Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 08/08/2002
2004 HIGH SCHOOL FINAL DRAINAGE & EROSION CONTROL STUDY for ............................. ............................ :Poud S noc...... t..... ............................ ............................. ............................ 2407 LaPorte Avenue Fort Collins, Colorado 80521 0 Nolte Associates, Inc. 1901 Sharp Point Drive, Suite A Fort Collins, Colorado 80525 (970) 221-2400 June 24, 2002 1 1 1 1 I 2004 HIGH SCHOOL FINAL DRAINAGE & EROSION CONTROL STUDY for ............................. ............................ :Poudr S0fi06 Dlstcict:R �: ............................ 2407 LaPorte Avenue Fort Collins, Colorado 80521 0 Nolte Associates, Inc. 1901 Sharp Point Drive, Suite A Fort Collins, Colorado 80525 (970) 221-2400 June 24, 2002 BEY ON D E N G IN E E R ING ' June 24, 2002 1 Mr. Basil Hamdan City of Fort Collins 700 Wood Street Fort Collins, CO 80521 RE: Drainage and Erosion Control Study for the 2004 Fort Collins High School Dear Basil: We are pleased to submit to you, for your review and approval, the Drainage and Erosion Control Study for the 2004 Fort Collins High School. All computations within this report have been completed in compliance with the City of Fort Collins Storm -Drainage Design Criteria and Construction Manual and the Urban Storm Drainage Criteria Manual. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. ' Sincerely, Nolte Associates, Inc. Pre/pared by: Greg A. Dreeszen, E.I.T. Junior Engineer cc: File FC0194 i NOLTE ASSOCIATES, INC. 1901 SHARP POINT DRIVE, SUITE A ' FORT COLLINS, CO 80525 970.221.2400 TEL 970.221.2415 FAX WWW.NOLTE.COM Thomas M. Ochwat, P.E. Senior Engineer � NOLTE BEYOND ENGINEERING P Final Drainage & Erosion Control Study 2004 High School TABLE OF CONTENTS ' PAGE ' 1.0. INTRODUCTION........................................................................................................I 1.1 Site Location.....................................................................................................1 1.2 Existing Site Description................................................................................... 1 1 1.3 Proposed Project Description............................................................................ 1 2.0 METHODOLOGY..........................................:............................................................2 ' 2.1 Compliance with Standards............................................................................... 2.2 Analytical Methods........................................................................................... 2 2 3.0 HISTORIC DRAINAGE CONDITIONS..................................................................... 3.1 Major Basin Description.................................................................................... 3 3 4.0 DEVELOPED DRAINAGE CONDITIONS 3 ' 4.1 General Concept ........................... ................................................................. 3 4.2 Basin Descriptions............................................................................................. 4 ' 4.3 Detention Pond Design...................................................................................... 7 5.0 EROSION CONTROL................................................................................................. 8 ' 5.1 General Concept............................................................................................... 5.2 Specific Detail................................................................................................... 8 9 ' 5.0 CONCLUSIONS..........................................................................................................9 5.1 Drainage Concept............................................................................................. 9 REFERENCES........................................................................................................... 10 ' APPENDIX A - Developed Site Hydrology APPENDIX B - Street Capacity Calculations ' APPENDIX C - Inlet Design APPENDIX D - Swale Calculations ' APPENDIX E - Storm Drain Design APPENDIX F - Detention Pond Calculations APPENDIX G - Erosion Control Calculations APPENDIX H - Charts, Tables & Graphs APPENDIX I - Excerpts from other Reports ' BACK POCKET — Overall Drainage Plan (Sheet DRO1) - Overall Grading and Erosion Control Plans w ' Nolte Associates, Inc. i N:\FC0194\Drainage\Word\Fc0194_DrainageReport_Final.doc 1 1 N 1 f 1 1 1 1 1 1 1 1 1 BEYOND ENGINEERING 1.0 1.1 Site Location Final Drainage & Erosion Control Study 2004 High School The proposed Fort Collins 2004 High School (Site) is located in south Fort Collins. The Site is bordered to the north by Rock Creek Drive; to the east by Cambridge Avenue; to the south by Kechter Road; and the to the west by Ziegler Road (Refer to Exhibit 1, Vicinity Map). More particularly, the Site (90t acres) is located in the Southwest Quarter of Section 4, Township 6 North, Range 68 West of the a Principal Meridian, City of Fort Collins, County of Latimer, State of Colorado. 1.2 Existing Site Description In general, the existing Site slopes south and east along grades that vary between 0.5 percent and 3 percent. The existing Site is presently irrigated cropland. According to the results of the geotechnical subsurface exploration report that was prepared by Earth Engineering Consultants, Inc., (Dated: November 14, 2001) the existing Site is comprised of topsoil/vegetation underlain by light brown lean clay with varying amounts of silt and sand. Other pertinent on -site features include the following: • Three small buildings and a two-story farmhouse that are located near the Site's west property line. • Three irrigation ditches that traverse the Site from west to east. The first follows the north property line of the Site; the second runs through the north third of the parcel; and the third splits the parcel approximately in half. The City of Fort Collins Parks and Recreation Department will allot the area to the south of the third ditch for future development. • The McClellands Channel runs west to east through the southern third of the Site. This reach of McClellands Channel will be within the City of Fort Collins Parks property. ' The Site lies within the McClellands Creek Watershed Basin. The existing on -site runoff currently flows overland and is captured by the irrigation ditches or McClellands Creek. 1.3 Proposed Project Description ' The proposed 2004 High School will consist of one two-story, predominantly brick building that covers 258,746 ft (5.94 acres). There are four separate parking areas will provide the school with approximately 1200 parking spaces. The two largest parking areas are located south of the proposed building. A third and Nolte Associates, Inc. N:\FC0194\Drainage\Word1Fc0194_DrainageReport_Final.doc 2:02 p.m. DATE: 03/12/02 PATH: N:\fCO194\CADD\CP\ R: FCSI SERVICE: PROJECT DRAWING NAME: ETDR01.DWC : LetterP R-EDBURN C�� , 10Si�Lj A� DR Ri .HA V,FN=Dp= I 0 a i;9! Sr cn� WoMM?N fpo-P -� 'i -'%W-717�ft. • YEILOWSWA(EiCT ----------------- L7 RewkU- Li Packard cc N 2 v q P0 Pipston MIDt#0i '-i;qh School Lu cr, cc - W-00a" u� - FZWI� 'REEK PROJECT SITE :4 525 2004 HIGH SCHOOL VICINITY MAP INK-1 34 if i N.T.S. B E Y 0 N D E K 6 1 N E E R I N 0 w W" P=T aim am A. FORT C=W CO. WM 07422UM T& I?Qnt%g FAX I PREPARED FOR: Poudre School District R-1 DATE SUBMITTED: 03/13/02 12b5]j 87: SHEET NUMBER 1 OF I SHEETS JOB NUMBER FC0194 � NOLTE B E Y O N D E N G IN E E R ING N Final Drainage & Erosion Control Study 2004 High School smaller parking area lies to the west of the proposed building. The fourth and smallest parking lot will be located in the northeast corner of the Site. The north portion of the Site will be heavily landscaped and contain a meandering pedestrian walkway. The area on the east side of the building will consist of numerous athletic fields and a running track. A truck docking area has been designed for the west side of the building. Vehicle access for the Site will be from west via Ziegler Road, from the east via Cambridge Avenue and from the north via Rock Creek Drive. In addition, the Site will include a dual use detention/irrigation pond located in the southeast corner. The irrigation raw water will come two irrigation laterals. The Poudre School District has raw water shares from Warren Lake and the New Mercer Lateral. The Warren Lake raw water will be conveyed from the north via a proposed pipe system and the onsite storm sewer system. The New Mercer Lateral raw water will be conveyed from the west (NEC of the Kechter Road and Ziegler ' Road intersection) via a separate pipe system. The irrigation raw water storage will used to irrigate the high school, the adjacent CFC parks parcels and Zach Elementary School located to the south and east along Kechter Road. ' 2.0 METHODOLOGY 2.1 Compliance with Standards The final drainage and erosion control study that follows was prepared in accordance with the requirements and procedures for storm drainage design set forth in the City of Fort Collins Storm -Drainage Design Criteria and Construction ' Manual (FC-SDDCC 1) and the Urban Storm Drainage Criteria Manual (Manual). 2.2 Analytical Methods ' The Rational Method was used to analyze the minor and major design storm runoff (10-year and 100-year). This method is widely accepted for drainage design involving small drainage areas (<160 acres) and short times of concentration. The Rational Method relates peak discharge to the runoff coefficient, rainfall intensity, and drainage area. The rainfall intensity and runoff coefficients were taken from the FGSDDCCM. ' This method is ideal for storm sewer sizing and simple detention pond sizing or design situations where only the peak flow rate and/or the total volume of runoff are needed. 1 Nolte Associates, Inc. 2 N:\FC0194\Dramage\Word\Fc0194_DramageReport_Final.doc ' NCUM Final Drainage & BEYOND ENGINEERING Erosion Control Stu 2004 High School P ' The FAA Method was used to estimate the detention pond size requirements. This value was multiplied by a factor of 1.50 to simulate results from a SWMM model and to allow extra assurance that adequate volume is provided. ' In addition to the methods mentioned above, this drainage study was prepared ' using hydraulic software packages from Haestad Methods and the Urban Drainage and Flood Control District, including: StormCAD, F1owMaster, HydroPond, and UD Inlet. HEC-2 software was used to model the proposed McClellands Channel ' improvements. 3.0 HISTORIC DRAINAGE BASINS 3.1 Major Basin Description The 2004 High School Site lies within the McClellands Creek Master Drainage Planning Area. An updated master drainage plan for McClellands Creek, ' McClellands Creek Master Drainage Plan Update (Dated: November 30, 2000), was completed by ICON Engineering, Inc. According to the Update, McClellands Creek is located in the southern part of Fort Collins and begins near the northeast corner of the intersection of College Avenue and Harmony Road. McClellands Creek flows in a southeasterly direction ' to Swift Pond. The mandated developed release rate for this area is 0.5 cfs per tributary acre. Because of this criterion, no historic drainage calculations were made. ' 4.0 DEVELOPED DRAINAGE CONDITIONS 4.1 General Concept In general, the majority of on -site developed runoff will sheet flow across landscaping or asphalt to a local area inlet that outlets to the sub -surface storm drainage system. The roof drainage will be captured by an internal piping system ' and dispersed to one of two different sub -surface conveyance systems that are located to the north and south of the building. The sub -surface storm drainage system will transport the developed runoff to on -site detention facility that will be ' located in the southeast corner of the Site. The three on -site parking areas that are located to the west and south of the building will act as local detention facilities and release developed runoff to the detention/irrigation facility at a rate of 0.50 cfs/acre. ' Nolte Associates, Inc. 3 N:\FCO194\Drainage\Word\Fc0194_DmmageReport_Fuml.doc ' NCUM Final Drainage & Erosion Control Study BEYOND ENGINEERING 2004 High School N Developed runoff along the Site's undeveloped west side (interim condition) will continue to sheet flow across existing terrain and drain into the existing irrigation ditches. An interim condition occurs in which undeveloped basins in the northwest corner of the site will contribute runoff to the system. During this interim condition, the parking lot ponds will release the total tributary area at 0.50 ' cfs/acre. At the time when the northwest corner lots are developed, they will be required to detain/release into the proposed system at 0.50 cfs/acre. The proposed storm sewer system has been designed and provides a connection point at manhole location for this future development. The basins to the north of the proposed building will sheet flow to either Rock ' Creek Drive or to the local detention facility that is located in the northeast corner of the soccer fields. This detention pond (i.e., Basin 403) will release at 1.20 cfs to the east and into detention pond in Basin 400. From here, an outlet structure will ' restrict the release of storm water (i.e., 7.70 cfs) to an off -site system located in Rock Creek Drive. Basins along the southern half of Rock Creek Drive will drain ' to a proposed 15' Type `R' curb inlet (i.e., D.P. 204) and release into the proposed detention pond in Basin 400. ' The main sub -surface drainage system will route storm water runoff as well the Warren Lake raw irrigation water to a detention/irrigation facility located in the southeast corner of the Site. This pond will provide water quality capture volume, ' detain the 100-year storm event and maintain a permanent water surface elevation below which irrigation water will be stored. The pond will release to McClellands Creek via a 50' spillway at a rate of 0.50 cfs/acre. 42- Basin Descriptions P Basin 100 pertains to the building's roof drainage. The roof drainage has been designed by MKK Consulting Engineers, Inc. using the Uniform Building Code. An intensity of 3-in/hr was used equating to 15.75 cfs exciting the building to the south and 2.36 cfs leaving each drain from the north. There are four roof drain connections on the south side of the building that will connect to 15" PVC. This storm water will outfall into a 3-ft wide (bottom -width) grass -lined swale located in Basin 308. The intent of this swale and associated planting is to provide a bio- swale environment. There are two roof drains that exit the building from the north. The northeast drain connects to 12" PVC that routes the runoff to a storm system that runs east along Rock Creek Drive. The northwest drain ties into system `B' at SDB-WB 14. Basin 101 (0.12 ac) is the truck docking/maintenance yard. This area's runoff will flow to a trench drain located at the bottom of the truck ramp. The runoff will then be routed into the school's interior roof drainage system. Nolte Associates, IRc. N:\FC01940rainage\Ward\FFc0194_DrainWReport_ mal.doc M [1 lJ 1 1 BEYOND ENGINEERING Final Drainage & Erosion Control Study 2004 High School Basins 200-204 border the Site to the east and north. These basins are bounded by the centerline of the adjoining streets and neighboring high points. The developed runoff in Basin 200 (1.23 ac) flows across landscaped areas and sidewalks and enters existing curb and gutter that routes the runoff north to D.P. 200. Basin 201 (1.33 ac) sheet flows across landscaped areas and sidewalks to a low point in the landscaping. An area inlet will capture the runoff and route it to the on -site sub- surface drainage system. Basin 202a (1.13 ac) sheet flows across a tennis court playing surface and sidewalks and enters existing curb and gutter that routes the runoff south to D.P. 200. A 10' Type `R' inlet was designed to accept the runoff from basins 200 and 202a. Runoff from Basin 202b (2.46 acres) flows across landscaped areas and sidewalks and enters existing curb and gutter that routes the runoff south to D.P. 202b where the flow is intercepted by a 20' on -grade Type `R' inlet. Runoff from Basin 203 (1.29 ac) flows overland across landscaping and enters curb and gutter that routes the runoff north to D.P. 203. A 10' Type `R' curb inlet was designed to accept the developed runoff and route it to the north to the detention pond in Basin 400. Basin 204 (3.36 ac) borders the Site to the north and encompasses a portion of the east half of Ziegler Road and the south half of Rock Creek Drive. Runoff will be routed by curb and gutter to a 15' on -grade Type `R' curb inlet located at the east end of the basin (near the corner Rock Creek Drive and Cambridge Avenue). This runoff will be routed to the detention facility in Basin 400. Basins 300-315 are located on the interior of the Site. The developed runoff in Basins 300 (0.66 ac), 301a (1.80 ac), 301b (1.42 ac), 302a (0.27 ac), 302b (0.59 ac), 309 (0.89 ac), and 310 (1.67 ac) traverse landscaped areas and half street areas and enter curb and gutter that routes the developed runoff to its respective design point. This developed runoff will be captured by Type `R' curb inlets and routed to storm drainage system `B'. The bypass flow at the inlets at D.P. 300 and 301a will follow curb and gutter to system `A' located to the south along Cambridge Avenue. The developed runoff from basins 303 (3.56 ac), 304 (1.52 ac), 305a (3.45 ac), and 305b (3.51 ac), respectively, will be intercepted in area inlets in each basin and routed to the sub -surface drainage system. An underdrain system utilizing ADS AdvanEDGE pipe will run along the south and west perimeter of the adjacent ball field. The underdrain will route surface runoff nuisance away from the field. Developed runoff from Basin 308 (0.51 ac) will flow into the Swale and enter a 24" NRCP culvert at D.P. 308. Ultimately, this runoff will be routed overland to D.P. 303. Refer to the swale calculations in Appendix D for further information. The main parking areas will act as local detention facilities that release storm water from the major event at a rate of 0.5cfs/acre. Basins 306 (2.66 ac), 307 (4.79 ac), 311 (3.17 ac), 312a (7.18 ac), and 313a (4.71 ac) will 1 Nolte Associates, Inc. 5 N.\FC01940rainW\Word\FcO194_Dmffi eReport_Final.doc BEYOND ENG INEERING w Final Drainage & Erosion Control Study 2004 High School capture local developed runoff in grass -lined bio-swales located in the center of ' each basin within the parking lot median islands. The runoff will enter the swales through under -sidewalk drains and flow overland to area inlets. The inlets will have orifice plates attached either to the pipe entrance or to the grate itself. These ' inlets route the runoff to storm drainage system `B' at a rate of 0.5 cfs per tributary acre. The plates on the inlets at D.P. 312a and 313a will need to be replaced once the future commercial lots to the west are developed. The major ' storm event ponding limits are shown on the overall drainage plan. Basin 313b (1.02 ac) was delineated to calculate the street capacity for the north entrance to the faculty parking lot. A high point at this entrance does not allow street runoff to enter the school site at this location. Basins 311b (0.57 ac) and 312b (2.12 ac) will flow overland to curb and gutter to design points located at the entrance to the parking lot. Basin 314 (1.63 ac) is located to the north of basin 313a and consists ' of mostly pervious terrain. This runoff will be captured in an area inlet within the landscaped area. Basin 315 (0.36 ac) is located adjacent to the west side of the building's west entrance. Runoff from this area will also be collected by a ' landscape area inlet. Overflow runoff from both Basins 314 and 315 will spill into the faculty parking lot area. M Developed runoff in basin 400 (2.75 ac) flows overland through the future northeast parking lot. In the interim condition, runoff will sheet flow to the pond. During the ultimate condition, runoff will be collected and conveyed via curb and gutter that routes the storm water to curb cuts located at the midpoint of the north end of the future lot. Runoff will enter the local detention pond through curb cuts. An outlet structure is proposed to control the release of storm water to the existing sub -surface storm drain system within Rock Creek Drive. Basins 401 (1.86 ac) and 402 (1.86 ac) are delineated around the proposed athletic field and track. The drainage for this facility is currently designed as a trench system along the interior of the track. Two connection points are designed to take half of the runoff each. The north connection, Basin 401, will release into the north detention pond. The south half will be routed to the subsurface storm drain system `B', which will outfall into the southeast detention/irrigation pond. Areas along the north and east side of the building will be primarily landscaped and graded for playing fields. Basin 403 (10.80 ac) will attenuate runoff from these landscaped areas in the northeast corner of the basin. An inlet with an orifice plate is proposed to regulate the flow to the pond in basin 400 to 1.20 cfs. An underdrain has been designed to carry nuisance flows from the northwest comer of the field areas east to the inlet at D.P.403. This comer of the basin will act as a detention facility during major storm events. Storm water from Basin 404 (1.31 ac) will travel overland through landscaped areas to an area inlet at D.P. 404. If the inlet were to be clogged, the excess runoff would be routed over the sidewalk and continue east within the play field adjacent to Rock Creek Drive. Nolte Associates, Inc. 6 N:\FC0194\Dminage\Word\Fc0194_DminageReport_Final.doc M 1 7 L M NOLTE BEYOND ENGINEERING Final Drainage & Erosion Control Study 2004 High School Undeveloped runoff in basin 500 (4.43 ac) will continue to flow overland through existing fields toward the northwest parking lot. Proposed curb and gutter will route the runoff to D.P. 313a. Runoff in basin 501 (4.39 ac) will flow overland and into an existing irrigation ditch to the south of the basin. Storm water that is not routed to the ditch will be routed to D.P. 312a. Basins 502 (2.04 ac) and 503 (0.88 ac) will route runoff via curb and gutter to a 10' Type `R' inlet that will route flows un-detained to McClellands Channel. As a condition of the un-detained release from Ziegler, Cambridge Avenue runoff will be detained in the detention pond P-300. Developed runoff in Basin 600 (1.68 ac) flows overland through landscaped areas and playing fields to Cambridge Avenue. The flows are collected by curb and gutter that route the flow south to D.P. 601. A 10' Type `R' curb inlet will capture the water and route it into the detention/irrigation facility. The developed runoff from Basin 601 (1.97 ac) will flow overland through landscaped areas and playing fields to Cambridge Avenue. This runoff will also be routed by curb and gutter to D.P. 601. Basin 602 (1.24 ac) will capture half street flows from Cambridge Avenue and route the runoff to D.P. 602 where the storm water will be captured by a 10' Type `R' curb inlet. These flows will be routed to the detention/irrigation pond via storm drainage system `A'. 4.3 Detention Pond Design The detention pond P-300 located in Basin 1000 will be utilized for runoff from the site as well as raw water irrigation storage. The pond was sized using USDCM program Hydropond that utilizes the FAA method. The volume required was 4.29 ac-ft. This volume was multiplied by 1.50 to simulate the results typically given using SWMM modeling to obtain a volume of 6.44 ac-ft. This pond will also detain runoff (0.9 ac-ft) from the parcel to the east (Reid Riedlinger Parcel). The water quality volume was determined using USDCM Best Management Practices for Retention Ponds. The amount of WQCV required is 0.47 ac-ft. No water quality outlet structure was designed due to the lack of measurable depth over the surface of the pond (3.5+ ac surface area). The irrigation volume was mandated by Aqua Engineering is 13.5 ac-ft. This creates a water surface elevation of 4889.37. The storm systems outfalling to this pond (System A & B) have been designed to begin construction incorporating this elevation as tailwater. The water quality capture volume increases the water surface to 4889.50 and the 100-yr event runoff increases the water surface to an elevation of 4891.44. The spillway elevation for the pond has been designed to IJ Nolte Associates, Inc. 7 N:\FC0194\Dnunage\Word\Fc0194_DramageReport_Final.doc BEYOND ENGINEERING M 1] 1 1 1 ' 5.0 Final Drainage & Erosion Control Study 2004 High School 4891.15 to allow the 100- yr. release of 22.2 cfs at the 100-yr. pond elevation. This release is equal to 0.5 cfs per acre of the contributing tributary area to the pond. The detention/irrigation pond will also have a secondary release for Stormwater that is collected when the irrigation pond is not at capacity. An 18" PVC drain will allow for measurable release of Stormwater after a rainfall event. The drain will have a valve that will be operated manually. Measurement of the water surface will be made prior to an event allowing for more accurate release. Each parking lot, Basins 306, 307, 31la, 312a, and 313a, act as local detention facilities during the major event. These ponds will detain and release runoff at 0.5 cfs per contributing acre. Basins 306 and 31 la will have an orifice plate attached to the area inlet, restricting the release. Basins 307, 312a, and 313a will have an orifice plate attached to the pipe entrance to inhibit flows to allowable release rates. The areas contributing to these ponds are not calculated in the sizing of detention pond P-300. On the north side of the building, the playing fields will act as temporary storage for runoff. The area inlet at design point 403 will have an orifice plate attached to the entrance of the exiting pipe to restrict flow. During the 100-yr event the high water line is 4906.76. If this inlet becomes clogged, the water would pond up and spill into basin 400 to the east. Basin 400 contains the northeast detention pond. This has a volume of 1.11 ac-ft during the major event. This creates a high water elevation of 4904.08. An outlet structure is designed to regulate the flow into the existing storm drain system in Rock Creek Drive. A pedestrian grate on a Type C outlet will regulate a maximum release of 6.5 cfs. The release from design point 403 releases at 1.20 cfs, which accounts for the remainder of the allowable 7.70 cfs. (See Appendix H.) ' 5.1 General Concept ' The 2004 High School is in the Moderate Rainfall and Moderate Wind Erodibility Zones per City of Fort Collins zone maps. Until the disturbed ground is re - vegetated, the potential exist for erosion problems during and after construction. The Erosion Control Performance Standard (PS) during construction for this project was computed to be 94.36 per the criteria in the City of Fort Collins ' Nolte Associates, Inc. 8 N:\FC0194\Draimge\Word\Fc0194_DrainageReport_Final.dac I M 1 1 1 C 1 1 BEYOND ENGINEERING 1 6.0 1 n i 1 i 1 A Final Drainage & Erosion Control Study 2004 High School Erosion Control Reference Manual for Construction Sites. The Effectiveness (EFF) of the proposed erosion control plan was calculated to be 77.00. The proposed erosion control methods meet the City of Fort Collins' requirements. Calculations can be found in Appendix G. 5.2 Specific Detail Prior to commencement of the overlot grading, vehicle tracking controls and silt fence must be installed as shown on the Grading and Erosion Control Plans. All disturbed areas that will not be paved shall be mulched and seeded within 30 days of the beginning of grading operations unless otherwise approved by the Stormwater Utility. Upon completion of the curb inlets, area inlets and sidewalk chases, inlet protection and straw bale check dams shall be installed. Straw bale check dams shall also be placed around the outlet works of the northeast pond, prior to construction in this area. These straw bales shall be left in place until re - vegetation growth is well established. All construction activities must comply with the State of Colorado permitting process for Storm water Discharges Associated with Construction Activity. 6.1 Drainage Concept The proposed drainage concepts presented in this study and shown on the preliminary drainage plans adequately provide for the conveyance of developed runoff from the proposed development. 1 Nolte Associates Inc. 9 N:\FC0194\Drainage\Word\Fc0194_DramageReport_Final.doe N :)= B E Y O N D E N G I N E E R I N G M 1 I L I t M Final Drainage & Erosion Control Study 2004 High School REFERENCES 1. Storm Drainage Design Criteria and Construction Standards (FC-SDDCCM), City of Fort Collins, Colorado (Revised January 1997). 2. Drainage Criteria Manual (Manual), Urban Drainage and Flood Control District, Wright - McLaughlin Engineers, Denver, Colorado, June 2001. 3. McClellands Creek Master Drainage Plan Update, City of Fort Collins, Colorado, prepared by Icon Engineering, Inc., November 30, 2000. (Draft Report) 4. Flood Plain Modeling Report McClellands Channel Improvements, for Fossil Lake P.U.D. Second Filing, City of Fort Collins, Colorado, prepared by Northern Engineering Services, Inc., November 30, 2000. Nolte Associates, Inc. 10 N:\FC0194\Dminage\Word\FcOI94_DmauVReportjmal.doc M r 1 LJ I I I I I I I 1 APPENDIX A Developed Site Hydrology � '��"°4` � j•+1 e+�i th_ '_4Rnc�n nfnG"�m�nnoil%"�nai i{in..c :::w� "t<. r. � -:s?a `�' _ �-d � � Y N� Ga[•i1.13 �.L '3S Z .E' `S g"'�E-i„R.G..s�,_4R."lcY"PmT�'4✓.Sut'3i'+iS�.,:4Wi'N'�.,SFS. Project#: FC0194 Project Name: 2004 High School ' Calculated By: GAD, HHF 0:;P= Date: 3/11/2002 rNic B E Y O N D E N G I N E E R I N G Per Table 3-3 (City of Fort Collins Stomt Drainage Design and Construction Standards) C 0.95 Gr,e 0.50 ' Cz m ra la.a- 0.25 Cc°°°,�i.t= 0.85 CQ., �„ 0.20 0 ° Total Total Total Total Total BasinImpervious 2 to 7% Lawn Q% Lawn Artificial Turf Commercial "C° 10 yr. 10 yr. 100 yr., 100 yr. Overland Average Channelized Average Area Area Area Area Area Area Area %Impervious Composite Cr CCr Cr CCr Basin Length Slbpe Length Slope ft2 250 604 ac. 5 75 ft2 250 604 ft= ftr 02 fit ft % It 0 0 0 100% 0.95 1.00 !... 0.95 1.25 1 " ' 1.00 100 n/a i n/a n/a n/a ' 101 _5,370 0.12 5,370 0 0 - 0 0 100% 0.95 1.00 I': %-0 95 1.25 101 101.8 I 2.75 1 n/a n/a 200 53,732 1.23 15,937 0 - 37,795 0 0 30% 0.42 1.00 ''-;'OA2 125 1'10i53'. 200 220 I 199 190 050 201 58,105 1.33 15,192 0 42,913 0 0 26% 0.40 1.00 1-- -0.40 '" 1.25 1-0.50. 201 143 ! 588 200 150 202a 49,193 1.13 43,305 0 5,888 0 0 88% 0.86 1.00 I c-0.86 1 1.25xr_1t00L:y 202a 207 0.50 207 0.68 ' 202b 106,975 2.46 27,494 0 79,481 0 0 26% 0.39 1.00 1 0.39 1.25 ' -0.49 202b 96.26 2.00 509 0.68 203 56,408 1.29 27,551 -'0 28,857 0 0 49% 0.57 1.00 1 '' 0.57 1.25 1a140.71 203 96 2.00 356 0.60 204 146,197 3.36 87,467 .0 58,731 0 0 60% - 0.65 1.00 F- 0.65 1.25 1 -1-' 0 81 204 40 2.00 2759 0.50 300 301a 28,539 78,214 0.66 1.80 7,294 10,839 _0 67,375 21,245 0 0 0 0 0 26% 14% 0.39 0.35 1.00 1.00 b>-.039._" I 035 1.25 1.25 Ji: 049--_ 043 300 301a 212 313 150 246 064 301b 62,042 1.42 35,726 26,316 0 0 0 58% 0.65 1.00 1 0.65 1.25 I=• 0'82 301b 97 1.50 200 050 302a 11,974 0.27 11,106 832 0 0 0 93% 0.90 1.00 11:17.0.90.' , : L25 �`?� 100 302a 16 514 2.00 870 330 063 0.80 302b 25,751 0.59 22,081 3,670 0 0 0 86% 0.85 100 ''' '0.-8 3 "' �' 115 IWOTR'' 302b 15 1 2.00 794 0.84 i 303 155,000 3.56 7,504 0 147,496 0 0 5% 0.24 L00 lyi.� 024';r'i 1.25 I'M'030'+= 303 313 1.50 249 2.57 304" 66,018 1.52 5,767 0 60,251 0 0 9% 027 I00 I'>' ;017� i 125 t"�0-332z.-- 304 312 11,50 71 050 305a 150,108 3.45 31,158 0 I18,950 0 0 21% 0.36 1:00 I` �036L71'1 1.25 '.0:44 '! 305a 173 2.10 137 2.00 305b 152,917 3.51 19,894 0 133,023 0 0 13% 0.30 100 30' -" 125 I` z037'"^ 305b I68 2 00 208 2 00 306 115,846 2.66 87,832 13,706 14,308 0 0 76% 0.77 1.00 I::?0:77`"� 1.25 IOi 097`''-- 306 109 862 275 100 307 208,463 4.79 124,379 69,117 14,967 0 0 60% 0.66 1.00 F" 0.66"<,.i 125t-! 0:83=-`.. 307 I 160 I 5.64 282 1.00 308 22,185 0.51 0 0 22,185 0 0 0% 0.20 i 1 1.00 = 0.20 ,' 1.25 ;:0:25'`- 308 63 1 25.00 272 0.50 309 38,920 0.89 19,327 19,593 0 0 0 50% -- 0.60 1.00 1. %-0.60. _;; 1.25 J,Z0.7.5 -_ 309 1 90 I 3.75 287 1.08 310 72,532 1.67 28,871 43,662 0 0 0 40% 0.53 1.00 [ :�.0:53">•'' 1.25 �`s_40.66'1'= 310 91 I 3.75 309 0.80 31 la 138,008 3.17 93,632 25,501 18,875 ' 0 0 68% 0.72 1.60 ram'. 0.72... '. 1.25 I<> 0.90:, 31 la 238 i 3.40 165 1.00 3116 24,715 0.57 15,162 9,553 0 0 0 61% 0.68 1.00 .,.0:68 .;' 1.25 ,50%5 jj. 31 lb 1 53 1 10.00 ; 193 0.90 1 312a 312,817 7.18 116,139 175,162 21,516 0 0 37% 0.51, ' 1.00 1, r-0.51.-'-" 115 -4='0:63;, 312a 257 2.36 1 272 1.75 312b 92,265 2.12 36,052 56,214 0 0 0 39% 0.52 1.00 IK`-=0.52i' 125 :0:65i 312b 452 I 1.55 1 309 0.68 313a 204,968 4.71 116,078 88,890 0 0 0 57% ! 0.65 1.00 a-s0.65't,-" 11 5 �'s�0181�.; r 313a 1 425 1 2.11 77 i 1.31 I 313b 44,536 1.02 11,644 32,892 0 0 0 26% i 0.43 1.00 :;r.043r"! 1.25 'a'a0754':•R 313b I 269 0.69 I 57.93 0.66 314 71,133 1.63 - 4,795 66,338 0 0 0 7% I 0.30 1 1.00 is.jO30A}A 1.25 %+�:ryf037 - q 314 111 1.76 1 203 ! 1.33 315 15,710 0.36 2,658 13,052 0 0 0 17% 0.37 1.00 t :;037=Ll I25 -"i 0:46.» ` 315 1 64 1 2.12 ' 146 1.70 400 119,791 2.75 60,964 58,827 0 0 0 51% 0.61 i 100 "F45061?- i 125 `'»0'71112�� 400 ' 244 1 224 21175 190 401 81,237 1.86 26,221 0 0 55,015 0 32% 0.65 1.00 i:y' 0.65 1.25 ''3-'081:'' 401 315 I 1.55 45 L55 402 81,229 _ 1.86 25,607 _ 0 _ 0 55,622 0 32% 0.64 1.00 1'''-=0.64,: 1.25 I;:_.;0:80-` 402 315 1 1.55 45 1.55 -_ 403 "-_ 470.267 10_80_ __-_" 35,290 - 0 434,977 0 _ 0 8% 0.26 1.00 1'' -' 026 1.25 1 0.32 403 264 2.10 742 1.02 _ 404 57,092 _ 131 3,698 53,395 _ _0 _ _-_ 0 _ 0 _ _ 6% 0.30 _ 1.00 ; ' 0.30 1.25 1 0.37 404 245 2.10 23 2.46 ' 500 192,925 _ 4,43 0 0 192,925 0 0 00/. 0.20 1.00 10.20.. l25 s-�,0 25 - 500 i 178 I 1.13 402 0.50 501 191,029 4.39 0 0 191,029 0 - 0 0% 0.20 1.00 ' i010 r'? 1.25 #025 • 501 S00 j 0.80 16 0 80 _ 502 _ 88,687 2.04 51,920 36,767 0 0 0 59% 0.66 1.00 .,t0.66 1.25 -0:82..: 502 i 43 2.00 1288 0.89 503 38,250__ 0.88 29,883 8 367 _ 0 0 _ _ 0 78% 0.80 1.00`0.80 1.25 I : 51i00 "" 503 1 45 2.00 894 117 _ _ ' __ 600 72,984 _ 1.68 _ 16,971 _ 3,822 52,191 0 _ _ 0 23% 0.38 1.00 :0.38. 1.25 1,-- .;0.47 .,:, 600 338 2.08 164 1.00 601 85,859 1.97 24,563 5,567 55,730 0 _ _0. 29% 0.42 1.00 ,t'.10.42-,+,w=i 1.25 ,� 0.52c•i`3i 601 i 310 j 1.25 1 401 - 133 1 ' 602 53,800 1.24 44,709 ! 9,092 0 0 0 83% 0.83 1.00 "g%c0.83x,..:z1 . ' 125 `-1'00-' 602 1 20 1 200 1 98867 i 110 _127,977 _ 1000 305,242 7.01 _ 0 177,265 _ 0 0 0% 0.23 1.00 w*= 0.23 . = 1.25 1000 327 1 160 1 91 16.76 Total Ske 4,139,751 95.04 1514,439 869,229 1,645,410 110,637 0 037 FC0194_Rational-Fort Collins.xls 2:27 PM t 1 1 Jab NumbeFC01 94 Date: 31112002 Ptojecl: 2004 High Schad `■ Calculated BY GAD, HHF Desi Slortn: 10 year(Dwtlopedl B E Y O N D E M G I E E R I N G DATA INITIAUOVERLA,ND TIME(IJ 1 TRAVELTIME 01) FINAL t, Dtamage Basin I Design Point Ilal AM actefs) (21 Runoff Coefficient C (3) I Frequency Factor Ct (3a) CC1 (3b1 Length It (4 Slope % (5) I. min 161 Length (I A Slope 5a (81 Velaciry Nsee f9 1, min 10 Computed t, min (12) I 100 1 100 5.75 1 0.95 1 100 I 095 Na 1 4/0 no Na Na I Na MOO 1 10.00 I I 101 1 101 0.12 1 0.95 1 1.00 I 095 102 1 275 202 0 000 1 N 1 1000 1202 200 I 200 123 1 0.42 1 1.00 042 220 1.99 14.94 190 0.50 1 1.41 1 2.24 17.19 201 I 201 1.33 0.40 1.00 040 143 5.88 8.73 1 200 1.50 2.45 1.36 "10.09 - 1 202a 1 202a 1.13 1 0.86 1.00 1 0.86 207 0.50 ! S. L' 207 0.68 1.65 2.09 10.21. 1 202b 1 202b 2.46 0.J9 1.00 I 0.39 96 2.00 1 1.30 509 0.68 1 1.65 1 54 - 15.44 I 203 203 . . . . 3.8329 11.59 I 201 I 204 3.36 0.65 1 1.00 1 0.65 40 1 2.00 1 4.24 2759 0.50 1 L41 1 32.52 300 300 0.66 1 0.39 1 1.00 0.39 212 1 1.50 1 16.85 246 0.64 1 1.60 1 2.36 19.41 ' 301a 301a 1.90 0.35 1.00 0.35 313 1.50 1 21.77 1 200 0.50 1 L41 2.36 - --, 24.12. 301b JOIb 1.42 0.65 IAO 065 97 1 5.14 1 477 870 0.63 1 1.59 914 V:' 1391 _ 302a I 302a 0.27 0.90 1.00 0.90 16 2.00 1 1.20 330 0.80 1.79 3.07 .5.00, I 302b 302b 0.59 0.85 1.00 0.85 IS 2.00 1.44 794 0.84 1.83 7.22 8.66'+•=' [:__ i 303 1 303 3.56 I 0.24 1 1.00 1 0.24 313 1.50 1 24.97 249 257 1 2.40 1 1.72 `'- I 304 J 5 0.271 1.00 017 . . . 1.120 -]26.69.- 25201_ 305a 0 0.36 L00 0.36 173 2.10 14.30 137 2.00 1 112 1 1.08 15.38.` - I 305b 305b 3.51 1 0.30 1 1.00 I 030 168 1 2.00 1544 208 2.00 1 2.17 1 1.63 17.07 I 306 ( 306 2.66 I 0.77 I 1.00 1 0.77 1 109 8.62 ! 3.10 275 1.00 1 1.50 1 3.06 6.16 I 307 1 307 4.79 1 0.66 1 1.00 0.66 1 160 5.64 5.80 282 1.00 1 1.50 1 3.13 8.93 - •- - I 308 1 308 0.51 1 0.20 1 1.00 0.20 1 63 1 25.00 4.57 272 0.50 1 L06 1 4.27 9.95.' 309 309 0.89 0.60 1.00 0.60 90 3.75 1 5.74 217 1.01 2.08 2.30 :.8.04 310 310 L67 0.53 LW 053 91 3.75 6.56 309 0.60 1.79 288 944 '? 31 la I 311a 3.17 1 0.72 1 1.00 1 0.72 238 1 3.40 7.33 165 L00 ! 1.50 1 L83 9.16..E 311b 1 311b 057 1 Q68 1 1.00 0.68 53 10.00 1 265 193 0.90 1 1.90 i 1.70 "-.3.00:-`- 3122 312a 7.18 I 0.51 L00 0.51 257 2.36 1 13.37 272 1.73 1 1.98 1 2.28 I 312b 3121, 2.11 1 0.52 1 L00 0.52 452 j 1.55 1 19.81 '309 0.68 1 1.65 1 313a 3132 4.71 1 0.65 1 1.00 0.65 425 2.11 1 13.64 77 1.31 1 229 1 056 1420 ='-- 3131, 1 313b 1.02 1 0.43 1 1.00 0,43 269 0.69 I 23.12 58 1 0.66 I 1.62 I 059 •' 2372 - 314 314 1.63 0.30 1.00 0.30 1 ❑ 1.76 ! 13.11 1 203 1 1.33 1 1.73 1.1 t 15 06 s 315 315 1 036 0.37 1.00 0.37 64 2.12 1 8.52 1 146 1 1.70 L96 1.24 400 1 400 - 276 0.61 1.00 0.61 244 2.24 1 11.03 212 1.90 1 2.07 1 1.71 i3'% J,::12.74 '•= •-_'-- ! 401 1 401 L86 1 0.65 1 1.00 I 0.65 1 315 1.55 13.04 45 1.55 1 1.87 1 0.40 1 13.44.`,-x I 402 1 402 L86 1 0.64 1 1.00 061 315 1 1.55 13.14 45 1.55 1 1.87 1 0.40 1- 13.54 I 403 1 403 10.80 0.26 I 1.00 0.26 261 1 2.10 20.02 742 1.02 1 L51 I 8.16 - "..28.19- - 404 1 404 1.31 I 0.30 L00 1 0.30 245 I 2.10 1940 23 2.46 2.35 1 0.16 18.56 ' 500 1 500 443 1 0.20 1 1.00 1 0.20 1 179 1 1.13 1 21.56 402 0.50 1 0.49 1 13.54 3509 '- Sol 1 501 4.39 0.20 1 1.00 1 0.20 500 0.80 40.54 16 0.80 1 0.63 1 042 4095 -- I _ 502 502 2.01 0.66 1.00 066 q3 2.00 Na 1288 0.89 1 L99 1 11.38 • _1138 .. .. 503 503 1 0.98 0.90 1.00 1. 0.90 45 2.00 1 n1a 894 1 1.17 I 2,16 6.90 - } 6.90 •L" ' t 600 1 1 601 I 600 601 1 1.68 L97 1 0.38 OA2 i 1.00 1.00 I 0.31 042 338 1 310 2.08 125 1 1948 I 2085 164 401 1.00 i 133 1 2.00 2.31 1 137 290 _ 2094 - 2375 I 6� 1 602 124 0.83 1 1.00 083 20 1 200 I 178 939 110 1 2.1il 1 78e I" 1000 I 7.01 0. 33 1.00 1 0.23 327 L60 I 25.19 ! 91 I 1676 I 6.H 0.25 ,•.r 25A3 a.==- Rowed Flows ' 600 601 1 1.68 1 0.38 1.00 1 0.38 338 1 2-o-s--7 19.48 i 657 1 1.06 1 2.06 1 5.32 ">124.79 3116 311a QSi 0.68 100 068 53 1000 I 265 517 083 i 192 1 e73 - 1 3121, 1 312a 2.12 1 0.52 1 1.00 1 0.52 1 452 1 1 55 19 SI 691 1.61 2.54 1 e e7 24.28 ' 3136 1 313a 1.02 1 OA3 1 100 1 043 1 269 1 069 2312 427 1H 291 i 245 2557 I 302b j 302a 0.59 1 0.85 1 1.00 0.85 IS +.00 1,44 1067 0.67 1.64 1 10.87 1230 ' FC0194_RaliauFFon Collvss.xis 2:26 PM 1 lob \umber FC0194 Date: 3/112002 Project 2004 High School ■ �V V Calculated BY GAD. HHF Design Storm: 10012N (Developed) R E V O N D E' N G 1 N E E R 1 N G DATA ' INITIALJOVERLAND TIME(Q - TRAVELTIME (t,) FINAL t, Dmmge Brim (11 Design Point l(a) Area acre(s) (2) RumoR Coefficient C (3) FrequencyCom Factor1.rn81h Cr (3a) CC, (3b) It (4) Slope % (5 4 minIt 61 Length Slope % (8) Velocity 0/sec (9) y minmin (10) P used �. (IS 10"": I 100 575 0.95 L25 I 1 9 Na IL00 Na na I 'c 0Na 0 101 012 1 0.95 1.25 L00 1 101 ISNa N 00010! - 200 200 ! 1.23 1 042 1.25 1 0.53 1 220 1 1.99 12.61 190 0.50 1 1.41 1 2.24 .14.85 - 1 201 I 201 1 1.33 1 040 1 1.25 1 0.50 1 143 1 5.88 7.50 2001 1.50 1 2.45 1 1.36 8.86 20, 2022 ! 1.13 1 016 1.25 1 1.00 1 207 1 0.50 1 3.39 1 207 0.68 1.65 1 2.09 5.48 20li 202b 1 2.46 1 0.39 I 125 0.49 96 2.00 8.87 509 0.68 Ib5 5.14 :14.01' - I 203 203 1 1.29 ! 0.57 L25 0.71 96 2.00 5.70 356 0.60 L55 1 3.93 '.9.53 204 204 1 3.36 1 0.65 1 L25 0.81 40 2.00 1 2.71 1 2759 1 0.50 j 101 1752 300 300 ! 0.66 1 0.39 1 125 0,49 212 L50 14.52 246 0.64 1. 00 I 2.56 301a 301a I 1.90 1 0.35 I 1.25 0.43 313 I L50 19.26 200 0.50 1.41 1 2.36 3016 30lb 1 1.42 1 065 1 1.25 012 97 l 5.14 3.03 1 870 0.63 1.59 1 9.14 307 I 302a 1 027 1 0.90 1 125 LOD 16 2.00 0.59 330 0.60 179 3.07 -6.00'__" " 302b I 302b 1 0.59 1 015 1 1.25 1.00 1 15 1 2.00 0.57 1 794 1 0.84 1 1.83 1 7.22 ':'.7.80r ` 303 303 1 3.56 i 0.24 1 1.25 0.30 313 1.50 23.26 1 249 - 2.40 I 1.72 - i '24.98- �� I 30. 304 I 1.52 I 0.27 1.25 0.33 312 1.50 22.17 71 0.50 H. L.2 "'23:28 _---T. 31Ta 3052 1 3,45 0.36 1 1.25 0.44 173 2.10 .2.59 137 2.00 212 1 L08 .'-'13:67.': > 340 305b 1 3.51 1 OJO 1 1.25 0.37 169 1 2.00 14.01 1 208 2.00 2.12 1 L63 ' <C15,64' 306 1 306 t 2.66 0,77 1 1.25 0.97 109 8.62 1.26 275 1.1 1.50 3.06 ''"' :5.00� 307 307 479 1 0.66 ! 1.23 0.83 1 160 5.64 3.59 282 1.00 I 1.50 1 3.13 :6:72. . 3V 308 1 0.51 1 0.20 1 1.25 0.25 63 1 25.00 4.32 1 272 0.50 1 1.06 I 427 c .'8.59'; '- t 309 309 ! 0.89 1 0.60 1 1.25 0.71 90 1 3.75 4.03 1 287 1Ae 2.08 1 2.30 -6.33` -` t 310 310 I L67 1 0.53 1 1-25 0.66 91 ( 375 5.05 I 309 010 1.79 1 2.89 - fl:7:92 311a 3lla I 317 1 0.72 1 125 0.90 238 1 3.40 3.98 1 165 L00 1 1.50 i 1.83 2572' 31 lb 311b O.57 0.68 1 1.25 1 0.85 1 53 1 10,00 1 1.58 1 193 1 OM 1 1.90 1 170 -.: 5.00. 3122 3122 7.18 0.51 t 1.25 1 0.63 1 257 1 2.36 1 10.52 1 272 1 1.75 1.98 1 2.28 --.'12.80=--rs 1 312b 312b 1 2.12 1 0.52 1 1.25 0.65 452 1 1.55 15.31 1 309 0.68 1.65 1 3.12 , F 98.44 T-- i 4.71 1 0.65 1 1.25 0.81 425 72.11 8.78 77 L31 229 1 0.56 934'd' ! 3131, 313b 1 1.02 1 0,43 1 I-25--L 0.54 1 269 U9 19.37 58 0.66 1.62 0.59 1996 314 314 1 1.63 ! 0.30 1 125 0.37 1 Ill 1.76 11.89 203 1.33 1.73 1.96 13.85 ' 315 315 1 0.36 l 0.37 1 1.25 0.46 1 2.12 7.45 146 1.70 1.96 1 124 0 I 275 1 0.61 ! 12 1 244 2.24 7.65 212 1.9D 207 5 I .76 1.55 8.4 1 45 1.55 117 I 8200 '-- 4(r 1 402 1 1.86 1 0.64 t 1.25 1 0.80 1 315 1 1.55 8.54 45 1.55 403 I 403 1 10.80 ! 0.26 1 1.25 0.32 264 2.10 I8.50 1 742 IA2 1.51 8.16 _ '.26.67 401 404 1 1.31 1 0.30 1 1.25 1 0.37 1 245 1 110 16.71 I 23 1 2.46 2.35 ! 0.16 ' 16:87±=<'. -.1 500 500 1 4.43 1 010 1.25 0.75 I78 113 2036 1 402 050 049 1354 501 I 501 ! 4.39 1 0.20 1 1.25 0.25 $OD 0.80 3828 16 0.80 0.63 042 502 502 1 2.04 4 066 125 082 43 200 Na 1288 089 189 1138 1136' _' 1 503 503 1 0.88 0.80 I 125 100 45 200 n/1 894 117 21; I 690 ` -6.90== _- 60D 600 1 1.68 1 0.33 1 1.25 1 0.47 338 2.08 16.94 1 164 1.00 200 I L37 - - 19.30 ! 601 601 1.97 1 0.42 i 125 I 0.52 310 125 17.66 1 401 1.33 231 1 290 -:20-' _ ! 60'0. 602 I 124 1 0.83 I 125 1.00 20 2.00 0.66 989 1.10 210 I 7.86 -'8.52 I I I I 1 1000 1000 7.01 0.23 1.25 0.29 327 1 160 23.53 91 1676 6.14 Routed Flows 600 1 601 I 1.68 0.38 1 125 1 0.47 1 338 208 1 16.94 1 657 1 1.06 1 206 552 ' I 3111, 31 la 0.57 1 0.68 1 125 0.85 53 10.00 1.56 517 0.63 t.82 4.73 631 rz.-_ ., I 312b 3122 ! 2.12 1 0.52 1 1.25 0.65 1 452 1.55 15.31 I 681F 1.6 1 254 1 ' 313b 313a 1.02 0.43 1 1.25 . 0.54 1 268.92 0.69 1 19.37 1 426.93 1 Z.11 1 2.91 I 2,45 21 82" 302b 1 3022 0.59 1 0.85 ! 125 1D0 1 15 1 2.00 1 0.57 1 1067 1 0.67 1 1.64 1 10.87 '11.44 - n A ' FC0194_RationaEFon CoUim.xb 2:30 PM 10 11 1 1 1 rij >xx 0=year eveloped4Runoff Job Nur. bec FC0194 Project 2004 High School NO= Date: 3/1112002 Calculated By: GAD, HHF Design Stornt 2 year (Developed) B E Y O N D E N G I N E E R I N G DIRECT RUNOFF Design Rainfall Basin Point Area of Area CCt t, CCr • A Intensity Flow (Q) Design acre(s)min acres) in/hr cfs 1 (2) (3) 4 5 (6) 17 (8 9 100 100 100 5.75 0.95 1 10.00 5.47 3.78 20.66 1 101 101 1 101 1 0.12 0.95 1 12.02 I 0.12 1 3.54 ' ]' 0.41 200 200 I 200 1.23 0.42 1 17.18 1 0.52 1 2.99 '1.56 I 201 201 I 201 1.33 0.40 10.09 I 0.53 1 3.77 _N:99 1 2022 202a 1 202a 1.13 0.86 10.21 1 0.97 1 3.75 . °3165 202b 202b 202b 2.46 0.39 1 15.44 1 0.96 1 3.15 -_ ;:53.04 203 203 203 1.29 0.57 ))59 0.73 3.59- 204 1 204 204 3.36 0.65 36.75 2.18 300 300 300 0.66 0.39 19.41 0.26 2.79 - 0.72 ''"t 301a 301a I 301a 1.80 0.35 24.12 1 0.62 1 2.49 '::1?55--- 301b 301b I 301b 1.42 0.65 13.91 0.93 1 3.32 "5.:�3:09 :- 302a 302a I 302a 0.27 0.90 5.00 0.25 I 4.87 _ ;:1M 302b 302b I 302b 0.59 0.85 9.66 0.50 4.07 ,:2.05 -� 1 303 303 303 3.56 0.24 26.69 1 0.84 1 2.36 304 304 304 1.52 I 0.27 i 2520 1 0.40 i 2.43 0.98- ' 305a 305a 305a 3.45 0.36 1538 1.23 3.16 :'-_:3:87:., 305b 305b I 305b 3.51 0.36 17.07 1.04 1 3.00 - '3114 -' 306 306 1 306 2.66 0.77 6.16 2.06 1 4.62 <. A51. - 307 307 I 307 4.79 0.66 8.93 3.18 1 4.01 ':4t12.75 - 308 I 308 308 0.51 0.20 8.85 0.10 4.03 ='=:0.41 309 1 309 I 309 0.89 0.60 8.04 0.53 4.21 235 310 310 I 310 1.67 0.53 9.44 0.88 3.90 -=:3.41- ?-- 31la 311a I 311a 3.17 0.72 9.16 2.28 I 3.96 311b 311b I 311b 0.57 0.68 5.00 0.39 4.87 1813 n 312a 312a I 312a 7.18 0.51 15.65 3.64 1 3.13 ---,!A Vi39'_ 312b 312b I 312b 2.12 0.52 1 22.93 1 1.11 I 2.56 -.:� = 2:84 .: 313a 313a I 313a 4.71 0.65 14.'0 3.04 I 3.28 -.- 9.99•: '+ 313b 313b 313b 1.02 0.43 23.72 0.44 11.T1 314 314 314 1.63 0.30 15.06 0.49 3.18 -:'x.155--" 315 315 315 0.36 j 0.37 9.777 0.13 I 3.83 11, ,,,-03i � - 400 400 I 400 2.75 0.61 12.74 1.67 1 3.46 '."`5.76'„ 401 1 401 1 401 1.86 0.65 13.44 1.20 3.i3 t4:06'Y-' 402 ! 402 1 402 1.86 0.64 1354 1.20 3.36 =--= 0202 ==-' 403 ! 403 403 1 10.80 0.26 28.19 2.77 2.29 '_.-6i35.-- 404 1 404 404 1.31 0.30 1856 0.39 2.87 _- °:I'll' -.= 500 I 500 500 4.43 0.20 35.09 0.89 2.00 501 501 501 4.39 0.20 40.95 502 I 502 502 2.04 0.66 11.38 1.34 1 3.62 ,'= 124:86y1-. 503 I 503 503 0.88 0.80 6.90 0.70 1 4.46 It7;71 600 600 - I 600 1 1.68 1 0.38 1 20.84 10 63 2.69 1:70 601 601 I 601 1.97 0.42 1 23.75 0.82 I 2.51 2.07 i 602 602 1 602 1.24 1 0.83 9.64 1.03 1 3.86 - .3.96 1 1000 1000 1 1000 7.01 0.23 25.43 1.60 2.42 Routed Flows Basins Design Point E CxA 4 I Q 200,202 1 200 I 1.49 17.18 2.99 . '-4A7-.- 600, 601 1 601 I 1.46 F24.79 2.45 3.oZ- 31la, 31 lb I 31la 2.66 1 7.38 4.35 312a, 312b I 312a 4.75 124.28 2.48 f't Y1178�:'==::- 313a, 313b 313a 1 3.48 1 25.57 2.41 =i:-IlAl . 1 FC0194_Ra6oml-FortCollins.xls 2:24 PM I 1 I 1 1 11 1 Job Number: FCOI94 Date: 3/1IR002 Project: 2004 I igh School Calculated By. GAD, IBff Design Storm: 100 year (Developed) BEY ON D E N G I.N E E R ING DIRECT RUNOFF Design Rainfall Basin Point Am of Am CCr 4 CCr • A Intensity Flow (Q) Design actc(s) min acre(s) in/hr cfs (q (2) (3) (4) (5) (6) (7) (8) (9) 100 too 1 100 1 5.75 1.00 10.00 5.75 7.72 I 44.41 - 101 101 1 101 0.12 1.00 I000 0.12 772 I095 300 300 3000.66 0.49 17.08 1 0.32 1 6.14 1t97 301a 301a 1 3012 1.80 0.43 21.61 1 0.78 5.40 4.21 - 301b 301b I 301b 1.42 1 0.82 1 12.16 1 1.16 7.20 '837'- -- 302a 302a I 302a 017 1.00 5.00 1 0.27 9.95 --2k73===_; 3026 302b I 302b 059 1.001 7.80 I 0.59 8.70 --<534`--`= 301 303 I 303 356 1 030 1 24.98 1 1.05 4.98 .5.24_i; 304 304 I 304 1.52 OJ3 23.28 0.50 5.19 - - .3.61'' 1'- 305a 305a I 305a 1 3.45 1 0.44 13.67 1.53 6.84 10.48 i c' 305b 305b 1 305b 3.51 0.37 15.64 1.31 6.40 ' .836.7 306 306 1 306 2.66 0.97 T 5.00 1 2.57 9.95 .-25.62'. -.'. I 307 307 1 307 - 4.79 0.83 6.72 1 3.97 I 9.19 "36.47' 308 308 308 1 0.51 015 8.59 1 0.13 1 835 1 1.06'-.. 1 309 309 1 309 1 0.89 1 0.75 1 6.33 1 0.67 9.36 1' `-624: z- 310 310 1 310 1.67 0.66 7.92 1.10 8.65 -_-931' 311a 311a I 311a 3.17 0.90 5.72 2.84 9.63 �'Y2738.:_-.` 31lb 31lb I 311b 0.57 0.85 5.00 0.48 9.95 479 312a i 312a 312a Zl8 0.63 I2.80 4.55 7.05 32 W4 l- . 3126 1 312b I 3126 2.12 0.65 18.44 139 5.89 8 16 �' 313a 313a 313a 4.71 0.811 9.34 3.80 8.01 -•=-.'-30.47'--i 313b 313b I 313b 1.02 0:4 19.96 I 0.55 5.61 _"?3101-' 314 314 I 314 1.63 0.37 13.85 I 0.61 6.80 =::='.4.12'.-'--' 315 315 315 036 0.46 8.69 I 0.17 8.30 `._i 38` -• 50 500 1 500 4.43 0.25 33.90 1.11 4.18 '"-=_.4.63A :- 50 I 501 501 439 025 38.70 1.10 1 3.83 420 502 1 502 502 2.64 0.82 11.38 1.68 7.39 12,41 503 1 503 503 0.88 1.00 1 6.90 1 0.87 9.10 If 796 600 600 600 1 1.68 0.47 18.30 0.79 5.91 : =, 4i67�' 601 1 601 1601 1.97 0.52 20.56 1.031 5.53 x�FRS.69F 602 1 602 1 602 1 1.24 1.00 1 8.52 1.24 1 838 a-'-1035:,.-..' 1000 1000 I 1000 1 7.01 019 23.78 1 2.01 5.13 '`10 30--_ Routed Flows Basins Design Point 2: CxA 4 I Q I 200.202a 200 1 1.78 1 14.85 6.56 1 1167 _ 1 302a, 302b I 3022 0.87 11.44 737 311a,31lb 31 Is 333 1 631 1 937 - 3115Controls 312a. 312b 1 312a 5.93 19.79 5.64 -33.46 ' Controls 313a, 313b 1 313a 436 21.82 5.37 1 -','23.41::r- 502,503 1 502 255 1138 739 c_c.18.97 . 501. 312a, 312b 1 312a 7.03 38.70 3.83 7.26� 500,313a, 313b1 313a 5.46 ' FC0194_Rationa4Fmt Collinsacls 231 PM N 1 1 1 1 1 APPENDIX B ' Street Capacity Calculations 1 1 1 1 1 1 1 1 N I 1 ,� y ;• '"`' �'."��'g-;:`Street�Capa�cuyrEalcuTations Mina N Project Number. FGAD Designer: GAD Date: 51612002 Given: ' I. Modified Manning's Formula for flow in shallow triangular channels: Q - 0.56(Zin)Sa`yaa Where: ' Refer o Figure 1. (below) Q= Theoretical Goner Capacity, cis r= Depth of Flow at Face of Gutter, feet n= Roughness Coefficient, 0.016 So Longitudinal Channel Slope, % ' S.= Cross Slope of Gunn Pan, feet/feet Sb= Crass Slope of Asphalt, fbet/feet Z= Reciprocal of Cross Slope, feet/feet N 1 B E Y O N D E N G I N E E R I N G 0.016 Solution: 1. Solve for 'Q*, S.- 0.0833 Se= 0.02 Z, = M. - 12.00 Z,/n = 75030 Zb=I/Sb- 50.00 Zb/n- 3125.00 y = 0.50 (water depth at curb face, feet) w 0.41 (water depth at curb face w/14' CL to FL) So= See Below (longitudinal slope ofs c%%) a = 2.00 a = 2.00 y'= 0.33 J= 0.24 Therefore. 0.56(Zln)ya'= 13533 Therefore. 056(Ln)ye 95.75 Q - 13533'Sab' Q = 74.62'Seu" Minor Storer Street I Spread Nance Criteria I Width FL to CL ft Street Classification I Developedl Qlo cfs Longitudinal Calculated Grades Q % cfs(See Reduction Factoro Anached Allowable Q cfs Design Point(s) i Top of Curb I Rock Creek Dr. 1 20 1 Coogan i 4.22 0.50% 1 9.57 0.65 6.22 204 O.K. Top of Curb I Cambridge Ave.1 25 Coucw L70 1 1.03 % 13.73 0.80 10 99 600 O.K. ' To of Curb ICambridgeAve. 25 [o0mu 2.07 1.30% 1 15.43 0.80 12.34 601 O.K. To of Curb l Cambridge Are.I 25 CaOeclw 1 3.96 1.41% 1 16.07 0.80 12.86 602 K. I O.O.K. To of Curb I Cambridee Am 25 Co 1 1.56 1 0.68% 1 11.16 0.80 8.93 200 I • Top of Curb I CarnbridgeAve.1 25 I emsaQ 1 11.00 1 0.68% i 11.16 0.80 8.93 I 202a O.K. 'Top of Curb l CaxnbridgeAve.I ' 25 1 Co 1 8.15 1 0.68% 1 11.16 0.80 .' 8.93 202b O.K. I I Top of Curb l Cambridge Ave. 1 25 Cuo-v 1 2.63 1 0.64% 1 10.83 0.80 1 8.66 203 O.K. 1 1 We Free I Zi n Road I 26 Minx nncF9 4.86 2.25% 1 20.30 0.78 1 15.83 502 O.K. 1 Centerline I Intrerior Road 1 14 local 1.55 0.50% 1 6.77 0.65 4.40 301a O.K. 1 Centerline I Interior Road 1 14 lml 3.09 0.67% 1 7.84 0.80 I 6.27 3016 O.K. 1 Crnterline Interior Road 1 14 tad 1 1.20 1 0.67% 1 7.94 0.80 j 6.27 302a O.K. I Cenwline I Interior Road 1 1 2.05 0.67% 1 7.84 ± 0.90 I 6.27 3026 O.K. 1 Crntnlme 1n,Uamr Road 1 1 0.72 0.50% 1 6.77 i 0.65 4.40 300 O.K. T b y a T Za I~- Zb Y Figure 1. 9 Nolle Associa/es, Inc. 51612002 10:09 AM 1 1 N 1 1 1 1 Gutter Spread - Minor Event (10yr) Worksheet for Gutter Section Project Description Worksheet Ziegler Road (DP 502) Type Gutter Section Solve For Spread Input Data Slope 0.022500 tt/ft Discharge 4.86 cfs Gutter Width 2.00 ft Gutter Cross Slope 0.083000 ft/ft Road Cross Slope 0.020000 ft/ft Mannings Coefficient 0.016 Results Spread 10.19 ft Flow Area 1.2 ft' Depth 0.33 ft Gutter Depression 1.5 in Velocity 4.18 ft/s n:\fo0194\drainage\haestad\fc0194—gutterspread.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 08:34:00 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) ' Project Description Worksheet for Irregular Channel N Worksheet Cambridge Avenue - D.P.200 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.006000 ft/ft ' Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotters Method Closed Channel Weighting Method Horton's Method ' Results Mannings Coefficient 0.014 ' Elevation Range 99.25 to 100.00 Discharge 38.25 cfs = QGAP Flow Area 11.1 ft' Wetted Perimeter 38.63 ft ' Top Width 38.00 ft Actual Depth 0.75 ft Critical Elevation 100.02 ft ' Critical Slope 0.004591 ft/ft Velocity 3.46 ft/s Velocity Head 0.19 It Specific Energy 100.19 ft ' Froude Number 1.13 Flow Type Supercritical Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. ' Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+38 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 ' 0+05 0+13 99.90 99.75 0+13 99.75 0+13 99,25 0+ 99.42 0+38 38 99.8888 Qloo = 4.Z7 ' n:\fc0194tdrainagethaestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:48:44 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 M Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.200 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.006000 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 38.25 cfs 100.003- 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ H:1 NTS ' nAfc0194\drainagethaestafttreetcapacity. fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:51:10 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description N Worksheet Cambridge Avenue - D.P.203 Flow Element Irregular Channel Method Mannings Formula Solve For Discharge ' Input Data Slope 0.006400 ft/ft ' Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results ' Mannings Coefficient 0.014 _ Elevation Range 99.25 to 100.00 Discarge 39.50 cfs _ (a C A9 Q 100 �• Z 7 C s h- Flow Area 11.1 ft' ' Wetted Perimeter 38.63 ft Top Width 38.00 ft Actual Depth 0.75 ft Critical Elevation 100.03 ft Critical Slope 0.004560 fUft Velocity 3.57 ft/s Velocity Head 0.20 ft ' Specific Energy 100.20 ft Froude Number 1.17 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. ' Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+38 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+05 99.90 ' 0+13 99.75 0+13 99.75 N 0+13 0+15 99,25 99.4242 0+38 99.88 ' n:\fc0194Xdrainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614j] 03J05/02 10:54:01 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 1 1 N 1 Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.203 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.006400 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 39.50 cfs 100.00-c- 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ H:1 NTS nAfc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614j] 03/05/02 10:54:10 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel ' Project Description Worksheet Rock Creek Drive - D.P204 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.005000 ft/ft ' Water Surface Elevation 100.00 ft Options ' Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method ' Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 ' Elevation Range 99.25 to 100.00 Discharge 34.67 cfs = �Lqp Qtco - �. 06 C�S Flow Area 10.3 ft' Wetted Perimeter 33.74 ft ' Top Width 33.00 ft Actual Depth 0.75 ft ' Critical Elevation Critical Slope 100.01 ft 0.004368 Wit Velocity 3.37 ft/s Velocity Head 0.18 ft Specific Energy 100.18 ft Froude Number 1.06 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.224 ft. ' Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+33 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+05 99.90 ' 0+13 99.75 0+13 99.75 0+13 99*25 0+15 99.4242 0+33 99.78 ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:04:19 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 1 1 1 1 1 P Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Rock Creek Drive - D.P.204 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.005000 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 34.67 cfs 100 99 99__ 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 V:4.0❑ H:1 NTS ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:04:43 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description Worksheet Interior Road - D.P.300 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Slope 0.005000 Wit Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results ' Mannings Coefficient Elevation Range 0.014 99.27 to 100.00 — Q Discharge 29.90 cfs = Qcgp too Flow Area 8.7 ft' Wetted Perimeter 29.28 ft ' Top Width 28.50 ft Actual Depth 0.73 ft ' Critical Elevation Critical Slope 100.02 ft 0.004150 ft/ft Velocity 3.42 ft/s Velocity Head 0.18 ft Specific Energy 100.18 ft ' Froude Number 1.09 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.27 ft. ' Start Station Roughness Segments End Station Mannings Coefficient ' 0+00 0+06 0.013 0+06 0+12 0.035 0+12 0+14 0.013 0+14 0+29 0.016 Natural Channel Points Station Elevation ' 0+00 100.00 0+06 99.88 ' 0+12 99.77 0+12 99.77 0+12 99.27 0+ 99.44 0+29 29 99.7373 ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:40:46 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 1 1 1 1 1 1 N Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Interior Road - D.P.300 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.005000 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.27 to 100.00 Discharge 29.90 cfs itellellelf 99.50 9920 — 0+00 0+05 0+10 0+15 0+20 0+25 0+30 V:4.0❑ H:1 N TS ' n:\fc0194%drainagethaestad\streetcapacity.fm2 Nohe Associates Inc FlowMaster v6.1 [614j] 031O5fO2 11:40:53 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel w 1 Project Description Worksheet Flow Element Method Solve For Input Data Interior Road - D.P.301 a Irregular Channel Manning's Formula Discharge Slope 0.005000 fvft ' Water Surface Elevation 100.00 ft Options ' Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotter's Method ' Closed Channel Weighting Method Horton's Method Results Mannings Coefficient Elevation Range 0.015 99.30 to 100.00 Discharge 26.12 cfs loo Flow Area 9.3 ft' Wetted Perimeter 36.57 ft ' Top Width 36.00 ft Actual Depth 0.70 ft ' Critical Elevation Critical Slope 100.00 ft 0.005221 fUft Velocity 2.82 fUs Velocity Head 0.12 ft Specific Energy 100.12 ft ' Froude Number 0.98 Flow Type Subcritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.06 ft. ' Start Station Roughness Segments End Mannings Station Coefficient ' 0+00 0+13 0.013 0+13 0+36 0.016 ' Natural Channel Points Station Elevation (ft) (ft) 0+00 100.00 0+10 99.80 0+11 99.80 0+11 99.30 ' 0+13 99.47 0+36 99.94 ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j) 03/05/02 11:16:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 G7 Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Interior Road - D.P.301a Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.015 Slope 0.005000 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.30 to 100.00 Discharge 26.12 cfs 100.00-c-- 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ HA NTS ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:16:51 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) ' Project Description . Worksheet for Irregular Channel Worksheet Interior Road - D.P.301 b Flow Element- Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.005000 ft/ft ' Water Surface Elevation 100.00 ft 1 Options Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotters Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 t Elevation Range 99.11 to 100.00 Discharge 48.61 cfs Flow Area 12.8 ft2 ' Wetted Perimeter 34.99 ft Top Width 34.00 ft Actual Depth 0.89 ft ' Critical Elevation Critical Slope 100.02 ft 0.004133 ft/ft Velocity 3.80 ft/s Velocity Head 0.22 It ' Specific Energy 100.22 ft Froude Number 1.09 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.48 ft. Start Station Roughness Segments End Station Mannings Coefficient ' 0+00 0+10 0.013 0+10 0+20 0.035 0+20 0+22 0.013 ' 0+22 0+34 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+10 99.80 ' 0+20 99.61 0+20 99.61 N 0+20 0+22 99.11 99.28 0+34 99.52 % Qioo - B. C{5 L ' n:\fo0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:22:49 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 ' ' Project Description Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Worksheet Interior Road - D.P.301b Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Section Data Mannings Coefficient 0.014 ' Slope 0.005000 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.11 to 100.00 ' Discharge 48.61 cis 1 10 0.000 ' 99.70 99.40 99.10 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 ' V:4.0❑ HA ' NTS N ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc - FlowMaster v6.1 (614j] 03/05/02 11:23:03 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 N 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description Worksheet Interior Road - D.P.302a Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Slope 0.006700 ft/ft Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.015 Elevation Range 99.39 to 100.16 Discharge 17.37 cfs Flow Area 6.2 ft' Wetted Perimeter 30.51 ft Top Width 30.00 ft Actual Depth 0.61 ft Critical Elevation 100.01 ft Critical Slope 0.005737 ft/ft Velocity 2.78 ft/s Velocity Head 0.12 ft Specific Energy 100.12 ft Froude Number 1.07 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+08 0.013 0+08 0+38 0.016 Natural Channel Points Station Elevation (ft) (ft) 0+00 100.00 0+06 99.89 0+06 99.89 0+06 99.39 0+08 99.56 0+38 100.16 QI oo = 2.7 3 c-�S pk n:\foDI94\drainage\haestad\strxmtcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j) 03/05/02 11:45:20 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 1 1 1 1 1 w Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Interior Road - D.P.302a Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.015 Slope 0.006700 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.39 to 100.16 Discharge 17.37 cis 100.20 — 99.90�— 99.60 — 99.30 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 VA.0❑ H:1 NTS t n:\fo0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:45:30 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description Worksheet Interior Road - D.P.302b Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data ' Slope Water Surface Elevation 0.006700 ft/ft 100.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.015 Elevation Range 99.39 to 100.16 Discharge 17.37 cfs = Q Cp P i Flow Area 6.2 ft' ' Wetted Perimeter 30.51 ft Top Width 30.00 ft Actual Depth 0.61 ft Critical Elevation 100.01 ft ' Critical Slope 0.005737 ft/ft Velocity 2.78 ft/s Velocity Head 0.12 ft ' Specific Energy 100.12 ft Froude Number 1.07 Flow Type Supercritical ' Roughness Segments Start End Mannings ' 0+00 Station 0+08 Station Coefficient 0.013 0+08 0+38 0.016 ' Natural Channel Points Station Elevation (ft) 0+00 100.00 0+06 99.89 0+06 99.89 ' 0+06 99.39 .0+08 99.56 0+38 100.16 ' n:\fc0194\drainage\haestad\sbeetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [61417 - 031OW02 11:46:26 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Cross Section for Irregular Channel Project Description Worksheet Flow Element Method ' Solve For Section Data Interior Road - D.P.3021b Irregular Channel Manning's Formula Discharge Mannings Coefficient 0.015 ' Slope 0.006700 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.39 to 100.16 ' Discharge 17.37 cfs 100.20 — 99.90' 99.60 — 99.30 0+00 V- 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ H:1 NTS N ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Notte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:46:38 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 ' Theoretical Capacity - Major Event (100yr) ' Worksheet for Irregular Channel Project Description N Worksheet Ziegler Road - D.P.502 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Input Data Slope 0.022500 ft/ft Water Surface Elevation 100.00 ft Options ' Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method ' Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.015 ' Elevation Range 99.19 to 100.00 Discharge 95.99 .cfs = Q cA7 i Qt oo Flow Area 13.6 ft' ' Wetted Perimeter 42.68 ft Top" Width 42.00 ft Actual Depth 0.81 ft ' Critical Elevation Critical Slope 100.22 ft 0.004017 Wit Velocity 7.05 ft/s Velocity Head 0.77 ft ' Specific Energy 100.77 ft Froude Number 2.18 Flow Type Supercritical Calculation Messages: Water elevation exceeds lowest end station by 0.16 ft. ' Start Station Roughness Segments End Station Mannings Coefficient ' 0+00 0+06 0.013 0+06 0+16 0.035 0+16 0+18 0.013 ' 0+18 0+42 0.016 Natural Channel Points Station Elevation ' (ft) (ft) 0+00 100.00 0+06 99.88 ' 0+16 99.69 0+16 99.69 N 0+1 0+18 99,19 99.3636 0+42 99.84 ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 11:11:27 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100-yr) ' Cross Section for Irregular Channel Project Description Worksheet Ziegler Road - D.P.502 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Section Data Mannings Coefficient 0.015 Slope 0.022500 ft/ft Water Surface Elevation 100.00 It Elevation Range 99.19 to 100.00 ' Discharge 95.99 cfs 100.00^ ' 99.50 99.10 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 1 0+45 V:4.0❑ HA NTS ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc 03/05/02 11:11:34 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 FlowMaster v6.1 [614j] Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel M Project Description Worksheet Cambridge Avenue - D.P.600 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Slope 0.010300 Wit ' Water Surface Elevation 100.00 ft Options ' Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotter's Method ' Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 ' Elevation Range 99.25 to 100.00 Discharge 50.11 cfs = 0 Qtoo 4• 4 -7 CF5 Flow Area 11.1 ft' ' Wetted Perimeter 38.63 ft Top"Width 38.00 ft Actual Depth 0.75 It Critical Elevation 100.09 ft Critical Slope 0.004342 ft/ft Velocity 4.53 ft/s Velocity Head 0.32 ft ' Specific Energy 100.32 it Froude Number 1.48 Flow Type Supercritical ' Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. ' Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+38 0.016 Natural Channel Points ' Station Elevation (ft) (ft) 0+00 100.00 0+05 99.90 0+13 99.75 0+13 99.75 0+199.25 0+15 99.4242 0+38 99.88 ' n:\fc0194\drainage\haestad\sbeetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 (614j] 03/05/02 10:55:18 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 1 1 1 1 w Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.600 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.014 Slope 0.010300 ft/ft Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 50.11 cfs 100.00c- 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0F� H:1 NTS ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:55:28 AM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 1 M 1 1 1 1 1 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.601 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Slope 0.013000 ft/ft Water Surface Elevation 100.00 ft Options Current Roughness Method Improved Lotters Method Open Channel Weighting Method Improved Lotters Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.014 Elevation Range 99.25 to 100.00 Discharge 56.30 .cfs Flow Area 11.1 ft' Wetted Perimeter 38.63 ft Top Width 38.00 ft Actual Depth 0.75 ft Critical Elevation 100.12 ft Critical Slope 0.004240 ft/ft Velocity 5.09 ft/s Velocity Head 0.40 ft Specific Energy 100.40 ft Froude Number 1.66 Flow Type Supercritical ' ' Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. Roughness Segments Start End Mannings Station Station Coefficient ' 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 ' 0+15 0+38 0.016 Natural Channel Points Station Elevation ' 0+00 100.00 0+05 99.90 ' 0+13 99.75 0+13 99.75 0+13 0+15 99.25 99.4242 0+38 99.88 _ / okoo _,� � 60 cis � ' n:tfc0194\drainagethaestad\streetcapacity.fm2 Nolte Associates tnc FlowMaster v6.1 [614j] 03/05/02 10:56:05 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 ' Theoretical Capacity - Major Event (100-yr) Cross Section for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.601 Flow Element Irregular Channel Method Manning's Formula ' Solve For Discharge Section Data Mannings Coefficient 0.014 ' Slope 0.013000 ft/ft 1 1 1 1 1 1 Water Surface Elevation 100.00 ft Elevation Range 99.25 to 100.00 Discharge 56.30 cfs 100.00c_ 99.50 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 V:4.0❑ HA NTS n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:56:12 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Theoretical Capacity - Major Event (100yr) Worksheet for Irregular Channel Project Description Worksheet Cambridge Avenue - D.P.602 Flow Element Irregular Channel Method Manning's Formula Solve For Discharge ' Input Data Slope 0.014100 ft/ft ' Water Surface Elevation 100.00 ft Options ' Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotters Method Closed Channel Weighting Method Horton's Method Results 1 1 Mannings Coefficient 0.014 Elevation Range 99.25 to 100.00 Discharge 58.63 cfs = Qcaa > Q,00 10.35 c s Flow Area 11.1 W Wetted Perimeter 38.63 ft Top" Width 38.00 ft Actual Depth 0.75 ft Critical Elevation 100.13 ft Critical Slope 0.004205 ft/ft Velocity 5.30 ft/s Velocity Head 0.44 ft Specific Energy 100.44 ft Froude Number 1.73 Flow Type Supercritical Calculation Messages: Water elevation exceeds lowest end station by 0.12 ft. Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+05 0.013 0+05 0+13 0.035 0+13 0+15 0.013 0+15 0+38 0.016 Natural Channel Points Station Elevation (ft) (ft) 0+00 100.00 0+05 99.90 ' 0+13 99.75 0+13 99.75 0+13 99.25 0+15 99.4242 0+38 99.88 bK ' n:\fc0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:56:40 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 1 Theoretical Capacity - Major Event (100-yr) 1 Cross Section for Irregular Channel Project Description Cambridge Avenue - D.P.602 Worksheet Flow Element Irregular Channel Method Manning's Formula 1 Solve For Discharge Section Data Mannings Coefficient 0.014 1 Slope 0.014100 ft/ft Water Surface Elevation 100.00 ft 1 Elevation Range Discharge 99.25 to 100.00 58.63 cfs 1 1 1 . 100.00- 1 99.50 y ✓ 9920 0+00 0+05 0+10 0+15 0+20 0+25 0+30 0+35 0+40 1 V:4.0 H:1 1 NTS 1 1 1 1 n:\fo0194\drainage\haestad\streetcapacity.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/05/02 10:56:47 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 M 1 ' APPENDIX C ' Inlet Design I I I 49 1 1 1 1 1 1 1 1 1 1 1 11 GUTTER°CONVEYANCE CAPACITY Project = FC0194 - 2004 High School Street ID = Cambridge Avenue - D.P.202b Street Side Walk Ts Crown A ' Y ; QW .' Qx 4f� Sic x D W -�SW A- DO v 4,--- T <------------------------> <--W><--------- T"-------- > Gutter Street )n Discharge in the Gutter Qo = 8.2 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1.52 inches t Transverse Slope Sx = 0.0200 ft/ft t Longitudinal Slope So = 0.0068 ft/ft ing's Roughness N = 0.016 :r Cross Slope :r Spread Width �r Depth without Gutter Depression !r Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope ate Carried by Width Ts ate Carried by Width (Ts - W) :r Flow Flow Flow (Check against Qo) ar Flow to Design Flow Ratio /alent Slope for the Street Area Velocity product Sw = - 0.08 ft/ft T = 16.39 ft Y = 0.33 ft D = 0.45 ft Tx = 14.39 ft Ts = ' 5.45 ft Qws = 4.2 cfs Qww = 1.3 cfs Qw =•.:.- :>3.0 cfs Qx = '5.2 cfs as = 8.2 cfs Eo = 0.36 Se = 0.04 ft/ft As= 2.81 sgft Vs = 2.90 fps VsD = 1.32 ftz/s ' UD-Inlet v1.00.xls, Street Hy 3/6/2002, 12:45 PM 1 1 1 1 1 1 1 1 1 1 CURB OPENING INLET ON A GRADE Project: FC0194 - 2004 High School Inlet ID: Cambridge Avenue - D.P.202b W L WP P-rt----- ><---� Curb xr �^� Flow Direction Gutter i Discharge on the Street (from Street Hy) Qo = .-8.2 cis Flow to Design Flow Ratio (from Street Hy) Eo = 0.36 of a Single Inlet Unit Lu = 5.00 ft ig Factor for a Single Unit Inlet Co = 0.10 )r of Inlet Units in Curb Opening No = 4 Length of Curb Opening Inlet L =1 " 20i00•ft alent Slope Se (from Street Hy) Se = ' ; 0.0400 ft/ft ired Length Lo to Have 100% Interception Lo =•' ` `:26:72tft ling Coefficient C-coeff = i..':. 1:33 ling Factor for Multiple -unit Curb Opening Inlet Clog = 0:03 ive (Undogged) Length Le = 19.34 ft r No -Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) L =. -. .20:00 ft eption Capacity Qi 2T5 cfs r Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) Le =: 19.34 ft eption Capacity Qa = , *3! cfs overflow = Qo - Qa = Qco = fi77 ate' U cfs ire Percentage for this Inlet = Qa / Qo = C%= [.;;: , =90s12i% UD-Inlet v1.00.xis, Curb-G Carryover +o D.PZ0- 3/6/2002, 2:19 PM 1 1 M 1 1 1 1 1 1 'GUTTER -CONVEYANCE :CAPACITY7. Project = FC0194 - 2004 High School Street ID = Cambridge Avenue - D.P. 200 Stmet Side Walk Ts Crown , ' y ' Qa' Qx Sx , H' D Do -�Sw T <- W><--------- Tx -------- > Gutter Street DP_200.xls, Street Hy in Discharge in the Gutter Qo = 12.5 cfs Height H = .6.00 inches r Width W = 2.00 ft r Depression Ds = 1.52 inches t Transverse Slope Sx = 0.0200 ft/ft t Longitudinal Slope So = 0.0068 ft/ft ing's Roughness N = 0:016 ;r Cross Slope Sw = -0.08 ft/ft :r Spread Width T = ,19.43 ft :r Depth without Gutter Depression Y = .-0:39 ft it Depth with a Gutter Depression D = _0.52 ft ad for Side Flow on the Street Tx = 17,43 ft 3d for Gutter Flow along Gutter Slope Ts =- ='r-618-ft *ate Carried by Width Ts Qws =' ` ' `5.9 cfs ate Carried by Width (Ts - W) Qww= 2.1 cfs :r Flow Qw = _,J3.8 cfs Flow Qx = =:;8.7 cfs Flow (Check against Qo) Qs =` ` 512.5 cfs %r Flow to Design Flow Ratio Eo = 0:31 /alent Slope for the Street Se = 0.04 ft/ft Area As = 3.90 sq ft Velocity Vs = 3.20 fps product VsD = 1.65 ft2/s `a' too C. D. P. 200 / 202a= I i . c= + 0.W cfs cap r)rJVEr , ram D. P. 201 b 3/6/2002, 4:20 PM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 M 1 II <GURB-;:OPENING INLET:IN ASUMP 11 Project = FC0194 - 2004 Inlet ID = Cambridge Av gh School ue - D.P.200 Lu WP P ->C---30. Yd H:. 0 Gutter gn Information (Input) gn Discharge on the Street (from Street Hy) th of a Unit Inlet Width for Depression Pan Sing Factor for a Single Unit it of Curb Opening in Inches e Coefficient Coefficient r Depth for the Design Condition of Throat (see USDCM Chapter 6, Figure ST-5) )er of Curb Opening Inlets a Weir al Length of Curb Opening Inlet :)acity as a Weir without Clogging gging Coefficient for Multiple Units gging Factor for Multiple Units Dacity as a Weir with Clogging an Orifice 3acity as an Orifice without Clogging 3acity as an Orifice with Clogging Percentage for this Inlet = Qa / Qo = water Flow Direction Qo = 12.5 cfs Lu = 5.00 ft W p = 3.00 ft Co = 0.15 H = 6:00 inches Cd = .0:65 Cw = 3.00 Yd = 0:77 ft Theta = 63.0 degrees No = 2 L = 10.00-ft Qwi = 31.2 cfs Clog-Coeff = 1.25 Clog = - ' 0'.09 Qwa = :.'29:3: cfs Qoi =.. :: ``19.3 cfs Qoa = 17.5 cfs Qa = f`.....,.,,-4J:5i cfs C%= ' a'� -,100:00:% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. DP_200.xls, Curb-S 3/7/2002, 11:31 AM 1 1 M 1 1 1 1 1 1 1 1 SGUTTER'CONVEYAN.CE CAPACITY-, Project = FC0194 - 2004 High School Street ID = Cambridge Avenue - D.P.20; DP_203.xls, Street Hy Street sme walk T. crown y Q" QX F� Sx D DI ^�sw <--w><---------Tx-------- > Gutter Street )n Discharge in the Gutter Qo = 10.3 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1:52 inches t Transverse Slope Sx = 0.0200 fUft t Longitudinal Slope So = 0.0064 fUft ing's Roughness N = 0.016 �r Cross Slope Sw = 0.08 fUft ;r Spread Width T = 18.20 ft :r Depth without Gutter Depression Y = 0.36 ft ;r Depth with a Gutter Depression D = 0.49 ft ad for Side Flow on the Street Tx = 16.20 ft ad for Gutter Flow along Gutter Slope Ts = . '5.89•ft rate Carried by Width Ts Qws= 5.0 cfs rate Carried by Width (Ts - W) Qww= 1:7 cfs ;r Flow Qw = . '_-.; 3.4 cfs Flow Qx = 6.9 cfs I Flow (Check against Qo) Qs = 10.3 cfs ;r Flow to Design Flow Ratio Eo = 0.33 Talent Slope for the Street Se = 0.04 ft/ft Area As = 3.44 sq ft Velocity Vs = 2.99 fps product VsD = 1.47 ffz/s G.,,, G= D.P.203 = 7.27cfs +/�S.00js car,yoge✓ trod D.P. 20,4 3/7/2002, 11:19 AM t 1 1 I 1 1 t w CU.RBtOPENING':INLET-IN.ASUMP _ Project=-FC0194 - 2004 High School Inlet ID = Cambridge Avenue - D.P.203 Lu WP P __a nv Direction gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 10.3 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = 3.00 ft Sing Factor for a Single Unit Co = 0.15 it of Curb Opening in Inches H = 6.00 inches e Coefficient Cd = 0:65 Coefficient Cw = 3.00 :r Depth for the Design Condition Yd = 0.74 ft of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees aer of Curb Opening Inlets No = 2 s a Weir otal Length of Curb Opening Inlet L = .. :=:10.00'aft :apacity as a Weir without Clogging Qwi =.29.4, cis :logging Coefficient for Multiple Units Clog-Coeff = - 1.25. :logging Factor for Multiple Units Clog = 0.09: rapacity as a Weir with Clogging Qwa = .27.6?cis s an Orifice apacity as an Orifice without Clogging Qoi = ; - -18.8 cfs apacity as an Orifice with Clogging Qoa = 17.0-cfs for Design with Clogging Qa =t _. - -�9Z Oi cfs Percentage for this Inlet = Qa / Qo = C%=r,i .. 100:00?% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' DP_203.xls, Curb-S 3/7/2002, 11:19 AM w fl 1 I 0 GUTTER CONVEYANCE CAPACITY Project = FC0194 - 2004 High School Street ID = Rock Creek Drive - D.P.204 street Side Walk Ts Crown ' A Y , Qw Qx 4�� Sx H D Do - Zsw T v o, - <------------------------> <- W><--------- TX -------- > Gutter Street to Discharge in the Gutter Height r Width r Depression t Transverse Slope t Longitudinal Slope ing's Roughness ,r Cross Slope ;r Spread Width :r Depth without Gutter Depression �r Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope rate Carried by Width Ts *ate Carried by Width (Ts - W) :r Flow Flow Flow (Check against Qo) ' Gutter Flow to Design Flow Ratio Equivalent Slope for the Street Flow Area Flow Velocity sD product M Qo = -11.1 cfs H = 6.00 inches W = 2.00 ft Ds = 1.52 inches Sx = 0.0200 ft/ft So = 0.0050 ft/ft N = - 0.016 SW = '.0.08 ft/ft T = 19.69 ft Y = 0.39 ft D = 0.52 ft Tx = . ":17.69 ft Ts =' `_>,6.25 ft Qws = " '.5.2 cfs Qww = .: ;' : 1.9 cfs Qw = ; :> ::. _.3.3 cfs Qx-I.^..3.. Z:TCfs Qs =. _11.1 cfs Eo = 0.30 Se = 0.04 ft/ft As = 4.00 sq ft Vs = .2.76 fps VsD = 1.44 ftz/s ' DP_204.xis, Street Hy 3/6/2002, 3:22 PM 1 1 1 1 1 CURB =OPENING=INLET'ON:A'GRADE ;= _ II Project: FC0194 - 2004 High School Inlet ID: Rock Creek Drive - D.P.204 W wp _ _ L �_ _ ow Direction r Discharge on the Street (from Street Hy) Qo = -11.1 cfs Flow to Design Flow Ratio (from Street Hy) Eo = 0.30 of a Single Inlet Unit Lu = 5.00 ft ig Factor for a Single Unit Inlet Co = 0.10 �r of Inlet Units in Curb Opening No = 3 otal Length of Curb Opening Inlet L = 15.00)ft quivalent Slope Se (from Street Hy) Se =; ' 0.04W ft/ft equired Length Lo to Have 100% Interception Lo = 27.7.0'ft logging Coefficient C-coeff =.'; " ` °1.31' logging Factor for Multiple -unit Curb Opening Inlet Clog = •;0.04 Ifective (Unclogged) Length Le =: 14.35 ft nder No -Clogging Condition ffective Length of Curb Opening Inlet (must be < Lo) L = -15:00 ft terception Capacity Oi =+:::. : 83icfs nder Clogging Condition ffective Length of Curb Opening Inlet (must be < Lo) Le = 14:35 ft terception Capacity Qa = <warmI cfs arryover flow = Qo - Qa = Q-co = P cfs apture Percentage for this Inlet = Qa / Qo = C% = I , uz 73i10, % DP_204.xis, Curb-G Carr yovev fo D.P.20= 3/7/2002, 11:17 AM I M 1 I 1 I M GUT TERrCONVEYANCECAP-ACID :: Project = FC0194 - 2004 High School Street ID = Interior Road - D.P.300 street Side V&M Ts Crown V ; QV Qx �-�� Sk x D W - Do -zSw W y y--_ T <------------------------> <- W><--------- T"-------- > Gutter Street In Discharge in the Gutter Qo =' 2.0 cfs Height H = 6.00 inches r Width W = 2.00 it r Depression Ds = 1.52 inches t Transverse Slope Sx = 0.0200 ft/ft t Longitudinal Slope So =i>•:. 0.0050.ft/ft ing's Roughness N = 0.016 :r Cross Slope SW = -". '-=:0.08 ft/ft irSpread Width T=i='":; ,:9;50 ft ;r Depth without Gutter Depression Y = `' ' _ 0:19 ft %r Depth with a Gutter Depression D =y >'=a . 0:32-ft ad for Side Flow on the Street Tx = i �' : ,` -.7.50 ft ad for Gutter Flow along Gutter Slope Ts =; ; .'=3:80`ft rate Carried by Width Ts Qws=` . +; ':14 cis rate Carried by Width (Ts - W) Qww =;, 0.21 cfs ;r Flow Qw = 1 2 cfs Flow Qx = : : -°_ 'O.t cis I Flow (Check against Qo) Qs = :: ; -* _2:0 cfs ;r Flow to Design Flow Ratio Eo = • . 0.60 +alent Slope for the Street Se = 0.06 ft/ft Area As =.. ., 1.03 sq ft Velocity Vs = '` 1:92 fps product VsD =. .0.61 ftZ/s ' DP_300.xis, Street Hy 3/6/2002, 3:35 PM 1 1 M 1 1 1 1 1 1 I� C.URB=.OPENING INLET=:ON-A::GRADE Project: FC0194 - 2004 High School Inlet ID: Interior Road - D.P.300 Wp L WP --------><----�---I,- Curb Gutter F. i Discharge on the Street (from Street Hy) Flow to Design Flow Ratio (from Street Hy) of a Single Inlet Unit ig Factor for a Single Unit Inlet prof Inlet Units in Curb Opening Flow Direction Qo = 2.0 cfs Eo = 0.60 Lu = 5.00 ft Co = 0.15 No = 2 Length of Curb Opening Inlet L = 10:00:ft alent Slope Se (from, Street Hy) Se = 0:0600: ft/ft ired Length Lo to Have 100% Interception Lo = '10:5Zft ing Coefficient C-coeff = ,1':25 ing Factor for Multiple -unit Curb Opening Inlet Clog = 0.09 ive (Undogged) Length Le = 9.06ft r No -Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) L = 10.00:ft eption Capacity Qi = ZO cfs r Clogging Condition ive Length of Curb Opening Inlet (must be < Lo) eption Capacity over flow = Qo - Qa = ire Percentage for this Inlet = Qa / Qo = DP_300.xis, Curb-G Le = 9.06 ft Qa= { 19jcfs Q-co=...,.• ,Os1,.cfs -a.ryover to D.P. (� ' 3/612002, 3:36 PM GUTTER CONVEYANCE CAPACITY Project = FC0194 --2004 High School Street ID = Interior Road - D.P.301 a Stmet Side Walk Ta Cmwn V Qx 4�' Sx x. D W - Do -�Sw T <--)K---------Tx--------> Gutter Street ]n Discharge in the Gutter Qo = 6.3 cfs Q,00@ P.P. 30la = y.21 c;s Height H = 6.00 inches t 2_1 cfs ca,yoveK r Width W = 2.00 it fro D. P. 3016 r Depression Ds = 1.52 inches t Transverse Slope Sx = 0.0200 ft/ft t Longitudinal Slope So = 0.0050 Wit ing's Roughness N = 0.016 ar Cross Slope Sw = V `' 0.08 ft/ft ;r Spread Width T = 15.71 ft :r Depth without Gutter Depression Y = 0.31 ft ;r Depth with a Gutter Depression D = 0.44 ft ad for Side Flow on the Street Tx = 13.71 it ad for Gutter Flow along Gutter Slope Ts = -; 5.29 it rate Carried by Width Ts Qws = .3:3 cfs rate Carried by Width (Ts - W) Qww = - . 0.9 cfs ar Flow Qw = . ,; _:: 2.4 cfs Flow Qx = `F-; 3.9 cfs I Flow (Check against Qo) Qs = -6.3 cfs ;r Flow to Design Flow Ratio Eo = 0.38 ✓alent Slope for the Street Se = 0.04 Wit Area As = 2.59 sq ft Velocity Vs = 2.43 fps product VsD = 1.07 ftz/s DP_301a.xls, Street Hy 3/6/2002, 4:24 PM A 1 CURB`OPENING INLET -ON A.GRADE. - Project: FC0194 - 2004 High School Inlet ID: Interior Road - D.P.301a W ow Direction Design Discharge on the Street (from Street Hy) Qo = 6.3 cfs Gutter Flow to Design Flow Ratio (from Street Hy) Eo = 0.38 Length of a Single Inlet Unit Lu = 5.00 ft Clogging Factor for a Single Unit Inlet Co = 0.10 ' Number of Inlet Units in Curb Opening No = -3 Length of Curb Opening Inlet L = ' - r-- 1 S:OOi ft 'Total Equivalent Slope Se (from Street Hy) Se = i` 0.0400 ftfft Required Length Lo to Have 100% Interception Lo =; .` .:21:87'ft Clogging Coefficient C-coeff = -" :1:31 Clogging Factor for Multiple -unit Curb Opening Inlet Clog = 0.04 Effective (Unclogged) Length Le = '14.35 ft Under No -Clogging Condition Effective Length of Curb Opening Inlet (must be < Lo) L = ' .15.00 ft Interception Capacity Qi = i ;5 5; cfs ' Under Clogging Condition Effective Length of Curb Opening Inlet (must be < Lo) Le = `14.35 ft Interception Capacity Qa = t%cfs ' Carryover flow = Qo - Qa = Q co = r77 70:9 cfs Capture Percentage for this Inlet = Qa / Qo = C % = { ;;:'85:34? % M yover to D.P.('O! ' DP_301a.xls, Curb-G 3/6/2002, 4:24 PM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M _ -GUTTER CONVEYANCE CAPACITY Project = FCO194 2004 High School Street ID = Interior Road - D.P.301 b street Side Walls Ts Crown Y QW Qx H D -/_/ q--- -j4 Do S T <- W><---------TX-------- > Gutter Street )n Discharge in the Gutter Qo = 8.4 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1.52 inches t Transverse Slope Sx = 0.0200 fUft t Longitudinal Slope So = 0.0067 ft/ft ing's Roughness N = 0.016 er Cross Slope Sw = '.' Oi08 ftlft =r Spread Width T = 16.61 It :r Depth without Gutter Depression Y = 0.33 ft ,r Depth with a Gutter Depression D = 0.46 ft ad for Side Flow on the Street Tx = 14.61 • ft ad for Gutter Flow along Gutter Slope Ts = - .5.51- ft rate Carried by Width Ts Qws = .'. 4.3i cfs rate Carried by Width (Ts - W) Qww= 1:3 cfs r Flow Qw =.: :3'0. cfs Flow Qx= 5:4-cfs I Flow (Check against Qo) Qs = .4 cfs ,r Flow to Design Flow Ratio Eo = 0.36 valent Slope for the Street Se = 0.04 ft/ft Area As = -2.89 sq ft Velocity Vs = 2.90 fps product VsD = 1.33 ftz/s ' DP_301b.xls, Street Hy 3/6/2002, 4:25 PM CURB OPENING INLET ON A GRADE Project: FC0194 - 2004 High School Inlet ID: Interior Road D.P:301 b WI) L Wp i Discharge on the Street (from Street Hy) Flow to Design Flow Ratio (from Street Hy) of a Single Inlet Unit ig Factor for a Single Unit Inlet !r of Inlet Units in Curb Opening Total Length of Curb Opening Inlet Equivalent Slope Se (from Street Hy) Required Length Lo to Have 100%, Interception Clogging Coefficient Clogging Factor for Multiple -unit Curb Opening Inlet Effective (Unclogged) Length Under No -Clogging Condition Effective Length of Curb Opening Inlet (must be < Lo) Interception Capacity Under Clogging Condition Effective Length of Curb Opening Inlet (must be < Lo) Interception Capacity Carryover flow = Qo - Qa = Capture Percentage for this Inlet = Qa / Qo = ow Direction Qo = 8.4 cis Eo = 0.36 Lu = 5.00 ft Co = 0.10 No = 3 L=;.- '15.00ft Se =; -'�. 0.0400 ft/ft Clog = . 0.04 Le = . : 14.35 ft L = :15:00 ft Qi :' '� 6i4 cfs Le = 14.35 ft Qa = VAM0621 cfs Qco = fir- "'=', cfs C% = E r74:62' % r 10 D. ?5" DP_301b.xis, Curb-G 3/6/2002, 4:25 PM 1 M u I 1 0 1 M `GUTTER1C;ONVEYANCE CAPACITY, Project = FC0194 2004 High School Street ID = Interior Road - D.P.302a Street Side Walk Ts Cm1vn ' Y ' QW ; ,' �' QX Ss H' D. Do -�SW W y y--- T <- W><--------- T"-------- > Gutter Street In Discharge in the Gutter Qo = 6.4 cfs Height H = 6.00 inches r Width W = 2.00 ft r Depression Ds = 1.52 inches t Transverse Slope Sx = 0.0200 ft/ft t Longitudinal Slope So = ... 0.0067 ft/ft ing's Roughness N = 0.016 :r Cross Slope Sw = •.0.08 Wit :r Spread Width T = 14.88 It ;r Depth without Gutter Depression Y = 0.30 ft it Depth with a Gutter Depression D = -0.42 ft ad for Side Flow on the Street Tx = 12:88 It ad for Gutter Flow along Gutter Slope Ts = °5.09 It rate Carried by Width Ts Qws = 3.5 cis rate Carried by Width (Ts - W) Qww = 0.9 cfs ;r Flow Qw = 2.6 cfs Flow Qx = ' '3.8 cfs I Flow (Check against Qo) Qs = 6.4 cfs ;r Flow to Design Flow Ratio Eo = 0.40 ✓alent Slope for the Street Se = 0.05 ft/ft Area As = 2.34 sq ft Velocity Vs = 2.73 fps product VsD = 1.16 ftZ/s ' DP_302a.xls, Street Hy 3/6/2002, 4:50 PM :CU.RB OPENING ,INLET'INr'AKSUMP �I Project =-FC0194 - 2004 High School Inlet ID = Interior Road - D.P.302a ' Lu WP Wp Ovate r Yd Flow Direction Pan ' Gutter 1 l 1 .1 J gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 6.4 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = 3.00 ft Sing Factor for a Single Unit Co = 0.20 it of Curb Opening in Inches H = 6.00 inches e Coefficient Cd = 0:65 Coefficient Cw = 3.00 �r Depth for the Design Condition Yd = 0.67 ft of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63:0 degrees )er of Curb Opening Inlets No = 1 a Weir al Length of Curb Opening Inlet L = 'ISOO'ft :)acity as a Weir without Clogging Qwi = •.17 1 cfs gging Coefficient for Multiple Units Clog-Coeff =. --1:00 gging Factor for Multiple Units Clog = 0:20 )acity as a Weir with Clogging Qwa = 15.5•cis an Orifice )acity as an Orifice without Clogging Qoi = w :'_ '89 cfs )acity as an Orifice with Clogging Qoa = 7.0 cfs 3acity for Design with Clogging Qa :. cfs 3ture Percentage for this Inlet = Qa / Qo = C% _``= ,--100.00;%a Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' DP_302a.xls, Curb-S 3/6/2002, 4:50 PM I 1 1 1 1 1 1 1 1 1 M : - MER CONVEYANCE'CAPACITY Project = FC0194 -.2004 Street ID = Interior Road (l School - D.P.3 Street Side Walk Ts <--- ----- > Crown Ilk /� ^--- y tZav ' Qx �� Sx , H' D W - Dr �SW T <------------------------> <- w><--------- T"-------- > Gutter Street In Discharge in the Gutter Height r Width r Depression t Transverse Slope t Longitudinal Slope ing's Roughness ;r Cross Slope ?r Spread Width .r Depth without Gutter Depression :r Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope rate Carried by Width Ts rate Carried by Width (Ts - W) er Flow Flow Flow (Check against Qo) it Flow to Design Flow Ratio jalent Slope for the Street Area Velocity product Qo = 6.2 cfs H = 6.00 inches W = 2.00 ft Ds = 1.52 inches Sx = 0.0200 ft/ft So = .0.0120 Wit N = 0.016 Sw = r . 0.08 ft/ft T = 13.04 ft Y = 0.26 ft D = 0.39-ft Tx = -A 1.04. ft Ts = ':=4.65;ft Qws = 3.7 cfs Qww = '0.8,cfs Ow = .'2.8 cfs Qx = 3.4 cfs Qs = 6.2 cfs Eo = 0.46 Se = 0.05 ft/ft As = 1.83 sq ft Vs = 3.42 fps VsD = 1.32 ftz/s ' DP_309.xls, Street Hy 3/6/2002, 4:52 PM I 1 1 M CURB,OPENING`INLET:IN,ASUMP -. Project = FC0194 - 2004 High School Inlet ID = Interior Road (Loop) - D.P.: Lu wP WP - ---�---� nv Direction gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 6.2 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = -3.00 ft ling Factor for a Single Unit Co = 0.20 it of Curb Opening in Inches H =, - . - i6.00 inches :e Coefficient Cd = ' , '0:65 Coefficient Cw 3:00 !r Depth for the Design Condition Yd = ' 0.64 ft . of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees )er of Curb Opening Inlets No = 1 a Weir al Length of Curb Opening Inlet L it `Sa)0 ft :)acity as a Weir without Clogging Qwi = , .-:'--'16.0 cfs gging Coefficient for Multiple Units Clog-Coeff = 100 gging Factor for Multiple Units Clog = 0:20 3acity as a Weir with Clogging Qwa =i .` �,-,m4.4;cfs an Orifice 3acity as an Orifice without Clogging Qoi = 4- _ -.-8.4 cfs 3acity as an Orifice with Clogging Qoa = - 6.7 cfs )acitvfor Design with Clogging Qa ="� 7'6'7icfs 3ture Percentage for this Inlet = Qa / Qo = C% =1 , ;`.100.00' % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' DP_309.xis, Curb-S 3/6/2002, 4:52 PM 1 -GUTI ER CONVEYAN;CEiCAPACITY Project = FC0194 = 2004 High School Street ID = Interior Road (Loop) - D.P.310 Side Walk Ta Street Crown ' Y QK. Qx Sx ^W _ _ _ -- � Sw T ' < w><--------- T"-------- > Gutter Stmet Street Geometry (input) ' Design Discharge in the Gutter Qo = ` °9.5 cfs Curb Height H = 6.00 inches Gutter Width W = 2.00 ft Gutter Depression Ds = - . • .1.52 inches Street Transverse Slope Sx = 0.0200 Wit Street Longitudinal Slope So = .-;. -.0.0120 Wit Manning's Roughness N = Gutter Conveyance Capacity Gutter Cross Slope Sw `0`08 ft/ft Water Spread Width T 1$ 54'ft Water Depth without Gutter Depression Y = =' " . 0 31:ft Depth with a Gutter Depression D = 4 ss ` 0.441ft 'Water Spread for Side Flow on the Street Tx =:. = - _A3.54.it Spread for Gutter Flow along Gutter Slope Ts = xr i5;25;ft Flowrate Carried by Width Ts Qws " :1'<cis ' Flowrate Carried by Width (Ts - W) Qww 1 4: cis Gutter Flow Qw cis ' Side Flow Qx = :5:9; cfs Total Flow (Check against Qo) Qs = - 9:5 cfs Gutter Flow to Design Flow Ratio Eo = 038 ' Equivalent Slope for the Street Se = 0.04 ft/ft Flow Area As = 2.54 sq ft Flow Velocity Vs ='=' _• :--3.74 fps sD product VsD = 1.64 ftZ/s M ' DP_310.xls, Street Hy 3/6/2002, 4:53 PM 1 1 M 1 1 1 1 1 1 Project = FC0194 - 2004 Inlet ID = Interior Road 1 CURB -OPENING"INLET:IN A'SUMP School - D.P.310 Lu WP rw Direction esign Information (Input) esign Discharge on the Street (from Street Hy) Qo = 9.5 cfs Dngth of a Unit Inlet Lu = 5.00 ft ide Width for Depression Pan Wp = 3.00 ft logging Factor for a Single Unit Co = 0.15 eight of Curb Opening in Inches H = 6.00 inches rifice Coefficient Cd = 0.65 feir Coefficient Cw = 3.00 Eater Depth for the Design Condition Yd = 0.69 ft ngle of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63:0 degrees umber of Curb Opening Inlets No = 2 a Weir al Length of Curb Opening Inlet L = 10.00 ft 3acity as a Weir without Clogging Qwi = 26.5 cfs gging Coefficient for Multiple Units Clog-Coeff = 1.25 gging Factor for Multiple Units Clog = 0.09 )acity as a Weir with Clogging Qwa = :°. ,. .24:9 cfs an Orifice )acity as an Orifice without Clogging Qoi = 17.8 cfs )acity as an Orifice with Clogging Qoa = 16.2 cfs )acity for Design with Clogging Qa = 16.2 cfs 3ture Percentage for this Inlet = Qa / Qo = C% _'` : <100.00.% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. DP_310.xls, Curb-S 3/6/2002, 4:52 PM 1 1 M 1 1 1 1 1 GUTTER `C'ONVEYANCE-CAPAC Project = FC0194 - 2004 High School Street ID=.Ziealer Road - D-P-502 Side Walk Street Ts Crown Y QW i QxSx ^_Dop __ V <------------------------> <- W><---------Tx--------> Gutter Street In Discharge in the Gutter Height r Width r Depression t Transverse Slope t Longitudinal Slope ing's Roughness it Cross Slope :r Spread Width :r Depth without Gutter Depression �r Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope rate Carded by Width Ts "ate Carried by Width (Ts - W) :r Flow Flow Flow (Check against Qo) ar Flow to Design Flow Ratio talent Slope for the Street Area Velocity product UD-Inlet v1.00.xis, Street Hy Qo = 18.9 cfs H = 6.00 inches W = 2.00 ft Ds = 1.52 inches Sx = 0.0200 ft/ft So = 0.0225 ft/ft N = 0:016 SW = u ' 0.08 ft/ft T = 1806 ft Y = 0.36 ft D = 0.49 ft Tx = 16.06 ft Ts =- " 5:85-ft Qws = 9.3 cis Qww = 3.0 cis Qw = > 6.2 cfs Qx = ". "12.7 cis Qs = 18.9 cfs Eo = 0.33 Se = 0.04 ft/ft As = 3.39 sq ft Vs = .5.57 fps VsD = 2.72 ftZ/s 3/6/2002, 2:55 PM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 M 1 Project = Inlet ID = CURB-OPENING-1NLET,INASUMP - 2004 High Sc Road - D.P.502 Lu WP P --� +w Direction Design Information (Input) Design Discharge on the Street (from Street Hy) Qo = 18.9 cfs Length of a Unit Inlet Lu = 5.00 ft Side Width for Depression Pan Wp = 3.00 ft Clogging Factor for a Single Unit Co = 0.20 Height of Curb Opening in Inches H = 6.00 inches Orifice Coefficient Cd = 0.65 Weir Coefficient Cw = -3.00 Water Depth for the Design Condition Yd = 0.74 ft Angle of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees Number of Curb Opening Inlets No = 3 a Weir al Length of Curb Opening Inlet L = 15.00 ft :)acity as a Weir without Clogging Qwi = 39.0 cfs gging Coefficient for Multiple Units Clog-Coeff = 1.31 gging Factor for Multiple Units Clog = 0.09 3acity as a Weir with Clogging Qwa = . 36.5 cfs an Orifice )acity as an Orifice without Clogging Qoi = 28.1 cfs )acity as an Orifice with Clogging Qoa = 25.7 cfs 3acity for Design with Clogging Qa = i ' -r 25.7. cfs Aure Percentage for this Inlet = Qa / Qo = C%= 100.00"% Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. UD-Inlet v1.00.xls, Curb-S 3/6/2002, 2:56 PM 3G UTTER -CONVEYANCE-CAPACITY Project = FC0194 - 2004 High School Street ID = Cambridge Avenue - D.P.601 1 Street Side Walk Ts Crown ' A,- - Y Qx, Qx �� Sx H' D Do <________________________> - <- W><--------- T"-------- > ' Gutter Street ' Design Discharge in the Gutter Curb Height Gutter Width ' Gutter Depression Street Transverse Slope Street Longitudinal Slope Manning's Roughness Gutter Conveyance Capacity Gutter Cross Slope ' Water Spread Width Water Depth without Gutter Depression Water Depth with a Gutter Depression ' Spread for Side Flow on the Street Spread for Gutter Flow along Gutter Slope Flowrate Carried by Width Ts ' Flowrate Carried by Width (Ts - W) Gutter Flow Side Flow ' Total Flow (Check against Qo) Gutter Flow to Design Flow Ratio Equivalent Slope for the Street Flow Area Flow Velocity ' sD product M Qo = 10.7 cfs G,00 a D.P.60��601 : 9 •(ob H = 6.00 inches cr= + 0.10 cfs carryovev W = 2.00 ft Trove D.P. 3_I ? Ds = 1.52 Inches Sx = 0.0200 ft/ft + 0.90 c'S corrvo•lev frovn D. P. 301 So = 0.0130 ft/ft N = 0.016 SW = :. 0.08 ft/ft T = 16.03 ft Y = 0.32 ft D = '0.45 ft Tx = 14.03 ft Ts = ~5.37,ft Qws = 5.6 cfs Qww = ` 1.6 cfs Qw = : 4.0. cfs Qx = ..-i =6.7• cfs Qs = 10.7 cfs Eo = 0.37 Se = 0.04 ft/ft As = 2.70 sq ft Vs = 3.96 fps VsD = 1.77 ftz/s ' DP_601.xis, Street Hy 3/6/2002, 4:53 PM A 1 1 1 L A CURB OPENING_INLET'IKA;SUMP Project = FC0194 -.2004 High School Inlet ID = Cambridge Avenue - D.P.601 WP Lu WP w Direction gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 10.7 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = 3.00 ft Sing Factor for a Single Unit Co = 0.15 it of Curb Opening in Inches H = 6.00 inches :e Coefficient Cd = 0:65 Coefficient Cw = 3.00 :r Depth for the Design Condition Yd = 010 ft of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees aer of Curb Opening Inlets No = 2 a Weir al Length of Curb Opening Inlet L = 10.00-ft )acity as a Weir without Clogging Qwi = `27.1 cfs gging Coefficient for Multiple Units Clog-Coeff = 1:25 gging Factor for Multiple Units Clog = to.09 )acity as a Weir with Clogging Qwa = - •- 25A cis an Orifice )acity as an Orifice without Clogging Qoi = 18.0 cis >acity as an Orifice with Clogging Qoa = 16.3 cis )acity for Design with Clogging Qa = '�' '-;;'7-161 cfs Aure Percentage for this Inlet = Qa / Qo = C% =i. .:100.00; % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. I DP_601.xls, Curb-S 3/6/2002, 4:54 PM Project = Street ID = 1 0 1 1 GUTTER CONVEYANCE CAPACITY FC0194-.2004 High School Cambridge Avenue - D.P.602 street Side Walk Ts Crown t[ I) y Qw Qx Sx ' D® T ^�S�Y <------------------------> <--W><--------- Tz-------- > Gutter Street gn Discharge in the Gutter Height ;r Width v Depression :t Transverse Slope A Longitudinal Slope iing's Roughness ;r Cross Slope :r Spread Width ;r Depth without Gutter Depression :r Depth with a Gutter Depression ad for Side Flow on the Street ad for Gutter Flow along Gutter Slope rate Carried by Width Ts rate Carried by Width (Ts - W) :r Flow Flow Flow (Check against Qo) ' Gutter Flow to Design Flow Ratio Equivalent Slope for the Street Flow Area Flow Velocity sD product II M Qo = 10.4 cfs H = 6.00 inches W = 2.00 ft Ds = 1.52 inches Sx = 0.0200 ft/ft So = 0.0141 ft/ft N = 0.016 Sw = . "..ry : 0: 8 ft/ft T= , "15t57`ft Y = •ti . 0.31 ft D= `0.44ft Tx =...: '13.57 ft Qws = >; <5:5 cfs cfs QW Qx=- __ 3'644cfs Qs = .' 10.4'cfs Eo = 0.38 Se = 0.04 ft/ft As = 2.55 sq ft Vs = 4.06 fps VsD = 1.78 ftZ/s DP_602.xls, Street Hy 3/6/2002, 4:55 PM I A 1 1 II 1 1 M CURB -OP:ENING,INLET]N;A SUMP Project = FC0194 - 2004 High School Inlet ID = Cambridge Avenue - D.P.602 WP _ Lu WP rw Direction gn Information (Input) gn Discharge on the Street (from Street Hy) Qo = 10.4 cfs th of a Unit Inlet Lu = 5.00 ft Width for Depression Pan Wp = 3.00 ft. ling Factor for a Single Unit Co = 0.15 it of Curb Opening in Inches H = i6.00 inches e Coefficient Cd = 0.65 Coefficient Cw = - ' . .,3:00 r Depth for the Design Condition Yd = 0:69 ft of Throat (see USDCM Chapter 6, Figure ST-5) Theta = 63.0 degrees )er of Curb Opening Inlets No = .2 a Weir al Length of Curb Opening Inlet L =' . 10.00•ft )acity as a Weir without Clogging Qwi = 26.5 cis gging Coefficient for Multiple Units Clog-Coeff = 1.25 gging Factor for Multiple Units Clog = 0.09 )acity as a Weir with Clogging Qwa =;:;", 24:9,cis an Orifice >acity as an Orifice without Clogging Qoi = � 17:8 cfs )acity as an Office with Clogging Qoa =•-- :.: _16.2 cfs )acitvfor Design with Cloaaina Qa=j._ 'cfs Aure Percentage for this Inlet = Qa / Qo = C% =f't %.100:001 % Note: Unless additional ponding depth or spilling over the curb is acceptable, a capture percentage of less than 100% in a sump may indicate the need for additional inlet units. ' DP_602.xls, Curb-S 3/6/2002, 4:55 PM � t : �� \\° \ \ � � �< « \: 2� \ © � d, : �� � \ 2� 1 1 M 1 1 1 1 1 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/11/2002 Design Point-- 306 ' Orifice Calculation: Rim Elevation= 4902.80 Q. = CA(2gH)os 100-yr Ponding Eler— 4905.35 Hydraulic Grade Out-- 4900.71 Allowable Release Rate= 133 cfs H= 2.55 ft C = 0.65 g= 32.2 ft/s Q= 1.33 cfs Ac= 0.16 ftZ Diameter of Orifice: 1 15/16" BE Y O N D E N G IN E E R I N G Nolte Associates, Inc. 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/10/2002 Design Point-- 307 Orifice Calculation: Rim Elevation= 4902.70 Q. = CA(2gH)o.s 100-yr Ponding Elev— 4905.61 Hydraulic Grade Out-- 4899.79 Allowable Release Rate= .2.395 cfs H= 5.82 ft C = 0.65 g = 32.2 ft/s Q= 2.40 cfs Ac = 0.19 ftZ Diameter of Orifice: 2 15/16" BE Y O N D E N G IN E E R ING ' Nolte Associates, Inc. :n � ,; cc late�Calculations, '�' Project#: _� .�Oiz FC0194 �O Project Name: 2004 Fort Collins High School ' Calculated By: Date: HHF/GAD 3/11/2002 BEYOND ENG I NEERING Design Point-- 31 la_ .: Orifice Calculation: Rim Elevation= 4904.20 Q. = CA(2gH)0.5 ' 100-yr Ponding Elev— —4906.74 Hydraulic Grade Out-- 4902.10 Allowable Release Rate= _187 cfs ' H= 2.54 ft C = 0.65 g = 32.2 ft/s ' Q= 1.87 cfs Ac = 0.22 ftZ Diameter of Orifice: 21146"`. C L C 1 M ' Nolte Associates, Inc. 1 1 M 1 1 1 1 1 u Project: 0194 Project Names 20: 2004 Fort Collins High School Calculated By: HHF/GAD BEYOND ENGINEERING Date: 3/11/2002 Design Point-- 312a ' Orifice Calculation: Rim Elevation= 4903.90 Q. = CA(2gH)os I00-yr Ponding Elev= -- —490T 10 Hydraulic Grade Our-- ..4903.64 Allowable Release Rate= .4.65 cfs H= 3.46 ft C = 0.65 g = 32.2 ft/s Q= 4.65 cfs Ac = 0.48 ft2 Diameter of Orifice: Nolte Associates, Inc. .1 lJ Project: 0194 Project Names 20: 2004 Fart Collins High School Calculated By: HHF/GAD BE Y O N D E N G IN E E R ING Date: 3/11/2002 Design Point-- r312a- ' Orifice Calculation: IN fEe-IM CONli1T/GN Rim Elevation= -4903.90 Q. = CA(2gH)O" 100-yr Ponding Eletr --.4907.15 Hydraulic Grade Out-- 4904.94 Allowable Release Rate= 6.845 cfs H= 2.21 ft C = 0.65 g= 32.2 ft/s Q= 6.85 cfs Ac = 0.88 ft2 Diameter of Orifice: 10 9/16" Nolte Associates, Inc. 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD B E Y O N D E N G I N E E R I N G ' Date: 3/10/2002 Design Point-- 313a`' . Orifice Calculation: ' Rim Elevation= 4908.00 Qo = CA(2gH)o.s I00-yr Ponding Elew 491039 Hydraulic Grade Ou— 4906.77 ' Allowable Release Rate= .2:87 cfs H= 3.62 ft C = 0.65 g = 32.2 ft/s ' Q= 2.87 cfs ' Ac = 0.29 ftZ Diameter of Orifice: 1 1 ' Nolte Associates, Inc. Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/I 1/2002 Design Point-- -313a - Orifice Calculation: Rim Elevation= 4908.00 Q. = CA(2gH)o.s I00-yr Ponding Elev— --4910.45 Hydraulic Grade Out-- 4909.06 Allowable Release Rate= 5.08 cfs H= 1.39 ft C = 0.65 g = 32.2 ft/s Q= 5.08 cfs Ac = 0.83 ft2 Diameter of Orifice: 1 1 1 1 1 M B E Y O N D E N G I N E E R I N G Interim Condition: -Accepting runoff from BASIN500 u Nolte Associates, Inc. 1 1 M 1 1 1 1 1 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 3/11/2002 Design Point-- 400 -- Orifice Calculation: Rim Elevation= 'N.A. - Q. = CA(2gH)os 100-yr Ponding Elev= --4904:79 Hydraulic Grade Out-- 489870 Allowable Release Rate= 6:5 cfs H= 6.09 ft C = 0.65 g= 32.2 ft/s Q= 6.50 cfs Ac = 0.50 112 Diameter of Orifice: 6" BE Y O N D E N G IN E E R ING Nolte Associates, Inc. 1. 1 M 1 1 1 1 1 1 1 1 Project: 0194 Project Names 20: 2004 Fort Collins High School Calculated By: HHF/GAD B E Y O N D E N G I N E E R I N G Date: 3/11/2002 Design Point— 403 _ "- Orifice Calculation: Rim Elevation= 4902.80 Q. = CA(2gH)0.5 I00-yr Ponding Elev= ---4906.70 Hydraulic Grade Out-- 4904.79 Allowable Release Rate= J'.2 cfs H= 1.91 ft C = 0.65 g = 32.2 ft/s Q= 1.20 cfs Ac = 0.17 ft2 Diameter of Orifice: Nolte Associates, Inc. M ' APPENDIX D ' Swale Calculations I I I 11 I I 1 M Swale Capacity - Major Event (100-yr) Project Description Worksheet for Trapezoidal Channel Worksheet Roof Drainage - D.P.308 Flow Element Trapezoidal Channel Method Manning's Formula ' Solve For Channel Depth Input Data Mannings Coefficient 0.035 ' Slope 0.005000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 3.00 ft Discharge 16.81 cfs ' Results Depth 1.04 ft Flow Area 7.5 fN Wetted Perimeter 11.61 ft ' Top Width 11.36 It Critical Depth 0.72 ft Critical Slope Velocity 0.023340 ft/ft 2.24 ft/s `t Velocity Head 0.08 ft Specific Energy 1.12 ft Froude Number 0.49 ' Flow Type Subcritical 1 J ' n:l..\drainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc RowMaster v6.1 [614j] 03/11/02 02:45:14 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Swale Capacity - Major Event (100-yr) Cross Section for Trapezoidal Channel Project Description Worksheet Roof Drainage - D.P.308 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.035 Slope 0.005000 ft/ft Depth 1.04 it Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 3.00 ft Discharge 16.81 cfs ft V:4.0 ❑ H:1 NTS n:\... \drainage�haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/11/02 02:45:43 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Swale Capacity - Major Event (100-yr) Worksheet for Trapezoidal Channel Project Description Worksheet Culvert Outfall to D.P.303 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.035 ' Slope 0.013000 ft/ft Left Side Slope 14.00 H : V Right Side Slope 4.00 H : V Bottom Width 22.00 ft Discharge 16.81 cfs Results Depth 0.32 R Flow Area 8.0 ft' Wetted Perimeter 27.82 ft ' Top Width 27.77 ft Critical Depth 0.25 ft ' Critical Slope Velocity 0.029120 ft/ft 2.11 ft/s Velocity Head 0.07 ft Specific Energy 0.39 ft Froude Number 0.69 Flow Type Subcritical 1 1 1 1 ' n:\...tdrainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614j] 03/11/02 02:58:16 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 ' Swale Capacity - Major Event (100-yr) Cross Section for Trapezoidal Channel ' Project Description Worksheet Culvert Outfali to D.P.303 Flow Element Trapezoidal Channel Method Manning's Formula ' Solve For Channel Depth Section Data Mannings Coefficient 0.035 Slope 0.013000 ft/ft Depth 0.32 it Left Side Slope 14.00 H : V ' Right Side Slope 4.00 H : V Bottom Width 22.00 ft Discharge 16.81 cis ' T 4 ft ' I 22.00 ft ' V:4.0❑ H:1 NTS ' n:\...tdrainage\haestad\fc0194_swale-basin308.fm2 Nolte Associates Inc FlowMaster v6.1 [614il 03/11/02 02:58:10 PM a Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755.1666 Page 1 of 1 Swale Capacity - Major Event (100-yr) Project Description Worksheet for Trapezoidal Channel JP Worksheet Pond P-300 Overflow Spillway Flow Element Trapezoidal Channel Method Manning's Formula ' Solve For Channel Depth Input Data Mannings Coefficient 0.030 ' Slope 0.020000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V ' Bottom Width 50.00 ft Discharge 22.20 cis ' Results Depth 0.19 ft Flow Area 9.7 ft' Wetted Perimeter 51.57 ft ' Top Width 51.52 It Critical Depth 0.18 ft Critical Slope Velocity 0.023275 fith 2.30 fits Velocity Head 0.08 ft Specific Energy 0.27 ft FNumber 0.93 FlowType Type Subcriticai 1 n:l..\drainage\haestad\fc0194_swale-overflow.fm2 Nolte Associates Inc FlowMaster v6.1 [614t7 03/11/02 03:04:35 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Project Description Worksheet Flow Element Method Solve For Swale Capacity - Major Event (100-yr) Cross Section for Trapezoidal Channel Pond P-300 Overflow Spillway Trapezoidal Channel Manning's Formula Channel Depth Section Data Mannings Coefficient 0.030 ' Slope 0.020000 ft/ft Depth 0.19 ft Left Side Slope 4.00 H : V ' Right Side Slope 4.00 H : V Bottom Width 50.00 ft Discharge 22.20 cfs 00 V:4.0❑ ' H:1 NTS 1 1 ' n:\...\drainage\haestad\fc0194_swale-overflow.fm2 Notte Assoch tes Inc FlowMaster v6.1 [614j) 03/11/02 03:04:28 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 IIp n I r.lr u %U Lr I. nC LIUL r J Discharge cfs Peak Flow Period hrs Velocity ffps) Area (sq.ft) Hydraulic Radius ft Normal Depth ft �2-2 0.5 1.68 1 13.20 1 0.25 0.26 0 LINER RESULTS SC1 S = 0.0200 1L 1 Bottom 4.0 Width = 50.00 ft 4.0 Not to Scale Reach Material Type 1 Phase 1 Ve . TjRe I Soil Type I Manning's'n' Permissible Shear Stress (psfj Calculated Shear Stress fp Safety Factor Remarks Staple Pattern I Class I Veo. Deniitu Straight SC150 0.050 1.80 0.32 5.58 STABLE Staple D 1 0 1 r rij 1 1 1 1 1 1 1 11 1 1 1 1 A HYUHAULIC HESUL I S Discharge cfs Peak Flow Period hrs Velocity (fps) Area (sq.ft) Hydraulic Radius ft Normal De th ft 22.2 1 0.5 2.30 9.67 0.19 0.19 LINER RESULTS L- Bottom 4.0 Width = 50.00 ft 4.0 Not to Scale Reach Material T e Phase Veo. T e Soil Type Mamr ng's'n' Permissible Shear Stress (psi] Calculated Shear Stress (psfJ Safety Factor Remarks Staple Pattern Class Ve . Densit Straight Unreinforced I Mix 1 1 0.030 3.33 0.24 14.00 1 STABLE D 1 75.95: 1 Gay Loam 1 0.050 0.016 3.11 1 STABLE 1 i M 1 1 fl 1 1 1 I 1 1 1 I I 1 n 1 APPENDIX E Storm Drain Design Culvert Calculator Report ' D.P.308 to D.P.303 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 4,906.89 ft Headwater Depth/Height 1.27 ' Computed Headwater Elevation 4,905.85 ft Discharge 16.81 cfs Inlet Control HW Elev. 4,905.80 ft Tailwater Elevation 4,900.36 ft Outlet Control HW Elev. 4,905.85 ft Control Type Outlet Control Grades Upstream Invert 4,903.32 ft Downstream Invert 4,900.23 ft Length 464.11 ft Constructed Slope 0.006658 ft/ft ' Hydraulic Profile Profile M2 Depth, Downstream 1.48 ft Slope Type Mild Normal Depth 1.50 ft ' Flow Regime Subcritical Critical Depth 1.48 ft Velocity Downstream 6.75 fUs Critical Slope 0.006877 ft/ft ' Section Section Shape Circular Mannings Coefficient 0.013 ' Section Material Concrete Span 2.00 ft Section Size 24 inch Rise 2.00 ft Number Sections 1 ' Outlet Control Properties ' Outlet Control HW Elev. Ke 4,905.85 ft 0.50 Upstream Velocity Head Entrance Loss 0.69 ft 0.34 ft ' Inlet Control Properties Inlet Control HW Elev. 4,905.80 ft Flow Control Transition Inlet Type Square edge w/headwall Area Full 3.1 ft' K 0.00980 HDS 5 Chart 1 ' M 2.00000 HDS 5 Scale 1 C 0.03980 Equation Form 1 Y 0.67000 r t M ' Title: 2004 High School Project Engineer: GAD n:l..\haestad\fc0194_culvert_basin308.cvm Nolte Associates Inc CulvertMaster v2.0 [2005a] 05/22/02 04:12:56 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1.203-755-1666 Page 1 of 1 ' �' i ra Dese �" dGalculations-i@ircu`7ar Project Name: 2004 High School Calculated By: GAD Date: 5/28/2002 ' Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System A Outlet to pond Basin 1000. Outfall Pipe Diameter, in: 30-- - Velocity, ft/s: - ".2.65 ` Qrw, cfs, 13.00 Depth of flow. ft: .2.5 ' Tailwater depth, ft: 3:69 _-Froude Number: 0.30 subcritical Where, F = V/(gY)03 F>0.80, supercritical flow F<0.80, subcritical flow Required Rock Size: ' a Q/D2-1= 1.32 Q/DI's= 3.29 b. Y,/D= 1.48 ' a (dsdD)(YID)t.:/(Q/D")=0.023 From Figure 5-7, Use Type L Riprap ' . d, = `-.9.00 ' inches If the flow in the culvert is supercritical, substitute D, for D. Where: Therefore: D,= n/a ft a: Q/D."= n/a Q/D,t's= n/a V. Y,/D.= n/a c'. (d5./DJ(YMJ"/(Q/D.25)=0.023 From Figure 5-7, ' Use Type. -'+L .-' Riprap d, -,9 _`inches Extent ojPratecrion: Check Results: BE Y O N D E N G IN E E R ING L = (1/(2tan0))(A,/Y, - W) Where: it/(2tanB)_'6.6;,l; Figura_5-99 _ Ar QN Where, V = acceptable velocity, 5.5 fps Ar 2.36 ft, Therefore: Calculated L= -12.27 ft L>3D •L < 10D • When Q/D° > 6 Maximum Depth: D=2d, Riprop Width: W=3D Minimum L = 7.5 ft Maximum L = 25 ft Use L = 8 feet Use D = 18 inches Use W = 7.5 feet 1 1 M 1 1 1 1 1 1 1 1 1 Riprdp DesiglKGalculationsx Cir`cularzUutJall.9 s Project #: 20 Hi 0 rsJC4XE Project Name: 2004 High School Calculated By: GAD Date: 5/28/2002 B E Y O N D E N G I N E E R I N G Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System B Outlet to pond Basin 1000. Outfall Pipe Diameter, in:---42.: Velocity, ft/s: - :8.77 Q,mcis,.-.84.4_-- Depth of flow, ft: "Ii5 Tailwater depth, ft: `5.44" Froude Number: 0.83 supercritical Where, F = V/(gY)O' F>0.80, supercritical flow F<0.80, subcritical Flow Required Rock Size: a. Q/D2.5= n/a Q/D1.5= n/a b. Y,/D= n/a C. (d5o/D)(YlD)L2/(Q/D2.) = 0.023 From Figure 5-7, UseTypef- n/a "Riprap d,= — n/a inches /f the flow in the culvert is supercritical, substitute D, jar D. Where:. D.= t/2(D + Y.) Therefore: D.= 3.50 ft a, Q/D,2.s= 3.68 Q/D."= 12.89 V. YM.= 1.55 c'. (dsdD.)(YJD.)"/(Q/D.`5) = 0.023 From Figure 5-7, Use Type;;;,, -L`-". • Pip rap dye =__ ,,"9 ; . ' inches Extent ofPwrection: L = (1/(2tan0))(A f Y, - W) Where: 1/(2tpgO) = 220,, per Figure 5 9 - Ar QN Where, V = acceptable velocity, 5.5 fps Ar 15.35 ft2 Therefore: Calculated L= -1.49 ft Check Results: L > 3D \Iinimum L = 10.5 ft •L < IOD Maximum L = 35 ft - When Q/D's > 6 Use L = 11 feet Maximum Depth: D = 2dso Use D = 18 inches Riprop Width: W=3D Use W = 10.5 feet ` r raplDesrgn-Calculahorrs SCircu[ar Oulfa N Project 20Hi n:0 Project tsk:;P= .cttName: 2004 High School Calculated By: GAD Date: 5/29/2002 BEYOND ENGINEERING ' Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection ' Location: Storm Drain System C Outlet to swale Basin 308. Outfall Pipe Diameter, in: 24 _. Velocity, ft/s: " 6.55 Q,,, cfs, 15.75Depth of flow, ft: 1.43 ' Tailwater depth, ft: 1 1.047 Froude Number: 0.97 supercritical Where, F = V/(g1)0.5 F>0.80, supercritical flow - F<0.80, subcritical Flow . Required Rock Size: a Q/D25= n/a Q/Dt.5= n/a b. Y,/D= n/a C. (dS,/D)(YJD)1.2/(Q/D3-) = 0.023 From Figure 5-7, Use Type - " - �',Riprap dso = - -'." inches ' If the flow in the culvert is supercritical, substitute D, for D. Where: Therefore: D,= 1.72 ft Y. Q/D,x.S= 4.09 Q/D,1's= 7.01 b'. Y,/D,= 0.61 c . (d50tD.)(Y1D.)1.2/(Q/D.2-) = 0.023 From Figure 5-7, ' Use Type L Riprap dso=- 9 iincbes Extent ojProtection: _ L = (1/(2tanO))(A,/Y, - W) Where: ;1%(2tan0)_ B4O.,,perFgure'5— A. QN Where, V = acceptable velocity, 5.5 fps A,. 2.86 R2 , Therefore: Calculated L= 4.52 ft Check Results: L> 3D 'L < IOD - • When Q/13p3 > 6 Maximum Depth: D = 2dso Riprap Width: W=3D Minimum L= 6 ft Maximum L = 20 ft Use L = 6 feet Use D = 18 inches Use W = 6 feet 1 1 1 1 11 M "" `�,'' ;'� RipapDes�g �Calcu7ations -Circular Ou[fall NOLTE Project #: FC0194 Project Name: 2004 High School Calculated By: GAD Date: 5/28/2002 B E Y O N D E N G I N E E R I N G Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System F Outlet to Pond 400. Outfall Pipe Diameter, in: 24 Velocity, ft/s:. 3:55 Q". cfs, - 11.15 Depth of now, ft: - .2 =-- Tailwater depth, ft:, --4.08 Froude Number: 0.44 subcritical Where, F = V/(gl)os F>0.80, supercritical flow -F<0.80, subcritical flow Required Rock Size a Q/Dzs= 1.97 Q/DI.s= 3.94 b. Y,/D= 2.04 C. (dso/D)(YM)"/(Q/D") = 0.023 From Figure 5-7, Use Type-'-'L�.-' Riprap ds,=' -9.00 -`- inches If the flow in the culvert is supercritical, substitute D,for D. Where: D. = t/Z(D + YJ Therefore: D,= n/a ft a' Q/D u= n/a Q/D,t.5= n/a U. Y,/D,- n/a c'. (dsdD.)(YfDjtz/(Q/D,=.5)=0.023 From Figure 5-7, Use Ty "`L 77�Riprap dso =7;:-. _9 _'_= inches Extent of Protection: Check Results: Maximum Depth: Riprap Width: L = (11(2tan0))(A,/Y, - W) Where: 1/(2taW) 6:6.' perFtgu-rkl- A. QN Where, V = acceptable velocity, 5.5 fps AM1 2.03 flZ Therefore: Calculated L= -9.02 ft L>3D Minimum L= 6 ft 'L < 1 OD Maximum L = 20 ft ' When Q/D's> 6 Use L = 6 feet D = 2dso W=3D Use D = 18 inches Use W = 6 feet ' r'.. R[ ra �Desr! zCalculatiions� Circrilae Outfiill ' M„ Project e20 Hi: 0 Project Name: 2004 High School 1 1 1 1 N Calculated By: GAD Date: 5/28/2002 Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Storm Drain System G Outlet to Pond Basin 400. Outfall Pipe Diameter, in: 30 Velocity, ft/s: 1.49 - QiOq cfs, - 7.32 Depth of flow, ft:.. . 2 , Tailwater depth, ft: 3.65 Froude Number: 0.19 subcritical Where, F = V/(gl)0s F>0.80, supercritical flow F<0.80, subcritical flow Required Rock Size: a. Q/D " = 0.74 Q/D1.5= 1.85 b. Y,/D= 1.46 C. (d50/D)(Yt/D)t.z/(Q/D") = 0.023 From Figure 5-7, Use Type :"L:-:`_;Riprap il0= 9.00''-;inches /jrhe flow in the culvert is supercritical, substitute D, for D. Where: D. = t/z(D + YJ Therefore: D.= n/a ft a,. Q/D,zS= n/a Q/D."5= n/a b'. Y,/D,= n/a c. (dso/DJ(Y%DJt.z/(Q/D,2.S)=0.023 From Figure 5.7, Use Tv pe• ,,;L Riprap d,= 9 -: finches Extent of Protection: L = (1/(2um6))(At/Y, - W) Where: �l/(2tan0) �6,6 ;pecFigute':5-9 -- Ar QN Where, V = acceptable velocity, 5.5 fps A,_ 1.33 R2 Therefore: Calculated L= -12.81 ft Check Results: L>3D 'L < IOD . Whm Q/D" > 6 Maximum Depth: D = 2ds0 Riprop Width: W=3D Minimum L = 7.5 ft Maximum L = 25 ft Use L = 8 feet Use D = 18 inches Use W = 7.5 feet BEYOND ENGI N EERING 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 Nolte Associates, Inc. Riprap Design (for rectangular outfall conduits) Project #: FC0194 Project Name: 2004 High School Calculated By. GAD Date: 3/9/2002 Calculations per Urban Drainage and Flood Control District Section 5.6.2 Required Rock Size and Section 5.6.3 Extent of Protection Location: Cambridge Avenue Box Culvert Outlet H W Outfall Pipe Dimensions, in: _. _ 60 _ _ 192 Velocity, ft/s: -5.35 Qt,, cis: 677.5 Depth of flow, ft: 3.26 Tailwater depth, ft: 6.70•: Froude Number: 0.52 subcritical Where, F=V/(gY)o.s F>0.80, supercritical flow F<0.80, subcritical flow Required Rock Size: a. Q/WHt'= 0.95 Q/WHo's= 75.75 b. YfH= 1.34 C. (dso/D)('M)t'/(Q/WH's)=0.014 From Figure 5-8, Use Type'•':K"-' Riprap dso= _12inches ljtheJlow in the culvert is supercritical, substitute H, jor K Where: H.= t/z(H + YJ Therefore: H,= 4.13 ft a'. Qom. ts= 1.26 QfWH.os= 83.34 V. YM.= 1.62 P. (d5o/D)(YfHJt`/(Q/WH,'s)=0.014 From Figure 5-7, Use Type: Riprap dso �„«inches Extent ojprotection: L = (1/(2=0))(AfY, - W) Where: 4/(2tart))=,6.6',-.per;Figum.5'10 --- T A,_ QN Where, V = acceptable velocity, 5.5 fps A= 123.18 ft' Therefore: Calculated L= 16 ft Check Results: L> 3H Minimum L = 15 ft 'L < 10D Maximum L = 50 ft ' When Q/R'H" <6 Use L = 50 feet Maximum Depth: D = 2dso Riprap ll,dth: W=3W Use D = 24 inches Use w - 48 feet I r.F 1 1 M� O W Q C � ' co a . 1 1 0 M U j 0) O M V M r M M 0 0M M M 0 0 O, 0 V M O 0) 0 V r r O 00 0V M M M r t. V N N N N, m (D to O C) CD 0) M r tD V M r V O r r 0 O O- V V, 0 O N V N N 0O w r 6 O N M 66 V M V N M O) !T r tq m 6 O N m, r n M M rn rn 0 0 0 o O o 0 0 O o 0 0 0 0 0 0 0 0 O o o O o 0 0 0 0 0 0 0 0 �c >.Cd mmrnrnrnornrnrnrnmrnrnrnmo)tnm0m >D>D,D,O>o)rnrnrnm0)rnrnrnrnrnw x J v v v vv v v v v vv v v v v v v v v v v v a v v v v v v v v v v v v E M D O o not00000 n no0or n n nooc00000000000 nr r n o M N O M 0 O O r V v N N N r 0 r r to 0o M O O .U) to N r r 0 0 0 N CD CD N N C ._ y 6 M O N V N M, N N N O O O (0 In m 0) to* M V Co N 0 0 0 0 0 0 0) 0) O m 0) W t0 0) O O O O O O O O O O O O O O O O O O O O O G > 00coD)mD)D>tnmmo,mm0)0)00 ,D�00000m0mam000) )0)CDC) o0 w v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v 0 m G — N r to tO 0 a 0 o M 00 <n CD o o 0) 0) r CD N to a a N 0 CO M (o CD V CO V tb t0 M M N m O O co 0) (o N V W 0) CO V e{ o m r CO V to CO CO V r r r M M @ D too v a v v m 0) ao co ro n N (o V co of to v to tri v of o) 0) 0) cO r ai cO co to m 0) Ln 0) C) 0 0 0 o O o 0 0 0 0 O o 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0 x a v v v v v v v v a v v v a v v v v v v v v v v v v a v v v v v v v v E G D 0 r o o m 0 0 0 0 0 0 )n o 0 0 0 0 to 0 0 0 0 0 0 0 0 o M o 0 0 0 0 0 o O N M tD M M to V N N r V N N N N tO N r N m O N O V N M 0 to r r 0 0 0 0 N M C= y p j v (h M to V V n (D V V N N 0 N_ N O O to 0) (D (7 Ip tD L6 N _N O N O O _O O N Q) N O 0) 0) 0 0 0 0 00 00 m m O 0) Of O 0,0 m 0) 0) 0) 0) 0) O) 0) 0) 0) 0) 0) 0) 0) 0) (D0 0) 0) m 0) m 0) m m O) O) w v t v v v v v v v v v v v v v v v v v v v v v v v v a v v v v v v v v r O to N 0) r V M V r 0 00 N ID N to 0) 00 N O (D CO O V M O r (o O O O A 0 3 y M O M m V V 10 V to 0) V M r M O M N N O M M— C) V 0) O CO O V CO to 0 6 TLL v V M r O N O M V M r V t7 N N M N h N (D (D N N a 0 0 0 O N l0 O N O O O � � M O M O 00 O O M V M V r M 0 to 0 M •V 0 tD m 0) 0) O O M N M M N M 0N D) M M V O O N Vv O r M T r 0 0) O r m V v LL aU r N O N N 6 o h O N N N V M N r 0 rn r n r O V r o V tD N N V N U M N In 01 o 0 to 0 M O 00 M 0 M V M 0 M V 0 0 O V O V M O N O 0 to V N 0 V 0 0 V V M <) 0 0 0 M 0 to v .- rn rnInr v v m o 0` O N O M O O N O M M OJ O V 0 O M 0 0 0 M N N N N N r M O O V N O 0 0 r r 0 O o 0 M M V M M N N (0 m" O y 0) 6` O r O O o 0) r (D CO N tO M V N (n O CO O M r r r (0 O fD V V 0 N N M M 0) tb o 0 0 W W 0 0 0 0 0 0 0 0 O O O 0) O 0 0 0 0 0 0 0 0 0 0 0 0 0 G>> ... Go to 0) 0) CD co 0) 0) m 0 0 m m 0 m C) m m 0 0 0 m 0 0 0 0 0 m 0 0 m m 0 m 0 o— W a v v v v v v v v v v v v v v v v v v v v v v v v v a v v v v v v v.0 m lOn tOn V N lOn )On N O O) 0 0 m O O N O r 0 0 0 0 V 0 O O N O O O O O O w 0 0 0 m LO 0 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O N O O O O O O O O O O O O O O O O O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 UD O O o 0 0 0 0 0 0 G O 0 0 C O C O 0 0 0 0 C C O 0 0 0 C O 0 0 0 0 0 C E G 0 m N, m (') M M M N N V r 0 O N O V !b N O O V V r O O N O O r M O V r• 07 N O M r t- M O to 0 N V M M o 0V N O 0 o O r V 0 O O O O O r O r [0 (0 O N V M. N V m M V M r M r (0 r O 0. O V V m to O O O O O O O O O O O O O O T O 0 0 0 0 0 0 0 0 0 0 0 0 —m (0 C > m 00 m m 0 m 0) D) m 0) 0) 0) 0) 0) O) 0) W 0) () Go (m m O 0) C) 0) 0) O 0) 0) 0) 0) 0) 0) ) D W v v v v v v v v v a v v v v v a v v v v v v v v v v v v v v v v v v v Im 0 M M M M CO M 0 0 0 0 0 0 CO O N N N_ N M M O O M N M M N_ M M N_ M M O_ N C _M O O O O O O O O O O O O O O O O O O O O O 0 O O O O O O O O O O O O O C C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N C O m 5 L U U U U U U LU LU LU tU LU LU LUj� N U U U U U U U U U U U U U U U U U U C CCCC CC CCCC C m h XCCCC C C C C C C C U G V O V O O v v to tO M to N O N N N N 00 Go GoN N N 0o N co 00 N N V N V V N M M N M N N •- N— N N W V O (On I m CO to t- O N 0 00) LO tm0 N W N CO CO O N O tmn O to t00 N W 0) r Co CD y v N t0 O to CO 0 V V M N 0 N V (0 to O to to m' V r N V N N O O V to r to m M V to r N M O N r N N O r O 0 r N 0 O m to M 0 N M 10 W N 0 N O tD r O r M J N N N M N N M V I N N M M E M O O O r r r O mm m W l0 l0 @ M O O O O o 0 0 M 0 0 0 0 J OO V V M N N^ N l0 M M M V V G 3 D (O co S U) tO (O 0 V M H (n M M N to N 0M M M M M M M o w w w w w 0 0 0 x x x W O x= x O D w O x x o o x x O x x 0 0 ❑p _m Z LL LL LL LL LL U U U (1_ U O LL U U U U 6 Q Q 1LL U` W 2 0 0 0 U U U U❑❑❑❑❑❑ U m m m m m m m m m m m m m m ❑ O O ❑ ❑ ❑ O ❑ O ❑ ❑ O ❑ O O ❑ ❑ ❑ O ❑ ❑ O ❑ O ❑ ❑ ❑ ❑ O ❑ ❑ O ❑ ❑ ❑ (D (A fA N N Cn lq h to V1 fn (n N N rn N fn (D rn y rn y y rn h y to N !n rn N V) rn N fA N N N V N M N 0 0) 0 0 m 0 0 0 0 0 0 0 !V m t1 Q a p• a a a to to M r m N a a a a a a to V M N O O try W O tO LO aa'aaaaaaaaa0.a.0. a'a'aC a maaaaaaaaaa J aC Q Q U W x (i U U U U U U U❑❑❑❑❑❑ U m m m m m m m m m m m m m m ❑ to !n N h rn y V) rn N N y to N V) h y rn (n N N y y h y N (n fn y (n (n (A y N v) (A D O m o 0 0 m 0 0 0 0 E M o D .0.0 m m 0 o r o M Cl) o v tO M 0 O O Nm V CIJCO O O O N V v M0 0 Cl) OSw O 000 0 Q ZmCC) N U UU _ M M MMto ❑ U0 UO m m m m m m m m m m MOm0 O O O o O ❑ ❑ o o ❑ 0 ❑ ❑ ❑ ❑ ❑ ❑ o ❑❑❑❑❑ ❑❑❑❑ ❑ ❑ D ❑ to (D (D U) U) U) U) m m (D cn 0: m U) to N N (p co (D m (n (n (D t'n (D fA to N to 0) to m U) G N N V p O C C w 7 Obi > 'o ❑ aL) E O (D co (D m to N n (�1 O N Q D m O n O 0 F- M U j C d a � �3 D d Z D 0 O m r Cl) E 0 O C0 N E 00 3 v� mo) 0 _a Q S �M n E `o M Uo V N LL o d Cl) H C 0 0 fJ 1 u 1 1 1 M U m N 0 0 0 0 0 0 m t0 m N M N to M M O N A N N A V V V N N N V m v, v, A 0 A A A� M M M M N N A A V m O M M M m m m N N N V V 0 O M V M N N N O) m m 00 0 0 m A 0 V m M 0 V V V 0 0 0 0 0 0 m TVr C 0 0 0 0 0 0 0) 0) 0) 0 0 o M 0) CD 0) 0) M 0) 0) 0) 0) M 0) 0) (0) O) Q) W O 0) 0) m O) O) O) W m m 0) O) O) m m m m m co m m m m m m 2 J V V V V R V V V V V V V V V V -V 4 V V V V V V V V 7 V V V V E O V m 0 0 0 0 0 V N )0 )O N 0 0 0 0 0 l0 O A A 10 N N N m 0 0 O M a o c m A A m )n u) )n m r� A A M )n u) o o )n m o sm m )n u) m )n )n )n u) a) G.2 1n n 0) N M N N N N V V V A M M O V m V V 07 N N N m m m N y o> G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 W 0 0 W rn rn rn rn W m w rn rn rn rn rn rn rn m rn rn rn m rn rn rn rn rn m rn rn rn � ao m 3(D.T v v v v a v v v v v v v v v v v e v v v v v v v v a v v v c w o U O C O m m t0 m A N 0 0 A 0 V V N N m N N 10 V A A t0 V m N O O O) V t0 V M A A M m N Q7 m m N m N V M V m m O N 7 m 0 m m 0 A A O O (0 m m 0) V V )n . M m 0 0 0 0 0 0 0 0 0 0 0 00 0) 0) O O O 0) 03 O O Cl) 0)O 0) 0) 0) O) (D 0) 0) 0) 0) O 0) m 0) M 0) O) 0) m m m 0) 0) 0) m m 0) 0) m m Co m m Co m m T� J 2 v v a v v v v v v v v v v v v v v v v v v v v v v v v v a v E'a G o 0 o A o m o v )n v o 0 0 0 O v o )n N o 0 0 0 )n O m n to N )n A co m o N v )n A T7 A A m )n rn m rn A M m v o )n m o A m m 0 m m m G m m M= o 0 0 0 0 0 0 0 0 0 0 0 N 0 0 Cl) 0 0 0 rn o 0 0 0 0 o 0) M 0 0) y m> �. 0) 0) 0) 0) M 0) 0) 0) 0) 0) M 0) 0) 0) 0) rn 0) rn m ao 0) rn 0 0) 0) CO CO CIO 2 rn ro rn v v a v a v v v v v v v v v v v v v v v v v v v v v vLU v v v N o A Q O N M V O M m A N A 0 l0 M 0) CO O CO A V CO )O N O '6 m 3 y f0 M g N m N V m N m m 0) M 0 N V A O m V O m N 0) A m O CO V0 V < j- TLL .U.. (D N N O m N N m O) N O t0 N N m m A N m N_ N ACo V Cl)U'j co Go - •V :A 6 a A A M A m A A h A A A A N A m A O M m LL U cc N v N V M V e N V N N A U> b N M A M 1 M m V V N 1 M m M m '- M m )O N V 6 m V 1 m M A m 0U� E O 01 m O O m A A A N V V M M M )O O) 01 M M M m O N O m C m Y 0 M m O m m O N N v V A M N A A V V N M M N M O 0 0 6 m 1 01 O 0) )0 m 0) m A m m m A m M v v V O V V N 0N A m o 0 0 0) 0 rn 0 0) 0) 0) Cl) rn 0) a) rn 0 0) rn 0) 0) 0) rn rn 0) 0) rn m 0) m m >> G O) rn rn m 0) co 0) m co Go rr m co co co (D m ml ro m m co co ro 00 co ao co m m o uw v v v v v v v v v v v v v v v a v v e v v v v v v v v a v v ❑ m a- o 0) O 0) o 0 0 0 0 0 0 0 0 0 0 0 0 0 v o M O M A o 0 0 o 0) o m y )O V 0 m m )0 )0 Go m m Lo m N m )0 )0 A U) m )0 m m V N m O M m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m � O 0 o o 0 0 0 o O o 0 0 0 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 O o 0 N" O Ci CJ o 0 o 6 O C 6 0 0 6 O 6 0 0 C O o 0 o C CJ o O C 6 6 0 E G m C 0 m A 0) N m 0 m N M O V m O A N V N M l0 l0 D) O O M N > f0 C N O M 0 0 0 0 M 0 0 N W 0 0 m Ih V m A w m V v V 0 m N A O O O O O O O C)0) 0) 0) 0) 0) 0 (MO) O) 0) 0) 0) C) M 0) 0) 0) O M M 0) Co m Q) O) 0) D) O) Q) m m m m m m m m m m m m m m m m m m Go m m a— a v v v v v v v v v v v v v v v v v v v v v v v v v v v v Z) W M M M N_ M M M Cl) M M *Cl) M M M M Cl) M M M M M Cl) M M Cl) Cl) M M co C _M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G C C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m O m 0 u u 0 u u u u u 0 0 u u u u u u u u u u u u u u u u u u u V N C C C M C C C C C M C C C C C G C G C C C C C C C G C C G C m V) CO m V m N m1 O m m V m CO m m o m V V O m V V m f0 C) m N N _0) , N M� N M , M M N N M M N N � M M, V V t �` O A N D) m M V N M A 0 V 0) O 0) CO m 0 A 0 m m M M m A A m m N )O N 0) m 0 0 7 m A 0) O) m m A N O) m O 7 V m Co W V V m O M O N A O N V O) A N A V O m O 0) O) M M A LL] V N m N m 0 M M O 10 N y V N A m 10 V m m O O V O M N M N O V V V m N O .0.0 N N N m m m C E m m a m o 0 0 0 0 0 0 0 0 0 m o 0 0 0 0 0 O M 10 10 M M M p M M M M N N �p )p M N M M M M M M M M co Z: m m 2 o o 2 2 2 o 2 2 2 2 2 2 o 0 2 2 0 2 2 0 2 2 2 2 2 2 W 0 y0 M M g M M 2 2 2 N 2 2 2 2 2 2 N Ll 2 2 2 2 2 m f a m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m ❑ ❑ O ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ O ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ m V) m N w 0) N N 0 N m 0 N V) m w h m N w w fN h N m m m m h U) M m m 0 V N V m N M O O .0 m M M 0) N )O M M m V N N N A V V N N m V N N 0 V N N V N m a a a a a a a m a m m m m m a a m m a m a m m m m m a m a m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m ❑ O ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ N m N v) N v) V1 m m V) N N N v) V) V) m m V) N m V) N y m m m m N V) E m m m N t0 O (N m m V m N O N m m m _ _ _ m o .m a m O 0 0 0 o d m o m o 0 N M M N M O M N t0 V m M O A M M N M )0 Cl) N N M p M M p 0 2 0 0 2 0 0 0 0 2 0 0 0 2 2 2 0 0 2 2 o o 2 0 0 S 2 a Z M M 2 V M M 2 N M M M 2 N N M 2 2 2 fn M 2 2 M M 2 M M 2 2 D m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m tu m m y N v7 m m m y m N y m m y m m m N m V) m V) N V) y N N y N N V 0 N N N m C N C W a� > O ❑ as U E O U) Q W O O F U U j c � d ?? 0 �0 0 m � O m Z o 0 O m A M U G u, N o GO N O °0 3 N 0 aw Q 2 vpM m U C [ m • C M U90 LL W 0 f C O Scenario: Base M 1 1 1 u r 1 M Node Report Label Total System Flow (CIS) Ground Elevation (ft) Rim . Elevation (ft) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) Description SDA-1601 4.37 4,893.27 4,893.27 4,891.93 4,891.82 SDA-1602 13.00 4,893.30 4,893.30 4,891.73 4,891.61 SDA-FES1 12.66 4,890.25 4.890.25 4,891.44 4,891.4.4 SDF-1204 11.15 4,905.85 4,905.85 4,904.37 4,904.37 SDF-FES1 11.10 4,902.00 4,902.00 4,904.23 4,904.23 SDG-1203 7.32 4,904.36 4,904.36 4,904.36 4,904.31 SDG-MH203 6.89 4,904.36 4,904.36 4,904.27 4,904.25 SDG-FES1 6.72 4,902.50 4,902.50 4,904.23 4,904.23 SDE-1401 12.41 4,907.50 4,907.50 4.904.91 4,904.91 SDE-FES1 12.41 4,901.00 4,901.00 4,904.23 4,904.23 SDH-1502 10.47 4,906.40 4,906.40 4,903.62 4,903.05 SDH-FES1 10.18 4,903.00 4,903.00 4,902.16 4,902.16 Roof Drain 100c 3.54 4,914.20 4,914.20 4,909.00 4,909.00 Roof Drain 100d 4.43 4,914.20 4,914.20 4,908.84 4,908.84 SDC-CO100c 3.54 4,912.70 4,912.70 4,908.96 4,908.96 SDC-CO100d 7.97 4,912.45 4,912.45 4,908.68 4,908.68 Roof Drain 100e 4.40 4,912.20 4,912.20 4,907.23 4,907.23 Roof Drain 100f 3.38 4,912.20 4,912.20 4,907.48 4,907.48 SDG-MH307 15.75 4,910.20 4,910.20 4,906.95 4,906.95 SDC-FES3 15.75 4,906.77 4,906.77 4,905.14 4,905.14 Roof Drain 100b 2.36 4,918.20 4,918.20 4,914.96 4,914.96 SDD-1404 3.02 4,911.50 4,911.50 4,909.25 4,908.80 SDD=CO100b 2.36 4,915.55 4,915.55 4,913.31 4,913.18 SDD-MH403b 5.29 4,909.75 4,909.75 4,905.67 4,905.49 SDD-MH403a 5.18 4,906.50 4,906.50 4,904.43 4,904.41 SDD-1403 6.25 4,903.80 4,903.80 4,903.80 4,903.80 SDD-OUTLET 6.14 4,904.36 4,904.36 4,904.79 4,904.79 SDC-FES2 16.81 4,908.00 4,908.00 4,905.07 4,905.07 SDC-FES1 16.81 4,906.00 4,906.00 4,902.48 4,902.48 Roof Drain 100a 2.36 4,918.20 4,918.20 4,914.96 4,914.96 SDB-CO100a 2.36 4,915.00 4,915.00 4,913.86 4,913.72 SDB-1314 4.13 4,912.40 4,912.40 4,909.96 4,909.85 SDB-1305e 0.00 4,912.50 4,912.50 4,909.44 4;909.44 SDB-MH314 6.44 4,910.50 4,910.50 4,909.77 4,909,64 SDB-1101 0.93 4,912.63 4,912.63 4,908.82 4,908.82 SDB-1305d 0.00 4,909.50 4,909.50 4,907.60 4,907.60 SDB-1313a 2.87 4,909.70 4,909.70 4,908.53 4,908.48 SDB-1315 8.16 4,910.70 4,910.70 4,908.81 4,908.73 SDB-1305c 0.00 4,910.00 4,910.00 4,906.16 4,906.16 SDB-1501 12.41 4,915.00 4,915.00 4,909.06 4,908.76 SDB-MH313a 10.81 4,909.00 4,909.00 4,908.46 4,908.34 Roof Drain 100g 0.50 4,912.00 4,912.00 4,909.36 4,909.36 SDB-CO305b 0.00 4,910.25 4,910.25 4,905.14 4,905.14 SDB-1312a 4.65 4,905.70 4,905.70 4,904.14 4,904.00 SDB-1309 6.30 4,907.80 4,907.80 4,905.23 4,904.98 SDB-MH312a 22.97 4,909.67 4,909.67 4,907.63 4,906.96 SOB-1402 12.29 4,907.00 4,907.00 4,902.15 4,902.15 SDB-CO305a 0.50 4,908.25 4,908.25 4,903.47 4,903.41 SDB-1311a 6.52 4,905.40 4,905.40 4,903.66 4,903.56 SDB-1310 15.43 4,907.54 4,907.54 4,904.42 4,903.47 SDB-MH310 22.84 1 4,909.75 1 4,909.75 1 4,903.45 4,903.32 ' Title: Fort Collins High School 2004 Project Engineer. zcs n:\fc0194\stonncad\fo0194 working.stm Nolte Associates Inc StormCAD v4.1.1 [4.2014a] O5/30/02 08:43:39 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 2 1 1 M 1 1 1 1 1 1 1 1 1 M Scenario: Base Node Report Label Total System Flow (cfs) Ground Elevation (It) Rim Elevation (ft) Hydraulic Grade Line In (it) Hydraulic Grade Line Out (h) Description SDB-1202b 8.21 4,904.14 4,904.14 4,901.18 4,900.76 SDB-1305b 9.60 4,902.70 4,902.70 4,901.79 4,901.70 SDB-1304 2.63 4.903.70 4,903.70 4,901.41 4.901.37 SDB-1305a 10.96 4.903.60 4,903.60 4,901.90 4,901.80 SDB-MH311a 39.37 4,912.50 4,912.50 4,902.70 4,902.21 SDB-1201 5.52 4,902.90 4,902.90 4,899.13 4,898.94 SDB-1200 12.27 4,902.84 4,902.84 4,899.46 4,898.64 SDB-1307 2.40 4,903.90 4,903.90 4,900.86 4,900.82 SDB-MH304 18.71 4,904.75 4,904.75 4,901.35 4,901.12 SDB-MH308 39.05 4,907.32 4,907.32 4,901.33 4,901.28 SDB-MH201 16.63 4,903.50 4,903.50 4,898.25 4,897.82 SDB-1303 7.49 4,899.40 4,899.40 4,897.36 4,897.25 SDB-1306 22.08 4,904.00 4,904.00 4,900.73 4,900.45 SDB-MH302b 38.80 4,905.50 4,905.50 4,900.40 4,900.31 SDB-MH200 16.26 4,901.85 4,901.85 4,896.52 4,896.44 SDB-1301b 12.97 4,901.00 4,901.00 4,897.07 4,896.67 SDB-1302a 2.71 4,900.76 4.900.76 4,896.72 4,896.67 SDB-MH301b 58.84 4,904.67 4,904.67 4,899.32 4,899.05 SDB=1301a 17.08 4,899.85 4,899.11 4,894.37 4,894.24 SDB-1300 1.85 4,899.61 4,899.11 4,894.65 4,894.41 SDB-MH302a 68.52 4,902.52 4,902.52 4,896.64 4,895.85 SDB-MH301a 84.40 4,899.55 4,899.55 4,894.22 4,893.02 SDB-FES1 1 83.941 4,892.501 4,892.501 4,891.441 4,891.44 Title: Fort Collins High School 2004 Project Engineer zcs n:\fc0194\stonncad\fo0194_working.stm Nolte Associates Inc StormCAD v4.1.1 [4.2014a] 05/30/02 08:43:39 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 2 of 2 O _ ^o 0 00 O a> a O � 2 c � I -- — O 0 � > > N N c c N N U iO 0 U = d 00 M p 00 N 0 O M � I wa Ip Q Z 00 (n 0_ 0 M O OU L O O a U an 00 p0� 0 -cIt4.; Q M Eon N— O � X > > V) U) 0 z a LLJ J J (i W LLJ IJZ 2 U Q V) � U LO 1^ N co D0 a ro00 ao' o�>> v7 N c C N N m O O v 00 I O Qa� poo a W H Z ry O w H U� Z ry 0 V / m O H O D Z L� r o O V(-) J g'j J z L O a Q N m 0 U E 2 °" V) E O p O w ON N N w N v o CN � ca � 3 a m p U 0 6 Q U O Q _ Ocxp . (npa, EQ U 04 (� w (n m � I e Q Z O W a Z w L� O w Q F- Q w w (n w w m 0 0_ 0 X p 0 1 1 1 1 1 1 1 1 1 1 M 0 � M La U O no U w Nrdc (n Z 7 M 0 OW a00N Co CO NJ.. N 00 0 in o V W n w a °D oo6 0 C) 0— U cdn m- m o On O 0 N N O 0 O a' ss� 0 in � 0 a Uai.7 n sX, I C CO O O CC)U—�� NM •G O•�G N C C 00 LLJ W . SrJ N L 0 .� �'�cJ W 0Q O .t V) W s EA N C C N N O) mtD ( O O O O) S O I J3 �O� mO �O0Ua OU mca aaMII accc L2oN rnaUooUa oWFNoNw��NV 1 1 1 1 1 1 1 1 1 1 1 M 1 i.� w cn fN F Z 00. Q6b 0 o N N 62 . j o sis . 0� f-- a:ao !Q 'v v� � N wa Z 00 En a 0 N o cD � rn a � oc�0 Oup N ^ C c M M w C) 0 U darn oo� m p N 06 O . rn d 0 _a 0 O c c0J plmii W — c c C� w O04 _ `f) N 1- a•-0)S MM N NN cn .Z Darn M Q`Qe0 oy0�0 c� c� v 0 a. c N o � o � O �rca• � cn �i wa LL io z 00 p N n- o v wa `i o W ^ voi a 00 66 10aa4pu u Cf) OS vs )— r va o V) z wa:r N ci,N_. ry V) 2 M o p n a a cmy N O o M y C C 0 M M N 02,'906ka d a r M ls,.. . Q/ SQ 4a /1u nN i i V) —.E c p p aped 3: O`OS` W d Mt O a EL 0 00 O z N O C C D G a V) c c O v p O U O 0 qtqt oo� V I o 01a O N I °) am 0 p N V) M a rn m o J d Z LL ap N LL J Z L p W 6 N m p U O 0 E o E d o w N E x V) N O N � C7 � 3 O a U w E p to o F a U ¢ i a N O p N rn O o 0 : 11 N .2 U ¢ = N o N w a 0 o w 3 ¢ ¢ w M w = o a. 9 i U In 0) O M U lam 0 p N m 0 m p I d M N cn O O N C 0 N p O Oto� y+ th O U = C I n W N 0. 0] �a) VI 0 z O U �� LLJ cn c Z U) G 0 C W O Of Z O Q � Q Of w O a 3N LLJa-J< -i U Z O Z— d W N Of > o O W ZOO Z fn of H }O< w w�>NX rr0wLL (n U) U U) Z— laJ H O Z lq- rn N O U o p 7V V V W z J V Q m t 0 m U 0 S U E E N V) 0 p V) O H W W N LO = O � O N 0 O � 3a -;U') 0 U W O 0 0O F- d Q U Q O _ 0 E.Q 0 • ino rn a w U N V U . m Q Z LO O I W m z iii z . c� 3 a Q w x w= w . 0a0x0V) SDB-P13 D.P.314 314 18 inch 1 4.12 cfs Inv.In:4907.64 DB-00100a Inv.Out:4907.37 SDB-P14 SDB-MH314 12 inch Inv.ln:491 .O6 SDB-P75 SDB-P12 Inv.0ut:4907.77 12 inch 18 inch Inv.In:4914.30 SDB-1313o Inv.In:4907.27 Inv.Out:4913.26 D.P. 313a Inv.Out:4906.16 2.87 cfs Roofdrain 100a SDB-P11 SDB-1315 D.P. 315 D.P. 315 1.38 cfs SDB-MH313a Inv.In:4905.66 1.38 cfs Inv.Out: 4904.63 SDB-P16 SDB-P10 18 inch SDB-I101 24 inch Inv.In:4906.96 D.P. 101 Inv.In:4904.43 Inv.Out:4906.16 3.44 cfs SDB-I501 Inv.Out: 4902.89 Commercial D.P. 501 12.41 cfs SDB-P19 24 inch In0n:4904.77 Inv.Out:4902.89 O`f 4902>9 SDB-MH312o 0�09 D P. 310 9.50 cfs SDB-MH310 N SDB-1312o 05 0 0 0`9 `v D.P. 312a C. ?p7 00 ,0`b o0 00 , 4.65 cfs' SD > O ° h118 3 mb &j evIn:4901.18 SDB-P30 tnOut:4900.31 18 - inch SDA-1311a D.P. Inv. nv n: Out:488'9.09 SD8_p7 311a In8 Inc lnr 1.87 cfs /I v 48 9 8.9 Out:48g7.72 SDB-MH311a Nicum Sale■. 9161111al..1 Hi h School Stor Storm CAD Layout System B DWG NAME: SD-LAYOUT.DWG PATH:N: fe0194 CADD CP DATE: 05 29 02 TIME: 11:20 a.m. SCALE: N.T.S. XREFS: _Stour DESIGNER: GAD PROJ. MGR: TMO JOB NO. FC0194 SHEET 2 OF 5 SHEETS SDB-1309 D.P. 309 6.20 cfs See Sheet 5 for continuation. SDB-1305a D.P. 305a 10.48 cfs s • r SpB- na % 30 SDB-MH04b \nv,0u SDB-1306 D.P. 306 Q25 50e•`ncr 9$2 33 /.tom 1.33 cfs / SD.P. 307 SOB-Q24 2.40 cfs 1$\t� AArb S. Z3 \\44' v SDB-1304 D.P. 304 2.61 cfs SDB-P33 18 inch Inv.ln: 4901,67 Inv.Out: 4900.90 SD8_P6 Inv.ln: Inv.Out: 97.625 SDB-P5 36 inch Inv.ln: 489 . Inv.Out: 4894.79 STORM SYSTEM 'B' N.T.S. SDB-P23 30 inch Inv.ln: 4897.23 Inv.Out: 4894.79 b SDB-1402 D.P. 402 12.26 cfs 0 cry D.P. 305b 8.36 cfs SDB-1303 D.P. 303 22.05 cfs SDB-P21 SOe� ;6 24 inch' Inv1n:4894.31 I Inv.Out:4894.23 iln�/��ch Plit.. 4?g . SDB-MH302a 1V iQti Oda a'� u � 0 SDB-1302o D.P. 302a 6.40 cfs .Ova SDB-1300 D.P. 300 1.90 cfs I SDB-1301b, D.P. 103b 6.20 cfs SDB-1202b D.P. 202b 7.30 cfs SDB-P43 18 inch Inv.ln: 4896.84 Inv.Out: 4895.78 SDB-1200 D.P. 200 SDB-P42 12.50 cfs 18a 6incr<h Inv.ln: 489.84 SDB-1201 Inv.Out: 4895.78 D.P. 201 5.43 cfs SDB-P44 n In4896.94 S D K)B -MH01c ut:Inv.O4895.44rna)01 m rCao o r Bo m��> � N C C SDB-MH2O0 Oy ham. V j VC h 4: A• Oj C'V C. SDB-1301a D.P. 301a 5.40 cfs SDB-FES1 11 I 1 i I 1 I I I I 1 7 APPENDIX F Detention Pond Calculations 1 P 1 1 1 L 1 1 F L 1 FJ L " etent>o`non7 olume Calculation � Project #: 0194 20 �O Project Name: 2004 Fort Collins High School Calculated By: GAD Date: 4/24/2002 B E Y O N D E N G I N E E R I N G Detention pond volume (V): 1/3d(A+B+(AB)05) (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, ft2 B= Surface area of contour line at a depth relevant to d, ft2 �-_ � "'�:�• 't�', a->. , ', , ' �'.%South Detention Pond �'-:' . ^, ,... � f,s..--� . ;...--" � ;w^-';- Volume Elevation Da ft A ft2 Cummulative B Volume Volume ft2 ft' ft' Cummulative Volume ac-ft I Vo 4882.50 0 i 0 0.00 1 0.00 0.00 0.00 V, 4883.00 0.50 0 j 28,923 i 4,821 4,821 0.11 V2 4884.00 1.00 28,923 31,626 I 30,265 i 35,085 0.8 j V3. 4885.00 1.00 31,626 83,379 55,452 0.00 0.00 Va j 4886.00 1.00 83,379 j 123,673, 102,866 102,866 2.36 V5 j 4887.00 j 1.00 123,673 1141,520, 132,496 ! 235,362 5.40 V6 I 4888.00 1.00 141,520 147,899, 144,698 1 380,060 8.72 Vr I 4889.00 1.00 147,899 153,2051 150,544 1 530,605 12.18 13.50 ac-ft V ,i 4889.3-, 13.50 0.47 ac-ft '-- .. Vwo 4889.50 13.97 Ve 4890.00 1.00 153,205 1156,146 154,673 685,278 15.73 V9 4891.00 1.00 156,146 1174,8471 165,408 850,686 19.53 7.34ac-ft •'VIA.,, 4891.44 20.41 ! VIo 4892.00 1.00 174,847 179,849! 177,342 j 1,028,028 23.60 V ❑ j 4893.00 1.00 179,849 1188,5891i 18041,202 1,212,230 27 83 ' A 2-ft sediment depth is required by the irrigation pond design. s 0.9 Acre-feet added per CFC to accommodate Reid riedhnger parcel (5ac) Mahe Associates. Inc. 412412002 2:46 PM DETENTION POND SIZING BY FAA METHOD Developed by N Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ ' EXECUTED ON 04-24-2002 AT TIME 14:17:06 PROJECT TITLE: 2004 Fort Collins High School ***` DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER 1000 BASIN AREA (acre)= 40.61 RUNOFF COEF 0.60 ****' DESIGN RAINFALL STATISTICS ' DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN ' DURATION 5 10 20 30 40 50 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 60 80 100 120 150 180 2.9 2.4 2.0 1.8 1.5 1.2 *'*** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 20.3 CFS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 20.3 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME ' STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE -FT 0.00 0.00 0.00 0.00 0.00 5.00 9.95 1.68 0.14 1.54 10.00 7.72 2.61 0.28 2.33 15.00 6.66 3.38 0.42 2.96 20.00 5.60 3.79 0.56 3.23 25.00 5.06 4.28 0.70 3.58 ' 30.00 4.52 4.59 0.84 3.75 35.00 4.13 4.89 0.98 3.91 40.00 3.74, 5.06 1.12 3.94 45.00 3.49 5.31 1.26 4.05 ' 50.00 3..23 5.47 1.40 4.07 55.00 3.05 5.67 1.54 4.13 60.00 2.86 5.81 1.68 4.13 65.00 2.74 6.04 1.82 4.22 70.00 2.63 6.23 1.96 4.27 75.00 2.52 6.38 2.10 4.29 80.00 2.40 6.50 2.24 4.26 85.00 2.30 6.62 2.38 4.24 90.00 2.20 6.70 2.52 4.18 ' 95.00 2.10 6.75 2.66 4.10 100.00 2.00 6.77 2.80 3.97 105.00 1.95 6.93 2.94 3.99 ----------------------------------------------------- THE REQUIRED POND SIZE = 4.286277 ACRE -FT �} ZS X I-5 (a,4A ac-�+ THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 75 MINUTES N 1 1 M 1 1 1 1 1 1 1 M 1 Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 1 of 3) Designer: GAD Company. Nolte Associates, Inc. Date: April24,2002 Project: FC0194 - 2004 High School Location: Fort Collins, CO 1. Basin Storage Volume Ia = 38.00 % A) Tributary Area's Imperviousness Ratio (i = la / 100) i = 0.38 B) Contributing Watershed Area (Area) Area = 40.61 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.14 watershed inches (WQCV =0.8`(0.91 1'-1.19`I'+0.78`1)) D) Design Volume: Vol = (WQCV / 12) ` Area Vol = 0.47 acre-feet 2. Permanent Pool A) Volume: Volp d = (1.0 to 1.5) ` Vol B) Average Depth Zone 1 = Littoral Zone - 6 to 12 inches deep Zone 2 = Deeper Zone - 4 feet to 8 feet deep Zone 2 C) Maximum Zone 2 Pool Depth (not to exceed 12 feet) Depth = D) Permanent Pool Water Surface Area (Estimated Minimum) (Zone 1 - Littoral Zone = 25% to 40% of the total surface area) % = (Zone 2 - Deeper Zone = 60% to 75% of the total surface area) % = Total Estimated Mihimum Surface Area (AT.�,) %= 3. AnnuaVSeasonal Water Balance (Qee, has to be positive) 2. Outlet Works A) Outlet Type (Check One) B) Depth at Outlet Above Lowest Perforation (H) C) Required Maximum Outlet Area per Row, (Ae) D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR ii) 2" Height Rectangular Perforation Width E) Number of Columns (nc) acre-feet feet feet feet acres acres = acres = Qinfl. acre-feet/year Qewp acre-feet/year Qseepege acre-feet/year QE.T. acre-feet/year Q e, -acre-feet/year x_ Orifice Plate _ Perforated Riser Pipe Other: H = feet A. = ...square inches D = inches, OR W = inches nc= !Number FC0194_Water Quality_NEW.xls, RP Basins contributing to the irrigation Pond. 100 250603.83 5.75 101 5370.44 0.12 200 53732.39 1.23 201 58105.26 1.33 202 156168.3 3.59 300 28539.1 0.66 301a 78214.17 1.80 ' 301b 62041.59 1.42 302a 11973.51 0.27 302b 25750.63 0.59 303 154999.68 3.56 304 66017.58 1.52 305a 150107.73 3.45 305b 152916.81 3.51 ' 308 22184.63 0.51 309 38919.6 0.89 310 72532.37 1.67 ' 314 71132.98 1.63 315 15709.87 0.36 402 81229.03 1.86 ' 600 72983.87 1.68 601 85859.25 1.97 602 53800.45 1.24 1 - 40.61. FC0194_Rational-Fort Collins.xls 2:10 PM war ra'Icurardi• oo= .ear Releas I� , ow ilriv N Project Name: 2004 High School PsNOLTE Project M FC0194 Designer: TMO/GAD ' Design Storm: Developed 100-year BEYOND ENG IN EERING Detention Pond: Southeast Detention Pond P-300 ' Problem: Calculate the head required to discharge 22.2cfs through a 50' wide broad crested weir. Given: Broad -Crested Weir Equation: Q„� = CLH32 Where, t Value Q = Discharge, cfs 22.2 C = Broad Crested Weir Coefficient, See Table 5-91 2.82 L = Broad Crested Weir Length, ft 50 ' H = Head above the weir crest2' ft Solve For ' Note: 1. Per Handbook of Hydraulics, King and Brater (1963) 2. 100-yr pond elevation = 4891.44 ' Solution: ' Solve for'H': . H = (Qa../CL)23 H = 0.29 ft 3. Weir crest elevation = 4891.15 1 Nolte Associates, Inc. ' FC0194_W eir:3ds 5/30/2002 DETENTION POND SIZING BY FAA METHOD Developed tri Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............... ..... .......... ........ EXECUTED ON 03-04-2002 AT TIME 11:59:15 PROJECT TITLE: 2004 Ft.Collins High School ' *'*' DRAINAGE BASIN DESCRIPTION ' BASIN ID NUMBER 306 BASIN AREA (acre)= 2.66 RUNOFF COEF 0.97 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN ' DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.9 7.7 5.6 4.5 3.7, 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 1.33 C=S ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 1.33 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. **:** COMPUTATION OF POND SIZE J M i I\ ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME .STORAGE MINUTE ----------------------------------------------------- INCH/HR ACRE -FT ACRE -FT ACRE-FT 0.00 0.00 0.00 0..00 0.00 5.00 9.95 0.18 0.01 0.17 10.00 7.72 0.28 0.02 0.26 15.00 6.66 0.36 0.03 0.33 20.00 5.60 0.40 0.04 0.36 25.00 5.06 0.45 0.05 0.41 30.00 4.52 0.49 0.05 0.43 35.00 4.13 0.52 0.06 0.45 40.00 3.74 0.54 0.07 0.46 45.00 3.49 0.56 0.08 0.48 50_00 3.23 0.58 0.09 - 0.49 55.00 3.05 0.60 0.10 0.50 60.00 2.86 0.61 0.11 0.51 65.00 2.74 0.64 0.12 0.52 70.00 2.63 0.66 0.13 0.53 75.00 2.52 0.68 0.14 0.54 80.00 2.40 0.69 0.15 0.54 85.00 2.30 0.70 0.16 0.54 90.00 2.20 0.71 0.16 0.54 95.00 2.10 0.71 0.17 0.54 100.00 2.00 0.72 0.18 0.53 105.00 1.95 0.73 0.19 0.54 110.00 1.90 0.75 0.20 0.55 115.00 1.85 0.76 0.21 0.55 120.00 1.80 0.77 0.22 0.55 130.00 1.70 0_79 0..24 0.55 135.00 1.65 0.80 0..25 0.55 140.00 1.60 0.80, 0.26 0.55 1 1 M 1 1 1 1 1 1 1 1 1 1 1 N 1 145.00 1.55 0.81 0.27 0.54 150.00 1.50 0.81 0.27 0.53 155.00 1.45 0.81 0.26 0.52 ----------------------------------------------------- THE REQUIRED POND SIZE _ .5549204 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 125 MINUTES r 1 1 M 1 1 1 1 1 1 1 ,)--eTen£ion an eoum Te c-,m -fi n Project : FC0194 Project Name:.2004 Fort Collins High School Calculated By: GAD Date: 5/30/2002 BEYOND ENGI NEERI N G Detention pond volume (V): 1/3d(A+B+(AB)O") (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours,11 A= Surface area of contour line, ft2 B= Surface area of contour line at a depth relevant to d, f BaJin 06 Volume Elevation Dd ft A ft2 B ft2 Volume ft3 Cummulative Volume ft3 I Cummulative Volume ac-ft Vo 4904.00 0.00 0 25 0 0 1 0.00 V I 4905.00 1.00 25 1 406 I 177 177 0.00 V2 4906.00 1.00 406 1 9,891 4,100 4,278 j 0.10 VIA 4906.76 ( 0.55 V3 4907.00 1.00 91891 ! 44,935 25,303 29,580 0.68 Nolte Associates, Inc. 513012002 1:16 PM DETENTION POND SIZING BY FAA METHOD - Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado ------------------------------------- ____________________________________________ ' USER=Nolte Associates, Inc ............................................ EXECUTED ON 03-04-2002 AT TIME 13:13:35 PROJECT TITLE: 2004 Ft.Collins High School DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 307 ' BASIN'AREA (acre)= 4.79 RUNOFF COEF 0.83 ***" DESIGN RAINFALL STATISTICS ' DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 2.395 CPS OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 2.395 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. ***'* COMPUTATION OF POND SIZE ----------------------------------------------------- ' RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT --------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 ' 5.00 9.95 0.27 0.02 0.26 10.00 7.72 0.43 0.03 0.39 15.00 6.66 0.55 0.05 0.50 20.00 5.60 0.62 0.07 0.55 25.00 5.06 0.70 0.08 0.62 30.00 4.52 0.75 0.10 0.65 35.00 4.13 0.80 0.12 0.68 40.00 3.74 0.83 0.13 0.69 45.00 3.49 0.87 0.15 0.72 ' 50.00 3.23 0.89 0_16 0_73 55.00 3.05 0.92 0.18 0.74 60.00 2.86 0.95 0.20 0.75 65.00 2.74 0.99 0.21 0.77 ' 70.00 2.63 1.02 0.23 0.79 75.00 2.52 1.04 0.25 0.79 80.00 2.40 1.06 0.26 0.80 85.00 2..30 1_08 -°0.28 0-80 ' 90.00 2.20 1.09 0.30 0.80 95.00 2.10 1.10 0.31 0.79 100.00 2.00 1.10 0.33 0.77 105.00 1.95 1.13 0.35 0.78 110.00 1.90 1.15 0.36 0.79 '115.00 1.85 1.170.38------0.80 --- ----- -- -- -------- ------- THE REQUIRED POND SIZE _ .7991067 ACRE -FT NTHE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 85 MINUTES 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 >e en "on -w- vio ume Gm-cma" ion Project : 0194 Project Name: 20 : 2004 Fort Collins High School Calculated By: GAD Date: 5/30/2002 9 E Y O N D' E N G I N E E R I N G Detention pond volume (V): 1/3d(A+B+(AB)0s) (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, ft2 ' 307 Volume Elevation Dd ft A ftZ B ft, Volume W Cummulative Volume ft' Cummulative Volume ac-ft Vo 4904.00 1 0.00 0 97 0 0 0.00 VI 4905.00 1.00 97 2,351 976 976 0.02 V2 4906.00 1.00 2,351 10,807 6,066 7,042 0.16 VIA 4907.00 -0:80 V3 4907.00 1.00 10,807 j 49,031 27,619 34,661 0.80 DETENTION POND SIZING BY FAA METHOD . Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ ' EXECUTED ON 03-04-2002 AT TIME 13:16:37 PROJECT TITLE: 2004 Ft.Collins High School . DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 311a BASIN AREA (acre)= 3.74 ' RUNOFF COEF 0.89 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 1.87 CPS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 1.87 CPS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE *.ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ----------------------------------------------------- ACRE -FT ACRE -FT 0.00 0.00 0.00 5.00 9.95 0.23 0.00 0.01 0.00 0.22 10.00 7.72 0.36 0.03 0.33 15.00 6.66 0.46 0.04 0.42 20.00 5.60 0.52 0.05 0.47 25.00 5.06 0.58 0.06 0.52 ' 30.00 4.52 0.63 0.08 0.55 35.00 4.13 0.67 0.09 0.58 40.00 3.74 0.69 0.10 0.59 45.00 3.49 0.73 0.12 0.61 ' ' 50.00 3.23 0.75 0.13 0.62 55.00 3.05 0.77 0.14 0.63 60.00 2.86 0.79 0.15 0.64 65.00 2.74 0.82 0.17 0.66 70.00 2.63 0.85 0.18 0.67 ' 75.00 2.52 0.87 0.19 0.68 80.00 2.40 0.89 0.21 0.68 85.00 2.30 0.90 0.22 0.68 ' 90.00 2.20 0.92 95.00 2.10 0.92 0.23 0.24 0.68 0.68 100.00 2.00 0.92 0.26 0.67 105.00 1.95 0.95 0.27 0.68 110.00 1.90 0.97 0.28 0.68 115.00 1.85 0.98 0.30 0.69 ' Ct.031 125.00 1.75 1.01 0.32 0.69 130.00 1.70 1.02 0.33 0.69 1.00 1.61.03 0..3 0.6 14040.00 1.60 1.04 0.36 0.677 1 1 1 1 1 1 1 1 1 1 1 1 1 145.00 1.55 1.04 0.37 0.67 150.00 1.50 1.04 0.39 0.65 ----------------------------------------------------- THE REQUIRED POND SIZE _ .689489 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 120 MINUTES 11 1 1 1 1 1 1 1 1 y 1 1 1 1 eten'�'io"RMM IRM a Calculation Project : 014 � Project Name: 20F : 2004 Fort Collins High School Calculated By: GAD Date: 5/30/2002 e E Y O N D E N G I N E E R I N G Detention pond volume (V): 1/3d(A+B+(AB)") (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, ft' Basib:3711a Volume Elevation Dd ft A ft' B ft' Volume ft3 Cummulative Volume ft3 Cummulative Volume ac-ft Vo 4905.20 0.00 0 0 0 0 0.00 V, 4906.00 0.80 0 867 231 231 0.01 V, 4907.00 1.00 867 1 6,660 3,310 3,541 0.08 V3 4908.00 1.00 6,660 41,250 21,495 25,036 0.57 VIA 4908.10 0.69 Vd 4908.50 0.50 41,250 58,702 24,860 49,896 1.15 Nolte Associates, Inc. 513012002 1:38 PM I/' DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ ' EXECUTED ON 03-04-2002 AT TIME 13:19:25 PROJECT TITLE: 2004 Ft.Collins High School DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 312a (Interim Condition) BASIN AREA (acre)= 13.69 ' RUNOFF COEF 0.51 DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 ' INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 6.845 CFS OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 6.845 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ---------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE -FT ' 0.00 0.00 0.00 0.00 5.00 9.95 0.48 0.05 0.00 0.44 10.00 7.72 0.75 0.09 0.65 15.00 6.66 0.97 0.14 0.83 20.00 5.60 1.09 0.19 0.90 25.00 5.06 1.23 0.24 0.99 t 30.00 4.52 1.31 0.28 1.03 35.00 4.13 1.40 0.33 1.07 40.00 3.74 1.45 0.38 1.07 ' 45.00 3.49 1.52 0.42 50..00 3.23 1.57 0.47 .1.10 1.09 55.00 3.05 1.62 0.52 1.11 60.00 2.86 1.66 0.57 1.10 65.00 2.74 1.73 0.61 1.12 70.00 2.63 - 1.79, _, 1 0.66 1.13 ' 75.00 2.52 1.83 0.71 1.12 80.00 2.40 1.86 0.75 1.11 85.00 2.30 1.90 0.80 1.09 ' 90.00 2.20 1.92 0.85 95.00 2.10 1.93 0.90 1.07 1.04 100.00 2.00 1.94 0.94 1.00 ----------------------------------------------------- THE REQUIRED POND SIZE = 1.125247 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES )efe-56-5-H -5-0 Polum- R-31Ma65-H Project : 0194 Project Name: 20 : 2004 Fort Collins High School Calculated By: HHF Date: 5/30/2002 BEYOND ENGINEERING Detention pond volume (V):1/3d(A+B+(AB)o'S) (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ft2 B= Surface area of contour line at a depth relevant to d, ftZ Basin.312a nterim Volume Elevation Dd ft A ftZ B ft, Volume ft, Cummulative Volume ft3 Currnttulative Volume ac-ft Vo 4905.50 0.00 0 25 1 0 0 ( 0.00 V, 4906.00 0.50 25 1,380 265 265 6.01 VZ 4907.00 1.00 1,380 7,255 3,933 4,198 0.10 V3 4908.00 1.00 7,255 33,564 18,808 23,006 0.53 V 4908.53 1.12 V, 4909.00 1.00 33,564 1 65,821 48,796 71,802 1.65 Nolte Associates, Inc. 513012002 1:42 PM DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ ' EXECUTED ON 03-04-2002 AT TIME 13:22:05 PROJECT TITLE: 2004 Ft.Collins High School DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 312a BASIN AREA (acre)= 9.30 ' RUNOFF COEF 0.63 DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 4.65 CFS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 4.65 CPS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ----------------------------------------------------- ACRE -FT 0.00 0.00 0.00 0.00 5.00 9.95 0.40 0.03 0.00 0.37 10.00 7.72 0.63 0.06 0.56 15.00 6.66 0.81 0.10 0.12 20.00 5.60 0.91 0.13 0.78 25.00 5.06 1.03 0.16 0.87 ' 30.00 4.52 1.10 0.19 0.91 35.00 4.13 1.18 0.22 0.95 40.00 3.74 1.22 0.26 0.96 ' 45.00 3.49 1.28 0.29 50.00 3.23 1.31 0.32 0.99 0.99 55.00 3.05 1.36 0.35 1.01 60.00 2.86 1.40 0.38 1.01 65.00 2.74 1.45 0.42 1.04 70.00 2.63 1.50 0.45 1.05 ' 75.00 2.52 1.53 0.48' - 1.05 80.00 2.40 1.56 - 0.51 1.05 85.00 2.30 1.59 0.54 1.05 ' 90.00 2.20 1.61 0.58 95.00 2.10 1.62 0.61 1.03 1.01 100.00 2.00 1.63 0.64 0.99 105.00 1.95 1.67 0.67 0.99 1 ----------------------------------------------------- THE REQUIRED POND SIZE = 1.054564 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 75 MINUTES '_ ClCiltlOIl ,071� „ GMl evll_e Cl! a__nn Project : 0194 NkL Project Name: 20 : 2004 Fort Collins High School Calculated By:"HHF Date:5/30/2002 BEYOND ENGINEERING Detention pond volume (V): 1/3d(A+B+(AB)05) (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ft2 B= Surface area of contour line at a depth relevant to d, 112 ar' 12a Volume Elevation Dd ft A ft2 B ft2 Volume ft3 Cummulative Volume ft3 Cummulative Volume ac-ft Vo 4905.50 0.00 0 25 0 ( 0 0.00 V I 4906.00 0.50 25 1,380 265 265 0.01 j V2 4907.00 1.00 1,380 7,255 3,933 4,198 0.10 V3 4908.00 1.00 7,255 33,564 18,808 23,006 0.53 V'00 4908.46 1.05 V4 4909.00 1.00 33,564 65,821 48,796 71,802 1.65 Nolte Associates, Inc. 513012002 1:41 PM DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ ' EXECUTED ON 03-04-2002 AT TIME 13:24:27 PROJECT TITLE: 2004 Ft.Collins High School **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 313a (Interim Condition) BASIN AREA (acre)= 10.16 ' RUNOFF COEF 0.54 DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 ' INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 5.08 CFS ' OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 5.08 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE COMPUTATION OF POND SIZE RATE * ADJUSTMENT FACTOR. ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ----------------------------------------------------- ACRE -FT ACRE -FT 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.38 0.03 0.34 10.00 7.72 0.59 0.07 0.52 15.00 6.66 0.76 0.10 0.66 20.00 5.60 0.85 0.14 0.71 25.00 5.06 0.96 0.17 0.79 ' 30.00 4.52 1.03 0.21 0.82 35.00 4.13 1.10 0.24 0.86 40.00 3.74 1.14 0.28 0.86 45.00 3.49 1.20 0.31 0.88 ' 50-00 3.23 1.23 0.35 0.88 55.00 3.05 1.28 0.38 0.89 60.00 2.86 1.31 0.42 0.89 65.00 2.74 1.36 0.45 0.90 70�00 2.63 1-:40 40.49 0..91 . ' 75.60 2.52 1.44 0.52 0.91' 80.00 2.40 1.46 0.56 0.90 85.00 2.30 1.49 0.59 0.89 90.00 2.20 1.51 0.63 0.88 ' 95.00 2.10 1.52 0.66 0.86 100.00 2.00 1.52 0.70 0.82 ----------------------------------------------------- THE REQUIRED POND SIZE = .913035 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 )enfian MEMB"Inm T.C. -1-- -- 0 Project : 0194 Project Name: 20 : 2004 Fort Collins High School Calculated By: GAD Date: 5/30/2002 BEYOND ENGINEERING Detention pond volume (V): 1/3d(A+B+(AB)o'S) (uniform sides) Where: V= Volume between contours, ft3 d= Depth between contours, ft A= Surface area of contour line, ftZ B= Surface area of contour line at a depth relevant to d, ft' asm 13a nterim Volume Elevation Dd ft A ftr B ftZ Volume Cummulative Volume I Cummulative Volume ac-ft Vo I 4908.00 0.00 1 0 20 0 0 ( 0.00 V, ! 4909.00 1.00 1 20 278 124 124 0.00 VZ 4910.00 1.00 ( 278 2,889 1,354 ! 1,479 0.03 V3 ! 4911.00 1.00 1 2,889 15,795 8,480 9,958 0.23 V, j 4912.00 1.00 j 15,795 41,967 27,836 ! 37,795 0.87 Nolte Associates, Inc. 513012002 1:49PM . M r 1 1 1 1 1 1 -------------------------------------------- DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ...... .............. .................... EXECUTED ON 03-04-2002 AT TIME 13:26:32 PROJECT TITLE: 2004 Ft.Collins High School **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 313a BASIN AREA (acre)= 5.73 RUNOFF COEF = 0.76 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY (IN/HR) -DURATION (MIN) TABLE IS GIVEN DURATION 5 . 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 2.865 CFS OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 2.865 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE --------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ----------------------------------------------------- ACRE -FT ACRE -FT 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.30 0.02 0.28 - 10.00 7.72 0.47 0.04 0.43 15.00 6.66 0.60 0.06 0.55 20.00 5.60 0.68 0.08 0.60 25.00 5.06 0.77 0.10 0.67 30.00 4.52 0.82 0.12 0.70 35.00 4.13 0.87 0.14 0.74 40.00 3.74 0.90 0.16 0.75 45.00 3.49 0.95 0.18 0.77 50.00 3.23 0.98 0.20 0.78 55.00 3.05 1.01 0.22 0.80 60.00 2.86 1.04 0.24 0.80 65.00 2.74 1.08 0.26 0.82 70.00 2.63 1.11 0.28 0.84 75.00 2.52 1.14 0.30 0.84 80.00 2.40 1.16 0.32 0.85 85.00 2.30 1.18 0.34 0.85 90.00 2.20 1.20 0.36 0.84 95.00 2.10 1.21 0.37 0.83 100.00 2.00 1.21 0.39 0.82 105.00 1.95 1.24 0.41 0.82 110.00 1.90 1.26 0.43 0.83 115.00 1.85 1.29 0.45 0.83 - ----------------------------------------------------- THE REQUIRED POND SIZE = .8470155 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 85 MINUTES fion ,one olume Calc'lu afion Project : FC0194 NJ(,_ Project Name: 2004 Fort Collins High School Calculated By: GAD Date:5/30/2002 BEYOND ENGIN.EERING Detention pond volume (V):1/3d(A+B+(AB)05) (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, 112 B= Surface area of contour line at a depth relevant to d, ft2 asin 313a Volume Elevation Dd ft A ft2 B W Volume ft' Cummulative Volume ft' Currmtulative Volume ac-ft Vo 4908.00 0.00 0 20 0 0 0.00 V, 4909.00 1.00 20 278 124 124 0.00 V2 4910.00 1.00 " 278 1 2,889 1,354 1,479 0.03 V; 4911.00 1.00 2,889 15,795 8,480 9,958 0.23 VIOO-. 4911.97 0.85 Nolte Associates, Inc. 513012001 1:47 PM 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 M 1 0 �-�--���etention;Ponil �olume�Caleula�'on , Project ` 0194 �O Project Namee20 : 2004 Fort Collins High School Calculated By: GAD Date:5/2/2002 BEYOND ENGINEERING Detention pond volume (V): 1/3d(A+B+(AB)° 5) (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, ft' B= Surface area of contour line at a depth relevant to d, fe Volume Elevation Da ft A ftZ B ft2 Volume ft' Cummulative Volume ft' Cummulative Volume ac-ft Vo 4898.83 ! 0.00 1 0 0 0 0 0.00 I VI 4899.00 0.17 j 0 1,144 65 65 0.00 V, 4900.00 1.00 1,144 9,016 4,457 4,522 0.10 V3 4901.00 1.00 9,016 12,643 10,779 10,844 0.25 1 V4 4902.00 1.00 12,643 16,523 14,540 19,062 0.44 V5 4903.00 1.00 16,523 19,634 24,290 35,133 0.81 Vb 4904.00 j 1.00 ( 19,634 . 31,365 35,778 46,622 1.07 VIA 4904.08 Vr ( 4905.00 1.00 31,365 50,900 50,544 69,606 1.60 Vs 4906.00 1.00 50,900 73,931 68,020 103,153 2.37 Nolte Associates, Inc. .5/212002 :, 11:17" DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept.., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ EXECUTED ON 05-02-2002 AT TIME 11:00:05 PROJECT TITLE: 2004 Fort Collins High School *+*+ DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER 400 BASIN AREA (acre)= 7.08 RUNOFF COEF 0.81 ***** DESIGN RAINFALL STATISTICS t DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN ' DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 6.5 CPS . OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 6.5 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT ----------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.40 0.04 0.35 10.00 7.72 0.61 0.09 0.53 15.00 6.66 0.80 0.13 0.66 20,00 5,60 0,89 0,18 0,71 ' 25.00 5.06 1.01 0.22 0.78 30.00 4.52 1.08 0.27 0.81 35.00 4.13 1.15 0.31 0.84 40.00 3.74 1.19 0.36 0.83 45 00 `=3 50.00 3.23 1.29 �0 45 0.84 55.00 3.05 1.33 0.49 0.84 60.00 2.86 1.37 0.54 0.83 65,00 2,74 1,42 0.58 0,84 70.00 2.63 1.47 0.63 0.84 75.00 2.52 1.50 0.67 0.83 ----------------------------------------------------- THE REQUIRED POND SIZE _ .8462186 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 45 MINUTES 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 Design Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 1 of 3) Designer: GAD Company: Nolte Associates, Inc. Date: May.2, 2002 Project: FC0194 - 20D4 High School Location: NE Pond - Basin 400 1. Basin Storage Volume la = 27.80 % A) TributaryArea's Imperviousness Ratio (i = la / 100) i = 0.28 B) Contributing Watershed Area (Area) Area = 27.13 acres C) Water Quality Capture Volume (WQCV) WQCV = 0.12 . watershed inches (WQCV =0.8 - (0.91 ' 13 - 1.19 ' IZ + 0.78. 1)) D) Design Volume: Vol = (WQCV / 12)' Area Vol = 0.26 acre-feet 2. Permanent Pool A) Volume: Vold = (1.0 to 1.5)' Vol acre-feet B) Average Depth Zone 1 = Littoral Zone - 6 to 12 inches deep feet Zone 2 = Deeper Zone - 4 feet to 8 feet deep Zone 2 feet C) Maximum Zone 2 Pool Depth (not to exceed 12 feet) Depth = feet D) Permanent Pool Water Surface Area (Estimated Minimum) (Zone 1 - Littoral Zone = 25% to 40% of the total surface area) % = acres = .` R (Zone 2 - Deeper Zone = 60% to 75% of the total surface area) % = acres = Total Estimated Minimum Surface Area (AT,,,,) % = acres = 3. Annual/Seasonal Water Balance (Q et has to be positive) 2. Outlet Works A) Outlet Type (Check One) B) Depth at Outlet Above Lowest Perforation (H) C) Required Maximum Outlet Area per Row, (Ap) D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR ii) 2' Height Rectangular Perforation Width E) Number of Columns (nc) Qinfim acre-feet/year Qmp acre-feet/year Qseepape acre-feet/year QE.T. acre-feet/year Qnet - - -acre-feetlyear x Orifice Plate _ Perforated Riser Pipe Other: H = 2.05 feet Ao = 0.94 ,. square inches D = 1.0630 inches, OR W = inches nc= ;' ,' _ 1:,=,='•.:Number FC0194_Water Quality_400.xls, RP i 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M Design. Procedure Form: Retention Pond (RP) - Sedimentation Facility (Sheet 2 of 3) Designer: GAD Company: Nolte Associates, Inc. .Date: May-2, 2002 Project: FC0194 - 2004 High School Location: NE Pond - Basin 400 F) Actual Design Outlet Area per Row (AJ G) Number of Rows (nr) H) Total Outlet Area (A,,) 5. Trash Rack A) Needed Open Area: A, = 0.5 " (Figure 7 Value) ' At B) Type of Outlet Opening (Check One) C) For 2", or Smaller, Round Opening (Ref.: Figure 6a) Ap = 0.89 ' square inches nr = 6 Number Aot = 5.46 square inches A = 184 _ square inches X < 2" Diameter Round 2" High Rectangular Other: 1) Width of Trash Rack and Concrete Opening Wm"c = 9 - inches (W.) from Table 6a-1 ii) Height of Trash Rack Screen (HTR) HTR =-::;=49 ::,inches iii) Type of Screen (Based on Depth H), Describe if "Other" S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other" I 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) Type and Size of Support Rod (Ref.: Table 6a-2) vi) Type and Size of Holding Frame (Ref.: Table 6a-2) inches D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening form 4.D.ii. (W) W = inches ii) Width of Perforated Plate Opening (Ww c = W + 12") W= C = inches iii) Width of Trash Rack Opening (Wope;"a) from Table 6b-1 upeog - inches Wm - iv) Height of Trash Rack Screen (HTR) HTR = inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, Klemp' KPP inches Grating). Describe if "Other" Other: FC0194_WaterQuality 400.)ds, RP Project#: FCO 194 -Project Name: 2004 Fort Collins High School Calculated By: GAD Date: 5/2/2002 BE Y O N D E N G IN E E R I N G Grate: CDOT Type 'C' Structure Weir Perimeter, L = 141.84 in 11.82 ft Open Area, A = 997.92 in' 6.93 ft' Clogging Factor, c = 50% Stage Interval, Ah = 0.10 ft Weir Calculation: Orifice Calculation: Qa = CLH'-' Q. = CA(2gH)O" C = 3.00 C = 0.65 cL= 5.91 ft Ac= 3.47 ft' H ft H ft Q--INLE-r cfs Qo-INLET cfs Rule cfs I 0.00 4903.57 0.00 j 0.00 0.00 0.10 j 4903.67 0.56 I 5.72 0.56 0.20 j 4903.77 1.59 j 8.08 1.59 0.30 4903.87 2.91 9.90 2.91 0.40 4903.97 4.49 11.43 j 4.49 27 12.78 i 6.27 0.60 j 4904:17 j 8.24 14.00 f 8.24 0.70 j 4904.27 j 10.38 1 15.12 10.38 0.80 j 4904.37 I 12769 16.17 12.69 0.90 4904.47 1 15.14 17.15 15.14 i 1.00 j 4904.57 j 17.73 18.07 17.73 1.10-- 4904.67 j 20.45 18.96 1 18.96 1.20 4904.77 j 23.31 19.80 1 19.80 1.30 j 4904.87 i 26.28 20.61 20.61 1.40 j 4904.97 1 29.37 21.39 21.39 1.50 4905.07 ' 32.57 j 22.14 22.14 ---Set Grate @ Elev. INolte Associates, Inc. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e. FINISHED GRADE 6" DIA IN INV. IN= 48969.00 24 RCP 24„ RCP OUT ET 4896.50 INV. OUT= OVERFLOW 0 100 YR. GRATE' W.S.E.L.= 4903.57 ' "WARNING OUnauthorized modification of this outlet is a zoning code violation" O O (minimum sign area = 0.75 sq. ft.) FINISHED __ ..... T GRADE '1 r TYPE 'C' INLET BOX 2% MIN 6" DIA �NV.N= 24EXISTING 4899.00 RCP 24" RCP © 0.40% a.:.... OUTLET 6 4896.50 6" .' INV. OUT= 47" 4896.00 1. USE CDOT TYPE 'C' INLET; CDOT STANDARD M-604-10 WITH PEDESTRIAN GRATE OUTLET STRUCTURE N.T.S. ' .,e-enfio"HIR§'n"aWolum Calcula_iion Project#: FC0194 'Project Name: 2004 Fort Collins High School NO Calculated By: GAD Date:5/212002 BEYOND ENGINEERING ' Detention pond volume (V): 1/3d(A+B+(AB)"5) (uniform sides) Where: V= Volume between contours, ft' d= Depth between contours, ft A= Surface area of contour line, ft' ' B= Surface area of contour line at a depth relevant to d, ft' Basin:403 r;- 1 1 1 1 1 1 M 1 Volume Elevation Dd ft A ft B fe Volume ft' Cummulative Volume ft' Cummulative Volume ac-ft V, 1 4904.00 1 0.00 0 1,007 1 0 1 0 0.00 'V, 4904.08 0.08 1,007 i 9,579 j 365 0 0.00 V2 4905.00 0.92 9579 1 11,8571 9,842 9,842 0.23 V, ( 4906.00 1.00 11,857 33,940 1 21,953 31,794 0.73 V Jay= 4906.76 1 1.66 V, 4907.00 1.00 31940 73,697 j 52,549 i 84,344 1.94 •4904.08 is the ponding surface elevation of basin 400. This causes egaulization of the system The ponding surface for basin 403 will begin at this elevation. Nolte Associates, Inc. 5YW002 :11:17 AM M 1 1 A ------------------------------------------------____________ DETENTION POND SIZING BY FAA METHOD Developed by Civil Eng. Dept., U. of Colorado Supported.by Denver Metro Cities/Counties Pool Fund Study .Denver Urban'Drainage and Flood Control District, Colorado USER=Nolte Associates, Inc ............................................ EXECUTED ON 05-02-2002 AT TIME 11:04:36 PROJECT TITLE: 2004 Fort Collins High School **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 403 BASIN AREA (acre)= 14.86 RUNOFF COEF = 0.41 - ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.9 7.7 5.6 4.5 3.7 3.2 2.9 2.4 2.0 1.8 1.5 1.2 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 1.2 CFS - OUTFLOW ADJUSTMENT FACTOR = 1 AVERAGE RELEASE RATE = 1.2 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. *�'** COMPUTATION OF POND SIZE --------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE ---------------------------------------------------- INCH/HR ACRE -FT ACRE -FT ACRE -FT 0.00 0.00 0.00 0.00 0.00 0.00 5.00 9.95 0.42 0.01 0.41 10.00 7.72 0.65 0.02 0.64 15.00 6.66 0.85 0.02 0.82 20.00 5.60 0.95 0.03 0.91 25.00 5.06 1.07 0.04 1.03 30.00 4.52 1.15 0.05 1.10 35.00 4.13 1.22 0.06 1.17 40.00 3.74 1.27 0.07 1.20 45.00 3.49 1.33 0.07 1.25 50.00 3.23 1.37 0.08 1.28 55.00 3.05 1.42 0.09 1.33 60.00 2.86 1.45 0.10 1.35 65.00 2.74 1.51 0.11 1.40 70.00 2.63 1.56 0.12 1.44 75.00 2.52 1.60 0.12 1.47 80.00 2.40 1.62 0.13 1.49 85.00 2.30 1.65 0.14 1.51 90.00 2.20 1.68 0.15 1.53 95.00 2.10 1.69 0.16 1.53 100.00 2.00 1.69 0.17 1.53 105.00 1.95 1.73 0.17 1.56 110.00 1.90 1.77 0.18 1.59 115.00 1.85 1.80 0.19 1.61 120.00 1.80 1.83 0.20 1.63 125.00 1.75 1.85 0.21 1.64 130.00 1.70 1.87 0.21 1.66 135.00 1.65 1.88 0.22 1.66 140.00 1.60 1.90 0.23 1.66 145.00 1.55 1.90 0.24 1.66 150.00 1.50 1.90 0.25 1.66 155.00 1.45 1.90 0.26 1.65 160.00 1.40 1.89 0.26 1.63 .165.00 1.35 1.88 0.27 1.61 170.00 1.30 1.87 0.28 1.59 --------------------- THE REQUIRED POND SIZE = 1.66407 ACRE -FT THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 140 MINUTES Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: HHF/GAD Date: 5/2/2002 Design Point , -403 Orifice Calculation: Rim Elevation= -4902.80 Q. = CA(2gH)os 100-yr Ponding Elev-- 4906.60 Hydraulic Grade Out-- 4904.08 Allowable Release Rate= .1 2 cfs H= 2.52 ft C = 0.65 g= 32.2 ft/s Q= 1.20 cfs Ac = 0.14 ft2 Diameter of Orifice: BEYOND ENGINEERING Nolte Associates, Inc. M I I I I I I L iJ 1 I 1 1 r APPENDIX G Erosion Control Calculations 1 1 M 1 1 1 1 1 1 Pmject#: FC0194 Project Name: 2004 Fort Collins Rgh School Calculated By. GAD Daze: 6252002 STANDARD FORM A B EYO N D E N G IN E E R ING DEVELOPED SUB -BASIN ERODIBILITY ZONE Ash (ac) Lsb (ft Ssb % Lb (ft) Sb (% PS 100 MODERATE - MODERATE- 5.75 530.00 1.00 101 0.12 106.80 2.64 200 1.23 410 1.30 201 1.33 343 3.33 202a 1.13 414 0.59 202b 2.46 605 0.89 203 1.29 452 0.90 204 3.36 2799 0.52 300 0.66 458 1.04 301a 1.80 513 1.11 301b 1.42 967 1.08 302a 0.27 346 0.86 302b 0.59 809 0.86 303 3.56 562 1.97 304 1.52 383 1.31 305a 3.45 310 2.06 305b 3.51 376 2.00 " 306 2.66 384 3.16 307 4.79 442 2.68 308 0.51 335 5.11 309 0.89 377 1.72 310 1.67 400 1.47 -311a 3.17 403 2.42 31lb 0.57 246 2.85 312a 7.18 529 2.05 312b 2.12 761 1.20 313a 4.71 502 1.99 313b 1.02 327 0.69 314 1.63 314 1.48 315 0.36 210 1.83 400 2.75 456 2.08 401 1.86 360 1.55 402 1.86 360 1.55 403 10.80 1006 1.30 404 1.31 268 2.13 500 4.43 580 0.69 501 4.39 516 0.80 502 2.04 1331 0.93 503 0.88 939 1.21 600 1.68 502 1.73 601 1.97 1 711 1.30 602 1.24 1009 1.12 1000 MODERATE/MODERATE• 7.01 417 4.89 106.92 627.66 1.80 80.21 ' Lb=sum(AiLi)/(sum(Ai)=(5.75.530+... +7.01.417.35)/106.92 627.66 • - MODERATE WIND ERODIBUM ZONE & MODERATE RAINFALL ERODIEIRM ZONE ' Sb=sum(AiSi)/(sum(Ai)= (5.75.1+...+7.01.4.89)/106.92 1.80 PS (during construction) - 80.21 (from Table S-A) PS (after construction) - 80.21/0.85 - 94.36 N:IFC01941DrainagelExoeP4FC0194_ Erosion -Fort Collins.xls]PERFORMANCE 1 1 M 1 1 1 1 1 1 1 I 1 1 1 1 1 M Project#: FC0195 Project Name: 2003 Elementary School Calculated By: GAD Date: 6/25/2002 STANDARD FORM B B E Y O N D E N.G VN E E R I N G EROSION CONTROL METHOD C-FACTOR VALUE P-FACTOR VALUE COMMENTS BARE SOIL 1 1.00 0.90 GRAVEL MULCH 2 O.05 1.00 STRAW -HAY MULCH 3 0.06 1.00 HYDRAULIC MULCH 4 0.10 1.00 ESTABLISHED GRASS COVER 5 0.35 1.00 PAVEMENT 6 0.01 1.00 STRAW BALE, GRAVEL FILTER 7 1.00 0.80 SILT FENCE BARRIER 1 8 1 1.00 1 0.50 SUB BASIN' PS (% AREA (ac SITE 80.21 1 106.92 SUB BASIN SUB AREA AREA (ac PRACTICE C"A P•A REMARKS 100 PERVIOUS 0.00 L 1 0.00 0.00 BARE SOIL 100 IMPERVIOUS 250603.83 1 250603.83 225543.45 BARE SOIL 101 PERVIOUS 0.00 1 0.00 0.00 BARE SOIL 101 IMPERVIOUS 5370.44 1 5370.44 4833.40 BARE SOIL 200 PERVIOUS 37795.00 3 2267.70 37795.00 STRAW -HAY MULCH _ 200 IMPERVIOUS 15937.39 1 15937.39 14343.65 BARE SOIL 201 PERVIOUS 42913.26 5 15019.64 42913.26 ESTABLISHED GRASS COVER 201 IMPERVIOUS 15192.00 3 911.52 15192.00 STRAW -HAY MULCH 202a PERVIOUS 5888.42 3 353.31 5888.42 STRAW -HAY MULCH 202a IMPERVIOUS 43305.02 8 43305.02 21652.51 SILT FENCE BARRIER 202b PERVIOUS 79480.78 3 4768.85 79480.78 STRAW -HAY MULCH 202b IMPERVIOUS 27494.08 6 274.94 27494.08 PAVEMENT 203 PERVIOUS 28856.84 3 1731.41 28856.84 STRAW -HAY MULCH 203 IMPERVIOUS 27551.00 6 275.51 27551.00 PAVEMENT 204 PERVIOUS 58730.67 3 3523.84 58730.67 STRAW -HAY MULCH 204 IMPERVIOUS 87466.72 6 874.67 87466.72 PAVEMENT 300 PERVIOUS 21244.78 3 1274.69 21244.78 STRAW -HAY MULCH 300 IMPERVIOUS 7294.32 6 72.94 7294.32 PAVEMENT 301a PERVIOUS 67375.00 3 4042.50 67375.00 STRAW -HAY MULCH 301a IMPERVIOUS 10839.17 6 108.39 10839.17 PAVEMENT 301b PERVIOUS 26316.00 3 1578.96 26316.00 STRAW -HAY MULCH 301b IMPERVIOUS 35725.59 6 357.26 35725.59 PAVEMENT 302a PERVIOUS 831.88 3 49.91 831.88 STRAW -HAY MULCH 302a IMPERVIOUS 11105.90 6 111.06 11105.90 PAVEMENT 302b PERVIOUS 3670.09 3 220.21 3670.09 STRAW -HAY MULCH 302b IMPERVIOUS 22080.54 6 220.81 22080.54 PAVEMENT 303 PERVIOUS 147495.68 5 51623.49 147495.68 ESTABLISHED GRASS COVER 303 IMPERVIOUS 7504.00 3 450.24 7504.00 STRAW -HAY MULCH 304 PERVIOUS 60250.58 5 21087.70 60250.58 ESTABLISHED GRASS COVER 304 IMPERVIOUS 5767.00 3 346.02 5767.00 STRAW -HAY MULCH 305a PERVIOUS 118949.73 5 41632.41 118949.73 ESTABLISHED GRASS COVER 305a IMPERVIOUS 31158.00 3 1869.48 31158.00 STRAW -HAY MULCH 305b PERVIOUS 133022.81 5 46557.98 133022.81 ESTABLISHED GRASS COVER 305b IMPERVIOUS 19894.00 3 1193.64 19894.00 STRAW -HAY MULCH 306 PERVIOUS 28014.25 2 1400.71 28014.25 GRAVEL MULCH 306 IMPERVIOUS 87831.90 7 87831.90 70265.52 STRAW BALE, GRAVEL FILTER 307 PERVIOUS 84084.00 2 4204.20 84084.00 GRAVEL MULCH 307 IMPERVIOUS 124379.20 7 124379.20 99503.36 STRAW BALE, GRAVEL FILTER ' Nolte Associates, Inc. M n 11 M 308 PERVIOUS 22184.63 5 7764.62 22184.63 ESTABLISHED GRASS CO' 308 IMPERVIOUS 0.00 6 0.00 0.00 PAVEMENT 309 PERVIOUS 19593.09 5 6857.58 19593.09 ESTABLISHED GRASS CO' 309 IMPERVIOUS 19326.51 3 1159.59 19326.51 STRAW -HAY MULCH 310 PERVIOUS 43661.84 5 15281.64 43661.84 ESTABLISHED GRASS CO' 310 IMPERVIOUS 28870.53 3 1732.23 28870.53 STRAW -HAY MULCH 31la PERVIOUS 44376.06 2 2218.80 44376.06 GRAVEL MULCH 31la IMPERVIOUS 93631.55 7 93631.55 74905.24 STRAW BALE, GRAVEL FIL 311b PERVIOUS 9552.80 2 477.64 9552.80 GRAVEL MULCH 311b IMPERVIOUS 15162.18 6 151.62 15162.18 PAVEMENT 312a PERVIOUS 196678.01 2 9833.90 196678.01 GRAVEL MULCH 312a IMPERVIOUS 116139.20 7 116139.20 92911.36 STRAW BALE, GRAVEL FIL 312b PERVIOUS 56213.80 3 3372.83 56213.80 STRAW -HAY MULCH 312b IMPERVIOUS 36051.55 6 360.52 36051.55 PAVEMENT 313a PERVIOUS 88889.62 3 5333.38 88889.62 STRAW -HAY MULCH 313a IMPERVIOUS 116078.00 7 116078.00 92862.40 STRAW BALE, GRAVEL FB. 313b PERVIOUS 32892.06 3 1973.52 32892.06 STRAW -HAY MULCH 313b IMPERVIOUS 11643.98 6 116.44 11643.98 PAVEMENT 314 PERVIOUS 66338.38 5 23218.43 66338.38 ESTABLISHED GRASS CO' 314 IMPERVIOUS 4794.60 2 239.73 4794.60 GRAVELMULCH 315 PERVIOUS 13051.87 1 13051.87 11746.68 BARE SOIL 315 IMPERVIOUS 2658.00 2 132.90 2658.00 GRAVEL MULCH 400 PERVIOUS 58827.24 2 2941.36 58827.24 GRAVEL MULCH 400 IMPERVIOUS 60963.68 1 60963.68 54867.31 BARE SOIL 401 PERVIOUS 55015.41 3 3300.92 55015.41 STRAW -HAY MULCH 401 IMPERVIOUS 26221.33 2 1311.07 26221.33 GRAVEL MULCH 402 PERVIOUS 55622.03 3 3337.32 55622.03 STRAW -HAY MULCH 402 IMPERVIOUS 25607.00 2 1280.35 25607.00 GRAVEL MULCH 403 PERVIOUS 434976.81 5 152241.88 434976.81 ESTABLISHED GRASS CO, 403 IMPERVIOUS 35290.15 2 1764.51 35290.15 GRAVEL MULCH 404 PERVIOUS 53394.84 5 18688.19 53394.84 ESTABLISHED GRASS COI 404 IMPERVIOUS 3697.50 2 184.88 3697.50 GRAVEL MULCH _ 500 PERVIOUS 192924.65 3 11575.48 192924.65 STRAW -HAY MULCH 500 IMPERVIOUS 0.00 6 0.00 0.00 PAVEMENT 501 PERVIOUS 191028.60 3 11461.72 191028.60 STRAW -HAY MULCH 501 IMPERVIOUS 0.00 6 0.00 0.00 PAVEMENT 502 PERVIOUS 36767.40 3 2206.04 367-67.40 STRAW -HAY MULCH 502 IMPERVIOUS 51919.88 7 51919.88 41535.90 STRAW BALE, GRAVEL FB.' 503 PERVIOUS 8367.00 3 502.02 8367.00 STRAW -HAY MULCH 503 IMPERVIOUS 29883.12 7 29883.12 23906.50 STRAW BALE, GRAVEL FB.' 600 PERVIOUS 56012.42 3 3360.75 56012.42 STRAW -HAY MULCH 600 IMPERVIOUS 16971.45 8 16971.45 8485.72 SILT FENCE BARRIER 601 PERVIOUS 61296.72 3 3677.80 61296.72 STRAW -HAY MULCH 601 IMPERVIOUS 24562.53 8 24562.53 12281.27 SILT FENCE BARRIER 602 PERVIOUS 9091.57 3 545.49 9091.57 STRAW -HAY MULCH 602 IMPERVIOUS 44708.88 8 44708.88 22354.44 SILT FENCE BARRIER 1000 PERVIOUS 305242.09 3 18314.53 305242.09 STRAW -HAY MULCH 1000 IMPERVIOUS 0.00 8 0.00 0.00 SILT FENCE BARRIER Cnet = (250603.83'1+ ...+305242.09.0.05)/(250603.83+...+305242.09) _ Pnet = (250603.83'1+ ...+305242.09'1)/(250603.83+...+305242.09) _ EFF = (1-C'P)100 = (1-0.35-0.95)100 N:\FC0194\Drainage\Excel\[FC0194_Er0sion-Fort Collins.xls]PERFORMANCE 0.35 0.95 66.75 80.21 (PS) Nolte Associates, Inc. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 Project#: FC0194 Project Name: 2004 Fort Collins High School Calculated By: GAD Date: 6/25/2002 STANDARD FORM B B E'Y OND ENGINEERING EROSION CONTROL METHOD C-FACTOR VALUE P-FACTOR VALUE COMMENTS BARE SOIL 1 1.00 0.90 GRAVEL MULCH 2 O.05 1.00 STRAW -HAY MULCH 3 0.06 1.00 HYDRAULIC MULCH 4 0.10 1.00 ESTABLISHED GRASS COVER 5 0.35 1.00 PAVEMENT 6 0.01 1.00 STRAW BALE, GRAVEL FILTER 7 1.00 0.80 SILT FENCE BARRIER 1 8 1 1.00 1 0.50 SUB BASIN PS % AREA ac SITE 1 94.36 106.92 SUB BASIN SUB AREA AREA ac PRACTICE C•A P*A REMARKS 100 PERVIOUS 0 5 0 0 ESTABLISHED GRASS COVER 100 IMPERVIOUS 250604 6 2506 250604 PAVEMENT 101 PERVIOUS 0 5 0 0 ESTABLISHED GRASS COVER 101 IMPERVIOUS 5370 6 54 5370 PAVEMENT 200 PERVIOUS 37795 5 13228 37795 ESTABLISHED GRASS COVER 200 IMPERVIOUS 15937 6 159 15937 PAVEMENT 201 PERVIOUS 42913 5 15020 42913 ESTABLISHED GRASS COVER 201 IMPERVIOUS 15192 6 152 15192 PAVEMENT 202a PERVIOUS 5888 5 2061 5888 ESTABLISHED GRASS COVER 202a IMPERVIOUS 43305 6 433 43305 PAVEMENT 202b PERVIOUS 79481 5 27818 79481 ESTABLISHED GRASS COVER 202b IMPERVIOUS 27494 6 275 27494 PAVEMENT 203 PERVIOUS 28857 5 10100 28857 ESTABLISHED GRASS COVER 203 IMPERVIOUS 27551 6 276 27551 PAVEMENT 204 PERVIOUS 58731 5 20556 58731 ESTABLISHED GRASS COVER 204 IMPERVIOUS 87467 6 875 87467 PAVEMENT 300 PERVIOUS 21245 5 7436 21245 ESTABLISHED GRASS COVER 300 IMPERVIOUS 7294 6 73 7294 PAVEMENT 301a PERVIOUS - 67375 5 23581 67375 ESTABLISHED GRASS COVER 301a IMPERVIOUS 10839 6 108 10839 PAVEMENT 301b PERVIOUS 26316 5 9211 26316 ESTABLISHED GRASS COVER 301b IMPERVIOUS 35726 6 357. 35726 PAVEMENT 302a PERVIOUS 832 5 291 832 ESTABLISHED GP ASS COVER 302a IMPERVIOUS 11106 6 111 11106 PAVEMENT 302b PERVIOUS 3670 5 .1285 3670 ESTABLISHED GRASS COVER 302b IMPERVIOUS 22081 6 221 22081 PAVEMENT 303 PERVIOUS 147496 5 51623 147496 ESTABLISHED GRASS COVER 303 IMPERVIOUS 7504 6 75 7504 PAVEMENT 304 PERVIOUS 60251 5 21088 60251 ESTABLISHED GRASS COVER 304 IMPERVIOUS 5767 6 58 5767 PAVEMENT 305a PERVIOUS 118950 5 41632 118950 ESTABLISHED GRASS COVER 305a IMPERVIOUS 31158 6 312 31158 PAVEMENT 305b PERVIOUS 133023 5 46558 133023 ESTABLISHED GRASS COVER 305b IMPERVIOUS 19894 6 199 19894 PAVEMENT 306 PERVIOUS 28014 5 9805 28014 ESTABLISHED GRASS COVER 306 IMPERVIOUS 87832 6 878 87832 PAVEMENT 307 PERVIOUS 84084 5 29429 84084 ESTABLISHED GRASS COVER 307 IMPERVIOUS 124379 6 1244 124379 PAVEMENT Nolte Associates, Inc. ' 308 PERVIOUS 22185 5 7765 22185 ESTABLISHED GRASS COVER 30 IMPERVIOUS 0 0 0 PAVEMENT 309 PERVIOUS 19593 5 5 6858 19593 ESTABLISHED GRASS COVER 309 IMPERVIOUS 19327 6 193 19327 PAVEMENT 310 PERVIOUS 43662 5 15282 43662 ESTABLISHED GRASS COVER 310 IMPERVIOUS 28871 6 289 28871 PAVEMENT 311a PERVIOUS 44376 5 15532 44376 ESTABLISHED GRASS COVER ' 311a IMPERVIOUS 93632 6 936 93632 PAVEMENT 311b PERVIOUS 9553 5 3343 9553 ESTABLISHED GRASS COVER 31lb IMPERVIOUS 15162 6 152 15162 PAVEMENT 312a PERVIOUS 196678 5 68837 196678 ESTABLISHED GRASS COVER ' 312a IMPERVIOUS 116139 6 1161 116139 PAVEMENT 312b PERVIOUS 56214 5 19675 56214 ESTABLISHED GRASS COVER 312b IMPERVIOUS 36052 6 361 36052 PAVEMENT ' 313a 313a PERVIOUS IMPERVIOUS 88890 116078 5 6 311 I 1 1161 88890 116078 ESTABLISHED GRASS COVER PAVEMENT 313b PERVIOUS 32892 5 11512 32892 ESTABLISHED GRASS COVER 313b IMPERVIOUS 11644 6 116 11644 PAVEMENT ' 314 314 PERVIOUS IMPERVIOUS 66338 4795 5 6 23218 48 66338 4795 ESTABLISHED GRASS COVER PAVEMENT 315 PERVIOUS 13052 5 4568 13052 ESTABLISHED GRASS COVER 315 IMPERVIOUS 2658 6 27 2658 PAVEMENT 400 PERVIOUS 58827 5 20590 58827 ESTABLISHED GRASS COVER ' 400 IMPERVIOUS 60964 6 610 60964 PAVEMENT 401 PERVIOUS 55015 5 19255 55015 ESTABLISHED GRASS COVER 401 IMPERVIOUS 26221 6 262 26221 PAVEMENT 402 PERVIOUS 55622 5 19468 55622 ESTABLISHED GRASS COVER ' 402 IMPERVIOUS 25607 6 256 25607 PAVEMENT 403 PERVIOUS 434977 5 152242 434977 ESTABLISHED GRASS COVER 403 IMPERVIOUS 35290 6 353 35290 PAVEMENT 404 PERVIOUS 53395 5 18688 53395 ESTABLISHED GRASS COVER 404 IMPERVIOUS 3698 6 37 3698 PAVEMENT 500 PERVIOUS 192925 5 67524 192925 ESTABLISHED GRASS COVER 500 IMPERVIOUS 0 6 0 0 PAVEMENT 501 PERVIOUS 191029 5 66860 191029 ESTABLISHED GRASS COVER 501 IMPERVIOUS, 0 6 0 0 PAVEMENT ' 502 PERVIOUS 36767 5 12869 36767 ESTABLISHED GRASS COVER 502 IMPERVIOUS 51920 6 519 51920 PAVEMENT 503 PERVIOUS 8367 5 2928 8367 ESTABLISHED GRASS COVER 503 IMPERVIOUS 29883 6 299 29883 PAVEMENT ' 600 PERVIOUS 56012 5 19604 56012 ESTABLISHED GRASS COVER 600 IMPERVIOUS 16971 6 170 16971 . PAVEMENT 601 PERVIOUS 61297 5 21454 61297 ESTABLISHED GRASS COVER 601 IMPERVIOUS 24563 6 246 24563 PAVEMENT ' 602 PERVIOUS 9092 5 3182 9092 ESTABLISHED GRASS COVER 602 IMPERVIOUS 44709 6 447 44709 PAVEMENT 1000 PERVIOUS 305242 5 106835 305242 ESTABLISHED GRASS COVER 1000 IMPERVIOUS 0 6 0 0 PAVEMENT ' (PS) Cnet = (250603.83'1+ ...+305242.09'0.05)/(250603.83+...+305242.09) = 0.23 Pnet = (250603.83'1+ ...+305242.09'1)/(250603.83+...+305242.09) = 1.00 EFF = (1-C'P)100 = (1-0.23'1)100 = ' «< 94.3636 N:\FC0194\Drainage\Exoel\[FC0194_Erosion-Fort Collins.xis]PERFORMANCE ' ' Notte Associates, Inc. I me I I I I u @ � � 11 I I I I I P I � � . . I � CO . < , § §' @ ,� |2 ] k=mm e 2ef§;!! J �k\ )!|kk\§{!{!; §§t�l=! 2erE ; W �m!!> §|kla;A!!!ƒo ;�la!!; > 6 k 0 A 1 11 11 l_ 1 ' APPENDIX H Charts Tables & Graphs I I I 11 I I M I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 Table 3-3 RATIONAL METHOD RUNOFF COEFFICIENTS FOR COMPOSITE ANALYSIS Character of Surface Runoff Coefficient Streets, Parking Lots, Drives: Asphalt................................................................................................ 0.95 Concrete............................................................................................. 0.95 Gravel................................................................................................. 0.50 Roofs.......................................................................................................... 0.95 Lawns, Sandy Soil: Flat<2%............................................................................................. 0.10 Average2 to 7%.................................................................................. 0.15 Steep>740.......................................................................................... 0.20 Lawns, Heavy Soil: Flat<2%............................................................................................. 0.20 Average2 to 7%................................................................................. 0.25 Steep>7%..........................:............................................................... 0.35 MAY 1984 3-4 DESIGN CRITERIA Table 3-4 RATIONAL METHOD FREQUENCY ADJUSTMENT FACTORS Storrs Return Period Frequency Factor (years) C, 2 to 10 1.00 11 to25 1.10 26 to 50 1.20 51 to 100 1.25 Note: The product of C times C, shall not exceed 1.00 No Text 1 M ' MAY 1984 1.0 — — .9 s=06 F - 0.8 .8 t .7 IL cr o .6 U Q tL Z . 0 5 U 0 w 4 .3 .2 s:0.4% F=0.5 I I I BELOW MINIMUM ALLOWABLE I STREET GRADE .0 0 2 4 6 8 10 12 14 SLOPE OF GUTTER (%) Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factor for applicable slope to the theoretical gutter capacity to obtain allowable gutter capacity. (From: U.S. Dept. of Commerce, Bureau of Public Roads, 1965) 4-4 . DESIGN CRITERIA I r 11 Table 5-4 num CAPACITY REDUCTION FACTORS Percentages of D+a:^=^e Condition 'Inlet Type Theoretical Capacity Su- or Continuous Grade C5oH Type R-Curb Opening 5 80% 10' 85% 15' 90% Street - Sump 4' Curb Opening 80% Street - Continuous Grade 4' Curb opening 80% Parking Lots, Medians Area Inlet 80% The theoretical capacity of inlets in a low point or sumn shall be determined from Figures 5-2 and 5-3. The theoretical capacity of curb openings on a continuous grade shall be determined from Figures 5-4, 5-5 and 5-6. The standard curb -opening is illustrated by Figure 5-4 and is defined as having a gutter depression apron W feet wide at the inlet opening which extends W feet upstream -' and downstream from the opening, has a depression depth (a) equal to W/12 feet -at the curb face, and a curb opening height (h) of at least 0.5 feet. The graph as presented by Figure 5-5 is based on a depression apron width (W) equal to 2 feet and depression width (a) equal to 2 inches. The pavement cross-section is straight to the curb face; however, a street section with gutters cross -sloped steeper than the street can also be analyzed using Figure 5-6. Since the figures are based on an inlet opening free of obstructions, the reduction factors listed previously shall be utilized. ' DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE tTable 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap % Smaller Than Intermediate Rock d* ' Designation Given.Size Dimension 5O By Weight (Inches) (Inches) ' Type VL 70-100 12 50-70 9 35-50 6 V* ' 2-10 2 Type L 70-100 15 t 50-70 12 35-50 9 _9** 2-10 3 ' Type M 70-100 21 50-70 18 35-50 12 12 ' 2-10 4 Type H 100 30 _ 50-0 24 35-50 18 18 2=10 6 ' Type VH 100 42 50-70 33 ' 35-50 24 24 2-10 9 *d5O = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. ' 5.2 Wire Enclosed Rock ' Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major ' advantages of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary ' riprap. Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fashioned into almost any shape that can be ' 11-15-82 1 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 DRAINAGE CRITERIA MANUAL r �4C 0 0 2C RIPRAP NONE Diu .m ROMPROPORN 00 .2 A Y /D .6 .8 1.0 t Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT 1 1 M. 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 DRAINAGE CRITERIA MANUAL r- a 7 Is 6 = Expansion Angle No, NA, 11 rm FFAr Emmommum mrsimumm-m mummmomm .l .2 .3 .4 .5 .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D RIPRAP FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15 -82 URBAN DRAINAGE & FLOOD CONTROL DISTRICT 1 1_ M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DRAINAGE CRITERIA MANUAL E• RIPRAP MEN 00 PAAFWA MEN N ll No MENAVE F :Id 'A mom =ate 00 .2 .4 .6 .8 1.0 Yt/H Use Ha instead of H whenever culvert has supercritical flow in the barrel. -*-*Use Type L for a distance of 3H downstream. FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR CONDUIT OUTLET. 11-15 -82 URBAN DRAINAGES FLOOD CONTROL DISTRICT 1 1_ M 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 DRAINAGE CRITERIA MANUAL 8 7 4 z 3 0 ui z a x 2 w 1 RIPRAP ; I A = Expansion Angle 0 VA MF N For 0 9, AMA m m Emmmmmilmm WA WA A . ice m 0 0 0 s 1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 TAILWATER DEPTH/ CONDUIT HEIGHT-Yt/H FIGURE 5-10. EXPANSION FACTOR FOR RECTANGULAR CONDUITS 11-15-82 URBAN DRAINAGE S FLOOD CONTROL.DISTRICT ►1 R frp = D14 for circular pipes, 1 Rfi,11 = Af,111(2H+2w) for rectangular pipes. when: w = width of a rectangular conduit. all in feet. Then V jyu .- QU11 / A full 1 in which: Vf = Flow velocity of the Pipe flowing full. in feet per second 1 The normal depth of flow, d, and the velocity at that depth in a conduit can be found with the aid of Figure 2. 1 Using the known design discharge, O, and the calculated pipe -full discharge. Qf,u, enter Figure 2 with the value of 1 O/0fix and find &D for a circular pipe or &H for a rectangular pipe. Compare the value of this d/D (or 1 &H) with that obtained from Figure 3 using the Fronde parameter.. namely, 1 0/D2.s or .._0AW H1.5 Choose the smaller of the two d/D (or d1R) ratios to calculate the flow depth at the end of the -pipe, namely, d=D-��) or d—H't./ 1 -H Again enter Figure 2 using the 1 smaller &D (or d/H) ratio to find the .4/Afn ratio. Use this to calculate the area of flow at the end of the pipe, 1 namely,, l A = `� I : Ate..... 1 \- - in which: A = Area of the design flow 1 in the end of the pipe, in square feet Finally, 1 V-°� A which: V= Design flow velocity at Pipe outlet, in feet per second. 1 Ending the Appropriate Riprap Size Use Figure 4 to find the size and type of the 7ipmp to use in the scour protection basin downstream of the pipe outlet [i.e.. HG (grouted H), H. M or L]. First calculate the riprap sizing design parameter. Pa. -namely. pd=(Vi.+S d).2... in which: g = acceleration due to gravity, 32.2 feet per second per second When the riprap sizing design Parameter indicates conditions that place the design above the Type H riprap line in Figure 4, use HG, or larger, grouted rock. An alternative to a grouted or loose nprap basin is to use the standard Bureau of Reclamation Basin Vi, a reinforced concrete impact structure, to dissipate the energy in the flow at the outlet of the pipe. After the riprap size has been selected, the minimum thickness of the nPrap laver,: T in feet in the basin is set 1:1 - .1.0 0.9. `- :.0.8 Q Q . 0.7 0 0.6 0.5 0.4 0..3 ' 0.2 0.1 11 at T =1.75 • D50 in which: DJo = the median size ofthe nprap (see "Table .1). Table 1. Median (Dso) Rock Size of Urban Drainage District Riprap. Riprap Type Median Size (Inches) L 9 M 12 HA HG 1 18 Finding the Basin Length The minimum length of the basin. Lin Figure 1, is defined. as being the t r of the following lengths: For circular pipe, V L =4D or L=(D) 2 — ... ---------------------------------------- - - -- - :- :- ; - - - ;ICircular !r- --: - --- -- - ,y ll -------/'~ - '- jaAwn �� .lRectangular i 'Rectangular I - .'i�� — - --. ---------- ----------- -------------- ------------------------- ' s� lCircular 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 &D or &H Figure 2: Discharge and Flow Ara Relationships for Circular and Rectangular Pipes (Ratios for flow based on Manning's n varying with depth) 12 For rectangular pipe. Step 3. Using the Q10 ja = 0.88 ratio. Figure 2 gives d1D = 0.82 for. a circular L = 4H or L = (H) Step 4. Calculate: DID' = 2.81. Use this in Figure 3to find &D = 0:57. Finding the Basin Width The minimum width. JV of the Step S. Since the smaller of the two basin downstream of the pipe's flared &D ratios is 0.57, use it to calculate end section is set at: depth, 4 at the outlet and then in Figure 2 to find the ratio fbrAAfdj For circular pipes- 0.59. W = 4 D d = (dID) , D = 0.57.4.0 = 2.28 feet For rectangular pipe: Step6 Using the -4lAfu = 0.59 ratio, calculate flow area andvelocity at the .W.t4H end of the pipe: Other. DesignRequirements A'WAftu)._- Afff (0.59) (It 2.0-) 7.41 square feet • All slopes in the preshaped ...... nprapped basin are 2H to IV. v = (QIA) (90) (7.41) = 12.1 feet Provide pipe joint fasteners and a " per second structural concrete-cutoffwafl. at the end of the flared end d: section for * *' .'Slep.7' Calculate the nprap sizing a circular or a headwall pipe- with design parameter. Pd ., and use it in wing walls and a paved bottom 'both - Fjgurew4_t6'find the appropriate nprap, teen the walls. -with a cutairwall.thativ=tisdown toa V depth of D -H Pd- (T;r2 + 2 B=-+Tor B=-+T The nprap must be caended up the Outlet embankment's slope to the mid -pipe leveL Er2mples Eramole 1- Circular vine on a relatively at slope Given: Design flow, Q = go cfs. Tailwater depth, yt = 1.0 feet Pipe Diameter D = 4,0 feet: Slope S = 0.005 ft/ft Nbilning's n = 0.013 Step L Determine if method is applicable: y, < D13; namely, low tailwater. Step 2 Calculate the capacity of the P,pi: flowing fall: 0 j.,, = 102 cfs is 0 0 n und using the Mmming's Equation I (I2_1'+32.2-Z28)1r-:= 14.8; Use Typ e pe L:Riprap Step 8. Calculate the minimum thickness of the riprap layer for D.10 = 9 inches: T= 1.75 - 9.0 = 15.75 inches Use T= 16 inches. Step 9 Find the length of the basm namely the greater of the following two lengths: L =(D =4Y2 (12.1 /2) 12.1 feet L = (d1D) - D = 4 - 4 16 feet (Greater of the two: use this value.) Step 10. Find the width of the nprap basin. W=4-D=4:-416 feet.-` 1.0 0.9 0.8 C11D 0.7 0.6 0 0.5 Q- 04 0.3 '�►I y!Iil 0.2 - 0.1 0.0 0.0 2.0 4.0 6'. 0 8.-0 QI025 or, Q1w H1-5 Figure 3: Brink Depth for Horizontal pipe outlets W] Erm Die 2 - Rectangular Dipe on a ' fairiv steep slope. Given: Design flow O = 300 cfs: Tawwater depth v, = 1.0 feet Box -Height H= 4.0 feet ' Width-w='5.0 feet Slope S = 0.05 f /ft; Manning's n = 0.013 ' Step 1. Determine if method is applicable: y, < H13: namely, low tailwater. ' Step 2 Calculate the capacity of the pipe flowing full: ' O,.0 = 426 cfs is found using the Mannin& Equation. 'Step 3. Using the O/O� = 0.70 ratio, Figure2.gives the.ratio d/H= 0.73. ' Step 4. Calculate OiwH" = 7.50 and use this in Figure 3 to find d/H = 0.94. 40 Step 5. Since the smaller of the two d/H ratios.is 0.73, use it to find the depth, d,.at the outlet and in Figure 2 to find the =tio ofA/Af„ a = 0.73. ' d=_0.73 A.0.=2.92 feet . ' Step 6. UsingA/Af„n = 0.73 ratio, rdiailate the flow area and velocity at .the end of the pipe: ' A=A/Af„Q • Af„u = (0.73) • (4.5) _ 14.6 square feet V = O/A = (300) / (14.6) = 20.5 feet per second Step 7. Calculate the riprap sizing design parameter, Pd , and use it in Figure 4 find the appropriate riprap ' size: -... Pd = (20-5 +32.2 2.92) 22.7; Use Type M Riprap Step 8. Caltailatw the minimum Wthiu9cress of the riprap laver for Dso = inches T=1.75 • 12.0 = 21 inches. Step 9. Find the length of the basin, namely the greater of the following two lengths: L=4•H=16feet L=WH ).•(VP-)=4ic.-(20.5/2)= 20.5 feet (use this length) Step 10. Find the width of the riprap basin: W=w=4H=5+4.4=21feet Acknowledgments The authors express their appreciation to Bill DeGroot and Bryan Kohlenberg, Urban Drainage and Flood Control District and Besharah Najjar, 30 to 25 a) .20 N .. E 0 0 15 a. C 10 N 0 loss Adams County Engineering Department for their review and suggestions; to Bryan for the preparation of the design examples: and to Ken McKenzie and Vmce VigiL the District's student interns for the preparation of the,graphics... References The information on circular pipes in Table 2 was taken from: Chow. Ven Te (1959). Open -channel Hvdraulics. McGraw-Hill Book Company. Inc.. New York. page 135. The information on brink depth for mild slopes and size of riprap is taken from: Stevens. M.A., (1969). Scour In Riprap At Culvert Outlets PhR dissertation. Civil Engineering Department, Colorado State University. Ft. Collins, Colorado. -_====:`Riprop Type------------------ H a RIM L 1 2 3 4 Storm Sewer Diameter, 5 6 7 8 D, or Height, H, in ft. Figure 4: Riprap selection chart for low tailwater basin at pipe outlets 14 NOTE: When specifying or ordering grates - Please refer to "CHOOSING THE PROPER INLET GRATE" on pages 108 and 109. ' R-2560 Series Beehive Grates with Frames Suitable for drainage in circumstances where clogging of a flat grating is a problem. Excellent for roadside or earth ditch catch basins. Furnished standard with as -cast bearing surfaces. ' Dimensions In Inches Catalog Frame No. A 8 C E F G Reference R-2560-A 12 1 11 19 4 4 R-1791-A ' R-2560-C 18 11/4 161/2 30 8 4 R-1900-A R-2560-C1 22 11/2 20 28 4 4112 R-1690 R-2560-C2 22 11/2 201/2 281/4 6 41/2 R-1761 ' R-2560-D 22 11/2 20 35 9 41/2 R-1710 R-2560.01 22 1 1/2 20 28 4 7 R-1690 R-2560.02 22 11/2 20112 281/4 6 7 R-1761 11-2560-133 22 11/2 20 35 9 7 R-1710 R-2560-05 22 3/4 1 1/2 21 1/4 34 4 41/2 R-1647-A R-2560-1016 22 3/4 1 1/2 21 34 9 4 1/2 R-1713 R-2560-137 22 3/4 1 1/2 21 1/4 34 4 7 R-1647-A R-256D-08 22 N4 1 1/2 21 34 9 7 R-1713 ' R-2560-E 23 1 1/2 21 36 9 7 R-1550-A R-2560-EA 25 3V4 7/8 241/8 351/2 4 6 R-1733-1 R-2560-EB 25 3/4 718 241/8 351/2 4 9 R-1733-1 ' R-2560-El 25 314 7/8 241/g 351/2 7 6 R-1733 a-9CAM" 25 3i4 7/8 2418 / 351/2 7 9 R-1733 R-2560-E5 R-2560-E6 R-2560-F7 R-2560-EB R-2560-E9 ' R-256D-El R-256D-G 1 1 1 1 1 M 25 3/4 7/8 241/8 35 1/2 8 6 R-1733-A 25 3/4 7/8 241/8 35 1/2 8 9 R-1733-A 25 3/4 7/8 241/8 35 1/2 9 6 R-1733-B 25 3/4 7/8 241/8 351/2 9 9 R-1733-B 25 314 7/8 241/8 351/2 10 6 R-1733-C 25 3/4 7/8 241/8 351/2 10 9 R-1733-C 32 1 1h 30 46 7 4 R-1740-B A a Illustrating R-2560-E ' N EENAH 1S ' 99 FOUNDRY COMPANY ' iNOTE: When specifying or ordering grates - (Please refer to "CHOOSING THE PROPER INLET GRATE" on pages 108 and 109. '-2561 igh Beehive Grate and Frame 25 314 2: ' 36 m 6' Uses R-1733 frame. t2561 -A Same as R-2561 except with e- oeehive te. .rnished Bandar_ with as-ca_: cea :ng surfaces. ive Grate —and Frame 'signed to fit in cell of 24" sev. a c:oe. Fumished standard :with as-cas: _earmg surfaces. 1 1 / r2564 ehiv ehive Grate an ie Designed to fit ir. oe:i of 24" sev.e- cce. N a_ �nished stand=_rc with as -cast cea ng surfaces. ' A T-C\ `--20, 264 -� 0 Uses Uses 13-1761 frame. �0 NEENAH P 1 1 ' APPENDIX I 1 Excerpts from other Reports 11 I I I 1 M 1 . . CO �Qw MONO co LU 1JsJ �A'o4x 4 §�� &72 LLJ J W Cf) . k 2 . . :249 VYI.1¥f4 24, §%U� N 22 v� . � � ko $ - � k� � . . . q.$k. \ r . � \& �Kton k �zz8ejz2 2z m� 22 . <. . : An .22� k� k.�� � - Ot%&k 1 .5T9 i �^ STORM SEWER'SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study 1 USER TST Inc Consulting Engineers. A ON.DATA 06-20-2001 AT TIME 15:56:21 VERSION=07-17-1995 1 *** PROJECT TITLE :Willow Brook ST-9 Ultimate *** SUMMARY OF HYDRAULICS AT MANHOLES i 1 1 i 1 1 F i 1 1 1 -------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 0.00 0.00 2.00 294.44 270.56 3.00 280.67 253.97 4.00 13.77 51.76 5.00 12.82 46.41 6.00 253.13 276.21 7.00 55.08 403.33 8.00 41.31 276.64 9.00 27.54 161.12 10.00 13.77 60.85 11.00 12.82 54.72 12.00 185.22 231.23 13.00 172.40 210.18 14.00 158.63 188.05 15.00 14.71 111.47 16.00 0.94 5.00 17.00 130.14 175.50 i8.00 117..32 152.56 z=19:OC `' '14r71' 1238.15 20:00 - 0.94 '5.00 23.00 12.82 5.13 `24:00 _91.67 555.65 25.00 64.13 562.23 26.00 51.30 420.80 27.00 38.47 288.76 28.00 25.65 168.36 29.00 12.82 63.84 OK MEANS WATER ELEVATION IS LOWER *** SUMMARY OF SEWER HYDRAULICS 0.00 --------------------------------- 139.90 4871.40 4871.40 OK 0.48 139.90 4878.50 4871.41 OK 0.50 139.90 4895.70 4880.63 OK 1.56 21.50 4894.00 4883.37 OK 1.68 21.50 4894.00 4884.69 OK 0.47 118.40 4896.60 4882.54 OK 0.35 19.30 4894.80 4883.52 OK 0.47 19.30 4892.30 4883.82 OK 0.70 19.30 4892.20 4884.10 OK 1.40 19.30 4889.75 4884.39 OK 1.50 19.30 4889.75 4884.79 OK 0.54 99.10 4896.00 4888.95 OK 0.57 99.10 4899.50 4890.67 OK 0.62 99.10 4899.80 4892.37 OK 0.92 13.50 4898.00 4893.68 OK 14.29 13.50 4898.00 4893.76 OK 0.66 85.60 4902.60 4894.64 OK 0.73 85.60 4906.20 4895.75 OK 7 0.'52 . ' 7.70 4904.•00. -4898.70 OK' 8.15 7..70 4904..00. 4898..73 OK 4.72 60.50 4906.00 4896.16 OK 0.27 :25.10 4906.60 4898.06 OK 0.27 17.40 4908.60 4900.49 OK 0.34 17.40 4910.50 4902.87 OK 0.45 17.40 4912.50 4905.25 OK 0.68 17.40 4912.90 4905.58 OK 1.36 17.40 4913.00 4905.82 OK THAN GROUND ELEVATION NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MANHOLE NUMBER ---------------------------------------- SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH ID NO. ID NO. ------------------------------------------------------ (IN) (FT) (IN) (FT) (IN) (FT) (FT) 12.00 2.00 1.00 ROUND 47.53 48.00 54:00 0.00 23.00 3.00 2.00 ROUND 40.66 42.00 54.00 0.00 34.00 4.00 3.00 ROUND 18.16 21.00 21.00 0.00 45.00 5.00 4.00 ROUND 18.16 21.00 21.00 0.00 36.00 6.00 3.00 ROUND 48.41 54.00 54.00 0.00 1 1 -67.00 7.00 6..00 ROUND 29.33 30.00 30.00 0.00 '78.00 8.00 7.00 ROUND 29.33 30.00 30.00 0.00 89.00 9.00 8.00 ROUND 29.33 '30.00 30.00 0.00 910.00 10.00 9.00 ROUND 29.33 30.00 30.00 0.00 1011.00 11.00 10.00 ROUND 29.33 30.00 30.00 0.00 ' 612.00 12.00 6.00 ROUND 36.03 42.00 54.00 0.00 1213_00 13.00 12.00 ROUND 49.60 54.00 54.00 0.00 1314..00 14.00 13.00 ROUND 49.60 54.00 54.00 0.00 1415.00 15.00 14.00 ROUND 22.52 24.00 24.00 0.00 ' 1516.00 16.00 15.00 ROUND 22.52 24.00 24.00 0.00 1417.00 17.00 14.00 ROUND 46.95 48.00 48.00 0.00 1718.00 18.00 17.00 ROUND 46.95 48.00 48.00 0.00 ' 1123,00 1824.00 23.00 24.00 11.00 18.00 ROUND ROUND 41.22 30.55 42.00 33.00 48.00 36.00 0.00 0.00 42419..'00 =19.00 24.00 'ROUND 19.03 21.00 24.00 0.00 ':1920,._00 20.00 .19.00 ROUND -19...03 :21,.00 :24.00 -0.00 2425.00 25.00 24.00 ROUND 26.63 27.00 24.00 0.00 ' 2526.00 26.00 25.00 ROUND 26.63 27.00 24.00 0.00 2627.00 27.00 26.00 ROUND 26.63 27.00 24.00 0.00 2728.00 28.00 27.00 ROUND 26.63 27.00 24.00 0.00 ' 2829.00 29.00 28.00 ROUND 26.63 27.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET ' REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, ' EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORMAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. ' --NUMBER -------------------------------------------------------------------------- CFS CFS FEET FPS FEET FPS FPS 12.0 139.9 197.2 2.80 13.45 3.48 10.61 8.80 1.54 V-OK 23.0 139.9 299.0 2..16 18.48 3.48 10.61 8.80 2.51 V-OK 34.0 21.5 31.8 1.05 14.19 1.60 9.31 8.94 2.66 V-OK 45.0 21.5 31.8 1.05 14.19 1.60 9.31 8.94 2.66 V-OK 36.0 118.4 159:0 2.89 10.96 3.19 9.83 7.44 1.22 V-OK 67.0 19.3 20.6 1.92 4.76 1.49 6.35 3.93 0.60 V-OK 78.0 19.3 20.6 1.92 4.76 1.49 6.35 3.93 0.60 V-OK 89.0 19.3 20.6 1.92 4.76 1.49 6.35 3.93 0.60 V-OK 910.0 1011.0 19.3 20.6 19.3 20.6 1.92 1:92 4.76 4.76 1.49 1.49 6.35 6.35 3.93 3.93 0.60 0.60 V-OK 612.0 99.1 292.5 1.81 16.61 2.92 9.08 6.23 2.52 V-OK V-OK 1213.0 99.1 124.7 3.03 8.70 2.92 9.08 6.23 0.93 V-OK 1314.0 99.1 124.7 3.03 8.70 2.92 9.08 6.23 0.93 V-OK ' 1415.0 13.5 16.0 1.41 5.72 1.32 6.14 4.30 0.89 V-OK 1516.0 13.5 16.0 1.41 5.72 1.32 6.14 4.30 0.89 V-OK 1417.0 85.6 91.1 3.08 8.24 2.83 9.00 6.81 0.83 V-OK ' 1718.0 85.6 91.1 3.08 8.24 2.83 9.00 6.81 0.83 V-OK 1823.0 60.5 91.1 2.38 7.76 2.34 7.93 4.81 0.97 V-OK 1824.0 25.1 39.0 1.75 5.86 1.63 6.42 3.55 0.86 V-OK ^2419 ,02 3 ,7:7 ,:` •'14:3- '-1: 04 ' 4. 65 1.01 _ --4. 83 - • 2: 45 0: 90 V-OK ' 1920.-0`", 7'.7 14.3- 1.04 4.65 1.01 .. 4.83 2.45 0.90 V-OK: 2425.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK 2526.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK 2627.0 17.4 13.2 2..00 5.54 1.50 6.87 5.54 0.00 V-OK N 2728.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK 2829.0 17.4 13.2 2.00 5.54 1.50 6.87 5.54 0.00 V-OK w 1] 1 J 1 FROUDE.NUMBER=O INDICATES THAT 'A PRESSURED FLOW OCCURS SEWER ------------------------------------------------------- SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ---------------------------------------------------------------------- % (FT) (FT) (FT) (FT) .12.00 1.00 4867.23 4867.00 6.77 -0.10 NO 23.00 2.30 4877.15 4870.94 14.05 3.06 OK .34.00 4.00 4881:77 4879.64 10.48 14.31 OK 45.00 4.00 4881.79 4881.75 10.46 10.50 OK 36.00 0.65 4879.20 4877.15 12.90 14.05 OK 67.00 0.25 4881.47 4881.22 10.83 12.88 OK 78.00 0.25 4881.80 4881.47 8.00 10.83 OK 89.00 0.25 4882.10 4881.80 7.60 8.00 OK 910.00 0.25 4882.30 4882.10 4.95 7.60 OK 1011.00 0.25 4882.31 4882.31 4.94 4.94 OK 612.00 2.20 4886.03 4879.43 5.47 12.67 OK 1213.00 0.40 4887.63 4886.03 7.37 5.47 OK 1314.00 0.40 4889.30 4887.63 6.00 7.37 OK 1415.00 0.50 4890.00 4889.80 6.00 8.00 OK 1516.00 0.50 4890.01 4890.00 5.99 6.00 OK 1417.00 0.40 4891.10 4889.30 7.50 6.50 OK 1718.00 0.40 4892.60 4891.10 9.60 7.50 OK 1823.00 0.40 4892.78 4892.59 9.22 9.61 OK 1824.00 0.34 4895.63 4895.15 7.97 8.05 OK _'24-19:.:00 0.40 . -4896.00 4895.64 6.00 8.96 OK =;19201-0.0.. 0.40 ..4896.01 4896.01 '5.99 5.99 OK 2425.00 0.34 4896.99 4895.63 9.61 8.97 OK 2526.00 0.34 4898.35 4896.99 10.15 9.61 OK 2627.00 0.34 4899.71 4898.35 10.79 10.15 OK 2728.00 0.34 4899.89 4899.71 11.01 10.79 OK 2829.00 0.34 4900.02 4899.89 10.98 11.01 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION ---------------------FEET FEET ------ FEET FEET FEET FEET 12.00 22.50 0.00 ------------------------------------------ 4871.73 4871.50 4871.41 4871.40 JUMP 23.00 270.00 0.00 4881.65 4875.44 4880.63 4871.41 JUMP 34.00 53.22 0.00 4883.52 4881.39 4883.37 4880.63 JUMP 45.00 1.00 0.00 4883.54 4883.50 4884.69 4883.37 JUMP 36.00 315.69 0.00 4883.70 4881.65 4882.54 4880.63 JUMP 67.00 101.35 0.00 4883.97 4863.72 4883.52 4882.54 SUBCR 78.00 131.40 0.00 4884.30 4883.97 4883.82 4883.52 SUBCR 89.00 120.97 0.00 4884.60 4884.30 4884.10 4883.82 SUBCR 910.00 80.00 0.00 4884.80 4884.60 4884.39 4884.10 SUBCR 1011.00 1.00 0.00 4884.81 4884.81 4884.79 4884.39 SUBCR 612.00 300.00 0.00 4890.53 4883.93 4888.95 4882.54 JUMP 1213.00 400.00 0.00 4892.13 4890.53 4890.67 4888.95 SUBCR 1314.00 417.96 0:00 4893.80 4892.13 4892.37 4890.67 SUBCR 1415.00 40.60 40.00 4892.00 4891.80 4893.68 4892.37 PRSS'ED 1516.00 1.00 1.00 4892.01 4892.00 4893.76 4893.68 PRSS'ED 1417.00 450.00 0.00 4895.10 4893.30 4894.64 4892.37 SUBCR 1 1718.00 374.42 0.00 1816.60 1115,11 1195.75 4194.64 SUBCR 1823.00 46..35 0.00 4896.78 4896.59 4896.16 4895.75 SUBCR 1824.00 139.72 0.00 4898.63 4898.15 4898.06 4895.75 SUBCR .2419-00 91.14 91.14 4898.00 4897.64 4898.70 4898.06 PRSS'ED 1920.00 1.00 1.00 4898.01 4898.01 4898..7.3 4898:70.PRSS'.ED ' 2425.00 400.00 400.00 4898.99 4897.63 4900.49 4898.06 PRSS'ED 2526.00 400.00 400.00 4900.35 4898.99 4902.87 4900.49 PRSS'ED 2627.00 400.00 400.00 4901.71 4900.35 4905.25 4902.87 PRSS'ED 2728.00 52.31 52.31 4901,89 4901.71 4905.58 4905.25 PRSS'ED ' 2829.00 37.28 37.28 4902.02 4901.89 4905.82 4905.58 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. -------------------------------------------------------- ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ' 12.0 2.00 4872.61 1.21 0.35 0.00 0.00 0.00 1.00 4871.40 23.0 3.00 4882.37 9.52 0.20 0.24 0.00 0.00 2.00 4872.61 34.0 4.00 4884.72 1.09 1.01 1.25 0.00 0.00 3.00 4882.37 ' 45.0 5.00 36.0 6.00 4885.93 4883.40 0.90 0.00 0.25 0.05 0.31 0.04 0.00 0.00 0.25 0.99 4.00 3.00 4884.72 4882.37 67.0 7.00 4883.91 0.26 1.01 0.24 0.00 0.00 6.00 4883.40 78.0 8.00 4884.15 0.22 0.08 0.02 0.00 0.00 7.00 4883.91 89.0 9.00 910.0 10.00 1011.0 4884.44 4884.72 0.27 0.18 0.08 0.46 0.02 0.11 0.00 0.00 0.00 0.00 8.00 9.00 4884.15 4884.44 11.00 4885.03 0.25 0.25 0.06 0.00 0.00 10.00 4884.7-2 612.0 12.00 4890.23 6.08 0.05 0.03 0.25 0.71 6.00 4883.40 1213.0 13.00 4891.86 1.60 0.05 0.03 0.00 0.00 12.00 4090.23 ' 1314.0 14.00 4893.54 1.64 0.05 0.03 0.00 0.00 13.00 4891.86 1415.0 15.00 4893.97 0.14 1.01 0.29 0.00 0.00 14.00 4893.54 1516.0 16.00 4894.04 0.00 0.25 0.07 0.00 0.00 15.00 4893.97 ' 1417.0 17.00 4895.69 1.70 0.05 0.04 0.25 0.42 14.00 4893.54 1718.0 18.00 4896.81 1.08. 0.05 0.04 0.00 0.00 17.00 4895.69 1823.0 23.00 4896.72 0.00 1.01 0.36 0.00 0.00 18.00 4896.81 1824.0 24.00 4898.59 1.10 0.05 0.01 0.25 0.67 18.00 4896.81 ' 2419.0 19.00 4898.79 0.10 1.01 0.09 0.00 0.00 24.00 4898.59 1920.0 20.00 4898.82 0.00 0.25 0.02 0.00 0.00 19.00 4898.79 2425.0 25.00 4900.97 2.35 0.05 0.02 0.00 0.00 24.00 4898.59 ' 2526.0 26.00 2627.0 27.00 4903.35 4905.72 2.35 2.35 0.05 0.05 0.02 0.02 0.00 0.00 0.00 25.00 4900.97 0.00 26.00 4903.35 2728.0 28.00 4906.06 0.31 0.05 0.02 0.00 0.00 27.00 4905.72 2829.0 29.00 4906.30 0.22 0.05 .0.02 0.00 0.00 28.00 4906.06 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. ' FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. No Text i I I I I + 1 *% i , 1 1 1 n + 1 P 4 r� k !E 7 i 6 7 Ir I, F + t/1R , l Wz o ! ! Z 0 4 BSc W ,m o 0 I I a *- _ z�s » III m � �e oZ Oa J = a U W U z 2 CE3 0 J J W O 00 N w 0 O U N 6 O W 6 s �g City of Port CoDiw, Colorado W SITE MAN ADVISORY REVIEW APPROVAL m maD,�� Po. L UNDERDRAIN DETAIL Y+9d9iJ: ' runs HORIZONTAL/SHALLOW DEPTH INSTALLATION / � 9D6vW a\rrJ I bMe I A 1 9 C 1 D W I CLASS C BEDDING CLASS B BEDDING UNSTABLE SUBGRADE d�y Bxw Q. Disney P�Iv Ca^BeaB cruse + Unxmm 6oaw - em m 1 im Rai Ce l.Nerw Gwv (Y MW.) 4M sorted Bonaaer�lY uaterla or man la• mid.) lose M, Here: Concert{ Etc (K Rpip) General Notes: I. Trench Widths Man be as speed" 2. Be = Outside Pipe Dlorn~, 3, Refer to the storm drainage construction standards. section 6. on plans. "Bedding Natenoli for gradations. STORM DRAIN BEDDING ���C fSW lMRS+ wlaw lsj54f1r �kA's'1'µ%O1%' KAtis9Ni t We m WLYFtR NLtlN59:^ILN IYmIRR A 5 T ay IP m a e r r s n> : zr. Im ctvE.-w. roes. cue3xNrs grHAIDJS.VaY[ JST: hMCW. Mi@153h5 WvIMSL N N"OS ,-TV ndUA33f blN.x NaIN'.m AI�G'Ala'•WWJWIW6GN9Merp sr e�rvM�LN11E 0"ISMW.Y !•USE 6yy AT0.W%I\IK:.I.RS IRAs.304Gp.NSGSROIG51fKKNGE[WEES5.ppWYlY 4,gM4pulp.VMy;nunwu[YJJC. �. INYNrs Q1116 „R496<O�i�TTXMN f[CNnf9Ca1U0WW 'O'sLl.:JsxS x3EW WA'C.�3'O C4W NI.S. VYYYSSAeENSUG+wE Nil +gI.FlWF(.S1WARa K"..Cn M¢9M1:M541A5Xi..a. TRASH RACK DETAIL N.,i WAMMUM! cum � rye ee. an" cl rY --I ME STue.W u_JM-lo WITH I•mi5lw.w GRAW OUTLET SVUCTURE NJS YDRo BIOSWALE MANHOLE DETAIL AT.S err.. Km I 0 We PIW NEW �. SECTOR A -A SECTOR a-9 x'. ' METq 9DEW LOR VALIFI aasvae SIDEWALK aasin Design Point BasnAn• plus••: O1m.s••r 100 100 5.>6 20.88 A1.11 101 1 101 1 0.12 OWN O.BS 200 1 200 1.23 if 1.50 4.27 201 201 1.33 1.99 5.43 202a 202• 1 1.14 3.05 11.00 203 203 1.29 2.03 2.27 204 1 204 1 3.36 4.22 11.06 300 0.68 0.72 1.91 301a 1.80 I.55 •.21 3016 1.•2 3,09 8,37 302m 0.2] 1.20 2.73 302b 0.59 2.05 5.14 303 3.56 1,99 524 304 1.52 0,98 2,61 305a M305b3.51 3.t5 3.87 love S056 3.51 3.14 A3 306 2.66 9.51 25A2 307 A.72 26 96.•2 303 0.51 0.11 1.08 309 0.89 2,26 6,24 310 1.6T 3.43 9.51 11e 3.1T 0.01 27.38 Ito 311h 1 0.67 1.85 4.79 12a 312• 7.18 11.39 32.04 12D 3121b 2.12 A54 F16 13e 510• 6.11 9.90 30.0 313b 3136 1.02 1.11 3.10 314 314 1.03 1.55 s.12 315 315 0.36 0.61 1.30 doe 400 2.75 5.76 16.69 400 400 2.75 5.36 16.69 401 401 1.98 /.06 12.41 403 403 10.60 6.35 Mag 404 606 1.31 1.11 2.99 600 500 4.43 1.)T 4.63 501 601 4.39 1.58 TWAT 502 Sot 2.0• A.86 12.41 503 503 0.00 3.12 7.96 600 60o 1.68 1.70 8781 001 501 1.9T 2.0T 5.69 $02 602 1.2A 3.20 10.35 1000 1000 1.01 3.88 10.30 F J 1 ere O 46 J is O F O O c 7 U j m w U 0 N (.0 O ¢ 0iz 0 W ZQ 2Z0 aw F 0 Z w 0 Z a 04 Q at Roiled Fb WA - ----- U- basin• Daai9n Point Olo. .er I Cal III, w W a 110 202s 200 •A9 3o2er 3a2bI 302a 1 3.67 1 aTo 311er 11 lbI 311e 1 11.57 1 31.16 ¢¢ 31263126 lIL 11.T8 ]3.•8g v neW w 8� dR1Ra x.Ts T.BL��A E S:ry'yT x1 na sm-'65 us o� X, 2 sf :surer 1� wrt arm Issee R Naarm 8 � �e MINECILIELAX OEM ®x.ma0-22krta� sure AaNr IWKWIIJMN[ 25 yr'Simi I (Anne MAW L U R fg'.y non I - I City of FEEL Collins, Colondo SITE PLAN 2Av6gt90�� ADVISORY REVIEW APPROVAL We �_ arzam eN Sfllf Neermr � SEFIICu: '.n/o OIEGm 9M� T Ip3IMiAL'r•. ya Oea®n �z� FC079! () \} }}\ \ ( (( II § )) [§! §! �, 6§\b| � a. § 12 0 I ] 0w 0 4 c%j