HomeMy WebLinkAboutDrainage Reports - 02/02/1999I
ECEIVE
<i. " s '
I I
L
IL
[]
1
is
Final Drainage Report
for
Waterfield PUD, First Filing
Fort Collins, Colorado
October 20, 1998
SERVICES IN(
Final Drainage Report
for
Waterfield PUD, First Filing
Fort Collins, Colorado
October 20, 1998
Prepared For:
Colorado Land Source
8101 East Prentice Avenue, Suite Ml80
Englewood, Colorado 80111
Prepared By:
Northern Engineering Services, Inc.
420 South Howes, Suite 202
Fort Collins, Colorado 80521
(970)2214158
Fax(970)221-4159
Project Number: 9733.00
Seventh Revision Submittal
I
1,
IOctober 5, 1998
I
I
Mr,
Glen Schleuter
City of Fort Collins
Stormwater Utility
235 Mathews
Fort Collins, Colorado 80522
RE: Waterfield PUD, First Filing
Fort Collins, Colorado
Project_ Number: 9652.00
Dear Glen:
Northern Engineering is again submitting this Revised Final Drainage Report for
the Waterfield P.U.D, First Filing. for your review. It represents a study of existing and
proposed stormwater characteristics of the project site.
This report was prepared in compliance with technical criteria set forth in the, City
of Fort Collins, Storm Drainage Design Criteria and Construction Standards manual. It
also represents revisions made due to City comments for the fifth time.
If you should have any questions or comments as you review this report, please
feel free to contact me at your convenience.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
Roger A. Curtiss, P.E.
' cc:
i
Jim McCory - Colorado Land Source
420 SOUTH HOWES, SUITE 202, FORT COLLINS, COLORADO 80521, (970) 221-4158, FAX (970) 221-4159
Final Drainage Report
for
Waterfield PUD, First Filing
' I. GENERAL LOCATION AND SITE DESCRIPTION
The Waterfield PUD development is located at the northwest corner of East Vine Drive
(County Road 48) and Summit View (County Road 9E), currently also being referred to as
Timberline Road.. The site is also bounded on the north by the Larimer and Weld County Canal.
The existing Plummer School is located to the southeast of this site. The site can also be
described as a portion of the southwest quarter of Section 5, Township 7 North, Range 68 West
of the 6th PM, City of Fort Collins, Larimer County, Colorado. A vicinity map of the site is
included in the appendix of this report. This site is also located within the Cooper Slough Major
Drainage Basin. It has also been included in the Dry Creek Major Drainage basin in a study
currently being prepared for the City of Fort Collins.
The Waterfield PUD includes approximately 140 acres. The site is presently
undeveloped, has most recently been used for agricultural purposes. The site generally slopes
from the north to the south at slopes between 1 % and 5%. There is an existing wetland located
adjacent to this site, which occupies approximately 11.50 acres.
The First Filing of Waterfield includes the Bull Run Apartment project, located in the
southeast comer of the site, as well as approximately 42 single family lots located in the
northeast comer of the site. The parcel which is intended to contain the future Senior Cottages of
1 America project is included as a Tract in this Filing, is not intended to be developed as part of
this project, and will be addressed later as Waterfield 3" Filing.
The 2°d Filing of Waterfield, containing the remainder of the site, was submitted asa
final on November 17, 1997.
II. HISTORIC DRAINAGE
rHistorically, the vast majority of the site drains to the existing Lake Canal, located at the
southwest comer of the site. A copy of the existing site, with the historic drainage basins has
been included in the appendix of this report. Basins H-1 and H-2 drain south to existing
irrigation laterals and on south to the existing wetlands area. Basin H-3 drains directly to the
existing wetland area. This existing wetlands appears to overtop at approximately elevation
' 4952, and flows south to Lake Canal. This assumption is based on the existing topography which
clearly delineates historic drainage in this direction. Basin H4 drains directly to Lake Canal.
Basin H-5, located at the southeast corner of the site, drains to an existing low point located in
' the vicinity of the old Plummer School. Drainage from this basin historically overtops Vine
Drive, and drain to the south. Basin H-6, located in the extreme northeast comer of the site,
drains to the existing Larimer and Weld Canal. Basin H-7 represents existing Vine Drive, which
also historically drains into Lake Canal.
There is approximately 108 acres east of Timberline Road that historically drains towards
the comer of Timberline and Vine Drive (identified in the current, unapproved version of the
Dry Creek Master Drainage Plan). These historic flows would eventually overtop Timberline
Road approximately 150' north of the intersection of Vine Drive (based on existing topography
obtained from Landstar surveying), at approximate elevation 4955.50, and drain towards
Plummer School and Waterfield 1" Filing. These flows would pond up to an elevation of
approximately 4955.75, and overflow across Vine Drive to the south at elevations greater than
4955.75, approximately 210' feet west of the intersection with Timberline Road. Some of these
flows (at elevations less than 4955.75) would pond on the Waterfield site (see attached exhibit).
To calculate the historic flows, the Dry Creek Master plan, currently under review by the
City, was used. Existing basin 421 corresponds to the existing basin which drains to Lake Canal.
The existing SWMM model, by Lidstone & Anderson was run (included in the appendix), and
showed a contributary basin of 43.5 acres. A spreadsheet was developed, and displayed historic
flows from Basin 421 over a period of time.
A small undeveloped portion of the northeast comer of the site also directly drains into
the Larimer and Weld Canal.
As mentioned above there is an existing wetland located on this site. A report entitled
"Jurisdictional Wetlands Delineation Survey for the Country Club Farms LLC, Larimer County,
Colorado" by Riverside Technology was prepared for this wetland, and submitted to the City
with the Preliminary PUD submittal under separate cover. A copy of the wetland delineation
map has been included in the appendix of this report. Included in the appendix of this report is a
letter from Riverside Technology, who have developed a groundwater hydrological model of
this site.
III. DEVELOPED DRAINAGE -
Design Criteria and References
' Drainage criteria outlined in both the City of Fort Collins Storm Drainage Design
Criteria Manual. and Storm Drainage Criteria Manual by the Urban Drainage and Flood Control
District have been used for this Final Drainage Study.
Hydrologic Criteria
The Rational Method was used to estimate peak stormwater runoff from the proposed
site. The 2 year storm event and the 100 year storm event were used to evaluate the proposed
drainage system. Rainfall intensity data for the Rational method was taken from the City of Fort
Collins Stormwater Utility Intensity curves (Figure 3-1).
1
' A SWMM model was developed for the first filing representing the interim concepts
associated with the First Filing. This SWMM model was also used to approximate the historic
runoff from basin DC-1. Using the rational method, historic runoff from Basin DC-1 was
calculated to be approximately 70 cfs. Using the City's criteria for SWMM modeling, the
' historic runoff from this same basin was found to be approximately 129 cfs.
Hydraulic Criteria
' City of Fort Collins Storm Drainage Criteria has been used for all hydraulic calculations.
In addition, the detention volumes required for this development have approximated using the
FAA method for detention ponds developed by the UDFCD. The interim SWMM model,
however, was used to determine the required pond volumes for the First Filing.
' Drainage Concepts
Clearly, this site historically drains to the Lake Canal. City policy however dictates these
flows be routed to Dry Creek.
The vast majority of the developed runoff from this site will be routed by either curb and
gutter, open channels, or storm sewers to the proposed detention pond located at the southwest
comer of the Waterfield PUD. With the exception of the 31.3 cfs of theoretical overtopping of
the Larimer and Weld Canal north of this site, (representing the historical runoff from the 75.8
acre area north of the Larimer and Weld Canal, designated as Basin OFF -I), the 108 acres east
of Timberline Road (designated as basin DC-1), and the 5 acre outparcel located along
Merganser and Vine Drive, no other offsite flows enter the site. All conveyance elements within
the site have been sized to accommodate developed site, as well as hypothetical offsite flows. No
developed flows from this Filing will be routed through the wetland area, only to the proposed
I offsite detention pond. Water collected in the subdrain system will be directed into the wetlands.
Capacity for the historic flows from basin DC-1 will be provided through this project, even
' though existing topography clearly demonstrates these flows do not drain across this site.
Detention for the site has been based on the SWMM model presented in the appendix of
' this report. The SWMM model developed for the 1" filing indicates the need for approximately
14.1 acre-feet of storage. The SWMM model developed for the 2°a Filing indicated a need for
approximately 10.5 acre-feet of storage required in this pond, but also included a°detention
' component in the existing wetland area. The 2 year historic release rate into Lake Canal has
been calculated to peak at approximately 12.63 cfs. The maximum release from the detention
pond is 3.00 cfs. The maximum 100 year release from the site, including Vine Drive is
approximately 13.77 cfs.
A small portion of the site, adjacent to the Larimer and Weld Canal, and not within any
' of the development, will continue to release directly into the Larimer and Weld Canal. An
overflow weir was considered along the southerly portion of the Canal adjacent to the Northwest
corner of the site. However, discussions with the Ditch company representative resulted in a
decision that the ditch would not overtop in this area, and that it would not make any sense to
force an overflow in this area. In the remote possibility of a 100 year storm occurring
simultaneously with the Irrigation Canal running full a small interception Swale (Section B-B)
will be installed to route these flows around the single family lots, through a small Tract and on
to Merganser, and eventually to Lake Canal. The emergency overflow weir was sized to account
for these mythical offsite flows, however the orifice in the pond was not sized for this flow.
As mentioned above, all developed flows from this site will be routed to the detention
pond located offsite at the comer of Future County Road 11 and Vine Drive. An interception
swale (Section E-E) will be installed to intercept flows and direct them south. As future filings
are designed, some, if not all of these flows, as well as the subdrain, may be routed to the
Wetlands instead. It is the intent of the future filings to utilize the wetlands area for detention.
For only the development connected with the First Filing, the offsite pond as shown has more
than adequate capacity to accommodate this project. Ditch Company approvals will be required
from both Lake Canal and Larimer and Weld canal prior to construction.
There are two irrigation laterals that feed from the Larimer and Weld Canal. The south
lateral was installed to service this farm, which will obviously be eliminated with this
development. The northerly shorter lateral is still in use by two separate users. This lateral will
be replaced with a pipe which will convey flows to the headgate which provides flows to the
user east of this site. The remaining flows to the user to the south will be maintained in a piped
system (installed previously by the user). This development will not have a negative impact on
either of these two irrigation users. Improvements will be coordinated with these users.
Drainage in the southeast comer of this site historically drains to a sump area located
adjacent to the Plummer School. Developed runoff from this site will be intercepted in an open
channel prior to entering the Plummer School site, and routed around to the Detention Pond.
Developed flow from improvements to Summit View will also be picked up in a roadside ditch,
and also routed to Pond 301. In any case, no developed flows from this project will be allowed
to enter either the Plummer School outparcel, or the 5 acre outparcel (designated as Basins OFF2
and OFF3. The conveyance system for this development is being sized to account for flows
coming from the 5 acre outparcel, and the 108 acres outparcel east of Timberline Road (basin
DC-1). The overflow elevations located around Plummer school (at Vine Drive and along the
Northerly and westerly property lines) will not be raised, therefore, the maximum water surface
elevation adjacent to Plummer school will not be affected by this development.
The two sump areas along Vine Drive and Timberline Road, which currently drains
DC-1 will be maintained at the same elevation which overtopping now would occur.
The detention pond contains approximately 14.1 ac.ft. of storage volume up to an
elevation of 4949.30 (per the SWMM model and calculated water quality capture volume and
additional sediment storage). This is based on a release rate from the pond of 3.00 cfs. The
difference between the allowable release rate of 12.63 cfs and the proposed 3.00 cfs is from the
adjacent roadway sections which cannot drain to the pond area. An emergency overflow weir
will be constructed at the southwest comer of the site, which would direct flows towards Vine
Drive and the siphon structure if the proposed outlet system was to plug. As previously
mentioned, this overflow weir is also sized for the historic basins to the north and the east. The
pond outlet will be constructed as a siphon which drains under Lake Canal, and into an existing
I
' roadside ditch along the South side of Vine Drive. The City has committed to improve this
' channel section in the future to Dry Creek.
The offsite channel sections, storm sewer pipes, and the proposed detention pond will be
constructed in dedicated easements to the City of Fort Collins. The same owner of the area
contained within the First Filing also owns all of the areas necessary for these easements.
' Specific questions regarding developed runoff from Waterfield
Conveyance of runoff from basin DC-1- As mentioned, provisions are being built into
this site to accommodate Dry Creek basin DC-1 (Dry Creek basin 419). The master study
SWMM model shows these flows to be approximately 129 cfs. These flows currently would
overtop Timberline Road at approximately elevation 4955.50 towards the Plummer school. From
' there flows would overtop Vine Drive at approximate elevation 4955.75, and continue to the
southwest, eventually flowing into Lake Canal. The elevations that basin DC-1 overtops Vine
Drive and Timberline Road will be maintained with these project improvements.
A open channel will be installed along the northerly and westerly boundaries of the
Plummer School site which will be sized for 129 cfs from basin DC-1 (Designated channel
isection F-F). An elevation of 4955.75 will be established along the Plummer School side of this
ditch which will allow for the flows to spill into this ditch at the same time flows would begin to
' overtop Vine Drive. The flood elevation across the Plummer School site will not be affected by
this development.. Flows from channel section F-F will be intercepted in an open pipe section
with a flared end section, north of design point W 15, and conveyed via a series of storm sewers
to channel section H-H, west of proposed Merganser Drive. There these flows would be
conveyed to the proposed detention pond by channel section H-H. The emergency overflow weir
has been sized for 298 cfs, which includes the 129 cfs from basin DC-1. The rational
' calculations presented in the appendix of this study shows the cumulative nature of these flows
as they intermingle with developed flows from the Waterfield site.
Inverted siphon at Lake Canal - An inverted siphon is being proposed from the
detention pond, under Lake Canal, and to an existing roadside ditch located on the south side of
' Vine Drive. The proposed system will be sumped in an area north of Vine Drive. A dry well,
sized to approximate the capacity of the sumped pipe system will be installed under manhole
L-4. Water will be allowed to seep out of Manhole L-4, and eventually perk out of the drywell.
' This siphon was sized to accommodate 17.7 cfs.
City stormwater utility has examined the downstream conditions of the existing roadside
swale along the south side of Vine Drive, and have committed to make needed improvements to
this roadside ditch as needed, and have stated that this downstream conveyance element will not
be the responsibility of the developer to provide capacity verification, or to provide maintenance.
Proposed improvements to Vine and Timberline Road, and when these
improvements might occur - The commitment of the developer for roadway improvements
with the Waterfield project include widening out Vine and Timberline Road across the frontage
of this property from existing 26' to 36' (or 44' where turns lanes are needed). The developed
runoff shown in this report accounts for this difference in impervious areas.
I
� I
The City has determined that Vine Drive will be considered an Arterial roadway section,
and Timberline Road a Major Arterial roadway section. This would give an ultimate flowline to
flowline dimension of 83' for Vine Drive, and 107' for Timberline Road.
When and by whom these roads are widened to ultimate configurations will obviously be
determined by traffic requirements for the area When the total improvements are implemented,
' or whether partial improvements are again proposed, the drainage will need to be reexamined to
determine the adequacy of the proposed storm conveyance system. The improvements presented
in this study adequately convey developed, as well as offsite historic runoff through our site.
Structures, such as curb inlets, and storm sewers have been placed to best approximate our
understanding of where these future improvements might be located.
' Future storm sewer improvements associated with Waterfield 21 Filing - The City is
currently interested in obtaining part of the Waterfield project, in particular those portions of the
' site north and west of the existing wetlands. Should this transaction take place, the magnitude of
the improvements associated with 2"' Filing will be reduced.
As shown, developed runoff from l°` filing will be intercepted by an open channel which
runs parallel to Merganser, and covey runoff to the proposed detention pond. When 2" filing
happens, obviously this channel will need to be filled in and an alternate conveyance system will
' need to be built.
It was always the intent, as presented in the preliminary drainage study, to utilize the
' existing wetlands as a part of the overall detention system. This concept was never fully
embraced by the department of Natural resources, however they never flatly denied this concept
either. The concepts presented in the 2"' Filing plans show how the existing system can be easily
' modified to make this possible, and that abandoning the existing open channel will not have a
great impact on the improvements being built with 1" Filing.
' SWMM Model - Interim Condition
Northern Engineering developed the 100 year event model as a conceptual overview of
the First Filing of Waterfield PUD, and to provide an interim pond volume for the site without
affecting the existing wetland area This model will be revised as part of the 2' Filing. The
' rational method was used to determine site specific requirements for swales, storm sewers and
inlets.
IV. EROSION CONTROL
General Conceat
' Waterfield PUD lies within the Moderate Rainfall Erodibility Zone, and the Moderate
Wind Erodibility Zone, per the City of Fort Collins zone maps. At the time of final design, Per
' the City of Fort Collins Erosion Control Reference Manual for Construction Sites, the erosion
control performance standard was calculated and copies included in the appendix of this report.
In general, all disturbed areas not in a roadway section or a building pad area will be
treated with a temporary seed and mulch, if not stabilized within 30 days of overlot grading, or
sooner if any problems occur. In addition, straw bale check dams will be installed at 250'
minimum intervals in all open channels, gravel filters will be installed and maintained on all
' curb inlets. Silt fence will be installed on the west side of disturbed areas, as shown on these
plans, to protect the existing wetlands area. Also, silt fence will be installed around all disturbed
areas in proximity to either the Plummer school outparcel, or the 5 acre outparcel on the south
end of the project.
All construction activities must also comply with the State of Colorado permitting
process for Stormwater Discharges associated with construction activities. A Colorado
Department of Health NPDES discharge permit will be required before any construction grading
can begin.
' V. CONCLUSIONS
Compliance with Standards
' All computations within this report have been completed in compliance with the City of
Fort Collins Storm Drainage Design Criteria.
' A variance request is being asked for regarding the side slopes for channel sections C-C
(at the south ends of Goslyn, Black Scoter, and Bufflehead Courts), and section D-D (along the
north side of basin W-9). Stormwater standard is for 4:1 side slopes, and we have requested a 3:
' side slope. These channels are relatively shallow (0.62'), and by allowing 3:1 side slopes, the
channel section can be fit inside the easement as platted, and these channels can be maintained.
' Drainage Conceit
The proposed drainage concepts presented in this study and shown on the grading and
drainage plans adequately provide for the conveyance and detention of developed runoff from
the proposed development.
' If groundwater is encountered during construction, and dewatering is used to install
utilities, a State of Colorado Construction Dewatering Wastewater Discharge Permit will be
' required.
Stormwater OuaGtX
' Because water quality is important to this developer, water quality mechanisms will be
incorporated into all aspects of final design of drainage systems. The proposed water quality
' measures proposed in this study will require regular maintenance to remove deposits as they
accumulate.
' Erosion Control Concots
' The developer of this project understands that the wetlands adjacent to this project, must
be protected during the construction process. Therefore, all erosion control measures, specified
' within these plans must be maintained and protected until all disturbed areas have been stabilized
with vegetative methods.
11
I
1
' Future Conditions - Vine Drive and Timberline Road
1
1
L
' Future Conditions - Vine Drive and Timberline Road
' Per City criteria, we will attempt to analyze what will happen in the future. This is based
on the anticipated ultimate condition of the adjacent arterials with todays street standards, and
' has not tried to account for future differences in street standards, or what impacts development
to other adjacent sites might involve. There has also been discussions of an overpass at the
intersection of Vine and Timberline, and this look into the future did not account for that
possibility either. Of course, when and how the surrounding properties develop will determine
how the future improvements are installed, and the extent of improvements necessary, therefore,
at best this is a cursory study of anticipated development, and as real improvements are
' proposed, they should be reviewed for compliance with current standards.
Timberline Road -
Improvements associated with this project to Timberline Road involve widening
' Timberline Road from the existing bridge over the Larimer and Weld Canal to Vine Drive. The
existing width is approximately 26' wide, and this project proposes extending this width to 36'.
No curb and gutter is proposed with this project . The road generally slopes from the north to the
south. There is an existing low point located approximately 150' north of Vine Drive, where
basin 419 (Dry Creek Master Plan) 100 year historic flows will eventually overflow to the west.
The elevation of the existing low point will be maintained with the improvements to Waterfield
' 11. Todays plan for the ultimate design of Timberline Road is as a Major Arterial, therefore,
future width could be anticipated to be 107' wide, flowline to flowline, 6" vertical curb and
gutter, and 14l' of Right-of-way. Our projected longitudinal flowline grades for this arterial
' section will keep a low point at the existing location. Type R curb inlets will need to be installed
at these low points, with a storm sewer that conveys flows from the east towards the west (see
attached sketch).
' Currently we are providing capacity through the Waterfield site for the 100 yr historic
' flows from 108 acres east of Timberline Road (Dry Creek Basin 419), or approximately 129 cfs.
Basin 419 is also a part of the Dry Creek Major Drainage Basin, and will be required to provide
detention between the 10 yr historic and the 100 yr developed flows, and provide a maximum
' release from the site of approximately 65 cfs. This would leave approximately 40 cfs of
additional capacity in the Waterfield 15' Filing conveyance system. This should provide
sufficient capacity to account for additional paving of Timberline Road, as well as Vine Dive,
' and still be able to accommodate detained flows from Basin 419.
Developed runoff from Timberline Road is found to peak at approximately 6 minutes. If
' Timberline Road was to develop prior to Basin 419 being developed, the peak runoff from
Timberline Road would be well downstream prior to Basin 419 peak at 35 minutes. Therefore
the system proposed with this site would have capacity for these flows, although runoff from the
final configuration should be analyzed to insure capacity.
C
Vine Drive -
Improvements associated with this project to Vine Drive include widening the existing
section from approximately 24' wide to 36' wide (48' wide where turn lanes are necessary). No
' curb and gutter is being proposed for the north side of Vine, and a temporary extruded asphalt
curb is being proposed for portions of the south side of the road. The ultimate intentions for
Vine Drive are for an Arterial Street, with 83' ultimate width, flowline to flowline, 6" vertical
curb and gutter, and a 115' Right -of -Way. There is currently a low point in Vine Drive,
approximately 210' west of the intersection with Timberline Road, where existing flows from
east of Timberline Road overtop from the Plummer School site, and travel south across the
' existing Railroad property. Improvements proposed with the Waterfield tat project, will maintain
the current elevation that the road is overtopped, and maintain the sump condition at that point.
An area inlet, sized to accommodate developed runoff from Vine Drive will be installed, with a
' storm sewer outlet that will convey intercepted flows back to the north, and ultimately to the
detention pond proposed just to the east of Lake Canal. When Vine is built out to full arterial
width, Type R curb inlets will need to be installed at these sump locations, and the existing
storm sewer pipe can be utilized to convey flows to the west.
' As with Timberline Road, the peak runoff from Vine Drive, even if fully developed will be in
through the detention pond prior to the peak runoff from basin 419.
0
1
1
1
1
Ul
-
-
- -
f
-; -
W
ss
---Ft.�rvtz�. _srozi.�►---5�ua.E�.
_L1rT
-tzr� Tp�__�__�v�_��►L-ter___
I
1
1
1
1
1
1
1
1
1
1
1
1
1
0
L----�-
Zs 9s 4 N _
I N u)
Z9'99 °�� L' L .I Ln it \ %O'Z
a0
w
a
LoI
T
�lto
I
II
LO
11
,!
I
V
i
I
REFERENCES
1. Storm Drainage Design Criteria and Construction Standards.
City of Fort Collins, Colorado, May, 1984.
2. Cooper Slough Master Drainage Study, by Simons, Li
3. Drainage Criteria Manual. Urban Drainage and Flood
Control District, Wright -McLaughlin Engineers, Denver,
Colorado, March, 1969.
4. Dry Creek Maoor Drainage Study Lidstone & Anderson, 1998
CITY COMMENTS AND RESPONSE LETTERS
i
0
11
11
PROJECT
COMMENT SHEET
Current Planning
DATE: September 21,1998 DEPT: Stormwater
PROJECT: Waterfield P.U.D. —1st Filing
All comments must be received by Mike Ludwig no later than the staff
review meeting: -
Wednesday, September 23, 1998
1. The area taken up by the detention pond needs to be dedicated as a grading and
drainage easement. Please include the easement by separate document in the next
submittal.
RESPONSE:
2. For swales with sideslopes of 3:1, a variance needs to be requested in the report text.
RESPONSE:
(continued on back)
Date• �l/��t7 Signature:
j
/ w zr14-4 440(
CHECK HERE IF YOU WISH TO RECEIVE COPIES OF REVISIONS N.rAw. ;,..,,•
-X PLAT —Z SITE LC DRAINAGE REPORT _OTHER Col mAe L.�
FUTILITY X REDLINE UTILITY j-LANDSCAPE Swrt{ lift
City of Fort Collins
1
3. Please show the location & corresponding cross-section of all the swales (as
calculated in the report) on the drainage plan and include a detail of the siphon. In
addition, please make revisions to existing swale cross -sections where indicated to
correspond with the calculations.
RESPONSE:
4. A few of the values used in UDSEWER analyses do not match up with those on the
profile views. Please make changes as needed.
RESPONSE:
' 5. For riprap bank protection of the emergency spillway channel section F-F, why was
142.7 cfs used in the calculation?
RESPONSE:
6. For storm sewer line L, please provide calculations used for sizing the dry well to
show that the infiltration capacity can sustain the maximum flow volume captured by
the storm sewer. In addition, please indicate who will be responsible for maintenance
of manhole L-4.
RESPONSE:
7. Please provide street capacity calculations for all proposed roads within the site to
show that they can handle the design flows.
RESPONSE:
Please refer to the redlined plans and report for additional review comments.
I
0
I
October 5, 1998
Mr. Basil Hamdan
City of Fort Collins
Utility Services Stormwater
1
235 Mathews
Fort Collins, Colorado 80522
RE: Waterfield First Filing
Response to City comments
Dear Basil,
This letter is in response to your written comments to Mike Ludwig dated September 21, 1998
Item No. 1 - These easements are being prepared and will be given to the City with the next submittal.
Item No. 2 - This variance request has been included in the text of the report
Item No. 3 - Regarding the swales, they will be revised. Regarding the siphon, it was detailed with the last
submittal
Item No. 4 - OK
Item No. 5 - Will revise to 129.7 cfs
Item No. 6 - The dry well was sized to allow the pipe volume only to drain into. Per notes on the plans, we
have already indicated that the owners, not the City will be responsible for maintenance of all drainage
facilities located on private property. It should be noted that even when 2nd Filing is completed, and
additional Right -of -Way dedicated, this manhole will still be located on private property.
Item No. 7 - Capacity calculations have been provided for Residential local streets w/ Rollover Curb and
gutter, Residential local w/ 6" vertical curb and gutter, Connector Local w/ 6" vertical curb and gutter, and
Collector with parking & 6" vertical curb and gutter. Values have been included in the hydrology
spreadsheets for the associated flows. Calculations for these street capacities have been included in the
appendix of the report (in the Charts, Graphs, Tables section).
We will be available to meet with Stormwater at any time to help clear up any questions you may have
regarding this project. Thanks for your cooperation.
Sincerely,
�I Roger Curtiss P.E. - Northern Engineering Services, Inc.
cc: Lucia Liley - March & Liley
Jim McCory - Colorado Land Source
LKim Vowell - Brisben Companies
"1
i
Current Planning
PROJECT
COMMENT SHEET
• DATE: August 4,1998 DEPT: Stormwater
PROJECT: Waterfield P.U.D.
All comments must be received by Mike Ludwig no later than the staff
review meeting:
Wednesday, August 12, 1998
1. Please indicate the location of the overflow weir for the detention pond on the grading,
drainage, and erosion control plans. Provide proper erosion protection around the
spillway. The flow rate over the spillway conflicts with the value in the report.
RESPONSE:
2. A drainage easement needs to be provided for the water that backs up from the
detention pond onto the future school site.
RESPONSE:
3. The historic flow from basin DC-1 is different than the master plan flow for this basin.
Please either use the master plan flow or provide supporting documentation for the width
to be used. This would include delineation of the basin with contours to document the
overland flow length used.
RESPONSE:
Date: u�73Signature:
a%• Tim Qtux<)%rZ�
CHECK HERE IF YOU WISH TO RECEIVE COPIES OF REVISIONS nikQ.-�(-O'
-X PLAT SITE X DRAINAGE REPORT OTIIER —�
X UTILITY X REDLINE UTILITY X LANDSCAPE a.a"
Ala-" QaA City of Fort Collins
J,
4. As stated in the previous comments, the property to the east, a portion of Waterfield
2"d Filing, is under negotiations to purchased by Natural Resources. Although at this
time it is unclear what parts will be developed it is necessary to design for any negative
impacts that would be costly to change after development. Such design is needed for a
storm sewer system to the detention pond.
RESPONSE:
1 5. In the SWMM calculations, the detention and is sized using flow from
p g offsite basin
DC -I. It is required that this offsite flow is allowed to pass through the site not be
detained, a model should be run without this flow to determine the necessary detention
volume for the site. Then a model should include this offsite flow; this model should be
used to size the detention pond spillway for the offsite flow.
RESPONSE:
6. Include sheet 35 in the utility plans.
RESPONSE:
7. The storm sewer that parallels Vine Drive accounts, according to the calculations, for
the offsite flow from DC-1, specifically the flow enters the storm sewer at design point
W 15. There are no supporting calculations showing that the inlet at W 15 has adequate
capacity to pass this flow. Also, the cross-section H indicates that the now from DC-1 is
not routed to the channel, but the storm sewer calculations show that this flow is routed to
the channel. Please clarify how the flow from DC-1 is being routed through Waterfield
PUD, include a more detailed discussion regarding this flow in the report and provide
explanation for the sizing of all drainage facilities that are affected by this flow from DC -
RESPONSE:
8. In storm sewer L, there is a 7-foot increase in elevation from one pipe to the next.
Please make necessary corrections to alleviate this problem of minor storm flow not
being able to be conveyed through the system.
RESPONSE:
9. Riprap calculations are provided for several pipe outlets, but it is necessary to show
calculations for the riprap that is placed in the channel located on the southeast portion of
the site and for the spillway on the detention pond. It is also necessary to provide riprap
details on the plans.
RESPONSE:
Please see redlined report and plans for additional review comments.
9
August 31, 1998
Mr. Basil Harridan
City of Fort Collins
Utility Services Stormwater
235 Mathews
Fort Collins, Colorado 80522
i
Waterfield First Filing
Response to City comments
Dear Basil,
This letter is in response to your written comments to Mike Ludwig dated August 7, 1998
There were 12 items listed.
Item No. 1 - The length of the overflow weir has been modified to reflect the revised flows, and
has been shown on the grading plan as well as the drainage plan. A detail of this weir and
protective riprap is shown on the detail sheet
Item No. 2 - This easement will be provided
Item No. 3 - Although I disagree with the parameters used in the Master plan, I have modified
the offsite flows entering the Waterfield site to match those specified in the master plan. (The
master plans flows are higher, therefore, this would be a conservative assumption).
Item No. 4 - The concepts presented and approved in the preliminary drainage plan still
represent the framework for the design of the first filing, as well as the second filing. It was our
intent to utilize the existing wetlands area for detention when 2ed filing develops. When this
occurs, most of the developed runoff from the single family lots will be directed towards the
wetlands area, instead of the proposed pond at the southwest comer of the site. I have attempted
to better describe these concepts in the text of the report.
Item No. 5 - I revised the SWMM model to exclude the flows from basins OFF-1 and DC-1.
This increased the required pond volume for the first filing to 14.1 acre feet, with a peak release
rate of 3.0 cfs. I again ran the model with basins OFF-1 and DC-1 included. This showed a
�f maximum flow to the pond of 218 cfs. These basins were also included in the rational
calculations for the site (see report) which shows a maximum flow to the pond of 298 cfs. I used
r the 298 cfs value for sizing the emergency overflow weir.
Item No. 6 - OK
Item No. 7 - The flows from DC-1 do not enter the storm sewer system at design point W 15, but
in a flared end section at W 15 (W 15 is not an inlet, W 16 is an inlet). I have included additional
text in the report which better explains the routing of these flows from DC-1.
1
i
I
1
Item No. 8 - This is the Lake Canal siphon structure. We have revised this system somewhat, but
there will still be a portion of the system that will not fully drain, but will need to perk out of the
storm sewer over a period of time.
Item No. 9 - These calculations have been provided.
We will be available to meet with Stormwater at any time to help clear up any questions you
may have regarding this project. Thanks for your cooperation.
Sincerely,
Roger Curtiss P.E. - Northern Engineering Services, Inc.
cc: Lucia Liley - March & Liley
Jim McCory - Colorado Land Source
Kim Vowell - Brisben Companies
PROJECT
C ONEvIENT SHEET
Current Planning
DATE: to /Ae DEFT': Stormwater
PROJECT:
p • M i l,.Jc) w I
1. In the SWMM model, the hyetograph time increment must be evenly divisible by the
integration interval. Therefore, the integration interval must be either 1 or 5.
1 II RESPONSE:
i
11
2. Please extend the simulation period for Pond 301 until it is empty.
RESPONSE:
3. Several of the stone sewer profiles do not match the calculations in the report.
RESPONSE:
Dut=
Ma nE TM IILlL1 M dGt.r E T�
6C • "Tim Egand
MKa Lu d✓I
Ok
Tarr do CIty of Fa t CaMns
4. Please show overflow weir for the detention pond on the plans on the grading,
drainage, and erosion control plans. Provide proper erosion protection around the
spillway. The flow rate over the spillway conflicts with the value in the report.
RESPONSE:
5. The computed rating curve for the detention pond does not match the rating curve
used in SWMM.
RESPONSE:
6. All sections of pipe that have pressurized flow must have pressured seals between the
joints.
RESPONSE:
7. The future condition of Vine Dr. and County Road 9E need to be further considered in
the design of the on -site drainage. The future sump conditions of the road should be
considered to determine where these areas will drain and where these areas will tie in
with the existing system. This sizing of the storm sewers should consider the future street
flows from Vine and County 9E. All proposed drainage facilities must be shown to work
for the interim and ultimate conditions of the arterial streets. This comment was made in
the previous submittal.
RESPONSE:
8. Please verify that the ditch along the south side of Vine Drive has capacity for all
contributing flow. Show more details of the ditch and provide a cross-section. The ditch
flow must be contained within the right-of-way. Provide supporting calculations which
show the capacity of the ditch. The Lake Canal Company must approve of this flow
entering the canal undetained and untreated. If the Lake Canal Company does not
approve this then a design of an outfall system to the Dry Creek needs to be completed
RESPONSE:
9. All storm pipes used for pressurized flow must be designed with pressure seals and a
note must be included on the plans.
N, RESPONSE:
10. The property to the east of Waterfield PUD is negotiations to be purchased by
Natural Resources, if this is completed then a storm sewer design must be completed to
the detention pond.
RESPONSE:
11. Please indicate on the plans where the offsite flow from the east is being directed.
Indicate the high water surface elevation of the ponding, the area of inundation, and the
area of overflow of Timberline.
RESPONSE:
71 A drainage easement needs to be provided for the water that backs up from the detention
pond onto the future school site.
�- RESPONSE:
Please see redlined report and plans for additional review comments.
i
1
1
i
June 19, 1998
Mr. Basil Hamdan
- City of Fort Collins
Utility Services Stormwater
235 Mathews
Fort Collins, Colorado 80522
RE: Waterfield First Filing
Response to City comments
Dear Basil,
This letter is in response to your written comments to Mike Ludwig dated June 4, 1998
There were 12 items listed.
Item No. 1 - The model was rerun and the integration interval was changed to 5 minutes.
Item No. 2 - The model was extended to 600 minutes
Item No. 3 - These have been revised. I do not agree with several of staffs comments regarding
these calculations, and have noted that in the redlined report.
Item No. 4 - This has been revised
Item No. 5 - This has been revised
Item No. 6 - These will be noted on the plans. Again, I disagree with your policy requiring
pressure seal joints when 100 year flows are being routed through a pipe system. It is only the
100 year major storm events which pressurize the pipes, the 2 year flows, which are what is
r required to be conveyed through the pipe system does not pressurize the pipe.
Item No. 7 - I have included discussion of future flows in the adjacent arterials.
Item No. 8 - These flows will be conveyed, along with detained flows from our detention pond
to a siphon structure which will convey flows under Lake Canal. We have a commitment from
City to improve the downstream conveyance system west of Lake Canal to Dry Creek.
Item No. 9 - See 6 above, and previous comments.
Item No. 10 - I think you are eluding to portions of Waterfield 2°d Filing. I think we both need
some clarifications on what the ultimate configuration of the parcel that Natural Resources is
1 interested in will have on the overall conveyance system. I believe that it really will have little
-I1
impact on the channel proposed with this development which runs parallel with Merganser (as I
believe that the street which will be installed west of Merganser in 2"d Filing is still being
proposed). At any rate, this surely can be corrected when 2"d Filing is resubmitted.
Item No. 11 - It was. I will try to define it better, although I believe that this type of information
has no place being shown on construction documents, but is better addressed in the report.
(Where it has been addressed).
' Item No. 12 - It will be provided.
We will be available to meet with Stormwater at any time to help clear up any questions you
may have regarding this project. Thanks for your cooperation.
Sincerely,
Roger Curtiss P.E. - Northern Engineering Services, Inc.
cc: Lucia Liley - March & Liley
Jim McCory - Colorado Land Source
' Brock Chapman - Brisben Companies
I
I
I
S
1
I
I
I
PROJECT
COMMENT SHEET
Current Planning
DATE: 5 q - 9.�f DEFT: Stormwater
PROJECT:
PLANNER: /-"? i 'Ar-
1. The existing off -site flow from the basin to the east is shown to spill over Timberline
Road and pond on the Plummer School and the Waterfield PUD properties. The flow
would then spill over Vine Drive. The ponding is an existing condition for the Waterfield
PUD site that should be considered in the drainage design. The Waterfield PUD site
should be designed to not adversely impact the drainage of off -site properties. This means
passing a portion or all of the existing off -site flow through Waterfield PUD. If only a
portion of the existing off -site flow is proposed to pass through the site, then an analysis
of the existing and proposed ponding and overflow conditions would be needed.
2. The time of concentration for the off -site basin was calculated incorrectly. The slope of
the basin should be in percent rather than ft/ft for use in the overland time of
concentration. This results in a large time of concentration and a low 100-year runoff
rate. The off -site basin is too large to be modeled using the Rational Method. Please use
UDSWMM to model the off -site basin. The Dry Creek Master Plan Update shows an
existing off -site flow of 129 cfs for the 108-acre basin.
3. The low points in Vine Drive and Timberline Road should not be raised to maintain the
existing ponding level at these locations.
Please refer to the redline letter and calculations for further review comments.
Dow=
an HERE I YOU WISH M REM COPIES OF flE ONS
Pl1� ate _�
��•. /Uarf hP► n Crio veer%ns
Tt.h Ala 47roiof
g/i Sin �mn9t%r'S'
Odt�
aey of Faft COMM
1-
I
May 12, 1998
Mr. Matthew Fater
City of Fort Collins
Utility Services Stormwater
235 Mathews
Fort Collins, Colorado 80522
RE: Waterfield Fast Filing
Response to City comments
�- Dear Matt,
This letter is in response to your comments dated May 5, 1998, specifically regarding the offsite drainage
from an existing 108 acre basin east of the proposed Waterfield development. There were three items
listed.
Item No. 1 - We take it from your response that you'acknowledge the historic flows overtop Vine Drive
and heads south. The problem seems to be that these historic flows also pond on the Waterfield site as
well as the Plummer school site. Therefore, you will require this developer to provide capacity for
approximately 108 cfs to be conveyed through our site to another property west of us where these flows
do not historically go.
Given the fact that this requirement has been identified 18 month into the review process, this developer
has decided to install these improvements rather than further delay this project, even though we do not
agree with your position.
Item No. 2 - Calculations for the time of concentration for the offsite basin provided to you were wrong.
1 The correct time of concentration should have been 60.4 minute (33.5 minute overland plus 26.9
channelized flows). Using the rational method, the 100 year historic flows calculate to be approximately
70.2 cfs. Using the UDSWMM criteria, established by the City, these historic flows are shown to be
approximately 104 cfs.
Item No. 3 - These low points have been lowered to maintain the approximate existing overtopping
elevations.
We will be available to meet with Stormwater at any time to help clear up any questions _you may have
r regarding this project. Thanks for your cooperation.
Sincerely,
Roger Curtiss P.E. - Northern Engineering Services, Inc.
cc: Lucia Liley - March & Liley
Jim McCory - Colorado Land Source
Brock Chapman - Brisben Companies
I
I
1
1
11
n
PROJECT
COMMENT SHEET'
CAVOfFollcon;►"a
Current Planning
DATE: 3 g DEFT: Stormwater
PROJECT: O A i er �;ELt 70 (-S t., e s cI
PLANNER: M tics Lvt� w1 ►1i
1. The final signed agreement from the Lake Canal Company is needed before final
approval. Signatures from the Lake Canal and the Larimer-Weld Canal will be needed
on the plans.
RESPONSE:
2. There are many drainage facilities that are located outside the property line of the
project. All of these drainage facilities will require off -site drainage easements, dedicated
by separate document. -
RESPONSE:
CEC[ BE I YOU WIM TO EVE COPES OF RE91S[ONS
_Pk _5k Ddmp ICO
.Uff# IC&uk
1�
M)-h'e 1,v614,15
G/Or ltp�o =A
� ShflliP
Qty o[ FortCoMns
i
L1,
3. The future condition of Vine Dr. and County Road 9E need to be fiuther cot stdered'in.
the design of the on -site drainage. The future sump conditions of the road should be ; ,
considered.to determine where these. areas will drain and where these areas will tie tn`
with the existing system. The sizing of the: storm sewers should consider the future;street 3,
flows froiri Vine and County 9E. All proposed drainage facilities must be shown to work
for the interim and ultimate conditions of the arterial streets. ;
4. There are locations where the basin boundaries do not match the proposed grading.
Please verify the basin boundaries with the proposed contours and revise any related;
calculations. `
RESPONSE:
5. Please show hydrologic calculations for the total flow in the roadside ditch along Vine
Drive. Verify that the ditch has capacity for this flow. Show more details of the ditch
and provide a cross-section. The ditch flow must be contained within the right-of-way.
The Lakecanali company must approve of this flow entering the canal undetained and
untreated.
RESPONSE:
6. Please show a detail of the water quality outlet structure. Design calculations are also
needed for,the,outlet.
RESPONSE:
7. The basin widths used to model the on -site developed basins appear to be small.
Please use basin widths that provide overland flow lengths that more accurately reflect
developed conditions. Overland flow lengths for residential settings typically range from
100' to 250'.
RESPONSE:
8. A temporary culvert is shown to drain the low area of the school property into the
detention pond. The high water elevation in the pond will cause the culvert to back up.
Theculvert should be removed, and the pond should be regraded to allow the school site
to drainiinto;the pond.
RESPONSE:.
n
r .
RESPONSE:
1
9. Pond 301 is shown to peak at the end of simulation period. It is possible that the pond
may peak after the 2-hour simulation period. Please extend the simulation period until
the entire pond is empty.
RESPONSE:
10. Please check the maximum velocity in the steep section of the roadside swale along
County Road 9E. Erosion protection may be needed.
■ RESPONSE:
11. Please provide capacity calculations for the pipe used at the detention pond outlet and
storm sewers C, D, and E.
rRESPONSE:
12. Calculations seem to have been performed incorrectly for determining the required
weir length for the detention pond overflow weir. Please check these calculations.
RESPONSE:
13. All storm pipes used for pressurized flow must be designed with pressure seals.
Please use circular pipe in place of elliptical pipe where pressurized flow occurs and
install pressure seals.
RESPONSE:
Please refer to the redline plans and report for additional review comments.
r
r
I
I
May 12, 1998
Mr. Matthew Fater
City of Fort Collins
Utility Services Stormwater
235 Mathews
Fort Coll
ins, Colorado 80522
RE: Waterfield First Filing
Response to City comments
Dear Matt,
This letter is in response to your written comments to Mike Ludwig dated March 4, 1998
There were 13 items listed.
Item No. 1 - We plan to meet with the Ditch Company with this revised submittal. We
understand that their approvals are required.
Item No. 2 - We are having the legal descriptions for these easements being prepared by
Landstar. The owner of the 1" Filing is also the owner of the offsite areas in question, and we do
not anticipate any problems getting these easements.
Item No. 3 - There are sump areas in Timberline Road and Vine Drive, neither of which are
directly adjacent to our site. Per City criteria, we have also added downstream capacity to our
on -site drainage facilities to accommodate upstream flows from basins that are not historically
contributory to our site.
Item No. 4 - These have been modified
Item No. 5 - This ditch section has been included in the cross sections for Vine Drive
Item No. 6 - Done
Item No. 7 - Done
Item No. 8 - We will provide a drainage easement for the school site in lieu
of filling the site at this time.
Item No. 9 - Done
Item No. 10 - Done
Item No. 11 - Done
IItem No. 12 - Done
Item No. 13 - Done. I design these pipes to be pressurized only in the 100 year storm event. In
the 2 year event, these pipes are not pressurized. Per City criteria, we are only required to
convey the minor storm events through the storm sewer. This criteria is a unnecessary expense
imposed by the City, and this policy should be reviewed.
We will be available to meet with Stormwater at any time to help clear up any questions you
may have regarding this project. Thanks for your cooperation.
ISincerely,
iRoger Curtiss P.E. - Northern Engineering Services, Inc.
cc: Lucia Liley - March & Liley
Jim McCory - Colorado Land Source
Brock Chapman - Brisben Companies
I
I
APPENDIX
I
L
G
i
i
1
1
1
1
n
i
° '` a& '� r n IR _ •� Pas. a�to ow.
A
�O 11r•I.a
•.° • 1 I i II _ s 1 ...
i I �
I
_ r
1
133
� PO
s�.
i <99 4990 ---�—� T 8 N
♦ a
• e �� 4495
-- r--
..........
IIyyn r
d
cw/rAI I p .... _1 .__-ro. _ _
On Nortnlre Black Ow °tea—•+' _fl ag, n dunc n e
I � �..'B RL/NG N THERN r • • — .+
f a pt T a r o
� ? a• . i 5...\i I s
WNTO
e — FORT c//'',,II--- 4493
19
/ ' ♦ � � I lawn
• •�:�
Trail .. .
. :.,-.�. '6�f9 Park r \�•••:y.•� b railer,, -
. •.� •�' �• �\�' Afro • • �'•a • : S
Poo
16
r
1 � ._. :p: •Wj \ I ewe
♦ •.
0
� e rye .'�'�:♦ ��' '$. J __.� r I
4491.
A.
p C
FdQ A .tsoO
71
i
1
I
1
i
1
I
L
I
1
1
1
1
1
g gl!!TY MAP
i
I
1
11
1
I
I
r
I
1
HISTORIC CONDITIONS
n
1
I
I
1
r
n
[I
I'
rl
r
11
1p
IA
a
6
SWMM MODEL - EXISTING CONDITIONS FROM DRY CREEK
i MASTER PLAN by Lidstone & Anderson
i
I
2 1 1 2
3 4
WATERSHED 0
LOWER DRY CREEK BASIN (BELOW LARIMER 6 WELD CANAL) FILES: EX100.DAT S .OUT
100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC.
600 0000 1. 1 1.
24 5.
.60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56
1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24
.24 .24 .12 .12
-2 .016 .25 .1
1 401 501 940 14.2 30..0024
1 402 501 1480 10.2 55..0092
1 403 503 4790 33.0 60..0060
1 404 504 1100 17.0 10..0079
1 405 505 1330 23.2 65..0034
1 406 506 4130 56.9 35..0057
1 407 508 1400 12.9 85..0080
1 408 511 830 19.1 5..0061
* GREENBRIAR/EVERGREEN WEST AREA BEGIN
1 102 3561410.36.34 13.3 .012 .016 .040 .1
1 105 3562200.42.95 33.7 .030 .016 .038 .1
1 107 280 950.21.95 10.1 .025 .016 .038 .1
1 103 204 600.19.29 18.8 .005 .016 .040 .1
1 104 2536700.69.16 26.1 .008 .016 .040 .1
1 101 2821260.42.91 4.4 .025 .016 .040 .1
1 129 2811000.23.53 14.3 .015 .016 .037 .1
1 124 322700.25.06 97.4 .005 .016 .035 .1
1 125 323900.36.11 0.0 .005 .016 .040 .1
1 126 2551090.12.55 0.0 .004 .016 .040 .1
* GREENBRIAR/EVERGREEN WEST AREA END
1 409 509 1970 48.8 55..0057
1 410 510 2210 45.6 5..0050
' GREENBRIAR/EVERGREEN WEST AREA BEGIN
1 127 6011800.30.82 4.7 .006 .016 .040 .1
* GREENBRIAR/EVERGREEN WEST AREA END
1 413 516 4400 10.1 5..0100
1 414 602 3090 14.2 55..0080
* GREENBRIAR/EVERGREEN SOUTHEAST AREA BEGIN
1 115 6021740.69.30 0.0 .004 .016 .040 .1
* GREENBRIAR/EVERGREEN SOUTHEAST AREA END
1 411 513 3530 24.3 70..0100
1 412 514 4360 30.0 60..0150
• GREENBRIAR/EVERGREEN SOUTHEAST AREA BEGIN
1 121 20 440.14.05 0.0 .016 .016 .040 .1
1 120 201240.13.97 22.2 .037 .016 .040 .1
1 122 20 700. 8.02 0.0 .012 .016 .040 .1
1 123 20 360. 3.01 49.8 .006 .016 .040 .1
1 112 371660.49.14 9.3 .008 .016 .040 .1
1 113 2651020.48.46 10.3 .004 .016 .040 .1
1 114 3104900.51.10 23.2 .005 .016 .036 .1
* GREENBRIAR/EVERGREEN SOUTHEAST AREA END
* GREENBRIAR/EVERGREEN NORTHEAST AREA BEGIN
1 108 258 630.11.48 0.0 .048 .016 .040 .1
1 110 258 475. 4.76 0.0 .035 .016 .040 .1
1 116 258 830.23.00 5.6 .032 .016 .040 .1
1 130 1582500.40.10 40.0 .020 .016 .035 .1
1 117 2581050.43.93 16.0 .021 .016 .040 .1
1 109 2591210.13.85 0.0 .042 .016 .040 .1
1 111 3073800.43.33 19.9 .008 .016 .038 .1
* GREENBRIAR/EVERGREEN NORTHEAST AREA END
1 415 518 7240 66.5 30..0070
1 416 519 2530 69.6 10..0100
1 417 603 2230 82.0 5..0040
1 418 603 1420 16.3 25..0070
1 419 801 2480108.0 10..0150
1 420 801 3640100.4 5..0200
1 421 520 1890 43.5 10..0150
1 422 520 2420149.9 5..0080
1 423 802 2970 88.5 10..0040
1 437 541 740 54.2 5..0032
1 438 542 1200 42.0 5..0027
1 439 543 2450 19.7 75..0060
1 453 55912690 87.4 50..0130
1 440 544 3700195.7 5..0049
51 .50 .0018
40
2.19
.05
.0071
44
2.19
.05
.0071
43
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
43
2.19
.05
.0071
50
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
40 2.19 .05 .0071
40 2.19 .05 .0071
40
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
48
2.19
.05
.0071
40
2.19
.05
.0071
50
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
40
2.19
.05
.0071
44
2.19
.05
.0071
I
I
1 443 549 1600 66.2 55..0040
1 455 875 2600 77.5 20..0060
1 454 610 1920 44.1 25..0150
1 445 611 2690 18.5 35..0040
* STREETS DEPARTMENT DEVELOPMENT
1 424 803 800 23.9 70..0100
1 425 523 2840 65.2 10..0060
1 426 525 470 7.6 5..0050
* VAN WORKS DEVELOPMENT
1 427 804 1030 14.2 40..0060
1 428 526 1810 35.7 35..0050
1 429 528 2030 16.3 40..0050
1 430 530 840 2.9 90..0050
1 431 531 1380 14.1 50..0040
1 432 533 1130 22.9 5..0050
1 433 534 1500 24.9 20..0040
1 434 535 2070 85.6 40..0040
1 435 606 5510 63.3 80.'.0080
1 436 539 1420 14.7 85..0060
1 441 546 1680 15.4 65..0050
1 442 548 1240 7.1 60..0050
1 444 608 1070 13.5 55..0080
1 446 551 1000 25.3 5..0035
1 447 553 1100 32.9 5..0050
1 448 609 2260 41.5 80..0040
1 449 555 2960 54.3 80..0050
1 450 556 1970 18.1 40..0040
1 451 55710980 12.6 65..0030
1 452 614 670 7.7 50..0080
0
81 2
101 102 103 104 105 107 108 109 110 111 112 113 114 115 116 117
120 121 122 123 124 125 126 127 129 130 401 402 403 404 405 406
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
455
501 502 1 10. 920. .0050 20. 3. .060 2.5
502 503 1 5. 1500. .0037 4. 5. .060 2.0
503 600 4 5. 1240. .0004 80. 50. .060 1.0
135. 1240. .0004 0. 0. .060 3.0
504 600 1 15. 1260. .0012 5. 5. .050 3.0
505 506 1 5. 1670. .0036 30. 100. .080 1.5
506 600 1 5. 880. .0023 30. 100. .080 1.5
* EXISTING DRY CREEK AT COLLEGE AVE AND HICKORY ST.
600 507 3 1.
507 508 4 5. 1200. .0017 3. 3. .050 1.0
11. 1200. .0017 100. 100. .060 3.0
508 511 4 5. 800. .0023 3. 3. .050 1.0
11. 800. .0023 100. 100. .080 3.0
511 512 4 5. 510. .0023 3. 3. .050 1.0
11. 510. .0023 100. 100. .080 3.0
* GREENBRIAR/EVERGREEN WEST AREA BEGIN
356 302 3 1.
280 356 1 10.0 1200. 0.025 60. 60. 0.060 6.0
302 202 11 2 1.
0.0 0.0 4.28 2.0 6.49 4.0 8.48 5.0
10.25 7.0 11.46 9.0 13.02 11.0 14.37 13.0
15.86 14.0 24.56 16.0 33.20 17.0
202 252 1 12.0 978. 0.0045 4. 4. 0.060 5.5
204 252 5 2.5 923. 0.003 0.013 2.5
0.001 923. 0.004 37.7 37.7 0.016 4.0
252 205 3 1.
205 253 1 30. 423. 0.0025 4. 4. 0.060 2.3
281 282 1 10. 1400. 0.035 60. 60. 0.060 6.0
282 253 1 10. 1600. 0.010 60. 60. 0.060 6.0
253 303 3 1.
303 206 11 2 1.
0.0 0.0 3.14 3.0 4.90 6.0 6.32 10.0
7.62 13.0 9.04 16.0 10.73 19.0 12.76 22.0
15.11 26.0 17.5 327. 21.6 1520.
206 255 1 7. 845. 0.0019 4. 4. 0.060 5.0
32 207 3 1.
207 255 5 2.0 520. 0.004 0.013 2.0
I
0.001
520.
0:004
41.
41.
0.016
4.0
255
512
1
16.
1100.
0.002
4.
4.
0.035
5.0
* GREENBRIAR/EVERGREEN
WEST AREA
END
'
512
601
1
10.
1250.
.0032
20.
7.
.040
3.5
509
510
1
15.
1770.
.0012
2.5
2.5
.035
5.0
510
601
1
10.
1220.
.0009
2.
2.
.035
5.0
* CROSSING
OF EXISTING
DRY CREEK
AND
LAKE CANAL
601
515
3
1.
'
515
515
516
1
5.
1560.
.0018
6.
15.
.040
7.0
516
602
4
6.
1080.
.0019
3.
3.
.040
3.0
24.
1060.
.0019
100.
100.
.080
6.0
513
514
1
5.
2290.
.0030
40.
30.
.060
5.0
514
602
1
5.
1330.
.0015
25.
15.
.060
5.0
'
* EXISTING
DRY
CREEK AT LEMAY
602
517
3
1.
* GREENBRIAR/EVERGREEN
SOUTHEAST AREA
BEGIN
20
22
3
1.
22
37
4
2.0
850.
0.0040
50.
50.
0.016
0.5
'
52.0
850.
0.0040
10.
10.
0.020
3.0
37
308
3
1.
308
211
13 2
1.
0.
0.
0.06
2.
0.33
3.
0.54
5.
'
0.67
7.
1.48
9.
2.89
12.
4.72
14.
6.75
15.
9.33
17.
11.2
85.
15.0
240.
18.7
679.
211
265
1
5.0
1560.
0.0025
4.
4.
0.035-
2.8
265
267
3
1.
'
310
267
12 2
1.
0.
0.
1.88
0.
2.57
2.
2.91
4.
3.52
7.
4.13
9.
4.74
11.
5.55
13.
6.36
15.
7.33
18.
8.48
20.
9.4
21.3
267
262
3
1.
'
* GREENBRIAR/EVERGREEN
SOUTHEAST AREA
END
* GREENBRIAR/EVERGREEN
NORTHEAST AREA
BEGIN
158
258
1
0.0
1825.
0.021
60
60
0.035
3.
-
258
259
3
1.
'
259
209
3
1.
209
307
1
10.0
1600.
0.006
60
60
0.060
3.
307
262
13 2
1.
0.
0.
0.03
3.0
0.31
7.0
0.72
9.0
1.61
11.0
3.04
13.0
4.03
14.0
7.04
16.0
'
8.68
17.0
10.09
17.8
11.2
92.
13.5
260.
15.7
735.
262
269
3
1.
* GREENBRIAR/EVERGREEN
NORTHEAST AREA
END
* COMBINE AND ROUTE NE
AND SE AREAS TO DRY CREEK
269
517
1
10.0
2200.
0.0020
60.
60.
0.060
3.0
517
603
4
10.
2010.
.0032
4.
5.
.040
4.0
46.
2010.
.0032
100.
100.
.080
6.0
518
519
1
10.
1450.
.0029
2.
2.
.035
10.0
'
519
603
4
20.
2680.
.0014
3.
3.
.035
3.0
38.
2680.
.0014
100.
100.
.080
3.0
801
520
4 2
1.
0
0
11.6
0
34.25
0
34.26
1000
520
802
1
5.
2410.
.0014
17.
100.
.035
5.0
'
802
521
5 2
1.
0
0
3.71
0
40.21
0
140.15
0
140.16
1000
521
603
1
5.
1090.
.0009
4.
100.
.035
2.0
* EXISTING
DRY CREEK AT
VINE
603
540
3
1.
540
541
4
10.
3970.
.0019
5.
5.
.050
3.0
40.
3970.
.0019
100.
100.
.080
6.0
541
545
1
0.
3190.
.0038
100.
100.
.080
3.0
542
544
1
0.
2140.
.0043
15.
100.
.080
3.0
559
543
1
10
2080.
.0009
2.
2.
.035
6.0
543
544
1
15.
1380.
.0014
3.
3.
.060
5.0
544
545
1
0.
1600.
.0054
10.
100.
.080
3.0
545
610
1
0.
1050.
.0038
100.
100.
.080
3.0
'
549
610
4
0.
2030.
.0034
50.
50.
.016
0.5
50.
2030.
.0034
60.
60.
..040
6.0
875
560
14 2
1.
0
0
1.77
0
2.44
20
2.80
40
3.14
60
3.42
80
3.62
100
3.82
120
'
4.03
140
4.16
160
4.30
180
4.50
200
4.78
250
5.12
300
560
610
4
0.
1400.
.0058
50.
50.
50.
1400.
.0058
60.
60.
* PROPOSED
DRY CREEK AT MULBERRY
610
550
3
1.
550
611
1
0.
1470.
.0041
100.
100.
* CONFLUENCE
OF
PROPOSED
DRY CREEK CHANNEL AND
POUDRE
RIVER
611
615
3
1.
803
522
6 2
1.
0
0
3.77
10.5
4.43
20.5
5.09
40.5
5.37
50.5
522
604
4
0.
900.
.0023
2.
2.
4.
900.
.0023
2.
100.
523
604
4
5.
1790.
.0035
S.
10.
20.
1790.
.0035
100.
100.
604
524
3
1.
524
525
4
0.
770.
.0043
2.
2.
4.
770.
.0043
2.
100.
804
525
7 2
1.
0
0
0.17
0.89
0.33
1.53
1.49
2.19
1.68
3.66
1.91
6.98
525
605
4
0.
490.
.0038
2.
2.
8.
490.
.0038
2.
100.
526
605
1
10.
1080.
.0037
5.
5.
* NW CORNER
OF LINCOLN AND LEMAY
.016
0.5
.040
6.0
.060
3.0
4.80
30.5
.060 1.0
.080 3.0
.060 1.0
.080 3.0
.060 1.0
.080 3.0
0.95 1.97
.060 2.0
.080 4.0
.050 4.0
605
527
3
1.
-
527
528
1
10.
1200.
.0027
3.
3.
.040
5.0
528
529
4
10.
1140.
.0021
3.
3.
.040
3.0
28.
1140.
.0021
100.
100.
.060
3.0
529
530
4
10.
840.
.0035
3.
3.
.040
5.0
40.
840.
.0035
100.
100.
.060
3.0
530
607
4
10.
1280.
.0020
4.
4.
.050
4.0
42.
1280.
.0020
100.
100.
.060
3.0
531
532
4
0.
590.
.0036
50.
50.
.016
0.5
50.
590.
.0036
60.
60.
.040
6.0
532
533
1
0.
870.
.0014
100.
100.
.080
3.0
533
534
1
0.
1620.
.0036
100.
100.
.080
3.0
534
606
4
0.
2510.
.0036
50.
50.
.016
0.5
50.
2510.
.0036
60.
60.
.040
6.0
535
536
4
0.
1620.
.0033
50.
50.
.016
0.5
50.
1620.
.0033
60.
60.
.040
6.0
536
606
4
0.
1050.
.0017
50.
50.
.016
0.5
50.
1050.
.0017
60.
60.
.040
6.0
606
537
3
1.
537
607
4
0.
1120.
.0017
50.
50.
.016
0.5
50.
1120.
.0017
60.
60.
.040
6.0
* NW CORNER
OF LINCOLN
AND AIRPARK
607
538
3
1.
538
539
4
5.
570.
.0020
3.
3.
.050
4.0
29.
570.
.0020
100.
100.
.060
5.0
539
608
4
5.
830.
.0020
9.
5.
.050
5.0
75.
830.
.0020
100.
100.
.060
6.0
546
547
4
5.
1670.
.0032
4.
4.
.050
5.0
45.
1670.
.0032
100.
100.
.080
3.0
547
548
4
5.
1130.
.0032
4.
4.
.040
5.0
45.
1130.
.0032
100.
100.
.080
3.0
548
608
4
5.
670.
.0032
3.
3.
.050
4.0
29.
670.
.0032
100.
100.
.080
3.0
* EXISTING
DRY CREEK
AT LINCOLN JUST NORTH OF
THE MULBERRY CROSSING
608
612
3
1.
551
552
1
0.
860.
.0029
100.
100.
.040
3.0
552
609
4
0.
1190.
.0032
50.
50.
.016
0.5
50.
1190.
.0032
60.
60.
.040
6.0
553
609
1
0.
990.
.0020
100.
100.
.060
3.0
* NW CORNER
OF LINK
IN.
AND MULBERRY
609
554
3
1.
554
555
1
0.
1660.
.0018
100.
100.
.060
3.0
555
556
4
0.
530.
.0057
50.
50.
.016
0.5
50.
530.
.0057
60.
60.
.040
6.0
556
612
1
15.
1120.
.0009
3.
2.
.035
7.0
* EXISTING
DRY CREEK
AT
MULBERRY
612
613
3
1.
557
613
1
10.
2450.
.0017
6.
20.
.035
2.0
613
558
3
1.
558
614
1
10.
510.
.0059
3.
3.
.040
6.0
I
1
1
1
1
1
I
1
1
* CONFLUENCE OF EXISTING DRY CREEK CHANNEL AND POUDRE RIVER
614 615 3 1.
* TOTAL DRY CREEK INFLOW INTO POUDRE RIVER
615 3 1.
0
111 2
20 22 32 37 158 202 204 205 206 207 209 211 252 253 255 258
259 262 265 267 269 280 281 282 302 303 307 308 310 356 501 502
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
551 552 553 554 555 556 557 558 559 560 600 601 602 603 604 605
606 607 608 609 610 611 612 613 614 615 801 802 803 804 875
ENDPROGRAM
I
1
I
i
i
1
1
I
I
I
G
I
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
TAPE OR DISK ASSIGNMENTS
JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10)
2 1 0 0 0 0 0 0 0 0
JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10)
1 2 0 0 0 0 0 0 0 0
NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5)
3 4 0 0 0
WATERSHED PROGRAM CALLED
*** ENTRY MADE TO RUNOFF MODEL ***
LOWER DRY CREEK BASIN (BELOW LARIMER d WELD CANAL) FILES: EX100.DAT S .OUT
100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC.
NUMBER OF TIME STEPS 600
INTEGRATION TIME INTERVAL (MINUTES) 1.00
1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
.60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56
1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24
.24 .24 .12 .12
LOWER DRY CREEK BASIN (BELOW LARIMER S WELD CANAL) FILES: EX100.DAT s .OUT
100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC.
SUBAREA
GUTTER
WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR
SURFACE STORAGE(IN)
GAGE
NUMBER
OR MANHOLE (FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
DERV.
IMPERV.
PERV.
NO
-2
0
.0
.0
.0
.0300
.016
.250
.100
.300
401
501
940.0
14.2
30.0
.0024
.016
.250
.100
.300
402
501
1480.0
10.2
55.0
.0092
.016
.250
.100
.300
403
503
4790.0
33.0
60.0
.0060
.016
.250
.100
.300
404
504
1100.0
17.0
10.0
.0079
.016
.250
.100
.300
405
505
1330.0
23.2
65.0
.0034
.016
.250
.100
.300
406
506
4130.0
56.9
35.0
.0057
.016
.250
.100
.300
407
508
1400.0
12.9
85.0
.0080
.016
.250
.100
.300
408
511
830.0
19.1
5.0
.0061
.016
.250
.100
.300
102
356
1410.0
36.3
13.3
.0120
.016
.040
.100
.400
105
356
2200.0
43.0
33.7
.0300
.016
.038
.100
.440
107
280
950.0
21.9
10.1
.0250
.016
.038
.100
.430
103
204
600.0
19.3
18.8
.0050
.016
.040
.100
.400
104
253
6700.0
69.2
26.1
.00BO
.016
.040
.100
.400
101
262
1260.0
42.9
4.4
.0250
.016
.040
.100
.400
129
281
1000.0
23.5
14.3
.0150
.016
.037
.100
.430
124
32
2700.0
25.1
97.4
.0050
.016
.035
.100
.500
125
32
3900.0
36.1
.0
.0050
.016
.040
.100
.400
126
255
1090.0
12.6
.0
.0040
.016
.040
.100
.400
409
509
1970.0
48.8
55.0
.0057
.016
.250
.100
.300
410
510
2210.0
45.6
5.0
.0050
.016
.250
.100
.300
INFILTRATION RATE(IN/HR)
MAXIMUM MINIMUM DECAY RATE
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00180
.51
.50
.00160
.51
.50
.00180
.51
.50
.00180
2.19
.05
.00710
2.19
.05
.00710
2.19
.05
.00710
2.19
.05
.00710
2.19
.05
.00710
2.19
.05
.00710
2.19
.05
.00710
2.19
.05
.00710
2.19
.05
.00710
2.19
.05
.00710
.51
.50
.00180
.51
.50
.00180
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i.
127
601
1800.0
30.8
4.7
.0060
.016
.040
.100
.400
2.19
.05
.00710 1
413
516
4400.0
10.1
5.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
414
602
3090.0
14.2
55.0
.0080
.016
.250
.100
.300
1
115
602
1740.0
69.3
.0
.0040
.016
.040
.100
.400
.51
2.19
.50
.05
.00180
.00710 1
411
513
3530.0
24.3
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
412
514
4360.0
30.0
60.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
'
121
20
440.0
14.1
.0
.0160
.016
.040
.100
.400
2.19
.05
.00710 1
120
20
1240.0
14.0
22.2
.0370
.016
.040
.100
.400
2.19
.05
.00710 1
122
20
700.0
8.0
.0
.0120
.016
.040
.100
.400
2.19
.05
.00710 1
123
20
360.0
3.0
49.8
.0060
.016
.040
.100
.400
2.19
.05
.00710 1
112
37
1660.0
49.1
9.3
.0080
.016
.040
.100
.400
2.19
.05
.00710 1
113
265
1020.0
48.5
10.3
.0040
.016
.040
.100
.400
2.19
.05
.00710 1
114
310
4900.0
51.1
23.2
.0050
.016
.036
.100
.480
2.19
.05
.00710 1
108
258
630.0
11.5
.0
.0480
.016
.040
.100
.400
2.19
.05
.00710 1
110
258
475.0
4.8
.0
.0350
.016
.040
.100
.500
2.19
.05
.00710 1
116
258
830.0
23.0
5.6
.0320
.016
.040
.100
.400
2.19
.05
.00710 1
130
158
2500.0
40.1
40.0
.0200
.016
.035
.100
.400
2.19
.05
.00710 1
117
258
1050.0
43.9
16.0
.0210
.016
.040
.100
.400
2.19
.05
.00710 1
109
111
259
307
1210.0
3800.0
13.9
43.3
.0
19.9
.0420
.0080
.016
.016
.040
.038
.100
.100
.400
.440
2.19
2.19
.05
.05
.00710 1
.00710 1
415
518
7240.0
66.5
30.0
.0070
.016
.250
.100
.300
.51
.50
.00180 1
416
519
2530.0
69.6
10.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
417
603
2230.0
B2.0
5.0
.0040
.016
.250
.100
.300
.51
.50
.00180 1
418
603
1420.0
16.3
25.0
.0070
.016
.250
.100
.300
.51
.50
.00180 1
419
801
2480.0
108.0
10.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
420
801
3640.0
100.4
5.0
.0200
.016
.250
.100
.300
.51
.50
.00180 1
421
520
1890.0
43.5
10.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
422
520
2420.0
149.9
5.0
.0000
.016
.250
.100
.300
.51
.50
.00180 1
423
802
2970.0
88.5
10.0
.0040
.016
.250
.100
.300
.51
1
437
541
740.0
54.2
5.0
.0032
.016
.250
.100
.300
.51
.50
.50
.00180
.00180 1
430
542
1200.0
42.0
5.0
.0027
.016
.250
.100
.300
.51
.50
.00180 1
439
543
2450.0
19.7
75.0
.0060
.016
.250
.100
.300
.51
.50
.00180 1
453
559
12690.0
87.4
50.0
.0130
.016
.250
.100
.300
.51
.50
.00180 1
440
544
3700.0
195.7
5.0
.0049
.016
.250
.100
.300
.51
.50
.00180 1
443
455
549
875
1600.0
2600.0
66.2
77.5
55.0
20.0
.0040
.0060
.016
.016
.250
.250
.100
.100
.300
.300
.51
.51
.50
.50
.00180 1
.00180 1
454
610
1920.0
44.1
25.0
.0150
.016
.250
.100
.300
.51
.50
.00180 1
445
611
2690.0
18.5
35.0
.0040
.016
.250
.100
.300
.51
.50
.00180 1
424
803
800.0
23.9
70.0
.0100
.016
.250
.100
.300
.51
.50
.00180 1
425
523
2840.0
65.2
10.0
.0060
.016
.250
.100
.300
1
426
525
470.0
7.6
5.0
.0050
.016
.250
.100
.300
.51
.51
.50
.50
.00180
.00180 1
427
B04
1030.0
14.2
40.0
.0060
.016
.250
.100
.300
.51
.50
.00180 1
428
526
1810.0
35.7
35.0
.0050
.016
.250
.100
.300
.51
.50
.001B0 1
429
528
2030.0
16.3
40.0
.0050
.016
.250
.100
.300
.51
.50
.00100 1
430
431
530
531
840.0
1380.0
2.9
14.1
90.0
50.0
.0050
.0040
.016
.016
.250
.250
.100
.100
.300
.300
.51
.51
.50
.50
.00180 1
.00180 1
432
533
1130.0
22.9
5.0
.0050
.016
.250
.100
.300
.51
.50
.00180 1
433
534
1500.0
24.9
20.0
.0040
.016
.250
.100
.300
.51
.50
.00180 1
434
535
2070.0
B5.6
40.0
.0040
.016
.250
.100
.300
.51
.50
.00160 1
435
606
5510.0
63.3
80.0
.0080
.016
.250
.100
.300
.51
.50
".00180 1
436
539
1420.0
14.7
85.0
.0060
.016
.250
.100
.300
.51
.50
.00180 1
441
546
1660.0
15.4
65.0
.0050
.016
.250
.100
.300
.51
.50
.00180 1
442
548
1240.0
7.1
60.0
.0050
.016
.250
.100
.300
.51
.50
.00180 1
444
608
1070.0
13.5
55.0
.0080
.016
.250
.100
.300
.51
.50
.00160 1
446
551
1000.0
25.3
5.0
.0035
.016
.250
.100
.300
.51
.50
.00180 1
447
553
1100.0
32.9
5.0
.0050
.016
.250
.100
.300
.51
.50
.00180 1
446
609
2260.0
41.5
80.0
.0040
.016
.250
.100
.300
.51
.50
.00180 1
449
555
2960.0
54.3
80.0
.0050
.016
.250
.100
.300
.51
.50
.00180 1
450
556
1970.0
18.1
40.0
.0040
.016
.250
.100
.300
.51
.50
.00180 1
451
557
10980.0
12.6
65.0
.0030
.016
.250
.100
.300
.51
.50
.00180 1
452
614
670.0
7.7
50.0
.0080
.016
.250
.100
.300
.51
.50
.00180 1
TOTAL NUMBER OF
SUBCATCHMENTS, 81
TOTAL TRIBUTARY
AREA (ACRES),
3107.37
*** CONTINUITY CHECK FOR SUBCATCHMEMT
ROUTING
IN UDSWM2-PC MODEL
***
WATERSHED AREA
(ACRES)
3107.370
TOTAL RAINFALL
(INCHES)
2.890
TOTAL INFILTRATION (INCHES)
.563
TOTAL WATERSHED
OUTFLOW (INCHES)
1.957
TOTAL SURFACE STORAGE AT END
OF STROM (INCHES)
.370
ERROR IN
CONTINUITY, PERCENTAGE
OF RAINFALL
.000
11
LOWER
DRY CREEK BASIN (BELOW LARIMER 6 WELD CANAL)
FILES: EX100.DAT 6
.OUT
100-YR EXISTING
CONDITION
-- REVISED
FEBRUARY 1997 BY LA, INC.
WIDTH
INVERT
SIDE SLOPES
OVERBANK/SURCHARGE
GUTTER
GUTTER
NDP
NP
OR DIAM
LENGTH
SLOPE
HORIZ
TO VERT
MANNING
DEPTH
JK
NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
(FT)
501
502
502
503
0
0
1
1
CHANNEL
CHANNEL
10.0
5.0
920.
.0050
20.0
3.0
.060
2.50
0
503
600
0
4
CHANNEL
5.0
1500.
1240.
.0037
.0004
4.0
80.0
5.0
50.0
.060
.060
2.00
1.00
0
0
OVERFLOW
135.0
1240.
.0004
.0
.0
.060
3.00
504
600
0
1
CHANNEL
15.0
1260.
.0012
5.0
5.0
.050
3.00
0
505
506
0
1
CHANNEL
5.0
1670.
.0036
30.0
100.0
.080
1.50
0
506
600
0
1
CHANNEL
5.0
880.
.0023
30.0
100.0
.080
1.50
0
600
507
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
507
508
0
4
CHANNEL
5.0
1200.
.0017
3.0
3.0
.050
1.00
0
OVERFLOW
11.0
1200.
.0017
100.0
100.0
.080
3.00
'
508
511
0
4
CHANNEL
5.0
800.
.0023
3.0
3.0
.050
1.00
0
OVERFLOW
11.0
800.
.0023
100.0
100.0
.080
3.00
511
512
0
4
CHANNEL
5.0
510.
.0023
3.0
3.0
.050
1.00
0
OVERFLOW
11.0
510.
.0023
100.0
100.0
.080
3.00
356
302
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
280
356
0
1
CHANNEL
10.0
1200.
.0250
60.0
60.0
.060
6.00
0
302
202
11
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
-
.0
.0
4.3 2.0
6.5
4.0
8.5
5.0
10.3
7.0
11.5 9.0
13.0
11.0
14.4 13.0
15.9
14.0
24.6
16.0
33.2
17.0
202
252
0
1
CHANNEL
12.0
978.
.0045
4.0
4.0
.060
5.50
0
204
252
0
5
PIPE
2.5
923.
.0030
.0
.0
.013
2.50
0
OVERFLOW
.0
923.
.0030
37.7
37.7
.016
4.00
252
205
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
205
253
0
1
CHANNEL
30.0
423.
.0025
4.0
4.0
.060
2.30
0
281
282
0
1
CHANNEL
10.0
1400.
.0350
60.0
60.0
.060
6.00
0
282
253
0
1
CHANNEL
10.0
1600.
.0100
60.0
60.0
.060
6.00
0
253
303
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
303
206
11
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
10.7
.0
19.0
3.1 3.0
12.8 22.0
4.9
15.1
6.0
26.0
6.3
17.5
10.0
327.0
7.6
21.6
13.0
1520.0
9.0 16.0
206
255
0
1
CHANNEL
7.0
845.
.0019
4.0
4.0
.060
5.00
0
32
207
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
207
255
0
5
PIPE
2.0
520.
.0040
.0
.0
.013
2.00
0
255
512
0
1
OVERFLOW
CHANNEL
.0
16.0
520.
1100.
.0040
.0020
41.0
4.0
41.0
4.0
.016
.035
4.00
5.00
0
512
601
0
1
CHANNEL
10.0
1250.
.0032
20.0
7.0
.040
3.50
0
509
510
0
1
CHANNEL
15.0
1770.
.0012
2.5
2.5
.035
5.00
0
510
601
0
1
CHANNEL
10.0
1220.
.0009
2.0
2.0
.035
5.00
0
601
515
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
515
516
0
1
CHANNEL
5.0
1560.
.0018
8.0.
15.0
.040
7.00
0
516
602
0
4
CHANNEL
6.0
1080.
.0019
3.0
3.0
.040
3.00
0
OVERFLOW
24.0
1080.
.0019
100.0
100.0
.080
6.00
513
514
0
1
CHANNEL
5.0
2290.
.0030
40.0
30.0
.060
5.00
0
514
602
0
1
CHANNEL
5.0
1330.
.0015
25.0
15.0
.060
5.00
0
602
517
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
20
22
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
22
37
0
4
CHANNEL
2.0
850.
.0040
50.0
50.0
.016
.50
0
OVERFLOW
52.0
850.
.0040
10.0
10.0
.020
3.00
37
308
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
301
211
13
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.1 2.0
.3
3.0
.5
5.0
.7
7.0
1.5 9.0
2.9
12.0
4.7 14.0
6.0
15.0
9.3
17.0
11.2
85.0
15.0 240.0
18.7
619.0
211
265
0
1
CHANNEL
5.0
1560.
.0025
4.0
4.0
.035
2.80
0
265
267
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
310
267
12
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
1.9 .0
2.6
2.0
2.9
4.0
3.5
7.0
4.1 9.0
4.7
11.0
5.5 13.0
6.4
15.0
7.3
18.0
8.5
20.0
9.4 21.3
267
262
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
158
258
0
1
CHANNEL
.0
1825.
.0210
60.0
60.0
.035
3.00
0
258
259
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
259
209
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
209
307
0
1
CHANNEL
10.0
1600.
.0060
60.0
60.0
.060
3.00
0
307
262
13
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 3.0
.3
7.0
.7
9.0
1.6
11.0
3.0 13.0
4.0
14.0
7.0 16.0
8.7
17.0
10.1
17.8
11.2
92.0
13.5 260.0
15.7
735.0
262
269
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
269
517
0
1
CHANNEL
10.0
2200.
.0020
60.0
60.0
.060
3.00
0
517
603
0
4
CHANNEL
10.0
2010.
.0032
4.0
5.0
.040
4.00
0
I
I
OVERFLOW
46.0
2010.
.0032
100.0
100.0
.080
6.00
518
519
0
1
CHANNEL
10.0
1450.
.0029
2.0
2.0
.035
10.00
519
603
0
4
CHANNEL
20.0
2610.
.0019
3.0
3.0
.011
3.00
OVERFLOW
38.0
2680.
.0014
100.0
100.0
.080
3.00
801
520
4
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
11.6 .0
34.3
.0
34.3
1000.0
520
802
102
521
0
5
1
2
CHANNEL
PIPE
5.0
.0
2410.
1.
.0011
.0010
17.0
.0
100.0
.0
.035
.001
5.00
.00
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
3.7 .0
40.2
.0
140.2
.0
140.2
1000.0
521
603
0
1
CHANNEL
5.0
1090.
.0009
4.0
100.0
.035
2.00
603
540
0
3
.0
1.
.0010
.0
.0
.001
10.00
540
541
0
4
CHANNEL
10.0
3970.
.0019
5.0
5.0
.050
3.00
OVERFLOW
40.0
3970.
.0019
100.0
100.0
.080
6.00
541
545
0
1
CHANNEL
.0
3190.
.0038
100.0
100.0
.080
3.00
542
544
0
1
CHANNEL
.0
2140.
.0043
15.0
100.0
.080
3.00
559
543
0
1
CHANNEL
10.0
2080.
.0009
2.0
2.0
.035
6.00
543
544
0
1
CHANNEL
15.0
1380.
.0014
3.0
3.0
.060
5.00
544
545
0
1
CHANNEL
.0
1600.
.0054
10.0
100.0
.OBO
3.00
545
610
0
1
CHANNEL
.0
1050.
.0038
100.0
100.0
.080
3.00
`
549
610
0
4
CHANNEL
.0
2030.
.0034
50.0
50.0
.016
.50
OVERFLOW
50.0
2030.
.0034
60.0
60.0
.040
6.00
875
560
14
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
1.8 .0
2.4
20.0
2.8
40.0
3.1
60.0
3.4 80.0
3.6
100.0
3.8 120.0
4.0
140.0
4.2
160.0
4.3
180.0
4.5 200.0
4.8
250.0
5.1 300.0
560
610
0
4
CHANNEL
.0
1400.
.0058
.50.0
50.0
.016
.50
OVERFLOW
50.0
1400.
.0058
60.0
60.0
.040
6.00
610
550
0
3
.0
1.
.0010
.0
.0
.001
10.00
'
550
611
0
1
CHANNEL
.0
1470.
.0041
100.0
100.0
.080
3.00
611
615
0
3
.0
1.
.0010
.0
.0
.001
10.00
803
522
6
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
3.8 10.5
4.4
20.5
4.8
30.5
5.1
40.5
5.4 50.5
522
604
0
4
CHANNEL
.0
900.
.0023
2.0
2.0
.060
1.00
OVERFLOW
4.0
900.
.0023
2.0
100.0
.OBO
3.00
523
604
0
4
CHANNEL
5.0
1790.
.0035
5.0
10.0
.060
1.00
604
524
0
3
OVERFLOW
20.0
.0
1790.
1.
.0035
.0010
100.0
.0
100.0
.0
.OBO
.001
3.00
10.00
524
525
0
4
CHANNEL
.0
770.
.0043
2.0
2.0
.060
1.00
OVERFLOW
4.0
770.
.0043
2.0
100.0
.080
3.00
804
525
7
2
PIPE
.0
1.
.0010
.0
.0
.001
.00
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.2 .9
.3
1.5
.9
2.0
1.5
2.2
1.7 3.7
1.9
-7.0
525
605
0
4
CHANNEL
.0
490.
.0038
2.0
2.0
.060
2.00
OVERFLOW
8.0
490.
.0038
2.0
100.0
.080
4.00
526
605
0
1
CHANNEL
10.0
1080.
.0037
5.0
5.0
.050
4.00
605
527
0
3
.0
1.
.0010
.0
.0
.001
10.00
527
528
0
1
CHANNEL
10.0
1200.
.0027
3.0
3.0
.040
5.00
528
529
0
4
CHANNEL
10.0
1140.
.0021
3.0
3.0
.040
3.00
OVERFLOW
28.0
1140.
.0021
100.0
100.0
.060
3.00
529
530
0
4
CHANNEL
10.0
840.
.0035
3.0
3.0
.040
5.00
OVERFLOW
40.0
840.
100.0
100.0
.060
3.00
530
607
0
4
CHANNEL
10.0
1280.
.0035
.0020
4.0
4.0
.050
4.00
OVERFLOW
42.0
1280.
.0020
100.0
100.0
.060
3.00
531
532
0
4
CHANNEL
.0
590.
.0036
50.0
50.0
.016
.50
OVERFLOW
50.0
590.
.0036
60.0
60.0
.040
6.00
532
533
0
1
CHANNEL
.0
870.
.0014
100.0
100.0
.OBO
3.00
533
534
0
1
CHANNEL
.0
1620.
.0036
100.0
100.0
.080
3.00
1,
534
606
0
4
CHANNEL
.0
2510.
.0036
50.0
50.0
.016
.50
OVERFLOW
50.0
2510.
.0036
60.0
60.0
.040
6.00
535
536
0
4
CHANNEL
.0
1620.
.0033
50.0
50.0
.016
.50
OVERFLOW
50.0
1620.
.0033
60.0
60.0
.040
6.00
536
606
0
4
CHANNEL
.0
1050.
.0017
50.0
50.0
.016
.50
OVERFLOW
50.0
1050.
.0017
60.0
60.0
.040
6.00
606
537
0
3
.0
1.
.0010
.0
.0
.001
10.00
537
607
0
4
CHANNEL
.0
1120.
.0017
50.0
50.0
.016
.50
OVERFLOW
50.0
1120.
.0017
60.0
60.0
.040
6.00
607
538
0
3
.0
1.
.0010
.0
.0
.001
10.00
538
539
0
4
CHANNEL
5.0
570.
.0020
3.0
3.0
.050
4.00
OVERFLOW
29.0
570.
.0020
100.0
100.0
.060
5.00
539
608
0
4
CHANNEL
5.0
830.
.0020
9.0
5.0
.050
5.00
OVERFLOW
75.0
830.
.0020
100.0
100.0
.060
6.00
546
547
0
4
CHANNEL
5.0
1670.
.0012
4.0
4.0
.050
5.00
OVERFLOW
45.0
1670.
.0032
100.0
100.0
.080
3.00
547
548
0
4
CHANNEL
5.0
1130.
.0032
4.0
4.0
.040
5.00
OVERFLOW
45.0
1130.
.0032
100.0
100.0
.060
3.00
548
608
0
4
CHANNEL
5.0
670.
.0032
3.0
3.0
.050
4.00
OVERFLOW
29.0
670.
.0032
100.0
100.0
.OBO
3.00
608
612
0
3
.0
1.
.0010
.0
.0
.001
10.00
551
552
0
1
CHANNEL
.0
860.
.0029
100.0
100.0
.040
3.00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
!�
552
609
0
4
CHANNEL
.0
1190.
.0032
50.0
50.0
.016
.50
0
OVERFLOW
50.0
1190.
.0032
60.0
60.0
.040
6.00
553
609
609
554
0
0
1
3
CHANNEL
.0
.0
990.
1.
.0020
.0010
100.0
100.0
.0
.0
.060
.001
3.00
10.00
0
0
554
555
0
1
CHANNEL
.0
1660.
.001B
100.0
100.0
.060
3.00
0
555
556
0
4
CHANNEL
.0
530.
.0057
50.0
50.0
.016
.50
0
OVERFLOW
50.0
530.
.0057
60.0
60.0
.040
6.00
556
612
0
1
CHANNEL
15.0
1120.
.0009
3.0
2.0
.035
7.00
0
612
613
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
557
613
0
1
CHANNEL
10.0
2450.
.0017
6.0
20.0
.035
2.00
0
613
558
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
558
614
0
1
CHANNEL
10.0
510.
.0059
3.0
3.0
.040
6.00
0
614
615
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
615
0
0
3
.0
1.
.0010
.0
.0
.001
10.00
0
i
TOTAL NUMBER
OF GUTTERS/PIPES,
111
LOWER DRY CREEK BASIN (BELOW LARIMER 6 WELD CANAL)
FILES:
EX100.DAT
5 .OUT
1
100-YR EXISTING CONDITION
-- REVISED FEBRUARY 1997 BY LA,
INC.
ARRANGEMENT OF SUBCATCH12NTS
AND GUTTERS/PIPES
GUTTER
20
TRIBUTARY GUTTER/PIPE
0 0 0 0
0
0 0
0
0
0
TRIBUTARY SUBAREA
121 120
D.A.(AC)
22
20
0
0
0
0
0 0
0
0
0
0
0
122
0
123
0
0
0
0
0
0
0
0
0
0
0
0
0
39.1
39.1
32
0
0
0
0
0
0 0
0
0
0
124
125
.0
0
0
0
0
0
0
0
61.2
37
158
22
0
0
0
0
0
0
0
0
0
0 0
0 0
0
0
0
0
0
0
112
130
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
88.2
40.1
202
302
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
101.2
204
0
0
0
0
0
0 0
0
0
0
103
0
0
0
0
0
0
0
0
0
19.3
205
252
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
120.5
206
303
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
256.1
207
32
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
61.2
209
259
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
137.1
..,
211
308
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
86.2
252
202
204
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
120.5
253
255
258
201
206
158
282
207
0
0
0
0
0
0
0
0
0
0
0 0
0 0
0
0
0
0
0
0
0
104
126
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
256.1
329.9
259
258
0
0
0
0
0
0 0
0
0
0
0
0
0
108
109
110
0
116
0
117
0
0
0
0
0
0
0
0
0
0
0
0
0
123.3
137.1
262
267
307
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
368.2
265
267
211
265
0
310
0
0
0
0
0
0
0 0
0 0
0
0
0
0
0
0
113
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
136.7
187.8
269
262
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
368.2
280
0
0
0
0
0
0 0
0
0
0
107
0
0
0
0
0
0
0
0
0
21.9
281
0
0
0
0
0
0 0
0
0
0
129
0
0
0
0
0
0
0
0
0
23.5
282
281
0
0
0
0
0 0
0
0
0
101
0
0
0
0
0
0
0
0
0
66.4
302
356
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
101.2
303
253
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
256.1
307
209
0
0
0
0
0 0
0
0
0
111
0
0
0
0
0
0
0
0
0
160.4
308
37
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
8F.2
310
0
0
0
0
0
0 0
0
0
0
114
0
0
0
0
0
0
0
0
0
51.1
356
280
0
0
0
0
0 0
0
0
0
102
105
0
0
0
0
0
0
0
0
101.2
501
0
0
0
0
0
0 0
0
0
0
401
402
0
0
0
0
0
0
0
0
24.4
502
501
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
24.4
503
502
0
0
0
0
0 0
0
0
0
403
0
0
0
0
0
0
0
0
0
57.4
504
0
0
0
0
0
0 0
0
0
0
404
0
0
0
0
0
0
0
0
0
17.0
505
0
0
0
0
0
0 0
0
0
0
405
0
0
0
0
0
0
0
0
0
23.2
506
505
0
0
0
0
0 0
0
0
0
406
0
0
0
0
0
0
0
0
0
80.1
507
600
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
154.5
508
507
0
0
0
0
0 0
0
0
0
407
0
0
0
0
0
0
0
0
0
167.4
509
0
0
0
0
0
0 0
0
0
0
409
0
0
0
0
0
0
0
0
0
48.8
510
509
0
0
0
0
0 0
0
0
0
410
0
0
0
0
0
0
0
0
0
94.4
511
508
0
0
0
0
0 0
0
0
0
408
0
0
0
0
0
0
0
0
0
186.5
512
511
255
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
516.4
513
0
0
0
0
0
0 0
0
0
0
411
0
0
0
0
0
0
0
0
0
24.3
514
513
0
0
0
0
0 0
0
0
0
412
0
0
0
0
0
0
0
0
0
54.3
515
601
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
641.6
516
515
0
0
0
0
0 0
0
0
0
413
0
0
0
0
0
0
0
0
0
651.7
517
602
269
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
1157.7
518
0
0
0
0
0
0 0
0
0-
0
415
0
0
0
0
0
0
0
0
0
66.5
519
518
0
0
0
0
0 0
0
0
0
416
0
0
0
0
0
0
0
0
0
136.1
520
801
0
0
0
0
0 0
0
0
0
421
422
0
0
0
0
0
0
0
0
401.8
521
802
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
490.3
522
803
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
23.9
523
0
0
0
0
0
0 0
0
0
0
425
0
0
0
0
0
0
0
0
0
65.2
524
604
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
89.1
525
524
804
0
0
0
0 0
0
0
0
426
0
0
0
0
0
0
0
0
0
110.9
526
0
0
0
0
0
0 0
0
0
0
128
0
0
0
0
0
0
0
0
0
35.7
527
605
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
146.6
528
527
0
0
0
0
0 0
0
0
0
429
0
0
0
0
0
0
0
0
0
162.9
529
528
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
162.9
530
529
0
0
0
0
0
0
0
0
0
430
0
0
0
0
0
0
0
0
0
165.8
531
0
0
0
0
0
0
0
0
0
0
431
0
0
0
0
0
0
0
0
0
14.1
532
531
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
14.1
533
532
0
0
0
0
0
0
0
0
0
432
0
0
0
0
0
0
0
0
0
37.0
534
533
0
0
0
0
0
0
0
0
0
433
0
0
0
0
0
0
0
0
0
61.9
535
0
0
0
0
0
0
0
0
0
0
434
0
0
0
0
0
0
0
0
0
85.6
536
535
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
65.6
537
606
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
210.8
538
607
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
376.6
539
538
0
0
0
0
0
0
0
0
0
436
0
0
0
0
0
0
0
0
0
391.3
540
603
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1882.4
541
540
0
0
0
0
0
0
0
0
0
437
0
0
0
0
0
0
0
0
0
1936.6
542
0
0
0
0
0
0
0
0
0
0
438
0
0
0
0
0
0
0
0
0
42.0
543
559
0
0
0
0
0
0
0
' 0
0
439
0
0
0
0
0
0
0
0
0
107.1
544
542
543
0
0
0
0
0
0
0
0
440
0
0
0
0
0
0
0
0
0
344.8
545
541
544
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2281.4
546
0
0
0
0
0
0
0
0
0
0
441
0
0
0
0
0
0
0
0
0
15.4
547
546
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
15.4
548
547
0
0
0
0
0
0
0
0
0
442
0
0
0
0
0
0
0
0
0
22.5
549
0
0
0
0
0
0
0
0
0
0
443
0
0
0
0
0
0
0
0
0
66.2
550
610
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2469.2
551
0
0
0
0
0
0
0
0
0
0
446
0
0
0
0
0
0
0
0
0
25.3
552
551
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25.3
553
0
0
0
0
0
0
0
0
0
.0
447
0
0
0
0
0
0
0
0
0
32.9
554
609
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
99.7
555
554
0
0
0
0
0
0
0
0
0
449
0
0
0
0
0
0
0
0
0
154.0
556
555
0
0
0
0
0
0
0
0
0
450
0
0
0
0
0
0
0
0
0
172.1
557
0
0
0
0
0
0
0
0
0
0
451
0
0
0
0
0
0
0
0
0
12.6
558
613
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
612.0
559
0
0
0
0
0
0
0
0
0
0
453
0
0
0
0
0
0
0
0
0
87.4
560
875
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
77.5
600
503
504
506
0
0
0
0
0
0
0
0
0
0
0
0
, 0
0
0
0
0
154.5
601
512
510
0
0
0
0
0
0
0
0
127
0
0
0
0
0
0
0
0
0
641.6
602
516
514
0
0
0
0
0
0
0
0
414
115
0
0
0
0
0
0
0
0
789.5
603
517
519
521
0
0
0
0
0
0
0
417
416
0
0
0
0
0
0
0
0
1882.4
604
522
523
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
89.1
605
525
526
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
146.6
606
534
536
0
0
0
0
0
0
0
0
435
0
0
0
0
0
0
0
0
0
210.8
607
530
537
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
376.6
608
539
548
0
0
0
0
0
0
0
0
444
0
0
0
0
0
0
0
0
0
427.3
609
552
553
0
0
0
0
0
0
0
0
44B
0
0
0
0
0
0
0
0
0
99.7
610
545
549
560
0
0
0
0
0
0
0
454
0
0
0
0
0
0
0
0
0
2469.2
611
550
0
0
0
0
0
0
0
0
0
445
0
0
0
0
0
0
0
0
0
2487.7
612
606
556
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
599.4
613
612
557
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
612.0
614
558
0
0
0
0
0
0
0
0
0
452
0
0
0
0
0
0
0
0
0
619.7
615
611
614
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3107.4
B01
0
0
0
0
0
0
0
0
0
0
419
420
0
0
0
0
0
0
0
0
208.4
802
520
0
0
0
0
0
0
0
0
0
423
0
0
0
0
0
0
0
0
0
490.3
803
0
0
0
0
0
0
0
0
0
0
424
0
0
0
0
0
0
0
0
0
23.9
804
0
0
0
0
0
0
0
0
0
0
427
0
0
0
0
0
0
0
0
0
14.2
875
0
0
0
0
0
0
0
0
0
0
455
0
0
0
0
0
0
0
0
0
77.5
LOWER DRY CREEK BASIN (BELOW LARIMER 6 WELD CANAL) FILES: EX100.DAT 6 .OUT
100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC.
THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL
STABILITY PROBLEMS THAT LEAD TO HYDRAULIC
OSCILLLATIONS DURING THE SIMULATION.
302 303 307 308 310 803 804 875
LOWER DRY CREEK BASIN (BELOW LARIMER I WELD CANAL) FILES: EX100.DAT S .OUT
100-YR EXISTING CONDITION -- REVISED FEBRUARY 1997 BY LA, INC.
*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS ***
CONVEYANCE PEAK STAGE STORAGE TIME
ELEMENT (CPS) (FT) (AC -FT) (HR/MIN)
20 213.2 (DIRECT FLOW) 0 35.
22 166.6 .8 0 36.
32 354.3 (DIRECT FLOW) 0 35.
37 309.7 (DIRECT FLOW) 0 38.
158 185.6 .9 0 40.
202 14.4 .8 2 24.
204 49.3 3.1 0 44.
205 48.7 1.1 0 51.
203..1 .
207 31919.4 3.3 36
0 36.
209 375.9 1.8 0 49.
211
67.7
2.1
1
31.
252
50.6
(DIRECT FLOW)
0
45.
253
507.5
(DIRECT FLOW)
0
35.
255
303.1
3.3
0
42.
258
522.2
(DIRECT FLOW)
0
35.
259
617.4
(DIRECT FLOW)
0
35.
262
463.7
(DIRECT FLOW)
1
1.
265
107.6
(DIRECT FLOW)
1
24.
267
126.5
(DIRECT FLOW)
1
24.
269
298.2
2.0
1
33.
280
71.4
.7
0
44.
281
72.6
.6
0
45,
282
152.0
1.1
0
54.
302
14.4
.0 17.7
2
14.
303
217.9
.0 16.6
1
9.
307
363.3
.0 14.0
1
1.
308
72.5
.0 10.9
1
21.
310
19.0
.0 7.9
1
32.
356
489.9
(DIRECT FLOW)
0
35,
501
63.0
1.5
0
40.
502
43.9
1.9
0
53.
503
64.2
1.3
1
6.
504
15.2
.9
1
3.
505
34.8
.9
0
57.
506
109.5
1.5
0
54.
507
143.7
2.3
1
27.
508
140.3
2.2
1
41.
509
118.3
2.5
0
44.
510
134.8
3.5
0
54.
511
145.7
2.2
1
49.
512
357.2
2.7
1
29.
513
47.9
1.1
0
49.
514
104.1
2.1
0
50.
515
443.3
3.7
1
30.
516
430.1
4.4
1
40.
517
796.0
4.9
1
46.
518
170.0
2.9
0
38.
519
164.1
2.5
0
56.
520
74.9
1.1
1
18.
521
.0
.0
0
0.
522
9.3
1.5
2
20.
523
38.1
1.4
1
13.
524
43.1
1.9
1
38.
525
50.8
2.6
1
45.
526
75.6
1.9
0
41.
527
78.4
2.0
0
52.
528
101.8
2.5
0
55.
529
100.2
2.1
0
59.
530
95.4
2.5
1
10.
531
51.1
.6
0
38.
532
20.0
.7
1
0.
533
22.5
.7
1
39.
534
33.9
.5
1
34.
535
145.5
.9
0
45.
536
124.5
.9
0
55.
537
331.B
1.4
0
42.
538
353.8
4.9
0
59.
539
369.6
4.4
1
1.
540
722.9
4.7
2
21.
541
655.0
2.3
2
57.
542
10.5
.6
1
58.
543
281.3
4.8
0
49.
544
273.8
1.9
1
6.
545
715.8
2.4
3
2.
546
47.9
2.0
0
42.
547
41.1
1.7
0
51.
548
53.9
2.2
0
51.
549
128.3
.6
0
48.
550
737.7
2.4
3
13.
551
12.1
.4
1
8.
552
11.7
.4
1
20.
553
13.6
.5
1
23.
554
81.1
1.1
1
1.
555
301.3
1.0
0
38.
556
299.2
4.4
0
44.
557
31.0
1.0
0
44.
558
723.3
4.9
0
51.
559
279.9
5.1
0
41.
560
52.4
.6
1
10.
600
185.3
(DIRECT FLOW)
0
59.
601
497.8
(DIRECT FLOW)
0
50.
602
544.1
(DIRECT FLOW)
1
12.
603
905.3
(DIRECT FLOW)
1
40.
604
44.5
(DIRECT FLOW)
1
21.
I
605
88.6
(DIRECT FLOW)
0
41.
606
486.6
(DIRECT FLOW)
0
35.
60.3
(DIRECT FLOW)
0
.
608
436936.5
(DIRECT FLOW)
0
5858.
609
228.9
(DIRECT FLOW)
0
35.
610
748.0
(DIRECT FLOW)
2
58.
611
738.7
(DIRECT FLOW)
3
12.
612
694.7
(DIRECT FLOW)
0
50.
613
724.3
(DIRECT FLOW)
0
50.
614
737.1
(DIRECT FLOW)
0
50.
615
915.4
(DIRECT FLOW)
1
0.
BO1
.0
.0 27.8
10
0.
802
.0
.0 32.7
10
0.
803
9.8
.0 3.5
1
36.
804
4.0
.0 1.8
1
50.
875
56.4
.0 3.1
0
59.
ENDPROGRAM
PROGRAM CALLED
11
1
No Text
1 w
a ZZ7 w,
m(-
Lp N
O> O W W
¢ �Of
0
o0
LLJ
FaQ��C'
w i
W Ir
0 !J
ab0�l 3 N FI�IJ f r o
l_I+JC-pr
C
w
0
w
z
i
[1
11
DEVELOPED SITE HYDROLOGY
i
11
j
i
Pj
DEVELOPED COMPOSITE RUNOFF COEFFICIENTS FOR WATERFIELD PUD
Prepared by Bud Curtiss - Northern Engineering Date: Revised June 19, 1998
File: WATCOMPC.WQ2
Basin
Area
Imperv.
Pervious
C Imper
C Pery
Comp C
No
(ac)
Area (ac)
Area (ac)
OFF-1
75.80
0.00
75.8
0.95
0.20
0.20
IRR-1
0.81
0.00
0.81
0.95
0.20
0.20
W1
1.00
0.40
0.6
0.95
0.35
0.59
W2
3.08
1.64
1.44
0.95
0.35
0.67
W3
1.49
0.59
0.90
0.95
0.35
0.59
W4
1.68
0.66
1.02
0.95
0.35
0.59
W5
2.54
0.87
1.67
0.95
.0.35
0.56
W6
1.60
0.65
0.95
0.95
0.35
0.59
W7
3.50
0.15
3.35
0.95
0.35
0.38
W8
0.99
0.49
0.50
0.95
0.35
0.65
W9 (Assumed)
13.01
5.25
7.76
0.95
0.20
0.50
W10
0.59
0.30
0.29
0.95
0.35
0.65
W11A
0.30
0.04
0.26
0.95
0.35
0.43
W11 B
0.73
0.66
0.07
0.95
0.35
0.89
W11 C
2.43
1.42
1.01
0.95
0.35
0.70
W12
1.68
0.67
1.01
0.95
0.35
0.59
W13
2.74
1.58
1.16
0.95
0.35
0.70
W14
0.62
0.48
0.14
0.95
0.35
0.81
W15
1.35
0.60
0.75
0.95
0.35
0.62
W16
0.44
0.29
0.15
0.95
0.35
0.75
W17
1.09
0.72
0.37
0.95
0.35
0.75
W18
0.68
0.45
0.23
0.95
0.35
0.75
W19
2.09
1.39
0.70
0.95
0.35
0.75
W20
0.60
0.42
0.18
0.95
0.35
0.77
W21
0.83
0.57
0.26
0.95
0.35
0.76
W22
0.82
0.50
0.32
0.95
0.35
0.72
W23
0.47
0.25
0.22
0.95
0.35
0.67
W24
1.40
0.87
0.53
0.95
0.35
0.72
W25
0.62
0.53
0.09
0.95
0.35
0.86
OFF-2
2.67
0.12
2.55
0.95
0.35
0.38
OFF-3
2.23
0.12
2.11
0.95
0.35
0.38
OFF-4
34.49
0.00
34.49
0.95
0.35
0.35
VD-1
0.65
0.38
0.27
0.95
0.35
0.70
VD-2
2.46
0.05
2.41
0.95
0.35
0.36
VD-3
1.41
0.83
0.58
0.95
0.35
0.70
VD-4
3.15
1.73
1.42
0.95
0.35
0.68
NET SITE 38.47 18.40 20.07 0.95 0.35 0.64
(Excludes Basin W-9, IRR-1, and Offsite Basins 1-4, VD-2,4)
i
I
i
�l N
LL
1
1
1
1
F
z
z
ZU
O
U
LL
O
w
F
0
C4
z
d
0
O N
I
ci
EE EE E
E E E E E
WIr
E E E E E
�n nn W)
mm m(o mmm
N N N N W
» 77
M OC OB m ao U) GO OGVU) O) O mO() m n U1 P Co r' C V U)mNNP O
�nNCN
-i
Dr 00 00M 00h rv M M 000h00 h�N0N0C�4 CN
CV tV
�O)
l+f N
LL
UN
Z
W O
F
D
Io
L
OJ
U)Ln V V V V NN W O/ P PP P PP O COP P 00 V V M Cl) NNNN co CO 00� V V
..17.
C
.Ol .(V CV tC (C CV CV U)U)M1C101
MMOO. ���.
P PO O U) U) CO ao m m Co CD P P O O N N P P 0 W O O P P O 000 w m P P O O w0
V
O O Nl9����(yNNN(V
pam
w
W
-)
W
0000000000000000000000000000000000000000
(0 U)00 V V O O N(700 w w 00 w w U) 0 w w. N N 0 U) U) U) 0 w U) w w w P?--00 ww
LLJ
>
O a 0
O O N N C O O O N N N N .- 0 0 f�) (O C O •- '- O O /% (O C O O O O O O O O C O O
v
N
2
0p 0000000 0 i00 000000p W OO
W W OOOOOO�Op
P
o000
p0p00p p0 p0p (Op pO pOU)
NN �•�-N()/ NNNN(p (ORN�rtNO (NO aD OD NNMMNt",NwMI+INN vv�'
Z
W
J
V m V P 0 0 N V N1mmPW0 V PP
C
h V WNMWMN016 CAI-z 66(O COI 64 6Nr�: V 6.-0 V N V 666 N666m1
w
r
0
0000000000000000000000000000000000000000
z
w
w w o o o o o o o o o o o o o o o o o o ro W O O O O o O O o O O O O O O O O O O
J
O \p Ln
G C 11 q� N N C`! CV N C`! N N N N N C`! N CY N N G O N N N CV CV N (V N N N N N CV CV N N N N
w
U)
O=
OOLOLOOOOOOooOOOOOO00000000000000000000000
:3F
NNOOI'�)(%U)f0 CD aO aD CO U)N OOU)UlC� l+f NNE U)v)U) O o V V U www
�� �f' W MR
Q
Z CC V
~
W
N NN N U) U)(O(O b W� h NOfOMM mm CR ((QQ Vim, CQ CO r n UUlU n CD O �(NQ Nn
N
. . . .7
00000000000000 00000000000000000000000000
0 w cq cq Cp pp m't COaa 000p p��-�mmpoo(o (9 co 17 W aovvNN((OO((O Va
CO CO CO (O 00 V V f0 (ON �(O (O U10 MOON U)OI�PP (O(OP
V V . .(O l"1 . V V
Q
W ONO
W 00��M 0! NN O)f`YOO OOOOOON(V (V NOO C O
oa
z
U)
C9
N
Q m U
m
Z)
w
LL R'
LLN l0 V U) (D C CD O) O N_ C� V h Oco
31
Fill
Lm
Xlzr
xr
N O'
O N
1 �
V
1
N
C
7
7
Q N 78
Q
Z
W
0)
LL
o a
W
W y
WLL LL ~
F �
U
0)
}
0]
O�
S2g
> D
O 0] J
CA U
0
Z
0
E EE
E E E
c c c
Y
E E E
M
C L C
W
E EE
n hm
m
mm
mmm
N N H
IO V V N M M V O CO O M m O m m h O O m O N N O N M O W N M m
CNh
p�
CO Ch j0 V 0
m CD m m W m 41 m 0 N m V 000 W NNNNv 2f
ZF E
V
LL
UU
Z
FO
0.
OJ
UV
M 01 M M m m m m m m m m M M O O N N O O O O M M fA h N N t� h h h
C
�ON7<V O N N 6 l7(7 6aD aD lA Wi N N 0'000 w 0 Y V NN w.0 w0
FEo
a0 c000/�l�hl�fOmmm00t0 f00)t000(D fD001OOhNOO1f1N
N
�NNNNN fV
a W
W
W
>
J
W
0000000000000000000000000000wwoo
a0 a0N O1�f�l�hmtO tOmhbfOmmtOrommrc m<ohMONf�P00
e
O e m
G C 0 0 0 0 0 0 0 0 G O 0 0 0 0 0 0 0 0 0 C O C C 0 0 0 0 0
N
p Op p Op p Op p Op O p O p O
LAO toNNR V mmMmMM O O7 V NN mN V V NNc0 aaDDOO
Z N
W
J
M 01�1l-h V OMmOh 10 m 111.717 m ON m M 0 O h M 0 mO
w
C
F E O
N� V �oD�tO�P)�hO1NMCN� GhNM1G1� fV <Goif�l+)(C�fCoi
N N N N M M N N
F
00000000000000000000000000000000
zw
o0000000000000mmoommmm�o�ommv)u>mmmm
J
O e O
N N N N N N N N N N N N 1 1 0 0 f V N G O O C O O O O 1 � C D C C D O
W
� ...
8
m
00000000000000000000000000000000
M M
fV (V m
V
N N lO lO �O
1=z--
F-
Z
Z
J
N NNNN�O rf�mmNN w 0 N F, m mmmm mmrOmmOO(D !O
WIn 00 w 1. N r 0�. N m N Nn
0 0pppp aapp 001pp O�r1 �v1NNI�POONNf�PMm mm�O �n OJm��mu)
�0 t00f001 tO OD aD aD� V V V 10 fD V fOm
QQ
mtONN7 V � V V �
Q
W v N
O G N fV 0 0 0 0 O C O O C C N aV N N V G O fV N M M
Q
Q
N
(Do
m
w
N
F.-co m N N N N N LL LL LL N mLL
_
N LL LL
HE
O
O
W
T
2
OQ
(A O
0 m LL Um
c mU
UNcO C
Ca
G
g
��
�a8
aQW
m C CL
VY m C
e
G
O O > O U a G Q 3p 0
E
cowllE�c E EG 0.2
UJ9� 33 3�}g 33��'
a�,md'�(n3cgU f9S
Q OpHWHIlIU. LLLLLL LL
,Q1 O
�OCv'N
W
W
W
>
�
Z
r Q Q r c 7 N't 0' R M Q n Q O l*� r m cp cl (p m N n C) m N M r O n g r M Q m N M t O
V 1
N N
V r
r
W
W `''
0
M O n M (i N N N
V ..
Lo
ao ao CO ao m (9 CR O Cd
r
w
a
wV
yW
-(�o
vmco o 0 a
0_,
NcV O(V N O O O
J LL
r Q Q r M N Qle M le n'T 0 nrm m M Q Q r m m m N n m m N MrO n OrM Q m N M m
O6cV
V
wo,voNN
66CNO m 4 O(V (C C1 CV C NN4r(66 :q C5 cVrC64rDFUyM Nj
r r
U^vr
H �
LL
r r r r
w 0 �^ N
m m m Q
~ 7 O r
O rt
LL
r Q Q r M N Q O Q M of n Q O n r m m M Q M r m (O m r n m m N M r O n O r M Q m N M m
00
m O rQ10 N NQ M N10 aDNO rm O Nm ONr �N mr� r cpOrNO r MQ r 10
y^r
yr
�Nr
_z
O
Q
O O m m m m n O Q O m N m m O O M M M M m m Q N m m m m m n m m m
mm000�mr(ninmmomipnn
oo
vmrv?QMoe mnmM m(Ir�toomnoom
(p
yr
m0 rMst rrMNr�f�t+jOOMM Or1000r mNmrNOch CIOrrO rrOrN N
n
r r N N N N r
m O O N O O O g O O I O I O O p m m O( O( C O r O I O O I O O O c l 10 m c g O O O m 0
Qr�QM oaD aO NNNNNIONN NIA 1�Q chQrQOp I� nmm�
m
W
_I�IONio
_
v
Z
�O ��pp 1O p p 1O 1O R.�p (p
NN wmcO MMM wW)MIO W IO tO cC 820 emm OIN N a T^ mr WN On W �8 p2nn ne nA
U m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0666000 0 60 606060 000 0 0 066
M
nMNo�
Qo
mow.m0mQomOOmm.u�Nmmmipnn,r,rnmmmoNMmv,,oQ
NM0no06
�rpafr1rOOnMfm�
mQmMmQmFE....rr^NMMM�N
Omr
...
ra=m
M M
o 0
waE
H
N n m M m
W C
LD
a o (o n
0�.9
LL
Cl)
wWC
Q
-j E
Z P:
2
r
Z vM
w
J
LL
LL
LL
LL 0
U)
O (j O O
z
N
LL
m m N
Q
m
m LL O Q 1 r
m
O
3 0 m r r � CQ O
co
r 3 0 � m 000 N
LL N ' q m n ^ O N M Q M N r 1 O N m N n m l m O m
(y0-rN�MQM10m mncbmmmrml7 rrr(; r(�rrrrr�rrrrrr rr Nr
0�33333333333333333333333333333>3333333333
oor
r
NMQ m nm 0)r Q. LO m N
333 3 33 33 33> 3 3
I
0
II
V
r
y
}
m
°D
c
E
Y
c n
a m E m
C n C C 1r
U
m$
O E
m
ro
p. j
Q'
N
0
0
C
E
a C C
0
J J J0
U a Q33 UU
3U
¢
_ Q�._
o o °(l1 °{nCO
Cc° °
C
16
GOo C
3
O O 0 O
OgO
.°2
NLO'
2$
O
LL
❑ l l r
LL
r LL O r
o�Rl
r
W
J v
w
W
>
�Z
�Nm
Q NI-�N
fy�MNm
M
Mm m
�mn"m(, 0� W* MAN
U
W
O
m m
rn m
Q �^ m
o (o
W
w
EL
U
U)
w
a -�
(o m
o a
o 0
J
LL
mom UA P�f�N��Q NI�N
(�MN(O
M
M m 10
QM,Nf�
Q Q
O j
N
Q 10
r�
2 LL
r:
O N O
W o—
0 M
M O CM
0
rLL
ao�mmMm �n N��vN �N
7
f7 fp 0
(Uo-�
wN Ime-f�6N�
0 MAN
OOMNm
Cl)N
(' a
m �-O
2 D 0�
❑
Q
M N CA N I m I M O M M N m
m m N m m C, Q O a D ItN m m 0
N M N_
N Q Q
m
Q
(O La
Q m
.OW..
O(7b O(G lV (D O(V O (V l7Ot()
RC o
CV
CV ('5 In
N N
0 M 0I
mOOOl fcoO N
co M(O CO m
O� Om0
O LO
Z
n
N�N�CM
M
N
i
UO
N N
Z_
n N(No.n(^o. (ro. (No.nM UA aDm
U M,Na
M
M (O
U m
000000000000000
0000
0
do 0
0000
m
m M m
F En
m O N N l0 MAN N 0M
<«O
N
N N
Fa=m
M N (l
00 0
wa
E
2
�r
m
I0
3W
sto
m
0
0�
LL
N
ww c
J M Q
z p —
2
Z vM
w
J
LL LL
M
LL LL
❑ 0 0
>
0 >
> >
I
❑
?
LL N
N
O N LL N
LL
1 1>1
m
N
N N LL N
RN NNN o �LLto
LL LL
0 0
L1 L.1
> >
(� 10
^ N^ LL
N 1 N LL N N N LL N LL N
N
Q
Z q Z
N
33333o3C3�333o33303o>3
0
°a> °a
a U
�0
N N N N N
M
N
Q
0
33 3 3 3
>
o
tp
N
II
U
Fl
r
U
t
._
U �00 m LL
N
p r L L Y C Y m U c m C C V C
C�
m 0:9:92�2 m £ ° m �� ac m ma
Q N
0.2003 ��,eOc U� o a'� 00� �� 0 dam
LLI
.0. o e Y@@ r
Y{00 O C A O C C c m c; G c m d o m m c Q
{
O 9 i m$ p % O U 3p a Q
O m O O O 0
p O 0
�O O V O',m0 .p. Q CC C =CQ C Q O
pr�C
y m�Km 3M 3�U pig p U3p 3 3 3p 3s3
—'
m X 0 0 0 s 0 Q O O 00 O 0p 0
O s B O 0
Q w r r r LL r LL LL r r r r r r r— LL r LL LL LL r LL LL r LL
,-.Ogg
W
W
W
>
cr
Z
m CDmnnn 10 N10 N 0 V nvo no 0 mA o M0n00 0 nO D nvM n nn O OO n�
W 646
�
E
N0
D D M NhnO(O OOnNM C
NNOMO0Mmp0N-4
w ...
0
W t(0p f(Op0p O 10
t(0p M
UQ `b
enp
N
0t0 �t�10 M
w
Q
w
U
�
W
tgio oa;(i S a
C) ^7
NlV 0 N N C 0
J
N
LL
Mt00wnnnnLoNLo" w le n e w N Co b GO Q In M to N.w O con w co n le n n n wU)On
�U �M
m�b�ODN NOD Of 10oi R a(O A C0MNf7 co 0) GmmtmN Nan NM Nmb4O
f� /O
O z.~0..�
r�
K LL
M r? M rh
wZ.@�
m inm in
OLL
grqwqnnnnION10NrOv,ne(OnCRki w 0NgN70nOnroconvco Otoen
UU
W Z
I O -qOD CD 0) co C) 0M CD p OD fD e-sM C c n ccr 6 6 of 6o of ar: M01664
co cqN Nc� M10 0 rD �O N N N N
OQ
CD0D 000000 �n1f1 t0�Mt0m0OMM O M M M(D ON(O N101p `Of00m n01
t�i_c. c4inno (O nfOM� (O OtOomno
w uo
1
IOO�M V—N'-'-MN�-pnMOO t7 M0 �66 6f4 ONOM^Opf o00, N
pp pp
tC�00I: pp OO OO �t 0O pp pp pp pp NNpp OppJ Oppf OpM ppN 01pp00pp 0mpp0II OO oo Npp NNpp 0 V ppOCl) IT ((O0
rn
F,0WoeN NdNNWWrimv+nc+np66L666cua66%r:M0i60666
wL2°
z `
OOOIn tOONQ) O)D1m rnnOD aO 100 Mt0NM0)rp NO00t O W N" W Nn N nN C t01010
NN M OtD NNtO OlO t0101010 M bt0 lO t0m OIOO aD n bn W)nODn n(O nn n
U O
O O C C O O O G C C G O C C C O O O C G G G O O G O O O O O O O O O O O G C O G C G
M n � M n n OntO torO ND C On�NDOtO
tOO
0D Op
ND ND MD
O c
mM 0n OtO 6 MM DtO nW
aN Mm nMOR
OOO OM6c6L66ONV WO cj
r E
M
O M CO COCO M M NM M —M
M M
�0
w '�
5�
O O
wa
E
1-
r
N n M M 10 t0 N
W C
W — LL)
V O f0 G
0
�
LL
rn
W W C
W M _
zr E
Z vM
w
J
LL U
O
U
_Z
LL U
� O (5 p
N N
a
LLm m N > >
(fl
M LL O < < (63
O cow v� ro
3�dma�UO
vy ��Qp��Qp MNMOC� ��—NON----
LL0' t NMIq O)
N� tow cb nc%� w C;� OO the (M
0�333�'333333333333333333333333333�33333333
oo�
o vto� m
333 3 3 3 33° 3
F
0
z
CD
U
LU
JO
z
Z
LL
2
w
F
}
M
w
z_
0
tp
II
U
U
0
W N
W
H D
¢U
3m
C 0
>
C
g g
w
O a a c c o c c i c
N
a o
c �. mc� c'eo OcE'� o Eam'a
w
U a ¢'3'- UU gCL 655
3 3;U 3
E@E{nn E@n O Egg E@�n O O p IL
�On �Cn @O gGg
}9 3 5$ m 3 Sc
OO O
LL
LL LLFH LLLLF H26 OIL(LOLL
U m O
N
FO
W
W
W
>
MZ
N(O� M ON O00 (� OEM (Ott) ON O(7 f7 aD m N 1�
IOLO
UDC
W
pOmp
Nn NN(O 10 fONNNOG010� (010 Olm s 7r0 n
W ��
N N
0
t0 tD 9
Uto
av�
td
m
W
wV
�w
a --
o�
0
o 0
J
JLL
N(D�MON70 a r" OD M(O tOoMmo OR OON n
O m m
10 'N Nm(O LO M t0N NN� OD 10 (O 10 LD OD O f� 1�
0 j ��
vW
N N
H D
LL
(7 (7 O m
SZ' N
m Cl)m0
0
F-LL
N(O 7 q q V 07 n(O q(O b7ON rmMn OD ODO
UO m�
W z
10 I�00(D tfi t00 NfV NOD 10� (ON ('� OD fp a vm
N N M m m m m (p
LL ��
N N
0 C
(O(OU) 0 (O to q COtO t-t0r V OD RNfO (00 NOO V q (O
W UO
W O
¢
NO Mt00 NNODGNN �NmON ��� NNm 0
OO(e ptri Nitirnp p�M pp p
ptp8m88vad ol�NvNvn(cMm� Ne�QN 88
U"
c°
p8i oMf mmmm 440
O
W
Z .v
^t0 t0 (ONNOOD (O f�10 I�NIDS(O OD NLOOM oww O
r NNmmr- (O mWWNNNmo WN m m l m mm(O W
UODO
G G O C O O O C C G G G G O O C 6666 666 o
OM O D)tA(00) OO ODD m n 7 7 00 7NN (O a a — O
p
F- E"
LOWWtaMW M-ee�COW000 rip) of om (o(o (c
N N � M M C N N m t e N N N N
�a
cm
m N
00 0
wa
m tp
W
c
w_p
(c c
OM
E
LL
m
~ W
J M O
z F
2
H
Z =m
W
J
N
LL LL
0 0 0 0 p
Z
N
0 0 (7 >
Q
LL N v N N
ty
m
(v�
N O IN LL N� lLLL U tLLl
(�I N N LL N O O O > >
N N N N N N (7 0 7 CO m m
) P!N^LL^NNNLLNLLmN NZZN033��NLLN 30 3t>3 a33333303333033
0 > >
a Q
of
m le
N N N N N N 0 a 8
3 33 3 3 3 > > >
I
CD
o
N N >U
U
U d d a: a d
p Lcmi Hc H O U Sm c�oUOo•U>-Nw3€c"ca" °o
c csaa�c�c
)pyc ci sU le
o� 5x 5
cmo°UdR mU m 8UUo
00)4)r�3U oit C`oLE �ddo�QNa0)0a)mvaOLLTV,NEE>.0o>�L3Ta �cmomo Ucd03en
cQod0dm
LLC6FNHpLLLLLLomUdo
vJ Cf a > LL LL
r Q O a
C7 O
Z 000000000000000000000c0000
J 0, M f� f-- 1-- 0 00 v(O O 0 O CO f�- V h(OO v(O 00 m MN 1--
LL 0 6C66:4646r-66C66CC4C64r.:
F„ V M N N (O O N N N M M O
(� ... N
w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 0 0
11J MN���t Of��CONN �O10 (D 1�7n MNCO
N, 0) tONNCO LO0 Ot�W 0r, r�N�
v N
W i i i
Q i i
00(00 U NNO0to 000 00 00 (0O3IN�a IO-f(�0f(--0 N 0 r-_ w m m r-_0
a O O O O O O O O O O C O 0 0 0 0 0 0 0 0 0 0 0 0 0
(n E
U
6 OO co0 co v IV SON W 0w N�04M M M 0 N N(O� 0
CL 0000 V to (O�CO 0) tO�M�(O 0 N1, 7(O� V V r
zd n 007�� N a 00 N O N Ci N C O c(wi CC � O c6 N� CM
' M Q
W
0
0 �
a U
O
O
W
U NLL
a
m LL 0 LL LL N
LL p LL p
N
'�� NNN O >
W
N O� nO�CM N(001�r� V (ONNM V
(LL L (��M V (0 (OACO(,%e-C6 i ����NN� Z
� � �
w
.o
a
c
uL 7
NMtT (OOIlCO 0 NN C
m
m
�m
U
N m'g
r M W t\ O CA r O) W t0 ^ W W W M N u) O
..�..
M ui r,:CD CO 6 O) 6 r�(O0 i 46NNr r OO
N 0
L
N
m
m
T
_U
C
O O y
r- N M W N h b W r N r a M M 0 WM t0
O ��r
�O)O N(O f�r(OhOONrrN'7M10 Wt0
f
r m
c W (p r r r N N N N N N N N N N N
n
N
O
C
L
m
T
0
N
C
CD
W
a?
v6C6 r 066 C6r,:r,:660446
O
Z
>+
N
- C
6N6�r�-�r��OGGCCCOCGC
W
>
W
>
> O w
00�
r
co u) N r` O W N M O h O N W O I-t O M to
0^^ M r�: OIL O tO Wllga tnbPM
tl1
7
3 0
E (p >
Cp r (� f` (7 M N r r 0 Oj Oj W W P !� W W
r r r r r r r r r r r
N
Q
V F
O
c
W
W
• s s • •
y
7
O
O
-
00
O
R
m
>r.L
t` N t0 W W r 0 O M r 0 W r r M 0 W N M
O
C
v
N
N W Nhr�OhtONOWdNOW WtONr
Z N
M N M 6 4 4 V M M M 6 N N N N r r r r
0
o>
O
3
w
LL
O to
• s • t
m 7
E C
`
� � N
F E
C
m C)
>
O m
r q M 0) N W N t0 .4 M N r O M W r N W b
MR M
N
O
> r m
n r n r W r M N W-q N W� r
06
C
m
(n j
ui Oi n(O W uj6 aaM MMN NN
v
E 0 u
Q p
N
O> l L
y>
Ol
LL
N
� N
N
m m
y
0
Orz
00000tO00w0000wN0r�LO0LO
3 w
0
c
614 6 M M
v
C)) ;` t0 li C7 N N N N r r r r r r
W
D
0
q? 3
.0N
0
3 Q
3
~
O
N
M p
OOt000000tOOt0000000000
00rtONto0)r(Mt00r, CO OCA0000r
CY
ma
V) C
C E
CCGci N N N N N N N N C7 C7 C7 CO C7
?
O`
0
LL
r
0
r
N
4)
E C W OtOOt00t0OW0t000000Or Nt00000
E r r N N M M of R W W 0 n W W r r r r r
N
m
7
C
E
u)
M
0
O
O
c
C
O
0
E
F-
W
N
m
U
(t(
u1
M
N
C
N
m
O
O
E
E
0
0
U
O
W
■W
I
I
INTERIM 1ST FILING SWMM MODEL
I
1
u
I
�� M M Moa>�
��„o�,�- Flo-,-���,_.►�
l5T_ _
>31SI �l Obi= - I e>,y Pam
Nor � a
IP,3 Mva >
,-5ar=,IQS -Wit 6w lla�
6)
18
I I C
ems, �s
����
t3os,us IZ-Z3
14
l d
_
17
�,t! 7s4,Zs
7ET'EI�!-nc�rt,
OAP - 3
Pohlo 3oi
�I 3aZ
303 3c
-7
SY�a.SS
'
104 c�s
310
2 CID
IZ
ZO
ZA.s, has
vD 2-
I
SWMM MODEL PARAMETERS
Prepared by Bud Curtiss
- Northern Engineering
Revised August 26, 1998
File: WATERISWMM CALCS.WB2
WATERFIELD 1 ST FILING
Weighted
Weighted
Weighted
SWMM
Basin
Area
Imperv.
% Imper
% hnper
Avg Length
Basin Width
Basin
No
(ac)
Area (ac)
(avg)
(ft)
(ft)
10
OFF4
34.49
0
10.00
10.00
500.00
3004.77
11
11C
2.43
1.42
58.44
58.44
100.00
1058.51
12
VDl
0.65
0.39
60.00
60.00
100.00
283.14
13
W1,2
4.08
2.09
51.23
51.23
150.00
1184.83
14
W 12-23, OFF2
16.08
8.04
50.00
50.00
225.00
3113.09
15
W9
13.01
0.00
10.00
10.00
250.00
2266.86
16
W3-8, 10
12.39
3.71
29.94
29.94
200.00
2698.54
17
W24,25,OFF3
4.25
1.52
35.76
35.76
195.00
949.38
18
W 1 IA,B
1.03
0.70
67.96
67.96
100.00
448.67
19
VD2,3
7.02
2.91
41.45
41.45
100.00
3057.91
20
DC-1
108
0.00
10.00
10.00
1950.00
2480.00
C�DS� wt � lV�ol ....i....:I �i.1vEYd,iJGf� I .�,,y I ar�?I .�LE4 �� I M�EQ•
;
I
ac;?o.S
34.49
I$
r ,
I
t I
�oS
�OJg
2.43
'S8
'
1 Z
I
13717
l.l:»s
4.oe31
1
14
'
I S
I
■
1 b �
� � �
� uC�s
Z699
I Z.39
� �
17.I
]
I-
I
I O.Br .
Get.
JJ _
' I
� I I
i
I i i i
t � I
44 . r
I Z-X/
SLore
o/ 0
aL OIU
r—r)
--- i i i I i ; I I
:4j, - 4
y Met.= nLi.-/
S2
1-7 1 A ddr
zr5; I
I
'
2
1
1 2
3
4
WATERSHED
Waterfield
0
SWhM9
for
First Filing
100-YEAR Rainfall
Event
1
240
0 0
5.
1 1.
1
25
5.
0.60
0.96
1.44
1.68
3.00 5.04
9.00
3.72 2.16
1.56
'
1.20
0.84
0.60
0.48
0.36 0.36
0.24
0.24 0.24
0.24
0.24
0.24
0.12
0.12
0.00
1
10
301
3005
34.5 10.
.012
.016 .250
.1
.3
.51
0.5
0.0018
1
11
305
1060
2.43 58
.007
.016 .250
.1
.3
.51
0.5
0.0018
1
12
304
283
0.65 60.
.004
.016 .250
.1
.3
.51
0.5
0.0018
1
13
307
1185
4.08 51.
.006
.016 .250
.1
.3
.51
0.5
0.0018
1
14
304
3113
16.9 50.
.006
.016 .250
.1
.3
.51
0.5
0.0018
1
1
15
16
305
305
2267
2700
13.0 50.
12.4 30.
.006
.010
.016 .250
.016 .250
.1
.1
.3
.3
.51
.51
0.5
0.5
0.0011
0.0018
'
1
17
302
949
4.25 36.
.006
.016 .250
.1
.3
.51
0.5
0.0018
1
18
306
450
1.03 68.
.005
.016 .250
.1
.3
.51
0.5
0.0018
1
19
300
3060
7.02 41.
.007
.016 .250
.1
.3
.51
0.5
0.0018
1
20
310
2480
108. 10.
.015
.016 .250
.1
.3
.51
0.5
0.0018
'
* ############################
+
END OF
WATERSHED DATA
#######################
11
10
11
12
13
19 15
16
17 18
19
20
11
10
11
12
13
14 15
16
17 18
19
20
1
300
1
0 1
4.
1000.
0.002
4.
4.
0.035
10.
'
0
301
300
11 2
.1
1.
0.001
0.1
0.1
0.013
0.1
0.0
0.0
0.3
1.7
2.2
2.1
4.8
2.4
8.2
2.7
12.7
3.0
13.7
3.0
14.2 3.0
14.7
28.8
15.2
81.6
15.8
149.6
1
302
301
0 4
4.
400.
0.005
4.
4.
0.035
10.
50.
400.
0.005
15.
15.
0.035
10.
1
303
302
0 5
4.
650.
0.003
0.
0.
0.013
4.
50.
650.
0.005
15.
15.
0.035
10.
1
304
303
0 5
3.5
400.
0.004
0.
0.
0.013
3.5
'
50.
400.
0.004
15.
15.
0.035
10.
1
305
302
0 4
0.
1125.
0.005
4.
4.
0.035
10.
50.
1125.
0.005
15.
15.
0.035
10.
1
306
305
0 9
2.
50.
1000,
1000.
0.030
0.030
4,
15.
4.
15.
0.013
0.013
10.
10.
1
307
304
0 4
0.
1500.
0.015
4.
4.
0.035
10.
50.
1500.
0.015
15.
15.
0.035
10.
1
310
300
0 4
0.
1900.
0.006
50.
50.
0.035
10.
50.
1900.
0.006
50.
50.
0.035
10.
* ############################
+
END OF
CONVEYANCE DATA
######################
9
301
302
303
304
305 306
307
300 310
-1
1
ENDPROGRAM
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
TAPE OR DISK ASSIGNMENTS
JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10)
2 1 0 0 0 0 0 0 0 0
' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10)
1 2 0 0 0 0 0 0 0 0
NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5)
3 4 0 0 0
WATERSHED PROGRAM CALLED
*** ENTRY MADE TO RUNOFF MODEL ***
Waterfield SWMM for First Filing
100-YEAR Rainfall Event
NUMBER OF TIME STEPS 240
INTEGRATION TIME INTERVAL (MINUTES) 5.00
1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
.60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56
1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24
.24 .24 .12 .12 .00
Waterfield SWMM for First Filing
100-YEAR Rainfall Event
SUBAREA GUTTER
WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR
SURFACE STORAGE(IN)
NUMBER OR MANHOLE (FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
10 301
3005.0
34.5
10.0
.0120
.016
.250
.100
.300
11 305
1060.0
2.4
50.0
.0070
.016
.250
.100
.300
12 304
283.0
.7
60.0
.0040
.016
.250
.100
.300
13 307
1185.0
4.1
51.0
.0060
.016
.250
.100
.300
14 304
3113.0
16.9
50.0
.0060
.016
.250
.100
.300
15 305
2267.0
13.0
50.0
.0060
.016
.250
.100
.300
16 305
2700.0
12.4
30.0
.0100
.016
.250
.100
.300
17 302
949.0
4.3
36.0
.0060
.016
.250
.100
.300
18 306
450.0
1.0
68.0
.0050
.016
.250
.100
.300
19 300
3060.0
7.0
41.0
.0070
.016
.250
.100
.300
20 310
2480.0
108.0
10.0
.0150
.016
.250
.100
.300
TOTAL NUMBER OF
SUBCATCHMENTS, 11
TOTAL TRIBUTARY
AREA (ACRES), 204.26
HYDROGRAPHS WILL
BE SAVED
FOR THE FOLLOWING
11 SUBCATCHMENTS FOR
SUBSEQUENT USE WITH
UDSWM2-PC
10
11
12
13
14
15
16
17
18
20
INFILTRATION RATE(IN/HR)
GAGE
MAXIMUM
MINIMUM
DECAY RATE
NO
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00160
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
.51
.50
.00180
1
19
Waterfield
SWMM for First
Filing
100-YEAR Rainfall Event
HYDROGRAPHS ARE LISTED
FOR THE FOLLOWING
10 SUBCATCHMENTS
- AVERAGE
VALUES WITHIN
TIME
INTERVALS
'
TIME(HR/MIN) 10
11
12
13
14
15
16
17
18
19
0 5.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0 10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0 15.
3.3
1.1
.3
1.4
4.2
3.1
3.2
1.1
.5
2.7
'
0 20.
5.8
2.3
.6
3.1
11.1
8.4
6.1
2.3
1.1
4.B
0 25.
8.9
3.5
.9
5.0
19.1
14.5
9.4
3.7
1.7
7.4
0 30.
20.4
7.3
1.9
10.1
37.5
28.5
20.3
7.6
3.4
16.3
0 35.
50.8
15.2
3.9
21.2
77.6
58.9
46.1
16.5
6.8
36.2
0 40,
62.5
13.3
3.5
20.3
77,1
59.2
48.3
16.9
5.9
34.6
0 45.
55.2
6.6
1.8
11.5
46.6
35.7
33.0
11.0
2.8
20.1
'
0 50.
53.8
5.0
1.4
8.0
36.1
27.7
27.7
9.1
2.0
15.5
0 55.
48.9
3.6
1.0
6.7
28.6
22.0
21.8
7.3
1.5
11.2
1 0.
43.8
2.6
.7
5.0
22.4
17.3
17.1
5.8
1.1
8.3
1 5.
38.1
1.8
.5
3.7
17.2
13.3
13.1
4.5
.6
5.9
1 10.
33.1
1.3
.4
2.6
13.3
10.4
10.1
3.5
.6
4.3
'
1 15.
28.7
1.0
.3
2.1
10.5
8.2
7.9
2.8
.4
3.2
1 20.
25.3
.8
.2
1.7
8.6
6.7
6.4
2.3
.4
2.6
1 25.
22.3
.7
.2
1.4
7.1
5.6
5.3
1.9
.3
2.1
1 30.
19.8
.5
.2
1.1
5.9
4.7
4.4
1.6
.2
1.7
1 35.
17.8
.5
.1
1.0
5.2
4.1
3.8
1.4
.2
1.5
'
1 40.
16.1
.5
.1
.9
4.6
3.7
3.3
1.2
.2
1.3
1 45.
14.6
.4
.1
.8
4.3
3.3
3.0
1.1
.2
1.2
1 50.
13.3
.4
.1
.8
3.9
3.1
2.7
1.0
.2
1.1
1 55.
12.0
.3
.1
.7
3.4
2.7
2.3
.9
.2
.9
'
2 0.
2 5.
10.8
9.8
.3
.2
.1
.1
.5
.4
2.9
2.3
2.3
1.0
1.9
1.5
.7
.6
.1
.1
.7
.5
2 10.
6.8
.1
.0
.3
1.7
1.4
1.2
.5
.0
.3
2 15.
8.0
.1
.0
.2
1.4
1.1
1.0
.4
.0
.2
2 20.
7.3
.0
.0
.2
1.1
.9
.9
.3
.0
.2
2 25.
6.7
.0
.0
.1
1.0
.8
.7
2 30.
6.2
.0
.0
.1
.8
.7
,7
.3
.2
.0
.0
.2
.1
'
2 35.
5.7
.0
.0
.1
.7
.6
.6
.2
.0
.1
2 40.
5.2
.0
.0
.1
.6
.5
.5
.2
.0
.1
2 45.
4.9
.0
.0
.1
.6
.5
.4
.2
.0
.1
2 50.
4.5
.0
.0
.1
.5
.4
.4
.2
.0
.1
2 55.
4.2
.0
.0
.0
.4
.4
.3
.1
.0
.0
'
3 0.
3.9
.0
.0
.0
.4
.3
.3
.1
.0
.0
3 5.
3.6
.0
.0
.0
.3
.3
.3
.1
.0
.0
3 10.
3.4
.0
.0
.0
.3
.3
.2
.1
.0
.0
3 15.
3.1
.0
.0
.0
.3
.2
.2
.1
.0
.0
3 20.
2.9
.0
.0
.0
.2
.2
.2
.1
.0
.0
'
3 25.
2.7
.0
.0
.0
.2
.2
.2
.1
.0
.0
3 30.
2.6
.0
.0
.0
.2
.2
.1
.1
.0
.0
3 35.
2.4
.0
.0
.0
.2
.1
.1
.1
.0
.0
3 40.
2.3
.0
.0
.0
.2
.1
.1
.1
.0
.0
3 45.
3 50.
2.1
2.0
.0
.0
.0
.0
.0
.0
.1
.1
.1
.1
.1
.1
.0
.0
.0
.0
.0
.0
3 55.
1.9
.0
.0
.0
.1
.1
.1
:0
.0
.0
4 0.
1.7
.0
.0
.0
.1
.1
.1
.0
.0
.0
4 5.
1.6
.0
.0
.0
.1
.1
.1
.0
.0
.0
4 10.
1.5
.0
.0
.0
.1
.1
.0
.0
.0
.0
4 15.
1.4
.0
.0
.0
.1
.1
.0
.0
.0
.0
'
4 20.
1.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
4 25.
1.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
4 30.
1.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
4 35.
1.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
4 40.
1.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
4 45.
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
4 50.
.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
4 55.
.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
5 0.
.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
S 5.
5 10.
.8
.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
5 15.
.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
5 20.
.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
5 25.
.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
5 30.
.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
S 35.
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
5 40.
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
5 45.
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
5 50.
.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
5 55.
.4
.0
.0
.0
.0
.0
.0
.0,
.0
.0
6 0.
.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
6 5.
.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
1 6
' 6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
B
8
' 8
8
8
8
B
' 8
8
8
8
8
' 9
9
9
9
9
9
9
9
9
9
9
' 9
10
10
10
10
' 10
10
10
10
10
10
' 10
10
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
13
13
10
15
20
25
30
35
40
45
50
55
0
5
10
15
20
25
30
35
40
45
50
55
0
5
10
15
20
25
30
35
40
45
50
55
0
5
10
15
20
25
30
35
40
45
50
55
0
5
10
15
20
25
30
35
40
45
50
55
0
5
10
15
20
25
30
35
40
45
50
55
0
5
10
15
20
25
30
35
40
45
50
55
0
5
1
I
13
10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
15.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
20.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
25.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
30.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
35.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
40.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
45.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
50.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
13
55.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
0.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
5.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
15.
.0
14
20.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
25.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
30.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
35.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
40.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
45.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
50.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
14
55.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
0.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
5.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
15.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
20.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
25.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
30.
.0
.0
.0
.0
.0
.0
.0
-.0
.0
.0
15
35.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
40.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
45.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
50.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
55.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
0.
.0
.0 -
16
5.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
15.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
20.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
25.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
30.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
16
35.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
40.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
45.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
50.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
55.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
17
0.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
5.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
15.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
20.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
25.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
30.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
35.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
40.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
15.
.0
.0
.0
.0
.0
17
50.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
17
55.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
0.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
5.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
15.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
18
20.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
25.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
30.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
35.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
40.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
45.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
50.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
55.
.0
.0
.0
.0
.0
:0
.0
.0
.0
.0
19
0.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
5.
19
10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
19
15.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
20.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
25.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
30.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
35.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
'
19
40.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
45.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
50.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
55.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
20
0.
'
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
[]
Waterfield SWMM for First Filing
100-YEAR Rainfall Event
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING
TIME(HR/MIN)
20
'
0 5.
.0
0 10.
.0
0 15.
5.4
0 2.
0 255.
4.3
2 9.3
0 30.
48.1
0 35.
102.4
0 40.
112.4
0 45.
84.0
0
5.
7.
'
0
555.
75.8
1
0.
71.5
1
5.
66.4
1
10.
61.6
' 1 20. 5.
1 20. 53.9
1 25. 50.8
1 30. 47.9
1 35. 45.6
1
4.
4.
1
95.
91.6
1
50.
39.8
1
55.
37.8
2
0.
35.8
2
5,
33.
2
10.
31.9
'
2
15.
30.2
2
20.
28.8
2
25.
27.5
2
30.
26.3
2
.
2.1
2
40.
40
24.1
2
45.
23.1
2
50.
22.1
2
55.
21.3
' 3 0. 19.
3 5. 19.6
3 10. 18.9
3 15. 18.1
3 20. 17.5
3
16.
3
30.
30.
16.2
3
35.
15.6
3
40.
15.0
3
45.
14.5
3
5,
1.
3
555.
13.5
'
4
0.
13.0
4
5.
12.6
4
10.
12.1
4
15.
11.7
4
2.
11.
'
9
255.
11.0
4
30.
10.6
4
35.
10.2
4
40.
9.9
.
9.
4
9
50
50.
9.3
4
55.
9.0
5
0.
8.7
5
5.
8.4
5
1.
.
5
155.
7 .9
'
5
20.
7.6
5
25.
7.4
5
30.
7.2
5
35.
7.0
5
4..
6.
'
5
95.
6.5
5
50.
6.3
5
55.
6.1
6
0.
6.0
6
5.
5.
'
6
10.
5.6
1 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS
6
15.
5.4
6
20.
5.3
6
25.
5.1
6
3.
.
'
6
355.
4 .8
6
40.
4.7
6
45.
4.5
6
50.
4.4
6
5.
.3
'
7
0.
0
4 .2
7
5.
4.0
7
10.
3.9
7
15.
3.8
7
2,
3.
7
255.
3.6
'
7
30.
3.5
7
35.
3.4
7
40.
3.3
7
45.
3.2
7
5.
3.
'
7
555.
3.0
6
0.
2.9
6
5.
2.8
6
10.
2.7
. 2. 6 20
8 20. 2.6
8 25. 2.5
8 30. 2.4
8 35. 2.3
8
2.
'
8
45.
45.
2.2
8
50.
2.1
8
55.
2.1
9
0.
2.0
9
5,
9
10.
1.
.9
9
15.
1.8
9
20.
1.8
9
25.
1.7
9
30.
1.7
9
.
1.6
'
9
40
90.
1.6
9
45.
1.5
9
50.
1.5
9
55.
1.4
t 10 0. 1.
10 5. 1.3
10 10. 1.3
10 15. 1.2
10 20. 1.2
10
.
1.2
'
10
30
30.
1.1
10
35.
1.1
10
40.
1.0
10
45.
1.0
10
5,
1.
10
555.
.99
11
0.
.9
11
5.
.9
11
10.
.8
_
15.
.8
11
2.
.8
'
11
255.
.7
11
30.
.7
11
35.
.7
11
40.
.6
11
.
.6
11
50
50.
.6
11
55.
.6
12
0.
.5
12
5.
.5
12
1.
.5
12
155.
.5
12
20.
.4
12
25.
.4
12
30.
.4
12
35.
.4
12
4.
.4
12
95.
.3
12
50.
.3
12
55.
.3
13
0.
.3
13
5.
.3
13
10.
.3
13 15.
13 20.
13 25.
' 13 3.
13 355.
13 40.
13 45.
13 50.
' 13 5.
0
14 0.
14 5.
14 10.
14 15.
' 14 2.
19 255.
14 30.
14 35.
14 40.
' 14 .
50
14 50.
14 55.
15 0.
15 5.
15 10.
' 15 .
20
15 20.
15 25.
15 30.
15 35.
' 15 4.
15 455.
15 50.
15 55.
16 0.
16 5.
16 10.
16 15.
16 20.
16 25.
' 16 3,
16 355.
16 40.
16 45.
16 50.
16 55.
' 17 0.
17 5.
17 10.
17 15.
17 20.
17 .
30
17 30.
17 35.
17 40.
17 45.
' 17 5,
17 555.
18 0.
16 5.
18 10.
18 15.
' 18 2.
18 255.
18 30.
18 35.
18 40.
18 .
50
18 50.
18 55.
19 0.
19 5.
' 19 1.
19 155.
19 20.
19 25.
19 30.
19 35.
' 19 4.
19 95.
19 50.
19 55.
20 0.
1 Waterfield SWMM for First Filing
100-YEAR Rainfall Event
' *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED AREA (ACRES)
204.260
'
TOTAL RAINFALL (INCHES)
2.890
TOTAL INFILTRATION (INCHES)
.967
t
TOTAL WATERSHED OUTFLOW (INCHES)
1.814
TOTAL SURFACE STORAGE AT END OF STROM (INCHES)
.110
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL
.000
1
Waterfield SWMM for First Filing
100-YEAR Rainfall Event
1
Li
1
1
C
I
u
WIDTH
INVERT
GUTTER
GUTTER
NDP
NP
OR DIAM
LENGTH
SLOPE
NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
300
1
0
1
CHANNEL
4.0
1000.
.0020
301
300
11
2
PIPE
.1
1.
.0010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.3 1.7
2.2
2.1
4.8
13.7
3.0
14.2 3.0
14.7
28.8
15.2
302
301
0
4
CHANNEL
4.0
400.
.0050
OVERFLOW
50.0
400.
.0050
303
302
0
5
PIPE
4.0
650.
.0030
OVERFLOW
50.0
650.
.0030
304
303
0
5
PIPE
3.5
400.
.0040
OVERFLOW
50.0
400.
.0040
305
302
0
4
CHANNEL
.0
1125.
.0050
OVERFLOW
50.0
1125.
.0050
306
305
0
4
CHANNEL
2.0
1000.
.0300
OVERFLOW
50.0
1000.
.0300
307
304
0
4
CHANNEL
.0
1500.
.0150
OVERFLOW
50.0
1500.
.0150
310
300
0
4
CHANNEL
.0
1900.
.0060
OVERFLOW
50.0
1900.
.0060
TOTAL NUMBER OF GUTTERS/PIPES,
9
Waterfield SWMM for First Filing
100-YEAR Rainfall Event
ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
300
301
310
0
0 0
0
0
0
0 0
301
302
0
0
0 0
0
0
0
0 0
302
303
305
0
0 0
0
0
0
0 0
303
304
0
0
0 0
0
0
0
0 0
304
307
0
0
0 0
0
0
0
0 0
305
306
0
0
0 0
0
0
0
0 0
306
0
0
0
0 0
0
0
0
0 0
307
0
0
0
0 0
0
0
0
0 0
310
0
0
0
0 0
0
0
0
0 0
HYDROGRAPHS WILL
BE
STORED FOR
THE FOLLOWING
9
POINTS
301
302
303
304
305
306
Waterfield SWMM for First Filing
100-YEAR Rainfall Event
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS
SIDE SLOPES
OVERBANK/SURCHARGE
HORIZ
TO VERT
MANNING
DEPTH
JK
L
R
N
(FT)
4.0
4.0
.035
10.00
1
.1
.1
.013
.10
0
2.4
8.2
2.7
12.7 3.0
81.6
15.8
149.6
4.0
4.0
.035
10.00
1
15.0
15.0
.035
10.00
.0
.0
.013
4.00
1
15.0
15.0
.035
10.00
.0
.0
.013
3.50
1
15.0
15.0
.035
10.00
4.0
4.0
.035
10.00
1
15.0
15.0
.035
10.00
4.0
4.0
.013
10.00
1
15.0
15.0
.013
10.00
4.0
4.0
.035
10.00
1
15.0
15.0
.035
10.00
50.0
50.0
.035
10.00
1
50.0
50.0
.035
10.00
TRIBUTARY SUBAREA
19
0
0 0
10
0
0 0
17
0
0 0
0
0
0 0
12
14
0 0
11
15
16 0
18
0
0 0
13
0
0 0
20
0
0 0
307 300
310
D.A.(AC)
0 0
0
0
0
0 204.3
0 0
0
0
0
0 89.2
0 0
0
0
0
0 54.7
0 0
0
0
0
0 21.6
0 0
0
0
0
0 21.6
0 0
0
0
0
0 28.9
0 0
0
0
0
0 1.0
0 0
0
0
0
0 4.1
0 0
0
0
0
0 108.0
n
'
THE
UPPER NUMBER IS DISCHARGE IN CPS
THE
LOWER NUMBER IS ONE OF
THE FOLLOWING CASES:
( )
DENOTES DEPTH
ABOVE INVERT
IN FEET-
(S)
DENOTES STORAGE IN AC -FT
FOR DETENTION
DAM.
DISCHARGE
INCLUDES
SPILLWAY OUTFLOW.
(I)
DENOTES GUTTER INFLOW
IN CPS FROM
SPECIFIED
INFLOW HYDROGRAP14
(D)
DENOTES DISCHARGE
IN CPS DIVERTED
FROM THIS
GUTTER
(0)
DENOTES STORAGE IN AC -FT
FOR SURCHARGED GUTTER
TIME(HR/MIN)
1
300
301
302
303
304
305
306
307
310
'
0
5.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00(
) .00( )
.00(S)
.00( )
.00( )
.01( )
.03(
) .00( )
.01( )
.00( )
0
10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0
15.
.00(
.5
) .00( )
.5
.00(S)
.2
.00( )
2.1
.02( )
2.2
.05( )
5.7
.07(
2.4
) .00( )
.3
.03( )
.3
.01( )
.4
'
.00(
) .18( )
.03(S)
.33( )
.46( )
.70( )
.65(
) .05( )
.25( )
.13( )
0
20.
2.2
2.2
.7
14.4
11.4
15.5
9.4
.9
1.3
2.3
.00(
) .43( )
.12(S)
.90( )
1.03( )
1.18( )
1.09(
) .10( )
.42( )
.24( )
0
25.
6.0
6.0
1.7
37.9
22.5
25.4
20.2
1.7
2.9
6.1
.00(
) .73( )
.36(S)
1.42( )
1.47( )
1.54( )
1.46(
) .14( )
.57( )
.35( )
'
0
30.
16.2
16.2
1.8
81.8
45.0
54.2
44.9
3.5
6.4
15.3
.00(
) 1.18( )
.90(S)
2.02( )
2.17( )
2.48( )
1.97(
) .21( )
.77( )
.49( )
0
35.
42.5
42.5
2.1
173.5
77.0
84.4
104.2
7.3
15.0
38.6
.00(
) 1.65( )
2.11(S)
2.81( )
3.20( )
3.77( )
2.69(
) .31( )
1.06( )
.69( )
0
40.
69.3
69.3
2.3
224.8
65.3
95.5
122.5
5.6
18.3
61.2
'
.00(
) 2.30( )
3.90(S)
3.13( )
4.05( )
3.87( )
2.86(
) .27( )
1.14( )
.82( )
0
45.
80.9
80.9
2.5
193.4
85.0
72.4
88.8
2.4
14.1
68.6
.00(
) 2.46( )
5.70(S)
2.94( )
4.03( )
3.62( )
2.54(
) .17( )
1.03( )
.86( )
0
50.
05.8
85.8
2.6
150.8
61.9
51.2
69.2 .
2.0
11.0
72.2
.00(
) 2.52( )
7.24(S)
2.64( )
2.67( )
2.38( )
2.31(
) .16( )
.94( )
.87( )
'
0
55.
86.4
86.4
2.7
108.0
35.6
32.8
54.8
1.5
8.5
73.4
.00(
) 2.53( )
8.45(S)
2.28( )
1.89( )
1.78( )
2.12(
) .13( )
.86( )
.88( )
1
0.
84.9
84.9
2.8
82.0
29.9
29.6
43.4
1.1
6.6
72.8
.00(
) 2.51( )
9.39(S)
2.02( )
1.71( )
1.68( )
1.94(
) .11( )
.78( )
.88( )
1
5,
82.0
.00(
82.0
) 2.47( )
2.8
10.15(S)
66.9
1.85( )
23.6
1.50( )
20.4
1.36( )
33.9
1.77(
.8
) .09( )
5.1
.71( )
70.7
.87( )
1
10.
78.3
78.3
2.9
51.6
17.5
17.1
26.6
.6
4.0
67.7
.00(
) 2.42( )
10.76(S)
1.64( )
1.28( )
1.24( )
1.62(
) .08( )
.64( )
.85( )
1
15.
74.4
74.4
2.9
41.0
14.5
13.0
21.1
.5
3.1
64.3
.00(
) 2.37( )
11.26(S)
1.47( )
1.16( )
1.07( )
1.48(
) .07( )
.59( )
.84( )
1
20.
70.4
70.4
2.9
33.3
11.5
11.0
17.2
.4
2.5
61.0
.00(
) 2.31( )
11.67(S)
1.34( )
1.03( )
.98( )
1.37(
) .06( )
.54( )
.82( )
1
25.
66.6
66.6
3.0
27.4
9.7
8.9
14.2
.3
2.0
57.7
.00(
) 2.26( )
12.01(S)
1.22( )
.95( )
.89( )
1.27(
) .05( )
.50( )
.80( )
1
30.
63.0
63.0
3.0
22.9
8.0
7.5
11.8
.3
1.6
54.6
.00(
) 2.20( )
12.30(S)
1.12( )
.86( )
.81( )
1.19(
) .05( )
.46( )
.79( )
'
1
35.
59.7
59.7
3.0
19.4
6.9
6.6
10.1
.2
1.4
51.8
.00(
) 2.15( )
12.55(S)
1.04( )
.80( )
.76( )
1.12(
) .04( )
.43( )
.77( )
1
40.
56.7
56.7
3.0
17.0
6.1
5.9
8.6
.2
1.2
49.2
.00(
) 2.10( )
12.76(S)
.97( )
.76( )
.72( )
1.07(
) .04( )
.41( )
.76( )
1
45.
54.0
.00(
54.0
) 2.06( )
3.0
12.95(S)
15.2
.92( )
5.6
.72( )
5.4
.69( )
7.9
1.02(
.2
) .04( )
1.1
.39( )
46.9
.74( )
1
50.
51.6
51.6
3.0
13.8
5.1
5.0
7.2
.2
1.0
44.8
.00(
) 2.02( )
13.12(S)
.88( )
.69( )
.66( )
.99(
) .04( )
.38( )
.73( )
1
55.
49.2
49.2
3.0
12.4
4.6
4.3
6.4
.2
.9
42.7
.00( )
1.98( )
13.28(S)
.83( )
.66( )
.61( )
.94(
) .04( )
.36( )
.72( )
2
0.
47.0
47.0
3.0
10.9
3.9
3.6
5.5
.1
.7
40.7
'
.00( )
1.93( )
13.41(S)
.78( )
.60( )
.56( )
.90(
) .03( )
.34( )
.70( )
2
5.
44.7
44.7
3.0
9.2
3.2
2.8
4.7
.1
.6
38.7
.00( )
1.89( )
13.53(S)
.71( )
.55( )
.50( )
.84(
) .03( )
.32( )
.69( )
2
10.
42.6
42.6
3.0
7.6
2.5
2.2
3.8
.1
.5
36.7
.00( )
1.85( )
13.62(S)
.65( )
.49( )
.44( )
.78(
) .02( )
.30( )
.68( )
'
2
15.
40.5
40.5
3.0
6.2
2.0
1.8
3.1
.1
.4
34.8
.00( )
1.81( )
13.71(S)
.58( )
.44( )
.40( )
.72(
) .02( )
.28( )
.66( )
2
20.
36.6
38.6
3.0
5.1
1.7
1.5
2.6
.0.
.3
33.1
.00( )
1.77( )
13.78(S)
.53( )
.40( )
.37( )
.68(
) .02( )
.26( )
.65( )
2
25.
36.8
36.8
3.0
4.3
1.4
1.2
2.2
.0
.3
31.5
'
.00( )
1.73( )
13.63(S)
.48( )
.37( )
.34( )
.63(
) .01( )
.24( )
.64( )
2
30.
35.2
35.2
3.0
3.7
1.2
1.1
1.9
.0
.2
30.1
.00( )
1.70( )
13.88(S)
.44( )
.34( 1
.32( )
.60(
) .01( )
.22( )
.63( )
2
35.
33.7
33.7
3.0
3.2
1.0
.9
1.6
.0
.2
28.7
.00( )
1.66( )
13.92(S)
.41( )
.32( )
.29( )
.57(
) .01( )
.21( )
.62( )
2
40.
32.3
32.3
3.0
2.8
.9
.8
1.4
.0
.2
27.5
1
.00( )
1.63( )
13.96(S)
.38( )
.30( )
.28( )
.54(
) .01( )
.20( )
.61( )
2
45.
31.0
31.0
3.0
2.4
.8
.7
1.2
.0
.1
26.3
.00( )
1.60( )
13.99(S)
.35( )
.28( )
.26( )
.51(
) .01( )
.18( )
.60( )
2
50.
29.8
29.8
3.0
2.1
.7
.6
1.1
.0
.1
25.2
.00( )
1.57( )
14.02(S)
.33( )
.26( )
.24( )
.49(
) .01( )
.17( )
.59( )
2
55.
28.7
28.7
3.0
1.9
.6
.5
1.0
.0
.1
24.1
.00( )
1.55( )
14.04(S)
.31( )
.25( )
.23( )
.47(
) .01( )
.16( )
.58( )
3
0.
27.6
27.6
3.0
1.7
.5
.5
.9
.0
.1
23.2
.00( )
1.52( )
14.06(S)
.29( )
.24( )
.22( )
.45(
) .01( )
.16( )
.57( )
3
5.
26.6
26.6
3.0
1.5
.5
.4
.8
.0
.1
22.2
.00( j
1.49( )
14.07(S)
.27( )
.22( )
.20( )
.43(
) .00( )
.15( )
.56( )
1
1
1
1
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
10.
15.
20.
25.
30.
35.
40.
45.
50.
55.
0.
5.
10.
15.
20.
25.
30.
35.
40.
45.
50.
55.
0.
5.
10.
15.
20.
25.
30.
35.
40.
45.
50.
55.
0.
5.
10,
15.
20.
25.
30.
35.
25.7
25.7
3.0
1.3
.4
.4
.7
.0
.1
21.4
.00( )
1.47( )
14.08(S)
.25( )
.21( )
.19( )
.41( )
.00( )
.14( )
.55( 1
24.8
24.8
3.0
1.2
.4
.3
.6
.0
.1
20.5
.00( )
1.44( )
14.09(S)
.24( )
.20( )
.18( )
.39( )
.00( )
.13( )
.55( )
23.9
23.9
3.0
1.1
.3
.3
.6
.0
.1
19.8
.00( )
1.42( )
14.10(S)
.22( )
.19( )
.17( )
.38( )
.00( )
.13( )
.54( )
23.1
23.1
3.0
1.0
.3
.3
.5
.0
.0
19.0
.00( )
1.40( )
14.11(S)
.21( )
.18( )
.16( )
.36( )
.00( )
.12( )
.53( )
22.4
22.4
3.0
.9
.3
.2
.4
.0
.0
18.3
.00( )
1.38( )
14.11(S)
.20( )
.17( )
.15( )
.35( )
.00( )
.11( )
.52( )
21.7
21.7
3.0
.8
.2
.2
.4
.0
.0
17.6
.00( )
1.36( )
14.11(S)
.19( )
.16( )
.15( )
.33( )
.00( )
.11( )
.51( )
21.0
21.0
3.0
.7
.2
.2
.4
.0
.0
17.0
.00( )
1.34( )
14.11(S)
.17( )
.15( )
.14( )
.32( )
.00( )
.10( )
.51( )
20.3
20.3
3.0
.6
.2
.2
.3
.0
.0
16.4
.00( )
1.32( )
14.11(S)
.16( )
.14( )
.13( )
.31( )
.00( )
.10( )
.50( )
19.7
19.7
3.0
.6
.2
.1
.3
.0
.0
15.8
.00( )
1.30( )
14.11(S)
.15( )
.14( )
.12( )
.30( )
.00( )
.09( )
.49( )
19.1
19.1
3.0
.5
.1
.1
.3
.0
.0
15.3
.00( )
1.28( )
14.10(S)
.14( )
.13( )
.12( )
.28( )
.00( )
.09( )
.49( )
18.6
18.6
3.0
.4
.1
.1
.2
.0
.0
14.7
.00( )
1.26( )
14.10(S)
.14( )
.12( )
.11( )
.27( )
.00( )
.08( )
.48( )
18.0
18.0
3.0
.4
.1
.1
.2
.0
.0
14.2
.00( )
1.24( )
14.09(S)
.13( )
.12( )
.10( )
.26( )
.00( )
.08( )
.47( )
17.5
17.5
3.0
.4
.1
.1
.2
.0
.0
13.7
.00( )
1.23( )
14.08(S)
.12( )
.11( )
.10( )
.25( )
.00( )
.07( )
.47( )
17.0
17.0
3.0
.3
.1
.1
.2
.0
.0
13.3
.00( )
1.21( )
14.07(S)
.11( )
.10( )
.09( )
.24( )
.00( )
.07( )
.46( )
16.5
16.5
3.0
.3
.1
.1
.1 -
.0
.0
12.8
.00( )
1.19( )
14.07(S)
.10( )
.10( )
.08( )
.23( )
.00( )
.07( )
.46( )
16.1
16.1
3.0
.3
.1
.1
.1
.0
.0
12.4
.00( )
1.18( )
14.05(S)
.10( )
.09( )
.OB( )
.22( )
.00( )
.06( )
.45( )
15.7
15.7
3.0
.2
.1
.0
.1
.0
.0
12.0
.00( )
1.16( )
14.04(S)
.09( )
.09( )
.07( )
.21( )
.00( )
.06( )
.45( )
15.2
15.2
3.0
.2
.1
.0
.1
.0
.0
11.6
.00( )
1.15( )
14.03(S)
.08( )
.08( )
.07( )
.20( )
.00( )
.06( )
.44( )
14.8
14.8
3.0
.2
.0
.0
.1
.0
.0
11.2
.00( )
1.13( )
14.02(S)
.08( )
.07( )
.06( )
.19( )
.00( )
.06( )
.43( )
14.5
14.5
3.0
.2
.0
.0
.1
.0
.0
10.9
.00( )
1.12( )
14.01(S)
.07( )
.07( )
.06( )
.18( )
.00( )
.05( )
.43( )
14.1
14.1
3.0
.1
.0
.0
.1
.0
.0
10.5
.00( )
1.11( )
13.99(S)
.07( )
.06( )
.05( )
.17( )
.00( )
.05( )
.42( )
13.7
13.7
3.0
.1
.0
.0
.1
.0
.0
10.2
.00( )
1.09( )
13.98(S)
.06( )
.06( )
.05( )
.16( )
.00( )
.05( )
.42( )
13.4
13.4
3.0
.1
.0
.0
.0
.0
.0
9.9
.00( )
1.08( )
13.97(S)
.06( )
.06( )
.04( )
.15( )
.00( )
.05( )
.41( )
13.1
13.1
3.0
.1
.0
.0
.0
.0
.0
9.5
.00( )
1.07( )
13.95(S)
.05( )
.05( )
.04( )
.14( )
.00( )
.05( )
.41( )
12.8
12.8
3.0
.1
.0
.0
.0
.0
.0
9.2
.00( )
1.05( )
13.94(S)
.05( )
.05( )
.04( )
.13( )
.00( )
.05( )
.40( )
12.5
12.5
3.0
.1
.0
.0
.0
.0
.0
9.0
.00( )
1.04( )
13.92(S)
.04( )
.04( )
.03( )
.13( )
.00( )
.04( )
.40( )
12.2
12.2
3.0
.1
.0
.0
.0
.0
.0
8.7
.00( )
1.03( )
13.91(S)
.04( )
.04( )
.03( )
.12( )
.00( )
.04( )
.39( )
11.9
11.9
3.0
.1
.0
.0
.0
.0
.0
8.4
.00( )
1.02( )
13.89(S)
.04( )
.04( )
.03( )
.11( )
.00( )
.04( )
.39( )
11.6
11.6
3.0
.0
.0
.0
.0
.0
.0
8.2
.00( )
1.01( )
13.87(S)
.03( )
.04( )
.03( )
.11( )
.00( )
.04( )
.39( )
11.4
11.4
3.0
.0
.0
.0
.0
.0
.0
7.9
.00( )
1.00( )
13.86(S)
.03( )
.03( )
.03( )
.10( )
.00( )
.04( )
.38( )
11.1
11.1
3.0
.0
.0
.0
.0
.0
.0
7.7
.00( )
.99( )
13.84(S)
.03( )
.03( )
.03( )
.10( )
.00( )
.04( )
.38( )
10.9
10.9
3.0
.0
.0
.0
.0
.0
.0
7.4
.00( )
. 97 ( )
13.82 (S)
.03( )
.03( )
.03( )
.10( )
.00( )
. 04 ( )
. 37 ( )
10.6
10.6
3.0
.0
.0
.0
.0
.0
.0
7.2
.00( )
.96( )
13.80(S)
.03( )
.03( )
.03( )
.09( )
.00( )
.04( )
.37( )
10.4
10.4
3.0
.0
.0
.0
.0
.0
.0
7.0
.00( )
.95( )
13.79(S)
.02( )
.03( )
.02( )
.09( )
.00( )
.03( )
.36( )
10.2
10.2
3.0
.0
.0
.0
.0
.0
.0
6.8
.00( )
.94( )
13.77(S)
.02( )
.03( )
.02( )
.09( )
.00( )
.03( )
.36( )
10.0
10.0
3.0
.0
.0
.0
.0
.0
.0
6.6
.00( )
.93( )
13.75(S)
.02( )
.03( )
.02( )
.08( )
.00( )
.03( )
.36( )
9.8
9.8
3.0
.0
.0
.0
.0
.0
.0
6.4
.00( )
.93( )
13.73(S)
.02( )
.03( )
.02( )
.08( )
.00( )
.03( )
.35( )
9.6
9.6
3.0
.0
.0
.0
.0
.0
.0
6.2
.00( )
.92( )
13.71(S)
.02( )
.03( )
.02( )
.08( )
.00( )
.03( )
.35( )
9.4
9.4
3.0
.0
.0
.0
.0
.0
.0
6.0
.00( )
.91( )
13.69(S)
.02( )
.03( )
.02( )
.07( )
.00( )
.03( )
.34( )
9.2
9.2
3.0
.0
.0
.0
.0
.0
.0
5.9
.00( )
.90( )
13.66(S)
.02( )
.02( )
.02( )
.07( )
.00(")
.03( )
.34( )
9.0
9.0
3.0
.0
.0
.0
.0
.0
.0
5.7
.00( )
.89( )
13.66(S)
.02( )
.02( )
.02( )
.07( )
.00( )
.03( )
.34( )
8.8
8.8
3.0
.0
.0
.0
.0
.0
.0
5.5
.00( )
.88( )
13.64 (S)
.02( )
.02( )
.02( )
.07( )
.00( )
.03( )
.33( )
1
6
40.
8.7
8.7
3.0
.0
.0
.0
.0
.0
.0
5.4
.00( )
.87( )
13.62 (S)
.02( )
.02( )
.02( )
. 07 ( )
.00( )
.03( )
.33( )
6
45.
8.5
8.5
3.0
.0
.0
.0
.0
.0
.0
5.2
.00( )
.86( )
13.60(S)
.02( )
.02( )
.02( )
.07( )
.00( )
.03( )
.33( )
'
6
50.
8.3
8.3
3.0
.0
.0
.0
.0
.0
.0
5.1
.00( )
.86( )
13.58(S)
.02( )
.02( )
.02( )
.06( )
.00( )
.03( )
.32( )
6
55.
8.2
8.2
3.0
.0
.0
.0
.0
.0
.0
4.9
.00( )
.85( )
13.56(S)
.01( )
.02( )
.02( )
.06( )
.00( )
.03( )
.32( )
7
0.
8.0
8.0
3.0
.0
.0
.0
.0
.0
.0
4.8
'
.00( )
.84( )
13.54(S)
.01( )
.02( )
.02( )
.06( )
.00( )
.03( )
.32( )
7
5.
7.9
7.9
3.0
.0
.0
.0
.0
.0
.0
4.6
.00( )
.83( )
13.52(S)
.01( )
.02( )
.02( )
.06( )
.00( )
.02( )
.31( )
7
10.
7.8
7.8
3.0
.0
.0
.0
.0
.0
.0
4.5
.00( )
.83( )
13.50(S)
.01( )
.02( )
.02( )
.06( )
.00( )
.02( )
.31( )
'
7
15.
7.6
7.6
3.0
.0
.0
.0
.0
.0
.0
4.4
.00( )
.82( )
13.48(S)
.01( )
.02( )
.02( )
.06( )
.00( )
.02( )
.31( )
7
20.
7.5
7.5
3.0
.0
.0
.0
.0
.0
.0
4.3
.00( )
.81( )
13.46(S)
.01( )
.02( )
.02( )
.06( )
.00( )
.02( )
.30( )
7
25.
7.4
.00( )
7.4
.80( )
3.0
13.44(S)
.0
.01( )
.0
.02( )
.0
.02( )
.0
.05( )
.0
.00( )
.0
.02( )
4.1
.30( )
'
7
30.
7.3
7.3
3.0
.0
.0
.0
.0
.0
.0
4.0
.00( )
.80( )
13.42(S)
.01( )
.02( )
.02( )
.05( )
.00( )
.02( )
.30( )
7
35.
7.1
7.1
3.0
.0
.0
.0
.0
.0
.0
3.9
.00( )
.79( )
13.40(S)
.01( )
.02( )
.02( )
.05( )
.00( )
.02( )
.29( )
7
40.
7.0
7.0
3.0
.0
.0
.0
.0
.0
.0
3.8
.00( )
.78( )
13.38(S)
.01( )
.02( )
.02( )
.05( )
.00( )
.02( )
.29( )
7
45.
6.9
6.9
3.0
.0
.0
.0
.0
.0
.0
3.7
.00( )
.78( )
13.36(S)
.01( )
.02( )
.02( )
.05( )
.00( )
.02( )
.29( )
7
50.
6.8
6.8
3.0
.0
.0
.0
.0
.0
.0
3.6
.00( )
.77( )
13.34(S)
.01( )
.02( )
.02( )
.05( )
.00( )
.02( )
.28( )
'
7
55.
6.7
6.7
3.0
.0
.0
.0
.0
.0
.0
3.5
.00( )
.77( )
-13.32(S)
.01( )
.02( )
.02( )
.05( )
.00( )
.02( )
.28( )
8
0.
6.6
6.6
3.0
.0
.0
.0
.0
.0
.0
3.4
.00( )
.76( )
13.30(S)
.01( )
.02( )
.02( )
.05( ]
.00( )
.02( )
.28( )
'
8
5.
6.5
.00( )
6.5
.75( )
3.0
13.28(S)
.0
.01( )
.0
.02( )
.0
.02( )
.0
.05( )
.0
.00( )
.0
.02( )
3.3
.27( )
8
10.
6.4
6.4
3.0
.0
.0
.0
.0
.0
.0
3.2
.00( )
.75( )
13.26(S)
.01( )
.02( )
.01( )
.05( )
.00( )
.02( )
.27( )
8
15.
6.3
6.3
3.0
.0
.0
.0
.0
.0
.0
3.1
.00( )
.74( )
13.24(S)
.01( )
.02( )
.01( )
.05( )
.00( )
.02( )
.27( )
8
20.
6.2
6.2
3.0
.0
.0
.0
.0
.0
.0
3.0
'
.00( )
.74( )
13.22(S)
.01( )
.02( )
.01( )
.05( )
.00( )
.02( )
.27( )
8
25.
6.1
6.1
3.0
.0
.0
.0
.0
.0
.0
2.9
.00( )
.73( )
13.19(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.26( )
8
30.
6.0
6.0
3.0
.0
.0
.0
.0
.0
.0
2.8
.00( )
.73( )
13.17(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.26( )
8
35.
5.9
5.9
3.0
.0
.0
.0
.0
.0
.0
2.8
.00( )
.72( )
13.15(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.26( )
B
40.
5.9
5.9
3.0
.0
.0
.0
.0
.0
.0
2.7
.00( )
.72( )
13.13(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.25( )
8
45.
5.8
5.8
3.0
.0
.0
.0
.0
.0
.0
2.6
'
.00( )
.71( )
13.11(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.25( )
8
50,
5.7
5.7
3.0
.0
.0
.0
.0
.0
.0
2.5
.00( )
.71( )
13.09(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.25( )
8
55.
5.6
5.6
3.0
.0
.0
.0
.0
.0
.0
2.5
9
0.
.00( )
5.5
.70( )
5.5
13.07(S)
3.0
.01( )
.0
.02( )
.0
.01( )
.0
.04( )
.0
.00( )
.0
.02( )
.0
.25( )
2.4
'
.00( )
.70( )
13.05(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.24( )
9
5.
5.5
5.5
3.0
.0
.0
.0
.0
.0
.0
2.3
.00( )
.69( )
13.03(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.24( )
9
10.
5.4
5.4
3.0
.0
.0
.0
.0
.0
.0
2.3
.00( )
.69( )
13.01(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.24( )
'
9
15.
5.3
5.3
3.0
.0
.0
.0
.0
.0
.0
2.2
.00( )
.68( )
12.99(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.24( )
9
20.
5.3
5.3
3.0
.0
.0
.0
.0
.0
.0
2.1
.00( )
.68( )
12.97(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.23( )
9
25.
5.2
5.2
3.0
.0
.0
.0
.0
.0
.0
2.1
'
.00( )
.67( )
12.95(S)
.01( )
.02( )
.01( )
.04( )
.00( )
.02( )
.23( )
9
30.
5.1
5.1
3.0
.0
.0
.0
.0
.0
.0
2.0
.00( )
.67( )
12.93(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.23( )
9
35.
5.1
5.1
3.0
.0
.0
.0
.0
.0
.0
1.9
.00( )
.67( )
12.-91(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.23( )
'
9
40.
5.0
5.0
3.0
.0
.0
.0
.0
.0
.0
1.9
.00( )
.66( )
12.88(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.22( )
9
45.
5.0
5.0
3.0
.0
.0
.0
.0
.0
.0
1.8
.00( )
.66( )
12.86(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.22( )
9
50.
4.9
4.9
3.0
.0
.0
.0
.0
.0
.0
1.8
.00( )
.65( )
12.84(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.22( )
'
9
55.
4.8
4.8
3.0
.0
.0
.0
.0
.0
.0
1.7
.00( )
.65( )
12.82(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.22( )
10
0.
4.8
4.8
3.0
.0
.0
.0
.0
.0
.0
1.7
.00( )
.65( )
12.80(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.21( )
10
5.
4.7
4.7
3.0
.0
.0
.0
.0
.0
.0
1.6
'
.00( )
.64( )
12.78(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.21( )
'
10
10.
4.7
4.7
3.0
.0
.0
.0
.0
.0
.0
1.6
.00( )
.64( )
12.76(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.21( )
10
15.
4.6
4.6
3.0
.0
.0
.0
.0
.0
.0
1.5
.00( )
.64( )
12.74(S)
..01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.21( )
'
10
20.
4.6
4.6
3.0
.0
.0
.0
.0
.0
.0
1.5
.00( )
.63( )
12.72(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.20( )
10
25.
4.5
4.5
3.0
.0
.0
.0
.0
.0
.0
1.4
.00( )
.63( )
12.70(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.20( )
10
30.
4.5
4.5
3.0
.0
.0
.0
.0
.0
.0
1.4
'
.00( )
.63( )
12.68(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.20( )
10
35.
4.4
4.4
3.0
.0
.0
.0
.0
.0
.0
1.3
.00( )
.62( )
12.66(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.20( )
10
40.
4.4
4.4
3.0
.0
.0
.0
.0
.0
.0
1.3
.00( )
.62( )
12.64(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.19( )
'
10
45.
4.4
4.4
3.0
.0
.0
.0
.0
.0
.0
1.3
.00( )
.62( )
12.62(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.19( )
10
50.
4.3
4.3
3.0
.0
.0
.0
.0
.0
.0
1.2
.00( )
.61( )
12.60(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.19( )
10
55,
4.3
.00( )
4.3
.61( )
3.0
12.57(S)
.0
.01( )
.0
.01( )
.0
.01( )
.0
.04( )
.0
.00( )
.0
.02( )
1.2
.19( )
'
11
0.
4.2
4.2
3.0
.0
.0
.0
.0
.0
.0
1.1
.00( )
.61( )
12.55(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.18( )
11
5.
4.2
4.2
3.0
.0
.0
.0
.0
.0
.0
1.1
.00( )
.60( )
12.53(S)
.01( )
.01( )
.01( )
.04( )
.00( )
.02( )
.18( )
11
10.
4.1
4.1
3.0
.0
.0
.0
.0
.0
.0
1.1
'
.00( )
.60( )
12.51(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.18( )
11
15.
4.1
4.1
3.0
.0
.0
.0
.0
.0
.0
1.0
.00( )
.60( )
12.49(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.18( )
11
20.
4.1
4.1
3.0
.0
.0
.0
.0
.0
.0
1.0
.00( )
.59( )
12.47(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.18( )
11
25.
4.0
4.0
3.0
.0
.0
.0
.0
.0
.0
1.0
.00( )
.59( )
12.45(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.17( )
11
30.
4.0
4.0
3.0
.0
.0
.0
.0
.0
.0
.9
.00( )
.59( )
12.43(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.17( )
11
35.
4.0
4.0
3.0
.0
.0
.0
.0
.0
.0
.9
'
.00( )
.59( )
12.41(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.17( )
11
40.
3.9
3.9
3.0
.0
.0
.0
.0
.0
.0
.9
.00( )
.58( )
12.39(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.17( )
11
45.
3.9
3.9
3.0
.0
.0
.0
.0
.0
.0
.8
11
50.
.00( )
3.9
.58( )
3.9
12.37(S)
3.0
.01( )
.0
.01( )
.0
.01( )
.0
.03( )
.0
.00( )
.0
.02( )
.0
.16( )
.8
'
.00( )
.58( )
12.35(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.16( )
11
55.
3.8
3.8
3.0
.0
.0
.0
.0
.0
.0
.8
.00( )
.58( )
12.33(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.16( )
12
0.
3.0
3.8
3.0
.0
.0
.0
.0
.0
.0
.7
.00( )
.57( )
12.31(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.16( )
'
12
5.
3.8
3.8
3.0
.0
.0
.0
.0
.0
.0
.7
.00( )
.57( )
12.29(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.16( )
12
10.
3.7
3.7
3.0
.0
.0
.0
.0
.0
.0
.7
.00( )
.57( )
12.27(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.15( )
12
15.
3.7
3.7
3.0
.0
.0
.0
.0
.0
.0
.7
'
.00( )
.57( )
12.25(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.15( )
12
20.
3.7
3.7
3.0
.0
.0
.0
.0
.0
.0
.6
.00( )
.56( )
12.23(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.15( )
12
25.
3.7
3.7
3.0
.0
.0
.0
.0
.0
.0
.6
.00( )
.56( )
12.21(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.15( )
'
12
30.
3.6
3.6
3.0
.0
.0
.0
.0
.0
.0
.6
.00( )
.56( )
12.19(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.14( )
12
35.
3.6
3.6
3.0
.0
.0
.0
.0
.0
.0
.6
.00( )
.56( )
12.16(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.14( )
12
40,
3.6
3.6
3.0
.0
.0
.0
.0
.0
.0
.5
.00( )
.55( )
12.14(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.14( )
'
12
45.
3.5
3.5
3.0
.0
.0
.0
.0
.0
.0
.5
.00( )
.55( )
12.12(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.14( )
12
50.
3.5
3.5
3.0
.0
.0
.0
.0
.0
.0
.5
.00( )
.55( )
12.10(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.14( )
12
55.
3.5
3.5
3.0
.0
.0
.0
.0
.0
.0
.5
.00( )
.55( )
12.08(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.13( )
13
0.
3.5
3.5
3.0
.0
.0
.0
.0
.0
.0
.5
.00( )
.55( )
12.06(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.13( )
13
5.
3.5
3.5
3.0
.0
.0
.0
.0
.0
.0
.4
.00( )
.54( )
12.04(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.13( )
13
10.
3.4
3.4
3.0
.0
.0
.0
.0
.0
.0
.4
.00( )
.54( )
12.02(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.13( )
13
15.
3.4
3.4
3.0
.0
.0
.0
.0
.0
.0
.4
.00( )
.54( )
12.00(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.12( )
13
20,
3.4
3.4
3.0
.0
.0
.0
.0
.00( )
.54( )
11.98(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.12( )
'
13
25.
3.4
3.4
3.0
.0
.0
.0
.0
.0
.0
.4
.00( )
.54( )
11.96(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.12( )
13
30.
3.3
3.3
3.0
.0
.0
.0
.0
.0
.0
.3
.00( )
.54( )
11.94(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.12( )
13
35.
3.3
3.3
3.0
.0
.0
.0
.0
.0
.0
.3
.00( )
.53( )
11.92(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.12( )
'
13
40.
3.3
3.3
2.9
.0
.0
.0
.0
.0
.0
.3
.00( )
.53( )
11.90(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.11( )
13
45.
3.3
3.3
2.9
.0
.0
.0
.0
.0
.00( )
.53( )
11.88(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.0
.02( )
.3
.11( )
'
13
50.
3.3
3.3
2.9
.0
.0
.0
.0
.0
.0
.3
.00( )
.53( )
11.86(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.11( )
13
55.
3.3
3.3
2.9
.0
.0
.0
.0
.0
.0
.3
.00( )
.53( )
11.84(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.11( )
14
0.
3.2
3.2
2.9
.0
.0
.0
.0
.0
.0
.3
.00( )
.53( )
11.82(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.10( )
14
5.
3.2
3.2
2.9
.0
.0
.0
.0
.0
.0
.2
.00( )
.53( )
11.80(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.10( )
14
10.
3.2
3.2
2.9
.0
.0
.0
.0
.0
.0
.2
.00( )
.52( )
11.78(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.10( )
'
14
15.
3.2
3.2
2.9
.0
.0
.0
.0
.0
.0
.2
.00( )
.52( )
11.76(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.10( )
14
20.
3.2
3.2
2.9
.0
.0
.0
.0
.0
.0
.2
.00( )
.52( )
11.74(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.10( )
'
14
14
25,
30.
3.2
.00( )
3.2
.52( )
2.9
11.72(S)
.0
.01( )
.0
.01( )
.0
.01( )
.0
.03( )
.0
.00( )
.0
.02( )
.2
.09( )
3.1
3.1
2.9
.0
.0
.0
.0
.0
.0
.2
.00( )
.52( )
11.70(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.09( )
14
35.
3.1
3.1
2.9
.0
.0
.0
.0
.0
.0
.2
.00( )
.52( )
11.68(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.09( )
14
40.
3.1
3.1
2.9
.0
.0
.0
.0
.0
.0
.2
'
.00( )
.52( )
11.66(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.09( )
14
45.
3.1
3.1
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.52( )
11.64(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.09( )
14
50.
3.1
3.1
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.62(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.08( )
'
14
55.
3.1
3.1
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.60(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.08( )
15
0.
3.1
3.1
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.58(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.08( )
15
5.
3.1
.00( )
3.1
.51( )
2.9
11.56(S)
.0
.01( )
.0
.01( )
.0
.01( )
.0
.03( )
.0
.00( )
.0
.02( )
.1
.08( )
15
10.
3.1
3.1
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.54(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.07( )
15
15.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.1
'
15
20.
.00( )
3.0
.51( )
3.0
11.52(S)
2.9
.01( )
.0
.01( )
.0
.01( )
.0
.03( )
.0
.00( )
.0
.02( )
.0
.07( )
.1
.00( )
.51( )
11.50(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.07( )
15
25.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.48(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.07( )
15
30.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.46(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.07( )
'
15
35.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.44(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.07( )
15
40.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.42(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.06( )
15
45.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.51( )
11.40(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.06( )
15
50.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.1
.00( )
.50( )
11.38(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.06( )
15
55.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.1
16
0.
.00( )
3.0
.50( )
3.0
11.36(S)
2.9
.01( )
.0
.01( )
.0
.01( )
.0
.03( )
.0
.00( )
.0
.02( )
.0
.06( )
.1
.00( )
.50( )
11.34(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.06( )
16
5.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.32(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.06( )
16
10.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.30(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.0
.05( )
'
16
15.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.28(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.05( )
16
20.
3.0
3.0
2.9
.0
.0
.0
.0
.0',
.0
.0
.00( )
.50( )
11.26(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.05( )
16
25.
3.0
3.0
2.9
.0
.0
.0
.0
.0
.0
.0
'
.00( )
.50( )
11.24(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.05( )
16
30.
2.9
2.9
2.9
.0
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.22(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.05( )
16
35.
2.9
2.9
2.9
.0
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.20(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.05( )
16
40.
2.9
2.9
2.9
.0
.0
.0
.0
.0
.0
.0
'
.00( )
.50( )
11.18(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.05( )
16
45.
2.9
2.9
2.9
.0
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.16(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.05( )
16
50.
2.9
2.9
2.9
.0
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.14(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.05( )
'
16
55.
2.9
2.9
2.9
.0
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.12(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
17
0.
2.9
2.9
2.9
.0
.0
.0
.0
.0
.0
.0
.00( )
.50( )
11.10(S)
.01( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
17
5.
2.9
2.9
2.9
.0
.0
.0
.0
.0
.0
.0
'
.00( )
.50( )
11.08(S)
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
t17
10.
2.9
2.9
2.9
.00( )
.50( )
11.06(S)
17
15.
2.9
2.9
2.9
.00( )
.50( )
11.04(S)
'
17
20.
2.9
2.9
2.9
.00( )
.50( )
11.02(S)
17
25.
2.9
2.9
2.9
.00( )
.50( )
11.00(S)
17
30.
2.9
2.9
2.9
'
.00( )
.50( )
10.98(S)
17
35.
2.9
2.9
2.9
.00( )
.50( )
10.96(S)
17
40,
2.9
2.9
2.9
17
95.
.00( )
2.9
.50( )
2.9
10.99 (S)
2.9
'
.00( )
.50( )
10.92(S)
17
50.
2.9
2.9
2.9
.00( )
.50( )
10.90(S)
17
55.
2.9
2.9
2.9
.00( )
.50( )
10.88(S)
'
18
0.
2.9
2.9
2.9
.00( )
.50( )
10.86(S)
18
5.
2.9
2.9
2.9
.00( )
.50( )
10.84(S)
18
10.
2.9
2.9
2.9
'
.00( )
.50( )
10.82(S)
18
15.
2.9
2.9
2.9
.00( )
.50( )
10.80(S)
18
20.
2.9
2.9
2.9
.00( )
.50( )
10.78(S)
t
16
25.
2.9
2.9
2.9
.00( )
.50( )
10.76(S)
18
30.
2.9
2.9
2.9
.00( )
.50( )
10.74(S)
18
35,
2.9
.00( )
2.9
.50( )
2.9
10.72 (S)
'
18
40.
2.9
2.9
2.9
.00( )
.50( )
10.70(S)
18
45.
2.9
2.9
2.9
.00( )
.50( )
10.68(S)
18
50.
2.9
2.9
2.9
.00( )
.50( )
10.66(S)
18
55.
2.9
2.9
2.9
.00( )
.50( )
10.64(S)
19
0.
2.9
2.9
2.9
.00( )
.49( )
10.62(S)
'
19
5.
2.9
2.9
2.9
.00( )
.49( )
10.60(S)
19
10.
2.9
2.9
2.9
.00( )
.49( )
10.58(S)
19
15.
2.9
2.9
2.9
'
.00( )
.49( )
10.56 (S)
19
20.
2.9
2.9
2.9
.00( )
.49( )
10.54(S)
19
25.
2.9
2.9
2.9
.00( )
.99( )
10.52 (S)
19
30.
2.9
2.9
2.9
'
.00( )
.49( )
10.50(S)
19
35.
2.9
2.9
2.9
.00( )
.49( )
10.46(S)
19
40.
2.9
2.9
2.9
.00( )
.49( )
10.46(S)
'
19
45.
2.9
2.9
2.9
.00( )
.49( )
10.44(S)
19
50.
2.9
2.9
2.9
.00( )
.49( )
10.42(S)
19
55.
2.9
2.9
2.8
'
.00( )
.49( )
10.90(S)
20
0.
2.9
2..9
2.8
.00( )
.49( )
10.38(S)
THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL
STABILITY PROBLEMS THAT LEAD TO HYDRAULIC
t
OSCILLLATIONS DURING THE
SIMULATION.
301
302
303 304 306
' Waterfield SWMM for First Filing
100-YEAR Rainfall Event
.0.
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.04( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0 _
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.03( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.02( )
.0
.0
.0
.0
.0
.0
.0
.00( )
.01( )
.01( )
.03( )
.00( )
.02( )
.02( )
I
***
DETENSION DAMS **•
PEAK FLOWS,
STAGES
AND STORAGES
OF GUTTERS
AND
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT
(CFS)
(FT)
(AC -FT)
(HR/MIN)
'
1
86.4
(DIRECT FLOW)
0 55.
300
86.4
2.5
0 55.
301
3.0
.1
14.1
3 35.
302
224.8
3.1
0 40.
'
303
85.3
4.0
0 40.
304
95.5
3.9
0 40.
305
122.5
2.9
0 40.
306
7.3
.3
0 35.
3.3
1.
0 .
'
310 10 �
7373.9
.9
55
0 55.
ENDPROGRAM PROGRAM CALLED
I
L
u
DETENTION
r
I
I
i
I
DETENTION POND HIGH WATER LINE
WATERFIELD 1ST WATER QUALITY POND
25,264.0 = REQ. VOLUME
CONTOUR AREA AVG AREA
INTERVAL CUMULATIVE HIGH WATER Contour
Storage
(sq.fL) (sq.ft.)
VOLUME (cu.ft) VOL (cu.ft.) LINE (ft.)
43.0 4,824.0
43.0
0.0
20,300.0
11,913.4 11,913.4
44.0 35,776.0
44.3 44.0
0.3
49,172.5
48,552.5 60,465.9
45.0 62,569.0
44.6 45.0
1.4
81,051.5
80,339.7 140,805.E
46.0 99,534.0
45.0 46.0
3.2
113.475.8 254,281.4
r113,774.0
47.0 128,014.0
45.5 47.0
5.8
149,727.0
149,199.4 403,480.8
48.0 171,440.0
46.1 48.0
9.3
r�
194,852.0
194,381.5 597,862.2
49.0 218,264.0
46.5 49.0
13.7
229,970.0
114,935.3 712,797.5
49.5 241,676.0
0.0 49.5
16.4
NOTES: 1. FOR THE FIRST CONTOUR VOLUME A CONIC SHAPE WAS ASSUMED
1
VOL. = 113 (AREA ABOVE) (DIFFERENCE IN CONTOUR ELEV.)
2. FOR THE REMAIMDER OF THE
VOLUMES BETWEEN CONTOURS (SECTION 9.2)
VOL. = DEPTH/3 (A +(AB)A.5 + B) FOR: Uniform Sides sec.(9.2)
3. HWL=(VOL.REQ-VOL.LOW CUML)-3/(AREA LOW+AREA HIGH+(Iow area high area)A.5)
44.27 = HWL POND
ORIFICE SIZING
ORIGINAL DESIGN DATA
3.00 = Allowable Des. Release Rate(ds)
NOTE: 1. VERT. PLATES WILL BE PLACED
42 75 = Flowline Orifice Elevation(ft)
AT PIPE FLOWLINE
0.60 = Orifice Coefficient (Cd)
1.52 = Available Driving Head(ft)
VERT. CIRCULAR PLATE
84.62 = Outlet Area(inches)
5.19 = Circular radius(inches)
1.09 = Actual Hydraulic Driving Head(ft)
VERT. SQUARE PLATE
72.65 = Outlet Area(inches)
8.52 = Side for Sq. Opening(inches)
1.17 = Actual Hydraulic Driving Head(ft)
HORZ. CIRCULAR PLATE
72.65 = Outlet Area(inches)
4.81 = Circular radius(inches)
'
1.52 = Actual Hydraulic Driving Head(ft)
I
P�
DETENTION POND HIGH WATER LINE
WATERFIELD 1ST DETENTION POND
614,196.0 = REQ. VOLUME
CONTOUR
AREA AVG AREA INTERVAL CUMULATIVE HIGH WATER Contour Storage
U
i
(sq.ft.) (sq.ft.) VOLUME (cu.ft.) VOL (cu.ft.) LINE (ft.)
44.3
43,813.0
44.3 0.0
m
53,191.0 14,584.8 14,584.8
I
V.
45.0
62,569.0 0.0
81,051.5 80,339.7 94,924.5
45.0 0.3
-
46.0
99,534.0 0.0
46.0 2.2
n I
113,774.0 113,475.8 208,400.3
tt, ���JJI
111111
i
47.0
128,014.0 0.0
149,727.0 149.199.4 357„599.7
47.0 4.8
;
WJ
48.0
171,440.0 0.0
48.0 8.2
194,852.0 194.381.5 551,981.2
49.0
218,264.0 49.3
49.0 12.7
229,970.0 183,896.5 735,877.7
�
II
, n
49.8
241,676.0 0.0
49.8 16.9
i
NOTES:
1. FOR THE FIRST CONTOUR VOLUME A CONIC SHAPE WAS ASSUMED
VOL. = 1/3 (AREA ABOVE) (DIFFERENCE IN CONTOUR ELEV.)
2. FOR THE REMAIMDER OF THE VOLUMES BETWEEN CONTOURS (SECTION 9.2)
(1J�Jj
Q
1lJ
VOL. = DEPTH/3 (A +(AB)A.5 + B) FOR: Uniform Sides sec.(9.2)
n
-
vl
O
4
3. HWL=(VOL.REQ.-VOL.LOW CUML)-3/(AREA LOW+AREA HIGH+(low area high area)A.5)
Q
�II�UU..II�
49.27 = HWL POND
ORIFICE SIZING
it
ORIGINAL DESIGN DATA
3.00
= Allowable Des. Release Rate(cfs) NOTE: 1. VERT. PLATES WILL BE PLACED
42.75 = Flowline Orifice Elevabon(ft)
0.60 = Orifice Coefficient (Cd)
6.52 = Available Driving Head(ft)
VERT. CIRCULAR PLATE
35.91 = Outlet Area(inches)
3.38 = Circular radius(inches)
6.24 = Actual Hydraulic Driving Head(ft)
' VERT. SQUARE PLATE
35.14 = Outlet Area(inches)
5.93 = Side for Sq. Opening(inches)
6.27 = Actual Hydraulic Driving Head(ft)
HORZ. CIRCULAR PLATE
35.14 = Outlet Area(inches)
3.34 = Circular radius(inches)
6.52 = Actual Hydraulic Driving Head(ft)
AT PIPE FLOWLINE
1
I
--- ---
Z., z -
Z • tom%
49 _
I Z - ---- -
- 2 .9 -
4 i. �
14• 1
4�-'). 4-D
I z
J
lZ
SI LTd?l Ot�) 61iS I � .
pr=>z �w M ;�Jl ►v�,o�� Is- � u r,1C� -
��--r�.tT��
I4-.CAB
44 . Z"7
} 4. 1- n.c . FT 44.277 - 49 .
11,
DRAINAGE CRITERIA MANUAL (V. 3)
0
0,
0.'
t
STORMWATER QUALITY MANAGEMENT
5
xten
0-1-10
ad De
r Dralli
entlor
i time
Basl
(Dry)
loor
D
1
Aentic
-Hour
n Pon
Drain
Is (W
me
t)
ku cu ju au 50 60 70 80 90 100
Percent Impervious Area in Tributary Watershed
Source: Urbanos, Guo, Tucker (1989)
Note: Watershed Inches of runoff shall a��ppl to the
enure watershed tributary to the WFacility.
FIGURE 5-1. WATER QUALITY CAPTURE VOLUME (WQCV)
9-1-1992
UDFCD
DRAINAGE CRITERIA MANUAL(V. 3)
10.1
6.
4.
2.
1.i
0.61
m
0.41
m
0.2�
a
U
0.11
O
3 0.01
0.04
0.022
0.01
STRUCTURAL BMPs
MINEWEENJ
SOLUTION: Required Area or
VAA4,12AA
0100PAOI
14
For
14
10
IN
AAA
a
FAA
EINWAA
VAOJA
PAA
AJAWA
VAA
P OVA
Ellmol
IPA
U•U4 U.UC U.10 0.20 0.40 0.60 1.0 2.0 E 4.0 6.0
Required Area per Row (in.2)
z
Source: Douglas County Storm Drainage and Technical Criteria, 1986.
FIGURE 5-3. WATER QUALITY OUTLET SIZING: DRY EXTENDED DETENTION
BASIN WITH A 40-HOUR DRAIN TIME OF THE CAPTURE VOLUME
Rev. 3-1-1994
UDFCD
W7-IJa-7- =
4'.2:-7 - 4-2.77 c5 = t
'
I
0. 5E-
I N S a t= OF
8" -
" 6� b2��tC.E �P►.1E�,.
a4:>4= �x
r
No Text
0 3
49.3
TJ.
' 4-9.4a
14 .-7
4C)
is.z
gt.�
P
OPEN CHANNELS AND SWALES .
I
1
I
j
I
I
I
CHANNEL SECTION A -A
Worksheet for Triangular Channel
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
CHANNEL SECTION A -A
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
'
Mannings Coefficient
0.060
Channel Slope
0.006000 tuft
'
Left Side Slope
Right Side Slope
4.000000 H : V
4.000000 H : V
Discharge
24.87 cfs
'
Results
Depth
1.86 ft
Flow Area
13.87 ft2
Wetted Perimeter
15.36 ft
Top Width
14.90 ft
'
Critical Depth
1.19 ft
Critical Slope
0.064914 ft/ft
Velocity
1.79 ft/s
'
Velocity Head
0.05 ft
Specific Energy
1.91 ft
Froude Number
0.33
'
Flow is subcritical.
1
' 03/06/s8
03:11:22 PM
----- CDQ co E) .72
i
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
Ci
' CHANNEL SECTION A -A - 100 YEAR
Worksheet for Triangular Channel
'
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
CHANNEL SECTION A -A
'
Flow Element
Triangular Channel
Method
Manning's Formula
'
Solve For
Channel Depth
Input Data
'
Mannings Coefficient
0.060
Channel Slope
0.006000 ft/ft
Left Side Slope
4.000000 H : V
'
Right Side Slope
4.000000 H : V
Discharge
18.70 cfs-
'
Results
Depth
1.67 ft
'
Flow Area
11.20 ft2
Wetted Perimeter
13.80 ft
Top Width
13.39 ft
'
Critical Depth
1.06 ft
Critical Slope
0.067430 ft/ft
Velocity
1.67 ftis
Velocity Head
0.04 ft
Specific Energy
1.72 ft
Froude Number
0.32
'
Flow is subcritical.
LJ
I
' 03/06/s8
03:18:56 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
' CHANNEL SECTION A -A - MAX SLOPE
Worksheet for Triangular Channel
1
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
CHANNEL SECTION A -A
'
Flow Element
Triangular Channel
Method
Manning's Formula
'
Solve For
Channel Depth
Input Data
'
Mannings Coefficient
0.060
Channel Slope
0.040000 f 1ft $
Left Side Slope
4.000000 H : V
'
Right Side Slope
4.000000 H : V
Discharge
24.87 cfs
Results
Depth
1.30 ft
'
Flow Area
6.81 fP
Wetted Perimeter
10.76 ft
Top Width
10.44 ft
Critical Depth
1.19 ft
Critical Slope
0.064911 ft(ft
Velocity
3.65 ftis
'
Velocity Head
0.21 ft
Specific Energy
1.51 ft
Froude Number
0.80
.
Flow is subcritical.
03/06/s8
03:11:51 PM
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
I
' CHANNEL SECTION B-B
Worksheet for Triangular Channel
' Project Description
Project File c:\drainage\haestad\fmw\waterfin.fm2
' Worksheet CHANNEL SECTION B-B
Flow Element Triangular Channel
Method Manning's Formula
Solve For Channel Depth
Input Data
'
Mannings Coefficient
0.060
Channel Slope
0.006000ft/ft
Left Side Slope
4.000000 H : V
'
Right Side Slope
4.000000 H : V
Discharge
43.22 cfs
'
Results
Depth
2.29 ft
Flow Area
21.00 ft2
Wetted Perimeter
18.89 ft
'
Top Width
Critical Depth
18.33 ft
1.49 ft
Critical Slope
0.060301 ft/ft
Velocity
2.06 ft/s
'
Velocity Head
0.07 ft
Specific Energy
2.36 ft
Froude Number
0.34
'
Flow is subcritical.
1
I".
I
i
I
C4.oO = Z.d61
,06/20/97 FlowMaster v5.13
08:13:10 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 08708 (203) 755-1688 Page 1 of 1
I
1
CHANNEL SECTION B-B - 100 YEAR
Worksheet for Triangular Channel
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
CHANNEL SECTION B-B
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.060
Channel Slope
0.006000 ft/ft
Left Side Slope
4.000000 H : V
'
Right Side Slope
4.000000 H : V
Discharge
32.50 cfs
'
Results
Depth
2.06 ft
Flow Area
16.96 ft,
Wetted Perimeter
16.98 ft
Top Width
16,47 ft
Critical Depth
1.33 ft
Critical Slope
0.062639 ft/ft
Velocity
1.92 ft/s
'
Velocity Head
0.06 ft
Specific Energy
2.12 ft
Froude Number
0.33
'
Flow is subcritical.
1
' 03/06/98
03:36:10 PM
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 o#1
r�
IJ
REVISED SECTION C-C -
Worksheet for Trapezoidal Channel
Project Description
Project File
c:\drainageXhaestad\fmw\waterfin.fm2
Worksheet
CHANNEL SECTION C-C
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.060
Channel Slope
0.080000
ft/ft
Left Side Slope
3.000000
H : V
Right Side Slope
3.000000
H : V
Bottom Width
8.00
ft
Discharge
27.40
cfs
Results
Depth
0.62
ft
Flow Area
6.11
ft2
Wetted Perimeter
11.92
ft
Top Width
11.72
ft
Critical Depth
0.66
ft
Critical Slope
0.065662 ft/ft
Velocity
4.49
ftis
Velocity Head
0.31
ft
Specific Energy
0.93
ft
Froude Number
1.10
Flow is supercritical.
07/14/98
01:19:45 PM
_c tZZ,
T`_iP_IC-01L_LI,u--S�J-
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13'
Page 1 of 1
' REVISED SECTION C-C -
Worksheet for Trapezoidal Channel
Project Description
Project File c:\drainage\haestad\fmw\waterfin.fm2
' Worksheet CHANNEL SECTION C-C
Flow Element Trapezoidal Channel
Method Manning's Formula
Solve For Channel Depth
Input Data
'
Mannings Coefficient
0.060
Channel Slope
0.080000 ft/ft
Left Side Slope
3.000000 H : V
Right Side Slope
3.000000 H : V
Bottom Width
8.00 ft
Discharge
20.60 cfs —6 (oo y�oulS
'
Results
Depth
0.53 ft
Flow Area
5.04 ft2
Wetted Perimeter
11.33 ft
'
Top Width
11.16 ft
Critical Depth
0.55 ft
Critical Slope
0.068928 ft/ft
'
Velocity
4.08 ft/s
Velocity Head
0.26 ft
Specific Energy
0.79 ft
Froude Number
1.07
'
Flow is supercritical.
07/14/98 FlowMaster v5.13
01:19:16 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
1
1
1
1
CHANNEL SECTION D-D
Worksheet for Trapezoidal Channel
Project Description
Project File
c:\drainageXhaestad\fmwlwaterfin.fm2
Worksheet
CHANNEL SECTION D-D
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.060
Channel Slope
0.005000 ft(ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Bottom Width
2.00 ft
Discharge
45.75 cfs
Results
Depth
2.19
ft
Flow Area
23.49
ftz
Wetted Perimeter
20.03
ft
Top Width
19.49
ft
Critical Depth
1.30
ft
Critical Slope
0.059672 ft/ft
Velocity
1.95
ft/s
Velocity Head
0.06
ft
Specific Energy
2.25
ft
Froude Number
0.31
Flow is subcritical.
Q 1 c0 =
' 10/04/98
03:14:00 PM
f Ll a(D + 5a/ = 4s:7 s
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
I
1
1
1
1
1
CHANNEL SECTION D-D -100 year flow
Worksheet for Trapezoidal Channel
Project Description
Project File c:ldrainage\haestadlfmw\waterfin.fm2
Worksheet CHANNEL SECTION D-D
Flow Element Trapezoidal Channel
Method Manning's Formula
Solve For Channel Depth
Input Data
Mannings Coefficient
0.060
Channel Slope
0.005000
ft/ft
Left Side Slope
4.000000
H : V
Right Side Slope .
4.000000
H : V
Bottom Width
2.00
ft
Discharge
34.40
cfs
Results
Depth
1.94
ft
Flow Area
18.98
ft'
Wetted Perimeter
18.02
ft
Top Width
17.54
ft
Critical Depth
1.13
ft
Critical Slope
0.061993 ft/ft
Velocity
1.81
ft/s
Velocity Head
0.05
ft
Specific Energy
1.99
ft
Froude Number
0.31
Flow is subcritical.
' 10/04M
03:11:51 PM
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookskte Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
1
1
1
i
CHANNEL SECTION E-E
Worksheet for Triangular Channel
Project Description
Project File
c:ldrainage\haestad\fmw\waterfin.fm2
Worksheet
REVISED CHANNEL SECTION E-E
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
1
Mannings Coefficient
0.035
Channel Slope
0.004000 f fft
Left Side Slope
4.000000 H : V
1
Right Side Slope
4.000000 H : V
Discharge
134.33 cfs
1
Results
1
Depth
Flow Area
3.09 ft
38.20 ftz
Wetted Perimeter
25.48 ft
Top Width
24.72 ft
Critical Depth
2.34 ft
Critical Slope
0.017640 ft/ft
Velocity
3.52 ft/s
1
Velocity Head
0.19 ft
Specific Energy
3.28 ft
Froude Number
0.50
'
Flow is subcritical.
1 1 _ 24321
1 z�
—
II''
' 4• �
1 06/17/98
03:42:10 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
1 _
O,
3.cf'!�
FlowMaster v5.13
Page 1 of 1
CHANNEL SECTION E-E - 100 yr
Worksheet for Triangular Channel
Project Description
Project File
c:ldrainagelhaestad\fmw\waterfin.fm2
Worksheet
REVISED CHANNEL SECTION E-E
Flow Element
Triangular Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.004000 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
101.00 cfs
Results
Depth
Flow Area
2.78 ft
30.84 f 2
Wetted Perimeter
22.90 ft
Top Width
22.21 ft
.
■
Critical Depth
2.09 ft
Critical Slope
0.018324 f 1ft
Velocity
3.27 ftfs
Velocity Head
0.17 ft
Specific Energy
2.94 ft
Froude Number
0.49
Flow is subcritical.
I
I
I
06n 7/98
03:42:27 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
I
I
REVISED CHANNEL SECTION F-F
Worksheet for Trapezoidal Channel
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
REVISED SECTION F-F
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
1
Mannings Coefficient
0.035
Channel Slope
0.003000 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Bottom Width
2.00 ft
Discharge
172.50 cfs
Results
Depth 3.34
ft
Flow Area 51.34
ft,
Wetted Perimeter 29.55
ft
Top Width 28.73
ft
Critical Depth 2.35
ft
Critical Slope 0.017017 fttft
Velocity 3.36 ftfs
Velocity Head 0.18
ft
Specific Energy 3.52
ft
Froude Number 0.44
Flow is subcritical.
vet E.surr.
o
_
1
Z,
V,//Gt oe.1C • P�.�l
09/01 /98
08:38:09 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
3.�
M t►.3
FlowMaster v5.13
Page 1 of 1
I
I
I
I
REVISED CHANNEL SECTION F-F - 100 YR DEV
Worksheet for Trapezoidal Channel
Project Description
Project File
c:\drainagelhaestad\fmw\waterfin.fm2
Worksheet
REVISED SECTION F-F
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.003000 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Bottom Width
2.00 ft
Discharge
129.70 cfs
Results
Depth
2.98
ft
Flow Area
41.46
ft2
Wetted Perimeter
26.57
ft
Top Width
25.83
ft
Critical Depth
2.07
ft
Critical Slope
0.017674 ft/ft
Velocity
3.13
ft/s
Velocity Head
0.15
ft
Specific Energy
3.13
ft
Froude Number
0.44
Flow is subcritical.
09f01 /98
08:40:22 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
copkr. 4*A
*
#
CARDER CONCRETE PRODUCTS COMPANY
CONCRETE
U �
8311 W. CARDER CT.
LITTLETON.CO80125
(303) 791-1600 (303) 791-1710 FAX
h
Q Kh
OLORAD SPRINGS, CO80931
ADOUG
DATE
PAGE of
d. A*J NEt-
Reinforced Concrete Sewer, Culvert & Irrigation Pipe It2" thru 144")
Reinforced Concrete Elliptical Pipe (18" thru 144"1 Precast Inlets
Precast Concrete Box Culverts "I Buy It, Bury It, Never Look Back" Stormceptor°
I
I
I
CHANNEL SECTION H-H - 100 YEAR DEVELOPED
Worksheet for Trapezoidal Channel
Project Description
Project File
c:ldrainage\haestadlfmw\waterfin.fm2
Worksheet
CHANNEL SECTION G-G
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.004000
ft/ft
Left Side Slope
4.000000
H : V
Right Side Slope
4.000000
H : V
Bottom Width
4.00
ft
Discharge
354.98
cfs
Results
Depth
3.98
ft
Flow Area
79.28
ftz
Wetted Perimeter
36.82
ft
Top Width
35.84
ft
Critical Depth
2.99
ft
Critical Slope
0.015450 ft/ft
Velocity
4.48
ft(s
Velocity Head
0.31
ft
Specific Energy
4.29
ft
Froude Number
0.53
Flow is subcritical.
08/21 /98
02:01:55 PM
'�lodx
3. �3
m
,I oo + 33 _ ,mod-�i8 cis
IJ
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
o1
3.9mt
M4.
FlowMaster v5.13
Page 1 of 1
I
1
CHANNEL SECTION H-H - 100 YEAR DEVELOPED
Worksheet for Trapezoidal Channel
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
CHANNEL SECTION G-G
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
Channel Slope
0.004000 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Bottom Width
4.00 ft
Discharge
266,90 cfs
Results
Depth
3.53 ft
Flow Area
64.05 ft2
Wetted Perimeter
33.13 ft
Top Width
32.26 ft
Critical Depth
2.63 ft
Critical Slope
0.016050 ft/ft
Velocity
4.17 ftis
Velocity Head
0.27 ft
Specific Energy
3.80 ft
Froude Number
0.52
Flow is subcritical.
08/21r98
02:02:24 PM Haestad Methods, Inc. 37 Brookside Road Wiaterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
I
I
CHANNEL SECTION 1 -1
Worksheet for Triangular Channel
Project Description
Project File c:\drainage\haestad\fmw\waterfin.fm2
Worksheet CHANNEL SECTION 1-1
Flow Element Triangular Channel
Method Manning's Formula
Solve For Channel Depth
Input Data
Mannings Coefficient
0.060
Channel Slope
0.003600 f 1ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Discharge
10.38 cfs
Results
Depth
1.48
ft
Flow Area
8.72
ft2
Wetted Perimeter
12.18
ft
Top Width
11.82
ft
Critical Depth
0.84
ft
Critical Slope
0.072932 ftfft
Velocity
1.19
ft/s
Velocity Head
0.02
ft
Specific Energy
1.50
ft
Froude Number
0.24
Flow is subcritical.
I�
03/17/98
03:44:46 PM
GZJoo.=....7.i=�>ctS
1 zI KAI�J
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
i
SECTION J-J
Worksheet for Trapezoidal Channel
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
SECTION J-J
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.060
Channel Slope
0.011800 ft/ft
Left Side Slope
4.000000 H : V
Right Side Slope
4.000000 H : V
Bottom Width
2.00 ft
Discharge
28.73 cfs
Results
Depth
1.50
ft
Flow Area
12.03
ft2
Wetted Perimeter
14.39
ft
Top Width
14.02
ft
Critical Depth
1.04
ft
Critical Slope
0.063508 f 1ft
Velocity
2.39
ft(s
Velocity Head
0.09
ft
Specific Energy
1.59
ft
Froude Number
0.45
Flow is subcritical.
I
�10/21 /98
08:38:59 AM
I .oZ1 i nI,1.
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
O
FlowMaster v5.13
Page 1 of 1
I
I
I
SECTION J-J - 100 YEAR FLOWS
Worksheet for Trapezoidal Channel
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
SECTION J-J
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.060
Channel Slope
0.011800
ft/ft
Left Side Slope
4.000000
H : V
Right Side Slope
4.000000
H : V
Bottom Width
2.00
ft
Discharge
21.60
cfs
Results
Depth
1.33
ft
Flow Area
9.72
ft2
Wetted Perimeter
12.96
ft
Top Width
12.63
ft
Critical Depth
0.91
ft
Critical Slope
0.065996 ft/ft
Velocity
2.22
ft/s
Velocity Head
0.08
ft
Specific Energy
1.41
ft
Froude Number
0.45
Flow is subcritical.
1021/98
08:39:43 AM
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
I
I
DOWNSTREAM SECTION 59+00 - FULL FLOW
Worksheet for Irregular Channel
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
STA 59+00 - WEST OF LAKE CANAL
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
1
Channel Slope 0.000800 ft(ft
Water Surface Elevation 42.90 ft
Elevation range: 39.90 ft to 43.00 ft.
Station (ft) Elevation (ft) Start Station
0.00 42.90 0.00
15.30 42.00
26.40 41.00
28.20 39.90
29.60 41.00
'
33.80 42.00
-
36.90 43.00
rResults
Wtd. Mannings Coefficient
0.060
Discharge
26.10
cfs
Flow Area
37.40
ft2
Wetted Perimeter
37.61
ft
Top Width
36.59
ft
Height
3.00
ft
Critical Depth
41.60
ft
Critical Slope
0.070916
ft/ft
1
Velocity
0.70
ftis
Velocity Head
0.01
ft
Specific Energy
42.91
ft
'
Froude Number
0.12
Flow is subcritical.
I
I
09/01/98
10:02:32 AM
wz_-�-7- Ol= �l 2+4�
End Station Roughness
36.90 0.060
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
I
1
I
I
I
I
DOWNSTREAM SECTION 60+00 - FULL FLOW
Worksheet for Irregular Channel
Project Description
Project File
c:\drainage\haestad\fmw\waterfin.fm2
Worksheet
STA 60+00 - WEST OF LAKE CANAL
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Channel Slope
0.000800 ft/ft
Water Surface Elevation 43.10 ft
Elevation range: 39.95 ft to 44.00 ft.
Station (ft)
Elevation (ft) Start Station
0.00
43.10 0.00
5.40
43.00
23.30
42.00
26.80
39.95
34.30
43.00
38.20
44.00
Results
Wtd. Mannings Coefficient
0.060
Discharge
19.33
cfs
Flow Area
30.65
ft2
Wetted Perimeter
35.88
ft
Top Width
34.69
ft
Height
3.15
ft
Critical Depth
41.35
ft
Critical Slope
0.068092 ft(ft
Velocity
0.63
ftis
Velocity Head
0.01
ft
Specific Energy
43.11
ft
Froude Number
0.12
Flow is subcritical.
End Station Roughness
38.20 0.060
09/01/98
10:09:22 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
I
I
I
I
I
DOWNSTREAM SECTION 61+00 - FULL FLOW
Worksheet for Irregular Channel
Project Description
Project File
c:\drainageVhaestadlfmw\waterfin.fm2
Worksheet
STA 61+00 - WEST OF LAKE CANAL
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Channel Slope
0.000800 ft(ft
Water Surface Elevation 43.20 ft
Elevation range: 40.00
ft to 44.00 ft.
Station (ft)
Elevation (ft) Start Station
0.00
43.20 0.00
7.80
43.00
27.00
40.00
29.90
43.00
37.80
44.00
End Station Roughness
37.80 0.060
Results
'
Wtd. Mannings Coefficient
0.060
Discharge
29.90
cfs
Flow Area
38.51
ftz�—�� ---___� -% 0--- ----- _ -
'
Wetted Perimeter
33.00
ft
Top Width
31.48
ft
Height
3.20
ft
Critical Depth
41.33
ft
Critical Slope
0.065690 f tft
Velocity
0.78
ft/s
Velocity Head
0.01
ft
1
Specific Energy
43.21
ft
Froude Number
0.12
Flow is subcritical.
' 09/01/98 FlowMaster v5.13
10:31:12 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
mmmmmmm
� mmmmmmm
U U U U U U U
NHlvlvhtriv
888�8��
9 9 9 8 8 2 2
t vi ri: o; m: r'
v _
888888�
u ai ui o a' b A
a
J v
N 1� m % ♦ lA9 W
�j
N N N ac ui m N
3Y £
RRIA'ovNcd
N ti
m m
vi N N vi ad Id m
pp pp pp pp
W b b b 49 b
C C C G Op O G
Q
8 n N n
sV
o00 •pia_
�M�et��l`�C7
r
1
o.s
SUMS TL1.1 Ua14T Y4
us r- TY Pa. L_ CC 1' dss �, P P�
1 0 I N io -raP ot-- ,
I
Z I M i rJ �osT 'TZ5 SLOP
fDLJC-
'
1
1
Q = 1 z9.7.
I-7
CSS-i�a,�
'
P�2 TL'k�L.� g • Z - NO ;2l i�
e�>' ��� I P.€D
� a�� � duo � �" = • c>S>= IZn
I
1
I
I
I
I
I
�I
I
STORM SEWER AND INLETS
STORM INLETS
DRAINAGE CRITERIA MANUAL
--I
-- - --------------�----------2.g�_/_sue � ��
a.
0.e
0.7
0.6
f-
w
z 0.5
ir
w
> 0.4
0
x
I —
a. 0.3
w
0
0
? 0.2
0
z
0
a 0.1
EXAMPLE
0.01111111111111111111111111III
' 0 1 2 3. 4
FLOW INTO INLET PER SO. FT. OF OPEN AREA.(CFS/FT2)
' FIGURE 4-I. CAPACITY OF GRATED INLET IN SUMP
1 v.l..la I �.JG�-_ _�__ G�� �-i_-. _. J W �.ic.C�� � �...._�J.�Q►1?7_ —._� �Y� I � Y'�.
1
i
1
10-15-68
Denver Repionol Council of Governments
5
' Deeter Foundry, Inc.
I
1
P.O. Box 29708, Lincoln, Nebraska 68529
2060 Catch Basin Inlet Grate & Frame
Heavy Duty
Total Wt. — 470#
Open Area — 378 Sq. In.
oil
2060-A Catch Basin Inlet Grate & Frame
Heavy Duty
Total Wt. — 465#
Open Area — 378 Sq. In.
2061. Catch Basin Inlet Grate & Frame
Heavy Duty
Total Wt. — 460#
Open Area — 378 Sq. In.
80
Ust �c� ��-rE�. � �-7r3 � �� �►��
1 -
' � �sY�.ti► 2 y� z.2� l
I apy� g.-7o Z Z
f
1 Ioo yam, �•60 3 �
1 � vP�TES r' ^ � �� ��.o.T�D �y To.r.� �v ���tt_c1a��a t'-L�►�c= Z.eZ
1
1
�/D¢ IOOYe ��1.21J l�fa Z
i
UDINLET:-------INLET------HYDARULICS-----------AND----SIZING ---------------------------
DEVELOPED BY
' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------------------------------------------------------------------------------
fER:Northern Engineering Services -Ft Collins Colorado .......................
DATE 01-30-1998 AT TIME 14:28:31
*** PROJECT TITLE: WATERFIELDIST
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
I
I
1
1
INLET ID NUMBER: 0
INLET HYDRAULICS:
IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
HEIGHT OF CURB OPENING (in)=
INCLINED THROAT ANGLE (degree)=
LATERAL WIDTH OF DEPRESSION (ft)=
SUMP DEPTH (ft)=
Note: The sump depth is additional
STREET GEOMETRIES:
10.00
6.00
0.00
2.00
0.00
depth to'flow depth.
STREET
LONGITUDINAL
SLOPE (t) =
0.40
STREET
CROSS SLOPE
(O =
2.00
STREET
MANNING N
=
0.016
GUTTER
DEPRESSION
(inch)=
1.50
GUTTER
WIDTH
(ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 19.38
GUTTER FLOW DEPTH (ft) = 0.51
FLOW VELOCITY ON STREET (fps)= 2.45
' FLOW CROSS SECTION AREA (sq ft)= 3.88
GRATE CLOGGING FACTOR (%;)= 50.00
CURB OPENNING CLOGGING FACTOR($)= 15.00
i
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (CfS)=
BY FAA HEC-12 METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
BY DENVER UDFCD METHOD: DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
11.48
(cfs) =
9.40
(cfs)=
9.40
(cfs)=
0.00
(cfs)=
9.40
(cfs)=
9.40
(cfs)=
0.00
-------------- UDINLET: -------INLET------HYDARULICS-----------AND----SIZING ---------------------------
'
DEVELOPED BY
' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------------------------------------------------------------------------------
USER:Northern Engineering Services -Ft Collins Colorado .......................
,N DATE 01-30-1998 AT TIME 14:42:47
*** PROJECT TITLE: WATERFIELDIST
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
'
INLET ID NUMBER: 14
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 10.00
'
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 0.00
'
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.50
Note: The sump depth is additional depth to flow
depth.
'
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 28.80
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)=
24.80
FLOW INTERCEPTED (cfs)=
24.80
CARRY-OVER FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
24.80
FLOW INTERCEPTED (cfs)=
24.80
CARRY-OVER FLOW (cfs)=
0.00
L
1
1
Deeter Foundry, Inc. P.O. Box 29708, Lincoln. Nebraska 68529
1925-1927 Catch Basin Inlet Grates & Frames
Heavy Duty
1. Furnished with me(
2. Can be furnished H
Catalog Ho.
A B C_
1925
241/a 1 223/4
1926
241/a 1 22a/4
1927
241/a 1 223/4
a, S' PoT.+O aEt� 1"► E
1928 Catch Basin Inlet Grate & Frame
Heavy Duty
Total Wt. — 130#
Open Area — 200 Sq. In.
1. Furnished with machined horizontal bearing surfaces.
to
1930 Catch Basin Inlet Grate & Frame
Heavy Duty
Total Wt. — 420#
Open Area — 210 Sq. In.
1. Furnished with machined horizontal bearing surfaces.
261/i
1 r1Vs 1/"—� r—
S*
24'
263/4'
333/4' �f
63
I
------------ -------------------------------------------------------
• UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------------------------------------------------------------------------------
USER:Northern Engineering Services -Ft Collins Colorado .......................
�N DATE 01-30-1998 AT TIME 14:51:14
*** PROJECT TITLE: WATERFIELDIST
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
' INLET ID NUMBER: 'MC �,&� Ill ZO
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 10.00
'
HEIGHT OF CURB OPENING (in)= 6.00
INCLINED THROAT ANGLE (degree)= 0.00
'
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.50
Note: The sump depth is additional depth to flow
depth.
'
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 28.42
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)=
21.60
FLOW INTERCEPTED (cfs)=
21.60
CARRY-OVER FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
21.60
FLOW INTERCEPTED (cfs)=
21.60
'
CARRY-OVER FLOW (cfs)=
0.00
1
-------------------------------------------------------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED -BY- METRO -DENVER -CITIES/COUNTIES -AND -UD&FCD----------
---------- ---
ER:Northern Engineering Services -Ft Collins Colorado .......................
O DATE 01-30-1998 AT TIME 14:48:23
* PROJECT TITLE: WATERFIELDIST
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 21
INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 12.50
HEIGHT OF CURB OPENING (in)=
6.00
'
INCLINED THROAT ANGLE (degree)=
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
'
SUMP DEPTH (ft)= 0.50
Note: The sump depth is additional depth to flow
depth.
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
36.58
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
30.00
FLOW INTERCEPTED
(CfS)=
30.00
CARRY-OVER FLOW
(cfs)=
0.00
'
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
30.00
FLOW INTERCEPTED
(cfs)=
30.00
CARRY-OVER FLOW
(Cfs)=
0.00
1
1
------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
-------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
---------------------------------------------------------------
SER:Northern Engineering Services -Ft Collins Colorado........................
�N DATE 10-05-1998 AT TIME 07:44:32
** PROJECT TITLE: WATERFIELD 1ST
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 24
INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
10.00
HEIGHT OF CURB OPENING (in)=
6.00
'
INCLINED THROAT ANGLE (degree)=
0.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)= 0.16
Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (o) =
0.40
STREET CROSS SLOPE (o) =
2.00
STREET MANNING N =
0.016
'
GUTTER DEPRESSION (inch)=
1.50
GUTTER WIDTH (ft) =
2.00
' STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 21.25
' GUTTER FLOW DEPTH (ft) = 0.55
FLOW VELOCITY ON STREET (fps)= 2.58
FLOW CROSS SECTION AREA (sq ft)= 4.64
' GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR('-)= 15.00
INLET INTERCEPTION CAPACITY:
' IDEAL INTERCEPTION CAPACITY (cfs)= 22.65
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 11.90
FLOW INTERCEPTED (cfs)= 11.90
' CARRY-OVER FLOW (cfs)= 0.00
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.90
FLOW INTERCEPTED (cfs)= 11.90
CARRY-OVER FLOW (cfs)= 0.00
N G'rE 845 tJ �.% ZS Q lco =
' Or lz7 USE IC, Tv PE a
CAr Ponxz cA.)cj5 aarm�,�E
I
-------------------------------------------------------
--------------------UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
' DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------------------------------------------------------------------------------
JSER:Northern Engineering Services -Ft Collins Colorado .......................
N DATE 06-24-1998 AT TIME 11:31:31
*** PROJECT TITLE: VINE DRIVE VD4 %E!:�Iu \JD.3 W/ d.Qzy mer. TD UDA
' *** CURB OPENING INLET HYDRAULICS AND SIZING: Z VQ,. i>_wva%LoPvu>
INLET ID NUMBER: 4
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
17.50
REQUIRED CURB OPENING LENGTH (ft)=
8.27
IDEAL CURB OPENNING EFFICIENCY =
1.00
'
ACTURAL CURB OPENNING EFFICIENCY =
1.00
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
1.84
STREET CROSS SLOPE (%) =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
4.00
'
GUTTER WIDTH (ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
3.25
GUTTER FLOW DEPTH (ft) =
0.40
FLOW VELOCITY ON STREET (fps)=
4.99
FLOW CROSS SECTION AREA (sq ft)=
0.44
GRATE CLOGGING FACTOR (°s)=
50.00
CURB OPENNING CLOGGING FACTOR('s)=
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
2.20
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
2.20
FLOW INTERCEPTED
(cfs)=
2.20
CARRY-OVER
FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
2.20
FLOW INTERCEPTED
(cfs)=
1.98
CARRY-OVER
FLOW (cfs)=
0.22
I
------------------- -------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------------------------------------------------------------------------------
iLTSER:Northern Engineering Services -Ft Collins Colorado .......................
N DATE 06-24-1998 AT TIME 11:29:56
*** PROJECT TITLE: VINE DRIVE VD4 ,)&5iw VDVD--de
*** CURB OPENING INLET HYDRAULICS AND SIZING: _. ( _yQ„ veve-tJpao
INLET ID NUMBER: 4
INLET HYDRAULICS: ON A GRADE.
' GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
17.50
REQUIRED CURB OPENING LENGTH (ft)=
18.18
IDEAL CURB OPENNING EFFICIENCY =
1.00
ACTURAL CURB OPENNING EFFICIENCY =
0.97
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE ("s) =
1.84
STREET CROSS SLOPE ($) =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
4.00
,r
GUTTER WIDTH (ft) =
2.00
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET (ft) =
11.69
GUTTER FLOW DEPTH (ft) =
0.57
FLOW VELOCITY ON STREET (fps)=
4.85
FLOW CROSS SECTION AREA (sq ft)=
1.70
GRATE CLOGGING FACTOR (%)=
50.00
CURB OPENNING CLOGGING FACTOR(%)=
10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
8.28
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
8.30
FLOW INTERCEPTED (cfs)=
8.08
CARRY-OVER
FLOW (cfs)=
0.22
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
8.30
FLOW INTERCEPTED
(cfs)=
7.45
CARRY-OVER
FLOW (cfs)=
0.85
U
I OR
I'll
lip
N m �, O
O
LL - Q a
1
WATERFIELD 1ST FILING
STORM SEWER SYSTEM ALONG VINE DRIVE
2 15 , 20 , 3 2 , 1 , .8 500
300
.2 ,Y
2 100
4.9 , 3.8 2.7 2.2 , 1.8 1.4
.89
16
1, 55 0 1 12 0 0 0
174.4 0 2 .2 0 0 0 0
0
2 , 54.5 12 2 23 25 0 0
174.4 , 0 2 .2 0 0 0 0
0
3, 54.27 23 1 34 0 0 0
12.1 , 0 1, .1 0 0 0 0
0
4, 54.27 34 , 0 0 0 0 0
12.1 , 0 1 .1 0 0 0 0
0
5, 55.2 25 1 56 0 0 0
164.6 , 0 2 .2 0 0 0 0
0
6, 57.8 56 1 67 0 0 0
164.6 , 0 2 .2 0 0 0 0
0
7 , 55.9 67 2 78 79 0 0
164.6 , 0 2 .2 0 0 0 0
0
8, 56.75 78 0 0 0 0 0
35.4 , 0 2 .2 0 0 0 0
0
9 , 57.3 79 2 910 , 911 0
0
129.7 , 0 2 .2 0 0 0 0
0
10 56.24 910 1 1015 0 0
0
,
12.3 , 0 2, .2 0 0 0, 0
0
11 , 55.5 911 , 2 , 1112 1113
0 , 0
129.7 , 0 2, .2 0 0 0 0
0
12 , 55.75 1112 0 0 0 0
0
129.7 , 0 2 .2 0 0 0 0
0
13 56 1113 1 1314 0 0
0
4.4 0 2, .2 , 0, 0 0 0 0
14 56 1314 , 0 , 0 , 0 , 0 , 0
'
1
4.4 0 2 .2 0 0, 0 0 0
15 56.24 1015 1 1516 0 0
0
3.7 0, 2 .2 0 0 0 0 0
16 56.24 1516 0 0 0 0
0
3.7 0 2 .2 0 0 0 0 0
15
12 85 .26 53.08 .013 1 0
1
72 0
23 54 .69 52.6 .013 .08
0 1
24 0
34 , .1 , .69 , 52.6 , .013 1.25 ,
0 , 1
, 24 , 0
25 90.5 , .26 , 53.43 , .013 , .16
, 0 ,
1 66 , 0
56 454 .26 54.61 , .013 , .44
, 0 ,
1 , 66 , 0
67 , 74 , .26 54.8 , .013 , .28 ,
0 , 1
, 66 , 0
78 97 1.14 53.34 .013 .28
0
1 30 0
79 177 .26 53.76 .013 .25
0
3 48 76
910 24.18 , .4 54.68 .013 1
0
1 24 0
1112 47 .26 54.49 .013 .4
0
3 48 76
1113 87 .25 52.9 .013 .6
0 1
21 0
1314 .1 .25 52.9 .013 1.25
0 ,
1 21 0
1015 28.1 , .4 54.89 , .013 , .25
0
1 24 0
1516 .1 , .6 , 55 .013 1.25
0 1
24 0
911 198.67 , .26 54.27 .013
.05 ,
0 , 3 48 , 76
24 0
1516 .1 .6 55 .013 1.25
0 1
24 0
911 198.67 , .26 54.27 .013
.05 ,
0 , 3 ,
i
------------------------------------------------------------------------------
------------------------------------------------------------------------------
STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL
Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver
Metro Denver Cities/Counties S UDFCD Pool Fund Study
------------------------------------------------------------------------------
------------------------------------------------------------------------------
USER:NORTHERN ENG SERVICES INC-FT COLLINS COLORADO ...........................
ON DATA 10-04-1998 AT TIME 15:30:27 VERSION=03-26-1994
*** PROJECT TITLE :WATERFIELD 1ST FILING
r *** SUMMARY OF HYDRAULICS AT MANHOLES
-------------------------------------------------------------------------------
CNTRBTING
RAINFALL RAINFALL
DESIGN
GROUND
WATER
COMMENTS
ID NUMBER AREA
* C
DURATION
INTENSITY
PEAK FLOW
ELEVATION
ELEVATION
INCH/HR------CFS------
FEET
--MANHOLE
------------------MINUTES
1.00
0.00
0.00
0.00
174.40
------FEET
55.00
-
50.36
OK
2.00
35.59
10.14
4.90
174.40
54.50
51.01
OK
3.00
2.47
10.00
4.90
12.10
54.27
51.99
OK
4.00
2.47
5.00
4.90
12.10
54.27
52.28
OK
5.00
33.59
7.90
4.90
164.60
55.20
52.04
OK
6.00
33.59
6.98
4.90
164.60
57.80
53.26
OK
7.00
33.59
6.83
4.90
164.60
55.90
53.61
OK
8.00
7.22
5.00
4.90
35.40
56.75
54.92
OK
9.00
26.47
6.45
4.90
129.70
57.30
54.93
OK
10.00
2.51
6.37
4.90
12.30
56.24
55.59
OK
11.00
26.47
5.43
4.90
129.70
55.50
55.44
OK
12.00
26.47
5.00
4.90
129.70
55.75
55.77
NO
13.00
0.90
5.00
4.90
4.40
56.00
56.08
NO
14.00
0.90
5.00
4.90
4.40
56.00
56.14
NO
15.00
0.80
6.25
4.63
3.70
56.24
55.82
OK
16.00
0.76
5.00
4.90
3.70
56.24
55.85
OK
OK MEANS WATER ELEVATION
IS LOWER THAN GROUND
ELEVATION
'
*** SUMMARY
OF SEWER HYDRAULICS
NOTE:
THE GIVEN FLOW DEPTH -TO -SEWER
SIZE RATIO=
.8
SEWER
MANHOLE
NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(RISE)
DIA(RISE)
DIA(RISE)
WIDTH
ID NO.
ID NO.
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
-------------------------------------------------------------------------------
12.00
2.00
1.00
ROUND
66.47
72.00
72.00
0.00
23.00
3.00
2.00
ROUND
20.35
21.00
24.00
0.00
34.00
4.00
3.00
ROUND
20.35
21.00
24.00
0.00
25.00
5.00
2.00
ROUND
65.04
66.00
66.00
0.00
56.00
6.00
5.00
ROUND
65.04
66.00
66.00
0.00
67.00
7.00
6.00
ROUND
65.04
66.00
66.00
0.00
78.00
8.00
7.00
ROUND
27.70
30.00
30.00
0.00
79.00
9.00
7.00
ARCH
59.48
60.00
'48.00
76.00
910.00
10.00
9.00
ROUND
22.68
24.00
24.00
0.00
1112.00
12.00
11.00
ARCH
59.48
60.00
48.00
76.00
1113.00
13.00
11.00
ROUND
16.85
18.00
21.00
0.00
1314.00
14.00
13.00
ROUND
16.85
18.00
21.00
0.00
1015.00
15.00
10.00
ROUND
14.46
15.00
24.00
0.00
1516.00
16.00
15.00
ROUND
13.40
15.00
24.00
0.00
911.00
11.00
9.00
ARCH
59.48
60.00
48.00
76.00
DIMENSION UNITS FOR ROUND
AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS
DETERMINED
BY SEWER
HYDRAULIC
CAPACITY.
SUGGESTED DIAMETER
WAS
DETERMINED
BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW
WAS ANALYZED
BY THE
SUGGESTED
SEWER SIZE; OTHERWISE,
EXISTING SIZE
WAS USED
-------------------------------------------------------------------------------
SEWER DESIGN FLOW
NORMAL
NORMAL
CRITIC CRITIC
FULL
FROUDE COMMENT
ID FLOW Q FULL Q
DEPTH
VLCITY
DEPTH VLCITY VLCITY
NO.
NUMBER
-------------------------------------------------------------------------------
CFS CFS
FEET
FPS
FEET
FPS
FPS
12.0
174.4 216.5
4.08
8.52
3.59
9.88
6.17
0.79 V-OK
23.0
12.1 18.8
1.17
6.37
1.25
5.88
3.85
1.14 V-OK
34.0
12.1 18.8
1.17
6.37
1.25
5.88
3.85
1.14 V-OK
25.0
164.6 171.7
4.32
8.23
3.58
10.07
6.93
0.69 V-OK
56.0
164.6 171.7
4.32
8.23
3.58
10.07
6.93
0.69 V-OK
67.0
164.6 171.7
4.32
8.23
3.58
10.07
6.93
0.69 V-OK
78.0
35.4 43.9
1.70
9.96
2.02
8.35
7.21
1.42 V-OK
79.0
129.7 145.3
3.81
7.84
3.22
9.45
6.19
0.72 V-OK
910.0
12.3 14.3
1.43
5.13
1.26
5.92
3.92
0.79 V-OK
1112.0
129.7 145.3
3.81
7.84
3.22
9.45
6.19
0.72 V-OK
1113.0
4.4 7.9
0.93
3.39
0.77
4.28
1.83
0.69 V-OK
1314.0
4.4 7.9
0.93
3.39
0.77
4.28
1.83
0.69 V-OK
1015.0
3.7 14.3
0.69
3.83
0.70
3.80
1.18
0.95 V-OK
1516.0
3.7 17.6
0.62
4.43
0.70
3.80
1.18
1.16 V-OK
911.0
129.7 145.3
3.81
7.84
3.22
9.45
6.19
0.72 V-OK
FROUDE NUMBER=O INDICATES THAT A
PRESSURED FLOW OCCURS
SEWER
SLOPE--INVERT-ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM DNSTREAM
UPSTREAM
DNSTREAM
$
(FT)
(FT)
(FT)
12.00
0.26
-- -----------
47.08
46.86
---------- ----------
1.42
2.14
----------
NO
23.00
0.69
50.60
50.23
1.67
2.27
NO
34.00
0.69
50.60
50.60
1.67
1.67
NO
25.00
0.26
47.93
47.69
1.77
1.31
NO
56.00
0.26
49.11
47.93
3.19
1.77
NO
67.00
0.26
49.30
49.11
1.10
3.19
NO
78.00
1.14
50.84
49.73
3.41
3.67
OK
79.00
0.26
49.76
49.30
3.54
2.60
OK
910.00
0.40
52.68
52.58
1.56
2.72
NO
1112.00
0.26
50.49
50.37
1.26
1.13
NO
1113.00
0.25
51.15
50.93
3.10
2.82
OK
1314.00
0.25
51.15
51.15
3.10
3.10
OK
1015.00
0.40
52.89
52.78
1.35
1.46
NO
1516.00
0.60
53.00
53.00
1.24
1.24
NO
911.00
0.26
50.27
49.75
1.23
3.55
NO
OK MEANS BURIED
DEPTH IS
GREATER
THAN REQUIRED SOIL
COVER OF
2
FEET
I
*** SUMMARY
OF HYDRAULIC
GRADIENT
LINE ALONG SEWERS
-------------------------------------------------------------------------------
SEWER
ID NUMBER
SEWER SURCHARGED
LENGTH LENGTH UPSTREAM
CROWN ELEVATION
DNSTREAM
WATER ELEVATION FLOW
UPSTREAM DNSTREAM CONDITION
---------------FEET
FEET
12.00
------FEET
85.00
------FEET
0.00
------FEET
53.08
------FEET
52.86
-
51.01
-------------------
50.36 SUBCR
23.00
54.00
0.00
52.60
52.23
51.99
51.01 JUMP
34.00
0.10
0.00
52.60
52.60
52.28
51.99 JUMP
25.00
90.50
0.00
53.43
53.19
52.04
51.01 SUBCR
56.00
454.00
0.00
54.61
53.43
53.26
52.04 SUBCR
67.00
74.00
0.00
54.80
54.61
53.61
53.26 SUBCR
78.00
97.00
97.00
53.34
52.23
54.92.
53.61 PRSS'ED
'
79.00
177.00 177.00
53.76
53.30
54.93
53.61 PRSS'ED
910.00
24.18
24.18
54.68
54.58
55.59
54.93 PRSS'ED
1112.00
1113.00
47.00
87.00
47.00
87.00
54.49
52.90
54.37
52.68
55.77
56.08
55.44 PRSS'ED
55.44 PRSS'ED
1314.00
0.10
0.10
52.90
52.90
56.14
56.08 PRSS'ED
1015.00
28.10
28.10
54.89
54.78
55.82
55.59 PRSS'ED
1516.00
0.10
0.10
55.00
55.00
55.85
55.82 PRSS'ED
911.00
198.67 198.67
54.27
53.75
55.44
54.93 PRSS'ED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE
HYDRAULIC JUMP;
SUBCR=SUBCRITICAL FLOW
•I *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
---------------------------------------------------------------------
UPST MANHOLE
SEWER
JUNCTURE LOSSES
DOWNST MANHOLE
SEWER----MA--NHOLE
ENERGY
FRCTION
BEND
BEND LATERAL LATERAL MANHOLE
ENERGY
ID NO
ID NO.
ELEV FT
FT
K COEF
LOSS FT K
COEF LOSS FT
ID
FT
-----------------------------------------------------------------------
12.0
2.00
52.20
1.84
1.00
0.00
0.00
0.00
1.00
50.36
23.0
3.00
52.22
0.00
0.08
0.02
0.00
0.00
2.00
52.20
34.0
4.00
52.51
0.00
1.25
0.29
0.00
0.00
3.00
52.22
25.0
5.00
53.25
0.93
0.16
0.12
0.00
0.00
2.00
52.20
i�
56.0
6.00
54.56
0.98
0.44
0.33
0.00
0.00
5.00
53.25
67.0
7.00
54.78
0.01
0.28
0.21
0.00
0.00
6.00
54.56
78.0
8.00
55.72
0.72
0.28
0.23
0.00
0.00
7.00
54.78
79.0
9.00
55.52
0.59
0,25
0,15
0.00
0,00
7.00
51,78
910.0
10.00
55.83
0.07
1.00
0.24
0.00
0.00
9.00
55.52
1112.0
12.00
56.37
0.10
0.40
0.24
0.00
0.00
11.00
56.03
1113.0
13.00
56.13
0.07
0.60
0.03
0.00
0.00
11.00
56.03
1314.0
14.00
56.19
0.00
1.25
0.06
0.00
0.00
13.00
56.13
1015.0
15.00
55.84
0.01
0.25
0.01
0.00
0.00
10.00
55.83
1516.0
16.00
55.87
0.00
1.25
0.03
0.00
0.00
15.00
55.84
911.0
11.00
56.03
0.48
0.05
0.03
0.00
0.00
9.00
55.52
BEND LOSS =BEND K* FLOWING FULL VHEAD
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT
IN SEWER.
LOSS K*INFLOW FULL
VHEAD
FRICTION LOSS=O
MEANS
IT IS NEGLIGIBLE
OR POSSIBLE ERROR
DUE TO
JUMP.
FRICTION LOSS
INCLUDES
SEWER INVERT DROP
AT MANHOLE
NOTICE:
VHEAD
A MINIMUM
DENOTES
JUNCTION
THE VELOCITY
LOSS
HEAD OF FULL FLOW CONDITION.
OF 0.05 FT WOULD BE INTRODUCED UNLESS
LATERAL K=O.
FRICTION
LOSS WAS ESTIMATED BY
BACKWATER
CURVE COMPUTATIONS.
I
I
I
I
I
I
�11-T� �►►=1 f_L� ��bT�M � hl�
�
13
r✓1 M -`jC . � O
IL -
1�..►v. - S3:7o
�vrn-�Ti ►�U �11s� �
�l.JaT Cj I o pd" .
Z3) 74-. O-7 L>= - l S ' PAP
9
=aa-8 _
CL 1 oo S> Tt o sl E--- - Z .78
I NJQ e - S I. �a4D
I
STORM
SEWER
LINE G
- WATERFIELD
1ST
FILING
MERGANSER DRIVE
1
15 , 20
, 2
2 , 1
, .8
500
300
.2 ,Y
2
100
4.9
, 3.8 ,
2.7
2.2 ,
1.8 1.4
.89
6
1,
56 , 0,
1 12
, 0,
0 0
63.9
, 0
2 .2
0
0, 0,
0
0
2 ,
56.5
12 2
23
25 , 0
,
0
63.9
3,
, 0
56.5
2 .2
23 1
0
34
0 0
0, 0,
0
0
0
3.5
, 0 2,
.2
0 0
0
0
0
4,
56.5
34 , 0
0
0 0
0
3.5
, 0 2
, .2
0 ., 0
0
0
0
5,
56.5
25 1
56
0 0
0
63.9
, 0
2 .2
0
0 0
0
0
6,
56.5
56 0
0
0 0
0
58.8
, 0
2 .2
0
0 0
0
0
5
12
13.1
.53 ,
54.58
, .013
1
0
1 36 0
23
74.07
.53
54.95
, .013
.16
0 1', 15 ,
34
.1 , .53
, 54.95
,
.013 ,
1.25
, 0
, 1 , 15 , 0
25
73.96
.63
55.02
.013
.16
0 1 36 ,
56
31.59
.56
55.21
.013
.25
0 1 36 ,
15
0
25
73.96
.63
55.02
.013
.16
0 1 36 ,
56
31.59
.56
55.21
11
i
91
E
co
I
-- ----------------------------------------------------------------------
STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL
Developed by Dr. James Guo, Civil Eng.
Dept, U. of Colorado at Denver
Metro Denver Cities/Counties
& UDFCD Pool Fund Study
'
----------------------------------------------------------------------------
USER:NORTHERN ENG SERVICES INC-FT COLLINS
ON DATA 06-17-1998 AT TIME 17:31:24
COLORADO ...........................
VERSION=03-26-1994
*** PROJECT TITLE :STORM SEWER LINE G - WATERFIELD 1ST FILING
*** RETURN PERIOD OF FLOOD IS 100 YEARS
RAINFALL INTENSITY TABLE IS GIVEN
*** SUMMARY OF HYDRAULICS AT MANHOLES
-------------------------------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL
DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY
MINUTES INCH
-----------------------
PEAK FLOW ELEVATION ELEVATION
CFS FEET FEET
---------------
1.00 0.00 0.00 0.00
------------------ ----------
63.90 56.00 54.28
OK
2.00 13.04 7.68 4.90
3.00 0.80 7.39 4.38
63.90 56.50 54.63
3.50 56.50 56.01
OK
OK
4.00 0.71 .5.00 4.90
3.50 56.50 56.17
OK
5.00 13.04 5.06 4.90
63.90 56.50 55.51
OK
6.00 12.00 5.00 4.90 58.80 56.50 56.22
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
OK
*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER
-------------------------------------------------------------------------------
SIZE RATIO= .8
SEWER MANHOLE NUMBER SEWER
REQUIRED SUGGESTED EXISTING
ID NUMBER UPSTREAM DNSTREAM SHAPE
DIA(RISE) DIA(RISE) DIA(RISE)
WIDTH
--------------ID-NO_ ID -NO_ -----------(IN)
------
(FT) (IN) (FT) (IN) (FT)
----------------------------------
(FT)
-
12.00 2.00 1.00 ROUND
39.91 42.00 36.00
0.00
23.00 3.00 2.00 ROUND
34.00 4.00 3.00 ROUND
13.43 15.00 15.00
13.43 15.00 15.00
0.00
0.00
25.00 5.00 2.00 ROUND
38.64 42.00 36.00
0.00
56.00 6.00 5.00 ROUND
38.29 42.00 36.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER
HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE
SUGGESTED SEWER SIZE; OTHERWISE,
EXISTING SIZE WAS USED
-------------------------------------------------------------------------------
SEWER DESIGN FLOW NORMAL NORMAL
CRITIC CRITIC FULL FROUDE
COMMENT
ID FLOW Q FULL Q DEPTH VLCITY
DEPTH VLCITY VLCITY NO.
NUMBER CFS CFS FEET FPS
FEET FPS FPS
-------------------------------------------------------------------------------
12.0 63.9 48.7 3.00 9.04
23.0 3.5 4.7 0.80 4.21
2.55 9.98 9.04 0.00
0.75 4.53 2.85 0.89
V-OK
V-OK
34.0 3.5 4.7 0.80 4.21
0.75 4.53 2.85 0.89
V-OK
25.0 63.9 53.1 3.00 9.04
2.55 9.98 9.04 0.00
V-OK
�1
56.0 58.8 50.0 3.00 8.32 2.47 9.44 8.32 0.00
FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
V-OK
i
i
I
I
i
----------------------------------------------------------------------
SEWER
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
--------------------------
(FT)
----------------------------------------
(FT)
(FT)
(FT)
12.00
0.53
51.58
51.51
1.92
1.49
OK
23.00
0.53
53.70
53.31
1.55
1.94
OK
34.00
0.53
53.70
53.70
1.55
1..55
OK
25.00
0.63
52.02
51.55
1.48
1.95
OK
56.00
0.56
52.21
52.03
1.29
1.47
OK
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
--------------------------------------------------
SEWER
SEWER SURCHARGED
CROWN ELEVATION
ID NUMBER
LENGTH
LENGTH
UPSTREAM
.DNSTREAM
FEET
FEET
FEET
FEET
12.00
---------------------------------------
13.10
13.10
54.58
54.51
23.00
74.07
74.07
54.95
54.56
34.00
0.10
0.10
54.95
54.95
25.00
73.96
73.96
55.02
54.55
56_00
31.59
31.59
55.21
55.03
----------------------------
WATER ELEVATION
FLOW
UPSTREAM
.DNSTREAM CONDITION
FEET
FEET
----------------------------
54.63
54.28
PRSS'ED
56.01
54.63
PRSS'ED
56.17
56.01
PRSS'ED
55.51
54.63
PRSS'ED
56.22
55.51
PRSS'ED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
UPST MANHOLE
SEWER JUNCTURE LOSSES DOWNST MANHOLE
SEWER.MANHOLE ENERGY
FRICTION BEND BEND LATERAL.LATERAL..MANHOLE
ENERGY
'
--ID-NO ID NO. ELEV-FT------FT--K-COEF
LOSS FT K COEF LOSS FT ID
12.0 2.00 55.90
--------------------------------- ------FT
1.62 1.00 0.00 0.00 0.00 1.00
54.28
23.0 3.00 56.14
0.22 0.16 0.02 0.00 0.00 2.00
55.90
34.0 4.00 56.29
0.00 1.25 0.16 0.00 0.00 3.00
56.14
25.0 5.00 56.78
0.67 0.16 0.20 0.00 0.00 2.00
55.90
56.0 6.00 57.29
0.24 .0-25 0.27 .0.00 0.00 5.00
.56_78
BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS
IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES
SEWER INVERT DROP AT MANHOLE
'
NOTICE: VHEAD DENOTES
THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUNCTION
LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS
LATERAL K=O.
FRICTION LOSS
WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
LLJ
U—
D
n
W
Z
+ al
JJI
0
LLJ
OEJ_Jn
o
I I
= 3
i
;n 3
'an
ova
J�N
LL:v*
Ja%O
0=:p
O—,*
O_N
0-4
�UV1
o)U(n
— 7
1— 4L JNIISIX3 T
� T i
/
/
—�
1I I�a0 I WI I ��
U=
Nco
I?(~iv~i
�O
In � I
I
�00
0�
I ozl I
J�
3�
O
( tc�I7
-M M
0��
J Octq W O
W
a J W O
+ JZ Z HV
PO W (n
I J�a ga
a0 uiv
�N(~n NcrJ
W
aN
0
I W a
Z J Q
li Z
Ww W
(na0
I
I
i
STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL
Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver
Metro Denver Cities/Counties & UDFCD Pool Fund Study
---------------------------------------------------------------------------
' USER:NORTHERN ENG SERVICES INC-FT COLLINS COLORADO ...........................
ON DATA 08-28-1998 AT TIME 09:08:04 VERSION=03-26-1994
*** PROJECT TITLE :WATERFIELD LAKE CANAL SIPHON
*** SUMMARY OF HYDRAULICS AT MANHOLES
-------------------------------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL
DESIGN
GROUND
WATER COMMENTS
AREA * C DURATION INTENSITY
PEAK FLOW
ELEVATION ELEVATION
1
-ID-NUMBER
-------------------MINUTES
INCH
1.00 0.00 0.00
---
0.00
17.70
43.00
----------
41.75
OK
2.00 3.61 12.95
4.90
17.70
43.00
41.78
OK
3.00 3.61 12.58
4.90
17.70
42.10
42.60
NO
4.00 1.59 12.15
4.90
7.80
43.00
43.09
NO
5.00 0.80 10.45
3.75
3.00
45.00,
43.19
OK
6.00 0.61 5.00
OK MEANS WATER ELEVATION IS LOWER
4.90
3.00
44.27
43.22
OK
THAN GROUND
ELEVATION
*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER
SIZE RATIO=
-------------------------------------------------------------------------------
.8
SEWER MANHOLE NUMBER
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER UPSTREAM DNSTREAM
SHAPE
DIA(RISE)
DIA(RISE) DIA(RISE)
WIDTH
ID NO. ID NO.
-------------------------------------------------------------------------------
(IN) (FT)
(IN) (FT) (IN)
(FT)
(FT)
12.00 2.00 1.00
ROUND
28.18
30.00
30.00
0.00
23.00 3.00 2.00
ROUND
24.00
24.00
24.00
0.00
I
34.00 4.00 3.00
ROUND
24.00
24.00
24.00
0.00
45.00 5.00 4.00
ROUND
24.00
24.00
24.00
0.00
56.00 6.00 5.00
ROUND
7.14
15.00
15.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE
IN FEET
REQUIRED DIAMETER WAS DETERMINED
BY SEWER
HYDRAULIC
CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE;
OTHERWISE,
EXISTING SIZE WAS USED
'
-------------------------------------------------------------------------------
SEWER DESIGN FLOW NORMAL
NORMAL
CRITIC CRITIC
FULL
FROUDE
COMMENT
ID FLOW Q FULL Q DEPTH
VLCITY
DEPTH VLCITY VLCITY
NO.
NUMBER CFS CFS FEET
-------------------------------------------------------------------------------
FPS
FEET
FPS FPS
12.0 17.7 21.0 1.76
4.79
1.42
6.13 3.61
0.66
V-OK
23.0 17.7 17.7 2.00
5.63
1.52
6.92 5.63
0.00
V-OK
34.0 7.8 7.8 2.00
2.48
1.02
4.87 2.48
0.00
V-OK
45.0 3.0 3.0 2.00
0.95
0.65
3.40 0.95
0.00
V-LOW
56.0 3.0 21.8 0.31
12.46
0.70
4.26 2.44
4.66
V-OK
FROUDE NUMBER=O INDICATES THAT A
PRESSURED FLOW OCCURS
I
----------------------------------------------------------------------
SEWER
SLOPE INVERT ELEVATION BURIED
DEPTH COMMENTS
ID NUMBER
UPSTREAM DNSTREAM UPSTREAM
DNSTREAM
'
------------------
-------(FT) -- (FT)
------------------ ----------
(FT)
12.00
0.26 40.15 40.09 0.35
----------
0.41 NO
23.00
-1.20 32.50 34.00 7.60
7.00 OK
'
34.00
-1.02 31.75 32.40 9.25
7.70 OK
45.00
-0.50 31.15 31.64 11.85
9.36 OK
56.00
11.33 37.00 31.90 6.02
11.85 OK
'
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF .5 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER
SEWER SURCHARGED CROWN ELEVATION
WATER ELEVATION
FLOW
ID NUMBER
LENGTH LENGTH UPSTREAM DNSTREAM
UPSTREAM DNSTREAM CONDITION
FEET FEET FEET FEET
FEET FEET
12.00
25.00 0.00 42.65 42.59
41.78 41.75
SUBCR
23.00
125.00 125.00 34.50 36.00
92.60 41.78
PRSS'ED
34.00
64.00 64.00 33.75 34.40
43.09 42.60
PRSS'ED
45.00
56.00
97.00 97.00 33.15 33.64
45.00 45.00 38.25 33.15
43.19 43.09
43.22 43.19
PRSS'ED
PRSS'ED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL
FLOW
I***
SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
UPST MANHOLE SEWER JUNCTURE
LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FACTION BEND BEND LATERAL LATERAL MANHOLE
ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K
-------------------------------------------------------------------------------
COEF LOSS FT ID
FT
12.0
2.00 42.21 0.46 1.00 0.00
0.00 0.00 1.00
41.75
23.0
3.00 43.09 0.76 0.25 0.12
0.00 0.00 2.00
42.21
34.0
4.00 43.19 0.08 0.25 0.02
0.00 0.00 3.00
43.09
45.0
5.00 43.21 0.02 0.05 0.00
0.00 0.00 4.00
43.19
56.0
6.00 43.31 0.10 0.05 0.00
0.00 0.00 5.00
43.21
BEND LOSS
=BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL
LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION
LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUNCTION LOSS OF 0.05 FT WOULD
BE INTRODUCED UNLESS
LATERAL K=O.
FRICTION LOSS WAS ESTIMATED BY BACKWATER
CURVE COMPUTATIONS.
'
WATERFIELD
LAKE
CANAL SIPHON
ALTERNATE
DESIGN
'
. 5
15 ,
20 ,
2 , 2 ,
1 .8
, 500
, 300
.2 , Y
2
5
4.9
, 3.8
, 2.7
, 2.2 ,
1.8 ,
1.4 ,
.89
6
1,
43 r
0 1 1
f 12 f 0
1 0
0
17.7
, 0
, 2 ,
.2 , 0 ,
0 , 0
, 0 ,
0
2 ,
43 ,
12 , 1
, 23 ,
0 , 0 ,
0
17.7
, 0
, 2 ,
.2 , 0 ,
0 , 0
, 0 ,
0
3 ,
42.1
, 23 ,
1 , 34
, 0 , 0
, 0
17.7
, 0
, 2 ,
.2 , 0 ,
0 , 0
, 0 ,
0
4 ,
43 ,
34 , 1
, 45 ,
0 , 0 ,
0
7.8
, 0 ,
2 , .2
, 0 ,
0 , 0 ,
0 , 0
5 ,
3
45 ,
0, 2,
45 , 1
.2
, 56 ,
0, 0
0 , 0 ,
0, 0,
0
0
6
44.27
56
0 0
0 0,
0
'
3
5
0, 2
.2
, 0 0
0 0,
0
12 f
25 1
.26 f
42.65 1
.013 1
1 f 0
1
30 0
f f
23 ,
125
,-1.2
, 34.5 ,
.013
.25
0 1
24 0
34 ,
64
33.75
,
.013
,
,
0
,
1 24 0
,-1.02
,
,
, .25
, ,
,
45 ,
97 ,-.5
,
33.15 ,
.013 ,
.05 ,
0 1
24 0
,
, ,
56 ,
45 ,
11.33
, 38.25
.013
.05
0
1 15 0
,
, ,
, ,
I
I
I
FOB S�II�S COtJSISTd.t`tT L1.J IT'}.1- �-�OSE C-G�UrJD �.
. �O 1 GYl a 3 7 1 IJ O o8�3 F�T' . Gc> SAC
1
J7 rL�l L)Lj Z-LL
_`9 � �9 � ou es Td a �.► �.� a �y W��
C1=XCt...I�D�S {��12_GC7lr4Tl�l�1 T}-�2�LX-s�I l�.L�-Lt�. S1�S
l P l�c� ►..1 ^ G!-} ter' r 1=0 2 �C>�/L�!`Z^ y
ana a-1t7L�
L.I
�z
L3
'
L4
1
�J ?�
rr1oN+�ot�
3�i.co 141 cF
88ZZ ��S
_
4
�MQ rJ u Old �p��n c Or=
�reucsu�
.�W-.�-7 Ls
1 S > s� �v� -7- ` $Lasidss
I
L.3
L1a
i
8n
c42 g>pav�, �i//b BnSE
als�l ���,. �- � i.s Cue.rz.Fxrr ►.����� �C`-y)
gBZL
13 , 233
�J I SD
C�614-
9� 21
4r31�
9���
Imo, s1 a
lo, l4z
Lz�- Its I . ZS
�oo1 1.5c)
43774= 1.10
C m T T
> > >
c4 a CD (D
3
0
LL LO W)
O c W
t v CV C14
O.
C)
Q M fM
CD co
Zco
m co Co
= ui rl: au
LU
a
Q
fV 00
Z ;
�
O
ui
O
❑
N0) CO
ui CD
O
fq
LL
N
_
N N
O LL
OOOi
ri) a
z a
W
-AOe
Ci 0
❑ O o
Z
O N N
N
m
m
C1 C
CD W) Lf)
O.v
�.
a
c
0
m
c
U ❑ W
N
C C C
❑0
J J J
a
a
P
A
Q
Q
MR
MOEN
MIN
IN
MEN
Y
�
ENMESH
• OD
^ %o Yf R M
p/p jaawaip ol41dap o 0110a
M
N
L
Uf
c
CO
N
u
P.
�Im
cis
Q
c
y
c
�
d
�
�
V
O
�
A
ba.
S
q
it
�
O
I
'Ch
N
W
CG
w
CHART 10
,6D
logo
u166
186
9,000
EXAMPLE (1) (2) (3)
0.4t lack" (3.5 feet) 6.
6,000
6.
144
3.000
0.120 et.
b.
132
4'�
If • 11n
6
b•
'
3,000
feet
(1) 2.5 9.9
s. _
4.
4.
120
2 00o
a► 2.1 7.4
4
3.Z
106
(3) tot
'
e0 I. feel
86
I ,Ooo
3•
900
84
600
/
~
--
2'
2-
s00
/
/
'
72
400
2.
W
x
300
�V�
/
'
=
80
u200
W
1.5
2
W
0
54
46
/ W
100
/ rc
80
=
j
8G
AL
42
H
50
IL
ENTYPECE
D SCALE
1.0
1.0
1.0
40
y~
j
38
(1) Square eep olle 3
9
.9
33
e.e4.ea c
,8
c
20
Q
rc> or.ee. ..e d/e W
30
heed -ell x
.8
.6
._
13) oreeve cod
.9
27
Fre)ee11q
10
24
°
.7
°
b
Tom costs (t) or (3) project
21
to code p),thop
o
�I%
+
use stroellt
eu arsgel tseu.d time rnreeee
hr
0 and 0 .Cole., or reverse as
6
3
111estrotee.
8
■
2
�./
Is
.s
12
HEADWATER DEPTH FOR
CONCRETE
HEADWATER
SCALES 283 PIPE CULVERTS
REVISED MAY1964 WITH INLET CONTROL
'
SURtNJ OF PUBLIC ROADS .MIL IN3
181
Preceding page blank
I
EROSION CONTROL
I
1
I
' May 12, 1998
Mr. Glen Schlueter
' City of Fort Collins
Utility Services Stormwater
235 Mathews
' Fort Collins, Colorado 80522
RE: Waterfield V Filing
' Erosion Control Security Deposit Estimate
Dear Glen,
1
The following letter is intended to serve as a basis for the Erosion Control Security Deposit for
' Waterfield 1" Filing .This estimate is based on the Final Utility plans as they have been
resubmitted to the City for review on May 12, 1998.
' An itemized listing of the erosion control measures incorporated into this design include the
following:
Temporary Seed & Mulch (this is applicable to all actual disturbed areas not located
within a building pad or under asphalt/concrete, including the offsite pond)
Straw bale check dams (located in open channels)
' Gravel filters (located around all curb and area inlets)
Silt fence (Located around the outparcels and westerly perimeters of the site)
' A breakdown of anticipated costs for these improvements include:
' Temporary Seed & Mulch 24 ac @ $531.00/ac = $ 12,745.00
Straw bale check dams 15 ea @ $75.00/ea = $1125.00
Gravel filters 12 ea @ $175.00/ea = $ 2100.00
' Silt Fence 46001f @ $ 2.00/lf = $ 9200.00
Total $ 25,170.00 * 150% = 37,755.00
An alternate look at this obligation:
' Total on -site disturbed area (total site area, although it is not intended to disturb the entire within
the scope of this project) - 34.5acres. Total disturbed area offsite is approximately 19 acres.
Total disturbed area 53.5 acres
' 53.5 acres @ $531.00 * 150% _ $ 42,612.00
i
' Based on the above figures, and the City policy to use the higher estimate, the Erosion Control
' Security Deposit obligation of the developer for Waterfield 1 °` Filing would be $ 42,612.00
Should there be a separate development agreement for the Bull Run Apartments and the single
' family lots, and/or separate Erosion Control Security Deposit obligations, the following splits
could be considered.
Bull Run 15.5 ac 30%
Single Family and Offsite improvements 38.0 ac 70%
' Therefore, it would follow that the Erosion Control Security Deposit obligation for the Bull Run
Apartments would be approximately 0.30 * $42,612 = $12,784, and the obligation for the
remainder of the site would be approximately 0.70 * $42,612 = $29,828
' Please call if you have any questions regarding these figures
Sincerely,
7RoggerCurtissrE.Northern Engineering Services, Inc.
cc: Jim McCory - Colorado Land Source
Gregg Seebohm - Empire Management, Inc.
' Brock Chapman - The Brisben Companies
•:RAINFALL PERFORMANCE STANDARD EVALUATION
PROJECT: STANDARD,FORM A
.. _�1.�d.T_>=ti=�►.El..a-_�l7 � �Sr �luwlG�.------
COMPLETED BY:. DATE: 6•204=7
DEVELOPED
SUBBA§IN
ERODIBILITY
ZONE
Asb
(ac)
Lsb
(ft)
Ssb
M
Lb
(feet)
Sb
($)
PS
(t)
lU I— LU&
ISo61
13
1. e'%
ZD Z93
2�.415
1i/IZ'-
15.9�
I boo
o, B%
25 55Z
IZ.1��
� es= A
31.58
4Sr34�.�
3�. t910
�sa
env
' MARCH 1991
B-14
DESIGN CRITERIA
i
EFFECTIVENESS CALCULATIONS
-
PROJECT
—_• STANDARD FORM B
COMPLETED BY: DATE: 97
'
Erosion Control C-Factor P-Factor
Method Value Value Comment
'
MAJOR PS SUB AREA
BASIN ($) BASIN (Ac) CALCULATIONS
- ...--------- ... _ ----------
T11E.-__� T[D__ R2QV I DE TAMP SEED
Mlil Cl A_.-_D.1J-- ld�._.17!_ST JP gF6� � nS-C.LJLTT. 1 W
'
A:._2U�.Q1,�1b�i..._.D2..f3lJIL.DItJC�-P4D�-f-ST-24U.1 Rni F-
----
-Od,t,
-25
1
1
' MARCH 1991 9.15 DESIGN CRITERIA
Table 81, C-Factors and P-Factors for Evaluating EFF Values.
'
Treatment
C-Factor
P-Factor
BARE SOIL
'
Packed and smooth..................................................................... 1.00
1.00
Freshlydisked............................................................................. 1.00
0.90
Rough Irregular surface............................................................... 1.00
0.90
'
SEDIMENT BASINITRAP.............................................................. 1.00
0.500)
SILT FENCE BARRIER-....----, .... 1.00
0.50
'
ASPHALT/CONCRETE PAVEMENT ............................................ 0.01
1.00
'
ESTABLISHED DRY LAND (NATIVE) GRASS ............................ See Fig. 8-A
1.00
SODGRASS................................................................................ 0.01
1.00
'
TEMPORARY VEGETATION/COVER CROPS ........................... 0.45(2)
1.00
HYDRAULIC MULCH @ 2 TONS/ACRE...................................... 0.10(3)
1.00
'
SOIL SEALANT........................................................................... 0.10-0.60(4)
1.00
EROSION CONTROL MATS/BLANKETS....................................... 0.10
1.00
'
GRAVEL MULCH
Mulch shall consist of gravel having a diameter of
approximately 1/4" to 1 1/2- and applied at a rate of at least
'
135 tons/acre.. 0.05
1.00
HAY OR STRAW DRY MULCH
'
After Planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor,
tact or crimp material into the
soil.
Slope (%)
'
1 to 05........................................................................................... 0.06
6 to 10
1.00
........................................................................................... 0.06
1.00
11 to 15......................................................................................... 0.07
16 to 20
1.00
'
......................................................................................... 0.11
21 to 25..................................................................................:...... 0.14
1.00
1.00
25 to 33......................................................................................... 0.17
1.00
>33.................................................................................. 0.20
1.00
'
NOTE: Use of other C-Factor or P-Factor values reported in this table must be suastantlated by
documentation.
'
(1) Must be constructed as the first step in overiot grading.
(2) Assumes by
planting dates identified in Table 11-4. thus dry or hydraulic mull
lhes are not
required.
'
(3) Hydraulic mulches shall be used only between March 15 and May 15 unless:, irrigated.
(4) Value used must be substantiated by documentation.
May 1984
Design Criteria
'
Revised January 1997 8-7
I
1
CONSTRUCTION SEQUENCE
' SEQUENCE FOR 1998/99 COMPLETED BY: BC DATE: AUGUST 26, 1998
1
1
1998
MONTH
OCT
NOVI
DECJAN
FEB
MAR
APRI
MA
JUN
JLY
AUG
OVERLOT GRADING:
WIND EROSION CONTROL:
Soil Roughening
Perimeter Barrier
Additional Barriers
Vegetative Methods
Soil Sealant
Other
RAINFALL EROSION
CONTROL STRUCTURAL:
Sediment Trap/Basin
Inlet Filters
Straw Barriers
Silt Fence Barriers
Sand Bags
Bare Soif Preparation
Contour Furrows
Terracin
Asphalt/9Concrete Paving
RipRap Outlet Control
VEGETATIVE:
Permanent Seed Plantin
Mulching/Sealant
Temporary Seed Planting
Sod Installation
Netting/Mats/Blankets
Other
I
CHARTS, TABLES, GRAPHS
DRAINAGE CRITERIA MANUAL
bt
3C
F- 2 C
Z
W
U
Ir
W
IL 10
Z
W
Ix
O 5
U)
W
ir 3
n
O
U 2
Cr
W
H
Q
3
1
a
RUNOFF
• 0 1 2 3 5 .10 20
VELOCITY IN FEET PER SECOND
FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR
USE WITH THE RATIONAL FORMULA.
*MOST FREQUENTLY OCCURRING"UNDEVELOPED"
LAND SURFACES IN THE DENVER REGION.
REFERENCE: "Urban Hydrology For Small Watersheds" Technical
Release No. 55, USDA, SCS Jan. 1975.
5-1-84
URBAN DRAINAGE d FLOOD CONTROL DISTRICT
I
I
INTERPOLATED VALUES FOR 100 YEAR INTENSITIES
Tc Value 6u,/uv�
5.00
9.0
5.10
9.0
5.20
8.9
5.30
8.9
5.40
8.9
5.50
8.8 .
5.60
8.8
5.70
8.7
5.80
8.7
5.90
8.7
6.00
8.6
6.10
8.6
6.20
8.6
6.30
8.5
6.40
8.5
6.50
8.5
6.60
8.4
6.70
8.4
6.80
8.4
6.90
8.3
7.00
8.3
7.10
8.2
7.20
8.2
7.30
8.2
7.40
8.1
7.50
8.1
7.60
8.1
7.70
8.0
7.80
8.0
7.90
8.0
8.00
7.9
8.10
7.9
8.20
7.8 /
)8.30
7.8
8.40
7.8
8.50
7.7
8.60
7.7
8.70
7.7
8.80
7.6
8.90
7.6
9.00
7.6
9.10
7.5
9.20
7.5
9.30
7.5
9.40
7.4
9.50
7.4
9.60
7.3
9.70
7.3
9.80
7.3
9.90
7.2
10.00
7.2
No Text
I
1
f
1
I
•-- 00 (O d- N CD 00 CO d- N
p� p� CY) 00 00 00 00
O O O O O O O O
x — .zo�on� �uau��snfp�a MoUInp
0
4
41
w
w
4J
(d
w
Q) �►
.,d. =4 �
4J
Ocr n
� ro
o �
M � �
I ro
O CL)^
=4 3
c. O
w44
w
N �
O
O
'-i
ro
r, b+
O µ'
a
RM DRAINAGE DESIGN AND TECHNICAL CRITERIA
E
TABLE 802C
STORM SEWER
ENERGY LOSS COEFFICIENT.
(BENDS
AT MANHOLES)
1.4
1;3
,.3
1•t•
• 1.2
Id
lob
m'q
1.0
0.9t
Y 0.8
c e.k
Bond at Manhole,
0
u
i
i
,!
i
STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA
Lu
CTION LOSSES
TABLE 803
!411-
&R-7-7
O/ PLAN NOTE /w Any Type
of 1.101. O/ PLAN
A
4 •,
SfrTInN
USE EQUATION 801
�i
t:
�� CASE I L= 1,
INLET ON MAINLINE or
k= 6,e5/H,lnlulc 0;1 MAiNCine
\'
A -we
USE EQUATION 005
'-
I�- N,rIC�ISa'C.
f nhf L A.5
PLAN
USE EQUATION 005
SECTION
CASE H
INLET ON MAIN LINE
PLAN
USE EQUATION 001
°1 A ILL=k._
;r
SECTION
CASE IZ
INLET OR MANHOLE AT
0. BEGINNING OF LINE_..
n
SECTION
CASE M
MANHOLE ON MAIN LINE CASE I I I
_WITH WBRANCH LATERAL. :CASE N0. Ki go KK
1 0.05 22 1/2 0.75
II 0.25 45 0.50
IV 1.25 60 0.35
90 0.25
Date: NOV 1984 I REFERENCE:
Rev:
No Lateral Sec Clrc I
APWA Special Report No. 49, 1981
F
I
O\ le O1 le r O O %D .. �o h m O O% �o .-• h qct oo le fV O\ fd h b ON ...
ti O �•'•� �•'� N N N N N M M M M M M M M M m M M M M M M M m M M m
00 V1 %0 V1 �o m V1 (71 V1 V) m N O N m N 00 ^ 7
a 00 O O V1 00 O ^ a �--� O r �o N h v1 m w•-� ^ a le wO` w r 'R ••� •-� O
y V) M^ M Vt oo O 4 a i 'O oo O^ N N^^ O O, r6� N^ O O` ^ m
a W ^ N m M m M 'Q -w Vl kn Vf �b �o %0 \0 \0 \0 \0 V) V1 to V) Vl VI v1 --t Vl V)
1 U O W v
_ •„V� N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
•r(�y N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
y n •Q1 '. .r r. ... .r .r .r .r ... .-. .. .-. .r r. '.. '•r ..•. .r .-. .-. .�
q c X o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�nWntn tn%nVitnRnknkn%ntn%n%ntnkn
z
z s o00000000000000000000a0000000
o a o�
y
-a .5 V
U >
u°�Noo^vC) M ow�trNmmmmm V�vorrwr-rl- nr-r
U oo N�. oo Q O^ D oo O^ N m M M M M N N^ O a oo r r O r o0
V 3 ^y�"i O �••� ^^^ N eV N N N M M M M M e+i M M Ci M M "i eV eV tV (V N eV fV
i
U 6 i y v
U cWi
20 v N m m 0 m Vl M M CO O r v r^ r, fM N 00 Vl O^ V vi N N M^ 00
Q w etl a � 5 .+ N N m r O M NO M O. 7 0 N eT � 00 r r %O v�^ O [- � N^ ON N't
G N m qi 7 V'i Vi Vi �6 �C r o0 00 o0 00 o0 00 oC 00 o0 00 o0 o0 r r r r �O r r
Z w Ell
w O'v
v U@
W o0 00 00 00 00 00 00 00 00 00 00 0o io 00 00 00 00 00 00 00 00 00 00 00 0o eo 0o co 00
' [i1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o o O C O 0 6 6 0 0 0 0
U� � ,b
W N N N N N N N N N N N N eV N N N N N N N N N N N N N fJ N N
a
0 0
GM O b w w 00 00 00 w 00 00 00 r r r r �o �o \0 �o Vt V1 tn
• O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
a p pp p p
O W a O N 0 n O N W) O N n O eV C) n 0 N 0 n S 0 0
y O O O O O O ^ ^^ N N N N M m m m--tj 4 4 4 of In Wi v� '.O '46 r
CL •-•
o
I
I
i
I
RESIDENTIAL LOCAL W/ ROLLOVER 100 year
Worksheet for Irregular Channel
Description
_froject
Project File
c:\drainagekhaestad\fmw\street c.fm2
Q
Worksheet
RESIDENTIAL LOCAL W/ ROLLOVER CURB
rOrl��
V
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Q
Input Data
Channel Slope
0.004000 ft/ft
(i
Water Surface Elevation 100.50 ft
�1
Elevation range: 99.61 ft to 100.50 ft.
Station (ft)
Elevation (ft) Start Station
0.00
100.50 0.00
0.00
100.00 20.17
13.83
99.72
15.00
99.61
16.42
100.00
20.17
100.12
25.50
100.23
39.17
100.50
Results
Wtd. Mannings Coefficient
0.026
Discharge
31.70 cfs
Flow Area
16.04 ftz
Wetted Perimeter
39.74 ft
Top Width
39.17 ft
Height
0.89 ft
Critical Depth
100.32 ft
Critical Slope
0.011395 ft/ft
Velocity
1.98 ft/s
Velocity Head
0.06 ft
Specific Energy
100.56 ft
Froude Number
0.54
Flow is subcritical.
1
10/04/98
12:22:25 PM
End Station
20.17
39.17
Roughness
0.016
0.035
--------------..= Lam. a4- z.. _ _ _-
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
RESIDENTIAL LOCAL W/ ROLLOVER 2 year
Worksheet for Irregular Channel
Project Description
Project File c:\drainage\haestad\fmw\street c.fm2
Worksheet RESIDENTIAL LOCAL W/ ROLLOVER CURB
Flow Element Irregular Channel
Method Manning's Formula
Solve For Discharge
Input Data
Channel Slope
0.004000 ft1ft
Water Surface Elevation
100.00 ft
Elevation range: 99.61 ft to 100.50 ft.
Station (ft) Elevation (ft)
Start Station End Station Roughness
0.00 100.50
0.00 20.17 0.016
0.00 100.00
20.17 39.17 0.035
13.83 99.72
15.00 99.61
16.42 100.00 �,
I
20.17 100.12
25.50 100.23
39.17 100.50
Results
r
Wtd. Mannings Coefficient 0.016
Discharge 4.47 cfs
Flow Area 2.61 ft2
Wetted Perimeter 16.48 ft
Top Width 16.42 ft
Height 0.39 ft
Critical Depth 99.97 ft
Critical Slope 0.007177 ft/ft
Velocity 1.72 ft/s
Velocity Head 0.05 ft
Specific Energy 100.05 ft
Froude Number 0.76
Flow is subcritical.
10/04/s8
12:22:04 PM
_ ►�1-Io4t, . x ).- . - .
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
I
O
Cl
Eli
00 M M w O% N le M 00 r le O\ M N �D N O w ^' mq-t t- D\
ON a O+ O N M t^ O N vl %o r- 00 00 00 00 t-- t, t` � v1 � N
H O �"" ^' N fV N N N M M M M M M M M M M M M M M M M M Vi M M fn
aO M �D l� l� v�i O+ w 7 r tn�— O C1 -It wwON ON � R 00 ... N N O 00 Ln
�+ a ,^' --� 00 O N � 'XiO e 06 -.• M V �O lh �6 �D vn t R N �-+ O 00 t-Z %6 � �6 w
G7 d W �••' N N M M M M e t r to Vl vl kn h h to V'1 h Vl h 'n Yl qe 7 V-e--t
O W �
o
S N N N N N N N N N N N N N N N N N N N N N N fV N N N N N N
kn vi to h V^l 4 V�i Vn kn 4n to v1 v�i kn In to �n v^i v�i V kn InLn �n �n Ln � kn
N N N N N N N N N N N N N N N N tV N N N N N N N N N N N N
n t` t` t` t` to t-
7 4 444 4414
t- %D O t, N r, '. Nr N O\ M �o r, D M '" m M t- to w Rr r O :; N T
CD Wn — N le kn t- O M Y1 00 ON O . N N .� �"' CD 00 00 t- In In � M vl
yVy y N fV fV N N M M ell M m 7 �t R M M M M M M M M M
F� ,
s n� OooNNO O O nO O DO�p ooInp t`MtnD
O% N `C R M O\ M ...i r N O\ r m w M
aI y M kn l� l-: 00 00 O� O N M^ M of 4 4 4 4 M M M M N N N
N N N N N N N N N N N N N N NNNN NN .NN . .NN .
b �6 � � b b � �6 �o b � � � b � � � NO NO � � b b �o �o 'D N
b
c7 �
W M M M M M M M M M M M M M M M M M M M M M M M M M M M M M
r, M m M M m m M M M M fM M M M M M M M e; t+1 fM M M M M M M M M
Phi v
zz
d O� 0O0 w w w w 0O00O0 w 0O0 r r r r-"D��bo tn�a lemma a
•� p C C C G C C C C C C O O o C O O C O O C O C C o o C C O O
W
PG
0000 g en O viO �n O v�O en O C��nQU OO
N tn l� O N Vl r--O N �n tr-� N Yl l- O N Vl l- �n O
D^ O O O O O O N N N N M M e6 fM 'i v1 vl vl Vl ,D NO t-Z
O e
to v
IN
I
I
I
I
rJ
RESIDENTIAL W/ 6" VERTICAL- 2 YEAR
Worksheet for Irregular Channel
Project Description
Project File
c:\drainage\haestad\fmw\street c.fm2
Worksheet
RESIDENTIAL LOCAL W/ 6" VERTICAL
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Channel Slope
0.004000 ft/ft
Water Surface Elevation 100.07
ft
Elevation range: 99.57 ft to 100.50 ft.
Station (ft)
Elevation (ft)
Start Station
0.00
100.50
0.00
0.00
100.00
15.50
13.00
99.74
21.00
15.00
99.57
25.50
15.00
100.07 ToP oP
-
15.50
100.07 zE>
21.00
100.18
25.50
100.27
37.00
100.50
Results
Wtd. Mannings Coefficient
0.016
Discharge
7.35
cfs
Flow Area
3.43
ft'
Wetted Perimeter
15.58
ft
Top Width
15.00
ft
Height
0.50
ft
Critical Depth
100.04
ft
Critical Slope
0.006725 ft/ft
Velocity
2.14
ft/s
Velocity Head
0.07
ft
Specific Energy
100.14
ft
Froude Number
Flow is subcrltical.
0.79
V
10/02/98
04:20:56 PM
z
End Station
Roughness
15.50
0.016
21:00
0.035
25.50
0.016
37.00
0.035
1/ (/Z
Z
II(=,.ZI
)
FbwMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
i
' RESIDENTIAL W/ 6" VERTICAL- 100 YEAR
Worksheet for Irregular Channel
'
Project Description
Project File
c:\drainageXhaestad\fmw\street c.fm2
Worksheet
RESIDENTIAL LOCAL W/ 6" VERTICAL
Flow Element
Irregular Channel
Method
Manning's Formula
1
Solve For
Discharge
Input Data
Channel Slope
0.004000 ft/ft
Water Surface Elevation
100.50 ft
Elevation range: 99.57 ft to 100.50 ft.
Station (ft) Elevation (ft)
Start Station
End Station
0.00 100.50
0.00
15.50
0.00 100.00
15.50
21.00
13.00 99.74
21.00
25.50
15.00 99.57
25.50
37.00
15.00 100.07
'
15.50 100.07
21.00 100.18
25.50 100.27
37.00 100.50
Results
Wtd. Mannings Coefficient
0.025
Discharge
28.93
cfs
Flow Area
14.72
ft2
Wetted Perimeter
38.01
ft
Top Width
37.00
ft
Height
0.93
ft
Critical Depth
100.33
ft
Critical Slope
0.010940 ft(ft
Velocity
1.97
ft/s
1
Velocity Head
0.06
ft
Specific Energy
100.56
ft
■
Froude Number
Flow is subcritical.
0.55
10/02/s8
04:21:17 PM
Roughness
0.016
0.035
0.016
0.035
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
I
1
V' ^ M ON .n O` N of ^ h It I-t N O+ w v O m N 'D Cl ON �o 00 O ^ 'cr h
O v1 O^ M V �o ON N I", h 00 a\ O O O O O ON ON h t- .n a M M N M
'
^„
--� --� tV cV N N tV tV t•i M M M M � � � � � ri to M M M M c+i e+i M M M
00
O�
^ �o M �o 00 M It O% .•. .•. h M �o N M It 00 w b O M p+ a, '-t ON 00 ^ %O ^
M O oD 00 �o M 00 N O O\ ^ 00 M 01 00 N �o
fl
G3
^
a W
Oh 00 l� M 'D 00 O� "t O� .r M �D V1 YI 7 M Wi O� Og 'D 7 N ^ O, lV
�••� N
«
U
c
W
1
v
0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0o ao 00 00 00 00
w
o
v v v 1a a v v v v v v a a a It v a It v v v v v v� v
0 o c o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A
0
_ _
N N N N N N N N N N N N N N N N N N fV N N N N N N N N N N
'10 '40 %Q
�o %0 �o �o �Z b %0 %0 �o b b b b b b %0 %0 �O �O �O �O �O �O b b b
•�
Ci
�y
o0 o0 00 DD o0 o0 o0 o0 o0 o0 o0 oo o0 o0 o0 o0 o0 o0 oG 00 o0 o0 o0 o0 00 o0 o0 o0 0o
.•-. ... .•. .-. .. .-. .-. .-. .-. .•.� .-. ... �-. ...� �-. ..� .. .r .. .-. ... .. .-. .-. .-. .-. .-. .-. ...
O
O
S
O
y
Q
^
N
0
1
t:
>
�_
eV�yy {7p.
h .n �o O` h N �D 00 Ot ON %O N .-• oo et M h N 00 h v1 00 ,-• N Itt b
a` M 00 S --� N M %C O\ ^ M It v1 �o [I h �o �o .n Vl � O O a M N ^ \ O ^
UO
't
N
U
y
O ^� .'•^ fV N N N N NM M M ri c•i M M c+i l+'i t i en f i eli M M M M fV M t•i
�y
y'�.
FI
U b
V
2
W
a
�..
O
U
.,y
00 N M M O M V ^^ Vl 00 h 00 V •'••� N h h N N N O 00 M Vl �O
•-+ �o N h N �o O O 00 I M l-- O m vl N O O kn O %O M .-+ 00 N
e0
a
3
�"'
ffi
^
M Q %O %O t� l� 00 O� O� O^ �--� N N c i� N N f i fV ^ .-+ ^' O O O O� O O
x
�?
..r ... ... .•-. .--. .-. .-. .. ... ... ..r ... ... '. .-. r. ... .•-.
U
U
0
C7
W
a..
N
y
��NONo�.oe.o��\0��ov��o%p��.p
v v,v,knv,h.n.n.nv v,tntntnv,kn.ntntnv,v, nv v,v, nv v v,
1
U �
w
g
o
x
oS 0 ppppp 00 gpgpggggDDDc
SSOS OOOOO SOO SS SSOOOOOOOOOOS
p
O
W
h h h h h h h h h h
M M M M M M M M M M M M M M M M M M M M M M M M M M M
�y h
¢ v
C/y
l�
v
O
T
O� \D b b b h h h't le't le� R
e„
G
•J p
000 000 OOo 000 000 000 000 000 000 h h h h
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
124
'
�00C=0 tnotn8Wn0Wng.n0tnc8tn0kn8knotnc�og
vl NO h 00 N .n h N kn h N to h N v1 h N Vl h �n
O
O O O O O O N N N N M M fn M a a ti o wi .n wi .n \O .6 h
0 e
fl
i
' CONNECTOR LOCAL W/ 6" VERT. - 100 Year
Worksheet for Irregular Channel
' Project Description
Project File
c.Xdrainage\haestad\fmw\street c.fm2
Worksheet
CONNECTOR LOCAL W/ 6" VERTICAL CURB
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Channel Slope
0.004000 ft/ft
Water Surface Elevation 100.50 ft
Elevation range: 99.51
Station (ft)
ft to 100.50 ft.
Elevation (ft) Start Station End Station
Roughness
0.00
100.50 0.00 18.50
0.016
0.00
100.00 18.50 24.00
0.035
16.00
99.68 24.00 28.50
0.016
18.00
99.51 28.50 43.00
0.035
18.00
100.01
18.50
100.01
24.00
100.12
28.50
100.21
43.00
100.50
Results
Md. Mannings Coefficient 0.026
Discharge
38.61 cfs
Flow Area
18.62 ft2
r
Wetted Perimeter
44.02 ft
Top Width
43.00 ft
Height
0.99 ft
Critical Depth
100.32 ft
Critical Slope
0.011187 ft/ft
Velocity
2.07 ft/s
1
Velocity Head
0.07 ft
Specific Energy
100.57 ft
Froude Number
Flow is subcritical.
0.56
�.eeA.-- I8_�Z
t0/04/98 1 FlowMaster v5.13
12:40:40 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1
i
CONNECTOR LOCAL W/ 6" VERT. - 2 Year
Worksheet for Irregular Channel
Project Description
Project File c:ldrainagekhaestad\fmwtstreet c.fm2
Worksheet CONNECTOR LOCAL W/ 6" VERTICAL CURB
Flow Element Irregular Channel
Method Manning's Formula
Solve For Discharge
Input Data
Channel Slope
0.004000 ft/ft
Water Surface Elevation
100.00 ft
Elevation range: 99.51 ft to 100.50 ft.
Station (ft) Elevation (ft)
Start Station
End Station
Roughness
0.00 100.50
0.00
18.50
0.016
0.00 100.00
18.50
24.00
0.035
16.00 99.68
24.00
28.50
0.016
18.00 99.51
28.50
43.00
0.035
18.00 100.01
18.50 100.01
24.00 100.12
28.50 100.21
43.00 100.50
Results
Wtd. Mannings Coefficient 0.016
Discharge
6.36 cfs
Flow Area
3.37 ft'
Wetted Perimeter
18.50 ft
Top Width
18.00 ft
Height
0.49 ft
'
Critical Depth
99.96 ft
Critical Slope
0.007004 ft/ft
Velocity
1.89 ftis
Velocity Head
0.06 ft
Specific Energy
100.06 ft
Froude Number
Flow is subcrtical.
0.77
�
10/04/98
12:40:20 PM
Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
I
I
O �O r N r �O Q\ ^ ^ 0� �O to N r ^ O. M O w "t n V �O
N 't h 00 ^+ M Vl n o0 w ON Ch ON 00 00 1- b �Q 7 m N ^ ^ N M
�••^
^ ^ ^ N N N N N M M M M M M M M M M M M M M M M M M M M M
'
00
0%
O eT �O O M a\ �O m O, O O, O, 00 �O r -t a M O 00 ^ t r
^ ^ [� v1 ^ �O O �--� n O N O [� �O M oo ^ C, N w O N M 7 00 ^
td
U
73
^
aw
r+ �O ^ M Vl %6 00 ^ r C\ ^ N t+i M M en N N 00 r NO v� to r
i
€b
Ln
Lnhvih vi vitn tntntn tn tn tn tn tn In vi kn kn tn vi vi vi tn vi
•�
M M M M M M M M M M M M M M M M M M M M M M M M M M M M M
r r n n r n n n n n r r n n n r r r r r r r r r r r r r
o 0 0 C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.
zp
U
•a �
�
t6
M r,^ M N 00 N Vl VM O\ 00 r- ^ r--,tM M O M V OO O
r, O+ N ^ O M v v� �OO r- r- r,�O �O M N ^ O O� �--� N
V
U O
y
O ^ ^ N fV N CV fV fV e6 e+i f7 f i e6 cli Co tfi "i f+l M M e6 M M fn M fV M e6
too
U �3
7E
En
W
Q
W A
p„
O
U
5
N \O M of ^ �O v Ol
'V C\ b N r� ^ I�O VO W) 7 N IO C, N e M �--� 0\ 00 S :
r
M �O r r 00 w C� O^ N N N M M M M M N N N N^^^ 0 C) ^
'
G
iYr
'S37
[a
Or W
U
�
U
C
W
o
r r r r r r r r r r n r r r r r r r r r r r r r r r r r r
0 0 0 00 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g
W
W
totnv,v,v,knknv,v,%nW,knv,InkntototnW,r
In Ln kn Ln Vl to kn to Vl to Vl In in kn to kn Vf to to
M M M M M M M M M M M M M M M M M M M M ell M Pry M M M M M M
a
��y+
o
0
z
�T
'
oo
CN 'J� \O NO \D 'q� qd!
G y
00 M OO 00 00 00 00 M OD r- r r r 10 V1 V1 In R 7
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
'$ w
1
qc cc oo pp pp pp pp
000 O N� r O N V) r O N V) r O N � r O N kn r 0 0
O O O O—^^^ N N N N to M M M 4 4 7 4 vi vi vi wn \C %6 r
o
I
I
' COLLECTOR W PARKING 6" VERT - 2 Year
Worksheet for Irregular Channel
'
Project Description
Project File
c:ldrainagelhaestadlfmw\street c.fm2
Worksheet
COLLECTOR W
PARKING 6" VERTICAL
'
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
'
Channel Slope
0.004000 ft/ft
Water Surface Elevation
99.87 ft
Elevation range: 99.37 ft to 100.50 ft.
Station (ft) Elevation (ft)
Start Station End Station
Roughness
0.00
100.50
0.00 25.50
0.016
0.00
100.00
25.50 33.00
0.035
23.00
99.54
33.00 38.00
0.016
25.00
99.37
38.00 57.00
0.035
25.00
99.87
25.50
99.87
Tom �i= G�JJ21�
33.00
100.02
38.00
100.12
57.00
100.50
Results
'
Wtd. Mannings Coefficient 0.016
Discharge
6.82
cfs
Flow Area
3.55
ft2
Wetted Perimeter
19.01
ft
Top Width
18.50
ft
Height
0.50
ft
Critical Depth
99.83
ft
Critical Slope
0.006940 ft/ft
Velocity
1.92
ft/s
'
Velocity Head
0.06
ft
Specific Energy
99.93
ft
Froude Number
Flow is subcritical.
0.77
r
---
--- -- --�-_-
.._...... , _----
-
----- -----
- --
��,. ► �o�.- ���- -- -
'
Z
10ro4i98
12:53:32 PM
Haestad Methods, Inc.
37 Brookside Road Waterbury, CT 06708 (203) 755-1666
FlowMaster v5.13
Page 1 of 1
Ul
COLLECTOR W PARKING 6" VERT - 100 Year
Worksheet for Irregular Channel
Project Description
Project File c:\drainageXhaestadlfmwlstreet c.fm2
Worksheet COLLECTOR W PARKING 6" VERTICAL
Flow Element Irregular Channel
Method Manning's Formula
Solve For Discharge
Input Data
Channel Slope
0.004000 ft/ft
Water Surface Elevation
100.12 ft
Elevation range: 99.37 ft to 100.50 ft.
Station (ft) Elevation (ft)
Start Station
End Station
0.00 100.50
0.00
25.50
0.00 100.00
25.50
33.00
23.00 99.54
33.00
38.00
25.00 99.37
38.00
57.00
25.00 99.87
25.50 99.87
33.00 100.02 _
38.00 100.12 kJ
57.00 100.50
Results
Md. Mannings Coefficient
0.020
Discharge
22.21 cfs
Flow Area
11.07 ft2
Wetted Perimeter
38.63 ft
Top Width
38.00 ft
Height
0.75 ft
Critical Depth
100.04 ft
Critical Slope
0.010457 ft/ft
Velocity
2.01 ft/s
Velocity Head
0.06 ft
Specific Energy
100.18 ft
Froude Number
0.66
Flow is subcritical.
' 10/04/98
12:54:34 PM
z
Roughness
0.016
0.035
0.016
0.035
FlowMaster v5.13
Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 (203) 755-1666 Page 1 of 1
J