Loading...
HomeMy WebLinkAboutDrainage Reports - 06/30/2015 (2)I DRAINAGE REPORT FOR Lightfield Enterprises, Inc. 2600 Midpoint Drive Fort Collins, CO 80525 Prepared for: SDP Architecture 633 Agate Court Fort Collins, CO 80525 Prepared by: QUALITY `x ENGINEERING www.quality-engineering.com. 1501 Academy Court, #201 Fort Collins, Colorado 80524 (970)416-7891 QE Project No: 7025-002 Date: January 21, 2015 Lightfield Enterprises, Inc. FINAL DRAINAGE REPORT ENGINEER'S CERTIFICATION I hereby certify that this Final Drainage Report for the design of stormwater management facilities for the Vogel Concrete Project was prepared by me, or under my direct supervision, in accordance with the provisions of the City of Fort Collins Storm Drainage Design Criteria and Construction Standards for the owners thereof. �OQ`PEO GSFN {(0 41326 m .010 a FSS��NAL ENG\ Registered Professional Engineer State of Colorado No. 41326 I. Table of Contents I. GENERAL LOCATION AND DESCRIPTION.........................................1 A. Location.................................................................................................................... 1 B. Description of Property ........................................................................................... 1 II. DRAINAGE BASINS AND SUB-BASINS..................................................2 ' A. Major Basin Description......................................................................................... 2 B. Sub -Basin Description............................................................................................. 2 ' III. DRAINAGE CRITERIA 2 ............................................................................... ' A. Regulations............................................................................................................... 2 B. Implementation of the "Four Step Process".......................................................... 2 ' C. Development Criteria Reference and Constraints ................................................ 4 D. Hydrological Criteria............................................................................................... 4 E. Hydraulic Criteria................................................................................................... 5 F. Modifications of Criteria......................................................................................... 5 IV. DRAINAGE FACILITY DESIGN................................................................5 A. General Concept....................................................................................................... 5 ' B. Specific Details......................................................................................................... 6 C. Rain Garden/Detention Pond.................................................................................. 7 V. CONCLUSIONS..........................................................:..................................8 ' A. Compliance with Standards.................................................................................... 8 B. Drainage Concept..................................................................................................... 8 ' VI. REFERENCES...............................................................................................8 VII. APPENDICES A. Hydrologic Computations Vicinity Map FEMA FIRM Exhibit USGS Soil Map Fort Collins Rainfall Intensity Curve Fort Collins Rainfall Intensity Table Table RO-3 Recommended Percentage Imperviousness Values Rational Method Calculated Composite C Tables Rational Method Calculated Imperviousness Rational Method Calculated Flows B. Hydraulic Computations Table 3-8 Effective Imperviousness Adjustments for Level 2 MDCIA Detention Volume by the Modified FAA Method Reduced Detention Volume by the Modified FAA Method (Via Table 3-8) Stage -Discharge Sizing of Orifice 12" RCP Flow Calculation C. Water Qualfty Design Calculations UD BMP Rain Garden Calculations ' I. GENERAL LOCATION AND DESCRIPTION ' A. Location ' The proposed site is located in the southeast quarter (SE '/4) of the northwest quarter (NW '/4) of Section 20, Township 7 North, Range 68 West of the 6th P.M. in Larimer County, Colorado. Specifically, the property is located on the north side of Midpoint Drive, about halfway between South Timberline Road and Sharp Point Drive. More generally, southeast of South Timberline Road and East Prospect Road. The property address is 2600 Midpoint Drive, Fort Collins, Colorado, 80525. (Please see the vicinity map ' located in the Appendix A). B. Description of Property The property is Lot 17 of the Prospect Industrial Park and is currently 0.86 acres of undeveloped land surrounded by commercial and industrial properties to the northeast, northwest and southwest as well as a vacant lot to the southeast. Midpoint Drive is located directly southwest of the property and acts as its only access. South Timberline Road is positioned further southwest while East Prospect Road is located equidistance to ' the northeast. All surrounding roads are both currently paved with curb, gutter, sidewalk, and utilities installed. ' The existing property is mainly re -seeded overlot grading that drains generally to the southeast towards Midpoint Drive at approximately a 0.5 percent slope. Midpoint Drive, then attenuates the flow via gutter towards the intersection of Midpoint Drive and Sharp ' Point Drive where it is met by an area inlet and eventually makes its way to the Poudre River. There are generally no offsite flows that drain towards the property. The entire site is located in FEMA Flood Zone X, entirely outside of any 100-year flood plain (see ' FIRMETTE in Appendix A). According to the NRCS soils map survey, the native soils consist of the Type "D" soils. These soils consist of deep, poorly drained soils that formed in alluvium. These soils ' produce high runoff rates and low infiltration. There are no irrigation facilities located within the proposed site area. The proposed development will consist of the construction of two buildings that will act ' as office and storage and maintenance space. The two buildings (4,900 and 2,218) S.F. will be connected via a sister wall and will act as one (7,118) S.F. building. A drive aisle will be constructed and will include asphalt and impervious pavers. The northern portion ' of the site will be a gravel road -base surface and will act as site storage. II. DRAINAGE BASINS AND SUB -BASINS A. Major Basin Description The Vogel Concrete proposed site is located within the Poudre River Drainage Basin. The basin is a major tributary to the South Platte River and the major confluence of many of Fort Collins' sub basins. Water quality and detention are required to attenuate developed flows to a 2-yr historic release rate. B. Sub -Basin Description Historically, the entire existing site drains to the southeast side of the property via sheet flow ' at a slope of 0.5 percent. This flow then exists the property to Midpoint Drive where it is then transported southeast until it is met by an area inlet. This flow is eventually carried via storm pipe to the Poudre River approximately 0.24 miles downstream. ' The developed site is delineated into one sub -basin with a rain garden/detention basin designed to provide both the required water quality capture volume and 100-year detention ' volume. Sub -basin B1, (0.86 acres), consists of roof, asphalt/concrete, gravel base course and t landscaped area. Rainfall is carried away from the buildings in every direction into valley pans, swales and soft pans. From there; flow travels into L.I.D. rain garden/detention ponds. The WQCV is treated via the rain garden/dry well area while the 100-year flow is released ' at the 2=year historic rate. This sub -basin is conveyed out to Midpoint Drive, as it does historically, eventually making its way to the Poudre River. Currently, offsite flows do not enter the site property. This will not change after the site has been developed. III. DRAINAGE CRITERIA ' A. Regulations Drainage design criteria specified in the City of Fort Collins Storm Drainage Design Criteria ' and Construction Standards manual (FCSDCM) and the Urban Storm Drainage Criteria Manual, Volume 3 by the Urban Drainage and Flood Control District (UDFCD) have been referenced in the preparation of this study. ' B. Implementation of the "Four Step Process" t The overall stormwater management strategy employed with the Vogel Concrete project utilizes the "Four Step Process" to minimize adverse impacts of urbanization on receiving ' waters. The following is a description of how the proposed development has incorporated each step. Step 1 — Employ Runoff Reduction Practices. The first consideration taken in trying to reduce the storrnwater impacts of this development is the site selection itself. By selecting a site with historically undetained runoff, the burden of development will be significantly less ' with a WQCV and detention pond. Also, for Basin BI, grass swales, soft pans and pavers are used to convey the runoff from impervious surfaces, reducing the effects of imperviousness. Step 2 — Implement BMPs That Provide a Water Quality Capture Volume (WQCV) with Slow Release. Urban development will cause stormwater runoff to increase from the ' site. The primary water quality will occur in the combined rain garden/detention pond on the southeast side of the lot. Refer to the map pocket for rain garden and detention pond details and cross -sections. The pond will reduce the release rate to equal or less than the ' historic 2-Yr release rate, while improving water quality. Step 3 — Stabilize Drainageways. The Poudre River is the governing drainageway for the Vogel Concrete site. While the project doesn't affect the river directly, the proposed project indirectly helps achieve a better stabilized drainageway nonetheless. By improving the water quality and lowering the developed runoff to lower than the historic rate, the .� likelihood of bed and bank erosion from this site is greatly reduced. Step 4 — Implement Site Specific and Other Source Control BMPs. The Vogel Concrete site contains a plethora of source control BMPs. ' Permeable Pavement Systems: Flow from the roof will directly flow into the void area of the pavers avoiding any extra pollutant -flow contact time. Additional flow from the sidewalks and drive aisle will be captured by the pavers and be treated before and ' underdrain system transfers flow to the Rain Garden. ' Rain Garden/Dry Well: All Unconnected Impervious Areas (UTA) are drained through the on -site rain garden, reducing the impact of the impervious areas on water quality. Since the site contains poorly draining soils, two, 10 feet by 10 feet dry wells have been added to aid ' in the infiltration of the WQCV. t Soft Pan: Before UTA flows are captured by the rain garden they are attenuated via pans, gutters, swales and soft pans. Some of these flows will travel through the soft pan on the northeast comer of the lot at a 1-2% slope and be the first defense against pollutants. ' C. Development Criteria Reference and Constraints The criteria used as the basis for analysis and design of stormwater management improvements for this site are those found in the references cited. To the knowledge of the author, there are no other capital drainage improvements planned ' for this portion of Prospect Industrial Park, aside from those referred to above, that would constrain or otherwise influence the design of the stormwater improvements for this site. D. Hydrological Criteria Stormwater runoff from the respective sub -basins of the Vogel Concrete site is analyzed for ' storms with 2-year and 100-year return frequencies. Due to the relatively small aggregate area of the tributary drainage sub -basins, the Rational ' Method was chosen for use in the design of the stormwater management improvements. The Rational Method provides that: ' Q = CIA, where: Q = Design flow in cubic feet per second (cfs) C =.Coefficient of runoff for the area under consideration ' I = Rainfall intensity for the design storm duration (in/hr) A = Area of -the drainage sub -basin under consideration (ac) ' Peak flows were calculated using the Rational Method for the 2-year and 100-year storm events. This software uses the local 1-hour rainfall depth and Fort Collins rainfall intensities developed calculate rainfall intensities as a function of the time of concentration. ' These values were obtained by the City of Fort Collins Rainfall Intensity -Duration - Frequency (IDF) curve/table; Figure 3-1 and Table 3-la, and can be found in the Appendix. Additionally, per City of Fort Collins, the coefficients have been multiplied by the ' appropriate storm factors. Percent imperviousness values were taken' from Table RO-3, Recommended Percentage ' Imperviousness Values, UDCM (See Appendix). Soils of hydrologic soil type "D" dominate the site. Onsite runoff was calculated to determine the runoff differential between existing and developed conditions for use in sizing the rain garden as required by the FCSDM.. The hydrologic basin parameters and runoff rates are included in the Appendices and include quantification of the allowable volume reduction. The USDFCD software UD-BMP v3.03 was used to calculate the required WQCV and the ' size for the proposed rain garden. The Urban Drainage, Table 3-8 Effective Imperviousness Adjustments for Level 2 MDCIA was used to determine the effective imperviousness of the site. ' The Modified FAA Detention Method as outlined in the UDCM Control was used to compute the required 100-year storage volume requirement for the site. The UDFCD software UD-Detention v2.34 was used to calculate the required detention storage volume ' as well as tabulate a stage -discharge relationship for the water quality capture volume and outlet structure. The design worksheets included in the Appendices to this Final Drainage Report present documentation of the hydrologic calculations for the on -site storm drainage systems. E. Hydraulic Criteria Within this development, all runoff will be conveyed on the surface, initially as sheet flow ' and subsequently as concentrated flow in shallow pans and gutters, as well as in grassed swales and soft pans. The west portion of the site will drain under the driveway through a culvert. The assessment of required capacity and the sizing of the respective components of the drainage system are based on the anticipated runoff from the 100-year storm event. The surface runoff will culminate into the rain garden/detention pond at the southeast ' portion of the site. The pond outlet will consist of a spillway weir with a water quality structure and �an orifice plate restricting the ultimate release rate to equal or less than the. allowable release rate.of 0.16 cfs per acre. An emergency spillway with a crest elevation set greater than the required 100-year water surface elevation and sized to convey the 1.00-year developed flow and offsite flows at an operating head not exceeding half of the available freeboard is implemented in the detention pond. F. Modifications of Criteria There are no modifications or variances requested in connection with the design of the stormwater management for the Vogel Concrete site development. IV. DRAINAGE FACILITY DESIGN A. General Concept The storm drainage system is designed to safely convey developed storm flows by sheet flow and concentrated pan, underdrain, gutter, swale and soft pan flow to the rain garden/detention pond located at the southeast comer of the property. The rain garden/detention pond has been sized for the total required 100-year storage volume and the WQCV requirements for the entire site. The pond outlet structure is the ultimate release point off of the site and will be releasing the flow at the historic 2-year release rate of 0.16 cfs per acre, or 0.14 cfs, as required by the FCSDCM. The design worksheets included in the Appendices to this Final Drainage Report present details of the hydrologic and hydraulic calculations pertinent to the design of the on -site V storm drainage system. A drainage plan, showing the proposed development of the site and developed drainage patterns is included in the map pocket following the Appendices. B. Specific Details There are a number of collection and conveyance scenarios within the drainage regime associated with this development. The respective scenarios are described below. Sub -basin B1, (0.86 acres), generally conveys flow away from the buildings until it is concentrated and eventually attenuated into the rain garden. Northwestern flows start initially as sheet flow over the concrete pad and road base material to the north of the building. They continue north until they are met by a 2 foot valley pan. This valley pan runs parallel to the northern property line and transfers the flow at 0.5% to the soft pan on the eastern side of the lot. The soft pan carries flows south to the rain garden at 1.0% and acts as both a means of conveyance as well as a primary treatment area. Once the flows are within the rain garden area, they are initially infiltrated while excess flows above the WQCV are detained and released out to Midpoint Drive and eventually into the Poudre River as described in the rain garden/detention pond section below. Northeastern flows are much like the northwestern flows described above. They start ,.initially as sheet . flow over the concrete pad and road base material traveling . in two directions. First, flows travel north into the 2 foot valley pan and continue on exactly as the northwestern flows. The second travel path attenuates flows directly into the soft pan and proceeds as described by the northwestern flows. Southwestern flows start initially as sheet flow over the roofs and sidewalk area. Half of the northern building's roof will drain to the west while the other half will drain to the east. Western flows will flow via gutter directly into the swale on the west side of the building. This flow eventually makes it way into the detention pond area in the southwest portion of the lot. Flow will accumulate and concentrate into the soft pan within the pond and flow towards the 12 inch culvert. This culvert allows for flow captured in the southwest detention pond to travel underneath the drive aisle to the rain garden where it can infiltrate and continue on as previously described. The eastern portion of the northern building's roof flows will flow via gutter and sub -drain directly into the void space of the permeable pavers located within the western most parking spots. From there, flow is transferred via a 6 inch sub -drain to the rain garden where it proceeds just as the northwestern and northeastern flows. The southern building's roof will drain directly into the detention pond located on the southwest quarter of the lot and proceed into the culvert and into the rain garden. The rest of the area encompassed by the southwestern portion of the lot will flow initially as sheet flow toward the pervious pavers located within the southeast parking spots. A portion of this flow is infiltrated through the pavers and is eventually transferred to the rain garden via a 6 inch sub -drain, while the remaining flow is transferred directly to the rain garden through a 2 foot curb cut. Southeastern flows include the drive aisle and the rain garden. Flow starts as sheet flow and proceed to the pervious pavers and continue just as the latter portion of the southwestern flows do. The rain garden is located in this quarter of the lot and acts as the ultimate release point for the entire site. C. Rain Garden/Detention Pond The rain garden/detention pond has been designed to accommodate volume and release requirements for the Vogel Concrete site in its entirety. The 100-year detention requirement for the site is 5,238 cubic feet, while the WQCV required is 533 cubic feet. The total detention volume required including 100-year detention and water quality is 5,771 cubic feet. The WQCV infiltrates completely through the rain garden media. Since the soils are poorly draining, two, 10 feet by 10 feet dry wells have been designed to assure the flow fully infiltrates the surface and does not adversely affect the site drainage. The outlet structure has been designed to release the flows above the WQCV at a maximum allowable release rate for the site of 0.16 cfs per acre. Rain Garden Detention Pond Summary 300-YR Total WQCVWQN+100 Volume Volume 100-YR WQCV Spillway 100-Yr Outlet Required Yr Req'd Release Outlet Size Required Provided Elevation Elevation Elevation Type (ac ft) lac-ft) Rate (cfs) ac-ft ac-ft 0.012 0.12 0.132 0.134 4897.26 4896.17 4897.26 0.14 Orifice (1) 3 1/8" hole The drive aisle will also act as a utility and access easement along the entire west side of the detention pond to allow for maintenance access. There will be no new facilities required offsite for the conveyance of the minor or major flows to the Poudre River. I 1 I I V. CONCLUSIONS A. Compliance with Standards The drainage design for the Vogel Concrete Project is in compliance with the requirements of the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual as well as the City's floodplain regulations. The criteria and recommendations of the Urban Storm Drainage Criteria Manual are also reflected in the design of the drainage systems. B. Drainage Concept The drainage design for the Vogel Concrete Project will be adequate to safely convey onsite and offsite flows through the development. The design will attenuate the 100-year developed site flow down to the 0.16 cfs per acre release rate as required by the City of Fort Collins. Development of the site, as proposed, should have a beneficial impact on water quality in downstream drainage facilities and drainage ways by reducing and delaying the initial discharge of runoff from the site such that sediments and other potential pollutants typically carried by this first flush are removed from the flow. VI. REFERENCES "City of Fort Collins Stormwater Criteria Manual", City of Fort Collins, Adopted December 2011 "City of Fort Collins Municipal Code", Chapter 10 — Flood Protection and Prevention City of Fort Collins, 1987 Urban Storm Drainage Criteria Manual, Volumes 1, 2, and 3, Urban Drainage and Flood Control District, April 2008 VII. APPENDICES A. Hydrologic Computations Vicinity Map FEMA FIRM Exhibit USGS Soil Map ' Fort Collins Rainfall Intensity Curve Fort Collins Rainfall Intensity Table ' Table RO-3 Recommended Percentage Imperviousness Values Rational Method Calculated Composite C Tables Rational Method Calculated Imperviousness Rational Method Calculated Flows �� U W OQ Of 0 3nb AVIN31 0 J z Z W Z U 0 0 0 w w v b �c 5A� w W C m0av mm2Eli Ix G N �, �En— p d mauve W o p E uoo E 78 SN < °om=a W w �d �' n o Z� 6g} 2 o y �2SSm v jj O S h (� a € 9 O 2 z J Z O vgv0g u�gno O 30 71 W %. W s ¢ 'S ym@° O n oq OEf to II i D Z r7 O F �I Gfi a-4 , nE�o g ' p rio _ JJ U O 0 N o ="= e i t m E E z s€°�� W L Z 9 0 Z TT G �� = c ( �'A [� o_I uLL 0 o V Q O ¢ Ji $ o$-yE nx: SOt n�c Cl) w0 04 O Q 2w i N�e3 W `o2Emc d c IJL I -a U d N 38 g�s�` g 8 =sa 0 O q m._ Q V C 4 a M C % r 9 u LL v a ®®® v ® IA O O ^�=gE E a m LO wamvo H 133b15 H3NVS ry Co rN ff � 133H1S OHOdIV EMIG 133b1S P N011Vd '^O%•%;' ¢' °C 2 133H1S Milli � U Q j QX c w 3NVl 1V11dSOH J P J L y <> a J P �] w 133H1S NOSIH3SON ~ y 50J z a w �6S w Q N CO 0 ~ (Y) 0 r U aj 133HIS �6'�S O �Oslb Pro yd'<j N 0 v 0 0 0 U W W D� C J 0 U W_ W �Z WO x U 07 = t— o rn _U O 9 M.6ZS SOT M.ESE SOT It 0 v 0 0 0 U Z 0 0 LL ca G 0 Z W W J d N O w �Jp m m u O C N T0� o" a _m ammm m� t0v ° E m 0 m Eo C w m.aI E c�m�10 m E 3 m m 0, O C > L O L m V - 0 O C (D O m T a )v m En o COL d a m m > m E0)Et c � � N m L c rn ° C m r c E E m J $ m 3 w E aw m a o O rn C m O O m mo O m` mm m a Z I 3cy O) Z O L m m m m J C M E in m w300 w!5 E a�i r o N c�E =Y my m v° a 04 m "o A E O` 10 m L ID m E N 0 m O ro Lm Z i.`•" (D c Cc O U ov y N 2 .00 V m Z L) p �O t y E EU �w m A d 0 U 0 p Eri QN 0 — La V mo m Q a a = m p@ y m ti D >` y mm �p cmmy O iC Q V m m 8 M� C m m C� U M Mm ZTL w3a y m i w oE a a>i` O m m m E O 0 Uo c 0 a> mVl m 0 E cmcRN 3. Zm Em )E �_Qaaz JL l a C C m m J 7 y L m C m a Z¢ m m y mE (D O'OYvm m m oc � 0 mQmT m a-Z ?ui � E °E? 0nmO CO m u ooE)J dJ am m LCooa vm0 'cE ' Ja- � 03a n� > Nmmm E fUv nQ n'f to o O N LEa cmi E 0 m a > m 0 N N T c m m U t r n C vO O 0 L m E a a U O O Z 4 m to O j 9 Q ❑ ❑ ❑ ❑ ° n E � A _ m H m a m O Q 0 � 0 C c O c o a� IL o e o C 3 0 0 0 a 0 e a a ino m U o o Z 0a a m 'm U u o z 0 a m en a o ? 2 o ®e �a❑❑❑❑❑❑❑❑ N N N QN II Hydrologic Soil Group—Larimer County Area, Colorado TOUCHSTONE HEALTH Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit— Larimer County Area, Colorado (CO644) Map unit symbol Map unit name Rating Acres in AOI Percent of AOI ' 53 Kim loam, 1 to 3 percent B 1.4 12.1 % slopes 94 Satanta loam, 0 to 1 B 10.4 87.9% percent slopes Totals for Area of Interest 11.8 100.0% ' Description Hydrologic soil groups are based on estimates of runoff potential. Soils are ' assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. ' The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and CID). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. ' Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils ' have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist ' chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or CID), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition L.Sun Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 11 /25/2014 Page 3 of 4 Hydrologic Soil Group—Larimer County Area, Colorado TOUCHSTONE HEALTH Component Percent Cutoff.. None Specified Tie -break Rule: Higher rSM Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 11 /25/2014 Page 4 of 4 - r Q � N cr O d = U LL ( } N N O _ f' 1 O_I Q LL 0 0 O O O O O O O O O O O O O O O O O O O O O O O O r O LO d' C7 CV O (JI.j/UI) Apsualul 0 N T— Qo 0 A M ti J 0 I 0 City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method (5 minutes - 30 minutes) Figure 3-1a Duration (minutes) 2-year Intensity in/hr 10-year Intensity in/hr 100-year Intensity in/hr 5.00 2.85 4.87 9.95 6.00 2.67 4.56 9.31 7.00 2.52 4.31 8.80 8.00 2.40 4.10 8.38 9.00 2.30 3.93 8.03 10.00 2.21 3.78 7.72 11.00 2.13 3.63 j 7.42 12.00 2.05 3.50 7.16 13.00 1.98 3.39 6.92 14.00 1.92 3.29 6.71 15.00 1.87 3.19 6.52 j 16.00 1.81 3.08 6.30 17.00 1.75 6.10 18.00 1.70 _2.99 2.90 5.92 j 19.00 1.65 2.82 5.75 1 20.00 1.61 2.74 5.60 j 21.00 j 1.56 2.67 5.46 22.00 1.53 2.61 5.32 23.00 1.49 2.55 i 5.20 24.00 1.46 2.49 5.09 25.00 I 1.43 2.44 4.98 I j 26.00 1.40 2.39 4.87 27.00 1.37 2.34 4.78 28.00 1.34 2.29 4.69 29.00 1.32 2.25 j 4.60 30.00 j 1.30 2.21 4.52 . DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF Table 110-3—Recommended Percentage Imperviousness Values Land Use or Surface Characteristics Percentage Imperviousness Business: Commercial areas 95 Neighborhood areas 85 Residential: Single-family Multi -unit (detached) 60 Multi -unit (attached) 75 Half -acre lot or larger ' Apartments 80 Industrial: Light areas 80 Heavy areas 90 Parks, cemeteries 5 Playgrounds 10 Schools 50 Railroad yard areas 15 Undeveloped Areas: Historic flow analysis 2 Greenbelts, agricultural 2 Off -site flow analysis (when land use not defined) 45 Streets: Paved 100 Gravel (packed) 40 Drive and walks 90 Roofs 90 Lawns, sandy soil 0 Lawns, clayey soil 0 ' See Figures RO-3 through RO-5 for percentage imperviousness. CA = KA + (1.31i' —1.44i z + 1.135i — 0.12) for CA >— 0, otherwise CA = 0 CCD = KCD + (0.858i' — 0.786i 2 + 0.774i + 0.04) CB = (CA + CcD )12 2007-01 Urban Drainage and Flood Control District (RO-6) (RO-7) RO-9 u x _ � V T .. o u .+ a m w m i w m 0 0 L M O O O .4 O N w.O O. E 0 u � u > y N ! O O LO V N Lr! Lr? n m O a 00 00 e_ E u° A to l0co m 0 0 0 0 G 6 Ci Ci 0 F N d 1 O O O O o N C II 3 u 0 O 0 O O O O O A J N `u h m o o o 0 ID 0 tD 0 w o 0 0 0 o 9 cc c y a O N � N cp W W u h 0 N � vm o � d II O O O O 0 0 O Ci A U l7 N A �1 d m 0 Q O 0 O O m O 0 O U 0 0 Ci 6 d �- u C O V N L u h ci O O O O O O O O Q II U 00 00 A �- L o. N Q N N w w m m A m C 0 6 m n m w w a s C m O L IY d C 0 C_ O U r O LL O Y V '-I rl N C7 ~ O O1 � L N F � E ~ O `y a d N C � N w L N W O � C j K u E Y O N o ` N a. O O 0Q Z U 2 U ' / C O H 7 O_ v N c O L u 3 ' N N 01 C r C N o aR y C y Z v V 01 a v o. E m _ N rl l0 11 %D O O 0 0 p mr O O O O N d O O- O O O N II O O O O C O O O O m m J N Y O O 1D n M 0 0 m in N II O O 0 0 p O O O O O K YI d Y W I, m O 00 m Ln r-I 0 a II o o -o 0 0 C 00 a 0 C C7 u"i X W > W N O u m E i O Q ^� cc 00 O O O II o 6 0 0 d `- v C O {J H d u m O O 0 0 0 0 Q II O O O O O O O O 10 �" L a N Q N C 'i .-m-I rl ,my .N LU lJJ m m m m _C .O a r-1 m N ''I. m ry m `LI w a a N N O a O N r-1 '-I N r-1 O L Y 19 c 0 m N C O v O LL 3 O C m v v to m c i 0 c Ia rti 0 v �o H v a N 7 f0 7 O i N O. E c c N u o a Z V N C C Q MY u v m Q u m 3 o M o LL C u m ~ r1 N T N m n b T e s oo ao _ m m m n O C t N .. O O m P N n b n N o C O O m m P N n b n N O N O C L C y c p c a O m P Yf P P t b N n n m i N b n N m m N C E 88 88 O m N m m F A L F e E T O i� ui o 0 vi vi 0 vi E 0 0 0 0 0 0 p N 08 O N y 00 . E F a c' n L p ~ FF Y W O o X o .mp o .mp L J •_ pp p p E N 6 m e T �O Ej O L n p R z L E N ui vi N p e X m � m voice L J IQ m P 0 O p y LO O iE. 9 O o m 0 O p f O 0 m 0 ti ti m o o �b'1 m 0 0 O M Y m 0 0 b m 0 0 - m m m c m 5 m 6 a op 0 a O O Q a U C p a `o _L � 3 � O L O f 3 0 m - c � V O � m ; b' p ^p a z � 0 3 n V V y � Q n � r E d O u m C V V A Q F m U ° p p ~II x E z APPENDIX B: Hydraulic Computations Table 3-8 Effective Imperviousness Adjustments for Level 2 MDCIA Detention Volume by the Modified FAA Method Reduced Detention Volume by the Modified FAA Method (Via Table 3-8) Stage -Discharge Sizing of Orifice 12" RCP Flow Calculation Calculating the WQCV and Volume Reduction Chapter 3 Vogel Concrete: Quality Engineering Impervious Reductions 100 % 90% 80% n 50% E m 40% Y u d w W 30% 20% 10% 0% 0' Figure 3-8. Effective Imperviousness Adjustments for Level 2 MDCIA 4.3 Site -level Volume Reduction Methods For site -level planning, whether at a conceptual level or a more advanced stage of design, it is not necessary to use default D and R values if the various area fractions of a site (i.e., DCIA, UTA, RPA, and SPA) can be defined. Two options are available for quantification of volume reduction at the site level when these fractions have been identified: I_ SWMM modeling using the cascading plane approach, or 2. UDFCD Imperviousness Reduction Factor (IRF) charts and spreadsheet (located within the UD-BAP workbook available at www.udfcd.org) ' The UDFCD IRF charts and spreadsheet were developed using a dimensionless SWMM modeling approach developed by Guo et al. (2010) that determines the effective imperviousness of a site based on ' the total area -weighted imperviousness and the ratio of the infiltration rate (average infiltration rate based on Green-Ampt ), f, to the rainfall intensity, I. Because the IRF is based on cascading plane CUHP/SWMM modeling, it will yield results that are generally consistent with creation of a site -specific SWMM model. 3-14 Urban Drainage and Flood Control District August 2011 Urban Storm Drainage Criteria Manual Volume 3 1 DETENTION VOLUME BY THE MODIFIED FAA METHOD Project: Vogel Concrete _ Basin to: Developed 100-Year (For catchments less than 160 acres only. For larger catchments, use hydrograph routing nalhod) (NOTE: for catchments larger than 90 acres, CUHp hydrograph and routing are i ecorronanded) Determination of MINOR Detention Volume Using Modified FAA Method I Determination of MAJOR Detention Volurna Using Modified FAA Method I Gairma,y Crania. I„ag.rae. Caolmnl Drainage Area Preamalopmern MCS Sol Group ReN Paded for Deier.ion Cneol T.w o1 Cdcarovion of W atenlad Abrade LWI Release Roe One n Precy.amon De.g0 w9,m IDF Fermui• l.C; plJCaaTyC. Caenlclen One Co•n'obn I". 1,. vommmNml loan.. A. saes Type. A.B. C, oto T• last(2.5.10.25.50. a loot To. mean 0- dv.. P,- C,- IBgo Ca- 0 Ce. O.M CalaM1 ant Drawee Impemotsrwsa CNC.,nf Drainage Ana Preawbp,neM WCS Sod Group Return Pniool for Detention C runt cane Of Cinmameauon of waum ad A•ae,ffib Una Reba. Rate One u P,erydffinn Dusan Ra ialmI IOF Farmula f. C: PAC,4T,]`Ca Coaftiam Ow Coefficient Tap CosXkbnl Tiwe le• BIRO PMIM A- offer calm Tive- D AB.C. oO T IW yeas (2.5, 10, M.N.. la) To. 571 ee•laa 0. 0.16 Ce/cm P, .1 263 mdas or- 28.50 C.. 10 C•- 0.711191 Rao„ fgelM1 era C- a 44 _ Rvnll CoeHcbM C- 065 IryN. Peak R.11 0". 1.01 _eta ldlga P.ak R.H 0,- 5A4 --�0.14 de Aloeeble Pear GNIIOW Rai 09-out- 0.14 oM Atoe,ade Peak Callow Rale Opoa- ola Mai. FAA MNer Sr." Volume a a0 Wbw trot Mad. FAA Map, Sen., Y.N.. 5,413 xlelalaea Mod. FAA Mebr Saone VoNma. "if _ecrM Mod. FAA Major Sbreto Volume._ 0.124 lerM I <Enter RartalB aeon ln,,emervaI.. V. 51or 5Mole4 Byrlhs Relief Ir/Ma MAwlexa Averse OWba 9ao•p1 Re6iJ Rnbial 4dba MrM1as Avergp 011Xoa Sbrapa Ovion hussy Vo9nls Fail, Olson V0141M Vdurle Conseil Miller Volans Fabr d/ba VMane vauns x3.Ya M ift W,__. 'm' ds meter wlex nM1ws Flrlas yM1 rn-keel da sn-idol ace -lax 0proud i-fto am Baoo ON am D.Doo ome a ON OND ON ON ! 0000 am 1 352 0002 1.00 ou o000 012,z _ 1 I2.1e p.00s_ 100 _0.1_4 0.000 0009 2 329 0003 1m 0.14 Om0 am 1135 Ov__ 100 0.11 O.O,lll 0017 3 3m -ONS -Om 1.00 0,14 ONI 00" 3 _ 1066 0.025 _ too _. 0.14 am, 0024 1 "1 IN 014 Om1 am 4 too 0.031 IN 0.14 ONI _' Do" 5 276 _ O.00T IN 014 0.001 BAN 5 OS2 0037 IN 0.14 float 0016 _ 5 M BON _am 014 Omit _BOOR, _ 6 am 0.012 ass _ 0.14 0.001 ON, ] 250 0.009 0.91 0.13 Oml am ] om 0447 09, 0A3 am] _ 0045 0 239 0010 Om 0.12 goal GM s 325 0051 0e6 oft 0001 0ON 9 2" 0.011 0.82 DA, Boot 0009 _ 9 IN goes _ 082 _ 0.11 0.001-- � 00" 10 220 0.011 _ 0.79 all 0.002 0010 10 - 749 0.059 0.79 0.11 (1.m 0057 _ 11 212 __ 0.012 0.76 0.11 Oo02 O.11ll 11 7.30 0062 076 0.11 0.002 0060 12 2.04 0.013 0.74 010 0002 Doll 12 - ]M 0.065 074 0.10 ODo2 am 13 197 0,013 0.72 010 OM 0.012 13 am BOM 072 0.10 am 0a" M 190 0011 0.]D 0.10 0.f02 0012 14 657 0071 OTp 0.10 0002 0.069 t6 161 0014 a.89 0.10 _ 0W2 _ 0.012 _ is - C36 0.07I 069 0.10 a." 16 170 0045 a." am am 0013 _ 16 6.17 0.0i6 0So am _0003 am _ 0074 17 1.74 0,015 0.87 Om 0002 0013 17 5m 001e 067 Om _ am 0026 la 1.69 0.016 am Om 0.002 0.014 Is 5.B2 OM066 am 00)e is 1.64 0.016 0.65 am 0002 0,014_ 19 5.66 0083 065 _ _am _ _am O.m 0081 _ 30 160 O.m] _ 064 009 0.002 _ _ 0.01/ _ 20 5.51 0.05 ON -_p6 009 0-002 0082 21 156 _001] 064 on 0003 _ Bola 21 527 OOe] Oita 0.09 _ --_Cs oo DO" n 152 _ 0447 0.0 0.09 am 0015 22 _ 524 aos9 so 0_M - aim 0086 23 148 able 0.62 009 am 23 5.11 ONI OR am OJM O.OM _ --24 1,45 --9418 0.12 009 0003 _0015 Oo15 _ 24 am _ 0092 _ Oe2 Om _ D.W3 0089 _ 25 141 _ _Cola OAI 009 am 0.015 _ _25 am 0094 gal ) am 0.003 0091 Be 138 00,9 06, a09 0003 0016 26 I.T am 0.61 Om O.No 0093 27 135 0.019 "1 Dos am a.016 27 4.67 am 061 Cos am 0094 L 132 0019 ON am 0.003 0.016 26 .- Is] 0.099 ON Om 0.003 0095 29 tw - am AN 009 am - 0.016 26 4.0 DIOO ON Om _ 0.003 0097 30 127 0.020 _ Bea 008 ON11 - 0016 30 1 4M DIM am am 0603 oam 31 125 B.a2o ass ON Ooa - 0.017 m 431 0.10 ass am coca - 0os9 32 422 ooze os9 o.DO 0004 0.017 32 ♦" o.ta ass am 0.004 - BmI _ as 120 0.02, 059 006 Ow4 0.017 33 _ _ _ _ 4.15 0i06 059 - _ am BON 0.02 3a 1.1e coal ON 009 Ovw 0.m2 _ 3i 4.07 01.1 os9 - ON -- cow 0loa 35 1.10 0021 - oss Doe - 0ON 0,017 35 4OO - 0.109 oss ooa o.0a 0.104 3e 1.11 0,021 Dse 00 ooa Bbv 36 3.93 p.109 ass gm o.aa ems 37 1.12 Dan Dm 0,09 0.0a 0.010 37 367 0.110 ass - ON 0.oa '. 0.106 38 1,10 _ 0.022 Om ON 0004, - 0016 _ 36 360 0.111 ON a." 0.004 0.107 39 1011 am 05T 008 00a Bole 39 3.74 0112 a57 0a 0004 0,as 40 102 _ o.ozz ow one OOa 0.018 40 3m 0.114 _ 057 ON ON4 0109 41 Ira O.D22 a_" Dos 0005 Dole at 30 0.115 _ OS] Too _ 0.005 0.110 42 103 _ am 057 008 Door 0018 42 357 oils 057 009 am 01„ 43 102 _ _ 0.023 057 ON 0.005 0.018 43 352 0.117 057 0.08 omd 0.112 44 IN 0.023 056 008 0.005 0.018 44 3.47 0,110 ON 0.08 _ OM 0.113 15 am 0023 O56 008 DODS 0.018 45 3.42 0,118 _ _ON 0.09 am 0.114 a6 ON 0.023 am ao9 Owl Cole 46 3.37 DA19 ON Om Dallas 0,11. 47 ON _ 0024 am 008 am 0019 47 332 a," ON Om am - 01,5 M am _ 0.024 am Dos 0005 0.019 48 328 0,121 ON Om_ BOOS Oils 49 am _ 0.024 ass 008 CODS 0.019 49 3.23 0.122 0% 1 Om _ 0.005 0. 117 50 032 _0024 am 0.08 0005 _0.019 _ 50 3.19 0.123 am Om_ am ells 51 0.91 0.024 am 0.08 0005 Dols 51 3,5 0.124 _ ON _ Om _ Om5 Olt$ S2 0.90 _ D.024 0._55 008 0.ON 0.019 52 3.11 0125 055 am I allo 0119 53 0.39 0.025 0_SS 008 D.008 -_ 0.019 Sl 3.07 0.125 055 0.0 '_ 0006 0120 54 am -. 0025 ON 0.oe 00a 0.019 5. 3.03 0.126 _ 055 ON 0.006 0120 55 _ 0.e]__ 0025 Om 009 aON "is 55 2.99 0127 055 Om _ aON 0.121 56 0.86 0.025 0_35 008 0.ON Dole 56 2m 0.128 055 _ 0m agoo 0122 sr 0,85 DOM am 006 am Dole 52 2.92 0128 D55 0.0 am 0122 56 0.84_ 0025 ass 0.09 am 0b19 so 289 arm _ ass o_oe _ D.00s 0.123 59 083 0.025 0.55 0.08 OM0.019 59 2m DIM055 ON 0ON - 0.124 50 062 0.026 D.55 Dos am 0.019 60 2..2 013, 055 O.OB 0.ON 0.124 Mod. FAA Minor Stores Volune(Cuble O). 940 Mod FAA Motor Sbrau Volume (cubic 10 SA13 Mad. FAA M ner Sorge Volume i•ttaA3. 0.0193 Mod FAA Major Sbrage Volume harem)= 0.1243 ' UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.33, Released August 2013 a EFORE_REDMTION_1a-Yea Dewbped lA DeM,6on_e233_USEkff.AbdIM FM 1/I64N15,2.0 PM II ' DETENTION VOLUME BY THE MODIFIED FAA METHOD ' Project: Vogel Concrete Basin ID: LID Reduced Developed 1O0-YR (For eatchn is Mae Man 180 mrea only. FN Mrger catchments, uee hydrogmph rmting method) (NOTE: for ca/chrnnla larger than 90 acne, CUHP hydrograph and routing are reccr r ended) Determination of MINOR Detention Volume Using Modified FAA Method DeterMnelion of MAJOR Detention Volume Using YotlMMe FAA WY1oe Deakin Information IY1out1 Catcammrt amoral lmo.m.,,ait I,.M20ogm perch Deakin 9lformatlon (haul I; Gol Drerege lmpervo.mara l,- 59.10 Concrete Geelmem Drara9e area A-smma Cmc6mem Orarage Area A- OAaI_ avm PrsaelabpmM NiC55ad Goul Rahn Panda for Delemion Conbpl Type•A. T.(2.5.10.25. S. C.coD SO. or 100) Pradevmlopmenl Wi Sail Gmlp RBNn Penoa lot Delemon COmml Type- 0 A, B. C. At T. i®yewr g.5. to. ss. S0.or IN) T me of Cotut4ybn of w We sled To.mrYYr Time of CmcentratlOn of wNennea T.. 51Ab.sele, i Rebma Rate q.arrears Armmaee i Rekae R. q. cmi Pmtyaa�an P,.rdas Ore�oat PrecprAbn Pr -I M [I As %SO Deegn Flab4laFFwmu4 Coagkem Ora F. Daaign FbinlaN Coeflcre ml O IDF Formula I=C,' P,gC»T,I"C. Cn- 2950 _ 10 COeai[iem T. Cr. C atlkiert Two Ct• 10 CaNikbn Tema Co. 0.M Coenkbrn Trvee Cr.._ 0.799 Deternination of Average Rum"Coatha m Outflow from the Basin lCalculateall: C. Car _ Determination of Avemae Run"Correrml Outflow from the Basin (Calculetedl: C= 0.0 _ Iteb Peak fluon oph. 0A2 dr Imbw Peaty Runll Opn- s.N da A6oaees Peak Qalba Ras 0i- 91 ds ANuwada Peak Qmbw Rafe Opuia= 0.11 as Yea. FAA Ymor guests voluea. >N eualr hart Mop. FAA Yepr Storage Volume= 5238 croak luel Mod. FM Mrwr Storage Veluat. 1.811 scrM Moe. FAA Major Storage Volume= CAN acre-n Erma: Bard a: I'll a visa e e .5lar5 Rarral RamY baba Agjuii Atari OfUbw Storage Rairtal Raises imbw N91sNMnt Avenge OWbw Storage [lateral Imemay Volume Factor (Aeroa Volume VOpane Duatlon Ireera8y VONne Fail 0tani volume VohFne mrWa rllar/rs eaA19a to da eaMNi ooraleet mreNr holea N .1get M dr aaeaea Berri Ni 0 O.N 0.000 0DO am ONO _ 0.ON 0 Do a.ON ON ON 0000 OAN 1 352 CAN lm _ 0.14 CAN 0.001 _ 1 1216 0.009 Im 0.14 am0 0009 2 3" Omn Im 0.I4 O.CN 0-0N 2 I135 OA17 Im 0_1e (IND 0017 3 _ _ 3as DNA 1DO 0.14 00.0_I_ Ogis 3_ _ 10" 0024 1.00 014 0001_ 0023 s 2.91 OON 1m 0.14 O401 0.005 s _ lON 0.030 I.N 0.14 _._ Oml 0029 5 216 Om1 im 0.14 0.001 O.N6 5 9.52 0036 1.OD - 0.10 0.001 - 0035 6 2.62 ON] ase 0.14 omt 0.008 -0.001 6 905 O.O41 0.98 0.14 om_t 0039 1 2SO O.ON 091 0.13 0.001 1 9.63 0.045 091 0.13 Oml _ 0.011 5 _ 259 00N _ aW 0.12 0A01 OA09 5 0% 0069 086 0.12 Owl OOH 9 2" 0010 OA2 CIA ON1 O.Ow 9 7m 0053 0.02 0.11 Om1 0052 10 - 220 0.010 0.]9 0.11 0.002 _ oA _ 10 7.59 OAS) 079 0.1_I OAN 0ON 11 2A2 _ 0.011 076 0.1t 0ow O.m 11 ].N _ OAN _ 0.76 eti Om2 0ON 12 2-N 0012 0.11 0.10 am 0010 12 ].N 0.083 07e 0.10 _ 0102 ONl 13 1.97 ael2 - _ On 0.10 0002 _ ONO 13 6.80 0.068 072 0.10 oW2 0ON 11 1.90 0013 0,70 DID 0,002 0.011 to 657 0.09 070 _ _ ' 0.10 _ O.N2 0067 15 1Ae 0013 _ 069 CIO 0002 0.011 15 _ 6,36 0.071 069 0.10 - am O.N9 16 179 UAis 068 Om ON2 0011 1_8 617 0.014 068 009 am _ 0072 11 1.14 _ O.014 067 Om D.OW OAl2 17 599 Don 067 0.09 _ OON 0074 1a _ 1.69 0.011 0." am 0.002 _ 0.012 is 5.82 Di _ 066 0.09 CAN Dan 19 Ias Oats 065 Om ON2 0.012 19 566 0.0e0 065 a.N (11 0.019 W _ _ lAo 0015 a." 0" 0ow _ _ 0.013 _ 20 5si 0Of12 0.64 Om 0.002 0ON 21 156 0015 Oho o.N 003 0013 21 5.37 0ON Oho - Om OAN D052 22 152 0016 063 Om 0003 0013 22 524 0N8 '.. 0.63 _ 0.09 0403 0093 29 to DA16 0,62 ON 0.003 0.013 0 5.11 0088 062 0.0_8 CAW 0085 21 1.45 0.016 ew Om Om) 0,014 21 429 0.090 062 _ _ 0m 0.003 0007 % 1A1 0017 oat Om O.ON 0.01s 25 ass O.N1 061 0119 am Do" % 1J8 0017 061 pm 0009 0.011 % 417 0099 081 Om a.N3 0090 21 1.35 0.017 0,61 ON am OA11 21 - Car 0090 0.6, Om 0m3 ai 29 132 0010 am 008 am I 0.010 _ % LS> CAN O.eO 008 am 0092 Is im 0A,0 0SO 0Do OON _ LLo19 29 ufi 0097 060 O0e oAYJ cos. >D 12l 0.018 om 0n0 am 0.015_ 30 ' 439 oose 0SO 0.08 om3 0095 _ 31 12S O.m6 ass Cos ams _ 0.015 31 4Jl Ulm 059 008 _ DAN 0096 32 - IZZ 0.019 059 000 O.ON 0.015 32 4z3 0.101 059 0.08 am 0097 39 _ 120 0.019 059 ON 0001 0.015 _ 33 4.15 0.10 059 008 01104 0ON N Iva 0019 0la 009 a0W 0015 _ se 407 0.103 0Se Des _ 0.000 01. 35 _ _ 1_16 0.019 ON 0.08 am _ _ 0.015 _ %_ _ sm 0.105 056 _ Om 0.101 36 1.10 0.019 0.56 O.Oa O.aN OATS 36 3.93 0,01, aSe _ Om _CAN _ oNal 0102 37 IA2 0020 0SO 0m O.ON O416 31 387 0,107 058 Om 0401 0.IM 38 _ 1.10 0020 am a.N 0.001 0.016 35 0.80 0.109 058 Om t 0001 9.1" 39 log O.MO 057 O.N a00o 0.016 39 3.74 0109 057 ON _ 0004 Ulm 10 107 OA% 0.57 ON_ 00N 0.016 10 _ 3as 0110 057 em 01 CAN sl 1M aWO _ 061 0_m O005 0.010 eat 3.0 OAll 057 am OON 0.107 42 _ 1as on, a57 Om 0005 OAIS 02 3.57 0112 057 ON D.ON 0107 03 1M 0021 OW Om 0005 _ O.015 a3 352 0113 0.57 _ _ON a.005 0,10 ee - im 0.021 am Om 0.005 0.016 ee 347 0.110 ass _ ON ONS O.IN 45 099 am, 056 Om 0.NS 0016 15 312 0.115 056 - OAS am 0.110 b 0.9e 0021 O58 O.N ONS 001a 96 3.37 0.116 O59 O.N O.ON 0.111 s] O.N 0021 aSO ON 0005 0016 oT 332 0.117 056 am 0005 0112 0 095 Dan 056 0.N O005--_0.016 /8 329 0.117 0.% - Om am 0. 112 49 ON 0022 ass Om am 0.019 09 3.23 O l le 056 Om Om5 0.113 s0 _ 092 0022 ON O.N O0115 0417 50 3.19 0_,119 ass - 0_m am 0.110 51 0.91 0022 0.W Om 0.005 0.017 51 3.15 OAW ON Om 01 0114 52 ON 0022 055 Om 0U06 0.017 52 3.11 0.12, 055 0.0 0005 0115 53 ass 0.022 0.55 On _ 000fi 0.017 53 307 OA22 0.S5 _ _Om O.N6 0.116 L ass 0022 ass ON 0.0m 0.017 51 3.03 0.122 0.55 Om a" 0.111 55 097 0.023 ass Om 0m8 0017 55 2.99 0.123 055 ON am 0117 56 ass 0.023 0.55 ON ON6 OR11 58 2.96 0124 055 _ D.N _ 0OD6 Oil$ 57 0.65 0023 0.55 OOB ON6 _ 0.017 5/ 292 0.120 055 0.005 0.118 Ss 090 0023 0.55 008 0006 - _ 0.017 so 2.69 OJ25 ass _ _0.0111 0_m _ 0006_ 0.119 59 083 0023 055 0.08 am 0.017 59 2m CAN ass 0.08 OAN DIN 10.82 0023 D.55 008 OON O.al] 60 282 0.12] 055 - 0.08 a.ON O.t20 YOL FM Yluea Sluraaa Veluaa tadM)= OAliO Yoi FM Nspr 5lmape Volume perM)= 0.1202 UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.33. Released Augltfit 2013 10OYeM OslelapeG ID Daier4en 4 11 USEME. WaFaa FM 11152015.1232 PM STAGE -DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL) ' Project: Urban Box -Storage Basin ID: 100-YR Detention Ru nn.....- (FunJUJI .a RaNM Ortln r) (elMlr 9ure1 N Current Routing Order Is #2 Desli n Inlormatlon !#mull: Circular Operu g: Diameter In Inches OR Rectangular Opening: Width In Feet Lergtlt(Height for Vertica0 Percentage of Open Area Attar Trash Rack Reduction Onlice Coefficient Weir Coefficient Orifice Elevation (Bottom for Vertical) Calculation of Collection Caoar, Net Opening Area (after Trash Rack Reduction) OPTIONAL: User-Ovende Net Opening Area Perim ter as Weir Length OPTIONAL: User-OVerlde Weir Length Routing 2: Water flows through WQCV Drificee 0 ti #1 Horiz. #2 Hartz. #1 Vert #2 Vert Dia.. 0.00 0.00 3.13 0.00 Inches W - IL L or H . ft. %open- 50 % C. g.6s C. - E,-I 1 96.17 tL An- 0.00 0.00 0.03 0.DO ag. IL A - egR 0.00 0.00 4 - Top Elevation of Vertical Orifice Opening, Top- Center Elevation of Vertical OrllIce Opening, Cen - M. ft. 96,43 96.30 0.00 0.00 K IL opening is not used). tmtW b VKM. AMmr. a Myer Stamen W.3, BwYba in t Water Surface Elevation it lnkedl WOCV Plate/Riser Flow cis User -Mile #1 Horiz. #1 Horiz Weir Orifice Flaw Flow CIS cia o i o N2 Haft 92 Hartz. Weir Critics Flow Flow cia Ma 0 0ubA #1 Ven. Collection Capacity cis (outpull #2 Van. Collection Capacity pie au Total Collection Capacity Ha (output) Tw#et Valunee far WOCV. MWr. tMa, sior.#e Vohmes 11. mr om --,nee. 95.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 WCCV 96A7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9625 0.00 0.00 0.00 0.00 0.01 0.00 0.00 96.50 1 0.00 0.00 0.00 0.00 0.06 0.00 0.00 96.75 0.00 0.00 0.00 0.00 0.09 _ 0.00 0.00 97.00 0.00 0.00 _ 0.00 0.00 _ 0.12 - 0.00 0.00 9725 0.00 0.00 0.00 0.00 0.14 0.00 0.00 Elev. 9726 0.00 0.00 0.00 0.00 NWA #N/A MA _ _ _ 0.14 _ 0.00 0.00 #N/A #N/A #NVA #N/A NWA _ #WA #N/A MIA MA MA MA #WA MA MA _#WA MA #WA NWA MA #WA LIMA NWA MA #N/A I _ _ _#WA NWA NWA #WA MA MA MIA #N/A MA NWA OVA NWA #WA NWA #WA #WA *N/A *NIA NN/A NWA MA #WA #N/A MA #N/A NWA #N/A *N/A NWA #WA �-- kN/A - --#WA NN/A #WA #N/A #WA NWA MN/A *N/A OWA NWA ♦N/A_ #WA MIA NWA *N/A NWA #N/A NWA OVA #N/A _ NN/A #WA #N/A NWA NWA I MA ON/A _ SWA _ MAI MA _ #N/A NWA #WA MA #N/A NWA IIWA NWA #N/A NWA I #WA NWA MA MA MA #WA #WA M4/A MMA NWA MA _ MAL MA *WA MA MA *K/ MA MIA NWA MA *N/A NWA AWA AWA #WA NWA I MA NWA MA #WA M4/A MA NWA MA MA #N/A pN/A NWA #N/A NWA MA NWA NWA _ _ I #N/A NWA #N/A -_-- NWA #14/A MA MIA NN/A MIA MA _ NN/A NN/A #N/A NWA #N/A #N/A #N/A #WA #N/A #NIA MIA M4/A MA _ NWA #N/A #WA aN/A #WA NN/A #N/A #WA #WA #N/A #N/A OVA _ #N/A #N/A --#N/A MUA MA #N/A #N/A MA NWA NN/A #N/A #N/A NWA NN/A #N/A *N/A NWA #N/A MA #N/A MA `#N/A #N/A MA *N/A #WA NWA #NA #WA NWA #WA #WA NWA #WA NWA MA MA NWA NWA MA �- --I NWA NWA #N/A MA MA I NN_/A #N/A MA i MA #WA _#N/A MA NWA #WA #N/A NWA #WA #N/A #WA NWA I OVA NWAI #WA - _MA IOG Year Developed LID-Detention_✓1.33_USEME, Outlet 111912015, 4:17 PM 0 O m co I� co to co N O O O O O O O O O O (14) U01jena13 i I C O ca n ' Hydraulic Analysis Report ' Project Data Project Title: Designer: ' Project Date: Tuesday, January 13, 2015 Project Units: U.S. Customary Units ' Notes: ' Channel Analysis: 12" RCP Notes: Input Parameters Channel Type: Circular ' Pipe Diameter: 1.0000 ft Longitudinal Slope: 0.0025 ft/ft Manning's n: 0.0130 ' Flow: 1.7700 cfs ' Result Parameters Depth: 0.8139 ft Area of Flow: 0.6845 ft^2 ' Wetted Perimeter: 2.2495 ft Average Velocity: 2.5857 ft/s Top Width: 0.7784 ft Froude Number: 0.4859 Critical Depth: 0.5659 ft ' Critical Velocity: 3.8610 ft/s Critical Slope: 0.0066 ft/ft Critical Top Width: 0.9913 ft Calculated Max Shear Stress: 0.1270 Ib/ft^2 Calculated Avg Shear Stress: 0.0475 Ib/ft^2 C. Water Quality Design Calculations UD BMP Rain Garden Calculations Design Procedure Form: Rain Garden (RG) _ sheet 1 of 2 Designer: GLF Company: QUALITY ENGINEERING Date: December 11, 2014� Project: 1217 RIVERSIDE AVE (One rg north) Location: FORT COLLINS, COLORADO 1. Basin Storage Volume A) Effective Imperviousness of Tnbutary Area, 1, I, . 90.0 % (100Y it all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = I,/100) I = 0.900 C) Water Quality Capture Volume (WOCV) for a 12-lour Drain Time WOCV =. 0.32 .watershed inches (WQCV= 0.8' (0.91• 0- 1.19' P+ 0.78' 0 D) Contributing Watershed Area (including rain garden area) Area = 1,600 sq it E) Water Quality Capture Volume (WOCV) Design Volume Vw= _,. , cu it Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of da = 0.43 in Average Runoff Producing Storm G) For Watersheds Outside of the Deriver Region, Vwecv o,im - 42.8 'icu it Water Quality Capture Volume (WOCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume Vway� . cu it (Only if a different WQCV Design Volume is desired) 1 2. Basin Geometry A) WQCV Depth (12-inch maximum) Dwocv - 12 in B) Rain Garden Side Slopes (Z - 4 min., horiz. dirt per unit vertical) Z = 4.00 ft / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area Aw, - 29 sq it D) Actual Flat Surface Area Amy = 55 sq it E) Area at Design Depth (fop Surface Area) Arm = 370 sq it F) Rain Garden Total Volume V� - 212 _, cu it (V� ((AT.+AAkw) / 2)' Depth) 3. Growing Media se One 43 16' Rain Gahm Gmwin9 Media Odrer (Explain): t 4. Underdrain System Owose OneYES . Ir j) A) Are underdrains provided? I NO A B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= WA it v` Volume to the Center of the Orifice Volume to Drain in 12 Hours VOlrr= WA cu 0 - u) Orifice Diameter, 3/8' Minimum Do =. N/A in LID-BMP_RAIN GARDEN (North RG with vertical walls), FIG 12/11/2014, 124 PM I 3U Design Procedure Form: Rain Garden (RG) Sheet 2 of 2 Designer: GLF = Company: QUALITY ENGINEERING Date: December 11, 2014 Project: 1217 RIVERSIDE AVE (One rg north) Location: FORT COLLINS, COLORADO _ I Choose One S. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable finer provided due to proximity CS NO of structures or groundwater contamination? - Onoose One 6. Inlet y Outlet Control 61Z Sheet Flow- No Energy Dissipation Required _} A) Inlet Control Concentrated Flow- Energy Dtsslpatbn ProNded 7. Vegetation CC Seed (Plan for frequent weed control) ( Plantings CSC Sand Gmwn or Other High Infiltration Sod " Choose One _ 8. Irrigation I . S,,i YES A) Will the rain garden be irrigated? QC NO Notes: Z e' .' .R- ,,•.£;y"tt' _ i $_ti ' UD-BMP_RAIN GARDEN (North RG with vertical walls), RG 12111/2014. 1:24 PM �M W W— ;\ 1 1 1 I 1 1 1 i I I . I I I I I ( I I I I I 1 I , I I I I I � I I I I I I I I I I I I 1 I I I , I P I i LOT 18 PROSPECT INDUSTRIAL PARK I I I (NOT A PART) 1 1 1 P+Le�b.N A.e. I I I I 1 I j I 1 I I I , I I I I I II I `�/ _________________ I \ 1 \ { II _ r �W —W ,C22G 0 m------ --___— _____ ______ �\ SONtlERPM �.__ oexrNe KWEO YARD (ROAD BASE SURFACE) all. I I LIGHTFIELD \' ENTIERPRISES LOT 1 I W.LmesW uft F _ GRADING NOTES NL s OTIELVAnpIS sxmN ME R." LME mass _ xoTn omERnsE. M M O QE/.1FA nIM NI• ns P SHALLn ENa Ol ux sOnW E WILLING ELEudr ro TOsNnLL REWIRE n 9EEMnlE BI PU P(SMEET ]) SEE tl Exem IIIN f91EEr m.l) Pw u.0. AND / 1 _ L auras scnox REwmAnGR °" CONSTRUCTION NOTES 1 O WNSIIRMT W AETE gtlK W9E PER MML R. sxEET LEo 'NYI10 O} WgIRUR ORxIWAY MflMAW PER MI M.1, SHEET GI E1 IMNIACNI %M O CONSTRUCT ACCESS RAW PER MI Miss, SHEET MO OI oms: ftw MbV ARM& CURB Ax0 WrIW usm s. may UI I O WMEMM cr C( MAEIE 9CEWMR. ITA OETAI- IMI. SHEET WI OO CORRECT TO MMING SmWM%. Ocoxsmum T WIN WT.. Cw511Nci Y'U' wMREL W/ MET& GRATED W PER WREM B wM1EEW CETML 10 e, SMEET Al l Cp51WCr LMAXW LANDSCAPE WI WITHASPR0YE0 REM. N.Ti WA�ACIURED CwC1E,E 9"KE0. O CpRIRXT ]' VAIIEY PM. PPR MTAE 1. SHUT MID 11 IKE Y RMMME PER BETML 1411 SHEET MI 4 \ ._________r____ ____ 01 _� iN_� III - Nmm 4NI � w m 0 —______ _ R -- __ �mmEismucTMRE..____ rEEsxDnee $. JIJRIVE MIIJPOItVT b V W V V WW a_ M W _ W W � ` V ST. TIRE RFLAN))X1ORMi I I I { { I I 1 I I { { I I { { / \ 1 FOIL 4U • LE ORE YOU DIG CALL 811 UI PI -AN W�RM� C7 z r Ld Ld J Z �0 aW 4 rcrrvrvcu. �. 1KeSP Nm CHECKED MI: CHECKED V. DE9CNED 6I'. WA/w, wP .emvrtx uiun wrz MMN 6Y wP/Gf CHEMED ff. mre le ARE TDIs viw..n. Amur. wT SCENE w5 NOTED CIEEY.ED BY. _ ..os .xx lartoox oex PROELG ro.: TDu-am CIEOED M - C4.0 1. xrz AEET 6 or 14 HISTORIC BASIN FLOWS UASIN DESIGNATION AREA (AO) x" awa. Y IN YEAR oz plop (CFS) DESIf;W POINT BASH NWBFR am 0.13 QIO 0.111 Pb PROPOSED BASIN FLOWS ®ASN DESIGNATION nRA (Ac) x IDvr wr. Y Im WFM ttv. oz R1W OESRaC POINT BASIN NIAIBER I el O.BaT Qa3 0.a0 I.N ]Aa _--_- UIew - ------- I\ U V i SIR / 1 FENCED YARD (ROAD BASE / 1 1 I msw- T r F LIGHTFIELD ENTERPRISES 0.e8 om I om I `.1 LOT 1 �><.:....._ .1 v.. � iF"aiM.W • ��'��. 1 SE,IM; WAYa —i __- -7 ---- '� P IP Rain Garden Detention Pond Su aepYaa Real Wo-n Mae" MR,vw lakk) rr Repd Wlpvumme Imwl Too Ieo-b1 wqY •. h d tl..mw 1ta.mr A+ew IYlew."eyr atuuon mn Idd ° ' o:setaa oau III I am I alm I vsvrs 1 ab617 1 ImIM a.0 nll/f IM I A -A RAIN GARDEN SCALE: 1"=5' N EtEV"MII „1.:. a. •.- ••• {hivL�a.awuu�' riY�rNaawymi... .� —:1 �2• CONCRETE PAN C-C CONCRETE PAN SWALE SCALE: 1"=5' QE: LWAI'leld EmerpN6esr LlD Summary Table Rain Garden Newlm endaM/uea ) XW 5.rt Pea Wed Near l rvlous Areato 1gMN .N MTRaletl Impervious Area T.a.OJ 3VUOTrtHMem Metlm iv Raln Garden ToWllm ary ous Area Smated L.IL Pervious Pavemelrt' New PavemeRAMS Mp ,ri, Reuied MnITUm AregapmMPMmeM dion IO L3@ .N M Paver'tlionpla to3ais dion mg TN .h 90 .n. Paver 'anion M u to 3ais mite amen iprea NO .h 1A98 .N ASPHA PAM DRAINAGE LEGEND BASIN NAME V VM� Y-YR RUNOFF COEEFIDENO o W-YR RUNOFF COEFFICIENT 0VL' ES) Ld }3C zggu DESIGN� D� POINT Q 0Z `tc m m m m BASIN BWNDAR:T uj n N%%'Nhv� PROPOSED FLOW DIRECBCN -) G A .........T $EC110N F. B-B SOFT PAN SWALE SCALE: 1"=5• FF = 98.90 SIR r IoerexmlPo\o 11 � �� �?{.•`•.: v. yr1l \�y + •ye 0A' V�O _ 100YR WSEL = 97.26_ _—TJ --- E i r I� � 1 — --- y DEEPEN FOOTING)12" /"'- f=gfl=1 Z, DD ss sy FOR FROST T— I WLf EIa MNNICNIE .. -. , ,�\ D1 WC4,.P4.lAm.rllS — �� ... � _ 1=ITI-r� I m ..:" _ -1E--III IIII I -I — � r— III R —xs _ � ¢ MIDPOINT DRIVE W W W_ \ W W W W _________________ _____�\ 4® r Pw2e r DETAIL, SHEET C8.3 NTION POND WITH SOFT PAN BEFORE DIG D-D DET� CU811SM,�nlama>=1P.N SCALE: 1"=5' cexIrc xDn�Icnnnlx L.I.D.LEGEND RG ~ RAIN GARDEN C 4 ® DRY WELL a...® .tom SOFT PAN.. ® H PERMEABLE PAVERSi W (= 18 C Oy ti �J W Q ujW J O _i 0C W 2 K O rM CITY OF FORT COLUNB, COLORADO UTILITY PLAN APPROVAL L NTRdEU rMEm,nttx ono am® m CKCYFD er: m: MAI amP..mewta toot NorK931En omw m: M•r/aU pECMEO m: stourm WI ATE am 1a AME 2015 Ae MOIm CELNFO B!: _ ww6 w4 xexurva: AN NN)AR r IML: A '(W pEp1® m: — C5.0 maM 1 _ _ mRD 7a,14