11.9 15.9 1.13 7.25 1.29 13.72 4.95 1.29 V-OK 4353.0 14.1 27.8 1.13 7.02 1.30 5.90 3.55 1.31 V-OK 4454.0 11.9 15.9 1.13 7.25 1.29 6.28 4.95 1.29 V-OK �OUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ------------------------------------------------------------------ 5/�0 ' SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS 1D NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ------' , - % (FT) (FT) ----------------------------------------- (FT) (FT) 4041.00 0.80 4995.91 4995.61 5.59 -2.51 NO 4142.00 0.80 4997.88 4996,11 4.87 5.64 OK 4243.00 0.80 4999.49 4998.08 1.06 4.67 OK 4344.00 1.00 5000.00 4999.64 1.05 1.41 OK 4353.00 0.80 4999.49 4999.48 1.06 1.07 OK ' 4454.00 1.00 5000.00 4999.99 1.05 1.06 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET '** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM ONSTREAM UPSTREAM DNSTREAM CONDITION ,---- FEET ---------------------------------------------------------- FEET FEET FEET FEET FEET 4041.00 38.10 38.10 4998.41 4998.11 4999.75 4999.60 PRSS#ED 4142.00 220.80 183.29 5000.13 4998.36 5001.11 4999.75 JUMP rr ' 4243.00 176.60 136.47 5001.74 5000.33 5002.38 5001.11 JUMP Not: G Ply 4 l orY�a�idq 1 ()a p1Nltull 43".00 36.00 36.00 5001.75 5001.39 5002.88 5002.38 PRSSIED �Fy�V/�2lLISI��gf70M• JJA I pipe jInf5 4353.00 4454.00 1.00 1.00 1.00 1.00 5001.74 5001.75 5001.73 5001.74 5002.90 5002.98 5002.38 PRSSIED 5002.88 PRSSIED m�fid2 ' w{,lcl� evm p bl5 wi�H r�Ts'15f��d 3�1. PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW t* SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY 10 NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ----------------------------------------------------------------------- 041.0 41.00 5000.19 0.15 1.00 0." 0.00 0.00 40.00 4999.60 4142.0 42.00 5001.78 1.28 0.46 0.31 0.00 0.00 41.00 5000.19 243.0 43.00 5003.04 0.96 0.46 0.31 0.00 0.00 42.00 5001.78 344.0 44.00 5003.26 0.20 0.05 0.02 0.00 0.00 43.00 5003.04 4353.0 53.00 5003.09 . 0.00 0.25 0.05 0.00 0.00 43.00 5003.04 �454.0 54.00 5003.36 0.01 0.25 0.10 0.00 0.00 44.00 5003.26 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAO-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. ' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. Energy 6rakline Iy belo*,4e poidej W05.Aru Gi Inle{� 30 �38 (app-ox 5003,W) I r' SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE. THE TRENCH SIDE SLOPE = 1 0--------------------------------------------------------------------------- MANHOLE GROUND INVERT MANHOLE 0 NUMBER ELEVATION ELEVATION HEIGHT FT FT FT -- ------- ---------- - -- --------------------------------------- 40.00 4995.60 4995.61 0.01 41.00 5004.00 4995.91 8.09 42.00 5005.00 4997.88 7.12 43.00 5002.80 4999.48 3.32 53.00 5002.80 4999.49 3.31 44.00 54.00 5002,80 5002.80 4999,99 5000.00 2.81 2.80 ---------------------------------------------------------------------------- SEWER UP TRENCH WIDTH DNST TRENCH WIDTH TRENCH WALL EARTN ID NUMBER ON GROUND AT INVERT ON GROUND AT INVERT LENGTH THICKNESS VOLUME FT FT INCHES CUBIC YD -----------------------FT--------FT---------FT 4041.00 15.10 5.08 5.08 -------- 5.08 38.10 ------------------- 3.50 64.9 '4243.00 4142,00 13.45 5.83 4.79 4.79 14.98 13.05 4.79 4.79 220.80 176.60 3.25 3.25 516.0 248.4 4344.00 5.39 4.21 6.11 4.21 36.00 2.75 23.2 4353.00 5.83 4.79 5.84 4.79 1.00 3.25 0.8 4454.00 5.39 4.21 5.41 4.21 1.00 2.75 0.6 TAL EARTH VOLUME FOR SEWER TRENCHES = 853.7815 CUBIC YARDS WER FLOW LINE IS DETERMINED BY THE USER RTH VOLUME WAS ESTIMATED TO HAVE BOTTOM WIDTH=DIAMETER OR WIDTH OF SEWER + 2 • B BONE FEET WHEN DIAMETER OR WIDTH <=48 INCHES B=TWO FEET WHEN DIAMETER OR WIDTH >48 INCHES 'IF BOTTOM WIDTH <CMINIMUM WIDTH, 2 FT, THE MINIMUM WIDTH WAS USED. BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT SEWER WALL THICKNESS=EOIVLNT DIAMATER IN INCH/12 +1 IN INCHES r I 1 1 1 1 1 1 1 1 1 i i 1 APPENDIX E SWALE DESIGN CALCULATIONS i I ' WINDTRAIL SINGLE FAMILY -- BACKLOT SWALE ANALYSIS INPUT DATA: ' DISCHARGE = 12.500000 CFS Qioo 70) BOTTOM WIDTH 2.000000 FT BED SLOPE = 7.000000E-03 FT/FT SIDE SLOPE 4.000000 ' MANNINGS N = 6.000000E-02 ' RESULTS: - NORMAL DEPTH - 1.173639 FT — y100 FLOW VELOCITY = 1.591148 FPS — f o HYDR. DEPTH 6.897785E-01 FT ' TOP WIDTH 11.389110 FT FROUDE NUMBER = 3.376197E-01 ' SPECIFIC ENERGY= 1.212952 FT ' INPUT DATA: DISCHARGE = 16.600000 CFS 4� 33 BOTTOM WIDTH 2.000000 FT _ BED SLOPE 7.000000E-03 FT/FT SIDE SLOPE = 4.000000 MANNINGS N = 6.000000E-02 RESULTS: NORMAL DEPTH = 1.327797 FT ' FLOW VELOCITY = 1.710090 FPS HYDR. DEPTH = 7.690385E-01 FT TOP WIDTH = 12.622370 FT FROUDE NUMBER = 3.436505E-01 SPECIFIC ENERGY= 1.3,73207 FT Swale Sec, ooi F-F Ue,5f haWor Bock 164 5wGle F 2� INPUT DATA: DISCHARGE = 22.200000 CFS — [ (D,p ab) BOTTOM WIDTH = 5.000000 FT BED SLOPE = 7.000000E-03 FT/FT SIDE SLOPE = 4.000000 MANNINGS N = 6.000000E-02 RESULTS: NORMAL DEPTH = 1.238416 FT — ►,,,. FLOW VELOCITY = 1.801155 FPS — j%oo HYDR. DEPTH = 8.268028E-01 FT TOP WIDTH = 14.907330 FT — Novo FROUDE NUMBER = 3.490778E-01 SPECIFIC ENERGY= 1'.288791 FT INPUT DATA: DISCHARGE = 29.500000 CFS Q�ooMl33 BOTTOM WIDTH = 5.000000 FT BED SLOPE = 7.000000E-03 FT/FT SIDE SLOPE = 4.000000 14ANNINGS N = 6.000000E-02. RESULTS: NORMAL DEPTH = 1.420981 FT ym,rl, FLOW VELOCITY = 1.943241 FPS HYDR. DEPTH = 9.274781E-01 FT TOP WIDTH = 16.367850 FT FROUDE NUMBER = 3.555879E-01 SPECIFIC ENERGY= 1.479618 FT 1 1 Swale Seefioll L,17-G; FAjf Qk o; &ekfof5,j,4 I [1 ' APPENDIX F CULVERT DESIGN CALCULATIONS [1 I CURRENT DATE: 03-01-1994 .&URRENT TIME: 15:25:06 FHWA CULVERT ANALYSIS HY-8, VERSION 4.0 FILE DATE: 02-03-1994 FILE NAME: WINDTR3 S686g666g6g8S1i66366&gag468 6g6g6866666g6glig6ga65a66Ag ° C ° SITE DATA ° CULVERT SHAPE, MATERIAL, INLET ° U GS65a56666AaAA6AAaSria66{sS8ti6A6liAAgA6Aa3f136a65363t169Ag6AA6g6gglaf666636ag66ggt; L ° INLET OUTLET CULVERT ° BARRELS ° ° V ° ELEV. ELEV. LENGTH ° SHAPE SPAN RISE MANNING INLET ° (FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE ° 1 04996.00 4995.50 35.00 2 RCS 12.00 4.00 .013 CONVENTIONAL° 2° ° 3 ° ° ° ' 4 5° ° 6 ° ° ° 3366aa66&a5a6a6aA363353A3A6ga6AA3glIAgSa64a5aaaaa33aaal16lIAg68S6666ri66A66A$A6$6$8$ �UMMARY OF CULVERT FLOWS (CFS) FILE: WINDTR3 DATE: 02-03-1994 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 4998.00 0 0 0 0 0 0 0 0 1 4998.10 17 17 0 0 0 0 0 0 1 4998.11 35 35 0 0 0 0 0 0 1 4998.12 52 52 0 0 0 0 0 0 1 4998.14 70 70 0 0 0 0 0 0 1 4998.16 87 87 0 0 0 0 0 0 1 4998.18 104 104 0 0 0 0 0 0 1 4998.12 122 122 0 0 0 0 0 0 1 4998.14 131 131 0 0 0 0 0 0 1 G1 Mgior5w4� CJvfW eolfle"-+ iascic�yne� �G►' Wur�+sail ri�n:wi*t'�, Q1 o pWele%d =14*8,14, Paebm�= 1.4Fee� 4998.18 157 157 0 0 0 0 0 0 1 4998.24 174 174 0 0 0 0 0 0 1 QIo�z133� �We�ed,:ggqg,�� v;ieeboaAz1.6fee� 5001.50 819 819 0 0 0 0 0 OVERTOPPING 3666{i66&665A6113a33365aaaa6336ggaga{a666g6AaaaaSa&Saa6366A66ti88ti6gA&AEs66Sri68(i6666 '3453636g556g6g6656a53a5aaa5666t16gti6ggf166aaa66aaa6363�6g666661iti666&6666AAae66$6{s _ SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: WINDTR3 DATE: 02-03-1994 HEAD _ HEAD TOTAL FLOW 11 FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 4998.00 0.00 0 0 0.00 4998.10 0.00 17 0 0.00 4998.11 0.00 35 0 0.00 4998.12 0.00 52 0 0.00 4998.14 0.00 70 0 0.00 4998.16 0.00 87 0 0.00 4998.18 0.00 104 0 0.00 4998.12 0.00 122 0 0.00 4998.14 0.00 131 0 0.00 ' 4998.18 0.00 157 0 0.00 4998.24 0.00 174 0 0.00 a633S6a6A{IASa55653aa6666eaa66666af16aAbA6A&a65aaaa&aa6$6g6g666666AAggg68aaaaa&aA6 <5 TOLERANCE (FT) = 0.010 <2> TOLERANCE (%) = 1.000 r d/ i 1 1 2 DATE: 03-01-1994 FILE DATE: 02-03-1994 TIME: 15:25:06 FILE NAME: WIMDTR3 PERFORMANCE CURVE FOR CULVERT # 1 - 2 ( 12 BY 4 ) RC8, �5333333gg686565g66AAA�SAa366AA6A666AA8g6g66is66A&B8B5S636Sb66g364A6g66ggg6886ggg DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ftk (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) a353aag333a3gag63aa5A33A3AA3a33aa>34g3€i4gza6gA443356gaai333aaa3AA4g3343AASAg466ggA 0 4998.00 0.00 2.00 0-NF 0.00 0.00 0.00 0.00 0.00 2.50 17 4998.10 0.39 2.10 3-Mlt 0.10 0.25 0.29 2.50 0.00 2.50 35 4998.11 0.59 2.11 3-MIt 0.20 0.40 0.58 2.50 0.00 2.50 52 4998.12 0,78 2,12 3-111t 0.31 0.53 0*87 2*50 0,00 2.50 70 4998.14 0.94 2.14 3-M1t 0.40 0.64 .1.16 2.50 0.00 2.50 87 4998.16 1.09 2.16 3-MIt 0.45 0.74 1.45 2.50 0.00 2.50 104 4998.18 1.24 2.18 3-M1t 0.50 0.84 1.74 2.50 0.00 2.50 122 4998.12 1.37 2.12 3-M1t 0.55 0.93 2.03 2.50 0.00 2.50 131 4998.14 1.44 2.14 3-M1t 0.58 0.98 2.18 2.50 0.00 2.50 157 4998.18 1.62 2.18 3-M1t 0.65 1.10 2.61 2.50 0.00 2.50 �174 4998.24 1.74 2.24 3-M1t 0.70 1.18 2.90 2.50 0.00 2.50 aa3aaAAA66535�aSa5aaaaaa5aaaaaaaaagai656g66g66aSa6564a6Ag3AA66aa3a3gA6g6g66gf6g El. inlet face invert 4996.00 ft EL. outlet invert 4995.50 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft aaaaaa5aEA3AAaaa6aaaaaaaaaaaaaaaaSAA&AAA3A33gAAa6A66a5a6a5�33A5A6$55g3g3AAA66$3 ***** SITE DATA ***** CULVERT INVERT INLET STATION (FT) 0.00 INLET ELEVATION (FT) 4996.00 OUTLET STATION (FT) 35.00 OUTLET ELEVATION (FT) 4995.50 NUMBER OF BARRELS 2 'SLOPE (V-FT/H-FT) 0.0143 CULVERT LENGTH ALONG SLOPE (FT) 35.00 **** CULVERT DATA SUMMARY BARREL SHAPE BOX BARREL SPAN 12.00 FT ' BARREL RISE 4.00 FT BARREL MATERIAL CONCRETE , BARREL MANNING'S N INLET TYPE 0.013 CONVENTIONAL INLET EDGE AND WALL 1:1 BEVEL (45 DEG. FLARE) INLET DEPRESSION NONE �6556a3aAAAAAAAAAAa6b55353aaaaa6�3g3AAA66&�a1g6A66AAA8aaaaa6A3AA6g5g&A66$gAAg6gAg$ C n F�17 t RRENT DATE: 03-01-1994 RRENT TIME: 15:25:06 3 FILE DATE: 02-03-1994 FILE NAME: WINDTR3 5SA53388aSS�aS58488885886 TAILWATER g4g6gAgg4gA446AS646gAg4$Ag aa33aaaa33A3336A�8S686�6B6g&4ag3A5g6A664gg6a64ggA4g8686g4g8AS88Sg44gSS�8864AAgA a43a3A3aaaaagAa3g�A3486�6S36a6465563aag4&344g65ggg4gg6S68g4464ggS3&3ggAg8S6&64g4 CONSTANT WATER SURFACE ELEVATION 4998.00 1pp.ji 4J5,,lei in �i53a3AAa66gaaagaa6a4AAAAAAAAaAS646AAAAAAAgAAAgAS64B&4&6A4gAA8A464gAgggAA66g6gAAA 5e< App2fIAtX H ROADWAY OVERTOPPING DATA A&A$�B$$gA&AA4S�6$6'agggA4A ROADWAY SURFACE EMBANKMENT TOP WIDTH (FT) CREST LENGTH (FT) OVERTOPPING CREST ELEVATION (FT) PAVED 35.00 35.00 5001.50 I I r.x. ■...r••. w �.w....ww aw...w. WNER-PROJECT By DATE J NO. WIYd+Au11 51 rri le rf4mI I C`D I-A-1 eo 5T180, a FEATURE CHECKED BY DATE SHEET OF CuI✓eri q ✓I Fq 7 lreulje4 will be lom+ed on the backlog 5,,mle ea-5-o� lo�dtla.ln ordee--6pro✓k1e G Cr0551n9 far a bike paf1 11�e 0-04(16A) Jravna9e area COn'Si4,5 of 5ubbAimb H a , s 3, aAJ �-55 acres of 50bbaNA Tel . Q �� p 7c� + (0s , iDD Qioo b )(Q1wLB � " n a�) = �/+ r 0100 ' 1a 5 C't'S 4-�a5�.o)�IDrq C k = 1�.5 CA Cdve✓� Slope- = C-6,jael 51ape = b, -7 go L F,5/ 7 �RRENT DATE: 03-01-1994 RRENT TIME: 08:40:11 FILE DATE: 01-26-1994 FILE NAME: WTSF-1 g3gA46g6gg66gg6gA6&6&55ea566g6g56gg8ggggA66gAg6AAA6g6S6&6gf6g6466g66AgA&6Ag6gg aaa$$aSgA&66g66A6A8A8A63 FHWA CULVERT ANALYSIS 6&Ag686866666666ggfg686866 AA645A6S665666g66&6a5Saa36 HY-8, VERSION 4.0 6366aaa6ggA86S6g5g4Ag6g&A6 �C ° SITE DATA CULVERT SHAPE., MATERIAL, INLET ° U G5ggg33g68g66g66666aa6a666666686Ag6g6665g6gg6666656g6gg64666666gg66AgA6gB6gt; ° L ° INLET OUTLET CULVERT ° BARRELS ° �V ° ELEV. ELEV. LENGTH ° SHAPE SPAN RISE MANNING INLET ° ° (FT) (FT) (FT) ° MATERIAL (FT) (FT) n TYPE ° ° 1 05000.30 ° 5000.16 20.00 ° 3 RCP 1.50 1.50 .013 CONVENTIONAL° ° ° 3 �2 3 ° ° ° ° 4 ° ° ° °5° ° ° .6 ° ° ° w1MMARY OF CULVERT FLOWS (CFS) FILE: WTSF-1 DATE: 01-26-1994 LEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 5000.30 0 0 0 0 0 0 0 0 1 5000.68 2 2 0 0 0 0 0 0 1 4 4 0 0 0 0 0 0 1 j'5000*87 5001.02 6 6 0 0 0 0 0 0 1 5001.16 8 8 0 0 0 0 0 0 1 5001.28 10 10 0 0 0 0 0 0 1 5001.39 12 12 0 0 0 0 0 O 1 5001.49 14 14 0 0 0 0 0 0 1 5001.52 15i 15 0 0 0 0 0 0 1 5001.68 18 18 0 0 0 0 0 0 1 5002.80 35 35 0 0 0 0 SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: WTSF-1 0 OVERTOPPING DATE: 01-26-1994 HEAD HEAD TOTAL FLOW % FLOW ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 5000.30 0.00 0 0 0.00 5000.68 0.00 2 0 0.00 5000.87 0.00 4 0 0.00 5001.02 0.00 6 0 0.00 5001.16 0.00 8 0 0.00 5001.28 0.00 10 0 0.00 5001.39 0.00 12- 0 0.00 5001.49 0.00 14 0 0.00 5001.52 0.00 15 0 0.00 5001.68 0.00 18 0 0.00 ,... 5001.78 0.00 20 0 0.00 '63AAAa6a&a6&6666A3aA6eaa66A6`aAA6'a6666A666666AAgA66b5&6S6a6a5&`aAAAAA6gAAgAAgA6gg <1> TOLERANCE (FT) = 0.010 <2> TOLERANCE M = 1.000 a55a5aa5A$a665355aAa5a3aaAaaa3A3A3AA65AA66ggg�6Ag6&6Agga5a66A65AAAAAAAAA'ag4A6666 K 18-inch Dw RC P'S 1 5 = 0. 7% �ix as /q., 5c r5 , D = I, OUR Qoo41•33=1y,3AI D=/•4t3P, 2 RRENT DATE: 03-01-1994 FILE DATE: 01-26-1994 RRENT TIME: 08:40:11 FILE NAME: WTSF-1 6t366666siA6a6a556a666666AAgt33Asis36ggA6✓3r36Asisi35535g✓3gg6✓36>s66636aa6gggrrigg6gg66g8Arif PERFORMANCE CURVE FOR CULVERT # 1 3 ( 1.5 BY 1.5 ) RCP -DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) `(ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) gs33A666aa33533aaa3A3a65B6SSaAA63AAA5666As33aaa36Ag666S6683S66666666gg66666gaa36f36 0 5000.30 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00 2 5000.68 0.38 0.38 1-S2n 0.27 0.30 2.98 0.27 0.89 0.35 4 5000.87 0.57 0.57 1-S2n 0.39 0.43 3.64 0.39 1.11 0.51 '6 5001.02 0.73 0.73 1-S2n 0.48 0.53 4.09 0.48 1.25 0.64 8 5601.16 0.86 0.86 1-S2n 0.56 0.62 4.38 0.56 1.36 0.74 10 5001.28 0.98 0.98 1-S2n 0.64 0.69 4.59 0.65 1.45 0.83 12 5001.39 1.09 1.09 1-S2n 0.71 0.76 4.87 0.71 1.52 0.91 14 5001.49 1.19 1.19 1-S2n 0.78 0.83 4.87 0.71 1.59 0.99 15 5001.52 1.22 1.22 1-S2n 0.79 0.84 5.10 0.79 1.60 1.00 18 5001.68 1.38 1.38 1-S2n 0.91 0.94 5.35 0.91 1.70 1.12 r 20 5001.78 1.48 1.48 1-S2n 0.98 1.00 5.47 0.98 1.75 1.18 El. inlet face invert 5000.30 ft El. outlet invert 5000.16 ft El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft �a5&aaagaaa6aaa56ag6666g3aaaaaaa56As3A6&a5aaaa36AAAA{sAA6aaaa3Asi66AAsi&Ais3AgAa rr*:r SITE DATA rrrrr CULVERT INVERT *:rrrrrrrrrrrr INLET STATION (FT) 0.00 INLET ELEVATION (FT) 5000.30 OUTLET STATION (FT) 20.00 OUTLET ELEVATION (FT) 5000.16 NUMBER OF BARRELS 3 SLOPE (V-FT/H-FT) 0.0070 ' CULVERT LENGTH ALONG SLOPE (FT) 20.00 **•r CULVERT DATA SUMMARYr"*r**rfrrr*rrrrlrf*r:r! BARREL SHAPE CIRCULAR BARREL DIAMETER 1.50 FT - BARREL MATERIAL CONCRETE BARREL MANNING'S N 0.013 INLET TYPE CONVENTIONAL INLET EDGE AND WALL GROOVED END PROJECTION INLET DEPRESSION NONE F // I BOTTOM WIDTH (FT) 5.00 SIDE SLOPE H/V (X:1) 4.0 CHANNEL SLOPE V/H (FT/FT) 0.007 MANNING'S N (.01-0.1) 0.060 CHANNEL INVERT ELEVATION (FT) 5000.16 CULVERT N0.1 OUTLET INVERT ELEVATION 5000.16 FT CURVE FOR DOWNSTREAM CHANNEL UNIFORM FLOW RATING FLOW W.S.E. FROUDE DEPTH VEL. SHEAR (CIS) (FT) NUMBER (FT) (FPS) (PSI) 0.00 5000.16 0.000 0.00 0.00 0.00 2.00 4.00 5000.51 5000.67 0.267 0.273 0.35 0.51 0.89 1.11 0.15 0.22 6.00 5000.80 0.276 0.64 1.25 0.28 8.00 5000.90 0.278 0.74 1.36 0.32 10.00 5000.99 0.280 0.83 1.45 0.36 12.00 5001.07 0.281 0.91 1.52 0.40 14.00 5001.15 0.282 0.99 1.59 0.43 14.50 5001.16 0.282 1.00 1.60 0.44 18.00 5001.28 0.283 1.12 1.70 0.49 20.00 5001.34 0.284 1.18 1.75 0.51 I RRENT DATE: 03-01-1994 RRENT TIME: 08:40:11 3 FILE DATE: 01-26-1994 FILE NAME: WTSF-1 TAILWATER 6g34666g646g6g4g4ggA3g66ga ***"* REGULAR CHANNEL CROSS SECTION �gAA6AaAAAAa56a3aaAAAa3a6aaa3Ag4AaA6aAa&6&Ag3aa3el♦6AAAAaagAgAg3�3363&g6&AgAAa&A& $$$aaA$A$$g5a5aaAAAA3aaaa ga6g6gAg55aaa3653ggA&6AAgA 643�Asa6AaagaaaaaaaAA33aaaaaaAaA3aaeaaA6g4ai&Aaa55AgAAA3ABAAbA&ga536aA46g4B6riariAA ' CREST LENGTH (FT) 20.00 OVERTOPPING CREST ELEVATION (IT) 5002.80 _ ROADWAY -OVERTOPPING DATA WEIR COEFFICIENT 3.00 EMBANKMENT TOP WIDTH (FT) 10.00 Gl APPENDIX G RIPRAP SIZING CALCULATIONS Ltd,lone & Anderson. Inc. ,nelffal l 51110/e 1 C ,� D I 3-1-1q i4l I enTie'a EATURE I 3 CHECKED BY DATE 1 SHEET OF i2 o p -Pr i'Cbor IGl—� /-1 M 4 6' J 041 e4 03 (3o" � RCP fo 5pooereek) l ram 5DD6 Mcnval R e 64 e�-Fro r"uDSMrr(App. D) V 5o,ro Class r1prey 15 ieyulreJ. �en�fl, = 10 feed. Ov}le� #�{ (51�ewalkC�l✓erg }oP6jor5rxk) Q1co = I�I�Scfs 5�ekiAc lre;4 Open area = (4f+)(0.5 R # : "'se &w = a.4 BPS 5 = 0.a5 (i; 1 51Jc5lope) 17 S a, o-fsb - 69A (" a �, "' r, Pra p 15 r'e5 vi (eJ (55-1) (Q,S-1) 1- = 10F4. drrl-o 5 wale boffin 0oflef t, 5 (Pike irarl euldee+ es'oylr> - 3- 10"ORCPI-b) 0100= I��SeiS-a�Fle+vel«l{y�iomNY e�}rwlyses t5eeApp,F) V Sa,1-7 LIL--n— 5 I '� - I- 1 e6 6 r1prey i5 required U, ) L= 10 4 upfream and dowmyl rfGr,l . &kW 5,jaic &4Cmf(erlce w4h M4jor5oale) Qwo = o�ol• i c (5 V 5p1' (I,s s) ,col •17 �: 0.(p 1 No ruck✓e9vrred redPrf�2 (eSS, JSe CI4ni b ( ),vv rock 7 uIS D15 gcA"er1ee qS a piec4ohonGr f 4WA13W. 4a/3 Table 8-1 lists several gradations of riprap. The minimum average size designation for loose riprap shall be 12 inches. Smaller sizes of riprap shall be either buried on slopes which can be easily maintained (4 to 1 minimum side slopes) or grouted if slopes are steeper. Grouted riprap should meet all the requirements for regular riprap except that the smallest rock fraction (smaller than the 10 per- cent size) should be eliminated from the gradation. A reduction of riprap size by one size designation (from 18 inches to 12 inches or from 24 inches to 18 inches) is permitted for grouted riprap. Table 8-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP % of Total Weight Smallerthan the Stone Size dsot Riprap Designation Given Size (in pounds) Cinches) 70-100 85 Class 6 tt 50-70 35 35-50 10 6 2-10 <1 70-100 440 L Class 12 50-70 275 35-50 85 12 2-10 3 100 1275 Class 18 50-70 655 35-50 275 18 2-10 10 100 3500 ' Class 24 50-70 1700 35-50 655 24 2-10 35 t dso = Mean Panicle Size. At least 50 percent of the mass shall be stones equal to or larger than this dimension. 4 tt Bury on 4 to 1 side slopes or grout rock if slopes are steeper. Table 8-2 summarizes riprap requirements for a stable channel lining based on the following relationship: VS0.,7 � --� = 5.8 � (dso) (SS 1) in which,' V = Mean channel velocity in feet per second S = Longitudinal channel slope in feet per foot ' S, = Specific gravity of rock (minimum Sg= 2.50) d50 = Rock size in feet for which 50 percent of the riprap by weight is smaller. The rock sizing requirements in Table 8-2 are based on the rock having a specific gravity of 2.5 or more. Also, the rock size does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper than 2h:ly. Rock lined side slopes steeper than 2h:1v are not recommended. Table 8-2 RIPRAP REQUIREMENTS FOR CHANNEL LININGS tt VSo. n/(S,-1)o.ae t Rock Type tt 0 to 1.4 No Riprap Required 1.5 to 4.0 Class 6 Riprap 4.1 to 5.8 Class 12 Riprap 5.9 to 7.1 Class 18 Riprap _ 7.2 to 8.2 Class 24 Riprap t Use S, = 2.5 unless the source of rock and its densities are known at the time of design. tt Table valid only for Froude number of 0.8 or less and side slopes no steeper than 2h:ty. ' MAY 1984 8-2 / DESIGN CRITERIA 6313 It I i J I 1 The thickness of the riprap layer should be at least 1.75 times dso (at least 2.0 times dso in sandy soils) and should extend up the side slopes at least one foot above the design water surface. At the upstream and downstream termination of a riprap lining, the thickness should be increased 50 percent for at least 3 feet to prevent undercutting. Where only the channel sides are to be lined, the riprap blanket should extend at least three feet below the existing channel bed and the thickness of the riprap layer underneath the channel bed increased to at least three times dso to prevent under cutting. Riprap should be placed on either filter material (gravel bedding), a plastic filter cloth, or a combination of both to protect channel embankment materials from washing out through the riprap. Generalized filter material specifications are listed in Tables 8-3 and 8-4. The Type I filter in Table 8-3 is designed to be the lower layer in a two layer filter for protecting fine grained soils and has a gradation identical to Colorado Division of Highways concrete sand specification AASHTO M 6 (Section 703.01). The Type 11 filter, the upper layer in a two layer filter, is equivalent to Colorado Division of Highways Class A filter material (Section 703.09) except that it permits a slightly larger maximum rock fraction. For fine grained soils either a two layer filter (Type I topped by Type 11), or a single 12-inch layer of Type II filter is required. For coarse sand and gravel (50% or more by weight retained on the #40 sieve), only the Type II filter is required. Filter cloth is not a complete substitute for filter material. Recommenda- tions for its use are made in the Urban Storm Drainage Criterial Manual. Table 8-3 GRADATION FOR FILTER MATERIAL % by Weight passing Square Mesh Sieves Typel Typell (CDOH concrete sand specification (CDOH Class A, Sieve Size (AASHTO M6) Section 703.01) Section 703.09) 3" ... 90-100 1-1/2" ... 3/4" ... 20-90 3/8" 100 ... #4 95-100 0-20 # 16 45-80 ... #50 10-30 ••• #100 2-10 ••• #200 0-2 0-3 Table 8-4 THICKNESS REQUIREMENTS FOR FILTER MATERIAL Minimum Thickness (Inches) Fine Grained Soils t Course Grained Soils tt Riprap Designation Type I Type II Type II Gabions, slope mattresses, Class 6 and Class 12 riprap................................... 4 4 6 Class 18 and Class 24 riprap................................. t May substitute one 12 inch layer of Type II bedding. tt Fifty percent or more by weight retained on the #40 sieve. ' MAY 19114 8-3 DESIGN CRITERIA I I APPENDIX H FLOODPLAIN DOCUMENTATION 1 1 [1 1 1 UIUU°UU ] Q 2 > U ~ Q NN 7 ' D 7 1 1 ' PR PE R T ' No 2 Coun ' BW Mercer �?o� TUART 5 nn 9Z CA _ Ce 10 Cc eek CIF Pe ' CF A- oc CIO NO CA MEN � Bo b . T 2 �O RIVER eG V) MEADOWS V1 ROAD � �V sherk rod LaterQ/ 03 e tT SPRNG � i eC T o COUIRT 5pn^� Creek Flood E"Ir6r f �f oalr�ay I`�iP I iV7!5 Sand W E;'k4wt Ne: ToIy I4 079 u 11-7 EDWAROS O IPRINI PARK DR q` 'qS IL- am- I W17,11 mr��l 4191/7 Y�. IS116 Wll- 1�-,` J 715- q a WIN Nr x C6 O P.26. Q C9 5), W z. cl - ko 41� Cv try X d Mml CV-1IN 41:1.4 co +80'� U) X- ILI ljqq gev6M F(5 r(oc8p6ri $Ba5e rtooJ VeA" ., 5014.9 % s , , �`� -` Yt , • W ,+ i /`.[ ,t- IZ90 t . ,r-X 50 7.0 X + 5010.3 b009.6 mm �� �.P f.•v ��r�; �_ ,�� -c. '� � a � ter ,y_ _ .�- � 4�''L•� fi r � _ [ CIU ��;.�.i,� •� i i y �••; z, t -� �j k.,. e r •_~ i��.� D1 '„C � j r- � '.a l r •A t J 5 0.4 ;c j►' '.�4. � X . " 2.TF �' ,. . ' p R. '- 7fh trs . 1Y _ � ` ..J• � � 5.4 "' � .._ � �•�^-.. �: y'♦y'at Y �t )_ Y. ^��`' w � OVC ;.0 '•�.s Vim A AI, •5003r0• .( •\.1. :Y �M1�•�"" � ' •� .•[ _ �FA VA' � _y���c�M.� -r _ ' ...., _ 'tl � • ti `.5 p A}�, .+. L�Q �y"�� ` ¢ ` _ � � , 1 .1�}• r ' .Y�C�. � ,'���Y�y;�i ✓. YJ �f:7 � ,r�.,�...�•. �R�f�IP+�.... �.'�_ Il•y •.F: 1 � � � � �• .jy� y - _' , t Jam` •� .. :s�ts s XX �'S ; I\ t . 5002.E _ 1082 5005.T dam'[' ' �1T'Y. �1' 1. - i-'-��.•�?.�- [: �:9r r •�-.♦ --r' T'•'9... •5 l5. .w � a � .. -,. � •� . % ,t.. ..,-. -... -' r"�'�' ' �_- i .m:.�F n>s•!e�*•yer� 0:1 ' _ `'. � - �• - -' - ' �(. �' � . _ .�' �r: Z �- �' ice' : � •� '�r`'-� 1. • � �>�._... ! •� � f��rY - v��• j + , •�.' c� 'fix �' .. /:{ F O3 =r sv 500• l - .. F..-�...dM �rr:.3 •Ai.�i''3, �' [ i•>�i�'; ;7�i ..r'iw �. J�--P - _ } i 3 f r ay9e _ Too. 4998.7 .:._ 50x495�6 r. X i i ,., oil -i .0 i �501T.4 •+ >-,�n�. _ .a'„ -ten . 1 Q%i r-' 4. / 5'@0;78.4 :..'.---.._. _ ....: ,� 'fir."•- � o`v v kip c, _ X50 X�3 ! ` i•.;• Y�yyP�'y�.` b' t< y`♦7.X✓v±i.:.` ••:.1 Y'.`lv- 1i.gb... .y�. �.....�•rr♦;!✓^ r: -T').'Sf•. i"rr. i- y ' t _'' 1T. .D ib-.•r.,'.• 4 -�. N. [-``__ -. .• _ •y> J " P ,JJ' S0/LO "-�,�.r-��YTra�a u y�'7`�'._ �''f9:. '4 R .., J�.f�,�t- L`.r'•> 'k r.. X S�s}� .n. Y, OR _ .. •j '., .>�• -1.- K 'r 1 ���r�♦ � 'v �t � -•.rD )`""r..t.� x *' 1 .�•[J :t [ i f i w �Y � � -. ���.6, e . � J� �j � %JC"5009. '� 4, �s , x ' •' � «T-r�-T�}' +.` �V j > ` �•T• i.i11� L•-�-r�...f•L. �yN �y - >y -�• .,•1� � I. '�, [ r^,`: p2p.8 ,i>' . �,• T.'" r i.. _�• -_.+•�--w....._ 2 .f- ` r. .4 500 t 4 Y - �" y � `Y - . Ff � .y T.�? :/yti ♦ _. -mot ` ..t J}�, >." s•'._ . a. /1 i� + r i P , ' h[ r: �j ' p�'sC�3y .. 1 . l y 4'�`y, - 'F A l� •� J 5 ,. _ -' •i' yq � S/�" r. `ra".�.'rt+>t,,. ..•J •� y �,�{i 'a.�" 'g/idl�Q . . � '`�i ' r rf •. '-y � '' .: y, � `,. •�,, '!" •� - ! �k�a 3j,,rs '_`-.�". •-' �• 30ov`.,� �` � I R- k r f •~'[ �. . ��>Y�i•' ` J.• �a- is �t''�or• �' ~� .:::t. _':..i 7..,. _ j} 'c''p'� y". ,�t� ������' -� - �` ~� 'r"'•r}��`. �'Y �•. Si. "1 -;��it �k t' '�. ..�, r>�'� 'cl.(*t� y. _ •?�w ;..�" • �. i,.• ',l' Sar 2.5� �f� � ' .. t_. � � _•�•�.d+ FJ'r. R .• i ' �' �� �5()J%./ �G -� ._. ,4'JtiY�-t- ♦- ���r.Is�i+a�l���s♦i�.�i'G!Y!b'�^�li s 1' �• -�� >�i, ._7.x�.~>5'Y r. ... �.. -3 .. .".>. .- . �'� 6:. 'O J. •�. 11914 Rev6eJ F15 Fioalp6o 8om+ Floyd r(eVAO,115 No Text H s/7 Y k' "i t t , 1 11 } " \t�'1 �'.J { J• 4x1.. r♦ .. lob:. t I a � \\ , ` � ' . _ � .n ._�'•• : •1'. ..r w _. x 1 '�'t•' .F i �� f T�� 1�'11 +I .I .} � �t �) r•'�I. ,' �;' j PI r� �• n it xis{.. _ _. j 4'; J r -J� ,•+ �N x' 1 1 � Y Y j �'i� .YFT I I iTTl. )y, •1 � 1 J • .�� l . 1 1 �.:�� .��' I � f. ��, 'I'.k 4. � 1. i.. _. I 's'.'d •r f � ' y ,d,. p i : � - 1 ' �_ � CC +w.k `a�tR�'!�. '�ir�'. �• A�� osa� r� sJ?�.. -.M.� .�,A x � �.��YS�..�.'�T. �I ' (��i ��� .1 i �I � •'.1'If.��! � + t� .< ����, f k -- .PI'. `[ -.d � •`F"�; ..%. �,�-•. •. ` - x, r �DM ytl i ' :. 'i ,:rj - , t'1 •) � t ni.\ . ,I. .' .�j `� ..�� ♦ �i?,, l4{Y;�`� -;�=t �E��''I1 r w ' i �,/ ',� �e ,� �`jP�% �.. i :•G 'r;••!1.�_.`` _ .y 1 1 d ' Via. ^L*'. ... k � •� I'I, �1 � '' i.`/ _..`.^ '.t �'..":! 0��.'� e r r �\` , -. �i_' f 1 t .1 � 1 ��y \. �. � �f l� a r �� {iwy`a�y a.a � __;� •iTf' .- r � -.. c _ - __ '_ � . .�i. '' _. �- 1y �! ' +� I ,p:-• - i ` {a i «»+i• �- �*+V•`."TrG57w r1 \ y, <�_ i5 _ �—� • g .- + 1 �:-. t . � t •� � � r• r ., • •' _' 1 pa 1i +el =�•:� ♦ .. �z! � i I 11 p n I "r `` r ITT 1 I i s .. _ " il`•a. 1 1114 y'- ITT ' •,'k'i y i1, k' wr �.� O a w 'y (r. `, Y?i • ♦ ' \ *. .D, < ,,t f i i!Ii.4` , t"f. _� '' ' `f <. .I 01. ��'1 � f l• I ,( ¢1 r,ran�,� I' b +�� _— \, _ I r a9. 1 +�I sex. `,. 'w I J �l r t�NN1_�% VM is r � 5 i' r1� ! 1.' wi - •i-_ ,. s t , L . � � ... � 4 I 1 v I e• 6 L''e i ` ; ��:.. I +k n ' l w .� ,> N M�� r. • .��i . t � + s �"'�Y `• - • I t'+'c. �•.•�'~- 'r it'+� y: 'A ti T Y . ,:..' I tM, )� a. \} -r( A �t R', I'`. _ �E ,-� �,:� ' a., Iti i + "S �4 '� . t f s-• �-- 'Rt1 y k � \`�N •. � :w:SJ I -.YEAR .FLOOD f• a �3„su y�, } _ `. �,' fid r5 �+ •X, ! ^ 1 +; 1 +I r t t1 "1' .` tya1� .w f`x•. t /: r • ' !1 `! f. ir,+.. .cir ,�''`: e • 1 ` I _ 1 1 '� `� \♦'.. ° . .r. T..-y '.h_.r: .. $ O� -4 ♦1 i? ' `r r` �� a '' f.f<16'ri,'•�t'a•^ '.w } <Y-. �y' �a II• i ••W g, .J `. IT k f W r- ;..f y,M,:' (' / — ^ I y N`h& HJe••� ' j �r 11 -... �r-st• i • . � � r•.Yct.. F,.� ; 4 I I. �� ` � j �.a. 1 f :2 ...: .:..�.•- r ,.r 1 t) i � .y�\j1 � < ,Ja-n I •.i'. y:i\i�. ' ;� _ � .ti�� r T ,r ... _'Y Ip ICi 1 rr IItEI r`i - e ::'1►+. _ �.,'�wr' ;} ,. _Jr '�I +? �{ ' iF 1A .�� - •l i�. m any. ����lll( _ x� • __ �.s_ sf.—x�e}.��y, r / •Yi 4,; Y.-Y j {�. ♦�- zJ�,�y� \W�-w' + •.; s_ ,. 'S ° yll�Na•.a i' � I �' e.i � ..� � �s" s ,%4` 7 �J.. .+`a 1.. •,,��•p' - •...�.� w'•F� `4.,c___"oO�" .,1 F' I � 0.... s, it O nx wl � - i t� I° WHITCOMB I j STREET" a, Lo f n R wr y a ' s ' t . N ry . WAY w y 'ASO i0vr 00DPL ��,yy'j�•[['��jjyy''�:� p'i a , Lti 'fi - .. [ a: � _ � � � > 1 I _ � �. .� III 4 4 � + �. .. __ �• ' '-' � t t �Ff F '��'•-� , =J O _ • �� n�= � . I ps •, t\ x , `fit �. �a �.. }, } • � :� �• t�# 1 �'�p. y1' ` Ir I I Y�-I rw� '�,y�'�f �' ,h �' I ao a � b/ � 3'� ,Y � JS I�i� � III; w f.(A '. �ij.'.. r f F •/.A. t.. i \) 'Y'. �. C ' a< x. 'y �. �t + °O ' T •4.ZYa,�i.� � / � -��1, t. I', it .+` f •i t /S �+li ° `�' •IGi'� ) x i a . i!\ •r i ( ►� Ir "f L'I Q�k� + �•t r�.. R �! _ r -,�J.a O - /' '-P . ♦,; Yl ..r'. ,�.! '• ti '� '�'f'%.. °g " i+ 5 i .' 1 -Z_ _� a i. +7 �•�? I i I '7f�1• .,t. �'. °°p $ .'y in t �r .� 0 I � J 1 , J `•-' -�)J � t - �� 4 � �,JO O•1'N '. 3' � V- __'Yt 11fEa T.by ° T /'o� � O •h K . I Q i J.' I-iA� •I p° 1:♦) `� 1 v. 8 , tC q`� f _ ti �� i`^ R o •J' _ , I • .ya � �� 1 � 4 _ _�. � r � J � k � �� ° .�..//i U' � I I � � a I � � k.. �'' :.ir �rR� O/ �'� y wq + ^ 1 W ' I $£ m I �I I • I $ Xr , y` rg ih T I r n'Q`.,. W p g rN " fPP i J1 _ It Z I`.,. xal K► +<. '.t J MA' P IF .8 I' �. a .w 4 •�. On iii ` °." m )._• . q y � ') 1. a If' } 0 !, 100 200 . ^300 8 r •}�j i a � i`'' wt v'%t 'y_ ,( t. 1(•0 � ;� I' `��•� I: I I ,. _ .o " w •�, `\`� :$��t :e »l'� 1+ � 1�". 1 ; � .� P 4 � •i � r4 ' • i+� ^ ] \ I :a,. <�� I � , i• :' � $ r � •\ � ' `. o '� I '' ,�(', �t � � ..�,I' I_ � � ^ ' w ••1(I' .tip a I + O 4 � ° I > n.• ,• J� � ,I t,r . ENGINEERING NO REvrs+oNs BY DATE PREPARED UNDER THE SUPERVISION Or MNS E`+EN' ' ?EE FLOODPLAIN DELINEATION PROFESSIONALS, INC. _ _._ DEsroymOJN CPEEKEo s1.1( SCALE 1"•200' CITY OF FORT COLLINS STA.185+00 TO STA.2O4+80 3T f ron0 Cori .��ICo 0 oeo 80sas -- - - n :6SP .r.AtE MAR. 1968 ORIO.1"•100' (9/7 c 4 r-' 9 � �N 91 90 ') ;� �i n�..: ♦ �H .. � : 'l•-•� � �-+w' I ,. 111 � - -. a. .. y�' `/�., .I� �, ` ;�.+yx �- i`k, r. 's y::, -�,.�! d ,�.'ii"�,;•' �:' � `�`'`, r'�•, -r , •� c __ bc� ti..`� mil '' �; �P _ --' �. _ `��.�..,, _.. ,w 'N .x1d441 iaaW .,, �:" .. • i, -; y w' Vie' .ice" a « - ,' :. _ >t soar. M aaew.• aanu.� _ 'f..'•' a r""�..•.a ._.. ,._ _. 5� • r _ y Ind 'P II id -' c � aeaev3 i - 1JYfIQa,�. gg L, d Q 41„ I ,hall«I �i,I V I S::iI:Y J* 'R1tliiE � Lu. '� to II 1 � iM.1' ua {•—� __ '` .. � .e rI�V 'ly. I �� i Q,�11H ',i� ,::� 41* �.i1�, ' Sf.4 r^�A:,. x:. r.. � .1 ` � 1.:+'�I: '+ �, �Y-up• a:'.. i. lu tlM' I `.: .. • •, : J" Iax'�..:: 1'r A'I' ^•e '� i �Ii'. L, :. r :,:•i. r,, o IS Ili ryn.„x iYF ,:1 ,..., ''ard Y �'I, :/1 L4y� ^':�' d::'::.:'''",�''`. ?ru" ::„ �' __ �::f f�.... , .. I I: 1 el ::�, � I 1 44I b I «J', il. x7:::, 11Y: Ivi-.i. .. ♦ : '' .:.,ww:n'liri _,II •' ', x I � I IOCW Gl •` ,�.r..l,.:.,_.,,e._" -. x , y.� �I ' u-.. 83 .ru. .,:rv^'_: ' w �� „ i�r I,. -:. 9'� ,LJf t a: ':' ,.., ' h `. llln :.: Jr I :'M, � p III_ V.'CIVA.., ,�il, •; �y .' 4. a `i :1: '1 e {I ,:�I_ a. I, 1 :♦ J , :,✓"1 • all - �. l4 roll ,. F L " : I ll x .,. , r .m:+. rY �:. aiRl- _ � Y. '�' �'� x \ ': i a A' :'•I � JI' y� "�u AOr6a IP-II ', '9i'-. :r. :e �J•r• -:.. yl'�F I'., ,6~`' r. 6.11.. '.I;.. , �r , dl�i., •' 1' �'i: J.,, r. x ♦ ''a .. i' k' ., ali. II^IIII:,. ': �.. w.. •', �l/'^-". �°.. Cy,,.... ,� n.. ._#""�•:�1",f f. :, li- _ I:iY�,� I+' y::r _ 9 p ar , L ::. i d (IT B R*Ma+' -. jam. s1a1 k Jhq'i:. �. 'S Cana ' ',' :i ..hi +i 8%.. .� I WMA a:rv� 50 41 ":x1Y:. i.'. �"^". !:''4P M.a „I Ij: 0. „I l I' ."\ f. +a� [° ni -a'J f::\ Y. 'hh':. �•Y ' r W :5 p • 1ItF �:#'� "'. '1, y,yWf-, .. :%,.. xl ,('N ':'. I IF. r. s.r^s iiw r�\ rTT {': ;' r w A N•. Ilx : d , �. '._:.:.w.-w:,w :�. � ::.h• I N•; 1 1 !';. i,. '. x +L, AI.. K 1 �c s • � a � �� ..rc�.,. � .oaa. fi ur i I k • �' ; } . " I' "'41 a+..l... 91; •`•! ":..:._ 1 "'N L. "e ::Yc+ac '� i..k t �'� :.pt. s: �� �.� -sonn�rN� .. ,� � ,. .:,r rfi. I,i � E-I�"I:IW.'R „+..w.'k-i .a r <rl I ._ : _. ,-� r ••' �'i:':'a� I' 11 I f` „ _:,e t � _ ..,�ry4::��F'.�._3_M.`1 ::.�..{._,�/ : •r �_ t"F�--�,-� ! , " .'HC:. �'M =:I r J�.i: .._. i:.i.,,..f ,:'l ,.� ."I I 1 ��.w.: _ A��. _ •S+Xr 1 -�y: _ „'y"'.._.,: :: �:`:, I Pl,�� , ;....:._. x �,.auaaa Arlr,l. It l.% / __ �•'� .I �'��'. = _.. � .d ':; � .I r::::Q. : � ,:. 1:8!,": .:. .. ..: _..�v-_L � -: r. 4: �{ 1 ,-sou; •::,~ +I:. vxfi' _ _"t• ._n5>.�.'•L ,IiL"'h __':x n r, :u. I?. :� .: L, � r ....:i �ii1iL eLNie I...-..:�.. -"^-' -_� ^�. I� auy, v,� .. r } �, L'•p ���.r:: ,.. a. ['l,. I �i t ...: ,: xx ::; .,_ i, iY,!,. 4xx ,,�.v.. I ..::� v2:,-•-:.r ..... _. -..._ -_ .:j;r..: 1)it ... Iki: � /� 'WM � i r Na raJ1 e.tl 1-:eilir ': yr,! #, ex .•. F ,- w FL'0'a'OWl -94ME vi(. ti a a �« , ..... J «T � 45 FL00DPLAfN ••: ..N.'�'::`'iY •r '. :4 '� ....,... •... R' dAkl�'yy ' IL _. 1, l !.. WAC RG DR/VE ! . i r LEN9f :✓ .�- �: .-�„-,-•��� r c•v�`a_•Y t r •, >+,, ..n r "--' e .c.n _ C..t. j . v':%+► w a a . ,- . I T . y saaa: .- �� • ' -'' <s. . '.,-' .- - ♦ =I♦ yeti--�...`I ;Haws u'. { ,_.•.•._._ t s:ror " 5':� . w»w.a: x 4•' . . . 4 a .� _.- " # -, ' �> �_..-. �. - xrs.1. y r'♦ •y °-.aP=•a e. - .,yxlvez !!__„ �.� f �—xo� ' C r r a � � -:, _ - '.. - = f d �',"•—: _ • • ` _ .. -, k«=s. "� __ � _ ,:Yaaa..s `- - - -- _ _ fi; fir. , $ ♦ 7'A75 �LoA ^✓ _. i ` 1 ..?:.... / �,,:.. =x _ . .J.r= d � �LL ff� r �'�7[ _-tea' . �,.. � x•4 ~^` -`. # a rr r. �.-� + •fir -' Y � _ wFo - r �� j °fJ.: Ji SS::� •• �' -•• a� ; x _ 1� FF / _. y'%S.t�r _ - - _- �4 �-.. � .. I'•� i/ '. : ar f _;. ,: � ..p: _ CT`,' I a. � �\ •1. � ', x�: L s -.. _S RAJ_ Mil c i _ � r �t f" -- `�'.- �' �w' as -.'M• _ _''rf iag1� � 1 I 1 \�' j " � .r:....rn:L *: r s,'" `h _ + 7 • spec =r .'' - 'soata a n . ♦ i 1i k ,LpEYYR.` 0 30PLA1N low , ;;� 2 .:.` :•�+'a - �.� aotrtR !^ir.l. oe y...� 6C._42], .:°,_.._. - � '�'.:.. •,' .!A s. .. • x. •r v-xw:: _. } '"^ k3Qa1:s J r .: w K•+ {( ;..:. 4 } e �!� a 01 IiT ��II.{��',. ,'' .' yam' i•�` 'a I J:.a.AAO �; \. fe996�_ . .x � � L.,,�� :rn _ e �.« ,P :._` • V••J, � .- kx .�`. � a� 9a':!V s art,. �,, x,. .:,.x �ih x - - - ��� �-^ - r {: ; _. �� a :: ' .�: a l 'y r'Ika'{,VJh�I��^ b � a'Cwa .^._.�..\ 'I ♦ >� � .a:_ '� :it::: � ,:; rw a 1 1la �/� :: _..., 11 d." :: 'e:,l ,_ _. ..k ' r aa"��� 'i'', n w , 60Q2 . .� 1 ♦.. „r.i ' �, - h; �::- . 1 •,a. ,:p1x1 .1. '':.j..II :.r krrPx :tM , fl i rv5 _ ./II'^a.r'.x�' '• .�� .:.. Iy6Pi� vEklll ..° .I :I I �I ,: ICI b II, I. ::n�l r °' Ie '� ° ur w.;: Ift .. , _.:.-•�, - fl .. IF 1M ° y'Ib'r,- R �'QO\ _,*w ;� � ri -.:: .. --. I� :•I I I{ �,I qiy� Ii rYln a I. _ y, . +• n•. .ill iF ,� -.. wM"f: - i, .. : r°. I I I "_ r : �- 6 ..�.:•raa P ..' na II. IYL. u,.: 4 I!II I I I I I��i :i. r'.r x l r ::�, �„•'_'htl Hal^+,: ,W�• j.x"liF:ili I„a ,ae Ln}1E-r•Ir �� tl ;M y:. _ '� ... : yaa.. �, ^rar p,,i4� % ; 1" y' ` , "F A I: i. �� b_. �+"I^. IN'' WI :Qn•I - ara�ar.aR HELL ....-•�"i- ,,. I i\.� . F � , 1 - w'u ; �:'�ik� x :.y. _ , j,',a`I I,, .� •�. '-... .. _r �a ,'^ro. .1 ,aceF.a ,e'cnar � c`c' € ��oars'a�"�soo.s r '" +�" 'IIII '"".r'F a a' J ,J 4e i^ 'I 6 x�i, *s. xdhlWlL r 1� - na: I r ,,, � w:.:. �y�lyjq'j�'4 Nt.l.� :'1. ':(. _. � t-1 !u •:, �:. �Iw ��_ rPi' ILL 4: i �.;r I:{ � ':11! �;N.,.:� w:lry �i {il . ' l -_.. '' �� n. . � � ... x i•:' �� + ::, I�'I}A : Ry ' Y II ':I lGpai :iti ;•'dt ry C. a Ad-. ^ : ,.,,, f "�+w ��i+'*'x�',,. w;•� WRN�l��A19Y IIhI'r '.:[: I- a: '..; I „K� :�µ ir: :,'^h ,,I::. s 'll A`�ry I is. :�IIII"! '.a 4 •,. I h ,'_ 1"'.,. _•e ,:..•c.__ �...-.",.:,ry ,,, ' <` :t.•; uilx; I 14..M1 - ��: 'li 1 p��q:::', . I q A, I: � "..' II, i . ^"- _...._.___ .-. Boas_ �/•7. "I - -. Y, I 1�L 1:'. -I i 1 ,:m. I. A' L U i wln .: -, '- �'af , a� . ... is xai ......,. ___-•-•-_...-- smaa,.. . i ,' - u .i.!. � .x•' 1 rat_ _ :- - .., '. ...� • .. n If , ' : � I �.. � I° I W '„�' ela:'.`. :: a Y.Y .. _ � 1 ,^.- .:..: r,. } :e..,., �..• •:J , ••. l :!Ill. r ., I:i 1'lll .:'� i:�. r r{ L:: i'i :.: 1'��I I ,i r'i''x, 'll' aLu " ,'' y.''� y ...IM •41;i I. 'I __.., -. . �. ^, d � II'i, '�.•: ::: ,H � �... - _. , :i:.J. :All{' q:. 'ir Ikl ,:::r°A� rn�!y(�1 ��xhrr'"I, ', .'' T x.,•F7 1..:` :: 'i' iltx '9fliF a "'x. y f"' � 1 _ • •i••I'«IG_i11,.:," `.. nn.ym.l. l.. L. __...--•��m.mc::r :c-yvAA -i y. ascM.�,. ,:�' fir{,' / tlON,.i x.l;;�, I, .. II II•. I_ ii r :!41A qll 1:�+.1' _i ,:, r_yL y F i ENGINEERING NO. R IONS RT DATE mEINAm ONOER INE SVPERITISION Of MINIS CLIENT: TITLE FOPFLOODPLAIN DELINEATION PL Art NO/37 of PROFESSIONALS. INC. CITY OF FORT COLLINS aoo0 v....x:fxN o.+.. 0E c K cNEcafO sLK scaLEl••2o0• STA.200+00 TO STA.227+48 8 2 CoII Col ro" 80sas ORAmim CSP oLTE MARCH.1988 0RIG. I••100° f7 w z 0 W H F O .2 m E. FC V) W U z w 0 a � H a N E w o U z a W O U V1 U `�-alCi--cs"�� C�nnSDi-r-r�„�� �I..ffTN �"Cor�r•tc—�.A�C� 5Y e.lwlc �TL�=AIL IAI T4C \llel Qj" r r r r r r r m N m N N m N m r1 a m rl N N m r N r m m n n m m m m v m m m v m m m v m m m v m m m v m m m v m m m v m m m v m m m v m ON m v m m m V 0 o N v 0 0 N r 0 0 N r 0 0 N m 0 0 N m 0 0 N O 0 N N 0 N n 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 0 N N m �p w %D 10 w r m N N O lD N m m rl m v m O m m N N v N w N N .D v v d v v v v v v rt m N �0 N rl m N m v �D m N N m 0 r m m m r r r r r r r r r r m Co m .-+ r♦ r4 N n d d d v N In m m m m m m m m m m m 0 0 0 O 0 0 0 H H H H r . H .-1 . r H H m m m rn m m ON m m m m o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o 0 v v v v v v v v v v v m N N N N N N N N N 1N N N N N N N N N v v v v v d v N O m v m v m N N m m H N v N N h m v m v d m nm Nm nm mm mm mm mm Nm O .0 m m h m O m m N .D w O m m r N Nn. Ov. mv. m N.N.NN. IN N VN O N. r. O. O. O. N. O O m m m OO OO O O 0r HH H r. d. . m m m m m m m m m m m O O O O O O O O O O O O O O O O O O O v v v v v v v v v v v N N N N N N N N N N N N N N N N N N N . O m r N N r m N N r v m n N rt M N rl N N m m h N m H O N d N O m rt 9 t4 n n 9 n v N r r O N N N N .0 �0 m m O O O H N N N M v v m rn m m m m m m m m m o 0 0 0 0 0 0 0 0 14 .-, H r H H r H H H m m m m m m m m m m m O O O O O O O O O O O O O O O O O O O v d v v v v v v v v v N N N N N N N N N N N N N N N N N N N N N N w ID w v O m m O N m r N m m 0 m N N N N r r m O v w N d v d v v v r m v r v w N b m m N 0 m .D H v m m rt v m v H N N d N .o r m .+ d v v vi .D m m m m m o .+ ra ra ry m m m m m m m ON m m m m m m o 0 0 o O o 0 0 0 0 0 H r � H m m m m m m m m m m m m O O 0 0 O O O O O O O O O O O O O O v v v v v v v v v v v v N N N N N N N N N N N N N N N N N N o 0 m m N N r r r N N N v O v N m n N O H v v m N N �D O m D ID m v m H H N N rl h m m r r r r r m N rl N .D 0 m O N v v v N r r r m m m O O O H N N m m m m m m m m m m m m o 0 0 0 0 0 0 0 o O o o H r H H H m m m m m m m m m ON m m O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v v v v v v v v v v v v N N N N N N N N N N N Ill N N N N N N N m O O O v H m r r N N H H O O m N m N r v v N � m N r N m m H N N r•1 N m N d v v r m H H H H N v v v r r m m m m m O 0 r m m m m m m m m m m m m O O o 0 0 0 0 0 0 0 o O o 0 0 H H m m m m m m m m m m m m m O o 0 0 o O o 0 0 0 0 0 0 0 0 0 0 v v v v v v v v v v v v v N N N N N N N N N N N N N N N N N 7 1 1 u U 1 A � 6 t3 N N N ? A .c a u v V o 0 N M O A 2 a P. In rt O N m v r m r h r N O N t'1 N m N O m m r m O O H n m m N N v r + + . . . . + + + + + + + + + + + + + + + + + + + + + + + + N O H H N m m m m N .D r r m O �.D r m m m m O H N mm m m m 0 H m O H r H N H N N N H H H H N N N N N N N N N N N N N N N N N N N N N N 0 N O O N O O O O O O O O O O O N O O O m O O O O N O N O N 0 r• W m m O r-I N m V U1 N r m m O O H N M m v Ln W r r m m m ON 0 r r r r m m m m m m m m m m m m m m m m m m m m m m Cho m H � 7/7 29 APPENDIX I EROSION CONTROL PLAN CALCULATIONS RAINFALL ------------------------------------ PERFORMANCE STANDARD EVALUATION PROJECT: WMAM411 Si le AI" I f ^9 `/ --------------- --- -------- STANDARD FORM A COMPLETED BY: el ------------ ------------ DATE' 3-1-1114 i I DEVELOPEDIEROOIBILITYI -----i______-____a__________ Asb Lsb I I Ssb I Lb I Sb I PS SUBBASIN I ZONE I (ac) I (ft) I (") I(feet) I ( ) I ( ) --------- I ---- - ----- - I ------- I ------- Zs, Ta i i a.9 530 1.5 i i i------- i3,T� i I�-S � ►38o i 0.9 � Tj 3.8 I 88o I b.7 I I I 1 I, T 11.5 1 'W6 1. o 1 78.3 ------------------------------------------ DI/SF-A:1939 I I I I C I 1 I CiC�C CC 1 I I Ll I CO w Cq I 1 I I G 1 1 G�C1 C. C)CCCCCO I 1 I I I C I a C c c to Ln Ln Ln Ln to I ' 1 c I g q q q q q q q q d 1 I I I C I I qG, c, C�C1 �G, G,C�CGICOC 1 I 1 I I C I CccccaCccccaLnLnLn 1 I M l g d q q q q q q q q q q q p q 1 1 I I C I 1 hdd qQL C1 Q1 L1 (;;1 Cl Cl C\MCIT LOCI G,MC1 1 I C I c c c c c c c c c c a C c c C c c c c c I i N I g q q q q q d q q q C) g q q q q q q q q I I 1 I C I r OM cLn LD qd I ' I C I I .-•L I .. . . . . .hhhnhnndggq I C C C C C C C C C C C C C C C C C C C C C C C C C a l g q q q q CO CO q q q q CO q CO CO q q CO CO CO CO q q q q q 1 1 I 1 C I I g N M Ct!'1U�Ln-lc IG Lc lO ID tpn n h n hnhnnnq qq I c 1 C� 1 Mcc cccccc� cctcccccccccccccc 1 C I I g q q q q q q q q C q q q q q d q q q q d q q q q q l C 1 I C I C I LO C N M C 1c,.L(^. LS'. L-. L.L'I l0 LD LG LO LL` 1p LG LO tp 1phnh!�nh I 1 C 1 I q i m C C C C C C C C C C C C C C C C C a C a C a a a a 1 U I I qqq C g q q CO CO q q q q q q q q CO CO q CO q q q q q l •• I C 1 1 .-� N M C C C C Ln Ln Ln Ln Ln of Lo LADLG Lc Lo LD h 1 -cr M In Ln Ln V I . . . . . . . . . . . . . . . . . . . . . I Z I h I M CO C C C C C C C C C C C a a C C C C C a C C C C C I r-. 1 I co CO q C q q q q N C q CO q q q q q q q q q q q q q q l J 1 I _J 1 C I CLO GJC.�.-+NNmmMMCCCaccccLr. Ln Lit.^. t;. LO 1 UI tzImMMcccaccccccaCcccccaacccat 1 I g q q q q q q q q q d q q d q q q q d q d d q q d q I 'nNln ndc+00 r+r•.-+NNNNNmMMMMCCCCa I O I 32 1 I NMM mMMCCCCCCCCCCCCCCCCCCCC 1 I I I d g q q q q q q cO g q q q q q q q q q d q q d G d q I Cp C 1 W I I C I ta. Ln I m c Ln Ln%0ta h n t� 00 CO Cc dC)G, C., CC CQO I J C I N N m m m M m M m m M M M M m M M M M M M C C C C C I V) I V) I ggCC) C:•==cc cc ggdqcc co co gqqq qq I C C F C 1 1 1 O 1 I l0 lil q Q.'••Nm CCIn lr, L1'7 LC to LD Lo Lp nhhhggq C`01 I C I I • 1 N N m M M m M M M M M M M m M M m M M M M M m M M I I 1 ggqQqqqqqqqqqqdc.7qqqqqqdqqq I C 1 I r•�L'] n.qCC.--�NNMmMaCccc'�LnLnLOLOLonh I W I 1 . . I Cl N N N m M M M m m M M M M M M M M M M M M M m M l g q q co g q q q q q d q d q d q q q q q q d d q q m I U 1 1 1 Z 1 C 1 mNLa co G, C MCC aaCCLfI Ln Ln Ln LG lO LD tp I I M I G ••-I •-" r" •"�NNN N N NNNN NN NNNNNNNN NN 1 C I I cc cc CO COggqdqd CO g q q q q q 00 cc co co I C I 1 L_ 1 L'] I Ln to C1NMCL7 LOn ndggG, Qi C�(7�G, Q)CCCCQO I L r N I c� C O N N N N N N t G I 1 hggd ggqd CC CO CO 0000 qqq qqq qq I I C I I Ctn C m Ln LO q q M-C C C.-�r-•.�.� N NNNmmmM mM I I I I N l 1 gL,000OCCC=Ccc.-I .-. .-.^-. .. r. 1 I I n n g q CO q d CO q d q Coq d q q q d q q q d q d q q q l co cc co I L^. I I qNC,` •--• CLnnnq C1 C1CC �.-• 1 . . 1 . . . . . . . . . I LOq qr� L1r G,Cl C G, G,CCQ OOOCCOOCOC OQ I I 1 nntrn nnnnnr,ngggqqqqqqqqqqqq 1 1 I C I 1 tO M 0 C n CI O .� N M M c c Ln Ln Ln Lo Lc Lo Lo Lo h h Lo Lo Lo 1 1 1 I r+ I I cLo r` hhggqcocoqqqqco00 qqq co 00 I 1 I I 1 nnn n n h l- t- nl�/�hhnl�l�f�hhhhnnl�nh 1 1 ' I Ln I OHO CLDngghhl�LD LD to tnCCMMNNG, to L, to I 1 I 1 I C I C N N N NNNNNN NNNNN N N NNN. -I.-r I I nnnr. n,�hn nr. r�hnnnn hnnnnnnn hn 1 1 CC.71 CCCC^CCCOO I C Q O C C O O O C C C O C O I `..OGCCC CQCCOCCC CC 1 1 JZL I .�Nm CL7 L'Jnq QlC •-�N M,C t^. L, nq C."-I.n C L^,C I l._ N Nmm C CL7 1 1 J I 1 1 JANUARY 199L 8-0, DESIGN CRITERIA EFFECTIVENESS CALCULATIONS ---------------------------------------------------------------------- PROJECT: STANDARD FORM B COMPLETED BY: CL.D DATE: 1-1-19G Erosion Control C-Factor P-Factor Method Value Value Comment ----- --------- ----- -------------- -------- --------- -------- ------------------- 4AJOR SUB 3ASINI W ,BASIN] r,7 76.5 ---------------------------------------------------I AREA (Ac) CALCULATIONS ------/1-----------f------------- ------------ -------� 3 �i/i+ ZYl�rt LI cif/ - 1co % 11.5 1.20(m (5d 10 KdSerc� /Mdlch 2 (cucrr� oft".) �lelgn?r� � F4«� _ ���•aa�(•o')r (a(ra)(,Iv��3,8 Qelg6 <o ? F Oe- _ r58ac� o. �v Ll Overall Egedwmt5S E : (a,9)(g5.2�+ (�.$)(aa,4�+(3,sX9�.�) if's F = qq,q yv ✓ck --------------- DI/SF-B:1989 1 ll4lq 1 EFFECTIVENESS CALCULATIONS ----------------------------------------------------------------------! (PROJECT: W,ndf/a�15�►x�tlrc,.��I�/ STANDARD FORM B 1 1COMPLETED BY: CL-D DATE: 3'I-f94� � I ' I Erosion Control C-Factor P-Factor I Method Value Value Comment I I---------------------------------------------------------- 1 I %-4,0 Fa & /r,er 1.0 0, ao I I G(d/jl low ? LW - i•V 0.80 I I 51I4terue / r.o - 0.50 I 0,01 i'00 I<e5 'd �;M�Icn 0.10 I•d0 1 1 ' ---------------------------------------------------------------------- IMAJOR( PS SUB I AREA I BASINI (%) ,BASIN( (Ac) j CALCULATIONS 1 I ----- I ------ I ----- ------ -------------------------------------------- �8.3 I s,f� i a•Q G,uvrl l,, ,T ; „ - ,0.1- ?o 1�vemeiY 1 3acrcS (y5`Io1\\ I � IJephl-tc1 C l=ac�ar =�i3�)i•o'�y �1,��(b,�o a•q WeOea a Luc+er - 0,&0 i i�cTv'ri155 = 0 100< f 13,7a I �I.B S rug t3� a G4rner - 100 I I I 15,1{ Felice 1, l uccr5 (a�SOI I II KewA /Mul(n, 100h0, ` OeIOI-ed 10 i I I j I 1 I Il I I I Weiyblled =pail I ---------------------------------------------------------------------- i I 1 III I I I I I I ► I i HDI/SF-B:1989 5 at INs,gn I lols at IIID 1F Pons P6Lt .1ni3ry n64°° I9) TnWury Arta Pam) Burnt CeeftkieN C Ra dall homily (daes per M1 ) Pok DixM1ugc (cfs) q_Yae ICO year bYo" IOYYm J -0 63.fi O.IS 11 3 W zB ] 108 a" 6 HI 25 O.fO 3fi l.0 L9 13.1 65 Ml LI Q� x9 ],0 L9 58 ry 41 IA 050 35 ]0 LB 6.1 ]6 ex 1 5 0.30 5 9 o IS 6 6 9p -H3.12 4.0 056 xJ ]A' J6 i96 11. lz 54 055 1.5 l0 Ia 36.0 yc 13 1.8 ]FSBAkecb IT 29 5 330 Ixl1laz0±.Jss9 11IE1x 3 e 30aIo58 . 14, .3z 59 0 32 601 z ARa H3.1 ]5.3 U8 e om ta, 3.6 a is nmR team Sltields SY CL ,r1ga.w 100-NEAR FL( OL)PLAIN s PER 1979 FEWA MAPPINtf� ' or Zia \ Q G - 1 r- _^! S:�RING CREK� <osee 5(]2 ¢LOODPLA N--' CONCRETEE RVIAPPROVALPPING - E DIN SPRING 14994) v ti t.4 � �k kyyy if 6x 50'54 - So same Ioo c h ,no:en aF f� y..y, SHIRE CT �A DP 6 + \ to DP y r 47 E 5,6 (PROPQSEOLE 1 ' l DP 8 y 1 �� y y 7-7:--DI -- DP 4 DEVELOPMENT BOUNDARY m bot r r 10 NIL / ,• o D J y Y -� DP 1 :oy/•• DP 3b / DP 3 y OFFSITE FLOWI FROM SHIELDS 'T. - y � Qx=Ocfs EXISTING CURB INLET n=3.6cfs - ` t It ,PROPERTY BOUNDARY t PROPOSED CONCRE fE BOX CULVERT ARTHUR'S DITCH :Ile. D 59 100 2oC ' Pm eNa CO TST-18 - Dote 9 2J-1993 Design: CLD SHEET 1 of 3 EXISTING GROUND //////������END 3 ��\�SECTION SLOP r04�1 \ \ \• REINFORCED 11 6 INCHES CONCRETE OR L— AD'.S PIPE 3 00 12 INCHES CLASS 6 RIIPRAP (BURIED) (SEE DETAIL, THIS SHEET) 10• TYPICAL PIPE OUTLET PROFILE NOT TO SCALE MATCH EXISTING GROUND CLASS 6 RIPRAP (BURIED) E-(SEE DETAIL. THIS SHEET) REINFORCED CONCRETE OR ADS PIPE s' SLOPE (13.4%) SLOP 15' (0.4% o ' 0 m O W FLARED END SECTION sN:ry VARIES 10• TYPICAL PIPE OUTLET PLAN NOT TO SCALE FLARED END SECTION TYPICAL PIPE OUTLET ELEVATION NOT TO SCALE SUNSMAEY OF PRE OUTLET' PARAMETERS D T P@E SLOPE OIITLCf RRRAP RNRAP Ip DmmmoN5 (R) WIDTH TTPE DEPIN (INCII51 G.EM RNCNE9) IA 16im6 MS OA 5.0 C 6 12 M M& ADS OA )o CLA996 12 2E 27: RCP OA 5.0 CLA556 12 3 2 24iuA RCP OA 5.0 CIA596 12 VARIES SURFACE T. W. /00 p 100-YR WATER 1� S. W. TYPICAL SWALE CROSS SECTION NOT TO SCALE Summary of Swale Puvrcleaa QmD(dD25 r�E a lwlu 2.6•N 6om Wdd•Sme•. • Mivimw bole dwatim u 4M.W i ' Mlpimpmlm[ tlm0mu� 0999.DJ u Om11ou swd. swm Qy Ym (Ap lfm) D. (bm) 'IW (ke0 FF 6.6 1.19 1.2 9A GL 6.0 LU I3 9.9 0 TW 100—YR W.S. D Y,m 1 GRASS LINED 0 d n = 0.060 00 w o TYPICAL O'YERFLOW SWALE rm wmI NOT TO SCALE V z m W J W 2 J J W Q z3 �5•� �� 2 4 00 75' ~i q o 6"CLASS 6 RIPRAP 127 (SEE DETAIL THIS SHEET) SLOPE PROTECTION PROFILE NOT TO SCALE z z 4 W 0 E Z> CLASS 6 RIPRAP wa (SEE DETAIL THIS SHEET) IF5. 'I END OF GUTTER[A)o FLOW LINE.!.- - - a_ A TOP OF CURB41 d Jl BACK OF WALK : d. ♦ - END OF PAVEMENT PLAN VIEW'✓_ NO' TO SCALE qWn� TOPSOIL (RE9EGETAT NA„K ORASS) 6"1p•❑.A56 6 RIPRAP yE 11 RL E MA,ERIAL RL7R G.OTR TYPICAL RIPRAP SECTION FOR CLASS 6 ROCK NOT TO SCALE GRADATION OF THE Y MLL MAiER1A1 SIEVE$In PERCEM PASSING (BY w GNn r 9 lw v4• xi 0 P4 020 nm o-5 GRAOAnDg OF ROCI( POR CLA446 RRRAP PERCENT SMALLER INAN GIVEN SIZE MY VMIGNG INIERMEDUM ROCI( DIMENSION (LES) 7blw S 5670 ` 25 350 10 240 <I SCALE: 1"=20' EXISTING GROUND iL FLARED END 3 �SECTION MATCH APE-i4Ag(Eg,L, GROUND SURFACE REINFORCED 11 -NCHES CONCRETE PIPE L— Tj 3 �n Q 112 INCHES CLASS 6 RIPRAP (BURIED) (SEE DETAIL, THIS SHEET) 10• TYPICAL PIPE OUTLET PROFILE NOT TO SCALE MATCH EXISTING GROUND I CLASS 6 RIPRAP (BURIED) (SEE DETAIL, THIS SHEET) SLOPE (VARIES)—� L 15, FLARED END SECTION aH:ty _I l� VARIES 10' TYPICAL PIPE OUTLET PLAN NOT TO SCALE EXISTING GROUND REINFORCED CONCRETE PIPE WITH FLARED END SECTION TYPICAL PIPE OUTLET ELEVATION NOT TO SCALE SUMMARY OF PIPE OUTLET PARAMET OUTLET pryE SIUPE OOTLET RIPR'Sp RIPRAP OEPTH DIMENSIONS WIDTH TTPE ID IINCIIGSI IRI (FEEn IINCNE91 5 ID:rcA RCP 0.6 1 o CLASS 6 5 SIB-ircARL'P 0'1 50 CLAS56 12 WATER 1 TYPICAL SWALE CROSS SECTION NOT TO SCALE S9m of owale PanRlelas bwJe ]laiw Qo w) Qs •Ln (QO Rw Z mm Iox Ve 14u5 V Ili D. (MI & A' W.5 273 5 16 IA IA IN BS' S16 IOES A n 16 1.9 L9 C1 E.6 AS 5 16 IA 15 1.6-23 55 16 1.9 19 0.V IWA IY2 N 55 11 2.0 2A30 E�P 139.6 I09 55 P-O @.5 166 2 11 13 1.6 IJ V2 E9.5 3 15 L2 16 IA 'Sr rcam amYed rim WWOMITI-N I a. 'Bxklm llJ WON Of DOOV lblry CC. `Baklm $wee m OI NOV POlnl rc 6" 12- t4PLAS77C OF,l 5 6 RIPRAPl'P IlI FlCIER MA2ERlAL FlLIER GLOM TYPICAL RIPRAP SECTION FOR CLASS 6 ROCK NOT TO SCALE GRADATION OF 'YPE II FILM MAPS PERCENT PA65PG I0Y wMfIF1 5. 90.1m 5N' 20 W „ ow Pyp ry5 GSADATpN OP V)CIC FOR CIAM 6 RIPIU& PFACENI SMALLER MAN OIVEN SR£ IBV wEIGNn INTERIAMIARROM DIMENS 1L6CI MIOJ 65 Y v 15 0 10 Llo (SEE DETAIL THIS SHEET) SIDEWALK CULVERT OUTLET RIPRAP PROTECTION PROFILE NOT TO SCALE O J o3 om t4' - t0' YxJ� y0 U OrV Oa wm m3 L 41-4:1 V — a V 1 A K J a u V N L d a < K y 1 H 0 3 o a N < 4. 4H:1V [ CLASS 6 IlPRAP L _ (SEE DETAfl. THIS SHEET) SIDEWALK CULVERT OUTLET RIPRAP PROTECTION PLAN _VIEW NOT TO SCALE BACKLOT SWALE RIPRAP PROTECTION DIRAOL E IREPOI NOT TO SCALE SHEET 3OF3