Loading...
HomeMy WebLinkAboutDrainage Reports - 10/07/1996 (3)gpRsr� ReportFria FINAL DRAINAGE REPORT WILLOW SPRINGS P.U.D. PHASE TWO UDSTONE & ANDERSON, INC. Water Resources and Environmental Consultants 736 Whalers Way, Suite F-200 Fort Collins, Colorado 80525 (970) 226-0120 IApril 30, 1996 ' Mr. Basil Hamdan City of Fort Collins Stormwater Utility 235 Mathews Street Fort Collins, CO 80524 ' Re: Final Drainage Report for the Willow Springs P.U.D., Phase Two (LA Project No. COPPP01) Lidstone & Anderson, Inc. (LA) is pleased to submit this Final Drainage Report for the Willow ' Springs P.U.D., Phase Two. The drainage plan has been modified in response to Stormwater Utility review comments dated April 10, 1996. The design of the drainage facilities conforms to the Preliminary Drainage Report for the Willow Springs P.U.D. [LA, 1994] which serves as ' an overall drainage plan for the development. In addition, the drainage facilities for Phase Two were designed in accordance with the design of the drainage facilities built in conjunction with Phase One of the Willow Springs P.U.D. [LA, 1995]. The hydraulic and hydrologic evaluation of the site, documented herein, was performed according to the specifications set forth in the City of Fort Collins SDDC Manual. ' If you have any questions regarding the procedures and results given in this report, please feel free to call us. Sincerely, LIDSTONE & ANDERSON, INC. Chris her L. Doherty, E.I.T. Proj Engineer CLD/GJK/tlt Attachment 1 Greg oc , P.E. Se ' r gineer Branch Office: Box 27, Savery, Wyoming 82332 TABLE OF CONTENTS G I. INTRODUCTION ....................................... 1 1.1 Background ....................................... 1 1.2 Purpose and Scope of Study .............................. 1 II. EXISTING DRAINAGE CONDITIONS .......................... 3 III. FINAL DRAINAGE PLAN FOR THE WILLOW SPRINGS P.U.D., PHASE TWO ....................... 4 3.1 General ........................................... 4 3.2 Proposed Drainage Plan ................................ 5 3.3 Design of Drainage Improvements ......................... 8 3.3.1 General ..................................... 8 3.3.2 Rational Method Hydrologic Analysis ................... 9 3.3.3 Allowable Street Capacities ........................ 11 3.3.4 Curb Inlet Design 11 3.3.5 Storm Sewer Design ............................ 12 3.3.6 Drainage Swale Design .......................... 13 3.3.7 RipraD Protection Design ......................... 14 3.4 Detention Pond Design ............................... 14 3.4.1 hydrologic Analysis for Detention Pond Design ............ 14 3.4.2 Final Design of Pr sed On -Site Detention Ponds .......... 16 3.5 Statement of Maintenance Responsibility ..................... 19 IV. EROSION CONTROL PLAN ............................... 20 V. REFERENCES ........................................ 23 i TABLE OF CONTENTS (CONTINUED) FIGURES/TABLES/APPENDICES/SHEETS FIGURES Figure1.1. Vicinity Map for Willow Springs P.U.D. ..................... 2 TABLES Table 3.1. Summary of Design Flows at All Design Points for Fully Developed Conditions . ......................... 10 Table 3.2 Summary of SWMM Subbasin Parameters ................... 15 Table 3.3. Summary of Detention Pond Facilities Design.................. 18 Table 3.4. Summary of Detention Pond Operation Parameters . ............. 18 Table 4.1. Construction Sequence ................................ 21 Table 4.2. Erosion Control Cost Estimate . .......................... 22 APPENDICES Appendix A: Rational Method Calculations Appendix B: Street Capacity Analysis Appendix C: Inlet Design , Appendix D: Storm Sewer Design Appendix E: Swale and Riprap Design Appendix F: On -Site SWMM Analysis Appendix G: Erosion Control Calculations SHEETS Sheet 1: Final Grading, Drainage and Erosion Control Plan and Drainage Facility Details ii ' I. INTRODUCTION 0 1.1 Background ' The Willow Springs P.U.D. is a proposed residential development located in the SE quarter of Section 6 and the NE quarter of Section 7, Township 6 North, Range 68 West, in the City of Fort Collins, Colorado. The overall development would consist of both single- and ' multi -family dwellings and would be developed in several phases. The total area of the development site is 123.9 acres; the total drainage area associated with the site, including all tributary off -site fringe areas, is 130.5 acres. Phase Two of the Willow Springs P.U.D. consists of 142 single-family home sites in the western half of the development. The development site is bounded on the west by the Union Pacific Railroad, on the south by the Mail Creek Ditch, on the east by Timberline Road and on the north by the proposed extension of Keenland Road and Battle Creek Drive. This area is part of the McClellands Basin and, consequently, is subject to the conditions specified in the McClellands Basin Master Drainage Plan [Greenhorne & O'Mara, 1986]. The McClellands Regional Channel flows generally west to east along the northern border of the Phase Two development site. Figure 1.1 is a vicinity map of the project site. ' Based on information contained in the Master Plan, on -site detention would be required to reduce the peak discharge from the site to 0.5 cfs/acre for the 100-year event and 0.2 cfs/acre for the 10-year event. A total of five detention ponds are located within the Willow Springs ' P.U.D. to meet the Master Plan discharge. The two western -most ponds will be utilized to detain flows from Phase Two. 1.2 Purpose and Scope of Study This study defines the proposed drainage plan for Willow Springs Phase Two in the ' context of Master Plan conditions and requirements as well as the design of drainage facilities already designed in conjunction with Phase One. The plan includes hydrologic and hydraulic ' analyses which provide consideration for all on -site and tributary off -site runoff. Included in this plan is the re -analysis of the overall hydrologic model for Willow Springs to ensure the ' adequate operation of all major drainage conveyance and detention facilities designed in conjunction with Phase One. Storm sewer inlets and pipes are designed to convey runoff to the detention ponds without violating street capacity criteria. The hydraulic and hydrologic ' evaluation of the site, documented herein, was performed in accordance with the specifications set forth in the City of Fort Collins Storm Drainage Design Criteria (SDDC) Manual. it ­LgAsr HORSE A Too TH ROA Mp13- Warreg z Park 0 z CiI Callindale -"o Go" Course Warren L ke Reservoi, SCALE 1-8 2.0 0 4949 SCA L /E N Trail Park cc H C MONYJOAD cc 04 L GS P.U.D� 6 1AV, 21 Phase 4950 'Two CAI k Figure 1.1. Vicinity Map for the Willow Springs Development. 2 II. EXISTING DRAINAGE CONDITIONS Since the McClellands Basin Master Drainage Plan has set the required ' release rates for this basin, all hydrologic calculations for this study were conducted for developed conditions. However, this chapter is provided as an overview of the existing drainage patterns within Phase Two of the Willow Springs development area, with reference to detention facilities designed as part of Willow Springs Phase One which will be utilized by Phase Two. Existing condition contours (which are reflective of overall grading conducted in conjunction with the construction of Phase One) are provided on Sheet 1. The Final Drainage Report for the Willow Springs P.U.D., Phase One [LA, 1995] and the associated utility plans included the design of two detention ponds (310 and 315) and a storm sewer system (ST-1) which will serve to collect developed condition runoff from Phase Two. Of those facilities, only the central detention pond (Pond 310) and the downstream -most segment of the storm sewer have been constructed to date. Minor revisions to the design of Pond 315 and storm sewer ST-1 are proposed as part of the Phase Two drainage plan to better accommodate the facilities designed as part of Phase Two. The modifications to Pond 315 and storm sewer ST-1 are documented in Chapter 3 and will be fully defined by amended utility plans for Phase One. These two facilities will be constructed prior to, or in conjunction with, the construction of Phase Two. The site currently consists primarily of irrigated grassland which slopes to the northeast at an average slope of approximately 1.5 percent. In the vicinity of the overall Willow Springs development site, the Union Pacific Railroad, the Mail Creek Ditch and Timberline Road all serve as drainage divides which isolate the area from off -site runoff. Phase Two is bounded by the McClellands Regional Channel on the north, the UPRR on the west, the Mail Creek Ditch on the south, and Phase One on the east. Currently, the grading and construction work for the Phase One infrastructure is essentially complete; the Phase Two site remains primarily in an undisturbed state. Under existing conditions, the majority of the runoff generated within the site will be conveyed as overland flow to Detention Pond 310 through the open space located in the central portion of the Willow Springs development. The remainder of the discharge will be conveyed directly to the regional channel. It is noted that this channel was constructed in conjunction with Willow Springs Phase One. 3 M. FINAL DRAINAGE PLAN FOR THE WILLOW SPRINGS P.U.D., PHASE TWO 3.1 General The final drainage plan for Phase Two of the Willow Springs P.U.D. has been developed to provide a drainage system that meets the requirements set forth in the McClellands Basin Master Drainage Plan and which conforms to the drainage system implemented in conjunction with Phase One. This has been accomplished by designing a series of inlets, storm sewers and detention ponds which would serve to collect, convey and detain runoff to allowable release levels given in the Master Plan. Sheet 1 shows the grading and drainage plan for Phase Two of the Willow Springs development. Included on the sheet are the proposed locations of the two detention ponds which collect runoff from the Phase Two site; also shown on the sheet are the locations of the minor storm drainage facilities which include curb inlets, storm sewer pipes and minor drainage swales. Reference is made to Section 3.2 which presents a specific description of the proposed drainage plan for the Willow Springs development. The evaluation of street capacities and the design of all inlets, storm sewers and swales was performed based on the methodologies given in the SDDC Manual. Hydrologic calculations for the design of the local drainage facilities were performed using the Rational Method. A detailed description of the design of the local drainage facilities is provided in Section 3.3. For the purposes of detention pond design, the recently revised version of the Urban Storm Drainage and Flood Control District's Stormwater Management Model (MODSWMM) was used to determine both 10- and 100-year flows for the subbasins indicated on Sheet 1. A MODSWMM model was completed in conjunction with the design of the Phase One final drainage plan. The Phase One model was modified to reflect minor changes to the overall drainage system planned for the Phase Two development. The resulting runoff hydrographs were routed through conveyance elements and detention ponds to obtain the total peak discharge to the regional channel at Timberline Road. The detention ponds were designed to meet allowable release rate requirements. It is noted that since the McClellands Basin Master Plan has set the detention requirements for this development site, the hydrologic analysis was conducted for developed conditions only. Design details associated with the detention pond storage pool and outlet structure, as well as other drainage improvements are provided in Section 3.4. 4 3.2 Proposed Drainage Plan ' A qualitative summary of the flow conditions within each basin and at each design point is provided in the following paragraphs. Discussion of the detailed design of drainage facilities, which are introduced in this section, is included in Sections 3.3 and 3.4. It is noted that several ' subbasins include areas which were developed in conjunction with Phase One. The discussion for these subbasins will be limited to their impact on drainage facilities designed in conjunction ■ with or utilized for Phase Two. Reference is made to Sheet 1 which depicts the flow conditions and facilities described below. Detention Pond 310 will collect and detain runoff from Subbasins 1 through 10 as described in the following paragraphs. As documented in the Phase One report, the portion of the pond which will maintain a permanent pool will serve as an irrigation pond for the development; the maximum normal water surface elevation in the pond will be 4940.0 feet. A 36-inch RCP will be placed between the upper and lower portions of the pond in order to maintain a hydraulic connection. The main storm sewer system which delivers flow to Detention Pond 310 serves Subbasins 1 through 5 and 7. It is designed to convey the 2-year discharge directly to the lower portion of the pond. Within the greenbelt area south of the pond, a series of bubbler manholes will allow discharges greater than the 2-year event to exit the storm sewer system. All flows diverted out of the storm sewer system will be conveyed to the upper portion of the detention pond in grass lined swales. ' Runoff from Subbasin 1A and 1B will be collected along the southern and northern halves of Fantail Court, respectively, and conveyed as gutter flow to the low point at Design Point 1A. The 100-year runoff will be collected by a 15-foot curb inlet and ' conveyed in an 18-inch ADS pipe to Design Point 1C. Subbasin IC consists of the open space and back of lot area between Weeping Way, Willow Springs Way and Fantail Court. Runoff will be conveyed as overland flow through the open space to an area inlet ' at Design Point 1C. The combined runoff from Subbasin 1 will be conveyed in a 24- inch ADS pipe to Design Point 2A. ' Runoff from the southern portion of Willow Springs Way and the western portion of Weeping Way within Subbasins 2A and 2B, respectively, will be conveyed as street flow to the low point at Design Point 2A. The 100-year developed condition flow will be ' collected by a 15-foot curb inlet. The flow will be joined by that from Subbasin 1 and conveyed under Willow Springs Way in a 27-inch RCP to Design Point 2C. The 100- ' year runoff from the northern portion of Willow Springs Way within Subbasin 2C will be conveyed within the street section to the low point at Design Point 2C and collected in a 5-foot curb inlet. The 100-year discharge from Subbasins 1 and 2 will be conveyed by a 24-inch ADS pipe to NM- 1C. 5 ' Runoff from Subbasin 4 will be collected along the northern extension of Weeping Way and be conveyed to a 10-foot curb inlet at Design Point 4 located at the northern end of the cul-de-sac. The storm sewer was documented in the Phase One report to convey the 100-year runoff to MH-lA. However, minor modifications to lot lines along Weeping Way, in Phase One, necessitate that the storm sewer be directed instead to MH-1B. ' Runoff from Subbasin 5 will be collected along Feltleaf Court and conveyed to a 15-foot curb inlet at Design Point 5 located at the eastern end of the cul-de-sac. The 100-year flow will be collected by the inlet and conveyed in an 18-inch ADS pipe storm sewer to ' MH-lB. The storm sewer upstream of MH-lC is sized to convey the 100-year flow from ' Subbasins 1 and 2. In addition, the storm sewer laterals which serve Subbasins 4 and 5 are sized to convey the 100-year discharge to MH-1B. Manholes 1A, 1B and 1C will be constructed with grated covers which are designed to divert flow out of the storm ' sewer into a grass -lined swale located in the central greenbelt area of the development. The flow from Subbasins 1, 2, 4 and 5 which remains in the storm sewer system will be conveyed in a 30-inch RCP to MH-1A. ' Runoff collected within Subbasin 3 and 7 (located in Phase One) will be collected by ' inlets and conveyed by storm sewer line ST-2 to MH-IA. As documented in the Phase One drainage report, a series of grated manhole covers was designed to divert a portion of the flow out of storm sewer ST-2 and into the greenbelt area. The portion of flow ' which remains in the storm sewer will be conveyed to.MH-lA. The portion of the runoff from Subbasins 1 through 5 and 7 which remains in the storm ' sewer system will be conveyed from MH-lA to the lower portion of Detention Pond 310 in a 30-inch RCP. Runoff from Subbasin 6A will be collected along both sides of Globe Court and conveyed as gutter flow to the low point at Design Point 6A. The 100-year runoff will be collected by a 15-foot curb inlet and conveyed in an 18-inch ADS pipe to Manhole 16A. Runoff from Subbasin 6B will be collected along Golden Willow Drive and Battle Creek Drive and conveyed to the local low point located at the northwest corner of that intersection (Design Point 6B). The 2-year discharge and a portion of the 100-year event will be collected by a 15-foot curb inlet and conveyed to Design Point 6C in a 24-inch RCP storm sewer. The portion of flow not collected by the inlet will be conveyed as street flow to Design Point 6C. Runoff from Subbasin 6C will be collected along both sides of Golden Willow Court and conveyed as street flow to a 15-foot curb inlet at the low point associated with Design Point 6C. The 100-year runoff from Subbasins 6B and 6C will be conveyed to Manhole 16A in a 24-inch ADS pipe. The combined runoff from Subbasin 6 will be conveyed to Detention Pond 310 in a 36-inch RCP. Subbasins 9 and 10 encompass the upper and lower portions of Detention Pond 310, respectively, as well as greenbelts and backs of lots surrounding the pond. Runoff from these subbasins will be conveyed to Detention Pond 310 by way of direct rainfall or overland flow. ■ 6 ' As described in the paragraphs above, Detention Pond 310 collects runoff from Subbasins 1 through 10. This pond consists of two separate storage pools which are connected by a 36-inch RCP. This pipe was sized as part of the Phase One drainage plan to ensure that adequate hydraulic connectivity is maintained. Outflow from the downstream portion of the detention pond will be conveyed directly to the regional channel in a 15-inch RCP. The pond discharge will be controlled by a 13.5-inch ' diameter orifice plate.at the entrance to the outlet pipe. It is noted that the operation of both the pond and the connecting pipe were analyzed in detail as part of the Phase One drainage report [LA, 1995]; reference is made to that report for complete documentation ' of the pond analysis. Runoff from Subbasin 14A will be collected along the west half of Golden Willow Drive ' and conveyed as street flow to a 15-foot inlet at the local low point identified as Design Point 14A. Runoff generated within Subbasin 14B will be collected by a 5-foot inlet at Design Point 14B and conveyed to Design Point 14A in a 15-inch RCP storm sewer. The combined runoff from Subbasin 14 will be conveyed to Manhole 20A in a 24-inch ADS pipe. ' Subbasin 15 consists primarily of the eastern portion of the Union Pacific Railroad easement. Runoff from this area will be conveyed in a swale along the western edge of Phase Two to Design Point 15. The 100-year discharge will be collected in a 15-inch ' ADS pipe and conveyed to Manhole 20A. The collective discharge from Subbasins 14 and 15 will be conveyed to Detention Pond 315 in a 24-inch ADS pipe. Outflow from ' the detention pond will be conveyed to Design Point 16 in a 15-inch ADS pipe. The pond discharge will be controlled by a 8.75 inch diameter orifice plate opening at the entrance to the outlet pipe. ' Runoff from Subbasin 16 will be generated along the eastern portion of the Union Pacific Railroad easement and the backs of lots from the western portion of Black Bark Court. Prior to construction of Keenland Drive, runoff from Subbasin 16 will flow overland in a northerly direction to the McClellands Regional Channel. After construction of Keenland Drive, runoff from Subbasin 16 will be collected in a pipe with ' its inlet located at Design Point 16. In the latter case, the 100-year runoff from Subbasin 16 will join the releases from Detention Pond 315 at Design Point 16 and continue directly to the regional channel in an 18-inch ADS. Subbasin 40 accounts for all runoff generated within the regional channel and the back of lots adjacent to the channel upstream of the White Willow Drive culvert crossing. ' The 100-year runoff from Subbasin 40 is 12.7 cfs. Commensurate with the Phase One drainage plan, no detention or additional drainage facilities are planned for this subbasin. 1 7 ' 3.3 Design of Drainage Improvements ■ 3.3.1 General ' The proposed drainage plan for Phase Two consists of a combination of street flow, curb inlets, storm sewers, swales, cross pans and detention ponds. Final lot grading details will ensure that each lot is graded and landscaped to provide positive drainage around and away from ' building foundations. Within Phase Two, drainage easements have been provided where necessary to ensure that overland flow can be collected and conveyed through well-defined ' drainage swales or storm sewers. ' 3.3.2 Rational Method Hydrologic Analysis The Rational Method was selected as the method for estimating the runoff from the site for the design of local drainage facilities. The Rational Method utilizes the SDDC Manual equation: Q = CgIA (1) where Q is the flow in cfs, A is the total area of the basin in acres, C f is the storm frequency adjustment factor, C is the runoff coefficient, and I is the rainfall intensity in inches per hour. The runoff coefficient was calculated for each subbasin using the following values: (a) 0.95 for ' all streets and impervious areas; (b) 0.60 for all multi -family lots; (c) 0.45 for all single-family lots; and (d) 0.20 for all open spaces and greenbelts. The frequency adjustment factor, Cf, is 1.0 ' for the initial (2-year) storm and 1.25 for the major (100-year) storm. The appropriate rainfall intensity information was developed based on the rainfall intensity duration curves in the SDDC Manual (SDDC Figure 3-1 which is included in Appendix A of this report). To obtain the ' rainfall intensity, the time of concentration must be determined. The following equation was utilized to determine the time of concentration: ' to = to. + tt (2) ' where t. is the time of concentration in minutes, t., is the initial or overland flow time in minutes, and t t is the travel time in the ditch, channel, or gutter in minutes. The initial, or ' overland, flow time was calculated with the SDDC Manual equation: 8 ' to( = [1.87(1.1 - CC�V-'1/(S)033 (3) where L is the length of overland flow in feet (limited to a maximum of 500 feet), S is the average basin slope in percent, and C and Cf are as previously defined. This procedure for ' computing time of concentration allows for overland flow as well as travel time for runoff collected in streets, gutters, channels, pipes, or ditches. A summary of the results of the hydrologic analysis are provided in Table 3.1; this table ' is also included on Sheet 1. All Rational Method calculations and associated information are contained in Appendix A. G] ITable 3. 1. Summary of Design Flows at All Design Points for Fully Developed Conditions. D esign Point nt S-bbasi (s)..�; b Tributary Area (acres klmoff.. Coefficient "c" RainfallInte . .... (inches/hour) Peak Discharge (c#).... year 100 Year : ., 2-year 100-Y ear... 1A IA 2.52 0.50 1.9 5.7 2.4 9.0 IA IB 0.82 0.63 2.5 7.0 1.3 4.5 IA 1A,IB 3.34 0.53 1.9 5.7 3.4 12.6 Ic ic 5.19 0.36 1.8 5.4 3.4 12.6 Ic 1 8.53 0.43 1.8 5.4 6.6 24.8 2A 2A 1.62 0.66 2.2 6.7 2.4 9.0 2A 2B 1.25 0.62 2.5 7.0 1.9 6.8 2A 2A,2B 2.87 0.64 2.2 6.7 4.0 15.4 2A 1,2A,2B 11.40 0.48 1.8 5.4 9.8 36.9 2C 2C 1.20 0.69 2.2 6,8 1.8 7.0 2C 1,2 12.60 0.50 1.8 5.4 11.3 42.5 5 5 2.74 0.64 2.3 6.9 4.1 15.4 5B 1,2,4,5 16.95 0.54 1.7 5.0 15.6 57.2 6A 6A 2.27 0.67 2.2 6.7 3.3 12.7 6B 6B 3.08 0.60 2.4 7.0 4.4 16.2_ 6C 6C 2.32 0.67 2.2 6.7 3.4 13.0 6C 6B,6C 5.31 0.64 2.2 6.7 7.5 28.5 6D 6 7.58 0.65 2.2 6.7 10.8 41.3 9 9 20.22 0.36 1.3 4.0 9.5 36.4 9 1,2,3,4,5,7 25.93 0.54 1.7 5.0 23.8 87.5 10 to 9.14 0.32 1.3 4.0 3.8 14.6 10 1-10 65.12 0.47 1.3 4.0 39.8 153.0 14A 14A 4.47 0.52 1.9 5.8 4.4 16.9 14B 14B 0.36 0.66 2.9 7.0 0.7 2.1 14A 14 4.82 0.53 1.9 5.8 4.9 18.5 5 15 4.42 0.22 1.8 5.1 1.8 6.2 15 14.15 9.24 0.38 1.8 5.1 6.3 22.4 16 16 1.83 0.24 1.6 4.6 0.7 2.5 10 ' 3.3.3 Allowable Street Capacities The majority of streets within Phase Two are considered local streets; the two exceptions are Battle Creek Drive and Keenland Drive which are both considered collector streets. The local streets and Battle Creek Drive incorporate a roadway width (flowline to flowline) of 36 feet ' and are characterized by a 2 percent cross slope and a Fort Collins standard 4.75-inch rollover curb. Keenland Road will not be constructed with Phase Two, but in the future will have a roadway width of 50 feet and 6-inch vertical curbs. Allowable gutter flows and maximum street encroachments for both the initial and major storms were estimated and evaluated based on the ' specifications set forth in the SDDC Manual. During the initial storm, runoff is not allowed to overtop the curb for either of the street ' configurations. Initial storm flows are allowed to spread to the crown of the local streets, and must leave one lane free for collector streets. Per the SDDC Manual, the maximum street runoff criteria during the major storm event limits the depth of water over the crown to less than or ' equal to 6 inches for both local and arterial streets. A normal depth analysis of the allowable street capacities was performed using HEC-2 [U.S. Army Corps of Engineers, 1991]. The normal depth option with a single cross section was used to find the flow rate associated with the allowable depth. For the local streets, a ' nomograph was prepared in conjunction with the "Final Drainage Report for the Willow Springs P.U.D., Phase One" [LA, 1995] to relate street slope to the allowable street flow (both with and without reduction factors). The calculations associated with the street capacity analysis are ' included in Appendix B. The results of the street capacity analysis are summarized in Table B-1 (page B1/9 in the Appendix). Street capacities would not be exceeded at any location within Phase Two. ' 3.3.4 Curb Inlet Design As indicated in the previous section, it was determined that street capacities would not be exceeded at any location within the Phase Two. As a result, all inlets within the development will be in a sump condition. Curb inlets will be placed (as described in the Section 3.2) at all low points within the development site. In addition, local sump conditions were created at ' Design Points 6B, 14A and 14B in order to more effectively collect street flows, thereby allowing the system to meet street capacity requirements. It is noted that the inlets at Design Points 6B, 14A and 14B are designed to collect all of the 2-year runoff reaching their respective ' locations. In addition, they will collect the majority of the associated 100-year discharge at each location. The incremental portion of the 100-year flow not collected by a given inlet will 11 ' overtop the adjacent street crown which forms the local sump and continue in the street to the next downstream inlet. Per SDDC Manual guidelines, the theoretical capacities of the curb ' inlets were reduced by 10 to 20 percent depending on the length of each inlet. The calculations associated with the curb inlet design are provided in Appendix C. A summary of the inlet ' design results is provided in Table C.1 (page C1/23 in the Appendix). 3.3.5 Storm Sewer Desi ' In general, the storm sewer pipes were designed to convey the 100-year flow to the detention ponds. The storm sewers which convey flow from Design Points 6B, 14A and 14B ' were sized to convey the entire 100-year discharge at that design point even though the inlets, as designed, do not have sufficient capacity to collect the entire flow. However, excess flow not conveyed by these storm sewer segments will be collected by downstream inlets. As noted ' in Section 3.2, the storm sewer upstream of MH-lC has been sized to convey the 100-year flow from Subbasins 1 and 2. Both of these manholes as well as two of the downstream manholes (MH's 1A and 1B) will be constructed with grated covers which are designed to divert flow out of the storm sewer to grass -lined swales located in the central greenbelt area of the development ' during low frequency (high flow) events. This portion of the storm sewer system, which serves Subbasins 1 through 5 and 7, is designed to convey the 2-year discharge without any diversions to the swales. ' The initial design of all storm sewer pipes was accomplished using Manning's equation and assuming full pipe flow conditions. All storm sewers under streets were designed as ' reinforced concrete pipes (RCPs). Most of the pipes in the greenbelt areas are designed as ADS pipes. The minimum invert slope for all pipes within the Phase Two is 0.5 percent. A detailed ' hydraulic analysis and hydraulic grade line determination of the final pipe design was performed using the UDSewer pipe hydraulic analysis model, developed by the Urban Drainage and Flood Control District. Final designs for the storm sewers connecting: (a) Subbasins 1 through 5 and ' 7 to Detention Pond 310, (b) Subbasin 6 to Detention Pond 310, and (c) Subbasins 14 and 15 to Detention Pond 315, were all conducted using the UDSewer model and considering the t maximum tailwater in the detention ponds. For the design of the storm sewer system for Subbasins 1 through 5 and 7, an iterative ' process was used to determine the actual storm sewer flow and diversions expected during the 100-year event. The UDSewer program was used to determine the hydraulic gradeline at each of the manholes while the diversion discharge was calculated using the orifice equation. A ' continuity check was performed at each junction to ensure that the grated opening for each manhole would be sufficient to convey the diversion flow. Each of the three storm sewer 12 ' manholes in the open space area south of Detention Pond 310, along storm sewer ST-1, would have a grated opening with an open area of five square feet. ' As part of the design of the storm sewer system, the portion of storm sewer line ST-1 upstream of MH-lA was re -designed with the Phase Two hydraulic analysis. It is noted that ' these drainage facilities have not been constructed to date. The location of MH-lB was moved approximately 58 feet downstream to accommodate a change in location for the storm sewer which serves Feltleaf Court (Subbasin 5). In addition, storm sewer line ST-lA, which drains trunoff from Weeping Way (Subbasin 4), will also be modified to drain into MH-lB. The pipe segment between MH-lA and MH-1B was increased in size from a 15-inch ADS pipe to a 30- inch RCP. Minor slope adjustments were made to the three upstream -most segments between MH-1B and Inlet 1B. Finally, the pipe segment between Inlet lA and Inlet 1B (Design Points 2C and 2A, respectively) was modified from a 24-inch RCP to a 27-inch RCP. The utility plan set for Phase One will be amended to reflect these modifications to storm sewer line ST-1 prior to construction of Phase Two. 3.3.6 Drainage Swale D ' A single drainage swale has been designed in conjunction with the Phase Two. Swale section A -A collects runoff from Subbasin 15 along the western edge of the Phase Two development. The flow is then conveyed north to Detention Pond 315. To account for ' freeboard requirements, the swale was designed to convey 1.33 times the 100-year flow. A typical cross section for the swale can be found on Sheet 1. The swale was designed with a 0.93-percent slope assuming normal flow conditions using Manning's equation. The hydraulic analysis indicated that the 100-year flow velocities in the swales, for the major storm event, ' would be 2.2 fps which is less than the maximum velocity of 4 fps allowed for a native grass - lined channel (from SDDC Manual). Results of the normal depth analysis for the swales may be found in Appendix E. In addition, emergency overflow swales have been designed at five locations in Phase Two, to provide conveyance for the entire 100-year flow at each location in the event inlets or ' storm sewers become substantially obstructed. These emergency overflow swales are located at Design Points IA, 5, 6A, 6C and 14A. Each of the swales will be located in a drainage easement and flow directly to one of the two detention ponds. Design calculations for these overflow swales are included in Appendix E. 13 3.3.7 RioraaProtection Desi ' Two storm sewer outlets will be constructed as part of Willow Springs Phase Two. One outlet will located in each of the two detention ponds for the conveyance of inflows to the ponds. ' At all storm sewer outlets, riprap outlet protection will be provided to minimize the potential for erosion. Riprap was sized based on procedures given in the SDDC Manual, as documented in Appendix E. Both of the storm sewer outlets into the detention ponds (Outlets 16 and 20) ' require a Rprap installation using Class 6 Rprap. Details and specifications for the two storm sewer outlet protection installations are given on Sheet 1. ' 3.4 Detention Pond Design 3.4.1 Hydrologic Analysis for Detention Pond Desi� The hydrologic analysis for the overall Willow Springs development was modified to ' reflect slight changes to flow patterns in Phase Two of the development. MODSWMM was used to model the basin response to both the 10- and 100-year rainfall events. The rainfall ' hyetographs, surface runoff resistance factors, surface storage. values and infiltration parameters were taken from the McClellands Basin Master Drainage Plan. For the revised subbasins, the subcatchment parameters (area, width, slope and percentage of imperviousness) and conveyance parameters (diameter, length and slope) were taken from the proposed grading and drainage plan for the Willow Springs Phase Two development. The percentage of imperviousness was ' calculated for each subbasin using the following values: (a) 100 percent impervious for all streets; (b) 60 percent impervious for all multi -family lots; (c) 45 percent impervious for all ' single-family lots; and (d) 5 percent impervious for all open spaces and greenbelts; and (e) 70 percent impervious for the future neighborhood recreation center. It is noted that the overall percentage of imperviousness would be 44.6 percent. A summary of the SWMM subbasin ' parameters is provided in Table 3.2. Specifically, modifications to the basin parameters were made for Subbasins 1, 2, 5, 6, 9, 10, 15, 16 and 40. In addition, Subbasin 14 was added to the ' MODSWMM model for the Phase Two analysis. . Results of the hydrologic analyses are presented, in conjunction with the final design of ' the detention ponds in Section 3.4.2. Documentation of the SWMM model parameters is provided in Appendix F. The output files for the SWMM analysis are also provided in Appendix F. 14 I I I I Table 3.2 Summary of SWMM Subbasin Parameters. -NNN -N ........ ............... ..... . ...... .... ...... .... IN . . ... ... . ........ .. .... ....Infilttahon . . ..... ... ... . ............. ........ .... ............ ..... . Rate ........ Basta SWra ......... .... Aces dpel:: IX. - ....... ..... ........ ... ...... ..... Snbbasiu .. f.0, . ...... ..... vrx ..I,.%............ j ..,N.%.,.%.,.N.N.,.-. pw. iq. .. Xx lo: - NN.N : b .. .......... ... I ....... 1,200 8.5 40 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 2 2,000 4.1 68 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 3 800 5.7 44 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 4 750 1.6 74 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 5 1,600 2.7 68 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 6 3,800 7.6 66 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 7 750 3.3 57 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 8 450 2.3 67 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 9 3,000 20.2 30 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 10 1,400 9.1 26 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 14 1,000 4.8 54 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 15 1,300 4.4 9 0.015 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 16 200 1.8 12 0.020 0.020 0.25 OA 0.3 0.51 0.50 0.0018 20 600 4.1 46 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 21 1,400 9.0 46 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 22 1,800 7.2 51 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 23 1,000 2.2 61 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 24 Soo 3.4 42 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 25 900 4.0 65 0.020 0.020 0.25 0.1 0.3 0.51 0.50. 0.0018 26 1,000 2.9 31 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 30 1,700 11.8 60 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 40 1,300 6.4 30 0.020 0.020 0.25 0.1 0.3 0.51 0.50 0.0018 800 3.5 50 0.020 0020 0.25 0.1 0.3 L1.51 0.50 1 0.0018 .L_±1 _jj 15 3.4.2 final Design of Proposed On -Site Detention Ponds As described in Section 3.2, two detention ponds receive runoff from the Phase Two development site. Both of these ponds were previously designed with Phase One to meet the allowable release requirements set in McClellands Basin Master Drainage Plan. The allowable release rates for the site are 0.5 cfs/acre for the 100-year event and 0.2 cfs/acre for the 10-year event. The total tributary drainage area for the Willow Springs development is 130.6 acres; this corresponds to an allowable peak discharge of 65 cfs for the 100-year event and 26 cfs for the 10-year event. With the modifications to the Phase Two site plan, the tributary area to Detention Pond 310 would be reduced by 2.3 acres. The area tributary to Detention Pond 315 would be increased by 2.1 acres. An additional 0.3 acres would be released to the McClellands Channel undetained. Detention Pond 310 was not modified as part of the Phase Two drainage plan. Because of the increased tributary area to Detention Pond 315, the outlet structure was re -sized to increase the outlet discharge and to more effectively utilize the available detention storage volume. The stage -storage rating curve for Detention Pond 315 was not modified for Phase Two. The stage -discharge rating curve for this pond was revised according to the methodology used in the Phase One analysis. An orifice plate is required to limit the discharge from the pond; the stage -discharge curve for these ponds was calculated using the orifice equation: Q = CA (2gH)rn (4) where Q is the discharge through the orifice in cfs; C is the orifice coefficient (0.62); A is the open area of the orifice opening; g is the acceleration due to gravity (32.2 ft/sec2); and H is the difference in elevation between the ponded water surface and the hydraulic gradeline in the outlet pipe immediately downstream of the orifice opening (or the centroid of the orifice opening, whichever is greater). For Pond 315 the hydraulic gradeline in the downstream outlet pipe was calculated assuming normal flow conditions using Manning's equation and a nomograph for determining hydraulic parameters in circular pipes flowing at less than capacity. The stage - storage and stage -discharge rating curves for Detention Pond 315 were combined to form the storage -discharge curve required for the SWMM simulation. Documentation of the development of the stage -storage -discharge rating curves is presented in Appendix F. It is noted that the sideslopes for Detention Pond 315 are designed to be 3H:1 V, as opposed to the City standard 411:1V. Since the pond will be maintained by the Willow Springs Homeowners Association, a variance is requested to allow sideslopes steeper than the City standard. V ' Results of the SWMM analysis indicate that the overall 100-year discharge from the site is 65.8 cfs which corresponds to a unit release of 0.5 cfs/acre; thereby meeting the Master Plan ' release requirement for the 100-year event. The 10-year discharge is 33.7 cfs which exceeds the mandated release rate of 26 cfs. Due to minor changes in flow patterns within Phase Two, ' this 10-year discharge exceeds that which was documented in the Phase One drainage report by 0.6 cfs. It is noted that direct rainfall on the regional channel and the west half of Timberline Road (which cannot be directed to any of the proposed detention ponds) results in a 10-year ' runoff rate of 22 cfs. Therefore, a variance is requested to allow a lQyear discharge of 33.6 cfs in the regional channel at Timberline Road; this corresponds to a unit runoff of 0.26 cfs/acre, as compared to the prescribed 0.2 cfs/acre. Table 3.3 presents a summary of the design of the detention pond outlet facilities. A summary of the discharge, active storage volume, maximum ponded water surface elevation and minimum freeboard for each of the detention ponds is provided in Table 3.4. It is noted that each of the ponds would maintain at least 1.0 feet of freeboard during the 100-year event. Complete results of the SWMM analyses are given in Appendix F. 17 Table 3.3 Summary of Detention Pond Facilities Design. ......... .. ......... ........... .......... �p ................... - . . ......... . . ...... ..... ............. ........ Detention .......... - -,-,v:, Minimum ... ....... ....... . ........ .. ..... . ...... pe ... ....... '.- ...... vertoppuzg Pond Inlet Eldv&& .......... -Invert ..*MSL ..... ........ ... .... . .............. .. .. ..... .... ............ ..... . .......... ....... ... ... ....... ..... ..... . ..... 310 65.1 15-Inch 13.5" Round 4940.0 4935.9 4940.0 4947.0 RCP Orifice Plate 315 9.2 15-Inch 8.75" Round 4948.8 4947.6 4946.2 4956.0 ADS Orifice Plate 324 25.9 24-Inch 16.5" Round 4946.0 4939.0 4942.3 4954.0 ADS Orifice Plate 326 32.8 18-Inch 16" Round 4936.5 4933.0 4937.6 4944.0 RCP Orifice Plate 18-Inch 13" Round 330 1.8 L, RCP Orifice Plate 4935.01 4934.0 4937.6 4941.0 I I I I I I Pond volume below elevation 4937.6 is assumed to be ineffective due to tailwater conditions in the regional channel. Table 3.4 Summary of Detention Pond Operation Parameters. The volume between elevations 4939.0 and 4940.0 has been reserved for future residential development north of Battle Creek Drive. 18 3.5 Statement of Maintenance Responsibility The City of Fort Collins will be responsible for maintenance of all storm sewers located in the City street rights -of --way. The Willow Springs Homeowners Association will be responsible for maintaining all other drainage facilities which will be built in conjunction with this project. 19 IV. EROSION CONTROL PLAN The Erosion Control Plan for this site was designed in accordance with the criteria set forth in the SDDC manual. Transportation of sediment to Detention Pond 310, Detention Pond ' 315, and the regional channel will be controlled by the installation of silt fences, straw bale barriers, and gravel inlet filters. Inlet filters will be installed shortly after construction on all proposed inlets to trap sediment which may be transported prior to seeding. Straw bale barriers ' will be placed in Swale A -A, at the Detention Pond 315 outlet; and around the area inlet located in Subbasin 1C. Erosion control effectiveness calculations were performed for the Willow Springs Phase Two development site. The site was split into seven sub -areas for the erosion control effectiveness calculations: (1) Subbasins 1 and 2; (2) Subbasin 5; (3) Subbasin 6; (4) Subbasins 9a, 9b, and 10a (tributary to Detention Pond 310); (5) Subbasin 14; (6) Subbasin 15; and (7) Subbasin 16. The erosion control effectiveness was calculated for each of the sub -areas based ' on the methodologies given in the SDDC Manual. An overall basin effectiveness was then calculated based on a weighted average of the each of the sub -areas. ' It is noted that the erosion control effectiveness calculations are less than the performance standard for the overall development. A variance is requested to allow the proposed erosion control plan for the following reasons: (a) erosion control measures are being provided at all reasonable locations --at all curb and area inlets, at all pipe inlets, along the single drainage swale, and at the "outlets" of the three open space corridors along the east side of Phase Two; and (b) runoff from all but the fringe and riparian areas is being directed into one of the two detention ponds which will provide settling of sediments with minimal passage to the McClellands Regional Channel. Calculations for the performance standard and the erosion control effectiveness are given ' in Appendix G. Table 4.1 outlines the construction sequence for the Erosion Control Plan; this table is also included on Sheet 1. The erosion control cost estimate for the single-family development is provided in Table 4.2. The cost estimate results indicate that a total security of ' $35,700 would be required for Phase Two. 20 Table 4.1. Construction Sequence. Project: Willow Springs P.U.D. Phase 2 Standard Form C Completed By: CLD Date: 3/18/96 Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. Time After Start of Month Month Month Month Month Month Month Month Month Construction 1 2 3 4 5 6 7 8 9 Demolition Overlot Grading Wind Erosion Control: Soil Roughing Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other Rainfall Erosion Control Structural: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other Vegetative: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation Nettings/MatsBlaakets Other Structures: Installed by CONTRACTOR Maintained by OWNER Vegetation/Mulching Contractor To Be Decided by Bid Date Submitted: 3/18/96 Approved by City of Fort Collins on 21 Table 4.2. Erosion Control Cost Estimate. EROSION CONTROL 1 Silt Fence 1,800 L.F. $ 3.00 $ 5,400.00 2 Gravel Inlet Filter 9 EA. $ 300.00 $ 2,700.00 3 Straw Bale Barrier 7 EA. $ 50.00 $ 350.00 CONSTRUCTION COST $ 8,450.00 1.5 X (CONST. COST) $ 12,675.00 TOTAL SECURITY $ 12,675.00 CITY RESEEDING COST 1 Resee&Mulch 47.6 AC. $ 500.00 $ 23,800.00 CONSTRUCTION COST $ 23,800.00 1.5 X (CONST. COST) $ 35,700.00 TOTAL SECURITY $ 359700.00 22 V. REFERENCES 1. City of Fort Collins, May, 1984. "Storm Drainage Design Criteria and Construction Standards". 2. Greenhorne & O'Mara, Inc., June 20, 1986. "McClellands Basin Master Drainage Plan". Prepared for the City of Fort Collins. 3. Lidstone & Anderson, Inc., June 2, 1994. "Preliminary Drainage Report for the Willow Springs P.U.D." Prepared for the City of Fort Collins. 4. Lidstone & Anderson, Inc., May 3, 1995. "Final Drainage Report for the Willow Springs P.U.D. Phase One" Prepared for the City of Fort Collins. 5. Roesner, L.A., Aldrich, J.A., and R.L. Dickinson, Storm Water Management Model User's Manual. Version 4: Addendum I. EXTRAN, EPA/600/3-88/OOlb (NTIS PB88- 236658/AS), Environmental Protection Agency, Athens, GA, 1988. 23 0 w� plot 1) ►:I:1 RATIONAL METHOD CALCULATIONS L4mF9M,V,liM;WlVFr.r�.nM 11M W. ........ . G.k.w c ~. OWNER -PROJECT OWNER—PROJECT By DATE PROJECT NO. WIIIOVL�i!2�,5 ?A(45eJ (o 51-71(% (!DPPP� f CHECKED BY DATE 3/11 SHEET OF LVA, 0-45 r- C-6 1 �I ��! �! :zr- vc., _-Z cy- 0— i VN cr � c C.� <Y— \A to rl— V\ 4:� V) : I 4�j Z'6 I �S I VR I tc) i V"N \rl NrN V*N v" V-, \/*N T IZS Vl\ .8 46 -!5 VN -9 4:S <S 4s O 1 � O 4z) C, _AL �zz Q, Alp _z gt -.3 L4sm 0 relffmANUMN Mwrolm nTm W. Oww... . ft.k.w 9 OWNER -PROJECT By DATE PROJECT NO. Wil ovi (!Dppp� f FEATURE Neu. &l(co CHECKED BY 6-Ty— DATE 3 /11 I'lt, SHEET OF oO V) -7r- ,ZG 1 qz ME tp --T-\fN Ir - V% � f O c� 7Zr . I qz Izz 7 \r ML so _.J ate- C, zsi cz, _V, n is Q, tp CA -= cl cs CA \n � 5 v zp- VN c.� . waw w..w....r ...w... m e«rrr. 5-7-Niv BY IDATE For GII 5obbasin5, fie V Coe.. �ioe„f tit (( be e4lcol4eA beikd on land v5e a5 l.Q�td Use Ie' ebegactif 51�P1�'I �1�e✓Vio�rs 0,95 51ngIe Fa AtI(i lof 0,�f5 W fi -Amd� lo% d, l00 open 7j�ce 6, as 50bba5in 1Q -0,31ae -0,a3ac I , 9jac 5Ubb3cjd lb -0,0 qac - 0, 53ac 50i1w51,l J e, - 3,3c14c S�bbasi� au _ - o,(y9ac 0 ,934c 50bba5, r, a b 0,40 0160 5obbGy10 ac- 0•lP0 6,&5 a, 5aQcr(5 -WWI 54reA x 0,95 open 5ce x 0,.2D 60%lof )(0,45 0,, Baadr--,) -iafa I 7�rCG�" ,c0,55 h0�5t �o� x 0,45 5 1�1 ac✓t5 44r- I h��sc Ivl- x0.45 open Spuc x0,ao 1, lea a«e5 i&!e I home I off- 0•45 (,a0 aere,�, -lafal •5�reef x 0, 4.5 hoj)elor- ,c o,45 I45acre-�461 5�rec-F n 045 hcvse (af A 0,45 —:�B, 060 0,0 —31 0, 5(0 0,& LoF = X5A LT = 5)or' LOF = 5off L r - SC;q LoF - I DO rk Lr = looFf LnF . 50(- Lr = 6500, tor = 50r' Lr - &50�4 Lop = 50 Ff Lr = 85or4 sor = /, 510 5 -r- 0,51d .2% 5vF - 02410 5T = O, 710 5oF-- a210 Sr- O,&°w 5oF = a% Sr= 1,5lc, soF= ago Sr° ab04 OF 1 L,dotonc 8 Anderson. Inc. CHECKED BY I DATE (SHEET 5�hhasin 5 a, ref acresta+nl 1,Uac `7 ,-e4 X 0,y5 I LOG = 504 n / 5oF= aw(D I, 69ac horse (of 01 Sr 5mla5wn 64 a-d % ac05 fpla I 0,9g,etc. -54ree4 x om5 for = 500 5oG 4, A ac hoa5e 14 )(o,45 0,0 Lr -- o5o ff 5Ubbei5i/1 6b 3,08 acres4A 0,�1aGc sfreef A a,ti5 LoF • IOOP� 5vr- . a/'o a,l(eac house(of A 6,145 —)o Oj(yo Lr= 500ff- 5r= I,�dlo 5obba5vi �c a,a5 acres Foul gBae I,aSac 5+(eel >< b,y5 hovse 0,to Lor- - 50Ff 800A SoF- 5i 5L)bba5in Qa 5,lQ8ac✓es 44al. 3,51 ac, ql ac (7ovseIC>- zo,45 ML)%faA(� xb,Gd LaF= IOOff SoF = a°/a 1,15ac ge✓►5pace x046 ---=" b-39 Lr 1000P- 5r= 1,-7 50bb45ln qb 9.89ac - 4,00 acres 4AI hoo-�e lo4 x o-145 IOOF� 0 5oF • a 1-aG ac open 5prce X o4o -:9p 0,27 000ff Srz I.O�o S�hbasl� 9 an,aa �c.es -� I (,I /3aC e (ol x 0,45 rnvlfi-�ur,i(1rx 0,60 LoF, �00F / SoF= (°!D 8, U ac oprn -space Y Oigv 0, 3& Lr = 5xkrf 5r = 1,3'lo IAw..« ......... W .wY..wMM C...MY. OWNER -PROJECT BY DATE PROJECT NO. FEATURE CHECKED BY DATE SHEET OF 5obbo5i/i 10a 3,46 oae5 4vfol a,&+u IV0,5e b� x 0145 0,Mac-open5,xce xo,ao d/qr 5Oftmsffl la q,14 acres +441 q.1( ac. house lob x 0, q5 cl,4ac open Space x 040 `5,0-3a Lr = 30015f 5r = l °/a Sobba6io 144 4147 Qc(6 afar' 61b jac. 5free� x 0 q5 LoF i l3a{� So F - o?vlo 5,8,2ac home lv x bj45 -10064 5r 54bba5(rj ICI b 6, % acres 4c{u ( b, 11ac h01 -Ibac -4(e4 x 6.15 hxne lal x 0145 LaF- 5044 SoF= ab 6,034e opcfl 5pgce x0-;0 310/ 5bb"m H3 67,404e- 4,4acres "I ka,)5 e [ofx 6,45 gtoa ae open tTwe x 040 -� (2, 5vbb�614 I& - 1,6 3 acrP5 -6k ( 14500 b 30ac Koine lof x b,45 LoF' 50F 1,53ae o en5ice x bead �. (9A 5obba5ia 40 (a ( acres +ok ( 1,01 ac hme 1v+ A 045 Lor- 5oF= on to 115�ac mv1f141vif o4o Lr= I F Sr= 17,59'o 3,01 ac open5pce 1,0,0 � 0,37 DRAINAGE CRITERIA MANUAL RUNOFF 5C 30 t- 20 z W U W 0. 10 z W a O 5 uw cr 3 O LU 2 0: W I— Q 1 5 .1 FIE oil� i■■FA ►I■■ I ,■■■■� �■■■� ��mm • r / �I,■■II �I �� iM���■■■■� �I��/I .2 .3 .5 1 'I 2'' 3 5 10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING "UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5 -1-84 URBAN DRAINAGE & FLOOD CONTROL DISTRICT No Text No Text Uuupl►111kAt STREET CAPACITY ANALYSIS Table B-1. Summary of Street Capacity Analysis. <. DeyelopedCandition Allowable Street: Subbase Locatcon i'ype` Dischar ge (efs} Fiow:efsj XX Z Year .' 104-dear 2 Year Oil -Year;: lA Fantail Court, South Half UH 2.4 9.0 3.4 44 1B Fantail Court, North Half L!H 1.3 4.5 3.4 44 2A Willow Springs Way, South Half UH 2.4 9.0 4.6 59 2B Weeping Way, West Half UH 1.9 6.8 7.2 94 3A - Weeping Way, East Half UH 2.0 7.6 7.2 94 2C Willow Springs Way, North Half UH 1.8 7.0 4.6 59 5 Feltleaf Court OF 4.1 15.4 4.9 126 6A Globe Court OF 3.3 12.7 4.6 118 6B Golden Willow Drive, West Half UH 2.6 9.6 5.8 76 6B Battle Creek Drive, West Half C/H 1.8 6.6 2.8 7.8 6C Golden Willow Court OF 3.4 13.0 6.8 88 14A Golden Willow Drive, West Half L/H 4.4 1 16.9 6.7 87 •L - Local; C - Collector; F - Full -Street Section; H - Half Street Section wuw •wwn.. w ....�., c.. - OWNER- PROJ ECTBY �Jlilot,j sDrl 5 76t o? c L D DATE 3/1 kq6 PROJECT NO. Lrppt6l FEATURE sheer l"11.n.irSl j CHECKED BY Y+L DATE 3�1�1`1(� SHEET OF ] �JcZ -I 11-t�QCI�/ �tasl✓1 1a �� � � . `LW C'k , Scx�fh �{a�� Y6t local *e4 , 51vpe= o,5010 Qa = SAcT5 0100= I,Dd5 from %r&4 *it fihaiiSt5 e 0A (al() = 3,4c45 > Mc; (pp 135G /q) Q�ao%II) = 88(a =4�eF> > 9,bc S+rect (r' pau y r i5mc�• `` I'q,IY41 1 (zt51/1 6 , I D� Cf l�l or h ge4l Ya IDCaI S�re�l � SIvQe = o,s�/o c'5 o,00= �/5cf5 i (om sfree� �PliuT f�Yla��1515 (�aLan)= 3,`ic�5 > 13c{j' (pp F35 G /9� Qloo(ad)= S&F5/d= �1�eF5 7 4/5c6 �t L ;, J�PGI ol�cl( l5md, gd51n �, Wllloo 5arlrw5 �(, 34-wn Black llotjDr• � WeeEwi� 5xA Qf Ya i6rcil 54reef , Slope = G,(o)lz alco= q,oc r(s / 1 G �.Oftl t4 &PUc(� N(5(5; (�a(all)= M,&4-6 > a,445 (ppB5 $lo/I Qlao(ai() ; IIB> q s ,' S?rre� �paccnf iS rv,C &+sin o b., Weef!4 Way FIa4, %a loca 15 reek 51ope = 1.501a ) a- 045 oloo- 6,5cfS F(0(71 •reel (apcv-i� Omly515 : ( (al(i �� .$5.$G(9) Qioo(AII) = Ig&�sla= •q�ic�5 >�.Sc('s. -= 51ree�G-� anly i5 me�P Lid St one 8 Anderson. Inc. OWNER —PROJECT (low ,i)/r nu ?t 65e; BY C' D DATE 3 7 /qq(o PROJECT NO. 0 f F P I FEATURE 5 AVIs CHECKED BY DATE SHEET OF �3 q LA!)1/1 3R - Weep In W�� I e ��I�• Iota( 4(eeT 151ope = (,S o Qa = a'D C� ` Fiore ()II Icw 5pong � , ?6e 1 Frna 1 Dramale 9cFv,1 LAB M j 1gg57 Qloo = %,& c�5 J 9epe 834 /1 iom S Pe D iu t (1515 - Q a ) 188 %a�9� = a> �4� F3 , ; 5;iee� i' rci{y �s rrte!. (pp as.��l�) �15(/1 dC W111cw 5p/rnj5 �1� 54wn, BI,ck Wit6i Dr, Weep,41 QA4, >•lOA Na(f. Ya (Oca l 5freei 151op e - 01010 0g : I, e ct Qtoo 7,ocFt7 n �f JP1 5I(4 C6� acl � �Iha (1515- (PP 55 �615) Qloo(a(I) = IIScF� fa- 54ef5 � 7�Oc�� - - 5{iee4' ��iLl>y i7me�• PjaSio S fdll e4' l.ou(�' >✓�II I�e�i '5-iwf 1510 �•��� Qa% �I,Ic�s ��om lra'Qa �aR7� TI►(a1�515' f� QaQo(All� = I�y9,� lha(�5%eel) 4f�/(Gi5 c (FP _ 3a5i� (Da G(oile(f' �)II local 5�(4 i 51ope - 0,610 Qa : 3'3 CC5 0100 = 10,1 d; 5we-( aP� �a (�515 Qa CAI!) = - (o cf5 (r1a14ed) > 3, 3cfj (Pp� L/R) Qlcniall)= I ISc�S >5ree�-PQuty B 34 /9 �N.r ..ww. W .MrrNN Cw.rfw. OWNER- ROJECT I,�rllo� F,�S>< Y DATE P OJEC NO. CEE STaO I CHECKED BY DATE SHEET OF ' FEATURE i<a`ionc,l M'li3Od ,'a�CJ� 'ror.i� s/zz!`�4 1 /(oIcb ri�1`���o Q N V\ I o ' V\ cQ ! O O rJ OJ ( CfJ p A ^ a -; VN � 1 C t s I n CIS C� ♦` ' cx VON z7- 5 tlJ ns tA ? c Q M 1 ► f � j 1 � I ( 1 � 3 fi. -- { i + �, �e �s j ' i `'F I �c � ' f Q vr, c^ _ CM43 i c6 a' 1 i V% 1 1 1 1r Vl V` V� V` V` �n c �'� I Vt i � c6 cC e�i c+. �C c6 I I 1 1uz^ T T v5 T i j lf� O •S O O O 9 O c'6 CIO 1 I 1 iC-6 i � ! ^ O V1 Vl i 1 1 I f i r I 1 I I {� 1-3 � c6 Cb f V, 7- �1 c 5 a6 ��6 r�6 cis M M I M M rz M V M ` T'- I Q 1I� M ,jI�Iv M 1\ T` 1 L,dctone & Anderson. Inc. OWNER —PROJECT wj( nn s Il sea BY C�� DATE 3 l99� PROJECT NO. Coy, 1 FEATURE `7-�i2e� �ac� Vi�lal5i5 CHECKED BY DATE SHEET OF �� 9 �� Golde ac151 /1 � a - Ck Wi (6j T5'i Je 3iiti - a4e C(k 3 44c� �r;c C i , Je , �t.8z ac o� 3•DSo�� 'yA-locai %ee � � 51D�= �) 1/0 o Qa = 4AA x (0a614LI3,og4cre5) = a, l cfs Fro(i 5�re4 CaOaC( h PRV � 515 ; OR 513 CiF J5 (pp 14) Qtoo (a15345/a : Il C4 ->q.to cf5 , % jiret= (a' ct l5�nc�• 13asm 68 3a �e C'/eek'Dive 8�n, keen lorti T,r. I Black wll�o�Dpue � (�e�f5lde SIaPe - 0,5010 I,a6ac /3,o8crues� Qico= (%aed5 % 1.aG� 40006re�: 64 fr0ff1 Sine ��f nna��51� Qafan) = a<BcFS > 1,g cis (pp a 7'9/4) Qtoo (bpOv Crounj: 118c; (o,CvGi5 :, S{relf 1 15 eN Z+• cl" �a51rt (pC & -wt(1a6) 64e 01(eeoc Drt✓e IvcC4 e = O,510 ate = ►3,v 1�'oal 5•%'e6r C'afzci f f�71�i515 C�cau) = 314 Ac=6,ecf5 >3,4c� (pp B 5 9) ()t0040 ° 88c-Fs > 13 cf; . , 9t& &p6ct'� 15 me. 5ltl Na ac f )dlovj _91-iJe A S0A 6-� C (obe C��f, I�P5t5t�e %a (oral 4(e& , 51opr = 13% Qa= gl4c door- lb,qd� I:irvill 5fr24Qa��(�- 17s��(a �S�c��> ((o.acFS (-PP B5�(ola) r . S( L F3 5/9 1 1 1 1 E W 14 12 m 10 U V� 0 s U IT 8 0 6 4 2 0 0 o,s9o, Ods- 6,6''lo, 4.bcr3 6.7°l0, 4,l d5 - j Minor Storm Allowable Street Flow 1 /2 Local Street -- 36' Width Calculatio Anderson. sppocificat "Storm Di is Were Inc.. Jul ons Cited ainage D erformed 1994. in in the Ci sign and byy Lid stone Aaoordo y of Forte Criteria M & Ice With Collins nual". - Curl /0 Reductior Full ischarge Facto i j Gurb (jRalloveF Full With Reduction Discharge Curb Fact ois and Gutter) � I t 1 2 3 4 f,5la, 7.1e.Fy Gutter Slope (�) III 5 5 Major Storm Allowable Street Flow Full Local Street -- 36' Width 500 450 400 350 300 U N 0 U. 0 250 200 150 100 Calculatio Anderzon.Q., specificat "Storm D s Were Jul ons Cited ainage D erformed 1994. in in the Ci sign and by lidsto ecardan'ce y of Fart Criteria M e k With Collins nuaf . Note: Flo Wo Conveyapcs Neglects Be on For Thi the Top Analysis of Curb Abo Wl Rollov a Crown Reduction r Curb Disc Factors and Gutter) urge I I � I j 6"I With fZollover Above Red Crowry ction Curb and I Discharge Factors Gu ter I I 50 0 0.5110, 8&f5 J o.c�°, udcFs.—I G•7Mof h(iC 1 2 3 4 1.60/p/lE36, , Gutter Slope (%) 5 e 3 7/9 14MAR96 09:57:59 PAGE 1 ' THIS RUN EXECUTED 14MAR96 09:57:59 rrrrrxxxxxrr:rxxxxxxxxrrxrxrrrrxxxxxx f� ' HEC-2 WATER SURFACE PROFILES rIIC� WS'SC'(�B�0yi 5f-itcf �' �ur{�ailG(y�sr5 m (�nsr?(8 Version 4.6.0; February 1991 eiG{�� C/(e�.D/I�e� 5G',4ewdecf6/ ' rxrxxrxxxrrrrrrrrxxrxxxrxxxr:rrrrxxxx - . NECof S�n�Ic CivYSSee&I s1o/mal d� Tt WILLOW SPRINGS PHASE 2 FINAL DRAINAGE PLAN -- STREET ANALYSIS 3/8/1996 ' T2 FLOW FOR THE ALLOWABLE 2-YR DEPTH (1 LANE FREE) LIDSTONE 8 ANDERSON, INC. T3 BATTLE CR. DR. 5=0.5X mv ' J1 ICHECK INO NINV IDIR STRT METRIC HVINS O WSEL FG 2 0 0.0050 .50 ' J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW CHNIM ITRACE 1 -1 /TYP, % e✓v."5eehen OT 2 2.8 7.8 / WA (011001- N(b• NC 0.016 0.016 0.016 0.1 0.3 X1 1 6 98.58 118.01 10 10 10 GR 2 98.58 0.39 98.59 0 100.00 0.11 101.17 0.45 118.00 GR 2 118.01 14MAR96 09:57:59 PAGE 2 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV C OLDS OCH GROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA ' SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *PROF 1 CCHV= .100 CEHV= .300 *SECNO 1.000 1.000 .33 .33 .00 .50 .37 .04 .00 .00 2.00 2.8 .0 2.8 .0 .0 1.7 .0 .0 .0 2.00 00 .00 1.66 .00 .000 .016 .000 .000 .00 98.82 .004984 100. f 10. 10. 0 0 7 .00 13.12 111.93 ' y15Gh4nAe �f rI 4e2ve5 �ee� -kee 1 1 --ag 19 1414AR96 09:57:59 ' T1 WILLOW SPRINGS PHASE 2 FINAL DRAINAGE PLAN -- STREET ANALYSIS 3/8/1996 T2 FLOW FOR ALLOWABLE 100-YR DEPTH (CROWN FULL FLOW) LIDSTONE 8 ANDERSON, INC. T3 BATTLE CR, DR. S=O.SY. ' J1 ICHECK INO NINV IDIR STRT METRIC HVINS 0 ' 3 0 0.0050 J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW 1 15 .1 ' 14MAR96 09:57:59 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV HL 0 OLOB OCH OROB ALOB ACH AROB VOL TIME VLOB VCH VROB XNL XNCH XNR WTN ' SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR *PROF 2 CCHV= .100 CEHV= .300 ' *SECNO 1.000 1.000 .45 .45 7.8 .0 7.8 ' .00 .00 2.14 004942 10. 10. 7rx�ir✓�C I - .00 .50 .52 .07 .00 .0 .0 3.6 .0 .0 .00 .000 .016 .000 .000 10. 0 0 5 .00 PAGE 3 WSEL FO .50 CHNIM ITRACE PAGE 4 OLOSS L-BANK ELEV TWA R-BANK ELEV ELMIN SSTA TOPWID ENDST .00 2.00 .0 2.00 .00 98.59 19.32 117.90 Floowjd . jj,gCf (111,4 - joo,D) NO,, (/odo f ix0a.-' 3 -t�>O( 19 14MAR96 09:57:59 PAGE 5 THIS RUN EXECUTED 14MAR96 09:57:59 'rrryrxrrrxrrrxxxwrxrrrrrrxxxxxrr:rrrr HEC-2 WATER SURFACE PROFILES 4.6.0; February 1991 'Version xxxxxrxrxrrxxxxxrxrxxrrrrxxxxxxxxxrxx ' NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST BATTLE CR. DR. 5=0.5% SUMMARY PRINTOUT TABLE 150 SECNO XLCH ELTRD ELLC ELMIN a CWSEL CRIWS EG 10*KS VCH AREA .01K 1.000 .& .00 .00 .00 2.80 .33 .00 .37 49.84 1.66 1.68 .40 1.000 .00 .00 .00 .00 7.80 .45 .00 .52 49.42 2.14 3.65 1.11 14MAR96 09:57:59 PAGE 6 ' BATTLE CR. DR. 5=0.5% ' SUMMARY PRINTOUT TABLE 150 SECNO O CWSEL DIFKSP DIFKWX DIFKWS TOPWID XLCH 1.000 2.80 .33 .00 .00 -.17 13.12 .00 1.000 7.80 .45 .12 .00 -.05 19.32 .00 ' 14MAR96 09:57:59 - PAGE 7 SUMMARY OF ERRORS AND SPECIAL NOTES APPENDIX C INLET DESIGN Table C-1. Summary of Inlet Design. .............. .......... .... e ....... ..... ......... . ....... ..... ...... Discharge ...... - - ......... D Capacity fefs} DesRequired ... .... �.ype- ....... Size ........... 110 uit ..... . ... A, IA 19B Type-R 15-foot 3.4- 12.6 6.6 14.9 1C 19A Area 4 sq. ft. 3.4 12.6 19.6 22.4 2A& IB Type-R 15-foot 4.0 15.4 9.9 19.6 2CR IA Type-R 5-foot 1.8 7.0 3.1 5.8 b 4' lAl Type-R 7-foot 4.4 10.1 4.4 12.3 5 18A Type-R 15-foot 4.1 15.4 6.6 19.6 6A 17A Type-R 15-foot 3.3 12.7 6.6 14.9 6B 16B Type-R 15-foot 4.4 16.3 7.2 13.2c 6C 16A Type-R 15-foot 3.4 16.1 6.6 19.6 14A 21A Type-R 15-foot 4.4 16.9 616 16.8 d 14B 21B Type-R 5-foot 0.7 1 2.1 1.1 2.0r a Initial design performed in conjunction with Willow Springs Phase 1, [LA, 1995]. "Inlet at D.P. 2A has an additional capacity of 4.2 cfs to be utilized by the Inlet at D.P. 2C for the 100-year event. `Excess discharge of 3.1 cfs is collected downstream by inlet at D.P. 6C. d Excess discharge of 0.1 cfs is collected downstream by inlet at D.P. 6B. `Excess discharge of 0.1 cfs is collected downstream by inlet at D.P. 6A. W.I.IA Y•w .. W ••rYw••I.1 C•YMIYM• OWNER -PROJECT BY DATE PROJEEOF WOO � (, � T6a cL� 3-8-19q� Co* FEATURE T CHECKED BY DATE SHEET�L Znlet aiwr� �oi�r 2A - Coible� 5�lifiy�► Qioo = 1016 ci; aye = a 39 f (4-op of cutb) 100- e- = m54 (6 r'ove/ cra)o)) hcweW , -or k5 ign , v5e Jep40,50 (Wc% o� „r,10 hefjh� of open nj =06R. A4 cal cy(a�7dris ram jdte� k?o✓nO ro pCtge C3 For a 10-4(ti W s (Q= (0/1014;Iri) 60R)(a65) _ (o,(o 6% o� Fal- hea" - I Do-yo- Ae� �C J �iT1o�15 • dram ,n lei waal l ph ok ;;✓ 160-year. 05e a 15 P Type-p Curb Lr�re� 1.0 --- 12 5 10 4 .9 11 8 3 10 6 .8 F ►= 0 U. 9 0 4 .7 a 3 i ' 'IL 8 w —z 1.5 a L .6 7 Pots b U .9 .5 w 5.5 .8 f v' U- 7!d 75, QIc=,18 w W 5 w .4 z77c; _ .6 lines0" rw09"aPh4.5 z w Aii oferof 5IZafiwIIY 1we U. = eulled0 _ 5 vsuJ +odevdopkaj 4 2 Cottle-Af v'P"7 LB, z 0 ►- o Aand IgF3. See z z Z 3 Z z 4 a11, V01,41 6ri ShCC{7 w 3.5 w w - GS,Idl9, a a J er O 0 1 w IL U- p .08 .25 3 ~o .06 3 c� 0 0 ? U. _ _ w w .04 .25 = 2.5 = w w 2 a .03 a~ r f- w .2 a .02 0 a = 2 U a Uj .01 0 .15 .15 L w 0 0 1.5 .10 °-2h Figure 5-2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2- ` Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA . ' M�Iw •YWH�� W ���Y�w���l C����IIIN1� Cs1RI 030 0.7 u- 0.6 f- f,j z 0.5 Cr w > 0.4 0 am I I EXAMPLE I ' I 2 3 4 5 FLOW INTO INLET PER SO. FT. OF OPEN AREA (CFS/FT`) .Figure 5-3 CAPACITY OF GRATED INLET IN SUMP (From: Wright -McLaughlin Engineers, 1969) 7�0f_ aepFh = o- 5 of ,,o a MAY 1984 36cir3 /4s a�� = y,o C'r� 14" 5-11 DESIGN CRITERIA L FEATURE CHECKED BY DATE SHEET OF SVlkl u� lv5I tl Nd d (r'-eVl5ion -rroal ?haje 1 ifli 7r( de5tqh) Qa = 4,4cF5 � 5ob-ko!,iei4 Ql«, : to, I cf5 t�l10.YAble �OLAJ Aef� o . a-yr : 0, -�q �+ (40pof coib) 100-fr- : 0, 15W (6,loke cro-111� hej4cWo?emj-- 06P 14L mW rilC��u�on ybj� _ --Fwh 14le4 r, graph r �ayc C3 Q IL -0/-a 5-P inter - Q= (0,78AA(5f+)(0,8) -- 3,Ir-4 A0414lye en"h. -For a 7-14 i✓11ef - 0 = 69,786Q(4) (I R) (0,B) " 4,gcA 'l� o k fora -ram loo-jr- inn ealculc,fioo : yo/A= olgGF�/s{f = q -Fran �nlef i1o//1 rahc C3 Ora-��tnlef la, ok(0rPo-yr ;. U5e a 1-F� mod�Ficd CW� Type -2 Cwb l�l kf low Gl kAW.I. C.... .41e� a+ De5im ?o1ff 5 CUrh ifile(-, svnap C'atci� o�, - q,145 Q(oO ; 15, 4c; 15,kb4Ssn .5 3-8-(99G y �Ila,e,bl� !low CIO s 0-39 F� //(fog, aCutb) /` 100 y - - O,g5-f ue"4dle C(aan) r h we✓eri �o�G1e5�9�, v� depTn- D•(W� 0;5q.iw Cv'ib) Neon- o� euib opemij -- a-feu/ ,014 Ucu(a1 045 yolh- G,594/o -from 1akT' MMOI aptir pale C3 : oi(--- albchi 1F* F-ora 10-Flrn14; Q= (0.18cFs�Ff) I00-,peal- frllef ea(CL) 4►045: volt ; Iq F%,5Fr= I,ae pl/ k �I�m r�kr do wlr^0 1 rora to-F1id ; a: (1145c1r�)OOR)(6-6�5); 1d,3c.g Fora Q= ((,45c�51p) (15p) (0,40) = 19,&cf5 vk �ol- (Go-�&n ' Use a 15-F4 000 T -jetAJ lW L4'.� M... � 8�..W C.�. C(-li 13- FEATURE CHECKED BY t� (r-f- 1 iP51a n lrnlef of J�5igv1 ?o(r4 &a - CL)6 Jutle+, SL)Mp ccmm ih� el (Subbay10 &4) n�+ Qtoo- Ia��C�5 C`UR451r1 %�) f-od C 5 (o✓elgow, 50bbotn 14b) ' t;,8c,;, ROJECT NO. , IEET OF c8 a� 000'Able �100 Dqf h - hf- = b, 39 R ( fc? 04 coib) job-yi= 0,15P (6,la(ove c(airl)j ha.,e✓er, 4(, deglh U5c Ohl F e(g4 o� bpeoiv) = o6CF , ajar 14W eo(colarro4.2 l am 14IJ nvrno9r4pkr Faye C3 o-7B51 f'oro (0-Ff 1&1-, Q = (0,18cf-s1�f)00FF) b•&cT-5 -IG�-�Ca� I/l�Zf Ca�cv�a{�ons. -From inlet- vo 9ra,�r Fora Iv-F�- I� - Q= 0,IcF5[P) (10pj C0.8� _ .gllgc�5 6rq 15-9 a- (1-1c;(R) (15ff) (M) = 141fc4S ;, 7yPe-eCvib rnle� , okgr ay*� ok �e looleGl- IN T viciPtonP&MAnders"onhic. 7 ���v •ww��� W Y�YM•���M Cr�lw� c� Im FEATURE CHECKED BY DATE SHEET OF i nle� 1YS1gn n ;1 :: l le+ C { %A°51 q rl ?ot Coib Josef, Ioca� 5 O.q = . y,q CF5 (544tnvi GB) 0100= l(D,ac{5 (5vb�s,n(aB� +0,1 eFSCGLer{%�FrcvnSobbastn l�(a� �(o,3ci5. ► (laja ble P(ai d ep+� tee„ 0, 3 I C4 (+opof Clown a� Ya$le Cveekb t ► Blow Dr. .Tr1kGr5ec%w) 100-,K; b,81 Ff ((s"al we ciojn� he(#a ofemni =0150, A eomblrneJ ecdcalned as-CV110,05 (�te (V112{ CR(xtct7y Way Cg1cU(a�ed VStvtq %�Q NRvtcl4rd t✓ile� vlovnocjr�,.pk (5 (i9urc 5 Pm cver4-opptn77 rct&q Curve wA5 CompAed J-)uny 46 roada)ay ovOoppin9 porhan of iI e. NY-13model Cale, WS-Sl�(3,P/�N) from t�le4• nomo�ra�,, �a9ge�3, d✓dey aciachon Facfor of 0,90, 1/llf� O,)inc elev,16rt = 51,19 P�. r-ram g,18 file �'StpB,pxm) l;evai�orl CFeef) yo U-) yolk) (41) ale. (c451r4) sr W tDi5c6iur e Cc45) OverLapp,✓i9 D e4v e &;) Tolal 'Dockay Cc�) 0,3( 0,(a 0)53 7,a 0 7,a? 5054, 5a 0/40 {oleo 0,1q (a1 1 11 % 5of;4,55 0,4 0,86 0109 I 1 ig a 5o54.56 v,qb 0,q§ 13,1 3 5054,51 6,47 o,q4 i.o 015 5,5 l�,a a-��� Evenf a% C(oan ovP/ ppiviq ; (�cap = 1,;ct5 > cl,cl cf5 ok Qr J-yemr even, 0 mle4 : 13,a cf5 r a alerfo?p,n1= 311 C. 5 (fo 50b6451h (e) : , olk ar too-Ir evestt, Ioo yrdepfh 0,q1 Feef , allocable d0f,. 0,31 ff%ra ^ elegy) i o-5pf = 0,01 (eef vk {;r loo-/reoc , Ej C'��b tvtler m 7RAANTM FRW )?CkUO fR 1* sroEw�ca aw bt�rizE CT4CH L1VR6� avrrtF aErMu[x oN 6u w/ ""Vn.4P R"Ps PM a 49M..78 / PCR 19+2Z25 \� from: Plan 5c� Pao a 4954 Jo prom: Vf�I�4�r Plate Sd 'CURRENT DATE: 03-08-1996 CURRENT TIME: 12:08:58 FILE DATE: 03-08-1996 FILE NAME: WS-I68 ' FHWA CULVERT ANALYSIS NY-8, VERSION 4.0 C I SITE DATA I CULVERT SHAPE, MATERIAL, INLET uI--------------------------I-----------------------------------------------I I INLET OUTLET CULVERT I BARRELS I 'L I V I ELEV. ELEV. LENGTH I SHAPE SPAN RISE MANNING INLET I # I (FT) (FT) (FT) I MATERIAL (FT) (FT) n TYPE II-------------------------- 54.40 54.39 I ---------------------------------------------I 1000.00 I 1 RCP 0.01 0.01 .100 CONVENTIONALI 121 I I 131 I. I ,15 I I I51 I I 161 I I SUMMARY OF CULVERT FLOWS (CFS) FILE: US-1611 DATE: 03-08-1996 ELEV (FT) TOTAL 1 2 3 4 5 6 ROADWAY ITR 54.40 0 0 0 0 0 0 0 0 1 A-C).+$ 0 0 0 0 0 0 0 30 '54.46 54.52 1 0 0 0 0 0 0 1 30 54.54 X 1,5 0 0 0 0 0 0 1 28 2 0 0 0 0 0 0 2 22 '54.55 54.57 X- 6 0 0 0 0 0 0 2 19 54.58 3 0 0 0 0 0 0 3 18 54.59 X.55 0 0 0 0 0 0 3 15 '54.59 4 0 0 0 0 0 0 4 14 54.60 jr q.S 0 0 0 0 0 0 4 13 54.61 5 0 0 0 0 0 0 5 12 . 54.43 0 0 0 0 0 0 0 OVERTOPPING SUMMARY OF ITERATIVE SOLUTION ERRORS FILE: WS-I6B DATE: 03-08-1996 HEAD HEAD TOTAL FLOW % FLOW ' ELEV(FT) ERROR(FT) FLOW(CFS) ERROR(CFS) ERROR 54.40 0.00 0 0 0.00 54.46 -0.00 1 0 90.68 54.52 -0.00 1 0 19.21 54.54 -0.00 2 0 1.89 54.55 -0.00 2 0 1.33 54.57 -0.00 3 0 1.16 ' 54.58 -0.00 3 0 0.85 54.59 -0.00 4 0 0.99 54.59 -0.00 4 0 0.88 54.60 -0.00 5 0 0.82 54.61 -0.00 5 0 0.80 &iftl Bpi , will40+(OAve� peril 4eenfiicdi, 6i9e 15 oaa Pj 4e r04Awl y CfA,Jn, k(xdt'Ai G'oah aeifoppl.#9 rah,CpNe <1> TOLERANCE (FT) = 0.010 <2> TOLERANCE M = 1.000 2 CURRENT DATE: 03-08-1996 FILE DATE: 03-08-1996 CURRENT TIME: 12:08:58 FILE NAME: WS-I68 PERFORMANCE CURVE FOR CULVERT # 1 - 1 ( .01 BY .01 ) RCP DIS- HEAD- INLET OUTLET CHARGE WATER CONTROL CONTROL FLOW NORMAL CRITICAL OUTLET TAILWATER FLOW ELEV. DEPTH DEPTH TYPE DEPTH DEPTH VEL. DEPTH VEL. DEPTH (cfs) (ft) (ft) (ft) <F4> (ft) (ft) (fps) (ft) (fps) (ft) 0 54.40 0.00 0.00 0-NF 0.00 0.00 0.00 0.00 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 0 54.40 0.00 0.00 3-M1f 0.00 0.00 0.00 0.01 0.00 0.01 El. inlet face invert 54.40 ft El. outlet invert 54.39 ft El. inlet throat invert 0.00 ft EL. inlet crest 0.00 ft ***** SITE DATA ***** CULVERT INVERT ************** INLET STATION (FT) 0.00 INLET ELEVATION (FT) 54.40 OUTLET STATION (FT) 1000.00 OUTLET ELEVATION (FT) 54.39 NUMBER OF BARRELS 1 SLOPE (V-FT/H-FT) 0.0000 CULVERT LENGTH ALONG SLOPE (FT) 1000.00 '*'** CULVERT DATA SUMMARY BARREL SHAPE CIRCULAR BARREL DIAMETER 0.01 FT BARREL MATERIAL CONCRETE BARREL MANNING'S N 6.100 INLET TYPE CONVENTIONAL INLET EDGE AND WALL SQUARE EDGE WITH HEADWALL INLET DEPRESSION NONE 3 'CURRENT DATE: 03-08-1996 FILE DATE: 03-08-1996 CURRENT TIME: 12:08:58 FILE NAME: WS-I68 ' TAILWATER CONSTANT WATER SURFACE ELEVATION 54.40 ' ROADWAY OVERTOPPING DATA ROADWAY SURFACE PAVED EMBANKMENT TOP WIDTH (FT) 2.00 USER DEFINED ROADWAY PROFILE CROSS-SECTION X Y COORD. NO. (FT) (FT) ' 2 28.00 54.61 efo„dn 5po+e(ewAhx ) on 34i fe O/eek UIwe ' 3 46.00 54.52 4 66.00 54.43 &Ovjn 6lfahon44 B4fFIeG[ek/Bkttlt(r�d(OJTN�trSeCh"o� 5 101.00 54.75 35'Ea,5+0n8kie:CWlllowDr, ern 6'olde/1 I il 3=-Taffl� C✓V 3-6-111b BY IDATE do PPIPO t SHEET OF CW J. �✓11� a� -De,5(gn Cv✓b . oIJ, 5omp (eo lhi rn Qa = 3A c. ,- CSob{xr9rn 6c) n Q�oo: 13,od5, CSvb,�as,tl GC) (O✓Pr�looJ -Fran Ubasir► ct5 t Motiol (e Flow fh 0,3q �4 Cfo� curb) 1�1'U-fir = O,q5l� (b"o6ore eraon)) 6v,�ever, rvrdmijm , v5e depl�l b,&O� b4SO abale colO HeijhT"o� ev(b owlrg =06R, a- JW Wet WcJ> 40,15 1 ` oII ; (7,51ly,5 p- � o, 78 rl/ff -P7om mk mmoyraph , ?Te C3 ; OJL-, 017Sd-5IFF. �vrq l�-Ff ivtl�; 0 r- (0,70d;[P) (10 0)(0/05)= &,6cft dk for ;year: IGYi�P�/ In�c{�(c�Ia�ton5 �roM Inlet nomalrepti , ale C3 ; a(`, 1145 cf (Fj. -Fora lo- q rn (&4. , Q = ((,4sc- P) (1of4) (0, 05)= la, 3 c,� Fora 15-4 tnl?f - (0,90) _ /7,6A ;. Ok fofIWyr. (ke a IS Ff CDOH Type-9 cv/b tniti�, I,J� Ilcw 5D(-Inq5 - Ag5e to I 3-8 - I qqG CEO, ppp d ( FEATURE CHECKED BY DATE SHEET OF bfs,gr, I I Cis 0 � -�i(ef of lDnIii 'Po 144- (44 Cub .lo(Zf , 5omp OoAdihon Qa= ocF5 > 5obba5ol WQ alcv= I&IgCF5 cu/0 lDo-jr = U,5 Ff (high poin+deo adore gcolwe� �efyhf 0� 615P, hew- mlef erdcolaho'0 yo/A , o, 5111/o,s Ff = b, �rom ivlle� rlomo9l-4Fh, Fora (o-F�jhlel: Q= 6,6c(; I0o-yev Idel eiilcolabo45 yoj� , o,s ��/0,5 R - I F,/F� From AJ moo9raph, Faye C3: ak I11cP5l-F rvr4 to-F o4l; 0= q,4cA -Fora :- lei-9Gi5 :, ok -or a-y�� ATURE CHECKED BY DATE SHEET OF J-A� l46t Con fguea Clro a� Nllo�' asmall o(hon of too -yeas di5�ai9e fo cvet-f(&w ¢o Ae ha"fh (po^� �/iUe (S� bbaS�n i98� pfr o✓el,-f lop (ahnq Cuta bja5 Com pof eJ USiK) NCC d (5rnlle cfm5ec1'7onl nofmal Jeo of ho�i) ffEc a Ali'; OUT Depfh 07eef) Olet-loa Dixlwr G LcFs) yolk (F� Ff) QlL� c�y Ff) IS-Ff.7hle� ��9c(1a/ (cis Tc*o, Disc(nur c (�& 005 o 1.0 b,� o o- r /40 115 114 I T 01&.5 04 1•a� 1 of Is,q 15.1 01&5 013 13a 1,5 ao,3 I ao,� I ,Le5ob: -ori It fie rrW wU eoUec� /&,s cf5 The ►'ematvltn' 04 of55 wr(I cvera'.) fo 4e hoifA on 13( Wrllv�l�✓e &Co Jen U5 e R 1S-f4 CDo4 Type -le Crib Im14. 00 50 0 w 100 scale i' —W* feet 54 55 a 56 Frorn: hh f ' 14kf 4 Deolp TbI4I4A 10+97.00 s•'1 PE RO NU7 57 FL 08MAR96 11:03:11 PAGE 1 ##xiiY+##iY+:##YixlYi#++rYYixl+##YiiY HEC-2 WATER SURFACE PROFILES Version 4.6.0; February 1991 *f#YYflf!#YYYff+#+#fYYYiflY###iYYYRf# T1 WILLOW SPRINrOS PHASE 2 FINAL DRAINAGE PLAN -- INLET ANALYSIS 3/8/1996 T2 OVERFLOW TO iB1.AB�6K WILLOW DR. FROM INLET 14A LIDSTONE 8 ANDERSON, INC. T3 LOCAL STREET W=361 S=1.4% J1 ICHECK INC NINV IDIR STRT METRIC HVINS O 2 1 0.0137 J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW 1 -1 CT 3 0.1 0.2 0.3 NC 0.016 0.016 0.016 0.1 X1 1 6 98.58 118.01 GR 2 98.58 0.89 98.59 GR 2 118.01 08MAR96 11:03:11 0.3 10 10 0.50 100.00 THIS RUN EXECUTED 08MAR96 11:03:11 WSEL FO .50 CHNIM ITRACE 74P'cA( Y4 5>(tt� 5eAon ' 10 '0.61 101.17 0.95 118.00 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 OLOB GCH GROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *PROF 1 CCHV= .100 CEHV= .300 *SECNO 1.000 1.000 .10 .60 .1 .0 .1 .00 .00 1.45 .013753 0. 0. .60 .50 .0 .0 .00 .000 0. 0 .63 .03 .1 .0 016 .000 24 14 .00 .00 2.00 .0 .0 2.00 000 .50 99.65 .00 1.40 101.04 PAGE 2 ' 1 08MAR96 11:03:11 T1 WILLOW SPRINGS �,PP�HASE 2 FINAL DRAINAGE PLAN -- INLET ANALYSIS 3/8/1996 p�pp 'T2 OVERFLOW TO Bt a WILLOW DR. FROM INLET 14A LIDSTONE 8 ANDERSON, INC. T3 LOCAL STREET W=36' S=1.4X ' 11 ICHECK INO NINV IDIR STRT METRIC HVINS 0 3 1 0.0137 ' J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW 2 1 ' 08MAR96 11:03:11 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL ' O GLOB OCH OROB ALOB ACH ARDS VOL TIME VLOB VCH VROB XNL XNCH XNR WTN SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR '*PROF 2 CCHV= .100 CEHV= .300 *SECNO 1.000 1.000 .13 .63 .64 .50 .67 .03 .00 ' 2 .0 .2 .0 .0 .1 .0 .0 .00 .00 1.44 .00 .000 .016 .000 .000 .013664 0. 0. 0. 0 32 13 .00 1 1 WSEL FO .50 CHNIM ITRACE OLOSS L-BANK ELEV TWA R-BANK ELEV ELMIN SSTA TOPWID ENDST .00 2.00 .0 2.00 .50 99.52 2.82 102.33 cigYal PAGE 3 PAGE 4 08MAR96 11:03:11 T1 WILLOW SPRINGS PHASE 2 FINAL DRAINAGE PLAN -- INLET ANALYSIS 3/8/1996 aDLbcT2 OVERFLOW TO 3LAEK WILLOW DR. FROM INLET 14A LIDSTONE 8 ANDERSON, INC. T3 LOCAL STREET W=36' S=1.4% J1 ICHECK INQ NINV IDIR STRT METRIC HVINS 0 WSEL 4 1 0.0137 .50 J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW CHNIM 15 -1 08MAR96 11:03:11 FO ITRACE SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 QLOB OCH OROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *PROF 3 CCHV= .100 CEHV= *SECNO 1.000 1.000 .15 .3 .0 .00 .00 .013618 0. 300 .65 .66 .50 .69 .04 .00 .00 2.00 .3 .0 .0 .2 .0 .0 .0 2.00 1.51 .00 .000 .016 .000 .000 .50 99.45 0. 0. 0 25 12 .00 3.79 103.24 10"v/ PAGE 5 ' PAGE 6 ' 1 1 1 OBNAR96 11:03:11 PAGE 7 ' THIS RUN EXECUTED 08MAR96 11:03:11 +fff+4fi+ftffffYYYYf+YYYYYYiiffi+tiYf 1EC-2 WATER SURFACE PROFILES ' Version 4.6.0; February 1991 ifYYiiYf+iift++itf+f+:+f++++f++++f+ff NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST LOCAL STREET W=36' 5=1.4% SUMMARY PRINTOUT TABLE 150 ' SECNO XLCH ELTRD ELLC ELMIN 0 CWSEL CRIWS EG 10*KS VCH AREA 0lK 1.000 .00 .00 .00 .50 .10 .60 .60 .63 137.53 1.45 .07 .01 1.000 .00 .00 .00 .50 .20 .63 .64 .67 136.64 1.44 .14 .02 ' 1.000 .00 .00 .00 .50 .30 .65 .66 .69 136.18 1.51 .20 .03 ' 08MAR96 11:03:11 PAGE 8 ' LOCAL STREET W=361 5=1.4% SUMMARY PRINTOUT TABLE 150 - ' SECNO 0 CWSEL DIFWSP DIFWSX DIFKWS TOPWID XLCH ' 1.000 .10 .60 .00 .00 .10 1.40 .00 1.000 .20 .63 .04 .00 .13 2.82 .00 1.000 .30 .65 .02 .00 .15 3.79 .00 08MAR96 11:03:11 1�e',Iyn �anfAwillovi'Dirive PAGE 9 O✓Ct,flow }0 b 6) ' D&6-je vs, dcp+ ra�rl cure 1 SUMMARY OF ERRORS AND SPECIAL NOTES 4 tnitf 14 A dcplk abrNc f1o0l (ri c www •...w.�. W .�.Yw.MU C.�.MM,. - �J��lo�l rt �{1a5e a CL� 3 s 1996 Cod � I FEATURE CHECKED BY DATE SHEET OF r _ (,.L �� Cm 81 Tvlle� aT 1)e5lyvi Pavt f I4b Curb 1444, 10C4150 n� Coriclifio4 Qd= (9,7 F5 5vbba5on Wb 0100 off, l cf^ hilowable F(oj Leo o a -and Ion-�tui = b's-4 (hc j4zD h1gh Pao+ a+ Globe fiel�(�li o� r Cc�l✓i9 = oj5fl -Fvm Wef YlA"✓lolraph I ?age C3 Qi,�: am cf--5I Gl. f orq 5f+m1d: 1. I c(5 Mlow a 5maU �orhao of 100-tear Raj�o ovtiRow onfo 61obe Cf �s�bba5� Ga� Ari o✓erPow rain, cu/✓e wa5 eoMfdo td using 45Cd (s�r�lc c.on,secimr; no--mAl dcPihophei) �HECa File; ws-Zi�3.ovt Dep f y, I gecl-) ova i-Raw 'Dfsc6e (d5) yo l h (RI P) Q I I- (c4 I Ff) .fin If { U5c6,,e (A 7i4a l -Dt6ctia e (ck) 04 0 0,4 0,a8 1, 1 111 a oil v-194 0,5'7 a,5 a;4 0,3s o1A a,G a-g 0,11 a 8 311 Re5oR5; Ora yak+ will collect a,Oc�5 , Tie re►natita' o,l C�5 �.x(IOvP/�a� fv Globe Coif. (Sobbasrnl�A'). Use a 5 -Focf 009 Type-2 Cceb.Lifc1, u 3CE=- Iv Mill mm 10*00 11+00 12*00 1 08MAR96 10:19:24 fYi#fiif#iYffYfY#fftY###YYY#Y#YY#ffYY HEC-2 WATER SURFACE PROFILES Version 4.6.0; February 1991 iYY##fY###tY#ff#f#f#fir###fYYf#ffYY## T1 WILLOW SPRINGS PHASE 2 FINAL DRAINAGE PLAN -- INLET ANALYSIS 3/8/1996 T2 OVERFLOW TO GLOBE CT. FROM INLET 148 LIDSTONE & ANDERSON, INC. T3 LOCAL STREET W=36' S=0.6% J1 ICHECK ING NINV IDIR STRT METRIC HVINS G 2 0 0.0060 J2 NPROF (PLOT PRFVS XSECV XSECH FN ALLDC IBW 1 -1 GT 3 0.1 0.2 0.3 NC 0.016 0.016 0.016 0.1 0.3 X1 1 6 98.58 118.01 10 10 10 GR 2 98.58 0.59 98.59 0.20 100.00 0.31 GR 2 118.01 08MAR96 10:19:24 U44 ,PAGE 1 THIS RUN EXECUTED 0814AR96 10:19:24 WSEL FO .50 CHNIM ITRACE TvicAf 5ec6on 101.17 0.65 118.00 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV G GLOB GCH OROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *PROF 1 CCHV= .100 CEHV= .300 *SECNO 1.000 1.000 .12 .32 .1 .0 .1 .00 .00 .97 .005981 10. 10. .00 .50 .33 .01 .00 .00 2.00 .0 .0 .1 .0 .0 .0 2.00 .00 .000 .016 .000 .000 .20 99.57 10. 0 0 11 .00 2.04 101.61 PAGE 2 ' t 1 1 1 ' 0811AR96 10:19:24 T1 WILLOW SPRINGS PHASE 2 FINAL DRAINAGE PLAN INLET ANALYSIS 3/8/1996 'T2 OVERFLOW TO GLOBE CT. FROM INLET 14B LIDSTONE & ANDERSON, INC. T3 LOCAL STREET W=36' S=0.6% ' J1 (CHECK INO NINV IDIR STRT METRIC HVINS 0 WSEL FO 3 0 0.0060 .50 ' J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW CHNIM ITRACE 2 -1 ' 08MAR96 10:19:24 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV ' 0 GLOB QCH CROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *PROF 2 ,CCHV= .100 CEHV= .300 *SECNO 1.000 1.000 .15 .35 .00 .50 .37 .02 .00 .00 2.00 ' 2 .0 .2 .0 .0 .2 .0 .0 .0 2.00 .00 .00 1.00 .00 .000 .016 .000 .000 .20 99.45 .005952 10. 10. 10. 0 0 9 .00 3.81 103.26 C41/x1 PAGE 3 PAGE 4 0814AR96 10:19:24 %Ap PAGE 5 T1 WILLOW SPRINGS PHASE 2 FINAL DRAINAGE PLAN -- INLET ANALYSIS 3/8/1996 T2 OVERFLOW TO GLOBE CT. FROM INLET 14B LIDSTONE 8 ANDERSON, INC. T3 LOCAL STREET W=36' S=0.6% J1 ICHECK INO NINV IDIR STRT METRIC HVINS Q 4 0 0.0060 J2 NPROF (PLOT PRFVS XSECV XSECH FN ALLDC IBW 15 -1 OBMAR96 10:19:24 WSEL FQ .50 CHNIM ITRACE SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 QLO8 CCH OROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *PROF 3 CCHV= .100 CEHV= .300 *SECNO 1.000 1.000 .17 .37 .3 .0 .3 .00 .00 1.08 .005995 10. 10. .00 .50 .39 .02 .00 .00 2.00 .0 .0 .3 .0 .0 .0 2.00 .00 .000 .016 .000 .000 .20 99.38 10. 0 0 9 .00 4.78 104.16 PAGE 6 08MAR96 10:19:24 PAGE 7 1 THIS RUN EXECUTED O8MAR96 10:19:24 ' xrxxwwrxw:wxwwww:wwwwwrxxwwwrxxxwrxxw HEC-2 WATER SURFACE PROFILES Version 4.6.0; February 1991 xxxxwxwxwwwxwwwwxwwwxwwwwwwwxwxwxxxww ' NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST LOCAL STREET W=361 5=0.6% SUMMARY PRINTOUT TABLE 150 SECNO XLCH ELTRD ELLC ELMIN Q CWSEL CRIWS EG ' 1.000 .00 .00 .00 .20 .10 .32 .00 .33 1.000 .00 .00 .00 .20 .20 .35 .00 .37 ' 1.000 .00 .00 .00 .20 .30 .37 .00 .39 08MAR96 10:19:24 1 LOCAL STREET W=361 5=0.6% SUMMARY PRINTOUT TABLE 150 SECNO G CWSEL DIFWSP DIFWSX DIFKWS TOPWID XLCH 1.000 .10 .32 .00 .00 -.18 2.04 .00 ' 1.000 .20 .35 .03 .00 -.15 3.81 .00 1.000 .30 .37 .02 .00 -.13 4.78 .00 ' 08MAR96 10:19:24 De519 el Y01 V4 14 b ae(Tlo-Fo 6loWCOf+ �B45M il�) ' D15rk4rjt v5• JCP+h �a�1✓tgcU(�e• SUMMARY OF ERRORS AND SPECIAL NOTES ciC AIpO✓e Inlee I413 �(�Ilti[' T 1 10*KS VCH AREA .01K 59.81 .97 .10 .01 59.52 1.00 .20 .03 59.95 1.08 .28 .04 PAGE 8 PAGE 9 APPENDIX D STORM SEWER DESIGN Lidst one &Anderson. Inc. lnlill��S irrll5 �ha5eoi CLb I 3-13-m(o LeoPPPC EATURE ' CHECKED BY DATE SHEET OF or(rl SevJei Line 1 eevi5ed IbFSiG y) I d:71L 3 /r,- 01- lot 3q1 — The 6min of Sfo(ri Sever Cale 1 Oeadr,j j-o Poncl 310) vWaS avl !fe/anve pocedaie ()5irii +fie 05ewer pro5rim fc defermwe hy2ravli� �radellne5 a✓id evieryy y/addtt�tr5 and fie o/mice egvaflon +o cl e4e✓nprhe fhe a*d ecipric(� of ecteln J &4ed Cloobblv�vnaHGrole f'or'ea(� 5ec)mfial pipe 5eymeui4 arcl y-a+ed rmviWe, 4c +ollojt' proeedore� were oiltizef: b A!551yl a d15ckar9(, -t0Ae pipe 5eymey4 dajosfl-r ► oP4e 9ra4ec(.yna04t, (7l� dt5d,ar e t►(be vnoj,eeJ atj/o,- Con{= med a%a lafe�5fep o✓lferkflon) RUn the L);5Ze/- mcael wifh f�af c��5c�ar9c From fAe oL+pL,t, Jt�ermme �Ae h�dravLc J(-adeGhe - IP 4e 96L 15a�vve fete N66le rind e(evrahon, Wrihnve +0 4epd• %er wi5e) rnerecne 9e j l,5c.+A rq e and ✓e peai ,*e p /t, b Defeimlrle t4 00fle4 ec,Pacih/! 0f Ac jra�ed maohde eeve�. F?vm UD5&/erPofp0t (5+e? de+eK-moe Ac ehery yq fade brie of mantle . C Iculafe -lie *en +la I enev head (�,C•L - Mcli4ole rim elea�on) , ()51 rl 4e6/jPxe egva�on) CalcUI k-ftie. ov+lefcryact� aC4k yrafe: (�_ J (�?=dtscla��e� C=Drrfue CUe iu\en�• P, , openare-j 65: po4eAal ener9Y head (95cL ©05mn a eonfjnvif y eyva�vrl a+ the rVoMl olel je,�errnirlc IF rye roc 1-45 5Auen•;'• ctpzl� 6- fhe given d0wr7 5fre4i► dt5 6r9e NcI A(y br) = b19chCr-je ovT Z. (�rrn = Pipe dt5ckcieot+ + bra+c cltsckgr9c oLF. I-jF eoribnvt {�/ 15 5a{i 5,eed, cor f l ave V pSf ream r Ire fpea f ril 5+ep,5 I —3 .� Co✓I�irl vi {�r � 5 rtaf 5afis�ied (DlSol�a� e i n 15 r'Ca�ri f'�r1 cit5c��c off, f�m re{vrrl fo 5+ep1 and lrifrease { c dl5ck�l je• yofe- a� ftie Frlal l�cra771vn aacl 5etvei e5r has beep GLOB cr. Coy\ \y'r g o" Q M /19A 78 `a ET 1BAI Sr-18 >MWEIR' LL IS' MN IB LET (MODIFIED FROM PF4LSE JJ �y UNES1,18&19 �} UDSESWER FLE: AI// JC J40 -MET IB \ EX/ST/NG 15' TYPE R' INLET 1 1, 1IS' ' R' INLET T t lI 7 x/SLING MH IA ' s 1? 15' ADS ' MODIFIED PHASE 1 LINE IA i® ®INLET DP 4 TWE INNLL ' YPE ' 'ET RM pim ONE rw� �WMWV Lidstone & Anderson. Inc. n. a /4- EATURE - I CHECKED BY I DATE I SHE OF � 1TTff JJ 5%/�r� ew�K ����� 1 vKec Ve5i0�1• Crated tybohdle Wauif MaWe 2A- o0e,iF = Ch ; C�G,I�a SFfa �rlr�lrn�m� li = E'1r�il e�radeGhc- r�Me(e��nvrr• o = 0,55 �XIII aour (60fibra4y) D1530'RcP Q Cula) * Q (nay) = Q 6011) + Q(oor) �y•aCiS (per (•)6N5cirt wl�+ �ii 19,4d5 Q (Ila1) = as 0 5 f 16, 41cr--� - 64 cr r �4JO�5, marl lo(e 1B (yDSc�x/ ID a1� Oloa{5.0 ��3zat0,yr = a3�c� Qlo = Qoo r F : 56C-vlr✓l _ gg41,01-4q#6,1 = 0,714 ()(MOB - - O(V&6) +- 007a0) f- Qorlo 10, (Cf� f 64CC,; >*- a(,gVed) = 3� a� a3• ECG 007m) = 544c.F> t a3• IcA - l0, It;; - 15,4d; -r 3 ,4r,�;, Marinole 1C (yD5eu✓eK PAO) - UP5t(eari I(q- l/ri1Gr holes O4eck roraAe9vale #- d a,,Ref capcI Qln = av+ c�= C� ��a� ��o•�o- , �=spa , �{= FCC-�,m = y951.3�- �4s�50 = I,S�Gf 34.0CA has ak (rote 01,040 �• IA W.I. a.... c ... uIlWI" 1 OWNER -PROJECT phmea BY cq) DATE 3-iq-fqq& PROJECT NO. FEATURE Sf��m Sewer DeSk7fl `6c( ,Iqe CHECKED BY DATE SHEET OF Dq 144 F71 fz ern 1141 qp -fn T,(�� I9A. _ (vDSewe� �3(05 and 1p5lalo� QIco (50%Lei51,15 I I Qa = 31d d{ I��De�rom .��I�l 19A- fo �lef �B �UDScwP� ZD (DI(�3� Qlco (5obba5o S) ►plPe gore Zyile� 40 fo fAje� J (UD5ever-.�Da9lp�) -(5Qow51l.) I )l aPr Qa= q,8 0(00 = Nbbcc5(n5 , afvj;) 40/5 CG Qa = II,3 c� Pige, -otrl MN 1C too Mwamu(ri pipe Wlcfi p(o6es5) 'Pipe,From Zvi(ef (314 fo i'7F( 2 1-3 ( ODx vei SD a 1(o S) 09 = N- l C45 Pile tom Srile, f c&P.R d fo MN13 bD5ewe� ZD'S a71D u„d 70a5) lee -cram //1N15 fn IMN14 SJ/oil) (%oo � MAXIrnJrn Pjpe UAPPACt�l (4e/All'iI' pea6y') Qa (5�bh�91�� 1, a,q qA4 5). - D5/0 Willow Springs Ph. 2 -- Storm Sewer Anal. Revision to Line 1 0-PPP-01 3-12-96 L&A Inc. CLD File: WSP2-1C.DAT 1 12 , 20 2 2 1 , .85 500 500 .2 ,N 1 100 '1.4 , 28.5 10 .786 32 10, 4940.0 0 1 ,1011, 0 0 0 L L1nc1�+� -Pon8310 '22.0,0, 1.0, .60,0,0000I 11, 4946.0 ,1011, 2 ,1112,1127,0 0 af-a"e 1 rIN 1 A 22.0, 0, 1.0, .60 , 0, 0, 0 0 0 12, 4946.75,1112, 1 ,1213, 0 , 0 0 6.2 , 0, 1.0, .60, 0, 0, 0 0 0 13, 4947.25,1213, 1 ,1314, 0 , 0 0 18.5, 0, 1.0, .60 , 0, 0, 0 0 0 14, 4947.25,1314, 2 ,1415,1423,0 0 18.5, 0, 1.0, .60 , 0, 0, 0 0 0 15, 4948.75,1415, 2 ,1516,1521,0 0 27.2,0, 1.0, .60,0,0,000 16, 4960.82,1516, 2 ,1617,1618,0 0 22.9, 0, 1.0, .60 , 0, 0, 0 0 0 17, 4960.82,1617, 0, 0, 0, 0 0 3.5, 0, 1.0, .60 , 0, 0, 0 0 0 18, 4960.75,1618, 2 ,1819,1820, 0 0 Wl l lvu 5�,�„9 hgse l 19.2, 0, 1.0, .60 0, 0, 0 '0 0 19, 4960,75,1819, 0 0 , 0 , 0 0 boe9 A, aA• IA13 12.1,0, 1.0,.60,0,0,0,0,o 4modi&daspar4of 20, 4960.0 ,1820, 1 ,2090, 0 , 0 0 p'G p/161y�1h\ 7.6, 0 , 1.0, .60 , 0 , 0 , 0 , 0 , 0 U, 4960.0 ,2090, 0 , 0 , 0 , 0 , 0 .6 , 0 , 1.0 , .60 , 0 , 0 , 0 , 0 , 0 21, 4953.68,1521, 1 ,2122, 0 , 0 , 0 t9.5, 0 , 1.0, .60 , 0 , 0 , 0 , 0 , 0 2, 4953.68,2122, 0, 0, 0, 0, 0 9.5, 0 , 1.0, .60 , 0 , 0 , 0 , 0 , 0 23, 4954.97,1423, 1 ,2324, 0 , 0 , 0 V8.5, 0 , 1.0, .60 , 0 , 0 , 0 , 0 , 0 4954.97,2324, 0, 0, 0, 0, 0 8.5, 0 , 1.0, .60 , 0 , 0 , 0 , 0 , 0 0, 4956.50,2770, 1 ,7025, 0 , 0 , 0 10.1, 0 , 1.0, .60 , 0 , 0 , 0 , 0 , 0 � P?iopoieJ M 4 on L.Gtic . 25, 4955.21,7025, 1 ,2526, 0, 0, 0 L Snle��+ P �hasc� F,10 1, 0, 1.0, .60 0 0 0 0 0 6, 4956.65,2526, 0 0 0 0 0 P-P 10.1, 0, 1.0, .60 0 0 0 0 Or hle: k15aa 1C . D#T' H1111od `n/rnay rna SCa UD�c�cr �ral�5i7 Lrn,rS 1 r 1Ar IB �19 (oo-yev/ EveO, WdIa.•5pn+� 5 Phased -Lrne1A (will bemodrGcj urn Pha5ci lo+lme Ghan9e9, h1drauli c clnalyVs of revised 4l,ynmrnt Pe.{nr,, e �,AP6a5ea� 27, 4946.1 ,1127, 3 ,2728,2770,2768, 0 42 0 I o 60 0 0 0 o D k -phk5e j MN-SB (relau+ed -For P{gSe 8 8, 4949.5 ,2728, 1 ,2829, 0 , 0 0 � 32.4, 0, 1.0, .60 , 0, 0, 0 0 0 9, 4960.7 ,2829, 2 ,2960,2961,0 0 rf 2.5, 0 , 1.0, .60 , 0 , 0 , 0 0 0 60, 4960.7 ,2960, 0 , 0 , 0 , 0 0 � *J f I oW IdT a1. AA 0, 1.0, .60 , 0, 0, 0 11 0 t7*0, 1, 4960.69,2961, 2 ,6162,6163,0 0 � Rw 1 �1c{ U1T J 6.9, 0, 1.0, .60 , 0, 0, 0, 0 0 62, 4960.69,6162, 0 , 0 , 0 , 0 0 I_ *10IJ I05c24+1 0 15.4, 0, 1.0, .60 , 0, 0, 0 0 0 r 63, 4960.1 ,6163, 2 ,6364,6365,0 0 L Ir111'f l�� �4i D p dL) 2 4.8 , 0, 1.0, .60 0, 0, 0 0 U4960.1 ,6364, 0 0, 0, 0 0 y rnli� A� I�F►• uw cj 12.6, 0, 1.0, .60 , 0, 0, 0 0 0 65, 4964.2 ,6365, 1 ,6566, 0, 0 0 m o11 n 1 f T 12.6 , 0, 1.0, .60, 0, 0, 0 0 0 66, 4967.3 ,6566, 1 ,6667, 0 , 0 , 0 I ��I I/� g /u4 b,p• 1 A� I l 12.6, 0, 1.0, .60 , 0, 0, 0 0 0 IF— 67, 4967.3 ,6667, 0 , 0 , 0 , 0 0xn+ 12.6,0, 1.0, .60,0,0,000 68, 4956.4 ,2768, 1 ,6869, 0, 0 15.4, 0 , 1.0, .60 , 0 , 0 , 0 0 69, 4956.4 ,6869, 0 , 0 , 0 , 0 0T {{ LP7 IS� 15.4, 0 , 1.0, .60 , 0 , 0 , 0 0 0 Zvi 31 1011,414.4, 0.6, 4943.29 , .011 , 1 , 0 1112,234.3,0.74, 4944.03 , .011 , 1 , 0 1213, 63.2,0.59, 4944.90 , .011 ,0.46 , 0 1314, 53.1,0.59, 4945.21 , .011 ,0.08 , 0 1415,150.6,0.59, 4946.10 , .011 ,0.28 , 0.25 , 1516,336.1,1.97, 4953.63 , .011 ,0.05 , 0.25 1617, 1 ,1.97, 4953.63 , .011 ,0.25 , 0 , 1618, 36.2,1.41, 4959.00 , .013 ,0.08 , 0 1819, 1 ,1.41, 4959.00 , .013 ,0.25 , 0 1820, 20 , 2.0, 4958.85 , .013 ,0.08 , 0 2090, 1 , 2.0, 4958.85 , .013 ,0.25 , 0 1521,131.7,4.58, 4951.38 , .011 ,1.00 , 0 , 2122, 1 ,4.58, 4951.38 , .011 ,0.25 , 0 1423,133.6,4.93, 4951.04 , .011 ,1.00 , 0 2324, 1 ,4.93, 4951.04 , .011 ,0.25 , 0 1127, 44.1,1.65, 4944.02 , .013 ,0.05 , 0.25 , 2770,101.4,4.72, 4947.75 , .011 ,0.46 , 0 , 7025, 66.0,7.27, 4952.75 , .011 ,0.08 , 0 2526, .1 ,7.27, 4952.75 , .011 ,0.25 , 0 2728,291.5,1.34, 4947.63 , .011 ,0.05 , 0.25 , 2829,162.8,5.27, 4956.41 , .011 ,0.05 , 0 , 2960, .1 ,5.27, 4956.41 , .011 ,0.25 , 0 , 2961, 37.3, 2.7, 4957.87 , .013 ,0.05 , 0 , 6162, .1 , 2.7, 4957.87 , .013 ,0.25 , 0 6163,153.7, 0.9, 4959.10 , .011 ,0.08 , 0 6364, .1 , 0.9, 4959.10 , .011 ,0.25 , 0 6365,149.0,1.80, 4961.48 , .011 ,0.05 , 0 6566,151.4,1.86, 4964.50 , .011 ,0.46 , 0 6667, .1 ,1.86, 4964.50 , .011 ,0.25 , 0 2768,173.8,4.19, 4950.50 ,: 011 ,0.46 , 0 6869, .1 ,4.19, 4950.50 , .011 ,0.25 , 0 , 130, 1 18 , 124, 124, 124, 124, 124, 124, 1 24 , 1 15 , 1 15 , 1 1 1 1 1 1 1 1 1 1 1 0— Etis{i 5 30-711 RCP hom M4-1*4o 510 0 0 0 0 0 0 Ir�lllv.� S�nA?9 f 451� o L4Ae5 At AA Affncl AB I 0 Not jqoc(i Gje0 45 PAr r 0 of Phose a ,1a4ys15. 15 0 15 0 15 0 15 0 30 0— 3o�n Q4P from MN1A 4a Mv118 &! ,A,Aed 4,Dksca ' 15 ' oL Ig_in fl�5{roM MN1g+o Zwk�a� d Cfobemod��itd� 15 Orr 15 0— y bvltel VnI .1440Lo354+D.P'4 24 0— akiM J+�S,F,, rAA18{o mA-,G lWO41ieJ6/'Pti4sf;) 24 0_ kD5{/ Mq.lr+��iid{o✓P +K� 24 0— v&'mCepfra4lAl4 LoS�ia 27 , 0— 91-in kb5 -rwn Znle4 9PrfoI/Ik+jg((n0d �ed Fa/�haSCB) 27 , 0— #6wep�vul _f4lle+Lo�5 44 -tAlef 16 1 24 0— 9�i in AU5 r-- Ialt� Ila S„Icf 156 1 24 , 0— �CoAtep �*I -TAle+ Las'�a4�lcl WA 1 18 0— I$'iA AD5 fi'0("rAIt+11H la 14419A 1 18 , 0— form FFD5f✓o'A INN 19A+a t„k{-19g 1 18 , o— teDmp4vAl/.�Tnle4L45s 4� t"I'l 16 1 18 0 — 181A Abe, iPVI� rlRIB+a TAIf4 IN 1 , 18 , 0 — -t (OA PfW l SAIP4 j w) 44 Jc ki 18A. D7/64 ---------------------------------------------------------------------- - -- STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study --------------------------------------------------------- ------------------- USER:LIDSTONE AND ANDERSON- FT COLLINS COLORADO .............................. - ON DATA 04-30-1996 AT TIME 16:15:06 VERSION=03-26-1994 ** PROJECT TITLE :Willow Springs Ph. 2 -- Storm Sewer Anal. Revision to Line 1 ** RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY FORMULA IS GIVEN 1** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS --------------------- TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS 10.00 0.60 0.00 0.00 0.00 4.75 2.85 11.00 0.60 0.00 0.00 0.00 4.75 2.85 12.00 0.60 0.00 0.00 0.00 4.75 2.85 13.00 1 0.60 0.00 0.00 0.00 4.75 2.85 14.00 0.60 0.00 0.00 0.00 4.75 2.85 15.00 0.60 0.00 0.00 0.00 4.75 2.85 16.00 0.60 0.00 0.00 0.00 4.75 2.85 17.00 0.60 0.00 0.00 5.00 5.83 3.50 18.00 0.60 0.00 0.00 0.00 4.75 2.85 0.60 0.00 0.00 5.00 20.17 12.10 '19.00 20.00 0.60 0.00 0.00 0.00 4.75 2.85 90.00 0.60 0.00 0.00 5.00 12.67 7.60 0.60 0.00 0.00 0.00 4.75 2.85 '21.00 22.00 0.60 0.00 0.00 5.00 15.83 9.50 23.00 0.60 0.00 0.00 0.00 4.75 2.85 24.00 0.60 0.00 0.00 5.00 14.17 8.50 '70.00 0.60 0.00 0.00 0.00 4.75 2.85 25.00 0.60 0.00 0.00 0.00 4.75 2.85 26.00 0.60 0.00 0.00 5.00 16.83 10.10 0.60 0.00 0.00 0.00 4.75 2.85 '27.00 28.00 0.60 0.00 0.00 0.00 4.75 2.85 29.00 0.60 0.00 0.00 0.00 4.75 2.85 0,60 0.00 0.00 5.00 11.67 7.00 '60.00 61.00 0.60 0.00 0.00 0.00 4.75 2.85 62.00 0.60 0.00 0.00 5.00 25.67 15.40 63.00 0.60 0.00 0.00 0.00 4.75 2.85 0.60 0.00 0.00 5.00 21.00 12.60 '64.00 65.00 0.60 0.00 0.00 0.00 4.75 2.85 66.00 0.60 0.00 0.00 0.00 4.75 2.85 67.00 0.60 0.00 0.00 5.00 21.00 12.60 68.00 1 0.60 0.00 0.00 0.00 4.75 2.85 69.00 0.60 0.00 0.00 5.00 25.67 15.40 E SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES NVER CRITERIA WAS NOT USED TO CHECK THE COMPUTATED Tc. ale' W5PklS - OL)T b4m I t AI ($ qnd (y I* SUMMARY OF HYDRAULICS AT MANHOLES D5134 ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION ' I MINUTES INCH/HR CFS FEET FEET 1(70 �ewvr✓�l�F4Ct Eflo^ --------- Ie+enhon RbA4 io n Lb 10.00 0.00 0.00 0.00 22.00 4940.00 4945.70 NO ?IaAkAe) 11.00 18.60 77.92 1.18 22.00 4946.00 4946.24 NO A (Bubb(ei 12.00 8.40 150.20 0.74 6.20 4946.75 4947.13 NO 13.00 7.80 26.28 2.37 18.50 4947.25 4947.33 NO 14.00 7.20 22.77 2.57 18.50 4947.25 4947.63 NO 15.00 5.40 5.00 5.04 27.20 4948.75 4949.12 NO 16.00 3.60 5.00 6.36 22.90 4960.82 4953.32 OK 17.00 0.60 5.00 5.83 3.50 4960.82 4954.32 OK lalllSpfl�Iysu�e� 18.00 2.40 5.00 8.00 19.20 4960.75 4958.58 OK 19.00 0.60 5.00 20.17 12.10 4960.75 4959.21 OK Lines A( AA and A 8 20.00 1.26 5.00 6.33 7.60 4960.00 4959.11 OK 90.00 0.60 5.00 12.67 7.60 4960.00 4959.27 OK 21.00 1.20 5.00 7.92 9.50 4953.68 4951.95 OK 22.00 0.60 5.00 15.83 9.50 4953.68 4952.20 OK 23.00 1.20 5.00 7.08 8.50 4954.97 4950.91 OK 24.00 0.60 5.00 14.17 8.50 4954.97 4952.60 OK 70.00 1.80 5.00 5.61 10.10 4956.50 4947.73 OK 25.00 1.20 5.00 8.42 10.10 4955.21 4952.67 OK - Snle� p• 26.00 0.60 5.00 16.83 10.10 4956.65 4955.40 OK 27.00 9.60 11.62 3.56 34.20 4946.10 4946.26 NO -M94b 28.00 6.00 5.00 5.40 32.40 4949.50 4950.04 NO-M9116r 29.00 5.40 5.00 7.87 42.50 4960.70 4956.34 OK 60.00 0.60 5.00 11.67 7.00 4960.70 4959.19 OK 61.00 4.20 5.00 8.79 36.90 4960.69 4957.97 OK 62.00 0.60 5.00 25.67 15.40 4960.69 4959.14 OK p4!✓Ce 63.00 3.00 5.00 8.27 24.80 4960.10 4959.09 OK a�� �nle�5 and 5{r�Ida•A rvanHvl°� 64.00 0.60 5.00 21.00 12.60 4960.10 4959.87 OK 65.00 1.80 5.00 7.00 12.60 4964.20 4961.30 OK 66.00 1.20 5.00 10.50 12.60 4967.30 4964.32 OK 67.00 0.60 5.00 21.00 12.60 4967.30 4964.89 OK 68.00 1.20 5.00 12.83 15.40 4956.40 4950.39 OK 69.00 0.60 5.00 25.67 15.40 4956.40 4952.20 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 --------------------------------------------------------•---------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) --•-----------------------•------------------•-------------•------------------- 1011.00 11.00 10.00 ROUND 24.55 27.00 30.00 0.00 1112.00 12.00 11.00 ROUND 14.68 15.00 18.00 0.00 1213.00 13.00 12.00 ROUND 23.08 24.00 24.00 0.00 1314.00 14.00 13.00 ROUND 23.08 24.00 24.00 0.00 1415.00 15.00 14.00 ROUND 26.67 27.00 24.00 0.00 1516.00 16.00 15.00 ROUND 19.95 21.00 24.00 0.00 1617.00 17.00 16.00 ROUND 9.86 12.00 24.00 0.00 1618.00 18.00 16.00 ROUND 21.16 24.00 24.00 0.00 1819.00 19.00 18.00 ROUND 17.80 18.00 24.00 0.00 1820.00 20.00 18.00 ROUND 14.00 15.00 15.00 0.00 2090.00 90.00 20.00 ROUND 14.00 15.00 15.00 0.00 1521.00 21.00 15.00 ROUND 12.24 15.00 15.00 0.00 D9/34 2122.00 22.00 21.00 ROUND 12.24 15.00 15.00 0.00 1423,01 23.00 14.00 ROUND 11.58 12.00 15.00 0.00 2324.00 24.00 23.00 ROUND 11.58 12.00 15.00 0.00 1127.00 27.00 11.00 ROUND 25.52 27.00 30.00 0.00 2770.00 70.00 27.00 ROUND 12.46 15.00 15.00 0.00 '7025.00 25.00 70.00 ROUND 11.49 12.00 15.00 0.00 2526.00 26.00 25.00 ROUND 11.49 12.00 15.00 0.00 2728.00 28.00 27.00 ROUND 24.42 27.00 24.00 0.00 2829.00 29.00 28.00 ROUND 20.91 21.00 24.00 0.00 2960.00 60.00 29.00 ROUND 10.63 12.00 24.00 0.00 2961.00 61.00 29.00 ROUND 23.94 24.00 27.00 0.00 '6162,00 62.00 61.00 ROUND 17.25 18.00 27.00 0,00 6163.00 63.00 61.00 ROUND 23.80 24.00 24.00 0.00 6364.00 64.00 63.00 ROUND 18.46 21.00 24.00 0.00 6365.00 65.00 63.00 ROUND 16.21 18.00 18.00 0.00 6566.00 66.00 65.00 ROUND 16.11 18.00 18.00 0.00 6667.00 67.00 66.00 ROUND 16.11 18.00 18.00 0.00 2768.00 68.00 27.00 ROUND 14.92 15.00 18.00 0.00 6869.00 69.00 68.00 ROUND 14.92 15.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES IMENSION UNITS FOR BOX SEWER ARE IN FEET EOUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. UGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, 'XISITNG SIZE WAS USED ------------------------------------------------------------------------------ ' SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW C FULL O DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 1011.0 22.0 37.6 1.37 7.97 1.59 6.68 4.48 1.33 V-OK 1112.0 6.2 10.7 0.82 6.28 0.96 5.19 3.51 1.36 V-OK 1213.0 18.5 20.6 1.48 7.42 1.55 7.09 5.89 1.10 V-OK '1314.0 18.5 20.6 1.48 7.42 1.55 7.09 5.89 1.10 V-OK 1415.0 27.2 20.6 2.00 8.66 1.79 9.18 8.66 0.00 V-OK 1516.0 22.9 37.6 1.13 12.57 1.69 8.08 7.29 2.31 V-OK 1617.0 3.5 37.6 0.41 7.50 0.68 3.70 1.11 2.46 V-OK '1618.0 19.2 26.9 1.25 9.31 1.58 7.23 6.11 1.59 V-OK 1819.0 12.1 26.9 0.94 8.34 1.25 5.88 3.85 1.72 V-OK 1820.0 7.6 9.2 -0.87 8.35 1.08 6.72 6.19 1.65 V-OK '2090.0 7.6 9.2 0.87 8.35 1.08 6.72 6.19 1.65 V-OK 1521.0 9.5 16.4 0.68 13.84 1.15 8.04 7.74 3.29 V-OK 2122.0 9.5 16.4 0.68 13.84 1.15 8.04 7.74 3.29 V-OK '1423.0 8.5 17.0 0.63 13.85 1.12 7.33 6.93 3.48 V-OK 2324.0 8.5 17.0 0.63 13.85 1.12 7.33 6.93 3.48 V-OK 1127.0 34.2 52.8 1.46 11.45 1.99 8.18 6.97 . 1.83 V-OK 2770.0 10.1 16.6 0.70 14.21 1.17 8.48 8,23 3.31 V-OK '7025.0 10.1 20.6 0.62 16.72 1.17 8.48 8.23 4.24 V-OK 2526.0 10.1 20.6 0.62 16.72 1.17 8.48 8.23 4.24 V-OK 2728.0 32.4 31.0 2.00 10.31 1.86 10.64 10.31 0.00 V-OK 2829.0 42.5 61.5 1.22 21.14 1.93 13.67 13.53 3.67 V-HI 2960.0 7.0 61.5 0.46 13.00 0.98 4.59 2:23. 4.04 V-OK' 2961.0 36.9 51.0 1.42 13.98 2.02 9.82 9.28 2.24 V-OK 6162.0 15.4 51.0 0.85 11.23 1.36 6.11 3.87 . 2.50 V-OK '6163.0 24.8 25.4 1.60 9.22 1.74 8.55 7.89 1.26 V-OK 6364.0 12.6 25.4 0.99 8.07 1.27 5.97 4.01 1.61 V-OK 6365.0 12.6 16.7 0.97 10.39 1.32 7.64 7.13 1.99 V-OK ' 6566.0 12.6 17.0 0.96 10.52 1.32 7.64 7.13 .2.03 V-OK DIb�3�{ 6667.0 12.6 17.0 0.96 10.52 1.32 7.64 7.13 2.03 V-OK ' 2768.0 15.4 25.5 0.84 15.10 1.39 9.02 8.71 3.22 V-OK 6869.0 15.4 25.5 0.84 15.10 1.39 9.02 8.71 3.22 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) --- 1011.00 0.60 ------------------------------------------------- 4940.79 4938.30 2.71 -0.80 NO 1112.00 0.74 4942.53 4940.80 2.72 3.70 OK 1213.00 0.59 4942.90 4942.53 2.35 2.22 OK ' 1314.00 0.59 4943.21 4942.90 2.04 2.35 OK 1415.00 0.59 4944.10 4943.21 2.65 2.04 OK 1516.00 1.97 4951.63 4945.01 7.19 1.74 OK 1617.00 1.97 4951.63 4951.61 7.19 7.21 OK ' 1618.00 1.41 4957.00 4956.49 1.75 2.33 OK 1819.00 1.41 4957.00 4956.99 1.75 1.76 OK 1820.00 2.00 4957.60 4957.20 1.15 2.30 OK ' 2090.00 2.00 4957.60 4957.58 1.15 1.17 OK 1521.00 4.58 4950.13 4944.10 2.30 3.40 OK 2122.00 4.58 4950.13 4950.08 2.30 2.35 OK ' 1423.00 4.93 4949.79 4943.20 3.93 2.80 OK 2324.00 4.93 4949.79 4949.74 3.93 3.98 OK 1127.00 1.65 4941.52 4940.79 2.08 2.71 OK 2770.00 4.72 4946.50 4941.71 8.75 3.14 OK ' 7025.00 7.27 4951.50 4946.70 2.46 8.55 OK 2526.00 7.27 4951.50 4951.49 3.90 2.47 OK 2728.00 1.34 4945.63 4941.72 1.87 2.38 OK ' 2829.00 5.27 4954.41 4945.83 4.29 1.67 OK 2960.00 5.27 4954.41 4954.40 4.29 4.30 OK 2961.00 2.70 4955.62 4954.61 2.82 3.84 OK 6162.00 2.70 4955.62 4955.62 2.82 2.82 OK , 6163.00 0.90 4957.10 4955.72 1.00 2.97 OK 6364.00 0.90 4957.10 4957.10 1.00 1.00 OK 6365.00 1.80 4959.98 4957.30 2.72 1.30 OK ' 6566.00 1.86 4963.00 4960.18 2.80 2.52 OK 6667.00 1.86 4963.00 4963.00 2.80 2.80 OK 2768.00 4.19 4949.00 4941.72 5.90 2.88 OK , 6869.00 4.19 4949.00 4949.00 5.90 5.90 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ----- SEWER ----- ---------- SEWER SURCHARGED ----- --------- CROWN ELEVATION ----- --------- WATER ELEVATION ---- FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ' 1011.00 414.40 ----------------------------------------------------------- 414.40 4943.29 4940.80 4946.24 4945.70 PRSS'ED 1112.00 234.30 234.30 4944.03 4942.30 4947.13 4946.24 PRSS'ED 1213.00 63.20 63.20 4944.90 4944.53 4947.33 4947.13 ' PRSS'ED 1314.00 53.10 53.10 4945.21 4944.90 4947.63 4947.33 PRSS'ED 1415.00 150.60 150.60 4946.10 4945.21 4949.12 4947.63 PRSS'ED 1516.00 336.10 175.29 4953.63 4947.01 4953.32 4949.12 JUMP , 1617.00 1.00 0.00 4953.63 4953.61 4954.32 4953.32 JUMP 1618.00 36.20 0.00 4959.00 4958.49 4958.58 4953.32 JUMP b 1AH 1819.00 1.00 0.00 4959.00 4958.99 4959.21 4958.58 JUMP '1820,00 20.00, 19,48 4958,85 4958*45 4959*11 4958,58 JUMP 2090.00 1.00 1.00 4958.85 4958.83 4959.27 4959.11 PRSS'ED 1521.00 131.70 107.86 4951.38 4945.35 4951.95 4949.12 JUMP 2122.00 1.00 1.00 4951.38 4951.33 4952.20 4951.95 PRSS'ED '1423.00 133.60 75.28 4951.04 4944.45 4950.91 4947.63 JUMP 2324.00 1.00 0.00 4951.04 4950.99 4952.60 4950.91 JUMP 1127.00 44.10 44.10 4944.02 4943.29 14946.26 1 4946.241PRSS'ED 2770.00 101.40 73.79 4947.75 4942.96 4947.73 4946.26 JUMP 7025.00 66.00 0.00 4952.75 4947.95 4952.67 4947.73 JUMP 2526.00 0.10 0.00 4952.75 4952.74 4955.40 4952.67 JUMP 2728.00 291.50 291.50 4947.63 4943.72 14950.04 1 4946.26---IPRSSIED '2829.00 162.80 22.08 4956.41 4947.83 4956.34 JUMP 2960.00 0.10 0.10 4956.41 4956.40 4959.19 4956.34 PRSS'ED O�Pr4i7�,�� �ies�i� zed 2961.00 37.30 0.00 4957.87 4956.86 (495- 7 97� 4956.34 JUMP :7C5 6162.00 0.10 0.10 4957.87 4957.87 4959.14 4957.97 PRSS'ED �jlhJ�flOn �� L foo-. eGr, Cud 6163.00 153.70 78.29 4959.10 4957.72 4959.09 4957.97 JUMP jolnfS m�nf {1Cive a��[ss�ec 5e� 6364.00 0.10 0.10 4959.10 4959.10 4959.87 4959.09 PRSS'ED 6365.00 149.00 28.37 4961.48 4958.80 4961.30 14959.09 JUMP 6566.00 151.40 0.00 4964.50 4961.68 4964.32 4961.30 JUMP 6667.00 0.10 0.00 4964.50 4964.50 4964.89 4964.32 JUMP 2768.00 173.80 75.42 4950.50 4943.22 4950.39 14946.26 JUMP ' 6869.00 0.10 0.00 4950.50 4950.50 4952.20 4950.39 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW SUMMARY OF ENERGY GRADIENT LINE ALONG SEWER 4el / jrAd4me,, �-, A165 l� gloabwe Fl euAvr __________________�-_-____-__-_________________________-__--__-__________ af'�1�ej, UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT. ., ID FT - ------------------------------------------------------------- ------------ 11011.0 11.00 4946.55 0.85 1.00 0.00 0.00 0.00 10.00 4945.70 1112.0 12.00 4947.32 0.58 1.00 0.19 0.00 0.00 11.00 4946.55 �213.0 13.00 4947.87 0.30 0.46 0.25 0.00 0.00 12.00 4947.32 314.0 14.00 4948.17 0.25 0.08 0.04 0.00 0.00 13.00 4947.87 1415.0 15.00 4950.29 1.55 0.28 0.33 0.25 0.25 14.00 4948.17 1516.0 16.00 4954.34 3.05 0.05 0.04 0.25 0.96 15.00 4950.29 1 617.0 17.00 4954.34 0.00 0.25 - 0.00 0.00 0.00 16.00 4954.34 618.0 18.00 4959.39 5.01 0.08 0.05 0.00 0.00 16.00 4954.34 1819.0 19.00 4959.45 0.00 0.25 0.06 0.00 0.00 18.00 4959.39 1820.0 20.00 4959.70 0.27 0.08 0.05 0.00 0.00 18.00 4959.39 090.0 90.00 4959.87 0.01 0.25 0.15 0.00 0.00 20.00 4959.70 1521.0 21.00 4952.88 1.66 1.00 0.93 0.00 0.00 15.00 4950.29 0122.0 22.00 4953.13 0.02 0.25 0.23 0.00 0.00 21.00 4952.88 423.0 23.00 4951.74 2.83 1.00 0.74 0.00 0.00 14.00 4948.17 324.0 24.00 4953.35 1.42 0.25 0.19 0.00 0.00 23.00 4951.74 1127.0 27.00 4947.01 0.30 0.05 0.04 0.25 0.12 11.00 4946.55 1770.0 70.00 4948.78 1.28 0.46 0.48 0.00 0.00 27.00 4947.01 \ 025.0 25.00 4953.78 4.92 0.08 0.08 0.00 0.00 70.00 4948.78 2526.0 26.00 4956.45 2.40 0.25 0.26 0.00 0.00 25.00 4953.78 728.0 28.00 4951.69 4.26 0.05 0.08 _ 0.25 0.34 27.00 4947.01 829.0 29.00 2960.0 60.00 495�zb 0.00 0.25 0.02 0.00 0.00 29.00 4959.24 (. %0, 7 (3 v4e+JA) K 961.0 61.00 4959.31 0.00 0.05 0.07 0.00 0.00 29.00 4959.24 162.0 62.00 4959.37 0.00 0.25 0.06 0.00 0.00 61-00 4959_31 gg4o, 7 (�kf1 �j�✓ 6364.0 64.00 0 4960.72j 0.00 0.25 0.06 0 00 0-60 63.00 4960-06 �greo,l (:�Ilcf (9A) �365.0 65.00 4962.21 2.11 0.05 0.04 0.00 0.00 63.00 4960.06 6566.0 66.00 4965.23 2.66 0.46 0.36 0.00 0.00 65.00 4962.21 ✓ 6667.0 67.00 4965.68 0.25 0.25 0.20 0.00 0.00 66.00 4965.23 4V,3 (j7vl(ef F1g) 2768.0 68.00 4951.65 4.09 0.46 0.54 0.00 0.00 27.00 4947.01 6869.0 69.00 4953.38 1.43 0.25 0.29 0.00 0.00 68.00 4951.65 4q5 4 (rmk4 19 A) / BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. *** SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE. THE TRENCH SIDE SLOPE = 1 ------------------------------------------------------------------------------- MANHOLE GROUND INVERT MANHOLE ID NUMBER ELEVATION ELEVATION HEIGHT FT FT FT ------------------------------------------------------------------------------- 10.00 4940.00 4938.30 1.70 11.00 4946.00 4940.79 5.21 12.00 4946.75 4942.53 4.22 13.00 4947.25 4942.90 4.35 14.00 4947.25 4943.20 4.05 15.00 4948.75 4944.10 4.65 16.00 4960.82 4951.61 9.21 17.00 4960.82 4951.63 9.19 18.00 4960.75 4956.99 3.76 19.00 4960.75 4957.00 3.75 20.00 4960.00 4957.58 2.42 90.00 4960.00 4957.60 2.40 21.00 4953.68 4950.08 3.60 22.00 4953.68 4950.13 3.55 23.00 4954.97 4949.74 5.23 24.00 4954.97 4949.79 5.18 70.00 4956.50 4946.50 10.00 25.00 4955.21 4951.49 3.72 26.00 4956.65 4951.50 5.15 27.00 4946.10 4941.52 4.58 28.00 4949.50 4945.63 3.87 29.00 4960.70 4954.40 6.30 60.00 4960.70 4954.41 6.29 61.00 4960.69 4955.62 5.07 62.00 4960.69 4955.62 5.07 63.00 4960.10 4957.10 3.00 64.00 4960.10 4957.10 3.00 65.00 4964.20 4959.98 4.22 66.00 4967.30 4963.00 4.30 67.00 4967.30 4963.00 4.30 68.00 4956.40 4949.00 7.40 69.00 4956.40 4949.00 7.40 ------------------------------------------------------------------------------- SEWER UPST TRENCH WIDTH DNST TRENCH WIDTH TRENCH WALL EARTH ID NUMBER ON GROUND AT INVERT ON GROUND AT INVERT LENGTH THICKNESS VOLUME FT FT FT FT FT INCHES CUBIC YD ------------------------------------------------------------------------------- 9.34 5.08 2.31 5.08 414.40 3.50 396.9 '1011,00 1112.00 8.52 3.92 10.49 3.92 234.30 2.50 264.1 1213.00 8.20 4.50 7.95 4.50 63.20 3.00 63.2 1314.00 7.58 4.50 8.21 4.50 53.10 3.00 51.7 8.80 4.50 7.58 4.50 150.60 3.00 153.6 '1415.00 1516.00 17.88 4.50 6.98 4.50 336.10 3.00 706.3 1617.00 17.88 4.50 17.92 4.50 1.00 3.00 3.4 7.00 4.50 8.16 4.50 36.20 3.00 33.7 '1618.00 1819.00 7.00 4.50 7.03 4.50 1.00 3.00 0.9 1820.00 5.17 3.63 7.47 3.63 20.00 2.25 12.3 2090.00 5.17 3.63 5.21 3.63 1.00 2.25 0.5 '1521.00 7.48 3.63 9.68 3.63 131.70 2.25 121.6 2122.00 7.48 3.63 7.57 3.63 1.00 2.25 0.8 1423.00 10.74 3.63 8.47 3.63 133.60 2.25 146.5 10.74 3.63 10.83 3.63 1.00 2.25 1.3 '2324.00 1127.00 8.08 5.08 9.33 5.08 44.10 3.50 54.4 2770.00 20.38 3.63 9.15 3.63 101.40 2.25 257.6 7015.00 7.79 3.63 19.97 3.63 66.00 2.25 155.7 2526.00 10.67 3.63 7.81 3.63 0.10 2.25 0.1 2728.00 7.24 4.50 8.25 4.50 291.50 3.00 278.0 2829.00 12.08 4.50 6.84 4.50 162.80 3.00 209.7 '2960.00 12.08 4.50 12.09 4.50 0.10 3.00 0.2 2961.00 9.35 4.79 11.38 4.79 37.30 3.25 54.6 6162.00 9.35 4.79 9.35 4.79 0.10 3.25 0.1 6163.00 5.50 4.50 9.45 4.50 153.70 3.00 145.9 6364.00 5.50 4.50 5.50 4.50 0.10 3.00 0.1 6365.00 8.52 3.92 5.69 3.92 149.00 2.50 114.3 8.611 3.92 8.12 3.92 151.40 2.50 141.6 '6566.00 6667.00 8.68 3.92 8.69 3.92 0.10 2.50 0.1 2768.00 14.88 3.92 8.85 3.92 173.80 2.50 290.1 6869.00 14.88 3.92 14.89 3.92 0.10 2.50 0.2 TOTAL EARTH VOLUME FOR SEWER TRENCHES = 3659.238 CUBIC YARDS EARTH VOLUME WAS ESTIMATED TO HAVE BOTTOM WIDTH=DIAMETER OR WIDTH OF SEWER + 2 ' B ' B=ONE FEET WHEN DIAMETER OR WIDTH <=48 INCHES B=TWO FEET WHEN DIAMETER OR WIDTH >48 INCHES IF BOTTOM WIDTH <MINIMUM WIDTH, 2 FT, THE MINIMUM WIDTH WAS USED. 'BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT SEWER WALL THICKNESS=EOIVLNT DIAMATER IN INCH/12 +1 IN INCHES ED. BACKFILL DEPTH UNDER SE A13/34 D 14154 Willow Springs Ph. 2 -- St. Sew. Anal. Rev. to Line 1 (2-Yr) CO-PPP-01 3-12-96 L&A Inc. CLD File: WSP2-1-2.DAT 1 , 12 , 20 , 2 , 2 1 , .85 , 500 , 500 , .2 , N 1 100 1.4 28.5 10 , .786 32 10 4940 0 1 1011 , 0, 0, 0 23.8 , 0 1 .6 0 0, 0, 0, 0 11 , 4946 1011 2 1112 , 1127 , 0 , 0 23.8 , 0 1 .6 0 0, 0, 0, 0 12,4946.75 1112, 1, 1213,0,0,0 10.5 , 0 , 1 .6 , 0 , 0 , 0 , 0 , 0 13 , 4947.25 1213 , 1 , 1314 , 0 , 0 , 0 10.5 , 0 , 1 .6 , 0 , 0 , 0 , 0 , 0 14 , 4947.25 1314 , 2 , 1415 , 1423 , 0 , 0 10.5 , 0 , 1 .6 , 0 , 0 , 0 , 0 , 0 15 4948.75 1415 2 1516 , 1521 , 0 , 0 8 0 , 1 , .6 , 0 0 , 0 , 0 0 16 4960.82 1516 2 1617 1618 , 0 , 0 5.9 0 , 1 .6 , 0 0 0 0 0 174960.82 1617 00 0 0, 0 1.1 0 , 1 .6 , 0 0 0 0 0 18 4960.75 1618 2 1819 1820 , 0 , 0 5 0 , 1 , .6 , 0 0 0 0 0 194960.75 1819 0000,0 3.5 0 , 1 .6 0 , 0 0 0 0 20 4960 1820 1 , 2090 0 0 , 0 2 0 , 1 .6 , 0 , 0 , 0 0 0 90 4960 2090 , 0 , 0 , 0 , 0 , 0 2 0 , 1 .6 , 0 0 0 , 0 0 21 4953.68 1521 1 2122 0 , 0 , 0 2.8 0 , 1 .6 , 0 0 , 0 , 0 , 0 22 4953.68 2122 0 , 0 , 0 , 0 , 0 2.8 0 , 1 .6 , 0 0 , 0 , 0 , 0 23 4954.97 1423 1 , 2324 , 0 , 0 , 0 2.5 0 , 1 .6 , 0 0 , 0 , 0 , 0 24 4954.97 2324 0 , 0 , 0 , 0 , 0 2.5 0 , 1 .6 , 0 0 , 0 , 0 , 0 70 4956.5 2770 , 1 , 7025 , 0 , 0 0 4.4 0, 1 .6 , 0 0, 0, 0, 0 25 4955.21 7025 1 , 2526 , 0 , 0 0 4.4 0 , 1 .6 , 0 , 0 , 0 , 0 , 0 26 4956.65 2526 0, 0, 0, 0 0 4.4 0 , 1 .6 , 0 , 0 , 0 , 0 , 0 27 4946.1 1127 , 3 , 2728 , 2770 2768 0 15.6 , 0, 1 .6 0, 0, 0, 0, 0 28 , 4949.5 2728 , 1 , 2829 , 0 , 0 0 11.3 , 0, 1 .6 0, 0, 0, 0, 0 29 , 4960.7 2829 , 2 , 2960 , 2961 0 0 11.3 , 0, 1 .6 0, 0 0, 0 0 60 4960.7 2960 0, 0 0, 0 0 1.8 0 , 1 .6 , 0 0 0 , 0 , 0 61 4960.69 2961 2 6162 , 6163 , 0 0 9.8 0 , 1 .6 , 0 0 0 0 0 62 4960.69 6162 0 0 0 0 0 4 0 , 1 , .6 , 0 0 0 0 0 63 4960.1 6163 2 6364 , 6365 0 0 6.6 0 , 1 .6 , 0 , 0 , 0 , 0 , 0 64 4960.1 6364 , 0 , 0 , 0 , 0 , 0 Fllc: WSwa-4-, .,DAT h11(IO�j tponr Aquo7 Lines 1,14,IS of-�e4r E✓ent 6rm FQ4 J f A I-41 }O I00 1 Fa e- cve4I evepf- Pv/fitle, Card5 OAJ d15cjWje Vil✓tl) ' 3.4 0, 1 .6 , 0, 0, 0 0 0 65 4964.2 6365 , 1 , 6566 0 0 0 L4 0, 1 .6 , 0, 0, 0 0 0 4967.3 6566 , 1 , 6667 0 0 0 3.4 0 , 1 .6 , 0 , 0 , 0 0 0 4967.3 6667 , 0 , 0 , 0 , 0 , 0 F7 .4 0, 1 .6 , 0, 0, 0 0 0 68 4956.4 2768 , 1 , 6869 0 0 0 1 011 .6,0,0,0 0 0 9 4956.4 6869 , 0, 0, 0, 0, 0 4.10,1.6,0,00,00 31 011,414.4, 0.6, 4943.29 .011 1 , 0 , 1 , 30 , 0 112,234.3,0.74, 4944.03 .011 1 , 0 , 1 , 18 , 0 1213, 63.2,0.59, 4944.90 .011 ,0.46 , 0 , 1 , 24 , 0 53.1,0.59, 4945.21 .011 ,0.08 , 0 , 1 , 24 , 0 �314, 415,150.6,0.59, 4946.10 .011 ,0.28 , 0.25 , 1 , 24 , 0 1516,336.1,1.97, 4953.63 .011 ,0.05 , 0.25 , 1 , 24 , 0 1617, 1 ,1.97, 4953.63 .011 ,0.25 , 0 , 1 , 24 , 0 1618, 36.2,1.41, 4959.00 .013 ,0.08 , 0 , 1 , 24 , 0 819, 1 ,1.41, 4959.00 .013 ,0.25 , 0 , 1 , 24 , 0 1820, 20 , 2.0, 4958.85 .013 ,0.08 , 0 , 1 , 15 , 0 090, 1 , 2.0, 4958.85 .013 ,0.25 , 0 , 1 , 15 , 0 521,131.7,4.58, 4951.38 .011 ,1.00 , 0 , 1 , 15 , 0 2122, 1 ,4.58, 4951.38 , .011 ,0.25 , 0 1 , 15 , 0 4951.04 , .011 ,1.00 , 0 1 , 15 , 0 0423,133.6,4.93, 24, 1 ,4.93, 4951.04 , .011 ,0.25 , 0 1 , 15 , 0 1127, 44.1,1.65, 4944.02 , .013 ,0.05 , 0.25 , 1 , 30 , 0 4947.75 , .011 ,0.46 , 0 , 1 , 15 , 0 t770,101.4,4.72, 025, 66.0,7.27, 4952.75 , .011 ,0.08 , 0 , 1 , 15 , 0 526, .1 ,7.27, 4952.75 , .011 ,0.25 , 0 , 1 , 15 , 0 2728,291.5,1.34, 4947.63 , .011 ,0.05 , 0.25 , 1 , 24 , 0 4956.41 , .011 ,0.05 , 0 , 1 , 24 , 0 1829,162.8,5.27, 960, .1 ,5.27, 4956.41 , .011 ,0.25 , 0 , 1 , 24 , 0 2961, 37.3, 2.7, 4957.87 , .013 ,0.05 , 0 , 1 , 27 , 0 .1 , 2.7, 4957.87 , .013 ,0.25 , 0 , 1 , 27 , 0 4162, 163,153.7, 0.9, 4959.10 , .011 ,0.08 , 0 , 1 , 24 , 0 364, .1 , 0.9, 4959.10 , .011 ,0.25 , 0 , 1 , 24 , 0 6365,149.0,1.80, 4961.48 , .011 ,0.05 , 0 , 1 , 18 , 0 1566,151.4,1.86, 4964.50 , .011 ,0.46 , 0 , 1 , 18 , 0 667, .1 ,1.86, 4964.50 , .011 ,0.25 , 0 , 1 , 18 , 0 2768,173.8,4.19, 4950.50 ,: 011 ,0.46 , 0 , 1 , 18 , 0 r9, .1 ,4.19, 4950.50 , .011 10.25 , 0 , 1 , 18 , 0 Di5134 D i(0134 STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study USER:LIDSTONE AND ANDERSON- FT COLLINS COLORADO .............................. ON DATA 04-30-1996 AT TIME 16:20:05 VERSION=03-26-1994 *** PROJECT TITLE :Willow Springs Ph. 2 -- St. Sew. Anal. Rev. to Line 1 (2-Yr) *** RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY FORMULA IS GIVEN *** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS --------------------- TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS ---------------------------------------------------------------------- 10.00 0.60 0.00 0.00 0.00 4.75 2.85 11.00 0.60 0.00 0.00 0.00 4.75 2.85 12.00 0.60 0.00 0.00 0.00 4.75 2.85 13.00 0.60 0.00 0.00 0.00 4.75 2.85 14.00 0.60 0.00 0.00 0.00 4.75 2.85 15.00 0.60 0.00 0.00 0.00 4.75 2.85 16.00 0.60 0.00 0.00 0.00 4.75 2.85 17.00 0.60 0.00 0.00 40.34 1.83 1.10 18.00 0.60 0.00 0.00 0.00 4.75 2.85 19.00 0.60 0.00 0.00 5.00 5.83 3.50 20.00 0.60 0.00 0.00 0.00 4.75 2.85 90.00 0.60 0.00 0.00 13:53 3.33 2.00 21.00 0.60 0.00 0.00 0.00 4.75 2.85 22.00 0.60 0.00 0.00 5.34 4.67 2.80 23.00 0.60 0.00 0.00 0.00 4.75 2.85 24.00 0.60 0.00 0.00 7.71 4.17 2.50 70.00 0.60 0.00 0.00 0.00 4.75 2.85 25.00 0.60 0.00 0.00 0.00 4.75 2.85 26.00 0.60 0.00 0.00 5.00 7.33 4.40 27.00 0.60 0.00 0.00 0.00 4.75 2.85 28.00 6.60 0.00 0.00 0.00 4.75 2.85 29.00 0.60 0.00 0.00 0.00 4.75 2.85 60.00 0.60 0.00 0.00 16.91 3.00 1.80 61.00 0.60 0.00 0.00 0.00 4.75 2.85 62.00 0.60 0.00 0.00 5.00 6.67 4.00 63.00 0.60 0.00 0.00 0.00 4.75 2.85 64.00 0.60 0.00 0.00 5.00 5.67 3.40 65.00 0.60 0.00 0.00 0.00 4.75 2.85 66.00 0.60 0.00 0.00 0.00 4.75 2.85 67.00 0.60 0.00 0.00 5.00 5.67 3.40 68.00 0.60 0.00 0.00 0.00 4.75 2.85 69.00 0.60 0.00 0.00 5.00 6.83 4.10 THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES DENVER CRITERIA WAS NOT USED TO CHECK THE COMPUTATED Tc. *** SUMMARY OF HYDRAULICS AT MANHOLES Ws as-1-a• o ur a-ye,v FAle4 0 P1'/34 ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ---------- 10.00 ---------- 0.00 ---------- 0.00 ------------------------------------------- 0.00 23.80 4940.00 4942.00 NO 11.00 18.60 69.55 1.28 23.80 4946.00 4942.45 OK 12.00 8.40 71.95 1.25 10.50 4946,75 4944.04 OK ' 13.00 7.80 64.58 1.35 10.50 4947.25 4944.49 OK 14.00 7.20 57.36 1.46 10.50 4947.25 4944.51 OK 15.00 5.40 56.02 1.48 8.00 4948.75 4945.13 OK ' 16.00 3.60 48.06 1.64 5.90 4960.82 4952.50 OK 17.00 0.60 40.34 1.83 1.10 4960.82 4952.81 OK 18.00 2.40 32.79 2.08 5.00 4960.75 4957.81 OK 19.00 0.60 5.00 5.83 3.50 4960.75 4958.07 OK ' 20.00 1.20 46.83 1.67 2.00 4960.00 4958.17 OK 90.00 0.60 13.53 3.33 2.00 4960.00 4958.49 OK 21.00 1.20 27.04 2.33 2.80 4953.68 4910.81 OK 22.00 0.60 5.34 4.67 2.80 4953.68 4951.90 OK 23.00 1.20 32.79 2.08 2.50 4954.97 4950.43 OK 24.00 0.60 7.71 4.17 2.50 4954.97 4951.52 OK 70.00 1.80 24.91 2.44 4.40 4956.50 4947.35 OK 25.00 1.20 10.84 3.67 4.40 4955.21 4952.35 OK 26.00 0.60 5.00 7.33 4.40 4956.65 4954.46 OK 27.00 9.60 48.69 1.63 15.60 4946.10 4943.36 OK ' 28.00 6.00 38.65 1.88 11.30 4949.50 4946.83 OK 29.00 5.40 32.55 2.09 11.30 4960.70 4955.61 OK 60.00 0.60 16.91 3.00 1.80 4960.70 4956.12 OK ' 61.00 4.20 27.04 2.33 9.80 4960.69 4956.74 OK 62.00 0.60 5.00 6.67 4.00 4960.69 4957.11 OK 63.00 3.00 29.92 2.20 6.60 4960.10 4958.02 OK 64.00 0.60 5.00 5.67 3.40 4960.10 4958.35 OK ' 65.00 1.80 38.47 1.89 3.40 4964.20 4960.71 OK 66.00 1.20 18.93 2.83 3.40 4967.30 4963.73 OK 67.00 0.60 5.00 5.67 3.40 4967.30 4964,27 OK ' 68.00 1.20 12.80 3.42 4.10 4956.40 4949.79 OK 69.00 0.60 5.00 6.83 4.10 4956.40 4951.06 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ** SUMMARY OF SEWER HYDRAULICS NOTE: '----- THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER -----------------------------------------------_._..-------------- MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH '-- ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ---------ID-NO. 1011.00 __--_----- 11.00 10.00 ROUND ------------------------------------ 25.29 27.00 30.00 0.00 1112.00 12.00 11.00 ROUND 17.89 18.00 18.00 - 0.00 1213.00 13.00 12.00 ROUND 18.67 21.00 24.00 0.00 1314.00 14.00 13.00 ROUND 18.67 21.00 24.00 0.00 15.00 14.00 ROUND 16.86 18.00 24.00 0.00 '1415.00 1516.00 16.00 15.00 ROUND 11.99 12.00 24.00 0.00 1617.00 17.00 16.00 ROUND 6.39 12.00 24.00 0.00 1618.00 18.00 16.00 ROUND 12.78 15.00 24.00 0.00 '1819.00 19.00 18.00 ROUND 11.18 12.00 24.00 0.00 1820.00 20.00 18.00 ROUND 8.49 12.00 15.00 0.00 . 2090.00 90.00 20.00 ROUND 8.49 12.00 15.00 0.00 ' 1521.00 21.00 15.00 ROUND 7.74 12.00 15.00 0.00 Dlal 2122.00 22.00 21.00 ROUND 7.74 12.00 15.00 0.00 1423.00 23.00 14.00 ROUND 7.32 12.00 15.00 0.00 2324.00 24.00 23.00 ROUND 7.32 12.00 15.00 0.00 1127.00 27.00 11.00 ROUND 19.01 21.00 30.00 0.00 2770.00 70.00 27.00 ROUND 9.12 12.00 15.00 0.00 7025.00 25.00 70.00 ROUND 8.41 12.00 15.00 0.00 2526.00 26.00 25.00 ROUND 8.41 12.00 15.00 0.00 2728.00 28.00 27.00 ROUND 16.45 18.00 24.00 0.00 2829.00 29.00 28.00 ROUND 12.73 15.00 24.00 0.00 2960.00 60.00 29.00 ROUND 6.39 12.00 24.00 0.00 2961.00 61.00 29.00 ROUND 14.56 15.00 27.00 0.00 6162.00 62.00 61.00 ROUND 10.40 12.00 27.00 0.00 6163.00 63.00 61.00 ROUND 14.49 15.00 24.00 0.00 6364.00 64.00 63.00 ROUND 11.30 12.00 24.00 0.00 6365.00 65.00 63.00 ROUND 9.92 12.00 18.00 0.00 6566.00 66.00 65.00 ROUND 9.86 12.00 18.00 0.00 6667.00 67.00 66.00 ROUND 9.86 12.00 18.00 0.00 2768.00 68.00 27.00 ROUND 9.08 12.00 18.00 0.00 6869.00 69.00 68.00 ROUND 9.08 12.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ----------------------------------------------- 1011.0 23.8 37.6 1.44 8.12 1.66 6.89 4.85 1.31 V-OK 1112.0 10.5 10.7 1.20 6.91 1.24 6.72 5.94 1.08 V-OK 1213.0 10.5 20.6 1.01 6.59 1.16 5.56 3.34 1.30 V-OK 1314.0 10.5 20.6 1.01 6.59 1.16 5.56 3.34 1.30 V-OK 1415.0 8.0 20.6 0.87 6.14 1.03 4.93 2.55 1.33 V-OK 1516.0 5.9 37.6 0.54 8.72 0.87 4.50 1.88 2.49 V-OK 1617.0 1.1 37.6 0.23 5.32 0.40 2.46 0.35 2.34'V-OK 1618.0 5.0 26.9 0.58 6.55 0.81 4.17 1.59 1.78 V-OK 1819.0 3.5 26.9 0.49 5.91 0.68 3.70 1.11 1.78 V-OK 1820.0 2.0 9.2 0.40 5.97 0.57 3.70 1.63 1.96 V-OK 2090.0 2.0 9.2 0.40 5.97 0.57 3.70 1.63 1.96 V-OK 1521.0 2.8 16.4 0.35 9.97 0.68 4.13 2.28 3.51 V-OK 2122.0 2.8 16.4 0.35 9.97 0.68 4.13 2.28 3.51 V-OK 1423.0 2.5 17.0 0.32 9.90 0.64 3.92 2.04 3.63 V-OK 2324.0 2.5 17.0 0.32 9.90 0.64 3.92 2.04 3.63 V-OK 1127.0 15.6 52.8 0.93 9.36 1.34 5.81 3.18 1.99 V-OK 2770.0 4.4 16.6 0.44 11.44 0.85 4.96 3.59 3.55 V-OK 7025.0 4.4 20.6 0.39 13.37 0.85 4.96 3.59 4.42 V-OK 2526.0 4.4 20.6 0.39 13.37 0.85 4.96 3.59 4.42 V-OK 2728.0 11.3 31.0 0.84 9.09 1.20 5.73 3.60 2.02 V-OK 2829.0 11.3 61.5 0.58 14.92 1.20 5.73 3.60 4.07 V-OK 2960.0 1.8 61.5 0.23 8.70 0.50 2.91 0.57 3.83 V-OK 2961.0 9.8 51.0 0.67 9.90 1.12 4.98 2.46 2.52 V-OK 6162.0 4.0 51.0 0.43 7.64 0.73 3.59 1.01 2.47 V-OK 6163.0 6.6 25.4 0.70 6.80 0.92 4.71 2.10 1.68 V-OK 6364.0 3.4 25.4 0.49 5.63 0.68 3.64 1.08 1.68 V-OK 6365.0 3.4 16.7 0.46 7.41 0.73 3.97 1.92 2.27 V-OK 6566.0 3.4 17.0 0.46 7.50 0.73 3.97 ., 1.92 2.31 V-OK ' 6667.0 3.4 17.0 0.46 7.50 0.73 3.97 1.92 2.31 V-OK 2768.0 4.1 25.5 0.41 10.58 0,79 4.38 2.32 3,46 V-OK ' 6869.0 4.1 25.5 0.41 10.58 0.79 4.38 2.32 3.46 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ' (FT) (FT) --------------------------(FT) 1011.00 0.60 4940.79 4938.30 ---- 2.71 -0.80 NO '1112.00 0.74 4942.53 4940.80 2.72 3.70 OK 1213.00 0.59 4942.90 4942.53 2.35 2.22 OK 1314.00 0.59 4943.21 4942.90 2.04 2.35 OK 0.59 4944.10 4943.21 2.65 2.04 OK '1415.00 1516.00 1.97 4951.63 4945.01 7.19 1.74 OK 1617.00 1.97 4951.63 4951.61 7.19 7.21 OK 1,41 4957.00 4956*41 1.75 2.33 OK '1618.00 1819.00 1.41 4957.00 4956.99 1.75 1.76 OK 1820.00 2.00 4957.60 4957.20 1.15 2.30 OK 2090.00 2.00 4957.60 4957.58 1.15 1.17 OK '1521.00 4.58 4950.13 4944.10 2.30 3.40 OK 2122.00 4.58 4950.13 4950.08 2.30 2.35 OK 1423.00 4.93 4949.79 4943.20 3.93 2.80 OK 4.93 4949.79 4949.74 3.93 3.98 OK '2324.00 1127.00 1.65 4941.52 4940.79 2.08 2.71 OK 2770.00 4.72 4946.50 4941.71 8.75 3.14 OK 7,27 4951,50 4946,70 2.46 8.55 OK '7025"00 2526.00 7.27 4951.50 4951.49 3.90 2.47 OK 2728.00 1.34 4945.63 4941.72 1.87 2.38 OK 2829.00 5.27 4954.41 4945.83 4.29 1.67 OK 5.27 4954.41 4954.40 4.29 4.30 OK '2960.00 2961.00 2.70 4955.62 4954.61 2.82 3.84 OK 6162.00 2.70 4955.62 4955.62 2.82 2.82 OK 6163.00 0.90 4957.10 4955.72 1.00 2.97 OK 6364.00 0.90 4957.10 4957.10 1.00 1.00 OK 6365.00 1.80 4959.98 4957.30 2.72 1.30 OK 6566.00 1.86 4963.00 4960.18 2.80 2.52 OK '6667.00 1.86 4963.00 4963.00 2.80 2.80 OK 2768.00 4.19 4949.00 4941.72 5.90 2.88 OK 6869.00 4.19 4949.00 4949.00 5.90 5.90 OK K MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET ** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ---'------- SEWER ------------- SEWER SEWER --------- SURCHARGED --------------------" ------ CROWN ELEVATION WATER ELEVATION FLOW 'ID NUMBER LENGTH LENGTH UPSTREAM DNSTREA14 UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 414.40 138.51 4943.29 4940.80 4942.45 4942.00 JUMP '1011.00 1112.00 234.30 120.02 4944.03 4942.30 4944.04 4942.45 JUMP 1213.00 63.20 0.00 4944.90 4944.53 4944.49 4944.04 JUMP 1314*00 53.10 0.00 4945,21 4944*90 4944.51 49" 49 JUMP 1415.00 150.60 0.00 4946.10 4945.21 4945.13 49".51 JUMP 1516.00 336.10 0.00 4953.63 4947.01 4952.50 4945.13 JUMP 1617.00 1.00 0.00 4953.63 4953.61 4952.81 4952.50 JUMP ' 1618.00 36.20 0.00 4959.00 4958.49 4957.81 4952.50 JUMP -Dre1134 1819.00 1.00 0.00 4959.00 4958.99 4958.07 4957.81 JUMP 1820.00 20.00 0.00 4958.85 4958.45 4958.17 4957.81 JUMP 2090.00 1.00 0.00 4958.85 4958.83 4958.49 4958.17 JUMP 1521.00 131.70 0.00 4951.38 4945.35 4950.81 4945.13 JUMP t 2122.00 1.00 0.00 4951.38 4951.33 4951.90 4950.81 JUMP 1423.00 133.60 4.58 4951.04 4944.45 4950.43 4944.51 JUMP 2324.00 1.00 0.00 4951.04 4950.99 4951.52 4950.43 JUMP 1127.00 44.10 0.00 4944.02 4943.29 4943.36 4942.45 ' JUMP 2770.00 101.40 9.44 4947.75 4942.96 4947.35 4943.36 JUMP 7025.00 66.00 0.00 4952.75 4947.95 4952.35 4947.35 JUMP 2526.00 0.10 0.00 4952.75 4952.74 4954.46 4952.35 JUMP ' 2728.00 291.50 0.00 4947.63 4943.72 4946.83 4943.36 JUMP 2829.00 162.80 0.00 4956.41 4947.83 4955.61 4946.83 JUMP 2960.00 0.10 0.00 4956.41 4956.40 4956.12 4955.61 JUMP 2961.00 37.30 0.00 4957.87 4956.86 4956.74 4955.61 ' JUMP 6162.00 0.10 0.00 4957.87 4957.87 4957.11 4956.74 JUMP 6163.00 153.70 0.00 4959.10 4957.72 4958.02 4956.74 JUMP 6364.00 0.10 0.00 4959.10 4959.10 4958.35 4958.02 ' JUMP 6365.00 149.00 0.00 4961.48 4958.80 4960.71 4958.02 JUMP 6566.00 151.40 0.00 4964.50 4961.68 4963.73 4960.71 JUMP 6667.00 0.10 0.00 4964.50 4964.50 4964.27 4963.73 JUMP ' 2768.00 173.80 6.08 4950.50 4943.22 4949.79 4943.36 JUMP 6869.00 0.10 0.00 4950.50 4950.50 4951.06 4949.79 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY , ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 1011.0 11.00 4943.18 1.18 1.00 0.00 0.00 0.00 10.00 4942.00 , 1112.0 12.00 4944.59 0.85 1.00 0.55 0.00 0.00 11.00 4943.18 1213.0 13.00 4944.67 0.00 0.46 0.08 0.00 0.00 12.00 4944.59 1314.0 14.00 4944.68 0.00 0.08 0.01 0.00 0.00 13.00 4944.67 1415.0 15.00 4945.50 0.65 0.28 0.03 0.25 0.15 14.00 4944.68 1516.0 16.00 4952.81 7.22 0.05 0.00 0.25 0.09 15.00 4945.50 1617.0 17.00 4952.81 0.00 0.25 0.00 0.00 0.00 16.00 4952.81 1618.0 18.00 4958.08 5.27 0.08 0.00 0.00 0.00 16.00 4952.81 ' 1819.0 19.00 4958.09 0.00 0.25 0.00 0.00 0.00 18.00 4958.08 1820.0 20.00 4958.38 0.29 0.08 0.00 0.00 0.00 18.00 4958.08 2090.0 90.00 4958.53 0.14 0.25 0.01 0.00 0.00 20.00 4958.38 ' 1521.0 21.00 4951.07 5.49 1.00 0.08 0.00 0.00 15.00 4945.50 2122.0 22.00 4951.98 0.88 0.25 0.02 0.00 0.00 21.00 4951.07 1423.0 23.00 4950.67 5.93 1.00 0.06 0.00 0.00 14.00 4944.68 2324.0 24.00 4951.59 0.90 0.25 0.02 0.00 0.00 23.00 4950.67 , 1127.0 27.00 4943.52 0.00 0.05 0.01 0.25 0.33 11.00 4943.18 2770.0 70.00 4947.73 4.12 0.46 0.09 0.00 0.00 27.00 4943.52 7025.0 25.00 4952.73 4.98 0.08 0.02 0.00 0.00 70.00 4947.73 , 2526.0 26.00 4954.66 1.88 0.25 0.05 0.00 0.00 25.00 4952.73 2728.0 28.00 4947.34 3.71 0.05 0.01 0.25 0.11 27.00 4943.52 2829.0 29.00 4956.12 8.77 0.05 0.01 0.00 0.00 28.00 4947.34 ' 2960.0 60.00 4956.12 0.00 0.25 0.00 0.00 0.00 29.00 4956.12 2961.0 61.00 4957.12 0.99 0.05 0.00 0.00 0.00 29.00 4956.12 6162.0 62.00 4957.13 0.00 0.25 0.00 0.00 0.00 61.00 4957.12 6163.0 63.00 4958.36 1.23 0.08 0.01 0.00 0.00 61.00 4957.12 ' 6364.0 64.00 4958.36 0.00 0.25 0.00 0.00 0.00 63.00 4958.36 6365.0 65.00 4960.96 2.59 0.05 0.00 0.00 0.00 63.00 4958.36 ' 6566.0 66.00 4963.98 2.99 0.46 0.03 0.00 0.00 65.00 4960.96 6667.0 67.00 4964.33 0.34 0.25 0.01 0.00 0.00 66.00 4963.98 2768.0 68.00 4950.08 6.53 0.46 0.04 0.00 0.00 27.00 4943.52 6869.0 69.00 4951.14 1.04 0.25 0.02 0.00 0.00 68.00 4950.08 'BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE ' NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. *** SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE. ' THE TRENCH SIDE SLOPE = 1 MANHOLE GROUND INVERT MANHOLE '1D NUMBER ELEVATION ELEVATION HEIGHT FT FT FT ------------------------------------------------------------------------------- 10.00 4940.00 4938.30 1.70 11.00 4946.00 4940.79 5.21 12.00 4946.75 4942.53 4.22 13.00 4947.21 4942,90 4,35 14.00 4947.25 4943.20 4.05 15.00 4948.75 4944.10 4.65 16.00 4960.82 4951.61 9.21 '17.00 4960.82 4951.63 9.19 18.00 4960.75 4956.99 3.76 19.00 4960.75 .4957.00 3.75 4960.00 4957.58 2.42 '20.00 90.00 4960.00 4957.60 2.40 21.00 4953.68 4950.08 3.60 4953.68 4950*13 3.55 t22,00 23.00 4954.97 4949.74 5.23 24.00 4954.97 4949.79 5.18 70.00 4956.50 4946.50 10.00 4955.21 4951.49 3.72 '25.00 26.00 4956.65 4951.50 5.15 27.00 4946.10 4941.52 4.58 4949.50 4945.63 3.87 '28.00 29.00 4960.70 4954.40 6.30 60.00 4960.70 4954.41 6.29 61.00 4960.69 4955.62 5.07 '62.00 4960.69 4955.62 5.07 63.00 4960.10 4957.10 3.00 64.00 4960.10 4957.10 3.00 65.00 4964.20 4959.98 4.22 66.00 4967.30 4963.00 4.30 67.00 4967.30 4963.00 4.30 4956*40 4949*00 7.40 '68.00 69.00 4956.40 4949.00 7.40 -------- SEWER -------------- UPST TRENCH WIDTH ------------------------------------------------ DNST TRENCH WIDTH TRENCH WALL EARTH ID NUMBER ON GROUND AT INVERT ON GROUND AT INVERT LENGTH THICKNESS VOLUME ' FT FT FT FT FT INCHES CUBIC YD WlIq ------------------------------------------------------------------------------- 1011.00 9.34 5.08 2.31 5.08 414.40 3.50 396.9 1112.00 8.52 3.92 10.49 3.92 234.30 2.50 264.1 1213.00 8.20 4.50 7.95 4.50 63.20 3.00 63.2 1314.00 7.58 4.50 8.21 4.50 53.10 3.00 51.7 1415.00 8.80 4.50 7.58 4.50 150.60 3.00 153.6 1516.00 17.88 4.50 6.98 4.50 336.10 3.00 706.3 1617.00 17.88 4.50 17.92 4.50 1.00 3.00 3.4 1618.00 7.00 4.50 8.16 4.50 36.20 3.00 33.7 1819.00 7.00 4.50 7.03 4.50 1.00 3.00 0.9 1820.00 5.17 3.63 7.47 3.63 20.00 2.25 12.3 2090.00 5.17 3.63 5.21 3.63 1.00 2.25 0.5 1521.00 7.48 3.63 9.68 3.63 131.70 2.25 121.6 2122.00 7.48 3.63 7.57 3.63 1.00 2.25 0.8 1423.00 10.74 3.63 8.47 3.63 133.60 2.25 146.5 2324.00 10.74 3.63 10.83 3.63 1.00 2.25 1.3 1127.00 8.08 5.08 9.33 5.08 44.10 3.50 54.4 2770.00 20.38 3.63 9.15 3.63 101.40 2.25 257.6 7025.00 7.79 3.63 19.97 3.63 66.00 2.25 155.7 2526.00 10.67 3.63 7.81 3.63 0.10 2.25 0.1 2728.00 7.24 '4.50 8.25 4.50 291.50 ` 3.00 278.0 2829.00 12.08 4.50 6.84 4.50 162.80 3.00 209.7 2960.00 12.08 4.50 12.09 4.50 0.10 3.00 0.2 2961.00 9.35 4.79 11.38 4.79 37.30 3.25 54.6 6162.00 9.35 4.79 9.35 4.79 0.10 3.25 0.1 6163.00 5.50 4.50 9.45 4.50 153.70 3.00 145.9 6364.00 5.50 4.50 5.50 4.50 0.10 3.00 0.1 6365.00 8.52 3.92 5.69 3.92 149.00 2.50 114.3 6566.00 8.68 3.92 8.12 3.92 151.40 2.50 141.6 6667.00 8.68 3.92 8.69 3.92 0.10 2.50 0.1 2768.00 14.88 3.92 8.85 3.92 173.80 2.50 290.1 6869.00 14.88 3.92 14.89 3.92 0.10 2.50 0.2 TOTAL EARTH VOLUME FOR SEWER TRENCHES = 3659.238 CUBIC YARDS EARTH VOLUME WAS ESTIMATED TO HAVE BOTTOM WIDTH=DIAMETER OR WIDTH OF SEWER + 2 * B B=ONE FEET WHEN DIAMETER OR WIDTH <=48 INCHES B=TWO FEET WHEN DIAMETER OR WIDTH >48 INCHES IF BOTTOM WIDTH <MINIMUM WIDTH, 2 FT, THE MINIMUM WIDTH WAS USED. BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT SEWER WALL THICKNESS=EOIVLNT DIAMATER IN INCH/12 +1 IN INCHES ED. BACKFILL DEPTH UNDER SEWER WAS ASSUME a Do/q b 2tz w \ O 0 3®31 3® ^ v2 1 I.. b i U®SL @I ER F0LE: WSP2-I3.®AT pp U�NE2Sp�®2220 & p22 U�Di®SLS ER IT LE: 9aSP2-2®.®A4 J tz wh= H V 2y� 2 �' NER-PROJECT Ipllowi wah a F BY 6 t 1� DATE 3 I�f q(n PROJECT NO. coif �l ATURE I ? 5foo 5eo)e(" miq n D5&: c e CHECKED BY DATE SHEET OF W 4 3 q pipes -From -QJef IbI3 �o Inlet- I(nA_ 6uD5cwp� ID 3Wj 553�, 505 and W4) Q1oo 65obbghol &13) % I (JCFc &ee tom Ifl (f 1l 6 4-o M H t &4 oo5e�jel- -ID. 93 ) �160 (50b6a5(ny 60 A4 &c) = a80 5cf-5 Pipe from Jro kf 114 {a M FI ((A (uo(wc,- rD 5 o q) Qioo 6)bb�51� ( it) ' pipe fo ?onj 3to Doge� 3D31 Q(OD (5obb4514 &) _ 4(, 36f5 -P,p1?Fi-om Snlef AID -fo lAef a (# (UbSele- ID 5g50 Q1oo (5obbxwi 1413) = a I c.(5 f jpe�vm ZWe� a( 4 f-o MCI aOA- ID SIS�f� Q1GU bobbo5(el ICI) 0100 (5ob1x51/i Ise aloe -Fv/YI MN ga �o �� 3ISo fed (UDSe1��r �D So51) QloD bobbaw5 14and (5) aMc-& litlow springs Ph. 2 -- Storm Sewer Anal. for Lines 16 & 17 CO-PPP-01 3-18-96 L&A Inc. CLD File: WSP2-16.DAT 1 12 , 20 2 2 , 1 , .85 500 500 .2 ,N 1100 1.4 , 28.5 10 .786 30, 4940.0 0 1 ,3031, 0 0 0 11 �71e �o ?6nJ 31D 41.3, 0 1.0, .60 , 0, 0 0 0 0 fi 31, 4944.8 ,3031, 2 ,3132,3139,0 0 I w 41.3, 0, 1.0, .60 , 0, 0, 0 0 0 r Mn tt 32, 4951.2 ,3132, 2 ,3233,3234, 0 , 0 �/ I�d (N D,p, �Cl 2 8.5 , 0, 1.0, .60, 0, 0, 0, 0, 0 T 1 R l/ T ,33, 4951.2 ,3233, 0 , 0 , 0 ,0 , 0 'njaL /6/' 13.0 , 0, 1.0, .60, 0, 0, 0, 0, 0 / f 34, 4951.5 ,3234, 1 ,3435, 0 , 0 116.2, 0, 1.0, .60, 0, 0, 00 35, 4952.9 ,3435, 1 ,3536, 0 , 0 0 14f 16.2, 0 , 1.0, .60 , 0 , 0 , 0 0 , 0 �[• 36, 4953.9 ,3536, 1 ,3637, 0 ,0 0 n�.r'�1 1 16.2, 0 , 1.0, .60 , 0 , 0 , 0 0 , 0 M JJ 37, 4954.1 ,3637, 1 ,3738, 0 , 0 0 I 16.2,0, 1.0,.60,0,0,0,oDa/�S� 38, 4955.6 ,3738, 0 , 0 , 0 , 0 , 0 x�e� IGB 16.2, 0 , 1.0, .60 , 0 , 0 , 0 , 0 0 39, 4953.2 ,3139, 1 ,3940, 0 , 0 0 I 12.7,0, 1.0,.60,0,0,000rl�►l�fl1�%1a D�� 40, 4953.2 ,3940, 0, 0, 0, 0 0 12.7,0, 1.0,.60,0,0,0,0,0��►11Z�%a55af17 10 031, 52.8, 0.51, 4943.27 , .013 1 , 0 132,164.6, 3.6 , 4948.40 , .011 ,1.00 , 0.25 , 3233, 1 , 0.6 , 4948.40 , .011 ,0.25 , 0 234, 19.8, 0.6 , 4948.72 , .013 ,0.05 , 0 435,241.5, 0.6 , 4950.37 , .013 ,1.00 , 0 536,182.3, 0.6 , 4951.66 , .013 ,0.05 , 0 3637,106.5, 0.6 , 4952.50 , .013 ,0.08 , 0 U38, 1 , 0.6 , 4952.50 , .013 ,0.25 , 0 7 139,150.4, 5.01, 4949.50 , .011 ,1.00 , 0 3940, 1 , 5.0 , 4949.50 , .011 ,0.25 , 0 File: 0Pa- I&.bi w(llo.v 5pitngl P)MVj OD5ek1tK Au tyii,5 14ne516 It17 1 , 36 , 0 — 56-1,vR&P4om F?cnj 3ro 4o M0 I&A 1 , 24 , 0 — 014nn M 4;VM P111 l bk i'o-fkC (O 1 24 , 0 — i6xep{pal 1.0154 rAlff 164 1 24 , 0 — ;+iAJ&P;rom 141410M M14/69 1 24 0 — -tn 9CR4vm IM1446 }D µ1N1I0G 1 , 24 , 0 — jecDRam MOW-., MHIO 1 , 24 , o — a�-„� 2cP F.am WINIbDI,�, 1411�I& 1 , 24 , 0— * 6we,06411.o55 4i LIOI&& 1 , 18 , 0 — 15-1n P65 Prop M4 I&Afo rA1ti11 A 1 , 18 , o — 4 PontePlAl (yes of ZgttE Ilk Da74 STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study USER:LIDSTONE AND ANDERSON- FT COLLINS COLORADO .............................. ON DATA 03-12-1996 AT TIME 09:17:54 VERSION=03-26-1994 *** PROJECT TITLE :Willow Springs Ph. 2 -- Storm Sewer Anal. for Lines 16 & 17 *** RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY FORMULA IS GIVEN *** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS --------------------- TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS ---------------------------------------------------------------------- 30.00 0.60 0.00 0.00 0.00 4.75 2.85 31.00 0.60 0.00 0.00 0.00 4.75 2.85 32.00 0.60 0.00 0.00 0.00 4.75 2.85 33.00 0.60 0.00 0.00 5.00 21.67 13.00 34.00 0.60 0.00 0.00 0.00 4.75 2.85 35.00 0.60 0.00 0.00 0.00 4.75 2.85 36.00 0.60 0.00 0.00 0.00 4.75 2.85 37.00 0.60 0.00 0.00 0.00 4.75 2.85 38.00 0.60 0.00 0.00 5.00 27.00 16.20 39.00 0.60 0.00 0.00 0.00 4.75 2.85 40.00 0.60 0.00 0.00 5.00 21.17 12.70 THE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES DENVER CRITERIA WAS NOT USED TO CHECK THE COMPUTATED Tc. *** SUMMARY OF HYDRAULICS AT MANHOLES rife: w5Pa-&oor uootr ot)�Pdl' ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS 1D NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES- INCH/HR CFS FEET FEET JC�eimue - -- - ------- --- ---- --- 4Ja4ci5�ifucc VJA+eKsw-(GCC 1Ii pb Wmavgndftl 3 D 30.00 0.00 0.00 0.00 41.30 4940.00 4945.70 NO NO fv%v5ed, 31.00 6.00 5.00 6.88 41.30 4944.80 4945.37 (IHhole cWpj 32.00 4.20 5.00 6.79 28.50 4951.20 4948.Zl OK 33.00 0.60 5.00 21.67 13.00 4951.20 4949.42 OK 34.00 3.00 5.00 5.40 16.20 4951.50 4949.33 OK GradiIAI 6e(ow 35.00 2.40 5.00 6.75 16.20 4952.90 4951.29 OK �}YaU�IG iy 9av�n� ht y1� OK 36.00 1.80 5.00 9.00 16.20 4953.90 4952.28 eW d q}ajl momWf5 �11n1ef3 37.00 1.20 5.00 13.50 16.20 4954.10 4952.89 OK C1�0�9 B�G IAN��C>�L�'wC ((Inll(9� 38.00 0.60 5.00 27.00 16.20 4955.60 4953.01 OK 4�J � 6bbl G 4 /UAe l i 39.00 1.20 5.00 10.58 12.70 4953.20 4949.32 OK 40.00 0.60 5.00 21.17 12.70 4953.20 4951.531 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS ' NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) 3031.00 31.00 30.00 ROUND 34.13 36.00 36.00 0.00 3132.00 32.00 31.00 ROUND 19.34 21.00 24.00 0.00 3233,00 33.00 32.00 ROUND 20.16 21.00 24,00 0.00 3234.00 34.00 32.00 ROUND 23.31 24.00 24.00 0.00 3435.00 35.00 34.00 ROUND 23.31 24.00 24.00 0.00 3536.00 36.00 35.00 ROUND 23.31 24.00 24.00 0.00 '3637.00 37.00 36.00 ROUND 23.31 24.00 24.00 0.00 3738.00 38.00 37.00 ROUND 23.31 24.00 24.00 0.00 3139.00 39.00 31.00 ROUND 13.42 15.00 18.00 0.00 ' 3940.00 40.00 39.00 ROUND 13.43 15.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES IMENSION UNITS FOR BOX SEWER ARE IN FEET EQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. UGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE;.OTHERWISE, �XISITNG SIZE WAS USED ------------------------------------------------------------------------------ ' SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL 9 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 3031.0 41.3 47.8 2.15 7.61 2.12 7.72 5.84 0.95 V-OK 3132.0 28.5 50.9 1.07 16.65 1.81 9.53 9.07 3.17 V-OK 3233.0 13.0 20.8 1.15 6.98 1.29 6.05 4.14 1.27 V-OK '3234.0 16.2 17.6 1.51 6.35 1.42 6.81 5.16 0.92 V-OK 3435.0 16.2 17.6 1.51 6.35 1.42 6.81 5.16 0.92 V-OK 3536.0 16.2 17.6 1.51 6.35 1.42 6.81 5.16 0.92 V-OK 3637.0 16.2 17.6 1.51 6.35 1.42 6.81 5.16 0.92 V-OK ' 3738.0 16.2 17.6 1.51 6.35 1.42 6.81 5.16 0.92 V-OK 3139.0 12.7 27.9 0.71 15.39 1.32 7.69 7.19 3.66 V-OK 3940.0 12.7 27.8 0.71 15.38 1.32 7.69 7.19 3.65 V-OK ROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS SEWER U SLOPE ------------------------------------------- INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM (FT) (FT) (FT) (FT) ----- 3031.00 ---- 0.51 --- 4940.27 4940.00 1.53 3.00 NO 3132.00 3.60 4946.40 4940.47 2.80 2.33 OK 0.60 4946.40 4946.39 2.80 2.81 OK '3233.00 3234.00 0.60 4946.72 4946.60 2.78 2.60 OK 3435.00 0.60 4948.37 4946.92 2.53 2.58 OK 0.60 4949.66 4948.57 2.24 2.33 OK- '3536.00 3637.00 0.60 4950.50 4949.86 1.60 2.04 OK 3738.00 0.60 4950.50 4950.49 3.10 1.61 OK 3139.00 5.01 4948.00 4940.46 3.70 2.83 OK 3940.00 5.00 4948.00 4947.95 3.70 3.75 OK K MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET Da�� *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ATJ/7`7 ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 3031.00 52.80 52.80 4943.27 4943.00 PRSS'ED 14945.37 1 4945.70 3132.00 164.60 101.05 4948.40 4942.47 4948.21 j 4945.37 JUMP 3233.00 1.00 1.00 4948.40 4948.39 4949.42 4948.21 PRSS'ED 3234.00 19.80 19.80 4948.72 4948.60 4949.33 4948.21 PRSS'ED 3435.00 241.50 136.96 4950.37 4948.92 4451.49 SUBCR f�iPe9A/e /esLsu/rZrd fai 3536.00 182.30 131.84 4951.66 4950.57 `•4952.28 4951.29j SUBCR (oo-yea, C✓lKf, filIJ Om{5 3637.00 106.50 77.72 4952.50 4951.86 14952.89 1 4952.28 SUBCR mvV ha✓e a fl55U/B S caIcj I c�1 3738.00 1.00 1.00 4952.50 4952.49 4953.01 4952.89 PRSS' ED (pm pl re5 w�f A7iw1 5(d . 56t I 3139.00 150.40 78.57 4949.50 4941.96 4949.32 i 4945.371 JUMP 3940.00 1.00 0.00 4949.50 4949.45 4951.53 . 4949.32 JUMP PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUSCRITICAL FLOW *** SUMMARY OF ENERGY GRADIE ALONG EErla VjSj SEWERS -------------- r,le� Fluplme Vei(c ion UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 3031.0 31.00 4945.90 0.20 1.00 0.00 0.00 0.00 30.00 4945.70 3132.0 32.00 4949.62 2.23 1.00 1.28 0.25 0.21 31.00 4945.90 3233.0 33.00 4949.69 0.00 0.25 0.07 0.00 0.00 32.00 4949.62 3234.0 34.00 4949.74 0.10 0.05 0.02 0.00 0.00 32.00 4949.62 d 3435.0 35.00 4951.75 1.59 1.00 0.41 0.00 0.00 34.00 4949.74 3536.0 36.00 4952.71 0.94 0.05 0.02 0.00 0.00 35.00 4951.75 3637.0 37.00 4953.31 0.57 0.08 0.03 0.00 0.00 36.00 4952.71 3738.0 38.00 4953.42 0.01 0.25 0.10 0.00 0.00 37.00 4953.31 i 3139.0 39.00 4950.24 3.54 1.00 0.80 0.00 0.00 31.00 4945.90 3940.0 40.00 4952.34 1.89 0.25 0.20 0.00 0.00 39.00 4950.24 �95 t a BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. *** SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE. THE TRENCH SIDE SLOPE = 1 MANHOLE GROUND INVERT MANHOLE ID NUMBER ELEVATION ELEVATION HEIGHT FT FT FT ------------------------------------------------------------------------------- 30.00 4940.00 4940.00 -0.00 31.00 4944.80 4940.27 4.53 32.00 4951.20 4946.39 4.81 33.00 4951.20 4946.40 4.80 34.00 4951.50 4946.72 4.78 ' 35.00 4952.90 4948.37 4.53 36.00 4953.90 4949.66 4.24 37.00 4954.10 4950.49 3.61 ' 38.00 4955.60 4950.50 5.10 39.00 4953.20 4947.95 5.25 ' 40.00 4953,20 4948.00 5.20 ------------------------------------------------------------------------------- SEWER UPST TRENCH WIDTH DNST TRENCH WIDTH TRENCH WALL EARTH ID NUMBER ON GROUND AT INVERT ON GROUND AT INVERT LENGTH THICKNESS VOLUME FT FT FT FT FT INCHES CUBIC YD ------------------------------------------------------------------------- ' 3031.00 7.39 5.67 5.67 5.67 52.80 4.00 57.2 3132.00 9.10 4.50 8.15 4.50 164.60 3.00 178.9 3233.00 9.10 4.50 9.11 4.50 1.00 3.00 1.2 '3234.00 9.06 4.50 8.70 4.50 19.80 3.00 22.3 3435.00 8.56 4.50 8.66 4.50 241.50 3.00 261.3 3536.00 7.98 430 8.17 4.50 182.30 3.00 182.2 6.70 4.50 7.58 4.50 106.50 3.00 92.6 '3637.00 3738.00 9.70 4.50 6.71 4.50 1.00 3.00 1.0 3139.00 10.48 3.92 8.75 3.92 150.40 2.50 172.1 3940*00 10.411 3,92 10,58 3.92 1.00 2.50 1.3 �OTAL EARTH VOLUME FOR SEWER TRENCHES = 970.1976 CUBIC YARDS` EARTH VOLUME WAS ESTIMATED TO HAVE BOTTOM WIDTH=DIAMETER OR WIDTH OF SEWER + 2 * B ' B=ONE FEET WHEN DIAMETER OR WIDTH <=48 INCHES B=TWO FEET WHEN DIAMETER OR WIDTH >48 INCHES BOTTOM WIDTH <MINIMUM WIDTH, 2 FT, THE MINIMUM WIDTH WAS USED. 'IF BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT SEWER WALL THICKNESS=EOIVLNT DIAMATER IN INCH/12 +1 IN INCHES D. BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT SEWER WALL THICKNESS=EOIVLNT DIAMATER IN INCH/12 +1 IN IN 0 J7v� Willow Springs Ph. 2 -- Storm Sewer Anal. for Lines 20 8 21 ' CO-PPP-01 3-18-96 L&A Inc. CLD File: WSP2-20.DAT rile; w5pp-- +T- 1 12 , 20 2 2 , 1 , .85 , 500 500 , .2 , N 1 , 100 WI (uri �jp/uttl P6ea 1.4 , 28.5 , 10 , .786 Oje�jti Aralf515 ' 50, 4952.0 0 1 ,5051, 0, 0 0 L��+v f end 315 22.4, 0 , 1.0, .60 , 0 , 0 , 0 0 OI ' 51, 4962.0 ,5051, 2 ,5152,5154,0 0 n�n oiOn 22.4, 0 , 1.0, .60 , 0 , 0 , 0 0 0 �1 52, 4959.0 ,5152, 1 ,5253, 0 , 0 , 0 U�jQNd e Glne ab ' 6.2 , 0, 1.0, .60, 0, 0, 0 0 0 I' 53, 4959.0 ,5253, 0 , 0 , 0 ,0 0 I UI5 bole oil? 6.2, 0, 1.0, .60, 0, 0,0 0 Or ' 54, 4958.2 ,5154, 2 ,5455,5456,0 0 I r�flr ql� 18.5, 0, 1.0, .60 , 0, 0, 0 0 55, 4958.2 ,5455, 0 , 0 , 0 , 0 0 f 16.9, 0 , 1.0, .60 , 0 , 0 , 0 0 , 0 j— 56, 4958.2 ,5456, 1 ,5657, 0 ,0 0 I ILL n' 2.1, 0, 1.0, .60 , 0, 0, 0 0 0 T a Y 57, 4958.2 ,5657, 0 , 0 , 0 , 0 , 0 � #��e{ to,5(A 2.1, 0, 1.0, .60 , 0, 0 0 0 0 7 5051, 62.9, 1.0 , 4954.63 , .011 1 , 0 , 1 , 24 , 0 — aLf-!n[n RD3 From I�cnd 313 fv y�1Ff da A , 5152, 17.5, 6.0 , 4960.25 , .011 ,0.05 , 0 , 1 , 15 , 0 — 15,,, AD5 from/40104+0.LjkW tlae%(7 5253, 1 , 6.0 , 4960.25 , .011 ,0.25 , 0 , 1 , 15 , 0 - f cow lce 1059 fo lame P 5154,147.0, 1.0 , 4956.29 , .011 ,1.00 , 0.25 , 1 , 24 , 0 — ay-,,, 6b5 -:um M4 gap 401WR�P4 5455, 1 , 1.0 , 4956.29 , .011 ,0.25 , 0 , 1 , 24 , 0—�-dancepbd lossa+.TnjefalA ' 5456, 37.4, 1.0 , 4956.11 , .013 ,0.05 , 0 1 , 15 , 0 — ISn �✓?CfP Frvn"-Wefall- }*rmlc�Alg 5657, 1 , 1.0 , 4956.11 , .013 ,0.25 , 0 1 , 15 , 0 — � ('U/1 pfval Gv55 a f & 916 - D3 Aq ----------------------------------------------------------------------------- STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver - Metro Denver Cities/Counties & UDFCD Pool Fund Study USER:LIDSTONE AND ANDERSON- FT COLLINS COLORADO .............................. ON DATA 03-11-1996 AT TIME 17:14:52 VERSION=03-26-1994 ** PROJECT TITLE :Willow Springs Ph. 2 -- Storm Sewer Anal, for Lines 20 & 21 ** RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY FORMULA IS GIVEN 1** SUMMARY OF SUBBASIN RUNOFF PREDICTIONS --------------------- TIME OF CONCENTRATION MANHOLE BASIN OVERLAND GUTTER BASIN RAIN I PEAK FLOW ID NUMBER AREA * C To (MIN) Tf (MIN) Tc (MIN) INCH/HR CFS 50.00 0.60 0.00 0.00 0.00 4.75 2.85 51.00 0.60 0.00 0.00 0.00 4.75 2.85 52.00 0.60 0.00 0.00 0.00 4.75 2.85 ' 53.00 0.60 0.00 0.00 5.00 10.33 6.20 54.00 0.60 0.00 0.00 0.00 4.75 2.85 55.00 0.60 0.00 0.00 5.00 28.17 16.90 '56.00 0.60 0.00 0.00 0.00 4.75 2.85 57.00 0.60 0.00 0.00 12.11 3.50 2.10 ,HE SHORTEST DESIGN RAINFALL DURATION IS FIVE MINUTES ENVER CRITERIA WAS NOT USED TO CHECK THE COMPUTATED Tc. Frle. w5pa-Mi ovr l4rlo ka Ja I 05e,ar 4d�?1�. *** SUMMARY '------------------------------------------------------------------------------ OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS 'ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ________________________________________________________ ___________________ __ 1 � � W C/�j✓7�tLC I✓I�o+ ?J�`� 0.00 0.00 0.00 22.40 4952.00 4955.00 NO '50.00 51.00 4.20 5.00 5.33 22.40 4962.00 4954.36 OK N(IL NA AOA 52.00 1.20 5.00 5.17 6.20 14959.009 .9 NO /I u15 end �Fl,,,e a�D �F�oi(d Cnc1 $CcTlon 53.00 0.60 5.00 10.33 6.20 4959,00 4961,07 NO '54.00 2.40 5.00 7.71 18.50 4958.20 4956.27 OK 55.00 0.60 5.00 28.17 16.90 4958.20 4956.47 OK 56.00 1.20 43.41 1.75 2.10 4958.20 4956.80 OK 57.00. 0.60 12.11 3.50 2.10 4958.20 4956.82 OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ** SUMMARY OF SEWER HYDRAULICS NOTE: ------------------------------------------------------------------------------- THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) D)A(RISE) DIA(RISE) WIDTH ---------------------------------------------------------------------------- ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) D 3�� 5051.00 51.00 50.00 ROUND 22.46 24.00 24.00 0.00 ' 5152.00 52.00 51.00 ROUND 9.92 12.00 15.00 0.00 5253.00 53.00 52.00 ROUND 9.92 12.00 15.00 0.00 5154.00 54.00 51.00 ROUND 20.91 21.00 24.00 0.00 5455.00 55.00 54.00 ROUND 20.21 21.00 24.00 0.00- ' 5456.00 56.00 54.00 ROUND 9.84 12.00 15.00 0.00 5657.00 57.00 56.00 ROUND 9.84 12.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES , DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. ' SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ' ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. ' NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 5051.0 22.4 26.8 1.40 9.55 1.68 7.96 7.13 1.49 V-OK 5152.0 6.2 18.8 0.49 13.71 1.00 5.87 5.05 3.97 V-OK ' 5253.0 6.2 18.8 0.49 13.71 1.00 5.87 5.05 3.97 V-OK 5154.0 18.5 26.8 1.22 9.21 1.55 7.09 5.89 1.60 V-OK 5455.0 16.9 26.8 1.15 9.03 1.48 6.77 5.38 1.63 V-OK ' 5456.0 2.1 6.5 0.49 4.71 0.58 3.77 1.71 1.37 V-OK 5657.0 2.1 6.5 0.49 4.71 0.58 3.77 1.71 1.37 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) ---- (FT) ---- - 5051.00 1.00 ------- 4952.63 ------- 4952.00 7.37 2.00 NO 5152.00 6.00 4959.00 4957.95 -1.25 2.80 NO 5253.00 6.00 4959.00 4958.94 -1.25 -1.19 NO , 5154.00 1.00 4954.29 4952.82 1.91 7.18 OK 5455.00 1.00 4954.29 4954.28 1.91 1.92 OK 5456.00 1.00 4954.86 4954.49 2.09 2.46 OK 5657.00 1.00 4954.86 4954.85 2.09 2.10 OK , OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ----' 5051.00 62.90 ----- 20.95 ------- 4954.63 ------- 4954.00 ------' 4954.36 4955.00 JUMP 5152.00 17.50 0.00 4960.25 4959.20 4960.97 4954.36 JUMP 5253.00 1.00 1.00 4960.25 4960.19 4961.07 4960.97 4954.36 PRSSIED JUMP rr Vlpt5 GAL Ke55M vJ ror j00-yev' ' 5154.00 147.00 98.14 4956.29 4954.82 4956.27 e✓G1✓ III Ol�fi�� �(✓� a 5455.00 1.00 0.00 4956.29 4956.28 4956.47 4956.27 JUMP �C55vr� sPA (which (OM P�ICS 5456.00 37.40 37.40 4956.11 4955.74 4956.80 4956.27 PRSSIED �/� ` Wlf,n A5T-m Sfal-41J �(' 5657.00 1.00 1.00 4956.11 4956.10 4956.82 4956.80 PRSSIED , IRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW D33�� ** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS EC,1- le6 -- --- ------ - - - ---- - - -- ------------------------------------------------------ UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- '5051.0' 51.00 4955.15 0.15 1.00 0.00 0.00 0.00 50.00 4955.00 5152.0 52.00 4961.36 6.20 0.05 0.02 0.00 0.00 51.00 4955.15 5253,0 53.00 4961.47 0.01 0.25 0.10 0.00 0.00 52.00 4961.36 5154.0 54.00 4956.81 0.47 1.00 0.54 0.25 0.65 51.00 4955.15 5455.0 55.00 4956.92 0.00 0.25 0.11 0.00 0.00 54.00 4956.81 5456.0 56.00 4956.85 0.04 0.05 0.00 0.00 0.00 54.00 4956.81 5657.0 57.00F4956.86! 0.00 0.25 0.01 0.00 0.00 56.00 4956.85 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT 1S NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I** SUMMARY OF EARTH EXCAVATION VOLUME FOR COST ESTIMATE. THE TRENCH SIDE SLOPE = 1 MANHOLE GROUND INVERT MANHOLE 1D NUMBER ELEVATION ELEVATION HEIGHT FT FT FT -- 50.00 ------- 4952.00 ------- 4952.00 ---- 0.00 51.00 4962.00 4952.63 9.37 52.00 4959.00 4958.94 0.06 ' 53.00 4959.00 4959.00 0.00 54.00 4958.20 4954.28 3.92 4958.20 4954.29 3.91 '55.00 56.00 4958.20 4954.85 3.35 57.00 4958.20 4954.86 3.34 ------------------------------------------------------------- SEWER UPST TRENCH WIDTH DNST TRENCH WIDTH TRENCH ----------------- WALL EARTH NUMBER ON GROUND AT INVERT ON GROUND AT INVERT LENGTH THICKNESS VOLUME 'ID FT FT FT FT FT INCHES CUBIC YD ---------------------------------------------------------------------------- 5051,00 18.24 4.50 4.50 4.50 . 62.90 3.00 127.7 5152.00 0.38 3.63 8.47 3.63 17.50 2.25 9.9 5253.00 0.38 3.63 0.50 3.63 1.00 2.25 0.2 5154.00 7.32 4.50 17.86 4.50 147.00 3.00 311.7 '5455.00 7.32 4.50 7.34 4.50 1.00 3.00 0.9 5456.00 7.06 3.63 7.80 3.63 37.40 2.25 27.8 5657.00 7.06 3.63 7.08 3.63 1.00 2.25 0.7 IOTAL EARTH VOLUME FOR SEWER TRENCHES = 478.9049 CUBIC YARDS EARTH VOLUME WAS ESTIMATED TO HAVE BOTTOM WIDTH=DIAMETER OR WIDTH OF SEWER + 2 * B F(oulinL 2(fmbol . LA56 a 4156.a -11 B=ONE FEET WHEN DIAMETER OR WIDTH <=48 INCHES B=TWO FEET WHEN DIAMETER OR WIDTH >48 INCHES IF BOTTOM WIDTH <MINIMUM WIDTH, 2 FT, THE MINIMUM WIDTH WAS USED. BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE ONE FOOT SEWER WALL THICKNESS=EOIVLNT DIAMATER 1N INCH/12 +1 IN INCHES ED. BACKFILL DEPTH UNDER SEWER WAS ASSUMED TO BE 0 FAwQDial17KV SWALE AND RIPRAP DESIGN SWALE DESIGN L4 ..,......................... c....,... Wdloj /irl 5- -Pk%e4 &-D 1 3/151194(, 1 CoPfi41 FEATURE CHECKED BY DATE SHEET OF 5(,jale'De5(gp I dam- I a/iz./9c. E1 9 5echoll P-A Q(oo = 6, a cf5 C A45irl 15) Qioo 453 = sl3A. Na ve 9aA55-1(necl5�.ale 51 ope o.934o 51de 510pe- _ �14: sv 504001 wIA4= d (�e5vlfs: Dea-fh - �.o �f vef'cu{y= TopWiCA = 0.I N Zvi a 633 DOf- 1.1 ff Gale(flo�5„o6,le of Dp :,A• aioo = 1 a1664 Grcss5-Iiviec (h 0W) ,Slope-- I,q% Side 51ape - (oN:1V 13o om W(JfT = o Rc5U1� 5 Depf�* 1-0 P ro�w�a+�- la��• (lei gaj 5,jct(e 4� b, P. 5. aloof ('5,4c�s. ( 055-Imed (:r o,o(co) 51npe= q,z% 51dolyPe; 4-d:ly nw6= D kesul f5: top vezxl-/ = 3.3 • /tll �hfaYsL�U CS �bf��� tJ.'1�� Mkatil� �T'wEitar-� i �65...�1�,�G --B4 ,540&a- 1 , Z- Pr ems. Lat- ��rr� OWNER -PROJECT BY DATE PROJECT NO. FEATURE CHECKED BY DATE SHEET OF � 9 Od e/flo.0 5vA le a 64 Cva% I10d (n=0•obo) = 5% 5 lope&AOM WICK ee�ol4-5: Dep1G. = a 84 Top = I0R VEtxrl = 3. I Fps Caress -I�ncd (n - 0,0w) Slope 51Je 5top":; 614: 1v &4om Wictfh= 5-Fec-f' �esulf5 = �ep1h° 6-1 F� aw-Rai5i,jale a� �,A Icia 0100= (9'5cf,-� 6MV5-lined (n= D,0&0) 5!0 = (' 01 5 fe 5Iape - (off- IV Bo#or4 WJf� ' = 5 Feed-• 9e5Jif5; 7Dep�; 1,00. T wrd fti = f la �rc� f3A WILLOW SPRINGS PHASE 2 -- SWALE DESIGN FOR SECTION A -A INPUT DATA: DISCHARGE 6.200000 CFS BOTTOM WIDTH 0.000000E+00 FT BED SLOPE = 9.400000E-03 FT/FT SIDE SLOPE 4.000000 ' MANNINGS N 6.000000E-02 RESULTS: ' - NORMAL DEPTH - 1.016883 FT FLOW VELOCITY = 1.499229 FPS ' HYDR. DEPTH 5.083497E-01 FT TOP WIDTH 8.135064 FT FROUDE NUMBER = 3.705603E-01 SPECIFIC ENERGY= 1.051785 FT INPUT DATA: DISCHARGE = 8.300000 CFS BOTTOM WIDTH = 0.000000E+00 FT ' BED SLOPE 9.400000E-03 FT/FT SIDE SLOPE = 4.000000 ' MANNINGS N = 6.000000E-02 RESULTS: ' NORMAL DEPTH = 1.134425 FT FLOW VELOCITY = 1.612594 FPS HYDR. DEPTH = 5.671359E-01 FT TOP WIDTH = 9.075403 FT ' FROUDE NUMBER = 3.773579E-01 SPECIFIC ENERGY= 1.174805 FT WILLOW SPRINGS PHASE 2 OVERFLOW SWALE DESIGN @ DP 1A, 5, 6A, 6C & 14A ' OVERFLOW SWALE AT DP 1A INPUT DATA: - DISCHARGE - 12.600000 CFS BOTTOM WIDTH = 0.000000E+00 FT BED SLOPE 1.900000E-02 FT/FT SIDE SLOPE 6.000000 MANNINGS N = 6.000000E-02 RESULTS: NORMAL DEPTH 9.944904E-01 FT FLOW VELOCITY = 2.122946 FPS HYDR. DEPTH 4.973359E-01 FT TOP WIDTH = 11.933890 FT FROUDE NUMBER = 5.305008E-01 SPECIFIC ENERGY= 1.064473 FT VERFLOW SWALE AT DP 5 ' INPUT DATA: SCHARGE = 15.40 00 CFS BO OM WIDTH = 0.000 OE+00 FT BED S PE 4. 000E-02 FT/FT SIDE SL = 6.000000 MANNINGS N = 6.000000E-02 RESULTS: ' NORMAL EPTH = 9. 0453E-01 FT FLO ELOCITY = 005646 FPS R. DEPTH = 4.6207 -01 FT TOP WIDTH = 11.088 FT FROUDE NUMBER = 7.792119E-01 SPECIFIC ENERGY= 1.064323 ' OVERFLOW SWALE AT DP 6A INPUT DATA: ' DISCHARGE = 12.700000 CFS BOTTOM WIDTH = 0.000000E+00 FT BED SLOPE = 5.000000E-02 FT/FT ' SIDE SLOPE 6.000000 MANNINGS N = 6.000000E-02 ' RESULTS: NORMAL DEPTH = 8.319601E-01 FT FLOW VELOCITY 3.057796 FPS HYDR. DEPTH = 1 4.160174E-0t FT TOP WIDTH = 9.983521 FT FROUDE NUMBER = 8.354583E-01 ' SPECIFIC ENERGY= 9.771482E-01 FT ' OVERFLOW SWALE AT DP 6C tINPUT DATA: DISCHARGE = 28.500000 CFS BOTTOM WIDTH = 5.000000 FT ' BED SLOPE = 3.600000E-02 FT/FT SIDE SLOPE 6.000000 MANNINGS N = 6.000000E-02 RESULTS: NORMAL DEPTH = 8.664281E-01 FT ' FLOW VELOCITY = 3.224970 FPS HYDR. DEPTH = 5.739567E-01 FT TOP WIDTH = 15.397140 FT ' FROUDE NUMBER = 7.501674E-01 SPECIFIC ENERGY=- 1.027925 FT 1 1 OVERFLOW SWALE AT DP 14A INPUT DATA: 1 DISCHARGE = 18.500000 CFS BOTTOM WIDTH = 5.000000 FT BED SLOPE 1.000000E-02 FT/FT SIDE SLOPE 1 6.000000 MANNINGS N 6.000000E-02 1 RESULTS: NORMAL DEPTH = 9.578126E-01 FT FLOW VELOCITY = 1.797075 FPS HYDR. DEPTH 1 6.241460E-01 FT TOP WIDTH = 16.493750 FT FROUDE NUMBER = 4.008622E-01 1 SPECIFIC ENERGY= 1 1 1 i 1 1 - 1 1 1.007960 FT F(PIq C -719 WILLOW SPRINGS PHASE 2 - REVISED OVERFLOW SWALE DESIGN @ DP 5 INPUT DATA: DISCHARGE = 15.400000 CFS BOTTOM WIDTH = 0.000000E+00 FT BED SLOPE = 4.200000E-02 FT/FT SIDE SLOPE = 4.000000 MANNINGS N = 6.000000E-02 RESULTS: NORMAL DEPTH = 1.080293 FT FLOW VELOCITY = 3.299252 FPS HYDR. DEPTH = 5.400994E-01 FT TOP WIDTH = 8.6423" FT FROUDE NUMBER = 7.911352E-01 SPECIFIC ENERGY= 1.249316 FT RIPRAP DESIGN FEA 3-6-1& 1 COPPF741 BY DATE SHEET OF r8 9 C�vfle� llo C��"�'CP fo Pond 310) 0100 - y/l/, 3d- `Jizr �heTilodc7l��/ SDDG f�qV ale 8 - Velou4y `usva ll6' o� j�Pe^d,R D (1,& (0,005 -�aIft)o•n C55_ �lo•� (� 5,� °'4 CIG55 �O �ipre, 15 �P�vi/e� / J Oo�ef W (ad" 4b5 +o -Pord 315) QIOD " �a, Grp I/e�ou ro.� UD5e ie,- &41t515 , Applj IA D (6k; SPa-ao out) all o17 alcCo = � p,fda ' 3, 3 � C�Q55 �D F(�G� K U�/P�• e q1q Table 8-1 lists several gradations of riprap. The minimum average size designation for loose riprap shall be 12 inches. Smaller sizes of riprap shall be either buried on slopes which can be easily ' maintained (4 to 1 minimum side slopes) or grouted if slopes are steeper. Grouted riprap should meet all the requirements for regular riprap except that the smallest rock fraction (smaller than the 10 per- cent size) 18 inches dto 112 inchebe s or from 24 inches ed from the tto 18 inches) snpermitted for grouted Sof riprap size by one ip apze esignation ' Table 8-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP ' % of Total Weight Smaller than the Stone Size dsot Riprap Designation Given Size (in pounds) (inches) ' 70-100 85 Class 6 tt 50-70 0 6 35-50 2-10 <1 ' 70-100 440 Class 12 50-70 275 35-50 85 12 ' 2 10 3 100 1275 Class 18 50-70 655 35-50 275 18 ' 2-10 10 100 3500 Class 24 50-70 1700 35-50 655 24 2-10 35 t d,a = Mean Particle Size. At least 50 percent of the mass shall be stones equal to or larger than this dimension. tt Bury on 4 to 1 side slopes or grout rock if slopes are steeper. Table 8-2 summarizes riprap requirements for a stable Channel lining based on the following relationship: V S0" p 0 66 = 5.6 (ds0) (Ss-1) in which, V = Mean channel velocity in feet per second S = Longitudinal channel slope in feet per foot S, = Specific gravity of rock (minimum S,= 2.50) d50 = Rock size in feet for which 50 percent of the riprap by weight is smaller. The rock sizing requirements in Table 8-2 are based on the rock having a Specific gravity of 2.5 or more. Also, the rock size does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper than 2h:ly. Rock lined side slopes steeper than 2h:1v are not recommended. Table 8-2 RIPRAP REQUIREMENTS FOR CHANNEL LININGS fit VS°'" f(S; 1)o."t RockTypett No Riprap Required 0 to 1.4 1.5 to 4.0 Class 6 Riprap 4.1 to 5.8 Class 12 Riprap 5.9 to 7.1 Class 18 Riprap 7.2 to 8.2 Class 24 Riprap t Use S, = 2.5 unless the source of rock and its densities are known at the time of design. tt Table valid only for Froude number of 0.8 or less and side slopes no steeper than 2h:1v. MAY 1984 8-2 I DESIGN CRITERIA APPENDIX F ON -SITE SWMM ANALYSIS SWMM INPUT CALCULATIONS Revised For PhasedafffmMITiumm� .........is& .w.........,.,......... QeJried & F,,41- 7-A-9d OWNER- ROJ C By DATE PROJECT NO. W lo.) 5 ruxt) -T/�,e;44 -Phase a CAD L1,e qq c'oi5T;o FEATURE ICHECKED BY DATE SHEET OF 5WI`1M Bi5rll Parame4ef5 (hiallled 5obb ;din 1 - 8s3 acncs - a.o 8 oprn SFuce � 570 1000 5,J9 hose lof5 x 95i b > '�yj, 5 50 Imp, kl = q.,ol zcres - .a opellspcce -, sso " 1,69 ho-iielol,5 ,, roolo )L 1457o (09.8 %,..r. b►xs,n 3 - S,734cros -.1.39 o�?n 5t ce A 550 — 0$G 51,alt x loo 50 ;- 3,55 800, (L = a� 0.57 j i/!C r3 A 10070 - b oaf mull �anli A s0 0, 144 yo imp w = �v / (L = ; 34 ) Sub r5,n 5 - ;114 aae�p - l,lae `'fee4) - hoa5elA x 10077" x 445A,o —3> 6715 lO w - 800' (L. =Iq l / I,iDd omp 5ubha5� G - 7,58 -wo - a,.88 5�rec43 k V073 .. 050 ' - 4,70 G >ew L15% G5, 9 (L • 181 5uhbr*ln 7 - 545aue3 - I • d.a ;=iee' x loom �bOG5,r1 F3 - a. 54c/rS - 0, : too7a 10 A{50' (L = -1,'95 iiooe Ids x -:-,p (27, 0 /.n p tAl < cm) 5)bbo5,n 9 -a0,8oZ ie/e5" - -8,1a open5pace -11,17 house (01-5 x x 4570 5or.r p L•l = 1j00p� -0,q3 ,m,14,41101 x 0090 5ubbo5in 10 - 9;r'1 .acir, -4,qa op*i)pace - q,71 house /01S x Vo x 4550 4 a5, (0 ; 5o10, p w = Moo' (L - )84 ') 5ubbcu5iq IS - cl, 09 own jpue x 5'90 x �So -� p,,(, 50, nt p I�l = ►300 , (�_ NO Such:r�,� 16. - 1,�3arrr7 r,53 ourngpuC� x s=-, y 114 °lo�,�,, 1^1: abo L=3� 5vbb45wl 10070 3 98 h0,re (vf5 >< 41 5':b --> 54,110 /Ap W = 10001 (b �10 � �,03 oper3 pre x QevoeJ CiA•a -3-5-9(0 www �.«.... w @w`... "e...+w. Q cNl::.Q:o -5II I-)5 OWNER— ROJ C Y DATEPROJECT NO. I4161 I„ 5 u se a el-D q- lq- e0T5T,*(?0 FEATURE CHECKED BY DATE SHEET OF 50b-x45/o JD - 4, 10 aeue5 0-M open 5pere x 5 to U•SG-j-t&45 ;wvie 1 `-) x I0o50 x P 5ubba51a V - q.00q(tt5 - i l(. ofed ell x 570 i al 5tetrt5 !o•c0 ha6e x Ico 47,5 `k)lmp I.J = W00' ebb,qslil -cara ��.we x Sao 1, 55 5 rien 5 'N ICe10 14',&4 'noo7l(015 x 41s1b 4,e,e5 - 0.0 5�,W6 x 10050 (L-- - 1,57 ke;a5elol A `5jo � 61.0 �„p In/ = /0,00' /18') 5vbMifi 11-1 - Mo acie5 1.14 4v`wy4c- t 59� b• 75 •fir/,ec�5 x 1oo?o 0• !ate koll5. lots x g510 4 -a �o rmp W =Soo' (L -0'`!7 avmelr4I x 70010 5�bba51,1 95 -. �l.e o.; 9 --x 5% 1,51 5-tee rl ,;oodol5 x 1 oo 90 x y5/S G'i•59o,„,,, kl : qoo' 5vbba5,,l Flo - 919aero , =I A3 x"? 51 aee A Selo —6117 ha✓5elo4-j x' 5% =0,70 Ca4rWci l x 70°b 31,3 90 IMP 1J= ID00' (L= aD6'� 51bba5n N III / / Qe�e� 3.15 mulh "J ^ &0,3eo le{p. W " !7W' (I-: Sol) fV�/ 5Ubbn5o l 40 'ly,ei 14e/es 3 Gl o�=n 5 pace I•sl iZ1ok x 5a0 x 1455o �.0(�i,q 50,nip w=13a�' (L>a1s 1.51 ,,> d� 10.,1y A G0 jo 5vbbu51a 41 /,8.2 open-JpAte 1, 0 S+retf A, 550 IC00 -�, Soo 50 ,,r,R W =Sao' (L- lee') I t I5U-(0 4e(16 44,& 10Ify WNER—PROJECT Wdlo.j S r-lrna5 - FrSf F,,,oI By C LD DATE `l If3N4 PROJECT NO. CDT 5T;O EATURE ICHECKED 5w(mm Bl51n faraine4er5 (Orr Irlal -Pararne-6/5) BY cfy- DATE s17-144 SHEET Of 50bb45i11 - B cil 4c/e5 ope^SFGce x 590 - 0,(oc( 5lfeer5 x 10050 5 • Z ilo.»e lof5 x 5o i,me. lxl = 400 ' 3o5 5obbz*iij we5 - 0.ex► open 5pefee x 55a - 1.1�4 jlrP,+s -a.Ql ho��� lop•, x p00% ,< 45 y0 43.7 0 ,„,p,. ►xl 5 i3acres 3a vpn 51xc c x 5 `l0 :- 9,55 hu"le f, x 455O 4 yy.a y01MP W = Bo,0' (L = a&1 ') `jbEr,5tn 'i - b d l acres - 0.57 ilte, x 100% .5 - /' Oq MA, Fa,nlit x ra`o 14'd 50 osip w = 3w 5ubb4j,4 5 - 3.15ac/es - 1.08 ;=c<,f5 x lco70 = 800(L170) _ 9,05 hc;a5elA x 4454,o 4,050,mp 1x1 5ubhagln - lJ,lDa aura - 3.55 4,,e, {:� x volj- ) -7.%1 {1ooefu17 x c15;0 *0$5Olm 7 tl _ �500 (L� Boa 0'qq Gpe,,-)Ftcc x 59b 5ubixf4 ltl 7 2 r00�u 4550 56•(0 (L - a,03 I04-5 x 70 ,mp k1 = 750' =188) . �bop51,7 F3 - a• 54c/e5 - 0 '!per rr,C') < IOo7a -1•� hooetA x 45i0 -�,67,0 SoimP w t 1450' - 7,46 opPnSpue --933 housefaf5 x 51 x 145710 -0,53 nviirr0,.,(/ x (105e Subbci5la ID - 8-4IacR> 41,31 opervgce x 510 - y.1g bovic lo{S x 4590 94, 7 %imp W = MOO, (L - d '5ubbc151q IS - 1,1gv acr/5 - 5.04 opin jp!,ce x S5o , a60 ' Km Elk if IIfflrqrIII.I3Lr."� Lill �MM •����W 2�mCW . R6V1S® 61r I`15 OWNER— ROJ C By DATE J CT NO. 141I1c-i rrt 5 aD q- J - 941 COT5T,('0 FEATURE rr CHECKED BY DATE SHEET OF 5)bbo5n1 0 0 - 4, (0 aw5 - 00 open 5pw x 51# U,SG sfi�-i5 ' - fvvie %u-) x 1oo50 x g55o � Gf 3,$ %imp W = boo' (L = .76;') 5ublw5io ql - q.00acrr5 - l.(l ofett act x 5� - l-al 5t�!rf5 (c•'o8 hob lof} x rGe90 z HSSo —� �11.5 yvr,np Q = l'!oo' `�bb�r51,1 9�9 - 7, t& g(,1l5 0.77 apefl ce x 5�O 1,55 5-'a; IS �av1e 14'1&4 hoavly! -x 451& � 51,4&,hp k/=18U4� (�° 1&/ �) r�,1,171.1'i5rr1 '�� - ,?,a3 adt5 0.6& 5Aieeb A 1000 ' 1,57 Lo'j5elo- x g77o b l.0 /000 SuHbOSr,i a �l - 3•`i0 acil5 - ► • 5� b�f,i;,,0rc � 55� x 10090 x q510 i0 Imp - soo' CaumeavA A 70110 S)bbaS„r 95 - c(.CI "fe Y 5% _ .1.51 5-irrr-) -�•r J ICE}CI015 x 10090 x 45IS 900' (L= 195 ) 5ubba 5"r ;,A, b - 094(f(5 , -, , 5 Xd 3 q ee A 5 % -6,77 A0a5eI04-3 x'i5% =0,76 CaArmrcral A 10`b -;�P 51,3 90 „gyp 5cbb45111 'b - f(-11 q(fe, 3,75mulh4"4f A x 0,3 90Imp. co' �402 5Uh1r15,11 40 ' �/,D1cpc/!5�� o� nS'CG 1,gr4 l,ovsr(a x 5ao x 1455o �.a9.1 Sorr,,p _ w =1500, 1,51 1pJAra,.,ry A G05D 5Obfx+Sr/i 14 ' M&P Qe/P5 13i optn-)pace 0 '4(eefs A. 550 < IrOo soo5o.,,hp W - gao' (I-: led,) 130 au(y q4J Io imp nV�G�• Mllo�5 r�n�,s- �hgse a CAD 3/r5 194G CoPPPdl FEATURE CHECKED BY DATE SHEET OF DefVAnGrt—�fVl � on -Pond 315 - �iage 5{or e ��5c �!Qige Cure. 5 7 Oo+lef Pipe: 15-inch PrD5 UISmv. ' glgO,S3� D15inv•-9q,5 =f -- De�eirn,ne flee j��druulic 9 iadel�ne ivi *e Ooflef Pepe c OJn5� elr'✓1 of +(c o�, �cepla(e: Qccip (15,h n ,Dil Calculch QoGT/66p 1 4er, 05,n) nomll-oph (F�y 4-5, nexfT)e) jJerrv71je y /do NC,L DI5oHP oriFxc = U151hv, elevaf W _ qW,83 Nei+, cicoe art z,5umed oorifice -)me d,lculafc neadwaferd,cp 6, reg04ed �D T:n55 +10I,J ikw1h orc Tice - a orifice open, area , +� = l e55er of : PW ,*d Q,s, e l ev - P,Pe Nc-- 015 oForl rid o/ Ponded P,5,elev--evrftviJofo✓,fice open' 'DISckarle, Ceps) 6kIQo iiCsIc(s) Y1Lo (�1�W) -Piet H L -q'5 er1) �eSol+an� reef) 'PorJed wS, Pond volume a O D gg48)83 O 4940j03 a a 23 3� 49g9• z 4150/10 o �� 4141, 3(o gl5l , 4 o,a� �11 ,50 q9g9,g(Q qg53-1-1 a 59 u,5 5a 4g49,49 z4g5q,13 (085 5,0 ,5s Wu Pe vl� o 5v)M M male( �oo-- 1114 �C-O Q,aJ= 4,o1 cF5 Otoo=4955,0 Forun 8,75„ j prike i . f ;;olg9 Fla Cep froij e kV - �o= •CIS FC-R Q(o = 3 1 cF5 WSio �IgSa-(o No No No No IMMEMMUM ■■ IMIRMOMIRM ■■ millihImmmmmmimm NoMENIMMINNINER w Wi �o S�tr L) I I eoT5T,)D FEATURE CHECKED BY DATE SHEET OF Defeh Culve I I 1 8 (f- r1N/ccilnl (fed4) Sut{ace {�yFi � � brace hrea �.,-e5) Inu[smeo �i+l VOlumt (J4c -i�) 'rv�a f 54o�age ,4cVo - nl i4-F4 4110leb 0 0 o a 401 — — q9$0 -1 0 , / oa >04D ,ow 4g5l 010 , f 59je,11 4953 10060 431 Z i14 49 a-389 L7. 09-a Z4Sb.aMv Imxx C cjv-- 41mk fb Ar CL. 4965 VSIZTICRL �farS�, Cq.L�7�(6L`/ 10-YEAR ON -SITE SWNIM INPUT AND OUTPUT /3 tz 1 1 z 3 4 TERSH0 WILLOW SPRINGS PH. 2 (MCCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL '10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 36 0000 5. 1 1. 1 25 5. 48 .60 .72 .96 2.16 3.12 5.64 2.28 1.12 .84 .72 .60 .60 .48 .48 .36 .24 .24 .12 .12 .12 .12 .12 .12 0.0 1 1 201 1200 8.5 40. .020 .020 .25 .1 .3 .51 .5 .0018 L '1 2 202 2000 4.1 68. .020 .020 .25 .1 .3 .51 .5 .0018 1 3 203 800 5.7 44. .020 .020 .25 .1 .3 .51 .5 .0018 1 4 209 750 1.6 74. .020 .020 .25 .1 .3 .51 .5 .0018 '1 5 209 1600 2.7 68. .020 .020 .25 .1 .3 .51 .5 .0018 1 6 210 3800 7.6 66. .020 .020 .25 .1 .3 .51, .5 .0018 1 7 209 750 3.3 57. .020 .020 .25 .1 .3 .51 .5 .0018 '1 8 210 450 2.3 67. .020 .020 .25 .1 .3 .51 .5 .0018 1 9 209 3000 20.2 30. .020 .020 .25 .1 .3 .51 .5 .0018 1 10 210 1400 9.1 26. .020 .020 .25 .1 .3 .51 .5 .0018 1 14 214 1000 4.8 54. .020 .020 .25 .1 .3 .51 .5 .0018 '1 15 215 1300 4.4 9. .015 .020 .25 .1 .3 .51 .5 .0018 1 16 216 200 1.8 12. .020 .020 .25 .1 .3 .51 .5 .0018 1 20 220 600 4.1 46. .020 .020 .25 .1 .3 .51 .5 .0018 1 21 220 1400 9.0 46. .020 .020 .25 .1 .3 .51 .5 .0018 1 22 220 1800 7.2 51. .020 .020 .25 .1 .3 .51 .5 .0018 1 23 224 1000 2.2 61. .020 .020 .25 .1 .3 .51 .5 .0018 1 24 224 500 3.4 42. .020 .020 .25 .1 .3 .51 .5 .0018 1 25 226 900 4.0 65. .020 .020 .25 .1 .3 .51 .5 .0018 1 26 226 1000 2.9 31. .020 .020 .25 .1 .3 .51 .5 .0018 1 30 330 1700 11.8 60. .020 .020 .25 .1 .3 .51 .5 .0018 '1 40 140 1300 6.4 30. .020 .020 .25 .1 .3 .51 .5 .0018 FJ 1 41 299 800 3.5 50. .020 .020 .25 .1 .3 .51 .5 .0018 ale: W556Jr1-100DAT K11110n) ,5;pl-11T P/mu J Revised 5WAn rA del 10-tea i rule• Qe✓ M 5obbor�in Ya%Irrleters 0 ' 23 1 2 3 4 5 6 7 8 9 10 14 15 16 20 21 22 23 24 25 26 30 40 41 ' 201 202 0 3 .1 1. 202 209 0 3 .1 1. 203 209 0 3 .1 1. 209 210 0 3 .1 1. ' 210 310 0 3 .1 1. 310 140 14 2 .1 1. 1 0.0 0.0 0.59 0.47 1.06 1.29 1.72 2.13 0r1 �vnd 310 ' 2.68 3.12 3.61 4.20 4.09 6.97 5.09 7.51De}l 6.09 7.51 7.43 7.92 8.77 8.40 9.85 8 10.56 8.81 10.92 9.00 I ►Jea1 moot a�14 ' 214 315 0 3 .1 1. 215 315 0 3 .1 1. 315 216 6 2 .1 1. _R7� (4o5ai. 0.0 0. 0.06 2. 0.24 3. 0.59 C- L4. (/Ll(l/li1on 315 ' 0.85 4.5 1.23 5. 216 116 0 3 .1 1. 116 140 0 1 10, 1650, 003 4. 4. .035 5. ' 140 299 0 1 10. 700. .003 4. 4. .035 5. 220 224 0 3 .1 1. 224 324 0 3 .1 1. ' 324 124 8 2 .1 1. •1 z 0.0 0.0 0.07 4.0 0.24 6.0 0.52 8.0 0.97 10.0 1.64 12.0 2.46 14.0 3.44 16.0 124 226 0 2 3. 825. .008 0. 0. .011 5. 226 326 0 3 .1 1. 326 299 8 2 .1 1. •1 0.0 0.0 0.04 4.0 0.12 6.0 0.24 8.0 0.45 10.0 0.73 12.0 1.16 14.0 1.72 16.0 330 299 7 2 .1 1. •1 0.0 0.0 0.08 1.0 0.27 2.0 0.65 3.0 1.11 4.0 1.86 5.0 2.82 6.0 299 0 3 .1 1. 0 20 310 315 324 326 330 299 201 202 203 209 210 215 216 220 224 226 115 116 124 140 ENDPROGRAM . ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY ' UPDATED BY ' TAPE OR DISK ASSIGNMENTS METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) %5 File: W55WM-10, Dot ile✓13ed 5k✓MM model f0-tev gWrll- ' JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JINGO) 2 1 0 0 0 0 0 0 0 0 ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 1 ' WATERSHED PROGRAM CALLED fENTRY MADE TO RUNOFF MODEL *** /Jx3 � WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 ' NUMBER OF TIME STEPS 36 INTEGRATION TIME INTERVAL (MINUTES) 5.00 , 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR ' .48 .60 .72 .96 2.16 3.12 5.64 2.28 1.12 .84 .72 .60 .60 .48 .48 .36 .24 .24 .12 .12 ' .12 .12 .12 .12 .00 WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE ' NO 1 201 1200.0 8.5 40.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 2 202 2000.0 4.1 68.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 3 203 800.0 5.7 44.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 ' 4 209 750.0 1.6 74.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 5 209 1600.0 2.7 68.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 6 210 3800.0 7.6 66.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 7 209 750.0 3.3 57.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 , 8 210 450.0 2.3 67.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 9 209 3000.0 20.2 30.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 10 210 1400.0 9.1 26.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 14 214 1000.0 4.8 54.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 15 215 1300.0 4.4 9.0 .0150 .020 .250 .100 .300 .51 .50 .00180 1 16 216 200.0 1.8 12.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 , 20 220 600.0 4.1 46.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 21 220 1400.0 9.0 46.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 22 220 1800.0 7.2 51.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 23 224 1000.0 2.2 61.0 .0200 .020 .250 .100 .300 .51 .50 .00180 ' 1 24 224 500.0 3.4 42.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 25 226 900.0 4.0 65.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 26 226 1000.0 2.9 31.0 .0200 .020 .250 .100 .300 .51 .50 .00180 ' 1 30 330 1700.0 11.8 60.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 40 140 1300.0 6.4 30.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 41 299 800.0 3.5 50.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 , TOTAL NUMBER OF SUBCATCHMENTS, 23 TOTAL TRIBUTARY AREA (ACRES), 130.60 WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN) 1 2 3 4 5 6 7 8 9 10 ' 0 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 -.0 0 15. .2 .3 .2 .1 .2 .6 .1 .1 .6 .2 0 20. 1.9 2.2 1.3 .9 1.5 4.0 1.1 .8 4.0 1.7 0 25. 4.9 4.7 3.5 1.9 3.2 8.5 2.8 2.1 9.5 3.9 0 30. 9.2 8.1 6.7 3.4 5.4 14.7 5.2 4.0 17.1 6.8 0 1 35. 18.2 16.4 13.1 6.7 11.2 30.0 10.2 7.8 35.1 14.3 0 40. 18.9 14.3 13.6 5.7 9.4 26.2 10.0 7.6 37.5 15.6 0 45. 11.1 5.6 7.8 2.2 3.5 10.4 5.1 3.8 23.5 10.2 0 50. 8.5 3.9 5.8 1.5 2.5 7.3 3.6 2.5 19.2 8.6 0 55. 7.0 2.9 4.7 1.1 1.9 5.4 2.7 1.9 16.1 7.2 1 0. 5.8 2.3 3.9 .9 1.5 4.3 2.2 1.5 13.5 6.1 5. 5.0 2.0 3.4 .8 1.3 3.7 1.8 1.3 11.6 5.2 '1 1 10. 4.3 1.8 2.9 .7 1.1 3.2 1.6 1.1 10.0 4.5 1 15. 3.7 1.5 2.5 .6 1.0 2.8 1.3 1.0 8.5 3.8 20, 3.1 1.3 2.1 .5 .8 2.4 1.1 .8 7.3 3.2 '1 1 25. 2.5 1.0 1.7 .4 .6 1.7 .9 .7 5.9 2.7 1 30. 2.1 .8 1.4 .3 .5 1.4 .7 .5 5.0 2.2 1 35. 1.7 .6 1.2 .2 .4 1.1 .6 .4 4.2 1.9 '1 40. 1.4 .4 .9 .2 .3 .8 .4 .3 3.5 1.6 1 45. 1.2 .4 .8 .2 .2 .7 .4 .3 3.1 1.4 1 50. 1.1 .4 .7 .2 .2 .7 .3 .3 2.8 1.3 55. 1.0 .4 .7 .2 .2 .7 .3 .2 2.5 1.2 '1 2 0. 1.0 .4 .6 .1 .2 .6 .3 .2 2.3 1.1 2 5. .8 .2 .5 .1 .2 .4 .2 .2 2.0 .9 2 10, .6 .1 .4 .0 .1 .2 .1 .1 1.5 .7 '2 15. .5 .1 .3 .0 .0 .1 .1 .1 1.3 .6 2 20. .4 .0 .3 .0 .0 .1 .1 .1 1.1 .5 2 25. .3 .0 .2 .0 .0 .0 .1 .0 .9 .4 30. .3 .0 .2 .0 .0 .0 .0 .0 .8 .4 '2 2 35. .3 .0 .2 .0 .0 .0 .0 .0 .7 .3 2 40. .2 .0 .1 .0 .0 .0 .0 .0 .6 .3 45. .2 .0 .1 .0 .0 .0 .0 .0 .6 .3 '2 2 50. .2 .0 .1 .0 .0 .0 .0 .0 .5 .2 2 55. .1 .0 .1 .0 .0 .0 .0 .0 .4 .2 3 0. .1 .0 .1 .0 .0 .0 .0 .0 .4 .2 SPRINGS PH. 2 (McCLELLANDS BASIN) REVISED WILLOW SPRINGS ON -SITE MODEL �ILLOW 10-YR EVENT FILE: WSSWM-10 LIDSTONE & ANDERSON, INC. CLD MARCH 1996 RYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS �IME(HR/MIN) 14 15 16 20 21 22 23 24 25 26 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 t0 0 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0 15. .2 .1 .0 .1 .3 .3 .2 .1 .2 .1 0 20, 1.5 .4 .2 1.0 2.3 2,4 1.1 .8 1.4 8 '0 25. 3.8 .7 .4 2.7 5.9 5.8 2.3 2.1 3.7 1.6 0 30. 7.1 1.3 .6 5.0 11.1 10.3 3.9 3.8 7.0 2.7 0 35. 14.0 4.2 1.5 9.8 21.9 20.8 8.1 7.6 13.6 6.3 ' 0 40. 13.9 6.4 1.8 10.1 22.5 201.7 7.3 7.9 13.2 6.9 513 0'/►3 0 45. 7.3 5.4 1.4 5.8 12.7 10.8 3.1 4.6 6.5 4.2 0 50. 5.2 4.6 1.3 4.3 9.4 7.7 2.2 3.5 4.3 3.2 0 55. 4.0 3.7 1.2 3.4 7.5 5.9 1.6 2.8 3.3 2.4 1 0. 3.2 3.0 1.1 2.8 6.2 4.7 1.3 2.3 2.6 1.8 1 5. 2.7 2.4 .9 2.4 5.3 3.9 1.1 2.0 2.2 1.5 1 10. 2.3 2.0 .8 2.1 4.5 3.3 .9 1.7 1.9 1.2 1 15. 1.9 1.6 .7 1.8 3.8 2.8 .8 1.5 1.6 1.0 1 20. 1.7 1.4 .6 1.5 3.3 2.4 .7 1.2 1.4 .8 1 25. 1.3 1.1 .6 1.2 2.6 1.8 .5 1.0 1.1 .6 1 30. 1.0 .9 .5 1.0 2.2 1.5 .4 .8 .9 .5 1 35. .8 .8 .4 .8 1.8 1.2 .3 .7 .7 .4 1 40. .6 .7 .4 .7 1.4 .9 .2 .6 .5 .3 1 45. .6 .6 .3 .6 1.2 .8 .2 .5 .5 .3 1 50. .5 .5 .3 .5 1.1 .7 .2 .4 .4 .3 1 55. .5 .5 .3 .5 1.0 .7 .2 .4 .4 .2 2 0. .4 .4 .3 .4 .9 .6 .2 .4 .4 .2 2 5. .3 .3 .2 .4 .8 .5 .1 .3 .3 .2 2 10. .2 .3 .2 .3 .6 .3 .1 .2 .2 .1 2 15. .2 .2 .2 .2 .4 .2 .0 .2 .1 .1 2 20. .1 .2 .2 .2 .3 .2 .0 .1 .1 .1 2 25. .1 .2 .1 .1 .3 .1 .0 .1 .1 .0 2 30. .1 .2 .1 .1 .2 .1 .0 .1 .0 .0 2 35. .1 .1 .1 .1 .2 .1 .0 .1 .0 .0 2 40. .0 .1 .1 .1 .2 .1 .0 .1 .0 .0 2 45. .0 .1 .1 .1 .1 .0 .0 .1 .0 .0 2 50. .0 .1 .1 .1 .1 .0 .0 .1 .0 .0 2 55. .0 .1 .1 .1 .1 .0 .0 .1 .0 .0 3 0. .0 .1 .1 .0 .1 .0 .0 .0 .0 .0 WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN) 30 40 41 0 5. .0 .0 .0 0 10. .0 .0 .0 0 15. .4 .2 .2 0 20. 3.2 1.5 1.1 0 25. 9.0 3.2 2.7 0 30. 17.8 5.6 4.9 0 35. 34.7 12.0 9.8 0 40. 35.3 12.9 9.8 0 45. 19.3 8.1 5.2 0 50. 13.2 6.6 3.8 0 55. 10.2 5.3 2.9 1 0. 8.3 4.3 2.3 1 5. 7.0 3.6 1.9 1 10. 6.0 3.0 1.6 1 15. 5.2 2.5 1.4 1 20. 4.5 2.1 1.2 1 25. 3.6 1.7 .9 1 30. 2.9 1.4 .7 1 35. 2.4 1.2 .6 1 40. 1.9 .9 .5 1 45. 1.6 .8 .4 50. 1.4 4 '1 1 55. 1.3 .7 .7 .3 2 0. 1.2 .6 .3 2 5. 1.0 .5 .2 '2 10. .7 .4 .2 2 15. .5 .3 .1 2 20. .4 .3 1 2 25. .3 .2 .1 2 30. .3 .2 .1 2 35. .2 .2 .0 2 40. 2 .1 .0 2 45. .1 .1 .0 2 50. .1 .1 .0 2 55. .1 .1 .0 ' 3 0. .1 .1 .0 'WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** 1 WATERSHED AREA (ACRES) 130.600 'TOTAL RAINFALL (INCHES) 1.863 TOTAL INFILTRATION (INCHES) .428 'TOTAL WATERSHED OUTFLOW (INCHES) 1.204 'TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .231 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .001 �167 WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 ' WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE ' GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 201 202 0 3 .1 1. .0010 .0 .0 .001 10.00 0 , 202 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 203 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 209 210 0 3 .1 1. .0010 .0 .0 .001 10.00 0 ' 210 310 0 3 .1 1. .0010 .0 .0 .001 10.00 0 310 140 14 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .6 .5 1.1 1.3 1.7 2.1 2.7 3.1 3.6 4.2 4.1 7.0 5.1 7.5 6.1 7.5 7.4 7.9 8.8 8.4 9.8 8.6 10.6 8.8 10.9 9.0 214 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 , 215 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 315 216 6 2 PIPE 1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .1 2.0 .2 3.0 .6 4.0 .8 4.5 1.2 5.0 216 116 0 3 .1 1. .0010 .0 .0 .001 10.00 0 116 140 0 1 CHANNEL 10.0 1650. .0030 4.0 4.0 .035 5.00 0 ' 140 299 0 1 CHANNEL 10.0 700. .0030 4.0 4.0 .035 5.00 0 220 224 0 3 .1 1. .0010 .0 .0 .001 10.00 0 224 324 0 3 .1 1. .0010 .0 .0 .001 10.00 0 324 124 8 2 PIPE 1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.0 .2 6.0 .5 8.0 1.0 10.0 1.6 12.0 2.5 14.0 3.4 16.0 ' 124 226 0 2 PIPE 3.0 825. .0080 .0 .0 .011 5.00 0 226 326 0 3 .1 1. .0010 .0 .0 .001 10.00 0 326 299 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 4.0 .11 6.0 .2 8.0 .5 10.0 .7 12.0 1.2 14.0 1.7 16.0 330 299 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.0 .3 2.0 .7 3.0 1.1 4.0 1.9 5.0 2.8 6.0 , 299 0 0 3 .1 1. .0010 .0 .0 .001 10.00 0 TOTAL NUMBER OF GUTTERS/PIPES, 20 'WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE & ANDERSON, INC. CLD MARCH 1996 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES ' GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA 116 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124 324 0 0 0 0 0 0 0 0 0 O 0 0 0 0 140 t 310 116 0• 0 0 0 0 0 0 0 40 0 0 0 0 201 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 202 201 0 0 0 0 0 0 0 0 0 2 0 0 0 0 203 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 ' 209 202 203 0 0 0 0 0 0 0 0 4 5 7 9 0 210 209 0 0 0 0 0 0 0 0 0 6 8 10 0 0 214 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 ' 215 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 216 315 0 0 0 0 0 0 0 0 0 16 0 0 0 0 220 0 0 0 0 0 0 0 0 0 0 20 21 22 0 0 ' 224 220 0 0 0 0 0 0 0 0 0 23 24 0 Q 0 226 124 0 0 0 0 0 0 0 0 0 25 26 0 0 0 299 140 326 330 0 0 0 0 0 0 0 41 0 0 0 0 310 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 315 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 324 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 326 226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 330 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 'WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE & ANDERSON, INC. CLD MARCH 1996 ' HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS Y3 D.A.(AC) 0 0 0 0 0 11.0 0 0 0 0 0 25.9 0 0 0 0 0 82.5 0 0 0 0 0 8.5 0 0 0 0 0 12.6 0 0 0 0 0 5.7 0 0 0 0 0 46.1 0 0 0 0 0 65.1 0 0 0 0 0 4.8 0 0 0 0 0 4.4 0 0 0 0 0 11.0 0 0 0 0 0 20.3 0 0 0 0 0 25.9 0 0 0 0 0 32.8 0 0 0 0 0 130.6 0 0 0 0 0 65.1 0 0 0 0 0 9.2 0 0 0 0 0 25.9 0 0 0 0 0 32.8 0 0 0 0 0 11.8 THE UPPER NUMBER LS DISCHARGE IN CFS ' THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. ' (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER ' TIME(HR/MIN) 310 315 324 326 330 299 201 202 203 209 0 5. .03 .01 .02 .01 .01 .02 .00 .01 .00 .03 '00(S) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 10. .03 .02 .04 .03 .03 .07 .02 .04 .01 .12 .00(S) .00( ) .00(S) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 15. 05 .09 .36 .22 .06 .59 .48 1.12 .32 3.55 .02(S) .00(S) .01(S) .00(S) .00(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 20. .16 .47 2.73 1.64 .32 4.21 3.35 7.04 2.35 22.42 .15(S) .01(S) .05(S) .02(S) .02(S) .00( ) .00( ) .00( ) .00( ) .00( ) ' 0 25. .40 1.32 4.97 4.31 1.04 10.15 6.50 12.17 4.71 38.77 10/1 .46(S) .04(S) .15(S) .05(S) .08(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 30. 1.24 2.17 6.78 5.99 1.63 17.61 11.84 22.44 8.61 71.34 1.01(S) .08(S) .34(S) .12(S) .19(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 35. 2.58 2.77 9.10 8.20 2.42 33.69 24.54 46.84 17.62 150.54 2.12(S) .19(S) .76(S) .26(S) .42(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 40. 3.75 3.24 10.61 9.54 3.02 33.43 13.26 19.49 9.48 68.11 3.19(S) .31(S) 1.16(S) .40(S) .64(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 45. 4.96 3.42 11.15 10.23 3.26 32.02 8.95 13.98 6.15 49.71 3.74(S) .38(S) 1.34(S) .48(S) .75(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 50. 7.03 3.55 11.47 10.64 3.41 32.24 8.03 10.80 5.51 40.31 4.13(S) .42(S) 1.45(S) .53(S) .82(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 55. 7.19 3.63 11.67 10.95 3.51 32.08 5.88 8.95 3.94 32.51 4.43(S) .45(S) 1.52(S) .58(S) .87(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 0. 7.32 3.68 11.79 11.20 3.58 32.04 5.72 7.34 3.89 27.89 4.67(S) .47(S) 1.56(S) .61(S) .90(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 5. 7.43 3.71 11.85 11.41 3.63 31.53 4.22 6.66 2.81 23.94 4.87(S) .48(S) 1.58(S) .64(S) .92(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 10. 7.51 3.72 11.86 11.58 3.67 31.42 4.32 5.40 2.95 20.62 5.03(S) .48(S) 1.58(S) .67(S) .94(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 15. 7.54 3.72 11.83 11.72 3.69 30.84 2.98 4.94 1.98 17.48 5.16(S) .48(S) 1.57(S) .69(S) .95(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 20. 7.54 3.70 11.78 11.83 3.70 30.70 3.28 3.94 2.25 15.19 5.27(S) .47(S) 1.55(S) .70(S) .96(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 25. 7.54 3.68 11.68 11.91 3.70 29.86 1.80 3.07 1.17 10.91 5.34(S) .47(S) 1.52(S) .71(S) .96(S) .00( ) 1.00( ) .00( ) .00( ) .00( ) 1 30. 7.54 3.64 11.56 11.96 3.69 29.79 2.42 2.70 1.66 10.71 5.39(S) .45(S) 1.48(S) .72(S) .95(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 35. 7.54 3.60 11.43 11.99 3.67 29.02 1.08 2.00 .67 7.08 5.43(S) .44(S) 1.44(S) .72(S) .94(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 40. 7.54 3.56 11.27 12.00 3.64 28.98 1.78 1.72 1.22 7.27 5.44(S) .42(S) 1.38(S) .73(S) .93(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 45. 7.54 3.51 11.11 12.00 3.61 28.38 .71 1.54 .42 5.33 5.45(S) .41(S) 1.33(S) .73(S) .92(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 50. 7.54 3.46 10.94 11.99 3.58 28.46 1.53 1.44 1.05 6.12 5.45(S) .39(S) 1.27(S) .72(S) .90(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 55. 7.54 3.42 10.77 11.97 3.54 27.94 .53 1.34 .30 4.49 5.45(S) .37(S) 1.22(S) .72(S) .89(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 0. 7.54 3.37 10.61 11.94 3.51 28.04 1.39 1.29 .96 5.46 5.45(S) .36(S) 1.16(S) .72(S) .87(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 5. 7.54 3.31 10.43 11.89 3.47 27.35 .19 .78 .08 2.53 5.43(S) .34(S) 1.10(S) .71(S) .85(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 10. 7.54 3_26 10.25 11.83 3.43 27.32 _ 1.00 .63 .69 3.21 5.41(S) .32(S) 1.04(S) .70(S) .83(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 15. 7.54 3.20 10.06 11.76 3.39 26.69 .00 .45 .00 1.33 5.38(S) .30(S) .98(S) .69(S) .81(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 20. 7.54 3.15 9.80 11.69 3.34 26.74 .80 .43 .50 2.43 5.34(S) .28(S) .92(S) .68(S) .79(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 25. 7.54 3.09 9.52 11.60 3.30 26.14 .00 .30 .00 .76 5.30(S) .26(S) .85(S) .67(S) .77(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 30. 7.54 3.04 9.25 11.50 3.25 26.20 .58 .32 .36 1.98 5.27(S) .24(S) .79(S) .66(S) .75(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 35. 7.54 2.93 8.99 11.39 3.21 25.62 .00 .21 .00 .40 5.22(S) .22(S) .73(S) .64(S) .73(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 40. 7.54 2.83 8.73 11.28 3.16 25.67 .44 .25 .27 1.68 5.18(S) .20(S) .68(S) .62(S) .71(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 45. 7.54 2.73 8.47 11.15 3.12 25.07 .00 .15 .00 .15 5.14(S) .18(S) .62(S) .61(S) .69(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 50. 7.54 2.63 8.23 11.02 3.07 25.11 .34 .20 .20 1.46 5.09(S) .17(S) .56(S) .59(S) .67(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 55. 7.52 2.53 7.96 10.89 3.03 24.48 .00 .11 .00 .00 5.05(S) .15(S) .51(s) .57(s) ' 3 0. 7.50 •2.44 7.59 10.74 5.00(S) .13(S) .46(S) .55(S) .65(S) .00( ) .00( ) .00( ) .00( ) 2.98 24.48 .26 .16 .15 .63(S) .00( ) .00( ) .00( ) .00( ) WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 ' HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS ' THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH ' (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER ,TIME(HR/MIN) 210 215 216 220 224 226 115 116 124 140 0 5. .05 .00 .01 .01 .02 .01 .00 .00 .00 .00 '.00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .01( ) .00( ) 0 10. 18 .00 .02 .06 .07 .03 .00 .00 .01 .00 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .03( ) .00( ) 0 15. 5.41 .19 .15 1.46 1.97 .74 .00 .00 .12 .02 ' .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .09( ) .01( ) 0 20. 33.47 .67 .78 9.97 13.17 5.27 .00 .01 1.39 .29 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .01( ) .29( ) .07( ) ' 0 25. 56.59 .78 1.76 18.71 24.17 10.88 .00 .08 4.10 1.33 .00( ) .00( ) .00( ) .00( ) .00( ) • .00( ) .00( ) .03( ) .49( ) .18( ) 0 30. 104.56 1.74 3.01 34.15 44.24 18.85 .00 .28 6.23 3.69 ON ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .07( ) .60( ) .32( ) 0 35. 221.59 6.75 4.91 71.00 92.37 35.64 .00 .77 8.36 9.77 .00( ) .00( ) 00( ) .00( ) .00( ) .00( ) .00( ) .13( ) .70( ) .56( ) 0 40. 95.96 6.05 4.75 35.52 44.60 23.22 .00 1.47 10.27 14.58 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .19( ) .77( ) .71( ) 0 45. 70.83 4.78 4.78 23.09 29.43 19.40 .00 2.14 11.06 14.39 .00( ) _ .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .23( ) .80( ) .70( ) ' 0 50. 55.87 4.42 4.86 19.69 24.61 18.06 .00 2.73 11.39 14.81 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .27( ) .82( ) .71( ) 0 55. 45.94 2.91 4.70 14.08 17.98 16.26 .00 3.21 11.63 15.20 ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .30( ) .82( ) .72( ) '00( 1 0. 38.28 3.08 4.72 13.35 16.64 16.06 .00 3.57 11.76 15.05 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .32( ) .83( ) .72( ) ' 1 5. 34.01 .00( ) 1.81 .00( ), 4.55 .00( ) 9.83 .00( ) 12.67 .00( 14.96 ) .00( ) .00 .00( ) 3.84 .33( ) 11.83 .83( 14.82 ) .71( ) 1 10. 28.14 2.20 4.54 9.91 12.31 14.98 .00 4.02 11.86 14.57 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .34( ) .83( ) .71( ) ' 1 15. 25.00 1.07 4.35 6.85 8.92 13.97 .00 4.13 11.84 14.28 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .34( ) .83( ) .70( ) 1 20. 20.57 1.64 4.35 7.43 9.19 14.10 .00 4.18 11.79 13.99 ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .35( ) .83( ) .69( ) '.00( 1 25. 15.65 .57 4.14 3.88 5.12 12.82 .00 4.20 11.71 13.62 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .35( ) .83( ) .68( ) 1 30, 14.31 1.30 4.16 5.36 6.57 13.25 .00 4.19 11.60 13.31 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .35( ) .82( ) .67( ) 1 35. 10.27 .27 3.95 2.13 .00( ) .00( ) .00( ) .00( ) 1 40. 9.45 1.06 3.97 3.80 .00( ) .00( ) .00( ) .00( ) 1 45. 7.90 .11 3.78 1.34 .00( ) .00( ) .00( ) .00( ) 1 50. 7.93 .92 3.82 3.31 .00( ) .00( ) .00( ) .00( ) 1 55. 6.78 .00 3.64 .99 .00( ) .00( ) .00( ) .00( ) 2 0. 7.04 .83 3.68 3.05 .00( ) .00( ) 00( ) .00( ) 2 5. 3.94 .00 3.47 .16 .00( ) .00( ) .00( ) .00( ) 2 10. 3.81 .57 3.51 2.05 .00( ) .00( ) .00( ) .00( ) 2 15. 2.28 .00 3.32 .00 .00( ) .00( ) .00( ) .00( ) 2 20. 2.74 .42 3.36 1.33 .00( ) .00( ) .00( ) .00( ) 2 25. 1.51 .00 3.18 .00 .00( ) .00( ) .00( ) .00( ) 2 30. 2.15 .32 3.22 .90 .00( ) .00( ) .00( ) .00( ) 2 35. 1.03 .00 2.99 .00 .00( ) .00( ) .00( ) .00( ) 2 40. 1.75 .24 2.99 .63 .00( ) .00( ) .00( ) .00( ) 2 45. .69 .00 2.77 .00 .00( ) .00( ) .00( ) .00( ) 2 50. 1.45 .18 2.78 .45 .00( ) .00( ) .00( ) .00( ) 2 55. .43 .00 2.56 .00 .00( ) .00( ) .00( ) .00( ) 3 0. 1.23 .14 2.57 .32 .00( ) .00( ) .00( ) .00( ) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 124 310 315 324 326 330 1a�3 2.90 12.01 .00 4.15 11.46 13.03 .00( ) .00( ) .00( ) .35( ) .82( ) .66( ) 4.59 12.45 .00 4.10 11.31 12.76 .00( ) .00( ) .00( ) .34( ) .81( ) .66( ) 1.91 11.47 .00 4.05 11.15 12.56 .00( ) .00( ) .00( ) .34( ) .81( ) .65( ) 3.98 12.00 .00 3.98 10.99 12.40 .00( ) .00( ) .00( ) .34( ) .80( ) .65( ) 1.49 11.05 .00 3.92 10.82 12.26 .00( ) .00( ) .00( ) .33( ) .79( ) .64( ) 3.66 11.60 .00 3.85 10.65 12.13 .00( ) .00( ) .00( ) .33( ) .79( ) .64( ) .41 10.42 .00 3.78 10.48 11.96 .00( ) .00( ) .00( ) .33( ) .78( ) .63( ) 2.37 10.90 .00 3.71 10.30 11.77 .00( ) .00( ) .00( ) .32( ) .77( ) .63( ) .00 9.89 .00 3.64 10.11 11.61 .00( ) .00( ) .00( ) .32( ) .77( ) .62( ) 1.66 10.38 .00 3.56 9.87 11.47 .00( ) .00( ) .00( ) .32( ) .76( ) .62( ) .00 9.31 .00 3.49 9.60 11.35 .00( ) .00( ) .00( ) .31( ) .75( ) .62( ) 1.12 9.78 .00 3.42 9.33 11.24 .00( ) .00( ) .00( ) .31( ) .74( ) .61( ) .00 8.73 .00 3.34 9.06 11.14 .00( ) .00( ) .00( ) .30( ) .73( ) .61( ) .80 9.23 .00 3.26 8.80 11.04 .00( ) .00( ) .00( ) .30( ) .72( ) .61( ) .00 8.20 .00 3.17 8.55 10.94 .00( ) .00( ) .00( ) .30( ) .71( ) .60( ) .58 8.71 .00 3.07 8.30 10.83 .00( ) .00( ) .00( ) .29( ) .69( ) .60( ) .00 7.67 .00 2.98 8.04 10.71 .00( ) .00( ) .00( ) .28( ) .68( ) .60( ) ' .42 8.10 .00 2.88 7.70 10.59 .00( ) .00( ) .00( ) .28( ) .67( ) .59( ) WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 10-YR EVENT FILE: WSSWM-10 LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 116 4.2 .3 1 25. 124 11.9 .8 1 10. 140 15.2 .7 0 55. 201 24.5 (DIRECT FLOW) 0 35. 202 46.8 (DIRECT FLOW) 0 35. 203 17.6 (DIRECT FLOW) 0 35. 209 150.5 (DIRECT FLOW) 0 35. ' 210 221.6 (DIRECT FLOW) 0 35. 214 18.9 (DIRECT FLOW) 0 35. 215 6.7 (DIRECT FLOW) 0 35. ' 216 4.9 (DIRECT FLOW) 0 35. 220 71.0 (DIRECT FLOW) 0 35. 224 92.4 (DIRECT FLOW) 0 35. ' 226 35.6 (DIRECT FLOW) FLOW) 0 0 35. 35. - 70W 5i4e Unl�a/9C 299 33.7 (DIRECT 310 7.5 5.5 1 50. - De+m fWA POAJ 31J .1 iDe-fetihm Pond 315 315 3.7 .1 .5 1 10. - ' 324 11.9 .1 1.6 1 10. 326 12.0 .1 .7 1 40. 330 3.7 .1 1.0 1 20. ENDPROGRAM PROGRAM CALLED I �/3 C 100-YEAR ON -SITE SWMM INPUT AND OUTPUT C� X5 2 1 1 2 LA3 4 TERSHED 0 WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL �00-YR EVENT FILE: WSSWM-C LIDSTONE & ANDERSON, INC. CLD MARCH 1996 36 0000 5. 1 1. 1 25 5. .60 .96 1.44 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 0.0 1 1 201 1200 8.5 40. .020 .020 .25 .1 .3 .51 .5 .0018 '1 2 202 2000 4.1 68. .020 .020 .25 .1 .3 .51 .5 .0018 1 3 203 800 5.7 44. .020 .020 .25 .1 .3 .51 .5 .0018 1 4 209 750 1.6 74. .020 .020 .25 .1 .3 .51 .5 .0018 '1 5 209 1600 2.7 68. .020 .020 .25 .1 .3 .51 .5 .0018 1 6 210 3800 7.6 66. .020 .020 .25 .1 .3 .51 .5 .0018 1 7 209 750 3.3 57. .020 .020 .25 .1 .3 .51 .5 .0018 1 8 210 450 2.3 67. .020 .020 .25 .1 .3 .51 .5 .0018 '1 9 209 3000 20.2 30. .020 .020 .25 .1 .3 .51 .5 .0018 1 10 210 1400 9.1 26. .020 .020 .25 .1 .3 .51 .5 .0018 1 14 214 1000 4.8 54. .020 .020 .25 .1 .3 .51 .5 .0018 '1 15 215 1300 4.4 9. .015 .020 .25 .1 .3 .51 .5 .0018 1 16 216 200 1.8 12. .020 .020 .25 .1 .3 .51 .5 .0018 1 20 220 600 4.1 46. .020 .020 .25 .1 .3 .51 .5 .0018 '1 21 220 1400 9.0 46. .020 .020 .25 .1 .3 .51 .5 .0018 1 22 220 1800 7.2 51. .020 .020 .25 .1 .3 .51 .5 .0018 1 23 224 1000 2.2 61. .020 .020 .25 .1 .3 .51 .5 .0018 1 24 224 500 3.4 42. .020 .020 .25 .1 .3 .51 .5 .0018 '1 25 226 900 4.0 65. .020 .020 .25 .1 .3 .51 .5 .0018 1 26 226 1000 2.9 31. .020 .020 .25 .1 .3 .51 .5 .0018 1 30 330 1700 11.8 60. .020 .020 .25 .1 .3 .51 .5 .0018 '1 40 140 1300 6.4 30. .020 .020 .25 .1 .3 .51 .5 .0018 1 41 299 800 3.5 50. .020 .020 .25 .1 .3 .51 .5 .0018 F714 ; W55Wlx_ C - per willow5pt(.g5 Phgxa &*l 5tdxlfm mode( l oo-I ear i;�'ven4. aeV,,,,A 5L)blx+5in Paramefei5 0 23 1 2 3 4 5 6 7 8 9 10 14 15 16 20 21 22 23 24 25 26 30 40 41 201 202 0 3 .1 1. ' 202 209 0 3 .1 1. 203 209 0 3 .1 1. 209 210 0 3 .T- 1. ' 210 310 0 3 .1 1. 310 140 14 2 .1 1. 1 _DIAlilo„ q. 3�D 2.68 3.12 3.61 4.20 4.09 6.97 5.09 7.51 6.09 7.51 7.43 7.92 8.77 8.40 9.85 8.64 10.56 8083 1.1 9.00 A I, ` eo Aoa e k4 214 315 1 ' 215 315 0 3 .1 1. 315 216 6 2 .1 1. 1 Pond 315 �QQUI I, 0.0 0. 0.06 2, 0.24 3. 0.59 4. De4'enf�� ' 0.85 4.5 1.23 5. 216 116 0 3 .1 1. 116 140 0 1 10. 1650. .003 4. 4. .035 5. 140 299 0 1 10. 700. .003 4. 4. .035 5. ' 220 224 0 3 .1 1. 224 324 0 3 .1 1. ' 324 124 8 2 .1 1. 1 0.0 0.0 0.07 4.0 0.24 6.0 0.52 8.0 0.97 10.0 1.64 12.0 2.46 14.0 3.44 16.0 124 226 0 2 3. 825. .008 0. 0. .011 5. 226 326 0 3 .1 1. 326 299 8 2 .1 1. .1 0.0 0.0 0.04 4.0 0.12 6.0 0.24 8.0 0.45 10.0 0.73 12.0 1.16 14.0 1.72 16.0 330 299 7 2 .1 1. .1 0.0 0.0 0.08 1.0 0.27 2.0 0.65 3.0 1.11 4.0 1.86 5.0 2.82 6.0 299 0 3 .1 1. 0 20 310 315 324 326 330 299 201 202 203 209 210 215 216 220 224 226 115 116 124 140 ENDPROGRAM 3115 ' ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY ' UPDATED BY 1 'TAPE OR DISK ASSIGNMENTS METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) File: W55W-C • OLii Wla,j 5p("op ?hctd Qe,,i,)cd 5wmf�jjokf 100-�olr rvtn4- ' JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 ' NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 1ATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** -'/15 WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE & ANDERSON, INC. CLD MARCH 1996 NUMBER OF TIME STEPS 36 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 .00 WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE & ANDERSON, INC. CLD MARCH 1996 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 1 201 1200.0 8.5 40.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 2 202 2000.0 4.1 68.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 3 203 800.0 5.7 44.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 4 209 750.0 1.6 74.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 5 209 1600.0 2.7 68.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 6 210 3800.0 7.6 66.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 7 209 750.0 3.3 57.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 8 210 450.0 2.3 67.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 9 209 3000.0 20.2 30.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 10 210 1400.0 9.1 26.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 14 214 1000.0 4.8 54.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 15 215 1300.0 4.4 9.0 .0150 .020 .250 .100 .300 .51 .50 .00180 1 16 216 200.0 1.8 12.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 20 220 600.0 4.1 46.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 21 220 1400.0 9.0 46.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 22 220 1800.0 7.2 51.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 23 224 1000.0 2.2 61.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 24 224 500.0 3.4 42.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 25 226 900.0 4.0 65.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 26 226 1000.0 2.9 31.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 30 330 1700.0 11.8 60.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 40 140 1300.0 6.4 30.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 41 299 800.0 3.5 50.0 .0200 .020 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 23 TOTAL TRIBUTARY AREA (ACRES), 130.60 WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE & ANDERSON, INC. LLD MARCH 1996 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS ITIME(HR/MIN) 3 6 1 2 4 5 7 8 9 10 0 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15. 2.1 2.5 1.5 1.0 1.8 4.6 1.3 .8 4.5 1.9 '0 0 20. 5.0 4.7 3.6 1.9 3.1 8.4 2.8 2.1 9.6 3.9 0 25. 8.1 7.1 5.9 3.0 4.7 12.8 4.5 3.6 15.0 5.9 0 30. 17.5 16.0 12.6 6.6 10.9 29.3 9.8 7.5 34.1 14.0 '0 35. 37.4 31.0 26.5. 12.4 20.9 57.1 20.2 14.9 75.9 31.9 0 40. 37.5 23.2 26.3 9.1 15.1 42.9 18.1 13.3 79.4 34.3 0 45. 23.8 9.7 16.2 3.7 6.1 18.0 9.5 6.7 54.8 24.5 50. 18.9 7.4 12.6 2.9 4.8 13.8 6.9 4.7 45.2 20.5 '0 0 55. 14.8 5.2 9.8 2.0 3.3 9.7 5.0 3.5 35.9 16.3 1 0. 11.5 3.8 7.6 1.5 2.4 7.1 3.7 2.6 28.3 12.9 1 5, 8.7 2.6 5.7 1.0 1.7 4.8 2.6 1.8 21.7 10.0 1 10. 6.6 1.9 4.3 .8 1.2 3.5 1.9 1.3 16.8 7.7 1 15. 5.2 1.4 3.4 .6 .9 2.6 1.5 1.0 13.2 6.1 1 20. 4.2 1.2 2.7 .5 .8 2.2 1.2 .8 10.7 4.9 1 25. 3.4 1.0 2.2 .4 .6 1.8 1.0 .7 8.8 4.1 1 30. 2.8 .8 1.8 .3 .5 1.4 .8 .6 7.3 3.4 1 35. 2.5 .7 1.6 .3 .5 1.4 .7 .5 6.3 2.9 40. 2.2 .7 1.4 .3 .5 1.3 .6 .5 5.6 2.5 '1 1 45. 2.0 .7 1.3 .3 .5 1.3 .6 .4 5.0 2.3 1 50. 1.8 .7 1.2 .3 .5 1.3 :6 .4 4.5 2.0 1 55. 1.6 .6 1.0 .2 .4 1.0 .5 .4 3.9 1.8 '2 0. 1.3 .4 .8 .2 .3 .7 .4 .3 3.2 1.5 2 5. 1.0 .3 .7 .1 .2 .5 .3 .2 2.6 1.2 2 10. .8 .1 .5 .1 .1 .2 .2 .1 2.1 1.0 15. .6 .1 .4 .0 .0 .1 .1 .1 1.7 .8 '2 2 20. .5 .0 .3 .0 .0 .1 .1 .1 1.5 .7 2 25. .4 .0 .3 .0 .0 .0 .1 .0 1.3 .6 30. .4 .0 .2 .0 .0 .0 .0 .0 1.1 .5 '2 2 35. .3 .0 .2 .0 .0 .0 .0 .0 1.0 .5 2 40. .3 .0 .2 .0 .0 .0 .0 .0 .9 .4 2 45. .3 .0 .2 .0 .0 .0 .0 .0 .8 .4 2 50. .2 .0 .1 .0 .0 .0 .0 .0 .7 .3 2 55. .2 .0 .1 .0 .0 .0 .0 .0 .6 .3 3 0. .2 .0 .1 .0 .0 .0 .0 .0 .5 .3 SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL �ILLOW 00-YR EVENT FILE: WSSWM-C LIDSTONE & ANDERSON, INC. CLD MARCH 1996 IYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS �IME(HR/MIN) 14 15 16 20 21 22 23 24 25 26 0 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 '0 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0 15. 1.7 .6 .2 1.1 2.5 2.7 1.2 .9 1.6 1.0 0 20. 3.9 .7 .4 2.7 6.0 5.8 2.2 2.1 ; 3.8 1.5 25. 6.2 1.1 .6 4.4 9.8 9.1 3.4 3.4 6.2 2.4 '0 0 30. 13.5 4.2 1.5 9.5 21.1 20.2 7.9 7.3 13.1 6.2 0 35. 27.9 12.8 3.7 19.8 44.3 42.3 15.8 15.6 26.2 14.6 ' 0 40. 25.7 16.7 4.6 19.5 43.2 38.4 12.4 15.5 23.0 14.4 -7/3 0 45. 14.0 13.5 4.0 11.8 26.0 20.7 0 50. 10.3 10.8 3.6 9.1 19.9 15.3 0 55. 7.6 8.3 3.1 7.0 15.3 11.1 1 0. 5.6 6.4 2.6 5.4 11.6 8.1 1 5. 4.0 4.8 2.2 4.0 8.6 5.8 1 10. 2.9 3.6 1.8 3.0 6.5 4.2 1 15. 2.2 2.7 1.5 2.3 5.0 3.2 1 20. 1.8 2.2 1.2 1.9 4.0 2.5 1 25. 1.5 1.7 1.1 1.5 3.3 2.0 1 30. 1.2 1.4 .9 1.3 2.7 1.6 1 35. 1.0 1.2 .8 1.1 2.3 1.5 1 40. 1.0 1.0 .7 1.0 2.1 1.3 1 45. .9 .9 .6 .9 1.9 1.3 1 50. .9 .8 .6 .8 1.8 1.2 1 55. .7 .6 .5 .7 1.5 1.0 2 0. .6 .5 .4 .6 1.2 .8 2 5. .4 .5 .4 .5 1.0 .6 2 10. .3 .4 .3 .3 .7 .3 2 15. .2 .3 .3 .3 .5 .2 2 20. .1 .3 .3 .2 .4 .2 2 25. .1 .2 .2 .2 .4 .1 2 30. .1 .2 .2 .1 .3 .1 2 35. .1 .2 .2 .1 .3 .1 2 40. .1 .2 .2 .1 .2 .1 2 45. .0 .1 .2 .1 .2 .1 . 2 50. .0 .1 .1 .1 .2 .0 2 55. .0 .1 .1 .1 .1 .0 3 0. .0 .1 .1 .1 .1 .0 5.5 9.6 11.4 8.8 4.1 7.6 8.1 6.6 2.9 5.9 5.9 4.6 2.1 4.5 4.3 3.4 1.4 3.4 3.1 2.4 1.0 2.6 2.3 1.7 .8 2.0 1.7 1.3 .6 1.6 1.4 1.0 .5 1.3 1.1 .8 .4 1.1 .9 .6 .4 .9 .8 .5 .4 .8 .8 .5 .4 .8 .7 .4 .4 .7 .7 .4 .3 .6 .6 .3 .2 .5 .5 .3 1 .4 .3 .2 1 .3 .2 .1 .0 .2 .0 .2 t 1 .0 .2 .0 .1 .1 .0 .0 t .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 WILLOW SPRINGS PH. 2 (MCCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 3 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS TIME(HR/MIN) 30 40 41 0 5. .0 .0 .0 0 10. .0 .0 .0 0 15. 3.4 1.7 1.3 0 20. 9.1 3.2 2.7 0 25. 15.8 4.9 4.3 0 30. 33.1 11.7 9.5 0 35. 67.2 26.7 19.9 0 40. 63.9 27.6 18.4 0 45. 35.6 18.5 10.1 0 50. 25.6 14.8 7.5 0 55. 19.2 11.2 5.5 1 0. 14.5 8.6 4.1 1 5. 10.6 6.4 2.9 1 10. 7.9 4.8 2.1 1 15. 6.1 3.7 1.6 1 20. 4.9 2.9 1.3 1 25. 4.0 2.4 1.0 1 30. 3.3 1.9 .8 1 35. 2.9 1.7 .7 1 40. 2.6 1.5 .7 %3 1 1 45. 2.5 1.3 .6 1/0 1 50. 2.3 1.2 .6 1 55. 2.0 1.0 .5 2 0. 1.6 .8 .4 2 5. 1.2 .6 .3 1 2 10. .8 .5 .2 2 15. .6 .4 .1 2 20. .5 .3 .1 2 25. .4 .3 .1 2 30. .3 .2 .1 2 35. .3 .2 .0 2 40. .2 .2 .0 2 45. .2 .2 .0 2 50. .1 .1 .0 2 55. .1 .1 .0 3 0. .1 .1 .0 ,WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 130.600 TOTAL RAINFALL (INCHES) 2.920 TOTAL INFILTRATION (INCHES) .446 TOTAL WATERSHED OUTFLOW (INCHES) 2.238 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .236 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 V/'�' WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 ' WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 201 202 0 3 .1 1. .0010 .0 .0 .001 10.00 0 , 202 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 203 209 0 3 .1 1. .0010 .0 .0 .001 10.00 0 209 210 0 3 .1 1. .0010 .0 .0 .001 10.00 0 , 210 310 0 3 .1 1. .0010 .0 .0 .001 10.00 0 310 140 14 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .6 .5 1.1 1.3 1.7 2.1 2.7 3.1 3.6 4.2 4.1 7.0 5.1 7.5 6.1 7.5 7.4 7.9 8.8 8.4 9.8 8.6 10.6 8.8 10.9 9.0 214 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 215 315 0 3 .1 1. .0010 .0 .0 .001 10.00 0 315 216 6 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 .2 3.0 .6 4.0 .8 4.5 1.2 5.0 216 116 0 3 .1 1. .0010 .0 .0 .001 10.00 0 116 140 0 1 CHANNEL 10.0 1650. .0030 4.0 4.0 .035 5.00 0 140 299 0 1 CHANNEL 10.0 700. .0030 4.0 4.0 .035 5.00 0 220 224 0 3 .1 1. .0010 .0 .0 .001 10.00 0 224 324 0 3 .1 1. .0010 .0 .0 .001 10.00 0 324 124 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 ' 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 4.0 .2 6.0 .5 8.0 1.0 10.0 1.6 12.0 2.5 14.0 3.4 16.0 ' 124 226 0 2 PIPE 3.0 825. .0080 .0 .0 .011 5.00 0 226 326 0 3 .1 1. .0010 .0 .0 .001 10.00 0 326 299 8 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW ' .0 .0 .0 4.0 .1 6.0 .2 8.0 .5 10.0 .7 12.0 1.2 14.0 1.7 16.0 330 299 7 2 PIPE .1 1. .0010 .0 .0 .001 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.0 .3 2.0 .7 3.0 1.1 4.0 1.9 5.0 2.8 6.0 299 0 0 3 .1 1. .0010 .0 .0 .001 10.00 0 TOTAL NUMBER OF GUTTERS/PIPES, 20 ' q�3 'WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE & ANDERSON, INC. CLD MARCH 1996 ' ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES ' GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 116 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.0 124 324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.9 140 310 116 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 82.5 201 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8.5 202 201 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0' 0 0 0 0 12.6 203 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 5.7 209 202 203 0 0 0 0 0 0 0 0 4 5 7 9 0 0 0 0 0 0 46.1 210 209 0 0 0 0 0 0 0 0 0 6 8 10 0 0 0 0 0 0 0 65.1 214 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 4.8 ' 215 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 4.4 216 315 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 11.0 220 0 0 0 0 0 0 0 0 0 0 20 21 22 0 0 0 0 0 0 0 20.3 ' 224 220 0 0 0 0 0 0 0 0 0 23 24 0 0 0 0 0 0 0 0 25.9 226 124 0 0 0 0 0 0 0 0 0 25 26 0 0 0 0 0 0 0 0. 32.8 299 140 326 330 0 0 0 0 0 0 0 41 0 .0 0 0 0 0 0 0 0 130.6 ' 310 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65.1 315 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.2 324 224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.9 326 226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.8 ' 330 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 11.8 'WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE & ANDERSON, INC. CLD MARCH 1996 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH ' (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER 'TIME(HR/MIN) 310 315 324 326 330 299 201 202 203 209 0 5. .03 .01 .03 .01 .01 .03 .01 .02 .00 .05 L .00(S) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 10. 03 .03 .05 .04 .03 .09 .03 .06 .02 .20 .00(S) .00( ) .00(S) .00(S) .00(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 15. .16 .49 2.81 1.64 .31 4.73 4.18 9.16 2.90 29.12 '.15(S) .01(S) .05(S) .02(S) .02(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 20. 40 1.32 4.99 4.30 1.04 9.61 5.77 10.10 4.23 32.25 .46(S) .04(S) .15(S) .05(S) .08(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 25. 1.12 2.13 6.60 5.79 1.57 16.27 10.42 20.28 7.55 64.40 I v113 .94(S) .08(S) .32(S) .11(S) .18(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 30. 2.47 2.72 8.92 8.08 2.36 33.07 24.65 46.88 17.68 150.77 2.02(S) .18(S) .72(S) .24(S) .40(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 35. 7.09 3.61 11.91 10.59 3.44 65.84 50.06 89.92 35.39 297.90 4.25(S) .44(S) 1.60(S) .53(S) .84(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 40. 7.60 4.26 13.88 12.31 4.22 61.39 24.84 31.45 17.17 119.46 6.26(S) .71(S) 2.40(S) .79(S) 1.25(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 45. 7.94 4.55 14.74 13.00 4.51 58.81 22.77 35.51 15.29 128.06 7.40(S) .87(S) 2.81(S) .94(S) 1.47(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 50. 8.26 4.70 15.31 13.52 4.70 52.07 14.94 17.07 9.94 69.39 8.29(S) .98(S) 3.09(S) 1.05(S) 1.61(S) .00( ) .00( ) .00( ) .00( ) .00( ) 0 55. 8.48 4.80 15.69 13.92 4.83 51.12 14.61 22.92 9.68 82.90 8.96(S) 1.05(S) 3.27(S) 1.13(S) 1.71(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 0. 8.59 4.87 15.91 14.17 4.92 45.50 8.31 7.63 5.44 34.60 9.46(S) 1.10(S) 3.38(S) 1.20(S) 1.78(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 5. 8.67 4.90 16.02 14.35 4.97 45.40 9.05 14.99 5.94 53.51 9.82(S) 1.13(S) 3.43(S) 1.25(S) 1.82(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 10. 8.73 4.92 16.03 14.49 5.00 40.87 4.23 2.11 2.72 13.60 10.08(S) 1.14(S) 3.44(S) 1.29(S) 1.84(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 15. 8.77 4.92 16.00 14.60 5.01 41.84 6.13 11.13 4.01 38.63 10.26(S) 1.14(S) 3.42(S) 1.32(S) 1.84(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 20. 8.81 4.91 15.92 14.69 5.01 38.28 2.26 .00 1.43 3.84 10.40(S) 1.14(S) 3.38(S) 1.34(S) 1.84(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 25. 8.83 4.89 15.82 14.76 5.00 39.84 4.63 8.85 3.03 31.07 10.51(S) 1.12(S) 3.34(S) 1.36(S) 1.84(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 30. 8.86 4.87 15.70 14.83 4.99 36.63 1.05 .00 .64 .00 10.58(S) 1.11(S) 3.28(S) 1.38(S) 1.82(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 35. 8.89 4.85 15.57 14.88 4.97 38.65 3.87 6.41 2.54 25.15 10.64(S) 1.09(S) 3.21(S) 1.40(S) 1.81(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 40. 8.91 4.82 15.43 14.93 4.95 35.75 .51 .00 .30 .00 10.69(S) 1.07(S) 3.14(S) 1.41(S) 1.79(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 45. 8.93 4.80 15.29 14.97 4.92 37.95 3.46 5.40 2.29 20.68 10.73(S) 1.05(S) 3.07(S) 1.42(S) 1.78(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 50. 8.95 4.77 15.14 15.00 4.90 35.17 .19 .00 .11 .00 10.76(S) 1.03(S) 3.00(S) 1.43(S) 1.76(S) .00( ) .00( ) .00( ) .00( ) .00( ) 1 55. 8.96 4.74 14.99 15.03 4.87 37.24 2.95 4.27 1.96 16.25 10.77(S) 1.00(S) 2.93(S) 1.44(S) 1.74(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 0. 8.96 4.70 14.83 15.04 4.84 34.37 .00 .00 .00 .00 10.77(S) .98(S) 2.85(S) 1.44(S) 1.72(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 5. 8.95 4.67 14.65 15.05 4.81 36.42 2.06 2.57 1.33 10.24 10.76(S) .95(S) 2.76(S) 1.44(S) 1.69(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 10. 8.93 4.63 14.47 15.04 4.77 33.55 .00 .00 .00 .00 10.73(S) - .92(S) 2.68(S) 1.44(S) 1.67(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 15. 8.92 4.60 14.29 15.04 4.74 35.73 1.25 1.38 .78 5.97 10.70(S) .90(S) 2.58(S) 1.44(S) 1.64(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 20. 8.90 4.56 14.10 15.02 4.70 32.98 .00 .00 .00 .00 10.66(S) .87(S) 2.49(S) 1.44(S) 1.61(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 25. 8.87 4.51 13.90 15.00 4.66 35.23 .89 .94 .54 4.22 10.62(S) .84(S) 2.40(S) 1.43(S) 1.58(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 30. 8.85 4.46 13.68 14.97 4.62 32.51 .00 .00 .00 .00 10.57(S) .81(S) 2.31(S) 1.42(S) 1.55(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 35. 8.84 4.40 13.46 14.94 4.58 34.79 .66 .69 .40 3.16 10.53(S) .78(S) 2.22(S) 1.41(S) 1.52(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 40. 8.82 4.35 13.24 14.91 4.54 32.09 .00 .00 .00 .00 10.48(S) .75(S) 2.14(S) 1.40(S) 1.49(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 45. 8.81 4.29 13.03 14.87 4.50 34.38 .51 .52 .30 2.43 10.43(S) .72(S) 2.05(S) 1.39(S) 1.46(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 50. 8.80 4.24 12.82 14.82 4.46 31.70 .00 .00 .00 .00 10.38(S) .70(S) 1.96(S) 1.38(S) 1.43(S) .00( ) .00( ) .00( ) .00( ) .00( ) 2 55. 8.79 4.18 12.61 14.77 4.42 33.99 .39 .40 .23 1.89 10.33(S) .67(S) 1.88(S) 1.37(S) 3 0. 8.78 4.13 12.40 14.72 ' 10.27(S) .64(S) 1.79(S) 1.35(S) 1 I/3 1.40(S) .00( ) .00( ) .00( ) .00( ) .00( ) 4.38 31.30 .00 .00 .00 .00 1.37(S) .00( ) .00( ) .00( ) .00( ) .00( ) FILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE 8 ANDERSON, INC. CLD MARCH 1996 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER 'TIME(HR/MIN) 210 215 216 220 224 226 115 116 124 140 0 5. .07 .00 .01 .02 .03 .01 .00 .00 .00 .00 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .02( ) .00( ) 0 10. .30 .01 .03 .09 .12 .05 .00 .00 .01 .00 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .03( ) .00( ) 0 15. 43.85 1.13 .92 12.56 16.75 6.27 .00 .01 1.18 .29 00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .01( ) .27( ) .07( ) 0 20. 46.32 .18 1.63 16.36 20.84 9.72 .00 .07 4.16 1.32 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .03( ) .49( ) .18( ) ' 0 25. 94.97 2.09 2.95 30.23 39.39 17.63 .00 .27 6.12 3.29 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .07( ) .60( ) .30( ) 0 30. 221.71 6.33 4.84 71.28 92.65 35.35 .00 .74 8.16 9.26 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .13( ) .69( ) .55( ) ' 0 35. 434.90 19.27 8.98 141.55 182.99 65.50 .00 1.85 11.05 25.34 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .22( ) .80( ) .96( ) 0 40. 163.41 14.11 8.15 60.55 74.87 33.66 .00 3.35 13.47 34.59 '.00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .30( ) .89( ) 1.14( ) 0 45. 182.63 12.99 8.65 56.50 72.49 34.67 .00 4.63 14.58 31.26 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .37( ) .93( ) 1.08( ) 0 50, 92.92 8.64 7.90 32,13 39.50 24.37 .00 5.62 15.17 28.80 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .41( ) .95( ) 1.03( ) 0 55. 118.28 7.86 7.86 34.65 44.77 27.48 .00 6.26 15.61 26.36 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .44( ) .96( ) .98( ) 1 0. 44.26 4.90 7.10 15.60 18.70 19.45 .00 6.61 15.86 24.27 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .45( ) .97( ).94( ) 1 5. 77.10 4.61 7.02 21.26 27.82 23.35 .00 6.74 16.00 22.37 '.00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .46( ) .97( ) .90( ) 1 10. 15.14 2.56 6.37 6.23 6.89 16.62 .00 6.73 16.03 20.82 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .46( ) .97( ) .86( ) 1 15. 56.56 2.90 6.42 14.79 19.68 21.36 AD 6.63 16.01 19.59 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .45( ) .97( ) .83( ) 1 20. 1.79 1.41 5.90 2.10 1.71 15.33 .00 6.49 15.94 18.66 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .45( ) .97( ) .81( ) ' 1 25. 46.18 2.04 6.02 11.67 15.74 20.29 .00 6.34 15.85 17.92 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .44( ) .97( ) .79( ) 1 30. .00 .77 5.56 .00 .00 14.38 .00 6.18 15.73 17.30 ' .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .43( ) .96( ) .78( ) i vjo 1 35. 34.66 1.60 5.75 9.82 .00( ) .00( ) .00( ) .00( ) 1 40. .00 .42 5.32 .00 .00( ) .00( ) .00( ) .00( ) 1 45. 28.71 1.32 5.54 8.20 .00( ) .00( ) .00( ) .00( ) 1 50. .00 .20 5.13 .00 .00( ) .00( ) .00( ) .00( ) 1 55. 22.54 1.09 5.35 6.52 .00( ) .00( ) .00( ) .00( ) 2 0. .00 .01 4.95 .00 .00( ) .00( ) .00( ) .00( ) 2 5. 14.00 .91 5.17 3.94 .00( ) .00( ) .00( ) .00( ) 2 10. .00 .00 4.78 .00 .00( ) .00( ) .00( ) .00( ) 2 15. 8.00 .65 5.02 2.06 .00( ) .00( ) .00( ) .00( ) 2 20. .00 .00 4.65 .00 .00( ) .00( ) .00( ) .00( ) 2 25. 5.63 .48 4.89 1.34 .00( ) .00( ) .00( ) .00( ) 2 30. .00 .00 4.50 .00 .00( ) .00( ) .00( ) .00( ) 2 35. 4.21 .37 4.74 .94 .00( ) .00( ) .00( ) .00( ) 2 40. .00 .00 4.36 .00 .00( ) .00( ) .00( ) .00( ) 2 45. 3.23 .28 4.60 .67 .00( ) .00( ) .00( ) .00( ) 2 50. .00 .00 4.22 .00 .00( ) .00( ) .00( ) .00( ) 2 55. 2.51 .21 4.46 .49 .00( ) .00( ) .00( ) .00( ) 3 0. .00 .00 4.09 .00 .00( ) .00( ) .00( ) .00( ) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 124 310 315 324 326 330 12.47 19.69 .00 6.03 15.60 16.84 .00( ) .00( ) .00( ) .43( ) .96( ) .77( ) .00 13.89 .00 5.89 15.46 16.48 .00( ) .00( ) .00( ) .42( ) .95( ) .76( ) 10.46 19.26 .00 5.76 15.32 16.19 .00( ) .00( ) .00( ) .42( ) .95( ) .75( ) .00 13.49 .00 5.64 15.18 15.94 .00( ) .00( ) .00( ) .41( ) .95( ) .74( ) 8.30 18.59 .00 5.53 15.03 15.66 .00( ) .00( ) .00( ) .41( ) .94( ) .74( ) .00 12.76 .00 5.42 14.87 15.38 .00( ) .00( ) .00( ) .40( ) .94( ) .73( ) 4.98 17.84 .00 5.32 14.70 15.10 .00( ) .00( ) .00( ) .40( ) .93( ) .72( ) .00 12.01 .00 5.23 14.52 14.83 .00( ) .00( ) .00( ) 39( ) .92( ) .71( ) 2.59 17.28 .00 5.14 14.34 14.61 .00( ) .00( ) .00( ) 39( ) .92( ) .71( ) .00 11.53 .00 5.06 14.15 14.42 .00( ) .00( ) .00( ) .39( ) .91( ) .70( ) 1.69 16.82 .00 4.98 13.95 14.26 .00( ) .00( ) .00( ) 38( ) .90( ) .70( ) .00 11.06 .00 4.90 13.73 14.11 .00( ) .00( ) .00( ) 38( ) .90( ) .70( ) 1.19 16.34 .00 4.83 13.51 13.98 .00( ) .00( ) .00( ) 38( ) .89( ) .69( ) .00 10.59 .00 4.75 13.30 13.86 .00( ) .00( ) .00( ) 37( ) .88( ) .69( ) .86 15.89 .00 4.68 13.08 13.75 .00( ) .00( ) .00( ) 37( ) 88( ) .68( ) .00 10.14 .00 4.61 12.87 13.64 .00( ) .00( ) .00( ) .37( ) .87( ) .68( ) .63 15.45 .00 4.54 12.66 13.53 .00( ) .00( ) .00( ) 36( ) .86( ) .68( ) .00 9.72 .00 4.47 12.46 13.44 .00( ) .00( ) .00( ) .36( ) .85( ) .68( ) WILLOW SPRINGS PH. 2 (McCLELLANDS BASIN) -- REVISED WILLOW SPRINGS ON -SITE MODEL 100-YR EVENT FILE: WSSWM-C LIDSTONE & ANDERSON, INC. CLD MARCH 1996 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 116 6.7 .5 1 5. 124 16.0 1.0 1 10. 140 34.6 1.1 0 40. 201 50.1 (DIRECT FLOW) 0 35. 202 89.9 (DIRECT FLOW) 0 35. 203 35.4 (DIRECT FLOW) 0 35. 209 297.9 (DIRECT FLOW) 0 35. 210 434.9 (DIRECT FLOW) 0 35. 214 36.9 (DIRECT FLOW) 0 35. 215 19.3 (DIRECT FLOW) 0 35. 216 9.0 (DIRECT FLOW) 0 35. ' 220 141.5 (DIRECT FLOW) 0 35. 224 183.0 (DIRECT FLOW) 0 35. 226 65.5 (DIRECT FLOW) 0 35. ' 299 65.8 (DIRECT FLOW) 0 35. 310 9.0 .1 10.8 2 0. 315 4.9 .1 1.1 1 15. 324 16.0 .1 3.4 1 10. ' 326 15.0 .1 1.4 2 5. 330 5.0 .1 1.8 1 15. ENDPROGRAM PROGRAM CALLED t l5it D"afle ?OA4 310 "3►5 e APPENDIX G EROSION CONTROL CALCULATIONS RAINFALL PERFORMANCE STANDARD EVALUATION j PROJECT: Willor 5pran9S ?hlje B STANDARD FORM A jCOMPLETED BY: CLID DATE: 3"I6-Y6 I--------------------------------------------------------------------- IDEVELOPEDIERODIBILITYI Asb I Lsb I Ssb I Lb I Sb I PS ISUBBASIN I ZONE I (ac) I (ft) I (0) .I(feet) I (o) I () l a I modua�c i 0.&0 1 (500 1 vo Soo (� I ►�odt�aic �. 7.58 IoV o, rioaira 6 1 qoo I a.5 ModtrAfe 1�,83 j IaoD j 1 3 mAef44t N.4a 1300 . I• o Mahlr44e I 1-Q�3 f 1400 I 3,0 I, iQo I I • `i i �9-�� 9 --------------------------------------------------------------------- DI/SF-A:19a9 PAGE 23 I I 1 o I alrnocc 1 I I C I C Q Ln Ln Ln I Ln I g q q co q C i mm C�C+C G COO C 1 1 G 1 I Qcc4LnLr;L.LnLc: Ln 1 Q I CCCq q q CCggq i C i C CI CI CT CT O C% CI C, O(nC'IC OC 1 1 . . . . . . . . . . . . . . . I C I CCCCQQQQQQQ QI.c'f In In 1 M l qqqqqqqqq CC g q q q q r�ggq0%Ct Q�Ct C C m m O C C+ 0� m m Ctm 1 1 . . . . . . . . . . . . . . . . . 1 c I c C C C C c c Q Q Q Q Q Q C c Q C Q c c 1 N I g q q C q q C q q q q q q q q q q q C q 1 1 1 C 1 CM .tf'f LO LC �� t0 r�r�r�rrr�t�r�r�r�r�r�ggCqqCJ . . . . . . . . . . . . . . . . . . . . . . I C I c c c c Q c c c c r c c Q c c c c c c c Q Q Q c c Q 1 .+ I CC cc C CO CO CO CO CO Cc Cc CC CC C C C 00 g q CO 00 CO q CO q CO CO iC I CC CV MCLn Ln L...tO u7 t0 LO t0 �O t\ r\ r\ r\ r\ r\ r\ P, r\ 00 CC CO 1 C'. 1 MCQC CC CQ QC' QQQC C C Q C C QQQ Q QQC' I I CCCCq CO CC gg0000qq g CO q CO CC q 00 CO CC CO CO C CO CO 1 O I tO C N M C V- Ln Ln LO LO LO 1.0 LO t0 t0 t0 t0 t0 t0 r\ r\ r\ n r\ n i CC i m e c e Q-e- e c Q c c c e c e Q c e c c Q c Q 1 I qq CO q C'_ g q q CO C CO CC qq C g C q q CJ CO gCOgq 1 I I O I C 01) .-+ N M M Q Q Q Q t['7 Ln Ln L!'f Lf'7 Ln In L!'f Ln t0 t0 t0 t0 t0 l0 r-- r` i M M c c Q Q c Q Q Q Q c c c c Q c c Q Q Q Q Q Q Q Q 1 I g q q q q q C q q q q q q q q q q q q q q q q q q q 1 1 I C I CtOgOr+r+NNMMMMQCCQQQCQLf•: Ln Lf•f Ln tG to 1 to I M M M c c c c c Q c c c c Q c Q Q c Q c c c Q Q c Q- I I g C q q q q q q C q q q C C q q C C q q q q q q q q 1 1 1 ^C I tf. . .ram . .CC.�.•'�r+NNNNNMMMMMCCQQQ 1 Lif I (14MMMMMccQQvcccQQQCQCQccQQQ I I C-- g q CO CC CO CO CC q q CC C C q 00 C q CO CO q q 00 CC CO CO 1 W 1 1 t l Ln I� q.-� M.. �.� D i O r� r� r� g cc cc C ccG. . G� C C C 0 . I J Q I N N M M M M M M M M M M M c `• 7 c+ 9 M M M M M M C Q Q Q' Q I N I C CO 00 C q q C q C C CO CC g CC CC 00 C q 00 CO CO CO q q CL'J q I O i tO ulcc 0.-+N c^. Q Q Ln Lr, Ln t0 t0 t0 t0 t0 r\ r\ n r� CO q 00 r" C+ 1 Q I NCV M MM MM MMM M MMMM C9 C]MMMM C7 C7MM I I C CC C Cc CO C q CO CCCO CO q CO 00 CO COCO CO CO CO CO Cc CCC7 q CO 1 Ln 1 N.-ILnr�cc C.-rNCV MMCnQQQCQLnV)V)t0LOt0r\r� I 1 I M I. -. N N N N M M M M M M M M M M M M M M M P ^i M MMM M I I q COq CO cc g C CC CC Cc COCO CO q CO00 CO CO CCCO CC cc00 00 COq 1 O I MNt0q CNC.-.N N M M MC QQ -M :r C Ln Ln Ln Ln 10 L0 LO%0 NN N N N N N N N N N N N N N N N NNN 1 I gCCccc 00 CcCOggqqqqqqqqqqCOqqC10q I Ln 1 Ln Ln Cr�NMQ t_n to n r\ r\ q q 00 Ct Ol Ct C% ON CN C 00000 1 N _ 1 C� C O .--� .--� r. .-� •--� •--� .--� .--� .--� .-+ .-y .--' .r .r .--� .--. N N N N N N 1 I r� C g C q q C q q q q q q q q q q q q q q q q q COq 1 C t CLO MLn LO q M.all, C OO.r .--I.--I.--INNNNMMMMchM . . . . . . . . . . . . . . . 1 N I q Ci O O O C C O O .+ .ti .--I .-..r .-+ r+ r•. '•. .-I .-+ .� .-+ .--� .-+ .-+ .-+ 1 1 n n g q q q q q q q q q q q q q q q q q q q q q q q 1 Ln Ln CnNm m m m m 1 1 q q Tc CI O Ct 1 O � r t` rO 00 C O O O O O O C O 0 0 0 1 I n n I� r" r., n rl t\ g q q q q q q q q q q q q q q 1 T 1 1-zs C I LC M O Q r\ ON r1 N M c'•9 1 1 I e••I 1 Qt0 n^ nr\q q'qq q 1 1 f\ n r` r\ r� r` t\ n f\ n r\ I Ln 1 ON1.0 1 1 1 O I O N N N N N N N N N N r C•LO Ln Ln Ln t0 LO t0 LO n r� t0 L0 LO q q q q q q q q q q q q q 00 .r.,r�r�r�r,r�r�r�r�r�r�r�r�r� L0 Ln Q Q M M N N m t0 C .--I m km J cV N N N N N N N r•1 .••I .-+ .-1 0 0 . ^nnnnt\r�f\t\^ram^ram^ I S 1 1 3 ^ I O O O O CC C O O O O O O O MC O O C O 0 0 0 1 0CD = F— I O O O O O O C O CC O O O O O O O O O O O C C C CLOC 0 I J W I .--I N M Q u7 t0 t\ q 01 O .-I N M Q Ln t0 n p O C u') C Ln O Ln O 1 LL W v I N N M M Q Q' Ln 1 J 1 (J �•6 TABLE 5.1 1 1 1 1 EFFECTIVENESS CALCULATIONS ----------------------------------------------------------- PROJECT: tjillaj 5p(,r�p ,?ha5e9 STANDARD FORM B COMPLETED BY: C&7) DATE: 3 14-1& Erosion Control C-Factor I Method ----------------- (�e4/GI Titles hl4h- ----Value---- ,, 00 5}f4� B2I 1,00 54 FtPit a 1,00 Cnea✓e I " 3ksc 10,10 P- s 6 /MvIch 0,10 UndtSbibedLaAj U,03 5e41me4 T,,ap ------------------------------------ (,00 MAJORI PS BASINII (%) I- HOI/SF-B:1989 P-Factor Value --- 0,50 1,00 1,00 /•OD 0 5G7 -------------- Comment SUB I AREA BASINI (Ac) I CALCULATIONS ----- 11 a ------ 10.&0 ------------------------------------- { 61radel Snle� 54r4w Ue, 3ain er C5 • Iw ac a °I I yo) bra✓ei i�u1 l�K (,a•35ac � 19'/0� 5eJ(vhenl TJap (jabot h/t�yllfe� C Fac�o� -10.35 r0.lo��(Io.aS� 1•D)7�� I I ► = O.lo ` i I We,yh=ed P Facoi=�9.41x,8x,3�t(�•I9X.6x•5�, i I = U,tiO EF�cc�IUCar55 : �_ (0,40A0,,100" Do d,14 G,aocl U,4 (a,14a, , bolo) �ara✓el 4ad BaSc (1,1946 Iq j I I 5cd,me✓�� welgh�-Gd C FuG.fo� _ (�,la x d, Ic).r�,�ax-r•o) WCrghf(� -P factor = (8,1�Ix0.Sxc�9,1d = I I II I I I gFrecfi rC ne55 = - (p,�3x 0,yo�7xvo - /la,w d 1/0 Vd,74 EFFECTIVENESS CALCULATIONS ----------------------------------------------------------------------1 I PROJECT: Willow 5piin95, Kh45c a STANDARD FORM B � COMPLETED BY: DATE: MAJOR BASIN Erosion Control C-Factor P-Factor Method Value Value Comment --------------------------------------------------------- SUB BASIN' AREA (Ac) -1,56 --_CALCULATIONS ----------- ----------------------- Geztdcl S„lef r-der (1,SBAc , ioo9o) ewar1( goad Qasc (o?•B8ac 307o) 5edimea+Trap 100,70, wt�gh�ed C Gac�o�='a,$BVO,10)70a1•o)�/7.58 weiyh�cd P EFFec f iemes5 ja4,gb + IDa 13,95 i I e� heNtd 5,x�aee (IS.aSac �. ioo9o� SXn(A+ 7/-tip 100,10 I I ! ! £FFcch�enes5 (0,3�I�o)]xlo0'G'i i 4,83 6ia✓el ;nkf hNer (4,8344 , looho) . G.uje( Koad SoSe (0,l6a?a4 i 1-7go) We(ghfed CFcda-=L(pfvxq,lo)+(q.oixj.o)314,o3 = aSS FaAor= 0,$0 E✓�ecfi�e��e55= L5x0,60)]x(00- 3.2 --- --------- ------ -------------------- ----------- --------------------- DI/SF-B:1989 EFFECTIVENESS CALCULATIONS -------------------------- --------------------------------------------1 PROJECT: wA(opi`5poli 5 -hose a STANDA$D FORM B COMPLETED BY: CL,D DATE: 3-(b-geo Erosion Control C-Factor P-Factor Method Value Value Comment ----------------------------------------------------- ------------------------- MAJOR- PS SUB AREA BASINI W (BASIN, (Ac) CALCULATIONS ------ ------------- -------- ----------------- 5fra,� &Ic $arrW (d•4aac, loo'/o) U454v(W R/eq (a•Gac 5810) �lnyhkd C rac{o�=�a•6xo,o9)r ��8a x 1•0)]�� Pei, yq�cd V P-acfor ���cc.�✓ene55 = �_ (�,c{3x0�Sa)��loo ; G�slo � oich4v4bcA� orea 0,9 AL , (1 /o) 5}raw Bale-&rr,er (1,834c, 1000(0) peg R,a�o,o3)��•�3xio)�/-v3: 0- 3� wetghW P Factor = oo8o ,5�F�ec fire ncsti _ [- (0.3& Xa, 00)] Aloo L' I vlo Overall F��c�ftrenl55 (19,& x 79) f 0-74 75)t (1.56% 14)f 05-;5x 64)t � �,aSac rCg I✓ -- 6blo ---------------------------------------------------------------------- )I/SF-B:1989 i I i r 11 r 1 / llrl%/Il/ l/ fF 65.50 ease 420 "SIX R lI�KIJ l � / ; 46 c.e° rr � 13 � '�-•..y \ ✓ l • � /j//�/ >3 l /l SAS ll�1�llolsl/lll/r �� a6B.Y 24 �3}� esw u.f �fF 6A>5I \"/// \ i ... w" l ���ll�alll�'hl22 en ♦ 1 \ \ LEGEND wvm SAS rme"'rr 11 o seas 6510 fi=6S93 / P.le fF�6tFO / ua ,76 19 / ! A I►. e i FF-/ lb �lil=n.aD .nm .ao j % 16 \ { ft� b \ I uw .C�'.s•,L�,,.. fF�gtAS n,.w \ n..� / �ll�26 I.......5 �b �'O� c�ai '�tT !f0� saw I fF �6150 .\\\` \ Y 42 2 NNN aim 229 A331'"� 14 r m.lo o7,-� a Z J a � � O �b��l /�//l� 41 6nJS a 6e3H 6n11 �I �(• 61tq ��� ��7 W Z ig JJ J =ZF50 / n 32 K� u.�o '� Q \ \ `°• fF L50 r ezm �, _ llll �i z,. 37 36 °" �" qev A �� e �a d Z 111 � M--710 fF >zcr\ r \ 35 sr3=n4 \ ro \\ - O nn W \ 1 ` z w nf. nae ran. fF 6>.IO 2 C` a Y _+ In Z — _ y a. o �.r I — _ .i7 \ ill N�"\ � \ \ � \ tcc 9 �� \104 \ m Ve 57106 0M City of Ft. Collins, Colorado 7 I / \ g`- 0 UTILITY PLAN API NE10 •W MERCER DITCH COMPANY I >t ®fl✓ / / / �0relns-p\, Mm `�,1 \ IA \ \ \ \ naaxoY,_o: l m PLAN APPROVAL _ I I �IIII . \ % �-` ` /• a MM BY: 9-1-�K. 10-5A5-o>1 rw Y ow efo \V I / CHECKED BY: Y-IiS/tIff VED V \\ J I III 1\ \ �\ CHECKED BY: ••,•• r _ o.,. .164a'N I9, l995 APPRO\ �'�'--�- Dete ` \ \ II 1 \ \ ( \ \ �//1 CHECKED BY: v.Hu a s.,suw 4G arsrs n \ H 707 w 7 C CNED BY: 32 x ■ r7P,FA! `PP, C-3 1591 f %jli l�ll� j�l / lei 62 I I Illl FF .9b 195E I l if A A IM-W HB2 S" ` j/l I nql�� Ill 1 1 FF 4 xim y N s]w \ �I / l ✓I � ' \ a54.�5 � FF 39.43 m.az \ BSo 69 70 11)Il l I B{1 �►-II�v y '` { I — �r s+.as 71 7� w"' / / i i LEGEND fF I 1'�`—FF�3430 34I3 FLOW DIRECTION lII l l ruw ns� PROPOSED l^ osevwBr-4..9 K , \ _ s5n STORM SEWER r.4 sxxs 47 ( ( (\ \ IXISTINC gesso _ �+� 1 1 STORM SEWER �/ / /I ��)����� PROPOSED ff 111 r / 74 ' 1 I„ _ CONTOUR • EXISTING/ 1 sss � ]6 1� r r ! 47 CONTOUR STRAW RACE 611 Us / // / II BARRIER shall1 \77 sz.m /// ^ GRAVEL INLEd 0 am SAS SF.N. SAS. Of 80 7s F i95 R � /////, Z FILTER Z �s _ _ _ 9] 1 L — — — fFa.5S05 KF> ..QS// /// J _ _ —s]— SILT FENCE I — 78 /l/lll a / / (� av $ BBBo 5].m m95 xim FF�SI.JO k5 //// /7 A SWALE CROSS w.n - ss-61.so // I l✓ / A '6PEN SPA E ,I�n ,ew ///�//�//I SEE SHEET 32 `0 \--- --`- - ..._ \-----►--\--------•.StO �. 47. / l \- r i�// 11 W o IL LET 21A 55 �� v9 89v �J� v — .�.1 A� 0 Il -� 2a /I�EO.JS 5 \ fF=3dl35 9 1 J /5 ✓ l/I y // f 6] /17J W w\'l\ \ \ 00 , (CAD Z \10,i\ \ 100v F447d5 flGc5lJ0 ) 99 \ I 47M O 0 5:3\ \ F/'�Sk92 CC fP-51XW l I I 9 \0P-... CE \ \ w-I!_ .� I N a Ir 1 O. 57 s t y fFa9AT5 's ntm \FF )L Fu\ 11$ ,E y.... Bo\- S City of Ft. Collins, Colorado UnIM PLAN APPROVAL II l fF 85.15 I fF=6J.30 f a.}' x] \ \ \�1 `1,. •] ! I (�]��`pV MPRO\£D: / / �, �.� \ eazn ••-{�.50 ` B� GC CHECKED By 9-.1 n,.11 r FF $j, } \ . CHECKED BY / ] 44-9\ 1 nQ m.m�\ Fr-5aa 8 �.. \$' p9p � fF+6'1.80 \ J1 4.L1l�d". CHECKED 9Y: NA -6610 �� /.Jp \ '1 5 I �� S6.b9 �\ s n 1 \\'• \ v.� CHECKED BY: Pert s Wc�estion Ml! P \ m.9 / 123 5 \\ CHECKED BY: 61.10 qn �9 \ 'ids C-3 1591