Loading...
HomeMy WebLinkAboutDrainage Reports - 06/19/2015TENNIS COURT PARKING LOT FINAL DRAINAGE REPORT City of Fort Co ► s Approv qg 4rovedbf, PREPARED FOR Colorado State University Fort Collins, Colorado PREPARED BY Olsson Associates 5285 McWhinney Blvd. Loveland, CO 80538 970.635.3721 May 2015 Olsson Associates Project No. 015-0358 0LSSON ASSOCIATES Tennis Courts Parking Lot Preliminary Drainage Report Colorado State University 015-0358 Table of Contents 1.0 GENERAL LOCATION AND DESCRIPTION.....................................................................1 1.1 Location ............... :................................................................................................... 1 1.2 Description of Property............................................................................................. 1 2.0 DRAINAGE BASINS AND SUB-BASINS...........................................................................1 2.1 Major Basin Description............................................................................................ 1 2.2 Sub -Basin Description.............................................................................................. 1 2.2.1 Historical Drainage Patterns.............................................................................. 1 3.0 DRAINAGE DESIGN CRITERIA........................................................................................1 3.1 Regulations/Development Criteria............................................................................ 1 3.2 Hydrological Criteria................................................................................................. 2 3.3 Hydraulic Criteria...................................................................................................... 2 3.4 Waivers/Variance from Criteria................................................................................. 2 3.5 Stormwater Quality Considerations.......................................................................... 2 4.0 WETLAND PRESERVATION AND MITIGATION..............................................................2 5.0 DRAINAGE FACILITY DESIGN.........................................................................................2 5.1 General Concept...................................................................................................... 2 5.2 Hydrologic and Hydraulic Modeling.......................................................................... 3 5.3 Basin Descriptions.................................................................................................... 3 5.4 Detention Pond......................................................................................................... 6 5.5 Low Impact Development......................................................................................... 7 6.0 CONCLUSIONS................................................................................................................7 7.0 REFERENCES..................................................................................................................8 05.06.2015 Tennis Courts Parking Lot Preliminary Drainage Report Colorado State University 015-0358 List of Tables Table 5.1 SWMM Input Parameters........................................................................................... 3 Table5.2 Basin Summary .......................................................................................................... 5 Table 5.3 Detention Pond Details............................................................................................... 6 List of Appendices Appendix A Maps and Figures Appendix B Basin Information Appendix C SWMM Input and Output Appendix D Inlet and Swale Sizing Appendix E Riprap Sizing Appendix F Pond Information 05.06.2015 1.0 GENERAL LOCATION AND DESCRIPTION 1.1 Location The proposed project is located within part of the south half of Section 23, in the Township 7 north, and the Range 69 west of the sixth principal meridian. The site is bound on the north and east by the Larimer County Canal Number 2, on the northwest by Center Avenue, on the southwest by Research Boulevard, and on the south by Drake Road. 1.2 Description of Property The proposed project site is part of Colorado State University's South Campus and includes the current Tennis Complex. The property is approximately 20 acres in size. Currently the site includes a tennis court facility with twelve tennis courts, a small parking lot, and small building with restrooms. The remaining site is primarily vegetated in a mixture of grasses. A depression at the western most corner of the property is populated with stands of cottonwood trees. The existing topography slopes to the east at average slopes of between 0 and 3%. Soils in this area consist of Nunn clay loam which are classed as hydrologic group .C". 2.0 DRAINAGE BASINS AND SUB -BASINS 2.1 Major Basin Description The project site is located in the City of Fort Collins Spring Creek drainage basin and is identified as basins 89 and 62 in the Spring Creek master plan. Spring Creek lies north of the project running west to east. The property is also part of Colorado State University's South Campus. The master plan for the south campus, completed by Anderson Consulting Engineers, correlates to the City's Spring Creek Master Plan's drainage basin numbering. The proposed project is outside any FEMA and City of Fort Collins floodplains areas. 2.2 Sub -Basin Description 2.2.1 Historical Drainage Patterns Historically the northern two-thirds of the site drains to the east and the southern third drains to the south. The northern portion drains to a detention pond at the northern and eastern sides of the tennis courts. This detention pond discharges to the east under the Larimer County Canal Number 2 and over to a drainage swale that runs north to Spring Creek. 3.0 DRAINAGE DESIGN CRITERIA 3.1 Regulations/Development Criteria The preliminary design of the proposed drainage facilities was completed in accordance with the criteria presented in the City of Fort Collins Spring Creek Basin Master Plan and Colorado State University's South Campus Drainage Master Plan. The following criteria were used in the drainage design. 05.06.2015 ■ The developed 100-year peak runoff from the developed site was limited to a release of no greater 3.0 CFS based on the release rates identified for Pond 289 in the Spring Creek and South Campus master plans. ■ The southern portion of the site remained undeveloped and was therefore not analyzed. 3.2 Hydrological Criteria The design storm used was the 100-year (major) for the developed discharge. The City of Fort Collins Intensity -Duration -Frequency curves were used to obtain rainfall data used for the 100- year storm event. The runoff for the site was determined using EPA Storm Water Management Model, version 5.1 (SWMM). This was done in order to accurately model the detention pond because the FAA Method was not sufficient. The volume required in the detention pond exceeded the limits of the FAA Method, therefore, SWMM was used to model the site. 3.3 Hydraulic Criteria The stormwater conveyance systems were designed to capture and convey the major event to the detention pond. The discharge used to size and design the conveyance structures was based on the SWMM model of the discharges from the basins. Pipes were sized using SWMM to ensure ponding at inlets met Fort Collins criteria. Inlets and riprap were sized using Urban Drainage and Flood Control District's spreadsheets while maintaining Fort Collins' ponding depth for inlet sizing and minimum riprap size where applicable. 3.4 Waivers/Variance from Criteria No waiver or variance is requested. 3.5 Stormwater Quality Considerations In general, stormwater quality will be mitigated on -site during construction with the use of silt fencing, vehicle tracking devices, inlet / outlet protection devices, and other best management practices as needed. Long-term stormwater quality will be obtained by running the stormwater over grassed areas and by providing a 40-hour water quality capture volume (WQCV) within the detention pond in conjunction with a water quality orifice plate designed for a 12 hour release rate. 4.0 WETLAND PRESERVATION AND MITIGATION There are no jurisdictional wetlands located on this property. 5.0 DRAINAGE FACILITY DESIGN 5.1 General Concept Onsite basins have been determined and are defined as Basins 1, 2, 3A through 3D, 4, 5, 6, 7A through 7C, 8A through 8C. Basins that flow offsite include Basins OS-1, OS-2 and OS-3. No offsite basins affect the project. Adjacent streets were accommodated in the Spring Creek Master Plan and as such, onsite basins do not include adjacent roadways. The proposed drainage patterns for the onsite basins have been determined by the layout and grading of the 05.06.2015 2 site. Overall, the site will be similar to the historic flow path. The majority of the stormwater from the site will be routed through the site by the stormwater system to the detention pond. Due to grading limitations, small portions of the site (the entrances, basins OS-1, OS-2, and OS-3) drain out to the adjacent streets. Additionally, the south half of the south entrance drains southerly without being detained, however, this flow pattern follows the South Campus and Spring Creek master plans. To mitigate the developed flows from the developed basins, the existing detention pond was reduced to accommodate the developed flows leaving the site undetained while maintaining the overall release rate from the site. 5.2 Hydrologic and Hydraulic Modeling EPA SWMM 5.1 was used to determine runoff from each basin, route the flows, and then used to size drainage structures to convey the discharge downstream. The model was also used to ensure the detention pond had adequate volume to provide water quality and to provide detention that detains the overall developed site flows with an overall release rate equal to the historic 2-year flow rate of 3.0 cfs as required by the Spring Creek and South Campus master plan. The rainfall from the City of Fort Collins Drainage Criteria was used in the SWMM model. A summary of the SWMM parameters used in the model are listed in Table 5.1 below. Table 5.1 SWMM Input Parameters Parameter Value Depth of Storage on Impervious Area 0.1 Inches Depth of Storage on Pervious Area 0.3 Inches Horton's Maximum Infiltration Rate 0.51 Inches/hr Horton's Minimum Infiltration Rate 0.50 Inches/hr Decay Rate 0.0018inches/sec Zero Detention Depth 1% Manning's n Value for Pervious Surfaces 0.025 Manning's n Value for Impervious Surfaces 0.016 5.3 Basin Descriptions Basin 1 consists mainly of the CSU tennis court and the newly graded detention pond 289. The main drainage path will start on the surface of the CSU tennis courts, and will drain to the east where it will hit the curb and gutter. It will then drain to the north east portion of the tennis courts were water sheet flows directly into detention pond 289. Basin 2 consists mainly of a new paved parking lot, with islands and curb and gutter. Runoff sheet flows from west to east thru the parking lot until it reaches the curb and gutter. It will then drain along the curb and gutter until it reaches the most northeast portion of the parking lot where it enters Inlet-2, a double type-13 combination inlet. Flows are then conveyed via storm sewer to pond 289. Basins 3A, 36, and 3D are very similar basins. All three basins consists of paved parking lots, with islands and curb and gutter. Runoff in these sheet flows from east to west in the parking lot until it reaches the curb and gutter. Flows will then be conveyed along the curb and gutter until 05.06.2015 3 it reaches the designated D-12 sidewalk culvert for the individual basin. The sidewalk culvert will drain storm water to the west along a rundown until it reaches the bio-swale in basin 3C. The bio-swale will drain to the north until it reaches the 18-inch pipeline under the north entrance to the parking lot where it is conveyed into pond 289. Basin 3C consists mainly of a bio-swale that slopes to then north at 0.5%. All the stormwater in Basin 3C will be conveyed in the bio-swale, which will drain to the north until it reaches the 18- inch pipeline under the north entrance to the parking lot where it is conveyed into pond 289. Basin 4 consists primarily of new paved parking lot with islands and curb and gutter. Runoff will sheet flow across the parking lot until it reaches the curb and gutter where it will then drain along the curb and gutter until it reaches Inlet-4, a double type-13 combination inlet. Flows will be conveyed into basin 8C's bio-swale via storm sewer. It will then pass under the eastern entrance flowing north into pond 289. Basins 5 and 6 consists primarily of the proposed drive through the site connecting Research Boulevard and Gillette Drive. Flows in both basins are conveyed via sheet flow until they reach the curb and gutter in each respective basin where flows are then routed east to inlets 5 and 6. Inlet 5 is a 10-foot type R inlet and Inlet 6 is a 5-foot Type R inlet. Both inlets are connected to the storm sewer that conveys flow under the drive to the north into Pond 289. Basins 7A and 7B are very similar basins. These basins consists of paved parking lots, with Islands and curb and gutter. Runoff from these basins will begin at the eastern side of the basin, and sheet flow westerly across the parking lot until it reaches the curb and gutter. It will then drain along the curb and gutter until it reaches the designated D-12 sidewalk culvert for the individual basin. The sidewalk culvert will drain storm water to the west along a rundown into the bio-swale in Basin 7C. The bio-swale conveys the flows north until it drains into a grated manhole in Basin 7C. The storm sewer system will deliver the flows into basin 8C's bio-swale and ultimately into Pond 289. Basin 7C consists mainly of landscaped area. All the stormwater in Basin 7C will drain into a grated manhole section at the northern end of the basin. The storm sewer system will convey flows into basin 8C's bio-swale and ultimately into Pond 289. Basin 8A consists of paved parking lot with islands and curb and gutter. Runoff from this basin will sheet flow east across the parking lot until it reaches the curb and gutter, from where it will drain north along until it reaches Inlet-8A, a double type-13 combination inlet. The flow will then flow through a flared end section and will enter a bio-swale. Once flows enter the bio-swale in Basin 8C, flows are conveyed north and into Pond 289. Basin 8B consists primarily of a new paved parking lot with islands and curb and gutter. The runoff is conveyed via sheet flow east -southeasterly across the parking lot until it reaches the curb and gutter. It will then drain flow along the curb and gutter until it reaches the D-12 sidewalk culvert at the southeast portion of the basin. The curb cut will drain storm water to the east along a rundown until it reaches the bio-swale in basin 8C. The bio-swale will then drain north at 0.5% until it reaches the storm sewer system that conveys the flows north into pond 289. 05.06.2015 4 Basin 8C consists mainly of a bio-swale that is sloped to the north at 0.5%. All the stormwater runoff in Basin 8C will be conveyed by the bio-swale to the north until it reaches the storm sewer system where it is conveyed north into pond 289. Basin OS-1 consists primarily of the north entrance to the site. The flows from this basin are conveyed via sheet flow to the adjacent street where they leave the site. Basin OS-2 consists primarily of the main entrance off of Research. The flows from this basin are conveyed via sheet flow to the adjacent street where they leave the site. Basin OS-3 consists primarily of the main entrance off of Gillette. The flows from this basin are conveyed via sheet flow to the adjacent street where they leave the site. As each basin contributed to the total discharge for each conveyance, the routed summation of the contributing discharges was used to size the conveyance structures at key points. See Table 5.2 for a summary of the drainage basins and their characteristics. Table 5.2 Basin Summary Basin (ID) Area (ac) Percent Imp. (%) RUNOFF (CFS) 1 5.90 44% 47.20 2 2.04 95% 18.18 3A 0.29 96% 2.89 3B 0.32 96% 3.20 3C 0.83 4% 5.47 3D 0.31 92% 3.08 4 0.62 66% 5.63 5 0.74 55% 6.75 6 0.28 100% 2.48 7A 0.40 92% 3.93 7B 0.36 82% 3.44 7C 0.28 6% 2.19 8A 2.43 92% 20.70 8B 0.30 61% 2.94 8C 0.81 10% 5.22 OS-1* 0.03 87% 0.71 OS-2* 0.07 100% 0.26 OS-3* 0.07 100% 0.71 rhese basins drain offsite. 05.06.2015 5 5.4 Detention Pond The existing detention pond was enlarged with the proposed parking lot improvements. The new pond includes the required detention to release at a reduced flow rate and the storage for the 40-hr release rate for water quality. The outlet is a siphon that was designed with the previous tennis courts improvements. Because the detention pond was modified, the outlet structure will need to be re -constructed to have a water quality orifice plate sized to release the WQCV within 12 hours and the revised release rate accounted for with a new orifice plate. If the outlet structure should ever become plugged, the volume in the pond is large enough to contain the developed runoff from the site without overtopping the spillway. The existing spillway was not modified. The following table summarizes the calculated stormwater runoff quantities and pond design parameters. See Table 5.3 Table 5.3 Detention Pond Details Pond Elevation Variables Bottom of Pond, feet 5031.00 Top of WQCV control structure, feet 5032.70 100-yr WSEL 5036.08 Pond spillway elevation, feet 5036.50 Top of pond elevation, feet 5038.00 Pond Outlet Spillway, feet (at 0.5 feet deep) 30 Freeboard 100-year plugged outlet condition, feet 1.0 Outlet pipe diameter, inches 18 Outlet Orifice diameter, inches 3.75 WQCV Volumes Volume required (40-hour release), ac-ft 0.49 Volume provided, ac-ft 0.49 Storage Volumes 100-Year Event Volume required, ac-ft 3.70 100-Year Event Volume provided, ac-ft 3.76 100-Year Event Volume + WQCV Provided, ac-ft 4.25 Pond volume at spillway elevation, ac-ft 4.93 Pond Discharge 100-year Allowable Release Rate, cfs 1.32 100-year Actual Release Rate, cfs 0.89 Master Plan Pond Discharge, cis 3.0 Undetained discharge, cfs 1.68 Refer to the Appendix F for detention pond sizing and outlet structure calculations. 05.06.2015 6 5.5 Low Impact Development Low impact development (LID) was used as much as possible including in the bio-swales on the east and west sides of the site and in the parking islands. The overall water quality control volume was not reduced even though some areas do receive some treatment by the bio-swales and parking islands. The reason for this is that it is unclear how effective the small scale LID improvements are. Should they be found ineffective in this application, the additional capacity in the pond is available. The overall impact to the pond volume is fairly minor but it would remove basins 3A, 36, 3C, 7A, 813, and 8C and result in a total requirement of .420 acre-feet of WQCV storage instead of the 0.492 identified using all the basins. 6.0 CONCLUSIONS Overall, the design of the structures used to convey the runoff from the proposed development will control required storm events effectively. The proposed stormwater system will capture the majority of the increased runoff from the site and route the storm flows to the detention pond. The detention pond will attenuate the developed flows and release them at a controlled rate to the Spring Creek basin. Water quality control will be provided before discharging developed flows. No offsite drainage improvements are required. 05.06.2015 7 7.0 REFERENCES Urban Storm Drainage Criteria Manual (USDCM), Volumes 1 and 2, published by the Urban Drainage and Flood Control District, Denver, Colorado, June 2001, Revised April 2008 Urban Storm Drainage Criteria Manual (USDCM), Volumes 3, published by the Urban Drainage and Flood Control District, Denver, Colorado, November 2010 Fort Collins Stormwater Criteria Manual, City of Fort Collins, December 2011, Addendum February 2013 CSU South Campus/Veterinary Teaching Hospital Drainage Evaluation, Anderson Consulting Engineers, October 19, 2001. Spring Creek Master Plan, Anderson Consulting Engineers, December 8, 1999 05.06.2015 8 APPENDIX A MAPS AND FIGURES 05.06.2015 O*kOLSSON ASSOCIATES 40' 3349'N 40^ 37 i' N i Hydrologic Soil Group—Larimer County Area, Colorado 3 (CSU Parking Area) yV O p 4(° 33 49' N i� 8 K 8 40 33I" N 492400 492500 492600 492700 492800 492900 493000 493100 493200 493300 493400 3 Map Scale: 1:7,210 If printed on A porbat (8.5" x 11") sheet e N 200 400 -- 600- Feet 0 350 700 1400 2100 Map OrO)eCbw: Web MIerMtor Comer mordirebes: WGS84 Edge tim U1M Zone 13N WGS84 VYIN Natural Resources Web Soil Survey 2/2/2015 i Conservation Service National Cooperative Soil Survey Page 1 of 4 0 U O O m C O - m Q O O O pp m C O C O Y> N > m r L N O w O 2 m mL >` U °� N 0 0 m y uEl y3 C c QA °yy Nm CD m E m mEo N o N c o -Y CV�� O`1� U N m 0mo Z E ainm m� m 'o ma�D wormy U N E o. mmN O m mc10v t cm ° 3 N E m m °CL N 44)4T)C� C Z Z¢ m 0 m p 4)C E O N W U j mmEDooo N oL Q m y O L C- y D , n pU mQm ,gyE O m>£m o d o CO m M�'0 0-- m qN y m CV° ° iUO N o .$o0 E T cc EC mNmJ om° A° om m (D"' - �v EIL d m Lm' L mOEE Q U A J y V N°J m N- L E mr m z n ¢um mo ° m y Ey E O1 E (D y b 0'�cm 0rn ai m N oc m�tp �3��0 rnm N� m ¢M m E 015 To 2 o_m�-� TE �Ud tca�_° y 'O m�o8 m m mr O C Ecmco U m vo E and m m om'vc L 2, N C V r �C Ng m 9 NN m i�V yy l0 yyCi= nor 7 T m 4) EC. N O'O.mm m cLmo and Opd)°o MQ0n� rm 'o5 '0`-0 Lm h- 3 W E o.y d E U�U . `5< ig F UU U `o m'- ON LEmE F- E`o a n m N > m o a C 3 a U t T t n m C V y N m 0 °� A y m O a 0 O _ a w K w a ❑ O a vF V m U U o ❑ Z N f = ❑ Q _O 9 8 ■ LL`o W■ C c a W —i d a a n o 0 d C C d C O O 0 C rn o w a9 Q O y C 0 Q 0 Q a m m U U ❑ Z m Q a m m U U ❑ Z pi Q a m m m c c c OF ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ 1 l Z ` q O ■ ■ ■ H a a i [ 0 Hydrologic Soil Group—Larimer County Area, Colorado CSU Parking Area Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit — Larimer County Area, Colorado (CO644) Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 3 Altvan-Satanta loams, 0 B 1.6 0.6% to 3 percent slopes 4 Altvan-Satanta loams, 3 B 37.9 14.6% to 9 percent slopes 22 Caruso clay loam, 0 to 1 D 10.4 4.0% percent slope 35 Fort Collins loam, 0 to 3 C 6.2 2.4% percent slopes 53 Kim loam, 1 to 3 percent B 2.6 1.0% slopes 63 Longmont clay, 0 to 3 D 5.0 1.9% percent slopes 73 Nunn clay loam, 0 to 1 C 133.8 51.5% percent slopes 74 Nunn clay loam, 1 to 3 C 32.5 12.5% percent slopes 75 Nunn clay loam, 3 to 5 C 3.7 1.4% percent slopes 76 Nunn Gay loam, wet, 1 to C 25.9 10.0% 3 percent slopes Totals for Area of Interest 259.7 100.0% T usDA Natural Resources Web Soil Survey 2/2/2015 Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—Larimer County Area, Colorado CSU Parking Area Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff.- None Specified Tie -break Rule: Higher usDA Natural Resources Web Soil Survey 2/2/2015 21111111111 Conservation Service National Cooperative Soil Survey Page 4 of 4 APPENDIX B BASIN INFORMATION 05.06.2015 OkOLSSON ASSOCIATES Project Name CSU Tennis Courts Project Number 015-0358 Calculations By F. Sottosanto Date: 4/24/2015 O'kOLSSON ASSOCIATES Basin ID Paved Area (acres) Grass Area (acres) Roof Area (acres) Total Basin Area (acres) Net Percent Imp. (%) 1 2.50 3.40 0 5.90 43.5% 2 1.93 0.11 0 2.04 94.7% 3A 0.28 0.01 0 0.29 95.6% 3B 0.31 0.01 0 0.32 96.3% 3C 0.01 0.82 0 0.83 3.7% 3D 0.29 0.02 0 0.31 92.4% 4 0.41 0.21 0 0.62 66.2% 5 0.36 0.33 0.05 0.74 55.2% 6 0.28 0.00 0 0.28 100.0% 7A 0.37 0.03 0 0.40 92.2% 7B 0.30 0.07 0 0.36 82.3% 7C 0.01 0.27 0 0.28 5.5% 8A 2.24 0.19 0 2.43 92.3% 8B 0.18 0.12 0 0.30 60.8% 8C 0.07 0.75 0 0.81 9.9% 05-1 0.03 0.00 0 0.03 86.7% OS-2 0.07 0.00 0 0.07 100.0% OS-3 0.07 0.00 0 0.07 100.0% Total 9.69 6.35 0.045 16.08 61.3% %IMP 100% 2% 90% OS = Offsite Total only includes on -site basins APPENDIX C SWMM INPUT AND OUTPUT 05.06.2015 OkOLSSON ASSOCIATES N N N O m O m 0 0 0 0 0 d O Q $ %D 0 ID 0 0 0 e•I e•1 ••I ei 0 •• r Z 3Z r 0 0 0 0 0 0 0 M 0 0 0 0 m u O> w O O N 0 N 0 N a H N 0 0 > u 2 0 0 0 Z z 0 0 0 0 0 0 0 H 0 0 0 0 0 N d O Z W W W F�- H O z F H N _ " M W 0 pppQ W W Q Q K W r U N C M Q O LL D. O W Q M I1- /1 Ir/1 W W F 2 N Ir/1 6 6 NI w vd, O �=h-w0�mI0 OI rI rI rIQ tiNI WI Q rlr rz J O H ++ IJ I IN 3 I r r m w 0 r a a 0 w N 0 rL ro.3H3y Ipa ww 00 I Iww 10 1 1r M d 1OOLL Ozz JN QQD. d OO W W>o.r>> f O Z J M M J y r r W W z z 3 3 w W W w O •. •+LL M LL J� Q N N N C K w w N N O K 3 p z v 3 L d K E > E m H 0 2C 'i V LL N m W d M L K Q d � W U � N L � W J � i N � r � J m L d i N C J i M i 0 s F 3 N m V m am tD $ 00ti-i m 0NN E A Z m E W C L 0 L i r W O d 0 Z LL M w r.. M F-I c r i N Y a J O' u N r C I WW I Q z J J Z Z _ z d 3 Ir l7w QOO Om wE O O z N Z W O W r r M V N E a 1J N IH Q J W I I r m w $ U J LL W Z LL Q J 3 3 Q O r> 0 � V ♦+ Q I J W D: 10 0 p w Z J Q r m M J Im $ C r J J O p Q Z 0 d Q U r W Q r N r I LL LL d m r 0 Z m u m Lt �+0 I In I I Q> N 1 "m m w w w z z z Q N r > W Z> Q l0 . 7 N 3 yO ; m m m m m m m m m m m m m m m m m m V � 0 I O � ,: m m m M r m m m .+ u+ ei rn In In m m H m w r m u, Ir, m mn N I•i ei e•I m ei m m m 1•'I ei N N O I •-I Q � rl y� r~i m m m lfl a e-1 00 n n N a m m N m w m m l a rl n ID m IO .y N Yl O M .•I .•I r-1 r-1 m n M � ••I N m N ID m a n Ir M .-I 1p .•I In nvi .•I m to m e+ema'+m m a - M m N m m m m 10 V1 10 N N N m r V1 N m n M N m N N ... ID N M M . N Vr Q W 10 V Q Q r Q m m l l M M r rn I Inrr I ow w 2 w w w E I ' O Z Z w p w Z 2 N" m 2 O O I d H r-I H LL N LL H H N N N H ei VI M I I i I ei ei ei •i 'i ei •i •i ei H r-1 •"� �"� �"� H H H r-1 i i I z zInMmnD H r v mmmm n I Z Z Z Z Z 2 z 2 z Z z2 H H H Z Z Z Z 2 Z I H H H H H H H N H N N N H H H H H H I N N N N N N N N N LL LL LL N N . •. Q Q Q Q Q Q Q Q Q LL LL LL Q Q •m m m m m m m m m 0 0 0 m m m m m m O y l w w w w w w w w w w w w w w w w w w }J I J J J J J J J J J J J J J J J J J J J l r r r r r r r r r r r r r r r r r r w r 000000000000000000 O L N V V I N {ll YI {fl VI V1 d I '•I 'i H H 'i rl rl 'i rl rl 'i H N N N N N N L I O1 I IA N IA Vl IA N rll V1 N IA IA V1 U1 IA N N N a r m m m m m m m m m m m m m m m m m V1 m m m m m m m m m m m m m m m m m m L N d I E r N N ul In lA N N ut In N In ut In N N N vl H I m m m m m m m m m m m m m m m m m N~ m m m m m m m m m m m m m m m m m I Li 01 IA IA N N Vl N YI VI V1 1l1 IA IA •. .. .. r. I. m m m m m m m m m m m m Z m m m m m m L� ElO IO 10 1D 1D 10 IO 1D 10 lD 10 �D rl 'i H 'i H rl W Iy (y N W .•I QD • .•I m m m m m . Z i m m m m m m m m m m m . m m m m m m i CI W � E r-• L ; N V w m l V m U V Q w w w Q m O Q m M Z MN M Z m n m m Z H r r a m m m n n N H N N IZ•1 � N r N N N N N VI VI LL LL LL {A V1 y� I� Ill y� � •, •, m mmmm mmmm O O O m m m m m m r r-1 I .i C I X r X m £ I m m m m m m E M r r I c l n n n n n n > I U I c�aaaaaa N a m a m m m m m m m m m m m m n n n n n n n n n n n n vvovvvvvvvvv N N N N N N N N N N N N m m m m m m 0 m m m m 0 ei ei ei ei ei rl m m m m m m N N N N N N N a � m aaG 10 H H FW- V< M O< m H H H N N N H H H l H/� LA H H m m m o LL o m m m m m m m m m 0 0 0 m m m m m m a d a C C � Q m m m m m m m m m m m m L � c. d I � � m N N n ea•1 L 1 Y I D_ I 4 Y .I r H l m m m m m m m m m m m m r L � nr d ox ro namlan .•Im f r m It m a N m m m m a N m r I N M M N ID a N N n L I N Itw N m It m m Or oo N al d I OOMaNn a vv�on �o ao > I m m m m m m m m m m m m a= � m m m m m m m m m m m m H N N N N N N N N N N N N N C i V N Q N w W a Q V C Z J i W I S W W W I I W S nm z w o z Z Z w w Z O L I > I H i m m m m I i N rti I J r-1 i J m LL 4 I O r O • ^ N N 'i T •^ •+.i N N N 1 1 Q 1 1-1 1 LL 1 m 1 � 1 1 0 r-I I LL r Y I •N I C I H l m m m m m m Y d � N I I Y I m at N O I N N N i Y d � N O C I H l m m m m m m N ; d C i L ID ID 10 10 ID ID m i 1"1 1"1 r"1 rl r"1 rl K l m m m m m m i I {t 1 1-I m eY N 1p pp I N M a M N w� v oo m v N a J 1 m.y mmn N I d 1 Q Ip N o Z 1 J J $ O 0 0 o z z 0 0 1 1 1 d O I N ID Q N Z M I N I E I W N W S W L 1 Z W Z O z LL I H LL H �-1 N H N Y M � I �a r m.a ry a Z 0 1 N N N ei N N 0V 1^mmmmmm I u.+.^N r/1 N N0N m m m CD m m m m m m m m m m m a M m m mmID IO 10 ut OI a rn N n N Ol t0 N N IA IA M 01 M N Q m m�IAr w w w 0 z LL LL LL N M ei maQ Q Q I M w w 2 y w J J 0 W Z Z LL LL M M N It O O M I -I N r b m m m 13/1 13/1 tr/1 trA N a I E I o I d I m l7 I m m m m m m m m m m m I E I O I �;mmmmmmmmmmmm N I E I u1 O d N l7 I m m m m m m m m m m m J J J i w w w Z Z M Z I QZQ Q m eY I i S N O I In In In In ul VI ul V' I N N N •i N N W W N eY m w � d Q Q Q Q Q Q J J Q Q W J A I K K K K K C K K K C C C N V V V V V V I -I M V V S N I I I N 0 M IA Vl r Y I M I-1 N a O O m I-1 N va I wM ullllCNnloa V1 J l m m Dm CDm Mm m m m m u •+ •+ N N Vrl N 1rA Vrl N t3A Vrl N N a m n W m m l D m .�-Im mrvm ro m m to ao m m mmm mmm m ul IA m In In N m I -I m m n m m n m CD .•I m m 1-I m In mmm •mm m V1 V1 m I/1 N IA m ei Op N • ei O� tlf 01 v1 CID M M m V M a CD Ilml Iml1 m N l l U 4 ei Y m Ol N m IO M a LE N n ao a O m rn n m m IA CO Vf ul M 01 Ii I m m m m a m m m V I-1 IA IA I-1 lA Vl Vl S •.Ci m 10 01 N V1 I-1 Ill N Vl n Vl Op Y m I•i Vl m N 0% m 10 J N N a J a N a Q W W F V Q m m Q m Cl w N V u m W Ol IA lSJ m 01 M IA c m Immm m IV ma L m W I mumi mmumi lmn lmn V M Q 0 tm V X 0 ID GC •+ •+ Z X l7 l7 l7 •+ Z X l7 l7 l7 a m m 00 Z 2 y I MIp I W b M m n M 01 IA n N d �O OO m 00 �D N d �D I m m m rl N M M d d IA W n 01 e4 �p N �D .-1 N M a0 M oo O+ mnvfa.y 0� MmMmd.-I m m } � m m m m �"I rl rl r1 •i •i 'i rl rl m m m N N M d V1 V1 1D �D n n 00 O� I W � ••I I A I � � ll1 V1 N lfl V1 IA m m X l m rl 'i N N M M d d v1 W J6 n I I m � C 41 1 O. I Y •i •i !T � a I I I I � d I M W 1 1 r r r r r r r r r r r r r r r I 1 L I W W W W W W W W W W W W W W W N d K i I J J J J J J J J J J J J J J J mm �Vlrrrrrrrrrrrrrrr Iri1 N u•+•.0000000000000 00 OI m �O n IA V1 Y1 V1 N m • �-1 �•1 N N M M d d V1 N 1p lD n m N L O 41 W W W W W W W W W W W W W W W l7 l7 l7 V' 1Q7 1Q7 17 17 17 t9 17 17 19 1Q7 1:J K K K K Q Q K K K K K K K Q K 000000OO0000000 + tr/1 Ir/1 Ir/1 N N tr/1 Ir/1 Ir/1 V1 IA IA IA IA V1 Vr1 � I eY eY ••1 N N V1 01 d N r1 I w i IA m V1 m 1I1 m IA m V1 m E I m e'I 'i N N M M d d v, r i m m m m m m m m m m I ••I i m N I \ Y D a I N N � N VI •'I I W L � M 41 W } } } } } } } } } } W W m m m m m m m m m m W E- m m m m m m m m m m � mi ei ei 'i ei 'i •i rl rl 'i 'i I'•1 r I I I I I I I I I I I •+ V V V V V V V V V V •+ •+ LL LL LL LL LL LL LL LL LL LL n N r0 N eY 1� O ei m Vf M rl O\ 1� N m Or O\ m m m 1� n n n b r0 m m V � N Ow0 la0 M m � rD a r/1 M N M � em•1 V Q1 V1 L r m m N N N N r-1 T of r0 m m ey O\ N b m . . . . . . . . . . . . . m r . . . . . . . . . . . . . . . . .y •i •i m m m m m m m m m m m CS)O.`nn a a m rn •i M N Y E N I� n m VI n n n n N M rl m N m N N N m T � rn mrn mrn maim rn min mrnm d i V1 m m rl rl N N M M a� ll1 N m M i m rl rl rl •i 'i 'i 'i rl •1 'i 'i rl N M i m ui M m � in V M.yy min rOmMmroti V romV ry m O r m 0 O r ao m�D ao M Y/1 ma naom ntn . � V r� m I� N N m m r-1 0% N mM l0 Ot rl ei w N m r 'i m a rD M N N C O J ONX � � I*1n V � tow rO .y ut r0 y r rp in r r %D %D „ J e v ¢ M W n c O O O V m O _ 2 2 H r 2 N c 2 W M E J J $ Q N i+ 0 X J J O Z 1 Q W YY}y}YY}}}YYYY H L JU¢Q H �n Qrv�om aQ V m m m m m m m m m m m (D m m m m m m m m m m m m m m m m w O O H n F CQO N OWO. ^ 0 V1 -2r O W m V1 Q¢ M M WV Hw Hw �p n �1- r-1 rf N •i•I ei ei rr l ri l rl eii eri rr l rr l ri l 0) = FW Y n W / O x p ' LLLLLLLLLLLLLLLLLLLLLLLLLLLL mm2m02 �•+M u 2 �r JHw JHW �=i 2 W u.n u w 0 z —0 •n rINLL{O/IMMMLLLLM Vo1a'iNNNa IQ I I I I I ; I I I I n V1 '1 01 10 rl n m Ill m ul ON M N W M W N Vl Ol ID n It M l0 n O N N U1 ID W m n O O W T m W 0 I mrnm.lD+rn W e�rnnnelc mnlMn�nnmal�n al�nmrn mlmnrnm.a+l�n .. lnn nlmiln munlvm m."-Inry O I O m O I O� 1� O l-I n l0 N Ol W Yl N n N ID rl m n rl a n Ol •i ei 01 n 111 1p M lD N Vl V V W T 1p V1 n lD a 1� V I V I W N T Ol n W Ol ul lD W M W a ul a ul M .-I W n N M M ID V .•1 l0 M Ol W m N lD a IA of b n T O l0 rl Ol n W I Ol n ID rl ••I Ol ID Vl N W T n rl N M 01 M lO W m N N m W N W V .-I N .-I .-1 .-I y Ol e-I M Ol m m W ei N N 1p } I } I n n I/l Ill 111 N N N M M O of V1 U1 n n W W W 01 01 Ol Ol W W W W Vl N M M M M M N Q1 ei N N rl ei l0 M M I I I ul Ol utO N NMlO W 101010 I m m VI V1 m 10 m m n N OI W l0 01 01 M n rl W V Ol Ill W N %0 T Nor, n rl M Vf W 0 0 W n N m q a I mlonm W.+om .In . . W rnm.+n W.+lomrnrvmmm�rnn W mmnMNlnv 0 I . . . .N\omin NM.au. . . .m .mme•. . . .o. . . . . . ...a . O I ej M M M M O ID V .i W 111 m V1 M Jl O l m ID N O m 01 m V N Ol 10 Ul N Vl n Ill N N N 'i Vl m M a W .y m m a M l0 M Ol e{ lD W Ol W N N e•i Vl V I W W m l0 W ei V w n N IA Ill l0 N W lD N N W lT M q e} W N Ol m l0 Ol m m 10 M a T N l0 M Ill N N m V W N X I m 0 0 V V K Vl W N N N N N N N N N N ei ei 01 a w H n W �•i V M M M a a 1p M n 01 m N m M M N n I V1 O I I I l I I I I I I I I I I I I I W P'� N1* 111 I I 'i V O Ci 14 -* a Ifl Vl �D 10 to to Vl i I Y � i C E I � E � u V 1 I O Y I O 10 I U U V V U U U U U V C i T M I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z M '-1 ..................... I O N I N N N 1A 1A IA VI VI VI V1 N N VI N VI VI V1 V1 V1 Vl V1 VI VI VI N 1A IA IA LA0a•,aa�aaaaaaaaaaaaaaaaaaaaaaaaaa�d�d�a�����aa�as •,•,.�•,•,mmmmmmmmmmmmmmmmWWWWWWWWWmWWmmmmmmmmmmmmmmmmm m m M V 1� T T a a IA m Ill N 'i a i m lD M a m a l0 1� n b n� M a lD l0 m M Ol 1� lD Ol m lD a Ol 1� Ol m IA Ol a m a N N M OI ID a V1 I11 N 1� C N N a m .r .•I N N m M m M l0 m a s Ol N 1� n N M N VI w O m M 0I CI L� a a r l 1. Ol . . . . . M Ol . . . . a . . w. ill V. . r. r. OD . rl 00 a 0 00 11 m rl 1� N � rl • m l-I N m 1� r1 m ul m N a omo lu�i .N+a uml .mi min�In oovemmlmilmvMimblO loll .�•+m loa m.�iN mn nmrn N aaaom�Ianmin uMi r.^-ImNmmma . � � � . r1 Ol ei M m Ol 1� N Vf N M M M a a a a a 1/1 1� n n b N rl N N N N N N M M N b ei •i m Ol m m m m 1� yNu M m ml0 WI a1lo mmlD V1 ytiy VI O�011000N00MN 0001 I�O1 �-1 V1 V Nrl l�r�nbb00b� N���r�n Nm a 1lallov m m m m 1, m.N•I .mi .m-i N.m-i a.m-ia Ol 1, w N.y 1O rlNN`0 lO 0%N.r .•IN .b0%r�n � N l0 m lD M . m N m . IA a m a aMmmN .m m N N OI •n maa l0am G) mm1* mei(S) 01 mNM l0 N01N m(A CD Vlmm Nw N w wn.•i Gl M Ifl M m m m N N" M 10 O M M M Il m n b 01 m M M m Ill rl m a N N l0 m m N M m Ol m m M" l0 O m m l0 l0 tD a M m 1t m m M M N N N N . . . r n n IO -0 eY N M ••I ••I ei eY N N ••I m Ol m .+ a s Ill m M N l0 .y N M m Ictm N N N Ict m aMMMNI-1lD . . � .-1aa a alnlnlnlnlnln.�+...+.+n�nnnnm.,.•,.,mmnminln.,.�+.+In M M M M M M M M M M M M m z Ill Ill z Ill Ill z z z z Ill z z z W W W W n n n n n n n n n n n n n W W W W z W W 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z N M N M M N M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M 1-I 1-I M N N 1-I 1-I M M M M M N lA Vl 1A VI M V1 VI VI VI VI V1 V1 N N N N VI V1 Vl Vl N Vl Vl N VI to Vf VI N VI VI �aaa���aa���a��aaaaaaaaaaaa�a����a��aaaaaaaaaaaa mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 01 w 0o A a I� 10 H V 01 a 10 to m Vl V 01 a0 N 'i dp 01 01 10 01 N H VI VI 10 N N E H M 1fl W N N 1� N 0p m m Ot h rn rn a 1c V m m m m m 116 16 10 m 01 N 1D 1l1 1p I� 01 1D 16 N N 10 Vf V N m M m m m 1/1 H 16 m Co m W 1p 1z n T CO M M D\ N V M M M 1� Vf d) 1� b 01 1/1 a M O\ M 07 T N N CpO m I� M H vl ? 1/1 I� W �-1 10 01 01 m m 10 N N 1� to b m V M M 1p N M M m 01 N 00 W V ei ei V M M N 10 1D 1D 10 10 1NO V V V V V1 V1 N n n n 1^p 1�p 1ND lmll V a a OO ao m m oo N N N M M m m N W ao OO N N M M M M N N N e•I N N N m 10 1D ei T m a VI Vf l0 N .••I 10 W 19 m M H W m r. . 00 N eY N 00 0. 01 1. .-. .-.r. O. 10 1D I� N N 10 e�•1 M m 1D H N IA H . m N O n r^+1 ON1 m ONO T n T M 1�0 O I� m W 1N0 n W m I� e~•I m eH•I W N (�r1 e�Y N 1�0 N N m T rMn N W m l0 10 N W V fn+l n ID OH1 V 1p 10 10 V ul .D 10 1� OD M H H N M V N N N N M H H H H m N Vf vl T a H a0 CO 00 M M m VI M m Ul 01 M N W N 1p 00 IA IA Vf Vl Ifl IA IA tl1 Vf 1D 00 'i ei lfl tlf V1 N N Vl Ifl Ifl IA lfl Ilf Vl Ifl IA 10 1D 1D 10 10 a a v u, Vf Vf � � Vf rl 1� � � � a � a a N N N N N a p a 0 0 C rl ei ei H ei rl ••I ei ei Q Q Q Q Q Q Q Q Q Q Q Q Q W W W W W W W W W W W W W W W W W W W W zzzzzzwo0zzzzm1010zzzzzz1010101010z HHHHHHHHHHHHHHHHHHHHa V V a Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ..... H H H H H H H H H H H H H H H Z 2 Z Z H H H H H H H .................. H H N V1 IA V1 VI VI VI IA VI VI lA VI VI V1 V1 VI VI N VI VI {/H� H H H N VI to N VI VI VI V1 V1 VI N N N N lA 1A Vl IA {A V1 N N N VI Q Q � LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL Q Q Q Q m m m m m m m m m m m m m m m m m m m m m m m m m m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m m m m N m 1� m m m m m 1� m n n rl ei m m N m m O� N d �O 00 m rl m N N d N N �p m m tD 'i CO m 1� N m m m 1� m eel M N 01 rl m N d �O d m •i •i N m ei m m 01 N Ot I� m �O d m 1� M m d N N m N N ei N N l0 m 1p 1� m m d d N d ei N m m m N N .i d N 1� m OD 01 lD N N �D p1 p1 i� d M I� n C1 %O O� lD N a1 W 01 m 1� 116 OO d M M 1� m N m 00 1z m h N N N N d 01 m m ImA d N emi .�-I m T m T 1N+1 m m m eY N m W 0�1 T m T 1�+1 m m m O� n m N l�+1 em+f loll Om1 a^a r�l eNi m m 01 m N N O� b N d e~i �n-1 01 N .-1 N M d d M M rl M rl rl M M N rl •i N N N N N rl rl M M M N N N M M M M M a N N N N d d d d M M M M M M N lD N 01 1� n N rl T N m m m d 1� N m d d m ."� m ei N N N M rl m ei 01 m 01 N M 1� m N N N N N M ei M lD N� N m m N ei 1� N O� N ei 01 ei N N m m N n N m m M m m W d lD m m N lD d �". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1� M O0 m m d .-I m • m n M m �m m m N m N O d ."� N .-I N M N 0�1O�1 n a a N nul M M0 N lD N 00 M M w q l0 d m N d O0 b M W M m N m N 01 1� m Nip m M 10 01 d l0 a aaaammmmm00000000aaaaaaaaaaaaaaaaaaaaaaaa d d d d d d d d d m M M M M M M M M M M M M M M M M M z n z n n z n z n n z z n n n n n z z n n n z n Z z z z z z z Z z Z z z 2 z z 2 z z z z z z z z z z z z z z z z z z z z z z z 2 z z z z z z z z z z z M M M M M M M M M M M M M M N M M M M M M ............. N N M M N N M M M N N N N N N N N aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm m m m m : m m m - 10 m m rl L a= - m m 10 a •ri •'I M •'1 : L L I L Q Q N Z : N. I - V1 0 0 w N N W n N N N m N m vl N u1 01 O N m m m I N lu M n rl W N m a N m m 1/1 0� m m N W N N W m ••I m Ut m mNrNln Olm V .+m�Drn nn V mm ninm 4 1 W I .--I J J O �3333 LA 4•I b.ni N M V J N N N N N m VNi W m emN m N �n•1 m N m N m m N a N ON m m m n a m N rn a I I N m mmv OCln �n in �n V aln In �n �n In In mm 4 > I .•� 0 m m 1/1 m N 00 N r N a M N N N a N 00 O Nm . . . . . . . . . . . . . . m 0� n 01 V\ 1l1 0� m m 01 O ei r m N r m .9 V m N V1 a0 m n rl N N 01 m �/1 O O 01 m N m m m m N N ei eY m m m ei m Vf 01 eY 01 01 ei '1 N '•/ rf 'i 'i rl rl ri 'i •i 'i 'i rl 01 m 01 0� N I X m m m m m m m m m m m m m m m m m m m m m n n r r r n n r r r n r n n n n n n n n n Z Z Z Z Z Z Z Z Z Z Z Z Z 2 2 Z Z 2 Z Z Z M M M M M M M M M M M M M M M M M M M M N N lA 1A IA IA Vf N VI N N V1 N N N N VI V1 N N N VI m m m m m m m m m m m m m m m m m m m m m .-Imma a �vNN QDm m O 0 N N m N V Ot M N 01 CD % (A N n N M 0 O O N � 1m11 J O m m m a m V W n m A x m m n m u.nmm�ln SUMMARY REPORT 5-6-15.rpt EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.007) -------------------------------------------------------------- ***********************************rt********************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***************rt*s*ssrt*sssrt*ssssrtsrtss******rt***srt*srtssssrt s«s««s«ss«ss*sss Analysis Options s«««ss«ss««*«««« Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES RDII ................... NO Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ NO Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Starting Date FEB-06-2015 00:00:00 Ending Date .............. FEB-09-2015 04:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:01:00 Dry Time Step ............ 01:00:00 Routing Time Step ........ 5.00 sec Variable Time Step ....... YES Maximum Trials ........... 8 Head Tolerance ........... 0.005000 ft ************************** Volume Depth Runoff Quantity Continuity acre-feet inches **********s****ss*«***rtrts* --------- ------- Total Precipitation ...... 4.916 3.669 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 0.679 0.507 Surface Runoff ........... 4.190 3.127 Final Surface Storage .... 0.049 0.037 Continuity Error (%) ..... -0.044 ************************** Volume Volume Flow Routing Continuity ************s*********rt*rts acre-feet 10^6 gal Dry Weather Inflow ....... --------- 0.000 --------- 0.000 Wet Weather Inflow ....... 4.190 1.365 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 0.000 0.000 External Outflow ......... 4.194 1.367 Internal Outflow ......... 0.000 0.000 Evaporation Loss ......... 0.000 0.000 Exfiltration Loss ........ 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 0.001 0.000 Continuity Error (%) ..... -0.112 *********rt*rtrt***srt«**s**rtrt* Time -Step Critical Elements *************************** Link ST05-1 (5.08%) Link ST04-3 (2.47%) Link ST05-3 (1.96%) Page 1 SUMMARY REPORT 5-6-15.rpt ##kink#R##R#R#R#iR#R#itiRiRitiRi Highest Flow Instability Indexes Rr#R##t#ssststsssstststtttsr#r## Link ST05-2 (15) Link ST05-3 (14) Link ST05-1 (13) Link ST05-4 (9) Link SW-6TO5 (4) #iR#kRiRiiit4r#i#iirr#rt# Routing Time Step Summary Minimum Time Step 0.50 sec Average Time Step 4.63 sec Maximum Time Step 5.00 sec Percent in Steady State 0.00 Average Iterations per Step 2.12 Percent Not Converging 0.08 RiR##R#R##4iR#RRiR#tktRit#t Subcatchment Runoff Summary ###r####################### ------------------ ---------------- Total ----------- Total ----------- Total ----------- Total ---------- Total ----------- Total --------- Peak ------- Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10^6 gal CFS -------------------------------------------------------------------------------------------------------- BASINI 3.67 0.00 0.00 0.79 2.84 0.45 47.20 0.774 BASIN2 3.67 0.00 0.00 0.06 3.57 0.20 18.18 0.972 BASIN3C 3.67 0.00 0.00 1.13 2.54 0.06 5.47 0.691 BASINS 3.67 0.00 0.00 0.50 3.15 0.06 6.75 0.858 BASIN88 3.67 0.00 0.00 0.42 3.22 0.03 2.94 0.878 BASINK 3.67 0.00, 0.00 1.07 2.59 0.02 2.19 0.707 BASIN8C 3.67 0.00 0.00 1.07 2.59 0.06 5.22 0.707 BASINBA 3.67 0.00 0.00 0.08 3.54 0.23 20.70 0.965 BASIN6 3.67 0.00 0.00 0.00 3.62 0.03 2.48 0.987 OFFSITE2 3.67 0.00 0.00 0.00 3.62 0.01 0.71 0.987 OFFSITE4 3.67 0.00 0.00 0.00 3.62 0.01 0.71 0.987 OFFSITEI 3.67 0.00 0.00 0.00 3.62 0.00 0.26 0.987 BASIN4 3.67 0.00 0.00 0.57 3.08 0.05 5.63 0.839 BASIN3A 3.67 0.00 0.00 0.07 3.57 0.03 2.89 0.972 BASIN3B 3.67 0.00 0.00 0.06 3.58 0.03 3.20 0.975 BASIN3D 3.67 0.00 0.00 0.12 3.51 0.03 3.08 0.958 BASIN7A 3.67 0.00 0.00 0.13 3.51 0.04 3.93 0.956 BASINBB 3.67 0.00 0.00 0.29 3.35 0.03 3.44 0.912 k#tk#t#iRit#ttrirr Node Depth Summary ################## -------------------------------------- Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type Feet Feet Feet days hr:min --------------------------------------------------------------------- 1 JUNCTION 0.08 1.58 5039.58 0 00:41 INLET-5 JUNCTION 0.97 2.90 5036.14 0 00:46 FES-5B JUNCTION 0.42 2.57 5037.00 0 00:46 SDMH-SA JUNCTION 1.17 3.18 5036.04 0 02:27 INLET-2 JUNCTION 0.08 2.18 5039.71 0 00:40 INLET-6 JUNCTION 0.57 2.57 5036.62 0 00:46 INLET-8A JUNCTION 0.43 3.26 5037.72 0 00:40 FES-6A JUNCTION 0.50 2.64 5037.00 0 00:46 FES-7A JUNCTION 0.01 0.27 5037.21 0 00:40 INLET-4 JUNCTION 0.45 4.60 5042.42 0 00:39 Page 2 SUMMARY REPORT 5-6-15.rpt SDMH-3A JUNCTION 0.39 5.08 5041.63 0 00:38 4 JUNCTION 0.03 0.62 5039.59 0 00:42 11 OUTFALL 0.00 0.00 0.00 0 00:00 22 OUTFALL 0.00 0.00 0.00 0 00:00 21 OUTFALL 0.00 0.00 0.00 0 00:00 29 OUTFALL 0.00 0.00 0.00 0 00:00 POND STORAGE 2.86 5.04 5036.04 0 02:23 **s*sstssssssssssss Node Inflow Summary sss************ssss -------------- ---------------- ---------- Maximum --------- Maximum ----- --------- ------------ Lateral ------------ Total ---------- Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10A6 gal 10A6 gal Percent ------------------------------------------------------------------------------------------------- 1 JUNCTION 8.55 13.61 0 00:38 0.0868 0.146 0.253 INLET-5 JUNCTION 6.75 26.37 0 00:42 0.0632 0.555 0.022 FES-5B JUNCTION 5.22 40.89 0 00:39 0.057 0.466 0.367 SDMH-5A JUNCTION 0.00 26.36 0 00:42 0 0.555 -0.150 INLET-2 JUNCTION 18.17 18.17 0 00:40 0.198 0.198 -0.003 INLET-6 JUNCTION 2.48 22.78 0 00:46 0.0275 0.493 0.074 INLET-8A JUNCTION 20.69 35.88 0 00:40 0.234 0.377 -0.153 FES-6A JUNCTION 0.00 35.89 0 00:40 0 0.379 -0.002 FES-7A JUNCTION 2.94 2.94 0 00:40 0.0262 0.0262 -4.685 INLET-4 JUNCTION 5.63 5.63 0 00:40 0.0519 0.0519 0.065 SDMH-3A JUNCTION 9.56 15.19 0 00:40 0.0906 0.142 0.147 4 JUNCTION 6.09 6.09 0 00:40 0.0592 0.0592 -0.609 11 OUTFALL 0.00 1.31 0 02:23 0 1.35 0.000 22 OUTFALL 0.71 0.71 0 00:40 0.00699 0.00698 0.000 21 OUTFALL 0.71 0.71 0 00:40 0.00698 0.00698 0.000 29 OUTFALL 0.26 0.26 0 00:40 0.00256 0.00256 0.000 POND STORAGE 47.18 99.27 0 00:40 0.455 1.35 -0.080 **********stssssssssss Node Surcharge Summary *****s*ss*ssssssssssss Surcharging occurs when water rises above the top of the highest conduit. Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- INLET-5 JUNCTION 2.85 0.201 1.939 SDMH-5A JUNCTION 9.57 0.484 1.586 INLET-2 JUNCTION 0.04 0.184 0.226 INLET-8A JUNCTION 0.25 0.759 0.281 INLET-4 JUNCTION 0.02 2.690 0.000 SDMH-3A JUNCTION 0.05 3.100 0.000 Node Flooding Summary ssssss***s*********** Flooding refers to all water that overflows a node, whether it ponds or not. Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Depth Node Flooded CFS days hr:min 10A6 gal Feet -------------------------------------------------------------------------- INLET-4 0.01 0.74 0 00:39 0.000 0.500 SDMH-3A 0.01 2.67 0 00:38 0.000 0.000 Page 3 SUMMARY REPORT 5-6-15.rpt Storage Volume Summary i tii#iRRt#iRRR#R##Ri#i -------------------------------------------------------------------------------------------------- Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr:min CFS -------------------------------------------------------------------------------------------------- POND 51.531 22 0 0 161.210 70 0 02:23 1.91 Outfall Loading Summary ----------------- ------------- Flow ---------- Avg --------- Max ---------- Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ----------------------------------------------------------- 11 65.59 1.06 1.31 1.350 22 10.38 0.15 0.71 0.007 21 10.49 0.1S 0.71 0.007 29 10.06 0.05 0.26 0.003 ----------------------------------------------------------- System 24.13 1.41 2.68 1.366 #i#RRRR#RRRi»iRiRiii Link Flow Summary -------------- --------------- ---------- Maximum ----- Time -------- of Max ----------- Maximum ------- Max/ ------- Max/ IFlowl Occurrence JVelocl Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------------- STOS-3 CONDUIT 26.36 0 00:42 5.44 1.09 1.00 ST05-1 CONDUIT 21.60 0 00:47 4.82 0.65 0.97 ST05-2 CONDUIT 22.78 0 00:46 4.64 0.48 1.00 ST01 CONDUIT 8.54 0 00:42 5.20 1.00 0.88 ST05-4 CONDUIT 26.33 0 00:42 5.92 1.11 1.00 ST02 CONDUIT 18.17 0 00:40 6.19 0.99 0.88 5W-7TO5 CHANNEL 2.26 0 00:40 0.16 0.01 0.45 SW-6TO5 CHANNEL 33.66 0 00:39 1.08 0.22 0.85 ST04-3 CONDUIT 35.89 0 00:40 7.46 1.50 1.00 ST04-1 CONDUIT 5.63 0 00:40 4.73 0.59 1.00 ST04-2 CONDUIT 15.19 0 00:40 4.77 1.02 1.00 4 CHANNEL 5.71 0 00:38 0.56 0.01 0.27 7 DUMMY 1.31 0 02:23 *ii#i«#i«ii#iRit4iR#RRi#R#+ Flow Classification Summary ------------- ---------------- Adjusted ------------- ---------- ------------ Fraction of ------ Time ------------------ in Flow Class ---------- ------- /Actual Up Down Sub Sup Up Down Norm Inlet Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ------------------------------------------------------------------------------------- ST05-3 1.00 0.00 0.00 0.00 0.59 0.00 0.00 0.41 0.02 0.00 ST05-1 1.00 0.00 0.00 0.00 0.42 0.00 0.00 0.58 0.04 0.00 ST05-2 1.00 0.00 0.00 0.00 0.55 0.00 0.00 0.45 0.10 0.00 ST01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 ST05-4 1.00 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.40 0.00 ST02 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 SW-7TO5 1.00 0.00 0.30 0.00 0.70 0.00 0.00 0.00 1.00 0.00 SW-6TO5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.00 ST04-3 1.00 0.00 0.05 0.00 0.94 0.00 0.00 0.00 0.63 0.00 Page 4 SUMMARY REPORT 5-6-1S.rpt ST04-1 1.00 0.00 0.00 0.00 0.01 0.03 0.00 0.96 0.01 0.00 ST04-2 1.00 0.00 0.02 0.00 0.33 0.00 0.00 0.64 0.30 0.00 4 1.00 0.00 0.32 0.00 0.68 0.00 0.00 0.00 0.99 0.00 Conduit Surcharge Summary --------------- ----------------- ------------ --------- -------------- Hours --------- Hours --------- Hours Full -------- Above Full Capacity Conduit ---------------------------------------------------------------------------- Both Ends Upstream Dnstream Normal Flow Limited STOS-3 6.57 6.57 6.62 0.18 0.27 ST05-2 0.13 0.13 0.13 0.01 0.01 ST01 0.01 0.01 0.01 0.03 0.02 ST05-4 12.68 12.68 12.73 0.19 0.14 ST04-3 0.16 0.16 0.16 0.11 0.15 ST04-1 0.02 0.02 0.02 0.01 0.01 ST04-2 0.05 0.05 0.05 0.01 0.01 Analysis begun on: Wed May 06 08:43:16 2015 Analysis ended on: Wed May 06 08:43:17 2015 Total elapsed time: 00:00:01 Page 5 APPENDIX D INLET AND SWALE SIZING 05.06.2015 OkOLSSON ASSOCIATES INLET IN A SUMP OR SAG LOCATION Project a 015-03S6 COLORADO STATE UNIVERSTITV TENNIS COURTS bbt D. TYPE D-12 SIDEWALK CULVER FOR BASIN 3A Lu (C)—+f HCaro - NOTE: A Type R Curb with a H-Vert We 4' opening was used to check the flows for a D-12 Sidewalk W WP Culvert. Lo (G) Waning of not Inlet Type I Depression iatldmoral to continuous gutter depression'a' fmm'O-Abut) Z. oer of Unt Inals (Grate or Cub Opening) No n Depth at Flowime (oulside of bW depression) Polling Depth, r Mormaaon in of a Unit Grate L. (G) n of a Unit Grate W. Opening Palo fora Grate (typical vaWes 0.15-0.90) Arc leg Factor for a Single Grate (ypicat vala 0.50 - 0.70) C, (G) r Weir Coefficient (typical valle 2.15 - 3.60) C. (G) r Orifice Coe0lcient (typical vale 0.60 - 0.60) C. (G) Opwtlq Mormalbn Ih of a Unh Cub Opening L. (C) I of Vertical Cue Opening in Inches K., 1 of Cub Orifice Thoat In Inches Hr.y i of Throat (see USDCM Figure ST 5) TheOt Width for Depression Pan (typically me gutter wain of 2 feet) Wp. ;Ing Factor for a Single Cub Openng 1yocai value 0.10) Cr (C) Opening Weir coefficient (typical vale 2.3-3.7) C. (C) Operirg Ordke Coefficient (typical value 0.60 - 0.70) C. (C) it Inlet Interception Capacity (assumes clogged condition) Q. a ca�.rx� n r.nnn I., Minn, .nx a .— srn,..,< r.n acaw., 0:....,v..,,. Naming 1: Denenabn Mtered A not a typcal dmensfon for nbt type specitb-j MINOR MAJOR CDOT Type R Cub Opening 3.00 1 6.0 6.0 unenn ua rnn WA WA WA WA WA WA N/A 4.00 6.00 6.00 63040 2.00 0.10 0.10 3.60 0.67 CIes riches ❑ "I aet "I roles none. leyrees eel INLET_BASIN3A SIDEWALKCULVERT3A.xism, Inlet In Sump 515/2015, 4:02 PM INLET IN A SUMP OR SAG LOCATION Project = 015-0358 COLORADO STATE UNIVERSTITV TENNIS COURTS Inlet ID - TYPE D-12 SIDEWALK CULVER FOR BASIN 3B r Lo (C) H-Curb NOTE: A Type R Curb with a N•vn Wit 4' opening was used to check the flows for a D-12 Sidewalk W Culvert. Lo (G) N... i ny Deslan lufomatbn flab Type of Inlet Local Depression additional to contintous yufler depression'a from'O-AIIaW) Number of Unl Inlets IGrale or Cure Openngf Water Depth at F Wma ous0e, of local J.preisipm Grate Information Length of a Unit Grate Width of a Unt Grate Brea Opening Ratio for a Grate (typical values 0.15-0.90) Cbgging Factor for a Single Grata (typical vale 0,50 - 0,70) 52le Weir Coefficient (typical value 2.15 - 3.60) orate Orifice Coefficient (typcal valure 0.60 0,80) Curb Opw*V Narration Length of a Unit Cub Opening iragnt of vertical Cub Opening In Inches -lelghf of Cub Orlflce Tlbroaf In Inches finger of TYroat (see USDCM Figue ST-5) Side Width for Depression Pan (typically, the gutter aedeh of 2 feet) Clogging Factor for a Single Cub Opening (typical value 0AO) Cub Opening Weir coefficient (typical value 2.3-3.71 Cub Opening Or61ce Coefficient (typical value 0.60 - 0,70) Total Inlet Interception Capacity (assumes clogged condition) met Capacity IS GOOD for Manor and Major Storms (.O PEAK) Iming 1: Dimension entered is not a typical dimension for Inlet We spi clfi d. MINOR MAJOR Inlet Type. Aar` No . Fondling Depth . CDOT Type R Cub Opening 3.00 1 6.0 MINOR Le (G) W. Arne or(G). C. (G). Ce(G)- Inches 6.0 Irfclrs MAJOR I] t),mtle Depth, eN left WA WA WA WA WA WA WA MINOR MAJOR Le (C) . H .t Near That& . Wp` Cr (C) . C.(C). Ca (C) . �z Dewaeoweo 4.00 6.00 6.00 63.40 2.00 0A0 0AID 3.60 0.67 ref IrL+OS Ir cirs degrees feet INLET BASIN38_SIDEWALKCULVERT38.alsm, Inlet In Sump 5/512015, 3:59 PM INLET IN A SUMP OR SAG LOCATION pAJaU a 015-0358 COLORADO STATE UNIVERSTITV TENNIS COURTS Met I = TYPE 1342 SIDEWALK CULVER FOR BASIN 3D �Lo (C)-�( M-Curb N-Vert WO - Wp W Lo (G) Wvnwg a of Inlet Inlet Type al Depression additional to coninuois surer depression'afrom'O -Albd) a.. nber of Unit biers (Grate or Curb Openng) NO her Depth at FbM. lod.ide o1 bcal depresson) Poncho Depth b litiMNtlM gth of a Unit Grate L. (G) eh of a Unt Grate W. a Opening Ratio for a Grate (typical values 0,15-0.90) A. going Factor for a Sin* Grate (typical value 0.50 - 0.70) CI (G) to Weir Coefficient (typical value 2.15 - 3.60) C. (G) to Orifice Coefficient (typical vale 0.60 - 0.80) C. (G) b opw*v kownraemt glh of a Unt Cub Opening L. (C) gN of Vertical Cub Opening in llcMs H. ghr of Cub Or0ice Throat In Inches H. b of Throat (see USDCM Fii ST-5) Thetis e Width for Depression Pan tocaly, ffe gMler eidth of 2 feet) W. ggeng Factor for a Single Cure Opening (typed value 0.10) Ce (C) b Opening Weir Coefficient (typical value 2b3.7) C. (C) b Opening Odfice Coefficeen (typical value 0.60 0,70) C. (C) tal Inlet Interception Capacity (assumes clopped condition) 0.; - Slmmn (.O PEAK) Oren. 11wu11u Wamm, I ❑rmcnsion n l ,ed P..i.^I .r ry,r.I dimeOsion for MW.t lype, epeci ied. CDOT Type R Cub Opening 3.00 incMs 1 6.0 6.0 Inches MINOR MAJOR O O.mee 0epms WA Ifeat WA leet WA WA WA WA WA Mann UA.Inn 4.00 6.00 6.00 63.40 2.00 0.10 0.10 3.60 0.67 MINUM flat ches ctes kgrees sl INLET BASIN30 SIDEWALKCULVERT3D.alsm, Inlet In Sump 5/6/2015, 10:18 AM INLET IN A SUMP OR SAG LOCATION Project = 015-0358 COLORADO STATE UNIVERSTITY TENNIS COURTS Inlet ID = TYPE D-12 SIDEWALK CULVER FOR BASIN 7A Wanrang T—Lo )C) 'I NOTE: A Type R Curb with a N,Cury 4' opening was used to check N.v.^ Wo the flows for a D-12 Sidewalk WP Culvert. W Lo (G) inInflorMtiort [bW0) of Inlet trial Type Depression(additiorW to coninIow glaer depression'a'from 'PAIIDW) aa. ter of Unit Inlets (Grate or CUD Opening) No f Depth W FlovAne (outside of local depression) Ponding Depth r Momleeon h of a Unit Grate Le (G) t of a Unit Grate W. Opening Ratio for a Grate (typical values 0.15-0.90) A, ping Factor for a Single Gale Ityplcal vakie 0.50 - 0.70) Cr (G) Weir Coeflideni (tYPIcal va 2.15 - 3,60) C. (G) Onfice Coefficient (typical vaWe 0.60 0.80) CB (G) Opening IrdomUlbn h of a Unit Curb Opemg Lo (C) a of Ventral CUB Opening in Inclines N..n A of CUD Onhce Tf Win Inches Rao. of Tri (see USDCM Figve ST-5) Thep Width for Depression Pan typically the gutter *dth of 2 feet) W. ling Factor for a Single Cub Opening (typical value 0.10) C, (C) Opening Weir Coefficient (typical value 23-3.7) C. (C) Operirg Orifice Coefficient (typical value 0.60 0.70) Co (C) N Inlet Interception Capacity (assumes clogged condition) 0.1 :apecay IS - Oeesv.seoaeo amine, 1Dinens:on nnz,, I. . ( :: tvpu' :I IVii,' MINOR MAJOR COOT Type R Curb Opening 3.00 Incites 1 Irches MINOR MAJOR Orentic OepOts WA WA WA WA WA WA WA 4.00 6.00 6.00 63.40 2.00 0.10 0.10 3.60 0.67 IL:l sal CM1eS cues ogress eel INLET BASIN7A SIDEWALKCULVERT7A.dsm, Inlet In Sump 5/5/2015. 4:04 PM INLET IN A SUMP OR SAG LOCATION Project a of5-0356 COLORADO STATE UNIVERSTITY TENNIS COURTS Inlet ID = TYPE D•12 SIDEWALK CULVER FOR BASIN 7B .1-- Lo (C)" NOTE: A Type R Curb with a R-Curb N Ven --_ 4' opening was used to check Wo the flows for a D-12 Sidewalk wp IN Culvert. La (G) wurnuw I )"on ffi rype cl Intel .ocal Depression iaddinorel to cc tortuous gu0er depresslon'a'trom'0-Alovn Junber of Uric trials (Grate or Cub Opening) Nater Depth at Fbehnis (outside of local depression( 3rate Information -ength of a Unit Grate MIMI, of a Unit Grate knot Opening Ratio for a Grate (typical values 0.15-0.90) ]bggir.g Factor for a Single Grate (gpiwl value 0.50 0.70) !rate Weir Coefficient (Typical vale 2.15 3.60) 3nete Onfice coefficiM (typical value 060 - 0.80) .leb Opening Mamrtlon .engm of a Unit Cub Opening ieigM of Vertical Curb opening in Irdes ieiglt of Cub office Throat In Inches Ugle of Throw (See USDCM Figure ST-5) fide Wid01 tot Depression Pan (typncaly the gutter e4ditrt of 2 test) ;logging Factor for a Single Cub Opening (typical value 0A0) ;tub Opening Weir Coefficient (typical value 2.33.7) ;tub Opening Orifice Coefficient (typical vale 0.60.0,70) foul Inlet Interception Capacity (assurnes clogged condition) ,let Capac ev IS GOOD for Minor end Major Storms (r0 PEAK) ming 1 Dimension entered is not A typical dimension for Inlet type specified MINOR MAJOR Intel Type - a.. - No - Ponoi ng DeWh . CDOT Type R Cub Opening 3,00 1 6.0 MINOR L. (G) - W.. A,.... Ci (G) - C. (G)- C.(G)- In res 6.0 ncles MAJOR 0 0`e ,de OepMs NIA WA WA WA WA WA WA MINOR MAJOR L. (C) - H..n - •1 Theta . WF' G (C) - C.(C)- C. (C) . Q. DPFNt aFUIPEa - 4.00 6.00 6.00 63.40 2.00 0A0 0.10 3.60 0.67 nret eel feet IKtes inches degrees feet INLET_BASIN76 SIDEWALKCULVERT/B.dsm, Inlet In Sump 51512015, 4:05 PM r INLET IN A SUMP OR SAG LOCATION Project = 01"358 COLORADO STATE U W VERSTITY TENNIS COURTS Inlet ID = TYPE D-12 SIDEWALK CULVER FOR BASIN 8B r Lo (C) 'I NOTE: A Type R Curb with a N,Cutb __ 4' opening was used to check N-vent Wo _ _ the flows for a D-12 Sidewalk wp — Culvert. w Lo (0) Wvning 00 �m of Inlet Inlet Type I Depression(adteaonal to continuous guterderpression'a'tmm'GAIoW) a.. oer of Urn Indies (Graft, or Cub Opening) No e Depth at RoMne, (oolvde of iocal depression) penciling Dept s etfornutlnn th of a Urtt Gmte L. (G) i of a Urn Grate W., Opening Rat. for a Gmte (typical nikms 0.15-0.90) A. gag Factor for a Single Gmte "i:al value 0.50 - 0 70) C, (G) r Weir Coefflaent (typical vale 2.15 3.60) C. (G) r Onflce Coefficient Irypcal value 0A0 080) C. (G) opening eepnrneon Ih of a Unt Cub Opening L. (C) n of Verllcal Cub Opening In Inches H.u„ ni of Cub Orifice Throat In Inches Hs.d. f of Throat (see USDCM Rglre ST 5) T1eet Width for Depression Pan (typically to goner w( th of 2 feet) WP' grog Fedor for a Single Cut Opening (typical value 0.10) Ct (C) Opening Weir Coefficient (typical vela 2.3-3.7) C. (C) Openirg Onfice Coefficient (typical vaWa 0,60 - 0,70) C. (C)' at Inlet Interception Capacity (assumes clogged condition) Q. e Capaci^: IS GOOD for Minor end Minor Stones (.0 PEAK) Or'Bea nepluaa' Veining I ❑Inerblon entered b not a fyphml dimension 1nr Inlet type specdfed. MINOR MAJOR CDOT Type R Cub Opening 3.00 nches 1 6.0 6.0 inches MINOR MAJOR O amrde Ixptns WA eel WA feet WA WA WA WA WA 4.00 6.00 6.00 63.40 2.00 0.10 0.10 3.60 0.67 INLET BASINBB SIDEWALKCULVERT8B.IIsm, Intel In Sump 51512015, 4:07 PM F(� A-7 EXTEND WALK I FT. BEYOND NORMAL BACK OF WALK. 3 FT. `6 IN. 6N4 BARS AT 11 IN. O.C. 3d I FT. 9 IN. I 5 65 BARS AT C 6 1N. THICK 9 IN. O.C. SIDEWALK I (TYP.) J 4 FT. I FT. 6 IN I 2 MS BARS AT B (TYP.) 6IN. O.C. B BACK OF CURB 6 IN. O SEE DETAIL 'A' f it IN FLOWLINE 2 FT. M4 BARS AT WARPED CURB 6 12 IN. O.C. GUTTER (TYP.) NOTE: 2' PAN REQUIRED ON DOWNSTREAM END WITH A 2• DROP AT END OF PAN BE: 8.5 WITH 1 1/2 IN. DIA. HOLE IN CENTER — EXTEND CHANNEL TO OUTSIDE El '.3 FT. 6 IN. 4 FT. OPENING FT. 2 FT. 0 IN. 5 FT, 6 IN. I SEE DETAIL •g• #4 BARS IA � DETAIL „B„ ------ --� 6 IN. $5 BARS H 1/2 II' I 1% SLOPE BE B.5 FLUSH T WITH CURB FACE OE 6IN. —I- I 1 1/2 IN. R 18 IN. LONG I�4 BARS /4IN. LEG #4 BARS-12 IN. O.C. I 2 IN. BOTHWAYS _ ' ° `• SECTION A —A I 2 IN. 4:1 6 I 6IN. 6 IN. 2:1 If 5 BAR 3 FT. 6 IN. 4 FT, 0 IN. 3 FT. 6 IN. I 1 1/2 IN. PIPE SPACER ANDD 1 1/4 IN. LOCK NUT 8 IN. P _ , T 1 1/4 IN. DIA. X 14 IN. GALV. 3 IN. STEEL ROD — THREADED I 3 1/2 IN. AT TOP. WARPED GUTTER DEPRESSED GUTTER —TOP OF CURB 2 IN WARPED GUTTER " " NORMAL LTERED FLOW LINE FLOW LINE � ,a °r 6IN. " ( 41N SECTION B—B I3 IN. X 3 IN. X 3/8 IN. • °• + ". �" (REINFORCEMENT NOT SHOWN) � PLATE 11 FT. 0 IN. ( 6 I"' DETAIL "B" IFT. r GENERAL NOTES�_ 4 BARS s BARS 11. SIDEWALK SHALL BE 6 IN. THICK FOR 3 FT. ON 6 IN. EITHER SIDE OF CULVERT. -r-- ADD 1 # 4 BARS ADD 1 / 4 BARS ') 2. TOP SLAB OF CULVERT SHALL BE SLOPE TO 14 1/2 IN. C MATCH SIDEWALK. SEE D-6. 3. EXPOSED STEEL SHALL BE GALVANIZED IN 1 •�L' ACCORDANCE WITH AASHTO M-111. 4. KEY JOINTS WHERE WALLS CONNECT TO TOP SLAB AND BASE. 4 BARS-12 IN. O.C. 15. REINFORCEMENT IN WALLS AND BASE SHALL BOTHWAYS BE 3 IN. FROM THE SIDE EXPOSED TO EARTH. SECTION C—C I REINFORCEMENT IN TOP SLAB SHALL BE 1 1/2 IN CLEAR, REV. DATE 12/11/13 CONCRETE SIDEWALK CULVERT FOR VERT. CURB, GUTTER AND SIDEWALK CITY OF APPROVED: FORT COLLINS STORMWATER DETAIL UTILITIES DATE: 12/19/00 FORT coums, co. CONSTRUCTION DETAILS D — 12 (ego) 221-6700 DRAWN BY: NBJ INLET IN A SUMP OR SAG LOCATION Project a 015-0358 COLORADO STATE UNIVERSTITY TENNIS COURTS blot ID = INLET3 TLo (C).t H-curt _— H-Ved Wo W Lo (0) on enomvoal un im of not Inm Type. I Depmssian ladditional to co ei gutter depression'afrom'O-Atli a. cer of Unit Inlets (Grate or Cub Opening) No it Depth at Fbwne (onside of local depression) Pointing Depth e whom mutbn th of a Unit Grate L. (G) +of a Um Grate W. Opening Ratio for a Grate (typical values 0.15-0,90) A,r. gong Factor for a Single Grate (typical vabe 0.50 - 0 70) C. (G) f Weir Coefficient (typical value 2.15 - 3.60) C. (G) r Onfice Coefficient (typical value 0.60 - 0.80) C. A Opening asomr0on Ih of a Um Cub Opening L. (C) hl of Vertical Cub Opening In Inches ni of Cub Orifice Tinware In Inches r of Throat (see USDCM Rgue ST-5) Theta, Width for Depression Pan (typically the gager wldlh of 2 feet) W. Ong Factor for a Single Cub Opening (typical vakm 0.10) C. (C) Coating Weir Coefficient (typical value 2.3-3.7) C. (C) Opening Orifice Coefficiem (typical value 0 60 - 0.70) C. (C) 31 Inlet Interception Capacity (assumes clogged Condition) 0e s „ St... LVO PEAK) QIRMf aEOIPEe' MINOR MAJOR CDOT Type R Cub n60xhm 3.00 imltes 2 MINOR MAJOR a'''n DepNs WA Past WA eat Ni WA WA WA WA 5.00 6.00 6.00 63.e0 2.00 0.10 0.10 3.60 0.67 net riches Cher agrees net INLET BASINS INLET5.tdsm, Intel In Sump 412412015.10:aa AM r INLET IN A SUMP OR SAG LOCATION Project - 015-CM COLORADO STATE UNIVERSTffY TENNIS COURTS Inlet lD = INLET -BA T--Lo (C)�/ H-Curt, N-Vert Wo W Lo (0) of Iriet Iniet Type Depression (additional to continuous guler depression'a' fmm'O-A1oW) am. er of Unit Iriets (Grate or Cub Opening) No r Depth at FIDMne (oulrade of local depression) Ponding Depth i Mdmaddl n of a Unit Grate L. (G) l of a Unit Grate W. Opening Ratio for a Grate (typical vales 0.15-0.90) A. Ong Factor for a Single Grate (typical value 0.50 0 70) CI (G) Weir Coefficient(typical vaYe 2 t 5 a 60) C. (G) Critics Coefficient (typical value 0.60 - 0.80) C. (G) Openk Mom otbn In of a Urit Cub Opening L. (C) it of Verbcal Cub Opening In Inches H. it of Cub Orifice Throat in Inches Hums of Throat (see USDCM Figure ST-5) Theta Width for Depression Pan hyplea0y, the gli Mdth of 2 feel) Wi Ong Factor for a Single Curb Opening (typical value 0.10) Cl (C) Opening Weir Coefficient (typical value 233.7) Cv (C) Opening Orifice Coefficient (lyocal vats 0.60 - 0.70) C. (C) it Intet Interception Capacity (assumes tdopged condition) Q. e ].D.M IS GOOD for Manor and Major Storms (>O PEAK) Orsra asanm' MINOR MAJOR CDOT/Denver 13 Combination 2.00 2 120 120 ur.v�e vie 3.00 1.73 0.43 OSO 0.50 3.30 0.60 3.00 6.50 5.25 0.00 200 0.10 0.10 3.70 0.66 u-n 1CIIH Q O.et+tic Depins eN eat get VN", <ngs bgreee tit INLET_BASINBA_INLET8A.slsm. Intel In Sump 4/30/2015, 3:34 PM INLET IN A SUMP OR SAG LOCATION trloJeM r 015-0358 COLORADO STATE UNIVERSTITY TENNIS COURTS YIIM ID r INLET-6 ,r--Lo (C) 01 HCurb H-Vert WP Wp W Lo(G) of Inel MN Type I Depression IadCiliorel to co Minima puffer oepression'a' fmri i¢. bar of Uhl Inlets (Grate or Curb Opering) No a Depth al FlovAns (outmoa of local depression) Pordin g Depth e Momrtion Ih of a Unit Grata L. (G) +of a Unit Grate W. Opening Ratio for a Grate (typical values 0,15-0,90) A. ping Factor for a Single Grate (typical vaYe 0.50 - 0.7(1) Cn (G) s Weir Coefficient(typ♦ical value 2,15 3.60) C. (G) n Office Coefficient (tyocal vale 0.60 - 0.80) Ca (G) opening Informallon th of a Unil Cub Opening Le (C) I of Vertical Cub Opening In Ircles Hr.n nt of Cub Office Throat in Inches Hf..e f of Tlroaf (see USDCM Figure ST-5) TMIe , WIGm for Depression Pan (typically the paler Wcth of 2 feet) W. ping Factor for a Single CUB Opening (typicai value 0.10) CI (C) Opening Weir Coefficient "itsil value 2.3-3 7) C. (C) Opening Office Coefficient (typical value 0,60 - 0,70) C. (C) at Inlet Interception Capacity (assumes clogged condition) Q. e C.P.Cfly IS C, -c b0 PEAK) OavallEpillEP+ MINOR MAJOR CDOT Type R CUE Opening 3.00 1 6.0 6.0 WA WA WA WA wA WA WA 5.00 6.00 6.00 63.40 2.00 0.10 0.10 360 0.67 =has rc es Osvriie Deers eet eet sea rches riches feP•� M INLET BASINS_ INLET6.xism, Inlet In Sump 4/24/2015, 1044 AM INLET IN A SUMP OR SAG LOCATION Project c 015-0358 COLORADO STATE UNIVERSTITY TENNIS COURTS Inlet ID = INLET-2 ,rLo (C)T NCurb M-Vert Wo Wp W Lo IG) blaming to Mormetion fe.otrll of lniet IdMType Depression (addi0onml to conlinnus gutter depression'a' from •O-Abv/) a� oar of Unit IAMB (Grate or Cub Opening( No r Depth at FbWlne (outside of local depression) Pending Dpt, r Morrmffon h of a Und Grate L. (G) i of a Unit Grate We Openng Ratio for a Grate (typical values 0.15-0.90) A. Ong Factor for a Single Grate (typical n k* 0.50 - 0.70) Ct (G) Weir Coefficient (typical value 2.15 3.60) Cv. (G) Onfice Coefficient (typical value 0.60 - 0.60) C. (G) OpenYq Montutlon b of a Um Cub Opening L. (C) t of Vertical Cub Opening In IrcMs H,.n t of Cub Orifice Throat In Inches H. of Throat (sea USDCM Fig" ST-5) Thole. Width for Deorewon Pan (typically the gutter Welh of 2 I M) Wv Ong Factor for a Singe, Cub Opening (typkM value 0.10) C. (C) Operin.g Weir Coefficient (typical value 2.33.7) C. (C) Opening Orifice Coelflaent (typical value 0.60 0,70) C. (C) d Inlet Interception Capacity (assumes clogged condition) Q. r 0apachv 6 GOOD for Minot and Major Storms LO PEAK': O.eiaaeourao amen, 1: Dimension entered is not a typical dimension for inlet type swrtod MINOR MAJOR CDOT/Demer 13 Comdnafion 2.00 2 120 120 Inches nches MAJOR priwxi. Rpnn feet feel 3.00 1.73 0.43 0.50 0.50 3.30 0.60 MINOR MAJOR 3.00 6.50 5.25 0.00 3.00 0.10 0.10 a70 0.66 feet Inches inches degrees I" INLET RASIN2 INLET2 Asm. Inlet In Sump 4124/2015, 10:39 AM rc INLET IN A SUMP OR SAG LOCATION Plepet m 015.03SB COLORADO STATE UNIVERSTTTY TENNIS COURTS ellat D e INLET-4 War nq .�—Lo (C)—X H-Curb H-Vert Wo Wp W Lo (el of Inlet Inlet Typo: I Depression additional to continuous (peer depreselon'a' hom )}Ali a,ma: ,or of Unit Inlets (Grate or Curb Opening) No : v Depth at Fbwire (outside of local depression) Pordng Depth: e MpnMbn In of a Unit Grate L. (G) : +of a Unit Grate W. Opening Raga for a Grate (typical values 0.15-0.90) A,•!i, . ling Factor for a Single Grate (typical value 0.50 - 0,70) C! (G) . ! Weir Coefficient (typical value 2.15 3.60) C„(G) Orifice Coefficient (typical value 0 60 - 0.60) C. (G) . opeNg Information In of a Unrl Cub Opening La (C) 1 of Vertical Curb Opening In Inches H.e . t of Cub Orifice Throat In Inches Hu.a ! of Throat (see USDCM Figue ST-5) Theta. Width for Depression Pan (focally the gutter wfElh of 2 feet) Wp, ling Factor for a Single Cub Opening (typical val 0.10) Cn (C) Opening Weir Coefficient (typical value 2.33.7) C. (C) Opening Orifice Coeniuen (typical vale 0.60 - 0.70) C. (C) d Inlet Interception Capacity (assumes clogged condition) 0. a CapaceylS GOOD for Minorand Mato Storms(aG PEAK) Oeaaa xoueo• Warning 1.- Di enalon entered Is not a typical dimension for Mkt type sp.,Xfed. MINOR MAJOR CDOT/Denver 13 Combination 200 Inches 1 120 12.0 Inches Ea O,nnrie DeDeu MAJOR MAJOR 3.00 peel 1.73 eel 0.43 0.60 0.50 3.30 0.60 MINOR MAJOR 3.00 feet 8.50 Iricnfas 625 nches 0.00 degrees 3.00 feet 0.10 0 10 3.70 0.6E INLET _BASIN4_INLET4.xlsm, Inlet In Sump 412412015, 10:40 AM I 05.06.2015 O\OLSSOW 4SSOC�A7E5 APPENDIX E RIPRAP SIZING C Determination of Culvert Headwater and Outlet Protection Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS _ Basin ID: 1, SPILLWAY an, crcnc aTI�I L 4 M Design Discharge O = 198.4 cis ular Culvert: Bartel Diameter in Inches D-Mches Inlet Edge Type (Choose from pull -down list) � Culvert: OR Barrel Height (Rise) in Fast Height (Rise) - 1.5 Barrel Width (Span) in Feet Width (Span). 30 Inlet Edge Type (Choose from pull -down list) I sown Edge w/ 30-78 deg. Fared Wingwa11 Number of Barrels No . 1 Inlet Elevation Elev IN . 5036.5 it Outlet Elevation Q] Slope Elev OUT - 5036.16 it Culvert Length L- 30 it Manning's Roughness n . 0.035 Bend Loss Coefficient ks - 0 Exit Loss Coefficient k - 1 Tailwater Surface Elevation Elev, Y, . it Max Allowable Channel Velocity V . 5 s Tailwater Surface Height Y, 0.60 If Flow Area at Max Channel Velocity At - 39.66 111, Culvert Cross Sectional Area Available A. 45.00 Entrance Loss Coefficient ke. 0.40 Friction Loss Coefficient kt• 3.94 Sum of All Losses Coefficients k - 5.34 ft Culvert Normal Depth Y,,• 1.30 If Culvert Critical Depth Y,. 1.11 ft Tailwater Depth for Design d . 1.30 Adjusted Diameter OR Adjusted Rise He' - If Expansion Factor 1/(2'tan(e)) . 2.98 Flow/Diameler2"QR Flow/(Span • Rise"I OlWHM.5 - 3.60 Ito "Is Froude Number Fr . 0.79 Tailwater/Adjusted Diameter,QR Tailwater/Adjusted Rise Yt/H - 0.40 Inlet Control Headwater Hilly, . 1.77 It Outlet Control Headwater HWg = 2.58 Design Headwater Elevation Hw = 5,039.08 fl Headwater'Diameter QR Headwater/Rise Ratio HWIH v 1.72 H W H I i Minimum Theorelical Riprap Size ds)= 2 in Nominal Riprap Size dso- 6 in UDFCD Riprap Type Type = VL Length o1 Protection Lo _ 15 ft Width of Protection T o 36 ff C Determination of Culvert Headwater and Outlet Protection Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS Basin ID: 3C, CULVERT ST-01 cFaE � y $CllDl9y9@: O Sandy ® 11oriSandY Design Discharge 0= B.Sd cis ular Culvert: Barrel Diameter in Inches D. 18 inohas Inlet Edge Type (Choose from pulldownlist) 1.1:1 Berated Edge Culvert: OR Barrel Height (Rise) in Feel Haight (Rise) ft Barrel Width (Span) in Feet Wkth _(�) Inlet Edge Type (Choose from pull -down list) Number of Barrels No. 1 Intel Elevation Elev IN . 5038 It Outlet Elevation 2B Slope Elev OUT. 5037.06 ft Culvert Length L. 94.32 ft Manning's Roughness n . 0.016 Bend Loss Coefficient kr . 0 Exit Loss Coefficient k • 1 Tailwater Surface Elevation Elev Y, . It Max Allowable Channel Velocity V . 7 i Tailwater Surface Height Flow At" at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Y,. A,. A. k. . 14. ke. Y,, Y� 0.60 1.22 1.77 0.20 259 3.79 1.23 1.13 Tailwater Depth for Design d. 1.32 it Adjusted Diameter Q$Adjusted Rise U. - it C- Expansion Factor 1/(2'tan(0)) . 4.33 Flow/DiameterTs 0 Flow/(Span' Rise") OID^2.5. 3.10 ft's/s C Froude Number Fr. 0.84 Tailwater/Adjusted Diameter QR Tailwater/Adjusted Rise YI/D . 40g C Inlet Control Headwater HWl • 1.83 it COutlet Control Headwater Hill 1.75 Design Headwater Elevation HW ix 5,039.83 1t Headwater'Diameter i Headwater Rise Ratio HW/D = 112 Minimum Theoretical Riprap Size dso -Min in Nominal Riprap Size d50 - 6 in UDFCD Riprap Type Type= VL Length of Protection Le= 5 R Width of Protection T= 3 fl C Determination of Culvert Headwater and Outlet Protection Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS Basin ID: 2, CULVERT ST-02 ec. cr+:tE n M L Y QQ��rr QSanay Non-Santfy Su ercrilical Flow! Using Da to calculate protection ty e Design Information (Input): Design Discharge O. 16.13 cis Circular Culvert: Barrel Diameter in Inches D . 24 _ Mchas Inlet Edge Type (Choose from pull -down list) 1.1 1 Bawled Edge Box Culvert: OR Barrel Height (Rise) in Fast Height (Rise) 0 Barrel Width (Span) in Feel Width (Spah) Ift Inlet Edge Type (Choose from pull -down list) Number of Barrels No- 1 Inlet Elevation Elev IN . 5037.63 k Outlet Elevation QR Slope Elev OUT. 5036.87 it Culvert Length L. 24 ff Manning's Roughness n . 0.016 Bend Loss Coefficient !b. 0 Exit Loss Coefficient k - 1 Tailwater Surface Elevation Elav Y, . it Max Allowable Channel Velocity V . 7 tus Tailwater Surface Height Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Y, . Al . A . k.- 14• k • Y.,. Y,. 0.80 2.59 3.14 0.20 0.45 1.05 1.11 1.53 Tailwater Depth for Design d.MIt Adjusted Diameter QPLAdjusted Rise U.ft Expansion Factor 1l(2'tan(9)) . Flow/DiameterT S Qg Flow/(Span'Rise") OIDa2.5.if 51s C Froude Number Fr.Supercri ical! Tailwater/Adjusted Diameter QR Tailwater/Adjusted Rise V1ID. Inlet Control Headwater HWI • 2.50 it COutlet Control Headwater HWo • 1.96 Design Headwater Elevation 1111111111. 5,040.03 h HeadwaterDiameter QR Headwaler'Rlse Ratio NyIIfO 1.25 Minimum Theoretical Riprap Size dso • 6 in Nominal Riprap Sae dso - 6 in UDFCD Riprap Type Type = VL Length of Protection Le : 6 R Width o1 Protection T = 4 fill C 11 Determination of Culvert Headwater and Outlet Protection Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS Basin ID: 8C, CULVERT ST-04 H LIec1E n w, u W Design Discharge filar Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull -down list) Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pulldownlist) Number of Barrels Inlet Elevation Outlet Elevation Q Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient Tailwater Surface Elevation Max Allowable Channel Velocity Tailwater Surface Height Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Tailwater Depth for Design Adjusted Diameter Q-Adjusted Rise C Expansion Factor Flow/Diameter5 Q Flow/(Span' Rise' ") C Froude Number Tailwater/Adjusted Diameter Q Tailwater/Adjusted Rise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter Q Headwater/Rise Ratio CMinimum Theoretical Riprap Size - Nominal Riprap Size C UDFCD Riprap Type Length of Protection CWidth of Protection i SON.Tvw.: r0 saner Il ®t+on-senor 0. 33.81 cis D . 30 Inches 1.1:1 leveled Edge OR H91ght (Rise) . ft Width (Span) . h Elev Elev Oi Elev Yt- 1.00 It A, - 4.83 fe A - 4.91 fl k.. 0.20 k, - 0.27 k.. 1.47 If Y - 1.38 it Y` - 1.98 ft d. 2.24 It D. It 1/(2'tan(0)) - 4.04 O/D"2.5 - 3.42 Deb/s Fr. - Pressure flow! Yt/D - 0.40 HWi- 3.35 ft HWo- 3.22 Hill 5,037.61 ft HWID 1.34 d5oWit in deoin TypeLeT Determination of Culvert Headwater and Outlet Protection project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS Basin ID: 1. CULVERT ST-05 PLC ::IPq[ h ��—L b Selbidyl�e: — -- _ - -- --- ----- '�`' rosary N -Sandy rt M^ Su ercritieal Ftow! Usin Da to calculate protection type. Design Information (Input): Design Discharge O - 30.38 cis Circular Culvert: Barrel Diameter in Inches D. 38 Inches Inlet Edge Type (Choose from pull -down list) L1 a eawlW fdpe Box Culvert: OR Barrel Height (Rise) in Feet Height (Rise) . ff Barrel Width (Span) in Feet Width (Span) . It Inlet Edge Type (Choose from pull -down list) Number of Barrels No . 1 Inlet Elevation Elev IN . 5032.67 ff Outlet Elevation QR Slope Elev OUT . 5031.92 It Culvert Length L. 75 fl Manning's Roughness n . 0.016 Bend Loss Coefficient ka - 0 Exit Loss Coefficient k. - 1 Tailwater Surface Elevation Elev, YI . If Max Allowable Channel Velocity V . 7 ft/s Tailwater Surface Height Y, . 1.20 11 Flow Area at Max Channel Velocity M - 4.34 fe Culvert Cross Sectional Area Available A . 7.07 fe Entrance Loss Coefficient k,. 020 Friction Loss Coefficient III, ' 0.82 Sum of All Losses Coefficients kr 2.02 It Culvert Normal Depth Ya 1.60 ft Culvert Critical Depth Yu 1.79 It Tailwater Depth for Design d 2.39 It Adjusted Diameter Q&Adjusted Rise D. It Expansion Factor 1/(2'tan(0)) . 6.69 Flow/Diameters Qfj Flow/(Span' Rises) O/D^2.5. 1.95 fla�5/6 Froude Number Tailwater/Adjusted Tailwater/Adjusted Fr 123 Supercriticall Diameter QR Rise YVD o,52 CInlet Control Headwater HWI 2.81 f1 COutlet Control Headwater HWo' 22z Design Headwater Elevation HW . Brp382B lit Headwater'Diameter QR Headwaten Rlse Ratio MID ggr Minimum Theoretical Riprap Size d5o'Min Nominal Riprap Size dsa.in UDFCD Riprap Type Type =Length o1 Protection Lp =It Width of Protection T III:1t I� 05.06.2015 O\OLSSON O A 5 5 0 C tn T E5 APPENDIX F POND INFORMATION STAGE -DISCHARGE SIZING OF THE SPILLWAY Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS Basin ID: SPILLWAY C Design Information (input): C_ Bottom Length of Weir L =M300 feel Angle of Side Slope Weir Angle =degrees Elev. for Weir Crest EL. Crest =feet CCoef. for Rectangular Weir C, = - Coot. for Trapezoidal Weir C, = Calculation of Spillway Capacity (output): Water Surface Elevation ft. (linked) Rect. Weir Flowrate cis (output) Triangle Weir Flowrate cis lout W, Total Spillway Release cis output) Total Pond Release cis (output) 5031.00 0.00 0.00 0.00 0.00 5031.50 0.00 0.00 0.00 0.00 5032.00 0.00 0.00 0.00 0.00 5032.50 0.00 0.00 0.00 0.00 5033,00 1 0.00 0.00 0.00 0.00 5033.50 0.00 0.00 0.00 0.00 5034.00 0.00 0.00 0.00 0.00 5034.50 0.00 0.00 0.00 0.00 5035.00 0.00 0.00 0.00 0.00 5035.50 0.00 0.00 0.00 0.00 5036.00 0.00 0.00 0.00 0.00 5036.50 0.00 0.00 0.00 0.00 5037.00 31.82 2.12 33.94 33.94 5037.50 90.00 12.00 102.00 102.00 5038.00 165.34 33.06 198.40 198.40 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #WA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N;A #WA #N/A #N/A #N/A #N;A #WA #N/A #N/A #N/A #NiA #WA #N/A #N/A #N/A #NiA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #WA #N/A #N/A #NiA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #NiA #N/A #N/A #N/A #N/A #NiA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #WA #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N,�A #N/A #WA #N/A #N/A #N/A #N/A #N/A #N/A UD-Detention v2.34.)ds, Spillway 5/1/2015. 10 01 AM II STAGE -DISCHARGE SIZING OF THE SPILLWAY II Project: 015-0356 COLORADO STATE UNIVERSITY TENNIS COURTS Basin ID: SPILLWAY 0 5040 r 5035 5030 m 5025 m m m 5020 N 5015 5010 5005 5000 1- 0 STAGE -STORAGE -DISCHARGE CURVES FOR THE POND Storage (Acre -Feet) 0.2 0.4 0.6 0.8 Pond Discharge (cfs) +MIM MGwM -V„I wvpGiNY �ly0 nOlNa i UD-Detention_v2.34.xls, Spillway 5/1/2015, 10:01 AM STAGE -STORAGE SIZING FOR DETENTION BASINS Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS Basin ID: STAGE STORAGE 4 F3.. Fill rr �'^� ~ r' sa ap z Design Intormatlon input) Check Basin Width of Basin Bottom. W tt Right Triangle Length of Basin Bottom. L tt Isosceles Triangle Dam Side slope (H Vr Z, Wit Rectangle Circle / Ellipse Irregular Storage Requirement from Sheat'Modified FAA': Stage -Storage Relationship: Storage Requirement from Sheet'Hydmgraph': Storage Requirement from Shest'Full-Spectrum': he OR... OR... OR... OR... (Use Ovende values in cells G32:G52) MAJOR acreit. acre-ft. acre-ft. MINOR 3.50 _ g Labels for W OCV, Minor, 6 Major Storage Stages Water Surface Elevation it n ;uo Side Slope (H:V) ft/0 Below El. ����;.r Basin Width at Stage 8 output) Basin Length at Stage 8 (output) ( Surface Area at Stage flit (output) Surface Area at Stage ft' User Ovende Volume Below Stage its (output) ( Surface Area at Stage acres out ut Volume Below Stage oared o ut Target Volumes for WOCV, Minor, 6 Major Storage Volumes .raIseek, 5031.00 1318 0.030 0.000 WOCV..491 5031.60 0.17 _ 0.00 0.00 _ 7,472 2197 7,472 0.172 1 0.050 0.313 0.172 5032-00 0.17 0.00 0.00 13,625 5032.50 0.17 0.00 0.00 _- - 0.00 0.00 20,674 18,046 28,145 0.475 0-468 0.636 0.646 5033.00 0.17 0.00 0.00 27,722 5033.50 0.17 35,945 440062 0_625 _ 1.012 64,090 1_014 1A71 98,053 1.187 2.021 115.776 1.359 2.658 146.497 1,462 3.363 179.458 1.565 4.120 214,810 1_681 4.931 252,702 _ 1.798 5.801 293,495 1.90 6.738 5034.00 0.17 0.00 0.D0 44168 5034.50 0.17 0.00 0.00 51,686 5035.00 0.17 0.00 0.00 0.00 59,203 5035.50 0.17 0.00 63683 5036.00 0.17 0.00 0.00 68162 5036.50 0.17 0.00 0.00 _ 73,244 5037.00 0.17 0.00 0.00 78326 5037.50 0.17 0.00 0.00 84846 5038.00 0.17 _ 0.00 0.00 _ . - - _ 91,366 337,548 MA _2.PK__4 I 7.749 I NN/A OWA OWA *WA OWA OWA OWA *N/A *N/A _ MA OWA MA *N/A OWA ON/A MA OWA OWA _ OWA ON/A ON/A ONIA OVA - _ iWA OWA OWA OWA OWA _ _ SWA #WA OWA #WA OWA OWA ill ON/A _ OWA OWA OWA OWA MA AWA OWA _ OWA OWA OWA _ OWA OWA _ OWA J. OWA I OWA OWA _ OWA MA OWA_ - SWA MA I - UD-Detention4-24-15(12-HR DEn_Spillway.lds, Basin 5/1/2015, 10:00 AM ISTAGE -STORAGE SIZING FOR DETENTION BASINS Project: Basin ID STAGE -STORAGE CURVE FOR THE POND 5038.60 T 5037.60 5036.60 5035.60 - � P d 5034.60 - - - - - - m � I 5033.60 - -- 5032-60 -- - 5031.60 - 5030.60 - - --- - - 0.00 1.00 2.00 3.00 4.00 5,00 6,00 7.00 8.00 9.00 Storage (acre-feet) UD-Detention-24-15j12-1-IR DEET)_SPillway.)ds, Basin 5/112015, 10:00 AM V q Y m d E FbM 4441 Q 0 D D 0 00000 00000 0000 0000 Do 000 o�oo oo D �K�Fi' =8 per $m_88m� <zt��wtp <mp eY L 8 �s�ilc egE O' s No Text STAGE -DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL) Prof: 015.0358 COLORADO STATE UNIVERSITY TENNIS COURTS Basin ID: OUTLET Current Routing Order Is #3 #1 Horiz. #2 Horiz. #1 Vert. #2 Vert Circular Opening: Diameter In Inches 1 . 3.75 1 linches, OR Rectangular Opening: Width in Feet W = 3.00 1 ft. Length (Height for Vertical) L or H =11 3.00 0. Percentage of Open Area After Trash Rack Reduction % open = too 100 Orifice Coefficient C,= 0. 55 0.65 Weir Coefficient C. 2.55 Orifice Elevation (Bottom for Vertical) E,= 5032.70 1 1 5,031.00 1 Ift. Calculation of Collection cacacav: Net Opening Area (after Trash Rack Reduction) A,= 9.00 0.08 sq. ft. OPTIONAL: User-Overide Net Opening Area A. -1 sq. fl. Perimeter as Weir Length L. 12.00 It. OPTIONAL: User,Overide Weir Length L. = ft. Top Elevation of Vertical Orifice Opening, Top = 5031.31 ft, Center Elevation of Vertical Orifice Opening, Can = 5031.16 rl. Routing 3: Single Stage - Water flows through WQCV plate and #1 horizontal opening into #1 vertical opening. This flow will be applied to I culvert sheet (92 vertical & horizontal openings is not used). labels for WOCV. Mi., & Maim Storage W-S. Elevatiom hrr rul Water Surface Elevation ft (irtketil WQCV Plate/Roar Flow cis '011-1 iinkvd #1 Horiz. #1 Horiz. Weir Orifice Flow Flow CIS CIS o f) fq #2 Horiz. #2 Horiz. Weir Orifice Flow Flow CIS CIS out Out I #1 Vert. Collection Capacity CIS (output #2 Vert. Collection Capacity cis e r Total Collection Capacity eta (output) Target Volume for wocv. Minor. & Major Storage volooae 4M for rn 1 seek 5031.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5031,50 0.15 _ 0.00 0.00 0.00 0.00 0.23 11 0.15 _ 5032-00 5032.50 5033.00 0.33 _ 0.00 0.00 5.03 21.90 0.00 0.00 0.00 0.37 0.00 0.33 0.53 0.00 0.00 0.00 0.46 0.00 0.46 0.66 25.71 _ 0.00 0.00 11 0.00 0.54 5033.50 0.77 41.99 0.00 0.00 0.61 0.00 0.61 5034.00 _ _ 0-86 _ 45.36 63.53 0.00 0.00 0.67 0.00 0.67 5034.50 0.94 _ 73.90 106.74 62.98 0.00 0.00 0.73 _ 0.00 0.73 _ 5035.D0 1.02 7120 0.00 0.00 0.78 0.00 0.78 5035.50 1.09 143.37 78.56 0.00 0.00 0.83 0.00 0.83 5036.00 5036.50 5037.00 5037.50 503B.00 _ _ _ 1.15 _ 183.44 86.28 0.00 0.00 0.88 0.00 0.98 122 _ 226-67 272.85 321.80 91.51 0.00 0.00 0.92 0.00 0.92 1.28 97.35 0.00 702.SS 0,00 108.08 0.00 iW/A _ #N/A #WA #N/A #WA #N/A 0.00 0.97 0.00 0.97 1.33 0.00 101 g.00 1.01 1.39 _ 373.37 #WA SWA _ #N/A #WA *N/A #N/A #N/A #N/A #N/A *N/A *WA #N/A *WA #WA 1/N/A #N/A MA #WA #WA #WA _ #WA #WA SWA MA Ill ill #WA MA #WA 000 1.05 0.00 1.05 1.44 #N/A _ #WA 0.00 #N/A 1.49 #N/A #N/A #N/A #N/A _ #N/A #N/A #N/A #N/A #N/A #WA _ 0.00 #N/A 1.54 *WA 0-00 #N/A 1.59 SWA #N/A #WA 0.00 #N/A 1.63 *N/A #N/A #N/A 0.00 #N/A *N/A *N/A #WA #WA #WA #WA 0-00 Ill #N/A MINA 0.00 #N/A #WA MA #WA 0.00 #N/A #WA #WA till#N/A MA #WA 0.00 11NIA #N/A #WA #WA #NIA 0.00 #N/A #N/A Of #N/A #N/A #N/A 0.00 0.00 #N/A Ill #N/A _ #WA #WA _ SWA #N/A _ #N/A #N/A _ #N/A #N/A #N/A #N/A #N/A _ #N/A #N/A #N/A #N/A 0.00 #N/A #N/A MA #N/A #WA #N/A MA #N/A #N/A #N/A #N1A #N/A _ #N/A #N/A #N/A 0.00 #N/A #N/A 0.00 #N/A #N/A 0.00 #N/A #WA _ MA #N/A 0.00 #N/A #N/A #WA *WA 0.00 #WA #N/A #N/A #WA 0.00 MA #N/A #WA #N/A 0.00 #N/A #N/A #WA #N/A 41 #N/A 0.00 0.00 0.00 #N/A #WA OWA #N/A SWA #WA #WA #WA #N/A #WA #WA #N/A #WA #N/A #WA #NIA #WA #1 0.00 #WA #N/A #WA ##UA #NIA *N/A 0.00 #WA #N/A #WA Of #WA #WA 0.00 pull SWA_ #WA Ill #WA SWA 0.00 SWA #N/A SWA SWA I #N/A I #WA 1 0.00 SWA #NIA I #WA SWA I #N/A I #NIA 1 0.00 MA UD-Detention4-24-15(12-HR DET)_Spllway.lds, Outlet 5/l/2015, 10:04 AM STAGE -DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL) Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS Basin 10: OUTLET STAGE -DISCHARGE CURVE FOR THE OUTLET STRUCTURE 5036.E 5037.6 5036.6 4) 65 19 5034.6 5033.6 5032.6 5031 6 5030 6 02 04 06 08 1 1.2 Discharge (cfs) UD-Detention4-24-15(12-HR DET)_Spillway.xls. Outlet 5/1/2015. 10:04 AM W V d Q F�tl Oxx a0000 0000 De000 00000 0000 0000 [Ed 0° I 3 a < a s< a< a< a a<< a a<< a a a a a a a a<< i.. i Y . i...... i i i i.. i w a3i w w w i �i ¢' p0000+g OS 6 } II t t i �2 x < Y < { Z . y� Oo00 oa O o0 0 Cc_� <�o m a m o aot< « « < « « <666666<6« « <6<66 y5q N N R eNi eNi n o e c o 0 0 0 o a o 0 o O x e• G = 0 3 N W ¢O I YN £S b O 0 I \\ rITTTI FIT. r Ll _\ Jallll lly BASIN AREA CA(C.) % IMPERVIOUS Q10° RUNOFF (CFS) 1 SUN µx, 47.20 2 20f4 95%, is-is. 3A O.ae 96% in 3B 0.72 96% 3.20 3C 0.w 4x 5.47 3D 0.41 92%I 3.08 4 0.S2 66R 5.63 5 O.Y4 55% 5.75 6 0.$'9 lom 2.4B TA 0.4b 921 3.93 10 ma 82% 3.44 TC O.a$ ex 119 SA 2.47 91 20.70 8B O.4b Six) 2.94 I C 0.41 In 5.22 OS-1 0.w 8]1L O.Tt CS-2 a09 1 0.28 OS-3 O.Op 10o IO.TI N- r an 6 ZW ~ 1 100 Q i \ SGIE IWI FEET I U N O 1 1 I A V1 J a s� 1 s A 1 15 1 1 � I1 6 1 €� 1 NUTS THREDUCLAKIENTIHAS BUN 0 • R' r \ .r _ �� - - 0607 \ 1 / // RELEASED By OLSSON _ J� ,:. OUP, EWSDNG "` --- w-� \\ �i ASSCCUTE5DX0'FORRNEW ''/ r F• STRUCTURE 'SPILLWAY _` '. - __ _ ... / // - In REDUw.DRY AGENceS AND ;o//i' /ir//i / _ _ _ _ _ - 9'%5'%24• TTPE Y RPRAP (BURIED) -- A _ g \\ 3\` p//� / W/ 12" II E 1 BEDDING 75 LP 38' RCPO 0.8x jI 10' TIDE R IN E I I,II e � S'COWRTS _ 9+aN+u+ix�.4.vet3.u+e\__r. i.. - -CSU TENNIS- NE AA B'%3'X24• II W/ 12' TYPE II 9EDdNO _ - I It I - yy CE I I\ I I I \\ OCOMBNAPON NLET \ g I 5'X3'X24• TYPE M RIPRAP (BURIED) 2 WA2. 1YPE 11 BEDDINGllu �. 1 a\ Bi /I ���� 'LL 18•RCPO'ti r%I , I'IiI II I,n I-AsM-111-1111 \IH 181, UN11 7t*4 1\4 444 �• .' IVA kk \e3 GIILVERT__ r MOM PROFFESSONAIS AND E z:Fm \ YluEcr Tc cxwcE. Tx. \ - ctt MENTSNOT TUBE USED %\I I I / / / / - NER00Ns HU DNOR AI RDfliiONTAL OR VFRi CALISTHE �/ MEETING UTILITIES CHI ON _� �/ � i THIS GRUBBING HAVE SEEN _I-�.EG W PTTED NOUN THE REST _ "-'� AVAEIHLE INFORMATION S an 5036=�� .SIOEWNJ(2THECONRAUNOR m NTro FER THE RE5NSICURY �'WL\ERTFIELD UNLIDES PRIOR 70 THE 10.%SOC14• TYPE M NIEFFEE' THE LOCATION GO AA.L RIPRAP (BURIFO)'. H �" /! - -OJg z f� \CONSIBRUCTIONACTIVOIES CONANEAREmENTOFANY W/ 12• 11PE II BMCINa _ - -- -' _EE.....■.'mllll oil 00a11W11 1 �a,4 !Q _ _ _ _ ELLPTICAL Rae asx / 1 7C TYPE D-12 NOTE FOR ALL D-12 SIDEWALK CULVERTS INCLUDE (L. WOE 24• RIPRAP PAD DOWN ALONG CHANNEL AND ° RUN ALONG OTNER SIDE OF CHANNEL UP TO A HOGHT OF 2 FEET. B SUMMARY TABLE 100-YEAR OUSEL 50216,08 100-YEAR RELEASE 0.87 COS ORIFICE DIA 3.75 INCHES ORIFICE ELEV. 503&8 DET ♦ WO EVIL 4.25 AC -FT EX. SPILLWAY: ELEV. 5038.5 EX. SPILLWAY: L 30 FT E%. SPILLWAY: A 1.50 FT WQCV REOD 0.01 AC -FT WVCV EIEV. 503270 LEGEND X BASIN NAPE INLET % IMPERWCUSNLSS BASIN AREA RIP RM (ACRES) FLOW ARROW FES BASIN BOUNDARY STORLI SEWER PIPE NI N m Q Ud W DO W Z H z Wa F (7 Q UK a Ov J 0 SARI FUI Ewc,axim, AUK NAKED NO Chl SHEET 1 of 1