HomeMy WebLinkAboutDrainage Reports - 06/30/2015 (2)I
DRAINAGE REPORT
FOR
Lightfield Enterprises, Inc.
2600 Midpoint Drive
Fort Collins, CO 80525
Prepared for:
SDP Architecture
633 Agate Court
Fort Collins, CO 80525
Prepared by:
QUALITY
`x ENGINEERING
www.quality-engineering.com.
1501 Academy Court, #201
Fort Collins, Colorado 80524
(970)416-7891
QE Project No: 7025-002
Date: January 21, 2015
Lightfield Enterprises, Inc.
FINAL DRAINAGE REPORT
ENGINEER'S CERTIFICATION
I hereby certify that this Final Drainage Report for the design of stormwater management
facilities for the Vogel Concrete Project was prepared by me, or under my direct supervision, in
accordance with the provisions of the City of Fort Collins Storm Drainage Design Criteria and
Construction Standards for the owners thereof.
�OQ`PEO
GSFN
{(0 41326 m
.010 a
FSS��NAL ENG\
Registered Professional Engineer
State of Colorado No. 41326
I. Table of Contents
I. GENERAL LOCATION AND DESCRIPTION.........................................1
A. Location.................................................................................................................... 1
B. Description of Property ........................................................................................... 1
II. DRAINAGE BASINS AND SUB-BASINS..................................................2
' A. Major Basin Description......................................................................................... 2
B. Sub -Basin Description............................................................................................. 2
' III. DRAINAGE CRITERIA 2
...............................................................................
' A. Regulations............................................................................................................... 2
B. Implementation of the "Four Step Process".......................................................... 2
' C. Development Criteria Reference and Constraints ................................................ 4
D. Hydrological Criteria............................................................................................... 4
E. Hydraulic Criteria................................................................................................... 5
F. Modifications of Criteria......................................................................................... 5
IV. DRAINAGE FACILITY DESIGN................................................................5
A. General Concept.......................................................................................................
5
' B. Specific Details.........................................................................................................
6
C. Rain Garden/Detention Pond..................................................................................
7
V. CONCLUSIONS..........................................................:..................................8
' A. Compliance with Standards.................................................................................... 8
B. Drainage Concept..................................................................................................... 8
' VI. REFERENCES...............................................................................................8
VII. APPENDICES
A. Hydrologic Computations
Vicinity Map
FEMA FIRM Exhibit
USGS Soil Map
Fort Collins Rainfall Intensity Curve
Fort Collins Rainfall Intensity Table
Table RO-3 Recommended Percentage Imperviousness Values
Rational Method Calculated Composite C Tables
Rational Method Calculated Imperviousness
Rational Method Calculated Flows
B. Hydraulic Computations
Table 3-8 Effective Imperviousness Adjustments for Level 2 MDCIA
Detention Volume by the Modified FAA Method
Reduced Detention Volume by the Modified FAA Method (Via Table 3-8)
Stage -Discharge Sizing of Orifice
12" RCP Flow Calculation
C. Water Qualfty Design Calculations
UD BMP Rain Garden Calculations
' I. GENERAL LOCATION AND DESCRIPTION
' A. Location
' The proposed site is located in the southeast quarter (SE '/4) of the northwest quarter (NW
'/4) of Section 20, Township 7 North, Range 68 West of the 6th P.M. in Larimer County,
Colorado. Specifically, the property is located on the north side of Midpoint Drive, about
halfway between South Timberline Road and Sharp Point Drive. More generally,
southeast of South Timberline Road and East Prospect Road. The property address is
2600 Midpoint Drive, Fort Collins, Colorado, 80525. (Please see the vicinity map
' located in the Appendix A).
B. Description of Property
The property is Lot 17 of the Prospect Industrial Park and is currently 0.86 acres of
undeveloped land surrounded by commercial and industrial properties to the northeast,
northwest and southwest as well as a vacant lot to the southeast. Midpoint Drive is
located directly southwest of the property and acts as its only access. South Timberline
Road is positioned further southwest while East Prospect Road is located equidistance to
' the northeast. All surrounding roads are both currently paved with curb, gutter, sidewalk,
and utilities installed.
' The existing property is mainly re -seeded overlot grading that drains generally to the
southeast towards Midpoint Drive at approximately a 0.5 percent slope. Midpoint Drive,
then attenuates the flow via gutter towards the intersection of Midpoint Drive and Sharp
' Point Drive where it is met by an area inlet and eventually makes its way to the Poudre
River. There are generally no offsite flows that drain towards the property. The entire
site is located in FEMA Flood Zone X, entirely outside of any 100-year flood plain (see
' FIRMETTE in Appendix A).
According to the NRCS soils map survey, the native soils consist of the Type "D" soils.
These soils consist of deep, poorly drained soils that formed in alluvium. These soils
' produce high runoff rates and low infiltration.
There are no irrigation facilities located within the proposed site area.
The proposed development will consist of the construction of two buildings that will act
' as office and storage and maintenance space. The two buildings (4,900 and 2,218) S.F.
will be connected via a sister wall and will act as one (7,118) S.F. building. A drive aisle
will be constructed and will include asphalt and impervious pavers. The northern portion
' of the site will be a gravel road -base surface and will act as site storage.
II. DRAINAGE BASINS AND SUB -BASINS
A. Major Basin Description
The Vogel Concrete proposed site is located within the Poudre River Drainage Basin. The
basin is a major tributary to the South Platte River and the major confluence of many of Fort
Collins' sub basins. Water quality and detention are required to attenuate developed flows
to a 2-yr historic release rate.
B. Sub -Basin Description
Historically, the entire existing site drains to the southeast side of the property via sheet flow
' at a slope of 0.5 percent. This flow then exists the property to Midpoint Drive where it is
then transported southeast until it is met by an area inlet. This flow is eventually carried via
storm pipe to the Poudre River approximately 0.24 miles downstream.
' The developed site is delineated into one sub -basin with a rain garden/detention basin
designed to provide both the required water quality capture volume and 100-year detention
' volume.
Sub -basin B1, (0.86 acres), consists of roof, asphalt/concrete, gravel base course and
t landscaped area. Rainfall is carried away from the buildings in every direction into valley
pans, swales and soft pans. From there; flow travels into L.I.D. rain garden/detention ponds.
The WQCV is treated via the rain garden/dry well area while the 100-year flow is released
' at the 2=year historic rate. This sub -basin is conveyed out to Midpoint Drive, as it does
historically, eventually making its way to the Poudre River.
Currently, offsite flows do not enter the site property. This will not change after the site has
been developed.
III. DRAINAGE CRITERIA
' A. Regulations
Drainage design criteria specified in the City of Fort Collins Storm Drainage Design Criteria
' and Construction Standards manual (FCSDCM) and the Urban Storm Drainage Criteria
Manual, Volume 3 by the Urban Drainage and Flood Control District (UDFCD) have been
referenced in the preparation of this study.
' B. Implementation of the "Four Step Process"
t The overall stormwater management strategy employed with the Vogel Concrete project
utilizes the "Four Step Process" to minimize adverse impacts of urbanization on receiving
' waters. The following is a description of how the proposed development has incorporated
each step.
Step 1 — Employ Runoff Reduction Practices. The first consideration taken in trying to
reduce the storrnwater impacts of this development is the site selection itself. By selecting a
site with historically undetained runoff, the burden of development will be significantly less
' with a WQCV and detention pond. Also, for Basin BI, grass swales, soft pans and pavers
are used to convey the runoff from impervious surfaces, reducing the effects of
imperviousness.
Step 2 — Implement BMPs That Provide a Water Quality Capture Volume (WQCV)
with Slow Release. Urban development will cause stormwater runoff to increase from the
' site. The primary water quality will occur in the combined rain garden/detention pond on
the southeast side of the lot. Refer to the map pocket for rain garden and detention pond
details and cross -sections. The pond will reduce the release rate to equal or less than the
' historic 2-Yr release rate, while improving water quality.
Step 3 — Stabilize Drainageways. The Poudre River is the governing drainageway for the
Vogel Concrete site. While the project doesn't affect the river directly, the proposed
project indirectly helps achieve a better stabilized drainageway nonetheless. By improving
the water quality and lowering the developed runoff to lower than the historic rate, the
.� likelihood of bed and bank erosion from this site is greatly reduced.
Step 4 — Implement Site Specific and Other Source Control BMPs.
The Vogel Concrete site contains a plethora of source control BMPs.
' Permeable Pavement Systems: Flow from the roof will directly flow into the void area of
the pavers avoiding any extra pollutant -flow contact time. Additional flow from the
sidewalks and drive aisle will be captured by the pavers and be treated before and
' underdrain system transfers flow to the Rain Garden.
' Rain Garden/Dry Well: All Unconnected Impervious Areas (UTA) are drained through the
on -site rain garden, reducing the impact of the impervious areas on water quality. Since the
site contains poorly draining soils, two, 10 feet by 10 feet dry wells have been added to aid
' in the infiltration of the WQCV.
t Soft Pan: Before UTA flows are captured by the rain garden they are attenuated via pans,
gutters, swales and soft pans. Some of these flows will travel through the soft pan on the
northeast comer of the lot at a 1-2% slope and be the first defense against pollutants.
' C. Development Criteria Reference and Constraints
The criteria used as the basis for analysis and design of stormwater management
improvements for this site are those found in the references cited.
To the knowledge of the author, there are no other capital drainage improvements planned
' for this portion of Prospect Industrial Park, aside from those referred to above, that would
constrain or otherwise influence the design of the stormwater improvements for this site.
D. Hydrological Criteria
Stormwater runoff from the respective sub -basins of the Vogel Concrete site is analyzed for
' storms with 2-year and 100-year return frequencies.
Due to the relatively small aggregate area of the tributary drainage sub -basins, the Rational
' Method was chosen for use in the design of the stormwater management improvements.
The Rational Method provides that:
' Q = CIA, where:
Q = Design flow in cubic feet per second (cfs)
C =.Coefficient of runoff for the area under consideration
' I = Rainfall intensity for the design storm duration (in/hr)
A = Area of -the drainage sub -basin under consideration (ac)
' Peak flows were calculated using the Rational Method for the 2-year and 100-year storm
events. This software uses the local 1-hour rainfall depth and Fort Collins rainfall
intensities developed calculate rainfall intensities as a function of the time of concentration.
' These values were obtained by the City of Fort Collins Rainfall Intensity -Duration -
Frequency (IDF) curve/table; Figure 3-1 and Table 3-la, and can be found in the Appendix.
Additionally, per City of Fort Collins, the coefficients have been multiplied by the
' appropriate storm factors.
Percent imperviousness values were taken' from Table RO-3, Recommended Percentage
' Imperviousness Values, UDCM (See Appendix). Soils of hydrologic soil type "D"
dominate the site. Onsite runoff was calculated to determine the runoff differential between
existing and developed conditions for use in sizing the rain garden as required by the
FCSDM.. The hydrologic basin parameters and runoff rates are included in the Appendices
and include quantification of the allowable volume reduction.
The USDFCD software UD-BMP v3.03 was used to calculate the required WQCV and the
' size for the proposed rain garden.
The Urban Drainage, Table 3-8 Effective Imperviousness Adjustments for Level 2 MDCIA
was used to determine the effective imperviousness of the site.
' The Modified FAA Detention Method as outlined in the UDCM Control was used to
compute the required 100-year storage volume requirement for the site. The UDFCD
software UD-Detention v2.34 was used to calculate the required detention storage volume
' as well as tabulate a stage -discharge relationship for the water quality capture volume and
outlet structure.
The design worksheets included in the Appendices to this Final Drainage Report present
documentation of the hydrologic calculations for the on -site storm drainage systems.
E. Hydraulic Criteria
Within this development, all runoff will be conveyed on the surface, initially as sheet flow
' and subsequently as concentrated flow in shallow pans and gutters, as well as in grassed
swales and soft pans. The west portion of the site will drain under the driveway through a
culvert. The assessment of required capacity and the sizing of the respective components of
the drainage system are based on the anticipated runoff from the 100-year storm event.
The surface runoff will culminate into the rain garden/detention pond at the southeast
' portion of the site. The pond outlet will consist of a spillway weir with a water quality
structure and �an orifice plate restricting the ultimate release rate to equal or less than the.
allowable release rate.of 0.16 cfs per acre. An emergency spillway with a crest elevation set
greater than the required 100-year water surface elevation and sized to convey the 1.00-year
developed flow and offsite flows at an operating head not exceeding half of the available
freeboard is implemented in the detention pond.
F. Modifications of Criteria
There are no modifications or variances requested in connection with the design of the
stormwater management for the Vogel Concrete site development.
IV. DRAINAGE FACILITY DESIGN
A. General Concept
The storm drainage system is designed to safely convey developed storm flows by sheet
flow and concentrated pan, underdrain, gutter, swale and soft pan flow to the rain
garden/detention pond located at the southeast comer of the property. The rain
garden/detention pond has been sized for the total required 100-year storage volume and the
WQCV requirements for the entire site. The pond outlet structure is the ultimate release
point off of the site and will be releasing the flow at the historic 2-year release rate of 0.16
cfs per acre, or 0.14 cfs, as required by the FCSDCM.
The design worksheets included in the Appendices to this Final Drainage Report present
details of the hydrologic and hydraulic calculations pertinent to the design of the on -site
V
storm drainage system. A drainage plan, showing the proposed development of the site and
developed drainage patterns is included in the map pocket following the Appendices.
B. Specific Details
There are a number of collection and conveyance scenarios within the drainage regime
associated with this development. The respective scenarios are described below.
Sub -basin B1, (0.86 acres), generally conveys flow away from the buildings until it is
concentrated and eventually attenuated into the rain garden.
Northwestern flows start initially as sheet flow over the concrete pad and road base material
to the north of the building. They continue north until they are met by a 2 foot valley pan.
This valley pan runs parallel to the northern property line and transfers the flow at 0.5% to
the soft pan on the eastern side of the lot. The soft pan carries flows south to the rain garden
at 1.0% and acts as both a means of conveyance as well as a primary treatment area. Once
the flows are within the rain garden area, they are initially infiltrated while excess flows
above the WQCV are detained and released out to Midpoint Drive and eventually into the
Poudre River as described in the rain garden/detention pond section below.
Northeastern flows are much like the northwestern flows described above. They start
,.initially as sheet . flow over the concrete pad and road base material traveling . in two
directions. First, flows travel north into the 2 foot valley pan and continue on exactly as the
northwestern flows. The second travel path attenuates flows directly into the soft pan and
proceeds as described by the northwestern flows.
Southwestern flows start initially as sheet flow over the roofs and sidewalk area. Half of the
northern building's roof will drain to the west while the other half will drain to the east.
Western flows will flow via gutter directly into the swale on the west side of the building.
This flow eventually makes it way into the detention pond area in the southwest portion of
the lot. Flow will accumulate and concentrate into the soft pan within the pond and flow
towards the 12 inch culvert. This culvert allows for flow captured in the southwest
detention pond to travel underneath the drive aisle to the rain garden where it can infiltrate
and continue on as previously described. The eastern portion of the northern building's roof
flows will flow via gutter and sub -drain directly into the void space of the permeable pavers
located within the western most parking spots. From there, flow is transferred via a 6 inch
sub -drain to the rain garden where it proceeds just as the northwestern and northeastern
flows. The southern building's roof will drain directly into the detention pond located on
the southwest quarter of the lot and proceed into the culvert and into the rain garden. The
rest of the area encompassed by the southwestern portion of the lot will flow initially as
sheet flow toward the pervious pavers located within the southeast parking spots. A portion
of this flow is infiltrated through the pavers and is eventually transferred to the rain garden
via a 6 inch sub -drain, while the remaining flow is transferred directly to the rain garden
through a 2 foot curb cut.
Southeastern flows include the drive aisle and the rain garden. Flow starts as sheet flow and
proceed to the pervious pavers and continue just as the latter portion of the southwestern
flows do. The rain garden is located in this quarter of the lot and acts as the ultimate release
point for the entire site.
C. Rain Garden/Detention Pond
The rain garden/detention pond has been designed to accommodate volume and release
requirements for the Vogel Concrete site in its entirety. The 100-year detention requirement
for the site is 5,238 cubic feet, while the WQCV required is 533 cubic feet. The total
detention volume required including 100-year detention and water quality is 5,771 cubic
feet. The WQCV infiltrates completely through the rain garden media. Since the soils are
poorly draining, two, 10 feet by 10 feet dry wells have been designed to assure the flow
fully infiltrates the surface and does not adversely affect the site drainage. The outlet
structure has been designed to release the flows above the WQCV at a maximum allowable
release rate for the site of 0.16 cfs per acre.
Rain Garden Detention Pond Summary
300-YR
Total
WQCVWQN+100
Volume
Volume
100-YR
WQCV
Spillway
100-Yr
Outlet
Required
Yr Req'd
Release
Outlet Size
Required
Provided
Elevation
Elevation
Elevation
Type
(ac ft)
lac-ft)
Rate (cfs)
ac-ft
ac-ft
0.012
0.12
0.132
0.134
4897.26
4896.17
4897.26
0.14
Orifice
(1) 3 1/8" hole
The drive aisle will also act as a utility and access easement along the entire west side of the
detention pond to allow for maintenance access.
There will be no new facilities required offsite for the conveyance of the minor or major
flows to the Poudre River.
I
1
I I
V. CONCLUSIONS
A. Compliance with Standards
The drainage design for the Vogel Concrete Project is in compliance with the requirements
of the City of Fort Collins Storm Drainage Design Criteria and Construction Standards
Manual as well as the City's floodplain regulations. The criteria and recommendations of
the Urban Storm Drainage Criteria Manual are also reflected in the design of the drainage
systems.
B. Drainage Concept
The drainage design for the Vogel Concrete Project will be adequate to safely convey onsite
and offsite flows through the development. The design will attenuate the 100-year
developed site flow down to the 0.16 cfs per acre release rate as required by the City of Fort
Collins. Development of the site, as proposed, should have a beneficial impact on water
quality in downstream drainage facilities and drainage ways by reducing and delaying the
initial discharge of runoff from the site such that sediments and other potential pollutants
typically carried by this first flush are removed from the flow.
VI. REFERENCES
"City of Fort Collins Stormwater Criteria Manual", City of Fort Collins, Adopted December
2011
"City of Fort Collins Municipal Code", Chapter 10 — Flood Protection and Prevention City of
Fort Collins, 1987
Urban Storm Drainage Criteria Manual, Volumes 1, 2, and 3, Urban Drainage and Flood Control
District, April 2008
VII. APPENDICES
A. Hydrologic Computations
Vicinity Map
FEMA FIRM Exhibit
USGS Soil Map
' Fort Collins Rainfall Intensity Curve
Fort Collins Rainfall Intensity Table
' Table RO-3 Recommended Percentage Imperviousness Values
Rational Method Calculated Composite C Tables
Rational Method Calculated Imperviousness
Rational Method Calculated Flows
��
U
W
OQ
Of 0
3nb
AVIN31
0
J
z
Z
W
Z
U
0
0
0
w
w
v b
�c
5A�
w
W
C
m0av
mm2Eli
Ix G N �,
�En—
p
d
mauve W o
p
E uoo E
78 SN
<
°om=a
W
w
�d
�'
n o
Z� 6g}
2
o
y
�2SSm
v jj
O S
h
(�
a
€ 9
O 2
z
J Z O
vgv0g
u�gno
O
30
71
W
%.
W
s
¢
'S
ym@°
O
n
oq OEf
to
II
i
D
Z
r7
O
F
�I
Gfi
a-4
,
nE�o
g
' p
rio
_
JJ
U
O
0
N o
="=
e
i
t m E E
z
s€°��
W
L
Z
9
0
Z
TT
G
��
= c
(
�'A
[�
o_I uLL
0
o
V
Q
O
¢
Ji
$
o$-yE
nx:
SOt n�c
Cl)
w0
04
O
Q
2w
i
N�e3
W
`o2Emc
d
c
IJL
I -a
U
d N
38
g�s�`
g 8
=sa
0 O q
m._
Q
V C 4 a
M
C
% r
9
u LL
v
a
®®®
v
® IA
O O
^�=gE
E a m
LO
wamvo
H
133b15
H3NVS ry
Co
rN
ff
�
133H1S
OHOdIV
EMIG
133b1S
P
N011Vd
'^O%•%;' ¢' °C
2
133H1S
Milli
�
U
Q
j QX c
w
3NVl 1V11dSOH
J
P
J L
y
<>
a
J
P
�]
w
133H1S
NOSIH3SON
~
y
50J
z
a
w
�6S
w
Q
N
CO
0
~
(Y)
0
r
U
aj
133HIS
�6'�S
O
�Oslb
Pro
yd'<j
N
0
v
0
0
0
U
W
W
D�
C J
0
U
W_
W
�Z
WO
x
U
07
=
t—
o
rn
_U
O
9
M.6ZS SOT
M.ESE SOT
It
0
v
0
0
0
U
Z
0
0
LL
ca
G
0
Z
W
W
J
d
N O w
�Jp m m
u O C N
T0�
o"
a
_m ammm
m� t0v
° E m 0 m
Eo
C
w m.aI E
c�m�10
m E 3 m
m 0, O C
> L O L
m V - 0 O
C (D O m
T a )v m
En o COL d
a m m >
m E0)Et
c � �
N m L
c rn ° C m r
c E
E m J $ m
3 w E aw
m
a
o
O
rn
C
m
O
O
m
mo
O
m` mm
m
a
Z
I
3cy
O)
Z
O L m
m
m
m J C
M
E
in m
w300
w!5 E
a�i
r
o
N
c�E
=Y
my
m
v°
a
04
m
"o A E
O` 10
m L ID
m
E
N
0 m O
ro
Lm
Z i.`•"
(D
c Cc
O
U
ov
y
N 2 .00 V
m
Z
L) p
�O
t y
E
EU
�w
m A d 0 U
0
p
Eri
QN
0
—
La
V
mo
m Q
a a =
m p@ y m
ti
D
>` y
mm
�p
cmmy
O iC Q V
m
m 8
M� C m
m
C�
U
M
Mm ZTL
w3a
y m
i
w
oE
a
a>i`
O
m
m
m
E O
0
Uo
c
0
a>
mVl
m 0 E
cmcRN
3.
Zm
Em
)E
�_Qaaz
JL
l
a C C
m m
J 7
y
L m C m
a
Z¢
m
m y
mE
(D
O'OYvm
m
m
oc
�
0
mQmT
m
a-Z
?ui
�
E
°E?
0nmO
CO
m u
ooE)J
dJ
am m
LCooa vm0 'cE
' Ja-
�
03a
n�
>
Nmmm
E
fUv
nQ
n'f
to
o
O N
LEa
cmi E 0
m
a
>
m
0
N
N T
c m
m
U t
r
n
C
vO
O 0
L
m
E a
a
U O
O Z
4
m
to O j
9 Q
❑ ❑
❑ ❑
°
n
E
�
A
_
m
H
m
a
m
O
Q
0
�
0
C
c
O
c
o
a�
IL
o e o
C
3 0
0 0
a
0
e
a
a
ino
m U o o Z
0a a
m 'm U u o z
0
a m en
a
o
? 2
o
®e
�a❑❑❑❑❑❑❑❑
N
N
N
QN
II
Hydrologic Soil Group—Larimer County Area, Colorado
TOUCHSTONE HEALTH
Hydrologic Soil Group
Hydrologic Soil Group— Summary by Map Unit— Larimer County Area, Colorado (CO644)
Map unit symbol Map unit name Rating Acres in AOI Percent of AOI
' 53 Kim loam, 1 to 3 percent B 1.4 12.1 %
slopes
94 Satanta loam, 0 to 1 B 10.4 87.9%
percent slopes
Totals for Area of Interest 11.8 100.0%
' Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
' assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive precipitation
from long -duration storms.
' The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and CID). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly
wet. These consist mainly of deep, well drained to excessively drained sands or
gravelly sands. These soils have a high rate of water transmission.
' Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well drained
soils that have moderately fine texture to moderately coarse texture. These soils
' have a moderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
' chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of water
transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink -swell
potential, soils that have a high water table, soils that have a claypan or clay layer
at or near the surface, and soils that are shallow over nearly impervious material.
These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (A/D, B/D, or CID), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in their
natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method: Dominant Condition
L.Sun Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
11 /25/2014
Page 3 of 4
Hydrologic Soil Group—Larimer County Area, Colorado
TOUCHSTONE HEALTH
Component Percent Cutoff.. None Specified
Tie -break Rule: Higher
rSM Natural Resources
Conservation Service
Web Soil Survey
National Cooperative Soil Survey
11 /25/2014
Page 4 of 4
-
r
Q
�
N
cr
O d =
U LL
( }
N
N
O
_
f'
1
O_I Q
LL
0
0
O O O O O
O O O O O
O O
O O
O O O
O O O
O O
O O
r
O LO
d' C7 CV
O
(JI.j/UI) Apsualul
0
N
T—
Qo
0
A
M
ti J
0
I
0
City of Fort Collins
Rainfall Intensity -Duration -Frequency Table
for using the Rational Method
(5 minutes - 30 minutes)
Figure 3-1a
Duration
(minutes)
2-year
Intensity
in/hr
10-year
Intensity
in/hr
100-year
Intensity
in/hr
5.00
2.85
4.87
9.95
6.00
2.67
4.56
9.31
7.00
2.52
4.31
8.80
8.00
2.40
4.10
8.38
9.00
2.30
3.93
8.03
10.00
2.21
3.78
7.72
11.00
2.13
3.63
j 7.42
12.00
2.05
3.50
7.16
13.00
1.98
3.39
6.92
14.00
1.92
3.29
6.71
15.00
1.87
3.19
6.52
j 16.00
1.81
3.08
6.30
17.00
1.75
6.10
18.00
1.70
_2.99
2.90
5.92
j 19.00
1.65
2.82
5.75 1
20.00
1.61
2.74
5.60
j 21.00 j
1.56
2.67
5.46
22.00
1.53
2.61
5.32
23.00
1.49
2.55 i
5.20
24.00
1.46
2.49
5.09
25.00 I
1.43
2.44
4.98 I
j 26.00
1.40
2.39
4.87
27.00
1.37
2.34
4.78
28.00
1.34
2.29
4.69
29.00
1.32
2.25 j
4.60
30.00 j
1.30
2.21
4.52 .
DRAINAGE CRITERIA MANUAL (V. 1)
RUNOFF
Table 110-3—Recommended Percentage Imperviousness Values
Land Use or
Surface Characteristics
Percentage
Imperviousness
Business:
Commercial areas
95
Neighborhood areas
85
Residential:
Single-family
Multi -unit (detached)
60
Multi -unit (attached)
75
Half -acre lot or larger
'
Apartments
80
Industrial:
Light areas
80
Heavy areas
90
Parks, cemeteries
5
Playgrounds
10
Schools
50
Railroad yard areas
15
Undeveloped Areas:
Historic flow analysis
2
Greenbelts, agricultural
2
Off -site flow analysis
(when land use not defined)
45
Streets:
Paved
100
Gravel (packed)
40
Drive and walks
90
Roofs
90
Lawns, sandy soil
0
Lawns, clayey soil
0
' See Figures RO-3 through RO-5 for percentage imperviousness.
CA = KA + (1.31i' —1.44i z + 1.135i — 0.12) for CA >— 0, otherwise CA = 0
CCD = KCD + (0.858i' — 0.786i 2 + 0.774i + 0.04)
CB = (CA + CcD )12
2007-01
Urban Drainage and Flood Control District
(RO-6)
(RO-7)
RO-9
u
x
_
� V
T ..
o u
.+ a
m
w
m
i
w
m
0
0
L M
O
O
O
.4
O N
w.O
O.
E
0
u
� u
> y
N !
O
O
LO
V
N
Lr!
Lr?
n
m
O a
00
00
e_ E
u°
A
to
l0co m
0
0
0
0
G
6
Ci
Ci
0
F
N
d 1
O
O
O
O
o
N
C II
3 u
0
O
0
O
O
O
O
O
A
J
N
`u h
m
o
o
o
0
ID
0
tD
0
w
o
0
0
0
o
9
cc
c
y
a
O
N
�
N
cp
W
W
u h
0
N
�
vm
o
�
d II
O
O
O
O
0
0
O
Ci
A U
l7
N
A
�1
d m
0
Q O
0
O
O
m
O
0
O
U
0
0
Ci
6
d �-
u
C
O
V
N
L
u
h
ci
O
O
O
O
O
O
O
O
Q II
U
00
00
A �-
L
o.
N
Q
N
N
w
w
m
m
A
m
C
0
6
m
n
m
w
w
a
s
C
m
O
L
IY
d
C
0
C_
O
U
r
O
LL
O
Y
V
'-I
rl N
C7 ~
O
O1 �
L N
F �
E ~
O `y
a
d N
C �
N w
L N
W O
� C
j K
u E
Y O
N
o `
N a.
O
O 0Q
Z U 2 U
' /
C
O
H
7
O_
v
N
c
O
L
u
3
'
N
N
01
C
r
C N
o
aR
y
C
y Z
v
V
01
a v
o.
E
m
_
N
rl
l0
11
%D
O
O
0
0
p mr
O
O
O
O
N
d
O
O-
O
O
O
N II
O
O
O
O
C
O
O
O
O
m
m
J
N
Y
O
O
1D
n
M
0
0
m
in
N II
O
O
0
0
p
O
O
O
O
O
K
YI
d
Y
W
I,
m
O
00
m
Ln
r-I
0
a II
o
o
-o
0
0
C
00
a
0
C
C7
u"i
X
W
>
W
N
O
u
m E
i O
Q ^�
cc
00
O
O
O
II
o
6
0
0
d `-
v
C
O
{J
H
d
u
m
O
O
0
0
0
0
Q II
O
O
O
O
O
O
O
O
10 �"
L
a
N
Q
N
C
'i
.-m-I
rl
,my
.N
LU
lJJ
m
m
m
m
_C
.O
a
r-1
m
N
''I.
m
ry
m
`LI
w
a
a
N
N
O
a
O
N
r-1
'-I
N
r-1
O
L
Y
19
c
0
m
N
C
O
v
O
LL
3
O
C
m
v
v
to
m
c
i
0
c
Ia
rti
0
v
�o
H
v
a
N
7
f0
7
O
i
N
O.
E
c
c
N
u
o
a
Z
V
N
C C
Q
MY
u v
m Q
u m
3 o
M o
LL
C u
m ~
r1
N
T
N
m
n
b
T
e
s
oo
ao
_
m
m
m
n
O
C
t
N
..
O
O
m
P
N
n
b
n
N
o
C
O
O
m
m
P
N
n
b
n
N
O
N
O
C
L
C
y
c
p
c
a
O
m
P
Yf
P
P
t
b
N
n
n
m
i
N
b
n
N
m
m
N
C
E
88
88
O
m
N
m
m
F
A
L
F
e E
T
O
i�
ui
o
0
vi
vi
0
vi
E
0
0
0
0
0
0
p
N
08
O
N
y
00
.
E
F
a
c'
n
L
p
~
FF
Y
W
O
o X
o
.mp
o
.mp
L
J
•_
pp
p
p E
N
6
m
e
T
�O
Ej
O L
n
p
R
z
L E
N
ui
vi
N
p
e X
m
�
m
voice
L
J
IQ
m
P
0
O p
y
LO
O
iE.
9
O
o
m
0
O p
f
O
0
m
0
ti
ti
m
o
o
�b'1
m
0
0
O M
Y
m
0
0
b
m
0
0
-
m
m
m
c
m 5
m
6
a
op
0
a
O
O
Q
a
U
C
p
a
`o
_L
�
3
� O
L
O f
3 0
m -
c �
V
O �
m
;
b' p
^p a
z �
0
3
n V
V y
� Q
n �
r E
d O
u m
C V
V A
Q F m
U ° p
p
~II
x E
z
APPENDIX B: Hydraulic Computations
Table 3-8 Effective Imperviousness Adjustments for Level 2 MDCIA
Detention Volume by the Modified FAA Method
Reduced Detention Volume by the Modified FAA Method (Via Table 3-8)
Stage -Discharge Sizing of Orifice
12" RCP Flow Calculation
Calculating the WQCV and Volume Reduction Chapter 3
Vogel Concrete: Quality Engineering Impervious Reductions
100 %
90%
80%
n 50%
E
m
40%
Y
u
d
w
W 30%
20%
10%
0%
0'
Figure 3-8. Effective Imperviousness Adjustments for Level 2 MDCIA
4.3 Site -level Volume Reduction Methods
For site -level planning, whether at a conceptual level or a more advanced stage of design, it is not
necessary to use default D and R values if the various area fractions of a site (i.e., DCIA, UTA, RPA, and
SPA) can be defined. Two options are available for quantification of volume reduction at the site level
when these fractions have been identified:
I_ SWMM modeling using the cascading plane approach, or
2. UDFCD Imperviousness Reduction Factor (IRF) charts and spreadsheet (located within the UD-BAP
workbook available at www.udfcd.org)
' The UDFCD IRF charts and spreadsheet were developed using a dimensionless SWMM modeling
approach developed by Guo et al. (2010) that determines the effective imperviousness of a site based on
' the total area -weighted imperviousness and the ratio of the infiltration rate (average infiltration rate based
on Green-Ampt ), f, to the rainfall intensity, I. Because the IRF is based on cascading plane
CUHP/SWMM modeling, it will yield results that are generally consistent with creation of a site -specific
SWMM model.
3-14 Urban Drainage and Flood Control District August 2011
Urban Storm Drainage Criteria Manual Volume 3
1
DETENTION VOLUME BY THE MODIFIED FAA METHOD
Project: Vogel Concrete _
Basin to: Developed 100-Year
(For catchments less than 160 acres only. For larger catchments, use hydrograph routing nalhod)
(NOTE: for catchments larger than 90 acres, CUHp hydrograph and routing are i ecorronanded)
Determination of MINOR Detention Volume Using Modified FAA Method I Determination of MAJOR Detention Volurna Using Modified FAA Method I
Gairma,y Crania. I„ag.rae.
Caolmnl Drainage Area
Preamalopmern MCS Sol Group
ReN Paded for Deier.ion Cneol
T.w o1 Cdcarovion of W atenlad
Abrade LWI Release Roe
One n Precy.amon
De.g0 w9,m IDF Fermui• l.C; plJCaaTyC.
Caenlclen One
Co•n'obn I".
1,. vommmNml
loan..
A. saes
Type. A.B. C, oto
T• last(2.5.10.25.50. a loot
To. mean
0- dv..
P,-
C,- IBgo
Ca- 0
Ce. O.M
CalaM1 ant Drawee Impemotsrwsa
CNC.,nf Drainage Ana
Preawbp,neM WCS Sod Group
Return Pniool for Detention C runt
cane Of Cinmameauon of waum ad
A•ae,ffib Una Reba. Rate
One u P,erydffinn
Dusan Ra ialmI IOF Farmula f. C: PAC,4T,]`Ca
Coaftiam Ow
Coefficient Tap
CosXkbnl Tiwe
le• BIRO PMIM
A- offer calm
Tive- D AB.C. oO
T IW yeas (2.5, 10, M.N.. la)
To. 571 ee•laa
0. 0.16 Ce/cm
P, .1 263 mdas
or- 28.50
C.. 10
C•- 0.711191
Rao„ fgelM1 era
C-
a 44 _
Rvnll CoeHcbM
C-
065
IryN. Peak R.11
0".
1.01 _eta
ldlga P.ak R.H
0,-
5A4
--�0.14
de
Aloeeble Pear GNIIOW Rai
09-out-
0.14
oM
Atoe,ade Peak Callow Rale
Opoa-
ola
Mai. FAA MNer Sr." Volume a
a0
Wbw trot
Mad. FAA Map, Sen., Y.N..
5,413
xlelalaea
Mod. FAA Mebr Saone VoNma.
"if _ecrM
Mod. FAA Major Sbreto Volume._
0.124
lerM
I
<Enter RartalB aeon ln,,emervaI..
V.
51or
5Mole4
Byrlhs
Relief
Ir/Ma
MAwlexa
Averse
OWba
9ao•p1
Re6iJ
Rnbial
4dba
MrM1as
Avergp
011Xoa
Sbrapa
Ovion
hussy
Vo9nls
Fail,
Olson
V0141M
Vdurle
Conseil
Miller
Volans
Fabr
d/ba
VMane
vauns
x3.Ya
M ift
W,__.
'm'
ds
meter
wlex
nM1ws
Flrlas yM1
rn-keel
da
sn-idol
ace -lax
0proud
i-fto
am
Baoo
ON
am
D.Doo
ome
a
ON
OND
ON
ON
! 0000
am
1
352
0002
1.00
ou
o000
012,z
_ 1
I2.1e
p.00s_
100
_0.1_4
0.000
0009
2
329
0003
1m
0.14
Om0
am
1135
Ov__
100
0.11
O.O,lll
0017
3
3m
-ONS
-Om
1.00
0,14
ONI
00"
3 _
1066
0.025 _
too
_. 0.14
am,
0024
1
"1
IN
014
Om1
am
4
too
0.031
IN
0.14
ONI
_'
Do"
5
276 _
O.00T
IN
014
0.001
BAN
5
OS2
0037
IN
0.14
float
0016
_ 5
M
BON
_am
014
Omit
_BOOR,
_ 6
am
0.012
ass _
0.14
0.001
ON,
]
250
0.009
0.91
0.13
Oml
am
]
om
0447
09,
0A3
am]
_
0045
0
239
0010
Om
0.12
goal
GM
s
325
0051
0e6
oft
0001
0ON
9
2"
0.011
0.82
DA,
Boot
0009
_
9
IN
goes
_
082
_
0.11
0.001--
� 00"
10
220
0.011 _
0.79
all
0.002
0010
10
-
749
0.059
0.79
0.11
(1.m
0057
_ 11
212
__ 0.012
0.76
0.11
Oo02
O.11ll
11
7.30
0062
076
0.11
0.002
0060
12
2.04
0.013
0.74
010
0002
Doll
12 -
]M
0.065
074
0.10
ODo2
am
13
197
0,013
0.72
010
OM
0.012
13
am
BOM
072
0.10
am
0a"
M
190
0011
0.]D
0.10
0.f02
0012
14
657
0071
OTp
0.10
0002
0.069
t6
161
0014
a.89
0.10 _
0W2
_ 0.012
_ is -
C36
0.07I
069
0.10
a."
16
170
0045
a."
am
am
0013 _
16
6.17
0.0i6
0So
am
_0003
am _
0074
17
1.74
0,015
0.87
Om
0002
0013
17
5m
001e
067
Om
_
am
0026
la
1.69
0.016
am
Om
0.002
0.014
Is
5.B2
OM066
am
00)e
is
1.64
0.016
0.65
am
0002
0,014_
19
5.66
0083
065 _
_am _
_am
O.m
0081
_ 30
160
O.m]
_ 064
009
0.002 _
_ 0.01/
_ 20
5.51
0.05
ON
-_p6
009
0-002
0082
21
156
_001]
064
on
0003
_ Bola
21
527
OOe]
Oita
0.09
_
--_Cs
oo
DO"
n
152
_ 0447
0.0
0.09
am
0015
22 _
524
aos9
so
0_M -
aim
0086
23
148
able
0.62
009
am
23
5.11
ONI
OR
am
OJM
O.OM
_ --24
1,45
--9418
0.12
009
0003
_0015
Oo15
_
24
am
_
0092 _
Oe2
Om
_
D.W3
0089
_ 25
141 _
_Cola
OAI
009
am
0.015
_ _25
am
0094
gal
)
am
0.003
0091
Be
138
00,9
06,
a09
0003
0016
26
I.T
am
0.61
Om
O.No
0093
27
135
0.019
"1
Dos
am
a.016
27
4.67
am
061
Cos
am
0094
L
132
0019
ON
am
0.003
0.016
26 .-
Is]
0.099
ON
Om
0.003
0095
29
tw
- am
AN
009
am -
0.016
26
4.0
DIOO
ON
Om
_
0.003
0097
30
127
0.020 _
Bea
008
ON11 -
0016
30 1
4M
DIM
am
am
0603
oam
31
125
B.a2o
ass
ON
Ooa -
0.017
m
431
0.10
ass
am
coca -
0os9
32
422
ooze
os9
o.DO
0004
0.017
32
♦"
o.ta
ass
am
0.004 -
BmI
_ as
120
0.02,
059
006
Ow4
0.017
33 _ _ _ _
4.15
0i06
059 -
_
am
BON
0.02
3a
1.1e
coal
ON
009
Ovw
0.m2 _
3i
4.07
01.1
os9 -
ON --
cow
0loa
35
1.10
0021
-
oss
Doe
- 0ON
0,017
35
4OO -
0.109
oss
ooa
o.0a
0.104
3e
1.11
0,021
Dse
00
ooa
Bbv
36
3.93
p.109
ass
gm
o.aa
ems
37
1.12
Dan
Dm
0,09
0.0a
0.010
37
367
0.110
ass -
ON
0.oa '.
0.106
38
1,10 _
0.022
Om
ON
0004,
- 0016 _
36
360
0.111
ON
a."
0.004
0.107
39
1011
am
05T
008
00a
Bole
39
3.74
0112
a57
0a
0004
0,as
40
102
_ o.ozz
ow
one
OOa
0.018
40
3m
0.114
_ 057
ON
ON4
0109
41
Ira
O.D22
a_"
Dos
0005
Dole
at
30
0.115
_
OS]
Too
_
0.005
0.110
42
103
_ am
057
008
Door
0018
42
357
oils
057
009
am
01„
43
102
_
_ 0.023
057
ON
0.005
0.018
43
352
0.117
057
0.08
omd
0.112
44
IN
0.023
056
008
0.005
0.018
44
3.47
0,110
ON
0.08
_
OM
0.113
15
am
0023
O56
008
DODS
0.018
45
3.42
0,118 _
_ON
0.09
am
0.114
a6
ON
0.023
am
ao9
Owl
Cole
46
3.37
DA19
ON
Om
Dallas
0,11.
47
ON
_
0024
am
008
am
0019
47
332
a,"
ON
Om
am -
01,5
M
am
_ 0.024
am
Dos
0005
0.019
48
328
0,121
ON
Om_
BOOS
Oils
49
am
_ 0.024
ass
008
CODS
0.019
49
3.23
0.122
0% 1
Om _
0.005
0. 117
50
032
_0024
am
0.08
0005
_0.019
_ 50
3.19
0.123
am
Om_
am
ells
51
0.91
0.024
am
0.08
0005
Dols
51
3,5
0.124
_
ON
_
Om
_
Om5
Olt$
S2
0.90
_ D.024
0._55
008
0.ON
0.019
52
3.11
0125
055
am I
allo
0119
53
0.39
0.025
0_SS
008
D.008 -_
0.019
Sl
3.07
0.125
055
0.0 '_
0006
0120
54
am
-. 0025
ON
0.oe
00a
0.019
5.
3.03
0.126
_
055
ON
0.006
0120
55 _
0.e]__
0025
Om
009
aON
"is
55
2.99
0127
055
Om
_
aON
0.121
56
0.86
0.025
0_35
008
0.ON
Dole
56
2m
0.128
055
_
0m
agoo
0122
sr
0,85
DOM
am
006
am
Dole
52
2.92
0128
D55
0.0
am
0122
56
0.84_
0025
ass
0.09
am
0b19
so
289
arm
_
ass
o_oe
_
D.00s
0.123
59
083
0.025
0.55
0.08
OM0.019
59
2m
DIM055
ON
0ON -
0.124
50
062
0.026
D.55
Dos
am
0.019
60
2..2
013,
055
O.OB
0.ON
0.124
Mod. FAA Minor
Stores Volune(Cuble
O).
940
Mod FAA Motor Sbrau Volume (cubic 10
SA13
Mad. FAA M ner Sorge Volume i•ttaA3. 0.0193 Mod FAA Major Sbrage Volume harem)= 0.1243
' UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.33, Released August 2013
a EFORE_REDMTION_1a-Yea Dewbped lA DeM,6on_e233_USEkff.AbdIM FM 1/I64N15,2.0 PM
II
' DETENTION VOLUME BY THE MODIFIED FAA METHOD
' Project: Vogel Concrete
Basin ID: LID Reduced Developed 1O0-YR
(For eatchn is Mae Man 180 mrea only. FN Mrger catchments, uee hydrogmph rmting method)
(NOTE: for ca/chrnnla larger than 90 acne, CUHP hydrograph and routing are reccr r ended)
Determination of MINOR Detention Volume Using Modified FAA Method
DeterMnelion of MAJOR Detention Volume Using YotlMMe FAA WY1oe
Deakin Information IY1out1
Catcammrt amoral lmo.m.,,ait
I,.M20ogm
perch
Deakin 9lformatlon (haul I;
Gol Drerege lmpervo.mara
l,- 59.10
Concrete
Geelmem Drara9e area A-smma
Cmc6mem Orarage Area
A- OAaI_
avm
PrsaelabpmM NiC55ad Goul
Rahn Panda for Delemion Conbpl
Type•A.
T.(2.5.10.25.
S. C.coD
SO. or 100)
Pradevmlopmenl Wi Sail Gmlp
RBNn Penoa lot Delemon COmml
Type- 0 A, B. C. At
T. i®yewr g.5. to. ss. S0.or IN)
T me of Cotut4ybn of w We
sled
To.mrYYr
Time of CmcentratlOn of wNennea
T.. 51Ab.sele,
i Rebma Rate q.arrears
Armmaee i
Rekae R.
q.
cmi Pmtyaa�an
P,.rdas
Ore�oat PrecprAbn
Pr -I M
[I As
%SO
Deegn Flab4laFFwmu4
Coagkem Ora
F.
Daaign FbinlaN
Coeflcre ml O
IDF Formula
I=C,' P,gC»T,I"C.
Cn- 2950 _
10
COeai[iem T. Cr.
C atlkiert Two
Ct• 10
CaNikbn Tema
Co.
0.M
Coenkbrn Trvee
Cr.._ 0.799
Deternination of Average
Rum"Coatha m
Outflow from
the Basin lCalculateall:
C.
Car _
Determination of Avemae
Run"Correrml
Outflow from
the Basin
(Calculetedl:
C= 0.0 _
Iteb Peak fluon
oph.
0A2
dr
Imbw Peaty Runll
Opn- s.N
da
A6oaees Peak Qalba Ras
0i-
91
ds
ANuwada Peak Qmbw Rafe
Opuia=
0.11
as
Yea. FAA Ymor guests voluea.
>N
eualr hart
Mop. FAA Yepr Storage Volume= 5238
croak luel
Mod. FM Mrwr Storage Veluat.
1.811
scrM
Moe. FAA Major Storage Volume= CAN
acre-n
Erma: Bard a:
I'll a visa e e .5lar5
Rarral
RamY
baba
Agjuii
Atari
OfUbw
Storage
Rairtal
Raises
imbw
N91sNMnt
Avenge
OWbw
Storage
[lateral
Imemay
Volume
Factor
(Aeroa
Volume
VOpane
Duatlon
Ireera8y
VONne
Fail
0tani
volume
VohFne
mrWa
rllar/rs
eaA19a
to
da
eaMNi
ooraleet
mreNr
holea N
.1get
M
dr
aaeaea
Berri
Ni
0
O.N
0.000
0DO
am
ONO
_ 0.ON
0
Do
a.ON
ON
ON
0000
OAN
1
352
CAN
lm _
0.14
CAN
0.001 _
1
1216
0.009
Im
0.14
am0
0009
2
3"
Omn
Im
0.I4
O.CN
0-0N
2
I135
OA17
Im
0_1e
(IND
0017
3 _
_ 3as
DNA
1DO
0.14
00.0_I_
Ogis
3_ _
10"
0024
1.00
014
0001_
0023
s
2.91
OON
1m
0.14
O401
0.005
s
_
lON
0.030
I.N
0.14
_._
Oml
0029
5
216
Om1
im
0.14
0.001
O.N6
5
9.52
0036
1.OD
- 0.10
0.001
- 0035
6
2.62
ON]
ase
0.14
omt
0.008
-0.001
6
905
O.O41
0.98
0.14
om_t
0039
1
2SO
O.ON
091
0.13
0.001
1
9.63
0.045
091
0.13
Oml
_
0.011
5 _
259
00N _
aW
0.12
0A01
OA09
5
0%
0069
086
0.12
Owl
OOH
9
2"
0010
OA2
CIA
ON1
O.Ow
9
7m
0053
0.02
0.11
Om1
0052
10 -
220
0.010
0.]9
0.11
0.002
_ oA _
10
7.59
OAS)
079
0.1_I
OAN
0ON
11
2A2
_
0.011
076
0.1t
0ow
O.m
11
].N _
OAN _
0.76
eti
Om2
0ON
12
2-N
0012
0.11
0.10
am
0010
12
].N
0.083
07e
0.10
_
0102
ONl
13
1.97
ael2
- _
On
0.10
0002 _
ONO
13
6.80
0.068
072
0.10
oW2
0ON
11
1.90
0013
0,70
DID
0,002
0.011
to
657
0.09
070
_ _
' 0.10
_
O.N2
0067
15
1Ae
0013 _
069
CIO
0002
0.011
15 _
6,36
0.071
069
0.10 -
am
O.N9
16
179
UAis
068
Om
ON2
0011
1_8
617
0.014
068
009
am
_
0072
11
1.14
_
O.014
067
Om
D.OW
OAl2
17
599
Don
067
0.09
_
OON
0074
1a _
1.69
0.011
0."
am
0.002
_ 0.012
is
5.82
Di _
066
0.09
CAN
Dan
19
Ias
Oats
065
Om
ON2
0.012
19
566
0.0e0
065
a.N
(11
0.019
W _
_ lAo
0015
a."
0"
0ow _ _
0.013 _
20
5si
0Of12
0.64
Om
0.002
0ON
21
156
0015
Oho
o.N
003
0013
21
5.37
0ON
Oho
- Om
OAN
D052
22
152
0016
063
Om
0003
0013
22
524
0N8 '..
0.63
_ 0.09
0403
0093
29
to
DA16
0,62
ON
0.003
0.013
0
5.11
0088
062
0.0_8
CAW
0085
21
1.45
0.016
ew
Om
Om)
0,014
21
429
0.090
062
_ _
0m
0.003
0007
%
1A1
0017
oat
Om
O.ON
0.01s
25
ass
O.N1
061
0119
am
Do"
%
1J8
0017
061
pm
0009
0.011
%
417
0099
081
Om
a.N3
0090
21
1.35
0.017
0,61
ON
am
OA11
21 -
Car
0090
0.6,
Om
0m3
ai
29
132
0010
am
008
am I
0.010
_ %
LS>
CAN
O.eO
008
am
0092
Is
im
0A,0
0SO
0Do
OON _
LLo19
29
ufi
0097
060
O0e
oAYJ
cos.
>D
12l
0.018
om
0n0
am
0.015_
30 '
439
oose
0SO
0.08
om3
0095
_
31
12S
O.m6
ass
Cos
ams
_ 0.015
31
4Jl
Ulm
059
008
_
DAN
0096
32 -
IZZ
0.019
059
000
O.ON
0.015
32
4z3
0.101
059
0.08
am
0097
39
_ 120
0.019
059
ON
0001
0.015 _
33
4.15
0.10
059
008
01104
0ON
N
Iva
0019
0la
009
a0W
0015
_
se
407
0.103
0Se
Des
_
0.000
01.
35 _
_ 1_16
0.019
ON
0.08
am _
_ 0.015
_ %_ _
sm
0.105
056
_ Om
0.101
36
1.10
0.019
0.56
O.Oa
O.aN
OATS
36
3.93
0,01,
aSe
_
Om
_CAN _
oNal
0102
37
IA2
0020
0SO
0m
O.ON
O416
31
387
0,107
058
Om
0401
0.IM
38 _
1.10
0020
am
a.N
0.001
0.016
35
0.80
0.109
058
Om t
0001
9.1"
39
log
O.MO
057
O.N
a00o
0.016
39
3.74
0109
057
ON
_
0004
Ulm
10
107
OA%
0.57
ON_
00N
0.016
10 _
3as
0110
057
em
01
CAN
sl
1M
aWO _
061
0_m
O005
0.010
eat
3.0
OAll
057
am
OON
0.107
42 _
1as
on,
a57
Om
0005
OAIS
02
3.57
0112
057
ON
D.ON
0107
03
1M
0021
OW
Om
0005 _
O.015
a3
352
0113
0.57
_ _ON
a.005
0,10
ee -
im
0.021
am
Om
0.005
0.016
ee
347
0.110
ass
_
ON
ONS
O.IN
45
099
am,
056
Om
0.NS
0016
15
312
0.115
056
- OAS
am
0.110
b
0.9e
0021
O58
O.N
ONS
001a
96
3.37
0.116
O59
O.N
O.ON
0.111
s]
O.N
0021
aSO
ON
0005
0016
oT
332
0.117
056
am
0005
0112
0
095
Dan
056
0.N
O005--_0.016
/8
329
0.117
0.%
- Om
am
0. 112
49
ON
0022
ass
Om
am
0.019
09
3.23
O l le
056
Om
Om5
0.113
s0 _
092
0022
ON
O.N
O0115
0417
50
3.19
0_,119
ass
- 0_m
am
0.110
51
0.91
0022
0.W
Om
0.005
0.017
51
3.15
OAW
ON
Om
01
0114
52
ON
0022
055
Om
0U06
0.017
52
3.11
0.12,
055
0.0
0005
0115
53
ass
0.022
0.55
On _
000fi
0.017
53
307
OA22
0.S5
_
_Om
O.N6
0.116
L
ass
0022
ass
ON
0.0m
0.017
51
3.03
0.122
0.55
Om
a"
0.111
55
097
0.023
ass
Om
0m8
0017
55
2.99
0.123
055
ON
am
0117
56
ass
0.023
0.55
ON
ON6
OR11
58
2.96
0124
055
_
D.N
_
0OD6
Oil$
57
0.65
0023
0.55
OOB
ON6
_ 0.017
5/
292
0.120
055
0.005
0.118
Ss
090
0023
0.55
008
0006 -
_ 0.017
so
2.69
OJ25
ass
_ _0.0111
0_m
_
0006_
0.119
59
083
0023
055
0.08
am
0.017
59
2m
CAN
ass
0.08
OAN
DIN
10.82
0023
D.55
008
OON
O.al]
60
282
0.12]
055
- 0.08
a.ON
O.t20
YOL FM Yluea Sluraaa Veluaa tadM)= OAliO Yoi FM Nspr 5lmape Volume perM)= 0.1202
UDFCD DETENTION BASIN VOLUME ESTIMATING WORKBOOK Version 2.33. Released Augltfit 2013
10OYeM OslelapeG ID Daier4en 4 11 USEME. WaFaa FM 11152015.1232 PM
STAGE -DISCHARGE SIZING OF THE WEIRS AND ORIFICES (INLET CONTROL)
' Project: Urban Box -Storage
Basin ID: 100-YR Detention
Ru nn.....- (FunJUJI
.a
RaNM Ortln r) (elMlr 9ure1
N
Current Routing Order Is #2
Desli n Inlormatlon !#mull:
Circular Operu g: Diameter In Inches
OR
Rectangular Opening: Width In Feet
Lergtlt(Height for Vertica0
Percentage of Open Area Attar Trash Rack Reduction
Onlice Coefficient
Weir Coefficient
Orifice Elevation (Bottom for Vertical)
Calculation of Collection Caoar,
Net Opening Area (after Trash Rack Reduction)
OPTIONAL: User-Ovende Net Opening Area
Perim ter as Weir Length
OPTIONAL: User-OVerlde Weir Length
Routing 2: Water flows through WQCV
Drificee
0
ti
#1 Horiz. #2 Hartz.
#1 Vert
#2 Vert
Dia.. 0.00 0.00
3.13
0.00
Inches
W -
IL
L or H .
ft.
%open-
50
%
C.
g.6s
C. -
E,-I
1
96.17
tL
An- 0.00 0.00
0.03
0.DO
ag. IL
A -
egR
0.00 0.00
4 -
Top Elevation of Vertical Orifice Opening, Top-
Center Elevation of Vertical OrllIce Opening, Cen -
M.
ft.
96,43
96.30
0.00
0.00
K
IL
opening is not used).
tmtW
b VKM. AMmr.
a Myer Stamen
W.3, BwYba
in t
Water
Surface
Elevation
it
lnkedl
WOCV
Plate/Riser
Flow
cis
User -Mile
#1 Horiz. #1 Horiz
Weir Orifice
Flaw Flow
CIS cia
o i o
N2 Haft 92 Hartz.
Weir Critics
Flow Flow
cia Ma
0 0ubA
#1 Ven.
Collection
Capacity
cis
(outpull
#2 Van.
Collection
Capacity
pie
au
Total
Collection
Capacity
Ha
(output)
Tw#et Valunee
far WOCV. MWr.
tMa, sior.#e
Vohmes
11. mr om --,nee.
95.78
0.00
0.00
0.00
0.00
0.00
0.00
0.00
96.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00
WCCV
96A7
0.00
0.00
0.00
0.00
0.00
0.00 0.00
9625
0.00
0.00
0.00
0.00
0.01
0.00 0.00
96.50
1 0.00
0.00
0.00
0.00
0.06
0.00 0.00
96.75
0.00
0.00
0.00
0.00
0.09
_
0.00 0.00
97.00
0.00
0.00
_
0.00
0.00
_
0.12
-
0.00 0.00
9725
0.00
0.00
0.00
0.00
0.14
0.00 0.00
Elev.
9726
0.00
0.00
0.00
0.00
NWA
#N/A
MA
_
_ _ 0.14 _ 0.00 0.00
#N/A #N/A #NVA
#N/A NWA _ #WA
#N/A MIA
MA
MA
MA
#WA
MA
MA
_#WA
MA
#WA
NWA
MA
#WA
LIMA
NWA
MA
#N/A I
_ _ _#WA
NWA NWA #WA
MA MA MIA
#N/A MA NWA
OVA NWA #WA
NWA
#WA
#WA
*N/A
*NIA
NN/A
NWA
MA
#WA
#N/A
MA
#N/A
NWA #N/A *N/A NWA
#WA �-- kN/A - --#WA NN/A
#WA #N/A #WA NWA
MN/A *N/A OWA NWA
♦N/A_ #WA MIA NWA
*N/A NWA #N/A NWA
OVA #N/A _ NN/A #WA
#N/A NWA NWA I MA
ON/A _ SWA _ MAI MA
_ #N/A NWA #WA MA
#N/A NWA IIWA NWA
#N/A NWA I #WA NWA
MA
MA
MA
#WA
#WA
M4/A
MMA
NWA
MA
_ MAL
MA
*WA
MA
MA
*K/
MA
MIA
NWA
MA
*N/A
NWA
AWA
AWA
#WA
NWA
I MA
NWA
MA
#WA
M4/A
MA
NWA
MA
MA
#N/A
pN/A NWA
#N/A NWA
MA
NWA
NWA
_ _
I #N/A NWA #N/A -_-- NWA
#14/A MA MIA NN/A
MIA MA _ NN/A NN/A
#N/A NWA #N/A #N/A
#N/A #WA #N/A #NIA
MIA M4/A MA _ NWA
#N/A #WA aN/A #WA
NN/A #N/A #WA #WA
#N/A #N/A OVA _ #N/A
#N/A --#N/A MUA MA
#N/A #N/A MA NWA
NN/A #N/A #N/A NWA
NN/A #N/A *N/A NWA
#N/A MA #N/A MA
`#N/A #N/A MA *N/A
#WA
NWA
#NA
#WA
NWA
#WA
#WA
NWA
#WA
NWA
MA
MA
NWA
NWA
MA
�- --I
NWA
NWA
#N/A
MA
MA I
NN_/A
#N/A
MA i
MA
#WA
_#N/A
MA
NWA
#WA
#N/A
NWA
#WA
#N/A
#WA
NWA I
OVA
NWAI
#WA
- _MA
IOG Year Developed LID-Detention_✓1.33_USEME, Outlet 111912015, 4:17 PM
0
O m co I� co to co N O
O O O O O O O O O
(14) U01jena13
i
I
C
O
ca
n
' Hydraulic Analysis Report
' Project Data
Project Title:
Designer:
' Project Date: Tuesday, January 13, 2015
Project Units: U.S. Customary Units
' Notes:
' Channel Analysis: 12" RCP
Notes:
Input Parameters
Channel Type: Circular
' Pipe Diameter: 1.0000 ft
Longitudinal Slope: 0.0025 ft/ft
Manning's n: 0.0130
' Flow: 1.7700 cfs
' Result Parameters
Depth: 0.8139 ft
Area of Flow: 0.6845 ft^2
' Wetted Perimeter: 2.2495 ft
Average Velocity: 2.5857 ft/s
Top Width: 0.7784 ft
Froude Number: 0.4859
Critical Depth: 0.5659 ft
' Critical Velocity: 3.8610 ft/s
Critical Slope: 0.0066 ft/ft
Critical Top Width: 0.9913 ft
Calculated Max Shear Stress: 0.1270 Ib/ft^2
Calculated Avg Shear Stress: 0.0475 Ib/ft^2
C. Water Quality Design Calculations
UD BMP Rain Garden Calculations
Design Procedure Form: Rain Garden (RG)
_
sheet 1 of 2
Designer: GLF
Company: QUALITY ENGINEERING
Date: December 11, 2014�
Project: 1217 RIVERSIDE AVE (One rg north)
Location: FORT COLLINS, COLORADO
1. Basin Storage Volume
A) Effective Imperviousness of Tnbutary Area, 1,
I, .
90.0
%
(100Y it all paved and roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = I,/100)
I =
0.900
C) Water Quality Capture Volume (WOCV) for a 12-lour Drain Time
WOCV =.
0.32
.watershed inches
(WQCV= 0.8' (0.91• 0- 1.19' P+ 0.78' 0
D) Contributing Watershed Area (including rain garden area)
Area =
1,600
sq it
E) Water Quality Capture Volume (WOCV) Design Volume
Vw= _,.
, cu it
Vol = (WQCV / 12)' Area
F) For Watersheds Outside of the Denver Region, Depth of
da =
0.43
in
Average Runoff Producing Storm
G) For Watersheds Outside of the Deriver Region,
Vwecv o,im -
42.8
'icu it
Water Quality Capture Volume (WOCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume
Vway� .
cu it
(Only if a different WQCV Design Volume is desired)
1
2. Basin Geometry
A) WQCV Depth (12-inch maximum)
Dwocv -
12
in
B) Rain Garden Side Slopes (Z - 4 min., horiz. dirt per unit vertical)
Z =
4.00
ft / ft
(Use "0" if rain garden has vertical walls)
C) Mimimum Flat Surface Area
Aw, -
29
sq it
D) Actual Flat Surface Area
Amy =
55
sq it
E) Area at Design Depth (fop Surface Area)
Arm =
370
sq it
F) Rain Garden Total Volume
V�
- 212
_, cu it
(V� ((AT.+AAkw) / 2)' Depth)
3. Growing Media
se One
43 16' Rain Gahm Gmwin9 Media
Odrer (Explain):
t
4. Underdrain System
Owose OneYES
.
Ir
j)
A) Are underdrains provided?
I
NO
A
B) Underdrain system orifice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage
y=
WA
it
v`
Volume to the Center of the Orifice
Volume to Drain in 12 Hours
VOlrr=
WA
cu 0
- u) Orifice Diameter, 3/8' Minimum
Do =.
N/A
in
LID-BMP_RAIN GARDEN (North RG with vertical walls), FIG 12/11/2014, 124 PM
I
3U
Design Procedure Form: Rain Garden (RG)
Sheet 2 of 2
Designer: GLF
=
Company: QUALITY ENGINEERING
Date: December 11, 2014
Project: 1217 RIVERSIDE AVE (One rg north)
Location: FORT COLLINS, COLORADO _
I
Choose One
S. Impermeable Geomembrane Liner and Geotextile Separator Fabric
A) Is an impermeable finer provided due to proximity
CS NO
of structures or groundwater contamination?
-
Onoose One
6. Inlet y Outlet Control
61Z Sheet Flow- No Energy Dissipation Required
_} A) Inlet Control
Concentrated Flow- Energy Dtsslpatbn ProNded
7. Vegetation
CC Seed (Plan for frequent weed control)
( Plantings
CSC Sand Gmwn or Other High Infiltration Sod
"
Choose One _
8. Irrigation
I .
S,,i YES
A) Will the rain garden be irrigated?
QC NO
Notes:
Z e' .' .R- ,,•.£;y"tt' _ i $_ti
' UD-BMP_RAIN GARDEN (North RG with vertical walls), RG
12111/2014. 1:24 PM
�M
W
W—
;\ 1
1
1 I 1
1
1 i
I I .
I I
I I I
( I I
I I I
1 I
, I
I I
I I �
I I I
I I I
I I
I I
I I
1 I I
I , I
P
I i LOT 18
PROSPECT INDUSTRIAL PARK
I I I
(NOT A PART)
1 1
1
P+Le�b.N A.e.
I I I
I 1 I
j I 1
I I I
, I
I I
I
I
II I `�/ _________________
I \
1 \
{
II _
r �W —W
,C22G
0
m------
--___—
_____ ______
�\
SONtlERPM
�.__
oexrNe
KWEO
YARD
(ROAD BASE
SURFACE)
all.
I I
LIGHTFIELD \'
ENTIERPRISES
LOT 1
I
W.LmesW
uft
F _ GRADING NOTES
NL s OTIELVAnpIS sxmN ME R." LME mass
_ xoTn omERnsE.
M M O QE/.1FA nIM NI• ns P SHALLn ENa
Ol ux sOnW E WILLING ELEudr ro TOsNnLL REWIRE n
9EEMnlE BI PU P(SMEET
]) SEE tl Exem IIIN f91EEr m.l) Pw u.0. AND
/ 1 _ L auras scnox REwmAnGR
°" CONSTRUCTION NOTES
1 O WNSIIRMT W AETE gtlK W9E PER MML R. sxEET
LEo
'NYI10 O} WgIRUR ORxIWAY MflMAW PER MI M.1, SHEET GI
E1
IMNIACNI %M O CONSTRUCT
ACCESS RAW PER MI Miss, SHEET MO
OI oms: ftw MbV ARM& CURB Ax0 WrIW usm s. may UI
I O WMEMM cr C( MAEIE 9CEWMR. ITA OETAI- IMI. SHEET WI
OO CORRECT TO MMING SmWM%.
Ocoxsmum T WIN WT..
Cw511Nci Y'U' wMREL W/ MET& GRATED W PER WREM
B wM1EEW CETML 10 e, SMEET Al
l
Cp51WCr LMAXW LANDSCAPE WI WITHASPR0YE0
REM. N.Ti WA�ACIURED CwC1E,E 9"KE0. O CpRIRXT ]' VAIIEY PM. PPR MTAE 1. SHUT MID
11 IKE Y RMMME PER BETML 1411 SHEET MI
4 \
._________r____ ____ 01 _� iN_�
III
-
Nmm 4NI
�
w m
0
—______
_ R --
__
�mmEismucTMRE..____
rEEsxDnee
$.
JIJRIVE
MIIJPOItVT
b
V W
V
V
WW a_ M
W
_ W W � `
V
ST. TIRE
RFLAN))X1ORMi
I
I
I
{
{
I
I
1
I
I
{
{
I
I
{
{
/
\
1
FOIL 4U
•
LE
ORE YOU DIG
CALL 811
UI PI -AN W�RM�
C7
z
r Ld
Ld
J Z
�0
aW
4
rcrrvrvcu.
�. 1KeSP
Nm
CHECKED MI:
CHECKED V.
DE9CNED 6I'. WA/w,
wP .emvrtx uiun
wrz
MMN 6Y wP/Gf
CHEMED ff.
mre le ARE TDIs
viw..n. Amur. wT
SCENE w5 NOTED
CIEEY.ED BY.
_
..os .xx lartoox
oex
PROELG ro.: TDu-am
CIEOED M
-
C4.0
1.
xrz
AEET 6 or 14
HISTORIC BASIN FLOWS
UASIN DESIGNATION
AREA
(AO)
x"
awa. Y
IN YEAR
oz
plop
(CFS)
DESIf;W POINT
BASH NWBFR
am
0.13
QIO
0.111
Pb
PROPOSED BASIN FLOWS
®ASN DESIGNATION
nRA
(Ac)
x IDvr
wr. Y
Im WFM
ttv.
oz
R1W
OESRaC POINT
BASIN NIAIBER
I
el
O.BaT
Qa3
0.a0
I.N
]Aa
_--_- UIew - -------
I\ U V i SIR
/
1 FENCED
YARD
(ROAD BASE / 1
1 I msw-
T r
F
LIGHTFIELD
ENTERPRISES
0.e8 om
I om
I `.1
LOT 1 �><.:....._
.1 v.. � iF"aiM.W • ��'��. 1
SE,IM;
WAYa —i
__- -7 ---- '�
P
IP
Rain Garden Detention Pond Su
aepYaa
Real
Wo-n
Mae"
MR,vw
lakk)
rr Repd Wlpvumme
Imwl
Too
Ieo-b1 wqY
•. h d tl..mw 1ta.mr
A+ew IYlew."eyr
atuuon mn Idd
°
'
o:setaa
oau
III
I am
I alm I vsvrs 1 ab617
1 ImIM a.0
nll/f IM
I
A -A RAIN GARDEN
SCALE: 1"=5'
N
EtEV"MII
„1.:. a. •.- •••
{hivL�a.awuu�'
riY�rNaawymi...
.� —:1
�2• CONCRETE PAN
C-C CONCRETE PAN SWALE
SCALE: 1"=5'
QE: LWAI'leld EmerpN6esr LlD Summary Table
Rain Garden
Newlm endaM/uea )
XW
5.rt
Pea Wed Near l rvlous Areato
1gMN
.N
MTRaletl
Impervious Area T.a.OJ 3VUOTrtHMem Metlm iv
Raln Garden
ToWllm ary ous Area Smated L.IL
Pervious Pavemelrt'
New PavemeRAMS
Mp
,ri,
Reuied MnITUm AregapmMPMmeM
dion IO
L3@
.N
M
Paver'tlionpla to3ais
dion
mg
TN
.h
90
.n.
Paver 'anion M u to 3ais mite
amen iprea
NO
.h
1A98
.N
ASPHA
PAM
DRAINAGE LEGEND
BASIN NAME V
VM�
Y-YR RUNOFF COEEFIDENO o
W-YR RUNOFF COEFFICIENT 0VL'
ES) Ld }3C
zggu
DESIGN�
D� POINT Q 0Z `tc
m m m m BASIN BWNDAR:T uj n
N%%'Nhv� PROPOSED FLOW
DIRECBCN -)
G A .........T $EC110N F.
B-B SOFT PAN SWALE
SCALE: 1"=5•
FF = 98.90
SIR r
IoerexmlPo\o 11 � �� �?{.•`•.: v. yr1l \�y + •ye
0A' V�O _ 100YR WSEL = 97.26_
_—TJ --- E i r I� � 1 — --- y DEEPEN FOOTING)12"
/"'- f=gfl=1 Z, DD ss sy FOR FROST
T— I WLf EIa MNNICNIE .. -. , ,�\ D1 WC4,.P4.lAm.rllS —
�� ... � _ 1=ITI-r� I m ..:" _ -1E--III IIII I -I — � r— III
R
—xs _ � ¢ MIDPOINT DRIVE
W W W_ \ W W W W
_________________ _____�\
4® r
Pw2e
r
DETAIL, SHEET C8.3
NTION POND WITH SOFT PAN BEFORE DIG
D-D DET� CU811SM,�nlama>=1P.N
SCALE: 1"=5' cexIrc xDn�Icnnnlx
L.I.D.LEGEND
RG
~
RAIN GARDEN
C 4
®
DRY WELL
a...®
.tom
SOFT PAN..
®
H
PERMEABLE
PAVERSi
W
(= 18
C Oy
ti �J
W Q
ujW
J
O
_i
0C
W
2
K
O
rM
CITY OF FORT COLUNB, COLORADO
UTILITY PLAN APPROVAL
L
NTRdEU
rMEm,nttx ono
am® m
CKCYFD er:
m: MAI
amP..mewta toot NorK931En
omw m: M•r/aU
pECMEO m:
stourm WI ATE
am 1a AME 2015
Ae MOIm
CELNFO B!:
_
ww6 w4 xexurva: AN
NN)AR r IML: A '(W
pEp1® m:
—
C5.0
maM 1
_ _
mRD 7a,14