Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 08/08/20022004 HIGH SCHOOL
FINAL DRAINAGE &
EROSION CONTROL STUDY
for
.............................
............................
:Poud S noc...... t.....
............................
.............................
............................
2407 LaPorte Avenue
Fort Collins, Colorado 80521
0
Nolte Associates, Inc.
1901 Sharp Point Drive, Suite A
Fort Collins, Colorado 80525
(970) 221-2400
June 24, 2002
1
1
1
1
I
2004 HIGH SCHOOL
FINAL DRAINAGE &
EROSION CONTROL STUDY
for
.............................
............................
:Poudr S0fi06 Dlstcict:R �:
............................
2407 LaPorte Avenue
Fort Collins, Colorado 80521
0
Nolte Associates, Inc.
1901 Sharp Point Drive, Suite A
Fort Collins, Colorado 80525
(970) 221-2400
June 24, 2002
BEY ON D E N G IN E E R ING
' June 24, 2002
1
Mr. Basil Hamdan
City of Fort Collins
700 Wood Street
Fort Collins, CO 80521
RE: Drainage and Erosion Control Study for the 2004 Fort Collins High School
Dear Basil:
We are pleased to submit to you, for your review and approval, the Drainage and Erosion Control
Study for the 2004 Fort Collins High School. All computations within this report have been
completed in compliance with the City of Fort Collins Storm -Drainage Design Criteria and
Construction Manual and the Urban Storm Drainage Criteria Manual.
We appreciate your time and consideration in reviewing this submittal. Please call if you have any
questions.
' Sincerely,
Nolte Associates, Inc.
Pre/pared by:
Greg A. Dreeszen, E.I.T.
Junior Engineer
cc: File FC0194
i
NOLTE ASSOCIATES, INC.
1901 SHARP POINT DRIVE, SUITE A
' FORT COLLINS, CO 80525
970.221.2400 TEL 970.221.2415 FAX
WWW.NOLTE.COM
Thomas M. Ochwat, P.E.
Senior Engineer
� NOLTE
BEYOND ENGINEERING
P
Final Drainage &
Erosion Control Study
2004 High School
TABLE OF CONTENTS
'
PAGE
'
1.0.
INTRODUCTION........................................................................................................I
1.1 Site Location.....................................................................................................1
1.2 Existing Site Description...................................................................................
1
1
1.3 Proposed Project Description............................................................................
1
2.0
METHODOLOGY..........................................:............................................................2
'
2.1 Compliance with Standards...............................................................................
2.2 Analytical Methods...........................................................................................
2
2
3.0
HISTORIC DRAINAGE CONDITIONS.....................................................................
3.1 Major Basin Description....................................................................................
3
3
4.0
DEVELOPED DRAINAGE CONDITIONS
3
'
4.1 General Concept ........................... .................................................................
3
4.2 Basin Descriptions.............................................................................................
4
'
4.3 Detention Pond Design......................................................................................
7
5.0
EROSION CONTROL.................................................................................................
8
'
5.1 General Concept...............................................................................................
5.2 Specific Detail...................................................................................................
8
9
'
5.0
CONCLUSIONS..........................................................................................................9
5.1 Drainage Concept.............................................................................................
9
REFERENCES...........................................................................................................
10
'
APPENDIX A - Developed Site Hydrology
APPENDIX B - Street Capacity Calculations
'
APPENDIX C - Inlet Design
APPENDIX D - Swale Calculations
'
APPENDIX E - Storm Drain Design
APPENDIX F - Detention Pond Calculations
APPENDIX G - Erosion Control Calculations
APPENDIX H - Charts, Tables & Graphs
APPENDIX I - Excerpts from other Reports
'
BACK POCKET — Overall Drainage Plan (Sheet DRO1)
- Overall Grading and Erosion Control Plans
w
' Nolte Associates, Inc. i N:\FC0194\Drainage\Word\Fc0194_DrainageReport_Final.doc
1
1
N
1
f
1
1
1
1
1
1
1
1
1
BEYOND ENGINEERING
1.0
1.1 Site Location
Final Drainage &
Erosion Control Study
2004 High School
The proposed Fort Collins 2004 High School (Site) is located in south Fort
Collins. The Site is bordered to the north by Rock Creek Drive; to the east by
Cambridge Avenue; to the south by Kechter Road; and the to the west by Ziegler
Road (Refer to Exhibit 1, Vicinity Map). More particularly, the Site (90t acres) is
located in the Southwest Quarter of Section 4, Township 6 North, Range 68 West
of the a Principal Meridian, City of Fort Collins, County of Latimer, State of
Colorado.
1.2 Existing Site Description
In general, the existing Site slopes south and east along grades that vary between
0.5 percent and 3 percent. The existing Site is presently irrigated cropland.
According to the results of the geotechnical subsurface exploration report that was
prepared by Earth Engineering Consultants, Inc., (Dated: November 14, 2001) the
existing Site is comprised of topsoil/vegetation underlain by light brown lean clay
with varying amounts of silt and sand.
Other pertinent on -site features include the following:
• Three small buildings and a two-story farmhouse that are located near the
Site's west property line.
• Three irrigation ditches that traverse the Site from west to east. The first
follows the north property line of the Site; the second runs through the
north third of the parcel; and the third splits the parcel approximately in
half. The City of Fort Collins Parks and Recreation Department will allot
the area to the south of the third ditch for future development.
• The McClellands Channel runs west to east through the southern third of
the Site. This reach of McClellands Channel will be within the City of Fort
Collins Parks property.
' The Site lies within the McClellands Creek Watershed Basin. The existing on -site
runoff currently flows overland and is captured by the irrigation ditches or
McClellands Creek.
1.3 Proposed Project Description
' The proposed 2004 High School will consist of one two-story, predominantly
brick building that covers 258,746 ft (5.94 acres). There are four separate parking
areas will provide the school with approximately 1200 parking spaces. The two
largest parking areas are located south of the proposed building. A third and
Nolte Associates, Inc.
N:\FC0194\Drainage\Word1Fc0194_DrainageReport_Final.doc
2:02 p.m. DATE: 03/12/02 PATH: N:\fCO194\CADD\CP\
R: FCSI SERVICE: PROJECT DRAWING NAME: ETDR01.DWC
: LetterP
R-EDBURN
C�� , 10Si�Lj
A� DR Ri
.HA
V,FN=Dp= I
0 a
i;9! Sr cn�
WoMM?N
fpo-P -� 'i -'%W-717�ft.
• YEILOWSWA(EiCT
-----------------
L7 RewkU-
Li
Packard
cc
N
2 v
q
P0
Pipston MIDt#0i
'-i;qh School
Lu
cr, cc
- W-00a" u� -
FZWI�
'REEK
PROJECT
SITE
:4
525
2004 HIGH SCHOOL
VICINITY MAP
INK-1
34
if
i
N.T.S.
B E Y 0 N D E K 6 1 N E E R I N 0
w W" P=T aim am A. FORT C=W CO. WM
07422UM T& I?Qnt%g FAX I PREPARED FOR: Poudre School District R-1 DATE SUBMITTED: 03/13/02
12b5]j
87:
SHEET NUMBER
1
OF I SHEETS
JOB NUMBER
FC0194
�
NOLTE
B E Y O N D
E N G IN E E R ING
N
Final Drainage &
Erosion Control Study
2004 High School
smaller parking area lies to the west of the proposed building. The fourth and
smallest parking lot will be located in the northeast corner of the Site.
The north portion of the Site will be heavily landscaped and contain a meandering
pedestrian walkway. The area on the east side of the building will consist of
numerous athletic fields and a running track. A truck docking area has been
designed for the west side of the building.
Vehicle access for the Site will be from west via Ziegler Road, from the east via
Cambridge Avenue and from the north via Rock Creek Drive.
In addition, the Site will include a dual use detention/irrigation pond located in the
southeast corner. The irrigation raw water will come two irrigation laterals. The
Poudre School District has raw water shares from Warren Lake and the New
Mercer Lateral. The Warren Lake raw water will be conveyed from the north via a
proposed pipe system and the onsite storm sewer system. The New Mercer Lateral
raw water will be conveyed from the west (NEC of the Kechter Road and Ziegler
' Road intersection) via a separate pipe system. The irrigation raw water storage will
used to irrigate the high school, the adjacent CFC parks parcels and Zach
Elementary School located to the south and east along Kechter Road.
' 2.0 METHODOLOGY
2.1 Compliance with Standards
The final drainage and erosion control study that follows was prepared in
accordance with the requirements and procedures for storm drainage design set
forth in the City of Fort Collins Storm -Drainage Design Criteria and Construction
' Manual (FC-SDDCC 1) and the Urban Storm Drainage Criteria Manual (Manual).
2.2 Analytical Methods
' The Rational Method was used to analyze the minor and major design storm runoff
(10-year and 100-year). This method is widely accepted for drainage design
involving small drainage areas (<160 acres) and short times of concentration. The
Rational Method relates peak discharge to the runoff coefficient, rainfall intensity,
and drainage area. The rainfall intensity and runoff coefficients were taken from
the FGSDDCCM.
' This method is ideal for storm sewer sizing and simple detention pond sizing or
design situations where only the peak flow rate and/or the total volume of runoff
are needed.
1 Nolte Associates, Inc. 2 N:\FC0194\Dramage\Word\Fc0194_DramageReport_Final.doc
' NCUM Final Drainage &
BEYOND ENGINEERING Erosion Control Stu
2004 High School
P
' The FAA Method was used to estimate the detention pond size requirements. This
value was multiplied by a factor of 1.50 to simulate results from a SWMM model
and to allow extra assurance that adequate volume is provided.
' In addition to the methods mentioned above, this drainage study was prepared
' using hydraulic software packages from Haestad Methods and the Urban Drainage
and Flood Control District, including: StormCAD, F1owMaster, HydroPond, and
UD Inlet. HEC-2 software was used to model the proposed McClellands Channel
' improvements.
3.0 HISTORIC DRAINAGE BASINS
3.1 Major Basin Description
The 2004 High School Site lies within the McClellands Creek Master Drainage
Planning Area. An updated master drainage plan for McClellands Creek,
' McClellands Creek Master Drainage Plan Update (Dated: November 30, 2000),
was completed by ICON Engineering, Inc.
According to the Update, McClellands Creek is located in the southern part of
Fort Collins and begins near the northeast corner of the intersection of College
Avenue and Harmony Road. McClellands Creek flows in a southeasterly direction
' to Swift Pond. The mandated developed release rate for this area is 0.5 cfs per
tributary acre. Because of this criterion, no historic drainage calculations were
made.
' 4.0 DEVELOPED DRAINAGE CONDITIONS
4.1 General Concept
In general, the majority of on -site developed runoff will sheet flow across
landscaping or asphalt to a local area inlet that outlets to the sub -surface storm
drainage system. The roof drainage will be captured by an internal piping system
'
and dispersed to one of two different sub -surface conveyance systems that are
located to the north and south of the building. The sub -surface storm drainage
system will transport the developed runoff to on -site detention facility that will be
'
located in the southeast corner of the Site. The three on -site parking areas that are
located to the west and south of the building will act as local detention facilities
and release developed runoff to the detention/irrigation facility at a rate of 0.50
cfs/acre.
' Nolte Associates, Inc. 3 N:\FCO194\Drainage\Word\Fc0194_DmmageReport_Fuml.doc
' NCUM Final Drainage &
Erosion Control Study
BEYOND ENGINEERING 2004 High School
N
Developed runoff along the Site's undeveloped west side (interim condition) will
continue to sheet flow across existing terrain and drain into the existing irrigation
ditches. An interim condition occurs in which undeveloped basins in the northwest
corner of the site will contribute runoff to the system. During this interim
condition, the parking lot ponds will release the total tributary area at 0.50
' cfs/acre. At the time when the northwest corner lots are developed, they will be
required to detain/release into the proposed system at 0.50 cfs/acre. The proposed
storm sewer system has been designed and provides a connection point at manhole
location for this future development.
The basins to the north of the proposed building will sheet flow to either Rock
' Creek Drive or to the local detention facility that is located in the northeast corner
of the soccer fields. This detention pond (i.e., Basin 403) will release at 1.20 cfs to
the east and into detention pond in Basin 400. From here, an outlet structure will
' restrict the release of storm water (i.e., 7.70 cfs) to an off -site system located in
Rock Creek Drive. Basins along the southern half of Rock Creek Drive will drain
' to a proposed 15' Type `R' curb inlet (i.e., D.P. 204) and release into the proposed
detention pond in Basin 400.
' The main sub -surface drainage system will route storm water runoff as well the
Warren Lake raw irrigation water to a detention/irrigation facility located in the
southeast corner of the Site. This pond will provide water quality capture volume,
' detain the 100-year storm event and maintain a permanent water surface elevation
below which irrigation water will be stored. The pond will release to McClellands
Creek via a 50' spillway at a rate of 0.50 cfs/acre.
42- Basin Descriptions
P
Basin 100 pertains to the building's roof drainage. The roof drainage has been
designed by MKK Consulting Engineers, Inc. using the Uniform Building Code.
An intensity of 3-in/hr was used equating to 15.75 cfs exciting the building to the
south and 2.36 cfs leaving each drain from the north. There are four roof drain
connections on the south side of the building that will connect to 15" PVC. This
storm water will outfall into a 3-ft wide (bottom -width) grass -lined swale located
in Basin 308. The intent of this swale and associated planting is to provide a bio-
swale environment. There are two roof drains that exit the building from the north.
The northeast drain connects to 12" PVC that routes the runoff to a storm system
that runs east along Rock Creek Drive. The northwest drain ties into system `B' at
SDB-WB 14. Basin 101 (0.12 ac) is the truck docking/maintenance yard. This
area's runoff will flow to a trench drain located at the bottom of the truck ramp.
The runoff will then be routed into the school's interior roof drainage system.
Nolte Associates, IRc.
N:\FC01940rainage\Ward\FFc0194_DrainWReport_ mal.doc
M
[1
lJ
1
1
BEYOND ENGINEERING
Final Drainage &
Erosion Control Study
2004 High School
Basins 200-204 border the Site to the east and north. These basins are bounded by
the centerline of the adjoining streets and neighboring high points. The developed
runoff in Basin 200 (1.23 ac) flows across landscaped areas and sidewalks and
enters existing curb and gutter that routes the runoff north to D.P. 200. Basin 201
(1.33 ac) sheet flows across landscaped areas and sidewalks to a low point in the
landscaping. An area inlet will capture the runoff and route it to the on -site sub-
surface drainage system. Basin 202a (1.13 ac) sheet flows across a tennis court
playing surface and sidewalks and enters existing curb and gutter that routes the
runoff south to D.P. 200. A 10' Type `R' inlet was designed to accept the runoff
from basins 200 and 202a. Runoff from Basin 202b (2.46 acres) flows across
landscaped areas and sidewalks and enters existing curb and gutter that routes the
runoff south to D.P. 202b where the flow is intercepted by a 20' on -grade Type
`R' inlet. Runoff from Basin 203 (1.29 ac) flows overland across landscaping and
enters curb and gutter that routes the runoff north to D.P. 203. A 10' Type `R'
curb inlet was designed to accept the developed runoff and route it to the north to
the detention pond in Basin 400. Basin 204 (3.36 ac) borders the Site to the north
and encompasses a portion of the east half of Ziegler Road and the south half of
Rock Creek Drive. Runoff will be routed by curb and gutter to a 15' on -grade
Type `R' curb inlet located at the east end of the basin (near the corner Rock
Creek Drive and Cambridge Avenue). This runoff will be routed to the detention
facility in Basin 400.
Basins 300-315 are located on the interior of the Site. The developed runoff in
Basins 300 (0.66 ac), 301a (1.80 ac), 301b (1.42 ac), 302a (0.27 ac), 302b (0.59
ac), 309 (0.89 ac), and 310 (1.67 ac) traverse landscaped areas and half street
areas and enter curb and gutter that routes the developed runoff to its respective
design point. This developed runoff will be captured by Type `R' curb inlets and
routed to storm drainage system `B'. The bypass flow at the inlets at D.P. 300 and
301a will follow curb and gutter to system `A' located to the south along
Cambridge Avenue. The developed runoff from basins 303 (3.56 ac), 304 (1.52
ac), 305a (3.45 ac), and 305b (3.51 ac), respectively, will be intercepted in area
inlets in each basin and routed to the sub -surface drainage system. An underdrain
system utilizing ADS AdvanEDGE pipe will run along the south and west
perimeter of the adjacent ball field. The underdrain will route surface runoff
nuisance away from the field. Developed runoff from Basin 308 (0.51 ac) will flow
into the Swale and enter a 24" NRCP culvert at D.P. 308. Ultimately, this runoff
will be routed overland to D.P. 303. Refer to the swale calculations in Appendix D
for further information. The main parking areas will act as local detention facilities
that release storm water from the major event at a rate of 0.5cfs/acre. Basins 306
(2.66 ac), 307 (4.79 ac), 311 (3.17 ac), 312a (7.18 ac), and 313a (4.71 ac) will
1
Nolte Associates, Inc.
5 N.\FC01940rainW\Word\FcO194_Dmffi eReport_Final.doc
BEYOND ENG INEERING
w
Final Drainage &
Erosion Control Study
2004 High School
capture local developed runoff in grass -lined bio-swales located in the center of
'
each basin within the parking lot median islands. The runoff will enter the swales
through under -sidewalk drains and flow overland to area inlets. The inlets will
have orifice plates attached either to the pipe entrance or to the grate itself. These
'
inlets route the runoff to storm drainage system `B' at a rate of 0.5 cfs per
tributary acre. The plates on the inlets at D.P. 312a and 313a will need to be
replaced once the future commercial lots to the west are developed. The major
'
storm event ponding limits are shown on the overall drainage plan. Basin 313b
(1.02 ac) was delineated to calculate the street capacity for the north entrance to
the faculty parking lot. A high point at this entrance does not allow street runoff to
enter the school site at this location. Basins 311b (0.57 ac) and 312b (2.12 ac) will
flow overland to curb and gutter to design points located at the entrance to the
parking lot. Basin 314 (1.63 ac) is located to the north of basin 313a and consists
'
of mostly pervious terrain. This runoff will be captured in an area inlet within the
landscaped area. Basin 315 (0.36 ac) is located adjacent to the west side of the
building's west entrance. Runoff from this area will also be collected by a
'
landscape area inlet. Overflow runoff from both Basins 314 and 315 will spill into
the faculty parking lot area.
M
Developed runoff in basin 400 (2.75 ac) flows overland through the future
northeast parking lot. In the interim condition, runoff will sheet flow to the pond.
During the ultimate condition, runoff will be collected and conveyed via curb and
gutter that routes the storm water to curb cuts located at the midpoint of the north
end of the future lot. Runoff will enter the local detention pond through curb cuts.
An outlet structure is proposed to control the release of storm water to the
existing sub -surface storm drain system within Rock Creek Drive. Basins 401
(1.86 ac) and 402 (1.86 ac) are delineated around the proposed athletic field and
track. The drainage for this facility is currently designed as a trench system along
the interior of the track. Two connection points are designed to take half of the
runoff each. The north connection, Basin 401, will release into the north detention
pond. The south half will be routed to the subsurface storm drain system `B',
which will outfall into the southeast detention/irrigation pond. Areas along the
north and east side of the building will be primarily landscaped and graded for
playing fields. Basin 403 (10.80 ac) will attenuate runoff from these landscaped
areas in the northeast corner of the basin. An inlet with an orifice plate is proposed
to regulate the flow to the pond in basin 400 to 1.20 cfs. An underdrain has been
designed to carry nuisance flows from the northwest comer of the field areas east
to the inlet at D.P.403. This comer of the basin will act as a detention facility
during major storm events. Storm water from Basin 404 (1.31 ac) will travel
overland through landscaped areas to an area inlet at D.P. 404. If the inlet were to
be clogged, the excess runoff would be routed over the sidewalk and continue east
within the play field adjacent to Rock Creek Drive.
Nolte Associates, Inc.
6 N:\FC0194\Dminage\Word\Fc0194_DminageReport_Final.doc
M
1
7
L
M
NOLTE
BEYOND ENGINEERING
Final Drainage &
Erosion Control Study
2004 High School
Undeveloped runoff in basin 500 (4.43 ac) will continue to flow overland through
existing fields toward the northwest parking lot. Proposed curb and gutter will
route the runoff to D.P. 313a. Runoff in basin 501 (4.39 ac) will flow overland and
into an existing irrigation ditch to the south of the basin. Storm water that is not
routed to the ditch will be routed to D.P. 312a. Basins 502 (2.04 ac) and 503 (0.88
ac) will route runoff via curb and gutter to a 10' Type `R' inlet that will route
flows un-detained to McClellands Channel. As a condition of the un-detained
release from Ziegler, Cambridge Avenue runoff will be detained in the detention
pond P-300.
Developed runoff in Basin 600 (1.68 ac) flows overland through landscaped areas
and playing fields to Cambridge Avenue. The flows are collected by curb and
gutter that route the flow south to D.P. 601. A 10' Type `R' curb inlet will capture
the water and route it into the detention/irrigation facility. The developed runoff
from Basin 601 (1.97 ac) will flow overland through landscaped areas and playing
fields to Cambridge Avenue. This runoff will also be routed by curb and gutter to
D.P. 601. Basin 602 (1.24 ac) will capture half street flows from Cambridge
Avenue and route the runoff to D.P. 602 where the storm water will be captured
by a 10' Type `R' curb inlet. These flows will be routed to the detention/irrigation
pond via storm drainage system `A'.
4.3 Detention Pond Design
The detention pond P-300 located in Basin 1000 will be utilized for runoff from
the site as well as raw water irrigation storage. The pond was sized using USDCM
program Hydropond that utilizes the FAA method. The volume required was 4.29
ac-ft. This volume was multiplied by 1.50 to simulate the results typically given
using SWMM modeling to obtain a volume of 6.44 ac-ft. This pond will also
detain runoff (0.9 ac-ft) from the parcel to the east (Reid Riedlinger Parcel). The
water quality volume was determined using USDCM Best Management Practices
for Retention Ponds. The amount of WQCV required is 0.47 ac-ft. No water
quality outlet structure was designed due to the lack of measurable depth over the
surface of the pond (3.5+ ac surface area).
The irrigation volume was mandated by Aqua Engineering is 13.5 ac-ft. This
creates a water surface elevation of 4889.37. The storm systems outfalling to this
pond (System A & B) have been designed to begin construction incorporating this
elevation as tailwater. The water quality capture volume increases the water
surface to 4889.50 and the 100-yr event runoff increases the water surface to an
elevation of 4891.44. The spillway elevation for the pond has been designed to
IJ
Nolte Associates, Inc. 7 N:\FC0194\Dnunage\Word\Fc0194_DramageReport_Final.doc
BEYOND ENGINEERING
M
1]
1
1
1
' 5.0
Final Drainage &
Erosion Control Study
2004 High School
4891.15 to allow the 100- yr. release of 22.2 cfs at the 100-yr. pond elevation.
This release is equal to 0.5 cfs per acre of the contributing tributary area to the
pond.
The detention/irrigation pond will also have a secondary release for Stormwater
that is collected when the irrigation pond is not at capacity. An 18" PVC drain will
allow for measurable release of Stormwater after a rainfall event. The drain will
have a valve that will be operated manually. Measurement of the water surface will
be made prior to an event allowing for more accurate release.
Each parking lot, Basins 306, 307, 31la, 312a, and 313a, act as local detention
facilities during the major event. These ponds will detain and release runoff at 0.5
cfs per contributing acre. Basins 306 and 31 la will have an orifice plate attached
to the area inlet, restricting the release. Basins 307, 312a, and 313a will have an
orifice plate attached to the pipe entrance to inhibit flows to allowable release
rates. The areas contributing to these ponds are not calculated in the sizing of
detention pond P-300.
On the north side of the building, the playing fields will act as temporary storage
for runoff. The area inlet at design point 403 will have an orifice plate attached to
the entrance of the exiting pipe to restrict flow. During the 100-yr event the high
water line is 4906.76. If this inlet becomes clogged, the water would pond up and
spill into basin 400 to the east. Basin 400 contains the northeast detention pond.
This has a volume of 1.11 ac-ft during the major event. This creates a high water
elevation of 4904.08. An outlet structure is designed to regulate the flow into the
existing storm drain system in Rock Creek Drive. A pedestrian grate on a Type C
outlet will regulate a maximum release of 6.5 cfs. The release from design point
403 releases at 1.20 cfs, which accounts for the remainder of the allowable 7.70
cfs. (See Appendix H.)
'
5.1 General Concept
'
The 2004 High School is in the Moderate Rainfall and Moderate Wind Erodibility
Zones per City of Fort Collins zone maps. Until the disturbed ground is re -
vegetated, the potential exist for erosion problems during and after construction.
The Erosion Control Performance Standard (PS) during construction for this
project was computed to be 94.36 per the criteria in the City of Fort Collins
' Nolte Associates, Inc. 8 N:\FC0194\Draimge\Word\Fc0194_DrainageReport_Final.dac
I
M
1
1
1
C
1
1
BEYOND ENGINEERING
1 6.0
1
n
i
1
i
1
A
Final Drainage &
Erosion Control Study
2004 High School
Erosion Control Reference Manual for Construction Sites. The Effectiveness
(EFF) of the proposed erosion control plan was calculated to be 77.00.
The proposed erosion control methods meet the City of Fort Collins'
requirements. Calculations can be found in Appendix G.
5.2 Specific Detail
Prior to commencement of the overlot grading, vehicle tracking controls and silt
fence must be installed as shown on the Grading and Erosion Control Plans. All
disturbed areas that will not be paved shall be mulched and seeded within 30 days
of the beginning of grading operations unless otherwise approved by the
Stormwater Utility. Upon completion of the curb inlets, area inlets and sidewalk
chases, inlet protection and straw bale check dams shall be installed. Straw bale
check dams shall also be placed around the outlet works of the northeast pond,
prior to construction in this area. These straw bales shall be left in place until re -
vegetation growth is well established.
All construction activities must comply with the State of Colorado permitting
process for Storm water Discharges Associated with Construction Activity.
6.1 Drainage Concept
The proposed drainage concepts presented in this study and shown on the
preliminary drainage plans adequately provide for the conveyance of developed
runoff from the proposed development.
1 Nolte Associates Inc. 9 N:\FC0194\Drainage\Word\Fc0194_DramageReport_Final.doe
N :)=
B E Y O N D
E N G I N E E R I N G
M
1
I
L
I
t
M
Final Drainage &
Erosion Control Study
2004 High School
REFERENCES
1. Storm Drainage Design Criteria and Construction Standards (FC-SDDCCM), City of Fort
Collins, Colorado (Revised January 1997).
2. Drainage Criteria Manual (Manual), Urban Drainage and Flood Control District, Wright -
McLaughlin Engineers, Denver, Colorado, June 2001.
3. McClellands Creek Master Drainage Plan Update, City of Fort Collins, Colorado,
prepared by Icon Engineering, Inc., November 30, 2000. (Draft Report)
4. Flood Plain Modeling Report McClellands Channel Improvements, for Fossil Lake P.U.D.
Second Filing, City of Fort Collins, Colorado, prepared by Northern Engineering Services,
Inc., November 30, 2000.
Nolte Associates, Inc. 10 N:\FC0194\Dminage\Word\FcOI94_DmauVReportjmal.doc
M
r
1
LJ
I
I
I
I
I
I
I
1
APPENDIX A
Developed Site Hydrology
� '��"°4` � j•+1 e+�i th_ '_4Rnc�n nfnG"�m�nnoil%"�nai i{in..c :::w� "t<. r. � -:s?a `�' _
�-d � � Y N� Ga[•i1.13 �.L '3S Z .E' `S g"'�E-i„R.G..s�,_4R."lcY"PmT�'4✓.Sut'3i'+iS�.,:4Wi'N'�.,SFS.
Project#: FC0194
Project Name: 2004 High School
' Calculated By: GAD, HHF 0:;P=
Date: 3/11/2002 rNic
B E Y O N D E N G I N E E R I N G
Per Table 3-3 (City of Fort Collins Stomt Drainage Design and Construction Standards)
C 0.95 Gr,e 0.50
' Cz m ra la.a- 0.25 Cc°°°,�i.t= 0.85
CQ., �„ 0.20
0 °
Total
Total
Total
Total
Total
BasinImpervious
2 to 7% Lawn
Q% Lawn
Artificial Turf
Commercial
"C°
10 yr.
10 yr.
100 yr.,
100 yr.
Overland
Average
Channelized
Average
Area
Area
Area
Area
Area
Area
Area
%Impervious
Composite
Cr
CCr
Cr
CCr
Basin
Length
Slbpe
Length
Slope
ft2
250 604
ac.
5 75
ft2
250 604
ft=
ftr
02
fit
ft
%
It
0
0
0
100%
0.95
1.00
!... 0.95
1.25
1 " ' 1.00
100
n/a i
n/a
n/a
n/a
' 101
_5,370
0.12
5,370
0
0 -
0
0
100%
0.95
1.00
I': %-0 95
1.25
101
101.8 I
2.75 1
n/a
n/a
200
53,732
1.23
15,937
0
-
37,795
0
0
30%
0.42
1.00
''-;'OA2
125
1'10i53'.
200
220 I
199
190
050
201
58,105
1.33
15,192
0
42,913
0
0
26%
0.40
1.00
1-- -0.40 '"
1.25
1-0.50.
201
143 !
588
200
150
202a
49,193
1.13
43,305
0
5,888
0
0
88%
0.86
1.00
I c-0.86 1
1.25xr_1t00L:y
202a
207
0.50
207
0.68
'
202b
106,975
2.46
27,494
0
79,481
0
0
26%
0.39
1.00
1 0.39
1.25
' -0.49
202b
96.26
2.00
509
0.68
203
56,408
1.29
27,551
-'0
28,857
0
0
49%
0.57
1.00
1 '' 0.57
1.25
1a140.71
203
96
2.00
356
0.60
204
146,197
3.36
87,467
.0
58,731
0
0
60% -
0.65
1.00
F- 0.65
1.25
1 -1-' 0 81
204
40
2.00
2759
0.50
300
301a
28,539
78,214
0.66
1.80
7,294
10,839
_0
67,375
21,245
0
0
0
0
0
26%
14%
0.39
0.35
1.00
1.00
b>-.039._"
I 035
1.25
1.25
Ji: 049--_
043
300
301a
212
313
150
246
064
301b
62,042
1.42
35,726
26,316
0
0
0
58%
0.65
1.00
1 0.65
1.25
I=• 0'82
301b
97
1.50
200
050
302a
11,974
0.27
11,106
832
0
0
0
93%
0.90
1.00
11:17.0.90.' , :
L25
�`?� 100
302a
16
514
2.00
870
330
063
0.80
302b
25,751
0.59
22,081
3,670
0
0
0
86%
0.85
100
''' '0.-8 3 "' �'
115
IWOTR''
302b
15
1 2.00
794
0.84 i
303
155,000
3.56
7,504
0
147,496
0
0
5%
0.24
L00
lyi.� 024';r'i
1.25
I'M'030'+=
303
313
1.50
249
2.57
304"
66,018
1.52
5,767
0
60,251
0
0
9%
027
I00
I'>' ;017� i
125
t"�0-332z.--
304
312
11,50
71
050
305a
150,108
3.45
31,158
0
I18,950
0
0
21%
0.36
1:00
I` �036L71'1
1.25
'.0:44 '!
305a
173
2.10
137
2.00
305b
152,917
3.51
19,894
0
133,023
0
0
13%
0.30
100
30' -"
125
I` z037'"^
305b
I68
2 00
208
2 00
306
115,846
2.66
87,832
13,706
14,308
0
0
76%
0.77
1.00
I::?0:77`"�
1.25
IOi 097`''--
306
109
862
275
100
307
208,463
4.79
124,379
69,117
14,967
0
0
60%
0.66
1.00
F" 0.66"<,.i
125t-!
0:83=-`..
307 I
160
I 5.64
282
1.00
308
22,185
0.51
0
0
22,185
0
0
0%
0.20
i 1 1.00
= 0.20 ,'
1.25
;:0:25'`-
308
63
1 25.00
272
0.50
309
38,920
0.89
19,327
19,593
0
0
0
50% --
0.60
1.00
1. %-0.60. _;;
1.25
J,Z0.7.5 -_
309 1
90
I 3.75
287
1.08
310
72,532
1.67
28,871
43,662
0
0
0
40%
0.53
1.00
[ :�.0:53">•''
1.25
�`s_40.66'1'=
310
91
I 3.75
309
0.80
31 la
138,008
3.17
93,632
25,501
18,875 '
0
0
68%
0.72
1.60
ram'. 0.72... '.
1.25
I<> 0.90:,
31 la
238
i 3.40
165
1.00
3116
24,715
0.57
15,162
9,553
0
0
0
61%
0.68
1.00
.,.0:68 .;'
1.25
,50%5 jj.
31 lb 1
53
1 10.00 ;
193
0.90 1
312a
312,817
7.18
116,139
175,162
21,516
0
0
37%
0.51,
' 1.00
1, r-0.51.-'-"
115
-4='0:63;,
312a
257
2.36 1
272
1.75
312b
92,265
2.12
36,052
56,214
0
0
0
39%
0.52
1.00
IK`-=0.52i'
125
:0:65i
312b
452
I 1.55 1
309
0.68
313a
204,968
4.71
116,078
88,890
0
0
0
57% !
0.65
1.00
a-s0.65't,-"
11 5
�'s�0181�.; r
313a 1
425
1 2.11
77
i 1.31 I
313b
44,536
1.02
11,644
32,892
0
0
0
26% i
0.43
1.00
:;r.043r"!
1.25
'a'a0754':•R
313b I
269
0.69 I
57.93
0.66
314
71,133
1.63
- 4,795
66,338
0
0
0
7% I
0.30
1 1.00
is.jO30A}A
1.25
%+�:ryf037 - q
314
111
1.76 1
203
! 1.33
315
15,710
0.36
2,658
13,052
0
0
0
17%
0.37
1.00
t :;037=Ll
I25
-"i 0:46.» `
315 1
64
1 2.12 '
146
1.70
400
119,791
2.75
60,964
58,827
0
0
0
51%
0.61
i 100
"F45061?- i
125
`'»0'71112��
400 '
244
1 224
21175
190
401
81,237
1.86
26,221
0
0
55,015
0
32%
0.65
1.00
i:y' 0.65
1.25
''3-'081:''
401
315
I 1.55
45
L55
402
81,229
_
1.86
25,607
_ 0
_ 0
55,622
0
32%
0.64
1.00
1'''-=0.64,:
1.25
I;:_.;0:80-`
402
315
1 1.55
45
1.55
-_ 403 "-_
470.267
10_80_ __-_"
35,290 -
0
434,977
0 _
0
8%
0.26
1.00
1'' -' 026
1.25
1 0.32
403
264
2.10
742
1.02
_
404
57,092
_ 131
3,698
53,395
_ _0 _ _-_
0 _
0 _ _
6%
0.30 _
1.00
; ' 0.30
1.25
1 0.37
404
245
2.10
23
2.46
'
500
192,925
_ 4,43
0
0
192,925
0
0
00/.
0.20
1.00
10.20..
l25
s-�,0 25 -
500 i
178
I 1.13
402
0.50
501
191,029
4.39
0
0
191,029
0
- 0
0%
0.20
1.00
'
i010 r'?
1.25
#025 •
501
S00
j 0.80
16
0 80
_ 502
_ 88,687
2.04
51,920
36,767
0
0
0
59%
0.66
1.00
.,t0.66
1.25
-0:82..:
502 i
43
2.00
1288
0.89
503
38,250__
0.88
29,883
8 367
_ 0
0 _ _
0
78%
0.80
1.00`0.80
1.25
I : 51i00 ""
503 1
45
2.00
894
117
_
_
' __
600
72,984
_ 1.68 _
16,971
_ 3,822
52,191
0 _
_ 0
23%
0.38
1.00
:0.38.
1.25
1,-- .;0.47 .,:,
600
338
2.08
164
1.00
601
85,859
1.97
24,563
5,567
55,730
0 _
_0.
29%
0.42
1.00
,t'.10.42-,+,w=i
1.25
,� 0.52c•i`3i
601 i
310
j 1.25 1
401 -
133 1
'
602
53,800
1.24
44,709 !
9,092
0
0
0
83%
0.83
1.00
"g%c0.83x,..:z1 .
'
125
`-1'00-'
602 1
20
1 200 1
98867 i
110
_127,977
_ 1000
305,242
7.01 _
0
177,265
_ 0
0
0%
0.23
1.00
w*= 0.23 . =
1.25
1000
327
1 160 1
91
16.76
Total Ske
4,139,751
95.04
1514,439
869,229
1,645,410
110,637
0
037
FC0194_Rational-Fort Collins.xls
2:27 PM
t
1
1
Jab NumbeFC01
94
Date: 31112002
Ptojecl: 2004 High Schad `■
Calculated BY GAD, HHF
Desi Slortn: 10 year(Dwtlopedl B E Y O N D E M G I E E R I N G
DATA
INITIAUOVERLA,ND
TIME(IJ
1
TRAVELTIME
01)
FINAL
t,
Dtamage
Basin
I
Design
Point
Ilal
AM
actefs)
(21
Runoff
Coefficient
C
(3)
I Frequency
Factor
Ct
(3a)
CC1
(3b1
Length
It
(4
Slope
%
(5)
I.
min
161
Length
(I
A
Slope
5a
(81
Velaciry
Nsee
f9
1,
min
10
Computed
t,
min
(12)
I 100
1 100
5.75
1 0.95 1
100
I 095
Na
1 4/0
no
Na
Na
I Na
MOO
1 10.00 I
I 101
1 101
0.12
1 0.95 1
1.00
I 095
102
1 275
202
0
000
1 N
1 1000
1202
200 I
200
123
1 0.42 1
1.00
042
220
1.99
14.94
190
0.50
1 1.41
1 2.24
17.19
201 I
201
1.33
0.40
1.00
040
143
5.88
8.73
1 200
1.50
2.45
1.36
"10.09 -
1 202a 1
202a
1.13
1 0.86
1.00
1 0.86
207
0.50 !
S. L'
207
0.68
1.65
2.09
10.21.
1 202b 1
202b
2.46
0.J9
1.00
I 0.39
96
2.00
1 1.30
509
0.68
1 1.65
1 54
- 15.44
I 203
203
.
.
.
.
3.8329
11.59
I 201 I
204
3.36
0.65 1
1.00
1 0.65
40
1 2.00 1
4.24
2759
0.50
1 L41
1 32.52
300
300
0.66
1 0.39 1
1.00
0.39
212
1 1.50 1
16.85
246
0.64
1 1.60
1 2.36
19.41 '
301a
301a
1.90
0.35
1.00
0.35
313
1.50 1
21.77 1
200
0.50
1 L41
2.36
- --, 24.12.
301b
JOIb
1.42
0.65
IAO
065
97
1 5.14 1
477
870
0.63
1 1.59
914
V:' 1391 _
302a I
302a
0.27
0.90
1.00
0.90
16
2.00 1
1.20
330
0.80
1.79
3.07
.5.00,
I 302b
302b
0.59
0.85
1.00
0.85
IS
2.00
1.44
794
0.84
1.83
7.22
8.66'+•=' [:__
i 303 1
303
3.56
I 0.24 1
1.00
1 0.24
313
1.50 1
24.97
249
257
1 2.40
1 1.72
`'-
I 304
J
5
0.271
1.00
017
.
.
.
1.120
-]26.69.-
25201_
305a
0
0.36
L00
0.36
173
2.10
14.30
137
2.00
1 112
1 1.08
15.38.` -
I 305b
305b
3.51
1 0.30 1
1.00
I 030
168
1 2.00
1544
208
2.00
1 2.17 1
1.63
17.07
I 306 (
306
2.66 I
0.77 I
1.00
1 0.77
1 109
8.62 !
3.10
275
1.00
1 1.50 1
3.06
6.16
I 307 1
307
4.79 1
0.66 1
1.00
0.66
1 160
5.64
5.80
282
1.00
1 1.50 1
3.13
8.93 - •- -
I 308 1
308
0.51 1
0.20 1
1.00
0.20
1 63
1 25.00
4.57
272
0.50
1 L06 1
4.27
9.95.'
309
309
0.89
0.60
1.00
0.60
90
3.75 1
5.74
217
1.01
2.08
2.30
:.8.04
310
310
L67
0.53
LW
053
91
3.75
6.56
309
0.60
1.79
288
944 '?
31 la I
311a
3.17 1
0.72 1
1.00
1 0.72
238
1 3.40
7.33
165
L00 !
1.50 1
L83
9.16..E
311b 1
311b
057 1
Q68 1
1.00
0.68
53
10.00 1
265
193
0.90 1
1.90 i
1.70
"-.3.00:-`-
3122
312a
7.18 I
0.51
L00
0.51
257
2.36 1
13.37
272
1.73 1
1.98 1
2.28
I 312b
3121,
2.11 1
0.52 1
L00
0.52
452 j
1.55 1
19.81
'309
0.68 1
1.65 1
313a
3132
4.71 1
0.65 1
1.00
0.65
425
2.11 1
13.64
77
1.31 1
229 1
056
1420 ='--
3131, 1
313b
1.02 1
0.43 1
1.00
0,43
269
0.69 I
23.12
58 1
0.66 I
1.62 I
059
•' 2372 -
314
314
1.63
0.30
1.00
0.30
1 ❑
1.76 !
13.11 1
203 1
1.33 1
1.73
1.1
t 15 06 s
315
315 1
036
0.37
1.00
0.37
64
2.12 1
8.52 1
146 1
1.70
L96
1.24
400 1
400 -
276
0.61
1.00
0.61
244
2.24 1
11.03
212
1.90 1
2.07 1
1.71
i3'% J,::12.74 '•= •-_'--
! 401 1
401
L86 1
0.65 1
1.00 I
0.65 1
315
1.55
13.04
45
1.55 1
1.87 1
0.40 1
13.44.`,-x
I 402 1
402
L86 1
0.64 1
1.00
061
315 1
1.55
13.14
45
1.55 1
1.87 1
0.40 1-
13.54
I 403 1
403
10.80
0.26 I
1.00
0.26
261 1
2.10
20.02
742
1.02 1
L51 I
8.16
- "..28.19- -
404 1
404
1.31 I
0.30
L00 1
0.30
245 I
2.10
1940
23
2.46
2.35 1
0.16
18.56 '
500 1
500
443 1
0.20 1
1.00 1
0.20 1
179 1
1.13 1
21.56
402
0.50 1
0.49 1
13.54
3509 '-
Sol 1
501
4.39
0.20 1
1.00 1
0.20
500
0.80
40.54
16
0.80 1
0.63 1
042
4095 --
I _ 502
502
2.01
0.66
1.00
066
q3
2.00
Na
1288
0.89 1
L99 1
11.38
• _1138 .. ..
503
503 1
0.98
0.90
1.00 1.
0.90
45
2.00 1
n1a
894 1
1.17 I
2,16
6.90
- } 6.90 •L"
'
t 600 1
1 601 I
600
601
1 1.68
L97
1 0.38
OA2
i 1.00
1.00
I 0.31
042
338
1 310
2.08
125
1 1948
I 2085
164
401
1.00 i
133 1
2.00
2.31 1
137
290
_ 2094 -
2375
I 6� 1
602
124
0.83
1 1.00
083
20 1
200
I 178
939
110 1
2.1il 1
78e
I"
1000 I
7.01
0. 33
1.00
1 0.23
327
L60
I 25.19 !
91
I 1676 I
6.H
0.25
,•.r 25A3 a.==-
Rowed Flows
'
600
601 1
1.68
1 0.38
1.00
1 0.38
338 1
2-o-s--7
19.48 i
657
1 1.06 1
2.06 1
5.32
">124.79
3116
311a
QSi
0.68
100
068
53
1000
I 265
517
083 i
192 1
e73
-
1 3121, 1
312a
2.12
1 0.52 1
1.00
1 0.52
1 452 1
1 55
19 SI
691
1.61
2.54 1
e e7
24.28
'
3136 1
313a
1.02
1 OA3 1
100
1 043
1 269 1
069
2312
427
1H
291 i
245
2557
I 302b j
302a
0.59
1 0.85 1
1.00
0.85
IS
+.00
1,44
1067
0.67
1.64 1
10.87
1230
' FC0194_RaliauFFon Collvss.xis
2:26 PM
1
lob \umber FC0194
Date: 3/112002
Project 2004 High School ■ �V V
Calculated BY GAD. HHF
Design Storm: 10012N (Developed) R E V O N D E' N G 1 N E E R 1 N G
DATA
'
INITIALJOVERLAND
TIME(Q
- TRAVELTIME
(t,)
FINAL
t,
Dmmge
Brim
(11
Design
Point
l(a)
Area
acre(s)
(2)
RumoR
Coefficient
C
(3)
FrequencyCom
Factor1.rn81h
Cr
(3a)
CC,
(3b)
It
(4)
Slope
%
(5
4
minIt
61
Length
Slope
%
(8)
Velocity
0/sec
(9)
y
minmin
(10)
P used
�.
(IS
10"":
I 100
575
0.95
L25
I
1
9
Na
IL00 Na
na
I 'c
0Na 0
101
012
1 0.95
1.25
L00
1 101
ISNa
N
00010! -
200
200 !
1.23
1 042
1.25
1 0.53
1 220
1 1.99
12.61
190
0.50
1 1.41
1 2.24
.14.85 - 1
201
I 201 1
1.33
1 040
1 1.25
1 0.50
1 143
1 5.88
7.50
2001
1.50
1 2.45
1 1.36
8.86
20,
2022 !
1.13
1 016
1.25
1 1.00
1 207
1 0.50
1 3.39
1 207
0.68
1.65
1 2.09
5.48
20li
202b 1
2.46
1 0.39
I 125
0.49
96
2.00
8.87
509
0.68
Ib5
5.14
:14.01' - I
203
203 1
1.29
! 0.57
L25
0.71
96
2.00
5.70
356
0.60
L55
1 3.93
'.9.53
204
204 1
3.36 1
0.65
1 L25
0.81
40
2.00
1 2.71
1 2759
1 0.50
j 101
1752
300
300 !
0.66 1
0.39 1
125
0,49
212
L50
14.52
246
0.64
1. 00
I 2.56
301a
301a I
1.90 1
0.35 I
1.25
0.43
313
I L50
19.26
200
0.50
1.41
1 2.36
3016
30lb 1
1.42 1
065 1
1.25
012
97
l 5.14
3.03
1 870
0.63
1.59
1 9.14
307
I 302a 1
027 1
0.90 1
125
LOD
16
2.00
0.59
330
0.60
179
3.07
-6.00'__" "
302b
I 302b 1
0.59 1
015 1
1.25
1.00
1 15
1 2.00
0.57
1 794
1 0.84
1 1.83
1 7.22
':'.7.80r `
303
303 1
3.56 i
0.24 1
1.25
0.30
313
1.50
23.26
1 249
-
2.40
I 1.72
- i '24.98- �� I
30.
304 I
1.52 I
0.27
1.25
0.33
312
1.50
22.17
71
0.50
H.
L.2
"'23:28 _---T.
31Ta
3052 1
3,45
0.36 1
1.25
0.44
173
2.10
.2.59
137
2.00
212
1 L08
.'-'13:67.': >
340
305b 1
3.51 1
OJO 1
1.25
0.37
169
1 2.00
14.01
1 208
2.00
2.12
1 L63
' <C15,64'
306
1 306 t
2.66
0,77 1
1.25
0.97
109
8.62
1.26
275
1.1
1.50
3.06
''"' :5.00�
307
307
479 1
0.66 !
1.23
0.83
1 160
5.64
3.59
282
1.00
I 1.50
1 3.13
:6:72. .
3V
308 1
0.51 1
0.20 1
1.25
0.25
63
1 25.00
4.32
1 272
0.50
1 1.06
I 427
c .'8.59'; '- t
309
309 !
0.89 1
0.60 1
1.25
0.71
90
1 3.75
4.03
1 287
1Ae
2.08
1 2.30
-6.33` -`
t 310
310 I
L67 1
0.53 1
1-25
0.66
91
( 375
5.05
I 309
010
1.79
1 2.89
- fl:7:92
311a
3lla I
317 1
0.72 1
125
0.90
238
1 3.40
3.98
1 165
L00
1 1.50
i 1.83
2572'
31 lb
311b
O.57
0.68 1
1.25
1 0.85
1 53
1 10,00
1 1.58
1 193
1 OM
1 1.90
1 170
-.: 5.00.
3122
3122
7.18
0.51 t
1.25
1 0.63
1 257
1 2.36
1 10.52
1 272
1 1.75
1.98
1 2.28
--.'12.80=--rs
1 312b
312b 1
2.12 1
0.52 1
1.25
0.65
452
1 1.55
15.31
1 309
0.68
1.65
1 3.12
, F 98.44 T--
i
4.71 1
0.65 1
1.25
0.81
425 72.11
8.78
77
L31
229
1 0.56
934'd'
! 3131,
313b 1
1.02 1
0,43 1
I-25--L
0.54
1 269
U9
19.37
58
0.66
1.62
0.59
1996
314
314 1
1.63 !
0.30 1
125
0.37
1 Ill
1.76
11.89
203
1.33
1.73
1.96
13.85 '
315
315 1
0.36 l
0.37 1
1.25
0.46
1
2.12
7.45
146
1.70
1.96
1 124
0 I
275 1
0.61 !
12
1 244
2.24
7.65
212
1.9D
207
5
I
.76
1.55
8.4
1 45
1.55
117
I
8200 '--
4(r
1 402 1
1.86 1
0.64 t
1.25 1
0.80
1 315
1 1.55
8.54
45
1.55
403
I 403 1
10.80 !
0.26 1
1.25
0.32
264
2.10
I8.50
1 742
IA2
1.51
8.16
_ '.26.67
401
404 1
1.31 1
0.30 1
1.25 1
0.37
1 245
1 110
16.71 I
23
1 2.46
2.35
! 0.16
' 16:87±=<'. -.1
500
500 1
4.43 1
010
1.25
0.75
I78
113
2036 1
402
050
049
1354
501 I
501 !
4.39 1
0.20 1
1.25
0.25
$OD
0.80
3828
16
0.80
0.63
042
502
502 1
2.04 4
066
125
082
43
200
Na
1288
089
189
1138
1136' _'
1 503
503 1
0.88
0.80 I
125
100
45
200
n/1
894
117
21; I
690
` -6.90== _-
60D
600 1
1.68 1
0.33 1
1.25 1
0.47
338
2.08
16.94 1
164
1.00
200 I
L37
- - 19.30
! 601
601
1.97 1
0.42 i
125 I
0.52
310
125
17.66 1
401
1.33
231 1
290
-:20-' _
! 60'0.
602 I
124 1
0.83 I
125
1.00
20
2.00
0.66
989
1.10
210 I
7.86
-'8.52
I
I
I
I
1
1000
1000
7.01
0.23
1.25
0.29
327 1
160
23.53
91
1676
6.14
Routed Flows
600 1
601
I 1.68
0.38
1 125
1 0.47
1 338
208
1 16.94
1 657 1
1.06 1
206
552
'
I 3111,
31 la
0.57
1 0.68
1 125
0.85
53
10.00
1.56
517
0.63
t.82
4.73
631 rz.-_ .,
I 312b
3122
! 2.12
1 0.52
1 1.25
0.65
1 452
1.55
15.31
I 681F
1.6 1
254 1
'
313b
313a
1.02
0.43
1 1.25
. 0.54
1 268.92
0.69
1 19.37
1 426.93 1
Z.11 1
2.91 I
2,45
21 82"
302b 1
3022
0.59
1 0.85
! 125
1D0
1 15 1
2.00
1 0.57
1 1067 1
0.67 1
1.64 1
10.87
'11.44 -
n
A
' FC0194_RationaEFon CoUim.xb
2:30 PM
10
11
1
1
1
rij
>xx 0=year eveloped4Runoff
Job Nur. bec FC0194 Project 2004 High School NO=
Date: 3/1112002 Calculated By: GAD, HHF
Design Stornt 2 year (Developed) B E Y O N D E N G I N E E R I N G
DIRECT RUNOFF
Design
Rainfall
Basin
Point
Area of
Area
CCt
t,
CCr • A
Intensity
Flow (Q)
Design
acre(s)min
acres)
in/hr
cfs
1
(2)
(3)
4
5
(6)
17
(8
9
100 100
100
5.75
0.95
1 10.00
5.47 3.78
20.66
1 101 101
1 101
1 0.12
0.95
1 12.02
I 0.12 1 3.54
' ]' 0.41
200
200
I 200
1.23
0.42
1 17.18 1
0.52
1 2.99
'1.56
I 201
201
I 201
1.33
0.40
10.09 I
0.53
1 3.77
_N:99 1
2022
202a
1 202a
1.13
0.86
10.21 1
0.97
1 3.75
. °3165
202b
202b
202b
2.46
0.39
1 15.44 1
0.96
1 3.15
-_ ;:53.04
203
203
203
1.29
0.57
))59
0.73
3.59-
204 1
204
204
3.36
0.65
36.75
2.18
300 300 300
0.66
0.39
19.41
0.26 2.79
- 0.72 ''"t
301a 301a I 301a
1.80
0.35
24.12
1 0.62 1 2.49
'::1?55---
301b 301b I 301b
1.42
0.65
13.91
0.93 1 3.32
"5.:�3:09 :-
302a 302a I 302a
0.27
0.90
5.00
0.25 I 4.87
_ ;:1M
302b 302b I 302b
0.59
0.85
9.66
0.50 4.07
,:2.05 -�
1 303 303 303
3.56
0.24
26.69
1 0.84 1 2.36
304 304 304
1.52
I 0.27
i 2520
1 0.40 i 2.43
0.98- '
305a 305a 305a
3.45
0.36
1538
1.23
3.16
:'-_:3:87:.,
305b 305b I 305b
3.51
0.36
17.07
1.04
1 3.00
- '3114 -'
306 306 1 306
2.66
0.77
6.16
2.06
1 4.62
<. A51. -
307 307 I 307
4.79
0.66
8.93
3.18
1 4.01
':4t12.75 -
308 I 308 308
0.51
0.20
8.85
0.10
4.03
='=:0.41
309 1 309 I 309
0.89
0.60
8.04
0.53
4.21
235
310 310 I 310
1.67
0.53
9.44
0.88
3.90
-=:3.41- ?--
31la 311a I 311a
3.17
0.72
9.16
2.28
I 3.96
311b 311b I 311b
0.57
0.68
5.00
0.39
4.87
1813 n
312a 312a I 312a
7.18
0.51
15.65
3.64
1 3.13
---,!A Vi39'_
312b 312b I 312b
2.12
0.52
1 22.93
1 1.11
I 2.56
-.:� = 2:84 .:
313a 313a I 313a
4.71
0.65
14.'0
3.04
I 3.28
-.- 9.99•: '+
313b 313b 313b
1.02
0.43
23.72
0.44
11.T1
314 314 314
1.63
0.30
15.06
0.49
3.18
-:'x.155--"
315 315 315
0.36 j
0.37
9.777
0.13
I 3.83
11, ,,,-03i � -
400
400
I 400
2.75
0.61
12.74
1.67 1
3.46
'."`5.76'„
401
1 401
1 401
1.86
0.65
13.44
1.20
3.i3
t4:06'Y-'
402
! 402
1 402
1.86
0.64
1354
1.20
3.36
=--= 0202 ==-'
403
! 403
403
1 10.80
0.26
28.19
2.77
2.29
'_.-6i35.--
404
1 404
404
1.31
0.30
1856
0.39
2.87
_- °:I'll' -.=
500 I 500 500
4.43
0.20
35.09
0.89
2.00
501 501 501
4.39
0.20
40.95
502 I 502 502
2.04
0.66
11.38
1.34
1 3.62
,'= 124:86y1-.
503 I 503 503
0.88
0.80
6.90
0.70
1 4.46
It7;71
600
600 - I
600 1
1.68 1
0.38
1 20.84 10
63
2.69
1:70
601
601 I
601
1.97
0.42
1 23.75
0.82
I 2.51
2.07
i 602
602 1
602
1.24 1
0.83
9.64
1.03
1 3.86
- .3.96 1
1000
1000 1
1000
7.01
0.23
25.43
1.60
2.42
Routed Flows
Basins
Design Point
E CxA
4
I
Q
200,202 1
200 I
1.49
17.18
2.99
. '-4A7-.-
600, 601 1
601 I
1.46
F24.79
2.45
3.oZ-
31la, 31 lb I
31la
2.66 1
7.38
4.35
312a, 312b I
312a
4.75 124.28
2.48
f't Y1178�:'==::-
313a, 313b
313a 1
3.48 1
25.57
2.41
=i:-IlAl .
1
FC0194_Ra6oml-FortCollins.xls
2:24 PM
I
1
I
1
1
11
1
Job Number: FCOI94
Date: 3/1IR002
Project: 2004 I igh School
Calculated By. GAD, IBff
Design Storm: 100 year (Developed)
BEY ON D E N G I.N E E R ING
DIRECT RUNOFF
Design
Rainfall
Basin
Point
Am of
Am
CCr
4
CCr • A
Intensity
Flow (Q)
Design
actc(s)
min
acre(s)
in/hr
cfs
(q
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
100 too
1 100
1 5.75
1.00
10.00 5.75
7.72
I 44.41 -
101 101
1 101
0.12
1.00
I000 0.12
772
I095
300 300
3000.66
0.49
17.08 1 0.32
1 6.14
1t97
301a 301a
1 3012
1.80
0.43
21.61 1 0.78
5.40
4.21 -
301b 301b
I 301b
1.42
1 0.82
1 12.16 1 1.16
7.20
'837'- --
302a 302a
I 302a
017
1.00
5.00 1 0.27
9.95
--2k73===_;
3026 302b
I 302b
059
1.001
7.80 I 0.59
8.70
--<534`--`=
301 303
I 303
356
1 030
1 24.98 1 1.05
4.98
.5.24_i;
304 304
I 304
1.52
OJ3
23.28 0.50
5.19
- - .3.61'' 1'-
305a 305a
I 305a
1 3.45
1 0.44
13.67 1.53
6.84
10.48 i c'
305b 305b
1 305b
3.51
0.37
15.64 1.31
6.40
' .836.7
306 306
1 306
2.66
0.97
T 5.00 1 2.57
9.95
.-25.62'. -.'.
I 307 307
1 307
- 4.79
0.83
6.72 1 3.97
I 9.19
"36.47'
308 308
308
1 0.51
015
8.59 1 0.13
1 835
1 1.06'-..
1 309 309
1 309
1 0.89
1 0.75
1 6.33 1 0.67
9.36
1' `-624: z-
310 310
1 310
1.67
0.66
7.92 1.10
8.65
-_-931'
311a 311a
I 311a
3.17
0.90
5.72 2.84
9.63
�'Y2738.:_-.`
31lb 31lb
I 311b
0.57
0.85
5.00 0.48
9.95
479
312a i 312a
312a
Zl8
0.63
I2.80 4.55
7.05
32 W4 l- .
3126 1 312b I
3126
2.12
0.65
18.44 139
5.89
8 16 �'
313a 313a
313a
4.71
0.811
9.34 3.80
8.01
-•=-.'-30.47'--i
313b 313b I
313b
1.02
0:4
19.96 I 0.55
5.61
_"?3101-'
314 314 I
314
1.63
0.37
13.85 I 0.61
6.80
=::='.4.12'.-'--'
315 315
315
036
0.46
8.69 I 0.17
8.30
`._i 38` -•
50
500
1 500
4.43
0.25
33.90
1.11
4.18
'"-=_.4.63A :-
50 I
501
501
439
025
38.70
1.10 1
3.83
420
502 1
502
502
2.64
0.82
11.38
1.68
7.39
12,41
503 1
503
503
0.88
1.00
1 6.90 1
0.87
9.10
If 796
600
600
600
1 1.68
0.47
18.30
0.79
5.91
: =, 4i67�'
601 1
601
1601
1.97
0.52
20.56
1.031
5.53
x�FRS.69F
602 1
602
1 602
1 1.24
1.00 1
8.52
1.24
1 838
a-'-1035:,.-..'
1000
1000 I
1000
1 7.01
019
23.78 1 2.01 5.13 '`10 30--_
Routed Flows
Basins
Design Point
2: CxA
4
I
Q
I 200.202a
200 1
1.78 1
14.85
6.56
1 1167 _ 1
302a, 302b I
3022
0.87
11.44
737
311a,31lb
31 Is
333 1
631 1
937
- 3115Controls
312a. 312b 1
312a
5.93
19.79
5.64
-33.46 ' Controls
313a, 313b 1
313a
436
21.82
5.37
1 -','23.41::r-
502,503 1
502
255
1138
739
c_c.18.97 .
501. 312a, 312b 1
312a
7.03
38.70
3.83
7.26�
500,313a, 313b1
313a
5.46
' FC0194_Rationa4Fmt Collinsacls
231 PM
N
1
1
1
1
1 APPENDIX B
' Street Capacity Calculations
1
1
1
1
1
1
1
1
N
I
1
,� y ;• '"`' �'."��'g-;:`Street�Capa�cuyrEalcuTations Mina
N Project Number. FGAD
Designer: GAD
Date: 51612002
Given:
' I. Modified Manning's Formula for flow in shallow triangular channels:
Q - 0.56(Zin)Sa`yaa
Where:
' Refer o Figure 1. (below)
Q= Theoretical Goner Capacity, cis
r= Depth of Flow at Face of Gutter, feet
n= Roughness Coefficient, 0.016
So Longitudinal Channel Slope, %
' S.= Cross Slope of Gunn Pan, feet/feet
Sb= Crass Slope of Asphalt, fbet/feet
Z= Reciprocal of Cross Slope, feet/feet
N
1
B E Y O N D E N G I N E E R I N G
0.016
Solution:
1. Solve for 'Q*,
S.- 0.0833 Se= 0.02
Z, = M. - 12.00 Z,/n = 75030
Zb=I/Sb- 50.00 Zb/n- 3125.00
y = 0.50 (water depth at curb face, feet) w 0.41 (water depth at curb face w/14' CL to FL)
So= See Below (longitudinal slope ofs c%%)
a = 2.00 a = 2.00
y'= 0.33 J= 0.24
Therefore. 0.56(Zln)ya'= 13533 Therefore. 056(Ln)ye 95.75
Q - 13533'Sab' Q = 74.62'Seu"
Minor Storer Street I
Spread Nance
Criteria I
Width
FL to CL
ft
Street
Classification
I Developedl
Qlo
cfs
Longitudinal Calculated
Grades Q
% cfs(See
Reduction Factoro
Anached
Allowable
Q
cfs
Design
Point(s)
i Top of Curb I Rock Creek Dr. 1
20
1 Coogan
i 4.22
0.50%
1 9.57
0.65
6.22
204
O.K.
Top of Curb I Cambridge Ave.1
25
Coucw
L70
1 1.03 %
13.73
0.80
10 99
600
O.K.
' To of Curb ICambridgeAve.
25
[o0mu
2.07
1.30%
1 15.43
0.80
12.34
601
O.K.
To of Curb l Cambridge Are.I
25
CaOeclw
1 3.96
1.41%
1 16.07
0.80
12.86
602
K. I
O.O.K.
To of Curb I Cambridee Am
25
Co
1 1.56
1 0.68%
1 11.16
0.80
8.93
200
I
• Top of Curb I CarnbridgeAve.1
25
I emsaQ
1 11.00
1 0.68%
i 11.16
0.80
8.93
I 202a
O.K.
'Top of Curb l CaxnbridgeAve.I
' 25
1 Co
1 8.15
1 0.68%
1 11.16
0.80
.' 8.93
202b
O.K. I
I Top of Curb l Cambridge Ave. 1
25
Cuo-v
1 2.63
1 0.64%
1 10.83
0.80
1 8.66
203
O.K. 1
1 We Free I Zi n Road I
26
Minx nncF9
4.86
2.25%
1 20.30
0.78
1 15.83
502
O.K.
1 Centerline I Intrerior Road 1
14
local
1.55
0.50%
1 6.77
0.65
4.40
301a
O.K.
1 Centerline I Interior Road 1
14
lml
3.09
0.67%
1 7.84
0.80
I 6.27
3016
O.K. 1
Crnterline Interior Road 1
14
tad
1 1.20
1 0.67%
1 7.94
0.80
j 6.27
302a
O.K.
I Cenwline I Interior Road 1
1 2.05
0.67%
1 7.84 ±
0.90
I 6.27
3026
O.K.
1 Crntnlme 1n,Uamr Road 1
1 0.72
0.50% 1
6.77 i
0.65
4.40
300
O.K.
T
b
y a
T
Za
I~- Zb Y
Figure 1.
9
Nolle Associa/es, Inc.
51612002
10:09 AM
1
1
N
1
1
1
1
Gutter Spread - Minor Event (10yr)
Worksheet for Gutter Section
Project Description
Worksheet Ziegler Road (DP 502)
Type Gutter Section
Solve For Spread
Input Data
Slope
0.022500 tt/ft
Discharge
4.86 cfs
Gutter Width
2.00 ft
Gutter Cross Slope
0.083000 ft/ft
Road Cross Slope
0.020000 ft/ft
Mannings Coefficient
0.016
Results
Spread
10.19 ft
Flow Area
1.2 ft'
Depth
0.33 ft
Gutter Depression
1.5 in
Velocity
4.18 ft/s
n:\fo0194\drainage\haestad\fc0194—gutterspread.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 08:34:00 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
'
Project Description
Worksheet for Irregular Channel
N
Worksheet
Cambridge Avenue - D.P.200
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.006000 ft/ft
'
Water Surface Elevation
100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotters Method
Closed Channel Weighting Method Horton's Method
' Results
Mannings Coefficient
0.014
'
Elevation Range
99.25 to 100.00
Discharge
38.25 cfs = QGAP
Flow Area
11.1 ft'
Wetted Perimeter
38.63 ft
'
Top Width
38.00 ft
Actual Depth
0.75 ft
Critical Elevation
100.02 ft
'
Critical Slope
0.004591 ft/ft
Velocity
3.46 ft/s
Velocity Head
0.19 It
Specific Energy
100.19 ft
'
Froude Number
1.13
Flow Type
Supercritical
Calculation Messages:
Water elevation exceeds lowest end
station by 0.12 ft.
'
Roughness Segments
Start
End
Mannings
Station
Station
Coefficient
0+00
0+05
0.013
0+05
0+13
0.035
0+13
0+15
0.013
'
0+15
0+38
0.016
Natural Channel Points
Station
Elevation
'
(ft)
(ft)
0+00
100.00
'
0+05
0+13
99.90
99.75
0+13
99.75
0+13
99,25
0+
99.42
0+38 38
99.8888
Qloo = 4.Z7
' n:\fc0194tdrainagethaestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:48:44 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
M
Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.200
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.006000 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.25 to 100.00
Discharge
38.25 cfs
100.003-
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
V:4.0❑
H:1
NTS
' nAfc0194\drainagethaestafttreetcapacity. fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:51:10 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
N
Worksheet
Cambridge Avenue - D.P.203
Flow Element
Irregular Channel
Method
Mannings Formula
Solve For
Discharge
'
Input Data
Slope
0.006400 ft/ft
'
Water Surface Elevation
100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
' Mannings Coefficient 0.014 _
Elevation Range 99.25 to 100.00
Discarge 39.50 cfs _ (a C A9 Q 100 �• Z 7
C s
h-
Flow Area 11.1 ft'
' Wetted Perimeter 38.63 ft
Top Width 38.00 ft
Actual Depth 0.75 ft
Critical Elevation 100.03 ft
Critical Slope 0.004560 fUft
Velocity 3.57 ft/s
Velocity Head 0.20 ft
' Specific Energy 100.20 ft
Froude Number 1.17
Flow Type Supercritical
' Calculation Messages:
Water elevation exceeds lowest end station by 0.12 ft.
'
Roughness Segments
Start
End
Mannings
Station
Station
Coefficient
'
0+00
0+05
0.013
0+05
0+13
0.035
0+13
0+15
0.013
'
0+15
0+38
0.016
Natural Channel Points
Station
Elevation
'
(ft)
(ft)
0+00
100.00
0+05
99.90
'
0+13
99.75
0+13
99.75
N
0+13
0+15
99,25
99.4242
0+38
99.88
' n:\fc0194Xdrainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614j]
03J05/02 10:54:01 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
1
1
N
1
Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.203
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.006400 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.25 to 100.00
Discharge
39.50 cfs
100.00-c-
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30
0+35 0+40
V:4.0❑
H:1
NTS
nAfc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614j]
03/05/02 10:54:10 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
'
Project Description
Worksheet
Rock Creek Drive - D.P204
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.005000 ft/ft
'
Water Surface Elevation
100.00 ft
Options
'
Current Roughness Method
Improved Lotter's Method
Open Channel Weighting Method
Improved Lotter's Method
'
Closed Channel Weighting Method
Horton's Method
Results
Mannings Coefficient
0.014
'
Elevation Range
99.25 to 100.00
Discharge
34.67 cfs = �Lqp Qtco - �. 06 C�S
Flow Area
10.3 ft'
Wetted Perimeter
33.74 ft
'
Top Width
33.00 ft
Actual Depth
0.75 ft
'
Critical Elevation
Critical Slope
100.01 ft
0.004368 Wit
Velocity
3.37 ft/s
Velocity Head
0.18 ft
Specific Energy
100.18 ft
Froude Number
1.06
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by 0.224 ft.
'
Roughness Segments
Start
End
Mannings
Station
Station
Coefficient
0+00
0+05
0.013
0+05
0+13
0.035
0+13
0+15
0.013
'
0+15
0+33
0.016
Natural Channel Points
Station
Elevation
'
(ft)
(ft)
0+00
100.00
0+05
99.90
'
0+13
99.75
0+13
99.75
0+13
99*25
0+15
99.4242
0+33
99.78
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:04:19 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
1
1
1
1
1
P
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Rock Creek Drive - D.P.204
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.005000 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.25 to 100.00
Discharge
34.67 cfs
100
99
99__
0+00
0+05 0+10 0+15 0+20 0+25 0+30
0+35
V:4.0❑
H:1
NTS
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:04:43 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.300
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Slope 0.005000 Wit
Water Surface Elevation 100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
'
Mannings Coefficient
Elevation Range
0.014
99.27 to 100.00
—
Q
Discharge
29.90 cfs = Qcgp too
Flow Area
8.7 ft'
Wetted Perimeter
29.28 ft
'
Top Width
28.50 ft
Actual Depth
0.73 ft
'
Critical Elevation
Critical Slope
100.02 ft
0.004150 ft/ft
Velocity
3.42 ft/s
Velocity Head
0.18 ft
Specific Energy
100.18 ft
'
Froude Number
1.09
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by 0.27 ft.
'
Start
Station
Roughness Segments
End
Station
Mannings
Coefficient
'
0+00
0+06
0.013
0+06
0+12
0.035
0+12
0+14
0.013
0+14
0+29
0.016
Natural Channel Points
Station
Elevation
'
0+00
100.00
0+06
99.88
'
0+12
99.77
0+12
99.77
0+12
99.27
0+
99.44
0+29 29
99.7373
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:40:46 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
1
1
1
1
1
1
N
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.300
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.005000 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.27 to 100.00
Discharge
29.90 cfs
itellellelf
99.50
9920 —
0+00
0+05 0+10 0+15 0+20 0+25
0+30
V:4.0❑
H:1
N TS
' n:\fc0194%drainagethaestad\streetcapacity.fm2 Nohe Associates Inc FlowMaster v6.1 [614j]
031O5fO2 11:40:53 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
w
1
Project Description
Worksheet
Flow Element
Method
Solve For
Input Data
Interior Road - D.P.301 a
Irregular Channel
Manning's Formula
Discharge
Slope
0.005000 fvft
'
Water Surface Elevation
100.00 ft
Options
'
Current Roughness Method
Improved Lotters Method
Open Channel Weighting Method
Improved Lotter's Method
'
Closed Channel Weighting Method
Horton's Method
Results
Mannings Coefficient
Elevation Range
0.015
99.30 to 100.00
Discharge
26.12 cfs
loo
Flow Area
9.3 ft'
Wetted Perimeter
36.57 ft
'
Top Width
36.00 ft
Actual Depth
0.70 ft
'
Critical Elevation
Critical Slope
100.00 ft
0.005221 fUft
Velocity
2.82 fUs
Velocity Head
0.12 ft
Specific Energy
100.12 ft
'
Froude Number
0.98
Flow Type
Subcritical
'
Calculation Messages:
Water elevation exceeds lowest end station by 0.06 ft.
'
Start
Station
Roughness Segments
End Mannings
Station Coefficient
'
0+00
0+13
0.013
0+13
0+36
0.016
'
Natural Channel Points
Station
Elevation
(ft)
(ft)
0+00
100.00
0+10
99.80
0+11
99.80
0+11
99.30
'
0+13
99.47
0+36
99.94
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j)
03/05/02 11:16:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
G7
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.301a
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.015
Slope
0.005000 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.30 to 100.00
Discharge
26.12 cfs
100.00-c--
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
V:4.0❑
HA
NTS
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:16:51 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
'
Project Description .
Worksheet for Irregular Channel
Worksheet
Interior Road - D.P.301 b
Flow Element-
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.005000 ft/ft
'
Water Surface Elevation
100.00 ft
1
Options
Current Roughness Method Improved Lotters Method
Open Channel Weighting Method Improved Lotters Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.014
t
Elevation Range
99.11 to 100.00
Discharge
48.61 cfs
Flow Area
12.8 ft2
'
Wetted Perimeter
34.99 ft
Top Width
34.00 ft
Actual Depth
0.89 ft
'
Critical Elevation
Critical Slope
100.02 ft
0.004133 ft/ft
Velocity
3.80 ft/s
Velocity Head
0.22 It
'
Specific Energy
100.22 ft
Froude Number
1.09
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end
station by 0.48 ft.
Start
Station
Roughness Segments
End
Station
Mannings
Coefficient
'
0+00
0+10
0.013
0+10
0+20
0.035
0+20
0+22
0.013
'
0+22
0+34
0.016
Natural
Channel Points
Station
Elevation
'
(ft)
(ft)
0+00
100.00
0+10
99.80
'
0+20
99.61
0+20
99.61
N
0+20
0+22
99.11
99.28
0+34
99.52
% Qioo - B. C{5 L
' n:\fo0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:22:49 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
'
'
Project Description
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Worksheet
Interior Road - D.P.301b
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
'
Slope
0.005000 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.11 to 100.00
'
Discharge
48.61 cis
1
10 0.000
' 99.70
99.40
99.10
0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35
' V:4.0❑
HA
' NTS
N
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc - FlowMaster v6.1 (614j]
03/05/02 11:23:03 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N
1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.302a
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Slope 0.006700 ft/ft
Water Surface Elevation 100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.015
Elevation Range
99.39 to 100.16
Discharge
17.37 cfs
Flow Area
6.2 ft'
Wetted Perimeter
30.51 ft
Top Width
30.00 ft
Actual Depth
0.61 ft
Critical Elevation
100.01 ft
Critical Slope
0.005737 ft/ft
Velocity
2.78 ft/s
Velocity Head
0.12 ft
Specific Energy
100.12 ft
Froude Number
1.07
Flow Type
Supercritical
Roughness Segments
Start End Mannings
Station Station Coefficient
0+00 0+08 0.013
0+08 0+38 0.016
Natural Channel Points
Station Elevation
(ft) (ft)
0+00
100.00
0+06
99.89
0+06
99.89
0+06
99.39
0+08
99.56
0+38
100.16
QI oo = 2.7 3 c-�S pk
n:\foDI94\drainage\haestad\strxmtcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j)
03/05/02 11:45:20 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
1
1
1
1
1
w
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.302a
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.015
Slope
0.006700 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.39 to 100.16
Discharge
17.37 cis
100.20 —
99.90�—
99.60 —
99.30
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
VA.0❑
H:1
NTS
t n:\fo0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:45:30 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
Worksheet
Interior Road - D.P.302b
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
' Slope
Water Surface Elevation
0.006700 ft/ft
100.00 ft
Options
Current Roughness Method Improved Lotter's Method
Open Channel Weighting Method Improved Lotter's Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.015
Elevation Range
99.39 to 100.16
Discharge
17.37 cfs = Q Cp P i
Flow Area
6.2 ft'
'
Wetted Perimeter
30.51 ft
Top Width
30.00 ft
Actual Depth
0.61 ft
Critical Elevation
100.01 ft
'
Critical Slope
0.005737 ft/ft
Velocity
2.78 ft/s
Velocity Head
0.12 ft
'
Specific Energy
100.12 ft
Froude Number
1.07
Flow Type
Supercritical
'
Roughness
Segments
Start End
Mannings
'
0+00 Station 0+08 Station
Coefficient
0.013
0+08 0+38
0.016
'
Natural Channel Points
Station Elevation
(ft)
0+00
100.00
0+06
99.89
0+06
99.89
'
0+06
99.39
.0+08
99.56
0+38
100.16
' n:\fc0194\drainage\haestad\sbeetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [61417 -
031OW02 11:46:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Flow Element
Method
'
Solve For
Section Data
Interior Road - D.P.3021b
Irregular Channel
Manning's Formula
Discharge
Mannings Coefficient
0.015
'
Slope
0.006700 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.39 to 100.16
'
Discharge
17.37 cfs
100.20 —
99.90'
99.60 —
99.30
0+00
V-
0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40
V:4.0❑
H:1
NTS
N
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Notte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:46:38 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
'
Theoretical Capacity - Major Event (100yr)
'
Worksheet for Irregular Channel
Project Description
N
Worksheet
Ziegler Road - D.P.502
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Input Data
Slope
0.022500 ft/ft
Water Surface Elevation
100.00 ft
Options
'
Current Roughness Method
Improved Lotter's Method
Open Channel Weighting Method
Improved Lotter's Method
'
Closed Channel Weighting Method
Horton's Method
Results
Mannings Coefficient
0.015
'
Elevation Range
99.19 to 100.00
Discharge
95.99 .cfs = Q cA7 i Qt oo
Flow Area
13.6 ft'
'
Wetted Perimeter
42.68 ft
Top" Width
42.00 ft
Actual Depth
0.81 ft
'
Critical Elevation
Critical Slope
100.22 ft
0.004017 Wit
Velocity
7.05 ft/s
Velocity Head
0.77 ft
'
Specific Energy
100.77 ft
Froude Number
2.18
Flow Type
Supercritical
Calculation Messages:
Water elevation exceeds lowest end station by 0.16 ft.
'
Start
Station
Roughness Segments
End
Station
Mannings
Coefficient
'
0+00
0+06
0.013
0+06
0+16
0.035
0+16
0+18
0.013
'
0+18
0+42
0.016
Natural Channel Points
Station
Elevation
'
(ft)
(ft)
0+00
100.00
0+06
99.88
'
0+16
99.69
0+16
99.69
N
0+1
0+18
99,19
99.3636
0+42
99.84
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 11:11:27 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100-yr)
'
Cross Section for Irregular Channel
Project Description
Worksheet
Ziegler Road - D.P.502
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Section Data
Mannings Coefficient
0.015
Slope
0.022500 ft/ft
Water Surface Elevation
100.00 It
Elevation Range
99.19 to 100.00
'
Discharge
95.99 cfs
100.00^
'
99.50
99.10
0+00 0+05
0+10 0+15 0+20 0+25 0+30 0+35 0+40
1
0+45
V:4.0❑
HA
NTS
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc
03/05/02 11:11:34 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
FlowMaster v6.1 [614j]
Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
M
Project Description
Worksheet
Cambridge Avenue - D.P.600
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Slope
0.010300 Wit
'
Water Surface Elevation
100.00 ft
Options
'
Current Roughness Method
Improved Lotters Method
Open Channel Weighting Method
Improved Lotter's Method
'
Closed Channel Weighting Method
Horton's Method
Results
Mannings Coefficient
0.014
'
Elevation Range
99.25 to 100.00
Discharge
50.11 cfs = 0 Qtoo 4• 4 -7 CF5
Flow Area
11.1 ft'
'
Wetted Perimeter
38.63 ft
Top"Width
38.00 ft
Actual Depth
0.75 It
Critical Elevation
100.09 ft
Critical Slope
0.004342 ft/ft
Velocity
4.53 ft/s
Velocity Head
0.32 ft
'
Specific Energy
100.32 it
Froude Number
1.48
Flow Type
Supercritical
'
Calculation Messages:
Water elevation exceeds lowest end station by
0.12 ft.
'
Roughness Segments
Start End
Mannings
Station Station
Coefficient
'
0+00 0+05
0.013
0+05 0+13
0.035
0+13 0+15
0.013
'
0+15 0+38
0.016
Natural Channel Points
'
Station Elevation
(ft) (ft)
0+00 100.00
0+05 99.90
0+13 99.75
0+13 99.75
0+199.25
0+15 99.4242
0+38 99.88
'
n:\fc0194\drainage\haestad\sbeetcapacity.fm2
Nolte Associates Inc FlowMaster v6.1 (614j]
03/05/02 10:55:18 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
1
1
1
1
w
Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.600
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
Slope
0.010300 ft/ft
Water Surface Elevation
100.00 ft
Elevation Range
99.25 to 100.00
Discharge
50.11 cfs
100.00c-
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
V:4.0F�
H:1
NTS
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:55:28 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
1
M
1
1
1
1
1
1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.601
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
Input Data
Slope 0.013000 ft/ft
Water Surface Elevation 100.00 ft
Options
Current Roughness Method Improved Lotters Method
Open Channel Weighting Method Improved Lotters Method
Closed Channel Weighting Method Horton's Method
Results
Mannings Coefficient
0.014
Elevation Range
99.25 to 100.00
Discharge
56.30 .cfs
Flow Area
11.1 ft'
Wetted Perimeter
38.63 ft
Top Width
38.00 ft
Actual Depth
0.75 ft
Critical Elevation
100.12 ft
Critical Slope
0.004240 ft/ft
Velocity
5.09 ft/s
Velocity Head
0.40 ft
Specific Energy
100.40 ft
Froude Number
1.66
Flow Type
Supercritical
'
'
Calculation Messages:
Water elevation exceeds lowest end station by 0.12 ft.
Roughness Segments
Start End Mannings
Station Station Coefficient
'
0+00
0+05
0.013
0+05
0+13
0.035
0+13
0+15
0.013
'
0+15
0+38
0.016
Natural Channel Points
Station
Elevation
'
0+00
100.00
0+05
99.90
'
0+13
99.75
0+13
99.75
0+13
0+15
99.25
99.4242
0+38
99.88
_
/ okoo _,� �
60 cis �
' n:tfc0194\drainagethaestad\streetcapacity.fm2 Nolte Associates tnc FlowMaster v6.1 [614j]
03/05/02 10:56:05 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
' Theoretical Capacity - Major Event (100-yr)
Cross Section for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.601
Flow Element
Irregular Channel
Method
Manning's Formula
'
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
'
Slope
0.013000 ft/ft
1
1
1
1
1
1
Water Surface Elevation 100.00 ft
Elevation Range 99.25 to 100.00
Discharge 56.30 cfs
100.00c_
99.50
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
V:4.0❑
HA
NTS
n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:56:12 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Theoretical Capacity - Major Event (100yr)
Worksheet for Irregular Channel
Project Description
Worksheet
Cambridge Avenue - D.P.602
Flow Element
Irregular Channel
Method
Manning's Formula
Solve For
Discharge
'
Input Data
Slope
0.014100 ft/ft
'
Water Surface Elevation
100.00 ft
Options
'
Current Roughness Method
Improved Lotter's Method
Open Channel Weighting Method
Improved Lotters Method
Closed Channel Weighting Method
Horton's Method
Results
1
1
Mannings Coefficient
0.014
Elevation Range
99.25 to 100.00
Discharge
58.63 cfs =
Qcaa > Q,00 10.35 c s
Flow Area
11.1 W
Wetted Perimeter
38.63 ft
Top" Width
38.00 ft
Actual Depth
0.75 ft
Critical Elevation
100.13 ft
Critical Slope
0.004205 ft/ft
Velocity
5.30 ft/s
Velocity Head
0.44 ft
Specific Energy
100.44 ft
Froude Number
1.73
Flow Type
Supercritical
Calculation Messages:
Water elevation exceeds lowest end station by 0.12 ft.
Roughness Segments
Start End Mannings
Station Station Coefficient
0+00
0+05
0.013
0+05
0+13
0.035
0+13
0+15
0.013
0+15
0+38
0.016
Natural Channel Points
Station Elevation
(ft) (ft)
0+00
100.00
0+05
99.90
'
0+13
99.75
0+13
99.75
0+13
99.25
0+15
99.4242
0+38
99.88
bK
' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/05/02 10:56:40 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
1
Theoretical Capacity - Major Event (100-yr)
1
Cross Section for Irregular Channel
Project Description
Cambridge Avenue - D.P.602
Worksheet
Flow Element
Irregular Channel
Method
Manning's Formula
1
Solve For
Discharge
Section Data
Mannings Coefficient
0.014
1
Slope
0.014100 ft/ft
Water Surface Elevation 100.00 ft
1
Elevation Range
Discharge
99.25 to 100.00
58.63 cfs
1
1
1
.
100.00-
1
99.50
y
✓
9920
0+00
0+05 0+10 0+15 0+20 0+25 0+30 0+35
0+40
1
V:4.0
H:1
1
NTS
1
1
1
1
n:\fo0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc
FlowMaster v6.1 [614j]
03/05/02 10:56:47 AM
m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
Page 1 of 1
M
1
' APPENDIX C
' Inlet Design
I
I
I
49
1
1
1
1
1
1
1
1
1
1
1
11 GUTTER°CONVEYANCE CAPACITY
Project = FC0194 - 2004 High
School
Street ID = Cambridge Avenue - D.P.202b
Street
Side Walk
Ts Crown
A
' Y ;
QW .' Qx 4f� Sic
x D
W
-�SW
A-
DO
v 4,---
T
<------------------------>
<--W><--------- T"-------- >
Gutter Street
)n Discharge in the Gutter
Qo =
8.2 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0.0200 ft/ft
t Longitudinal Slope
So =
0.0068 ft/ft
ing's Roughness
N =
0.016
:r Cross Slope
:r Spread Width
�r Depth without Gutter Depression
!r Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
ate Carried by Width Ts
ate Carried by Width (Ts - W)
:r Flow
Flow
Flow (Check against Qo)
ar Flow to Design Flow Ratio
/alent Slope for the Street
Area
Velocity
product
Sw = -
0.08 ft/ft
T =
16.39 ft
Y =
0.33 ft
D =
0.45 ft
Tx =
14.39 ft
Ts = '
5.45 ft
Qws =
4.2 cfs
Qww =
1.3 cfs
Qw =•.:.-
:>3.0 cfs
Qx =
'5.2 cfs
as =
8.2 cfs
Eo =
0.36
Se =
0.04 ft/ft
As=
2.81 sgft
Vs =
2.90 fps
VsD =
1.32 ftz/s
' UD-Inlet v1.00.xls, Street Hy 3/6/2002, 12:45 PM
1
1
1
1
1
1
1
1
1
1
CURB OPENING INLET ON A GRADE
Project: FC0194 - 2004 High School
Inlet ID: Cambridge Avenue - D.P.202b
W L WP
P-rt----- ><---�
Curb xr �^� Flow Direction
Gutter
i Discharge on the Street (from Street Hy)
Qo =
.-8.2 cis
Flow to Design Flow Ratio (from Street Hy)
Eo =
0.36
of a Single Inlet Unit
Lu =
5.00 ft
ig Factor for a Single Unit Inlet
Co =
0.10
)r of Inlet Units in Curb Opening
No =
4
Length of Curb Opening Inlet
L =1 " 20i00•ft
alent Slope Se (from Street Hy)
Se = ' ; 0.0400 ft/ft
ired Length Lo to Have 100% Interception
Lo =•' ` `:26:72tft
ling Coefficient
C-coeff = i..':. 1:33
ling Factor for Multiple -unit Curb Opening Inlet
Clog = 0:03
ive (Undogged) Length
Le = 19.34 ft
r No -Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
L =. -. .20:00 ft
eption Capacity
Qi 2T5 cfs
r Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
Le =: 19.34 ft
eption Capacity
Qa = , *3! cfs
overflow = Qo - Qa =
Qco = fi77 ate' U cfs
ire Percentage for this Inlet = Qa / Qo =
C%= [.;;: , =90s12i%
UD-Inlet v1.00.xis, Curb-G
Carryover +o D.PZ0-
3/6/2002, 2:19 PM
1
1
M
1
1
1
1
1
1
'GUTTER -CONVEYANCE :CAPACITY7.
Project = FC0194 - 2004 High School
Street ID = Cambridge Avenue - D.P. 200
Stmet
Side Walk Ts Crown
,
' y ' Qa' Qx Sx ,
H' D
Do -�Sw
T
<- W><--------- Tx -------- >
Gutter Street
DP_200.xls, Street Hy
in Discharge in the Gutter
Qo =
12.5 cfs
Height
H =
.6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0.0200 ft/ft
t Longitudinal Slope
So =
0.0068 ft/ft
ing's Roughness
N =
0:016
;r Cross Slope
Sw =
-0.08 ft/ft
:r Spread Width
T =
,19.43 ft
:r Depth without Gutter Depression
Y =
.-0:39 ft
it Depth with a Gutter Depression
D =
_0.52 ft
ad for Side Flow on the Street
Tx =
17,43 ft
3d for Gutter Flow along Gutter Slope
Ts =-
='r-618-ft
*ate Carried by Width Ts
Qws ='
` ' `5.9 cfs
ate Carried by Width (Ts - W)
Qww=
2.1 cfs
:r Flow
Qw =
_,J3.8 cfs
Flow
Qx =
=:;8.7 cfs
Flow (Check against Qo)
Qs =`
` 512.5 cfs
%r Flow to Design Flow Ratio
Eo =
0:31
/alent Slope for the Street
Se =
0.04 ft/ft
Area
As =
3.90 sq ft
Velocity
Vs =
3.20 fps
product
VsD =
1.65 ft2/s
`a' too C. D. P. 200 / 202a= I i .
c=
+ 0.W cfs cap r)rJVEr
, ram D. P. 201 b
3/6/2002, 4:20 PM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
M
1
II <GURB-;:OPENING INLET:IN ASUMP 11
Project = FC0194 - 2004
Inlet ID = Cambridge Av
gh School
ue - D.P.200
Lu WP
P ->C---30.
Yd
H:.
0
Gutter
gn Information (Input)
gn Discharge on the Street (from Street Hy)
th of a Unit Inlet
Width for Depression Pan
Sing Factor for a Single Unit
it of Curb Opening in Inches
e Coefficient
Coefficient
r Depth for the Design Condition
of Throat (see USDCM Chapter 6, Figure ST-5)
)er of Curb Opening Inlets
a Weir
al Length of Curb Opening Inlet
:)acity as a Weir without Clogging
gging Coefficient for Multiple Units
gging Factor for Multiple Units
Dacity as a Weir with Clogging
an Orifice
3acity as an Orifice without Clogging
3acity as an Orifice with Clogging
Percentage for this Inlet = Qa / Qo =
water
Flow Direction
Qo =
12.5 cfs
Lu =
5.00 ft
W p =
3.00 ft
Co =
0.15
H =
6:00 inches
Cd =
.0:65
Cw =
3.00
Yd =
0:77 ft
Theta =
63.0 degrees
No =
2
L =
10.00-ft
Qwi =
31.2 cfs
Clog-Coeff =
1.25
Clog = -
' 0'.09
Qwa =
:.'29:3: cfs
Qoi =..
:: ``19.3 cfs
Qoa =
17.5 cfs
Qa = f`.....,.,,-4J:5i cfs
C%= ' a'� -,100:00:%
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
DP_200.xls, Curb-S
3/7/2002, 11:31 AM
1
1
M
1
1
1
1
1
1
1
1
SGUTTER'CONVEYAN.CE CAPACITY-,
Project = FC0194 - 2004 High School
Street ID = Cambridge Avenue - D.P.20;
DP_203.xls, Street Hy
Street
sme walk T. crown
y Q" QX F� Sx
D
DI ^�sw
<--w><---------Tx-------- >
Gutter Street
)n Discharge in the Gutter
Qo =
10.3 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1:52 inches
t Transverse Slope
Sx =
0.0200 fUft
t Longitudinal Slope
So =
0.0064 fUft
ing's Roughness
N =
0.016
�r Cross Slope
Sw =
0.08 fUft
;r Spread Width
T =
18.20 ft
:r Depth without Gutter Depression
Y =
0.36 ft
;r Depth with a Gutter Depression
D =
0.49 ft
ad for Side Flow on the Street
Tx =
16.20 ft
ad for Gutter Flow along Gutter Slope
Ts =
. '5.89•ft
rate Carried by Width Ts
Qws=
5.0 cfs
rate Carried by Width (Ts - W)
Qww=
1:7 cfs
;r Flow
Qw =
. '_-.; 3.4 cfs
Flow
Qx =
6.9 cfs
I Flow (Check against Qo)
Qs =
10.3 cfs
;r Flow to Design Flow Ratio
Eo =
0.33
Talent Slope for the Street
Se =
0.04 ft/ft
Area
As =
3.44 sq ft
Velocity
Vs =
2.99 fps
product
VsD =
1.47 ffz/s
G.,,, G= D.P.203 = 7.27cfs
+/�S.00js car,yoge✓
trod D.P. 20,4
3/7/2002, 11:19 AM
t
1
1
I
1
1
t
w
CU.RBtOPENING':INLET-IN.ASUMP _
Project=-FC0194 - 2004 High School
Inlet ID = Cambridge Avenue - D.P.203
Lu WP
P __a
nv Direction
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
10.3 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
3.00 ft
Sing Factor for a Single Unit
Co =
0.15
it of Curb Opening in Inches
H =
6.00 inches
e Coefficient
Cd =
0:65
Coefficient
Cw =
3.00
:r Depth for the Design Condition
Yd =
0.74 ft
of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
aer of Curb Opening Inlets
No =
2
s a Weir
otal Length of Curb Opening Inlet
L = ..
:=:10.00'aft
:apacity as a Weir without Clogging
Qwi =.29.4,
cis
:logging Coefficient for Multiple Units
Clog-Coeff = -
1.25.
:logging Factor for Multiple Units
Clog =
0.09:
rapacity as a Weir with Clogging
Qwa =
.27.6?cis
s an Orifice
apacity as an Orifice without Clogging
Qoi = ; - -18.8 cfs
apacity as an Orifice with Clogging
Qoa =
17.0-cfs
for Design with Clogging Qa =t _. - -�9Z Oi cfs
Percentage for this Inlet = Qa / Qo = C%=r,i .. 100:00?%
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' DP_203.xls, Curb-S 3/7/2002, 11:19 AM
w
fl
1
I
0
GUTTER CONVEYANCE CAPACITY
Project = FC0194 - 2004 High School
Street ID = Rock Creek Drive - D.P.204
street
Side Walk Ts Crown
' A
Y , Qw Qx 4�� Sx
H D
Do - Zsw
T v o,
- <------------------------>
<- W><--------- TX -------- >
Gutter Street
to Discharge in the Gutter
Height
r Width
r Depression
t Transverse Slope
t Longitudinal Slope
ing's Roughness
,r Cross Slope
;r Spread Width
:r Depth without Gutter Depression
�r Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
rate Carried by Width Ts
*ate Carried by Width (Ts - W)
:r Flow
Flow
Flow (Check against Qo)
' Gutter Flow to Design Flow Ratio
Equivalent Slope for the Street
Flow Area
Flow Velocity
sD product
M
Qo = -11.1 cfs
H =
6.00 inches
W =
2.00 ft
Ds =
1.52 inches
Sx =
0.0200 ft/ft
So =
0.0050 ft/ft
N = -
0.016
SW =
'.0.08 ft/ft
T =
19.69 ft
Y =
0.39 ft
D =
0.52 ft
Tx = .
":17.69 ft
Ts ='
`_>,6.25 ft
Qws = "
'.5.2 cfs
Qww = .:
;' : 1.9 cfs
Qw = ; :> ::. _.3.3 cfs
Qx-I.^..3..
Z:TCfs
Qs =.
_11.1 cfs
Eo =
0.30
Se =
0.04 ft/ft
As =
4.00 sq ft
Vs =
.2.76 fps
VsD =
1.44 ftz/s
' DP_204.xis, Street Hy 3/6/2002, 3:22 PM
1
1
1
1
1
CURB =OPENING=INLET'ON:A'GRADE
;= _ II
Project: FC0194 - 2004 High School
Inlet ID: Rock Creek Drive - D.P.204
W
wp _ _ L �_ _
ow Direction
r Discharge on the Street (from Street Hy)
Qo =
-11.1 cfs
Flow to Design Flow Ratio (from Street Hy)
Eo =
0.30
of a Single Inlet Unit
Lu =
5.00 ft
ig Factor for a Single Unit Inlet
Co =
0.10
�r of Inlet Units in Curb Opening
No =
3
otal Length of Curb Opening Inlet
L = 15.00)ft
quivalent Slope Se (from Street Hy)
Se =; ' 0.04W ft/ft
equired Length Lo to Have 100% Interception
Lo = 27.7.0'ft
logging Coefficient
C-coeff =.'; " ` °1.31'
logging Factor for Multiple -unit Curb Opening Inlet
Clog = •;0.04
Ifective (Unclogged) Length
Le =: 14.35 ft
nder No -Clogging Condition
ffective Length of Curb Opening Inlet (must be < Lo)
L = -15:00 ft
terception Capacity
Oi =+:::. : 83icfs
nder Clogging Condition
ffective Length of Curb Opening Inlet (must be < Lo)
Le = 14:35 ft
terception Capacity
Qa = <warmI cfs
arryover flow = Qo - Qa =
Q-co = P cfs
apture Percentage for this Inlet = Qa / Qo =
C% = I , uz 73i10, %
DP_204.xis, Curb-G
Carr yovev fo D.P.20=
3/7/2002, 11:17 AM
I
M
1
I
1
I
M
GUT TERrCONVEYANCECAP-ACID ::
Project = FC0194 - 2004 High School
Street ID = Interior Road - D.P.300
street
Side V&M Ts Crown
V ; QV Qx �-�� Sk
x D
W -
Do -zSw
W y y--_ T
<------------------------>
<- W><--------- T"-------- >
Gutter Street
In Discharge in the Gutter
Qo ='
2.0 cfs
Height
H =
6.00 inches
r Width
W =
2.00 it
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0.0200 ft/ft
t Longitudinal Slope
So =i>•:.
0.0050.ft/ft
ing's Roughness
N =
0.016
:r Cross Slope
SW = -".
'-=:0.08 ft/ft
irSpread Width
T=i='":;
,:9;50 ft
;r Depth without Gutter Depression
Y = `'
' _ 0:19 ft
%r Depth with a Gutter Depression
D =y >'=a
. 0:32-ft
ad for Side Flow on the Street
Tx = i �'
: ,` -.7.50 ft
ad for Gutter Flow along Gutter Slope
Ts =; ;
.'=3:80`ft
rate Carried by Width Ts
Qws=`
. +; ':14 cis
rate Carried by Width (Ts - W)
Qww =;,
0.21 cfs
;r Flow
Qw = 1 2 cfs
Flow
Qx = :
: -°_ 'O.t cis
I Flow (Check against Qo)
Qs = ::
; -* _2:0 cfs
;r Flow to Design Flow Ratio
Eo = •
. 0.60
+alent Slope for the Street
Se =
0.06 ft/ft
Area
As =..
., 1.03 sq ft
Velocity
Vs =
'` 1:92 fps
product
VsD =.
.0.61 ftZ/s
' DP_300.xis, Street Hy 3/6/2002, 3:35 PM
1
1
M
1
1
1
1
1
1
I� C.URB=.OPENING INLET=:ON-A::GRADE
Project: FC0194 - 2004 High School
Inlet ID: Interior Road - D.P.300
Wp L WP
--------><----�---I,-
Curb
Gutter
F.
i Discharge on the Street (from Street Hy)
Flow to Design Flow Ratio (from Street Hy)
of a Single Inlet Unit
ig Factor for a Single Unit Inlet
prof Inlet Units in Curb Opening
Flow Direction
Qo =
2.0 cfs
Eo =
0.60
Lu =
5.00 ft
Co =
0.15
No =
2
Length of Curb Opening Inlet
L =
10:00:ft
alent Slope Se (from, Street Hy)
Se =
0:0600: ft/ft
ired Length Lo to Have 100% Interception
Lo =
'10:5Zft
ing Coefficient
C-coeff =
,1':25
ing Factor for Multiple -unit Curb Opening Inlet
Clog =
0.09
ive (Undogged) Length
Le =
9.06ft
r No -Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
L =
10.00:ft
eption Capacity
Qi =
ZO cfs
r Clogging Condition
ive Length of Curb Opening Inlet (must be < Lo)
eption Capacity
over flow = Qo - Qa =
ire Percentage for this Inlet = Qa / Qo =
DP_300.xis, Curb-G
Le = 9.06 ft
Qa= { 19jcfs
Q-co=...,.• ,Os1,.cfs
-a.ryover to D.P. (� '
3/612002, 3:36 PM
GUTTER CONVEYANCE CAPACITY
Project = FC0194 --2004 High School
Street ID = Interior Road - D.P.301 a
Stmet
Side Walk Ta Cmwn
V Qx 4�' Sx
x. D
W -
Do -�Sw
T
<--)K---------Tx-------->
Gutter Street
]n Discharge in the Gutter
Qo =
6.3 cfs
Q,00@ P.P. 30la = y.21 c;s
Height
H =
6.00 inches
t 2_1 cfs ca,yoveK
r Width
W =
2.00 it
fro D. P. 3016
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0.0200 ft/ft
t Longitudinal Slope
So =
0.0050 Wit
ing's Roughness
N =
0.016
ar Cross Slope
Sw =
V `' 0.08 ft/ft
;r Spread Width
T =
15.71 ft
:r Depth without Gutter Depression
Y =
0.31 ft
;r Depth with a Gutter Depression
D =
0.44 ft
ad for Side Flow on the Street
Tx =
13.71 it
ad for Gutter Flow along Gutter Slope
Ts =
-; 5.29 it
rate Carried by Width Ts
Qws =
.3:3 cfs
rate Carried by Width (Ts - W)
Qww =
- . 0.9 cfs
ar Flow
Qw = .
,; _:: 2.4 cfs
Flow
Qx = `F-; 3.9 cfs
I Flow (Check against Qo)
Qs =
-6.3 cfs
;r Flow to Design Flow Ratio
Eo =
0.38
✓alent Slope for the Street
Se =
0.04 Wit
Area
As =
2.59 sq ft
Velocity
Vs =
2.43 fps
product
VsD =
1.07 ftz/s
DP_301a.xls, Street Hy 3/6/2002, 4:24 PM
A
1
CURB`OPENING INLET -ON A.GRADE. -
Project: FC0194 - 2004 High School
Inlet ID: Interior Road - D.P.301a
W
ow Direction
Design Discharge on the Street (from Street Hy)
Qo =
6.3 cfs
Gutter Flow to Design Flow Ratio (from Street Hy)
Eo =
0.38
Length of a Single Inlet Unit
Lu =
5.00 ft
Clogging Factor for a Single Unit Inlet
Co =
0.10
'
Number of Inlet Units in Curb Opening
No =
-3
Length of Curb Opening Inlet
L = ' - r--
1 S:OOi ft
'Total
Equivalent Slope Se (from Street Hy)
Se = i` 0.0400 ftfft
Required Length Lo to Have 100% Interception
Lo =; .` .:21:87'ft
Clogging Coefficient
C-coeff = -" :1:31
Clogging Factor for Multiple -unit Curb Opening Inlet
Clog = 0.04
Effective (Unclogged) Length
Le = '14.35 ft
Under No -Clogging Condition
Effective Length of Curb Opening Inlet (must be < Lo)
L = ' .15.00 ft
Interception Capacity
Qi = i ;5 5; cfs
'
Under Clogging Condition
Effective Length of Curb Opening Inlet (must be < Lo)
Le = `14.35 ft
Interception Capacity
Qa = t%cfs
'
Carryover flow = Qo - Qa =
Q co = r77 70:9 cfs
Capture Percentage for this Inlet = Qa / Qo =
C % = { ;;:'85:34? %
M
yover to D.P.('O!
' DP_301a.xls, Curb-G 3/6/2002, 4:24 PM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
_ -GUTTER CONVEYANCE CAPACITY
Project = FCO194 2004 High School
Street ID = Interior Road - D.P.301 b
street
Side Walls Ts Crown
Y QW Qx
H D
-/_/
q--- -j4
Do S
T
<- W><---------TX-------- >
Gutter Street
)n Discharge in the Gutter
Qo =
8.4 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0.0200 fUft
t Longitudinal Slope
So =
0.0067 ft/ft
ing's Roughness
N =
0.016
er Cross Slope
Sw = '.'
Oi08 ftlft
=r Spread Width
T =
16.61 It
:r Depth without Gutter Depression
Y =
0.33 ft
,r Depth with a Gutter Depression
D =
0.46 ft
ad for Side Flow on the Street
Tx =
14.61 • ft
ad for Gutter Flow along Gutter Slope
Ts = -
.5.51- ft
rate Carried by Width Ts
Qws = .'.
4.3i cfs
rate Carried by Width (Ts - W)
Qww=
1:3 cfs
r Flow
Qw =.:
:3'0. cfs
Flow
Qx=
5:4-cfs
I Flow (Check against Qo)
Qs =
.4 cfs
,r Flow to Design Flow Ratio
Eo =
0.36
valent Slope for the Street
Se =
0.04 ft/ft
Area
As =
-2.89 sq ft
Velocity
Vs =
2.90 fps
product
VsD =
1.33 ftz/s
' DP_301b.xls, Street Hy 3/6/2002, 4:25 PM
CURB OPENING INLET ON A GRADE
Project: FC0194 - 2004 High School
Inlet ID: Interior Road D.P:301 b
WI) L Wp
i Discharge on the Street (from Street Hy)
Flow to Design Flow Ratio (from Street Hy)
of a Single Inlet Unit
ig Factor for a Single Unit Inlet
!r of Inlet Units in Curb Opening
Total Length of Curb Opening Inlet
Equivalent Slope Se (from Street Hy)
Required Length Lo to Have 100%, Interception
Clogging Coefficient
Clogging Factor for Multiple -unit Curb Opening Inlet
Effective (Unclogged) Length
Under No -Clogging Condition
Effective Length of Curb Opening Inlet (must be < Lo)
Interception Capacity
Under Clogging Condition
Effective Length of Curb Opening Inlet (must be < Lo)
Interception Capacity
Carryover flow = Qo - Qa =
Capture Percentage for this Inlet = Qa / Qo =
ow Direction
Qo =
8.4 cis
Eo =
0.36
Lu =
5.00 ft
Co =
0.10
No =
3
L=;.-
'15.00ft
Se =; -'�.
0.0400 ft/ft
Clog = .
0.04
Le = .
: 14.35 ft
L = :15:00 ft
Qi :' '� 6i4 cfs
Le = 14.35 ft
Qa = VAM0621 cfs
Qco = fir- "'=', cfs
C% = E r74:62' %
r 10 D. ?5"
DP_301b.xis, Curb-G 3/6/2002, 4:25 PM
1
M
u
I
1
0
1
M
`GUTTER1C;ONVEYANCE CAPACITY,
Project = FC0194 2004 High School
Street ID = Interior Road - D.P.302a
Street
Side Walk Ts Cm1vn
' Y ' QW ; ,' �' QX Ss
H' D.
Do -�SW
W y y--- T
<- W><--------- T"-------- >
Gutter Street
In Discharge in the Gutter
Qo =
6.4 cfs
Height
H =
6.00 inches
r Width
W =
2.00 ft
r Depression
Ds =
1.52 inches
t Transverse Slope
Sx =
0.0200 ft/ft
t Longitudinal Slope
So = ...
0.0067 ft/ft
ing's Roughness
N =
0.016
:r Cross Slope
Sw =
•.0.08 Wit
:r Spread Width
T =
14.88 It
;r Depth without Gutter Depression
Y =
0.30 ft
it Depth with a Gutter Depression
D =
-0.42 ft
ad for Side Flow on the Street
Tx =
12:88 It
ad for Gutter Flow along Gutter Slope
Ts =
°5.09 It
rate Carried by Width Ts
Qws =
3.5 cis
rate Carried by Width (Ts - W)
Qww =
0.9 cfs
;r Flow
Qw =
2.6 cfs
Flow
Qx =
' '3.8 cfs
I Flow (Check against Qo)
Qs =
6.4 cfs
;r Flow to Design Flow Ratio
Eo =
0.40
✓alent Slope for the Street
Se =
0.05 ft/ft
Area
As =
2.34 sq ft
Velocity
Vs =
2.73 fps
product
VsD =
1.16 ftZ/s
' DP_302a.xls, Street Hy 3/6/2002, 4:50 PM
:CU.RB OPENING ,INLET'INr'AKSUMP �I
Project =-FC0194 - 2004 High School
Inlet ID = Interior Road - D.P.302a
' Lu WP
Wp
Ovate r
Yd
Flow Direction
Pan
' Gutter
1
l
1
.1
J
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
6.4 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
3.00 ft
Sing Factor for a Single Unit
Co =
0.20
it of Curb Opening in Inches
H =
6.00 inches
e Coefficient
Cd =
0:65
Coefficient
Cw =
3.00
�r Depth for the Design Condition
Yd =
0.67 ft
of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63:0 degrees
)er of Curb Opening Inlets
No =
1
a Weir
al Length of Curb Opening Inlet
L =
'ISOO'ft
:)acity as a Weir without Clogging
Qwi =
•.17 1 cfs
gging Coefficient for Multiple Units
Clog-Coeff =.
--1:00
gging Factor for Multiple Units
Clog =
0:20
)acity as a Weir with Clogging
Qwa =
15.5•cis
an Orifice
)acity as an Orifice without Clogging
Qoi = w
:'_ '89 cfs
)acity as an Orifice with Clogging
Qoa =
7.0 cfs
3acity for Design with Clogging
Qa
:. cfs
3ture Percentage for this Inlet = Qa / Qo =
C% _``= ,--100.00;%a
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' DP_302a.xls, Curb-S 3/6/2002, 4:50 PM
I
1
1
1
1
1
1
1
1
1
M
: - MER CONVEYANCE'CAPACITY
Project = FC0194 -.2004
Street ID = Interior Road (l
School
- D.P.3
Street
Side Walk Ts
<--- ----- > Crown
Ilk
/� ^---
y tZav ' Qx �� Sx ,
H' D
W -
Dr �SW
T
<------------------------>
<- w><--------- T"-------- >
Gutter Street
In Discharge in the Gutter
Height
r Width
r Depression
t Transverse Slope
t Longitudinal Slope
ing's Roughness
;r Cross Slope
?r Spread Width
.r Depth without Gutter Depression
:r Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
rate Carried by Width Ts
rate Carried by Width (Ts - W)
er Flow
Flow
Flow (Check against Qo)
it Flow to Design Flow Ratio
jalent Slope for the Street
Area
Velocity
product
Qo =
6.2 cfs
H =
6.00 inches
W =
2.00 ft
Ds =
1.52 inches
Sx =
0.0200 ft/ft
So =
.0.0120 Wit
N =
0.016
Sw =
r . 0.08 ft/ft
T =
13.04 ft
Y =
0.26 ft
D =
0.39-ft
Tx =
-A 1.04. ft
Ts =
':=4.65;ft
Qws =
3.7 cfs
Qww =
'0.8,cfs
Ow =
.'2.8 cfs
Qx =
3.4 cfs
Qs =
6.2 cfs
Eo =
0.46
Se =
0.05 ft/ft
As =
1.83 sq ft
Vs =
3.42 fps
VsD =
1.32 ftz/s
' DP_309.xls, Street Hy 3/6/2002, 4:52 PM
I
1
1
M
CURB,OPENING`INLET:IN,ASUMP -.
Project = FC0194 - 2004 High School
Inlet ID = Interior Road (Loop) - D.P.:
Lu wP
WP - ---�---�
nv Direction
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
6.2 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
-3.00 ft
ling Factor for a Single Unit
Co =
0.20
it of Curb Opening in Inches
H =, -
. - i6.00 inches
:e Coefficient
Cd = '
, '0:65
Coefficient
Cw
3:00
!r Depth for the Design Condition
Yd =
' 0.64 ft
. of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
)er of Curb Opening Inlets
No =
1
a Weir
al Length of Curb Opening Inlet
L
it `Sa)0 ft
:)acity as a Weir without Clogging
Qwi =
, .-:'--'16.0 cfs
gging Coefficient for Multiple Units
Clog-Coeff =
100
gging Factor for Multiple Units
Clog =
0:20
3acity as a Weir with Clogging
Qwa =i
.` �,-,m4.4;cfs
an Orifice
3acity as an Orifice without Clogging
Qoi =
4- _ -.-8.4 cfs
3acity as an Orifice with Clogging
Qoa = -
6.7 cfs
)acitvfor Design with Clogging
Qa ="� 7'6'7icfs
3ture Percentage for this Inlet = Qa / Qo =
C% =1 , ;`.100.00' %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' DP_309.xis, Curb-S 3/6/2002, 4:52 PM
1
-GUTI ER CONVEYAN;CEiCAPACITY
Project = FC0194 = 2004 High School
Street ID = Interior Road (Loop) - D.P.310
Side Walk Ta
Street
Crown
' Y
QK. Qx
Sx
^W _ _ _
--
� Sw
T
'
< w><---------
T"-------- >
Gutter
Stmet
Street Geometry (input)
'
Design Discharge in the Gutter
Qo = ` °9.5 cfs
Curb Height
H = 6.00 inches
Gutter Width
W = 2.00 ft
Gutter Depression
Ds = - . • .1.52 inches
Street Transverse Slope
Sx = 0.0200 Wit
Street Longitudinal Slope
So = .-;. -.0.0120 Wit
Manning's Roughness
N =
Gutter Conveyance Capacity
Gutter Cross Slope
Sw `0`08 ft/ft
Water Spread Width
T 1$ 54'ft
Water Depth without Gutter Depression
Y = =' " . 0 31:ft
Depth with a Gutter Depression
D = 4 ss ` 0.441ft
'Water
Spread for Side Flow on the Street
Tx =:. = - _A3.54.it
Spread for Gutter Flow along Gutter Slope
Ts = xr i5;25;ft
Flowrate Carried by Width Ts
Qws " :1'<cis
'
Flowrate Carried by Width (Ts - W)
Qww 1 4: cis
Gutter Flow
Qw cis
'
Side Flow
Qx = :5:9; cfs
Total Flow (Check against Qo)
Qs = - 9:5 cfs
Gutter Flow to Design Flow Ratio
Eo = 038
'
Equivalent Slope for the Street
Se = 0.04 ft/ft
Flow Area
As = 2.54 sq ft
Flow Velocity
Vs ='=' _• :--3.74 fps
sD product
VsD = 1.64 ftZ/s
M
' DP_310.xls, Street Hy
3/6/2002, 4:53 PM
1
1
M
1
1
1
1
1
1
Project = FC0194 - 2004
Inlet ID = Interior Road 1
CURB -OPENING"INLET:IN A'SUMP
School
- D.P.310
Lu WP
rw Direction
esign Information (Input)
esign Discharge on the Street (from Street Hy)
Qo =
9.5 cfs
Dngth of a Unit Inlet
Lu =
5.00 ft
ide Width for Depression Pan
Wp =
3.00 ft
logging Factor for a Single Unit
Co =
0.15
eight of Curb Opening in Inches
H =
6.00 inches
rifice Coefficient
Cd =
0.65
feir Coefficient
Cw =
3.00
Eater Depth for the Design Condition
Yd =
0.69 ft
ngle of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63:0 degrees
umber of Curb Opening Inlets
No =
2
a Weir
al Length of Curb Opening Inlet
L =
10.00 ft
3acity as a Weir without Clogging
Qwi =
26.5 cfs
gging Coefficient for Multiple Units
Clog-Coeff =
1.25
gging Factor for Multiple Units
Clog =
0.09
)acity as a Weir with Clogging
Qwa = :°.
,. .24:9 cfs
an Orifice
)acity as an Orifice without Clogging
Qoi =
17.8 cfs
)acity as an Orifice with Clogging
Qoa =
16.2 cfs
)acity for Design with Clogging
Qa =
16.2 cfs
3ture Percentage for this Inlet = Qa / Qo =
C% _'`
: <100.00.%
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
DP_310.xls, Curb-S
3/6/2002, 4:52 PM
1
1
M
1
1
1
1
1
GUTTER `C'ONVEYANCE-CAPAC
Project = FC0194 - 2004 High School
Street ID=.Ziealer Road - D-P-502
Side Walk Street
Ts Crown
Y QW i QxSx
^_Dop
__
V
<------------------------>
<- W><---------Tx-------->
Gutter Street
In Discharge in the Gutter
Height
r Width
r Depression
t Transverse Slope
t Longitudinal Slope
ing's Roughness
it Cross Slope
:r Spread Width
:r Depth without Gutter Depression
�r Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
rate Carded by Width Ts
"ate Carried by Width (Ts - W)
:r Flow
Flow
Flow (Check against Qo)
ar Flow to Design Flow Ratio
talent Slope for the Street
Area
Velocity
product
UD-Inlet v1.00.xis, Street Hy
Qo =
18.9 cfs
H =
6.00 inches
W =
2.00 ft
Ds =
1.52 inches
Sx =
0.0200 ft/ft
So =
0.0225 ft/ft
N =
0:016
SW =
u ' 0.08 ft/ft
T =
1806 ft
Y =
0.36 ft
D =
0.49 ft
Tx =
16.06 ft
Ts =-
" 5:85-ft
Qws =
9.3 cis
Qww =
3.0 cis
Qw =
> 6.2 cfs
Qx =
". "12.7 cis
Qs =
18.9 cfs
Eo =
0.33
Se =
0.04 ft/ft
As =
3.39 sq ft
Vs =
.5.57 fps
VsD =
2.72 ftZ/s
3/6/2002, 2:55 PM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
M
1
Project =
Inlet ID =
CURB-OPENING-1NLET,INASUMP
- 2004 High Sc
Road - D.P.502
Lu WP
P --�
+w Direction
Design Information (Input)
Design Discharge on the Street (from Street Hy)
Qo =
18.9 cfs
Length of a Unit Inlet
Lu =
5.00 ft
Side Width for Depression Pan
Wp =
3.00 ft
Clogging Factor for a Single Unit
Co =
0.20
Height of Curb Opening in Inches
H =
6.00 inches
Orifice Coefficient
Cd =
0.65
Weir Coefficient
Cw =
-3.00
Water Depth for the Design Condition
Yd =
0.74 ft
Angle of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
Number of Curb Opening Inlets
No =
3
a Weir
al Length of Curb Opening Inlet
L =
15.00 ft
:)acity as a Weir without Clogging
Qwi =
39.0 cfs
gging Coefficient for Multiple Units
Clog-Coeff =
1.31
gging Factor for Multiple Units
Clog =
0.09
3acity as a Weir with Clogging
Qwa = .
36.5 cfs
an Orifice
)acity as an Orifice without Clogging
Qoi =
28.1 cfs
)acity as an Orifice with Clogging
Qoa =
25.7 cfs
3acity for Design with Clogging
Qa = i '
-r 25.7. cfs
Aure Percentage for this Inlet = Qa / Qo =
C%=
100.00"%
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
UD-Inlet v1.00.xls, Curb-S
3/6/2002, 2:56 PM
3G UTTER -CONVEYANCE-CAPACITY
Project = FC0194 - 2004 High School
Street ID = Cambridge Avenue - D.P.601
1
Street
Side Walk
Ts Crown
'
A,- -
Y
Qx, Qx �� Sx
H' D
Do
<________________________> -
<- W><--------- T"-------- >
'
Gutter Street
'
Design Discharge in the Gutter
Curb Height
Gutter Width
'
Gutter Depression
Street Transverse Slope
Street Longitudinal Slope
Manning's Roughness
Gutter Conveyance Capacity
Gutter Cross Slope
'
Water Spread Width
Water Depth without Gutter Depression
Water Depth with a Gutter Depression
'
Spread for Side Flow on the Street
Spread for Gutter Flow along Gutter Slope
Flowrate Carried by Width Ts
'
Flowrate Carried by Width (Ts - W)
Gutter Flow
Side Flow
'
Total Flow (Check against Qo)
Gutter Flow to Design Flow Ratio
Equivalent Slope for the Street
Flow Area
Flow Velocity
'
sD product
M
Qo =
10.7 cfs
G,00 a D.P.60��601 : 9 •(ob
H =
6.00 inches
cr=
+ 0.10 cfs carryovev
W =
2.00 ft
Trove D.P. 3_I ?
Ds =
1.52 Inches
Sx =
0.0200 ft/ft
+ 0.90 c'S corrvo•lev
frovn D. P. 301
So =
0.0130 ft/ft
N =
0.016
SW = :.
0.08 ft/ft
T =
16.03 ft
Y =
0.32 ft
D =
'0.45 ft
Tx =
14.03 ft
Ts =
~5.37,ft
Qws =
5.6 cfs
Qww =
` 1.6 cfs
Qw =
: 4.0. cfs
Qx = ..-i
=6.7• cfs
Qs =
10.7 cfs
Eo =
0.37
Se =
0.04 ft/ft
As =
2.70 sq ft
Vs =
3.96 fps
VsD =
1.77 ftz/s
' DP_601.xis, Street Hy 3/6/2002, 4:53 PM
A
1
1
1
L
A
CURB OPENING_INLET'IKA;SUMP
Project = FC0194 -.2004 High School
Inlet ID = Cambridge Avenue - D.P.601
WP Lu WP
w Direction
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
10.7 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
3.00 ft
Sing Factor for a Single Unit
Co =
0.15
it of Curb Opening in Inches
H =
6.00 inches
:e Coefficient
Cd =
0:65
Coefficient
Cw =
3.00
:r Depth for the Design Condition
Yd =
010 ft
of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
aer of Curb Opening Inlets
No =
2
a Weir
al Length of Curb Opening Inlet
L =
10.00-ft
)acity as a Weir without Clogging
Qwi =
`27.1 cfs
gging Coefficient for Multiple Units
Clog-Coeff =
1:25
gging Factor for Multiple Units
Clog =
to.09
)acity as a Weir with Clogging
Qwa = - •- 25A cis
an Orifice
)acity as an Orifice without Clogging
Qoi =
18.0 cis
>acity as an Orifice with Clogging
Qoa =
16.3 cis
)acity for Design with Clogging
Qa =
'�' '-;;'7-161 cfs
Aure Percentage for this Inlet = Qa / Qo =
C% =i.
.:100.00; %
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
I
DP_601.xls, Curb-S 3/6/2002, 4:54 PM
Project =
Street ID =
1
0
1
1
GUTTER CONVEYANCE CAPACITY
FC0194-.2004 High School
Cambridge Avenue - D.P.602
street
Side Walk Ts Crown
t[ I) y Qw Qx Sx '
D® T
^�S�Y
<------------------------>
<--W><---------
Tz-------- >
Gutter Street
gn Discharge in the Gutter
Height
;r Width
v Depression
:t Transverse Slope
A Longitudinal Slope
iing's Roughness
;r Cross Slope
:r Spread Width
;r Depth without Gutter Depression
:r Depth with a Gutter Depression
ad for Side Flow on the Street
ad for Gutter Flow along Gutter Slope
rate Carried by Width Ts
rate Carried by Width (Ts - W)
:r Flow
Flow
Flow (Check against Qo)
' Gutter Flow to Design Flow Ratio
Equivalent Slope for the Street
Flow Area
Flow Velocity
sD product
II
M
Qo =
10.4 cfs
H =
6.00 inches
W =
2.00 ft
Ds =
1.52 inches
Sx =
0.0200 ft/ft
So =
0.0141 ft/ft
N =
0.016
Sw = . "..ry
: 0: 8 ft/ft
T= ,
"15t57`ft
Y = •ti .
0.31 ft
D=
`0.44ft
Tx =...:
'13.57 ft
Qws =
>; <5:5 cfs
cfs
QW
Qx=- __ 3'644cfs
Qs = .'
10.4'cfs
Eo =
0.38
Se =
0.04 ft/ft
As =
2.55 sq ft
Vs =
4.06 fps
VsD =
1.78 ftZ/s
DP_602.xls, Street Hy 3/6/2002, 4:55 PM
I
A
1
1
II
1
1
M
CURB -OP:ENING,INLET]N;A SUMP
Project = FC0194 - 2004 High School
Inlet ID = Cambridge Avenue - D.P.602
WP _ Lu WP
rw Direction
gn Information (Input)
gn Discharge on the Street (from Street Hy)
Qo =
10.4 cfs
th of a Unit Inlet
Lu =
5.00 ft
Width for Depression Pan
Wp =
3.00 ft.
ling Factor for a Single Unit
Co =
0.15
it of Curb Opening in Inches
H =
i6.00 inches
e Coefficient
Cd =
0.65
Coefficient
Cw = -
' . .,3:00
r Depth for the Design Condition
Yd =
0:69 ft
of Throat (see USDCM Chapter 6, Figure ST-5)
Theta =
63.0 degrees
)er of Curb Opening Inlets
No =
.2
a Weir
al Length of Curb Opening Inlet
L =' .
10.00•ft
)acity as a Weir without Clogging
Qwi =
26.5 cis
gging Coefficient for Multiple Units
Clog-Coeff =
1.25
gging Factor for Multiple Units
Clog =
0.09
)acity as a Weir with Clogging
Qwa =;:;",
24:9,cis
an Orifice
>acity as an Orifice without Clogging
Qoi =
� 17:8 cfs
)acity as an Office with Clogging
Qoa =•-- :.:
_16.2 cfs
)acitvfor Design with Cloaaina
Qa=j._ 'cfs
Aure Percentage for this Inlet = Qa / Qo =
C% =f't %.100:001
%
Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture
percentage of less than 100% in a sump may indicate the need for additional inlet units.
' DP_602.xls, Curb-S 3/6/2002, 4:55 PM
� t
:
�� \\°
\ \
� �
�<
«
\: 2� \
© � d,
: ��
� \
2�
1
1
M
1
1
1
1
1
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/11/2002
Design Point--
306 '
Orifice Calculation:
Rim Elevation=
4902.80
Q. = CA(2gH)os
100-yr Ponding Eler—
4905.35
Hydraulic Grade Out--
4900.71
Allowable Release Rate=
133
cfs
H=
2.55
ft
C =
0.65
g=
32.2
ft/s
Q=
1.33
cfs
Ac=
0.16
ftZ
Diameter of Orifice: 1 15/16"
BE Y O N D E N G IN E E R I N G
Nolte Associates, Inc.
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/10/2002
Design Point--
307
Orifice Calculation:
Rim Elevation=
4902.70
Q. = CA(2gH)o.s
100-yr Ponding Elev—
4905.61
Hydraulic Grade Out--
4899.79
Allowable Release Rate=
.2.395
cfs
H=
5.82 ft
C =
0.65
g =
32.2 ft/s
Q=
2.40 cfs
Ac =
0.19 ftZ
Diameter of Orifice: 2 15/16"
BE Y O N D E N G IN E E R ING
' Nolte Associates, Inc.
:n � ,; cc
late�Calculations, '�'
Project#:
_� .�Oiz
FC0194
�O
Project Name:
2004 Fort Collins High
School
'
Calculated By:
Date:
HHF/GAD
3/11/2002
BEYOND ENG I NEERING
Design Point--
31 la_ .:
Orifice Calculation:
Rim Elevation=
4904.20
Q. = CA(2gH)0.5
'
100-yr Ponding Elev—
—4906.74
Hydraulic Grade Out--
4902.10
Allowable Release Rate=
_187 cfs
'
H=
2.54 ft
C =
0.65
g =
32.2 ft/s
'
Q=
1.87 cfs
Ac =
0.22 ftZ
Diameter of Orifice:
21146"`.
C
L
C
1
M
' Nolte Associates, Inc.
1
1
M
1
1
1
1
1
u
Project:
0194
Project Names
20: 2004 Fort Collins High School
Calculated By:
HHF/GAD BEYOND ENGINEERING
Date:
3/11/2002
Design Point--
312a ' Orifice Calculation:
Rim Elevation=
4903.90 Q. = CA(2gH)os
I00-yr Ponding Elev=
-- —490T 10
Hydraulic Grade Our--
..4903.64
Allowable Release Rate=
.4.65 cfs
H=
3.46 ft
C =
0.65
g =
32.2 ft/s
Q=
4.65 cfs
Ac =
0.48 ft2
Diameter of Orifice:
Nolte Associates, Inc.
.1
lJ
Project:
0194
Project Names
20: 2004 Fart Collins High School
Calculated By:
HHF/GAD
BE Y O N D E N G IN E E R ING
Date:
3/11/2002
Design Point--
r312a- ' Orifice Calculation:
IN fEe-IM CONli1T/GN
Rim Elevation=
-4903.90 Q. = CA(2gH)O"
100-yr Ponding Eletr
--.4907.15
Hydraulic Grade Out--
4904.94
Allowable Release Rate=
6.845 cfs
H=
2.21 ft
C =
0.65
g=
32.2 ft/s
Q=
6.85 cfs
Ac =
0.88 ft2
Diameter of Orifice: 10 9/16"
Nolte Associates, Inc.
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD B E Y O N D
E N G I N E E R I N G
'
Date:
3/10/2002
Design Point--
313a`' . Orifice Calculation:
'
Rim Elevation=
4908.00 Qo = CA(2gH)o.s
I00-yr Ponding Elew
491039
Hydraulic Grade Ou—
4906.77
'
Allowable Release Rate=
.2:87 cfs
H=
3.62 ft
C =
0.65
g =
32.2 ft/s
'
Q=
2.87 cfs
'
Ac =
0.29 ftZ
Diameter of Orifice:
1
1
' Nolte Associates, Inc.
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/I 1/2002
Design Point--
-313a -
Orifice Calculation:
Rim Elevation=
4908.00
Q. = CA(2gH)o.s
I00-yr Ponding Elev—
--4910.45
Hydraulic Grade Out--
4909.06
Allowable Release Rate=
5.08
cfs
H=
1.39 ft
C =
0.65
g =
32.2 ft/s
Q=
5.08 cfs
Ac =
0.83 ft2
Diameter of Orifice:
1
1
1
1
1
M
B E Y O N D E N G I N E E R I N G
Interim Condition:
-Accepting runoff from BASIN500
u
Nolte Associates, Inc.
1
1
M
1
1
1
1
1
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
3/11/2002
Design Point--
400 --
Orifice Calculation:
Rim Elevation=
'N.A. -
Q. = CA(2gH)os
100-yr Ponding Elev=
--4904:79
Hydraulic Grade Out--
489870
Allowable Release Rate=
6:5
cfs
H=
6.09 ft
C =
0.65
g=
32.2 ft/s
Q=
6.50 cfs
Ac =
0.50 112
Diameter of Orifice: 6"
BE Y O N D E N G IN E E R ING
Nolte Associates, Inc.
1.
1
M
1
1
1
1
1
1
1
1
Project:
0194
Project Names
20: 2004 Fort Collins High School
Calculated By:
HHF/GAD B E Y O N D E N G I N E E R I N G
Date:
3/11/2002
Design Point—
403 _ "- Orifice Calculation:
Rim Elevation=
4902.80 Q. = CA(2gH)0.5
I00-yr Ponding Elev=
---4906.70
Hydraulic Grade Out--
4904.79
Allowable Release Rate=
J'.2 cfs
H=
1.91 ft
C =
0.65
g =
32.2 ft/s
Q=
1.20 cfs
Ac =
0.17 ft2
Diameter of Orifice:
Nolte Associates, Inc.
M
' APPENDIX D
' Swale Calculations
I
I
I
11
I
I
1
M
Swale Capacity - Major Event (100-yr)
Project Description
Worksheet for Trapezoidal Channel
Worksheet
Roof Drainage - D.P.308
Flow Element
Trapezoidal Channel
Method
Manning's Formula
'
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
'
Slope
0.005000 ft/ft
Left Side Slope
4.00 H : V
Right Side Slope
4.00 H : V
Bottom Width
3.00 ft
Discharge
16.81 cfs
'
Results
Depth
1.04 ft
Flow Area
7.5 fN
Wetted Perimeter
11.61 ft
'
Top Width
11.36 It
Critical Depth
0.72 ft
Critical Slope
Velocity
0.023340 ft/ft
2.24 ft/s
`t
Velocity Head
0.08 ft
Specific Energy
1.12 ft
Froude Number
0.49
'
Flow Type
Subcritical
1
J
' n:l..\drainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc RowMaster v6.1 [614j]
03/11/02 02:45:14 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Swale Capacity - Major Event (100-yr)
Cross Section for Trapezoidal Channel
Project Description
Worksheet
Roof Drainage - D.P.308
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.035
Slope
0.005000 ft/ft
Depth
1.04 it
Left Side Slope
4.00 H : V
Right Side Slope
4.00 H : V
Bottom Width
3.00 ft
Discharge
16.81 cfs
ft
V:4.0 ❑
H:1
NTS
n:\... \drainage�haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/11/02 02:45:43 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Swale Capacity - Major Event (100-yr)
Worksheet for Trapezoidal Channel
Project Description
Worksheet
Culvert Outfall to D.P.303
Flow Element
Trapezoidal Channel
Method
Manning's Formula
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.035
'
Slope
0.013000 ft/ft
Left Side Slope
14.00 H : V
Right Side Slope
4.00 H : V
Bottom Width
22.00 ft
Discharge
16.81 cfs
Results
Depth
0.32 R
Flow Area
8.0 ft'
Wetted Perimeter
27.82 ft
'
Top Width
27.77 ft
Critical Depth
0.25 ft
'
Critical Slope
Velocity
0.029120 ft/ft
2.11 ft/s
Velocity Head
0.07 ft
Specific Energy
0.39 ft
Froude Number
0.69
Flow Type
Subcritical
1
1
1
1
' n:\...tdrainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614j]
03/11/02 02:58:16 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
'
Swale Capacity - Major Event (100-yr)
Cross Section for Trapezoidal Channel
'
Project Description
Worksheet
Culvert Outfali to D.P.303
Flow Element
Trapezoidal Channel
Method
Manning's Formula
'
Solve For
Channel Depth
Section Data
Mannings Coefficient
0.035
Slope
0.013000 ft/ft
Depth
0.32 it
Left Side Slope
14.00 H : V
'
Right Side Slope
4.00 H : V
Bottom Width
22.00 ft
Discharge
16.81 cis
'
T
4 ft
'
I
22.00 ft
' V:4.0❑
H:1
NTS
' n:\...tdrainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614il
03/11/02 02:58:10 PM a Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755.1666 Page 1 of 1
Swale Capacity - Major Event (100-yr)
Project Description
Worksheet for Trapezoidal Channel
JP
Worksheet
Pond P-300 Overflow Spillway
Flow Element
Trapezoidal Channel
Method
Manning's Formula
'
Solve For
Channel Depth
Input Data
Mannings Coefficient
0.030
'
Slope
0.020000 ft/ft
Left Side Slope
4.00 H : V
Right Side Slope
4.00 H : V
'
Bottom Width
50.00 ft
Discharge
22.20 cis
'
Results
Depth
0.19 ft
Flow Area
9.7 ft'
Wetted Perimeter
51.57 ft
'
Top Width
51.52 It
Critical Depth
0.18 ft
Critical Slope
Velocity
0.023275 fith
2.30 fits
Velocity Head
0.08 ft
Specific Energy
0.27 ft
FNumber
0.93
FlowType
Type
Subcriticai
1
n:l..\drainage\haestad\fc0194_swale-overflow.fm2 Nolte Associates Inc FlowMaster v6.1 [614t7
03/11/02 03:04:35 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
Project Description
Worksheet
Flow Element
Method
Solve For
Swale Capacity - Major Event (100-yr)
Cross Section for Trapezoidal Channel
Pond P-300 Overflow Spillway
Trapezoidal Channel
Manning's Formula
Channel Depth
Section Data
Mannings Coefficient
0.030
'
Slope
0.020000 ft/ft
Depth
0.19 ft
Left Side Slope
4.00 H : V
'
Right Side Slope
4.00 H : V
Bottom Width
50.00 ft
Discharge
22.20 cfs
00
V:4.0❑
' H:1
NTS
1
1
' n:\...\drainage\haestad\fc0194_swale-overflow.fm2 Notte Assoch tes Inc FlowMaster v6.1 [614j)
03/11/02 03:04:28 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
IIp
n I r.lr u %U Lr I. nC LIUL r J
Discharge
cfs
Peak Flow
Period hrs
Velocity ffps)
Area (sq.ft)
Hydraulic
Radius ft
Normal
Depth ft
�2-2
0.5
1.68
1 13.20
1 0.25
0.26
0
LINER RESULTS
SC1
S = 0.0200
1L 1
Bottom
4.0 Width = 50.00 ft 4.0
Not to Scale
Reach
Material Type
1 Phase
1 Ve . TjRe
I Soil Type
I
Manning's'n'
Permissible
Shear Stress (psfj
Calculated
Shear Stress fp
Safety
Factor
Remarks
Staple Pattern
I Class
I Veo. Deniitu
Straight
SC150
0.050
1.80
0.32
5.58
STABLE
Staple D
1
0
1
r
rij
1
1
1
1
1
1
1
11
1
1
1
1
A
HYUHAULIC HESUL I S
Discharge
cfs
Peak Flow
Period hrs
Velocity (fps)
Area (sq.ft)
Hydraulic
Radius ft
Normal
De th ft
22.2
1 0.5
2.30
9.67
0.19
0.19
LINER RESULTS
L- Bottom
4.0 Width = 50.00 ft 4.0
Not to Scale
Reach
Material T e
Phase
Veo. T e
Soil Type
Mamr ng's'n'
Permissible
Shear Stress (psi]
Calculated
Shear Stress (psfJ
Safety
Factor
Remarks
Staple Pattern
Class
Ve . Densit
Straight
Unreinforced
I Mix
1
1 0.030
3.33
0.24
14.00
1 STABLE
D
1 75.95:
1 Gay Loam
1
0.050
0.016
3.11
1 STABLE
1
i
M
1
1
fl
1
1
1
I
1
1
1
I
I
1
n
1
APPENDIX E
Storm Drain Design
Culvert Calculator Report
'
D.P.308 to D.P.303
Solve For: Headwater Elevation
Culvert Summary
Allowable HW Elevation
4,906.89 ft
Headwater Depth/Height
1.27
'
Computed Headwater Elevation
4,905.85 ft
Discharge
16.81 cfs
Inlet Control HW Elev.
4,905.80 ft
Tailwater Elevation
4,900.36 ft
Outlet Control HW Elev.
4,905.85 ft
Control Type
Outlet Control
Grades
Upstream Invert
4,903.32 ft
Downstream Invert
4,900.23 ft
Length
464.11 ft
Constructed Slope
0.006658 ft/ft
'
Hydraulic Profile
Profile
M2
Depth, Downstream
1.48 ft
Slope Type
Mild
Normal Depth
1.50 ft
'
Flow Regime
Subcritical
Critical Depth
1.48 ft
Velocity Downstream
6.75 fUs
Critical Slope
0.006877 ft/ft
'
Section
Section Shape
Circular
Mannings Coefficient
0.013
'
Section Material
Concrete
Span
2.00 ft
Section Size
24 inch
Rise
2.00 ft
Number Sections
1
'
Outlet Control Properties
'
Outlet Control HW Elev.
Ke
4,905.85 ft
0.50
Upstream Velocity Head
Entrance Loss
0.69 ft
0.34 ft
'
Inlet Control Properties
Inlet Control HW Elev.
4,905.80 ft
Flow Control
Transition
Inlet Type Square edge w/headwall
Area Full
3.1 ft'
K
0.00980
HDS 5 Chart
1
'
M
2.00000
HDS 5 Scale
1
C
0.03980
Equation Form
1
Y
0.67000
r
t
M
' Title: 2004 High School Project Engineer: GAD
n:l..\haestad\fc0194_culvert_basin308.cvm Nolte Associates Inc CulvertMaster v2.0 [2005a]
05/22/02 04:12:56 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1.203-755-1666 Page 1 of 1
' �' i ra Dese �" dGalculations-i@ircu`7ar
Project Name: 2004 High School
Calculated By: GAD
Date: 5/28/2002
' Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System A Outlet to pond Basin 1000.
Outfall Pipe Diameter, in: 30-- - Velocity, ft/s: - ".2.65 `
Qrw, cfs, 13.00 Depth of flow. ft: .2.5
' Tailwater depth, ft: 3:69 _-Froude Number: 0.30 subcritical
Where, F = V/(gY)03
F>0.80, supercritical flow
F<0.80, subcritical flow
Required Rock Size:
' a Q/D2-1= 1.32 Q/DI's= 3.29
b. Y,/D= 1.48
' a (dsdD)(YID)t.:/(Q/D")=0.023
From Figure 5-7,
Use Type L Riprap
' . d, = `-.9.00 ' inches
If the flow in the culvert is supercritical, substitute D, for D.
Where:
Therefore:
D,= n/a ft
a: Q/D."= n/a Q/D,t's= n/a
V. Y,/D.= n/a
c'. (d5./DJ(YMJ"/(Q/D.25)=0.023
From Figure 5-7,
' Use Type. -'+L .-' Riprap
d, -,9 _`inches
Extent ojPratecrion:
Check Results:
BE Y O N D E N G IN E E R ING
L = (1/(2tan0))(A,/Y, - W)
Where:
it/(2tanB)_'6.6;,l; Figura_5-99 _
Ar QN Where, V = acceptable velocity, 5.5 fps
Ar 2.36 ft,
Therefore:
Calculated L= -12.27 ft
L>3D
•L < 10D
• When Q/D° > 6
Maximum Depth:
D=2d,
Riprop Width:
W=3D
Minimum L = 7.5 ft
Maximum L = 25 ft
Use L = 8 feet
Use D = 18 inches
Use W = 7.5 feet
1
1
M
1
1
1
1
1
1
1
1
1
Riprdp DesiglKGalculationsx Cir`cularzUutJall.9 s
Project #: 20 Hi 0 rsJC4XE
Project Name: 2004 High School
Calculated By: GAD
Date: 5/28/2002 B E Y O N D E N G I N E E R I N G
Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System B Outlet to pond Basin 1000.
Outfall Pipe Diameter, in:---42.: Velocity, ft/s: - :8.77
Q,mcis,.-.84.4_-- Depth of flow, ft: "Ii5
Tailwater depth, ft: `5.44" Froude Number: 0.83 supercritical
Where, F = V/(gY)O'
F>0.80, supercritical flow
F<0.80, subcritical Flow
Required Rock Size:
a. Q/D2.5= n/a Q/D1.5= n/a
b. Y,/D= n/a
C. (d5o/D)(YlD)L2/(Q/D2.) = 0.023
From Figure 5-7,
UseTypef- n/a "Riprap
d,= — n/a inches
/f the flow in the culvert is supercritical, substitute D, jar D.
Where:.
D.= t/2(D + Y.)
Therefore:
D.= 3.50 ft
a, Q/D,2.s= 3.68 Q/D."= 12.89
V. YM.= 1.55
c'. (dsdD.)(YJD.)"/(Q/D.`5) = 0.023
From Figure 5-7,
Use Type;;;,, -L`-".
• Pip rap
dye =__ ,,"9 ; .
' inches
Extent ofPwrection:
L = (1/(2tan0))(A f Y, - W)
Where:
1/(2tpgO) = 220,, per Figure 5 9 -
Ar QN Where, V
= acceptable velocity, 5.5 fps
Ar 15.35 ft2
Therefore:
Calculated L= -1.49 ft
Check Results:
L > 3D \Iinimum L = 10.5
ft
•L < IOD Maximum L = 35
ft -
When Q/D's > 6
Use L = 11
feet
Maximum Depth:
D = 2dso
Use D = 18
inches
Riprop Width:
W=3D
Use W = 10.5 feet
` r raplDesrgn-Calculahorrs SCircu[ar Oulfa
N Project 20Hi n:0
Project tsk:;P=
.cttName: 2004 High School
Calculated By: GAD
Date: 5/29/2002 BEYOND ENGINEERING
' Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
' Location: Storm Drain System C Outlet to swale Basin 308.
Outfall Pipe Diameter, in: 24 _. Velocity, ft/s: " 6.55
Q,,, cfs, 15.75Depth of flow, ft: 1.43
' Tailwater depth, ft: 1 1.047 Froude Number: 0.97 supercritical
Where, F = V/(g1)0.5
F>0.80, supercritical flow
- F<0.80, subcritical Flow .
Required Rock Size:
a Q/D25= n/a Q/Dt.5= n/a
b. Y,/D= n/a
C. (dS,/D)(YJD)1.2/(Q/D3-) = 0.023
From Figure 5-7,
Use Type - " - �',Riprap
dso = - -'." inches
' If the flow in the culvert is supercritical, substitute D, for D.
Where:
Therefore:
D,= 1.72 ft
Y. Q/D,x.S= 4.09 Q/D,1's= 7.01
b'. Y,/D,= 0.61
c . (d50tD.)(Y1D.)1.2/(Q/D.2-) = 0.023
From Figure 5-7,
' Use Type L Riprap
dso=- 9 iincbes
Extent ojProtection: _
L = (1/(2tanO))(A,/Y, - W)
Where:
;1%(2tan0)_ B4O.,,perFgure'5—
A. QN Where, V = acceptable velocity, 5.5 fps
A,. 2.86 R2 ,
Therefore:
Calculated L= 4.52 ft
Check Results:
L> 3D
'L < IOD
- • When Q/13p3 > 6
Maximum Depth:
D = 2dso
Riprap Width:
W=3D
Minimum L= 6 ft
Maximum L = 20 ft
Use L = 6 feet
Use D = 18 inches
Use W = 6 feet
1
1
1
1
11
M
"" `�,'' ;'� RipapDes�g �Calcu7ations -Circular Ou[fall
NOLTE
Project #: FC0194
Project Name: 2004 High School
Calculated By: GAD
Date: 5/28/2002 B E Y O N D E N G I N E E R I N G
Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System F Outlet to Pond 400.
Outfall Pipe Diameter, in: 24 Velocity, ft/s:. 3:55
Q". cfs, - 11.15 Depth of now, ft: - .2 =--
Tailwater depth, ft:, --4.08 Froude Number: 0.44 subcritical
Where, F = V/(gl)os
F>0.80, supercritical flow
-F<0.80, subcritical flow
Required Rock Size
a Q/Dzs= 1.97 Q/DI.s= 3.94
b. Y,/D= 2.04
C. (dso/D)(YM)"/(Q/D") = 0.023
From Figure 5-7,
Use Type-'-'L�.-' Riprap
ds,=' -9.00 -`- inches
If the flow in the culvert is supercritical, substitute D,for D.
Where:
D. = t/Z(D + YJ
Therefore:
D,= n/a ft
a' Q/D u= n/a Q/D,t.5= n/a
U. Y,/D,- n/a
c'. (dsdD.)(YfDjtz/(Q/D,=.5)=0.023
From Figure 5-7,
Use Ty "`L 77�Riprap
dso =7;:-. _9 _'_= inches
Extent of Protection:
Check Results:
Maximum Depth:
Riprap Width:
L = (11(2tan0))(A,/Y, - W)
Where:
1/(2taW) 6:6.' perFtgu-rkl-
A. QN Where, V = acceptable velocity, 5.5 fps
AM1 2.03 flZ
Therefore:
Calculated L= -9.02 ft
L>3D Minimum L= 6 ft
'L < 1 OD Maximum L = 20 ft
' When Q/D's> 6
Use L = 6 feet
D = 2dso
W=3D
Use D = 18 inches
Use W = 6 feet
' r'.. R[ ra �Desr! zCalculatiions� Circrilae Outfiill ' M„
Project e20 Hi: 0
Project Name: 2004 High School
1
1
1
1
N
Calculated By: GAD
Date: 5/28/2002
Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Storm Drain System G Outlet to Pond Basin 400.
Outfall Pipe Diameter, in: 30 Velocity, ft/s: 1.49 -
QiOq cfs, - 7.32 Depth of flow, ft:.. . 2 ,
Tailwater depth, ft: 3.65 Froude Number: 0.19 subcritical
Where, F = V/(gl)0s
F>0.80, supercritical flow
F<0.80, subcritical flow
Required Rock Size:
a. Q/D " = 0.74 Q/D1.5= 1.85
b. Y,/D= 1.46
C. (d50/D)(Yt/D)t.z/(Q/D") = 0.023
From Figure 5-7,
Use Type :"L:-:`_;Riprap
il0= 9.00''-;inches
/jrhe flow in the culvert is supercritical, substitute D, for D.
Where:
D. = t/z(D + YJ
Therefore:
D.= n/a ft
a,. Q/D,zS= n/a Q/D."5= n/a
b'. Y,/D,= n/a
c. (dso/DJ(Y%DJt.z/(Q/D,2.S)=0.023
From Figure 5.7,
Use Tv
pe• ,,;L Riprap
d,= 9 -: finches
Extent of Protection:
L = (1/(2um6))(At/Y, - W)
Where:
�l/(2tan0) �6,6 ;pecFigute':5-9 --
Ar QN Where, V = acceptable velocity, 5.5 fps
A,_ 1.33 R2
Therefore:
Calculated L= -12.81 ft
Check Results:
L>3D
'L < IOD
. Whm Q/D" > 6
Maximum Depth:
D = 2ds0
Riprop Width:
W=3D
Minimum L = 7.5 ft
Maximum L = 25 ft
Use L = 8 feet
Use D = 18 inches
Use W = 7.5 feet
BEYOND ENGI N EERING
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
Nolte Associates, Inc. Riprap Design
(for rectangular outfall conduits)
Project #: FC0194
Project Name: 2004 High School
Calculated By. GAD
Date: 3/9/2002
Calculations per Urban Drainage and Flood Control District
Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection
Location: Cambridge Avenue Box Culvert Outlet
H W
Outfall Pipe Dimensions, in: _. _ 60 _ _ 192 Velocity, ft/s: -5.35
Qt,, cis: 677.5 Depth of flow, ft: 3.26
Tailwater depth, ft: 6.70•: Froude Number: 0.52 subcritical
Where, F=V/(gY)o.s
F>0.80, supercritical flow
F<0.80, subcritical flow
Required Rock Size:
a. Q/WHt'= 0.95 Q/WHo's= 75.75
b. YfH= 1.34
C. (dso/D)('M)t'/(Q/WH's)=0.014
From Figure 5-8,
Use Type'•':K"-' Riprap
dso= _12inches
ljtheJlow in the culvert is supercritical, substitute H, jor K
Where:
H.= t/z(H + YJ
Therefore:
H,= 4.13 ft
a'. Qom. ts= 1.26 QfWH.os= 83.34
V. YM.= 1.62
P. (d5o/D)(YfHJt`/(Q/WH,'s)=0.014
From Figure 5-7,
Use Type: Riprap
dso �„«inches
Extent ojprotection:
L = (1/(2=0))(AfY, - W)
Where:
4/(2tart))=,6.6',-.per;Figum.5'10 --- T
A,_ QN Where, V = acceptable velocity, 5.5 fps
A= 123.18 ft'
Therefore:
Calculated L= 16 ft
Check Results:
L> 3H Minimum L = 15 ft
'L < 10D Maximum L = 50 ft
' When Q/R'H" <6
Use L = 50 feet
Maximum Depth:
D = 2dso
Riprap ll,dth:
W=3W
Use D = 24 inches
Use w - 48 feet
I
r.F
1
1
M�
O
W
Q
C
�
' co
a .
1
1
0
M
U j
0)
O
M V M r M M 0 0M M M 0 0 O, 0 V M O 0) 0 V r r O 00 0V M M M r
t. V N N N N, m (D to O C) CD 0) M r tD V M r V O r r 0 O O- V V, 0 O N V
N
N 0O w r 6 O N M 66 V M V N M O) !T r tq m 6 O N m, r n M M
rn rn 0 0 0 o O o 0 0 O o 0 0 0 0 0 0 0 0 O o o O o 0 0 0 0 0 0 0 0
�c
>.Cd
mmrnrnrnornrnrnrnmrnrnrnmo)tnm0m >D>D,D,O>o)rnrnrnm0)rnrnrnrnrnw
x J
v v v vv v v v v vv v v v v v v v v v v v a v v v v v v v v v v v v
E
M D O
o not00000 n no0or n n nooc00000000000 nr r n o
M N O M 0 O O r V v N N N r 0 r r to 0o M O O .U) to N r r 0 0 0 N CD CD N N
C ._
y 6
M O N V N M, N N N O O O (0 In m 0) to* M V Co N 0 0 0 0 0 0 0) 0) O m 0) W t0
0) O O O O O O O O O O O O O O O O O O O O
O
G >
00coD)mD)D>tnmmo,mm0)0)00 ,D�00000m0mam000) )0)CDC)
o0 w
v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v
0
m G
—
N r to tO 0 a 0 o M 00 <n CD o o 0) 0) r CD N to a a N 0 CO M (o CD V CO V
tb t0 M M N m O O co 0) (o N V W 0) CO V e{ o m r CO V to CO CO V r r r M M
@ D
too
v a v v m 0) ao co ro n N (o V co of to v to tri v of o) 0) 0) cO r ai cO co to m 0) Ln
0) C) 0 0 0 o O o 0 0 0 0 O o 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0
x
a v v v v v v v v a v v v a v v v v v v v v v v v v a v v v v v v v v
E G
D 0
r o o m 0 0 0 0 0 0 )n o 0 0 0 0 to 0 0 0 0 0 0 0 0 o M o 0 0 0 0 0 o O
N M tD M M to V N N r V N N N N tO N r N m O N O V N M 0 to r r 0 0 0 0 N
M C=
y p j v
(h M to V V n (D V V N N 0 N_ N O O to 0) (D (7 Ip tD L6 N _N O N O O _O O N Q) N O
0) 0) 0 0 0 0
00 00 m m O 0) Of O
0,0
m 0) 0) 0) 0) 0) O) 0) 0) 0) 0) 0) 0) 0) 0) (D0 0) 0) m 0) m 0) m m O) O)
w
v t v v v v v v v v v v v v v v v v v v v v v v v v a v v v v v v v v
r O to N 0) r V M V r 0 00 N ID N to 0) 00 N O (D CO O V M O r (o O O O
A 0 3 y
M O M m V V 10 V to 0) V M r M O M N N O M M— C) V 0) O CO O V CO to 0
6 TLL v
V M r O N O M V M r V t7 N N M N h N (D (D N N a 0 0 0 O N l0 O N O O O
� �
M O M O 00 O O M V M V r M 0 to 0 M
•V
0
tD m 0) 0) O O M N M M N M 0N D) M M V O O N Vv O r M T r 0 0) O r
m V v
LL aU
r N O N N 6 o h O N N N V M N r 0 rn r n r O V r o V tD N N V
N
U
M N In 01 o 0 to 0 M O 00 M 0 M V M 0 M V 0 0 O V O V M O N O 0 to V N 0
V 0 0 V V M <) 0 0 0 M 0 to v .- rn rnInr v v m o
0`
O
N O M O O N O M M OJ O
V 0 O M 0 0 0 M N N N N N r M O O V N O 0 0 r r 0 O o 0 M M V M M N N
(0
m" O
y 0) 6`
O r O O o 0) r (D CO N tO M V N (n O CO O M r r r (0 O fD V V 0 N N M M
0) tb o 0 0 W W 0 0 0 0 0 0 0 0 O O O 0) O 0 0 0 0 0 0 0 0 0 0 0 0 0
G>> ...
Go to 0) 0) CD co 0) 0) m 0 0 m m 0 m C) m m 0 0 0 m 0 0 0 0 0 m 0 0 m m 0 m 0
o— W
a v v v v v v v v v v v v v v v v v v v v v v v v v a v v v v v v v.0
m
lOn tOn V N lOn )On N O O) 0 0 m O O N O r 0 0 0 0 V 0 O O N O O O O O O w 0
0 0 m LO
0
G
0
0 0 0 0 0 0 0 0 0 0 0 0 0 O N O O
O O O O O O O O O O O O O O O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UD
O O o 0 0 0 0 0 0 G O 0 0 C O C O 0 0 0 0 C C O 0 0 0 C O 0 0 0 0 0 C
E G
0
m N, m (') M M M N N V r 0 O N O V !b N O O V V r O O N O O r M O V
r• 07 N O M r t- M O to 0 N V M M o 0V N O 0 o O r V 0
O O O O O r O r [0 (0 O N V M. N V m M V M r M r (0 r O 0. O V V m to
O O O O O O O O O O O O O O T O 0 0 0 0 0 0 0 0 0 0 0 0
—m
(0 C >
m 00 m m 0 m 0) D) m 0) 0) 0) 0) 0) O) 0) W 0) () Go (m m O 0) C) 0) 0) O 0) 0) 0) 0) 0) 0)
) D
W
v v v v v v v v v a v v v v v a v v v v v v v v v v v v v v v v v v v
Im 0
M M M M CO M 0 0 0 0 0 0 CO O N N N_ N M M O O M N M M N_ M M N_ M M O_ N
C
_M
O O O O O O O O O O O O O O O O O O O O O 0 O O O O O O O O O O O O O
C C
C
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N
C
O m
5
L
U U U U U U LU LU LU tU LU LU
LUj�
N
U U U U U U U U U U U U U U U U U U
C CCCC CC CCCC C
m h
XCCCC C C C C C C C U G
V O V O O v v to tO M to N O N N N N 00 Go GoN N N 0o N co 00 N N V N V V N
M M N M N N •- N— N N W
V O (On I m CO to t- O N 0 00) LO tm0 N W N CO CO O N O tmn O to t00 N W 0) r Co
CD y
v N t0 O to CO 0 V V M N 0 N V (0 to O to to m' V r N V N N O O V to r to m M V
to r N M O N r N N O r O 0 r N 0 O m to M 0 N M 10 W N 0 N O tD r O r M
J
N N N M N N M V I N N M M
E
M O O O r r r O mm m W l0 l0 @ M
O O O O o 0 0 M 0 0 0 0 J OO V V M N N^ N l0
M M M V V
G
3 D
(O co S U) tO (O 0 V M H (n M M N to N 0M M M M M M M
o w w w w w 0 0 0 x x x W O x= x O D w O x x o o x x O x x 0 0
❑p _m Z
LL LL LL LL LL U U U (1_ U O LL U U U U
6
Q Q 1LL U` W 2 0 0 0 U U U U❑❑❑❑❑❑ U m m m m m m m m m m m m m m
❑ O O ❑ ❑ ❑ O ❑ O ❑ ❑ O ❑ O O ❑ ❑ ❑ O ❑ ❑ O ❑ O ❑ ❑ ❑ ❑ O ❑ ❑ O ❑ ❑ ❑
(D (A fA N N Cn lq h to V1 fn (n N N rn N fn (D rn y rn y y rn h y to N !n rn N V) rn N fA
N N N V N M N
0
0) 0 0 m 0 0 0 0 0 0 0
!V
m
t1 Q a p• a a a to to M r m N a a a a a a to V M N O O try W O tO LO
aa'aaaaaaaaa0.a.0. a'a'aC a maaaaaaaaaa
J
aC
Q Q U W x
(i U U U U U U U❑❑❑❑❑❑ U m m m m m m m m m m m m m m
❑
to !n N h rn y V) rn N N y to N V) h y rn (n N N y y h y N (n fn y (n (n (A y N v) (A
D O m o
0 0 m 0
0 0 0
E
M o D .0.0 m m
0 o r o M Cl) o v tO
M
0
O O Nm V CIJCO O
O O N V v M0 0 Cl)
OSw O 000 0 Q
ZmCC)
N U UU _ M M MMto ❑
U0
UO m m m m m m m m m m MOm0 O
O O
o O ❑ ❑ o o ❑ 0 ❑ ❑ ❑ ❑ ❑ ❑ o ❑❑❑❑❑ ❑❑❑❑ ❑ ❑ D ❑
to (D (D U) U) U) U) m m (D cn 0: m U) to N N (p co (D m (n (n (D t'n (D fA to N to 0) to m U)
G
N
N V p
O
C C
w 7
Obi >
'o ❑
aL)
E
O
(D
co
(D
m
to
N
n
(�1
O
N
Q
D
m
O
n
O
0
F-
M
U j
C d
a �
�3
D
d
Z D
0
O
m
r
Cl)
E
0
O C0
N E
00 3
v�
mo)
0
_a Q
S �M
n
E `o
M
Uo
V
N
LL o
d Cl)
H C 0
0
fJ
1
u
1
1
1
M
U
m N 0 0 0 0 0 0 m t0 m N M N to M M O N A N N A V V V N N N V
m v, v, A 0 A A A� M M M M N N A A V m O M M M m m m N N N V
V 0
O
M V M N N N O) m m 00 0 0 m A 0 V m M 0 V V V
0 0 0 0 0 0
m
TVr C
0 0 0 0 0 0 0) 0) 0) 0 0 o M 0) CD 0) 0) M 0) 0) 0) 0) M 0)
0) (0) O) Q) W O 0) 0) m O) O) O) W m m 0) O) O) m m m m m co m m m m m m
2 J
V V V V R V V V V V V V V V V -V 4 V V V V V V V V 7 V V V V
E
O V m 0 0 0 0 0 V N )0 )O N 0 0 0 0 0 l0 O A A 10 N N N m 0 0 O
M a o
c m A A m )n u) )n m r� A A M )n u) o o )n m o sm m )n u) m )n )n )n u)
a) G.2
1n n 0) N M N N N N V V V A M M O V m V V 07 N N N m m m N
y o>
G
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 W 0 0 W
rn rn rn rn W m w rn rn rn rn rn rn rn m rn rn rn m rn rn rn rn rn m rn rn rn � ao m
3(D.T
v v v v a v v v v v v v v v v v e v v v v v v v v a v v v c
w
o
U
O C
O m m t0 m A N 0 0 A 0 V V N N m N N 10 V A A t0 V m N
O O O) V t0 V M A A M m N Q7 m m N m N V M V m m O N 7 m 0
m
m 0 A A O O (0 m m 0) V V )n . M
m
0 0 0 0 0 0 0 0 0 0 0 00 0) 0) O O O 0) 03 O O Cl) 0)O 0) 0) 0) O) (D
0) 0) 0) 0) O 0) m 0) M 0) O) 0) m m m 0) 0) 0) m m 0) 0) m m Co m m Co m m
T� J
2
v v a v v v v v v v v v v v v v v v v v v v v v v v v v a v
E'a G
o
0 o A o m o v )n v o 0 0 0 O v o )n N o 0 0 0 )n O m n to N )n
A co m o N v )n A T7 A A m )n rn m rn A M m v o )n m o A m m 0 m m
m G
m m M=
o 0 0 0 0 0 0 0 0 0 0 0 N 0 0 Cl) 0 0 0 rn o 0 0 0 0 o 0) M 0 0)
y m> �.
0) 0) 0) 0) M 0) 0) 0) 0) 0) M 0) 0) 0) 0) rn 0) rn m ao 0) rn 0 0) 0) CO CO
CIO 2
rn ro rn
v v a v a v v v v v v v v v v v v v v v v v v v v v vLU v v v
N o A Q O N M V O M m A N A 0 l0 M 0) CO O CO A V CO )O N O
'6 m 3 y
f0 M g N m N V m N m m 0) M 0 N V A O m V O m N 0) A m O CO V0 V
<
j- TLL .U..
(D N N O m N N m O) N O t0 N N m m A N m N_ N ACo V
Cl)U'j co Go
- •V
:A
6
a
A A M A m A A h A A A A N A m A O M m
LL U
cc
N v N V M V e N V N N A
U> b
N M A M 1 M m V V N 1 M m M m '- M m )O N V 6 m V 1 m M A m
0U�
E
O 01 m O O m A A A N V V M M M )O O) 01 M M M m O N O
m C
m Y 0
M m O m m O N N v V A M N A A V V N M M N M O
0 0 6
m
1 01 O 0) )0 m 0) m A m m m A m M v v V O V V N 0N A m
o 0 0 0) 0 rn 0 0) 0) 0) Cl) rn 0) a) rn 0 0) rn 0) 0) 0) rn rn 0) 0) rn m 0) m m
>>
G
O) rn rn m 0) co 0) m co Go rr m co co co (D m ml ro m m co co ro 00 co ao co m m
o uw
v v v v v v v v v v v v v v v a v v e v v v v v v v v a v v
❑
m a-
o 0) O 0) o 0 0 0 0 0 0 0 0 0 0 0 0 0 v o M O M A o 0 0 o 0) o
m y )O V 0 m m )0 )0 Go m m Lo m N m )0 )0 A U) m )0 m m V N m O M m
m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m � O
0
o
o 0 0 0 o O o 0 0 0 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 O o 0
N"
O Ci CJ o 0 o 6 O C 6 0 0 6 O 6 0 0 C O o 0 o C CJ o O C 6 6 0
E G
m C 0
m A 0) N m 0 m N M O V m O A N V N M l0 l0 D) O O M N
> f0 C
N O M 0 0 0 0 M 0 0 N W 0 0 m Ih V m A w m V v V 0 m N A
O O O O O O O C)0) 0) 0) 0) 0) 0 (MO) O) 0) 0) 0) C) M 0) 0) 0) O M M 0) Co
m
Q) O) 0) D) O) Q) m m m m m m m m m m m m m m m m m m Go m m
a—
a v v v v v v v v v v v v v v v v v v v v v v v v v v v v
Z) W
M M M N_ M M M Cl) M M *Cl) M M M M Cl) M M M M M Cl) M M Cl) Cl) M M co
C
_M
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G C
C
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m
O m
0 u u 0 u u u u u 0 0 u u u u u u u u u u u u u u u u u u u
V N
C C C M C C C C C M C C C C C G C G C C C C C C C G C C G C
m V)
CO m V m N m1 O m m V m CO m m o m V V O m V V m f0 C) m N N
_0)
, N M� N M , M M N N M M N N � M M, V V
t
�`
O A N D) m M V N M A 0 V 0) O 0) CO m 0 A 0 m m M M m A A
m m N )O N 0) m 0 0 7 m A 0) O) m m A N O) m O 7 V m Co W V
V m O M O N A O N V O) A N A V O m O 0) O) M M
A LL] V N m N m 0 M M O 10 N
y
V N A m 10 V m m O O V O M N
M N
O V V V m N O .0.0 N N N m m m
C E m
m a m o 0 0 0 0 0 0 0 0 0 m o 0 0 0 0 0
O M 10 10 M M M p M M M M N N �p )p M N M M M M M M M M co
Z: m m
2 o o 2 2 2 o 2 2 2 2 2 2 o 0 2 2 0 2 2 0 2 2 2 2 2 2 W
0 y0
M M g M M 2 2 2 N 2 2 2 2 2 2 N Ll 2 2 2 2 2 m f a
m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
❑ ❑ O ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ O ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑
m V) m N w 0) N N 0 N m 0 N V) m w h m N w w fN h N m m m m h U)
M m m 0 V N V m N M O O .0 m
M M 0) N )O M M m V N N N A V V N N m V N N 0 V N N V N
m
a a a a a a a m a m m m m m a a m m a m a m m m m m a m a m
m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
❑ O ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑
N m N v) N v) V1 m m V) N N N v) V) V) m m V) N m V) N y m m m m N V)
E
m m m
N t0 O (N m m
V m N O N
m m
m
_ _ _
m o .m a m O 0 0 0 o d m o m o 0
N M M N M O M N t0 V m M O A M M N M )0 Cl) N N M p M M
p
0 2 0 0 2 0 0 0 0 2 0 0 0 2 2 2 0 0 2 2 o o 2 0 0 S 2
a Z
M M 2 V M M 2 N M M M 2 N N M 2 2 2 fn M 2 2 M M 2 M M 2 2
D
m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
tu m m y N v7 m m m y m N y m m y m m m N m V) m V) N V) y N N y
N
N V 0
N N N
m
C N
C
W
a� >
O ❑
as
U
E
O
U)
Q
W
O
O
F
U
U j
c �
d ??
0
�0
0
m �
O m
Z o
0
O
m
A
M
U
G
u,
N
o GO
N
O
°0 3
N
0
aw Q
2 vpM
m U
C [ m
• C M
U90
LL W 0
f C O
Scenario: Base
M
1
1
1
u
r
1
M
Node Report
Label
Total
System
Flow
(CIS)
Ground
Elevation
(ft)
Rim .
Elevation
(ft)
Hydraulic
Grade
Line In
(ft)
Hydraulic
Grade
Line Out
(ft)
Description
SDA-1601
4.37
4,893.27
4,893.27
4,891.93
4,891.82
SDA-1602
13.00
4,893.30
4,893.30
4,891.73
4,891.61
SDA-FES1
12.66
4,890.25
4.890.25
4,891.44
4,891.4.4
SDF-1204
11.15
4,905.85
4,905.85
4,904.37
4,904.37
SDF-FES1
11.10
4,902.00
4,902.00
4,904.23
4,904.23
SDG-1203
7.32
4,904.36
4,904.36
4,904.36
4,904.31
SDG-MH203
6.89
4,904.36
4,904.36
4,904.27
4,904.25
SDG-FES1
6.72
4,902.50
4,902.50
4,904.23
4,904.23
SDE-1401
12.41
4,907.50
4,907.50
4.904.91
4,904.91
SDE-FES1
12.41
4,901.00
4,901.00
4,904.23
4,904.23
SDH-1502
10.47
4,906.40
4,906.40
4,903.62
4,903.05
SDH-FES1
10.18
4,903.00
4,903.00
4,902.16
4,902.16
Roof Drain 100c
3.54
4,914.20
4,914.20
4,909.00
4,909.00
Roof Drain 100d
4.43
4,914.20
4,914.20
4,908.84
4,908.84
SDC-CO100c
3.54
4,912.70
4,912.70
4,908.96
4,908.96
SDC-CO100d
7.97
4,912.45
4,912.45
4,908.68
4,908.68
Roof Drain 100e
4.40
4,912.20
4,912.20
4,907.23
4,907.23
Roof Drain 100f
3.38
4,912.20
4,912.20
4,907.48
4,907.48
SDG-MH307
15.75
4,910.20
4,910.20
4,906.95
4,906.95
SDC-FES3
15.75
4,906.77
4,906.77
4,905.14
4,905.14
Roof Drain 100b
2.36
4,918.20
4,918.20
4,914.96
4,914.96
SDD-1404
3.02
4,911.50
4,911.50
4,909.25
4,908.80
SDD=CO100b
2.36
4,915.55
4,915.55
4,913.31
4,913.18
SDD-MH403b
5.29
4,909.75
4,909.75
4,905.67
4,905.49
SDD-MH403a
5.18
4,906.50
4,906.50
4,904.43
4,904.41
SDD-1403
6.25
4,903.80
4,903.80
4,903.80
4,903.80
SDD-OUTLET
6.14
4,904.36
4,904.36
4,904.79
4,904.79
SDC-FES2
16.81
4,908.00
4,908.00
4,905.07
4,905.07
SDC-FES1
16.81
4,906.00
4,906.00
4,902.48
4,902.48
Roof Drain 100a
2.36
4,918.20
4,918.20
4,914.96
4,914.96
SDB-CO100a
2.36
4,915.00
4,915.00
4,913.86
4,913.72
SDB-1314
4.13
4,912.40
4,912.40
4,909.96
4,909.85
SDB-1305e
0.00
4,912.50
4,912.50
4,909.44
4;909.44
SDB-MH314
6.44
4,910.50
4,910.50
4,909.77
4,909,64
SDB-1101
0.93
4,912.63
4,912.63
4,908.82
4,908.82
SDB-1305d
0.00
4,909.50
4,909.50
4,907.60
4,907.60
SDB-1313a
2.87
4,909.70
4,909.70
4,908.53
4,908.48
SDB-1315
8.16
4,910.70
4,910.70
4,908.81
4,908.73
SDB-1305c
0.00
4,910.00
4,910.00
4,906.16
4,906.16
SDB-1501
12.41
4,915.00
4,915.00
4,909.06
4,908.76
SDB-MH313a
10.81
4,909.00
4,909.00
4,908.46
4,908.34
Roof Drain 100g
0.50
4,912.00
4,912.00
4,909.36
4,909.36
SDB-CO305b
0.00
4,910.25
4,910.25
4,905.14
4,905.14
SDB-1312a
4.65
4,905.70
4,905.70
4,904.14
4,904.00
SDB-1309
6.30
4,907.80
4,907.80
4,905.23
4,904.98
SDB-MH312a
22.97
4,909.67
4,909.67
4,907.63
4,906.96
SOB-1402
12.29
4,907.00
4,907.00
4,902.15
4,902.15
SDB-CO305a
0.50
4,908.25
4,908.25
4,903.47
4,903.41
SDB-1311a
6.52
4,905.40
4,905.40
4,903.66
4,903.56
SDB-1310
15.43
4,907.54
4,907.54
4,904.42
4,903.47
SDB-MH310
22.84 1
4,909.75 1
4,909.75 1
4,903.45
4,903.32
' Title: Fort Collins High School 2004 Project Engineer. zcs
n:\fc0194\stonncad\fo0194 working.stm Nolte Associates Inc StormCAD v4.1.1 [4.2014a]
O5/30/02 08:43:39 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 2
1
1
M
1
1
1
1
1
1
1
1
1
M
Scenario: Base
Node Report
Label
Total
System
Flow
(cfs)
Ground
Elevation
(It)
Rim
Elevation
(ft)
Hydraulic
Grade
Line In
(it)
Hydraulic
Grade
Line Out
(h)
Description
SDB-1202b
8.21
4,904.14
4,904.14
4,901.18
4,900.76
SDB-1305b
9.60
4,902.70
4,902.70
4,901.79
4,901.70
SDB-1304
2.63
4.903.70
4,903.70
4,901.41
4.901.37
SDB-1305a
10.96
4.903.60
4,903.60
4,901.90
4,901.80
SDB-MH311a
39.37
4,912.50
4,912.50
4,902.70
4,902.21
SDB-1201
5.52
4,902.90
4,902.90
4,899.13
4,898.94
SDB-1200
12.27
4,902.84
4,902.84
4,899.46
4,898.64
SDB-1307
2.40
4,903.90
4,903.90
4,900.86
4,900.82
SDB-MH304
18.71
4,904.75
4,904.75
4,901.35
4,901.12
SDB-MH308
39.05
4,907.32
4,907.32
4,901.33
4,901.28
SDB-MH201
16.63
4,903.50
4,903.50
4,898.25
4,897.82
SDB-1303
7.49
4,899.40
4,899.40
4,897.36
4,897.25
SDB-1306
22.08
4,904.00
4,904.00
4,900.73
4,900.45
SDB-MH302b
38.80
4,905.50
4,905.50
4,900.40
4,900.31
SDB-MH200
16.26
4,901.85
4,901.85
4,896.52
4,896.44
SDB-1301b
12.97
4,901.00
4,901.00
4,897.07
4,896.67
SDB-1302a
2.71
4,900.76
4.900.76
4,896.72
4,896.67
SDB-MH301b
58.84
4,904.67
4,904.67
4,899.32
4,899.05
SDB=1301a
17.08
4,899.85
4,899.11
4,894.37
4,894.24
SDB-1300
1.85
4,899.61
4,899.11
4,894.65
4,894.41
SDB-MH302a
68.52
4,902.52
4,902.52
4,896.64
4,895.85
SDB-MH301a
84.40
4,899.55
4,899.55
4,894.22
4,893.02
SDB-FES1 1
83.941
4,892.501
4,892.501
4,891.441
4,891.44
Title: Fort Collins High School 2004 Project Engineer zcs
n:\fc0194\stonncad\fo0194_working.stm Nolte Associates Inc StormCAD v4.1.1 [4.2014a]
05/30/02 08:43:39 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 2 of 2
O
_ ^o
0 00 O
a>
a O �
2 c �
I -- — O
0 � > >
N N c c
N N U
iO 0 U
= d 00
M p 00
N
0
O
M
� I
wa
Ip
Q Z
00
(n 0_
0
M O
OU L O O
a U an 00
p0�
0 -cIt4.;
Q M Eon
N—
O
� X > >
V)
U)
0
z
a
LLJ J
J
(i W LLJ
IJZ
2 U Q
V) � U
LO
1^
N co
D0
a ro00
ao'
o�>>
v7 N c C
N N m
O O v
00
I O
Qa�
poo
a
W
H
Z
ry
O
w
H
U� Z
ry
0
V /
m
O
H
O
D
Z
L�
r
o
O
V(-)
J
g'j
J
z
L
O
a
Q
N
m
0
U
E
2
°"
V)
E
O
p
O
w
ON
N
N
w
N
v
o
CN
�
ca
�
3
a
m
p
U
0
6
Q
U
O
Q
_
Ocxp
.
(npa,
EQ
U
04
(�
w
(n
m
�
I
e
Q
Z
O
W
a
Z
w
L�
O
w
Q
F-
Q
w
w
(n
w
w
m
0
0_
0
X
p
0
1
1
1
1
1
1
1
1
1
1
M
0
� M
La
U O
no
U
w
Nrdc
(n
Z
7
M 0
OW
a00N
Co
CO
NJ..
N 00 0
in o V
W n
w
a °D
oo6
0 C)
0— U
cdn
m- m
o
On
O
0
N
N
O
0
O
a'
ss�
0
in �
0
a Uai.7
n
sX,
I C CO
O
O
CC)U—��
NM
•G O•�G
N C C
00
LLJ
W
.
SrJ
N L 0 .�
�'�cJ
W
0Q
O .t
V) W
s
EA N C C
N
N
O)
mtD
(
O
O
O O)
S
O
I
J3
�O�
mO
�O0Ua
OU
mca
aaMII
accc
L2oN
rnaUooUa
oWFNoNw��NV
1
1
1
1
1
1
1
1
1
1
1
M
1
i.�
w
cn
fN
F
Z
00.
Q6b
0 o
N N
62 .
j o
sis . 0�
f--
a:ao
!Q 'v v�
�
N
wa
Z
00
En a
0
N
o cD
� rn
a �
oc�0
Oup
N ^ C c
M M w
C) 0 U
darn
oo� m
p
N 06
O . rn
d 0 _a 0
O c c0J
plmii
W — c c
C�
w
O04
_
`f) N
1-
a•-0)S
MM N
NN
cn .Z
Darn
M
Q`Qe0 oy0�0
c�
c� v
0 a. c
N o
� o
�
O
�rca•
�
cn
�i
wa
LL
io
z
00
p
N n-
o
v
wa
`i o
W
^
voi a
00 66
10aa4pu u
Cf)
OS
vs
)— r
va o
V) z
wa:r
N ci,N_.
ry
V)
2 M
o
p n
a
a
cmy
N O
o
M
y
C C
0
M M N
02,'906ka
d
a
r
M
ls,.. . Q/
SQ 4a /1u
nN i i
V) —.E c
p p
aped
3:
O`OS`
W
d Mt
O a
EL
0 00
O z
N O C C D
G a
V) c c
O
v p
O
U
O
0
qtqt
oo�
V
I
o
01a
O
N
I °)
am
0 p N
V)
M
a
rn
m
o
J
d
Z
LL
ap
N
LL
J
Z
L
p
W
6
N
m
p
U
O
0
E
o
E
d
o
w
N
E
x
V)
N
O
N
�
C7
�
3
O
a
U
w
E
p
to
o
F
a
U
¢
i
a
N
O
p
N
rn
O
o
0
:
11
N
.2
U
¢
=
N
o
N
w
a
0
o
w
3
¢
¢
w
M
w
=
o
a.
9
i
U In 0)
O M U
lam
0 p
N
m 0 m
p I d M
N cn
O O
N
C
0
N p
O
Oto� y+
th O U = C
I n W N 0.
0] �a)
VI 0
z
O
U
��
LLJ cn
c Z
U)
G
0
C
W
O Of
Z O
Q �
Q Of
w O
a 3N
LLJa-J<
-i U Z
O Z—
d W N Of
> o
O W ZOO
Z fn of H
}O<
w
w�>NX
rr0wLL
(n U) U U) Z—
laJ
H
O
Z
lq-
rn
N
O
U
o
p
7V
V
V
W
z
J
V
Q
m
t
0
m
U
0
S
U
E
E
N
V)
0
p
V)
O
H
W
W
N
LO
=
O
�
O
N
0
O
�
3a
-;U')
0
U
W
O
0
0O
F-
d
Q
U
Q
O
_
0
E.Q
0
•
ino
rn
a
w
U
N
V
U
.
m
Q
Z
LO
O
I
W
m
z
iii
z
.
c�
3
a
Q
w
x
w=
w
.
0a0x0V)
SDB-P13 D.P.314
314
18 inch 1
4.12 cfs
Inv.In:4907.64
DB-00100a
Inv.Out:4907.37 SDB-P14
SDB-MH314 12 inch
Inv.ln:491 .O6
SDB-P75
SDB-P12 Inv.0ut:4907.77 12 inch
18 inch
Inv.In:4914.30
SDB-1313o
Inv.In:4907.27
Inv.Out:4913.26
D.P. 313a
Inv.Out:4906.16
2.87 cfs
Roofdrain 100a
SDB-P11 SDB-1315
D.P. 315
D.P. 315
1.38 cfs
SDB-MH313a
Inv.In:4905.66 1.38 cfs
Inv.Out: 4904.63
SDB-P16
SDB-P10 18 inch
SDB-I101
24 inch Inv.In:4906.96
D.P. 101
Inv.In:4904.43 Inv.Out:4906.16
3.44 cfs
SDB-I501
Inv.Out: 4902.89
Commercial
D.P. 501
12.41 cfs
SDB-P19
24 inch
In0n:4904.77
Inv.Out:4902.89
O`f
4902>9
SDB-MH312o
0�09
D P. 310
9.50 cfs
SDB-MH310 N
SDB-1312o
05 0 0
0`9 `v
D.P. 312a
C. ?p7 00
,0`b o0 00
,
4.65 cfs' SD
> O
°
h118 3
mb
&j
evIn:4901.18
SDB-P30 tnOut:4900.31
18
-
inch
SDA-1311a
D.P.
Inv. nv n:
Out:488'9.09
SD8_p7
311a
In8 Inc
lnr
1.87 cfs
/I v 48 9 8.9
Out:48g7.72
SDB-MH311a
Nicum
Sale■. 9161111al..1
Hi h School
Stor
Storm CAD Layout
System B
DWG NAME: SD-LAYOUT.DWG
PATH:N: fe0194 CADD CP
DATE: 05 29 02 TIME: 11:20 a.m. SCALE: N.T.S.
XREFS: _Stour
DESIGNER: GAD PROJ. MGR:
TMO JOB NO. FC0194
SHEET 2 OF 5
SHEETS
SDB-1309
D.P. 309
6.20 cfs
See Sheet 5
for continuation.
SDB-1305a
D.P. 305a
10.48 cfs
s
•
r
SpB- na %
30
SDB-MH04b
\nv,0u
SDB-1306
D.P. 306
Q25
50e•`ncr 9$2 33
/.tom
1.33 cfs
/
SD.P.
307 SOB-Q24
2.40 cfs 1$\t� AArb S. Z3
\\44'
v
SDB-1304
D.P. 304
2.61 cfs
SDB-P33
18 inch
Inv.ln: 4901,67
Inv.Out: 4900.90
SD8_P6
Inv.ln:
Inv.Out: 97.625
SDB-P5
36 inch
Inv.ln: 489 .
Inv.Out: 4894.79
STORM SYSTEM 'B'
N.T.S.
SDB-P23
30 inch
Inv.ln: 4897.23
Inv.Out: 4894.79
b
SDB-1402
D.P. 402
12.26 cfs
0
cry
D.P. 305b
8.36 cfs
SDB-1303
D.P. 303
22.05 cfs
SDB-P21
SOe�
;6
24 inch'
Inv1n:4894.31
I
Inv.Out:4894.23
iln�/��ch
Plit.. 4?g
.
SDB-MH302a
1V
iQti Oda a'�
u �
0
SDB-1302o
D.P. 302a
6.40 cfs
.Ova
SDB-1300
D.P. 300
1.90 cfs
I
SDB-1301b,
D.P. 103b
6.20 cfs
SDB-1202b
D.P. 202b
7.30 cfs
SDB-P43
18 inch
Inv.ln: 4896.84
Inv.Out: 4895.78
SDB-1200
D.P. 200
SDB-P42 12.50 cfs
18a 6incr<h
Inv.ln: 489.84
SDB-1201 Inv.Out: 4895.78
D.P. 201
5.43 cfs SDB-P44
n In4896.94 S
D
K)B
-MH01c
ut:Inv.O4895.44rna)01 m
rCao
o r Bo
m��>
� N C C
SDB-MH2O0
Oy ham.
V j VC
h 4:
A• Oj
C'V C.
SDB-1301a
D.P. 301a
5.40 cfs
SDB-FES1
11
I
1
i
I
1
I
I
I
I
1
7
APPENDIX F
Detention Pond Calculations
1
P
1
1
1
L
1
1
F
L
1
FJ
L
" etent>o`non7 olume Calculation �
Project #: 0194 20 �O
Project Name: 2004 Fort Collins High School
Calculated By: GAD
Date: 4/24/2002 B E Y O N D E N G I N E E R I N G
Detention pond volume (V): 1/3d(A+B+(AB)05) (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, ft2
B= Surface area of contour line at a depth relevant to d, ft2
�-_ � "'�:�• 't�', a->. , ', , ' �'.%South Detention Pond �'-:' . ^, ,... � f,s..--� . ;...--" � ;w^-';-
Volume
Elevation
Da
ft
A
ft2
Cummulative
B Volume Volume
ft2 ft' ft'
Cummulative
Volume
ac-ft
I Vo
4882.50
0
i 0
0.00 1 0.00 0.00
0.00
V,
4883.00
0.50 0
j 28,923 i 4,821 4,821
0.11
V2
4884.00
1.00 28,923
31,626 I 30,265 i 35,085
0.8
j V3.
4885.00
1.00 31,626
83,379 55,452 0.00
0.00
Va
j 4886.00
1.00
83,379
j 123,673, 102,866 102,866
2.36
V5
j 4887.00
j 1.00
123,673
1141,520, 132,496 ! 235,362
5.40
V6
I 4888.00
1.00
141,520
147,899, 144,698 1 380,060
8.72
Vr
I 4889.00
1.00
147,899
153,2051
150,544 1 530,605
12.18
13.50 ac-ft V ,i
4889.3-,
13.50
0.47 ac-ft '-- .. Vwo
4889.50
13.97
Ve
4890.00
1.00
153,205 1156,146
154,673 685,278
15.73
V9
4891.00
1.00
156,146 1174,8471
165,408 850,686
19.53
7.34ac-ft •'VIA.,,
4891.44
20.41
! VIo
4892.00
1.00
174,847
179,849!
177,342 j 1,028,028
23.60
V ❑ j
4893.00
1.00
179,849 1188,5891i
18041,202 1,212,230
27 83
' A 2-ft sediment depth is required by the irrigation pond design.
s 0.9 Acre-feet added per CFC to accommodate Reid riedhnger parcel (5ac)
Mahe Associates. Inc.
412412002
2:46 PM
DETENTION POND SIZING
BY FAA METHOD
Developed by
N
Civil Eng. Dept.,
U. of Colorado
Supported by Denver Metro Cities/Counties
Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
'
EXECUTED ON 04-24-2002 AT TIME 14:17:06
PROJECT TITLE: 2004 Fort Collins High School
***`
DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER 1000
BASIN AREA (acre)= 40.61
RUNOFF COEF 0.60
****' DESIGN RAINFALL STATISTICS
'
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS
GIVEN
'
DURATION 5 10 20 30 40 50
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2
60 80 100 120 150 180
2.9 2.4 2.0
1.8 1.5 1.2
*'*** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 20.3 CFS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 20.3 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME VOLUME
' STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE -FT
0.00 0.00 0.00 0.00
0.00
5.00 9.95 1.68 0.14
1.54
10.00 7.72 2.61 0.28
2.33
15.00 6.66 3.38 0.42
2.96
20.00 5.60 3.79 0.56
3.23
25.00 5.06 4.28 0.70
3.58
'
30.00 4.52 4.59 0.84
3.75
35.00 4.13 4.89 0.98
3.91
40.00 3.74, 5.06 1.12
3.94
45.00 3.49 5.31 1.26
4.05
'
50.00 3..23 5.47 1.40
4.07
55.00 3.05 5.67 1.54
4.13
60.00 2.86 5.81 1.68
4.13
65.00 2.74 6.04 1.82
4.22
70.00 2.63 6.23 1.96
4.27
75.00 2.52 6.38 2.10
4.29
80.00 2.40 6.50 2.24
4.26
85.00 2.30 6.62 2.38
4.24
90.00 2.20 6.70 2.52
4.18
'
95.00 2.10 6.75 2.66
4.10
100.00 2.00 6.77 2.80
3.97
105.00 1.95 6.93 2.94
3.99
-----------------------------------------------------
THE REQUIRED POND SIZE = 4.286277 ACRE -FT �} ZS X I-5 (a,4A ac-�+
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 75 MINUTES
N
1
1
M
1
1
1
1
1
1
1
M
1
Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 1 of 3)
Designer:
GAD
Company.
Nolte Associates, Inc.
Date:
April24,2002
Project:
FC0194 - 2004 High School
Location:
Fort Collins, CO
1. Basin Storage Volume
Ia =
38.00
%
A) Tributary Area's Imperviousness Ratio (i = la / 100)
i =
0.38
B) Contributing Watershed Area (Area)
Area =
40.61
acres
C) Water Quality Capture Volume (WQCV)
WQCV =
0.14
watershed inches
(WQCV =0.8`(0.91 1'-1.19`I'+0.78`1))
D) Design Volume: Vol = (WQCV / 12) ` Area
Vol =
0.47
acre-feet
2. Permanent Pool
A) Volume: Volp d = (1.0 to 1.5) ` Vol
B) Average Depth Zone 1 = Littoral Zone - 6 to 12 inches deep
Zone 2 = Deeper Zone - 4 feet to 8 feet deep Zone 2
C) Maximum Zone 2 Pool Depth (not to exceed 12 feet) Depth =
D) Permanent Pool Water Surface Area (Estimated Minimum)
(Zone 1 - Littoral Zone = 25% to 40% of the total surface area) % =
(Zone 2 - Deeper Zone = 60% to 75% of the total surface area) % =
Total Estimated Mihimum Surface Area (AT.�,) %=
3. AnnuaVSeasonal Water Balance (Qee, has to be positive)
2. Outlet Works
A) Outlet Type (Check One)
B) Depth at Outlet Above Lowest Perforation (H)
C) Required Maximum Outlet Area per Row, (Ae)
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
ii) 2" Height Rectangular Perforation Width
E) Number of Columns (nc)
acre-feet
feet
feet
feet
acres
acres =
acres =
Qinfl.
acre-feet/year
Qewp
acre-feet/year
Qseepege
acre-feet/year
QE.T.
acre-feet/year
Q e, -acre-feet/year
x_ Orifice Plate
_ Perforated Riser Pipe
Other:
H = feet
A. = ...square inches
D =
inches, OR
W =
inches
nc=
!Number
FC0194_Water Quality_NEW.xls, RP
Basins contributing
to the irrigation
Pond.
100
250603.83
5.75
101
5370.44
0.12
200
53732.39
1.23
201
58105.26
1.33
202
156168.3
3.59
300
28539.1
0.66
301a
78214.17
1.80
'
301b
62041.59
1.42
302a
11973.51
0.27
302b
25750.63
0.59
303
154999.68
3.56
304
66017.58
1.52
305a
150107.73
3.45
305b
152916.81
3.51
'
308
22184.63
0.51
309
38919.6
0.89
310
72532.37
1.67
'
314
71132.98
1.63
315
15709.87
0.36
402
81229.03
1.86
'
600
72983.87
1.68
601
85859.25
1.97
602
53800.45
1.24
1
-
40.61.
FC0194_Rational-Fort Collins.xls
2:10 PM
war ra'Icurardi• oo= .ear Releas I� , ow ilriv
N
Project Name:
2004 High School
PsNOLTE
Project M
FC0194
Designer:
TMO/GAD
'
Design Storm:
Developed 100-year BEYOND ENG IN EERING
Detention Pond:
Southeast Detention Pond P-300
'
Problem:
Calculate the head required to discharge 22.2cfs through a 50' wide
broad crested weir.
Given:
Broad -Crested Weir Equation: Q„� = CLH32
Where,
t
Value
Q = Discharge, cfs 22.2
C = Broad Crested Weir Coefficient, See Table 5-91 2.82
L = Broad Crested Weir Length, ft 50
'
H = Head above the weir crest2' ft Solve For
'
Note:
1.
Per Handbook of Hydraulics, King and Brater (1963)
2.
100-yr pond elevation = 4891.44
'
Solution:
'
Solve for'H': .
H = (Qa../CL)23
H = 0.29 ft
3.
Weir crest elevation = 4891.15
1
Nolte Associates, Inc.
'
FC0194_W eir:3ds
5/30/2002
DETENTION POND SIZING BY FAA METHOD
Developed tri
Civil Eng. Dept., U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ............... ..... .......... ........
EXECUTED ON 03-04-2002 AT TIME 11:59:15
PROJECT TITLE: 2004 Ft.Collins High School '
*'*'
DRAINAGE BASIN DESCRIPTION
'
BASIN ID NUMBER 306
BASIN AREA (acre)= 2.66
RUNOFF COEF 0.97
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN
'
DURATION 5 10 20 30 40 50 60 80 100 120 150 180
INTENSITY 9.9 7.7 5.6 4.5 3.7, 3.2 2.9
2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE = 1.33 C=S
'
OUTFLOW ADJUSTMENT FACTOR = 1
AVERAGE RELEASE RATE = 1.33 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
**:** COMPUTATION OF POND SIZE
J
M
i
I\
-----------------------------------------------------
RAINFALL
RAINFALL
INFLOW
OUTFLOW
REQUIRED
DURATION INTENSITY
VOLUME
VOLUME
.STORAGE
MINUTE
-----------------------------------------------------
INCH/HR
ACRE -FT
ACRE -FT
ACRE-FT
0.00
0.00
0.00
0..00
0.00
5.00
9.95
0.18
0.01
0.17
10.00
7.72
0.28
0.02
0.26
15.00
6.66
0.36
0.03
0.33
20.00
5.60
0.40
0.04
0.36
25.00
5.06
0.45
0.05
0.41
30.00
4.52
0.49
0.05
0.43
35.00
4.13
0.52
0.06
0.45
40.00
3.74
0.54
0.07
0.46
45.00
3.49
0.56
0.08
0.48
50_00
3.23
0.58
0.09
- 0.49
55.00
3.05
0.60
0.10
0.50
60.00
2.86
0.61
0.11
0.51
65.00
2.74
0.64
0.12
0.52
70.00
2.63
0.66
0.13
0.53
75.00
2.52
0.68
0.14
0.54
80.00
2.40
0.69
0.15
0.54
85.00
2.30
0.70
0.16
0.54
90.00
2.20
0.71
0.16
0.54
95.00
2.10
0.71
0.17
0.54
100.00
2.00
0.72
0.18
0.53
105.00
1.95
0.73
0.19
0.54
110.00
1.90
0.75
0.20
0.55
115.00
1.85
0.76
0.21
0.55
120.00
1.80
0.77
0.22
0.55
130.00
1.70
0_79
0..24
0.55
135.00
1.65
0.80
0..25
0.55
140.00
1.60
0.80,
0.26
0.55
1
1
M
1
1
1
1
1
1
1
1
1
1
1
N
1
145.00 1.55 0.81 0.27 0.54
150.00 1.50 0.81 0.27 0.53
155.00 1.45 0.81 0.26 0.52
-----------------------------------------------------
THE REQUIRED POND SIZE _ .5549204 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 125 MINUTES
r
1
1
M
1
1
1
1
1
1
1
,)--eTen£ion an eoum Te c-,m -fi n
Project : FC0194
Project Name:.2004 Fort Collins High School
Calculated By: GAD
Date: 5/30/2002 BEYOND ENGI NEERI N G
Detention pond volume (V): 1/3d(A+B+(AB)O") (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours,11
A= Surface area of contour line, ft2
B= Surface area of contour line at a depth relevant to d, f
BaJin 06
Volume Elevation
Dd
ft
A
ft2
B
ft2
Volume
ft3
Cummulative
Volume
ft3
I Cummulative
Volume
ac-ft
Vo 4904.00
0.00
0 25
0
0
1 0.00
V I 4905.00
1.00
25 1 406 I 177
177
0.00
V2 4906.00
1.00
406 1 9,891 4,100
4,278
j 0.10
VIA 4906.76
(
0.55
V3 4907.00
1.00
91891 ! 44,935 25,303
29,580 0.68
Nolte Associates, Inc.
513012002
1:16 PM
DETENTION POND SIZING BY FAA METHOD
- Developed by
Civil Eng. Dept., U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
-------------------------------------
____________________________________________
' USER=Nolte Associates, Inc ............................................
EXECUTED ON 03-04-2002 AT TIME 13:13:35
PROJECT TITLE: 2004 Ft.Collins High School
DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 307
' BASIN'AREA (acre)= 4.79
RUNOFF COEF 0.83
***" DESIGN RAINFALL STATISTICS
' DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN
DURATION 5 10 20 30 40 50 60 80 100 120 150 180
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE = 2.395 CPS
OUTFLOW ADJUSTMENT FACTOR = 1
AVERAGE RELEASE RATE = 2.395 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
***'* COMPUTATION OF POND SIZE
-----------------------------------------------------
' RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED
DURATION INTENSITY VOLUME VOLUME STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT
---------------------------------------------------
0.00 0.00 0.00 0.00 0.00
' 5.00 9.95 0.27 0.02 0.26
10.00 7.72 0.43 0.03 0.39
15.00 6.66 0.55 0.05 0.50
20.00 5.60 0.62 0.07 0.55
25.00 5.06 0.70 0.08 0.62
30.00 4.52 0.75 0.10 0.65
35.00 4.13 0.80 0.12 0.68
40.00 3.74 0.83 0.13 0.69
45.00 3.49 0.87 0.15 0.72
' 50.00 3.23 0.89 0_16 0_73
55.00 3.05 0.92 0.18 0.74
60.00 2.86 0.95 0.20 0.75
65.00 2.74 0.99 0.21 0.77
' 70.00 2.63 1.02 0.23 0.79
75.00 2.52 1.04 0.25 0.79
80.00 2.40 1.06 0.26 0.80
85.00 2..30 1_08 -°0.28 0-80
' 90.00 2.20 1.09 0.30 0.80
95.00 2.10 1.10 0.31 0.79
100.00 2.00 1.10 0.33 0.77
105.00 1.95 1.13 0.35 0.78
110.00 1.90 1.15 0.36 0.79
'115.00 1.85 1.170.38------0.80
--- ----- -- --
-------- -------
THE REQUIRED POND SIZE _ .7991067 ACRE -FT
NTHE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 85 MINUTES
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
>e en "on -w- vio ume Gm-cma" ion
Project : 0194
Project Name:
20
: 2004 Fort Collins High School
Calculated By: GAD
Date: 5/30/2002 9 E Y O N D' E N G I N E E R I N G
Detention pond volume (V): 1/3d(A+B+(AB)0s) (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, ft2
' 307
Volume
Elevation
Dd
ft
A
ftZ
B
ft,
Volume
W
Cummulative
Volume
ft'
Cummulative
Volume
ac-ft
Vo
4904.00
1 0.00
0
97
0
0
0.00
VI
4905.00
1.00
97
2,351
976
976
0.02
V2
4906.00
1.00
2,351
10,807
6,066
7,042
0.16
VIA
4907.00
-0:80
V3
4907.00
1.00
10,807
j 49,031
27,619
34,661
0.80
DETENTION
POND SIZING BY
FAA METHOD
.
Developed by
Civil Eng. Dept.,
U. of
Colorado
Supported by Denver
Metro Cities/Counties Pool Fund Study
Denver Urban Drainage
and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
'
EXECUTED ON 03-04-2002 AT
TIME 13:16:37
PROJECT TITLE: 2004 Ft.Collins
High School
.
DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER
= 311a
BASIN AREA (acre)= 3.74
'
RUNOFF COEF
0.89
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN)
TABLE IS
GIVEN
DURATION 5 10 20 30
40 50
60
80 100 120 150 180
'
INTENSITY 9.9 7.7 5.6 4.5
3.7 3.2
2.9
2.4
2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 1.87
CPS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 1.87
CPS
AVERAGE RELEASE RATE = MAXIMUM RELEASE
RATE *.ADJUSTMENT FACTOR.
***** COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW
OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME
VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT
-----------------------------------------------------
ACRE -FT
ACRE
-FT
0.00 0.00 0.00
5.00 9.95 0.23
0.00
0.01
0.00
0.22
10.00 7.72 0.36
0.03
0.33
15.00 6.66 0.46
0.04
0.42
20.00 5.60 0.52
0.05
0.47
25.00 5.06 0.58
0.06
0.52
'
30.00 4.52 0.63
0.08
0.55
35.00 4.13 0.67
0.09
0.58
40.00 3.74 0.69
0.10
0.59
45.00 3.49 0.73
0.12
0.61
'
'
50.00 3.23 0.75
0.13
0.62
55.00 3.05 0.77
0.14
0.63
60.00 2.86 0.79
0.15
0.64
65.00 2.74 0.82
0.17
0.66
70.00 2.63 0.85
0.18
0.67
'
75.00 2.52 0.87
0.19
0.68
80.00 2.40 0.89
0.21
0.68
85.00 2.30 0.90
0.22
0.68
'
90.00 2.20 0.92
95.00 2.10 0.92
0.23
0.24
0.68
0.68
100.00 2.00 0.92
0.26
0.67
105.00 1.95 0.95
0.27
0.68
110.00 1.90 0.97
0.28
0.68
115.00 1.85 0.98
0.30
0.69
'
Ct.031
125.00 1.75 1.01
0.32
0.69
130.00 1.70 1.02
0.33
0.69
1.00 1.61.03
0..3
0.6
14040.00 1.60 1.04
0.36
0.677
1
1
1
1
1
1
1
1
1
1
1
1
1
145.00 1.55 1.04 0.37 0.67
150.00 1.50 1.04 0.39 0.65
-----------------------------------------------------
THE REQUIRED POND SIZE _ .689489 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 120 MINUTES
11
1
1
1
1
1
1
1
1
y
1
1
1
1
eten'�'io"RMM IRM a Calculation
Project : 014 �
Project Name:
20F
: 2004 Fort Collins High School
Calculated By: GAD
Date: 5/30/2002 e E Y O N D E N G I N E E R I N G
Detention pond volume (V): 1/3d(A+B+(AB)") (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, ft'
Basib:3711a
Volume
Elevation
Dd
ft
A
ft'
B
ft'
Volume
ft3
Cummulative
Volume
ft3
Cummulative
Volume
ac-ft
Vo
4905.20
0.00
0
0
0
0
0.00
V,
4906.00
0.80
0
867
231
231
0.01
V,
4907.00
1.00
867
1 6,660
3,310
3,541
0.08
V3
4908.00
1.00
6,660
41,250
21,495
25,036
0.57
VIA
4908.10
0.69
Vd
4908.50
0.50
41,250
58,702
24,860
49,896
1.15
Nolte Associates, Inc.
513012002
1:38 PM
I/'
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept.,
U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
'
EXECUTED ON 03-04-2002 AT TIME 13:19:25
PROJECT TITLE: 2004 Ft.Collins High School
DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 312a
(Interim Condition)
BASIN AREA (acre)= 13.69
'
RUNOFF COEF 0.51
DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
'
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS
GIVEN
DURATION 5 10 20 30 40 50
60 80 100 120 150 180
'
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2
2.9 2.4 2.0
1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 6.845 CFS
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 6.845 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE -FT
'
0.00 0.00 0.00 0.00
5.00 9.95 0.48 0.05
0.00
0.44
10.00 7.72 0.75 0.09
0.65
15.00 6.66 0.97 0.14
0.83
20.00 5.60 1.09 0.19
0.90
25.00 5.06 1.23 0.24
0.99
t
30.00 4.52 1.31 0.28
1.03
35.00 4.13 1.40 0.33
1.07
40.00 3.74 1.45 0.38
1.07
'
45.00 3.49 1.52 0.42
50..00 3.23 1.57 0.47
.1.10
1.09
55.00 3.05 1.62 0.52
1.11
60.00 2.86 1.66 0.57
1.10
65.00 2.74 1.73 0.61
1.12
70.00 2.63 - 1.79, _, 1 0.66
1.13
'
75.00 2.52 1.83 0.71
1.12
80.00 2.40 1.86 0.75
1.11
85.00 2.30 1.90 0.80
1.09
'
90.00 2.20 1.92 0.85
95.00 2.10 1.93 0.90
1.07
1.04
100.00 2.00 1.94 0.94
1.00
-----------------------------------------------------
THE REQUIRED POND SIZE = 1.125247 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES
)efe-56-5-H -5-0 Polum- R-31Ma65-H
Project : 0194
Project Name:
20
: 2004 Fort Collins High School
Calculated By: HHF
Date: 5/30/2002 BEYOND ENGINEERING
Detention pond volume (V):1/3d(A+B+(AB)o'S) (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ft2
B= Surface area of contour line at a depth relevant to d, ftZ
Basin.312a nterim
Volume
Elevation
Dd
ft
A
ftZ
B
ft,
Volume
ft,
Cummulative
Volume
ft3
Currnttulative
Volume
ac-ft
Vo
4905.50
0.00
0
25
1 0
0
( 0.00
V,
4906.00
0.50
25
1,380
265
265
6.01
VZ
4907.00
1.00
1,380
7,255
3,933
4,198
0.10
V3
4908.00
1.00
7,255
33,564
18,808
23,006
0.53
V
4908.53
1.12
V,
4909.00
1.00
33,564
1 65,821
48,796
71,802
1.65
Nolte Associates, Inc.
513012002
1:42 PM
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept.,
U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
'
EXECUTED ON 03-04-2002 AT TIME 13:22:05
PROJECT TITLE: 2004 Ft.Collins High School
DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 312a
BASIN AREA (acre)= 9.30
'
RUNOFF COEF 0.63
DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS
GIVEN
DURATION 5 10 20 30 40 50
60 80 100 120 150 180
'
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2
2.9 2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 4.65 CFS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 4.65 CPS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT
-----------------------------------------------------
ACRE -FT
0.00 0.00 0.00 0.00
5.00 9.95 0.40 0.03
0.00
0.37
10.00 7.72 0.63 0.06
0.56
15.00 6.66 0.81 0.10
0.12
20.00 5.60 0.91 0.13
0.78
25.00 5.06 1.03 0.16
0.87
'
30.00 4.52 1.10 0.19
0.91
35.00 4.13 1.18 0.22
0.95
40.00 3.74 1.22 0.26
0.96
'
45.00 3.49 1.28 0.29
50.00 3.23 1.31 0.32
0.99
0.99
55.00 3.05 1.36 0.35
1.01
60.00 2.86 1.40 0.38
1.01
65.00 2.74 1.45 0.42
1.04
70.00 2.63 1.50 0.45
1.05
'
75.00 2.52 1.53 0.48'
- 1.05
80.00 2.40 1.56 - 0.51
1.05
85.00 2.30 1.59 0.54
1.05
'
90.00 2.20 1.61 0.58
95.00 2.10 1.62 0.61
1.03
1.01
100.00 2.00 1.63 0.64
0.99
105.00 1.95 1.67 0.67
0.99
1
-----------------------------------------------------
THE REQUIRED POND SIZE = 1.054564 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 75 MINUTES
'_ ClCiltlOIl ,071� „ GMl evll_e Cl! a__nn
Project : 0194 NkL
Project Name:
20
: 2004 Fort Collins High School
Calculated By:"HHF
Date:5/30/2002 BEYOND ENGINEERING
Detention pond volume (V): 1/3d(A+B+(AB)05) (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ft2
B= Surface area of contour line at a depth relevant to d, 112
ar' 12a
Volume
Elevation
Dd
ft
A
ft2
B
ft2
Volume
ft3
Cummulative
Volume
ft3
Cummulative
Volume
ac-ft
Vo
4905.50
0.00
0
25
0
( 0
0.00
V I
4906.00
0.50
25
1,380
265
265
0.01 j
V2
4907.00
1.00
1,380
7,255
3,933
4,198
0.10
V3
4908.00
1.00
7,255
33,564
18,808
23,006
0.53
V'00
4908.46
1.05
V4
4909.00
1.00
33,564
65,821
48,796
71,802
1.65
Nolte Associates, Inc.
513012002
1:41 PM
DETENTION
POND SIZING
BY
FAA METHOD
Developed
by
Civil Eng. Dept.,
U. of
Colorado
Supported by Denver Metro Cities/Counties
Pool Fund Study
Denver Urban Drainage
and Flood
Control District, Colorado
USER=Nolte Associates, Inc ............................................
'
EXECUTED ON 03-04-2002 AT
TIME 13:24:27
PROJECT TITLE: 2004 Ft.Collins
High School
**** DRAINAGE BASIN
DESCRIPTION
BASIN ID NUMBER
= 313a
(Interim Condition)
BASIN AREA (acre)= 10.16
'
RUNOFF COEF
0.54
DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
'
INTENSITY(IN/HR)-DURATION(MIN)
TABLE IS
GIVEN
DURATION 5 10 20 30
40 50
60
80 100 120 150 180
'
INTENSITY 9.9 7.7 5.6 4.5
3.7 3.2
2.9
2.4 2.0 1.8 1.5
1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE
= 5.08
CFS
'
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 5.08
CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE
COMPUTATION OF POND SIZE
RATE * ADJUSTMENT FACTOR.
-----------------------------------------------------
RAINFALL RAINFALL INFLOW
OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME
VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT
-----------------------------------------------------
ACRE -FT
ACRE
-FT
0.00 0.00 0.00
0.00
0.00
5.00 9.95 0.38
0.03
0.34
10.00 7.72 0.59
0.07
0.52
15.00 6.66 0.76
0.10
0.66
20.00 5.60 0.85
0.14
0.71
25.00 5.06 0.96
0.17
0.79
'
30.00 4.52 1.03
0.21
0.82
35.00 4.13 1.10
0.24
0.86
40.00 3.74 1.14
0.28
0.86
45.00 3.49 1.20
0.31
0.88
'
50-00 3.23 1.23
0.35
0.88
55.00 3.05 1.28
0.38
0.89
60.00 2.86 1.31
0.42
0.89
65.00 2.74 1.36
0.45
0.90
70�00 2.63 1-:40
40.49
0..91
.
'
75.60 2.52 1.44
0.52
0.91'
80.00 2.40 1.46
0.56
0.90
85.00 2.30 1.49
0.59
0.89
90.00 2.20 1.51
0.63
0.88
'
95.00 2.10 1.52
0.66
0.86
100.00 2.00 1.52
0.70
0.82
-----------------------------------------------------
THE REQUIRED POND SIZE = .913035 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES
1
1
1
1
1
1
1
1
1
1
1
1
1
1
)enfian MEMB"Inm T.C. -1-- -- 0
Project : 0194
Project Name:
20
: 2004 Fort Collins High School
Calculated By: GAD
Date: 5/30/2002 BEYOND ENGINEERING
Detention pond volume (V): 1/3d(A+B+(AB)o'S) (uniform sides)
Where:
V= Volume between contours, ft3
d= Depth between contours, ft
A= Surface area of contour line, ftZ
B= Surface area of contour line at a depth relevant to d, ft'
asm 13a nterim
Volume
Elevation
Dd
ft
A
ftr
B
ftZ
Volume
Cummulative
Volume
I
Cummulative
Volume
ac-ft
Vo
I 4908.00
0.00
1 0
20
0 0
( 0.00
V,
! 4909.00
1.00
1 20
278
124 124
0.00
VZ
4910.00
1.00
( 278
2,889
1,354 ! 1,479
0.03
V3 !
4911.00
1.00
1 2,889
15,795
8,480 9,958
0.23
V, j
4912.00
1.00
j 15,795
41,967
27,836 ! 37,795
0.87
Nolte Associates, Inc.
513012002
1:49PM .
M
r
1
1
1
1
1
1
--------------------------------------------
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept., U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ...... .............. ....................
EXECUTED ON 03-04-2002 AT TIME 13:26:32
PROJECT TITLE: 2004 Ft.Collins High School
**** DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER =
313a
BASIN AREA (acre)=
5.73
RUNOFF COEF =
0.76
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY (IN/HR) -DURATION (MIN)
TABLE IS
GIVEN
DURATION 5 . 10 20 30
40 50
60 80
100 120 150 180
INTENSITY 9.9 7.7 5.6 4.5
3.7 3.2
2.9 2.4
2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE
RATE
= 2.865
CFS
OUTFLOW ADJUSTMENT FACTOR
= 1
AVERAGE RELEASE RATE
= 2.865
CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
***** COMPUTATION OF POND SIZE
---------------------------------------------------
RAINFALL RAINFALL INFLOW
OUTFLOW
REQUIRED
DURATION INTENSITY VOLUME
VOLUME
STORAGE
MINUTE INCH/HR ACRE -FT
-----------------------------------------------------
ACRE -FT
ACRE -FT
0.00 0.00 0.00
0.00
0.00
5.00 9.95 0.30
0.02
0.28
-
10.00 7.72 0.47
0.04
0.43
15.00 6.66 0.60
0.06
0.55
20.00 5.60 0.68
0.08
0.60
25.00 5.06 0.77
0.10
0.67
30.00 4.52 0.82
0.12
0.70
35.00 4.13 0.87
0.14
0.74
40.00 3.74 0.90
0.16
0.75
45.00 3.49 0.95
0.18
0.77
50.00 3.23 0.98
0.20
0.78
55.00 3.05 1.01
0.22
0.80
60.00 2.86 1.04
0.24
0.80
65.00 2.74 1.08
0.26
0.82
70.00 2.63 1.11
0.28
0.84
75.00 2.52 1.14
0.30
0.84
80.00 2.40 1.16
0.32
0.85
85.00 2.30 1.18
0.34
0.85
90.00 2.20 1.20
0.36
0.84
95.00 2.10 1.21
0.37
0.83
100.00 2.00 1.21
0.39
0.82
105.00 1.95 1.24
0.41
0.82
110.00 1.90 1.26
0.43
0.83
115.00 1.85 1.29
0.45
0.83
-
-----------------------------------------------------
THE REQUIRED POND SIZE = .8470155 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 85 MINUTES
fion ,one olume Calc'lu afion
Project : FC0194 NJ(,_
Project Name: 2004 Fort Collins High School
Calculated By: GAD
Date:5/30/2002 BEYOND ENGIN.EERING
Detention pond volume (V):1/3d(A+B+(AB)05) (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, 112
B= Surface area of contour line at a depth relevant to d, ft2
asin 313a
Volume
Elevation
Dd
ft
A
ft2
B
W
Volume
ft'
Cummulative
Volume
ft'
Currmtulative
Volume
ac-ft
Vo
4908.00
0.00
0
20
0
0 0.00
V,
4909.00
1.00
20
278
124
124 0.00
V2
4910.00
1.00 "
278
1 2,889
1,354
1,479 0.03
V;
4911.00
1.00
2,889
15,795
8,480
9,958 0.23
VIOO-.
4911.97
0.85
Nolte Associates, Inc.
513012001
1:47 PM
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
M
1
0
�-�--���etention;Ponil �olume�Caleula�'on ,
Project ` 0194 �O
Project Namee20
: 2004 Fort Collins High School
Calculated By: GAD
Date:5/2/2002 BEYOND ENGINEERING
Detention pond volume (V): 1/3d(A+B+(AB)° 5) (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, ft'
B= Surface area of contour line at a depth relevant to d, fe
Volume
Elevation
Da
ft
A
ftZ
B
ft2
Volume
ft'
Cummulative
Volume
ft'
Cummulative
Volume
ac-ft
Vo
4898.83
! 0.00
1 0 0 0
0
0.00
I VI
4899.00
0.17
j 0 1,144 65
65
0.00
V,
4900.00
1.00
1,144 9,016 4,457
4,522
0.10
V3
4901.00
1.00
9,016 12,643 10,779
10,844
0.25 1
V4
4902.00
1.00
12,643 16,523 14,540
19,062
0.44
V5
4903.00
1.00
16,523 19,634 24,290
35,133
0.81
Vb
4904.00
j 1.00
( 19,634 . 31,365 35,778
46,622
1.07
VIA
4904.08
Vr (
4905.00
1.00
31,365 50,900 50,544
69,606
1.60
Vs
4906.00
1.00
50,900 73,931 68,020
103,153
2.37
Nolte Associates, Inc.
.5/212002
:, 11:17"
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept.., U. of Colorado
Supported by Denver Metro Cities/Counties Pool Fund Study
Denver Urban Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
EXECUTED ON 05-02-2002 AT TIME 11:00:05
PROJECT TITLE: 2004 Fort Collins High School
*+*+ DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER 400
BASIN AREA (acre)= 7.08
RUNOFF COEF 0.81
***** DESIGN RAINFALL STATISTICS
t DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN
' DURATION 5 10 20 30 40 50 60 80 100 120 150 180
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE = 6.5 CPS .
OUTFLOW ADJUSTMENT FACTOR = 1
AVERAGE RELEASE RATE = 6.5 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
***** COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED
DURATION INTENSITY VOLUME VOLUME STORAGE
MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT
-----------------------------------------------------
0.00 0.00 0.00 0.00 0.00
5.00 9.95 0.40 0.04 0.35
10.00 7.72 0.61 0.09 0.53
15.00 6.66 0.80 0.13 0.66
20,00 5,60 0,89 0,18 0,71
' 25.00 5.06 1.01 0.22 0.78
30.00 4.52 1.08 0.27 0.81
35.00 4.13 1.15 0.31 0.84
40.00 3.74 1.19 0.36 0.83
45 00 `=3
50.00 3.23 1.29 �0 45 0.84
55.00 3.05 1.33 0.49 0.84
60.00 2.86 1.37 0.54 0.83
65,00 2,74 1,42 0.58 0,84
70.00 2.63 1.47 0.63 0.84
75.00 2.52 1.50 0.67 0.83
-----------------------------------------------------
THE REQUIRED POND SIZE _ .8462186 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 45 MINUTES
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 1 of 3)
Designer:
GAD
Company:
Nolte Associates, Inc.
Date:
May.2, 2002
Project:
FC0194 - 20D4 High School
Location:
NE Pond - Basin 400
1. Basin Storage Volume
la = 27.80 %
A) TributaryArea's Imperviousness Ratio (i = la / 100) i = 0.28
B) Contributing Watershed Area (Area) Area = 27.13 acres
C) Water Quality Capture Volume (WQCV) WQCV = 0.12 . watershed inches
(WQCV =0.8 - (0.91 ' 13 - 1.19 ' IZ + 0.78. 1))
D) Design Volume: Vol = (WQCV / 12)' Area Vol = 0.26 acre-feet
2. Permanent Pool
A) Volume: Vold = (1.0 to 1.5)' Vol acre-feet
B) Average Depth Zone 1 = Littoral Zone - 6 to 12 inches deep feet
Zone 2 = Deeper Zone - 4 feet to 8 feet deep Zone 2 feet
C) Maximum Zone 2 Pool Depth (not to exceed 12 feet) Depth = feet
D) Permanent Pool Water Surface Area (Estimated Minimum)
(Zone 1 - Littoral Zone = 25% to 40% of the total surface area) % = acres = .` R
(Zone 2 - Deeper Zone = 60% to 75% of the total surface area) % = acres =
Total Estimated Minimum Surface Area (AT,,,,) % = acres =
3. Annual/Seasonal Water Balance (Q et has to be positive)
2. Outlet Works
A) Outlet Type (Check One)
B) Depth at Outlet Above Lowest Perforation (H)
C) Required Maximum Outlet Area per Row, (Ap)
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
ii) 2' Height Rectangular Perforation Width
E) Number of Columns (nc)
Qinfim
acre-feet/year
Qmp
acre-feet/year
Qseepape
acre-feet/year
QE.T.
acre-feet/year
Qnet - - -acre-feetlyear
x Orifice Plate
_ Perforated Riser Pipe
Other:
H = 2.05 feet
Ao = 0.94 ,. square inches
D = 1.0630 inches, OR
W = inches
nc= ;' ,' _ 1:,=,='•.:Number
FC0194_Water Quality_400.xls, RP
i
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
Design. Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 2 of 3)
Designer:
GAD
Company:
Nolte Associates, Inc.
.Date:
May-2, 2002
Project:
FC0194 - 2004 High School
Location:
NE Pond - Basin 400
F) Actual Design Outlet Area per Row (AJ
G) Number of Rows (nr)
H) Total Outlet Area (A,,)
5. Trash Rack
A) Needed Open Area: A, = 0.5 " (Figure 7 Value) ' At
B) Type of Outlet Opening (Check One)
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a)
Ap = 0.89 ' square inches
nr = 6 Number
Aot = 5.46 square inches
A = 184 _ square inches
X < 2" Diameter Round
2" High Rectangular
Other:
1) Width of Trash Rack and Concrete Opening Wm"c = 9 - inches
(W.) from Table 6a-1
ii) Height of Trash Rack Screen (HTR) HTR =-::;=49 ::,inches
iii) Type of Screen (Based on Depth H), Describe if "Other" S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other" I 0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
Type and Size of Support Rod (Ref.: Table 6a-2)
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
inches
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening form 4.D.ii. (W)
W = inches
ii) Width of Perforated Plate Opening (Ww c = W + 12")
W= C = inches
iii) Width of Trash Rack Opening (Wope;"a) from Table 6b-1
upeog - inches
Wm -
iv) Height of Trash Rack Screen (HTR)
HTR = inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm KPP Series Aluminum
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, Klemp' KPP inches
Grating). Describe if "Other" Other:
FC0194_WaterQuality 400.)ds, RP
Project#:
FCO 194
-Project Name:
2004 Fort Collins High School
Calculated By:
GAD
Date:
5/2/2002
BE Y O N D E N G IN E E R I N G
Grate:
CDOT Type 'C' Structure
Weir Perimeter, L =
141.84 in
11.82 ft
Open Area, A =
997.92 in'
6.93 ft'
Clogging Factor, c =
50%
Stage Interval, Ah =
0.10 ft
Weir Calculation:
Orifice Calculation:
Qa = CLH'-'
Q. = CA(2gH)O"
C =
3.00
C = 0.65
cL=
5.91 ft
Ac= 3.47 ft'
H
ft
H
ft
Q--INLE-r
cfs
Qo-INLET
cfs
Rule
cfs I
0.00
4903.57
0.00
j 0.00
0.00
0.10
j 4903.67
0.56
I 5.72
0.56
0.20
j 4903.77
1.59
j 8.08
1.59
0.30
4903.87
2.91
9.90
2.91
0.40
4903.97
4.49
11.43 j
4.49
27
12.78 i
6.27
0.60
j 4904:17 j
8.24
14.00 f
8.24
0.70
j 4904.27 j
10.38
1 15.12
10.38
0.80
j 4904.37 I
12769
16.17
12.69
0.90
4904.47 1
15.14
17.15
15.14 i
1.00
j 4904.57 j
17.73
18.07
17.73
1.10--
4904.67 j
20.45
18.96 1
18.96
1.20
4904.77 j
23.31
19.80 1
19.80
1.30
j
4904.87 i
26.28
20.61
20.61
1.40
j
4904.97 1
29.37
21.39
21.39
1.50
4905.07 '
32.57 j
22.14
22.14
---Set Grate @ Elev.
INolte Associates, Inc.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
e.
FINISHED
GRADE 6" DIA
IN
INV. IN=
48969.00 24 RCP 24„
RCP
OUT ET
4896.50
INV. OUT=
OVERFLOW
0 100 YR. GRATE'
W.S.E.L.= 4903.57 '
"WARNING
OUnauthorized modification of
this outlet is a zoning code
violation"
O O
(minimum sign area = 0.75 sq. ft.)
FINISHED
__ ..... T GRADE
'1 r TYPE 'C' INLET BOX
2% MIN 6" DIA
�NV.N= 24EXISTING
4899.00 RCP 24" RCP
© 0.40%
a.:.... OUTLET
6 4896.50
6" .'
INV. OUT=
47" 4896.00
1. USE CDOT TYPE 'C' INLET;
CDOT STANDARD M-604-10 WITH
PEDESTRIAN GRATE
OUTLET STRUCTURE
N.T.S.
' .,e-enfio"HIR§'n"aWolum Calcula_iion
Project#: FC0194
'Project Name: 2004 Fort Collins High School NO
Calculated By: GAD
Date:5/212002 BEYOND ENGINEERING
' Detention pond volume (V): 1/3d(A+B+(AB)"5) (uniform sides)
Where:
V= Volume between contours, ft'
d= Depth between contours, ft
A= Surface area of contour line, ft'
' B= Surface area of contour line at a depth relevant to d, ft'
Basin:403 r;-
1
1
1
1
1
1
M
1
Volume
Elevation
Dd
ft
A
ft
B
fe
Volume
ft'
Cummulative
Volume
ft'
Cummulative
Volume
ac-ft
V,
1 4904.00
1 0.00
0
1,007
1 0
1 0
0.00
'V,
4904.08
0.08
1,007
i 9,579
j 365
0
0.00
V2
4905.00
0.92
9579
1 11,8571
9,842
9,842
0.23
V,
( 4906.00
1.00
11,857
33,940
1 21,953
31,794
0.73
V Jay=
4906.76
1
1.66
V,
4907.00
1.00
31940
73,697
j 52,549 i
84,344
1.94
•4904.08 is the ponding surface elevation of basin 400. This causes egaulization of the system The ponding
surface for basin 403 will begin at this elevation.
Nolte Associates, Inc.
5YW002
:11:17 AM
M
1
1
A
------------------------------------------------____________
DETENTION POND SIZING BY FAA METHOD
Developed by
Civil Eng. Dept., U. of Colorado
Supported.by Denver Metro Cities/Counties Pool Fund Study
.Denver Urban'Drainage and Flood Control District, Colorado
USER=Nolte Associates, Inc ............................................
EXECUTED ON 05-02-2002 AT TIME 11:04:36
PROJECT TITLE: 2004 Fort Collins High School
**** DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 403
BASIN AREA (acre)= 14.86
RUNOFF COEF = 0.41 -
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN
DURATION 5 10 20 30 40 50 60 80 100 120 150 180
INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2
***** POND OUTFLOW CHARACTERISTICS:
MAXIMUM ALLOWABLE RELEASE RATE = 1.2 CFS -
OUTFLOW ADJUSTMENT FACTOR = 1
AVERAGE RELEASE RATE = 1.2 CFS
AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR.
*�'** COMPUTATION OF POND SIZE
---------------------------------------------------
RAINFALL
RAINFALL
INFLOW
OUTFLOW
REQUIRED
DURATION
INTENSITY
VOLUME
VOLUME
STORAGE
MINUTE
----------------------------------------------------
INCH/HR
ACRE -FT
ACRE -FT
ACRE -FT
0.00
0.00 0.00
0.00
0.00
0.00
5.00
9.95
0.42
0.01
0.41
10.00
7.72
0.65
0.02
0.64
15.00
6.66
0.85
0.02
0.82
20.00
5.60
0.95
0.03
0.91
25.00
5.06
1.07
0.04
1.03
30.00
4.52
1.15
0.05
1.10
35.00
4.13
1.22
0.06
1.17
40.00
3.74
1.27
0.07
1.20
45.00
3.49
1.33
0.07
1.25
50.00
3.23
1.37
0.08
1.28
55.00
3.05
1.42
0.09
1.33
60.00
2.86
1.45
0.10
1.35
65.00
2.74
1.51
0.11
1.40
70.00
2.63
1.56
0.12
1.44
75.00
2.52
1.60
0.12
1.47
80.00
2.40
1.62
0.13
1.49
85.00
2.30
1.65
0.14
1.51
90.00
2.20
1.68
0.15
1.53
95.00
2.10
1.69
0.16
1.53
100.00
2.00
1.69
0.17
1.53
105.00
1.95
1.73
0.17
1.56
110.00
1.90
1.77
0.18
1.59
115.00
1.85
1.80
0.19
1.61
120.00
1.80
1.83
0.20
1.63
125.00
1.75
1.85
0.21
1.64
130.00
1.70
1.87
0.21
1.66
135.00
1.65
1.88
0.22
1.66
140.00
1.60
1.90
0.23
1.66
145.00 1.55 1.90 0.24 1.66
150.00 1.50 1.90 0.25 1.66
155.00 1.45 1.90 0.26 1.65
160.00 1.40 1.89 0.26 1.63
.165.00 1.35 1.88 0.27 1.61
170.00 1.30 1.87 0.28 1.59
---------------------
THE REQUIRED POND SIZE = 1.66407 ACRE -FT
THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 140 MINUTES
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
HHF/GAD
Date:
5/2/2002
Design Point
, -403
Orifice Calculation:
Rim Elevation=
-4902.80
Q. = CA(2gH)os
100-yr Ponding Elev--
4906.60
Hydraulic Grade Out--
4904.08
Allowable Release Rate=
.1 2
cfs
H=
2.52 ft
C =
0.65
g=
32.2 ft/s
Q=
1.20 cfs
Ac =
0.14 ft2
Diameter of Orifice:
BEYOND ENGINEERING
Nolte Associates, Inc.
M
I
I
I
I
I
I
L
iJ
1
I
1
1
r
APPENDIX G
Erosion Control Calculations
1
1
M
1
1
1
1
1
1
Pmject#:
FC0194
Project Name:
2004 Fort Collins Rgh School
Calculated By.
GAD
Daze:
6252002
STANDARD FORM A
B EYO N D E N G IN E E R ING
DEVELOPED
SUB -BASIN
ERODIBILITY
ZONE
Ash
(ac)
Lsb
(ft
Ssb
%
Lb
(ft)
Sb
(%
PS
100
MODERATE - MODERATE-
5.75
530.00
1.00
101
0.12
106.80
2.64
200
1.23
410
1.30
201
1.33
343
3.33
202a
1.13
414
0.59
202b
2.46
605
0.89
203
1.29
452
0.90
204
3.36
2799
0.52
300
0.66
458
1.04
301a
1.80
513
1.11
301b
1.42
967
1.08
302a
0.27
346
0.86
302b
0.59
809
0.86
303
3.56
562
1.97
304
1.52
383
1.31
305a
3.45
310
2.06
305b
3.51
376
2.00
" 306
2.66
384
3.16
307
4.79
442
2.68
308
0.51
335
5.11
309
0.89
377
1.72
310
1.67
400
1.47
-311a
3.17
403
2.42
31lb
0.57
246
2.85
312a
7.18
529
2.05
312b
2.12
761
1.20
313a
4.71
502
1.99
313b
1.02
327
0.69
314
1.63
314
1.48
315
0.36
210
1.83
400
2.75
456
2.08
401
1.86
360
1.55
402
1.86
360
1.55
403
10.80
1006
1.30
404
1.31
268
2.13
500
4.43
580
0.69
501
4.39
516
0.80
502
2.04
1331
0.93
503
0.88
939
1.21
600
1.68
502
1.73
601
1.97 1
711
1.30
602
1.24
1009
1.12
1000
MODERATE/MODERATE•
7.01
417
4.89
106.92
627.66
1.80
80.21
' Lb=sum(AiLi)/(sum(Ai)=(5.75.530+... +7.01.417.35)/106.92
627.66
• - MODERATE WIND ERODIBUM ZONE & MODERATE RAINFALL ERODIEIRM ZONE
' Sb=sum(AiSi)/(sum(Ai)= (5.75.1+...+7.01.4.89)/106.92
1.80
PS (during construction) - 80.21 (from Table S-A)
PS (after construction) - 80.21/0.85 - 94.36
N:IFC01941DrainagelExoeP4FC0194_ Erosion -Fort Collins.xls]PERFORMANCE
1
1
M
1
1
1
1
1
1
1
I
1
1
1
1
1
M
Project#:
FC0195
Project Name:
2003 Elementary School
Calculated By:
GAD
Date:
6/25/2002
STANDARD FORM B
B E Y O N D E N.G VN E E R I N G
EROSION CONTROL
METHOD
C-FACTOR
VALUE
P-FACTOR
VALUE
COMMENTS
BARE SOIL
1
1.00
0.90
GRAVEL MULCH
2
O.05
1.00
STRAW -HAY MULCH
3
0.06
1.00
HYDRAULIC MULCH
4
0.10
1.00
ESTABLISHED GRASS COVER
5
0.35
1.00
PAVEMENT
6
0.01
1.00
STRAW BALE, GRAVEL FILTER
7
1.00
0.80
SILT FENCE BARRIER 1
8 1
1.00
1 0.50
SUB
BASIN'
PS
(%
AREA
(ac
SITE
80.21
1 106.92
SUB
BASIN
SUB
AREA
AREA
(ac
PRACTICE
C"A
P•A
REMARKS
100
PERVIOUS
0.00 L
1
0.00
0.00
BARE SOIL
100
IMPERVIOUS
250603.83
1
250603.83
225543.45
BARE SOIL
101
PERVIOUS
0.00
1
0.00
0.00
BARE SOIL
101
IMPERVIOUS
5370.44
1
5370.44
4833.40
BARE SOIL
200
PERVIOUS
37795.00
3
2267.70
37795.00
STRAW -HAY MULCH
_ 200
IMPERVIOUS
15937.39
1
15937.39
14343.65
BARE SOIL
201
PERVIOUS
42913.26
5
15019.64
42913.26
ESTABLISHED GRASS COVER
201
IMPERVIOUS
15192.00
3
911.52
15192.00
STRAW -HAY MULCH
202a
PERVIOUS
5888.42
3
353.31
5888.42
STRAW -HAY MULCH
202a
IMPERVIOUS
43305.02
8
43305.02
21652.51
SILT FENCE BARRIER
202b
PERVIOUS
79480.78
3
4768.85
79480.78
STRAW -HAY MULCH
202b
IMPERVIOUS
27494.08
6
274.94
27494.08
PAVEMENT
203
PERVIOUS
28856.84
3
1731.41
28856.84
STRAW -HAY MULCH
203
IMPERVIOUS
27551.00
6
275.51
27551.00
PAVEMENT
204
PERVIOUS
58730.67
3
3523.84
58730.67
STRAW -HAY MULCH
204
IMPERVIOUS
87466.72
6
874.67
87466.72
PAVEMENT
300
PERVIOUS
21244.78
3
1274.69
21244.78
STRAW -HAY MULCH
300
IMPERVIOUS
7294.32
6
72.94
7294.32
PAVEMENT
301a
PERVIOUS
67375.00
3
4042.50
67375.00
STRAW -HAY MULCH
301a
IMPERVIOUS
10839.17
6
108.39
10839.17
PAVEMENT
301b
PERVIOUS
26316.00
3
1578.96
26316.00
STRAW -HAY MULCH
301b
IMPERVIOUS
35725.59
6
357.26
35725.59
PAVEMENT
302a
PERVIOUS
831.88
3
49.91
831.88
STRAW -HAY MULCH
302a
IMPERVIOUS
11105.90
6
111.06
11105.90
PAVEMENT
302b
PERVIOUS
3670.09
3
220.21
3670.09
STRAW -HAY MULCH
302b
IMPERVIOUS
22080.54
6
220.81
22080.54
PAVEMENT
303
PERVIOUS
147495.68
5
51623.49
147495.68
ESTABLISHED GRASS COVER
303
IMPERVIOUS
7504.00
3
450.24
7504.00
STRAW -HAY MULCH
304
PERVIOUS
60250.58
5
21087.70
60250.58
ESTABLISHED GRASS COVER
304
IMPERVIOUS
5767.00
3
346.02
5767.00
STRAW -HAY MULCH
305a
PERVIOUS
118949.73
5
41632.41
118949.73
ESTABLISHED GRASS COVER
305a
IMPERVIOUS
31158.00
3
1869.48
31158.00
STRAW -HAY MULCH
305b
PERVIOUS
133022.81
5
46557.98
133022.81
ESTABLISHED GRASS COVER
305b
IMPERVIOUS
19894.00
3
1193.64
19894.00
STRAW -HAY MULCH
306
PERVIOUS
28014.25
2
1400.71
28014.25
GRAVEL MULCH
306
IMPERVIOUS
87831.90
7
87831.90
70265.52
STRAW BALE, GRAVEL FILTER
307
PERVIOUS
84084.00
2
4204.20
84084.00
GRAVEL MULCH
307
IMPERVIOUS
124379.20
7
124379.20
99503.36
STRAW BALE, GRAVEL FILTER
' Nolte Associates, Inc.
M
n
11
M
308
PERVIOUS
22184.63
5
7764.62
22184.63
ESTABLISHED GRASS CO'
308
IMPERVIOUS
0.00
6
0.00
0.00
PAVEMENT
309
PERVIOUS
19593.09
5
6857.58
19593.09
ESTABLISHED GRASS CO'
309
IMPERVIOUS
19326.51
3
1159.59
19326.51
STRAW -HAY MULCH
310
PERVIOUS
43661.84
5
15281.64
43661.84
ESTABLISHED GRASS CO'
310
IMPERVIOUS
28870.53
3
1732.23
28870.53
STRAW -HAY MULCH
31la
PERVIOUS
44376.06
2
2218.80
44376.06
GRAVEL MULCH
31la
IMPERVIOUS
93631.55
7
93631.55
74905.24
STRAW BALE, GRAVEL FIL
311b
PERVIOUS
9552.80
2
477.64
9552.80
GRAVEL MULCH
311b
IMPERVIOUS
15162.18
6
151.62
15162.18
PAVEMENT
312a
PERVIOUS
196678.01
2
9833.90
196678.01
GRAVEL MULCH
312a
IMPERVIOUS
116139.20
7
116139.20
92911.36
STRAW BALE, GRAVEL FIL
312b
PERVIOUS
56213.80
3
3372.83
56213.80
STRAW -HAY MULCH
312b
IMPERVIOUS
36051.55
6
360.52
36051.55
PAVEMENT
313a
PERVIOUS
88889.62
3
5333.38
88889.62
STRAW -HAY MULCH
313a
IMPERVIOUS
116078.00
7
116078.00
92862.40
STRAW BALE, GRAVEL FB.
313b
PERVIOUS
32892.06
3
1973.52
32892.06
STRAW -HAY MULCH
313b
IMPERVIOUS
11643.98
6
116.44
11643.98
PAVEMENT
314
PERVIOUS
66338.38
5
23218.43
66338.38
ESTABLISHED GRASS CO'
314
IMPERVIOUS
4794.60
2
239.73
4794.60
GRAVELMULCH
315
PERVIOUS
13051.87
1
13051.87
11746.68
BARE SOIL
315
IMPERVIOUS
2658.00
2
132.90
2658.00
GRAVEL MULCH
400
PERVIOUS
58827.24
2
2941.36
58827.24
GRAVEL MULCH
400
IMPERVIOUS
60963.68
1
60963.68
54867.31
BARE SOIL
401
PERVIOUS
55015.41
3
3300.92
55015.41
STRAW -HAY MULCH
401
IMPERVIOUS
26221.33
2
1311.07
26221.33
GRAVEL MULCH
402
PERVIOUS
55622.03
3
3337.32
55622.03
STRAW -HAY MULCH
402
IMPERVIOUS
25607.00
2
1280.35
25607.00
GRAVEL MULCH
403
PERVIOUS
434976.81
5
152241.88
434976.81
ESTABLISHED GRASS CO,
403
IMPERVIOUS
35290.15
2
1764.51
35290.15
GRAVEL MULCH
404
PERVIOUS
53394.84
5
18688.19
53394.84
ESTABLISHED GRASS COI
404
IMPERVIOUS
3697.50
2
184.88
3697.50
GRAVEL MULCH
_ 500
PERVIOUS
192924.65
3
11575.48
192924.65
STRAW -HAY MULCH
500
IMPERVIOUS
0.00
6
0.00
0.00
PAVEMENT
501
PERVIOUS
191028.60
3
11461.72
191028.60
STRAW -HAY MULCH
501
IMPERVIOUS
0.00
6
0.00
0.00
PAVEMENT
502
PERVIOUS
36767.40
3
2206.04
367-67.40
STRAW -HAY MULCH
502
IMPERVIOUS
51919.88
7
51919.88
41535.90
STRAW BALE, GRAVEL FB.'
503
PERVIOUS
8367.00
3
502.02
8367.00
STRAW -HAY MULCH
503
IMPERVIOUS
29883.12
7
29883.12
23906.50
STRAW BALE, GRAVEL FB.'
600
PERVIOUS
56012.42
3
3360.75
56012.42
STRAW -HAY MULCH
600
IMPERVIOUS
16971.45
8
16971.45
8485.72
SILT FENCE BARRIER
601
PERVIOUS
61296.72
3
3677.80
61296.72
STRAW -HAY MULCH
601
IMPERVIOUS
24562.53
8
24562.53
12281.27
SILT FENCE BARRIER
602
PERVIOUS
9091.57
3
545.49
9091.57
STRAW -HAY MULCH
602
IMPERVIOUS
44708.88
8
44708.88
22354.44
SILT FENCE BARRIER
1000
PERVIOUS
305242.09
3
18314.53
305242.09
STRAW -HAY MULCH
1000
IMPERVIOUS
0.00
8
0.00
0.00
SILT FENCE BARRIER
Cnet = (250603.83'1+ ...+305242.09.0.05)/(250603.83+...+305242.09) _
Pnet = (250603.83'1+ ...+305242.09'1)/(250603.83+...+305242.09) _
EFF = (1-C'P)100 = (1-0.35-0.95)100
N:\FC0194\Drainage\Excel\[FC0194_Er0sion-Fort Collins.xls]PERFORMANCE
0.35
0.95
66.75
80.21 (PS)
Nolte Associates, Inc.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
Project#:
FC0194
Project Name:
2004 Fort Collins High School
Calculated By:
GAD
Date:
6/25/2002
STANDARD FORM B
B E'Y OND ENGINEERING
EROSION CONTROL
METHOD
C-FACTOR
VALUE
P-FACTOR
VALUE
COMMENTS
BARE SOIL
1
1.00
0.90
GRAVEL MULCH
2
O.05
1.00
STRAW -HAY MULCH
3
0.06
1.00
HYDRAULIC MULCH
4
0.10
1.00
ESTABLISHED GRASS COVER
5
0.35
1.00
PAVEMENT
6
0.01
1.00
STRAW BALE, GRAVEL FILTER
7
1.00
0.80
SILT FENCE BARRIER
1 8
1 1.00
1 0.50
SUB
BASIN
PS
%
AREA
ac
SITE
1 94.36
106.92
SUB
BASIN
SUB
AREA
AREA
ac
PRACTICE
C•A
P*A
REMARKS
100
PERVIOUS
0
5
0
0
ESTABLISHED GRASS COVER
100
IMPERVIOUS
250604
6
2506
250604
PAVEMENT
101
PERVIOUS
0
5
0
0
ESTABLISHED GRASS COVER
101
IMPERVIOUS
5370
6
54
5370
PAVEMENT
200
PERVIOUS
37795
5
13228
37795
ESTABLISHED GRASS COVER
200
IMPERVIOUS
15937
6
159
15937
PAVEMENT
201
PERVIOUS
42913
5
15020
42913
ESTABLISHED GRASS COVER
201
IMPERVIOUS
15192
6
152
15192
PAVEMENT
202a
PERVIOUS
5888
5
2061
5888
ESTABLISHED GRASS COVER
202a
IMPERVIOUS
43305
6
433
43305
PAVEMENT
202b
PERVIOUS
79481
5
27818
79481
ESTABLISHED GRASS COVER
202b
IMPERVIOUS
27494
6
275
27494
PAVEMENT
203
PERVIOUS
28857
5
10100
28857
ESTABLISHED GRASS COVER
203
IMPERVIOUS
27551
6
276
27551
PAVEMENT
204
PERVIOUS
58731
5
20556
58731
ESTABLISHED GRASS COVER
204
IMPERVIOUS
87467
6
875
87467
PAVEMENT
300
PERVIOUS
21245
5
7436
21245
ESTABLISHED GRASS COVER
300
IMPERVIOUS
7294
6
73
7294
PAVEMENT
301a
PERVIOUS -
67375
5
23581
67375
ESTABLISHED GRASS COVER
301a
IMPERVIOUS
10839
6
108
10839
PAVEMENT
301b
PERVIOUS
26316
5
9211
26316
ESTABLISHED GRASS COVER
301b
IMPERVIOUS
35726
6
357.
35726
PAVEMENT
302a
PERVIOUS
832
5
291
832
ESTABLISHED GP ASS COVER
302a
IMPERVIOUS
11106
6
111
11106
PAVEMENT
302b
PERVIOUS
3670
5
.1285
3670
ESTABLISHED GRASS COVER
302b
IMPERVIOUS
22081
6
221
22081
PAVEMENT
303
PERVIOUS
147496
5
51623
147496
ESTABLISHED GRASS COVER
303
IMPERVIOUS
7504
6
75
7504
PAVEMENT
304
PERVIOUS
60251
5
21088
60251
ESTABLISHED GRASS COVER
304
IMPERVIOUS
5767
6
58
5767
PAVEMENT
305a
PERVIOUS
118950
5
41632
118950
ESTABLISHED GRASS COVER
305a
IMPERVIOUS
31158
6
312
31158
PAVEMENT
305b
PERVIOUS
133023
5
46558
133023
ESTABLISHED GRASS COVER
305b
IMPERVIOUS
19894
6
199
19894
PAVEMENT
306
PERVIOUS
28014
5
9805
28014
ESTABLISHED GRASS COVER
306
IMPERVIOUS
87832
6
878
87832
PAVEMENT
307
PERVIOUS
84084
5
29429
84084
ESTABLISHED GRASS COVER
307
IMPERVIOUS
124379
6
1244
124379
PAVEMENT
Nolte Associates, Inc.
'
308
PERVIOUS
22185
5
7765
22185
ESTABLISHED GRASS COVER
30
IMPERVIOUS
0
0
0
PAVEMENT
309
PERVIOUS
19593
5
5
6858
19593
ESTABLISHED GRASS COVER
309
IMPERVIOUS
19327
6
193
19327
PAVEMENT
310
PERVIOUS
43662
5
15282
43662
ESTABLISHED GRASS COVER
310
IMPERVIOUS
28871
6
289
28871
PAVEMENT
311a
PERVIOUS
44376
5
15532
44376
ESTABLISHED GRASS COVER
'
311a
IMPERVIOUS
93632
6
936
93632
PAVEMENT
311b
PERVIOUS
9553
5
3343
9553
ESTABLISHED GRASS COVER
31lb
IMPERVIOUS
15162
6
152
15162
PAVEMENT
312a
PERVIOUS
196678
5
68837
196678
ESTABLISHED GRASS COVER
'
312a
IMPERVIOUS
116139
6
1161
116139
PAVEMENT
312b
PERVIOUS
56214
5
19675
56214
ESTABLISHED GRASS COVER
312b
IMPERVIOUS
36052
6
361
36052
PAVEMENT
'
313a
313a
PERVIOUS
IMPERVIOUS
88890
116078
5
6
311 I 1
1161
88890
116078
ESTABLISHED GRASS COVER
PAVEMENT
313b
PERVIOUS
32892
5
11512
32892
ESTABLISHED GRASS COVER
313b
IMPERVIOUS
11644
6
116
11644
PAVEMENT
'
314
314
PERVIOUS
IMPERVIOUS
66338
4795
5
6
23218
48
66338
4795
ESTABLISHED GRASS COVER
PAVEMENT
315
PERVIOUS
13052
5
4568
13052
ESTABLISHED GRASS COVER
315
IMPERVIOUS
2658
6
27
2658
PAVEMENT
400
PERVIOUS
58827
5
20590
58827
ESTABLISHED GRASS COVER
'
400
IMPERVIOUS
60964
6
610
60964
PAVEMENT
401
PERVIOUS
55015
5
19255
55015
ESTABLISHED GRASS COVER
401
IMPERVIOUS
26221
6
262
26221
PAVEMENT
402
PERVIOUS
55622
5
19468
55622
ESTABLISHED GRASS COVER
'
402
IMPERVIOUS
25607
6
256
25607
PAVEMENT
403
PERVIOUS
434977
5
152242
434977
ESTABLISHED GRASS COVER
403
IMPERVIOUS
35290
6
353
35290
PAVEMENT
404
PERVIOUS
53395
5
18688
53395
ESTABLISHED GRASS COVER
404
IMPERVIOUS
3698
6
37
3698
PAVEMENT
500
PERVIOUS
192925
5
67524
192925
ESTABLISHED GRASS COVER
500
IMPERVIOUS
0
6
0
0
PAVEMENT
501
PERVIOUS
191029
5
66860
191029
ESTABLISHED GRASS COVER
501
IMPERVIOUS,
0
6
0
0
PAVEMENT
'
502
PERVIOUS
36767
5
12869
36767
ESTABLISHED GRASS COVER
502
IMPERVIOUS
51920
6
519
51920
PAVEMENT
503
PERVIOUS
8367
5
2928
8367
ESTABLISHED GRASS COVER
503
IMPERVIOUS
29883
6
299
29883
PAVEMENT
'
600
PERVIOUS
56012
5
19604
56012
ESTABLISHED GRASS COVER
600
IMPERVIOUS
16971
6
170
16971 .
PAVEMENT
601
PERVIOUS
61297
5
21454
61297
ESTABLISHED GRASS COVER
601
IMPERVIOUS
24563
6
246
24563
PAVEMENT
'
602
PERVIOUS
9092
5
3182
9092
ESTABLISHED GRASS COVER
602
IMPERVIOUS
44709
6
447
44709
PAVEMENT
1000
PERVIOUS
305242
5
106835
305242
ESTABLISHED GRASS COVER
1000
IMPERVIOUS
0
6
0
0
PAVEMENT
'
(PS)
Cnet = (250603.83'1+ ...+305242.09'0.05)/(250603.83+...+305242.09) = 0.23
Pnet = (250603.83'1+ ...+305242.09'1)/(250603.83+...+305242.09) = 1.00
EFF = (1-C'P)100 = (1-0.23'1)100
=
'
«< 94.3636
N:\FC0194\Drainage\Exoel\[FC0194_Erosion-Fort Collins.xis]PERFORMANCE
'
' Notte Associates, Inc.
I
me
I
I
I
I
u
@
�
�
11
I
I
I
I
I
P
I
�
�
. .
I
�
CO
.
<
,
§
§'
@
,� |2
]
k=mm
e
2ef§;!! J
�k\
)!|kk\§{!{!;
§§t�l=!
2erE ;
W �m!!>
§|kla;A!!!ƒo
;�la!!;
>
6 k
0
A
1
11
11
l_ 1
' APPENDIX H
Charts Tables & Graphs
I
I
I
11
I
I
M
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
Table 3-3
RATIONAL METHOD RUNOFF COEFFICIENTS FOR COMPOSITE ANALYSIS
Character of Surface
Runoff Coefficient
Streets, Parking Lots, Drives:
Asphalt................................................................................................
0.95
Concrete.............................................................................................
0.95
Gravel.................................................................................................
0.50
Roofs..........................................................................................................
0.95
Lawns, Sandy Soil:
Flat<2%.............................................................................................
0.10
Average2 to 7%..................................................................................
0.15
Steep>740..........................................................................................
0.20
Lawns, Heavy Soil:
Flat<2%.............................................................................................
0.20
Average2 to 7%.................................................................................
0.25
Steep>7%..........................:...............................................................
0.35
MAY 1984 3-4
DESIGN CRITERIA
Table 3-4
RATIONAL METHOD FREQUENCY ADJUSTMENT FACTORS
Storrs Return Period Frequency Factor
(years) C,
2 to 10 1.00
11 to25 1.10
26 to 50 1.20
51 to 100 1.25
Note: The product of C times C, shall not exceed 1.00
No Text
1
M
' MAY 1984
1.0 — —
.9
s=06
F - 0.8
.8 t
.7
IL
cr
o .6
U
Q
tL
Z .
0 5
U
0
w 4
.3
.2
s:0.4%
F=0.5 I
I
I BELOW MINIMUM
ALLOWABLE
I STREET GRADE
.0
0 2 4 6 8 10 12 14
SLOPE OF GUTTER (%)
Figure 4-2
REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY
Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain
allowable gutter capacity.
(From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965)
4-4 .
DESIGN CRITERIA
I
r
11
Table 5-4
num CAPACITY REDUCTION FACTORS
Percentages of
D+a:^=^e Condition 'Inlet Type Theoretical Capacity
Su- or Continuous Grade C5oH Type R-Curb
Opening
5 80%
10' 85%
15' 90%
Street - Sump 4' Curb Opening 80%
Street - Continuous Grade 4' Curb opening 80%
Parking Lots, Medians Area Inlet 80%
The theoretical capacity of inlets in a low point or sumn shall be determined from
Figures 5-2 and 5-3.
The theoretical capacity of curb openings on a continuous grade shall be determined
from Figures 5-4, 5-5 and 5-6.
The standard curb -opening is illustrated by Figure 5-4 and is defined as having a
gutter depression apron W feet wide at the inlet opening which extends W feet upstream
-' and downstream from the opening, has a depression depth (a) equal to W/12 feet -at the
curb face, and a curb opening height (h) of at least 0.5 feet. The graph as presented
by Figure 5-5 is based on a depression apron width (W) equal to 2 feet and depression
width (a) equal to 2 inches. The pavement cross-section is straight to the curb face;
however, a street section with gutters cross -sloped steeper than the street can also
be analyzed using Figure 5-6. Since the figures are based on an inlet opening free of
obstructions, the reduction factors listed previously shall be utilized.
' DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE
tTable 5-1
CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP
Riprap % Smaller Than Intermediate Rock d*
' Designation Given.Size Dimension 5O
By Weight (Inches) (Inches)
' Type VL 70-100 12
50-70 9
35-50 6 V*
' 2-10 2
Type L 70-100 15
t 50-70 12
35-50 9 _9**
2-10 3
' Type M 70-100 21
50-70 18
35-50 12 12
' 2-10 4
Type H 100 30
_ 50-0 24
35-50 18 18
2=10 6
' Type VH 100 42
50-70 33
' 35-50 24 24
2-10 9
*d5O = Mean particle size
** Bury types VL and L with native top soil and revegetate to protect
from vandalism.
' 5.2 Wire Enclosed Rock
' Wire enclosed rock refers to rocks that are bound together in a
wire basket so that they act as a single unit. One of the major
' advantages of wire enclosed rock is that it provides an alternative in
situations where available rock sizes are too small for ordinary
' riprap. Another advantage is the versatility that results from the
regular geometric shapes of wire enclosed rock. The rectangular
blocks and mats can be fashioned into almost any shape that can be
' 11-15-82
1
1
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
DRAINAGE CRITERIA MANUAL
r
�4C
0
0
2C
RIPRAP
NONE
Diu
.m
ROMPROPORN
00
.2 A Y /D .6 .8 1.0
t
Use Do instead of D whenever flow is supercritical in the barrel.
**Use Type L for a distance of 3D downstream.
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
1
1
M.
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
DRAINAGE CRITERIA MANUAL
r-
a
7
Is
6 = Expansion Angle
No,
NA,
11
rm
FFAr
Emmommum
mrsimumm-m
mummmomm
.l .2 .3 .4 .5 .6 .7 .8
TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D
RIPRAP
FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS
11-15 -82
URBAN DRAINAGE & FLOOD CONTROL DISTRICT
1
1_
M
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DRAINAGE CRITERIA MANUAL
E•
RIPRAP
MEN
00
PAAFWA
MEN
N
ll
No
MENAVE
F
:Id
'A
mom
=ate
00
.2 .4 .6 .8 1.0
Yt/H
Use Ha instead of H whenever culvert has supercritical flow in the barrel.
-*-*Use Type L for a distance of 3H downstream.
FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR
CONDUIT OUTLET.
11-15 -82
URBAN DRAINAGES FLOOD CONTROL DISTRICT
1
1_
M
1
1
1
1
1
1
1
1
1
1
1
1
1
M
1
DRAINAGE CRITERIA MANUAL
8
7
4
z 3
0
ui
z
a
x 2
w
1
RIPRAP ;
I
A = Expansion Angle
0
VA
MF
N
For
0
9,
AMA
m
m
Emmmmmilmm
WA
WA A
.
ice
m
0
0
0
s
1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
TAILWATER DEPTH/ CONDUIT HEIGHT-Yt/H
FIGURE 5-10. EXPANSION FACTOR FOR RECTANGULAR CONDUITS
11-15-82
URBAN DRAINAGE S FLOOD CONTROL.DISTRICT
►1
R frp = D14 for circular pipes,
1 Rfi,11 = Af,111(2H+2w) for
rectangular pipes. when: w = width of a
rectangular conduit. all in feet. Then
V jyu .- QU11 / A full
1 in which: Vf = Flow velocity of the
Pipe flowing full. in feet per second
1 The normal depth of flow, d, and
the velocity at that depth in a conduit
can be found with the aid of Figure 2.
1 Using the known design discharge, O,
and the calculated pipe -full discharge.
Qf,u, enter Figure 2 with the value of
1 O/0fix and find &D for a circular pipe
or &H for a rectangular pipe.
Compare the value of this d/D (or
1 &H) with that obtained from Figure 3
using the Fronde parameter.. namely,
1 0/D2.s or .._0AW H1.5
Choose the smaller of the two d/D (or
d1R) ratios to calculate the flow depth at
the end of the -pipe, namely,
d=D-��)
or
d—H't./
1 -H
Again enter Figure 2 using the
1 smaller &D (or d/H) ratio to find the
.4/Afn ratio. Use this to calculate the
area of flow at the end of the pipe,
1 namely,, l
A = `� I : Ate.....
1 \- -
in which: A = Area of the design flow
1 in the end of the pipe, in square feet
Finally,
1 V-°�
A
which: V= Design flow velocity at
Pipe outlet, in feet per second.
1
Ending the Appropriate Riprap Size
Use Figure 4 to find the size and
type of the 7ipmp to use in the scour
protection basin downstream of the pipe
outlet [i.e.. HG (grouted H), H. M or L].
First calculate the riprap sizing design
parameter. Pa. -namely.
pd=(Vi.+S d).2...
in which: g = acceleration due to
gravity, 32.2 feet per second per second
When the riprap sizing design
Parameter indicates conditions that
place the design above the Type H
riprap line in Figure 4, use HG, or
larger, grouted rock. An alternative to
a grouted or loose nprap basin is to use
the standard Bureau of Reclamation
Basin Vi, a reinforced concrete impact
structure, to dissipate the energy in the
flow at the outlet of the pipe.
After the riprap size has been
selected, the minimum thickness of the
nPrap laver,: T in feet in the basin is set
1:1
- .1.0
0.9.
`- :.0.8
Q
Q . 0.7
0 0.6
0.5
0.4
0..3 '
0.2
0.1
11
at
T =1.75 • D50
in which: DJo = the median size ofthe
nprap (see "Table .1).
Table 1. Median (Dso) Rock Size of
Urban Drainage District Riprap.
Riprap Type
Median Size (Inches)
L
9
M
12
HA HG 1
18
Finding the Basin Length
The minimum length of the basin.
Lin Figure 1, is defined. as being the
t r of the following lengths:
For circular pipe,
V
L =4D or L=(D) 2 — ...
----------------------------------------
- - -- - :- :- ; - -
- ;ICircular !r- --: -
--- -- - ,y ll
-------/'~ - '-
jaAwn �� .lRectangular i
'Rectangular
I - .'i�� — - --. ----------
----------- --------------
-------------------------
' s� lCircular
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
&D or &H
Figure 2: Discharge and Flow Ara Relationships for Circular and Rectangular
Pipes (Ratios for flow based on Manning's n varying with depth)
12
For rectangular pipe.
Step 3. Using the Q10
ja = 0.88 ratio.
Figure 2 gives d1D = 0.82 for. a circular
L = 4H or L = (H)
Step 4. Calculate: DID' = 2.81. Use
this in Figure 3to find &D = 0:57.
Finding the Basin Width
The minimum width. JV of the
Step S. Since the smaller of the two
basin downstream of the pipe's flared
&D ratios is 0.57, use it to calculate
end section is set at:
depth, 4 at the outlet and then in
Figure 2 to find the ratio fbrAAfdj
For circular pipes-
0.59.
W = 4 D
d = (dID) , D = 0.57.4.0 = 2.28 feet
For rectangular pipe:
Step6 Using the -4lAfu = 0.59 ratio,
calculate flow area andvelocity at the
.W.t4H
end of the pipe:
Other. DesignRequirements
A'WAftu)._- Afff (0.59) (It 2.0-)
7.41 square feet
• All slopes in the preshaped
......
nprapped basin are 2H to IV.
v = (QIA) (90) (7.41) = 12.1 feet
Provide pipe joint fasteners and a
" per second
structural concrete-cutoffwafl. at
the end of the flared end d: section for
* *'
.'Slep.7' Calculate the nprap sizing
a circular or a headwall
pipe- with
design parameter. Pd ., and use it in
wing walls and a paved bottom
'both
-
Fjgurew4_t6'find the appropriate nprap,
teen the walls. -with a
cutairwall.thativ=tisdown toa
V
depth of
D -H
Pd- (T;r2 +
2
B=-+Tor B=-+T
The
nprap must be caended up
the Outlet embankment's slope to
the mid -pipe leveL
Er2mples
Eramole 1- Circular vine on a
relatively at slope
Given:
Design flow, Q = go cfs.
Tailwater depth, yt = 1.0 feet
Pipe Diameter D = 4,0 feet:
Slope S = 0.005 ft/ft
Nbilning's n = 0.013
Step L Determine if method is
applicable: y, < D13; namely, low
tailwater.
Step 2 Calculate the capacity of the
P,pi: flowing fall: 0 j.,, = 102 cfs is
0 0 n
und using the Mmming's Equation
I
(I2_1'+32.2-Z28)1r-:= 14.8;
Use Typ
e pe L:Riprap
Step 8. Calculate the minimum
thickness of the riprap layer for D.10 = 9
inches:
T= 1.75 - 9.0 = 15.75 inches
Use T= 16 inches.
Step 9 Find the length of the basm
namely the greater of the
following two
lengths:
L =(D =4Y2 (12.1 /2)
12.1 feet
L = (d1D) - D = 4 - 4 16 feet
(Greater of the two: use this value.)
Step 10. Find the width of the nprap
basin.
W=4-D=4:-416 feet.-`
1.0
0.9
0.8 C11D
0.7
0.6
0 0.5
Q- 04
0.3 '�►I y!Iil
0.2 - 0.1
0.0
0.0 2.0 4.0 6'. 0 8.-0
QI025 or, Q1w H1-5
Figure 3: Brink Depth for Horizontal pipe outlets
W]
Erm Die 2 - Rectangular Dipe on a
'
fairiv steep slope.
Given:
Design flow O = 300 cfs:
Tawwater depth v, = 1.0 feet
Box -Height H= 4.0 feet
'
Width-w='5.0 feet
Slope S = 0.05 f /ft;
Manning's n = 0.013
' Step 1. Determine if method is
applicable: y, < H13: namely, low
tailwater.
' Step 2 Calculate the capacity of the
pipe flowing full:
' O,.0 = 426 cfs is found using the
Mannin& Equation.
'Step 3. Using the O/O� = 0.70 ratio,
Figure2.gives the.ratio d/H= 0.73.
' Step 4. Calculate OiwH" = 7.50 and
use this in Figure 3 to find d/H = 0.94.
40 Step 5. Since the smaller of the two
d/H ratios.is 0.73, use it to find the
depth, d,.at the outlet and in Figure 2 to
find the =tio ofA/Af„ a = 0.73.
' d=_0.73 A.0.=2.92 feet .
' Step 6. UsingA/Af„n = 0.73 ratio,
rdiailate the flow area and velocity at
.the end of the pipe:
' A=A/Af„Q • Af„u = (0.73) • (4.5) _
14.6 square feet
V = O/A = (300) / (14.6) = 20.5 feet per
second
Step 7. Calculate the riprap sizing
design parameter, Pd , and use it in
Figure 4 find the appropriate riprap
' size: -...
Pd = (20-5 +32.2 2.92) 22.7;
Use Type M Riprap
Step 8. Caltailatw the minimum
Wthiu9cress of the riprap laver for Dso =
inches
T=1.75 • 12.0 = 21 inches.
Step 9. Find the length of the basin,
namely the greater of the following two
lengths:
L=4•H=16feet
L=WH ).•(VP-)=4ic.-(20.5/2)=
20.5 feet (use this length)
Step 10. Find the width of the riprap
basin:
W=w=4H=5+4.4=21feet
Acknowledgments
The authors express their
appreciation to Bill DeGroot and Bryan
Kohlenberg, Urban Drainage and Flood
Control District and Besharah Najjar,
30
to
25
a) .20
N ..
E
0
0 15
a.
C
10
N
0
loss
Adams County Engineering
Department for their review and
suggestions; to Bryan for the
preparation of the design examples: and
to Ken McKenzie and Vmce VigiL the
District's student interns for the
preparation of the,graphics...
References
The information on circular pipes
in Table 2 was taken from: Chow. Ven
Te (1959). Open -channel Hvdraulics.
McGraw-Hill Book Company. Inc..
New York. page 135.
The information on brink depth
for mild slopes and size of riprap is
taken from: Stevens. M.A., (1969).
Scour In Riprap At Culvert Outlets
PhR dissertation. Civil Engineering
Department, Colorado State University.
Ft. Collins, Colorado.
-_====:`Riprop Type------------------
H a
RIM
L
1 2 3 4
Storm Sewer Diameter,
5 6 7 8
D, or Height, H, in ft.
Figure 4: Riprap selection chart for
low tailwater basin at pipe outlets
14
NOTE: When specifying or ordering grates -
Please refer to "CHOOSING THE PROPER INLET GRATE" on pages 108 and 109.
'
R-2560 Series
Beehive Grates with Frames
Suitable for drainage in circumstances where clogging of a flat grating is
a problem.
Excellent for
roadside or earth ditch catch basins.
Furnished standard with as -cast bearing surfaces.
'
Dimensions In Inches
Catalog
Frame
No. A
8
C
E
F
G
Reference
R-2560-A 12
1
11
19
4
4
R-1791-A
'
R-2560-C 18
11/4
161/2
30
8
4
R-1900-A
R-2560-C1 22
11/2
20
28
4
4112
R-1690
R-2560-C2 22
11/2
201/2
281/4
6
41/2
R-1761
'
R-2560-D 22
11/2
20
35
9
41/2
R-1710
R-2560.01 22
1 1/2
20
28
4
7
R-1690
R-2560.02 22
11/2
20112
281/4
6
7
R-1761
11-2560-133 22
11/2
20
35
9
7
R-1710
R-2560-05 22 3/4
1 1/2
21 1/4
34
4
41/2
R-1647-A
R-2560-1016 22 3/4
1 1/2
21
34
9
4 1/2
R-1713
R-2560-137 22 3/4
1 1/2
21 1/4
34
4
7
R-1647-A
R-256D-08 22 N4
1 1/2
21
34
9
7
R-1713
'
R-2560-E 23
1 1/2
21
36
9
7
R-1550-A
R-2560-EA 25 3V4
7/8
241/8
351/2
4
6
R-1733-1
R-2560-EB 25 3/4
718
241/8
351/2
4
9
R-1733-1
'
R-2560-El 25 314
7/8
241/g
351/2
7
6
R-1733
a-9CAM" 25 3i4
7/8
2418 /
351/2
7
9
R-1733
R-2560-E5
R-2560-E6
R-2560-F7
R-2560-EB
R-2560-E9
'
R-256D-El
R-256D-G
1
1
1
1
1
M
25 3/4
7/8
241/8
35 1/2
8
6
R-1733-A
25 3/4
7/8
241/8
35 1/2
8
9
R-1733-A
25 3/4
7/8
241/8
35 1/2
9
6
R-1733-B
25 3/4
7/8
241/8
351/2
9
9
R-1733-B
25 314
7/8
241/8
351/2
10
6
R-1733-C
25 3/4
7/8
241/8
351/2
10
9
R-1733-C
32
1 1h
30
46
7
4
R-1740-B
A
a
Illustrating R-2560-E
' N EENAH 1S ' 99
FOUNDRY COMPANY
' iNOTE: When specifying or ordering grates -
(Please refer to "CHOOSING THE PROPER INLET GRATE" on pages 108 and 109.
'-2561
igh Beehive Grate and Frame
25 314
2:
' 36 m 6' Uses R-1733 frame.
t2561 -A
Same as R-2561 except with e- oeehive
te. .rnished Bandar_ with as-ca_: cea :ng surfaces.
ive Grate —and Frame
'signed to fit in cell of 24" sev. a c:oe.
Fumished standard :with as-cas: _earmg surfaces.
1
1 /
r2564
ehiv
ehive Grate an ie
Designed to fit ir. oe:i of 24" sev.e- cce. N a_
�nished stand=_rc with as -cast cea ng surfaces. '
A
T-C\ `--20,
264 -�
0
Uses
Uses 13-1761 frame.
�0 NEENAH
P
1
1
' APPENDIX I
1
Excerpts from other Reports
11
I
I
I
1
M
1
.
. CO
�Qw MONO
co
LU
1JsJ
�A'o4x 4
§��
&72
LLJ
J W
Cf)
.
k
2
. .
:249
VYI.1¥f4 24,
§%U�
N
22
v�
.
�
�
ko
$
-
�
k�
�
.
.
.
q.$k.
\
r
.
�
\&
�Kton
k
�zz8ejz2
2z
m�
22
.
<.
.
: An
.22�
k�
k.��
�
-
Ot%&k
1 .5T9
i
�^ STORM SEWER'SYSTEM DESIGN USING UDSEWER MODEL
Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver
Metro Denver Cities/Counties & UDFCD Pool Fund Study
1 USER TST Inc Consulting Engineers. A
ON.DATA 06-20-2001 AT TIME 15:56:21 VERSION=07-17-1995
1 *** PROJECT TITLE :Willow Brook ST-9 Ultimate
*** SUMMARY OF HYDRAULICS AT MANHOLES
i
1
1
i
1
1
F
i
1
1
1
--------------------------------------------------------
MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS
ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION
MINUTES INCH/HR CFS FEET FEET
1.00
0.00
0.00
2.00
294.44
270.56
3.00
280.67
253.97
4.00
13.77
51.76
5.00
12.82
46.41
6.00
253.13
276.21
7.00
55.08
403.33
8.00
41.31
276.64
9.00
27.54
161.12
10.00
13.77
60.85
11.00
12.82
54.72
12.00
185.22
231.23
13.00
172.40
210.18
14.00
158.63
188.05
15.00
14.71
111.47
16.00
0.94
5.00
17.00
130.14
175.50
i8.00
117..32
152.56
z=19:OC
`' '14r71'
1238.15
20:00
- 0.94
'5.00
23.00
12.82
5.13
`24:00
_91.67
555.65
25.00
64.13
562.23
26.00
51.30
420.80
27.00
38.47
288.76
28.00
25.65
168.36
29.00
12.82
63.84
OK MEANS WATER ELEVATION
IS LOWER
*** SUMMARY OF SEWER HYDRAULICS
0.00
---------------------------------
139.90
4871.40
4871.40
OK
0.48
139.90
4878.50
4871.41
OK
0.50
139.90
4895.70
4880.63
OK
1.56
21.50
4894.00
4883.37
OK
1.68
21.50
4894.00
4884.69
OK
0.47
118.40
4896.60
4882.54
OK
0.35
19.30
4894.80
4883.52
OK
0.47
19.30
4892.30
4883.82
OK
0.70
19.30
4892.20
4884.10
OK
1.40
19.30
4889.75
4884.39
OK
1.50
19.30
4889.75
4884.79
OK
0.54
99.10
4896.00
4888.95
OK
0.57
99.10
4899.50
4890.67
OK
0.62
99.10
4899.80
4892.37
OK
0.92
13.50
4898.00
4893.68
OK
14.29
13.50
4898.00
4893.76
OK
0.66
85.60
4902.60
4894.64
OK
0.73
85.60
4906.20
4895.75
OK
7 0.'52
. ' 7.70
4904.•00.
-4898.70
OK'
8.15
7..70
4904..00.
4898..73
OK
4.72
60.50
4906.00
4896.16
OK
0.27
:25.10
4906.60
4898.06
OK
0.27
17.40
4908.60
4900.49
OK
0.34
17.40
4910.50
4902.87
OK
0.45
17.40
4912.50
4905.25
OK
0.68
17.40
4912.90
4905.58
OK
1.36
17.40
4913.00
4905.82
OK
THAN GROUND ELEVATION
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85
SEWER
MANHOLE NUMBER
----------------------------------------
SEWER
REQUIRED
SUGGESTED
EXISTING
ID NUMBER
UPSTREAM
DNSTREAM
SHAPE
DIA(RISE)
DIA(RISE)
DIA(RISE)
WIDTH
ID NO.
ID NO.
------------------------------------------------------
(IN) (FT)
(IN) (FT)
(IN) (FT)
(FT)
12.00
2.00
1.00
ROUND
47.53
48.00
54:00
0.00
23.00
3.00
2.00
ROUND
40.66
42.00
54.00
0.00
34.00
4.00
3.00
ROUND
18.16
21.00
21.00
0.00
45.00
5.00
4.00
ROUND
18.16
21.00
21.00
0.00
36.00
6.00
3.00
ROUND
48.41
54.00
54.00
0.00
1
1
-67.00
7.00
6..00
ROUND
29.33
30.00
30.00
0.00
'78.00
8.00
7.00
ROUND
29.33
30.00
30.00
0.00
89.00
9.00
8.00
ROUND
29.33
'30.00
30.00
0.00
910.00
10.00
9.00
ROUND
29.33
30.00
30.00
0.00
1011.00
11.00
10.00
ROUND
29.33
30.00
30.00
0.00
'
612.00
12.00
6.00
ROUND
36.03
42.00
54.00
0.00
1213_00
13.00
12.00
ROUND
49.60
54.00
54.00
0.00
1314..00
14.00
13.00
ROUND
49.60
54.00
54.00
0.00
1415.00
15.00
14.00
ROUND
22.52
24.00
24.00
0.00
'
1516.00
16.00
15.00
ROUND
22.52
24.00
24.00
0.00
1417.00
17.00
14.00
ROUND
46.95
48.00
48.00
0.00
1718.00
18.00
17.00
ROUND
46.95
48.00
48.00
0.00
'
1123,00
1824.00
23.00
24.00
11.00
18.00
ROUND
ROUND
41.22
30.55
42.00
33.00
48.00
36.00
0.00
0.00
42419..'00
=19.00
24.00
'ROUND
19.03
21.00
24.00
0.00
':1920,._00
20.00
.19.00
ROUND
-19...03
:21,.00
:24.00
-0.00
2425.00
25.00
24.00
ROUND
26.63
27.00
24.00
0.00
'
2526.00
26.00
25.00
ROUND
26.63
27.00
24.00
0.00
2627.00
27.00
26.00
ROUND
26.63
27.00
24.00
0.00
2728.00
28.00
27.00
ROUND
26.63
27.00
24.00
0.00
'
2829.00
29.00
28.00
ROUND
26.63
27.00
24.00
0.00
DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX
SEWER ARE
IN FEET
'
REQUIRED DIAMETER WAS DETERMINED
BY SEWER
HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED
BY COMMERCIALLY
AVAILABLE
SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE
SUGGESTED SEWER SIZE;
OTHERWISE,
'
EXISITNG SIZE WAS USED
-------------------------------------------------------------------------------
SEWER DESIGN FLOW
NORMAL
NORMAL
CRITIC
CRITIC
FULL
FROUDE
COMMENT
ID FLOW Q FULL Q
DEPTH
VLCITY
DEPTH
VLCITY VLCITY
NO.
'
--NUMBER
--------------------------------------------------------------------------
CFS CFS
FEET
FPS
FEET
FPS
FPS
12.0
139.9 197.2
2.80
13.45
3.48
10.61
8.80
1.54
V-OK
23.0
139.9 299.0
2..16
18.48
3.48
10.61
8.80
2.51
V-OK
34.0
21.5 31.8
1.05
14.19
1.60
9.31
8.94
2.66
V-OK
45.0
21.5 31.8
1.05
14.19
1.60
9.31
8.94
2.66
V-OK
36.0
118.4 159:0
2.89
10.96
3.19
9.83
7.44
1.22
V-OK
67.0
19.3 20.6
1.92
4.76
1.49
6.35
3.93
0.60
V-OK
78.0
19.3 20.6
1.92
4.76
1.49
6.35
3.93
0.60
V-OK
89.0
19.3 20.6
1.92
4.76
1.49
6.35
3.93
0.60
V-OK
910.0
1011.0
19.3 20.6
19.3 20.6
1.92
1:92
4.76
4.76
1.49
1.49
6.35
6.35
3.93
3.93
0.60
0.60
V-OK
612.0
99.1 292.5
1.81
16.61
2.92
9.08
6.23
2.52
V-OK
V-OK
1213.0
99.1 124.7
3.03
8.70
2.92
9.08
6.23
0.93
V-OK
1314.0
99.1 124.7
3.03
8.70
2.92
9.08
6.23
0.93
V-OK
'
1415.0
13.5 16.0
1.41
5.72
1.32
6.14
4.30
0.89
V-OK
1516.0
13.5 16.0
1.41
5.72
1.32
6.14
4.30
0.89
V-OK
1417.0
85.6 91.1
3.08
8.24
2.83
9.00
6.81
0.83
V-OK
'
1718.0
85.6 91.1
3.08
8.24
2.83
9.00
6.81
0.83
V-OK
1823.0
60.5 91.1
2.38
7.76
2.34
7.93
4.81
0.97
V-OK
1824.0
25.1 39.0
1.75
5.86
1.63
6.42
3.55
0.86
V-OK
^2419 ,02 3
,7:7 ,:` •'14:3-
'-1: 04
' 4. 65
1.01 _
--4. 83 - •
2: 45
0: 90
V-OK
'
1920.-0`",
7'.7 14.3-
1.04
4.65
1.01 ..
4.83
2.45
0.90
V-OK:
2425.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
2526.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
2627.0
17.4 13.2
2..00
5.54
1.50
6.87
5.54
0.00
V-OK
N
2728.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
2829.0
17.4 13.2
2.00
5.54
1.50
6.87
5.54
0.00
V-OK
w
1]
1
J
1
FROUDE.NUMBER=O INDICATES THAT 'A PRESSURED FLOW OCCURS
SEWER
-------------------------------------------------------
SLOPE
INVERT ELEVATION
BURIED
DEPTH
COMMENTS
ID NUMBER
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
----------------------------------------------------------------------
%
(FT)
(FT)
(FT)
(FT)
.12.00
1.00
4867.23
4867.00
6.77
-0.10
NO
23.00
2.30
4877.15
4870.94
14.05
3.06
OK
.34.00
4.00
4881:77
4879.64
10.48
14.31
OK
45.00
4.00
4881.79
4881.75
10.46
10.50
OK
36.00
0.65
4879.20
4877.15
12.90
14.05
OK
67.00
0.25
4881.47
4881.22
10.83
12.88
OK
78.00
0.25
4881.80
4881.47
8.00
10.83
OK
89.00
0.25
4882.10
4881.80
7.60
8.00
OK
910.00
0.25
4882.30
4882.10
4.95
7.60
OK
1011.00
0.25
4882.31
4882.31
4.94
4.94
OK
612.00
2.20
4886.03
4879.43
5.47
12.67
OK
1213.00
0.40
4887.63
4886.03
7.37
5.47
OK
1314.00
0.40
4889.30
4887.63
6.00
7.37
OK
1415.00
0.50
4890.00
4889.80
6.00
8.00
OK
1516.00
0.50
4890.01
4890.00
5.99
6.00
OK
1417.00
0.40
4891.10
4889.30
7.50
6.50
OK
1718.00
0.40
4892.60
4891.10
9.60
7.50
OK
1823.00
0.40
4892.78
4892.59
9.22
9.61
OK
1824.00
0.34
4895.63
4895.15
7.97
8.05
OK
_'24-19:.:00
0.40 .
-4896.00
4895.64
6.00
8.96
OK
=;19201-0.0..
0.40
..4896.01
4896.01
'5.99
5.99
OK
2425.00
0.34
4896.99
4895.63
9.61
8.97
OK
2526.00
0.34
4898.35
4896.99
10.15
9.61
OK
2627.00
0.34
4899.71
4898.35
10.79
10.15
OK
2728.00
0.34
4899.89
4899.71
11.01
10.79
OK
2829.00
0.34
4900.02
4899.89
10.98
11.01
OK
OK MEANS BURIED
DEPTH
IS GREATER THAN REQUIRED SOIL
COVER OF
1 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER
SEWER
SURCHARGED
CROWN ELEVATION
WATER ELEVATION
FLOW
ID NUMBER
LENGTH
LENGTH
UPSTREAM
DNSTREAM
UPSTREAM
DNSTREAM
CONDITION
---------------------FEET
FEET
------
FEET
FEET
FEET
FEET
12.00
22.50
0.00
------------------------------------------
4871.73
4871.50
4871.41
4871.40
JUMP
23.00
270.00
0.00
4881.65
4875.44
4880.63
4871.41
JUMP
34.00
53.22
0.00
4883.52
4881.39
4883.37
4880.63
JUMP
45.00
1.00
0.00
4883.54
4883.50
4884.69
4883.37
JUMP
36.00
315.69
0.00
4883.70
4881.65
4882.54
4880.63
JUMP
67.00
101.35
0.00
4883.97
4863.72
4883.52
4882.54
SUBCR
78.00
131.40
0.00
4884.30
4883.97
4883.82
4883.52
SUBCR
89.00
120.97
0.00
4884.60
4884.30
4884.10
4883.82
SUBCR
910.00
80.00
0.00
4884.80
4884.60
4884.39
4884.10
SUBCR
1011.00
1.00
0.00
4884.81
4884.81
4884.79
4884.39
SUBCR
612.00
300.00
0.00
4890.53
4883.93
4888.95
4882.54
JUMP
1213.00
400.00
0.00
4892.13
4890.53
4890.67
4888.95
SUBCR
1314.00
417.96
0:00
4893.80
4892.13
4892.37
4890.67
SUBCR
1415.00
40.60
40.00
4892.00
4891.80
4893.68
4892.37
PRSS'ED
1516.00
1.00
1.00
4892.01
4892.00
4893.76
4893.68
PRSS'ED
1417.00
450.00
0.00
4895.10
4893.30
4894.64
4892.37
SUBCR
1
1718.00 374.42
0.00
1816.60
1115,11
1195.75
4194.64
SUBCR
1823.00
46..35
0.00
4896.78
4896.59
4896.16
4895.75
SUBCR
1824.00 139.72
0.00
4898.63
4898.15
4898.06
4895.75
SUBCR
.2419-00
91.14
91.14
4898.00
4897.64
4898.70
4898.06
PRSS'ED
1920.00
1.00
1.00
4898.01
4898.01
4898..7.3
4898:70.PRSS'.ED
'
2425.00 400.00
400.00
4898.99
4897.63
4900.49
4898.06
PRSS'ED
2526.00 400.00
400.00
4900.35
4898.99
4902.87
4900.49
PRSS'ED
2627.00 400.00
400.00
4901.71
4900.35
4905.25
4902.87
PRSS'ED
2728.00
52.31
52.31
4901,89
4901.71
4905.58
4905.25
PRSS'ED
'
2829.00
37.28
37.28
4902.02
4901.89
4905.82
4905.58
PRSS'ED
PRSS'ED=PRESSURED FLOW;
JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL
FLOW
'
*** SUMMARY OF
ENERGY GRADIENT
LINE ALONG
SEWERS
-------------------------------------------------------------------------------
UPST
MANHOLE
SEWER
JUNCTURE LOSSES
DOWNST MANHOLE
SEWER MANHOLE
ENERGY
FRCTION
BEND
BEND LATERAL LATERAL
MANHOLE
ENERGY
ID NO ID NO.
--------------------------------------------------------
ELEV FT
FT
K COEF LOSS FT K
COEF LOSS FT
ID
FT
'
12.0 2.00
4872.61
1.21
0.35
0.00
0.00 0.00
1.00
4871.40
23.0 3.00
4882.37
9.52
0.20
0.24
0.00 0.00
2.00
4872.61
34.0 4.00
4884.72
1.09
1.01
1.25
0.00 0.00
3.00
4882.37
'
45.0 5.00
36.0 6.00
4885.93
4883.40
0.90
0.00
0.25
0.05
0.31
0.04
0.00 0.00
0.25 0.99
4.00
3.00
4884.72
4882.37
67.0 7.00
4883.91
0.26
1.01
0.24
0.00 0.00
6.00
4883.40
78.0 8.00
4884.15
0.22
0.08
0.02
0.00 0.00
7.00
4883.91
89.0 9.00
910.0 10.00
1011.0
4884.44
4884.72
0.27
0.18
0.08
0.46
0.02
0.11
0.00 0.00
0.00 0.00
8.00
9.00
4884.15
4884.44
11.00
4885.03
0.25
0.25
0.06
0.00 0.00
10.00
4884.7-2
612.0 12.00
4890.23
6.08
0.05
0.03
0.25 0.71
6.00
4883.40
1213.0 13.00
4891.86
1.60
0.05
0.03
0.00 0.00
12.00
4090.23
'
1314.0 14.00
4893.54
1.64
0.05
0.03
0.00 0.00
13.00
4891.86
1415.0 15.00
4893.97
0.14
1.01
0.29
0.00 0.00
14.00
4893.54
1516.0 16.00
4894.04
0.00
0.25
0.07
0.00 0.00
15.00
4893.97
'
1417.0 17.00
4895.69
1.70
0.05
0.04
0.25 0.42
14.00
4893.54
1718.0 18.00
4896.81
1.08.
0.05
0.04
0.00 0.00
17.00
4895.69
1823.0 23.00
4896.72
0.00
1.01
0.36
0.00 0.00
18.00
4896.81
1824.0 24.00
4898.59
1.10
0.05
0.01
0.25 0.67
18.00
4896.81
'
2419.0 19.00
4898.79
0.10
1.01
0.09
0.00 0.00
24.00
4898.59
1920.0 20.00
4898.82
0.00
0.25
0.02
0.00 0.00
19.00
4898.79
2425.0 25.00
4900.97
2.35
0.05
0.02
0.00 0.00
24.00
4898.59
'
2526.0 26.00
2627.0 27.00
4903.35
4905.72
2.35
2.35
0.05
0.05
0.02
0.02
0.00 0.00
0.00
25.00
4900.97
0.00
26.00
4903.35
2728.0 28.00
4906.06
0.31
0.05
0.02
0.00 0.00
27.00
4905.72
2829.0 29.00
4906.30
0.22
0.05
.0.02
0.00 0.00
28.00
4906.06
BEND LOSS =BEND K* FLOWING FULL VHEAD IN
SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS
K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS
IT IS NEGLIGIBLE OR
POSSIBLE
ERROR DUE TO JUMP.
FRICTION LOSS
INCLUDES
SEWER INVERT DROP
AT MANHOLE
NOTICE: VHEAD
DENOTES
THE VELOCITY HEAD
OF FULL FLOW CONDITION.
A MINIMUM JUCTION LOSS
OF 0.05 FT WOULD BE INTRODUCED
UNLESS LATERAL K=O.
'
FRICTION LOSS
WAS ESTIMATED
BY BACKWATER
CURVE COMPUTATIONS.
No Text
i
I I I
I +
1
*%
i , 1 1 1
n
+ 1
P 4
r� k
!E
7 i
6
7 Ir I,
F
+
t/1R
,
l
Wz o !
!
Z
0
4 BSc W
,m o 0
I
I
a *- _ z�s »
III m �
�e
oZ
Oa
J
= a
U W
U z
2
CE3 0
J
J
W
O
00
N
w
0
O
U
N
6
O
W
6
s
�g
City of Port CoDiw, Colorado W
SITE MAN ADVISORY REVIEW APPROVAL m
maD,��
Po.
L
UNDERDRAIN DETAIL
Y+9d9iJ: '
runs
HORIZONTAL/SHALLOW DEPTH
INSTALLATION
/ � 9D6vW
a\rrJ
I bMe I A 1 9 C 1 D W I
CLASS C BEDDING CLASS B BEDDING UNSTABLE SUBGRADE
d�y
Bxw Q.
Disney P�Iv
Ca^BeaB cruse + Unxmm 6oaw -
em m
1 im Rai
Ce l.Nerw Gwv (Y MW.) 4M sorted Bonaaer�lY
uaterla or man la• mid.) lose M, Here:
Concert{ Etc (K Rpip)
General Notes:
I. Trench Widths Man be as speed" 2. Be = Outside Pipe Dlorn~, 3, Refer to the storm drainage construction standards. section 6.
on plans. "Bedding Natenoli for gradations.
STORM DRAIN BEDDING
���C fSW lMRS+
wlaw
lsj54f1r
�kA's'1'µ%O1%'
KAtis9Ni t
We m
WLYFtR
NLtlN59:^ILN
IYmIRR A
5
T
ay
IP m
a
e
r
r
s
n>
:
zr.
Im
ctvE.-w. roes. cue3xNrs
grHAIDJS.VaY[ JST: hMCW. Mi@153h5 WvIMSL N N"OS
,-TV ndUA33f blN.x NaIN'.m AI�G'Ala'•WWJWIW6GN9Merp sr e�rvM�LN11E 0"ISMW.Y !•USE 6yy AT0.W%I\IK:.I.RS
IRAs.304Gp.NSGSROIG51fKKNGE[WEES5.ppWYlY 4,gM4pulp.VMy;nunwu[YJJC. �. INYNrs Q1116 „R496<O�i�TTXMN f[CNnf9Ca1U0WW
'O'sLl.:JsxS x3EW WA'C.�3'O C4W NI.S. VYYYSSAeENSUG+wE Nil +gI.FlWF(.S1WARa K"..Cn M¢9M1:M541A5Xi..a.
TRASH RACK DETAIL
N.,i
WAMMUM!
cum
� rye ee. an" cl
rY --I
ME STue.W u_JM-lo WITH
I•mi5lw.w GRAW
OUTLET SVUCTURE
NJS
YDRo
BIOSWALE MANHOLE DETAIL
AT.S
err..
Km I
0
We
PIW NEW
�.
SECTOR A -A
SECTOR a-9
x'.
'
METq 9DEW
LOR VALIFI
aasvae
SIDEWALK
aasin
Design Point
BasnAn•
plus••:
O1m.s••r
100
100
5.>6
20.88
A1.11
101
1 101
1 0.12
OWN
O.BS
200
1 200
1.23
if
1.50
4.27
201
201
1.33
1.99
5.43
202a
202•
1 1.14
3.05
11.00
203
203
1.29
2.03
2.27
204
1 204
1 3.36
4.22
11.06
300
0.68
0.72
1.91
301a
1.80
I.55
•.21
3016
1.•2
3,09
8,37
302m
0.2]
1.20
2.73
302b
0.59
2.05
5.14
303
3.56
1,99
524
304
1.52
0,98
2,61
305a
M305b3.51
3.t5
3.87
love
S056
3.51
3.14
A3
306
2.66
9.51
25A2
307
A.72
26
96.•2
303
0.51
0.11
1.08
309
0.89
2,26
6,24
310
1.6T
3.43
9.51
11e
3.1T
0.01
27.38
Ito
311h
1 0.67
1.85
4.79
12a
312•
7.18
11.39
32.04
12D
3121b
2.12
A54
F16
13e
510•
6.11
9.90
30.0
313b
3136
1.02
1.11
3.10
314
314
1.03
1.55
s.12
315
315
0.36
0.61
1.30
doe
400
2.75
5.76
16.69
400
400
2.75
5.36
16.69
401
401
1.98
/.06
12.41
403
403
10.60
6.35
Mag
404
606
1.31
1.11
2.99
600
500
4.43
1.)T
4.63
501
601
4.39
1.58
TWAT
502
Sot
2.0•
A.86
12.41
503
503
0.00
3.12
7.96
600
60o
1.68
1.70
8781
001
501
1.9T
2.0T
5.69
$02
602
1.2A
3.20
10.35
1000
1000
1.01
3.88
10.30
F
J
1
ere
O
46
J
is
O
F
O
O
c
7
U
j
m
w
U
0
N
(.0
O
¢
0iz
0
W
ZQ
2Z0
aw
F
0
Z
w
0
Z
a
04
Q
at
Roiled Fb WA - ----- U-
basin• Daai9n Point
Olo. .er I
Cal III,
w
W
a
110 202s 200
•A9
3o2er 3a2bI 302a
1 3.67
1 aTo
311er 11 lbI 311e
1 11.57 1
31.16
¢¢
31263126 lIL
11.T8
]3.•8g
v neW
w 8�
dR1Ra x.Ts T.BL��A E
S:ry'yT x1
na sm-'65 us o� X, 2
sf
:surer 1�
wrt arm Issee
R
Naarm 8 � �e
MINECILIELAX OEM
®x.ma0-22krta� sure AaNr
IWKWIIJMN[ 25 yr'Simi I (Anne MAW
L
U R fg'.y
non
I
- I
City of FEEL Collins, Colondo
SITE PLAN
2Av6gt90��
ADVISORY REVIEW APPROVAL
We
�_
arzam eN
Sfllf
Neermr �
SEFIICu: '.n/o
OIEGm 9M�
T
Ip3IMiAL'r•. ya
Oea®n
�z�
FC079!
()
\}
}}\
\
( ((
II
§
))
[§!
§!
�,
6§\b|
�
a.
§
12
0
I ]
0w
0 4
c%j