Loading...
HomeMy WebLinkAboutDrainage Reports - 02/02/1999I ECEIVE <i. " s ' I I L IL [] 1 is Final Drainage Report for Waterfield PUD, First Filing Fort Collins, Colorado October 20, 1998 SERVICES IN( Final Drainage Report for Waterfield PUD, First Filing Fort Collins, Colorado October 20, 1998 Prepared For: Colorado Land Source 8101 East Prentice Avenue, Suite Ml80 Englewood, Colorado 80111 Prepared By: Northern Engineering Services, Inc. 420 South Howes, Suite 202 Fort Collins, Colorado 80521 (970)2214158 Fax(970)221-4159 Project Number: 9733.00 Seventh Revision Submittal I 1, IOctober 5, 1998 I I Mr, Glen Schleuter City of Fort Collins Stormwater Utility 235 Mathews Fort Collins, Colorado 80522 RE: Waterfield PUD, First Filing Fort Collins, Colorado Project_ Number: 9652.00 Dear Glen: Northern Engineering is again submitting this Revised Final Drainage Report for the Waterfield P.U.D, First Filing. for your review. It represents a study of existing and proposed stormwater characteristics of the project site. This report was prepared in compliance with technical criteria set forth in the, City of Fort Collins, Storm Drainage Design Criteria and Construction Standards manual. It also represents revisions made due to City comments for the fifth time. If you should have any questions or comments as you review this report, please feel free to contact me at your convenience. Sincerely, NORTHERN ENGINEERING SERVICES, INC. Roger A. Curtiss, P.E. ' cc: i Jim McCory - Colorado Land Source 420 SOUTH HOWES, SUITE 202, FORT COLLINS, COLORADO 80521, (970) 221-4158, FAX (970) 221-4159 Final Drainage Report for Waterfield PUD, First Filing ' I. GENERAL LOCATION AND SITE DESCRIPTION The Waterfield PUD development is located at the northwest corner of East Vine Drive (County Road 48) and Summit View (County Road 9E), currently also being referred to as Timberline Road.. The site is also bounded on the north by the Larimer and Weld County Canal. The existing Plummer School is located to the southeast of this site. The site can also be described as a portion of the southwest quarter of Section 5, Township 7 North, Range 68 West of the 6th PM, City of Fort Collins, Larimer County, Colorado. A vicinity map of the site is included in the appendix of this report. This site is also located within the Cooper Slough Major Drainage Basin. It has also been included in the Dry Creek Major Drainage basin in a study currently being prepared for the City of Fort Collins. The Waterfield PUD includes approximately 140 acres. The site is presently undeveloped, has most recently been used for agricultural purposes. The site generally slopes from the north to the south at slopes between 1 % and 5%. There is an existing wetland located adjacent to this site, which occupies approximately 11.50 acres. The First Filing of Waterfield includes the Bull Run Apartment project, located in the southeast comer of the site, as well as approximately 42 single family lots located in the northeast comer of the site. The parcel which is intended to contain the future Senior Cottages of 1 America project is included as a Tract in this Filing, is not intended to be developed as part of this project, and will be addressed later as Waterfield 3" Filing. The 2°d Filing of Waterfield, containing the remainder of the site, was submitted asa final on November 17, 1997. II. HISTORIC DRAINAGE rHistorically, the vast majority of the site drains to the existing Lake Canal, located at the southwest comer of the site. A copy of the existing site, with the historic drainage basins has been included in the appendix of this report. Basins H-1 and H-2 drain south to existing irrigation laterals and on south to the existing wetlands area. Basin H-3 drains directly to the existing wetland area. This existing wetlands appears to overtop at approximately elevation ' 4952, and flows south to Lake Canal. This assumption is based on the existing topography which clearly delineates historic drainage in this direction. Basin H4 drains directly to Lake Canal. Basin H-5, located at the southeast corner of the site, drains to an existing low point located in ' the vicinity of the old Plummer School. Drainage from this basin historically overtops Vine Drive, and drain to the south. Basin H-6, located in the extreme northeast comer of the site, drains to the existing Larimer and Weld Canal. Basin H-7 represents existing Vine Drive, which also historically drains into Lake Canal. There is approximately 108 acres east of Timberline Road that historically drains towards the comer of Timberline and Vine Drive (identified in the current, unapproved version of the Dry Creek Master Drainage Plan). These historic flows would eventually overtop Timberline Road approximately 150' north of the intersection of Vine Drive (based on existing topography obtained from Landstar surveying), at approximate elevation 4955.50, and drain towards Plummer School and Waterfield 1" Filing. These flows would pond up to an elevation of approximately 4955.75, and overflow across Vine Drive to the south at elevations greater than 4955.75, approximately 210' feet west of the intersection with Timberline Road. Some of these flows (at elevations less than 4955.75) would pond on the Waterfield site (see attached exhibit). To calculate the historic flows, the Dry Creek Master plan, currently under review by the City, was used. Existing basin 421 corresponds to the existing basin which drains to Lake Canal. The existing SWMM model, by Lidstone & Anderson was run (included in the appendix), and showed a contributary basin of 43.5 acres. A spreadsheet was developed, and displayed historic flows from Basin 421 over a period of time. A small undeveloped portion of the northeast comer of the site also directly drains into the Larimer and Weld Canal. As mentioned above there is an existing wetland located on this site. A report entitled "Jurisdictional Wetlands Delineation Survey for the Country Club Farms LLC, Larimer County, Colorado" by Riverside Technology was prepared for this wetland, and submitted to the City with the Preliminary PUD submittal under separate cover. A copy of the wetland delineation map has been included in the appendix of this report. Included in the appendix of this report is a letter from Riverside Technology, who have developed a groundwater hydrological model of this site. III. DEVELOPED DRAINAGE - Design Criteria and References ' Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design Criteria Manual. and Storm Drainage Criteria Manual by the Urban Drainage and Flood Control District have been used for this Final Drainage Study. Hydrologic Criteria The Rational Method was used to estimate peak stormwater runoff from the proposed site. The 2 year storm event and the 100 year storm event were used to evaluate the proposed drainage system. Rainfall intensity data for the Rational method was taken from the City of Fort Collins Stormwater Utility Intensity curves (Figure 3-1). 1 ' A SWMM model was developed for the first filing representing the interim concepts associated with the First Filing. This SWMM model was also used to approximate the historic runoff from basin DC-1. Using the rational method, historic runoff from Basin DC-1 was calculated to be approximately 70 cfs. Using the City's criteria for SWMM modeling, the ' historic runoff from this same basin was found to be approximately 129 cfs. Hydraulic Criteria ' City of Fort Collins Storm Drainage Criteria has been used for all hydraulic calculations. In addition, the detention volumes required for this development have approximated using the FAA method for detention ponds developed by the UDFCD. The interim SWMM model, however, was used to determine the required pond volumes for the First Filing. ' Drainage Concepts Clearly, this site historically drains to the Lake Canal. City policy however dictates these flows be routed to Dry Creek. The vast majority of the developed runoff from this site will be routed by either curb and gutter, open channels, or storm sewers to the proposed detention pond located at the southwest comer of the Waterfield PUD. With the exception of the 31.3 cfs of theoretical overtopping of the Larimer and Weld Canal north of this site, (representing the historical runoff from the 75.8 acre area north of the Larimer and Weld Canal, designated as Basin OFF -I), the 108 acres east of Timberline Road (designated as basin DC-1), and the 5 acre outparcel located along Merganser and Vine Drive, no other offsite flows enter the site. All conveyance elements within the site have been sized to accommodate developed site, as well as hypothetical offsite flows. No developed flows from this Filing will be routed through the wetland area, only to the proposed I offsite detention pond. Water collected in the subdrain system will be directed into the wetlands. Capacity for the historic flows from basin DC-1 will be provided through this project, even ' though existing topography clearly demonstrates these flows do not drain across this site. Detention for the site has been based on the SWMM model presented in the appendix of ' this report. The SWMM model developed for the 1" filing indicates the need for approximately 14.1 acre-feet of storage. The SWMM model developed for the 2°a Filing indicated a need for approximately 10.5 acre-feet of storage required in this pond, but also included a°detention ' component in the existing wetland area. The 2 year historic release rate into Lake Canal has been calculated to peak at approximately 12.63 cfs. The maximum release from the detention pond is 3.00 cfs. The maximum 100 year release from the site, including Vine Drive is approximately 13.77 cfs. A small portion of the site, adjacent to the Larimer and Weld Canal, and not within any ' of the development, will continue to release directly into the Larimer and Weld Canal. An overflow weir was considered along the southerly portion of the Canal adjacent to the Northwest corner of the site. However, discussions with the Ditch company representative resulted in a decision that the ditch would not overtop in this area, and that it would not make any sense to force an overflow in this area. In the remote possibility of a 100 year storm occurring simultaneously with the Irrigation Canal running full a small interception Swale (Section B-B) will be installed to route these flows around the single family lots, through a small Tract and on to Merganser, and eventually to Lake Canal. The emergency overflow weir was sized to account for these mythical offsite flows, however the orifice in the pond was not sized for this flow. As mentioned above, all developed flows from this site will be routed to the detention pond located offsite at the comer of Future County Road 11 and Vine Drive. An interception swale (Section E-E) will be installed to intercept flows and direct them south. As future filings are designed, some, if not all of these flows, as well as the subdrain, may be routed to the Wetlands instead. It is the intent of the future filings to utilize the wetlands area for detention. For only the development connected with the First Filing, the offsite pond as shown has more than adequate capacity to accommodate this project. Ditch Company approvals will be required from both Lake Canal and Larimer and Weld canal prior to construction. There are two irrigation laterals that feed from the Larimer and Weld Canal. The south lateral was installed to service this farm, which will obviously be eliminated with this development. The northerly shorter lateral is still in use by two separate users. This lateral will be replaced with a pipe which will convey flows to the headgate which provides flows to the user east of this site. The remaining flows to the user to the south will be maintained in a piped system (installed previously by the user). This development will not have a negative impact on either of these two irrigation users. Improvements will be coordinated with these users. Drainage in the southeast comer of this site historically drains to a sump area located adjacent to the Plummer School. Developed runoff from this site will be intercepted in an open channel prior to entering the Plummer School site, and routed around to the Detention Pond. Developed flow from improvements to Summit View will also be picked up in a roadside ditch, and also routed to Pond 301. In any case, no developed flows from this project will be allowed to enter either the Plummer School outparcel, or the 5 acre outparcel (designated as Basins OFF2 and OFF3. The conveyance system for this development is being sized to account for flows coming from the 5 acre outparcel, and the 108 acres outparcel east of Timberline Road (basin DC-1). The overflow elevations located around Plummer school (at Vine Drive and along the Northerly and westerly property lines) will not be raised, therefore, the maximum water surface elevation adjacent to Plummer school will not be affected by this development. The two sump areas along Vine Drive and Timberline Road, which currently drains DC-1 will be maintained at the same elevation which overtopping now would occur. The detention pond contains approximately 14.1 ac.ft. of storage volume up to an elevation of 4949.30 (per the SWMM model and calculated water quality capture volume and additional sediment storage). This is based on a release rate from the pond of 3.00 cfs. The difference between the allowable release rate of 12.63 cfs and the proposed 3.00 cfs is from the adjacent roadway sections which cannot drain to the pond area. An emergency overflow weir will be constructed at the southwest comer of the site, which would direct flows towards Vine Drive and the siphon structure if the proposed outlet system was to plug. As previously mentioned, this overflow weir is also sized for the historic basins to the north and the east. The pond outlet will be constructed as a siphon which drains under Lake Canal, and into an existing I ' roadside ditch along the South side of Vine Drive. The City has committed to improve this ' channel section in the future to Dry Creek. The offsite channel sections, storm sewer pipes, and the proposed detention pond will be constructed in dedicated easements to the City of Fort Collins. The same owner of the area contained within the First Filing also owns all of the areas necessary for these easements. ' Specific questions regarding developed runoff from Waterfield Conveyance of runoff from basin DC-1- As mentioned, provisions are being built into this site to accommodate Dry Creek basin DC-1 (Dry Creek basin 419). The master study SWMM model shows these flows to be approximately 129 cfs. These flows currently would overtop Timberline Road at approximately elevation 4955.50 towards the Plummer school. From ' there flows would overtop Vine Drive at approximate elevation 4955.75, and continue to the southwest, eventually flowing into Lake Canal. The elevations that basin DC-1 overtops Vine Drive and Timberline Road will be maintained with these project improvements. A open channel will be installed along the northerly and westerly boundaries of the Plummer School site which will be sized for 129 cfs from basin DC-1 (Designated channel isection F-F). An elevation of 4955.75 will be established along the Plummer School side of this ditch which will allow for the flows to spill into this ditch at the same time flows would begin to ' overtop Vine Drive. The flood elevation across the Plummer School site will not be affected by this development.. Flows from channel section F-F will be intercepted in an open pipe section with a flared end section, north of design point W 15, and conveyed via a series of storm sewers to channel section H-H, west of proposed Merganser Drive. There these flows would be conveyed to the proposed detention pond by channel section H-H. The emergency overflow weir has been sized for 298 cfs, which includes the 129 cfs from basin DC-1. The rational ' calculations presented in the appendix of this study shows the cumulative nature of these flows as they intermingle with developed flows from the Waterfield site. Inverted siphon at Lake Canal - An inverted siphon is being proposed from the detention pond, under Lake Canal, and to an existing roadside ditch located on the south side of ' Vine Drive. The proposed system will be sumped in an area north of Vine Drive. A dry well, sized to approximate the capacity of the sumped pipe system will be installed under manhole L-4. Water will be allowed to seep out of Manhole L-4, and eventually perk out of the drywell. ' This siphon was sized to accommodate 17.7 cfs. City stormwater utility has examined the downstream conditions of the existing roadside swale along the south side of Vine Drive, and have committed to make needed improvements to this roadside ditch as needed, and have stated that this downstream conveyance element will not be the responsibility of the developer to provide capacity verification, or to provide maintenance. Proposed improvements to Vine and Timberline Road, and when these improvements might occur - The commitment of the developer for roadway improvements with the Waterfield project include widening out Vine and Timberline Road across the frontage of this property from existing 26' to 36' (or 44' where turns lanes are needed). The developed runoff shown in this report accounts for this difference in impervious areas. I � I The City has determined that Vine Drive will be considered an Arterial roadway section, and Timberline Road a Major Arterial roadway section. This would give an ultimate flowline to flowline dimension of 83' for Vine Drive, and 107' for Timberline Road. When and by whom these roads are widened to ultimate configurations will obviously be determined by traffic requirements for the area When the total improvements are implemented, ' or whether partial improvements are again proposed, the drainage will need to be reexamined to determine the adequacy of the proposed storm conveyance system. The improvements presented in this study adequately convey developed, as well as offsite historic runoff through our site. Structures, such as curb inlets, and storm sewers have been placed to best approximate our understanding of where these future improvements might be located. ' Future storm sewer improvements associated with Waterfield 21 Filing - The City is currently interested in obtaining part of the Waterfield project, in particular those portions of the ' site north and west of the existing wetlands. Should this transaction take place, the magnitude of the improvements associated with 2"' Filing will be reduced. As shown, developed runoff from l°` filing will be intercepted by an open channel which runs parallel to Merganser, and covey runoff to the proposed detention pond. When 2" filing happens, obviously this channel will need to be filled in and an alternate conveyance system will ' need to be built. It was always the intent, as presented in the preliminary drainage study, to utilize the ' existing wetlands as a part of the overall detention system. This concept was never fully embraced by the department of Natural resources, however they never flatly denied this concept either. The concepts presented in the 2"' Filing plans show how the existing system can be easily ' modified to make this possible, and that abandoning the existing open channel will not have a great impact on the improvements being built with 1" Filing. ' SWMM Model - Interim Condition Northern Engineering developed the 100 year event model as a conceptual overview of the First Filing of Waterfield PUD, and to provide an interim pond volume for the site without affecting the existing wetland area This model will be revised as part of the 2' Filing. The ' rational method was used to determine site specific requirements for swales, storm sewers and inlets. IV. EROSION CONTROL General Conceat ' Waterfield PUD lies within the Moderate Rainfall Erodibility Zone, and the Moderate Wind Erodibility Zone, per the City of Fort Collins zone maps. At the time of final design, Per ' the City of Fort Collins Erosion Control Reference Manual for Construction Sites, the erosion control performance standard was calculated and copies included in the appendix of this report. In general, all disturbed areas not in a roadway section or a building pad area will be treated with a temporary seed and mulch, if not stabilized within 30 days of overlot grading, or sooner if any problems occur. In addition, straw bale check dams will be installed at 250' minimum intervals in all open channels, gravel filters will be installed and maintained on all ' curb inlets. Silt fence will be installed on the west side of disturbed areas, as shown on these plans, to protect the existing wetlands area. Also, silt fence will be installed around all disturbed areas in proximity to either the Plummer school outparcel, or the 5 acre outparcel on the south end of the project. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges associated with construction activities. A Colorado Department of Health NPDES discharge permit will be required before any construction grading can begin. ' V. CONCLUSIONS Compliance with Standards ' All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. ' A variance request is being asked for regarding the side slopes for channel sections C-C (at the south ends of Goslyn, Black Scoter, and Bufflehead Courts), and section D-D (along the north side of basin W-9). Stormwater standard is for 4:1 side slopes, and we have requested a 3: ' side slope. These channels are relatively shallow (0.62'), and by allowing 3:1 side slopes, the channel section can be fit inside the easement as platted, and these channels can be maintained. ' Drainage Conceit The proposed drainage concepts presented in this study and shown on the grading and drainage plans adequately provide for the conveyance and detention of developed runoff from the proposed development. ' If groundwater is encountered during construction, and dewatering is used to install utilities, a State of Colorado Construction Dewatering Wastewater Discharge Permit will be ' required. Stormwater OuaGtX ' Because water quality is important to this developer, water quality mechanisms will be incorporated into all aspects of final design of drainage systems. The proposed water quality ' measures proposed in this study will require regular maintenance to remove deposits as they accumulate. ' Erosion Control Concots ' The developer of this project understands that the wetlands adjacent to this project, must be protected during the construction process. Therefore, all erosion control measures, specified ' within these plans must be maintained and protected until all disturbed areas have been stabilized with vegetative methods. 11 I 1 ' Future Conditions - Vine Drive and Timberline Road 1 1 L ' Future Conditions - Vine Drive and Timberline Road ' Per City criteria, we will attempt to analyze what will happen in the future. This is based on the anticipated ultimate condition of the adjacent arterials with todays street standards, and ' has not tried to account for future differences in street standards, or what impacts development to other adjacent sites might involve. There has also been discussions of an overpass at the intersection of Vine and Timberline, and this look into the future did not account for that possibility either. Of course, when and how the surrounding properties develop will determine how the future improvements are installed, and the extent of improvements necessary, therefore, at best this is a cursory study of anticipated development, and as real improvements are ' proposed, they should be reviewed for compliance with current standards. Timberline Road - Improvements associated with this project to Timberline Road involve widening ' Timberline Road from the existing bridge over the Larimer and Weld Canal to Vine Drive. The existing width is approximately 26' wide, and this project proposes extending this width to 36'. No curb and gutter is proposed with this project . The road generally slopes from the north to the south. There is an existing low point located approximately 150' north of Vine Drive, where basin 419 (Dry Creek Master Plan) 100 year historic flows will eventually overflow to the west. The elevation of the existing low point will be maintained with the improvements to Waterfield ' 11. Todays plan for the ultimate design of Timberline Road is as a Major Arterial, therefore, future width could be anticipated to be 107' wide, flowline to flowline, 6" vertical curb and gutter, and 14l' of Right-of-way. Our projected longitudinal flowline grades for this arterial ' section will keep a low point at the existing location. Type R curb inlets will need to be installed at these low points, with a storm sewer that conveys flows from the east towards the west (see attached sketch). ' Currently we are providing capacity through the Waterfield site for the 100 yr historic ' flows from 108 acres east of Timberline Road (Dry Creek Basin 419), or approximately 129 cfs. Basin 419 is also a part of the Dry Creek Major Drainage Basin, and will be required to provide detention between the 10 yr historic and the 100 yr developed flows, and provide a maximum ' release from the site of approximately 65 cfs. This would leave approximately 40 cfs of additional capacity in the Waterfield 15' Filing conveyance system. This should provide sufficient capacity to account for additional paving of Timberline Road, as well as Vine Dive, ' and still be able to accommodate detained flows from Basin 419. Developed runoff from Timberline Road is found to peak at approximately 6 minutes. If ' Timberline Road was to develop prior to Basin 419 being developed, the peak runoff from Timberline Road would be well downstream prior to Basin 419 peak at 35 minutes. Therefore the system proposed with this site would have capacity for these flows, although runoff from the final configuration should be analyzed to insure capacity. C Vine Drive - Improvements associated with this project to Vine Drive include widening the existing section from approximately 24' wide to 36' wide (48' wide where turn lanes are necessary). No ' curb and gutter is being proposed for the north side of Vine, and a temporary extruded asphalt curb is being proposed for portions of the south side of the road. The ultimate intentions for Vine Drive are for an Arterial Street, with 83' ultimate width, flowline to flowline, 6" vertical curb and gutter, and a 115' Right -of -Way. There is currently a low point in Vine Drive, approximately 210' west of the intersection with Timberline Road, where existing flows from east of Timberline Road overtop from the Plummer School site, and travel south across the ' existing Railroad property. Improvements proposed with the Waterfield tat project, will maintain the current elevation that the road is overtopped, and maintain the sump condition at that point. An area inlet, sized to accommodate developed runoff from Vine Drive will be installed, with a ' storm sewer outlet that will convey intercepted flows back to the north, and ultimately to the detention pond proposed just to the east of Lake Canal. When Vine is built out to full arterial width, Type R curb inlets will need to be installed at these sump locations, and the existing storm sewer pipe can be utilized to convey flows to the west. ' As with Timberline Road, the peak runoff from Vine Drive, even if fully developed will be in through the detention pond prior to the peak runoff from basin 419. 0 1 1 1 1 Ul - - - - f -; - W ss ---Ft.�rvtz�. _srozi.�►---5�ua.E�. _L1rT -tzr� Tp�__�__�v�_��►L-ter___ I 1 1 1 1 1 1 1 1 1 1 1 1 1 0 L----�- Zs 9s 4 N _ I N u) Z9'99 °�� L' L .I Ln it \ %O'Z a0 w a LoI T �lto I II LO 11 ,! I V i I REFERENCES 1. Storm Drainage Design Criteria and Construction Standards. City of Fort Collins, Colorado, May, 1984. 2. Cooper Slough Master Drainage Study, by Simons, Li 3. Drainage Criteria Manual. Urban Drainage and Flood Control District, Wright -McLaughlin Engineers, Denver, Colorado, March, 1969. 4. Dry Creek Maoor Drainage Study Lidstone & Anderson, 1998 CITY COMMENTS AND RESPONSE LETTERS i 0 11 11 PROJECT COMMENT SHEET Current Planning DATE: September 21,1998 DEPT: Stormwater PROJECT: Waterfield P.U.D. —1st Filing All comments must be received by Mike Ludwig no later than the staff review meeting: - Wednesday, September 23, 1998 1. The area taken up by the detention pond needs to be dedicated as a grading and drainage easement. Please include the easement by separate document in the next submittal. RESPONSE: 2. For swales with sideslopes of 3:1, a variance needs to be requested in the report text. RESPONSE: (continued on back) Date• �l/��t7 Signature: j / w zr14-4 440( CHECK HERE IF YOU WISH TO RECEIVE COPIES OF REVISIONS N.rAw. ;,..,,• -X PLAT —Z SITE LC DRAINAGE REPORT _OTHER Col mAe L.� FUTILITY X REDLINE UTILITY j-LANDSCAPE Swrt{ lift City of Fort Collins 1 3. Please show the location & corresponding cross-section of all the swales (as calculated in the report) on the drainage plan and include a detail of the siphon. In addition, please make revisions to existing swale cross -sections where indicated to correspond with the calculations. RESPONSE: 4. A few of the values used in UDSEWER analyses do not match up with those on the profile views. Please make changes as needed. RESPONSE: ' 5. For riprap bank protection of the emergency spillway channel section F-F, why was 142.7 cfs used in the calculation? RESPONSE: 6. For storm sewer line L, please provide calculations used for sizing the dry well to show that the infiltration capacity can sustain the maximum flow volume captured by the storm sewer. In addition, please indicate who will be responsible for maintenance of manhole L-4. RESPONSE: 7. Please provide street capacity calculations for all proposed roads within the site to show that they can handle the design flows. RESPONSE: Please refer to the redlined plans and report for additional review comments. I 0 I October 5, 1998 Mr. Basil Hamdan City of Fort Collins Utility Services Stormwater 1 235 Mathews Fort Collins, Colorado 80522 RE: Waterfield First Filing Response to City comments Dear Basil, This letter is in response to your written comments to Mike Ludwig dated September 21, 1998 Item No. 1 - These easements are being prepared and will be given to the City with the next submittal. Item No. 2 - This variance request has been included in the text of the report Item No. 3 - Regarding the swales, they will be revised. Regarding the siphon, it was detailed with the last submittal Item No. 4 - OK Item No. 5 - Will revise to 129.7 cfs Item No. 6 - The dry well was sized to allow the pipe volume only to drain into. Per notes on the plans, we have already indicated that the owners, not the City will be responsible for maintenance of all drainage facilities located on private property. It should be noted that even when 2nd Filing is completed, and additional Right -of -Way dedicated, this manhole will still be located on private property. Item No. 7 - Capacity calculations have been provided for Residential local streets w/ Rollover Curb and gutter, Residential local w/ 6" vertical curb and gutter, Connector Local w/ 6" vertical curb and gutter, and Collector with parking & 6" vertical curb and gutter. Values have been included in the hydrology spreadsheets for the associated flows. Calculations for these street capacities have been included in the appendix of the report (in the Charts, Graphs, Tables section). We will be available to meet with Stormwater at any time to help clear up any questions you may have regarding this project. Thanks for your cooperation. Sincerely, �I Roger Curtiss P.E. - Northern Engineering Services, Inc. cc: Lucia Liley - March & Liley Jim McCory - Colorado Land Source LKim Vowell - Brisben Companies "1 i Current Planning PROJECT COMMENT SHEET • DATE: August 4,1998 DEPT: Stormwater PROJECT: Waterfield P.U.D. All comments must be received by Mike Ludwig no later than the staff review meeting: Wednesday, August 12, 1998 1. Please indicate the location of the overflow weir for the detention pond on the grading, drainage, and erosion control plans. Provide proper erosion protection around the spillway. The flow rate over the spillway conflicts with the value in the report. RESPONSE: 2. A drainage easement needs to be provided for the water that backs up from the detention pond onto the future school site. RESPONSE: 3. The historic flow from basin DC-1 is different than the master plan flow for this basin. Please either use the master plan flow or provide supporting documentation for the width to be used. This would include delineation of the basin with contours to document the overland flow length used. RESPONSE: Date: u�73Signature: a%• Tim Qtux<)%rZ� CHECK HERE IF YOU WISH TO RECEIVE COPIES OF REVISIONS nikQ.-�(-O' -X PLAT SITE X DRAINAGE REPORT OTIIER —� X UTILITY X REDLINE UTILITY X LANDSCAPE a.a" Ala-" QaA City of Fort Collins J, 4. As stated in the previous comments, the property to the east, a portion of Waterfield 2"d Filing, is under negotiations to purchased by Natural Resources. Although at this time it is unclear what parts will be developed it is necessary to design for any negative impacts that would be costly to change after development. Such design is needed for a storm sewer system to the detention pond. RESPONSE: 1 5. In the SWMM calculations, the detention and is sized using flow from p g offsite basin DC -I. It is required that this offsite flow is allowed to pass through the site not be detained, a model should be run without this flow to determine the necessary detention volume for the site. Then a model should include this offsite flow; this model should be used to size the detention pond spillway for the offsite flow. RESPONSE: 6. Include sheet 35 in the utility plans. RESPONSE: 7. The storm sewer that parallels Vine Drive accounts, according to the calculations, for the offsite flow from DC-1, specifically the flow enters the storm sewer at design point W 15. There are no supporting calculations showing that the inlet at W 15 has adequate capacity to pass this flow. Also, the cross-section H indicates that the now from DC-1 is not routed to the channel, but the storm sewer calculations show that this flow is routed to the channel. Please clarify how the flow from DC-1 is being routed through Waterfield PUD, include a more detailed discussion regarding this flow in the report and provide explanation for the sizing of all drainage facilities that are affected by this flow from DC - RESPONSE: 8. In storm sewer L, there is a 7-foot increase in elevation from one pipe to the next. Please make necessary corrections to alleviate this problem of minor storm flow not being able to be conveyed through the system. RESPONSE: 9. Riprap calculations are provided for several pipe outlets, but it is necessary to show calculations for the riprap that is placed in the channel located on the southeast portion of the site and for the spillway on the detention pond. It is also necessary to provide riprap details on the plans. RESPONSE: Please see redlined report and plans for additional review comments. 9 August 31, 1998 Mr. Basil Harridan City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 i Waterfield First Filing Response to City comments Dear Basil, This letter is in response to your written comments to Mike Ludwig dated August 7, 1998 There were 12 items listed. Item No. 1 - The length of the overflow weir has been modified to reflect the revised flows, and has been shown on the grading plan as well as the drainage plan. A detail of this weir and protective riprap is shown on the detail sheet Item No. 2 - This easement will be provided Item No. 3 - Although I disagree with the parameters used in the Master plan, I have modified the offsite flows entering the Waterfield site to match those specified in the master plan. (The master plans flows are higher, therefore, this would be a conservative assumption). Item No. 4 - The concepts presented and approved in the preliminary drainage plan still represent the framework for the design of the first filing, as well as the second filing. It was our intent to utilize the existing wetlands area for detention when 2ed filing develops. When this occurs, most of the developed runoff from the single family lots will be directed towards the wetlands area, instead of the proposed pond at the southwest comer of the site. I have attempted to better describe these concepts in the text of the report. Item No. 5 - I revised the SWMM model to exclude the flows from basins OFF-1 and DC-1. This increased the required pond volume for the first filing to 14.1 acre feet, with a peak release rate of 3.0 cfs. I again ran the model with basins OFF-1 and DC-1 included. This showed a �f maximum flow to the pond of 218 cfs. These basins were also included in the rational calculations for the site (see report) which shows a maximum flow to the pond of 298 cfs. I used r the 298 cfs value for sizing the emergency overflow weir. Item No. 6 - OK Item No. 7 - The flows from DC-1 do not enter the storm sewer system at design point W 15, but in a flared end section at W 15 (W 15 is not an inlet, W 16 is an inlet). I have included additional text in the report which better explains the routing of these flows from DC-1. 1 i I 1 Item No. 8 - This is the Lake Canal siphon structure. We have revised this system somewhat, but there will still be a portion of the system that will not fully drain, but will need to perk out of the storm sewer over a period of time. Item No. 9 - These calculations have been provided. We will be available to meet with Stormwater at any time to help clear up any questions you may have regarding this project. Thanks for your cooperation. Sincerely, Roger Curtiss P.E. - Northern Engineering Services, Inc. cc: Lucia Liley - March & Liley Jim McCory - Colorado Land Source Kim Vowell - Brisben Companies PROJECT C ONEvIENT SHEET Current Planning DATE: to /Ae DEFT': Stormwater PROJECT: p • M i l,.Jc) w I 1. In the SWMM model, the hyetograph time increment must be evenly divisible by the integration interval. Therefore, the integration interval must be either 1 or 5. 1 II RESPONSE: i 11 2. Please extend the simulation period for Pond 301 until it is empty. RESPONSE: 3. Several of the stone sewer profiles do not match the calculations in the report. RESPONSE: Dut= Ma nE TM IILlL1 M dGt.r E T� 6C • "Tim Egand MKa Lu d✓I Ok Tarr do CIty of Fa t CaMns 4. Please show overflow weir for the detention pond on the plans on the grading, drainage, and erosion control plans. Provide proper erosion protection around the spillway. The flow rate over the spillway conflicts with the value in the report. RESPONSE: 5. The computed rating curve for the detention pond does not match the rating curve used in SWMM. RESPONSE: 6. All sections of pipe that have pressurized flow must have pressured seals between the joints. RESPONSE: 7. The future condition of Vine Dr. and County Road 9E need to be further considered in the design of the on -site drainage. The future sump conditions of the road should be considered to determine where these areas will drain and where these areas will tie in with the existing system. This sizing of the storm sewers should consider the future street flows from Vine and County 9E. All proposed drainage facilities must be shown to work for the interim and ultimate conditions of the arterial streets. This comment was made in the previous submittal. RESPONSE: 8. Please verify that the ditch along the south side of Vine Drive has capacity for all contributing flow. Show more details of the ditch and provide a cross-section. The ditch flow must be contained within the right-of-way. Provide supporting calculations which show the capacity of the ditch. The Lake Canal Company must approve of this flow entering the canal undetained and untreated. If the Lake Canal Company does not approve this then a design of an outfall system to the Dry Creek needs to be completed RESPONSE: 9. All storm pipes used for pressurized flow must be designed with pressure seals and a note must be included on the plans. N, RESPONSE: 10. The property to the east of Waterfield PUD is negotiations to be purchased by Natural Resources, if this is completed then a storm sewer design must be completed to the detention pond. RESPONSE: 11. Please indicate on the plans where the offsite flow from the east is being directed. Indicate the high water surface elevation of the ponding, the area of inundation, and the area of overflow of Timberline. RESPONSE: 71 A drainage easement needs to be provided for the water that backs up from the detention pond onto the future school site. �- RESPONSE: Please see redlined report and plans for additional review comments. i 1 1 i June 19, 1998 Mr. Basil Hamdan - City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 RE: Waterfield First Filing Response to City comments Dear Basil, This letter is in response to your written comments to Mike Ludwig dated June 4, 1998 There were 12 items listed. Item No. 1 - The model was rerun and the integration interval was changed to 5 minutes. Item No. 2 - The model was extended to 600 minutes Item No. 3 - These have been revised. I do not agree with several of staffs comments regarding these calculations, and have noted that in the redlined report. Item No. 4 - This has been revised Item No. 5 - This has been revised Item No. 6 - These will be noted on the plans. Again, I disagree with your policy requiring pressure seal joints when 100 year flows are being routed through a pipe system. It is only the 100 year major storm events which pressurize the pipes, the 2 year flows, which are what is r required to be conveyed through the pipe system does not pressurize the pipe. Item No. 7 - I have included discussion of future flows in the adjacent arterials. Item No. 8 - These flows will be conveyed, along with detained flows from our detention pond to a siphon structure which will convey flows under Lake Canal. We have a commitment from City to improve the downstream conveyance system west of Lake Canal to Dry Creek. Item No. 9 - See 6 above, and previous comments. Item No. 10 - I think you are eluding to portions of Waterfield 2°d Filing. I think we both need some clarifications on what the ultimate configuration of the parcel that Natural Resources is 1 interested in will have on the overall conveyance system. I believe that it really will have little -I1 impact on the channel proposed with this development which runs parallel with Merganser (as I believe that the street which will be installed west of Merganser in 2"d Filing is still being proposed). At any rate, this surely can be corrected when 2"d Filing is resubmitted. Item No. 11 - It was. I will try to define it better, although I believe that this type of information has no place being shown on construction documents, but is better addressed in the report. (Where it has been addressed). ' Item No. 12 - It will be provided. We will be available to meet with Stormwater at any time to help clear up any questions you may have regarding this project. Thanks for your cooperation. Sincerely, Roger Curtiss P.E. - Northern Engineering Services, Inc. cc: Lucia Liley - March & Liley Jim McCory - Colorado Land Source ' Brock Chapman - Brisben Companies I I I S 1 I I I PROJECT COMMENT SHEET Current Planning DATE: 5 q - 9.�f DEFT: Stormwater PROJECT: PLANNER: /-"? i 'Ar- 1. The existing off -site flow from the basin to the east is shown to spill over Timberline Road and pond on the Plummer School and the Waterfield PUD properties. The flow would then spill over Vine Drive. The ponding is an existing condition for the Waterfield PUD site that should be considered in the drainage design. The Waterfield PUD site should be designed to not adversely impact the drainage of off -site properties. This means passing a portion or all of the existing off -site flow through Waterfield PUD. If only a portion of the existing off -site flow is proposed to pass through the site, then an analysis of the existing and proposed ponding and overflow conditions would be needed. 2. The time of concentration for the off -site basin was calculated incorrectly. The slope of the basin should be in percent rather than ft/ft for use in the overland time of concentration. This results in a large time of concentration and a low 100-year runoff rate. The off -site basin is too large to be modeled using the Rational Method. Please use UDSWMM to model the off -site basin. The Dry Creek Master Plan Update shows an existing off -site flow of 129 cfs for the 108-acre basin. 3. The low points in Vine Drive and Timberline Road should not be raised to maintain the existing ponding level at these locations. Please refer to the redline letter and calculations for further review comments. Dow= an HERE I YOU WISH M REM COPIES OF flE ONS Pl1� ate _� ��•. /Uarf hP► n Crio veer%ns Tt.h Ala 47roiof g/i Sin �mn9t%r'S' Odt� aey of Faft COMM 1- I May 12, 1998 Mr. Matthew Fater City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 RE: Waterfield Fast Filing Response to City comments �- Dear Matt, This letter is in response to your comments dated May 5, 1998, specifically regarding the offsite drainage from an existing 108 acre basin east of the proposed Waterfield development. There were three items listed. Item No. 1 - We take it from your response that you'acknowledge the historic flows overtop Vine Drive and heads south. The problem seems to be that these historic flows also pond on the Waterfield site as well as the Plummer school site. Therefore, you will require this developer to provide capacity for approximately 108 cfs to be conveyed through our site to another property west of us where these flows do not historically go. Given the fact that this requirement has been identified 18 month into the review process, this developer has decided to install these improvements rather than further delay this project, even though we do not agree with your position. Item No. 2 - Calculations for the time of concentration for the offsite basin provided to you were wrong. 1 The correct time of concentration should have been 60.4 minute (33.5 minute overland plus 26.9 channelized flows). Using the rational method, the 100 year historic flows calculate to be approximately 70.2 cfs. Using the UDSWMM criteria, established by the City, these historic flows are shown to be approximately 104 cfs. Item No. 3 - These low points have been lowered to maintain the approximate existing overtopping elevations. We will be available to meet with Stormwater at any time to help clear up any questions _you may have r regarding this project. Thanks for your cooperation. Sincerely, Roger Curtiss P.E. - Northern Engineering Services, Inc. cc: Lucia Liley - March & Liley Jim McCory - Colorado Land Source Brock Chapman - Brisben Companies I I 1 1 11 n PROJECT COMMENT SHEET' CAVOfFollcon;►"a Current Planning DATE: 3 g DEFT: Stormwater PROJECT: O A i er �;ELt 70 (-S t., e s cI PLANNER: M tics Lvt� w1 ►1i 1. The final signed agreement from the Lake Canal Company is needed before final approval. Signatures from the Lake Canal and the Larimer-Weld Canal will be needed on the plans. RESPONSE: 2. There are many drainage facilities that are located outside the property line of the project. All of these drainage facilities will require off -site drainage easements, dedicated by separate document. - RESPONSE: CEC[ BE I YOU WIM TO EVE COPES OF RE91S[ONS _Pk _5k Ddmp ICO .Uff# IC&uk 1� M)-h'e 1,v614,15 G/Or ltp�o =A � ShflliP Qty o[ FortCoMns i L1, 3. The future condition of Vine Dr. and County Road 9E need to be fiuther cot stdered'in. the design of the on -site drainage. The future sump conditions of the road should be ; , considered.to determine where these. areas will drain and where these areas will tie tn` with the existing system. The sizing of the: storm sewers should consider the future;street 3, flows froiri Vine and County 9E. All proposed drainage facilities must be shown to work for the interim and ultimate conditions of the arterial streets. ; 4. There are locations where the basin boundaries do not match the proposed grading. Please verify the basin boundaries with the proposed contours and revise any related; calculations. ` RESPONSE: 5. Please show hydrologic calculations for the total flow in the roadside ditch along Vine Drive. Verify that the ditch has capacity for this flow. Show more details of the ditch and provide a cross-section. The ditch flow must be contained within the right-of-way. The Lakecanali company must approve of this flow entering the canal undetained and untreated. RESPONSE: 6. Please show a detail of the water quality outlet structure. Design calculations are also needed for,the,outlet. RESPONSE: 7. The basin widths used to model the on -site developed basins appear to be small. Please use basin widths that provide overland flow lengths that more accurately reflect developed conditions. Overland flow lengths for residential settings typically range from 100' to 250'. RESPONSE: 8. A temporary culvert is shown to drain the low area of the school property into the detention pond. The high water elevation in the pond will cause the culvert to back up. Theculvert should be removed, and the pond should be regraded to allow the school site to drainiinto;the pond. RESPONSE:. n r . RESPONSE: 1 9. Pond 301 is shown to peak at the end of simulation period. It is possible that the pond may peak after the 2-hour simulation period. Please extend the simulation period until the entire pond is empty. RESPONSE: 10. Please check the maximum velocity in the steep section of the roadside swale along County Road 9E. Erosion protection may be needed. ■ RESPONSE: 11. Please provide capacity calculations for the pipe used at the detention pond outlet and storm sewers C, D, and E. rRESPONSE: 12. Calculations seem to have been performed incorrectly for determining the required weir length for the detention pond overflow weir. Please check these calculations. RESPONSE: 13. All storm pipes used for pressurized flow must be designed with pressure seals. Please use circular pipe in place of elliptical pipe where pressurized flow occurs and install pressure seals. RESPONSE: Please refer to the redline plans and report for additional review comments. r r I I May 12, 1998 Mr. Matthew Fater City of Fort Collins Utility Services Stormwater 235 Mathews Fort Coll ins, Colorado 80522 RE: Waterfield First Filing Response to City comments Dear Matt, This letter is in response to your written comments to Mike Ludwig dated March 4, 1998 There were 13 items listed. Item No. 1 - We plan to meet with the Ditch Company with this revised submittal. We understand that their approvals are required. Item No. 2 - We are having the legal descriptions for these easements being prepared by Landstar. The owner of the 1" Filing is also the owner of the offsite areas in question, and we do not anticipate any problems getting these easements. Item No. 3 - There are sump areas in Timberline Road and Vine Drive, neither of which are directly adjacent to our site. Per City criteria, we have also added downstream capacity to our on -site drainage facilities to accommodate upstream flows from basins that are not historically contributory to our site. Item No. 4 - These have been modified Item No. 5 - This ditch section has been included in the cross sections for Vine Drive Item No. 6 - Done Item No. 7 - Done Item No. 8 - We will provide a drainage easement for the school site in lieu of filling the site at this time. Item No. 9 - Done Item No. 10 - Done Item No. 11 - Done IItem No. 12 - Done Item No. 13 - Done. I design these pipes to be pressurized only in the 100 year storm event. In the 2 year event, these pipes are not pressurized. Per City criteria, we are only required to convey the minor storm events through the storm sewer. This criteria is a unnecessary expense imposed by the City, and this policy should be reviewed. We will be available to meet with Stormwater at any time to help clear up any questions you may have regarding this project. Thanks for your cooperation. ISincerely, iRoger Curtiss P.E. - Northern Engineering Services, Inc. cc: Lucia Liley - March & Liley Jim McCory - Colorado Land Source Brock Chapman - Brisben Companies I I APPENDIX I L G i i 1 1 1 1 n i ° '` a& '� r n IR _ •� Pas. a�to ow. A �O 11r•I.a •.° • 1 I i II _ s 1 ... i I � I _ r 1 133 � PO s�. i <99 4990 ---�—� T 8 N ♦ a • e �� 4495 -- r-- .......... IIyyn r d cw/rAI I p .... _1 .__-ro. _ _ On Nortnlre Black Ow °tea—•+' _fl ag, n dunc n e I � �..'B RL/NG N THERN r • • — .+ f a pt T a r o � ? a• . i 5...\i I s WNTO e — FORT c//'',,II--- 4493 19 / ' ♦ � � I lawn • •�:� Trail .. . . :.,-.�. '6�f9 Park r \�•••:y.•� b railer,, - . •.� •�' �• �\�' Afro • • �'•a • : S Poo 16 r 1 � ._. :p: •Wj \ I ewe ♦ •. 0 � e rye .'�'�:♦ ��' '$. J __.� r I 4491. A. p C FdQ A .tsoO 71 i 1 I 1 i 1 I L I 1 1 1 1 1 g gl!!TY MAP i I 1 11 1 I I r I 1 HISTORIC CONDITIONS n 1 I I 1 r n [I I' rl r 11 1p IA a 6 SWMM MODEL - EXISTING CONDITIONS FROM DRY CREEK i MASTER PLAN by Lidstone & Anderson i I 2 1 1 2 3 4 WATERSHED 0 LOWER DRY CREEK BASIN (BELOW LARIMER 6 WELD CANAL) FILES: EX100.DAT S .OUT 100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC. 600 0000 1. 1 1. 24 5. .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 -2 .016 .25 .1 1 401 501 940 14.2 30..0024 1 402 501 1480 10.2 55..0092 1 403 503 4790 33.0 60..0060 1 404 504 1100 17.0 10..0079 1 405 505 1330 23.2 65..0034 1 406 506 4130 56.9 35..0057 1 407 508 1400 12.9 85..0080 1 408 511 830 19.1 5..0061 * GREENBRIAR/EVERGREEN WEST AREA BEGIN 1 102 3561410.36.34 13.3 .012 .016 .040 .1 1 105 3562200.42.95 33.7 .030 .016 .038 .1 1 107 280 950.21.95 10.1 .025 .016 .038 .1 1 103 204 600.19.29 18.8 .005 .016 .040 .1 1 104 2536700.69.16 26.1 .008 .016 .040 .1 1 101 2821260.42.91 4.4 .025 .016 .040 .1 1 129 2811000.23.53 14.3 .015 .016 .037 .1 1 124 322700.25.06 97.4 .005 .016 .035 .1 1 125 323900.36.11 0.0 .005 .016 .040 .1 1 126 2551090.12.55 0.0 .004 .016 .040 .1 * GREENBRIAR/EVERGREEN WEST AREA END 1 409 509 1970 48.8 55..0057 1 410 510 2210 45.6 5..0050 ' GREENBRIAR/EVERGREEN WEST AREA BEGIN 1 127 6011800.30.82 4.7 .006 .016 .040 .1 * GREENBRIAR/EVERGREEN WEST AREA END 1 413 516 4400 10.1 5..0100 1 414 602 3090 14.2 55..0080 * GREENBRIAR/EVERGREEN SOUTHEAST AREA BEGIN 1 115 6021740.69.30 0.0 .004 .016 .040 .1 * GREENBRIAR/EVERGREEN SOUTHEAST AREA END 1 411 513 3530 24.3 70..0100 1 412 514 4360 30.0 60..0150 • GREENBRIAR/EVERGREEN SOUTHEAST AREA BEGIN 1 121 20 440.14.05 0.0 .016 .016 .040 .1 1 120 201240.13.97 22.2 .037 .016 .040 .1 1 122 20 700. 8.02 0.0 .012 .016 .040 .1 1 123 20 360. 3.01 49.8 .006 .016 .040 .1 1 112 371660.49.14 9.3 .008 .016 .040 .1 1 113 2651020.48.46 10.3 .004 .016 .040 .1 1 114 3104900.51.10 23.2 .005 .016 .036 .1 * GREENBRIAR/EVERGREEN SOUTHEAST AREA END * GREENBRIAR/EVERGREEN NORTHEAST AREA BEGIN 1 108 258 630.11.48 0.0 .048 .016 .040 .1 1 110 258 475. 4.76 0.0 .035 .016 .040 .1 1 116 258 830.23.00 5.6 .032 .016 .040 .1 1 130 1582500.40.10 40.0 .020 .016 .035 .1 1 117 2581050.43.93 16.0 .021 .016 .040 .1 1 109 2591210.13.85 0.0 .042 .016 .040 .1 1 111 3073800.43.33 19.9 .008 .016 .038 .1 * GREENBRIAR/EVERGREEN NORTHEAST AREA END 1 415 518 7240 66.5 30..0070 1 416 519 2530 69.6 10..0100 1 417 603 2230 82.0 5..0040 1 418 603 1420 16.3 25..0070 1 419 801 2480108.0 10..0150 1 420 801 3640100.4 5..0200 1 421 520 1890 43.5 10..0150 1 422 520 2420149.9 5..0080 1 423 802 2970 88.5 10..0040 1 437 541 740 54.2 5..0032 1 438 542 1200 42.0 5..0027 1 439 543 2450 19.7 75..0060 1 453 55912690 87.4 50..0130 1 440 544 3700195.7 5..0049 51 .50 .0018 40 2.19 .05 .0071 44 2.19 .05 .0071 43 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 43 2.19 .05 .0071 50 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 48 2.19 .05 .0071 40 2.19 .05 .0071 50 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 40 2.19 .05 .0071 44 2.19 .05 .0071 I I 1 443 549 1600 66.2 55..0040 1 455 875 2600 77.5 20..0060 1 454 610 1920 44.1 25..0150 1 445 611 2690 18.5 35..0040 * STREETS DEPARTMENT DEVELOPMENT 1 424 803 800 23.9 70..0100 1 425 523 2840 65.2 10..0060 1 426 525 470 7.6 5..0050 * VAN WORKS DEVELOPMENT 1 427 804 1030 14.2 40..0060 1 428 526 1810 35.7 35..0050 1 429 528 2030 16.3 40..0050 1 430 530 840 2.9 90..0050 1 431 531 1380 14.1 50..0040 1 432 533 1130 22.9 5..0050 1 433 534 1500 24.9 20..0040 1 434 535 2070 85.6 40..0040 1 435 606 5510 63.3 80.'.0080 1 436 539 1420 14.7 85..0060 1 441 546 1680 15.4 65..0050 1 442 548 1240 7.1 60..0050 1 444 608 1070 13.5 55..0080 1 446 551 1000 25.3 5..0035 1 447 553 1100 32.9 5..0050 1 448 609 2260 41.5 80..0040 1 449 555 2960 54.3 80..0050 1 450 556 1970 18.1 40..0040 1 451 55710980 12.6 65..0030 1 452 614 670 7.7 50..0080 0 81 2 101 102 103 104 105 107 108 109 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 129 130 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 501 502 1 10. 920. .0050 20. 3. .060 2.5 502 503 1 5. 1500. .0037 4. 5. .060 2.0 503 600 4 5. 1240. .0004 80. 50. .060 1.0 135. 1240. .0004 0. 0. .060 3.0 504 600 1 15. 1260. .0012 5. 5. .050 3.0 505 506 1 5. 1670. .0036 30. 100. .080 1.5 506 600 1 5. 880. .0023 30. 100. .080 1.5 * EXISTING DRY CREEK AT COLLEGE AVE AND HICKORY ST. 600 507 3 1. 507 508 4 5. 1200. .0017 3. 3. .050 1.0 11. 1200. .0017 100. 100. .060 3.0 508 511 4 5. 800. .0023 3. 3. .050 1.0 11. 800. .0023 100. 100. .080 3.0 511 512 4 5. 510. .0023 3. 3. .050 1.0 11. 510. .0023 100. 100. .080 3.0 * GREENBRIAR/EVERGREEN WEST AREA BEGIN 356 302 3 1. 280 356 1 10.0 1200. 0.025 60. 60. 0.060 6.0 302 202 11 2 1. 0.0 0.0 4.28 2.0 6.49 4.0 8.48 5.0 10.25 7.0 11.46 9.0 13.02 11.0 14.37 13.0 15.86 14.0 24.56 16.0 33.20 17.0 202 252 1 12.0 978. 0.0045 4. 4. 0.060 5.5 204 252 5 2.5 923. 0.003 0.013 2.5 0.001 923. 0.004 37.7 37.7 0.016 4.0 252 205 3 1. 205 253 1 30. 423. 0.0025 4. 4. 0.060 2.3 281 282 1 10. 1400. 0.035 60. 60. 0.060 6.0 282 253 1 10. 1600. 0.010 60. 60. 0.060 6.0 253 303 3 1. 303 206 11 2 1. 0.0 0.0 3.14 3.0 4.90 6.0 6.32 10.0 7.62 13.0 9.04 16.0 10.73 19.0 12.76 22.0 15.11 26.0 17.5 327. 21.6 1520. 206 255 1 7. 845. 0.0019 4. 4. 0.060 5.0 32 207 3 1. 207 255 5 2.0 520. 0.004 0.013 2.0 I 0.001 520. 0:004 41. 41. 0.016 4.0 255 512 1 16. 1100. 0.002 4. 4. 0.035 5.0 * GREENBRIAR/EVERGREEN WEST AREA END ' 512 601 1 10. 1250. .0032 20. 7. .040 3.5 509 510 1 15. 1770. .0012 2.5 2.5 .035 5.0 510 601 1 10. 1220. .0009 2. 2. .035 5.0 * CROSSING OF EXISTING DRY CREEK AND LAKE CANAL 601 515 3 1. ' 515 515 516 1 5. 1560. .0018 6. 15. .040 7.0 516 602 4 6. 1080. .0019 3. 3. .040 3.0 24. 1060. .0019 100. 100. .080 6.0 513 514 1 5. 2290. .0030 40. 30. .060 5.0 514 602 1 5. 1330. .0015 25. 15. .060 5.0 ' * EXISTING DRY CREEK AT LEMAY 602 517 3 1. * GREENBRIAR/EVERGREEN SOUTHEAST AREA BEGIN 20 22 3 1. 22 37 4 2.0 850. 0.0040 50. 50. 0.016 0.5 ' 52.0 850. 0.0040 10. 10. 0.020 3.0 37 308 3 1. 308 211 13 2 1. 0. 0. 0.06 2. 0.33 3. 0.54 5. ' 0.67 7. 1.48 9. 2.89 12. 4.72 14. 6.75 15. 9.33 17. 11.2 85. 15.0 240. 18.7 679. 211 265 1 5.0 1560. 0.0025 4. 4. 0.035- 2.8 265 267 3 1. ' 310 267 12 2 1. 0. 0. 1.88 0. 2.57 2. 2.91 4. 3.52 7. 4.13 9. 4.74 11. 5.55 13. 6.36 15. 7.33 18. 8.48 20. 9.4 21.3 267 262 3 1. ' * GREENBRIAR/EVERGREEN SOUTHEAST AREA END * GREENBRIAR/EVERGREEN NORTHEAST AREA BEGIN 158 258 1 0.0 1825. 0.021 60 60 0.035 3. - 258 259 3 1. ' 259 209 3 1. 209 307 1 10.0 1600. 0.006 60 60 0.060 3. 307 262 13 2 1. 0. 0. 0.03 3.0 0.31 7.0 0.72 9.0 1.61 11.0 3.04 13.0 4.03 14.0 7.04 16.0 ' 8.68 17.0 10.09 17.8 11.2 92. 13.5 260. 15.7 735. 262 269 3 1. * GREENBRIAR/EVERGREEN NORTHEAST AREA END * COMBINE AND ROUTE NE AND SE AREAS TO DRY CREEK 269 517 1 10.0 2200. 0.0020 60. 60. 0.060 3.0 517 603 4 10. 2010. .0032 4. 5. .040 4.0 46. 2010. .0032 100. 100. .080 6.0 518 519 1 10. 1450. .0029 2. 2. .035 10.0 ' 519 603 4 20. 2680. .0014 3. 3. .035 3.0 38. 2680. .0014 100. 100. .080 3.0 801 520 4 2 1. 0 0 11.6 0 34.25 0 34.26 1000 520 802 1 5. 2410. .0014 17. 100. .035 5.0 ' 802 521 5 2 1. 0 0 3.71 0 40.21 0 140.15 0 140.16 1000 521 603 1 5. 1090. .0009 4. 100. .035 2.0 * EXISTING DRY CREEK AT VINE 603 540 3 1. 540 541 4 10. 3970. .0019 5. 5. .050 3.0 40. 3970. .0019 100. 100. .080 6.0 541 545 1 0. 3190. .0038 100. 100. .080 3.0 542 544 1 0. 2140. .0043 15. 100. .080 3.0 559 543 1 10 2080. .0009 2. 2. .035 6.0 543 544 1 15. 1380. .0014 3. 3. .060 5.0 544 545 1 0. 1600. .0054 10. 100. .080 3.0 545 610 1 0. 1050. .0038 100. 100. .080 3.0 ' 549 610 4 0. 2030. .0034 50. 50. .016 0.5 50. 2030. .0034 60. 60. ..040 6.0 875 560 14 2 1. 0 0 1.77 0 2.44 20 2.80 40 3.14 60 3.42 80 3.62 100 3.82 120 ' 4.03 140 4.16 160 4.30 180 4.50 200 4.78 250 5.12 300 560 610 4 0. 1400. .0058 50. 50. 50. 1400. .0058 60. 60. * PROPOSED DRY CREEK AT MULBERRY 610 550 3 1. 550 611 1 0. 1470. .0041 100. 100. * CONFLUENCE OF PROPOSED DRY CREEK CHANNEL AND POUDRE RIVER 611 615 3 1. 803 522 6 2 1. 0 0 3.77 10.5 4.43 20.5 5.09 40.5 5.37 50.5 522 604 4 0. 900. .0023 2. 2. 4. 900. .0023 2. 100. 523 604 4 5. 1790. .0035 S. 10. 20. 1790. .0035 100. 100. 604 524 3 1. 524 525 4 0. 770. .0043 2. 2. 4. 770. .0043 2. 100. 804 525 7 2 1. 0 0 0.17 0.89 0.33 1.53 1.49 2.19 1.68 3.66 1.91 6.98 525 605 4 0. 490. .0038 2. 2. 8. 490. .0038 2. 100. 526 605 1 10. 1080. .0037 5. 5. * NW CORNER OF LINCOLN AND LEMAY .016 0.5 .040 6.0 .060 3.0 4.80 30.5 .060 1.0 .080 3.0 .060 1.0 .080 3.0 .060 1.0 .080 3.0 0.95 1.97 .060 2.0 .080 4.0 .050 4.0 605 527 3 1. - 527 528 1 10. 1200. .0027 3. 3. .040 5.0 528 529 4 10. 1140. .0021 3. 3. .040 3.0 28. 1140. .0021 100. 100. .060 3.0 529 530 4 10. 840. .0035 3. 3. .040 5.0 40. 840. .0035 100. 100. .060 3.0 530 607 4 10. 1280. .0020 4. 4. .050 4.0 42. 1280. .0020 100. 100. .060 3.0 531 532 4 0. 590. .0036 50. 50. .016 0.5 50. 590. .0036 60. 60. .040 6.0 532 533 1 0. 870. .0014 100. 100. .080 3.0 533 534 1 0. 1620. .0036 100. 100. .080 3.0 534 606 4 0. 2510. .0036 50. 50. .016 0.5 50. 2510. .0036 60. 60. .040 6.0 535 536 4 0. 1620. .0033 50. 50. .016 0.5 50. 1620. .0033 60. 60. .040 6.0 536 606 4 0. 1050. .0017 50. 50. .016 0.5 50. 1050. .0017 60. 60. .040 6.0 606 537 3 1. 537 607 4 0. 1120. .0017 50. 50. .016 0.5 50. 1120. .0017 60. 60. .040 6.0 * NW CORNER OF LINCOLN AND AIRPARK 607 538 3 1. 538 539 4 5. 570. .0020 3. 3. .050 4.0 29. 570. .0020 100. 100. .060 5.0 539 608 4 5. 830. .0020 9. 5. .050 5.0 75. 830. .0020 100. 100. .060 6.0 546 547 4 5. 1670. .0032 4. 4. .050 5.0 45. 1670. .0032 100. 100. .080 3.0 547 548 4 5. 1130. .0032 4. 4. .040 5.0 45. 1130. .0032 100. 100. .080 3.0 548 608 4 5. 670. .0032 3. 3. .050 4.0 29. 670. .0032 100. 100. .080 3.0 * EXISTING DRY CREEK AT LINCOLN JUST NORTH OF THE MULBERRY CROSSING 608 612 3 1. 551 552 1 0. 860. .0029 100. 100. .040 3.0 552 609 4 0. 1190. .0032 50. 50. .016 0.5 50. 1190. .0032 60. 60. .040 6.0 553 609 1 0. 990. .0020 100. 100. .060 3.0 * NW CORNER OF LINK IN. AND MULBERRY 609 554 3 1. 554 555 1 0. 1660. .0018 100. 100. .060 3.0 555 556 4 0. 530. .0057 50. 50. .016 0.5 50. 530. .0057 60. 60. .040 6.0 556 612 1 15. 1120. .0009 3. 2. .035 7.0 * EXISTING DRY CREEK AT MULBERRY 612 613 3 1. 557 613 1 10. 2450. .0017 6. 20. .035 2.0 613 558 3 1. 558 614 1 10. 510. .0059 3. 3. .040 6.0 I 1 1 1 1 1 I 1 1 * CONFLUENCE OF EXISTING DRY CREEK CHANNEL AND POUDRE RIVER 614 615 3 1. * TOTAL DRY CREEK INFLOW INTO POUDRE RIVER 615 3 1. 0 111 2 20 22 32 37 158 202 204 205 206 207 209 211 252 253 255 258 259 262 265 267 269 280 281 282 302 303 307 308 310 356 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 801 802 803 804 875 ENDPROGRAM I 1 I i i 1 1 I I I G I ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** LOWER DRY CREEK BASIN (BELOW LARIMER d WELD CANAL) FILES: EX100.DAT S .OUT 100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC. NUMBER OF TIME STEPS 600 INTEGRATION TIME INTERVAL (MINUTES) 1.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 LOWER DRY CREEK BASIN (BELOW LARIMER S WELD CANAL) FILES: EX100.DAT s .OUT 100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC. SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. DERV. IMPERV. PERV. NO -2 0 .0 .0 .0 .0300 .016 .250 .100 .300 401 501 940.0 14.2 30.0 .0024 .016 .250 .100 .300 402 501 1480.0 10.2 55.0 .0092 .016 .250 .100 .300 403 503 4790.0 33.0 60.0 .0060 .016 .250 .100 .300 404 504 1100.0 17.0 10.0 .0079 .016 .250 .100 .300 405 505 1330.0 23.2 65.0 .0034 .016 .250 .100 .300 406 506 4130.0 56.9 35.0 .0057 .016 .250 .100 .300 407 508 1400.0 12.9 85.0 .0080 .016 .250 .100 .300 408 511 830.0 19.1 5.0 .0061 .016 .250 .100 .300 102 356 1410.0 36.3 13.3 .0120 .016 .040 .100 .400 105 356 2200.0 43.0 33.7 .0300 .016 .038 .100 .440 107 280 950.0 21.9 10.1 .0250 .016 .038 .100 .430 103 204 600.0 19.3 18.8 .0050 .016 .040 .100 .400 104 253 6700.0 69.2 26.1 .00BO .016 .040 .100 .400 101 262 1260.0 42.9 4.4 .0250 .016 .040 .100 .400 129 281 1000.0 23.5 14.3 .0150 .016 .037 .100 .430 124 32 2700.0 25.1 97.4 .0050 .016 .035 .100 .500 125 32 3900.0 36.1 .0 .0050 .016 .040 .100 .400 126 255 1090.0 12.6 .0 .0040 .016 .040 .100 .400 409 509 1970.0 48.8 55.0 .0057 .016 .250 .100 .300 410 510 2210.0 45.6 5.0 .0050 .016 .250 .100 .300 INFILTRATION RATE(IN/HR) MAXIMUM MINIMUM DECAY RATE .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00160 .51 .50 .00180 .51 .50 .00180 2.19 .05 .00710 2.19 .05 .00710 2.19 .05 .00710 2.19 .05 .00710 2.19 .05 .00710 2.19 .05 .00710 2.19 .05 .00710 2.19 .05 .00710 2.19 .05 .00710 2.19 .05 .00710 .51 .50 .00180 .51 .50 .00180 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i. 127 601 1800.0 30.8 4.7 .0060 .016 .040 .100 .400 2.19 .05 .00710 1 413 516 4400.0 10.1 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 414 602 3090.0 14.2 55.0 .0080 .016 .250 .100 .300 1 115 602 1740.0 69.3 .0 .0040 .016 .040 .100 .400 .51 2.19 .50 .05 .00180 .00710 1 411 513 3530.0 24.3 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 412 514 4360.0 30.0 60.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 ' 121 20 440.0 14.1 .0 .0160 .016 .040 .100 .400 2.19 .05 .00710 1 120 20 1240.0 14.0 22.2 .0370 .016 .040 .100 .400 2.19 .05 .00710 1 122 20 700.0 8.0 .0 .0120 .016 .040 .100 .400 2.19 .05 .00710 1 123 20 360.0 3.0 49.8 .0060 .016 .040 .100 .400 2.19 .05 .00710 1 112 37 1660.0 49.1 9.3 .0080 .016 .040 .100 .400 2.19 .05 .00710 1 113 265 1020.0 48.5 10.3 .0040 .016 .040 .100 .400 2.19 .05 .00710 1 114 310 4900.0 51.1 23.2 .0050 .016 .036 .100 .480 2.19 .05 .00710 1 108 258 630.0 11.5 .0 .0480 .016 .040 .100 .400 2.19 .05 .00710 1 110 258 475.0 4.8 .0 .0350 .016 .040 .100 .500 2.19 .05 .00710 1 116 258 830.0 23.0 5.6 .0320 .016 .040 .100 .400 2.19 .05 .00710 1 130 158 2500.0 40.1 40.0 .0200 .016 .035 .100 .400 2.19 .05 .00710 1 117 258 1050.0 43.9 16.0 .0210 .016 .040 .100 .400 2.19 .05 .00710 1 109 111 259 307 1210.0 3800.0 13.9 43.3 .0 19.9 .0420 .0080 .016 .016 .040 .038 .100 .100 .400 .440 2.19 2.19 .05 .05 .00710 1 .00710 1 415 518 7240.0 66.5 30.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 416 519 2530.0 69.6 10.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 417 603 2230.0 B2.0 5.0 .0040 .016 .250 .100 .300 .51 .50 .00180 1 418 603 1420.0 16.3 25.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 419 801 2480.0 108.0 10.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 420 801 3640.0 100.4 5.0 .0200 .016 .250 .100 .300 .51 .50 .00180 1 421 520 1890.0 43.5 10.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 422 520 2420.0 149.9 5.0 .0000 .016 .250 .100 .300 .51 .50 .00180 1 423 802 2970.0 88.5 10.0 .0040 .016 .250 .100 .300 .51 1 437 541 740.0 54.2 5.0 .0032 .016 .250 .100 .300 .51 .50 .50 .00180 .00180 1 430 542 1200.0 42.0 5.0 .0027 .016 .250 .100 .300 .51 .50 .00180 1 439 543 2450.0 19.7 75.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 453 559 12690.0 87.4 50.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 440 544 3700.0 195.7 5.0 .0049 .016 .250 .100 .300 .51 .50 .00180 1 443 455 549 875 1600.0 2600.0 66.2 77.5 55.0 20.0 .0040 .0060 .016 .016 .250 .250 .100 .100 .300 .300 .51 .51 .50 .50 .00180 1 .00180 1 454 610 1920.0 44.1 25.0 .0150 .016 .250 .100 .300 .51 .50 .00180 1 445 611 2690.0 18.5 35.0 .0040 .016 .250 .100 .300 .51 .50 .00180 1 424 803 800.0 23.9 70.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 425 523 2840.0 65.2 10.0 .0060 .016 .250 .100 .300 1 426 525 470.0 7.6 5.0 .0050 .016 .250 .100 .300 .51 .51 .50 .50 .00180 .00180 1 427 B04 1030.0 14.2 40.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 428 526 1810.0 35.7 35.0 .0050 .016 .250 .100 .300 .51 .50 .001B0 1 429 528 2030.0 16.3 40.0 .0050 .016 .250 .100 .300 .51 .50 .00100 1 430 431 530 531 840.0 1380.0 2.9 14.1 90.0 50.0 .0050 .0040 .016 .016 .250 .250 .100 .100 .300 .300 .51 .51 .50 .50 .00180 1 .00180 1 432 533 1130.0 22.9 5.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 433 534 1500.0 24.9 20.0 .0040 .016 .250 .100 .300 .51 .50 .00180 1 434 535 2070.0 B5.6 40.0 .0040 .016 .250 .100 .300 .51 .50 .00160 1 435 606 5510.0 63.3 80.0 .0080 .016 .250 .100 .300 .51 .50 ".00180 1 436 539 1420.0 14.7 85.0 .0060 .016 .250 .100 .300 .51 .50 .00180 1 441 546 1660.0 15.4 65.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 442 548 1240.0 7.1 60.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 444 608 1070.0 13.5 55.0 .0080 .016 .250 .100 .300 .51 .50 .00160 1 446 551 1000.0 25.3 5.0 .0035 .016 .250 .100 .300 .51 .50 .00180 1 447 553 1100.0 32.9 5.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 446 609 2260.0 41.5 80.0 .0040 .016 .250 .100 .300 .51 .50 .00180 1 449 555 2960.0 54.3 80.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 450 556 1970.0 18.1 40.0 .0040 .016 .250 .100 .300 .51 .50 .00180 1 451 557 10980.0 12.6 65.0 .0030 .016 .250 .100 .300 .51 .50 .00180 1 452 614 670.0 7.7 50.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 81 TOTAL TRIBUTARY AREA (ACRES), 3107.37 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 3107.370 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .563 TOTAL WATERSHED OUTFLOW (INCHES) 1.957 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .370 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 11 LOWER DRY CREEK BASIN (BELOW LARIMER 6 WELD CANAL) FILES: EX100.DAT 6 .OUT 100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC. WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 501 502 502 503 0 0 1 1 CHANNEL CHANNEL 10.0 5.0 920. .0050 20.0 3.0 .060 2.50 0 503 600 0 4 CHANNEL 5.0 1500. 1240. .0037 .0004 4.0 80.0 5.0 50.0 .060 .060 2.00 1.00 0 0 OVERFLOW 135.0 1240. .0004 .0 .0 .060 3.00 504 600 0 1 CHANNEL 15.0 1260. .0012 5.0 5.0 .050 3.00 0 505 506 0 1 CHANNEL 5.0 1670. .0036 30.0 100.0 .080 1.50 0 506 600 0 1 CHANNEL 5.0 880. .0023 30.0 100.0 .080 1.50 0 600 507 0 3 .0 1. .0010 .0 .0 .001 10.00 0 507 508 0 4 CHANNEL 5.0 1200. .0017 3.0 3.0 .050 1.00 0 OVERFLOW 11.0 1200. .0017 100.0 100.0 .080 3.00 ' 508 511 0 4 CHANNEL 5.0 800. .0023 3.0 3.0 .050 1.00 0 OVERFLOW 11.0 800. .0023 100.0 100.0 .080 3.00 511 512 0 4 CHANNEL 5.0 510. .0023 3.0 3.0 .050 1.00 0 OVERFLOW 11.0 510. .0023 100.0 100.0 .080 3.00 356 302 0 3 .0 1. .0010 .0 .0 .001 10.00 0 280 356 0 1 CHANNEL 10.0 1200. .0250 60.0 60.0 .060 6.00 0 302 202 11 2 PIPE .0 1. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW - .0 .0 4.3 2.0 6.5 4.0 8.5 5.0 10.3 7.0 11.5 9.0 13.0 11.0 14.4 13.0 15.9 14.0 24.6 16.0 33.2 17.0 202 252 0 1 CHANNEL 12.0 978. .0045 4.0 4.0 .060 5.50 0 204 252 0 5 PIPE 2.5 923. .0030 .0 .0 .013 2.50 0 OVERFLOW .0 923. .0030 37.7 37.7 .016 4.00 252 205 0 3 .0 1. .0010 .0 .0 .001 10.00 0 205 253 0 1 CHANNEL 30.0 423. .0025 4.0 4.0 .060 2.30 0 281 282 0 1 CHANNEL 10.0 1400. .0350 60.0 60.0 .060 6.00 0 282 253 0 1 CHANNEL 10.0 1600. .0100 60.0 60.0 .060 6.00 0 253 303 0 3 .0 1. .0010 .0 .0 .001 10.00 0 303 206 11 2 PIPE .0 1. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 10.7 .0 19.0 3.1 3.0 12.8 22.0 4.9 15.1 6.0 26.0 6.3 17.5 10.0 327.0 7.6 21.6 13.0 1520.0 9.0 16.0 206 255 0 1 CHANNEL 7.0 845. .0019 4.0 4.0 .060 5.00 0 32 207 0 3 .0 1. .0010 .0 .0 .001 10.00 0 207 255 0 5 PIPE 2.0 520. .0040 .0 .0 .013 2.00 0 255 512 0 1 OVERFLOW CHANNEL .0 16.0 520. 1100. .0040 .0020 41.0 4.0 41.0 4.0 .016 .035 4.00 5.00 0 512 601 0 1 CHANNEL 10.0 1250. .0032 20.0 7.0 .040 3.50 0 509 510 0 1 CHANNEL 15.0 1770. .0012 2.5 2.5 .035 5.00 0 510 601 0 1 CHANNEL 10.0 1220. .0009 2.0 2.0 .035 5.00 0 601 515 0 3 .0 1. .0010 .0 .0 .001 10.00 0 515 516 0 1 CHANNEL 5.0 1560. .0018 8.0. 15.0 .040 7.00 0 516 602 0 4 CHANNEL 6.0 1080. .0019 3.0 3.0 .040 3.00 0 OVERFLOW 24.0 1080. .0019 100.0 100.0 .080 6.00 513 514 0 1 CHANNEL 5.0 2290. .0030 40.0 30.0 .060 5.00 0 514 602 0 1 CHANNEL 5.0 1330. .0015 25.0 15.0 .060 5.00 0 602 517 0 3 .0 1. .0010 .0 .0 .001 10.00 0 20 22 0 3 .0 1. .0010 .0 .0 .001 10.00 0 22 37 0 4 CHANNEL 2.0 850. .0040 50.0 50.0 .016 .50 0 OVERFLOW 52.0 850. .0040 10.0 10.0 .020 3.00 37 308 0 3 .0 1. .0010 .0 .0 .001 10.00 0 301 211 13 2 PIPE .0 1. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 .3 3.0 .5 5.0 .7 7.0 1.5 9.0 2.9 12.0 4.7 14.0 6.0 15.0 9.3 17.0 11.2 85.0 15.0 240.0 18.7 619.0 211 265 0 1 CHANNEL 5.0 1560. .0025 4.0 4.0 .035 2.80 0 265 267 0 3 .0 1. .0010 .0 .0 .001 10.00 0 310 267 12 2 PIPE .0 1. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.9 .0 2.6 2.0 2.9 4.0 3.5 7.0 4.1 9.0 4.7 11.0 5.5 13.0 6.4 15.0 7.3 18.0 8.5 20.0 9.4 21.3 267 262 0 3 .0 1. .0010 .0 .0 .001 10.00 0 158 258 0 1 CHANNEL .0 1825. .0210 60.0 60.0 .035 3.00 0 258 259 0 3 .0 1. .0010 .0 .0 .001 10.00 0 259 209 0 3 .0 1. .0010 .0 .0 .001 10.00 0 209 307 0 1 CHANNEL 10.0 1600. .0060 60.0 60.0 .060 3.00 0 307 262 13 2 PIPE .0 1. .0010 .0 .0 .001 .00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 3.0 .3 7.0 .7 9.0 1.6 11.0 3.0 13.0 4.0 14.0 7.0 16.0 8.7 17.0 10.1 17.8 11.2 92.0 13.5 260.0 15.7 735.0 262 269 0 3 .0 1. .0010 .0 .0 .001 10.00 0 269 517 0 1 CHANNEL 10.0 2200. .0020 60.0 60.0 .060 3.00 0 517 603 0 4 CHANNEL 10.0 2010. .0032 4.0 5.0 .040 4.00 0 I I OVERFLOW 46.0 2010. .0032 100.0 100.0 .080 6.00 518 519 0 1 CHANNEL 10.0 1450. .0029 2.0 2.0 .035 10.00 519 603 0 4 CHANNEL 20.0 2610. .0019 3.0 3.0 .011 3.00 OVERFLOW 38.0 2680. .0014 100.0 100.0 .080 3.00 801 520 4 2 PIPE .0 1. .0010 .0 .0 .001 .00 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 11.6 .0 34.3 .0 34.3 1000.0 520 802 102 521 0 5 1 2 CHANNEL PIPE 5.0 .0 2410. 1. .0011 .0010 17.0 .0 100.0 .0 .035 .001 5.00 .00 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 3.7 .0 40.2 .0 140.2 .0 140.2 1000.0 521 603 0 1 CHANNEL 5.0 1090. .0009 4.0 100.0 .035 2.00 603 540 0 3 .0 1. .0010 .0 .0 .001 10.00 540 541 0 4 CHANNEL 10.0 3970. .0019 5.0 5.0 .050 3.00 OVERFLOW 40.0 3970. .0019 100.0 100.0 .080 6.00 541 545 0 1 CHANNEL .0 3190. .0038 100.0 100.0 .080 3.00 542 544 0 1 CHANNEL .0 2140. .0043 15.0 100.0 .080 3.00 559 543 0 1 CHANNEL 10.0 2080. .0009 2.0 2.0 .035 6.00 543 544 0 1 CHANNEL 15.0 1380. .0014 3.0 3.0 .060 5.00 544 545 0 1 CHANNEL .0 1600. .0054 10.0 100.0 .OBO 3.00 545 610 0 1 CHANNEL .0 1050. .0038 100.0 100.0 .080 3.00 ` 549 610 0 4 CHANNEL .0 2030. .0034 50.0 50.0 .016 .50 OVERFLOW 50.0 2030. .0034 60.0 60.0 .040 6.00 875 560 14 2 PIPE .0 1. .0010 .0 .0 .001 .00 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.8 .0 2.4 20.0 2.8 40.0 3.1 60.0 3.4 80.0 3.6 100.0 3.8 120.0 4.0 140.0 4.2 160.0 4.3 180.0 4.5 200.0 4.8 250.0 5.1 300.0 560 610 0 4 CHANNEL .0 1400. .0058 .50.0 50.0 .016 .50 OVERFLOW 50.0 1400. .0058 60.0 60.0 .040 6.00 610 550 0 3 .0 1. .0010 .0 .0 .001 10.00 ' 550 611 0 1 CHANNEL .0 1470. .0041 100.0 100.0 .080 3.00 611 615 0 3 .0 1. .0010 .0 .0 .001 10.00 803 522 6 2 PIPE .0 1. .0010 .0 .0 .001 .00 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 3.8 10.5 4.4 20.5 4.8 30.5 5.1 40.5 5.4 50.5 522 604 0 4 CHANNEL .0 900. .0023 2.0 2.0 .060 1.00 OVERFLOW 4.0 900. .0023 2.0 100.0 .OBO 3.00 523 604 0 4 CHANNEL 5.0 1790. .0035 5.0 10.0 .060 1.00 604 524 0 3 OVERFLOW 20.0 .0 1790. 1. .0035 .0010 100.0 .0 100.0 .0 .OBO .001 3.00 10.00 524 525 0 4 CHANNEL .0 770. .0043 2.0 2.0 .060 1.00 OVERFLOW 4.0 770. .0043 2.0 100.0 .080 3.00 804 525 7 2 PIPE .0 1. .0010 .0 .0 .001 .00 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 .9 .3 1.5 .9 2.0 1.5 2.2 1.7 3.7 1.9 -7.0 525 605 0 4 CHANNEL .0 490. .0038 2.0 2.0 .060 2.00 OVERFLOW 8.0 490. .0038 2.0 100.0 .080 4.00 526 605 0 1 CHANNEL 10.0 1080. .0037 5.0 5.0 .050 4.00 605 527 0 3 .0 1. .0010 .0 .0 .001 10.00 527 528 0 1 CHANNEL 10.0 1200. .0027 3.0 3.0 .040 5.00 528 529 0 4 CHANNEL 10.0 1140. .0021 3.0 3.0 .040 3.00 OVERFLOW 28.0 1140. .0021 100.0 100.0 .060 3.00 529 530 0 4 CHANNEL 10.0 840. .0035 3.0 3.0 .040 5.00 OVERFLOW 40.0 840. 100.0 100.0 .060 3.00 530 607 0 4 CHANNEL 10.0 1280. .0035 .0020 4.0 4.0 .050 4.00 OVERFLOW 42.0 1280. .0020 100.0 100.0 .060 3.00 531 532 0 4 CHANNEL .0 590. .0036 50.0 50.0 .016 .50 OVERFLOW 50.0 590. .0036 60.0 60.0 .040 6.00 532 533 0 1 CHANNEL .0 870. .0014 100.0 100.0 .OBO 3.00 533 534 0 1 CHANNEL .0 1620. .0036 100.0 100.0 .080 3.00 1, 534 606 0 4 CHANNEL .0 2510. .0036 50.0 50.0 .016 .50 OVERFLOW 50.0 2510. .0036 60.0 60.0 .040 6.00 535 536 0 4 CHANNEL .0 1620. .0033 50.0 50.0 .016 .50 OVERFLOW 50.0 1620. .0033 60.0 60.0 .040 6.00 536 606 0 4 CHANNEL .0 1050. .0017 50.0 50.0 .016 .50 OVERFLOW 50.0 1050. .0017 60.0 60.0 .040 6.00 606 537 0 3 .0 1. .0010 .0 .0 .001 10.00 537 607 0 4 CHANNEL .0 1120. .0017 50.0 50.0 .016 .50 OVERFLOW 50.0 1120. .0017 60.0 60.0 .040 6.00 607 538 0 3 .0 1. .0010 .0 .0 .001 10.00 538 539 0 4 CHANNEL 5.0 570. .0020 3.0 3.0 .050 4.00 OVERFLOW 29.0 570. .0020 100.0 100.0 .060 5.00 539 608 0 4 CHANNEL 5.0 830. .0020 9.0 5.0 .050 5.00 OVERFLOW 75.0 830. .0020 100.0 100.0 .060 6.00 546 547 0 4 CHANNEL 5.0 1670. .0012 4.0 4.0 .050 5.00 OVERFLOW 45.0 1670. .0032 100.0 100.0 .080 3.00 547 548 0 4 CHANNEL 5.0 1130. .0032 4.0 4.0 .040 5.00 OVERFLOW 45.0 1130. .0032 100.0 100.0 .060 3.00 548 608 0 4 CHANNEL 5.0 670. .0032 3.0 3.0 .050 4.00 OVERFLOW 29.0 670. .0032 100.0 100.0 .OBO 3.00 608 612 0 3 .0 1. .0010 .0 .0 .001 10.00 551 552 0 1 CHANNEL .0 860. .0029 100.0 100.0 .040 3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 !� 552 609 0 4 CHANNEL .0 1190. .0032 50.0 50.0 .016 .50 0 OVERFLOW 50.0 1190. .0032 60.0 60.0 .040 6.00 553 609 609 554 0 0 1 3 CHANNEL .0 .0 990. 1. .0020 .0010 100.0 100.0 .0 .0 .060 .001 3.00 10.00 0 0 554 555 0 1 CHANNEL .0 1660. .001B 100.0 100.0 .060 3.00 0 555 556 0 4 CHANNEL .0 530. .0057 50.0 50.0 .016 .50 0 OVERFLOW 50.0 530. .0057 60.0 60.0 .040 6.00 556 612 0 1 CHANNEL 15.0 1120. .0009 3.0 2.0 .035 7.00 0 612 613 0 3 .0 1. .0010 .0 .0 .001 10.00 0 557 613 0 1 CHANNEL 10.0 2450. .0017 6.0 20.0 .035 2.00 0 613 558 0 3 .0 1. .0010 .0 .0 .001 10.00 0 558 614 0 1 CHANNEL 10.0 510. .0059 3.0 3.0 .040 6.00 0 614 615 0 3 .0 1. .0010 .0 .0 .001 10.00 0 615 0 0 3 .0 1. .0010 .0 .0 .001 10.00 0 i TOTAL NUMBER OF GUTTERS/PIPES, 111 LOWER DRY CREEK BASIN (BELOW LARIMER 6 WELD CANAL) FILES: EX100.DAT 5 .OUT 1 100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC. ARRANGEMENT OF SUBCATCH12NTS AND GUTTERS/PIPES GUTTER 20 TRIBUTARY GUTTER/PIPE 0 0 0 0 0 0 0 0 0 0 TRIBUTARY SUBAREA 121 120 D.A.(AC) 22 20 0 0 0 0 0 0 0 0 0 0 0 122 0 123 0 0 0 0 0 0 0 0 0 0 0 0 0 39.1 39.1 32 0 0 0 0 0 0 0 0 0 0 124 125 .0 0 0 0 0 0 0 0 61.2 37 158 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 112 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88.2 40.1 202 302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 101.2 204 0 0 0 0 0 0 0 0 0 0 103 0 0 0 0 0 0 0 0 0 19.3 205 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120.5 206 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256.1 207 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.2 209 259 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 137.1 .., 211 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86.2 252 202 204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120.5 253 255 258 201 206 158 282 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256.1 329.9 259 258 0 0 0 0 0 0 0 0 0 0 0 0 0 108 109 110 0 116 0 117 0 0 0 0 0 0 0 0 0 0 0 0 0 123.3 137.1 262 267 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 368.2 265 267 211 265 0 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 136.7 187.8 269 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 368.2 280 0 0 0 0 0 0 0 0 0 0 107 0 0 0 0 0 0 0 0 0 21.9 281 0 0 0 0 0 0 0 0 0 0 129 0 0 0 0 0 0 0 0 0 23.5 282 281 0 0 0 0 0 0 0 0 0 101 0 0 0 0 0 0 0 0 0 66.4 302 356 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 101.2 303 253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 256.1 307 209 0 0 0 0 0 0 0 0 0 111 0 0 0 0 0 0 0 0 0 160.4 308 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8F.2 310 0 0 0 0 0 0 0 0 0 0 114 0 0 0 0 0 0 0 0 0 51.1 356 280 0 0 0 0 0 0 0 0 0 102 105 0 0 0 0 0 0 0 0 101.2 501 0 0 0 0 0 0 0 0 0 0 401 402 0 0 0 0 0 0 0 0 24.4 502 501 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.4 503 502 0 0 0 0 0 0 0 0 0 403 0 0 0 0 0 0 0 0 0 57.4 504 0 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 17.0 505 0 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 23.2 506 505 0 0 0 0 0 0 0 0 0 406 0 0 0 0 0 0 0 0 0 80.1 507 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154.5 508 507 0 0 0 0 0 0 0 0 0 407 0 0 0 0 0 0 0 0 0 167.4 509 0 0 0 0 0 0 0 0 0 0 409 0 0 0 0 0 0 0 0 0 48.8 510 509 0 0 0 0 0 0 0 0 0 410 0 0 0 0 0 0 0 0 0 94.4 511 508 0 0 0 0 0 0 0 0 0 408 0 0 0 0 0 0 0 0 0 186.5 512 511 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 516.4 513 0 0 0 0 0 0 0 0 0 0 411 0 0 0 0 0 0 0 0 0 24.3 514 513 0 0 0 0 0 0 0 0 0 412 0 0 0 0 0 0 0 0 0 54.3 515 601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 641.6 516 515 0 0 0 0 0 0 0 0 0 413 0 0 0 0 0 0 0 0 0 651.7 517 602 269 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1157.7 518 0 0 0 0 0 0 0 0 0- 0 415 0 0 0 0 0 0 0 0 0 66.5 519 518 0 0 0 0 0 0 0 0 0 416 0 0 0 0 0 0 0 0 0 136.1 520 801 0 0 0 0 0 0 0 0 0 421 422 0 0 0 0 0 0 0 0 401.8 521 802 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490.3 522 803 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.9 523 0 0 0 0 0 0 0 0 0 0 425 0 0 0 0 0 0 0 0 0 65.2 524 604 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89.1 525 524 804 0 0 0 0 0 0 0 0 426 0 0 0 0 0 0 0 0 0 110.9 526 0 0 0 0 0 0 0 0 0 0 128 0 0 0 0 0 0 0 0 0 35.7 527 605 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 146.6 528 527 0 0 0 0 0 0 0 0 0 429 0 0 0 0 0 0 0 0 0 162.9 529 528 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 162.9 530 529 0 0 0 0 0 0 0 0 0 430 0 0 0 0 0 0 0 0 0 165.8 531 0 0 0 0 0 0 0 0 0 0 431 0 0 0 0 0 0 0 0 0 14.1 532 531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.1 533 532 0 0 0 0 0 0 0 0 0 432 0 0 0 0 0 0 0 0 0 37.0 534 533 0 0 0 0 0 0 0 0 0 433 0 0 0 0 0 0 0 0 0 61.9 535 0 0 0 0 0 0 0 0 0 0 434 0 0 0 0 0 0 0 0 0 85.6 536 535 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65.6 537 606 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210.8 538 607 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 376.6 539 538 0 0 0 0 0 0 0 0 0 436 0 0 0 0 0 0 0 0 0 391.3 540 603 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1882.4 541 540 0 0 0 0 0 0 0 0 0 437 0 0 0 0 0 0 0 0 0 1936.6 542 0 0 0 0 0 0 0 0 0 0 438 0 0 0 0 0 0 0 0 0 42.0 543 559 0 0 0 0 0 0 0 ' 0 0 439 0 0 0 0 0 0 0 0 0 107.1 544 542 543 0 0 0 0 0 0 0 0 440 0 0 0 0 0 0 0 0 0 344.8 545 541 544 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2281.4 546 0 0 0 0 0 0 0 0 0 0 441 0 0 0 0 0 0 0 0 0 15.4 547 546 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.4 548 547 0 0 0 0 0 0 0 0 0 442 0 0 0 0 0 0 0 0 0 22.5 549 0 0 0 0 0 0 0 0 0 0 443 0 0 0 0 0 0 0 0 0 66.2 550 610 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2469.2 551 0 0 0 0 0 0 0 0 0 0 446 0 0 0 0 0 0 0 0 0 25.3 552 551 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.3 553 0 0 0 0 0 0 0 0 0 .0 447 0 0 0 0 0 0 0 0 0 32.9 554 609 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99.7 555 554 0 0 0 0 0 0 0 0 0 449 0 0 0 0 0 0 0 0 0 154.0 556 555 0 0 0 0 0 0 0 0 0 450 0 0 0 0 0 0 0 0 0 172.1 557 0 0 0 0 0 0 0 0 0 0 451 0 0 0 0 0 0 0 0 0 12.6 558 613 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 612.0 559 0 0 0 0 0 0 0 0 0 0 453 0 0 0 0 0 0 0 0 0 87.4 560 875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77.5 600 503 504 506 0 0 0 0 0 0 0 0 0 0 0 0 , 0 0 0 0 0 154.5 601 512 510 0 0 0 0 0 0 0 0 127 0 0 0 0 0 0 0 0 0 641.6 602 516 514 0 0 0 0 0 0 0 0 414 115 0 0 0 0 0 0 0 0 789.5 603 517 519 521 0 0 0 0 0 0 0 417 416 0 0 0 0 0 0 0 0 1882.4 604 522 523 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89.1 605 525 526 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 146.6 606 534 536 0 0 0 0 0 0 0 0 435 0 0 0 0 0 0 0 0 0 210.8 607 530 537 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 376.6 608 539 548 0 0 0 0 0 0 0 0 444 0 0 0 0 0 0 0 0 0 427.3 609 552 553 0 0 0 0 0 0 0 0 44B 0 0 0 0 0 0 0 0 0 99.7 610 545 549 560 0 0 0 0 0 0 0 454 0 0 0 0 0 0 0 0 0 2469.2 611 550 0 0 0 0 0 0 0 0 0 445 0 0 0 0 0 0 0 0 0 2487.7 612 606 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 599.4 613 612 557 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 612.0 614 558 0 0 0 0 0 0 0 0 0 452 0 0 0 0 0 0 0 0 0 619.7 615 611 614 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3107.4 B01 0 0 0 0 0 0 0 0 0 0 419 420 0 0 0 0 0 0 0 0 208.4 802 520 0 0 0 0 0 0 0 0 0 423 0 0 0 0 0 0 0 0 0 490.3 803 0 0 0 0 0 0 0 0 0 0 424 0 0 0 0 0 0 0 0 0 23.9 804 0 0 0 0 0 0 0 0 0 0 427 0 0 0 0 0 0 0 0 0 14.2 875 0 0 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 77.5 LOWER DRY CREEK BASIN (BELOW LARIMER 6 WELD CANAL) FILES: EX100.DAT 6 .OUT 100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC. THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 302 303 307 308 310 803 804 875 LOWER DRY CREEK BASIN (BELOW LARIMER I WELD CANAL) FILES: EX100.DAT S .OUT 100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC. *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CPS) (FT) (AC -FT) (HR/MIN) 20 213.2 (DIRECT FLOW) 0 35. 22 166.6 .8 0 36. 32 354.3 (DIRECT FLOW) 0 35. 37 309.7 (DIRECT FLOW) 0 38. 158 185.6 .9 0 40. 202 14.4 .8 2 24. 204 49.3 3.1 0 44. 205 48.7 1.1 0 51. 203..1 . 207 31919.4 3.3 36 0 36. 209 375.9 1.8 0 49. 211 67.7 2.1 1 31. 252 50.6 (DIRECT FLOW) 0 45. 253 507.5 (DIRECT FLOW) 0 35. 255 303.1 3.3 0 42. 258 522.2 (DIRECT FLOW) 0 35. 259 617.4 (DIRECT FLOW) 0 35. 262 463.7 (DIRECT FLOW) 1 1. 265 107.6 (DIRECT FLOW) 1 24. 267 126.5 (DIRECT FLOW) 1 24. 269 298.2 2.0 1 33. 280 71.4 .7 0 44. 281 72.6 .6 0 45, 282 152.0 1.1 0 54. 302 14.4 .0 17.7 2 14. 303 217.9 .0 16.6 1 9. 307 363.3 .0 14.0 1 1. 308 72.5 .0 10.9 1 21. 310 19.0 .0 7.9 1 32. 356 489.9 (DIRECT FLOW) 0 35, 501 63.0 1.5 0 40. 502 43.9 1.9 0 53. 503 64.2 1.3 1 6. 504 15.2 .9 1 3. 505 34.8 .9 0 57. 506 109.5 1.5 0 54. 507 143.7 2.3 1 27. 508 140.3 2.2 1 41. 509 118.3 2.5 0 44. 510 134.8 3.5 0 54. 511 145.7 2.2 1 49. 512 357.2 2.7 1 29. 513 47.9 1.1 0 49. 514 104.1 2.1 0 50. 515 443.3 3.7 1 30. 516 430.1 4.4 1 40. 517 796.0 4.9 1 46. 518 170.0 2.9 0 38. 519 164.1 2.5 0 56. 520 74.9 1.1 1 18. 521 .0 .0 0 0. 522 9.3 1.5 2 20. 523 38.1 1.4 1 13. 524 43.1 1.9 1 38. 525 50.8 2.6 1 45. 526 75.6 1.9 0 41. 527 78.4 2.0 0 52. 528 101.8 2.5 0 55. 529 100.2 2.1 0 59. 530 95.4 2.5 1 10. 531 51.1 .6 0 38. 532 20.0 .7 1 0. 533 22.5 .7 1 39. 534 33.9 .5 1 34. 535 145.5 .9 0 45. 536 124.5 .9 0 55. 537 331.B 1.4 0 42. 538 353.8 4.9 0 59. 539 369.6 4.4 1 1. 540 722.9 4.7 2 21. 541 655.0 2.3 2 57. 542 10.5 .6 1 58. 543 281.3 4.8 0 49. 544 273.8 1.9 1 6. 545 715.8 2.4 3 2. 546 47.9 2.0 0 42. 547 41.1 1.7 0 51. 548 53.9 2.2 0 51. 549 128.3 .6 0 48. 550 737.7 2.4 3 13. 551 12.1 .4 1 8. 552 11.7 .4 1 20. 553 13.6 .5 1 23. 554 81.1 1.1 1 1. 555 301.3 1.0 0 38. 556 299.2 4.4 0 44. 557 31.0 1.0 0 44. 558 723.3 4.9 0 51. 559 279.9 5.1 0 41. 560 52.4 .6 1 10. 600 185.3 (DIRECT FLOW) 0 59. 601 497.8 (DIRECT FLOW) 0 50. 602 544.1 (DIRECT FLOW) 1 12. 603 905.3 (DIRECT FLOW) 1 40. 604 44.5 (DIRECT FLOW) 1 21. I 605 88.6 (DIRECT FLOW) 0 41. 606 486.6 (DIRECT FLOW) 0 35. 60.3 (DIRECT FLOW) 0 . 608 436936.5 (DIRECT FLOW) 0 5858. 609 228.9 (DIRECT FLOW) 0 35. 610 748.0 (DIRECT FLOW) 2 58. 611 738.7 (DIRECT FLOW) 3 12. 612 694.7 (DIRECT FLOW) 0 50. 613 724.3 (DIRECT FLOW) 0 50. 614 737.1 (DIRECT FLOW) 0 50. 615 915.4 (DIRECT FLOW) 1 0. BO1 .0 .0 27.8 10 0. 802 .0 .0 32.7 10 0. 803 9.8 .0 3.5 1 36. 804 4.0 .0 1.8 1 50. 875 56.4 .0 3.1 0 59. ENDPROGRAM PROGRAM CALLED 11 1 No Text 1 w a ZZ7 w, m(- Lp N O> O W W ¢ �Of 0 o0 LLJ FaQ��C' w i W Ir 0 !J ab0�l 3 N FI�IJ f r o l_I+JC-pr C w 0 w z i [1 11 DEVELOPED SITE HYDROLOGY i 11 j i Pj DEVELOPED COMPOSITE RUNOFF COEFFICIENTS FOR WATERFIELD PUD Prepared by Bud Curtiss - Northern Engineering Date: Revised June 19, 1998 File: WATCOMPC.WQ2 Basin Area Imperv. Pervious C Imper C Pery Comp C No (ac) Area (ac) Area (ac) OFF-1 75.80 0.00 75.8 0.95 0.20 0.20 IRR-1 0.81 0.00 0.81 0.95 0.20 0.20 W1 1.00 0.40 0.6 0.95 0.35 0.59 W2 3.08 1.64 1.44 0.95 0.35 0.67 W3 1.49 0.59 0.90 0.95 0.35 0.59 W4 1.68 0.66 1.02 0.95 0.35 0.59 W5 2.54 0.87 1.67 0.95 .0.35 0.56 W6 1.60 0.65 0.95 0.95 0.35 0.59 W7 3.50 0.15 3.35 0.95 0.35 0.38 W8 0.99 0.49 0.50 0.95 0.35 0.65 W9 (Assumed) 13.01 5.25 7.76 0.95 0.20 0.50 W10 0.59 0.30 0.29 0.95 0.35 0.65 W11A 0.30 0.04 0.26 0.95 0.35 0.43 W11 B 0.73 0.66 0.07 0.95 0.35 0.89 W11 C 2.43 1.42 1.01 0.95 0.35 0.70 W12 1.68 0.67 1.01 0.95 0.35 0.59 W13 2.74 1.58 1.16 0.95 0.35 0.70 W14 0.62 0.48 0.14 0.95 0.35 0.81 W15 1.35 0.60 0.75 0.95 0.35 0.62 W16 0.44 0.29 0.15 0.95 0.35 0.75 W17 1.09 0.72 0.37 0.95 0.35 0.75 W18 0.68 0.45 0.23 0.95 0.35 0.75 W19 2.09 1.39 0.70 0.95 0.35 0.75 W20 0.60 0.42 0.18 0.95 0.35 0.77 W21 0.83 0.57 0.26 0.95 0.35 0.76 W22 0.82 0.50 0.32 0.95 0.35 0.72 W23 0.47 0.25 0.22 0.95 0.35 0.67 W24 1.40 0.87 0.53 0.95 0.35 0.72 W25 0.62 0.53 0.09 0.95 0.35 0.86 OFF-2 2.67 0.12 2.55 0.95 0.35 0.38 OFF-3 2.23 0.12 2.11 0.95 0.35 0.38 OFF-4 34.49 0.00 34.49 0.95 0.35 0.35 VD-1 0.65 0.38 0.27 0.95 0.35 0.70 VD-2 2.46 0.05 2.41 0.95 0.35 0.36 VD-3 1.41 0.83 0.58 0.95 0.35 0.70 VD-4 3.15 1.73 1.42 0.95 0.35 0.68 NET SITE 38.47 18.40 20.07 0.95 0.35 0.64 (Excludes Basin W-9, IRR-1, and Offsite Basins 1-4, VD-2,4) i I i �l N LL 1 1 1 1 F z z ZU O U LL O w F 0 C4 z d 0 O N I ci EE EE E E E E E E WIr E E E E E �n nn W) mm m(o mmm N N N N W » 77 M OC OB m ao U) GO OGVU) O) O mO() m n U1 P Co r' C V U)mNNP O �nNCN -i Dr 00 00M 00h rv M M 000h00 h�N0N0C�4 CN CV tV �O) l+f N LL UN Z W O F D Io L OJ U)Ln V V V V NN W O/ P PP P PP O COP P 00 V V M Cl) NNNN co CO 00� V V ..17. C .Ol .(V CV tC (C CV CV U)U)M1C101 MMOO. ���. P PO O U) U) CO ao m m Co CD P P O O N N P P 0 W O O P P O 000 w m P P O O w0 V O O Nl9����(yNNN(V pam w W -) W 0000000000000000000000000000000000000000 (0 U)00 V V O O N(700 w w 00 w w U) 0 w w. N N 0 U) U) U) 0 w U) w w w P?--00 ww LLJ > O a 0 O O N N C O O O N N N N .- 0 0 f�) (O C O •- '- O O /% (O C O O O O O O O O C O O v N 2 0p 0000000 0 i00 000000p W OO W W OOOOOO�Op P o000 p0p00p p0 p0p (Op pO pOU) NN �•�-N()/ NNNN(p (ORN�rtNO (NO aD OD NNMMNt",NwMI+INN vv�' Z W J V m V P 0 0 N V N1mmPW0 V PP C h V WNMWMN016 CAI-z 66(O COI 64 6Nr�: V 6.-0 V N V 666 N666m1 w r 0 0000000000000000000000000000000000000000 z w w w o o o o o o o o o o o o o o o o o o ro W O O O O o O O o O O O O O O O O O O J O \p Ln G C 11 q� N N C`! CV N C`! N N N N N C`! N CY N N G O N N N CV CV N (V N N N N N CV CV N N N N w U) O= OOLOLOOOOOOooOOOOOO00000000000000000000000 :3F NNOOI'�)(%U)f0 CD aO aD CO U)N OOU)UlC� l+f NNE U)v)U) O o V V U www �� �f' W MR Q Z CC V ~ W N NN N U) U)(O(O b W� h NOfOMM mm CR ((QQ Vim, CQ CO r n UUlU n CD O �(NQ Nn N . . . .7 00000000000000 00000000000000000000000000 0 w cq cq Cp pp m't COaa 000p p��-�mmpoo(o (9 co 17 W aovvNN((OO((O Va CO CO CO (O 00 V V f0 (ON �(O (O U10 MOON U)OI�PP (O(OP V V . .(O l"1 . V V Q W ONO W 00��M 0! NN O)f`YOO OOOOOON(V (V NOO C O oa z U) C9 N Q m U m Z) w LL R' LLN l0 V U) (D C CD O) O N_ C� V h Oco 31 Fill Lm Xlzr xr N O' O N 1 � V 1 N C 7 7 Q N 78 Q Z W 0) LL o a W W y WLL LL ~ F � U 0) } 0] O� S2g > D O 0] J CA U 0 Z 0 E EE E E E c c c Y E E E M C L C W E EE n hm m mm mmm N N H IO V V N M M V O CO O M m O m m h O O m O N N O N M O W N M m CNh p� CO Ch j0 V 0 m CD m m W m 41 m 0 N m V 000 W NNNNv 2f ZF E V LL UU Z FO 0. OJ UV M 01 M M m m m m m m m m M M O O N N O O O O M M fA h N N t� h h h C �ON7<V O N N 6 l7(7 6aD aD lA Wi N N 0'000 w 0 Y V NN w.0 w0 FEo a0 c000/�l�hl�fOmmm00t0 f00)t000(D fD001OOhNOO1f1N N �NNNNN fV a W W W > J W 0000000000000000000000000000wwoo a0 a0N O1�f�l�hmtO tOmhbfOmmtOrommrc m<ohMONf�P00 e O e m G C 0 0 0 0 0 0 0 0 G O 0 0 0 0 0 0 0 0 0 C O C C 0 0 0 0 0 N p Op p Op p Op p Op O p O p O LAO toNNR V mmMmMM O O7 V NN mN V V NNc0 aaDDOO Z N W J M 01�1l-h V OMmOh 10 m 111.717 m ON m M 0 O h M 0 mO w C F E O N� V �oD�tO�P)�hO1NMCN� GhNM1G1� fV <Goif�l+)(C�fCoi N N N N M M N N F 00000000000000000000000000000000 zw o0000000000000mmoommmm�o�ommv)u>mmmm J O e O N N N N N N N N N N N N 1 1 0 0 f V N G O O C O O O O 1 � C D C C D O W � ... 8 m 00000000000000000000000000000000 M M fV (V m V N N lO lO �O 1=z-- F- Z Z J N NNNN�O rf�mmNN w 0 N F, m mmmm mmrOmmOO(D !O WIn 00 w 1. N r 0�. N m N Nn 0 0pppp aapp 001pp O�r1 �v1NNI�POONNf�PMm mm�O �n OJm��mu) �0 t00f001 tO OD aD aD� V V V 10 fD V fOm QQ mtONN7 V � V V � Q W v N O G N fV 0 0 0 0 O C O O C C N aV N N V G O fV N M M Q Q N (Do m w N F.-co m N N N N N LL LL LL N mLL _ N LL LL HE O O W T 2 OQ (A O 0 m LL Um c mU UNcO C Ca G g �� �a8 aQW m C CL VY m C e G O O > O U a G Q 3p 0 E cowllE�c E EG 0.2 UJ9� 33 3�}g 33��' a�,md'�(n3cgU f9S Q OpHWHIlIU. LLLLLL LL ,Q1 O �OCv'N W W W > � Z r Q Q r c 7 N't 0' R M Q n Q O l*� r m cp cl (p m N n C) m N M r O n g r M Q m N M t O V 1 N N V r r W W `'' 0 M O n M (i N N N V .. Lo ao ao CO ao m (9 CR O Cd r w a wV yW -(�o vmco o 0 a 0_, NcV O(V N O O O J LL r Q Q r M N Qle M le n'T 0 nrm m M Q Q r m m m N n m m N MrO n OrM Q m N M m O6cV V wo,voNN 66CNO m 4 O(V (C C1 CV C NN4r(66 :q C5 cVrC64rDFUyM Nj r r U^vr H � LL r r r r w 0 �^ N m m m Q ~ 7 O r O rt LL r Q Q r M N Q O Q M of n Q O n r m m M Q M r m (O m r n m m N M r O n O r M Q m N M m 00 m O rQ10 N NQ M N10 aDNO rm O Nm ONr �N mr� r cpOrNO r MQ r 10 y^r yr �Nr _z O Q O O m m m m n O Q O m N m m O O M M M M m m Q N m m m m m n m m m mm000�mr(ninmmomipnn oo vmrv?QMoe mnmM m(Ir�toomnoom (p yr m0 rMst rrMNr�f�t+jOOMM Or1000r mNmrNOch CIOrrO rrOrN N n r r N N N N r m O O N O O O g O O I O I O O p m m O( O( C O r O I O O I O O O c l 10 m c g O O O m 0 Qr�QM oaD aO NNNNNIONN NIA 1�Q chQrQOp I� nmm� m W _I�IONio _ v Z �O ��pp 1O p p 1O 1O R.�p (p NN wmcO MMM wW)MIO W IO tO cC 820 emm OIN N a T^ mr WN On W �8 p2nn ne nA U m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0666000 0 60 606060 000 0 0 066 M nMNo� Qo mow.m0mQomOOmm.u�Nmmmipnn,r,rnmmmoNMmv,,oQ NM0no06 �rpafr1rOOnMfm� mQmMmQmFE....rr^NMMM�N Omr ... ra=m M M o 0 waE H N n m M m W C LD a o (o n 0�.9 LL Cl) wWC Q -j E Z P: 2 r Z vM w J LL LL LL LL 0 U) O (j O O z N LL m m N Q m m LL O Q 1 r m O 3 0 m r r � CQ O co r 3 0 � m 000 N LL N ' q m n ^ O N M Q M N r 1 O N m N n m l m O m (y0-rN�MQM10m mncbmmmrml7 rrr(; r(�rrrrr�rrrrrr rr Nr 0�33333333333333333333333333333>3333333333 oor r NMQ m nm 0)r Q. LO m N 333 3 33 33 33> 3 3 I 0 II V r y } m °D c E Y c n a m E m C n C C 1r U m$ O E m ro p. j Q' N 0 0 C E a C C 0 J J J0 U a Q33 UU 3U ¢ _ Q�._ o o °(l1 °{nCO Cc° ° C 16 GOo C 3 O O 0 O OgO .°2 NLO' 2$ O LL ❑ l l r LL r LL O r o�Rl r W J v w W > �Z �Nm Q NI-�N fy�MNm M Mm m �mn"m(, 0� W* MAN U W O m m rn m Q �^ m o (o W w EL U U) w a -� (o m o a o 0 J LL mom UA P�f�N��Q NI�N (�MN(O M M m 10 QM,Nf� Q Q O j N Q 10 r� 2 LL r: O N O W o— 0 M M O CM 0 rLL ao�mmMm �n N��vN �N 7 f7 fp 0 (Uo-� wN Ime-f�6N� 0 MAN OOMNm Cl)N (' a m �-O 2 D 0� ❑ Q M N CA N I m I M O M M N m m m N m m C, Q O a D ItN m m 0 N M N_ N Q Q m Q (O La Q m .OW.. O(7b O(G lV (D O(V O (V l7Ot() RC o CV CV ('5 In N N 0 M 0I mOOOl fcoO N co M(O CO m O� Om0 O LO Z n N�N�CM M N i UO N N Z_ n N(No.n(^o. (ro. (No.nM UA aDm U M,Na M M (O U m 000000000000000 0000 0 do 0 0000 m m M m F En m O N N l0 MAN N 0M <«O N N N Fa=m M N (l 00 0 wa E 2 �r m I0 3W sto m 0 0� LL N ww c J M Q z p — 2 Z vM w J LL LL M LL LL ❑ 0 0 > 0 > > > I ❑ ? LL N N O N LL N LL 1 1>1 m N N N LL N RN NNN o �LLto LL LL 0 0 L1 L.1 > > (� 10 ^ N^ LL N 1 N LL N N N LL N LL N N Q Z q Z N 33333o3C3�333o33303o>3 0 °a> °a a U �0 N N N N N M N Q 0 33 3 3 3 > o tp N II U Fl r U t ._ U �00 m LL N p r L L Y C Y m U c m C C V C C� m 0:9:92�2 m £ ° m �� ac m ma Q N 0.2003 ��,eOc U� o a'� 00� �� 0 dam LLI .0. o e Y@@ r Y{00 O C A O C C c m c; G c m d o m m c Q { O 9 i m$ p % O U 3p a Q O m O O O 0 p O 0 �O O V O',m0 .p. Q CC C =CQ C Q O pr�C y m�Km 3M 3�U pig p U3p 3 3 3p 3s3 —' m X 0 0 0 s 0 Q O O 00 O 0p 0 O s B O 0 Q w r r r LL r LL LL r r r r r r r— LL r LL LL LL r LL LL r LL ,-.Ogg W W W > cr Z m CDmnnn 10 N10 N 0 V nvo no 0 mA o M0n00 0 nO D nvM n nn O OO n� W 646 � E N0 D D M NhnO(O OOnNM C NNOMO0Mmp0N-4 w ... 0 W t(0p f(Op0p O 10 t(0p M UQ `b enp N 0t0 �t�10 M w Q w U � W tgio oa;(i S a C) ^7 NlV 0 N N C 0 J N LL Mt00wnnnnLoNLo" w le n e w N Co b GO Q In M to N.w O con w co n le n n n wU)On �U �M m�b�ODN NOD Of 10oi R a(O A C0MNf7 co 0) GmmtmN Nan NM Nmb4O f� /O O z.~0..� r� K LL M r? M rh wZ.@� m inm in OLL grqwqnnnnION10NrOv,ne(OnCRki w 0NgN70nOnroconvco Otoen UU W Z I O -qOD CD 0) co C) 0M CD p OD fD e-sM C c n ccr 6 6 of 6o of ar: M01664 co cqN Nc� M10 0 rD �O N N N N OQ CD0D 000000 �n1f1 t0�Mt0m0OMM O M M M(D ON(O N101p `Of00m n01 t�i_c. c4inno (O nfOM� (O OtOomno w uo 1 IOO�M V—N'-'-MN�-pnMOO t7 M0 �66 6f4 ONOM^Opf o00, N pp pp tC�00I: pp OO OO �t 0O pp pp pp pp NNpp OppJ Oppf OpM ppN 01pp00pp 0mpp0II OO oo Npp NNpp 0 V ppOCl) IT ((O0 rn F,0WoeN NdNNWWrimv+nc+np66L666cua66%r:M0i60666 wL2° z ` OOOIn tOONQ) O)D1m rnnOD aO 100 Mt0NM0)rp NO00t O W N" W Nn N nN C t01010 NN M OtD NNtO OlO t0101010 M bt0 lO t0m OIOO aD n bn W)nODn n(O nn n U O O O C C O O O G C C G O C C C O O O C G G G O O G O O O O O O O O O O O G C O G C G M n � M n n OntO torO ND C On�NDOtO tOO 0D Op ND ND MD O c mM 0n OtO 6 MM DtO nW aN Mm nMOR OOO OM6c6L66ONV WO cj r E M O M CO COCO M M NM M —M M M �0 w '� 5� O O wa E 1- r N n M M 10 t0 N W C W — LL) V O f0 G 0 � LL rn W W C W M _ zr E Z vM w J LL U O U _Z LL U � O (5 p N N a LLm m N > > (fl M LL O < < (63 O cow v� ro 3�dma�UO vy ��Qp��Qp MNMOC� ��—NON---- LL0' t NMIq O) N� tow cb nc%� w C;� OO the (M 0�333�'333333333333333333333333333�33333333 oo� o vto� m 333 3 3 3 33° 3 F 0 z CD U LU JO z Z LL 2 w F } M w z_ 0 tp II U U 0 W N W H D ¢U 3m C 0 > C g g w O a a c c o c c i c N a o c �. mc� c'eo OcE'� o Eam'a w U a ¢'3'- UU gCL 655 3 3;U 3 E@E{nn E@n O Egg E@�n O O p IL �On �Cn @O gGg }9 3 5$ m 3 Sc OO O LL LL LLFH LLLLF H26 OIL(LOLL U m O N FO W W W > MZ N(O� M ON O00 (� OEM (Ott) ON O(7 f7 aD m N 1� IOLO UDC W pOmp Nn NN(O 10 fONNNOG010� (010 Olm s 7r0 n W �� N N 0 t0 tD 9 Uto av� td m W wV �w a -- o� 0 o 0 J JLL N(D�MON70 a r" OD M(O tOoMmo OR OON n O m m 10 'N Nm(O LO M t0N NN� OD 10 (O 10 LD OD O f� 1� 0 j �� vW N N H D LL (7 (7 O m SZ' N m Cl)m0 0 F-LL N(O 7 q q V 07 n(O q(O b7ON rmMn OD ODO UO m� W z 10 I�00(D tfi t00 NfV NOD 10� (ON ('� OD fp a vm N N M m m m m (p LL �� N N 0 C (O(OU) 0 (O to q COtO t-t0r V OD RNfO (00 NOO V q (O W UO W O ¢ NO Mt00 NNODGNN �NmON ��� NNm 0 OO(e ptri Nitirnp p�M pp p ptp8m88vad ol�NvNvn(cMm� Ne�QN 88 U" c° p8i oMf mmmm 440 O W Z .v ^t0 t0 (ONNOOD (O f�10 I�NIDS(O OD NLOOM oww O r NNmmr- (O mWWNNNmo WN m m l m mm(O W UODO G G O C O O O C C G G G G O O C 6666 666 o OM O D)tA(00) OO ODD m n 7 7 00 7NN (O a a — O p F- E" LOWWtaMW M-ee�COW000 rip) of om (o(o (c N N � M M C N N m t e N N N N �a cm m N 00 0 wa m tp W c w_p (c c OM E LL m ~ W J M O z F 2 H Z =m W J N LL LL 0 0 0 0 p Z N 0 0 (7 > Q LL N v N N ty m (v� N O IN LL N� lLLL U tLLl (�I N N LL N O O O > > N N N N N N (7 0 7 CO m m ) P!N^LL^NNNLLNLLmN NZZN033��NLLN 30 3t>3 a33333303333033 0 > > a Q of m le N N N N N N 0 a 8 3 33 3 3 3 > > > I CD o N N >U U U d d a: a d p Lcmi Hc H O U Sm c�oUOo•U>-Nw3€c"ca" °o c csaa�c�c )pyc ci sU le o� 5x 5 cmo°UdR mU m 8UUo 00)4)r�3U oit C`oLE �ddo�QNa0)0a)mvaOLLTV,NEE>.0o>�L3Ta �cmomo Ucd03en cQod0dm LLC6FNHpLLLLLLomUdo vJ Cf a > LL LL r Q O a C7 O Z 000000000000000000000c0000 J 0, M f� f-- 1-- 0 00 v(O O 0 O CO f�- V h(OO v(O 00 m MN 1-- LL 0 6C66:4646r-66C66CC4C64r.: F„ V M N N (O O N N N M M O (� ... N w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0 11J MN���t Of��CONN �O10 (D 1�7n MNCO N, 0) tONNCO LO0 Ot�W 0r, r�N� v N W i i i Q i i 00(00 U NNO0to 000 00 00 (0O3IN�a IO-f(�0f(--0 N 0 r-_ w m m r-_0 a O O O O O O O O O O C O 0 0 0 0 0 0 0 0 0 0 0 0 0 (n E U 6 OO co0 co v IV SON W 0w N�04M M M 0 N N(O� 0 CL 0000 V to (O�CO 0) tO�M�(O 0 N1, 7(O� V V r zd n 007�� N a 00 N O N Ci N C O c(wi CC � O c6 N� CM ' M Q W 0 0 � a U O O W U NLL a m LL 0 LL LL N LL p LL p N '�� NNN O > W N O� nO�CM N(001�r� V (ONNM V (LL L (��M V (0 (OACO(,%e-C6 i ����NN� Z � � � w .o a c uL 7 NMtT (OOIlCO 0 NN C m m �m U N m'g r M W t\ O CA r O) W t0 ^ W W W M N u) O ..�.. M ui r,:CD CO 6 O) 6 r�(O0 i 46NNr r OO N 0 L N m m T _U C O O y r- N M W N h b W r N r a M M 0 WM t0 O ��r �O)O N(O f�r(OhOONrrN'7M10 Wt0 f r m c W (p r r r N N N N N N N N N N N n N O C L m T 0 N C CD W a? v6C6 r 066 C6r,:r,:660446 O Z >+ N - C 6N6�r�-�r��OGGCCCOCGC W > W > > O w 00� r co u) N r` O W N M O h O N W O I-t O M to 0^^ M r�: OIL O tO Wllga tnbPM tl1 7 3 0 E (p > Cp r (� f` (7 M N r r 0 Oj Oj W W P !� W W r r r r r r r r r r r N Q V F O c W W • s s • • y 7 O O - 00 O R m >r.L t` N t0 W W r 0 O M r 0 W r r M 0 W N M O C v N N W Nhr�OhtONOWdNOW WtONr Z N M N M 6 4 4 V M M M 6 N N N N r r r r 0 o> O 3 w LL O to • s • t m 7 E C ` � � N F E C m C) > O m r q M 0) N W N t0 .4 M N r O M W r N W b MR M N O > r m n r n r W r M N W-q N W� r 06 C m (n j ui Oi n(O W uj6 aaM MMN NN v E 0 u Q p N O> l L y> Ol LL N � N N m m y 0 Orz 00000tO00w0000wN0r�LO0LO 3 w 0 c 614 6 M M v C)) ;` t0 li C7 N N N N r r r r r r W D 0 q? 3 .0N 0 3 Q 3 ~ O N M p OOt000000tOOt0000000000 00rtONto0)r(Mt00r, CO OCA0000r CY ma V) C C E CCGci N N N N N N N N C7 C7 C7 CO C7 ? O` 0 LL r 0 r N 4) E C W OtOOt00t0OW0t000000Or Nt00000 E r r N N M M of R W W 0 n W W r r r r r N m 7 C E u) M 0 O O c C O 0 E F- W N m U (t( u1 M N C N m O O E E 0 0 U O W ■W I I INTERIM 1ST FILING SWMM MODEL I 1 u I �� M M Moa>� ��„o�,�- Flo-,-���,_.►� l5T_ _ >31SI �l Obi= - I e>,y Pam Nor � a IP,3 Mva > ,-5ar=,IQS -Wit 6w lla� 6) 18 I I C ems, �s ���� t3os,us IZ-Z3 14 l d _ 17 �,t! 7s4,Zs 7ET'EI�!-nc�rt, OAP - 3 Pohlo 3oi �I 3aZ 303 3c -7 SY�a.SS ' 104 c�s 310 2 CID IZ ZO ZA.s, has vD 2- I SWMM MODEL PARAMETERS Prepared by Bud Curtiss - Northern Engineering Revised August 26, 1998 File: WATERISWMM CALCS.WB2 WATERFIELD 1 ST FILING Weighted Weighted Weighted SWMM Basin Area Imperv. % Imper % hnper Avg Length Basin Width Basin No (ac) Area (ac) (avg) (ft) (ft) 10 OFF4 34.49 0 10.00 10.00 500.00 3004.77 11 11C 2.43 1.42 58.44 58.44 100.00 1058.51 12 VDl 0.65 0.39 60.00 60.00 100.00 283.14 13 W1,2 4.08 2.09 51.23 51.23 150.00 1184.83 14 W 12-23, OFF2 16.08 8.04 50.00 50.00 225.00 3113.09 15 W9 13.01 0.00 10.00 10.00 250.00 2266.86 16 W3-8, 10 12.39 3.71 29.94 29.94 200.00 2698.54 17 W24,25,OFF3 4.25 1.52 35.76 35.76 195.00 949.38 18 W 1 IA,B 1.03 0.70 67.96 67.96 100.00 448.67 19 VD2,3 7.02 2.91 41.45 41.45 100.00 3057.91 20 DC-1 108 0.00 10.00 10.00 1950.00 2480.00 C�DS� wt � lV�ol ....i....:I �i.1vEYd,iJGf� I .�,,y I ar�?I .�LE4 �� I M�EQ• ; I ac;?o.S 34.49 I$ r , I t I �oS �OJg 2.43 'S8 ' 1 Z I 13717 l.l:»s 4.oe31 1 14 ' I S I ■ 1 b � � � � � uC�s Z699 I Z.39 � � 17.I ] I- I I O.Br . Get. JJ _ ' I � I I i I i i i t � I 44 . r I Z-X/ SLore o/ 0 aL OIU r—r) --- i i i I i ; I I :4j, - 4 y Met.= nLi.-/ S2 1-7 1 A ddr zr5; I I ' 2 1 1 2 3 4 WATERSHED Waterfield 0 SWhM9 for First Filing 100-YEAR Rainfall Event 1 240 0 0 5. 1 1. 1 25 5. 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 ' 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 1 10 301 3005 34.5 10. .012 .016 .250 .1 .3 .51 0.5 0.0018 1 11 305 1060 2.43 58 .007 .016 .250 .1 .3 .51 0.5 0.0018 1 12 304 283 0.65 60. .004 .016 .250 .1 .3 .51 0.5 0.0018 1 13 307 1185 4.08 51. .006 .016 .250 .1 .3 .51 0.5 0.0018 1 14 304 3113 16.9 50. .006 .016 .250 .1 .3 .51 0.5 0.0018 1 1 15 16 305 305 2267 2700 13.0 50. 12.4 30. .006 .010 .016 .250 .016 .250 .1 .1 .3 .3 .51 .51 0.5 0.5 0.0011 0.0018 ' 1 17 302 949 4.25 36. .006 .016 .250 .1 .3 .51 0.5 0.0018 1 18 306 450 1.03 68. .005 .016 .250 .1 .3 .51 0.5 0.0018 1 19 300 3060 7.02 41. .007 .016 .250 .1 .3 .51 0.5 0.0018 1 20 310 2480 108. 10. .015 .016 .250 .1 .3 .51 0.5 0.0018 ' * ############################ + END OF WATERSHED DATA ####################### 11 10 11 12 13 19 15 16 17 18 19 20 11 10 11 12 13 14 15 16 17 18 19 20 1 300 1 0 1 4. 1000. 0.002 4. 4. 0.035 10. ' 0 301 300 11 2 .1 1. 0.001 0.1 0.1 0.013 0.1 0.0 0.0 0.3 1.7 2.2 2.1 4.8 2.4 8.2 2.7 12.7 3.0 13.7 3.0 14.2 3.0 14.7 28.8 15.2 81.6 15.8 149.6 1 302 301 0 4 4. 400. 0.005 4. 4. 0.035 10. 50. 400. 0.005 15. 15. 0.035 10. 1 303 302 0 5 4. 650. 0.003 0. 0. 0.013 4. 50. 650. 0.005 15. 15. 0.035 10. 1 304 303 0 5 3.5 400. 0.004 0. 0. 0.013 3.5 ' 50. 400. 0.004 15. 15. 0.035 10. 1 305 302 0 4 0. 1125. 0.005 4. 4. 0.035 10. 50. 1125. 0.005 15. 15. 0.035 10. 1 306 305 0 9 2. 50. 1000, 1000. 0.030 0.030 4, 15. 4. 15. 0.013 0.013 10. 10. 1 307 304 0 4 0. 1500. 0.015 4. 4. 0.035 10. 50. 1500. 0.015 15. 15. 0.035 10. 1 310 300 0 4 0. 1900. 0.006 50. 50. 0.035 10. 50. 1900. 0.006 50. 50. 0.035 10. * ############################ + END OF CONVEYANCE DATA ###################### 9 301 302 303 304 305 306 307 300 310 -1 1 ENDPROGRAM ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 WATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** Waterfield SWMM for First Filing 100-YEAR Rainfall Event NUMBER OF TIME STEPS 240 INTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 .00 Waterfield SWMM for First Filing 100-YEAR Rainfall Event SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. 10 301 3005.0 34.5 10.0 .0120 .016 .250 .100 .300 11 305 1060.0 2.4 50.0 .0070 .016 .250 .100 .300 12 304 283.0 .7 60.0 .0040 .016 .250 .100 .300 13 307 1185.0 4.1 51.0 .0060 .016 .250 .100 .300 14 304 3113.0 16.9 50.0 .0060 .016 .250 .100 .300 15 305 2267.0 13.0 50.0 .0060 .016 .250 .100 .300 16 305 2700.0 12.4 30.0 .0100 .016 .250 .100 .300 17 302 949.0 4.3 36.0 .0060 .016 .250 .100 .300 18 306 450.0 1.0 68.0 .0050 .016 .250 .100 .300 19 300 3060.0 7.0 41.0 .0070 .016 .250 .100 .300 20 310 2480.0 108.0 10.0 .0150 .016 .250 .100 .300 TOTAL NUMBER OF SUBCATCHMENTS, 11 TOTAL TRIBUTARY AREA (ACRES), 204.26 HYDROGRAPHS WILL BE SAVED FOR THE FOLLOWING 11 SUBCATCHMENTS FOR SUBSEQUENT USE WITH UDSWM2-PC 10 11 12 13 14 15 16 17 18 20 INFILTRATION RATE(IN/HR) GAGE MAXIMUM MINIMUM DECAY RATE NO .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00160 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 .51 .50 .00180 1 19 Waterfield SWMM for First Filing 100-YEAR Rainfall Event HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS ' TIME(HR/MIN) 10 11 12 13 14 15 16 17 18 19 0 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0 15. 3.3 1.1 .3 1.4 4.2 3.1 3.2 1.1 .5 2.7 ' 0 20. 5.8 2.3 .6 3.1 11.1 8.4 6.1 2.3 1.1 4.B 0 25. 8.9 3.5 .9 5.0 19.1 14.5 9.4 3.7 1.7 7.4 0 30. 20.4 7.3 1.9 10.1 37.5 28.5 20.3 7.6 3.4 16.3 0 35. 50.8 15.2 3.9 21.2 77.6 58.9 46.1 16.5 6.8 36.2 0 40, 62.5 13.3 3.5 20.3 77,1 59.2 48.3 16.9 5.9 34.6 0 45. 55.2 6.6 1.8 11.5 46.6 35.7 33.0 11.0 2.8 20.1 ' 0 50. 53.8 5.0 1.4 8.0 36.1 27.7 27.7 9.1 2.0 15.5 0 55. 48.9 3.6 1.0 6.7 28.6 22.0 21.8 7.3 1.5 11.2 1 0. 43.8 2.6 .7 5.0 22.4 17.3 17.1 5.8 1.1 8.3 1 5. 38.1 1.8 .5 3.7 17.2 13.3 13.1 4.5 .6 5.9 1 10. 33.1 1.3 .4 2.6 13.3 10.4 10.1 3.5 .6 4.3 ' 1 15. 28.7 1.0 .3 2.1 10.5 8.2 7.9 2.8 .4 3.2 1 20. 25.3 .8 .2 1.7 8.6 6.7 6.4 2.3 .4 2.6 1 25. 22.3 .7 .2 1.4 7.1 5.6 5.3 1.9 .3 2.1 1 30. 19.8 .5 .2 1.1 5.9 4.7 4.4 1.6 .2 1.7 1 35. 17.8 .5 .1 1.0 5.2 4.1 3.8 1.4 .2 1.5 ' 1 40. 16.1 .5 .1 .9 4.6 3.7 3.3 1.2 .2 1.3 1 45. 14.6 .4 .1 .8 4.3 3.3 3.0 1.1 .2 1.2 1 50. 13.3 .4 .1 .8 3.9 3.1 2.7 1.0 .2 1.1 1 55. 12.0 .3 .1 .7 3.4 2.7 2.3 .9 .2 .9 ' 2 0. 2 5. 10.8 9.8 .3 .2 .1 .1 .5 .4 2.9 2.3 2.3 1.0 1.9 1.5 .7 .6 .1 .1 .7 .5 2 10. 6.8 .1 .0 .3 1.7 1.4 1.2 .5 .0 .3 2 15. 8.0 .1 .0 .2 1.4 1.1 1.0 .4 .0 .2 2 20. 7.3 .0 .0 .2 1.1 .9 .9 .3 .0 .2 2 25. 6.7 .0 .0 .1 1.0 .8 .7 2 30. 6.2 .0 .0 .1 .8 .7 ,7 .3 .2 .0 .0 .2 .1 ' 2 35. 5.7 .0 .0 .1 .7 .6 .6 .2 .0 .1 2 40. 5.2 .0 .0 .1 .6 .5 .5 .2 .0 .1 2 45. 4.9 .0 .0 .1 .6 .5 .4 .2 .0 .1 2 50. 4.5 .0 .0 .1 .5 .4 .4 .2 .0 .1 2 55. 4.2 .0 .0 .0 .4 .4 .3 .1 .0 .0 ' 3 0. 3.9 .0 .0 .0 .4 .3 .3 .1 .0 .0 3 5. 3.6 .0 .0 .0 .3 .3 .3 .1 .0 .0 3 10. 3.4 .0 .0 .0 .3 .3 .2 .1 .0 .0 3 15. 3.1 .0 .0 .0 .3 .2 .2 .1 .0 .0 3 20. 2.9 .0 .0 .0 .2 .2 .2 .1 .0 .0 ' 3 25. 2.7 .0 .0 .0 .2 .2 .2 .1 .0 .0 3 30. 2.6 .0 .0 .0 .2 .2 .1 .1 .0 .0 3 35. 2.4 .0 .0 .0 .2 .1 .1 .1 .0 .0 3 40. 2.3 .0 .0 .0 .2 .1 .1 .1 .0 .0 3 45. 3 50. 2.1 2.0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 3 55. 1.9 .0 .0 .0 .1 .1 .1 :0 .0 .0 4 0. 1.7 .0 .0 .0 .1 .1 .1 .0 .0 .0 4 5. 1.6 .0 .0 .0 .1 .1 .1 .0 .0 .0 4 10. 1.5 .0 .0 .0 .1 .1 .0 .0 .0 .0 4 15. 1.4 .0 .0 .0 .1 .1 .0 .0 .0 .0 ' 4 20. 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 4 25. 1.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 4 30. 1.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 4 35. 1.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 4 40. 1.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 4 45. 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 4 50. .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 4 55. .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 5 0. .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 S 5. 5 10. .8 .7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 5 15. .7 .0 .0 .0 .0 .0 .0 .0 .0 .0 5 20. .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 5 25. .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 5 30. .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 S 35. .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 5 40. .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 5 45. .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 5 50. .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 5 55. .4 .0 .0 .0 .0 .0 .0 .0, .0 .0 6 0. .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 6 5. .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 1 6 ' 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 B 8 ' 8 8 8 8 B ' 8 8 8 8 8 ' 9 9 9 9 9 9 9 9 9 9 9 ' 9 10 10 10 10 ' 10 10 10 10 10 10 ' 10 10 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 0 5 1 I 13 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 13 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 13 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 13 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 13 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 13 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 13 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 13 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 13 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 13 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 15. .0 14 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 14 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 30. .0 .0 .0 .0 .0 .0 .0 -.0 .0 .0 15 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 15 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 0. .0 .0 - 16 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 16 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 16 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 17 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 17 15. .0 .0 .0 .0 .0 17 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 17 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 18 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 18 55. .0 .0 .0 .0 .0 :0 .0 .0 .0 .0 19 0. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 19 5. 19 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 19 15. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 19 20. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 19 25. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 19 30. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 19 35. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 ' 19 40. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 19 45. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 19 50. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 19 55. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 20 0. ' .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 [] Waterfield SWMM for First Filing 100-YEAR Rainfall Event HYDROGRAPHS ARE LISTED FOR THE FOLLOWING TIME(HR/MIN) 20 ' 0 5. .0 0 10. .0 0 15. 5.4 0 2. 0 255. 4.3 2 9.3 0 30. 48.1 0 35. 102.4 0 40. 112.4 0 45. 84.0 0 5. 7. ' 0 555. 75.8 1 0. 71.5 1 5. 66.4 1 10. 61.6 ' 1 20. 5. 1 20. 53.9 1 25. 50.8 1 30. 47.9 1 35. 45.6 1 4. 4. 1 95. 91.6 1 50. 39.8 1 55. 37.8 2 0. 35.8 2 5, 33. 2 10. 31.9 ' 2 15. 30.2 2 20. 28.8 2 25. 27.5 2 30. 26.3 2 . 2.1 2 40. 40 24.1 2 45. 23.1 2 50. 22.1 2 55. 21.3 ' 3 0. 19. 3 5. 19.6 3 10. 18.9 3 15. 18.1 3 20. 17.5 3 16. 3 30. 30. 16.2 3 35. 15.6 3 40. 15.0 3 45. 14.5 3 5, 1. 3 555. 13.5 ' 4 0. 13.0 4 5. 12.6 4 10. 12.1 4 15. 11.7 4 2. 11. ' 9 255. 11.0 4 30. 10.6 4 35. 10.2 4 40. 9.9 . 9. 4 9 50 50. 9.3 4 55. 9.0 5 0. 8.7 5 5. 8.4 5 1. . 5 155. 7 .9 ' 5 20. 7.6 5 25. 7.4 5 30. 7.2 5 35. 7.0 5 4.. 6. ' 5 95. 6.5 5 50. 6.3 5 55. 6.1 6 0. 6.0 6 5. 5. ' 6 10. 5.6 1 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS 6 15. 5.4 6 20. 5.3 6 25. 5.1 6 3. . ' 6 355. 4 .8 6 40. 4.7 6 45. 4.5 6 50. 4.4 6 5. .3 ' 7 0. 0 4 .2 7 5. 4.0 7 10. 3.9 7 15. 3.8 7 2, 3. 7 255. 3.6 ' 7 30. 3.5 7 35. 3.4 7 40. 3.3 7 45. 3.2 7 5. 3. ' 7 555. 3.0 6 0. 2.9 6 5. 2.8 6 10. 2.7 . 2. 6 20 8 20. 2.6 8 25. 2.5 8 30. 2.4 8 35. 2.3 8 2. ' 8 45. 45. 2.2 8 50. 2.1 8 55. 2.1 9 0. 2.0 9 5, 9 10. 1. .9 9 15. 1.8 9 20. 1.8 9 25. 1.7 9 30. 1.7 9 . 1.6 ' 9 40 90. 1.6 9 45. 1.5 9 50. 1.5 9 55. 1.4 t 10 0. 1. 10 5. 1.3 10 10. 1.3 10 15. 1.2 10 20. 1.2 10 . 1.2 ' 10 30 30. 1.1 10 35. 1.1 10 40. 1.0 10 45. 1.0 10 5, 1. 10 555. .99 11 0. .9 11 5. .9 11 10. .8 _ 15. .8 11 2. .8 ' 11 255. .7 11 30. .7 11 35. .7 11 40. .6 11 . .6 11 50 50. .6 11 55. .6 12 0. .5 12 5. .5 12 1. .5 12 155. .5 12 20. .4 12 25. .4 12 30. .4 12 35. .4 12 4. .4 12 95. .3 12 50. .3 12 55. .3 13 0. .3 13 5. .3 13 10. .3 13 15. 13 20. 13 25. ' 13 3. 13 355. 13 40. 13 45. 13 50. ' 13 5. 0 14 0. 14 5. 14 10. 14 15. ' 14 2. 19 255. 14 30. 14 35. 14 40. ' 14 . 50 14 50. 14 55. 15 0. 15 5. 15 10. ' 15 . 20 15 20. 15 25. 15 30. 15 35. ' 15 4. 15 455. 15 50. 15 55. 16 0. 16 5. 16 10. 16 15. 16 20. 16 25. ' 16 3, 16 355. 16 40. 16 45. 16 50. 16 55. ' 17 0. 17 5. 17 10. 17 15. 17 20. 17 . 30 17 30. 17 35. 17 40. 17 45. ' 17 5, 17 555. 18 0. 16 5. 18 10. 18 15. ' 18 2. 18 255. 18 30. 18 35. 18 40. 18 . 50 18 50. 18 55. 19 0. 19 5. ' 19 1. 19 155. 19 20. 19 25. 19 30. 19 35. ' 19 4. 19 95. 19 50. 19 55. 20 0. 1 Waterfield SWMM for First Filing 100-YEAR Rainfall Event ' *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 204.260 ' TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .967 t TOTAL WATERSHED OUTFLOW (INCHES) 1.814 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .110 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 1 Waterfield SWMM for First Filing 100-YEAR Rainfall Event 1 Li 1 1 C I u WIDTH INVERT GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE NUMBER CONNECTION (FT) (FT) (FT/FT) 300 1 0 1 CHANNEL 4.0 1000. .0020 301 300 11 2 PIPE .1 1. .0010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 1.7 2.2 2.1 4.8 13.7 3.0 14.2 3.0 14.7 28.8 15.2 302 301 0 4 CHANNEL 4.0 400. .0050 OVERFLOW 50.0 400. .0050 303 302 0 5 PIPE 4.0 650. .0030 OVERFLOW 50.0 650. .0030 304 303 0 5 PIPE 3.5 400. .0040 OVERFLOW 50.0 400. .0040 305 302 0 4 CHANNEL .0 1125. .0050 OVERFLOW 50.0 1125. .0050 306 305 0 4 CHANNEL 2.0 1000. .0300 OVERFLOW 50.0 1000. .0300 307 304 0 4 CHANNEL .0 1500. .0150 OVERFLOW 50.0 1500. .0150 310 300 0 4 CHANNEL .0 1900. .0060 OVERFLOW 50.0 1900. .0060 TOTAL NUMBER OF GUTTERS/PIPES, 9 Waterfield SWMM for First Filing 100-YEAR Rainfall Event ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE 300 301 310 0 0 0 0 0 0 0 0 301 302 0 0 0 0 0 0 0 0 0 302 303 305 0 0 0 0 0 0 0 0 303 304 0 0 0 0 0 0 0 0 0 304 307 0 0 0 0 0 0 0 0 0 305 306 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 0 310 0 0 0 0 0 0 0 0 0 0 HYDROGRAPHS WILL BE STORED FOR THE FOLLOWING 9 POINTS 301 302 303 304 305 306 Waterfield SWMM for First Filing 100-YEAR Rainfall Event HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS SIDE SLOPES OVERBANK/SURCHARGE HORIZ TO VERT MANNING DEPTH JK L R N (FT) 4.0 4.0 .035 10.00 1 .1 .1 .013 .10 0 2.4 8.2 2.7 12.7 3.0 81.6 15.8 149.6 4.0 4.0 .035 10.00 1 15.0 15.0 .035 10.00 .0 .0 .013 4.00 1 15.0 15.0 .035 10.00 .0 .0 .013 3.50 1 15.0 15.0 .035 10.00 4.0 4.0 .035 10.00 1 15.0 15.0 .035 10.00 4.0 4.0 .013 10.00 1 15.0 15.0 .013 10.00 4.0 4.0 .035 10.00 1 15.0 15.0 .035 10.00 50.0 50.0 .035 10.00 1 50.0 50.0 .035 10.00 TRIBUTARY SUBAREA 19 0 0 0 10 0 0 0 17 0 0 0 0 0 0 0 12 14 0 0 11 15 16 0 18 0 0 0 13 0 0 0 20 0 0 0 307 300 310 D.A.(AC) 0 0 0 0 0 0 204.3 0 0 0 0 0 0 89.2 0 0 0 0 0 0 54.7 0 0 0 0 0 0 21.6 0 0 0 0 0 0 21.6 0 0 0 0 0 0 28.9 0 0 0 0 0 0 1.0 0 0 0 0 0 0 4.1 0 0 0 0 0 0 108.0 n ' THE UPPER NUMBER IS DISCHARGE IN CPS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET- (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CPS FROM SPECIFIED INFLOW HYDROGRAP14 (D) DENOTES DISCHARGE IN CPS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 1 300 301 302 303 304 305 306 307 310 ' 0 5. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00(S) .00( ) .00( ) .01( ) .03( ) .00( ) .01( ) .00( ) 0 10. .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0 15. .00( .5 ) .00( ) .5 .00(S) .2 .00( ) 2.1 .02( ) 2.2 .05( ) 5.7 .07( 2.4 ) .00( ) .3 .03( ) .3 .01( ) .4 ' .00( ) .18( ) .03(S) .33( ) .46( ) .70( ) .65( ) .05( ) .25( ) .13( ) 0 20. 2.2 2.2 .7 14.4 11.4 15.5 9.4 .9 1.3 2.3 .00( ) .43( ) .12(S) .90( ) 1.03( ) 1.18( ) 1.09( ) .10( ) .42( ) .24( ) 0 25. 6.0 6.0 1.7 37.9 22.5 25.4 20.2 1.7 2.9 6.1 .00( ) .73( ) .36(S) 1.42( ) 1.47( ) 1.54( ) 1.46( ) .14( ) .57( ) .35( ) ' 0 30. 16.2 16.2 1.8 81.8 45.0 54.2 44.9 3.5 6.4 15.3 .00( ) 1.18( ) .90(S) 2.02( ) 2.17( ) 2.48( ) 1.97( ) .21( ) .77( ) .49( ) 0 35. 42.5 42.5 2.1 173.5 77.0 84.4 104.2 7.3 15.0 38.6 .00( ) 1.65( ) 2.11(S) 2.81( ) 3.20( ) 3.77( ) 2.69( ) .31( ) 1.06( ) .69( ) 0 40. 69.3 69.3 2.3 224.8 65.3 95.5 122.5 5.6 18.3 61.2 ' .00( ) 2.30( ) 3.90(S) 3.13( ) 4.05( ) 3.87( ) 2.86( ) .27( ) 1.14( ) .82( ) 0 45. 80.9 80.9 2.5 193.4 85.0 72.4 88.8 2.4 14.1 68.6 .00( ) 2.46( ) 5.70(S) 2.94( ) 4.03( ) 3.62( ) 2.54( ) .17( ) 1.03( ) .86( ) 0 50. 05.8 85.8 2.6 150.8 61.9 51.2 69.2 . 2.0 11.0 72.2 .00( ) 2.52( ) 7.24(S) 2.64( ) 2.67( ) 2.38( ) 2.31( ) .16( ) .94( ) .87( ) ' 0 55. 86.4 86.4 2.7 108.0 35.6 32.8 54.8 1.5 8.5 73.4 .00( ) 2.53( ) 8.45(S) 2.28( ) 1.89( ) 1.78( ) 2.12( ) .13( ) .86( ) .88( ) 1 0. 84.9 84.9 2.8 82.0 29.9 29.6 43.4 1.1 6.6 72.8 .00( ) 2.51( ) 9.39(S) 2.02( ) 1.71( ) 1.68( ) 1.94( ) .11( ) .78( ) .88( ) 1 5, 82.0 .00( 82.0 ) 2.47( ) 2.8 10.15(S) 66.9 1.85( ) 23.6 1.50( ) 20.4 1.36( ) 33.9 1.77( .8 ) .09( ) 5.1 .71( ) 70.7 .87( ) 1 10. 78.3 78.3 2.9 51.6 17.5 17.1 26.6 .6 4.0 67.7 .00( ) 2.42( ) 10.76(S) 1.64( ) 1.28( ) 1.24( ) 1.62( ) .08( ) .64( ) .85( ) 1 15. 74.4 74.4 2.9 41.0 14.5 13.0 21.1 .5 3.1 64.3 .00( ) 2.37( ) 11.26(S) 1.47( ) 1.16( ) 1.07( ) 1.48( ) .07( ) .59( ) .84( ) 1 20. 70.4 70.4 2.9 33.3 11.5 11.0 17.2 .4 2.5 61.0 .00( ) 2.31( ) 11.67(S) 1.34( ) 1.03( ) .98( ) 1.37( ) .06( ) .54( ) .82( ) 1 25. 66.6 66.6 3.0 27.4 9.7 8.9 14.2 .3 2.0 57.7 .00( ) 2.26( ) 12.01(S) 1.22( ) .95( ) .89( ) 1.27( ) .05( ) .50( ) .80( ) 1 30. 63.0 63.0 3.0 22.9 8.0 7.5 11.8 .3 1.6 54.6 .00( ) 2.20( ) 12.30(S) 1.12( ) .86( ) .81( ) 1.19( ) .05( ) .46( ) .79( ) ' 1 35. 59.7 59.7 3.0 19.4 6.9 6.6 10.1 .2 1.4 51.8 .00( ) 2.15( ) 12.55(S) 1.04( ) .80( ) .76( ) 1.12( ) .04( ) .43( ) .77( ) 1 40. 56.7 56.7 3.0 17.0 6.1 5.9 8.6 .2 1.2 49.2 .00( ) 2.10( ) 12.76(S) .97( ) .76( ) .72( ) 1.07( ) .04( ) .41( ) .76( ) 1 45. 54.0 .00( 54.0 ) 2.06( ) 3.0 12.95(S) 15.2 .92( ) 5.6 .72( ) 5.4 .69( ) 7.9 1.02( .2 ) .04( ) 1.1 .39( ) 46.9 .74( ) 1 50. 51.6 51.6 3.0 13.8 5.1 5.0 7.2 .2 1.0 44.8 .00( ) 2.02( ) 13.12(S) .88( ) .69( ) .66( ) .99( ) .04( ) .38( ) .73( ) 1 55. 49.2 49.2 3.0 12.4 4.6 4.3 6.4 .2 .9 42.7 .00( ) 1.98( ) 13.28(S) .83( ) .66( ) .61( ) .94( ) .04( ) .36( ) .72( ) 2 0. 47.0 47.0 3.0 10.9 3.9 3.6 5.5 .1 .7 40.7 ' .00( ) 1.93( ) 13.41(S) .78( ) .60( ) .56( ) .90( ) .03( ) .34( ) .70( ) 2 5. 44.7 44.7 3.0 9.2 3.2 2.8 4.7 .1 .6 38.7 .00( ) 1.89( ) 13.53(S) .71( ) .55( ) .50( ) .84( ) .03( ) .32( ) .69( ) 2 10. 42.6 42.6 3.0 7.6 2.5 2.2 3.8 .1 .5 36.7 .00( ) 1.85( ) 13.62(S) .65( ) .49( ) .44( ) .78( ) .02( ) .30( ) .68( ) ' 2 15. 40.5 40.5 3.0 6.2 2.0 1.8 3.1 .1 .4 34.8 .00( ) 1.81( ) 13.71(S) .58( ) .44( ) .40( ) .72( ) .02( ) .28( ) .66( ) 2 20. 36.6 38.6 3.0 5.1 1.7 1.5 2.6 .0. .3 33.1 .00( ) 1.77( ) 13.78(S) .53( ) .40( ) .37( ) .68( ) .02( ) .26( ) .65( ) 2 25. 36.8 36.8 3.0 4.3 1.4 1.2 2.2 .0 .3 31.5 ' .00( ) 1.73( ) 13.63(S) .48( ) .37( ) .34( ) .63( ) .01( ) .24( ) .64( ) 2 30. 35.2 35.2 3.0 3.7 1.2 1.1 1.9 .0 .2 30.1 .00( ) 1.70( ) 13.88(S) .44( ) .34( 1 .32( ) .60( ) .01( ) .22( ) .63( ) 2 35. 33.7 33.7 3.0 3.2 1.0 .9 1.6 .0 .2 28.7 .00( ) 1.66( ) 13.92(S) .41( ) .32( ) .29( ) .57( ) .01( ) .21( ) .62( ) 2 40. 32.3 32.3 3.0 2.8 .9 .8 1.4 .0 .2 27.5 1 .00( ) 1.63( ) 13.96(S) .38( ) .30( ) .28( ) .54( ) .01( ) .20( ) .61( ) 2 45. 31.0 31.0 3.0 2.4 .8 .7 1.2 .0 .1 26.3 .00( ) 1.60( ) 13.99(S) .35( ) .28( ) .26( ) .51( ) .01( ) .18( ) .60( ) 2 50. 29.8 29.8 3.0 2.1 .7 .6 1.1 .0 .1 25.2 .00( ) 1.57( ) 14.02(S) .33( ) .26( ) .24( ) .49( ) .01( ) .17( ) .59( ) 2 55. 28.7 28.7 3.0 1.9 .6 .5 1.0 .0 .1 24.1 .00( ) 1.55( ) 14.04(S) .31( ) .25( ) .23( ) .47( ) .01( ) .16( ) .58( ) 3 0. 27.6 27.6 3.0 1.7 .5 .5 .9 .0 .1 23.2 .00( ) 1.52( ) 14.06(S) .29( ) .24( ) .22( ) .45( ) .01( ) .16( ) .57( ) 3 5. 26.6 26.6 3.0 1.5 .5 .4 .8 .0 .1 22.2 .00( j 1.49( ) 14.07(S) .27( ) .22( ) .20( ) .43( ) .00( ) .15( ) .56( ) 1 1 1 1 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 10. 15. 20. 25. 30. 35. 40. 45. 50. 55. 0. 5. 10. 15. 20. 25. 30. 35. 40. 45. 50. 55. 0. 5. 10. 15. 20. 25. 30. 35. 40. 45. 50. 55. 0. 5. 10, 15. 20. 25. 30. 35. 25.7 25.7 3.0 1.3 .4 .4 .7 .0 .1 21.4 .00( ) 1.47( ) 14.08(S) .25( ) .21( ) .19( ) .41( ) .00( ) .14( ) .55( 1 24.8 24.8 3.0 1.2 .4 .3 .6 .0 .1 20.5 .00( ) 1.44( ) 14.09(S) .24( ) .20( ) .18( ) .39( ) .00( ) .13( ) .55( ) 23.9 23.9 3.0 1.1 .3 .3 .6 .0 .1 19.8 .00( ) 1.42( ) 14.10(S) .22( ) .19( ) .17( ) .38( ) .00( ) .13( ) .54( ) 23.1 23.1 3.0 1.0 .3 .3 .5 .0 .0 19.0 .00( ) 1.40( ) 14.11(S) .21( ) .18( ) .16( ) .36( ) .00( ) .12( ) .53( ) 22.4 22.4 3.0 .9 .3 .2 .4 .0 .0 18.3 .00( ) 1.38( ) 14.11(S) .20( ) .17( ) .15( ) .35( ) .00( ) .11( ) .52( ) 21.7 21.7 3.0 .8 .2 .2 .4 .0 .0 17.6 .00( ) 1.36( ) 14.11(S) .19( ) .16( ) .15( ) .33( ) .00( ) .11( ) .51( ) 21.0 21.0 3.0 .7 .2 .2 .4 .0 .0 17.0 .00( ) 1.34( ) 14.11(S) .17( ) .15( ) .14( ) .32( ) .00( ) .10( ) .51( ) 20.3 20.3 3.0 .6 .2 .2 .3 .0 .0 16.4 .00( ) 1.32( ) 14.11(S) .16( ) .14( ) .13( ) .31( ) .00( ) .10( ) .50( ) 19.7 19.7 3.0 .6 .2 .1 .3 .0 .0 15.8 .00( ) 1.30( ) 14.11(S) .15( ) .14( ) .12( ) .30( ) .00( ) .09( ) .49( ) 19.1 19.1 3.0 .5 .1 .1 .3 .0 .0 15.3 .00( ) 1.28( ) 14.10(S) .14( ) .13( ) .12( ) .28( ) .00( ) .09( ) .49( ) 18.6 18.6 3.0 .4 .1 .1 .2 .0 .0 14.7 .00( ) 1.26( ) 14.10(S) .14( ) .12( ) .11( ) .27( ) .00( ) .08( ) .48( ) 18.0 18.0 3.0 .4 .1 .1 .2 .0 .0 14.2 .00( ) 1.24( ) 14.09(S) .13( ) .12( ) .10( ) .26( ) .00( ) .08( ) .47( ) 17.5 17.5 3.0 .4 .1 .1 .2 .0 .0 13.7 .00( ) 1.23( ) 14.08(S) .12( ) .11( ) .10( ) .25( ) .00( ) .07( ) .47( ) 17.0 17.0 3.0 .3 .1 .1 .2 .0 .0 13.3 .00( ) 1.21( ) 14.07(S) .11( ) .10( ) .09( ) .24( ) .00( ) .07( ) .46( ) 16.5 16.5 3.0 .3 .1 .1 .1 - .0 .0 12.8 .00( ) 1.19( ) 14.07(S) .10( ) .10( ) .08( ) .23( ) .00( ) .07( ) .46( ) 16.1 16.1 3.0 .3 .1 .1 .1 .0 .0 12.4 .00( ) 1.18( ) 14.05(S) .10( ) .09( ) .OB( ) .22( ) .00( ) .06( ) .45( ) 15.7 15.7 3.0 .2 .1 .0 .1 .0 .0 12.0 .00( ) 1.16( ) 14.04(S) .09( ) .09( ) .07( ) .21( ) .00( ) .06( ) .45( ) 15.2 15.2 3.0 .2 .1 .0 .1 .0 .0 11.6 .00( ) 1.15( ) 14.03(S) .08( ) .08( ) .07( ) .20( ) .00( ) .06( ) .44( ) 14.8 14.8 3.0 .2 .0 .0 .1 .0 .0 11.2 .00( ) 1.13( ) 14.02(S) .08( ) .07( ) .06( ) .19( ) .00( ) .06( ) .43( ) 14.5 14.5 3.0 .2 .0 .0 .1 .0 .0 10.9 .00( ) 1.12( ) 14.01(S) .07( ) .07( ) .06( ) .18( ) .00( ) .05( ) .43( ) 14.1 14.1 3.0 .1 .0 .0 .1 .0 .0 10.5 .00( ) 1.11( ) 13.99(S) .07( ) .06( ) .05( ) .17( ) .00( ) .05( ) .42( ) 13.7 13.7 3.0 .1 .0 .0 .1 .0 .0 10.2 .00( ) 1.09( ) 13.98(S) .06( ) .06( ) .05( ) .16( ) .00( ) .05( ) .42( ) 13.4 13.4 3.0 .1 .0 .0 .0 .0 .0 9.9 .00( ) 1.08( ) 13.97(S) .06( ) .06( ) .04( ) .15( ) .00( ) .05( ) .41( ) 13.1 13.1 3.0 .1 .0 .0 .0 .0 .0 9.5 .00( ) 1.07( ) 13.95(S) .05( ) .05( ) .04( ) .14( ) .00( ) .05( ) .41( ) 12.8 12.8 3.0 .1 .0 .0 .0 .0 .0 9.2 .00( ) 1.05( ) 13.94(S) .05( ) .05( ) .04( ) .13( ) .00( ) .05( ) .40( ) 12.5 12.5 3.0 .1 .0 .0 .0 .0 .0 9.0 .00( ) 1.04( ) 13.92(S) .04( ) .04( ) .03( ) .13( ) .00( ) .04( ) .40( ) 12.2 12.2 3.0 .1 .0 .0 .0 .0 .0 8.7 .00( ) 1.03( ) 13.91(S) .04( ) .04( ) .03( ) .12( ) .00( ) .04( ) .39( ) 11.9 11.9 3.0 .1 .0 .0 .0 .0 .0 8.4 .00( ) 1.02( ) 13.89(S) .04( ) .04( ) .03( ) .11( ) .00( ) .04( ) .39( ) 11.6 11.6 3.0 .0 .0 .0 .0 .0 .0 8.2 .00( ) 1.01( ) 13.87(S) .03( ) .04( ) .03( ) .11( ) .00( ) .04( ) .39( ) 11.4 11.4 3.0 .0 .0 .0 .0 .0 .0 7.9 .00( ) 1.00( ) 13.86(S) .03( ) .03( ) .03( ) .10( ) .00( ) .04( ) .38( ) 11.1 11.1 3.0 .0 .0 .0 .0 .0 .0 7.7 .00( ) .99( ) 13.84(S) .03( ) .03( ) .03( ) .10( ) .00( ) .04( ) .38( ) 10.9 10.9 3.0 .0 .0 .0 .0 .0 .0 7.4 .00( ) . 97 ( ) 13.82 (S) .03( ) .03( ) .03( ) .10( ) .00( ) . 04 ( ) . 37 ( ) 10.6 10.6 3.0 .0 .0 .0 .0 .0 .0 7.2 .00( ) .96( ) 13.80(S) .03( ) .03( ) .03( ) .09( ) .00( ) .04( ) .37( ) 10.4 10.4 3.0 .0 .0 .0 .0 .0 .0 7.0 .00( ) .95( ) 13.79(S) .02( ) .03( ) .02( ) .09( ) .00( ) .03( ) .36( ) 10.2 10.2 3.0 .0 .0 .0 .0 .0 .0 6.8 .00( ) .94( ) 13.77(S) .02( ) .03( ) .02( ) .09( ) .00( ) .03( ) .36( ) 10.0 10.0 3.0 .0 .0 .0 .0 .0 .0 6.6 .00( ) .93( ) 13.75(S) .02( ) .03( ) .02( ) .08( ) .00( ) .03( ) .36( ) 9.8 9.8 3.0 .0 .0 .0 .0 .0 .0 6.4 .00( ) .93( ) 13.73(S) .02( ) .03( ) .02( ) .08( ) .00( ) .03( ) .35( ) 9.6 9.6 3.0 .0 .0 .0 .0 .0 .0 6.2 .00( ) .92( ) 13.71(S) .02( ) .03( ) .02( ) .08( ) .00( ) .03( ) .35( ) 9.4 9.4 3.0 .0 .0 .0 .0 .0 .0 6.0 .00( ) .91( ) 13.69(S) .02( ) .03( ) .02( ) .07( ) .00( ) .03( ) .34( ) 9.2 9.2 3.0 .0 .0 .0 .0 .0 .0 5.9 .00( ) .90( ) 13.66(S) .02( ) .02( ) .02( ) .07( ) .00(") .03( ) .34( ) 9.0 9.0 3.0 .0 .0 .0 .0 .0 .0 5.7 .00( ) .89( ) 13.66(S) .02( ) .02( ) .02( ) .07( ) .00( ) .03( ) .34( ) 8.8 8.8 3.0 .0 .0 .0 .0 .0 .0 5.5 .00( ) .88( ) 13.64 (S) .02( ) .02( ) .02( ) .07( ) .00( ) .03( ) .33( ) 1 6 40. 8.7 8.7 3.0 .0 .0 .0 .0 .0 .0 5.4 .00( ) .87( ) 13.62 (S) .02( ) .02( ) .02( ) . 07 ( ) .00( ) .03( ) .33( ) 6 45. 8.5 8.5 3.0 .0 .0 .0 .0 .0 .0 5.2 .00( ) .86( ) 13.60(S) .02( ) .02( ) .02( ) .07( ) .00( ) .03( ) .33( ) ' 6 50. 8.3 8.3 3.0 .0 .0 .0 .0 .0 .0 5.1 .00( ) .86( ) 13.58(S) .02( ) .02( ) .02( ) .06( ) .00( ) .03( ) .32( ) 6 55. 8.2 8.2 3.0 .0 .0 .0 .0 .0 .0 4.9 .00( ) .85( ) 13.56(S) .01( ) .02( ) .02( ) .06( ) .00( ) .03( ) .32( ) 7 0. 8.0 8.0 3.0 .0 .0 .0 .0 .0 .0 4.8 ' .00( ) .84( ) 13.54(S) .01( ) .02( ) .02( ) .06( ) .00( ) .03( ) .32( ) 7 5. 7.9 7.9 3.0 .0 .0 .0 .0 .0 .0 4.6 .00( ) .83( ) 13.52(S) .01( ) .02( ) .02( ) .06( ) .00( ) .02( ) .31( ) 7 10. 7.8 7.8 3.0 .0 .0 .0 .0 .0 .0 4.5 .00( ) .83( ) 13.50(S) .01( ) .02( ) .02( ) .06( ) .00( ) .02( ) .31( ) ' 7 15. 7.6 7.6 3.0 .0 .0 .0 .0 .0 .0 4.4 .00( ) .82( ) 13.48(S) .01( ) .02( ) .02( ) .06( ) .00( ) .02( ) .31( ) 7 20. 7.5 7.5 3.0 .0 .0 .0 .0 .0 .0 4.3 .00( ) .81( ) 13.46(S) .01( ) .02( ) .02( ) .06( ) .00( ) .02( ) .30( ) 7 25. 7.4 .00( ) 7.4 .80( ) 3.0 13.44(S) .0 .01( ) .0 .02( ) .0 .02( ) .0 .05( ) .0 .00( ) .0 .02( ) 4.1 .30( ) ' 7 30. 7.3 7.3 3.0 .0 .0 .0 .0 .0 .0 4.0 .00( ) .80( ) 13.42(S) .01( ) .02( ) .02( ) .05( ) .00( ) .02( ) .30( ) 7 35. 7.1 7.1 3.0 .0 .0 .0 .0 .0 .0 3.9 .00( ) .79( ) 13.40(S) .01( ) .02( ) .02( ) .05( ) .00( ) .02( ) .29( ) 7 40. 7.0 7.0 3.0 .0 .0 .0 .0 .0 .0 3.8 .00( ) .78( ) 13.38(S) .01( ) .02( ) .02( ) .05( ) .00( ) .02( ) .29( ) 7 45. 6.9 6.9 3.0 .0 .0 .0 .0 .0 .0 3.7 .00( ) .78( ) 13.36(S) .01( ) .02( ) .02( ) .05( ) .00( ) .02( ) .29( ) 7 50. 6.8 6.8 3.0 .0 .0 .0 .0 .0 .0 3.6 .00( ) .77( ) 13.34(S) .01( ) .02( ) .02( ) .05( ) .00( ) .02( ) .28( ) ' 7 55. 6.7 6.7 3.0 .0 .0 .0 .0 .0 .0 3.5 .00( ) .77( ) -13.32(S) .01( ) .02( ) .02( ) .05( ) .00( ) .02( ) .28( ) 8 0. 6.6 6.6 3.0 .0 .0 .0 .0 .0 .0 3.4 .00( ) .76( ) 13.30(S) .01( ) .02( ) .02( ) .05( ] .00( ) .02( ) .28( ) ' 8 5. 6.5 .00( ) 6.5 .75( ) 3.0 13.28(S) .0 .01( ) .0 .02( ) .0 .02( ) .0 .05( ) .0 .00( ) .0 .02( ) 3.3 .27( ) 8 10. 6.4 6.4 3.0 .0 .0 .0 .0 .0 .0 3.2 .00( ) .75( ) 13.26(S) .01( ) .02( ) .01( ) .05( ) .00( ) .02( ) .27( ) 8 15. 6.3 6.3 3.0 .0 .0 .0 .0 .0 .0 3.1 .00( ) .74( ) 13.24(S) .01( ) .02( ) .01( ) .05( ) .00( ) .02( ) .27( ) 8 20. 6.2 6.2 3.0 .0 .0 .0 .0 .0 .0 3.0 ' .00( ) .74( ) 13.22(S) .01( ) .02( ) .01( ) .05( ) .00( ) .02( ) .27( ) 8 25. 6.1 6.1 3.0 .0 .0 .0 .0 .0 .0 2.9 .00( ) .73( ) 13.19(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .26( ) 8 30. 6.0 6.0 3.0 .0 .0 .0 .0 .0 .0 2.8 .00( ) .73( ) 13.17(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .26( ) 8 35. 5.9 5.9 3.0 .0 .0 .0 .0 .0 .0 2.8 .00( ) .72( ) 13.15(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .26( ) B 40. 5.9 5.9 3.0 .0 .0 .0 .0 .0 .0 2.7 .00( ) .72( ) 13.13(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .25( ) 8 45. 5.8 5.8 3.0 .0 .0 .0 .0 .0 .0 2.6 ' .00( ) .71( ) 13.11(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .25( ) 8 50, 5.7 5.7 3.0 .0 .0 .0 .0 .0 .0 2.5 .00( ) .71( ) 13.09(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .25( ) 8 55. 5.6 5.6 3.0 .0 .0 .0 .0 .0 .0 2.5 9 0. .00( ) 5.5 .70( ) 5.5 13.07(S) 3.0 .01( ) .0 .02( ) .0 .01( ) .0 .04( ) .0 .00( ) .0 .02( ) .0 .25( ) 2.4 ' .00( ) .70( ) 13.05(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .24( ) 9 5. 5.5 5.5 3.0 .0 .0 .0 .0 .0 .0 2.3 .00( ) .69( ) 13.03(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .24( ) 9 10. 5.4 5.4 3.0 .0 .0 .0 .0 .0 .0 2.3 .00( ) .69( ) 13.01(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .24( ) ' 9 15. 5.3 5.3 3.0 .0 .0 .0 .0 .0 .0 2.2 .00( ) .68( ) 12.99(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .24( ) 9 20. 5.3 5.3 3.0 .0 .0 .0 .0 .0 .0 2.1 .00( ) .68( ) 12.97(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .23( ) 9 25. 5.2 5.2 3.0 .0 .0 .0 .0 .0 .0 2.1 ' .00( ) .67( ) 12.95(S) .01( ) .02( ) .01( ) .04( ) .00( ) .02( ) .23( ) 9 30. 5.1 5.1 3.0 .0 .0 .0 .0 .0 .0 2.0 .00( ) .67( ) 12.93(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .23( ) 9 35. 5.1 5.1 3.0 .0 .0 .0 .0 .0 .0 1.9 .00( ) .67( ) 12.-91(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .23( ) ' 9 40. 5.0 5.0 3.0 .0 .0 .0 .0 .0 .0 1.9 .00( ) .66( ) 12.88(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .22( ) 9 45. 5.0 5.0 3.0 .0 .0 .0 .0 .0 .0 1.8 .00( ) .66( ) 12.86(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .22( ) 9 50. 4.9 4.9 3.0 .0 .0 .0 .0 .0 .0 1.8 .00( ) .65( ) 12.84(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .22( ) ' 9 55. 4.8 4.8 3.0 .0 .0 .0 .0 .0 .0 1.7 .00( ) .65( ) 12.82(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .22( ) 10 0. 4.8 4.8 3.0 .0 .0 .0 .0 .0 .0 1.7 .00( ) .65( ) 12.80(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .21( ) 10 5. 4.7 4.7 3.0 .0 .0 .0 .0 .0 .0 1.6 ' .00( ) .64( ) 12.78(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .21( ) ' 10 10. 4.7 4.7 3.0 .0 .0 .0 .0 .0 .0 1.6 .00( ) .64( ) 12.76(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .21( ) 10 15. 4.6 4.6 3.0 .0 .0 .0 .0 .0 .0 1.5 .00( ) .64( ) 12.74(S) ..01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .21( ) ' 10 20. 4.6 4.6 3.0 .0 .0 .0 .0 .0 .0 1.5 .00( ) .63( ) 12.72(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .20( ) 10 25. 4.5 4.5 3.0 .0 .0 .0 .0 .0 .0 1.4 .00( ) .63( ) 12.70(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .20( ) 10 30. 4.5 4.5 3.0 .0 .0 .0 .0 .0 .0 1.4 ' .00( ) .63( ) 12.68(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .20( ) 10 35. 4.4 4.4 3.0 .0 .0 .0 .0 .0 .0 1.3 .00( ) .62( ) 12.66(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .20( ) 10 40. 4.4 4.4 3.0 .0 .0 .0 .0 .0 .0 1.3 .00( ) .62( ) 12.64(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .19( ) ' 10 45. 4.4 4.4 3.0 .0 .0 .0 .0 .0 .0 1.3 .00( ) .62( ) 12.62(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .19( ) 10 50. 4.3 4.3 3.0 .0 .0 .0 .0 .0 .0 1.2 .00( ) .61( ) 12.60(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .19( ) 10 55, 4.3 .00( ) 4.3 .61( ) 3.0 12.57(S) .0 .01( ) .0 .01( ) .0 .01( ) .0 .04( ) .0 .00( ) .0 .02( ) 1.2 .19( ) ' 11 0. 4.2 4.2 3.0 .0 .0 .0 .0 .0 .0 1.1 .00( ) .61( ) 12.55(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .18( ) 11 5. 4.2 4.2 3.0 .0 .0 .0 .0 .0 .0 1.1 .00( ) .60( ) 12.53(S) .01( ) .01( ) .01( ) .04( ) .00( ) .02( ) .18( ) 11 10. 4.1 4.1 3.0 .0 .0 .0 .0 .0 .0 1.1 ' .00( ) .60( ) 12.51(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .18( ) 11 15. 4.1 4.1 3.0 .0 .0 .0 .0 .0 .0 1.0 .00( ) .60( ) 12.49(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .18( ) 11 20. 4.1 4.1 3.0 .0 .0 .0 .0 .0 .0 1.0 .00( ) .59( ) 12.47(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .18( ) 11 25. 4.0 4.0 3.0 .0 .0 .0 .0 .0 .0 1.0 .00( ) .59( ) 12.45(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .17( ) 11 30. 4.0 4.0 3.0 .0 .0 .0 .0 .0 .0 .9 .00( ) .59( ) 12.43(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .17( ) 11 35. 4.0 4.0 3.0 .0 .0 .0 .0 .0 .0 .9 ' .00( ) .59( ) 12.41(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .17( ) 11 40. 3.9 3.9 3.0 .0 .0 .0 .0 .0 .0 .9 .00( ) .58( ) 12.39(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .17( ) 11 45. 3.9 3.9 3.0 .0 .0 .0 .0 .0 .0 .8 11 50. .00( ) 3.9 .58( ) 3.9 12.37(S) 3.0 .01( ) .0 .01( ) .0 .01( ) .0 .03( ) .0 .00( ) .0 .02( ) .0 .16( ) .8 ' .00( ) .58( ) 12.35(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .16( ) 11 55. 3.8 3.8 3.0 .0 .0 .0 .0 .0 .0 .8 .00( ) .58( ) 12.33(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .16( ) 12 0. 3.0 3.8 3.0 .0 .0 .0 .0 .0 .0 .7 .00( ) .57( ) 12.31(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .16( ) ' 12 5. 3.8 3.8 3.0 .0 .0 .0 .0 .0 .0 .7 .00( ) .57( ) 12.29(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .16( ) 12 10. 3.7 3.7 3.0 .0 .0 .0 .0 .0 .0 .7 .00( ) .57( ) 12.27(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .15( ) 12 15. 3.7 3.7 3.0 .0 .0 .0 .0 .0 .0 .7 ' .00( ) .57( ) 12.25(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .15( ) 12 20. 3.7 3.7 3.0 .0 .0 .0 .0 .0 .0 .6 .00( ) .56( ) 12.23(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .15( ) 12 25. 3.7 3.7 3.0 .0 .0 .0 .0 .0 .0 .6 .00( ) .56( ) 12.21(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .15( ) ' 12 30. 3.6 3.6 3.0 .0 .0 .0 .0 .0 .0 .6 .00( ) .56( ) 12.19(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .14( ) 12 35. 3.6 3.6 3.0 .0 .0 .0 .0 .0 .0 .6 .00( ) .56( ) 12.16(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .14( ) 12 40, 3.6 3.6 3.0 .0 .0 .0 .0 .0 .0 .5 .00( ) .55( ) 12.14(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .14( ) ' 12 45. 3.5 3.5 3.0 .0 .0 .0 .0 .0 .0 .5 .00( ) .55( ) 12.12(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .14( ) 12 50. 3.5 3.5 3.0 .0 .0 .0 .0 .0 .0 .5 .00( ) .55( ) 12.10(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .14( ) 12 55. 3.5 3.5 3.0 .0 .0 .0 .0 .0 .0 .5 .00( ) .55( ) 12.08(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .13( ) 13 0. 3.5 3.5 3.0 .0 .0 .0 .0 .0 .0 .5 .00( ) .55( ) 12.06(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .13( ) 13 5. 3.5 3.5 3.0 .0 .0 .0 .0 .0 .0 .4 .00( ) .54( ) 12.04(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .13( ) 13 10. 3.4 3.4 3.0 .0 .0 .0 .0 .0 .0 .4 .00( ) .54( ) 12.02(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .13( ) 13 15. 3.4 3.4 3.0 .0 .0 .0 .0 .0 .0 .4 .00( ) .54( ) 12.00(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .12( ) 13 20, 3.4 3.4 3.0 .0 .0 .0 .0 .00( ) .54( ) 11.98(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .12( ) ' 13 25. 3.4 3.4 3.0 .0 .0 .0 .0 .0 .0 .4 .00( ) .54( ) 11.96(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .12( ) 13 30. 3.3 3.3 3.0 .0 .0 .0 .0 .0 .0 .3 .00( ) .54( ) 11.94(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .12( ) 13 35. 3.3 3.3 3.0 .0 .0 .0 .0 .0 .0 .3 .00( ) .53( ) 11.92(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .12( ) ' 13 40. 3.3 3.3 2.9 .0 .0 .0 .0 .0 .0 .3 .00( ) .53( ) 11.90(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .11( ) 13 45. 3.3 3.3 2.9 .0 .0 .0 .0 .0 .00( ) .53( ) 11.88(S) .01( ) .01( ) .01( ) .03( ) .00( ) .0 .02( ) .3 .11( ) ' 13 50. 3.3 3.3 2.9 .0 .0 .0 .0 .0 .0 .3 .00( ) .53( ) 11.86(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .11( ) 13 55. 3.3 3.3 2.9 .0 .0 .0 .0 .0 .0 .3 .00( ) .53( ) 11.84(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .11( ) 14 0. 3.2 3.2 2.9 .0 .0 .0 .0 .0 .0 .3 .00( ) .53( ) 11.82(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .10( ) 14 5. 3.2 3.2 2.9 .0 .0 .0 .0 .0 .0 .2 .00( ) .53( ) 11.80(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .10( ) 14 10. 3.2 3.2 2.9 .0 .0 .0 .0 .0 .0 .2 .00( ) .52( ) 11.78(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .10( ) ' 14 15. 3.2 3.2 2.9 .0 .0 .0 .0 .0 .0 .2 .00( ) .52( ) 11.76(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .10( ) 14 20. 3.2 3.2 2.9 .0 .0 .0 .0 .0 .0 .2 .00( ) .52( ) 11.74(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .10( ) ' 14 14 25, 30. 3.2 .00( ) 3.2 .52( ) 2.9 11.72(S) .0 .01( ) .0 .01( ) .0 .01( ) .0 .03( ) .0 .00( ) .0 .02( ) .2 .09( ) 3.1 3.1 2.9 .0 .0 .0 .0 .0 .0 .2 .00( ) .52( ) 11.70(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .09( ) 14 35. 3.1 3.1 2.9 .0 .0 .0 .0 .0 .0 .2 .00( ) .52( ) 11.68(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .09( ) 14 40. 3.1 3.1 2.9 .0 .0 .0 .0 .0 .0 .2 ' .00( ) .52( ) 11.66(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .09( ) 14 45. 3.1 3.1 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .52( ) 11.64(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .09( ) 14 50. 3.1 3.1 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.62(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .08( ) ' 14 55. 3.1 3.1 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.60(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .08( ) 15 0. 3.1 3.1 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.58(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .08( ) 15 5. 3.1 .00( ) 3.1 .51( ) 2.9 11.56(S) .0 .01( ) .0 .01( ) .0 .01( ) .0 .03( ) .0 .00( ) .0 .02( ) .1 .08( ) 15 10. 3.1 3.1 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.54(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .07( ) 15 15. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .1 ' 15 20. .00( ) 3.0 .51( ) 3.0 11.52(S) 2.9 .01( ) .0 .01( ) .0 .01( ) .0 .03( ) .0 .00( ) .0 .02( ) .0 .07( ) .1 .00( ) .51( ) 11.50(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .07( ) 15 25. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.48(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .07( ) 15 30. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.46(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .07( ) ' 15 35. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.44(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .07( ) 15 40. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.42(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .06( ) 15 45. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .51( ) 11.40(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .06( ) 15 50. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .1 .00( ) .50( ) 11.38(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .06( ) 15 55. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .1 16 0. .00( ) 3.0 .50( ) 3.0 11.36(S) 2.9 .01( ) .0 .01( ) .0 .01( ) .0 .03( ) .0 .00( ) .0 .02( ) .0 .06( ) .1 .00( ) .50( ) 11.34(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .06( ) 16 5. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.32(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .06( ) 16 10. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.30(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .0 .05( ) ' 16 15. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.28(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .05( ) 16 20. 3.0 3.0 2.9 .0 .0 .0 .0 .0', .0 .0 .00( ) .50( ) 11.26(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .05( ) 16 25. 3.0 3.0 2.9 .0 .0 .0 .0 .0 .0 .0 ' .00( ) .50( ) 11.24(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .05( ) 16 30. 2.9 2.9 2.9 .0 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.22(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .05( ) 16 35. 2.9 2.9 2.9 .0 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.20(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .05( ) 16 40. 2.9 2.9 2.9 .0 .0 .0 .0 .0 .0 .0 ' .00( ) .50( ) 11.18(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .05( ) 16 45. 2.9 2.9 2.9 .0 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.16(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .05( ) 16 50. 2.9 2.9 2.9 .0 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.14(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .05( ) ' 16 55. 2.9 2.9 2.9 .0 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.12(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) 17 0. 2.9 2.9 2.9 .0 .0 .0 .0 .0 .0 .0 .00( ) .50( ) 11.10(S) .01( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) 17 5. 2.9 2.9 2.9 .0 .0 .0 .0 .0 .0 .0 ' .00( ) .50( ) 11.08(S) .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) t17 10. 2.9 2.9 2.9 .00( ) .50( ) 11.06(S) 17 15. 2.9 2.9 2.9 .00( ) .50( ) 11.04(S) ' 17 20. 2.9 2.9 2.9 .00( ) .50( ) 11.02(S) 17 25. 2.9 2.9 2.9 .00( ) .50( ) 11.00(S) 17 30. 2.9 2.9 2.9 ' .00( ) .50( ) 10.98(S) 17 35. 2.9 2.9 2.9 .00( ) .50( ) 10.96(S) 17 40, 2.9 2.9 2.9 17 95. .00( ) 2.9 .50( ) 2.9 10.99 (S) 2.9 ' .00( ) .50( ) 10.92(S) 17 50. 2.9 2.9 2.9 .00( ) .50( ) 10.90(S) 17 55. 2.9 2.9 2.9 .00( ) .50( ) 10.88(S) ' 18 0. 2.9 2.9 2.9 .00( ) .50( ) 10.86(S) 18 5. 2.9 2.9 2.9 .00( ) .50( ) 10.84(S) 18 10. 2.9 2.9 2.9 ' .00( ) .50( ) 10.82(S) 18 15. 2.9 2.9 2.9 .00( ) .50( ) 10.80(S) 18 20. 2.9 2.9 2.9 .00( ) .50( ) 10.78(S) t 16 25. 2.9 2.9 2.9 .00( ) .50( ) 10.76(S) 18 30. 2.9 2.9 2.9 .00( ) .50( ) 10.74(S) 18 35, 2.9 .00( ) 2.9 .50( ) 2.9 10.72 (S) ' 18 40. 2.9 2.9 2.9 .00( ) .50( ) 10.70(S) 18 45. 2.9 2.9 2.9 .00( ) .50( ) 10.68(S) 18 50. 2.9 2.9 2.9 .00( ) .50( ) 10.66(S) 18 55. 2.9 2.9 2.9 .00( ) .50( ) 10.64(S) 19 0. 2.9 2.9 2.9 .00( ) .49( ) 10.62(S) ' 19 5. 2.9 2.9 2.9 .00( ) .49( ) 10.60(S) 19 10. 2.9 2.9 2.9 .00( ) .49( ) 10.58(S) 19 15. 2.9 2.9 2.9 ' .00( ) .49( ) 10.56 (S) 19 20. 2.9 2.9 2.9 .00( ) .49( ) 10.54(S) 19 25. 2.9 2.9 2.9 .00( ) .99( ) 10.52 (S) 19 30. 2.9 2.9 2.9 ' .00( ) .49( ) 10.50(S) 19 35. 2.9 2.9 2.9 .00( ) .49( ) 10.46(S) 19 40. 2.9 2.9 2.9 .00( ) .49( ) 10.46(S) ' 19 45. 2.9 2.9 2.9 .00( ) .49( ) 10.44(S) 19 50. 2.9 2.9 2.9 .00( ) .49( ) 10.42(S) 19 55. 2.9 2.9 2.8 ' .00( ) .49( ) 10.90(S) 20 0. 2.9 2..9 2.8 .00( ) .49( ) 10.38(S) THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC t OSCILLLATIONS DURING THE SIMULATION. 301 302 303 304 306 ' Waterfield SWMM for First Filing 100-YEAR Rainfall Event .0. .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .04( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 _ .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .03( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .02( ) .0 .0 .0 .0 .0 .0 .0 .00( ) .01( ) .01( ) .03( ) .00( ) .02( ) .02( ) I *** DETENSION DAMS **• PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 1 86.4 (DIRECT FLOW) 0 55. 300 86.4 2.5 0 55. 301 3.0 .1 14.1 3 35. 302 224.8 3.1 0 40. ' 303 85.3 4.0 0 40. 304 95.5 3.9 0 40. 305 122.5 2.9 0 40. 306 7.3 .3 0 35. 3.3 1. 0 . ' 310 10 � 7373.9 .9 55 0 55. ENDPROGRAM PROGRAM CALLED I L u DETENTION r I I i I DETENTION POND HIGH WATER LINE WATERFIELD 1ST WATER QUALITY POND 25,264.0 = REQ. VOLUME CONTOUR AREA AVG AREA INTERVAL CUMULATIVE HIGH WATER Contour Storage (sq.fL) (sq.ft.) VOLUME (cu.ft) VOL (cu.ft.) LINE (ft.) 43.0 4,824.0 43.0 0.0 20,300.0 11,913.4 11,913.4 44.0 35,776.0 44.3 44.0 0.3 49,172.5 48,552.5 60,465.9 45.0 62,569.0 44.6 45.0 1.4 81,051.5 80,339.7 140,805.E 46.0 99,534.0 45.0 46.0 3.2 113.475.8 254,281.4 r113,774.0 47.0 128,014.0 45.5 47.0 5.8 149,727.0 149,199.4 403,480.8 48.0 171,440.0 46.1 48.0 9.3 r� 194,852.0 194,381.5 597,862.2 49.0 218,264.0 46.5 49.0 13.7 229,970.0 114,935.3 712,797.5 49.5 241,676.0 0.0 49.5 16.4 NOTES: 1. FOR THE FIRST CONTOUR VOLUME A CONIC SHAPE WAS ASSUMED 1 VOL. = 113 (AREA ABOVE) (DIFFERENCE IN CONTOUR ELEV.) 2. FOR THE REMAIMDER OF THE VOLUMES BETWEEN CONTOURS (SECTION 9.2) VOL. = DEPTH/3 (A +(AB)A.5 + B) FOR: Uniform Sides sec.(9.2) 3. HWL=(VOL.REQ-VOL.LOW CUML)-3/(AREA LOW+AREA HIGH+(Iow area high area)A.5) 44.27 = HWL POND ORIFICE SIZING ORIGINAL DESIGN DATA 3.00 = Allowable Des. Release Rate(ds) NOTE: 1. VERT. PLATES WILL BE PLACED 42 75 = Flowline Orifice Elevation(ft) AT PIPE FLOWLINE 0.60 = Orifice Coefficient (Cd) 1.52 = Available Driving Head(ft) VERT. CIRCULAR PLATE 84.62 = Outlet Area(inches) 5.19 = Circular radius(inches) 1.09 = Actual Hydraulic Driving Head(ft) VERT. SQUARE PLATE 72.65 = Outlet Area(inches) 8.52 = Side for Sq. Opening(inches) 1.17 = Actual Hydraulic Driving Head(ft) HORZ. CIRCULAR PLATE 72.65 = Outlet Area(inches) 4.81 = Circular radius(inches) ' 1.52 = Actual Hydraulic Driving Head(ft) I P� DETENTION POND HIGH WATER LINE WATERFIELD 1ST DETENTION POND 614,196.0 = REQ. VOLUME CONTOUR AREA AVG AREA INTERVAL CUMULATIVE HIGH WATER Contour Storage U i (sq.ft.) (sq.ft.) VOLUME (cu.ft.) VOL (cu.ft.) LINE (ft.) 44.3 43,813.0 44.3 0.0 m 53,191.0 14,584.8 14,584.8 I V. 45.0 62,569.0 0.0 81,051.5 80,339.7 94,924.5 45.0 0.3 - 46.0 99,534.0 0.0 46.0 2.2 n I 113,774.0 113,475.8 208,400.3 tt, ���JJI 111111 i 47.0 128,014.0 0.0 149,727.0 149.199.4 357„599.7 47.0 4.8 ; WJ 48.0 171,440.0 0.0 48.0 8.2 194,852.0 194.381.5 551,981.2 49.0 218,264.0 49.3 49.0 12.7 229,970.0 183,896.5 735,877.7 � II , n 49.8 241,676.0 0.0 49.8 16.9 i NOTES: 1. FOR THE FIRST CONTOUR VOLUME A CONIC SHAPE WAS ASSUMED VOL. = 1/3 (AREA ABOVE) (DIFFERENCE IN CONTOUR ELEV.) 2. FOR THE REMAIMDER OF THE VOLUMES BETWEEN CONTOURS (SECTION 9.2) (1J�Jj Q 1lJ VOL. = DEPTH/3 (A +(AB)A.5 + B) FOR: Uniform Sides sec.(9.2) n - vl O 4 3. HWL=(VOL.REQ.-VOL.LOW CUML)-3/(AREA LOW+AREA HIGH+(low area high area)A.5) Q �II�UU..II� 49.27 = HWL POND ORIFICE SIZING it ORIGINAL DESIGN DATA 3.00 = Allowable Des. Release Rate(cfs) NOTE: 1. VERT. PLATES WILL BE PLACED 42.75 = Flowline Orifice Elevabon(ft) 0.60 = Orifice Coefficient (Cd) 6.52 = Available Driving Head(ft) VERT. CIRCULAR PLATE 35.91 = Outlet Area(inches) 3.38 = Circular radius(inches) 6.24 = Actual Hydraulic Driving Head(ft) ' VERT. SQUARE PLATE 35.14 = Outlet Area(inches) 5.93 = Side for Sq. Opening(inches) 6.27 = Actual Hydraulic Driving Head(ft) HORZ. CIRCULAR PLATE 35.14 = Outlet Area(inches) 3.34 = Circular radius(inches) 6.52 = Actual Hydraulic Driving Head(ft) AT PIPE FLOWLINE 1 I --- --- Z., z - Z • tom% 49 _ I Z - ---- - - 2 .9 - 4 i. � 14• 1 4�-'). 4-D I z J lZ SI LTd?l Ot�) 61iS I � . pr=>z �w M ;�Jl ►v�,o�� Is- � u r,1C� - ��--r�.tT�� I4-.CAB 44 . Z"7 } 4. 1- n.c . FT 44.277 - 49 . 11, DRAINAGE CRITERIA MANUAL (V. 3) 0 0, 0.' t STORMWATER QUALITY MANAGEMENT 5 xten 0-1-10 ad De r Dralli entlor i time Basl (Dry) loor D 1 Aentic -Hour n Pon Drain Is (W me t) ku cu ju au 50 60 70 80 90 100 Percent Impervious Area in Tributary Watershed Source: Urbanos, Guo, Tucker (1989) Note: Watershed Inches of runoff shall a��ppl to the enure watershed tributary to the WFacility. FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV) 9-1-1992 UDFCD DRAINAGE CRITERIA MANUAL(V. 3) 10.1 6. 4. 2. 1.i 0.61 m 0.41 m 0.2� a U 0.11 O 3 0.01 0.04 0.022 0.01 STRUCTURAL BMPs MINEWEENJ SOLUTION: Required Area or VAA4,12AA 0100PAOI 14 For 14 10 IN AAA a FAA EINWAA VAOJA PAA AJAWA VAA P OVA Ellmol IPA U•U4 U.UC U.10 0.20 0.40 0.60 1.0 2.0 E 4.0 6.0 Required Area per Row (in.2) z Source: Douglas County Storm Drainage and Technical Criteria, 1986. FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME Rev. 3-1-1994 UDFCD W7-IJa-7- = 4'.2:-7 - 4-2.77 c5 = t ' I 0. 5E- I N S a t= OF 8" - " 6� b2��tC.E �P►.1E�,. a4:>4= �x r No Text 0 3 49.3 TJ. ' 4-9.4a 14 .-7 4C) is.z gt.� P OPEN CHANNELS AND SWALES . I 1 I j I I I CHANNEL SECTION A -A Worksheet for Triangular Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet CHANNEL SECTION A -A Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data ' Mannings Coefficient 0.060 Channel Slope 0.006000 tuft ' Left Side Slope Right Side Slope 4.000000 H : V 4.000000 H : V Discharge 24.87 cfs ' Results Depth 1.86 ft Flow Area 13.87 ft2 Wetted Perimeter 15.36 ft Top Width 14.90 ft ' Critical Depth 1.19 ft Critical Slope 0.064914 ft/ft Velocity 1.79 ft/s ' Velocity Head 0.05 ft Specific Energy 1.91 ft Froude Number 0.33 ' Flow is subcritical. 1 ' 03/06/s8 03:11:22 PM ----- CDQ co E) .72 i Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 Ci ' CHANNEL SECTION A -A - 100 YEAR Worksheet for Triangular Channel ' Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet CHANNEL SECTION A -A ' Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data ' Mannings Coefficient 0.060 Channel Slope 0.006000 ft/ft Left Side Slope 4.000000 H : V ' Right Side Slope 4.000000 H : V Discharge 18.70 cfs- ' Results Depth 1.67 ft ' Flow Area 11.20 ft2 Wetted Perimeter 13.80 ft Top Width 13.39 ft ' Critical Depth 1.06 ft Critical Slope 0.067430 ft/ft Velocity 1.67 ftis Velocity Head 0.04 ft Specific Energy 1.72 ft Froude Number 0.32 ' Flow is subcritical. LJ I ' 03/06/s8 03:18:56 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 ' CHANNEL SECTION A -A - MAX SLOPE Worksheet for Triangular Channel 1 Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet CHANNEL SECTION A -A ' Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data ' Mannings Coefficient 0.060 Channel Slope 0.040000 f 1ft $ Left Side Slope 4.000000 H : V ' Right Side Slope 4.000000 H : V Discharge 24.87 cfs Results Depth 1.30 ft ' Flow Area 6.81 fP Wetted Perimeter 10.76 ft Top Width 10.44 ft Critical Depth 1.19 ft Critical Slope 0.064911 ft(ft Velocity 3.65 ftis ' Velocity Head 0.21 ft Specific Energy 1.51 ft Froude Number 0.80 . Flow is subcritical. 03/06/s8 03:11:51 PM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I ' CHANNEL SECTION B-B Worksheet for Triangular Channel ' Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 ' Worksheet CHANNEL SECTION B-B Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data ' Mannings Coefficient 0.060 Channel Slope 0.006000ft/ft Left Side Slope 4.000000 H : V ' Right Side Slope 4.000000 H : V Discharge 43.22 cfs ' Results Depth 2.29 ft Flow Area 21.00 ft2 Wetted Perimeter 18.89 ft ' Top Width Critical Depth 18.33 ft 1.49 ft Critical Slope 0.060301 ft/ft Velocity 2.06 ft/s ' Velocity Head 0.07 ft Specific Energy 2.36 ft Froude Number 0.34 ' Flow is subcritical. 1 I". I i I C4.oO = Z.d61 ,06/20/97 FlowMaster v5.13 08:13:10 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 08708 (203) 755-1688 Page 1 of 1 I 1 CHANNEL SECTION B-B - 100 YEAR Worksheet for Triangular Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet CHANNEL SECTION B-B Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.006000 ft/ft Left Side Slope 4.000000 H : V ' Right Side Slope 4.000000 H : V Discharge 32.50 cfs ' Results Depth 2.06 ft Flow Area 16.96 ft, Wetted Perimeter 16.98 ft Top Width 16,47 ft Critical Depth 1.33 ft Critical Slope 0.062639 ft/ft Velocity 1.92 ft/s ' Velocity Head 0.06 ft Specific Energy 2.12 ft Froude Number 0.33 ' Flow is subcritical. 1 ' 03/06/98 03:36:10 PM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 o#1 r� IJ REVISED SECTION C-C - Worksheet for Trapezoidal Channel Project Description Project File c:\drainageXhaestad\fmw\waterfin.fm2 Worksheet CHANNEL SECTION C-C Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.080000 ft/ft Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H : V Bottom Width 8.00 ft Discharge 27.40 cfs Results Depth 0.62 ft Flow Area 6.11 ft2 Wetted Perimeter 11.92 ft Top Width 11.72 ft Critical Depth 0.66 ft Critical Slope 0.065662 ft/ft Velocity 4.49 ftis Velocity Head 0.31 ft Specific Energy 0.93 ft Froude Number 1.10 Flow is supercritical. 07/14/98 01:19:45 PM _c tZZ, T`_iP_IC-01L_LI,u--S�J- Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13' Page 1 of 1 ' REVISED SECTION C-C - Worksheet for Trapezoidal Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 ' Worksheet CHANNEL SECTION C-C Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data ' Mannings Coefficient 0.060 Channel Slope 0.080000 ft/ft Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H : V Bottom Width 8.00 ft Discharge 20.60 cfs —6 (oo y�oulS ' Results Depth 0.53 ft Flow Area 5.04 ft2 Wetted Perimeter 11.33 ft ' Top Width 11.16 ft Critical Depth 0.55 ft Critical Slope 0.068928 ft/ft ' Velocity 4.08 ft/s Velocity Head 0.26 ft Specific Energy 0.79 ft Froude Number 1.07 ' Flow is supercritical. 07/14/98 FlowMaster v5.13 01:19:16 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 1 1 1 CHANNEL SECTION D-D Worksheet for Trapezoidal Channel Project Description Project File c:\drainageXhaestad\fmwlwaterfin.fm2 Worksheet CHANNEL SECTION D-D Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.005000 ft(ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 2.00 ft Discharge 45.75 cfs Results Depth 2.19 ft Flow Area 23.49 ftz Wetted Perimeter 20.03 ft Top Width 19.49 ft Critical Depth 1.30 ft Critical Slope 0.059672 ft/ft Velocity 1.95 ft/s Velocity Head 0.06 ft Specific Energy 2.25 ft Froude Number 0.31 Flow is subcritical. Q 1 c0 = ' 10/04/98 03:14:00 PM f Ll a(D + 5a/ = 4s:7 s FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I 1 1 1 1 1 CHANNEL SECTION D-D -100 year flow Worksheet for Trapezoidal Channel Project Description Project File c:ldrainage\haestadlfmw\waterfin.fm2 Worksheet CHANNEL SECTION D-D Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.005000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope . 4.000000 H : V Bottom Width 2.00 ft Discharge 34.40 cfs Results Depth 1.94 ft Flow Area 18.98 ft' Wetted Perimeter 18.02 ft Top Width 17.54 ft Critical Depth 1.13 ft Critical Slope 0.061993 ft/ft Velocity 1.81 ft/s Velocity Head 0.05 ft Specific Energy 1.99 ft Froude Number 0.31 Flow is subcritical. ' 10/04M 03:11:51 PM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookskte Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 1 1 i CHANNEL SECTION E-E Worksheet for Triangular Channel Project Description Project File c:ldrainage\haestad\fmw\waterfin.fm2 Worksheet REVISED CHANNEL SECTION E-E Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data 1 Mannings Coefficient 0.035 Channel Slope 0.004000 f fft Left Side Slope 4.000000 H : V 1 Right Side Slope 4.000000 H : V Discharge 134.33 cfs 1 Results 1 Depth Flow Area 3.09 ft 38.20 ftz Wetted Perimeter 25.48 ft Top Width 24.72 ft Critical Depth 2.34 ft Critical Slope 0.017640 ft/ft Velocity 3.52 ft/s 1 Velocity Head 0.19 ft Specific Energy 3.28 ft Froude Number 0.50 ' Flow is subcritical. 1 1 _ 24321 1 z� — II'' ' 4• � 1 06/17/98 03:42:10 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1 _ O, 3.cf'!� FlowMaster v5.13 Page 1 of 1 CHANNEL SECTION E-E - 100 yr Worksheet for Triangular Channel Project Description Project File c:ldrainagelhaestad\fmw\waterfin.fm2 Worksheet REVISED CHANNEL SECTION E-E Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.004000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 101.00 cfs Results Depth Flow Area 2.78 ft 30.84 f 2 Wetted Perimeter 22.90 ft Top Width 22.21 ft . ■ Critical Depth 2.09 ft Critical Slope 0.018324 f 1ft Velocity 3.27 ftfs Velocity Head 0.17 ft Specific Energy 2.94 ft Froude Number 0.49 Flow is subcritical. I I I 06n 7/98 03:42:27 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 I I REVISED CHANNEL SECTION F-F Worksheet for Trapezoidal Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet REVISED SECTION F-F Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data 1 Mannings Coefficient 0.035 Channel Slope 0.003000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 2.00 ft Discharge 172.50 cfs Results Depth 3.34 ft Flow Area 51.34 ft, Wetted Perimeter 29.55 ft Top Width 28.73 ft Critical Depth 2.35 ft Critical Slope 0.017017 fttft Velocity 3.36 ftfs Velocity Head 0.18 ft Specific Energy 3.52 ft Froude Number 0.44 Flow is subcritical. vet E.surr. o _ 1 Z, V,//Gt oe.1C • P�.�l 09/01 /98 08:38:09 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 3.� M t►.3 FlowMaster v5.13 Page 1 of 1 I I I I REVISED CHANNEL SECTION F-F - 100 YR DEV Worksheet for Trapezoidal Channel Project Description Project File c:\drainagelhaestad\fmw\waterfin.fm2 Worksheet REVISED SECTION F-F Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.003000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 2.00 ft Discharge 129.70 cfs Results Depth 2.98 ft Flow Area 41.46 ft2 Wetted Perimeter 26.57 ft Top Width 25.83 ft Critical Depth 2.07 ft Critical Slope 0.017674 ft/ft Velocity 3.13 ft/s Velocity Head 0.15 ft Specific Energy 3.13 ft Froude Number 0.44 Flow is subcritical. 09f01 /98 08:40:22 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 copkr. 4*A * # CARDER CONCRETE PRODUCTS COMPANY CONCRETE U � 8311 W. CARDER CT. LITTLETON.CO80125 (303) 791-1600 (303) 791-1710 FAX h Q Kh OLORAD SPRINGS, CO80931 ADOUG DATE PAGE of d. A*J NEt- Reinforced Concrete Sewer, Culvert & Irrigation Pipe It2" thru 144") Reinforced Concrete Elliptical Pipe (18" thru 144"1 Precast Inlets Precast Concrete Box Culverts "I Buy It, Bury It, Never Look Back" Stormceptor° I I I CHANNEL SECTION H-H - 100 YEAR DEVELOPED Worksheet for Trapezoidal Channel Project Description Project File c:ldrainage\haestadlfmw\waterfin.fm2 Worksheet CHANNEL SECTION G-G Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.004000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 4.00 ft Discharge 354.98 cfs Results Depth 3.98 ft Flow Area 79.28 ftz Wetted Perimeter 36.82 ft Top Width 35.84 ft Critical Depth 2.99 ft Critical Slope 0.015450 ft/ft Velocity 4.48 ft(s Velocity Head 0.31 ft Specific Energy 4.29 ft Froude Number 0.53 Flow is subcritical. 08/21 /98 02:01:55 PM '�lodx 3. �3 m ,I oo + 33 _ ,mod-�i8 cis IJ Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 o1 3.9mt M4. FlowMaster v5.13 Page 1 of 1 I 1 CHANNEL SECTION H-H - 100 YEAR DEVELOPED Worksheet for Trapezoidal Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet CHANNEL SECTION G-G Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 Channel Slope 0.004000 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 4.00 ft Discharge 266,90 cfs Results Depth 3.53 ft Flow Area 64.05 ft2 Wetted Perimeter 33.13 ft Top Width 32.26 ft Critical Depth 2.63 ft Critical Slope 0.016050 ft/ft Velocity 4.17 ftis Velocity Head 0.27 ft Specific Energy 3.80 ft Froude Number 0.52 Flow is subcritical. 08/21r98 02:02:24 PM Haestad Methods, Inc. 37 Brookside Road Wiaterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 I I CHANNEL SECTION 1 -1 Worksheet for Triangular Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet CHANNEL SECTION 1-1 Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.003600 f 1ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Discharge 10.38 cfs Results Depth 1.48 ft Flow Area 8.72 ft2 Wetted Perimeter 12.18 ft Top Width 11.82 ft Critical Depth 0.84 ft Critical Slope 0.072932 ftfft Velocity 1.19 ft/s Velocity Head 0.02 ft Specific Energy 1.50 ft Froude Number 0.24 Flow is subcritical. I� 03/17/98 03:44:46 PM GZJoo.=....7.i=�>ctS 1 zI KAI�J Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 i SECTION J-J Worksheet for Trapezoidal Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet SECTION J-J Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.011800 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 2.00 ft Discharge 28.73 cfs Results Depth 1.50 ft Flow Area 12.03 ft2 Wetted Perimeter 14.39 ft Top Width 14.02 ft Critical Depth 1.04 ft Critical Slope 0.063508 f 1ft Velocity 2.39 ft(s Velocity Head 0.09 ft Specific Energy 1.59 ft Froude Number 0.45 Flow is subcritical. I �10/21 /98 08:38:59 AM I .oZ1 i nI,1. Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 O FlowMaster v5.13 Page 1 of 1 I I I SECTION J-J - 100 YEAR FLOWS Worksheet for Trapezoidal Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet SECTION J-J Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.060 Channel Slope 0.011800 ft/ft Left Side Slope 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 2.00 ft Discharge 21.60 cfs Results Depth 1.33 ft Flow Area 9.72 ft2 Wetted Perimeter 12.96 ft Top Width 12.63 ft Critical Depth 0.91 ft Critical Slope 0.065996 ft/ft Velocity 2.22 ft/s Velocity Head 0.08 ft Specific Energy 1.41 ft Froude Number 0.45 Flow is subcritical. 1021/98 08:39:43 AM FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I I DOWNSTREAM SECTION 59+00 - FULL FLOW Worksheet for Irregular Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet STA 59+00 - WEST OF LAKE CANAL Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data 1 Channel Slope 0.000800 ft(ft Water Surface Elevation 42.90 ft Elevation range: 39.90 ft to 43.00 ft. Station (ft) Elevation (ft) Start Station 0.00 42.90 0.00 15.30 42.00 26.40 41.00 28.20 39.90 29.60 41.00 ' 33.80 42.00 - 36.90 43.00 rResults Wtd. Mannings Coefficient 0.060 Discharge 26.10 cfs Flow Area 37.40 ft2 Wetted Perimeter 37.61 ft Top Width 36.59 ft Height 3.00 ft Critical Depth 41.60 ft Critical Slope 0.070916 ft/ft 1 Velocity 0.70 ftis Velocity Head 0.01 ft Specific Energy 42.91 ft ' Froude Number 0.12 Flow is subcritical. I I 09/01/98 10:02:32 AM wz_-�-7- Ol= �l 2+4� End Station Roughness 36.90 0.060 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 I 1 I I I I DOWNSTREAM SECTION 60+00 - FULL FLOW Worksheet for Irregular Channel Project Description Project File c:\drainage\haestad\fmw\waterfin.fm2 Worksheet STA 60+00 - WEST OF LAKE CANAL Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.000800 ft/ft Water Surface Elevation 43.10 ft Elevation range: 39.95 ft to 44.00 ft. Station (ft) Elevation (ft) Start Station 0.00 43.10 0.00 5.40 43.00 23.30 42.00 26.80 39.95 34.30 43.00 38.20 44.00 Results Wtd. Mannings Coefficient 0.060 Discharge 19.33 cfs Flow Area 30.65 ft2 Wetted Perimeter 35.88 ft Top Width 34.69 ft Height 3.15 ft Critical Depth 41.35 ft Critical Slope 0.068092 ft(ft Velocity 0.63 ftis Velocity Head 0.01 ft Specific Energy 43.11 ft Froude Number 0.12 Flow is subcritical. End Station Roughness 38.20 0.060 09/01/98 10:09:22 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 I I I I I DOWNSTREAM SECTION 61+00 - FULL FLOW Worksheet for Irregular Channel Project Description Project File c:\drainageVhaestadlfmw\waterfin.fm2 Worksheet STA 61+00 - WEST OF LAKE CANAL Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.000800 ft(ft Water Surface Elevation 43.20 ft Elevation range: 40.00 ft to 44.00 ft. Station (ft) Elevation (ft) Start Station 0.00 43.20 0.00 7.80 43.00 27.00 40.00 29.90 43.00 37.80 44.00 End Station Roughness 37.80 0.060 Results ' Wtd. Mannings Coefficient 0.060 Discharge 29.90 cfs Flow Area 38.51 ftz�—�� ---___� -% 0--- ----- _ - ' Wetted Perimeter 33.00 ft Top Width 31.48 ft Height 3.20 ft Critical Depth 41.33 ft Critical Slope 0.065690 f tft Velocity 0.78 ft/s Velocity Head 0.01 ft 1 Specific Energy 43.21 ft Froude Number 0.12 Flow is subcritical. ' 09/01/98 FlowMaster v5.13 10:31:12 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 mmmmmmm � mmmmmmm U U U U U U U NHlvlvhtriv 888�8�� 9 9 9 8 8 2 2 t vi ri: o; m: r' v _ 888888� u ai ui o a' b A a J v N 1� m % ♦ lA9 W �j N N N ac ui m N 3Y £ RRIA'ovNcd N ti m m vi N N vi ad Id m pp pp pp pp W b b b 49 b C C C G Op O G Q 8 n N n sV o00 •pia_ �M�et��l`�C7 r 1 o.s SUMS TL1.1 Ua14T Y4 us r- TY Pa. L_ CC 1' dss �, P P� 1 0 I N io -raP ot-- , I Z I M i rJ �osT 'TZ5 SLOP fDLJC- ' 1 1 Q = 1 z9.7. I-7 CSS-i�a,� ' P�2 TL'k�L.� g • Z - NO ;2l i� e�>' ��� I P.€D � a�� � duo � �" = • c>S>= IZn I 1 I I I I I �I I STORM SEWER AND INLETS STORM INLETS DRAINAGE CRITERIA MANUAL --I -- - --------------�----------2.g�_/_sue � �� a. 0.e 0.7 0.6 f- w z 0.5 ir w > 0.4 0 x I — a. 0.3 w 0 0 ? 0.2 0 z 0 a 0.1 EXAMPLE 0.01111111111111111111111111III ' 0 1 2 3. 4 FLOW INTO INLET PER SO. FT. OF OPEN AREA.(CFS/FT2) ' FIGURE 4-I. CAPACITY OF GRATED INLET IN SUMP 1 v.l..la I �.JG�-_ _�__ G�� �-i_-. _. J W �.ic.C�� � �...._�J.�Q►1?7_ —._� �Y� I � Y'�. 1 i 1 10-15-68 Denver Repionol Council of Governments 5 ' Deeter Foundry, Inc. I 1 P.O. Box 29708, Lincoln, Nebraska 68529 2060 Catch Basin Inlet Grate & Frame Heavy Duty Total Wt. — 470# Open Area — 378 Sq. In. oil 2060-A Catch Basin Inlet Grate & Frame Heavy Duty Total Wt. — 465# Open Area — 378 Sq. In. 2061. Catch Basin Inlet Grate & Frame Heavy Duty Total Wt. — 460# Open Area — 378 Sq. In. 80 Ust �c� ��-rE�. � �-7r3 � �� �►�� 1 - ' � �sY�.ti► 2 y� z.2� l I apy� g.-7o Z Z f 1 Ioo yam, �•60 3 � 1 � vP�TES r' ^ � �� ��.o.T�D �y To.r.� �v ���tt_c1a��a t'-L�►�c= Z.eZ 1 1 �/D¢ IOOYe ��1.21J l�fa Z i UDINLET:-------INLET------HYDARULICS-----------AND----SIZING --------------------------- DEVELOPED BY ' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ fER:Northern Engineering Services -Ft Collins Colorado ....................... DATE 01-30-1998 AT TIME 14:28:31 *** PROJECT TITLE: WATERFIELDIST ' *** CURB OPENING INLET HYDRAULICS AND SIZING: I I 1 1 INLET ID NUMBER: 0 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 10.00 6.00 0.00 2.00 0.00 depth to'flow depth. STREET LONGITUDINAL SLOPE (t) = 0.40 STREET CROSS SLOPE (O = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 19.38 GUTTER FLOW DEPTH (ft) = 0.51 FLOW VELOCITY ON STREET (fps)= 2.45 ' FLOW CROSS SECTION AREA (sq ft)= 3.88 GRATE CLOGGING FACTOR (%;)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 15.00 i INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (CfS)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 11.48 (cfs) = 9.40 (cfs)= 9.40 (cfs)= 0.00 (cfs)= 9.40 (cfs)= 9.40 (cfs)= 0.00 -------------- UDINLET: -------INLET------HYDARULICS-----------AND----SIZING --------------------------- ' DEVELOPED BY ' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:Northern Engineering Services -Ft Collins Colorado ....................... ,N DATE 01-30-1998 AT TIME 14:42:47 *** PROJECT TITLE: WATERFIELDIST ' *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 14 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 ' HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.50 Note: The sump depth is additional depth to flow depth. ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 28.80 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 24.80 FLOW INTERCEPTED (cfs)= 24.80 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 24.80 FLOW INTERCEPTED (cfs)= 24.80 CARRY-OVER FLOW (cfs)= 0.00 L 1 1 Deeter Foundry, Inc. P.O. Box 29708, Lincoln. Nebraska 68529 1925-1927 Catch Basin Inlet Grates & Frames Heavy Duty 1. Furnished with me( 2. Can be furnished H Catalog Ho. A B C_ 1925 241/a 1 223/4 1926 241/a 1 22a/4 1927 241/a 1 223/4 a, S' PoT.+O aEt� 1"► E 1928 Catch Basin Inlet Grate & Frame Heavy Duty Total Wt. — 130# Open Area — 200 Sq. In. 1. Furnished with machined horizontal bearing surfaces. to 1930 Catch Basin Inlet Grate & Frame Heavy Duty Total Wt. — 420# Open Area — 210 Sq. In. 1. Furnished with machined horizontal bearing surfaces. 261/i 1 r1Vs 1/"—� r— S* 24' 263/4' 333/4' �f 63 I ------------ ------------------------------------------------------- • UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ USER:Northern Engineering Services -Ft Collins Colorado ....................... �N DATE 01-30-1998 AT TIME 14:51:14 *** PROJECT TITLE: WATERFIELDIST ' *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 'MC �,&� Ill ZO INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 ' HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.50 Note: The sump depth is additional depth to flow depth. ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 28.42 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 21.60 FLOW INTERCEPTED (cfs)= 21.60 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 21.60 FLOW INTERCEPTED (cfs)= 21.60 ' CARRY-OVER FLOW (cfs)= 0.00 1 ------------------------------------------------------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED -BY- METRO -DENVER -CITIES/COUNTIES -AND -UD&FCD---------- ---------- --- ER:Northern Engineering Services -Ft Collins Colorado ....................... O DATE 01-30-1998 AT TIME 14:48:23 * PROJECT TITLE: WATERFIELDIST *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 21 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 12.50 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= 0.50 Note: The sump depth is additional depth to flow depth. INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 36.58 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 30.00 FLOW INTERCEPTED (CfS)= 30.00 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 30.00 FLOW INTERCEPTED (cfs)= 30.00 CARRY-OVER FLOW (Cfs)= 0.00 1 1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER -------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------- SER:Northern Engineering Services -Ft Collins Colorado........................ �N DATE 10-05-1998 AT TIME 07:44:32 ** PROJECT TITLE: WATERFIELD 1ST ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 24 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.16 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (o) = 0.40 STREET CROSS SLOPE (o) = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 21.25 ' GUTTER FLOW DEPTH (ft) = 0.55 FLOW VELOCITY ON STREET (fps)= 2.58 FLOW CROSS SECTION AREA (sq ft)= 4.64 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR('-)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 22.65 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 11.90 FLOW INTERCEPTED (cfs)= 11.90 ' CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.90 FLOW INTERCEPTED (cfs)= 11.90 CARRY-OVER FLOW (cfs)= 0.00 N G'rE 845 tJ �.% ZS Q lco = ' Or lz7 USE IC, Tv PE a CAr Ponxz cA.)cj5 aarm�,�E I ------------------------------------------------------- --------------------UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY ' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ JSER:Northern Engineering Services -Ft Collins Colorado ....................... N DATE 06-24-1998 AT TIME 11:31:31 *** PROJECT TITLE: VINE DRIVE VD4 %E!:�Iu \JD.3 W/ d.Qzy mer. TD UDA ' *** CURB OPENING INLET HYDRAULICS AND SIZING: Z VQ,. i>_wva%LoPvu> INLET ID NUMBER: 4 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 17.50 REQUIRED CURB OPENING LENGTH (ft)= 8.27 IDEAL CURB OPENNING EFFICIENCY = 1.00 ' ACTURAL CURB OPENNING EFFICIENCY = 1.00 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 1.84 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 4.00 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 3.25 GUTTER FLOW DEPTH (ft) = 0.40 FLOW VELOCITY ON STREET (fps)= 4.99 FLOW CROSS SECTION AREA (sq ft)= 0.44 GRATE CLOGGING FACTOR (°s)= 50.00 CURB OPENNING CLOGGING FACTOR('s)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.20 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 2.20 FLOW INTERCEPTED (cfs)= 2.20 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 2.20 FLOW INTERCEPTED (cfs)= 1.98 CARRY-OVER FLOW (cfs)= 0.22 I ------------------- ------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------------------------------------------------------------------------------ iLTSER:Northern Engineering Services -Ft Collins Colorado ....................... N DATE 06-24-1998 AT TIME 11:29:56 *** PROJECT TITLE: VINE DRIVE VD4 ,)&5iw VDVD--de *** CURB OPENING INLET HYDRAULICS AND SIZING: _. ( _yQ„ veve-tJpao INLET ID NUMBER: 4 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 17.50 REQUIRED CURB OPENING LENGTH (ft)= 18.18 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 0.97 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ("s) = 1.84 STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 4.00 ,r GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 11.69 GUTTER FLOW DEPTH (ft) = 0.57 FLOW VELOCITY ON STREET (fps)= 4.85 FLOW CROSS SECTION AREA (sq ft)= 1.70 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.28 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 8.30 FLOW INTERCEPTED (cfs)= 8.08 CARRY-OVER FLOW (cfs)= 0.22 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 8.30 FLOW INTERCEPTED (cfs)= 7.45 CARRY-OVER FLOW (cfs)= 0.85 U I OR I'll lip N m �, O O LL - Q a 1 WATERFIELD 1ST FILING STORM SEWER SYSTEM ALONG VINE DRIVE 2 15 , 20 , 3 2 , 1 , .8 500 300 .2 ,Y 2 100 4.9 , 3.8 2.7 2.2 , 1.8 1.4 .89 16 1, 55 0 1 12 0 0 0 174.4 0 2 .2 0 0 0 0 0 2 , 54.5 12 2 23 25 0 0 174.4 , 0 2 .2 0 0 0 0 0 3, 54.27 23 1 34 0 0 0 12.1 , 0 1, .1 0 0 0 0 0 4, 54.27 34 , 0 0 0 0 0 12.1 , 0 1 .1 0 0 0 0 0 5, 55.2 25 1 56 0 0 0 164.6 , 0 2 .2 0 0 0 0 0 6, 57.8 56 1 67 0 0 0 164.6 , 0 2 .2 0 0 0 0 0 7 , 55.9 67 2 78 79 0 0 164.6 , 0 2 .2 0 0 0 0 0 8, 56.75 78 0 0 0 0 0 35.4 , 0 2 .2 0 0 0 0 0 9 , 57.3 79 2 910 , 911 0 0 129.7 , 0 2 .2 0 0 0 0 0 10 56.24 910 1 1015 0 0 0 , 12.3 , 0 2, .2 0 0 0, 0 0 11 , 55.5 911 , 2 , 1112 1113 0 , 0 129.7 , 0 2, .2 0 0 0 0 0 12 , 55.75 1112 0 0 0 0 0 129.7 , 0 2 .2 0 0 0 0 0 13 56 1113 1 1314 0 0 0 4.4 0 2, .2 , 0, 0 0 0 0 14 56 1314 , 0 , 0 , 0 , 0 , 0 ' 1 4.4 0 2 .2 0 0, 0 0 0 15 56.24 1015 1 1516 0 0 0 3.7 0, 2 .2 0 0 0 0 0 16 56.24 1516 0 0 0 0 0 3.7 0 2 .2 0 0 0 0 0 15 12 85 .26 53.08 .013 1 0 1 72 0 23 54 .69 52.6 .013 .08 0 1 24 0 34 , .1 , .69 , 52.6 , .013 1.25 , 0 , 1 , 24 , 0 25 90.5 , .26 , 53.43 , .013 , .16 , 0 , 1 66 , 0 56 454 .26 54.61 , .013 , .44 , 0 , 1 , 66 , 0 67 , 74 , .26 54.8 , .013 , .28 , 0 , 1 , 66 , 0 78 97 1.14 53.34 .013 .28 0 1 30 0 79 177 .26 53.76 .013 .25 0 3 48 76 910 24.18 , .4 54.68 .013 1 0 1 24 0 1112 47 .26 54.49 .013 .4 0 3 48 76 1113 87 .25 52.9 .013 .6 0 1 21 0 1314 .1 .25 52.9 .013 1.25 0 , 1 21 0 1015 28.1 , .4 54.89 , .013 , .25 0 1 24 0 1516 .1 , .6 , 55 .013 1.25 0 1 24 0 911 198.67 , .26 54.27 .013 .05 , 0 , 3 48 , 76 24 0 1516 .1 .6 55 .013 1.25 0 1 24 0 911 198.67 , .26 54.27 .013 .05 , 0 , 3 , i ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties S UDFCD Pool Fund Study ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ USER:NORTHERN ENG SERVICES INC-FT COLLINS COLORADO ........................... ON DATA 10-04-1998 AT TIME 15:30:27 VERSION=03-26-1994 *** PROJECT TITLE :WATERFIELD 1ST FILING r *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION INCH/HR------CFS------ FEET --MANHOLE ------------------MINUTES 1.00 0.00 0.00 0.00 174.40 ------FEET 55.00 - 50.36 OK 2.00 35.59 10.14 4.90 174.40 54.50 51.01 OK 3.00 2.47 10.00 4.90 12.10 54.27 51.99 OK 4.00 2.47 5.00 4.90 12.10 54.27 52.28 OK 5.00 33.59 7.90 4.90 164.60 55.20 52.04 OK 6.00 33.59 6.98 4.90 164.60 57.80 53.26 OK 7.00 33.59 6.83 4.90 164.60 55.90 53.61 OK 8.00 7.22 5.00 4.90 35.40 56.75 54.92 OK 9.00 26.47 6.45 4.90 129.70 57.30 54.93 OK 10.00 2.51 6.37 4.90 12.30 56.24 55.59 OK 11.00 26.47 5.43 4.90 129.70 55.50 55.44 OK 12.00 26.47 5.00 4.90 129.70 55.75 55.77 NO 13.00 0.90 5.00 4.90 4.40 56.00 56.08 NO 14.00 0.90 5.00 4.90 4.40 56.00 56.14 NO 15.00 0.80 6.25 4.63 3.70 56.24 55.82 OK 16.00 0.76 5.00 4.90 3.70 56.24 55.85 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION ' *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ------------------------------------------------------------------------------- 12.00 2.00 1.00 ROUND 66.47 72.00 72.00 0.00 23.00 3.00 2.00 ROUND 20.35 21.00 24.00 0.00 34.00 4.00 3.00 ROUND 20.35 21.00 24.00 0.00 25.00 5.00 2.00 ROUND 65.04 66.00 66.00 0.00 56.00 6.00 5.00 ROUND 65.04 66.00 66.00 0.00 67.00 7.00 6.00 ROUND 65.04 66.00 66.00 0.00 78.00 8.00 7.00 ROUND 27.70 30.00 30.00 0.00 79.00 9.00 7.00 ARCH 59.48 60.00 '48.00 76.00 910.00 10.00 9.00 ROUND 22.68 24.00 24.00 0.00 1112.00 12.00 11.00 ARCH 59.48 60.00 48.00 76.00 1113.00 13.00 11.00 ROUND 16.85 18.00 21.00 0.00 1314.00 14.00 13.00 ROUND 16.85 18.00 21.00 0.00 1015.00 15.00 10.00 ROUND 14.46 15.00 24.00 0.00 1516.00 16.00 15.00 ROUND 13.40 15.00 24.00 0.00 911.00 11.00 9.00 ARCH 59.48 60.00 48.00 76.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTING SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORMAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER ------------------------------------------------------------------------------- CFS CFS FEET FPS FEET FPS FPS 12.0 174.4 216.5 4.08 8.52 3.59 9.88 6.17 0.79 V-OK 23.0 12.1 18.8 1.17 6.37 1.25 5.88 3.85 1.14 V-OK 34.0 12.1 18.8 1.17 6.37 1.25 5.88 3.85 1.14 V-OK 25.0 164.6 171.7 4.32 8.23 3.58 10.07 6.93 0.69 V-OK 56.0 164.6 171.7 4.32 8.23 3.58 10.07 6.93 0.69 V-OK 67.0 164.6 171.7 4.32 8.23 3.58 10.07 6.93 0.69 V-OK 78.0 35.4 43.9 1.70 9.96 2.02 8.35 7.21 1.42 V-OK 79.0 129.7 145.3 3.81 7.84 3.22 9.45 6.19 0.72 V-OK 910.0 12.3 14.3 1.43 5.13 1.26 5.92 3.92 0.79 V-OK 1112.0 129.7 145.3 3.81 7.84 3.22 9.45 6.19 0.72 V-OK 1113.0 4.4 7.9 0.93 3.39 0.77 4.28 1.83 0.69 V-OK 1314.0 4.4 7.9 0.93 3.39 0.77 4.28 1.83 0.69 V-OK 1015.0 3.7 14.3 0.69 3.83 0.70 3.80 1.18 0.95 V-OK 1516.0 3.7 17.6 0.62 4.43 0.70 3.80 1.18 1.16 V-OK 911.0 129.7 145.3 3.81 7.84 3.22 9.45 6.19 0.72 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS SEWER SLOPE--INVERT-ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM $ (FT) (FT) (FT) 12.00 0.26 -- ----------- 47.08 46.86 ---------- ---------- 1.42 2.14 ---------- NO 23.00 0.69 50.60 50.23 1.67 2.27 NO 34.00 0.69 50.60 50.60 1.67 1.67 NO 25.00 0.26 47.93 47.69 1.77 1.31 NO 56.00 0.26 49.11 47.93 3.19 1.77 NO 67.00 0.26 49.30 49.11 1.10 3.19 NO 78.00 1.14 50.84 49.73 3.41 3.67 OK 79.00 0.26 49.76 49.30 3.54 2.60 OK 910.00 0.40 52.68 52.58 1.56 2.72 NO 1112.00 0.26 50.49 50.37 1.26 1.13 NO 1113.00 0.25 51.15 50.93 3.10 2.82 OK 1314.00 0.25 51.15 51.15 3.10 3.10 OK 1015.00 0.40 52.89 52.78 1.35 1.46 NO 1516.00 0.60 53.00 53.00 1.24 1.24 NO 911.00 0.26 50.27 49.75 1.23 3.55 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET I *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER ID NUMBER SEWER SURCHARGED LENGTH LENGTH UPSTREAM CROWN ELEVATION DNSTREAM WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION ---------------FEET FEET 12.00 ------FEET 85.00 ------FEET 0.00 ------FEET 53.08 ------FEET 52.86 - 51.01 ------------------- 50.36 SUBCR 23.00 54.00 0.00 52.60 52.23 51.99 51.01 JUMP 34.00 0.10 0.00 52.60 52.60 52.28 51.99 JUMP 25.00 90.50 0.00 53.43 53.19 52.04 51.01 SUBCR 56.00 454.00 0.00 54.61 53.43 53.26 52.04 SUBCR 67.00 74.00 0.00 54.80 54.61 53.61 53.26 SUBCR 78.00 97.00 97.00 53.34 52.23 54.92. 53.61 PRSS'ED ' 79.00 177.00 177.00 53.76 53.30 54.93 53.61 PRSS'ED 910.00 24.18 24.18 54.68 54.58 55.59 54.93 PRSS'ED 1112.00 1113.00 47.00 87.00 47.00 87.00 54.49 52.90 54.37 52.68 55.77 56.08 55.44 PRSS'ED 55.44 PRSS'ED 1314.00 0.10 0.10 52.90 52.90 56.14 56.08 PRSS'ED 1015.00 28.10 28.10 54.89 54.78 55.82 55.59 PRSS'ED 1516.00 0.10 0.10 55.00 55.00 55.85 55.82 PRSS'ED 911.00 198.67 198.67 54.27 53.75 55.44 54.93 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW •I *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS --------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER----MA--NHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ----------------------------------------------------------------------- 12.0 2.00 52.20 1.84 1.00 0.00 0.00 0.00 1.00 50.36 23.0 3.00 52.22 0.00 0.08 0.02 0.00 0.00 2.00 52.20 34.0 4.00 52.51 0.00 1.25 0.29 0.00 0.00 3.00 52.22 25.0 5.00 53.25 0.93 0.16 0.12 0.00 0.00 2.00 52.20 i� 56.0 6.00 54.56 0.98 0.44 0.33 0.00 0.00 5.00 53.25 67.0 7.00 54.78 0.01 0.28 0.21 0.00 0.00 6.00 54.56 78.0 8.00 55.72 0.72 0.28 0.23 0.00 0.00 7.00 54.78 79.0 9.00 55.52 0.59 0,25 0,15 0.00 0,00 7.00 51,78 910.0 10.00 55.83 0.07 1.00 0.24 0.00 0.00 9.00 55.52 1112.0 12.00 56.37 0.10 0.40 0.24 0.00 0.00 11.00 56.03 1113.0 13.00 56.13 0.07 0.60 0.03 0.00 0.00 11.00 56.03 1314.0 14.00 56.19 0.00 1.25 0.06 0.00 0.00 13.00 56.13 1015.0 15.00 55.84 0.01 0.25 0.01 0.00 0.00 10.00 55.83 1516.0 16.00 55.87 0.00 1.25 0.03 0.00 0.00 15.00 55.84 911.0 11.00 56.03 0.48 0.05 0.03 0.00 0.00 9.00 55.52 BEND LOSS =BEND K* FLOWING FULL VHEAD LATERAL LOSS= OUTFLOW FULL VHEAD-JCT IN SEWER. LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD A MINIMUM DENOTES JUNCTION THE VELOCITY LOSS HEAD OF FULL FLOW CONDITION. OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. I I I I I I �11-T� �►►=1 f_L� ��bT�M � hl� � 13 r✓1 M -`jC . � O IL - 1�..►v. - S3:7o �vrn-�Ti ►�U �11s� � �l.JaT Cj I o pd" . Z3) 74-. O-7 L>= - l S ' PAP 9 =aa-8 _ CL 1 oo S> Tt o sl E--- - Z .78 I NJQ e - S I. �a4D I STORM SEWER LINE G - WATERFIELD 1ST FILING MERGANSER DRIVE 1 15 , 20 , 2 2 , 1 , .8 500 300 .2 ,Y 2 100 4.9 , 3.8 , 2.7 2.2 , 1.8 1.4 .89 6 1, 56 , 0, 1 12 , 0, 0 0 63.9 , 0 2 .2 0 0, 0, 0 0 2 , 56.5 12 2 23 25 , 0 , 0 63.9 3, , 0 56.5 2 .2 23 1 0 34 0 0 0, 0, 0 0 0 3.5 , 0 2, .2 0 0 0 0 0 4, 56.5 34 , 0 0 0 0 0 3.5 , 0 2 , .2 0 ., 0 0 0 0 5, 56.5 25 1 56 0 0 0 63.9 , 0 2 .2 0 0 0 0 0 6, 56.5 56 0 0 0 0 0 58.8 , 0 2 .2 0 0 0 0 0 5 12 13.1 .53 , 54.58 , .013 1 0 1 36 0 23 74.07 .53 54.95 , .013 .16 0 1', 15 , 34 .1 , .53 , 54.95 , .013 , 1.25 , 0 , 1 , 15 , 0 25 73.96 .63 55.02 .013 .16 0 1 36 , 56 31.59 .56 55.21 .013 .25 0 1 36 , 15 0 25 73.96 .63 55.02 .013 .16 0 1 36 , 56 31.59 .56 55.21 11 i 91 E co I -- ---------------------------------------------------------------------- STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study ' ---------------------------------------------------------------------------- USER:NORTHERN ENG SERVICES INC-FT COLLINS ON DATA 06-17-1998 AT TIME 17:31:24 COLORADO ........................... VERSION=03-26-1994 *** PROJECT TITLE :STORM SEWER LINE G - WATERFIELD 1ST FILING *** RETURN PERIOD OF FLOOD IS 100 YEARS RAINFALL INTENSITY TABLE IS GIVEN *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY MINUTES INCH ----------------------- PEAK FLOW ELEVATION ELEVATION CFS FEET FEET --------------- 1.00 0.00 0.00 0.00 ------------------ ---------- 63.90 56.00 54.28 OK 2.00 13.04 7.68 4.90 3.00 0.80 7.39 4.38 63.90 56.50 54.63 3.50 56.50 56.01 OK OK 4.00 0.71 .5.00 4.90 3.50 56.50 56.17 OK 5.00 13.04 5.06 4.90 63.90 56.50 55.51 OK 6.00 12.00 5.00 4.90 58.80 56.50 56.22 OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION OK *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER ------------------------------------------------------------------------------- SIZE RATIO= .8 SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH --------------ID-NO_ ID -NO_ -----------(IN) ------ (FT) (IN) (FT) (IN) (FT) ---------------------------------- (FT) - 12.00 2.00 1.00 ROUND 39.91 42.00 36.00 0.00 23.00 3.00 2.00 ROUND 34.00 4.00 3.00 ROUND 13.43 15.00 15.00 13.43 15.00 15.00 0.00 0.00 25.00 5.00 2.00 ROUND 38.64 42.00 36.00 0.00 56.00 6.00 5.00 ROUND 38.29 42.00 36.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTING SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORMAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ------------------------------------------------------------------------------- 12.0 63.9 48.7 3.00 9.04 23.0 3.5 4.7 0.80 4.21 2.55 9.98 9.04 0.00 0.75 4.53 2.85 0.89 V-OK V-OK 34.0 3.5 4.7 0.80 4.21 0.75 4.53 2.85 0.89 V-OK 25.0 63.9 53.1 3.00 9.04 2.55 9.98 9.04 0.00 V-OK �1 56.0 58.8 50.0 3.00 8.32 2.47 9.44 8.32 0.00 FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS V-OK i i I I i ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM -------------------------- (FT) ---------------------------------------- (FT) (FT) (FT) 12.00 0.53 51.58 51.51 1.92 1.49 OK 23.00 0.53 53.70 53.31 1.55 1.94 OK 34.00 0.53 53.70 53.70 1.55 1..55 OK 25.00 0.63 52.02 51.55 1.48 1.95 OK 56.00 0.56 52.21 52.03 1.29 1.47 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS -------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION ID NUMBER LENGTH LENGTH UPSTREAM .DNSTREAM FEET FEET FEET FEET 12.00 --------------------------------------- 13.10 13.10 54.58 54.51 23.00 74.07 74.07 54.95 54.56 34.00 0.10 0.10 54.95 54.95 25.00 73.96 73.96 55.02 54.55 56_00 31.59 31.59 55.21 55.03 ---------------------------- WATER ELEVATION FLOW UPSTREAM .DNSTREAM CONDITION FEET FEET ---------------------------- 54.63 54.28 PRSS'ED 56.01 54.63 PRSS'ED 56.17 56.01 PRSS'ED 55.51 54.63 PRSS'ED 56.22 55.51 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER.MANHOLE ENERGY FRICTION BEND BEND LATERAL.LATERAL..MANHOLE ENERGY ' --ID-NO ID NO. ELEV-FT------FT--K-COEF LOSS FT K COEF LOSS FT ID 12.0 2.00 55.90 --------------------------------- ------FT 1.62 1.00 0.00 0.00 0.00 1.00 54.28 23.0 3.00 56.14 0.22 0.16 0.02 0.00 0.00 2.00 55.90 34.0 4.00 56.29 0.00 1.25 0.16 0.00 0.00 3.00 56.14 25.0 5.00 56.78 0.67 0.16 0.20 0.00 0.00 2.00 55.90 56.0 6.00 57.29 0.24 .0-25 0.27 .0.00 0.00 5.00 .56_78 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE ' NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUNCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. LLJ U— D n W Z + al JJI 0 LLJ OEJ_Jn o I I = 3 i ;n 3 'an ova J�N LL:v* Ja%O 0=:p O—,* O_N 0-4 �UV1 o)U(n — 7 1— 4L JNIISIX3 T � T i / / —� 1I I�a0 I WI I �� U= Nco I?(~iv~i �O In � I I �00 0� I ozl I J� 3� O ( tc�I7 -M M 0�� J Octq W O W a J W O + JZ Z HV PO W (n I J�a ga a0 uiv �N(~n NcrJ W aN 0 I W a Z J Q li Z Ww W (na0 I I i STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study --------------------------------------------------------------------------- ' USER:NORTHERN ENG SERVICES INC-FT COLLINS COLORADO ........................... ON DATA 08-28-1998 AT TIME 09:08:04 VERSION=03-26-1994 *** PROJECT TITLE :WATERFIELD LAKE CANAL SIPHON *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION 1 -ID-NUMBER -------------------MINUTES INCH 1.00 0.00 0.00 --- 0.00 17.70 43.00 ---------- 41.75 OK 2.00 3.61 12.95 4.90 17.70 43.00 41.78 OK 3.00 3.61 12.58 4.90 17.70 42.10 42.60 NO 4.00 1.59 12.15 4.90 7.80 43.00 43.09 NO 5.00 0.80 10.45 3.75 3.00 45.00, 43.19 OK 6.00 0.61 5.00 OK MEANS WATER ELEVATION IS LOWER 4.90 3.00 44.27 43.22 OK THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= ------------------------------------------------------------------------------- .8 SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. ------------------------------------------------------------------------------- (IN) (FT) (IN) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ROUND 28.18 30.00 30.00 0.00 23.00 3.00 2.00 ROUND 24.00 24.00 24.00 0.00 I 34.00 4.00 3.00 ROUND 24.00 24.00 24.00 0.00 45.00 5.00 4.00 ROUND 24.00 24.00 24.00 0.00 56.00 6.00 5.00 ROUND 7.14 15.00 15.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTING SIZE WAS USED ' ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORMAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET ------------------------------------------------------------------------------- FPS FEET FPS FPS 12.0 17.7 21.0 1.76 4.79 1.42 6.13 3.61 0.66 V-OK 23.0 17.7 17.7 2.00 5.63 1.52 6.92 5.63 0.00 V-OK 34.0 7.8 7.8 2.00 2.48 1.02 4.87 2.48 0.00 V-OK 45.0 3.0 3.0 2.00 0.95 0.65 3.40 0.95 0.00 V-LOW 56.0 3.0 21.8 0.31 12.46 0.70 4.26 2.44 4.66 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS I ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ' ------------------ -------(FT) -- (FT) ------------------ ---------- (FT) 12.00 0.26 40.15 40.09 0.35 ---------- 0.41 NO 23.00 -1.20 32.50 34.00 7.60 7.00 OK ' 34.00 -1.02 31.75 32.40 9.25 7.70 OK 45.00 -0.50 31.15 31.64 11.85 9.36 OK 56.00 11.33 37.00 31.90 6.02 11.85 OK ' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF .5 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET 12.00 25.00 0.00 42.65 42.59 41.78 41.75 SUBCR 23.00 125.00 125.00 34.50 36.00 92.60 41.78 PRSS'ED 34.00 64.00 64.00 33.75 34.40 43.09 42.60 PRSS'ED 45.00 56.00 97.00 97.00 33.15 33.64 45.00 45.00 38.25 33.15 43.19 43.09 43.22 43.19 PRSS'ED PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW I*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FACTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K ------------------------------------------------------------------------------- COEF LOSS FT ID FT 12.0 2.00 42.21 0.46 1.00 0.00 0.00 0.00 1.00 41.75 23.0 3.00 43.09 0.76 0.25 0.12 0.00 0.00 2.00 42.21 34.0 4.00 43.19 0.08 0.25 0.02 0.00 0.00 3.00 43.09 45.0 5.00 43.21 0.02 0.05 0.00 0.00 0.00 4.00 43.19 56.0 6.00 43.31 0.10 0.05 0.00 0.00 0.00 5.00 43.21 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUNCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. ' WATERFIELD LAKE CANAL SIPHON ALTERNATE DESIGN ' . 5 15 , 20 , 2 , 2 , 1 .8 , 500 , 300 .2 , Y 2 5 4.9 , 3.8 , 2.7 , 2.2 , 1.8 , 1.4 , .89 6 1, 43 r 0 1 1 f 12 f 0 1 0 0 17.7 , 0 , 2 , .2 , 0 , 0 , 0 , 0 , 0 2 , 43 , 12 , 1 , 23 , 0 , 0 , 0 17.7 , 0 , 2 , .2 , 0 , 0 , 0 , 0 , 0 3 , 42.1 , 23 , 1 , 34 , 0 , 0 , 0 17.7 , 0 , 2 , .2 , 0 , 0 , 0 , 0 , 0 4 , 43 , 34 , 1 , 45 , 0 , 0 , 0 7.8 , 0 , 2 , .2 , 0 , 0 , 0 , 0 , 0 5 , 3 45 , 0, 2, 45 , 1 .2 , 56 , 0, 0 0 , 0 , 0, 0, 0 0 6 44.27 56 0 0 0 0, 0 ' 3 5 0, 2 .2 , 0 0 0 0, 0 12 f 25 1 .26 f 42.65 1 .013 1 1 f 0 1 30 0 f f 23 , 125 ,-1.2 , 34.5 , .013 .25 0 1 24 0 34 , 64 33.75 , .013 , , 0 , 1 24 0 ,-1.02 , , , .25 , , , 45 , 97 ,-.5 , 33.15 , .013 , .05 , 0 1 24 0 , , , 56 , 45 , 11.33 , 38.25 .013 .05 0 1 15 0 , , , , , I I I FOB S�II�S COtJSISTd.t`tT L1.J IT'}.1- �-�OSE C-G�UrJD �. . �O 1 GYl a 3 7 1 IJ O o8�3 F�T' . Gc> SAC 1 J7 rL�l L)Lj Z-LL _`9 � �9 � ou es Td a �.► �.� a �y W�� C1=XCt...I�D�S {��12_GC7lr4Tl�l�1 T}-�2�LX-s�I l�.L�-Lt�. S1�S l P l�c� ►..1 ^ G!-} ter' r 1=0 2 �C>�/L�!`Z^ y ana a-1t7L� L.I �z L3 ' L4 1 �J ?� rr1oN+�ot� 3�i.co 141 cF 88ZZ ��S _ 4 �MQ rJ u Old �p��n c Or= �reucsu� .�W-.�-7 Ls 1 S > s� �v� -7- ` $Lasidss I L.3 L1a i 8n c42 g>pav�, �i//b BnSE als�l ���,. �- � i.s Cue.rz.Fxrr ►.����� �C`-y) gBZL 13 , 233 �J I SD C�614- 9� 21 4r31� 9��� Imo, s1 a lo, l4z Lz�- Its I . ZS �oo1 1.5c) 43774= 1.10 C m T T > > > c4 a CD (D 3 0 LL LO W) O c W t v CV C14 O. C) Q M fM CD co Zco m co Co = ui rl: au LU a Q fV 00 Z ; � O ui O ❑ N0) CO ui CD O fq LL N _ N N O LL OOOi ri) a z a W -AOe Ci 0 ❑ O o Z O N N N m m C1 C CD W) Lf) O.v �. a c 0 m c U ❑ W N C C C ❑0 J J J a a P A Q Q MR MOEN MIN IN MEN Y � ENMESH • OD ^ %o Yf R M p/p jaawaip ol41dap o 0110a M N L Uf c CO N u P. �Im cis Q c y c � d � � V O � A ba. S q it � O I 'Ch N W CG w CHART 10 ,6D logo u166 186 9,000 EXAMPLE (1) (2) (3) 0.4t lack" (3.5 feet) 6. 6,000 6. 144 3.000 0.120 et. b. 132 4'� If • 11n 6 b• ' 3,000 feet (1) 2.5 9.9 s. _ 4. 4. 120 2 00o a► 2.1 7.4 4 3.Z 106 (3) tot ' e0 I. feel 86 I ,Ooo 3• 900 84 600 / ~ -- 2' 2- s00 / / ' 72 400 2. W x 300 �V� / ' = 80 u200 W 1.5 2 W 0 54 46 / W 100 / rc 80 = j 8G AL 42 H 50 IL ENTYPECE D SCALE 1.0 1.0 1.0 40 y~ j 38 (1) Square eep olle 3 9 .9 33 e.e4.ea c ,8 c 20 Q rc> or.ee. ..e d/e W 30 heed -ell x .8 .6 ._ 13) oreeve cod .9 27 Fre)ee11q 10 24 ° .7 ° b Tom costs (t) or (3) project 21 to code p),thop o �I% + use stroellt eu arsgel tseu.d time rnreeee hr 0 and 0 .Cole., or reverse as 6 3 111estrotee. 8 ■ 2 �./ Is .s 12 HEADWATER DEPTH FOR CONCRETE HEADWATER SCALES 283 PIPE CULVERTS REVISED MAY1964 WITH INLET CONTROL ' SURtNJ OF PUBLIC ROADS .MIL IN3 181 Preceding page blank I EROSION CONTROL I 1 I ' May 12, 1998 Mr. Glen Schlueter ' City of Fort Collins Utility Services Stormwater 235 Mathews ' Fort Collins, Colorado 80522 RE: Waterfield V Filing ' Erosion Control Security Deposit Estimate Dear Glen, 1 The following letter is intended to serve as a basis for the Erosion Control Security Deposit for ' Waterfield 1" Filing .This estimate is based on the Final Utility plans as they have been resubmitted to the City for review on May 12, 1998. ' An itemized listing of the erosion control measures incorporated into this design include the following: Temporary Seed & Mulch (this is applicable to all actual disturbed areas not located within a building pad or under asphalt/concrete, including the offsite pond) Straw bale check dams (located in open channels) ' Gravel filters (located around all curb and area inlets) Silt fence (Located around the outparcels and westerly perimeters of the site) ' A breakdown of anticipated costs for these improvements include: ' Temporary Seed & Mulch 24 ac @ $531.00/ac = $ 12,745.00 Straw bale check dams 15 ea @ $75.00/ea = $1125.00 Gravel filters 12 ea @ $175.00/ea = $ 2100.00 ' Silt Fence 46001f @ $ 2.00/lf = $ 9200.00 Total $ 25,170.00 * 150% = 37,755.00 An alternate look at this obligation: ' Total on -site disturbed area (total site area, although it is not intended to disturb the entire within the scope of this project) - 34.5acres. Total disturbed area offsite is approximately 19 acres. Total disturbed area 53.5 acres ' 53.5 acres @ $531.00 * 150% _ $ 42,612.00 i ' Based on the above figures, and the City policy to use the higher estimate, the Erosion Control ' Security Deposit obligation of the developer for Waterfield 1 °` Filing would be $ 42,612.00 Should there be a separate development agreement for the Bull Run Apartments and the single ' family lots, and/or separate Erosion Control Security Deposit obligations, the following splits could be considered. Bull Run 15.5 ac 30% Single Family and Offsite improvements 38.0 ac 70% ' Therefore, it would follow that the Erosion Control Security Deposit obligation for the Bull Run Apartments would be approximately 0.30 * $42,612 = $12,784, and the obligation for the remainder of the site would be approximately 0.70 * $42,612 = $29,828 ' Please call if you have any questions regarding these figures Sincerely, 7RoggerCurtissrE.Northern Engineering Services, Inc. cc: Jim McCory - Colorado Land Source Gregg Seebohm - Empire Management, Inc. ' Brock Chapman - The Brisben Companies •:RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: STANDARD,FORM A .. _�1.�d.T_>=ti=�►.El..a-_�l7 � �Sr �luwlG�.------ COMPLETED BY:. DATE: 6•204=7 DEVELOPED SUBBA§IN ERODIBILITY ZONE Asb (ac) Lsb (ft) Ssb M Lb (feet) Sb ($) PS (t) lU I— LU& ISo61 13 1. e'% ZD Z93 2�.415 1i/IZ'- 15.9� I boo o, B% 25 55Z IZ.1�� � es= A 31.58 4Sr34�.� 3�. t910 �sa env ' MARCH 1991 B-14 DESIGN CRITERIA i EFFECTIVENESS CALCULATIONS - PROJECT —_• STANDARD FORM B COMPLETED BY: DATE: 97 ' Erosion Control C-Factor P-Factor Method Value Value Comment ' MAJOR PS SUB AREA BASIN ($) BASIN (Ac) CALCULATIONS - ...--------- ... _ ---------- T11E.-__� T[D__ R2QV I DE TAMP SEED Mlil Cl A_.-_D.1J-- ld�._.17!_ST JP gF6� � nS-C.LJLTT. 1 W ' A:._2U�.Q1,�1b�i..._.D2..f3lJIL.DItJC�-P4D�-f-ST-24U.1 Rni F- ---- -Od,t, -25 1 1 ' MARCH 1991 9.15 DESIGN CRITERIA Table 81, C-Factors and P-Factors for Evaluating EFF Values. ' Treatment C-Factor P-Factor BARE SOIL ' Packed and smooth..................................................................... 1.00 1.00 Freshlydisked............................................................................. 1.00 0.90 Rough Irregular surface............................................................... 1.00 0.90 ' SEDIMENT BASINITRAP.............................................................. 1.00 0.500) SILT FENCE BARRIER-....----, .... 1.00 0.50 ' ASPHALT/CONCRETE PAVEMENT ............................................ 0.01 1.00 ' ESTABLISHED DRY LAND (NATIVE) GRASS ............................ See Fig. 8-A 1.00 SODGRASS................................................................................ 0.01 1.00 ' TEMPORARY VEGETATION/COVER CROPS ........................... 0.45(2) 1.00 HYDRAULIC MULCH @ 2 TONS/ACRE...................................... 0.10(3) 1.00 ' SOIL SEALANT........................................................................... 0.10-0.60(4) 1.00 EROSION CONTROL MATS/BLANKETS....................................... 0.10 1.00 ' GRAVEL MULCH Mulch shall consist of gravel having a diameter of approximately 1/4" to 1 1/2- and applied at a rate of at least ' 135 tons/acre.. 0.05 1.00 HAY OR STRAW DRY MULCH ' After Planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tact or crimp material into the soil. Slope (%) ' 1 to 05........................................................................................... 0.06 6 to 10 1.00 ........................................................................................... 0.06 1.00 11 to 15......................................................................................... 0.07 16 to 20 1.00 ' ......................................................................................... 0.11 21 to 25..................................................................................:...... 0.14 1.00 1.00 25 to 33......................................................................................... 0.17 1.00 >33.................................................................................. 0.20 1.00 ' NOTE: Use of other C-Factor or P-Factor values reported in this table must be suastantlated by documentation. ' (1) Must be constructed as the first step in overiot grading. (2) Assumes by planting dates identified in Table 11-4. thus dry or hydraulic mull lhes are not required. ' (3) Hydraulic mulches shall be used only between March 15 and May 15 unless:, irrigated. (4) Value used must be substantiated by documentation. May 1984 Design Criteria ' Revised January 1997 8-7 I 1 CONSTRUCTION SEQUENCE ' SEQUENCE FOR 1998/99 COMPLETED BY: BC DATE: AUGUST 26, 1998 1 1 1998 MONTH OCT NOVI DECJAN FEB MAR APRI MA JUN JLY AUG OVERLOT GRADING: WIND EROSION CONTROL: Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soif Preparation Contour Furrows Terracin Asphalt/9Concrete Paving RipRap Outlet Control VEGETATIVE: Permanent Seed Plantin Mulching/Sealant Temporary Seed Planting Sod Installation Netting/Mats/Blankets Other I CHARTS, TABLES, GRAPHS DRAINAGE CRITERIA MANUAL bt 3C F- 2 C Z W U Ir W IL 10 Z W Ix O 5 U) W ir 3 n O U 2 Cr W H Q 3 1 a RUNOFF • 0 1 2 3 5 .10 20 VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING"UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5-1-84 URBAN DRAINAGE d FLOOD CONTROL DISTRICT I I INTERPOLATED VALUES FOR 100 YEAR INTENSITIES Tc Value 6u,/uv� 5.00 9.0 5.10 9.0 5.20 8.9 5.30 8.9 5.40 8.9 5.50 8.8 . 5.60 8.8 5.70 8.7 5.80 8.7 5.90 8.7 6.00 8.6 6.10 8.6 6.20 8.6 6.30 8.5 6.40 8.5 6.50 8.5 6.60 8.4 6.70 8.4 6.80 8.4 6.90 8.3 7.00 8.3 7.10 8.2 7.20 8.2 7.30 8.2 7.40 8.1 7.50 8.1 7.60 8.1 7.70 8.0 7.80 8.0 7.90 8.0 8.00 7.9 8.10 7.9 8.20 7.8 / )8.30 7.8 8.40 7.8 8.50 7.7 8.60 7.7 8.70 7.7 8.80 7.6 8.90 7.6 9.00 7.6 9.10 7.5 9.20 7.5 9.30 7.5 9.40 7.4 9.50 7.4 9.60 7.3 9.70 7.3 9.80 7.3 9.90 7.2 10.00 7.2 No Text I 1 f 1 I •-- 00 (O d- N CD 00 CO d- N p� p� CY) 00 00 00 00 O O O O O O O O x — .zo�on� �uau��snfp�a MoUInp 0 4 41 w w 4J (d w Q) �► .,d. =4 � 4J Ocr n � ro o � M � � I ro O CL)^ =4 3 c. O w44 w N � O O '-i ro r, b+ O µ' a RM DRAINAGE DESIGN AND TECHNICAL CRITERIA E TABLE 802C STORM SEWER ENERGY LOSS COEFFICIENT. (BENDS AT MANHOLES) 1.4 1;3 ,.3 1•t• • 1.2 Id lob m'q 1.0 0.9t Y 0.8 c e.k Bond at Manhole, 0 u i i ,! i STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA Lu CTION LOSSES TABLE 803 !411- &R-7-7 O/ PLAN NOTE /w Any Type of 1.101. O/ PLAN A 4 •, SfrTInN USE EQUATION 801 �i t: �� CASE I L= 1, INLET ON MAINLINE or k= 6,e5/H,lnlulc 0;1 MAiNCine \' A -we USE EQUATION 005 '- I�- N,rIC�ISa'C. f nhf L A.5 PLAN USE EQUATION 005 SECTION CASE H INLET ON MAIN LINE PLAN USE EQUATION 001 °1 A ILL=k._ ;r SECTION CASE IZ INLET OR MANHOLE AT 0. BEGINNING OF LINE_.. n SECTION CASE M MANHOLE ON MAIN LINE CASE I I I _WITH WBRANCH LATERAL. :CASE N0. Ki go KK 1 0.05 22 1/2 0.75 II 0.25 45 0.50 IV 1.25 60 0.35 90 0.25 Date: NOV 1984 I REFERENCE: Rev: No Lateral Sec Clrc I APWA Special Report No. 49, 1981 F I O\ le O1 le r O O %D .. �o h m O O% �o .-• h qct oo le fV O\ fd h b ON ... ti O �•'•� �•'� N N N N N M M M M M M M M M m M M M M M M M m M M m 00 V1 %0 V1 �o m V1 (71 V1 V) m N O N m N 00 ^ 7 a 00 O O V1 00 O ^ a �--� O r �o N h v1 m w•-� ^ a le wO` w r 'R ••� •-� O y V) M^ M Vt oo O 4 a i 'O oo O^ N N^^ O O, r6� N^ O O` ^ m a W ^ N m M m M 'Q -w Vl kn Vf �b �o %0 \0 \0 \0 \0 V) V1 to V) Vl VI v1 --t Vl V) 1 U O W v _ •„V� N N N N N N N N N N N N N N N N N N N N N N N N N N N N N •r(�y N N N N N N N N N N N N N N N N N N N N N N N N N N N N N y n •Q1 '. .r r. ... .r .r .r .r ... .-. .. .-. .r r. '.. '•r ..•. .r .-. .-. .� q c X o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �nWntn tn%nVitnRnknkn%ntn%n%ntnkn z z s o00000000000000000000a0000000 o a o� y -a .5 V U > u°�Noo^vC) M ow�trNmmmmm V�vorrwr-rl- nr-r U oo N�. oo Q O^ D oo O^ N m M M M M N N^ O a oo r r O r o0 V 3 ^y�"i O �••� ^^^ N eV N N N M M M M M e+i M M Ci M M "i eV eV tV (V N eV fV i U 6 i y v U cWi 20 v N m m 0 m Vl M M CO O r v r^ r, fM N 00 Vl O^ V vi N N M^ 00 Q w etl a � 5 .+ N N m r O M NO M O. 7 0 N eT � 00 r r %O v�^ O [- � N^ ON N't G N m qi 7 V'i Vi Vi �6 �C r o0 00 o0 00 o0 00 oC 00 o0 00 o0 o0 r r r r �O r r Z w Ell w O'v v U@ W o0 00 00 00 00 00 00 00 00 00 00 0o io 00 00 00 00 00 00 00 00 00 00 00 0o eo 0o co 00 ' [i1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o o O C O 0 6 6 0 0 0 0 U� � ,b W N N N N N N N N N N N N eV N N N N N N N N N N N N N fJ N N a 0 0 GM O b w w 00 00 00 w 00 00 00 r r r r �o �o \0 �o Vt V1 tn • O O O O O O O O O O O O O O O O O O O O O O O O O O O O O a p pp p p O W a O N 0 n O N W) O N n O eV C) n 0 N 0 n S 0 0 y O O O O O O ^ ^^ N N N N M m m m--tj 4 4 4 of In Wi v� '.O '46 r CL •-• o I I i I RESIDENTIAL LOCAL W/ ROLLOVER 100 year Worksheet for Irregular Channel Description _froject Project File c:\drainagekhaestad\fmw\street c.fm2 Q Worksheet RESIDENTIAL LOCAL W/ ROLLOVER CURB rOrl�� V Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Q Input Data Channel Slope 0.004000 ft/ft (i Water Surface Elevation 100.50 ft �1 Elevation range: 99.61 ft to 100.50 ft. Station (ft) Elevation (ft) Start Station 0.00 100.50 0.00 0.00 100.00 20.17 13.83 99.72 15.00 99.61 16.42 100.00 20.17 100.12 25.50 100.23 39.17 100.50 Results Wtd. Mannings Coefficient 0.026 Discharge 31.70 cfs Flow Area 16.04 ftz Wetted Perimeter 39.74 ft Top Width 39.17 ft Height 0.89 ft Critical Depth 100.32 ft Critical Slope 0.011395 ft/ft Velocity 1.98 ft/s Velocity Head 0.06 ft Specific Energy 100.56 ft Froude Number 0.54 Flow is subcritical. 1 10/04/98 12:22:25 PM End Station 20.17 39.17 Roughness 0.016 0.035 --------------..= Lam. a4- z.. _ _ _- FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 RESIDENTIAL LOCAL W/ ROLLOVER 2 year Worksheet for Irregular Channel Project Description Project File c:\drainage\haestad\fmw\street c.fm2 Worksheet RESIDENTIAL LOCAL W/ ROLLOVER CURB Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.004000 ft1ft Water Surface Elevation 100.00 ft Elevation range: 99.61 ft to 100.50 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 100.50 0.00 20.17 0.016 0.00 100.00 20.17 39.17 0.035 13.83 99.72 15.00 99.61 16.42 100.00 �, I 20.17 100.12 25.50 100.23 39.17 100.50 Results r Wtd. Mannings Coefficient 0.016 Discharge 4.47 cfs Flow Area 2.61 ft2 Wetted Perimeter 16.48 ft Top Width 16.42 ft Height 0.39 ft Critical Depth 99.97 ft Critical Slope 0.007177 ft/ft Velocity 1.72 ft/s Velocity Head 0.05 ft Specific Energy 100.05 ft Froude Number 0.76 Flow is subcritical. 10/04/s8 12:22:04 PM _ ►�1-Io4t, . x ).- . - . FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I O Cl Eli 00 M M w O% N le M 00 r le O\ M N �D N O w ^' mq-t t- D\ ON a O+ O N M t^ O N vl %o r- 00 00 00 00 t-- t, t` � v1 � N H O �"" ^' N fV N N N M M M M M M M M M M M M M M M M M Vi M M fn aO M �D l� l� v�i O+ w 7 r tn�— O C1 -It wwON ON � R 00 ... N N O 00 Ln �+ a ,^' --� 00 O N � 'XiO e 06 -.• M V �O lh �6 �D vn t R N �-+ O 00 t-Z %6 � �6 w G7 d W �••' N N M M M M e t r to Vl vl kn h h to V'1 h Vl h 'n Yl qe 7 V-e--t O W � o S N N N N N N N N N N N N N N N N N N N N N N fV N N N N N N kn vi to h V^l 4 V�i Vn kn 4n to v1 v�i kn In to �n v^i v�i V kn InLn �n �n Ln � kn N N N N N N N N N N N N N N N N tV N N N N N N N N N N N N n t` t` t` t` to t- 7 4 444 4414 t- %D O t, N r, '. Nr N O\ M �o r, D M '" m M t- to w Rr r O :; N T CD Wn — N le kn t- O M Y1 00 ON O . N N .� �"' CD 00 00 t- In In � M vl yVy y N fV fV N N M M ell M m 7 �t R M M M M M M M M M F� , s n� OooNNO O O nO O DO�p ooInp t`MtnD O% N `C R M O\ M ...i r N O\ r m w M aI y M kn l� l-: 00 00 O� O N M^ M of 4 4 4 4 M M M M N N N N N N N N N N N N N N N N N NNNN NN .NN . .NN . b �6 � � b b � �6 �o b � � � b � � � NO NO � � b b �o �o 'D N b c7 � W M M M M M M M M M M M M M M M M M M M M M M M M M M M M M r, M m M M m m M M M M fM M M M M M M M e; t+1 fM M M M M M M M M Phi v zz d O� 0O0 w w w w 0O00O0 w 0O0 r r r r-"D��bo tn�a lemma a •� p C C C G C C C C C C O O o C O O C O O C O C C o o C C O O W PG 0000 g en O viO �n O v�O en O C��nQU OO N tn l� O N Vl r--O N �n tr-� N Yl l- O N Vl l- �n O D^ O O O O O O N N N N M M e6 fM 'i v1 vl vl Vl ,D NO t-Z O e to v IN I I I I rJ RESIDENTIAL W/ 6" VERTICAL- 2 YEAR Worksheet for Irregular Channel Project Description Project File c:\drainage\haestad\fmw\street c.fm2 Worksheet RESIDENTIAL LOCAL W/ 6" VERTICAL Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.004000 ft/ft Water Surface Elevation 100.07 ft Elevation range: 99.57 ft to 100.50 ft. Station (ft) Elevation (ft) Start Station 0.00 100.50 0.00 0.00 100.00 15.50 13.00 99.74 21.00 15.00 99.57 25.50 15.00 100.07 ToP oP - 15.50 100.07 zE> 21.00 100.18 25.50 100.27 37.00 100.50 Results Wtd. Mannings Coefficient 0.016 Discharge 7.35 cfs Flow Area 3.43 ft' Wetted Perimeter 15.58 ft Top Width 15.00 ft Height 0.50 ft Critical Depth 100.04 ft Critical Slope 0.006725 ft/ft Velocity 2.14 ft/s Velocity Head 0.07 ft Specific Energy 100.14 ft Froude Number Flow is subcrltical. 0.79 V 10/02/98 04:20:56 PM z End Station Roughness 15.50 0.016 21:00 0.035 25.50 0.016 37.00 0.035 1/ (/Z Z II(=,.ZI ) FbwMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 i ' RESIDENTIAL W/ 6" VERTICAL- 100 YEAR Worksheet for Irregular Channel ' Project Description Project File c:\drainageXhaestad\fmw\street c.fm2 Worksheet RESIDENTIAL LOCAL W/ 6" VERTICAL Flow Element Irregular Channel Method Manning's Formula 1 Solve For Discharge Input Data Channel Slope 0.004000 ft/ft Water Surface Elevation 100.50 ft Elevation range: 99.57 ft to 100.50 ft. Station (ft) Elevation (ft) Start Station End Station 0.00 100.50 0.00 15.50 0.00 100.00 15.50 21.00 13.00 99.74 21.00 25.50 15.00 99.57 25.50 37.00 15.00 100.07 ' 15.50 100.07 21.00 100.18 25.50 100.27 37.00 100.50 Results Wtd. Mannings Coefficient 0.025 Discharge 28.93 cfs Flow Area 14.72 ft2 Wetted Perimeter 38.01 ft Top Width 37.00 ft Height 0.93 ft Critical Depth 100.33 ft Critical Slope 0.010940 ft(ft Velocity 1.97 ft/s 1 Velocity Head 0.06 ft Specific Energy 100.56 ft ■ Froude Number Flow is subcritical. 0.55 10/02/s8 04:21:17 PM Roughness 0.016 0.035 0.016 0.035 FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I 1 V' ^ M ON .n O` N of ^ h It I-t N O+ w v O m N 'D Cl ON �o 00 O ^ 'cr h O v1 O^ M V �o ON N I", h 00 a\ O O O O O ON ON h t- .n a M M N M ' ^„ --� --� tV cV N N tV tV t•i M M M M � � � � � ri to M M M M c+i e+i M M M 00 O� ^ �o M �o 00 M It O% .•. .•. h M �o N M It 00 w b O M p+ a, '-t ON 00 ^ %O ^ M O oD 00 �o M 00 N O O\ ^ 00 M 01 00 N �o fl G3 ^ a W Oh 00 l� M 'D 00 O� "t O� .r M �D V1 YI 7 M Wi O� Og 'D 7 N ^ O, lV �••� N « U c W 1 v 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0o ao 00 00 00 00 w o v v v 1a a v v v v v v a a a It v a It v v v v v v� v 0 o c o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 _ _ N N N N N N N N N N N N N N N N N N fV N N N N N N N N N N '10 '40 %Q �o %0 �o �o �Z b %0 %0 �o b b b b b b %0 %0 �O �O �O �O �O �O b b b •� Ci �y o0 o0 00 DD o0 o0 o0 o0 o0 o0 o0 oo o0 o0 o0 o0 o0 o0 oG 00 o0 o0 o0 o0 00 o0 o0 o0 0o .•-. ... .•. .-. .. .-. .-. .-. .-. .•.� .-. ... �-. ...� �-. ..� .. .r .. .-. ... .. .-. .-. .-. .-. .-. .-. ... O O S O y Q ^ N 0 1 t: > �_ eV�yy {7p. h .n �o O` h N �D 00 Ot ON %O N .-• oo et M h N 00 h v1 00 ,-• N Itt b a` M 00 S --� N M %C O\ ^ M It v1 �o [I h �o �o .n Vl � O O a M N ^ \ O ^ UO 't N U y O ^� .'•^ fV N N N N NM M M ri c•i M M c+i l+'i t i en f i eli M M M M fV M t•i �y y'�. FI U b V 2 W a �.. O U .,y 00 N M M O M V ^^ Vl 00 h 00 V •'••� N h h N N N O 00 M Vl �O •-+ �o N h N �o O O 00 I M l-- O m vl N O O kn O %O M .-+ 00 N e0 a 3 �"' ffi ^ M Q %O %O t� l� 00 O� O� O^ �--� N N c i� N N f i fV ^ .-+ ^' O O O O� O O x �? ..r ... ... .•-. .--. .-. .-. .. ... ... ..r ... ... '. .-. r. ... .•-. U U 0 C7 W a.. N y ��NONo�.oe.o��\0��ov��o%p��.p v v,v,knv,h.n.n.nv v,tntntnv,kn.ntntnv,v, nv v,v, nv v v, 1 U � w g o x oS 0 ppppp 00 gpgpggggDDDc SSOS OOOOO SOO SS SSOOOOOOOOOOS p O W h h h h h h h h h h M M M M M M M M M M M M M M M M M M M M M M M M M M M �y h ¢ v C/y l� v O T O� \D b b b h h h't le't le� R e„ G •J p 000 000 OOo 000 000 000 000 000 000 h h h h O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 124 ' �00C=0 tnotn8Wn0Wng.n0tnc8tn0kn8knotnc�og vl NO h 00 N .n h N kn h N to h N v1 h N Vl h �n O O O O O O O N N N N M M fn M a a ti o wi .n wi .n \O .6 h 0 e fl i ' CONNECTOR LOCAL W/ 6" VERT. - 100 Year Worksheet for Irregular Channel ' Project Description Project File c.Xdrainage\haestad\fmw\street c.fm2 Worksheet CONNECTOR LOCAL W/ 6" VERTICAL CURB Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.004000 ft/ft Water Surface Elevation 100.50 ft Elevation range: 99.51 Station (ft) ft to 100.50 ft. Elevation (ft) Start Station End Station Roughness 0.00 100.50 0.00 18.50 0.016 0.00 100.00 18.50 24.00 0.035 16.00 99.68 24.00 28.50 0.016 18.00 99.51 28.50 43.00 0.035 18.00 100.01 18.50 100.01 24.00 100.12 28.50 100.21 43.00 100.50 Results Md. Mannings Coefficient 0.026 Discharge 38.61 cfs Flow Area 18.62 ft2 r Wetted Perimeter 44.02 ft Top Width 43.00 ft Height 0.99 ft Critical Depth 100.32 ft Critical Slope 0.011187 ft/ft Velocity 2.07 ft/s 1 Velocity Head 0.07 ft Specific Energy 100.57 ft Froude Number Flow is subcritical. 0.56 �.eeA.-- I8_�Z t0/04/98 1 FlowMaster v5.13 12:40:40 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 i CONNECTOR LOCAL W/ 6" VERT. - 2 Year Worksheet for Irregular Channel Project Description Project File c:ldrainagekhaestad\fmwtstreet c.fm2 Worksheet CONNECTOR LOCAL W/ 6" VERTICAL CURB Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.004000 ft/ft Water Surface Elevation 100.00 ft Elevation range: 99.51 ft to 100.50 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 100.50 0.00 18.50 0.016 0.00 100.00 18.50 24.00 0.035 16.00 99.68 24.00 28.50 0.016 18.00 99.51 28.50 43.00 0.035 18.00 100.01 18.50 100.01 24.00 100.12 28.50 100.21 43.00 100.50 Results Wtd. Mannings Coefficient 0.016 Discharge 6.36 cfs Flow Area 3.37 ft' Wetted Perimeter 18.50 ft Top Width 18.00 ft Height 0.49 ft ' Critical Depth 99.96 ft Critical Slope 0.007004 ft/ft Velocity 1.89 ftis Velocity Head 0.06 ft Specific Energy 100.06 ft Froude Number Flow is subcrtical. 0.77 � 10/04/98 12:40:20 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 I I O �O r N r �O Q\ ^ ^ 0� �O to N r ^ O. M O w "t n V �O N 't h 00 ^+ M Vl n o0 w ON Ch ON 00 00 1- b �Q 7 m N ^ ^ N M �••^ ^ ^ ^ N N N N N M M M M M M M M M M M M M M M M M M M M M ' 00 0% O eT �O O M a\ �O m O, O O, O, 00 �O r -t a M O 00 ^ t r ^ ^ [� v1 ^ �O O �--� n O N O [� �O M oo ^ C, N w O N M 7 00 ^ td U 73 ^ aw r+ �O ^ M Vl %6 00 ^ r C\ ^ N t+i M M en N N 00 r NO v� to r i €b Ln Lnhvih vi vitn tntntn tn tn tn tn tn In vi kn kn tn vi vi vi tn vi •� M M M M M M M M M M M M M M M M M M M M M M M M M M M M M r r n n r n n n n n r r n n n r r r r r r r r r r r r r o 0 0 C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. zp U •a � � t6 M r,^ M N 00 N Vl VM O\ 00 r- ^ r--,tM M O M V OO O r, O+ N ^ O M v v� �OO r- r- r,�O �O M N ^ O O� �--� N V U O y O ^ ^ N fV N CV fV fV e6 e+i f7 f i e6 cli Co tfi "i f+l M M e6 M M fn M fV M e6 too U �3 7E En W Q W A p„ O U 5 N \O M of ^ �O v Ol 'V C\ b N r� ^ I�O VO W) 7 N IO C, N e M �--� 0\ 00 S : r M �O r r 00 w C� O^ N N N M M M M M N N N N^^^ 0 C) ^ ' G iYr 'S37 [a Or W U � U C W o r r r r r r r r r r n r r r r r r r r r r r r r r r r r r 0 0 0 00 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g W W totnv,v,v,knknv,v,%nW,knv,InkntototnW,r In Ln kn Ln Vl to kn to Vl to Vl In in kn to kn Vf to to M M M M M M M M M M M M M M M M M M M M ell M Pry M M M M M M a ��y+ o 0 z �T ' oo CN 'J� \O NO \D 'q� qd! G y 00 M OO 00 00 00 00 M OD r- r r r 10 V1 V1 In R 7 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O '$ w 1 qc cc oo pp pp pp pp 000 O N� r O N V) r O N V) r O N � r O N kn r 0 0 O O O O—^^^ N N N N to M M M 4 4 7 4 vi vi vi wn \C %6 r o I I ' COLLECTOR W PARKING 6" VERT - 2 Year Worksheet for Irregular Channel ' Project Description Project File c:ldrainagelhaestadlfmw\street c.fm2 Worksheet COLLECTOR W PARKING 6" VERTICAL ' Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data ' Channel Slope 0.004000 ft/ft Water Surface Elevation 99.87 ft Elevation range: 99.37 ft to 100.50 ft. Station (ft) Elevation (ft) Start Station End Station Roughness 0.00 100.50 0.00 25.50 0.016 0.00 100.00 25.50 33.00 0.035 23.00 99.54 33.00 38.00 0.016 25.00 99.37 38.00 57.00 0.035 25.00 99.87 25.50 99.87 Tom �i= G�JJ21� 33.00 100.02 38.00 100.12 57.00 100.50 Results ' Wtd. Mannings Coefficient 0.016 Discharge 6.82 cfs Flow Area 3.55 ft2 Wetted Perimeter 19.01 ft Top Width 18.50 ft Height 0.50 ft Critical Depth 99.83 ft Critical Slope 0.006940 ft/ft Velocity 1.92 ft/s ' Velocity Head 0.06 ft Specific Energy 99.93 ft Froude Number Flow is subcritical. 0.77 r --- --- -- --�-_- .._...... , _---- - ----- ----- - -- ��,. ► �o�.- ���- -- - ' Z 10ro4i98 12:53:32 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.13 Page 1 of 1 Ul COLLECTOR W PARKING 6" VERT - 100 Year Worksheet for Irregular Channel Project Description Project File c:\drainageXhaestadlfmwlstreet c.fm2 Worksheet COLLECTOR W PARKING 6" VERTICAL Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.004000 ft/ft Water Surface Elevation 100.12 ft Elevation range: 99.37 ft to 100.50 ft. Station (ft) Elevation (ft) Start Station End Station 0.00 100.50 0.00 25.50 0.00 100.00 25.50 33.00 23.00 99.54 33.00 38.00 25.00 99.37 38.00 57.00 25.00 99.87 25.50 99.87 33.00 100.02 _ 38.00 100.12 kJ 57.00 100.50 Results Md. Mannings Coefficient 0.020 Discharge 22.21 cfs Flow Area 11.07 ft2 Wetted Perimeter 38.63 ft Top Width 38.00 ft Height 0.75 ft Critical Depth 100.04 ft Critical Slope 0.010457 ft/ft Velocity 2.01 ft/s Velocity Head 0.06 ft Specific Energy 100.18 ft Froude Number 0.66 Flow is subcritical. ' 10/04/98 12:54:34 PM z Roughness 0.016 0.035 0.016 0.035 FlowMaster v5.13 Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1 J