HomeMy WebLinkAboutDrainage Reports - 06/19/2015TENNIS COURT PARKING LOT
FINAL DRAINAGE REPORT
City of Fort Co ► s Approv qg
4rovedbf,
PREPARED FOR
Colorado State University
Fort Collins, Colorado
PREPARED BY
Olsson Associates
5285 McWhinney Blvd.
Loveland, CO 80538
970.635.3721
May 2015
Olsson Associates Project No. 015-0358
0LSSON
ASSOCIATES
Tennis Courts Parking Lot Preliminary Drainage Report
Colorado State University 015-0358
Table of Contents
1.0 GENERAL LOCATION AND DESCRIPTION.....................................................................1
1.1 Location ............... :................................................................................................... 1
1.2 Description of Property............................................................................................. 1
2.0 DRAINAGE BASINS AND SUB-BASINS...........................................................................1
2.1 Major Basin Description............................................................................................ 1
2.2 Sub -Basin Description.............................................................................................. 1
2.2.1 Historical Drainage Patterns.............................................................................. 1
3.0 DRAINAGE DESIGN CRITERIA........................................................................................1
3.1 Regulations/Development Criteria............................................................................ 1
3.2 Hydrological Criteria................................................................................................. 2
3.3 Hydraulic Criteria...................................................................................................... 2
3.4 Waivers/Variance from Criteria................................................................................. 2
3.5 Stormwater Quality Considerations.......................................................................... 2
4.0 WETLAND PRESERVATION AND MITIGATION..............................................................2
5.0 DRAINAGE FACILITY DESIGN.........................................................................................2
5.1 General Concept...................................................................................................... 2
5.2 Hydrologic and Hydraulic Modeling.......................................................................... 3
5.3 Basin Descriptions.................................................................................................... 3
5.4 Detention Pond......................................................................................................... 6
5.5 Low Impact Development......................................................................................... 7
6.0 CONCLUSIONS................................................................................................................7
7.0 REFERENCES..................................................................................................................8
05.06.2015
Tennis Courts Parking Lot Preliminary Drainage Report
Colorado State University 015-0358
List of Tables
Table 5.1 SWMM Input Parameters........................................................................................... 3
Table5.2 Basin Summary .......................................................................................................... 5
Table 5.3 Detention Pond Details............................................................................................... 6
List of Appendices
Appendix A
Maps and Figures
Appendix B
Basin Information
Appendix C
SWMM Input and Output
Appendix D
Inlet and Swale Sizing
Appendix E
Riprap Sizing
Appendix F
Pond Information
05.06.2015
1.0 GENERAL LOCATION AND DESCRIPTION
1.1 Location
The proposed project is located within part of the south half of Section 23, in the Township 7
north, and the Range 69 west of the sixth principal meridian. The site is bound on the north and
east by the Larimer County Canal Number 2, on the northwest by Center Avenue, on the
southwest by Research Boulevard, and on the south by Drake Road.
1.2 Description of Property
The proposed project site is part of Colorado State University's South Campus and includes the
current Tennis Complex. The property is approximately 20 acres in size.
Currently the site includes a tennis court facility with twelve tennis courts, a small parking lot,
and small building with restrooms. The remaining site is primarily vegetated in a mixture of
grasses. A depression at the western most corner of the property is populated with stands of
cottonwood trees. The existing topography slopes to the east at average slopes of between 0
and 3%. Soils in this area consist of Nunn clay loam which are classed as hydrologic group
.C".
2.0 DRAINAGE BASINS AND SUB -BASINS
2.1 Major Basin Description
The project site is located in the City of Fort Collins Spring Creek drainage basin and is
identified as basins 89 and 62 in the Spring Creek master plan. Spring Creek lies north of the
project running west to east. The property is also part of Colorado State University's South
Campus. The master plan for the south campus, completed by Anderson Consulting Engineers,
correlates to the City's Spring Creek Master Plan's drainage basin numbering. The proposed
project is outside any FEMA and City of Fort Collins floodplains areas.
2.2 Sub -Basin Description
2.2.1 Historical Drainage Patterns
Historically the northern two-thirds of the site drains to the east and the southern third drains to
the south. The northern portion drains to a detention pond at the northern and eastern sides of
the tennis courts. This detention pond discharges to the east under the Larimer County Canal
Number 2 and over to a drainage swale that runs north to Spring Creek.
3.0 DRAINAGE DESIGN CRITERIA
3.1 Regulations/Development Criteria
The preliminary design of the proposed drainage facilities was completed in accordance with the
criteria presented in the City of Fort Collins Spring Creek Basin Master Plan and Colorado State
University's South Campus Drainage Master Plan. The following criteria were used in the
drainage design.
05.06.2015
■ The developed 100-year peak runoff from the developed site was limited to a release of
no greater 3.0 CFS based on the release rates identified for Pond 289 in the Spring
Creek and South Campus master plans.
■ The southern portion of the site remained undeveloped and was therefore not analyzed.
3.2 Hydrological Criteria
The design storm used was the 100-year (major) for the developed discharge. The City of Fort
Collins Intensity -Duration -Frequency curves were used to obtain rainfall data used for the 100-
year storm event. The runoff for the site was determined using EPA Storm Water Management
Model, version 5.1 (SWMM). This was done in order to accurately model the detention pond
because the FAA Method was not sufficient. The volume required in the detention pond
exceeded the limits of the FAA Method, therefore, SWMM was used to model the site.
3.3 Hydraulic Criteria
The stormwater conveyance systems were designed to capture and convey the major event to
the detention pond. The discharge used to size and design the conveyance structures was
based on the SWMM model of the discharges from the basins. Pipes were sized using SWMM
to ensure ponding at inlets met Fort Collins criteria.
Inlets and riprap were sized using Urban Drainage and Flood Control District's spreadsheets
while maintaining Fort Collins' ponding depth for inlet sizing and minimum riprap size where
applicable.
3.4 Waivers/Variance from Criteria
No waiver or variance is requested.
3.5 Stormwater Quality Considerations
In general, stormwater quality will be mitigated on -site during construction with the use of silt
fencing, vehicle tracking devices, inlet / outlet protection devices, and other best management
practices as needed. Long-term stormwater quality will be obtained by running the stormwater
over grassed areas and by providing a 40-hour water quality capture volume (WQCV) within the
detention pond in conjunction with a water quality orifice plate designed for a 12 hour release
rate.
4.0 WETLAND PRESERVATION AND MITIGATION
There are no jurisdictional wetlands located on this property.
5.0 DRAINAGE FACILITY DESIGN
5.1 General Concept
Onsite basins have been determined and are defined as Basins 1, 2, 3A through 3D, 4, 5, 6, 7A
through 7C, 8A through 8C. Basins that flow offsite include Basins OS-1, OS-2 and OS-3. No
offsite basins affect the project. Adjacent streets were accommodated in the Spring Creek
Master Plan and as such, onsite basins do not include adjacent roadways. The proposed
drainage patterns for the onsite basins have been determined by the layout and grading of the
05.06.2015 2
site. Overall, the site will be similar to the historic flow path. The majority of the stormwater from
the site will be routed through the site by the stormwater system to the detention pond. Due to
grading limitations, small portions of the site (the entrances, basins OS-1, OS-2, and OS-3)
drain out to the adjacent streets. Additionally, the south half of the south entrance drains
southerly without being detained, however, this flow pattern follows the South Campus and
Spring Creek master plans.
To mitigate the developed flows from the developed basins, the existing detention pond was
reduced to accommodate the developed flows leaving the site undetained while maintaining the
overall release rate from the site.
5.2 Hydrologic and Hydraulic Modeling
EPA SWMM 5.1 was used to determine runoff from each basin, route the flows, and then used
to size drainage structures to convey the discharge downstream. The model was also used to
ensure the detention pond had adequate volume to provide water quality and to provide
detention that detains the overall developed site flows with an overall release rate equal to the
historic 2-year flow rate of 3.0 cfs as required by the Spring Creek and South Campus master
plan. The rainfall from the City of Fort Collins Drainage Criteria was used in the SWMM model.
A summary of the SWMM parameters used in the model are listed in Table 5.1 below.
Table 5.1 SWMM Input Parameters
Parameter
Value
Depth of Storage on Impervious Area
0.1 Inches
Depth of Storage on Pervious Area
0.3 Inches
Horton's Maximum Infiltration Rate
0.51 Inches/hr
Horton's Minimum Infiltration Rate
0.50 Inches/hr
Decay Rate
0.0018inches/sec
Zero Detention Depth
1%
Manning's n Value for Pervious Surfaces
0.025
Manning's n Value for Impervious Surfaces
0.016
5.3 Basin Descriptions
Basin 1 consists mainly of the CSU tennis court and the newly graded detention pond 289. The
main drainage path will start on the surface of the CSU tennis courts, and will drain to the east
where it will hit the curb and gutter. It will then drain to the north east portion of the tennis courts
were water sheet flows directly into detention pond 289.
Basin 2 consists mainly of a new paved parking lot, with islands and curb and gutter. Runoff
sheet flows from west to east thru the parking lot until it reaches the curb and gutter. It will then
drain along the curb and gutter until it reaches the most northeast portion of the parking lot
where it enters Inlet-2, a double type-13 combination inlet. Flows are then conveyed via storm
sewer to pond 289.
Basins 3A, 36, and 3D are very similar basins. All three basins consists of paved parking lots,
with islands and curb and gutter. Runoff in these sheet flows from east to west in the parking lot
until it reaches the curb and gutter. Flows will then be conveyed along the curb and gutter until
05.06.2015 3
it reaches the designated D-12 sidewalk culvert for the individual basin. The sidewalk culvert
will drain storm water to the west along a rundown until it reaches the bio-swale in basin 3C.
The bio-swale will drain to the north until it reaches the 18-inch pipeline under the north
entrance to the parking lot where it is conveyed into pond 289.
Basin 3C consists mainly of a bio-swale that slopes to then north at 0.5%. All the stormwater in
Basin 3C will be conveyed in the bio-swale, which will drain to the north until it reaches the 18-
inch pipeline under the north entrance to the parking lot where it is conveyed into pond 289.
Basin 4 consists primarily of new paved parking lot with islands and curb and gutter. Runoff will
sheet flow across the parking lot until it reaches the curb and gutter where it will then drain
along the curb and gutter until it reaches Inlet-4, a double type-13 combination inlet. Flows will
be conveyed into basin 8C's bio-swale via storm sewer. It will then pass under the eastern
entrance flowing north into pond 289.
Basins 5 and 6 consists primarily of the proposed drive through the site connecting Research
Boulevard and Gillette Drive. Flows in both basins are conveyed via sheet flow until they reach
the curb and gutter in each respective basin where flows are then routed east to inlets 5 and 6.
Inlet 5 is a 10-foot type R inlet and Inlet 6 is a 5-foot Type R inlet. Both inlets are connected to
the storm sewer that conveys flow under the drive to the north into Pond 289.
Basins 7A and 7B are very similar basins. These basins consists of paved parking lots, with
Islands and curb and gutter. Runoff from these basins will begin at the eastern side of the
basin, and sheet flow westerly across the parking lot until it reaches the curb and gutter. It will
then drain along the curb and gutter until it reaches the designated D-12 sidewalk culvert for the
individual basin. The sidewalk culvert will drain storm water to the west along a rundown into
the bio-swale in Basin 7C. The bio-swale conveys the flows north until it drains into a grated
manhole in Basin 7C. The storm sewer system will deliver the flows into basin 8C's bio-swale
and ultimately into Pond 289.
Basin 7C consists mainly of landscaped area. All the stormwater in Basin 7C will drain into a
grated manhole section at the northern end of the basin. The storm sewer system will convey
flows into basin 8C's bio-swale and ultimately into Pond 289.
Basin 8A consists of paved parking lot with islands and curb and gutter. Runoff from this basin
will sheet flow east across the parking lot until it reaches the curb and gutter, from where it will
drain north along until it reaches Inlet-8A, a double type-13 combination inlet. The flow will then
flow through a flared end section and will enter a bio-swale. Once flows enter the bio-swale in
Basin 8C, flows are conveyed north and into Pond 289.
Basin 8B consists primarily of a new paved parking lot with islands and curb and gutter. The
runoff is conveyed via sheet flow east -southeasterly across the parking lot until it reaches the
curb and gutter. It will then drain flow along the curb and gutter until it reaches the D-12
sidewalk culvert at the southeast portion of the basin. The curb cut will drain storm water to the
east along a rundown until it reaches the bio-swale in basin 8C. The bio-swale will then drain
north at 0.5% until it reaches the storm sewer system that conveys the flows north into pond
289.
05.06.2015 4
Basin 8C consists mainly of a bio-swale that is sloped to the north at 0.5%. All the stormwater
runoff in Basin 8C will be conveyed by the bio-swale to the north until it reaches the storm sewer
system where it is conveyed north into pond 289.
Basin OS-1 consists primarily of the north entrance to the site. The flows from this basin are
conveyed via sheet flow to the adjacent street where they leave the site.
Basin OS-2 consists primarily of the main entrance off of Research. The flows from this basin
are conveyed via sheet flow to the adjacent street where they leave the site.
Basin OS-3 consists primarily of the main entrance off of Gillette. The flows from this basin are
conveyed via sheet flow to the adjacent street where they leave the site.
As each basin contributed to the total discharge for each conveyance, the routed summation of
the contributing discharges was used to size the conveyance structures at key points. See
Table 5.2 for a summary of the drainage basins and their characteristics.
Table 5.2 Basin Summary
Basin
(ID)
Area
(ac)
Percent Imp.
(%)
RUNOFF
(CFS)
1
5.90
44%
47.20
2
2.04
95%
18.18
3A
0.29
96%
2.89
3B
0.32
96%
3.20
3C
0.83
4%
5.47
3D
0.31
92%
3.08
4
0.62
66%
5.63
5
0.74
55%
6.75
6
0.28
100%
2.48
7A
0.40
92%
3.93
7B
0.36
82%
3.44
7C
0.28
6%
2.19
8A
2.43
92%
20.70
8B
0.30
61%
2.94
8C
0.81
10%
5.22
OS-1*
0.03
87%
0.71
OS-2*
0.07
100%
0.26
OS-3*
0.07
100%
0.71
rhese basins drain offsite.
05.06.2015 5
5.4 Detention Pond
The existing detention pond was enlarged with the proposed parking lot improvements. The
new pond includes the required detention to release at a reduced flow rate and the storage for
the 40-hr release rate for water quality. The outlet is a siphon that was designed with the
previous tennis courts improvements. Because the detention pond was modified, the outlet
structure will need to be re -constructed to have a water quality orifice plate sized to release the
WQCV within 12 hours and the revised release rate accounted for with a new orifice plate. If
the outlet structure should ever become plugged, the volume in the pond is large enough to
contain the developed runoff from the site without overtopping the spillway. The existing
spillway was not modified. The following table summarizes the calculated stormwater runoff
quantities and pond design parameters. See Table 5.3
Table 5.3 Detention Pond Details
Pond Elevation Variables
Bottom of Pond, feet
5031.00
Top of WQCV control structure, feet
5032.70
100-yr WSEL
5036.08
Pond spillway elevation, feet
5036.50
Top of pond elevation, feet
5038.00
Pond Outlet
Spillway, feet (at 0.5 feet deep)
30
Freeboard 100-year plugged outlet condition, feet
1.0
Outlet pipe diameter, inches
18
Outlet Orifice diameter, inches
3.75
WQCV Volumes
Volume required (40-hour release), ac-ft
0.49
Volume provided, ac-ft
0.49
Storage Volumes
100-Year Event Volume required, ac-ft
3.70
100-Year Event Volume provided, ac-ft
3.76
100-Year Event Volume + WQCV Provided, ac-ft
4.25
Pond volume at spillway elevation, ac-ft
4.93
Pond Discharge
100-year Allowable Release Rate, cfs
1.32
100-year Actual Release Rate, cfs
0.89
Master Plan Pond Discharge, cis
3.0
Undetained discharge, cfs
1.68
Refer to the Appendix F for detention pond sizing and outlet structure calculations.
05.06.2015 6
5.5 Low Impact Development
Low impact development (LID) was used as much as possible including in the bio-swales on the
east and west sides of the site and in the parking islands. The overall water quality control
volume was not reduced even though some areas do receive some treatment by the bio-swales
and parking islands. The reason for this is that it is unclear how effective the small scale LID
improvements are. Should they be found ineffective in this application, the additional capacity in
the pond is available. The overall impact to the pond volume is fairly minor but it would remove
basins 3A, 36, 3C, 7A, 813, and 8C and result in a total requirement of .420 acre-feet of WQCV
storage instead of the 0.492 identified using all the basins.
6.0 CONCLUSIONS
Overall, the design of the structures used to convey the runoff from the proposed development
will control required storm events effectively. The proposed stormwater system will capture the
majority of the increased runoff from the site and route the storm flows to the detention pond.
The detention pond will attenuate the developed flows and release them at a controlled rate to
the Spring Creek basin. Water quality control will be provided before discharging developed
flows. No offsite drainage improvements are required.
05.06.2015 7
7.0 REFERENCES
Urban Storm Drainage Criteria Manual (USDCM), Volumes 1 and 2, published by the Urban
Drainage and Flood Control District, Denver, Colorado, June 2001, Revised April 2008
Urban Storm Drainage Criteria Manual (USDCM), Volumes 3, published by the Urban Drainage
and Flood Control District, Denver, Colorado, November 2010
Fort Collins Stormwater Criteria Manual, City of Fort Collins, December 2011, Addendum
February 2013
CSU South Campus/Veterinary Teaching Hospital Drainage Evaluation, Anderson Consulting
Engineers, October 19, 2001.
Spring Creek Master Plan, Anderson Consulting Engineers, December 8, 1999
05.06.2015 8
APPENDIX A
MAPS AND FIGURES
05.06.2015
O*kOLSSON
ASSOCIATES
40' 3349'N
40^ 37 i' N
i Hydrologic Soil Group—Larimer County Area, Colorado 3
(CSU Parking Area)
yV
O p
4(° 33 49' N
i�
8
K
8
40 33I" N
492400 492500 492600 492700 492800 492900 493000 493100 493200 493300 493400
3
Map Scale: 1:7,210 If printed on A porbat (8.5" x 11") sheet
e
N 200 400 -- 600- Feet
0 350 700 1400 2100
Map OrO)eCbw: Web MIerMtor Comer mordirebes: WGS84 Edge tim U1M Zone 13N WGS84
VYIN Natural Resources Web Soil Survey 2/2/2015
i Conservation Service National Cooperative Soil Survey Page 1 of 4
0
U
O
O
m
C O
-
m
Q
O
O
O
pp
m
C
O
C
O Y>
N
>
m r
L
N
O w O
2 m
mL >`
U °�
N 0
0
m y uEl
y3 C
c
QA
°yy
Nm
CD
m
E
m
mEo
N
o
N
c o
-Y
CV��
O`1�
U
N
m
0mo
Z
E
ainm
m�
m
'o
ma�D
wormy
U
N
E
o.
mmN
O
m
mc10v
t
cm
°
3
N
E m m
°CL
N
44)4T)C�
C Z
Z¢
m
0 m
p
4)C
E
O N W
U
j
mmEDooo
N
oL
Q
m
y O
L
C- y
D
,
n
pU mQm
,gyE
O
m>£m
o
d
o CO
m
M�'0
0-- m
qN
y m CV°
° iUO
N
o
.$o0
E T cc
EC
mNmJ
om°
A°
om
m
(D"'
-
�v
EIL
d
m
Lm'
L
mOEE
Q
U
A
J
y V
N°J
m
N-
L
E
mr m
z
n ¢um
mo
°
m
y
Ey
E O1 E
(D y
b
0'�cm
0rn ai
m
N
oc
m�tp
�3��0
rnm
N�
m
¢M
m
E
015 To
2
o_m�-�
TE
�Ud
tca�_°
y
'O
m�o8
m m mr
O C
Ecmco
U m
vo
E
and
m
m
om'vc
L 2,
N
C
V r
�C Ng
m 9
NN
m
i�V
yy l0
yyCi=
nor
7 T
m 4)
EC.
N
O'O.mm
m
cLmo
and
Opd)°o
MQ0n�
rm
'o5
'0`-0
Lm
h-
3
W E o.y
d E
U�U
. `5< ig
F
UU
U `o
m'-
ON
LEmE
F- E`o
a
n
m
N
>
m
o
a
C 3
a
U t
T
t
n
m
C
V
y N
m
0
°�
A y
m
O a
0
O
_
a
w
K w
a
❑
O a
vF V
m
U U
o
❑ Z
N f =
❑
Q
_O
9
8
■
LL`o
W■
C
c
a
W
—i
d
a
a
n
o
0
d
C
C
d
C
O
O
0 C
rn
o
w
a9
Q O
y
C
0
Q
0 Q
a m m U
U
❑ Z
m Q a
m m U U ❑ Z
pi Q a m m
m
c
c
c
OF
❑
❑ ❑ ❑ ❑
❑
❑ ❑
1 l
Z ` q
O ■ ■ ■
H a
a i
[
0
Hydrologic Soil Group—Larimer County Area, Colorado
CSU Parking Area
Hydrologic Soil Group
Hydrologic Soil Group— Summary by Map Unit — Larimer County Area, Colorado (CO644)
Map unit symbol
Map unit name
Rating
Acres in AOI
Percent of AOI
3
Altvan-Satanta loams, 0
B
1.6
0.6%
to 3 percent slopes
4
Altvan-Satanta loams, 3
B
37.9
14.6%
to 9 percent slopes
22
Caruso clay loam, 0 to 1
D
10.4
4.0%
percent slope
35
Fort Collins loam, 0 to 3
C
6.2
2.4%
percent slopes
53
Kim loam, 1 to 3 percent
B
2.6
1.0%
slopes
63
Longmont clay, 0 to 3
D
5.0
1.9%
percent slopes
73
Nunn clay loam, 0 to 1
C
133.8
51.5%
percent slopes
74
Nunn clay loam, 1 to 3
C
32.5
12.5%
percent slopes
75
Nunn clay loam, 3 to 5
C
3.7
1.4%
percent slopes
76
Nunn Gay loam, wet, 1 to
C
25.9
10.0%
3 percent slopes
Totals for Area of Interest
259.7
100.0%
T
usDA Natural Resources Web Soil Survey 2/2/2015
Conservation Service National Cooperative Soil Survey Page 3 of 4
Hydrologic Soil Group—Larimer County Area, Colorado
CSU Parking Area
Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive precipitation
from long -duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly
wet. These consist mainly of deep, well drained to excessively drained sands or
gravelly sands. These soils have a high rate of water transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well drained
soils that have moderately fine texture to moderately coarse texture. These soils
have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of water
transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink -swell
potential, soils that have a high water table, soils that have a claypan or clay layer
at or near the surface, and soils that are shallow over nearly impervious material.
These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in their
natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method: Dominant Condition
Component Percent Cutoff.- None Specified
Tie -break Rule: Higher
usDA Natural Resources Web Soil Survey 2/2/2015
21111111111 Conservation Service National Cooperative Soil Survey Page 4 of 4
APPENDIX B
BASIN INFORMATION
05.06.2015
OkOLSSON
ASSOCIATES
Project Name CSU Tennis Courts
Project Number 015-0358
Calculations By F. Sottosanto
Date: 4/24/2015
O'kOLSSON
ASSOCIATES
Basin
ID
Paved Area
(acres)
Grass Area
(acres)
Roof Area
(acres)
Total Basin Area
(acres)
Net Percent Imp.
(%)
1
2.50
3.40
0
5.90
43.5%
2
1.93
0.11
0
2.04
94.7%
3A
0.28
0.01
0
0.29
95.6%
3B
0.31
0.01
0
0.32
96.3%
3C
0.01
0.82
0
0.83
3.7%
3D
0.29
0.02
0
0.31
92.4%
4
0.41
0.21
0
0.62
66.2%
5
0.36
0.33
0.05
0.74
55.2%
6
0.28
0.00
0
0.28
100.0%
7A
0.37
0.03
0
0.40
92.2%
7B
0.30
0.07
0
0.36
82.3%
7C
0.01
0.27
0
0.28
5.5%
8A
2.24
0.19
0
2.43
92.3%
8B
0.18
0.12
0
0.30
60.8%
8C
0.07
0.75
0
0.81
9.9%
05-1
0.03
0.00
0
0.03
86.7%
OS-2
0.07
0.00
0
0.07
100.0%
OS-3
0.07
0.00
0
0.07
100.0%
Total
9.69
6.35
0.045
16.08
61.3%
%IMP 100% 2% 90%
OS = Offsite
Total only includes on -site basins
APPENDIX C
SWMM INPUT AND OUTPUT
05.06.2015
OkOLSSON
ASSOCIATES
N N N
O m O m 0 0 0 0 0
d O Q $ %D 0 ID 0 0 0 e•I e•1 ••I ei 0 ••
r Z 3Z r 0 0 0 0 0 0 0 M 0 0 0 0
m u O> w O O N 0 N 0 N a H N 0 0
> u 2 0 0 0 Z z 0 0 0 0 0 0 0 H 0 0 0 0 0
N
d
O
Z W W W
F�-
H O z F H
N _ " M W 0 pppQ W W Q Q K W r
U N C M Q O LL D. O W Q M I1-
/1 Ir/1 W W F 2 N Ir/1 6 6 NI
w vd, O �=h-w0�mI0 OI rI rI rIQ tiNI WI Q rlr rz
J O H ++ IJ I IN 3 I r r m w 0 r a a 0 w N 0
rL ro.3H3y Ipa ww 00 I Iww 10 1 1r
M d 1OOLL Ozz JN QQD. d OO W W>o.r>>
f O Z J M M J y r r W W z z 3 3 w W W w O
•. •+LL M LL J� Q N N N C K w w N N O K 3 p z
v
3
L
d
K E
> E
m H
0 2C
'i
V
LL
N m
W d
M L
K Q
d � W
U � N
L � W
J � i
N � r
� J
m
L
d i N
C
J i M i 0
s F 3 N m V m
am tD
$ 00ti-i m 0NN E A Z
m E W C
L 0 L i r
W O d 0 Z LL M w
r..
M F-I c r i N Y
a J O' u
N r C
I WW I Q z J J Z Z _ z d
3 Ir l7w QOO Om wE
O O z N Z W O W r r M V N E a
1J N IH Q J W I I r m w $ U
J LL W Z LL Q J 3 3 Q O r> 0 � V ♦+
Q I J W D: 10 0 p w Z J Q r m
M J Im $ C r J J O p Q Z 0 d Q U
r W Q r N r I LL LL d m r 0 Z m u m
Lt �+0 I In I I Q> N 1 "m m
w w w z z z Q N r > W Z> Q l0 . 7 N
3
yO ;
m m m m m m m m m m m m m m m m m m
V �
0 I
O �
,: m m m
M r m m m .+ u+ ei rn In In m m H m w
r m u, Ir, m mn
N I•i ei e•I m ei m m m 1•'I ei N N
O I
•-I
Q �
rl
y� r~i m m m lfl a e-1 00 n n N a m m N m w m
m l a rl n ID m IO .y N Yl O M .•I .•I r-1 r-1 m n
M �
••I
N m N ID m a n Ir M .-I 1p .•I
In nvi .•I m to m e+ema'+m
m a - M m N m m m m 10 V1 10 N N N
m
r V1 N m n M N m N N ... ID N M M .
N Vr Q W 10 V Q Q
r Q m m l l M M
r rn I Inrr I ow w 2 w w w E I
' O Z Z w p w Z 2 N" m 2 O O
I d H r-I H LL N LL H H N N N H ei VI M
I
I
i
I ei ei ei •i 'i ei •i •i ei H r-1 •"� �"� �"� H H H r-1
i
i
I
z zInMmnD H r v mmmm n
I Z Z Z Z Z 2 z 2 z Z z2 H H H Z Z Z Z 2 Z
I H H H H H H H N H N N N H H H H H H
I N N N N N N N N N LL LL LL N N
. •. Q Q Q Q Q Q Q Q Q LL LL LL Q Q
•m m m m m m m m m 0 0 0 m m m m m m
O
y l w w w w w w w w w w w w w w w w w w
}J I J J J J J J J J J J J J J J J J J J
J l r r r r r r r r r r r r r r r r r r
w r 000000000000000000
O
L
N
V
V I N {ll YI {fl VI V1
d I '•I 'i H H 'i rl rl 'i rl rl 'i H N N N N N N
L I
O1 I IA N IA Vl IA N rll V1 N IA IA V1 U1 IA N N N
a r m m m m m m m m m m m m m m m m m
V1 m m m m m m m m m m m m m m m m m m
L
N
d I
E r N N ul In lA N N ut In N In ut In N N N vl
H I m m m m m m m m m m m m m m m m m
N~ m m m m m m m m m m m m m m m m m
I
Li
01 IA IA N N Vl N YI VI V1 1l1 IA IA
•. .. .. r.
I. m m m m m m m m m m m m
Z m m m m m m
L�
ElO IO 10 1D 1D 10 IO 1D 10 lD 10 �D rl 'i H 'i H rl
W Iy (y N W .•I QD • .•I m m m m m .
Z i m m m m m m m m m m m . m m m m m m
i
CI
W �
E
r-• L ;
N
V
w m l V m U V Q w w w Q m O Q m
M Z MN M Z m n m m Z H r r a m m m n n
N H N N IZ•1
� N r N N N N N VI VI LL LL LL {A V1 y� I� Ill y�
� •, •, m mmmm mmmm O O O m m m m m m
r
r-1 I
.i
C I
X r
X
m
£ I m m m m m m
E
M r
r I
c l n n n n n n
> I
U I
c�aaaaaa
N
a
m
a
m m m m m m m m m m m m
n n n n n n n n n n n n
vvovvvvvvvvv
N N N N N N N N N N N N
m m m m m m 0 m m m m 0
ei ei ei ei ei rl m m m m m m
N N N N N N
N a �
m aaG 10 H H FW- V< M O< m
H H H N N N H H H l H/� LA
H H
m m m o LL o m m m m m m
m m m 0 0 0 m m m m m m
a
d
a
C
C �
Q m m m m m m m m m m m m
L �
c.
d I
� � m N N n ea•1
L 1
Y I
D_ I
4
Y
.I r
H l m m m m m m m m m m m m
r
L �
nr
d
ox ro namlan .•Im
f r m It m a N m m m m a N m
r
I N M M N ID a N N n
L I N Itw N m It m m Or oo N al
d I OOMaNn a vv�on �o ao
> I m m m m m m m m m m m m
a= � m m m m m m m m m m m m
H N N N N N N N N N N N N
N C i
V N Q N w W a Q
V C
Z J i W I S W W W I I W S
nm z w o z Z Z w w Z O
L I
> I
H i m m m m
I
i
N rti I
J r-1 i
J m
LL 4 I
O r
O • ^ N N 'i T
•^ •+.i N N N
1
1
Q 1
1-1 1
LL 1
m 1
� 1
1
0
r-I I
LL r
Y I
•N I
C I
H l m m m m m m
Y
d �
N
I
I
Y I m at N
O I N N N
i
Y
d �
N
O
C I
H l m m m m m m
N ;
d
C i
L ID ID 10 10 ID ID
m i 1"1 1"1 r"1 rl r"1 rl
K l m m m m m m
i
I
{t 1 1-I m eY N 1p
pp I N M a M N
w� v oo m v N a
J 1 m.y mmn N
I
d 1 Q Ip N
o
Z 1 J J $
O 0 0
o z z 0 0
1
1
1
d
O I N ID Q N
Z M I N I
E I W N W S W
L 1 Z W Z O z
LL I H LL H �-1 N H
N Y
M � I
�a r m.a ry a
Z 0 1 N N N ei N N
0V 1^mmmmmm
I
u.+.^N r/1 N N0N
m
m
m
CD m m m m m
m m m m m m
a
M
m
m mmID IO 10 ut
OI
a rn N
n N Ol t0 N N
IA IA M 01 M N
Q
m m�IAr
w w w 0 z
LL LL LL N M ei
maQ
Q Q I M
w w 2
y w J J 0
W Z Z
LL LL M M N It
O O M I -I N
r b m m m
13/1 13/1 tr/1 trA N a
I
E I
o I
d I m
l7 I m m m m m m m m m m m
I
E I
O I
�;mmmmmmmmmmmm
N I
E I u1
O
d N
l7 I m m m m m m m m m m m
J J J
i w w w
Z Z M Z
I QZQ Q m
eY I i S N
O I In In In In ul VI ul
V' I N N N •i N N W W N eY m
w
� d
Q Q Q Q Q Q J J Q Q W J
A I K K K K K C K K K C C C
N V V V V V V I -I M V V S N
I
I
I
N
0
M IA Vl
r Y I M I-1 N a O O m I-1 N
va
I
wM ullllCNnloa
V1 J l m m Dm CDm Mm m m m m
u •+ •+ N N Vrl N 1rA Vrl N t3A Vrl N N a
m n W m m l D
m .�-Im mrvm
ro m m
to ao m m
mmm mmm
m ul IA m In In
N m I -I
m m
n m m n m
CD .•I m m 1-I m In
mmm
•mm
m V1 V1 m I/1 N IA
m ei Op N
• ei O� tlf
01 v1
CID M M m V M a
CD Ilml Iml1 m N l l
U 4 ei
Y m Ol N m IO M a
LE
N n ao a
O m rn n m m
IA CO Vf ul M 01 Ii
I m m m m a m m m
V I-1 IA IA I-1 lA Vl Vl
S
•.Ci m 10 01 N
V1 I-1 Ill N Vl n Vl Op
Y m I•i Vl m N 0% m
10 J N N a J a N a
Q W W
F V Q m m Q m Cl
w N V u m W Ol IA lSJ m 01 M
IA c m Immm m IV ma
L m W I mumi mmumi lmn lmn
V M Q 0 tm V X 0 ID GC
•+ •+ Z X l7 l7 l7 •+ Z X l7 l7 l7
a
m m
00
Z 2
y I
MIp I W b M m n M 01 IA n N d �O OO m 00 �D N d �D
I m m m rl N M M d d IA W n 01 e4 �p N �D .-1 N M a0 M
oo O+ mnvfa.y 0� MmMmd.-I
m m } � m m m m �"I rl rl r1 •i •i 'i rl rl m m m N N M d V1 V1 1D �D n n 00 O�
I
W �
••I I
A I
� � ll1 V1 N lfl V1 IA
m m X l m rl 'i N N M M d d v1 W J6 n
I
I m
� C
41 1
O. I Y
•i •i !T � a
I
I
I
I
� d I
M W 1 1 r r r r r r r r r r r r r r r
I 1 L I W W W W W W W W W W W W W W W
N d K i I J J J J J J J J J J J J J J J
mm �Vlrrrrrrrrrrrrrrr
Iri1 N u•+•.0000000000000 00
OI m
�O n IA V1 Y1 V1 N
m • �-1 �•1 N N M M d d V1 N 1p lD n
m
N
L
O
41
W W W W W W W W W W W W W W W
l7 l7 l7 V' 1Q7 1Q7 17 17 17 t9 17 17 19 1Q7 1:J
K K K K Q Q K K K K K K K Q K
000000OO0000000
+ tr/1 Ir/1 Ir/1 N N tr/1 Ir/1 Ir/1 V1 IA IA IA IA V1 Vr1
� I eY eY ••1 N N V1 01 d N r1
I
w i IA m V1 m 1I1 m IA m V1 m
E I m e'I 'i N N M M d d v,
r i m m m m m m m m m m
I
••I
i m
N
I \
Y D
a I N
N �
N
VI •'I I
W L �
M 41
W } } } } } } } } } }
W W m m m m m m m m m m
W E- m m m m m m m m m m
� mi ei ei 'i ei 'i •i rl rl 'i 'i
I'•1 r I I I I I I I I I I I
•+ V V V V V V V V V V
•+ •+ LL LL LL LL LL LL LL LL LL LL
n
N r0 N eY 1� O ei m Vf M rl O\ 1�
N m Or O\ m m m 1� n n n b r0
m
m
V � N Ow0 la0 M m � rD a r/1 M N M � em•1 V Q1 V1
L r m m N N N N r-1 T of r0 m m ey O\ N b m
. . . . . . . . . . . . .
m
r . . . . . . . . . . . . . . . .
.y •i •i m m m m m m m m m m m
CS)O.`nn
a a m rn •i M N
Y E N I� n m VI n n n n N M rl m N m N N
N
m
T
�
rn mrn mrn maim rn min mrnm
d
i
V1 m m rl rl N N M M a� ll1 N m
M
i
m rl rl rl •i 'i 'i 'i rl •1 'i 'i rl N
M
i
m
ui M
m
� in V M.yy min rOmMmroti V romV ry
m
O r m 0
O r ao m�D ao M Y/1 ma naom ntn .
�
V r� m I� N N m m r-1 0% N mM l0 Ot rl ei
w
N
m
r 'i m a rD M N N
C
O J
ONX
� � I*1n V � tow rO .y ut r0 y r rp in r r
%D %D
„ J
e
v ¢
M W
n
c
O O O V
m O
_
2 2 H
r 2
N
c 2
W
M E J J
$
Q N
i+ 0 X J J
O
Z 1 Q W
YY}y}YY}}}YYYY
H L JU¢Q
H �n Qrv�om aQ V
m m m m m m m m m m m (D m m
m m m m m m m m m m m m m m
w O O H
n F CQO N
OWO.
^
0
V1
-2r
O W m V1 Q¢ M M
WV Hw Hw �p n �1-
r-1 rf N •i•I ei ei rr l ri l rl eii eri rr l rr l ri l
0) = FW Y
n W /
O x p '
LLLLLLLLLLLLLLLLLLLLLLLLLLLL
mm2m02
�•+M
u
2 �r JHw JHW �=i
2 W
u.n u
w 0 z
—0
•n rINLL{O/IMMMLLLLM Vo1a'iNNNa
IQ
I I
I I
I ;
I I
I I n V1 '1 01 10 rl n m Ill m ul ON M N W M W N Vl Ol ID n It M l0 n O N N U1 ID W m n O O W T m W
0 I mrnm.lD+rn W e�rnnnelc mnlMn�nnmal�n al�nmrn mlmnrnm.a+l�n .. lnn nlmiln munlvm m."-Inry
O I O m
O I O� 1� O l-I n l0 N Ol W Yl N n N ID rl m n rl a n Ol •i ei 01 n 111 1p M lD N Vl V V W T 1p V1 n lD a 1�
V I V I W N T Ol n W Ol ul lD W M W a ul a ul M .-I W n N M M ID V .•1 l0 M Ol W m N lD a IA of b n T O l0 rl Ol n W
I Ol n ID rl ••I Ol ID Vl N W T n rl N M 01 M lO W m N N m W N W V .-I N .-I .-1 .-I y Ol e-I M Ol m m W ei N N 1p
} I } I n n I/l Ill 111 N N N M M O of V1 U1 n n W W W 01 01 Ol Ol W W W W Vl N M M M M M N Q1 ei N N rl ei l0 M M
I
I
I ul Ol utO N NMlO W 101010
I m m VI V1 m 10 m m n N OI W l0 01 01 M n rl W V Ol Ill W N %0 T Nor,
n rl M Vf W 0 0 W n N m q
a I mlonm W.+om .In . . W rnm.+n W.+lomrnrvmmm�rnn W mmnMNlnv
0 I . . . .N\omin NM.au. . . .m .mme•. . . .o. . . . . . ...a .
O I ej M M M M O ID V .i W 111 m V1 M Jl
O l m ID N O m 01 m V N Ol 10 Ul N Vl n Ill N N N 'i Vl m M a W .y m m a M l0 M Ol e{ lD W Ol W N N e•i Vl
V I W W m l0 W ei V w n N IA Ill l0 N W lD N N W lT M q e} W N Ol m l0 Ol m m 10 M a T N l0 M Ill N N m V W N
X I m 0 0 V V K Vl W N N N N N N N N N N ei ei 01 a w H n W �•i V M M M a a 1p M n 01 m N m M M N n
I V1 O I I I l I I I I I I I I I I I I I W P'� N1* 111 I I 'i V O Ci 14 -* a Ifl Vl �D 10 to to Vl
i
I Y � i C
E I
� E �
u
V 1 I
O Y I
O 10 I U U V V U U U U U V
C i T M I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
M '-1 .....................
I O N I N N N 1A 1A IA VI VI VI V1 N N VI N VI VI V1 V1 V1 Vl V1 VI VI VI N 1A IA IA LA0a•,aa�aaaaaaaaaaaaaaaaaaaaaaaaaa�d�d�a�����aa�as
•,•,.�•,•,mmmmmmmmmmmmmmmmWWWWWWWWWmWWmmmmmmmmmmmmmmmmm
m
m M V 1�
T T a a IA m Ill N 'i a i m lD M a m a l0 1� n b n� M a lD l0 m M Ol 1� lD Ol m lD a Ol 1� Ol m IA Ol a
m a N N M OI ID a V1 I11 N 1� C N N a m .r .•I N N m M m M l0 m a s Ol N 1� n N M N VI w O m M 0I CI L� a a r l
1. Ol . . . . . M Ol . . . . a . . w. ill V. . r. r. OD . rl 00 a 0 00 11 m rl 1� N � rl
• m l-I N m 1� r1 m ul m N a
omo lu�i .N+a uml .mi min�In oovemmlmilmvMimblO loll .�•+m loa m.�iN mn nmrn N aaaom�Ianmin uMi r.^-ImNmmma
. � � � . r1 Ol ei M m Ol 1� N Vf N M M M a a a a a 1/1 1� n n b N rl N N N N N N M M N b ei •i m Ol m m m m 1�
yNu M m ml0 WI a1lo mmlD V1 ytiy VI O�011000N00MN 0001 I�O1 �-1 V1 V Nrl l�r�nbb00b� N���r�n Nm
a 1lallov m m m m 1, m.N•I .mi .m-i N.m-i a.m-ia Ol 1, w N.y 1O rlNN`0 lO 0%N.r .•IN .b0%r�n �
N l0 m lD M . m N m . IA a m
a aMmmN .m m N N OI •n maa l0am G) mm1* mei(S) 01 mNM l0 N01N m(A CD Vlmm Nw N w wn.•i Gl
M Ifl M m m m N N" M 10 O M M M Il m n b 01 m M M m Ill rl m a N N l0 m m N M m Ol m m M" l0 O m m l0 l0 tD a M m
1t m m M M N N N N . . . r n n IO -0 eY N M ••I ••I ei eY N N ••I m Ol m .+ a s Ill m M N l0 .y N M m Ictm N N N Ict
m
aMMMNI-1lD . . � .-1aa a alnlnlnlnlnln.�+...+.+n�nnnnm.,.•,.,mmnminln.,.�+.+In
M M M M M M M M M M M M m z Ill Ill z Ill Ill z z z z Ill z z z W W W W n n n n n n n n n n n n n W W W W z W W
2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
N M N M M N M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M 1-I 1-I M N N 1-I 1-I M M M M M
N lA Vl 1A VI M V1 VI VI VI VI V1 V1 N N N N VI V1 Vl Vl N Vl Vl N VI to Vf VI N VI VI
�aaa���aa���a��aaaaaaaaaaaa�a����a��aaaaaaaaaaaa
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
01
w
0o
A
a
I� 10 H V 01 a 10 to m Vl V 01 a0 N 'i dp 01 01 10 01 N H VI VI 10 N N E H M 1fl W N N 1� N 0p m m Ot h rn rn a 1c V m m m m m
116 16 10 m 01 N 1D 1l1 1p I� 01 1D 16 N N 10 Vf V N m M m m m 1/1 H 16 m Co m W 1p 1z n T CO M M D\ N V M M M 1� Vf d) 1� b 01 1/1
a M O\ M 07 T N N CpO m I� M H vl ? 1/1 I� W �-1 10 01 01 m m 10 N N 1� to b m V M M 1p N M M m 01 N 00 W V ei ei V M M N 10
1D 1D 10 10 1NO V V V V V1 V1 N n n n 1^p 1�p 1ND lmll V a a OO ao m m oo N N N M M m m N W ao OO N N M M M M N N N e•I N N N
m 10
1D ei T m a VI Vf l0 N .••I 10 W 19 m M H W m r. . 00 N eY N 00 0. 01 1. .-. .-.r. O. 10 1D I� N N 10 e�•1 M m 1D H N IA H . m
N O n r^+1 ON1 m ONO T n T M 1�0 O I� m W 1N0 n W m I� e~•I m eH•I W N (�r1 e�Y N 1�0 N N m T rMn N W m l0 10 N W V fn+l n ID OH1
V 1p 10 10 V ul .D 10 1� OD M H H N M V N N N N M H H H H m N Vf vl T a H a0 CO 00 M M m VI M m Ul 01 M N W N 1p 00
IA IA Vf Vl Ifl IA IA tl1 Vf 1D 00 'i ei lfl tlf V1 N N Vl Ifl Ifl IA lfl Ilf Vl Ifl IA 10 1D 1D 10 10 a a v u, Vf Vf � � Vf rl 1� � � � a � a a
N N N N N a p a 0 0 C rl ei ei H ei rl ••I ei ei
Q Q Q Q Q Q Q Q Q Q Q Q Q W W W W W W W W W W W W W W W W W W W W
zzzzzzwo0zzzzm1010zzzzzz1010101010z HHHHHHHHHHHHHHHHHHHHa V V a
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ..... H H H H H H H H H H H H H H H Z 2 Z Z
H H H H H H H .................. H H N V1 IA V1 VI VI VI IA VI VI lA VI VI V1 V1 VI VI N VI VI {/H� H H H
N VI to N VI VI VI V1 V1 VI N N N N lA 1A Vl IA {A V1 N N N VI Q Q � LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL LL Q Q Q Q
m m m m m m m m m m m m m m m m m m m m m m m m m m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m m m m
N m 1� m m m m m 1� m n n rl ei m m N m m O� N d �O 00 m rl m N N d N N �p m m tD 'i CO m 1� N m m m 1� m eel M N 01
rl m N d �O d m •i •i N m ei m m 01 N Ot I� m �O d m 1� M m d N N m N N ei N N l0 m 1p 1� m m d d N d ei N m m m N
N .i d N 1� m OD 01 lD N N �D p1 p1 i� d M I� n C1 %O O� lD N a1 W 01 m 1� 116 OO d M M 1� m N m 00 1z m h N N N N d 01 m
m ImA d N emi .�-I m T m T 1N+1 m m m eY N m W 0�1 T m T 1�+1 m m m O� n m N l�+1 em+f loll Om1 a^a r�l eNi m m 01 m N N O� b N d e~i �n-1 01
N .-1 N M d d M M rl M rl rl M M N rl •i N N N N N rl rl M M M N N N M M M M M a N N N N d d d d M M M M M M N
lD N 01 1� n N rl T N m m m d 1� N m d d m ."� m ei N N N M rl m ei 01 m 01 N M 1� m N N N N N M ei M lD N� N m m
N ei 1� N O� N ei 01 ei N N m m N n N m m M m m W d lD m m N lD d �".
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1� M O0 m m d .-I m • m n M m �m m m N m N O d ."� N .-I N M
N 0�1O�1 n a a N nul M M0 N lD N 00 M M w q l0 d m N d O0 b M W M m N m N 01 1� m Nip m M 10 01 d l0
a aaaammmmm00000000aaaaaaaaaaaaaaaaaaaaaaaa
d d d d d d d d d m M M M M M M M M M M M M M M M M M z n z n n z n z n n z z n n n n n z z n n n z n
Z z z z z z z Z z Z z z 2 z z 2 z z z z z z z z z z z z z z z z z z z z z z z 2 z z z z z z z z z z z
M M M M M M M M M M M M M M N M M M M M M .............
N N M M N N M M M N N N N N N N N
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
m
m
m
m
: m m
m -
10 m m
rl L
a= -
m m
10 a •ri •'I
M
•'1 : L L
I
L Q Q
N
Z :
N.
I
- V1
0 0
w
N N W n N N N m N m vl N u1 01 O N m m m
I N
lu
M n
rl W N m a N m m 1/1 0� m m N W N N W m ••I m Ut
m mNrNln Olm V .+m�Drn nn V mm ninm
4 1 W
I
.--I J J
O
�3333
LA 4•I
b.ni N
M
V
J N N N N
N m VNi W m emN m N �n•1 m N m
N m m N a N ON m m m n a m N rn a
I
I N
m mmv OCln �n in �n V aln In �n �n In In mm
4
> I .•�
0 m m 1/1 m N 00 N r N a M N N N a N 00
O
Nm
. . . . . . . . . . . . . .
m 0� n 01 V\ 1l1 0� m m 01
O ei r m N r m .9 V m N V1 a0 m n rl N N 01 m �/1
O
O
01 m N m m m m N N ei eY m m m ei m Vf 01 eY 01
01 ei '1 N '•/ rf 'i 'i rl rl ri 'i •i 'i 'i rl 01 m 01 0� N
I
X
m m m m m m m m m m m m m m m m m m m m m
n n r r r n n r r r n r n n n n n n n n n
Z Z Z Z Z Z Z Z Z Z Z Z Z 2 2 Z Z 2 Z Z Z
M M M M M M M M M M M M M M M M M M M M N
N lA 1A IA IA Vf N VI N N V1 N N N N VI V1 N N N VI
m m m m m m m m m m m m m m m m m m m m m
.-Imma
a �vNN QDm
m O 0 N N m
N V Ot M N 01
CD % (A N n N
M
0 O O N � 1m11
J O m m m a
m V W n m A
x m m n m
u.nmm�ln
SUMMARY REPORT 5-6-15.rpt
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.007)
--------------------------------------------------------------
***********************************rt*********************
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
***************rt*s*ssrt*sssrt*ssssrtsrtss******rt***srt*srtssssrt
s«s««s«ss«ss*sss
Analysis Options
s«««ss«ss««*««««
Flow Units ............... CFS
Process Models:
Rainfall/Runoff ........ YES
RDII ................... NO
Snowmelt ............... NO
Groundwater ............ NO
Flow Routing ........... YES
Ponding Allowed ........ NO
Water Quality .......... NO
Infiltration Method ...... HORTON
Flow Routing Method ...... DYNWAVE
Starting Date FEB-06-2015 00:00:00
Ending Date .............. FEB-09-2015 04:00:00
Antecedent Dry Days ...... 0.0
Report Time Step ......... 00:01:00
Wet Time Step ............ 00:01:00
Dry Time Step ............ 01:00:00
Routing Time Step ........ 5.00 sec
Variable Time Step ....... YES
Maximum Trials ........... 8
Head Tolerance ........... 0.005000 ft
**************************
Volume
Depth
Runoff Quantity Continuity
acre-feet
inches
**********s****ss*«***rtrts*
---------
-------
Total Precipitation ......
4.916
3.669
Evaporation Loss .........
0.000
0.000
Infiltration Loss ........
0.679
0.507
Surface Runoff ...........
4.190
3.127
Final Surface Storage ....
0.049
0.037
Continuity Error (%) .....
-0.044
**************************
Volume
Volume
Flow Routing Continuity
************s*********rt*rts
acre-feet
10^6 gal
Dry Weather Inflow .......
---------
0.000
---------
0.000
Wet Weather Inflow .......
4.190
1.365
Groundwater Inflow .......
0.000
0.000
RDII Inflow ..............
0.000
0.000
External Inflow ..........
0.000
0.000
External Outflow .........
4.194
1.367
Internal Outflow .........
0.000
0.000
Evaporation Loss .........
0.000
0.000
Exfiltration Loss ........
0.000
0.000
Initial Stored Volume ....
0.000
0.000
Final Stored Volume ......
0.001
0.000
Continuity Error (%) ..... -0.112
*********rt*rtrt***srt«**s**rtrt*
Time -Step Critical Elements
***************************
Link ST05-1 (5.08%)
Link ST04-3 (2.47%)
Link ST05-3 (1.96%)
Page 1
SUMMARY REPORT 5-6-15.rpt
##kink#R##R#R#R#iR#R#itiRiRitiRi
Highest Flow Instability Indexes
Rr#R##t#ssststsssstststtttsr#r##
Link ST05-2 (15)
Link ST05-3 (14)
Link ST05-1 (13)
Link ST05-4 (9)
Link SW-6TO5 (4)
#iR#kRiRiiit4r#i#iirr#rt#
Routing
Time Step Summary
Minimum
Time Step
0.50 sec
Average
Time Step
4.63 sec
Maximum
Time Step
5.00 sec
Percent
in Steady State
0.00
Average
Iterations per Step
2.12
Percent
Not Converging
0.08
RiR##R#R##4iR#RRiR#tktRit#t
Subcatchment Runoff Summary
###r#######################
------------------
----------------
Total
-----------
Total
-----------
Total
-----------
Total
----------
Total
-----------
Total
---------
Peak
-------
Runoff
Precip
Runon
Evap
Infil
Runoff
Runoff
Runoff
Coeff
Subcatchment
in
in
in
in
in
10^6 gal
CFS
--------------------------------------------------------------------------------------------------------
BASINI
3.67
0.00
0.00
0.79
2.84
0.45
47.20
0.774
BASIN2
3.67
0.00
0.00
0.06
3.57
0.20
18.18
0.972
BASIN3C
3.67
0.00
0.00
1.13
2.54
0.06
5.47
0.691
BASINS
3.67
0.00
0.00
0.50
3.15
0.06
6.75
0.858
BASIN88
3.67
0.00
0.00
0.42
3.22
0.03
2.94
0.878
BASINK
3.67
0.00,
0.00
1.07
2.59
0.02
2.19
0.707
BASIN8C
3.67
0.00
0.00
1.07
2.59
0.06
5.22
0.707
BASINBA
3.67
0.00
0.00
0.08
3.54
0.23
20.70
0.965
BASIN6
3.67
0.00
0.00
0.00
3.62
0.03
2.48
0.987
OFFSITE2
3.67
0.00
0.00
0.00
3.62
0.01
0.71
0.987
OFFSITE4
3.67
0.00
0.00
0.00
3.62
0.01
0.71
0.987
OFFSITEI
3.67
0.00
0.00
0.00
3.62
0.00
0.26
0.987
BASIN4
3.67
0.00
0.00
0.57
3.08
0.05
5.63
0.839
BASIN3A
3.67
0.00
0.00
0.07
3.57
0.03
2.89
0.972
BASIN3B
3.67
0.00
0.00
0.06
3.58
0.03
3.20
0.975
BASIN3D
3.67
0.00
0.00
0.12
3.51
0.03
3.08
0.958
BASIN7A
3.67
0.00
0.00
0.13
3.51
0.04
3.93
0.956
BASINBB
3.67
0.00
0.00
0.29
3.35
0.03
3.44
0.912
k#tk#t#iRit#ttrirr
Node Depth Summary
##################
--------------------------------------
Average Maximum Maximum Time of Max
Depth
Depth
HGL
Occurrence
Node
Type
Feet
Feet
Feet
days
hr:min
---------------------------------------------------------------------
1
JUNCTION
0.08
1.58
5039.58
0
00:41
INLET-5
JUNCTION
0.97
2.90
5036.14
0
00:46
FES-5B
JUNCTION
0.42
2.57
5037.00
0
00:46
SDMH-SA
JUNCTION
1.17
3.18
5036.04
0
02:27
INLET-2
JUNCTION
0.08
2.18
5039.71
0
00:40
INLET-6
JUNCTION
0.57
2.57
5036.62
0
00:46
INLET-8A
JUNCTION
0.43
3.26
5037.72
0
00:40
FES-6A
JUNCTION
0.50
2.64
5037.00
0
00:46
FES-7A
JUNCTION
0.01
0.27
5037.21
0
00:40
INLET-4
JUNCTION
0.45
4.60
5042.42
0
00:39
Page
2
SUMMARY REPORT 5-6-15.rpt
SDMH-3A
JUNCTION
0.39
5.08
5041.63
0
00:38
4
JUNCTION
0.03
0.62
5039.59
0
00:42
11
OUTFALL
0.00
0.00
0.00
0
00:00
22
OUTFALL
0.00
0.00
0.00
0
00:00
21
OUTFALL
0.00
0.00
0.00
0
00:00
29
OUTFALL
0.00
0.00
0.00
0
00:00
POND
STORAGE
2.86
5.04
5036.04
0
02:23
**s*sstssssssssssss
Node Inflow Summary
sss************ssss
--------------
----------------
----------
Maximum
---------
Maximum
-----
---------
------------
Lateral
------------
Total
----------
Flow
Lateral
Total
Time
of Max
Inflow
Inflow
Balance
Inflow
Inflow
Occurrence
Volume
Volume
Error
Node
Type
CFS
CFS
days
hr:min
10A6 gal
10A6 gal
Percent
-------------------------------------------------------------------------------------------------
1
JUNCTION
8.55
13.61
0
00:38
0.0868
0.146
0.253
INLET-5
JUNCTION
6.75
26.37
0
00:42
0.0632
0.555
0.022
FES-5B
JUNCTION
5.22
40.89
0
00:39
0.057
0.466
0.367
SDMH-5A
JUNCTION
0.00
26.36
0
00:42
0
0.555
-0.150
INLET-2
JUNCTION
18.17
18.17
0
00:40
0.198
0.198
-0.003
INLET-6
JUNCTION
2.48
22.78
0
00:46
0.0275
0.493
0.074
INLET-8A
JUNCTION
20.69
35.88
0
00:40
0.234
0.377
-0.153
FES-6A
JUNCTION
0.00
35.89
0
00:40
0
0.379
-0.002
FES-7A
JUNCTION
2.94
2.94
0
00:40
0.0262
0.0262
-4.685
INLET-4
JUNCTION
5.63
5.63
0
00:40
0.0519
0.0519
0.065
SDMH-3A
JUNCTION
9.56
15.19
0
00:40
0.0906
0.142
0.147
4
JUNCTION
6.09
6.09
0
00:40
0.0592
0.0592
-0.609
11
OUTFALL
0.00
1.31
0
02:23
0
1.35
0.000
22
OUTFALL
0.71
0.71
0
00:40
0.00699
0.00698
0.000
21
OUTFALL
0.71
0.71
0
00:40
0.00698
0.00698
0.000
29
OUTFALL
0.26
0.26
0
00:40
0.00256
0.00256
0.000
POND
STORAGE
47.18
99.27
0
00:40
0.455
1.35
-0.080
**********stssssssssss
Node Surcharge Summary
*****s*ss*ssssssssssss
Surcharging occurs when water rises above the top of the highest conduit.
Max. Height
Min. Depth
Hours
Above Crown
Below Rim
Node
Type
Surcharged
Feet
Feet
---------------------------------------------------------------------
INLET-5
JUNCTION
2.85
0.201
1.939
SDMH-5A
JUNCTION
9.57
0.484
1.586
INLET-2
JUNCTION
0.04
0.184
0.226
INLET-8A
JUNCTION
0.25
0.759
0.281
INLET-4
JUNCTION
0.02
2.690
0.000
SDMH-3A
JUNCTION
0.05
3.100
0.000
Node Flooding Summary
ssssss***s***********
Flooding refers to all water that overflows a node, whether it ponds or not.
Total
Maximum
Maximum
Time of Max
Flood
Ponded
Hours
Rate
Occurrence
Volume
Depth
Node Flooded
CFS
days hr:min
10A6 gal
Feet
--------------------------------------------------------------------------
INLET-4 0.01
0.74
0 00:39
0.000
0.500
SDMH-3A 0.01
2.67
0 00:38
0.000
0.000
Page 3
SUMMARY REPORT 5-6-15.rpt
Storage Volume Summary
i tii#iRRt#iRRR#R##Ri#i
--------------------------------------------------------------------------------------------------
Average
Avg
Evap
Exfil
Maximum
Max
Time of Max
Maximum
Volume
Pcnt
Pcnt
Pcnt
Volume
Pcnt
Occurrence
Outflow
Storage Unit 1000 ft3
Full
Loss
Loss
1000 ft3
Full
days hr:min
CFS
--------------------------------------------------------------------------------------------------
POND 51.531
22
0
0
161.210
70
0 02:23
1.91
Outfall Loading Summary
-----------------
-------------
Flow
----------
Avg
---------
Max
----------
Total
Freq
Flow
Flow
Volume
Outfall Node
Pcnt
CFS
CFS
10^6 gal
-----------------------------------------------------------
11
65.59
1.06
1.31
1.350
22
10.38
0.15
0.71
0.007
21
10.49
0.1S
0.71
0.007
29
10.06
0.05
0.26
0.003
-----------------------------------------------------------
System
24.13
1.41
2.68
1.366
#i#RRRR#RRRi»iRiRiii
Link Flow Summary
--------------
---------------
----------
Maximum
-----
Time
--------
of Max
-----------
Maximum
-------
Max/
-------
Max/
IFlowl
Occurrence
JVelocl
Full
Full
Link
Type
CFS
days
hr:min
ft/sec
Flow
Depth
-----------------------------------------------------------------------------
STOS-3
CONDUIT
26.36
0
00:42
5.44
1.09
1.00
ST05-1
CONDUIT
21.60
0
00:47
4.82
0.65
0.97
ST05-2
CONDUIT
22.78
0
00:46
4.64
0.48
1.00
ST01
CONDUIT
8.54
0
00:42
5.20
1.00
0.88
ST05-4
CONDUIT
26.33
0
00:42
5.92
1.11
1.00
ST02
CONDUIT
18.17
0
00:40
6.19
0.99
0.88
5W-7TO5
CHANNEL
2.26
0
00:40
0.16
0.01
0.45
SW-6TO5
CHANNEL
33.66
0
00:39
1.08
0.22
0.85
ST04-3
CONDUIT
35.89
0
00:40
7.46
1.50
1.00
ST04-1
CONDUIT
5.63
0
00:40
4.73
0.59
1.00
ST04-2
CONDUIT
15.19
0
00:40
4.77
1.02
1.00
4
CHANNEL
5.71
0
00:38
0.56
0.01
0.27
7
DUMMY
1.31
0
02:23
*ii#i«#i«ii#iRit4iR#RRi#R#+
Flow Classification Summary
-------------
----------------
Adjusted
-------------
----------
------------
Fraction of
------
Time
------------------
in Flow Class ----------
-------
/Actual
Up
Down
Sub
Sup
Up
Down
Norm
Inlet
Conduit
Length
Dry
Dry
Dry
Crit
Crit
Crit
Crit
Ltd
Ctrl
-------------------------------------------------------------------------------------
ST05-3
1.00
0.00
0.00
0.00
0.59
0.00
0.00
0.41
0.02
0.00
ST05-1
1.00
0.00
0.00
0.00
0.42
0.00
0.00
0.58
0.04
0.00
ST05-2
1.00
0.00
0.00
0.00
0.55
0.00
0.00
0.45
0.10
0.00
ST01
1.00
0.00
0.00
0.00
0.00
0.00
0.00
1.00
0.00
0.00
ST05-4
1.00
0.00
0.00
0.00
0.98
0.00
0.00
0.02
0.40
0.00
ST02
1.00
0.00
0.00
0.00
0.00
0.00
0.00
1.00
0.00
0.00
SW-7TO5
1.00
0.00
0.30
0.00
0.70
0.00
0.00
0.00
1.00
0.00
SW-6TO5
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.01
0.00
ST04-3
1.00
0.00
0.05
0.00
0.94
0.00
0.00
0.00
0.63
0.00
Page 4
SUMMARY REPORT 5-6-1S.rpt
ST04-1 1.00 0.00 0.00 0.00 0.01 0.03 0.00 0.96 0.01 0.00
ST04-2 1.00 0.00 0.02 0.00 0.33 0.00 0.00 0.64 0.30 0.00
4 1.00 0.00 0.32 0.00 0.68 0.00 0.00 0.00 0.99 0.00
Conduit Surcharge Summary
---------------
-----------------
------------
---------
--------------
Hours
---------
Hours
---------
Hours Full
--------
Above Full
Capacity
Conduit
----------------------------------------------------------------------------
Both Ends
Upstream
Dnstream
Normal Flow
Limited
STOS-3
6.57
6.57
6.62
0.18
0.27
ST05-2
0.13
0.13
0.13
0.01
0.01
ST01
0.01
0.01
0.01
0.03
0.02
ST05-4
12.68
12.68
12.73
0.19
0.14
ST04-3
0.16
0.16
0.16
0.11
0.15
ST04-1
0.02
0.02
0.02
0.01
0.01
ST04-2
0.05
0.05
0.05
0.01
0.01
Analysis begun on: Wed May 06 08:43:16 2015
Analysis ended on: Wed May 06 08:43:17 2015
Total elapsed time: 00:00:01
Page 5
APPENDIX D
INLET AND SWALE SIZING
05.06.2015
OkOLSSON
ASSOCIATES
INLET IN A SUMP OR SAG LOCATION
Project a 015-03S6 COLORADO STATE UNIVERSTITV TENNIS COURTS
bbt D. TYPE D-12 SIDEWALK CULVER FOR BASIN 3A
Lu (C)—+f
HCaro - NOTE: A Type R Curb with a
H-Vert We 4' opening was used to check
the flows for a D-12 Sidewalk
W WP Culvert.
Lo (G)
Waning
of not
Inlet Type
I Depression iatldmoral to continuous gutter depression'a' fmm'O-Abut)
Z.
oer of Unt Inals (Grate or Cub Opening)
No
n Depth at Flowime (oulside of bW depression)
Polling Depth,
r Mormaaon
in of a Unit Grate
L. (G)
n of a Unit Grate
W.
Opening Palo fora Grate (typical vaWes 0.15-0.90)
Arc
leg Factor for a Single Grate (ypicat vala 0.50 - 0.70)
C, (G)
r Weir Coefficient (typical valle 2.15 - 3.60)
C. (G)
r Orifice Coe0lcient (typical vale 0.60 - 0.60)
C. (G)
Opwtlq Mormalbn
Ih of a Unh Cub Opening
L. (C)
I of Vertical Cue Opening in Inches
K.,
1 of Cub Orifice Thoat In Inches
Hr.y
i of Throat (see USDCM Figure ST 5)
TheOt
Width for Depression Pan (typically me gutter wain of 2 feet)
Wp.
;Ing Factor for a Single Cub Openng 1yocai value 0.10)
Cr (C)
Opening Weir coefficient (typical vale 2.3-3.7)
C. (C)
Operirg Ordke Coefficient (typical value 0.60 - 0.70)
C. (C)
it Inlet Interception Capacity (assumes clogged condition)
Q. a
ca�.rx� n r.nnn I., Minn, .nx a .— srn,..,< r.n acaw.,
0:....,v..,,.
Naming 1: Denenabn Mtered A not a typcal dmensfon for nbt type specitb-j
MINOR MAJOR
CDOT Type R Cub Opening
3.00
1
6.0 6.0
unenn ua rnn
WA
WA
WA
WA
WA
WA
N/A
4.00
6.00
6.00
63040
2.00
0.10
0.10
3.60
0.67
CIes
riches
❑
"I
aet
"I
roles
none.
leyrees
eel
INLET_BASIN3A SIDEWALKCULVERT3A.xism, Inlet In Sump 515/2015, 4:02 PM
INLET IN A SUMP OR SAG LOCATION
Project = 015-0358 COLORADO STATE UNIVERSTITV TENNIS COURTS
Inlet ID - TYPE D-12 SIDEWALK CULVER FOR BASIN 3B
r Lo (C)
H-Curb NOTE: A Type R Curb with a
N•vn Wit 4' opening was used to check
the flows for a D-12 Sidewalk
W Culvert.
Lo (G)
N... i ny
Deslan lufomatbn flab
Type of Inlet
Local Depression additional to contintous yufler depression'a from'O-AIIaW)
Number of Unl Inlets IGrale or Cure Openngf
Water Depth at F Wma ous0e, of local J.preisipm
Grate Information
Length of a Unit Grate
Width of a Unt Grate
Brea Opening Ratio for a Grate (typical values 0.15-0.90)
Cbgging Factor for a Single Grata (typical vale 0,50 - 0,70)
52le Weir Coefficient (typical value 2.15 - 3.60)
orate Orifice Coefficient (typcal valure 0.60 0,80)
Curb Opw*V Narration
Length of a Unit Cub Opening
iragnt of vertical Cub Opening In Inches
-lelghf of Cub Orlflce Tlbroaf In Inches
finger of TYroat (see USDCM Figue ST-5)
Side Width for Depression Pan (typically, the gutter aedeh of 2 feet)
Clogging Factor for a Single Cub Opening (typical value 0AO)
Cub Opening Weir coefficient (typical value 2.3-3.71
Cub Opening Or61ce Coefficient (typical value 0.60 - 0,70)
Total Inlet Interception Capacity (assumes clogged condition)
met Capacity IS GOOD for Manor and Major Storms (.O PEAK)
Iming 1: Dimension entered is not a typical dimension for Inlet We spi clfi d.
MINOR MAJOR
Inlet Type.
Aar`
No .
Fondling Depth .
CDOT Type R Cub Opening
3.00
1
6.0
MINOR
Le (G)
W.
Arne
or(G).
C. (G).
Ce(G)-
Inches
6.0 Irfclrs
MAJOR I] t),mtle Depth,
eN
left
WA
WA
WA
WA
WA
WA
WA
MINOR MAJOR
Le (C) .
H .t
Near
That& .
Wp`
Cr (C) .
C.(C).
Ca (C) .
�z
Dewaeoweo
4.00
6.00
6.00
63.40
2.00
0A0
0AID
3.60
0.67
ref
IrL+OS
Ir cirs
degrees
feet
INLET BASIN38_SIDEWALKCULVERT38.alsm, Inlet In Sump 5/512015, 3:59 PM
INLET IN A SUMP OR SAG LOCATION
pAJaU a 015-0358 COLORADO STATE UNIVERSTITV TENNIS COURTS
Met I = TYPE 1342 SIDEWALK CULVER FOR BASIN 3D
�Lo (C)-�(
M-Curb
N-Vert
WO -
Wp
W
Lo (G)
Wvnwg
a of Inlet
Inlet Type
al Depression additional to coninuois surer depression'afrom'O -Albd)
a..
nber of Unit biers (Grate or Curb Openng)
NO
her Depth at FbM. lod.ide o1 bcal depresson)
Poncho Depth
b litiMNtlM
gth of a Unit Grate
L. (G)
eh of a Unt Grate
W.
a Opening Ratio for a Grate (typical values 0,15-0.90)
A.
going Factor for a Sin* Grate (typical value 0.50 - 0.70)
CI (G)
to Weir Coefficient (typical value 2.15 - 3.60)
C. (G)
to Orifice Coefficient (typical vale 0.60 - 0.80)
C. (G)
b opw*v kownraemt
glh of a Unt Cub Opening
L. (C)
gN of Vertical Cub Opening in llcMs
H.
ghr of Cub Or0ice Throat In Inches
H.
b of Throat (see USDCM Fii ST-5)
Thetis
e Width for Depression Pan tocaly, ffe gMler eidth of 2 feet)
W.
ggeng Factor for a Single Cure Opening (typed value 0.10)
Ce (C)
b Opening Weir Coefficient (typical value 2b3.7)
C. (C)
b Opening Odfice Coefficeen (typical value 0.60 0,70)
C. (C)
tal Inlet Interception Capacity (assumes clopped condition)
0.;
- Slmmn (.O PEAK)
Oren. 11wu11u
Wamm, I ❑rmcnsion n l ,ed P..i.^I .r ry,r.I dimeOsion for MW.t lype, epeci ied.
CDOT Type R Cub Opening
3.00 incMs
1
6.0 6.0 Inches
MINOR MAJOR O O.mee 0epms
WA Ifeat
WA leet
WA
WA WA
WA
WA
Mann UA.Inn
4.00
6.00
6.00
63.40
2.00
0.10
0.10
3.60
0.67
MINUM
flat
ches
ctes
kgrees
sl
INLET BASIN30 SIDEWALKCULVERT3D.alsm, Inlet In Sump
5/6/2015, 10:18 AM
INLET IN A SUMP OR SAG LOCATION
Project = 015-0358 COLORADO STATE UNIVERSTITY TENNIS COURTS
Inlet ID = TYPE D-12 SIDEWALK CULVER FOR BASIN 7A
Wanrang
T—Lo )C) 'I NOTE: A Type R Curb with a
N,Cury 4' opening was used to check
N.v.^ Wo the flows for a D-12 Sidewalk
WP Culvert.
W
Lo (G)
inInflorMtiort [bW0)
of Inlet
trial Type
Depression(additiorW to coninIow glaer depression'a'from 'PAIIDW)
aa.
ter of Unit Inlets (Grate or CUD Opening)
No
f Depth W FlovAne (outside of local depression)
Ponding Depth
r Momleeon
h of a Unit Grate
Le (G)
t of a Unit Grate
W.
Opening Ratio for a Grate (typical values 0.15-0.90)
A,
ping Factor for a Single Gale Ityplcal vakie 0.50 - 0.70)
Cr (G)
Weir Coeflideni (tYPIcal va 2.15 - 3,60)
C. (G)
Onfice Coefficient (typical vaWe 0.60 0.80)
CB (G)
Opening IrdomUlbn
h of a Unit Curb Opemg
Lo (C)
a of Ventral CUB Opening in Inclines
N..n
A of CUD Onhce Tf Win Inches
Rao.
of Tri (see USDCM Figve ST-5)
Thep
Width for Depression Pan typically the gutter *dth of 2 feet)
W.
ling Factor for a Single Cub Opening (typical value 0.10)
C, (C)
Opening Weir Coefficient (typical value 23-3.7)
C. (C)
Operirg Orifice Coefficient (typical value 0.60 0.70)
Co (C)
N Inlet Interception Capacity (assumes clogged condition)
0.1
:apecay IS -
Oeesv.seoaeo
amine, 1Dinens:on nnz,, I. . ( :: tvpu' :I IVii,'
MINOR MAJOR
COOT Type R Curb Opening
3.00 Incites
1
Irches
MINOR MAJOR Orentic OepOts
WA
WA
WA
WA
WA
WA
WA
4.00
6.00
6.00
63.40
2.00
0.10
0.10
3.60
0.67
IL:l
sal
CM1eS
cues
ogress
eel
INLET BASIN7A SIDEWALKCULVERT7A.dsm, Inlet In Sump
5/5/2015. 4:04 PM
INLET IN A SUMP OR SAG LOCATION
Project a of5-0356 COLORADO STATE UNIVERSTITY TENNIS COURTS
Inlet ID = TYPE D•12 SIDEWALK CULVER FOR BASIN 7B
.1-- Lo (C)" NOTE: A Type R Curb with a
R-Curb N Ven --_ 4' opening was used to check
Wo the flows for a D-12 Sidewalk
wp
IN Culvert.
La (G)
wurnuw I
)"on ffi
rype cl Intel
.ocal Depression iaddinorel to cc tortuous gu0er depresslon'a'trom'0-Alovn
Junber of Uric trials (Grate or Cub Opening)
Nater Depth at Fbehnis (outside of local depression(
3rate Information
-ength of a Unit Grate
MIMI, of a Unit Grate
knot Opening Ratio for a Grate (typical values 0.15-0.90)
]bggir.g Factor for a Single Grate (gpiwl value 0.50 0.70)
!rate Weir Coefficient (Typical vale 2.15 3.60)
3nete Onfice coefficiM (typical value 060 - 0.80)
.leb Opening Mamrtlon
.engm of a Unit Cub Opening
ieigM of Vertical Curb opening in Irdes
ieiglt of Cub office Throat In Inches
Ugle of Throw (See USDCM Figure ST-5)
fide Wid01 tot Depression Pan (typncaly the gutter e4ditrt of 2 test)
;logging Factor for a Single Cub Opening (typical value 0A0)
;tub Opening Weir Coefficient (typical value 2.33.7)
;tub Opening Orifice Coefficient (typical vale 0.60.0,70)
foul Inlet Interception Capacity (assurnes clogged condition)
,let Capac ev IS GOOD for Minor end Major Storms (r0 PEAK)
ming 1 Dimension entered is not A typical dimension for Inlet type specified
MINOR MAJOR
Intel Type -
a.. -
No -
Ponoi ng DeWh .
CDOT Type R Cub Opening
3,00
1
6.0
MINOR
L. (G) -
W..
A,....
Ci (G) -
C. (G)-
C.(G)-
In res
6.0 ncles
MAJOR 0 0`e ,de OepMs
NIA
WA
WA
WA
WA
WA
WA
MINOR MAJOR
L. (C) -
H..n -
•1
Theta .
WF'
G (C) -
C.(C)-
C. (C) .
Q.
DPFNt aFUIPEa -
4.00
6.00
6.00
63.40
2.00
0A0
0.10
3.60
0.67
nret
eel
feet
IKtes
inches
degrees
feet
INLET_BASIN76 SIDEWALKCULVERT/B.dsm, Inlet In Sump
51512015, 4:05 PM
r
INLET IN A SUMP OR SAG LOCATION
Project = 01"358 COLORADO STATE U W VERSTITY TENNIS COURTS
Inlet ID = TYPE D-12 SIDEWALK CULVER FOR BASIN 8B
r Lo (C) 'I NOTE: A Type R Curb with a
N,Cutb __ 4' opening was used to check
N-vent Wo _ _ the flows for a D-12 Sidewalk
wp — Culvert.
w
Lo (0)
Wvning
00 �m
of Inlet
Inlet Type
I Depression(adteaonal to continuous guterderpression'a'tmm'GAIoW)
a..
oer of Urn Indies (Graft, or Cub Opening)
No
e Depth at RoMne, (oolvde of iocal depression)
penciling Dept
s etfornutlnn
th of a Urtt Gmte
L. (G)
i of a Urn Grate
W.,
Opening Rat. for a Gmte (typical nikms 0.15-0.90)
A.
gag Factor for a Single Gmte "i:al value 0.50 - 0 70)
C, (G)
r Weir Coefflaent (typical vale 2.15 3.60)
C. (G)
r Onflce Coefficient Irypcal value 0A0 080)
C. (G)
opening eepnrneon
Ih of a Unt Cub Opening
L. (C)
n of Verllcal Cub Opening In Inches
H.u„
ni of Cub Orifice Throat In Inches
Hs.d.
f of Throat (see USDCM Rglre ST 5)
T1eet
Width for Depression Pan (typically to goner w( th of 2 feet)
WP'
grog Fedor for a Single Cut Opening (typical value 0.10)
Ct (C)
Opening Weir Coefficient (typical vela 2.3-3.7)
C. (C)
Openirg Onfice Coefficient (typical vaWa 0,60 - 0,70)
C. (C)'
at Inlet Interception Capacity (assumes clogged condition)
Q. e
Capaci^: IS GOOD for Minor end Minor Stones (.0 PEAK)
Or'Bea nepluaa'
Veining I ❑Inerblon entered b not a fyphml dimension 1nr Inlet type specdfed.
MINOR MAJOR
CDOT Type R Cub Opening
3.00 nches
1
6.0 6.0 inches
MINOR MAJOR O amrde Ixptns
WA eel
WA feet
WA
WA WA
WA
WA
4.00
6.00
6.00
63.40
2.00
0.10
0.10
3.60
0.67
INLET BASINBB SIDEWALKCULVERT8B.IIsm, Intel In Sump
51512015, 4:07 PM
F(�
A-7 EXTEND WALK I FT.
BEYOND NORMAL BACK
OF WALK.
3 FT. `6 IN. 6N4 BARS
AT 11 IN. O.C. 3d
I FT.
9 IN. I 5 65 BARS AT C
6 1N. THICK 9 IN. O.C.
SIDEWALK I
(TYP.) J
4 FT.
I FT. 6 IN I 2 MS BARS AT
B (TYP.) 6IN. O.C. B
BACK OF CURB
6 IN. O SEE DETAIL 'A'
f it IN FLOWLINE
2 FT. M4 BARS AT WARPED CURB 6
12 IN. O.C. GUTTER (TYP.)
NOTE:
2' PAN REQUIRED ON DOWNSTREAM END
WITH A 2• DROP AT END OF PAN
BE: 8.5 WITH 1 1/2 IN. DIA. HOLE
IN CENTER — EXTEND CHANNEL TO
OUTSIDE El
'.3
FT. 6 IN.
4 FT. OPENING
FT.
2 FT. 0 IN.
5 FT, 6 IN.
I
SEE DETAIL
•g• #4 BARS
IA
�
DETAIL
„B„
------ --�
6 IN.
$5 BARS
H 1/2 II'
I
1% SLOPE
BE B.5 FLUSH
T
WITH CURB FACE
OE
6IN.
—I-
I
1 1/2 IN. R
18 IN. LONG
I�4 BARS
/4IN. LEG
#4 BARS-12 IN.
O.C.
I 2 IN.
BOTHWAYS
_
' ° `•
SECTION A —A
I
2 IN.
4:1
6
I 6IN.
6 IN.
2:1
If 5 BAR
3 FT. 6 IN.
4 FT, 0 IN. 3 FT. 6 IN.
I
1 1/2 IN. PIPE SPACER
ANDD 1 1/4 IN. LOCK NUT
8 IN. P _ , T 1 1/4 IN. DIA. X 14 IN. GALV.
3 IN. STEEL ROD — THREADED
I 3 1/2 IN. AT TOP.
WARPED GUTTER DEPRESSED GUTTER
—TOP OF CURB 2 IN
WARPED GUTTER
"
" NORMAL LTERED
FLOW LINE FLOW LINE
� ,a °r 6IN. "
( 41N SECTION B—B
I3 IN. X 3 IN. X 3/8 IN. • °• + ". �" (REINFORCEMENT NOT SHOWN)
� PLATE
11 FT. 0 IN.
( 6 I"' DETAIL "B" IFT.
r GENERAL NOTES�_ 4 BARS s BARS
11. SIDEWALK SHALL BE 6 IN. THICK FOR 3 FT. ON 6 IN.
EITHER SIDE OF CULVERT. -r-- ADD 1 # 4 BARS ADD 1 / 4 BARS
') 2. TOP SLAB OF CULVERT SHALL BE SLOPE TO 14 1/2 IN.
C MATCH SIDEWALK. SEE D-6.
3. EXPOSED STEEL SHALL BE GALVANIZED IN 1 •�L'
ACCORDANCE WITH AASHTO M-111.
4. KEY JOINTS WHERE WALLS CONNECT TO TOP
SLAB AND BASE. 4 BARS-12 IN. O.C.
15. REINFORCEMENT IN WALLS AND BASE SHALL BOTHWAYS
BE 3 IN. FROM THE SIDE EXPOSED TO EARTH. SECTION C—C
I REINFORCEMENT IN TOP SLAB SHALL BE 1 1/2 IN CLEAR, REV. DATE 12/11/13
CONCRETE SIDEWALK CULVERT FOR VERT. CURB, GUTTER AND SIDEWALK
CITY OF APPROVED:
FORT COLLINS STORMWATER DETAIL
UTILITIES DATE: 12/19/00
FORT coums, co. CONSTRUCTION DETAILS D — 12
(ego) 221-6700 DRAWN BY: NBJ
INLET IN A SUMP OR SAG LOCATION
Project a 015-0358 COLORADO STATE UNIVERSTITY TENNIS COURTS
blot ID = INLET3
TLo (C).t
H-curt _—
H-Ved
Wo
W
Lo (0)
on enomvoal un im
of not
Inm Type.
I Depmssian ladditional to co ei gutter depression'afrom'O-Atli
a.
cer of Unit Inlets (Grate or Cub Opening)
No
it Depth at Fbwne (onside of local depression)
Pointing Depth
e whom mutbn
th of a Unit Grate
L. (G)
+of a Um Grate
W.
Opening Ratio for a Grate (typical values 0.15-0,90)
A,r.
gong Factor for a Single Grate (typical vabe 0.50 - 0 70)
C. (G)
f Weir Coefficient (typical value 2.15 - 3.60)
C. (G)
r Onfice Coefficient (typical value 0.60 - 0.80)
C. A
Opening asomr0on
Ih of a Um Cub Opening
L. (C)
hl of Vertical Cub Opening In Inches
ni of Cub Orifice Tinware In Inches
r of Throat (see USDCM Rgue ST-5)
Theta,
Width for Depression Pan (typically the gager wldlh of 2 feet)
W.
Ong Factor for a Single Cub Opening (typical vakm 0.10)
C. (C)
Coating Weir Coefficient (typical value 2.3-3.7)
C. (C)
Opening Orifice Coefficiem (typical value 0 60 - 0.70)
C. (C)
31 Inlet Interception Capacity (assumes clogged Condition)
0e s
„ St... LVO PEAK)
QIRMf aEOIPEe'
MINOR MAJOR
CDOT Type R Cub n60xhm
3.00 imltes
2
MINOR MAJOR a'''n DepNs
WA Past
WA eat
Ni
WA WA
WA
WA
5.00
6.00
6.00
63.e0
2.00
0.10
0.10
3.60
0.67
net
riches
Cher
agrees
net
INLET BASINS INLET5.tdsm, Intel In Sump 412412015.10:aa AM
r
INLET IN A SUMP OR SAG LOCATION
Project - 015-CM COLORADO STATE UNIVERSTffY TENNIS COURTS
Inlet lD = INLET -BA
T--Lo (C)�/
H-Curt, N-Vert
Wo
W
Lo (0)
of Iriet
Iniet Type
Depression (additional to continuous guler depression'a' fmm'O-A1oW)
am.
er of Unit Iriets (Grate or Cub Opening)
No
r Depth at FIDMne (oulrade of local depression)
Ponding Depth
i Mdmaddl
n of a Unit Grate
L. (G)
l of a Unit Grate
W.
Opening Ratio for a Grate (typical vales 0.15-0.90)
A.
Ong Factor for a Single Grate (typical value 0.50 0 70)
CI (G)
Weir Coefficient(typical vaYe 2 t 5 a 60)
C. (G)
Critics Coefficient (typical value 0.60 - 0.80)
C. (G)
Openk Mom otbn
In of a Urit Cub Opening
L. (C)
it of Verbcal Cub Opening In Inches
H.
it of Cub Orifice Throat in Inches
Hums
of Throat (see USDCM Figure ST-5)
Theta
Width for Depression Pan hyplea0y, the gli Mdth of 2 feel)
Wi
Ong Factor for a Single Curb Opening (typical value 0.10)
Cl (C)
Opening Weir Coefficient (typical value 233.7)
Cv (C)
Opening Orifice Coefficient (lyocal vats 0.60 - 0.70)
C. (C)
it Intet Interception Capacity (assumes tdopged condition)
Q. e
].D.M IS GOOD for Manor and Major Storms (>O PEAK)
Orsra asanm'
MINOR MAJOR
CDOT/Denver 13 Combination
2.00
2
120 120
ur.v�e vie
3.00
1.73
0.43
OSO
0.50
3.30
0.60
3.00
6.50
5.25
0.00
200
0.10
0.10
3.70
0.66
u-n
1CIIH
Q O.et+tic Depins
eN
eat
get
VN",
<ngs
bgreee
tit
INLET_BASINBA_INLET8A.slsm. Intel In Sump
4/30/2015, 3:34 PM
INLET IN A SUMP OR SAG LOCATION
trloJeM r 015-0358 COLORADO STATE UNIVERSTITY TENNIS COURTS
YIIM ID r INLET-6
,r--Lo (C) 01
HCurb
H-Vert
WP
Wp
W
Lo(G)
of Inel
MN Type
I Depression IadCiliorel to co Minima puffer oepression'a' fmri
i¢.
bar of Uhl Inlets (Grate or Curb Opering)
No
a Depth al FlovAns (outmoa of local depression)
Pordin g Depth
e Momrtion
Ih of a Unit Grata
L. (G)
+of a Unit Grate
W.
Opening Ratio for a Grate (typical values 0,15-0,90)
A.
ping Factor for a Single Grate (typical vaYe 0.50 - 0.7(1)
Cn (G)
s Weir Coefficient(typ♦ical value 2,15 3.60)
C. (G)
n Office Coefficient (tyocal vale 0.60 - 0.80)
Ca (G)
opening Informallon
th of a Unil Cub Opening
Le (C)
I of Vertical Cub Opening In Ircles
Hr.n
nt of Cub Office Throat in Inches
Hf..e
f of Tlroaf (see USDCM Figure ST-5)
TMIe ,
WIGm for Depression Pan (typically the paler Wcth of 2 feet)
W.
ping Factor for a Single CUB Opening (typicai value 0.10)
CI (C)
Opening Weir Coefficient "itsil value 2.3-3 7)
C. (C)
Opening Office Coefficient (typical value 0,60 - 0,70)
C. (C)
at Inlet Interception Capacity (assumes clogged condition)
Q. e
C.P.Cfly IS C, -c b0 PEAK)
OavallEpillEP+
MINOR MAJOR
CDOT Type R CUE Opening
3.00
1
6.0 6.0
WA
WA
WA
WA
wA
WA
WA
5.00
6.00
6.00
63.40
2.00
0.10
0.10
360
0.67
=has
rc es
Osvriie Deers
eet
eet
sea
rches
riches
feP•�
M
INLET BASINS_ INLET6.xism, Inlet In Sump 4/24/2015, 1044 AM
INLET IN A SUMP OR SAG LOCATION
Project c 015-0358 COLORADO STATE UNIVERSTITY TENNIS COURTS
Inlet ID = INLET-2
,rLo (C)T
NCurb
M-Vert
Wo
Wp
W
Lo IG)
blaming
to Mormetion fe.otrll
of lniet
IdMType
Depression (addi0onml to conlinnus gutter depression'a' from •O-Abv/)
a�
oar of Unit IAMB (Grate or Cub Opening(
No
r Depth at FbWlne (outside of local depression)
Pending Dpt,
r Morrmffon
h of a Und Grate
L. (G)
i of a Unit Grate
We
Openng Ratio for a Grate (typical values 0.15-0.90)
A.
Ong Factor for a Single Grate (typical n k* 0.50 - 0.70)
Ct (G)
Weir Coefficient (typical value 2.15 3.60)
Cv. (G)
Onfice Coefficient (typical value 0.60 - 0.60)
C. (G)
OpenYq Montutlon
b of a Um Cub Opening
L. (C)
t of Vertical Cub Opening In IrcMs
H,.n
t of Cub Orifice Throat In Inches
H.
of Throat (sea USDCM Fig" ST-5)
Thole.
Width for Deorewon Pan (typically the gutter Welh of 2 I M)
Wv
Ong Factor for a Singe, Cub Opening (typkM value 0.10)
C. (C)
Operin.g Weir Coefficient (typical value 2.33.7)
C. (C)
Opening Orifice Coelflaent (typical value 0.60 0,70)
C. (C)
d Inlet Interception Capacity (assumes clogged condition)
Q. r
0apachv 6 GOOD for Minot and Major Storms LO PEAK':
O.eiaaeourao
amen, 1: Dimension entered is not a typical dimension for inlet type swrtod
MINOR MAJOR
CDOT/Demer 13 Comdnafion
2.00
2
120
120
Inches
nches
MAJOR priwxi. Rpnn
feet
feel
3.00
1.73
0.43
0.50
0.50
3.30
0.60
MINOR MAJOR
3.00
6.50
5.25
0.00
3.00
0.10
0.10
a70
0.66
feet
Inches
inches
degrees
I"
INLET RASIN2 INLET2 Asm. Inlet In Sump 4124/2015, 10:39 AM
rc
INLET IN A SUMP OR SAG LOCATION
Plepet m 015.03SB COLORADO STATE UNIVERSTTTY TENNIS COURTS
ellat D e INLET-4
War nq
.�—Lo (C)—X
H-Curb
H-Vert
Wo
Wp
W
Lo (el
of Inlet
Inlet Typo:
I Depression additional to continuous (peer depreselon'a' hom )}Ali
a,ma:
,or of Unit Inlets (Grate or Curb Opening)
No :
v Depth at Fbwire (outside of local depression)
Pordng Depth:
e MpnMbn
In of a Unit Grate
L. (G) :
+of a Unit Grate
W.
Opening Raga for a Grate (typical values 0.15-0.90)
A,•!i, .
ling Factor for a Single Grate (typical value 0.50 - 0,70)
C! (G) .
! Weir Coefficient (typical value 2.15 3.60)
C„(G)
Orifice Coefficient (typical value 0 60 - 0.60)
C. (G) .
opeNg Information
In of a Unrl Cub Opening
La (C)
1 of Vertical Curb Opening In Inches
H.e .
t of Cub Orifice Throat In Inches
Hu.a
! of Throat (see USDCM Figue ST-5)
Theta.
Width for Depression Pan (focally the gutter wfElh of 2 feet)
Wp,
ling Factor for a Single Cub Opening (typical val 0.10)
Cn (C)
Opening Weir Coefficient (typical value 2.33.7)
C. (C)
Opening Orifice Coeniuen (typical vale 0.60 - 0.70)
C. (C)
d Inlet Interception Capacity (assumes clogged condition)
0. a
CapaceylS GOOD for Minorand Mato Storms(aG PEAK)
Oeaaa xoueo•
Warning 1.- Di enalon entered Is not a typical dimension for Mkt type sp.,Xfed.
MINOR MAJOR
CDOT/Denver 13 Combination
200
Inches
1
120
12.0
Inches
Ea O,nnrie DeDeu
MAJOR MAJOR
3.00
peel
1.73
eel
0.43
0.60
0.50
3.30
0.60
MINOR MAJOR
3.00
feet
8.50
Iricnfas
625
nches
0.00
degrees
3.00
feet
0.10
0 10
3.70
0.6E
INLET _BASIN4_INLET4.xlsm, Inlet In Sump
412412015, 10:40 AM
I
05.06.2015
O\OLSSOW
4SSOC�A7E5
APPENDIX E
RIPRAP SIZING
C
Determination of Culvert Headwater and Outlet Protection
Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS _
Basin ID: 1, SPILLWAY
an, crcnc
aTI�I
L 4
M
Design Discharge
O = 198.4 cis
ular Culvert:
Bartel Diameter in Inches
D-Mches
Inlet Edge Type (Choose from pull -down list)
�
Culvert:
OR
Barrel Height (Rise) in Fast
Height (Rise) - 1.5
Barrel Width (Span) in Feet
Width (Span). 30
Inlet Edge Type (Choose from pull -down list)
I sown Edge w/ 30-78 deg. Fared Wingwa11
Number of Barrels
No . 1
Inlet Elevation
Elev IN . 5036.5 it
Outlet Elevation Q] Slope
Elev OUT - 5036.16 it
Culvert Length
L- 30 it
Manning's Roughness
n . 0.035
Bend Loss Coefficient
ks - 0
Exit Loss Coefficient
k - 1
Tailwater Surface Elevation
Elev, Y, . it
Max Allowable Channel Velocity
V . 5 s
Tailwater Surface Height
Y,
0.60
If
Flow Area at Max Channel Velocity
At -
39.66
111,
Culvert Cross Sectional Area Available
A.
45.00
Entrance Loss Coefficient
ke.
0.40
Friction Loss Coefficient
kt•
3.94
Sum of All Losses Coefficients
k -
5.34
ft
Culvert Normal Depth
Y,,•
1.30
If
Culvert Critical Depth
Y,.
1.11
ft
Tailwater Depth for Design
d .
1.30
Adjusted Diameter OR Adjusted Rise
He'
-
If
Expansion Factor
1/(2'tan(e)) .
2.98
Flow/Diameler2"QR Flow/(Span • Rise"I
OlWHM.5 -
3.60
Ito "Is
Froude Number
Fr .
0.79
Tailwater/Adjusted Diameter,QR Tailwater/Adjusted Rise
Yt/H -
0.40
Inlet Control Headwater
Hilly, .
1.77
It
Outlet Control Headwater
HWg =
2.58
Design Headwater Elevation
Hw =
5,039.08
fl
Headwater'Diameter QR Headwater/Rise Ratio
HWIH v
1.72
H W H I i
Minimum Theorelical Riprap Size
ds)=
2
in
Nominal Riprap Size
dso-
6
in
UDFCD Riprap Type
Type =
VL
Length o1 Protection
Lo _
15
ft
Width of Protection
T o
36
ff
C
Determination of Culvert Headwater and Outlet Protection
Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin ID: 3C, CULVERT ST-01
cFaE
� y
$CllDl9y9@:
O Sandy
® 11oriSandY
Design Discharge
0= B.Sd cis
ular Culvert:
Barrel Diameter in Inches
D. 18 inohas
Inlet Edge Type (Choose from pulldownlist)
1.1:1 Berated Edge
Culvert:
OR
Barrel Height (Rise) in Feel
Haight (Rise) ft
Barrel Width (Span) in Feet
Wkth _(�)
Inlet Edge Type (Choose from pull -down list)
Number of Barrels
No. 1
Intel Elevation
Elev IN . 5038 It
Outlet Elevation 2B Slope
Elev OUT. 5037.06 ft
Culvert Length
L. 94.32 ft
Manning's Roughness
n . 0.016
Bend Loss Coefficient
kr . 0
Exit Loss Coefficient
k • 1
Tailwater Surface Elevation
Elev Y, . It
Max Allowable Channel Velocity
V . 7 i
Tailwater Surface Height
Flow At" at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Y,.
A,.
A.
k. .
14.
ke.
Y,,
Y�
0.60
1.22
1.77
0.20
259
3.79
1.23
1.13
Tailwater Depth for Design
d. 1.32 it
Adjusted Diameter Q$Adjusted Rise
U. - it
C-
Expansion Factor
1/(2'tan(0)) . 4.33
Flow/DiameterTs 0 Flow/(Span' Rise")
OID^2.5. 3.10 ft's/s
C
Froude Number
Fr. 0.84
Tailwater/Adjusted Diameter QR Tailwater/Adjusted Rise
YI/D . 40g
C
Inlet Control Headwater
HWl • 1.83 it
COutlet
Control Headwater
Hill 1.75
Design Headwater Elevation
HW ix 5,039.83 1t
Headwater'Diameter i Headwater Rise Ratio
HW/D = 112
Minimum Theoretical Riprap Size
dso -Min
in
Nominal Riprap Size
d50 - 6 in
UDFCD Riprap Type
Type= VL
Length of Protection
Le= 5 R
Width of Protection
T= 3 fl
C
Determination of Culvert Headwater and Outlet Protection
Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin ID: 2, CULVERT ST-02
ec. cr+:tE
n
M
L
Y QQ��rr
QSanay
Non-Santfy
Su ercrilical Flow! Using Da to calculate protection ty e
Design Information (Input):
Design Discharge O. 16.13 cis
Circular Culvert:
Barrel Diameter in Inches D . 24 _ Mchas
Inlet Edge Type (Choose from pull -down list) 1.1 1 Bawled Edge
Box Culvert: OR
Barrel Height (Rise) in Fast Height (Rise) 0
Barrel Width (Span) in Feel Width (Spah) Ift
Inlet Edge Type (Choose from pull -down list)
Number of Barrels No- 1
Inlet Elevation Elev IN . 5037.63 k
Outlet Elevation QR Slope Elev OUT. 5036.87 it
Culvert Length L. 24 ff
Manning's Roughness n . 0.016
Bend Loss Coefficient !b. 0
Exit Loss Coefficient k - 1
Tailwater Surface Elevation Elav Y, . it
Max Allowable Channel Velocity V . 7 tus
Tailwater Surface Height
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Y, .
Al .
A .
k.-
14•
k •
Y.,.
Y,.
0.80
2.59
3.14
0.20
0.45
1.05
1.11
1.53
Tailwater Depth for Design
d.MIt
Adjusted Diameter QPLAdjusted Rise
U.ft
Expansion Factor
1l(2'tan(9)) .
Flow/DiameterT S Qg Flow/(Span'Rise")
OIDa2.5.if 51s
C
Froude Number
Fr.Supercri ical!
Tailwater/Adjusted Diameter QR Tailwater/Adjusted Rise
V1ID.
Inlet Control Headwater
HWI • 2.50 it
COutlet
Control Headwater
HWo • 1.96
Design Headwater Elevation
1111111111. 5,040.03 h
HeadwaterDiameter QR Headwaler'Rlse Ratio
NyIIfO 1.25
Minimum Theoretical Riprap Size
dso • 6 in
Nominal Riprap Sae
dso - 6 in
UDFCD Riprap Type
Type = VL
Length of Protection
Le : 6 R
Width o1 Protection
T = 4 fill
C
11 Determination of Culvert Headwater and Outlet Protection
Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin ID: 8C, CULVERT ST-04
H LIec1E n
w, u W
Design Discharge
filar Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull -down list)
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pulldownlist)
Number of Barrels
Inlet Elevation
Outlet Elevation Q Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coefficient
Tailwater Surface Elevation
Max Allowable Channel Velocity
Tailwater Surface Height
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Tailwater Depth for Design
Adjusted Diameter Q-Adjusted Rise
C Expansion Factor
Flow/Diameter5 Q Flow/(Span' Rise' ")
C Froude Number
Tailwater/Adjusted Diameter Q Tailwater/Adjusted Rise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter Q Headwater/Rise Ratio
CMinimum Theoretical Riprap Size
- Nominal Riprap Size
C UDFCD Riprap Type
Length of Protection
CWidth of Protection
i
SON.Tvw.:
r0 saner
Il ®t+on-senor
0. 33.81 cis
D . 30 Inches
1.1:1 leveled Edge
OR
H91ght (Rise) . ft
Width (Span) . h
Elev
Elev Oi
Elev
Yt-
1.00
It
A, -
4.83
fe
A -
4.91
fl
k..
0.20
k, -
0.27
k..
1.47
If
Y -
1.38
it
Y` -
1.98
ft
d.
2.24
It
D.
It
1/(2'tan(0)) -
4.04
O/D"2.5 -
3.42
Deb/s
Fr.
-
Pressure flow!
Yt/D -
0.40
HWi- 3.35 ft
HWo- 3.22
Hill 5,037.61 ft
HWID 1.34
d5oWit
in
deoin
TypeLeT
Determination of Culvert Headwater and Outlet Protection
project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin ID: 1. CULVERT ST-05
PLC ::IPq[
h
��—L b
Selbidyl�e:
— -- _ -
-- --- ----- '�`' rosary
N -Sandy
rt M^
Su ercritieal Ftow! Usin Da to calculate protection type.
Design Information (Input):
Design Discharge O - 30.38 cis
Circular Culvert:
Barrel Diameter in Inches D. 38 Inches
Inlet Edge Type (Choose from pull -down list) L1 a eawlW fdpe
Box Culvert: OR
Barrel Height (Rise) in Feet Height (Rise) . ff
Barrel Width (Span) in Feet Width (Span) . It
Inlet Edge Type (Choose from pull -down list)
Number of Barrels No . 1
Inlet Elevation Elev IN . 5032.67 ff
Outlet Elevation QR Slope Elev OUT . 5031.92 It
Culvert Length L. 75 fl
Manning's Roughness n . 0.016
Bend Loss Coefficient ka - 0
Exit Loss Coefficient k. - 1
Tailwater Surface Elevation Elev, YI . If
Max Allowable Channel Velocity V . 7 ft/s
Tailwater Surface Height
Y, . 1.20 11
Flow Area at Max Channel Velocity
M - 4.34 fe
Culvert Cross Sectional Area Available
A . 7.07 fe
Entrance Loss Coefficient
k,. 020
Friction Loss Coefficient
III, ' 0.82
Sum of All Losses Coefficients
kr 2.02 It
Culvert Normal Depth
Ya 1.60 ft
Culvert Critical Depth
Yu 1.79 It
Tailwater Depth for Design
d 2.39 It
Adjusted Diameter Q&Adjusted Rise
D. It
Expansion Factor
1/(2'tan(0)) . 6.69
Flow/Diameters Qfj Flow/(Span' Rises)
O/D^2.5. 1.95 fla�5/6
Froude Number
Tailwater/Adjusted Tailwater/Adjusted
Fr 123 Supercriticall
Diameter QR Rise
YVD o,52
CInlet
Control Headwater
HWI 2.81 f1
COutlet
Control Headwater
HWo' 22z
Design Headwater Elevation
HW . Brp382B lit
Headwater'Diameter QR Headwaten Rlse Ratio
MID ggr
Minimum Theoretical Riprap Size
d5o'Min
Nominal Riprap Size
dsa.in
UDFCD Riprap Type
Type =Length
o1 Protection
Lp =It
Width of Protection
T III:1t
I�
05.06.2015
O\OLSSON O
A 5 5 0 C tn T E5
APPENDIX F
POND INFORMATION
STAGE -DISCHARGE SIZING OF THE SPILLWAY
Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin ID: SPILLWAY
C
Design Information (input):
C_
Bottom Length of Weir
L =M300
feel
Angle of Side Slope Weir
Angle =degrees
Elev. for Weir Crest
EL. Crest =feet
CCoef. for Rectangular Weir
C,
=
- Coot. for Trapezoidal Weir
C,
=
Calculation of Spillway Capacity (output):
Water
Surface
Elevation
ft.
(linked)
Rect.
Weir
Flowrate
cis
(output)
Triangle
Weir
Flowrate
cis
lout W,
Total
Spillway
Release
cis
output)
Total
Pond
Release
cis
(output)
5031.00
0.00
0.00
0.00
0.00
5031.50
0.00
0.00
0.00
0.00
5032.00
0.00
0.00
0.00
0.00
5032.50
0.00
0.00
0.00
0.00
5033,00
1 0.00
0.00
0.00
0.00
5033.50
0.00
0.00
0.00
0.00
5034.00
0.00
0.00
0.00
0.00
5034.50
0.00
0.00
0.00
0.00
5035.00
0.00
0.00
0.00
0.00
5035.50
0.00
0.00
0.00
0.00
5036.00
0.00
0.00
0.00
0.00
5036.50
0.00
0.00
0.00
0.00
5037.00
31.82
2.12
33.94
33.94
5037.50
90.00
12.00
102.00
102.00
5038.00
165.34
33.06
198.40
198.40
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#WA
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N;A
#WA
#N/A
#N/A
#N/A
#N;A
#WA
#N/A
#N/A
#N/A
#NiA
#WA
#N/A
#N/A
#N/A
#NiA
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#WA
#N/A
#N/A
#NiA
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#NiA
#N/A
#N/A
#N/A
#N/A
#NiA
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#WA
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
#N,�A
#N/A
#WA
#N/A
#N/A
#N/A
#N/A
#N/A
#N/A
UD-Detention v2.34.)ds, Spillway 5/1/2015. 10 01 AM
II STAGE -DISCHARGE SIZING OF THE SPILLWAY II
Project: 015-0356 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin ID: SPILLWAY
0
5040 r
5035
5030
m
5025
m
m
m
5020
N
5015
5010
5005
5000 1-
0
STAGE -STORAGE -DISCHARGE CURVES FOR THE POND
Storage (Acre -Feet)
0.2 0.4 0.6 0.8
Pond Discharge (cfs)
+MIM MGwM -V„I wvpGiNY �ly0 nOlNa
i
UD-Detention_v2.34.xls, Spillway 5/1/2015, 10:01 AM
STAGE -STORAGE SIZING FOR DETENTION BASINS
Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin ID: STAGE STORAGE
4 F3.. Fill rr �'^� ~
r'
sa ap z
Design Intormatlon input) Check Basin
Width of Basin Bottom. W tt Right Triangle
Length of Basin Bottom. L tt Isosceles Triangle
Dam Side slope (H Vr Z, Wit Rectangle
Circle / Ellipse
Irregular
Storage Requirement from Sheat'Modified FAA':
Stage -Storage Relationship: Storage Requirement from Sheet'Hydmgraph':
Storage Requirement from Shest'Full-Spectrum':
he
OR...
OR...
OR...
OR...
(Use Ovende values in cells G32:G52)
MAJOR
acreit.
acre-ft.
acre-ft.
MINOR
3.50
_
g
Labels
for W OCV, Minor,
6 Major Storage
Stages
Water
Surface
Elevation
it
n ;uo
Side
Slope
(H:V)
ft/0
Below El.
����;.r
Basin
Width at
Stage
8
output)
Basin
Length at
Stage
8
(output) (
Surface
Area at
Stage
flit
(output)
Surface
Area at
Stage
ft' User
Ovende
Volume
Below
Stage
its
(output) (
Surface
Area at
Stage
acres
out ut
Volume
Below
Stage
oared
o ut
Target Volumes
for WOCV, Minor,
6 Major Storage
Volumes
.raIseek,
5031.00
1318
0.030
0.000
WOCV..491
5031.60
0.17
_
0.00
0.00
_
7,472
2197
7,472
0.172 1 0.050
0.313 0.172
5032-00
0.17
0.00
0.00
13,625
5032.50
0.17
0.00
0.00 _- -
0.00
0.00
20,674
18,046
28,145
0.475 0-468
0.636 0.646
5033.00
0.17
0.00
0.00
27,722
5033.50
0.17
35,945
440062 0_625 _ 1.012
64,090 1_014 1A71
98,053 1.187 2.021
115.776 1.359 2.658
146.497 1,462 3.363
179.458 1.565 4.120
214,810 1_681 4.931
252,702 _ 1.798 5.801
293,495 1.90 6.738
5034.00
0.17
0.00
0.D0
44168
5034.50
0.17
0.00
0.00
51,686
5035.00
0.17
0.00
0.00
0.00
59,203
5035.50
0.17
0.00
63683
5036.00
0.17
0.00
0.00
68162
5036.50
0.17
0.00
0.00
_
73,244
5037.00
0.17
0.00
0.00
78326
5037.50
0.17
0.00
0.00
84846
5038.00
0.17
_
0.00 0.00
_
. - -
_
91,366
337,548
MA
_2.PK__4
I
7.749
I NN/A
OWA
OWA
*WA
OWA
OWA
OWA
*N/A
*N/A
_
MA
OWA
MA
*N/A
OWA
ON/A
MA
OWA
OWA
_
OWA
ON/A
ON/A
ONIA
OVA
-
_ iWA
OWA
OWA
OWA
OWA
_
_
SWA
#WA
OWA
#WA
OWA
OWA
ill
ON/A
_
OWA
OWA
OWA
OWA
MA
AWA
OWA
_
OWA
OWA
OWA
_
OWA
OWA _
OWA J.
OWA I
OWA
OWA
_
OWA
MA
OWA_
-
SWA
MA
I - UD-Detention4-24-15(12-HR DEn_Spillway.lds, Basin 5/1/2015, 10:00 AM
ISTAGE -STORAGE SIZING FOR DETENTION BASINS
Project:
Basin ID
STAGE -STORAGE CURVE FOR THE POND
5038.60
T
5037.60
5036.60
5035.60
-
�
P
d
5034.60
- - - - - -
m
�
I
5033.60
- --
5032-60
-- -
5031.60
-
5030.60
- - --- - -
0.00
1.00 2.00 3.00 4.00 5,00 6,00 7.00 8.00 9.00
Storage (acre-feet)
UD-Detention-24-15j12-1-IR DEET)_SPillway.)ds, Basin 5/112015, 10:00 AM
V q
Y m
d
E
FbM
4441 Q
0
D D 0
00000 00000
0000 0000
Do 000 o�oo oo
D
�K�Fi' =8 per
$m_88m�
<zt��wtp <mp
eY L
8 �s�ilc egE
O'
s
No Text
STAGE -DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL)
Prof: 015.0358 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin ID: OUTLET
Current Routing Order Is #3
#1 Horiz. #2 Horiz.
#1 Vert.
#2 Vert
Circular Opening: Diameter In Inches
1 .
3.75 1
linches,
OR
Rectangular Opening: Width in Feet
W =
3.00
1
ft.
Length (Height for Vertical)
L or H =11
3.00
0.
Percentage of Open Area After Trash Rack Reduction
% open =
too
100
Orifice Coefficient
C,=
0. 55
0.65
Weir Coefficient
C.
2.55
Orifice Elevation (Bottom for Vertical)
E,=
5032.70
1 1
5,031.00 1
Ift.
Calculation of Collection cacacav:
Net Opening Area (after Trash Rack Reduction)
A,= 9.00
0.08
sq. ft.
OPTIONAL: User-Overide Net Opening Area
A. -1
sq. fl.
Perimeter as Weir Length
L. 12.00 It.
OPTIONAL: User,Overide Weir Length
L. = ft.
Top Elevation of Vertical Orifice Opening, Top =
5031.31
ft,
Center Elevation of Vertical Orifice Opening, Can =
5031.16
rl.
Routing 3: Single Stage - Water flows through WQCV plate and #1 horizontal opening into #1 vertical opening. This flow will be applied to I
culvert sheet (92 vertical & horizontal openings is not used).
labels
for WOCV. Mi.,
& Maim Storage
W-S. Elevatiom
hrr rul
Water
Surface
Elevation
ft
(irtketil
WQCV
Plate/Roar
Flow
cis
'011-1 iinkvd
#1 Horiz. #1 Horiz.
Weir Orifice
Flow Flow
CIS CIS
o f) fq
#2 Horiz. #2 Horiz.
Weir Orifice
Flow Flow
CIS CIS
out Out I
#1 Vert.
Collection
Capacity
CIS
(output
#2 Vert.
Collection
Capacity
cis
e r
Total
Collection
Capacity
eta
(output)
Target Volume
for wocv. Minor.
& Major Storage
volooae
4M for rn 1 seek
5031.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5031,50
0.15
_
0.00
0.00
0.00
0.00
0.23
11
0.15
_
5032-00
5032.50
5033.00
0.33
_ 0.00
0.00
5.03
21.90
0.00
0.00
0.00
0.37
0.00
0.33
0.53
0.00
0.00
0.00
0.46
0.00 0.46
0.66
25.71
_
0.00
0.00
11
0.00 0.54
5033.50
0.77
41.99
0.00
0.00
0.61
0.00 0.61
5034.00 _ _
0-86
_
45.36
63.53
0.00
0.00
0.67
0.00 0.67
5034.50
0.94
_
73.90
106.74
62.98
0.00
0.00
0.73
_
0.00
0.73
_
5035.D0
1.02
7120
0.00
0.00
0.78
0.00
0.78
5035.50
1.09
143.37
78.56
0.00
0.00
0.83
0.00 0.83
5036.00
5036.50
5037.00
5037.50
503B.00
_
_
_
1.15
_
183.44
86.28
0.00
0.00
0.88
0.00 0.98
122
_
226-67
272.85
321.80
91.51
0.00
0.00
0.92
0.00 0.92
1.28
97.35 0.00
702.SS 0,00
108.08 0.00
iW/A _ #N/A
#WA #N/A
#WA #N/A
0.00
0.97
0.00 0.97
1.33
0.00
101
g.00 1.01
1.39
_
373.37
#WA
SWA
_ #N/A
#WA
*N/A
#N/A
#N/A
#N/A
#N/A
*N/A
*WA
#N/A
*WA
#WA
1/N/A
#N/A
MA
#WA
#WA
#WA
_ #WA
#WA
SWA
MA
Ill
ill
#WA
MA
#WA
000
1.05
0.00 1.05
1.44
#N/A
_
#WA
0.00 #N/A
1.49
#N/A
#N/A
#N/A
#N/A
_ #N/A
#N/A
#N/A
#N/A
#N/A
#WA
_
0.00 #N/A
1.54
*WA
0-00 #N/A
1.59
SWA #N/A
#WA
0.00 #N/A
1.63
*N/A #N/A
#N/A
0.00 #N/A
*N/A
*N/A #WA
#WA #WA
#WA
0-00 Ill
#N/A
MINA
0.00 #N/A
#WA
MA #WA
0.00
#N/A
#WA
#WA till#N/A
MA
#WA
0.00
11NIA
#N/A
#WA #WA
#NIA
0.00
#N/A
#N/A
Of #N/A
#N/A
#N/A
0.00
0.00
#N/A
Ill
#N/A
_
#WA #WA _
SWA #N/A
_ #N/A
#N/A
_ #N/A
#N/A
#N/A
#N/A
#N/A _
#N/A
#N/A
#N/A
#N/A
0.00
#N/A
#N/A
MA #N/A
#WA #N/A
MA #N/A
#N/A
#N/A
#N1A
#N/A
_ #N/A
#N/A
#N/A
0.00
#N/A
#N/A
0.00
#N/A
#N/A
0.00
#N/A
#WA
_
MA
#N/A
0.00
#N/A
#N/A
#WA
*WA
0.00
#WA
#N/A
#N/A
#WA
0.00
MA
#N/A
#WA
#N/A
0.00
#N/A
#N/A
#WA
#N/A
41
#N/A
0.00
0.00
0.00
#N/A
#WA
OWA
#N/A
SWA
#WA
#WA
#WA
#N/A
#WA
#WA
#N/A
#WA
#N/A
#WA
#NIA
#WA
#1
0.00
#WA
#N/A
#WA
##UA
#NIA
*N/A
0.00
#WA
#N/A
#WA
Of
#WA
#WA
0.00
pull
SWA_
#WA
Ill
#WA
SWA
0.00
SWA
#N/A
SWA
SWA I
#N/A I
#WA 1
0.00
SWA
#NIA I
#WA
SWA I
#N/A I
#NIA 1
0.00
MA
UD-Detention4-24-15(12-HR DET)_Spllway.lds, Outlet 5/l/2015, 10:04 AM
STAGE -DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL)
Project: 015-0358 COLORADO STATE UNIVERSITY TENNIS COURTS
Basin 10: OUTLET
STAGE -DISCHARGE CURVE FOR THE OUTLET STRUCTURE
5036.E
5037.6
5036.6
4)
65
19
5034.6
5033.6
5032.6
5031 6
5030 6
02 04 06 08 1 1.2
Discharge (cfs)
UD-Detention4-24-15(12-HR DET)_Spillway.xls. Outlet 5/1/2015. 10:04 AM
W V
d Q
F�tl
Oxx
a0000 0000
De000 00000
0000 0000
[Ed
0°
I
3 a < a s< a< a< a a<< a a<< a a a a a a a a<<
i.. i Y . i...... i i i i.. i w a3i w w w i
�i
¢'
p0000+g
OS
6
} II
t t i
�2
x <
Y <
{
Z . y� Oo00 oa O o0 0
Cc_� <�o m a m o aot< « « < « « <666666<6« « <6<66 y5q
N N R eNi eNi n
o e c o 0 0 0 o a o 0 o O
x
e•
G =
0
3
N
W
¢O
I
YN
£S
b
O
0
I \\
rITTTI FIT.
r
Ll
_\ Jallll
lly
BASIN
AREA CA(C.)
% IMPERVIOUS
Q10° RUNOFF
(CFS)
1
SUN
µx,
47.20
2
20f4
95%,
is-is.
3A
O.ae
96%
in
3B
0.72
96%
3.20
3C
0.w
4x
5.47
3D
0.41
92%I
3.08
4
0.S2
66R
5.63
5
O.Y4
55%
5.75
6
0.$'9
lom
2.4B
TA
0.4b
921
3.93
10
ma
82%
3.44
TC
O.a$
ex
119
SA
2.47
91
20.70
8B
O.4b
Six)
2.94
I C
0.41
In
5.22
OS-1
0.w
8]1L
O.Tt
CS-2
a09
1
0.28
OS-3
O.Op
10o
IO.TI
N-
r an
6
ZW
~
1
100
Q
i
\ SGIE IWI FEET
I
U
N O
1
1
I A
V1
J a
s�
1
s
A
1
15
1
1
�
I1
6
1
€�
1
NUTS
THREDUCLAKIENTIHAS BUN
0 • R' r \ .r _ �� - - 0607 \ 1 / // RELEASED By OLSSON
_ J� ,:. OUP, EWSDNG "` --- w-� \\ �i ASSCCUTE5DX0'FORRNEW
''/ r F• STRUCTURE 'SPILLWAY _` '. - __ _ ... / // - In REDUw.DRY AGENceS AND
;o//i' /ir//i / _ _ _ _ _ - 9'%5'%24• TTPE Y RPRAP (BURIED) --
A _
g \\ 3\` p//� / W/ 12" II E 1 BEDDING
75 LP 38' RCPO 0.8x
jI 10' TIDE R IN E
I I,II
e � S'COWRTS _ 9+aN+u+ix�.4.vet3.u+e\__r. i..
- -CSU TENNIS-
NE
AA
B'%3'X24•
II W/ 12' TYPE II 9EDdNO _ -
I It I -
yy
CE I I\
I I I \\
OCOMBNAPON NLET \
g I 5'X3'X24• TYPE M RIPRAP (BURIED) 2
WA2. 1YPE 11 BEDDINGllu
�.
1 a\
Bi /I ����
'LL 18•RCPO'ti r%I , I'IiI II I,n I-AsM-111-1111 \IH 181, UN11
7t*4
1\4 444
�• .'
IVA
kk
\e3
GIILVERT__
r
MOM PROFFESSONAIS AND E
z:Fm \ YluEcr Tc cxwcE. Tx.
\ - ctt MENTSNOT TUBE USED
%\I I I / / / / - NER00Ns HU DNOR
AI
RDfliiONTAL OR VFRi CALISTHE
�/ MEETING UTILITIES CHI ON
_� �/ � i THIS GRUBBING HAVE SEEN
_I-�.EG W PTTED NOUN THE REST
_ "-'� AVAEIHLE INFORMATION S
an
5036=�� .SIOEWNJ(2THECONRAUNOR m
NTro FER THE RE5NSICURY
�'WL\ERTFIELD
UNLIDES PRIOR 70 THE
10.%SOC14• TYPE M NIEFFEE' THE LOCATION GO AA.L
RIPRAP (BURIFO)'. H �" /! - -OJg z f� \CONSIBRUCTIONACTIVOIES
CONANEAREmENTOFANY
W/ 12• 11PE II BMCINa _ - -- -'
_EE.....■.'mllll
oil 00a11W11 1 �a,4
!Q
_ _ _ _ ELLPTICAL Rae asx
/ 1
7C
TYPE D-12
NOTE FOR ALL D-12 SIDEWALK CULVERTS INCLUDE (L.
WOE 24• RIPRAP PAD DOWN ALONG CHANNEL AND °
RUN ALONG OTNER SIDE OF CHANNEL UP TO A
HOGHT OF 2 FEET.
B
SUMMARY TABLE
100-YEAR OUSEL
50216,08
100-YEAR RELEASE
0.87 COS
ORIFICE DIA
3.75 INCHES
ORIFICE ELEV.
503&8
DET ♦ WO EVIL
4.25 AC -FT
EX. SPILLWAY: ELEV.
5038.5
EX. SPILLWAY: L
30 FT
E%. SPILLWAY: A
1.50 FT
WQCV REOD
0.01 AC -FT
WVCV EIEV.
503270
LEGEND
X BASIN NAPE
INLET
% IMPERWCUSNLSS
BASIN AREA
RIP RM
(ACRES)
FLOW ARROW
FES
BASIN BOUNDARY
STORLI SEWER PIPE
NI
N
m
Q
Ud
W
DO
W
Z H
z
Wa
F (7
Q
UK
a
Ov
J
0
SARI
FUI
Ewc,axim,
AUK
NAKED NO
Chl
SHEET
1 of 1