HomeMy WebLinkAboutDrainage Reports - 12/16/1994FORT COLLINS UTILi rMS
Final Approval ROPOO
FINAL DRAINAGE REPORT
FOR THE
WINDTRAIL ON SPRING CREEK P.U.D.
(SINGLE-FAMILY HOMES SITE)
FINAL DRAINAGE REPORT
FOR THE
WINDTRAIL ON SPRING CREEK P.U.D.
(SINGLE-FAMILY HOMES SITE)
PREPARED FOR:
City of Fort Collins
Stormwater Utility
235 Mathews
Fort Collins, CO 80524
r
PREPARED BY:
Lidstone & Anderson, Inc.
736 Whalers Way, F-200
Fort Collins, CO 80525
(LA Project No. CO-TST-18.2)
April 6, 1994
LIDSTONE & ANDERSON, INC.
Water Resources and Environmental Consultants
736 Whalers Way, Suite F-200
Fort Collins, Colorado 80525
(303) 226-0120
April 6, 1994
' Mr. Basil Hamdan
City of Fort Collins
Stormwater Utility
' 235 Mathews Street
Fort Collins, CO 80524
' Re: Final Drainage Report for the Windtrail on Spring Creek P.U.D., Single -Family Homes
Site (LA Project No. CO-TST-18.2)
Dear Basil,
Lidstone & Anderson, Inc. (LA) is pleased to submit herewith the revised Final Drainage Report
for the Single -Family Homes portion of the Windtrail on Spring Creek P.U.D. for your review.
The hydraulic and hydrologic evaluation of the site was performed in accordance with the
' specifications set forth in the City of Fort Collins Storm Drainage Design and Criteria Manual.
Furthermore, the drainage design for the single-family development site was performed in
accordance with the conditions defined in the "Preliminary Drainage Report for the Windtrail
' P.U.D." [LA, 1994].
If you have any questions regarding the procedures and results given in this report, please feel
' free to call us.
Since ely,
Christo er L. Doherty, EIT
Project neer
i
Gre ry och, PE
Senior Hnaineer
' CLDitlt
Branch Office: Box 27, Savery, Wyoming 82332
TABLE OF CONTENTS
I. INTRODUCTION ....................................... 1
1.1 Background ....................................... 1
1.2 Purpose and Scope of Study ............................. 1
II. EXISTING DRAINAGE CONDITIONS .......................... 3
III. FINAL DRAINAGE PLAN FOR THE WINDTRAIL
P.U.D. TOWNHOIM SITE ................................ 4
3.1 General ........... ' ............................... 4
3.2 Proposed Drainage Plan ................................ 5
3.3 Hydrologic Analysis of Proposed Drainage Conditions ............. 7
3.4 Design of Drainage Improvements ........................ 10
3.4.1 General .................................... 10
3.4.2 Allowable Street Capacities ........................ 10
3.4.3 Curb Inlet Design 11
3.4.4 Storm Sewer Design ............................ 11
3.4.5 Drainage Swale Design ........................... 13
3.4.6 Spring Creek Trail Culvert Design .................... 13
IV. SPRING CREEK FLOODPLAIN CONSIDERATIONS ................ 15
V. EROSION CONTROL PLAN ............................... 17
VI. REFERENCES ........................................ 22
FIGURES/TABLES/APPENDICES/SHEETS
FIGURES
Figure 1.1. Vicinity Map for the Windtrail Development . .................. 2
i
TABLE OF CONTENTS (CONTINUED)
1
1
11
TABLES
Table 3.1.
Summary of Design Flows at all Design Points . ................
Table 3.2.
Summary of Developed Condition Discharges and
Allowable Street Flows ...............................
Table 3.3.
Summary of Storm Sewer Pipe Design Requirements . ............
Table 5.1.
Rainfall Performance Standard Evaluation . ...................
Table 5.2.
Effectiveness Calculations . ............................ .
Table 5.3.
Construction Sequence . .............................. .
Table 5.4.
Erosion Control Cost Estimate . ..........................
APPENDICES
Appendix A:
Hydrologic Calculations
Appendix B:
Street Capacity Calculations
Appendix C:
Curb Inlet Hydraulic Design Calculations
Appendix D:
Pipe Hydraulic Design Calculations
Appendix E:
Swale Design Calculations
Appendix F:
Culvert Design Calculations
Appendix G:
Riprap Sizing Calculations
Appendix H:
Floodplain Documentation
Appendix I:
Erosion Control Plan Calculations
Sheet 1: Overall Drainage Plan
Sheet 2: Final Grading, Drainage and Erosion Control Plan
Sheet 3: Final Details for Proposed Drainage Facilities
L7
11
12
18
19
20
21
ii
I. INTRODUCTION
' 1.1 Background
' The Windtrail P.U.D. is a proposed residential development located in the northwest
quarter of Section 23, Township 7 North, Range 69 West, in the City of Fort Collins, Colorado.
' The proposed development would consist of both single- and multi -family dwellings. The single-
family tract would be the second phase of the development.
The development site is bounded on the west by the Hill Pond and Sundering Townhomes
developments, on the south by an undeveloped tract, and on the north and east by the Spring
Creek Trail. Along the north and east, the trail is located between the Windtrail development,
and Spring Creek and Arthur's Ditch, respectively. This area is part of the Spring Creek
drainage basin and, consequently, is subject to the conditions specified in the Spring Creek
Master Drainageway Plan [EPI, 1988]. Figure 1.1 is a vicinity map of the project site.
This report specifically addresses issues pertaining to the final drainage plan for the
single-family portion of the development; as shown on Sheet 2, this site includes approximately
' 12.3 acres of the northern portion of the Windtrail area. The drainage plan presented herein
conforms to the specifications and criteria defined in the, "Preliminary Drainage Report for the
' Windtrail P.U.D." [LA, 1994]. That report describes the overall drainage plan for the entire
Windtrail development, accounting for all on -site and upstream runoff. As documented in the
' preliminary report, the overall plan meets the requirements of the Spring Creek Master Drainage
Plan.
1 1.2 Purpose and Scope of Study
This study defines the proposed final drainage plan for the single-family site within the
Windtrail P.U.D. in the context of the conditions and requirements of the preliminary drainage
plan [LA, 1994]. This plan includes consideration for all on -site and tributary off -site runoff,
as well as 100-year flood levels in Spring Creek. Included in this plan is the design of all
' drainage facilities required within the single-family site. All drainage facilities designed herein
meet the specifications and requirements set forth in the City of Fort Collins Storm Drainage
' Design Criteria and Construction Standards (SDDC) Manual.
1
ORADO, ST lord
t ■I owns �UNIVE] tsiT
ia
En
tat
81a
A F
Li -1 14-3 F-1
-k ILI!❑❑ $ ca
a High Sch-,
ar
T PRI:�SP C
h TrIT, B
- 6666 ....... . ........----- - s
2�
50
,OR I NG ERE
Ato :Sprg Thv Lm
RTHUR'S D ,jrk
CRWO 'PAD
NDT '777
atal 0 W
w DE
J
z
w r.
>
LLI
1 � `2
ti)
rakes `�_�`-° ° ; ' al� E
O"M
Figure 1.1. Vicinity Map for the Windmil Development.
2
U. EXISTING DRAINAGE
Since the Spring Creek Master Plan does not require detention for this site, all hydrologic
calculations for this study were conducted for developed conditions. However, existing
' development and drainage patterns have a significant influence on the drainage facilities required
for the Windtrail area. The relevant issues concerning existing conditions and their impact on
the proposed development are discussed in the preliminary drainage report; they are briefly
summarized below.
With the exception of a strip of Shields Street to the south, all contributing subbasins are
shown on Sheet 1 As documented in -the drainage report, off -site flows from
Shields Street are generated along the east side of the street beginning at Shire Court and
extending south for a distance of approximately 1,600 feet. Sheet 1 serves as an overall view
which defines existing off -site conditions, identifies subbasins associated with the proposed
development, and indicates the location of major drainage facilities. Sheet 2 displays more
detailed information concerning on -site subbasin delineation, and the final grading and drainage
plan.
Existing drainage patterns within Windtrail are generally west to east, with an average
existing ground slope of 0.6 percent. Off -site to the west of Windtrail, both Shire Court and
Hill Pond Road convey undetained runoff from the Hill Pond and Sundering Townhome
developments to the east end of the existing Hill Pond Road. At this point, the runoff reverts
to overland flow as it commingles with off -site flows from the undeveloped area south of the
site, before entering Arthur's Ditch.
The runoff which enters Arthur's Ditch was historically tributary to Spring Creek, but
the construction of a berm along the south side of the Spring Creek Trail through this reach
directs flows away from the creek. A swale was designed in conjunction with the Hill Pond
' development to re-establish historical drainage patterns whereby all tributary runoff was
conveyed to Spring Creek. However, this swale has not yet been constructed (according to Mr.
Glen Schlueter of the City Stormwater Utility, funds for its construction remain in escrow) and,
consequently, runoff is currently directed east to. Arthur's Ditch rather than north to Spring
Creek. An existing low area within the Windtrail property, south of the proposed development
' footprint directs runoff to the east into Arthur's Ditch. The major swale designed in conjunction
with the townhome development would follow an alignment different than that originally
designed. However, the swale would serve the previously intended purpose, that is, conveying
runoff from the Hill Pond area to Spring Creek, as well as conveying all Windtrail tributary on -
and off -site flows to Spring Creek. The casement for the previously designed swale is being
abandoned as part of the single-family homes site documentation; this is indicated on the plat.
3
' M. FINAL DRAINAGE PLAN FOR THE WINDTRAIL ON SPRING CREEK P.U.D.
3.1 General
The final drainage plan for the Windtrail P.U.D. single-family site has been developed
to provide a drainage system that is compatible with flood conditions along Spring Creek. This
has been accomplished by utilizing existing drainage patterns to the extent possible and providing
the major outfall swale for the contributing drainage area to Spring Creek. Sheet 2 shows the
grading and drainage plan for the Windtrail development. Included on the sheet are the
proposed location of all storm drainage facilities; i.e., curb inlets, storm sewer pipes, and
overflow swales. In addition, all facilities designed for the townhome development are also
shown on Sheet 2. Typical cross sections for all swales, as well as riprap protection details are
provided on Sheet 3.
The major drainage facilities for the Windtrail property are two relatively wide, shallow
swales running generally west to east along the south development boundary. These swales
would collect 100-year runoff from: (a) the undeveloped tract south of Windtrail, (b) the Hill
Pond and Sundering Townhomes developments, and (c) the Windtrail Townhomes development.
The two swales would confluence east of Shadowmere Court, forming a single swale. As this
swale turns to the north, at the east end of the Windtrail single-family area, it would collect 100-
year flows from the east portion of the single-family development, which are to be conveyed
along Gilgalad Way to a concrete sidewalk culvert at the end of the street. North of the
sidewalk culvert, the major swale would also collect flow from the proposed backlot swale
located along the north side of the single-family development. The total 100-year flow in the
swale would then be conveyed through a concrete box culvert under the Spring Creek Trail.
The culvert would outlet into HillPond on Spring Creek upstream of the Arthur's Ditch weir.
Minor drainage facilities, in the form of curb inlets and storm sewers and a sidewalk
culvert, would be required to provide drainage relief for: (a) the western portion of Gilgalad
Way, which would outlet to Spring Creek via inlets at Design Points #7a and #7b and storm
sewer; and (b) the eastern end of Gilgalad Way, which would outlet to the major drainage swale
by way of a concrete sidewalk culvert at Design Point #8a.
The Rational Method was used to determine both 2- and 100-year flows for the subbasins
indicated on Sheets 1 and 2. A detailed description of the hydrologic analysis is provided in
Section 3.2. It is noted that since the Spring Creek Master Plan does not require detention for
this development site, the hydrologic analysis was conducted for developed conditions only. The
resulting 100-year runoff values were used to define design discharges at design points identified
on Sheet, 2; i.e., along streets, at low points, and along the major drainage swales.
4
' 3.2 Proposed Drainage Plan
A qualitative summary of the drainage patterns within each subbasin and at each design
point is provided in the following paragraphs. Discussion of the detailed design of drainage
facilities which are introduced in this section, is included in Section 3.4. It is noted that
compared to the Preliminary Drainage Report, Subbasins H, I and J have been subdivided in
order to more accurately assess design flows within the single-family site. All changes in
hydrology caused by the subbasin modifications are incorporated herein.
For discussion of the runoff from Subbasins A through G, refer to the
Preliminary Drainage Report and the Final Drainage Report for the Townhomes
Site. Runoff from these subbasins would be tributary to the major drainage
swale, which would be located on the southern perimeter of the single-family
site. It is noted that runoff generated on the back of the lots on the southern
portion of the single-family development would be included as a part of
Subbasins E and G.
Runoff from Subbasin Hl (Wilderland Townhomes) would be conveyed easterly
to Gilgalad Way at the western end of the single-family development (Design
Point #6). All flow would then be conveyed along the northern half of Gilgalad
Way to the sump area associated with Design Point #7b. Although this area is
currently undeveloped, it has been platted for townhome development.
Therefore, the site was assumed to be fully developed for all hydrologic
calculations.
Runoff from Subbasin H2 (Wilderland Townhomes) would be conveyed easterly
to the backlot swale at the western end of the. single-family development (Design
Point #6a). All flow would then be conveyed in the Swale along the northern
boundary of the single-family site to the confluence with the major swale at
Design Point #8b.
Subbasin Il is the local area tributary to the southern half of Gilgalad Way on
the western half of the single-family development. Runoff would be conveyed as
street flow to the low point associated with Design Point Va. Both the 2- and
100-year discharge would then be diverted across the street to Design Point #7b
by way of a curb inlet and storm sewer.
Subbasin 12 is the local area tributary to the northern portion of Gilgalad Way
on the western half of the single-f� devopmnt. Runoff would be joined by
the flow from Subbasin 1 at�tlieJlow point in the street associated with Design
Point #7b. Street flow would be collected by a curb inlet operating in a sump
condition. All discharge from Subbasins HI, I1 and 12 would then be conveyed
to Spring Creek by way of a reinforced concrete outfall pipe.
61
1
Runoff from Subbasin 13 would be directed to the backlot swale by overland
flow from the back of the northern lots and the open space area alongside of the
Spring Creek Trail. Flow from Subbasins H2 and 13 would then be conveyed
easterly in the swale toward the major drainage swale. aA J 0• P. 6,6 -
Subbasin Ji is the local area tributary to the eastern half of Gilgalad Way within
the single-family development. Runoff would be conveyed by way of the street
and crosspans to the low point at the east end of the cul-de-sac, which is
associated with Design Point #8a. The 2-year discharge would be diverted to the
major swale by way of a sidewalk culvert; the portion of the 100-year flow not
diverted by the sidewalk culvert would overtop the curb and flow directly into the
Swale.
Subbasin J2 is the local area tributary to the eastern portion of the backlot swale.
Runoff from the basin would be conveyed to the swale by overland flow. Flow
from Subbasins 112, 13 and J2 would then be conveyed to the major swale at
the northeast comer of the development, associated with Design Point #8b.
As shown on the drainage plan presented on Sheet 2, two curb inlets (8- and 12-foot
lengths) would be placed at Inlets #3A and #3B, respectively. These inlets would operate in a
sump condition and have sufficient capacity to pass the 100-year discharge at Design Points #7a
and #7b. Flow collected by the inlets would be conveyed by a storm sewer pipe to Hill Pond
on Spring Creek. This RCP would vary in size from 21- to 30-inches. This system is designed
to carry runoff from both the 2- and 100-year events without exceeding street criteria. In the
event that the storm sewer system would become clogged, flow would overtop the high point
in Gilgalad Way east of the inlets and continue down the street to the major swale.
The sidewalk culvert located at the eastern end of Gilgalad Way would have a length of
12 feet. It would convey the 2-year runoff directly to the major swale. A portion of the 100-
year discharge would be conveyed by the sidewalk culvert; the remaining discharge would
overtop the curb and flow directly into the Swale. The width of the overflow would be 50 feet
for the 100-year event; the entire width of the 100-year overflow would be contained within the
easements provided.
In order to facilitate movement of runoff through the street system, (Moot wide cross
pans are specified along Gilgalad Way at the location of the eastern cul-de-sac. In addition, a
high point has been designed in the stubbed out street to the south of Gilgalad Way (as shown
on Sheet 2) to prevent 100-year flows along Gilgalad Way from exiting the roadway at that
location.
Ci
1 3.3 Hydrologic Analysis of Proposed Drainage Conditions
The Rational Method was used to determined both 2- and 100-year peak runoff values
for each Subbasin A through J as shown on Sheets 1 and 2. As shown on the City of Fort
Collins Zoning Map, the entire tributary drainage area is zoned "RP". This zoning designation
is commensurate with a rational method runoff coefficient of 0.50; this coefficient was adopted
for the single-family portion of the proposed development. For the areas within Sundering
Townhomes, Hill Pond, Wilderland and Windtrail which currently (or would) consist of multi-
family dwellings, a slightly more conservative runoff coefficient of 0.60 was adopted. A runoff
rcoefficient of 0.20 was used for the undeveloped portions of Subbasins A, F and G.
For all off -site subbasins, including both developed and undeveloped areas, the requisite
geometric parameters were taken from the City of Fort Collins' topographic aerial photograph
shown on Sheet 1. The geometric parameters for all on -site subbasins were defined based on
the proposed grading plan shown on Sheet 2.
The undeveloped area to the south of the Windtrail property is part of the Centre for
Advanced Technology, Special Improvement District (SID). A drainage study for this SID was
conducted in 1987 by RBD Inc. The associated drainage report indicates that detention is
proposed for the area of Subbasins A, F and G, south of the Windtrail property line. In the
RBD report, detention was designed at a conceptual level to detain the 100-year developed
condition runoff while releasing at the 2-year historical runoff rate. The portion of the RBD
' drainage report, including the final drainage plan map, which documents the runoff and detention
calculations for this area (Subbasin E in the RBD report) was included in the appendix of the
preliminary drainage report.
rAll design calculations for the Windtrail drainage facilities were based on the 100-year
existing condition runoff from the undeveloped area to the south. This ensures that the facilities
would have adequate capacity both prior to and after development of Subbasin E of the Centre
for Advanced Technology. Before development, the area would contribute the undeveloped 100-
year runoff during the 100-year storm; after development, the area would contribute flow at the
2-year undeveloped rate during the 100-year storm (with the implementation of detention as
designed).
As shown on Sheet 1, off -site flow is being contributed to Subbasin B from the east side
of Shields Street to the south. The magnitude of flow entering Subbasin B is impacted by the
interception capability of two existing curb inlets. Documentation of the flow which passes the
inlets was provided in the preliminary drainage report. As noted in that report, it was
determined that the existing inlets would provided 100 percent interception of the Shields Street
flows associated with the 2-year event; for the 100-year event, 3.6 cfs would pass the inlets.
As stated above, the Rational Method was used to conduct all hydrologic analyses for the
Windtrail Townhomes Site. The Rational Method utilizes the SDDC Manual equation:
Q = CfCIA (1)
A. where Q is the flow in cfs, A is the total area of the basin in acres, C f is the storm frequency
adjustment factor, C is the runoff coefficient, and I is the rainfall intensity in inches per hour.
tThe runoff coefficients were assigned as described above. The frequency adjustment factor, Cf,
is 1.0 for the initial (2-year) storm and 1.25 for the major (100-year) storm. The appropriate
rainfall intensity information was developed based on the rainfall intensity duration curves m the
SDDC Manual (SDDC Figure 3-1 which is included in Appendix A of this report). To obtain
the rainfall intensity, the time of concentration must be determined. The following equation was
utilized to determine the time of concentration:
Ito=t;+tt (2)
where t C is the time of concentration in minutes, t i is the initial or overland flow time in
minutes, and t , is the travel time in the ditch, channel, or gutter in minutes. The initial, or
overland flow time was calculated with the SDDC Manual equation:
' t i = (1.87(1.1 - CC f)L0.5j1(S)0.33 (3)
where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the
raverage basin slope in percent, and C and C f are as previously defined. This procedure for
computing time of concentration allows for overland flow as well as travel time for runoff
' collected in streets, gutters, channels, pipes, or ditches.
All hydrologic calculations associated with Subbasins A through J are included in
Appendix A. Table 3.1 provides a summary of the design flows for all design points within the
single-family development and the off -site tributary drainage area.
In defining design flows for the 100-year event for the inlets and pipes along Hill Pond
Road and the major drainage swale, the 3.6 cfs contribution from Shields Street was added,
where appropriate, directly to the runoff values resulting from the hydrologic analysis. It is
noted that the design of the major swale and the box culvert under the Spring Creek trail were
designed in conjunction with the townhome development. The design of these facilities assumed
that the entire runoff from Subbasins H and I would be tributary. Since a portion of these
subbasins would be diverted directly to Spring Creek, the design discharge for these facilities
is conservatively high.
8
Table 3.1. Summary of Design Flows at all Design Points.
5
A-G
65.6
0.35
1.25
3.65
28.7
108.0)
6
HI
2.5
0.60
2.6
7.0
3.9
13.1
6a
H2
1.1
0.60
2.9
7.0
1.9
5.8
7b
I1
1.4
0.50
2.5
7.0
1.8
6.1
7b
12
1.5
0.50
2.5
7.0
1.9
6.6
7b
H1,12
4.0
0.56
2.5
7.0
5.6
19.6
7
H19 Il, 12
5.4
0.55
2.5
7.0
7.4
26.0
7c
I3
1.8
0.50
2.2
6.5
2.0
7.3
7c
H2,I3
2.9
0.53
2.2
6.5
3.4
12.5
8a
11
3.8
0.50
2.1
6.1
4.0
14.5
8b
J2
3.0
0.50
2.0
5.8
3.0
10.9
8b
H22 13, J2
5.9
0.52
2.0
5.8
6.1
22.2
8
A-G,H2,I3, J
75.3
0.37
1.25
3.65
34.8
130.7(`)
(a) Includes 3.6 cfs runoff from Shields Street.
0
1 3.4 Design of Drainage Improvements
11 3.4.1 General
The proposed drainage plan for the Windtrail on Spring Creek Site consists of a
combination of street flow, curb inlets, a sidewalk culvert, storm sewers, swales and a box
culvert. Final lot grading details will ensure that each lot is graded and landscaped to provide
positive drainage around and away from building foundations. In addition, final grading must
ensure that all finished floor elevations are a minimum of 18 inches higher than the adjacent base
flood elevations indicated on the current FEMA mapping. The base flood elevations are shown
on Sheet 2.
Within the site, drainage easements have been provided where necessary to ensure that
overland flows can be collected and conveyed through well-defined drainage swales or storm
sewers. Reference is made to the plat, where all easements are identified.
3.4.2 Allowable Street Capacities
An analysis of Gilgalad Way was performed in order to determine the allowable flow
L capacity. Gilgalad Way is considered a local street. It incorporates a roadway width (flowline
to flowline) of 36 feet and is further characterized by a 2 percent cross slope and a City of Fort
Collins standard 4.75-inch rollover curb. Allowable gutter flows and maximum street
encroachments for both the initial and major storms were estimated and evaluated based on the
specifications set forth in the SDDC Manual.
Allowable street capacity calculations were made at three locations along Gilgalad Way:
(a) directly west of the low point associated with Design Point Va; (b) directly east of this same
low point; and (c) at the eastern end of Gilgalad Way.
During the initial storm, runoff was not allowed to overtop either the curb or street
crown. Per the SDDC Manual, maximum street runoff criteria during the major storm event
limits the depth of water over the crown to 6 inches for local streets.
tA normal depth analysis of the allowable street capacities was performed using HEC-2
[U.S. Army Corps of Engineers, 19911. The single cross section, normal depth option was used
to find the flow rate associated with the allowable depth. The results of the street capacity
analysis are summarized in Table 3.2. Street capacities would not be violated at any location
on Gilgalad Way for either the 2- or 100-year events. All calculations associated with the street
capacity analysis, including the HEC-2 results, are provided in Appendix B.
10
Table 3.2. Summary of Developed Condition Discharges and Allowable Street Flows.
Developed Conditum
Altowabie
Street Flow
I:orat<on
Side of
Dtscltarge
(cfs)
{cfs}
51 ..
::> ..:.::..... .
.......
.
Z Year
1OQ-dear.
2:Year'
Oeat
Gilgalad Way West
South
1.2
4.1
6.4
of Inlets # 3A and 3B
180
North
4.6
16.2
6.4
Gilgalad Way East of
South
0.6
2.0
2.3
Inlets #3A and 3B
160
North
1.0
3.4
2.3
Gilgalad Way West
South
4.6
of Inlet #4
4.0
14.5
118
North
4.6
(a) Half -Street Capacity
(b) Full -Street Capacity
3.4.3 Curb Inlet Design
As indicated in the previous section, on -grade curb inlets would not be necessary at any
location on Gilgalad Way in order to meet street capacity requirements. Two curb sump inlets
and one sidewalk culvert would be required within the single-family site. Both sump inlets
would be located at the low point on Gilgalad Way, associated with Design Points #7a and #7b.
An 8-foot inlet would be required on the southern side of the street (Inlet #3A). The inlet on
the northern side of the street would have a length of 12 feet (Inlet #3B). A 12-foot sidewalk
culvert would be required at the low point at the eastern end of Gilgalad Way (Inlet #4). Per
SDDC Manual guidelines, the theoretical capacities of the curb inlets were reduced by 15
percent, which is based on the length of each inlet. All inlet locations and sizes are shown on
Sheet 2. The calculations associated with the curb inlet design task are provided in Appendix
C.
3.4.4 Storm Sewer Design
The capacity of the pipe flowing from Inlet #3A to Inlet #3B across Gilgalad Way was
designed for the theoretical capacity of Inlet #3A during the 100-year event. The pipe from Inlet
11
#3B to the outlet in Spring Creek was sized based on the total 100-year discharge at Design
Point #7.
The initial design of all storm sewer pipes was accomplished using Manning's equation
and assuming full pipe flow conditions. All storm sewers were designed as reinforced concrete
pipes (RCP's). The required minimum invert slope for all pipes within the single-family site is
0.8 percent. .
A detailed hydraulic analysis and hydraulic grade line determination of the final pipe
design was performed using the UDSewer pipe hydraulic analysis model, developed by the
Urban Drainage and Flood Control District. The downstream tailwater elevation was assumed
to be commensurate with 100-year water surface elevation in Spring Creek at the outlet of the
pipe system. The results of the analysis indicate that the hydraulic grade line in the pipe system
is below the ground elevation at all manholes and at Inlet #3B. The hydraulic grade line at Inlet
#3A would be 0.1 feet above the flowline elevation which is lower than the ponded water surface
at the inlet. The hydraulic grade line would be above the pipe crown at all locations within the
tstorm sewer. Therefore, all pipe joints must have a press application which complies
with ASTM Standard 361. It is noted that the energy grade line is below the ponded water
surface elevation at both inlets. A summary of the final design of the storm sewer is given in
Table 3.3. In addition, the hydraulic grade lines computed by this analysis are shown on the
Utility Plans. All storm sewer design calculations are provided in Appendix D.
Table 3.3. Summary of Storm Sewer Pipe Design Requirements.
ReacSa Descnptan
Pipe Drameter
Mutimum 51opee
Materral
......... .:............:..
es
...__..........._........._
...................................................__...................._.
�$)< ... ...........
._....... :.::............:
Inlet #3A to Inlet #3B
21
1.0
14.0
RCP
Inlet #3B to MH #3-1
27
0.8
26.0
RCP
MH #3-1 to Outlet
30
0.8
26.0
RCP
t
At storm sewer outlet #3, (shown on Sheet 2), riprap outlet protection is proposed to
reduce the potential for erosion. The riprap was sized based on procedures given in the Urban
Storm Drainage and Criteria Manual and the SDDC Manual. All outlets are designed as buried
riprap installations using Class 6 riprap (City of Fort Collins SDDC Manual gradation). Details
and specifications for all storm sewer outlet protection installations are provided on Sheet 3.
All riprap design calculations are given in Appendix G.
12
i�.
t, 3.4.5 Drainage Swale Design
MBased on the design discharges shown in Table 3.2, sizing of the backlot swale was
accomplished assuming normal flow conditions. In order to conform to the overall site grading,
the swale was designed with a 0.7 percent bed slope and depths varying from 1.3 to 1.4 feet;
side slopes are specified at 4H:1V. Flow velocities associated with the major storm would be
relatively small (less than 3 fps), thereby normally requiring either a trickle channel or
runderdrain. However, a variance is requested to not include a trickle channel or underdrain in
order to maintain a natural appearance along the northern perimeter of the site and enhance
wildlife habitat. The intention is to encourage wetland establishment in the swales.
Correspondingly, a Manning's n value of 0.060 was used in the design of the swales. For
these conditions, the bottom width of the backlot swale would vary from 2 to 5 feet, with a 100-
year flow depth of 1.2 feet. A summary of swale design results is provided on Sheet 3. All
swale design calculations are given in Appendix E. Class 6 riprap protection would be placed
at the confluence with the major swale at the northeastern corner of the development. Sizing
calculations showed that protection was not necessary at the confluence; nevertheless, protection
would be placed as a precautionary erosion control measure. Riprap design calculations are
given in Appendix G; a detail of the riprap protection is shown on Sheet 3.
3.4.6 Spring Creek Trail Culvert Design
Culverts would be required at two locations across the swales in the vicinity of the single-
family development. First, a culvert would be required at the north end of the major swale to
pass flows under the trail and into the Spring Creek pond. The double 12'W x 4'H reinforced
concrete box culvert was designed in conjunction with the townhomes development. The design
of the culvert assumed that the entire runoff from Subbasins H and I would be tributary. Since
a portion of these subbasins would be diverted directly to Spring Creek, the design discharge
for these facilities is conservatively high. It is noted that the 100-year water surface elevation
in Spring creek at the culvert outlet would be 4998.0 (per the revised FIS, 1994). This would
represent an increase of 0.6 feet compared to the downstream water surface elevation used in
the design calculations. The culvert was re -analyzed using the revised discharge and tailwater
conditions. The results of the analysis indicate that there would be a minimum of 1.2 feet of
freeboard in the major swale at the upstream end of the box culvert.
A second culvert crossing would be required for the backlot swale at the central open
space easement along the north side of Gilgalad Way, to provide access to the bike trail. The
design for the culvert was performed using the HY-8 computer model. Results of the culvert
V 13
I
sizing indicated that a triple 18-inch RCP culvert installation would be required to pass the 100-
year flow. This culvert design was based on a maximum headwater depth of 1.5 feet, to ensure
that the entire flow would be contained within the swale. With this configuration, sufficient
freeboard is provided to ensure an additional one-third capacity for the culverts during the 100-
year event. Riprap would be placed at both the upstream and downstream ends of this culvert.
Riprap sizing calculations were performed in accordance with the design procedures given in the
SDDC Manual. The sizing analysis indicates that an installation of buried Class 6 rock will be
required. All culvert design calculations are provided in Appendix F; Rprap calculations are
provided in Appendix G.
IIV. SPRING CREEK FLOODPLAIN CONSIDERATIONS
tThe Spring Creek 100-year floodplain boundary, as delineated on the Flood Insurance
Rate Map (FIRM) dated 1979, is shown on Sheets 1 and 2. This is the floodplain boundary
currently recognized by FEMA; however, it is associated with 1979 hydrologic and channel
conditions. It is noted that several modifications have been made to the channel since the
floodplain was mapped for the 1979 FIRM. As a result, the floodplain delineations are no
longer indicative of existing channel conditions. The 1979 FIRM indicates that the flood
elevation at the location of the proposed box culvert is approximately 4997.5 feet. It is expected
that FEMA will approve a revised floodplain boundary in the spring of 1994, prior to the
development of the single-family phase of the Windtrail P.U.D. The 100-year floodplain
boundary and base flood elevations associated with the revised Flood Insurance Study is shown
on Sheet 2.
The results of the analysis in the revised FIS indicates that the floodplain would wrap
around the east end of the Windtrail development and pond to an elevation of approximately
4998.0 feet at the south end of the development. There is a drop structure located on Spring
Creek near the western end of the development (see Sheet 1). The results of the Master Plan
analysis indicate a water surface elevation of 5001.3 and 5003.3 feet upstream and downstream
of the drop structure, respectively. Topographic mapping for the area indicates that the southern
bank elevation is at least 5006 feet near the toe of the drop structure and 5008 feet on the
upstream side. This would provide a minimum of 4.7 feet of freeboard at the western end of
the development. Additional discussion and documentation of the Spring Creek floodplain was
included in the Preliminary Drainage Report for the Windtrail P.U.D. [LA, 1994].
In order to accommodate the potential 100-year water surface elevation at the eastern end
of the development, proposed grading within the future single-family development, as shown on
Sheet 2, specifies a minimum ground elevation of 5000.0 feet along the lot boundaries at the
eastern end of the development. It is noted that final grading throughout the development must
ensure that all finished floor elevations are a minimum of 18 inches higher than the adjacent base
flood elevation. The grading plan would provide a minimum of 2 feet of freeboard between the
individual lots and the developed condition 100-year water surface elevation.
The floodplain mapping for the revised FIS indicates that the eastern portion of the
single-family development would be in a fringe flood area (Zone AE). As previously noted, the
grading for the site will ensure that all finished floor elevations will be a minimum of 2 feet
above adjacent base flood elevations. Therefore, all houses within the single-family development
site will be removed from the contiguous floodplain. A floodplain use permit is requested to fill
and build residential structures in the flood fringe area as delineated on the FIS floodplain
mapping.
1 15
If the 100-year storm occurs in the area tributary to Windtrail without extending
throughout the entire upstream Spring Creek watershed, the swale system has been designed to
convey the local 100-year flow while providing freeboard in the form of additional capacity of
at least one-third of the 100-year discharge. During the 100-year event along Spring Creek, the
maximum ponding elevation adjacent to the downstream end of the development is 4998.0 feet.
Under this condition, the proposed swale would act as additional storage for the pond with a
maximum standing water surface elevation of 4998.0 feet.
16
V. EROSION CONTROL PLAN
The Erosion Control Plan for this site was designed in accordance with the criteria set
forth in the SDDC manual. Transportation of sediment from the site would be controlled by the
implementation of a silt fence around the perimeter of the site at the start of construction. Inlet
filters would be installed shortly after construction on all proposed inlets to trap any sediment
which may be transported prior to seeding. It is also noted that the site would be reseeded and
mulched immediately following final grading of the swale. Because of the relatively flat slope
of the proposed swale, any sediment produced on the construction site is likely to be deposited
in the swale. Straw bale barriers would be added at the downstream end of the backlot swale
to further inhibit the motion of sediment toward Spring Creek. To ensure that any sediment
collected in the swale would not reduce the capacity of the swale, the final ground surface would
be marked by stakes at two locations within the backlot swale as an indicator of sedimentation
in the channel. If there is any sediment accumulation in the channel, the contractor would be
required to regrade the swale to restore the designed final ground slope. The contractor would
be responsible for maintaining all erosion control facilities for as long as they are required. In
addition, erosion control facilities placed in the major swale for the townhome development shall
be maintained in conjunction with the single-family development.
Erosion control effectiveness calculations were performed for Subbasins I and J within
the Windtrail single-family site. Within Subbasins I and J, sediment will be controlled by: (a)
a silt fence along the southern, northern and eastern perimeters of the development; (b) inlet
filters on all proposed inlets and sidewalk culverts; (c) reseeding and mulching of the single-
family site; and (d) straw bale barriers in the major and backlot swales. It is noted that the
erosion control effectiveness calculations are greater than the performance standard for the
overall development.
Wind erosion within the Windtrail single-family site would be controlled primarily by soil
roughing which would be applied in a southwest to northeast direction, perpendicular to the
prevailing wind direction. Existing trees to the west and northwest of the site would further
�i reduce the local wind velocities and wind erosion potential on the site.
Tables 5.1 and 5.2 detail the rainfall performance and effectiveness of this Erosion
Control Plan, respectively; associated calculations can be found in Appendix H. Table 5.3
outlines the construction sequence for the Erosion Control Plan; this table is also included on
Sheet 2. The erosion control cost estimate for the single-family development is provided in
Table 5.4. The cost estimate results indicate that a total security of $12,000 would be required
for the single-family site.
17
I
Table 5.1. Rainfall Performance Standard Evaluation.
PROJECT: Windtrail Single -Family (CO-TST-18.2) STANDARD FORM A
COMPLETED BY: CLD DATE: 3/3194
DEVELOPED
ERODIBMM
Asb
Lsb
Ssb
Lb
Sb
PS
SUBBASIN
ZONE
(acre)
(feet)
(%)
(feet)
M
M
11,12
2.9
530
1.5
13, J2
4.8
1380
0.9
J1
3.8
880
0.7
I, J
11.5
1000
1.0
78.3
18
I
I
I
11
I
I
Table 5.2. Effectiveness Calculations.
PROJECT: Windtrail Single -Family (CO-TST-18.2) STANDARD FORM B
COMPLETED BY: CDL DATE: 3/3/94
EROSION CONTROL C-FACTOR P-FACTOR COMMENT
METHOD VALUE VALUE
STRAW BALE BARRIER 1.00 0.80
GRAVEL INLET FILTER 1.00 0.80
SILT FENCE 1.00 0.50
ASPHALT/CONCRETE PAVEMENT 0.01 1.00
RESEED & MULCH 0.06 1.00
MAJOR
PS
SUB
AREA
CALCULATIONS
BASIN
(%)
BASIN
(AC)
(CALCULATIONS ARE SHOWN IN APPENDIX)
78.3
11,12
2.9
Gravel Inlet filter = 100%
Pavement 1.3 acres (45 %)
Reseed/Mulch = 1.6 acres (55 %)
Weighted C Factor = [(1.3 x 0.01)+ (1.6 x 0.10)]/2.9
= 0.06
Weighted P Factor = 0.80
Effectiveness = [1 - (0.8 x 0.06)] x 100 = 95.2%
I3, J2
4.8
Straw Bale Barrier = 100%
Silt Fence = 1.1 acres (23 %)
Reseed/Mulch = 100%
Weighted C Factor = 0.10
Weighted P Factor = [(1.1)(0.8)(0.5) + (3.7)(0.8)1/4.8
= 0.71
Effectiveness = [(1 - (0.10 x 0.71)] x 100 = 92.9%
Jl
3.8
Gravel Inlet filter = 100%
Straw Bale Barrier = 100%
Pavement 1.2 acres (32%)
Reseed/Mulch = 2.6 acres (68 %)
Weighted C Factor = [(1.2 x 0.01)+ (2.6 x 0.10)]/3.8
= 0.07
Weighted P Factor = [(3.8)(0.5)(0.8)]/3.8 = 0.40
Effectiveness = [1 - (0.7 x 0.40)] x 100 = 97.2%
I, J
11.5
Overall Effectiveness
E = 1(2.9 x 95.2) + (4.8 x 92.9) + (3.8 x 97.2)l
11.5
E = 94.9%
I
19
Table 5.3. Construction Sequence.
Project: Windtrail Single Family P.U.D. Standard Form C
Sequence for 1994 Only Completed By: KGS Date: 3/7/94
Indicate by use of a bar line or symbols when erosion control measures will be installed. Major
modifications to an approved schedule may require submitting a new schedule for approval by the City
Engineer.
Year
94
Month
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Demolition
Overlot Grading
Wind Erosion Control:
Soil Roughing
Perimeter Barrier
Additional Barriers
Vegetative Methods
Soil Sealant
Other
Rainfall Erosion Control
Structural:
Sediment Trap/Basin
Inlet Filters
Straw Barriers
Silt Fence Barriers
Sand Bags
Bare Soil Preparation
Contour Furrows
Terracing
Asphalt/Concrete Paving
Other
Vegetative:
Permanent Seed Planting
Mulching/Sealant
Temporary Seed Planting
Sod Installation
Nettings/MatsBlankets
Other
Structures: Installed by CONTRACTOR Maintained by OWNER
Vegetation/Mulching Contractor To Be Decided by Bid
Date Submitted: 3/7/94 Approved by City of Fort Collins on
FA
Table 5.4. Erosion Control Cost Estimate.
Client:
Project: Wmdtrail Single -Family
Job No.: CO-TST-18.12
By: CLD
Date: 3/4/94
Sheet 1 of 1
No.
Item
Quantity
I Units
Unit Cost
Total
Comments
EROSION CONTROL
i
Reseed/Mulch
12.3
A.C.
$ 1,742.40
$ 21,400.00
$0.04 per S.F.
2
Silt Fence
2,100
L.F.
$ 3.00
$ 6,300.00
3
Gravel Inlet Filter
3
EA.
$ 300.00
$ 900.00
CONSTRUCTION COST
$ 28,600.00
1.5 X (CONST. COST)
$ 42,900.00
TOTAL SECURITY
$ 42,900.00
CITY RESEEDING COST
1
Reseed/Mulch
12.3
1 A.C.
1 $ 649.04
1 $ 8,000.00
$0.0149 per S.F.
CONSTRUCTION COST
$ 8,000.00
1.5 X (CONST. COST)
$ 12,000.00
TOTAL SECURITY
$ 12,000.00
21
VI. REFERENCES
1. Engineering Professionals, Inc., March 1988. "Spring Creek Master Drainageway Plan".
Prepared for the City of Fort Collins.
' 2. Lidstone & Anderson, Inc., January, 1994. "Preliminary Drainage Report for the
Windtrail P.U.D.". Prepared for City of Fort Collins, Stormwater Utility, Fort Collins,
' Colorado.
' 3. Lidstone & Anderson, Inc., February, 1994. "Final Drainage Report for the Windtrail
P.U.D., Townhomes Site". Prepared for City of Fort Collins, Stormwater Utility, Fort
Collins, Colorado.
4. National Flood Insurance Program, July 16, 1979. "Flood Insurance Rate Map for the
City of Fort Collins, Colorado, Community Number 080102, Panel Number 0003 and
' 00048. U.S. Department of Housing and Urban Development, Federal Insurance
Administration.
' 5. RBD, Inc., February, 1987. "Drainage Report for the Centre for Advance Technology
S.I.D."
' 6. U.S. Army Corps of Engineers, Hydrologic Engineering Center, September 1990.
"HEC-2 Water Surface Profiles".
' 22
APPENDIX A
HYDROLOGIC CALCULATIONS
Lidstone & Anderson. Inc.
•
5fe -Ple. fiA 42,- fbps
r-fDo5ilti, &, 7ooj 8
OWNER -PROJECT
By
DATE
PROJECT NO.
Wind {rill
CLD
OOT7_16
FE TURE
CHECKED BY
DATE
SHEET
OF
-Tto
�
CZ
NX)
rig
Qz
Mi
zi-
n
4
t
! M
m
s
V'N
VN
czv-
V)
V,
<j__
ci'l
40
c--
rz
flzs
CIS
TO
Vo
rz6
1A
�G
cis
VN
cr
cis
40
kA
Cr
3
-JJ
-7Zr-
M
i
Q)
t
V\
%p
C76 !
4-
r3
10
O
O
O
eZ)
V(R
u e-Q\l
09
a
o
V
C6
C-6
zb
ci
C16
4z,
�Ilo4zM�;'!;!�i8
lid;,
--- Tt
"-)
JQ
ik
b
1
Lidslone & Anderson. Inc.
OWNER —PR J
BY
DATE
PROJECT NO.
WMJ40AII Sln le F4mll
CL7)
I-
CDT5T18.a
FEATURE
Ra�onu(Mefl�c� G�Icuia��t5
CHECKED BY
DATE
SHEET OF
f� a q
CIS
_
4
T
�
M
�
-
�
; vl
1
'
V)
=
g
O
t
n
_
\
1
00
V�
V1
c-s
v'S
vi—
o
V)
s
V-\
IL
N
?
O
r
T
cam(
cad
C6
nt
c�-c
K
�'6
c�
c�6
C6
C_
p
V
O
-13
4O
O
46
O
O
O
o
O
'L o
O
p
O
1
1
Q
1
Q
O
1
u
ci
C15
ri
CIS
,
0
c
ci
vi
cri
H
H
►�
=
H
�-►
z
h
vs
9
ra
1�—
r-D—
s
F,.jT�
co
c It
W jfro,II
ru« �•.•r.•. w .•.rw.a., e...rnr.
CLI) I q q j I Co%STiC-z?
FEATURE
5
(h(70 Cu
K. 4ia
I CHECKED BY
1 Me t c-J
DATE
I
SHEET
I k 5
OF
9
l
�VU�'Sin j*
�= a�•3UCIP5
C = G,ao (exi5fin�, 9arg5lt;
Lop = -500 4 ; ',oc = �,� 1'0
Sobb6i(i j
it = 1 a, 3 riC.e5
C : 040 (7a MkOMCI)
Loc.10t>44 ; 5of =a?,0
S)bbzIVI C
A-; � / 5 a(r-m
C-a,(9-T)
L of = god{ r 5 o6
L E 80CQ 5c, = b A I5o +reef fk,j
5obbci5(n b
Pr' 0 .O, Xre� (A 6.4544L /' A(hw t,,^q)=1,55")
+ (J.35�ib•Lo1j = 0, 7.'
?•0
I- Op % W4 a5o
11150 ; 5+rer-f�Iowl
51)bbc151r1 E '1
;R(open) 0,7Qr)
(o,7)Ca,ao)��5,`i = Or S$
L vF = /D,,Po�f S of �70
G =qwr+ j 56; r0456 i Cra55 LineJ5.-)cqle
5obbcr5rn ��—
�} = 8,9 acres
040
L or-;: 3754�4
L c,, = &00�f 561: 0,45o j GAUSS LInPclSmle
L,dstone & Anderson. Inc.
MR r.r.. a....... r c.rrr..
el-? -aP -I s I Co757-iO
FEATURE CHECKED BY DATE SHEET OF
q 9
5066651el 6 rt q
= /o, 54e C�%Q[nk 9,5At ; RC�a dtr lya� Aee414)1=o,%ce,e
C = 01)(ad0*(o,axc,5, (Io,S) = O,ou
Lo<= 500 j 5oF= 5,&o o
Sc,5so ; Sdvr{9rus5 (nofe(,cnncltzed�
�1S1n N a
3, & cic/e5 (PtnPen = 3•lcc kjr^pe v)
a)+ (o•SYo.g 5)) /;.G - 0,3
cbf sow • 2,350
Le=a
&A6451r, Z
X5�k/
o,soLao:eorf4 : 450F+ � 50 ; 54reef f fo.J
lrlt
; Sc,
; 5+,-eef
Pleau /efirr fo Pcje5 45 and f 6
JEEMENtr.mm
Lid,tone & Anderson. Inc.
St
T
W MAING W \WWIMrYGWIIGM�
CHECKED
Co
sobl7m5n F
T&kI h(ea = 3,( Litres
Tn 4e pre6,)11�42v i r��+,'C eoe��icr4 was �. secl.on ex,s�h,, eoaA4oas, l♦owew,
-Final, assumed �v►ly �evebpeJ �o4 )on (�IgWed for +home Jeveb�mm+).
50bb i5,rn HI (TrtbAry 4-o 1bP 6t ITAIrd Wuy)
rCa = J,Sgcre5
= 0.40 (Icwnllo►nes)
Lo; = loofk ; SD:: a,o%
Ls = 350P� ; 5e. ,r}/asw = a,aho Sfree+ Flow (TnJevclopeJGxJ,f7oi)
SLVo%i n N A (Trl bu%ary fo Da &, a , $acklo+ Swale)
4(-e4 = 1,1 au es
C= 0110D 0& M hams )
GoF:106F+ ; 5=-a-05b
L E = asoff ; 56 = s'�,'/asofk : 3.a5u We (455vm ed)
'5*k*sin 11 (TrnbAnvyfo b.
#(ea = 1. q acres
C = 0,50 (Stw)le Fam i}y)
Lor- 804 , 5=d,07o
/-& = c15W ; 5c l , q; o
50b6b,n 1 a (Tr, bo4wy fo
f rea = 1-5 ctcrrS
C = 0.50 C5nlle FALi„ly)
LOF: =86f+ 1 5:a,050
LG = ycv f+; 56 =1, 410
P. 74 ; G,19alud �Ay, 5*4� 5(de)
5-Iree� Flovo
D, P. b ; CiIr14l Dray No6 5iJe
5obbas,ri 13 (Trt bv-lur +o �• R
/�-re4 :. ), S Acres Y
C= 0,50 (smile-F'aMlly)
L or- =,Sod+ ; 5 ; �,05o
LQ : 7o04 ; 56, : 0, 8 %
5+(ee+ 1%lo i
lc, , Back to+500 (c
(1ra55cd 5,,aale
5
6•a
1
L,cl�tone & Andeison. Inc.
IM AMM M Y �M C�
WNER—PROJECT BY DATE PROJECT NO.
Wi md Sile Famil ^u) 1-a5-7 e07-5TI64
EATURE I
II CHECKED BY DATE SHEET OF
"tia �elrio0%tLola i oo5
5L)bba51n J1 (Tr,W-bo y io'DP fie. E. end of 61T4W W4y)
f }rea z 3.8a4re5
C= b- 50 (5tr9e Farnt 0
l-or = 80ff 5 = A 5e
L80o 4 ; 5s, = d.(o`!a ; 54-reef Flow
5obb,51,1 Ta (Tnbo�ary 4o 'DIP Sb backloi'Sak�G�
�reoa = 3 - o GcreS
Cc61So (StfyIG FA�'t11
Lor- = E30N 5:o? to
SG = 6, $ `)o G(-s5eJ li .)ale
1
DRAINAGE CRITERIA MANUAL
fawe l T dic Velon y Compv�Ofi ,
5(
3C
1.- 2C
Z
W
U
cc
a 10
Z .
W
a
O 5
W
c(nc 3
O
v 2
cc
W
3
1�
5
.1
-I'%9
RUNOF _
moll
WRIVA■rIIIN
l
�Wmilli
(—
���lII�F�
I■Ifi91I�L�
Ii�L4�,1
WAMMAN
���I�II■I,■■IIIIt
/Ill
■1111���■■■■�
�I
�I��rI
■'/■11//1,1■11�1111���■■■■�
2 .3 .5 1' 1 It 1211113 5 10 20
VELOCITY IN FEET PER SECOND
FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR
USE WITH THE RATIONAL FORMULA.
*MOST FREQUENTLY OCCURRING"UNDEVELOPED"
LAND SURFACES IN THE DENVER REGION.
REFERENCE: "Urban Hydrology For Small Watersheds" Technical
Release No. 55, USDA, SCS Jan. 1975.
5 -1-84
URBAN DRAINAGE & FLOOD CONTROL DISTRICT
No Text
No Text
I
APPENDIX B
STREET CAPACITY CALCULATIONS
1
Licttitone & Anderson.
Inc.
� W.I. •.r.w. w ..ww..,u o .
IWlfl&fu1I 51r1 � Faft CLD I I-d6-oj. C0;5TI8.a
FEATURE I ---] L CHECKED BY DATE SHEET OF
,+(eA CG c17 Am61� C.—L a/-7 lq4 a 1 /a
Toiird Ama :1,gacre5
West 4rea t 0,554c(6
Li D,P. ?4
O 4scf's) (o,q%4o) = I ,acf5
- (I- I r) /CA,5 ti I r
"e; 5fteef1Cu r{ye4lwb;td 1�aSCclpn a slo�eoF 1.377o,
,4A04J'J1vPew,l1 be9rtAfer. lbeee4re, ihetilla.-mete
C 5 5ieeefer(>wCIN I-j r-M,}e,--1P4AfAecglc0L-,1edvaIJa.
too- , C /.A4 - . 7htetsacanervaAvi eacwleolRhon-
lllo,able cyge( - Cala)Wej b -a �Otmed bep'4h Arw11515
Slope _ o 1,577a �eeJx6o� rkdvr
Ya a"ble - 0.39 fl &rb;oll) Qa (416wtQ 4-oc-p)(0,8) = G, c�5 ✓ok
- re;er �;o o,+p, 4 Ole Wr5F -a►I, OUT (i)5 B q/ 1,2)
YJOU4l"AbIC = Or95g (41"weiemw„) ; 000 (aII�.,Gbic)- (o1a5eF5)Co-8) = ISC7cfs ✓vk
-refu lo N-4puf Gle Wr5r-loo•ooT (NIB 8/1a)
G11 a� lid Wes✓ � No/�h 51de , WeSf �F D.P. ' b
5L)bbawm N 1 and .Za
7b I greei = q • 0 Ac re5
West- 4re4 = 3, 3 uc• ,5
r! D.P. ib
atop -- (w,kf�) (3-140 = I (V -a Cf5
5e4op o- A15 p49e
Qa (Q Ilo,,,rble) _ 6,4 cls ✓ok
Olao (allow4e) = 160cA ✓ok
L itl�lone 8 llnderson.
Inc.
MNN N... W C..
Windfrar I Si 416 FGmi I CL-D I I-Z-19g41 I iaTIT-P,
FEATURE ICHECKED BY --i DATE SHEET OF
'5[iee� C'aoau fr 4nal 8 a is
(�' �gci�lad_Wa� �,,,�h 51cI e Easi of D, P. 7a
5ubbast.l S1-
Tofed kee, = I.q acres
F_as+ Area = 0,�5 acres
.960� DP,,7q
Qroo° i!o-1 cFs)(�r,�) = a,ocf>
Movable Cq ,<<fy C�,Icolq��e by H>;C-a A6e"41 Np+k E}n411515
Slope : 6- 0 90 II
�rQ�JCt'7on Fnc roe
ya (allowgble)= 0,3q(co(b-Full) (allowablc Cfs) k
refer �o ovfW+ Pole WTSF-Aq,out (py8&/ia)
y1Du (tillowr,ble)= 6.9S.;:f (6"above crow^�; Qrco (allowable): (110 C�s�(6�5) _ %Oe�S ✓ok
- reftr16ou�pu4 Ale WnF- Ioo.00r Cpy aio/ra)
fIgnlot d W4� ' k0k5rde sae, cF D,P, 7b
5ublx Sup H 1 anj za
Toia I Heea = y o ac re5
Echo- Ada : b,?acrl5
map-Ib
See +Fof a Alto peL9C
as 616%,mb16 k
Qroo (albwable) = 60 K,
Ljclstone & Anderson. Inc.
OWNER —PROJECT BY DATE PROJECT NO.
UnJ+rail 51 Ic Fumi I C L), 1 1-07(0- (96)q OOTIMAJ
FEATURE ICHECKED BY DATE SHEET OF
Stiee+ c I fine 1915 ►3 3
lgal� Waj 1-kIf (re-,bAr�+o b.A aa)
S�bl�,n 11
Qa= ,4,Dcf5 (on bo(k 5tcles of,+,reef)
Qtoo` ►q6 C4;5
41lowable ('u�GcI% - Calcuk+cby HFC-2 t,6(mGl Dept f}nalrSis
Slope = d,(o ho
� a��,ho„ caefia.
is (a(low4ble� = b• 35Gf L+oaofuvib) Qa (a lbwable) : (5, 7 C4;s (o a) _ q,locf5 ✓vk
- ieFrr fo �o{ �(� llTSF-aA. OJT (pg 3 S /�a)
yioo(allo.w,ble, = 0,95ff ((o'abou ProA Ghoo (Fibwable) = Oqg c,f5) 0, 8) - IIG Cf5 ✓ok
-nfei }o oo- f+It wnr--too, oor (ry i3 °I / la )
26JAN94 07:50:10
I-(IT5Fovr
Wu,d+roll S,n�lr+avnll�
HEC-2 WATER SURFACE PROFILES - FIEC-a No(maI Depth
Version 4.6.0; February 1991
IT WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1/26/1994
T2 FLOW FOR THE ALLOWABLE 2-YR DEPTH (CURB FULL) LIDSTONE 8 ANDERSON, INC.
T3 GILGALAD WAY S=1.37%
11 ICHECK ING NINV IDIR STRT METRIC HVINS 0
2 1 0.0137
J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW
1 -1
02
�T 3 8.0 5.7 4.6
NC 0.016 0.016 0.016 0.1 0.3
t1 1 6 98.58 118.01 10 10 10
R 2 98.58 0.39 98.59 0 100.00 0.11
GR 2 118.01
26JAN94 07:50:10
SECNO DEPTH CWSEL CRIWS WSELK EG HV HL
0 GLOB 0CH GROB ALOE ACH AROB VOL
TIME VLOB VCH VROB XNL XNCH XNR WTN
SLOPE XLOBL XLCH XLOBR [TRIAL IDC ICONT CORAR
PROF 1
5= I.311b
CCHV= .100 CEHV= .300 Aflo.ieble DeA 6,Nff
ISECNO 1.000 l}IIoYz,blC /9�`�:A��S
1.000 .39 .39 .43 .50 .54 .15 .00
8.0 .0 8.0 .0 .0 2.5 .0 .0
00 .00 3.14 .00 .000 .016 .000 .000
.013597 0. 0. 0. 0 12 6 .00
B`/,a
PAGE 1
THIS RUN EXECUTED 26JAN94 07:50:10
WSEL FO
.50
CHNIM ITRACE
101.17 0.45 118.00
OLOSS
L-BANK ELEV
TWA
R-BANK ELEV
ELMIN
SSTA
TOPWID
ENDST
.00 2.00
.0 2.00
.00 98.60
16.24 114.85
PAGE 2
r
26JAN94 07:50:10
PAGE 3
T1
WINDTRAIL P.U.D. FINAL
DRAINAGE PLAN -- STREET ANALYSIS
1/26/1994
T2
�T3
FLOW FOR THE
GILGALAD WAY
ALLOWABLE 2-YR DEPTH
S=0.60%
(CURB FULL) LIDSTONE 8 ANDERSON, INC.
J1.
ICHECK
INO
NINV
IDIR
STRT METRIC HV1NS
0
WSEL
FO
3
0
0.0060
.50
NPROF
]PLOT
PRFVS
XSECV
XSECH FN ALLDC
IBW
CHNIM
ITRACE
�J2
2
-1
I
26JAN94
07:50:10
SECNO
DEPTH
CWSEL
CRIWS
WSELK EG HV
HL
OLOSS
L-BANK ELEV
0
OLOB
OCH
OROB
ALOE ACH ARDS
VOL
TWA
R-BANK ELEV
TIME
VLOB
VCH
VROB
XNL XNCH XNR
WTN
ELMIN
SSTA
SLOPE
XLOBL
XLCH
XLOBR
ITRIAL IDC ICONT
CORAR
TOPWID
ENDST
*PROF 2
5 = L 50
CHV=
.100
CEHV=
.300
Aila-x bldPfF A zOIN j
*SECNO
1.000
Alto. 4& -.Y.1 wye - 5 7Q .
1.000
.39
.39
.00
.50 .46 .07
.00
.00
2.00
5.7
.0
5.7
.0
.0 2.7 .0
.0
.0
2.00
.00
.00
2.12
.00
.000 .016 .000
.000
.00
98.59
.005973
10.
10.
10.
0 0 6
.00
16.68
115.27
PAGE 4
A
26JAN94 07:50:10
f-i WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1/26/1994
T2 FLOW FOR THE ALLOWABLE 2-YR DEPTH (CURB FULL) LIDSTONE 8 ANDERSON, INC.
13 GILGALAD WAY 5=0.40%
J1 ICHECK INO NINV IDIR STRT METRIC HVINS 0
1 4 0 0.0040
V 92 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW
15 -1
r
26JAN94 07:50:10
1
SECNO DEPTH CWSEL CRIWS WSELK EG HV HL
G OLOB CCH OROB ALOB ACH AROB VOL
TIME VLOB VCH VROB XNL XNCH XNR WTN
SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR
PROF 3
5=OAlo
CHV= .100 CEHV= .300 fill,.-bklitPf4+> 0'31H
SECNO 1.000 Flo Jgb({ t)i%jwTe - +loA
1.000 .39 .3 ..00 .50 .44 .05 .00
4.6 .0 14,6 .0 .0 2.7 .0 .0
.00 .00 1.73 .00 .000 .016 .000 .000
.003981 10. 10. 10. 0 0 6 .00
WSEL FO
.50
CHNIM ]TRACE
OLOSS
L-BANK ELEV
TWA
R-BANK ELEV
ELMIN
SSTA
TOPWID
ENDST
.00 2.00
.0 2.00
.00 98.59
16.61 115.20
PAGE 5
PAGE 6
26JAN94 07:50:10
PAGE 7
�rrww►r:frrrrrww►f:f:fffrrrrrw►w:f►►►►
THIS RUN EXECUTED 26JAN94
07:50:10
HEC-2 WATER SURFACE PROFILES
Version 4.6.0; February 1991
wrf►f:f:frrrrw»:ff:f:ffrfwwwrw►w►►►►
NOTE- ASTERISK (r) AT LEFT OF CROSS-SECTION
NUMBER INDICATES MESSAGE
IN
SUMMARY OF
ERRORS LIST
IGILGALAD
WAY S=1.37X
SUMMARY PRINTOUT TABLE 150
SECNO XLCH ELTRD ELLC
ELMIN
0
CWSEL
CRIWS
EG
10fKS VCH
AREA
.01K
1.000 .00 .00
.00
.00
8.00
.39
.43
.54
135.97 3.14
2.55
.69
1.000 .00 .00
.00
.00
5.70
.39
.00
.46
59.73 2.12
2.69
.74
1.000 .00 .00
1
.00
.00
4.60
.39
.00
.44
39.81 1.73
2.67
.73
t26JAN94 07:50:10
PAGE 8
�GILGALAD WAY S=1.37%
SUMMARY PRINTOUT TABLE 150
SECNO 0 CWSEL DIFWSP
DIFWSX
DIFKSS
TOPWID
XLCH
1.000 8.00 .39
.00
.00
-.11
16.24
.00
1.000 5.70 .39
.01
.00
-.11
16.68
.00
1.000 4.60 .39
.00
.00
-.11
16.61
.00
26JAN94 07:50:10
PAGE 9
SUMMARY OF ERRORS AND SPECIAL NOTES
BS/2
26JAN94 08:06:56
PAGE 1
WiSF - ioo . aor
�ffwwww**rrfrr*ffrrrffrfrrffrff►f►www
THIS RUN
EXECUTED 26JAN94
08:06:56
NEC 2 WATER SURFACE PROFILES
�E� a N lft2f DeA
Anal
Version 4.6.0; February 1991
rrfrfwf:wwwwxrrrrrf:ff►f:wwwxwwrrfrf
11 WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS
1-26-1994
T2 FLOW FOR THE ALLOWABLE 100-YR DEPTH (6" OVER CROWN) LIDSTONE 8
ANDERSON
�T3 GILGALAD WAY S=1.37%
J1 ICHECK INO NINV
IDIR STRT METRIC HVINS
0
WSEL
FO
1 2
1 0.0137
.50
J2 NPROF IPLOT PRFVS
XSECV XSECH FN ALLDC
IBW
CHNIM
ITRACE
1 -1
0100
IT
3 225 148
120
NC 0.016 0.016 0.016
0.1 0.3
1 1 9 98.57
137.43 10 10
10
R 2 98.57 0.39
98.58 0 100.00
0.11
101.17
0.45
118.00
GR 0.11 134.83 0
136.00 0.39 137.42
2
137.43
26JAN94 08:06:56
PAGE 2
SECNO DEPTH CWSEL
CRIWS WSELK EG HV
HL
OLOSS
L-BANK ELEV
0 OLOB OCH
OROB ALOB ACH AROB
VOL
TWA
R-BANK ELEV
TIME VLOB VCH
VROB XNL XNCH XNR
WTN
ELMIN
SSTA
SLOPE XLOBL XLCH
XLOBR ITRIAL IDC ICONT
CORAR
TOPWID
ENDST
PROF 1
Al�ouhblt�tIcD ti5f�
CCHV= .100 CEHV= .300
AlloJab�f Dl l
ISECNO 1.000
�e+aa5�
1.000 .95 .95
1.27 .50 2.04 1.08
.00
.00
2.00
225.0 .0 225.0
.0 .0 27.0 .0
.0
.0
2.00
00 .00 8.35
.00 .000 .016 .000
.000
.00
98.58
.013721 0. 0.
0. 0 20 6
.00
38.85
137.42
26JAN94 08:06:56
3�Aa
PAGE 3
T1 WINDTRAIL P.U.D. FINAL
DRAINAGE
PLAN -- STREET ANALYSIS
1-26-1994
2 FLOW FOR THE
ALLOWABLE
100-YR DEPTH (6" OVER CROWN) LIDSTONE 8
ANDERSON
3 GILGALAD WAY
S=0.60%
1 ICHECK
INO
NINV
IDIR
STRT METRIC HVINS
0
WSEL
FO
J
3
1
0.0060
.50
2 NPROF
IPLOT
PRFVS
XSECV
XSECH FN ALLDC
IBW
CHNIM
ITRACE
2
1
26JAN94
08:06:56
SECNO
DEPTH
CWSEL
CRIWS
WSELK EG HV
HL
OLOSS
L-BANK ELEV
0
OLOB
OCH
OROB
ALOB ACH AROB
VOL
TWA
R-BANK ELEV
TIME
VLOB
VCH
VROB
XNL XNCH XNR
WTN
ELMIN
SSTA
SLOPE
XLOBL
XLCH
XLOBR
ITRIAL IDC ICONT
CORAR
TOPWID
ENDST
PROF 2
5 -Z 0.60 50
Al"WeDep46 0,9 5P
�HV= .100
SECNO
CEHV=
.300
l}lb,�bk 17lSGhA/gC > I�is(,F6
1.000
1.000
.95
.95
1.03
.50 1.42 .47
.00
.00
2.00
148.0
.00
.0
.00
148.0
5.51
.0
.00
.0 26.9 .0
.000 .016 .000
.0
.000
.0
.00
2.00
98.58
.006009
0.
0.
0.
0 17 6
.00
38.85
137.42
PAGE 4
26JAN94 08:06:56
IT1 WINDTRAIL P.U.D. FINAL DRAINAGE PLAN -- STREET ANALYSIS 1-26-1994
T2 FLOW FOR THE ALLOWABLE 100-YR DEPTH (6" OVER CROWN) LIDSTONE & ANDERSON
t3 GILGALAD WAY S=0.40%
J1 ICHECK INO NINV IDIR STRT METRIC HVINS 0
�. 4 0 0.0040
2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW
15 -1
26JAN94 08:06:56
SECNO DEPTH CWSEL CRIWS WSELK EG HV HL
0 OLOB OCH 0R08 ALOE ACH AROB VOL
TIME VLOB VCH VROB XNL XNCH XNR WTN
SLOPE XLOSL XLCH XLOBR ITRIAL IDC ICONT CORAR
PROF 3
sto,4%
CHV= .100 CEHV= .300 *I.ble DerA- b-g5fi
SECNO 1.000 Miow ble DIsce = jAoCA
1.000 .95 .95 .00 .50 1.26 .31 .00
120.0 .0 120.0 .0 .0 26.7 .0 .0
.00 .00 4.49 .00 .000 .016 .000 .000
.004006 10. 10. 10. 0 0 6 .00
i
WSEL FO
.50
CHNIM ITRACE
OLOSS
L-BANK ELEV
TWA
R-BANK ELEV
ELMIN
SSTA
TOPWID
ENDST
.00 2.00
.0 2.00
.00 98.58
38.85 137.42
PAGE 5
PAGE 6
6n �a
26JAN94 08:06:56
PAGE 7
�ffffiffftfttfftftfffffflffftffffffft
THIS RUN EXECUTED
26JAN94
08:06:57
HEC 2 WATER SURFACE PROFILES
lVersion 4.6.0; February 1991
ffttlfffffffttfttffftftfltffttffttttt
NOTE- ASTERISK (f) AT LEFT OF CROSS-SECTION
NUMBER INDICATES MESSAGE IN
SUMMARY OF
ERRORS LIST
1ILGALAD WAY S=1.37%
tMMARY PRINTOUT TABLE 150
SECNO XLCH ELTRD ELLC
ELMIN
0
CWSEL
CRIWS
EG
10*KS
VCH
AREA
.01K
1.000 .00 .00 .00
.00
225.00
.95
1.27
2.04
137.21
8.35
26.95
19.21
1.000 .00 .00 .00
.00
148.00
.95
1.03
1.42
60.09
5.51
26.85
19.09
1.000 .00 .00 .00
.00
120.00
.95
.00
1.26
40.06
4.49
26.74
18.96
t26JAN94 08:06:56
PAGE 8
ILGALAD WAY S=1.37%
UMMARY PRINTOUT TABLE 150
SECNO 0 CWSEL DIFWSP
DIFWSX
DIFKWS
TOPWID
XLCH
1.000 225.00 .95 .00
.00
.45
38.85
.00
1.000 148.00 .95 .00
.00
.45
38.85
.00
1.000 120.00 .95 .00
.00
.45
38.85
.00
26JAN94 08:06:56
PAGE 9
�UM14ARY OF ERRORS AND SPECIAL NOTES ,
9
.8
7
U.
o .6
c.�
a
z 0 .5
U
0
O
W .4
0:
.3
'C's-06
0.8
tF-
`S
L
I.
d8
jf
s-0.4%
F -.0.5
I
BELOW
ALLOWABLE
STREET
MINIMUM
GRAOE
I
.00
2 4 6 8 10 12 14
SLOPE OF GUTTER (%)
Figure 4-2
REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY
Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain
allowable gutter capacity.
(From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
MAY 1984
4-4
DESIGN CRITERIA
1-1
1
APPENDIX C
CURB INLET HYDRAULIC DESIGN CALCULATIONS
I
I
QIVr rql 15 F le ,l i I CI-D 1-16-1994 eoTSrts.a
FEATURE CHECKED BY DATE SHEET OF
Curbirt1>.51 h. I 1 3/7194 1C 1
TnW -�- 3a - a� D-n 7a - AikaIcI Way 5DAern Sid c
5omp ootljlf on
Oa= 1-8CA
0100<611cf�5
Al loveable -plvj Jep+,
9-yr, = 0,39 ff (+op 4 Cvib)
l oo ryr = o, g 5 Ff (&"odu crovvn)
hergh� aopeniny: 0-5 4.
- a-yr t(lW c�ticuhhom S
hoviever-, 4rJehtyn, (ne depfA- 0,75 F- �or aci,jvAal
yo/h _ a. 3yos - = D, 78
see nomol ruph , pt�,q e Ca
Q D, 78 cf5 (R.
Fcy-6 `I-441aef : G2= (0,78 P) (0-So) = i'sCA
— 100-yr in f�� CaICJIG �OA-S ;
yolk = 6,11 ,5 = 1,50
See ooMo e-tip, , pele Ca
a /1-- 1.75
Fora y-�oo4 ►nle� : Q= (i �s/}) (�I Ff) (a, go)
For4n f3-�ooF ►�Icf ; Q- (1,15dyq (8ff)
ok poi a-ye.r
C (S /7A(44rye el7WJ t -
I R d5 o k Zr too -year
I;e a ell a Forf eeollm3 5�dj
6(h,InlA - mn4l6(j. lobe 04la7.
r,1k+134,
1.0 -- 12 5 Ca�q
10 4
9 II 8
3
10 6 '
.8 F:
o 2
9 0 4
i t_
.7 x 3
8 w z 1.5
0.
vi
2� r
6 7
z
i
P e, Part a 1'0 z .9
5
w
5.5
`.6 LL
w o o .7
w 5 x z
Uj
u. .4 z w '4 6
? 4.5 0.
z 0 .3
_ W
S
4 r o 2 0 •5
z z ►-
c� 0
w •3 3.5 w w _ .4
4_ a x -1
0 0 I w
W u_ U. .08
.25 3 0 o .06 .3
x x o z
w
o —
w w x .04 Cr..25
_ 2.5 x a - I--
.2 r a
c� 02 wo 2
a
a
2 f) ~
O.
.15 01 0 .15
U.
L O
0
Yo FZ
1.5 --- - -- -- x
a=2'h 10
I 1.2
Figure 5-2
NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2"
Adapted from Bureau of Public Roads Nomograph
M' MAY 1984 5-10 DESIGN CRITERIA
i
'IAwnw ••••w••• w 4.v.wnY Cw•.rx•
G I I S1nol le ;"II 1J I C`D
DATE
b in le% De5tqv1
In lef k 3 b - a� U,', 16 , 111 Iqa Iod W4% Nor&(n Sete
Sum,,f Coed 161
0; - 5-(p cf5
0100= 19.&d5
19Iq I CorSTIs•a
C3
Allowable flo) depf ►
a-yr = 0.M ff (-6pz4wt6)
100-Ir :MSP (& ✓e,- C(a.;,%) ; ho,vve% vote depf'--6,75ff 4f OAdIhona,cyacdy
he(I4of opeattil - b, 5 R.
a-yr ► fed calculcihoo
b 3Y,so : 0,�8
d, 78 cfs /�
Forgn 8'f�`��►le�; Q= Cb,78�f/f) i8ff� (n.85) = 5,3c�s
rvrA iI(e (�= i0.1B`��t�Uaff)(o,85�_ $,Ocf5
- IDo-yr. ��rlef ealcola�ions
yo
d/,-= 1-,7 5 cis/1.
Fora U-P'oofmlef 0= (1175cfi'ft) (lay) (0,05)
hv_ � ��ye encwj�•
• dk �� a
For the Its -year e✓etit, 4,,) will ove(- op crown; 4e(e4re 1445 N and 310 wjll be Qc,� 0
a 5(mlle inkFina 5wnp eonPioei.
0100 (•Al)= a&Cfs CD,pr 5eG liy&61091LCQIC-0144�*AS,p4G 41)
Qcapac;�'y = 11,gc-r5 (rr,leHb) + 11,9 c�5 (rnlefU) = aJ.,S-'✓ok for too -yea..
o , I%SCA CI%ldf �WMi%�io5 Si4nao� i .
('ivb�Ak� -hbalfird io be la�l• l�9'
clef +3b .
I
ru& Anderson. Inc.
YINw ��� W �M1�rr14 CWII�W�
t
indt(eiII SI le 1 t I Cl-1 1-a6-lggLl COTjT16.2
EATURE CHECKED BY DATE SHEET OF
I curb Tvllef be91gVI I I C `i q
� Icf#3a and 43b OverP6j
The mIA5 have been det)tgwd to We ex6e5!5 cApau�in fAe e✓en+of �yihal
bloekayqc, 7he Inlef- cofrx i y a+ depot., = U 75 �ee{ (pklcA IS lave.}tiuei allo�Gblej
17 aq8 C4,- Th1-1 pro✓Ides an dlfional IS 5o e4p4C,I+y in 4e mlef,s.
The a%".(�CPS}arnnejereapaclly i:5 916 e-fs, kotilch repre5,en45 on addlontil
70-cAllocic1 ,
Tn 4�e even+4a� 4�e 5formsel.)er s tewl ,xuld becov+e alockeelI �loj ww�l be
hill ved over e AIgti point ih 'Il�,lad �441 a4 dep� aF ba feel.over 4e
isle+ Plaa line.
ru&
Anderson. Inc.
WIM ref/ 514 le FM] II Cu I -A- Mid I ODTC)ns..�
FEATURE CHECKED BY DATE SHEET OF
Corb Tnlef eSigkl C s 9
Lvilef #4 (SiaetdGlk CoIver+) �� D� 8a � >�a5f �n��F �tl�alu� ►�la�
50m? Cond t -hon
Na = 1I,0CF5
Qtoo = I � , 5 cf-5
�}�I able �Lw De f-
a-yr = 0, 51 f} (+op �.pcurb
121" = O•gSF+ (&"over uoan�
helghf �Fopehr� = 0,5�4•
- a -yam A6 ealcolc fi6v75
yo/t, = o r 1 B
Q/L: o•1s
have✓er, u5c 6r5l ff (backofwalk) fodeftrrhine
eapacvf j)rtor+o over{vpp,n) lllfo major.', ale.
Tvrar� S�4inlet: Q= �xBff)(0,asj = 5,3cf.5 ak for a-yr
- lo0-yr in ealcokTon5
�
yo /A : pr5/o,5 -- I: oa
Q/c - 1,15c4;W
roran e-foo4-,nlff : a = CI�ISCfs/ff)(Sft� (010 _ 7r8 efs
lo,-7 Cf5 would overfop the cvrb to l�e nlr yr swul e,, 05e a �rjer 114ewal kwljtetf rar
le 55 ove• fop p) fte. .
TorI la-f�rF,rile�, 0= (145cfhlf4)01f-�)(O,35)=
a•8 C(5 ,aoolA over -top lHe 5,Je w4lk .
An Ifs 8 anel SIti was FW4rmeJ �o�t�trmt�e ;4e 6W1-pjjoJep4
Depfk o� 6verf(aJ = 0o15 feed
Wlclfh4 over Flow 50fee� , over-(Iow6con�ute� wij}jri -ea5emenf5
T-AIDeA of how= 0,51 feef t d.l5feet Or(�(o�ecf la's�aewulk e�rerf ,5 0l<•
r
05eCA 04- cI cofward
SJevalk Mom fve-lT I of -44,
1
�RRENT DATE: 01-26-1994 1
IRRENT TIME: 10:23:17 J
FHWA CULVERT ANALYSIS
HY-8, VERSION 4.0
FILE DATE: 01-26-1994
FILE NAME: WTSF-OT
4gAaaaaAgA68Ei6666g&gA6Ag6f
AA6Ab6�gAAg8B6&&8�88&&g�bA
WT-5; - OT. PRN
Av_g
arwly515 +o�e-&,;;,Ne
�c�fhof ole.-toPP,n7
a � „ end cW AlgaW WAI,
C °
SITE DATA
°
CULVERT
SHAPE, MATERIAL,
INLET °
U uaa5aaa33AAA&eaAaS43353aaaa@A3AAfiAAAA6S86�66aa6ag66g&4gA&A&&6666&5aa6&6ggAAf,
° L °
INLET
OUTLET CULVERT
° BARRELS
°
ELEV.
ELEV. LENGTH
° SHAPE
SPAN
RISE MANNING
INLET °
°
(FT)
(FT) (FT)
MATERIAL
(FT)
(FT) n
TYPE °
1 °
99.00
98.99 100.00
° 1 RCP
0.01
0.01 .100
CONVENTIONAL°
�- N�roMAI CJlvee+ will epnvel v1('611y
2 ,
a
o
noflovi) Allflvw woad beeooeyed
vlcl over_47#A 5ecr;vn,
'5'
�MARY
OF CULVERT FLOWS (CFS)
FILE: WTSF-OT
DATE: 01-26-1994
--LEV (FT)
TOTAL
1
2
3
4
5
6 ROADWAY ITR
it 99.00
0
0
0
0
0
0
0 0 1
1100.09
1
0
0
0
0
0
0 1 30
100.13
2
0
0
0
0
0
0 2 28
Q°T " ;,e d'5 DG�+h = d. � S fee
100.15
3
0
0
0
0
0
0 3 20
61a il'fl�pe�
100.18
4
0
0
0
0
0
0 4 16
oVe/iopp'n, 9uAGSlope ° 04 /0
100.19
5
0
0
0
0
0
0 5 13
0,afk o�aef,flovJ : Sa+ee%-
100.21
6
0
0
0
0
0
0 6 11
100.22
7
0
0
0
0
0
0 7 10
100.23
8
0
0
0
0
0
0 8 9
100.24
9
0
0
0
0
0
0 9 8
100.25
10
0
0
0
0
0
0 10 8
100.00
0
0
0
0
0
0
0 OVERTOPPING
AAA86SAaaaAAAA666AaAAAA&S&aAaa66Fi6&6�AA&a&&&gA8g6a64A6AAA&Ei46g66gAgAA66AB668g6g&
V SUMMARY OF ITERATIVE
SOLUTION ERRORS
HEAD
HEAD
ELEV(FT)
ERROR(FT)
99.00
0.00
100.09
-0.00 -
100.13
-0.00
100.15
-0.00
100.18
-0.00
J 100.19
-0.00
100.21
-0.00
100.2
-0.00
100.23
-0.00
100.24
-0.00
_ 100.25
-0.00
FILE: WTSF-OT DATE: 01-26-1994
TOTAL
FLOW(CFS)
0
- 1
2
3
4
5
6
7
8
9
10
FLOW
ERROR(CFS)
0
0
0
0
0
0
0
0
0
0
0
% FLOW
ERROR
0.00
25.49
1.26
0.84
1.00
0.90
0.94
0.85
0.82
0.87
0.66
'S1> TOLERANCE (FT) = 0.010 Q> TOLERANCE (X) = 1.000
aaaaaaaaaaaaaAAAA&aaAA&86A�6aaeAaAAA66FiaS6�6&66aaaa64gAAAAAaaa5S88S8�4�s66gg&g8&
t
C-71q .
2
�1RRENT DATE: 01-26-1994 FILE DATE: 01-26-1994
CURRENT TIME: 10:23:17 FILE NAME: WTSF-OT
Aa;�aa>33AAA6a5�aa>3A&6a6aaaa5& �&AaAa�6S&��AAAA>3AAg8��aaa�>;A6Sa3�5a��,3AA6S6ga55
PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( .01 BY .01 ) RCP
aAgAaa5555A3ASaaa338S6aaaaaSAAAA>3a�68�gBAAA�AAA>3+)6S635a3AAA8>3�6��gaiA6gg�ga>3s�
DIS- HEAD- INLET OUTLET
#HARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER
LOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH
(cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft)
0 99.00 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.01
0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01
t0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01
0 99.00 0.00 0.00 3-Mlf 0.00 0.00 0.00 0.01 0.00 0.01
0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01
0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01
0 99.00 0.00 0.00 3-MIf 0.00 0.00 0.00 0.01 0.00 0.01
0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01
\Y 0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01
0 99.00 0.00 0.00 3-Mlf 0.00 0.00 0.00 0.01 0.00 0.01
0 99.00 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01
�sAAa�eaa35a63AAAAAA66��gaSa>35AAgAaaagAAAg�s3�a3a3A&AAAAAAe6�6��&AAAAAA,36gg�aa
El. inlet face invert 99.00 ft EL. outlet invert 98.99 ft
(�I El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
i�ggAAAAAS�g��S�aaa�&A�eaaaa5�>3�aaaaa�>3�AA66aaa6a3ggg��>3a�gA�b6��>3a��gAg&ga>3�
••* SITE DATA ***** CULVERT INVERT ***•*•********
INLET STATION (FT) 0.00
INLET ELEVATION (FT) 99.00
OUTLET STATION (FT) 100.00
OUTLET ELEVATION (FT) 98.99
NUMBER OF BARRELS 1
SLOPE (V-FT/H-FT) 0.0001
CULVERT LENGTH ALONG SLOPE (FT) 100.00
•••** CULVERT DATA SUMMARY rr»rrrrrrrrrrrrrr»rrrr
rBARREL SHAPE CIRCULAR
BARREL DIAMETER 0.01 FT
BARREL. MATERIAL CONCRETE
BARREL MANNING'S N 0.100
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL
INLET DEPRESSION NONE
I
3
tRRENT DATE: 01-26-1994
CURRENT TIME: 10:23:17
TAILWATER
CONSTANT WATER SURFACE ELEVATION
99.00
FILE DATE: 01-26-1994
FILE NAME: WTSF-OT
B86g66&6gg�gAg6AA666g636Ag
ROADWAY OVERTOPPING DATA B665aaaa6gAA6gAaA6$6$6�6a�
r\ WEIR COEFFICIENT
EMBANKMENT TOP WIDTH (FT)
• " USER DEFINED ROADWAY PROFILE
CROSS-SECTION X Y
COORD. NO. (FT) (FT)
1 50.00 100.30
2 100.00 100.00
3 150.00 100.30
0
1_11
Ll
I
2.60 �---
10.00
5dMs-alope t 6, (a 90
(§qvc4l fosiree4 s lope)
I
I
-5.3.5 Grates for Pipes
Where a clear and present danger exists such as a siphon, a drop in elevation adjacent to a
sidewalk or road. a long pipe with one or more manholes, or at pipes which are near play-
grounds, parks, and residential areas, a grate may be required. For most culverts through
embankments and crossing streets, grates will not be required.
When called for on the plans, grates shall meet the following requirements:
a. Grating shall be constructed of steel bars with a minimum diameter of 518". Reinforcing
bars shall not be used. ,
b. Welded connections shall be 1/4" minimum.
c. Spacing between bars shall normally be 6" unless site conditions are prohibitive.
d. All exposed steel shall be galvanized in accordance with AASHTO M 111.
e. Welded joints shall be galvanized with a rust preventive paint.
f. Grates shall be secured to the headwall or end section by removable devices such as
bolts or hinges to allow maintenance access, prevent vandalism, and prohibit entrance by
children.
'5.4 Inlets
Storm inlets shall be installed where sump (low -spot) conditions exist or street runoff -carrying
capacities are exceeded.
The curb inlets shown in the Standard Details, pages D-7, 8,12 & 13, shall be used in all City Streets.
If larger inlets are required, the Colorado Department of Highways Type R Curb Inlet, Standard M-604-
12, shall be used. For drainageways other than streets (for example, parking lots, medians, sump
basins) an Area Inlet similar to the detail on page D-9 shall be used.
The outlet pipe of the storm inlet shall be sized on the basis of the theoretical capacity of the inlet, with
a minimum diameter of 15 inches, or 12 inches if elliptical or arch pipe is used.
All curb openings shall be installed with the opening at least 2 inches below the flow line elevation. The
minimum transition length shall be 3'6" as shown on the standard details previously listed.
Because of debris plugging, pavement overlaying, parked vehicles, and other factors which decrease
inlet capacity, the reduction factors listed in Table 5-4 shall be utilized.
Table 5-4
INLET CAPACITY REDUCTION FACTORS
Percentage of
Drainage Condition Inlet Type Theoretical Capacity
Sump or Continuous Grade ........................................... CDOH Type R-Curb
Openin
�I - 80%
-7' 419' 85%
151 a 90%
Street— Sump..............................................................
Street — Continuous Grade ..........................................
Parking Lots, Medians ...................................................
4' Curb Opening
80%
4' Curb Opening
80%
Area Inlet
80%
The theoretical capacity of inlets in a low point or sump shall be determined from Figures 5-2 and 5-3.
The theoretical capacity of curb openings on a continuous grade shall be determined from Figures 5-4,
5-5 and 5-6.
The standard curb -opening is illustrated by Figure 5-4 and is defined as having a gutter depression
apron W feet wide at the inlet opening which extends W feet upstream and downstream from the open-
ing, has a depression depth (a) equal to W/12 feet at the curb face, and a curb opening height (h) of at
least 0.5 feet. The graph as presented by Figure 5-5 is based on a depression apron width (W) equal to
2 feet and depression width (a) equal to 2 inches. The pavement cross-section is straight to the curb
MAY 1984
5-8 DESIGN CRITERIA
I
I
APPENDIX D
PIPE HYDRAULIC DESIGN CALCULATIONS
I
!,
l
rutone
& Anderson.
Inc.
wa W.w •«w... w ........r.. Gw .
C c-D
SnI fia I P(
?pe -Pram Isnlef *3ti +o I-nlef I5b
e-Reduciten Fr cl a/-
GCOO (Aeorehcal) _ �Il.gef,)/(o•85)0cfs
lissome 5= 1.0 °lo (minimum)
(he rnanr m) t j ahw (iedtxed for ,pe f',,If fly)
� � n
jP9)
5
Pipe From Tdef 43b +v OJ+4
QAOO U*I) = d6,OG-(S (D.n,
1i*ame 5 = 0•15 90
GAL
Lil) _ 0(, \113/$
a�,(acfs
ro�3
'��cf= 0•g9a
I-Z-19gH I COnTr8•a
3/-7 Ji4 I -- D 1 to
v5e a a l '" KcF .
toe a d 7 " 0 qcp
5mrn = 0,7510
Indtrail Single Family Storm Sewer Analysis -Inlets 3A & 38
COTST18.2 2-28-94 L&A Inc. CLD File: WTSF-1.DAT
12 20 2 2 , 1 , .85 500 500 , .2 , N
100
1.4 , 28.5 10 .786 (40, 490 ,5.4, 6 .1 4041, 0 0 , 0 0� Oul4< I O5p/iIoleiee ((41
6.41, 5004.0 ,4041, 1 ,4142, 0 , 0 , 0 Mai hole 3-I
6.0,0 5.4,.6000000
2, 5005.0 ,4142, 1 ,4243, 0 0 0 L ')IQ iWe �f _
26.0,0, 2.0, .60 , 0 , 0 0 00
3, 5002.8 ,4243, 2 ,4344,4353,0 0 L I�Ie� 2 a
6.0,0, 2.0,.6000000 J 53, 5002.8 ,4353, 0 0 0 0 , 0 L hlC f `055 &i -To �JQ
14 1, 0 , 2.0 , .60 , 0 , 0 , 0 0 0 I 7
R4, 5002.8 ,4344, 1 ,"54, 0, 0, 0
1.9, 0, 2.0 ,. 6 0, 0, 0, 0, 0 0
�07 tOO)
54, 5002.8 ,4454, 0 0 , 0 , 0 0
t1.9,0, 2.0, .600,0000 f I
4041, 38.1, 0.8, 4998.41 .013 , 1 0 1 30 , 0 — 30" RCT" Fian C)Aei +o M4 3-1
�.142,220.8, 0.8, 5000.13 , .013 ,0.46 , 0 1 , 27 , 0 — a7" RCP �'iom MA5-1 #c MA 3'd
243,176.6, 0.8, 5001.74 .013 ,0.46 0 1 27 , 0 — d 7" RCP - a m MA 544c, Sn1cf 36
4344, 36.0, 1.0, 5001.75 , .013 ,0.05 , 0 1 21 0 — p " RCp pOA Snlef 3 3 +o s#4e 3A
f'4353, 1 , 0.8, 5001.74 .013 ,0.25 0 1 27 0 — *Snl-e� Lo55 aa1' 5113
54, 1 , 1.0, 5001.75 .013 ,0.25 0 1 21 0 — * Ink+ LoS6 art V
1
t
t
Dais
Wod Tr411 51179 1'e G'.I. I J
U75eww/ Nru(YSi�
1
I
P3�0
------------------------------- ------------------------------------- -
' REPORT OF STORM SEWER SYSTEM DESIGN
' USING UDSEWER-MODEL 2-10-1993
DEVELOPED
BY
'JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
I
'** EXECUTED BY LIDSTONE AND ANDERSON....................................................
' ON DATA 02-28-1994 AT TIME 15:42:18
"* PROJECT TITLE :
WindtraiL Single Family Storm Sewer Analysis -Inlets 3A 8 3B
'* RETURN PERIOD OF FLOOD IS 100 YEARS
' RAINFALL INTENSITY FORMULA IS GIVEN
FSUMMARY OF SUBBASIN RUNOFF PREDICTIONS
k/7-5F- a .00r
WirKl+,-c,J SfiJ IC rq,;II!I
,
_______________________________________________________________fir.
TIME OF CONCENTRATION
MANHOLE
B
OVERLAND
GUTTER
BASIN
RA I PEAK
FLOW
e C�
,,��i„e t„ L QS s1,o-jti be:'
'J
NUMBER
AREA *
To (MIN)
Tf (MIN)
TC (MINA
INCHAR
CFS
JI .Y �T
-
-------------
-----
-----------------------
40.00
3.24
0.00
0.Ov
0.00
4.75
15.39
41.00
3.24
0.00
�.-
0.00
4.75
15.39
42.00
1.20
0.OQ
0.00
0.00
4.75
5.70
43.00
1.2?
0.00
0.00
0.
4.75
5.70
53.00
.20
0.00
0.00
5.00
75
14.10
' 44.00
1.20
0.00
0.00
0.00
4.
5.70
00
1.20
0.00
0.00
5.00
9.92
0
FSHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES
VER REGIONAL DRAINAGE CRITERIA WAS NOT USED TO CHECK
COMPUTATION OF TIME OF CONCENTRATION
�* SUMMARY OF HYDRAULICS AT MANHOLES
J
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
�D NUMBER AREA • C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION 9AA4 W S bq lco-if !'�5 r-el'
MINUTES INCH/HR CFS FEET FEET In 5/n Cmek [+t��r10" , O7 Oo
-------------------- ---------------...._._.------------
40.00 0.00 0.00 0.00 26.00 4995.60 4 NO CDei II9gH) (9,,p1,Y1IA
'41.00 0.00 5.92 0.00 26.00 5004:00 4999:75 OK Water 5v[fA[e elev"704 15 bela.,-;[cunj
42.00 0.00 5.46 0.00 26.00 soos.00 5001.11 0K eledabon -,1 MN 9-1 , MH 3;
43.00 0.00 5.09 0.00 26.00 5002.80 5002* OK
53.00 1.20 5.00 11.75 14.10 5002.80 5002.90 NO
44.00 0.00 5.00 0.00 11.90 5002.80 5002.88 NO Wlfei 17
54.00 1.20 5.00 9.92 11.90 5002.80 5002.98 NO W5elev• of .Znle4 3A (aWax. 5003,Wo)
MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
SUMMARY
OF SEWER
HYDRAULICS
NOTE:
THE GIVEN
FLOW DEPTH -TO -SEWER S1ZE RATIO= .85
-----------------------------------------------------------------------------
SEWER
MANHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(HIGH)
DIA(HIGH)
DIA(HIGH)
WIDTH
'
10 NO.
ID N0.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
4041.00
41.00
40.00
ROUND
---
26.37
--------------
27.00
-----
30.00
----
0.00
4142.00
42.00
41.00
ROUND
26.37
27.00
27.00
0.00
4243.00
43.00
42.00
ROUND
26.37
27.00
27.00
0.00
4344.00
44.00
43.00
ROUND
18.87
21.00
21.00
0.00
53.00
43.00
ROUND
20.96
21.00
27.00
0.00
'4353.00
4454.00
54.00
44.00
ROUND
18.87
21.00
21.00
0.00
MENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
MENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
�GGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
R A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
SEWER
DESIGN
FLOW
NORMAL
NORAML
CRITIC
CRITIC
FULL
FROUDE
COMMENT
ID
FLOW 0
FULL 0
DEPTH
VLCITY
DEPTH
VLCITY
VLCITY
NO.
NUMBER
CFS
CFS
FEET
FPS
FEET
FPS
FPS
�
71pe GJ1I o,,iW Uelvclfv
/
------
---
26.0
---
36.8
----
1.55
----
8.13
--.._._
1.77
---
7.00
---
5.30
1.25
V-OK
'4041.0
4142.0
26.0
27.8
1.73
7.94
1.78
7.71
6.54
1.07
V-OK
4243.0
26.0
27.8
1.73
7.94
1.78
7.71
6.54
1.07
V-OK
4344.0
11.9
15.9
1.13
7.25
1.29
13.72
4.95
1.29
V-OK
4353.0
14.1
27.8
1.13
7.02
1.30
5.90
3.55
1.31
V-OK
4454.0
11.9
15.9
1.13
7.25
1.29
6.28
4.95
1.29
V-OK
�OUDE NUMBER=O INDICATES
THAT A
PRESSURED
FLOW OCCURS
------------------------------------------------------------------
5/�0
'
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
1D NUMBER
UPSTREAM DNSTREAM
UPSTREAM
DNSTREAM
------'
,
-
%
(FT) (FT)
-----------------------------------------
(FT)
(FT)
4041.00
0.80
4995.91 4995.61
5.59
-2.51
NO
4142.00
0.80
4997.88 4996,11
4.87
5.64
OK
4243.00
0.80
4999.49 4998.08
1.06
4.67
OK
4344.00
1.00
5000.00 4999.64
1.05
1.41
OK
4353.00
0.80
4999.49 4999.48
1.06
1.07
OK
'
4454.00
1.00
5000.00 4999.99
1.05
1.06
OK
OK
MEANS BURIED
DEPTH
IS GREATER THAN REQUIRED SOIL COVER OF
1 FEET
'** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
ID NUMBER
LENGTH
LENGTH
UPSTREAM
ONSTREAM
UPSTREAM
DNSTREAM CONDITION
,----
FEET
----------------------------------------------------------
FEET
FEET
FEET
FEET
FEET
4041.00
38.10
38.10
4998.41
4998.11
4999.75
4999.60 PRSS#ED
4142.00
220.80
183.29
5000.13
4998.36
5001.11
4999.75 JUMP
rr
' 4243.00
176.60
136.47
5001.74
5000.33
5002.38
5001.11 JUMP
Not: G Ply 4 l orY�a�idq 1 ()a p1Nltull
43".00
36.00
36.00
5001.75
5001.39
5002.88
5002.38 PRSSIED
�Fy�V/�2lLISI��gf70M•
JJA I pipe jInf5
4353.00
4454.00
1.00
1.00
1.00
1.00
5001.74
5001.75
5001.73
5001.74
5002.90
5002.98
5002.38 PRSSIED
5002.88 PRSSIED
m�fid2
'
w{,lcl� evm p bl5 wi�H
r�Ts'15f��d 3�1.
PRSS'ED=PRESSURED FLOW;
JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
t* SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
10 NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT
-----------------------------------------------------------------------
041.0 41.00 5000.19 0.15 1.00 0." 0.00 0.00 40.00 4999.60
4142.0 42.00 5001.78 1.28 0.46 0.31 0.00 0.00 41.00 5000.19
243.0 43.00 5003.04 0.96 0.46 0.31 0.00 0.00 42.00 5001.78
344.0 44.00 5003.26 0.20 0.05 0.02 0.00 0.00 43.00 5003.04
4353.0 53.00 5003.09 . 0.00 0.25 0.05 0.00 0.00 43.00 5003.04
�454.0 54.00 5003.36 0.01 0.25 0.10 0.00 0.00 44.00 5003.26
BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAO-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
' A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O.
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
Energy 6rakline Iy belo*,4e poidej W05.Aru
Gi Inle{� 30 �38 (app-ox 5003,W)
I
r' SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE.
THE TRENCH SIDE
SLOPE =
1
0---------------------------------------------------------------------------
MANHOLE
GROUND
INVERT
MANHOLE
0
NUMBER
ELEVATION
ELEVATION
HEIGHT
FT
FT
FT
-- -------
---------- -
-- ---------------------------------------
40.00
4995.60
4995.61
0.01
41.00
5004.00
4995.91
8.09
42.00
5005.00
4997.88
7.12
43.00
5002.80
4999.48
3.32
53.00
5002.80
4999.49
3.31
44.00
54.00
5002,80
5002.80
4999,99
5000.00
2.81
2.80
----------------------------------------------------------------------------
SEWER UP TRENCH WIDTH DNST TRENCH WIDTH TRENCH WALL EARTN
ID
NUMBER ON
GROUND AT
INVERT ON
GROUND AT
INVERT
LENGTH
THICKNESS
VOLUME
FT
FT
INCHES
CUBIC YD
-----------------------FT--------FT---------FT
4041.00
15.10
5.08
5.08
--------
5.08
38.10
-------------------
3.50
64.9
'4243.00
4142,00
13.45
5.83
4.79
4.79
14.98
13.05
4.79
4.79
220.80
176.60
3.25
3.25
516.0
248.4
4344.00
5.39
4.21
6.11
4.21
36.00
2.75
23.2
4353.00
5.83
4.79
5.84
4.79
1.00
3.25
0.8
4454.00
5.39
4.21
5.41
4.21
1.00
2.75
0.6
TAL EARTH VOLUME FOR SEWER TRENCHES = 853.7815 CUBIC YARDS
WER FLOW LINE IS DETERMINED BY THE USER
RTH VOLUME WAS ESTIMATED TO HAVE
BOTTOM WIDTH=DIAMETER OR WIDTH OF SEWER + 2 • B
BONE FEET WHEN DIAMETER OR WIDTH <=48 INCHES
B=TWO FEET WHEN DIAMETER OR WIDTH >48 INCHES
'IF BOTTOM WIDTH <CMINIMUM WIDTH, 2 FT, THE MINIMUM WIDTH WAS USED.
BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT
SEWER WALL THICKNESS=EOIVLNT DIAMATER IN INCH/12 +1 IN INCHES
r
I
1
1
1
1
1
1
1
1
1
i
i
1
APPENDIX E
SWALE DESIGN CALCULATIONS
i
I
' WINDTRAIL SINGLE FAMILY -- BACKLOT SWALE ANALYSIS
INPUT DATA:
'
DISCHARGE =
12.500000
CFS Qioo
70)
BOTTOM WIDTH
2.000000
FT
BED SLOPE =
7.000000E-03
FT/FT
SIDE SLOPE
4.000000
'
MANNINGS N =
6.000000E-02
'
RESULTS:
-
NORMAL DEPTH -
1.173639
FT — y100
FLOW VELOCITY =
1.591148
FPS — f o
HYDR. DEPTH
6.897785E-01
FT
'
TOP WIDTH
11.389110
FT
FROUDE NUMBER =
3.376197E-01
'
SPECIFIC ENERGY=
1.212952
FT
'
INPUT DATA:
DISCHARGE =
16.600000
CFS 4�
33
BOTTOM WIDTH
2.000000
FT
_
BED SLOPE
7.000000E-03
FT/FT
SIDE SLOPE =
4.000000
MANNINGS N =
6.000000E-02
RESULTS:
NORMAL DEPTH =
1.327797
FT
'
FLOW VELOCITY =
1.710090
FPS
HYDR. DEPTH =
7.690385E-01
FT
TOP WIDTH =
12.622370
FT
FROUDE NUMBER =
3.436505E-01
SPECIFIC ENERGY=
1.3,73207
FT
Swale Sec, ooi F-F
Ue,5f haWor Bock 164 5wGle
F 2�
INPUT DATA:
DISCHARGE
= 22.200000 CFS — [ (D,p ab)
BOTTOM WIDTH
= 5.000000 FT
BED SLOPE
= 7.000000E-03 FT/FT
SIDE SLOPE
= 4.000000
MANNINGS N
= 6.000000E-02
RESULTS:
NORMAL DEPTH =
1.238416
FT
— ►,,,.
FLOW VELOCITY =
1.801155
FPS
— j%oo
HYDR. DEPTH =
8.268028E-01
FT
TOP WIDTH =
14.907330
FT
— Novo
FROUDE NUMBER =
3.490778E-01
SPECIFIC ENERGY=
1'.288791
FT
INPUT DATA:
DISCHARGE
= 29.500000 CFS Q�ooMl33
BOTTOM WIDTH
= 5.000000 FT
BED SLOPE
= 7.000000E-03 FT/FT
SIDE SLOPE
= 4.000000
14ANNINGS N
= 6.000000E-02.
RESULTS:
NORMAL DEPTH =
1.420981
FT ym,rl,
FLOW VELOCITY =
1.943241
FPS
HYDR. DEPTH =
9.274781E-01
FT
TOP WIDTH =
16.367850
FT
FROUDE NUMBER =
3.555879E-01
SPECIFIC ENERGY=
1.479618
FT
1
1
Swale Seefioll L,17-G;
FAjf Qk o; &ekfof5,j,4
I
[1
' APPENDIX F
CULVERT DESIGN CALCULATIONS
[1
I
CURRENT DATE: 03-01-1994
.&URRENT TIME: 15:25:06
FHWA CULVERT ANALYSIS
HY-8, VERSION 4.0
FILE DATE: 02-03-1994
FILE NAME: WINDTR3
S686g666g6g8S1i66366&gag468
6g6g6866666g6glig6ga65a66Ag
° C ° SITE DATA ° CULVERT SHAPE, MATERIAL, INLET °
U GS65a56666AaAA6AAaSria66{sS8ti6A6liAAgA6Aa3f136a65363t169Ag6AA6g6gglaf666636ag66ggt;
L ° INLET OUTLET CULVERT ° BARRELS °
° V ° ELEV. ELEV. LENGTH ° SHAPE SPAN RISE MANNING INLET °
(FT) (FT) (FT) MATERIAL (FT) (FT) n TYPE °
1 04996.00 4995.50 35.00 2 RCS 12.00 4.00 .013 CONVENTIONAL°
2°
° 3 ° ° °
' 4
5°
° 6 ° ° °
3366aa66&a5a6a6aA363353A3A6ga6AA3glIAgSa64a5aaaaa33aaal16lIAg68S6666ri66A66A$A6$6$8$
�UMMARY OF CULVERT
FLOWS (CFS)
FILE:
WINDTR3
DATE:
02-03-1994
ELEV (FT) TOTAL
1
2
3
4
5
6
ROADWAY
ITR
4998.00 0
0
0
0
0
0
0
0
1
4998.10 17
17
0
0
0
0
0
0
1
4998.11 35
35
0
0
0
0
0
0
1
4998.12 52
52
0
0
0
0
0
0
1
4998.14 70
70
0
0
0
0
0
0
1
4998.16 87
87
0
0
0
0
0
0
1
4998.18 104
104
0
0
0
0
0
0
1
4998.12 122
122
0
0
0
0
0
0
1
4998.14 131
131
0
0
0
0
0
0
1
G1
Mgior5w4� CJvfW eolfle"-+
iascic�yne� �G►' Wur�+sail ri�n:wi*t'�,
Q1 o pWele%d
=14*8,14, Paebm�= 1.4Fee�
4998.18 157 157 0 0 0 0 0 0 1
4998.24 174 174 0 0 0 0 0 0 1 QIo�z133� �We�ed,:ggqg,�� v;ieeboaAz1.6fee�
5001.50 819 819 0 0 0 0 0 OVERTOPPING
3666{i66&665A6113a33365aaaa6336ggaga{a666g6AaaaaSa&Saa6366A66ti88ti6gA&AEs66Sri68(i6666
'3453636g556g6g6656a53a5aaa5666t16gti6ggf166aaa66aaa6363�6g666661iti666&6666AAae66$6{s _
SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: WINDTR3 DATE: 02-03-1994
HEAD _ HEAD TOTAL FLOW 11 FLOW
ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR
4998.00 0.00 0 0 0.00
4998.10 0.00 17 0 0.00
4998.11 0.00 35 0 0.00
4998.12 0.00 52 0 0.00
4998.14 0.00 70 0 0.00
4998.16 0.00 87 0 0.00
4998.18 0.00 104 0 0.00
4998.12 0.00 122 0 0.00
4998.14 0.00 131 0 0.00
' 4998.18 0.00 157 0 0.00
4998.24 0.00 174 0 0.00
a633S6a6A{IASa55653aa6666eaa66666af16aAbA6A&a65aaaa&aa6$6g6g666666AAggg68aaaaa&aA6
<5 TOLERANCE (FT) = 0.010 <2> TOLERANCE (%) = 1.000
r d/ i
1 1 2
DATE: 03-01-1994 FILE DATE: 02-03-1994
TIME: 15:25:06 FILE NAME: WIMDTR3
PERFORMANCE CURVE FOR CULVERT # 1 - 2 ( 12 BY 4 ) RC8,
�5333333gg686565g66AAA�SAa366AA6A666AA8g6g66is66A&B8B5S636Sb66g364A6g66ggg6886ggg
DIS- HEAD- INLET OUTLET
CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER
FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH
(cfs) (ft) (ftk (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft)
a353aag333a3gag63aa5A33A3AA3a33aa>34g3€i4gza6gA443356gaai333aaa3AA4g3343AASAg466ggA
0 4998.00 0.00 2.00 0-NF 0.00 0.00 0.00 0.00 0.00 2.50
17 4998.10 0.39 2.10 3-Mlt 0.10 0.25 0.29 2.50 0.00 2.50
35 4998.11 0.59 2.11 3-MIt 0.20 0.40 0.58 2.50 0.00 2.50
52 4998.12 0,78 2,12 3-111t 0.31 0.53 0*87 2*50 0,00 2.50
70 4998.14 0.94 2.14 3-M1t 0.40 0.64 .1.16 2.50 0.00 2.50
87 4998.16 1.09 2.16 3-MIt 0.45 0.74 1.45 2.50 0.00 2.50
104 4998.18 1.24 2.18 3-M1t 0.50 0.84 1.74 2.50 0.00 2.50
122 4998.12 1.37 2.12 3-M1t 0.55 0.93 2.03 2.50 0.00 2.50
131 4998.14 1.44 2.14 3-M1t 0.58 0.98 2.18 2.50 0.00 2.50
157 4998.18 1.62 2.18 3-M1t 0.65 1.10 2.61 2.50 0.00 2.50
�174 4998.24 1.74 2.24 3-M1t 0.70 1.18 2.90 2.50 0.00 2.50
aa3aaAAA66535�aSa5aaaaaa5aaaaaaaaagai656g66g66aSa6564a6Ag3AA66aa3a3gA6g6g66gf6g
El. inlet face invert 4996.00 ft EL. outlet invert 4995.50 ft
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
aaaaaa5aEA3AAaaa6aaaaaaaaaaaaaaaaSAA&AAA3A33gAAa6A66a5a6a5�33A5A6$55g3g3AAA66$3
***** SITE DATA ***** CULVERT INVERT
INLET STATION (FT)
0.00
INLET ELEVATION (FT)
4996.00
OUTLET STATION (FT)
35.00
OUTLET ELEVATION (FT)
4995.50
NUMBER OF BARRELS
2
'SLOPE (V-FT/H-FT)
0.0143
CULVERT LENGTH ALONG
SLOPE (FT)
35.00
****
CULVERT DATA SUMMARY
BARREL SHAPE
BOX
BARREL SPAN
12.00 FT
'
BARREL RISE
4.00 FT
BARREL MATERIAL
CONCRETE ,
BARREL MANNING'S N
INLET TYPE
0.013
CONVENTIONAL
INLET EDGE AND WALL
1:1 BEVEL (45
DEG. FLARE)
INLET DEPRESSION
NONE
�6556a3aAAAAAAAAAAa6b55353aaaaa6�3g3AAA66&�a1g6A66AAA8aaaaa6A3AA6g5g&A66$gAAg6gAg$
C
n
F�17
t
RRENT DATE: 03-01-1994
RRENT TIME: 15:25:06
3
FILE DATE: 02-03-1994
FILE NAME: WINDTR3
5SA53388aSS�aS58488885886 TAILWATER g4g6gAgg4gA446AS646gAg4$Ag
aa33aaaa33A3336A�8S686�6B6g&4ag3A5g6A664gg6a64ggA4g8686g4g8AS88Sg44gSS�8864AAgA
a43a3A3aaaaagAa3g�A3486�6S36a6465563aag4&344g65ggg4gg6S68g4464ggS3&3ggAg8S6&64g4
CONSTANT WATER SURFACE ELEVATION
4998.00
1pp.ji 4J5,,lei in
�i53a3AAa66gaaagaa6a4AAAAAAAAaAS646AAAAAAAgAAAgAS64B&4&6A4gAA8A464gAgggAA66g6gAAA 5e< App2fIAtX H
ROADWAY OVERTOPPING DATA A&A$�B$$gA&AA4S�6$6'agggA4A
ROADWAY SURFACE
EMBANKMENT TOP WIDTH (FT)
CREST LENGTH (FT)
OVERTOPPING CREST ELEVATION (FT)
PAVED
35.00
35.00
5001.50
I
I
r.x. ■...r••. w �.w....ww aw...w.
WNER-PROJECT By DATE J NO.
WIYd+Au11 51 rri le rf4mI I C`D I-A-1 eo 5T180, a
FEATURE CHECKED BY DATE SHEET OF
CuI✓eri q ✓I Fq 7
lreulje4 will be lom+ed on the backlog 5,,mle ea-5-o� lo�dtla.ln ordee--6pro✓k1e G
Cr0551n9 far a bike paf1
11�e 0-04(16A) Jravna9e area COn'Si4,5 of 5ubbAimb H a , s 3, aAJ �-55 acres of 50bbaNA Tel .
Q �� p 7c� + (0s ,
iDD Qioo b )(Q1wLB � " n a�)
= �/+ r
0100 ' 1a 5 C't'S 4-�a5�.o)�IDrq C k = 1�.5 CA
Cdve✓� Slope- = C-6,jael 51ape = b, -7 go
L
F,5/ 7
�RRENT DATE: 03-01-1994
RRENT TIME: 08:40:11
FILE DATE: 01-26-1994
FILE NAME: WTSF-1
g3gA46g6gg66gg6gA6&6&55ea566g6g56gg8ggggA66gAg6AAA6g6S6&6gf6g6466g66AgA&6Ag6gg
aaa$$aSgA&66g66A6A8A8A63 FHWA CULVERT ANALYSIS 6&Ag686866666666ggfg686866
AA645A6S665666g66&6a5Saa36 HY-8, VERSION 4.0 6366aaa6ggA86S6g5g4Ag6g&A6
�C ° SITE DATA CULVERT SHAPE., MATERIAL, INLET °
U G5ggg33g68g66g66666aa6a666666686Ag6g6665g6gg6666656g6gg64666666gg66AgA6gB6gt;
° L °
INLET
OUTLET
CULVERT
° BARRELS
°
�V °
ELEV.
ELEV.
LENGTH
° SHAPE
SPAN RISE MANNING INLET °
°
(FT)
(FT)
(FT)
° MATERIAL
(FT) (FT) n TYPE °
° 1 05000.30
°
5000.16
20.00
° 3 RCP
1.50 1.50 .013 CONVENTIONAL°
°
° 3
�2
3 °
°
°
° 4 °
°
°
°5°
°
°
.6 °
°
°
w1MMARY OF CULVERT
FLOWS (CFS)
FILE: WTSF-1
DATE:
01-26-1994
LEV (FT)
TOTAL
1
2
3
4
5
6
ROADWAY
ITR
5000.30
0
0
0
0
0
0
0
0
1
5000.68
2
2
0
0
0
0
0
0
1
4
4
0
0
0
0
0
0
1
j'5000*87
5001.02
6
6
0
0
0
0
0
0
1
5001.16
8
8
0
0
0
0
0
0
1
5001.28
10
10
0
0
0
0
0
0
1
5001.39
12
12
0
0
0
0
0
O
1
5001.49
14
14
0
0
0
0
0
0
1
5001.52
15i
15
0
0
0
0
0
0
1
5001.68
18
18
0
0
0
0
0
0
1
5002.80 35 35 0 0 0 0
SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: WTSF-1
0 OVERTOPPING
DATE: 01-26-1994
HEAD
HEAD
TOTAL
FLOW
% FLOW
ELEV(FT)
ERROR(FT)
FLOW(CFS)
ERROR(CFS)
ERROR
5000.30
0.00
0
0
0.00
5000.68
0.00
2
0
0.00
5000.87
0.00
4
0
0.00
5001.02
0.00
6
0
0.00
5001.16
0.00
8
0
0.00
5001.28
0.00
10
0
0.00
5001.39
0.00
12-
0
0.00
5001.49
0.00
14
0
0.00
5001.52
0.00
15
0
0.00
5001.68
0.00
18
0
0.00
,... 5001.78
0.00
20
0
0.00
'63AAAa6a&a6&6666A3aA6eaa66A6`aAA6'a6666A666666AAgA66b5&6S6a6a5&`aAAAAA6gAAgAAgA6gg
<1> TOLERANCE (FT) = 0.010 <2> TOLERANCE M = 1.000
a55a5aa5A$a665355aAa5a3aaAaaa3A3A3AA65AA66ggg�6Ag6&6Agga5a66A65AAAAAAAAA'ag4A6666
K
18-inch Dw RC P'S 1 5 = 0. 7%
�ix as /q., 5c r5 , D = I, OUR
Qoo41•33=1y,3AI D=/•4t3P,
2
RRENT DATE: 03-01-1994 FILE DATE: 01-26-1994
RRENT TIME: 08:40:11 FILE NAME: WTSF-1
6t366666siA6a6a556a666666AAgt33Asis36ggA6✓3r36Asisi35535g✓3gg6✓36>s66636aa6gggrrigg6gg66g8Arif
PERFORMANCE CURVE FOR CULVERT # 1 3 ( 1.5 BY 1.5 ) RCP
-DIS- HEAD- INLET OUTLET
CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER
FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH
(cfs) (ft) (ft) `(ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft)
gs33A666aa33533aaa3A3a65B6SSaAA63AAA5666As33aaa36Ag666S6683S66666666gg66666gaa36f36
0 5000.30 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.00
2 5000.68 0.38 0.38 1-S2n 0.27 0.30 2.98 0.27 0.89 0.35
4 5000.87 0.57 0.57 1-S2n 0.39 0.43 3.64 0.39 1.11 0.51
'6 5001.02 0.73 0.73 1-S2n 0.48 0.53 4.09 0.48 1.25 0.64
8 5601.16 0.86 0.86 1-S2n 0.56 0.62 4.38 0.56 1.36 0.74
10 5001.28 0.98 0.98 1-S2n 0.64 0.69 4.59 0.65 1.45 0.83
12 5001.39 1.09 1.09 1-S2n 0.71 0.76 4.87 0.71 1.52 0.91
14 5001.49 1.19 1.19 1-S2n 0.78 0.83 4.87 0.71 1.59 0.99
15 5001.52 1.22 1.22 1-S2n 0.79 0.84 5.10 0.79 1.60 1.00
18 5001.68 1.38 1.38 1-S2n 0.91 0.94 5.35 0.91 1.70 1.12
r 20 5001.78 1.48 1.48 1-S2n 0.98 1.00 5.47 0.98 1.75 1.18
El. inlet face invert 5000.30 ft El. outlet invert 5000.16 ft
El. inlet throat invert 0.00 ft El. inlet crest 0.00 ft
�a5&aaagaaa6aaa56ag6666g3aaaaaaa56As3A6&a5aaaa36AAAA{sAA6aaaa3Asi66AAsi&Ais3AgAa
rr*:r SITE DATA rrrrr CULVERT INVERT *:rrrrrrrrrrrr
INLET STATION (FT) 0.00
INLET ELEVATION (FT) 5000.30
OUTLET STATION (FT) 20.00
OUTLET ELEVATION (FT) 5000.16
NUMBER OF BARRELS 3
SLOPE (V-FT/H-FT) 0.0070
' CULVERT LENGTH ALONG SLOPE (FT) 20.00
**•r CULVERT DATA SUMMARYr"*r**rfrrr*rrrrlrf*r:r!
BARREL SHAPE CIRCULAR
BARREL DIAMETER 1.50 FT -
BARREL MATERIAL CONCRETE
BARREL MANNING'S N 0.013
INLET TYPE CONVENTIONAL
INLET EDGE AND WALL GROOVED END PROJECTION
INLET DEPRESSION NONE
F
// I
BOTTOM WIDTH (FT)
5.00
SIDE SLOPE H/V (X:1)
4.0
CHANNEL
SLOPE V/H
(FT/FT)
0.007
MANNING'S N (.01-0.1)
0.060
CHANNEL
INVERT ELEVATION
(FT)
5000.16
CULVERT
N0.1 OUTLET
INVERT
ELEVATION 5000.16 FT
CURVE
FOR DOWNSTREAM
CHANNEL
UNIFORM
FLOW RATING
FLOW
W.S.E.
FROUDE
DEPTH
VEL.
SHEAR
(CIS)
(FT)
NUMBER
(FT)
(FPS)
(PSI)
0.00
5000.16
0.000
0.00
0.00
0.00
2.00
4.00
5000.51
5000.67
0.267
0.273
0.35
0.51
0.89
1.11
0.15
0.22
6.00
5000.80
0.276
0.64
1.25
0.28
8.00
5000.90
0.278
0.74
1.36
0.32
10.00
5000.99
0.280
0.83
1.45
0.36
12.00
5001.07
0.281
0.91
1.52
0.40
14.00
5001.15
0.282
0.99
1.59
0.43
14.50
5001.16
0.282
1.00
1.60
0.44
18.00
5001.28
0.283
1.12
1.70
0.49
20.00
5001.34
0.284
1.18
1.75
0.51
I
RRENT DATE: 03-01-1994
RRENT TIME: 08:40:11
3
FILE DATE: 01-26-1994
FILE NAME: WTSF-1
TAILWATER 6g34666g646g6g4g4ggA3g66ga
***"* REGULAR CHANNEL CROSS SECTION
�gAA6AaAAAAa56a3aaAAAa3a6aaa3Ag4AaA6aAa&6&Ag3aa3el♦6AAAAaagAgAg3�3363&g6&AgAAa&A&
$$$aaA$A$$g5a5aaAAAA3aaaa ga6g6gAg55aaa3653ggA&6AAgA
643�Asa6AaagaaaaaaaAA33aaaaaaAaA3aaeaaA6g4ai&Aaa55AgAAA3ABAAbA&ga536aA46g4B6riariAA
'
CREST LENGTH (FT) 20.00
OVERTOPPING CREST ELEVATION (IT) 5002.80 _
ROADWAY -OVERTOPPING DATA
WEIR COEFFICIENT 3.00
EMBANKMENT TOP WIDTH (FT) 10.00
Gl
APPENDIX G
RIPRAP SIZING CALCULATIONS
Ltd,lone & Anderson. Inc.
,nelffal l 51110/e 1 C ,� D I 3-1-1q i4l I enTie'a
EATURE I
3 CHECKED BY DATE 1 SHEET OF
i2
o p -Pr i'Cbor IGl—� /-1 M 4 6' J
041 e4 03 (3o" � RCP fo 5pooereek)
l ram 5DD6 Mcnval R e 64
e�-Fro r"uDSMrr(App. D)
V 5o,ro
Class r1prey 15 ieyulreJ.
�en�fl, = 10 feed.
Ov}le� #�{ (51�ewalkC�l✓erg }oP6jor5rxk)
Q1co = I�I�Scfs
5�ekiAc lre;4 Open area = (4f+)(0.5 R
# : "'se &w = a.4 BPS
5 = 0.a5 (i; 1 51Jc5lope)
17
S a, o-fsb - 69A (" a �, "' r, Pra p 15 r'e5 vi (eJ
(55-1) (Q,S-1) 1- = 10F4. drrl-o 5 wale boffin
0oflef t, 5 (Pike irarl euldee+ es'oylr> - 3- 10"ORCPI-b)
0100= I��SeiS-a�Fle+vel«l{y�iomNY e�}rwlyses t5eeApp,F)
V Sa,1-7 LIL--n—
5 I '� - I- 1 e6 6 r1prey i5 required
U,
) L= 10 4 upfream and dowmyl rfGr,l .
&kW 5,jaic &4Cmf(erlce w4h M4jor5oale)
Qwo = o�ol• i c (5
V 5p1' (I,s s) ,col •17
�: 0.(p 1 No ruck✓e9vrred redPrf�2 (eSS, JSe CI4ni b
( ),vv rock 7 uIS D15 gcA"er1ee qS a piec4ohonGr f
4WA13W.
4a/3
Table 8-1 lists several gradations of riprap. The minimum average size designation for loose riprap
shall be 12 inches. Smaller sizes of riprap shall be either buried on slopes which can be easily
maintained (4 to 1 minimum side slopes) or grouted if slopes are steeper. Grouted riprap should meet
all the requirements for regular riprap except that the smallest rock fraction (smaller than the 10 per-
cent size) should be eliminated from the gradation. A reduction of riprap size by one size designation
(from 18 inches to 12 inches or from 24 inches to 18 inches) is permitted for grouted riprap.
Table 8-1
CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP
% of Total Weight
Smallerthan the Stone Size dsot
Riprap Designation Given Size (in pounds) Cinches)
70-100 85
Class 6 tt 50-70 35
35-50 10 6
2-10 <1
70-100 440
L Class 12 50-70 275
35-50 85 12
2-10 3
100 1275
Class 18 50-70 655
35-50 275 18
2-10 10
100 3500
' Class 24 50-70 1700
35-50 655 24
2-10 35
t dso = Mean Panicle Size. At least 50 percent of the mass shall be stones equal to or larger than this dimension.
4 tt Bury on 4 to 1 side slopes or grout rock if slopes are steeper.
Table 8-2 summarizes riprap requirements for a stable channel lining based on the following
relationship:
VS0.,7
�
--� = 5.8 � (dso) (SS 1)
in which,' V = Mean channel velocity in feet per second
S = Longitudinal channel slope in feet per foot
' S, = Specific gravity of rock (minimum Sg= 2.50)
d50 = Rock size in feet for which 50 percent of the riprap by weight is smaller.
The rock sizing requirements in Table 8-2 are based on the rock having a specific gravity of 2.5 or
more. Also, the rock size does not need to be increased for steeper channel side slopes, provided the
side slopes are no steeper than 2h:ly. Rock lined side slopes steeper than 2h:1v are not
recommended.
Table 8-2
RIPRAP REQUIREMENTS FOR CHANNEL LININGS tt
VSo. n/(S,-1)o.ae t Rock Type tt
0 to 1.4 No Riprap Required
1.5 to 4.0 Class 6 Riprap
4.1 to 5.8 Class 12 Riprap
5.9 to 7.1 Class 18 Riprap
_ 7.2 to 8.2 Class 24 Riprap
t Use S, = 2.5 unless the source of rock and its densities are known at the time of design.
tt Table valid only for Froude number of 0.8 or less and side slopes no steeper than 2h:ty.
' MAY 1984 8-2 / DESIGN CRITERIA
6313
It
I
i
J
I
1
The thickness of the riprap layer should be at least 1.75 times dso (at least 2.0 times dso in sandy soils)
and should extend up the side slopes at least one foot above the design water surface. At the upstream
and downstream termination of a riprap lining, the thickness should be increased 50 percent for at least
3 feet to prevent undercutting. Where only the channel sides are to be lined, the riprap blanket should
extend at least three feet below the existing channel bed and the thickness of the riprap layer
underneath the channel bed increased to at least three times dso to prevent under cutting.
Riprap should be placed on either filter material (gravel bedding), a plastic filter cloth, or a combination
of both to protect channel embankment materials from washing out through the riprap. Generalized
filter material specifications are listed in Tables 8-3 and 8-4. The Type I filter in Table 8-3 is designed to
be the lower layer in a two layer filter for protecting fine grained soils and has a gradation identical to
Colorado Division of Highways concrete sand specification AASHTO M 6 (Section 703.01). The Type
11 filter, the upper layer in a two layer filter, is equivalent to Colorado Division of Highways Class A filter
material (Section 703.09) except that it permits a slightly larger maximum rock fraction.
For fine grained soils either a two layer filter (Type I topped by Type 11), or a single 12-inch layer of Type
II filter is required. For coarse sand and gravel (50% or more by weight retained on the #40 sieve), only
the Type II filter is required. Filter cloth is not a complete substitute for filter material. Recommenda-
tions for its use are made in the Urban Storm Drainage Criterial Manual.
Table 8-3
GRADATION FOR FILTER MATERIAL
% by Weight passing Square Mesh Sieves
Typel Typell
(CDOH concrete sand specification (CDOH Class A,
Sieve Size (AASHTO M6) Section 703.01) Section 703.09)
3"
...
90-100
1-1/2"
...
3/4"
...
20-90
3/8"
100
...
#4
95-100
0-20
# 16
45-80
...
#50
10-30
•••
#100
2-10
•••
#200
0-2
0-3
Table 8-4
THICKNESS REQUIREMENTS FOR FILTER MATERIAL
Minimum Thickness (Inches)
Fine Grained Soils t Course Grained Soils tt
Riprap Designation Type I Type II Type II
Gabions, slope mattresses,
Class 6 and Class 12 riprap................................... 4 4 6
Class 18 and Class 24 riprap.................................
t May substitute one 12 inch layer of Type II bedding.
tt Fifty percent or more by weight retained on the #40 sieve.
' MAY 19114 8-3 DESIGN CRITERIA
I
I
APPENDIX H
FLOODPLAIN DOCUMENTATION
1
1
[1
1
1
UIUU°UU
] Q 2 > U
~ Q NN 7
' D
7
1
1
' PR PE R T
' No 2
Coun
' BW
Mercer �?o�
TUART
5
nn 9Z
CA _
Ce
10
Cc eek
CIF Pe
' CF
A-
oc
CIO
NO
CA
MEN
� Bo b .
T 2
�O RIVER
eG V) MEADOWS
V1 ROAD
� �V
sherk rod LaterQ/
03
e tT SPRNG
� i eC T o COUIRT
5pn^� Creek Flood E"Ir6r f �f oalr�ay I`�iP
I iV7!5 Sand W
E;'k4wt Ne: ToIy I4 079
u 11-7
EDWAROS
O
IPRINI
PARK
DR
q`
'qS
IL-
am- I
W17,11
mr��l
4191/7
Y�. IS116 Wll- 1�-,`
J 715-
q
a WIN
Nr
x
C6
O P.26.
Q C9
5),
W z.
cl -
ko
41�
Cv
try
X d
Mml
CV-1IN
41:1.4
co
+80'�
U) X-
ILI
ljqq gev6M F(5 r(oc8p6ri $Ba5e rtooJ VeA"
., 5014.9
%
s , , �`� -` Yt , • W ,+ i /`.[ ,t- IZ90 t . ,r-X 50 7.0 X + 5010.3 b009.6
mm
�� �.P f.•v ��r�; �_ ,�� -c. '� � a � ter ,y_ _ .�- � 4�''L•� fi r � _ [
CIU
��;.�.i,� •� i i y �••; z, t -� �j k.,. e r •_~ i��.� D1 '„C � j r- � '.a
l r •A t J
5 0.4 ;c j►' '.�4. � X . " 2.TF �' ,. .
' p
R.
'- 7fh trs . 1Y
_ � ` ..J• � � 5.4 "' � .._ � �•�^-.. �: y'♦y'at
Y �t )_ Y. ^��`' w � OVC ;.0 '•�.s Vim A AI, •5003r0• .( •\.1. :Y �M1�•�"" � ' •� .•[ _ �FA VA' � _y���c�M.� -r _
' ...., _ 'tl � • ti `.5 p A}�, .+. L�Q �y"�� ` ¢ ` _ � � , 1 .1�}• r ' .Y�C�. � ,'���Y�y;�i ✓. YJ �f:7 � ,r�.,�...�•. �R�f�IP+�.... �.'�_ Il•y •.F:
1 � � � � �• .jy� y - _' , t Jam` •� ..
:s�ts s
XX �'S ; I\ t . 5002.E
_ 1082
5005.T
dam'[' ' �1T'Y. �1' 1. - i-'-��.•�?.�- [: �:9r r •�-.♦ --r' T'•'9...
•5 l5. .w � a � .. -,. � •� . % ,t.. ..,-. -... -' r"�'�' ' �_- i .m:.�F n>s•!e�*•yer� 0:1
' _ `'. � - �• - -' - ' �(. �' � . _ .�' �r: Z �- �' ice' : � •� '�r`'-� 1. • � �>�._... ! •� � f��rY - v��•
j + , •�.' c� 'fix �' .. /:{ F O3 =r sv
500• l - .. F..-�...dM �rr:.3 •Ai.�i''3, �' [ i•>�i�'; ;7�i ..r'iw �. J�--P -
_ } i 3
f r ay9e _
Too. 4998.7
.:._
50x495�6
r. X i i ,., oil -i .0
i
�501T.4 •+ >-,�n�. _ .a'„ -ten . 1 Q%i r-' 4.
/ 5'@0;78.4 :..'.---.._. _ ....: ,� 'fir."•- �
o`v v kip c, _ X50
X�3 ! ` i•.;• Y�yyP�'y�.` b' t< y`♦7.X✓v±i.:.` ••:.1 Y'.`lv- 1i.gb... .y�. �.....�•rr♦;!✓^ r: -T').'Sf•. i"rr. i-
y ' t _'' 1T. .D ib-.•r.,'.• 4 -�. N. [-``__ -. .• _ •y>
J " P ,JJ' S0/LO "-�,�.r-��YTra�a u y�'7`�'._ �''f9:. '4 R .., J�.f�,�t- L`.r'•> 'k r.. X S�s}� .n. Y,
OR
_ .. •j '., .>�• -1.- K 'r 1 ���r�♦ � 'v �t � -•.rD )`""r..t.� x *' 1 .�•[J :t [ i f i w �Y � � -. ���.6, e . � J�
�j � %JC"5009. '� 4, �s , x ' •' � «T-r�-T�}' +.` �V j > ` �•T• i.i11� L•-�-r�...f•L. �yN �y - >y -�• .,•1� � I. '�,
[ r^,`: p2p.8 ,i>' . �,• T.'" r i.. _�• -_.+•�--w....._ 2 .f- ` r.
.4 500
t 4 Y
- �" y � `Y - . Ff � .y T.�? :/yti ♦ _. -mot ` ..t J}�, >." s•'._ .
a. /1 i� + r i P , ' h[ r: �j ' p�'sC�3y .. 1 . l y 4'�`y, - 'F A l� •� J
5 ,. _ -' •i' yq � S/�" r. `ra".�.'rt+>t,,. ..•J •� y �,�{i 'a.�" 'g/idl�Q . . � '`�i
' r rf •. '-y � '' .: y, � `,. •�,, '!" •� - ! �k�a 3j,,rs '_`-.�". •-' �• 30ov`.,� �` � I
R- k r f •~'[ �. . ��>Y�i•' ` J.• �a- is �t''�or• �' ~� .:::t. _':..i 7..,. _ j} 'c''p'� y". ,�t� ������' -� - �` ~� 'r"'•r}��`. �'Y �•. Si. "1 -;��it �k t' '�.
..�, r>�'� 'cl.(*t� y. _ •?�w ;..�" • �. i,.• ',l' Sar 2.5� �f� � ' .. t_. � � _•�•�.d+ FJ'r. R .• i
' �' �� �5()J%./ �G -� ._. ,4'JtiY�-t- ♦- ���r.Is�i+a�l���s♦i�.�i'G!Y!b'�^�li s 1' �• -�� >�i, ._7.x�.~>5'Y r. ... �.. -3 .. .".>. .- . �'� 6:. 'O J. •�.
11914 Rev6eJ F15 Fioalp6o 8om+
Floyd r(eVAO,115
No Text
H s/7
Y k' "i t t , 1 11 } " \t�'1 �'.J { J• 4x1.. r♦
.. lob:. t I a � \\ , ` � ' . _ � .n ._�'•• : •1'. ..r w _. x 1 '�'t•' .F i �� f T�� 1�'11 +I .I .} � �t �) r•'�I. ,' �;' j
PI r� �• n it xis{.. _ _. j 4'; J r -J� ,•+
�N x' 1 1 � Y Y j �'i� .YFT I I iTTl. )y, •1 �
1 J • .�� l . 1
1 �.:�� .��' I � f. ��, 'I'.k 4. � 1. i.. _. I 's'.'d •r f � ' y ,d,. p i : � -
1 '
�_ � CC +w.k `a�tR�'!�. '�ir�'. �• A�� osa� r� sJ?�.. -.M.� .�,A x � �.��YS�..�.'�T. �I ' (��i ��� .1 i �I � •'.1'If.��! � + t� .< ����, f
k -- .PI'. `[ -.d � •`F"�; ..%. �,�-•. •. ` - x, r �DM ytl i ' :. 'i ,:rj - , t'1
•) � t ni.\ . ,I. .' .�j `� ..�� ♦ �i?,, l4{Y;�`� -;�=t �E��''I1 r w ' i �,/ ',� �e ,� �`jP�% �..
i :•G 'r;••!1.�_.``
_ .y 1 1 d ' Via. ^L*'. ... k � •� I'I, �1 � '' i.`/ _..`.^ '.t �'..":! 0��.'� e r r �\` , -. �i_' f 1 t .1 � 1 ��y \. �. � �f l� a r
�� {iwy`a�y a.a � __;� •iTf' .- r � -.. c _ - __ '_ � . .�i. '' _. �- 1y �! ' +� I ,p:-• - i ` {a i
«»+i• �- �*+V•`."TrG57w r1 \ y, <�_ i5 _ �—� • g .- + 1 �:-. t . � t •� � � r• r .,
• •' _' 1 pa 1i +el =�•:� ♦ .. �z! � i I 11 p n I "r `` r
ITT 1 I i s .. _ " il`•a.
1 1114 y'- ITT ' •,'k'i y i1, k' wr �.� O a w 'y (r. `, Y?i • ♦ ' \ *. .D, < ,,t f i i!Ii.4` , t"f. _� '' ' `f <. .I
01. ��'1 � f l• I ,( ¢1 r,ran�,� I' b +�� _— \, _ I r a9. 1 +�I sex. `,. 'w I J �l r t�NN1_�% VM is r � 5 i' r1� ! 1.'
wi
- •i-_ ,. s t , L . � � ... � 4 I 1 v I e• 6 L''e i ` ; ��:.. I +k n ' l w .� ,> N M�� r. • .��i
. t �
+ s
�"'�Y `• - • I t'+'c. �•.•�'~- 'r it'+� y: 'A ti T Y . ,:..' I tM, )� a. \} -r( A �t R', I'`.
_ �E
,-� �,:� ' a., Iti i + "S �4 '� . t f s-• �-- 'Rt1
y
k � \`�N •. � :w:SJ I -.YEAR .FLOOD f• a �3„su y�, } _ `. �,' fid r5 �+
•X, ! ^ 1 +; 1 +I r t t1 "1' .` tya1� .w f`x•. t /: r • ' !1 `! f. ir,+.. .cir ,�''`:
e • 1 ` I _ 1 1 '� `� \♦'.. ° . .r. T..-y '.h_.r: .. $ O� -4 ♦1 i? ' `r r` �� a ''
f.f<16'ri,'•�t'a•^ '.w } <Y-. �y' �a II• i ••W g, .J `.
IT
k f W r- ;..f y,M,:' (' / — ^ I y N`h&
HJe••� ' j �r 11 -... �r-st• i • . � � r•.Yct.. F,.� ; 4 I I. �� ` � j �.a. 1
f :2 ...: .:..�.•- r ,.r 1 t) i � .y�\j1 � < ,Ja-n I •.i'. y:i\i�. ' ;� _ � .ti�� r T ,r
... _'Y Ip ICi 1 rr IItEI r`i - e ::'1►+. _ �.,'�wr' ;} ,.
_Jr
'�I +? �{ ' iF 1A .�� - •l i�. m any. ����lll( _ x� • __ �.s_ sf.—x�e}.��y, r / •Yi 4,; Y.-Y j
{�. ♦�- zJ�,�y� \W�-w' + •.; s_ ,. 'S ° yll�Na•.a i' � I �' e.i � ..� � �s" s ,%4` 7 �J.. .+`a 1..
•,,��•p' - •...�.� w'•F� `4.,c___"oO�" .,1 F' I � 0.... s, it O nx wl � -
i t� I° WHITCOMB I j STREET" a,
Lo f n R wr y a
' s
' t
. N
ry .
WAY
w y 'ASO i0vr
00DPL
��,yy'j�•[['��jjyy''�:� p'i a , Lti 'fi - .. [ a: � _ � � � > 1 I _ � �. .� III 4 4 � + �. .. __ �•
' '-' � t t �Ff F '��'•-� , =J O _ • �� n�= � . I ps •, t\ x , `fit �. �a �.. }, }
• � :� �• t�# 1 �'�p. y1' ` Ir I I Y�-I rw� '�,y�'�f �' ,h �' I ao a � b/ � 3'� ,Y � JS I�i� � III;
w f.(A '. �ij.'.. r f F •/.A. t.. i \) 'Y'. �. C ' a< x. 'y �. �t + °O ' T •4.ZYa,�i.� � / � -��1, t. I',
it
.+` f •i t /S �+li ° `�' •IGi'� ) x i a . i!\ •r i
( ►� Ir
"f L'I Q�k� + �•t r�.. R �! _ r -,�J.a O - /' '-P . ♦,;
Yl ..r'. ,�.! '• ti '� '�'f'%.. °g "
i+ 5 i .' 1 -Z_ _� a i. +7 �•�? I i I '7f�1• .,t. �'. °°p $ .'y in
t �r .� 0 I � J 1 , J `•-' -�)J �
t - �� 4 � �,JO O•1'N '. 3' � V- __'Yt 11fEa T.by ° T /'o� � O
•h K
. I Q
i J.' I-iA� •I p° 1:♦) `� 1 v. 8 , tC q`� f _ ti �� i`^ R o •J' _
,
I • .ya � �� 1 � 4 _ _�. � r � J � k � �� ° .�..//i U' � I I � � a I � � k.. �'' :.ir �rR� O/ �'�
y
wq + ^ 1 W ' I $£ m I �I I • I $ Xr , y` rg
ih T I r n'Q`.,. W p g rN "
fPP i J1 _ It
Z I`.,. xal K► +<. '.t J MA' P IF .8 I' �. a .w 4 •�.
On iii
` °."
m )._• . q y � ') 1. a If' } 0 !, 100 200 . ^300 8
r •}�j i a � i`'' wt v'%t 'y_ ,( t. 1(•0 � ;� I' `��•� I: I I ,. _ .o " w •�, `\`� :$��t :e »l'�
1+ � 1�". 1 ; � .� P 4 � •i � r4 ' • i+� ^ ] \ I :a,. <�� I � , i• :' � $ r � •\ � ' `. o '� I
'' ,�(', �t � � ..�,I' I_ � � ^ ' w ••1(I' .tip a I + O 4 � ° I > n.• ,• J� � ,I t,r .
ENGINEERING NO REvrs+oNs BY DATE PREPARED UNDER THE SUPERVISION Or MNS E`+EN' ' ?EE FLOODPLAIN DELINEATION
PROFESSIONALS, INC. _ _._ DEsroymOJN CPEEKEo s1.1( SCALE 1"•200' CITY OF FORT COLLINS STA.185+00 TO STA.2O4+80 3T
f ron0 Cori .��ICo 0 oeo 80sas -- - - n :6SP .r.AtE MAR. 1968 ORIO.1"•100'
(9/7
c 4 r-' 9 � �N 91 90 ') ;� �i n�..: ♦ �H .. � : 'l•-•� � �-+w' I ,. 111 � - -. a.
.. y�' `/�., .I� �, ` ;�.+yx �- i`k, r. 's y::, -�,.�! d ,�.'ii"�,;•' �:' � `�`'`, r'�•, -r , •� c __ bc� ti..`� mil '' �; �P _ --' �. _ `��.�..,, _.. ,w
'N .x1d441 iaaW .,, �:" .. • i, -; y w' Vie' .ice" a « - ,' :. _ >t soar. M aaew.• aanu.� _ 'f..'•' a r""�..•.a ._.. ,._ _.
5�
• r _ y
Ind
'P II id -' c � aeaev3 i -
1JYfIQa,�.
gg L,
d
Q 41„ I ,hall«I �i,I V I S::iI:Y J* 'R1tliiE � Lu. '� to II 1 � iM.1' ua {•—� __ '` .. �
.e rI�V 'ly. I �� i Q,�11H ',i� ,::� 41* �.i1�, ' Sf.4 r^�A:,. x:. r.. � .1 ` � 1.:+'�I: '+ �, �Y-up• a:'.. i. lu tlM' I `.: .. • •, : J" Iax'�..:: 1'r A'I' ^•e '�
i �Ii'. L, :. r :,:•i. r,, o IS Ili ryn.„x iYF ,:1 ,..., ''ard Y �'I, :/1 L4y� ^':�' d::'::.:'''",�''`. ?ru" ::„ �' __ �::f f�.... , .. I
I: 1 el
::�, � I 1 44I b I «J', il. x7:::, 11Y: Ivi-.i. .. ♦ : '' .:.,ww:n'liri _,II •' ', x I � I IOCW Gl •` ,�.r..l,.:.,_.,,e._" -. x , y.� �I ' u-.. 83 .ru. .,:rv^'_:
' w �� „ i�r I,. -:. 9'� ,LJf t a: ':' ,.., ' h `. llln :.: Jr I :'M, � p III_ V.'CIVA.., ,�il, •; �y .' 4. a `i :1:
'1 e {I ,:�I_ a. I, 1 :♦ J , :,✓"1 • all - �. l4 roll
,.
F L " : I ll x .,. , r .m:+. rY �:. aiRl- _
� Y. '�' �'� x \ ': i a A' :'•I � JI'
y� "�u AOr6a IP-II ', '9i'-. :r. :e �J•r• -:.. yl'�F I'., ,6~`' r.
6.11.. '.I;.. , �r , dl�i., •' 1' �'i: J.,, r. x ♦ ''a .. i' k' ., ali. II^IIII:,. ': �.. w.. •', �l/'^-". �°.. Cy,,.... ,� n.. ._#""�•:�1",f f. :, li- _ I:iY�,� I+' y::r _
9 p ar , L ::. i d (IT
B R*Ma+' -. jam. s1a1 k
Jhq'i:. �. 'S Cana ' ',' :i ..hi +i 8%.. .� I WMA a:rv� 50 41
":x1Y:. i.'. �"^". !:''4P M.a „I Ij: 0. „I l I' ."\ f. +a� [° ni -a'J f::\ Y. 'hh':. �•Y '
r W :5 p • 1ItF �:#'� "'. '1, y,yWf-, .. :%,.. xl ,('N ':'. I IF. r. s.r^s iiw r�\ rTT {': ;'
r w A N•. Ilx : d , �. '._:.:.w.-w:,w :�. � ::.h• I N•; 1 1 !';. i,. '. x +L, AI.. K 1 �c s • � a � �� ..rc�.,. � .oaa. fi ur i I k • �' ; } .
" I' "'41 a+..l... 91; •`•! ":..:._ 1 "'N L. "e ::Yc+ac '� i..k t �'� :.pt. s: �� �.�
-sonn�rN�
.. ,� � ,. .:,r rfi. I,i � E-I�"I:IW.'R „+..w.'k-i .a r <rl I ._ : _. ,-� r ••' �'i:':'a� I' 11 I f` „ _:,e t � _ ..,�ry4::��F'.�._3_M.`1 ::.�..{._,�/ : •r �_ t"F�--�,-� !
, " .'HC:. �'M =:I r J�.i: .._. i:.i.,,..f ,:'l ,.� ."I I 1 ��.w.: _ A��. _ •S+Xr 1 -�y: _ „'y"'.._.,:
:: �:`:, I Pl,�� , ;....:._. x �,.auaaa Arlr,l. It l.% / __ �•'� .I �'��'. =
_.. � .d ':; � .I r::::Q. : � ,:. 1:8!,": .:. .. ..: _..�v-_L � -: r. 4: �{ 1 ,-sou; •::,~ +I:. vxfi' _ _"t• ._n5>.�.'•L ,IiL"'h __':x
n r, :u. I?. :� .: L, � r ....:i �ii1iL eLNie I...-..:�.. -"^-' -_� ^�. I� auy, v,� .. r } �, L'•p ���.r:: ,.. a. ['l,. I �i t
...: ,: xx ::; .,_ i, iY,!,. 4xx ,,�.v.. I ..::� v2:,-•-:.r ..... _. -..._ -_ .:j;r..: 1)it ... Iki: � /� 'WM �
i
r Na raJ1 e.tl 1-:eilir ': yr,! #, ex .•.
F ,-
w FL'0'a'OWl -94ME vi(. ti a a �« , .....
J «T �
45 FL00DPLAfN ••: ..N.'�'::`'iY •r '. :4 '� ....,... •... R' dAkl�'yy ' IL _. 1, l !..
WAC RG DR/VE ! .
i r
LEN9f
:✓ .�- �: .-�„-,-•��� r c•v�`a_•Y t r •, >+,, ..n r "--' e .c.n _ C..t. j . v':%+► w a a .
,- . I T . y saaa: .- �� • ' -'' <s. . '.,-' .- - ♦ =I♦ yeti--�...`I ;Haws u'. { ,_.•.•._._ t s:ror " 5':� . w»w.a: x 4•' . . . 4 a
.�
_.-
" # -, ' �> �_..-. �. - xrs.1. y r'♦ •y °-.aP=•a e. - .,yxlvez !!__„ �.� f �—xo�
' C r r a � � -:, _ - '.. - = f d �',"•—: _ • • ` _ .. -, k«=s. "� __ � _ ,:Yaaa..s `- - - -- _ _ fi;
fir. ,
$ ♦ 7'A75 �LoA ^✓ _. i ` 1 ..?:.... / �,,:.. =x _ . .J.r= d
� �LL
ff� r �'�7[ _-tea' . �,.. � x•4 ~^` -`. # a rr r. �.-� + •fir -' Y � _ wFo -
r �� j °fJ.: Ji SS::� •• �' -•• a� ; x _ 1� FF / _. y'%S.t�r
_ - - _-
�4 �-.. � .. I'•� i/ '. : ar f _;. ,: � ..p: _ CT`,' I a. � �\ •1. � ', x�: L s -.. _S RAJ_ Mil c i _ � r �t f" --
`�'.- �' �w' as -.'M• _ _''rf iag1� � 1 I
1
\�' j " � .r:....rn:L *: r s,'"
`h _ + 7 • spec =r .'' - 'soata a n . ♦ i 1i k ,LpEYYR.` 0 30PLA1N
low
,
;;� 2 .:.` :•�+'a - �.� aotrtR !^ir.l. oe y...� 6C._42], .:°,_.._. - � '�'.:.. •,' .!A
s. .. • x. •r v-xw:: _. } '"^ k3Qa1:s J r .: w K•+ {( ;..:. 4
} e �!� a
01
IiT
��II.{��',. ,'' .' yam' i•�` 'a I J:.a.AAO �; \. fe996�_ .
.x � � L.,,�� :rn _ e �.« ,P :._` • V••J, � .- kx .�`. � a� 9a':!V s art,. �,, x,. .:,.x �ih x - - - ���
�-^ -
r
{: ; _. �� a :: ' .�: a l 'y r'Ika'{,VJh�I��^ b � a'Cwa .^._.�..\ 'I ♦ >� � .a:_ '� :it:::
� ,:; rw a 1 1la �/� :: _..., 11 d." :: 'e:,l ,_ _. ..k ' r aa"��� 'i'', n w , 60Q2 . .� 1 ♦.. „r.i ' �, - h; �::- .
1
•,a. ,:p1x1 .1. '':.j..II
:.r krrPx
:tM , fl
i
rv5 _ ./II'^a.r'.x�' '• .�� .:.. Iy6Pi� vEklll ..° .I :I I �I ,: ICI b II, I. ::n�l r °' Ie '� ° ur w.;:
Ift
.. , _.:.-•�, -
fl
.. IF 1M
° y'Ib'r,-
R
�'QO\ _,*w ;� � ri -.:: .. --. I� :•I I I{ �,I qiy� Ii rYln a I. _ y,
. +• n•. .ill iF ,� -.. wM"f: - i, .. : r°. I I I "_ r :
�- 6 ..�.:•raa P ..' na II. IYL. u,.: 4 I!II I I I I I��i :i. r'.r x l r ::�, �„•'_'htl Hal^+,: ,W�•
j.x"liF:ili I„a ,ae
Ln}1E-r•Ir
�� tl ;M y:. _ '� ... : yaa.. �, ^rar p,,i4� % ; 1" y' ` , "F A I: i. �� b_. �+"I^. IN'' WI :Qn•I -
ara�ar.aR
HELL ....-•�"i- ,,. I i\.� . F � , 1 - w'u ; �:'�ik�
x :.y. _ , j,',a`I I,, .� •�. '-... .. _r �a ,'^ro. .1 ,aceF.a ,e'cnar � c`c' € ��oars'a�"�soo.s r '" +�" 'IIII '"".r'F
a
a' J ,J 4e i^ 'I 6 x�i, *s. xdhlWlL r
1� - na:
I r ,,, � w:.:. �y�lyjq'j�'4 Nt.l.� :'1. ':(. _. � t-1 !u •:, �:. �Iw ��_ rPi' ILL 4: i �.;r I:{ � ':11! �;N.,.:� w:lry �i
{il .
' l -_.. '' �� n. . � � ... x i•:' �� + ::, I�'I}A :
Ry
' Y II ':I lGpai :iti
;•'dt ry C. a Ad-. ^ : ,.,,, f "�+w ��i+'*'x�',,. w;•� WRN�l��A19Y IIhI'r '.:[: I- a: '..; I „K� :�µ ir: :,'^h ,,I::. s 'll A`�ry I is. :�IIII"!
'.a 4
•,. I h ,'_ 1"'.,. _•e ,:..•c.__ �...-.",.:,ry ,,, ' <` :t.•; uilx; I 14..M1 - ��: 'li 1 p��q:::',
. I
q A,
I: � "..' II, i . ^"- _...._.___ .-. Boas_ �/•7. "I - -. Y, I 1�L 1:'. -I i 1 ,:m. I. A'
L
U
i
wln .: -, '- �'af , a� . ... is xai ......,. ___-•-•-_...-- smaa,.. . i ,' - u .i.!. � .x•' 1 rat_ _ :- - .., '. ...� • .. n If , ' : � I �.. � I° I W
'„�' ela:'.`. :: a Y.Y .. _ � 1 ,^.- .:..: r,. } :e..,., �..• •:J , ••. l :!Ill. r ., I:i 1'lll .:'� i:�. r r{ L:: i'i :.: 1'��I I ,i r'i''x, 'll' aLu " ,'' y.''�
y ...IM •41;i I. 'I __.., -. . �. ^, d � II'i, '�.•: ::: ,H � �... - _. , :i:.J. :All{' q:. 'ir Ikl ,:::r°A� rn�!y(�1 ��xhrr'"I, ', .''
T x.,•F7 1..:` :: 'i' iltx '9fliF a "'x.
y f"' � 1 _
• •i••I'«IG_i11,.:," `.. nn.ym.l. l.. L. __...--•��m.mc::r :c-yvAA -i y. ascM.�,. ,:�' fir{,' / tlON,.i x.l;;�, I, .. II II•. I_ ii r :!41A qll 1:�+.1' _i ,:, r_yL y F
i
ENGINEERING NO. R IONS RT DATE mEINAm ONOER INE SVPERITISION Of MINIS CLIENT: TITLE
FOPFLOODPLAIN DELINEATION PL Art NO/37
of
PROFESSIONALS. INC. CITY OF FORT COLLINS
aoo0 v....x:fxN o.+.. 0E c K cNEcafO sLK scaLEl••2o0• STA.200+00 TO STA.227+48 8
2 CoII Col ro" 80sas ORAmim CSP oLTE MARCH.1988 0RIG. I••100°
f7
w
z
0 W
H
F O
.2 m
E. FC
V)
W
U
z w
0 a
� H a
N E w
o U z
a W O
U V1 U
`�-alCi--cs"�� C�nnSDi-r-r�„�� �I..ffTN �"Cor�r•tc—�.A�C�
5Y e.lwlc �TL�=AIL IAI T4C \llel Qj"
r
r
r
r
r
r
r
m
N
m
N
N
m
N
m
r1
a
m
rl
N
N
m
r
N
r
m
m
n
n m
m
m
m
v
m
m
m
v
m
m
m
v
m
m
m
v
m
m
m
v
m
m
m
v
m
m
m
v
m
m
m
v
m
m
m
v
m
ON
m
v
m
m
m
V
0
o
N
v
0
0
N
r
0
0
N
r
0
0
N
m
0
0
N
m
0
0
N
O
0
N
N
0
N
n
0
N
0
N
0
N
0
N
0
N
0
N
0
N
0
N
0
N
0 0
N N
m �p w %D 10 w r m N N O lD N m m rl m v m O m m N N v N w N N .D
v v d v v v v v v rt m N �0 N rl m N m v �D m N N m 0 r m m m r
r r r r r r r r r m Co m .-+ r♦ r4 N n d d d v N In
m m m m m m m m m m m 0 0 0 O 0 0 0 H H H H r . H .-1 . r H H
m m m rn m m ON m m m m o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o 0
v v v v v v v v v v v m N N N N N N N N N 1N N N N N N N N N
v v v v v d v N O m v m v m N N m m H N v N N h m v m v d m
nm Nm nm mm mm mm mm Nm O .0 m m h m O m m N .D w O m m r N Nn. Ov. mv. m
N.N.NN. IN N VN O N. r. O. O. O. N. O O
m m m OO OO O O 0r HH H r. d.
.
m m m m m m m m m m m O O O O O O O O O O O O O O O O O O O
v v v v v v v v v v v N N N N N N N N N N N N N N N N N N N
. O m r N N r m N N r v m n N
rt M N rl N N m m h N m H O N d N O m
rt 9 t4 n n 9 n v N r r O N N N N .0 �0 m m O O O H N N N M v v
m rn m m m m m m m m m o 0 0 0 0 0 0 0 0 14 .-, H r H H r H H H
m m m m m m m m m m m O O O O O O O O O O O O O O O O O O O
v d v v v v v v v v v N N N N N N N N N N N N N N N N N N N
N N N w ID w v O m m O N m r N m m 0 m N N N N r r m O v w N
d v d v v v r m v r v w N b m m N 0 m .D H v m m rt v m v H N
N d N .o r m .+ d v v vi .D m m m m m o .+ ra ra ry m m
m m m m m ON m m m m m m o 0 0 o O o 0 0 0 0 0 H r � H
m m m m m m m m m m m m O O 0 0 O O O O O O O O O O O O O O
v v v v v v v v v v v v N N N N N N N N N N N N N N N N N N
o 0 m m N N r r r N N N v O v N m n N O H v v m N N �D O m D
ID m v m H H N N rl h m m
r r r r r m N rl N .D 0 m O N v v v N r r r m m m O O O H N N
m m m m m m m m m m m m o 0 0 0 0 0 0 0 o O o o H r H H H
m m m m m m m m m ON m m O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v v v v v v v v v v v v N N N N N N N N N N N Ill N N N N N N
N m O O O v H m r r N N H H O O m N m N r v v N � m N r N m
m H N N r•1 N m N d v v r m H H H H N v v v r r m m m m m O 0
r m m m m m m m m m m m m O O o 0 0 0 0 0 0 0 o O o 0 0 H H
m m m m m m m m m m m m m O o 0 0 o O o 0 0 0 0 0 0 0 0 0 0
v v v v v v v v v v v v v N N N N N N N N N N N N N N N N N
7
1 1
u
U
1
A �
6 t3
N N
N
?
A
.c a
u v
V o
0
N M
O A
2 a
P. In
rt O N m v r m r h r N O N t'1 N m N O m m r m O O H n m m N N
v r + + . . . .
+ + + + + + + + + + + + + + + + + + + + + + + +
N O H H N m m m m N .D r r m O �.D r m m m m O H N mm
m m m 0 H m O H r H N H N N N
H H H H N N N N N N N N N N N N N N N N N N N N N N
0
N O O N O O O O O O O O O O O N O O O m O O O O N O N O N
0
r• W m m O r-I N m V U1 N r m m O O H N M m v Ln W r r m m m ON 0
r r r r m m m m m m m m m m m m m m m m m m m m m m Cho m H
� 7/7
29
APPENDIX I
EROSION CONTROL PLAN CALCULATIONS
RAINFALL
------------------------------------
PERFORMANCE STANDARD EVALUATION
PROJECT: WMAM411 Si le AI" I f
^9 `/
---------------
--- --------
STANDARD FORM A
COMPLETED BY: el
------------ ------------
DATE' 3-1-1114 i
I
DEVELOPEDIEROOIBILITYI
-----i______-____a__________
Asb
Lsb
I
I Ssb I Lb I Sb I PS
SUBBASIN
I ZONE I
(ac) I
(ft)
I (")
I(feet)
I ( )
I ( )
---------
I ---- - ----- - I
------- I
-------
Zs, Ta
i i
a.9
530
1.5
i
i
i-------
i3,T�
i I�-S
�
►38o i
0.9
�
Tj
3.8 I
88o I
b.7
I
I I
1 I, T
11.5 1 'W6
1. o 1 78.3
------------------------------------------
DI/SF-A:1939
I I
I
I C I
1 I
CiC�C CC 1
I
I Ll I
CO w Cq I
1 I
I G 1
1
G�C1 C. C)CCCCCO I
1 I
I
I C I
a C c c to Ln Ln Ln Ln to I
'
1 c I
g q q q q q q q q d 1
I I
I C I
I
qG, c, C�C1 �G, G,C�CGICOC 1
I
1 I
I C I
CccccaCccccaLnLnLn 1
I M l
g d q q q q q q q q q q q p q 1
1 I
I C I
1
hdd qQL C1 Q1 L1 (;;1 Cl Cl C\MCIT LOCI G,MC1 1
I C I
c c c c c c c c c c a C c c C c c c c c I
i N I
g q q q q q d q q q C) g q q q q q q q q I
I 1
I C I
r
OM cLn LD qd I
'
I C I
I .-•L I
.. . . . . .hhhnhnndggq
I
C C C C C C C C C C C C C C C C C C C C C C C C C a l
g q q q q CO CO q q q q CO q CO CO q q CO CO CO CO q q q q q 1
1 I
1 C I
I
g N M Ct!'1U�Ln-lc IG Lc lO ID tpn n h n hnhnnnq qq I
c
1 C� 1
Mcc cccccc� cctcccccccccccccc 1
C
I I
g q q q q q q q q C q q q q q d q q q q d q q q q q l
C
1
I
C
I C I
LO C N M C 1c,.L(^. LS'. L-. L.L'I l0 LD LG LO LL` 1p LG LO tp 1phnh!�nh I
1
C
1
I q i
m C C C C C C C C C C C C C C C C C a C a C a a a a 1
U
I I
qqq C g q q CO CO q q q q q q q q CO CO q CO q q q q q l
••
I C 1
1
.-� N M C C C C Ln Ln Ln Ln Ln of Lo LADLG Lc Lo LD h 1
-cr M In Ln Ln
V
I
. . . . . . . . . . . . . . . . . . . . . I
Z
I h I
M CO C C C C C C C C C C C a a C C C C C a C C C C C I
r-.
1 I
co CO q C q q q q N C q CO q q q q q q q q q q q q q q l
J
1
I
_J
1 C I
CLO GJC.�.-+NNmmMMCCCaccccLr. Ln Lit.^. t;. LO 1
UI
tzImMMcccaccccccaCcccccaacccat
1 I
g q q q q q q q q q d q q d q q q q d q d d q q d q I
'nNln ndc+00 r+r•.-+NNNNNmMMMMCCCCa I
O
I 32 1
I
NMM mMMCCCCCCCCCCCCCCCCCCCC 1
I
I I
d g q q q q q q cO g q q q q q q q q q d q q d G d q I
Cp C
1 W I
I
C
I ta. Ln I
m c Ln Ln%0ta h n t� 00 CO Cc dC)G, C., CC CQO I
J C I
N N m m m M m M m m M M M M m M M M M M M C C C C C I
V)
I V) I
ggCC) C:•==cc cc ggdqcc co co gqqq qq I
C C
F C
1 1
1 O 1
I
l0 lil q Q.'••Nm CCIn lr, L1'7 LC to LD Lo Lp nhhhggq C`01 I
C
I I
• 1
N N m M M m M M M M M M M m M M m M M M M M m M M I
I 1
ggqQqqqqqqqqqqdc.7qqqqqqdqqq I
C
1
I
r•�L'] n.qCC.--�NNMmMaCccc'�LnLnLOLOLonh I
W
I 1
. . I
Cl N N N m M M M m m M M M M M M M M M M M M M m M l
g q q co g q q q q q d q d q d q q q q q q d d q q m I
U
1 1
1
Z
1 C 1
mNLa co G, C MCC aaCCLfI Ln Ln Ln LG lO LD tp I
I M I
G ••-I •-" r" •"�NNN N N NNNN NN NNNNNNNN NN 1
C
I I
cc cc CO COggqdqd CO g q q q q q 00 cc co co I
C
I
1
L_
1 L'] I
Ln to C1NMCL7 LOn ndggG, Qi C�(7�G, Q)CCCCQO I
L
r N I
c� C O N N N N N N t
G
I 1
hggd ggqd CC CO CO 0000 qqq qqq qq I
I C I
I
Ctn C m Ln LO q q M-C C C.-�r-•.�.� N NNNmmmM mM I
I I
I N l
1
gL,000OCCC=Ccc.-I .-. .-.^-. .. r. 1
I I
n n g q CO q d CO q d q Coq d q q q d q q q d q d q q q l
co cc co
I L^. I
I
qNC,` •--• CLnnnq C1 C1CC �.-• 1
. .
1
. . . . . . . . . I
LOq qr� L1r G,Cl C G, G,CCQ OOOCCOOCOC OQ I
I 1
nntrn nnnnnr,ngggqqqqqqqqqqqq 1
1
I C I
1
tO M 0 C n CI O .� N M M c c Ln Ln Ln Lo Lc Lo Lo Lo h h Lo Lo Lo 1
1 1
I r+ I
I
cLo r` hhggqcocoqqqqco00 qqq co 00 I
1 I
I 1
nnn n n h l- t- nl�/�hhnl�l�f�hhhhnnl�nh 1
1
'
I Ln I
OHO CLDngghhl�LD LD to tnCCMMNNG, to L, to I
1 I
1
I C I
C N N N NNNNNN NNNNN N N NNN. -I.-r
I I
nnnr. n,�hn nr. r�hnnnn hnnnnnnn hn 1
1
CC.71
CCCC^CCCOO
I
C Q O C C O O O C C C O C O I
`..OGCCC CQCCOCCC CC 1
1
JZL I
.�Nm CL7 L'Jnq QlC
•-�N M,C t^. L, nq C."-I.n C L^,C
I
l._
N Nmm C CL7 1
1
J I
1
1 JANUARY 199L 8-0, DESIGN CRITERIA
EFFECTIVENESS CALCULATIONS
----------------------------------------------------------------------
PROJECT: STANDARD FORM B
COMPLETED BY: CL.D DATE: 1-1-19G
Erosion Control C-Factor P-Factor
Method Value Value Comment
----- --------- ----- -------------- -------- --------- --------
-------------------
4AJOR
SUB
3ASINI W ,BASIN]
r,7
76.5
---------------------------------------------------I
AREA
(Ac) CALCULATIONS
------/1-----------f------------- ------------ -------�
3 �i/i+ ZYl�rt LI cif/ - 1co %
11.5
1.20(m (5d 10
KdSerc� /Mdlch 2 (cucrr� oft".)
�lelgn?r� � F4«� _ ���•aa�(•o')r (a(ra)(,Iv��3,8
Qelg6 <o ? F Oe- _ r58ac�
o. �v
Ll
Overall Egedwmt5S
E : (a,9)(g5.2�+ (�.$)(aa,4�+(3,sX9�.�)
if's
F = qq,q yv ✓ck
---------------
DI/SF-B:1989
1 ll4lq
1 EFFECTIVENESS CALCULATIONS
----------------------------------------------------------------------!
(PROJECT: W,ndf/a�15�►x�tlrc,.��I�/ STANDARD FORM B
1 1COMPLETED BY: CL-D DATE: 3'I-f94�
� I
' I Erosion Control C-Factor P-Factor I
Method Value Value Comment I
I---------------------------------------------------------- 1
I %-4,0 Fa & /r,er 1.0 0, ao I
I G(d/jl low ? LW - i•V 0.80 I
I 51I4terue / r.o - 0.50 I
0,01 i'00
I<e5 'd �;M�Icn 0.10 I•d0 1
1 '
----------------------------------------------------------------------
IMAJOR( PS SUB I AREA I
BASINI (%) ,BASIN( (Ac) j CALCULATIONS
1 I ----- I ------ I ----- ------ --------------------------------------------
�8.3 I s,f� i a•Q G,uvrl l,, ,T ; „ - ,0.1- ?o 1�vemeiY 1 3acrcS (y5`Io1\\
I � IJephl-tc1 C l=ac�ar =�i3�)i•o'�y �1,��(b,�o a•q
WeOea a Luc+er - 0,&0
i i�cTv'ri155 = 0 100<
f 13,7a I �I.B S rug t3� a G4rner - 100 I
I I 15,1{ Felice 1, l uccr5 (a�SOI I
II KewA /Mul(n, 100h0,
` OeIOI-ed 10 i
I I
j I
1 I Il
I I I Weiyblled
=pail I
----------------------------------------------------------------------
i
I
1 III I I I I
I I ► I
i
HDI/SF-B:1989
5 at INs,gn I lols at IIID 1F Pons
P6Lt
.1ni3ry
n64°° I9)
TnWury
Arta
Pam)
Burnt
CeeftkieN
C
Ra dall homily
(daes per M1 )
Pok DixM1ugc
(cfs)
q_Yae
ICO year
bYo"
IOYYm
J
-0
63.fi
O.IS
11
3 W
zB ]
108 a"
6
HI
25
O.fO
3fi
l.0
L9
13.1
65
Ml
LI
Q�
x9
],0
L9
58
ry
41
IA
050
35
]0
LB
6.1
]6
ex
1 5
0.30
5
9 o
IS
6 6
9p
-H3.12
4.0
056
xJ
]A'
J6
i96
11. lz
54
055
1.5
l0
Ia
36.0
yc
13
1.8
]FSBAkecb
IT
29
5
330
Ixl1laz0±.Jss9
11IE1x
3 e
30aIo58
.
14, .3z
59
0 32
601
z
ARa H3.1
]5.3
U8
e om ta, 3.6 a is nmR team Sltields SY CL
,r1ga.w 100-NEAR FL(
OL)PLAIN s
PER 1979 FEWA MAPPINtf� '
or
Zia \ Q G - 1 r-
_^!
S:�RING CREK� <osee
5(]2
¢LOODPLA N--' CONCRETEE RVIAPPROVALPPING
- E DIN SPRING 14994) v
ti
t.4
� �k kyyy
if 6x 50'54 -
So
same
Ioo
c
h ,no:en
aF
f�
y..y,
SHIRE CT
�A
DP 6
+ \ to
DP
y r
47
E
5,6
(PROPQSEOLE 1
' l DP 8
y
1 �� y
y
7-7:--DI --
DP 4 DEVELOPMENT BOUNDARY
m
bot r
r
10
NIL / ,•
o D J
y Y
-� DP 1 :oy/••
DP 3b
/ DP 3
y
OFFSITE FLOWI
FROM SHIELDS 'T. -
y �
Qx=Ocfs EXISTING CURB INLET
n=3.6cfs - `
t
It
,PROPERTY BOUNDARY
t
PROPOSED CONCRE fE
BOX CULVERT
ARTHUR'S DITCH
:Ile.
D 59 100 2oC
'
Pm eNa CO TST-18
-
Dote 9 2J-1993
Design: CLD
SHEET
1 of 3
EXISTING GROUND
//////������END
3 ��\�SECTION
SLOP r04�1 \ \ \•
REINFORCED 11 6 INCHES
CONCRETE OR L—
AD'.S PIPE 3
00 12 INCHES
CLASS 6 RIIPRAP (BURIED)
(SEE DETAIL, THIS SHEET) 10•
TYPICAL PIPE OUTLET PROFILE
NOT TO SCALE
MATCH EXISTING
GROUND CLASS 6 RIPRAP (BURIED)
E-(SEE DETAIL. THIS SHEET)
REINFORCED
CONCRETE OR
ADS PIPE
s'
SLOPE (13.4%) SLOP 15'
(0.4%
o ' 0
m O W
FLARED END SECTION sN:ry
VARIES
10•
TYPICAL
PIPE
OUTLET
PLAN
NOT TO
SCALE
FLARED END SECTION
TYPICAL PIPE OUTLET ELEVATION
NOT TO SCALE
SUNSMAEY OF PRE OUTLET' PARAMETERS
D T
P@E
SLOPE
OIITLCf
RRRAP
RNRAP
Ip
DmmmoN5
(R)
WIDTH
TTPE
DEPIN
(INCII51
G.EM
RNCNE9)
IA
16im6 MS
OA
5.0
C 6
12
M
M& ADS
OA
)o
CLA996
12
2E
27: RCP
OA
5.0
CLA556
12
3
2 24iuA RCP
OA
5.0
CIA596
12
VARIES
SURFACE
T. W. /00
p 100-YR WATER
1�
S. W.
TYPICAL SWALE CROSS SECTION
NOT TO SCALE
Summary of Swale Puvrcleaa
QmD(dD25
r�E
a
lwlu 2.6•N 6om Wdd•Sme•.
• Mivimw bole dwatim u 4M.W i
' Mlpimpmlm[ tlm0mu� 0999.DJ u
Om11ou
swd. swm
Qy Ym
(Ap lfm)
D.
(bm)
'IW
(ke0
FF
6.6 1.19
1.2
9A
GL
6.0 LU
I3
9.9
0
TW
100—YR W.S.
D Y,m 1 GRASS LINED
0
d n = 0.060
00
w o
TYPICAL O'YERFLOW SWALE
rm wmI NOT TO SCALE
V z m
W J W
2 J J
W Q
z3
�5•�
��
2 4
00
75' ~i
q o 6"CLASS 6 RIPRAP 127
(SEE DETAIL THIS SHEET)
SLOPE PROTECTION PROFILE
NOT TO SCALE
z
z
4 W
0 E
Z>
CLASS 6 RIPRAP wa (SEE DETAIL THIS SHEET) IF5. 'I
END OF GUTTER[A)o
FLOW LINE.!.- - - a_ A TOP OF CURB41
d Jl
BACK OF WALK : d. ♦ -
END OF PAVEMENT PLAN VIEW'✓_
NO' TO SCALE
qWn� TOPSOIL (RE9EGETAT
NA„K ORASS)
6"1p•❑.A56 6 RIPRAP
yE 11 RL E MA,ERIAL
RL7R G.OTR
TYPICAL RIPRAP SECTION
FOR CLASS 6 ROCK
NOT TO SCALE
GRADATION OF THE Y MLL MAiER1A1
SIEVE$In
PERCEM PASSING
(BY w GNn
r
9 lw
v4•
xi 0
P4
020
nm
o-5
GRAOAnDg OF ROCI( POR CLA446 RRRAP
PERCENT SMALLER
INAN GIVEN SIZE
MY VMIGNG
INIERMEDUM ROCI(
DIMENSION
(LES)
7blw
S
5670
`
25
350
10
240
<I
SCALE: 1"=20'
EXISTING GROUND
iL FLARED END
3 �SECTION
MATCH
APE-i4Ag(Eg,L, GROUND SURFACE
REINFORCED 11 -NCHES
CONCRETE PIPE L— Tj
3 �n Q 112 INCHES
CLASS 6 RIPRAP (BURIED)
(SEE DETAIL, THIS SHEET) 10•
TYPICAL PIPE OUTLET PROFILE
NOT TO SCALE
MATCH EXISTING
GROUND
I
CLASS 6 RIPRAP (BURIED)
(SEE DETAIL, THIS SHEET)
SLOPE (VARIES)—� L
15,
FLARED END SECTION aH:ty
_I
l� VARIES 10'
TYPICAL PIPE OUTLET PLAN
NOT TO SCALE
EXISTING GROUND REINFORCED CONCRETE
PIPE WITH FLARED
END SECTION
TYPICAL PIPE OUTLET ELEVATION
NOT TO SCALE
SUMMARY OF PIPE OUTLET PARAMET
OUTLET
pryE
SIUPE
OOTLET
RIPR'Sp
RIPRAP
OEPTH
DIMENSIONS
WIDTH
TTPE
ID
IINCIIGSI
IRI
(FEEn
IINCNE91
5
ID:rcA RCP
0.6
1 o
CLASS 6
5
SIB-ircARL'P
0'1
50
CLAS56
12
WATER
1
TYPICAL SWALE CROSS SECTION
NOT TO SCALE
S9m of owale PanRlelas
bwJe
]laiw
Qo
w)
Qs •Ln
(QO
Rw
Z
mm
Iox
Ve
14u5
V
Ili
D.
(MI
& A'
W.5
273
5
16
IA
IA
IN
BS'
S16
IOES
A
n
16
1.9
L9
C1
E.6
AS
5
16
IA
15
1.6-23
55
16
1.9
19
0.V
IWA
IY2
N
55
11
2.0
2A30
E�P
139.6
I09
55
P-O
@.5
166
2
11
13
1.6
IJ
V2
E9.5
3
15
L2
16
IA
'Sr rcam amYed rim WWOMITI-N I a.
'Bxklm llJ WON Of DOOV lblry CC.
`Baklm $wee m OI NOV POlnl rc
6"
12- t4PLAS77C
OF,l 5 6 RIPRAPl'P
IlI FlCIER MA2ERlAL
FlLIER GLOM
TYPICAL RIPRAP SECTION
FOR CLASS 6 ROCK
NOT TO SCALE
GRADATION OF 'YPE II FILM MAPS
PERCENT PA65PG
I0Y wMfIF1
5.
90.1m
5N'
20 W
„
ow
Pyp
ry5
GSADATpN OP V)CIC FOR CIAM 6 RIPIU&
PFACENI SMALLER
MAN OIVEN SR£
IBV wEIGNn
INTERIAMIARROM
DIMENS
1L6CI
MIOJ
65
Y v
15
0
10
Llo
(SEE DETAIL THIS SHEET)
SIDEWALK CULVERT OUTLET
RIPRAP PROTECTION PROFILE
NOT TO SCALE
O J
o3 om t4' - t0'
YxJ�
y0 U
OrV
Oa wm m3
L
41-4:1 V
—
a
V
1
A
K
J
a
u
V
N
L
d a <
K
y
1
H
0
3
o
a
N
<
4.
4H:1V
[
CLASS 6
IlPRAP
L
_
(SEE DETAfl.
THIS SHEET)
SIDEWALK CULVERT OUTLET
RIPRAP PROTECTION PLAN _VIEW
NOT TO SCALE
BACKLOT SWALE RIPRAP PROTECTION DIRAOL E IREPOI
NOT TO SCALE SHEET
3OF3