Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutDrainage Reports - 02/28/2007Eta sr .,,.may 'S.l:a C'7 M Ft
Appmvw
Final Drainage and* �'2
Erosion Control Study for
Front Range Village
Fort Collins, Colorado
February 2007
PREPARED FOR:
Bayer Properties, Inc.
2222 Arlington Avenue
Birmingham, Alabama 35205
PREPARED BY:
Stantec Consulting Inc.
209 South Meldrum
Fort Collins, Colorado 80521
F
. Final Drainage and
Erosion Control Study for
Front Range Village
Fort Collins,. Colorado
February 2007
PREPARED FOR:
Bayer Properties, Inc.
2222 Arlington Avenue
Birmingham, Alabama 35205
PREPARED BY:
Stantec Consulting Inc.
209 South Meldrum
Fort Collins, Colorado 80521
Stantec Consulting Inc
2000 South Colorado Boulevard Suite 2-300
Denver CO 80222
Tel: (303) 758-4058 Fax: (303) 758-4828
stantec.com
tv
StantK
February 21", 2007
Mr. Basil Hamden
City of Fort Collins
Water Utilities-Stormwater
700 Wood Street
Fort Collins, Colorado 80521
RE: Final Project Development Plan Drainage and Erosion Control Study for Front Range Village
Dear Mr. Hamden:
We are pleased to submit to you, for your review and approval, this Final Project Development Plan
Drainage and Erosion Control Study for the Front Range Village. All computations within this
report have been completed in compliance with the City of Fort Collins Storm Drainage Design
Criteria.
We appreciate your time and consideration in reviewing this submittal. Please call if you have any
questions.
Re:
Sta
Pre
Tin
Project > ngmeer
Front Range Village
City of Fort Collins Final Drainage and Erosion Control Study
TABLE OF CONTENTS
DESCRIPTION PAGE
I. GENERAL LOCATION AND DESCRIPTION................................................................1
A. Location.............................................................................................................................1
B. Description of Property....................................................................................................1
C. Drainage Concept..............................................................................................................1
C.1 Existing Drainage Conditions.....................................................................................
1
C.2 Developed Drainage Concept.....................................................................................
2
II. DRAINAGE BASINS.......................................................................................................
4
A. Major Basin Description..................................................................................................
4
B. Sub -basin Description.......................................................................................................
4
III. DRAINAGE DESIGN CRITERIA.................................................................................
4
A. Regulations........................................................................................................................ 4
B. Development Criteria Reference and Constraints......................................................... 4
C. Hydrologic Criteria...........................................................................................................
5
D. Hydraulic Criteria............................................................................................................ 5
E. Variance.............................................................................................................................5
IV. DRAINAGE FACILITY DESIGN.................................................................................. 5
A. General Concept................................................................................................................ 5
B. Specific Details.................................................................................................................. 6
B.1 Fox Meadows Basin Drainage Master Plan Update ...................................................
6
B.2 Modified City Master Drainage Plan ..........................................................................
6
B.3 Proposed Detention Ponds..........................................................................................
8
BAStorm Water Quality.................................................................................................
10
B.5 Harmony Mobile Home Park....................................................................................
10
B.6 Harmony Road..........................................................................................................
10
B.7 Paragon Outlet..........................................................................................................
11
B.8 Storm Sewer Design.................................................................................................
11
B.9 Subbasin Description................................................................................................
12
B.10 Street Capacity ..........................................................................................................
12
V. EROSION CONTROL.......................................................................................................12
VI. CONCLUSIONS.............................................................................................................13
A. Compliance with Standards...........................................................................................13
B. Drainage Concept............................................................................................................13
C. Stormwater Quality Concept.........................................................................................13
Stantec Consulting, Inc. - i - December 2006
Front Range Village
City of Fort Collins Final Drainage and Erosion Control Study
D. Erosion Control Concept................................................................................................14
VII. REFERENCES................................................................................................................15
APPENDICES
APPENDIX A — CITY OF FORT COLLINS STORMWATER BASINS
APPENDIX B — ModSWMM HYDROLOGY
ModSWMM INPUT
ModSWMM OUTPUT
ModSWMM INFLOW HYDROGRAPHS FOR DETENTION PONDS
ORIGINAL CITY OF FORT COLLINS ModSWMM MODEL INPUT AND OUTPUT
APPENDIX C — EPA SWMM 5.0 HYDROLOGY
APPENDIX D — DETENTION POND DESIGN
POND RATING CURVES
WATER QUALITY CONTROL VOLUME
SPILLWAY CALCULATIONS
RIP RAP SIZING
APPENDIX E — RATIONAL METHOD HYDROLOGY
DEVELOPED 10-YEAR STORM EVENT
DEVELOPED 100-YEAR STORM EVENT
APPENDIX F — STREET CAPACITY CALCULATIONS
APPENDIX G — INLET SIZING
INLET SIZING — UDINLET
INLET SIZING — AREA INLETS
APPENDIX H — STORM SEWER DESIGN
APPENDIX I — EROSION CONTROL
PERFORMANCE STANDARDS, EFFECTIVENESS, CONSTRUCTION
SEQUENCE, COST ESTIMATE
APPENDIX J — SOIL TYPES
APPENDIX K — OFFSITE DRAINAGE
EXISTING CONDITIONS DRAINAGE BASIN MAP.....................................BACK POCKET
PROPOSED DRAINAGE BASIN MAP...............................................................BACK POCKET
SWMM DRAINAGE EXHIBIT..............................................................................BACK POCKET
SWMM SCHEMATIC DRAINAGE EXHIBIT..................................................BACK POCKET
Stantec Consulting, Inc. - ii - December 2006
Front Range Village
City of Fort Collins
I. GENERAL LOCATION AND DESCRIPTION
A. Location
Final Drainage and Erosion Control Study
The Front Range Village site is situated in the Southeast quarter of Section 32, Township 7
North, Range 68 West of the 6`h Principal Meridian, City of Fort Collins, County of Larimer,
State of Colorado and comprises approximately 101 acres. Front Range Village is located to
the North and West of Paragon at the Northwest corner of the intersection of Ziegler Road
and Harmony Road. The project site is bounded on the South by Harmony Road, to the
North by empty fields and to the East by Ziegler Road. The Harmony Mobile Home Park
borders the site on the West.
For the purposes of this report, the Front Range Village property will be referred to as the
"site". This project includes improvements to Harmony Road from the intersection with
Timberline Road to the main entrance of HP and improvements to Ziegler Road from the
intersection of Harmony Road to the intersection of Horsetooth Road.
B. Description of Property
The Front Range Village property, approximately 101 acres, is currently zoned as
Commercial and will be developed into a retail shopping center. The shopping center will
consist of approximately 30 shops/stores. The project site's current use is fallow agricultural
land that consists of fallow farmland with tall native grasses and other low growing
vegetation. The site generally slopes in a northeasterly direction at approximately 0.5% to
1.5%.
Harmony Road is an East-West four -lane collector road that varies in width due to the
exclusive turn lanes at the major intersections. Currently, there is no curb and gutter on
either side of Harmony Road except at major intersections. Improvements to westbound
Harmony Road will consist of widening the westbound lanes. Improvements to the
eastbound lanes include reconfiguration of the median to accommodate dual left turn lanes
into the project site. No new curb and gutter will be constructed on the either side of
Harmony Road as part of these improvements. A roadside ditch will be constructed along
the North side of Harmony Road to collect runoff from the North half of Harmony Road.
C. Drainage Concept
CA Existing Drainage Conditions
The current drainage pattern for the site drains from the southwest corner of the site northeast
to an irrigation ditch that runs across the property. Seethe existing conditions drainage map
located in a pocket in the Appendix. The irrigation ditch starts approximately 400 feet west
of the Paragon parking lot entrance at Harmony Road and runs north approximately half a
Stantec Consulting, Inc. - 1 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
mile, where it turns to the east and discharges into an 18-inch culvert. The culvert conveys
the water from the irrigation ditch, under Ziegler Road, to a swale on the Hewlett-Packard
(HP) Harmony Campus.
The irrigation ditch on the site currently collects some of the on -site stormwater as well as
some offsite flows. The irrigation ditch collects on -site stormwater from the area west of the
ditch and off -site flows enters the ditch through an 18-inch culvert from an irrigation ditch
that runs along the south side of Harmony Road.
An existing area inlet, located in the median on Harmony Road, collects flows from the
median and discharges them to the North, into the irrigation ditch within the site.
The on -site runoff from the area east of the irrigation ditch flows overland to an on -site
detention pond which discharges to two 18-inch storm culverts under Ziegler Road. The two
culverts carry the stormwater under Ziegler Road to a drainage channel on the HP Harmony
Campus.
Off -site runoff from the eastern portions of the Harmony Mobile Home Park currently passes
through the site during the 100-year stone event. Currently, flows from the mobile home
park travel to an 18" stone sewer system that runs adjacent to the West side of the site. This
storm sewer system conveys lower frequency storm flows to a small detention facility located
at the northeast corner of the mobile home park. It is assumed that runoff from the less
frequent, high intensity stone events exceeds the capacity of the existing storm sewer,
causing runoff to overtop and enter into two existing small swales adjacent to the existing
stone sewer system. When the capacity of these two swales is exceeded, the swales then
overtop and discharge into the Front Range Village project site.
Flows from the Paragon site and a small portion of the Front Range Village property drain to
a detention pond located in the Southeast corner of the Paragon site. This detention pond
currently discharges to the eastern part of the Front Range Village site. These flows travel
overland to existing dual 18-inch storm sewer culverts under Ziegler Road. These culverts
convey the storm water under Ziegler Road to the HP Harmony Campus drainage channel.
C.2 Developed Drainage Concept
Runoff from the Front Range Village development will be conveyed to the on -site ponds via
overland flow, curb and gutter, cross -pans, inlets and storm sewer systems. See the proposed
drainage basin map located in a pocket in the Appendix. On -site runoff will drain to six
proposed on -site detention ponds, Ponds A, B, C, D, E and F, which are located in the North
and East portions of the site. Off -site flows from the Pads at Harmony development will also
be routed via storm sewer to Pond D. Detention and water quality for this offsite
development will be provided in Pond D. Combined, the six detention ponds will provide
approximately 33.6 acre-feet of detention, including WQCV. An additional existing offsite
pond on the Paragon property provides an additional 5.3 acre-feet of detention for the
Paragon property as well as some areas of the Front Range Village development.
Stantec Consulting, Inc. - 2 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
Off -site flows from the Harmony Mobile Home Park that exceed the capacity of the existing
Harmony Mobile Home Park storm sewer system will be collected and routed into Pond D
via storm sewer. However, Pond D and its outlet structure have been sized to detain on -site
and Pads at Harmony runoff only. As a result, during the 100-year storm event, runoff
entering Pond D from the Harmony Mobile Home Park will be discharged through the Pond
D spillway and will not be detained within Pond D. This runoff which is discharged through
the Pond D spillway will drain into the undeveloped field to the north of the Front Range
Village development and will flow along the path that it has historically to the existing
culvert under Ziegler Road. By routing the offsite flows through Pond D in this way the
extra detention capacity available in Pond D during storm events smaller than the 100-year
storm can be utilized for the offsite flows. With the construction of Pond D and the storm
sewer systems within the Front Range Village development, the volume of runoff which
drains to the existing culvert under Ziegler Road from the Harmony Mobile Home Park will
be held to historic levels. Overflow from English Ranch will be allowed to enter the
inadvertent detention area along Ziegler as it has historically and will be passed through the
existing 18" PVC storm culvert. The inadvertent detention along Ziegler will overflow
slightly onto Ziegler Road. The overflow is consistent with the historic conditions shown by
the City of Fort Collins' ModSWMM model. This ponding will be alleviated with the
construction of the Future Ziegler Pond.
Detention ponds A, B, C and D will function in series. The ModSWMM model for this site
was used to generate the input hydrographs for the EPA SWMM 5.0 model, which uses
dynamic wave routing to route Ponds A through D in series. The off -site Paragon pond,
Pond E and Pond F will also function in series. The discharge from the off -site Paragon
pond will pass through Ponds E & F prior to being discharged into the existing 18" culvert
under Ziegler Road. The existing 18" culvert discharges into the drainage channel on the HP
Harmony Campus site. Detention ponds A, C, D, E and F will require individual outlet
control devices. The combined peak release rate from the Front Range Village site and the
Paragon site will be approximately 26.9 cfs. Please refer to section B.3 Proposed Detention
Ponds for a detailed explanation of how this release rate was determined.
Stormwater detention and water quality has been provided for the undeveloped lots that front
Harmony Road. A drainage easement has been dedicated to allow the undeveloped lots to
connect into the proposed Front Range Village storm sewer system. Connection points to the
proposed storm drain system have been specified in the construction drawings and must be
adhered to by future developers.
Stantec Consulting, Inc. - 3 - December 2006
Front Range Village
City of Fort Collins
II. DRAINAGE BASINS
A. Major Basin Description
Final Drainage and Erosion Control Study
The Front Range Village development is located within the Fox Meadows Drainage Basin.
The Fox Meadows Drainage Basin generally flows south to north. The City of Fort Collins
Stormwater Basins can be seen in the Drainage Exhibit found in Appendix A.
B. Sub -basin Description
The area encompassed by the proposed Front Range Village site has been divided into
approximately 100 rational sub -basins, 101-165,200-221, 300-307, 400-414, and 500-505, in
order to determine the Rational flows for each sub -basin and to size the storm sewer. The
site was also divided into 6 SWMM sub -basins 206, 207, 208, 209, 210 and 250 in order to
determine the volume of required on -site detention. On -site runoff from these basins is
routed to one of six on -site detention ponds via overland flow, curb and gutter and storm
drain systems. Ponds A through D are located along the northern boundary of the site while
Ponds E and F can be found along the eastern boundary of the site. The SWMM Sub -basin
map is located in a pocket within the Appendix. A copy of the Rational Sub -basin map is
located in the map pockets of the Appendix.
III. DRAINAGE DESIGN CRITERIA
A. Regulations
The Front Range Village site is located in the Fox Meadows Drainage Basin in the City of
Fort Collins. As such, the drainage design criteria that will be followed for this report will be
to detain the developed stormwater runoff up to the 100-year event. The maximum peak
flow from the site is restricted to approximately 29.6 cfs, a value that is based on the Fox
Meadows Basin Drainage Master Plan Update. The Urban Storm Drainage Criteria Manual
(published by the Urban Drainage and Flood Control District — Denver, Colorado) and the
City of Fort Collins Storm Drainage Design Criteria have been used to calculate the
stormwater runoff and to size the on -site storm sewer facilities. Appendix D - Drainage
Facility Design provides a detailed description of the calculated release rate based on the Fox
Meadows Basin Drainage Master Plan Update.
B. Development Criteria Reference and Constraints
The design criteria, constraints, and recommendations utilized for this Drainage Study were
obtained from the City of Fort Collins Master Plan and the Fox Meadows Basin Drainage
Master Plan Update.
Stantec Consulting, Inc. - 4 - December 2006
Front Range Village
City of Fort Collins
C. Hydrologic Criteria
Final Drainage and Erosion Control Study
Since The Front Range Village is less than 160-acres, the Rational Method was used to
calculate developed stormwater runoff. The 10-year and 100-year storm events were used in
calculating rational runoff values and the City of Fort Collins intensity duration frequency
curves were used to obtain rainfall data for each storm specified. Rational Method
computations are provided in Appendix E. Only the 100-year storm event was used in
calculating ModSWMM and EPA SWMM 5.0 runoff values.
D. Hydraulic Criteria
All hydraulic calculations within this report have been prepared in accordance with the City
of Fort Collins Drainage Criteria and are included in the Appendix. The detention pond
sizing was computed using ModSWMM and EPA SWMM 5.0.
The required Water Quality Capture Volumes were computed using the Water Quality
Capture Volume equation from the Urban Storm Drainage Criteria Manual, Volume 3.
Calculations and criteria are included in Appendix D.
E. Variance
The City of Fort Collins Urban Storm Drainage Criteria Manual requires 1.0 ft of freeboard
for all detention ponds. This requirement could not be met for all onsite detention basins due
to site constraints. Ponds B, C and D provide 1.0 R of freeboard per City of Fort Collins
requirements. The existing Paragon pond provides 0.80 ft of freeboard. Ponds A, E and F
provide 0.50 ft of freeboard during the 100 year storm. All overflow structures were
designed with the above mentioned freeboards taken into account.
IV. DRAINAGE FACILITY DESIGN
A. General Concept
The majority of the runoff produced by the Front Range Village flows via curb and gutter,
cross -pans, inlets, and storm pipe to one of six proposed detention ponds located within the
site. The Rational Method has been used to size the on -site storm sewer systems. Four of
the six proposed detention ponds are located along the northern boundary of the site while
the fifth and sixth ponds can be found along the eastern boundary of the site. Combined, the
five detention ponds will provide approximately 33.6 acre-feet of detention, including
WQCV. Off -site flows from the Harmony Mobile Home Park will be routed through Pond
D, but will not be detained during the 100-year storm event. Offsite flows from the
Commercial Pads at Harmony Road, directly south of the Harmony Mobile Home Park, will
also be routed to Pond D via storm sewer pipe and these flows will be detained. Offsite
Stantec Consulting, Inc. - 5 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
flows also enter the site from the northern half of Harmony Road that is directly adjacent to
the project site. Flows from an existing irrigation ditch that crosses the site will be piped
through the site and discharged on the north side of the proposed development. Additionally,
a small amount of runoff from the proposed parking lot just northwest of the existing
Paragon building will overtop the existing curb -and -gutter and flow east through a drainage
swale to the Front Range Village site. A drainage easement has been provided for this
overflow. No other off -site runoff from properties surrounding the Front Range Village site
traverse through the site.
B. Specific Details
BA Fox Meadows Basin Drainage Master Plan Update
The City of Fort Collins has developed a ModSWMM model of the selected drainage master
plan. This model is to be used as a guideline for new construction to insure proper rates of
discharges into existing storm drainage systems. When development occurs, the master plan
is to be updated to demonstrate and document the effect that the development will have on
the City's existing storm system.
The master plan shows Front Range Village, combined with half of the future development
to the North of the site, as Basin 210. The other half of the site and the future development
to the North is shown as Basin 200. The Paragon site is Basin 205 and the Harmony Mobile
Home Park West of the site is Basin 300.
Basins 210, 200 and 205 drain to detention pond 201 that in turn drains to the drainage
channel on the HP Harmony Campus, node 212. During the 100-year event the mobile home
park, Basin 300, drains to conveyance element 299 and then to the HP swale, 212. A
detention pond for English Ranch, the subdivision to the North, node 214, drains directly to
the HP swale. In the original Fox Meadows Basin Drainage Master Plan, the English Ranch
Pond overflowed to the detention pond 201, in Basin 200. The English Ranch detention
pond was sized using outdated rainfall data prior to the City revised rainfall data of 1999.
Applying the new rainfall data to the English Ranch Pond (214) causes the pond to overtop
and flow to the future Ziegler detention pond at node 297 during the 100-year storm.
B.2 Modified City Master Drainage Plan
The City of Fort Collins Master Drainage Plan ModSWMM model was modified to reflect
the proposed design conditions for this project site. Together, basins 206, 207, 208, 209, 210
and 250 make up the Front Range Village site, and Basin 296 makes up half of the future
development to the North. Basin 297 contains the other half of the future development to the
North. The Harmony Mobile Park, Basin 300, was divided into six basins, 300, 301, 302,
243, 244 and 245. Basin 300 represents the southern most portion of the mobile park, Basin
301 is the middle portion and Basin 302 is in the northernmost portion of the mobile park.
Stantec Consulting, Inc. - 6 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
Basins 243, 244 and 245 represent different portions of the proposed Pads at Harmony Road
development, currently under development by others.
The Harmony Mobile Park Basins 300, 301, 243, 244, and 245 drain to Pond D, node 360.
Basin 302 drains directly to Basin 296. Per an agreement with the neighboring developer
detention for basins 243, 244 and 245 will be provided in Pond D. During the 100-year
event, the flows from the Harmony Mobile Park Basins 300 and 301 will pass through the
Pond D spillway and will be routed to the undeveloped field north of the site, Basin 296.
Front Range Village Basin 207 drains to Pond C (287). Front Range Village Basin 208
drains to Pond B (288). Front Range Village basin 209 drains to Pond A (289). Front Range
Village basin 210 drains to Pond E (200). Front Range Village basin 250 drains to Pond F
(249). Ponds A, B, C, D, E, and F are denoted as nodes 209, 208, 207, 360, 200, and 249,
respectively, in the ModSWMM model.
The six detention ponds will be hydraulically connected with storm sewer pipe. Detention
Pond D drains to detention Pond C, which drains to detention Pond B, which drains to
detention Pond A. Detention Pond A discharges through a proposed storm drain that
connects to an existing 30" storm drain running under Ziegler Road. Detention pond F
receives inflows from the existing Paragon detention pond (205). Detention pond F drains to
detention Pond E. Detention pond E will discharge through the existing 18" storm sewer
pipe under Ziegler Road to the existing channel on the East side of Ziegler Road. The peak
discharge rate from Ponds A and E was limited so that the combined peak discharge rate in
the drainage channel on the HP Harmony Campus from the Front Range Village site will be
limited to 29.8 cfs or less during the 100-year storm event.
The future development north of the Front Range Village is divided into two basins, Basin
296 and 297. The future development basin 296, along with the Harmony Mobile Park basin
302, will drain to node 296. Node 296 and overflows from the English Ranch Pond (214)
then drain to the future Ziegler detention pond (298). Basin 297 drains to the future Ziegler
Pond.
The future Ziegler Pond (298) will be located approximately where the existing irrigation
ditch crosses under Ziegler Road. This ditch starts approximately 400 feet west from the
Paragon parking lot entrance and runs north approximately half a mile where it takes a turn
east to a drainage culvert. This culvert takes the water collected from the ditch under Ziegler
Road to a swale on the HP Harmony Campus, conveyance element 212 in the City's Master
Drainage Plan. The future Ziegler detention pond will be constructed with the development
of basins 296 and 297. This pond, once constructed will release at a maximum rate of 20.1
cfs.
Stantec Consulting, Inc. - 7 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
Copies of the ModSWMM Schematic for the proposed conditions along with the
input/output from the modified City of Fort Collins Master Drainage Plan ModSWMM
model can be found in the map pockets and in Appendix B of this report respectively.
B.3 Proposed Detention Ponds
The proposed detention ponds will detain the water quality capture volume for
approximately 40 hours before draining into the HP Harmony campus channel per the
requirements from the City of Fort Collins Master Stormwater Drainage Plan. The
existing City Master Plan hydrologic model has a peak discharge of 76.7 cfs entering into
the drainage channel on the HP Harmony Campus.
After construction of Front Range Village and the property to the North is complete, a
total of four storm drain systems will discharge into the drainage channel on the HP
Harmony Campus. The first is an existing 30" storm drain system that originates from
the English Ranch Subdivision detention pond. The second will be a storm drain system
out of Pond E. The Pond E storm drain outlet will connect the existing 18-inch storm
culvert that cross under Ziegler Road. The third storm drain system, which Pond A will
tie into, is an existing 30" storm culvert that runs under Ziegler Road. It is believed that
this storm culvert was constructed to achieve easy access to the HP drainage channel
without having to reconstruct Ziegler Road. The future development to the North of the
Front Range Village will tie into the other existing 30" culvert at Ziegler Road.
The existing outlet, from the English Ranch Subdivision, discharges at a rate of 26.8 cfs
during the 100-year storm, thus the two future developments north of the site, the existing
Paragon site and the Front Range Village can discharge at a total combined rate of 49.9 cfs.
In order to determine the allowable release rates of each of these areas, it was decided that
each development would release at a rate comparable to the percent of land that it
encompasses. The total tributary area to design point 212, not including the English Ranch
contribution, is approximately 226.6 acres. The combined tributary area of the two
undeveloped parcels to the north of the site and of the Harmony Mobile Park is 91.4 acres, or
40.33% of the total. The combined tributary area of the major portion of Front Range
Village property and of the commercial Pads at Harmony Road is approximately 105.6 acres,
or 46.61 % of the total. The combined tributary area of the remainder of the Front Range
Village development and of the Paragon site is 29.6 acres, or 13.06% of the total. Applying
these ratios to the allowable combined release rate of 49.9 cfs yields a release rate of 23.3 cfs
from Pond A, 6.5 cfs from Pond E, and 20.1 cfs from the future Ziegler Road pond. Thus,
the computed maximum allowable release rate for ponds A and E, which includes the Front
Range Village development, the commercial Pads at Harmony Road development, and the
existing Paragon site, is 29.8 cfs. The maximum allowable release rate for the future Ziegler
Pond (298) on the future development north of the site is 20.1 cfs.
As ModSWMM cannot do the dynamic wave routing necessary to analyze ponds in series,
within the ModSWMM model we have routed the flow from Ponds A, B, C and D directly to
node 212. This was done in order to determine a preliminary detention pond size needed for
Stantec Consulting, Inc. - 8 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
each of the on -site basins and to provide the inflow hydrographs for each pond that were
needed for the EPA SWMM 5.0 model.
EPA SWMM 5.0 was then used to calculate the backwater effects of interconnecting the
ponds and to size the pipes that interconnect the ponds. The stage -discharge hydrographs for
the proposed ponds were taken from the output of the EPA SWMM 5.0 model and
interpolated to get a volume -discharge rating curve. The detention volume provided in each
of the six proposed on -site detention ponds was shifted from one basin to another with some
ponds over detaining tributary runoff to compensate for ponds that cannot detain enough
volume due to area constraints in that part of the site. In this way, the combined peak total
discharge from the Front Range Village property, the commercial Pads at Harmony Road,
and from the Paragon property will be restricted to a release rate of 26.9 cfs.
Proposed detention ponds A, D, E, and F will also provide additional capacity to
accommodate water quality capture volume. These ponds were sized for the worst -case
scenario where it is assumed that the proposed ponds are already filled with the water quality
capture volume prior to the 100-year storm event occurring.
The six proposed detention ponds were designed with side slopes of 4:1 and provide the
required volume between the spillway elevation and bottom of the pond to detain the
developed 100-year storm event. If the outlet structure for any of these ponds should ever
become plugged, each pond's spillway is designed to provide a controlled release while
maintaining one foot of freeboard. In the event that the pond outlet becomes clogged, the
stormwater from Pond D will overflow to the undeveloped field north ofthe site, Pond C will
.overflow into a grated manhole just east of the overflow spillway and continue to Pond B,
overflow from Pond B will be released through a spillway and be directed to a grated
manhole and then conveyed to Pond A. Ponds A, E and F will overflow onto Ziegler Road.
Required Pond Volumes:
WQCV
Required
Detention
Volume
Required
Total
Volume
Required
Pond A
1.55
6.09
7.64
Pond B
N/A
2.23
2.23
Pond C
N/A
1.37
1.37
Pond D
1.83
17.95
19.78
Pond E
0.15
0.77
0.92
Pond F
0.28
1.41
1.69
Total
3.81
29.82
33.63
Stantec Consulting, Inc. - 9 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
With the construction of Front Range Village flows from the existing off -site irrigation ditch
will be routed through the site via a proposed irrigation pipe and discharged to the existing
irrigation ditch north of the site.
Offsite flows from the portion of the westbound lanes of Harmony Road directly adjacent to
the Front Range Village property will be calculated and accounted for in the storm sewer
design of the Front Range Village.
B.7 Paragon Outlet
With the construction of the Front Range Village, an entrance will be built from Ziegler
Road that crosses over the area where the Paragon site discharges their on -site flows. In
order not to impede the existing flows from the Paragon site, a proposed storm sewer and
drainage swale will be built to direct the storm flows under the proposed entrance road and to
proposed Pond F, which will discharge to the HP Harmony Campus drainage channel. As
part of these improvements an outlet control structure will be installed on the outlet pipe of
the existing Paragon detention pond. This proposed outlet control structure will allow the
excess detention volume available in the Paragon detention pond to be utilized and will help
the existing pond work in series with proposed Ponds E and F within the Front Range Village
development such that the combined peak 100-year discharge rate from all three ponds does
not exceed allowable limits.
B.8 Storm Sewer Design
The storm drain design for the Front Range Village will meet the 10-year storm drainage
inlet and pipe design criteria set forth by the City of Fort Collins. NeoUDSewer was utilized
for computing the hydraulic grade lines for the proposed storm sewer systems. The
minimum velocity in the proposed storm sewer systems was set at 2 feet/second (fps) to
prevent silting. Based on the results of NeoUDSewer, the hydraulic grade line along the
length of the pipe, and energy grade line at the inlets, is below the ground surface or 1.0 feet
above the ground in the parking lot. Inflows to the storm sewer were calculated using the
rational method.
CDOT Type R inlets were sized based on flows computed using the rational method and
using UDInlet, a spreadsheet created by the Urban Drainage and Flood Control District.
Gutter flows during the 10-year storm event are maintained within the curb and gutter section
and do not exceed 18-inches during the 100-year storm event. If overtopping were to occur
during a 100-year event, the building pad elevations were set so that they will not be
inundated. Clogging factors of 0.2, 0.15, and 0.1 were applied to 5', 10' and 15' Type R
inlets, respectively.
Area inlets were sized using a combination of weir and orifice equations. Weir flow and
orifice flow was calculated across the inlet and the minimum flow was taken to be the
controlling flow. A clogging factor of 0.20 was applied to all area inlets and a maximum
ponding depth of 1 foot was used in the parking areas.
Stantec Consulting, Inc. - 11 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
B.4 Storm Water Quality
The State of Colorado requires Stormwater Management Plans as part of their permit
process. The final drainage report will seek to find various Best Management Practices for
the treatment of storm water runoff that could be implemented in the construction phase of
the project as well as after the completion of the project. The Front Range Village will be
providing six grass lined detention ponds (on -site), four of which will be equipped with a
water quality discharge control structure with a 40-hour release time. These water quality
ponds will provide a mechanism for pollutants to settle out of the stormwater runoff before
flows are directed to the drainage channel on the HP Harmony Campus.
B.5 Harmony Mobile Home Park
With the construction of the Front Range Village, the contributing storm water runoff from
the eastern part of the mobile home park will be routed through proposed detention pond D.
During the 100-year event runoff to the existing southern most inlet will exceed the capacity
of the inlet and overflow into the existing drainage swale to the east. The runoff will then
flow north toward the second, middle existing inlet where it will combine with the runoff
that the existing storm sewer system is unable to capture. The excess runoff will then
continue to flow north and to a proposed inlet which will convey the flow to Pond D via a
proposed storm sewer system.
B.6 Harmony Road
Along with the development of the Front Range Village property, a portion of Harmony
Road will be widened. Currently, there is no curb and gutter on either side of the road except
at major intersections. Improvements to Harmony Road will consist of widening the
westbound lanes. Improvements to the eastbound lanes include reconfiguration of the
median to accommodate dual left turn lanes into the project site. No curb and gutter will be
constructed on the either side of the side of Harmony Road with this project. There is an
existing irrigation ditch adjacent to the South side of Harmony Road and a roadside ditch will
be constructed adjacent to the site along the North side of Harmony Road to collect runoff
from the north half of Harmony Road.
As previously mentioned an existing area inlet located in the median on Harmony Road
collects flows from the median and discharges them into the irrigation ditch on the property
site. Due to the widening of Harmony Road, the area inlet will be demolished and flows
from the westbound lanes of Harmony Road will drain to a proposed swale along the North
side of the road. A new median will be constructed with the improvements on Harmony
Road. The median will contain a proposed catch basin that will also drain into the proposed
drainage swale.
Stantec Consulting, Inc. - 10 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
B.9 Subbasin Description
The Front Range Village site has been subdivided into approximately 100 on -site subbasins
in order to determine inflow and the concentration points for the storm sewer. The attributed
runoffs from the majority of the basins are routed to one of the six on -site detention ponds
located within the Front Range Village property. A subbasin map illustrating the subbasin
characteristics is located in the pocket pockets in the Appendix of this report.
B.10 Street Capacity
The flows for the street capacities for the streets inside the Front Range Village development
were calculated using the Rational Method and UDInlet. The proposed street designs for the
Front Range Village meet the required 10-year and 100-year street capacity requirements set
forth in the City of Fort Collins Standards. During the minor 10-year storm event the storm
water runoff does not overtop the curb and at least one-half of the roadway width is free of
water in each direction. During the major 100-year storm event the storm runoff does not
overtop the crown of the road and the depth of the storm runoff is below 18 inches at the
flowline of the gutter. Supporting calculations for the street analyses are provided in
Appendix F.
V. EROSION CONTROL
This development lies within the Moderate Rainfall Erodibility Zone and the Moderate Wind
Erodibility Zone per the City of Fort Collins zone maps. There should be minimal -to no
erosion problems after completion of the Front Range Village development. Silt fence will
be installed along the North and East sides of the site to prevent sediment from leaving the
site. Two vehicle -tracking pads will also be placed at entrances/exits to the site. Straw Bale
inlet filters will be placed at the openings of the proposed area inlets as well as the pond
outlets. Gravel inlet filters will be placed at the opening of the proposed Type R inlets.
Straw Bale check dams will be placed approximately every 300 feet along the swales located
within the site. During the construction of Front Range Village, all disturbed areas will be
permanently landscaped or temporarily seeded and mulched within 30 days of initial
disturbance.
All disturbed areas not in a roadway or greenbelt area shall have temporary vegetation seed
applied within 30 days of initial disturbance. After seeding, a hay or straw mulch shall be
applied over the seed at a rate of 1.5-tons/acre minimum, and the mulch shall be adequately
anchored, tacked, or crimped into the soil. Those roads that are to be paved as part of the
Front Range Village must have a 1-inch layer of gravel mulch applied at a rate of at least 135
tons/acre immediately after overlot grading is completed. The pavement structure shall be
applied within 30 days after the utilities have been installed.
Stantec Consulting, Inc. - 12 - December 2006
Front Range Village
City of Fort Collins
Final Drainage and Erosion Control Study
If the disturbed areas will not be constructed upon within one growing season, a permanent
seed shall be applied. After seeding, a hay or straw mulch shall be applied over the seed at a
minimum rate of 1.5 tons/acre, and the mulch shall be adequately anchored, tacked or
crimped into the soil. In the event a portion of the roadway pavement surface and utilities
will not be constructed for an extended period of time after overlot grading, a temporary
vegetation seed and mulch shall also be applied to the roadway areas as previously discussed.
All construction activities must also comply with the State of Colorado permitting process
for Stormwater Discharges Associated with Construction Activity. A Colorado Department
of Health NPDES permit shall be obtained so that construction grading may commence
within this development.
VI. CONCLUSIONS
A. Compliance with Standards
All assumptions, computations and design criteria utilized for the completion of this report
are in compliance with the City of Fort Collins Erosion Control Reference Manual for
Construction Sites and the Urban Storm Drainage Criteria Manual. The site drainage design
corresponds with and adheres to the recommendations stipulated in the City of Fort Collins
Master Drainage Plan.
B. Drainage Concept
The proposed drainage concepts presented in this report will adequately provide for the
conveyance of developed on -site stormwater runoff as well as off -site flows to the proposed
drainage facilities of the proposed project site. The combination of the proposed curb and
gutter, cross -pans, inlets, and storm pipes will provide conveyance for the 10-year and the
100-year flows to reach one of the six proposed detention ponds located on the site. The
sizes, locations and release rates of these ponds will allow the Front Range Village site to be
developed in conformance with the City of Fort Collins Master Drainage Plan concepts and
within the City criteria.
If, at the time of construction, groundwater is encountered, a Colorado Department of Health
Construction Dewatering Permit will be required.
C. Stormwater Quality Concept
The proposed design has addressed the water quality aspect of stormwater runoff. Water
Quality facilities will be provided in Ponds A, D, E and F. Calculations for the WQCV
required in these four ponds are provided in the Appendix.
Stantec Consulting, Inc. - 13 -
December 2006
Front Range Village
City of Fort Collins
D. Erosion Control Concept
Final Drainage and Erosion Control Study
The proposed erosion control concepts mitigate the control of wind and rainfall erosion for
the Front Range Village. Through the construction of the proposed erosion control concepts,
the City of Fort Collins performance standard will be met. The proposed erosion control
concepts presented in this report and shown on the erosion control plan are in compliance
with the City of Fort Collins Erosion Control criteria.
Stantec Consulting, Inc. - 14 - December 2006
Front Range Village
City of Fort Collins Final Drainage and Erosion Control Study
VII. REFERENCES
1. Storm Drainage Design Criteria and Construction Standards by the City of Fort
Collins, Colorado, May 1984, interim revision January 1997.
2. Erosion Control Reference Manual for Construction Sites by the City of Fort
Collins, Colorado, January 1991.
3. Fox Meadows Basin Drainage Master Plan Update Selected Plan Report by
ICON Engineering Inc, December 24, 2002, revised February 2003.
4. The Urban Storm Drainage Criteria Manual (published by the Urban Drainage
and Flood Control District — Denver, Colorado — June 2001).
5. Overall Drainage Study and Phase I Final Drainage Study for the Symbios
Logic Site, by The Sear -Brown Group (now Stantec Consulting Inc.), July 1997.
Stantec Consulting, Inc. - 15 - December 2006
APPENDIX - A
December 2006
CITY OF FORT COLLINS STORMWATER BASINS
Stantec
0,
0
0
5
VIM
Lw�q
] � . • r J ►t a�1 r.S 'r,C. :lr•Ss�p `li s . "�' >. - �' .. 'r ! _
f ;.'° /? tYx'1'^•1 A i t•1 y[f a]d•` -//yet: - t.�f is ♦y{i•' % _ ti• r•4N
r/t. \ �,J�±�.-��7•.,Tca�.•r a:.r�]:�ai7<<�•��.r (=j! 0 r:� •� �J '�110 '_s--'�•'`. .:'.., .�: ♦�.:a..
z ra �'ti�'. �y_tl'. i .,' . ,� �>i-� •� 'r. }�r _ X' _ ,-•f. 1 _•C.l�' _• t 1'.},• •�y����ye���±± . _ , _ _ \
�; f �- 1 tr�K •M� W�1'ay„l :•5 i �n♦a":�� Iv '�✓w-•..'1 lai �i �fKr�,'•,.�..s,�'•i �� �••:'Si.�!• � • • _ • 1 t!-• e' '� � ``�\
y
'`,�� ` y, t. .;,i. i'Tc1'Xi1I.�i��.. �• �i1Wjj;...i'!r.. ,�Y .' Iv� �. ^vl. :! �`:i♦ , -� �w• � iF . y.. '.�-�. ,�i .:.� ``;�
♦. #'!� n� Y i� �ii'•�`w �+i. rj R -... ��3 4AA''�-�- '.1�V .♦•.•'v 1 ' 1 .r �" �}�r77var cis .:�rt �' � :-nY .
-� - •. }� i"i .y �aa a. li•Y A iayt r• ♦ i • ,,(( .�L _ - - -
_• • :w�"taw:�q'. •,r 14 �-4% �#k "1'�'�^`'� i 'i 'i i "i1 _ i. i rE 1. � • J i.�.i .�. ii' l,'�!�•i.' �j - y .. \ Y f�� .a
• � i.e._a -. 9� +�,.� .i1-:• ij i1�ai• ..�iirv�y i.� M - •tw- � ' .t - a�i+ +' _`t �w�! 1 t � 'w...�
`•i' j''l,i` a/•'•Y 6�•'ak�"'}i+F �'�a�a- �r'ist; -••I.t .;s� I'���: yl���iS] � r•rY -�.r:z ,j'�,,•� � � �'' ♦*• '=` � "'t� /'
, .a � .t �•Y �_i .\• � ��"�trT•i laZ f �'• 1' aa „_//'�• Ya ,+ 'a '• \ a �� �,
_ ..• ✓. �-. _.r: � •iY-� ♦. r� r•.•.N '♦„►1 r •n�a]a.dl� � - v '•_ CiN! •> _ �� .C. ` 1 TFif? •S' l �C.
a-' • . •.is: t•• .(!-�' '•+r+ �s;A`.-.[•i'rb� K] �f�� •,c: �` �?ra�i.�`•� ..•r� �i.. .F,�i,�.i. _ �� I � -,is i � - �,• �I i 'v -
r .r .a tr •- •i- f a,•w/.- >tit nF`�q,' �f U!?ay�-IS Cam: .�y'�t.� �a,�•••���� -=' ?/! •t; � !�._ '�•,.: �: ,;ur ` I •♦ ��.: �4.•�'� .• t�•.. - '�•
f •d• .aw _•_t .' ••.r^lprt 1 -'r�f - ati ,�-P� af3v�fa_ �I. i t C�"r�Cr�_ �1 �. �,•r r�1y�yJ \ 'i-+ - . �.. �.: q of �T' r .
f- �'V a.•\:., YC. ) Nt ij I ._ •�• .,r. „♦ !!... •Y r T _ _ "'�!/! - _ ~- o^+•.-�._u.� _ t _�+s.t r._ _^
-„'+•l '� � � _M�' ] - - -1 .ri, a.Y _'•_•, .a 1. ..? ... 1 f'= �:� dX •-� _ t-'f ems.; •. .c- :, h'� 'i
'• f'.Y � r1 s� Ali 'I(_'-. .' i J •i y 4 r � 9 • i � '(i I 1 � 7 tt
• _ (�J�• '# <. • �� ! y1J[jJ`•(._k.. (�+ tG_..a,'.. j.Xntti•• '?.i; r. .��+:a ti. ��f,n _ '. r��1, - �'�-it�,l�j 'ti �7.i� r ,s •C% .. a �L-• 'j
•,•. AIL a,y(jg t�.1•�".. � � .1' �w i. SF: .� tl y ay,1 aS�f - .:1 T+�`♦�a•',•'J,'f'.r1 � � 'a.���t Ij .2 �1 ^' -♦v..y rs � Vi�� t �t4 _
�w.as-:� •tT • . •I� a � t 'h. ff �...• fa' :1 " T 1T�� S� • w`': V.. •.:.���yya•. • t �i. �.�`. ..%.. Y..�yyh!•^,._.-.-i�i` �.-. � �}} . � `•R r. ��Ir♦� .� �V:. �Y t
' Ta, {- '�±f1:.c ♦ �."_ ]' .}�Y .�, .1. - '� h yj. Jiai•i'•.LC�St�"V�Ci�I•\Oji: :a•a•): '�L V �;J.SY- '.f _ 'rrrrfi :.i - ii`; �a ir.r '•� '�� +•
fa r ""-- - - � *' �•�'•:/eT.ia�itj rS•w•� i a v •L •e10. t- _ r•� '.�. `� f j- ':,.'.. !'j�S'`;• :.p t` .. *.'.
i�: \G• y }?. �. ,• '• �,• 1 St... t:vJl� ti Jt.•�..ln.0 �. .t l f •t _ -� �+lF �t ��i ,� !
V \ ) •l ' • -Ir1�~�Yf-a• \/rtI`.: <w Jf. �l a f► y{ -.7 e. .t 1 -t.� Y-•>s�._ ♦ �,; ^�. ,-jy'• t
• r. ,� 1�iL .�[:.CS-t .r .,1]1 a:-N' ►a • y ] 'y _'t :'• i M.. _ � y'�ii Y.:. ]• r\.�•a¢-,
y.;; -'r�� 'w� ��._� � r.♦�.�)Y 1 a- LJ. F ^� '.T! � •t, }T :. f rh♦ �
' �• i .I i .� a �"•Ufv. rr ;1'f•J.,. vT fyy r4'!�a -e �t 1" _ t `dp.-f au (-t r l4 t��-�'�'•t•��v �i'_1 �- a. �.1_'•{�� i
- �, r p;• ^rL."�•F.-'_Vrr'i ;ir y� i. _ Yam•' _ `""l•.� .C� ,.%. 1L` C'' .tea d: :,,�/�,. �� f -. 5T{'ys. �� •r x
•�`^: ri.. 'i f t�r,�'•s]LftZ�i1 �I i. i ?G T -.a `,- �',- Mn S „^'�.e}` •� r•a.: �f ��'°`, y :l 'i -•"'�
' '. .. /. �.. ay ' 1��e-,'�y�•I.-'•�'.. _ iYiai4N. _ia •• i"a_. }3L` -♦ ea��•�Jr =f' 1-S ,��T � Z i.a Via' `•t►��.
d+.+ . ...� -, •�� -� �, rr,- � 4:'�C wr r % 'i �' a � -. �a .�'t*r"�•�. t F-"� '�• Y `H ' X •• ��p q
."'. w'y� r a,'' �♦ •i_ •icrj7 , • . - : :1i 45r 1�,'7� i+i "f i •-
' ��•.r�.�pp��..���� j] II='si`{���, �' _ :�+ 't.'�...v :_ - _ •`` `2 a. '�, s .a 'I! �. t[!' k..`�� � r +�'if;:
4 .f. „4�+ „� 1•�:_.__I - LR.i _., I..y a'l it �l-' ;. fir•:!" ,r-': >& •�},.
S ..a J . {1' ,.. +so t�� - i^`� .aa 't _ 5---, ;'L.li+w�'r-
-: _ _1 ^••'�L`C�.'_.� "' •• y. _ q� it�_j•' i` f �..�, ;1�+�,
+•� r ��-��fli h'`�j' •r. � 6i' ��'w ��••.a'r�.1� •`,,/.�,'`ii .`w -_ __ C a•.a - s .�i rl _ _` .a;--7 �i a�ti`__..,,wT -�f _ -• r..t.:
a. s,rt'>V .• � a � I I1� _ "R �?�. t,'t�!'C.iY�I�"•�Ai�!(�r. r. -�t' • r-a._ 4 ^ _ t •� � � ••
V i C.�i� •,: • fL -.! is i I I I •r:,� ",il f ,YIWil' .!� -_.-i ._ R.� s - .\ r.p�- ^S r_. i f. r• :;z" - :f9��'" - C if� .:nY- _:
- A` .:�.1�y�Jll �r •-.' .♦ •r�ry.v. „ •i jn `y''i � •� �� '1 - i . oily: _ ♦i! _ 1 ♦1 } "•AE ] -t Y• t -�i.^. s... ��� v ♦� •
x ,l�,�t'y -• - 1'1II'I �..•�F--_ y ,t:� { - i 1 -.� _ a ,� t • - s .✓•� `}. r .rr_+,Y)
'
!� • _ t} .,�..�, _ . w a�,• -`it�i 'N, 'w'v s � -•1.� w.2•ni \ '� •ylr'} r l + e �*� � 11�; I� , ,,,, � -
.��';T.•' �� '- s 1•:.'^r'i'• v. � •a. jwla ='e"L' i:.t, ••t�AC a: 7^.".- �t�j1 ♦ �. - f v• •�
V. "y •.tw:�, -' �-'.. ^ y+[. _aJ r "•1 _ ;!��1~•ll1 1.4+.^...3 r� _ � ':._t--- .. _ ���t i ,�. .f> - 6 I I' S#i
. • raft a a ` y_: +b }I'-�rw, i .s+i �7 ' x.J 2� � r a i� ' �Y' �llr '�:} ��� '•.•+ .• � _ iT'- v .•v r
. �fi!G `•'. i' .1 . .. � ,� a ��.��'yy'.r�, •� a .c• �. _ t ...` -•!� :.' ��=yal" a.•`�. —,. _ { ; '� `xy t - ,-'c..r ��.
4'•+y � n `t • a .r :�l.a�a�...�'�-I- r- - p^� C.r4. t`_�L�e'w F'D '$�S':`����. 1.� - r. _�_ - a _�. _ � ��. .. ty.
' ♦ � '_• i. ,p F I 1- � �. .ir - J• � T -'t' • >•�ZS,:I. i'. ,a ♦• r� � 14' � 1 ' �.� � 7 t
.♦ ..` . �: I�r / ^ .�. y •,�' a _I, '�� 'T •♦ u Vt I:.�u:" f f �i _..n •� r 1 7 ' " _ �� .'� .1
- • _r_ +.. T.� .J, ."_ axia: t. . �; '♦ f •_. y .a• i .,j��il\l?�• �R'.. l: - , a _ / �iF._ 'F»Y ..p - 1 i
- r - ,�' ,,•risr_-. a r. .� °�- - ..ctwlt.i^i^!+. '7 :;"- k�' _..'_-•: y'(r X i - _ '-w _ v^ .-a:-'-, •::.
4 `W,��'�+ � ci!'.y-!1 y_.t� �_' .>f •:`a 4>�._i .L ,1: �<4 � '♦ e ...aaa _ ti'<vi_ -.i �j.� _ tF -r •S
�„ -E. _ .~ '�'',- _ r,!f.. ,f+FMrir�.: _ic' •4' .�.]}-�r I., y}. �F 7:{• tt� , - `qr".•'�.t 4� u.,. „L �.�_,�'' f:_'w•..,
:]:' x \l^ 3' r _ _ .�•�'� y.i - ..r v.+.ir l.r . - - .(,.' ♦ 'r"?I".-. -}'}`C t _ l•. _ ' X
"! •'\. T, • VrIn1Y ( £ �^' ..�. • •l:i. a7 ai•\. saa .9_ tq� 'v 11j� •. � .7ir F r .Ca�j f� �•lr'.'S _. w: �,.i- _ \, '-�..4f�: n }k _ t '^ a• ♦
:sue r..t�_'a. ��.. :y-,w. '��_.,n�i, t•ig''-•1 _ '�?R" , _.!`i >%�"w --
i r_. `%y( _a.'-. _ 4 %l- �� f.. w1•- iN•.'•, �; �i•"r..�::l.:Y-^'"� 1 s\ -i Jx .:F!'-t _LA � � f
'�"_ s. �av i+¢.:.. .�iTi�•• '.1.aAc....�. :� i _. ":n.-�.�,•.
a -• 2 _ _
ML
a, < a - .r 5}} .� -�a• t �� -� ♦ f ..,may r'._r.^•�'t
a�. � r ftvye ,yr. a � r 'r r f•z-:- ��'�" . �` - � w t4� � µti-'- - - t
,
1. INTRODUCTION
The Fox Meadows Drainage Basin is generally located west of Interstate 25, east of Warren
Lake, north of Harmony Road, and south of Hoorsetooth Road. Figure 1 presents the location
map for the Fox Meadows Drainage Basin. The Fox Meadows Drainage Basin does not include
a major drainage way to convey flow from the upper end of the basin to the downstream
discharge points along the Fossil Creek Reservoir Inlet Ditch (FCRID). Instead, a network of
storm sewers, local drainage channels, and detention ponds control and transport the storm
runoff through the basin. The majority of area within the Fox Meadows Basin has previously
been developed and few locations remain for new development. Much of the current
development has occurred after stormwater development criteria had been established by the
City of Fort Collins. However, several drainage problems have been still been identified in the
basin mainly due to increases in flow data due to rainfall updates. These problems include
overtopping of existing detention facilities, ponding behind railroad embankments, roadway
overtopping, and lack of freeboard for flood conveyance structures. Up to fourteen residential
structures are estimated as being damaged throughout the basin during the 100-year event. The
specific problem area locations are presented in Figure 2.
The selected improvement plan combines 100-year drainage improvements with additional
public safety and maintenance improvements throughout the basin. The Selected Plan focuses
on both alleviating flooding for existing drainage problems, as well as preventing damages that
could potentially result due to potential embankment failures.
Elements within the selected improvement plan include structural, non-structural, and
development criteria components. Structural components' include construction of new detention
facilities, modifications to existing detention facilities, addition of spillways to existing
detention facilities, and the construction of culverts and other drainage conveyance systems.
Structural improvements may also include riprap installation for erosion and scour protection at
critical locations within the basin. Non-structural components of the Selected Plan may include
the installation of flood warning devices to warn area residents of potential flood conditions.
The non-structural improvements are recommended at problem locations where potential
failure of an embankment during a storm event could lead to significant damage or loss of life.
Development criteria recommendations have also been included in the selected improvement
plan to provide guidance for any new development that may occur. Habitat and floodplain
criteria components were not included in the Selected Plan, since a natural stream, or
drainageway, does not exist within the Fox Meadows Basin.
2. SELECTED IMPROVEMENT PLAN DESCRIPTION
Three improvement reaches have been defined in the Fox Meadows Basin for the Selected Plan.
The first reach extends west from the Poudre River to Ziegler Road. The second reach
encompasses the drainage basin between Ziegler Road and Timberline Road. The final reach
includes the remainder of the basin from Timberline Road, west, to South Lemay Avenue. The
reach limits are defined, along with the selected improvement plan, on Figure 3. Table 1
provides a basin wide discharge comparison between existing conditions flows and discharges
after the implementation of the selected improvement plan.
1
Fox Meadows Master Plan ICON Engineering, Inc. December 2002
TABLE 1: SELECTED PLAN DISCHARGE
COMPARISON TABLE
100-YEAR
Existing Selected Plan
Conditions Conditions
Location (cfs) (cfs)
HP Site FCRID Bypass
367
380
Fossil Creek Reservoir Inlet Ditch (FCRID)
595
595
at Harmony Road
Fossil Creek Reservoir Inlet Ditch (FCRID)
416
416
t Woodland Park
Fossil Creek Reservoir Inlet Ditch (FCRID)
336
300
at Horsetooth Road
Hewlett-Packard Drainage Channel
305
311
Overflow Through English Ranch South
180
0
orsetooth Road / Ziegler Road
301
174
Intersection*
Kingsley Drive
209
158
Sunstone Village Pond #5
(46 / 39)**
(40 / 0)**
Isunstone Village Regional Detention Pond
(27 / 212)**
(27
* Reflects discharge in roadway, pipe flow not included
** Reflects (Pipe Outflow/Spill Outflow) at detention facilities
Fox Meadows Master Plan ICON Engineering, Inc. December 2002
2.1 Reach l (Poudre River to Ziegler Road)
Two problem areas have been identified along the first reach. First, the FCRID (Location A,
shown on Figure 2) does not have capacity to pass the 100-year existing conditions flows while
meeting the City's freeboard requirements of 1-foot. Channel freeboard, along the east canal
bank, is as low as 0.5-ft for over 550 feet of channel. Second, overflow from the Hewlett-
Packard site (Location B) currently discharges across the FCRID over a bypass flume.
Additionally, a spill structure for the FCRID (Location B) has been proposed in the East
Harmony portion of the McClellands Creek Master Plan Update immediately upstream of
Harmony Road. This spill structure is proposed to limit flow under the roadway to 444-cfs.
This will enable the FCRID to meet freeboard requirements within the McClellands Drainage
Basin. The spill structure and the bypass flume release a combination of up to 367-cfs of
discharge during the 100-year event. This release occurs along the FCRID bank. Erosion and
scour from the overflow could potentially lead to a FCRID bank failure at this location.
The selected improvement plan recommends drainage improvements at both of these locations.
First, along the FCRID Channel it is recommended that the portions of the east channel bank
that do not meet the City's. freeboard requirements be improved to meet criteria. Improvements
are assumed to consist primarily of the installation of acceptable fill material along the crest
and sides of the existing canal embankment. Second, the selected improvement plan proposes
to reinforce the FCRID bank at the FCRID/bypass flume spill location with riprap protection in
order to help reduce the risk of bank failure during large storm events.
A specific sequence of construction is not required for this reach. It is recommended that the
riprap protection at the FCRID/bypass flume spill location be permanently installed after the
completion of the Harmony Road FCRID spill structure.
New development within this reach shall meet criteria recommended under the Development
Criteria section of this report.
2.2 Reach 2 (Ziegler Road to Timberline Road)
Several problem locations have been identified within the second basin reach. First, Sunstone
Village Pond #4 (Location C) displays overtopping during storm events greater than the 50-
year. During overtopping, this pond overflows at two locations simultaneously. The majority
of the flow, 33-cfs during the 100-year event, spills along the west bank and travels overland to
the north. A smaller volume of flow, around 3-cfs, also spills through low points in the eastern
embankment into the Mobile Home Park.
The capacity of the Sunstone Village Pond #5 (Location D) is also exceeded during storm
events greater than the 50-year frequency. Spill flow rates approach 39-cfs during the 100-year
event. Since a defined spillway for the pond was not constructed, flows are expected to overtop
the north embankment and sheet flow around the adjacent residential structures. Without a
designated spillway, significant damage could result to the embankment. Significant backwater
also develops upstream in the adjacent Mobile Home Park. Significant damage to the mobile
homes is not expected since the mobile homes are typically raised approximately 2-feet higher
6
Fox Meadows Master Plan ICON Engineering, Inc. December 2002
then the ground surface. The flow depth downstream of the pond is not anticipated to impact
adjacent structures.
The capacity of the Sunstone Village Regional Detention Pond (Location E) is exceeded during
the 100-year event. Existing pond spills are anticipated to approach 209-cfs during the 100-
year event. Overflow from this pond contributes to flooding of three residential structures
along Kingsley Drive and significantly contributes to flood problems at other locations, such as
English Ranch Detention Ponds #2 through #5.
The capacity of the Fox Meadows Pond (Location F) is exceeded during the 100-year event.
Although no structures are impacted due to the backwater from the pond, the overflow does
contribute to flooding at the Ziegler Road/Hoorsetooth Road intersection.
During major flow events, English Ranch Ponds #2 through #5 (Location G) function together
as upstream ponds spill overland into the subsequent downstream ponds. Overflows from the
Sunstone Village Regional Pond travel north on Kinsley Drive and combine with additional
runoff at English Ranch Pond #2. The combined flow continues east through each of the
remaining detention ponds. Kingsley Drive and Antelope Drive are overtopped and significant
overflows are expected to collect at the intersection of Horsetooth Road and Ziegler Road
before sheet flowing to the FCRID. As much as 301-cfs collects in the intersection during the
100-year event. Five residential structures adjacent to the ponds have been identified as
potentially impacted during the 100-year event. In addition to residential structure damages,
additional damages are anticipated at Kingsley Drive, Ashmount Drive, the Horsetooth
Road/Ziegler Road intersection, and other locations where flow overtops the embankments.
During the existing conditions, the runoff from the Harmony Mobile Home Park that does not
enter the local storm sewer to Sunstone Village Pond #5 will overflow through English Ranch
South. Up to 180-cfs is anticipated to overflow through English Ranch South (Location H)
during the 100-year event. Overflow from the Harmony Mobile Home Park occurs for storm
events greater than or equal to the 5-year event. Additionally, the overflow contributes to the
volume of water in the English Ranch South_ detention ponds. Pond overtopping is expected
during the 100-year event.
The inadvertent detention occurs upstream of Ziegler Road (Location 1). The inadvertent
detention area primarily exists only on undeveloped land. However, two residential structures
located to the south of the English Ranch South development are impacted from the ponded
water. Damage to the residential structures is expected for events equal to or exceeding the 5-
year frequency.
Improvements proposed for Reach 2 primarily consist of structural improvements to alleviate
flooding. The improvements are discussed below in more detail. A detention improvement
summary for Reach 2 is presented in Table 2.
Sunstone Village Pond #4: The selected improvement plan proposes to formalize a spillway for
Sunstone Village Pond #4 along the north end of the pond, following the outlet pipe. The plan
assumes the existing detention volume will remain unchanged.
7
Fox Meadows Master Plan ICON Engineering, Inc. December 2002
TABLE 2: REACH 2 - DETENTION IMPROVEMENT SUMMARY
Volume
Before
Overtopping
(acre-ft)
4.5
Overtopping
Elevation
(feet)
4919.0
EXISTING CONDITIONS
Discharge at
Overtopping100-Year
Elevation
(cfs)
5
Event
Volume
Before
Overtopping
Overto In
(acre-ft)
4.7
SELECTED
Overtopping
Elevation
(feet)
4919.0
IMPROVEMENT
Dischargp at
Overtopping
Elevation
(cfs)
5
PLAN
100-Year Event
Location
English Ranch Pond #3
Water Surface
(feet )
4920.2
4931.3
N/A
Total Discharge
(cfs)
222
103
N/A
Spill Discharge
(cfs)
217
Water Surface
(feet)
4920.0
Total Discharge
(cfs)
168
Spill Discharge
(cfs)
163
Fox Meadows Pond
5.8
4931.0
30
73
10.8
4931.0
34
4930.0
34
0
Ziegler Pond
N/A
N/A
N/A
N/A
15.8 »»
N/A »
25
N/A*
25
0
..ow detention racntty. I uo-year water surface shall beset as to not impact adjacent or upstream structures.
•» Reflects 1-foot freeboard.
Fox Meadows Master Plan
8
ICON Engineering, Inc.
December 2002
Sunstone Village Pond #5 & Ziegler Pond: The selected improvement plan proposes to divert
flow from the Harmony Mobile Home Park to a new detention facility, located upstream of
Ziegler Road by redirecting the existing 36-inch storm sewer outfall to a new location. With
this flow diversion, flooding downstream of Sunstone Village Pond #5 is greatly reduced. As a
result of the improvements, Sunstone Village Pond #5 only overtops during the 100-year event
and the resultant overflow discharge is not great enough to cause significant damage
downstream. Additionally, damages are also reduced downstream of the Sunstone Village
Regional Detention Pond since overflow discharges along Kingsley Drive and English Ranch
Detention Ponds #2 through #5 are reduced as a result of the improvements. A
recommendation for the installation of a formalized spillway is recommended at Sunstone
Village Pond #5 to protect the embankment during periods of overflow.
In order to minimize damages from the overflows exceeding the capacity of the Harmony
Mobile Home Park, a new detention facility, Ziegler Pond, is proposed to be located within the
undeveloped basin to the east of the mobile home park. The pond is proposed to be sized for
the 100-Year event in order to eliminate all overflows, and associated damages within English
Ranch South. The outlet from the new detention facility is proposed to be connected directly to
the drainage channel along the north side of the Hewlett Packard site. It is assumed that the
outlet system will consist of a drainage channel. However, as the downstream basins develop, a
storm sewer system may be considered. It is anticipated that drainage from Ziegler Pond will
cross Ziegler Road through an existing 30-inch pipe that is_currend :1-3'.gpd. The pipe stub
out is located immediately across of Ziegler Road from the Hewlett Packard drainage channel.
Ziegler Pond will be required to provide detention for Harmony Mobile Home Park flows to a
level that downstream facilities are not impacted above their capacity. Additional volume for
water quality is recommended, but has not been included in the size and cost of this
improvement. It is anticipated that improvements downstream of the Ziegler Pond could
effectively be used to mitigate flood damages at the two residences, located to the south of
English Ranch South. It is recommended that the improvements downstream of the Ziegler
Pond be completed in a manner that either intercepts inadvertent flows before they reach the
residences, or provides a berm or levee to prohibit the flooding from reaching the homes.
Fox Meadows Pond: The selected improvement plan recommends grading modifications to the
Fox Meadows Pond in order to increase the overall pond volume by up to 5 acre-feet in order to
eliminate a portion of roadway flooding along Horsetooth Road. Construction is anticipated to
involve excavating the pond deeper and rebuilding the outlet structure between the pond and
downstream storm sewer manhole. Pond improvements at this location will eliminate the
overtopping during the 100-year event and provide 1-foot of additional freeboard.
English Ranch Detention Ponds #2 through #5: The selected improvement plan recommends
the installation of a double 3-foot by 8-foot box culvert below Kingsley Drive, between English
Ranch Detention Ponds #2 and #3. The box culvert would allow flow from Pond #2 to travel
freely into Pond #3 without backwater. This will help eliminate flooding to homes adjacent to
Pond #2. This improvement will also help maintain an additional point of access into the
subdivision during flooding events. A direct connection between the existing 27-inch storm
sewer in Kingsley Road and the box culvert is also recommended with this improvement.
9
Fox Meadows Master Plan ICON Engineering, Inc. December 2002
Improvement construction sequencing is not required in this reach. However, it is
recommended that the Ziegler Pond improvements be implemented as soon as possible in order
to reduce the flood potential in English Ranch South. Layout and design of this pond should be
closely coordinated with any development that may occur in the adjacent basins. Similarly, the
box culvert installation below Kingsley Drive would help alleviate some existing flood
problems. The Fox Meadows Pond improvements should be coordinated with any roadway
improvements that may occur along Ziegler Road. After the pond improvements are
completed, the required discharge to be conveyed by Ziegler Road can be reduced. There are
not any specific sequencing requirements for the installation of spillways at existing detention
facilities. Groundwater elevations were not available at the time of this report and should be
considered with the construction of the detention pond improvements.
New development within this reach shall meet criteria recommended under the Development
Criteria section of this report.
2.3 Reach 3 (Timberline Road to South Lemay Avenue)
One main problem area has been identified along Reach 3. Several factors contribute to the
flood problems at the Golden Meadows Detention Pond (Location n. The first factor is the
presence of the Union Pacific Railroad (UPRR) immediately downstream of the detention
pond. The Golden Meadows pond only has capacity for 9 acre-feet of storm -water detention
before overtopping. Once the capacity of the pond is exceeded, water will continue to build up
behind the UPRR embankment until the storm -water passes through a 36-in pipe outlet or
overtops the embankment. The hydrology completed for this study, indicated that the 100-year
existing conditions stone flow would not overtop the UPRR embankment. However, almost 52
acre-feet of volume (10.1-feet deep) are detained behind the railroad embankment during the
100-year event. The estimated water surface is within 1.3-ft of the embankment crest. Given
that the upper portion of the railroad embankment is usually ballast, and there is the potential
for storing significant volume, the railroad embankment could have significant damage, or even
fail, during a large storm event. In addition, there is not a designated spillway for flows greater
than the 100-year event since this location has not been designed as a detention pond. Finally,
a potential exists for significant damage downstream if the embankment is breached after a
large volume of water has collected upstream. Backwater (behind the UPRR embankment
during the 100-year event) extends into the various roadways within the subdivision, however,
there are no impacts to the residential structures from this backwater.
The selected improvement plan recommends that flood warning be provided at this location.
As discussed above, significant damage could result downstream in the event of an
embankment failure. It is assumed for this improvement that the flood warning device will
consist of a combination rain and flow gage, including a pressure transducer and stand pipe.
The devise will also be tied into the existing City flood warning network. Even with the
installation of a flood warning device at this location, it is also recommended that the current
stability of the embankment be analyzed and the potential downstream damages be estimated
based on those findings.
10
Fox Meadows Master Plan ICON Engineering, Inc. December 2002
Specific construction sequencing is not required in this reach.
New development within this reach shall meet criteria recommended under the Development
Criteria section of this report.
3. DEVELOPMENT CRITERIA
Development within the drainage basin can have major impacts to existing flood hazards.
Development typically increases the volume of storm -water runoff and decreases the storm -
water travel time, which can result in increased peak discharges. In general, the existing
development within the basin has provided on -site detention. However, as determined by this
study, many of the existing ponds are undersized and overtop during the larger storm events.
Given the development potential remaining within the Fox Meadows basin, development
regulations must minimize the impacts to downstream facilities. Areas of particular concern
include development tributary to Sunstone Village Pond #3 (Hydrologic Basin 335) and within
the Collindale Business Park (Hydrologic Basins 345 and 350), where development without
adequate on -site detention could result in overtopping of ponds that currently do not overflow.
Development of areas (Hydrologic Basins 200 and 210) contributing to the inadvertent
detention upstream of Ziegler Road could potentially increase damages at the adjacent homes if
runoff is not controlled through on -site detention. Finally, there is the potential for additional
development between the FCRID and Ziegler Road in Hydrologic Basins 135, 140, 145 and
150. Without on -site detention, discharges could be increased in the FCRID. As a result, the
City's freeboard requirements may not be met.
Development regulations for these areas should require on -site detention to offset the impacts
of increased discharge peaks and volumes and decreased travel times. Detention at a minimum
shall meet the City's standard of detaining to the 2-year historic storm level. Detention shall
also be regulated so that downstream facilities are not adversely impacted. The allowable
release rate for new development in the Fox Meadows Basin shall not excee�0.23-cfs/acre
Extended detention, for the benefit of water quality, should also be considered in any new
development. By detaining the runoff for an extended amount of time, one can decrease the
amount of pollutants in the water before releasing the runoff back into the natural ecosystem.
The City's standards should be referred to in order to design adequate water -quality features
within each detention pond:
4. BENEFIT/COST ANALYSIS
A Benefit -Cost analysis has been performed in order to compare the expenditures of the
selected improvement plan with the benefits of the plan. For the purposes of this analysis, the
benefits and costs have been measured in present worth dollars. Only direct benefits have been
included in the B/C ratios. "Intangible" damages including: loss of life, business and sales tax
losses, loss of employees' salaries, and damages due to failure of an embankment impounding
floodwaters, have not been included in the B/C analysis.
II
Fox Meadows Master Plan ICON Engineering, Inc. December 2002
The benefits included in the B/C ratio are the reductions in potential damages from the
problems described in the selected improvement plan description section .of this report.
Because of the proposed improvements, damages may be reduced or eliminated all together.
These potential damages include: direct damage to residential or commercial structures and
contents, damages to roadways and utilities, any costs associated with clean-up activities, and
the indirect damages associated with emergency response.
Table 3 presents a summary of the benefits, costs, and B/C ratio for the Selected Plan. Table 4
presents a detailed summary of costs for the Selected Plan. According to the results presented
in the table, the B/C ratios indicate the costs exceed the benefits for this plan. Regardless of the
low B/C ratio, the selected improvement plan does greatly reduce flood damages within the
basin. Incidental and intangible damages such as loss of life, loss of income, etc., will also be
greatly reduced as a result of this plan
Table 3: Summary of Benefit -Cost Analysis
Golden Meadows Pond $14,100
Sunstone Village Pond #4 $49,198
Sunstone Village Pond #5 $63,701
English Ranch Ponds #2 through #5 $33%570
Fox Meadows Pond $161,528
Ziegler Pond $673,205
Hewlet Packard Site - FCRID Bypass Channel / FCRID Spill Structure $34,222
FCRID Bank Modifications $20,189
Total $1,355,712
Basin Damages (Present Worth) $674,829
Approximate Benefits (Damages Reduced) $630,557
Alternative Costs $1,355,712
Benefit -Cost Ratio (All Improvements) 0.47
Benefit -Cost Ratio (Flood Control Improvements)* 0.60
B/C ratio computed using only Flood Control Improvement costs at Sunstone Village Pond #5, English
Ranch Ponds #2 through #5, and Ziegler Pond.
12
Fox Meadows Master Plan ICON Engineering, Inc. December 2002
RM
5NS1
a
tk\
lily
I/ �/
.
�� 0_4`
2
M
k - I --
it
L rA"j
pe
APPENDIX — B
IN
December 2006
ModSWMM HYDROLOGY
Stantec
LEGEND
_
-Sno-
NEW INJLK CONTOURS
NEW IJIf RMEDIATE CONIOUR`i
NEW STORM DRAIN WITH MANHOLE
ar_ BASIN OOUNDARY
r r SUB-6ASIN BOUNDARY
DESIGN POINT
302
UASIN NUMaFR
11 3
BASIN ACRES
INQ
'a Kid e77F4 Ie77
�, NGLISH RANH.r, ��.E$ � � ..
r Pb }
_
xA.
v.-�,A
` �i, •V..V.\.�IY/C_.1 L/4VJ1 .R.VP•II
>
a p
v 1 .
POND D
Vtvamm,=20.4 acre-ft..
i"r �JIT[ "ik
W CV 2.2 acre-R
* a
x j 3
POND C POND B
}(. =1.4 acre-ft E j� = 2.3 acre-ft
A.qr OFFSITE MOBILE HOME PARK
g—Ly, .� 'r t
I 4Ct '.7rif 'y d..: ,v
207
• t ja S a.:;, .
" \d
� w
"
a
. b t37 "�`FaJ r » '}`'P'i pain's , a ' n 1
r
aN,I,T
,`j�� ., • t r i a" A,',W `' ¢ «y v l�'i` $ �q ml
3 OFFSITE MOBILE HOME PARK ,� r , # l xE. _ �„
^•sIR-'
ii �f��.. +�.7th
''+p r a
f � $ � "F`f � �.',,"# . ii � ♦ � i A ; c'. :«,� 1��; '".a �H 14
q 1 y+
. � q. , { a r R n4 ft -aii� U
�, fax"
a I g
a= Lap a. r P � Tsrt �'' "Ftaa }"&4rs'J ,'s � C'i'L3 Y IFUI
oA .�_">x,..
'Y" :. 4 t 1s h y, r !t
�,. a m �.� • a, *� , � .$� t A 10
\ v
300
y
h I
1 23.1.a
y
V .= 7.6 acre-ft
V'QCV =1.53 acre-ft
• { d `A DLI. �Y
HP SWALE
(OUTLET)
Q,,,,. = 76.7cfs (MAX)
wwlm
Q.-- 26.8 cfs
Qda = 26.9 cfs
Qnm.= 20.1 cfs ..
POND L
VN„,R�0 4T acro-ft
WOCV — 0.07 acre-fi
POND F
V . 1.7 acre-ft
W CV 0.33 acre ft -
w
� e 4
i
q
v
r
•� k e
_.dSnM1..
City of Fort Collins, CDlomdo
UTILITY PLAN APPROVAL
�""ROVED: .._......._._.._.._.._.._...-...-..._..._........
City Engineer I]uic
W(I.P.t h WCStCwnY i'i _� llv
0( HI:CKED BY.
stnrmwater U I,,y Lot,
CIE CKED 01
FcrM; k 4eoe.1'.an Lute
'.IFCKLD NY
voile r�gineer Data
KED EY_
Dnte
T
I
c. u+. I+'Hteyo._ -He REVrIv noes Not
Y [:iA t'.IAI.TI f3 Ct 1 M5 "'It Ter 'CANS !SF
n_ E,"..L LJANTI L� I I+LU -FL RCVILW]ItA_:
EE IrJIS-kLECI N ANY REASON AS ACCFPTANCi
,.. _ _ I cll Ni I.
1
e=
El_2 € %
SHE
1111
Z UU
0
g
W J
LU
a a
rY Q U
It. K
z $
QccY
m cc
Pemlil-Seal
100% PLANS
NOT FOR CONSTRUCTION
January 2007
H
m
x
r2
2 z
Ln 0
P.o,.., N. .. 187010251
112 u
Jon A.M ilL
nx. ymM.nn
Dsavnng No- C-152
Revision Stoat
0 24 of 13T
ModSWMM SCHEMATIC
Stantec
LEGEND
MODSWMM BASIN BOUNDARY
FW71 DIVERSION
® PIPE / CHANNEL
103 BASIN
1(�Q DETENTION POND _—
DIRECT FLOW NODE I UNDEVELOPED LAND®
A DESIGN POINT I 296
296
7�C NOTE: RUNOFF FROM THE HARMONY /
COMMUNITY IS ROUTED THROUGH POND D
AND WILL OVERFLOW INTO BASIN 296. 322 /
302 POND D etc
1 360 286
I M
O
302 MONY MMUNITV � N
— (M LE HOME PARK) 206
i
321
1 301
r
I O6, ovor�o
® a
0 o m o m
I N I o 0
o 0 0 o 0
301 HARMONY COMMUNITY
' — (MOBILE HOME PARK)— o o FRO�N�T F
a••• 0 a 0 D
300 -. D D
0 0
D 0
0 D
HARMONY COMMUNITY I
' 300 (MOBILE HOME PARK) u 0 a D 0
o-i(i rDiii. 243
220 215
ENGLISH RANCH POND #7
e
UNDEVELOPED LAND INADVERTENT
DETENTION
C
Q o
eo o Qo 0 0
o,= CID�oe�o oe� oo ve Ie C o (^
/ILLAGE o 0 0 o eD
e O o C o0
o d 210
0 0 0 0cp
0 o O
0 209 0 210
� Rm
HARMONY ROAD
w
HP CAMPUS
(AVAGO)
0 ]Da 400 am
SCALEINFEET
.t
9
City of Fort Collins. Colorado
UTILITY PLAN APPROVAL
THESE PUNS HAVE BEEN REVIEWED BY THE
LOCAL ENTITY FOR CONCEPT ONLY. THE
APPROVED:
REVIEW DOES NOT IMPLY RESPONSIBILITY BY
City Engineer Date
THE REVIEWING DEPARTMENT, THE LOCAL
CHECKED BY:
ENTITY ENGINEER. OR THE LOCAL ENTITY FOR
WPter k Woete.oter U011ty Dale
ACCURACY AND CORRECTNESS OF THE
CALCULATIONS. FURTHERMORE. THE REVIEW
CHECKED BY:
DOES NOT IMPLY THAT QUANTITIES OF ITEMS
Stor—ter Utility Date
ON THE PLANS ARE THE FINAL QUANTITIES
CHECKED BY:
REQUIRED. THE REVIEW SHALL NOT BE
Par" 3 Recreation Dota
CONSTRUED IN ANY REASON AS ACCEPTANCE
OF RNANCX RESPONSIBILITY BY THE LOCAL
CHECKED BY:
iraRlc Engineer Dcte
ENTITY FOR ADDITIONAL QUANTITIES OF ITEMS
SHOWN THAT MAY BE REQUIRED DURWG THE
CHECKED BY:
CONSTRUCTION PHASE.
Wte
100% PLANS
NOT FOR CONSTRUCTION
Jaws M7
P.w, Nv.a..: 107010251
i� rM Mc
— Dn. nww
DTaAiI19 Nay G-153
ROYWM Sheet
0 25 Of 137
ModSWMM HYDROLOGY
FOR SWMM 5.0 INPUT
ModSWMM INPUT
frv-100-ult-p.in
2 1 1 2
3 4
WATERSHED 0
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRv by Stantec, Jan 2007
999 000 1.0 1 0.0
1 ,
24 5.0
1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46
1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75
0.73 0.71 0.69 0.67
1 100 100 2881 12.3 32.00.0390.0160.2500.1000.300 0.51 0.50 0.0018
1 105 105 641 3.4 10.00.0230.0160.2500.1000.300 0.51 0.50 0.0018
1 110 110 2758 17.6 90.00.0300.0160.2500.1000.300 0.51 0.50 0.0018
1 115 115 3722 18.8 13.50.0860.0160.2500.1000.300 0.51 0.50 0.0018
1 120 120 4665 36.2 86.50.0160.0160.2500.1000.300 0.51 0.50 0.0018
1 125 125 3494 36.5 68.80.0230.0160.2500.1000.300 0.51 0.50 0.0018
1 130 129 8604 39.7 78.00.0310.0160.2500.1000.300 0.51 0.50 0.0018
1 135 135 4127 21.6 13.30.0290.0160.2500.1000.300 0.51 0.50 0.0018
1 140 140 8223 58.9 24.80.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 145 145 4915 38.7 12.00.0160.0160.2500.1000.300 0.51 0.50 0.0018
1 150 10 3026 19.8 6.80.0510.0160.2500.1000.300 0.51 0.50 0.0018
1 155 115 9801 17.1 70.00.0130.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Paragon, Basin 205 (Previously LSI Logic)
1 205 205 2497 17.2 82.00.0160.0160.2500.1000.300 0.51 0.50 0.0018
-------------------------------------------------------------------------
Front Range village, Basins 206 - 210
1 206 206 7957 54.8 81.20.0170 M60.2500.1000.300 0.51 0.50 0.0018
1 207 207 1812 4.0 81.60.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 208 208 5467 17.9 89.50.0200.0160.2500.1000.300 0.51 0.50 0.0018
1 209 209 2960 18.1 88.70.0150.0160.2500.1000.300 0.51 0.50 0.0018
1 210 210 2654 3.9 86.60.0420.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* English Ranch, Basins 215 - 240
1 215 215 9265 41.9 38.50.0070.0160.2500.1000.300 0.51 0.50 0.0018
1 220 215 4630 16.9 38.50.0120.0160.2500.1000.300 0.51 0.50 0.0018
1 225 225 5678 21.9 38.50.0240.0160.2500.1000.300 0.51 0.50 0.0018
1 230 230 5639 18.9 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018
1 235 235 5949 29.5 38.50.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 240 240 5007 32.3 41.50.0120.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Pads at Harmony Road, Basins 243 - 245
1 243 243 3359 5.5 92.70.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 244 244 1098 2.5 54.80.0170.0160.2500.1000.300 0.51 0.50• 0.0018
1 245 245 1245 2.8 63.20.0130.0160.2500.1000.300 0.51 0.50 0.0018
-------------------------------------------------------------------------
* Front Range village, Basin 250
1 250 250 1654 8.5 79.80.0180.0160.2500.1000.300 0.51 0.50 0.0018
-------------------------------------------------------------------------
* Future Development north of FRv, Basins 296, 297
1 296 296 2703 12.9 90.00.0100.0160.2500.1000.300 0.51 0.50 0.0018
1 297 297 4199 28.9 90.00.0070.0160.2500.1000.300 0.51 0.50 0.0018
-------------------------------------------------------------------------
Harmony Trailer Park west of Front Range village, Basins 300-302, 305
1 300 300 3357 23.1 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 301 301 2977 20.5 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 302 302 1992 11.3 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 305 305 7663 24.1 38.50.0150.0160.2500.1000.300 0.51 0.50 0.0018
=-------------------------------------------------------------------------
1 310 31012018 84.7 37.00.0050.0160.2500.1000.300 0.51 0.50 0.0018
1 315 315 9023 60.9 38.50.0060.0160.2500.1000.300 0.51 0.50 0.0018
1 320 320 5102 29.4 38.50.0210.0160.2500.1000.300 0.51 0.50 0.0018
1 325 325 2084 14.4 40.00.0210.0160.2500.1000.300 0.51 0.50 0.0018
1 330 330 2038 15.3 46.80.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 335 334 3567 30.3 27.80.0150.0160.2500.1000.300 0.51 0.50 0.0018
Page 1
frv-100-ult-p.in
1
340
340
4623
34.6 30.00.0270.0160.2500.1000.300
0.51
0.50 0.0018
1
345
345
5109
44.8 27.00.0080.0160.2500.1000.300
0.51
0.50 0.0018
1
350
345
6639
34.9 90.00.0110.0160.2500.1000.300
0.51
0.50 0.0018
1
355
355
2940
27.4 48.00.0100.0160.2500.1000.300
0.51
0.50 0.0018
1
400
400
6703
51.7 71.50.0240.0160.2500.1000.300
0.51
0.50 0.0018
1
405
405
7493
41.8 60.80.0180.0160.2500.1000.300
0.51
0.50 0.0018
1
410
410
7013
58.6 48.50.0090.0160.2500.1000.300
0.51
0.50 0.0018
1
415
415
5458
42.1 40.00.0090.0160.2500.1000.300
0.51
0.50 0.0018
1
420
421
7066109.0 11.60.0080.0160.2500.1000.300
0.51
0.50 0.0018
1
425
425
5627
31.0 38.50.0090.0160.2500.1000.300
0.51
0.50 0.0018
1
430
430
2979
22.5 38.50.0180.0160.2500.1000.300
0.51
0.50 0.0018
1
435
435
3776
31.9 10.00.0110.0160.2500.1000.300
0.51
0.50 0.0018
1
440
440
2603
9.5 38.50.0110.0160.2500.1000.300
0.51
0.50 0.0018
0
0
0
430
440
0 5
1.25
600 0.0130
0
0
0.013
1.25
1
513 0.0120
20
20
0.020
5.00
0
440
437
0 3
0
0 0.0000
0
0
0.000
0.00
436
437
426
3 3
0
0 0.0000
0
0
0.000
0.00
0.00
0.0
4
0.0
10000 9996.0
0
426
425
0 2
1.25
1339 0.0100
0
0
0.013
1.25
0
436
435
0 1
15
1889 0.0080
8
8
0.035
5.00
0
425
423
0 3
0
0 0.0000
0
0
0.000
0.00
0
435
434
0 3
0
0 0.0000
0
0
0.000
0.00
0
423
415
0 5
1.5
1457 0.0050
0
0
0.013
1.50
1
1457 0.0050
20
20
0.020
5.00
0
434
415
0 4
0.5
768 0.0050
12
12
0.016
0.50
10
768 0.0050
20
20
0.020
5.00
0
415
400
0 3
0
0 0.0000
0
0
0.000
0.00
0
410
400
0 5
2.5
1301 0.0090
0
0
0.013
2.50
1
1380 0.0070
20
20
0.020
5.00
0
405
400
0 5
3
1065 0.0090
0
0
0.013
3.00
80
1065 0.0090
1
1
0.005
5.00
0
400
401
0 3
0
0 0.0000
0
0
0.000
0.00
0
401
340
11 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.0
0.001
8.0
4.85
12.7
8.97
16.7
9.03
23.0
10.29
57.9
11.59
70.8
16.67
80.7
31.34
98.0
52.86
115.4
95.93 705.0
0
355
340
0 4
0.25
608 0.0050
12
0
0.016
0.50
5
608 0.0050
20
0
0.020
5.00
0
340
342
0 3
0
0 0.0000
0
0
0.000
0.00
0
342
341
8 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.0
0.20
2.9
5.68
23.5
14.66
53.0
28.14
73.1
47.36
88.5
72.54 103.6
95.53
111.0
0
341
325
0 5
3.5
1200 0.0050
0
0
0.013
3.50
1
1200 0.0050
20
20
0.020
5.00
0
325
324
0 3
0
0 0.0000
0
0
0.000
0.00
0
324
314
0 5
3.5
1242 0.0030
0
0
0.013
3.50
1
1242 0.0030
20
20
0.020
5.00
0
421
347
5 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.0
0.16
2.1
8.27
10.5
34.02
17.4
43.63
18.7
0
347
314
0 2
1.5
1139 0.0150
0
0
0.013
1.50
0
345
344
0 3
0
0 0.0000
0
0
0.000
0.00
0
344
314
5 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.0
0.04
1.9
2.79
16.8
10.12
27.6
21.56
35.0
0
314
313
0 3
0
0 0.0000
0
0
0.000
0.00
0
313
312
0 5
2
409 0.0090
0
0
0.013
2.00
Page 2
frv-100-ult-p.in
10
409
0.0350
5
5
0.035
6.00
0
330
312
5 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.001
4.0
0.97
6.6
1.98
8.0
3.04
104.0
0
312
311
0 3
0
0
0.0000
0
0
0.000
0.00
0
311
310
0 5
2
1566
0.0090
0
0
0.013
2.00
10
1566
0.0090
5
5
0.035
6.00
0
334
333
5 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.012
5.6
0.32
21.9
6.45
34.0
16.40
100.0
0
333
320
0 5
2
1064
0.0090
0
0
0.013
2.00
5
1075
0.0090
3
3
0.035
6.00
0
320
319
0 3
0
0
0.0000
0
0
0.000
0.00
0
319
318
9 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.003
0.4
0.52
3.3
2.06
6.2
4.21
9.2
5.92
11.0
6.27
17.5
7.07
109.6
7.93
260.7
0
318
305
0 5
1.25
1320
0.0050
0
0
0.013
1.25
1
1384
0.0040
20
20
0.020
5.00
0
305
304
0 3
0
0
0.0000
0
0
0.000
0.00
0
304
303
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.027
13.6
0.59
28.3
2.19
37.7
6.49
46
7.13
100
7.77
200
8.24
300
0
303
310
0 5
2
671
0.0060
0
0
0.013
2.00
10
671
0.0060
5
5
0.035
6.00
0
310
309
0 3
0
0
0.0000
0
0
0.000
0.00
0
309
308
7 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.004
0.7
1.40
17.6
7.92
25.5
20.29
26.9
25.02
27.4
30.20
273
242
308
307
3 3
0
0
0.0000
0
0
0.000
0.00
0
0
27.4
0
273
245.6
0
307
306
0 2
2.5
1351
0.0060
0
0
0.013
2.50
0
315
306
10 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.287
10.4
0.97
15.0
3.07
22.9
5.50
29.0
8.27
33.2
11.42
35.7
13.14
36.2
13.61
106
13.97
206.0
0
306
238
0 3
0
0
0.0000
0
0
0.000
0.00
*-------------------------------------------------------------------------
* Harmony Trailer
Park
routing
0
300
291
0 3
0
0
0.0000
0
0
0.000
0.00
0
291
321
0 2
4
660
0.0050
0
0
0.013
4.00
0
301
321
0 3
0
0
0.0000
0
0
0.000
0.00
0
321
292
0 3
0
0
0.0000
0
0
0.000
0.00
0
292
360
0 2
4
500
0.0050
0
0
0.013
4.00
0
302
322
0 3
0
0
0.0000
0
0
0.000
0.00
0
322
299
0 3
0
0
0.0000
0
0
0.000
0.00
0
299
296
0 2
6.0
270
0.0100
0
0
0.013
6.00
-------------------------------------------------------------------------
* Pads
at Harmony Road
routing
0
245
247
0 3
0
0
0.0000
0
0
0.000
0.00
0
247
294
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.01
2.1
0.06
3.4
0.13
4.4
0.25
5.1
0.37
10.0
0
244
246
0 3
0
0
0.0000
0
0
0.000
0.00
0
246
290
7 2
0.1
1
0.0100
0
0
0.010
0.10
Page 3
frv-100-ult-p.in
0.00
0.0
0.01
1.9
0.02
3.1
0.06
3.9
0.12
4.6
0.21
5.2
0.30
10.0
0
290
243
0 2
2
600
0.0100
0
0
0.013
2.00
0
294
243
0 2
2
834
0.0100
0
0
0.013
2.00
0
243
295
0 3
0
0
0.0000
0
0
0.000
0.00
0
295
206
0 2
4
1800
0.0100
0
0
0.013
4.00
0
206
360
0 3
0
0
0.0000
0
0
0.000
0.00
*-------------------------------------------------------------------------
* undeveloped
site north of FRv routing
0
296
293
0 3
0
0
0.0000
0
0
0.000
0.00
0
293
297
0 1
4
1800
0.0050
4
4
0.035
4.00
0
297
298
0 3
0
0
0.0000
0
0
0.000
0.00
* Future detention
pond 298 by
others
0
298
212
3 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
19.00
19.6
22.50
24.2
*-------------------------------------------------------------------------
* Front
Range
village
onsite routing
0
360
286
0 3
0
0
0.0000
0
0
0.000
0.00
* Pond
D
0
286
276
4 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
6.01
0.2
12.01
0.4
18.01
1.1
0
276
270
0 1
1
2160
0.0100
4
4
0.035
4.00
0
207
287
0 3
0
0
0.0000
0
0
0.000
0.00
* Pond
c
0
287
277
4 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.61
0.3
1.21
0.6
1.81
1.1
0
277
270
0 1
1
1730
0.0100
4
4
0.035
4.00
0
208
288
0 3
0
0
0.0000
0
0
0.000
0.00
* Pond
B
0
288
278
4 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
1.67
2.1
3.33
9.8
5.01
13.8
0
278
270
0 1
1
1150
0.0100
4
4
0.035
4.00
0
209
289
0 3
0
0
0.0000
0
0
0.000
0.00
* Pond
A
0
289
279
4 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
1.51
4.1
3.01
8.1
4.51
10.1
0
279
270
0 1
1
250
0.0100
4
4
0.035
4.00
*-------------------------------------------------------------------------
* AMD
(Previously
L5I
Logic) pond routing through FRv
onsite
Basins 210
and
250
0
205
216
0 3
0
0
0.0000
0
0
0.000
0.00
* AMD
Pond
0
216
204
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.35
0.0
1.30
0.0
1.38
11.4
1.65
21.9
3.12
40.3
7.04
66.0
8.48
200.0
0
204
249
0 2
4
50
0.0100
0
0
0.013
4.00
0
250
249
0 3
0
0
0.0000
0
0
0.000
0.00
0
249
248
0 3
0
0
0.0000
0
0
0.000
0.00
* Pond
F
0
248
251
4 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
1.01
1.21
3.01
4.1
6.01
6.7
0
251
200
0 2
4
50
0.0100
0
0
0.013
4.00
0
210
200
0 3
0
0
0.0000
0
0
0.000
0.00
0
200
201
0 3
0
0
0.0000
0
0
0.000
0.00
* Pond
E
0
201
202
4 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
1.01
1.21
3.01
4.1
6.01
6.7
Page 4
frv-100-ult-p.in
0
202
270
0 4
15
902
0.0020
4
8
0.035
6.00
87
902
0.0020
20
20
0.020
2.00
-------------------------------------------------------------------------
0
270
212
0 3
0
0
0.0000
0
0
0.000
0.00
0
242
240
0 4
0.5
1779
0.0070
12
12
0.016
0.50
10
1779
0.0070
20
20
0.020
5.00
0
240
235
0 3
0
0
0.0000
0
0
0.000
0.00
0
238
237
0 5
3
787
0.0060
0
0
0.013
3.00
1
787
0.0060
20
20
0.020
5.00
0
237
236
0 3
0
0
0.0000
0
0
0.000
0.00
0
236
232
0 5
3
740
0.0050
0
0
0.013
3.00
1
740
0.0050
20
20
0.020
5.00
0
235
234
0 3
0
0
0.0000
0
0
0.000
0.00
0
234
233
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.44
3.1
2.350
4.2
2.81
4.6
4.69
5.1
6.39
100.6
7.13
203.7
8.21
401.9
230
233
232
5 3
0
0
0.0000
0
0
0.000
0.00
0
0
5
0
101
95
204
198
402
396
0
232
231
0 3
0
0
0.0000
0
0
0.000
0.00
0
231
227
0 5
3
311
0.0030
0
0
0.013
3.00
1
311
0.0030
20
20
0.020
5.00
0
230
229
0 3
0
0
0.0000
0
0
0.000
0.00
0
229
228
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.07
2.0
1.12
2.9
3.46
3.5
4.60
200.8
5.29
401
225
228
227
4 3
0
0
0.0000
0
0
0.000
0.00
0
0
4
0
201
197
401
397
0
227
226
0 3
0
0
0.0000
0
0
0.000
0.00
0
226
222
0 5
3
477
0.0060
0
0
0.013
3.00
1
477
0.0060
20
20
0.020
5.00
0
225
224
0 3
0
0
0.0000
0
0
0.000
0.00
0
224
223
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.002
1.0
0.51
2.7
1.99
3.6
3.90
4.3
4.46
4.5
4.85
200
5.10
400
155
223
222
4 3
0
0
0.0000
0
0
0.000
0.00
0
0
4
0
200
195
400
395
0
222
221
0 3
0
0
0.0000
0
0
0.000
0.00
0
221
152
0 5
3
1569
0.0240
0
0
0.013
3.00
1
1569
0.0140
20
20
0.020
8.00
0
152
0 3
0
0
0.0000
0
0
0.000
0.00
0
215
214
0 3
0
0
0.0000
0
0
0.000
0.00
0
214
203
9 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.08
12.6
0.411
14.9
4.00
21.8
9.62
26.9
12.17
28.7
13.04
149
13.17
149.4
14.04
149.9
297
203
213
3 3
0
0
0.0000
0
0
0.000
0.00
0
0
29.5
0
150
120
0
213
212
0 5
3
610
0.0030
0
0
0.013
3.00
1
610
0.0030
20
20
0.020
5.00
0
212
211
0 3
0
0
0.0000
0
0
0.000
0.00
0
211
125
0 4
5
1670
0.0060
4
4
0.035
6.00
53
1670
0.0060
4
40
0.020
3.00
0
125
111
0 3
0
0
0.0000
0
0
0.000
0.00
0
111
110
0 4
10
1400
0;0040
0
0
0.013
4.00
Page 5
frv-100-ult-p.in
10
1400
0.0040
20
20
0.020
3.50
0
110
105
0
3
0
0
0.0000
0
0
0.000
0.00
0
105
104
0
3
0
0
0.0000
0
0
0.000
0.00
100
104
103
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
20
0
2000
1980
0
103
120
0
2
2.8
617
0.0050
0.00
0.00
0.013
2.80
0
129
120
0
1
130
956
0.0080
60.00
6.00
0.030
8.00
0
120
100
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
100
101
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
101
99
7
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
1.54
4.0
6.085
13.9
11.93
22.0
19.08
377.8
27.46
1130
29.80
1400
0
154
221
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
150
146
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
146
145
0
4
31
1384
0.0020
1.50
1.50
0.035
6.00
62
1384
0.0020
0.00
15.00
0.050
12.00
0
145
141
0
3
0
0
0.0000
0.000
0.000
0.000
0.00
0
141
139
0
4
31
1193
0.0020
1.50
1.50
0.035
6.00
62
1193
0.0020
0.00
15.00
0.050
12.00
0
140
139
8
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.01
1.0
0.39
7.0
1.65
8.9
3.96
10.5
5.45
11.2
7.07
40.0
7.99
100.0
0
139
136
0
3
0
0
0.0000
0.000
0.000
0.000
0.00
0
136
135
0
4
31
910
0.0020
1.50
1.50
0.035
6.00
62
910
0.0020
0.00
15.00
0.050
12.00
0
135
116
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
116
115
0
4
31
2552
0.0020
1.50
1.50
0.035
6.00
62
2552
0.0020
0.00
15.00
0.050
12.00
95
99
115
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
25
0
1012
987
0
115
90
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
95
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
-1
11
150
2
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
300
100
300
0
10
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
155
154
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
91
90
80
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
444
0
6000
5556
0
80
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
91
95
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
15
5
200
205
206
207
208 209
210
244 245
249 250
300
301 302
360
ENDPROGRAM
Page 6
ModSWMM OUTPUT
Stantec
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
*** ENTRY MADE TO RUNOFF MODEL ***
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 1 Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
ri
NUMBER OF TIME STEPS 999
INTEGRATION TIME INTERVAL (MINUTES) 1.00
25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
1.00 1.14 1.33 2.23 2.84 5.49 9.95
1.22 1.06 1.00 .95 .91 .87 .84
.73 .71 .69 .67
4.12 2.48 1.46
.81 .78 .75
V:\52870f\active\187010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out
2 Prini
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
SUBAREA
GUTTER
WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR
SURFACE STORAGE(IN)
INFILTRATION RATE(IN/HR)
GAGE
NUMBER
OR MANHOLE
(FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
MAXIMUM
MINIMUM
DECAY RATE
NO
100
100
2881.0
12.3
32.0
.0390
.016
.250
.100
.300
.51
.50
.00180
1
105
105
641.0
3.4
10.0
.0230
.016
.250
.100
.300
.51
.50
.00180
1
110
110
2758.0
17.6
90.0
.0300
.016
.250
.100
.300
.51
.50
.00180
1
115
115
3722.0
18.8
13.5
.0860
.016
.250
.100
.300
.51
.50
.00180
1
120
120
4665.0
36.2
86.5
.0160
.016
.250
.100
.300
.51
.50
.00180
1
125
125
3494.0
36.5
68.8
.0230
.016
.250
.100
.300
.51
.50
.00180
1
130
129
8604.0
39.7
78.0
.0310
.016
.250
.100
.300
.51
.50
.00180
1
135
135
4127.0
21.6
13.3
.0290
.016
.250
.100
.300
.51
.50
.00180
1
140
140
8223.0
58.9
24.8
.0090
.016
.250
.100
.300
.51
.50
.00180
1
145
145
4915.0
38.7
12.0
.0160
.016
.250
.100
.300
.51
.50
.00180
1
150
10
3026.0
19.8
6.8
.0510
.016
.250
.100
.300
.51
.50
.00180
1
155
115
9801.0
17.1
70.0
.0130
.016
.250
.100
.300
.51
.50
.00180
1
205
205
2497.0
17.2
82.0
.0160
.016
.250
.100
.300
.51
.50
.00180
1
206
206
7957.0
54.8
81.2
.0170
.016
.250
.100
.300
.51
.50
.00180
1
207
207
1812.0
4.0
81.6
.0130
.016
.250
.100
.300
.51
.50
.00180
1
208
208
5467.0
17.9
89.5
.0200
.016
.250
.100
.300
.51
.50
.00180
1
209
209
2960.0
18.1
88.7
.0150
.016
.250
.100
.300
.51
.50
.00180
1
210
210
2654.0
3.9
86.6
.0420
.016
.250
.100
.300
.51
.50
.00180
1
215
215
9265.0
41.9
38.5
.0070
.016
.250
.100
.300
.51
.50
.00180
1
220
215
4630.0
16.9
38.5
.0120
.016
.250
.100
.300
.51
.50
.00180
1
225
225
5678.0
21.9
38.5
.0240
.016
.250
.100
.300
.51
.50
.00180
1
230
230
5639.0
18.9
38.5
.0180
.016
.250
.100
.300
.51
.50
.00180
1
235
235
5949.0
29.5
38.5
.0130
.016
.250
.100
.300
.51
.50
.00180
1
240
240
5007.0
32.3
41.5
.0120
.016
.250
.100
.300
.51
.50
.00180
1
243
243
3359.0
5.5
92.7
.0080
.016
.250
.100
.300
.51
.50
.00180
1
244
244
1098.0
2.5
54.8
.0170
.016
.250
.100
.300
.51
.60
.00180
1
245
245
1245.0
2.8
63.2
.0130
.016
.250
.100
.300
.51
.50
.00180
1
250
250
1654.0
8.5
79.8
.0180
.016
.250
.100
.300
.51
.50
.00180
1
296
296
2703.0
12.9
90.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
297
297
4199.0
28.9
90.0
.0070
.016
.250
.100
.300
.51
.50
.00180
1
300
300
3357.0
23.1
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
301
301
2977.0
20.5
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
302
302
1992.0
11.3
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
305
305
7663.0
24.1
38.5
.0150
.016
.250
.100
.300
.51
.50
.00180
1
310
310
12018.0
84.7
37.0
.0050
.016
.250
.100
.300
.51
.50
.00180
1
315
315
9023.0
60.9
38.5
.0060
.016
.250
.100
.300
.51
.50
.00180
1
320
320
5102.0
29.4
38.5
.0210
.016
.250
.100
.300
.51
.50
.00180
1
325
325
2084.0
14.4
40.0
.0210
.016
.250
.100
.300
.51
.50
.00180
1
330
330
2038.0
15.3
46.8
.0130
.016
.250
.100
.300
.51
.50
.00180
1
335
334
3567.0
30.3
27.8
.0150
.016
.250
.100
.300
.51
.50
.00180
1
V:\52870t\active\l87010251\Reports\Drainage\ModSVVMM\frv-100-ult-p.out 3 Print
340
340
4623.0
34.6
1
345
345
5109.0
44.8
1
350
345
6639.0
34.9
1
355
355
2940.0
27.4
1
400
400
6703.0
51.7
1
405
405
7493.0
41.E
1
410
410
7013.0
58.6
1
415
415
5458.0
42.1
1
420
421
7066.0
109.0
1
425
425
5627.0
31.0
1
430
430
2979.0
22.5
1
435
435
3776.0
31.9
1
440
440
2603.0
9.5
1
TOTAL NUMBER OF
SUBCATCHMENTS,
TOTAL TRIBUTARY
AREA (ACRES),
Stantec
30.0
.0270
.016
.250
.100
.300
.51
.50
.00180
27.0
.0080
.016
.250
.100
.300
.51
.50
.00180
90.0
.0110
.016
.250
.100
.300
.51
.50
.00180
48.0
.0100
.016
.250
.100
.300
.51
.50
.00180
71.5
.0240
.016
.250
.100
.300
.51
.50
.00180
60.8
.0180
.016
.250
.100
.300
.51
.50
.00180
48.5
.0090
.016
.250
.100
.300
.51
.50
.00180
40.0
.0090
.016
.250
.100
.300
.51 '
.50
.00180
11.6
.0080
.016
.250
.100
.300
.51
.50
.00180
38.5
.0090
.016
.250
.100
.300
.51
.50
.00180
38.5
.0180
.016
.250
.100
.300
.51
.50
.00180
10.0
.0110
.016
.250
.100
.300
.51
.50
.00180
38.5
.0110
.016
.250
.100
.300
.51
.50
.00180
53
1512.80
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 4 Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 1OO-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED AREA (ACRES) 1512.800
TOTAL RAINFALL (INCHES) 3.669
TOTAL INFILTRATION (INCHES) .742
TOTAL WATERSHED OUTFLOW (INCHES) 2.867
TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .060
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 5 Pdni
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
WIDTH
INVERT
SIDE SLOPES
OVERBANK/SURCHARGE
GUTTER
GUTTER
NDP
NP
OR DIAM
LENGTH
SLOPE
HORIZ
TO VERT
MANNING
JK
NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
430
440
0
5
PIPE
1.3
600.
.0130
.0
.0
.013
0
OVERFLOW
1.0
513.
.0152
20.0
20.0
.020
440
437
0
3
.0
0.
.0010
.0
.0
.001
0
437
426
3
3
.0
0.
.0010
.0
.0
.001
436
DIVERSION
TO GUTTER
NUMBER 436 TOTAL 0 VS
DIVERTED 0
IN CFS
0
.0
4.0 .0
10000.0
9996.0
426
425
0
2
PIPE
1.3
1339.
.0100
.0
.0
.013
0
436
435
0
1
CHANNEL
15.0
1889.
.0080
8.0
8.0
.035
0
425
423
0
3
.0
0.
.0010
.0
.0
.001
0
435
434
0
3
.0
0.
.0010
.0
.0
.001
0
423
415
0
5
PIPE
1.5
1457.
.0050 .
.0
.0
.013
0
OVERFLOW
1.0
1457.
.0050
20.0
20.0
.020
434
415
0
4
CHANNEL
.5
768.
.0050
12.0
12.0
.016
0
OVERFLOW
10.0
768.
.0050
20.0
20.0
.020
415
400
0
3
.0
0.
.0010
.0
.0
.001
0
410
400
0
5
PIPE
2.5
1301.
.0090
.0
.0
.013
0
OVERFLOW
1.0
1380.
.0085
20.0
20.0
.020
405
400
0
5
PIPE
3.0
1065.
.0090
.0
.0
.013
0
OVERFLOW
80.0
1065.
.0090
1.0
1.0
.005
400
401
0
3
.0
0.
.0010
.0
.0
.001
0
401
340
11
2
PIPE
.1
1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.0
.0
.0 8.0
4.8
12.7
9.0
16.7
9.0
23.0
57.9
11.6
70.8
16.7 80.7
31.3
98.0
52.9
115.4
95.9
705.0
355
340
0
4
CHANNEL
.3
608.
.0050
12.0
.0
.016
0
OVERFLOW
5.0
608.
.0050
20.0
.0
.020
340
342
0
3
.0
0.
.0010
.0
.0
.001
0
342
341
8
2
PIPE
.1
1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.0
.0
.2 2.9
5.7
23.5
14.7
53.0
28.1
73.1
88.5
72.5
103.6
95.5 111.0
341
325
0
5
PIPE
3.5
1200.
.0050
.0
.0
.013
0
OVERFLOW
1.0
1200.
.0050
20.0
20.0
.020
325
324
0
3
.0
0.
.0010
.0
.0
.001
0
324
.314
0
5
PIPE
3.5
1242.
.0030
.0
.0
.013
0
OVERFLOW
1.0
1242.
.0030
20.0
20.0
.020
421
347
5
2
PIPE
.1
1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
0
.0
.2 2.1
8.3
10.5
34.0
17.4
43.6
18.7
347
314
0
2
PIPE
1.5
1139.
.0150
.0
.0
.013
0
345
344
0
3
.0
0.
.0010
.0
.0
.001
0
344
314
5
2
PIPE
.1
1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
.0
.0
.0 1.9
2.8
16.8
10.1
27.6
21.6
35.0
314
313
0
3
.0
0.
.0010
.0
.0
.001
0
313
312
0
5
PIPE
2.0
409.
.0090
.0
.0
.013
0
OVERFLOW
10.0
409.
.0090
5.0
5.0
.035
330
312
5
2
PIPE
.1
1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET VS
SPILLWAY OUTFLOW
V:\52870f\active\l 87010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out
DEPTH
(FT)
1.25
5.00
10.00
10.00
1.25
5.00
10.00
10.00
1.50
5.00
.50
5.00
10.00
2.50
5.00
3.00
5.00
10.00
.10
10.3
.50
5.00
10.00
.10
47.4
3.50
5.00
10.00
3.50
5.00
.10
1.50
10.00
.10
10.00
2.00
6.00
.10
♦^
6 Print
Stantec
312
0
311
0
334
0
333
0
320
0
319
0
11.0
318
0
305
0
304
0
100.0
303
0
310
0
309
0
27.4
308
242
307
0
315
0
33.2
306
0
300
0
291
0
301
0
321
0
292
0
302
0
322
0
299
0
245
0
247
0
10.0
244
0
246
0
0
.0
.0 4.0 1.0 6.6
2.0
8.0
3.0
104.0
311
0
3
.0 0.
.0010
.0
.0
.001
310
0
5
PIPE 2.0 1566.
.0090
.0
.0
.013
OVERFLOW 10.0 1566.
.0090
5.0
5.0
.035
333
5
2
PIPE .1 1.
.0100
.0
.0
.010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 5.6 3 21.9
6.5
34.0
16.4
100.0
320
0
5
PIPE 2.0 1064.
.0090
.0
.0
.013
OVERFLOW 5.0 1075.
.0089
3.0
3.0
.035
319
0
3
.0 0.
.0010
.0
.0
.001
318
9
2
PIPE .1 1.
.0100
.0
.0
.010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 .4 .5 3.3
2.1
6.2
4.2
9.2
6.3
17.5
7.1 109.6 7.9 260.7
305
0
5
PIPE 1.3 1320.
.0050
.0
.0
.013
OVERFLOW 1.0 1384.
.0048
20.0
20.0
.020
304
0
3
.0 0.
.0010
.0
.0
.001
303
8
2
PIPE .1 1.
.0100
.0
.0
.010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 13.6 .6 28.3
2.2
37.7
6.5
46.0
7.8
200.0
8.2 300.0
310
0
5
PIPE 2.0 671.
.0060
.0
.0
.013
OVERFLOW 10.0 671.
.0060
5.0
5.0
.035
309
0
3
.0 0.
.0010
.0
.0
.001
308
7
2
PIPE .1 1.
.0100
.0
.0
.010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 .7 1.4 17.6
7.9
25.5
20.3
26.9
30.2
273.0
307
3
3
.0 0.
.0010
.0
.0
.001
DIVERSION
TO GUTTER NUMBER 242
- TOTAL 0 VS DIVERTED 0
IN CFS
0
.0
27.4
.0 273.0 245.6
306
0
2
PIPE
2.5 1351.
.0060
.0
306
10
2
PIPE
.1 1.
.0100
.0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.3
10.4 1.0 15.0
3.1
22.9
11.4
35.7
13.1
36.2 13.6 106.0
14.0
206.0
238
0
3
.0 0.
.0010
.0
291
0
3
.0 0.
.0010
.0
321
0
2
PIPE
4.0 660.
.0050
.0
321
0
3
.0 0.
.0010
.0
292
0
3
.0 0.
.0010
.0
360
0
2
PIPE
4.0 500.
.0050
.0
322
0
3
.0 0.
.0010
.0
299
0
3
.0 0.
.0010
.0
296
0
2
PIPE
6.0 270.
.0100
.0
247
0
3
.0 0.
.0010
.0
294
6
2
PIPE
.1 1.
.0100
.0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
2.1 .1 3.4
.1
4.4
246
0
3
.0 0.
.0010
.0
290
7
2
PIPE
.1 1.
.0100
.0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
1.9 .0 3.1
.1
3.9
5.2
.3 10.0
290 243 0 2 PIPE 2.0 600. .0100 .0
0
V:\52870f\active\l87010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out
.0 .013
.0 .010
5.5 29.0
.0 .001
.0 .001
.0 .013
.0 .001
.0 .001
.0 .013
.0 .001
.0 .001
.0 .013
.0 .001
.0 .010
10.00
2.00
6.00
.10
2.00
6.00
10.00
.10
5.9
1.25
5.00
10.00
.10
7.1
2.00
6.00
10.00
.10
25.0
10.00
2.50
.10
8.3
10.00
10.00
4.00
10.00
10.00
4.00
10.00
10.00
6.00
10.00
.10
.3 5.1
.4
0 .001
10.00
0 .010
.10
1 4.6
.2
0 .013
2.00
7 Prin1
Stantec
294
243
0
2
PIPE 2.0 834.
.0100
.0
.0
.013
2.00
0
243
295
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
295
206
0
2
PIPE 4.0 1800.
.0100
.0
.0
.013
4.00
0
206
360
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
296
293
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
293
297
0
1
CHANNEL 4.0 1800.
.0050
4.0
4.0
.035
4.00
0
297
298
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
298
212
3
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
19.0 19.6 22.5 24.2
360
286
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
286
276
4
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
6.0 .2 12.0 4
18.0
1.1
276
270
0
1
CHANNEL 1.0 2160.
.0100
4.0
4.0
.035
4.00
0
207
287
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
287
277
4
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
6 .3 1.2 6
1.8
1.1
277
270
0
1
CHANNEL 1.0 1730.
.0100
4.0
4.0
.035
4.00
0
208
288
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
288
278
4
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
1.7 2.1 3.3 9.8
5.0
13.8
278
270
0
1
CHANNEL 1.0 1150.
.0100
4.0
'4.0
.035
4.00
0
209
289
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
289
279
4
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
1.5 4.1 3.0 8.1
4.5
10.1
279
270
0
1
CHANNEL 1.0 250.
.0100
4.0
4.0
.035
4.00
0
205
216
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
216
204
8
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.3 .0 1.3 .0
1.4
11.4
1.6
21.9
3.1
40.3
7.0
66.0
8.5 200.0
204
249
0
2
PIPE 4.0 50.
.0100
.0
.0
.013
4.00
0
250
249
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
249
248
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
248
251
4
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
1.0 1.2 3.0 4.1
6.0
6.7
251
200
0
2
PIPE 4.0 50.
.0100
.0
.0
.013
4.00
0
210
200
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
200
201
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
201
202
4
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
1.0 1.2 3.0 4.1
6.0
6.7
202
270
0
4
CHANNEL 15.0 902.
.0020
4.0
8.0
.035
6.00
0
OVERFLOW 87.0 902.
.0020
20.0
20.0
.020
2.00
270
212
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
242
240
0
4
CHANNEL .5 1779.
.0070
12.0
12.0
.016
.50
0
OVERFLOW 10.0 1779.
.0070
20.0
20.0
.020
5.00
240
235
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
238
237
0
5
PIPE 3.0 787.
.0060
.0
.0
.013
3.00
0
V:\52870f\active\l 87010251
\Reports\Drainage\ModSW MM\frv-100-ult-p.out
8 Print
Stanteo
OVERFLOW
1.0 787.
.0060
20.0
20.0
.020
5.00
237
236
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
236
232
0
5
PIPE
3.0 740.
.0050
.0 .0
.013
3.00
0
OVERFLOW
1.0 740.
.0050
20.0
20.0
.020
5.00
235
234
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
234
233
8
2
PIPE
.1 1.
.0100
.0 .0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.4 3.1
2.4 4.2
2.8
4.6
4.7
5.1
6.4
100.6
7.1
203.7
8.2 401.9
233
232
5
3
.0 0.
.0010
.0 .0
.001
10.00
230
DIVERSION
TO GUTTER
NUMBER 230 - TOTAL
0 VS DIVERTED 0
IN CFS
0
.0
5.0 .0
101.0 95.0
204.0
198.0
402.0
396.0
232
231
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
231
227
0
5
PIPE
3.0 311.
.0030
.0 .0
.013
3.00
0
OVERFLOW
1.0 311.
.0030
20.0
20.0
.020
5.00
230
229
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
229
228
6
2
PIPE
.1 1.
.0100
.0 .0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.1 2.0
1.1 2.9
3.5
3.5
4.6
200.8
5.3
401.0
228
227
4
3
.0 0.
.0010
.0 .0
.001
10.00
225
DIVERSION
TO GUTTER
NUMBER 225 - TOTAL
0 VS DIVERTED Q
IN CFS
0
.0
4.0 .0
201.0 197.0
401.0
397.0
227
226
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
226
222
0
5
PIPE
3.0 477.
.0060
.0 .0
.013
3.00
0
OVERFLOW
1.0 477.
.0060
20.0
20.0
.020
5.00
225
224
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
224
223
8
2
PIPE
.1 1.
.0100
.0 .0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 1.0
.5 2.7
2.0
3.6
3.9
4.3
4.5
4.5
4.8
200.0
5.1 400.0
223
222
4
3
.0 0.
.0010
.0 .0
.001
10.00
155
DIVERSION
TO GUTTER
NUMBER 155 - TOTAL
Q VS DIVERTED Q
IN CFS
.0
.0
4.0 .0
200.0 195.0
400.0
395.0
222
221
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
221
152
0
5
PIPE
3.0 1569.
.0240
.0 .0
.013
3.00
0
OVERFLOW
1.0 1569.
.0240
20.0
20.0
.020
8.00
152
0
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
215
214
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
214
203
9
2
PIPE
.1 1.
.0100
.0 .0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.1 12.6
.4 14.9
4.0
21.8
9.6
26.9
12.2
28.7
13.0
149.0
13.2 149.4
14.0 149.9
203
213
3
3
.0 0.
.0010
.0 .0
.001
10.00
297
DIVERSION
TO GUTTER
NUMBER 297 - TOTAL
0 VS DIVERTED 0
IN CFS
0
.0
29.5 0
150.0 120.0
213
212
0
5
PIPE
3.0 610.
.0030
.0 .0
.013
3.00
0
OVERFLOW
1.0 610.
.0030
20.0
20.0
.020
5.00
212
211
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
211
125
0
4
CHANNEL
5.0 1670.
.0060
4.0
4.0
.035
6.00
0
OVERFLOW
53.0 1670.
.0060
4.0
40.0
.020
3.00
125
111
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
111
110
0
4
CHANNEL
10.0 1400.
.0040
.0 .0
.013
4.00
0
OVERFLOW
10.0 1400.
.0040
20.0
20.0
.020
3.50
110
105
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
105
104
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
104
103
3
3
.0 0.
.0010
.0 .0
.001
10.00
100
DIVERSION
TO GUTTER
NUMBER 100 - TOTAL
0 VS DIVERTED 0
IN CFS
V:\52870t\active\187010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out
9 Print
Stantec
0
.0
20.0 .0
2000.0
1980.0
103
120
0
2
PIPE
2.8
617.
.0050
.0
.0
.013
2.80
0
129
120
0
1
CHANNEL
130.0
956.
.0080
60.0
6.0
.030
8.00
0
120
100
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
100
101
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
101
99
7
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
1.5 4.0
6.1
13.9
11.9
22.0
19.1
377.8
27.5
1130.0
29.8
1400.0
154
221
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
150
146
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
146
145
0
4
CHANNEL
31.0
1384.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
1384.
.0020
.0
15.0
.050
12.00
145
141
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
141
139
0
4
CHANNEL
31.0
1193.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
1193.
.0020
.0
15.0
.050
12.00
140
139
8
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 1.0
.4
7.0
1.6
8.9
4.0
10.5
5.5
11.2
7.1
40.0
8.0 100.0
139
136
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
136
135
0
4
CHANNEL
31.0
910.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
910.
.0020
.0
15.0
.050
12.00
135
116
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
116
115
0
4
CHANNEL
31.0
2552.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
2552.
.0020
.0
15.0
.050
12.00
99
115
3
3
.0
0.
.0010
.0
.0
.001
10.00
95
DIVERSION
TO GUTTER
NUMBER 95 - TOTAL
0 VS
DIVERTED 0
IN CFS
0
.0
25.0 .0
1012.0
987.0
115
90
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
95
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
11
150
2
3
.0
0.
.0010
.0
.0
.001
10.00
-1
TIME IN HRS VS INFLOW IN CFS
0
300.0
100.0 300.0
10
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
155
154
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
90
80
3
3
.0
0.
.0010
.0
.0
.001
10.00
91
DIVERSION
TO GUTTER
NUMBER 91 - TOTAL
Q VS
DIVERTED 0
IN CFS
0
.0
444.0 .0
6000.0
5556.0
80
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
91
95
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
TOTAL
NUMBER OF GUTTERS/PIPES,
144
V:\52870f\active\1B7010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 10 Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
ARRANGEMENT OF
SUBCATCHMENTS AND
GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
TRIBUTARY
SUBAREA
D.A.(AC)
101
100
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
436.4
103
104
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
348.2
111
125
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
327.2
116
135
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
119.2
129
0
0
0
0 0
0
0
0
0
0
130
0
0 0
0
0
0
0
0
0
39.7
136
139
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
97.6
140
0
0
0
0 0
0
0
0
0
0
140
0
0 0
0
0
0
0
0
0
58.9
141
145
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
38.7
146
150
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
.0
201
200
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
29.6
202
201
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
29.6
204
216
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
17.2
211
212
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
290.7
213
203
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
58.8
214
215
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
58.8
216
205
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
17.2
221
222
154
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
901.5
224
225
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
21.9
226
227
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
879.6
229
230
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
18.9
231
232
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
860.7
234
235
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
61.8
236
237
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
798.9
238
306
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
798.9
242
0
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
.0
246
244
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
2.5
247
245
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
2.8
248
249
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
25.7
251
248
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
25.7
276
286
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
109.2
277
287
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
4.0
278
288
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
17.9
279
289
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
18.1
286
360
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
109.2
287
207
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
4.0
288
208
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
17.9
289
209
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
18.1
290
246
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
2.5
291
300
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
23.1
292
321
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
43.6
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out
11 Print
Stantec
293
296 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
24.2
294
247 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
2.8
295
243 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
10.8
298
297 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
53.1
299
322 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
11.3
303
304 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
83.8
304
305 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
83.8
307
308 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
738.0
309
310 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
738.0
311
312 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
569.5
313
314 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
554.2
315
0 0
0
0
0
0
0
0 0
0
315
0
0
0
0
0
0
0
0
0
60.9
318
319 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
59.7
319
320 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
59.7
324
325 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
365.5
330
0 0
0
0
0
0
0
0 0
0
330
0
0
0
0
0
0
0
0
0
15.3
333
334 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
30.3
334
0 0
0
0
0
0
0
0 0
0
335
0
0
0
0
0
0
0
0
0
30.3
341
342 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
351.1
342
340 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
351.1
344
345 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
79.7
347
421 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
109.0
355
0 0
0
0
0
0
0
0 0
0
355
0
0
0
0
0
0
0
0
0
27.4
401
400 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
289.1
405
0 0
0
0
0
0
0
0 0
0
405
0
0
0
0
0
0
0
0
0
41.8
410
0 0
0
0
0
0
0
0 0
0
410
0
0
0
0
0
0
0
0
0
58.6
421
0 0
0
0
0
0
0
0 0
0
420
0
0
0
0
0
0
0
0
0
109.0
423
425 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
63.0
426
437 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
32.0
430
0 0
0
0
0
0
0
0 0
0
430
0
0
0
0
0
0
0
0
0
22.5
434
435 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
31.9
436
0 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
.0
ORDER
OF TREE STRUCTURE
(NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 106
TO
GUTTER
100
COMP
THROUGH
DIVERSION
WILL
LAG ONE TIME
STEP UNLESS
GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
ORDER
OF TREE STRUCTURE
(NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 130
TO
GUTTER
95
COMP
THROUGH
DIVERSION
WILL
LAG ONE TIME
STEP UNLESS
GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
ORDER
OF TREE STRUCTURE
(NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 138
TO
GUTTER
91
COMP
THROUGH
DIVERSION
WILL
LAG ONE
TIME
STEP UNLESS
GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 12 Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS
THE
UPPER NUMBER IS DISCHARGE IN CFS
THE
LOWER NUMBER IS ONE OF
THE FOLLOWING CASES:
( )
DENOTES DEPTH
ABOVE INVERT IN FEET
(S)
DENOTES STORAGE IN AC -FT
FOR DETENTION
DAM.
DISCHARGE
INCLUDES SPILLWAY OUTFLOW.
(I)
DENOTES GUTTER
INFLOW IN
CFS FROM
SPECIFIED
INFLOW HYDROGRAPH
(0)
DENOTES DISCHARGE IN CFS
DIVERTED
FROM
THIS
GUTTER
(0)
DENOTES STORAGE IN AC -FT
FOR SURCHARGED
GUTTER
TIME(HR/MIN)
200
205
206
207
208
209
210
244
245
249
0
1.
.1
.0
.1
.0
.1
.0
.1
.0
.0
.0
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
6.
.9
1.6
5.3
.6
2.8
1.8
.8
.3
.4
1.0
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
11.
3.9
7.9
27.6
3.0
13.2
9.0
3.9
1.4
1.7
4.7
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
16.
5.5
16.3
58.9
4.8
22.6
18.6
5.4
2.1
2.7
8.8
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
21.
8.6
29.0
105.4
7.7
36.8
33.1
8.4
3.3
4.2
14.9
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
26.
14.9
46.0
166.4
12.6
58.4
52.2
14.5
6.1
7.4
23.7
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
31.
29.3
95.3
340.3
26.1
117.3
105.9
28.6
14.0
16.3
49.6
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
36.
29.9
140.8
504.1
32.1
146.9
152.2
28.6
18.6
21.4
94.2
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
41.
15.7
74.9
273.8
15.3
69.1
78.0
13.6
10.1
11.1
66.5
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
46.
10.8
46.4
175.3
9.2
42.0
47.7
8.2
6.2
6.9
54.7
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
51.
8.4
29.8
117.1
5.8
26.6
30.4
5.3
3.9
4.3
47.0
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
0
56.
7.9
23.0
92.0
4.7
21.5
23.6
4.4
3.0
3.4
43.3
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
1.
7.7
19.2
77.9
4.0
18.6
20.0
3.9
2.5
2.8
40.6
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
6.
7.8
17.2
70.4
3.7
17.3
18.1
3.6
2.2
2.5
38.6
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
11.
7.8
15.9
65.6
3.5
16.3
16.9
3.4
2.0
2.3
36.9
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
16.
7.9
15.0
62.1
3.3
15.6
16.0
3.3
1.9
2.2
35.3
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
21.
7.9
14.2
59.1
3.2
14.9
15.2
3.1
1.7
2.0
33.8
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
26.
7.9
13.5
56.6
3.0
14.3
14.6
3.0
1.6
1.9
32.4
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
31.
8.0
12.9
54.3
2.9
13.7
14.1
2.9
1.5
1.8
31.1
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
36.
8.0
12.4
52.0
2.8
13.2
13.5
2.8
1.5
1.7
29.8
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
41.
8.0
11.9
49.8
2.7
12.7
13.0
2.7
1.4
1.7
28.6
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
46.
8.1
11.5
47.8
2.6
12.3
12.5
2.6
1.3
1.6
27.4
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
51.
8.1
11.1
46.0
2.5
11.9
12.2
2.5
1.3
1.5
24.7
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
1
56.
8.2
10.7
43.8
2.4
11.6
11.8
2.4
1.2
1.5
22.6
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
1.
7.7
9.6
38.9
2.0
9.8
10.5
1.8
1.0
1.2
20.3
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
6.
6.2
4.5
20.3
.6
3.2
4.8
.3
.3
.4
15.3
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
11.
6.0
2.6
12.4
.3
1.5
2.7
.1
.2
.2
11.2
.00(
) .00( )
.00( )
.00(.)
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
16.
6.0
1.6
8.3
.2
.8
1.7
.0
.1
.1
5.9
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
21.
6.0
1.1
5.5
.1
.5
1.1
.0
.1
.1
3.3
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
26.
5.9
.8
3.7
.1
.3
.8
.0
.1
.1
1.9
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
31.
5.9
.6
2.6
.0
.2
.6
.0
.0
.0
1.2
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
36.
5.9
.5
1.9
.0
.2
.4
.0
.0
.0
.9
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
41.
5.8
.4
1.5
.0
.1
.3
.0
.0
.0
.6
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
46.
5.8
.3
1.1
.0
.1
.3
.0
.0
.0
.5
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
51.
5.8
.2
.9
.0
.1
.2
.0
.0
.0
.4
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
2
56.
5.8
.2
.7
.0
.1
.2
.0
.0
.0
.3
.00(
) .00( )
.00( )
.00( )
.00(
) .00(
) .00( )
.00( )
.00( )
.00( )
V:\52870t\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 13 Print
Stantec
3
1.
5.7
.2
.6
.0
.1
.1
.0
.0
.0
.2
.00(.)
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
6.
5.7
.1
.5
.0
.0
.1
.0
.0
.0
.2
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
11.
5.7
.1
.4
.0
.0
.1
.0
.0
.0
.2
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
16.
5.6
.1
.3
.0
.0
.1
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
21.
5.6
.1
.3
.0
.0
.1
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
26.
5.6
.1
.2
.0
.0
.1
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
31.
5.5
.1
.2
.0
.0
.1
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
36.
5.5
.0
.2
.0
.0
.1
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
41.
5.5
.0
.2
.0
.0
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
46.
5.4
.0
.1
.0
.0
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
3
51.
5.4
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
00( )
.00( )
.00( )
.00( )
3
56.
5.4
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
1.
5.3
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
6.
5.3
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
11.
5.3
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
16.
5.2
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
21.
5.2
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
26.
5.2
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
31.
5.1
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
36.
5.1
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
41.
5.1
.0
.1
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
46.
5.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
51.
5.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
4
56.
5.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
1.
5.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
6.
4.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
11.
4.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
16.
4.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
21.
4.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
26.
4.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
31.
4.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
36.
4.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
41.
4.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
46.
4.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
51.
4.7
.0
.0
.0
.0
.0
.0
.0
.0 .
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
5
56.
4.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6
1.
4.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6
6.
4.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6
11.
4.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6
16.
4.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6
21.
4.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
" 6
26.
4.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6
31.
4.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6
36.
4.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6
41.
4.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( ).
.00( )
.00( )
.00( )
.00( )
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 14 Print
Stantec
6 46.
4.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6 51.
4.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
6 56.
4.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 1.
4.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 6.
4.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 11.
4.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 16.
4.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( ),
.00( )
.00( )
.00( )
.00( )
.00( )
7 21.
4.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 26.
4.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 31.
4.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 36.
4.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00(.)
.00( )
.00( )
.00( )
7 41.
4.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 46.
4.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 51.
4.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
7 56.
4.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 1.
3.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 6.
3.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 11.
3.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 16.
3.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 21.
3.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 26.
3.7
.0
.0
.0
.0
.0
.0
..0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 31.
3.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 36.
3.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 41.
3.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 46.
3.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 51.
3.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
8 56.
3.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 1.
3.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 6.
3.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 11.
3.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 16.
3.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 21.
3.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 26.
3.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 31.
3.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 36.
3.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 41.
3.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 46.
3.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 51.
3.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
9 56.
3.1
.0
.0
.0
.0
.0.
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10 1.
3.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10 6.
3.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10 11.
3.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10 16.
3.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10 21.
3.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10 26,
3.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 15 Print
Stantec
10
31.
2.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10
36.
2.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10
41.
2.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10
46.
2.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10
51.
2.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
10
56.
2.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
1.
2.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
6.
2.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
11.
2.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
16.
2.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
21.
2.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
26.
2.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
31.
2.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
36.
2.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
41.
2.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
46.
2.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
51.
2.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
11
56.
2.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
1.
2.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
6.
2.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
11.
2.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
16.
2.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
21.
2.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
26.
2.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
31.
2.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
36.
2.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
41.
2.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
46.
2.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
12
51.
2.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(')
.00( )
.00( )
.00( )
.00( )
.00( )
12
56.
2.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
1.
2.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
6.
2.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
11.
2.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
16.
2.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
21.
2.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
26.
2.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
31.
2.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
36.
2.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
41.
2.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
46.
2.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
51.
2.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
13
56.
1.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
1.
1.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
6.
1.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
11.
1.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 16 Print
Stantec
14
16.
1.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
21.
1.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
26.
1.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
31.
1.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
36.
1.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
41.
1.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
46.
1.8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
51.
1.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
14
56.
1.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
1.
1.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
6.
1.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
11.
1.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
16.
1.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
21.
1.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
26.
1.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
31.
1.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
36.
1.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
41.
1.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
46.
1.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
51.
1.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
15
56.
1.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
AN )
.00( )
.00( )
.00( )
16
1.
1.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
16
6.
1.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
16
11.
1.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
16
16.
1.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
16
21.
1.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
16
26.
1.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
16
31.
1.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
16
36.
1.4
.0
.0
.0
.0
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.00( )
.DO( )
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 5 CONVEYANCE ELEMENTS
THE UPPER NUMBER IS DISCHARGE IN CFS
THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES:
( ) DENOTES DEPTH ABOVE INVERT IN FEET
(S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW.
(I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH
(D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER
(0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER
TIME(HR/MIN) 250 300 301 302 360
0 1. ,00( ) .00( ) .00( ) .00( ) .00( )
0 6. 1.0 1.2 1.1 .7 6.2
.00( ) .00( ) .00( ) .00( ) .00( )
0 11. 4.7 5.9 5.3 3.2 34.9
.00( ) .00( ) .00( ) .00( ) .00( )
0 16. 8.8 10.8 9.6 5.5 76.4
.00( ) .00( ) .00( ) .00( ) .00( )
0 21. 14.9 18.1 16.0 9.0 136.9
.00( ) .00( ) .00( ) .00( ) .00( )
0 26. 23.7 29.4 26.1 14.9 215.6
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 17 Print
Stantec
.00( )
.00( )
.00( )
.00( )
.00( )
0 31.
49.5
66.3
58.8
34.2
448.3
.00( )
.00( )
.00( )
.00( )
.00( )
0 36.
69.5
108.1
95.9
55.6
613.4
.00( )
.00( )
.00( )
.00( )
.00( )
0 41.
35.3
75.8
67.2
39.1
383.0
.00( )
.00( )
.00( )
.00( )
.00( )
0 46.
21.7
59.3
52.6
30.2
284.5
.00( )
.00( )
.00( )
.00( )
.00( )
0 51.
13.8
45.8
40.7
22.9
226.3
.00( )
.00( )
.00( )
.00( )
.00( )
0 56.
10.8
38.1
33.8
18.7
201.2
.00( )
.00( )
.00( )
.00( )
.00( )
1 1.
9.1
32.5
28.8
15.7
187.1
.00( )
.00( )
.00( )
.00( )
.00( )
1 6.
8.2
28.5
25.3
13.7
179.6
.00( )
.00( )
.00( )
.00( )
.00( )
1 11.
7.6
25.4
22.5
12.1
114.6
.00( )
.00( )
.00( )
.00( )
.00( )
1 16.
7.2
22.9
20.3
10.8
106.1
.00( )
.00( )
.00( )
.00( )
.00( )
1 21.
6.8
20.8
18.4
9.8
99.0
.00( )
.00( )
.00( )
.00( )
.00( )
1 26.
6.5
19.0
16.9
8.9
93.1
.00( )
.00( )
.00( )
.00( )
.00( )
1 31.
6.2
17.5
15.6
8.2
87.9
.00( )
.00( )
.00( )
.00( )
.00( )
1 36.
6.0
16.2
14.4
7.6
83.2
.00( )
.00( )
.00( )
.00( )
.00( )
1 41.
5.7
15.1
13.4
7.0
78.7
.00( )
.00( )
.00( )
.00( )
.00( )
1 46.
5.5
14.1
12.5
6.6
74.8
.00( )
.00( )
.00( )
.00( )
.00( )
1 51.
5.3
13.2
11.7
6.2
71.2
.00( )
.00( )
.00( )
.00( )
.00( )
1 56.
5.2
12.4
11.0
5.8
67.6
.00( )
.00( )
.00( )
.00( )
.00( )
2 1.
4.5
11.0
9.8
5.1
60.8
.00( )
.00( )
.00( )
.00( )
.00( )
2 6.
1.9
7.1
6.3
3.1
35.2
.00( )
.00( )
.00( )
.00( )
.00( )
2 11.
1.0
5.5
4.9
2.4
23.6
.00( )
.00( )
.00( )
.00( )
.00( )
2 16.
.6
4.5
4.0
2.0
17.5
.00( )
.00( )
.00( )
.00( )
.00( )
2 21.
.4
3.9
3.4
1.7
13.3
.00( )
.00( )
.00( )
.00( )
.00( )
2 26.
.3
3.4
3.0
1.4
10.4
.00( )
.00( )
.00( )
.00( )
.00( )
2 31.
.2
2.9
2.6
1.2
8.5
.00( )
.00( )
.00( )
.00( )
.00( )
2 36.
.2
2.6
2.3
1.1
7.1
.00( )
.00( )
.00( )
.00( )
.00( )
2 41.
.1
2.3
2.1
1.0
6.1
.00( )
.00( )
.00( )
.00( )
.00( )
2 46.
.1
2.1
1.8
.8
5.3
.00( )
.00( )
.00( )
.00( )
.00( )
2 51.
.1
1.9
1.6
.8
4.6
.00( )
.00( )
.00( )
.00( )
.00( )
2 56.
.1
1.7
1.5
.7
4.0
.00( )
.00( )
.00( )
.00( )
.00( )
3 1.
.0
1.5
1.3
.6
3.6
.00( )
.00( )
.00( )
.00( )
.00( )
3 6.
.0
1.4
1.2
.5
3.2
.00( )
.00( )
.00( )
.00( )
.00( )
3 11.
.0
1.2
1.1
.5
2.8
.00( )
.00( )
.00( )
.00( )
.00( )
3 16.
.0
1.1
1.0
.4
2.6
.00( )
.00( )
.00( )
.00( )
.00( )
3 21.
.0
1.0
.9
.4
2.3
.00( )
.00( )
.00( )
.00( )
.00( )
3 26.
.0
.9
.8
.4
2.1
.00( )
.00( )
.00( )
.00( )
.00( )
3 31.
.0
.8
.7
.3
1.9
.00( )
.00( )
.00( )
.00( )
.00( )
3 36.
.0
.8
.7
.3
1.7
.00( )
.00( )
.00( )
.00( )
.00( )
3 41.
.0
.7
.6
.3
1.6
.00( )
.00( )
.00( )
.00( )
.00( )
3 46.
.0
.6
.6
.2
1.4
.00( )
.00( )
.00( )
.00( )
.00( )
3 51.
.0
.6
.5
.2
1.3
.00( )
.00( )
.00( )
.00( )
.00( )
3 56.
.0
.5
.5
.2
1.2
.00( )
.00( )
.00( )
.00( )
.00( )
4 1.
.0
.5
.4
.2
1.1
.00( )
.00( )
.00( )
.00( )
.00( )
4 6.
.0
.4
.4
.2
1.0
.00( )
.00( )
.00( )
.00( )
.00( )
4 11.
.0
.4
.4
.1
.9
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 18 Pdn1
Stantec
:00( )
.00( )
.00( )
.00( )
.00( )
4 16.
.00( )
.00( )
.00( )
.00( )
.00( )
4 21.
.0
.3
.3
.1
.8
.00( )
.00( )
.00( )
.00( )
.00( )
4 26.
.0
.3
.3
.1
.7
.00( )
.00( )
.00( )
.00( )
.00( )
4 31.
.0
.3
.2
.1
.6
.00( )
.00( )
.00( )
.00( )
.00( )
4 36.
.0
.3
.2
.1
.6
.00( )
.00( )
.00( )
.00( )
.00( )
4 41.
.0
.2
.2
.1
.5
.00( )
.00( )
.00( )
.00( ).
.00( )
4 46.
.0
.2
.2
.1
.5
.00( )
.00( )
.00( )
.00( )
.00( )
4 51.
.0
.2
.2
.1
.4
.00( )
.00( )
.00( )
.00( )
.00( )
4 56.
.0
.2
.1
.0
.4
.00( )
.00( )
.00( )
.00( )
.00( )
5 1.
.0
.1
.1
.0
.4
.00( )
.00( )
.00( )
.00( )
.00( )
5 6.
.0
.1
.1
.0
.3
.00( )
.00( )
.00( )
.00( )
.00( )
5 11.
.0
.1
.1
.0
.3
.00( )
.00( )
.00( )
.00( )
.00( )
5 16.
.0
.1
.1
.0
.3
.00( )
.00( )
.00( )
.00( )
.00( )
5 21.
.0
.1
.1
.0
.2
.00( )
.00( )
.00( )
.00( )
.00( )
5 26.
.0
.1
.1
.0
.2
.00( )
.00( )
.00( )
.00( )
.00( )
5 31.
.0
.1
.1
.0
.2
.00( )
.00( )
.00( )
.00( )
.00( )
5 36.
.0
.1
.1
.0
.2
.00( )
.00( )
.00( )
.00( )
.00( )
5 41.
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
5 46.
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
5 51.
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
5 56.
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
6 1.
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
6 6.
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
6 11.
.00( )
.00( )
.00( )
.00( )
.00( )
6 16.
.0
.0
.0
.0
.1
.00( )
.00( )
.00( )
.00( )
.00( )
6 21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
6 26.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
6 31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
6 36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
6 41.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
6 46.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
6 51.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
6 56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 1.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 16.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 26.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 41.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
00( )
.00( )
7 46.
.0
.0
.0
.0
.00( )
.00( )
.00( )(
)
.00( )
7 51.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
7 56.
.0
.0
.0
.0
.0
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 19 Print
Stantec
.00( )
.00( )
.00( )
.00( )
.00( )
8
1.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
8
6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
8
11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
8
16.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
8
21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
8
26
.00( )
.00( )
.00( )
.00( )
.00( )
8
31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
8
36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
8
41.
,00( )
.00( )
.00( )
.00( )
.00( )
8
46.
,00( )
.00( )
.00( )
.00( )
.00( )
8
51.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00(')
.00( )
8
56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
1
.00( )
.00( )
.00( )
.00( )
.00( )
9
6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
16.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
26.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
41.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
46.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
51.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
9
56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
1.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
16.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
26.
,00( )
.00( )
.00( )
.00( )
.00( )
10
31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
36.
,00( )
.00( )
.00( )
.00( )
.00( )
10
41.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
46.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )'
.00( )
10
51.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
10
56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
1.
,00( )
.00( )
.00( )
.00( )
.00( )
11
6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
16.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
26.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
31.
,00( )
.00( )
.00( )
.00( )
.00( )
11
36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
41.
.0
.0
.0
.0
.0
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 20 NO
Stantec
.00( )
.00( )
.00( )
.00( )
.00( )
11
46.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
51.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
11
56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
1.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
16.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
26.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
12
41.
.00( )
.00( )
.00( )
.00( )
.00( )
12
46.
.00( )
.00( )
.00( )
.00( )
.00( )
12
51.
_00( )
.00( )
.00( )
.00( )
.00( )
12
56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
1.
.00( )
.00( )
.00( )
.00( )
.00( )
13
6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
11.
.00( )
.00( )
.00( )
.00( )
.00( )
13
16.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
26.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
41.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
46.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
51.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
13
56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
1.
.00( )
.00( )
.00( )
.00( )
.00( )
14
6.
.00( )
.00( )
.00( )
.00( )
.00( )
14
11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
16.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
26.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
31.
.00( )
.00( )
.00( )
.00( )
.00( )
14
36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
41.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
46.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
51.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
14
56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
15
1.
.00( )
.00( )
.00( )
.00( )
.00( )
15
6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
15
11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
15
16.
.00( )
.00( )
.00( )
.00( )
.00( )
15
21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00( )
15
26.
.0
.0
.0
.0
.0
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 21 Print
Stantec
.00( )
.00( )
.00( )
.00( )
.00(
15 31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
15 36.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( ).
.00( )
.00(
15 41.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
15 46.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
15 51.
.00( )
.00( )
.00( )
.00( )
.00(
15 56.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
16 1.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
16 6.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
16 11.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
16 16.
.00( )
.00( )
.00( )
.00( )
.00(
16 21.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
16 26.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
16 31.
.0
.0
.0
.0
.0
.00( )
.00( )
.00( )
.00( )
.00(
16 36.
.0
.0
.0
.0
.0
00( )
00( )
00( )
.00( )
.00(
THE FOLLOWING
CONVEYANCE
ELEMENTS WERE
SURCHARGED
DURING THE SIMULATION.
THIS COULD LEAD TO ERRORS
IN THE SIMULATION
RESULTS!!
292
THE FOLLOWING
CONVEYANCE
ELEMENTS HAVE
NUMERICAL
STABILITY PROBLEMS THAT
LEAD TO HYDRAULIC
OSCILLLATIONS
DURING THE
SIMULATION.
401
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 22 Pdn1
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS ***
*** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT)
(AC -FT)
(HR/MIN)
10:3
85.3
(DIRECT
FLOW)
0
35.
11:3
300.0
(DIRECT
FLOW)
0
1.
80:3
444.0
(DIRECT
FLOW)
0
32.
90:3
595.0
(DIRECT
FLOW)
0
35.
91:3
151.0
(DIRECT
FLOW)
0
35.
95:3
478.6
(DIRECT
FLOW)
0
46.
99:3
401.4
(DIRECT
FLOW)
0
48.
100:3
1177.5
(DIRECT
FLOW)
0
35.
101:2
401.4
.1
19.3:D
0
48.
103:2
32.5
1.9
0
32.
104:3
466.1
(DIRECT
FLOW)
0
35.
105:3
466.1
(DIRECT
FLOW)
0
35.
110:3
452.0
(DIRECT
FLOW)
0
35.
111:4
284.7
2.7
0
36.
115:3
595.0
(DIRECT
FLOW)
0
35.
116:4
447.6
3.3
0
53.
120:3
645.0
(DIRECT
FLOW)
0
35.
125:3
309.3
(DIRECT
FLOW)
0
35.
129:1
297.8
.6
0
36.
135:3
488.3
(DIRECT
FLOW)
0
41.
136:4
413.0
3.2
0
46.
139:3
416.4
(DIRECT
FLOW)
0
41.
140:2
52.9
.1
7.3:D
1
22.
141:4
405.9
3.1
0
41.
145:3
423.9
(DIRECT
FLOW)
0
35.
146:4
300.0
2.6
1
0.
150:3
300.0
(DIRECT
FLOW)
0
1.
152:3
230.4
(DIRECT
FLOW)
2
24.
154:3
155.3
(DIRECT
FLOW)
2
20.
155:3
155.3
(DIRECT
FLOW)
2
20.
200:3
40.0
(DIRECT
FLOW)
0
35.
201:2
3.4
.1
2.5:D
9
8.
202:4
3.4
.3
9
12.
203:3
26.8
(DIRECT
FLOW)
2
0.
204:2
33.3
1.3
0
49.
205:3
155.8
(DIRECT
FLOW)
0
35.
206:3
554.7
(DIRECT
FLOW)
0
35.
207:3
39.1
(DIRECT
FLOW)
0
35.
208:3
176.5
(DIRECT
FLOW)
0
35.
209:3
170.1
(DIRECT
FLOW)
0
35.
210:3
38.8
(DIRECT
FLOW)
0
35.
211:4
64.2
1.7
2
13.
212:3
64.4
(DIRECT
FLOW)
2
7.
213:5
26.8
1.9
2
1.
214:2
26.8
.1
9.5:D
2
0.
215:3
360.6
(DIRECT
FLOW)
0
35.
216:2
33.2
.1
2.6:D
0
49.
221:5
230.4
3.9
2
24.
222:3
75.8
(DIRECT
FLOW)
2
13.
223:3
160.1
(DIRECT
FLOW)
2
19.
224:2
160.1
.1
4.8:D
2
19.
225:3
164.0
(DIRECT
FLOW)
0
56.
226:5
71.0
3.5
2
8.
227:3
71.0
(DIRECT
FLOW)
2
6.
228:3
162.6
(DIRECT
FLOW)
2
18.
229:2
162.6
.1
4.4:D
2
18.
230:3
171.8
(DIRECT
FLOW)
0
48.
231:5
67.0
3.8
2
6.
232:3
67.0
(DIRECT
FLOW)
2
4.
233:3
168.0
(DIRECT
FLOW)
2
12.
234:2
168.0
.1
6.9:D
2
12.
235:3
379.1
(DIRECT
FLOW)
0
35.
236:5
61.0
3.5
2
4.
237:3
61.0
(DIRECT
FLOW)
2
1.
238:5
61.0
3.4
2
1.
240:3
194.6
(DIRECT
FLOW)
0
35.
242:4
158.0
1.2
2
12.
243:3
63.9
(DIRECT
FLOW)
0
35.
244:3
22.0
(DIRECT
FLOW)
0
35.
245:3
25.5
(DIRECT
FLOW)
0
35.
246:2
6.4
.1
.2:D
0
45.
247:2
6.9
.1
.3:D
0
45.
248:2
6.0
.1
5.1:D
2
16.
249:3
100.9
(DIRECT
FLOW)
0
35.
250:3
79.1
(DIRECT
FLOW)
0
35.
251:2
6.0
.6
2
16.
270:3
24.6
(DIRECT
FLOW)
2
8.
276:1
2.2
.5
3
34.
277:1
.5
.2
2
32.
V:\52870t\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 23 Print
Stantec
278:1
11.0
.9
2
1.
279:1
9.4
.8
2
2.
286:2
2.2
.1
27.6:D
3
22.
287:2
.5
.1
1.1:D
2
6.
288:2
11.0
.1
3.8:D
2
0.
2:2
1,4
.
4.1:1
2
1,
29090:2
6.4
.77
0
46.
291:2
109.0
3.7
0
35.
292:2
109.2
4.0
1.0:S
0
46.
293:1
117.2
2.4
0
38.
294:2
6.9
.8
0
47.
295:2
58.4
1.8
0
35.
296:3
183.2
(DIRECT
FLOW)
0
35.
297:3
360.2
(DIRECT
FLOW)
0
35.
298:2
13.1
.1
12.7:D
2
14.
299:2
61.0
1.5
0
35.
300:3
116.6
(DIRECT
FLOW)
0
35.
301:3
103.5
(DIRECT
FLOW)
0
35.
302:3
60.3
(DIRECT
FLOW)
0
35.
303:5
40.2
2.7
2
14.
304:2
40.2
.1
3.5:D
2
11.
305:3
178.0
(DIRECT
FLOW)
0
35.
306:3
61.0
(DIRECT
FLOW)
1
56.
307:2
27.4
1.8
2
50.
308:3
186.8
(DIRECT
FLOW)
2
6.
309:2
186.8
.1
28.4:D
2
6.
310:3
486.3
(DIRECT
FLOW)
0
35.
311:5
120.1
3.4
4
12.
312:3
120.1
(DIRECT
FLOW)
4
6.
313:5
114.0
3.4
4
26.
314:3
114.0
(DIRECT
FLOW)
4
25.
315:2
33.6
.1
8.8:D
1
56.
318:5
45.4
2.1
1
38.
319:2
47.0
.1
6.5:D
1
28.
320:3
210.8
(DIRECT
FLOW)
0
35.
321:3
212.5
(DIRECT
FLOW)
0
35.
322:3
60.3
(DIRECT
FLOW)
0
35.
324:5
76.5
4.1
7
53.
325:3
102.1
(DIRECT
FLOW)
0
35.
330:2
16.7
.1
2.1:D
1
8.
333:5
26.9
2.4
1
30.
334:2
27.0
.1
2.9:D
1
21.
340:3
411.8
(DIRECT
FLOW)
0
35.
341:5
76.5
3.3
6
58.
342:2
76.6
.1
32.4:D
7
10.
344:2
30.6
.1
14.7:D
2
4.
345:3
508.0
(DIRECT
FLOW)
0
35.
347:2
12.6
1.2
3
52.
355:4
149.2
1.7
0
36.
360:3
663.9
(DIRECT
FLOW)
0
35.
400:3
1504.5
(DIRECT
FLOW)
0
35.
401:2
114.4
.1
51.6:D
2
4.
405:5
329.2
3.3
0
35.
410:5
281.5
3.9
0
36.
415:3
479.8
(DIRECT
FLOW)
0
36.
421:2
12.6
.1
16.1:D
3
50.
423:5
130.9
2.7
0
37.
425:3
185.9
(DIRECT
FLOW)
0
35.
426:2
6.9
1.1
0
33.
430:5
124.7
2.2
0
35.
434:4
189.3
1.4
0
43.
435:3
195.2
(DIRECT
FLOW)
0
40.
436:1
117.8
1.3
0
41.
437:3
187.8
(DIRECT
FLOW)
0
35.
440:3
187.8
(DIRECT
FLOW)
0
35.
ENDPROGRAM PROGRAM CALLED
V:\52870f\active\l 87010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out
24 Print
ModSWMM INFLOWS HYDROGRAPHS
FOR DETENTION PONDS
Stantec
TIME
Design Point
200
205
206
207
208
209
210
244
Hours
Minutes
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
0
1
0.1
0.0
0.1
0.0
0.1
0.0
0.1
0.0
0
6
0.9
1.6
5.3
0.6
2.8
1.8
0.8
0.3
0
11
3.9
7.9
27.6
3.0
13.2
9.0
3.9
1.4
0
16
5.5
16.3
58.9
4.8
22.6
18.6
5.4
2.1
0
21
8.6
29.0
105.41
7.7
36.8
33.1
8.4
3.3
0
26
14.9
46.0
166.4
12.6
58.41
52.2
14.5
6.1
0
31
29.3
95.3
340.3
26.1
117.31
105.9
28.6
14.0
0
36
29.9
140.8
504.1
32.1
146.9
152.2
28.6
18.6
0
41
15.7
74.9
273.8
15.3
69.1
78.0
13.6
10.1
0
46
10.8
46.4
175.3
9.2
42.0
47.7
8.2
6.2
0
51
8.4
29.8
117.1
5.8
26.6
30.4
5.3
3.9
0
56
7.9
23.0
92.0
4.7
21.5
23.6
4.4
3.0
1
1
7.7
19.2
77.9
4.0
18.6
20.0
3.9
2.5
1
6
7.8
17.2
70.4
3.7
17.31
18.1
3.6
2.2
1
11
7.8
15.9
65.6
3.5
16.3
16.9
3.4
2.0
1
16
7.9
15.0
62.1
3.3
15.6
16.0
3.3
1.9
1
21
7.9
14.2
59.1
3.2
14.9
15.2
3.1
1.7
1
26
7.9
13.5
56.6
3.0
14.3
14.6
3.0
1.6
1
31
8.0
12.9
54.3
2.9
13.7
14.1
2.9
1.5
1
36
8.0
12.4
52.0
2.8
13.2
13.5
2.8
1.5
1
41
8.0
11.9
49.8
2.7
12.7
13.0
2.7
1.4
1
46
1 8.1
11.5
47.8
2.6
12.31
12.5
2.6
1.3
1
51
8.1
11.1
46.0
2.5
11.9
12.2
2.5
1.3
1
56
8.2
10.7
43.8
2.4
11.6
11.8
2.4
1.2
2
1
7.7
9.6
38.9
2.0
9.8
10.5
1.8
1.0
2
6
6.2
4.5
20.3
0.6
3.2
4.8
0.3
0.3
2
11
6.0
2.6
12.4
0.3
1.5
2.7
0.1
0.2
2
16
6.0
1.6
8.3
0.2
0.8
1.7
0.0
0.1
2
21
6.0
1.1
5.5
0.1
0.5
1.1
0.0
0.1
2
26
1 5.9
0.8
3.7
0.1
0.31
0.8
0.0
0.1
2
31
5.9
0.6
2.6
0.0
0.2
0.6
0.0
0.0
2
36
5.9
0.5
1.9
0.0
0.2
0.4
0.0
0.0
2
41
5.8
0.4
1.5
0.0
0.1
0.3
0.0
0.0
2
46
5.8
0.3
1.1
0.0
0.1
0.3
0.0
0.0
2
51
5.8
0.2
0.9
0.0
0.1
0.2
0.0
0.0
2
56
5.8
0.2
0.7
0.0
0.1
0.2
0.0
0.0
3
1
5.7
0.2
0.6
0.0
0.1
0.1
0.0
0.0
3
6
1 5.7
0.1
0.5
0.0
0.01
0.1
0.0
0.0
3
11
5.7
0.1
0.4
0.0
0.0
0.1
0.0
0.0
3
16
5.6
0.1
0.3
0.0
0.0
0.1
0.0
0.0
3
21
5.6
0.1
0.3
0.0
0.0
0.1
0.0
0.0
3
26
5.6
0.1
0.2
0.0
0.0
0.1
0.0
0.0
3
31
5.5
0.1
0.2
0.0
0.0
0.1
0.0
0.0
3
36
5.5
0.0
0.2
0.0
0.0
0.1
0.0
0.0
3
41
5.5
0.0
0.2
0.0
0.0
0.0
0.0
0.0
3
46
5.4
0.0
0.1
0.0
0.01
0.0
0.0
0.0
3
51
5.4
0.01
0.1
0.0
0.0
0.0
0.0
0.0
3
56
5.4
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
1
5.3
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
6
5.3
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
11
5.3
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
16
5.2
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
21
5.2
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
26
5.2
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
31
5.1
0.01
0.1
0.0
0.0
0.0
0.0
0.0
4
36
5.1
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
41
5.1
0.0
0.1
0.0
0.0
0.0
0.0
0.0
4
46
5.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4
51
5.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
4
56
5.0
0.01
0.0
0.0
0.0
0.0
0.01
0.0
TIME
Design Point
200
205
206
207
208
209
210
244
Hours
Minutes
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
5
1
5.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
6
4.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
11
4.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
16
4.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
21
4.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
26
4.8
0.0
0.0
0.0
0.01
0.0
0.0
0.0
5
31
4.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
36
4.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
41
4.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
46
4.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
51
4.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5
56
4.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
1
4.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
6
4.6
0.0
0.0
0.0
0.01
0.0
0.0
0.0
6
11
4.6
0.0
0.0
0.0
0.01
0.0
0.0
0.0
6
16
4.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
21
4.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
26
4.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
31
4.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
36
4.4
0.01
0.0
0.0
0.0
0.0
0.0
0.0
6
41
4.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
46
4.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
51
4.4
0.0
0.0
0.01
0.0
0.0
0.0
0.0
6
56
4.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
1
4.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
6
4.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
11
4.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
16
4.2
0.01
0.0
0.0
0.0
0.0
0.0
0.0
7
21
4.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
26
4.2
0.0
0.0
0.0
0.01
0.0
0.0
0.0
7
31
4.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
36
4.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
41
4.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
46
4.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
51
4.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
56
4.0
0.01
0.0
0.0
0.0
0.0
0.0
0.0
8
1
3.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
6
3.9
0.0
0.0
0.0
0.01
0.0
0.0
0.0
8
11
3.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
16
3.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
21
3.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
26
3.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
31
3.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
36
3.7
0.01
0.0
0.0
0.0
0.0
0.0
0.0
8
41
3.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
46
3.6
0.0
0.0
0.0
0.01
0.0
0.0
0.0
8
51
3.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
56
3.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
1
3.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
6
3.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
11
3.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
16
3.4
0.01
0.0
0.0
0.0
0.0
0.0
0.0
9
21
3.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
26
3.3
0.0
0.0
0.0
0.01
0.0
0.0
0.0
9
31
3.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
36
3.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
41
3.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
46
3.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
51
3.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
56
3.11
0.01
0.01
0.0
0.0
0.0
0.0
0.0
TIME
Design Point
200
205
206
207
208
209
210
244
Hours
Minutes
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
10
1
3.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
6
3.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
11
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
16
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
21
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
26
3.0
0.0
0.0
0.01
0.0
0.0
0.01
0.0
10
31
2.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
36
2.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
41
2.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
46
2.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
51
2.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
56
2.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
1
2.8
0.01
0.0
0.0
0.01
0.0
0.0
0.0
11
6
2.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
11
2.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
16
2.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
21
2.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
26
2.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
31
2.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
36
2.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
41
2.5
0.01
0.0
0.0
0.01
0.0
0.0
0.0
11
46
1 2.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
51
2.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
56
2.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
1
2.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
6
2.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
11
2.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
16
2.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
21
2.3
0.01
0.0
0.0
0.01
0.0
0.0
0.0
12
26
1 2.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
31
2.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
36
2.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
41
2.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
46
2.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
51
2.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
56
2.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
1
2.2
0.01
0.0
0.0
0.01
0.0
0.0
0.0
13
6
2.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
11
2.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
16
2.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
21
2.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
26
2.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
31
2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
36
2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
41
2.0
0.01
0.0
0.0
0.01
0.0
0.0
0.0
13
46
2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
51
2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
56
1.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
1
1.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
6
1.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
11
1.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
16
1.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
21
1.9
0.01
0.0
0.0
0.01
0.0
0.0
0.0
14
26
1.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
31
1.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
36
1.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
41
1.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
46
1.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
51
1.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
56
1.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TIME
Design Point
200
205
206
207
208
209
210
244
Hours
Minutes
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
15
1
1.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
6
1.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
11
1.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
16
1.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
21
1.6
0.01
0.0
0.0
0.0
0.0
0.0
0.0
15
26
1.6
0.0
0.0
0.0
0.01
0.0
0.0
0.0
15
31
1.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
36
1.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
41
1.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
46
1.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
51
1.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
15
56
1.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
16
1
1.5
0.01
0.0
0.0
0.0
0.0
0.01
0.0
16
6
1.5
0.0
0.0
0.0
0.01
0.0
0.0
0.0
16
11
1.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
16
16
1.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
16
21
1.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
16
26
1.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
16
31
1.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
16
36
1 1.4
0.0
0.01
0.0
0.0
0.01
0.0
0.0
200 - Total inflow to Pond E
205 - Total inflow to Paragon pond
206 - Inflow to Pond D from on -site and from Harmony Pads
207 - Inflow to Pond C from on -site basins (does not include flow from Pond D)
208 - Inflow to Pond B from on -site basins (does not include flow from Pond C)
209 - Inflow to Pond A from on -site basins (does not include flow from Pond B)
210 - Inflow to Pond E from on -site basins (does not include flow from Pond F)
244 - Inflow to east pond at Harmony Pads
245 - Inflow to west pond at Harmony Pads
249 - Total inflow to Pond F from on -site basins and from Paragon pond
250 - Inflow to Pond F from on -site basins and from Paragon property (does not include flow from Paragon pond)
300 - Inflow to inlet from off -site basin 300
301 - Inflow to inlet from off -site basin 301
302 - Inflow to inlet from off -site basin 302
360 - Total inflow to Pond D from on -site basins, Harmony Pads and from Harmony Trailer Park
TIME
245
249
250
300
301
302
360
Hours
Minutes
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
0
1
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0
6
0.4
1.0
1.0
1.2
1.1
0.7
6.2
0
11
1.7
4.7
4.7
5.9
5.3
3.2
34.9
0
16
2.7
8.8
8.8
10.8
9.6
5.5
76.4
0
21
4.2
14.9
14.9
18.1
16.0
9.0
136.9
0
26
7.4
23.7
23.7
29.4
26.1
14.9
215.6
0
31
16.3
49.6
49.5
66.3
58.8
34.2
448.3
0
36
21.4
94.2
69.5
108.1
95.9
55.6
613.4
0
41
11.1
66.5
35.3
75.8
67.2
39.1
383.0
0
46
6.9
54.7
21.7
59.3
52.6
30.2
284.5
0
51
4.3
47.0
13.8
45.8
40.7
22.9
226.3
0
56
3.4
43.3
10.8
38.1
33.8
18.7
201.2
1
1
2.8
40.61
9.1
32.5
28.81
15.7
187.1
1
6
2.5
38.6
8.2
28.5
25.3
13.7
179.6
1
11
2.3
36.9
7.6
25.4
22.5
12.1
114.6
1
16
2.2
35.3
7.2
22.9
20.3
10.8
106.1
1
21
2.0
33.8
6.8
20.8
18.4
9.8
99.0
1
26
1.9
32.4
6.5
19.0
16.9
8.9
93.1
1
31
1.8
31.1
6.2
17.5
15.6
8.2
87.9
1
36
1.7
29.8
6.0
16.2
14.4
7.6
83.2
1
41
1.7
28.61
5.7
15.1
13.41
7.0
78.7
1
46
1 1.6
27.4
5.5
14.1
12.5
6.6
74.8
1
51
1.5
24.7
5.3
13.2
11.7
6.2
71.2
1
56
1.5
22.6
5.2
12.4
11.0
5.8
67.6
2
1
1.2
20.3
4.5
11.0
9.8
5.1
60.8
2
6
0.4
15.3
1.9
7.1
6.3
3.1
35.2
2
11
0.2
11.2
1.0
5.5
4.9
2.4
23.6
2
16
0.1
5.91
0.6
4.5
4.01
2.0
17.5
2
21
0.1
3.3
0.4
3.9
3.4
1.7
13.3
2
26
0.1
1.9
0.3
3.4
3.0
1.4
10.4
2
31
0.0
1.2
0.2
2.9
2.6
1.2
8.5
2
36
0.0
0.9
0.2
2.6
2.3
1.1
7.1
2
41
0.0
0.6
0.1
2.3
2.1
1.0
6.1
2
46
0.0
0.5
0.1
2.1
1.8
0.8
5.3
2
51
0.0
0.4
0.1
1.9
1.6
0.8
4.6
2
56
0.0
0.31
0.1
1.7
1.51
0.7
4.0
3
1
0.0
0.2
0.0
1.5
1.3
0.6
3.6
3
6
0.0
0.2
0.0
1.4
1.2
0.5
3.2
3
11
0.0
0.2
0.0
1.2
1.1
0.5
2.8
3
16
0.0
0.1
0.0
1.1
1.0
0.4
2.6
3
21
0.0
0.1
0.0
1.0
0.9
0.4
2.3
3
26
0.0
0.1
0.0
0.9
0.8
0.4
2.1
3
31
0.0
0.1
0.0
0.8
0.7
0.3
1.9
3
36
0.0
0.11
0.0
0.8
0.71
0.3
1.7
3
41
0.0
0.1
0.0
0.7
0.6
0.3
1.6
3
46 1
0.0
0.1
0.0
0.6
0.6
0.2
1.4
3
51
0.0
0.0
0.0
0.6
0.5
0.2
1.3
3
56
0.0
0.0
0.0
0.5
0.5
0.2
1.2
4
1
0.0
0.0
0.0
0.5
0.4
0.2
1.1
4
6
0.0
0.0
0.0
0.4
0.4
0.2
1.0
4
11
0.0
0.0
0.0
0.4
0.4
0.1
0.9
4
16
0.0
0.01
0.0
0.4
0.31
0.1
0.8
4
21
0.0
0.0
0.0
0.3
0.3
0.1
0.8
4
26
0.0
0.0
0.0
0.3
0.3
0.1
0.7
4
31
0.0
0.0
0.0
0.3
0.2
0.1
0.6
4
36
0.0
0.0
0.0
0.3
0.2
0.1
0.6
4
41
0.0
0.0
.0.0
0.2
0.2
0.1
0.5
4
46
0.0
0.0
0.0
0.2
0.2
0.1
0.5
4
51
0.0
0.0
0.0
0.2
0.2
0.1
0.4
4 1
56
001
001
0.0
0.21
0.11
0.01
0.4
TIME
245
249
250
300
301
302
360
Hours
Minutes
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
5
1
0.0
0.0
0.0
0.1
0.1
0.0
0.4
5
6
0.0
0.0
0.0
0.1
0.1
0.0
0.3
5
11
0.0
0.0
0.0
0.1
0.1
0.0
0.3
5
16
0.0
0.0
0.0
0.1
0.1
0.0
0.3
5
21
0.0
0.0
0.0
0.1
0.11
0.0
0.2
5
26
0.0
0.0
0.0
0.1
0.1
0.0
0.2
5
31
0.0
0.0
0.0
0.1
0.1
0.0
0.2
5
36
0.0
0.0
0.0
0.1
0.1
0.0
0.2
5
41
0.0
0.0
0.0
0.0
0.0
0.0
0.1
5
46
0.0
0.0
0.0
0.0
0.0
0.0
0.1
5
51
0.0
0.0
0.0
0.0
0.0
0.0
0.1
5
56
0.0
0.0
0.0
0.0
0.0
0.0
0.1
6
1
0.0
0.01
0.0
0.0
0.01
0.0
0.1
6
6
0.0
0.0
0.0
0.0
0.0
0.0
0.1
6
11
0.0
0.0
0.0
0.0
0.0
0.0
0.1
6
16
0.0
0.0
0.0
0.0
0.0
0.0
0.1
6
21
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
26
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
31
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
36
0.0
0.0
0.0
0.0
0.0
0.01
0.0
6
41
0.0
0.01
0.0
0.0
0.0
0.0
0.0
6
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6
56
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
11
0.0
0.0
0.0
0.0
0.01
0.0
0.0
7
16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
21
0.0
0.01
0.0
0.0
0.0
0.0
0.0
7
26
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
31
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
36
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
41
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
51
0.0
0.0
0.0
0.0
0.01
0.0
0.0
7
56
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
1
0.0
0.01
0.0
0.0
0.0
0.0
0.0
8
6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
11
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
21
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
26
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
31
0.0
0.0
0.0
0.0
0.01
0.0
0.0
8
36
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
41
0.0
0.01
0.0
0.0
0.0
0.0
0.0
8
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8
56
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
11
0.0
0.0
0.0
0.0
0.01
0.0
0.0
9
16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
21
0.0
0.01
0.0
0.0
0.0
0.0
0.0
9
26
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
31
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
36
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
41
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9
56
0.0
0.0
0.0
0.01
0.01
0.01
0.0
TIME
245
249
250
300
301
302
360
Hours
Minutes
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
Flow (CFS)
10
1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
11
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
21
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
26
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
31
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
36
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
41
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10
56
0.0
0.0
0.01
0.0
0.0
0.0
0.0
11
1
0.0
0.0
0.0
0.0
0.01
0.0
0.0
11
6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
11
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
21
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
26
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
31
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
36
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
41
0.0
0.0
0.0
0.0
0.01
0.0
0.0
11
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
11
56
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
11
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
21
0.0
0.0
0.0
0.0
0.01
0.0
0.0
12
26
1 0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
31
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
36
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
41
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12
56
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
1
0.0
0.0
0.0
0.0
0.01
0.0
0.0
13
6
1 0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
11
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
21
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
26
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
31
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
36
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
41
0.0
0.0
0.0
0.0
0.01
0.0
0.0
13
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
13
56
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
11
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
21
0.0
0.0
0.0
0.0
0.01
0.0
0.0
14
26
1 0.0
0.01
0.0
0.0
0.0
0.0
0.0
14
31
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
36
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
41
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
46
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
51
0.0
0.0
0.0
0.0
0.0
0.0
0.0
14
56
0.0
0.0
0.0
0.OF-0
0
0.0
0.0
ModSWMM HYDROLOGY
EXISTING CONDTION
WITH FRONT RANGE VILLAGE
CONSTRUCTION
ModSWMM INPUT
frv-100-int-s.in
2 1 1 2
3 4
WATERSHED 0
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
999 000 1.0 1 0.0
1
24 5.0
1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46
1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75
0.73 0.71 0.69 0.67
1 100 100 2881 12.3 32.00.0390.0160.2500.1000.300 0.51 0.50 0.001E
1 105 105 641 3.4 10.00.0230.0160.2500.1000.300 0.51 0.50 0.001E
1 110 110 2758 17.6 90.00.0300.0160.2500.1000.300 0.51 0.50 0.001E
1 115 115 3722 18.8 13.50.0860.0160.2500.1000.300 0.51 0.50 0.0018
1 120 120 4665 36.2 86.50.0160.0160.2500.1000.300 0.51 0.50 0.001E
1 125 125 3494 36.5 68.80.0230.0160.2500.1000.300 0.51 0.50 0.0018
1 130 129 8604 39.7 78.00.0310.0160.2500.1000.300 0.51 0.50 0.0018
1 135 135 4127 21.6 13.30.0290.0160.2500.1000.300 0.51 0.50 0.0018
1 140 140 8223 58.9 24.80.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 145 145 4915 38.7 12.00.0160.0160.2500.1000.300 0.51 0.50 0.0018
1 150 10 3026 19.8 6.80.0510.0160.2500.1000.300 0.51 0.50 0.0018
1 155 115 9801 17.1 70.00.0130.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Paragon, Basin 205 (Previously LSI Logic)
1 205 205 2497 17.2 82.00.0160.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Front Range village, Basins 206 - 210
1 206 206 7957 54.8 81.20.0170.0160.2500.1000.300 0.51 0.50 0.0018
1 207 207 1812 4.0 81.60.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 208 208 5467 17.9 89.50.0200.0160.2500.1000.300 0.51 0.50 0.0018
1 209 209 2960 18.1 88.70.0150.0160.2500.1000.300 0.51 0.50 0.0018
1 210 210 2654 3.9 86.60.0420.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* English Ranch, Basins 215 - 240
1 215 215 9265 41.9 38.50.0070.0160.2500.1000.300 0.51 0.50 0.0018
1 220 215 4630 16.9 38.50.0120.0160.2500.1000.300 0.51 0.50 0.0018
1 225 225 5678 21.9 38.50.0240.0160.2500.1000.300 0.51.0.50 0.0018
1 230 230 5639 18.9 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018
1 235 235 5949 29.5 38.50.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 240 240 5007 32.3 41.50.0120.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Pads at Harmony Road, Basins 243 - 245
1 243 243 3359 5.5 92.70.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 244 244 1098 2.5 54.80.0170.0160.2500.1000.300 0.51 0.50 0.0018
1 245 245 1245 2.8 63.20.0130.0160.2500.1000.300 0.51 0.50 0.0018
-------------------------------------------------------------------------
Front Range village, Basin 250
1 250 250 1654 8.5 79.80.0180.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Future Development north of FRV, Basins 296, 297
1 296 296 2703 12.9 05.00.0100.0160.2500.1000.300 0.51 0.50 0.0018
1 297 297 4199 28.9 05.00.0070.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Harmony Trailer Park west of Front Range village, Basins 300-302, 305
1 300 300 3357 23.1 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 301 301 2977 20.5 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 302 302 1992 11.3 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 305 305 7663 24.1 38.50.0150.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
1 310 31012018 84.7 37.00.0050.0160.2500.1000.300 0.51 0.50 0.0018
1 315 315 9023 60.9 38.50.0060.0160.2500.1000.300 0.51 0.50 0.0018
1 320 320 5102 29.4 38.50.0210.0160.2500.1000.300 0.51 0.50 0.0018
1 325 325 2084 14.4 40.00.0210.0160.2500.1000.300 0.51 0.50 0.0018
1 330 330 2038 15.3 46.80.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 335 334 3567 30.3 27.80.0150.0160.2500.1000.300 0.51 0.50 0.0018
Page 1
frv-100-int-s.in
1 340 340 4623 34.6 30.00.0270.0160.2500.1000.300 0.51 0.50
1 345 345 5109 44.8 27.00.0080.0160.2500.1000.300 0.51 0.50
1 350 345 6639 34.9 90.00.0110.0160.2500.1000.300 0.51 0.50
1 355 355 2940 27.4 48.00.0100.0160.2500.1000.300 0.51 0.50
1 400 400 6703 51.7 71.50.0240.0160.2500.1000.300 0.51 0.50
1 405 405 7493 41.8 60.80.0180.0160.2500.1000.300 0.51 0.50
1 410 410 7013 58.6 48.50.0090.0160.2500.1000.300 0.51 0.50
1 415 415 5458 42.1 40.00.0090.0160.2500.1000.300 0.51 0.50
1 420 421 7066109.0 11.60.0080.0160.2500.1000.300 0.51 0.50
1 425 425 5627 31.0 38.50.0090.0160.2500.1000.300 0.51 0.50
1 430 430 2979 22.5 38.50.0180.0160.2500.1000.300 0.51 0.50
1 435 435 3776 31.9 10.00.0110.0160.2500.1000.300 0.51 0.50
1 440 440 2603 9.5 38.50.0110.0160.2500.1000.300 0.51 0.50
0
0
0 430 440 0 5 1.25 600 0.0130 0 0 0.
1 513 0.0120 20 20 0.
0 440 437 0 3 0 0 0.0000 0 0 0.
436 437 426 3 3 0 0 0.0000 0 0 0.
0.00 0.0 4 0.0 10000 9996.0
0 426 425 0 2 1.25 1339 0.0100 0 0 0.
0 436 435 0 1 15 1889 0.0080 8 8 0.
0 425 423 0 3 0 0 0.0000 0 0 0.
0 435 434 0 3 0 0 0.0000 0 0 0.
0 423 415 0 5 1.5 1457 0.0050 0 0 0.
1 1457 0.0050 20 20 0.
0 434 415 0 4 0.5 768 0.0050 12 12 0.
10 768 0.0050 20 20 0.
0 415 400 0 3 0 0 0.0000 0 0 0.
0 410 400 0 5 2.5 1301 0.0090 0 0 0.
1 1380 0.0070 20 20 0.
0 405 400 0 5 3 1065 0.0090 0 0 0.
80 1065 0.0090 1 1 0.
0 400 401 0 3 0 0 0.0000 0 0 0.
0 401 340 11 2 0.1 1 0.0100 0 0 0.
0.00 0.0 0.001 8.0 4.85 12.7
16.7
9.03 23.0 10.29 57.9 11.59 70.8
80.7
31.34 98.0 52.86 115.4 95.93 705.0
0 355 340 0 4 0.25 608 0.0050 12 0 0.
5 608 0.0050 20 0 0.
0 340 342 0 3 0 0 0.0000 0 0 0.
0 342 341 8 2 0.1 1 0.0100 0 0 0.
0.00 0.0 0.20 2.9 5.68 23.5
53.0
28.14 73.1 47.36 88.5 72.54 103.6
111.0
0 341 325 0 5 3.5 1200 0.0050 0 0 0.
1 1200 0.0050 20 20 0.
0 325 324 0 3 0 0 0.0000 0 0 0.
0 324 314 0 5 3.5 1242 0.0030 0 0 0.
1 1242 0.0030 20 20 0.
0 421 347 5 2 0.1 1 0.0100 0 0 0.
0.00 0.0 0.16 2.1 8.27 10.5
17.4
43.63 18.7
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
0.0018
013
020
000
000
013
035
000
000
013
020
016
020
000
013
020
013
005
000
010
8.97
16.67
016
020
000
010
14.66
95.53
013
020
000
013
020
010
34.02
0
347
314
0 2
1.5
1139
0.0150
0
0
0.013
0
345
344
0 3
0
0
0.0000
0
0
0.000
0
344
314
5 2
0.1
1
0.0100
0
0
0.010
0.00
0.0
0.04
1.9
2.79
16.8
10.12
27.6
21.56
35.0
0
314
313
0 3
0
0
0.0000
0
0
0.000
0
313
312
0 5
2
409
0.0090
0
0
0.013
Page 2
1.25
5.00
0.00
0.00
1.25
5.00
0.00
0.00
1.50
5.00
0.50
5.00
0.00
2.50
5.00
3.00
5.00
0.00
0.10
0.50
5.00
0.00
0.10
3.50
5.00
0.00
3.50
5.00
0.10
1.50
0.00
0.10
0.00
2.00
frv-100-int-s.in
10
409
0.0350
5
5
0.035
6.00
0
330
312
5 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.001
4.0
0.97
6.6
1.98
8.0
3.04
104.0
0
312
311
0 3
0
0
0.0000
0
0
0.000
0.00
0
311
310
0 5
2
1566
0.0090
0
0
0.013
2.00
10
1566
0.0090
5
5
0.035
6.00
0
334
333
5 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.012
5.6
0.32
21.9
6.45
34.0
16.40
100.0
0
333
320
0 5
2
1064
0.0090
0
0
0.013
2.00
5
1075
0.0090
3
3
0.035
6.00
0
320
319
0 3
0
0
0.0000
0
0
0.000
0.00
0
319
318
9 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.003
0.4
0.52
3.3
2.06
6.2
4.21
9.2
5.92
11.0
6.27
17.5
7.07
109.6
7.93
260.7
0
318
305
0 5
1.25
1320
0.0050
0
0
0.013
1.25
1
1384
0.0040
20
20
0.020
5.00
0
305
304
0 3
0
0
0.0000
0
0
0.000
0.00
0
304
303
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.027
13.6
0.59
28.3
2.19
37.7
6.49
46
7.13
100
7.77
200
8.24
300
0
303
310
0 5
2
671
0.0060
0
0
0.013
2.00
10
671
0.0060
5
5
0.035
6.00
0
310
309
0 3
0
0
0.0000
0
0
0.000
0.00
0
309
308
7 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.004
0.7
1.40
17.6
7.92
25.5
20.29
26.9
25.02
27.4
30.20
273
242
308
307
3 3
0
0
0.0000
0
0
0.000
0.00
0
0
27.4
0
273
245.6
0
307
306
0 2
2.5
1351
0.0060
0
0
0.013
2.50
0
315
306
10 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.287
10.4
0.97
15.0
3.07
22.9
5.50
29.0
8.27
33.2
11.42
35.7
13.14
36.2
13.61
106
13.97
206.0
0
306
238
0 3
0
0
0.0000
0
0
0.000
0.00
*-------------------------------------------------------------------------
* Harmony Trailer
Park
routing
0
300
291
0 3
0
0
0.0000
0
0
0.000
0.00
0
291
321
0 2
4
660
0.0050
0
0
0.013
4.00
0
301
321
0 3
0
0
0.0000
0
0
0.000
0.00
0
321
292
0 3
0
0
0.0000
0
0
0.000
0.00
0
292
360
0 2
4
500
0.0050
0
0
0.013
4.00
0
302
322
0 3
0
0
0.0000
0
0
0.000
0.00
0
322
299
0 3
0
0
0.0000
0
0
0.000
0.00
0
299
296
0 2
6.0
270
0.0100
0
0
0.013
6.00
*-------------------------------------------------------------------------
* Pads
at Harmony
Road
routing
0
245
247
0 3
0
0
0.0000
0
0
0.000
0.00
0
247
294
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.01
2.1
0.06
3.4
0.13
4.4
0.25
5.1
0.37
10.0
0
244
246
0 3
0
0
0.0000
0
0
0.000
0.00
0
246
290
7 2
0.1
1
0.0100
0
0
0.010
0.10
Page 3
frv-100-int-s.in
0.00
0.0
0.01
1.9
0.02
3.1
0.06
3.9
0.12
4.6
0.21
5.2
0.30
10.0
0 290
243
0 2
2
600 0.0100
0
0
0.013
2.00
0 294
243
0 2
2
834 0.0100
0
0
0.013
2.00
0 243
295
0 3
0
0 0.0000
0
0
0.000
O.00
0 295
206
0 2
9
1723 0.0020
0
0
0.013
9.00
0 206
360
0 3
0
0 0.0000
0
0
0.000
0.00
*-------------------------------------------------------------------------
* undeveloped site north
of FRv
routing
0 296
293
0 3
0
0 0.0000
0
0
0.000
0.00
0 293
297
0 1
200
1800 0.0050
4
4
0.035
1.00
0 297
298
0 3
0
0 0.0000
0
0
0.000
0.00
* Existing
culvert under
ziegler
Road
0 298
212
4 2
0.1
1 0.0100
0
0
0.010
O.1C
0.00
0.00
2.95
13.02
10.74
15.95
16.18
17.23
*-------------------------------------------------------------------------
* Front Range village onsite routing
0 360
286
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond D
0 286
601
10 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.0
0.03
0.70
1.62
0.93
4.12
1.04
6.92
1.14
9.87
1.24
12.99
1.32
16.28
1.41
17.94
1.42
19.80
104.84
296 601
276
3 3
0
0 0.0000
0
0
0.000
0.00
0
0
1.42
0 104.26
102.84
0 276
207
0 2
1.5
362 0.0020
0
0
0.013
1.50
0 207
287
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond c
0 287
277
9 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.00
0.17
0.72
0.31
0.86
0.49
0.98
0.70
1.09
0.95
1.19
1.25
1.28
1.59
1.36
1.97
1.44
0 277
208
0 2
1.5
217 0.0020
0
0
0.013
1.50
0 208
288
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond B
0 288
278
7 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.00
0.01
1.59
0.19
9.93
0.60
24.27
1.12
33.73
1.71
37.47
2.38
38.00
0 278
209
0 2
4
850 0.0020
4
4
0.013
4.00
0 209
289
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond A
0 289
279
8 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.00
0.04
9.77
0.60
10.70
1.89
12.41
3.28
13.92
4.77
15.27
6.34
16.30
7.70
16.35
0 279
270
0 2
3
570 0.0020
0
0
0.013
3.00
*-------------------------------------------------------------------------
* Paragon (Previously
BSI
Logic)
pond routing
through
FRv Basins
210 and
250
0 205
216
0 3
0
0 0.0000
0
0
0.000
0.00
* Paragon Pond
0 216
204
6 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.00
0.46
0.53
1.53
0.80
2.89
0.99
4.52
1.15
6.44
1.30
0 204
249
0 2
2.5
143 0.0020
0
0
0.013
2.50
0 250
249
0 3
0
0 0.0000
0
0
0.000
0.00
0 249
248
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond F
Page 4
frv-100-int-s.in
0
248
251
7 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.00
0.01
2.58
0.04
3.07
0.42
5.39
0.87
6.97
1.37
8.26
1.65
8.83
0
251
200
0 2
2
230
0.0020
0
0
0.013
2.00
0
210
200
0 3
0
0
0.0000
0
0
0.000
0.00
0
200
201
0 3
0
0
0.0000
0
0
0.000
0.00
* Pond E
0
201
202
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.00
0.01
4.41
0.18
7.09
0.68
10.21
1.23
12.58
1.83
14.57
0
202
270
0 4
15
902
0.0020
4
8
0.035
6.00
87
902
0.0020
20
20
0.020
2.00
*-------------------------------------------------------------------------
0
270
212
0 3
0
0
0.0000
0
0
0.000
0.00
0
242
240
0 4
0.5
1779
0.0070
12
12
0.016
0.50
10
1779
0.0070
20
20
0.020
5.00
0
240
235
0 3
0
0
0.0000
0
0
0.000
0.00
0
238
237
0 5
3
787
0.0060
0
0
0.013
3.00
1
787
0.0060
20
20
0.020
5.00
0
237
236
0 3
0
0
0.0000
0
0
0.000
0.00
0
236
232
0 5
3
740
0.0050
0
0
0.013
3.00
1
740
0.0050
20
20
0.020
5.00
0
235
234
0 3
0
0
0.0000
0
0
0.000
0.00
0
234
233
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.44
3.1
2.350
4.2
2.81
4.6
4.69
5.1
6.39
100.6
7.13
203.7
8.21
401.9
230
233
232
5 3
0
0
0.0000
0
0
0.000
0.00
0
0
5
0
101
95
204
198
402
396
0
232
231
0 3
0
0
0.0000
0
0
0.000
0.00
0
231
227
0 5
3
311
0.0030
0
0
0.013
3.00
1
311
0.0030
20
20
0.020
5.00
0
230
229
0 3
0
0
0.0000
0
0
0.000
0.00
0
229
228
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.07
2.0
1.12
2.9
3.46
3.5
4.60
200.8
5.29
401
225
228
227
4 3
0
0
0.0000
0
0
0.000
0.00
0
0
4
0
201
197
401
397
0
227
226
0 3
0
0
0.0000
0
0
0.000
0.00
0
226
222
0 5
3
477
0.0060
0
0
0.013
3.00
1
477
0.0060
20
20
0.020
5.00
0
225
224
0 3
0
0
0.0000
0
0
0.000
0.00
0
224
223
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.002
1.0
0.51
2.7
1.99
3.6
3.90
4.3
4.46
4.5
4.85
200
5.10
400
155
223
222
4 3
0
0
0.0000
0
0
0.000
0.00
0
0
4
0
200
195
400
395
0
222
221
0 3
0
0
0.0000
0
0
0.000
0.00
0
221
152
0 5
3
1569
0.0240
0
0
0.013
3.00
1
1569
0.0140
20
20
0.020
8.00
0
152
0 3
0
0
0.0000
0
0
0.000
0.00
0
215
214
0 3
0
0
0.0000
0
0
0.000
0.00
0
214
203
9 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.08
12.6
0.411
14.9
4.00
21.8
9.62
26.9
12.17
28.7
13.04
149
13.17
Page 5
frv-100-int-s.in
149.4
14.04
149.9
297
203
213
3
3
0
0
0.0000
0
0
0.000
0.00
0
0
29.5
0
150
120
0
213
212
0
5
3
610
0.0030
0
0
0.013
3.00
1
610
0.0030
20
20
0.020
5.00
0
212
211
0
3
0
0
0.0000
0
0
0.000
0.00
0
211
125
0
4
5
1670
0.0060
4
4
0.035
6.00
53
1670
0.0060
4
40
0.020
3.00
0
125
111
0
3
0
0
0.0000
0
0
0.000
0.00
0
111
110
0
4
10
1400
0.0040
0
0
0.013
4.00
10
1400
0.0040
20
20
0.020
3.50
0
110
105
0
3
0
0
0.0000
0
0
0.000
0.00
0
105
104
0
3
0
0
0.0000
0
0
0.000
0.00
100
104
103
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
20
0
2000
1980
0
103
120
0
2
2.8
617
0.0050
0.00
0.00
0.013
2.80
0
129
120
0
1
130
956
0.0080
60.00
6.00
0.030
8.00
0
120
100
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
100
101
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
101
99
7
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
1.54
4.0
6.085
13.9
11.93
22.0
19.08
377.8
27.46
1130
29.80
1400
0
154
221
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
150
146
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
146
145
0
4
31
1384
0.0020
1.50
1.50
0.035
6.00
62
1384
0.0020
0.00
15.00
0.050
12.00
0
145
141
0
3
0
0
0.0000
0.000
0.000
0.000
0.00
0
141
139
0
4
31
1193
0.0020
1.50
1.50
0.035
6.00
62
1193
0.0020
0.00
15.00
0.050
12.00
0
140
139
8
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.01
1.0
0.39
7.0
1.65
8.9
3.96
10.5
5.45
11.2
7.07
40.0
7.99
100.0
0
139
136
0
3
0
0
0.0000
0.000
0.000
0.000
0.00
0
136
135
0
4
31
910
0.0020
1.50
1.50
0.035
6.00
62
910
0.0020
0.00
15.00
0.050
12.00
0
135
116
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
116
115
0
4
31
2552
0.0020
1.50
1.50
0.035
6.00
62
2552
0.0020
0.00
15.00
0.050
12.00
95
99
115
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
25
0
1012
987
0
115
90
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
95
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
-1
11
150
2
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
300
100
300
0
10
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
155
154
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
91
90
80
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
444
0
6000
5556
0
80
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
91
95
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
7
5
201
216
248
286
287 288
289
ENDPROGRAM
Page 6
0
ModSWMM OUTPUT
Stantec
.`
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
*** ENTRY MADE TO RUNOFF MODEL ***
V:\52870f\acbve\7 87010251 \Reports\Drainage\ModSW MM\frv-100-int-s.out
1 Print I
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
NUMBER OF TIME STEPS 999
INTEGRATION TIME INTERVAL (MINUTES) 1.00
25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
1.00 1.14 1.33 2.23 2.84 5.49
1.22 1.06 1.00 .95 .91 .87
.73 .71 .69 .67
9.95 4.12 2.48 1.46
.84 .81 .78 .75
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 2 P6ni
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
SUBAREA
GUTTER
WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR
SURFACE STORAGE(IN)
INFILTRATION RATE(IN/HR)
GAGE
NUMBER
OR MANHOLE (FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
MAXIMUM
MINIMUM
DECAY RATE
NO
100
100
2881.0
12.3
32.0
.0390
.016
.250
.100
.300
.51
.50
.00180
1
105
105
641.0
3.4
10.0
.0230
.016
.250
.100
.300
.51
.50
.00180
1
110
110
2758.0
17.6
90.0
.0300
.016
.250
.100
.300
.51
.50
.00180
1
115
115
3722.0
18.8
13.5
.0860
.016
.250
.100
.300
.51
.50
.00180
1
120
120
4665.0
36.2
86.5
.0160
.016
.250
.100
.300
.51
.50
.00180
1
125
125
3494.0
36.5
68.8
.0230
.016
.250
.100
.300
.51
.50
.00180
1
130
129
8604.0
39.7
78.0
.0310
.016
.250
.100
.300
.51
.50
.00180
1
135
135
4127.0
21.6
13.3
.0290
.016
.250
.100
.300
.51
.50
.00180
1
140
140
8223.0
58.9
24.8
.0090
.016
.250
.100
.300
.51
.50
.00180
1
145
145
4915.0
38.7
12.0
.0160
.016
.250
.100
.300
.51
.50
.00180
1
150
10
3026.0
19.8
6.8
.0510
.016
.250
.100
.300
.51
.50
.00180
1
155
115
9801.0
17.1
70.0
.0130
.016
.250
.100
.300
.51
.50
.00180
1
205
205
2497.0
17.2
82.0
.0160
.016
.250
.100
.300
.51
.50
.00180
1
206
206
7957.0
54.8
81.2
.0170
.016
.250
.100
.300
.51
.50
.00180
1
207
207
1812.0
4.0
81.6
.0130
.016
.250
.100
.300
.51
.50
.00180
1
208
208
5467.0
17.9
89.5
.0200
.016
.250
.100
.300
.51
.50
.00180
1
209
209
2960.0
18.1
88.7
.0150
.016
.250
.100
.300
.51
.50
.00180
1
210
210
2654.0
3.9
86.6
.0420
.016
.250
.100
.300
.51
.50
.00180
1
215
215
9265.0
41.9
38.5
.0070
.016
.250
.100
.300
.51
.50
.00180
1
220
215
4630.0
16.9
38.5
.0120
.016
.250
.100
.300
.51
.50
.00180
1
225
225
5678.0
21.9
38.5
.0240
.016
.250
.100
.300
.51
.50
.00180
1
230
230
5639.0
18.9
38.5
.0180
.016
.250
.100
.300
.51
.50
.00180
1
235
235
5949.0
29.5
38.5
.0130
.016
.250
.100
.300
.51
.50
.00180
1
240
240
5007.0
32.3
41.5
.0120
.016
.250
.100
.300
.51
.50
.00180
1
243
243
3359.0
5.5
92.7
.0080
.016
.250
.100
.300
.51
.50
.00180
1
244
244
1098.0
2.5
54.8
.0170
.016
.250
.100
.300
.51
.50
.00180
1
245
245
1245.0
2.8
63.2
.0130
.016
.250
.100
.300
.51
.50
.00180
1
250
250
1654.0
8.5
79.8
.0180
.016
.250
.100
.300
.51
.50
.00180
1
296
296
2703.0
12.9
5.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
297
297
4199.0
28.9
5.0
.0070
.016
.250
.100
.300
.51
.50
.00180
1
300
300
3357.0
23.1
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
301
301
2977.0
20.5
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
302
302
1992.0
11.3
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
305
305
7663.0
24.1
38.5
.0150
.016
.250
.100
.300
.51
.50
.00180
1
310
310
12018.0
84.7
37.0
.0050
.016
.250
.100
.300
.51
.50
.00180
1
315
315
9023.0
60.9
38.5
.0060
.016
.250
.100
.300
.51
.50
.00180
1
320
320
5102.0
29.4
38.5
.0210
.016
.250
.100
.300
.51
.50
.00180
1
325
325
2084.0
14.4
40.0
.0210
.016
.250
.100
.300
.51
.50
.00180
1
330
330
2038.0
15.3
46.8
.0130
.016
.250
.100
.300
.51
.50
.00180
1
335
334
3567.0
30.3
27.8
.0150
.016
.250
.100
.300
.51
.50
.00180
1
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 3 Print
Stantec
340
340
4623.0
34.6
30.0
.0270
.016
.250
.100
.300
.51
.50
.00180
1
345
345
5109.0
44.8
27.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
350
345
6639.0
34.9
90.0
.0110
.016
.250
.100
.300
.51
.50
.00180
1
355
355
2940.0
27.4
48.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
400
400
6703.0
51.7
71.5
.0240
.016
.250
.100
.300
.51
.50
.00180
1
405
405
7493.0
41.8
60.8
.0180
.016
.250
.100
.300
.51
.50
.00180
1
410
410
7013.0
58.6
48.5
.0090
.016
.250
.100
.300
.51
.50
.00180
1
415
415
5458.0
42.1
40.0
.0090
.016
.250
.100
.300
.51
.50
.00180
1
420
421
7066.0
109.0
11.6
.0080
.016
.250
.100
.300
.51
.50
.00180
1
425
425
5627.0
31.0
38.5
.0090
.016
.250
.100
.300
.51
.50
.00180
1
430
430
2979.0
22.5
38.5
.0180
.016
.250
.100
.300
.51
.50
.00180
1
435
435
3776.0
31.9
10.0
.0110
.016
.250
.100
.300
.51
.50
.00180
1
440
440
2603.0
9.5
38.5
.0110
.016
.250
.100
.300
.51
.50
.00180
1
TOTAL
NUMBER OF
SUBCATCHMENTS, 53
TOTAL
TRIBUTARY
AREA (ACRES), 1512.80
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 4 Print .
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED AREA (ACRES) 1512.800
TOTAL RAINFALL (INCHES) 3.669
TOTAL INFILTRATION (INCHES) .775
TOTAL WATERSHED OUTFLOW (INCHES) 2.835
TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .060
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 5 Prini,
Stentec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
WIDTH
INVERT
SIDE SLOPES
OVERBANK/SURCHARGE
GUTTER
GUTTER
NDP
NP
OR DIAM
LENGTH
SLOPE
HORIZ
TO VERT
MANNING
DEPTH
JK
NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
(FT)
430
440
0
5
PIPE 1.3
600.
.0130
.0
.0
.013
1.25
0
OVERFLOW 1.0
513.
.0152
20.0
20.0
.020
5.00
440
437
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
437
426
3
3
.0
0.
.0010
.0
.0
.001
10.00
436
DIVERSION
TO GUTTER NUMBER 436 TOTAL 0 VS DIVERTED
0
IN CFS
.0
.0
4.0 .0 10000.0
9996.0
426
425
0
2
PIPE 1.3
1339.
.0100
.0
.0
.013
1.25
0
436
435
0
1
CHANNEL 15.0
1889.
.0080
8.0
8.0
.035
5.00
0
425
423
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
435
434
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
423
415
0
5
PIPE 1.5
1457.
.0050
.0
.0
.013
1.50
0
OVERFLOW 1.0
1457.
.0050
20.0
20.0
.020
5.00
434
415
0
4
CHANNEL .5
768.
.0050
12.0
12.0
.016
.50
0
OVERFLOW 10.0
768.
.0050
20.0
20.0
.020
5.00
415
400
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
410
400
0
5
PIPE 2.5
1301.
.0090
.0
.0
.013
2.50
0
OVERFLOW 1.0
1380.
.0085
20.0
20.0
.020
5.00
405
400
0
5
PIPE 3.0
1065.
.0090
.0
.0
.013
3.00
0
OVERFLOW 80.0
1065.
.0090
1.0
1.0
.005
5.00
400
401
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
401
340
11
2
PIPE .1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 8.0 4.8
12.7
9.0
16.7
9.0
23.0
10.3
57.9
11.6
70.8
16.7 80.7 31.3
98.0
52.9
115.4
95.9
705.0
355
340
0
4
CHANNEL .3
608.
.0050
12.0
.0
.016
.50
0
OVERFLOW 5.0
608.
.0050
20.0
.0
.020
5.00
340
342
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
342
341
8
2
PIPE .1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.2 2.9 5.7
23.5
14.7
53.0
28.1
73.1
47.4
88.5
72.5
103.6
95.5 111.0
341
325
0
5
PIPE 3.5
1200.
.0050
.0
.0
.013
3.50
0
OVERFLOW 1.0
1200.
.0050
20.0
20.0
.020
5.00
325
324
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
324
314
0
5
PIPE 3.5
1242.
.0030
.0
.0
.013
3.50
0
OVERFLOW 1.0
1242.
.0030
20.0
20.0
.020
5.00
421
347
5
2
PIPE .1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
.2 2.1 8.3
10.5
34.0
17.4
43.6
18.7
347
314
0
2
PIPE 1.5
1139.
.0150
.0
.0
.013
1.50
0
345
344
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
344
314
5
2
PIPE .1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
.0 1.9 2.8
16.8
10.1
27.6
21.6
35.0
314
313
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
313
312
0
5
PIPE 2.0
409.
.0090
.0
.0
.013
2.00
0
OVERFLOW 10.0
409.
.0090
5.0
5.0
.035
6.00
330
312
5
2
PIPE .1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
V:\52870f\active\l87010251 \Reports\Drainage\ModSW MM\frv-100-int-s.out
6 Print
Stantec
312
0
311
0
334
0
333
0
320
0
319
0
11.0
318
0
305
0
304
0
100.0
303
0
310
0
309
0
27.4
308
242
307
0
315
0
33.2
306
0
300
0
291
0
301
0
321
0
292
0
302
0
322
0
299
0
245
0
247
0
10.0
244
0
246
0
0
.0
.0 4.0 1.0 6.6
2.0
8.0
3.0
104.0
311
0
3
.0 0.
.0010
.0
.0
.001
310
0
5
PIPE 2.0 1566.
.0090
.0
.0
.013
OVERFLOW 10.0 1566.
.0090
5.0
5.0
.035
333
5
2
PIPE .1 1.
.0100
.0
.0
.010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
.0 5.6 3 21.9
6.5
34.0
16.4
100.0
320
0
5
PIPE 2.0 1064.
.0090
.0
.0
.013
OVERFLOW 5.0 1075.
.0089
3.0
3.0
.035
319
0
3
.0 0.
.0010
.0
.0
.001
318
9
2
PIPE .1 1.
.0100
.0
.0
.010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 .4 .5 3.3
2.1
6.2
4.2
9.2
6.3
17.5
7.1 109.6 7.9 260.7
305
0
5
PIPE 1.3 1320.
.0050
.0
.0
.013
OVERFLOW 1.0 1384.
.0048
20.0
20.0
.020
304
0
3
.0 0.
.0010
.0
.0
.001
303
8
2
PIPE .1 1.
.0100
.0
.0
.010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 13.6 .6 28.3
2.2
37.7
6.5
46.0
7.8
200.0
8.2 300.0
310
0
5
PIPE 2.0 671.
.0060
.0
.0
.013
OVERFLOW 10.0 671.
.0060
5.0
5.0
.035
309
0
3
.0 0.
.0010
.0
.0
.001
308
7
2
PIPE .1 1.
.0100
.0
.0
.010
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 .7 1.4 17.6
7.9
25.5
20.3
26.9
30,2
273.0
307
3
3
.0 0.
.0010
.0
.0
.001
DIVERSION
TO GUTTER
NUMBER 242
- TOTAL 0 VS DIVERTED 0
IN CFS
0
.0
27.4
.0 273.0 245.6
306
0
2
PIPE
2.5 1351.
.0060
.0
306
10
2
PIPE.
.1 1.
.0100
.0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.3
10.4 1.0 15.0
3.1
22.9
11.4
35.7
13.1
36.2 13.6 106.0
14.0
206.0
238
0
3
.0 0.
.0010
.0
291
.0
3
.0 0.
.0010
.0
321
0
2
PIPE
4.0 660.
.0050
.0
321
0
3
.0 0.
.0010
.0
292
0
3
.0 0.
.0010
.0
360
0
2
PIPE
4.0 500.
.0050
.0
322
0
3
.0 0.
.0010
.0
299
0
3
.0 0.
.0010
.0
296
0
2
PIPE
6.0 270.
.0100
.0
247
0
3
.0 0.
.0010
.0
294
6
2
PIPE
.1 1.
.0100
.0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
2.1 .1 3.4
.1
4.4
246
0
3
.0 0.
.0010
.0
290
7
2
PIPE
.1 1.
.0100
.0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
1.9 .0 3.1
.l
3.9
5.2
.3 10.0
290 243 0 2 PIPE 2.0 600. .0100 .0
0
V:\52870f\active\187010251 \Reports\Drainage\ModSW MM\frv-100-int-s.out
.0 .013
.0 .010
5.5 29.0
.0 .001
.0 .001
.0 .013
.0 .001
.0 .001
.0 .013
.0 .001
.0 .001
.0 .013
.0 .001
.0 .010
.3 5.1
.0 .001
.0 .010
.1 4.6
.0 .013
10.00
2.00
6.00
.10
2.00
6.00
10.00
.10
5.9
1.25
5.00
10.00
.10
7.1
2.00
6.00
10.00
.10
25.0
10.00
2.50
.10
8.3
10.00
10.00
4.00
10.00
10.00
4.00
10.00
10.00
6.00
10.00
.10
.4
10.00
.10
2
2.00
7 Print
Stantec
294
243
0
2
PIPE
2.0 834.
.0100
.0
.0
.013
0
243
295
0
3
.0 0.
.0010
.0
.0
.001
0
295
206
0
2
PIPE
9.0 1723.
.0020
.0
.0
.013
0
206
360
0
3
.0 0.
.0010
.0
.0
.001
0
296
293
0
3
.0 0.
.0010
.0
.0
.001
0
293
297
0
1
CHANNEL
200.0 1800.
.0050
4.0
4.0
.035
0
297
298
0
3
.0 0.
.0010
.0
.0
.001
0
298
212
4
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
0
.0
3.0 13.0
10.7 15.9
16.2
17.2
360
286
0
3
.0 0.
.0010
.0
.0
.001
0
286
601
10
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
.7 1.6 .9
4.1
1.0
6.9
1.1
1.2
13.0
1.3
16.3
1.4 17.9 1.4
19.8
104.8
601
276
3
3
.0 0.
.0010
.0
.0
.001
296
DIVERSION
TO GUTTER NUMBER 296
- TOTAL 0 VS DIVERTED Q
IN CFS
0
.0
1.4
.0 104.3 102.8
276
207
0
2
PIPE
1.5 362.
.0020
.0
.0
.013
0
207
287
0
3
.0 0.
.0010
.0
.0
.001
0
287
277
9
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.2
.7 .3 .9
.5
1.0
.7
1.1
1.2
1.3
1.3
1.6
1.4 2.0 1.4
277
208
0
2
PIPE
1.5 217.
.0020
.0
.0
.013
0
208
288
0
3
.0 0.
Y .0010
.0
.0
.001
0
288
278
7
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
1.6 .2 9.9
.6
24.3
1.1
33.7
37.5
2.4
38.0
278
209
0
2
PIPE
4.0 850.
.0020
4.0
4.0
.013
0
209
289
0
3
.0 0.
.0010
.0
.0
.001
0
289
279
8
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
9.8 .6 10.7
1.9
12.4
3.3
13.9
15.3
6.3
16.3
7.7 16.4
279
270
0
2
PIPE
3.0 570.
.0020
.0
.0
.013
0
205
216
0
3
.0 0.
.0010
.0
.0
.001
0
216
204
6
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.5
.5 1.5 .8
2.9
1.0
4.5
1.1
1.3
204
249
0
2
PIPE
2.5 143.
.0020
.0
.0
.013
0
250
249
0
3
.0 0.
.0010
.0
.0
.001
0
249
248
0
3
.0 0.
.0010
.0
.0
.001
0
248
251
7
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
2.6 .0 3.1
.4
5.4
.9
7.0
8.3
1.6
8.8
251
200
0
2
PIPE
2.0 230.
.0020
.0
.0
.013
0
210
200
0
3
.0 0.
.0010
.0
.0
.001
0
200
201
0
3
.0 0.
.0010
.0
.0
.001
0
201
202
6
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
V:\52870f\active\l87010251 \Reports\Drainage\Mod3VVMM\frv-100-int-s.out
2.00
10.00
9.00
10.00
10.00
1.00
10.00
.10
10.00
.10
9.9
10.00
1.50
10.00
.10
.9
1.50
10.00
.10
1.7
4.00
10.00
.10
4.8
3.00
10.00
.10
6.4
2.50
10.00
10.00
.10
1.4
2.00
10.00
10.00
.10
8 Print
Stantec
.0
.0
.0 4.4
.2 7.1
.7
10.2
1.2
12.6
1.8
14.6
202
270
0
4
CHANNEL
15.0 902.
.0020
4.0
8.0
.035
6.00
0
OVERFLOW
87.0 902.
.0020
20.0
20.0
.020
2.00
270
212
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
242
240
0
4
CHANNEL
.5 1779.
.0070
12.0
12.0
.016
.50
0
OVERFLOW
10.0 1779.
.0070
20.0
20.0
.020
5.00
240
235
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
238
237
0
5
PIPE
3.0 787.
.0060
.0 .0
.013
3.00
0
OVERFLOW
1.0 787.
.0060
20.0
20.0
.020
5.00
237
236
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
236
232
0
5
PIPE
3.0 740.
.0050
.0 .0
.013
3.00
0
OVERFLOW
1.0 740.
.0050
20.0
20.0
.020
5.00
235
234
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
234
233
8
2
PIPE
.1 1.
.0100
.0 .0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.4 3.1
2.4 4.2
2.8
4.6
4.7
5.1
6.4
100.6
7.1
203.7
8.2 401.9
233
232
5
3
.0 0.
.0010
.0 .0
.001
10.00
230
DIVERSION
TO GUTTER
NUMBER 230 - TOTAL
O VS DIVERTED 0
IN CFS
0
.0
5.0 .0
101.0 95.0
204.0
198.0
402.0
396.0
232
231
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
231
227
0
5
PIPE
3.0 311.
.0030
.0 .0
.013
3.00
0
OVERFLOW
1.0 311.
.0030
20.0
20.0
.020
5.00
230
229
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
229
228
6
2
PIPE
.1 1.
.0100
.0 .0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
0
.0
.1 2.0
1.1 2.9
3.5
3.5
4.6
200.8.e
5.3
401.0
228
227
4
3
.0 0.
.0010
.0 .0
.001
10.00
225
DIVERSION
TO GUTTER
NUMBER 225 - TOTAL
0 VS DIVERTED O
IN CFS
0
.0
4.0 .0
201.0 197.0
401.0
397.0
227
226
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
226
222
0
5
PIPE
3.0 477.
.0060
.0 .0
.013
3.00
0
OVERFLOW
1.0 477.
.0060
20.0
20.0
.020
5.00
225
224
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
224
223
8
2
PIPE
.1 1.
.0100
.0 .0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 1.0
.5 2.7
2.0
3.6
3.9
4.3
4.5
4.5
4.8
200.0
5.1 400.0
223
222
4
3
.0 0.
.0010
.0 .0
.001
10.00
155
DIVERSION
TO GUTTER
NUMBER 155 - TOTAL
0 VS DIVERTED 0
IN CFS
0
.0
4.0 .0
200.0 195.0
400.0
395.0
222
221
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
221
152
0
5
PIPE
3.0 1569.
.0240
.0 .0
.013
3.00
0
OVERFLOW
1.0 1569.
.0240
20.0
20.0
.020
8.00
152
0
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
215
214
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
214
203
9
2
PIPE
.1 1.
.0100
.0 .0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.1 12.6
.4 14.9
4.0
21.8
9.6
26.9
12.2
28.7
13.0
149.0
13.2 149.4
14.0 149.9
203
213
3
3
.0 0.
.0010
.0 .0
.001
10.00
297
DIVERSION
TO GUTTER
NUMBER 297 - TOTAL
0 VS DIVERTED O
IN CFS
0
.0
29.5 .0
150.0 120.0
213
212
0
5
PIPE
3.0 610.
.0030
.0 .0
.013
3.00
0
OVERFLOW
1.0 610.
.0030
20.0
20.0
.020
5.00
212
211
0
3
.0 0.
.0010
.0 .0
.001
10.00
0
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 9 Print
Stantec
211
125
0
4
CHANNEL
5.0
1670.
.0060
4.0
4.0
.035
6.00
0
OVERFLOW
53.0
1670.
.0060
4.0
40.0
.020
3.00
125
ill
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
ill
110
0
4
CHANNEL
10.0
1400.
.0040
.0
.0
.013
4.00
0
OVERFLOW
10.0
1400.
.0040
20.0
20.0
.020
3.50
110
105
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
105
104
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
104
103
3
3
.0
0.
.0010
.0
.0
.001
10.00
100
DIVERSION
TO GUTTER
NUMBER 100 TOTAL
0 VS DIVERTED 0
IN CFS
0
.0
20.0 .0
2000.0
1980.0
103
120
0
2
PIPE
2.8
617.
.0050
.0
.0
.013
2.80
0
129
120
0
1
CHANNEL
130.0
956.
.0080
60.0
6.0
.030
8.00
0
120
100
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
100
101
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
101
99
7
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
1.5 4.0
6.1
13.9
11.9
22.0
19.1
377.8
27.5
1130.0
29.8
1400.0
154
221
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
150
146
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
146
145
0
4
CHANNEL
31.0
1384.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
1384.
.0020
.0
15.0
.050
12.00
145
141
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
141
139
0
4
CHANNEL
31.0
1193.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
1193.
.0020
.0
15.0
.050
12.00
140
139
8
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 1.0
.4
7.0
1.6
8.9
4.0
10.5
5.5
11.2
7.1
40.0
8.0 100.0
139
136
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
136
135
0
4
CHANNEL
31.0
910.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
910.
.0020
.0
15.0
.050
12.00
135
116
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
116
115
0
4
CHANNEL
31.0
2552.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
2552.
.0020
.0
15.0
.050
12.00
99
115
3
3
.0
0.
.0010
.0
.0
.001
10.00
95
DIVERSION
TO GUTTER
NUMBER 95 - TOTAL
0 VS DIVERTED 0
IN CFS
.0
.0
25.0 .0
1012.0
987.0
115
90
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
95
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
11
150
2
3
.0
0.
.0010
.0
.0
.001
10.00
-1
TIME IN HRS VS'INFLOW IN CFS
.0
300.0
100.0 300.0
10
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
155
154
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
90
80
3
3
.0
0.
.0010
.0
.0
.001
10.00
91
DIVERSION
TO GUTTER
NUMBER 91 - TOTAL
0 VS DIVERTED 0
IN CFS
.0
.0
444.0 .0
6000.0
5556.0
80
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
91
95
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
TOTAL
NUMBER OF GUTTERS/PIPES,
145
VA52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 10 Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
ARRANGEMENT OF
SUBCATCHMENTS AND
GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
TRIBUTARY
SUBAREA
D.A.(AC)
101
100
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
436.4
103
104
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
348.2
111
125
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
327.2
116
135
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
119.2
129
0
0
0
0 0
0
0
0
0
0
130
0
0 0
0
0
0
0
0 0
39.7
136
139
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
97.6
140
0
0
0
0 0
0
0
0
0
0
140
0
0 0
0
0
0
0
0 0
58.9
141
145
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
38.7
146
150
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
.0
201
200
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
29.6
202
201
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
29.6
204
216
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
17.2
211
212
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
290.7
213
203
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
58.8
214
215
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
58.8
216
205
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
17.2
221
222
154
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
901.5
224
225
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
21.9
226
227
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
879.6
229
230
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
18.9
231
232
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
860.7
234
235
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
61.8
236
237
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
798.9
238
306
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
798.9
242
0
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
.0
246
244
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
2.5
247
245
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
2.8
248
249
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
25.7
251
248
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
25.7
276
601
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
109.2
277
287
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
113.2
278
288
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
131.1
279
289
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
149.2
286
360
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
109.2
287
207
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
113.2
288
208
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
131.1
289
209
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
149.2
290
246
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
2.5
291
300
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
23.1
292
321
0
0
0 0
0
0
0
0
0
0
0
0 0
0
0
0
0
0 0
43.6
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 11 Pdni
Stantec
293
296 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
24.2
294
247 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
2.8
295
243 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
10.8
298
297 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
53.1
299
322 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
11.3
303
304 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
83.8
304
305 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
83.8
307
308 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
738.0
309
310 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
738.0
311
312 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
569.5
313
314 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
554.2
315
0 0
0
0
0
0
0
0 0
0
315
0
0
0
0
0
0
0
0
0
60.9
318
319 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
59.7
319
320 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
59.7
324
325 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
365.5
330
0 0
0
0
0
0
0
0 0
0
330
0
0
0
0
0
0
0
0
0
15.3
333
334 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
30.3
334
0 0
0
0
0
0
0
0 0.
0
335
0
0
0
0
0
0
0
0
0
30.3
341
342 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
351.1
342
340 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
351.1
344
345 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
79.7
347
421 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
109.0
355
0 0
0
0
0
0
0
0 0
0
355
0
0
0
0
0
0
0
0
0
27.4
401
400 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
289.1
405
0 0
0
0
0
0
0
0 0
0
405
0
0
0
0
0
0
0
0
0
41.8
410
0 0
0
0
0
0
0
0 0
0
410
0
0
0
0
0
0
0
0
0
58.6
421
0 0
0
0
0
0
0
0 0
0
420
0
0
0
0
0
0
0
0
0
109.0
423
425 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
63.0
426
437 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
32.0
430
0 0
0
0
0
0
0
0 0
0
430
0
0
0
0
0
0
0
0
0
22.5
434
435 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
31.9
436
0 0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
.0
ORDER
OF TREE STRUCTURE
(NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 107
TO
GUTTER
100
COMP
THROUGH
DIVERSION
WILL
LAG ONE TIME
STEP UNLESS
GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
ORDER
OF TREE STRUCTURE
(NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 131
TO
GUTTER
95
COMP
THROUGH
DIVERSION
WILL
LAG ONE TIME
STEP UNLESS
GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
ORDER
OF TREE STRUCTURE
(NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 139
TO
GUTTER
91
COMP
THROUGH
DIVERSION
WILL
LAG ONE TIME
STEP UNLESS
GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
V:\52870t\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-stout 12 Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 7 CONVEYANCE ELEMENTS
THE
UPPER NUMBER
IS DISCHARGE IN CFS
THE
LOWER NUMBER
IS ONE OF
THE FOLLOWING
CASES:
( ) DENOTES DEPTH
ABOVE INVERT
IN FEET
(S) DENOTES STORAGE IN AC -FT
FOR DETENTION DAM.
DISCHARGE
INCLUDES SPILLWAY OUTFLOW.
(I) DENOTES GUTTER
INFLOW IN
CFS FROM
SPECIFIED
INFLOW HYDROGRAPH
(D) DENOTES DISCHARGE IN CFS
DIVERTED
FROM THIS
GUTTER
(0) DENOTES STORAGE IN AC -FT
FOR SURCHARGED
GUTTER
TIME(HR/MIN)
201
216
248
286
287
288
289
0
1.
.0
.0
.0
.0
.0
.0
.0
.DD(S)
OO(S)
OO(S)
OO(S)
.DD(S)
OO(S)
OO(S)
0
6.
.9
.0
.6
.5
.0
1.3
1.1
.00(S)
.01(S)
OO(S)
.02(S)
.00(S)
.01(S)
OO(S)
0
11.
4.4
.1
2.6
.7
.1
3.5
6.4
.01(S)
.04(S)
.01(S)
.15(S)
.02(S)
.05(S)
.03(S)
0
16.
4.7
.2
3.1
.8
.2
7.8
9.9
.03(S)
.13(S)
.04(S)
.53(S)
.05(S)
.14(S)
.08(S)
0
21.
5.3
.3
3.5
.9
.4
13.5
10.1
.07(S)
.29(S)
.11(S)
1.28(S)
.10(S)
.29(S)
.26(S)
0
26.
6.3
.6
4.2
1.0
.7
21.0
10.7
.13(S)
.55(S)
.22(S)
2.46(S)
.17(S)
.51(S)
.58(S)
0
31.
7.6
.7
5.5
1.1
.9
31.1
11.5
.27(S)
1.06(S)
.46(S)
4.79(S)
.31(S)
.97(S)
1.23(S)
0
36.
9.1
.9
7.1
1.2
1.0
37.6
13.0
.50(S)
2.02(S)
.91(S)
8.92(S)
.56(S)
1.86(S)
2.42(S)
0
41.
9.7
1.0
7.8
1.3
1.1
37.9
13.9
.60(S)
2.65(S)
1.17(S)
11.98(S)
.69(S)
2.19(S)
3.25(S)
0
46.
10.0
1.0
8.1
1.4
1.1
37.9
14.4
.65(S)
3.02(S)
1.30(S)
14.16(S)
.77(S)
2.28(S)
3.81(S)
0
51.
10.2
1.0
8.2
1.4
1.1
37.9
14.8
.68(S)
3.26(S)
1.36(S)
15.85(S)
.82(S)
2.24(S)
4.21(S)
0
56.
10.3
1.1
8.3
1.4
1.2
37.8
15.1
.70(S)
3.42(S)
1.39(S)
17.30(S)
.85(S)
2.14(S)
4.55(S)
1
1.
10.3
1.1
8.3
35.8
1.2
37.7
15.3
.71(S)
3.56(S)
1.41(S)
18.56(S)
.89(S)
2.02(S)
4.85(S)
1
6.
10.4
1.1
8.4
82.6
1.2
37.6
15.5
.72(S)
3.67(S)
1.41(S)
19.40(S)
.91(S)
1.89(S)
5.13(S)
1
11.
10.4
1.1
8.4
99.7
1.2
37.5
15.7
.73(S)
3.78(S)
1.42(S)
19.71(S)
.94(S)
1.76(S)
5.40(S)
1
16.
10.5
1.1
8.4
103.0
1.2
36.9
15.9
.74(S)
3.87(S)
1.42(S)
19.77(S)
.96(S)
1.62(S)
5.66(S)
1
21.
10.5
1.1
8.4
102.7
1.2
36.0
16.0
.75(S)
3.97(S)
1.42(S)
19.76(S)
.99(S)
1.48(S)
5.91(S)
1
26.
10.5
1.1
8.4
100.5
1.2
35.2
16.2
.75(S)
4.05(S)
1.41(S)
19.72(S)
1.01(S)
1.34(S)
6.15(S)
1
31.
10.6
1.1
8.3
97.3
1.2
34.3
16.3
.76(S)
4.14(S)
1.41(S)
19.66(S)
1.03(S)
1.21(S)
6.38(S)
1
36.
10.6
1.1
8.3
93.5
1.2
32.9
16.3
.76(S)
4.22(S)
1.40(S)
19.60(S)
1.05(S)
1.08(S)
6.60(S)
1
41.
10.6
1.1
8.3
89.4
1.2
30.7
16.3
.77(S)
4.29(S)
1.39(S)
19.52(S)
1.07(S)
.95(S)
6.80(S)
1
46.
10.6
1.1
8.3
85.4
1.2
28.7
16.3
.77(S)
4.36(S)
1.38(S)
19.45(S)
1.09(S)
.84(S)
6.99(S)
1
51.
10.6
1.2
8.3
81.4
1.2
26.9
16.3
.77(S)
4.43(S)
1.37(S)
19.38(S)
1.11(S)
.74(S)
7.16(S)
1
56.
10.6
1.2
8.2
77.7
1.3
25.3
16.3
77(S)
4.50(S)
1.35(S)
19.31(S)
1.13(S)
.65(S)
7.31(S)
2
1.
10.6
1.2
8.2
73.7
1.3
23.2
16.4
.77(S)
4.56(S)
1.34(S)
19.24(S)
1.15(S)
.57(S)
7.45(S)
2
6.
10.6
1.2
8.1
64.5
1.3
19.6
16.4
.76(S)
4.60(S)
1.31(S)
19.08(S)
1.15(S)
.47(S)
7.54(S)
2
11.
10.5
1.2
8.0
53.2
1.3
16.1
16.4
.74(S)
4.61(S)
1.27(S)
18.87(S)
1.16(S)
.37(S)
7.58(S)
2
16.
10.4
1.2
7.9
42.9
1.3
13.1
16.4
.72(S)
4.62(S)
1.23(S)
18.69(S)
1.16(S)
.28(S)
7.59(S)
2
21.
10.3
1.2
7.8
34.3
1.3
10.7
16.4
.71(S)
4.62(S)
1.19(S)
18.53(S)
1.16(S)
.21(S)
7.58(S)
2
26.
10.3
1.2
7.7
27.3
1.3
8.4
16.4
.69(S)
4.62(S)
1.14(S)
18.41(S)
1.16(S)
.16(S)
7.55(S)
2
31.
10.2
1.2
7.6
21.8
1.3
6.6
16.4
.67(S)
4.61(S)
1.10(S)
18.31(S)
1.16(S)
.12(S)
7.50(S)
2
36.
10.1
1.2
7.5
17.5
1.3
5.2
16.4
.65(S)
4.61(S)
1.06(S)
18.23(S)
1.17(S)
.09(S)
7.44(S)
2
41.
10.0
1.2
7.4
14.1
1.3
4.1
16.3
.64(S)
4.60(S)
1.02(S)
18.17(S)
1.17(S)
.06(S)
7.37(S)
2
46.
9.8
1.2
7.2
11.5
1.3
3.4
16.3
.62(S)
4.60(S)
.97(S)
18.12(S)
1.17(S)
.05(S)
7.28(S)
2
51.
9.7
1.2
7.1
9.5
1.3
2.8
16.3
.60(S)
4.59(S)
.93(S)
18.08(S)
1.17(S)
.04(S)
7.20(S)
2
56.
9.6
1.2
7.0
7.9
1.3
2.4
16.3
.58(S)
4.58(S)
.89(S)
18.06(S)
1.17(S)
.03(S)
7.11(S)
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 13 Print
Stantec
3 1.
9.5
1.2
6.9
6.6
1.3
2.1
16.3
.57(S)
4.58(S)
.85(S)
18.03(S)
1.17(S)
.02(S)
7.01(S)
3 6.
9.4
1.2
6.8
5.6
1.3
1.9
16.3
.55(S)
4.57(S)
.81(S)
18.02(S)
1.17(S)
.02(S)
6.92(S)
3 11.
9.3
1.2
6.7
4.8
1.3
1.7
16.3
.53(S)
4.56(S)
.78(S)
18.00(S)
1.17(S)
.01(S)
6.82(S)
3 16.
9.2
1.2
6.5
4.2
1.3
1.6
16.3
.51(S)
4.56(S)
.74(S)
17.99(S)
1.18(S)
.01(S)
6.72(S)
3 21.
9.1
1.2
6.4
3.6
1.3
1.4
16.3
.49(S)
4.55(S)
.70(S)
17.98(S)
1.18(S)
.01(S)
6.62(S)
3 26.
8.9
1.2
6.3
3.2
1.3
1.3
16.3
.48(S)
4.54(S)
.67(S)
17.97(S)
1.18(S)
.01(S)
6.52(S)
3 31.
8.8
1.2
6.1
2.8
1.3
1.3
16.3
.46(S)
4.53(S)
.63(S)
17.96(S)
1.18(S)
.01(S)
6.42(S)
3 36.
8.7
1.2
6.0
2.5
1.3
1.3
16.3
.44(S)
4.52(S)
.60(S)
17.96(S)
1.18(S)
.01(S)
6.31(S)
3 41.
8.6
1.2
5.9
2.2
1.3
1.3
16.2
.42(S)
4.52(S)
.57(S)
17.95(S)
1.18(S)
.01(S)
6.21(S)
3 46.
8.5
1.2
5.8
2.0
1.3
1.3
16.2
.40(S)
4.51(S)
.53(S)
17.95(S)
1.18(S)
.01(S)
6.11(S)
3 51.
8.4
1.2
5.7
1.8
1.3
1.3
16.1
.38(S)
4.50(S)
.50(S)
17.95(S)
1.18(S)
.01(S)
6.01(S)
3 56.
8.3
1.2
5.6
1.6
1.3
1.3
16.0
.37(S)
4.49(S)
.47(S)
17.94(S)
1.18(S)
.01(S)
5.91(S)
4 1.
8.1
1.2
5.5
1.5
1.3
1.3
16.0
.35(S)
4.49(S)
.44(S)
17.94(S)
1.18(S)
.01(S)
5.80(S)
4 6.
8.0
1.2
5.4
1.4
1.3
1.3
15.9
.33(S)
4.48(S)
.41(S)
17.94(S)
1.19(S)
.01(S)
5.70(S)
4 11.
7.9
1.2
5.2
1.4
1.3
1.3
15.8
.31(S)
4.47(S)
.38(S)
17.93(S)
1.19(S)
.01(S)
5.60(S)
4 16.
7.8
1.2
5.0
1.4
1.3
1.3
15.8
.29(S)
4.46(S)
.36(S)
17.93(S)
1.19(S)
.01(S)
5.50(S)
4 21.
7.7
1.2
4.9
1.4
1.3
1.3
15.7
.27(S)
4.45(S)
.33(S)
17.93(S)
1.19(S)
.01(S)
5.40(S)
4 26.
7.6
1.2
4.7
1.4
1.3
1.3
15.6
.25(S)
4.45(S)
.31(S)
17.92(S)
1.19(S)
.01(S)
5.31(S)
4 31.
7.4
1.2
4.6
1.4
1.3
1.3
15.6
.23(S)
4.44(S)
.28(S)
17.92(S)
1.19(S)
.01(S)
5.21(S)
4 36.
7.3
1.2
4.4
1.4
1.3
1.3
15.5
.21(S)
4.43(S)
.26(S)
17.91(S)
1.19(S)
.01(S)
5.11(S)
4 41.
7.2
1.2
4.3
1.4
1.3
1.3
15.4
.19(S)
4.42(S)
.24(S)
17.91(S)
1.19(S)
.01(S)
5.01(S)
4 46.
7.0
1.2
4.2
1.4
1.3
1.3
15.4
.17(S)
4.42(S)
.22(S)
17.90(S)
1.19(S)
.01(S)
4.91(S)
4 51.
6.7
1.1
4.0
1.4
1.3
1.3
15.3
.16(S)
4.41(S)
.20(S)
17.89(S)
1.19(S)
.01(S)
4.82(S)
4 56.
6.4
1.1
3.9
1.4
1.3
1.3
15.2
.14(S)
4.40(S)
.18(S)
17.89(S)
1.20(S)
.01(S)
4.72(S)
5 1.
6.2
1.1
3.8
1.4
1.3
1.3
15.1
.12(S)
4.39(S)
.16(S)
17.88(S)
1.20(S)
.01(S)
4.63(S)
5 6.
5.9
1.1
3.7
1.4
1.3
1.3
15.1
.11(S)
4.38(S)
.14(S)
17.87(S)
1.20(S)
.01(S)
4.53(S)
5 11.
5.7
1.1
3.6
1.4
1.3
1.3
15.0
.09(S)
4.38(S)
.12(S)
17.86(S)
1.20(S)
.01(S)
4.44(S)
5 16.
5.5
1.1
3.5
1.4
1.3
1.3
14.9
.08(S)
4.37(S)
.11(S)
17.85(S)
1.20(S)
.01(S)
4.34(S)
5 21.
5.3
1.1
3.4
1.4
1.3
1.3
14.8
.06(S)
4.36(S)
.09(S)
17.85(S)
1.20(S)
.01(S)
4.25(S)
5 26.
5.1
1.1
3.3
1.4
1.3
1.3
14.7
.05(S)
4.35(S)
.08(S)
17.84(S)
1.20(S)
.01(S)
4.16(S)
5 31.
4.9
1.1
3.2
1.4
1.3
1.3
14.6
.04(S)
4.35(S)
.06(S)
17.83(S)
1.20(S)
.01(S)
4.06(S)
5 36.
4.7
1.1
3.1
1.4
1.3
1.3
14.6
.03(S)
4.34(S)
.05(S)
17.82(S)
1.20(S)
.01(S)
3.97(S)
5 41.
4.5
1.1
3.0
1.4
1.3
1.3
14.5
.02(S)
4.33(S)
.03(S)
17.81(S)
1.20(S)
.01(S)
3.88(S)
5 46.
3.5
1.1
2.8
1.4
1.3
1.3
14.4
.01(S)
4.32(S)
.02(S)
17.80(S)
1.21(S)
.01(S)
3.79(S)
5 51.
2.7
1.1
2.6
1.4
1.3
1.3
14.3
.01(S)
4.31(S)
.01(S)
17.79(S)
1.21(S)
.01(S)
3.70(S)
5 56.
1.9
1.1
1.4
1.4
1.3
1.3
14.2
.00(S)
4.31(S)
.01(S)
17.79(S)
1.21(S)
.01(S)
3.61(S)
6 1.
1.3
1.1 .
1.2
1.4
1.3
1.3
14.1
.00(S)
4.30(S)
.00(S)
17.78(S)
1.21(S)
.01(S)
3.52(S)
6 6.
1.2
1.1
1.1
1.4
1.3
1.3
14.1
.00(S)
4.29(S)
.00(S)
17.77(S)
1.21(S)
.01(S)
3.43(S)
6 11.
1.1
1.1
1.1
1.4
1.3
1.3
14.0
.00(S)
4.28(S)
.00(S)
17.76(S)
1.21(S)
.01(S)
3.35(S)
6 16.
1.1
1.1
1.1
1.4
1.3
1.3
13.9
.00(S)
4.28(S)
.00(S)
17.75(S)
1.21(S)
.01(S)
3.26(S)
6 21.
1.1
1.1
1.1
1.4
1.3
1.3
13.8
.00(S)
4.27(S)
.00(S)
17.74(S)
1.21(S)
.01(S)
3.17(S)
6 26.
1.1
1.1
1.1
1.4
1.3
1.3
13.7
.00(S)
4.26(S)
.00(S)
17.73(S)
1.21(5)
.01(S)
3.09(S)
6 31.
1.1
1.1
1.1
1.4
1.3
1.3
13.6
.00(S)
4.25(S)
.00(S)
17.72(S)
1.21(S)
.01(S)
3.00(S)
6 36.
1.1
1.1
1.1
1.4
1.3
1.3
13.5
.00(S)
4.24(S)
.00(S)
17.71(S)
1.22(S)
.01(S)
2.92(S)
6 41.
1.1
1.1
1.1
1.4
1.3
1.3
13.4
.00(S)
4.24(S)
.00(S)
17.70(S)
1.22(S)
.01(S)
2.83(S)
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 14 Print
Stantec
6 46.
1.1
1.1
1.1
1.4
1.3
1.3
13.4
.00(S)
4.23(S)
.00(S)
17.69(S)
1.22(S)
.01(S)
2.75(S)
6 51.
1.1
1.1
1.1
1.4
1.3
1.3
13.3
.00(S)
4.22(S)
.00(S)
17.68(S)
1.22(S)
.01(S)
2.67(S)
6 56.
1.1
1.1
1.1
1.4
1.3
1.3
13.2
.00(S)
4.21(S)
.00(S)
17.67(S)
1.22(S)
.01(S)
2.58(S)
7 1.
1.1
1.1
1.1
1.4
1.3
1.3
13.1
.00(S)
4.21(S)
.00(S)
17.66(S)
1.22(S)
.01(S)
2.50(S)
7 6.
1.1
1.1
1.1
1.4
1.3
1.3
13.0
.00(S)
4.20(S)
.00(S)
17.65(S)
1.22(S)
.01(S)
2.42(S)
7 11.
1.1
1.1
1.1
1.4
1.3
1.3
12.9
.00(S)
4.19(S)
.00(S)
17.64(S)
1.22(S)
.01(S)
2.34(S)
7 16.
1.1
1.1
1.1
1.4
1.3
1.3
12.8
.00(S)
4.18(S)
.00(S)
17.63(S)
1.22(S)
.01(S)
2.26(S)
7 21.
1.1
1.1
1.1
1.4
1.3
1.3
12.7
.00(S)
4.17(S)
.00(S)
17.62(S)
1.22(S)
.01(S)
2.18(S)
7 26.
1.1
1.1
1.1
1.4
1.3
1.3
12.7
.00(S)
4.17(S)
.00(S)
17.61(S)
1.23(S)
.01(S)
2.10(S)
7 31.
1.1
1.1
1.1
1.4
1.3
1.3
12.6
.00(S)
4.16(S)
.00(S)
17.60(S)
1.23(S)
.01(S)
2.03(S)
7 36.
1.1
1.1
1.1
1.4
1.3
1.3
12.5
.00(S)
4.15(S)
.00(S)
17.59(S)
1.23(S)
.01(S)
1.95(S)
7 41.
1.1
1.1
1.1
1.4
1.3
1.3
12.4
.00(S)
4.14(S)
.00(S)
17.58(S)
1.23(S)
.01(S)
1.87(S)
7 46.
1.1
1.1
1.1
1.4
1.3
1.3
12.3
.00(S)
4.14(S)
.00(S)
17.57(S)
1.23(S)
.01(S)
1.79(S)
7 51.
1.1
1.1
1.1
1.4
1.3
1.3
12.2
.00(S)
4.13(S)
.00(S)
17.56(S)
1.23(S)
.01(S)
1.72(S)
7 56.
1.1
1.1
1.1
1.4
1.3
1.3
12.1
.00(S)
4.12(S)
.00(S)
17.55(S)
1.23(S)
.01(S)
1.64(S)
8 1.
1.1
1.1
1.1
1.4
1.3
1.3
12.0
.00(S)
4.11(S)
.00(S)
17.54(S)
1.23(S)
.01(S)
1.57(S)
8 6.
1.1
1.1
1.1
1.4
1.3
1.3
11.9
.00(S)
4.10(S)
.00(S)
17.54(S)
1.23(S)
.01(S)
1.50(S)
8 11.
1.1
1.1
1.1
1.4
1.3
1.3
11.8
.00(S)
4.10(S)
.00(S)
17.53(S)
1.23(S)
.01(S)
1.42(S)
8 16.
1.1
1.1
1.1
1.4
1.3
1.3
11.7
.00(S)
4.09(S)
.00(S)
17.52(S)
1.23(S)
.01(S)
1.35(S)
8 21.
1.1
1.1
1.1
1.4
1.3
1.3
11.6
.00(S)
4.08(S)
.00(S)
17.51(S)
1.24(S)
.01(S)
1.28(S)
8 26.
1.1
1.1
1.1
1.4
1.3
1.3
11.5
.00(S)
4.07(S)
.00(S)
17.50(S)
1.24(S)
.01(S)
1.21(S)
8 31.
1.1
1.1
1.1
1.4
1.3
1.3
11.4
.00(S)
4.07(S)
.00(S)
17.49(S)
1.24(S)
.01(S)
1.14(S)
8 36.
1.1
1.1
1.1
1.4
1.3
1.3
11.3
.00(S)
4.06(S)
.00(S)
17.48(S)
1.24(S)
.01(S)
1.07(S)
8 41.
1.1
1.1
1.1
1.4
1.3
1.3
11.2
.00(S)
4.05(S)
.00(S)
17.47(S)
1.24(S)
.01(S)
1.00(S)
8 46.
1.1
1.1
1.1
1.4
1.3
1.3
11.2
.00(S)
4.04(S)
.00(S)
17.46(S)
1.24(S)
.01(S)
.93(S)
8 51.
1.1
1.1
1.1
1.4
1.3
1.3
11.1
.00(S)
4.04(S)
.00(S)
17.45(S)
1.24(S)
.01(S)
.87(S)
8 56.
1.1
1.1
1.1
1.4
1.3
1.3
11.0
.00(S)
4.03(S)
.00(S)
17.44(S)
1.24(S)
.01(S)
.80(S)
9 1.
1.1
1.1
1.1
1.4
1.3
1.3
10.9
.00(S)
4.02(S)
.00(S)
17.43(S)
1.24(S)
.01(S)
.73(S)
9 6.
1.1
1.1
1.1
1.4
1.3
1.3
10.8
.00(S)
4.01(S)
.00(S)
17.42(S)
1.24(S)
.01(S)
.67(S)
9 11.
1.1
1.1
1.1
1.4
1.3
1.3
10.7
.00(S)
4.00(S)
.00(S)
17.41(S)
1.24(S)
.01(S)
.60(S)
9 16.
1.1
1.1
1.1
1.4
1.3
1.3
10.6
.00(S)
4.00(S)
.00(S)
17.40(S)
1.25(S)
.01(S)
.54(S)
9 21.
1.1
1.1
1.1
1.4
1.3
1.3
10.5
.00(S)
3.99(S)
.00(S)
17.39(S)
1.25(S),
.01(S)
.47(S)
9 26.
1.1
1.1
1.1
1.4
1.3
1.3
10.4
.00(S)
3.98(S)
.00(S)
17.38(S)
1.25(S)
.01(S)
.41(S)
9 31.
1.1
1.1
1.1
1.4
1.3
1.3
10.3
.00(S)
3.97(S)
.00(S)
17.37(S)
1.25(S)
.01(S)
.35(S)
9 36.
1.1
1.1
1.1
1.4
1.3
1.3
10.2
.00(S)
3.97(S)
.00(S)
17.36(S)
1.25(S)
.01(S)
.29(S)
9 41.
1.1
1.1
1.1
1.4
1.3
1.3
10.1
.00(S)
3.96(S)
.00(S)
17.35(S)
1.25(S)
.01(S)
.23(S)
9 46.
1.1
1.1
1.1
1.4
1.3
1.3
10.0
.00(S)
3.95(S)
.00(S)
17.34(S)
1.25(S)
.01(S)
.17(S)
9 51.
1.1
1.1
1.1
1.4
1.3
1.3
9.9
.00(S)
3.94(S)
.00(S)
17.33(S)
1.25(S)
.01(S)
.11(S)
9 56.
1.1
1.1
1.1
1.4
1.3
1.3
9.8
.00(S)
3.94(S)
.00(S)
17.32(S)
1.25(S)
.01(S)
.05(S)
10 1.
1.1
1.1
1.1
1.4
1.3
1.3
3.2
.00(S)
3.93(S)
.00(S)
17.31(S)
1.25(S)
.01(S)
.01(S)
10 6.
1.1
1.1
1.1
1.4
1.3
1.3
1.6
.00(S)
3.92(S)
.00(S)
17.30(S)
1.25(S)
.01(S)
.01(S)
10 11.
1.1
1.1
1.1
1.4
1.3
1.3
1.4
.00(S)
3.91(S)
.00(S)
17.29(S)
1.26(S)
.01(S)
.01(S)
10 16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.91(S)
.00(S)
17.28(S)
1.26(S)
.01(S)
.01(S)
10 21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.90(S)
.00(S)
17.27(S)
1.26(S)
.01(S)
.01(S)
10 26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.89(S)
.00(S)
17.26(S)
1.26(S)
.01(S)
.01(S)
V:\52B70t\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 15 Pdn1
Stantec
10
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.88(S)
.00(S)
17.25(S)
1.26(S)
.01(S)
.01(S)
10
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.88(S)
.00(S)
17.24(S)
1.26(S)
.01(S)
.01(S)
10
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.87(S)
.00(S)
17.23(S)
1.26(S)
.01(S)
.01(S)
10
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.86(S)
.00(S)
17.22(S)
1.26(S)
.01(S)
.01(S)
10
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.85(S)
.00(S)
17.21(S)
1.26(S)
.01(S)
.01(S)
10
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.85(S)
.00(S)
17.20(S)
1.26(S)
.01(S)
.01(S)
11
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.84(S)
.00(S)
17.19(S)
1.26(S)
.01(S)
.01(S)
11
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(5)
3.83(S)
.00(S)
17.18(S)
1.26(S)
.01(S)
.01(S)
11
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.82(S)
.00(S)
17.17(S)
1.27(S)
.01(S)
.01(S)
11
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.82(S)
.00(S)
17.16(S)
1.27(S)
.01(S)
.01(S)
11
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.81(S)
.00(S)
17.15(S)
1.27(S)
.01(S)
.01(S)
11
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.80(S)
.00(S)
17.14(S)
1.27(S)
.01(S)
.01(S)
11
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.79(S)
.00(S)
17.13(S)
1.27(S)
.01(S)
:01(S)
11
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.79(S)
.00(S)
17.12(S)
1.27(S)
.01(S)
.01(S)
11
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.78(S)
.00(S)
17.11(S)
1.27(S)
.01(S)
.01(S)
11
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.77(S)
.00(S)
17.10(S)
1.27(S)
.01(S)
.01(S)
11
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.76(S)
.00(S)
17.10(S)
1.27(S)
.01(S)
.01(S)
11
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.76(S)
.00(S)
17.09(S)
1.27(S)
.01(S)
.01(S)
12
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.75(S)
.00(S)
17.08(S)
1.27(S)
.01(S)
.01(S)
12
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.74(S)
.00(S)
17.07(S)
1.28(S)
.01(S)
.01(S)
12
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.73(S)
.00(S)
17.06(S)
1.28(S)
.01(S)
.01(5)
12
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.73(S)
.00(S)
17.05(S)
1.28(S)
.01(S)
.01(S)
12
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.72(S)
.00(S)
17.04(S)
1.28(S)
.01(S)
.01(S)
12
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.71(S)
.00(S)
17.03(S)
1.28(S)
.01(S)
.01(S)
12
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.70(S)
.00(S)
17.02(S)
1.28(S)
.01(S)
.01(S)
12
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.70(S)
.00(S)
17.01(S)
1.28(S)
.01(S)
.01(S)
12
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.69(S)
.00(S)
17.00(S)
1.28(S)
.01(S)
.01(S)
12
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.68(S)
.00(S)
16.99(S)
1.28(S)
.01(S)
.01(S)
12
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.67(S)
.00(S)
16.98(S)
1.28(S)
.01(S)
.01(S)
12
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.67(S)
.00(S)
16.97(S)
1.28(S)
.01(S)
.01(5)
13
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.66(S)
.00(S)
16.96(S)
1.28(S)
.01(S)
.01(S)
13
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.65(S)
.00(S)
16.95(S)
1.29(S)
.01(S)
.01(S)
13
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.64(S)
.00(S)
16.94(S)
1.29(S)
.01(S)
.01(S)
13
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.64(S)
.00(S)
16.93(S)
1.29(S)
.01(S)
.01(S)
13
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.63(S)
.00(S)
16.92(S)
1.29(S)
.01(S)
.01(S)
13
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.62(S)
.00(S)
16.91(S)
1.29(S)
.01(S)
.01(S)
13
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.61(S)
.00(S)
16.90(S)
1.29(S)
.01(S)
.01(S)
13
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.61(S)
.00(S)
16.89(S)
1.29(S)
.01(S)
.01(S)
13
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.60(S)
.00(S)
16.88(S)
1:29(S)
.01(S)
.01(S)
13
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.59(S)
.00(S)
16.87(S)
1.29(S)
.01(S)
.01(5)
13
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.58(S)
.00(S)
16.86(S)
1.29(S)
.01(S)
.01(S)
13
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.58(S)
.00(S)
16.85(S)
1.29(S)
.01(S)
.01(5)
14
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.57(S)
.00(S)
16.84(S)
1.29(S)
.01(S)
.01(S)
14
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.56(S)
.00(S)
16.83(S)
1.30(S)
.01(S)
.01(S)
14
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.56(S)
.00(S)
16.82(S)
1.30(S)
.01(S)
.01(S)
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 16 Print
Stantec
14
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.55(S)
.00(S)
16.81(S)
1.30(S)
.01(S)
.01(S)
14
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.54(S)
.00(S)
16.80(S)
1.30(S)
.01(S)
.01(S)
14
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.53(S)
OO(S)
16.79(S)
1.30(S)
.01(S)
.01(S)
14
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.53(S)
.00(S)
16.78(S)
1.30(S)
.01(S)
.01(S)
14
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.52(S)
.00(S)
16.77(S)
1.30(S)
.01(S)
.01(S)
14
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.51(S)
.00(S)
16.76(S)
1.30(S)
.01(S)
.01(S)
14
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.50(S)
.00(S)
16.75(S)
1.30(S)
.01(S)
.01(5)
14
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.50(S)
.00(S)
16.74(S)
1.30(S)
.01(S)
.01(S)
14
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.49(S)
.00(S)
16.73(S)
1.30(S)
.01(S)
.01(S)
15
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.48(S)
.00(S)
16.72(S)
1.30(S)
.01(S)
.01(S)
15
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.48(S)
OO(S)
16.71(S)
1.30(S)
.01(S)
.01(S)
15
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.47(S)
.00(S)
16.70(S)
1.31(S)
.01(S)
.01(S)
15
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.46(S)
.00(S)
16.69(S)
1.31(S)
.01(S)
.01(S)
15
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.45(S)
.00(S)
16.68(S)
1.31(S)
.01(S)
.01(S)
15
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.45(S)
.00(S)
16.67(S)
1.31(S)
.01(S)
.01(S)
15
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.44(S)
.00(S)
16.66(S)
1.31(S)
.01(S)
.01(S)
15
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.43(S)
OO(S)
16.66(S)
1.31(S)
.01(S)
.01(S)
15
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.42(S)
OO(S)
16.65(S)
1.31(S)
.01(S)
.01(S)
15
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.42(S)
.00(S)
16.64(S)
1.31(S)
.01(S)
.01(S)
15
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.41(S)
00(S)
16.63(S)
1.31(S)
.01(S)
.01(S)
15
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.40(S)
.00(S)
16.62(S)
1.31(S)
.01(S)
.01(S)
16
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.40(S)
.00(S)
16.61(S)
1.31(S)
.01(S)
.01(S)
16
6.
1.1
1.0
1.1
1.4
1.3
1.3
1.3
.00(S)
3.39(S)
.00(S)
16.60(S)
1.31(S)
.01(S)
.01(S)
16
11.
1.1
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.38(S)
.00(S)
16.59(S)
1.32(S)
.01(S)
.01(S)
16
16.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.37(S)
.00(S)
16.58(S)
1.32(S)
.01(S)
.01(S)
16
21.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.37(S)
.00(S)
16.57(S)
1.32(S)
.01(S)
.01(S)
16
26.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.36(S)
.00(S)
16.56(S)
1.32(S)
.01(S)
.01(S)
16
31.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.35(S)
OO(S)
16.55(S)
1.32(S)
.01(S)
.01(S)
16
36.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.34(S)
.00(S)
16.54(S)
1.32(S)
.01(S)
.01(S)
THE
FOLLOWING
CONVEYANCE
ELEMENTS WERE
SURCHARGED
DURING
THE SIMULATION.
THIS COULD
LEAD TO ERRORS
IN THE
SIMULATION
RESULTS!!
292
THE
FOLLOWING
CONVEYANCE
ELEMENTS HAVE
NUMERICAL
STABILITY
PROBLEMS THAT
LEAD TO HYDRAULIC
OSCILLLATIONS
DURING THE
SIMULATION.
401
V:\52870t\active\187010251\Reports\DrainageWodSWMM\frv-100-int-s.out 17 Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS ***
*** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT)
(AC -FT)
(HR/MIN)
10:3
85.3
(DIRECT
FLOW)
0
35.
11:3
300.0
(DIRECT
FLOW)
0
1.
80:3
444.0
(DIRECT
FLOW)
0
32.
90:3
595.0
(DIRECT
FLOW)
0
35.
91:3
151.0
(DIRECT
FLOW)
0
35.
95:3
495.1
(DIRECT
FLOW)
0
46.
99:3
416.3
(DIRECT
FLOW)
0
48.
100:3
1189.0
(DIRECT
FLOW)
0
35.
101:2
416.3
.1
19.5:D
0
48.
103:2
32.5
1.9
0
32.
104:3
477.6
(DIRECT
FLOW)
0
35.
105:3
477.6
(DIRECT
FLOW)
0
35.
110:3
463.5
(DIRECT
FLOW)
0
35.
111:4
296.0
2.8
0
36.
115:3
595.0
(DIRECT
FLOW)
0
35.
116:4
447.6
3.3
0
53.
120:3
645.0
(DIRECT
FLOW)
0
35.
125:3
320.5
(DIRECT
FLOW)
0
35.
129:1
297.8
.6
0
36.
135:3
488.3
(DIRECT
FLOW)
0
41.
136:4
413.0
3.2
0
46.
139:3
416.4
(DIRECT
FLOW)
0
41.
140:2
52.9
.1
7.3:D
1
22.
141:4
405.9
3.1
0
41.
145:3
423.9
(DIRECT
FLOW)
0
35.
146:4
300.0
2.6
1
0.
150:3
300.0
(DIRECT
FLOW)
0
1.
152:3
230.4
(DIRECT
FLOW)
2
24.
154:3
155.3
(DIRECT
FLOW)
2
20.
155:3
155.3
(DIRECT
FLOW)
2
20.
200:3
45.4
(DIRECT
FLOW)
0
35.
201:2
10.6
.1
.8:D
1
58.
202:4
10.6
.5
2
2.
203:3
26.8
(DIRECT
FLOW)
2
0.
204:2
1.2
.4
2
21.
205:3
155.8
(DIRECT
FLOW)
0
35.
206:3
546.6
(DIRECT
FLOW)
0
35.
207:3
40.2
(DIRECT
FLOW)
0
35.
208:3
177.5
(DIRECT
FLOW)
0
35.
209:3
204.5
(DIRECT
FLOW)
0
35.
210:3
38.8
(DIRECT
FLOW)
0
35.
211:4
70.1
1.7
2
16.
212:3
70.2
(DIRECT
FLOW)
2
9.
213:5
26.8
1.9
2
1.
214:2
26.8
.1
9.5:D
2
0.
215:3
360.6
(DIRECT
FLOW)
0
35.
216:2
1.2
.1
4.6:D
2
20.
221:5
230.4
3.9
2
24.
222:3
75.8
(DIRECT
FLOW)
2
13.
223:3
160.1
(DIRECT
FLOW)
2
19.
224:2
160.1
.1
4.8:D
2
19.
225:3
164.0
(DIRECT
FLOW)
0
56.
226:5
71.0
3.5
2
8.
227:3
71.0
(DIRECT
FLOW)
2
6.
228:3
162.6
(DIRECT
FLOW)
2
18.
229:2
162.6
.1
4.4:0
2
18.
230:3
171.8
(DIRECT
FLOW)
0
48.
231:5
67.0
3.8
2
6.
232:3
67.0
(DIRECT
FLOW)
2
4.
233:3
168.0
(DIRECT
FLOW)
2
12.
234:2
168.0
.1
6.9:0
2
12.
235:3
379.1
(DIRECT
FLOW)
0
35.
236:5
61.0
3.5
2
4.
237:3
61.0
(DIRECT
FLOW)
2
1.
238:5
61.0
3.4
2
1.
240:3
194.6
(DIRECT
FLOW)
0
35.
242:4
158.0
1.2
2
12.
243:3
63.9
(DIRECT
FLOW)
0
35.
244:3
22.0
(DIRECT
FLOW)
0
35.
245:3
25.5
(DIRECT
FLOW)
0
35.
246:2
6.4
.1
.2:D
0
45.
247:2
6.9
.1
.3:D
0
45.
248:2
8.4
.l
1.4:D
1
15.
249:3
80.0
(DIRECT
FLOW)
0
35.
250:3
79.1
(DIRECT
FLOW)
0
35.
251:2
8.4
1.4
1
15.
270:3
27.0
(DIRECT
FLOW)
2
3.
276:2
1.4
.6
1
56.
277:2
1.3
.5
16
39.
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 18 Print
Stantec
278:2
37.9
2.2
0
49.
279:2
16.4
1.6
2
17.
286:2
103.2
.1
19.8:D
1
18.
287:2
1.3
.1
1.3:D
16
39.
288:2
37.9
.1
2.3:0
0
46.
289:2
16.4
.1
7.6:0
2
16.
290:2
6.4
.7
0
46.
291:2
109.0
3.7
0
35.
292:2
109.2
4.0
1.O:S
0
46.
293:1
111.0
.4
1
33.
294:2
6.9
.8
0
47.
295:2
51.2
1.8
0
36.
296:3
125.6
(DIRECT
FLOW)
1
14.
297:3
134.4
(DIRECT
FLOW)
1
29.
298:2
17.1
.1
15.7:D
3
14.
299:2
61.0
1.5
0
35.
300:3
116.6
(DIRECT
FLOW)
0
35.
301:3
103.5
(DIRECT
FLOW)
0
35.
302:3
60.3
(DIRECT
FLOW)
0
35.
303:5
40.2
2.7
2
14.
304:2
40.2
.1
3.5:D
2
11.
305:3
178.0
(DIRECT
FLOW)
0
35.
306:3
61.0
(DIRECT
FLOW)
1
56.
307:2
27.4
1.8
2
50.
308:3
186.8
(DIRECT
FLOW)
2
6.
309:2
186.8
.1
28.4:D
2
6.
310:3
486.3
(DIRECT
FLOW)
0
35.
311:5
120.1
3.4
4
12.
312:3
120.1
(DIRECT
FLOW)
4
6.
313:5
114.0
3.4
4
26.
314:3
114.0
(DIRECT
FLOW)
4
25.
315:2
33.6
.1
8.8:D
1
56.
318:5
45.4
2.1
1
38.
319:2
47.0
.1
6.5:D
1
28.
320:3
210.8
(DIRECT
FLOW)
0
35.
321:3
212.5
(DIRECT
FLOW)
0
35.
322:3
60.3
(DIRECT
FLOW)
0
35.
324:5
76.5
4.1
7
53.
325:3
102.1
(DIRECT
FLOW)
0
35.
330:2
16.7
.1
2.1:D
1
8.
333:5
26.9
2.4
1
30.
334:2
27.0
.1
2.9:D
1
21.
340:3
411.8
(DIRECT
FLOW)
0
35.
341:5
76.5
3.3
6
58.
342:2
76.6
.1
32.4:D
7
10.
344:2
30.6
.1
14.7:D
2
4.
345:3
508.0
(DIRECT
FLOW)
0
35.
347:2
12.6
1.2
3
52.
355:4
149.2
1.7
0
36.
360:3
655.8
(DIRECT
FLOW)
0
35.
400:3
1504.5
(DIRECT
FLOW)
0
35.
401:2
114.4
.1
51.6:D
2
4.
405:5
329.2
3.3
0
35.
410:5
281.5
3.9
0
36.
415:3
479.8
(DIRECT
FLOW)
0
36.
421:2
12.6
.1
16.1:D
3
50.
423:5
130.9
2.7
0
37.
425:3
185.9
(DIRECT
FLOW)
0
35.
426:2
6.9
1.1
0
33.
430:5
124.7
2.2
0
35.
434:4
189.3
1.4
0
43.
435:3
195.2
(DIRECT
FLOW)
0
40.
436:1
117.8
1.3
0
41.
437:3
187.8
(DIRECT
FLOW)
0
35.
440:3
187.8
(DIRECT
FLOW)
0
35.
601:3
103.2
(DIRECT
FLOW)
1
18.
ENDPROGRAM PROGRAM CALLED
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 19 Print
ModSWMM HYDROLOGY
MASTER PLAN CONDITION
,
!!};�!|
•
| /bQ
�|
\!�
p=
|
|
) z_
_
2
(w
2w
187010251
�
ND � 4 `
0 .
ModSWMM INPUT
frv-100-ult-s.in
2 1 1 2
3 4
WATERSHED. 0
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRv by Stantec, ]an 2007
999 000 1.0 1 0.0
1
24 5.0
1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46
1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75
0.73 0.71 0.69 0.67
1 100 100 2881 12.3 32.00.0390.0160.2500.1000.300 0.51 0.50 0.0018
1 105 105 641 3.4 10.00.0230.0160.2500.1000.300 0.51 0.50 0.0018
1 110 110 2758 17.6 90.00.0300.0160.2500.1000.300 0.51 0.50 0.0018
1 115 115 3722 18.8 13.50.0860.0160.2500.1000.300 0.51 0.50 0.0018
1 120 120 4665 36.2 86.50.0160.0160.2500.1000.300 0.51 0.50 0.0018
1 125 125 3494 36.5 68.80.0230.0160.2500.1000.300 0.51 0.50 0.0018
1 130 129 8604 39.7 78.00.0310.0160.2500.1000.300 0.51 0.50 0.0018
1 135 135 4127 21.6 13.30.0290.0160.2500.1000.300 0.51 0.50 0.0018
1 140 140 8223 58.9 24.80.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 145 145 4915 38.7 12.00.0160.0160.2500.1000.300 0.51 0.50 0.0018
1 150 10 3026 19.8 6.80.0510.0160.2500.1000.300 0.51 0.50 0.0018
1 155 115 9801 17.1 70.00.0130.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Paragon, Basin 205 (Previously LSI Logic)
1 205 205 2497 17.2 82.00.0160.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Front Range village, Basins 206 - 210
1 206 206 7957 54.8 81.20.0170.0160.2500.1000.300 0.51 0.50 0.0018
1 207 207 1812 4.0 81.60.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 208 208 5467 17.9 89.50.0200.0160.2500.1000.300 0.51 0.50 0.0018
1 209 209 2960 18.1 88.70.0150.0160.2500.1000.300 0.51 0.50 0.0018
1 210 210 2654 3.9 86.60.0420.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* English Ranch, Basins 215 - 240
1 215 215 9265 41.9 38.50.0070.0160.2500.1000.300 0.51 0.50 0.0018
1 220 215 4630 16.9 38.50.0120.0160.2500.1000.300 0.51 0.50 0..0018
1 225 225 5678 21.9 38.50.0240.0160.2500.1000.300 0.51 0.50 0.0018
1 230 230 5639 18.9 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018
1 235 235 5949 29.5 38.50.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 240 240 5007 32.3 41.50.0120.0160.2500.1000.300 0.51 0.50. 0.0018
*-------------------------------------------------------------------------
* Pads at Harmony Road, Basins 243 - 245
1 243 243 3359 5.5 92.70.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 244 244 1098 2.5 54.80.0170.0160.2500.1000.300 0.51 0.50 0.0018
1 245 245 1245 2.8 63.20.0130.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Front Range village, Basin 250
1 250 250 1654 8.5 79.80.0180.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Future Development north of FRv, Basins 296, 297
1 296 296 2703 12.9 90.00.0100.0160.2500.1000.300 0.51 0.50 0.0018
1 297 297 4199 28.9 90.00.0070.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
* Harmony Trailer Park west of Front Range village, Basins 300-302, 305
1 300 300 3357 23.1 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 301 301 2977 20.5 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 302 302 1992 11.3 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 305 305 7663 24.1 38.50.0150.0160.2500.1000.300 0.51 0.50 0.0018
*-------------------------------------------------------------------------
1 310 31012018 84.7 37.00.0050.0160.2500.1000.300 0.51 0.50 0.0018
1 315 315 9023 60.9 38.50.0060.0160.2500.1000.300 0.51 0.50 0.0018
1 320 320 5102 29.4 38.50.0210.0160.2500.1000.300 0.51 0.50 0.0018
1 325 325 2084 14.4 40.00.0210.0160.2500.1000.300 0.51 0.50 0.0018
1 330 330 2038 15.3 46.80.0130.0160.2500:1000.300 0.51 0.50 0.0018
1 335 334 3567 30.3 27.80.0150.0160.2500.1000.300 0.51 0.50 0.0018
Page 1
frv-100-ult-s.in
1 340 340 4623 34.6 30.00.0270.0160.2500.1000.300 0.51 0.50 0.0018
1 345 345 5109 44.8 27.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 350 345 6639 34.9 90.00.0110.0160.2500.1000.300 0.51 0.50 0.0018
1 355 355 2940 27.4 48.00.0100.0160.2500.1000.300 0.51 0.50 0.0018
1 400 400 6703 51.7 71.50.0240.0160.2500.1000.300 0.51 0.50 0.0018
1 405 405 7493 41.8 60.80.0180.0160.2500.1000.300 0.51 0.50 0.0018
1 .410 410 7013 58.6 48.50.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 415 415 5458 42.1 40.00.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 420 421 7066109.0 11.60.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 425 425 5627 31.0 38.50.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 430 430 2979 22.5 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018
1 435 435 3776 31.9 10.00.0110.0160.2500.1000.300 0.51 0.50 0.0018
1 440 440 2603 9.5 38.50.0110.0160.2500.1000.300 0.51 0.50 0.0018
0
0
0 430 440 0 5 1.25 600 0.0130 0 0 0.013 1.25
1 513 0.0120 20 20 0.020 5.00
0 440 437 0 3 0 0 0.0000 0 0 0.000 0.00
436 437 426 3 3 0 0 0.0000 0 0 0.000 0.00
0.00 0.0 4 0.0 10000 9996.0
0 426 425 0 2 1.25 1339 0.0100 0 0 0.013 1.25
0 436 435 0 1 15 1889 0.0080 8 8 0.035 5.00
0 425 423 0 3 .0 0 0.0000 0 0 0.000 0.00
0 435 434 0 3 0 0 0.0000 0 0. 0.000 0.00
0 423 415 0 5 1.5 1457 0.0050 0 0 0.013 1.50
1 1457 0.0050 20 20 0.020 5.00
0 434 415 0 4 0.5 768 0.0050 12 12 0.016 0.50
10 768 0.0050 20 20 0.020 5.00
0 415 400 0 3 0 0 0.0000 0 0 0.000 0.00
0 410 400 0 5 2.5 1301 0.0090 0 0 0.013 2.50
1 1380 0.0070 20 20 0.020 5.00
0 405 400 0 5 3 1065 0.0090 0 0 0.013 3.00
80 1065 0.0090 1 1 0.005 5.00
0 400 401 0 3 0 0 0.0000 0 0 0.000 0.00
0 401 340 11 2 0.1 1 0.0100 0 0 0.010 0.10
0.00 0.0 0.001 8.0 4.85 12.7 8.97
16.7
9.03 23.0 10.29 57.9 11.59 70.8 16.67
80.7
31.34 98.0 52.86 115.4 95.93 705.0
0 355 340 0 4 0.25 608 0.0050 12 0 0.016 0.50
5 608 0.0050 20 0 0.020 5.00
0 340 342 0 3 0 0 0.0000 0 0 0.000 0.00
0 342 341 8 2 0.1 1 0.0100 0 0 0.010 0.10
0.00 0.0 0.20 2.9 5.68 23.5 14.66
53.0
28.14 73.1 47.36 88.5 72.54 103.6 95.53
111.0
0 341 325 0 5 3.5 1200 0.0050 0 0 0.013 3.50
1 1200 0.0050 20 20 0.020 5.00
0 325 324 0 3 0 0 0.0000 0 0 0.000 0.00
0 324 314 0 5 3.5 1242 0.0030 0 0 0.013 3.50
1 1242 0.0030 20 20 0.020 5.00
0 421 347 5 2 0.1 1 0.0100 0 0 0.010 0.10
0.00 0.0 0.16 2.1 8.27 10.5 34.02
17.4
43.63 18.7
0 347 314 0 2 1.5 1139 0.0150 0 0 0.013 1.50
0 345 344 0 3 0 0 0.0000 0 0 0.000 0.00
0 344 314 5 2 0.1 1 0.0100 0 0 0.010 0.10
0.00 0.0 0.04 1.9 2.79 16.8 10.12
27.6
21.56 35.0
0 314 313 0 3 0 0 0.0000 0 0 0.000 0.00
0 313 312 0 5 2 409 0.0090 0 0 0.013 2.00
Page 2
frv-100-ult-s.in
10
409
0.0350
5
5
0.035
6.00
0
330
312
5 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.001
4.0
0.97
6.6
1.98
8.0
3.04
104.0
0
312
311
0 3
0
0
0.0000
0
0
0.000
0.00
0
311
310
0 5
2
1566
0.0090
0
0
0.013
2.00
10
1566
0.0090
5
5
0.035
6.00
0
334
333
5 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.012
5.6
0.32
21.9
6.45
34.0
16.40
100.0
0
333
320
0 5
2
1064
0.0090
0
0
0.013
2.00
5
1075
0.0090
3
3
0.035
6.00
0
320
319
0 3
0
0
0.0000
0
0
0.000
0.00
0
319
318
9 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.003
0.4
0.52
3.3
2.06
6.2
4.21
9.2
5.92
11.0
6.27
17.5
7.07
109.6
7.93
260.7
0
318
305
0 5
1.25
1320
0.0050
0
0
0.013
1.25
1
1384
0.0040
20
20
0.020
5.00
0
305
304
0 3
0
0
0.0000
0
0
0.000
0.00
0
304
303
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.027
13.6
0.59
28.3
2.19
37.7
6.49
46
7.13
100
7.77
200
8.24
300
0
303
310
0 5
2
671
0.0060
0
0
0.013
2.00
10
671
0.0060
5
5
0.035
6.00
0
310
309
0 3
0
0
0.0000
0
0
0.000
0.00
0
309
308
7 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.004
0.7
1.40
17.6
7.92
25.5
20.29
26.9
25.02
27.4
30.20
273
242
308
307
3 3
0
0
0.0000
0
0
0.000
0.00
0
0
27.4
0
273
245.6
0
307
306
0 2
2.5
1351
0.0060
0
0
0.013
2.50
0
315
306
10 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.287
10.4
0.97
15.0
3.07
22.9
5.50
29.0
8.27
33.2
11.42
35.7
13.14
36.2
13.61
106
13.97
206.0
0
306
238
0 3
0
0
0.0000
0
0
0.000
0.00
-------------------------------------------------------------------------
Harmony Trailer
Park
routing
0
300
291
0 3
0
0
0.0000
0
0
0.000
0.00
0
291
321
0 2
4
660
0.0050
0
0
0.013
4.00
0
301
321
0 3
0
0
0.0000
0
0
0.000
0.00
0
321
292
0 3
0
0
0.0000
0
0
0.000
0.00
0
292
360
0 2
4
500
0.0050
0
0
0.013
4.00
0
302
322
0 3
0
0
0.0000
0
0
0.000
0.00
0
322
299
0 3
0
0
0.0000
0
0
0.000
0.00
0
299
296
0 2
6.0
270
0.0100
0
0
0.013
6.00
*-------------------------------------------------------------------------
Pads
at Harmony
Road
routing
0
245
247
0 3
0
0
0.0000
0
0
0.000
0.00
0
247
294
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.01
2.1
0.06
3.4
0.13
4.4
0.25
5.1
0.37
10.0
0
244
246
0 3
0
0
0.0000
0
0
0.000
0.00
0
246
290
7 2
0.1
1
0.0100
0
0
0.010
0.10
Page 3
frv-100-ult-s.in
0.00
0.0
0.01
1.9
0.02
3.1
0.06
3.9
0.12
4.6
0.21
5.2
0.30
10.0
0 290
243
0 2•
2
600 0.0100
0
0
0.013
2.00
0 294
243
0 2
2
834 0.0100
0
0
0.013
2.00
0 243
295
0 3
0
0 0.0000
0
0
0.000
0.00
0 295
206
0 2
9
1723 0.0020
0
0
0.013
9.00
0 206
360
0 3
0
0 0.0000
0
0
0.000
0.00
*-------------------------------------------------------------------------
* Undeveloped
site north
of FRv
routing
0 296
293
0 3
0
0 0.0000
0
0
0.000
0.00
0 293
297
0 1
4
1800 0.0050
4
4
0.035
4.00
0 297
298
0 3
0
0 0.0000
0
0
0.000
0.00
* Future detention
pond
298 by Others
0 298
212
3 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.0
19.00
17.3
22.50
21.9
*-------------------------------------------------------------------------
* Front Range
village onsite
routing
0 360
286
0 3
0
0. 0.0000
0
0
0.000
0.00
* Pond D
0 286
601
10 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.0
0.03
0.70
1.62
0.93
4.12
1.04
6.92
1.14
9.87
1.24
12.99
1.32
16.28
1.41
17.94
1.42
19.80
104.84
296 601
276
3 3
0
0 0.0000
0
0
0.000
0.00
0
0
1.42
0 104.26
102.84
0 276
207
0 2
1.5
362 0.0020
0
0
0.013
1.50
0 207
287
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond C
0 287
277
9 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.00
0.17
0.72
0.31
0.86
0.49
0.98
0.70
1.09
0.95
1.19
1.25
1.28
1.59
1.36
1.97
1.44
0 277
208
0 2
1.5
217 0.0020
0
0
0.013
1.50
0 208
288
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond B
0 288
278
7 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.00
0.01
1.59
0.19
9.93
0.60
24.27
1.12
33.73
1.71
37.47
2.38
38.00
0 278
209
0 2
4
850 0.0020
4
4
0.013
4.00
0 209
289
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond A
0 289
279
8 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.00
0.04
9.77
0.60
10.70
1.89
12.41
3.28
13.92
4.77
15.27
6.34
16.30
7.70
16.35
0 279
270
0 2
3
570 0.0020
0
0
0.013
3.00
*-------------------------------------------------------------------------
* Paragon
(Previously psi
Logic)
pond routing
through
FRv Basins
210 and
250
0 205
216
0 3
0
0 0.0000
0
0
0.000
0.00
* Paragon Pond
0 216
204
6 2
0.1
1 0.0100
0
0
0.010
0.10
0.00
0.00
0.46
0.53
1.53
0.80
2.89
0.99
4.52
1.15
6.44
1.30
0 204
249
0 2
2.5
143 0.0020
0
0
0.013
2.50
0 250
249
0 3
0
0 0.0000
0
0
0.000
0.00
0 249
248
0 3
0
0 0.0000
0
0
0.000
0.00
* Pond F
0 248
251
7 2
0.1
1 0.0100
0
0
0.010
0.10
Page 4
frv-100-ult-s.in
0.00
0.00
0.01
2.58
0.04
3.07
0.42
5.39
0.87
6.97
1.37
8.26
1.65
8.83
0
251
200
0 2
2
230
0.0020
0
0
0.013
2.00
0
210
200
0 3
0
0
0.0000
0
0
0.000
0.00
0
200
201
0 3
0
0
0.0000
0
0
0.000
0.00
* Pond E
0
201
202
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.00
0.01
4.41
0.18
7.09
0.68
10.21
1.23
12.58
1.83
14.57
0
202
270
0 4
15
902
0.0020
4
8
0.035
6.00
87
902
0.0020
20
20
0.020
2.00
*-------------------------------------------------------------------------
0
270
212
0 3
0
0
0.0000
0
0
0.000
0.00
0
242
240
0 4
0.5
1779
0.0070
12
12
0.016
0.50
10
1779
0.0070
20
20
0.020
5.00
0
240
235
0 3
0
0
0.0000
0
0
0.000
0.00
0
238
237
0 5
3
787
0.0060
0
0
0.013
3.00
1
787
0.0060
20
20
0.020
5.00
0
237
236
0 3
0
0
0.0000
0
0
0.000
0.00
0
236
232
0 5
3
740
0.0050
0
0
0.013
3.00
1
740
0.0050
20
20
0.020
5.00
0
235
234
0 3
0
0
0.0000
0
0
0.000
0.00
0
234
233
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.44
3.1
2.350
4.2
2.81
4.6
4.69
5.1
6.39
100.6
7.13
203.7
8.21
401.9
230
233
232
5 3
0
0
0.0000
0
0'
0.000
0.00
0
0
5
0
101
95
204
198
402
396
0
232
231
0 3
0
0
0.0000
0
0
0.000
0.00
0
231
227
0 5
3
311
0.0030
0
0
0.013
3.00
1
311
0.0030
20
20
0.020
5.00
0
230
229
0 3
0
0
0.0000
0
0
0.000
0.00
0
229
228
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.07
2.0
1.12
2.9
3.46
3.5
4.60
200.8
5.29
401
225
228
227
4 3
0
0
0.0000
0
0
0.000
0.00
0
0
4
0
201
197
401
397
0
227
226
0 3
0
0
0.0000
0
0
0.000
0.00
0
226
222
0 5
3
477
0.0060
0
0
0.013
3.00
1
477
0.0060
20
20
0.020
5.00
0
225
224
0 3
0
0
0.0000
0
0
0.000
0.00
0
224
223
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.002
1.0
0.51
2.7
1.99
3.6
3.90
4.3
4.46
4.5
4.85
200
5.10
400
155
223
222
4 3
0
0
0.0000
0
0
0.000
0.00
0
0
4
0
200
195
400
395
0
222
221
0 3
0
0
0.0000
0
0
0.000
0.00
0
221
152
0 5
3
1569
0.0240
0
0
0.013
3.00
1
1569
0.0140
20
20
0.020
8.00
0
152
0 3
0
0
0.0000
0
0
0.000
0.00
0
215
214
0 3
0
0
0.0000
0
0
0.000
0.00
0
214
203
9 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.08
12.6
0.411
14.9
4.00
21.8
9.62
26.9
12.17
28.7
13.04
149
13.17
149.4
Page 5
frv-100-ult-s.in
14.04
149.9
297
203
213
3
3
0
0
0.0000
0
0
0.000
0.00
0
0
29.5
0
150
120
0
213
212
0
5
3
610
0.0030
0
0
0.013
3.00
1
610
0.0030
20
.20
0.020
5.00
0
212
211
0
3
0
0
0.0000
0
0
0.000
0.00
0
211
125
0
4
5
1670
0.0060
4
4
0.035
6.00
53
1670
0.0060
4
40
0.020
3.00
0
125
111
0
3
0
0
0.0000
0
0
0.000
0.00
0
111
110
0
4
10
1400
0.0040
0
0
0.013
4.00
10
1400
0.0040
20
20
0.020
3.50
0
110
105
0
3
0
0
0.0000
0
0
0.000
0.00
0
105
104
0
3
0
0
0.0000
0
0
0.000
0.00
100
104
103
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
20
0
2000
1980
0
103
120
0
2
2.8
617
0.0050
0.00
0.00
0.013
2.80
0
129
120
0
1
130
956
0.0080
60.00
6.00
0.030
8.00
0
120
100
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
100
101
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
101
99
7
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
1.54
4.0
6.085
13.9
11.93
22.0
19.08
377.8
27.46
1130
29.80
1400
0
154
221
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
150
146
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
146
145
0
4
31
1384
0.0020
1.50
1.50
0.035
6.00
62
1384
0.0020
0.00
15.00
0.050
12.00
0
145
141
0
3
0
0
0.0000
0.000
0.000
0.000
0.00
0
141
139
0
4
31
1193
0.0020
1.50
1.50
0.035
6.00
62
1193
0.0020
0.00
15.00
0.050
12.00
0
140
139
8
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.01
1.0
0.39
7.0
1.65
8.9
3.96
10.5
5.45
11.2
7.07
40.0
7.99
100.0
0
139
136
0
3
0
0
0.0000
0.000
0.000
0.000
0.00
0
136
135
0
4
31
910
0.0020
1.50
1.50
0.035
6.00
62
910
0.0020
0.00
15.00
0.050
12.00
0
135
116
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
116
115
0
4
31
2552
0.0020
1.50
1.50
0.035
6.00
62
2552
0.0020
0.00
15.00
0.050
12.00
95
99
115
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
25
0
1012
987
0
115
90
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
95
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
-1
11
150
2
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
300
100
300
0
10
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
155
154
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
91
90
80
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
444
0
6000
5556
0
80
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
91
95
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
7
5
201
216
248
286
287 288
289
ENDPROGRAM
Page 6
frv-100-ult-s.in
Page 7
ModSWMM OUTPUT
Stantec
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
*** ENTRY MADE TO RUNOFF MODEL ***
V:\52870t\active\187010251\Reports\Drainage\ModSVVMM\frv-100-ult-s.out 1V , Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
NUMBER OF TIME STEPS 999
INTEGRATION TIME INTERVAL (MINUTES) 1.00
25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
1.00 1.14 1.33 2.23 2.84 5.49 9.95
1.22 1.06 1.00 .95 .91 .87 .84
.73 .71 .69 .67
4.12 2.48 1.46
.81 .78 .75
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 2V . Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
SUBAREA
GUTTER
WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR
SURFACE STORAGE(IN)
INFILTRATION RATE(IN/HR)
GAGE
NUMBER
OR MANHOLE
(FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
MAXIMUM
MINIMUM
DECAY RATE
NO
100
100
2881.0
12.3
32.0
.0390
.016
.250
.100
.300
.51
.50
.00180
1
105
105
641.0
3.4
10.0
.0230
.016
.250
.100
.300
.51
.50
.00180
1
110
110
2758.0
17.6
90.0
.0300
.016
.250
.100
.300
.51
.50
.00180
1
115
115
3722.0
18.8
13.5
.0860
.016
.250
.100
.300
.51
.50
.00180
1
120
120
4665.0
36.2
86.5
.0160
.016
.250
.100
.300
.51
.50
.00180
1
125
125
3494.0
36.5
68.8
.0230
.016
.250
.100
.300
.51
.50
.00180
1
130
129
8604.0
39.7
78.0
.0310
.016
.250
.100
.300
.51
.50
.00180
1
135
135
4127.0
21.6
13.3
.0290
.016
.250
.100
.300
.51
.50
.00180
1
140
140
8223.0
58.9
24.8
.0090
.016
.250
.100
.300
.51
.50
.00180
1
145
145
4915.0
38.7
12.0
.0160
.016
.250
.100
.300
.51
.50
.00180
1
150
10
3026.0
19.8
6.8
.0510
.016
.250
.100
.300
.51
.50
.00180
1
155
115
9801.0
17.1
70.0
.0130
.016
.250
.100
.300
.51
.50
.00180
1
205
205
2497.0
17.2
82.0
.0160
.016
.250
.100
.300
.51
.50
.00180
1
206
206
7957.0
54.8
81.2
.0170
.016
.250
.100
.300
.51
.50
.00180
1
207
207
1812.0
4.0
81.6
.0130
.016
.250
.100
.300
.51
.50
.00180
1
208
208
5467.0
17.9
89.5
.0200
.016
.250
.100
.300
.51
.50
.00180
1
209
209
2960.0
18.1
88.7
.0150
.016
.250
.100
.300
.51
.50
.00180
1
210
210
2654.0
3.9
86.6
.0420
.016
.250
.100
.300
.51
.50
.00180
1
215
215
9265.0
41.9
38.5
.0070
.016
.250
.100
.300
.51
.50
.00180
1
220
215
4630.0
16.9
38.5
.0120
.016
.250
.100
.300
.51
.50
.00180
1
225
225
5678.0
21.9
38.5
.0240
.016
.250
.100
.300
.51
.50
.00180
1
230
230
5639.0
18.9
38.5
.0180
.016
.250
.100
.300
.51
.50
.00180
1
235
235
5949.0
29.5
38.5
.0130
.016
.250
.100
.300
.51
.50
.00180
1
240
240
5007.0
32.3
41.5
.0120
.016
.250
.100
.300
.51
.50
.00180
1
243
243
3359.0
5.5
92.7
.0080
.016
.250
.100
.300
.51
.50
.00180
1
244
244
1098.0
2.5
54.8
.0170
.016
.250
.100
.300
.51
.50
.00180
1
245
245
1245.0
2.8
63.2
.0130
.016
.250
.100
.300
.51
.50
.00180
1
250
250
1654.0
8.5
79.8
.0180
.016
.250
.100
.300
.51
.50
.00180
1
296
296
2703.0
12.9
90.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
297
297
4199.0
28.9
90.0
.0070
.016
.250
.100
.300
.51
.50
.00180
1
300
300
3357.0
23.1
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
301
301
2977.0
20.5
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
302
302
1992.0
11.3
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
305
305
7663.0
24.1
38.5
.0150
.016
.250
.100
.300
.51
.50
.00180
1
310
310
12018.0
84.7
37.0
.0050
.016
.250
.100
.300
.51
.50
.00180
1
315
315
9023.0
60.9
38.5
.0060
.016
.250
.100
.300
.51
.50
.00180
1
320
320
5102.0
29.4
38.5
.0210
.016
.250
.100
.300
.51
.50
.00180
1
325
325
2084.0
14.4
40.0
.0210
.016
.250
.100
.300
.51
.50
.00180
1
330
330
2038.0
15.3
46.8
.0130
.016
.250
.100
.300
.51
.50
.00180
1
335
334
3567.0
30.3
27.8
.0150
.016
.250
.100
.300
.51
.50
.00180
1
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 3V . Print
Stantec
340
340
4623.0
34.6
30.0
.0270
.016
.250
.100
.300
.51
.50
.00180
1
345
345
5109.0
44.8
27.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
350
345
6639.0
34.9
90.0
.0110
.016
.250
.100
.300
.51
.50
.00180
1
355
355
2940.0
27.4
48.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
400
400
6703.0
51.7
71.5
.0240
.016
.250
.100
.300
.51
.50
.00180
1
405
405
7493.0
41.8
60.8
.0180
.016
..250
.100
.300
.51
.50
.00180
1
410
410
7013.0
58.6
48.5
.0090
.016
.250
.100
.300
.51
.50
.00180
1
415
415
5458.0
42.1
40.0
.0090
.016
.250
.100
.300
.51
.50
.00180
1
420
421
7066.0
109.0
11.6
.0080
.016
.250
.100
.300
.51
.50
.00180
1
425
425
5627.0
31.0
38.5
.0090
.016
.250
.100
.300
.51
.50
.00180
1
430
430
2979.0
22.5
38.5
.0180
.016
.250
.100
.300
.51
.50
.00180
1
435
435
3776.0
31.9
10.0
.0110
016
.250
.100
.300
.51
.50
.00180
1
440
440
2603.0
9.5
38.5
.0110
.016
.250
.100
.300
.51
.50
.00180
1
TOTAL
NUMBER OF
SUBCATCHMENTS, 53
TOTAL
TRIBUTARY
AREA (ACRES), 1512.80
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 4V _ Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED AREA (ACRES) 1512.800
TOTAL RAINFALL (INCHES) 3.669
TOTAL INFILTRATION (INCHES) .742
TOTAL WATERSHED OUTFLOW (INCHES) 2.867
TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .060
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000
V:\52870t\active\187010251\Reports\Drainage\ModSVVMM\frv-100-ult-s.out 5V. Pdnt
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
WIDTH
INVERT
SIDE SLOPES
OVERBANK/SURCHARGE
GUTTER
GUTTER
NDP
NP
OR DIAM
LENGTH
SLOPE
HORIZ
TO VERT
MANNING
DEPTH
JK
NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
(FT)
430
440
0
5
PIPE
1.3
600.
.0130
.0
.0
.013
1.25
0
OVERFLOW
1.0
513.
.0152
20.0
20.0
.020
5.00
440
437
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
437
426
3
3
.0
0.
.0010
.0
.0
.001
10.00
436
DIVERSION
TO GUTTER
NUMBER 436 TOTAL
0 VS
DIVERTED 0
IN CFS
.0
.0
4.0 .0
10000.0
9996.0
426
425
0
2
PIPE
1.3
1339.
.0100
.0
.0
.013
1.25
0
436
435
0
1
CHANNEL
15.0
1889.
.0080
8.0
8.0
.035
5.00
0
425
423
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
435
434
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
423
415
0
5
PIPE
1.5
1457.
.0050
.0
.0
.013
1.50
0
OVERFLOW
1.0
1457.
.0050
20.0
20.0
.020
5.00
434
415
0
4
CHANNEL
.5
768.
.0050
12.0
12.0
.016
.50
0
OVERFLOW
10.0
768.
.0050
20.0
20.0
.020
5.00
415
400
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
410
400
0
5
PIPE
2.5
1301.
.0090
.0
.0
.013
2.50
0
OVERFLOW
1.0
1380.
.0085
20.0
20.0
.020
5.00
405
400
0
5
PIPE
3.0
1065.
.0090
.0
.0
.013
3.00
0
OVERFLOW
80.0
1065.
.0090
1.0
1.0
.005
5.00
400
401
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
401
340
11
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 8.0
4.8
12.7
9.0
16.7
9.0
23.0
10.3
57.9
11.6
70.8
16.7 80.7
31.3
98.0
52.9
115.4
95.9
705.0
355
340
0
4
CHANNEL
.3
608.
.0050
12.0
.0
.016
.50
0
OVERFLOW
5.0
608.
.0050
20.0
.0
.020
5.00
340
342
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
342
341
8
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.2 2.9
5.7
23.5
14.7
53.0
28.1
73.1
47.4
88.5
72.5
103.6
95.5 111.0
341
325
0
5
PIPE
3.5
1200.
.0050
.0
.0
.013
3.50
0
OVERFLOW
1.0
1200.
.0050
20.0
20.0
.020
5.00
325
324
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
324
314
0
5
PIPE
3.5
1242.
.0030
.0
.0
.013
3.50
0
OVERFLOW
1.0
1242.
.0030
20.0
20.0
.020
5.00
421
347
5
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
2 2.1
8.3
10.5
34.0
17.4
43.6
18.7
347
314
0
2
PIPE
1.5
1139.
.0150
.0
.0
.013
1.50
0
345
344
0
3
.0
0.
.0010
.0
.0 :
.001
10.00
0
344
314
5
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
.0 1.9
2.8
16.8
10.1
27.6
21.6
35.0
314
313
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
313
312
0
5
PIPE
2.0
409.
.0090
.0
.0
.013
2.00
0
OVERFLOW
10.0
409.
.0090
5.0
5.0
.035
6.00
330
312
5
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 4.0
1.0
6.6
2.0
8.0
3.0
104.0
V:\52870f\active\l87010251 \Reports\Drainage\ModSW MM\frv-100-ult-s.out
6V Print
stantec
312
311
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
311
310
0
5
PIPE 2.0 1566.
.0090
.0
.0
.013
2.00
0
OVERFLOW 10.0 1566.
.0090
5.0
5.0
.035
6.00
334
333
5
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 5.6 .3 21.9
6.5
34.0
16.4
100.0
333
320
0
5
PIPE 2.0 1064.
.0090
.0
.0
.013
2.00
0
OVERFLOW 5.0 1075.
.0089
3.0
3.0
.035
6.00
320
319
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
319
318
9
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 .4 .5 3.3
2.1
6.2
4.2
9.2
5.9
11.0
6.3
17.5
7.1 109.6 7.9 260.7
318
305
0
5
PIPE 1.3 1320.
.0050
.0
.0
.013
1.25
0
OVERFLOW 1.0 1384.
.0048
20.0
20.0
.020
5.00
305
304
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
304
303
8
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 13.6 .6 28.3
2.2
37.7
6.5
46.0
7.1
100.0
7.8
200.0
8.2 300.0
303
310
0
5
PIPE 2.0 671.
.0060
.0.
.0
.013
2.00
0
OVERFLOW 10.0 671.
.0060
5.0
5.0
.035
6.00
310
309
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
309
308
7
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 .7 1.4 17.6
7.9
25.5
20.3
26.9
25.0
27.4
30.2
273.0
308
307
3
3
.0 0.
.0010
.0
.0
.001
10.00
242
DIVERSION
TO GUTTER NUMBER 242 - TOTAL 0 VS DIVERTED 0 IN
CFS
0
.0
27.4 .0 273.0 245.6
307
306
0
2
PIPE 2.5 1351.
.0060
.0
.0
.013
2.50
0
315
306
10
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.3 10.4 1.0 15.0
3.1
22.9
5.5
29.0
8.3
33.2
11.4
35.7
13.1 36.2 13.6 106.0
14.0
206.0
306
238
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
300
291
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
291
321
0
2
PIPE 4.0 660.
.0050
.0
.0
.013
4.00
0
301
321
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
321
292
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
292
360
0
2
PIPE 4.0 500.
.0050
.0
.0
.013
4.00
0
302
322
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
322
299
0'
3
.0 0.
.0010
.0
.0
.001
10.00
0
299
296
0
2
PIPE 6.0 270.
.0100
.0
.0
.013
6.00
0
245
247
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
247
294
6
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 2.1 .1 3.4
.l
4.4
.3
5.1
.4
10.0
244
246
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
246
290
7
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 1.9 .0 3.1
.1
3.9
.1
4.6
.2
5.2
.3
10.0
290
243
0
2
PIPE 2.0 600.
.0100
.0
.0
.013
2.00
0
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 7V Print
Stantec
294
243
0
2
PIPE
2.0 834.
.0100
.0
.0
.013
0
243
295
0
3
.0 0.
.0010
.0
.0
.001
0
295
206
0
2
PIPE
9.0 1723.
.0020
.0
.0
.013
0
206
360
0
3
.0 0.
.0010
.0
.0
.001
0
296
293
0
3
.0 0.
.0010
.0
.0
.001
0
293
297
0
1
CHANNEL
4.0 1800.
.0050
4.0
4.0
.035
0
297
298
0
3
.0 0.
.0010
.0
.0
.001
0
298
212
3
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
0
.0
19.0 17.3 22.5 21.9
360
286
0
3
.0 0.
.0010
.0
.0
.001
0
286
601
10
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
.7 1.6 .9
4.1
1.0
6.9
1.1
1.2
13.0
1.3
16.3
1.4 17.9 1.4
19.8
104.8
601
276
3
3
.0 0.
.0010
.0
.0
.001
296
DIVERSION
TO GUTTER NUMBER 296
- TOTAL 0 VS DIVERTED 0
IN CFS
0
.0
1.4
.0 104.3 102.8
276
207
0
2
PIPE
1.5 362.
.0020
.0
.0
.013
0
207
287
0
3
.0 0.
.0010
.0
.0
.001
0
287
277
9
2
PIPE
.l 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.2
.7 .3 .9
.5
1.0
.7
1.1
1.2
1.3
1.3
1.6
1.4 2.0 1.4
277
208
0
2
PIPE
1.5 217.
.0020
.0
.0
.013
0
208
288
0
3
.0 0.
.0010
.0
.0
.001
0
288
278
7
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
1.6 .2 9.9
.6
24.3
1.1
33.7
37.5
204
38.0
278
209
2
PIPE
4.0 850.
.0020
4.0
4.0
.013
0
209
289
0
3
.0 0.
.0010
.0
.0
.001
0
289
279
8
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
9.8 .6 10.7
1.9
12.4
3.3
13.9
15.3
6.3
16.3
7.7 16.4
279
270
0
2
PIPE
3.0 570.
.0020
.0
.0
.013
0
205
216
0
3
.0 0.
.0010
.0
.0
.001
0
216
204
6
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.5
.5 1.5 .8
2.9
1.0
4.5
1.1
1.3
204
249
0
2
PIPE
2.5 143.
.0020
.0
.0
.013
0
250
249
0
3
.0 0.
.0010
.0
.0
.001
0
249
248
0
3
.0 0.
.0010
.0
.0
.001
0
248
251
7
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
.0
.0
.0
2.6 .0 3.1
.4
5.4
.9
7.0
8.3
1.6
8.8
251
200
0
2
PIPE
2.0 230.
.0020
.0
.0
.013
0
210
200
0
3
.0 0.
.0010
.0
.0
.001
0
200
201
0
3
.0 0.
.0010
.0
.0
.001
0
201
202
6
2
PIPE
.1 1.
.0100
.0
.0
.010
0
RESERVOIR
STORAGE IN
ACRE-FEET
VS SPILLWAY OUTFLOW
V:\52870f\active\l87010251 \Reports\Drainage\ModSVVMM\frv-100-ult-s.out
2.00
10.00
9.00
10.00
10.00
4.00
10.00
.10
10.00
.10
9.9
10.00
1.50
10.00
.10
.9
1.50
10.00
.10
1.7
4.00
10.00
.10
4.8
3.00
10.00
.10
6.4
2.50
10.00
10.00
.10
1.4
2.00
10.00
10.00
.10
8V Print
Stantec
.0
.0
.0 4.4
.2 7.1
.7
10.2
1.2
12.6
1.8
14.6
202
270
0
4
CHANNEL
15.0 902.
.0020
4.0
8.0
.035
6.00
0
OVERFLOW
87.0 902.
.0020
20.0
20.0
.020
2.00
270
212
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
242
240
0
4
CHANNEL
.5 1779.
.0070
12.0
12.0
.016
.50
0
OVERFLOW
10.0 1779.
.0070
20.0
20.0
.020
5.00
240
235
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
238
237
0
5
PIPE
3.0 787.
.0060
.0
.0
.013
3.00
0
OVERFLOW
1.0 787.
.0060
20.0
20.0
.020
5.00
237
236
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
236
232
0
5
PIPE
3:0 740.
.0050
.0
.0
.013
3.00
0
OVERFLOW
1.0 740.
.0050
20.0
20.0
.020
5.00
235
234
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
234
233
8
2
PIPE
.1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
6.4
.0
.0
.4 3.1
2.4 4.2
2.8
4.6
4.7
5.1
100.6
7.1
203.7
8.2 401.9
0.
10.00
233
232
5
3
.0
.0010
.0
.0
.001
230
DIVERSION
TO GUTTER
NUMBER 230 - TOTAL
0 VS DIVERTED 0
IN CFS
0
5.0 .0
101.0 95.0
204.0
198.0
402.0
396.0
232
231
0
.0
3
.0 0.
.0010
.0
.0
.001
10.00
0
231
227
0
5
PIPE
3.0 311.
.0030
.0
.0
.013
3.00
0
OVERFLOW
1.0 311.
.0030
20.0
20.0
.020
5.00
230
229
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
229
228
6
2
PIPE
.1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.1 2.0
1.1 2.9
3.5
3.5
4.6
200.8
5.3
401.0
228
227
4
3
.0 0.
.0010
.0
.0
.001
10.00
225
DIVERSION
TO GUTTER
NUMBER 225 - TOTAL
0 VS DIVERTED 0
IN CFS
0
4.0 .0
201.0 197.0
401.0
397.0
227
226
0
.0
3
.0 0.
.0010
.0
.0
.001
10.00
0
226
222
0
5
PIPE
3.0 477.
.0060
.0
.0
.013
3.00
0
OVERFLOW
1.0 477.
.0060
20.0
20.0
.020
5.00
225
224
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
224
223
8
2
PIPE
.1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 1.0
.5 2.7
2.0
3.6
3.9
4.3
4.5
4.5
4.8
200.0
5.1 400.0
0.
.001
10.00
223
222
4
3
.0
.0010
.0
.0
155
DIVERSION
TO GUTTER
NUMBER 155 - TOTAL 0 VS DIVERTED 0
IN CFS
0
4.0 .0
200.0 195.0
400.0
395.0
222
221
0
.0
3
.0 0.
.0010
.0
.0
.001
10.00
0
221
152
0
5
PIPE
3.0 1569.
.0240
.0
.0
.013
3.00
0
OVERFLOW
1.0 1569.
.0240
20.0
20.0
.020
8.00
152
0
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
215
214
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
214
203
9
2
PIPE
.1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.1 12.6
.4 14.9
4.0
21.8
9.6
26.9
12.2
28.7
13.0
149.0
13.2 149.4
14.0 149.9
203
213
3
3
.0 0.
.0010
.0
.0
.001
10.00
297
DIVERSION
TO GUTTER
NUMBER 297 - TOTAL
0 VS DIVERTED 0
IN CFS
29.5 .0
150.0 120.0
213
212
.0
0
.0
5
PIPE
3.0 610.
.0030
.0
.0
.013
3.00
0
OVERFLOW
1.0 610.
.0030
20.0
20.0
.020
5.00
212
211
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 9V Print
Stantec
211
125
0
4
CHANNEL
5.0
1670.
.0060
4.0
4.0
.035
6.00
0
OVERFLOW
53.0
1670.
.0060
4.0
40.0
.020
3.00
125
ill
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
ill
110
0
4
CHANNEL
10.0
1400,
.0040
.0
.0
.013
4.00
0
OVERFLOW
10.0
1400.
.0040
20.0
20.0
.020
3.50
110
105
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
105
104
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
104
103
3
3
.0
0.
.0010
.0
.0
.001
10.00
100
DIVERSION
TO GUTTER
NUMBER 100 TOTAL
Q VS DIVERTED Q
IN CFS
0
.0
20.0 .0
2000.0
1980.0
103
120
0
2
PIPE
2.8
617.
.0050
.0
.0
.013
2.80
0
129
120
0
1
CHANNEL
130.0
956.
.0080
60.0
6.0
.030
8.00
0
120
100
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
100
101
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
101
99
7
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
1.5 4.0
6.1
13.9
11.9
22.0
19.1
377.8
27.5
1130.0
29.8
1400.0
154
221
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
150
146
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
146
145
0
4
CHANNEL
31.0
1384.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
1384.
.0020
.0
15.0
.050
12.00
145
141
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
141
139
0
4
CHANNEL
31.0
1193.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
1193.
.0020
.0
15.0
.050
12.00
140
139
8
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 1.0
.4
7.0
1.6
8.9
4.0
10.5
5.5
11.2
7.1
40.0
8.0 100.0
139
136
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
136
135
0
4
CHANNEL
31.0
910.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
910.
.0020
.0
15.0
.050
12.00
135
116
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
116
115
0
4
CHANNEL
31.0
2552.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
2552.
.0020
.0
15.0
.050
12.00
99
115
3
3
.0
0.
.0010
.0
.0
.001
10.00
95
DIVERSION
TO GUTTER
NUMBER 95 - TOTAL
Q VS DIVERTED
0
IN CFS
0
.0
25.0 .0
1012.0
987.0
115
90
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
95
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
11
150
2
3
.0
0.
.0010
.0
.0
.001
10.00
-1
TIME IN HRS VS INFLOW IN CFS
0
300.0
100.0 300.0
10
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
155
154
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
90
80
3
3
.0
0.
.0010
.0
.0
.001
10.00
91
DIVERSION
TO GUTTER
NUMBER 91 - TOTAL
Q VS DIVERTED
0
IN CFS
.0
.0
444.0 .0
6000.0
5556.0
80
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
91
95
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
TOTAL
NUMBER OF
GUTTERS/PIPES,
145
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 10V Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
ARRANGEMENT OF
SUBCATCHMENTS AND
GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
TRIBUTARY
SUBAREA
D.A.(AC)
101
100
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
436.4
103
104
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
348.2
111
125
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
327.2
116
135
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
119.2
129
0
0
0
0
0 0
0
0
0
0
130
0
0 0
0
0
0
0
0
0
39.7
136
139
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
97.6
140
0
0
0
0
0 0
0
0
0
0
140
0
0 0
0
0
0
0
0
0
58.9
141
145
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
38.7
146
150
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
.0
201
200
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
29.6
202
201
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
29.6
204
216
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
17.2
211
212
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
290.7
'
213
203
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
58.8
214
215
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
58.8
216
205
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
17.2
221
222
154
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
901.5
224
225
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
21.9
226
227
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
879.6
229
230
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
18.9
231
232
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
860.7
234
235
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
61.8
236
237
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
798.9
238
306
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
798.9
242
0
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
.0
246
244
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
2.5
247
245
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
2.8
248
249
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
25.7
251
248
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
25.7
276
601
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
109.2
277
287
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
113.2
278
288
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
131.1
279
289
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
149.2
286
360
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
109.2
287
207
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
113.2
288
208
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
131.1
289
209
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
149.2
290
246
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
2.5
291
300
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
23.1
292
321
0
0
0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
43.6
V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out
I Print
Stantec
293
296 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
24.2
294
247 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
2.8
295
243 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
10.8
298
297 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
53.1
299
322 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
11.3
303
304 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
83.8
304
305 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
83.8
307
308 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
738.0
309
310 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
738.0
311
312 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
569.5
313
314 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
554.2
315
0 0 0
0
0
0
0
0 0
0
315
0
0
0
0
0
0
0
0
0
60.9
318
319 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
59.7
319
320 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
59.7
324
325 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
365.5
330
0 0 0
0
0
0
0
0 0
0
330
0
0
0
0
0
0
0
0
0
15.3
333
334 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
30.3
334
0 0 0
0
0
0
0
0 0
0
335
0
0
0
0
0
0
0
0
0
30.3
341
342 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
351.1
342
340 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
351.1
344
345 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
79.7
347
421 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
109.0
355
0 0 0
0
0
0
0
0 0
0
355
0
0
0
0
0
0
0
0
0
27.4
401
400 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
289.1
405
0 0 0
0
0
0
0
0 0
0
405
0
0
0
0
0
0
0
0
0
41.8
410
0 0 0
0
0
0
0
0 0
0
410
0
0
0
0
0
0
0
0
0
58.6
421
0 0 0
0
0
0
0
0 0
0
420
0
.0
0
0
0
0
0
0
0
109.0
423
425 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
63.0
426
437 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
32.0
430
0 0 0
0
0
0
0
0 0
0
430
0
0
0
0
0
0
0
0
0
22.5
434
435 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
31.9
436
0 0 0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0
0
0
.0
ORDER
OF TREE STRUCTURE (NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 107
TO
GUTTER
100
COMP
THROUGH
DIVERSION
WILL
LAG ONE TIME
STEP UNLESS GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
ORDER
OF TREE STRUCTURE (NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 131
TO
GUTTER
95
COMP
THROUGH
DIVERSION
WILL
LAG ONE TIME
STEP UNLESS GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
ORDER
OF TREE STRUCTURE (NGUT
VALUE)
DECREASES
THROUGH
DIVERSION FROM
GUTTER 139
TO
GUTTER
91
COMP
THROUGH
DIVERSION
WILL
LAG ONE TIME
STEP UNLESS GUTTER
CARDS
ARE
MODIFIED TO
REVERSE
DIVERSION.
V:\52870f\active\l87010251\Reports\Drainage\ModSVVMM\frv-100-ult-s.out 12V Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 7 CONVEYANCE ELEMENTS
THE
UPPER NUMBER
IS DISCHARGE IN CFS
THE
LOWER NUMBER
IS ONE OF
THE FOLLOWING
CASES:
( ) DENOTES DEPTH
ABOVE INVERT
IN FEET
(S) DENOTES STORAGE IN AC -FT
FOR DETENTION DAM. DISCHARGE
INCLUDES SPILLWAY OUTFLOW.
(1) DENOTES GUTTER
INFLOW
IN CFS FROM
SPECIFIED INFLOW HYDROGRAPH
(0) DENOTES DISCHARGE IN CFS
DIVERTED
FROM THIS GUTTER
(0) DENOTES STORAGE IN AC -FT
FOR SURCHARGED
GUTTER
TIME(HR/MIN)
201
216
248
286
287
288
289
0
1.
.0
.0
.0
.0
.0
.0
.0
.00(S)
OO(S)
.00(S)
.00(S)
OO(S)
.00(S)
.00(S)
0
6.
.9
.0
.6
.5
.0
1.3
1.1
.00(S)
.01(S)
.00(S)
.02(S)
OO(S)
.01(S)
.00(S)
0
11.
4.4
.1
2.6
.7
.1
3.5
6.4
.01(S)
.04(S)
.O1(S)
.15(S)
.02(S)
.05(S)
.03(S)
0
16.
4.7
.2
3.1
.8
.2
7.8
9.9
.03(S)
.13(S)
.04(S)
.53(S)
.05(S)
.14(S)
.08(S)
0
21.
5.3
.3
3.5
.9
.4
13.5
10.1
.07(S)
.29(S) -
.11(S)
1.28(S)
.10(S)
.29(S)
.26(S)
0
26.
6.3
.6
4.2
1.0
.7
21.0
10.7
.13(S)
.55(S)
.22(S)
2.46(S)
.17(S)
.51(S)
.58(S)
0
31.
7.6
.7
5.5
1.1
.9
31.1
11.5
.27(S)
1.06(S)
.46(S)
4.79(S)
.31(S)
.97(S)
1.23(S)
0
36.
9.1
.9
7.1
1.2
1.0
37.6
13.0
.50(S)
2.02(S)
.91(S)
8.92(S)
.56(S)
1.86(S)
2.42(S)
0
41.
9.7
1.0
7.8
1.3
1.1
37.9
13.9
.60(S)
2.65(S)
1.17(S)
11.98(S)
.69(S)
2.19(S)
3.25(S)
0
46.
10.0
1.0
8.1
1.4
1.1
37.9
14.4
.65(S)
3.02(S)
1.30(S)
14.16(S)
.77(S)
2.28(S)
3.81(S)
0
51.
10.2
1.0
8.2
1.4
1.1
37.9
14.8
.68(S)
3.26(S)
1.36(S)
15.85(S)
.82(S)
2.24(S)
4.21(S)
0
56.
10.3
1.1
8.3
1.4
1.2
37.8
15.1
.70(S)
3.42(S)
1.39(S)
17.30(S)
.85(S)
2.14(S)
4.55(S)
1
1.
10.3
1.1
8.3
35.8
1.2
37.7
15.3
.71(S)
3.56(S)
1.41(S)
18.56(S)
.89(S)
2.02(S)
4.85(S)
1
6.
10.4
1.1
8.4
82.6
1.2
37.6
15.5
.72(S)
3.67(S)
1.41(S)
19.40(S)
.91(S)
1.89(S)
5.13(S)
1
11.
10.4
1.1
8.4
99.7
1.2
37.5
15.7
.73(S)
3.78(S)
1.42(S)
19.71(S)
.94(S)
1.76(S)
5.40(S)
1
16.
10.5
1.1
8.4
103.0
1.2
36.9
15.9
.74(S)
3.87(S)
1.42(S)
19.77(S)
.96(S)
1.62(S)
5.66(S)
1
21.
10.5
1.1
8.4
102.7
1.2
36.0
16.0
.75(S)
3.97(S)
1.42(S)
19.76(S)
.99(S)
1.48(S)
5.91(S)
1
26.
10.5
1.1
8.4
100.5
1.2
35.2
16.2
.75(S)
4.05(S)
1.41(S)
19.72(S)
1.01(S)
1.34(S)
6.15(S)
1
31.
10.6
1.1
8.3
97.3
1.2
34.3
16.3
.76(S)
4.14(S)
1.41(S)
19.66(S)
1.03(S)
1.21(S)
6.38(S)
1
36.
10.6
1.1
8.3
93.5
1.2
32.9
16.3
.76(S)
4.22(S)
1.40(S)
19.60(S)
1.05(S)
1.08(S)
6.60(S)
1
41.
10.6
1.1
8.3
89.4
1.2
30.7
16.3
.77(S)
4.29(S)
1.39(S)
19.52(S)
1.07(S)
.95(S)
6.80(S)
1
46.
10.6
1.1
8.3
85.4
1.2
28.7
16.3
.77(S)
4.36(S)
1.38(S)
19.45(5)
1.09(S)
.84(S)
6.99(S)
1
51.
10.6
1.2
8.3
81.4
1.2
26.9
16.3
.77(S)
4.43(S)
1.37(S)
19.38(S)
1.11(S)
.74(S)
7.16(S)
1
56.
10.6
1.2
8.2
77.7
1.3
25.3
16.3
.77(S)
4.50(S)
1.35(S)
19.31(S)
1.13(S)
.65(S)
7.31(S)
2
1.
10.6
1.2
8.2
73.7
1.3
23.2
16.4
.77(S)
4.56(S)
1.34(S)
19.24(S)
1.15(S)
.57(S)
7.45(S)
2
6.
10.6
1.2
8.1
64.5
1.3
19.6
16.4
.76(S)
4.60(S)
1.31(S)
19.08(S)
1.15(S)
.47(S)
7.54(S)
2
11.
10.5
1.2
8.0
53.2
1.3
16.1
16.4
.74(S)
4.61(S)
1.27(S)
18.87(S)
1.16(S)
.37(S)
7.58(S)
2
16.
10.4
1.2
7.9
42.9
1.3
13.1
16.4
.72(S)
4.62(S)
1.23(S)
18.69(S)
1.16(S)
.28(S)
7.59(S)
2
21.
10.3
1.2
7.8
34.3
1.3
10.7
16.4
.71(S)
4.62(S)
1.19(S)
18.53(S)
1.16(S)
.21(S)
7.58(S)
2
. 26.
10.3
1.2
7.7
27.3
1.3
8.4
16.4
.69(S)
4.62(S)
1.14(S)
18.41(S)
1.16(S)
.16(S)
7.55(S)
2
31.
10.2
1.2
7.6
21.8
1.3
6.6
16.4
.67(S)
4.61(S)
1.10(S)
18.31(S)
1.16(S)
.12(S)
7.50(S)
2
36.
10.1
1.2
7.5
17.5
1.3
5.2
16.4
.65(S)
4.61(S)
1.06(S)
18.23(S)
1.17(S)
.09(S)
7.44(S)
2
41.
10.0
1.2
7.4
14.1
1.3
4.1
16.3
.64(S)
4.60(S)
1.02(S)
18.17(S)
1.17(S)
.06(S)
7.37(S)
2
46.
9.8
1.2
7.2
11.5
1.3
3.4
16.3
.62(S)
4.60(S)
.97(S)
18.12(S)
1.17(S)
.05(S)
7.28(S)
2
51.
9.7
1.2
7.1
9.5
1.3
2.8
16.3
.60(S)
4.59(S)
.93(S)
18.08(S)
1.17(S)
.04(S)
7.20(S)
2
56.
9.6
1.2
7.0
7.9
1.3
2.4
16.3
.58(S)
4.58(S)
.89(S)
18.06(S)
1.17(S)
.03(S)
7.11(S)
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 13V Print
Stantec
3 1.
9.5
1.2
6.9
6.6
1.3
2.1
16.3
.57(S)
4.58(S)
.85(S)
18.03(S)
1.17(S)
.02(S)
7.01(S)
3 6.
9.4
1.2
6.8
5.6
1.3
1.9
16.3
.55(S)
4.57(S)
.81(S)
18.02(S)
1.17(S)
.02(S)
6.92(S)
3 11.
9.3
1.2
6.7
4.8
1.3
1.7
16.3
.53(S)
4.56(S)
.78(S)
18.00(S)
1.17(S)
.01(S)
6.82(S)
3 16.
9.2
1.2
6.5
4.2
1.3
1.6
16.3
.51(S)
4.56(S)
.74(S)
17.99(S)
1.18(S)
.01(S)
6.72(S)
3 21.
9.1
1.2
6.4
3.6
1.3
1.4
16.3
.49(S)
4.55(S)
.70(S)
17.98(S)
1.18(S)
.01(S)
6.62(S)
3 26.
8.9
1.2
6.3
3.2
1.3
1.3
16.3
.48(S)
4.54(S)
.67(S)
17.97(S)
1.18(S)
.01(S)
6.52(S)
3 31.
8.8
1.2
6.1
2.8
1.3
1.3
16.3
.46(S)
4.53(S)
.63(S)
17.96(S)
1.18(S)
.01(S)
6.42(S)
3 36.
8.7
1.2
6.0
2.5
1.3
1.3
16.3
.44(S)
4.52(S)
.60(S)
17.96(S)
1.18(S)
.01(S)
6.31(S)
3 41.
8.6
1.2
5.9
2.2
1.3
1.3
16.2
.42(S)
4.52(S)
.57(S)
17.95(S)
1.18(S)
.01(S)
6.21(S)
3 46.
8.5
1.2
5.8
2.0
1.3
1.3
16.2
.40(S)
4.51(S)
.53(S)
17.95(S)
1.18(S)
.01(S)
6.11(S)
3 51.
8.4
1.2
5.7
1.8
1.3
1.3
16.1
.38(S)
4.50(S)
.50(S)
17.95(S)
1.18(S)
.01(S)
6.01(S)
3 56.
8.3
1.2
5.6
1.6
1.3
1.3
16.0
.37(S)
4.49(S)
.47(S)
17.94(S)
1.18(S)
.01(S)
5.91(S)
4 1.
8.1
1.2
5.5
1.5
1.3
1.3
16.0
.35(S)
4.49(S)
.44(S)
17.94(S)
1.18(S)
.01(S)
5.80(S)
4 6.
8.0
1.2
5.4
1.4
1.3
1.3
15.9
.33(S)
4.48(S)
.41(S)
17.94(S)
1.19(S)
.01(S)
5.70(S)
4 11.
7.9
1.2
5.2
1.4
1.3
1.3
15.8
.31(S)
4.47(S)
.38(S)
17.93(S)
1.19(S)
.01(S)
5.60(S)
4 16.
7.8
1.2
5.0
1.4
1.3
1.3
15.8
.29(S)
4.46(S)
.36(S)
17.93(S)
1.19(S)
.01(S)
5.50(S)
4 21.
7.7
1.2
4.9
1.4
1.3
1.3
15.7
.27(S)
4.45(S)
.33(S)
17.93(S)
1.19(S)
.01(S)
5.40(S)
4 26.
7.6
1.2
4.7
1.4
1.3
1.3
15.6
.25(S)
4.45(S)
.31(S)
17.92(S)
1.19(S)
.01(S)
5.31(S)
4 31.
7.4
1.2
4.6
1.4
1.3
1.3
15.6
.23(S)
4.44(S)
.28(S)
17.92(S)
1.19(S)
.01(S)
5.21(S)
4 36.
7.3
1.2
4.4
1.4
1.3
1.3
15.5
.21(S)
4.43(S)
.26(S)
17.91(S)
1.19(S)
.01(S)
5.11(S)
4 41.
7.2
1.2
4.3
1.4
1.3
1.3
15.4
.19(S)
4.42(S)
.24(S)
17.91(5)
1.19(S)
.01(S)
5.01(S)
4 46.
7.0
1.2
4.2
1.4
1.3
1.3
15.4
.17(S)
4.42(S)
.22(S)
17.90(S)
1.19(S)
.01(S)
4.91(S)
4 51.
6.7
1.1
4.0
1.4
1.3
1.3
15.3
.16(S)
4.41(S)
.20(S)
17.89(S)
1.19(S)
.01(S)
4.82(S)
4 56.
6.4
1.1
3.9
1.4
1.3
1.3
15.2
.14(S)
4.40(S)
.18(S)
17.89(S)
1.20(S)
.01(S)
4.72(S)
5 1.
6.2
1.1
3.8
1.4
1.3
1.3
15.1
.12(S)
4.39(S)
.16(S)
17.88(S)
1.20(S)
.01(S)
4.63(S)
5 6.
5.9
1.1
3.7
1.4
1.3
1.3
15.1
.11(S)
4.38(S)
.14(S)
17.87(S)
1.20(S)
.01(S)
4.53(S)
5 11.
5.7
1.1
3.6
1.4
1.3
1.3
15.0
.09(S)
4.38(S)
.12(S)
17.86(S)
1.20(S)
.01(S)
4.44(S)
5 16.
5.5
1.1
3.5
1.4
1.3
1.3
14.9
.08(S)
4.37(S)
.11(S)
17.85(S)
1.20(S)
.01(S)
4.34(S)
5 21.
5.3
1.1
3.4
1.4
1.3
1.3
14.8
.06(S)
4.36(S)
.09(S)
17.85(S)
1.20(S)
.01(S)
4.25(S)
5 26.
5.1
1.1
3.3
1.4
1.3
1.3
14.7
.05(S)
4.35(S)
.08(S)
17.84(S)
1.20(S)
.01(S)
4.16(S)
5 31.
4.9
1.1
3.2
1.4
1.3
1.3
14.6
.04(S)
4.35(S)
.06(5)
17.83(S)
1.20(S)
.01(S)
4.06(S)
5 36.
4.7
1.1
3.1
1.4
1.3
1.3
14.6
.03(S)
4.34(S)
.05(S)
17.82(S)
1.20(S)
.01(S)
3.97(S)
5 41.
4.5
1.1
3.0
1.4
1.3
1.3
14.5
.02(S)
4.33(S)
.03(S)
17.81(S)
1.20(S)
.01(S)
3.88(S)
5 46.
3.5
1.1
2.8
1.4
1.3
1.3
14.4
.01(S)
4.32(S)
.02(S)
17.80(S)
1.21(S)
.01(S)
3.79(S)
5 51.
2.7
1.1
2.6
1.4
1.3
1.3
14.3
.01(S)
4.31(S)
.01(S)
17.79(S)
1.21(S)
.01(S)
3.70(S)
5 56.
1.9
1.1
1.4
1.4
1.3
1.3
14.2
.00(S)
4.31(S)
.01(S)
17.79(S)
1.21(S)
.01(S)
3.61(S)
6 1.
1.3
1.1
1.2
1.4
1.3
1.3
14.1
.00(S)
4.30(S)
.00(S)
17.78(S)
1.21(S)
.01(S)
3.52(S)
6 6.
1.2
1.1
1.1
1.4
1.3
1.3
14.1
.00(S)
4.29(S)
.00(S)
17.77(S)
1.21(S)
.01(S)
3.43(S)
6 11.
1.1
1.1
1.1
1.4
1.3
1.3
14.0
.00(S)
4.28(S)
.00(S)
17.76(S)
1.21(S)
.01(S)
3.35(S)
6 16.
1.1
1.1
1.1
1.4
1.3
1.3
13.9
.00(S)
4.28(S)
.00(S)
17.75(S)
1.21(S)
.01(S)
3.26(S)
6 21.
1.1
1.1
1.1
1.4
1.3
1.3
13.8
.00(S)
4.27(S)
.00(S)
17.74(S)
1.21(S)
.01(S)
3.17(S)
6 26.
1.1
1.1
1.1
1.4
1.3
1.3
13.7
.00(S)
4.26(S)
.00(S)
17.73(S)
1.21(S)
.01(S)
3.09(S)
6 31.
1.1
1.1
1.1
1.4
1.3
1.3
13.6
.00(S)
4.25(S)
.00(S)
17.72(S)
1.21(S)
.01(S)
3.00(S)
6 36.
1.1
1.1
1.1
1.4
1.3
1.3
13.5
.00(S)
4.24(S)
.00(S)
17.71(S)
1.22(S)
.01(S)
2.92(S)
6 41.
1.1
1.1
1.1
1.4
1.3
1.3
13.4
.00(S)
4.24(S)
.00(S)
17.70(S)
1.22(S)
.01(S)
2.83(S)
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 14V Print
Stantec
6 46.
1.1
1.1
1.1
1.4
1.3
1.3
13.4
.00(S)
4.23(S)
.00(S)
17.69(S)
1.22(S)
.01(S)
2.75(S)
6 51.
1.1
1.1
1.1
1.4
1.3
1.3
13.3
.00(S)
4.22(S)
.00(S)
17.68(S)
1.22(S)
.01(S)
2.67(S)
6 56.
1.1
1.1
1.1
1.4
1.3
1.3
13.2
.00(S)
4.21(S)
.00(S)
17.67(S)
1.22(S)
.01(S)
2.58(S)
7 1.
1.1
1.1
1.1
1.4
1.3
1.3
13.1
.00(S)
4.21(S)
.00(S)
17.66(S)
1.22(S)
.01(S)
2.50(S)
7 6.
1.1
1.1
1.1
1.4
1.3
1.3
13.0
.00(S)
4.20(S)
.00(S)
17.65(S)
1.22(S)
.01(S)
2.42(S)
7 11.
1.1
1.1
1.1
1.4
1.3
1.3
12.9
.00(S)
4.19(S)
.00(S)
17.64(S)
1.22(S)
.01(S)
2.34(S)
7 16.
1.1
1.1
1.1
1.4
1.3
1.3
12.8
.00(S)
4.18(S)
.00(S)
17.63(S)
1.22(S)
.01(S)
2.26(S)
7 21.
1.1
1.1
1.1
1.4
1.3
1.3
12.7
.00(S)
4.17(S)
.00(S)
17.62(S)
1.22(S)
.01(S)
2.18(S)
7 26.
1.1
1.1
1.1
1.4
1.3
1.3
12.7
.00(S)
4.17(S)
.00(S)
17.61(S)
1.23(S)
.01(S)
2.10(S)
7 31.
1.1
1.1
1.1
1.4
1.3
1.3
12.6
.00(S)
4.16(S)
.00(S)
17.60(S)
1.23(S)
.01(S)
2.03(S)
7 36.
1.1
1.1
1.1
1.4
1.3
1.3
12.5
.00(S)
4.15(S)
.00(S)
17.59(S)
1.23(S)
.01(S)
1.95(S)
7 41.
1.1
1.1
1.1
1.4
1.3
1.3
12.4
.00(S)
4.14(S)
.00(S)
17.58(S)
1.23(S)
.01(S)
1.87(S)
7 46.
1.1
1.1
1.1
1.4
1.3
1.3
12.3
.00(S)
4.14(S)
.00(S)
17.57(S)
1.23(S)
.01(5)
1.79(S)
7 51.
1.1
1.1
1.1
1.4
1.3
1.3
12.2
.00(S)
4.13(S)
.00(S)
17.56(S)
1.23(S)
.01(S)
1.72(S)
7 56.
1.1
1.1
1.1
1.4
1.3
1.3
12.1
.00(S)
4.12(S)
.00(S)
17.55(S)
1.23(S)
.01(S)
1.64(S)
8 1.
1.1
1.1
1.1
1.4
1.3
1.3
12.0
.00(S)
4.11(S)
.00(S)
17.54(S)
1.23(S)
.01(S)
1.57(S)
8 6.
1.1
1.1
1.1
1.4
1.3
1.3
11.9
.00(S)
4.10(S)
.00(S)
17.54(S)
1.23(S)
.01(S)
1.50(S)
8 11.
1.1
1.1
1.1
1.4
1.3
1.3
11.8
.00(S)
4.10(S)
.00(S)
17.53(S)
1.23(S)
.01(S)
1.42(S)
8 16.
1.1
1.1
1.1
1.4
1.3
1.3
11.7
.00(S)
4.09(S)
.00(S)
17.52(S)
1.23(S)
.01(S)
1.35(S)
8 21.
1.1
1.1
1.1
1.4
1.3
1.3
11.6
.00(S)
4.08(S)
.00(S)
17.51(S)
1.24(S)
.01(S)
1.28(S)
8 26.
1.1
1.1
1.1
1.4
1.3
1.3
11.5
.00(S)
4.07(S)
.00(S)
17.50(S)
1.24(S)
.01(S)
1.21(S)
8 31.
1.1
1.1
1.1
1.4
1.3
1.3
11.4
.00(S)
4.07(S)
.00(S)
17.49(S)
1.24(S)
.01(S)
1.14(S)
8 36.
1.1
1.1
1.1
1.4
1.3
1.3
11.3
.00(S)
4.06(S)
.00(S)
17.48(S)
1.24(S)
.01(S)
1.07(S)
8 41.
1.1
1.1
1.1
1.4
1.3
1.3
11.2
.00(S)
4.05(S)
.00(S)
17.47(S)
1.24(S)
.01(S)
1.00(S)
8 46.
1.1
1.1
1.1
1.4
1.3
1.3
11.2
.00(S)
4.04(S)
.00(S)
17.46(S)
1.24(S)
.01(S)
.93(S)
8 51.
1.1
1.1
1.1
1.4
1.3
1.3
11.1
.00(S)
4.04(S)
.00(S)
17.45(S)
1.24(S)
.01(S)
.87(S)
8 56.
1.1
1.1
1.1
1.4
1.3
1.3
11.0
.00(S)
4.03(S)
.00(S)
17.44(S)
1.24(S)
.01(S)
.80(S)
9 1.
1.1
1.1
1.1
1.4
1.3
1.3
10.9
.00(S)
4.02(S)
.00(S)
17.43(S)
1.24(S)
.01(S)
.73(S)
9 6.
1.1
1.1
1.1
1.4
1.3
1.3
10.8
.00(S)
4.01(S)
.00(S)
17.42(S)
1.24(S)
.01(S)
.67(S)
9 11.
1.1
1.1
1.1
1.4
1.3
1.3
10.7
.00(S)
4.00(S)
.00(S)
17.41(S)
1.24(S)
.01(S)
.60(S)
9 16.
1.1
1.1
1.1
1.4
1.3
1.3
10.6
.00(S)
4.00(5)
.00(S)
17.40(S)
1.25(S)
.01(S)
.54(S)
9 21.
1.1
1.1
1.1
1.4
1.3
1.3
10.5
.00(S)
3.99(S)
.00(S)
17.39(S)
1.25(S)
.01(S)
.47(S)
9 26.
1.1
1.1
1.1
1.4
1.3
1.3
10.4
.00(S)
3.98(S)
.00(S)
17.38(S)
1.25(S)
.01(S)
.41(S)
9 31.
1.1
1.1
1.1
1.4
1.3
1.3
10.3
.00(S)
3.97(S)
.00(S)
17.37(S)
1.25(S)
.01(S)
.35(S)
9 36.
1.1
1.1
1.1
1.4
1.3
1.3
10.2
.00(S)
3.97(S)
.00(S)
17.36(S)
1.25(S)
.01(S)
.29(S)
9 41.
1.1
1.1
1.1
1.4
1.3
1.3
10.1
.00(S)
3.96(S)
.00(S)
17.35(S)
1.25(S)
.01(S)
.23(S)
9 46.
1.1
1.1
1.1
1.4
1.3
1.3
10.0
.00(S)
3.95(S)
.00(S)
17.34(S)
1.25(S)
.01(S)
.17(S)
9 51.
1.1
1.1
1.1
1.4
1.3
1.3
9.9
.00(S)
3.94(S)
.00(S)
17.33(S)
1.25(S)
.01(S)
.11(S)
9 56.
1.1
1.1
1.1
1.4
1.3
1.3
9.8
.00(S)
3.94(S)
.00(S)
17.32(S)
1.25(S)
.01(S)
.05(S)
10 1.
1.1
1.1
1.1
1.4
1.3
1.3
3.2
.00(S)
3.93(S)
.00(S)
17.31(S)
1.25(S)
.01(S)
.01(S)
10 6.
1.1
1.1
1.1
1.4
1.3
1.3
1.6
.00(S)
3.92(S)
.00(S)
17.30(S)
1.25(S)
.01(S)
.01(S)
10 11.
1.1
1.1
1.1
1.4
1.3
1.3
1.4
.00(S)
3.91(S)
.00(S)
17.29(S)
1.26(S)
.01(S)
.01(S)
10 16.
1.1
1.1
1.1 •
1.4
1.3
1.3
1.3
.00(S)
3.91(S)
.00(S)
17.28(S)
1.26(S)
.01(S)
.01(S)
10 21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.90(S)
.00(S)
17.27(S)
1.26(S)
.01(5)
.01(S)
10 26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.89(S)
.00(S)
17.26(S)
1.26(S)
.01(S)
.01(S)
V:\52B70f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 15V Print
Stentec
10
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.88(S)
.00(S)
17.25(S)
1.26(S)
.01(S)
.01(S)
10
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.88(S)
.00(S)
17.24(S)
1.26(S)
.01(S)
.01(S)
10
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.87(S)
.00(S)
17.23(S)
1.26(S)
.01(S)
.01(S)
10
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.86(S)
.00(S)
17.22(S)
1.26(S)
.01(S)
.01(S)
10
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.85(S)
.00(S)
17.21(S)
1.26(S)
.01(S)
.01(S)
10
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.85(S)
.00(S)
17.20(S)
1.26(S)
.01(S)
.01(S)
11
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.84(S)
.00(S)
17.19(S)
1.26(S)
.01(S)
.01(S)
11
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.83(S)
.00(S)
17.18(S)
1.26(S)
.01(S)
.01(S)
11
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.82(S)
.00(S)
17.17(S)
1.27(S)
.01(S)
.01(S)
11
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.82(S)
.00(S)
17.16(S)
1.27(S)
.01(S)
.01(S)
11
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.81(S)
.00(S)
17.15(S)
1.27(S)
.01(S)
.01(S)
11
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.80(S)
.00(S)
17.14(S)
1.27(S)
.01(S)
.01(S)
11
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.79(S)
.00(S)
17.13(S)
1.27(S)
.01(S)
.01(S)
11
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.79(S)
.00(S)
17.12(S)
1.27(S)
.01(S)
.01(S)
11
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.78(S)
.00(S)
17.11(S)
1.27(S)
.01(S)
.01(S)
11
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
MR S)
.00(S)
17.10(S)
1.27(S)
.01(S)
.01(S)
11
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.76(S)
.00(S)
17.10(S)
1.27(S)
.01(S)
.01(S)
11
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.76(S)
.00(S)
17.09(S)
1.27(S)
.01(S)
.01(S)
12
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.75(S)
.00(S)
17.08(S)
1.27(S)
.01(S)
.01(S)
12
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.74(S)
.00(S)
17.07(S)
1.28(S)
.01(S)
.01(S)
12
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.73(S)
.00(S)
17.06(S)
1.28(S)
.01(S)
.01(S)
12
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.73(S)
.00(S)
17.05(S)
1.28(S)
.01(S)
.01(S)
12
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.72(S)
.00(S)
17.04(S)
1.28(S)
.01(S)
.01(S)
12
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.71(S)
.00(S)
17.03(S)
1.28(S)
.01(S)
.01(S)
12
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.70(S)
.00(S)
17.02(S)
1.28(S)
.01(S)
.01(S)
12
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.70(S)
.00(S)
17.01(S)
1.28(S)
.01(S)
.01(S)
12
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.69(S)
.00(S)
17.00(S)
1.28(S)
.01(S)
.01(S)
12
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.68(S)
.00(S)
16.99(S)
1.28(S)
.01(S)
.01(S)
12
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.67(S)
.00(S)
16.98(S)
1.28(S)
.01(S)
.01(S)
12
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.67(S)
.00(S)
16.97(S)
1.28(S)
.01(S)
.01(S)
13
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.66(S)
.00(S)
16.96(S)
1.28(S)
.01(S)
.01(S)
13
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.65(S)
.00(S)
16.95(S)
1.29(S)
.01(S)
.01(S)
13
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.64(S)
.00(S)
16.94(S)
1.29(S)
.01(S)
.01(S)
13
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.64(S)
.00(S)
16.93(S)
1.29(S)
.01(S)
.01(S)
13
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.63(S)
.00(S)
16.92(S)
1.29(S)
.01(S)
.01(S)
13
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.62(S)
.00(S)
16.91(S)
1.29(S)
.01(S)
.01(S)
13
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.61(S)
.00(S)
16.90(S)
1.29(S)
.01(S)
.01(S)
13
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.61(S)
.00(S)
16.89(S)
1.29(S)
.01(S)
.01(S)
13
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.60(S)
.00(S)
16.88(S)
1.29(S)
.01(S)
.01(S)
13
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.59(S)
.00(S)
16.87(S)
1.29(S)
.01(S)
.01(S)
13
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.58(S)
.00(S)
16.86(S)
1.29(S)
.01(S)
.01(S)
13
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.58(S)
.00(S)
16.85(S)
1.29(S)
.01(S)
.01(S)
14
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.57(S)
.00(S)
16.84(S)
1.29(S)
.01(S)
.01(S)
14
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.56(S)
.00(S)
16.83(S)
1.30(S)
.01(S)
.01(S)
14
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.56(S)
.00(S)
16.82(S)
1.30(S)
.01(S)
.01(S)
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 16V Print
Stantec
14
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.55(S)
OO(S)
16.81(S)
1.30(S)
.01(S)
.01(S)
14
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.54(S)
OO(S)
16.80(S)
1.30(S)
.01(S)
.01(S)
14
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.53(S)
OO(S)
16.79(S)
1.30(S)
.01(S)
.01(S)
14
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.53(S)
OO(S)
16.78(S)
1.30(S)
.01(S)
.01(S)
14
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.52(S)
OO(S)
16.77(S)
1.30(S)
.01(S)
.01(S)
14
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.51(S)
OO(S)
16.76(S)
1.30(S)
.01(S)
.01(S)
14
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.50(S)
OO(S)
16.75(S)
1.30(S)
.01(S)
.01(S)
14
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.50(S)
OO(S)
16.74(S)
1.30(S)
.01(S)
.01(S)
14
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.49(S)
OO(S).
16.73(S)
1.30(S)
.01(S)
.01(S)
15
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.48(S)
OO(S)
16.72(S)
1.30(S)
.01(S)
.01(S)
15
6.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.48(S)
OO(S)
16.71(S)
1.30(S)
.01(S)
.01(S)
15
11.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.47(S)
OO(S)
16.70(S)
1.31(S)
.01(S)
.01(S)
15
16.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.46(S)
OO(S)
16.69(S)
1.31(S)
.01(S)
.01(S)
15
21.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.45(S)
OO(S)
16.68(S).
1.31(S)
.01(S)
.01(S)
15
26.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.45(S)
OO(S)
16.67(S)
1.31(S)
.01(S)
.01(S)
15
31.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.44(S)
OO(S)
16.66(S)
1.31(S)
.01(S)
.01(S)
15
36.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.43(S)
OO(S)
16.66(S)
1.31(S)
.01(S)
.01(S)
15
41.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.42(S)
OO(S)
16.65(S)
1.31(S)
.01(S)
.01(S)
15
46.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.42(S)
OO(S)
16.64(S)
1.31(S)
.01(S)
.01(S)
15
51.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.41(S)
OO(S)
16.63(S)
1.31(S)
.01(S)
.01(S)
15
56.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.40(S)
OO(S)
16.62(S)
1.31(S)
.01(S)
.01(S)
16
1.
1.1
1.1
1.1
1.4
1.3
1.3
1.3
.00(S)
3.40(S)
OO(S)
16.61(S)
1.31(S)
.01(S)
.01(S)
16
6.
1.1
1.0
1.1
1.4
1.3
1.3
1.3
.00(S)
3.39(S)
OO(S)
16.60(S)
1.31(S)
.01(S)
.01(S)
16
11.
1.1
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.38(S)
OO(S)
16.59(S)
1.32(S)
.01(S)
.01(S)
16
16.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.37(S)
OO(S)
16.58(S)
1.32(S)
.01(S)
.01(S)
16
21.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.37(S)
OO(S)
16.57(S)
1.32(S)
.01(S)
.01(S)
16
26.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.36(S)
OO(S)
16.56(S)
1.32(S)
.01(S)
.01(S)
16
31.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.35(S)
OO(S)
16.55(S)
1.32(S)
.01(S)
.01(S)
16
36.
1.0
1.0
1.0
1.4
1.3
1.3
1.3
.00(S)
3.34(S)
.00(S)
16.54(S)
1.32(S)
.01(S)
.01(S)
THE
FOLLOWING CONVEYANCE
ELEMENTS WERE SURCHARGED
DURING
THE
SIMULATION.
THIS COULD
LEAD TO ERRORS
IN THE
SIMULATION
RESULTS!!
292
THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL
STABILITY PROBLEMS THAT LEAD TO HYDRAULIC
OSCILLLATIONS DURING THE SIMULATION.
401
V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 17V Print
Stantec
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007
*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS ***
*** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT)
(AC -FT)
(HR/MIN)
10:3
85.3
(DIRECT
FLOW)
0
35.
11:3
300.0
(DIRECT
FLOW)
0
1.
80:3
444.0
(DIRECT
FLOW)
0
32.
90:3
595.0
(DIRECT
FLOW)
0
35.
91:3
151.0
(DIRECT
FLOW)
0
35.
95:3
495.9
(DIRECT
FLOW)
0
46.
99:3
417.0
(DIRECT
FLOW)
0
48.
100:3
1189.7
(DIRECT
FLOW)
0
35.
101:2
417.0
.1
19.5:D
0
48.
103:2
32.5
1.9
0
32.
104:3
478.3
(DIRECT
FLOW)
0
35.
105:3
478.3
(DIRECT
FLOW)
0
35.
110:3
464.1
(DIRECT
FLOW)
0
35.
111:4
296.8
2.8
0
36.
115:3
595.0
(DIRECT
FLOW)
0
35.
116:4
447.6
3.3
0
53.
120:3
645.0
(DIRECT
FLOW)
0
35.
125:3
321.2
(DIRECT
FLOW)
0
35.
129:1
297.8
.6
0
36.
135:3
488.3
(DIRECT
FLOW)
0
41.
136:4
413.0
3.2
0
46.
139:3
416.4
(DIRECT
FLOW)
0
41.
140:2
52.9
.1
7.3:D
1
22.
141:4
405.9
3.1
0
41.
145:3
423.9
(DIRECT
FLOW)
0
35.
146:4
300.0
2.6
1
0.
150:3
300.0
(DIRECT
FLOW)
0
1.
152:3
230.4
(DIRECT
FLOW)
2
24.
154:3
155.3
(DIRECT
FLOW)
2
20.
155:3
155.3
(DIRECT
FLOW)
2
20.
200:3
45.4
(DIRECT
FLOW)
0
35.
201:2
10.6
.1
.8:D
1
58.
202:4
10.6
.5
2
2.
203:3
26.8
(DIRECT
FLOW)
2
0.
204:2
1.2
.4
2
21.
205:3
155.8
(DIRECT
FLOW)
0
35.
206:3
546.6
(DIRECT
FLOW)
0
35.
207:3
40.2
(DIRECT
FLOW)
0
35.
208:3
177.5
(DIRECT
FLOW)
0
35.
209:3
204.5
(DIRECT
FLOW)
0
35.
210:3
38.8
(DIRECT
FLOW)
0
35.
211:4
72.7
1.7
2
33.
212:3
72.8
(DIRECT
FLOW)
2
27.
213:5
26.8
1.9
2
1.
214:2
26.8
.1
9.5:D
2
0.
215:3
360.6
(DIRECT
FLOW)
0
35.
216:2
1.2
.1
4.6:D
2
20.
221:5
230.4
3.9
2
24.
222:3
75.8
(DIRECT
FLOW)
2
13.
223:3
160.1
(DIRECT
FLOW)
2
19.
224:2
160.1
.1
4.8:D
2
19.
225:3
164.0
(DIRECT
FLOW)
0
56.
226:5
71.0
3.5
2
B.
227:3
71.0
(DIRECT
FLOW)
2
6.
228:3
162.6
(DIRECT
FLOW)
2
18.
229:2
162.6
.1
4.4:D
2
18.
230:3
171.8
(DIRECT
FLOW)
0
48.
231:5
67.0
3.8
2
6.
232:3
67.0
(DIRECT
FLOW)
2
4.
233:3
168.0
(DIRECT
FLOW)
2
12.
234:2
168.0
.1
6.9:D
2
12.
235:3
379.1
(DIRECT
FLOW)
0
35.
236:5
61.0
3.5
2
4.
237:3
61.0
(DIRECT
FLOW)
2
1.
238:5
61.0
3.4
2
1.
240:3
194.6
(DIRECT
FLOW)
0
35.
242:4
158.0
1.2
2
12.
243:3
63.9
(DIRECT
FLOW)
0
35.
244:3
22.0
(DIRECT
FLOW)
0
35.
245:3
25.5
(DIRECT
FLOW)
0
35.
246:2
6.4
.1
.2:D
0
45.
247:2
6.9
.1
.3:D
0
45.
248:2
8.4
.1
1.4:D
1
15.
249:3
80.0
(DIRECT
FLOW)
0
35.
250:3
79.1
(DIRECT
FLOW)
0
35.
251:2
8.4
1.4
1
15.
270:3
27.0
(DIRECT
FLOW)
2
3.
276:2
1.4
.6
1
56.
277:2
1.3
.5
16
39.
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 18V Print
Stantec
278:2
37.9
2.2
0
49.
279:2
16.4
1.6
2
17.
286:2
103.2
.1
19.8:0
1
18.
287:2
1.3
.1
1.3:D
16
39.
288:2
37.9
.1
2.3:0
0
46.
289:2
16.4
.1
7.6:0
2
16.
290:2
6.4
.7
0
46.
291:2
109.0
3.7
0
35.
292:2
109.2
4.0
1.0:S
0
46.
293:1
119.0
2.4
1
25.
294:2
6.9
.8
0
47.
295:2
51.2
1.8
0
36.
296:3
183.2
(DIRECT
FLOW)
0
35.
297:3
360.2
(DIRECT
FLOW)
0
35.
298:2
20.1
.1
21.1:D
2
44.
299:2
61.0
1.5
0
35.
300:3
116.6
(DIRECT
FLOW)
0
35.
301:3
103.5
(DIRECT
FLOW)
0
35.
302:3
60.3
(DIRECT
FLOW)
0
35.
303:5
40.2
2.7
2
14.
304:2
40.2
.1
3.5:D
2
11.
305:3
178.0
(DIRECT
FLOW)
0
35.
306:3
61.0
(DIRECT
FLOW)
1
56.
307:2
27.4
1.8
2
50.
308:3
186.8
(DIRECT
FLOW)
2
6.
309:2
186.8
.1
28.4:D
2
6.
310:3
486.3
(DIRECT
FLOW)
0
35.
311:5
120.1
3.4
4
12.
312:3
120.1
(DIRECT
FLOW)
4
6.
313:5
114.0
3.4
4
26.
314:3
114.0
(DIRECT
FLOW)
4
25.
315:2
33.6
.1
8.8:D
1
56.
318:5
45.4
2.1
1
38.
319:2
47.0
.1
6.5:D
1
28.
320:3
210.8
(DIRECT
FLOW)
0
35.
321:3
212.5
(DIRECT
FLOW)
0
35.
322:3
60.3
(DIRECT
FLOW)
0
35.
324:5
76.5
4.1
7
53.
325:3
102.1
(DIRECT
FLOW)
0
'35.
330:2
16.7
.1
2.1:D
1
8.
333:5
26.9
2.4
1
30.
334:2
27.0
.1
2.9:D
1
21.
340:3
411.8
(DIRECT
FLOW)
0
35.
341:5
76.5
3.3
6
58.
342:2
76.6
.1
32.4:D
7
10.
344:2
30.6
.1
14.7:D
2
4.
345:3
508.0
(DIRECT
FLOW)
0
35.
347:2
12.6
1.2
3
52.
355:4
149.2
1.7
0
36..
360:3
655.8
(DIRECT
FLOW)
0
35.
400:3
1504.5
(DIRECT
FLOW)
0
35.
401:2
114.4
.1
51.6:0
2
4.
405:5
329.2
3.3
0
35.
410:5
281.5
3.9
0
36.
415:3
479.8
(DIRECT
FLOW)
0
36.
421:2
12.6
.1
16.1:D
3
50.
423:5
130.9
2.7
0
37.
425:3
185.9
(DIRECT
FLOW)
0
35.
426:2
6.9
1.1
0
33.
430:5
124.7
2.2
0
35.
434:4
189.3
1.4
0
43.
435:3
195.2
(DIRECT
FLOW)
0
40.
436:1
117.8
1.3
0
41.
437:3
187.8
(DIRECT
FLOW)
0
35.
440:3
187.8
(DIRECT
FLOW)
0
35.
601:3
103.2
(DIRECT
FLOW)
1
18.
ENDPROGRAM PROGRAM CALLED
V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out .19V Print
ORIGINAL CITY OF FORT COLLINS
ModSWMM
INPUT AND OUTPUT
Stantee
31 �V306 `J ENCUSH
FOX RANCH
MEADOWS POND /2
POND
303
Acres
30
4=64 6 Acres
L
24 /
BA=32.3 Arcre� 23
242 BA=29.5 Acres
SUNSTONE
VILLAGE POND
45
21
BA=83 3 Acres
ENGLISH RA!
1 POAlD /4
4A= I'd.0 Acres
J 150
HORSETOOTH ROAD
'CH LINE SEE THIS Cui
0
23
w BA=38.7 Acres
BA=18.9 Acres
Li
N
22
BA=21.9 Acres
2�
6.9 Acres
21
BA=41.9 Acres
PROJECT No.01-043-001
14
BA=58.9 Acres
1 "`
145 oUl
141 VA
L
O
WOODLAN �T
PARK REGION
POND
140
139 �
`y
2 33 13
BA=21.6 Acres
F12 211 125
12
BA=36.5 Acres
U
BA=681 Acres
INADVERTENT
DETENTION A
14�
UNDEVELOPED L
2
Q
O
205
Of
Ls
2 0 POND
Q�
LLJ
BA=14.3 Acres
cD .
Ld
Fv
DRAWN
8JL
DESIGNED
CDJ
CHECKED
DJW
I
152 (Hydrogroph to
Foothals Rosin)
tHydrogroph to
%oothills Basin)
a)Hydrograph
(300—cfs Inflow
from
Rodial Gate)
11
A-19.8 Acres
HORSETOOTH ROAD
fCH LINE SEE THIS SHEET
GRAPHIC SCALE
cTK�1
1 IsL � 00a R '
j
135
BA=18.\Acre
13A=17.6 Acres 110
LEGEND
CONTOUR INTERVAL = 2 FEET
BASIN
1 1
BASIN ID Y
MAIN CONVEYANCE
FLOW LINE
_.._..�
DIVERSION OVERFLOW
FLOW LINE
430
PIPE / CHANNEL
440
DIRECT FLOW NODE
/ DESIGN POINT
401
DETENTION POND
437
DIVERSION
105 10
13 104 A=3.4'Acres
BA=39.7 Acres 1 2 HPSITE
103 \ 1 0
BA=36.2 Acres 9(;�
115
129 120
HARMONY ROAD 1 5 95
90
BA=17.1 Acres 80
l(��'1/nTq FOX MEADpy;STM OFI FORTRCOLLINS. COLORADO PLAN UPDA DECA200
ENGINEERING INCSHEET
or ort slap S. Ara, sbwt. sw loo, &W,.004 00 eo z S;13B%SIN AND MODSWMM ELEMENT MAP
Phe I= 221—OM / Fm (aWT 221-4019 - CFI FrTFl1 IAAGDnt rr�irr.iT of A.' A --'I
1
I
.i
HORSEEOOTH ROAD
I ---------------------------------
I I I
------- ----
I I I
I I I
I i]0
N] I
I I ]b I � � b• ]10
I I I i I
VI sic
} •.� I T
4aas uo N] . u • m �m I V
I a+ I I .uy'a�M uaaep
I ® a No NI m
w o`1 I
m m m 4u m ••+ �1---� NO m I m ra.a .ae a
a•]• I I
'M,
]n OI wI
�u LLI m � I
14 aI jI &�
x 40 = ffi K
5 oI wm
w :I HARMONY ROAD F I ----------------------L-----------L----------------Jill
3
0
J
m
Fox Meodows Basin
LE!%END
1
6ASIN ID
FLOW LINE
OVERFLOW FROM
DIVERSION
m
PIPE / CHANNEL
CONVEYANCE ELEMENT
DIRECT FLOW NODE
/ DESIGN POINT
©
INI'LOW HYDROGRAPH
®
DETENTION POND
DIVERSION
I p r m I �SSII ;RfE
'"' 1 �'.•taa' EERVOIR 114 D
g I n Illul t.u,1L ` ET
HORSE— — ROAD T
m
wr---------- ---- —
In ]an• b a1 m s INIAMMIotax al m m y] I IN +a M in
`
I
I ®
7W • aS ® • m ID 'ala ® • I O • tm IN in IN +M
IS
w
� I ..•" m m m m I I
0 I m I
s l ®• m. • m INIUMININ
I I
MIS
>a T I I
® • >fn ® I �� x+]
I
I=
I an • I 7 . } • . I�
— +a fai +m O ra Iw
IN
Iz
T I O a ,a m IN n] IL
I
Q I T i I in ,m IN
OQ 0
I�
I ,ffi. &I IW
g I 0: I�
I wJI W
In
I HARMONY ROAD ,NI Io
I --------------------------------I--------------,-_------- — — — — — - P
DAWN
DESIGNED
CDr
CHEED
PRO.IFr:T No.01-041-001-415 I nm
][SCOT
ENGINEERIN(3t INC
MEADOWS BASIN DRAINAGE MASTER PLAN UPDA E DATE
CITY OF FORT COLLINS, COLORADO JAN 2(
MODSWMM /;ONNECTNfTY DIAGRAM
"r..1, r
SHEET I
SP-100.in
2 1 1 2
3 4
WATERSHED 0
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT
999 000 1.0 1 0.0
24 5.0
1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46
1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75
0.73 0.71 0.69 0.67
1 100 100 2881 12.3 32.00.0390.0160.2500.1000.300 0.51 0.50 0.0018
1 105 105 641 3.4 10.00.0230.0160.2500.1000.300 0.51 0.50 0.0018
1 110 110 2758 17.6 90.00.0300.0160.2500.1000.300 0.51 0.50 0.0018
1 115 115 3722 18.8 13.50.0860.0160.2500.1000.300 0.51 0.50 0.0018
1 120 120 4665 36.2 86.50.0160.0160.2500.1000.300 0.51 0.50 0.0018
1 125 125 3494 36.5 68.80.0230.0160.2500.1000.300 0.51 0.50 0.0018
1 130 129 8604 39.7 78.00.0310.0160.2500.1000.300 0.51 0.50 0.0018
1 135 135 4127 21.6 13.30.0290.0160.2500.1000.300 0.51 0.50 0.0018
1 140 140 8223 58.9 24.80.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 145 145 4915 38.7 12.00.0160.0160.2500:1000.300 0.51 0.50 0.0018
1 150 10 3026 19.8 6.80.0510.0160.2500.1000.300 0.51 0.50 0.0018
1 155 115 9801 17.1 70.00.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 200 200 5921 68.1 8.30.0070.0160.2500.1000.300 0.51 0.50 0.0018
1 205 205 2112 14.3 70.00.0170.0160.2500.1000.300 0.51 0.50 0.0018
1 210 209 6621 83.3 5.70.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 215 215 9265 41.9 38.50.0070.0160.2500.1000.300.0.51 0.50 0.0018
1 220 215 4630 16.9 38.50.0120.0160.2500.1000.300 0.51 0.50 0.0018
1 225 225 5678 21.9 38.50.0240.0160.2500.1000.300 0.51 0.50 0.0018
1 230 230 5639 18.9 38.50.0180.0X60.2500.1000.300 0.51 0.50� 0.0018
1 235 235 5949 29:5 38.50.0130.0 60.2500.1000.300 0.51 0.56 0.0018
1 240 240 5007 32.3 41.50.0120.0160.2500.1000.300 0.51 0.50 0.0018
1 300 300 8849 64.6 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 305 305 7663 24.1 38.50.0150.0160.2500.1000.300 0.51 0.50 0.0018
1 310 31012018 84.7 37.00.0050:0160.2500.1000.300 0.51 0.50 0.0018
1 315 315 9023 60.9 38.50.0060.0160.2500.1000.300 0.51 0.50 0.0018
1 320 320 5102 29.4 38.50.0210.0160.2500.1000.300 0.51 0.50 0.0018
1 325 325 2084 14.4 40.00.0210.0160.2500.1000..300 0.51 0.50 0.0018
1 330 330 2038 15.3 46.80.0130.0160.2500.1000.300 0.51 0.50 0.0018
1 335 334 3567 30.3 27.80.0150.0160.2500.1000.300 0.51 0.50 0.0018
1 340 340 4623 34.6 30.00.0270.0160.2500.1000.300 0.51 0.50 0.0018
1 345 345 5109 44.8 27.00.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 350 345 6639 34.9 90.00.0110.0160.2500.1000.300 0.51 0.50 0.0018
1 355 355 2940 27.4 48.00.0100.0160.2500.1000.300 0.51 0.50 0.0018
1 400 400 6703 51.7 71.50.0240.0160.2500.1000.300 0.51 0.50 0.0018
1 405 405 7493 41.8 60.80.0180.0160.2500.1000.300 0.51 0.50 0.0018
1 410 410 7013 58.6 48.50.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 415 415 5458 42.1 40.00.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 420 421 7066109.0 11.60.0080.0160.2500.1000.300 0.51 0.50 0.0018
1 425 425 5627 31.0 38.50.0090.0160.2500.1000.300 0.51 0.50 0.0018
1 430 430 2979 22.5 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018
1 435 435 3776 31.9 10.00.0110.0160.2500.1000.300 0.51 0.50 0.0018
1 440 440 2603 9.5 38.50.0110.0160.2500.1000.300 0.51 0.50 0.0018
0
0
0 430 440 0 5 1.25 600 0.0130 0 0 0.013 1.25
1 513 0.0120 20 20 0.020 5.00
0 440 437 0 3 0 0 0.0000 0 0 0.000 0.00
436 437 426 3 3 0 0 0.0000 0 0 0.000 0.00
0.00 0.0 4 0.0 10000 9996.0
0 426 425 0 2 1.25 1339 0.0100 0 0 0.013 1.25
0 436 435 0 1 15 1889 0.0080 8 8 0.035 5.00
0 425 423 0 3 0 0 0.0000 0 0 0.000 0.00
Page 1
G
SP-100.in
0
435
434
0 3
0
0
0:0000
0
0
0.000
0.00
0
423
415
0 5
1.5
1457
0.0050
0
0
0.013
1.50
1
1457
0.0050
20
20
0.020
5.00
0
434
415
0 4
0.5
768
0.0050
12
12
0.016
0.50
10
768
0.0050
20
20
0.020
5.00
0
415
400
0 3
0
0
0.0000
0
0
0.000
0.00
0
410
400
0 5
2.5
1301
0.0090
0
0
0.013
2.50
1
1380
0.0070
20
20
0.020
5.00
0
405
400
0 5
3
1065
0.0090
0
0
0.013
3.00
80
1065
0.0090
1
1
0.005
5.00
0
400
401
0 3
0
0.
0.0000
0
0
0.000
0.00
0
401
340
11 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.001
8.0
4.85
12.7
8.97
16.7
9.03
23.0
10.29
57.9
11.59
70.8
16.67
80.7
31.34
98.0
52.86
115.4
95.93
705.0
0
355
340
0 4
0.25
608
0.0050
12
0
0.016
0.50
5
608
0.0050
20
0
0.020
5.00
0
340
342
0 3
0
0
0.0000
0
0
0.000
0.00
0
342
341
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.20
2.9
5.68
23.5
14.66
53.0
28.14
73.1
47.36
88.5
72.54
103.6
95.53
111.0
0
341
325
0 5
3.5
1200
0.0050
0
0
0.013
3.50
1
1200
0.0050
20
20
0.020
5.00
0
325
324
0 3
0
0
0.0000
0
0
0.000
0.00
0
324
314
0 5
3.5
1242
0.0030
0
0
0.013
3.50
1
1242
0.0030
20
20
0.020
5.00
0
421
347
5 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.16
2.1
8.27
10.5
34.02
17.4
43*63
18.7
0
347
314
0 2
1.5
1139
0.0150
0
0
O.bl3
1.50
0
345
344
0 3
0
0
0.0000
0
0
0.000
0.00
0
344
314
5 2.
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.04
1.9
2.79
16.8
10.12
27.6
21.56
35.0
0
314
313
0 3
0
0
0.0000
0
0
0.000
0.00
0
313
312
0 5
2
409
0.0090.
0
0
0.013
2.00
10
409
0.0350
5
5
0.035
6.00
0
330
312
5 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.001
4.0
0.97
6.6
1.98
8.0
3.04
104.0
0
312
311
0 3
0
0
0.0000
0
0
0.000
0.00
0
311
310
0 5
2
1566
0.0090
0
0
0.013
2.00
10
1566
0.0090
5
5
0.035
6.00
0
334
333
5 2
0.1
1
'0.0100
0
0
0.010
0.10
0.00
0.0
0.012
5.6
0.32
21.9
6.45
34.0
16.40
100.0
0
333
320
0 5
2
1064
0.0090
0
0
0.013
2.00
5
1075
0.0090
3
3
0.035
6.00
0
320
319
0 3
0
0
0.0000
0
0
0.000
0.00
0
319
318
9 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.003
0.4
0.52
3.3
2.06
6.2
4.21
9.2
5.92
11.0
6.27
17.5
7.07
109.6
7.93
260.7
0
318
305
0 5
1.25
1320
0.0050
0
0
0.013
1.25
1
1384
0.0040
20
20
0.020
5.00
0
305
304
0 3
0
0
0.0000
0
0
0.000
0.00
0
304
303
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.027
13.6
0.59
28.3
2.19
37.7
6.49
46
7.13
100
7.77
200
8.24
300
0
303
310
0 5
2
671
0.0060
0
0
0.013
2.00
10
671
0.0060
5
5
0.035
6.00
0
310
309.
0 3
0
0
0.0000
0
0
0.000
0.00
0
309
308
7 2
0.1
1
0.0100
0
0
0.010
0.10
Pagel
n
SP-100.in
0.00
0.0
0:004
0.7
1.40
17.6
7.92
25.5
20.29
26.9
25.02
27.4
30.20
273
242
308
307
3 3
0
0
0.0000
0
0
0.000
0.00
0
0
27.4
0
273
245.6
0
307
306
0 2
2.5
1351
0.0060
0
0
0.013
2.50
0
315
306
10 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.287
10.4
0.97
15.0
3.07
22.9
5.50
29.0
8.27
33.2
11.42
35.7
13.14
36.2
13.61
106
13.97
206.0
0
306
238
0 3
0
0
0.0000
0
0
0.000
0.00
0
299
212
0 1
1
2100
0.0100
4
4
0.035
4.00
0
242
240
0 4
0.5
1779
0.0070
12
12
0.016
0.50
10
1779
0.0070
20
20
0.020
5.00
0
240
235
0 3
0
0
0.0000
0
0
0.000
0.00
0
238
237
0 5
3
787
0.0060
0
0
0.013
3.00
1
787
0.0060
20
20
0.020
5.00
0
237
236
0 3
0
0
0.0000
0
0
0.000
0.00
0
236
232
0 5
3
740
0.0050
0
0
0.013
3.00
1
740
0.0050
20
20
0.020
5.00
0
235
234
0 3
0
0
0.0000
0
0
0.000
0.00
0
234
233
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.44
3.1
2.350
4.2
2.81
4.6
4.69
5.1
6.39
100.6
7.13
203.7
8.21
401.9
230
233
232
5 3
0
0
0.0000
0
0
0.000
0.00
0
0
5
0
101
95
204
198
402
396
0
232
231
0 3
0
0
0.0000
0
0
0.000
0.00
.0
.231
227
0 5
3
311
0.0030
0
0
0.013
3.00
1
311
0.0030
20
20
0.020
.5.00
0
230
229
0 3
0
0
0.0000
0
0
0.000
0.00
0
229
228
6 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.07
2.0
1.12
2.9
3.46
3.5
4.60
200.8
5.29
401
225
228
227
4 3
0
0
0.0000
0
0
0.000
0.00
0
0
4
0
201
197
401
397
0
227
226
0 3
0
0
0.0000.
0
0
0.000
0.00
0
226
222
0 5
3
477
0.0060
0
0
0.013
3.00
1
477
0.0060
20
20
0.020
5.00
0
225
224
0 3
0
0
0.0000
0
0
0.000
0.00
0
224
223
8 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.002
1.0
0.51
2.7
1.99
3.6
3.90
4.3
4.46
4.5
4.85
200
5.10
400
155
223
222
4 3
0
0
0.0000
0
0
0.000
0.00
0
0
4
0
200
195
400
395
0
222
221
0 3
0
0
0.0000
0
0
0.000
0.00
0
221
152
0 5
3
1569
0.0240
0
0
0.013
3.00
1
1569
0.0140
20
20
0.020
8.00
0
152
0 3
0
0
0.0000
0
0
0.000
0.00
0
215
214
0 3
0
0
0.0000
0
0
0.000
0.00
0
214
.203
9 2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.08
12.6
0.411
14.9
4.00
21.8
9.62
26.9
12.17
28.7
13.04
149
13.17
149.4
14.04
149.9
200
203
213
3 3
0
0
0.0000
0
0
0.000
0.00
0
0
29.5
0
150
120
0
213
212
0 5
3
610
0.0030
0
0
0.013
3.00
1
610
0.0030
20
20
0.020
5.00
0
209
200
0 1
1200
1282
0.0060
50
50
0.050
3.00
0
205
204
8 2
0.1
1
0.0100
0
0
0.010
0.10 '
0.00
0.0
0.35
0.0
1.30
0.0
1.38
11.4
1.65
21.9
3.12
40.3
7.04
66.0
8.48
200.0
0
204
200
0 1
10
526
0'.0060
150
4
0.050
4.00
Page 3
5P-100.in
0
200
201
0
3
0
0
0.0000
0
0
0.000
0.00
0
201
202
5
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
8.09
19.7
23.10
27.3
32.19
100.0
36.42
200.0
0
202
212
0
4
15
902
0.0020
4
8
0.035
6.00
87
902
0.0020
20
20
0.020
2.00
0
212
211
0
3
0
0
0.0000
0
0
0.000
0.00
0
211
125
0
4
5
1670
0.0060
4
4
0.035
6.00
53
1670
0.0060
4
40
0.020
3.00
0
125
111
0
3
0
0
0.0000
0
0
0.000
0.00
0
111
110
0.4
10
1400
0.0040
0
0
0.013
4.00
10
1400
0.0040
20
20
0.020
3.50
0
110
105
0
3
0
0
0.0000
0
0
0.000
0.00
0
105
104
0
3
0
0
0.0000
0
0
0.000
0.00
100
104
103
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
20
0
2000
1980
0
103
120
0
2
2.8
617
0.0050
0.00
0.00
0.013
2.80
0
129
120
0
1
130
956
0.0080
60.00
6.00
0.030
8.00
0
120
100
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
100
101
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
101
99
7
2
0.1
1
0.0100
0
0
0.010
0.10
0.00.
0.0
1.54
4.0
6.085
13.9
11.93
22.0
19.08
377.8
27.46
1130
29.80
1400
0
154
221
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
150
146
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
146
145
0
4
31
1384
0.0020
1.50
1.50
0.035
6.00
62
1384
0.0020
0.00
15.00
0.050
12.00
0
145
141
0
3
0
0
0.0000
0.000
0.000
0.000
0.00
0
141
139
0
4
31
1193
0.0020
1.50
1.50
0:035
6.00
62
1193
0.0020
0.00
15.00
. 0.050
12.00
0
140
139
8
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.01
1.0
0.39
7.0
1.65
8.9
3.96
10.5
5.45
11.2
7.07
40.0
7.99
100.0
0
139
136
0
3
0
0
0.0000
0.000
0.000
0.000
0.00
0
136
135
0
4
31
910
0.0020
1.50
1.50
0.035
6.00
62
910
0.0020
0.00
15.00
0.050
12.00
0
135
116
0
3
0
0
0.0000'
0.00
0.00
0.000
0.00
0
116
115
0
4
31
2552
0.0020
1.50
1.50
0.035
6.00
62
2552
0.0020
0.00
15.00
0.050
12.00
95
99
115
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
25
0
1012
987
0
115
90
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
95
0
3
0
0
0.0000
0.00 .
0.00
0.000
0.00
-1
11
150
2
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
300
100
300
0
10
0
3
0
0
0.0000
0.00
0.00
0:000
0.00
0
155
154
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
300
299
6
2
0.1
1
0.0100
0
0
0.010
0.10
0.00
0.0
0.18
6.9
1.32
13.1
4.07
18.7.
8.59
23.7
14.13
28.3
91
90
80
3
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
444
0
6000
5556
0
80
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
91
95
0
3
0
0
0.0000
0.00
0.00
0.000
0.00
0
0
ENDPROGRAM
Page 4
SP-100.in
Page 5
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
*** ENTRY MADE TO RUNOFF MODEL ***
L:V06S\102300IWft%Drainage\SVNMM\City of Fort Collins FUes%SP•100.o1A 1 Pdr
FOX MEADOWS MASTER PLAN UPDATE - 2002. By ICON Engineering, Inc
SELECTED PLAN. 100-YEAR EVENT
NUMBER OF TIME STEPS 999
INTEGRATION TIME INTERVAL (MINUTES) 1.00
25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
FOR 24 RAINFALL STEPS. THE TIME INTERVAL IS 5.00 MINUTES
FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
1.00 1.14 1,33 2.23 2.84 5.49 .9.95 4.12 2.48 1.46
1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .75
.73 .71 .69 .67
LkKWl0230011data0mInageNSWMWC4 of Fort CoHIns F9es\SP-t00Atd 2 Pdn
FOX MEADOWS MASTER PLAN UPDATE - 2002. By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT
SUBAREA
GUTTER
WIDTH
AREA
PERCENT
SLOPE
RESISTANCE
FACTOR
SURFACE STORAGE(IN)
INFILTRATION RATE(IN/HR)
AGE
NUMBER
OR MANHOLE (FT)
(AC)
IMPERV.
(FT/FT)
IMPERV.
PERV.
IMPERV.
PERV.
MAXIMUM
MINIMUM
DECAY RATE
NO
100
100
2881.0
12.3
32.0
.0390
.016
.250
.100
.300
.51
.50
.00180
1
105
105
641.0
3.4
10.0
.0230
.016
.250
.100
.300
.51
.50
.00180
1
110
110
2758.0
17.6
90.0
.0300
.016
.250
.100
.300
.51
.50
.00180
1
115
115
3722.0
18.8
13.5
.0860
.016
.250
.100
.300
.51
.50
.00180
1
'
120
120
4665.0
36.2
86.5
.0160
.016
.250
.100
.300
.51
.50
.00180
1
125
125
3494.0
36.5
68.8
.0230
.016
.250
.100
.300
.51
.50
.00180
1
130
129
8604.0
39.7
78.0
.0310
.016
.250
.100
.300
.51
.50
.00180
1
135
135
4127.0
21.6
13.3
.0290
.016
.250
.100
.300
.51
.50
.00180
1
140
140
8223.0
58.9
24.8
.0090
.016
.250
.100
.300
.51
.50
.00180
1
145
145
4915.0
38.7
12.0
.0160
.016
250
.100
.300
.51
.50
.00180
1
150
10
3026.0
19.8
6.8
.0510
.016
.250
.100
.300
.51
.50
.00180
1
155
115
9801.0
17.1
70.0
.0130
.016
.250
.100
.300
.51
.50
.00180,
1
200
200
5921.0
68.1
8.3
.0070
.016
.250
.100
.300
.51
.50
.00180
1
205
205
2112.0
14.3
70.0
.0170
.016
.250
.100
.300
.51
.50
.00180
1
210
209
6621.0
83.3
5.7
.0090
.016
.250
.100
.300
.51
.50
.00180
1
215
215
9265.0
41.9
38.5
.0070
.016
.250
.100
.300
.51
.50
.00180
1
220
215
4630.0
16.9
38.5
.0120
.016
.250
.100
.300
.51
.50
.00180
1
225
225
5678.0
21.9
38.5
.0240
.016
.250
.100
.300
.51
.50
.00180
230
230
5639.0
18.9
38.5
.0180
.016
.250
.100
.300
.51
.50
.00180
1
235
235
5949.0
29.5
38.5
.0130
.016
.250
.100
.306
.51
.50
.00180
1
240
240
5007.0
32.3
41.5
.0120
.016
.250
.100
.300
.51
.50
.00180
1
300
300
8849.0
64.6
35.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
305
305
7663.0
24.1
38.5
.0150
.016
.250
.100
.300
.51
.50
.00180
1
310
310
12018.0
84.7
37.0
Ob50
.016
.250
.100
.300
.51
.50
.00180
1
315
315
9023.0
60.9
38.5
.0060
.016
.250
.100
.300
.51
.50
.00180
1
320
320
5102.0
29.4
38.5
.0210
.016
.250
.100
.300
.51
.50
.00180
1
325
325
2084.0
14.4
40.0
.0210
.016
.250
.100
.300
.51
.50
.00180
1
330
330
2038.0
15.3
46.8
.0130
.016
.250
.100
.300
.51
.50
.00180
1
335
334
3567.0
30.3 .
27.8
.0150
.016
.250
.100
.300
.51
.50
.00180
1
340
340
4623.0
34.6
30.0
.0270
.016
.250
.100
.300
.51
.50
.00180
1
345
345
5109.0
44.8
27.0
.0080
.016
.250
.100
.300
.51
.50
.00180
1
350
345
6639.0
34.9
90.0
.0110
.016
.250
.100
-.300
.51
.50
.00180
1
355
355
2940.0
27.4
48.0
.0100
.016
.250
.100
.300
.51
.50
.00180
1
400
400
6703.0
51.7
71.5
.0240-
.016
.250
.100
.300
.51
.50
.00180
1
405
405
7493.0
41.8
60.8
.0180
.016
.250
.100
.300
.51
.50
.00180
1
410
410
7013.0
58.6
48.5
.0090
.016
.250
.100
.300.
.51
.50
.0P180
1
415
415
5458.0
42.1
40.0
.0090
.016
.250
.100
.300
.51
.50
.00180
�420
421
7066.0
109.0
11.6
.0080
.016
.250
.100
.300
.51
.50
.00180
1
425
425
5627.0
31.0
38.5
.0090
.016
.250
.100
.300
.51
.50
.00180
1
430
430
2979.0
22.5
38.5
.0180
.016
.250
.100
.300
.51
.50
.00180
1
L•UOM10230011def \Dralnage\SWMATCIty of Fort Copins FRes1.SP-100.out 3 Pr1n
435 435 3776.0 31.9 10.0 .0110
1
440_ 440 2603.0 9.5 38.5 .0110
1
TOTAL NUMBER OF SUBCATCHMENTS. 42
TOTAL TRIBUTARY AREA (ACRES). 1511.20
016 .250 .100 .300 .51 .50 .00180
016 .250 .100 .300 .51 .50 .00180
L-%,MS1023001Vdaffi1DrWnape SWMW%aty of Fon Odin FUeMP-100.oW 4 Pdn
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering. Inc.
SELECTED PLAN, 100-YEAR EVENT
*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED AREA (ACRES)
TOTAL RAINFALL (INCHES)
TOTAL INFILTRATION (INCHES)
TOTAL WATERSHED OUTFLOW (INCHES)
TOTAL SURFACE STORAGE AT END OF STROM (INCHES)
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL
n
1511.200
3.669
.857
2.746
.066
.000
o A.Irma%ing.wl1dataM)ralnaoe%SWMM%CNv of Fort Collins FIIes\,SP-100.out 5 Pdr
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT
WIDTH
INVERT
OVERBANK/SURCHARGE
GUTTER
GUTTER
NDP
NP
OR DIAM
LENGTH
SLOPE
jK
NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
430
.440
0
5
PIPE
1.3
600.
.0130
0
OVERFLOW
1.0
513.
.0152
440
437
0
3
.0
0.
.0010
0 437
426
3
3
.0
0.
.0010
436
DIVERSION
TO GUTTER
NUMBER 436 - TOTAL
O VS
DIVERTED 0
IN CFS
0
.0
4.0 .0
10000.0
9996.0
426
425
0
2
PIPE
1.3
1339.
.0100
0
436
435
0
1
CHANNEL
15.0
1889.
.0080
0
425
423
0
3
.0
0.
.0010
0 435
434
0
3
.0
0.
.0010
0
423
415
0
5
PIPE
1.5
1457.
.0050
0
OVERFLOW
1.0
1457.
.0050
434
415
0
4
CHANNEL
.5
768.
.0050
0
OVERFLOW
10.0
768.
.0050
415
400
0
3
.0
0.
.0010
0
410
400
0
5
PIPE
2.5
1301.
.0090
0
OVERFLOW
1.0
1380.
.0085
405
400
0
5
PIPE
3.0
1065.
.0090
0
OVERFLOW
80.0
1065.
.0090
400
401
0
3'
.0
0.
.0010
0
401
340
11
2
PIPE
.1
1.
.0100
RESERVOIR
STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
57.9
355 340
0
340 342
0 342 341
0
88.5
SIDE SLOPES
HORIZ TO VERT
MANNING
DEPTH
L R
N
(FT)
.0 .0
.013
1.25
20.0 20.0
.020
5.00
.0 .0
.001
10.00
.0 .0
.001
10.00
.0 .0
8.0 8.0
.0 .0
.0 .0
.0 .0
20.0 20.0
12.0 12.0
20.0 20.0
.0 .0
.0 .0
20.0 20.0
.0 .0
1.0 1.0
.0 k .0
.0 .0
.013
.035
.001
.001
.013
.020
.016
.020
.001
.013
.020
.013
.005
.001
.010
.0
.0 .0 8.0
4.8
12.7
9.0
. 16.7
9.0
23.0
11.6
70.8 16.7 80.7
31.3
98.0
52.9
115.4
95.9
705.0
0
4 CHANNEL
.3
608.
.0050
12.0
.0
.016
OVERFLOW
5.0
608.
.0050
20.0
.0
.020
0
3
,0
0.
.0010
.0
.0
.001
8
2 PIPE
1
1.
.0100
.0
.0
.010
RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
.0 .0 .2 2.9 5.7 23.5 14.7
72 5 103 6 95.5 111.0
341 325 0 5 PIPE 3.5 1200. .0050
0
OVERFLOW 1.0 1200. .0050
325
324
0 3 .0
0.
0
'
324
314
0 5 PIPE 3.5
1242.
0
OVERFLOW 1.0
1242.
421
347
5 2 PIPE .1
1.
0
RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
0 .0 2 2.1 8.3
10.5
347
314
0 2 PIPE 1.5
1139.
0
345
344
0 3 .0
0.
0
344
314
5 2 PIPE .1
1.
0
RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
0 .0 .0 1.9 2.8
16.8
314
313•
0 3 .0
0.
0
313
312
0 5 PIPE 2.0
409.
OVERFLOW 10.0
409.
330
312
5 2 PIPE .1
1.
0
RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW
.0 .0 .0 4.0 1.0
6.6
L'U W10230011data\Dralnage\SVVMM1CNy of Fort C o line FIOMSP-100.out
.0010
.0030
.0030
.0100
1.25
5.00
10.00
10.00
1.50
5.00
.50
5.00
10.00
2.50
5.00
3.00
5.00
10.00
.10
10.3 y
.50
5.00
10.00
.10
53.0
28.1
73.1
47.4
.0
.0
.013
3.50
20.0
20.0
.020
5.00
.0
.0
.001
10.00
.0
.0
.013
3.50
20.0
20.0
.020
5.00
.0
.0
.010
.10
34.0
17.4
43.6
18.7
.0150
.0
.0
.013
1.50
.0010
.0
.0
.001
10.00
.0100
.0
.0
.010
.10
10.1
27.6..
'21.6
35.0
,
.0010
.0
.0
.001
10.00
.0090
.0
.0
.013
2.00. j
5.0
5.0
.035
6.00
.0090
.0100
.0
.0
.010
.10
2.0 8.0 3.0 104.0
6 Pdn
312
311
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
311
310
0
5
PIPE
2.0
1566.
.0090
.0
.0
.013
2.00
0
OVERFLOW
10.0
1566.
.0090
5.0
5.0
.035
6.00
334
333
5
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 5.6
.3
21.9
6.5
34.0
16.4
100.0
333
320
0
5
PIPE
2.0 _
1064.
.0090
.0
.0
.013
2.00
0
OVERFLOW
5.0
1075.
.0089
3.0
3.0
.035
6.00
320
319
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
319
318
9
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 .4
.5
3.3
2.1
6.2
4.2
9.2
5.9
11.0
6.3
17.5
7.1 109.6
7.9
260.7
318
305
0
5
PIPE
1.3
1320.
.0050
.0
.0
.013
1.25
0
OVERFLOW
1.0
1384.
.0048
20.0
20.0
.020
5.00
305
304
0
3
.0
0.
.0010
-0
.0
.001
10.00
0
304
303
8
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE I.N
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 13.6
.6
28.3
2.2
37.7
6.5
.46.0
7.1-
100.0
7.8
200.0
8.2 300.0
303
310
0
5
PIPE
2.0
671.
.0060
.0
.0
.013
2.00
0
OVERFLOW
10.0
611.
.0060
5.0
5.0
.035
6.00
310
309
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
309
308
7
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 .7
1.4
17.6
7.9
25.5
20.3
26.9
25.0
27.4
30.2
273.0
308
307
3
- 3
.0
0.
.0010
.0
.0
.001
10.00
242
DIVERSION
TO GUTTER NUMBER 242 - TOTAL
0 VS DIVERTED 0
IN CFS
0
.0
27.4 -0
273.0
245.6
307
306
0
2
PIPE
2.5
1351.
.0060
.0
.0
.013
2.50
0
315
306
10
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.3 10.4
1.0
15.0
3.1
22.9
5.5
29.0
8.3
33.2
11.4
35.7
13.1 36.2
13.6
106.0
14.0
206.0
306
238
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
299
212
0
1
CHANNEL
1.0
2100.
.0100
4.0
4.0
.035
4.00
0
242
240
0
4
CHANNEL
.5
1779.
0070
12.0
12.0
.016
.50
0
OVERFLOW
10.0
1779.
.0070
20.0
20.0
.020
5.00
240
235
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
238
237
0
5
PIPE
3.0
787.
.0060
.0
.0
.013
3.00
0
OVERFLOW
1.0
787.
.0060
20.0
20.0
.020
5.00
237
236
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
236
232
0
5
PIPE
3.0
740.
.0050
.0
.0
•
.013
3.00
0
OVERFLOW
1.0
740.
.0050
20.0
20.0
.020
5.00
235
234
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
234
233
8
2
PIPE
.1
1..
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.4 3.1
2.4
4.2
2.8
4.6
4.7
5.1
6.4
100.6
7.1
203.7
8.2 401.9
233
232
5
3
.0
0.
.0010
'D
.0
.001
.10.00
230
DIVERSION
TO GUTTER NUMBER 230 - TOTAL
0 VS DIVERTED Q
IN CFS
0
5.0 .0
101.0
95.0
204.0
198.0
402.0
396.0
232
231
0
.0
3
.0
0.
.0010
.0
.0
.001
10.00
0
231
227
0
5
PIPE
3.0
311.
.0030
.0
.0
.013
3.00
0
OVERFLOW
1.0
311.
.0030
20.0
20.0
.020
5.00
230
229
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
i .tlr R11o23001\data\Drainage\SWMWC4ty of Fort Collins FIIes\SP-100.out
7 Prfr
229
228
6
2
PIPE 1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.1 2.0 1.1 2.9
3.5
3.5
4.6
200.8
5.3
401.0
228
227
4
3
.0 0.
.0010
.0
.0
.001
10.00
225
DIVERSION
TO GUTTER
NUMBER 225 - TOTAL Q VS DIVERTED 0
IN CFS
.0
.0
4.0 .0 201.0 197.0
401.0
397.0
227
226
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
226
222
0
5
PIPE 3.0 477.
.0060
.0
.0
.013
3.00
0
OVERFLOW 1.0 477.
.0060
20.0
20.0
.020
5.00
225
224
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
224
223
8
2
PIPE 1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.0 1.0 .5 2.7
2.0
3.6
3.9
4.3
4.5
4.5
4.8
200.0
5.1 400.0
223
222
4
3
.0 0.
.0010
.0
.0
.001
10.00
155
DIVERSION
TO GUTTER
NUMBER 155 - TOTAL Q VS DIVERTED 0
IN CFS
.0
.0
4.0 .0 200.0 195.0
400.0
395.0
222
221
0
3
.0 0.
..0010
.0
.0
.001
10.00
0
221
152
0
5
PIPE 3.0 1569.
.0240
.0
.0
.013
3.00
0
OVERFLOW 1.0 1569.
.0240
20.0
20.0
.020
8.00
152
0
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
215
214
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
214
203
9
2
PIPE .1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.1 12.6 .4 14.9
4.0
21.8
9.6
26.9
12.2
28.7
13.0
149.0
13.2 149.4 14.0 149.9
203
213
3
3
.0 0.
.0010
.0
.0
.001
10.00
200
�
DIVERSION
TO QUTTER NUMBER 200 - TOTAL 0 VS DIVERTED 0
IN CFS
0
.0
29.5 .0 150.0 120.0
213
212
0
5
PIPE 3.0 610.
.0030
.0
.0
.013
3.00
OVERFLOW 1.0 610.
.0030
20.0
20.0
.020
5.00
209
200
0
1
CHANNEL 1200.0 1282.
.0060
50.0
50.0
.050
3.00
0
205
.204
8
2
PIPE 1 1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.3 .0 1.3 .0
1.4
11.4
1.6
21.9
3.1
40.3
7.0
66.0
8.5 200.0
204
200
0
1
CHANNEL 10.0 526.
.0060
150.0
4.0
.050
4.00
0
200
201
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
201
202
5
2
PIPE .1 1.
.0100
.0
.0
.010
10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
0
.0
8.1 19.7 23.1 27.3
32.2
100.0
36.4
200.0
202
212
0
4
CHANNEL 15.0 902.
.0020
4.0
8.0
.035
6.00
0
OVERFLOW 87.0 902.
.0020
20.0
20.0
.020
2.00
212
211
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
211
125
0
4
CHANNEL 5.0 1670.
.0060
4.0
4.0
.035
6.00
0
OVERFLOW 53.0 1670.
.0060
4.0
40.0
.020
3.00
125
111
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
111
110
0
4
CHANNEL 10.0 1400.
.0040
.0
.0
.013
4.00
0
OVERFLOW 10.0 1400.
0040
20.0
20.0
.020
3.50
110
105
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
105
104
0
3
.0 0.
.0010
.0
.0
.001
10.00
0
104
103
3
3
.0 0.
.0010
.0
.0
.001
�10.00
100
.
DIVERSION
TO GUTTER NUMBER 100 - TOTAL 0 VS DIVERTED Q
IN CFS
-
0
20.0 .0 2000.0 1980.0
103
120
0
.0
2
PIPE 2.8 617.
.0050
.0
.0
.013
2.80
0
129
120
0
1
CHANNEL 130.0 956.
.0080
60.0
6.0
.030
8.00
0
L110W1023001Vb t 0ffikW99WVVMM1C1ty of Fort CoWnS F9GSW-100.01A
6 Pdn
120
100
0
3
.0
0.
.0010
.0
.0
.001
10.00
0 -
100
101
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
101
99
7
2
PIPE
1
1.
.0100
.0
.0
.01.0
.10
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
1.5 4.0
6.1
13.9
11.9
22.0
19.1
377.8
27.5
1130.0
29.8
1400.0
154
221
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
150
146
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
146
145
0
4
CHANNEL
31.0
1384.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
1384.
.0020
.0
15.0
.050
12.00
145
141
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
141
139
0
4
CHANNEL
31.0
1193.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
1193.
.0020
.0
15.0
.050
12.00
140
139
8
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY
OUTFLOW
.0
.0
.0 1.0
.4
7.0
1.6
8.9
4.0
10.5
5.5
11.2
7.1
40.0
8.0 100.0
139
136
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
136
135
0
4
CHANNEL
31.0
910.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
910.
.0020
.0
15.0
.050
12.00
135
116
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
116
115
0
4
CHANNEL
31.0
2552.
.0020
1.5
1.5
.035
6.00
0
OVERFLOW
62.0
2552.
.0020
.0
15.0
.050
12.00
99
115
3
3
.0
0.
.0010
.0
.0
.001
10.00
95
DIVERSION
TO GUTTER NUMBER 95 - TOTAL
0 VS DIVERTED
O
IN CFS
0
.0
25.0 .0
1012.0
987.0
115
90
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
95
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
J
11
150
2
3
.0
0.
.0010
.0
.0
.001
10.00
-1
TIME IN HRS VS INFLOW IN CFS
0
300.0
100.0 300.0
10
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
155
154
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
300
299
6
2
PIPE
.1
1.
.0100
.0
.0
.010
.10
0
RESERVOIR
STORAGE IN
ACRE-FEET VS SPILLWAY OUTFLOW
.0
.0
.2 6.9
1.3
13.1
4.1
18.7
8.6
23,7
14.1
28.3
90
80
3
3
.0
0.
.0010
.0
.0
.001
10.00
91
DIVERSION
TO GUTTER NUMBER 91 - TOTAL O VS DIVERTED 0
IN CFS
0
.0
444.0 .0
6000.0
5556.0
80
0
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
91
95
0
3
.0
0.
.0010
.0
.0
.001
10.00
0
TOTAL NUMBER
OF GUTTERS/PIPES.
107
t tmc;NionWlWateNDrainaae%SWMRAC tv of Fort C Mr%s FHesVSP-100.otd 9 Pdn
LilOBS11WWjWata\DrWnaOQ\SWMMCkof Fort C 1ns Fies\SP-100.out 10 Pdn
FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc.
SELECTED PLAN, 100-YEAR EVENT
ARRANGEMENT OF
SUBCATCMMENTS AND GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
TRIBUTARY
SUBAREA
D.AJAC)
101
100
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0 0
434,8
103
104
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
346.6
111
125
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
325.6
116
135
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
119.2
129
0
0
0
0
0
0
0
0
0
0
130
0
0
0
0
0
0
0
0 0
39.7
136
139
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
97.6
140
0
0
0
0
0
0
0
0
0
0
140
0
0
0
0
0
0
0
0 0
58.9
141
145
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
38.7
146
150
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
201
200
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
165.7
202
201
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
165.7
204
205
0
0_
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
14.3
205
0
0
0
0
0
0
0
0
0
0
205
0
0
0
0
0
0
0
0 0
14.3
209
0
0
0
0
0
0
0
0
0
0
210
0
0
0
0
0
0
0
0 0
83.3
211
212
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
289.1
213
203
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
58.8
214
215
0
0
0
0
0
0
0
0
0
0
0
0
0,
0
0
0
0
0 0
58.8
221
222
154
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
01.5
224
225
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
21.9
226
227
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
879.6
229
230
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
18.9
231
232
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0 0
860.7
234
235
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
61.8
236
237
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
798.9
238
306
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
798.9
242
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
299
300
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
64.6
300
0
0
0
0
0
0
0
0
0
0
300
0
0
0
0
0
0
0
0 0
64.6
303
304
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
83.8
304
305
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
83.6
307
308
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
738.0
309
310
0
0
0
0
0
0
0
0
0
0
0
0
.0
0
0
0
0
0 0
738.0
311
312
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
569.5
313
314
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
554.2
315
0
0
0
0
0
0
0
0
0
0
315
0
0
0
0
0
0
0
0 0
60.9
318
319
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
59.7
319
320
0
0
0
0
0
0
0,
0
0
0
0
0
0
0
0
0
0
0 0
59.7
324
325
0
0
0
0
0
0-
0
0
0
0
0
0
0
0
0
0
0
0 0
365.5
330
0
0
0
0
0
0
0
0
0
0
330
0
0
0
0
0
0
0
0 0
15.3
333
334
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
30.3
L UOBS11023001WatelDralnagelSWMW0 ty of Fod Collins Fpes1.SP-100.01A 11 Pdr
334
0
0
0
0
0
0
0
0
0
0
335
0
0
0
0
0
0
0
0
0
30.3
341
342
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
351.1
342
340
0
0
0
0'
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
351.1
344
345
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0-
0
0
0
.7
347
421
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
109.0
355
0
0
0
0
0
0
0
0
0
0:
355
0
0
0
0
0
0
0
0
0
27.4
401
400
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
289.1
405
0
0
0
0
0
0
0
0
0
0
405
0
0
0
0
0
0
0
0
0
41.8
410
0
0
0
0
0
0
0
0
0•
0
410
0
0
0
0
0
0
0
0
0
58.6
421
0
0
0
0
0
0
0
0
0
0
420
0
0
0
0
0
0
0
0
0
109.0
423
425
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
63.0
426
437
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
32.0
430
0
0
0
0
0
0
0
0
0
0
430
0
0
0
0
0
0
0
0
0
22.5
434
435
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31.9
436
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
ORDER
OF TREE STRUCTURE
(NGUT VALUE)
DECREASES
THROUGH DIVERSION FROM GUTTER 101
TO GUTTER
91
COMP
THROUGH DIVERSION WILL
LAG ONE TIME STEP UNLESS GUTTER CARDS
ARE MODIFIED
TO REVERSE DIVERSION.
ij
L4JMM1O230011dat XDrWnepe4SWMM0ty of Fort Cd9m FRes4SP-100.out 12 Pdry
FOX MEADOWS MASTER PLAN UPDATE - 2002. By ICON Engineering, Inc.
SELECTED PLAN. 100-YEAR EVENT
*** PEAK
*** NOTE
FLOWS. STAGES
:S IMPLIES A
AND STORAGES OF GUTTERS AND DETENTION DAMS ***
SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY
CONVEYANCE PEAK
STAGE STORAGE
TIME
ELEMENT:TYPE
(CFS)
(FT) (AC -FT)
(HR/MIN)
10:3
85.3
(DIRECT FLOW)
0
35.
11:3
300.0
(DIRECT FLOW)
0
1.
80:3
444.0
(DIRECT FLOW)
0
32.
90:3
595.0
(DIRECT FLOW)
0
35.
91:3
151.0
(DIRECT FLOW)
0
35.
95:3
480.0
(DIRECT FLOW)
0
46.
99:3
402.2
(DIRECT FLOW)
0
48.
100:3
1179.6
(DIRECT FLOW)
0
35.
101:2
402.2
.1 19.4:D
0
48.
103:2
32.5
1.9
0
32.
104:3
468.1
(DIRECT FLOW)
0
35.
105:3
468.1
(DIRECT FLOW)
0
35.
110:3
454.0
(DIRECT FLOW)
0
35.
111:4
286.6
2.7
0
36.
115:3
595.0
(DIRECT FLOW)
0
35.
116:4
447.6
3.3
0
53.
120:3
645.0
(DIRECT FLOW)
0
35.
125.3
311.2
(DIRECT FLOW)
0
35.
129:1
297.8
.6
0
36.
135:3
488.3
(DIRECT FLOW)
0
41.
136:4
413.0
3.2
0
46.
139:3
416.4
(DIRECT FLOW)
0
41.
140:2
52.9
.1 7.3:0
1
22.
141:4
405.9
3.1
0
41.
145:3
423.9
(DIRECT FLOW)
0
35.
146:4
300.0
2.6
1
0.
150:3
300.0
(DIRECT FLOW)
0
1.
152:3
230.4
(DIRECT FLOW)
2
24.
154:3
155.3
(DIRECT FLOW)
2
20.
155:3
155.3
(DIRECT FLOW)
2
20.
200:3
184.8
(DIRECT FLOW)
1
1.
201:2
26.5
.1 21.5:D
3
39.
202:4
26.5
.9
3
45.
(�
203:3
26.8
(DIRECT FLOW)
2
0.
204:1
25.3
.5
1
3.
205:2
26.7
.1 2.0:D
0
50.
209:1
82.9
.1
1
17.
211:4
76.6
1.8
2
32.
212:3
76.7
(DIRECT FLOW)
2
25.
213:5
26.8
1.9
2
1.
214:2
26.8
.1 9.5:D
2
0.
215:3
360.6
(DIRECT FLOW)
0
35.
221:5
230.4
3.9
2
24.
222:3
75.8
(DIRECT FLOW)
2
13.
223:3
160.1
(DIRECT FLOW)
2
19.
224:2
160.1
.1 4.8:0
2
19.
225:3
164.0
(DIRECT FLOW)
0
56.
226:5
71.0
3.5
2
8.
227:3
71.0
(DIRECT FLOW)
2
6.
228:3
162.6
(DIRECT FLOW)
2
18.
229:2
162.6
.1 4.4:0
2
18.
230:3
171.8
(DIRECT FLOW)
0
48.
231:5
67.0
3.8
2
6.
232:3
67.0
(DIRECT FLOW)
2
4.
233:3
168.0
(DIRECT FLOW)
2
12.
234:2
168.0
.1 6.9:0
2
12.
235:3
379.1
(DIRECT FLOW)
0
35.
236:5
61.0
3.5
2
4.
237:3
61.0
(DIRECT FLOW)
2
1.
238:5
61.0
3.4
2
1.
240:3
194.6
(DIRECT FLOW)
0
35.
242:4
158.0
1.2
2
12.
299:1
25.1
1.3
2
10.
300:2
25.2
.1 10.4:D
2
3.
303:5•
40.2
2.7
2
14.
304:2
40.2
.1 3.5:D
2
11.
305:3
178.0
(DIRECT FLOW)
0
35.
306:3
61.0
(DIRECT FLOW)
1
56.
307:2
27.4
1.8
2
50.
308:3
186.8
(DIRECT FLOW)
2
6.
309:2
186.8
.1 28.4:0
2
6.
310:3
486.3
(DIRECT FLOW)
0
35.
311:5
120.1
3.4
4
12.
312:3
120.1
(DIRECT FLOW)
4
6.
313:5
114.0
3.4 •
4
26.
314:3
114.0
(DIRECT FLOW)
4
25.
315:2
33.6
.1 8.8:0
1
56.
318:5
45.4
2.1
1
38.
319:2
47.0
.1 6.5:0
1
28.
r a vwc%irrimi%t4ata%nminanakgWUKArJtvnf FnA r'.-Ainc F11ac1RP-ln0.out 13 Pdr
320:3
210.8
(DIRECT
FLOW)
0
35.
324:5
76.5
4.1
7
53.
325:3
102.1
(DIRECT
FLOW)
0
35.
330:2
16.7
.1
2.1:D
1
8.
333:5
26.9
2.4
1
30.
334:2
27.0
.1
2.9:D
1
21.
340:3
411.8
(DIRECT
FLOW)
0
35.
341:5
76.5
3.3
6
58.
342:2
76.6
.1
32.4:0
7
10.
344:2
30.6
.1
14.7:D
2
4.
345:3
508.0
(DIRECT
FLOW)
0
35.
'347:2
12.6
1.2
3
52.
355:4
149.2
1.7
0
36.
400:3
1504.5
(DIRECT
FLOW)
0
.35.
401:2
114.4
.1
51.6:D
2
4.
405:5
329.2
3.3
0
35.
410:5
281.5
3.9
0
36.
415:3
479.8
(DIRECT
FLOW)
0
36.
421:2
12.6
.1
16.1:D
3
50.
423:5
130.9
2.7
0
37.
425:3
185.9
(DIRECT
FLOW)
0
35.
426:2
6.9
1.1
0
33.
430:5
124.7
2.2
0
35.
434:4
189.3
1.4
0
43.
435:3
195.2
(DIRECT
FLOW)
0
40.
436:1
117.8
1.3
0
41.
437:3
187.8
(DIRECT
FLOW)
0
35.
440:3
187.8
(DIRECT
FLOW)
0
35.
ENDPRDGRAM PROGRAM CALLED
14 Prin
L'U M10230011data\DrWnage\SWMM1Ctty of Fort CdIIns FNes\SP-1o0.out
APPENDIX - C
December 2006
E P'A-SWMM OUTPUT
Stantec
a�
o,
CL
a
h
3
ti
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.009)
--------------------------------------------------------------
++++++++++++++++
Analysis Options
++++++++++++++++
Flow Units ...............
CFS
Flow Routing Method
...... DYNWAVE
Starting Date ............
NOV-06-2006
00:01:00
Ending Date ..............
NOV-12-2006
04:00:00
Antecedent Dry Days
...... 0.0
Report Time Step .........
00:05:00
Routing Time Step ........
1.00 sec
++++++++++++++++++++++++++
Volume
Volume
Flow Routing Continuity
++++++++++++++++++++++++++
acre-feet
---------
Mgallons
---------
Dry Weather Inflow .......
0.000
0.000
Wet Weather Inflow .......
0.000
0.000
Gioundwater Inflow .......
0.000
0.000
RDII Inflow ..............
0.000
0.000
External Inflow ..........
29.722
9.685
External Outflow .........
25.544
8.324
Surface Flooding .........
0.000
0.000
Evaporation Loss .........
0.000
0.000
Initial Stored Volume ....
0.000
0.000
Final Stored Volume
......
4.027
1.312
Continuity Error (%)
.....
0.510
++++++++++++++++++
Node Depth Summary
++++++++++++++++++
`
--------------------------------------------------------
Average Maximum
Maximum
Depth
Depth
HGL
Node
Type
Feet
Feet
Feet
--------------------
J8
-----------------------------
JUNCTION
0.66
3.41
4928.82
J10
JUNCTION
6.26
6.98
4933.46
J11
JUNCTION
6.05
6.78
4933.49
J4
JUNCTION
1.74
5.93
4927.88
J5
JUNCTION
0.99
5.21
4927.91
J6
JUNCTION
0.69
4.93
4928.00
J7
JUNCTION
0.60
5.03
4928.38
J1
JUNCTION
0.73
1.84
4920.81
J2
JUNCTION
0.54
2.00
4921.87
J12
JUNCTION
5.78
6.52
4933.52
J9
JUNCTION
0.65
3.30
4928.83
J3
JUNCTION
0.43
4.09
4924.58
01
OUTFALL
0.70
1.37
4920.31
PONDD
STORAGE
6.91
9.24
4936.24
POND-C
STORAGE
7.18
7.91
4933.44
POND-B
STORAGE
0.64
5:36
4928.79
POND -A
STORAGE
3.18
7.37
4927.86
+++++++++++++++++
Node Flow Summary
-----------------
Node
-----------------
J8
SWMM5
Time of Max Total Total
Occurrence Flooding Minutes
days hr:min acre -in Flooded
------------------------------
0 00:48
1 17:10
1 17:15
0 02:04
0 02:04
0 02:01
0 00:50
0 02:06
0 02:05
1 17:08
0 00:48
0 00:09
0 02:06
0 02:40
1 17: 07
0 00:48
0 02:05
--------------------------------------------------
Maximum Maximum Maximum
Lateral Total Time of Max Flooding
Inflow Inflow Occurrence Overflow
Type CFS CPS days hr:min CFS
JUNCTION 0.00 1.32 1 18:14 0.00
Time of Max
Occurrence
days hr:min
Page 1
J10
JUNCTION
0.00
2.50
0 00:09
0.00
J11
JUNCTION
0.00
2.62
0 00:05
0.00
J4
JUNCTION
0.00
36.74
0 00:41
0.00
J5
JUNCTION
0.00
37.89
0 00:39
0.00
J6
JUNCTION
0.00
37.89
0 00:39
0.00
J7
JUNCTION
0.00
37.90
0 00:39
0.00
J1
JUNCTION
0.00
16.35
0 02:06
0.00
J2
JUNCTION
0.00
16.53
0 00:12
0.00
J12
JUNCTION
0.00
1.43
0 02:40
0.00
J9
JUNCTION
0.00
1.32
1 17:05
0.00
J3
JUNCTION
0.00
16.35
0 02:05
0.00
01
OUTFALL
0.00
16.35
0 02:06
0.00
PONDD
STORAGE
503.99
503.99
0 00:36
0.00
POND-C
STORAGE
32.10
33.21
0 00:36
0.00
POND-B
STORAGE
146.88
147.86
0 00:36
0.00
POND -A
STORAGE
152.17
185.16
0 00:36
0.00
Storage Volume Summary
--------------------------------------------------------------------------------------
Average
Avg
Maximum
Max
Time of Max
Maximum
Volume
Pcnt
Volume
Pcnt
Occurrence
Outflow
Storage
Unit 1000 ft3
Full
1000 ft3
Full
days hr:min
CFS
-----------
PONDD
--------------------------------------------------------------------
445.719
49
781.270
87
0 02:40
1.43
POND-C
51.032
59
60.607
70
1 17:07
1.32
POND-B
2.885
2
97.196
71
0 00:48
37.90
POND -A
10.312
4
265.166
96
0 02:05
23.61
Outfall Loading Summary
-----------------------------------------------
Flow
Avg.
Max.
_
Freq.
Flow
Flow
Outfall Node
Pcnt.
CFS
CFS
-----------------------------------------------
01
99.89
2.16
16.35
-----------------------------------------------
System
99.89
2.16
16.35
Link Flow Summary
*******xxxxxxxxx****
--
Maximum
Time
---------------------
of Max
Maximum
Max/
Flow
Occurrence
Velocity
Full
Link
-----------------------
Type
-
CFS
-----------------------------------
days
hr:min
ft/sec
Flow
PIPE12
CONDUIT
2.50
0
00:09
3.08
0.54
PIPE11
CONDUIT
1.77
0
00:10
2.67
0.37
PIPE9
CONDUIT
1.32
1
19:11
2.38
0.28
PIPER
CONDUIT
37.90
0
00:39
5.36
1.32
PIPET
CONDUIT
37.89
0
00:39
5.36
1.26
PIPE6
CONDUIT
37.89
0
00:39
5.36
1.27
PIPES
CONDUIT
36.74
0
00:41
3.50
0.58
PIPE4
CONDUIT
36.58
0
00:41
2.97
0.38
PIPE2
CONDUIT
16.35
0
*02:06
4.05
0.89
PIPE1
CONDUIT
16.35
0
02:06
4.92
0.86
PIPE13
CONDUIT
2.62
0
00:05
3.05
0.56
PIPE10
CONDUIT
1.32
1
18:14
2.15
0.26
PIPE3
CONDUIT
16.53
0
00:12
6.77
0.53
D
DUMMY
1.43
0
02:40
A
DUMMY
16.35
0
02:05
C
DUMMY
1.32
1
17:05
Max/
Total
Full
Minutes
Depth
------------------
Surcharged
1.00
8847
1.00
8848
1.00
217
1.00
268
1.00
275
1.00
305
1.00
219
1.00
307
0.77
0
0.64
0
1.00
8846
1.00
205
0.75
0
SWMM 5 Page 2
Flow Classification Summary
###################++*+####
----------------------------------------------
Adjusted
---
Fraction of
Time
------------------------------
in Flow
Class
----
Avg.
Avg.
/Actual
Up
Down
Sub
Sup
Up
Down
Froude
Flow
Conduit
Length
Dry
Dry
Dry
Crit
Crit
Crit
Crit
Number
Change
-------- -------------
PIPE12
1.00
----------------------------------------------------------
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.10
0.0000
PIPEll
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.10
0.0000
PIPE9
1.00
0.00
0.00
0.00
0.05
0.00
0.00
0.95
0.56
0.0001
PIPE8
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.48
0.0000
PIPET
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.44
0.0000
PIPE6
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.23
0.0000
PIPE5
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.06
0.0000
PIPE4
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.03
0.0000
PIPE2
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.38
0.0000
PIPE1
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.29
0.0000
PIPE13
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.10
0.0000
PIPE10
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.42
0.0001
PIPES
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
0.71
0.0000
###xxxx*xxxx+x+xxxx++++++
Highest Continuity Errors
xxxxxxxxxxxxxxxxxxxx+#+xx
Node J4 (0.128)
Node J5 (0.078)
Node J3 (0.068)
Node Jll (0.04%)
Node J10 (0.04%)
xx xx#+++++x++#+++++###x*###
Time -Step Critical Elements
Link PIPE1 (6.498)
Routing Time Step Summary
Minimum Time Step
0.88 sec
Average Time Step
0.99 sec
Maximum Time Step
1.00 sec
Percent in Steady State
0.00
Average Iterations per Step
2.00
Analysis begun on: Fri Feb 16 11:51:52 2007
Total elapsed time: 00:00:50
SWMM 5 Page 3
6
11
r
I
SWMM 5
Page 1
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.009)
--------------------------------------------------------------
Analysis Options
*****++*++++++++
Flow Units ...............
Flow Routing Method ......
Starting Date ............
Ending Date ..............
Antecedent Dry Days ......
Report Time Step .........
Routing Time Step ........
Flow Routing Continuity
f fffffffff #ffffxfff#ff #fff
Dry Weather Inflow .......
Wet Weather Inflow .......
Groundwater Inflow .......
RDII Inflow ..............
External Inflow ..........
External Outflow .........
Surface Flooding .........
Evaporation Loss .........
Initial Stored Volume ....
Final Stored Volume ......
Continuity Error (%) .....
*****##*#******f*f
Node Depth Summary
****#*f*f*ff+ff*fx
Node
J3
J2
J1
02
POND -Paragon
POND-E
POND-F
****xx}}}x*******
Node Flow Summary
CFS
DYNWAVE
NOV-06-2006 00:01:00
NOV-12-2006 00:00:00
0.0
00:05:00
1.00 sec
Volume
Volume
acre-feet
Mgallons
---------
0.000
---------
0.000
0.000
0.000
0.000
0.000
0.000
0.000
8.278
2.697
8.734
2.846
0.000
0.000
0.000
0.000
0.462
0.151
0.007
0.002
-0.011
--------------------------------------
Average Maximum Maximum Time of Max Total
Depth
Depth
HGL
Occurrence
Flooding
Type
Feet
Feet
Feet
days
hr:min
acre -in
-----------------------------------------------------------
JUNCTION
0.22
3.06
4927.06
0
01:14
0
JUNCTION
0.49
2.52
4925.52
0
01:51
0
JUNCTION
0.93
1.84
4924.24
0
01:55
0
OUTFALL
1.01
1.24
4923.54
0
01:56
0
STORAGE
1.26
4.29
4928.29
0
02:19
0
STORAGE
1.06
2.72
4925.12
0
01:56
0
STORAGE
0.92
4.06
4927.06
0
01:15
0
Maximum
Maximum
Lateral
Total
Inflow
Inflow
Node
Type
CFS
CFS
------------------------------------------------
J3
JUNCTION
0 00
1 19
J2
JUNCTION
0.00
8.33
J1
JUNCTION
0.00
10.51
02
OUTFALL
0.00
10.51
POND -Paragon
STORAGE
140.72
140.72
POND-E
STORAGE
26.60
35.07
POND-F
STORAGE
69.47
70.15
Storage Volume Summary
Maximum
Total
Minutes
Flooded
Time of Max Flooding Time of Max
Occurrence Overflow Occurrence
days hr:min CFS days hr:min
----------------------------------
0 02:19 0.00
0 01:15 0.00
0 01:56 0.00
0 01:56 0.00
0 00:35 0.00
0 00:35 0.00
0 00:35 0.00
0
0
0
0
0
0
0
SWMM 5 Page 1
****}}******+*********
-----------------------------------
Average
Avg
-----------------------------------------
Maximum
Max
Time
of Max
Maximum
Volume
Pcnt
Volume
Pcnt
Occurrence
Outflow
Storage Unit
1000 ft3
Full
1000 ft3
Full
days
hr:min
CFS
--------------------------------------------------------------------------------------
POND-Paragon
50.259
18
220.063
78
0
02:19
1.19
POND-E
0.772
1
33.709
41
0
01:56
10.51
POND-F
1.253
2
61.524
85
0
01:15
8.33
Outfall Loading Summary
+++++++++++++++++++++++
Flow
Avg.
Max.
Freq.
Flow
Flow
Outfall Node
Pcnt.
CFS
CFS
-----------------------------------------------
02
66.48
1.10
10.51
-----------------------------------------------
System
66.48
1.10
10.51
Link Flow Summary
-----------------------------------------------------------------------------------------
Maximum
Time
of Max
Maximum
Max/
Max/
Total
Flow
Occurrence
Velocity
Full
Full
Minutes
Link
-----------------------------------------------------------------------------------------
Type
CFS
days
hr:min
ft/sec
Flow
Depth
Surcharged
PIPE3
CONDUIT
1.22
0
03:52
2.56
0.08
1.00
143
PIPE2
CONDUIT
8.33
0
01:16
2.65
0.73
1.00
145
PIPE1
CONDUIT
10.51
0
01:56
6.20
1.48
0.91
254
Paragon
DUMMY
1.19
0
02:19
F
DUMMY
8.33
0
01:15
E
DUMMY
10.51
0
01:56
Flow Classification Summary
-------------------------------
Adjusted
/Actual
Conduit
-------------------------------
Length
PIPE3
1.00
PIPE2
1.00
PIPE1
1.00
Highest Continuity Errors
Node J1 (0.08%)
Node J2 (0.028)
Node POND-E (-0.028)
Node POND-F (0.01%)
Node J3 (-0.00%)
***************************
Time -Step Critical Elements
********}********}**}**}*}*
None
--- Fraction of Time in Flow Class ---- Avg. Avg.
Up Down Sub Sup Up Down Froude Flow
Dry Dry Dry Crit Crit Crit Crit Number Change
----------------------------------------------------------
0.00 0.36 0.00 0.64 0.00 0.00 0.00 0.29 0.0000
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.09 0.0000
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.09 0.0001
SWMM 5 Page 2
Routing Time Step Summary
Minimum Time Step
1.00 sec
Average Time Step
1.00 sec
Maximum Time Step
1.00 sec
Percent in Steady State
0.00
Average Iterations per Step
2.00
Analysis begun on: Fri Feb 16 11:54:30 2007
Total elapsed time: 00:00:20
SWMM 5 Page 3
m
m
a
U�,
;
£d£
K�
i
N
0
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.009)
--------------------------------------------------------------
Analysis Options
****************
Flow Units ...............
CFS
Flow Routing Method
...... DYNWAVE
Starting Date ............
NOV-06-2006 00:00:00
Ending Date ..............
NOV-12-2006
00:00:00
Antecedent Dry Days
...... 0.0
Report Time Step .........
00:05:00
Routing Time Step ........
1.00 sec
**************************
Volume
Volume
Flow Routing Continuity
##################*#######
acre-feet
---------
Mgallons
---------
Dry Weather Inflow .......
0.000
0.000
Wet Weather Inflow .......
0.000
0.000
Groundwater Inflow .......
0.000
0.000
RDII Inflow ..............
0.000
0.000
External Inflow ..........
39.688
12.933
External Outflow .........
34.980
11.399
Surface Flooding .........
0.000
0.000
Evaporation Loss .........
0.000
0.000
Initial Stored Volume
....
0.000
0.000
Final Stored Volume
......
4.559
1.486
Continuity Error (%)
.....
0.376
Node Depth Summary
----------------------------------------------------------------------------------------
Average Maximum
Maximum
Time
of Max
Total
Total
Depth
Depth
HGL
Occurrence
Flooding
Minutes
Node
Type
Feet
Feet
Feet
days
hr:min
acre -in
Flooded
--------------------
J8
JUNCTION
----------------------------------------------------
0.67
3.41
4928.82
0
00:48
0
0
J10
JUNCTION
6.35
7.03
4933.51
1
17:56
0
0
J11
JUNCTION
6.15
6.83
4933.54
1
17:16
0
0
J4
JUNCTION
1.74
5.93
4927.88
0
02:04
0
0
J5
JUNCTION
1.00
5.21
4927.91
0
02:03
0
0
J6
JUNCTION
0.70
4.93
4928.00
0
02:01
0
0
J7
JUNCTION
0.61
5.03
4928.38
0
00:50
0
0
Jl
JUNCTION
0.73
1.84
4920.81
0
02:05
0
0
J2
JUNCTION
0.54
2.00
4921.87
0
02:06
0
0
J12
JUNCTION
5.88
6.57
4933.57
1
17:11
0
0
J9
JUNCTION
0.65
3.30
4928.83
0
00:48
0
0
J3
JUNCTION
0.43
4.09
4924.56
0
00:09
0
0
01
OUTFALL
0.70
1.37
4920.31
0
02:06
0
0
02
OUTFALL
0.00
0.00
4936.00
0
00:00
0
0
PONDD
STORAGE
7.04
9.81
4936.81
0
01:17
0
0
POND-C
STORAGE
7.29
7.96
4933.49
1
17:22
0
0
POND-B
STORAGE
0.65
5.36
4928.79
0
00:48
0
0
POND -A
STORAGE
3.19
7.37
4927.86
0
02:05
0
0
#*##*############
Node Flow Summary
#################
------------------------------------------------------------------------------------
Maximum
Maximum
Maximum
Lateral
Total
Time of
Max
Flooding
Time of
Max
Inflow
Inflow
Occurrence
Overflow
Occurrence
Node
------------------------------------------------------------------------------------
Type
CFS
CFS
days hr:min
CFS
days hr:min
SWMM 5 Page 1
J8
JUNCTION
0.00
1.32
1
20:11
0.00
J10
JUNCTION
0.00
2.56
0
00:09
0.00
J11
JUNCTION
0.00
2.79
0
00:05
0.00
J4
JUNCTION
0.00
36.74
0
00:41
0.00
J5
JUNCTION
0.00
37.89
0
00:39
0.00
J6
JUNCTION
0.00
37.89
0
00:39
0.00
J7
JUNCTION
0.00
37.90
0
00:39
0.00
J1
JUNCTION
0.00
16.35
0
02:06
0.00
J2
JUNCTION
0.00
16.53
0
00:12
0.00
J12
JUNCTION
0.00
1.47
0
01:17
0.00
J9
JUNCTION
0.00
1.32
1
17:22
0.00
J3
JUNCTION
0.00
16.35
0
02:05
0.00
01
OUTFALL
0.00
16.35
0
02:06
0.00
02
OUTFALL
0.00
102.97
0
01:15
0.00
PONDD
STORAGE
613.29
613.29
0
00:36
0.00
POND-C
STORAGE
32.10
33.27
0
00:36
0.00
POND-B
STORAGE
146.68
147.86
0
00:36
0.00
POND -A
STORAGE
152.17
185.16
0
00:36
0.00
}###*f#*ffff4ff###f***
Storage Volume Summary
--------------------------------------------------------------------------------------
Average
Avg
Maximum
Max
Time
of Max
Maximum
Volume
Pcnt
Volume
Pcnt
Occurrence
Outflow
Storage Unit
1000 ft3
Full
1000 ft3
Full
days
hr:min
CFS
-------------
POND-
464.041
-----------
51
870.629
-----------
97
0
-----------
01:17
104.44
POND-C
52.333
61
61.374
71
1
17:22
1.32
POND-B
2.956
2
97.198
71
0
00:48
37.90
POND -A
10.593
4
265.174
96
0
02:05
23.61
+++++++++++++++++++++++
Outfall Loading Summary
+++++++++++++++++++++++
-----------------------------------------------
Flow
Avg.
Max.
Freq.
Flow
Flow
Outfall Node
Pcnt.
CFS
CFS
-----------------------------------------------
01
99.89
2.19
16.35
02
3.18
28.98
102.97
-----------------------------------------------
System
51.53
31.17
118.64
++++++++++++++++++++
Link Flow Summary
-----------------------------------------------------------------------------------------
Maximum
Time of Max
Maximum
Max/
Max/
Total
Flow
Occurrence
velocity
Full
Full
Minutes
Link
-----------------------------------------------------------------------------------------
Type
CFS
days hr:min
ft/sec
Flow
Depth
Surcharged
PIPE12
CONDUIT
2.56
0 00:09
3.10
0.55
1.00
8612
PIPE11
CONDUIT
1.83
0 00:10
2.69
0.38
1.00
8613
PIPES
CONDUIT
1.32
1 20:02
2.38
0.28
1.00
217
PIPER
CONDUIT
37.90
0 00:39
5.36
1.32
1.00
268
PIPE7
CONDUIT
37.89
0 00:39
5.36
1.26
1.00
275
PIPE6
CONDUIT
37.89
0 00:39
5.36
1.27
1.00
305
PIPES
CONDUIT
36.74
0 00:41
3.50
0.58
- 1.00
219
PIPE4
CONDUIT
36.58
0 00:41
2.97
0.38
1.00
307
PIPE2
CONDUIT
16.35
0 02:06
4.05
0.89
0.77
0
PIPE1
CONDUIT
16.35
0 02:06
4.92
0.86
0.64
0
PIPE13
CONDUIT
2.79
0 00:05
3.11
0.60
1.00
8611
PIPE10
CONDUIT
1.32
1 20:11
2.15
0.26
1.00
205
PIPE3
CONDUIT
16.53
0 00:12
6.77
0.53
0.75
0
SWMM5
Page 2
2 WEIR 102.97 0 01:15
D DUMMY 1.47 0 01:17
A DUMMY 16.35 0 02:05
C DUMMY 1.32 1 17:22
+*++++++++++*++++++++++++++
Flow Classification Summary
--------------------------------
Adjusted
---
---------------------------
Fraction of
Time
in Flow
Class
----
/Actual
Up
Down
Sub
Sup
Up
Down
Conduit
Length
Dry
Dry
Dry
Crit
Crit
Crit
Crit
-------------------------------------------
PIPE12
1.00
0.00
0.00
----
0.00
1.00
---------------
0.00
0.00
0.00
PIPEll
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE9
1.00
0.00
0.00
0.00
0.05
0.00
0.00
0.95
PIPER
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE7
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE6
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPES
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE4
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE2
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE1
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE13
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE10
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
PIPE3
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
Highest Continuity Errors
+++++++++++++++++++++++++
Node J4 (0.12%)
Node J5 (0.078)
Node J3 (0.06%)
Node J11 (0.048)
Node J10 (0.04%)
Time -Step Critical Elements
++++++x**xxxxxxxxxx+x+xi+ii
Link PIPE1 (6.67%)
Routing Time Step Summary
Minimum Time Step
0.88 sec
Average Time Step
0.99 sec
Maximum Time Step
1.00 sec
Percent in Steady State
0.00
Average Iterations per Step
2.00
Analysis begun on: Fri Feb 16 11:53:15 2007
Total elapsed time: 00:00:50
0.57 0
Avg. Avg.
Froude Flow
Number Change
---------------
0.10 0.0000
0.10 0.0000
0.56 0.0001
0.47 0.0000
0.44 0.0000
0.23 0.0000
0.07 0.0000
0.03 0.0000
0.39 0.0000
0.30 0.0000
0.10 0.0000
0.42 0.0001
0.71 0.0000
SWMM5
Page 3
A
P,,, � A 0 L,,-k -C I o vi
18.0-
16.0_ _1-
-
14.0
12.0-
10.0-
8.0-
0.0
n 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 Il
Bapsed Toe (hours)
Swmm 5
Page 1
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
Pond S ok-a� low
0.0-1
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Elapsed Tire (hours)
SWMM 5 Page 1
1.2
1.0
0
0.2
P.,A c
0.0- 6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Bapsed Tffne (hours)
Swmm 5 Page 1
E
Pona b GL-A (Coy-%'kro,
4
2-
0-
0.h I
0 1 2 3 4 5 6
8-
Elapsed Tme (hours)
Swmm 5 Page 1
120.0
100.0
80.0
60.0
LL
40.0
20.0
po'A b 0,,tJlOvv (Sp -ill wqy)
0.04
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Bapsed Tffne (hours)
Swmm 5 Page 1
12.0
10.0
8.0
6.0
4.0
2.0
Fir.
I.
t
0.01
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Bapsed Time (hours)
SWMM 5 Page 1
.0
8.0
TC
6.0
5.0
L)
4
3.0
2.(
IA
Pow F
C 1
I
0.0 1
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lb it
Bapsed Tirre (hours)
Swmm 5 Page 1
1.0
OA
0.4
0.2
01
ParO,30rN O(A**NW
-0.2-
0
6 7 8 9 10 11 12 13 14 15 16 17
Bapsed Tore (hours)
SWMM 5 Page 1
APPENDIX — D
December 2006
DETENTION POND DESIGN
Stantec
Flow Division Summary
The Front Range Village development will outlet, per the City Master Drainage Plan to a swale on the HP Harmony
Campus. The current City model demonstrates 76.7 cis coming into the swale on the HP Harmony Campus. It has
been agreed upon that this flow is to remain at 76.7 cfs after the construction of the Front Range Village. There are
four storm systems that outlet into the HP swale. An existing system from a subdivision detention pond, The Front
Range Village, the existing AMD property and the future development to the north of the Front Range Village
development. The existing outlet discharges at a rate of 26.8 cfs during the 100-year storm, thus the three other
properties can discharge at a combined rate of 49.9 cis. The below calculations were used to determine the amount
of water each site shall be allowed to release at during the 100-year storm.
Land Summary
tuna i otai
Area
Basins Contributing % area of Total
Pond Sub -Pond Contributing Area (acres) Area
297
----
296
12.9
91.4 40.33%
----
297
28.9
----
300
9.3
---
301
17.2
---
302
23.1
209
206 (A)
206
54.8
105.64 46.61 %
207 (B)
207
4.0
208 (C)
208
18.0
209 (D)
208
18.1
---
243
5.5
---
244
2.5
----
245
2.8
210E 210 3.90
250 (F) 1 250 1 8.5
Flow Summary
Flow at HP Swale = 76.7 cfs
Flow from Offsite Pond = 26.8 cfs
Flow Left = 49.9 cfs
Max Allowable 100-Year Release Rate
Pond
Pond A
Pond E
u ure
Dev.
Total
SWMM
209
210
297
----
Area %
46.61 %
13.06%
40.33%
----
Q %
46.61 %
13.06%
40.33%
----
Allowable Quut
23.3
6.5
20.1
49.9
EPA SWMM QO t
16.4
10.5
20.3 -
47.0
- Future Ziegler Pond (297) Release Rate, Assumed
1023001 Pond Rating Curves 100%.xls
POND RATING CURVES
Stantec
Pond Storage Volume Pond A
Volume Equation:
Vol (V) = 1/2h(A1+A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by Successive Contours
nafed, n2/16/07
Contour
Elev.
Ft
Area
SF
Al+A2
SF
(A1+A2u2
SF
Contour
Interval
Ft
Depth
Ft
Volume
V
CF
Accum. Vol.
AV
CF
Accum. Vol.
AV
Ac-ft
Discharge
CFS
4920.49
0
.,
0.00
0.00
0.00
1929
965
0.51
0.51
491.9
4921.00
1929
I:- -
kw%4_t� 14,!�
492
0.01
0.46
'M
23563
11782
1
1.51
11781.5
4922.00
21634
°+
.«
M,Anv,,4,z � a
s -1NVO04r
PI"
12273
0.28
0.46
65536
32768
1
2.51
32768.0
:1,'O"MOVu•
4923.00
43902'
. t . - %
., tis.
,nw^i
".: , . �
` t`4
45041
1.03
0.46
92883
46442
1
3.03
24149.6
T �"N&ky__--'
t'�' ?"
:
4923.52
48981
NOOM
N4M, OAP.
69191
1.59
9.77
s 'v RigW.
102392
51196
0
3.51
24574.1
kC wz -
4924.00
53411
`s
��112137
- ...g,. :�a
.ar>':_
- ,�..,
;.,.a.^i`
93765
2.15
10.70
� .;. K
NT:? M$ •;
56069
1
4.51
56068.5
4925.00
58726
149834
3.44
12.41
ism -• -
: , °: V-, =
121365
60683
1
5.51
60682.5
f., �s' .. 9r ��
w -' a
%`��'� :° =
4926.00
62639
.:"^
PMUMN,
WWXj9X ?
K k%r r.�
210516
4.83
13.92
129285
64643
1
6.51
64642.5
4927.00
66646
�".'��WVXV-,
k
275159
6.32
t5.27
�- �� ""
r VA
137398
68699
1
7.51
68699.0
°i� �'�1 '
4928.00
70752
343858
7.89
116.52
V:\52870Ractive\187010251\Reports\Drainagel[Pond Rating Curves 100%.xls]Future Ziegler
Spillway Elevation = 4927.86
WQCV (including 20% for Sediment) = 1.55 ac-ft
100-Yr Volume (from SW WM Model) = 6.09 ac-ft 7.64 ac-ft Including WQCV
WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
WQCV
Water Surface Elev. = 4923.52
WQCV + 100-Year
Water Surface Elev. _
4927.86
Pond Storage Volume Pond B
Volume Equation:
Vol (V) = 1/2h(A1 +A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by Successive Contours
Dated 02/16/07
Contour
Elev.
(Ft)
Area
(SF)
At +A2
(SF)
(A1+A2Y2
(SF)
Contour
Interval
(Ft)
Depth
(Ft)
Volume
V
(CF)
Accum. Vol.
AV
(CF)
Accum. Vol.
AV
(Ac-ft)
Discharge
(CFS)
4923.43
0
XMI M104
�ffiwov,
-,�qpw
0.00
UO
0.00
rMMOUNEM
OM!Nw
1414
707
0.57
0.57
403.0
QMTNNPNNI'm
4924.00
1414
1
't. ; v
r
MV
403
0.01
1.59
Alw."X_ A TIW4?<
W_3U%
15555
7778
1
1.57
7777.5
7777� M&,
4925.00
14141
f
MZRMIIZ'
777', `- ,`
duwiftl
E 7mftl
8181
0.19
9.93
35626
17813
1
2.57
17813.0
JMSSMNe&,
10WMM
4926.00
21485
P%1�47 -%' MM A
&M.O."AN,
Ef'4,W4Wq,,,,MA
25994
0.60
24.27
UWAMMW4
Mk _,�AXZI
45837
22919
1
3.57
22918.5
4927-00
24352
a
1__AARWLW
UMWM�
MAMYW
48912
1.12
33.73
"90t
MW�UftA
51678
25839
1
4.57
25839.0
t;f��NAUXMX
W"51$UMM
4928.00
27326
MW X
972-VAM
TUN-MON-441
74751
1.72
37.47
NMOftwl
F1,12:10%_,.QIr"M
57737
28869
1
5.57
28868.5
L,
ft*,MW-,10W
4929.00
30411
�T�,I,-, .
�_,, AlrM1,
M"=
P
103620
2.38
38.00
V:\52870f\active%187010251\Reports\DrainagelPond Rating Curves 100%.xls]Future Ziegler
Spillway Elevation = 4929.00
1 00-Yr Volume (from SWWM Model) = 2.23 ac-ft
WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
100-Year
Water Surface Elev. = 4928.79
Pond Storage Volume Pond C
Volume Equation:
Vol (V) = 1/2h(A1+A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by Successive Contours
natal- mil Rim
Contour
Elev.
Ft
Area
SF
At+A2
SF
(A1+A2y2
Ft
Contour
Interval
Ft
Depth
Ft
Volume
V
CF
Accum. Vol.
AV
CF
Accum. Vol.
AV
Ac-ft
Discharge
CFS
4925.53
0
' h .772
.
0.00
0.00
0.00
,.�
�t �` ., ;.
386
0.47
0.47
181.4
. P ., �,,, em"
".� ,z .� .a
�1 e_ .�;.,
4926.00
772
, ,-., .,
'�:"�
w`_^�
,t a
181
0.00
0.26
IT,
4828
2414
1
1.47
2414.0
,', ` ::.
1. t, _
4927.00
4056
` �'<
:. `-#
. 3 .. f .�.
-� �.£w`
,, ._
2595
0.06
0.54
9479
1 4740
1
2.47
4739.5
�` -". . w s::+
',.s ;� �F __
�"' .,�': �:
4928.00
5423
'>
"I � -
„-."_�.,�-``�
7335
0.17
0.72
-V
12318
6159
1
3.47
6159.0
:� r...
4929.00
6895
".:Al
..,15363
P.v
13494
0.31
0.86
7682
1
4.47
7681.5
5,T1 4A%,Y
;` e a
' MVPWKSM
4930.00
8468
'?,��.
`�:t�v�,,�„'�
"�.- ,W,�
21175
0.49
0.98
P0.11 „ N1
18611
9306 �
1
5.47
9305.5
15f�-�¢�.�"�+'�.pr
EE ��� �'_�
'"���AA
4931.00
10143
m.`'°:`'tom„
Pal "��
�w.�'��`i„�
'K)
30481
0.70
1.09
22061
11031
1
6.47
11030.5
4932.00
11918
'1".'- M
41511
0.95
1.19
�L-4 %',1
25713
12857
1
7.47
12856.5
4933.00
13795
k'�ht;EJ
54368
1.25
1.28
P = 4W4
*Jx4d4r
29568
14784
1
8.47
14783.8
4934.00
15773
; .ft1
a�' ' s ':._-
69152
1.59
1.36
VV
33632
16816
1
9.47
16815.8
UV� ZW
€;
4935.00
17859
"
+., ^"PoZ_ a ,'?.
85967
1.97
1.44
V:\52870t\active\187010251\Reports\DrainagelPond Rating Curves 100%.xls]Future Ziegler
Spillway Elevation = 4934.00
100-Yr Volume (from SWWM Model) = 1.43 ac-ft
WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
100-Year
Water Surface Elev. = 4933.44
00 Pond Storage Volume Pond D
Volume Equation:
Vol (V)= 1/2h(A1+A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by Successive Contours
n.t.,+ mnaim
Elev.
Ft
Contourh_N8125
Al+A2
SF
(At+A2)/2
SF
Countour
Interval
Ft
Depth
Ft
Volume
V
CF
Accum. Vol.
AV
CF
Accum. Vol.
AV
Ac-ft
Discharge
CFS
4927.00x`.
mwx�^
0.00
0.00
0.00
6637
3319
1
1.00
3318.E.4928.00'.�r3319
0.08
0.70
34762
17381
1
2.00
17381.1
-41 z ze, .,
m : -a
_-. .., i " U4929.00
k.`:r s- ; '.
, x • . _°. ,..
-
;:=-_
20700
0.48
0.70
93843
1 46922
1
3.00
46921.7
4930.00
65718
...m
m<. ,,, 3
67621
1 1.55
0.70
k,
. '_= L, � _ :
165871
8293E
1
4.00
82935.7
�,".'nt M,, .pry` !C �:'
4931.00
100153
*0; '
"S'P..� =°
150557
3.46
0.93
s-:.., , 2-4
218420
109210
1
5.00
109209.8
4932.00
11826E
'"' "�cx.»
:°� .� $" '� '�
-fir=
s �:..'.au ..,
W'" m0-H&LO
259767
5.96
1.04
Z� ,'41&6
243485
121742
1
6.00
121742.4
C_ 0rj-'
4933.00
125218
�'"_,.�
,,,r"'`.-#:°„'.,,"�'
"a
381509
8.76
1.14
257491_
128746
1
7.00
128745.E
4934.00
132273
:_ .. )PS, :
", . r ,,;"' ,.„at
IWISKv+
.....) .:
MAC*�
510255
11.71
1.24
271698
135849
1
8.00
135848.8
'�-W' WW WA*
4935.00
139425
# -;
., Si-. .r,-
'VhWA' ,.
m'Wkl. „
:� •9*.s,`,'4
646104
14.83
1.32
tv: s R
.VAIRW.69
286197
143099
1
9.00
143098.7
N i *'� W
* , �°PkY
.
4936.00
146773
€,
r` `,
789202
18.12
1.41
-9
A l
301432
150716
1
10.00
150716.0
7 `Oe4 16d,1t,
>
7'. 7771
4937.00
154660
= " .€ ff r ,.
..x -' =s,
-"-. ' "x °
�
, " r
939918
21.58
1.48
V:\52870f1active\187010251\Reports\DrainagelPond Rating Curves 100%.xls]Future Ziegler
Spillway Elevation = 4936.24
WQCV (including 20% for Sediment) = 1.84 ac-ft
100-Yr Volume (from SWWMModel) = 17.94 ac-ft 19.78 ac-ft Including WQCV
WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
WQCV
Water Surface Elev. = 4930.18
WQCV + 100-Year
Water Surface Elev. = 4936.24
Pond Storage Volume Pond E
Volume Equation:
Vol (V) = 1/2h(A1+A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by Successive Contours
naiad• mne/m
Contour
Elev.
Ft
Area
SF
At+A2
SF
(At+A2)/2
SF(Ft)
Contour
Interval
Depth
Ft
Volume
V
CF
Accum. Vol.
AV
CF
Accum. Vol.
AV
Ac-ft
Discharge
CFS
4922.40
0�
."
0.00
0.00
0.00
x"GAN �M.
""M..s
4923
2462'..
0.60
0.60
1476.9
E1,N,.�°�aN''2',
`a�.�`"?'f@it..0
4923.00
4923"-�.,.
-25779
1477
0.03
0.02
12890
1
1.60
12889.5
.. �' ;,
A-.. ., e,
04. i`M=a
4924.00
20856
; W
, ,. r; � ,.
;" w
F. _Z. 1
14366
0.33
7.09
,;
C`?QNK,,L-o1,
43789
21895
1
1 2.60
1 21894.5
4XIM-
N
4925.00
22933
=: �J. "...: - `
2 _ ,' .¢�
; r
am :
��
36261
0.83
10.21
.``.."..=+..
47966
23983
1
3.60
23983.0zA'a_.s`;
.",a.-w~'."°'.
4926.00
25033
.�._ ._ �, _ _:
L
__. _.`'
fir. _"
,. '.�
r"
60244
1.38
12.58
��f ` I
�-::.-;��t� �;'� "
52245
26123
1
4.60
26122.5
4927.00
27212
e.
" o '�� '
'S s , : �,
P" »�' � -
tip""; ,'>�
86366
1.98
14.57
V:\52870f1active\787010251 UReportslDrainagegPond Rating Curves 100%.xls]Future Ziegler
Spillway Elevation = 4926.00
WQCV (including 20% for Sediment) = 0.15 ac-ft
100-Yr Volume (from SWWM Model) = 0.77 ac-ft 0.92 ac-ft Including WQCV
WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
WClCV
Water Surface Elev. = 4923.43
WQCV + 100-Year
Water Surface Elev. = 4925.12
Pond Storage Volume Pond F
Volume Equation:
Vol (V) = 1/2h(A1+A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by'Successive Contours
Dated, 02/16/07
Contour
Elev.
Ft
Area
SF
Al+A2
SF
(A1+A2y2
SF
Contour
Interval
Ft
Depth
Ft
Volume
V
CF
Accum. Vol.
AV
CF
Accum. Vol.
AV
Ac-ft
Discharge
CFS
4923.00
12784
F (��
�z�t
a
0.00
0.00
0.00
28090
14045
1
1.00
14045.0
4924.00
15306
14045
0.32
3.07
33234
16617
1
2.00
16617.0
•,�.=s`*`.I,
e
�.;'a''w`�«x:
4925.00
17928
a. ." r+W
"N "'
N',W, _Nk r
30662
0.70
5.39
38588
19294
1
1 3.00
19294.0h
4926.00
20660
49956
1 1.15
6.97
wadN' x
W, `W m
44151
22076
1
4.00
22075.5
""tvmr ." 4,"1'z
*s1A'
.,,cta.�?<Ig
4927.00
23491
�t �' . �. ;'�.
e�' ,. �. �� . "_
„ 'a„1„
r.;
... ,�:`
72032
1.65
8.26
48436
242181,
1
4.50
12109.0
A7' WW.
4927.50
24945
;: ", Y .
w.A,
.___
- �ft ,
84141
1.93
8.83
V:\52870tWCUve\787010251\Reports\DrainagegPond Rating Curves 100%.xls]Future Ziegler
Spillway Elevation = 4927.06
WQCV (including 20% for Sediment) = 0.28 ac-it
100-Yr Volume (from SWWM Model) = 1.41 ac-ft 1.69 ac-ft Including WQCV
WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
WQCV
Water Surface Elev. = 4923.86
WQCV + 100-Year
Water Surface Elev. = 4927.06
Pond Storage Volume Pond Paragon
Volume Equation:
Vol IV) = 1/2h(A1+A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by Successive Contours
n.t.H. tnnam7
Contour
Elev.
(Ft)
Area
SF
A1+A2
SF
(A1+A2)/2
SF
Contour
Interval
Ft
Depth
Ft
Volume
V
CF
Accum. Vol.
AV
CF
Accum. Vol.
AV
Ac-fl
Discharge
CFS
4924.00
47
:.
-
0
0.00
0.00
::.: ; a�s�,,
rc,,ab y
40246
20123
1
1.00
20123.2
""?' *� ', w..
,�,fls.? . ;:°mT'..,
4925.00
40199
0
T�
20123
0.46
0.53
93415
46707
1
2.00
46707.5
�
4926.00
53216
E �- :.?r.
>�. -�, - ,i.: ,m
ws_z ..
'' '.�
t r_.v; q
66831
1.53
0.80
-INC „
ftTWPv„'W4
117763
58882
1
3.00
58881.E
4927.00
64548
V?,, a a` 1 ,14
125712
1 2.89
0.99
i Q
N �
142198
71099
1
4.00
71098.9
5
�4.52
.., �s `.°sa
4928.00
77650
.` _ .'� - _
- _
.
R
. �',.. ,
196811
1.15
in KTMR
UAL x"
167155
83577
1
5.00
83577.4
` `:,�E,�.. �'
@b ..�:;
�`U,11F$1„.'�: ..
4929.00
89505
`i'�d`
t �a,sw,"`�°.
x "°1.,'a
': rg�<„'1
280389
6.44
1.32
V:\52870Pactive\187010251\ReponsUkainagel[Pond Rating Curves 100%.als]Future Ziegler
Spillway Elevation = 4928.29
100-Yr Volume (from SWWM Model) = 5.29 ac-ft
WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
100-Year
Water Surface Elev. = 4928.29
Pond Storage Volume Inadvertant Ziegler Detention
Volume Equation:
Vol (V) = 1/2h(A1 +A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by Successive Contours
Dated, 02/16107
Contour
Elev.
(Ft)
Area
(SF)
At +A2
(SF)
(Al +A2)/2
(SF)
Contour
Interval
Ft)
Depth
(Ft)
Volume
V
(CF)
Accum. Vol.
AV
(CF)
Accum. Vol.
AV
(Ac-ft)
Discharge
(CFS)
4923.00
56155
0
0.00
0.00
256912
128456
1
1.00
128456.0
fE!,*-
Ab3z
4924.00
251227
Un 7
1215456
2.95
13.02
678775
339388
1
2.00
339387.5
492500
427548
tO
W-;M 1ci
AXAt�,VIW
467844
10.74
15.95
A, "-, ,
"''tA
64
1.Z
17
6 6.�
1
� v�� P
•
1 4925.50
1 519836
70�
NK
AA
704690
16.18
1 17 2'3
V:152870MCtive1187010251X2eportsXDminage\[Pond Rating Curves 100%.xlffuture Ziegler
Spillway Elevation = 4928.29
1 OG-Yr Volume (from SWWM Model) = 15.70 ac-ft
WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
1 00-Year
Water Surface Elev. = 4925.4
Pond Storage Volume Future Ziegler Pond
Volume Equation:
Vol (V) = 112h(Al +A2)
V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft)
h = Contour Interval in Feet (Ft)
A1,A2 = Area Enclosed by Successive Contours
Dated, 02/16/07
Contour
Elev.
(Ft)
Area
(SF)
Al +A2
(SF)
(Al +A2)/_2
(SF)
Contour
Interval
(Ft)
Depth
(Ft)
Volume
V
(CF)
Accum. Vol.
AV
(CF)
Accum. Vol. Discharge
AV
(Ac-ft) (CFS)
4920.00
0
0
0.00 0.00
"t x
206910
103455
8
8.00
827640.0
ti �t
4928.00
206910
e_� �
_� 11W - )1K V
�11
'ellN,--ft
NO"'
145N ST
X,'A� A Xi
827640
19.00 17.30
416910
208455
1
8.73
152172.1
4928.73
210000
979812
22.49 21.90
V:152870McUveII87010251IReports\DrainagelPond Rating Curves 100%.xis]Future Ziegler
Spillway Elevation = 4928.44
100-Yr Volume (from SWWM Model) = 21.10 ac-ft
. WATER SURFACE INTERPOLATIONS
WSEL Interpolations below represent Calculated WSEL based on Required Volumes
1 00-Year
Water Surface Elev. = 4928.44
WATER QUALITY CONTROL VOLUME
Stantec
11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11
Designer:
Company:
Date:
Project:
Location:
Josh Ziliak
Stantec Consulting
January 25, 2007
FRV
Pond A
1. Basin Storage Volume
1. = 88.37
%
A) Tributary Area's Imperviousness Ratio (i = I , / 100)
i = 0.88
1
B) Contributing Watershed Area (Area)
Area = 39.970
acres
C) Water Quality Capture Volume (WQCV)
WQCV = - 0.34
,watershed inches
(WQCV =1.0' (0.91 ' 13 - 1.19' I2 + 0.78. 1))
D) Design Volume: Vol = (WQCV / 12)' Area' 1.2
Vol =-, 1.5508
acre-feet
2. Outlet Works
A) Outlet Type (Check One)
X
Orifice Plate
Perforated Riser Pipe
Other.
B) Depth at Outlet Above Lowest Perforation (H)
H =
3.01
feet
C) Recommended Maximum Outlet Area per Row, (A o)
A. =
1.9
square inches
D) Perforation Dimensions
i) Circular Perforation Diameter or
D =1
1.500
inches
ii) Width of 2" High Rectangular Perforations
W =+
inches
E) Number of Columns (nc, See Table 6a-1 For Maximum)
nc =(
1
number
F) Actual Design Outlet Area per Row (A J
k =
" - 1.8
'square inches
G) Number of Rows (nr)
nr =
9
number
H) Total Outlet Area (A,)
Ao, _;
16.0
. square inches
3. Trash Rack
A) Needed Open Area: A, = 0.5' (Figure 7 Value)' A o,
B) Type of Outlet Opening (Check One)
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening (W „J
from Table 6a-1
ii) Height of Trash Rack Screen (H TR)
A,=! 511 square inches
X < 2" Diameter Round
2" High Rectangular
Other:
Ww„, = 15 'inches
HTR =. 66 inches
Pond A.xls, EDB 1/25/2007, 6:35 PM
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 2 of 3
Designer: Josh Zillak
Company:
Stantac Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond A
iii) Type of Screen (Based on Depth H), Describe if "Other" I S.S. #93 VEE Wire (US Filter)
Other.
iv) Screen Opening Slot Dimension, Describe if "Other" I :0.139" (US Filter)
Other:
v) Spacing of Support Rod (D.C.)
Type and Size of Support Rod (Ref.: Table 6a-2)
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
inches
D) For 2' High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W = 'inches
ii) Width of Perforated Plate Opening (W = W + 12")
W.„c _>�.: ' ' - 'inches
iii) Width of Trashrack Opening (W op.*,e) from Table 6b-1
W;=, ; inches
iv) Height of Trash Rack Screen (H m)
Hm _; - inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlemoTM KPP Series Aluminum
Other:
vi) Cross -bar Spacinq (Based on Table 6b-1. KlempTm KPP I — inches
Grating). Describe if "Other" Other:
vii) Minimum Bearing Bar Size (KlempTm Series, Table 6b-2)
(Based on depth of WOCV surcharael
4. Detention Basin length to width ratio I VW)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (3% to 5% of Design Volume from 1 D) acre-feet
(3% - 5% of Design Volume (0.0465 - 0.0775 acre-feet.)
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
Pond A.As, EDB 1/25/2007. 6:35 PM
11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11
Designer: Josh Ziliak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond A
6. Two -Stage Design - See Figure EDBA
A) Top Stage (Depth D wo = 2' Minimum)
Dwo =
feel
Top Stage Storage: no less than 99.5% of Design Volume (1.543 acre-feet.)
Storage=
acre-feet
B) Bottom Stage Depth (D Bs = 0.33' Minimum Below Trickle Channel Invert)
Des =
feet
Bottom Stage Storage: no less than 0.5% of Design Volume (0.0078 acre-feet.)
Storage=
acre-feet
Storage = A' Depth Above WS To Bottom Of Top Stage
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.50 ` Top Stage Depth or 2.5 Feet)
D) Total Volume: Vol m, = Storage from 5A + 6A + 6B
Volat =
-� ' acre-feet
(Must be > Design Volume in 1 D, or 1.5508 acre-feet.)
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
(horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other")
Native Grass
Irrigated Turf Grass
Other.
notes:
Pond A.As, EDB 1/25/2007, 6:35 PM
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 7 of 3
Designer: Josh Ziliak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond D
1. Basin Storage Volume
I, =
81.21
%
A) Tributary Area's Imperviousness Ratio (i = I , / 100)
i =
0.81
B) Contributing Watershed Area (Area)
Area =
54.750
acres
C) Water Quality Capture Volume (WQCV)
WQCV =:
0.34.
watershed inches
(WQCV =1.0-(0.91' 1I_ 1.19"12+0.78"1))
D) Design Volume: Vol = (WQCV / 12)' Area' 1.2
Vol =
1.8396
acre-feet
2. Outlet Works
A) Outlet Type (Check One)
B) Depth at Outlet Above Lowest Perforation (H)
C) Recommended Maximum Outlet Area per Row, (A J
D) Perforation Dimensions :
i) Circular Perforation Diameter or
ii) Width of 2" High Rectangular Perforations
E) Number of Columns (nc, See Table 6a-1 For Maximum)
F) Actual Design Outlet Area per Row (A J
G) Number of Rows (nr)
H) Total Outlet Area (A w)
3. Trash Rack
A) Needed Open Area: A, = 0.5' (Figure 7 Value)' At
B) Type of Outlet Opening (Check One)
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening (W mm)
from Table 6a-1
ii) Height of Trash Rack Screen (H �)
x_Orifice Plate
_ Perforated Riser Pipe
Other:
H = 3.18 feet
A. = 2.1 square inches
D ='. 1.625 'inches
W = inches
nc 1 number
Ao = - 2.1 square inches
nr=• .10 -..number
Ap, _' 1907 square inches
At 622 'squareinches
X < 2" Diameter Round
2" High Rectangular
Other:
W.n, = 18 inches
Hm _ - 68 ' inches
Pond D.xls, EDB 1/25/2007, 6:36 PM
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 2 of 3
Designer: Josh Ziliak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond D
iii) Type of Screen (Based on Depth H), Describe if "Other" I S.S. #93 VEE Wire (US Filter)
Other.
iv) Screen Opening Slot Dimension, Describe if "Other" I ' 0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
Type and Size of Support Rod (Ref.: Table 6a-2)
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
inches
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W =
! inches
ii) Width of Perforated Plate Opening (W m� = W + 12")
W.. _
inches
iii) Width of Trashrack Opening (W op nnq) from Table 6b-1
W.�ni,e =�
inches
iv) Height of Trash Rack Screen (H TR)
HTR ='
inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm
KPP Series Aluminum
Other:
vi) Cross -bar Spacinq (Based on Table 6b-1, KlempTM KPP inches
Grating). Describe if "Other"Other.
vii) Minimum Bearinq Bar Size (KlempT Series, Table 6b-2)
4. Detention Basin length to width ratio I (L/W)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (3% to 5% of Design Volume from 1 D) acre-feet
(3%- 5% of Design Volume (0.0552 - 0.092 acre-feet.)
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
Pond D.As, EDB 1/25/2007, 6:36 PM
11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11
Designer: Josh Zlliak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond D
6. Two -Stage Design - See Figure EDBA
A) Top Stage (Depth D wo = 2' Minimum)
Dwo =
feet
Top Stage Storage: no less than 99.5% of Design Volume (1.8304 acre-feet.)
Storage=
acre-feet
B) Bottom Stage Depth (D Bs = 0.33' Minimum Below Trickle Channel Invert)
Des =
feet
Bottom Stage Storage: no less than 0.5% of Design Volume (0.0092 acre-feet.)
Storage=
acre-feet
Storage = A' Depth Above WS To Bottom Of Top Stage
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.50' Top Stage Depth or 2.5 Feet)
D) Total Volume: Vol ,m = Storage from 5A + 6A + 6B
Volta' _;
- acre-feet
(Must be > Design Volume in 1 D, or 1.8396 acre-feet.)
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
(horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other")
Native Grass
Irrigated Turf Grass
Other:
Notes:
Pond CIA% EDB 1/25/2007, 6:36 PM
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 1 of 3
Designer: Josh Ziliak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond E
1. Basin Storage Volume
la =
86.59
%
A) Tributary Area's Imperviousness Ratio (i = I e / 100)
1 =
0.87
B) Contributing Watershed Area (Area)
Area =
3.910
acres
C) Water Quality Capture Volume (WQCV)
WOCV =
0.37
'watershed inches
(WQCV =1.0' (0.91 ' 13 - 1.19. IZ + 0.781))
D) Design Volume: Vol = (WQCV / 12)' Area ' 1.2
Vol =
0.1462
acre-feet
2. Outlet Works
A) Outlet Type (Check One) X Orifice Plate
Perforated Riser Pipe .
Other:
B) Depth at Outlet Above Lowest Perforation (H)
H =
1.03
feet
C) Recommended Maximum Outlet Area per Row, (A o)
A. =
6.9
square inches
D) Perforation Dimensions :
i) Circular Perforation Diameter or
_
D ='
1.000
_
inches
ii) Width of 2" High Rectangular Perforations
W =
inches
E) Number of Columns (nc, See Table 6a-1 For Maximum)
nc =:
1
number
F) Actual Design Outlet Area per Row (A o)
Ao =
0.8
'square inches
G) Number of Rows (m)
nr =-'.
3
number
H) Total Outlet Area (A,,)
Ao, =
2.4
'square inches
3. Trash Rack
A) Needed Open Area: A, = 0.5' (Figure 7 Value) ' A m
A, = 83 square inches
B) Type of Outlet Opening (Check One)
x < 2" Diameter Round
2" High Rectangular
Other:
C) For 2", or Smaller. Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening (W mm)
from Table 6a-1
Wm� = 6 ' inches
ii) Height of Trash Rack Screen (H TR)
HTR = 42 inches
Pond E.xls, EDB 1/25/2007, 6:36 PM
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 2 of 3
Designer: Josh Ziliak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond E
iii) Type of Screen (Based on Depth H), Describe if "Other" I S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other"
0.139" (US Filter)
Other.
v) Spacing of Support Rod (O.C.)
inches
Type and Size of Support Rod (Ref.: Table 6a-2)
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
D) For 2" High Rectangular Opening (Refer to Figure 61b):
1) Width of Rectangular Opening (W)
W =
inches
ii) Width of Perforated Plate Opening (W = W + 12")
W WM _
- inches
iii) Width of Trashrack Opening (W a�,,;,,g) from Table 6b-1
Waning =
r ' inches
iv) Height of Trash Rack Screen (H TO
HTR =
- inches
v) Type of Screen (based on depth H) (Describe if "Other")
KlempTm KPP Series Aluminum
Other.
vi) Cross -bar Spacinq (Based on Table 6b-1, KlempTM KPP I � inches
Grating). Describe if "Other" Other:
vii) Minimum Bearinq Bar Size (KlempTm Series, Table 6b-2)
4. Detention Basin length to width ratio I (UW)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (3% to 5% of Design Volume from 1 D) acre-feet
(3% - 5% of Design Volume (0.0044 - 0.0073 acre-feet.)_
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
Pond E.xls, EDB 1/25/2007, 6:36 PM
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3
Designer: Josh Ziliak
Company:
Stantec Consulting
Date:
January 25,2007
Project:
FRV
Location:
Pond E
6. Two -Stage Design - See Figure EDBA
A) Top Stage (Depth D wo = 2' Minimum)
Dwo =
feet
Top Stage Storage: no less than 99.5% of Design Volume (0.1455 acre-feet.)
Storage=
acre-feet
B) Bottom Stage Depth (D as = 0.33' Minimum Below Trickle Channel Invert)
Dss =
feet
Bottom Stage Storage: no less than 0.5% of Design Volume (0.0007 acre-feet.)
Storage=
acre-feet
Storage = A' Depth Above WS To Bottom Of Top Stage
Surf. Area=
acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.50' Top Stage Depth or 2.5 Feet)
D) Total Volume: Vol Storage from 5A + 6A + 613
Volm _;
- ' acre-feet
(Must be > Design Volume in 1D, or 0.1462 acre-feet.) -
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
(horizontal/vertical)
per unit vertical) Minimum Z = 3, Flatter Preferred
9. Vegetation (Check the method or describe "Other')
Native Grass
Irrigated Turf Grass
Other.
notes:
Pond E.xls, EDB 1/25/2007. 6:36 PM
11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11
Sheet 1 of
Designer: Josh Ziliak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond F
1. Basin Storage Volume
la = 79.78
%
A) Tributary Area's Imperviousness Ratio (i = I a/ 100)
i = 0.80
B) Contributing Watershed Area (Area)
Area = 8.510
acres
C) Water Quality Capture Volume (WQCV)
WQCV = ��'0.33
' watershed inches
(WQCV =1.0' (0.91 ' 11. 1.19' IZ + 0.78 " 1))
D) Design Volume: Vol = (WQCV / 12)' Area 1.2
Vol =. _ 027U2
acre-feet
2. Outlet Works
A) Outlet Type (Check One) X Orifice Plate
Perforated Riser Pipe
Other:
B) Depth at Outlet Above Lowest Perforation (H)
H =
0.86
feet
C) Recommended Maximum Outlet Area per Row, (A ,)
A, _
- 2.3
'square inches
D) Perforation Dimensions
i) Circular Perforation Diameter or
D ='
1.750
'. inches
ii) Width of 2" High Rectangular Perforations
W =
, inches
E) Number of Columns (nc, See Table 6a-1 For Maximum)
nc =:.
1-
`number
F) Actual Design Outlet Area per Row (A ,)
Ao ='
2.4
'; square inches
G) Number of Rows (nr)
nr =`�
3 "
�: number
H) Total Outlet Area (A„)
k, _.
6.2'
'square inches
3. Trash Rack
A) Needed Open Area: A, = 0.5' (Figure 7 Value)' A ,�
A, = 193 square inches
B) Type of Outlet Opening (Check One)
X < 2" Diameter Round
2" High Rectangular
Other:
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening (W
from Table 6a-1
W„n, _ 12 'inches
ii) Height of Trash Rack Screen (H TR)
HTR _. 40 inches
Pond F.xls, EDB 1/25/2007, 6:36 PM
11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11
2of3
Designer: Josh Zillak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond F
iii) Type of Screen (Based on Depth H), Describe if "Other" I S.S. #93 VEE Wire (US Filter)
Other:
iv) Screen Opening Slot Dimension, Describe if "Other' 0.139" (US Filter)
Other:
v) Spacing of Support Rod (O.C.)
Type and Size of Support Rod (Ref.: Table 6a-2)
vi) Type and Size of Holding Frame (Ref.: Table 6a-2)
inches
D) For 2" High Rectangular Opening (Refer to Figure 6b):
1) Width of Rectangular Opening (W)
W =
--,inches
ii) Width of Perforated Plate Opening (W W + 12")
W.W = -
inches
iii) Width of Trashrack Opening (W n, v) from Table 6b-1
WoPmng =
inches
iv) Height of Trash Rack Screen (H TR)
HTR =;
inches
v) Type of Screen (based on depth H) (Describe if "Other")
Klemp'm
KPP Series Aluminum
Other:
vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP : inches
Grating). Describe if "Other" Other:
vii) Minimum Bearing Bar Size (KlemoTm Series. Table 6b-2)
4. Detention Basin length to width ratio I (L/W)
5 Pre -sedimentation Forebay Basin - Enter design values
A) Volume (3% to 5% of Design Volume from 1 D) acre-feet
(3% - 5% of Design Volume (0.0083 - 0.0139 acre-feet.)
B) Surface Area acres
C) Connector Pipe Diameter inches
(Size to drain this volume in 5-minutes under inlet control)
D) Paved/Hard Bottom and Sides yes/no
Pond F.xls, EDB 1/25/2007, 6:36 PM
Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3
Designer: Josh Ziliak
Company:
Stantec Consulting
Date:
January 25, 2007
Project:
FRV
Location:
Pond F
6. Two -Stage Design - See Figure EDBA
A) Top Stage (Depth D wo = 2' Minimum)
Dwo =
feet
Top Stage Storage: no less than 99.5% of Design Volume (0.2768 acre-feet.)
Storage=
acre-feet
B) Bottom Stage Depth (D es = 0.33' Minimum Below Trickle Channel Invert)
Des =
feet
Bottom Stage Storage: no less than 0.5% of Design Volume (0.0014 acre-feet.)
Storage=
acre-feet
Storage = A' Depth Above WS To Bottom Of Top Stage
Surf. Area=
- acres
C) Micro Pool (Minimum Depth = the Larger of
Depth=
feet
0.50' Top Stage Depth or 2.5 Feet)
D) Total Volume: Vol . = Storage from 5A + 6A + 6B
Vol,, =
acre-feet
(Must be > Design Volume in 1 D, or 0.2782 acre-feet.)
7. Basin Side Slopes (Z, horizontal distance per unit vertical)
Z =
(horizontal/vertical)
Minimum Z = 4, Flatter Preferred
8. Dam Embankment Side Slopes (Z, horizontal distance)
Z =
(hodzontaVvertical)
per unit vertical) Minimum Z = 3. Flatter Preferred
9. Vegetation (Check the method or describe 'Other)
Native Grass
Irrigated Turf Grass
Other:
Notes:
Pond F.xls, EDB 1/25/2007, 6:36 PM
Orifice Plate Perforation Sizing
Circular Perforation Sizlna
Chart may be applied to orifice plate or verttal outlet
Hole Dia
n
Hole Die
in
Min. Sc
in
Area per Row
In )
n=1
n=2
11 n=3
1/4
0.25
1
0.05
0.1
0.15
5/16
0.313
2
0.08
0.15
023
3/8
0.375
2
0.11
022
0.33
7/16
0.438
2
0.15
0.3
0.45
12
0.5
2
02
0.99
0.59
9/16
0.563
3
025
f 0.5
0.75
5/8
0.625
3
0.31
1 0.61
0.92
11/16
0.688
3
0.37
1 0.74
1.11
3/4
0.75
3
0.44
1 0.88
1.33
13116
0.813
3
0.62
1.04
1.66
7/8
0.875
3
0.6
12
1.8
15/16
0.938
3
0.69
1.38
2.07
1
1
4
0.79
1.57
2.36
1 1/16
1.063
4
0.89
1.77
2.66
1 1/8
1.125
4
0.99
1.99
2.98
1 3116
1.188
4
1.11
222
3.32
1 1/4
125
4
123
2.45
3.68
1 W16
1.313
4
1.35
2.71
4.06
1 3/8
1.375
4
1.48
2.97
4.45
1 7/16
1.438
4
1.62
325
4.87
1/2
1.5
4
1.77
3.53
5.3
1 .9/16
15563
4
1.92
3.83
5.75
1 5/8
1.625
4
2.07
4.15
622
1 11/16
1.688
4
224
4.47
6.71
1 3/4
1.75
4
2.41
4.81
722
1 13116
1.813
4
2.58
5.16
7.74
1 7/8
1.875
4
2.76
5.52
828
1 W16
1.938
4
2.95
5.9
8.84
2
2
4
3.14
628
9.42
n=n ns
Minimum Steel late Thicknew1/4'
S/16' - 3/8'
o e = mseutoe Denvean now
Rectangualr Perforation Sizing
Only one colum of rectanguair perforations allowed
Rectangular Height = 2inches
Rectangular Width (in) = Required Area per Row Or?) / 2'
Rectangular
Hole Width
Min. Steel
Thickness
5
1/4'
6
1/4'
7
5/32•
8
5/16•
9
11/32•
10
3/6•
>10
1/2'
DRAINAGE CRITERIA MANUAL (V.3)
STRUCTURAL BEST MANAGEMENT PRACTICES
10
:6
4
2
1.
0.6
00.4
E
V�
In
0.2
U
M
M
0.019
no
i
SOLUTION: Required Area per
III
goo
WQCV
40
010
PAJ
in which,
K 40 =0-013DWQ +0.22DWQ -0.10
P'J'
PAV
=ME
P0010
Elm
ARA
0.01
0.
�•�Y V.VV V. lu u.zu U.4U 0.60 1.0 2.0 .4.0 6.0
Required Area per Row,a (in.2 ) -
FIGURE EDB-3
Water Quality Outlet Sizing:
Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume
9-1-99
Urban Drainage and Flood Control District
S-43
STRUCTURAL BEST MANAGEMENT PRACTICES DRAINAGE CRITERIA MANUAL (V. 3)
0.50
0.45
0.40
- 0.35
t
0.30
0.25
3
0.20
0.15
0.10
0.05
0.00
S-42
Om
i
i
i
MAP
and Porous
Landscape Detention
M1124xxrDraInThne
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Total Imperviousness Ratio (1= I oN00)
0.8 0.9 1
FIGURE EDB-2
Water Quality Capture Volume (WQCV), Se Percentile Runoff Event
9-1-99
Urban Drainage and Food Control District
Orifice Plate Perforation Sizing
Circular Perforation Sizing
Chart may be applied to orifice plate or vertical pipe outlet.
Hole Dio
Hale Dio
Min. Sc
Area per Row (sq in)
1 /4
0.250
1
0.05
0.10
r 0.15
5/16
0.313
2
0.08
0.15
1 0.23
3/8
0.375
2
0.11
0.22
1 0.33
7/16
0.438
2
0.15
0.30
T 0.45
1 2
0.500
2
0.20
0.39
1 0.59
9116
0.563
3
0.25
0.50
0.75
5 8
M625
3
0.31
0.61
0.92
11 16
0.688
3
0.37
0.74
1.11
3 4
0.750
3
0.44
0.88
1.33
13 16
0.813
3
0.52
1.04
1.56
7 8
0.875
3
0.60
1.20
1.80
15 16
0.938
3
0.69
1.38
2.07
1
1.000
4
0.79
1.57
2.36
1 1 6
1.063
4
0.89
1.77
2.66
1 1
1.125
4
1 0.99
1.99
2.98
1 3 6
1.188
4
1 1.11
2.22
3.32
1 t 4
1.250
4
1.23
2.45
3.68
1 5/16
1.313
4
1.35
2.71
4.06
1 318
1.375
4
1.48
2.97
4.45
1 7 16
1.438
4
1.62
125
4.87
1 1
1.500
4
1.77
3.53
5.30
1 9 16
1.563
4
1.92
3.83
5.75
1 5 8
1.625
4
2.07
4.15
6.22
1 11 6
1.688
4
2.24
4.47
6.71
1 3 4
1.750
4
2.41
4.81
7.22
1 13'16
1.813
4
2.58
5.16
7.74
1 7
1. 75
4
2.76
5.52
8.28
1 15 16
1.938
4
2.95
5.90
8.84
2
.000
4
3.14
6.28 1
9.42
n e Number of columns of perforations
Minimum sled
plate thickness
1/4
_
5/16
3/8
• Designer may interpolate to the nearest 32nd inch
to better match the required ores, it desired.
Rectangular Perforation Sizing
Only one column of rectangular perforations allowed.
Rectangular Height = 2 inches
Rectangular Width (inches) = Required Area per Row (sq in)
2"
Rectangular
Hole Width
Min. Steel
Thickness
5"
1 4
6"
1 4
7"
5/32 "
8"
5/16 "
9"
11/32 "
10"
3/8 "
>10"
1/2 "
1 Urban Drainage and I Figure 5
Flood Control District
Drainage Criteria Manual (V.3)
Fir DetaYad"q
WOCV Outlet Orifice
Perforation Sizing
I%*
140
149
C" 3'- 6" SEFL CHANNEL FORMED
(MIN
CONCRETE SIDES
— 0 — 6" WATER QUALITY (WQ
6" F- RACK 3/8" ROUND OR HOLE (TYP.), D- r.5
51"x'l" CRAI
1/4' PLATE. WELDED . . .... .. -TWISTED CROSS I A -T--
TO GRATE. WITH � ROUND OR BAR
I, - 1 "N318" 3/8% 1" FLAT
A B TWISTED CROSS D A _TI �/9%6" THREADED BOLT
r '7 BARS AT 3" 0 C.. FRAME . . . . . 27 TO FASTEN GRATE DOWN REARING HAR HOLDING
I __1 BAR
"TYP PP�� SIDE) WELDED To 1"xJ/8
BEARING BARS AT I
C.C.) WEE- SCREEN'• (MIN.)
2 112 1 - - STEEI FLOW CONTROL
No, 93 (U.S.
tO FILTER ST
AINLESS
ESS PI -ATE
pool ST;LL OR
EQUAL)
STAINLESS STFFI,
ANCHOR BOLT �Typ
)TIOM ROW OF
STAINLESS STEEL ANCHOR BOLTS OR Bc FLOW CONTROL PLATE
I AND SIDES HOLES TO BE AT
. .... . RCP OUT( Fr PIPE SECTION -13
CONTROL
WELL SCREEN
_-FLOW
. . . ......... - ....... ... ... ...... .....
...... PLATE
ar
C SECTION A -A LEGEND
U, S.CTION LINE A -A (ARROWS
. . ... ... J A IINT IN DIRECTION SECTION
BOLTS 12: OC IS VIEWED)
10 HOLD HINGE
2 1/4- FROM CDCE of ABBREVIATIONS
a, I/ ............. . . GRATE (TYP CLR. CLLAPANI,L TYP' TYPICAL
DIA, DIAMETER Wo WIDTH OF CONCRETE OPENING
-1/4- METAL PLATE ILL V. LLIFVATFON VIP WIDTH Of PLATE
TO (,OVER OPENING INV. INVERT AD WATER DUALITY
WELL SCREEN NO. 93 (FASTEN WITH 3/8",6" L MAX, MAXIMUM Ls LENGTH OF STRUCTURE
(U.S. FILTER STAINLESS A B FREADED BOLTS) D �/E" 6' 3OLT TO HOLD MIN� MINIMUM 'WeWIDTH OF STRUCTURE
STEEL OR EQUAL) IN PLACE, 1/4" O.C. ON CENTER NUMBER
PLAN GP ATE SPILL EtIEV-4927.86 OPP. OPPOSITE a AT
1/4" PLATE, WELDED TRASH RACK ��Typ Opp. SIDE)
TO GRATE, WITH (NOTE 5) ELEV-4924 77
3/8"96" rHREAO[D BOLT
TO FASTEN GRATE DOWN
ELEV=4923,52
J4@12* 24" RCP I Pond A
ff OU7LET PIPE F! EV A (POND INV 4920.49'
GENERAL NOTES WELL SCREEN NO. 93 ELEV. 9 (WCCU .1--4) 492.3.52'
(U.S. FILTER STAINLESS
I CONCRETE SHALL BE CLASS 8 MAY BE CAST-N-P,_ACE OR PRECAST. STEEL OR EQUAL) • 1 L* ELEV. C 4924.77*
2 REINFORCING BARS SHALL BE EPDXY COALED AND 'ErTORME0, AND SHALL SPILL ELEV 4927 86'
HAVE A MINIMUM 2" CLEARANCE. FLOW CONTROL --r—
PLATE I —OUTLLIPIPE CM..24'
3 STEPS SHALL BE PROVIDED WHEN VERTICAL DiMfNS:0N LX=S S-6'
3 '/2- 100-YR ORIFICE Ok 14.88
AND SHALL BE IN ACCORDANCE WITH AASHIO M !99. CLR. 1.11100-YEAR OUTLET
ORIFICE _PLATE S' CLR.
4. ALL TRASH RACKS SHAL_ BE MOUNTED USINC STAN-ESS STEEL HARDWARE AND 491 1 1 A v x 1 1/2' 71- Ws 5.
PROVIDED WITH HINGED AND LOCKABLE OR POLABI I ACCESS PANELS. LLEV=4920 49 O= 1418' 1 KEY
5, TRASH RACKS SHALL BE STAINLESS STEEL, ALUMINUM, OR SCR. aEL TRASH! 'A Wo 6"
RACKS SHALL BE HOT DIP GALVANIZED AND MAY BE H07 POWDER PhNI T
AFTER CALVANIZNC. - ---- -- WO HOLE CIA.
6. INVERT OF 100-YEAR OUTLET PLATE ORIFICE TO MATCH INVERT OF OUTLET PIPE "
�#4012
#4t*l LTIA018-
SECTION C-C
EY
100-YR ORIFICE -7- #49';"'
#4 HOOP O.C'
1/0' PCALVANII BAR METAL OR
CONCRETE 1
PIPE
-#4 DI;.oCNA:
C, f 'TYP
CCNC BOLTS
0 1 1/2"
Z
ORIFICE P KT 5E-AiLS
N:
SECTION D—D
ea
City of Fort Collins, Colorado
UTILITY PLAN APPROVAL
Cif, cqmY.e, D"".
C<CKED DY:_ —_
water A, woverruat UtIfty 0,11,
Cr'F^KID 4BY - - ____- -
st"'.Ier ji"Ily11. ow,
It----- ---- — ------
palt'. III Realeel..' Lora
1-r-ECI(D bY,—
e(k L ....... Date
. . . ...... ... .... -
u0ta
FIESE PANS III ETTER REVIEWED DY THE LOOM.
(N-ITY FOR CENCILIT OPHY I-F REVIEW DOES NOT
M�Y RfSFONSIBIL11Y NY IHE R"IFW!NG
'TPAR%!FRT. JIIL CCAL FNI ENGINEER. OR THE
':COAL ENTITY FOR ACCURACY AND CORRECTNESS OF
NE�EALCUI-AfiON5. FURTHERMORE. 'HE REVIEW DOES
IMP!" THAT 0,AN;ITIVS C' ITEMS ON THE
L Me ARE Ii 'E ;INAL CL;AN71;[S RLO.11I T14E
'LAfw NOT 8: CONSTRUED 1% MY REASON
P-
III
z
0
EL
cj
z
ILE
UL!
C)
LET
ILE
0.
0w
0
w
z
§
0
0
LLJ
CD
a
9
z
0
z
0
<
0 L)
100% PLANS
NOT FOR CONSTRUCTION
January 2007
187010251—
DriiIii"I'lo. C-513
Revillim Sheill
0 134 of 139
l i
AT
1' 4' C" 3'...6" S'. IF GH.Ali FCRMED
L---� ----'----- IN`0 CONCRE_C SICES
(MIN.) Err 6 ti"
6' -- TRASH (RACK. i L.. 3/6 ROUND OR I I
�1 x``1 CRATING WISILD CROSS
1/4" PLATE, WELDED \ BAr
TO GRATE.WITH (3/6 ROUND OR r
1"x.3 8' -- 3/8°xi" FLAT
A $ w!sTFD GRoss D 1 /
3/8"x6" I'HREADEI7 BOL( � REARING BAIT HOLDING
TO ppCRATE DOWN BARS Al 3' U.C. BAR FRAME
TO FASTEN DPP. SIDE) WELDED 1C 1",C. ud "'
BEARING BARS AT
WELL SCREEN
D / 1 FILTER STAINLESS
I__. } STEEL R
EQUAL)
1
T-CE
. ._ ° r/._ FLOW - -T \ I CP OUTNEI O PIPE _____ ..._ .............. ........ N(NRU155 STEEL ANCHOR COLTS (JR
o � .._ .. _.___. ...... .._. PLATE
rz01 L �L i WLID$ ON 10P AND SIDES
L SCREEN
__..
C = C SECTION A —A
..
°.� .. .i ......... A .,, ..,,.. '
3/8 x6 BOLTS 12 O C
-- 'U HOLD HINGE IN PLACE
a 2 1/4" FROM EOCE OF
GRAIL ('YP. DPP SIDE)
\__1/4• METAL PLATE
TO COVER OPENING
(FASTEN WITH 3/8"x6"
WELL SCREEN NO, 93
(L.S. FILTER STAINLESS A B TREADED BOLTS)
D
3/8"x6" BOLT TO HOLD
STEP OR EQUAL) - PLAN
HINGE IN PLACE, 2 1/4-
FROM EDGE OF GRATE SPILL ELEV=4936.24
(TYP. OPP. SIDE)
TRAH RACK
1 /4" PLATE, WELDED S
T?%
TO GRATE, WITH (NOTE 5)--�
ELEV=4931 187Rj/��\�
3/N"x6" iFIIRE.A0f.:1J BpLi
TO FASTEN GRATE DOWN
FLEV=.4930I
ii
... j)4072" -18" RCP OL'TLF PIPE
GENERAL NOTES
WELL SCREEN NO, 93
44012"
(U S. FILTER STAINLESSj
—
T CONCRETE SHALL BE CLASS B. MAY BE CAS rN-PLACE OR PRECAST.
STEEL OR EQUAL) S'
2 FVWE MINI BARS SHALL 6E EPDXY COATED AND DEFORMED, AND $wLLL a
HAVE A MINIMUM Y• CLEARANCE.
I
-FLOW CCNTRO!.
j
PIAl[
3 STEPS SHALL HE PROVIDED WHEN VERTICAL DIMENSION EXCEEDS d'-6•
3" !
AND SHALL BE IN ACCORDANCE WITH b\SHTO M T99
CLR.
3 '/2"
3" CLR.
4, ALL TRASH RACKS SHALL BE MOUNTED USING STAINLESS STEEL HARDWARE AND
4'
K 1/2^
KEY
PROVIDED WITH MINCED AND LOCKABLE OR BOIIABLE ACCESS PANELS.
E.LFV=4927.00
5. TRASH RACKS SHALL 13E STAINLESS STEEL, ALUMINUM, OR STEEL. SNIEL [RASH
T4
RACKS SHALL BE HOT DIP GALVANIZED AND MAY BE HOT POWDER PAINTED
°
A
AF7rR GALVANIZING.
�........................ __ _
_. _. .......__ ... ....._....._
..a..._.... __...__..... ..._..__
6. INVERT OF 100-YEAR OUTLET PLATE ORIFICE TO MACH INVERT OF OUTLET J°IPE.
b4Rp12"
SECTION C-C
—...T._-,I—WAii.R QUALITY (WC)
HOLE (FTD.)r U.-'.625"
4
° I
1/4" (MIN.) THICK
°
4 ° STEEL FLOW CONTROL
PLATE.
--STNNLF.SS STEEL.
ANCHOR BOLT (ttP.)
BOTTOM Row OF FLOW CONTROL PLATE
HOLES TO BE AT -
INVERT OF PLATE SECTION B-B
LEGEND
fT CTIOI LINE A -A (ARROWS
('TIT IN DIRECTION (ARROWS
s VTW[D)
ABBRI=VIATIONS
G _H. clt AkAltu IY'. TYPICAL
CIA. DIAMETER WP WIDTH Of CONCRETE OPENING
ELEV. ELEVA110% Wp WIDTH Di PLATE
!NV, INVERT wD WATER DUALITY
MAX. MAXIMUM Ls LENGTH OF STRUCTURE
MIN. MINIMUM We WIDTH OF STRUCTURE
O.C. ON CENTER # NUMBER
OPP. OPPOSITE a AT
! ELEV. A (POND I%.)
ELEV. B�(WOCU DIV)
ELEV. C
1 SPILL. E' EV.
OUTLET PIPE DIA.
4927.00'
4930.18'
493:.18'
4936.29'
18"
100-YR ORIFICE DA
--
Ls
4'
Ws
4'
Wo
6"
I IOII:. DIA.
L625"
WO
)J 01" ROW$
10
If OE' COLUMNS
N4�T...
N4 HOOP U.(:.
BAR
METAL Of?
CONCRETE
PIPE
/3;I
JI
SECTION D-D
p4 UI; rGr;r.A
(w)
jjM1�12" C.(:
City of Fort Collins, Colorado
UTILITY PLAN APPROVAL
APPROVED _____.._......_.._.. _..__.—__
City L'n9lneer Uutn
--
CHECKLD BY _
W°Im & WRvtewRter Utility Dn:e
.-FGKED H• _..- --
r."c 1�5 nfr:r .0:a
T IE5E P ANS IAIF HEEN K V WF7 Rv T LC AI
FV IIY FIR CPNCPT OA 1 TIF RFV-F;'IF NCT
IM'=Y RI IN'.IlilllY Pv iF RFVIFWINC
DEPAfTx1I %T, T If OCA. N ENCINEFR. OR TPL
LOCAL EATrTv FOR ACCURACI Art.` CORRECNECS OF
THE CAL CUV.TONS, `UR'HERMORE, THE REVIEW :OES
NOT IMI'." TIIAI UUANIITIL, 0, IFVI ON THE.
PI.AN`I aFi I'rIF ;INAI. CI.ANIII'F.S R1:C'UIRCD. THI:
REVIEW E.IIA1 NO'I OF I;QNSIRULD IN ANY REASON
n5 A('T'I. FAC.1 IF INANI AI. RLS.,ONSRILPY OY
THI OCAI --NFIY FOR AOOIOONA'. )JANTITIE4 O
I tMR -::4% IHA' MAY III RTCUIR.EG "At-4,'HF
CONS.-RUB:;ON
1111L
I
z
Z
O
EL
W
Of
0V
i�
u �
]of)
u
�O
s r
�O
]U
100% PLANS
NOT FOR CONSTRUCTION
Jwnuery 2007
Pwi.[ mr. 8701
r.wo,rrmT:
.rwN aw .IIR;
Pnn ef"rry yAI I1P
DlrAep No. C-514
Rwiw Sheet
0 135 of 139
J
3,_ 6..
(MIN.) 6..
6_ TRASH RACK 3/8" ROUND OR
/4' PI -ATE, WELDED — r 51"41" CRATING TWISTED CP.OSS
/
10 CRATE. WITH (3
Y?. OPF. SIDE PROCOR �R
-..1/8°
3/8°x6" THREADED BOLT A B TWISTED CROSS
"x3
SS � BEARING
G FASTEN GRATE DOWN-7 BARS AI 3 O.C., BAR
(T - )� WELDED TO 1'05 '---ttu
I BLARING (BARS At
P �
.., IN
°--CF'ATFRL.INE OF LAI' 23
FLOW HERCP OUTLET PIPE
CONTROL - .._.__ _. ......... ........
f PLATE ._ ...._......_...— -- — — —
C C
UP3/8°x6" BOLTS I,' O.C.
1
:T
-- 10 HOLD HINGE IN PLACE
u - : - — --1 a 2 1/4" FROM EDGE OF
N
'O-... Y LIP (TYP ) GRATE (TYP. OPP SIDE)
--1/4" METAL PLATE
TO COVER OPENING
(FASTEN WITH 3/8"x6"
WELL SCREEN AI 93 TREADED BOLTS)
(US FOR E STAINLESS A B J/8"W BOLT TO HOLD
SrEEi. OR FGUAL`,-- PLAN HINGE IN PLACE, 2 1/4"
FROM EDGE OF GRATE
(TYP. OPa. SIDE)
1/4" PLATE., WELDED TRASH RACE
TO GRATE, WITH (NOTE. 5) ELE'✓=4924,76
3/8"x6' THREAGED BOLT
GENERAL NOTES TO FASTEN GRATE DOWN
I CONCRETE SHALL BE CLASS B MAY BE CAS' -IN -PLACE OR PRECAST. ELEV=4923.43
2. REINFORCING BARS SHALL HE EPDXY COATED AND DEFORMED, AND SHALL +
HAVE A MINIMUM 2" CLEARANCE. WELL SCREEN NO. 93
3. STEPS SHALT. BE PROVIDED WHEN VIiRTICAL DIMENSION EXCEEDS S-6- (U.S. FILTER STAINLESS AND SHALL BE IN ACCORDANCE WITH AASHTO M 199. a STEEI,. OR EQUAL) --
4. All TRASH PACKS SHALL O MOUNTED USING TABLE AC STEEL PANELS.
RE AND O FLOW CONEROI_
PROVIDED Wlihl hIINC@ ANU LCCKABLf. OR BOLTABLE ACCESS PANf_L5. ��
PLATE
TRASH RACKS SHALL BE STAINLESS STILL, ALUMINUM, OR STEEL. STEEL TRASH 100 YEAR OUTLC- i
RACKS SHALL BE H07 DIP GALVANIZED AND MAY Sit HOT POWDER PANTED
AFTER OaLvaN¢ING. CL E PLATE DA.-1-��I
1 III LJIA. 608"
6. NVERT Of 100-YEAR OUTLET PLAT,r ORIFICE 70 MATCH INAJEW OF OUTLET PIPE ELEV=49"[2 40
A
0 �A®12 m
,
100 _YR ORIFICE
1/8" PIQALVANIZED
n
_I_.:'SAa"
CONC. OCLTS
I P.. Air Jr A,
rC
N'S
S'�El CHANNE. CRMWD
IN C CCNCRT'r SILL%
\6"
)FBI
-1- 3/8 K1" FLAT
PAH HOLDING
FPIR
- 'WEL. SCREEN
NG. 93 (LL5.
ILOR STAINLESS
STEEL OR
_.. __. .. L._..._... EQUAL)
TAINLESS STEEI. ANCHOR BOLTS OR
?FRMTTANT WELDS ON TOP AND SITES
WELLSCREEN
SECTION A —A
-V. A (FOND INV.)
1 ,.V. 6 (WOCU ELEV)
LI[:V. C
SPILL ELTV
OUTLET PIPE. DIA,
100-YR ORIFICE DIA
Ls
WS
Wo
HOLE DIAL
WO # OF ROWS
F# OF COLUMNS
SPILL ELEV-4926.00
14"x 27" HERCP OUTLET PIPE
#4012"
3 1/2"
x' 112. 3"
K,`_Y
N c,, aa§
- WAII R GUAI IIY .NL1
o
- S m
e5'a3
_ ---�
°
rn Bbmna,
a;cape
I
.6=
�9=x Nc
••
.._. 1/4" (MIN.) THICK
FLOW
STEEL CONTROL
PI ATF
•
M
i
�
STAINLESS STEEI.
ANCHOR BOLT (TYP,)
I E
BOTTOM ROW OF
- FLOW CONTROL PLATE
HOLES TO 8E,I
I
I"`
INVERT OF PLATE
SECTION B—B
Pond E
LEGEND
4923,43'
A -A (ARROWS
StICTCOENI
a923.43'
I DIRECTION
POINT m )IRTCnOry skcnoN
i5 VEWED)
4A24.7B
ABBREVIATIONS
4926.OU'
18"
CLR. Cl EARANCFI
TYP, TYPICAI.
16.08
CIA. DIAMETER
Wo WIDTH 01 CCNCREIL OPENING
4
@L. EV. ELEVATION
An WIDTH Or PLATE
INV. INVERT
WO WATER QUALITY
F
5
MAX. MAXIMUM
Ls LENGTH OF STRUCTURE
6"
MN. MINIMUM
WS WIDTH OF STRUCTURE
S
0,9^
0 C. ON CENTER
III NUMBER
I
I I I I Ir
3
OPP, OPPOSITE
@ AT
-- -- APPROX. 19 LF OF NEW 14"x 23" HERCP
(MATCH EXIST'..NC SLOPE)
FOR SITE LOCATICN
SFE 5HEFT C-250
STORM LINE 'V' PLAN VIEW
HOOP
CH4
9AR
\\ MI17AL OR
CONCRETE
. PIPE
'I
12"
C3R� —
a
F
4°6 L� 4y,
�. ......
J/— E%ISrING 14"x 23" HERCP
REMOVE E%S'INC FES AND CONNECT
TO -MISTING 14 x 23 HERCP
Mi EXISTING INVERT 0 APPKrV
4922.25
#4012'
TOG'
p4012" O.C.
City of Fort Collins Colorado
UTILITY PLAN APPROVAL
APPROVED
Cuy fng lee, URty--
CHECKED 31;.
Water N Wnelewaler Utility DOtc
C-rckr",
o mwnl Utility Dote
—
I r 4 W Rcr <albr. Gala
Clif `.KED
c'M1r ^ ncc TIM,
L`+ ' AY uVI It k . W.D 3- T-E -OCAL
kN I- ON CGINCtill ON., 1"F RENEW DOES NOT
IM-, Y RE6 ON>IHILIIY HY IHL REVIEWING
OLPAen,!-NI, III[ .GM ':NTCY ENGINEER, OR -HD
LOCAL ENTITY ICR ACCURACY AND CORRECTNESS OF
THE CALCJVdIONS. rHRTHERAIORE THE REVIEW ODES
NOT IM('IY THAT GI.gN'1?IES DF ITEMS ON THE
PLANS A(S 1^II IINAI C4AMITIES REOURED. THE
Nk VIEW SHALL NOT UC CONS'RUCD IN ANY REASCh
AS AC'ECTANCC 'If FINANCIAL. RCEPON6117I1.1— 81
THE II,ICAE ENTITY FOP ADDITONAIOUANTI?I�; DT
TIPS S-'OWN THAI MAY RE REOUIR<_'O IYJRIRD !HI
CONSI'RUCT'ON NHAST'.
N g
W �
F >
0. C)
m 9 0.16
W Z
Pemit-Seel
100% PLANS
NOT FOR CONSTRUCTION
January 2007
%,.•I wm..: 187010251
H JW
ruwa. v ,
Drawing No. C-515
Rat Sheet
0 136 of 139
1,5
IS
W
0
Z
O
OL
W
Of
JU
L �
u�
u�
ZO
ff H
CO
] U
i
1' 4'-C" 3'--n" -- S1--EL CHANNEL FORME:
INID CONCRETE SIDES
_ ACK 3/8 POUND OR
t/h' PLATE, WLLOEU C _ SII�x51�GRATING TWISTED CROSS
BAR
TO GRAt WITH (3/8' ROUND OR D _
3/8"x6 THREADED ROLT A B TWISTED CROSS BEARING
._. - - 3/e"x1" FLAT
10 IA',IEN GRATE SIDE) DOWN BARS AT 3' O.C.17 BEARING f T BAR H01C]NG
y WELDED TO 1'x3/8" _ -�I OAR T17AMF,
BEARING BARS AT /
2 1/2" O.C.) / WELL. SCREEN
(U.:>.
FILTER STAINLESS
1...._ STEEL OR
L
EQUAL)
--- .-, _ ZSS STUFF ANCHOR 30
IO
IS R
CENTERLINE OF 18 IN FRMIFTANTLI V,S ON TOP AND SIDES
._ R(P OUTLET PIPE
o 'FLOW
CDNDRaL -- WELL SCREEN
PLATE ..._.. -....
C r °....._ C SECTION A -A
A N-3/8"x6" BOLTS 12" O.C. it
- TO HOLD HINGE IN PLACE
2 1/4- FROM EDGE OF
GRATE (TYP PPP. SIDE)
1/4 METAL PLATE
J IF COVER WITH
3/OPENING
(rASTEN WITH 3/8'.h'
WELL SCREEN NO R.i ADID HCLT:) z
(U.S. rarER TA A B D /8"x6" aoLT r0 HoLo
STEEL OR ECUAI PLAN HINGE IN PucE, 2 1/a"
FROM EDGE OF GRATE
(TYP. OFP. SIDE) SPILT ElEV=A926.00
/a" PLATE, YIELDED TRASH RACK �../
!^ GRATE, WITH (NOTE 5+ ELEV=492`t5 i�ij y�\�iN����
3,l x6" THREADED BOLT 3
TO FASTEN GRATE DOWN -. .'.........-- �-s
ELEV=4923.8E
ell H40I2" 8" RCP OU'I=_r PIPE
WILL SCREEN NO. 93
GENERAL NOTES u'
(U.S. FILTER STAINLESS --- .
1. CONCRETE SHALL BE CLASS B. MA. BE CASI-IN-PLACE OR PRECAST. STEEL OR EQUAL)
a
2. REINFORCING BARS SHALL BE EPDXY COATED AND DEFORMED, M'O SHALL FLEW CONTROL
HAVE. A MINIMUM 'I• CLEARANCE. j
1 STEPS SHALL BE PROVIDED WHEN VERTICAL DIMENSION EXCEEDS S-6• T.. T PLATE
AND SHALL BE IN ACCORDANCE WITH Al M 199. -' IL '00-YEAR OLTLG .• 3 -/2"
<. ALL PROVIOEDrWR1HCN5SHALL BE NGED AND LOCKABLE OfllNG 50LTABNEESS STEEL ACCF55-PANELS lv7E NJO ELEV=4923L 0Cui�+ ol• Dp'FIC248" ---" ) KEY
I/2" 3" CLR.
5. TRASH RACKS SHALL BE STAINLESS STEEL, ALUMINUM, OR STEEL. SEE, TRASH 1
ARACKSFTER SHALL BE HOT DIP GALVANIZED AND MAY BE HOT POWDER PAINTEDAFTEP.
GALVANIZING. 1 '
6. INVERT OF 100-YEAR OUT. ET PLA" ORIFICE TO MATCH INVERT OF OUTLET PIPE. rill�2. #4012" �
e4i
SECTION C-C
100-YR CRIPCF
--7/8' PLGN9ANf1ED
I) 11 H- ` LAP
I
I/2
ONE COL I<
4°
E
uh IL;1" PA'F ECTAIIi._
NT$
C'
WATER QUALITY (Ai
HOLE (TYP.), D--'.75"
I
a�
J-7
v it
O
o
I A
s
I
-I/4" (MIN.) THICK
4
STEEL FLOW CONTROL
PLATE
STAINLESS STEEL
ANCHOR BOLT (TYP,)
BOTTOM ROW OF - FLOW CONTROL PLATE
HOLES 10 BE AT
INVERT OF PLATE SECTION B-B
LEGEND
,
-"1ION LINEA-A (ARROWS
^71N DIRECTION SECTION
JQ
S NrWEO)
ABBREVIATIONS
CLR. CLEARANC
IYP, TY.ICAI
OIA. MAMETER
Wo WIDTH 01 CONCRETE OPENING
ELEV. ELEVATION
Wp WIDTH OF PLATE
NV. INVERT
NO WATER DUALITY
MAX. MAXIMUM
Ls LENGTH OF STRUCTURE
MIN. MINIMUM
WE WIDTH OF STRUCTURE
O.0 ON CENTER
H NUMBER
OPP. OPPOSITE
a AT
NnnH
I-IEV. A POND INV.)
4923.00'
ELEV. B (WOCU EL.V)
4923.86'
ELEV. C
4925,19'
SPILL ELEV.
Al
OUTLET PIPE DIA.
,8"
100-YR ORIFICE DA
'2.48'
Ls
4'
WE
4'
WO
6"
HULE DA.
1.75
WO
4 Or RDWs
s
A OF COLUMNS
F4®,.,,
N4 HOOP
O.C.
R
METAL OR
CONCRETE
PIPE:
!
-
-#4 DIAGCNAI
Ih
C-T
(TT'P.)
CLIy of Fort Collins, Colorado
UTILITY PLAN APPROVAL
APPROVED: --------
Clty Eng,neer Drill,
CHECKED BY:
Wmter k wastewater ULnly Ome
CHECKED By -_
Stor IDael. UI 11, _ iu:•
CHECKED
BY
Parks h ,en•nf •nn .. ..
CHECKS, By.
t ffll P-ANS HAVE BEEN REV :wy.O BY 'ley ,CC+L
ENTTY FOR CONCEPT ON Y THE. REVIf'A DOS NOT
IMILY RESPONSIBILITY BY IHE RFVICWINC
DEPARTMENT, THE LOCAL ENTITY ENOINCER, OR TLIE
LOCAL ENTITY FOR ACCURACY AN, CORRECTNESS Ot
THE CALCUInTIONS. FURTHERMORE, `HE REVIEW DOES
NOT Ial IHA, QUANTITIES Oa HEMS ON THE.
PLANS ARE, IHE FINIAL C'LAN'IIIII.S RE.CUIRCD. IHI
REVIEW SHALL NOT BE CONSPIULCI IN ANY RLA.';tl
AS AC`[-A%,L Of FINANCIAL RCS%-ONSIBILHY
il
IHE LOCm EMITY :OR ADDITIONA_ or Al
I'EMS S•C'N.N r-A' MAY HE RECIAREL` All '•'
CONS RUCf0N l�IIA f,
z �
ai g
W J
H �
W W
a 0
of U
a �
UJI o
LL LL
Permtl-SaM
W
z
Z
0
a
W
DIC
Cn
H U
W
Ly
W J
a0
z�
z
`a0
00
100% PLANS
NOT FOR CONSTRUCTION
Jan., 207
l e°mo..187010251
i. I- c-sn: Km
my IA. In
7n a I1[o" n VM p:l
DTrmq No.C-516
Revialm St"
0 137 of 139
SPILLWAY CALCULATIONS
Stantec
Project: Bayer
Location: POND A
Broad Crested Weir - Basic Equation:
Q= C,L,H1.5
Calculate H from Q and L
C=
3.00
Q=
171.18 cfs
L=
140 ft
H=
0.5 ft
Stantec
Proj. Number: 187010251
By: J. Ziliak
1023001 OverflowWeirs.xls
Project: Bayer
Location: POND B
Broad Crested Weir - Basic Equation:
Q = C*L*H1.5
Calculate H from Q and L
C= 3.00
Q= 152.20 cfs
L= 50 ft
H= 1.0 ft
Stantec
Proj. Number: 187010251
By: J. Ziliak
1023001 1 OverflowWeirs.xls
Project: Bayer
Location: POND C
Broad Crested Weir - Basic Equation:
Q= C*L*H1.5
Calculate H from Q and L
C=
3.00
Q=
32.10 cfs
L=
10 ft
H=
1.0 ft
Stantec
Proj. Number: 187010251
By: J. Ziliak
1023001 OverflowWeirs.xls
Project: Bayer
Location: POND D
Broad Crested Weir - Basic Equation:
Q= CeL*H1.5
Calculate H from Q and L
C= 3.00
Q= 629.49 cfs
L= 200 ft
H= 1.0 ft
Stantec
Proj. Number: 187010251
By: J. Ziliak
1023001 OverflowWeirs.xls
Project: Bayer
Location: POND E
Broad Crested Weir - Basic Equation:
Q = CoLaH1.5
Calculate H from Q and L
C=
3.00
Q=
28.60 cfs
L=
25 ft
H=
0.5 ft
Stantec
Proj. Number: 187010251
By:. J. Ziliak
1023001 OverflowWeirs.xls
Project: Bayer
Location: POND F
Broad Crested Weir - Basic Equation:
Q _ C9L*H1.5
Calculate H from Q and L
C=
3.00
Q=
69.50 cfs
L=
60 ft
H=
0.5 ft
Stantec
Proj. Number: 187010251
By: J. Ziliak
1023001 OverflowWeirs.xls
Project: Bayer Stantee
Location: POND Paragon Proj. Number: 187010251
By: J. Ziliak
Broad Crested Weir - Basic Equation:
Q = CoLoH1.5
Calculate H from Q and L
C= 3.00
Q= 140.80 cfs
L= 65 ft
H= 0.8 ft
1023001 OverflowWeirs.xls
RIP RAP SIZING
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-P Outlet"
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 36 in Fffix
Type: Erosion Resistant Soil (Clay)
Discharge: Q 19.15 cfs Velocity: v 7.7 ft/sec
Taiwwater*: y 1.2 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
O/D2.5 = 1.23 < 6 --> use design charts
D = 3.00 ft
YVD = 0.40
Q/DAl .5 = 3.69
d50 = 3.05 in -------> 6 in
----> Use Type VL (Class 6) riprap ^� N5e e r.\0.1-e l Cer%C.K}e
2. Expansion Factor: 10gn
1/2tan0= 6.45
3. Riprap Length:
At = Q/V = 2.49 ft2
L = 1/2tanO * (AVYt - D) _ -6 ft
4. Governing Limits:
L> 3D 9 ft increase length to 9 ft
L<10D 30 ft =>-6ft-->OK
5. Maximum Depth:
Depth = 2d50 = 2 (6 in / 12) = 1 ft
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width:
Width = 3D = 3 (36 in /12) = 9 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type VL (Class 6) riprap
Length = 9 ft
Depth = 1 ft
Width = 9 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-P-O-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-Q Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 18 inIISo-ilType: Erosion Resistant Soil (Clay)
Discharge: Q 3.5 cfs IMax Velocity: v 7.7 ft/sec
ailwater': y 0.6 ft unknown
Assume that y=0.4'D if tailwater conditions are unknown
1. Required riprap type:
O/D2.5 = 1.27 < 6 --> use design charts
D = 1.50 ft
YUD = 0.40
Q/D^1.5 = 1.91
d50 = 1.58 in -------> 0 in
----> Use geotextile or minimum riprap gradation. Use
2. Expansion Factor: C 3 $'O
1/2tan0= 6.41
3. Riprap Length:
At = Q/V = 0.45 ft2
L = 1/2tanO * (At/Yt - D) _ -5 ft
4. Governing Limits:
L> 3D 5 ft increase length to 5 ft
L<10D 15 ft =>-5ft-->OK
5. Maximum Depth:
Depth = 2d50 = 2 (0 in / 12) = 0 ft
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width:
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
geotextile or minimum riprap
gradation.
Length = 5 ft
Depth = 0 ft
Width = 5 ft
gXS IvA V
Geotcxt;l�
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \RE PORTS\DRAI NAGE\RI P-RAP\STRM-N-Q-OUTLET.XLS
4
I
STEM N—Q ta,f
HYDRAULIC RESULTS
Discharge
cfs
Peak Flow
Period hrs
Velocity [fps]
Area (sq.ft)
Hydraulic
Radius ft
Normal
Depth ft
0.5
1.0
2.68
1.31
1 0.22
0.28
LINER RESULTS
C350
S = 0.0200
1 L Bottom 1
4.0 Width = 3.50 ft 4.0
Not to Scale
Reach
Matting Type
Stability Analysis
Vegetation Characteristics
Permissible
Shear Stress
(psf)
Calculated
Shear Stress
(psfl
Safety Factor
Remarks
Staple Pattern
Phase
Class
Type
PDensity
Straight
C350
Vegetation
3
D
Mix,
7.00
0.35
19.65
STABLE
Staple E
Soil
Clay Loam
1.200
0.070
17.03
STABLE
SEAR - BROWN
2. Expansion Factor:
1/2tanO= 3.63
3. Riprap Length:
At = Q/V = 4.98 ft2
L = 1 /2tanO * (At/Yt - D) = 9 ft
4. Governing Limits:
L>3D 8 ft
L < 10D 25 ft
5. Maximum Depth:
Depth = 2d50 = 2 (9 in / 12) = 1.5 ft
6. Bedding:
7. Riprap Width:
in
13"x ti3 NAB
Front Range Village
Riprap Rundown at STRM-N-R Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 30 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 38.33 cfs Max Velocity: v 7.7 ft/sec
Tailwater*: y 1.0 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 =
3.88 < 6 --> use design charts
D =
2.50 ft
YUD =
0.40
Q/D^1.5 =
9.70
d50 =
8.04 in -------> 9
----> Use Type L (Class 9) riprap
C35-0 GCCJCX-E',�C.
<=9ft->OK
=>9ft-->OK
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (30 in /12) = 8 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type L (Class 9) riprap
Length = 9 ft
Depth = 1.5 ft
Width = 8 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-R-OUTLET.XLS
SEAR - BROWN
Front Range Village
Riprap Rundown at STRM-N-V Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 18 in rffix
Type: Erosion Resistant Soil (Clay)
Discharge: Q 8.33 cfs Velocity: V 7.7 ft/sec
Tailwater*: y 0.6 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 = 3.02 < 6 --> use design charts
D = 1.50 ft
YUD = 0.40
Q/D^1.5 = 4.53
d50 = 3.76 in -------> 6 in
----> Use Tyne VL (Class 6) riprap
2. Expansion Factor:
1/2tan0= 4.42
3. Riprap Length:
At = Q/V = 1.08 ft2
L = 1 /2tanO * (At/Yt - D) = 1 ft
4. Governing Limits:
L> 3D 5 ft increase length to 5 ft
L<1OD 15 ft =>1ft-->OK
5. Maximum Depth:
Depth = 2d50 = 2 (6 in / 12) = 1 ft
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width:
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type VL (Class 6) riprap
Length = 5 ft
Depth = 1 ft
Width = 5 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTIVE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-V-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-W Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D . 18 in 1[9-o-i—IType: Erosion Resistant Soil (Clay)
Discharge: Q 15.65 cfs IMax Velocity: v 7.7 ft/sec
ailwater*: y 0.6 ft unknown
Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.1 = 5.68 < 6 --> use design charts
D = 1.50 ft
YUD = 0.40
Q/D^1.5 = 8.52
d50 = 7.06 in -------> 9 in
----> Use Type L (Class 9) riprap
2. Expansion Factor:
1/2tan0= 2.02
3. Riprap Length:
At = Q/V = 2.03 ft2
L = 1/2tan0 * (At/Yt - D) = 4 ft
4. Governing Limits:
L> 3D 5 ft increase length to 5 ft
L<10D 15 ft =>4ft-->OK
5. Maximum Depth:
Depth = 2d50 = 2 (9 in / 12) = 1.5 ft
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width:
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type L (Class 9) riprap
Length = 5 ft
Depth = 1.5 ft
Width = 5 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-W-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-1 Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 24 inJ[S7o_iII_Type: Erosion Resistant Soil (Clay)
Discharge: Q 9.94 cfs IMax Velocity: v 7.7 ft/sec
ailwater;: y 0.8 ft unknown
Assume that y=0.4'D if tailwater conditions are unknown
1. Required riprap type:
Q/Dz.5 = 1.76 < 6 --> use design charts
D = 2.00 ft
YUD = 0.40
Q/D^1.5 = 3.51
d50 = 2.91 in -------> 0 in
----> Use cieotextile or minimum riaraa gradation.=2 LxSe
2. Expansion Factor: 0"CCet
1/2tanO= 5.91
3. Riprap Length:
At = ON = 1.29 ft2
L = 1/2tan0' (At/Yt - D) = -2 ft
4. Governing Limits:
L>3D 6 ft
L<1OD 20 ft
5. Maximum Depth:
Depth = 2d50 = 2 (0 in / 12) = 0 ft
6. Bedding:
7. Riprap Width:
increase length to 6 ft
=> -2 ft --> OK
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (24 in /12) = 6 ft
(Extend riprap to minimum of culvertheight or normal channel depth.)
Summary:
geotextile or minimum riprap
gradation.
Length = 6 ft
Depth = 0 ft
Width = 6 ft
e 1n\M_rl
-fir; ck I e-
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \RE PORTS\DRAINAGE\RI P-RAP\STRM-N-I-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-J Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 24 in I[Toi—I-Type: Erosion Resistant Soil (Clay)
Discharge: Q 24.73 cfs IMax Velocity: v 7.7 ft/sec
ailwater*: y 0.8 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
O/D2.5 = 4.37 < 6 --> use design charts
D = 2.00 ft
Yt/D = 0.40
Q/D^1.5 = 8.74
d50 = 7.25 in -------> 9 in
---> Use Type L (Class 9) riprap
to x)o )VAG
2. Expansion Factor:
1/2tanO= 3.10
3. Riprap Length:
At = Q/V = 3.21 ft2
L = 1/2tanO * (At/Yt - D) = 6 ft
4. Governing Limits:
L > 3D 6 ft
L<10D 20 ft
5. Maximum Depth:
Depth =2d50=2(9in/12)= 1.5 ft
6. Bedding:
7. Riprap Width:
C 350 6co�ex�;\e.
<=6ft-->OK
=>6ft-->OK
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (24 in /12) = 6 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type L (Class 9) riprap
Length = 6 ft
Depth = 1.5 ft
Width = 6 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-J-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-K Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 18 in JF§o_i_IType: Erosion Resistant Soil (Clay)
Discharge: Q 0.52 cfs IMax Velocity: V 7.7 ft/sec
ailwater*: y 0.6 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 =
0.19 < 6 --> use design charts
D =
1.50 ft
YUD =
0.40
Q/D^1.5 =
0.28
d50 =
0.23 in -------> 0 in
----> Use
geotextile or minimum riprap gradation.
2. Expansion Factor:
1/2tanO= #N/A
3. Riprap Length:
At = ON = 0.07 ft2
L = 1/2tan0 * (At/Yt - D) _ #N/A ft
4. Governing Limits:
L>3D 5 ft
L < 10D 15 ft
5. Maximum Depth:
Depth = 2d50 = 2 (0 in / 12) = 0 ft
6. Bedding:
7. Riprap Width:
#N/A
#N/A
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7 L&5 8x S` NAG
C 3,�,'O Gco�ex�;1t
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
geotextile or minimum riprap
gradation.
Length = #N/A ft
Depth = 0 ft
Width = 5 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-K-OUTLET.XLS
S T 9M, M- K 0�+ Ie:.6
HYDRAULIC RESULTS
Discharge
cfs
Peak Flow
Period (his)Radiusft
Velocity (fps)
Area (sq.ft)
Hydraulic
Normal
Depth ft
0.5
1.0
1 1.41
1 0.37
1 0.09
0.09
L
4.0
LINER RESULTS
Bottom
Width = 3.50 ft
11
4.0
Not to Scale
Reach
Matting Type
S tability Analysis
Vegetation Characteristics
Permissible
Shear Stress
(Psf)
Calculated
Shear Stress
(Psf)
Safety Factor
Remarks
Staple Pattern
Phase
Class
Type
Density
Straight
C350
Vegetation
3
D
Mix
>=95%
7.00
0.12
59.08
STABLE
Staple E
Soil
Clay Loam
1.200
0.024
50.67
STABLE
it;
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-L Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 18 in IFTIType: Erosion Resistant Soil (Clay)
Discharge: Q 13.99 cfs IMax Velocity: V 7.7 ft/sec
ailwater*: y 0.6 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 =
5.08 < 6 --> use design charts
D =
1.50 ft
Yt/D =
0.40
Q/D^1.5 =
7.62
d50 =
6.31 in -------> 9 in
---> Use Type L (Class 9) riprap
2. Expansion Factor:
1 /2tanO =
3. Riprap Length:
At=Q/V=
L = 1 /2tanO * (At/Yt - D) =
4. Governing Limits:
L>3D
L<1OD
5. Maximum Depth:
Depth = 2d50 = 2 (9 in / 12) =
6. Bedding:
7. Riprap Width:
63so
2.36
1.82 ft2
4 ft
`tIxq% NAB
Geoke_xk,1e.
5 ft increase length to 5 ft
15 ft =>4ft-->OK
1.5 ft
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type L (Class 9) riprap
Length = 5 ft
Depth = 1.5 ft
Width = 5 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-L-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-M Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 18 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 1.27 cfs Max Velocity: v 7.7 ft/sec
Tailwater*: y 0.6 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 = 0.46 < 6 --> use design charts
D = 1.50 ft
YUD = 0.40
Q/D^1.5 = 0.69
d50 = 0.57 in -------> 0 in
----> Use geotextile or minimum riprap gradation. s7 u Se C n\ of-5 C
2. Expansion Factor:
1/2tanO= #N/A
3. Riprap Length:
At = Q/V = 0.16 ft2
L = 1/2tanO * (At/Yt - D) = #N/A ft
4. Governing Limits:
L>3D 5 ft
L < 10D 15 ft
5. Maximum Depth:
Depth = 2d50 = 2 (0 in / 12) = 0 ft
6. Bedding:
7. Riprap Width:
#N/A
#N/A
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
geotextile or minimum riprap
gradation.
Length = #N/A ft
Depth = 0 ft
Width = 5 ft
ConcmC e. +rtCI ke- lockn
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-M-OUTLET.XLS
SEAR -BROWN
2. Expansion Factor:
1/2tanO= 5.07
3. Riprap Length:
At = Q/V = 0.89 ft2
L = 1 /2tan0 * (At/Yt - D) = 0 ft
4. Governing Limits:
L>3D 5 ft
L < 10D 15 ft
5. Maximum Depth:
Depth = 2d50 = 2 (6 in / 12) = 1 ft
6. Bedding:
7. Riprap Width:
8' x 8` NAG
Front Range Village
Riprap Rundown at STRM-N-N Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 18 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 6.86 cfs IMax Velocity: v 7.7 ft/sec
ailwater*: y 0.6 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
O/D2.5 =
2.49 < 6 --> use design charts
D =
1.50 ft
YUD =
0.40
Q/D^1.5 =
3.73
d50 =
3.09 in -------> 6 in
---> Use Type VL (Class 6) riprap
C35-0 GGckt.KItAe.
increase length to 5 ft
=>0ft-->OK
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type VL (Class 6) riprap
Length = 5 ft
Depth = 1 ft
Width = 5 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \RE PORTS\DRAI NAGE\RIP-RAP\STRM-N-N-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown for STRM-N-A Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Box Width: W 10 ft Soil Type: Erosion Resistant Soil (Clay)
Box Height: H 3 ft Max Velocity: v 7.7 ft/sec
Discharge: Q 147.12 cfs
Tailwater*: y 1.2 ft unknown
* Assume that y=0.4*H if tailwater conditions are unknown
1. Required riprap type:
Q/WH^1.5 = 2.83 < 8 --> use design charts
H = 3.00 ft
Yt/H = 0.40
Q/WH^0.5 = 8.49
d50 = 3.57 in --> 6
----> Use Type VL (Class 6) riprap
2. Expansion Factor:
1/2tan0= 3.99
3. Riprap Length:
At = ON = 19 ft2
L = 1/(2tan0) * (At/Yt - W) = 24 ft
4. Governing Limits:
in Lk5c 0160 = I Z
TYPe M (00,55 iZ)
L>3H 9 ft <=24ft-->OK
L<1OH= 30 ft =>24ft-->OK
5. Maximum Depth:
Depth = 2d50 = 2 (6 in / 12) = 1 ft
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width (minimum): t�5t
Width = 2H = 2 (3 ft) = 6 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
M 12.
Type Vt Class 6 riprap
Length =_ 24 ft
Depth = 1 ft
Width = -& ft =7 36�
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-A-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-B Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 72 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 129.7 cfs Max Velocit : v 7.7 ft/sec
Tailwater*: y 2.4 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 =
1.47 < 6 --> use design charts
D =
6.00 ft
YUD =
0.40
Q/D^1.5 =
8.82
d50 =
7.31 in -------> 9
----> Use Type
L (Class 9) riprap
2. Expansion Factor:
1/2tanO= 6.20
3. Riprap Length:
At = Q/V = 16.84 ft2
L = 1/2tan0 * (At/Yt - D) = 6 ft
4. Governing Limits:
L>3D 18 ft
L<10D 60 ft
5. Maximum Depth:
Depth = 2d50 = 2 (9 in / 12) = 1.5 ft
6. Bedding:
7. Riprap Width:
in
increase length to 18 ft
=>6ft-->OK
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (72 in /12) = 18 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Z
Typek (Class,9-) riprap
Length = 18 ft
Depth = 1.5 ft
Width = 18 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \RE PORTS\DRAI NAGE\RI P-RAP\STRM-N-B-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-C Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 54 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 52.63 cfs Max Velocity: v 7.7 fUsec
ailwater*: y 1.8 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
O/D2.5 =
1.23
< 6 --> use design charts
D =
4.50
ft
YVD =
0.40
Q/D^1.5 =
5.51
d50 =
4.57
in -------> -6- in
---> Use Tyne
VL
(Class 6) riprap
2. Expansion Factor:
1/2tan0= 6.45
3. Riprap Length:
At = Q/V = 6.84 ft2
L = 1/2tanO * (At/Yt - D) = -5 ft
4. Governing Limits:
L>3D 14 ft
L<1OD 45 ft
5. Maximum Depth:
Depth = 2d50 = 2 (6 in / 12) = 1 ft
6. Bedding:
7. Riprap Width:
7 uge � so ' 12
T'rpe AA.( Class IZ)
increase length to 14 ft
=> -5 ft --> OK
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (54 in /12) = 14 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type-Yt (Class 8) riprap
Lengtn = 14 tt
Depth = 1 ft
Width = 14 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-C-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-D Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 48 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 66.57 cfs IlMax Velocity: v 7.7 ft/sec
Tailwater*: y 1.6 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 = 2.08 < 6 --> use design charts
D = 4.00 ft
Yt/D = 0.40
Q/D^1.5 = 8.32
d50 = 6.90 in -------> 9
---> Use Type L (Class 9) riprap
2. Expansion Factor:
1/2tan0= 5.57
3. Riprap Length:
At = Q/V = 8.65 ft2
L = 1/2tan6 * (At/Yt - D) = 8 ft
4. Governing Limits:
L>3D 12 ft
L<10D 40 ft
5. Maximum Depth:
Depth = 2d50 = 2 (9 in / 12) = 1.5 ft
6. Bedding:
7. Riprap Width:
in 7 1A
5e 'J\So ; IZ
T,/O2. M (Luis (2)
increase length to 12 ft
=> 8 ft --> OK
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (48 in /12) = 12 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
M t7�
Type,V(Class8) riprap
Length = 12 ft
Depth = 1.5 ft
Width = 12 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-D-OUTLET.XLS
SEAR -BROWN
Front Range Village By: MBK 187010251
Riprap Rundown for STRM-N-F Outlet Checked:
Updated: 26-Jan-07
Box Width: W 6 ft Soil Type: Erosion Resistant Soil (Clay)
Box Height: H 2 ft Max Velocity: v 7.7 ftlsec
Discharge: Q 54.27 cfs
Tailwater*: y 0.8 ft unknown
* Assume that y=0.4*H if tailwater conditions are unknown
1. Required riprap type:
QfWH^1.5 = 3.20 < 8 --> use design charts
H = 2.00 ft
YUH = 0.40
Q/WH^0.5 = 6.40 7 LAg 2
d50 = 2.69 in --> 0 in M
----> Use geotextile or minimum riaraa gradation. To e
2. Expansion Factor:
1/2tanO = 3.28
3. Riprap Length:
At=QN= 7 ft2 7 )2
L = 1/(2tanO) * (At/Yt - W) = 9 ft
3. Governing Limits:
L>3H 6 ft <=9ft-->OK
L<10H= 20 ft =>9ft-->OK
5. Maximum Depth:
Depth = 2d50 = 2 (0 in / 12) = 0 ft
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width (minimum):
Width = 2H = 2 (2 ft) = 4 ft
(Extend nprap to minimum of culvert height or normal channel depth.)
Summary:
Type M W&55 ►7.) r;prap
Length = -8- II
ft tZ
Depth = -8' ft 1.0`
Width = -� ft III
dso = 1 Z
(CIg5s IZ>
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-F 1-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-G Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 18 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 15.31 cfs Max Velocity: V 7.7 ft/sec
ailwater*: y 0.6 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 =
5.56 < 6 --> use design charts
D =
1.50 ft
YUD =
0.40
Q/D^1.5 =
8.33
d50 =
6.91 in -------> 9 in
----> Use Type
L (Class 9) riprap
2. Expansion Factor:
1 /2tan0 = 2.09
3. Riprap Length:
At = QN = 1.99 ft2
L = 1/2tanO * (At/Yt - D) = 4 ft
4. Governing Limits:
L> 3D 5 ft increase length to 5 ft
L<1OD 15 ft=>4ft-->OK
5. Maximum Depth:
Depth = 2d50 = 2 (9 in / 12) = 1.5 ft
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width:
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type L (Class 9) riprap
Length = 5 ft
Depth = 1.5 ft
Width = 5 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RIP-RAP\STRM-N-G-OUTLET.XLS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-N-H Outlet
Updated: 26-Jan-07
By: MBK 187010251
Checked:
Pipe Diameter: D 18 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 3.74 cfs JIMax Velocity: v 7.7 fUsec
ailwater 0.6 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 =
1.36 < 6 --> use design charts
D =
1.50 ft
YUD =
0.40
Q/D^1.5 =
2.04
d50 =
1.69 in -------> 0 in
----> Use
geotextile or minimum nora gradation.
2. Expansion Factor:
1/2tan0= 6.32
3. Riprap Length:
At = Q/V = 0.49 ft2
L = 1 /2tan0 * (AUYt - D) = -4 ft
4. Governing Limits:
L > 3D 5 ft
L < 10D 15 ft
5. Maximum Depth:
Depth = 2d50 = 2 (0 in / 12) = 0 ft
6. Bedding:
7. Riprap Width:
NAG
increase length to 5 ft
=> -4 ft --> OK
Use 1 ft thick layer of Type II'(CDOT Class A) bedding material.
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
geotextile or minimum riprap
gradation.
Length = 5 ft
Depth = 0 ft
Width = 5 ft
-7 U Se
C 3So Gcd�eXCle-.
Reference: UDFCD USDCM, Vol. 1, Major Drainage; Page MD-105
V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-H-OUTLETALS
s'
ST ?- to
•
•
HYDRAULIC RESULTS
Discharge
cfs
Peak Flow
Period hrs
Velocity [fps]
Area (sq.ft)
Hydraulic
Radius ft
Normal
Depth ft
0.7
1.0
1 2.72
1 1.36
0.23
0.29
L
4.0
LINER RESULTS
Bottom
Width = 3.50 ft
11
4.0
Not to Scale
Reach
Matting Type
Stability Analysis
Vegetation Characteristics
Permissible
Shear Stress
(psf)
Calculated
Shear Stress
(psf)
Safety Factor
Remarks
Staple Pattern
Phase
Class
Type
Density
Straight
C350
Vegetation
3
D
Mix
>=95%
7.00
0.36
19.25
STABLE
Staple E
Soil
Clay Loam
1.200
0.073
16.51
STABLE
0
APPENDIX - E
0 December 2006
Stantee
r'-
RATIONAL METHOD HYDROLOGY
Stantec
a/■ �-+tea-�� ��-RR Ra . -_. Riiiiiiiiiiiiia, Is r. — _ _
I
HYDROLOGIC SUMMARY TABLE
POND SUMMARY TABLE
:Pad
iTotal Vol ReR.:Yd Pmvidad
104Yr WBEL
A
7.64 f 648
4927.86
B
1 2.23 1 3,09
4e23.7€
O
1 1.37 f L%
4433.39
D
19 78 23 12
4435.15
E
0 u2 f ?5
4v25.i2
F
_
1.8Fi 1 03
_
3927 G3
"iraq..
1 5US 644
4105N
v
0 1N 300 450
I
SCALE IN FEET
---
NROPCSEO ILOIt INE
cM73:C [Cxia:NS
NEW SipM NX4N Rir. reINTR,1
EXISTNC SiIXM MAN
—�—
PROPOSED SWALE
era
Pv!yDSEG AKAAIE STREET acpE
C'TfETICN D( FLM
GES" PPNI
Eat ESTANACE RI 9NWNMY
NO.
= BASIN N1.wN
AL
= SANN ANEA (IN ACWE)
FOR DRAINAGE
REVIEW ONLY
NOT FOR CONSTRUCTION
City of Fort Collins, Colomdo
UTILITY PLAN APPROVAL
A PRDYD:
City Fcg;nGcr Da•�
CHECKED BY:........_..._—__-
Weter & Wcelevater UtINZY Di:e
CHECKED BY:
Stcrm.aler LIVYy
C:--ECKED BY:
Pol+x h RCcEM..n Oa:<
CHECKED BY:_ __.._.
Trntllc F,q Amer CG;e
CHECKED BY,_ _
CG:e
I HESE PANS HAVc NEEN 4tvt*ILT SO trE _OCA-
_N`I1Y TOR COMCEP- O\LY IHE RCNEW DOES NO!
VPLY RESPOINS'S TY BY II R YtEWINC
� PARTMHNI. THE IOCA. P011y FNCI-'ER 04 T'.T
- CA, ENTITY FOR ACCURN Y AND CORRECTNESS G
IHE CAI.C.ULA IONS FURT H VORE. T E rEVEW rICES
Nr IVPLY THAT Q�A%TITES DF ITCVS ON THE PLANS
NE fNk O uk E< REOL :HE REV:w
A. N3et IN 1W qn7kSON A,
- A• NA1,C At 1-,v%r E, T,
mm
c
� a1
4R�dxn
' a
Am
IIII�
X
Y m
U
WIT"
100% PLANS
BID SET
NOT FOR CONSTRUCTION
January 2007
rk N<N:<'t _SI N�
aIa iw �v
1n. [nNe o<er -
01211 D. C-151
Revision Sheet
0 23 of 137
Developed Site Hydrology
Front Range Village
187010251
Design
Point
Basin(s)
Area
(acre)
Composite
"C"
Qio
(cfs)
Q100
(cfs)
100
100
3.83
0.85
15.24
38.14
101
101
0.18
0.83
0.73
1.79
102
102
0.57
0.76
2.03
5.39
103
103
2.41
0.84
9.17
23.68
104
104
0.45
0.95
2.07
4.45
105
105
0.91
0.84
3.61
9.05
106
106
1.51
0.86
4.83
12.16
107
107
0.37
0.84
1.51
3.66
108
108
0.40
0.95
1.87
4.02
109
109
1.67
0.85
6.76
16.57
110
110
0.62
0.78
2.16
6.02
111
111
1.03
0.87
4.37
10.23
112
112
0.83
0.86
3.08
7.77
113
113
1.00
0.90
4.41
9.99
114
114
1.00
0.90
4.38
9.93
115
115
1.27
0.90
5.59
12.64
116
116
0.70
0.95
3.25
6.98
117
117
1.69
0.89
7.29
16.79
118
118
1.03
0.92
4.64
10.27
119
119
0.57
0.91
2.52
5.67
120
120
0.59
0.92
2.64
5.88
121
121
0.42
0.81
1.67
4.20
122
122
0.86
0.71
2.26
6.30
123
123
1.24
0.60
2.83
7.57
124
124
0.11
0.95
0.53
1.14
125
125
0.31
0.84
1.18
3.10
126
126
0.67
0.95
3.03
6.63
130
130
1.08
0.95
4.98
10.72
131
131
0.81
0.67
2.64
6.75
1:04 PM
The Sear -Brown Group 1 /25/2007
132
132
0.23
0.95
1.05
2.26
133
133
0.14
0.95
0.65
1.40
134
134
0.82
0.95
3.79
8.15
135
135
0.39
0.70
1.31
3.38
136
136
0.36
0.95
1.65
3.55
137
137
0.47
0.95
2.19
4.71
138
138
1.84
0.91
8.19
18.34
139
139
1.70
0.58
3.93
10.63
140
140
0.38
0.65
1.15
3.10
141
141
3.26
0.95
15.08
32.43
142
142
1.23
0.85
4.81
12.27
143
143
4.90
0.76
18.06
46.13
150
150
3.36
0.65
8.10
23.09
151
151
1.48
0.62
3.84
11.00
160
160
1.63
0.85
6.55
16.23
161
161
0.97
0.81
3.77
9.62
162
162
0.77
0.90
3.38
7.68
163
163
0.65
0.95
2.99
6.44
164
164
1.50
0.83
5.07
13.27
165
165
0.55
0.91
2.41
5.42
200
200
2.74
0.85
10.41
27.24
201
201
1.36
0.88
5.70
13.55
202
202
0.32
0.95
1.49
3.20
203
203
0.10
0.84
0.40
0.97
204
204
0.24
0.95
1.11
2.38
205
205
0.37
0.95
1.70
3.65
206
206
0.32
0.92
1.42
3.16
207
207
1.22
0.78
4.23
11.91
208
208
0.29
0.94
1.34
2.91
209
209
0.16
0.93
0.71
1.56
210
210
0.39
0.91
1.73
3.91
211
211
0.38
0.90
1.68
3.82
212
212
0.44
0.95
2.04
4.39
213
213
1.71
0.86
6.82
17.01
214
214
1.12
0.89
4.89
11.19
215
215
1.53
0.61
3.53
10.15
216
216
0.16
0.95
0.75
1.61
217
217
1.41
0.95
6.50
13.99
218
218
0.23
0.95
1.08
2.32
219
219
0.40
0.95
1.87
4.01
220
220
2.01
0.91
8.43
19.95
1:04 PM
The Sear -Brown Group 1 /25/2007
221
221
1.04
0.72
3.36
9.31
300
300
0.55
0.60
1.19
3.50
301
301
1.38
0.87
5.45
13.72
302
302
0.21
0.95
0.97
2.08
303
303
0.30
0.66
0.95
2.50
304
304
0.28
0.95
1.29
2.78
305
305
0.31
0.95
1.43
3.08
306
306
0.69
0.90
3.02
6.86
307
307
0.81
0.60
2.15
6.10
400
400
0.26
0.95
1.21
2.59
401
401
0.30
0.95
1.38
2.96
402
402
2.04
0.87
8.28
20.29
403
403
0.33
0.87
1.38
3.24
404
404
1.75
0.86
7.33
17.45
405
405
1.16
0.89
5.04
11.52
406
406
1.11
0.89
4.47
11.09
407
407
0.90
0.88
3.55
8.99
408
408
1.72
0.88
7.30
17.14
409
409
1.98
0.80
7.68
19.61
410
410
0.38
0.93
1.71
3.74
411
411
0.28
0.88
1.20
2.79
412
412
4.34
0.95
20.08
43.19
413
413
0.37
0.77
1.38
3.56
414
414
1.12
0.62
2.78
7.77
500
500
3.02
0.84
9.88
30.06
501
501
0.85
0.65
2.67
6.82
502
502
1.13
0.76
3.23
8.70
503
503
1.25
0.74
3.21
8.75
504
504
0.87
0.67
2.86
7.31
505
505
3.03
0.91
8.22
19.12
1:04 PM
The Sear -Brown Group 1 /25/2007
Developed Weighted Runoff Coefficients
Front Range Village
187010251
This sheet calculates the composite "C' values for the Rational Method.
100
0.95
0.25
166,990
3.83
141,946
3.26
85
15
0.85
101
0.95
0.25
7,836
0.18
6,473
0.15
83
17
0.83
102
0.95
0.25
24,763
0.57
18,135
0.42
73
27
0.76
103
0.95
0.25
104,864
2.41
87.688
2.01
84
16
0.84
104
0.95
0.25
19,503
0.45
19,503
0.45
100
0
0.95
105
0.95
0.25
39,629
0.91
33,469
0.77
84
16
0.84
106
0.95
0.25
65,653
1.51
56,931
1.31
87
13
0.86
107
0.95
0.25
16,004
0.37
13,575
0.31
85
15
0.84
108
0.95
0.25
17,608
0.40
17,608
0.40
100
0
0.95
109
0.95
0.25
72,532
1.67
62,397
1.43
86
14
0.85
110
0.95
0.25
27,018
0.62
20,457
0.47
76
24
0.78
111
0.95
0.25
44,804
1.03
39,800
0.91
89
11
0.87
112
0.95
0.25
36,293
0.83
31,587
0.73
87
13
0.86
113
0.95
0.25
43,752
1.00
40,661
0.93
93
7
0.90
114
0.95
0.25
43,479
1.00
40,419
0.93
93
7
0.90
115
0.95
0.25
55,344
1.27
51,690
1.19
93
7
0.90
116
0.95
0.25
30,564
0.70
30,564
0.70
100
0
0.95
117
0.95
0.25
73,502
1.69
66,894
1.54
91
9
0.89
118
0.95
0.25
44,976
1.03
43,230
0.99
96
4
0.92
119
0.95
0.25
24,839
0.57
23,386
0.54
94
6
0.91
.120
0.95
0.25
25,747
0.59
24,598
0.56
96
4
0.92
121
0.95
0.25
18.404
0.42
14,806
0.34
80
20
0.81
122
0.95
0.25
37,614
0.86
24,514
0.56
65
35
0.71
123
0.95
0.25
54,110
1.24
26,777
0.61
49
51
0.60
124
0.95
0.25
5,000
0.11
5,000
0.11
100
0
0.95
125
0.95
0.25
13,554
0.31
11,520
0.26
85
15
0.84
126
0.95
0.25
29,025
0.67
28,892
0.66
100
0
0.95
130
0.95
0.25
46,921
1.08
46,921
1.08
100
0
0.95
131
0.95
0.25
35,341
0.81
21,163
0.49
60
40
0.67
132
0.95
0.25
9,912
0.23
9,912
0.23
100
0
0.95
133
0.95
0.25
6,146
0.14
6,146
0.14
100
0
0.95
134
0.95
0.25
35,696.
0.82
35,696
0.82
100
0
0.95
135
0.95
0.25
16,896
0.39
10,888
0.25
64
36
0.70
136
0.95
0.25
15,526
0.36
15,526
0.36
100
0
0.95
137
0.95
0.25
20,601
0.47
20,601
0.47
100
0
0.95
138
0.95
0.25
80,287
1.84
76,027
1.75
95
5
0.91
139
0.95
0.25
74,128
1.70
35,077
0.81
47
53
0.58
140
0.95
0.25
16,685
0.38
9,549
0.22
57
43
0.65
141
0.95
0.25
141,976
3.26
141,976
3.26
100
0
0.95
142
0.95
0.25
53,733
1.23
46,351
1.06
86
14
0.85
143
0.95
0.25
213,552
4.90
154,556
3.55
72
28
0.76
150
0.95
0.25
146,398
3.36
84,003
1.93
57
43
0.65
151
0.95
0.25
64,570
1.48
34,537
0.79
53
47
0.62
160
0.95
0.25
71,072
1.63
60,517
1.39
85
15
0.85
161
0.95
0.25
42,097
0.97
33,831
0.78
80
20
0.81
162
0.95
0.25
33,623
0.77
31,170
0.72
93
7
0.90
163
0.95
0.25
28,175
0.65
28,175
0.65
100
0
0.95
164
0.95
0.25
65,370
1.50
54,520
1.25
83
17
0.83
165
0.95
0.25
23,746
0.55
22,307
0.51
94
6
0.91
200
0.95
0.25
119,242
2.74
101,442
2.33
85
15
0.85
201
0.95
0.25
59,318
1.36
53,774
1.23
91
9
0.88
202
0.95
0.25
13,995
0.32
13,995
0.32
100
0
0.95
203
0.95
0.25
4,226
0.10
3,578
0.08
85
15
0.84
204
0.95
0.25
10,408
0.24
10,408
0.24
100
0
0.95
205
0.95
0.25
16,000
0.37
16,000
0.37
100
0
0.95
1:06 PM
The Sear -Brown Group 1/25/2007
206
0.95
0.25
13,843
0.32
13,237
0.30
96
4
0.92
207
0.95
0.25
53,125
1.22
40.599
0.93
76
24
0.78
208
0.95
0.25
12,740
0.29
12,524
0.29
98
2
0.94
209
0.95
0.25
6,818
0.16
6,601
0.15
97
3
0.93
210
0.95
0.25
17,100
0.39
16,049
0.37
94
6
0.91
211
0.95
0.25
16,703
0.38
15,479
0.36
93
7
0.90
212
0.95
0.25
19,229
0.44
19,229
0.44
100
0
0.95
213
0.95
0.25
74,470
1.71
64,981
1.49
87
13-
0.86
214
0.95
0.25
48,973
1.12
45,006
1.03
92
8
0.89
215
0.95
0.25
66,487
1.53
34,120
0.78
51
49
0.61
216
0.95
0.25
7,065
0.16
7,065
0.16
100
0
0.95
217
0.95
0.25
61,240
1.41
61,240
1.41
100
0
0.95
218
0.95
0.25
10,176
0.23
10,176
0.23
100
0
0.95
219
0.95
0.25
17,567
0.40
17,567
0.40
100
0
0.95
220
0.95
0.25
87,358
2.01
82,640
1.90
95
5
0.91
221
0.95
0.25
45,296
1.04
30,411
0.70
67
33
0.72
300
0.95
0.25
23,979
0.55
11,889
0.27
50
50
0.60
301
0.95
0.25
60,081
1.38
53,487
1.23
89
11
0.87
302
0.95
0.25
9,111
0.21
9,111
0.21
100
0
0.95
303
0.95
0.25
13,224
0.30
7,761
0.18
59
41
0.66
304
0.95
0.25
12,183
0.28
12,183
0.28
100
0
0.95
305
0.95
0.25
13,504
0.31
13.504
0.31
100
0
0.95
306
0.95
0.25
30,023
0.69
27,819
0.64
93
7
0.90
307
0.95
0.25
35,491
0.81
17,851
0.41
50
50
0.60
400
0.95
0.25
11,354
0.26
11,354
0.26
100
0
0.95
401
0.95
0.25
12,958
0.30
12,958
0.30
100
0
0.95
402
0.95
0.25
88,821
2.04
78,892
1.81
89
11
0.87
403
0.95
0.25
14,197
0.33
12,578
0.29
89
11
0.87
404
0.95
0.25
76,380
1.75
66,654
1.53
87
13
0.86
405
0.95
0.25
50,443
1.16
46,350
1.06
92
8
0.89
406
0.95
0.25
48,535
1.11
44,084
1.01
91
9
0.89
407
0.95
0.25
39,357
0.90
35,510
0.82
90
10
0.88
408
0.95
0.25
75,043
1.72
68,017
1.56
91
9
0.88
409
0.95
0.25
86,373
1.98
67,254
1.54
78
22
0.80
410
0.95
0.25
16,370
0.38
15,979
0.37
98
2
0.93
411
0.95
0.25
12,225
0.28
11,009
0.25
90
10
0.88
412
0.95
0.25
189,069
4.34
189,069
4.34
100
0
0.95
413
0.95
0.25
16,243
0.37
11,988
0.28
74
26
0.77
414
0.95
0.25
49,001
1.12
25,993
0.60
53
47
0.62
500
0.95
0.25
131,589
3.02
111,485
2.56
85
15
0.84
501
0.95
0.25
36,998
0.85
20,892
0.48
56
44
0.65
502
0.95
0.25
49,424
1.13
36,325
0.83
73
27
0.76
503
0.95
0.25
54,327
1.25
37,711
0.87
69
31
0.74
504
0.95
0.25
37,970
0.87
23,017
0.53
61
39
0.67
505
0.95
0.25
132,192
3.03
124,326
2.85
94
6
0.91
506
0.95
0.25
98,245
2.26
89.225
2.05
91
9
0.89
1:06 PM
The Sear -Brown Group 1/25/2007
DEVELOPED 10-YEAR STORM EVENT
Stantec
TIME OF CONCENTRATION
10 year design storm
Front Range Village
187010251 1.87(I.1 - CC7 ).fD
Sa333
t, = ti +tL
Cr = 1.00
SUB -BASIN DATA
INITIALIOVERLAND TIME
TRAVEL TIME
FINAL
REMARKS
BASIN AREA
C
LENGTH
SLOPE
t;
LENGTH CHANNEL
SLOPE
VELOCITY
4
Tr
NO.
(ac)
(ft)
N
(min)
(ft)
TYPE(a)
N
WEI)
(min)
(min)
1
2
3
4
5
6
7
8
10
12
13
100
3.83
0.85
217
2
5.6
1
PA
2
2.72
0.0
5.6
101
0.18
0.83
30
2
2.2
101
PA
1.34
2.21
0.8
5.0
102
0.57
0.76
127
2
5.6
1
PA
2
2.72
0.0
5.7
103
2.41
0.84
15
2
1.5
650
PA
1.5
2.35
4.6
6.1
104
0.45
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
105
0.91
0.84
244
2.58
5.5
1
PA
2.58
3.10
0.0
5.5
106
1.51
0.86
50
3.17
2.2
915
PA
0.98
1.89
8.1
10.3
107
0.37
0.84
19
2
1.7
251
PA
1.15
2.05
2.0
5.0
108
0.40
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
109
1.67
0.85
259
2.67
5.4
1
PA
2.67
3.15
0.0
5.4
110
0.62
0.78
186
2
6.5
1
PA
2
2.72
0.0
6.5
111
1.03
0.87
210
2
4.9
1
PA
2
2.72
0.0
5.0
112
0.83
0.86
28
2
1.9
427
PA
0.5
1.34
5.3
7.2
113
1.00
0.90
194
2.51
3.8
1
PA
2.51
3.05
0.0
5.0
114
1.00
0.90
196
2.41
3.9
1
PA
2.41
2.99
0.0
6.0
115
1.27
0.90
234
2
4.5
1
PA
2
2.72
0.0
5.0
116
0.70
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
117
1.69
0.89
30
2
1.7
246
PA
1.23
2.12
1.9
5.0
118
1.03
0.92
110
2.35
2.6
1
PA
2.35
2.95
0.0
5.0
119
0.57
0.91
146
2
3.4
1
PA
2
2.72
0.0
5.0
120
0.59
0.92
142
2.14
3.1
1
PA
2.14
2.81
0.0
5.0
121
0.42
0.81
45
2
2.9
99
PA
0.87
1.77
0.9
5.0
122
0.86
0.71
60
2
4.5
616
PA
0.82
1.72
6.0
10.5
123
124
0.60
25
2
3.7
621
PA
0.81
1.71
6.0
9.8
124
0.11
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
125
0.31
0.84
151
1.28
5.4
117
PA
1.07
1.97
1.0
6.4
126
0.67
0.95
55
2
1.7
284
PA
0.5
1.34
3.5
5.2
130
1.08
0.95
50
1.6
1.7
294
PA
2.5
3.05
1.6
5.0
131
0.81
0.67
1
1
0.8
1
PA
1
1.91
0.0
5.0
132
023
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
133
0.14
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
134
0.82
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
135
0.39
0.70
78
2.53
4.8
50
PA
1.62
2.44
0.3
5.2
136
0.36
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
137
0.47
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
138
1.84
0.91
273
2.14
4.5
1
PA
2.14
2.81
0.0
5.0
139
1.70
0.58
32
2
4.4
550
PA
1.14
2.04
4.5
8.9
140
0.38
0.65
50
2
4.7
93
PA
0.5
1.34
1.2
5.9
141
3.26
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
142
1.23
0.85
50
2
2.6
319
PA
0.63
1.50
3.5
6.1
143
4.90
0.76
1
1
0.6
1
PA
1
1.91
0.0
5.0
150
3.36
0.65
108
2
6.9
280
GW
0.7
1.29
3.6
10.5
151
1.48
0.62
80
1.8
6.5
114
GW
0.8
1.38
1.4
7.9
160
1.63
0.85
207
2
5.4
1
PA
2
2.72
0.0
5.4
161
0.97
0.81
152
2.05
5.2
1
PA
2.05
2.75
0.0
5.2
162
0.77
0.90
176
2.86
3.5
1
PA
2.86
3.27
0.0
5.0
163
0.65
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
164
1.50
0.83
30
2
2.2
758
PA
1.11
2.01
6.3
8.4
165
0.55
0.91
64
2
2.3
100
PA
2.59
3.10
0.5
5.0
200
2.74
0.86
100
1.92
3.8
260
PA
0.8
1.70
2.5
6.4
201
1.36
0.88
302
2.09
5.5
1
PA
2.09
2.78
0.0
5.5
202
0.32
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
203
0.10
0.84
60
2
3.0
45
PA
2.28
2.91
0.3
5.0
204
0.24
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
205
0.37
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
206
0.32
0.92
28
2
1.4
126
PA
1.88
2.63
0.8
5.0
207
1.22
0.78
233
2.4
6.7
1
PA
2.4
2.99
0.0
6.7
1:07 PM
The Sear -Brown Group 1/25/2007
208
0.29
0.94
95
2
2.3
129
PA
1.44
2.30
0.9
5.0
209
0.16
0.93
30
2
1.4
62
PA
1.98
2.70
0.4
5.0
210
0.39
0.91
89
2
2.7
112
PA
0.5
1.34
1.4
5.0
211
0.38
0.90
35
2
1.8
109
PA
0.5
1.34
1.4
5.0
212
0.44
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
213
1.71
0.86
290
2.23 -
5.8
1
PA
2.23
2.87
0.0
5.8
214
1.12
0.89
134
3
3.1
1
PA
3
3.35
0.0
5.0
215
1.53
0.61
130
2
8.3
218
PA
1.4
2.26
1.6
9.9
216
0.16
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
217
1.41
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
218
0.23
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
219
0.40
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
220
2.01
0.91
374
1.5
5.9
1
PA
1.5
2.35
0.0
5.9
221
1.04
0.72
149
2.5
6.4
1
PA
2.5
3.05
0.0
6.4
300
0.55
0.60
128
1
10.6
35
PA
0.75
1.64
0.4
11.0
301
1.38
0.87
152
1.42
4.7
173
PA
0.88
1.79
1.6
6.3
302
0.21
0.95
23
2
1.1
180
PA
0.66
1.54
1.9
5.0
303
0.30
0.66
30
2
3.6
180
PA
0.66
1.54
1.9
5.5
304
0.28
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
305
0.31
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
306
0.69
0.90
38
2
1.8
297
PA
0.96
1.87
2.7
5.0
307
0.81
0.60
97
2.4
6.9
1
PA
2.4
2.99
0.0
6.9
400
0.26
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
401
0.30
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
402
2.04
0.87
119
1.9
3.8
261
PA
1.29
2.17
2.0
5.8
403
0.33
0.87
98
2
3.4
133
PA
0.5
1.34
1.7
5.0
404
1.75
0.86
215
3
4.5
71
PA
1.5
2.35
0.5
5.1
405
1.16
0.89
204
1.9
4.5
1
PA
1.9
2.65
0.0
5.0
406
1.11
0.89
204
2.1
4.5
145
PA
0.5
1.34
1.8
6.3
407
0.90
0.88
218
1.5
5.3
104
PA
0.5
1.34
1.3
6.6
408
1.72
0.88
302
2.35
5.3
1
PA
2.35
2.95
0.0
5.3
409
1.98
0.80
28
2
2.4
1
PA
2
2.72
0.0
5.0
410
0.38
0.93
68
2
2.0
130
PA
0.5
1.34
1.6
5.0
411
0.28
0.88
68
2
2.7
101
PA
0.5
1.34
1.3
5.0
412
4.34
0.95
1
1
0.3
1
PA
1
1.91
0.0
5.0
413
0.37
0.77
65
2.11
3.9
95
PA
0.5
1.34
1.2
5.1
414
1.12
0.62
64
2
5.7
281
PA
0.62
1.49
3.1
8.8
500
3.02
0.84
240
0.5
9.4
1
PA
0.5
1.34
0.0
9.4
501
0.85
0.65
50
4.37
3.7
1
PA
4.37
4.06
0.0
5.0
502
1.13
0.76
25
2.8
2.2
992
PA
1.13
2.03
8.1
10.4
503
1.25
0.74
26
1
3.5
1026
PA
1.09
1.99
8.6
12.1
504
0.87
0.67
52
6.6
3.1
1
PA
6.6
5.01
0.0
5.0
505
3.03
0.91
60
2
2.2
1195
PA
0.5
1.34
14.9
1 17.1
Note:
a) Codes the channel type for velocity calculations.
PA = Paved, PL = Pasture 8. Lawns, GW = Grassed Waterway
1:07 PM
The Sear -Brown Group 1/25/2007
m
m
E
m
z
m o
dth thrr th�nmmnm�mrnNrnd Nd north th mthmd NNm� NmrnmN�O modNA
t'i d - m N d th d V N th n d N N N O t7 d N Om .- .- CV m M m lh
N O
cY'000000000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
� �c000000000000000c0000c000c00000000cocc0000000
N AOoOmmNmn th Od thN NNm NtOmNmN OCt m0mAMm�w Of O4O mNA
�� U
�CNNNthOCI <th V V Nthn V NCI CIC nth OCl,Oth, NaG thO Nth tGm
O
C
tll
thmn� N� n OANth thOOrOOt (hn OlNmd � nm�f7dNOimrdOmmlhOmmlhA
I=
Q m
C1O0NOO�OO�O�O'-��0��OOOO�OOO �-0000000� �-Oth �-dth� � O
N t
C
A O) m A N d A A m A r O A A A A AAA A A A O O n n A A A N A AAA ty A m A O N N �
A m m N m A A m m A d m m m m m m m m m m Ii ai m N m m m m m m m m m m Ci m m N m A 4 A m
m 2
c
o4 44644
ocooco th6o�aocoovoi oi000vo6oc00000i6000th600
V
mmAm0)mm OimAmmOI 0�0) W m0) W O)mnmlTm Of 0)m OtTOtn O�Of ANmO�mnmmmm�
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
000000000000000000000000000000000000O00000000
E
m O A O N N O O d N O N 0 0 0 0 0 0 0 0 0 N m O d N O O p O O N O p O W Ot O O N Oz d N
's'ENNNmNNa-NNNtdNrNNNNNNNNN0-mNNNNNNNNNNNNacNNNN
nNN
='
E E
> C
p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E
ti otictiocc000coc0000tioti ticcc0000ti000000000000000
�2
o
>
LL
c
m _
S
N
O
K
r �
F
I
L
m
J
E
m O A w O N O 0 d N O N O 0 0 N m o d N O 0 0 0 N O O O m O) O O N W d N
m N N� 6 N N N m N A 6 6 N N N N N 6 N 6 N 6 N 6 � OI N m N N N 6 N N N 0,6 N N m N N m NN N
N
m
0000000000� � �NNNNNNNIh th th th C)lh th th lh the ddd NNmm
m
C
O C
m
.9 V
()
0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - - - - - - ^ N - th M th M M M th - - - - - N N m m
y J
m
o_
0
0
o_
N
C
IA
l0
m
T
C
O
N
S
N
N
a
m
a
mOr OOO�-ON('I Q �-l�l [[ppeNOC)mOmrNmmmrlA Q)C)N � �mmpmp C)dr mOm�Ommmmrl7�mN N
l7 m O Q e r Q Q.- r Q N C l r r t O O m m m r m O m e t 7 Q m m N d 0 N M N l h C f O d m CJ m r N l7 r m m N N m N N
t7N6N6 0Q 0mNmNNMNm m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O O O O O O O O O O O O O O O O O O O O O O O O O ( Op O O O O O O O O O m O O O O O O O O O O O O m O O m O O O O O O
m W r"QOD7O"ON(7Q (7meNm(")mnOme (7�emmNeO�N [7 NfmI C')Oe I(JOmrN�lh m(DmNN mN N M m O e r Q Q r Q N {7 r r m O m m m r
(7N mN6'-0 e •-O� �Nmef7Om�-ppm(7 •-mOO� �MN.-�-m� r 1(l df7rr�� pN �NO)Nf")NNm m
n tmOn�rtm�f��NmfN�)NN�f7 t7QrNm�QN000�OmNmNt7mmNthOMrm�mrmnNlh (7�Om�NmO m
00 � O N � 00000 � 00000 � � •-O � 00 N � O � OOOOOOOON O� � �-O � �-00 d O�-NO �-�-017 0)
m m O m m r m m m m m Q m m m m m m m r m m m m m Q m m m r m m m M m m m m m m m Q r m m m m m m m m r N m m M
e Q e e e e e e e e e e e e Q e e e d P l d d Q e e Q l 7 e e e e d d d Q d e e d d d d d d d d d d t h l h d f h C 1 d N N
mmwrnmnrn�rnmrnmr rnrnmrnrnmmsomrnrnmrnnnmrnnrnmmnrnmmmmmmmmmmmrnnmmmnnma
0000000000000000000000000000000000000000000000000000000 0
o OeoQ m o N � N N tC N N 2 o o r o o 000 m Omo o o o mQ--no m doom o omo 6oc�m�noo oo 6md o oo� ?
N N tG � m 6 � 6 N �[) N N � N � Yf Oi N Vf IN tD � �G N N � � N (O �[) i[f N N � Nt t0 N � N Vf N N O) 6O^ eN- 6 ! co
0 6 6 0 a 6 0 6 0 a 6 6 0 O O O O O O O O O O O 0 0 a 6 6 0 a 0 0 0 6 6 0 0 a 0 0 0 6 6 6 6 0 6 0 0 6 6 6 6 6 O
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
I I i I I I I I 1 I I I I I I I 1 I I 1 1 I I i I I I I I I I� I I I I 1 1 I I I 17 1 1 I I I I I I t i l t
o ododm00000r00000mom0000md4mom000moomo�ommc�0000�mdo?�o�
N MemO�NC)e�Omr mm- ---Q mmrmmO�O�NC')d UlmrpOp epppNp MQYoo1 (OrmmO'-N t7Q0�-NMe N N
N N N N N N N N N��
N t 7 d m O N t 7 Q m m r m m O- N t 7 e m m r m m O O N (n Q N m r O Np mp e h m r m m O N t 7 Q O N t 7 Q O
m
p
m mmm0000000000 - -- - --- - --N NOOOOOOOOOPdQ V aev a o0 oa a anuoi voi voi coin
N NNNNNNNNNNNNNNNNNNNN Nf")C'l Cl f")f")C'l Mlh Vd
�"�
F
T
N
0
N
0
N
m m- M m Q- N M
m M
Q M m M
m
t D i[ I
QQ m A A M M N Q
d O M M N O A m
M i l l
d M, M m Q M m m
am
N m O Q
-
m N 0
O CO m O m N m A
N M M m d N m
O m
d W
P N Om0
d Q m
m m O O m m m M m m
m A
m 6 - N
O
�� N
A d m N A A m A m �
O m v o o l A m
M Ili
Q A
N m m
N N d Q Q Q m o
-- N N
N
N N d d d d d m N
.-
m m M m d N d M
mdTdddMdQmdNMMN hmM
d�DMd
m M
d M m
m
N m M
m 7
o m-
wOomM Oi �6
am
6
N 0
6 o;N
C
�N
O A
m O- m N mO
M m Ooom
OM
a m v o0A66
O m
MV
dNm
N
Od �d v�
NQNOM
NN
NN
-----
O N m M N m M m m
00
d
mwmo
m m m M
d
MN�
m m
O W mammom�
W A N m m m d
ONOG� A Q
N
MN
00
cO Of T
QON
A m O ' m m
� M M d d N N
N
64
M Q m m
m
d
O
- Q m
O
N A m m A
N N N N N M M
m
N M M Q M m A A
an d
O r
O O
N
M h m
�'s-
A m
N Q Q
N N m m m m m m
A m
m
m m 0
N d d O m M O M m
A A m A m m M 0
a"
Am
M m 0
O O N
.
A" M
O m m 0 N O O m m
. .
m N m m d M M N
M O
m M
m Q M
N" A
N N � � � � � � � �
44
d d M M
M
d d M
.
d N N N N N N N .- �-
Q Q M M M M M M
Q Q
Q O
444
.
d d M
MA �
m
n m A r A A m tp
m m
m m m m
m
m m�
m A A m m m m m m m
m m m m m m m
m m
m m
m m m
m m m
O O O O O O O O O O
O O
O O O O
O
0 0 0
0 0 0 0 0 0 0 0 0 0
O O O O O O O O
0 0
66
666
660
O m N Q Q M m N O Q
O m
M O Cl! O
A
Q A m
Q N m Q m N N O O d
O d M A d 0 m m
N m
O m
M m N
Q N d
M M M M d d d N H m
m A
6,6
N A M
m MMM
Yl A m!R �2 M M
A m
m m
m m A
m m
N NNN Q
m m m N O O N A m d
O m
O d N m
N
O M N
o m Q m a a o m o Q
O Q O Q A m m d
ad
am
O M A
O m N
to N n 1:'i 16 1 V 1 V
O N
O N M M
Q
O N m
O M t7 0 N Q m 6 N m
C N N �: C C 1
O �
O-
666
O W N
m m m m m m N m m m
N
; m m m
N
N N
N N N m m m m m m
N N N N N N N
I N
N
N N
m m
0 0 0 0 0 0 0 0 0 0
0 0 0
�-�- - 066666
---- � � �
-
�
�--
� 0 0
O O O O O O O O O O
O
O O O
O
O O
o o
o-
Oa
N N N N N N N N N N
d
N N N
d
d d
O O< N N N N N N
Q O< O< O O
O
O
C V
0 0 0 0 0 0 0 0 0 0
O
O O O
O
O O
0 0 0 0 0 0 0 0 0
O O O O O O O
O
O
O O
O O
¢aaaaaaa¢¢
a
aaa
a
as
aaaaaaa¢¢
aaaaaaa
a
a
as
as
¢¢¢aaaaaaa
a
aaa
a
as
¢¢aaaaaaa
aaaaaaa
a
a
as
as
o000ooO0Oo
0
000
0
O0
0000O0000
000O000
0
0
00
00
000 oom vm 0
0
000
0
oa
0pp� o00 00
0cooQ D
o
c
o
m
d
A� y
e-
N N
m �
Q O m N Q Q M m N O
O O
m m O N
m
Q Q A
Q m In m d m N NQ O O
O O d M A Q 0
N N
O O
M M N
d d N
M M M M d d dip N
N N
N m m
60 A
m N Q
N
m M A m
A A
m N
m m m
m m m
N
N N M M M
MMmAmm000
M
m �000000
m
mommmmm��
77777
m 0 0 0 0 0 0 0 0 o
N
d
N M N
O O O
M o
m m
N O M
m m m o N m o o o o
A m m O N M Ip
Q
N M
M
0
-O -
<-OOo00o00
-O
�t7
O
N N
OOa
N N N N M M
O O O
tp m_ o o N N
tOtptp66,666
M
N
Ip h
o o N o
�-
M M
N N
d�
'000000o0
N 0 0 0 0 0 0 0
O
O
�
O
O Q m A m
o
m m A d Z
M Q❑
' Q
0 0 0 0
m m
t0 0
-
m N " � � �
� �
� �
M M M
N N N
�0
�a
cQ
a
N
m
m
m F
0 0
0 0
N N
a a
c c
0 0
a a
E E
0 0
vM 0
y
Lp LD
N N
U U
O O
II II
a o
N wl�wNl�
now
m0
Qm
MM
ow
m�
W mNI�
w- w N
ww
m0)
O)w
I�mNmQO
NOI�
h.-
Oh
N aOww ^
Ow N O
nw �j
N W w
NN
QQ Q
�m
NOJ
OOJ
O �
I��
m
Nmm
mIU IU
"1U
NNNNNN
�NNNN
NN N
O O
�
O O
N w 1 w N h
m o w
m 0
Q m
O J O 1
w w
m
T m N t l (J
w o w N
w A
M M
w w
1 m N m Q O
N O n
n
O A
f 0 f p
n
m
N w w w A
O( O Cl! O
^ O �j
N A t p
N N
w a N m w N
< 0 0
f7
(V to
O w
O
I�
C fG Vi lV
O C G
N m m
n o I
� N
i
N N N N N
� NNN N
N N N
Q- W vm1
O w w
Nwh
mw
Qw
0
wO
w-
(O"Mom A
Q
N ��
o0w
ww
Q w
IOh ha V V
N m w
m n
00
Q
O
w
w
ON
I O)
.-N
N W w w w w
aw W M
m N h f`
Q Q
N m m
NN
N N
O.-
a
w n n n
N h w
r m
I N N
n w
I N
N w
I N w m w 0
11 O
w 0 0 f
O N w
r a w
'
wmNw V O
QwQ
wQ
ww
wQ
wm
wm
wmamol
ww w Q
mm)
wm-
wQ
`a
m mmNNN
Qmm
Q Q
Q Q
QQ
QQ
o v
6 veci ClN
QQQ m
mmm
mmm
aQ
w
O m
N N
f D I
1 A Q)[ O W (O
wwwwww
rIt
TOE
C(
rnw
wrn
ww
w
Of
IOQa
c oc000
acw
coo
00
00
0a
00
00
00
Owwww
oocooc
a0l
a
cocc
o00
a0a
000
a
00
O wQD7mm
^ I�Q
Oh
00�
OQ
Or
�w
Or QI�N0
OIL O w
wNOi
�n0
ON
i!
N N
N O' c-4
In tG
6,6
N w
6 n
66
If) n w m�R N
666
CJ ai T
M- N
66
i
III
mwwwQa
--66M6
QQN
OQ '
On
Or
a
00
oQ
O-
o
ON
w
O's
a-MMWQ
6ci wQ
0n m 0
666 w
avr
000
aoQ
O
ow
O�
w w w w w w
w w
N
I^
N
N N w w
N N N
N N
w w
I
I
I!,
I
O O O O O O
O O
O
O
O
O
O
0 0 0 0
0 0 O
O O
O O
O
N N N N N N
N N
Q
O
Q
O
Q
O Q N N
Q Q Q
Q Q
N N
O
0 0 0 0 0 0
C C
G
l V
G
(V
O
N O O G O
O G G
O C
00
111
a<
<
aaaaaa.
as
am
a
a
a
a
aaaaa
a. a a.as
as
a
00OOoo
00
0
0
0
O�
0
o0 0
00
00
0
GOO
N
1p
066aq
GO
0
0 O)
OO
6O
w w m m- Q
N w
(n
W W
m m N
w N Q
m w
N
<Cw <Am
l� A n
00
00
00
00
00 �-Q h N
00 t� O
wwN
00
m" N
� � �
w w �.....:
i
o
oo--��
a
m
w
N
o
0000o
mm
QQ
o0
0
N N N N N N
N N
O N
N N
Q N
w w
O Q
O Y v Y Y 4
_m
N q Y V
Q O O
O w w
o m
O O O O O O
N N
O
N O
N N
N Q
N N
Q a
Q 0 0 0 0 0
y N N N
Q
0 0
m 0
0 0 0 0 0 0
N N N N N N
O
N N
N
N
N
w
O
Q
O O O O O
Q QQQ Q
Q Q Q
Q Q
00
m
N
O
O
O
O
O
O
O
m
w¢ Q m a N
h A w
O-
Q w
w
a Q
a Q
Q
w
a
O w Q
O O O
"m
w 0
N
Q
O O
O m w w
0 0 0 0
N m m p
Q
O
m N
O O O
Q
O Z
N N N N N Z
a
N N N
N N
N N
N N
N"
Q Q
� Q Q Z
Q Q Q Z
Q Q Z
a
w w Z
a
m a
a
a
o
m
DEVELOPED 100-YEAR STORM EVENT
Stantec
TIME OF CONCENTRATION
100 year design storm
Front Range Village
187010251 1.87(1.] - CCU ),�
t, = S„1„
t, = to+tt
Cr = 1.25
SUB -BASIN DATA
INITIAL/OVERLAND TIME
TRAVEL TIME
FINAL
REMARKS
BASIN
AREA
C
LENGTH
SLOPE
4
LENGTH CHANNEL
SLOPE
VELOCITY
tL
tc
NO.
(ac)
(ft)
N
(min)
(ft)
TYPE(a)
M
(fUs)
(min)
(min)
1
2
3
4
5
6
7
8
10
12
13
100
3.83
0.85
217
2.0
2.2
1
PA
2.0
2.72
0.0
5.0
101
0.18
0.83
30
2.0
0.8
101
PA
1.3
2.21
0.8
5.0
102
0.57
0.76
127
2.0
2.5
1
PA
2.0
2.72
0.0
5.0
103
2.41
0.84
15
2.0
0.6
650
PA
1.5
2.35
4.6
5.2
104
0.45
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
105
0.91
0.84
244
2.6
2.1
1
PA
2.6
3.10
0.0
5.0
106
1.51
0.86
50
3.2
0.9
915
PA
1.0
1.89
8.1
9.0
107
0.37
0.84
19
2.0
0.6
251
PA
1.2
2.05
2.0
5.0
108
0.40
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
109
1.67
0.85
259
2.7
2.2
1
PA
2.7
3.15
0.0
5.0
110
0.62
0.78
186
2.0
2.5
1
PA
2.0
2.72
0.0
5.0
Ill
1.03
0.87
210
2.0
2.2
1
PA
2.0
2.72
0.0
5.0
112
0.83
0.86
28
2.0
0.8
427
PA
0.5
1.34
5.3
6.1
113
1.00
0.90
194
2.5
1.9
1
PA
2.5
3.05
0.0
5.0
114
1.00
0.90
196
2.4
2.0
1
PA
2.4
2.99
0.0
5.0
115
1.27
0.90
234
2.0
2.3
1
PA
2.0
2.72
0.0
5.0
116
0.70
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
117
1.69
0.89
30
2.0
0.8
246
PA
1.2
2.12
1.9
5.0
118
1.03
0.92
110
2.4
1.5
1
PA
2.4
2.95
0.0
5.0
119
0.57
0.91
146
2.0
1.8
1
PA
2.0
2.72
0.0
5.0
120
0.59
0.92
142
2.1
1.7
1
PA
2.1
2.81
0.0
5.0
121
0.42
0.81
45
2.0
1.0
99
PA
0.9
1.77
0.9
5.0
122
0.86
0.71
60
2.0
2.5
616
PA
0.8
1.72
6.0
8.5
123
1.24
0.60
25
2.0
2.6
621
PA
0.8
1.71
6.0
8.7
124
0.11
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
125
0.31
0.84
151
1.3
2.1
117
PA
1.1
1.97
1.0
5.0
126
0.67
0.95
55
2.0
1.1
284
PA
0.5
1.34
3.5
5.0
130
1.08
0.95
50
1.6
1.1
294
PA
2.5
3.05
1.6
5.0
131
0.81
0.67
1
1.0
0.5
1
PA
1.0
1.91
0.0
5.0
132
0.23
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
133
0.14
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
134
0.82
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
135
0.39
0.70
78
2.5
2.7
50
PA
1.6
2.44
0.3
5.0
136
0.36
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
137
0.47
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
138
1.84
0.91
273
2.1
2.4
1
PA
2.1
2.81
0.0
5.0
139
1.70
0.58
32
2.0
3.1
550
PA
1.1
2.04
4.5
7.6
140
0.38
0.65
50
2.0
3.0
93
PA
0.5
1.34
1.2
5.0
141
3.26
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
142
1.23
0.85
50
2.0
1.0
319
PA
0.6
1.50
3.5
5.0
143
4.90
0.76
1
1.0
0.3
1
PA
1.0
1.91
0.0
5.0
150
3.36
0.65
108
2.0
4.4
280
GW
0.7
1.29
3.6
8.0
151
1.48
0.62
80
1.8
4.4
114
GW
0.8
1.38
1.4
5.8
160
1.63
0.85
207
2.0
2.1
1
PA
2.0
2.72
0.0
5.0
161
0.97
0.81
152
2.1
1.8
1
PA
2.1
2.75
0.0
5.0
162
0.77
0.90
176
2.9
1.7
1
PA
2.9
3.27
0.0
5.0
163
0.65
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
164
1.50
0.83
30
2.0
0.8
758
PA
1.1
2.01
6.3
7.1
165
0.55
0.91
64
2.0
1.2 -
100
PA
2.6
3.10
0.5
5.0
200
2.74
0.85
100
1.9
1.5
260
PA
0.8
1.70
2.5
5.0
201
1.36
0.88
302
2.1
2.5
1
PA
2.1
2.78
0.0
5.0
202
0.32
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
203
0.10
0.84
60
2.0
1.1
45
PA
2.3
2.91
0.3
5.0
204
0.24
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
205
0.37
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
206
0.32
0.92
28
2.0
0.8
126
PA
1.9
2.63
0.8
5.0
1:07 PM
The Sear -Brown Group 1/25/2007
207
1.22
0.78
233
2.4
2.5
1
PA
2.4
2.99
0.0
5.0
208
0.29
0.94
95
2.0
1.4
129
PA
1.4
2.30
0.9
5.0
209
0.16
0.93
30
2.0
0.8
62
PA
2.0
2.70
0.4
5.0
210
0.39
0.91
89
2.0
1.4
112
PA
0.5
1.34
1.4
5.0
211
0.38
0.90
35
2.0
0.9
109
PA
0.5
1.34
1.4
5.0
212
0.44
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
213
1.71
0.86
290
2.2
2.4
1
PA
2.2
2.87
0.0
5.0
214
1.12
0.89
134
3.0
1.5
1
PA
3.0
' 3.35
0.0
5.0
215
1.53
0.61
130
2.0
5.7
218
PA
1.4
2.26
1.6
7.3
216
0.16
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
217
1.41
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
218
0.23
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
219
0.40
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
220
2.01
0.91
374
1.5
3.2
1
PA
1.5
2.35
0.0
5.0
221
1.04
0.72
149
2.5
3.4
1
PA
2.5
3.05
0.0
5.0
300
0.55
0.60
128
1.0
7.5
35
PA
0.8
1.64
0.4
7.8
301
1.38
0.87
152
1.4
2.1
173
PA
0.9
1.79
1.6
5.0
302
0.21
0.95
23
2.0
0.7
180
PA
0.7
1.54
1.9
5.0
303
0.30
0.66
30
2.0
2.2
180
PA
0.7
1.54
1.9
5.0
304
0.28
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
305
0.31
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
306
0.69
0.90
38
2.0
0.9
297
PA
1.0
1.87
2.7
5.0
307
0.81
0.60
97
2.4
4.8
1
PA
2.4
2.99
0.0
5.0
400
0.26
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
401
0.30
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
402
2.04
0.87
119
1.9
1.6
261
PA
1.3
2.17
2.0
5.0
403
0.33
0.87
98
2.0
1.5
133
PA
0.5
1.34
1.7
5.0
404
1.75
0.86
215
3.0
1.9
71
PA
1.5
2.35
0.5
5.0
405
1.16
0.89
204
1.9
2.2
1
PA
1.9
2.65
0.0
5.0
406
1.11
0.89
204
2.1
2.1
145
PA
0.5
1.34
1.8
5.0
407
0.90
0.88
218
1.5 -
2.4
104
PA
0.5
1.34
1.3
5.0
408
1.72
0.88
302
2.4
2.4
1
PA
2.4
2.95
0.0
5.0
409
1.98
0.80
28
2.0
0.8
1
PA
2.0
2.72
0.0
5.0
410
0.38
0.93
68
2.0
1.2
130
PA
0.5
1.34
1.6
5.0
411
0.28
0.88
68
2.0
1.2
101
PA
0.5
1.34
1.3
5.0
412
4.34
0.95
1
1.0
0.2
1
PA
1.0
1.91
0.0
5.0
413
0.37
0.77
65
2.1
1.7
95
PA
0.5
1.34
1.2
5.0
414
1.12
0.62
64
2.0
3.8
281
PA
0.6
1.49
3.1
7.0
500
3.02
0.84
240
0.5
3.6
1
PA
0.5
1.34
0.0
5.0
501
0.85
0.65
50
4.4
2.4
1
PA
4.4
4.06
0.0
5.0
502
1.13
0.76
25
2.8
1.0
992
PA
1.1
2.03
8.1
9.1
503
1.25
0.74
26
1.0
1.7
1026
PA
1.1
1.99
8.6
10.3
504
0.87
0.67
52
6.6
1.8
1
PA
6.6
5.01
0.0
5.0
505
3.03
0.91
60
2.0
1.1
1195
PA
0.5
1.34
14.9
16.1
Note:
a) Codes the channel type for velocity calculations.
PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway
1:07 PM
The Sear -Brown Gmup 1 /25/2007
L
W
E
m
z
W C
�rtrnh�00 �fmOOmONrOrnI�"'T�NtrD�Ntmh N��tNO n ANQ�tmh� hth t00�<N�OONtNO (mO
�:NN<tn N t7 V-tDm-tGNOtG mm6N mMOO��[7m�
cr
O
y
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
ix
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O
rnrn�mmmmN rNNnrn �m°'nnmO O r QOmmOmmQthp(hr rnOmNm
r Q N O N
Cl m O
a. gym.-NNQrn�[�)Q�m�nrnrn
N m m N f") n r N Q � l h 1 A r �
rn O f m � � w 0 m�
N.,m��1(I NQmn �Mm�mN �-ml"f f") Qm�Mt7�Q N��rnr
W
mmr m.- non Ntn (boon orn<hnrnNmQ� nm�th ^Nrnmn QOmm�Omccpp then
L
C
m Z
rn rn rn m rn rn O rn rn rn rn rn e7 rn rn rn rn rn rn rn rn rn N rn rn rn rn rn rn rn rn rn rn rn rn m rn rn rn rn Q m rn rn rn
C
rn rn rn rn rn rn m rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn m m rn rn rn rn rn rn rn rn rn rn rn rn m rn rn rn rn m rn rn rn rn
cj
pppp
O O rn 0 0 0 0 0 0 0 rn O 0 0 0 0 0 0 0 0 0 0 m r 0 0 0 0 m O O O m O 0 0 r m O O rn m 0 0 0
----------.- O G--OO G---
U
mmnmrnmmmrnmnmmmrnmrnmrnmrnmnmrnmrnrnmrnmrnnrnmrnmmrnmnmmmmrn
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E
mNNNNNONY)�NNtt) Nil)NNNNNOY)oJ G)Oi[)NNNi()NNOtAONI�YI NtAN 6�N UINN
m j C
3. L° E
E
tiOOOtiOooti0000000000ti000000000000Oti000000000000
y
�T
o
>
LL
IA
C
O e
O
C
n W
T
L
m
J
N
N
000------- - NNNNNN Nan to th mthm m--m QQ QQ m m m mm
m
a°
O N C' f Q m m r m 01 0 Nth Q m m n N rn 0 N (h Q N m O V N l h Q m m n m O 1 0 N[ 7 0 O N
N N N N N N [h m m N� m m t7 —m m—
l1
m
O_
fh
O_
O
O
N
C
Vl
N
m
T
C
O
N
2
N
N
C
N
IL
Q Q N m C I m T m m O) m
m (h f m 4t 7 � m M Nm. t 7 m m m
m � N� C l O N h l7 � N � f h f 7 � �� � � N Q� O f � N N N t 7 co N N
N � �
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000000000000000000000000000000000000000000000000000000
Q N N N O n m m m m N A m N O n m O m m m O T m N Q y y O T Q OI m n N O N
Q Q NOC)m OiNAmth m C)O Om n Om,6N N nn mn mn nCl
7 T
6m C1
m� miny� C)ONMf7Nf")CIQ� �� �� NQO)CI�NNNI")mmNpNN fh�� w �f")N (7nmmmn''
�m�
Q Q
py
O O m Q m N O Q n N N Q 7 m m m Q^ m N Q O O I l M N (7 N M f O m N f �) O
mmmC ( aC
m
a'-Nl7a
a.0.
O �ON�00000�-00000� �-�O•-OON.-O�OOOOOOOONO�-�-�-0� �OOQ O.-ma--Om
0)�
N Q m m 1A 1A 1A m N IA m IA N m 1(J m m IA t7 IA m N IA IA IA In m N m lA In IA N m m N IA m m m N N m 1A m lA O m N N (�% N O
m
olm olm wmmmmmm o>rn mrn mrnm nmrn mrn o> mm m m rn m rn m m m of m m of rn m W m olm mmmOmmn
oQ
ci
m mrnmrnmrnmmwmmrnmmmmmmmmmrnrnrnmrnmmmmmm mmmmmm mrnrnmmmmrnmmmmnmm
mQ
000000000am0000000m000000moom000m000000000rn000mmO�mNQo
mm
0000000000a0000000n00000rnnoom000n000000000m000 n o m0)mmo
mm
6
mm
m mrnmmmmmmmnmrnmmrnma�'ommrnmmrnnmwmmmmrnmmmmmm wmm mm�rnnmmmnQn mm
non'
000000000000000000000000000000000000000000000000000000
00
0.-00000000000 o 0 o o 0 Cl o o oo o om o oo o o 00000000000000000006-0�
I:
� N 0N H N� N� l A Ni[I N N N N N N l� N� N N N �� N N N N N N N N N N N t� N A� N N�
Y I i[ l N N N N i (I
Q
N�
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O m
0
N
O
Q
a
0
m
N
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f7 O O O O O O m O O O O O O O O O O O O O O O O O O O O O O O O
ci
O Ia ko�
N N
O
N- Q- m n m- O O N f") Q IA m n O n mp O O" N (7 Q O N (7 Q N
1pph 10o[l
th
� �
p p p pN ppQ pmp
N N N N N N N N N N N N N N N N N N N N N N M M (7 f") M f") (� 1 f 7 Q Q V V Q O V Q Q O O Q O 0 0 v0i v0i v0i u0i n v0i
d m
Q)
Q
T
C)Qm0'-NMQmmn m010� NCI Q mmnmdlO�O�NIhQ ON mopn pOp pp� pNp tpp7 pQp ippOm pnp mO)O�NIh QO e-N C)Q N Q
N N N N N N N N N N N N N N N N N N N N N N m C0] m m Coi (7 M Q Q Q Q Q Q Q R Q V< O Q V Q u0i v0i N N N N Op m M
C
P
CD
c
3
e
m
N
m
m Q
d
m n d
O
N O
O m d
i i
Epp p Q N
A N
m O�
A N A
N m Q O
N O C n
A
f
N O O N O
`r°mm�
N�
mmmO
N
no
_ ��w �
NNmmmd d Q-WNQNMQO
Nmtm'ld
N�
7 mdd OHO m Oil
dm'1
-wNd
O
N.m-0
Omd W n'�tp0 (O
mm�mmmdN
n
m0)
mm�
N w d O
N{h N M` V V �
Nm
mOI Nm
m
m NA
maO)�ONmO) V N
mm�d IAOmci
A
m'
��n
nOO-
N N N-"
m m
m m m O
N
m m
- fO O__
N N m m m d d d
N m m d
QN
N Q m t 7 N O I[ 7 Y 1 m
m m
t 7 m O f m
Q
m N m
m W N m (O O Q N
O) N O f m � A e- p
no A
O O
m m A
d O N
mmmmv V NN
N Q
l7R
m� n m m
t7 <(Cm
m
O
O o m
�QVW
O
CI__NNNNNNm
[' l d m m O m- N
Ntn (�IQY)Y]nn
an d
0 0
now m
n 7 N
nm
7
7Im0O
vAON
NTm�NN7OTT10N1N9
a9
�
0-NQ
mmommmm
h0
N0
M
N
dmmmmmmmN
rnm
mmnO
.T
mmm
mmOmmaaamm
mmnnnOmO
rnm
rnm
rnmrn
mmmn
m m O m O m m A n
O O
O O O O
O O d
O n 0 0 0 0 0 0 0
O O O O O O O O
O O
O O
O On
O O O O
m m O w m m m m m
Oa
O O O O
m
O O O)
N
00 O O O o O 0 o
O O O O O O O O
O O
O O
O O O
O O O O
m O) ---- OM
ON
m m m
m
O o w
N n m N N m m m
O n m m
On
0 0
A m m
O O O m
rn nm n rr Pn nOO
.
rnm
mmm
O
mmn
mn A cc cG mmmmm
mmmmmmmm
mm
rnm
mmm
mmmm .
000000000
00
0000
0
000
0000000000
00000000
00
00
000
0000
rn u�nnOmmmA
Od
N
omo
_7modmmOOo
odmAvomm
_o
ow
omo
OmOt�O
N 61�G<G h N4
Onm
0.; M rN VW0
lm��-6
Ct
Nw
w,6w
6m0mmmdQQNmm
NNNNm m Q
m m N O O N A m d
m
IT m
N
O m N
O m d m IT d O m O IT
IT IT A m m IT
d
O m
O m A
O m N m
. .
N m - m m - Q - Q
N
N m m
Q
O N m
O m m O N Q m O N m
a-
0 0 0
O W N
m m m m m m m m m
N
m m m
N
N N
N N N m m m m m m
i N N N N N N N
N
N
�
N N
m m m
000000000
e-
OO o
�-
�- - �-000000
- �- •- - �-�- �-
N N N N N N N N N
d
N N N
d
d Q
d d Q N N N N N N
d Q Q Q Q Q d
Q
d
d d
N N N
0 0 0 0 0 0 0 0 0
O
000
O
O O
O O O O O O O O O
O O O O O O O
O
O
O O
O O O
m
aaa
ana.aaaaaa¢aa
mmammmm
a a aILa.mmm(L
a
aaa
as
a
as
aaa
0 o N o
m O m N
0
O
O
m Q
Q N O O N
O a 0
O
t7
� -m N "N
"
^^^
m
d
-
N N N m d
�
N m
O_ m
m m h h n m c0 m m
O O
O O Q m
O
O O m
_ 0 m O IT m m m
O O d f7 n d O h
O O
O O (7
O O m O
d d d m m
m
N 6 A
n O t7 A N O �G
M M
�j uj n O)
ow
60
660
N N O m
c� m m m
N NNN C')
o wmwWmm0
m
0,66666000
m OOAmm000
O
Oo _O _OO_OOOO
NN
mO
nm 0O-Nmm
Nm
mm
OOOOOO
Om
0OaO
ow
wow0000moo
^ ^ ---
NNNNN
00
m m m n m m n
Or
5777
_-
m
NOOO
N N N
NNNNmm
_000
OOOm
O
_ O
Om
Q pOppOOppOO
mmmON
OOOOOOOO
m
00
NOOO
000
N N m m h m m
_______
________
mm
N N N
p ArnNC4aOOO
"i
aovoeeacv
m
�Om O__O NN
_
O O O O O O d 0
N 0 0 0 0 0 0 0
O
O
O
O
Q Q Q Q Q O Q�
Q m n m 0
N
O N m m
a
O
O w
Q Q Q Q p� _ Q O Q O
m m A d_ N
n m¢ O N m d
O)
N O
an d
_"m
O m O
m 0
m d
--
0000
o¢
O O
_ m
m 0_
_ m O O _ O
-NO
_ N N N N
_ _ _ _
_ _
_ _
O O O
m m m
O O O O
a
....
�p
_
�a
_
a
N
a
e
m
m
m
0 0
0 0
N N
a a
c o 0
a a
E E
9�
U
(O (0
n
(A�
Cml fh
II II
8 8
Q d
pp
N (. O!O�
QI 17 In
AOf
w^
Q
tt,pp
NOA(nv W A
rn0 0 In
^N �j
n0(h
m0
O<O(Oo
N
m0
Mn
(v�N
V O
N
O
(G
Cj0 of mN
mI w M
^GO
Ow0
N
e-
O m
n r
(ri of
m (n
p
O)O)
ttpp
NOA my
7O N
Ao(1
,(O
N l0 �Cp O7
W 7IQ
O(0
(hr
mN
QN
�n
Q�
AN
0rA
NN Q t0 M"AaO
(0
n"m
06
N�
—00(O(0
NRM
m7
v-
N(O
—M
Am
"mNmInN
C) A n A
c(v Q
Nf")(7
NN
00
ON
1N
ON
N
ONIn nmm
v'P v v
In(O—
Inv
Inm
In cO
InN
InA
O"Wm(0—
IA0 pp (O
a
MW O
N
O(3 (w 7
CI OIn
O)0
C(v
q7
mM
m W
qOO NM NIn
OIIn v m
m n v
0-0
Q7
n tG In YIO
Oi aGn
mm
mm
mm
mM
mw
mOJ(O w(
0m 0 (O
m(O(O
�nb
Qai
O O O o 0
M 0 0
0 0
0 0
O—
0 0
0 0
0 0 0 0 0 0
0 0 O O
O v Q
N v v
0 0
OOO o0
O>00
00
00
O A
00
00
000000
00 O O
A 00
m mm
00
a--
.-
--
�O
11
1
r 1 �lm _�
�� � �
GGC
600
N.
nnnmmm-m
mm
nmmmmmmnmw
m
m
m
mwm�wm
m0m
Omm
00000
oco
00
00
06
co
a
.
oc0000
0000
000
ooO
a
v O( 0 0 0)
O O A
O n
am
O v
o-
O N
O- v A N q
O n O m
O v-
m q m
O V J
"mmm—
NOi 00
h(G
Nan
IN
Inn
In(O
( N M0
INI (C
A Ism
0a-m
N(O
MMOvo
oon
on
am
a
a
o—MM0 V
oA m M
OQn
owv
oIn
O (0 m 6
o V �
O
0 0
O r
Ci (V
G r
G N (G O
O O O ( G
G C O
O
M OJ mM W
mt0
N
A
N
n
N
n N N(nN
N N
N N
M0
n
`
aaaaa
'
00
'
N
�-
`
N
f
'
N �.- 0
0
1`
,
00
I
16
Cl! N N Cl! Cl!
Cl! N
Q
0
v
0
v
O v O N N
v v v
Q v
N N
0
0 0 0 0 0
O O
O
N
O
N
O
N 0 0 0 0
0 0 O
O O
O O
N
aaaaa
as
a
a
a
a
a
aaaaa
aaaa
aaa
aaa
m
00000
OIn
O
O
O
O
O
OOOm N
O O m
00
00
N
mmC')
I(yn Q)D)(yN
In N v
fh In
OJr
�Q
NO
(h
C(
(O Q own
0 0 0
00
0 0
0 0
0 0
0 0
O O
O O A O
O O v
m m m
0 a
O N M O1 N
O N m
N In
0 In
In In
In In
N 6
In In A N W
N In In w
A A A
In In
_..
O
m n I (7 In
mo m
�-
(7
N
N
In
Cf In r N N
Pf m (n
v v
lh m
O
O •-�-
N N N N N
0
0 N N
O N
N N
v N
(0 (O
O
ovG v
00 pO
oOp $ v v ai
N v q v
Q Q
00
O N
O
O O O O O
O O O O O
N r n
O O
N 0
N N
N v
N N
V v
v 0 0 0 Oi O
OQ a 0 W
Q N N N
Q
In N N
N 0
m y
N N N N N
N N
N
N
N
(O
Q
v V O
v v
m
N
0
Q QmQN
vIn
v In
Ol'n a(O COQ
Q Q
Q��
O — v(3
AMM
O O O
07
N N
Nm
N N
N N
(00
N
N N
O p
Q 0
p O 0 p p 0
Q v Q v
Nl7 m p
v v
v v
0 0
I n I nz
O Z
(7 O
N N N N Z
0
N N N
Z
0
e Z
0
Z
0
0
a
a
m
a
m
a
c
m
APPENDIX — F
0
stantec
December 2006
STREET CAPACITY CALCULATIONS
Stantec
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spirits
Project: Bayer
Inlet to: STIN-85-2
TBACK TCROWN '
SBAC T, T MA%
K W Tx
\_ Street
Crown
i QwQx
i y
HCURB d S x _.
le
�. I a 1404
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
dng's Roughness Behind Curb
of Curb at Gutter Flow Line
re from Curb Face to Street Crown
Depression
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
ng's Roughness for Street Section
Allowable Depth at Gutter Flow Line for Minor 8 Major Storm
Allowable Water Spread for Minor 8 Major Storm
[Discharge
uwtter Cross Slope (Eq. STA)star Depth without Gutter Depression (Eq. ST-2)
star Depth with a Gutter Depression
lowable Spread for Discharge outside the Gutter Section W (T - W)
utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)scharge outside the Gutter Section W, carded in Section Tx
scharge within the Gutter Section W (Or - Qx)
Behind the Curb (e.g.. sidewalk, driveways, 8 lans)
aximum Flow Based On Allowable Water Spread
rotieel Water Spread
retical Spread for Discharge outside the Gutter Section W (T - W)
K Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
retical Discharge outside the Gutter Section W. tamed in Section Tx n,
it Discharge outside the Gutter Section W, (limited by distance T,, x)
urge within the Gutter Section W (Qd - Qx)
Discharge for Major 6 Minor Stoma
~Based Depth Safety Reduction Fectm for Major 8 Minor Storm
arge Behind the Curb (e.g., sidewalk, driveways, 8 lawns)
num Flow Based on Allowable Gutter Depth
flows a"! tlLM the
Ta =1
50.0
ft
Se =1
0.0200
ft. ven. I ft. horiz
nsr =
0.0290
Hcurm=
6.00
inches
Tcr =
15.0
ft
a =
2.00
inches
W =
2.00
ft
Sx =
0.0200
ft. van. I ft. horiz
So =
0.0250
ft. van. I ft. horiz
nsran!r =
0.016D
Minor Storm Major Storm
tlu =1 6.001 18.00 inches
Twx= 15.0 15.0 ft
Sw
y'
d:
Tx:
Eo'
ox:
Qw'
QedcK'
Or:
TTM
TX ni
Eo:
Ox M:
Qx'
OW:
Q=
R=
Qencx
Odd
Q.K..
0.1033
0.1033
3.60
3.60
5.60
5.60
13.0
13.0
0.421
0.421
7.6
7.6
5.5
5.5
0.0
0.0
113.21
13.2
u�. C..._ a-:..- c...._
16.7
66.7
14.7
64.7
0.378
0.086
10.5
549.4
10.5
247.4
6.4
51.8
16.9
299.0
0.86
0.70
0.0
152.7
14.51
315.2
13.
Vft
xhes
aches
fs
fs
is
ft
is
is
is
is
is
is
StreetCapacitySTIN-85-2.xls, Q-Allow 11/30/2006, 11:13 AM
Street Section with Flow Depths
40
-60 -50 -40 -30 -20 -10 0 10 20
Section of 1/2 Street (distance in feet)
Ground elev. Minor d-max
Major d-max Minor T-max
x Major T-max
S1reelCapacilySTIN-B5-2.xls, O-Allow 11/30/2006, 11:13 AM
I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) J
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
Project: Bayer
Inlet ID: STIN-B3-3
TRACK TCRO W N
SB c T, TMAX
K _W ... Tx
� Street
- - I-
-' -;- Crown
Qw Qx
YI H S ..
' CURB
J
-\
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
ring's Roughness Behind Curb
I of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
Depression
Width
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
rg's Roughness for Street Section
Allowable Depth at Gutter Flow line for Minor 8 Major Storm
Allowable Water Spread for Misr 8 Major Storm
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W IT - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Me outside the Gutter Section W, carried in Section Tx
rge within the Gutter Section W (Or - Qx)
rge Behind the Curb (e.g.. sidewalk, driveways, 8 lawns)
um Flow Based On Allowable Water Spread
retical Water Spread
reticel Spread for Discharge outside the Gutter Section W (T - W)
f Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
retieal Discharge outside the Gutter Section W. carried in Section Tx ra
it Discharge outside the Gutter Section W, (limited by distance Ty)
large within the Gutter Section W I% - Qx)
Discharge for Major a Minor Storm
Based Depth Safety Reduction Factor for Major 8 Minor Storm
arge Behind the Curb (e.g., sidewalk, driveways, 8 lawns)
num Flow Based on Allowable Gutter Depth
Te -1
50.0
ft
Se K =
n, n =
1 0.0200
ft. vat. I ft. horiz
0.0290
Hcu,s, =
6.00
inches
Tcnowa =
19.0
ft
a =
2.00
inches
W =
2.00
ft
S. =
0.0200
ft. vert. I ft. horiz
So =
0.0050
ft. vet. / ft. horn
n5TREET =
Minor Storm Ma or Storm
duAx =1 6.001 184inches
Tux =1 13.51 19.0 ft
Sw
y
it
T.
Eo'
ox:
Qw'
OexcK
Or:
TTM
Txrx
Eo
Qx nt
Qx'
ow!
Q
R
ABACK
Qa'
Q.
than the how ai:en o
0.1033
0.1033
3.24
4.56
5.24
6.56
11.5
17.0
0.467
0.330
2.5
7.0
2.2
3.5
0.0
0.0
4.61
10.4
u;.,... ce- U.w cr......
16.7
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
136.8
2.9
23.1
7.6
159.8
1.00
10
0
68.3
7.61
228.1
left
riches
t
is
is
is
:fs
t
t
Is
is
is
is
is
is
StreetCapacity-STIN-B3-3.xls. Q-Allow 11/3012006, 11:13 AM
Street Section with Flow Depths
,O
-60 -50 -40 -30 -20 -10 0 10 20 30
Section of 1/2 Street (distance in feet)
—Ground elev
Major d-max
Major T-max
Minor d-max
Minor T-max
StreetCapacity-STIN-B3-3.xls. O-Allow 11/30/2006, 11:13 AM
I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm)
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
Project: Bayer
Inlet ID: STIN-1334
TRACK TCROWN
T. TMAx
SBACK ... -.
W Tx.
- - - -- teet S
Crown
I .Qw -.I Qx �
y;
HCURB d
a
-N.-\
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
ring's Roughness Behind Curb
I of Curb at Gutter Flow Line
os from Curb Face to Street Crown
Depression
Width
Transvema Slope
LongitWinal Slope - Enter 0 for sump condition
rig's Roughness for Street Section
Allowable Depth at Gutter Flow Lim for Minor & Major Storm
Allowable Water Spread for Mkror & Major Storm
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W (T - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
rge outside the Gutter Section W, carried in Section Tx
rge within the Gutter Section W (Or - Ox)
rge Behind the Curb (e.g., sidewalk, driveways. & la"s)
um Flow Based On Allowable Water Spread
retical Water Spread
mbcal Spread for Discharge outside the Gutter Section W (T - W)
K Flow to Design Flow Ratio by FHWA HEC-22 method (Eq- ST-7)
retical Discharge outside the Gutter Section W, tamed in Section Tx 1x
it Discharge outside the Gutter Section W, (limited by distance Tux.K)
arge within the Gutter Section W I%- Ox)
Discharge for Major & Misr Storm
Based Depth Safety Reduction Fact" for Major & Minor Storm
arge Behind the Curb (e.g.. sidewalk, driveways, & lawns)
num Flow Based on Allowable Gutter Depth
Ta�cx =
50.0
ft
S= =
0.0200
ft. van. / ft. horiz
nay =
0.0290
Hcurm =
6.00
inches
Tcs =
19.0
ft
a =
2.00
inches
W =
2.00
ft
Sx =
0.0200
R van. / ft. horn
So =
nslazer =
0.0050
ft. van. / ft. honz
0.0160
Mirror Storm Major Storm
dr =
8.00
18.00
inches
T.=
13.5
19.0
ft
SW
y
d'
Tx'
E.
Ox:
Ow'
Cie.:
Or'
TTM
Tx ra
Eo
Ox TM
Qx'
Ow'
O'
R (� �
oat K'
Gd'
0.1033
0.1033
3.24
4.56
5.24
6.56
11.5
17.0
0.467
0.330
2.5
7.0
22
3.5
0.0
0.0
4.61
10A
VIt
aches
nches
t
Is
:fs
,is
ds
Minor Storm Major Storm
16.7 66.7 ft
14.7 64.7 ft
0.378
0.088
4.7
245.7
4.7
136.8
2.9
23.1
7.6
159.8
1.00
1.00
0.0
68.3
7.61
228.1
Minor Storm
G, m =L 4.61
is
.is
.is
is
StreetCapacity-STIN-B34.xls. O-Allow 11 /30/2006. 11:14 AM
Street Section with Flow Depths
.10
-60 -50 -40 -30 -20 -10 0 10 20 30
Section of 1/2 Street (distance in feet)
—Ground elev
Major d-max
Major T-max
Minor d-max
Minor T-max
StreelCapacity-STIN-B34.xls, O-Allow 11/30/2006, 11:14 AM
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor
(Based on Regulated Criteria for Maximum Allowable Flow Deoth and Snraa
Project- Bayer
Inlet ID: STIN-137-1-1
.. -TRACK _. - TCROWN.-
S T, TMAx
BACK
W T. -
Y,
HCURB d
Qw Qx.
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind wrb)
ring's Roughness Behind Curb
of Curb at Gutter Flow Line
m from Curb Face to Street Crown
Depression
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
og's Roughness for Street Section
Allowable Depth at Gutter Flow Line for Minor & Major Storm
Aflamble Water Spread for Minor & Major Storm
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W (T - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
rge outside the Gutter Section W, canted Section Tx
rge within the Gutter Section W (Qr - Qx)
rile Behind the Curb (e.g., sidewalk, driveways, & lawns)
um Flow Based On Allowable Water Spread
retinal Water Spread
retinal Spread for Discharge outside tte Gutter Section W (T - W)
or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
retinal Discharge outside the Gutter Section W. carded in Section Tx ra
it Discharge outside the Gutter Section W. (limited by distance T.)
large within the Gutter Section W (Qd - Qx)
Discharge for Major & Minor Storm
Based Depth Safety Reduction Factor for Major & Minor Storm
arge Behind the Curb (e.g., sidewalk, driveways, & towns)
num Flow Based on Allowable Gutter Depth
101241
ble flows are
in=
Tay =
0
ft
San =
0.02050.0
ft. vert / ft. hertz
naxox =
0.0290
Hcuse =
6.00
inches
Tcaowa =
15.0
ft
a =
2.00
inches
W =
2.00
ft
Sx =
0.0200
ft. van. / ft. hertz
So =
0.0050
ft. Vert./ft. here
nsra,u =
0.0160
Minor Storm Ma or Storm
dµor = 8.00 18.00 inr9res
TM = 15-01 15.0 ft
Sw
y
d
Tx
Eo
Qx
Qw'
C.:
Qr'
Tm
Txm
Qx�'
Qx'
Qw'
Q
R=
Qa.tx "
Qa`
Qa
0.1033
0.1033
3.60
3.60
5.60
5.60
13.0
13.0
0.421
0.421
3A
3.4
2.5
2.5
0.0
0.0
5.9
5.9
know cm.... U."' e.......
16.7
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
110.7
2.9
23.1
7.5
133.7
1.00
1.00
0.0
68.3
7.5
202.0
ftm
Inches
ft
cis
as
as
Ma
i
t
is
:is
Its
is
StreelCapacity-STIN-B7-1-1.xls, O-Allow 11/30/2006. 11:14 AM
Street Section with Flow Depths
40
-60 -50 40 -30 -20 -10 0 10 20
Section of 1/2 Street (distance in feet)
—Ground elev
Major d-max
Major T-max
Minor d-max
Minor T-max
SlreelCapacily-STIN-U-1-1.xls. 0-Allow - 11/30/2006, 11:14 AM
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm)
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
Project: Bayer
Inlet to: STIN437-2-1
TRACK -- - - TCROWN - -
SBACT. TMAx
he W Tx
- Street
-- - - Crown
y I
Qw I Qx
HCURB d J - S x
I �
a
rum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
iing's Roughness Behind Curb
of Curb at Gutter Flow Une
e from Curb Face to Street Crown
Transverse Slope
Longitudinal Slope - Ether 0 for sump condition
g's Roughness for Street Section
Depth at Gutter Flow Une for Minor & Major Storm
Water Spread for Minor 8 Major Storm
( mawnnwa wear a.a acn aww am cur sera namr a ma
Gutter Cross Slope (Eq. ST-8)
Water Depth without Gutter Depression (Eq. ST-2)
Water Depth with a Gutter Depression
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W. named in Section Tx
Discharge within the Gutter Section W (Gr - Cx)
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)
Maximum Flow Based On Allowable Water Spread
retital Water Spread
retkal Spread for Discharge outside the Gutter Section W IT - W)
r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
e0ral Discharge outside the Gutter Section W, cabled in Section Tx ra
I Discharge outside the Gutter Section W, (limited by distance Tax,)
arge within the Gutter Section W (Dr - Dx)
Discharge for Major & Minor Storm
-Based Depth Safety Reduction Factor for Major & Minor Storm
arge Behind the Curb (e.g.. sidewalk, driveways, & lawns)
num Flow Based on Allowable Gutter Depth
OK: These
TercK =1
50.0
ft
SWR =1
0.0200
ft. van. I ft. fora
ri , =1
0.0290
Hcure =
6.00
inches
Tcewva =
15.0
ft
a =
2.00
inches
W =
2.00
ft
S, =
0.0200
ft, van. I ft. hroriz
So =
0.0050
ft. van. I R hloriz
ns,,,u =
Minor Storm Major Storm
daxx = 6.00 18.00 Inches
T. =1 15.01 15.0 ft
Sw,
y'
d
Tx'
Eo
Ox:
Qw:
Oa K
Qrr
Tn.,
Txr
Eo
Dx rn
O,'
Ow
O
R
o1WK'
Gd'
0.1033
0.163
3.60
3.60
5.60
5.so
13.0
13.0
0.421
OA21
3.4
3.4
2.5
2.5
0.0
0.0
59
5.9
r,;- er..- ue:.,. e.....-.
16.7
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
110.7
2.9
23.1
7.5
133.7
1
1.00
R
68.3
7.51
202.0
Minor Storrn Major Storm
5.89 5.8s
Vft
1d1es
fiches
is
fs
Is
fa
,is
fs
fs
is
Is
is
StreelCapacily-STIN-87-2-1.xls, O-Allow 11/30/2006, 11:14 AM
Street Section with Flow Depths
40
-60 -50 -40 -30 -20 -10 0 10
Section of 1/2 Street (distance in feet)
i —Ground elev. Minor d-max
Major d-max Minor T-max
x Major T-max
KIM
SlreelCapadly-STIN-87-2-1.xls, O-Allow 11/30/2006. 11:14 AM
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor
(Based on Rectulated Criteria for Maximum Allowable Flow naath and s...aa
Project: Ba r Inlet ID: STIN-B-9
TBACK TCROWN _..
S - T' TMAx
BACK
W Tx-- -
Crown
I i y Qw I Qx
I -
HCURB d
t I al
_
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
hing's Roughness Behind Curb
of Curb at Gutter Flow Line
x from Curb Few to Street Crown
Depression
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
g's Roughness for Street Section
Allowable Depth at Gutter Flow Line for Minor & Major Storm
Allowable Water Spread for Minor & Major Stonn
Cross Slope (Eq. ST-a)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W (T - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
rge outside the Gutter Section W. carried in Section Tx
rge within the Gutter Section W (Or - Dx)
rge Behind the Curb (e.g., sidewalk, driveways, & lawns)
um Flow Based On Allowable Water Spread
retical Water Spread
retkal Spread for Discharge outside the Gutter Section W (T - W)
e Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
retical Discharge outside the Gutter Section W. carried in Section Tx rH
d Discharge outside the Gutter Section W, (limited by distance TuW
large within the Gutter Section W (Or - Dx)
Discharge for Major & Minor Storm
-Based Depth Safety Reduction Factor for Major & Minor Stonn
arge Behind the Curb (e.g.. sidewalk, driveways. & lawns)
num Flow Based on Allowable Gutter Depth
o•wable flowa
Ts,,c. =1
50.0111
Swa =
0.0200
ft. van. I h. horiz
rl � =
0.0-
Hcunm =
6.00
inches
T =
15.0
ft
a =
2.00
inches
W =
2.00
ft
% =
0.0200
ft. van. I ft. horiz
SO =
0.0050
ft. vert. I ft. tor¢
ns,au =
0.0160
Mirror Storm Ma or Storm
dwx = 6.00 18.00 Inches
T. 15.0 15.0ft
Sw
y
d
Tx
E,
Dx'
ow:
err'
TIN
Txrs:
E.'
Dxm'
Dx:
ow:
D=
R=
Okuc.
Qe'
p_=
flow ui'.'en On
0.10331
0.1033
3.60
3.60
5.60
5.60
13.0
13.0
0.421
0.421
3.4
3.4
2.5
2.5
0.0
0.0
5.9
5.9
16.7
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
110.7
2.9
23.1
7.5
133.7
1.00
1.00
0.0
68.3 1
7.5
202.0 i
f/R
ndhes
nches
1
:fs
fs
Is
fs
fs
Is
is
is
is
is
StreetCapacity-STIN-B-9.xls. O-Allow 11/3012006, 11:14 AM
Street Section with Flow Depths
40
-60 -50 -40 -30 -20 -10 0 10 20
Section of 1/2 Street (distance in feet)
Ground elev. Minor d-max
Major d-max Minor T-max
x Major T-max
StreetCapacity-STIN-B-9.xls• O-Allow 11/30/2006. 11:14 AM
I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) �I
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
Project: - Bayer
Inlet ID: STIN-G-1
__._TRACK - TCROWN _.. ..
_ T, ST BACK MAX ..
- ---- W Tx
Street
Crown
I I Y QW. i Qx ..
CURB d
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind Curb)
hirg's Roughness Behind Curb
of Curb at Gutter Flow Line
ce from Curb Fete to Street Crown
Depression
Width
Transverse Slope
LorgMWhutl Slope - Enter 0 for sump condition
1g's Roughness for Street Section
Allowable Depth at Gutter Flow Line for Minor 8 Major Storm
Allowable Water Spread for Minor 8 Major Storm
I Gutter Cress Slope (Eq. ST-8)
star Depth without Gutter Depression (Eq. ST-2)
titer Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W. carried in Section Tx
Discharge within the Gutter Section W (Or . Ox)
Discharge Behind the Curb (e.g.. sidewalk, driveways, 8 lawns)
Maximum Flow Based On Allowable Water Spread
rental Water Spread
re0wl Spread for Discharge outside the Gutter Section W (T - W)
f Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
retieal Discharge outside the Gutter Section W. carried in Section Tx m
it Discharge outside the Gutter Section W, (limited by distance T,c,,,,)
arge rrimin the Gutter Section W (Oa - Ox)
Discharge for Major 8 Minor Storm
-Based Depth Safety Reduction Factor for Maim d Minor Storm
arge Behind the Curb (e.g.. sidewalk, driveways, & lawns)
num Flow Based on Allowable Gutter Depth
allowable flows are
gnoli1Qa
Tw,cx=
So.o
ft
S =
0.0200
R. vert. / R. hertz
nWK=
0.0290
Hcuse =
6.00
inches
T. =
31.0
R
a =
2.00
inches
W =
2.00
R
% =
0.0200
ft ven. / R. hertz
So =
0.0050
ft. vert. / ft hertz
nsmEV =
Mirror Storm Me'or Storm
cl , = 6.00 18.00 Inches
Tzohx = 31.0 31.0 R
Sw'
y'
d=
Tz=
Eo `
Ox=
O
f�w=
QWK=
Or
T":
Txm:
Eo'
Oxni
Oz=
ow -
0-
R=
amcK =
Ozz
Q,
0.1033
0.1633
7.44
7.44
9.44
9.44
29.0
29.0
0.195
0.195
29.0
29.0
9.5
9.5
2.4
2.4
38A
38.4
ui.,.,r ew...., u-w Qr......
16.7
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
195.4
2.9
23.1
7.6
218.5
1.00
1.00
0.0
fi8.3
7.8
288.8
7
Storm
yR
ches
►Gres
1s
fs
fs
fe
fs
is
fs
fs
fs
fs
StreetCapacity-STIN-G-1.xls. O-Allow 11/30/2006. 11:14 AM
Street Section with Flow Depths
-60 -40 -20 0 20 40
Section of 1/2 Street (distance in feet)
—Ground elev
Major d-max
* Major T-max
Minor d-max
Minor T-max
SlreelCapacily-STIN-G-t.xls, Q-Allow 11/3012006. 11:14 AM
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spree
Project: Bayer
Inlet to: STIN-Gd
TBACx - ,� .. _ --_. TCROWN ....-_ .. ._.
SB T. TMAx
< . W Tx
�_.. tre t S e
Crown
Qw Qx
y
HCURe d _ _ S x
a\f - _�4
mum Allowable width for Spread Behind Curb
Slope Behind Curb (Issue blank for no conveyance credit behind curb)
ring's Roughness Behind Curb
of Curb at Gutter Flow Line
s from Curb Face to Street Crown
Depression
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
Vs Roughness fix Street Section
Allowable Depth at Gutter Flow Lure for Minor & Major Storm
Allowable Water Spread fix Misr & Major Stonn
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W (T - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
rge outside the Gutter Section W, carried in Section Tx
rge within the Gutter Section W (Or - Ox)
Me Behind the Curb (e.g., sidewalk, driveways, & lawns)
um Flow Based On Allowable Water Spread
retloal Water Spread
re0cal Spread for Discharge, outside the Gutter Section W (T - W)
r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
vilest Discharge outside the Gutter Section W. carried in Sedan Tx TH
1 Discharge outside the Gutter Section W, (limited by distance TM)
arge within the Gutter Section W (Od - Ox)
Discharge for Major & Misr Stone
-Based Depth Safety Reduction Factor for Major & Minor Stone
arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
num Flow Based on Allowable Gutter Depth
allowable
=1
50.0
ft
CTsmcx
` WK =
ri . =1
0.0200
ft. ven. / ft. horiz
0.0290
Hcuas =
6.00
inches
Tc�K =
31.0
ft
a =
2.00
inches
W =
2.00
ft
Sx =
0.0200
ft. ven. / ft. horiz
So =
0.0050
ft. vent / R hertz
nsm" =
0.0160
Misr Storm Major Storm
dam= 6.001 /8.00 inches
T� =1 31.01 31.0 ft
SW
y.
d
TX:
E.:
Oz:
(� Dw:
osI x'
Or'
Tr,,
TxTM:
Eo'
Oxnr'
Oz:
Ow:
O=
R=
QB K
Od'
0A033
0.1033
7.44
7.44
9.44
9.44
29.0
29.0
0.195
0.195
29.0
29.0
9.5
9.5
2.4
2.4
38.41
38.4
mi.,,. cr...,, u.w Q..,....
16.7
66.7
14.7
64.7
0.378
0.688
4.7
245.7
4.7
195A
2.9
23.1
7.6
218.5
1.00
1.00
0.0
68.3
7-61
286.8
ft/ft
kid
lord
ft
cis
cis
cfs
cfs
9
1
.fs
:fs
is
is
is
:h
Mirror Storm Ma or Storm
QN = 7.56 38.42 cfs
..n on sheet'O-peak'
StreetCapacity-STIN-G-4.xls, Q-Allow 11/302006. 11:14 AM
9
Street Section with Flow Depths
-60 -40 -20 0 20 40
Section of 1/2 Street (distance in feet)
—Ground elev.
Major d-max
Major T-max
i Minor d-max
Minor T-max
StreetCapacity-STI N-G-4. xls. 9-Allow
11/30/2006, 11:14 AM
I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) �I
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
Project: Bayer
Inlet to: STIN-0-1
TBACx - TCROWN
BACK - T, TMAx
k W Tx .
Crown -- --
i
I Qw I Qx
Y
HCURB d _ S
a Ci 4%
\-
mm Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
iirtg's Roughness Behind Curb
of Curb at Gutter Flaw Line
m from Curb Face to Street Crown
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
1g's Roughness for Street Section
Allowable Depth at Gutter Flow Lino for Minor & Major Stone
Allowable Water Spread for Mirror & Major Stone
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W (T - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
rge outside the Gutter Section W. canned in Section Tx
rge within the Gutter Section W (OT - Ox)
rge Behind the Curb (e.g., sidewalk, driveways, & lawns)
um Flaw Based On Allowable Water Spread
rental Water Spread
rental Spread for Discharge outside the Gutter Section W (T - W)
f Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
retinal Discharge outside the Gutter Section W, tamed in Section Tx n,
d Discharge outside the Gutter Section W, (lirnited by distance Tw )
large within the Gutter Section W (tie - Ox)
Discharge for Major & Minor Storm
,Based Depth Safety Reduction Factor for Major & Minor Storm
arge Behind the Curb (e.g.. sidewalk, driveways, & lawns)
num Flow Based on Allowable Gutter Depth
Tezcx =
50.0
ft
Sezcx =
0.0200
ft. verL I ft. horiz
rkt =
0.0290
Hcwm =
6.0o
inches
TcR =1
50.0
ft
a =
2.00
inches
W =
2.00
ft
Sx =1
0.0200
ft. ven. I ft. horiz
So =1
0.0050
ft. van. I ft. horiz
nSTREET =
Minor Storm Ma'or Sform
rl x =1 6.D01 18.00 inches
T. = 13.5 19.0 ft
Sw'
y'
d
Tx:
Eo'
Oz'
ow:
os x :
chi
TTM
Txra
Eo'
ox Ta'
Oz:
Ow'
O
R
Dentx '
De:
0.1033
0.1033
3.24
4.56
5.24
6.56
11.5
17.0
0.467
0.330
2.5
7.0
2.2
3.5
0.0
0.0
4.61
10.4
u� Qr....., ".w cr......
16.7
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
136.8
2.9
23.1
7.6
159.8
1.00
1.00
0.0
68.3
7.8
228.1
Stone
ftm
nci
nd
1
;ts
-is
-is
:fs
t
is
h
,is
fs
is
StreetCapacity-STIN-0-1.xls, 0-Allow 11130I2006, 11:15 AM
Street Section with Flow Depths
MI
-60 -40 -20 0 20 40 60
Section of 1/2 Street (distance in feet)
—Ground elev.
Major d-max
Major T-max
Minor d-max
Minor T-max
SlreelCapacily-STIN-0-1.xls. O-Allow 11/30/2006. 11:15 AM
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm)
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Snreadl
Project: Bayer
Inlet ID: STIN-0-2
' TBACK •-- - - -- TCROWN
S T. TMAX
BACK
- - - - W Tx
Street
Crown
1 ow .� Qx ..�
y
HCURB d
c- .0,
a c"'
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
ring's Roughness Behind Curb
of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
Depression
Wkth
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
V's Roughness for Street Section
Allowable Depth at Gutter Flow Line for Minor & Major Storm
Allowable Water Spread for Miner & Major Storm
Tern =1
50.011
Sswc =
0.0200
ft. ven. / ft. hor¢
nertx =
0.0290
Hams =
8.00
Inches
Tceovm =
19.0
fl
a =
2.00
khches
W
Sx =
0.0200
ft. ven. / ft. hor¢
So =
0.0050
R ven. / ft. hors
nsr,,,u =
Mmor Storm Mabr Storm
d. = 8.00 18.00 inches
Tw,,=1 13.51 19.0 ft
/
g mawnnum u r �a act aaaan no g note waters an
Gutter Cross Slope (Eq. ST-8) Sw :
star Depth without Gutter Depression (Eq. ST-2) y
ater Depth with a Gutter Depression d
kwrable Spread for Discharge outside the Gutter Section W (T- W) Tx:
utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo
ischarge outside the Gutter Section W. carried in Section Tx Ox
Discharge within the Gutter Section W (Or - Ox) Qw =
Discharge Behind the Curb (e.g., skewalk, driveways, & Lawns) Q..
Maximum Flow Based On Allowable Water Spread Or.
retieal Water Spread
Trill
retical Spread for Discharge outside the Gutter Section W (T - W)
Tx ni
r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Eo
radical Discharge outside the Gutter Section W. ranted in Section Tx r„
Ox.K
it Discharge outside the Gutter Section W, (limited by distance T.)
Olt
arge within his Gutter Section W (Gd - Dili
Ovr'
Discharge for Major & Minor Storm
O
~Based Depth Safety Reduction Factor for Major & Minor Storm
R :
arge Behind the Curb (e.g.. sidewalk, driveways, & lawns)
OWK
num Flow Based on Allowable Gutter Depth
Qd
table Gutter Capacity Based an Minimum of Q. or - Q,r,,,
OK: These maximum allawable flows it,, ::realci than the fluw liven o
0.1033
0.1033
324
4.56
524
6.56
115
17.0
0.461
0.330
2S
7.0
22
3.5
0.0
0.0
4.8
70.4
ui..... cr....., u..w ..-
16.71
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
136.8
2.9
23.1
7.6
159.8
1.00
10
0
68.3
7.8
228.1
LL7W
inches
ft
cis
cis
cis
ere
t
It
is
is
Its
is
is
StreelCapacity-STIN-0-2.xls, O-Allow 11130/2006, 11:15 AM
f
Street Section with Flow Depths
-60 -50 -40 -30 -20 -10 0 10 20 30
Section of 1/2 Street (distance in feet)
—Ground elev. : ; Minor d-max
Major d-max Minor T-max
Major T-max
StreetCapacity-STI N-O-2. xl s. O-Allow
11/3012006. 11:15 AM
APPENDIX — G
December 2006
INLET SIZING
Stantec
INLET SIZING — Udlnlet
Type R Curb Inlets
Stantec
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Baver
STIN-A2-1
Design Flow = Gutter Flow + Carry-over Flow
yUVFLOWND SIDE y STREET FLOW
nD FLOWy
F GUTTER FLOW PLUS CARRY-OVER FLOW e F GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
3.10 cfs
' If you entered a value here, skip the rest of this sheet and proceed to sheet O-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope ft/ft
Length (ft)
Site is Urban: I Overland Flow =
Site Is Non -Urban: -"` Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P1 I ( CC2 + T,) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
': inches
Cj=
C2 =
C3=
User -Defined Stonn Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C3 =
Bypass (Carry -Over) Flow from upstream Subcatchments, q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
N/A
Calculated 5-yr. Runoff Coefficient, C5 -
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, is =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, Tc =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, O =1
3.10 cfs
STIN-A2-1.xls, Q-Peak 1/25/2007, 2:50 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-A2-1
"- Lo (C) 11
Design Information (Input)
Type of Inlet
Type = COOT Type R Curb Opening ,
Local Depression (in addition to gutter depression's' irom'Q-AIIow')
ate=
- 300 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1
Grate Information
Length of a Unit Grate
L. (G) _
" N/Afeet
idth of a Unit Grate
W,
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,, =
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) _
N/A
Grate Weir Coefficient (typical value 3.00)
C„ (G) _
N/A
Grate Orifice Coefficient (typical value 0.67)
Co (G) _ `
N/A
Curb Opening Information
_
Length of a Unit Curb Opening
L. (C) _
- 5.00 feet
Height of Vertical Curb Opening in Inches
H,.,,r =
6.00 inches
Height of Curb Orifice Throat in Inches
Hr„e =
': 5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
- 63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =, -
6.20.
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C. (C) =
2.30
Curb Opening Odfice Coefficient (typical value 0.67)
Co (C) =
0.67
Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
N/A'
Clogging Factor for Multiple Units
Clog =
N/A
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.1 cis curb)
dv =.
WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cis curb)
Qe =
N/A inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 3.1 cfs curb)
da _'
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cis curb)
d. _
N/A' inches
Resulting Gutter Flow Depth Outside of Local Depression
cl o =
NIA Inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
- 1.00.
Clogging Factor for Multiple Units
Clog =
0201
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.1 cis curb)
d,„ =
3.5 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 3.1 cls curb)
cl, =
3.8 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 3.1 cis curb)
da =
3.3inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cfs curb)
d„ =
3.7 inches
Resulting Gutter Flow Depth Outside of Local Depression
tl"u„ =
0.8 inches
Resultant Street Conditions
Total Inlet Length
L =
_ . 5.0feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
0, =
3.1 cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =
0.8& inches
Resultant Street Flow Spread (based on sheet O-Allow geometry)
T =
0.6 feet
Resultant Flow Depth at Maximum Allowable Spread
daeeew=
0.0 inches
STIN-A2-1.xls, Inlet In Sump 1/25/2007, 2:50 PM
27
-
2625
24
23
I
—I
22
2120
A
I
19
I
I
�1817
m
I
I
I
I
I
I
13
78
I
I
l—
1n 15
a
I
�►
I
C 13
I
/
01
m
12
76
7.
6
4!
3
11
I
I
I
1I
i
2
I
l
l l
I
I
1
Iol
i
i
I I
01
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (Cf8)
—6 Curb Weir —0 Curb Onf. E3 Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-A2-1.xls, Inlet In Sump 1/25/2007, 2:50 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-A3-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND I SIDE I IOVERLAND I
Y FLOW W I STREET I W FLOW W
FGUTTER FLOW PLUS CARRY -EVER FLOW 1 ® F GUTTER FLEW
INLET INLET
I/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Cl =
10.63 cfs
* If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B. C, or D
Site: (Check One Box Only Slope (ftlft)
Lenth ft
Site is Urban:j Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, I ( C2 + T, ) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
C,=
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tc =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, Tc =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, Tc =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
10.63 cfs
STIN-A3-1.xis, Q-Peak 1/25/2007, 2:50 PM
INLET IN A SUMP OR SAG LOCATION
Project= - - Bayer ,.
Inlet ID = STIN-A3.1 G
--Lo (C)—�
Design Information (Input)
Type of Inlet
Type = COOT Type R Curb Opemng
Local Depression (in addition to gutter depression'a' from'Q-Allow)
a.,i -
3.00. inches
Number of Unit Inlets (Grate or Curb Opening)
No = -
1
Grate Information
Length of a Unit Grate
L. (G) =
WA feet
idth of a Unit Grate
W. =
NIA feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,. =.
WA
Clogging Factor for a Single Grate (typical value 0.50) " _
C, (G) _
WA`
Grate Weir Coefficient (typical value 3.00)
C„ (G) =
- NIA
Grate Orifice Coefficient (typical value 0.67)
C. (G) = -
NIA.
Curb Opening Information
_
Length of a Unit Curb Opening
L, (C) = -
10.00 feet
Height of Vertical Curb Opening in Inches
H,,,,i =-(`
6.00 inches
Height of Curb Orifice Throat in Inches
Hq,P„="
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
63A degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =! - -
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) _'
0.15
Curb Opening Weir Coefficient (typical value 2.30.3.00)
C„ (C) =' -
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) _: -
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coal =
NIA!
Clogging Factor for Multiple Units
Clog =-.
N/AI
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 10.63 cis curb)
d„, _,
WA' inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 10.63 cis curb)
d,,, _'
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 10.63 cis curb)
da = -
NIA. inches
Flow Depth at Local Depression with Clogging (0 cis grate, 10.63 cfs curb)
d. _'.
N/A' inches
Resulting Gutter Flow Depth Outside of Local Depression
cl D =
N/A inches
[Resultina Gutter Flow Depth for Curb Opening Inlet Caoacitv in a Sum
_
Clogging Coefficient for Multiple Units
Coal =
1.00�
Clogging Factor for Multiple Units
Clog = -
0.15
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 10.63 cfs curb)
d., =
5.8' inches
Flow Depth at Local Depression with Clogging (0 cis grate, 10.63 cis curb)
d,„ =
6.3 inches
Curb as an Orifice, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 10.63 cis curb)
d,; =
4.6 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 10.63 cfs curb)
d. _'.
5.3 inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.u,ro =;
3.3 Inches
Resultant Street Conditions
Total Inlet Length
_
L =
10.0 feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. _,
10.6 cls
Resultant Gutter Flow Depth (based on sheet 0-Allow geometry)
d =:
3.3 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
5.5 feet
Resultant Flow Depth at Maximum Allowable Spread
dgPREAD =
0.0 inches
STIN-A3-1.xls, Inlet In Sump 1/25/2007, 2:51 PM
30
29
28
27
26
—
25
—
24
—
23
22
I
I
i
2120
I
/
O
I
N
17
a
10
76
fA
I
I
Q
15
74
C
I
0
13
m
12
11
10
9
1
I
0
I
I
I
8
5-
l
I
3.
2
l
O
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (die)
-6 Curb Weir 0 Curb 06L —B—Not Used • Reported Design —O— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-A3-1.xls, Inlet In Sump 1/25/2007, 2:51 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-Ag-I
Design Flow = Gutter Flow + Carry-over Flow
�OV RLAND SIDE yOVER AND
I STREET
e GUTTER FLOW PLUS CARRY-OVER FLOW c F GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
11.53 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Onl) Slope ft/ft
Len th ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P1 I ( C2 + Tc ) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vc =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
NIA minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
11.53 cfs
STIN-A9-1.xls, Q-Peak 1/25/2007, 2:52 PM
INLET IN A SUMP OR SAG LOCATION
Project= - - Bayer I
Inlet ID = - STIN-A9-1
—Lo (C) /
Design Information (input)
Type of Inlet
Type=".CDOT Type Curb Opening .
Local Depression (in addition to gutter depression'a' fmm'O-AIIow')
aim =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1
Grate Information
Length of a Unit Grate
L, (G) =
N/A feet
Width of a Unit Grate
WP =-
N/A feet
rea Opening Ratio for a Grate (typical values 0.15-0.90)
A,,,P =--"-
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) =
N/A
Grate Weir Coefficient (typical value 3.00)
C. (G) =
N/A'
Grate Orifice Coefficient (typical value 0.67)
C. (G) =
N/A
Curb Opening Information
Length of a Unit Curb Opening
LP (C) = ` -
10.00 feet
Height of Vertical Curb Opening in Inches
H,,,,,= -
6.00 inches
Height of Curb Orifice Throat in Inches
H,rP =
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta ='' �' -
63.4. degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
WP =. _
2.00. feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) _
0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00) -
C. (C) _ -,
2.30'
Cum Opening Orifice Coefficient (typical value 0.67)
C. (C) _:
0.67
Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef=
N/Al
Clogging Factor for Multiple Units
Clog =
N/At
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 11.53 cis cum)
d,„ _,
WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 11.53 cfs cum)
d„, _
NIA inches
s an Orifrte
_
Flow Depth at Loral Depression without Clogging (0 cis grate, 11.53 cfs cum)
dy =
- N/A'. inches
Flow Depth at Local Depression with Clogging (g cfs grate, 11.53 cis cum)
dP, _
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d,4„„ _
N/A inches
Resultin Gutter Flow Depth for Cum Opening Inlet Capacity in a Sump
Clogging Coefficient for Multiple Units
Coef =
1.00
Factor for Multiple Units
Clog =
Cum as a Weir, Grate as an Orifice
,Clogging
Flow Depth at Local Depression without Clogging (0 cfs grate, 11.53 cis cum)
d,„ = -
6.2 inches
Flow Depth at Local Depression with Clogging (0 cfs grate. 11.53 cis cum)
d,„ =.
6.7 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 11.53 ofs cum)
d. =
4.9 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 11.53 cfs cum)
d. =
5.8inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c,,,,=
3.7 inches
Resultant Street Conditions
_
Total Inlet Length
L =.
10.0 feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
O, =
11.5 cis
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
of ="
3.7 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =-
7.0. feet
Resultant Flow Depth at Maximum Allowable Spread
d3PREAD =
0.0 inches
STIN-A9-1.xls, Inlet In Sump 1/25/2007, 2:51 PM
28
27
26
26
—
—
24
I
I
23
—�
I
22
21
20
19
18
`17.
9
18
I
1CL
n
18
m
N
14
C
13
:5
a
m
12
—
11.
10
5
3
2
Goal
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
a (cfs)
—6 Curb Weir Curb Od/. E9 Not Used • Reported Design —o— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R.)
STIN-Ag-t.xls, Inlet In Sump 1/25/2007, 2:51 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-A10-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLANDI STREEET FLOW
ND
FLOW FLOW
F GUTTER FLOW PLUS CARRY-OVER FLOW me u F GUTTER FLOW
INLET INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q =
6.75 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area =
Acres
Percent Imperviousness =
- %
NRCS Soil Type
IA, B. C, or D
Site: (Check One Box Only) Slope ft/ft)
Lenth tt
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) ^ C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tc =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, Tc =
N/A minutes
Recommended Tc =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
6.75 cfs
STIN-A10-1.xls, Q-Peak 1/25/2007, 2:53 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = - STIN-A10-1
Desi n Information (Input)
Type of Inlet
Type = COOT Type R Curb Opening
Local Depression (in addition to gutter depression's' fmm'(D-Allow')
al"
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
- 1.
Grate Information
Length of a Unit Grate
L. (G) =
WA feet
idth of a Unit Grate
W, _
WA feet
Area Opening Ratio for a Grate (typical values 0.15-0,90)
A,.w=
N/A"
Clogging Factor for a Single Grate (typical value 0.50)
Ci (G) _ .
WA
Grate Weir Coefficient (typical value 3.00)
Cw (G) _ :
N/A
Grate Orifice Coefficient (typical value 0.67)
Co (G) _ :
N/A'
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _
10.00 feet
Height of Vertical Curb Opening in Inches
H,, =
6.00 inches
Height of Curb Orifice Thmat in Inches
Hprpr, _
5.96 inches
Angle of Throat (see USDCM Figure STS)
Theta = "
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =I
- 2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
G (C) _:....
0.M
Curb Opening Weir Coefficient (typical value 2.30-3,00)
C. (C)
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) _
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
N/A.
Clogging Factor for Multiple Units
Clog ='-
N/A.
s a Weir
_
Flow Depth at Local Depression without Clogging (0 cis grate, 6.75 cfs curb)
d- =
N/A; inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 6.75 cis curb)
d„, _
N/A' inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 6.75 cfs curb)
d. _
N/A inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 6.75 cfs curb)
it. _.
N/A. inches
Resulting Gutter Flow Depth Outside of Local Depression
d",er =
N/A inches
Resulting Gutter Flow De th for Curb Openina Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coal=
1.00'
Clogging Factor for Multiple Units
Clog ='
0.20"
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 6.75 cfs curb)
rl ,
4.3 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 6.75 cfs curb)
it. _
4.8' inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 6.75 cis cum)
it. _
3.4' inches
Flow Depth at Local Depression with Clogging (0 cfs grate. 6.75 cfs cum)
cf . _
3.9 inches
Resulting Gutter Flow Depth Outside of Local Depression
cl c =.
1.8" inches
Resultant Street Conditions
_
Total Inlet Length
L =
10.0 feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. _
6.8 cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
of =
1.8. Inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T = �
1.3' feet
Resultant Flow Depth at Maximum Allowable Spread
dspaeea='.
0.0 inches
STIN-A10-1.xls, Inlet In Sump 1/25/2007, 2:53 PM
30
29
}{
28
27
26
25
24 -
23
22
21
-
20
79
18
—
—
m
17'
I
.LL..
76
CL
13_
C
m
12
11
I
I
I
O
I
I
t0
O
9-
O
—
8
5
O�
O 1
'
I
2
1
1
i
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (Cfs)
—E—Curb Weir —0 Curb Orif. —B—Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-A10-1.xls, Inlet In Sump 11/25/2007, 2:53 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-133-1-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND
SIDE �OV FLOW
FLOW
I STREET I y
I� F GUTTER FLOW PLUS CARRY-OVER FLOW yE— F GUTTER FLOW
INLET INLET
I/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q =
5.67 cfs
* If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness -
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Onl) Slope (ft/ft)
en th (ft)
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
'...:
C2
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, 4 =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
5.67 cfs
STIN-B3-1-1.xls, Q-Peak 1/25/2007, 2:53 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer -
Inlet ID = - STIN-B3.1.1
,I Lo (C) i
Design Information (input) -
Type of Inlet
Type = COOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'O-AIIoW)
a� = _
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
- 1
Grate Information
Length of a Unit Grate
L. (G) =
N/A feet
idth of a Unit Grate
Wo =. -
N/A feet
Area Opening Ratio fora Grate (typical values 0.15-0.90)
A„. = - '
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) _ ,
WA
Grate Weir Coefficient(typical value 3.00)
C„ (G)
- N/k
Grate Orifice Coefficient (typical value 0.67)
Co (G) _ -
N/A
Curb Opening Information
Length of a Unit Curb Opening
L, (C) _ `
:, 5.00 feet
Height of Vertical Curb Opening in Inches
H, =
- 6.00 inches
Height of Curb Orifice Throat in Inches
H� = -
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =
- 2.00, feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =' -
0.20
Curb Opening Weir Coefficient (typical value 2.303.00)
C„ (C) _.
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) =; -
- 0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef='
N/A.
Clogging Factor for Multiple Units
Clog =:
NIA,
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 5.67 cis curb)
dM =
N/A inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 5.67 cfs curb)
d„, _
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 5.67 cfs curb)
da =.
N/A.. inches
Flow Depth at Local Depression with Clogging (0 cis grate. 5.67 cis curb)
d. _. -
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c,,,, _ -
NIA inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef=
1.00.
Clogging Factor for Multiple Units
Clog
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 5.67 cis curb)
dam, _
5.2 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 5.67 cfs curb)
d„p = •
5.7 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 5.67 cis curb)
da = °
4.8 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 5.67 cfs curb)
d„ _.
6.1 inches
Resulting Gutter Flow Depth Outside of Local Depression
cl . =
2.7 inches
Resultant Street Conditions
Total Inlet Length
L =
5.0feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
Q. =,
5.7 cfs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =;
2.7 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T ='
2.8. feet
Resultant Flow Depth at Maximum Allowable Spread
d3MEw =
0.0 inches
STIN-B3-1-1.xls, Inlet In Sump 1/25/2007, 2:53 PM
30
29
28
26
2
25
24.
I
23
22
I
0
21
I
I
1
20 -
19
/
LL ; 1i
16
N
14
_
to
to
0 1
t
73
a
12
-
O
I-
11
I
10
9
g
�
O
i
I
I
I
I
fi
5
I
m
3 2LXi
0
.
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
—a Curb Weir Curb Orif. 8 Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-B3-1-1.xls, Inlet In Sump 1/2512007, 2:53 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-B3-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND I
FLOW y Sl
u E- GUTTER FLOW PLUS CARRY-OVER
INLET
DE ❑VERLAIND
2EET FLOW
I y
FLOW E- ® E- GUTTER FLOW
INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q =
3.10 cfs
" If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope (f tft)
Length ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, " P1 I ( CC2 + Tc ) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
Cj=
C2 =
Ci3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q _
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T. =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
3.10 cfs
STIN-B3-1.xls, Q-Peak 1/25/2007, 2:54 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer -
Inlet ID =' STIN-B3-1
Lo (C) ,f
Deakin Information (input)
Type of Inlet
Type =CDOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'O-Allow')
aKK,i =. -
- 3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =;
1
Grate Information
Length of a Unit Grate
L. (G) _ ` '
WA. feet
Width of a Unit Grate
W. =
WA feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
N.. _ •
- N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) = _
N/A
Grate Weir Coefficient (typical value 3.00)
C. (G) =
N/A
Grate Orifice Coefficient (typical value 0.67)
C, (G) = "'- ..
N/A
Curb Opening Information
'
Length of a Unit Curb Opening
L. (C) - '
10.00 feet
Height of Vertical Curb Opening in Inches
H,,,,r=
6.00 inches
Height of Curb Orifice Throat in Inches
Hr,,,i
inches
Angle of Throat (see USDCM Figure ST-5)
Theta =- -
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W, _.
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) _
0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00)
Cw (C) _ -
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C, (C) _ -
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity In a Sump
Clogging Coefficient for Multiple Units
Coef =. -
N/A!.
Clogging Factor for Multiple Units
Clog =
N/A,
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 3.1 cis curb)
d,� _,.
WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cis curb)
d,q =
N/A. inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 3.1 cis curb)
d„ _'
N/A. inches
Flow Depth at Local Depression with Clogging (0 cis grate. 3.1 cis curb)
d„ _.
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
tl,.e„„ =;
N/A inches
Resultino Gutter Flow Depth for Curb Ooenlno Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef ='
1.00
Clogging Factor for Multiple Units
Clog =.
0.15
Curb as a Weir, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.1 cis curb)
cl„ _'
2.6 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 3.1 cis curb)
d„, _,
2.8 inches
Curb as an Orifice, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.1 cis curb)
d„ _'
2.8 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cis curb)
d„ _
2.9. inches
Resulting Gutter Flow Depth Outside of Local Depression
d.c,m = °
0.0 inches
Resultant Street Conditions
_
Total Inlet Length
L =.J
- 10.0 feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q, _,
3.1 cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d ='
0.0 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
0.0 feet
Resultant Flow Depth at Maximum Allowable Spread
cl Y EAD =.
0.0 inches
STIN-B3-1.xls, Inlet In Sump 1/25/2007, 2:54 PM
30
-
29
L
28
27 -
I
24
23
22
21
20
19
I
I
I
0
1
ai
17
10
V
N
18
a
--
p
_`
y 15
N
/
1—
=Q
14
C
G 13.
a!
—
12
11
,g
g.
I
6�I�
I�
II
III
3
2-
-
0
0 2 4 6 -8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (Cfs)
—ar Curb Weir 0 Curb Orif. —9—Not Used • Reported Design --O—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-133-1.xls, Inlet In Sump 1/25/2007, 2:54 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer.
STIN-B3-3
Design Flow = Gutter Flow + Carry-over Flow
yOVERLAND
SIDE W I STREET W IOV FLOW FLOWy
e CUTTER FLOW PLUS CARRY -`MOVER FLOW C F GUTTER FLOW
INLET INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q =
7.57 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area =
Acres
Percent Imperviousness =
%
NRCS Soil Type
IA. B, C, or D
Site: (Check One Box Only Slope ft/ft
Len th ft
Site is Urban: Overland Flow =
Site Is Non-Urban:l Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ` Pr / ( CZ + Tc ) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
CZ =
C3-
User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
I N/A cfs
Total Design Peak Flow, Q =1
7.57 cfs
STIN-B3-3.xls, Q-Peak 1/25/2007, 2:54 PR
INLET IN A SUMP OR SAG LOCATION
Project =
Inlet ID = .
-Lo (C) r,
STIN-B3-3
Design Information In ut
Type of Inlet
Type = CDOT Type R Curb Opening
Loral Depression (in addition to gutter depression'a' from'Q-Allow')
al._' '
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =-
1
Grate Information
Length of a Unit Grate
L. (G) =
WA. feet
idth of a Unit Grate
W. =
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,,,a=:
NIA
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) = -
WA
Grate Weir Coefficient (typical value 3.00)
C„. (G) = -
N/A
Grate Orifice Coefficient (typical value 0.67)
C. (G) =
N/A
Curb Opening Information
Length of a Unit Curb Opening
L. (C) -
10.00 feet
Height of Vertical Curb Opening in Inches
H,,,,, =- -
6.00 inches
Height of Curb Orifice Throat in Inches
Hy ,= -
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =' _
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W p =
2,00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
G (C) = -
0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C.„ (C) = - , - -
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C, (C) =;` -
0.67
Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
NIA
Clogging Factor for Multiple Units
Clog =
NIA'
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 7.57 cis curb)
qM ='
WA inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 7.57 cfs curb)
d„„ =
N/A inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 7.57 efs curb)
da =
WA inches
Flow Depth at Local Depression with Clogging (0 cfs grate. 7.57 cfs curb)
d„ =
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
tl,e,,,, _:.
N/A' inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
1.00,
Clogging Factor for Multiple Units
Clog =
0.151
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 7.57 cis curb)
d, = -
4.7"inches
Flow Depth at Local Depression with Clogging (0 cis grate. 7.57 cis curb)
d„, =;
5.0 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 7.57 cfs curb)
d. ="
3.6 inches
Flow Depth at Local Depression with Clogging (0 cfs grate. 7.57 cfs curb)
d. _,.
4.0, inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.cu„ =
2.0 Inches
Resultant Street Conditions
_.._. -.. __.
Total Inlet Length
L _.
10.0feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. _
7.6' cfs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =
2.0 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
0.2 feet
Resultant Flow Depth at Maximum Allowable Spread
dspseno ='
0.0 Inches
STIN-B3-3.xls, Inlet In Sump 112512007, 2:54 PM
30
-
2
—�
28
(
26
2
-
25
LL
24
23
22
21
20
18
18
N
17
m
16
CL
to 75,
I
I
m
0 14
13
a
12
0
I
11
10
O
-
gAl
I
II
8
6
5-
3-
2.
I
0
1
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (Cfs)
—a Curb Weir 0 Curb Orif. a Not Used • Reported Design —*—Reported Design
,
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (fl)
-
STIN-B3-3.xls, Inlet In Sump 1/25/2007, 2:54 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-B3-4
Design Flow = Gutter Flow + Carry-over Flow OII
�VND DO
LOWSTREET yVND
FLOW
t�ttliu F GUTTER FLOW PLUS CARRY-OVER FLOW F F GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q =
6.30 cfs
' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box On] ) Slope ft/ft
Length ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inchlhr) = C, ` P1 / ( CZ + T° ) ^ C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T° =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T° =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
6.30 cfs
STIN-133-4.xls, Q-Peak 1/25/2007, 2:55 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = - STIN-B3-4
�Lo (C) ,f
Design Information In
Type of Inlet
Type = CDOT Type Curb Opening -.
Local Depression (in addition to gutter depression'a' fmm'Q-Allow')
a=.
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No = •
1
Grate Information
Length of a Unit Grate
La (G) _
:- - NIA' feet
idth of a Unit Grate
W. =
- N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,,,==
N/A
Clogging Factor for a Single Grate (typical value 0.50) -
C, (G) =
- WA
Grate Weir Coefficient (typical value 3.00)
C„ (G) =
N/A
Grate Orifice Coefficient (typical value 0.67)
Co (G) =
WA,
Curb Opening Information
Length of a Unit Curb Opening
L. (C) = -
- 5.00 feet
Height of Vertical Curb Opening in Inches
H, =
6.00 inches
Height of Curb Orifice Throat in Inches
Hn =
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
- - 63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =..
2.00 feet
Clogging Factor fora Single Curb Opening (typical value 0.10)
C, (C) = ,.
--- 0.20
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C. (C) =
- 2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) =
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
_
Clogging Coefficient for Multiple Units
Coef =
N/A+
Clogging Factor for Multiple Units
Clog
NIA:
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 6.3 cis curb)
d. _ �
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.3 cis curb)
d„p =
N/A inches
s an Or ice
Flow Depth at Local Depression without Clogging (0 cis grate, 6.3 cis curb)
dp _
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.3 cis curb)
dp, =
NIA. inches
Resulting Gutter Flow Depth Outside of Local Depression
d, w =
NIA inches
Resulting Gutter Flow Depth for Curb OpeningInlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
1.00
Clogging Factor for Multiple Units
Clog =
0.20
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate. 6.3 cis curb)
d„ =
5.6 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.3 cis curb)
d. =
6.1 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 6.3 cfs curb)
d„ ='
5.3. inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.3 cis curb)
d-=
6.8 inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.cp,p =
3.8 Inches
Resultant Street Conditions
_
Total Inlet Length
L ='
5.0. feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
Q, =
6.3 cfs
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =
3.8 inches
Resultant Street Flow Spread (based on sheet O-Allow geometry)
T =
7.7 feet
Resultant Flow Depth at Maximum Allowable Spread
dspREao''
0.0 inches
STIN-B3-4.xls, Inlet In Sump 1/25/2007, 2:55 PM
30
29
28
—I
27
26
25
—
24-
23�
22
L
-
21
m
20.
19-
--
�1817
m
I
I
I
I
I
I
m16
I
i
�
I
G
/
15
d
/
C 14
G 13 .
12 .
11
10
9O
6
7111I
I
I
2
to
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
O(Cta)
—6—Curb Weir Curb Odt.--B—Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft)
STIN-B3-4.xls, Inlet In Sump 1/25/2007, 2:55 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-B5-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND
LOWy `MI S1
F GUTTER FLEW PLUS CARRY—OVER
INLET
DE I OVERLAND
y
2EET I
FLOW F- F GUTTER FLOW
INLET
112 ❑F STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
6.02 cfs
` If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope ft/ft
Length (ft)
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + Tc) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
Ci=
C2 =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q _
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
6.02 cfs
STIN-135-1.xls, Q-Peak 1/25/2007, 2:55 PM
INLET IN A SUMP OR SAG LOCATION
Project = . Bayer
Inlet ID = STIN-B5-1 -
", Lo (C) K
Design Information (Input)
Type of Inlet
Type = CDOT Type Curb Opening
Local Depression (in addition to gutter depression'a' fmm'O-Allow')
ab i ='
.3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No ='.
1
Grate Information
Length of a Unit Grate
L. (G) = -
- WAfeet
idth of a Unit Grate
W. =
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,,,, =-
N/A.
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) =
WA`
Grate Weir Coefficient (typical value 3.00)
C„ (G) =
N/A.
Grate Orifice Coefficient (typical value 0.67)
Co (G) =
N/A'
Curb Opening Information
_
Length of a Unit Curb Opening
L. (C) =
- 5.00, feet
Height of Vertical Curb Opening in Inches
H,.,n =
6.00 inches
Height of Curb Orifice Throat in Inches
Hp ='
5.96inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
- 63.4' degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W p =.
2.00. feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =
0.20.
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C. (C) =
- 2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) =
0.67
Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum
_
Clogging Coefficient for Multiple Units
Coef =
N/A`
Clogging Factor for Multiple Units
Clog =.
N/k
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate. 6.02 cfs curb)
cl� _' _
N/A: inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 6.02 cfs curb)
d.„, _.
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 6.02 cis curb)
da ='
WA'. inches
Flow Depth at Local Depression with Clogging (0 cfs grate. 6.02 cis curb)
d„ =
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d� =
N/A inches
!Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump
_
Clogging Coefficient for Multiple Units
Coef=
1.00:
Clogging Factor for Multiple Units
Clog =
0.20,
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 6.02 cis curb)
d, =
5.4. inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 6.02 cfs curb)
d„, _.
5.9` inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 6.02 cfs curb)
d,i =
5.1- inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.02 cis curb)
d„ =
6.5-inches
Resulting Gutter Flow Depth Outside of Local Depression
ci . =
2.9 inches
Resultant Street Conditions
Total Inlet Length
L =
5.0 feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q, =
6.0' cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
it =
2.9' inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T ='
3.8' feet
Resultant Flow Depth at Maximum Allowable Spread
depeeao =
0.0 inches
STIN-B5-1.xis, Inlet In Sump - 1/25/2007, 2:55 PM
29
7 2
I
26
25
24
4
23
22-
21
20
19
17
�
A
m
16
C
C.
to
15
N
I
/
C 14
I
-
/
G t3
0
t2
11
10
9'
0
5
kH
4
3
1
2
0
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (Cf8)
-a Curb Weir 0 Curb Odf. -B- Not Used • Reported Design -O- Reported Design
Flow Depth (in.) Flow Depth (in.) Flaw Depth (in.) Spread (ft.)
STIN-65-1.xls, Inlet in Sump 1/25/2007, 2:55 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-B5-2
II Design Flow = Gutter Flow + Carry-over Flow
yOVERLAND
I LOW
SIDE f OVFND
I STREET � J�
F GUTTER FLOW PLUS CARRY -`MOVER FLOW F ® F GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
7:77 cfs
` If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope ft/ft
Length ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' PI / ( C2 + T,) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
Cj=
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tc, =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
NIA cfs
Total Design Peak Flow, Q =1
7.77 cfs
STIN-B5-2.xls, Q-Peak 1/25/2007, 2:55 PM
INLET IN A SUMP OR SAG LOCATION
Project= - - .Bayer -
Inlet ID = _ - • �- STIN•B5.2
,fLo (C) i
Desi n Information (input)
Type of Inlet
Type = COOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'Q-Allow')
a„ cai = f-"-
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
Grate Information
Length of a Unit Grate
L. (G) =-
N/A feet
idth of a Unit Grate
Wo =
NIA feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,auo = -
N/A'
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) = ""
N/A
Grate Weir Coefficient (typical value 3.00)
C„, (G) = -
NIA`
Grate Orifice Coefficient (typical value 0.67)
C. (G) - ' `"
NIA'
Curb Opening Information
Length of a Unit Curb Opening
Lo (C) -
10.00 feet
Height of Vertical Curb Opening in Inches
H„a„
6.06 inches
Height of Curb Orifice Throat in Inches
Hm.,
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta - •
63.4degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp -'
`-. 2.00' feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =
015.
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„. (C) _ `,
2.30.
Curb Opening Onfice Coefficient (typical value 0.67)
Co (C)-
-0.67'.
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coal=
NIX
Clogging Factor for Multiple Units
Clog =.' _
N/A�
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 7.77 cfs Curb)
d,
WA inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 7.77 cfs curb)
d„, _;,
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 7.77 cfs curb)
do; =:v
- �N/A inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 7.77 cfs curb)
cl a =
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c,,,, _
N/A inches
Resulting Gutter Flow Depth for Curt Opening Inlet Capacity in a Sum
_
Clogging Coefficient for Multiple Units
Coef=`- • : 1-��
1.00:
Clogging Factor for Multiple Units
Clog = °
0.15�
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 7.77 cfs curb)
dv =.�'
4.7 inches
Flow Depth at Local Depression with Clogging (0 cfs grate. 7.77 cis curb)
d„, _' ' -
5.1, inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 7.77 cis curb)
d„ -'
3.7inches
Flow Depth at Local Depression with Clogging 0 cfs rate, 7.77 cfs curb
P P 99 9( 9 )
da, =, -
i
4a.inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c„b =,
2.1' Inches
Resultant Street Conditions
-�-�10A
_
Total Inlet Length
L-'_�
feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. =-
7,5 cis
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =,''
2.1 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T = , -
0.5. feet
Resultant Flow Depth at Maximum Allowable Spread
dSMEne = -
- 0.0 inches
STIN-B5-2.xls, Inlet In Sump 1/25/2007, 2:55 PM
30
29.
28 -
I
27
25
I
24
—
I
23
22
2119
I
20
III
ml
Is
LL17
16
6
y
I
0
-
U 14
a13
m
12
11
10
—
1
ICI
I_I
6
i
i
t
i
l
5
k
I
II
31111��111
2
1
I
�/0
XI
1 1
1
1
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
—6 Curb Weir Curb Onf. —B—Nat Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-B5-2.xls, Inlet In Sump 1/25/2007, 2:55 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
_ Bayer
STIN-137-1-1
Design Flow = Gutter Flow + Carry-over Flow
yOVERLAND
SIDE W I STREET I IUVL11W,'D FLOW
FGUTTER FLOW PLUS CARRY -,MOVER FLOW E— t_=EE� F- GUTTER LOW
INLET 1NL ET
112 ❑F STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q =
3.66 cfs
* If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area =
Acres
Percent Imperviousness =
%
NRCS Soil Type
JA, B, C, or D
Site: (Check One Box Only Slope ft/ft
Len th ft
Site is Urban]' Overland Flow -F.
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, I ( CZ + Tc) ^ C3
- : "_
Design Storm Return Period, T =
years
-_'
Return Period One -Hour Precipitation, Pi _
inches
Cj=
C2 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G =
=
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
NIA fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
3.66 cfs
STIN-B7-1-1.xls, Q-Peak 1/25/2007, 2:56 PM
INLET IN A SUMP OR SAG LOCATION
Project = - - - Bayer
Inlet ID = . _ STIN-87-11-1
, Lo (C) ,
Design Information (input)
Type of Inlet
Type = "COOT Type R Curb Opening
Loral Depression (in addition to gutter depression'a' from'O-Allow')
a,«a, _ �.
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No
Grate Information
Length of a Unit Grate
L. (G)
" " N/A" feet
idth of a Unit Grate
W. = "
" " "N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A„„o =- -
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cf (G) -
N/A
Grate Weir Coefficient (typical value 3.00)
C„. (G) -
" NIA:
Grate Orifice Coefficient (typical value 0.67)
Co (G) -
- WA
Curb Opening Information
_
Length of a Unit Curb Opening
Le (C) - ,'
5.00--feet
Height of Vertical Curb Opening in Inches
H,,,,f =
6.00 inches
Height of Curb Orifice Throat in Inches
Hm., = "
- 5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta --"
63:4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp -
2.00, feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cf (C) =
0.15�
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C,„ (C) - °.
2.30,
Curb Opening Orifice Coefficient (typical value 0.67)
Ca (C) = -
.: 0.67'
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
N/A
Clogging Factor for Multiple Units
Clog =1
N/AI
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.66 cfs curb)
d. =
- NIA inches
Flow Depth at Loral Depression with Clogging (0 cfs grate, 3.66 cfs curb)
tl„, _ -
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.66 cfs curb)
_
do =�'
N/A' inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 3.66 cfs curb)
da =
" N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c. = -
NIA'. inches
lResulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
_
Clogging Coefficient for Multiple Units
Coef =:-`-
1.00,
Clogging Factor for Multiple Units
Clog =.
0.15'
Curb as a Weir, Grate as an Orifice
.3.9'
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.66 cfs curb)
d„, _ j ,"
inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 3.66 cls curb)
d„ =
4.1 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.66 cfs curb)
do,
3.6, inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 3.66 cfs curb)
d. _: -
3.9' inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c, =
1.1 inches
Resultant Street Conditions
Total Inlet Length
L
5.0' feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
Q. = j
3.7' cfs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d
1.1 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T ="
- 0.9-feet I
Resultant Flow Depth at Maximum Allowable Spread
dspeem=}"
0.0-inches
STIN-B7-1-1.xis, Inlet In Sump - 1/25/2007, 2:55 PM
30
29
28
27
25
2
-
24
23
(
I
O
22
21
20
19
..., 18LL
m
17
113
(0
m
CL
t
15
u 14
c
I
I
O
4) 13
N
12
11
10
8
7
6
I T
21
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (ofs)
—6—Curb Weir —0 Curb Orif. —e—Not Used • Reported Design —O--Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-67-1-1.xls, Inlet In Sump 1/25/2007, 2:55 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-87-2-1
Design Flow = Gutter Flow + Carry-over Flow
OVEROL\AAy
ND
Y S1
E— GUTTER FLOW PLUS CARRY-OVER
INLET
DE �O\/ RLAND I
= T FLOW
FLOW tt�i F- GUTTER FLOW
INLET
i/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =F 12.16 cfs
' If you entered a value here, ski the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area = Acres
Percent Imperviousness =
%
NRCS Soil Type
JA, B, C, or D
Site: (Check One Box Only Slope ft/ft
Len th ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C� ' P1 I ( C2 + Tc ) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q _
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, _
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
12.16 cfs
STIN-67-2-1.xls, Q-Peak 1/25/2007, 2:56 PM
INLET IN A SUMP OR SAG LOCATION
Project = _ _ Bayer �-
Inlet ID = STIN-B7-2-1
i Lo (C) x,
Desi n Information (input)_
Type of Inlet
Type = CDOT Type R Curb Opening
Local Depression (in addition to gutter depression 'a' from'Q-Allow')
A.,=
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
.1
Grate Information
Length of a Unit Grate
LP (G) =
WA feet
idth of a Unit Grate
W. =
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
N.. =
N/A
Clogging Factor for a Single Grate (typical value 0.50)
C, (G) =.
WA
Grate Weir Coefficient (typical value 3.00)
Cw (G) =
- N/A
Grate Orifice Coefficient (typical value 0.67)
CP (G) =
N/A
Curb Opening Information
Length of a Unit Curb Opening
LP (C) = -
- 10.00 feet
Height of Vertical Curb Opening in Inches
H„w,=.
6.00 inches
Height of Curb Orifice Throat in Inches
HP , =
- 5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta = -
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
WP =.
2.00 feet
Clogging Factor fora Single Curb Opening (typical value 0.10)
C, (C) =
0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„. (C) =
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
CP (C) =
0.67'
Resultina Gutter Flow Depth for Grate Inlet Capacity In a Sum
Clogging Coefficient for Multiple Units
Coat=.
N/A
Clogging Factor for Multiple Units
Clog =
N/A`
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 12.16 cfs curb)
d„, _
N/A' inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 12.16 cls curb)
d. _,
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 12.16 cis curb)
da =
WA inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 12.16 cis curb)
cl P =
N/A. inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.e,,,, =
N/A inches
Resulting Gutter Flow Depth for Curb Openina Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coal=
1.00'
Clogging Factor for Multiple Units
Clog =
Curb as a Weir, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 12.16 cfs curb)
cl� =
6.4 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 12.16 cis curb)
d„y =
6.9- inches
Curb as an Orifice, Grate as an Orifice
_
Flow Depth at Loral Depression without Clogging (0 cls grate, 12.16 cfs curb)
da =
5.2, inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 12.16 cfs curb)
d. _'
6.1 inches
Resulting Gutter Flow Depth Outside of Local Depression
dreum =
3.9 inches
Resultant Street Conditions
-
_
Total Inlet Length
L -
10.0�feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. =
12.2 cfs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
it =
3.9 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
8.0 feet
Resultant Flow Depth at Maximum Allowable Spread
d5PREM =
0.0 inches
STIN-B7-2-1.xls, Inlet In Sump 1/25/2007, 2:56 PM
30
I
26
25
24
23
22
—
2120
19
I
0
18
I
d
17
a
m
16
G
to
15
4)
C 14
I
0
13
CIL
e)
G
12
0
11
10-
8
O I
I
I
7
O
8
5-
I
—
g.
l
O
i
i
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
—6—Curb Weir —0 Curb Onf. a- Not Used • Reported Design —0— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R.)
STIN-B7-2-1.xls, Inlet In Sump 1/25/2007, 2:56 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-B9-1
Design Flow = Gutter Flow + Carry-over Flow
yUVFLOWuD SSIDE REET �OVERLAND
FLOW
GUTTER FLOW PLUS CARRY -LIVER FLOW F GUTTER FLOW
iNLET INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q =
4.2Q cfs
' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One BOX Only) Slope ft/ft
Length (ft)
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CZ + T, ) ^ C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C,=
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C -
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended Tc =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 06=
N/A cfs
Total Design Peak Flow, Q =1
4.20 cfs
STIN-139-1.xls, Q-Peak 1/25/2007, 2:56 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer -
Inlet ID = STIN-B9.1
Lo (C)r,
Design Information (input)
Type of Inlet
Type =:CDOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' frem'Q-AIIoW)
a =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1-
Grate Information
Length of a Unit Grate
L.(G)=�:'
N/A feet
idth of a Unit Grate
W.
'N/Afeet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A"a. =
NIA'
Clogging Factor for a Single Grate (typical value 0.50)
Ci (G) =
N/A'
Grate Weir Coefficient (typical value 3.00)
C„ (G) =
N/A.
Grate Orifice Coefficient (typical value 0.67)
Co (G) =
N/A -
Curb Opening Information
Length of a Unit Curb Opening
Lo (C) _ '::.,
" 5.00� feet
Height of Vertical Curb Opening in Inches
H,,,,i =' -
6.00 inches
Height of Curb Orifice Throat in Inches
Ham„ =
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W n =;,
2A0 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =
0.20:
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„.(C)='
2.30'.
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) _ -
0.67`
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef ='
N/At
Clogging Factor for Multiple Units
Clog =:
N/A4
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 4.2 cis curb)
rim = I"
N/7 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 4.2 cfs curb)
dw =- -
N/k inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 4.2 cis curb)
dd ='
N/A inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 4.2 cfs curb)
d„ _.
N/A'. inches
Resulting Gutter Flow Depth Outside of Local Depression
cl ter, =
N/A: Inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity In a Sum
Clogging Coefficient for Multiple Units
Coef =
1.00,
Clogging Factor for Multiple Units
Clog =
0.M
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 4.2 cis curb)
d„, =
4.31 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 4.2 cfs curb)
de =
4.6'' inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 4.2 cfs curb)
_
dq =�
3.91 inches
Flow Depth al Local Depression with Clogging (0 cfs grate, 4.2 cfs curb)
da. _ -
4.5. inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c„s =,
1.6'' inches
Resultant Street Conditions
Total Inlet Length
L ='
5.0feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
O, _"
4.Z cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =.
1.6'. inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T ='
1.3 feet
Resultant Flow Depth at Maximum Allowable Spread
ds Eeo =
0.0 inches
STIN-B9-1.xls, Inlet In Sump 1/25/2007, 2:56 PM
30 -
29
1—
2827
-
—
I
261-
25
-
24
o
23
22
21
20
i
7817
m
�76
I
m
I
�—
CL
to
15
_
N
14
t
13-
O.
Q
12
ii
I'
m
10
I
I
I
5
4
I
I
I
I
I
3
1
11
I
I
I
I
I
2.I�i
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q(C13)
—a Curb Weir 0 Curb Onf. —9— Not Used • Reported Design —0— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-B9-1.xls, Inlet In Sump 1/25/2007, 2:56 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-B-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND
FLOW W S
W
F GUTTER FLOW PLUS CARRY-OVER
INLET
SIDE I OVERLAND
TREET y
FLOW < F GUTTER FLOW
INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
6.63 cfs
' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area =
Acres
Percent Imperviousness =
%
NRCS Soil Type
JA, B, C, or D
Site: (Check One Box Only Slope ft/ff
Len th ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C33 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q, =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
6.63 cfs
STIN-B-1.xls, Q-Peak 1/25/2007, 2:56 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-B-1
i Lo (C),/
Desi n Information flnputl
Type of Inlet
Type = CDOT Type R Curb Opening -
Local Depression (in addition to gutter depression's' from'O-Allow')
a„w =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1
Grate Information -
Length of a Unit Grate
LP (G) =
N/A feet
idth of a Unit Grate
W. =
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A„.=
NIA
Clogging Factor for a Single Grate (typical value 0.50)
C, (G) =
WA
Grate Weir Coefficient (typical value 3.00)
C. (G) =
-N/A
Grate Orifice Coefficient (typical value 0.67)
Co (G) =
WA
Curb Opening Information
Length of a Unit Curb Opening
L, (C) =
10.00. feet
Height of Vertical Curb Opening in Inches
H� =
6.00 inches
Height of Curb Orifice Throat in Inches
Hu., _.
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta ='�
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W, =
2.00 feet _
Clogging Factor for a Single Curb Opening (typical value 0.10)
C, (C) = - -
0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„ (C) =.:
2.30.
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) =
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Cost =
N/A.
Clogging Factor for Multiple Units
Clog =
NIA.
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 6.63 cis curb)
4,. =
WA inches
Flow Depth at Local Depression with Clogging (0 cfs grate. 6.63 cfs curb)
d—=
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 6.63 cis curb)
da =
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.63 cfs curb)
it. =
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d,c„d =
NIA inches
Resultina Gutter Flow Depth for Curb Opening Inlet CapacityIn m
Clogging Coefficient for Multiple Units
Coef =
1.00'
Clogging Factor for Multiple Units
Clog =
0.15
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 6.63 cis curb)
d„, _
4.3 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 6.63 cis curb)
d„, _
4.6 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 6.63 cis curb)
rid =
3.4 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.63 cis curb)
d. _,
3.7 inches
Resulting Gutter Flow Depth Outside of Local Depression
d,i,,,p=
1.6 inches
Resultant Street Conditions
Total Inlet Length
L=
10.0 feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
Q. =
6.6 cfs
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =
1.6 inches
Resultant Street Flow Spread (based on sheet O-Allow, geometry)
T =
1.3 feet
Resultant Flow Depth at Maximum Allowable Spread
d8PREM =
0.0 inches
STIN-B-1.xls, Inlet In Sump 1/25/2007, 2:56 PM
30
29
II
I
I
28
T
2726
(
III
I
I
I
I
25�
I.
24 _
23
22.
21.
I
I
A
20
19
I
0
7813
17
10
16
to
15
V
14
I
I
a13
12
i�l
I
I
II
L —
11
10
7
6
4.
�_
—
2.
'�IIIII
I
II
III
0 _
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
—tr—Curb Weir —Curb Orif. —8 Not Used • Reported Design —O— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R.)
STIN-B-1.xls, Inlet In Sump 1/25/2007, 2:56 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-B-9
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND
OWy S1
y
GUTTER FLOW PLUS CARRY-OVER
INLET
DE I �OVFLOWND y
2EET
FLOW F- uIE GUTTER FLOW
INLET
I/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q cfs
If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area =
Acres
Percent Imperviousness =
%
NRCS Soil Type
JA, B, C, or D
Site: (Check One Box Only) Slope ft/ft
Length (ft)
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) =.C, ' P1 / ( C2 + Tc ) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
C,=
C2 =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, Tc =
N/A minutes
Recommended Tc =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
1.79 cfs
STIN-B-9.xls, Q-Peak 1/25/2007, 2:57 PM
INLET IN A SUMP OR SAG LOCATION
Project =
Inlet ID =
i Lo (C)--{
Design Information (input)_
Type of Inlet
Type = COOT Type R Curb Opening .
Local Depression (in addition to gutter depression'a' from'Q-AIIow)
611.1 `
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No = .
-':.1
Grate Information
_
Length of a Unit Grate
La (G) _
NIA' feet
Width of a Unit Grate
W. =:
N/A feet
a Opening Ratio for a Grate (typical values 0.15-0.90)
A, =
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Ct (G) =
- NIA
Grate Weir Coefficient (typical value 3.00)
C„ (G) =
- NIA
Grate Orifice Coefficient (typical value 0.67)
C. (G) =
WA
Curb Opening Information
Length of a Unit Curb Opening
L. (C) = _ `
- 5.00 feet
Height of Vertical Curb Opening in Inches
H� =
6.00. inches
Height of Curb Orifice Throat in Inches
Hp t =
- 5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =.
2000 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =
0.20
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C. (C) =
2.30'
Curb Opening Orifice Coefficient (typical value 0.67)
C, (C) =
0.67
Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
NIA
Clogging Factor for Multiple Units
Clog =
NIA`.
s a Weir
_
Flow Depth at Local Depression without Clogging (0 cis grate, 1.79 cis curb)
cl i =-
NIA: inches
Flow Depth at Local Depression with Clogging (0 cis grate, 1.79 cis curb)
d.„, _'
NIA! inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 1.79 cfs curb)
dq =
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 1.79 cis curb)
d„ =
NIA` inches
Resulting Gutter Flow Depth Outside of Local Depression
it
NIA. inches
Resultina Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump
Clogging Coefficient for Multiple Units
Coef =
1.00-
Clogging Factor for Multiple Units
Clog =
0.201
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 1.79 cis curb)
dv =
2.4 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 1.79 cis curb)
it. =
� 2.6. inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate. 1.79 cfs curb)
d4 =
2.9`inches
Flow Depth at Local Depression with Clogging (0 cis grate. 1.79 cis curb)
dw =
3.0 inches
Resulting Gutter Flow Depth Outside of Local Depression
cl � _.
0.0 inches
Resultant Street Conditions
_
Total Inlet Length
L =
5.0 feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Qp =
1.8 cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d ='
0.0' inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
0.0 feet
Resultant Flow Depth at Maximum Allowable Spread
dspaeno =
0.0 inches
STIN-B-9.xls, Inlet In Sump 1/25/2007, 2:57 PM
30
9
28
-
27
26
I--
25
24
23.
22
21
2019
LL
18m
I
0
`16
I
w
1
►
1
N 15
I
013
12
11
10
6
11
3
2
IOI
6
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
—6 Curb Weir Curb Odf. —B—Not Used • Reported Design —O—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-B-9.xls, Inlet In Sump 1/25/2007, 2:57 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-CS-1
Design Flow = Gutter Flow + Carry-over Flow
yOVERLAND
FLOW I I S1
F GUTTER FLOW PLUS CARRY-OVER
INLET
DE OVF RO AND I 2EET
FLOW E- F GUTTER FLOW
INLET
112 ❑F STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
11.91 cfs
' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Onl Slope (ft/ft)
Len th ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
CZ =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
11.91 cfs
STIN-05-1.xls, Q-Peak 1/25/2007, 4:45 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-CS-1 -
T Lo (C) ,r
Design Information (input)_
Type of Inlet
Type = '.CDOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'O-AIIoW)
a, =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =- -
1.
Grate Information
_
Length of a Unit Grate
L. (G) =
N/A feet
idth of a Unit Grate
W. = �'+ -
N/A feet
a Opening Ratio for a Grate (typical values 0.15-0.90)
A„w=
N/A
CloggingFactor for a Single Grate (typical value 0.50) )G
(G) _.
- WA'
Grate Weir Coefficient (typical value 3.00)
C„ (G) _ -
WA'.
Grate Orifice Coefficient (typical value 0.67)
C. (G) _'
NIA
Curb Opening Information
Length of a Unit Curb Opening
Lo (C) -
- 10.00 feet
Height of Vertical Curb Opening in Inches
H,,,,, = I
6.00 inches
Height of Curb Orifice Throat in Inches
Hs,,,, =
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta = -
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =
0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00)
Cw (C) =
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) =.
0.67
Resultina Gutter Flow Death for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef = `'
NIA
Clogging Factor for Multiple Units
Clog =
WAl
As a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 11.91 cis curb)
cl � _'
WA' inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 11.91 cis curb)
d„e =:
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 11.91 cis curb)
rid =.
NIA inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 11.91 cis curb)
it. = .
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d"r,,, _'
NIA inches
Resultina Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef ='
1.00
Clogging Factor for Multiple Units
Clog
Curb as a Weir, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 11.91 cfs curb)
dam; _-
6.3 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 11.91 cis curb)
d„, _:.
6.8 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 11.91 cfs curb)
da = �'
5.1 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 11.91 cis curb)
d„ _ _
6.0 inches
Resulting Gutter Flow Depth Outside of Local Depression
it, _
3.8 inches
Resultant Street Conditions
Total Inlet Length
L ='
- 10.0 feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
O, =: ,
11.9 cfs
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =;
3.8` Inches
Resultant Street Flow Spread (based on sheet O-Allow geometry)
T =
7.5 feet
Resultant Flow Depth at Maximum Allowable Spread
db>REM = �
0.0 Inches
STIN-05-1.xls, Inlet In Sump 1/2512007, 4:45 PM
30-�
29
I
u
28
27
-
26
25
2423
I—
I
I
I
O
17
22
21
I
I
20
0
19
r 18
17
m 16
CL
O
15
N
N
u 14
C 13_
m
G 12
0
-
11
10
8
A
4
3
2
01
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0 (cfs)
—6 Curb Weir 9 Curb Orif. —9 Not Used • Reported Oesign —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (%.)
STIN-05-1.xls, Inlet In Sump 1125/2007, 4:45 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-C6-1
Design Flow = Gutter Flow + Carry-over Flow
y OVERLAND
FLO
I Sl
GUTTER LOW PLUS CARRY -,MOVER
INLET
DE �OVFLOWND y
?EET
FLOW ® F GUTTER FLOW
INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
6.81 cfs
If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope ft/ft
Length ft
Site is Jrban:j Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = G ' P, / ( C2 + Tc ) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments,
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
NIA
Calculated 5-yr. Runoff Coefficient, C5 =
NIA
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
NIA fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
6.81 cfs
STIN-C6-1.xls, Q-Peak 1/25/2007, 4:46 PM
INLET IN A SUMP OR SAG LOCATION
Project=. Bayer
Inlet ID STIN-C61
d Lo (C) i
Desi n Information (Input)
Type of Inlet
Type = CDOT Type R Curb Opening
Local Depression (in addition to gutter depression's' from'Q-AIIoW)
ab =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
- 1
Grate Information
_
Length of a Unit Grate
Lp (G) _
N/A feet
[Width of a Unit Grate
W.
-N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A„pp= :
N/Al
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) _..
- N/A
Grate Weir Coefficient (typical value 3.00)
C„ (G) _
N/A:
Grate Orifice Coefficient (typical value 0.67)
C. (G) _
N/A
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _
5.00 feet
Height of Vertical Curb Opening in Inches
H,.,,r
6.00 inches
Height of Curb Orifice Throat in Inches
Hy,ppr =, --
5.96 inches
ngle of Throat (see USDCM Figure ST-5)
Theta =:. '
MA degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) = -
0.20
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C. (C) = -
2.30'
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C)
-`0.67'
Resulting a Gutter Flow Depth for Grata Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =-
N/AI
Clogging Factor for Multiple Units
Clog =
N/A;
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 6.81 cfs curb)
cl� _:
WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.81 cis curb)
dw. _
N/A' inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 6.81 cis curb)
dy =
NIA' inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.81 cis cum)
it. =
NIA inches
Resulting Gutter Flow Depth Outside of Local Depression
dw„„ =
NIA. inches
Resul in Gutter Flow Depth for Curb Opening Inlet Capacity in a Sumo
_
Clogging Coefficient for Multiple Units
Coef
Clogging Factor for Multiple Units
Clog =
0.20'
Cum as a Weir, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 6.81 cis cum)
d v ='
5.9 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.81 cis cum)
d,q =
6.4 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 6.81 cis cum)
de ='
5.8' inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.81 cis cum)
d„ _.
7.5 inches
Resulting Gutter Flow Depth Outside of Local Depression
tl,.c„p =
4.5, inches
Resultant Stree Conditions
-
of Inlet Length
L-
-v� 5.0�foet
otal Inlet Interception Capacity (Design Discharge from O-Peak )
O, _
6.8' efs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =
4.5 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
. 10.6 feet
Resultant Flow Depth at Maximum Allowable Spread
dspaeao=
0.0, Inches
STIN-C6-1.xls, Inlet In Sump 1125/2007, 4:46 PM
30
29
—
28
27 -
—
26
—
25
24
-
-
O
23
22
21
0---{--r
20
19-
O
LL18
_ 17
ns
�16
I
m
6
to
15--I
m
L
C 14
O
II
I
1
.L.. 13
a
O
'
I
12 -
11
10
9
I0
6-
5
I
4
I
I
3
'
I
I
I
2
4
1-
III
o
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
-tr-Curb Weir -0 Curb Orif. -9- Not Used • Reported Design -0- Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-C6-t.xls, Inlet In Sump 1/25/2007, 4:46 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer.
STIN-C7-T
Design Flow = Gutter Flow + Carry-over Flow
�OVFROL\PND SIDE �OVFLOW
ND
STREETY
tEEE�lE—GUTTER FLOW PLUS CARRY -`OVER FLOW F ® E— GUTTER FLOW
INLET INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
4.17 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area =
Acres
Percent Imperviousness =
%
NRCS Soil Type =1
1A, B, C, or D
Site: (Check One Box Only) Slope ft/ft
Len th ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = G " P, I ( C2 + T,) A C3
I=
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, _
inches
C_
CZ =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
4.17 cfs
STIN-C7-1.xls, Q-Peak 1/25/2007, 4:46 PM
INLET IN A SUMP OR SAG LOCATION
Project =
Inlet ID =
STIN-CM
,I—Lo (C) {
Design Information In td
_
Type of Inlet
Type = �CDOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'Q-Alloxr)
a� =.
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No
Grate Information
-
Length of a Unit Grate
-
L, (G) =
-N/A feet
Idth of a Unit Grate
W. = ` =
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,, =
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) = '.
- N/A
Grate Weir Coefficient (typical value 3.00)
C„. (G) = ' `-
- N/A'
Grate Orifice Coefficient (typical value 0.67)
C. (G) _>..
WA'
Curb Opening Information
Length of a Unit Curb Opening
L, (C) _':
-5.00 feet
Height of Vertical Curb Opening in Inches
H,,,,r='
6.00 inches
Height of Curb Orifice Throat in Inches
Hy,,,r=-
5.96 inches
gle of Throat (see USDCM Figure ST-5)
Theta =.
.. 63A degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
WP =- -
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cf (C) =
0.20'
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„. (C) =
- 2.30
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) _'
0.67''
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef
NIA.
Clogging Factor for Multiple Units
Clog =:..-
N/AI
As a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 4.17 cis curb)
dam, _ .
WA' inches
Flow Depth at Local Depression with Clogging (0 cis grate, 4.17 cis curb)
d.. =
N/A, inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 4.17 cis curb)
it, =
N/A. inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 4.17 cis curb)
d. =
N/A' inches
Resulting Gutter Flow Depth Outside of Local Depression
d,s„„ =
NIA Inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
1.00:
Clogging Factor for Multiple Units
Clog =
0.20,
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 4.17 cis curb)
d„;_
- 4.3 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 4.17 cis curb)
cl , ='.
4.6; inches
Curb as an Orifice, Grate as an Orifice
Ftow Depth at Local Depression without Clogging (0 cis grate, 4.17 cis curb)
cl ; =. T
31 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 4.17 cis curb)
dw = s
4.5 inches
Resulting Gutter Flow Depth Outside of Local Depression
cl G =°
1.6, inches
Resultant Street Conditions
Total Inlet Length
L =
5.0 feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
0, _;
4.2, cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d = ,
1.6. Inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
1.3 feet
Resultant Flow Depth at Maximum Allowable Spread
dSPREeo =
0.0, Inches
STIN-C7-1.xls, Inlet In Sump 1/25/2007, 4:46 PM
30
29 -
28
27
26--
25 -
T
lit
I
24
23
2.2
21
I'
20
19
O
N
LL 17
N
m
—
—
a! 16
a
0
—Z 15--
N
m
u 14
C
t
13
a
O
-
1211
m
10-
8
7
3
2
1
0111
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
—a Curb Weir —0 Curb Orif. —9—Not Used • Reported Design —o— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-C7-1.xls, Inlet In Sump 1/25/2007, 4:46 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-G-1
Design Flow = Gutter Flow + Carry-over Flow
�oVFLOW y I S1
III F GUTTER FLOW PLUS CP.RRY-OVER
INLET
DE �UVFLOWND y '.EET
FLOW ®J F GUTTER FLOW
INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q = 8.75 Cfs
* If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B. C, or D
Site: (Check One Box Only) Slope ft/ft
Len th ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' PI / ( C2 + T,) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
Cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, Vo =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 06 =
N/A cfs
Total Design Peak Flow, Q =1
8.75 cfs
STIN-G-1.xls, Q-Peak 1/25/2007, 4:46 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = - STIN-G-1
�Lo(C) 4,
Design Information (Input)
Type of Inlet
Type = CDOT Type R Curb Opening -
Local Depression (in addition to gutter depression'a' from'Q-AIIow)
a,,,,
- 3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1
Grate Information
.
Length of a Unit Grate
L. (G) =
WA. feet
idth of a Unit Grate
W. = .
WA feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A„r,=
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cf (G) =
WA.
Grate Weir Coefficient (typical value 3.00)
C„ (G) = -
NIA
Grate Orifice Coefficient (typical value 0.67)
C. (G) =
NIX
Curb Opening Information
..
Length of a Unit Curb Opening
L. (C) =
10.00 feet
Height of Vertical Curb Opening in Inches
H,„f =
6.00" inches
Height of Curb Orifice Throat in Inches
H, =
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta = -
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wf, =
2,00. feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cf (C) =
0d5!
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„ (C) =
2.30,
Curb Opening Orifice Coefficient (typical value 0.67)
C, (C) =
0.67
Resulting Gutter Flow Depth for Grate Inlet Caoacitv in a Sum
Clogging Coefficient for Multiple Units
Coef =
NIX
Clogging Factor for Multiple Units
Clog =
NIAI
As Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 8.75 cfs curb)
cl� _'
WA inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 8.75 cis curb)
cl q = .
NIA, inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 8.75 cis curb)
it, =f
N/A. inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 8.75 cfs curb)
d„ =
N/A' inches
Resulting Gutter Flow Depth Outside of Local Depression
d,c,,,, _
NIA. inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump_
Clogging Coefficient for Multiple Units
Cost=
1.00:
Clogging Factor for Multiple Units
Clog =
0.15!
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 8.75 cfs curb)
it, ='
5.1, inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 8.75 cfs curb)
d„„ _
5.6, inches
Curb as an Orifice, Grate its an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 8.75 cfs curb)
d,; _,
4.01 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 8.75 cis curb)
d„ _ =
4.5 inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c,,,e =
2.6, inches
Resultant Street Conditions
- -� - --
- -10.0'
Total Inlet Length
L -
feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. _
8.8, cfs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
of =
2.61 inches
Resultant Street Flow Spread (based on sheet C-Allow geometry)
T =
2.3 feet
Resultant Flow Depth at Maximum Allowable Spread
dsrarw =
0.0, inches
STIN-G-1.xls, Inlet In Sump 1125/2007, 4:46 PM
30
u
29
28
27
26
25
24
23
22
21 -
--
20
I
v
,9.
I
I
p
1817
m
p-
m 78
I
I
I
i
m
�15
m
IIr
c 14
p
CL
m
0 12.
11
m
p
�I
5.
I
m
3
2
1
/
�I
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (CIS)
—A—Curb Weir —0 Curb Onf. --8 Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread ft)
STIN-G-1.xls, Inlet In Sump 1/25/2007, 4:46 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer.
STIN-G-4 .
Design Flow = Gutter Flow + Carry-over Flow
y0IVERLAF OWND y SIDE �OVF 0WND
I STREET
F GUTTER FLOW PLUS CARRY-OVER FLOW F F GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q =
8.70 cfs
* If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area =
Acres
Percent Imperviousness =
%
NRCS Soil Type
JA, B, C, or D
Site: (Check One Box Only) Slope ft/ft
Length ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CZ + T,) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, _
'-" inches
C, _
CZ =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, (I =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
8.70 cfs
STIN-G-4.xls, Q-Peak 1/25/2007, 4:47 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bauer -
Inlet ID = STING-4
�Lo (C) ,f
Design Information (input)'
Type of Inlet
Type =' COOT Type R Curb Opening. -
Local Depression (in addition to gutter depression'a' kom'O-AIIoW)
abpd = i' '
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1
Grate Information
Length of a Unit Grate
L. (G) _ -
N/A feet
idth of a Unit Grate
Wp =; -
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A„rp =
- N/A.
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) _'. - -
N/A
Grate Weir Coefficient (typical value 3.00)
C. (G) = -
N/A
Grate Orifice Coefficient (typical value 0.67)
Cp (G) _
WA
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _'
10.00 feet
Height of Vertical Curb Opening in Inches
H,.,,r =:.
_. ^ .: 6.00 inches
Height of Curb Orifice Throat in Inches
Hu =
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta = - ` -
' 63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W p =
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
G (C) =-
0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C. (C) = -
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) _
0.67.
Resultina Gutter Flow Depth for Grate Inlet Capacity In a Sum
Clogging Coefficient for Multiple Units
Coef =�
NIA;
Clogging Factor for Multiple Units
Clog =.
N/A'
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate. 8.7 cfs curb)
d v =,
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 8.7 cis curb)
d„ _
N/A inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 8.7 cis curb)
da =
NIA inches
Flow Depth at Local Depression with Clogging (0 c/s grate, 8.7 cfs curb)
dp, _
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
cl . =
NIA. inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coat=
1.00
Clogging Factor for Multiple Units
Clog = -
0.15-
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 8.7 cfs curb)
cl, = -
5.-1: inches
Flow Depth at Local Depression with Clogging (0 cis grate, 8.7 cis curb)
dM =
5.5 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 8.7 cis curb)
d,; =
3.9, inches
Flow Depth at Local Depression with Clogging (0 cis grate, 8.7 cfs curb)
dp, =
4.4 inches
Resulting Gutter Flow Depth Outside of Local Depression
cl"c ='.
2.5 Inches
Resultant Street Conditions
Total Inlet Length
L ='
10.0' feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
O, =
8.7'cfs
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =
2.5 inches
Resultant Street Flow Spread (based on sheet O-Allow geometry)
T =
2.2 feet
Resultant Flow Depth at Maximum Allowable Spread
dapne•o =
0.0- inches
STIN-G-4.xls, Inlet In Sump 1/25/2007, 4:47 PM
30'
29
28
27
26 -
25
)
24
23
22
21-
0
20
19-
18
m
0)
I�
16
i
NCL
75
m
l
_
U)
N
14
C
/
G13
m
0 12
I
m
11
)
I
O
10 -
9-
8
I
6
6
4.
3
—
2.
1
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (dfs)
—,6 Curb Weir Curb Orif. El Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R)
STIN-G-4.xls, Inlet In Sump 1/25/2007, 4:47 PM
11 DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD 11
Bayer
STIN-H-1
Design Flow = Gutter Flow + Carry-over Flow
�OV RLAND SIDE I OVERLAND
I STREET Y
F—GUTTER FLOW PLUS CARRY -`LOVER FLOW c5 ® E—CUTTER FLOW
INLET INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus Flow bypassing upstream subcatchments): 'Q
cfs
` If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only) Slope ft/ft
Length ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ` P1 / ( CZ + Tc ) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
Cr =
CZ =
C3
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C3 =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cis
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tc =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =1
N/A cfs
Total Design Peak Flow, Q =
3.74 cis
STIN-H-1.xls, Q-Peak 1/25/2007, 4:47 PM
INLET IN A SUMP OR SAG LOCATION
Project= Bayer
Inlet ID = STIN-H-1 `
�Lo(C) 4,
Design Information (Input)
Type of Inlet
Type CDOT Type R Curb Opening,
Local Depression (in addition to gutter depression'a' from'Q-Allow')
al� =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1.
Grate Information
_
Length of a Unit Grate
L.(G)= -•
N/A feet
Width of a Unit Grate
W. =,*
N/A feet
lArea Opening Ratio for a Grate (typical values 0.15-0.90)
A,.. _
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Ch (G) _ •
NIA
Grate Weir Coefficient (typical value 3.00)
C. (G) _
N/A
Grate Orifice Coefficient (typical value 0.67)
C. (G) _
N/A
Curb Opening Information
Length of a Unit Curb Opening
Le (C) _ : .: "'
5.00 feet
Height of Vertical Curb Opening in Inches
H. =:
6.00 inches
Height of Curb Orifice Throat in Inches
Hy ='
5.96 inches
gle of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W n = - '°
2.00. feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) = -
0.20'
Curb Opening Weir Coefficient (typical value 2.30-3.00) -
C„. (C) =
2.30.
Curb Opening Orifice Coefficient (typical value 0.67)
C, (C) =
0.67.
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
N/Ait
Clogging Factor for Multiple Units
Clog = •
N/Al.
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 3.74 cis curb)
d„r ='- -
N/A° inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.74 cis curb)
d„, _' ' <
Nlk inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 3.74 cfs curb)
da =
WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.74 cfs curb)
d„ =
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d",.,. _'
N/A. inches
Resultino Gutter Flow Depth for Curb Openina Inlet Capacity in a Sum
_
Clogging Coefficient for Multiple Units
Coef=
1.00h
Clogging Factor for Multiple Units
Clog ='
0.20'
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 3.74 cis curb)
d„r =,
4.0 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.74 cis curb)
d„., _
4.3inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.74 cis curb)
do ='
3.6' inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 3.74 cfs curb)
d. =
4.1; inches
Resulting Gutter Flow Depth Outside of Local Depression
d.c�n =
1.3 inches
Resultant Street Conditions
Total Inlet Length
L =:
_
5.0. feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. =
3.7 cfs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
cl =
1.3 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
1.0' feet
Resultant Flow Depth at Maximum Allowable Spread
dsyse,ho =
0.0 inches
STIN-H-1.xls, Inlet In Sump 1/25/2007, 4:48 PM
30
29
I
i
�
28
I
27 -
26
25 -
24
I 0
23
—
(
22
21 -
/I
20
d
19.
.18—
V
d
m
17
`76
6
N
15-
m
L
0 14-
C
I
0
-
I
013
G
I
12
_�
11
1
P
10-
9
I
e
_
I
I
6
5
O
I
IO
I
I I
(
2
'�I
I
I
I
(
I
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
O (cte)
—6 Curb Weir —0 Curb Orif. —9 Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (8.)
STIN-H-1.xls, Inlet In Sump 1/25/2007, 4:48 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer . ,,-
STIN-1-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLANDO\I SIDE 0\/ RL\AND
Y STREET O
F GUTTER FLOW PLUS CARRY-OVER FLOW F- ® e GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q
cfs
If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B. C, or D
Site: (Check One Box Only Slope ft/ft
Length (ft
Site is Urban: I Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
CZ =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cis
Total Design Peak Flow, Q =1
2.79 cis
STIN-1-1.xls, Q-Peak 1/25/2007, 4:48 PM
ji�
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-1-1
4 Lo (C) r,
Design Information (input)
Type of Inlet
Type = COOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'O-Allow')
a� _:
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =-
1.
Grate Information
_
Length of a Unit Grate
L. (G) _
N/A feet
rdth of a Unit Grate
W, =
WA feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,,,„=
N/A.
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) =
N/A.
Grate Weir Coefficient (typical value 3.00)
C„ (G) _
N/A
Grate Orifice Coefficient (typical value 0.67)
C, (G) _ -
N/A
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _
5.00. feet
Height of Vertical Curb Opening in Inches
H,,,,h =
6.00 inches
Height of Curb Orifice Throat in Inches
Hr,,,, _-
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W p = `
2.00. feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) _
. 0.20
Curb Opening Weir Coefficient (typical value 2.30.3.00)
G. (C) _
2.30::
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) _
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =!
NIA-
Clogging Factor for Multiple Units
Clog =
NW
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 2.79 cfs curb)
dm _'
N/A;. inches
Flow Depth at Loral Depression with Clogging (0 cls grate, 2.79 cfs curb)
d,„ _%
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 2.79 cfs curb)
it. =
NIA'... —.--
Flow Depth at Local Depression with Clogging (0 cfs grate, 2.79 cfs curb)
d. _+
NIA. inches
Resulting Gutter Flow Depth Outside of Local Depression
d,4r,d ='
NIA inches
Resulting Gutter Flow Depth for Curb Openina Inlet Capacity in a Sum
_
Clogging Coefficient for Multiple Units
Coef ='
1.00'
Clogging Factor for MuMple Units
Clog =
0.20
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 2.79 cis curb)
d„ =
3.3' inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 2.79 cfs curb)
d„m =
3.5, inches
Curb as an Orifice,, Grate as an Or'dice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 2.79 cfs curb)
da ='
3.2. inches
Flaw Depth at Local Depression with Clogging (0 cis grate, 2.79 cfs curb)
de, =
3.5 inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c, =,
0.5 inches
Resultant Street Conditions
otal Inlet Length
L=,
5.0�feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
Oa =
2.8 cfs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =,
0.5 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
0.4 feet
Resultant Flow Depth at Maximum Allowable Spread
d,PRrAa =
0.0, inches
STIN-1-1.xls, Inlet In Sump 1/25/2007, 4:48 PM
30
29
28--
I I
27
26-
25
-
24
23
22
21
m
I
20
19
18
—
m
1L
I
17
16
a
f/1
I
l
15
N
m
C iq.
I
C 13
12
—
�
11
IIII
�
10
9
I
O
(
6.
3 -
—�—
ILj
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
a (efs)
-
—a Curb Weir 0 Curb Onf. —9— Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-I-t.xls, Inlet In Sump 1/25/2007, 4:48 PM
11 DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Sayer
STIN-1-2
Design Flow = Gutter Flow + Carry-over Flow
I
�OVERLAND STREET I OVERLAND
I
le GUTTER FLOW PLUS CARRY-OVER FLOW le GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): Q = 7.77 cfs
If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area = Acres
Percent Imperviousness =
%
NRCS Soil Type
JA, B, C, or D
Site: (Check One Box Only lope ft/ft
Len th ft
Site is Urban: I Overland Flow =
=
Site Is Non -Urban: Gutter FlowF.
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + Tc ) A C3
Design Storm Return Period, Tr = ,-
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =1
N/A cfs
Total Design Peak Flow, Q =
7.77 cfs
STIN-1-2.xls, Q-Peak 1/25/2007, 4:50 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = - STIN-1-2 `
�Lo (C) I
Warning 5
Design Information (input)
Type of Inlet
Type =CDOT Type Curb Opemng
Local Depression (in addition to gutter depression'a' from'Q-Allow')
a„ �,�=
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
Grate Information
Length of a Unit Grate
L, (G) =
N/A feet
idth of a Unit Grate
W o ='
- N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A„n,=,
N/A`
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) _.
N/A'
Grate Weir Coefficient (typical value 3.00)
C„ (G) _
N/A
Grate Orifice Coefficient (typical value 0.67)
Co (G) _ ,
- N/A`
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _
.5.00' feet
Height of Vertical Curb Opening in Inches
H, = -
"" 6.00 inches
Height of Curb Orifice Throat in Inches
Hy _
-5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta ='
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =
0.20.
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„ (C) =' -
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) =
0.67'
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coal ='
N/AI
Clogging Factor for Multiple Units
Clog ='
N/Ai
saWeir
Flow Depth at Local Depression without Clogging (0 cfs grate, 7.77 cfs curb)
cl,r = _
NIA! inches
Flow Depth at Local Depression with Clogging (0 cis grate, 7.77 cis curb)
cl , =
N/A'. inches
s an OriFlce
Flow Depth at Local Depression without Clogging (0 cis grate, 7.77 cis curb)
da ='
N/A inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 7.77 cls curb)
d. =
N/A. inches
Resulting Gutter Flow Depth Outside of Local Depression
d".. =
N/A; inches
Resulting Gutter Flow Depth for Curb Openina Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef='
1.00:
Clogging Factor for Multiple Units
Clog =
0.24"
Curb as a Weir, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 7.77 cis curb)
CIM =
6.4 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 7.77 cis curb)
d,„ =,
7.0. inches
Curb as an Orifice, Grate as an Orifice
_ _
Flow Depth at Local Depression without Clogging (0 cis grate, 7.77 cis curb)
cl ; =
6.7 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 7.77 cis curb)
d„ ='
9.0` inches
Resulting Gutter Flow Depth Outside of Local Depression
cl . =
6.0 inches
Resultant Street Conditions
_
Total Inlet Length
L =
5.0'� feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. =
7.8, cis
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =
6.0' inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
16.7 feet
Resultant Flow Depth at Maximum Allowable Spread
d3PREM=
0.0 inches
Warning 5: Gutter flow depth is greater than the 6 inches allowed for the MINOR STORM (see sheet'Q.Allow')
STIN-1-2.xls, Inlet In Sump 1/25/2007, 4:50 PM
30 _
29 -
—
28 -
—
27
—
I
if
26
25
24
O
23
22
m
21
20
,6.
N
m
I
„17
16
m
m
CL
to 15
m
tE 14
I
I
:5 13
O.
N
12
I
—
11
10
I
I
I
s-
8
7
II
I
II
5-©I���
4.
-
3
2-
'
oil
a,,
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
a (cfs)
—6 Curb Weir 0 Curb Orif. —B— Not Used • Reported Design --*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-1-2.xls, Inlet In Sump 1/2512007, 4:50 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-J-1
Design Flow = Gutter Flow + Carry-over Flow
I DIVERLAND SIDE UV ND
Lyy
OW y I STREET � I LOW
GUTTER FLOW PLUS CARRY-OVER FLOW F NE LOW
INLET INLET
I/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus Flow bypassing upstream subcatchments): "Q =
19.95 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope ft/ft
Length (ft)
Site is Urban:1 Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = G ' P, / (C + Tc ) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
CZ =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, 4 =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
19.95 cfs
STIN-J-1.xls, Q-Peak 1/25/2007, 4:51 PM
INLET IN A SUMP OR SAG LOCATION
Project= Bayer `
Inlet ID = STINJ•1" `
Lo (C) X
Desi n Information (input)
Type of Inlet
Type = COOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'Q-AIIow)
a� =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1
Grate Information
-'
Length of a Unit Grate
L. (G) _
N/A' feet
idth of a Unit Grate
W. = _ _
- N/A feet
Area Opening Ratio fora Grate (typical values 0.15-0.90)
A„. _ .-- `,
NIA
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) _ -
N/A
Grate Weir Coefficient (typical value 3.00)
G. (G) _ _
NIA!
Grate Orifice Coefficient (typical value 0.67)
CP (G) _ -
WA
Curb Opening Information
Lengm of a Unit Curb Opening
Lo (C) _ ::
15.00 feet
Height of Vertical Curb Opening in Inches
H„,r =
- 6.00 inches
Height of Curb Orifice Throat in Inches
Hs =±. -
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp = - -- -
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) _
0.10
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„ (C) _ -
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) =
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coet
Clogging Factor for Multiple Units
Clog =, _
N/A'
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 19.95 cis curb)
d,„ _.
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 19.95 cfs curb)
Q,., =
N/A inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 19.95 cfs curb)
da =' -
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 19.95 cis curb)
da =-
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
cf . r, _ -
N/A Inches
Resultino Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
_
Clogging Coefficient for Multiple Units
Coef ='
1.00'
Clogging Factor for Multiple Units
Clog =
0.10
Curb as a Weir. Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 19.95 cis curb)
d„i =�
8.3 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 19.95 cis curb)
d„, _
8.9inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 19.95 efs curb)
d„ _ �'
5.6, inches
Flow Depth at Local Depression with Clogging (0 cis grate, 19.95 cis curb)
d. _
6.3' inches
Resulting Gutter Flow Depth Outside of Local Depression
d� _.
5.9 Inches
Resultant Street Conditions
Total Inlet Length
L = -
15.0 feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. _.
20.0: cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d = -
5.9' inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
16.4 feet
Resultant Flow Depth at Maximum Allowable Spread
dsPRem =
0.0 inches
STIN-J-1.xls, Inlet In Sump 1/25/2007, 4:51 PM
30
28
—
0
27
—
26
25 -
24-
I
/
23-�
22
d
0
21
20
19
18
-
LL 17
16
to
15
m
L
14
�
I/
13
CL
0
I
12.
4
11
I
�
-
10
O
I
5.
2.
1
��
0
1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cts)
—6 Curb Weir 0 Curb On(. E3 Not Used • Reported Design -*-Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-J-1.xls, Inlet In Sump 1/25/2007, 4:51 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-L-1
Design Flow = Gutter Flow + Carry-over Flow
yUVi\D
FLOWJ I Sl
y
F GUTTER FLOW PLUS CARRY-OVER
INLET
DE �OVFLOWND
?EET
FLOW le t7771 <-- GUTTER FLOW
INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak Flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 16.00 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area = Acres
Percent Imperviousness =
%
NRCS Soil Type
IA, B, C, or D
Site: (Check One Box Onl) Slope ft/ft)
Length(ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T� ) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, =
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G =
Bypass (Cant' -Over) Flow from upstream Subcatchments, Q, =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
16.00 cfs
STIN-L-1.xls, Q-Peak 1/2512007, 4:51 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-L-1
F—Lo (C) 11
Design Information (input)
Type of Inlet
Type ='CDOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'O-Allox+)
a _. -
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1
Grate Information
Length of a Unit Grate
L, (G) = "
_ WA feet
idth of a Unit Grate
W.
- N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
gave-
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) -,
NIA-
Grate Weir Coefficient (typical value 3.00)
C„ (G) _ -`-
N/A'.
Grate Orifice Coefficient (typical value 0.67)
Ca (G) =
" NIA
Curb Opening Information
Length of a Unit Curb Opening
La (C) _ -
- 10.00 feet
Height of Vertical Curb Opening in Inches
H,.,,r='-_.>.,
6.00 inches
Height of Curb Orifice Throat in Inches
Hr =:: -
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =_
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C)
0.15.
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„ (C) _
2.30;
Curb Opening Orifice Coefficient (typical value 0.67)
Ca (C) _
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
f
Clogging Coefficient for Multiple Units
Coef
N/A
Clogging Factor for Multiple Units
Clog =1
N7
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 16 cis curb)
d v =;
N/A,I inches
Flow Depth at Local Depression with Clogging (0 cis grate, 16 cis curb)
d„ _ :
N/A inches
As an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 16 cis curb)
d„ _;.
N/Ainches
Flow Depth at Local Depression with Clogging (0 cis grate, 16 cis curb)
da. _;
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d� ='
NIA Inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
,
Clogging Coefficient for Multiple Units
Coef=.
1.00'
Clogging Factor for Multiple Units
Clog =; --
0.151
Curb as a Weir, Grate as an Orifice
LL7.7'
Flow Depth at Local Depression without Clogging (0 cfs grate, 16 cis curb)
d„r =i
inches
Flow Depth at Local Depression with Clogging (0 cis grate, 16 cis curb)
d», _:. -
8.3' inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 16 cis curb)
cl ; _;"
7.0, inches
Flow at Local Depression with Clogging (0 cis grate, 16 cis curb)
it. _
8.6 inches
teplh
Resulting Gutter Flow Depth Outside of Local Depression
da.c,ae='
5.6 inches
Resultant Street Conditions
Total Inlet Length
L = I
10.0. feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
Oa ='
16.0 cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =:,
5.6• inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T = "
15.1 feet
Resultant Flow Depth at Maximum Allowable Spread
dacaew ='. -
0.0 inches
STIN-L-1.xls, Inlet In Sump 1/25/2007, 4:51 PM
30
29
28
27
I
-
—
26
25
24
23
22
21
I
I
I
m
20
19
—
�_
m
8
,
to
N
CL
15
r
C14
G 13
12
11
,0
I
0
I
8
I
�-
5
�-
3
2
I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (Cfs)
--6 Curb Weir Curb Onf. —9 Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-L-i.xls, Inlet In Sump 1/25/2007, 4:51 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-N-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND I
y FLOW y I ST
F— GUTTER -LOW PLUS CARRY-OVER
INLET
DE I OVERLAND
PAND
'EET
FLOW F F GUTTER FLOW
INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
12.72 cfs
" If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope ft/ft
Len th ft
Site is'Urban:l I Overland Flow -
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T, ) A C3
Design Storm Return Period, Tr =
years
-
Return Period One -Hour Precipitation, P, =
inches
C, _
CZ =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, t� =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
12.72 cfs
STIN-N-1.xls, Q-Peak 1/25/2007, 4:51 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-N-1
'iI Lo (C)
Desi n Information finout)
Type of Inlet
Type = COOT Type R Curb Opening -
Local Depression (in addition to gutter depression'a' Imm'0-AIIow')
a. =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No
Grate Information
Length of a Unit Grate
LP (G) =
NIA feet
Width of a Unit Grate
W. =
NIA feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A,, =. '
WA.
Clogging Factor for a Single Grate (typical value 0.50)
C, (G) = . ° - -
NIA
Grate Weir Coefficient (typical value 3.00)
C„. (G) =!
N/A'
Grate Orifice Coefficient (typical value 0.67)
C. (G) =
N/A
Curb Opening Information
Length of a Unit Curb Opening
L. (C) =
10.00 feet
Height of Vertical Curb Opening in Inches
H,,,,,=
6.00 inches
Height of Curb Orifice Throat in Inches
Ham„ = -
5.96 inches
ngle of Throat (see USDCM Figure ST-5)
Theta =
63.4degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
WP = _ `-
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
C,(C)=: --,-
-0.15'
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„ (C) =
2.30;
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) =
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sump
Clogging Coefficient for Multiple Units
Coef = •
NIA''.
Clogging Factor for Multiple Units
Clog =
INA!
is a Weir
Flow Depth at Local Depression without Clogging (0 cis grate. 12.72 cis curb)
d,=
WAI inches
Flow Depth at Local Depression with Clogging (0 cis grate, 12.72 cis curb)
d„ = �.
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 12.72 cis curb)
da = -
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 12.72 cis curb)
d. =
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
tl,.er,,, _;
N/A inches
Resulting Gutter Flow Depth for Curb Openinti Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
_
1.M
Clogging Factor for Multiple Units
Clog =.
0.15�
Curt as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 12.72 cis curb)
d„ _'
6.6, inches
Flow Depth at Local Depression with Clogging (0 cis grate. 12.72 cis curb)
d— _
7.1 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 12.72 cis curb)
dy =
5.4 inches
Flow Depth at Local Depression with Clogging (0 cis grate. 12.72 cis curb)
d. _'
6.4 inches
Resulting Gutter Flow Depth Outside of Local Depression
cl . =
4.1 inches
Resultant Street Conditions
Total Inlet Length
L ='
_
10.0 feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
0, _; .,
12.7 rcB
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =
4.1 inches
Resultant Street Flow Spread (based on sheet Q-Alfow geometry)
T =
8.8 feet
Resultant Flow Depth at Maximum Allowable Spread
d9PREM =
0.0 inches
STIN-N-t.xls, Inlet In Sump 1/25/2007, 4:51 PM
30
—
28
27
26
25
24
23
0
-
22
21
20
—O
19
m
LL
17
10
16-
a
rn
O
15
—Z
N
N
L
14
C
13
:5
a
m
12
11
10
9
I
I
7
4
�I
3
—
2
I
I
rO
(
1
0
/
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (ifs)
-
a Curb Weir —0 Curb Orif. —O—Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (N.)
STIN-N-1.xls, Inlet In Sump 1/25/2007, 4:51 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-0-1 .
Design Flow = Gutter Flow + Carry-over Flow
yOVERLAND
SIDE OVERLAND STREEET FLOW
FLOWW W
� e GUTTER LOW PLUS CARRY-OVER FLOW F F CUTTER LOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): Q =
2.50 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Onl) Slope ft/ft
Len th ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ` P, I ( C2 + Tc ) A C3
Design Storm Return Period, T,=
years
Return Period One -Hour Precipitation, P, =
inches
C,=
C2 =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G =
Bypass (Carry -Over) Flow from upstream Subcatchments, q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended Tc =
N/A minutes
Time of Concentration Selected by User, Tc =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
2.50 cfs
STIN-0-1.xls, O-Peak 1/25/2007, 4:52 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-0-1
Lo (C) A
Desicin Information (input)
Type of Inlet
Type = CDOT Type R Curb Opening,. -
Local Depression (in addition to gutter depression 'a'from'Q-AlloW)
ate„= -
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
V
Grate Information
Length of a Unit Grate
La (G) =
WA feet
idth of a Unit Grate
W. =' -
WA feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A„� = -
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) =
WA'
Grate Weir Coefficient (typical value 3.00)
C„ (G) =
MAI
Grate Orifice Coefficient (typical value 0.67)
Co (G) =.
N/A
Curb Opening Information
Length of a Unit Curb Opening
L. (C)
5.06 feet
Height of Vertical Curb Opening in Inches
H,„„ =
6.00inches
Height of Curb Orifice Throat in Inches
Hy j = F
5.96, inches
Angle of Threat (see USDCM Figure ST-5)
Theta = -
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W p =
2.00' feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) =
0.20
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C. (C) =
2.30•
Curb Opening Oce Coefficient (typical value 0.67)
Co (C) =. -
0.67'
Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Cost =
NW
Clogging Factor for Multiple Units
Clog =
N/A
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 2.5 cfs curb)
dM =
N/A i. inches
Flow Depth at Local Depression with Clogging (0 cis grate, 2.5 cis curb)
d. =
N/A. inches
s an Orfce
Flow Depth at Local Depression without Clogging (0 cfs grate, 2.5 cis curb)
dM =
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 2.5 cis curb)
d. =
N/A` inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c„„ =
NIA` inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
1.00
Clogging Factor for Multiple Units
Clog =
0201
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 2.5 cfs curb)
dM =.
3.0� inches
Flow Depth at Local Depression with Clogging (0 cis grate, 2.5 cfs curb)
d„, =
3.3, inches
Curb as an Orifice, Grate as an Orifice
w
�3.1
Flow Depth at Local Depression without Clogging (0 cis grate, 2.5 cfs curb)
rid =
inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 2.5 cfs curb)
d„ =
3.3, inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c, =.
0.3' inches
Resultant Street Conditions
Total Inlet Length
L='
5.0.--feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
Q. _'
2.51 cfs
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =
0.3, inches
Resultant Street Flow Spread (based on sheet O-Allow geometry)
T =
02; feet
Resultant Flow Depth at Maximum Allowable Spread -
dapaeee=
0.0. inches
STIN-0-1.xls, Inlet In Sump 1/25/2007, 4:62 PM
30
29 -
28--
27
26
25
24
I
I
O
23-
22
21
—
I
20
19-
/
18
L
17—
V
m
4
1s
a
rn
�
15
m
t
c 74
I
G 13
m
G
12-
O
11 -
10
9
8
7
5
4
3-
I 0
2
1
0 fit A
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (CIS)
—a Curb Weir 8 Curb Orif. —9— Not Used • Reported Design —O— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-at.xls, Inlet In Sump 1/25/2007, 4:52 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-O-2
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND SIDE �OV OVERLAND
y I STREET Y
J E GUTTER FLOW PLUS CARRY -`MOVER FLOW GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 2.08 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Subcatchment Area = " Acres
Percent Imperviousness =
%
NRCS Soil Type =1
JA, B, C, or D
Site: (Check One Box Only Slope fUft)
Length ft
Site is Urban: Overland Flow -
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CZ + Tc) A C3
Design Storm Return Period, Tr=
years
Return Period One -Hour Precipitation, P, =
inches
Ci=
C2 =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cis
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, Tc =
N/A minutes
Recommended Tc =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, Cy =
N/A cfs
Total Design Peak Flow, Q =1
2.08 cfs
STIN-0-2.xls, Q-Peak 1/25/2007, 4:52 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-0-2
—Lo (C) ,r
Design Information (Input)
Type of inlet
Type =. CDOT Type R Curb Opening
Local Depression (in addition to gutter depression's' from'O-AIIow')
a.= - -
- 3.00 inches
Number of Unit Inlets (Grate or Cum Opening)
No =
Grate Information
Length of a Unit Grate
L, (G) -
- WA, feet
Width of a Unit Grate
We = -
- NIA feet
a Opening Ratio for a Grate (typical values 0.15-0.90)
A„o, = - -
-' WA
Clogging Factor for a Single Grate (typical value 0,50)
C, (G) =
WA',
Grate Weir Coefficient (typical value 3.00)
C„ (G) _ -
N/A
Grate Orifice Coefident (typical value 0.67)
Ca (G) _ `
N/A
Cum Opening Information
_
Length of a Unit Cum Opening
L. (C) -
- . 5.00" feet
Height of Vertical Cum Opening in Inches
H,.,,, = �
- 6.00 inches
Height of Cum Orifice Throat in Inches
Hy,,,i = `. "-
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta ='.'- -
'63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =
2.00, feet
Clogging Factor for a Single Cum Opening (typical value 0.10)
C, (C)
- 0.20
Cum Opening Weir Coefficient (typical value 2.30-3.00)
C„. (C) =
2.30
Cum Opening Orifice Coefficient (typical value 0.67)
Co (C) -,
- - 0.67'
Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sump
Clogging Coefficient for Multiple Units
Coal -.�
N/AI
Clogging Factor for Multiple Units
Clog ='
N/Af
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 2.08 cfs cum)
d„,
N/A inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 2.08 cfs cum)
dw., =Y - -
NIA inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 2.08 cfs cum)
_
dd =1
N/A' inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 2.08 cfs cum)
cl , = i
N/A' inches
Resulting Gutter Flow Depth Outside of Local Depression
cl . = -
NIA' inches
Resulting Gutter Flow Depth for Cum Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =; -
1.00'
Clogging Factor for Multiple Units
Clog ='
0.20
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 2.08 c/s cum)
d. _ :
2.7 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 2,08 cfs cum)
d,e = _
2.9' inches
Cum as an Orifice, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate. 2.08 cis cum)
do =!
3.0 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 2.08 cfs cum)
d„ _;
3.19 inches
Resulting Gutter Flow Depth Outside of Local Depression
cl . =
0.0 inches
Resultant Street Conditions
_
Total Inlet Length
- L = `
5.0 feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
O, = -
2.1 -cfs
Resultant Gutter Flow Depth (based on sheet 0-Allow geometry)
d =
0.0. inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T
0.0 feet
Resultant Flow Depth at Maximum Allowable Spread
dWRExo =
0.0 inches
STIN-0-2.xis, Inlet In Sump 1/25/2007, 4:52 PM
30
29
28-
27
-
26
25
-
2423
�I
0
22
21
20
/
19H—
^ 19
(D
IL
17
I
A
16
O
I /
15
u
/
1a
c
.L 13 '
6
m
12
O
11
19
_
7
6
I
6
I
m
l
3_
2
1
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
O (cfs)
—Gr Curb Weir —0 Curb Orif. 8 Not Used • Reported Design —o—Reported Design
Flow Depth (in.) Flow Depth (in.) - Flow Depth (in.) Spread (ft.)
STIN-0-2.xls, Inlet In Sump 1/25/2007, 4:52 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-O-3
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND
FLOWy S1
y
®� GUTTER FLOW PLUS CARRY-OVER
INLET
DE �OVFLOWNS y ?FET
FLOW F LEI E GUTTER LOW
INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 13.72 Cfs
' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope ft/ft
Length (ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
C,=
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A c%
Total Design Peak Flow, Q =
13.72 cfs
STIN-0-3.xls, Q-Peak 1/25/2007, 4:52 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer `
Inlet ID = STIN-0.3 E
,, Lo (C)-1�
Desi n Information (input)
Type of Inlet
Type = `CDOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'O-AIIow)
a. = `
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No = -'
11
Grate Information
Length of a Unit Grate
L. (G) =
WA. feet
Width of a Unit Grate
Wo =: �.'
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A� = - -
- N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) =:_
WA
Grate Weir Coefficient (typical value 3.00)
C„. (G) = -.
NIA
Grate Odfice Coefficient (typical value 0.67)
C, (G) = - -
WA'
Curb Opening Information
Length of a Unit Curb Opening
L. (C) =
- 10.00 feet
Height of Vertical Curb Opening in Inches
H_ .
6.00 inches
Height of Curb Orifice Throat in Inches
Hy,,,r=
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =;.
- -63.4 degrees
Side Width for Depression Pan (typically the gutter Moth of 2 feet)
WP =;: -
s 2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) = s -
0.15'
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C, (C) = -
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) _ - _
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Cost =
N/A`
Clogging Factor for Multiple Units
Clog
WA.
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 13.72 cfs curb)
d- _ ;
WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 13.72 cfs curb)
d.. _?
N/A' inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 13.72 cfs curb)
dd = l
NIA' inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 13.72 cfs curb)
d. _ •
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
cl .Gr, _'
NIA, inches
Resultino Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
1.00
Clogging Factor for Multiple Units
Clog
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 13.72 cfs curb)
d„ _'-
- 6.9 inches
Flow Depth at Local Depression with Clogging (0 cfs grate. 13.72 cfs curb)
tl„ _ -,
7.5 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 13.72 cfs curb)
rid = _W
51 inches
at
Flow Depth at Local Depression with Clogging (0 cfs grate, 13.72 cfs curb)
it. _.
7.1 inches
Resulting Flow Depth Outside of Local Depression
d,. m=' ,
4.5 inches
Resultant Street Conditions
Total Inlet Length
L =
10.0r feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
O, _
13.7' cfs
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =
4.5 inches
Resultant Street Flow Spread (based on sheet O-Allow geometry)
T =-
10.4 feet
Resultant Flow Depth at Maximum Allowable Spread
d9PREA =.
0.0 inches
STIN-0-3.xls, Inlet In Sump 1/25/2007, 4:52 PM
29
28
27
28 -
I
It
25
24
23
I
I
I
I
22
O
/
21
I
2019
LL
I
I
t
17
o
M
Gl 16.
C15,
to
m
N
m
14
C
13
C
12 .
11
10
I
I
9TT
I
0
5
3
1 .
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (Cfs)
—6 Curb Weir 0 Curb Orif. —G Not Used • Reported Design —O— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R.)
STIN-0-3.xls, Inlet In Sump 1/25/2007, 4:52 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-Q-1
Design Flow = Gutter Flow + Carry-over Flow
�OVFROLWND SIDE �OVERLAND y' I STREET
FLUTTER LOW PLUS CARRY-OVER LOW F F GUTTER FLOW
INLET INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
3.50 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness -
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only) Slope fUft
Lenth ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P1 / ( C2 + T,) A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
C=:;..
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tG =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
3.50 cfs
STIN-Q-1.xls, Q-Peak 1/25/2007, 4:52 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer" -
Inlet ID = STIN-0-1
i Lo (C)—
Design Information (input)
Type of Inlet
Type ='CDOT Type.R Curb Opening
Local Depression (in addition to gutter depression'a' from'Q-AIIow)
81"
- -3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =.
1
Grate Information
Length of a Unit Grate
L. (G) =
N/Afeet
Width of a Unit Grate
W. =
N/A feet
a Opening Ratio for a Grate (typical values 0.15-0.90)
A„rp = .
"N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) = -'
- N/A'
Grate Weir Coefficient (typical value 3.00)
Cw (G) = �' '
N/A
Grate Orifice Coefficient (typical value 0.67)
Co (G) _ -. "..
-- N/A
Curb Opening Information
_
Length of a Unit Curb Opening
Lp (C) =' '
�. 5.00 feet
Height of Vertical Curb Opening in Inches
H='
6.00 inches
Height of Curb Orifice Throat in Inches
Hs,,,, _ •
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta = _
63.4' degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp ='
-' 2.00. feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) = . —
0.20
Curb Opening Weir Coefficient (typical value 2.30-3.00)
Cw (C) = -
,. 2.30
Curb Opening Orifice Coefficient (typical value 0.67)
Cp (C) ='.. -
,;:0.67'
Resultina Gutter Flow Depth for Grate Inlet Ca aci in Sum
Clogging Coefficient for Multiple Units
Coef ='
N/A
Clogging Factor for Multiple Units
Clog =:..
N/AI
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.5 cfs curb)
d,„ =+
WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.5 efs curb)
rl , _ ,
NIA inches
s an Orifice
,
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.5 cis curb)
da =,
NIX inches
Flow Depth at Loral Depression with Clogging (0 cfs grate, 3.5 cis curb)
rip, =
NIA. inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.,. =;
N/A inches
Resulting Gutter Flow Depth for Curb OPenInA Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
too
Clogging Factor for Multiple Units
Clog =>
0.20
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 3.6 cis curb)
dr =1
3.8 inches
Flow Depth at Local Depression with Clogging (0 cls grate, 3.5 cis curb)
d„., _ ;
4.1 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 3.5 cis curb)
da =
3.5 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.5 efs curb)
dpp _'
4.0 inches
Resulting Gutter Flow Depth Outside of Local Depression
tl . m =-
1.1, Inches
Resultant Street Conditions
Total Inlet Length
L ='
5.0' feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. _
3.5 efs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =
1.1 Inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
0.9 feet
Resultant Flow Depth at Maximum Allowable Spread
dspneao =,
0.0 Inches
STIN-Q-t.xls, Inlet In Sump 1125/2007, 4:53 PM
29 -
28 -
27
-
26
25
-
--{
23
22
-}-I
21
I
m
20
-
19
117
«
N
7
fx 1s
fd
15
N
C 14
I
/
II--
I
.+ 13
a
m
12
LL
11
10
I O
8.
7
I�
3
�
(
2
1
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0 (ofs)
—6 Curb Weir Curb Orif. —B—Not Used • Reported Design —O—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-Q-1.xls, Inlet In Sump 1/25/2007, 4:53 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-R-1
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND
SIDE FLOW
y I STREET
GUTTER PLOW PLUS CARRY-OVER LOW F ® F GUTTER FLOW
INLET INLET
1/2 ❑F STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q =
12.27 cfs
* If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope ft/ft)
Len th ft
Site is Urbanj Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, * P, / ( Cz + T� A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
Ci=
CZ =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tc =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
12.27 cfs
STIN-R-1.xls, Q-Peak 1/25/2007, 4:53 PM
INLET IN A SUMP OR SAG LOCATION
Project =. Bayer
Inlet ID = STIN-R-1
"Lo (C) r
Design Information (input)
Type of Inlet
Type = CDOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'O-Allow')
A., =
- 3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No ='
1
Grate Information
_
Length of a Unit Grate
L. (G) _ - '
- �- N/A feet
idth of a Unit Grate
W. -.:.-.
N/A feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A„n, _
N/A
Clogging Factor for a Single Grate (typical value 0.50)
C, (G) _
- - - NIA
Grate Weir Coefficient (typical value 3.00)
C„ (G) _
WA
Grate Orifice Coefficient (typical value 0.67)
Co (G) _ -
- WA
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _
- 10.00 feet
Height of Vertical Curb Opening in Inches
H,,,,r = -
-- 6.00 inches
Height of Curb Orifice Throat in Inches
Hr,,,, =
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W, = `
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) = `
,0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C. (C) =.
'"" 2.30
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) =
0.67
Resuftina Gutter Flow Depth for Grate Inlet Capacity in a Sumo
Clogging Coefficient for Multiple Units
Coef =.
NIA!
Clogging Factor for Multiple Units
Clog =
NIAi
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 12.27 cis curb)
dw =
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 12.27 cis curb)
d. =
NIX inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cfs grate, 12.27 cts curb)
da =
N/A' inches
Flow Depth at Local Depression with Clogging (0 cis grate, 12.27 cis curb)
da =
. NIA'. inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.o„r, =
NIA Inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
1.00
Clogging Factor for Multiple Units
Clog =
0.15..
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 12.27 cis curb)
cl v =
___
6.4inches
Flow Depth at Local Depression with Clogging (0 cis grate, 12.27 cis curb)
cl, =
7.0 inches
Curb as an Orifice, Grate as an Orifice
.
Flow Depth at Local Depression without Clogging (0 cis grate, 12.27 cis curb)
da =
5.2 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 12.27 cts curb)
d. =
- 6.2 inches
Resulting Gutter Flow Depth Outside of Local Depression
d,c,,, =
4.0- inches
Resultant Street Conditions
Total Inlet Length
L ='
10.0 feet
Total Inlet Interception Capacity(Design Discharge from O-Peak)
0,=
12.3 cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =
4.0 Inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
8.1 feet
Resultant Flow Depth at Maximum Allowable Spread
d9PRE,1D=
0.0, Inches
STIN-R-1.xls, Inlet In Sump 1/25/2007, 4:53 PM
30
29
-
28
I
I
27
26
25
24 -
23 -
0
—
22
.
21
0
O
19
I
I
18
m
17
0
16
0.
I
I
0
15
L
14
C
O
13
:E
C
m
12
11
O
10
m
g
i
i
7
4
t-
5
-
I
3
O
2
1
0 1LA
/
1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0 (cfs)
—6 Curb Weir 8 Curb Onf. --8 Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flaw Depth (in.) Spread (ft.)
STIN-R-t.xls, Inlet In Sump 1/25/2007, 4:53 PM
INLET SIZING — Area Inlets
CDOT Type C and
CDOT Type D
Stantec
Area Inlet Design - Sump Condition
Area Inlet for Design Point 053 (STIN-Al-1)
Project No. 187010251
This sheet computes the controlling area inlet Flow condition.
Weir Equation:
3
Q, =CLH'
where: H = head above weir
Orifice Equation:
Q = C. A. 2Ky
where: H= h z- h r
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cesar = 3.20
0.65
L� = 11.74 ft. (1)
Aar. =
7.97 W
Clogging
Factor =
0.20
Number of Inlets =
6
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
95.90
100 year WSEL (95.9) =
0.65
Head (ft.)
Qww
Qf.
Odw
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
63.76
141.03
63.76
0.50
1.00
180.33
199.44
180.33
1.00
1.50
331.28
24427
244.27
1.50
2.00
510.04
282.06
282.06
2.00
2.50
712.80
315.35
315.35
2.50
3.00
937.00
345.45
345.45
3.00
3.50
1180.76
373.13
373.13
3.50
4.00
1442.61
398.89
398.89
4.00
4.50
1721.39
423.09
423.09
4.50
5.00
2016.11
445.97
445.97
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control
tt]weir
t Oorifice
2500
4
;3
N
2000
+ 1500
3
ic 1000
`.
---- -- ,
500
0
)
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 ft.
Effective Grate Length =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth =
3.74 ft.
The Sear -Brown Group
4:55 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 138 (STIN-All-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
i
Q,,;, = CLH'
where: H = head above weir
Odfice Equation:
Q is = C. A. -gH
H =hz -h
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
Cw& = 3.20 - C„yk, = 0.65
L� = 8.42 ft. (1) Aar . = 4.27 fl`
Clogging Factor = 0.20
Number of Inlets = 3
Fiowline elevation of grate = 0.00
100 year Design Flow (cfs) = 18.34
100 year WSEL (18.34) = 0.44
Head (ft)
Q.
Qa,f.
c6r r
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
22.85
37.79
22.85
0.50
1.00
64.64
53.44
53.44
1.00
1.50
118.75
65.45
65.45
1.50
2.00
182.83
75.58
75.58
2.00
2.50
255.51
84.50
84.50
2.50
3.00
335.88
92.56
92.56
3.00
3.50
423.26
99.98
99.98
3.50
4.00
517.12
106.88
106.88
4.00
4.50
617.05
113.37
113.37
4.50
5.00
722.70
119.50
119.50
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
4:55 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 052 (STIN-A5-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
CLH 2
where: H = head above weir
Orifice Equation:
Q =C.A 2KH
where: H= h z- h r
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cwcr = 3.20
0.65
= 11.74 ft. (1)
A,,;" =
7.97 ft`
Clogging
in Factor =
0.20
Number of Inlets =
6
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
108.00
100 year WSEL (108) =
0.70
Head (ft.)
Qwer
Oo,;.
Q. mw
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
63.76
141.03
63.76
0.50
1.00
180.33
199.44
180.33
1.00
1.50
331.28
244.27
244.27
1.50
2.00
510.04
282.06
282.06
2.00
2.50
712.80
315.35
315.35
2.50
3.00
937.00
345.45
345.45
3.00
3.50
1180.76
373.13
373.13
3.50
4.00
1442.61
398.89
398.89
4.00
4.50
1721.39
423.09
423.09
4.50
5.00
2016.11
445.97
445.97
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control
tpweir
-F Llorifice
2500
2000
---•-•-
1500
�
LL 1000
500
�
f
r
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth t)
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 ft.
Effective Grate Length =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width=
2.66 ft.
Effective GrateWidth=
3.74 ft.
4:55 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 137 (STIN-A6-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
CLH:
where: H = head above weir
Orifice Equation:
Q_,_ = C. A. 2gH
where: H= h z- h t
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cwar = 3.20
Cf. =
0.65
L� = 11.74 ft. (1)
Ajr� =
7.97 ft`
Clogging
Factor =
0.20
Number of Inlets =
1
. Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
4.71
100 year WSEL (4.71) =
0.27
Head (ft.)
Q,,. ,
Cam.
Q.„
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
10.63
23.50
10.63
0.50
1.00
30.05
33.24
30.05
1.00
1.50
55.21
40.71
40.71
1.50
2.00
85.01
47.01
47.01
2.00
2.50
118.80
52.56
52.56
2.50
3.00
156.17
57.57
57.57
3.00
3.50
196.79
62.19
62.19
3.50
4.00
240.44
66.48
66.48
4.00
4.50
286.90
70.51
70.51
4.50
5.00
336.02
74.33
74.33
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir-Orffice Control tQweir
-i-Clorifice
400
350
300-
e 2`0
3 200
X 150
100
so.. -
0 "
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 ft.
Effective Grate Len th =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth =
3.74 ft.
The Sear -Brown Group
4:56 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 136 (STIN-A7-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Q., = CLH'
where: H = head above weir
Orifice Equation:
C. A. f2KH
where: H =hz -hr
Grate: CDOT Type C Area Inlet
Weir: Orifice:
C,,.e; = 3.20 Cam. = 0.65
L� = 11.74 ft. (1) Aorjr. = 7.97 ft`
Clogging Factor= 0.20
Number of Inlets = 1
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 3.55
100 year WSEL (3.55) = 0.21
Head (ft.)
Q.
Q.,
Q. i
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
10.63
23.50
10.63
0.50
1.00
30.05
33.24
30.05
1.00
1.50
55.21
40.71
40.71
1.50
2.00
85.01
47.01
47.01
2.00
2.50
118.80
52.56
52.56
2.50
3.00
156.17
57.57
57.57
3.00
3.50
196.79
62.19
62.19
3.50
4.00
240.44
66.48
66.48
4.00
4.50
286.90
70.51
70.51
4.50
5.00
336.02
74.33
74.33
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control t4weir
-�--Qorifice
400 ___ ._ ......._�..
350
300
200
3
0
x ISO
100
®11
50
0
(
I
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 ft.
Effective Grate Length =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWicith=
3.74 ft.
4:56 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 134 (STIN-A8-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q. = CLH-
where: H = head above weir
Orifice Equation:
C..4o 2 H
where: H =hz -h,
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
C e; = 3.20
C., re, =
0.65
L� = 20.92 ft. (1)
Ao� =
25.13 ft`
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
8.15
100 year WSEL (8.15) =
0.24
Head (ft.)
Qww
Qonroe
Q nt.1
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
18.94
74.13
18.94
0.50
1.00
53.57
104.84
53.57
1.00
1.50
98.41
128.40
98.41
1.50
2.00
151.51
148.26
148.26
2.00
2.50
211.74
165.76
165.76
2.50
3.00
278.33
181.58
181.58
3.00
3.50
350.74
196.13
196.13
3.50
4.00
428.52
209.67
209.67
4.00
4.50
511.33
222.39
222.39
4.50
5.00
598.88
234.42
234.42
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tDweir
-i-Qorifice
700
600
500
r` 400
o300
200
100 ----
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
7.60 ft.
Effective Grate Length =
6.72 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth =
3.74 ft.
The Sear -Brown Group
4:56 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 133 (STIN-All-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q o = CLH'
where: H = head above weir
Orifice Equation:
Q.,,,ra = C. A. 2RH
where: H =hz -hr
Grate: Modred CDOT Type C Area Inlet
Weir: Orifice:
C. r = 3.20 C,r f. = 0.65
L� = 8.42 ft. (1) A„� = 4.27 ft
Clogging Factor = 0.20
Number of Inlets = 1
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 3.66
100 year WSEL (3.66) = 0.31
Head (ft.)
O.&
O�
0,,tm
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
7.62
12.60
7.62
0.50
1.00
21.55
17.81
17.81
1.00
1.50
39.58
21.82
21.82
1.50
2.00
60.94
25.19
25.19
2.00
2.50
85.17
28.17
28.17
2.50
3.00
111.96
30.85
30.85
3.00
3.50
141.09
33.33
33.33
3.50
4.00
172.37
35.63
35.63
4.00
4.50
205.68
37.79
37.79
4,50
5.00
240.90
39.83
39.83
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Space width = 0.0417 IL
Bar width=
0.0208ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:56 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 130 (STIN-Al2-1)
Project No. 187010251
This sheet computes the controlling area inlet Bow condition.
Weir Equation:
}
Q. , = CLH z
where: H = head above weir
Orifice Equation:
Q .,,ra = C. A. 2-gH
where: H =h2 -hr
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cwar = 3.20
C� =
0.65
L� = 11.74 ft. (1)
Aa,w. =
7.97 ft`
Clogging
Factor =
0.20
Number of Inlets =
1
Fiowline elevation of grate =
0.00
100 year Design Flow (cfs) =
10.72
100 year WSEL (10.72) =
0.50
Head (ft.)
O,,.ar
0a .
Q.m
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
10.63
23.50
10.63
0.50
1.00
30.05
33.24
30.05
1.00
1.50
55.21
40.71
40.71
1.50
2.00
85.01
47.01
47.01
2.00
2.50
118.80
52.56
52.56
2.50
3.00
156.17
57.57
57.57
3.00
3.50
196.79
62.19
62.19
3.50
4.00
240.44
66.48
66.48
4.00
4.50
286.90
70.51
70.51
4.50
5.00
336.02
74.33
74.33
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control --#-0weir
-a-Oonfice
400
350
--
g250
E
200
-
_41,
3
LL 150
100
I
50
e
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (tL)
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 ft.
Effective Grate Length =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width=
2.66 ft.
Effective GrateWidth =
3.74 ft.
4:56 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 121 (STIN-B3-5)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Qr� = CLH'-
where: H = head above weir
Orifice Equation:
Q ,,, _ = C, Ao 2gH
where: H= h z- h r
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
Cwv ; = 3.20 Co , = 0.65
L� = 8.42 ft. (1) Aamw = 4.27 ft`
Clogging Factor = 0.20
Number of Inlets = 2
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 4.20
100 year WSEL (4.2) = 0.20
Head (ft.)
O..w
Q ff.
O�i
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir-Oriflce Control -T-avert
--aorifice
600
500 �
_400
300
0
LL 200
100 i
0
1'
0.00. 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:56 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 120 (STIN-63-6)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
i
Q.,,, = CLH'-
where: H = head above weir
Orifice Equation:
Q7� ,- = Co Ao 2 H
where: H= h Z- h r
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
C„e; = 3.20
Cam;. =
0.65
La = 8.42 ft. (1)
Arm. =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
5.88
100 year WSEL (5.88) =
0.26
Head (ft.)
Q.,w
Qr, ,
O�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control
taveir
t porifice
600
00
400
F�
300
0
200
100
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:56 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 118 (STIN-133-7)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q... = CLH:
where: H = head above weir
Orifice Equation:
()o„rn = Co A, 2RH
where: H = h 2 -h,
Grate: Modred CDOT Type C Area Inlet
Weir:
Orifice:
Cwe, = 3.20
C0 once =
0.65
Lam = 8.42 ft. (1)
Ada, =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
10.27
100 year WSEL (10.27) =
0.40
Head (ft.)
0.
Qorif.
Qcantml
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control Oweir
t Dorifice
600
500
_400
-
-+----
300
a
200
100
e
s
0.00- 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (R)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:56 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 117 (STIN-133-8)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
i
CLH 2
where: H = head above weir
Orifice Equation:
Co A, f2 gH
H=hz-
Grate: Modified COOT Type C Area Inlet
Weir: Orifice:
C.& = 3.20 C rr. = 0.65
L� = 8.42 ft. (1) Aowice = 4.27 ft`
Clogging Factor= 0.20
Number of Inlets = 3
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 16.79
100 year WSEL (16.79) = 0.42
Head (ft.)
O.wr
Q.M.
O,,,
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
22.85
37.79
22.85
0.50
1.00
64.64
53.44
53.44
1.00
1.50
118.75
65.45
65.45
1.50
2.00
182.83
75.58
75.58
2.00
2.50
255.51
84.50
84.50
2.50
3.00
335.88
92.56
92.56
3.00
3.50
423.26
99.98
99.98
3.50
4.00
517.12
106.88
106.88
4.00
4.50
617.05
113.37
113.37
4.50
5.00
722.70
119.50
119.50
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control
tDweir
t Qorifice
700
-
600
500
400
b
o
M 300
200
100
^�w',.,
ts_
,.ny➢Y3.'PE.
e
a
t
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 IL
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWldth =
2.50 ft.
4:57 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 114 (STIN-B4-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
0,,,; = CLH-
where: H = head above weir
Orifice Equation:
Ca A. f2gH
where: H =hz -h,
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
3.20
0.65
8.42 ft.(1)
A.K. =
4.27 ft
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
9.93
100 year WSEL (9.93) =
0.39
Head (ft.)
Q.
Qf.
Ct.,
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control Oweir
t porifice
00
500
400
n,
300
0
n 200
100
a
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow DepN (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:57 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 113 (STIN-134-2)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
i
Q _ = CLH 1
where: H = head above weir
Orifice Equation:
Q. , - = Ca A. f2KH
where: H =h2 -hr
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
Cwar = 3.20
0.65
L= = 8.42 ft. (1)
Aorif. =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
9.99
100 year WSEL (9.99) =
0.39
Head (ft.)
Q.&
Qorir.
Q.r l
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control +Oweir
-W- Qori6ce
600
500
-
400
V
300
3
o
i
}
200
100
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Len th =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:57 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 151 (STIN-137-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
=CLH=
where: H = head above weir
Orifice Equation:
Q. ,_ = Co A. 2gH
where: H= h 2- h r
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cw& = 3.20
C f. =
0.65
L� = 11.74 ft. (1)
AoM. =
7.97 ft`
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
11.00
100 year WSEL (11) =
0.51
Head (ft.)
Oweir
Q a.
Omnwl
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
10.63
23.50
10.63
0.50
1.00
30.05
33.24
30.05
1.00
1.50
55.21
40.71
40.71
1.50
2.00
85.01
47.01
47.01
2.00
2.50
118.80
52.56
52.56
2.50
3.00
156.17
57.57
57.57
3.00
3.50
196.79
62.19
62.19
3.50
4.00
240.44
66.48
66.48
4.00
4.50
286.90
70.51
70.51
4.50
5.00
336.02
74.33
74.33
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control'eir
-i-Cforifice
400
350
0 25
'e 0
3 200
LL 150
100 1 r
50
0 � 4 AN
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 ft.
Effective Grate Len th =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWtdth =
3.74 ft.
The Sear -Brown Group
4:57 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 165 (STIN-87-3-1-1)
Project No. 187010251
This sheet computes the controlling area inlet Flow condition.
Weir Equation:
i
Q..P =CLH=
where: H = head above weir
Orifice Equation:
Q.,,,_ = Co A„ 2gH
where: H = h 2 -h
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
C.ar = 3.20
C,, . =
0.65
L� = 8.42 ft. (1)
A,.T , =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
5.42
100 year WSEL (5.42) =
0.41
Head (ft.)
Q,,.ar
Q f,.
Q.r
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
7.62
12.60
7.62
0.50
1.00
21.55
17.81
17.81
1.00
1.50
39.58
21.82
21.82
1.50
2.00
60.94
25.19
25.19
2.00
2.50
85.17
28.17
28.17
2.50
3.00
111.96
30.85
30.85
3.00
3.50
141.09
33.33
33.33
3.50
4.00
172.37
35.63
35.63
4.00
4.50
205.68
37.79
37.79
4.50
5.00
240.90
39.83
39.83
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
300
250
200
e
;150
100
50
0
Weir -Orifice Control toweir
-0-00rifice
0.00 1.00 2.00 Flow D ptli (k.) 4.00 5.00 6.00
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
4:58 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 164 (STIN-137-3-1)
Project No. 187010251
This sheet computes the controlling area inlet Flow condition.
Weir Equation:
a
CLH a
where: H = head above weir
Orifice Equation:
i�..,.x.. = C. A. j2gH
where: H = h 2 -h,
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
C„& = 3.20
Cam. =
0.65
L� = 8.42 ft. (1)
AoK,. =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
13.27
100 year WSEL (13.27) =
0.46
Head (ft.)
Q.,a,
QoM.
Q.m
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control t0lweir
- W-Dorifce
600
500
t
_ m
3
1.
400
300
200
�_
100
T
0
f
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth 1ftJ
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:58 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 161 (STIN-137A-1)
Project No. 187010251
This sheet computes the controlling area inlet How condition.
Weir Equation:
Q,,; = CLH'
where: H = head above weir
Orifice Equation:
Q., - = Co A. 2KH
where: H= h z- h r
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
Cyr = 3.20
C,,;rk, =
0.65
L� = 8.42 ft. (1)
Ate, =
4.27 W
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
9.62
100 year WSEL (9.62) =
0.38
Head (ft.)
Q„w
Qan6.
Q.,
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control Oweir
t Oorice
600 r
4
500
400 v
300 �•
a
LL 200
100
0.00 1.00 2.00 FI�3.00�tft) 4.00 5.00 6.00
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:59 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 161 (STIN-B7-4-2)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
CLH z
where: H = head above weir
Orifice Equation:
Qo..sn = Co A. 2KH
where: H= h z- h t
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
C. - = 3.20
C.M. =
0.65
L� = 8.42 ft. (1)
A„f. =
427 ft`
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
4.81
100 year WSEL (4.81) =
0.38
Head (ft.)
O.&
06M.
O�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
7.62
12.60
7.62
0.50
1.00
21.55
17.81
17.81
1.00
1.50
39.58
21.82
21.82
1.50
2.00
60.94
25.19
25.19
2.00
2.50
85.17
28.17
28.17
2.50
3.00
111.96
30.85
30.85
3.00
3.50
141.09
33.33
33.33
3.50
4.00
172.37
35.63
35.63
4.00
4.50
205.68
37.79
37.79
4.50
5.00
240.90
39.83
39.83
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control tOweir
t Oriffce
300 �f
250
200
a
;150
0
u 100
50_.
0-
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (k.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Len th =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:59 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 162 (STIN-B7-4-3)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
QM, = CLH 2
where: H = head above weir
Orifice Equation:
where: H =hz -hr
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
Cwar = 3.20
C.M. =
0.65
L = 8.42 ft. (1)
A„ n. =
4.27 W
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
7.68
100 year WSEL (7.68) =
0.50
Head (ft.)
Oar
Q.,
O�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
7.62
12.60
7.62
0.50
1.00
21.55
17.81
17.81
1.00
1.50
39.58
21.82
21.82
1.50
2.00
60.94
25.19
25.19
2.00
2.50
85.17
28.17
28.17
2.50
3.00
111.96
30.85
30.85
3.00
3.50
141.09
33.33
33.33
3.50
4.00
172.37
35.63
35.63
4.00
4.50
205.68
37.79
37.79
4.50
5.00
240.90
39.83
39.83
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control --#-Oweir
-i-Qonfice
300
250
_200
150
0
LL 100
50
.
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
4:59 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 162 (STIN-137-4-4)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Q,,;, = CLH'-
where: H = head above weir
Orifice Equation:
Q.,.,_ =C. A. 2gH
where: H= h 2- h r
Grate: Modred CDOT Type C Area Inlet
Weir: Orifice:
C..w = 3.20 C.V,. = 0.65
L„� = 8.42 ft. (1) Aa nc, = 4.27 ft`
Clogging Factor = 0.20
Number of Inlets = 1
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 7.68
100 year WSEL (7.68) = 0.50
Head (ft.)
Q,.,
C,df.
Q�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
7.62
12.60
7.62
0.50
1.00
21.55
17.81
17.81
1.00
1.50
39.58
21.82
21.82
1.50
2.00
60.94
25.19
25.19
2.00
2.50
85.17
28.17
28.17
2.50
3.00
111.96
30.85
30.85
3.00
3.50
141.09
33.33
33.33
3.50
4.00
172.37
35.63
35.63
4.00
4.50
205.68
37.79
37.79
4.50
5.00
240.90
39.83
39.83
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control
0 Oweir
-� Oorice
300
250200
x
a
;150
�100
50
#
-
.1
J
c
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (k.)
Space width = 0.0417 ft.
Bar width=
0.0208ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:59 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 150 (STIN-87-5-1)
Project No. 187010251
This sheet computes the controlling area inlet Flow condition.
Weir Equation:
CL H z
where: H = head above weir
Orifice Equation:
r_)„„_ = C. A. 2gH
where: H= h z- h r
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cwer = 3.20
Cam, =
0.65
L� = 11.74 ft.(1)
Ar. =
7.97 W
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
23.09
100 year WSEL (23.09) =
0.53
Head (ft.)
Ow
Q.M.
O.Mrol
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
21.25
47.01
21.25
0.50
1.00
60.11
66.48 .
60.11
1.00
1.50
110.43
81.42
81.42
1.50
2.00
170.01
94.02
94.02
2.00
2.50
237.60
105.12
105.12
2.50
3.00
312.33
115.15
115.15
3.00
3.50
393.59
124.38
124.38
3.50
4.00
480.87
132.96
132.96
4.00
4.50
573.80
141.03
141.03
4.50
5.00
672.04
148.66
148.66
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tt)weir
-f- Clonfice
800 - -
00
600
7500 u
; 400
T 300
200
100
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 ft.
Effective Grate Length =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth =
3.74 ft.
The Sear -Brown Group
4:59 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 115 (STIN-B-2)
Project No. 187010251
This sheet computes the controlling area inlet Bow condition.
Weir Equation:
0 CLHr
where: H = head above weir
Orifice Equation:
Q-,R = C. A. 2gH
where: H= h 2- h I
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
C. = 3.20 Cpw = 0.65
L°m = 8.42 ft. (1) Arr. = 4.27 ft`
Clogging Factor = 0.20
Number of Inlets = 2
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 12.64
100 year WSEL (12.64) = 0.45
Head (ft.)
O..w
Q„�
Q�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir-Ortfice Control tQweir
t Dorifice
600 - -
a
500 +�--"-'- -----
400^
e
300
° :,..
LL 260 ''
d'°,'o "� �s. P.
100
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:59 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 111 (STIN-B-3)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
}
Q„ = CLH:
where: H = head above weir
Orifice Equation:
Q, , = C. A. 2KH
where: H = h 2 -hr
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
3.20
Ca,a , =
0.65
Lit = 8.42 ft. (1)
Ao,f,. =
4.27 f'
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
10.23
100 year WSEL (10.23) =
0.39
Head (ft.)
Q ar
Qff.
Q�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tQweir
f Q06fice
600 I¢
500
400
y s
S
3 300
_o
u 200
100
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth=
2.50 ft.
The Sear -Brown Group
4:59 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 109 (STIN-13-4)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
a
Q, =CLHZ
where: H = head above weir
Orifice Equation:
C7._,_ = Co A. 2 H
where: H= h 2- h t
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
C.m = 3.20 C.M. = 0.65
L� = 8.42 ft. (1) AoM. = 4.27 ft`
Clogging Factor = 0.20
Number of Inlets = 3
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 16.57
100 year WSEL (16.57) = 0.41
Head (ft.)
Q„a,
Oo,ifi=,
0�moi
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
22.85
37.79
22.85
0.50
1.00
64.64
53.44
53.44
1.00
1.50
118.75
65.45
65.45
1.50
2.00
182.83
75.58
75.58
2.00
2.50
255.51
84.50
84.50
2.50
3.00
335.88
92.56
92.56
3.00
3.50
423.26
99.98
99.98
3.50
4.00
517.12
106.88
106.88
4.00
4.50
617.05
113.37
113.37
4.50
5.00
722.70
119.50
119.50
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tQmeir
t Qorifice
00
700
600
g500
L
400
E 300
200
100
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
4:59 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 105 (STIN-B-S)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Qu.,,, = CLH 2
where: H = head above weir
Orifice Equation:
Q. ,_ = C,. A. f2gH
where: H= h 2- h r
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
C„� = 3.20 C.M. = 0.65
= 8.42 ft. (1) Aaf,. = 4.27 ft`
Clogging Factor = 0.20
Number of Inlets = 2
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 9.05
100 year WSEL (9.05) = 0.36
Head (ft.)
Q„&
Qf.
Q.,
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control 0weir
-i- Dorifice
00
500 --�-
400
� a;Y
LL 200
100
0i
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth Ik.1
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth=
2.50 ft.
The Sear -Brown Group
4:59 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 103 (STIN-B-6)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q, = CLH 2
where: H = head above weir
Orifice Equation:
C. A. f2gH
where: H= h z- h r
Grate: Modified CDOT Type C Area Inlet
'
Weir:
Orifice:
C„e = 3.20
C.M. =
0.65
Lam = 8.42 ft. (1)
A,ff" =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flovdine elevation of grate =
0.00
100 year Design Flow (cfs) =
6.19
100 year WSEL (6.19) =
0.28
Head (ft.)
Q�
Qadke
Q�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control t0weir
-st-Coifice
600
500
400 �-•
a
200
100
3 300
0
k 3`
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (k.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:00 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 103 (STIN-B-7)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir -
Weir Equation:
3
Q,, = CLH 2
where: H = head above weir
Orifice Equation:
Q, 0_ = Co A. 2g7-1
where: H= h z- h 1
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
Cw.� = 3.20
C,, . =
0.65
L� = 8.42 ft. (1)
A,e. =
4.27 ft`
Clogging
Factor
0.20
Number of Inlets =
3
Fiowline elevation of grate =
0.00
100 year Design Flow (cfs) =
17.49
100 year WSEL (17.49) =
0.43
Head (ft.)
Q r
Oa,a.
Orq„wi
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
22.85
37.79
22.85
0.50
1.00
64.64
53.44
53.44
1.00
1.50
118.75
65.45
65.45
1.50
2.00
182.83
75.58
75.58
2.00
2.50
255.51
84.50
84.50
2.50
3.00
335.88
92.56
92.56
3.00
3.50
423.26
99.98
99.98
3.50
4.00
517.12
106.88
106.88
4.00
4.50
617.05
113.37
113.37
4.50
5.00
722.70
119.50
119.50
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Sow directions.
Weir -Orifice Control t•C e,,r.
t porice
600 T
700
600 -
P 500 --
V
400
u 300
200 � ,
100 i
a
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Len th =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth=
2.50 ft.
The Sear -Brown Group
5:00 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 102 (STIN-B-8)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Q.< = CLH'
where: H = head above weir
Orifice Equation:
Qo,,,a = C.A. 2 H
where: H =hz -h,
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
C.& = 3.20
C f. =
0.65
L� = 8.42 ft. (1)
Aa,f. =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
5.39
100 year WSEL (5.39) =
0.25
Head (ft.)
Ow
Qa;n<,
Q�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control taveir
-�-Ooritice
600
500
400 -- �
a
`v
300
LL 200
100
o !r I
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
5:00 PM
The Sear -Brawn Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 214 (STIN-C2-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
O»„ =CLH2
where: H = head above weir
Orifice Equation:
Q ,,,i_ = C. A. 2gH
where: H =hz -h,
Grate: Modred CDOT Type C Area Inlet
Weir: Orifice:
C..6, = 3.20 C'a. = 0.65
Laes� = 8.42 ft. (1) A.w = 4.27 ft`
Clogging Factor = 0.20
Number of Inlets = 2
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 5.60
100 year WSEL (5.6) = 0.25
Head (ft.)
Q„&
Q rir.
Q..,o
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control t0weir
i-a0rifice
600 - - .41
Soo400
7
'
13
300
e
u
200
�r
100
0
1
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flew Depth (ft.)
Space width = 0.0417 ft.
Bar width=
0.0208ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:00 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 215 (STIN-C2-2)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q,,.,o = CLH x
where: H = head above weir
Orifice Equation:
A. 2gH
where: H= h 2- h r
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
C..k = 3.20
C.M. =
0.65
L� = 8.42 ft. (1)
A.K. =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
10.15
100 year WSEL (10.15) =
0.39
Head (ft.)
Q.
Oa;i,
O6�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate Length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:00 PM
1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 214 (STIN-C2-1-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
i
CLH'
where: H = head above weir
Orifice Equation:
Q_, = C.,4., 2RH
where: H = h z - h ,
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
C", = 3.20 Coenca = 0.65
L = 8.42 ft. (1) Aoff" = 4.27 ft`
Clogging Factor = 0.20
Number of Inlets = 2
Flowiine elevation of grate = 0.00
100 year Design Flow (cfs) = 11.19
100 year WSEL (11.19) = 0.42
Head (ft.)
Qv;
Qf,
Q�
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control taveir
t Dorifice
600
500
a
400
`u
3 30U
e
LL 200
100
j
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:00 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 213 (STIN-C3-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q,, =CLHz
where: H = head above weir
Orifice Equation:
Q_xa = C. A. 12gH
where: H = h 2 - h
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
C , = 3.20
0.65
L� = 8.42 ft. (1)
A.K,. =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
3
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
17.01
100 year WSEL (17.01) =
0.42
Head (ft.)
Qrer
QoM.
Cl. i l
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
22.85
37.79
22.85
0.50
1.00
64.64
53.44
53.44
1.00
1.50
118.75
65.45
65.45
1.50
2.00
182.83
75.58
75.58
2.00
2.50
255.51
84.50
84.50
2.50
3.00
335.88
92.56
92.56
3.00
3.50
423.26
99.98
99.98
3.50
4.00
517.12
106.88
106.88
4.00
4.50
617.05
113.37
113.37
4.50
5.00
722.70
119.50
119.50
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control
taveir
t Dorifice
600
700
e 500
400
9°l
"
3
200
�e
100-
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:00 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 207 (STIN-05-2)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Q... = CLH-
where: H = head above weir
Orifice Equation:
Qo„sre = C.'„ A;, 2KH
H=hz -h
Grate: CDOT Type C Area Inlet
Weir: Orifice:
Cweir = 3.20 Corifice = 0.65
L� = 11.74 ft. (1) Aonrce = 7.97 ft`
Clogging Factor = 0.20
Number of Inlets = 1
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 10.00
100 year WSEL (10) = 0.48
Head (ft.)
- Owen
Cloffice
Ommmi
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
10.63
23.50
10.63
0.50
1.00
30.05
33.24
30.05
1.00
1.50
55.21
40.71
40.71
1.50
2.00
85.01
47.01
47.01
2,00
2.50
118.80
52.56
52.56
2.50
3.00
156.17
57.57
57.57
3.00
3.50
196.79
62.19
62.19
3.50
4.00
240.44
66.48
66.48
4.00
4.50
286.90
70.51
70.51
4.50
5.00
336.02
74.33
74.33
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tQweir
Qonfce
400 "^----vr--
350
300
le
m 250
3 200
O
i- 150
100
50
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
�. A
Space width = 0.1640 ft.
- Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces=
13
Grate length =
2.59 ft.
Effective Grate Length =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth =
3.74 ft.
The Sear -Brown Group
5:00 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 201 (STIN-C8-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Q.eir = CLH 2
where: H = head above weir
Orifice Equation:
Qo,,_ =C., A. 2KH
H =h2 -h
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
C.� = 3.20 Cod. = 0.65
Lr = 8.42 ft. (1) Aofu = 4.27 ft`
Clogging Factor = 0.20
Number of Inlets = 2
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 13.55
100 year WSEL (13.55) = 0.47
Head (ft.)
C.&
Q rir,,.
O,=„t,ol
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control t!)vreir
t orifice
600
500
Ma
400
NN
3 300
0
u 200
too
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
aaa`
Space width = 0.0417 ft.
' Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
- Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:01 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 413 (STIN-D1-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q = CLH'
where: H = head above weir
Orifice Equation:
Q,,,,$- = Co A. r2gH
where: H= h z- h r
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
Cwdr = 3.20
Con., =
0.65
Ley = 8.42 ft. (1)
A., =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
3.56
100 year WSEL (3.56) =
0.31
Head (ft.)
Q eir
Qr,M.
Q.n,.i
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
7.62
12.60
7.62
0.50
1.00
21.55
17.81
17.81
1.00
1.50
39.58
21.82
21.82
1.50
2.00
60.94
25.19
25.19
2.00
2.50
85.17
28.17
28.17
2.50
3.00
111.96
30.85
30.85
3.00
3.50
141.09
33.33
33.33
3.50
4.00
172.37
35.63
35.63
4.00
4.50
205.68
37.79
37.79
4.50
5.00
240.90
39.83
39.83
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tl]weir
' t Dorifice
300
250
200 d
m
3 1 b0 a
o
100
50
0 L:
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
5:01 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 220 (STIN-D2-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Q.,, = CLH 2
where: H = head above weir
Orifice Equation:
Co A. f2gH
where: H =h2 -hr
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
Cw = 3.20
C.M. =
0.65
L� = 8.42 ft.(1)
Aod. =
4.27 W
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
2.79
100 year WSEL (2.79) =
0.25
Head (ft.)
Q.
Qfl.
Q.a,,,,a
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
7.62
12.60
7.62
0.50
1.00
21.55
17.81
17.81
1.00
1.50
39.58
21.82
21.82
1.50
2.00
60.94
25.19
25.19
2.00
2.50
85.17
28.17
28.17
2.50
3.00
111.96
30.85
30.85
3.00
3.50
141.09
33.33
33.33
3.50
4.00
172.37
35.63
35.63
4.00
4.50
205.68
37.79
37.79
4.50
5.00
240.90
39.83
39.83
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tQweir
--Qorifice
0
250
200
,p }
150 '}
100
50
0 t 1
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
5:01 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 408 (STIN-F2-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir -
Weir Equation:
r
where: H = head above weir
Orifice Equation:
Q_0_ = C. A. 2gH
where: H =hz -hr
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
C.& = 3.20
C.,W. =
0.65
Lrrm = 8.42 ft. (1)
Aa,;rw =
4.27 W
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
17.14
100 year WSEL (17.14) =
0.53
Head (ft.)
Q...;,
Qo,m.
Ocordrol
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tQweir
---Qorifice
500
400
tl
5300
o
200
100
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.).
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
5:01 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 405 (STIN-F3-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
Q,.,= = CLH 2
where: H = head above weir
Orifice Equation:
Q t„ = Co Ao 2gH
where: H =hz -hr
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
Cweir = 3.20
Co,ni. =
0.65
L� = 8.42 ft. (1)
Aarnlr, =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
11.52
100 year WSEL (11.52) =
0.43
Head (ft.)
Oar
Q.r,
Qww
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control
tOweir
-11-Ooice
600
500
400---w--
o
poo
o
200
100
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces=
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:01 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 404 (STIN-F3-2)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation
3
where: H = head above weir
Orifice Equation:
C. A. 12gH
H=hz-hr
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
Cwa, = 3.20 Cep;. = 0.65
L = 8.42 ft. (1) Ad,. = 4.27 ft`
Clogging Factor= 0.20
Number of Inlets = 3
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 17.45
100 year WSEL (17.45) = 0.43
Head (ft.)
Q ar
Qo,;r,ce
Qwni l
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
22.85
37.79
22.85
0.50
1.00
64.64
53.44
53.44
1.00
1.50
118.75
65.45
65.45
1.50
2.00
182.83
75.58
75.58
2.00
2.50
255.51
84.50
84.50
2.50
3.00
335.88
92.56
92.56
3.00
3.50
423.26
99.98
99.98
3.50
4.00
517.12
106.88
106.88
4.00.
4.50
617.05
113.37
113.37
4.50
5.00
722.70
119.50
119.50
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tOweir
t Qorifice
800
600
0
400
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
300
Space width =- 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 k.
Effective Grate Length =
1.71 k.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 k.
Effective GrateWidth =
2:50 k.
The Sear -Brown Group
5:01 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 404 (STIN-F3-3)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q.Q� =CLH-
where: H = head above weir
Orifice Equation:
Qo..a_ = Co A. 2RH
H=hr-h
Grate: Modified CDOT Type C Area Inlet
Weir: Orifice:
C..ar = 3.20 Co,;r;. = 0.65
L� = 8.42 ft. (1) Aorifica = 4.27 ft`
Clogging Factor= 0.20
Number of Inlets = 2
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 8.70
100 year WSEL (8.7) = 0.35
Head (ft.)
Qwar
Qonr.
Om
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions. '
Weir -Orifice Control-aweir
-�-Qonfice
600
500
400
300
0
v 200
100
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.) J
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:01 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 406 (STIN-F-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q�P =CLHz
where: H = head above weir
Orifice Equation:
C, ..r.. = Co A. 29H
where: H =hz -hr
Grate: Modred CDOT Type C Area Inlet
Weir: Orifice:
Cwdr = 3.20 C,ff. = 0.65
L� = 8.42 ft. (1) Aorif. = 4.27 fl`
Clogging Factor = 0.20
Number of Inlets = 3
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 20.08
100 year WSEL (20.08) = 0.46
Head (ft.)
Ower -
4ar.
Qm
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
22.85
37.79
22.85
0.50
1.00
64.64
53.44
53.44
1.00
1.50
118.75
65.45
65.45
1.50
2.00
182.83
75.58
75.58
2.00
2.50
255.51
84.50
84.50
2.50
3.00
335.88
92.56
92.56
3.00
3.50
423.26
99.98
99.98
3.50
4.00
517.12
106.88
106.88
4.00
4.50
617.05
113.37
113.37
4.50
5.00
722.70
119.50
119.50
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control
tOweir
t Confice
800
700
600
a 500
3 400
E300
a;41,
200
1
100 -
0.00 1.00 2.00 FI�3.00� (ft 1 4.00 5.00 6.00
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Len th =
1.71 ft.
Space width = 0.3125 ft.
Bar width=
0.0208ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:01 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 403 (STIN-F-2)
Project No. 187010251
This sheet computes the controlling area inlet Flow condition.
Weir Equation:
r
Q,,; = CLH'
where: H = head above weir
Orifice Equation:
(;.A. 12gH
where: H =hz -hr
Grate: Modified CDOT Type C Area Inlet
Weir:
Orifice:
Cash = 3.20
C.r. =
0.65
Lo� = 8.42 ft. (1)
A,,;r=, =
4.27 W
Clogging
Factor =
0.20
Number of Inlets =
4
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
23.53
100 year WSEL (23.53) =
0.43
Head (ft.)
0..®r
Q.K.
0.,,,,d
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
30.47
50.39
30.47
0.50
1.00
86.19
71.26
71.26
1.00
1.50
158.34
87.27
87.27
1.50
2.00
243.77
100.77
100.77
2.00
2.50
340.68
112.67
112.67
2.50
3.00
447.84
123.42
123.42
3.00
3.50
564.34
133.31
133.31
3.50
4.00
689.50
142.51
142.51
4.00
4.50
822.74
151.16
151.16
4.50
5.00
963.60
159.33
159.33
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control taveir
t porifce
1200
1000
800 )
600-
r
{ $.
LL 400
200- 1
d i $,
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width=
2.69 ft.
Effective GrateWidth =
2.50 ft.
The Sear -Brown Group
5:02 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 411 (STIN-11-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
3
O„o = CLH 2
where: H = head above weir
Orifice Equation:
Q. ,_ = C„ A. 2KH
where: H =hz -hr
Grate: Modred CDOT Type C Area Inlet
Weir:
Orifice:
Cwdr = 3.20
CoMce =
0.65
L. = 8.42 ft. (1)
Aar;r,. =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
2.79
100 year WSEL (2.79) =
0.25
Head (ft.)
Qwdr
O fce
Q.n
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
7.62
12.60
7.62
0.50
1.00
21.55
17.81
17.81
1.00
1.50
39.58
21.82
21.82
1.50
2.00
60.94
25.19
25.19
2.00
2.50
85.17
28.17
28.17
2.50
3.00
111.96
30.85
30.85
3.00
3.50
141.09
33.33
33.33
3.50
4.00
172.37
35.63
35.63
4.00
4.50
205.68
37.79
37.79
4.50
5.00
240.90
39.83
39.83
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control-t-dweir
f- Qorifice
300
250
51
200
O
3150
O
u 100 IN
a
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Length =
1.71 ft.
Space width = 0.3125 ft.
Bar width = 0.0208 ft.
Number of bars = 9
Number of spaces = 8
'
Grate Width = 2.69 ft.
Effective GrateWidth = 2.50 ft.
5:02 PM
The Sear -Brown Group 1/25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 220 (STIN-J-2)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
CLH'
where: H = head above weir
Orifice Equation:
Co A. r2gH
where: H = h z - h ,
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cw.k = 3.20
Cf.. =
0.65
L� = 11.74 ft. (1)
Aoac. =
7.97 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
7.77
100 year WSEL (7.77) =
0.23
Head (ft.)
Clan
Qoe.
Qmnwl
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
21.25
47.01
21.25
0.50
1.00
60.11
66.48
60.11
1.00
1.50
110.43
81.42
81.42
1.50
2.00
170.01
94.02
94.02
2.00
2.50
237.60
105.12
105.12
2.50
3.00
312.33
115.15
115.15
3.00
3.50
393.59
124.38
124.38
3.50
4.00
480.87
132.96
132.96
4.00
4.50
573.80
141.03
141.03
4.50
5.00
672.04
148.66
148.66
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control tOweir
-!- Orrice
800
700
600
i 500
t i
400
: 300
M
200
100 --
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 ft.
Effective Grate Length =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth =
3.74 ft.
The Sear -Brown Group
5:02 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 217 (STIN-K-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
=CLH2
where: H = head above weir
Orifice Equation:
Q , = C� A. ZgH
where: H =hz -h,
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cwo, = 3.20
Co,;l;ce =
0.65
L� = 11.74 ft.(1)
A.6r. =
7.97 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) _
. 13.99
100 year WSEL (13.99) =
0.37
Head (ft.)
Owet
Q.K,.
Dmeod
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
21.25
47.01
21.25
0.50
1.00
60.11
66.48
60.11
1.00
1.50
110.43
81.42
81.42
1.50
2.00
170.01
94.02
94.02
2.00
2.50
237.60
105.12
105.12
2.50
3.00
312.33
115.15
115.15
3.00
3.50
393.59
124.38
124.38
3.50
4.00
480.87
132.96
132.96
4.00
4.50
573.80
141.03
141.03
4.50
5.00
672.04
148.66
148.66
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir-Oriflce Control t0weir
-F Qorifice
00
700
600
7500 �_..
400
u 300
200
100 - EE
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth
Space width = 0.1640 ft.
Bar width =
0.0328 ft.
Number of bars =
14
Number of spaces =
13
Grate length =
2.59 fl.
Effective Grate Length =
2.13 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
. Effective GrateWidth =
3.74 ft.
The Sear -Brown Group
5:02 PM
1 /25/2007
Area Inlet Design - Sump Condition
Area Inlet for Design Point 301 (STIN-0-3)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
weir -
Weir Equation:
CLH:
where: H = head above weir
Orifice Equation:
Q,,,,r.. = Co A.. 2KH
where: H= h z- h r
Grate: Modred CDOT Type C Area Inlet
Weir:
Orifice:
C,,& = 3.20
0.65
L = 8.42 ft. (1)
Aa„ r,. =
4.27 ft`
Clogging
Factor =
0.20
Number of Inlets =
2
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
13.72
100 year WSEL (13.72) =
0.47
Head (ft.)
Q..ar
Q.,
Q�„W
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
15.24
25.19
15.24
0.50
1.00
43.09
35.63
35.63
1.00
1.50
79.17
43.64
43.64
1.50
2.00
121.89
50.39
50.39
2.00
2.50
170.34
56.33
56.33
2.50
3.00
223.92
61.71
61.71
3.00
3.50
282.17
66.65
66.65
3.50
4.00
344.75
71.26
71.26
4.00
4.50
411.37
75.58
75.58
4.50
5.00
481.80
79.67
79.67
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant Flow directions.
Weir -Orifice Control
Qweir
t Qorifice
600
S
M g
haw
500
�E
400
---
0
200
100
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.0417 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
2.58 ft.
Effective Grate Len th =
1.71 ft.
Space width = 0.3125 ft.
Bar width =
0.0208 ft.
Number of bars =
9
Number of spaces =
8
Grate Width =
2.69 ft.
Effective GrateWidth =
2.50ft.
The Sear -Brown Group
5:02 PM
1 /25/2007
APPENDIX - H
December 2006
f
STORM SEWER DESIGN
Stantec
o
1
;ST,of,h
,3 TpV .41-1 015,
S-r '[IV A2-1-�016-r
1
12 3'Xl 0' R66
2 ' &flot A -1
33')1O'P,66
3
4 3'YJO' 'ZLL2)
STT�j A3 -1 — (V7 - xto
, 04
05
18—ST--AIV iq-//-/
SOH A -AI
� 30I
,
E i a 6 3 X(to 1 R(fz
6
711
3TVV
S-7N41+-8 �
7 3 tY,(�
1 IS I (
(3,,,8- 0 20,
8,q8
i do 21-57-ZA) A7-4
20 %9
9 ZIS it 13
022
,SM A-19-1
OTTN -�l;1
)10
S-W 4 -9
j"-j-wG23,al22bjo
5TOJ+t
PdO--( 024,023, ?4-0 25 STT-4J
Sit
4
(3 12q3"
SNT141M A--)1- 12--- El 25
it 26 12
d 1330
13
Cj'l 430,
14 H
ST-mH A-12-1
NeoUDS Results Summary
Project Title: STRM-A
Project Description: FRV
Output Created On: 6/8/2007 at 8:15:11 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
-F-� Time of Concentration I -I
Manhole
Basin
JArea
Overland
Gutter
BasinF(In
ain I
Peak Flow
ID #
* C
(Minutes)
(Minutes)
(Minutes).h/Hour)
(CFS)
1 0.001 5.01 0.01 0.01 36780.001 147.1
(- 2 0.00 5.0 0.0 0.0 38737.50 154.9
�- 0.00 5.0 0.0 0.0 F 28700.00 F 114.8
4 0.00 5.0 0.0 0.0 30272.50 F 121.1
j 5 1 0.001 5.01 0.01 0.01 29730.001 118.9
0.00. 5.0 0.0 0.0 F 30600.00. 122.4
,�- 0.00; 5.0' 0.0' 0.0 30600.00' 122.4'
-8 0.00 5.0 0.0 0.0 r 13355.00 I--53.4
-9 - 0.00 5.0 F_--0.0 F-7-0.0 [ C3220-ooF 52.9
10 0.00 5.0 0.0 1 0.0 F 13220.00 52.9
11 66 61 5.0 0.0 0.0 12777.50.1 51.1
12 0.00 5.0 0.0:1 0.0 F 12227.50 48.91
13 0.00 5.0 0.0 0.0 F 12035.001 48.1
14 F 0.00 F 5.0 0.0 0.0 12035.00 (-48.1
1 15 1 0.001 5.01 0.01 0.01 23975.001 95.9
16 0.00 5.0 0.0 � 0.0 F 775.00 � 3.1
17 0.00 5.0 0.0 � 0.0 2657.50 10.6
18 0.00 5.0 0.0 0.0 �4585.00 18.3
F-19 0.00 5.010.0 F- 0.0 '--27000.00 108.0
20 0.00 l- 5.0 F 0.0 I 0.0 + 1177.50 4.7
21 _ 0 F`5.0�-0.0r.-_- 0.0;_.�__887.50E-3.5
Manhole
Basin 10verland I Gutter
reaC(Mnutes) '(Minutes)
i
Basin
Rain I PeakFlow
(CSID#
F) w
22
0.00 5.0 1_ 0.0
F-0.0
1 2037.50
8.1
23
0.00 5.0 1- 0.0
0.0
F 845.00
3.4
24
0.00 5.0 0.0
0.0 61� 87 5050
6.8
25
0.00 5.0 0.0
F 0.0 F 915.00
3.7
26-1
0.00 5.0 0.0 0.0 F 165.00
0.7
27
0.00
5.0
0.0
0.0
165.00
0.7
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Manhole
ID #
1
Contributing Rainfall
Duration
Area * C (Minutes)
0 0.0
' Rainfall .peak
1 Intensity
(Inch/Hour)
0.00[147.1[4934-00,
Design
Flow (CFS)
Ground
Elevation
(Feet)
Water
Elevation
(Feet)
4934.66
Comments
Water
[Presenturface
I 20.1
5.0
1489.90
154.9
4937.98
4934.61I-
3 0.1 5.0
1195.83 114.8F4937.62
4935.25
4 -- 0.09 5.0
�- 0.08 5.0
1376.02 121.1
1486.50 118.9
4937.20 4935.64
I 4938.02 4935.92
F-
r--
0.07 F 5.0
F 1700.00
122.4 F4939.17 4935.94
F_
7 0.07 5.0
1800.00 I
122.4
4940.50 F4936.64
F8 F 0.06 5.0
953.93
53.4
4942.44 4937.97
�- 0.05 5.0
1101.67
F 52.9
4942.92
4938.28
F_
10 0.04 5.0
1322.00
52.9 !
4941.34
4938.59-
-----
.0 1597_19 51.11 4942.18
F4938.99
F'_
Manhole
ID #
Contributing
Area C
Rainfall
Duration
(Minutes)
Rainfall
Intensity
(Inch/Hour)
Design
Peak
(Flow
Ground
Elevation
(Feet)
Water
Elevation
(Feet)
Comments
12
0.02
5.0
2445.50
48.9
4943.95
4939.40
F-
13
0.01
5.0
6017.50
48.1
4949.54
4943.25
14 -1
0
� 5.0
12035.00
48.1
F-4948.32
F4944.94
�+
15
F 0
5.0
F23975.00
r 95.9 4943.90
4938.88
16
� 0- 5.0 F 775.00
F 3.1
F4937.4F4935.50
17 0 5.0 2657.50
10.6
4937.56
4936.18
18 0 5.0 F4585.00
18.3
4936.37.
4936.52
Surface
Water
Present
19 F 0E-5-91 27000.00 F108.0
4945.90 4945.10
F7-
20 F- 0 5.0 1177.50
4.7 4938.5o 1 4937.47
r-
21 r- 0 F-5-OF--iV.501
3.5 4939.62 4938.34
r'
22 F OF 5.01 2037.50F
8.1
F4939.80 4938.86
23 F 0 5.0 845.00
3.4
4941.38
4938.91
F-
24 I
0 (--5.0 1687.50
F 6.8
[ 4941.71
F 4939.46
F^---
25 F 0 5.0 915.00
3.7
4942.37
4939.37
F--
F26 0.01 5.0 82.50
_ 0.7
4941.07
4939.63
�-
27
F- 0
5.0
165.00
0.7
4940.90;
4939.64
F-
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
�-
Calculated
Suggested
Existing
?Sewer
ID #
Upstream
Downstream
Sewer
Shape
Diameter
(Rise)
(Inches)
FTe
Diameter
(Rise)
(Inches)
FT
Diameter
(Rise)
(Inches)
E.
Width
(FT)
�2 F2
1
Box 2.2�
2�
3�
10
3 - 3 r 2-
Box
F------- 1.8
F 2
(_____--_ 3
F-10
1 4 I 4 3 Box
[-.-- 1.91----.--
2
F 3[
10
F 5 -F 5 -I 4 iFBoxF
1.9F-
2F-
3F
10
F 6 ( 6 F 5 !�
7--- L___ 7 r 6
Box �3.6
Box �_____.._ 3 0
4
�4
3
3
6
_ _ 6
Sewer
ID #
Upstream
Downstream
Sewer,
Shape
p
Diameter
(Rise)
Inches
(inches)
(FT)
Diameter
(Rise)
(Inches)
(FT)
Diameter
(Rise)
(Inches)
(FT)
Width
(FT)
8
I 8
F -7FRoundF
44.8
F 481
48
N/A
—F
9
F —8FRoundF
44.6
F 48F
48
N/A
10
F 10
F 9 --FRoundF
44.6F
48F
48
N/A
11
F 11
F I -0FRoundF
44.1
F 48F
48
N/A
12
12
11
Round 43-3F
48 F 48 N/A
13
13
12 Round I----- 25.9 27
30 [ /A
14
14
13 Round 25.9. 27
30 N/A
-
F1 15
Round' 27.9 30 30r N/A
I15 16 ' Roun18d .
18
N/A
16 17 F —4Round: 14.6. 18
F 18
f N/A
17 F 18 �! RoundI 27.5 30
30
N/A
18 20 F— 7 -- Round 11.7 �-18
r 18
N/A
19 F 19 I ' — Round F 37.9 F 421
30
N/A
20 F 21 I 8 — Round F 11.3 F 18
F 18
FN/A
21 F 22 F —9FRoundF 14.01 18F
18
N/A
22 23 10 Round 9.5 18
18
N/A
23 24 F11.. Round: 9.9 18 18
. N/A
2T7F 25
F 11 FRoundF IOAF 18F
18
N/A
25 26 12 Round 5.6 18
18
FN/A
26
27
26
Round;
5.6
18
12
N/A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Full Normal Normal Critical Critical FFwer FroudeFlow Depth Velocity Depth Velocity CommentID (CFS) (Feet) (FPS) (Feet) (FPS) Number
r
2 - 154.9 169.2 2.24 F 6.9 1.95 F 7.9 5.2 0.81
I -' 114.8 169.2 1.83 6.3 1.60 1- 7.2 F-3.8 0.81 i--�
121.1 169.2 1.90 6.4 1.66 7.3 4.0 F 0.81 1,-
5 118.9 169.2 1.88 6.3. 1.64 7.3 4.0 0.81 F-
6 122.4 92.3 3.00 6.8 r 3.00 F- 0.0 F- 6.8 N/A r---
F7 122.4 22.3 F 3.00 F 6.8 3.00 F 0.0 F 6.8 N/A F
8 53.4 64.4 2.78 5.7 2.20 7.5 4.3 0.64 F--
9-- 52.9 [64.4 2.76 5.7 �2.19' 7.5 4.2 0.64 F
7`-
10 52.9 64.4 2.76 5.2.19. 7.5+ 4.2 0.64 �-
11 51.1 64.4 2.69 F-571 2.16. 7.4:
4.1
F 0.65`F-
12 F748.K64.4 F 2.61 F 5.6 2.12. 7.2' 3-qF 6.66 F-
13 48.1 -71.2F-1.5,F 15.6F 2.24F 10AF 9.8F 2.45F -
4 48.1 71.2 1.51 � 15.6 2.24 10.4 9.8 2.45 F--
1ocity
F_ 95.9[116.31.73 26.5 2.46I --F 19.6 19.5 3.72 IsiHigh
15 3.1 29.8 0.33 10.9 0.67 4.0 1.8 4.01 1-
I 16 F 10.6 18.7 0.81 10.9 1.25 6.8 6.0 F 2.39 F
17 F 18.3 23.3 1.67 5.3:F 1..2ij 3.7 0.76'f-
18 F 4.7F 14.9 F 0.58F 7.5F 6.84F 4.7 F 2.7F 2F
Fig108.0 58.2 2.50 22.0 2.47F22.0 22.0 N/A
20 3.5 12.5 F-6.55 ( 6.1 F 0.74 4.1 2.0 F 1.68
Is'Ocg
F-
21 F 8.1 16.1 F 0.75 9.1 1-11F 5.8 F 4.61 2.09
f-
22 3.4 88.7 0.43 8.0 F 0.73 4.0 1.9 2.54
F-
r23 6.8 33.31 0.46 14.8 F 1.00 F 5.4 3.8 4.52 -`--^
F-24F-3.7FI4.9F OJIF 7.0 F 0.75F 4.1 F 2.1 F 2.02 F---
25 F0.7 14.9 1- 0.22 4.2 0.33 2.3 0.4 r 1.94 F-
26 F 07F.5.1 0.24� 4.4�0.35� 2.7�0.8�1.88F-
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
-�
Invert Elevation[ -Buried Depth
roT U st aerm
IDI (Feet)
Downstream U stream
(Feet) (Feet)
DownstreamSewer
(Feet)
Comment
2 -� 0.20 4931.43 4931.00 3.55
0.00
Sewer Too Shallow
F- 3 -- 0.20 4931.62 4931.44 3.00
F 3.54
F 4 0.20 F4932.69 F
3.00
1
5 - 0.20 4932.21 4932.09 2.81
2.11
'---^
F- 6 Fo.2oF4932.44F 4932.22 3.73 2.801
F- 7-F0.20) 4932.82 F- 4932.44,( 4.68 �- 3.73
�-
I- 8 0.20 4933.12 4932.81;
5.32
3.69
0.20 4933.25 4933.13
5.67;r^-5.31----
-
.,
0204933.38'4933.255'_45
-- 493.3.96'-5.6710
3.96.26 4933.38F1�1 0-49 3.63r
12 6.20 4933.93 4933.63 6.02
(---_---
4.55
13 3.00 4941.ol 4933.93 6.03
7.521
--
14 3.00 4942.26 4941.01
3.56
6.031
�1--� 8.00 4934.33 4931.45
�� 7.07
�� ! 4.04
r�
15
8.00 4933.40 �4932.62;F 2.44
�- u3.50.[-
-
16 3.16' 4932.40 4932.09 1- 3-60!
3.61'�
17 0.32 4932.68 4932.21 1.19
3.31
Sewer Too Shallow
18 2.00 4933.54 4932.82 3.46
6.181
--
19 2.00F 4-93437F4932.82 9.03
5.181
20 1.40 4933.99 4933.12
4.13
7.82
r-
21 r 2.34F 4934.00 F 4933.25F
4.30
F 8.17
r 22 F3.15F 4934.00 F 4933.38F
5.88
F 6.461
F 23 10.00 4935.60 4933.63
4.61
�� 7.06
F-
24 r-2.00 4935.28 _ 4933.63
5.59 ��� 7.05
i 25 r 2.00 1-4934.62 4933.93
r 26 2.00 4934.72 4934.62 5.18
5.45
Summary of Hydraulic Grade Line
F__ Invert Elevation Water Elevation
Fe Sewer Surcharged ra eg dra eg d Upstream Downstream Upstream ID' ownstream
Length Length (Feet) (Feet) (Feet) I (Feet)
[Condition
(Feet) (Feet)
21216.691 216.69 4931.43 4931.00 4934.61 4934.66
Pressured
r 3 �90.59 90.59 4931.62 4931.44 �4935.25-4934.61
Pressured
f -4 (233J2 233.72 4932.09 4931.62 4935.64
4935.25
[ Pressured
F- 5' 58.54 58.54[4932.21 4932.09 4935.92
4935.64
Pressured
6 - 111.92 111.92 4932.44 493212 4935.94,
4935.92
Pressured
191.1 191.1; 4932.82 4932.44 4936.64; 4935.94.
Pressured
4936.64•P4932814937.97I° 15249 151494MA2
ressured
�- 62.21 62.21-F 4933.25; 4933.13j 4938.28 4937.97E
ressured,
10 64.98 64.9&�4933.38 4933.25[ 4438.59 4938.28
FPressured
11F 125.05 125.05 49 33.63 F 4 333.38 49 88.99 F 4 338.59
Pressured
12 149.4 149.4 4933.93 4933.63: 4939.40F. 4938.99
Pressured
13 235.87 112.11 [ 4441.01 4933.93 4943.25 4939.40.
Jump
14 41.79 41.79 F 49 22.26 [- 941 -of F 4944.94F 4943.25
Pressured
1 36.08 36.08 4934.33 4931.44 �4938.88 4934.61
Pressured
15 9.76' 9.76 4933.40. 4932.62, 4935.50 4935.25
Pressured
16 9.69 9.69 4932.40 4932.09
4936.18
4935.64
Pressured'
17 146.98 146.98-4932.68 4932.21
( 4936.52
4935.92 (
Pressured
18 36.04 36.04,[4933.54 4932.82
[74937.47
4936.64
rPressured
19 77.32 77.32 4934.37 4932.82
4945.10
4936.64
Pressured
20 F62-68F 62.08 4933.99F 4933.12
4938.34
9937.97
Pressured
21 32.22 32.22 4934.00 -4933.25F-4938.861
4938.28
Pressured
22 19.67 19.67 �4934.00 4933.38
4938.91
4938.59
Pressured
�23 �-19.76 19.76 4935.60 4933.62
4939.40
4938.99
Pressured
24
82.54 [ 82.54 �4935.28 4933.63
4939.37
�4938.99
Pressured
25
42 34.42 �4934.62 r 4933.93
F 4939.63
F 4939.40
Pressured
26 5
5_09_4934J2
- 4934.62-
4939.64 j-4939.63
Pressured
Summary of Energy Grade Line
F-1
Upstream
Manhole F
Dow nstream
(� Juncture Losses Manhole
Sewer
#
Manhole
ID #
Energy
ElevationFriction
(Feet)
Sewer
[BendK
oefficient
(Feet)
Bend
Lateral K
Loss Coefficient
(Feet)
Lateral ----F
ManholeID
Loss I ID #
(Feet)
(- 2 F 2 !- 4935.02 0.36 0.05
0.00
0.00
0.00 F -1-_--1
.4934.66
F 3 (_- 3 '
� 4935.48 0.08) OA7
0.02
0.25
r 0.36 F 2
4935.02
4-- 4935.90 0.24 0.05 0.01----0.25
F0.16 `- 3 4935.48
r 5 -F 5 - 4936.16 0.061 0.05 0.01
0.25
0.191
4-4935.90.
6 6 4936.65 0.39 0.05
�
0.04�
0.25'
0.06
5
4936.16
�
-I 7 - 4937 36 0.67 0.05]
0.04
OAO
o-66
F 6
.
4936.65,
8 F- 4938 25 0.21 0 11 0.03;
0.25J
0.65
7 -
4937.36
-F 9 4938.56 6. o 8,1 0 05_
0.01
0.25
0.21--8
-
4938.25
10 10 4938.87 0.09 0.05
0.01
0.25
( 0.21
F--9 --
4938.56
11
11 4939.25 F-0.16 F--^0.05
0.01
0.25
F 0.21
16
4938.87
12 �12 4939.63 �0.17 � ^ 0.05
0.01
�'-0.25
0 20 F 11
4939.25
�13 13 4944.92 5.17 0.05 0.07
0.25[70.05
�12
4939.63
14 14 4946.44 0 57
0.63
0.94
F 0.00
0.00
13
[_,j944.92
1 15 4944 81 . 1.96
132
7.82'
0 00 OAOI-
2--.
4935.02:
15 16 4935 55 0.01, 1.32
0.06
0 00
0.00
F 3
4935.48
F16-F 17 r 4936.74 6.10
1.32
[ 034
0.00
F 50
4
4935.90
17 18 4936.74 0.29
132
F0.29---0.00
0.00
F 5 -
4936.16
18 20 4937.58 �0.07 132
0.15`
0.00
0.00
7 - 4937.36
19 19 4952.61 �5.33 r-_--_ 1.32
9.92
� 0.00
0.00
� 7 �4937.36
20 1-21 F4938.40 F0.07 1.32 0.08:r 0.00 OAO
8-1
4938.25
F21-F 22 F4939.19F o-19F 1.32
FO.44F
0.00I
uo
F- 9
4938.56
22 (
23 4938.96 j- 0.02 132
6.67
6.00
6.00
10
�4938.87
23 24 4939.63 0.08 132
030
0.00
0.00
11
4939.25
24 25 4939.44 0.10 132
0.09
0.00
0.00
11 4939.25
25 26 4939.63 0.00 0.90 0.00
0.00 0 00 _12_
r 4939.63
IF 26 - r _ 27 _
4939.65 j OAO
r 1.25
OA 1 1_
0.00
0.00
__
26
__
4939.63
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole
ID #
Rim Elevation
(Feet)
Invert Elevation
(Feet)
Manhole Height
(Feet)
F 1 4934.00 4931.001
3.00
F 2-1 4937.98 1 4931.43--
6.55
F--3-7.1 4937.621
4931.62
�4 4937.20
l 4932.091 5.11
I -5-1 4938.021
4932.21:1 5.81
I 6-1 4939.17 1- 4932.44
1-6.73
r 7-1 4940.501
4932.811
7.69
I 8- 4942.441
4933.121
9.32
9-1 4942.92
14933.25
F 9.67
10-1 4941.341
4933.38
�- 7.96
11 4942.181 4933.621
8.56
12 041,95] 4933.93
10.02:
13 4949.54'1-
4941.011
8.53
14 4948.321
4942.261
6.06
15 4943.90 1- 4934.33
F 9.57
F-IT-1 4937.841 4933.40
4.44
17 4937.501 4932.401
5.10
18-1 4936.371
4932.681
3.69
19 4945.90
F- 4934.37
11.53
20
1 4938.501
4933.54
[- 4.96
21 4939.621 4933.991
5.63
22 1 4939.801 4934.00
y- - -_- 5.80
23 1 4941.381 4934.00
�- -- 7.38
24 5 4941.71 _ 4935.60
6.11
25 5 4942.37 4935.28
F 7.09
F 26 I 4941.07 F-y 4934.62
�� 6.45
27
4940.90
4934.72 , ^ 6.18
Sewer
ID #
Upstream Trench
Width
On At
Ground Invert
(Feet) (Feet)
Downstream
Trench Width
On At
Ground Invert
(Feet) (Feet)
I
Trench
Length
(Feet)
-`-�
Wall
Thickness
(Inches)
Earth
Volume
(Cubic
yards)
I- 2 -
19.9
F 15.2
1- 12.8
15.2
F 216.69
1 7. 81
732
F-3
18.8
15.21
19.9[-15.2
90.59
7.18
385
(- 4
17.0 F 15.2 18.8 r 15.2
1 233.72
7.18
880
5
18.4 15.2 17.0 15.2
58.54
7.18
217
16.5 11.0 14.6-11-6F
111.921 5.791
353
I ' 18.4: 11.0 6.5 111.0
191.1 5.79
713
F 8 -F 15.8 F 6.81 12.5
6.8 1 22.49. 5.00
447
�- 16.5 6.8 15.8
1- 6.8 62.21 5.00
215
10 F 13.1 F 6.8 F 16.5F 6.8F 64.98
F 5.001 201
11 F 14.3 F 6.8F 13.1 F 6.8F
125.05
F 5.00
F 348
12 17.2 F 6.8F 14.3 f 6-iF
149.4
5.00
F 501
13 16.0 5.1 18.9 5.1 235.87
3.50
796
14 11.0 5.1. 16.0 5.1 41.79
3.50.
95
18.1 5.1 12.0' S.f 36.08
F 3.50
F 98
15 9.0 3.qF-16.1F 3.9F
9.76F
2.50
F 11
16 10.3 F 3.9 F 10.3F 3.9
9.69
F 2.50
F 12
F-17-r 6.3 5.1 F 10.5F 5.1 r 146.98F
18 10.0 3.9 15.4 3.9F 36.04
3.50
F 2.50F
F 180
67
19 22.0 5.1 14.3 f 5.1 F 77.32
20 F 11.3F 3.9 F-18.7F 3.9 F 62.08F
F-3.501
2.50
287
F 155
21 1 11.7 3.9 19.4 3.9
F 3-2-221
2.50
86
22 14.8 3.9 I 16.0 3.9
19.67
�2.-50
49
23 12.3 3.9 1 17.2
3.9
19.76
2.50
46
24 F 14.3F 3.9F 17.2F
3.9F
82.54
F 2.50
F 214
25 F- 13.0 3.9 F 20.1 F-3.9
F 34.42 [- 2.50
101
---�
26 � 13.0
3.3 13.6
3.3 r
____���
5 .09
I-- 9
2.00
36 N.0
Q
•'\� STSN - A-k
-2:
-3 y S� ST14H-83-1
-20a STIw-A3-2
STMH-8-3 \ 04 a
C73r-.7-6 %
STIN- 64-7 \ \ 068
72
/ 5815 5905888-60 61 061 62r1r STMM A3'� 97
STn N *83-2 S ti ,I �'1
•63 m
*41 •6,y C 3. 063 StTN-63-1 ti s
nTN-A-3 Q}- �23�.•24 Srry-6S 2 •67t66*64 b
�, b \ srzN. �`'( vJ 63-3-1 =-n• 64 S,ZN-63-2 •57
t
-s 86-1 3TSN-6-1-3-� � `i2 165
STtr-S-1-3-1-1 �3 •
STIN-6-Y �25 S's" .'- s
a.." :x � 55 _.
/4Th" -6--1. 3`• •51� 510,52F'529-53--53 • fr4-• 64 i 55s_.y�t'
is 10
tr
ST"%N-62 — �2g ® �a 6`o•!' LSTs+v_ (fi7-3-1-y
■ 69 �l>7 %a
4 all 11 14 441.
70 1 N_
SUM-61-i-16o / L Zy.�45-45 46-46 47-47048`6"4
s gcwN-6-'I'2A � 4TAN-67-3., a 0��, ■481%4%
4t - 12 S7 M �
STMH'd-I a26"al �' � �6�� �� •49f
yf` • 13 s,,K-n-3— 39 •46 !'4o 72
6 4-1
s
- 41 f ?� Sr
V - 41
69
STIN-B-1 -15� STnM B 8 042
S-rr4,'
STsy-6-I �/'�STh1{-e'7.y 8.7
17
CJD-- s*rH-8-5
- 18
- 3, 30
0—SZZN-6.10
STMN-
-34 -331� 032 �4TiA) 12-1
$Tru-B�-s-z — i
st��-61-5-\
NeoUDS Results Summary
Project Title: STRM-B
Project Description: FRV
Output Created On: 6/5/2007 at 1:10:01 PM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
Manhole Basin �O�ver�landGutter BasinRain I Peak Flow
ID # Area * C inutes) Inch/Hour)
�(Mi ((Minutes)
(Minutes) i(' (CFS)
I F-0.00 � -- 5.0 --
0.0 �-0.0 32166.00 F 128.6
2 F-o 00 5.0F
0.0F0.01 32160.00 128.E
3 - 0 00 5.0 F
0.0 0.0 r 36160.00 1 144.6
4 -- 0.00 F- 5.0 1 -0.0
1- 0.0 ( 36160.00 144.6 �
F -5F-6-66F 5.011
6.0 0 0 36160.00 144.6
-- 6-- 0.00 F-5.0 F-
0.0F 0.01 29777.50 19.1
0.00 r- 5.01--
0.0 0.01-28932_50I 115.7
--0.00 5.0`-
0.0 0.0 0121.08�324
9 F- 0.00� 5.0�
0.0[ 0.0302--121.0
10 ir- 0.00 ! 5.0 F
0.01-
.0 0.0 29885.00 119.5
11 0.00-5.0
0.0 0.0 F-i8810.00 115.2
12 F-- 0.00 5.0 F-0.0
F 0.0 F 13852.50 F 55.4
13 ; 0.00� 5.0j
0.0�-0.0I 13852.50� 55.4�
I 14 0.00 �- 5.0 jM-_
0.0 0.0 13175.00 I 52.7
' - 5 15 i- 0.00 .0
--- - - - --
-(v-0.00
0.0
.0 --- 0.0 r 13175.00 52.71
16, 5.01
0.0 i 0.0 9972.50 39.9
17 1 0.001 5.0'
0.01 0.0 9972.501 - 39.9
18 0.001 5.0E
0.01 0.01 9972.50 11 39.9 i
19 1 0.001 5.0
0.0 0.0 9535.001 38.11
20 0.001 5.0 I 0.01 0.0 j 500.001 2.01
21 0.00 ; 5.0 0.0! 0.01 500.001 2.0
iManhole , Basin Overland IF Gutter Basin Rain I Peak Flow
ID # !Area * C ,(Minutes)1(Minutes) j(Minutes) ;(Inch/Hour) (CFS)
22--�0.00 5.0 ---0.0 ��-_ 0.0 4492.50 ��- 18.0
r^ 23 -10.00 5.0 --- -- 0.01` _ _0.01 _ 2497.501_ 10.0
24 0.00 r"-5.0--0.0 0.0 F 145.00 12.6
r 25 0.00 5.0 I ---0.0 0.0 r^-1942.50
I 7.8
F 26 F-0.00 5.0 0.0 F 0.0 I 750.001-
3.0
27 0.00
r 28 F- 0.001-
r� 5.0 0.0
5.0 F 0.0
0.0 1 1000.00 -- 4.0
r- - 0.0 F 17357.501 `- 69.4
r`29
I- 0.00 I 5.0 0.0 _ 0.0 . 16080.00
64.3
31 0.00---5.0 r--0.0 0.0 7007.50
F 28.0
32 F 0.00 F 5.0 F o6F 0.0 7007.50
33 0.00 5.0 0.0 0.0 i 00572 0F
F 28.0
11.0
34 0.00 5.0 0.0 F-6.6F
5772.50
F 23.1
35 0.00 5.0 0.0 0.0
5772.50E-23.1
39 r 0.00 r- 5.0 0.0 F 0.01 8782.50
35.1
40 I
41
0.00
r-0.00
5.6 r^ 0.0
�- - - -)
5.0 0.0
� 0.0 r--8782.50 r 35.1
_ 1920.00
-- 0.0-----r---- 7.7'
I�
42 (
0.00 5.0 r r-4057.550
16.2
44 F
_ -0_0
-��0.0
0.00r 5.0r 0.0F 0.0I 3315.00F
-_
13.3
45 0.00 F -.5.0 F 0.0 0.0 F 662.50
2.7
r- 46 F- 0.00 F 2.0 r--0.0 f- 0.0 F 662.50
2.7
0.00 F
47 �--5.0 0.0 r- 0.0 662.50
2.7
48 0.001- 5.0 I ~ - 0.0 0.0 662.50
2.7
F 49 ( 0 00 �5.0 �- 0.0 r 0.0 1 662.50
2.7
-50 r- 0.00 +--_--5.0-- -�0.0) } -- 0.0 1662.50 I A 2.7
j- 51 0.00r--5.0r 0.0r 0.0� 1355.00ru 5.4
52 r- 0.00 i- 5.01 i- O.O r- 0.0 337.5O r- 1.4
53 F- .00 r- 5.6 I 0.0 0.01 337.50 1.4
----
1 54 0.00 5.0 0.0 0.0 r�337.50 r- 1.4
55 1 0.001 5.01 0.01 0.01 337.501
1.41
r 56 _ r 0.001 5.01 0.0 �' 0.0 -_ 337.50
-- 1.41
57 j 0.001 5.01 0.01 0.01 337.50 i 1.4
58 f 0.00 , 5.0 � 0.01 0 0 12107.501 48.4
59 1 0.00 5.01 0.0 0.0: 12107.501 48 4!
Manhole i Bas n IfOverland ( Gutter Basin i Rain I Peak Flow
j ID # !Area C 1(Minutes) !(Minutes) (Minutes) ;(Inch/Hour) I (CFS)
F_ - ----
+ . 60 j 0.00-5.0
61 0.00
r-_ _-
0.0 0.0 (� 10167.50
5.01 8832.50
F 40.7
( 35.3
62 0.00 5.0 0.0 0.0 8590.00 -'34.4
63-� 0.00 F- 5.0 F- 0.01 0.0 ! 7925.001 31.7
64 j 0.00 F�5.0 I~ _ 0.01 - 0.0 F 7452.501 29.8
65 r 0.00
66- 0.00
F-5.0 F 0.0
(---5.0 -0.0
F -- 0.0,- 5942.50 23.8
r -- 0.0 �..__.._. 4130.00 - 16.5
67 F0.00 5.0 0.01 0.0 750.00 3.0
69 0.00 5.01 0.0 0.0 915.00 3.7
70 6.00 F 5.01 0.0 F 0.0 F 3640.00 F--12.2
71 6.00 5.0 F- 0.0 F O.O'F 12316.001 49.2
1 72
0.00 5.0 0.0 0.0
1920.00 7.7
1 68 0.00 5.0 F 0.0 r O.OF
12310.00 49.2
73 0 00 5.0 F- 0.0 0.0 F 285.00
1.1
37 j--0.00 F 5.0
30 ! 0.00 5.0
F- 0.0
0.01
F 0.0 1050.00
0.01 16080.00 I
4:2 i.
64.31
+
r- 36 1-0.00
r 38 1 --_-0.001-----
F-1 5.01-V 0.0 0.014267.501
5.0F_..---- F --0.0 _.-..-- [- _.._._0.0 4520.00
57.1 I
F ---- 18.1
,�- 0 5.0 0.0 0.0,F-1317.50
5.3,
! 74 � 0.00 �-5.0 �- 0.0 0.0 1745.00
F-75 -j- 0.00 (
0.01--
.0
0.0
I--_
�0.0
0.00 1
_ 6.8
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <= (10+Total Length/ 180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Manhole
ID #
Contributing
i Area * C
Rainfall
Duration
(Minutes)
Rainfall
Intensity
(Inch/Hour)
Design
peak
Flow
(CFS)
Ground
(Elevation
I (Feet)
r
! Water
.Elevation
' (Feet)
Comments
1
' 0
�-
0.0
-Surface
0.001 128.6F--[932.004933.95
Water
Present
- 2 --
0.29 5.0
�- 440.55
466.8if 4933.74
��-
F 3
F-0.29 F 5-6F
502.22 144.6 [4937.87 4933.82
F
4 20 5.0 516.57 144.E 4937.66 4934.32 (- - -�
5 0.27 F5.0 F 531.76 144.6 � 4937.30 4934.66 F-
6 0.21 �� 5.0 r 572.64 119.1 4936.50 4935.12
I---
7
8
0.2
0.19
5.0
5.0
r 567.30
630.16
115.7 4937.32
121.0 4939.43
4935.21
4935.43
9- 0.19 F5.0 F--643.56 F 1� F 4937.10 F4935.59 r
0 0.18 5.0 679.20 119.5 r 4937.47 -i935.97 -�
r l l 0.17 , 5.01 685.95 1 15.24938.58 4936.28 F--
12 0.04 F 5.oF 1385.25 r-55.4 4938.40 4936.42 F-
13 F 0.04F 5.0 F 1539.17 F 55.4F 4939.01 ( 4936.48 F
14 0.03 5.0 1882.14 j�52.7 �4938.74 4936.88
15 �--- 0.02 r5.0 2195.83 52.7 � 4939.07 4937.02 F--
16 0.02 5.0 2493.12 ( 39.9 4939.80 4937.45
17 0.01 5.0 3324.17 39.9 r 4939.17 4937.68
18 r- 0.01 r- 5.01-7 4986.25 r 39.9
r 4942.26 r-4937.74 (-
-------
19 0-5.0 9535.00 1 -38.1
4943.51 4937.90
j 20 1 0 I 5.0 r 500.00F 2.0 i 4937.87 r-4934.181
1 21
F 0 [- 5.0 F 500.00 r" 2.0 1-4937.66 1 4934.65 F--
I 22 -1 0.01 r 5.01 2246.25 r 18.0 r^49- 8
1
r 4935.53 r'- ---
�___.---[
j 23a �0 j 5.0 2497.50 i 10.0 4936.38 4935.85
r 24 0.01 5.01 1- 1572.501 12.6 4937.68 4936.17
- -- -.. _ --- - - - -- _-.-_--__.-.. --_----------
25 r 0 j 5.0 1942.501 7.81 4938.04 , 4936.46 #---------- - --I
- 26 - - -�--0 - 5.0 - 750.00 , 3.01 4940.941 4936.30 -- --
27 t 0 ; 5.0 1000.00 j 4.04941.701 4936.97 i
�anhole
'Contributing
Rainfall[(In
Rainfall
1!Design rGround
Peak !Elevation'Elevation
Water
ID #
Area * C
DurationIntensity
!
Flow
Comments
I
Ij
'(Minutes)
ch/Hour)
i (CFS) (Feet)
(Feet)
28
0.12
---5.0
559.92
69.41 4938.37
F 4936.51
29
0.11
�5.0
574.29
64.3 4942.27I
4936.85
F 31
0.021
5.0
1401.50
28.0 ( 4943.71
r 4937.67
F 3i
.0
0.02 5.01-
1751.88
F 28.0 r 4948.79
r 4939.66
i
r_ 33 _
01-----5.0
�4 V2750.001
11.0 4943.80
F 34
0.01 0
r� 2886.25
23.1 4948.96
4941.14
35
1 01 5.0
5772.50 [-23.1 4947.00 4942.57 I-------
��� - Surface
39
0.02I 5.0 1756.50 35.1 4937.30 4937.58 Water
FPresent
40
0.021 5.0 2195.62
35.1 4937.30
Surface
4937.64 Water
Present
r- ---
Surface
41 0.01
5.0
960.00 7.7) 4937.30 4937.83
Water
Present
42 11 0-- 5-oF 4057.50 f6-iF 4941.13 [4938.06------
44 0.03 5.0 (------473.57 ( 13.3 4938.71 4937.65
------�i-
45 0.02 { 5.0
110.42
2.7 ! 4939.20
4938.53
Surface
Water
`Present
Surf ce
46 0.02 5.0 132.50 2.7 4938.20 4938.58 1Water
!Present
FF`---����
47 0.021 5.0 165.62 i 2.7 4938.20
�iSurf e -
4938.63 Water
1 j +
Present
F 48
0.01 1 T5.0 F-220.83 F 2.7 4939.39 j-4938.671
-49F, 0.0111 5.0 331.25 2.7 ` 4939.00 ( 4938.741 -
50 1 01 5.01 662.50 I 2.71 4939.00 i 4938.791
51 F� 0.031 5.01 193.571 5.41 4938.441 4937.641
0.021 - 5.0 56.251 - 1.4 - 4938.281 4937.78 j
53- 1 5_O1 67.501 1 4; 4938281 4937.80
- _ _0.02!_- -
54 1 0.021 5.0 ! 84.38 1 1.4 ; 4938.28 I 4937.81 !
55 0.01 1 5.01 1 1 2.50 1.4 4939.47 , 4937.82 j
(Manhole (Contributing
Rainfall
Duration
Rainfall
Intensity
Design
peak
Ground
Elevation
Water
Elevation
Comments
' ID # Area * C
[
(Minutes)
t
(Inch/Hour)
Flow
(CFS)
(Feet)
(Feet)
56 0.01
, 5.6
j 168.751
_
1.4
4939.00
__
4937.90
(�
57 [--- 01
5.01 337.501
1.4
[ 4939.001
4938.01
-------
--5.0-1008.96
48.4
49387358
r4
j 59 -I 0.04
5.0 1100.68
` 48.4
4936.49
1 4935.46
r
60 0.04
-5.01 1016.751 40.7 4936.50
r 4935.54
r- 61- 0.04
r-�` 5.0 rY 981.39 �V 35.31 4935.90
4935.60
r
r 62 0.03 F-5.0 r- 1073.75 [v34.4 I 4935.90 F4935.66 r�-{
63
0.03 5.0 rl 132.14 31.7 4937.32 4935.70
��Surface
64 ( 0.02F- 5.0 1242.08
29.8 4935.90 4935.93 Water
Present
65 0.02
5.0
1485.62 23.8
- Surface
4935.91 4936.49 Water
Present
F
r 66 0.01
r- 5.0
r- -I
1376.67 I 16.5 r4936.9]
4936.72
�_
f j
67 r- 0
r� 5.0
_ _
750.00 3.0 r 4938.80
4936.31
69
( 0 -- 5.0 r- 915.00 3.7 4938.36 r 4936.72
r�
70 ;- 0 5.0 �� 3040.00 12.2 4938.37 4936.71
F-
-71 06 r -- --5.0 F 820.67 49 2 4936.03 4934.97
r-
--Surfer
ace
72 0
5.0
1920.00,
7.7 4937.30 4937.92
Water
Present
68 0.05 5.0 46 9.92
r 49.2 4936.48
4935.20
73 0 ( 5.0 ( 285.00
1.1 4936.47
4935.12
r-37 r 0 �^ 5.0 1050.00 i `4.2 4942.44 (
4937.46-+
�1 30 j - 0.11 5.0 r-64.3 r- Ti-,49�4937.08
_595.56
-
36 r 0.04 r' 5.01[ 1297.05 , 57.1 , 4942.671 4937.33
i
38 ; 0.061 5.01 - 301.331 18.1 1 4940.441 4937.35 r�u�
- 43�- -�- 0 5.01 1317.50 r-�5.3 4939.99 4937.58 , 1
74 01 5.01 1745.001 7.01 4939.13 4937.67
75 I 01 0 0 ( - ' 0.00 j 6.8 ,[ 4939.04 _4937.82
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
J___Ralculated
ole ID Number
F9uggesie'd1
Existing
Diameter
Diameter
Diameter
Sewer
ID#
Upstream
Downstream
Sewer
Shape
(Rise)
(Inches)
(Rise)
(inches)
(Rise)
(inches)
lWidth
(IT)
(FT)
(Fr)
(Fr)
F 2-1
1 _F_
Box
F___ 2.4
F--3
4 [--F--8
——,
__F_2
F2
F3
_
BoxF
F—2.6
F —31
'4'F-8
F _3F_4_F_
_3FBox
2.6
3
F 4---8
F_---4F
5
F 4 j
liox
12.6
3
4
8
6
F_ 5
F -F---*--
Box
2.3
3
4 8'-'-
—
r 6
1 _7 F 6
F--F---'—
Box
2.2F_iF
4
8
r— F8 7
7 _
Box 2.3
3
4
8.
F_8F _9F —8F—Box
F__2.3
(_..._._--_--3
F__ 4F8
9
F 9 F 1-0 Box
2.3
3F
41
8
10
Flo F —"if Box
2.2
2
8
12
F 1 _1'F 11 _FRouWF_45
4F48F__481
N/A
F12 F 1-3 -'--,r---12
45.4-F-----48
r----48 1---N/A-
-F _1_1_oundF_
F_13 1`14 3 R
44.61--
48F-4—
8
F_
N/A
__1 i—nd
F-141-1-5- r 14 Roun
F44._6 48
4-8 F_
r N/A
F —,5F —16
r 15 —rRoundF-4o.iF-42
48 N
16 [48 —
r F 1-7 16 RoundF-40.2F-421—F
_N/A
F 17—F _181' 17 FRound F 40.2F 42 F 42
F N/A
18
19 1 18 lRound [_39.5
42
42r
_N/A
19 20 3 lRound I 8.5 18 18
20 21 14 [Round 8.5 18 I'l 8FN/A
2'1 22 1 —i [kound 301 N/Al
22 23 ',d[ 22 Rounoun 21.0 211 241 N/A
'Round
23 24 9 22.9 241 241 N/A
----------
24 25 24N/A!
24 'Round 1 19.1 21 1
...... .... ...
10 Round N/A I
25 26 9.9 18 F I
_d
26 27 id 11.0 i 181 N/A!
13 ;Round)
27 28 11 'Round! 43.41 48 601 N/Ai'
(Sewer
Sewer
Diameter
(Rise)
Diameter
(Rise) '
Diameter
(Rise)
Width
I ID #
Upstream
Downstream
Shape
(Inches)
(Inches)
(Inches)
(FT)
(FI)
(FT)
(FT)
28
29
28
;Round
48
�- 60
N/A
30
31
36 lR
n
F 25.3 27
30
N/A
31
F 32
31 jRound
25.3
27
F-- 30
[-N/A
32
�- 33 -�
32 - (Round
21.8
-----24
(------ 24
N/A
�33
�34 �32 �ound 24.2
27
30
N/A
34
F35 -( 34 Round j - -- 24.2
j__-_-_... 27
F- 30
I N/A
j 38 39 j 36 —1 Arch 38.3 F 42
38
60
�39 F 40 F 39 FArchF 38-iF 42F
38
F 60
40 F 41 1� 40 jRound 21.6----24
(i 24 N/A
41 42 40 Round 25.2
27
30 F N/A
43 F 44 �— 38 jRound 23.3----
- 24
(_--- 18 I N/A
F-445 44 (Round �- -- 12.8
( 18
18
�N/A
45 46 �45 - Round 12.8 i- 18
18
F-K/A
jv46 47 46 -Round �`12.8 18
I 18
N/A
47
I 48 47 FRoundF 12.8F 181
18
N/A
1 48 F 49
48 _ !R uo nd 12.8 ` - 18
F— 18
N/A
49 F 50 F 49 RoundF 12.iF
18
F 18
N/A
50 51 ��—jRo F 16.7
18 i8
N/A
F51 �52 51 Round( 9.9
-- - 18 --- 181
52 53 52 Round 9.9 I—
18 18
N/A
53
54 �— 53 (Round �— 9.9
r -- 18--
18
�N/A
54 55 i --54 rRound 9.9
18
18
N/A
55- 56 55 jRound—^ 9.9 (
_ 18
12
�N/A
�56 1 57 1- 56 - jRound F~- -9.9
F 18
�— l2
�N/A
58 j
59 i
58 Round 43.2 j _ I
48 �- 54 j
N/A
59 60 _ I-
-59 !Round 40.4
r __
-42 i —� 54
�N/A
60 F— if 60 jRound 38.4 - 421 54 N/A
--- --- ------
62 63 62 Arch' 36.8 42 43 68
I
63 ! 64 63 ;Round; 36..-0 3636' N/AI
64 65 64 !Round 33.11 36 r 36 f N/Ai
Round; 28.81 301 241 N/Ai
66 ; 67 ! 64 ;Round, 9.91 181 181 N/A
Sewer
ID #
r 68
1Upstream Downstream
I
F 69 28
Sewer
Shape
_
(Round
Diameter
(Rise)
(Inches)
(FT)
[ 14.4
Diameter
(Rise)
(Inches)
(FT)
18
r Diameter
(Rise)
(Inches)
(FT)
18
!Width
(FT)
i
N/A
69
71
F61
�- 70 28
�_71__r 5
62 61 I
Round--
Round
Arch
-- 22.6
(_ - 43.5
38.0
24
�_ 48
42
36
I 54
I 43
N/A
N/A i
r-57
F 72
I 41 iRound �- 21.6
-- 24
�� 24
` N/A
r-67 73
71 - Round-10.6 F- 18 - 18
�N/A
70
68 �r -- 71 - FRound 43.5 �- 48
54
r N/A
72 58 68 Round 43.2 48
54
N/A
36
37 15 Round 10.2 F-- 18
F- 18
N/A
I 24
r 35
l 30
r- 36
F 29 `FRoundl
30 _-[Round
42.21
!--..--40.3
48
42
60
1------- 60
N/A
r N/A
37 38
I 30 Round r- 26.2 r---- 27
36
r-N/A
42
43 r 66 Round 12.2 r-- 18
r 18
N/A
73 74 �66 Round 20.9 21
18
N/A
r 74 75
40 Round [-
18.2
21 (
18
(I
�N/A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
iDesin j Full final Normal
Sewers g I (
Critical (Critical
I
Full
�Froude
ID
i Flow i Flow Depth Velocity
j (CFS) I(CFS) (Feet) i (FPS)
Depth (Velocity
(Feet) I (FPS)
Velocity
, (FPS)
Nul mbeC Comment
1 1-'
128.6 r198.7 f 2.39
6.7
0
(--8.0 r
4.01--
0.77
(--'-- -
2r-144.6
j 198.7 (-- 2.60 j
l-- 7.0 �.
2.17 _ 8.4
r-------4.5
-_ 0.76
- ...----
--
r 3;.6197.0
--
r�
---
4.517 0.76 ---
i 4
r 144.61 198.71
2.601
7.0j
2.171 8.41
4.5 , 0.761
5
j l l 9. I j l 98.7 i
2.26 j
6.6---
1.90 r! 7.8 (-
- 3.7 �� 0.77 r--
- 6-
115.71 198.7 ; _ 2.22 j-
�6.5 if-
1.87 7.8
3.6 0.77
11
7
121.0198.7 2.291
a
6.6 �y
1.92' 7.91
ti
3.8; 0.771
i Design
Sewer Flow
I
Full Normal Normal Cry itical Critical
Flow Depth 'Velocity Depth Velocity
I
Full ----
Velocity I Froude
Comment
ID
(CFS) I(CFS)
I (Feet) ( (FPS) (Feet) (FPS)
Number
, (FPS)
j
198_7 1_ 2.29 6.6 �_ 1.92 � 7.9
3.81
-8 _;-121.0
9 119.5
--
198.7� 2.27r 6.61 1.91� 7.88�
- 3.70.77�
---0.77
� 10 115.2�198.7
221 F- 6.51 1.861 7.7�
3.6
: 0.77�
--
11 1 55.4 64.4 2.86
�- 5.8
F- 2.24 7.61-
4.4
0.62
F-
12 55.4 64.4
2.86
5.8
F 2.241
7.6
4.4
0.62
F--
F 13 52.7
64.4
f 2.75
r 5.7 2 1� 9
�7.5
14.2
�0.64---
14 I 52.7
64.4 2.75
5.7
2.19
7.5
4-2
0.64
�-
15 F 39.9 64.4� 2.28�-u5.4F
1.96F
6.51
_
3.2�0.7�-
16 39.9 64.4 2.28
5.4
F-1i96
F-6.5
3.2
1- 0.7
F--
17 F39.9 r 45.1
2.561 5.3
( 1.97
� 7.2
� 4.1
� _0.6
1-
18
( 38.1
45.1
2.47� 5.3
1.93�7.0f4.0�0.61(---�
r 19- 2.Or
14.9
0.37I
5.9r
-0.54
3.5F
1.1
2.02(
20 2.0 14.9
F 0.37
5.9
F 0.54
3.5
F- 1.1
F- 2.02
r-
21 j� 18.0 26.0
1.53
5.7
F 1.43
6.2
3.7
0.89
- -
22 ( Ol( 0F 14.3I 1.23
4.9�
1.13
5.5��
3.2F-0.85r
2 12.6
14.3 1.45
5.2 F - 1^27 6i0
�4.0
�0 78
--
r 24 7.8'
14.3F 1.05
4.7, 1.01 4.9
0.9�
- -
25 3.0
-14.91
0.46
F 6.61 0.661
4.0
1.7
2.02--
26 i 4.0
14.9
0.53
( 7.1 ( 0.78--
4.3
2.3
2.02+�
�27 ; 69.4
165.2 2.26
8.0
2.45
r 7.3
3.5
1.08
28
( 64.3
165.2 2.17
f 7.9
�2.27
7.4
F 3.3F
1.08
F
30 r 28.0 44.3 1.44 r 9.6
r 1.77 , 7.5
5.7
F 1.541
i 31 . 28.0 44.3[ 1.44� 9.6(
1.77
7.5� 5.7
1.54�-�
32 11.0 14.3 1.3 I j - 5.0
I.19
5.7 3.5F
�
0.83
33 ! 23.1 41.1 1.34 8 6 �l .63 6.8 �- 4.7 1.47--- -
_ _
34 I1 i 1.34 f_ .I _1.63=`.4.7
-23_1_r_41 _l
-.__8-6
138 F 35.1 �--68-f 1 . 2.08 ( F I.v78 �- 6 4�- 0-72 i �--
._..5'2 .._ ------_•-2„7 -----:
39 ; 35.1 I 68.1 2.081 5.2 i 1.781 6.41 2.71 0.72 �
- 1.301 3.6 1.01 �__... 4.81 _...._.2.4 (---0.59 �- --- -
40 -; --- 7.7,1 10.11
,
I 41 j 16.2 (�26.0 1.43 - 5.6 �- 1.37 r ' 5.9 3.3 0.91
_ 1.341 -V 8.0 ; 7.5 N/A
43 ; 13.31 6.71 1.501
A A - �..� 1 4 '7 T11 GG 2 !. { n f"2 (�--__--Z 4 i G n QA I i
- --
Des�gn Full
Sewer
Flow Flow
--r--
Normal Normal
Depth Velocity
Critical Critical Full
Depth Velocity Velocity
Froude
Number
Comment i
lID
(CFS) I(CFS)
(Feet) I (FPS)
(Feet) (FPS) (FPS)
---------I---
45 2.7 6 7
-- i -- 3.6
0.66
0.63 I .. 3.8 ---1.5
r- .-1
0 88
�46 2.7 �6.7
0.66 �- 3.6
�0.63 I 3.8-- 1.5
0.881
47 F-2.7r 67I 0.66�- 3.6( 0.631 3.8 1.5r 0.88�-
48 2.7 6.7[.66 3-6r0.63 F 3.8 1_5F0.88�
49 2.7[6.7 0.66� 3.61 0.63 1.5 3.8�0.88�----
50 5.4 F 6 7 1.031- 4.21 0.89 4.9 F-3.1 F-0.77 [---I
�51 1.4 j 6.7 f 0461 3.01 645F 3.0 F o8r 0.9 (-_-- -
52 1.4 6.7 0.46 3.0 0.45 3.0 ! 0.8 6.9 F
F 53 1.4 6.7 0.46 �- - 3.0 - 0.45 �- - 3.0 �- 0.8 0.9
54 I 1.4 6.7r 0.46� 3.0� 0.45 3.0 0.8 0.9F
55
1.4�2.3
0.56
3.0�
0.50�3.4�
1.7�
0.79�
-__
F-56
I 1.4 I 2.3
F 0.56
�-- -3.0
0.50
r - 3.4 �__- 1.7
- 0.79
(-- _-
58 48.4 88.2 2.38 F- 5.7 2.03 7.0 3.0 [-0.73 r--^
59 40.7 88.2 2.15 5.4 1.88 6.5 2.6 �--0.74------
r 60 �35.3 88.2� 1.98�- 5.2� 1.78� 6.0-2.2r 0.75���
62 31.7 94.9 1.84 5.1 1.64 1- 5.9 1.9 F-0.76
63 29.8�29.9�2.45� 4.8�^ -1.76� 6.9� 4.2�
0.52
64 I
23.8 29.9 �2.02 � 4.7 1.59 F 6.31- 3.4
0.62
�----
65 16.5 10.1 2.00 5.3 1.47 6.7 5.3 N/A --
I 66 �3.0 14.9 F 0.46 6.6 0.66 4.0 1.7 � 2.02
68 . 3.7F 6.7F 0.79 3-qF 6.75F 4. I F ilF 0.86 F _ --
69 F 12.2 ( 42.3 I.10 5.2 1.17 4.8 1.7 I.O1 F--I
71 F 49-2-F 88.2F 2.4oF 5.7F 2.04F ToF 3.1 F 0.721
61 ( 34.4 94.9 1.93 5.2 1.70 6 1 2.0 0.76
.3.6 4.8 24 0557 �7 10.1 1309--�
167 1.1 4.7 r 0.50 (.-__.2.2 0.43 `- - - 2.7 0.6 0.64--__._�)
-70 1 49.21 88.2 j 2.40 i_- 5.7 +--.- 2.04 [--__. --7.01 -- 3.1 0.721_-
72 ;- 48.4188.2 i---2.38 F-----5.7 I- 2.031 7.01 3.01-_ -0.731
-
36 4.2 19.1 0.481 8.7� 0:79( 4.41 2.4, 2.6
29 64.3 j 165.2 2.17 I ---- 7.9 _ 2.27 3.31 _-1.08
35 57.1165.2j 2.031 2.I5- 7.11 2.9r-1.09j--- ---'
37 1, 42.3 1.37� 1.37 5.8f 2.61-0.9
I8.9!
Design Full 'Normal; Normal rcritiiti cal 1Crcal I Full
Sewer Froude
ID ,Flow Flow Depth Velocity Depth Velocity Velocity Number Comment
(CFS) j(CFS) (Feet) (FPS) (Feet) (FPS) I (FPS)
42 _�.. 5.3 �. 14.9 ( 0.621 ._- 7.7 0.88 �_- 4.9I---.3.9�.3.0 ( _--1`99 �___ - -
-73 j-7.Or-4.7�150� 3.9�1.02) �5.4� N/A�
F 74 j -6.8 6.7 1.56F 3.8 f 1.01 � 5.4 � 3.8 ( N/A
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation
( Buried Depth
F
�ISewer ID Sl p Upstream Downstream
(
Upstream
Downstream
Comment
/o (Feet) (Feet)
(Feet)
(Feet)
I 0.20 4928.09
4928.00
��
4.731 0.00 �Se er Too Shallow
�2 0.20 4928.33
4928.13
�---5.54
F 4.69
r
j 3 0.20 4928.79
4928.33
4.87
5.54
4 0.20 r 4928.96
4928.79
-4.34
4.87--Ai
1F5 0.20 4929.17
F 4928.95
F 3.33
4.35
6 (( 0 4929.25
4929. t 8
4.07
3.32
I '
0 2OF
492956F 4929251
5.87F
4.071
�8
4929.57
5.86�049
9
4929.88
---.21
3.18
-_--
3.22
10 0.20
4930.55
�4930.29
4.03
3.18
F-11 0.20 4930.68I
4930.55
3.72
4.03I~
12 0.20 4930.75
4930.69
4.26
3.71
13 I 0.2F 4930.93
F 4930.75
F 3.81
4.26
l4 0.20 ( 4 319 05
4930.93
4.02
3.81
�w
5 0.20 4931.331 4931.06 -- 4.47 4_01
-
16 ( 0.201 4931.39 4931.33 , 3.78' 4 47 i
17 1 0.201 4931.531 49-3 7.23 r 4.271
-- 18 0.201 4932.68 � 4932.58 { ` 7.33 j -_- 6.181 -�`---------
19 ( 2.001 4930.38 - 4928.33 ,
20 ; 2.00 I 4929.291 4928.79 ,
F 2
_1 - 0.40-4929.721 4929.25 !
5.99 � 8.04 j
6.871 7.37 i
4.161 5.571
Slope rUpstream
Sewer ID'
%(Feet)
Downstream Upstream
(Feet) ( (Feet)
Downstream
(Feet)
Comment
-�
22 F0.40 4930.22 -4929 74 j 4.16
F 23- j 0.40 , 4930.331 4929.90 5.35
- 4.64
5.21
-4928.731 4928.34
00
C� 7.31 I
_)
F-220 32.73 4930.7
.
6.7
81
26 �2.00 4i 933.06 4930.75
�- 7.14
-7.34124
6.76
v--I
27 0.40 4930.69
4930.55
2.68
3.03
28 0.40
30 v [ 1.16
4931.65
I 4934.32
F _ 4930.68
- 4932.59
F-_ 5.62
r 6.89
F- _ 2_69
7.58
F-` -
31
1.16
[4937.89
4934.31
�- 8.40
6.96
F^�
32
Fo.40
F4939.66
F 4937.89
F 2.80
8.901
33 1.00
4939.61 4937.89
7.45
8.40
�-
34 1.00
4940.94
4939.01
�3.56
7.45-
38 0.26 4932.92
F-4932.59
1.21
6.91
JSewer Too Shallow
39 0.20 4933.65
40 0.20 ! 4933.18
4932.93
4933.07
1.08
2.12
1.20
2.23
ISewer Too Shallow
41
{-0.40
4933.71
4933.05
4.92
1.75
ISewer Too Shallow
0.40
4932.38
4932.13
�4.83
6.8143
F 0.40
-92.
1--
4.07
4.81
F- - �
0.40
4932.90
�32.65
4945
3.80
4.06
46 (0.40 4933.16
r 4932.96
3.54
3.80
-u -
47 � 0 40 � 4 3339 6
�4933.18
� 4.53
�- 3.52
1-
1 48 1 0.401 4933.531
4933.361
3.97f
4.53
r 49 0.40 4933.81
50 6 46 ! 4�- 432.51
51_ 0.40 4932.64
1 933.54
F-4932.13
4932.531
3.69 3.96 ,
F-4.43 - 6.81 -_ - -
4.14 4.41
52 , 0 4646 4932.91
--
4932.66 I 3.87
�- 4.12
53 i 0.40 4r 933.19
f 4932.92
3.59 3.86
754 4040 4933.56
4933.19
4.47
3.59.
!
- -�
-,,
55 40 0 4933.64
- _
I-4933.50 j 4.36
- 4.97 T-- -
!! 56�� 0.40 4933.93 4933.66 4.07
�� 4.34 �r ---- j
--_._ -
0.2_0 (-. 4929.3 l IF4929.19-_ F
[-~ 2.68 � 5.04 I i
r--58 IF
59 0.201 49229.391 4929.31 ; 2.61 2.68 ,
60 0.20 I 4929.46 4929.391 r 2.61 !Sewer Too Shallow
Slope Upstream !Downstream
.Sewer ID i % + (Feet) 1 (Feet)
I _ _
62 ! 0.20 r-4929.91 -- 4929.70
----
r 634930.17
Upstream Downstream
(Feet) I (Feet)
r.-- 3.83)--
---__ -4.41�
2.73
Comment
--_--
--
--
4 8
9 2.7102r 49301
r- 6
65 0.20 4930.63 4930.494.28 3.42�
F 66 P.00 r`4933.43 4931.39 i 3.87 r -- 3.011
I 68 0.40 r-4930.75 I4930.69
I 69 0.40 j 4930.75 4930.69
r�6.11 r 6.18
4.62 r - 4.68
r
71 0 201 4929.07 , 4928.98 2 463.82
61
0.20 r-4929.70 �- 4429.47 r-- 2.62 r- 2.85
r
57 , 0.20 4933.30 i-v4933.18 2.00 - 2.12
67 0.20 r 4429.11 4929.09 5.861 5.441
70 10.20 F 4929.10 4929.08 2.88F 2.45 r----_
72 0.20 r-4929.171 T4929.10 r- 5.06,
- -�
2.881
36-�_5.00
- 29 0.401
35 j 0.401
4935.98 4931.15
4931.761 4931.65
4932.601
4.96
5.35
r- 6.42 j !
-- 5.62
J
-4931.761--
r` 37 i 0.40 4932.13 4931.76
42 2 001 4934.72 r 4931.67
Ir-6.83
_55.071 -5_35
5.31 r 7.35
r^�Y _)
-
73 0.20 4930.80 4930.65
4.76
4 _ 0 0
I I
(�-_
4933 28 -- 4933.05
4.26
��
2 75
Summary of Hydraulic Grade Line
F- r
F
Invert Elevation Water Elevation
I A
Sewer Surcharged I
Sewer I Upstream Downstream:Upstream
-�
F
ID#
(Feet)
;Downstream
(Feet) (Feet) f
(Feet) ndition
(engt)
Feet
(engt>
Feet
l�! 44.81---
-44.81
4928.09
_..._.-.-4928.001
-4933.744933.95
(Pressured
2 ; 100.581
100.58
4928.331
4928.13. 4933.82 I
4933.74.-Pressured l
3 229.431
229.431
4928.791
4928.331 4934.321
4933.82Pressured
4 _ 1 85.88 I -
- 85.881 Y
4928.96 f -
4928.791 4934.661 _
4934.32 Pressured
_ ,
_ ,
4929.171
4928.951 4935.1 _
,
4934.66 Pressured
6 37.46
� � 1
37.46!
49�9.2 5 j
4929.18 ! 4935.21
1
4935.1 2 !�----_..._
Pressured;
'Sewer
Fe Length
(Feet)
Surcharged
Upstream Downstream
LengthCondition
(Feet) i (Feet) (Feet)
r
Upstream ;Downstream
(Feet) 1 (Feet)
7 153.27 I 153.27 4929.56 4929.25 r 4935.43 4935.21 (Pressured
8 1 160.751- 160.75 F4929.89 ( 4929.571 4935.59 j 4935.431 Pressured
3 f4930.29�4935.97 j 4935.591 Pressured-
9i0263-206.8
10 129.53129.53 4930.55' 4930.29 I`4936.28 4935.97 Pressured
r
r-11 62.83 62.83 I 4930.68
_ _F -
4930.55 4936.42 i 4936.28 rPressured
12 j 403 4 jf 30.44 4930.75 r _ 4930.69 r 4936.48 4936.42 Pressured
13 90.64 j---- 90.64 4930.93 i�-_ 4936.75 4936.88 {---4936.48 Pressured
14
I 60.011 60.01 4931.05 F 4930.93 F 4937.02 4 336.88 [ Pressured
15 135.66 r 135.66 4931.33 4931.06 4937.45 4937.02 Pressured
16 30.61 30.61 r 4931.39 �- 461.33 F 4937.68 4937.45 Pressured
17 r 64.88 64.88 4931.53 4931.40 4937.74 F 4 337.68 Pressured
18 51.17 �51.17 4932.68 r4932.58 r 4937.904937.74 Pressured
19 102.47 �� 102.47 [ 4930.38 4928.33 4934.18 4933.82 Pressured
20
C 24.77 24.77 4 229.29 4428.79 ( 4934.65 F- 4934.32 Pressured
1 21 1116.44 116.44 r-.4929.72 4929.25 4935.53 �--4935.21 Pressured
f 22 �120.34 ( 120.34
23 j 108.74 108.74
24 96.3 96.3
4930.22
4930.33
4928.73
4929.74
4929.90
4928.34
F 4935.85
4936.171
r 4936.46
4935.53
4935.59
4936.17
Pressured
Pressured
Pressured
25 i 1821 24 128.24 4932.73 4930.17 f 4936.30 T 4935.97 Pressured
i �i - -` r----
26 115.47 115.47 4933.06 4930.75 4936.97 4936.48 Pressured I
_�
r`27 34.25 34.25 4930.69 4930.55 4936.51 4936.28 Pressured
28 241.97 I- 241.97 �4931.65 4930.68 4936.85 4936.51 Pressured
36 i 149 1818 149.18F4934.32F 4932.59 4937.67 9 733 Pressured
r 31 1 308.721 127.8 4937.89 4934.3 l i 4939.66F 4937.67 F Jump
r'32 r277.38 277.38 F 4939.00 F 4937.89 F 49- 1 � 4939.66I Pressured
33 j 111.9 75.17 i 4939.01 4937.891 4941.14 i 4939.66 y Jump!
34 i 193.151 01 4940.94 I 4939.01 4942.57 4941.14 Jump'
.._..___. _. _ .. .. .. ._..__. .____ ._.-_._
38 I162.33 162.33 4932.92 4932.59 4937.58 4937.33 Pressured
39 60 j 601 4933.05 j 4932.931 4937.64 I 4937.58 1 Pressured
40 1 56.771-- _ 56.77 ; 4933. If ( 4933.07 ; 4937.831 4937.64 Pressured
-41 i 164.651 164.65 � 4933.71 ! 4933.05 I 4938.06 4937.64 f Pressured
43 62.69 i 62.69 1 4932.38 r 4932.13 i 4937.65' 493 7.3 5 Pressured'
Sewer; Sewer 'Surcharged Upstream !DownstreamUpstream .Downstream 1 r
Length Length i lCondition
i
ID #
(Feet)
(Feet) i (Feet)
(Feet)
(Feet)
(Feet)
f 44
57 91 ;
57.91 4932 63
493� 40
j 4938 53
4937 65 Pressured
45
__ _-.-_r._
63.67
63.67 4932.90
4932.65
! 4938.581
4938.53 Pressured
46
63.84 ,
63.84 G 4933.16 !
4932.90
1 4938.631
4938.58 ! Pressured
r 47
j 45.561
45.56 4933.36
4933.18
( 4938.67 ;
4938.63 Pressured
48
1 42.571
42.57
F----
4933.53
4933.361
4938.74
r _
4938.67
Pressured
_
49-�-
68
_
68 [4933.81
4933.541
4938.791
4938.741
Pressured I.
50
95.02 1�-95.02
F4932.51
4932.13
' 4937.641
4937.35
Pressured
�_-
51
_
28.72 ^
28.72 4932.64
4932.53
�4937.78
4937.64
Pressured
C 52
-�62.67
62.67 4932.91
4932.66
4937.80
4937.78 Pressured
53
66.671
66.67 4933.19
4932.92
4937.81
4937.80 Pressured
5 -4'j
78.12 j
78.12 4933.50
4933.191
4937.82
4937.81 Pressured
55
34.52 1
34.52 1 4933.64 -
4933.50
` 4937.90;
4937.82 i Pressured,
56
�
681
_ _ 1
68 r 4933.934933.66
1 4938.01
�_._ _
4937.90 Pressured
58.23 ;
58.23 4929.31
4929.19 (
4935.46 j
4935.23 Pressured
59
39 34 j-
39 �-
4929.31
4935.541 _
4935.46 Pressured;
�60-'
32.63
32.63 �4929.46
4929.391
4935.60
4935.54 Pressured j
62
103.021
103.02 ( 4929.911
4929.70
�- 4935 70
4935 66 Pressured Ii
63
-I _
j-
130.97 I
_ -
130.97 4930.17
4929.91 I
_
4935.931
- ----
4935.70 Pressured
64
144.51
144.5 1-4930.48 1--
4930.19
4936.49i
4935.93 Pressured
�65
( 70.98
70.981 4930.63
4930.49 j
4936.72
4936.49 Pressured I
66
j 101 8888 7
101.88 F 4933.431--
4931.391
--
4936.31 {
4935.93 Pressured
F-68
68
15.14
__F-_ I
15.14 4930.754
�-_
4930.69
r_
4936.72
_
4936.51
r-I
Pressured!
69
I 16.031
16.03F493 0.75
4930.69
4936.71
4936.51
Pressured'
71
1 45.44 F
45.44 F 4929.07 j
4928.981
4934.97
4934.66 Pressured
61
116.981
116.98 4929.70
4929.47 ,
4935.66 .
4935.60 Pressured j
57
58.59 I
58.59 j 4933.301
4933.18 ;
4937.92 ;
4937.83 Pressured i
67
I 11.67
.__ .._.. _____
11.67 4929_.11 I
4929.09 !
_.. _____
4935. l2
4934.97 f Pressured':
70
j 11.671
11.67 i 4929.101
4929.08
4935.2011
4934.97 Pressured
72
35.7
35.71 4929.17 I
4929.10 '
4935.231
4935.20 j Pressured;
36
96.531
96.191 4935.98
4931.15 j
4937.46 i
4937.021 Pressured
29
I 27.19 i
27.191 4931.761
4931.65
4937.08 ;
4936.85 i Pressured
35 -! 209.8141.091 4932.601 4931.76 4937.33 4937.0811 Jump
� Sewer Surcharged.F(Fee
-.�---.---
Sewer tream Downstream Upstream !Downstream
i ID # jLength Length t) (Feet) (Feet) (Feet) [Condition
(Feet) (Feet) 1
37 92.91 92.91 F-4932.13j 4931.761 4937.35 ' 4937.08 Pressured
1 42 i 152.42 j 152.42 4934.72 I 4931.671 4937.58 4936.72 Pressured
73 75.96 75.96 I 4930.80 I 4930.65 4937.67 1 4936.72 Pressured
74 56.94 56.94 4933.28 F- 4933.05 ( 4937.82 I 4937.64 F Pj-- ressured
Summary of Energy Grade Line
[-F___
Upstream
Manhole
Juncture Losses
Downstream
Manhole
i-
Sewer
ID #
Manhole
ID #
_
�Energy
'Elevation
_1
Sewer
Friction
Bend ( Lateral
Bend K Loss Lateral K Loss
Coefficient
Manhole
ID #
Energy
Elevation
(Feet)
(Feet)
(Coefficient
I Feet)
I (Feet)
(Feet)
r 1
2
4933.99
0.04
I
-0.051-0.00 i -
-0.00
0.00
��1-
4933.95
F-2 F 3 -1
4934.141 --- 0.11
0.13 0.04 �-
0.00
0.00
2 - -
�4933.99
�3 1 4
4934.63
�0.24
0.05 0 02
0.25
r 0.24 3
4934.14
F-4`(- 5
I 4934.98
0.09
(---
0_05 0.02 (-
( 0.24 I 4
4934.631
r 5 1 6
4935.33 j 0.08
-
0.20 0.04
^0.25
0.38 0.24
F 5
54934.98 j
F 6-F-7
I 4935.41 F 0.03I
0.2510.-05
0.001-0.001-
6 `1
4935.33
1 8
4935.65 0.11
0.05 0.01
0.41
r 0.11 7
�4935.41
8 h 9
I 4r 935.81 -0.12 r
0.20 �0.04
0.00 0.00 8
4935.65 1
9 1 10
�4936.18 i 0.15 �_
0.25 �0.05 (---
-26 0 17 9
0.
�4935.81
10 11 4936.491 0.09
0.25 �0.05 0.25 0 17 10 4936.18
1 1 12
f 4936.72 0.09
0.05 r0.02 j-�0.25
0.13 F 11
�4936.49
�_ ��-
12 13
---
3 -� 0^04
49 6 78
OA5 0.02
0_00 0.00 12-, 4936.72
13 j _ 14
4937.15 r -0.12
1
0.05 0.01
- - i
0.25 0.23 13
4936.781
_
14 15
_, _ _ ---
4937.30 0.08
- -- --- --'
0.25 0.07 ,
0.00 0.00 - 14 -
[-4937.15
15 1 16 1
4937.611 0.101
1.321 0.211
0.001 0.001 15
4937.30
_ 16 F-17 -j
4937.841 0.021--
1.32 j 0.211
0.00 1 16 (
4937.61 1
17- 18 (
4938.01 0.10 `
- 0.25 0.07
0.00 0.001 17 ;
4937.84
18 19 I
4938.14 _ 0.07 i
0.251 0.061
0.00 0.00 j 18 4938.01
19 20_-
4934.20 0.041
1.32 ' 0.03 -
0.00 , 0.00 3 1
4934.14;
20 21 1 4934.67 ! 0.01 I 1.321 0.031 0.00 i 0.00 4 1 4934.63'
21 I 22 4935.74 0.221 0.51 0.11 0.00, 0.001 7 4935.41
nergy Sewer j Bend Lateral Energy
Sewer'Manhole vion Friction Bend K i Loss } Lateral K Loss Manhole;Elevation�
FEat
ID # ID # ( Coefficient Coefficient ID #
I
I (Feet) (Feet)
i(Feet) j (Feet) I
I (Feet)
22--�--
23
- j 4936.01 j Y-0.231 --
0.251 0.04I--
0.00I 0.001-_-22
--4935.74
23
24
-{ 4936.42 - 0.33 - -
-l.l l j 0.281 v
0.001 0.00 9
I 4935.81
24
25
1 4936.56 , 0.11
0.25 0 52 `-^0.00
0.00 24
�4936.42
25
26
i 4936.35 �.10
1.32 �0.061
0.00 0.00 j 10
4936.18
26
�27
4937.05 0.17^1.32
0 11
0.00 0.00 13
�4936.78
27
28
IF -4936.7070.02
1.00 0.19
0.00 F-0.00 11
4936.49
F 28
29
1-4937.01 0.15 ��
0.05 ( 0 1 -
0.25 0.15 28
4936.70
30
ir- 31
-1 4938.18 6 F-
0.05 10.03
1
0.251
0.001 36
�4937.46
31
j 32
----
4940.54 �- 2.34
0.05 ` 0.03
0.00
0.00 31
4938.18
32
33
4941.40 0.65 (
1.061 0.201
0.00
-0.00 ( 32
I 4940.54
�33
34
1-4941.49 0.24
0.83 (-0.29
-_
0.25
( 0.42 32
4940.54
34-I�
35
-( 4943.291 -1.72 --
0.25 0.09
�-
0.00I
0.00 (- 34 --
-4941.49
�38
39
4937.69 0.09 �� _
1.32 �0.15
�
_ 0.00 0.00 36
--- _..-
� 4937.46
39
40 4937.75 �0.03 ��
0.25 0.03
-0.00 �0.00 F-39
4937.69
F40
F 41
4937.93 0.06 (-�
0.25 F0 021
0.25 6- 9 -4937.75
41
42
j 4938.231-0.26
1.32 0.22 lV
0.00 r 0.00 40-
�4937.75
j 43
44
I 4938.52 0.99 (
0.03 0.03F0.39
0.05 38
49.37.45
44
1-45
4938.571�0.04
0.25 0.01
0.00 0.001-44 1
4938.52
1 45
46
4938.61 10.04
0.251-0.01 I
0 001 0 45 4
46
��1
4938.66 j --0.04 F
0.25 0.01 1
-
0.00 0.00 1 46
---
4938.61
47
1 48
4938.70 0.03
0.25 F 0.01 F
_
0.00 0.00 47 (
4938.66
48
49 � 4938.77 0.03 �
1.32 0.05
0.00 0 00 48 �
4938.70
49
50
F4938.831 0.041
0.25 F 0.01
0.00 0.00 F-9
4938.77
50 f
51
4r 937.78 0.25
0.55 0.08
0.00 0.00 1 38
I
4937.45
__
51
52
_
4�0.00
0.53 ( 0.001
0.00 0.00 ' 51^r
_ _ _
4937.781
52 I
- 53
4937.801 0.011
01 (
0.25 I 0.001
0.00 - 0.00 I 52 j
4937.79
53
1 54
1 4937.821 0.011
0.25 -0.00 (
0.00 ( 0.00 i 53
4937.80 !
54 1
55
4937.83 0 O1 !
0.25 , 0.00!
0.001 0.00 r 54 I
4937.82.1
4
0.0055 0.001 55
4937.83
56
57
C 4938.05 0.10 j
0.251 0.01 !
0.00 I 0.00 j 56
4937.94
58
59
! 4935.60 j 0.04 i
1.32 , 0 191 -
0 00 0.00 1- 58
4935.381
59
60
i 4935.64 i 0.02 i
0.25 0.03 !
0.001 0.00 59
4935.60It
i Energy Sewer
rSewer ;Manhole
'Friction
Bend i Lateral !
Bend K i Lateral K j Manhole
(
Energy ,
ID #
ID #
Elevation
Feet Feet Coefficient
r Loss Loss
I Feet Coefficient # Feet '
ID #
Elevations
Feet
60
j 61
4935.671
0.01 (
0.25 j 0.02
0.0011
0.00 ;
60
4935.641
62
( 63
4935.76 i
0.02
0.25 0.01
0.00
0.00 ;
62
I 4935.72
�63�j
64
1 4936.211
0.261
0.691 0.19.
T 0.00 ,
0.00 ;
63
4935.76
j 64
65
1 4936.67
0.181-
0.25 0.04 j
0.25 ;�
0.231
64
4936.211
65
1 66
67
4937.151 0.38
4936.35 j 0.08
0.251
1.32
0.111
0.06--�0.00
0.00
-
0.00 j
0.00 �64
65 -� 4936.67
- I 4936.21
i-66
68 -_
69
---_-_�_______-
4936.79 1
0.02-1.00
_._r
0 07 (
._r
0.00 i
0.00E
28 I
_ _.__.__
4936.70
F69 70�j
4936.76 j
0.01 1
1.00 0.05 _
0.00
0.00
28 -j
4936.70 i
r
71
71
--
4935.12
0.03
0.75 F -0.11
0.00
0.00 ,
5
4934.98
1- 61
T- 62 --1
4935.72---.0.03
, ._
_..____.0.25 0.02 (__-___.____.0.001_._.__0.001
_61 _.__�-
4935.67
1-57
72 w
( 4938.021
0.07I
0.251 0.02 i
0.001 _
0.00
41
1 4937.93
} �' ;
73
4935.131 W-0.001..__.__._.1.32
0.01 1--
v 0.00 �___.
0.00;
71--
4935.12
1 70 (
68
i 4935.351
0.01
_ 0.751 0.111
0.251
0.111
71
4935.121
1�72
58
4935.381
0.02 i
0.05 0.01 -
0.00 i
0.00 j
68 1
4435.351
---
36
37
4937.55�-�0.231---0.25
!�--151
0.02�-�O.00
j
0.00
4937.301
_�-
29
30
i-
4937.25
0 02
1.32 �0.221
0.00
0.001 �29
4937.011
35
-
36
4937.461
0.07
0.05 0.011
0.25 +
0.13 C
30 j
4937.251
37 1
38�
1 4937.451-
0.07I-_
------ 1.321 0.13+-
0.00
0.00 }0.001
30 1-4937.25
42 1
43
4937.71 (
0.38 ��
1.321 0.181
0.00;
0.00;
66
4937.15
73 i
74
..-._-e_
'1 4937.91 1
0.33 (
0.25 1 0.06 ,
.-_.._. r._,._,.-._
0.25 j
_
0.37
66
4937.15
74 75
1 _ 1--.241 �0.25 �0.06 j -0.001
4938.05
0.00, 40 1
4937.75
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
_. .........
Manhole.Rim Elevation; Invert Elevation 'Manhole Height
ID # ( (Feet) (Feet)
(Feet)
- 1 (
4932.001
4928 00 I
4 00
2 `
4936.821
4928.091
8.73
3 i
4937.871
4928.33 1
9.54 1
4 �
4937.661 _--
4928.791 _-�---_8.87
4937.301
4928.95 j
8.35
6 1
4936.501
4929.17 (-
7.33
7
4937.32
- 4929.25 --
8.07
8
4939.43
4929.56 [-
9.87
9 �--------
493 7. 10 i4929.88
f----.._.----____-7.22
10--t ---
-4937.47
4930.17
7.31
-11 _
4938.58 -- -
4930.55 `�_
-- - 8.03
r 12 i-'
4938.40
4930.68 C
7.72
13 1
4939.011
4930.751
8.26
14
4938.741
4930.931
7.81
15
4939.07 �051
8.02
F 16
4939.801
4931.331
8.47
17 !
4939.171
4931.39
7.78
18
4942.26
4931.531
10.73
19
4943.51
4932.68 i
10.83
f 20
4937.871
4930.38
7.49
21 {
4937.66
29.291
8.37
22--, _.
4936.38
4929.72 ,_...__._6.66
23
4936.381
4930.22
6.161
24 i
4937.681
4928.341
9.341
-. 25
4938.041
4928.73 1
9.31 11
26
4940.94
4932.73 j
8.21
27 ;
4941.701
4933.06!
8.641
28 ? 4938.371 4930.68' 7.691
.... ........ -..--- --
29 4942.27., 4931.65 10.62
Manhole !Rim Elevation Invert Elevation !Manhole Height
ID # (Feet) (Feet) (Feet)
j 31 4943.71 4934.31
--
32 4948.79 4937.89 10.90,
33 j 4943.80 1 4939.00 �-
4.80
34
4948.96 �--4939.01 j
9.95
35--4947.00 �- 4940.941 6.06
39 -- 4937.301 -- - 4932.92 [
4.38
40 F- 4937.30 4933.051
4.25
1-41 j 4937.30 r 4933.18 A
4.12
42 4941.131 4933.71 r
7.42
44 � 4938.71 F- 4932.38 �-6.33
45 F 4938.2oF 4932.63- -
5.57
46 j -4938.201 4932.90----
5.30
F-47 4938.201------4933.16
F
5.04
48 4939.39
-- 49 � 4939.00
j 50 4939.00
51 4938.44
52 4938.28
I
F- 4933.36
---4933.53T-...__.___-_._-
i 4933.81
4932.51
r_._...__..___4932.64
F -
_
v
�__.______._._.._-__
6.03
5.47
5.19
5.93
5.64
53 4938.28 --4932.91 �- - --�
5.37
54 4938.28 4933.19 r--
5.09
1 - 55 4939.47 4933.501 --__T-5.97
i 56---- 4939.00 I--- 4933.64--
5.36
57 F4939.00E- 4933.93F--5.07
I 58 4938.73 �- 4929.17
9.56
59 4936.49 - 4929.31 i
60 �4936.50-- 4929.391 - -
7.18
7.11 '
61 ij- 4935.90 1 4929.461 6.44
62 F- 4935.90 F--- 4929.70 F-6.20
I�I 63 ' 4937.32 -- 4929.91
7.41 .
64 ! 4935.90
4930.17 1
5.73
j 65 j 4935.911 4930.481 5.431
66 ; 4936.91 j 4930.631 6.28
j -67 - - - 4938.80 (__-----_.._-4933.43 j 5.371
Manhole Rim Elevation ilnvert Elevation Manhole Height
ID #
(Feet) (Feet) j (Feet)
69
4938.36
4930.751
7.61
- 70
4938.37
._
4930.751
7.62
-- 71 -`
�4936.03^-
4929.07;- - ---
6.96
r 72 j
4937.30
4933.301
4.00
68 i
4936.48
4929.10
7.38
7F3I
I
4936.47
4929.11 j-� �7.36
�37
4942.44 �-
4935.981 -
6.46
30 1
4942.11 �-
4931.761
10.35
36 j^-4942.67F-----4932.59r-
10.08
38 F-
4940.44 F-
4932.13 F8.31
43
4939.99-
4934.72 I _
5.27
74 j
4939.13
4930.801 -- T
8.33
F 75
F-
4939.041
! 4933.281
5.76
j Upstream Trench
Downstream
1
Width
Trench Width
(
j
-I
Sewer)
--- r
On At
---------i------
On I At
�--- --
Trench
------------L.
Wall
`-
Earth
Volume
ID #
Ground Invert
Ground Invert
Ij
Length
Thickness
Cubic
(Feet) (Feet)
(Feet) (Feet)
(Feet)
(Inches)
�
i
Yards)
13.2
- -10.8 `--13.2
F--_- 44.81
i --- -
7.381
173
�- 2 - j
21.8
33.2
F-
20.2
13.2
100.58
F
7.38
555
-3 i
20.5 13.2 i-
21.8 13.2 �229.43
7.38
21� 82
4 F
19.4 F13.21
20.51 13.2 (- 85.88 F-7.38 F
441 �
5
17.4 F 13.2 F'�19.5
{ 13.21 108.92 �-
7.38
500
6
18.9 ` 13.2 I
- -
17.4 13.2 37.46
7.38 i
1681
-;
7
- _ _
22.5 1 - 13.2 F-
_
18.9---13.2 --153.27 (-
- 7.38 ! --
-- 8331
---- -- ..--
8
- - - -- --- ---------
17.21 13.2;
22.5 r _ 13.2 r- 160.75,
7.38
827
9
17.1� 13.2�
-17.2; 13.2� 206.83r__---
i i
-7.38
861,
0
18.8 13.21
_, _ _
- 17.1 �---13.2--- 129.53
7.38 j -
_
- - 574
1?.61-_6.8r--__I3.2I -6.8
�---12 -�---- 13.7 ; �6.8 �--__--12.6 �-----6.8 i -
_ _
--1 3 ; - --- 1 2.8 ! -- 6.81
._.13.7 r. --- -6.8
-62.83 _ 5.00 r - 163
30.441 5.001 81 1
90.64 ;
At
On
--_EarthOn
At
Trench
WallSewer
Volume
ID#
I Ground
Invert
Ground
vert
[in
Length
Thickness(Cubic
I
I(Feet)
(Feet)
(Feet)
Feet)
(Feet)
i (Inches)
) yards
14
13.2
I 6.8
�� 12.8
6.8
60.01
5.00
_
157
15-14.1
6.8
13.2
F- 6.8
F135.66
�-5.00
376
16--I-------12.7
� 6.8
r...._.__ _._14.1
1 6.8
I ._..---- 30.61
r---____-5.00
1---------_83 i
17
r 19.2F-
6.2�--
13.3�
6.2�
64.88�--
4.501
219
18
19.4�
-6.2I�
17_1�
- 51.17 4.50�
202I
-19
15.1
r�3.9
19.2
�6.2)
r 3.9
102.47 j -- 2.50
F 311
20
16.8F3.9
17.8
[ 3.9
^- 24.77 2.50 76
21
12.2
5.1
15.0
ry 5.1
116.44 3.50
264
22
11.8F4.5(--
- 12.8F
4.5r
120.34
3.00�
216
23 F 14.21- 4.5
F-13.9
F 4 5F
108 74F
3.00 [ 242
24�F 18.1�4.5I-
�18.2�!
4.5[---..--96.3
--.3.001 ----__- 3321
_._-__.3.9
I 25lC- - -16.5 3.9 r - - 14.7 1-
F--128.24
I ------ 2.50 326
26 F_ 17.4 3 9 1666 r 115.471
2_50
341
-3.9
r 27 1 13.4 10.0 14.1 I 10.6 34.25
!-
1- 6.00
-
117
i 28 F 19.2 10.0 F---13.4 F 10.0
241.97
F 6.00 r 1018
30
( l 7.7 5.1 F 19.1
F 5.1-149.18
[-- 3.50 f 547
31 20.7 5.1 17.7-5.1
308.72-u-
3.50
1226
32 9 11
- 4.5
21.3
4.5
�277.38
3.00
799
F 33 r- 18.8
1 5.1
r--------20.7 I----5.1
r 111.9
F---_- 3.50 1465
r.....__._.._.5.1 - 193.15 .... ---- 3.50---- 528
�- - 34 r-_ 11.0 r 5.1 (- ...._. 18.8
r-38
10.6 r 9.8 r- 22.0 9.81 162.33 - 5.08
5981
39 ] 0.3 9.8F ---10.6 r- 9.8
r^ -60
r-_ 5.08
116
--40
_,� 7.7 r__ 4.S r -- -8.0 4.5
r- - 56.77
r - -3.00
r__..-- 55'
F 41 I 13.8 5.1 j - 7.4 (�- 5.1
-164.65 C 3.50 r'-273
-
43 j 12.7 j 3.9 r-- 16.7 r-- 3.9 r 62.69 r-� 2.50 146'
44 - ' 11.21 3.91 12.7 r--- 3.9 r 57.91 2.501 93
45 I 10.71 3.9 ��-- 11,2 r�-~-3.9 `- r ' - 2.50 j - - 88
-63.67
46 10.21 3.91 10.71 3.91 63.841 2.501 821
47 ! 12.1 -3.91 10.11 3.9 { . - _45.56 f _ 2.50166
--- 48 �l 1.0 1 -3,9 .._ _.._._12.1-3.9 42.57 r -- -- --2.50 r--_ -_ _--65
49 1 10.5F 11.01 3.9j 682.501 92!
50 11.9 ; 3.9; 16.71 3.9! 95.021 2.50;212
On ;
At
On 1 At �-Trench
.�- Wall ^r
Earth
Sewer j Ground
1 ID #
; Invert
Ground '
Invert Length
( Thickness
I
Volume
( Cubic
(Feet)
' (Feet)
(Feet)
(Feet)
j
(Feet)
(Inches)
Yards)
51
11.4)
3.91
11.9
3.91
28.72
2.50
44
52 i`
10.8 1
3.9 -_
11.31
' -3.9 i
62.67
- 2.50
�89
53 j
10.31
3.9
10-81
3.91
66.671
2.50
87
54 ;
12.01
3.91
10.3 ,
3.91
78.12
2.50
112
55 ,
'
12.6
3-3_f_____-
I
34.52
2.001
52
- -
56 i
10.81
3.3
r
I
l 1.41
3.3
�68
-------
2.00I__
90
F58 ��
12.91
9.4
�
- 17.7
-9.4 1-�-
58.23 �
5.501
212
59-
1
__.____. -..--_
12.8
9.4
��
1_
12.91
_. __I__
9.4 1
_.
39.34
5.50
__
- 116,
j 60
^-�
11.5
�9.4
- 12.8 i-
9.4
F--
32.63 F
5.501
_ 91
62 ��
62
16.4 rv_
10.6-�
14.0 ��10.6
��
103.02
5.62
337
63
i
9.81
5.71
13.2
5.7
T
130.97
4 00 �
252 �
-
64 - --
9.21
_
5.7
98�
5.7.._
,
..144.SJ -
4.001
2191
1 65
12.11
4.5
10.31
- 4.5
70.98 ,
3.00
66
10.81
3.91
9.11
3.91
101.88
2.50 (
123
68 j
15.31
3.9
15.4
�3.9�
15.14
-
2.50�
371
�69 i
13.6
5.7 j
13.71
5.7
1
16.03
�-
4.00
39
71 F 12.5 9A F
---
15.2 �_
9.4
45.44
5.50 C
146
61-�
-- -----;
14.0
-
0 j-
144�10.6F
116.98j �_-
5.62�-
350
57 ;
i_-
7.51
_.._.
4.51
_. .
7.71
4.51
_....
58.
3.00j
551
{ --67 i
--14.8�
_3.9�
140�
3.9�--
_11.67t _
-2.50[. _
26
70 F`
_13.3 _
_ �.._9.4
9.4
12.5 (
�___--
11.67 (- _--_.-
I __.._-__-.._1
5.50
35
17.7j
9.41
13.3��
9.4)
35.7
5.50�
132�
�- - 36
13.0 ,
_.3 9 I_._______
15.9 j
3.9
96.53 ( _ _._...._.
2.501
2161
1 29 ;
18.71
10.0
19.2 �
10.0 {
27.19 j
6.001
1361
35
18.1 1
10.0;
18 7 j
10.01
209.81
6.001
1 009i
37 ;
15.0j
5.7
19.01
5.7,
92.911
4.00
31511
j 42
10.61
3.91
10.61
3.91�
152.42 '
2.50 j
201
73 i
16.71
3.91
12 6 .[
3 91
75.96 i
2.501
176
j 74
116
39
86!
3.9[
56.941
2501
71j
Total earth volume for sewer trenches = 21308.88 Cubic Yards.
TV
01�- fEs
59 2,r
I�
$yafl 3I
® 3` S-TMH - c - 2.
I
Syjj 44r
04--� C -3
S74M -G
q s 116 5 A*
z9 I6" sTxN-c2-I
4p14 13 5all'15�
STSN-CI-7-1 \YtMF1 -c -q
STEM -e- ) -1 6a 6 At
�16615©8�-ST"A c-S
Srsu-c3-1
Sr2N-Cy-I s{MH- G-fo
®1 w 18®18 �STSN-c$�1_2
\I� W 17 li
sT"H-c4-I�®17p11-f7 zr�2e j27 S,trA%\ -)
' 2
1t® 19 a 818„ �m 25 SZMIt\-�s�
=,j_Cy-�-z —® 21a 2* 20 ®8 21 zz�22®/
r HERcP
SrSu - c 4 - l -1 i9 4m 27 28 ae �q" x3c 2255
q 9,d " 28 029 6123 24 ' \
1 „ u 24 s
$TMH-C--7 �9d2t30 it? \ 24 �v�e
s S�ti � s'.
StMH—C_8/ � \ T �
.T,L, � c
°s s., I/ \
11 3L�
L-10
STMH-
srzN-c8-I�® 11/
�i � 12 �
12—STXN -r- - 1)
NeoUDS Results Summary
Project Title: STRM-C
Project Description: FRV
Output Created On: 2/16/2007 at 8:56:14 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Manhole,,[ Basin 1
i ID # Area * C
Time of Concentration =�
Overland; Gutter Basin Rain I
(Minutes); (Minutes). (Minutes)' (Inch/Hour)
j
Peak Flow
(CFS) �E
a __OAOj 5.0;
0_Oj
0�0 13775.001 _ 55,1
�- y-58.8!
0.00 _ SA!
-_ 0.00 5.0
�- OA�
-- „ 0,0�
-- 0-A �15145 00 _ _60.6E
_____._0 15827 SOj _ 63.3E
16512 50 66v1
I _A0.00 5.0;
0.00
__ 0A 14225:00 - � t-
it ..__._' . 3._ ___ . _Sm�;
O.Oi
___ ..0.0: 13660^00� _ _.__._54 6
f0.00'
_ 5.0
_ M -0.0` 12560.001 _ 50.2?
1F 9
� To 5.0
_70.0�
0.0 10257.SOj 41.0�
11 0 00; 5.0
_0K�
0.0, 9205.001 36.8
1 12_ JF 00 S.Oi
_ 0.01
0.01 6810.00' _ 2_7.2
13 1 0 5`�{ �
_ ___. _.. _-,..a
0 0! 3937.SOI 15.8
14 !�
____� j
10.14
___
F 15 0.001 5.0` 0.0
� _ _ _ . -- _ - _ __ _ _ .__
I
��2537.50;
0 0 2797.50 11.2
I _
16 1 0.00 _ 5.0; _ _ 0.0
_ 0.0� 4252 50 17.0;
:
F 17 0.00 -� �5.0 _� �0> D
0.0� 1932.50# 7.7;
._
____ __ 0 0:
0 _
_ 955 0__3�8
19 -!
,_ __0_00(_ _- - 5.0 _ _-_ OASE
--- 0 0'
-- 955.00 3.8J
21 0.001 S.Oi 0.
___e_.0 977.50!
0.0� 9....._..__277 50?
_ _
39;
3.9;
0•6'
3132 50
_ 12.5
Manhole Basin FOvierulandl Gutter Basm Ram I
ID # J Area * CItes)l (Minutes); (Mmutes)j (Inch/Hour)
Peak Flow:
(CFS) s
rt
23 IOA(Y5.0`; 0.0 0.0.'i- 2775.001
} ,�2977.56
25 -- O.00i 5.0 0.O _.._ 0.0 SOO.00j
- --_ 2.0
1[726 0 00 5.0 - 0.01 0.0 727.S JO - 2.9
27_} 0.00� __ 5.0` O.O, �._ 0.7,6E 727.501 _ 2 9
^_ 28_ _- i - 0.00 -. 5.0< 0 0 ___ ____0 Oj _ ___-._595_00 - _. _2.4
30 J _T0.0011.1_ 5.0 .--Y0.01-_. 0-0; -- m--A-9 ! _- 3.2
32
O.00 ry SA O.O W 0.0 3387rv5O
- 13.6
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Manhole
ID #
Contributing;
Area* C 1
Rainfall
Duration I
{
(Minutes);
Rainfall ,
Intensity i
(Inch/Hour).
Design
Peak
Flow
(CFS)
Ground j
Elevation'
f
(Feet)
Water
1
Elevation!
(Feet) !
Comments
I
-- OAi
O.00j
55.1j
F 493m
4926.85j�
I
498.62
�57 8i
4935.8T
-4928.871E
-_ „-0.11
_-- _ _ S - 911
0.89
T 60 6!
I 4935331-_
4929.28
S.OI
__ -586 20a
- 63.3
4933.48)
4929.381
f
I
5.01F
35.10
66.11
4932.591
4929.541
I 6 1
-0.09`
_ 5.0
646.59
- 6791[74935.39j[
4930g14
[
I 76A8±
Oj
683.66
54.6
4938.14
493q_99��
��
0.06
- 5.0
� 897.14j
50 2
4937.90
493 ' 81F
1 7 [
u OA2'
S.Oj�2051
50
41 O'l
4931
11 (
0.01`
F
3068.33
36.8j
4934.93)
4932.053��
Rainfall
Rainfall ;
Designs
Ground
Water
Manhole
ID #
Contributingi
Area * C '
Duration [
(Minutes)i
Intensity E
(Inch/Hour)
Peak 3
Flow 1
Elevation
(Feet) {
Elevation
(Feet)
Commentsi
(CFSJ
12
S.oj
_ 681 .000
27.2�
-4936.53j
4932�72j�
!____13_1---_.-_-_._
0.01�_--_
50__._._196875
15.8
49320811
I
0
2537 50
10 1f
4932:66j
4930 8^'
-14 __
`_ -5
-_2797.501
11.2
T
4932.081
4930.83
I ,16 J
5.0
4252.501
Y 17.0
4933.48
4931.34
�
�386�50j
7.7
4939.03�
4931.61
I J
j 18
0.01
5.0�477
50
3 8I
4938.11
4931.85�
F 19
5 0
�955 00;
3.8
4938.07
4932LL18�
j
��
jI
0.01
SAS
488 75(
_ -
4938.13
4931.8711
21
0�
5.0E
977 50 �
3 9G��1
_�
4938.08
4932 70
�OA3jF
91 56�
3 23
0.02!
______ SA
693.75,
11.1
-4936.05
4931.771�
i
24
0.01E
5.0;
1488.75t
11.9
4931.00�
4932.00
Surface
Water
Present
.._ _
l
j 25
01
5.0E
(
500.00
2.0
4931.91
4932.48�
Surface
Water j
Present 3
26
0.01�
5.0
363.75;�^
2.9
4936.27]
N493LgF
27, 1F-
=-A
_ 5.0 727.50;
^9 2.;
4936.29
4931_91��
28
5.0 595A-
72.41
4936.32�
4931.76E J
� 29 ��
SwO� 390.00
1.6E � 4935.84! �493 L81��
I 32
Oi
- 5 01--3387.50-
13.6!
4934.141
4933.17�F--,-j
Summary of Sewer Hydraulics
Note: The Oven depth to flow ratio is 0.9.
jF-
Sewer:
! ID #
Manhole ID Number��
-�
Upstream. Downstream!
Sewer
Shape)
Calculated
Diameter
(Rise)
(Inches) !
(Fr)
Suggested
Diameter
(Rise) i
(Inches)
AFT).-._;
Existing
Diameter j
(Rise) ' Width'
(Inches) (FT)
_ (Fr
(�
�I (
Round
_ _ __ 46�2I
_ _ _�483
_{ _ m 54
N/A
_3
3
Round
47.Oj
- 48
54�
N/A
___��
�
_it
__...___
___ ___
54j
N/Ai
;Roundi
- 45_948
_ - 48i
N/A
7 _ I
_-
_I !.____(__._
6. _
Roundi
___....-__-45
_._.___. 48t
___- .___. 48i
N/A'':,
--48j
N/A
-__l1 -
i -12 i
12 _
- 11 -�
Roundi26.
_ 27i
_- - 30�
„ N/AI
13,_ ��5
-, � �
Rounds
__.23.9�F
!' 13 `
_ 1_4 !
- _ _ 13_ . _ i
Round]
- __ 20.2j
__.___-.. __? 1 i
_.._ . _ _ _._ 24�
N/AI
-14-
15- _;�
Round
18.4j
21
18
_15
__----- 2--
__27
EKA,
16
1l
I _2J_NA
1I
81
N/A!
-9
_ 18 j
Ru"dj
_ 148
NALi
_ 1_]Ro
7
Roundi
10.9118i
18
N/Ai
{ 20
Round
__--- ._ -10.9
_-__ _ _ . 18 - - `-18(
N /A
i 21 __-22-_. _il
° I
Round
-26.Oi
- -,27! - - J6l
N/A'
Roundi
�_ __�2
_. -_�3 _ __- 36
N/A
23 i 24
23
Arch±
25.5
27i 19E
30
i _24 : _ 25 -_24
Round
13 1E
18 18
N/Ai
18
N/Ai
27 - 28 -
_ 22 - 7 1Round] -_ 9. IF - 18 18j
N/A
28 29
-23 - }Round! 7.7; _ - - 18s - -- - - 181
N/A
29
30 '
F
Roundi
._ _ 10.1 i ___. _... 1 g!
_ - _ _ __ __ 18 i
N/Af
10
Diameter
j Diameter
Diameter E
Sewer;
Up stream
Downstream
Sewer
(Rise)
(Rise)
(Rise)
Width
ID #
;
Shape
(Inches)
(Inches)
(Inches) j
(FT)
(FT)
I �(FT_) J
_ (FT_)
1811
18�
N/A)
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
I Sewer
ID
Design
Flow !
(CFS)
�_s
Full
Flow
(CFS),
Normal]
Depth j
(Feet) #
Norman
Velocity
(FPS)
Critical
Depth
(Feet) (
Critical (
Velocity
(FPS
_
Full i
Velocityl
(FPS) 1�
Froude
Number}
Commend
1 2
_ 57�8i 88 2 ` 2.66; _5 9j
2 270.7
_ 60.6i 88.2' 2.74 _ _ 6.0�
2.31
F 7.4E 38j _
r
2.82!___. 6.0
66.1 88.2! 2.90 _ 6.1� 2 39 ___..__ .__ _4.2F 0.68
I 6 �
56II 6474' 2.92 v 5 8$ T 2 27j �7.7
4w5j 0.61 i��
7 54.6 64.4, -
,� 50.2I 64.41 _-.2.66j 5.7 2 14(� 7.37.34.0 �0.65 1
9_ 4 17. qjI F64�4, _2`32; 5.4 1 98; _ 6.6 T 3.3i 0.69E
1F 11_' _ 3_ 29 - 3A01 _....._ 5� 1 971 ______. J
12 27.2# 36.8 , 1.60j -___ 8.2
1 15.8! 16.0` _ -1 61j 5�8! 1.42 6.6� 5.0; 0.79]�?
13 10.1 16A 1.15; 5.4� 1.143.21 _ ^0.98
r
14 j 11.2� 10.5!1.SOj 6.3( 1 27 7 0) 6.31 _ N/Ay
15 17.0� 22.7! 1.29 7 91 1 49 F. 6.8� E. 5.4
16 F 7.7(_ 32 1! 0.0J v _ 8 4) _ _1 i11 . 4 8' 2.Sj 2.12'F
�17 j 3 149; _ 0.52 _ 7.1� _ 0.76i ___4�2 2.2� 2621F
18 3.8j 149, - 0.52� -- 7�1 _ 0 76 __ 4.2i � 2.2j -- 2.021
1791 3.9�
20 i -T. 1, 14.9 0.521 7.11 0 77 ..._ 4-J3 _ 2 2? .._w - 2.02I�
21 12.5E 29.9, 1.35 4.0I_ 1 18: 4.9T 1,8j 0.7C�
_ 22
ll.lj
29
1.27�
___-__3.9
` 1.081
4.8
1.6
0.71jj�_-
i
Sewer
Design
Full
Normal!
Normal,
CriticalFPs
tical`
1
Full
Fro de
I
ID
Flow
(CFS)
Flow;
(CFS)
Depth
(Feet)
-
Velocity!
(FPS)
Depth
(Feet)(F)
_
city,
Velocity)
?Number
__
Comment]
__ f
IF23 j11_9�
- 26 ! -_2.91 ----7.4 _ 0.65 4.Oj 0.66(� _ 3.9j 1R6 0.99
1.3! , 2A2,'F--,----j
29 ; _ 3 2MI
,14.9 _.._ 0.47 6 7 0.68! �i 4.1 j - ._ 1 _81 _ 2.02
31 j
13.6!
14.9
1 12!
_ 96
-_ -1 35j
8.1)
E 7.7
-1.61IF
I
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation I Buried Depth !)
Sewer ID` Slope Upstream Downstream Upstream Downstream' Comment
0 (Feet _ (Feet) (Feet) L(Feet) i
2 0.20il 4926.311 4926.01 j 5.06 -0.51;Sewer Too Shallow)
i '_._? --�-2.0 ---4926 61 4926 31 i _.__
I ' 1j 0.20`. 4926.75: -- � ^4926.61I __._.___2.23; _ ._ 4.1_2
5 � 0.20 4926"86; � 4926.75 � 1 23mm 2 23 Sewer To Shallow!
0.20. 4927.19; � 4926.85 _ 4.20 1.74 Sewer Too Shallow;
j� . 0.20', v 4927.86; _ 4927.19 6.28! -�I
0.201 _ 4927.93i ___ . 4927.861 - 5.97 .._
IF 9 0�.20 492-� - 4�927. 22 R 4.43' __ __ 5.98; _-� � I
Ir __ _'�I - ._J� _
11 j 0.20• 4928.51 i _ 4928.11 � 3.421
_-- iL_ ! 0.80 E4929901- 4 4929.17i 4.13
- 1 .. 0.50 4926.98j _ .___4926.__3.73!
91 3.211-
- 14 ( _ 10.00' 4927.21 t_ _ 4926.8-6 �3----- - 4.28-=
164929.38, _ 4927.86j_ __. _ _
17 i 2.00'F 493ol3F 4929.43} 6.48 F 8.16
on
Sewer ID'
!�!
_
Slo a
p '
%�
Upstream.
(Feet
Downstream*
(Feet)
Upstream)
.._ (Feet)
Downstream{
(Feet)
j
Comment
18 A2 0i 4931.42
!___
4nq j_ j � 5�15 _ 6.48j
19 j
2.00' 493061;
4929 38 - 6.05E
j 20 Tj 2.00 4931.93`.� 4930T65i 4.65 -- -45 98,
21 1 0^20; �4928.11; 4927 93 -__._ 5.44 6.97j _ - l
1 22 1 0.20 4928.26! 4928 10'' 4 79; 5 45
23 !! 0.20 4928.0 F7928 260 73�` 6 20' Sewer Too Shallow'
2�4 0.20, 49�28.99, 4928.80j�1.42 F0.70 Sewer Too Shallow)
`I _ j�l____. �1 __ _ it _ ,�__...
j 25- ` j ._ 0.50; 4928 36 ^ _ 4928 11' - 6 411 6 94'
_ _
r 26 0_50 4928_49j _ 4928.37j 630i
_. 27 J 2.00' 4928.27�-4928.11 j _ m 6.55 6.94j `
Y 28 ? 2.00' _ 4928.42j 4928.226 E 5.921
29 _IF2.00: _4928_81 j 4928.11 j _ -6.02; 6.931
_..____ 3.64i
_ _ -_.._.4
Summary of Hydraulic Grade Line
Invert Elevation 1 Water Elevation
Sewer Surcharged. { ;j
Sewers ; Upstreamr Downstream F-P(F-eTet--.',
DownstreamLength Length 4ConditionID # Feet)(Feet) (Feet)-----__-_--
2 148.521 0( 4926.31 4926.01 4928.87 4926 8585 Subcritical.
+ 3-� 147.91' 0 4926.61' 4926.31; 4929.28 4928.8Ti Subcnticali
I�___ ,� __ ____ - __ _
! `' 69.65?F 4926.75] 4926.61j 4929.381 T 4929.28; Subcritical;
5 55.851 OiOi 4926.86 4926 75? 4929.54j 4929.381 Subcritical'
I 6 167.8': 01 E4927.191, 4926.85 4930.141 4929.54-1 Subcritical
!� " 332.9'� 4927.86j 4927.19) 4930.99 4930.14j Subcritical,
--- _I-
I 8 _i 33.65}r 01 4927_93j 4927.86 4931.28 493099; Subcritical
9 93.47 00� 4928.11 4927.921 49�31.55493�1_28 Subcritical
11
IF�_
198.66 _ __198.66 4928 51 4928.11 4932.05
1_I..
4931.55
_____F
Pressured'
-12
9L26 v --91.26; - 4929.90
4929.17 4932^72
_ 4932.051
Pressured!
1 23.6' 23.623.E 4926.98
;I��v_ _J
4926.8E 4930 47f 4929.54,
Pressured
13 90.81 90.81 4927.45! 4927.00� 4930 89' 4930 47! Pressured",
_ -_ _ _ _ -_. ___M.__ _ __ _._.. __.. __ _� __ _.
14
-3 .28;
35.281
4927.21jF
_4926.86
4930.83I
4929.54?
Pressured
FFe
Sewer�Surcharged
�
LengthCondition;
_ ,-(Feet)
eamownstream
et)
Fp
(Feet) i
Upstream;
(Feet)
DownstLen
(Feet) {{et).
85.67�
4928 OS!
4927.19
4931 341
4930.14i
Pressured:
16 ; 75.97i 75.97
4929.38
�4927-86EF
4931.4930.99,1 Pressureds
{ 17 i 35.22j
__ �� ._..-.
35.22
__�
4930.13E
.._.._____...... ____J
4929.43
__
4931.85f _ 493_1.611 Pressured`
T ..�..� -..
_18 64.71
-19.96
4931.42� 4930.13i E4932.18 4931 85- Jump
19 61.42� 4949.4-4`�-4-93-0--6-1i
4929 38� 4931.87� 4931.61
Jump
i 20 64�14 493L93) _ 4930.6�_2.76F 4931.871-Jump'
- 21� ; 88.28' �- 88.28j 4928.11� _ 4927�93� �493 L70� 4931.28�
Pressured
22 � 78.46; 78.46� 4928 26j 4928.10j 4931 77� 4931.703 Pressured`,
' 23 t 213.92' 213.92 4928.69'�492�8.26 49�32 23� 4931.771 Pressured
;��I_ _ �I____ ____.__ �
j 24 ; 95.19 95.19 492 -9-9 __ 4928.80E 4932.48 4932.23! Pressured'
25
11`__
26 E
_-6:
0 75i
[I_
25'
_ .V 5
50.75( 4928 36'
. 25� _ 4928.49j
4928 11 4931 8484' 4�931.70 Pressured
4928.3 �4931 91 �4931.84i Pressured
_-,.r.
_
_27 __ 7.98j 49: 8.271 4928-j1 _493L76F - 4931.70 Pressured
28 798i 7.98� 4928.4928.26 81_ 4931.4931.77� Pressured!
T _ 2 4i J .. _..
29 I 35.05,. 35.05 4928.81 4928.11" 4931 83 4931.551 Pressured;
_ _ _ _� J
1 31_j
24.53'
24.53;
^ 4929.00I
4928_511
4933.1K
_ 4932.05�
Pressured
Summary of Energy Grade Line
Upstream f f Downstream
j Juncture Losses
Manhole Manhole
----o.___� __._____._, _ __ _
! ; Energy ( Sewer 'Bend" fFte ; Energy
Sewer Manhole i Bend K teral KManhole,
ID # ID # Elevation Faction Coefficient! Loss efficientt ID#Elevation(Feet) j (Feet) iJ (Feet); ______ .I - - - (Feet)
F-c_
4929.46� 2.61 - 0 OSj -0 00-Oj00{{{� 4926.85
�..-.._-
4.-_..._.._...-.-...__.J � 3���_
3 � 3 ( 4929.88 0 38� 0 153 0.03 0.00 2 4929.461
_�._ __ _ _0.00,
�� :4930.05 -016; u 0.081 0.02� ----O.00j _ O.00j� 4929.88
4930.05�
E_._ i___"___.1 4930.71� 0.281 Om05, 0 25 0 [ 4930.231
_ -0.oT m -v
--
7 F- a 4931.4-9 0.52 0�05 11 OA
0.25{ 0.24�(- 6 4930.71
4931.65� _ 0.00 ___ __..-0.05 0971
0.25; 0.23f _ �.; __4931.49i
4931.65'
11
11
4932.47
0.60
0.050.05°�
0.02�:
0.25i�--0.06�;
9
49�31.79,
Sewer
n
'F Manhole;
7D
Ene y
rg
r
Sewer
Bend
Bend '
�
I
Lateral
t
Lateral:
Loss
h 7ol e
an
Energy
Elevation!
i 1D#Coefficient,
Elevation
I
F ni
r 0
Frictions
Coefficient,
Coe le
Loss
L
Feet)(
F
ID 4
(Feet)
�F
F4933..
T�-7 F J —�7 F —. F,77�-4—F---
--P.q
F-�,-9f
5,1
.. L
7�
F -
11
- 11
32.471
-1-1-1 11
I T I F --: 71� 7,.,F-4q3o.--8.6F---
.1jif-7
4930.23!
F 0 OS!70
F
1-7-7-
13
4930.861
0.06F
5
0.00
F--j- 7, F- —1— E-49371- —7jo F, 7 0:q—q, F- —F.--,o-: 1 F 7 - —99j,F ---- �q--qq;
F-7--7-71
4931.491
17 O OS
17 FT� 1.70!
18 ET? D, F-T?�? F-
F
18 4931.92i
------ -_0.05F
... 7__O.,251 f __q
-
F_ �931.70!
-- , " A
2 1
'F 7 0__' E F-
4931.95 1
E22
F217�—
:
. .... ... .
F- —i?3T75,1
25 E-7�0:51F2—[,-
—1-
'FT47"F�5 ;,,F--
4932.4�
25]F
I -T
4931
22 ;1 .7�1�
-----J _ _
—F
4931.881
27
4931.811
[ Tq ]'F---To.—1[:TqL-1—
9
4931.79!
F�—
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole; Rim Elevation Invert Elevation Manhole Height;
ID (Feet) i � (Feet) (Feet)
4926 011
3 99
2 14935 87
4926 31 9 56
4935.2311
__ _.
4926 61 8.621
4933.�8 4926 75
673
._.._ _. 4932.59jj_—_�_- 4926 85
_.._..___5 74;
6 4935.39492719. 8.201
4938 14 4927 86` w 10 281
8�! 4937 901 911
9.98a
4936 54�928 1l'F
8.431
11 � 4934.93j 928.51
� 6.42
4936.53! 4929 90
6.63;
13,�.___.4926 98
5.101
iF _14 1�932 6614927 45
[—�--� 5 21
C15 4932.081�- 4927 21
4 87j
t, 16 4933 48�l�-4928 05 5 43
_ �
17 4929 38 9.65
„ �4939.03
18 ! 493811# 493013
798
19 4938 07 � 4931 4Z 6.65
4938.131 4930 61! 7.52'
21 4938.081�
493193€F 615
22 { 4936.55; 4928 10 8 45
_ �.
23 m , 4936 O5 4928 261 W -- 7.79
24 m i _4931.Ooij 4928 69 _ 2.31,
F 25_
1 26M' 4936 27, ,_4928 36
7.91
2�7 936.2 49 4928 � .49]
7 803
4936 *321 4928 27: _._. ... 8 O5
29 4935 841 4928 42 .. __.._.__. 7.42';,
4936 3W 4928 81f 3 7.52
32 4934 14 4929 06
5.14
10
11
_
Sewer I
ID # E
Upstream Trench {
Width _ j
On ! At
Ground ! Invert
(Feet) (Feet)
__ _-- _
Downstream
Trench Width l_
On At
Ground Invert
(Feet) (Feet) I.
-- __-- _ __� __. ____ __l
E
Trench
!
Length
(Feet) ,
_ ____ __
-Wall i
I
Thickness
(Inches)
. __.___ _.._.Yards)
Earth
Volume
(Cubic 1
1
- 2 -
-- -- 17.7]
_. 9.4�
6 6!
941
- 148.521
5.50.'j
455
_---
-17.711
4j
__ 9.___
-,147.9
Imo- --`
- -- 12=0�
----
15_8!
- 9.4j
-- 69 651
I --'---`
- --- 10:0�
_ 9.4�
------12-.�I
_ 9•�
-__� 55.85i
--��._--- - 5.50j
____ __ _143{
I_----- --`-'_--_
_ _13.6;
- - 6.81
_ - g=j
----6-8�
167.8!
F 7 ;
_ _ 17.7;
-6.8�
______13.6I
6.8j
332,9
5.00
----1115,
! °
- - -17.1 j
6.8!
-- - 17.7�
- 6.8)
.__ 33.651"�
- 5.00
-130i
�
I ._7__t
_. 14.0!
6.8j
_.._..._17.1i
6.8j._
93.47�5.00j
_ .._.__310';
11-- +
- 1 L2!
-5=�!
.... _ 15m
..._ _..__5 7j
198.6611
Y•��;
463
971
'•SOj
_ 1571
- ---1
_ 9.71
4;5I
_- ---° TT
___ 4w5i.
--- 23 6
_ ..._ 3..00
- __33
_ -13-_!
- -9 9
._ _ 4-5
- 9
4.:5
.--_. 90.81�
�OOj
.-
_. _ _._._ 117j
._ 39i
--_._w_ 11.5;
_ 391
- 35.28j1
�3
_ ..__,.- ` 50
--- -- 47"
15 71
_ -10-4j
_ 4.5
____ 15.J
___._4�57ij
85.67
3.001
_ _177
T -_ 20.11
-4 Si
- -- 75 97
3.00'
-296
-77 - '
- - 16.O
- 3.9
_.-._ 19.3
_3.91--
- 35.22!
_... 2.50;
- - 113'
- 18 -
- 13.4(
-. 3.91
----16.1!._.._.__
39I
._ _.64.71!
-- 2_501
- 1491
19
15.11,
3.9'
19.4]
3.9
61.42
2.50
189E
F77i-q-!_12
4!
_ 3.9
_ 15.Oj
3 91-
64.14
2.50!
_ _ 131i
- 21-
-5.7�
--- 18=3
----5.7
- 88.28
_ 4.00j
- -291
_22 j
-- 1--y
__J_5_7�__-
15.21-_
5.7
m 78.46
- 23
_ 5.41-
5�
_ - 16 4j
5�0�
-213.921-
3.04
- 369i
24
- 5.91-
- 3.9j
-�- 4.5
r -y 3�9j
95.191---
-2.501
511
- -25
-- -15 ;9!
_.- 3.9�
- . 17.0�
3.9j
- 50.75€
2.501
- --_-141'
- 26 - j
. _ 15.7j
- - -3.91
- -15 9i
----3.9
25;
- - - -?-S61
- -- 65j
___7'981
_____ 2-50
_______ 23�
- 28 -
_- - -14.9j
--- 3.9!
-15.71.___
3.9i
_. �w98'
2.SOj..
----20'
29
15.1!
3.9!
- 16.9
3.9j
- - 35.05;
- 2.50,
_ 94
11
Earth
Sewer
On
Ground
At
Invert
On
Ground
At
Invert
Trench
(
Length t
Wall
Thickness
Volume
ID #
(Feet) 1
(Feet)
(Feet)
(Feet)
(Feet)
(Inches)
(Cubic
_
Yards) 1
31
Total earth volume for sewer trenches = 6519.67 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+l
12
STU-A
SI.MH- D-
07 012
L
GT Ail - D-Z
6a 7
ya
In 8 jz
30
4)10
bt-x
STANN - bj-j-,Z
48d
F65 6aO
powla
Ida
NeoUDS Results Summary
Project Title: STRM-D
Project Description: FRV
Output Created On: 6/5/2007 at 2:30:19 PM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
`-- Time of Concentration
Manhole (Basin
ID # Area * C
Overland
(Minutes)
Gutter Basin Rain I
(Minutes) #(Minutes) ,(Inch/Hour)
Peak Flow
(CFS)
F 1 -F 0.001 5.0 �0.0 �~ 0.01 16642.50
66.6
�2 0.00 5.0 0.0 �- 0.0 i 16642.50
F 66.6
3� 0.00 5.0 i 0.0 0.0 16642.50
66.6
r�4 00 0 S.O r- 0.O r- 0.0 1 _ 19512.50
� 78.1
5� OOI 0�-
-�
5.00.01 - 0001 �8410.00
�33.6�
F 6 0.00
5.0 r� 0.0 O.O r 8410.00
F33.6
__
7 0.00
�----_-r__
5.0 0.0 0.0 8410.00
33.6
8 0.00----5.0
_...____----_-.__--
L_.-.. -0.0 1._ . --0.0 ......10797.50
43.2
1�
10797.501
- -43.2
l 0 r 0.00
T5.0 r0.0 rY -- 0.0 ( 6477.50-
_ 25.9
F 11 ( 0.001- 5.0 F 0.0 ) - 0.0 F - 4320.00
F 17.3
12 j�-0.00
0.0�
0.0�
1.0.0�
0.00�
2.0
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (l O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Manhole
ID #
Contributing
Area * C
Rainfall
{ Duration
((Minutes)
Rainfall
Intensity
((Inch/Hour)
Design
Peak
Flow
(CFS)
Ground
Elevation
I (Feet)
-F
Water
Elevation
(Feet)
-!
Comments
r__ 1--�-�----
0
�0.0
0.00
66.6
�4925.71
� 4922.00
�------
F 2
3
I --4 -I
(----•- 0.04
0 04
---0.03
F- 5.0
5.0
�- - -5.O
F-1664.25
�--1849.1 *7
I 2439.06I
66.6
66.6
78.1
F4927.00
4928.14
� 4929.001
4924.41-F----
4924.52
4926.13
-
(_.------.__-__)
5 0.01 5.0 2803.33 33.6 4929.12
[ 4927.81
F-- 0.01 5.0 4205.00 33.6 4929.00
4928.44
-
����
7 0 5.01 8410.00 33.6 4926.44
4928.59
jPresent
Surface
Water
8 --�
0.02 �-- 5.0 � 2699.37 � 43.2
r 4930.11
4927.29
�- 0.01 5.0 3599.17 43.2
4931.56
4927.40----
10 F_---- 0 5.01 6477.50 r 25.9 4931.72
F 4928.38
F i
11 r- 0 5.0 4320.00 17.3 4931.70
4928.01
--
12
F-0
0.0
0.00
2.0
4930.11
4928.17
F----
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
1Manhole ID Number
_Calculated
rSuggested
Existing
Diameter
Diameter
Diameter
Sewer
ID #
[Upstream'Downstream
I
lFsewer
Shape
(Rise)
(Inches)
(Rise)
(Inches)
(Rise) ;Width
3
(Inches)
! (IT)
(I)
�+
2 ~F--1
,Round
- 42.7
F-- 48
_(FT)
F 481 N/A
2 ---3 F--- 2 ---- {Round F- 42.7
F 48
r` 48
[ N/A i
�-- --
4
3 4 3 {Round
r---
- 45.4
----
48
---
48 N/A
4 i 5 ----- 4 - --'Rounds
33.1--
-- - 36�__..---
361 N/A!
5 6 1 5 lRound
i 33.1 i
36
36 N/A I
--- 6 - i ---7 -- 1 6 !Round,
33.1 L_-_-
----36
_..------ 361 _ N/A �
I8 4
Round 36.31
42,
42, N/A;
Sewer
ID #
Upstream
-----
Downstream
Sewer
Shape
Diameter
Rise _I
(Rise)
(Inches)
(FT)
r Diameter
Rise
(Rise)
(Inches)
(FT)
Diameter
(Rise) Width
(Inches) (FT)
(FT)
8
F _ 9 -r
8 --
Round
r 36.3
42
F 42
N/A
F 9
10
(- -- 9 -Round
30.0
30
30
N/A
F 10
I 11
9
Round 25.8
� _27
30
N/A
11 IF
12
F- 5
Round
F_ 11.5 I----
18
1- 18
N/A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Design Full Normal Normal Critical CriticalF
Full
Sewer Flow Flow Depth Velocity Depth Velocity elocity Froude Comment
ID (CFS) (CFS) (Feet) (FPS) (Feet) (FPS) I (FPS) Number
1-l-1 66.6 91.1 52 4 7.9 2.46F 8.2F 5.3F 6.94 F_
-2-- 66 6F 91.1 2.54 7.9 46 5.3 0.94
F 3- 78.1 91.1 2.85 F 8.1 2 67 �8.8 F-6.2 F-0.88 �-
�4 33.6 42.3 r 2.02 �.6 1.88 �7.2 �� 4.8 0.87 i---
5 33.6 542.3 ll_ 2.02 F 7.2 �- - - 4.8 [----0.87 [Y-- -
1 6 33.6 �42.3 �2.02 6.6 �1.88 7.2 F_--4.8 � 0.87 F-__
7! 43.2 63.iF 2.11F 7.1 [ 2.041 7.4[ 4.51 0.94�
8 -- 43.2 63.8 2.11 7.1 F 2.04 7.4 F 4.5 0.94
F 9 F259F 266F 2.04 F6.0 F 1.77 7.0 F 5.3 0 71 F
�00 F17.3 26.0 1.49 I Y 5.7 1.41 r _ 6.1 3.5 �- 0.9
1 I 2.0 6 7 j 0.56 ( 3.3 T 0.54 -_3.5 F_ 1.1 0.9 F-
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation
( Buried Depth�� - I
Slope !Upstream !jDownstream Upstream
Sewer ID ( % I (Feet) I (Feet) , (Feet)
Downstream
(Feet)
I Comment
I 1 40 0 4921.891 4921.54
I ` l . l l 0.17
ISewer Too Shallow
F- 2 -)
0.40 i 49 12 95 4921.86 2.19 1.14 !Sew r Too Shallow E
�- 0.40 4922.70 4921.18 2.30 2.961
F- 4 j 0.40
4923.07 4922.33 3.05 3.67
5 -�0.40 4923.35 4922.80 2.65 3.32
I V 0.40 4923.43 4923.27 0.01 2.73 Sewer Too Shallow
F 7 - 0.40 4922.76 4922.70 3.85 2.80---
8 0.40 4922.98 �-4922.77 5.08 3.84
9 0.40 4923.50 4922.98 5.72 1 6.09 r-----
10 0.40 4924.92 32494 4.28 4.68 - ---
_11FO_4oF_4923.13F__4423.07F
5.4iF
4.55
Summary of Hydraulic Grade Line
-FInvert Elevation �� --� r Water Elevation
1___
!Sewer
ID #
Sewer Surcharged
f g
ILength I Length
Upstream
( (Feet)
Downstream
(Feet)
[
jupstreamDownstream
(Feet) (Feet)
[Condition
(Feet) I (Feet)
1 86.5 ( 0 4921.89 I - 4921.54 F 4924.41 r- 4922.00 iSubcritical
2 22.54 0 4921.95 4921.86 4924.52 4924.41 Subcritical
F_ �
_ _ _ _I
r 3 379. l6 0 r-4922.70 �- 4921.18 4926.13 r-4924.52 Subcritical
F 4 184.04 r---184.04 4923.07, 4922.33 4927.81 4926.131 Pressured !
r 5 11� 38.49 r- 138.49 4923.354922.80 i 4928.44 F_4927.81 ! Pressured
r 6 38.96 38.96 4923.43 r- 4923.27 r-4928.59 4928.44 Pressured
r 7 1 14.831 14.831 4922.761 4922.70 4927.29F~4926.13 1 Pressured
r 8 51.73 �- 51.73 4922.98 4922.77 1 4927.40 4927.291 Pressured
9 ( 131.871 131.87 1 4923.50 4922.98 4928.38 4927.40; Pressured
10 i 134.65 134.651 4924.92 4924.381 4928.011 4927.40 I Pressured j
1 1 I 14.5 I 14.51 4923.13 ! 4923.071 4928.17 , 4927.81 i Pressured !
Summary of Energy Grade Line
FUpstream -
Manhole
Downstream
Juncture Losses Manhole
��--
Sewer
ID #
Energy
Manhole
ID # I (Feet)
Sewer
FrictionLossLoss
(Feet)
Bend
Bend K
Coefficient (Feet)
Lai- teral
[�Lat�e�ral K '
(Coefficient 1 (Feet)
F-
ManholeElevation
ID #
Fei)o
-1
2 4925.40 3.40 F- 0.05
0.00 ( 0.00 0.00 �1
( 4922.00
F-2 -F 3
4925.48 �0.06 0.05
0.02 �0.00 0.00 �2
4925.40
3 1- 4
I 4927.16 1.10 1- 0.96
1 0.58
( 0.00 F 0.00 [_3
[_4925.48
i- 4 F- 5 4928.16 0.47 F-0.05
0.02
0.25 F 0.51 r 4 -
4927.16
�5 �ti 4928.79 0.35 0.05 0.02 0.25 0.26 F 5---
4928.16
r 6 I 7 4928.94 0.10 0.14 0.05 0.00 F 0.00
F- 6 -
4928.79
F7
( 8v 4927.60 F 0.03 1.32 FO.41 0.00 0 00
F 4--F4627.16
�8 I- 9 - 4927.71 0.09 0.05 0.02 0.00 0.00
F 8--[
4927.60
�9 10
10 I 11 I
7 11 ( 12
�4928.81
4928.21
�4928.19
0.52
m0.24
-0.01--
1.32
�- 1.32 i^
._.._-1.32 (
0.57
0.25
0.03
0.00 0.00
r----0.00 0.00
0.00 �0.00
� 9 4927.71
i _- 9 -^ 4927.71
_^-5 4928.16
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is I .
;Manhole;Rim Elevation -invert Elevation
ID # (Feet) I (Feet)
4925.71 4921.54
1-2--�---- 4927.00I_------4921.86
anhole Height
(Feet)
4.17
5.14
3 --� _- -- 4928.14 �----_---4921.18 f----- 6.96
4 4929.00 4922.331 6.67
Manhole +Rim Elevation Invert Elevation Manhole Height
ID #
(Feet) i (Feet) ( (Feet)
5
j 4929.121 - -
4922.80
6.32
6
4929.00�-------4923.27
5.73
�7
4926.44
4923.431
3.01
S
4930.11 -
4922.761
7.35
9
�4931.56 F--4922.97
!-
8.59
F-10
F-4931.72 jv--^
4923.50
� �-
8.22
11
(--- 4931.70
[ - _. _. _
. 4924.92
1. _._._____.____.6.78
12
4930.11
-4923.13 1
6.98
Upstream Trench
Width
Downstream
� Trench Width
Sewer
ID #
On At
Ground Invert
(Feet) (Feet)
On
' Ground
(Feet)
At
Invert
I (Feet)
I Trench
Length
(Feet)
Wall
Thickness
(Inches)
Earth
( Volume
(Cubic i
Yard124
1 '
7.4 6.8 5.5 6.8
�- 86.5
5.00 1
F 2 9.5 ; 6.8
7.4
6.8
22.54
5.00-39
1' 3 9.8 6.8
4 �i 10.4 5.7
_
I 5 ( -- --9.6 ` 5.7
C- 6 �4.4 [-
�- - --11.1-m
i11.7
11.0
-6.8
5.7
-_ 5.7
379.16
-184.04-
138.49
-� 5.00
-- __.._ 4.00
�..__.__- 4.00
779
i 334
--__231-�
F-� -47
F 7 F 12.5 6.2F 10.3F6.2j' 14.83F-m
4.50E
31
8 F 14.9 6 2 [- 12.4
[- 6.2 [- 51.73
F- -4.50
F- 134
9-M15.4 5.1 16.1
10712.51 5.1 [--.---13.3
I I 14.0 j 3.9 i 12.2 i
�- 5.1 131.871 3.50 i 3721
F- .5.1 i-__-134.65 F -3.501 - - 278I
_ _-3 9 . 14.5 ( ___2.50 27
Total earth volume for sewer trenches = 2397.02 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48.
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backtill depth under the sewer was assumed to be I foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
STMN -E
3 N-E-Z
r. kA
c4 0�JAet
NeoUDS Results Summary
Project Title: STRM-E
Project Description: FRV
Output Created On: 2/16/2007 at 9:04:29 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration _I
Manhole',
Basin `Overland!
Gutter �[B
asin
Rain1 !
PeakFlowj
ID #
Area*CI
(Minutes);
(Minutes)Mnutes)
_...._..,_.____
(Inch/Ho(C
_.__._,.._..._._
II-- 1- --{I------O.0011_ _ 5.0I___ O.O�I_ OA'I_ 4462.50�I---17.9
_;
F- - Oro- ` _ 5 0 0 01 — 0.0; _ 4462.50� — 17.9
I�C�I�II�III]l�XI��III11,�11�1)1 � �fY.X.IIA����
) 4 11 0.00;1 5.01 0.011 0.01 4462.5011 17.911
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (lO+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
I
Design
Manhole;
Contributing
*
Rainfall s
Duration!
Rainfall
Intensity
Peak +
Ground
Elevation
Water j
Elevation;
j)
Comments!
ID #;
Area C
Minutes
Inch/Hour
Flow
(CFS)
Feet 1
Feet
-A.
- -- -- i
174
4926.51�
4919.6011[
5.0
_ 1487.50!1
-17.91
--4926.53�
4921.03 i
I "
0.01
5.0';
2231.25!
17.91
4925.89'
4924.47
Rainfall
Rainfall
DesignI
Ground
Water
Manhole!
Contributing
Duration
Intensity
Peak
Elevation'
Elevations
Comments
ID # ;
i
Area * C
(Minutes)!
(Inch/Hour);
Flow I
(CFS) i
(Feet)
(Feet)
4
70'
5.0
i
4462.50
17.91
4922.49
I
4925.23i
__j
Surface
Water
Present
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Sewer;
ID #
Manhole ID Number
Upstream; Downstream
E
Sewer
Shape
C—alcua te#_1
Diameter
(Rise)
(Inches) j
Suggested
Diameter
(Rise)
(Inches)
Existin
Diameter
(Rise) Width
(Inches) ! (Fr)
FI
30i
2
__N/A
Roundi
2
_24
— N/Al
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
!Invert Elevation Buried Depth
Upstream
Downstream
II
Sewer ID'FS1ope,,1Upstream,1Downstream1
(Feet) !
(Feet)
Feet
( )
Feet
( )
Comment
1 1l 0.201_4918.97] 4918.9411 5.56]1 5.57!1�
�F 0.20 F 4919.87(— 4918.9711I4.02i 5.56;� �
l�t�l(11�1171tLJ►�Il�i`]ISL�L :%��I�III���IL'IIE. • wnM
Summary of Hydraulic Grade Line
Invert
Elevation j Water
Elevation
' Sewer , Surcharged]
;Sewer t Upstream!
LengthI Length
� �
Downstream) Upstream!
Downstream
ID # Feet1
(Feet) (Feet) ( )
(Feet) (Feet)
Condition
(Feet)
14.23j A 14.23 4918 9
4918.94 4921 A31
� 4919.601 Pressure
j 448.81 448.81 i _4919.87
4918.97 4924._ 7'
_ 4921. E Pressured!
3
106.6a
106.6!
4920.49
_ 4919.85;
_ 49�25.23
4924.471
Pressured)
F
Summary of Energy Grade Line
{ Upstream { f Downstream
Juncture Losses
Manhole_ �I ! Manhole !
--
Energy Sewer [Bend Laterals I EnergySewer' Manhole;Bend K 1 Lateral K j F—
Friction Loss Loss Elevation(Feet)
ID # ;Elevation!
j (Feet) Coefficient Feet)] Coefticient� (Feet)D # (- (Feet)_'
�. _ __ _. _� _ i492153
�11nhole'ID#
1 0 05! �O.00j � 0.00� 0 00'� 4919.60
4921.53�
Ir 3
4
4925.73
0.66
0 19
0.10
- 0.001,
�W O-EF
3 j
4924.97,
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
3
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole!",
Rim Elevation,e
Invert F Elevation
Manhole Heights
- ( )
_
( )
(Feet) —
__ 4926.511F _ 4918 9411----7.57�
'i� 4926.53� 4918.9711 7.56!
�
j� 4925.89� 4919.885`6.0411
—� _
1� (—� �4922.491 � 4920.49!�AO�
Upstream Trench
Downstream
I
Width a
Trench Width
Trench
_ ---
�At
._
E
_
Earth
Sewer i
On
On At j
Trench {
Wall
Volume
ID # +:
Ground Invert i
Ground Invert ;
1
Length ;
Thickness
(Cubic
Feet (Feet)
(Feet) (Feet)
(Feet) !
(Inches)
_Yards)
_3.00!
34�
--6
4.5!
448.81'
3.60
89898�
4.5I
11.61I
m4.51
106.6(
_ 3.00'
— 114�
Total earth volume for sewer trenches = 1046.37 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
12
51tt" - T:
016
15
Jj
,014
1
13
10
STIm
F-4
10
9
.'yS
jlg'i6
y
NeoUDS Results Summary
Project Title: STRM-F
Project Description: FRV
Output Created On: 6/5/2007 at 1:44:51 PM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
(--� Time of Concentration
'Man elel
ID #
Basin
Area * C
Overland Gutter
(Minutes) (Minutes)
Basin
(Minutes)
Rain I Peak Flow
(Inch/Hour) I (CFS)
F 1 0.00 5.0 F 0.0
F- 0.0 F 13182.501
52.7
r 2 �0.00 5.0 0.0 0.0 �14992.50
60.0
1-3 0.00 5.0 0.0 F- 0.0 14992.50
4 0.00 � 5.0 0.0 �--_-�-��--0.0 F I5370.00
60.0
61.5
5-� 0.001- 5.0 0.0F0.0F 15370.00F
61.5
00 0 -5.0 0.0 0.0 12082.50
48.3
r 7-1
0.00 5.0 0.0 F 0.01 6445.00
25.8
8 0.00 5.0� 0.0 F-0.0�500.00
2.0
�� 0.00 5.0 I ^� 0.0 I 0.0
F-500.00
� 2.0
10 0.00 5.0 0.0 F-- 0.0 I
` 4285.00
F- 17.1
(�11 - 0.00 5.0 0.0 0.0
6530.00
26.1
12 0.00 5.6 F 0.0 0.0
4362.50
17.5
14 0 00 5.6F OA F� 0.0
1750.00----7.0
16
17
0.00 5.0 F - 0.0F.-0.0 I - 500.00
0.005.0r _0.0j 0.0r 14992.
2.0
60.0
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/l80) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Manhole
ID #
Contributing
Area * C
Rainfall
Duration
((Minutes)
Rainfall
Intensity
(Inch/Hour)
, DesignGround
Peak
I Flow
(CFS)
jElevation
(Feet)
Water
Elevation
(Feet)
;Comments
1-
0
j�- 0.0
�- 0.00
�52.7
4924.10
4923.68
-
0
.
.
i- 4928.52_
F
3
0.04
5.
362.95
60.0F4929.04
_4924._55
4925.48_-6v
-2--)F---`
5.0
1921.25
928.55
4926.7_14
�j -- 0.03 5.0 2195.71
61.5 �4927.99
4927.71
F6 F 0.02 F 5.0 F 2013.75F
48.3
4929.83
4928.27
r�
F7 !F 0 5.0 6445.00
25.8
4930.01
4929.11
F
18 0.01 5.0 - 250.00 F-2.0 4930.26
F4925.17-�
r 9 - F O r 5.0 F 500.00 F 2.0 4931.85
4925.22
10 --- 0 5.0 4285.00 17.1 4927 O
r 4927.18
11 0.02
5.0
1632.50
26.1 4928.20
Surface
4928.86 Water- _
;Present
rF 12 -� 0.01 5.0 r 1454.17-17.5 4929.41
4929.26
F-
14 0.01-5.0 875.00 j 7.0 4929.90
4929.61
F
16�i 0 5.0 500.00 1- 2.0
4931.82
4929.88
F�
1 -^
0.04
5.0 1499.25
�60.0
�492832
4925.82
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number j Calculated Suggested Existing
_�_--- (- -- --- -Diameter j Diameter Diameter-�w
!Sewer U stream (Downstream (Sewer (Rise) (Rise) (Rise) ;Width
ID # p 'Shape (Inches) (Inches) (Inches) (FT)
i ( (FT) (FT) (FT) i
j_._.. - -_ ..._. i
1 2 1 i Box! 2.1,F 2- 2; 5
2 ; 3 2 Box; 2.1 2' 21 5
4 5 f 4 �- pox! 2.2 21
21
5
5 6 5 j Box 1.8 2! 2 1---5
Sewer
ID #
U pstream
I
Downstream
Sewer
Shape
Diameter
(Rise)
(Inches)
(FT)
Diameter
(Rise)
(Inches)
(FT)
Diameter
(Rise)
(Inches)
(FT)
Width
(FT)
-6
F 7 -
F 6 -IR
nuo d
_
� 34.1 --
� ---- 36
�---24
N/A
r 7
F 8
�- 2
lRound
I 11.5
I--- 18 �- 18
�N/A
8
F9 -�
8 Round
�� 11.51
18
18
N/A
10
11
(- 6 ---Round
30.11 33
36
N/A
11 12 11 -Round-
25.9
F- 27
r 30 N/A
13 14
( 12 Round (--18.4
r---- 21
�- -- 18
N/A
15 16 F 14 Round 11.5
18
18
N/A
F 9 - 10 -17FRoundF 25.7F
27
F 18
N/A
F-31 17 F 3 Box
F- 2.1 (--
2
F-. 2
5
16
�-
17
Box
2.2
(----- 2
F 2
F 5
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer Design[FIFull Normal Normal Critical Critical Full
Flow ow Depth Velocity De th Veloci -[Velocity
[Froude
umber --- -
ID p � p tY � !Number Comment
(CFS) CFS) (Feet) (FPS) (Feet) (FPS) (FPS)
�l 60.0 41.0�2.00 6.0�2.00r
0.0�6.0�
N/AF
F 2 60.0 41.0 2.00 6.0 F 2.00
O -oF 6.0 N/A F�
r 4 61.5 41.0 2.00 6.1 2.00 0 0
6.1 + - N/A
--
r 5-
48.3r 41.0 1.82� 5.3 L43�
6.8�4.8
0.7F
r6
25.8 10.1 [ 2.00 �8.2 1.76 j
8.8 ( 8.2
F N/A-i
j 7
F2.0�6.7�0.56�
3.3r 0.54F
- 3.51 1.IF-0.9F
I 8
F 2.0F 6.7j 0.56I
3.31 0.54
3.5(� 1.11
j I 0
26.1 42.3 ( 1.70 6.31 1.66
6.5 .7 0.94
11
17.5 i6.0 (- 1.50 5.7 I 1.41
6.1 1 3.6 j 0.89 i-
j 13
7.0I 6.71 1.50 4.0F 1.02�5.5�
4.0; N/A
F15
1 2.01 6.71 0.56 � --3.3
[- 0.54 �-
3.5 � 1.1 ? - 0.9 �
I 9
1 17.11 6.71
1.501 9.71 1.42 ,
9.9 � -----9.7 N/A �
5FF
ormal Normal Critical Critical FullFroude
w Depth VelocityDepth(VelocityVelocityNumber) (Feet) (FPS) (Feet) (FPS) (FPS)
04l.0 2.00 6.0 2.00 0.0 6.i N/A3^r60.0I -
( 16 61.5 41.0 2.00 6.1 ( 2.00 (-- - 0.0 6.1 �N/A
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
FF-1Invert Elevation Buried Depth
-- - (
Slope Upstream Downstream Upstream Downstream
Fse--
wer (Feet) (Feet) (Feet) (Feet)
�-
Comment
I ' 0.201 4922.311 4922.10 F- 4.21
0.00
_
ISewer Too Shallow
F- 2 - 0.20 4922.53 4922.30
F 4.51
4.22---
1-4 Fo.26F 4923.20 4 222.84
F 2.79
F 3.711
F5 (0.20 4923.39 4923.21
4.44
F-2.78---
(- 6 0.20 4923.57 4923.39
4.44
4.44
f - 7 --F 0.40 F 4923.02 4922.31
1- 5.74
4.71
F 8 - 6.40 F4923.32 F 4923.02F
7.03 F 5.741
10 0.40 49 33.79 4 223.39 1.41
I 3.44
ISewer Too Shallow
11
F 13 --
0.40
10.40
4924.30 r--- 4923.80
1. 4924.61 [ _- 4924.31
2.61
[-.__-_3.79
1.89 Sewer Too Shallow
r_._ _.._..__._ 3.60 _----
15 0.40 4924.98 4924.62 15.34---- 3.78
F-9 0.40 4922.85 4922.65 2.85 F--- 4.17
3 0.20 F4922.65 F 4922.55F 3.67-- - 4.49 F----
16
[ 0.20 F4922.84
63 4922.3.71
�3.69f
�'�
Summary of Hydraulic Grade Line
Invert Elevation r Water Elevation
-__ I -I
'Sewer Surcharged! ��-_1�
er Upstream Downstream Upstream Downstream
FID# (Feet) (Fee) Length Length (Feet) (Feet) (Feet) (Feet) Condition
F 1 1[-4 03.54 103.54 922.31 _ 4922.10 4924.55 4923.68 Pressured
2 - 112.59 112.59 r-4922.53 4922.30 4925.48 4924.55 Pressured
F 4 180.37 180.37 4923.20 F 4922.841 4927.71 4926.71 Pressured
5�-�88.67 88.67 4923.39 F 4923.21 4928.27 -- -4927.71 Pressured
j 6 89.49-89.49 F 4923.57 F 4923.39 F 4929.11 4928.27 Pressured
F 7 178.65 178.65 F4923.02 F- 4922.31 4925.17 1- 4924.55 I Pressured
F 8
1 74.32 44.32 4923.32 F 4923.02 F 492-5-221 4925.17 FPressured
10 100.5 100.5 4923.79 4923.39 4928.86 1 4928.27 Pressured
11 122.74 122.74 4924.30 4923.80 4929.26 j 4928.86 Pressured
F re -su�red
13 75.14 r 75.14 4924.6, F 4924.31 4929.61 4929.26 Pressured
15 90.88 90.88 4924.98 4924.62 4929.88 4929.61 Pressured
�9 49.41 49.41 4922.85 4922.65F4927.18 4925.82 Pressured
3 51.26 51.26 [-4922.65 F-4922.551-4925.82 F 4-925.48 Pressured
16
(104.56
104.56
4922.84
4922.63 F 4926.71
4925.82
Pressured
Summary of Energy Grade Line
UpstreamDownstream
Manhole Juncture Losses Manhole
r__ Energy Sewer Bend Lateral Energy
1Sewer Manhole Bend K Lateral K Manhole
! ;Elevation Friction Loss Loss Elevation
( ID # ID # (Feet) (Feet) (Coefficient (Feet) iCoefficient (Feet) ID # (Feet)
FT 2 T 4925.10 1.421 0.051 0.001 - 0.00 0.00 1 4923.68
1 2 3 1 4926.031 -0.481 ^^ 0.05 0.03 j� 0.25 ( 0.42 ` 2 4925.10
0.33 0.19 r 0.00 ( 4 1 5 4928.301 0.81 0.4927.29
�- 00 --- F--44 ----ir -- 9 -
5 . r___._� I.- 4928.641 0.251 0.25 r 0.09--_..._. _._.0.00 i 0.00 I 5 ----1--- 4928.30
1 6 7 1 4930.151 1.16, 0.25 0.261 0.251 0.101 6 1 4928.64
7 1 4925.19 i 0.06 0.921 0.021 _ 0.00!, 0.001 2 4925.10
j 8 i 9 4925.24 0.031 1.321 0.03 0.001 0.00, 8 4925.19'.
11 4929.07 0.15, 1.32' 0.281 0.00! 0.006 I 4928.64
ID#
Energy Sewer[F3
Manhole
ID # levaton Friction
(Feet) (Feet)
end
end K
efficient 1 Loss
((Feet)
Lateral K
Coefficient
LateralI---EnerSewer
Loss
(Feet)
Manhole
ID #
Elevation
(Feet)
11
12 -� 4929.46 i 0.22 I 0.85 0.17 0.00
0.00
11
4929.07
13 �4 4929.85 0.33 - 0.25 1 0.06 r-- 0.00 �- 0.00
�12
4929.46
1 15 16 !F 4929.96 F- 0.03 I 1.01
0.02 l-- 0.00
OAO
F14
( 4929.85
9 10 4928.64 1.31 r 0.65
�0.95 0.00
f 0.00
17
4926.38
F- 3 - 17 4926.38 F 0.22 0.23 o. 13F 6.00F
0.00
F 3
F4926.03
16
F4
4927.29
0.47
0.05
0.03
0.25 I
0.41
17
4926.38
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
Man o el Rim Elevation
ID # I (Feet)
Invert Elevation Manhole Height
(Feet) I (Feet)
�1 4924.101 4922.10 F 2.00
I 2 4928.521 4922.30 F 6.22
3 r----4929.04 r------4922.531 - --6.51
I -4
I--. 4928.55 4922.84---� �5.71
5 F 4927.99 1- 4923.20 F 4.79
F 6-1 4929.8314923.391 6.44
! ' 1 4930.011 4923.571 6.44
8 1 4930.26 4923.02 r -�7.24
9 -- 4931.85 4923.32 - - 8.53
10 4927.26 4922.85
4.35
11 j-- 4928.20
i 12 4929.41
-- - ----.-.---_.__._._...._
14 4929.90 �-
4923.79F--4
4924.301--------..._.___
4924.61
41
5.11
__._.__.__...-._...._.__.._._._
5.29
j 16 4931.821 4924.98 1 6.84
i 17 i 4928.32 1 4922.631 5.691
F
Sewer
ID#
I Upstream Trench
Width
On At
Ground Invert
(Feet) (Feet)
Downstream
6onch Width
Trench
On At
Ground Invert
(Feet) (Feet)
Trench
Length
(Feet)
I
Wall
Thickness
(Inches)
i
Earth
Volume
(Cubic
Yards)
16.7F-9
-8
F--8.2F-9.8F
-1631
54
4.571
215
F'2
F-17.3F-9.8F'----16.7F--'-'--9
.8
F 1 12.59-F---
4.57F
354
F -4
F-13-8F-9-8
F 15.7F--9.8
F 180.37F-4--57F-456
F -5F-1
7.1 F-9.8
r 13.8F
9.8F 88.67F
4.57F
241
1--6
F-1241 4.51-
12AF-4-5F-6-49 F 3.00E-162
7
F-
F- -1 F -9 F-17865F--
4639 F-- - -125F-3 256F 355
F -8F-17.1 F-3-91- 14.6F-3-9F -74.32F-2.50 F-195
7.2 --
F- F---
F 10 5.71 11.2 5.7 100.5 4.00 151
11 -F-9 1 F-5-1 I 7.7F-5.1 F 122.74F---3.50F 146
F 10.7 3.9 1-3 F-- F- F 10.3 F--3". 9 75.14 F 2.50 97
F 1-5 F-- 13.8 F 3.91- 10.6F- 3.9 -90.88- F 2.50 F 153
F -9 F-8-8F-3.-9- F-1 I.4F-3-9F 4-9.41 F 2-50 F 61
-----17.2F-9.81- 51.26F-4 57 152
F 3 15 6 981
F
r 16
F 15.7F
9.8F
15.6F
9.8F 104.56
----F
F �4.57
287
Total earth volume for sewer trenches = 3020.4 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either I foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be I foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/ 1 2)+l
57
6
rF5
m
NeoUDS Results Summary
Project Title: STRM-G
Project Description: FRV
Output Created On: 2/16/2007 at 9:28:33 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
Manhole
7Basi7ni
Overland
Gutter
Basin _
Ram I
Peak Flow!
ID # J
Aa C�
(Minute )�
(Minutes)
(Minutes)`
(Inch/Hour)�
(CFS
!1 — I� - 0.001 _ 5.0) - 0.0[ - 0.0j1 3827.501115.3
O.00I 5.0 E 0.0, �16.0
3 0.000.00 5.0, T TM�0.0 0 0 �4�007.50�16.0, `
0.00� 5.0 0.0$ 0 0' 2187.50 8.8E
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Rainfall E
Rainfall (
Designs
Ground!
Water E
Manhole
ID #
Contributing'
Area * C
Duration
Intensity 'Peak
'
{
Flow I
Elevation'
i
Elevation,
!
Comments i
(Minutes);
--.,.__._.�._
(Inch/Hour)!
_.._.__.__ __�
(CFS.__- �..,.-.-
(Feet)
(Feet)
i
1
�0
0.0�
- 0.00
15 3 �
492 ---o
4923.91 i-
16Aj
4927 31
4925.33'
3 i
0.01,
5.0'
2003.75�
16.Oj
4926.88'
4925.82I
Rainfall
Rainfall ;Design;
Ground
Water
Manhole'
ID #
Contributing.
Area * C
Duration
Intensity ;
Peak
Flow
Elevation
III
Elevation,
Comments;
(Minutes);
(Inch/Hour),
+
(Feet)
(Feet) I
(CFS)
_ 492:733t
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Sewerr
ID#
Manhole ID Num_ ber '
_ l
Upstream'!
stream Downstream]
Sewer
Shape'
Calculated
Diameter
(Rise)
(Inches)
(FT) _
Su ested
Diameter
(Rise)
(Inches) ;
(FT_)
Existing!
Diameter
(Rise) Width
(Inches) (FT) a
.__(FT)
301
_ 24i
T N/A1
`---
-- -3-----1j___
2 -- -
Round;
-- 28.5jI._.
N/A
4_—
I _'_.__- _;
Round
-- 22.E
24
_ 241
N/A�
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
1 Design4 Full Normah Normala Criticah[Critic1[_
Fulj SIr
Flow ! FlowDepth Velocity Depthelocity VelocityaNumon
berComment
(CFS) (CFS)] (Feet) (FPS Feet) ;(FPS) (FPS)
w
1 16_0 _ 10_1! _ 2_00� �� 5.1 �1.42 6�7j 5.I N/A
f i
I- 16.01 10.1`. 2.00( 5 1; � 1 4 6 7 5.1 N/A;� s
I '
8.8
101i
1.43i.
36
1061.
.__._51055��
-
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
�� ! _Invert Elevation - Buried Depth _ ;F
ffS1o7pe,, Upstream Downstreami Upstream) DownstreamSewer IDifComment
(% (Feet) ! _ (Feet) (Feet) j (Feet)
it 1 110.20'I 4923.1411 4923.02I 2.17� -0.02 (Sewer Too Shallow,
_ . 7 _ 0
4923.21;' 4923.1411 67 2.17� Sewer Too Shallow
iF 3 F O. 26F 4923.38F 4923.221F441' Sewer Too Shallow]
Summary of Hydraulic Grade Line
Invert Elevation j Water Elevation„ lF
Sewer Surcharged _ ;
Upstream Downstream; Upstream Downstream) !
I ewer; Lengthy Length � , � � Condition
(Feet) ; (Feet)�I —[Downs
ID # (Feet) ! (Feet) (Feet) (Feet)
j 1 6199 �� 6L99j _ 492314; 4923.021 492533� m 4923 91 Pressured
37.23' _ 37.231 4923.21 4923.144 4925.82� �4925.33j red!
Pressui
_ 3
80.35E
_ 80.35�
4923 38
�923.3-
4926.331
4925.82j
Pressured;
Summary of Energy Grade Line
Upstream I Downstream +
3 Juncture Losses
Manhole Manhole
Energy Sewer nd' ;Lateral` EnerSewerManhole' Bend K Lateral K' ?ManholeElevation' Friction Loss ! Loss Elevation!
ID# ' ID # Coefficient; Coefficient ID #(Feet) J _ _ [Be
Feet)( (Feet) (Feet) ;
1 .O _-2 + `4925.73j —1.82 �0.05, ^0�.00 �OOI _ O:OO;r�1 4923.911
1_ _,_.._.._._1
2 3 4926 231 0.19I 0 77 0.31 0.001 O.00)[2 4925.71
0.00 70.0
[7= 4926.23
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
3
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole; Rim Elevation Invert Elevation Manhole Height
f ID # 1 (Feet) _ ._j ._._Feet)— - (Feet)-
- - -- -_
(-1, -J
4925.001 4923.02;1 1.981
(___2 ._
111 _4927 311 4923.11�[
`� 4926.88� 4923.2_67
4926_82�
- .4923.38'
3.4411
Upstream Trench
Downstream11
f
Width
Trench Width
��
Earth
Sewer
On At
On E At j
Trench
Wall
Volume
Ground Invert
I
Ground Invert
!
Length
Thickness j
(Cubic
(Feet) (Feet)
(Feet) ; (Feet)
(Feet)
(Inches)
yards)
I-_-._`.-
F_
__ 4.5]
3.5
4.5
61.99
3.001
---- 46j
6 81
4.5;
7.8;
4.5�
37.23�
3AO1
331
�
_
3 _
_
7-4.5
.-
Total earth volume for sewer trenches = 143.3. Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
El
,Y�v r m Cl n C
/ El
FES
S TSkj K- I
,S-rrvl f+ -K- 2
STM V K-1
cl
NeoUDS Results Summary
Project Title: STRM-K & L
Project Description: FRV
Output Created On: 6/8/2007 at 9:25:17 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
—F—Time of Concentration
Manhole
[Basin
Overland.
Gutter
Basin
�
Rain I
Peak Flow
ID #
Area * C'
Minutes
( )
Minutes
( ),
(Minutes
Inch/Hour
( )
(CFS)
1 0.001 5.01 0.01 0.01 3807.501 15.2
0.00 5.0 0.0 0.0 3807.50 15.2
�— 0.00 5.0 0.0 0.0 F 3807.50 15.2
4 0.00 5.0 0.0 F-6-61 2742.50 11.0
5 - 0.00 5.0 0.0 0.0 1065.00 4.3
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <= (10+Total Length/l80) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
`
Design,_
-
..
Manhole
Contributing
Rainfall
Rainfall
Peak
Ground'
Water
ID #
Area * C
Duration'
Intensity
Flow `
Elevation
Elevation
Comments
Minutes
(Minutes)
(inch/Hour),
(CFS)
(Feet)
)
Feet
( )
Surface
15.2:
4926.54
4926.85.
Water
Present
-.
0.02
5 0
951 87. 15 2 4935.56 4928.36
F-
3
0.01
5#1 1269.17• 15.2i 4935.99;1 4929.80,�
Surface
4
[70
5.0; 2742.50� 11.01 493208' 4932.34 Water
Present
—ti0
S Oi
1065 00
F-44935
_..
90
4932.52^
_
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
j
Calculated ;
Suggested '
Existing
Sewer:
ID #
Upstream;
Downstream;
Sewers
Shape!
Diameter
(Rise)
(Inches)
Diameter
(Rise)
(Inches) ;
i
Diameter
(Rise)
(Inches) i
(FI)
Width:
(IT)
_(FT)
. .
18
N/A.
Lam`_ .�'., ..�.`_.. Round .. _.._ 19.2; 21;
-I-I . . -
- * I ? ..Round! .. 16.1 18
18'
—�—
�--
....
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer Design Full NormalFNmal rri'i
cal Critical' Full Froude
ID FlowFlowcityepth VelocityVelocityNumber(CFS) (CFS) (Feet)PS) Feet) (FPS) (FPS)
1 15.2 12.9 1.50 8.6 1.39 8.9 8.6 N/A
F_ 2 15.2 F 12.9 F 1.50 8.6 1.39 F 8.9 F 8.6 N/A
3 - 11.0 14.9 0.96F 9.2 1.26 F 6.9 F 6.2 F 1.79
4 - 4.3 4.4 0.80 6.4 F 0.86 5.9 5-41 1.23
A Froude number = 0 indicated that a pressured flow occurs
Summary of Sewer Design Information
-� Invert Elevation F -Buried Depth
Slope
Upstream
Downstream
Upstream
Downstream
Sewer ID'
(Feet)
(Feet)
(Feet)
(Feet)
Comment
1 1 2.001 4926.381 4925.151 7.681 -0.11 (Sewer Too Shallow
2 2.00 4927.24 4926.38 7.25 7.68
-3F-2.001 4927.67 4927.24 2.91 7.25
r_-- 4 2.00 4928.78 F 4927.24F 612F 7751
Summary of Hydraulic Grade Line
-�-�- Invert Elevation Water Elevation
Sewer Surcharged
Sewer
Upstream Downstream Upstream Downstream
ID # Length Length Feet Feet Condition
( ) ( ) (Feet) (Feet)
(Feet) (Feet)
r 1-1 61.441 61.441 4926.38
49-25.151
4928.36 1 4926.85 Pressured
r -2F43.15F 43.15F 4927.24
F 4926.38
4929.80 F 4928.36 Pressured
F 3 21.28 21.28 4927.67
4927.24
4932.34 4929.80 Pressured
F 4 F 76-9F 76.9 4928.78
F -4927.24F
4932.52F 4929.80 Pressured
Summary of Energy Grade Line
Upstream
Manhole Juncture Losses
Downstream
Manhole
Energy
Sewer Manhole
ID # ID # �E (vat j n
Feet
Sewer
F( ict t)
Feet
Bend K
Coefficient
Bend
(Feet)
Lateral K
Coefficient
Lateral
(Feet)
Manhole
ID #
Energy
E (F ett) n
�1-2-1 4929.511 2.66 0.03 FO.00F
0.001
0.0011-
4926.85
2-F 3 4930.96 l -261 0.21
F0.24
0.00.
0.00 F 2
4929.51
3-F 4 - 4932.94 0.231 1.25FO.751
0.25
1.00
F 3
4930.96
F4
F 5
4932.98
1.46
1.25
0.57
0.00
0.00
3
4930.96
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole
ID #
Rim Elevation Invert Elevation
(Feet) I (Feet)
Manhole Height
(Feet)
F 4926.54 �- 4925.151
1.39
2 4935.56 4926.381 -9.18'
3 1 4935.99 1 4927.241 8.75
4 -1 4932.08 4927.671
4.41
5
1 4935.901
4928.78
r---7.12
Upstream Trench
Downstream
Width
Trench Width
Earth
Sewer
On At
On At
Trench
Wall
Volume
ID #
Ground Invert
Ground Invert .
Length
Thickness
(Cubic
Feet
(Feet) (Feet)
(Feet) (Feet)
(Feet)
(Inches)
Yards)
—1
18.4
3.9
1- 2.9
3.9
61.44
2.50
116
F 2
17.6
3.9
18.4
3.9
F---43.15F
2.50
F 142
3
8.9
3.9
17.6
3.9
21.28
F 2.56F
44
4 —
14.9
3.3
18.2
F 3.3
76-9F
2.66-F
211
Total earth volume for sewer trenches = 513.27 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
S TRYvI - � -- H
3 z cl �. i cl
cl
• •
NeoUDS Results Summary
Project Title: STRM-H
Project Description: FRV
Output Created On: 6/5/2007 at 11:24:25 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
—F— r---_ Time of'Concentration
Manhole Basin Overland Gutter Basin 'Rain I Peak Flow
ID # Area C (Minutes) (Minutes) (Minutes) (' Inch/Hour) (CFS)
(-� 1 - 0.00 F-5.0 1— 0.0 I---- 0.0 r 935.00 F-3.7
2 0.00 F- 5.0 A l— 0.0 F 935.00 3.7
F- 3 — o:oo o.o ( o.o 1--- o:o F— 0.00 F— 2.6
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
�_ ---; RainRainfall 1 Design rGround Water F
Manhole Contributing i Duration Intensity ;Peak ,Elevation Elevation 'C4
ID # Area C ; Flow i I )
I ;(Minutes) !(Inch/Hour) ( I (Feet) (Feet)
_ i (CFS)
-
- 1 -�-- --- -- --O--- --0.0 -- _._..---0.00G __...-3.7 L[ 4
._ 4924.50
i 922.491
! 2
Oi
_._--_._, 3—
0
'_ ---
5.01 935.001 3.7
............. ...-- _...-
0.01 0.00' 2.6
j 4929.381 4923.92 j
4931.50 4924.55
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
Calculated
I Suggested
Existing�
r---'
,Sewer
Diameter
Diameter
Diameter
Downstream
#Sewer
(Rise)
(Rise)
(Rise)
Width
1D it
jUpstream
l
Shape
(Inches)
(Inches)
(Inches)
(FT)
(F')
(FT)
(7')_
(-1 —F
2--F1
---iR
_
uo nd
14.5
� 18 I
18
N/A
2
3
2 —
Round
12.7
18
�T 12
N/A j
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer iDe gs n Full Normal Normal Critical[Cr
itcalFullFroude
ID Flow Flow Depth Velocity Depthelocity VeocityNumber(CFS) (CFS) (Feet) (FPS) (Feet)(FPS) (FPS)
1 3.7 6.7 0.80 3.9 0.76 4.2 2.1 0.85
2 2.6 2.3 1 -661 3.3 0.71 4.4 3.3 F—N/A
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation Buried Depth T
Slope ;Upstream Downstream (Upstream ownstream j
,Sewer ID % I (Feet) , (Feet) I (Feet) (Feet) j Comment
1 ----�
�— 0 40 (� 4923.12 4923.02 h 4.76 (— --0.02 Sewer Too Shallow �
1 2 1 0.401 4923.40 f 4923.13 7.10
Summary of Hydraulic Grade Line
Invert Elevation Water Elevation
' Surcharged
mI Downstream Upstream
Length
[ConditionSewer
gtd
ID#Lenth (Feet) (Feet) (Feet) (Feet)
(Fee(Feet)
F_ 1 1 24.91 F-- 0 r 4923.12 F- 4923.02 [-4923.92 I 4922.49 Subcritical
923.40 r 4923.13 4924.551-- 4923.92 Pressured
(2-1 66.57 66.57 �4
Summary of Energy Grade Line
Upstream
Manhole
Juncture Losses
Downstream
Manhole
ID#
Energy
Manhole ---Bend
ID #
_ _
Sewer
Friction
_
K
Coefficient
[Bend
oss
Lateral
Lateral K
Loss
Coefficient
ManholeElevation
ID #
EnergySewer
Elevation
(Feet)
Feet
(Feet )
eet)
(Feet)
(Feet)
1---F---2
4924.15 I
3� 4924.72
-1.66
O.35F-
0.05
- 1.25
( 0.00
0.21
7 6.00 0.00
F 6.00 0.00E-2--
r -- 1 -F-4922.49
4924.15
2
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole Rim Elevation J evn t Elevation ;Manhole Height
ID it I (Feet) I (Feet) I (Feet)
�i -� 4924.50 4923.02-1.48
2 4929.38 4923. l2
6.26
3 _4931.50 4923.401 �� 8.10
Upstream Trench
Downstream
i
Width
Trench Width
I
T—
I�
�—
Sewer
�On
Ground
At _
Invert
On
Ground
At
Invert
Trench
Length
Wall
Thickness
Earth.
Volume
ID #
(Feet)
(Feet)
(Feet)
(Feet)
(Feet)
(Inches)
(Cubic
( Yards)
1
F-12.6
_
F-3.9
_ _
I 3.0
_ 3.9 I
24.91
�2.501
' 26
2
_ 16.9�3.3
13`2
3.3�
66.57
2.00�
153
Total earth volume for sewer trenches = 179.76 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
s .'L
NeoUDS Results Summary
Project Title: STRM-I
Project Description: FRV
Output Created On: 2/16/2007 at 9:33:57 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
i_
I __7 Time of Concentration
Manholell
Basin �
Overland;
Gutter
Basin j
Rain I
Peak Flow':I
ID #
t
Area * C
(Mmutes)=
I
(Minutes)
(Minutes);
(Inch/Hour)'
(CFS)
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (I O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Designs
Manholel
Contributing
*
Rainfall
Duration
Rainfall
Intensity
Peak
`
I
Ground '
Elevation'
Water
Elevation!
I
Comments!
ID #
Area C ;
(Minutes)!
(Inch/Hour),
Flow
CFS
I
(Feet)
(Feet)
1
6FO
0 00
i
9 9!
4923.48
�
`Surface
4923.51
j
Water
__-__._
_____.__.._ .._
__._: _._�
__..__. _...
__ _.-.__ ;Present
�I.
—
- 1286.25
�--10-3�:��
4929.44;1
4923.891
F 3
F 9
S.OI
_1942.50
7 8
4929 29
4924.62I
'j
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
E
Manhole ID Number
[Calculated
gcsteqjj
istm
{
Diameter
Diameter
Diameter
Sewer'
ID # !
Upstream
Downstream.
Sewer(
Shape
(Rise)
(Inches)
(Rise)
(Inches)
(Rise)
(Inches) }
Width
(FT) I
- (FT)
_ (FT)
(FT)
_1
I��I
�-�(-
f
Roundj
21.2��
24
18
N/A
`-.--:
--- 3-._ __a
_� ..I `__ .__ _ ;Round
__ _.-_19.1]_
21
- —18i
-N/A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
ID
Design;
CFS)
Full 'FNall[Normal
Flowelocity
(C1 S)a(FPS)
Criticali
Depth
(Feet)
Critical
Velocity
(FPS) i(FPS)
FullSewer, ,
Velocity
FroudeFlow
NumberE1
Comment
J
10.3j
6.7i
1.50
5.88
, 1.23i
`6.6?
5.8]
7 N/A
j
__?_
778;
6.7
— 1.501
__ 4.-
1.06�
._ 5 8
-^ 4_4
N/A
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
F- Invert Elevation i Buried Depth
I_ __ 11 .__.. __ __ -JI
Sewer ID! Slope: Upstream Downstream' Upstream Downstream! Comment 3I
(Feet) f (Feet) (Feet) (Feet)
I
1 0.401 4922.17il 4922.0111 5.77' 0.03i Sewer Too Shallowll
l i 11 0.40' 4� 922.45E 4922.iq'IF 5.34i 5.751� i
2
Summary of Hydraulic Grade Line
Invert Elevation Water Elevation }
`Sewer; Sewer i Surchargeda ! a
Upstream; Downstream: Upstream Downstream`': j
{ _ ;Length' Length ;Condition
ID # (Feet) (Feet) (Feet) ; (Feet)
f .(Feet) j _ (Feet) -- _.__ _ ___ --_.-_ _ _ - __ __ ....
1 40.46' 40.46111
4922.17€ 4922.01 4923.89' 4923.51 Pressured)
2 1 66.02f 66.02( 4922.45 4922.19 4924.62( 4923.8911 Pressured)
Summary of Energy Grade Line
Upstream Downstream
Juncture Losses
Manhole � � Manhole
Sewer
Manhole
ID # ;ElevatonFriction(
Energy
(Fe(Feet)
Sewer j
i
!Loss
Bendateral(�anholeID#
;Feet)
[Bend
Coefficiet,
Lateran
LossElevationCoefficient:
(Feet) [
(
D#
_
Energy
(Feet)
� 1
2 J
4924.42�
0.91 j
_ 0 05
09001[
_4923.51 }
3 (
4924.92
70.361'
F ^ 0.471
0.14F
_ 0.00
0.00;r
2
4924.42
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manholej Rim Elevation, Invert Elevation] Manhole Height]
ID # i (Feet) (Feet) (Feet) 9
923.4814922.01 ! 1.47
i
4929.44 __4922.171 7.27
^�
_ _ __.4929 29!
4922 45
_...__ .__6 8I
3
j11
Upstream Trench
Width
Downstream i
Trench Width,Earth
I
v
On j At
On I At
Trench
Wall
Sewer
Ground i Invert
E
Ground Invert
Length
Thickness
Volume
ID #
(Feet) (Feet)
(Feet) (Feet)
(Feet)
i
(Inches)
Cubic
Yards)-..;
1
14 614 6'��3.9I�3.0
�3-9
40.4
2.50�
�� 13 8
3
14 6
3 9
66.02€
2^50
142
Total earth volume for sewer trenches = 194.67 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
4
s+rr► - 3-
STIA/
--------- -- ----
NeoUDS Results Summary
Project Title: STRM-J
Project Description: FRV
Output Created On: 2/16/2007 at 9:37:23. AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
anhole
Basin
Overland!
Gutter 1
Basin
Rain I
Peak Flow
F-11)#
i Area * C+
(Minutes):
(Minutes){
(Minutes)`
(Inch/Hour)
(CFS) 1
II_ il____ 0.0011__ s.o,lo.o l - _ �o.o l 6182.5011 24.7
22 IF 0.0015.01 6.01�O.OF 6182.50124.71
1���11hIlli�X1}l�ll�l��l�l]�.I<I►�.ill�l�',
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <= (IO+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Manhole,
Contributing!
Rainfall
Rainfall
Design;
Peak 3
Ground
Water
ID #
Area * C
Duration'
Intensity ;
Flow ;
Elevation'
Elevation!
Comments;
(Minutes);
(Inch/Hour)�
_(CFS.._.....-__)_-
(Feet)
(Feet)
I24.—[4926.0011
-4924.13
�!
-- O.OL
SA-j
2060.83
24.7!-
4929.89
- 4926.30�
04
5.0
232.50'
0--
4931.65
4927.27if,
7
Rainfall
Rainfall
Design n
Ground
Water #
i
Manhole;
Contributing
`;
Peak
Elevation;
Comments;
ID # !
Area * C
Duration
Intensity
I
Flow
Elevation;
(Minutes).
(Inch/Hour)i
(Feet)
(Feet)
.(CFS)�
I '...._.°
_-_Oi
. __ __Sy0(
500 00
_._ _2 0
4929 23
4927.35
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
___--______
Calculated f
Suggested
Existing
___
Diameter
Diameter
Diameter j
Sewer
ID # i
Upstream' DownstreamI
Sewer
Shape,
(Rise) I
(Inches)
(Rise)
(Inches) j
(Rise) 1 Width'
(Inches) (FT) i
i
Round3�---�29
(FT)
5
_(FT)._._ I
30
. (Fr
24i N/A
��
F
_ _3 �F
2 j
Round
8,6�
l.gi
18�
_ N/A�
��
4-��
2_ __i
I_.__�—
l_R_ounds
.�L_
12.11
._ 1
- 1
8
1 1818
N/A�
A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
,Sewer.
Design`
1
Full !Formal
Normal'+
i
Critical'
Critical
Full
1
Froude!
Flow
Flow;Velocity
Depth ;
Velocityl
Velocity
NumbedFS)?
Comment:ID
(CFS)
(FPS
(Feet) ;
(FPS)
-(FPS)
r�
_
38i —._ 2- _- 0.5' 0_-.9?I�_J
---3
..__ 2.01
5.8
0.611
_.__._3.0
0 54
.._.-_ .3 SI
_,_.___ 1 li
0.77i1
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation Buried Depth
FSewer
Slope
Upstream.
Downstream
Upstream]
j
Downstream
ID
% o ;
(Feet)
(Feet) m
(Feet)
(Feet) '
Comment
1 0.40] 4924.12 I 4924.03F� 3.77 I_ __— -0.03 (Sewer Too Shallow
__ _ __ ___ — ___ . _
_I ; _ 0.40; 4924.71' .. 4924T13_j __—:T� R, F 4.2611 I
IF 3 ? FO.40 4924.95F 4924.1511F 2.78IF 4.24E
Summary of Hydraulic Grade Line
Invert Elevation
Water
Elevation
t I Sewer ? Surcharged
Sewer
� �
Upstream= Downstream
Upstream,
Downstream,
i
ID # Length( Length
(Feet)�(Feet) j
(Feet) (Feet)
(Feet)
�—_____.��____._�_!
(Feet)
Condition
4924.12 T rvm4924_03 4926.30T
- 4924. 3
Pressured;
--
23.18 23.18
2 145.811 -11
F 4924.71' _ _4_924.13; 4927.27
F 7 7 4926.301
Pressured;
l[—
200.32
__ 200
4924.15
492735[
6,30j
Pressuredi
Summary of Energy Grade Line
Upstream
j
Downstream
Manhole
Juncture Losses
1
Manhole j
-�
tF
Sewer;
---- _
Ener
ElevationE
Sewer
Frictions
j[oeffIcient
_ _ _ _ __--_
Bend i Laterals
Bend K Lateral K
Loss Loss
-_ - -
Ener
Manhole;
Elevation
ID #
(Feet) i
(Feet)
s CoefficientfID#_
(Feet); _ i _ (Feet)
j (Feet) —
j _1 j _4 2- 7.27j�3K14j µ4 0.0510 00 _0.00 — OAO 4924.13:
} 2 3 4927.28s 0.01# 0 22 0 00 - _-. 0.00, v 9961— 4927.271
IMF-
4 I
4927.373
-T. 0
F 2
- 0 00 11
F____ _. 0 00
0 00
_
4927 27
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
3
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole; Rim Elevations Invert Elevation, Manhole Height!
ID # Feetet)
�I 1 IF__ (-4926.00� .._ _ (Feet) � .__ (Fe ._
` --- -_ 24 03 1.971
!��929.89
4924.121
5.77�
I '.__mil 4931.65
f 4924.71 __. _ _ _.6.94i
'
__ __4929.231
4924.95
— —_._._.. 4•18
I
Upstream Trench
Width
Downstream
Trench Width
Sewer
ID s
On
Grounds
(Feet ---)_
At
Invert =
Feeet
et- _ (Fe
_--)F)Feet
On €
Ground
(-_
At
Invert
(>Feet.. i
Trench
Length
�__..T)
Wall
Thickness
(Inches) (_______i
Earth 1
Volume j
(Cubic I
_Yards) j
3.9i
145.811[
2.50
2641
3.9f
2OL332J
, _F 2.501
� 250
Total earth volume for sewer trenches = 536.75 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
9
FES
NeoUDS Results Summary
Project Title: STRM-K
Project Description: FRV
Output Created On: 2/16/2007 at 9:40:27 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
of Concentration
Manhole
Basin '
Overland]
Gutter {
Basin
Rain I
Flow;
ID #
-- - - #__'
Area * Ci
_ --- I
inutes '
_ �,
Minutes '
- - _)(
mutes
(M -�l
Inch/Hour
nch/H- - �
feak
CFS
II- - 1 1I 0.01 �130.0011 0.5
F -210.00i 5.0 O.Of 0.0 —56.661F 0.51
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Manholei
ID #
E
Contributing
Area * t '
Rainfall
1
Duration
(Minutes)!
Rainfall 1
i
Intensity j
(Inch/Hour)'
Designi
Peak :
Flow t
CFS
Ground'
Elevation;
(Feet)
Water
Elevationj {
(Feet)
m
Comentsi
i
___..�---- 0.f
0 0
0 00;
-0.5
4927.50':
4923.891
_I `
"_`
5 0{
130 003
LLa 0 5#
4933 11
v 4927 84Y
_
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
j
Calculated
Suggested
;Existing
Diameter
Diameter
Diameter
Sewer' ;
Upstream';
Downstream
Sewer
(Rise)
(Rise)
(Rise)
Width!
I
ID # !
Shape
(Inches)
(Inches)
(Inches) i
(FT) 1
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
S Iwllen
Designs
Flow f
(CFS)
Full
Flow `
(CFS)
Normal
Depth
(Feet)
Normal';
Velocity
FPS)
Critical][C-
Depth
(Feet)(FPS)
ritical]
elocity
Full ;
Velocity{NumberComment
-(FPS
Fro de
170.51
14.9'�0.19
391
030
21-031
1.92�—`
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert. Elevation -_ .Buried Depth _-
x Slope Upstream. Downstream] Upstreama Downstream,
Sewer IDS oho Feet Feet ! Feet a Feet Comment j
I_ 1 jj_2.00 4927.54il 4926.11 4.07 -0.11 Sewer Too Shallow!
Summary of Hydraulic Grade Line
_
r� Invert Elevation _Water Elevation j�
`Sewer;FLenh11",,,
Surcharged`
Length
Upstream
i
Downstream
UpstreamI
Downstream
Conditions
ID # j(Feet)
(Feet)
(Feet) _
(Feet)
(Feet)
1 !
7L65
4927.54I
4926y11
4927 R
4923.891
Jump
Summary of Energy Grade Line
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes'the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
ID # 11 (Feet) 11 (Feet)
'I_1 _11_ �4927.50J1 4926.1111 1.391
F- 2 1 4933.11 i1927.54'F 5.571
3
Upstream Trench
Width
Downstream
Trench Width
Sewerj
On
At
On
At
Trench
Wall
Earth
Volume
I
Ground
Invert 3
Ground
Invert i
Length
Thickness .
Cubic
(Feet)
(Feet) (
(Feet)
(Feet)
(Feet)
(Inches)
yards
` _ 1 j
____ 11.2
_ 3.9
_ 2.9
_ _ 3.9{
__— 71.65j
2.50�
_ —653
Total earth volume for sewer trenches = 64.65 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
0
5
',�, 57I7.AJ
NeoUDS Results Summary
Project Title: STRM-L
Project Description: FRV
Output Created On: 2/16/2007 at 9:42:00 AM .
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
�--- Time of Concentration `
Manhole;
Basm
Overland'[Gutter
Basin i
Rain I
Peak Flow
ID #
Area * C
(Minutes);Minutes)]
(Minutes)
(Inch/Hour)
(CFS)
2
1 11 1 1 1 1 1 1 1
0.011 3497
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/l80) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
1
I
Manhole!
ID # !
_�_i
Contributing'
Area * C
Rainfall
Duration !
(Minutes)
Rainfall
Intensi
(Inch/Hour)!
Design
Peak
'
Flow '
CFS)
Ground
Elevation'
(Feet)
Water
Elevation'
(Feet) I
j
Comments;
!
I
4923_891
�
-K-714#F
4933.981
4927 76]-�
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
�-
Manhole ID Number
__._
Cal
_ culated `
ste
Sugged 11
xisting
Diameter ?
Diameter j
Diameter
Sewer!
Upstream.
`
Downstream!
Sewer!
(Rise)
(Rise)
(Rise)
!
Width
i
ID # ;
!
Shapel
(Inches)
(Inches)
(Inches)
(FT) !
(Fr)
(F.T)
1
E 2
_�
Round
� � 17.611�
18
1 181
N/Ai
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer
Design`
low
Full '
Flow
Normalj
Depth
Normal (rri'i
Velocity]epth
cal!
Critical
Velocity
Full
VelocityFroudeComment;ID(C;
(CFS).
(Feet) !
(FPS) =IIIFeet)
!
(FPS)
^T(FPS)
Number
r 1
_ 14At
14.9
1_15I
9.
1.36�
_�83�
7.
1Y57
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation IF Buried Depth --
Sewer ID,r1807
a Upstream: Downstream
_ (Feet) j (Feet) I (Feet) i (Feet) Comment
U stream, Downstream
1 2.00 4926.40 4926.10 6.08E -0.10 Sewer Too Shallow!
�.____J __ _.t __ ._�_— _ _�
Summary of Hydraulic Grade Line
�� _
Invert Elevation Water Elevation
j Sewer
Sewer
Length.
Surcharged'
Length
Upstream
Downstream]
Upstream!
Downstream
E
I ID #
(Feet) ;
(Feet) _.�
j (Feet)
(Feet) I
I
(Feet)
_
(Feet)
Condition;
—715_160.03�
_ 4926_40f
4926�
4927 76!4923.89j
Summary of Energy Grade Line
Upstream Downstream I
Juncture Losses iI
Manhole Manhole f
Sewer.
Manhole
Energy
Sewer
Bend K j
Bend
Lateral K '
Laterah
!
Manhole;
Energy
ID #
ID # j
Elevations
Friction
Coefficient'
((Feet)i
Loss
Coefficient,
Loss
ID #
Elevation
(Feet)_
(Feet)
____.__._ S�)
(Feet)
eet _.
l_1 =I_ 2 11 4928.8311 4.94�1 0.005f1 O.00l 0.0011 0.00II 1 �I) 4923.891)
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
I ID # 11__ (Feet) al _ _ (Feet) _.r I Feet) _._
I� 4927.50;�926�10� 1.40j
F 2 11 4933.981 4926.401F 7.581
3
Upstream Trench i
_ Width
Downstream
Trench Width
(
Sewer
On
At 3
On
At
Trench o
Wall
Thickness
;Earth
Volume
ID #
Ground
Invert II
Ground
Invert (
Length
(Cubic
(Feet)
(Feet) 1
(Feet)
(Feet)
(Feet)
(Inches) !
yards)
29MIiF
3 9;
V—� 15.16(TM
i �2v50�
21j
Total earth volume for sewer trenches = 21.16 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be I foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
0
5Te YJ , N - /l/N
yl
NeoUDS Results Summary
Project Title: STRM-M
Project Description: FRV
Output Created On: 2/16/2007 at 9:43:33 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
t� y Time of Concentration
Manholes
Basin I
Overland
Gutter
BasinV
ain I
Flow
ID #
Area * C`
�_
(Minutes);
(Minutes)
(Mmutes)!h/Hour)
lieak
(CFS)
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (lO+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Rainfall '
Rainfall
Design?
Ground!
Water
Manhole
Contributing'
Duration!
Intensity 1
Peak
,
Elevation!
Elevation`
Comments;
ID #
*
Area C
(Minutes)'
(Inch/Hour)`
Flow E
CFS
f
(Feet)
(Feet)
; )
89i
1._31
4935 00'
4925 98
f-----
__�(
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number 1=
Calculated
-Suggested
Existing
Diameter
Diameter
Diameter
Sewer;
ID #
Upstream
€
Downstream)
Sewers
Shape,
(Rise) f
(Rise)
(Rise)
Width
.
(Inches)
(Inches)
(Inches)
(FT)
1
i�
__ �.._
._ ��
(FT)
�) __J
_ _I
_lam
_? 'I
ss
Round
l l �i
.
1.8
_W N/Ai
�2 ��
3 _ i
2 __— ;Round;
- - —11.0`
18F
_ � m mm18i
N/Aj
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Design
Full `,
Normal
Normal
, Critical{[Critical
Full
Froude
j
Sewer.
ID
Flow
Flow ;
Depth !
Velocity]
Depth
Velocity
Velocity
Numbers
luomment;
4---
(CFS)
-
(CFS)
(Feet)
(FPS)
(Feet)
(FPS)
(FPS)
j J
v
�.57j
- - 2.Oi
0.44�
2.9!
0.7
0.55�m
Ir 2 4
_ 1.3
— 4mT
7E53
2.3f0.44
2.9
—
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
��'— Invert Elevation Buried Depth
Slope
Upstream
Downstream
Upstream,
Downstream,
Sewer IDI
eet €
Feet
Feet
Feeta
Comment
1 0.20'• 4925.41 4924.98 8.09 0.01' Sewer Too Shallow
j�_._._.__J�� m_ 1 _ - _ _I
F —210.20 4925.52i 4925-421F 0.0018.08 Sewer Too Shallow;
2
Summary of Hydraulic Grade Line
��-
�-
Invert Elevation Water Elevation
Sewer;
s
Sewer ;rLen
gtgth
hConditionsID#
Feet ieet
rcharged,
pstreamDownstream
(Feet)
(Feet) i
Upstream;
(Feet)
Downstream
(Feet)
fLen
�
216.461
4925.41
4924.98j
4925 98[
4923.89j
Subcritical)
j—-4925.52
4925.42
4926.06
4925.98j
Subcritical
Summary of Energy Grade Line
Upstream Downstream
Juncture Losses
Manhole Manhole
Energy I, Sewer
ID # 11 ID #
Bend } Lateral!s Energy
Bend K Loss Lateral K ( Loss Manhole Energy
oefficient ,.. Coefficient! ,— I —
1) 1 11__2 26.05]1— 2.16�j� 0.051� 0.00il 0 00�1 0 001) 1 � 4923.891
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user eiven trench side slope is 1.
Manhole; Rim Elevation' Invert Elevation; Manhole Height,
ID # J(Feet) —(Feet) �� (Feet)
4926.471_ 4924.98111.49i
4935.00i _4925.41 15911
�1.501
3
Upstream Trench '
Downstream [
Width
�''=
Trench Width
On
At
On i
At
Trench
Wall
Earth E
Sewer
Ground '
i
Invert ;
Ground
Invert ;
Length
g
Thickness i
Volume
ID # �
(Feet) 1
(Feet)
(Feet)
(Feet) ?
(Feet)
I
(Inches) i
(Cubic
a___
-
_..._._____ ._
_ _ __:
_. __ _ __ .+
..______
_Yards)
L
_19.3_.3�1m
_.,_..391
216.4611._________`•50
�__-__'
442
9.___
..3 3 9'
__. _52�.36E
. 2.50!
_.._..._W.107
Total earth volume for sewer trenches = 549 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
C!
S-T",-2M-N-d
SrMH -N-
3
S 7_U -N- I
NeoUDS Results Summary
Project Title: STRM-N
Project Description: FRV
Output Created On: 6/5/2007 at 11:37:17 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
r—_—�._
Manhole Basin TOverland Gutter Basin RainI Peak Flow
ID # 'Area * C)(Minutes) (Minutes) (Minutes) }(Inch/Hour) (CFS)
1 1 0.001 5.0 �� 0.0 � — 0.0 �-3167.50 F 12.7
2---0.00F 5.0F 0.0�� 0.0j 3167.5012.7
F 3 —F 0.00F 5.0F 0.0E--- -0.0J 3167.501F— 12.7
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (IO+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be.
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
—�—��—;Desi n j r!
Rainfall Rainfall g ! Ground Water
Manhole ,Contributing I Peak i
1 ID # Area C , Duration I Intensity a ;Elevation Elevation 'Comments I
* Minutes ( Inch/Hour Flow Feet Feet
'(Minutes) �( ) (CFS) (Feet) (Feet)
10 0.01
0!0.00 12.7 r _ 4928.601 4925.781
5.01 1583.751 12.71 4935.00 4930.53
3..__ _.. ....._. - .. -.
0 5.0 ! 3167.50 12.7 ; 4934.901 4931.68 I
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
Calculated
Suggested
j Existing
Diameter
Diameter
Diameter
iSewer;Upstream
ID #
Downstream
Sewer
Shape
( (Rise)
(Inches)
�— (Rise)—
{ (Inches)
(Rise) Width
(Inches) (FT)
(FT)
i (FT)
i (FT)
1 --
1
Round--
i 19.3
i _�__
21 18
N/A
— 2 1 3 j
2 iRound
19.3
21
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
r----
Sewer iDesign
ID Flow
1--.._W.._.
Full iNormal Normal
Flow 1 Depth Velocityh
�.._.�.--. ._._.
al Critical Full Froude l
Velocity Velocity Commend
FDe
((CFS)
(CFS) j (Feet) (FPS)
) i (FPS) , (FPS) Number
I ' I
12.710.5� 1.501 7.21 I.321�-7.71�7.2N/AI�v—._
12.7 10.5 1.501-7.21 1.32F 7.7F 7.2F N/A1—
�—
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
------------_._..—.
{ Invert Elevation Buried Depth
Sewer ID Slope ;Upstream ;Downstream Upstream ;Downstream
1 % ' Feet Comment
(Feet) (Feet) j (Feet) } (Feet)
1 i 1.00 4928.421 4927.061, 5.081 0.04 ;Sewer Too Shallow
1 2 1.001 4928.53 ; 4928.421 4.871 5.081
Summary of Hydraulic Grade Line
Invert Elevation Water Elevation
Sewer F(F
ed_� _.
Sewer Length ,Upstream (Downstream Upstream i'Downstream
j ID # I (Feet) (Feet) i (Feet) i (Feet) (Feet) [Condition
1!� 136.18 136.18 4928.42 r 4927.06 4930.53 4925.781 Pressured
_ I _
2 �10.56 10.56I— 4928.53 ��4928.42-4931.68 �4930.53 Pressured
Summary of Energy Grade Line
Upstream Juncture Losses
�
Downstream
Manhole
Manhole
Energy Sewer Bend CLateral Energy
Sewer Manhole Elevation Friction I Bend K Loss Lateral K Loss Manhole Elevation
ID # i ID #
(Feet) (Feet) Coefficient (Feet) Coefficient i (Feet)
ID # (Feet)
�--1 [-2
i 4931.33 F 5.55 [-0.97
[ 0.00
F 0.00 00 0
F
1F4925.78
I—-32
F4932.48
( 0415-�
1.25
1.00
0.00 0 00
r—
2
-4931.33
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole;Rim Elevation Invert Elevation Manhole Height
ID # ( (Feet) ! (Feet) (Feet)
j— 1 i— 4928.60 ��—4927.06 j .54
2 !' 4935.001 4928.421 6.58
3 ^� 4934.901 _ 4928.53 � �� 6.37
F
[Up am T
Width
Downst ream
FTrench Width
``
Sewer
ID #
On
Ground
I (Feet)
�rench
-
I At
Invert
I (Feet)
On At
Ground Invert
(Feet) (Feet)
Trench
Length
(Feet)
Wall
Thickness
(Inches)
Earth
Volume
(Cubic
Yards)
F 13.2
3.9F
3.2j 3.9F
136.181
2.501
155
—
2
12.8�_
3.9�
13.2
�� 3.9�10.56�
2.50�-_-20
Total earth volume for sewer trenches = 174.75 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either I foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
3 3 2�74
FES
NeoUDS Results Summary
Project Title: STRM-O
Project Description: FRV
Output Created On: 2/16/2007 at 9:46:43 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration E�
{
Manhole}
Basm
Overland',
Gutter
Basin
Rain I ;Peak
Flow
ID # ;Area
* C
(Minutes)
�
(Minutes)
(Minutes),
(Inch/Hour)
(CFS)
0.00,
5.0`
0.0
6 q
4445.00
17.8'
10
_ � : 0._-
�
5� 0.01 � 0.0 4445.001 17.8
IF 0.00
_ 5.0` 00) 0.0 3885.00 15 5i
IE 0.00
5.0 0.0} 0.0 3430. O 13.7E
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (IO+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Rainfall
Rainfall
Design
Ground
Water
Manhole:
Contributing:
1
* ;
Duration
i
Intensity
Peak
1
Elevation.
Elevation3
i
Comts men
ID #
Area C _3
(Minutes)]
(Inch/Hour),
Flow
(CFS '
(Feet)
(Feet)
j
0 0;
0 00,
17
4928 00�
-._
�4925.84
0.01;
5-- 0
6T
17.81
4937.18
4929.69;F
�7_.
I '
0.01;
_ _
5.0;
W1481
1942.50
15.51
4937.111
4931.111
Manhole
i
ID # 1
Contributing
Area * C
____... ............. m_.....
Rainfall
Duration
(Minutes)!
Rainfall !
Intensity 1
(Inch/Hour);
Design
Peak
Flow
Ground
Elevation
(Feet)
Water
Elevation)
(Feet)
Comments'
I
_- . ? 0
F 0
13.7
- 4936 46
e 4931.72'
^�
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
!� `,Manhole
k
Sewer!
ID # i
1
Upstream?
ID Number +�
Downstream)
((
Sewer
Shape-
Calculated
Diameter
(Rise) !
(Inches)
Suggested
Diameter '
(Rise)
(Inches)
Existing
Diameter
(Rise)
?
(Inches)
Width
(FT)
(F I) !
(FT) _J
—1 IL=2
I _ ` -_;
._._.I ' ___ l
E f
__-___I ;Round!
Round`
19.31
_. -._ _ __ 18.3 i
211
_ _ _._ 21.'
18
_.__._ 18 i
N/A
j N—/A
r 3
4^
1811
A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
f
Designs
'Sewer Flow
(CFS)
lA j 17 8�
Full Normal{ Normal Ir__ri"ca'itical
Flow i Depth i Velocityepth lFelocijeloc-ity--F—
(CFS)! (Feet) j (FPS FeedPS
_ 14.9 1.50? 10.1 1.47 10.�
Full
Vroude
(FPS) Number
10 1j N/AI—
CommentID
�a
1.50 8 8� 1.39' � 9�
8.8j N/A!
'-3 —`
-13.T
14.9
--1.
— 96
--1.35'--
8.2j
_ 7.8
� --1.611
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
i Invert Elevation Buried Depth
;Slope Upstream` Downstream' Upstream' Downstream'
Sewer ID Comment
? % (Feet) Feet Feet Feet _ _ t _ ...�._.._� . a �._ _� .�__._�
- it
2.00` E 4927 72 4926.62 7.961
-0.12 Sewer Too Shallow)
JF
2.00 4928.69 4927.78j _-- 6.92�
7.90�
2.00j
4929.11
4928.75
5.85
6.86�
Summary of Hydraulic Grade Line
Invert Elevation
_
Water ElevationF
Sewer ;Surcharged!
�
!�
(Feet)
p
i D
Upstream)FDream",I,
(F
ConditionLenhl
�_-1
5.251,
.25
55.25
4927.72
4926.62
4929.66K-
4925.84�
Pressured!
Il f 45.34j 45.34 4928.69
_ 4927.78
�4931.11
4929mm69 Pressured
tl '
17.98,
17.98,
4929.11
_ ___ _
4928.75
4931.72
4931.11
Pressured
Summary of Energy Grade Line
_ i Upstream ! Downstream
Juncture Losses
Manhole !j i Manhole
Energy iFBe E Bend Lateral] Energy
Elevation
Sewer Manhole !nd K Lateral K Manhole,ID
ID # CoefficentLossLoss ? Elevation;Coefficientl(Feet) ID#Feet) - - ((Feet) ^- -w_J (Feet)
lI
E -
1
! 4931.26 5.42 O.OSj O.00i - m 0.00 0.00 4925.84j
2 i 3 4932.31 - 0.99E
0 05� 0.06 _ 0.00 0�0qj',F--- 4931,
3 (�4
4932.661
- 0.30
_: 0.05
0.05
0.00�
0.00
3-_
4932_31
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
3
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manholes
ID #
-_ ___J
Rim Elevation
Feet
_- -
Invert Elevations
Feet s
>
Manhole Height
Feet f
_>_..___
r l
._�383 4928.00�_-, 4926.62
2
__ 4937.118f 4927.7211 9.46
4937.11��— 4928.69E 8.421
4936.46j1
4929.11';�
7.35E
E
Upstream Trench j
Downstream
i I
Width i
Trench Width
4
Earth
' Sewer k
On At
On At 1
P
Trench
Wall
� Volume
ID # {
Ground Invert
Ground Invert
Length
Thickness
(Feet) (Feet)
(Feet) (Feet)
(Feet)
(Inches)
Yards)
3.91
_ _55.25
�1
I_ 4
_�
14.8E
39'
16.8E
3. 911
-_17.98
2.561
47
Total earth volume for sewer trenches = 304.39 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
40
4
-ro,Met
(v ff.
d fS`MN " , , AA,
A
5fs---Jl,
NeoUDS Results Summary
Project Title: STRM-P
Project Description: FRV
Output Created On: 2/16/2007 at 9:48:39 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of ConcentrationI 'I
Manhole
Basm
Overlandi
Gutter (
Basin !
Ram I
FlowE
ID #
Area * C
(Minutes)
(Minutes)
(Minutes)
(Inch/Hour][Peak
(CFS)
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (IO+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
i
Rainfall
Rainfall
Design
Ground
Water
Manhole
Contributing'
Duration
Intensity
Peak
Elevations
Elevation!
Comments
ID #
Area * C !
Flow
F
i
(Minutes)'
_
(Inch/Hour)
(CFS)
(Feet)
(Feet)
17
0.0i
w , 0 00;
1.4E
4927_76j
4926.20lF
,!
F -�!
F 0 - 91
5.0i
F_.. 88 75:
1A
4937.29
4927.04��
'
Designi
Water
Manhole,
Contributing
i
Rainfall
Duration
Rainfall
Intensity
Peak
;
Ground
Elevation;
Elevation:
Comments
ID #
Area * C
(Minutes);
(Inch/Hour)
Flow i
;
(CFS)
(Feet)
(Feet)
;
33
1 4�
4938 08'
4927 28�
,,118
{ *_
0.01
�____._5 �3
___.._._ 177 50
1 4;
_._4938 OS'
4927.50�1�__
'
5 �;
i55.00
1 4[
4928 47V
4927
__..
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
�—
Manhole ID Number '
�C��a��l��culat��ed `
Suggested i
Exishn
Diameter
Diameter i
Diameter
Sewer
ID #
U stream Downstream!
p
Sewerj
Shape,!
(Rise)
(Inches)
(Rise) E
(Inches)
(Rise) Width
(Inches) (Fr)
_.! ______ ._ __ F
_.�__ �_ ..
(FT)
_ __.._ __ _ _ __ _ ._.
�Fr>
_ .. _._._- - . - --- _<
SFr) 3
1
2_.__.il______
�_
1..__..
Round
5181
N/A
_!
____
.._..11
1 2
3�l
l ws
.l g
_.I '�;I
_1__�?._.___
18i
Ai
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
;Design
Sewer;
Flow
Full `Normal,
Flow
Depth
Normal'
!
Velocity;
Critical
Depth
Critical
,
Full
{
Velocity,
Froude
Comment
_
(CFS)
;
(CFS)
(Feet)
(FPS) 3
;Velocity,
Feet) ;
FPS) '`
( _. _.
(FPS
_.__._ ) F
Number,
j
0.64F_. _
2
0 46'70.56 _. 3'�_
�I _Y.__., __._.1 4 4 7 0.56,
2.3_ 0 46 .3_l..._0 8 0.64
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation Buried Depth 3F- 11
rSlopel,, Upstream; Downstream'i Upstream Downstream{
Sewer IDi% Feet Feet Feet Comment
( ) J _ (.__) i _ (Feet) (Feet)
0.20 - 4926.48 4926.271 9.31 fO.OIj Sewer Too Shallowl
�E 0.20 4926.71 ` F- 4926.48 -- 9.87 9.31
I ' 0.20j 4926.894926.71 9.66�� -987
0.20 4926.991 F 4926.8C Too Shallow
Summary of Hydraulic Grade Line
Invert Elevation j Water Elevation
Sewer':
Sewer
Surcharged)
1F-�-;)m-
F-
Upstream
Downstream,
Condition',
Lengthy
(Feet)t
Length
(Feet)
Feet)etFeet)
�
-1 102 88 r Oj
4926.48 - 4926.27 4927.04
4926Y20;
Subcritical'wnstream;
116.71jF--- -6.1
4926.71 4926.483 4927.28
4927.04
Subcritical
1 3 ? 87.99[- 0
4926.89 4926.71, F�- _27.50,11
927.28
Subcn icalj
4926.99] -- 4926.88] 4927.57�
_ 4927.501
Subcritical
Summary of Energy Grade Line"
Upstream
Manhole
; Downstream
Juncture Losses
Manhole I
- _
��
Energy
1 Sewer; Manhole
Sewer Bend Lateral Energy
K LateralK anholeElevation.
ID #
(Feet)
[Bend
Friction1 LossLoss ElevationID#
oefficient Coefficient}} ID #;
(Feet) (Feet) (Feet) (Feet)
---- -
_ _.�i
_ 1 2 4927.13
0 93; OAS OAO€ 4 0.00� ^ 0.0011 4926.20
2
3 j 4927.37
0 23 0.67 0.01 j 0.00� O.00j 2 4927.13;
_ _
4
5
_ 4927.65
- 0 08
0.05
0.00
- 0.00�
0.00��
-4927.57
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
3
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth.Excavation Volume for Cost Estimate
The user given trench side slope is 1.
ff
hole` Rim Elevations Invert Elevation` Manhole Height!� (Feet) _ (Feet) (Feet)
� 4927.763 4926.27 _ � 1.49j
4937.2911 4926.48'1 10.811
4938.08 4926.71!J11.37�
i� 4938.05 4926.88j 11.171
1.50�
!
Upstream Trench E
Downstream
!
i
Width
Trench Width
Earth
Sewer
On At
On At 1
Trench
Wall '
Volume
ID # €
Ground Invert
Ground Invert
Length
Thickness
(Cubic
S
(Feet) (Feet)
(Feet) (Feet)
(Feet)
(Inches)
yards
3.9
102.88;
2.501
258)
22.8
3.91
21.7
3.9;
116.71
2.SO'
-� 569j
E 73 (
3.9j
—77—.991
2.56
441
3.1{
_ T 3_9�
22.4
____3 9i
-____._ 5L
_ ________2_50
____ _-143j
Total earth volume for sewer trenches = 1410.93 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
4
STRM-N-a
STIAl -a -1
NeoUDS Results Summary
Project Title: STRM-Q
Project Description: FRV
Output Created On: 2/16/2007 at 9:54:11 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
Manholei
Basin
Overland!
Gutter
Basin 1
Rain I I
Peak Flow
ID #
Area * C
(Minutes) a
(Minutes)
_
(Minutes)
.____._� es f_.___�
(Inch/Hour)j
..
(CFS) j
IF -i I O.00I 5.0? 0.0? 0.0' F 875.66I3.51
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
i
Manhole,
ID #
E
Contributing.
*
Area C I
Rainfall
Duration
(Minutes)
Rainfall i
Intensity
ty
i
(inch/Hour),
Design!
1
Peak '
I
Flow
(CFS)
� ...._
Ground
Elevation]
(Feet)
Water
Elevation
(Feet)
Commentsl
-.. � �__0
00;
___.__.3 53
_4931
���� 0
5.0
875.00
3.S
4936.66i
4933.0111
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
r
Manhole ID Number
�
Calculated
Suggested
M Existing
m
E
Sewer;
!
!
Sewer
Diameter
(Rise)
Diameter
(Rise)
Diameter
(Rise)
Width
Upstream'
Downstream,
ID #
;Shape
(Inches)
(Inches) I
(Inches)
(FT)
(FT)
(FT)
(FT)
I
2
I
Round��
18�
18
N/AE
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
3Sewer
ID
II
Design
Flow
(CFS)
—
Full f
Flow
(CFS):
Normal
Depth
(Feet)
Normal'
Velocity
(FPS)
Critical
Depth
(Feet)
CriticalFFuct
Velocity
(FPS)
loityNumber
PS
Froude
Comment
3 Sj
—23 6
0.39
9-61F
0.741F
4.01
2.0
3.19
. „ —]
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
�� -Invert Elevation Buried Depth l
Slope
Upstream
Downstreami
Upstream3
Downstream.
Sewer IDI
(
(Feet) i
i
(Feet) —
I
(Feet)
— (Feet)
Comment
`1__ 1 11 5.001 4932.27j1 4929.73 2.89-0.23]Sewer Too Shallowil
Summary of Hydraulic Grade Line
� Invert Elevation Water Elevation
� —
Sewer;
Sewer'
i
Surchargedf
i
Upstream
Downstream
Upstream
,
Downstream;
ID #
Length,
Length
(Feet)
(Feet)
(Feet)
(Feet)
Condition
---=
Feet) =
--(Feet)-
--- — --
- ------
- - -
— - -- ._,
.._ _ ._
1
F 50.85F
4932.27
_ 4929.73
4933.O1j
4930.18
Jumpy
Summary of Energy Grade Line
Upstream
Juncture Losses
�I � Manhole
Downstream 3
Manhole
...___jjj _
I 1 Energy Sewer ([Bend j Laterals
Sewed Manhole' Bend K Lateral K I
Elevation' Friction. (oss Loss
ID # ID # Coefficient, Coefficient
IFeet)(Feet ;Feet- (Feet)
Energy
Manhole
Elevationj
ID #Feet
F ) _�
1
2 j
4933.26J
3.08j
0.05j
O.00
F 0.0000�
0.001
4930.18
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user eiven trench side Slone is 1.
ID #
11 1 11 4931.0011 4929.7311 1.2711
It► �,ixrslMS 1lci►• ffil�lI«�'
3
Upstream Trench
Downstream
Width
—
Trench Width
- -
Earth f
On At
On At
Trench ch
Wall
Volume
ID #
Ground Invert ;
Ground Invert l
Length
Thickness I
i
(Cubic
(Feet) (Feet)
(Feet) (Feet)
(Feet)
(Inches) I
Yards) j
I 1 I`s
— 8.9�
- �3 9j
2.6j
3.9
50.85
2.SO
34�
Total earth volume for sewer trenches = 34.41 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
4
5`T(ZM - N-(�?-
(P5
5-'MH-R%
-- --- ----- O 4
STMk1 -1i2-2
NeoUDS Results Summary
Project Title: STRM-R
Project Description: FRV
Output Created On: 2/16/2007 at 9:55:49 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration_
Peak Flow
(CFS)
i Manhole
ID #
Basm 'Overland;
JArea * CI
(Minutes)]
Gutter
(Minutes)
Basin '
(Minutes)
Rain I
(Inch/Hour)I
IO.00i - 5.0 _ � 0
.__
O.00 5 0, m : 0.0�
- OA 9582�Syi
0 0 - 9582�50�
_-38 3�
___-_ 38.3
__I `' i 0.00` --5.0 0,0 0:0 6892.50�
27.6
___-..___0.0
-- �1215.0q
T�» 4.9'
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Design! !
Manhole,
{
Contributing
Rainfall �
Duration:
Rainfall (
Intensity
Peak
Ground
Elevation!
Water �
Elevation!
Comments!
ID #
Area * C
.(Minutes);
(Inch/Hour).
Flow (
) j
(Feet)
(Feet) +
1—
F-
F-- ---0
0.0;
�
O.00j
�
38.3E
4933.50;
4934.30 ,
Surface
Water
Present
Manhole
ID #
Contributing]
Area * C
Rainfall i
Duration
in
Rainfall ;Design=
Intensity `Peak
Inch/Hour ;
3
Flow ;
Ground i
Elevation;
Feet
F
Water
Elevation`
Feet
Comments?
O,Olj
5.0
2702 50
32 4;
a4938 23=
4934 38,"j
,4937.55€�—
�— 0
5.0
1215 00'
4 9
4938 20
4935 53�--
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
'
_
Calculated
mm _ ___
Su ested
_ gg
Existin g
3
Diameter E
Diameter
Diameter
Sewer;
ID #
E
Upstream; Downstream'
Sewer;
Shape]
(Rise)
(Inches)
(Rise) [
(Inches) l
(Rise) Width!
(Inches) (FT)
_ __� �.._'._..__..(F-1r)
__....i
. _ .(FT)
(FT).____ _._.__..._..
�____,
I '.,__.�
2
F �,Round€F29.3
� 301!j
N/A
_`
__ _3. .�I�`
_'�.�
Round
._ �� Sl
_ 30
_. 30=.
N/Al
__ 3
__ 4
I77 _.
Round
_____ __.2914[._30I_.
301
N/AI
mo'
.181
mmN/A`=i
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer
Design
Full !Norman
Normal €Critical;
Critical;
Full j
Froude
ID
Flow
Flow i
Depth ,
Velocity
Depth ;Velocity;
Velocity=
Commend
(CFS)1(CFS)3
(Feet)
(FPS)
(Feet)
(FPS)
(FPS) `Number
2 4 341 1 1 67 9 3E 1 94 7 9' 6 6; 1 34E�
'�
�`
i�I '.__-- ` 27 6 29.17F E1 94
6 7� ... 1 77: 7 4 5.6 — 0 85____—__'
.i _.
_ _ 4.9
10 SE
_�_ 0 72
... 7 s 8.
_..._ 0 85._..__.
.. 4 �'
_.._ _.. 2.g`
___ 1.381
I
A Froude number = 0 indicated that a pressured flow occurs.
2
Summary of Sewer Design Information
J � i Invert Elevation '_Buried Depth J
Sewer ID !
Slope
`% (
lupstream]Downstream�
(Feet)`
(Feet)
Upstream!
(Feet)
Downstream
(Fe et)
Comment
-�
1 ( 1.00, 49�31.41!�4931.0-6 2.67
0 06 eweroo STShallow
_
1.00� - 4932.44'; 4931.441 3.29!
2.64 �
0.50! 4934.09 4932.441--2.041
3.29
II `� !E
---6
4933.06i
_ 4932.441
3.64f
Summary of Hydraulic Grade Line
Invert Elevation 11,_W_ater Elevation�
ewer' Surchar
i gUpstream Downstream Upstream Downstream
jSewer'
ength Length
ID # ( + Feet (Feet) (Feet) (Feet) (Feet)
[Fe
Iet) ! ( ) - -- .
Condition
�1 34.92I-0.011E4931.4 493L06j - 4933.56 - 4934.30
JumIF
2 i
100.44 �
4932 44'
4931.44, 4934 38, 4933.561
Jump
3
330.38� 330.38
4934.09I
4932.441 4937 SSi 4934.38
Pressured)
�4
�I —1
62.16+
62.16
4933.06
4932.44'
I_.___ ___ AF-
4935 53i
4934.38i
._.__ ,, __
Pressured',
�
Summary of Energy Grade Line
Upstream
j Manhole_ _
' Energy Sewer
Manhole;
# i Evation: Friction,
#
et) (Feet)-j
+
Juncture Losses
Bend K Lateral K (
oss oss
[1e-nd Laterall
Coefficientl Coefficient!
(eet)( (Feet
i Downstream
Manhole
EnergSewer;
; Manholei ElevaioID
ID
,ID
_^ -_ (Feet)
j 2 - 4934.51 0.21
_ 0.05j 0.00 -- _ OAO O.00I7l
4934.30
Ti.3 4935.36a 0_821
m', 0 0.03j OAO 0.001�2
493 J 4.51;
i ` 3 4 _4938.04 1.481:_
1.32 0.65j 0.25j ._ 0.56
3 _ 4935.36'
4
4935.65,
013j
1.32j
0.16
_ O.00I
M 0.00;�
4935.36'
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
3
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole;
j ID #,j
Rim Elevation! Invert Elevation`, Manhole Height
(Feet) (Feet) (Feet)
4933.501 493106 2.44'
��-4936.58
- 4931 Al! 5.171
F7 73714938
23 _ 4932 44`�� 5.79
-4938
63 _4934 09IF7777_ 4.541
��
4938.201[ — 4933.0611 5.141
Upstream Trench
Downstream
I---]
Width
Trench Width
j
-!=
-
Earth
Sewer '
On At
On 1 At
Trench
Wall
Volume
ID #
Ground Invert
Ground Invert
Length
Thickness
(Feet) (Feet)
(Feet) (Feet)
(Feet)
(Inches)
Yarn
I- _-.'__- "
--- 9.3i--
5'
_ _----3.8;
— 9.2j
5.1;
100.441
3_50j
14411
I '
— 8.01
ET,
10.5s
5.1
_ 330.38I-
3-5qjl
441)
I `'
10.4i
3.9
11 7�
3.9i
62.16
2.5O'
88+
____ -
-
Total earth volume for sewer trenches = 707.45 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
0
I
Tww
L
NeoUDS Results Summary
Project Title: STRM-S
Project Description: FRV
Output Created On: 2/16/2007 at 9:57:37 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of ConcentrationvYVw
Manhole
Basin
Overland
Gutter
Rain II
Peak Flow!
ID #
Area * Cj
(Minutes)I
I[Xasitn
(Minutesnues)!
(Inch/Hour)
(CFS)
5
5.
2360.0011
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (I O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Manhole]
ID #
�
Contributing,
Area* C j
—'
Rainfall
I
Duration�
(Minutes)]
Rainfall
Intensity
� �
(Inch/Hour)!
Desrgn
Peak
Flow
(CFSJ
Ground
Elevation;
(Feet)
Water }
Elevations
E
(Feet) (
Comments
_
__-_I '_ __.'
__ _.----.._
-----__0 o
_._____ _ 0 00,
_ 9 4�
4930;82]
4928.13
0
4,
4933.221�
4929.991�
1
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number 'IF
7 lFCalculate—d
Suggested
Existing E
i
i
f
Diameter
Diameter
Diameter i
Width'
Sewer'
ID # 3
Upstream.
i
Downstream!
!
Sewer
Shape
(Rise)
(Inches)
(Rise)
(Inches)
(Rise)
(Inches)
(FT) I
�Fr)
(FT) _
( )
Round
17.3'
18
_ 18�
N/Ai
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
I
Desi n�
gFroude
Full
Normal
Normal
Clri'*Ca'l,[Critical
FullSewer
FlowFlow
Depth
VelocityDepth
elocity)VelocityNumberComment,
l
ID
(CFS)(CFS)
1
(Feet)
(FPS)
(Feet) ;FPS)
_
(FPS)jj
_
--A
9.4�
10.5!
1.11
--1.19i
6.3j
5.3
L15
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation Buried Depth I�
Sewer IDIrl.ofe Upstream Downstream Upstream Downstream)Comment�//! Feet Feet=� -- -- ._.(Feet) (Feet)..__
l�
1 i 1.00; 4928880!__ 4928.131 2.92 1�19 Sewer Too Shallow)
Summary of Hydraulic Grade Line
j��� Invert Elevation W�
Water Elevation —�
111FSewer
Surcharged)
j
DownstreamE
Upstream.
DownstreamLngth
iUpstream
Length
eet)
(Feet)
(FeeFee
Condition
-(Feet)
66.77�
� -0.12
4928.y80J
�-4928.13
4929.99
w 4928.13
Jumpy
Summary of Energy Grade Line
Upstream Juncture Losses Downstream
I l Manhole ; Manhole
_ _ _.._.
Energy Sewer BendI Lateral Energy
FSewer!l,, Manhole Bend K Lateral K Manhole! j
�Elevation Friction Loss Loss Elevation!ID # i Coefficients ,_ Coefficient .� ID # 1
I 1 it 2 11 4930.6011 2.4711 0.0S1 0.0011 0.0011 0.0011 1 EI 4928.1311
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
l— (Feet) J (Feet) 11 (Feet) J
4930.82i _____.. -.._ 4928.13� 2.69
IF 11 4933.22E 4928.801;1 4.42
3
Upstream Trench
Width
Downstream
Trench Width
_
On
At
On
At
Trench
Wall i
Earth I
Sewer
Ground
Invert I
Ground
Invert
Length
Thickness
Volume
ID #
(Feet)
(Feet) I
(Feet)
(Feet)
(Feet)
(Inches) ;
(Cubic
yards)
I 'jF8.91
_ 3.9j
--__�J.5
3.9
66.77
2.50j
53
Total earth volume for sewer trenches = 52.59 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
0
57 i� M _ trlt - T
1!
NeoUDS Results Summary
Project Title: STRM-T
Project Description: FRV
Output Created On: 2/16/2007 at 9:59:47 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration F j
Basm
Overland]
Gutter
Basin !
Rain I
Peak Flow'i
FI'TD
Area * C�
(Minutes)'
(Minutes))
(Minutes)
(Inch/Hour
_ (CFS)
1i=Nrl11�0
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For.urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <= (10+-Total Length/l80) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
?
Manhole's,
ID #
1
s
Contributing+
Area * C
Rainfall
Duration i
(Minutes),
Rainfall €
Intensity ;Flow
(Inch/Hour)I
Design
Peak j
(CFS)
Ground I
j
Elevation!
(Feet)
Water
Elevation,
(Feet)
Comments
--
Oi
_---_ --.... �._�_
_ __ ____ 0 00
__ __ 2.0
0
5.0
500 00'
v 2.0
4959.331
�4949.173�
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
�
Calculated_
Suggested
Existijg,
I
Sewer
ID #
(
Upstream
E
Downstream!
Sewer
Shape
Diameter
(Rise)
(Inches)
Diameter
(Rise)
(Inches)
Diameter
(Rise)
(Inches)
Width
(FI')
2 ';E::T
�IRound
8.51
�18
18
N/A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Full `
Norman
Normal
Critical
Critical
FullSewer:FroudeID
[Design
FloFlow
;
Depth
Velocity
Depth
Velocity
VelocityNumberComment)CFS
(CFS)i
(Feet)
(FPS)
(Feet)
(FPS)
(FPS)
!� lr 1I�2.0) 3r51I_____. iJI.-____2.02I�I
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
it 11 l Invert Elevation j Buried De th
Slope; Upstream Downstream` Upstream Downstreami �)
Sewer ID' (— ) Comment
(Feet) � Feet _ (Feet)
I 1 2.00'1 4948.6314946.6111 9.2011 0.0 0 Sewer Too Shallow
Summary of Hydraulic Grade Line
1� Invertt Elevati in Water Elevation -
Sewer
I
Surchar ed�
Fee
gt
Length
F-
100.
Summary of Energy Grade Line
jUpstream
Manhole
fit
Downstream
Juncture Losses Manhole
�
i ' � Energy
Sewer Manhole]
� Sewer
� 1 Bend � �— � � Laterals � Energy j
Bend K Lateral K Manhole)
Loss
Elevation
ID # ; ID #
J
Friction
Loss I Elevation!
Coefficient) Coefficient; ID # ;
Feet)
I v(Feet)
ry.(Feet)
; _... m�Feet)_a__ _ (Feet)_J
IF---_
26
____ — O.O50.00
_ _ 0.00
0.00
1 � 3
4946.50I
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
ID #
it 1 it 4948.1211 4946.6111 1.5111
li�lsiI.S�cicll�i•' :�1c��[IILIIIA
3
Upstream Trench JFDownstream
Width
Trench Width
Sewer
On
At
On
At
Trench
Wall
Earth
Volume
ID # j
Ground
Invert
Ground
Invert
Length
Thickness
(Cubic
(Feet)
(Feet)
(Feet)
(Feet)
(Feet)
(Inches)
I
Yards) j
1
_ 21.5j
` 3.9�
3.1
3.9�
85� T 100.
2.50
248
Total earth volume for sewer trenches = 248.32 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
M
STEM --M v
r�
it
�3
' � FFs
o ,, -.�\t
NeoUDS Results Summary
Project Title: STRM-V
Project Description: FRV
Output Created On: 2/16/2007 at 10:03:57 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
Manhole
Basm
Overland][Gutter
Basin
Ram I
Peak Flow:
ID # ;
Area * Cs
(Minutes);
Iinutes)
(Minutes)i
(Inch/Hour)
(CFS)
1 ___►I_ o.00 � 5.0!� o.o � 0.01 2082.5011 8.3
2 ! o.00i s.o; o.oi o.o 2082.5o1
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Rainfall
Rainfall
Design!
Ground
Water ' ;
Manhole!
Contributing,
Duration ;
Intensity
peak ;
f
Elevation
Elevation;
Comments!
ID #
Area * C !
' I
01
(Minutes)l
(Inch/Hour)i
Flow
CFS i
(Feet) {
(Feet) ,
1
0.0
0F
F--
8.3
4924.53
4925.00z
Surface
Water
__,_
_._!
____._.___
_._ ____
Present
25.Oi
(7.5011"![
8.3
4925.00--
F4926.09',"""
_--- --'
�
Present
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number Ta
vCalculated
Suggested
—T Existing
Diameter
Diameter 3
Diameter
I
Seweri
Upstream
(
Downstream[1
Sewer
(Rise) j
(Rise)
(Rise) i
Width
ID #
Shape]
(Inches)
(Inches) t
(Inches)
(FT)
(Fr)
� � ._. _I?
_ (F]P)
I jl
G
I
Round)18J
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer+ Design] Full j Normalf Normal Critical' Critical Full
Froudel
ID Flow Flow Depth Velocity Depth Velocity Velocity Comment
! (CFS) (CFS)E (Feet) FPS Feet FPS F Numbed
Ij 8.3i — 1.50 4.7 1.12 5.9 4.7 N/Ai�)
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation Buried De th !
! Slo e' U stream' Downstream U stream Downstream
Sewer ID u p p p Comment
— _ _X I _ (Feet) - t (Feet) - ..m (Feet) — (Feet)
L"1�,(� 0.20I 4923.00il 4922.541_ 0.5011 0.491ISewer Too Shallowl
Summary of Hydraulic Grade Line
Invert Elevation Water Elevation s
j Sewer i Surchargedl
i Sewer; j
Length; Length
j j
Upstream: Downstream, Upstream DTistream'
{ Condition.
ID #
Feet)(Feet)
i 1 � 229.71 � 229.71
(Feet) i (Feet) (Feet) eet)
____�...._a_.._�___�
4923.00� 4922.54� 4926 09; 4925.00� Pressured
Summary of Energy Grade Line
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
MID
nhole Rim Elevations Invert Elevation Manhole Heights
# (Feet) (Feet) (Feet) mm
!F- 4924.53� 4922.54; 1.991
4925.00i �4923.00 A
3
Upstream Trench
Width
Downstream
Trench Width
Sewer
On
At
On
At
Trench
i
Wall
Earth
Volume
ID # I
Ground
Invert
Ground
Invert
Length
j
Thickness
Cubic
(Feet)
___
(Feet)
(Feet) (
(Feet)
(Feet)
(Inches)
yards )_
y 1 ;`.
4.1
1. 1
4-- I
M____-3.jq
229.71
2 SOj
v100
Total earth volume for sewer trenches = 99.84 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
M
sTtt.A -W
VJ -
It 11
2 It
FES
NeoUDS Results Summary
Project Title: STRM-W
Project Description: FRV
Output Created On: 2/16/2007 at 10:05:46 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
Manhole]
Basin !Overland`,
Gutter
Basm
Rarn I
Peak Flow'
ID #
Area * C
(Minutes);
(Minutes)
J
(Minutes)
(Inch/Hour)
(CFS)
F �11�ir 5.011 V.U! 0.0' 3912.50 15.6?
0.0011 5.01 0.0 �� 0.0] 3912.501 15.611
I3-10.00F5.0 O.OI 0.0' -2252.5611 9.0
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Rainfall
Rainfall
Design
Ground
Water
Manhole!
Contributing'
* '
Duration
I
Intensity
Peak
Elevations
Elevation'
Comments
ID #
Area C
(Minutes);
E
(Inch/Hour)!
Flow
(CFS)
E
(Feet) (
(Feet)
1
0
1
0.0
0 001
15.6
j
4926.50,
4928.29!
Surface
Water
Present
Rainfall
Rainfall ;Design
Ground
Water
Manhole
Contributing!
Duration
Intensity i
Peak
Elevation,
Elevation3
Comments!
ID #
Area * C =
Flow
;
(Minutes)
(Inch/Hour)1
(Feet) 1
(Feet)
�ETD
0.01 j
_ 5.0
1956.25
_ 15.6
4928.601
_ 4927.74
I i�
3
01
5.0
2252.5019.0
j
4928.901
G
4929.021
Surface
ater
water
- '
_ i
Present__ i
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
F-1111
Manhole ID Number
j 1
Calculated
Suggested
_ Existing
1
j
Diameter
Diameter
Diameter
Sewer;
Upstream;
Downstream
Sewer
(Rise)
(Rise)
(Rise)
Width
ID # (
Shapel
(Inches)
(Inches)
(Inches)
(FT)
_ 71
2 _
�
Round
- 24.8
27
18
N/A
�
_I _` _i
3
I ` __ i
Ro....._und1..._
- 20.21
_ ._.._ 21 j
18
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
S Iwllen
j
Designl
Flow
(CFS)
Full
Flow
(CFS);
Normal
Depth
(Feet)
Normal!
Velocity
(FPS)
Criticall
Depth
(Feet)
Critical
Velocity'
(FPS)
Full
Velocity
(FPS) 1
Number'
1
Comment1
��1
15.6
6 7;
1.56
8 9E
1 39!
9 11
8 9i
- N/A
�
(I `__-'
__ -9=-0�
- 6 7
_.._1.50
_ 5 1 i
1 16
_6.-1
.. 5 1
_N/A�I__.._-
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation —Buried Depth i
+Slope`
Upstream
Downstream
r—
I--
1 0.40i 4925.15
2 11 0.46E 49 55.41 i
4925.0311 1.95
4925.1
Summary of Hydraulic Grade Line
Too S
ewer Too Shal
tl a }� Invert Elevation Water Elevation DF1I
Sewer `
Surcharged
Sewer:
Length
Length i
Upstream
Downstream
Upstream
DownstreamE
I
[ondition
ID # ;
(Feet) ;
(Feet)
(Feet)
(Feet)
(Feet)
(Feet)
__ �!
- ;
_
_...
_ _
�
30.45 492515 4925.03 4927.74 4928.29� Pressur_ed'; 1 30.451_ _ _ _
22 F 60.36( 60.36� 4925.41i 4925.17i 4929.02i� 4927.741 Pressured?
Summary of Energy Grade Line
Upstream j
i Manhole
; Downstream
Juncture Losses
Manhole
Energy Sewer
Sewer; Manhole. Elevation Friction[Bend
ID # ID # i
(Feet (Feet)
--
i Bend' Lateral, E Energy
K Loss I LateralLoss j ManholeElevahon!
oefficient, Coeffacient4 ID #
(Feet)] J (Feet) __ _� (Feet)
492896
0.05
0.�
0.00
7F
I '
4928.29
r 2
I
4929.42
�0.67j
044—
0.0
M 0.02
0.00�
O.00r
2
�4928.96!
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
3
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
iManhole' Rim Elevation, Invert Elevation Manhole Height`
ID # '(Feet) i (Feet) ; (Feet)
)
(�1 4926.50(� 4925.03111 47
2 4928.60 4925 15---��
3 45j
4928.90
1 4925 41=�
3.49'
Upstream Trench','[
Downstream I
_;
Width
Trench Width
_Trench
_
On
At
On i
At
Wall
Earth
Sewer
Ground
!
Invert
Ground
Invert
Length
I
Thickness
Volume E
# i
(Feet)
(Feet)
(Feet) 1
(Feet)
(Feet)
(Inches) i
(Cubic
Yards)
_
3045 __.___
2.50_17
3.9
6.9
_ 3 9
.___._ 60.36
..____._ 2.5 0
.____ _44 il
Total earth volume for sewer trenches = 61.11 Cubic Yards. The earth volume was .
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
4
APPENDIX — I
December 2006
EROSION CONTROL
PERFORMANCE STANDARDS
EFFECTIVNESS
CONSTRUCTION SEQUENCE
COST ESTIMATE
RAINFALL PERFORMANCE STANDARD EVALUATION
187010251
font Range.Village.
JOZmr
15-iSTANDARD FORNI
11 DatO-;" -'.:,4112912006,7
DEVELOPED
SUBBASIN
ERODIBILITY Asb
ZONE (ac)
Lab
(it)
Ssb
I%)
Lb
(ft)
Sb
I%)
Ps
206
Modulate oz).bu
1884
0.50
985.7
0.26
207
Moderate 4.00
150
2.00
5.6
0.08
208
Moderate 17.40
1580
0-50
258.7
0.08
209
Moderate 18.33
970
1.00
167.3
0.17
210
Moderate 2.74
90
2.00
2.3
0.05
250
Moderate 8.20
620
0.80
478
0.06
Total
106.27
7.521
0.70
75.0
EQUATIONS
Lb = Sum(AiLiySurn(AJ)
Sb = sum(AiSlysum(Ai)
1467.5
0.70
UPS (during cdnstrucUon) • 74 0_ . I (from Table BA)
PS jLfter construction) . --75. 0 ffiskg-i." 1 $8.2
-w
EFFECTIVENESS CALCULATIONS
187010251
Project +1 Front Range N/kgesu
Cedwlated8':. JOZ rc S rb.) +�zr
o
4:`'.��!:a.._. .Date' r t.1,1/29r200B
^P-Factor
Erosion Control
C-Factor
Comment
Number Method
Value
Value
3
Bare Soil - Rough Irregular Surface
1
0.9
6
Gravel Filter
1
0.8
5
Straw Bale Barrier
1
0.8
6
Gravel Filter .
1
0.8
8
Silt Fence Barrier
1
0.5
38
Gravel Mulch
0.05
1
39 111-lay
or Straw Dry Mulch (1-5% slope) 1
0.06 1
1
SUB
PS AREA
BASIN
(X ac
Site
75.00 106.27
SUB
SUB
AREA
Practice C • A P' A Remarks
BASIN
AREA
ae
DURING
CONSTRUCTION
206
Impervious
36.44
38
1.82
36.44
Gravel Mulch
206
Pervious
10.35
39
0.62
10.35
Hay or Straw Dry Mulch (1-5% slope)
206
Building
8.81
3
8.81
7.93
Bare Sal - Rough Irregular Surface
207
Impervious
2.68
38
0.13
2.68
Gravel Mulch
207
Pervious
0.73
39
0.04
0.73
Hay or Straw Dry Mulch (1-5% slope)
207
Building
0.59
3
0.59
0.53
Bare Soil - Rough Irregular Surface
208
Impervious
11.98
38
0.60
11.98
Gravel Mulch
208
Pervious
1.85
39
0.11
1.85
Hay or Straw Dry Mulch (1-5% slope)
208 -
Building
3.57
3
3.57
3.21
Bare Soil - Rough Irregular Surface
209
Impervious
11.22
38
0.56
11.22
Gravel Mulch
209
Pervious
2.21
39
0.13
2.21
Hay or Straw Dry Mulch (1-5% slope)
209
Building
4.90
3
4.90
4.41
Bare Soil - Rough Irregular Surface
210
Impervious
2.22
38
0.11
2.22
Gravel Mulch
210
Pervious
0.52
39
0.03
0.52
Hay or Straw Dry Mulch (1-5% slope)
210
Building
0.00
3
0.00
0.00
Bare Soil - Rough Irregular Surface
250
Impervious
6.65
38
0.33
6.65
Gravel Mulch
250
Pervious
1.55
39
0.09
1.55
Hay or Straw Dry Mulch (1-5% slope)
250
Building
0.00
3
0.00
0.00
Bare Soil - Rough Irregular Surface
Cnet
= 0.21
Pnet
= 0.786547
EFF = (1-C•P)100
EFF
= 83.4
> 75.0 PS Before
EFFECTIVENESS CALCULATIONS
187010500
t ns`4
FinfR Vl,0.
Cn alc.u.- late,: d 8 - }.?:-" fi1: `% ry:., ....ny. JOoZ_. �•-�, 4.s. law:.e'3,t...".".^ ., <._"^'f,z` 'rra g.e�
SFOsRM'1B
t.�', °rs� ".+rra'
4;4 8
n..a�.: Ai£Date ;,3 Y'1tLw+S',Fi.
Erosion Control
C-Factor
P-Factor
Comment
Number Method
Value
Value
9Asphalt/Concrete
P Asphalt/Concrete Pavement
0.01
1
12
Established Grass Ground Cover - 30%
0.15
1
14
Established Grass Ground Cover - 50%
0.08
1
16
Established Grass Ground Cover - 70%
0.04
1
18
Established Grass Ground Cover - 90%
0.025
1
SUB PS AREA
BASIN %) ac
Site 88.24 106.21
SUB
BASIN
SUB
AREA
AREA
ac
Practice
C' A
PA
Remarks
AFTER CONSTRUCTION
206
Impervious
36.44
9
0.3644
36.44
Asphaft/Concrete Pavement
206
Pervious
10.35
18
0.911
10.35
Established Grass Ground Cover- 90%
206
Building
8.81
9
0.3644
8.81
Asphalt/Concrete Pavement
207
Impervious
2.68
9
0.3644
2.68
AsphalVConcrete Pavement
207
Pervious
0.73
18
0.911
0.73
Established Grass Ground Cover - 90%
207
Building
0.59
9
0.3644
0.69
AsphalVConcrele Pavement
208
Impervious
11.98
9
0.3644
11.98
Asphah/Concrete Pavement
208
Pervious
1.85
18
0.911
1.85
Established Grass Ground Cover - 90%
208
Building
3.57
9
0.3644
3.57
Asphalt/Concrete Pavement
209
Impervious
11.22
9
0.3644
11.22
Asphalt/Concrete Pavement
209
Pervious
2.21
18
0.911
2.21
Established Grass Ground Cover - 90%
209
Building
4.90
9
0.3644
4.9
Asphalt/Concrete Pavement
210
Impervious
2.22
9
0.3644
2.22
AsphaWConcrete Pavement
210
Pervious
0.52
18
0.911
0.52
Established Grass Ground Cover - 90%
210
Building
0.00
9
0.3644
0
Asphalt/Concrete Pavement
250
Impervious
6.65
9
0.3644
6.65
Asphatt/Concrete Pavement
250
Pervious
1.55
18
0.911
1.55
Established Grass Ground Cover - 90%
250
Building
0.00
9
0.3644
0
Asphalt/Concrete Pavement
Cnet
0.089154
Pnet
=
1.00
EFF = 1-C'P 100
EFF
=
91.1
>
88.2
PS After
EROSION CONTROL CONSTRUCTION SEQUENCE
Front Ran,,e VW&,,e STANDARD FORM C
caAd.w By. Joz Date fUlYldpd
SEOUENCE FOR "7 & 2 ONLY
lmlk by uae of a W be w SMWIS when —=- Wt —aes wi pe Maded.
appmaJ by ft Cly EViv..
YEAR MY Mll
MONTH IN A I M j I A S 0 N O i F m
5WIkOT GRADM
IMNO EROSION CONTROL
Soi RougtxrV
pwillei Bart!!
�i*8
Banks
Vepeha4y Meftft
Sol Sealard
otha
RANFALL EROSION CONTROL
STRUCTURAL
Seclk,umrt Tompliasin
be Flan
sv;Pa so le
SaFemBirdam
Ij
l
Sard sap
B" Sw Pmpwsdm
Coftm FM
Twadm
AsplmltlCw Paft
Dow
VEGETATIVE:
Pm..om S"dPlub
itittfts"ibli
a
TamwayseecIplod
Am
Sod YWalatbn
Ode
STRUCTURES: INSTALLED BY MAINTAINED BY
VEGETAnOWMULCHING CONTRACTOR
DATE SUBMITTED APPROVED BY CITY OF FORT COLLINS ON
EROSION CONTROL COST ESTIMATE
Project> + *3 t" aik yj,pK� r iy C M k
oN c w�' "� Front RetigegVlllage, r jk 't w 10610251
Pre red,c
,�' N +
40z a:,
. , , .: ' ""?
Date.'
CITY RESEEDING COST
F�
Unit
Total
Method
Quantlty
Unit Cost
Cost Notes
Reseed/mulch
106.27 ac
$723
$76,833.21
Subtotal
$76,833
Contingency
50%
$38,417
Total
$115,250
Notes: 1. A<=5 ac=$655/ac; A>5 ac=$615/ac.
EROSION CONTROL MEASURES
Unit
Total
Number Method
Quantlty
Unit Cost
Cost Notes
6 Gravel Filter
86 ea
$300
$25,800
5 Straw Bale Barrier
55 ea
$150
$8,250
8 Silt Fence Barrier
6170 LF
$3
$18,510
38 Gravel Mulch
71.19 ac
$1,350
$96,107
39 Hay or Straw Dry Mulch (1-5% slope)
17.21 ac
$500
$8,605
Subtotal
$157 272
Contingency
50%
$78,636
Total
$235,907
Total Security _.,
s
$235,907 x
0
O
0
N
00 W W ONO coNcoNcoNaND
't
O W W W W OI W O) W S W Of W N N N
O aA m aaD aD .O}) W a� aW ��{ aW W W yW Oy) aW W yW aT pa1 yW
N aD aD a0 aD a0 a0 CD aD a0 a0 ED a0 a0 OD
C Cl y<y N fa0 fap fp fp A �A} aA aA} A f.�} aA ah aA A aA A aW 00 OD OD 00 OD
O OD W aD a0 GO a0 GO CO aD a0 aD aD a0 a0
00 OO yNy eM�t N )D N (O (aO W (O W (p aA fad aA yA sA� aA A A A eh� 0a0 (yp <p
W aM0 aD 0D aD aO aD a0 aD CD aD o7 a0 a0 aD
00 (D a eN� M a7 < ah yN aN aN coo co .froo (D w coo (Dw coo 0r-- A r- t- yA h
a6 OMO a0 aD aD a0 (O aD fO aD aD aD aD aD aD aD aD o7 f0
O a W N M M
r CDcli
adW
O
co M V
CMD co �
q -,taN N N (D
(00
(G
a� y� CN} yN aM aM aO aV aV aV yT
co W aD aD aD c0 a0 aD aD a0 aD aD c0 aD
aN
aD (O aD aD
a0
O
N N 0 M W a V .- N N N M M
f0 aD Nt Nt
M M M It T�
y
�
aP� s.}-
s y s a y
O aD aD W aD aD aD
aND m Go aD cMD m
a a a�
aD a0 a0 a0
O
N
Ci W g M a N N (O (D r A t• m W a0 W W tp
N N OD M
y�
W W W S
7
M (7 M (`6 M a') M c) l7 M (7 M M
W W W W W W OD W 00 W W W W co
M M M aD
W W aD 00
W W W
CD O
(0 N W CO) I N '-t N N N ((D� Co (0 ((D A
W
r_ N W W W
W
V
(+M� (e+t� ((.D
0G0 000 aND GMD co aD aD c0 co GM0 OD OD GMD ODGoa0 aD OMO
aA, (0
a0 Go OD OD OD
m
aD co
QO
Lq
.- N A OD M M, N N Cl) Cl) M
W W V�
y� •�t
N N W co (DGo A
A
m
t test (O� f
co GND OND OODD ONO co MN Go OD OODD 00
fN�
m m
_m
ODOD W 00 f0 OD
f0 coMGM0 coMcoM
Go
`
O
�
M N (D W W N �- N N M CO) Cl) 7 V It O V a
O CO
N
N N N N CO (D co
(D
L
M
1 (V fV N N (V N N N (V N (V
Co W W W W W W 00 00 W W W W W W OD W
fV N N N c i N N(-
W W W W W W co
W
)O N N W N M R N wr n r W W W W W W W W W N N N N N N
Cb 0 0 W W co co co W
N r W aD W W W W W W W W W W W W W W W W W
O N O M N W W co W N N N N M M M M M M
N W w a00 a00 a00 a00 000 aD co OD OD W OD OD co OD co co OD W a0
O W N W — 7 N 1-r W W W O O �- �- N N N M M M M M
(0 W 00 D) W W W W W W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 n r n r r r r A n n r W W W OD W W W W co co W W co
O (D M r a r` 01 W N M M,t p N N N N (0 Co W Co r r (O f0 f0
v (o r r; r r, r a6 0 o6 0 co 0 c6 0 0 o ao ao oA a; cd o Op ao co,
n
r A r r n n r n r n n n n n n n n r n n r n r n
O W N 7 CO r 00 W r r r CO (D (D (N y M M N N W (O O W (D
0 o N r n n N � n 04 N N n N N n C� n n n n n o 0
0 0 0 0 o 0 o o o 0 o o o o 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0
r co W
3
0
LL
C
N M Y N tp 1�
t0 O N M Y N
t0 h co W
0
U
N
N N N M 47
er N N (p
O O
O O
N M
y
N M y In
N M V Ip fp f� a0 O O ^ �N,- - - - — � O] — O N M •f C04 (O
p � N N N N N N
a'
O O O O O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O
0 O M O N O M O
�
/
/|
k
k27
c{�
||J
!!�
. !!!
\ . //#!/&�0aa0cc
�2,aa2a!!!!2
.$■■■■■■■■■■
\_ !! la2aafla
77kt7ka
2 . °ll,,,,l,,,l�
k M. ;|£zre|;|r|
!_ /�£777!!!I2!!
■-■,,,|| „ ;,�
!! _
■■ w ;MMMMMM;MMMMMM
6 6cic;§ƒ§)/!\/;)§;/:§6
@@aKk/J/K\
-\)})}\\)\'\ ;
k{r 32\2\k2)2)
I
kk\\\\\\\\\\ }
=dkƒ2/d777J77JJ77"`�k!!f;!!!\ff
a2a s aBaa elk}}ikk��})
])3]]]]))w(n (n7A227\}7A
N Vl N Y1 p O
F2
D
L
O O O O y
OOOOO pO O O O O O 8 S
N N N N N N W W a e � �'•
momN
m y W 2 N m tl II II 11 1�Q1j II
.L.•L.. L.. V
�
U C
C
ap m m mm c c LL LLC c d d ddcc'cc'c•cEEEE dv
IaAL
m C C
yA
o m y m m m m m J J O J E E E 0 umi � m
Yi
umi m m m m m m E E E E J J J
•' n a a n a a n g g t€
m E E E E 9 r€
E E E f i o 0 0 0 o mN
N5 8 8
N N V O O O O O
o o o o o o
m````o .- �
Y Y Y Y Y II 11 II 11
`o Yif o IYS u ° o U
° ° E E E E E E
u o
0 5 u u u u
LLa
5c 5 Q LL o o S 8 S o
au d. d d LL LL
m m m m m m m m CL a a Q E Q Q Q E
n m m m m m m m m 9 2£ €€ a n n n n n
a1a1
E o v m o o m o o y
XI v MI
m m m m m m m$ $ I I
.
c c c c c c c •c •c 'c c g $ m m �
r• m m m m m m m Raa8�c caaaaaa
p E E E E E E E o 0 0 `o cc c� $
E E E E E E E �' �' °° 4 5
,,$��
c m € o m
T E E E E E E c E E go
Eo c
I
Simi m _� $ m
c
c
c
_ m ab m m m
5pp ¢ c c c
W W
,�
a
O
N N N N N N N 0 L L 5
a
,C
a000sos6??330�' mmmmmm
;G -S$ t O O O
E
E
E
L$ O O O
°p pJ pJ o Q f
a
a
a
1O 1 .fi -5-5 fi 6 m 'm S ac
E E E E -E E E$ E E
m
_$
E E E_ E E E
8
C
m
C
m
C
6 a 6 a a a a o Q
m m• W a m a m m J J J � > >
J J J le It It It It le
>
>
?
O O o O O O
jjjjp
Nb 8 R R 'Qop 2 2 2 2 2 2
f11
N N N N N In N II It 11 11 11 11 {mp (mp m Nw
E
E
E
c a s c° a a a° Er'o
8
D) p, 0) a O) a c c c C C y
c c C Oi
c c c c
y y y
Ol Ol OI
c c c E E E E E E
E E E E 8 8 8 8 8 8
_
mmm `mm `m `m 'x ,X w in m iil a ffi O
i � � � �
F F
O O O O
N m
� N t9
• 19
� W M!
mmmmmmmmmmmmmmmmmmmmmmmamm
.- .- e- e- — — — 0 W 0 w O N .- N v 00
17
O O O O O a 6 G O O O O O
h _
p O G
O O O O-- N
�- �- �-
O C O O O G C O
o _p
N C C
m m m m
0 G 1 Q 6
{0
8 �Np ryN �0
a
L SI 1]
N O
w _
N e d° 2e N N
ag dQ a 2' a aeaeb
R
m m
mm mm O.
c
m
_O O
v v v v m m m 8 8 m 8 N Tn o
.9 t t L m m m m m m m N N
O O U U U U U t 'C t 'C 'C '!: '[ C N N
c c c
N N N 0) N fn N NVN N B B- N
Zb 2b 3 B . ae ae
O E E E O O
Q
E t t t `fie N 2m
a2 m
m
IL IL IL LL � m FF
^ZJL
m
m
0
J
N2
N fn
U%
.N
) 0
m OO O O O O O �c
c c
O
O
QT
5
T T T T T a�
m m m m
2 V V
NW
7 = S= 0 U U U U H Fa
Fm-
APPENDIX - J
December 2006
SOIL TYPE
SOIL SURVEY OF
Larl"mer County Area, Colorado
United States Department of Agriculture
Soil Conservation Service and
Forest Service
In cooperation with
Colorado Agricultural Experiment Station
v
f
N
O
0
0
0
t
CN
�
N
O
Z
_
O
Q
cr
O
o
O
a
42
SOIL SURVEY
4/3) moist; moderate medium and coar prismatic structure parting to modera
medium subangular blocky; very hard
nearly very
stickus clay and efillmsaon ' thi
eds
noncalcareous; mildly alkaline; Ilea
smooth boundary.
Baca-24 to 29 inches; pale brown (10YR 6/3 clay loam, brown (10YR 5/3) moist
weak medium subangular blocky strtureut
h n' very hard, firm, very plastic; fe
calcium carbo�e°occurrinaces, visible
nodules; calcareous g as small
line; gradual smooth boundary. moderately alka-
line; to 47 inches; light yellowish brown
(10YR 6/4) clay loam, dark yellowish
brown (10YR 4/4) moist; massive; very
calciumcar}mnate occurxw plastic. sticky and ' visible
thin seams, and str g as nodules,
moderately alkaline; eaka; calcareous;
boundary. gradual smooth
C2ca-47 to 60 inches; light yellowish brown
(2.5Y 6/3) clay loam, light olive brown
(2.5Y 5/3) moist; massive; very hard,
firm, sticky and plastic. some visible
calcium carbonate but less than in the
EkalClca horizon; calcareous; ,'moderately
The A horizonislight clay loam o'r clay 1
10 to
12 inches thick in cultivated areas. The combinoed'thick-
ness of the A and B horizons ranges from 16 to 40
inches The to calcareous is heavy clay loam or -light
'lay. Depth material ranges from 10 to
se 30 inches. Sand and gravel are below a depth
to inches in some profiles. Some profiles have bs
) with a redder hue. .
n 73—Nunn clay loam, 0 to 1 percent elopes,
level soil is on high terraces and fans. This soil '
r profile similar to the one described as representative
the series, but the combined thickness of the surf
layer and subsoil is about 35 inches.
Included with this soil in mapping are small a
Of soils that are more sloping. Also included are a f
w small areas of Satanta, Fort Collins, and Ulm soils an
a few small areas of soils that have a surface layer
subsoil of silty clay loam. su
Runoff is slow, and the hazard of erosion is slight
beans, barley _!
If irrigated, this soil is suited to corn, sugar beef
, wheat, and alfalfa. Under drylani
management it is suited to wheat or barley. It is alai
suited to pasture and native
IIs-1, irrigated, and IIIc-1 grasses.dryCapability unit!
range site; windbreak suitability group FootW
g ty group 1.
74—'Nmn clay loam, 1 to 3
soil
nearly level soil Is on high terraces andnfaslopes. This .
has the profile described as representative of he
series.
Included with this soil in mapping are a few small
a
arefew as of soils that are more sloping or less sloping and
small areas of soils that have a surface layer and
subsoil of silty clay loam Also included are small areas
Of Satanta, Fort Collins, and Uhn soils.
Runoff is slow to medium, the hazard of wind erosion
is slight, and the hazard Qf water erosion is moderate
If irrigated, this
��, barley, soil is suited to corn, sugar beets,
alfalfa, and wheat. Under dryland
management It is suited to wheat and barley. It is also
well suited to pasture or native grasses (fig. 10).
Ptsa►e 10.--Alfalfa bales oa Dunn rye loaa4 1 to 3 vereent slopes.
LARIMER COUNTY AREA, COLORADO
( Capability units IIe-1, irrigated, and IIIe-6, dryland
ayey Foothill range site; windbreak suitability grou
75—Nunn clay loam, 3 to 5 percent slopes. This
gently sloping soil is on high terraces and fans. This
soil .has a profile similar to the one described as rep-
resentative of the series, but the combined thickness
of the surface layer and subsoil is about 24 inches.
Included with this soil in mapping are small area
of soils that are more sloping or less sloping and a fe
small areas of soils that have a surface layer of light
clay. Also included are a few small areas of Satanta
and Ulm soils.
Runoff is medium. The hazard of water erosion is
moderate, and the hazard of wind erosion is slight.
If irrigated, this soil is suited to barley, alfalfa, and
wheat and, to a lesser extent, corn, sugar beets, and
beans: Under dryland management it is suited to wheat
or barley. It is also well suited to pasture and native
grasses. Capability units III:-2, irrigated, and IIIe-7,
dryland; Clayey Foothill range site; windbreak suit-
ability group 1.
76—Nunn clay loam, wet, 1 to 3 percent slopes. This
nearly level, somewhat poorly drs med soil is on low
terraces and alluvial fans, commonly adjacent to
drainageways. This soil has a profile similar to the one
described as representative of the series, but a seasonal
high water table is at a depth of 20 to 30 inches during
part of the growing season.
Included with this soil in mapping are a few small
areas of soils that have a strongly alkaline surface
layer and a few small areas of soils that are moderately
�ll drained. Also included are a few areas of soils
tbtarEeets,
have a surface layer of loam or clay and a few
of soils that are less sloping.
noff is slow, and the hazard of erosion is slight.
is soil is suited to pasture and hay. If the water
is lowered by management practices, corn, sugar
wheat, and barley can be grown. Capability unit
1, irrigated; Wet Meadow range site; windbreak
ility group 5.
r Series
i Otero series consists of deep, well drained soils
ormed in alluvium and wind -deposited material.
soils are on alluvial fans and terraces. Elevation
B from 4,800 to 5,600 feet. Slopes are 0 to 15
It. The native vegetation is mainly blue grams,
grass, bluestems, and some forbs and shrubs.
annual precipitation ranges from 13 to 15 inches,
annual air temperature ranges from 480 to 500
1 the frost -free season ranges from 135 to 150
representative profile the surface layer is brown
loam about 4 inches thick. The underlying
Al is pale brown sandy loam about 18 inches
her light brownish gray sandy loam.
neability is rapid, and the available.water ca-
is medium. Reaction is mildly alkaline above a
about 4 inches and moderately alkaline below
soils are used mainly for native grasses and
ed crops. A few areas are used for ir-
1.0 _-
43
Representative profile of Otero sandy loam in an
p area of Otero -Nelson sandy loams, 3 to 25 percent
slopes, in native grass, about 300 feet south and 1,420
feet west of the northeast corner of sec. 11, T. 10 N.,
R. 68 W.:
A1=0 to 4 inches; brown (10YR 5/3) sandy
loam, dark brown (10YR 3/3) moist;
weak very fine granular structure • soft
s very friable; calcareous; mildly structure;
v' line; clear smooth boundary.
Clca--4 to 17 inches; pale brown (10YR 6/3)
sandy loam, brown (10YR 5/3) moist;
weak medium and coarse subangular
blocky structure; hard, very friable; cal-
careous; visible calcium carbonate as few
soft spots; moderately alkaline; gradual
smooth boundary.
C2ca-17 to 60 inches; light brownish gray
(10YR 6/2) sandy loam, dark grayish
brown (10YR. 4/2) moist; massive; hard,
very friable; calcareous; visible calcium
carbonate as few soft spots; moderately
alkaline.
The A horizon is sandy loam or fine sandy loam 8 to
12 inches thick in cultivated areas. The C horizon is
sandy loam or fine sandy loam. The soil is generally
calcareous throughout, but the surface layer is leached
in places. Distribution of lime in the profile is erratic.
Soft sandstone is at a depth of 40 to 60 inches in some
profiles.
77—Otero sandy loam, 0 to 3 percent slopes. This
nearly level soil is on uplands and fans. This soil has a
the series,ofile ilar bu to
surface ane yer pis representative 10 toe 12
inches thick.
Included with this soil in mapping are some small
areas of soils that have a surface layer of loam or fine
sandy loam. Also included are some areas of soils that
are redder and a few small areas of Ascalon, Nelson,
and Kim soils.
Runoff is slow. The hazard of water erosion is slight,
and the hazard of wind erosion is moderate.
If irrigated, this soil is suited to corn, barley, sugar
beets, wheat, and beans. Under dryland management
it is suited to pasture and native grasses and, to a
lesser extent, wheat and barley. Capability units
IIIe-5, irrigated, and IVe-5, dryland; Sandy Plains
range site; windbreak suitability group 2.
78—Otero sandy loam, 3 to 5 percent slopes. This
gently sloping soil is on uplands and fans. This soil
has a profile similar to the one described as representa-
tive of the series, but the surface layer is about 8
inches thick.
Included with this soil in mapping are a few small
areas of soils that are more sloping or less sloping.
Also included are some small areas of soils in which
sandstone is at a depth of 40 to 60 inches and a few
small areas of Ascalon, Nelson, and Kim soils.
Runoff is medium, and the hazard of erosion is
moderate.
If irrigated, this soil is suited to barley, wheat,
alfalfa, and pasture and, to a lesser extent, Born and
beans. Under dryland management it is well suited to
pasture and native grasses. Capability units IIIe-4,
irrigated, and VIe-2, dryland; Sandy Plains range
site; windbreak suitability group 2.
APPENDIX - K
0
December 2006
r
OFFSITE DRAINAGE CALCULATIONS
Developed Weighted Runoff Coefficients
Bayer
187010251
This sheet calculates the composite "C' values for the Rational Method.
OS-1
0.95
0.25
22,033
0.51
21,770
0.50
99
1
0.94
OS-2
0.95
0.25
28,472
0.65
28,312
0.65
99
1
0.95
OS-3
0.95
0.25
81,518
1.87
80,668
1.85
99
1
0.94
OS-4
0.95
0.25
14,545
0.33
9,345
0.21
64
36
0.70
OS-5
0.95
0.25
21,028
0.48
12,973
0.30
62
38
0.68
OS-6
0.95
0.25
0
0.00
0
0.00
0
100
0.25
OS-7
0.95
0.25
17,295
0.40
17,295
0.40
100
0
0.95
OS-8
0.95
0.25
107.523
2.47
87.206
2.00
81
19
0.82
The Sear -Brown Group
12:50 PM
1 /312007
TIME OF CONCENTRATION
10 year design storm
Bayer
187010251 1.87(1.1- CC )✓D
r, = S0311
t,= tj+tL
Cf = 1.00
SUB -BASIN DATA
INITIAL/OVERLAND TIME
TRAVEL TIME
FINAL
REMARKS
BASIN
AREA
C
LENGTH
SLOPE
t;
LENGTH CHANNEL
SLOPE VELOCITY
tL
tc
NO.
(ac)
(ft)
N
(min)
(ft)
TYPE(a)
N
(ft/s)
(min)
(min)
1
2
3
4
5
6
7
8
10
12
13
OS-1
0.51
0.94
75
2
2.0
270
PA
0.5
1.34
3.4
5.4
OS-2
0.65
0.95
80
2
2.0
265
PA
0.5
1.34
3.3
5.3
OS-3
1.87
0.94
55
2
1.7
725
PA
1.2
2.09
5.8
7.5
OS-4
0.33
0.70
56
2
4.4
40
PA
3.2
3.46
0.2
5.0
OS-5
0.48
0.68
35
2
3.7
112
PA
2
2.72
0.7
5.0
OS-6
0.00
0.25
0
0
0.0
0
PA
1
1.91
0.0
5.0
OS-7
0.40
0.95
1
2
0.2
647
PA
0.5
1.34
8.1
8.3
OS-8
2.47
0.82
50
2
3.0
1200
PA
0.5
1.34
15.0
17.9
77�
.ae59
7
$ J. r
Note:
a) Codes the channel type for velocity calculations.
PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway
12:50 PM
The Sear -Brown Group 1 /312007
TIME OF CONCENTRATION
100 year design storm
Bayer
187010251 1.87(l.l - CCj. ),l D
tr = Sa3»
tc= t;+tr
Cr = 1.25
SUB -BASIN DATA
INITIAL/OVERLAND TIME
TRAVEL TIME
FINAL
REMARKS
BASIN AREA
C
LENGTH
SLOPE
t;
LENGTH
CHANNEL
SLOPE
VELOCITY
4
I.
NO. (ac)
(ft)
N
(min)
(ft)
TYPE(a)
M
(f /s)
(min)
(min)
1 2
3
4
5
6
7
8
10
12
13
OS-1 0.51
0.94
75
2.0
1.3
270 -
PA
0.5
1.34
3.4
5.0
OS-2 0.65
0.95
80
2.0
1.3
265
PA
0.5
1.34
3.3
5.0
OS-3 1.87
0.94
55
2.0
1.1
725
PA
1.2
2.09
5.8
6.9
OS-4 0.33
0.70
56
2.0
2.5
40
PA
3.2
3.46
0.2
5.0
OS-5 0.48
0.68
35
2.0
2.2
112
PA
2.0
2.72
0.7
5.0
OS-6 0.00
0.25
0
0.0
0.0
0
PA
1.0
1.91
0.0
5.0
OS-7 0.40
0.95
1
2.0
0.1
647
PA
0.5
1.34
8.1
8.2
OS-8 2.47
0.82
50
2.0
1.0
1200
PA
0.5
1.34
15.0
16.0
_
ki •"'
.rv'Y
Note:
a) Codes the channel type for velocity calculations.
PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway
12:49 PM
The Sear -Brown Group 102007
,
|
�
q,Rg2§\
88888888
� `
[
.t888888881
«!
[
!��
(
!
:
|
:
!-�
[
ƒ�'
[
\
\`'
§!R
R 2!ƒ
Jleeg!ƒ
{!Sage\
�l222:\
�t
[
§25000)
\9G2g\
|
/
a$
Area Inlet Design - Sump Condition
Area Inlet for (STIN-A001-3)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
Q,,; = CLH z
where: H = head above weir
Orifice Equation:
Qo„f,P C.A. 2gH
where: H= h z- h r
Grate: CDOT Type C Area Inlet
Weir:
Orifice:
Cwar = 3.20
C.W. =
0.65
L� = 20.92 ft. (1)
AoM=, =
25.13 W
Clogging
Factor =
0.20
Number of Inlets =
1
Flowline elevation of grate =
0.00
100 year Design Flow (cfs) =
4.09
100 year WSEL (4.09) =
0.13
Head (ft.)
Qw ,
QeM.
Qm
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
18.94
74.13
18.94
0.50
1.00
53.57
104.84
53.57
1.00
1.50
98.41
128.40
98.41
1.50
2.00
151.51
148.26
148.26
2.00
2.50
211.74
165.76
165.76
2.50
3.00
278.33
181.58
181.58
3.00
3.50
350.74
196.13
196.13
3.50
4.00
428.52
209.67
209.67
4.00
4.50
511.33
222.39
222.39
4.50
5.00
598.88
234.42
234.42
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice Control --H Qa'eir
t!)orifice
700
500
-
-
y` 400
9300
LL
i
i
200
I
:•
100
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
7.60 ft.
Effective Grate Length =
6.72 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth =
3.74 ft.
The Sear -Brown Group
12:57 PM
1 /3/2007
Area Inlet Design - Sump Condition
Area Inlet for (STIN-A001-2)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir -
Weir Equation:
Q„s = CLH 2
where: H = head above weir
Orifice Equation:
Co A. r2gH
where: H =h2 -hr
Grate: CDOT Type C Area Inlet
Weir: Orifice:
C.& = 3.20 0.65
L� = 20.92 ft. (1) Ao,dim = 25.13 ft`
Clogging Factor = 0.20
Number of Inlets = 1
Fiowline elevation of grate = 0.00
100 year Design Flow (cfs) = 2.91
100 year WSEL (2.91) = 0.09
Head (ft.)
Q.&
Qrtf.
Qr,, l
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
18.94
74.13
18.94
0.50
1.00
53.57
104.84
53.57
1.00
1.50
98.41
128.40
98.41
1.50
2.00
151.51
148.26
148.26
2.00
2.50
211.74
165.76
165.76
2.50
3.00
278.33
181.58
181.58
3.00
3.50
350.74
196.13
196.13
3.50
4.00
428.52
209.67
209.67
4.00
4.50
511.33
222.39
222.39
4.50
5.00
598.88
234.42
234.42
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Space width = 0.1640 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
7.60 ft.
Effective Grate Length =
6.72 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth=
3.74 ft.
12:57 PM
The Sear -Brown Group 1 /3/2007
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD 11
Bayer
STIN-AA01-1
Design Flow = Gutter Flow + Carry-over Flow
i
OVERLAND
y STRUEET FLOW
GUTTER -LOW PLUS CARRY-OVER FLOW F e GUTTER FLOW
INLET INLET
1/2 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): Q =
3.32 cfs
` If you entered a value here, skip the rest of this sheet and proceed to sheet O-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
• A, B, C, or D
Site: (Check One Box Onl) Slope (ft/
Length ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = Ci ` P, / ( C2 + T,) A C3
Design Storm Return Period, T, =
years
Return Period Ode -Hour Precipitation, P, =
inches
C, _
C2 =
C'33 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, Tc =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended Tc =
N/A minutes
Time of Concentration Selected by User, Tc =
N/A minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
L__ -
3.32 cfs
STIN-AA01-1.xls, Q-Peak 1/3/2007, 12:53 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer -
Inlet ID = - STIN-AA01-1
—Lo (C) T
Design Information (Input)
Type of Inlet
Type = COOT Type R Curb Opening -
Local Depression (in addition to gutter depression'a' from'Q-Allow')
a�=.
3.00. inches
Number of Unit Inlets (Grate or Curb Opening)
- No =•
1
Grate Information
Length of a Unit Grate
L. (G) _
N/A- feet
dth of a Unit Grate
Wo
- NIAfeet
me Opening Ratio for a Grate (typical values 0.15-0.90)
Ii
A„�,=
' N/A'
Clogging Factor for a Single Grate (typical value 0.50)
Cf (G) _
N/A
Grate Weir Coefficient (typical value 3.00)
C„ (G) _
- NIA'
Grate Orifice Coefficient (typical value 0.67) -
C. (G) _
- N/A'.
Curb Opening Information
Length of a Unit Curb Opening
L, (C) _
-5.00feet
Height of Vertical Curb Opening in Inches
H,,,,,
6.00'. inches
Height of Curb Orifice Throat in Inches
Ham, =.
5.96- inches
Angle of Throat (see USDCM Figure ST-5)
Theta =-
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =
2.00' feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) _' .
0.20,
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C.„ (C) _;..
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) _
- 0.67.
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =',
N/A-
Clogging Factor for Multiple Units
Clog =.
N/A,
s a Weir
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.32 cfs curb)
d. _'
N/A' inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.32 cis curb)
d„, _
N/A, inches
s an Or fice
Flow Depth at Local Depression without Clogging (0 cfs grate, 3.32 cfs cum)
d. _ -
N/A inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 3.32 cis cum)
d. _ .
N/A. inches
Resulting Gutter Flow Depth Outside of Local Depression
dam,,,, ='' -
NIA -. inches
Resulting Gutter Flow Depth for Cum Opening Inlet Capacity In a Sum
Clogging Coefficient for Multiple Units
Coal=
1.M
Clogging Factor for Multiple Units
Clog =.
0.20:
Curb as a Weir, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 3.32 cis cum)
dam, = { -
3.7 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.32 cfs cum)
d. =
4.01 inches
Cum as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 3.32 cfs cum)
do = _
3.4 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 3.32 cfs cum)
d. _,
3.8i inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.c„s =.
1.0, inches
Resultant Street Conditions
Total Inlet Length
L =.
5.0; feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. = j
3.3`: cts
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
d =
1.0" inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
0.8 feet
Resultant Flow Depth at Maximum Allowable Spread
clsm o =
0.0' inches
STIN-AA01-1.xls, Inlet In Sump 1/3/2007, 12:54 PM
30
i
29-
--
—
28 -
27
26
25 -
24
O
23
-
22
-
21
-
20-
I
I
I O
li
17
A
d 16
I
I
0
CL
to
I
/
I-
15
W
d
u 14
/
6 13
a
12
11
10
9-
0
7
7
6
5
3
1
1
011 ..
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
a (Cfs)
—E—Curb Weir 0 Curb Orif, —B—Not Used • Reported Design —O— Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.)
STIN-AA01-1.xls, Inlet In Sump 1/312007, 12:54 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer_
STIN-AD01
Design Flow = Gutter Flow + Carry-over Flow
�OV LROW STREET ySIDE UVAND
FLOW
e GUTTER FLOW PLUS CARRY-OVER FLOW F <—GUTTER FLOW
INLET 1NLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus Flow bypassing upstream subcatchments): 'Q = 16.74 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
Snt
Percent Imperviousness -
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Onl) Slope ft/ft
Length ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CC2 + Tc ) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C'3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Q =
Bypass (Carry -Over) Flow from upstream Subcatchments, 4 =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, Tc =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
16.74 cfs
STIN-AD01.xls, Q-Peak 1/3/2007, 12:55 PM
INLET IN A SUMP OR SAG LOCATION
Project = -- - Bayer
Inlet ID = STIN-AD01 -
-Lo(C) ,
Design Information (Input)
Type of Inlet
Type = COOT Type R Curb Opening _
Local Depression (in addition to gutter depression 'a' from'Q-Allow)
alai =
- 3.00: inches
Number of Unit Inlets (Grate or Curb Opening)
No =
1'
Grate Information
Length of a Unit Grate
L, (G) =
N/A feet
idth of a Unit Grate
W. _.
N/A feet
Area Opening Rabo for a Grate (typical values 0.15-0.90)
A„e, _ -
N/A.
Clogging Factor for a Single Grate (typical value 0.50)
C, (G) _.
WA
Grate Weir Coefficient (typical value 3.00)
C„ (G) _
NIA
Grate Orifice Coefficient (typical value 0.67)
C. (G) _ -
N/A -
Curb Opening Information
_
Length of a Unit Curb Opening
L. (C) _ -
15.00feet
Height of Vertical Curb Opening in Inches
H,,,r =,
6.00 inches
Height of Curb Orifice Throat in Inches
Hn,,,, _.
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =' -
63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp = '
2.00, feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
C, (C) _
0.10-
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„ (C) _
2.30
Curb Opening Orifice Coefficient (typical value 0.67)
Co (C) _
- 0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sump
Clogging Coefficient for Multiple Units
Coef =:
+N/A..
Clogging Factor for Multiple Units
Clog =
WAi
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 16.74 cfs curb)
d„, _
N/A' inches
Flow Depth at Local Depression with Clogging (0 cis grate, 16.74 cls cum)
d. =
N/A--, inches
s an Orifice
_
Flow Depth at Local Depression without Clogging (0 cfs grate, 16.74 cis cum)
da =.
NIA inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 16.74 cis cum)
d„ =
N/A. inches
Resulting Gutter Flow Depth Outside of Local Depression
d� =
N/A- inches
Resultina Gutter Flow Depth for Cum Opening Inlet Capacity in a Sum
_
Clogging Coefficient for Multiple Units
Coef =
1.00'
Clogging Factor for Multiple Units
Clog =..
0.10
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 16.74 cis cum)
cl� _
7.4, inches
Flow Depth at Local Depression with Clogging (0 cis grate, 16.74 cfs cum)
d„, _"
8.0 inches
Curb as an Orifice, Grate as an Orifice
_
Flow Depth at Local Depression without Clogging (0 cis grate, 16.74 cis cum)
dy =
4.8. inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 16.74 cfs cum)
d. _
5.3'. inches
Resulting Gutter Flow Depth Outside of Local Depression
d.an =
5.0, inches
Resultant Street Conditions
Total Inlet Length
L=.
15.0'feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
O, _:
16.7-i cfs
Resultant Gutter Flow Depth (based on sheet Q-Allowgeometry)
d =
5.0inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T ='
12.3' feet
Resultant Flow Depth at Maximum Allowable Spread
d3mEw =
0.0 inches
STIN-AD01.xls, Inlet In Sump 1/3/2007, 12:55 PM
30
29 -
28
27
26 -
25
24
23
22
21
20 -
19
18-
m
�17-
t1
to
Ca
rn
15
0
t
1-f
STIN-ADO1.xls, Inlet In Sump 1/3/2007, 12:55 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
-Bayer
STIN-AE01.2
Design Flow = Gutter Flow + Carry-over Flow
�OVFW ROLI SIDE � FLOW'
`Y I STREET � y
F GUTTER FLOW PLUS CARRY-OVER FLOW e ® F GUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =
6.50 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SubcaPercent
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only) Slope ft/ft
Length ft
Site is Urban: Overland Flow =
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ` P, I ( C2 + T� A C3
Design Storm Return Period, Tr =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C -
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
6.50 cfs
STIN-AE01-2.xls, Q-Peak 1/3/2007, 12:55 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN•AE01.2 '
,(—Lo (C) ,r
Design Information tinput)
Type of Inlet
Type = CDOT Type R Curb Opening
Local Depression (in addition to gutter depression'a' from'O-Allow)
a,.,i =
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No =
- t
Grate Information
Length of a Unit Grate
L. (G) =.
N/A feet
Width of a Unit Grate
W. ='.
N/A'. feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
h,w =
' N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) _'
WA
Grate Weir Coefficient (typical value 3.00)
C. (G) _
N/A
Grate Orifice Coefficient (typical value 0.67)
Co (G) _
N/A,
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _;
5.00 feet
Height of Vertical Curb Opening in Inches
H,,,,t= ,
- �. 6.00 inches
Height of Curb Orifice Throat in Inches
H ft t _',..:
- 5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
- 63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp =:
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) = r.
0.20
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„. (C) _' ..
2.30
Curb Cpenin 10
Oce Coefficient (typical value 0.67)
C, (C) _
0.67
ResultinQ Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef
Clogging Factor for Multiple Units
Clog =
N/A
s a weir
Flow Depth at Local Depression without Clogging (0 cis grate, 6.5 cis curb)
it. =
WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.5 cis curb)
cl„_,
N/A inches
As an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate. 6.5 cis curb)
da =.
_ WA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.5 cis curb)
d„ _
N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
cl . -,, _
N/A inches
Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coal '=.
1.00-
Clogging Factor for Multiple Units
Clog =
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 6.5 cis curb)
dµ =.
5.7 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 6.5 cis curb)
d—=,
6.2� inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 6.5 cis curb)
da =
5.5 inches
Flow Depth at Local Depression with Clogging (0 cfs grate, 6.5 cis curb)
de, =
7.1 inches
Resulting Gutter Flow Depth Outside of Local Depression
d =-
4.1 inches
Resultant Street Conditions
Total Inlet Length
L = -
5.0 feet
Total Inlet Interception Capacity (Design Discharge from, O-Peak)
O, _ -
6.5 cis
Resultant Gutter Flow Depth (based on sheet O-Allow geometry)
it =
4.1 inches
Resultant Street Flow Spread (based on sheet O-Allow geometry)
T =
8.8. feet
Resultant Flow Depth at Maximum Allowable Spread
d9PXEM =
- 0.0 inches
STIN-AE01-2.xls, Inlet In Sump 1/312007, 12:55 PM
30
29
28
�I
27
26 -
2524
23
22
21
20
i
19
_ 18
lL 17 . D
I
O
I
A
C18
t1
to
15
—
H
m
(
I
I
0 14 -
O
I!
Q 13
N
12
11
10 -
I
I
y.
O
I
I
I
6 .
5
©
�
I
4-
)
I
I
3
'
1
I
I
II
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
—6 Curb Weir 0 Curb Orif. —9—Not Used • Reported Design —*—Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft)
I
STIN-AE01-2.xls, Inlet In Sump 1/3/2007, 12:55 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-AF01-2
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND
<
Sl
GUTTER FLOW PLUS CARRY-OVER
INLET
i
DE FLOW
.EET Y
FLOW E— F— GUTTER FLOW
INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q =
15.57 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness -
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Onl lope ft/ft
Length ft
Site is Urban: Overland Flow -
Site Is Non -Urban: Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CZ + T� A C3
Design Storm Return Period, Tr =
years
Return Period Orie-Hour Precipitation, P, =
inches
C, _
C2 =
C3=
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, tc =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, Tc =
N/A minutes
Recommended Tc =
N/A minutes
Time of Concentration Selected by User, Tc =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =1
15.57 cfs
STIN-AF01-2.xls, Q-Peak 1/3/2007, 12:56 PM
INLET IN A SUMP OR SAG LOCATION
Project= Bayer -
Inlet ID = STIN-AF01-2
r—Lo (C) f,
Design Information (input)
Type of Inlet
Type = CDOT Type R Curb Opening
Local Depression (in addition to gutter depmssion'a' fmm'O-PJIOW)
A.,= -
- 3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No = -
1
Grate Information
.. - ...
. ..._
Length of a Unit Grate
Le (G) _
't-• N/A feet
Width of a Unit Grate
W. =
N/A feet
a Opening Ratio for a Grate (typical values 0.15-0.90)
A„. _ -
N/A
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) _
- N/A
Grate Weir Coefficient (typical value 3.00)
C„. (G) _
N/A
Grate Orifice Coefficient (typical value 0.67)
C. (G) _ :
N/A
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _
10.D0 feet
Height of Vertical Curb Opening in Inches
H� _
- 6.00 inches
Height of Curb Orifice Throat in Inches
H� _'
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta ='
- 63.4 degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W p =
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
Cr (C) _;
., 0.15
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„. (C) _ -
- 2.30'
Curb Opening Orifice Coefficient (typical value 0.67)
C. (C) _
0.67
Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
N/A'
Clogging Factor for Multiple Units
Clog =•
N/A
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 15.57 cfs curb)
qw =.
WAS inches
Flow Depth at Local Depression with Clogging (0 cis grate, 15.57 cis curb)
d„, _
N/A inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 15.57 cis curb)
da =
N/A� inches
Flow Depth at Local Depression with Clogging (0 cis grate, 15.57 cis curb)
d. _
- N/A inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.D,,,, =
N/A Inches
Resulting Gutter Flow Depth for Curb Ovenina Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef =
1.00,
Clogging Factor for Multiple Units
Clog =
0.15.
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 15.57 cis curb)
d. _
7.5 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 15.57 cis curb)
cl , _ `
8.2' inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 15.57 cis curb)
da =
6.7 inches
Flow Depthh at Locat Depression with Clogging (0 cis grate, 15.57 cis curb)
da. _.
8.3' inches
Resulting Gutter Flow Depth Outside of Local Depression
d,.D„b =
57 inches
Resultant Street Conditions
Total Inlet Length
L =. -
10.0 feet
Total Inlet Interception Capacity (Design Discharge from O-Peak)
Q. =
15.6 cfs
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =..
5.3 inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
13.8feet
Resultant Flow Depth at Maximum Allowable Spread
dspee.D 0
0.0 inches
STIN-AFOt-2.xls, Inlet In Sump 1/3/2007, 12:56 PM
30
29
-
—
28
27
26 -
25
-
24 -
23
22
0
21
20 -
19
18
O
LL 17
V
N
1615
�
(
I
0
Lc1 14
13
CL
G 12
�0
11
10-
0
8
7
3
I
—'
I
0
�I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0 (cfs)
--&--Curb Weir .-8 Curb Orif. -e Not Used • Reported Design -o- Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (fL)
STIN-AF01-2.xls, Inlet In Sump 1/3/2007, 12:56 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD
Bayer
STIN-AH01-2
Design Flow = Gutter Flow + Carry-over Flow
OVERLAND
y SIDE OVERLAND
STREET
E- GUTTER FLOW PLUS CARRY-OVER FLOW 45 leGUTTER FLOW
INLET INLET
112 OF STREET
Design Flow: ONLY if already determined through other methods:
(local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): Q =
19:12 cfs
. If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow
Geographic Information: (Enter data in the blue cells):
Area
SntImp
Percent Imperviousness =
Imperviousness
=Acres
NRCS Soil Type =
A, B, C, or D
Site: (Check One Box Only Slope (ft/ft
Length (ft
Site is Urban: Overland Flow -
Site Is Non-Urban:j Gutter Flow =
Rainfall Information: Intensity I (inch/hr) = G ' P1 / ( C2 + Tc ) A C3
Design Storm Return Period, T, =
years
Return Period One -Hour Precipitation, P, =
inches
C, _
C2 =
C3 =
User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C
User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q =
Bypass (Carry -Over) Flow from upstream Subcatchments, Q =
cfs
Analysis of Flow Time (Time of Concentration) for a Catchment:
Calculated Design Storm Runoff Coefficient, C =
N/A
Calculated 5-yr. Runoff Coefficient, C5 =
N/A
Overland Flow Velocity, Vo =
N/A fps
Gutter Flow Velocity, VG =
N/A fps
Overland Flow Time, to =
N/A minutes
Gutter Flow Time, to =
N/A minutes
Calculated Time of Concentration, T, =
N/A minutes
Time of Concentration by Regional Formula, T, =
N/A minutes
Recommended T, =
N/A minutes
Time of Concentration Selected by User, T, =
NIA minutes
Design Rainfall Intensity, I =
N/A inch/hr
Calculated Local Peak Flow, 4 =
N/A cfs
Total Design Peak Flow, Q =
19.12 cfs
STIN-AH01-2.xls, Q-Peak 1/3/2007, 12:56 PM
INLET IN A SUMP OR SAG LOCATION
Project = Bayer
Inlet ID = STIN-AH01-2
¢—Lo (C) K
Design Information finput)
Type of Inlet
Type = CDOT Type R Curb Opening -
Local Depression (in addition to gutter depression's' from'Q-Allow)
a.., _ -
3.00 inches
Number of Unit Inlets (Grate or Curb Opening)
No ='
- 1,
Grate Information
Length of a Unit Grate
L. (G) =
NIA feet
Width of a Unit Grate
Wo =,.. '
-' WA feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)
A� _,
NIA
Clogging Factor for a Single Grate (typical value 0.50)
Cr (G) =
N/A
Grate Weir Coefficient (typical value 3.00)
C„. (G) =
N/A.
Grate Orifice Coefficient (typical value 0.67)
C, (G) = r
NIA"
Curb Opening Information
Length of a Unit Curb Opening
L. (C) _
15.00 feet
Height of Vertical Curb Opening in Inches
H_
6.00 inches
Height of Curb Orifice Throat in Inches
H�_
5.96 inches
Angle of Throat (see USDCM Figure ST-5)
Theta =
63A degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
Wp = _ -
2.00 feet
Clogging Factor for a Single Curb Opening (typical value 0.10)
C, (C) =
0.10
Curb Opening Weir Coefficient (typical value 2.30-3.00)
C„. (C) = y
2.30'
Curb Opening Orce Coefficient (typical value 0,67)
Co (C) _
0.6T
Resulting Gutter Flow De th for Grate Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
Coef=
NIAi
Clogging Factor for Multiple Units
Clog =
N/A,
s a Weir
Flow Depth at Local Depression without Clogging (0 cis grate, 19.12 cis curb)
d,M =
N/A inches
Flow Depth at Local Depression with Clogging (0 cis grate, 19.12 cfs curb)
d. _'
N/A. inches
s an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 19.12 cis curb)
da =
NIA inches
Flow Depth at Local Depression with Clogging (0 cis grate, 19.12 cis curb)
d. =
NIA inches
Resulting Gutter Flow Depth Outside of Local Depression
it... _
NIA inches
Resultina Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum
Clogging Coefficient for Multiple Units
_
Coef =
1.00'
Clogging Factor for Multiple Units
Clog =
0.10
Curb as a Weir, Grate as an Orifice
Flow Depth at Local Depression without Clogging (0 cis grate, 19.12 cis curb)
clm =
8.1 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 19.12 cis curb)
cl, =
8.7 inches
Curb as an Orifice, Grate as an Orifice
Flow Depth at Loral Depression without Clogging (0 cis grate, 19.12 cfs curb)
dw =
5.4 inches
Flow Depth at Local Depression with Clogging (0 cis grate, 19.12 cfs curb)
cl , =
6.0 inches
Resulting Gutter Flow Depth Outside of Local Depression
it . =
5.7 inches
Resultant Street Conditions
Total Inlet Length
L = -
_ 14 feet
Total Inlet Interception Capacity (Design Discharge from Q-Peak)
Q. _,
19.1 cis
Resultant Gutter Flow Depth (based on sheet Q-Allow geometry)
d =
- 5.7' inches
Resultant Street Flow Spread (based on sheet Q-Allow geometry)
T =
16.4 feet
Resultant Flow Depth at Maximum Allowable Spread
dsrseao ='
0.0 inches
STIN-AH01-2.xls, Inlet In Sump 1/312007, 12:56 PM
30
29
28
27
26
25
24
23
22
21
20
19
18
m
LL 17
9
m
d 16
a
1n
c 15
m
n 1a
c
« 13
a
m
C 12
11 -
10
s
8
7-
6-
5
4
3
2-
1
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Q (cfs)
-tr-Curb Weir --0 Curb Orif. -a- Not Used • Reported Design -O- Reported Design
Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (fL)
I
/
0
O
i
0
I
0
O
O
O
I
I
STIN-AH01-2.xls, Inlet In Sump 1/3/2007. 12:56 PM
Area Inlet Design - Sump Condition
Area Inlet for(STIN-AE01-1)
Project No. 187010251
This sheet computes the controlling area inlet flow condition.
Weir Equation:
r
Q_ = CLH'
where: H = head above weir
Orifice Equation:
C. A. f2.YH
H =hz -h
Grate: CDOT Type C Area Inlet
Weir: Orifice:
Cesar = 3.20 0.65
Lit = 20.92 ft. (1) AeM. = 25.13 ft`
Clogging Factor = 0.20
Number of Inlets = 1
Flowline elevation of grate = 0.00
100 year Design Flow (cfs) = 5.03
100 year WSEL (5.03) = 0.15
Head (ft.)
Qwar
QoM.
O.m=i
WSEL
0.00
0.00
0.00
0.00
0.00
0.50
18.94
74.13
18.94
0.50
1.00
53.57
104.84
53.57
1.00
1.50
98.41
128.40
98.41
1.50
2.00
151.51
148.26
148.26
2.00
2.50
211.74
165.76
165.76
2.50
3.00
278.33
181.58
181.58
3.00
3.50
350.74
196.13
196.13
3.50
4.00
428.52
209.67
209.67
4.00
4.50
511.33
222.39
222.39
4.50
5.00
598.88
234.42
234.42
5.00
Notes:
1) This is the effective weir length which equals the sum of the open space lengths
between bars in the predominant flow directions.
Weir -Orifice ControlOweir
t Oaice
700
600
500
400
0 300
,K L.
200
100
-
r
0
0.00 1.00 2.00 3.00 4.00 5.00 6.00
Flow Depth (ft.)
Space width = 0.1640 ft.
Bar width =
0.0208 ft.
Number of bars =
42
Number of spaces =
41
Grate length =
7.60 ft.
Effective Grate Length =
6.72 ft.
Space width = 0.6230 ft.
Bar width =
0.0328 ft.
Number of bars =
5
Number of spaces =
6
Grate Width =
2.66 ft.
Effective GrateWidth=
3.74 ft.
12:57 PM
The Sear -Brown Group 1/3/2007
.o ST9m -AAO-1
jzcq
NeoUDS Results Summary
Project Title: STRM-AA01
Project Description: FRV OFFSITE
Output Created On: 2/16/2007 at 11:30:39 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
F_ Time of Concentration
Manhole
Basin
;0verland'[
Gutter
Basin
Ram I
Peak Flow!
ID #
Area * C�nutes)iMinutes),
__
(Minutes)
..
(Inch/Hour)j
_�
(CFS)
_
5.
830.0011 3.3
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Rainfall #
i
Rainfall
Design]—
1
1
Manhole
Contributing
*
Duration
1
Intensity 1
Peak
Ground
Elevation.
Water
Elevation
j
Commentsl i
ID #
Area C
1
(Minutes)
(Inch/Hour)(
Flow I
(Feet)
(Feet)
(CFS)
1
Oj
0.0
O.00j
1
3.3�
I
4953.301
_
4953.701
_
Surface
Water
Present
���
Oi
� 5 0
830.00t
3.3
4960.45
4953.83!
1
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
_
Manhole ID Number
{{Calculated
'
Suggested
Existin g J
Diameter
Diameter 1
Diameter
Sewer'
i
Upstream;.
1
Downstream
Sewer
(Rise)
(Rise)
(Rise)
Width
ID #
1
Shape
(Inches)
(Inches)
(Inches)
(FT)
(FT)
(FT) i
_. (FT)
I
2
Round)
13.3��
181
_ 181
N/All
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
+Sewer;
Design
Full i
Normal[0rm.�I
Criticall
Critical
Full
Froude 1
j ID
Flow 1
Flow ;
Depth !eloci
IFPS)
Depth
VelocityVelocitylNumberComment(CFI
(CFS)
(Feet)
(Feet)
(FPS)
(FPS)
IEE
` 3.31
7.4
0.701
4.1�
0.70
4.11
17
0.9g11
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
-invert Elevation IF Buried Depth lr jI
Sewer IDI Slope' Upstream; Downstream' Upstream Downstream)
i % (Feet) ! (Feet) (Feet) (Feet) i _Comment
i 1 0.501 4952.33!1 4951.801 6.62 0 00j Sewer Too Shallow
_ .__
Summary of Hydraulic Grade Line
Invert Elevation Water Elevation
Feer,,",'
Sewer
Len 1
(Fee_ _� .
Surcharged
Length
__ (Feet)
U stream
p
(Feet )
Downstreami
( )
__..Feet
U stream!
p
(Fee )
_t
Downstream
(Feet)
Condition!
1
106.58j
_86.85
4952.33
4951.80
4953.831
.__.., _ ,_,
4953.70
Subcritical�
Summary of Energy Grade Line
Upstream
Manhole
__-_-- _ _
i Downstream I
Juncture Losses
_ !
. _. _.— _ Manhole J
Sewer'
ID #
_
1
Manhole!
ID # j
Energy
Elevation[Friction;
_(Feet)
Sewer
(Feet)Aj
Bend K
Coeffcient
Bend
Loss
3
I (Feet)]
JF--,
Lateral K
Coefficient
Lateral}
Loss
(Fee]
1
Manhole
!
ID #
__�
Energy
Elevation]
(Feet)
I 1 fE
2 j
4953.891
0 l9
0.05
0.06
O.Oo
0.00!
1 i
4953_70
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
ID # 11 (Feet)
I'1__._ 1 __ 11_ ___ 4953.301 4951.80'1 1.50
12 4960.45; — 4952.33{F �8.121
3
Upstream Trench
Width
Downstream
Trench Width
On
At
On
At
Trench
Wall
Sewer
f
Ground
In
Ground
Invert
Length
Thickness.:
Volume
ID #
(Feet)
(Feet) ,
(Feet)
(Feet)
(Feet)
(Inches).
(Cubic
yards _
Total earth volume for sewer trenches = 166.14 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
4
.s-rgM - ADOI
1 is" Ize-P
•)
NeoUDS Results Summary
Project Title: STRM-ADO1
Project Description: FRV OFFSITE
Output Created On: 2/16/2007 at 11:33:10 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
�F _' Time of Concentration
Manhole(
Basin
Overland:
Gutter
Basin
Rain I ;Peak
Flow
ID # Area * C
(Minutes);
(Minutes)
(Minutes)
(Inch/Hour
(CFS)
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/l80) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
`
Design I
Manholes
Contributing
Rainfall
Duration!
Rainfall
I
Intensity !
Peak E
Ground (
Elevation I
Water
Elevation,
Comments!
ID #
Area * C
(Minutes)G
(Inch/Hour)!
Flow
{
j
(Feet) 3
(Feet)
J____.___..___,____..___.___(CFS)I,_________�_.__.__.__._._�__.
!
�
0.001
i
16.71
j
4922.501
�
4925.02 !
Surface
Water
Present _
-- 0.01
5.012092.50's
16 7j
493005
4926_4811
3
0.._.
_ 5.0
4185 00
16 7
4932.18i
4929.701
1
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
Manhole ID Number
_ „LL
_�-�aleulatFCF-7ugpestedjlj
_Existing
Sewer
Sewer
Diameter
(Rise)
Diameter
(Rise)
Diameter
(Rise)
Width
Upstream
Downstream
ID # i
Shape
(Inches)
(Inches)
(Inches)
(FT)
J
_ (IT) _
(FT)
(r)__
IF1
2
Round
. 19.61_N/A�
-- 3
�1--
—� `--- -�
Round 1
__ _ -21 4
_ _—_ _ 24
_- - 18
N/A
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer!
ID ;Flow
Design[IowIePth
(CFS)FS)',
ull j
Normal?
D;Velocity
(Feet)
Normal
(FPS)
Critical
Depth
(Feet)
Critical
Velocity
(FPS) j
Full
Velocity
(FPS)
Froude
NumbersComment
A -
ijF
� 167�
13•J
1.5095j
Nei
i
�1,
16.7
10.5!
1.50j
9.Sj
1.41
9.7
9.51
N/A
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevation
ied Depth
Upstream Downstream4 Comment
(Feet)- I (Feet)
�Sewer ID±Slope; Upstream; Downstream
'� % (Feet) ! (Feet)
I 1 € 1.60 _ 4922.80j 4920.99
5.75 O.Olj Sewer Too Shallow;
__ -r __
�I `_T
1.00
E4923.96
^ Y_ 4923AOj
6.72-_
5.55�—
Summary of Hydraulic Grade Line
IF- —
Water Elevation
Sewer SurchargedG
Length; Length
Fe j UpstrTea DownstreamF(Fee
am Downstream)
(Fe(Feet)
(Feet) _ (Feet)
112.831 _ 112.83 F4932 84920.^99
2 96.13i 96.13 4923.96 4923.00
t) (Feet) ' Condition
_
4926 48� 4925.02 Pressure
4929.70 4926.48 Pressured
Summary of Energy Grade Line
Upstream Downstream
Juncture Losses s
ManholeManhole j
.i
1
Sewed
ID # =
I
Manholes
ID #
Energy
Elevation
(Feet) I
Sewers
Friction
(Feet) s
Bend K i
!
Coefficients
E
Bend ,
Loss
(Feet)
'
Lateral K
Coefficient
_J
Lateran
Loss
(Feet)
Manhole
ID #
Energy
Elevations
(Feet) s
i
j_.....__.......
._.._.-.._._.
�
- 4927.87
2.85
0.05((
O.00I
O.003j
_ 000�I
1� __ a
4925A21
j
F���
4931.09�
- 2.43]
OST
0.79
0.00
0.00
2
4927:87;
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
Manhole' Rim Elevation; Invert Elevation, Manhole Height'
Iy �J (Feet) (Feet) (Feet)y_j
!� - 492 0 �N 492099�- 151
4930.05 4922.80�--7.25(
8 22'
I]
Upstream Trench
Downstream
Width
Trench Width
Sewer
On
At
On
At
Trench 1
Wall
Earth
Volume
!
ID # {
Ground
Invert
Ground !
;
Invert
Length
Thickness
(Cubic
(Feet)
(Feet)
(Feet) f
(Feet)
(Feet)
(Inches) 1
yards
__.2.501
1481
16.K—
3.9j
— 14.2j
— 3-9J
_.Y_ 96.13
2.50
238
Total earth volume for sewer trenches = 385.9 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
M
-~.^��
__���
° , , " -_ ___
1 O
� 1
' --- ---------------'-��---- '��� K ^��' r --^
NeoUDS Results Summary
Project Title: STRM-AE01
Project Description: FRV OFFSITE
Output Created On: 2/16/2007 at 11:34:55 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
Basin
Overland Gutter Basin i Rain I
Peak Flow
rMian7hole,,"
ID #
Area * C(
(Minutes) (Minutes) (Mmutes) (Inch/Hour)
(CFS) _
OAE 0�0 _ 1625.00
6.5?
___.6
1625.00�
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Rainfall
Rainfall
DesignI
Ground
Water
Manhole
Contributing;
Duration
Intensity
Peak ;
=
Elevation
Elevation;
Comments
ID #
Area *.0
(Minutes)
(Inch/Hour);
Flow
(Feet)
(F )
(Feet)
4930.801
wmm 4927.6681
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
',,I
Manhole ID Number
11
Calculated
Su ested
Existing
Diameter
Diameter
Diameter
Sewers
Upstream
Downstream
Sewer
(Rise)
(Rise)
i
(Rise)
Width
ID # ;
Shape
(Inches) f
(Inches)
(Inches)
(FT)
1 -
2 ;�
Round
17.1j
v18
118j
N/Al
Round and arch sewers are measured in inches.
Box sewers are measured in feet. .
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer;
Design
Flow
Full
Flow
Normall,
Depth
Normal
Velocity
CriticalFIclI[eloc,tyl'iticalFull
Depth
CommentID
iNumber(CFSj
(CFS)E
(Feet)
(FPS)
(Feet)PS)
oFroude
FP
6•511
7.4
1.08
4.8]
0 98
�Y
—3 771
� 0.83E
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
Invert Elevations Buried Depth I �I
Moo'� pe:
Upstreamf
Downstream
Upstream{
Downstream;Sewer
ID
{
(Feet)T
(Feet) _�
(Feet)
(Feet) 111
Comment
1 0.50 4926.60' 4924.80 2.70 1.10; Sewer Too Shallowl
2
Summary of Hydraulic Grade Line
i ! Invert Elevation Water Elevation
—1rt .__—...._. ._.
Sewer;
Sewer
i Surcharged
Upstream
Downstream)
U stream
i
Downstream
1
ID #
Length]
(Feet)-
Length
(Feet)
(Feet)
(Feet)
(Feet) i
Condition'
---=
-_.
359.83 � 4926.60 4924.80l -- 9727- 8j — 4926.23! Subcriticalil
Summary of Energy Grade Line
1 Upstream I
Manhole Juncture Losses
—
Downstream
Manhole_
Energy I Sewer I Bend Lateral
Sewer•II f Manhole Bend K Lateral K
Elevation Frictions 1 Loss Loss
Energy
Manhole{
Elevation]
ID # = ID # j Coefficient, Coefficient
i I ,(Feet)(Feet) (Feet)] j (Feet)
�4928.04j
ID #
—(Feet) j
— 1.81 j
O.OSa
—0.00
0.00
0.00
4926.21,
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
ID #
(I 1 II 4927.4011 4924.8011 2.6011
1 2 11 4930.8011 4926.601 4.2011
3
Upstream Trench
Downstream
Width 11
Trench Width
Sewer
ID #
kEarth
On At
( Ground - Invert I
(Feet) (Feet)
(Feet)
On i At
Ground Invert
(Feet) E (Feet)
Trench
Length
(Feet)
Wall
Thickness
(Inches) l
Volume
Yards)
359.831—
2.50
267
Total earth volume for sewer trenches = 267.47 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
4
s-V2n\ - a Fat
's
Is1. (tce
NeoUDS Results Summary
Project Title: STRM-AFO1
Project Description: FRV OFFSITE
Output Created On: 2/16/2007 at 11:38:48 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
hole,
ffID#
Basin
Area * C
Overland Gutter ( Basin Rain I ]Peak
Flow
J
(Minutes); (Minutes)} (Minutes)!VInch/Hour
(CFS)�
i��
0.00
S.Oj 0.0 O Oj
3892-5 �
15.6
(I f
0.0�1
._ 5 �i 0.0 �O
3892.50�
15.6
m
_..
2650.00
..._._.
10�6j
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Rainfall 3
Rainfall
Desig
n
Ground
�
Water
Manhole
Contributing;
Duration
Peak �
�
ID #
Area * C
Intensity
Flow
Elevation!
Elevation
Comments
(Minutes)
(Inch/Hour)
(Feet) i
(Feet)
4923.561�_____.._
0.01
SA;
1946 25j
15�6
4925.54J
4924.061J
j
_
_
Surface j
3
0
5 0
2650.00
10.6
4923 901
4926.131
Water j
'Present
17
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
'=1Manhole
ID Numberj=
Calculated 1
Suggested
Existing��
Diameter
Diameter
Diameter
Sewer;
m Upstrea=
Downstream,
Sewer
(Rise)
(Rise)
}
(Rise)
Width!.
ID #
i
Shape
(Inches) i
(Inches)
(Inches)
(Fr)
(FT)
(FT)
(Fr)
I�� —
-_..2
Round
, 28 K
30j
� 181
� N/Al
IF--
___ 3 _
Rounds
__ 24.21
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
rSewer Design
ID°w
(CFS)(CFS)I
15.6�
210.6
Full !Normal
Flow Depth
(Feet)
4.81 1.50
4.8 1.50
Normal, Critical
Velocity DcphVelocity!
j (FPS) F�(FPS�
8.8 T 1.39
6.0 1.24
Critical
`1._.
�6.8i
Full '
Fronde
Velocity;
(FPS) I Namber
_
N/AIL._
{
Comment
_J
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
_'Invert Elevation_ _ ] F Buried Depth
Sewer IDI Slope Upstream! Downstream Upstream! Downstream( Comment
(Feet) (Feet) T (Feet (Feet) ;�
_.
0.2114922.1111 4922.061F 1.931F 0.00 SewerToo S
11 2 11 0.2111 4922AQ 4922.1111 0.0011 1.93 (Sewer Too Shallow`:(
PA
Summary of Hydraulic Grade Line
Sewer Surcharged
Sewer;
Lengthl Length
ID #
(Feet); (Feet)
Invert Elevation Water Elevation
- _
i
UpstreamI Downstream Upstream; Downstream
! , Condition
{{ (Feet) (Feet) (Feet) (Feet)
_ __.,__.
J=F22.R�'
22.841
4922.1I
4922.06�
4924.06
4923.56
2
137.82
137.82
4922.40]!
_—
—4922.11
4926 13
4924.06�
„Pressured
Pressured
Summary of Energy Grade Line
i Upstream
E
Manhole I
Downstream
Juncture Losses I
I Manhole J
iFSewer.
Manhole`
H) # !I
ner 1
(Feet)
Sewer
i
(Feet) �
Bend KF
CoefficientefficientID#—
Bend
Loss
feet)
ateral K
. — .
Lateral
Loss
(Feet)
Manhole,ElevationFriction
Enerj
Elevation
(Feet)
1�I
4925.271
1.71j
0.05
0.00
0.00�
0.001
1 11
4923.561
—2�
0.00
4925.27
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition:
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations..
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is 1.
i Manhole`
_ ID #
Rim Elevation!
(Feet)
Invert Elevation'
(Feet) }
Manhole Height!
(Feet)
I _— 4923_561 _— 4922.061 1.501
4925.54! V 4922.11 ��^m3.43!
3
4923.90!
4922.40
1.SOj
3
IUpstream
Trench
Downstream
f
i
Width
Trench Width
(
Sewer ,
ID # I
On At
Ground Invert ,
On At
Ground Invert
Trench
Length
Wall
;
Thickness ,
Earth
Volume
Cubic
(Feet) (Feet)
(Feet) (Feet) ?
(Feet)
(Inches)
yards
—__ —
_)
6.9i
3.9
3�1�
39
22.84�
2.50
1�
F 391
69
_ 9
3_7 821F
50,
76
Total earth volume for sewer trenches = 88.08 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
4
5 -rp-)V) - A H 0 -1_
acp
NeoUDS Results Summary
Project Title: STRM-AHO1
Project Description: FRV OFFSITE
Output Created On: 2/16/2007 at 11:41:22 AM
Using NeoUDSewer Version 1.5.
Rainfall Intensity Formula Used.
Return Period of Flood is 100 Years.
Sub Basin Information
Time of Concentration
Manhole;
Basin
Overland!
Gutter
Basin
Rain I
j Peak FlowEl
ID # i
Area * Ci
(Minutes))
(Minutes)
(Minutes)
(Inch/HourJ
(CFS) `s.
1 � 0.00 I 5.0] 0.0 ( O.O",I _ 4780.019.1J
IF 2 l o.001F 5.0 o.o1F_6-6T 4780.001119.1 11
The shortest design rainfall duration is 5 minutes.
For rural areas, the catchment time of concentration is always => 10 minutes.
For urban areas, the catchment time of concentration is always => 5 minutes.
At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes.
When the weighted runoff coefficient => 0.2, then the basin is considered to be
urbanized.
When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above
criteria supersedes the calculated values.
Summary of Manhole Hydraulics
Design'
Manhole!
Contributing=
Rainfall
Duration
Rainfall
l
Intensity
Peak
Ground
Water
J ID # 1,
Area * C
i
1
Flow E
Elevation
Elevation!
Comments,
—
(Minutes)
(Inch/Hour),
(CFS)Ji
(Feet)
(Feet) j
�j
0;
0.00.0'�
0.00`
1�91�
49�2425
4923.70
��
0
5�
_ 4780.00
19.1 1
4925.61
4925.07�
Summary of Sewer Hydraulics
Note: The given depth to flow ratio is 0.9.
�-
Manhole ID Number j�
Calculated
Suggested
Existing
EDiameter
Diameter
Diameter
Sewer;
1
1
Upstream.
i
Downstream;
Sewer
(Rise)
(Rise) _
(Rise)
Width
ID #
Shape
(Inches)
(Inches)
(Inches)
(FT)
(IT)
(FT)
(FTLA
F
I
Roun�
_ _ ....�� _.25 77!
_._._ ___ .27j
26I
/Aj
Round and arch sewers are measured in inches.
Box sewers are measured in feet.
Calculated diameter was determined by sewer hydraulic capacity.
Suggested diameter was rounded up to the nearest commercially available size
All hydraulics where calculated using the existing parameters.
If sewer was sized mathematically, the suggested diameter was used for hydraulic
calculations.
Sewer
Design
Full -
Normal
Normal
Critical'
Critical[Fun
FlowFlowDepth
Velocity
Depth
Velocity
locityFroude
CommentNumber,ID
(CFS)
(CFS)(Feet)
(FPS)
(Feet
FP
FPS)
—,
r 1
19.1j
18.9
2.1
5.4
1.56
7.1
5.4
N/A
A Froude number = 0 indicated that a pressured flow occurs.
Summary of Sewer Design Information
�F----Jj Invert Elevation ] Buried Depth F it
F-
I
Summary of Hydraulic Grade Line
!�y Invert Elevation ' Water Elevation '
t
Surcharged
i
FSewer
ee
i
Length,
Length
Upstream,
DownstreamE
Upstream;
Downstream!
I
Condition
(Feet)
Feet
(Feet)
(Feet) I
(Feet)
(Feet)
1 1j8.55) 38.551I 4922.?J4 4922.75(l 4925.0711 4923.77011 Pressured+
Summary of Energy Grade Line
Bend loss = Bend K * Flowing full vhead in sewer.
Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead.
A friction loss of 0 means it was negligible or possible error due to jump.
Friction loss includes sewer invert drop at manhole.
Notice: Vhead denotes the velocity head of the full flow condition.
A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0.
Friction loss was estimated by backwater curve computations.
Summary of Earth Excavation Volume for Cost Estimate
The user given trench side slope is_l.
I1 ID # J� (Feet) (Feet) _ (� (Feet) !
j
F_1_- 2 4924.�l4922.75 � 1.50
IF 21 4925.6111 4922.9411 2.671
K
Upstream Trench
Downstream
Width
v�Trench WidthEarth
Sewer
On At
On j At
Trench
Wall
Volume
ID # f
Ground Invert
Ground Invert
Length (
Thickness
Cubic
(Feet) (Feet)
(Feet) (Feet)
(Feet)
(Inches)
_ __
Yards)
1 !
4.7
4.61
___2.4
_�._.._ 4
21
Total earth volume. for sewer trenches = 21.41 Cubic Yards. The earth volume was
estimated to have a bottom width equal to the diameter (or width) of the sewer plus two
times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48
inches.
If the bottom width is less than the minimum width, the minimum width was used.
The backfill depth under the sewer was assumed to be 1 foot.
The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1
4
(Based on Regulated criteria for maximum Allowable Flow Depth and Spread)
Project:.. - .. Bayer .
Inlet ID: - - STIN•AA01.1"
�TBACK TCROWN
T, TMAx
Tx
S ,t
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave btank for no conveyance credit behind curb)
zing's Roughness Behind Curb
TBACK = 50.0 ft
SBA« = 0.0200 ft. vert. / ft. horiz
%AC = .0.0290
: of Curb at Gutter Flow Line
Hmm =
- 6.00
inches
ce from Curb Face to Street Crown
TcRw _
75.0
ft
Depression
a =
2.00
inches
Width
W =
. -: 2.00
ft
Transverse Slope
Sx =
0.0200
ft. vert. / ft. hodz
Longitudinal Slope - Enter 0 for sump condition
So =
0.0050
ft. vert. / ft. horiz
ng's Roughness for Street Section
%T� =
0.0160
Allowable Depth at Gutter Flow Line for Minor & Major Stone
Allowable Water Spread for Minor & Major Storm
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
able Spread for Discharge outside the Gutter Section W (T - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Irge outside the Gutter Section W. tamed in Section T x
Irge within the Gutter Section W (Q T - DO
uge Behind the Curb (e.g., sidewalk, driveways, & lawns)
lum Flow Based On Allowable Water Spread
etical Water Spread
etical Spread for Discharge outside the Gutter Section W (T - W)
r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
e0cal Discharge outside the Gutter Section W. carded in Section T xTn
I Discharge outside the Gutter Section W, (limited by distance T mAx)
arge within the Gutter Section W (0 d - O0
Discharge for Major & Minor Storm
-Based Depth Safety Reduction Factor for Major & Minor Storm
arge Behind the Curb (e.g.. sidewalk, driveways, & lawns)
num Flow Based on Allowable Gutter Depth
Minor Storm Major Stone
dmm = 6.001 18.00 inches
Tmm 37.51 0 ft
Sw =
y=
d=
Tx
E. =
Q. =
QW=
QBACK =
QT=
TTH =
Txm=
E. =
Qx TH
Qx=
Qw
Q=
R=
QaALK =
Od'
0.1033
0.1033
9.00
18.00
11.00
20.00
35.5
73.0
0.159
0,076
49.6
339.5
16.0
130.2
6.6
102.4
65.61
469.7
Minor Storm Maior Storm
16.7
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
245.7
2.9
- 23.1
7.6
268.8
1.00
1.00
0.0
2 3
7.6
337.0
Stone Major Stone
Io Year = 1.54 cFs
Wit
inches
inches
ft
cis
cis
cis
cfs
cis
cis
cis
cis
cis
cis
►oo Yeox = 3.3Z. cs
Street Capacity STIN-AA01-1.xls, Q-Allow 1/4/2007, 9:02 AM
Street Section with Flow Depths
•1$ i • I•••• ♦♦ • ••A•
16
—
—
I
I
—T-d
N
d
a
p
I
8-
�
cm
6
0-0
I
4
—
I
Q2—,
-60
-40 -20 0 20 40 60 80 100
Section of 1/2 Street (distance in feet)
—Ground elev. o Minor d-max
-• Major d-max x Minor T-max
x Major T-max
Street Capacity STIN-AA01-t.xls, Q-Allow 1/4/2007, 9:02 AM
II ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) II
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
Project: - Bayer
Inlet ID: STIN-AD01. i
�TBACK TCROWN
S T. TMAx
\ BACK W Tx I Street
T - Crown
y� Q w jj j( j
HCURB d S x
5�s
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
ring's Roughness Behind Curb
TRACK = 50.0 ft
SBACK = 0,0200 ft. van. / ft. horiz
naACK --...0.0299
of Curb at Gutter Flow Line
Hcu%=
- 6.00
inches
:e from Curb Face to Street Crown
Tcaovm =
68.5
ft
Depression
a =
2.00
inches
Width
W =
2.00
ft
Transverse Slope
Sx =
` -�
- U200
ft. vert / ft. horiz
Longitudinal Slope - Enter 0 for sump condition
So =
"
" 0.0120
ft. van. / ft. horiz
Ig's Roughness for Street Section
nsmeln =
0.0160
Allowable Depth at Gutter Flow Line for Minor & Major Storm
Allowable Water Spread for Minor & Major Storm
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W (T - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
rge outside the Gutter Section W. carried in Section T x
rge within the Gutter Section W (Q T - Ox)
rge Behind the Curb (e.g., sidewalk, driveways, & lawns)
um Flow Based On Allowable Water Spread
etical Water Spread
vifical Spread for Discharge outside the Gutter Section W (T - W)
r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
'etcal Discharge outside the Gutter Section W, carried in Section T x TH
I Discharge outside the Gutter Section W. (limited by distance TMAx)
arge within the Gutter Section W (O e - Ox)
Discharge for Major & Minor Storm
-Based Depth Safety Reduction Factor for Major & Minor Storm
arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
num Flow Based on Allowable Gutter Depth
Minor Storm Major Storrs
dmm=1 6.00 18.00 inches
Tuex = , 34.31 68.5 1 ft
Sw =
y=
d=
Tx =
Eo =
Ox =
Ow =
OBACK =
OT_
0.1033
0.1033
8.22
16.44
10.22
18.44
32.3
66.5
0.175
0.083
59.5
410.1
19.2
153.7
6.5
116.4
78.71
563.8
Minor Storn Ma or Storm
16.7
66.7
14.7
64.7
.. 0.378
0.086
7.3
380.6
7.3
380.6
4.4
35.7
11.7
- 416.4
1.00
- 1.00
0.0
105.8
111JI
522.1
to Ysa,'f = -7.4$ cis
Raft
inches
inches
ft
cis
cis
cis
cfs
efs
cfs
cis
cis
cis
cis
100 '(tar = 16.14 Js
Street Capacity STIN-AD01.xls, Q-Allow 1/4/2007, 9:08 AM
Street Section with Flow Depths
�.4
MJ—
d
12
,
x
xx
xx
s
a
_
G
8-
r
Cm
m
4
2
0
-60
-40
-20 0 20 40 60 80
Section of 1/2 Street (distance in feet)
—Ground elev. o Minor d-max
-. Major d-max x Minor T-max
* Major T-max
Street Capacity STIN-AD01.xls, Q-Allow 1/4/2007, 9:08 AM
11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) 11
(13ased on Kegulateo t:rnena Tor Maximum Allowable rtow Dn and sprea eptd/
Project: .._- -- - .. _._ -- Bayer. _ _ -
Inlet ID:. STIN-AE01-2
/ TBACK� TCROWN
STMAx
BACK
T�
K W Tx Street
Crown
\ \Qw, iQx��j.//
H
CURB x
a 54
mum Allowable Width for Spread Behind Curb
TRACK -
0
ft
Slope Behind Curb (leave blank for no conveyance credit behind curb)
Sencx -
'
0.050.O
R. vert. / ft. horiz
ring's Roughness Behind Curb
nBncx -
-
0.0290
it of Curb at Gutter Flow Line
Hcum =
- 6.00
inches
nee from Curb Face to Street Crown
TCRowm =
"_
79.0
ft
it Depression
a =
2.00
inches
it Width
W =
--
2.00
ft
it Transverse Slope
Sx =
-
-.-.0.0200
ft. vert. / ft. hodz
4 Longitudinal Slope - Enter 0 for sump condition
So =
`
- 0.0050
ft. vert. / ft. hertz
zing's Roughness for Street Section
neTHEPT =
-' 0.0160
Depth at Gutter Flow Line for Minor & Major Storm
Water Spread for Minor & Major Storm
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
ble Spread for Discharge outside the Gutter Section W (T - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
rge outside the Gutter Section W. carried in Section T x
rge within the Gutter Section W (D T - Ox)
rge Behind the Curb (e.g., sidewalk, ddveways, & lawns)
um Flow Based On Allowable Water Spread
-etical Spread for Discharge outside the Gutter Section W (T - W) -
r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
-etical Discharge outside the Gutter Section W, carried in Section T xTH
I Discharge outside the Gutter Section W. (limited by distance T
arge within the Gutter Section W (O d - Ox)
Discharge for Major & Minor Storm
-Based Depth Safety Reduction Factor for Major & Minor Storm
arge Behind the Curb (e.g.. sidewalk, driveways, & lawns)
mum Flow Based on Allowable Gutter Depth
OK: These maximum
Minor Storm Major Storm
dmm= 1 6.001 18.00 inches
Turx= 39.5 ..-79.0 ft
Sw =
y=
d=
Tx =
Eo =
Ox=
Ow =
OBAcic =
OT_
TTM
Tx TH -
Eo =
Ox TH =
Ox-
Dw=
O=
R=
DBAC =
Od=
Q.1b
0.1033
0:1033
9.48
18.96
11.48
20.96
37.5
77-0
0.150
0.072
57.5
- 391.4
18.6
-151.5
8.4
121.3
76.11
642.9
Minor Storm Major Storm
16.7
66.7
14.7
64.7
" 0.378
0.086
4.7
245.7
4.7
245.7
2.9
23.1
7.6
268.8
1.00
1.00
0.0
68.3
7.6
.337.0
tO i'Im = 2.95 c-�s
ft/ft
inches
inches
ft
cis
cis
cis
CIS
cfs
CIS
CIS
CIS
CIS
cfs
too Year = (,.5 cars
Street Capacity STIN-AE01-2.xls, O-Allow 1/4/2007, 9:10 AM
Street Section with Flow Depths
♦ I ♦ 18 ♦ i►♦♦♦♦♦♦ ♦♦♦♦♦♦ ♦*
16
I
-
12
—{
;W
KX
xx
;<x
xxi
CL
m
_
_
L
x
—4—
K7
2
—
-60
-40 -20 0 20 40 60 80 100
Section of 1/2 Street (distance in feet)
—Ground elev. 0 Minor d-max
. ♦ Major d-max x Minor T-max
)K Major T-max
Street Capacity STIN-AE01-2.xls, Q-Allow 114/2007, 9:10 AM
II ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) II
(Based on Kegulatea Cnteria for Maximum Allowable glow Oeptn and spread)
Project: Bayer -
Inlet ID: STIN-AF01-2. yyy
1 //--TBACK TCROWN 'I
T, TMAx
\ S1BACK W Tx
Street
Y �Q�i�j i���%�
HCURB d \� S x
a I\g�
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
ring's Roughness Behind Curb
of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
Depression
Width
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
ng's Roughness for Street Section
Allowable Depth at Gutter Flow Line for Minor & Major Storm
Allowable Water Spread for Minor & Major Storm
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
able Spread for Discharge outside the Gutter Section W IT - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
uge outside the Gutter Section W, carried in Section T x
ttge within the Gutter Section W (0 T - DO
uge Behind the Curb (e.g., sidewalk, driveways, & lawns)
turn Flow Based On Allowable Water Spread
retical Water Spread
retical Spread for Discharge outside the Gutter Section W (T - W)
r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
retical Discharge outside the Gutter Section W, tarred in Section T x TH
it Discharge outside the Gutter Section W, (limited by distance T
large within the Gutter Section W (0 d - Qx)
Discharge for Major & Minor Storm
-Based Depth Safety Reduction Factor for Major & Minor Storm
large Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based on Allowable Gutter Depth
OK: These maximum allowable flows are
TBACK = - - 50.0 ft
SBACK = 0.0200 ft. vert. / ft. horiz
nBACX = 0.0290
Hcurm=
6.00
inches-
TCRQvN =
30.0
ft
a =
2.00
inches
W =
' 2.00
ft
Sx =
0.0200
ft. van. / ft. hodz
So =
0.0050
ft. van. / ft. hodz
nSTREET =
Minor Storm Major Storm
cimm = 6.001 18.00 inches
Tmm = 15.0 - - 30.0 ft
Sw =
y=
it
TX =
Ec =
0.=
Qw
ABACK =
QT=
TTH =
TX TH -
Eo =
OX TH =
Qx=
Ow =
0=
R=
ABACK =
Qd =
Q.1i , =
0.1033
0.1033
3.60
7.20
5.60
9.20
13.0
28.0
0.421
- 0.202
3.4
26.4
2.5
8.7
0.0
2.0
5.91
35.1
Minor Storm Major Storm
16.7
66.7
14.7
64.7
0.378
0.086
4.7
245.7
4.7
191.6
2.9
23.1
7.6
214.6
1.00
1.00
0.0
68.3
7.6
282.9
to Yeox % S.$i C 3
Rift
inches
inches
ft
cfs
cis
CIS
cts
cfs
cfs
CIS
cfs
CIS
Its
loo Yew- = IS.57 J3
Street Capacity STIN-AF01-2.xls, O-Allow 1/412007, 9:16 AM
Street Section with Flow Depths
e e 18 eAk
I
,
1
N
d
�
12
c
CL
\iOl
1
�I
2
o
-60
-40 -20 0 20 40
Section of 1/2 Street (distance in feet)
—Ground elev. o Minor d-max
A- Major d-max x Minor T-max
x Major T-max
Street Capacity STIN-AF01-2.xls, C-Allow 1/4/2007, 9:16 AM
Project:��
Inlet ID:
�TBACK
S
on Regulated Criteria for
Q
Y
\ \
HCURB d
TCROW N
T, TMAX
Tx
Sx
num Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
ring's Roughness Behind Curb
of Curb at Gutter Flow Line
m from Curb Face to Street Crown
Depression
Transverse Slope
Longitudinal Slope - Enter 0 for sump condition
Tg's Roughness for Street Section
Allowable Depth at Gutter Flow Line for Minor & Major Storm
Allowable Water Spread for Minor & Major Storm
Cross Slope (Eq. ST-8)
Depth without Gutter Depression (Eq. ST-2)
Depth with a Gutter Depression
able Spread for Discharge outside the Gutter Section W IT - W)
Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
age outside the Gutter Section W, carried in Section T X
age within the Gutter Section W (Q T - QX)
age Behind the Curb (e.g., sidewalk, driveways, & lawns)
lum Flow Based On Allowable Water Spread
etical Water Spread
etical Spread for Discharge outside the Gutter Section W (T - W)
r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
'etical Discharge outside the Gutter Section W. carded in Section T XTR
I Discharge outside the Gutter Section W, (limited by distance T MAX)
arge within the Gutter Section W (Q d - QX)
Discharge for Major & Minor Storm
-Based Depth Safety Reduction Factor for Major & Minor Storm
arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
num Flow Based on Allowable Gutter Depth
rown
-
- "'.50.0
ft
TSBAACKOX
0,0200
ft. vent. I ft. horiz
nBA� _
`= 0.0290
Hcum
inches
TCRovm -ft
a =inches
4`0.0050
SX -ft.
vent. I ft. hodz
So =
ft. vert. I ft. hodz
nSTREET =L
Minor Storm Major Storm
dmm 6.001 18.00 inches
Tum 29.3 - 58.5 ft
SW=
y'
d•
TX:
Eo'
QX=
QW=
ABACK'
QTr
TTR
TX TR `
Eo,
QX TH -
QX=
QW=
Q=
R=
ABACK'
Qd'
io `&f 'r : c-5' S
0.1033
,._` 0.1033
-" 7.02
`. 14.04
9.02
.16.04
27.3
56.5
-0.208
' 0.099
.-24.5
.171:4
--8.2
61a2
' 1.7
' 42.4
32.71
232.6
14.7
64.7
";. 0.378
_ 0.086
4.7
245.7
4.7
'244.7
*s 2.9
23A
7.6
267.8
1.00
1.00
. 0.0
683
_ 7.6
: 336.1
Ift
fiches
fiches
I
fs
fs
15
is
fs
is
is
fs
fs
fs
ioo seat = nx.16 V�s
Street Capacity STIN-AH01-2.xls, Q-Allow 1/4/2007, 9:22 AM
Street Section with Flow Depths
18 s®AA A, AA ®asp I a Am
�6- - -x-I -x it k_.X'_.YC_X'_`X._.
11
14—
N
d
1
c
I
i
o
8-`
r
tm
iu
000
I
2
-60
-40 -20 0 20 40 60 80
Section of 1/2 Street (distance in feet)
—Ground elev. o Minor d-max
m.. Major d-max x Minor T-max
x Major T-max
Street Capacity STIN-AH01-2.xls, Q-Allow 1/4/2007, 9:22 AM
SEAR;• BROWN'
:k
Front Range Village
Riprap Rundown at STRM-AA01 Outlet
Updated: 8-Feb-07
By: JOZ 187010251
Checked:
Pipe Diameter: D, h_`= 1'8- in JSWlType: Erosion Resistant Soil (Clay)
Discharge: 3.32 cfs IMax Velocity: v 7.7 ft/sec
Taiwwater*: 0 6 ft (unknown)
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 = 1.20 < 6 --> use design charts
D = 1.50 ft
YUD = 0.40
Q/D^1.5 = 1.81
d50 = 1.50 in -------> 0 in
----> Use geotextile or minimum riprap gradation.
2. Expansion Factor:
1/2tanO= 6.47
3. Riprap Length:
At = QN = 0.43 ft2
L = 1/2tan0 * (At/Yt - D) = -5 ft
4. Governing Limits:
L > 3D 5 ft
L<1OD 15 ft
5. Maximum Depth:
Depth = 2d50 = 2 (0 in / 12) = 0 ft
6. Bedding:
7. Riprap Width:
increase length to 5 ft
=> -5 ft --> OK
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
NAG C3So
geotextile
Length = --Irlr8 ft
Depth = 0 ft
Width = .5- 8 ft
LA5e 8' b"V 8,
NAG C3S0
Geoiext:le—
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTIVE\187010251 \REPORTS\DRAT NAG E\R I P-RAP\STRM-AAOI-OUTLET.XLS
SEAR -BROWN
ti
Front Range Village
Riprap Rundown at STRM-AD01 Outlet
Updated: 8-Feb-07
By: JOZ 187010251
Checked:
Pipe Diameter: D 18 in JVoillType: Erosion Resistant Soil (Clay)
Discharge: Q 16.5 cfs IMax Velocity: v 7.7 ft/sec
Tailwater*: y 0.6 !ft (unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 = 5.99 < 6 --> use design charts
D= 1.50 ft
YUD = 0.40
Q/D^1.5 = 8.98
d50 = 7.44 in -------> 9 in
--> Use Type L (Class 9) riprap
2. Expansion Factor:
1/2tanO = 1.85
3. Riprap Length:
At = QN = 2.14 ft2
L = 1 /2tan6 * (At/Yt - D) = 4 ft
4. Governing Limits:
L> 3D 5 ft increase length to 5 ft
L<10D 15 ft =>4ft-->OK
5. Maximum Depth:
Depth = 2d50 = 2 (9 in / 12) = 1.5 ft
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width:
Width =3D=3(18in/12)= 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type L (Class 9) riprap
Length = 5 ft
Depth = 1.5 ft
Width = 5 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870FW CTIVE\187010251 \REPORTS\DRAINAGE\RI P-RAP\STRM-ADO1-OUTLETALS
SEAR -BROWN'
Front Range Village
Riprap Rundown at STRM-AH01 Outlet
Updated: 8-Feb-07
By: JOZ 187010251
Checked:
Pipe Diameter: D 18 in IF§o�iiType: Erosion Resistant Soil (Clay)
Discharge: Q 9.56 cfs IMax Velocity: V 7.7 ft/sec
Taiwwater*: y 0.6 ft (unknown)
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
Q/D2.5 =
3.47 < 6 --> use design charts
D =
1.50 ft °
Yt/D =
0.40
Q/D^1.5 =
5.20
d50 =
4.31 in -------> 6 in
----> Use
2. Expansion Factor:
1/2tanO = 4.01
3. Riprap Length:
At = QN = 1.24 ft2
L = 1 /2tan0 * (At/Yt - D) = 2 ft
4. Governing Limits:
L> 3D 5 ft increase length to 5 ft
L<10D 15 ft=>2ft—>OK
5. Maximum Depth:
Depth = 2d50 = 2 (6 in / 12) = 1 ft 7 1 S0 -�4
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width:
Width = 3D = 3 (18 in /12) = 5 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type L, (CIGss 9) rtpr-y
-Type V64GIass 6) riprap
Lengtn = 0 rt
Depth = i ft 1. 5* {k
Width = 5 ft
L � C Io.sS R) r; IP r- r
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTIVE\187010251 \REPORTS\DRAINAGE\RIP-RAP\STRM-AH0I-OUTLETALS
SEAR -BROWN
Front Range Village
Riprap Rundown at STRM-AA01 Outlet
Updated: 16-Feb-07
By: JOZ 187010251
Checked:
Pipe Diameter: D 27 in Soil Type: Erosion Resistant Soil (Clay)
Discharge: Q 21 cfs IMax Velocity: v 7.7 ft/sec
ailwater*: y 0.9 ft unknown
* Assume that y=0.4*D if tailwater conditions are unknown
1. Required riprap type:
O/D2.5 =
2.77 < 6 --> use design charts
D =
2.25 ft
Yt/D =
0.40
Q/D^1.5 =
6.22
d50 =
5.16 in -------> 6
---> Use Typ
4 GI;as" riprap
2. Expansion Factor:
1/2tanO= 4.73
3. Riprap Length:
At = QN = 2.73 ft2
L = 1 /2tanO * (At/Yt - D) = 4 ft
4. Governing Limits:
5. Maximum Depth:
=7 LA5 e 'frP - L i c lass 4�
rI,pr he Dso = 9
L> 3D 7 ft increase length to 7 ft
L<1OD 23 ft =>4ft-->OK
Depth = 2d50 = 2 (6 in / 12) _ —1-^ ft 7 I•5- �i
6. Bedding:
Use 1 ft thick layer of Type II (CDOT Class A) bedding material.
7. Riprap Width:
Width = 3D = 3 (27 in /12) = 7 ft
(Extend riprap to minimum of culvert height or normal channel depth.)
Summary:
Type L (Class 9) r;prgiO
T
Length = 7 ft
Depth = —a-- ft t-64-�
.0 Width = 7 ft
Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105
V:\52870F\ACTI VE\l87010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-AAO 1 -OUTLETALS
ENGUSX RANCH
L_____________________ "-- I Il
i` `♦ `\ ♦ \ I \ \\ \\ E%ISIING�19'-SNItM-...__..._
T t T \ \ \ \ I \ \ \ 1 SEWER CULVERT
j II\t �\♦ �`` \\ \�� \�\ � \l �\ \\ rl 1. � I
t
mill
E\ \` `� ` \� I \ \\ ` I h \\ \\ I\ XISTING IRRIGATION -ARM AL DITCH I I " I I HP HARMONY
I CAMPUS SWALE
110
I
I/ \ \`�1 1 1 \ I 1 \ \ \\ ��� \\ --1
/1
EXISTING MOBILE HOME / II 1V III i \ V 1 I A\�*`�
PARK AREA INLET / / r / 1 / I _ — 1+
I I I I � r � �\ \ N III
IIIIII
I I
ll \ I I I I I \
i L—
li II I I j� I A A A I 1 1 I �I gilIl
\ \ \ I\ \ \\ \ \ 1 \ I II \ I 11 1 I1 I STORMS
TING DUAL 18
HARMONY ILE HOME PAROK WIN CULVERTS
RRIGADUATIII I `I II
IY
1 \ \ I II I I I 1 I
DITCH LATERALS
\ \ 1 I \ I I 1
\ \ \ \
EXISTING MOBILE HOME ` \ I 1 \ \ 1 I \ I I I II 1 1 1 .IIII i�
PARK AREA INLETS I 1 I I \ \ \ \\ III I 1 1 1 A \ i
\\\\\\\Illll I TAll . >_
F'(20NT R41JGE VIL GE N I I 1 1 I I 1 j-
V II I AV AI V AV 11 II 11 1 1 II / Y
1\ 1 11 \ 11 \I \I 1 11 I 1 1 11 1 1 /
HARMONY
MOBILE HOME PARK \\ 11 II II �I I� I II 1 IV II 11 1/ / Lille
(HARMONY COMMUNITY)
PARAGON
\ 1 1 1 \ — PAID OUTLET - 114 41
\ �y IGIe I �I III11 HP CAMPUS
EXISTING MOBILE HOME I 1 A A A V 1 II (AVAGO)
PARK AREA INLETif
1 \ \ \ \ \ \ \ 1 E%IS NC PRIVATE
I A A A A V 1 V IR ATIW DITCH /
\v v A A\ `\ II 1 1 Av I II ✓� Y � / � : f
V Avvv \vvvv v`� vv I vIv vv �.. �v III \\ II\ PARAGON /jS�
III'1111:
//AI I RBI I�
I � . . . • � , � �� I � II A A � 4 . I /// O , I 1 ,
[ - :� . `•'. uT — _\ \\ ` \� IRAI ATOM FLOWS TO
! \\ \\ \ DIRECTED I I"
THROUGH 51 I A k—\\\ I // \\\\\ N hill
II HARMWT LOAD tGr III?\
GRASS MEDIAN I \ r �I`. —{ \ \ I `/III
18' STORM DRAINyPARAGON
(TO BE REMO\iD)�
EXISTING 15'J �E%ISPNG 18'Y !LLVIA�
IRRIGATOR PIPE IRRIGATOR PIPE 'I p' RNLI /
0 ISO w AID
SCALE IN FEET
---
RIwT-a-wR
DTI CONTWR5
EVSTING STORM DRAW
—�
DIRECTOR OF ROW
FOR DRAINAGE
REVIEW ONLY
NOT FOR CONSTRUCTION
City of Fort Collins, Colorado
UTILITY PLAN APPROVAL
APPROVED:
City Engineer Date
CHECKED BY:
Water 4 Wastewater Utility OWe
CHECKED BY:
Stormwater Utility Dole
CHECKED BY:
PaMa k Recreotion Date
CHECKED BY:
Traffic Engineer Dote
CHECKED BY:
Date
THESE PUNS HAVE BEEN RENEWED BY ME LOCO
ENTITY FOR CONCEPT ONLY. TIE RENEW DOES NOT
IMPLY RESPONSIBILITY BY ME RENEWING DEPARTMENT,
ME LOCAL ENTRY ENGINEER, OR THE LOCAL ENTRY FOR
ACCURACY AND CORRECTNESS OF THE CALCULATIONS.
FURTHERMORE, TIE RENEW DOES NOT IMPLY THAT
QUANTITIES OF ITEMS ON TIE PUNS ORE THE FINAL
QUANTITIES REQUIRED. THE RENEW SHALL NOT BE
CONSTRUED IN ANY REASON AS ACCEPTANCE OF
FINANCIAL RESPONSIBIUTY BY THE LOCAL ENTITY FOR
ADOMONAL QUANTITIES OF ITEMS SHOWN THAT MAY BE
REWIRED DURING THE CONSTRUCTION PHASE.
Tb
n
e i$ T��
aq 9
u�i �8:9E
Ija el
�SEEjae$$$gg{�
�SEddB
I ly
Illy
lis
Ij
I
S
t
III
�y
I
I�
=
4w7
a
Q
ai
w
5
Oz
a
iN
O m
0
LWD
Q
V W
CL
Of
a
13
w
~
rZ
n
OW
LL
u� a
100% PLANS
NOT FOR CON51RLCTtt1N
January M7
Pm
He Ikma: C-lso xaf
JAA AIR
All Chu Qua
DelYM
Dmwing %. C-150
Recision Sn t
0 22 N 139
7,I
HYDROLOGIC SUMMARY TABLE
Design
Point
Basinsteam)
Area
Composite
"C"
QW
cM1
Q1a
cM1
100
100
383
0.85
15.24
38.14
101
101
018
083
073
1.79
102
102
0.57
075
203
539
103
103
241
ON
9.17
23 Bit
10/
IN
046
On
207
445
105
105
091
0.84
381
905
109
IN
1.51
ON
4.83
12.16
107
107
037
0.84
151
388
100
IN
040
00
167
4.02
109
109
167
0.85
6.76
Has,
110
110
062
078
2A6
1 6.02
111
111
103
087
437
1023
112
112
DUN
0.86
3.08
TR
113
113
1.DO
0.90
441
999
114
114
1.00
0.90
4.38
9,93
116
115
127
am
5.59
12.M
Ila
116
070
095
325
an
117
117
1.W
on
7.29
16.79
tie
lie
103
0.92
484
1027
119
119
0.5]
0.91
252N
67
120
120
0.59
ON
264.
5.88
121
121
042
0.81
1.611
42D
122
122
0.W
0.]t
2.2B
6.30
123
123
1.24
on
2.83
].5]
IN
IN
0.11
095
0.53
1.14
126
125
0.31
O84
1.18
3.10
1M
in
0.67
095
303
6.63
In
130
1.08
0.95
498
10.72
131
131
0.81
067
26,1
875
132
132
0.23
095
1.05
2.26
133
133
0.14
095
am
1.40
134
IN
0.82
0.95
3]9
8.15
136
135
0,39
070
1.31
3.38
In
IN
on
095
165
3,55
137
137
047
095
2.19
4.71
In
in
1.84
091
8.19
1834
139
139
1.70
0.56
3,93
1063
140
140
on
065
1.15
3.10
141
141
3A
095
15.0
3243
142
142
1.23
00
481
1227
10
143
BOB
076
18.M
a13
150
in
335
0.85
8.10
23N
151
151
148
062
384
11M
190
IN
1.63
0.85
BUSS
1623
161
lei
0.97
0,81
3.7
962
162
in
0.]]
ON
3.38
765
181
in
065
095
2.99
644
1"
164
1,50
082
01
13.27
166
IN
0.55
0.91
241
542
200
29MD
274
ON
101
2724
301
201
136
O88
570
13.55
202
202
032
0.95
1.49
320
203
203
0.10
0.84
0.40
0.97
zes
204
024
D.95
1m
2.38
205
205
03]
0.95
1]0'
385
spit
spit
032
092
142
3.16
307
207
1.22
078
4.23
11.91
2D6
spit
029
0.94
1.3d,
291
3W
209
0.1fi
0.93
0.71
1.55
210
210
0.39
0.91
In
3.91
211
211
038
090
1W
3.82
212
212
044
0.95
2.as
4.39
213
213
171
0.as
6.82
1]01
214
214
1.12
0.89
4.89
1119
216
215
1.53
0.61
3.53
f 0.15
216
216
0,16
095
075
161
217
217
141
0.95
6.SO
1399
218
218
023
095
1.OR
2,32
219
219
040
0.95
187
4,01
NO
220
201
091
843
19.95
221
221
101
OT2
3.Be
931
300
BOND
0.55
am
1.19
3.SO
301
MY
In
087
5.45
13.12
302
JD3_.F
302
303
021
a
095
066
097
095
20
250
304 304
0.28
095
129
2078
305 '
_
306
0.31
095
141
IDS
308
306
069
0.0
3.02
686
307
3W
0,81
am
2.15
6.10
as
4O0
am
00
121
2.59
401
-461
0.30
095
138
2.%
42
402
204
067
828
202)
406
403
033
067
138
324
404
404
1_75
on
733
1745
as
405
1.16
0.89
504
1152
as
406
111
089
447
11.09
07
407
0.SO
0as
3.55
Esw
as
409
172
088
]30
17.14
4M
409
1.Be
0SO
7W
1961
410
410
On
093
171
374
411
411
028
068
120
2.79
412
412
ATM
ON
20.0
43.19
413
413
0.37
on
Ise
3.as
414
414
112
062
278,
7T/
NO
500
302
ON
988
30W
601
501
065
1.13
125
am
26
682
$02
502
0 ]8
32
8.8
W3
5W
O74
3.21
875
604
We
OB]
OBT
2.86'
731
606
We03
091
8.22
1912.
POND SUMMARY TABLE
Pak
Tael VW. Re ON
VI9EL
a41
ml
A
7.61
927 W
B
223
s8J9
C
1,37
93339
M23,124WA6
D
19.76
WA6D.92
935.12F
1eg
2]O6505
estis
0 ISO BOB 450
SCARF IN FEET
MaT-M-WAY
PROPOSED FLON
------��-
m311NG CONTOURS
NEW INTERIM BRAIN WITH MANHOLE
EATSING STORM DRAIN
PROPOSED SMILE
PNCWiEO AVERAGE STREET APE
DIRECTION OF FLOW
DE9ON POINT
96iiiiiiiiiiia IS ■ salas
DRAINAGE! BASIN BOUNDARY
/ND\.
- BASIN NUMBER
`AD
" BASIN AREA (IN AWES)
FOR DRAINAGE
REVIEW ONLY
NOT FOR CONSTRUCTION
City of Fort Collins, Colorado
UTILITY PLAN APPROVAL
APPROVED:
City Engineer Dole
CHECKED Eff
Wale, It Wasleeater Utility Dale
CHECKED BY:
stormrale, Utility Date
CHECKED HY:
Raft h Recreation Date
CHECKED BY:
Trot6c Engineer Dote
CHECKED BY:
Date
THESE PLANS HAVE BEEN RENEWED BY THE 10CA-
ENITY FOR CONCEPT ONLY. ME RENEW WES NOT
IMPLY RESPONSIBILITY BY ME REVIEWING
DEFARTMEM, THE LOCAL ENMY` ENGINEER, OR THE
LOLL ENTIIY FOR ACCURACY AND CORRECTNESS OF
ME CIICUUPONS. FURTHERMORE. ME REVIEW DOES
NOT IMPLY TUT QUANTITIES OF ITEMS ON ME PLANS
ARE ME RNAl DUAIJIITES REWIRED. ME REVIEW
SHALL NOT BE CQNSTRUED IN MY REASON AS
ACCEPTANCE OF FINANCIAL RESPONSIBILITY BY ME
LOCAL EMIIY FOR ADDIPONLL QUANTITIES OF REMS
SHOWN TIUT NAT BE REQUIRED DURING ME
CONSRNCTON PHASE.
-
N
7
5
z
W
U1
J
>
OL
0
Z
0
K
�¢
W Q
0O
ON.
2
III
z
al
O uA
aED
ED
a
LL
�
P"I Seel
100% PLANS
NOT FQ4 CQV5IRIKTKNi
Jenuery0*7
FnizlFnpd X�
YB JFG
DrAwN NO. C-151
Revision Stleel
0 23 DI 139
20.4 acre-ft
WOCV=2.2 au' 0
ISO
k�
•=4 it ••wk,
it I ■kp
OFFSITE MOBILE HOME PARK
t ! s Fl EtiMM���j M all
ENGLISH RANCH `.4-2w kill.
will
'FUTURE DEVELOPMENT - FUTURE DEVELOPMENT'
>iima: ,
lit
Vic xA
296 - - , I ALE 3
12,9 �. ' - — - � - . (OUTLET)
It QwO=76.7cfs(MAR)
297 I QN„p 26.8 cfa
r , ze 9 , Q-e 26.9 cfs
■ ■ Q ', 20.1 OR
A m /�
POND POND It VI=7.6 ■
acre-0 ���'
�(e = 1.4 Bere-ft }(.,, , — 2.3 acre -I I W Q(V — I s3 acr-1 i
map
j7 1'
• , •it
207 - 1b0 30) • Y1410,
.. .
In �°°� _
■ ■ SCNLE IN FEET
■ � 209 I
■
■
r '
210 PONDS
■ d __ __ 10 VN xn-0.47 acro-8
W V=0.07a ft
200 ' /.� ! k PONDIT1 VNIIII)E= 1.7 acre-ft Y
■W =0.33 acre-ft250
elm WIF1
■ .. — - - �' FUTURE DEVELOPMENT , ' Io .+
ijj
We at
■ i J
■ '
ipjE
205 Q q!tr tJ
.n 'PARAGON
y� , City of Fort Collins, Colorado
yw 172�� ' UTILITY PLAN APPROVAL
'1' , ■ a Nt PPER ID
■ :' I,e , \ 1 , GUY EOA my Oofe
i +\ 1 r CHECKED BY
%e \ Water k Wastewater utility me
W CHECKED BY:
'r 244 _" ■ I I E . AMD P� N ^ staNawater Illility OWN
i AT HARMONY 2.47 t = w p' ■ - „+ �' Y+'� =5.3 acre-R cHECKEo er:
` WOCV = 0.38 acre-ft may" -
1 �,,,, ! Parw : Rearaauon Date
w -� — CHECKED BY:
_ le III_ _ _— - '� r^ iroK Engineer Oe[e
IN - MiCHECKED BY.
HARMONY ROAD y mte
_ • • s '��ILT- _ - � - — - - THESE PUNS R4VE BEEN RENENED BY ME LOLL
�.4 _ ENTITY FOR CONCEPT ONLY ME RFAEW DOES NOT
I !�+ 7• IMPLY RESPONI BY ME RENEWING DEPAWtlENT
nti✓<+ +: t • Ef i' �� FOR DRAINAGE
I' j ME LOcu ENTITY ENGNEER, OR ME LOrsL B,RTY
Ir FOR ACCURACY MD CORRECTNESS OF THE
•' REVIEW ONLY III CPLCUOTIONS. FURTHERMORE, ME RENEW DOES Nor
��„- . 1\ r' E ■ R s� 3� NCIT FOR CONSTRUCTION IMPLY MAT ODM,DDES OF ITEMS ON ME PW1S MBE
(( ' ■ !! t>• K I • __ - THE PHIL QUANTITIES REQUIRED. ME REOIPW SHMFL
■ =•• ewe: r G\ .`Neil - W NOT BE CONSTRUED IN ANY REWN M ACCEPTANCE
1 1 1�1 I t lit 1 } � OF nNANCyM. RESPONSIBILITY BY ME LOCAL ENTITY
s y-may FOR A➢DIIDIVIL OUMPTIES OF ITEMS SHOWN THAT
, 1 \WNW1 — e�wI 1 MAY -at BE REQUIRED DURING ME CONSTRUCTION P
It
- 111 • x1—
QE mn
ass
zl
cis=`$oo�
I
Ja_PP$
�g aaE
1
Ili
I
€1
pE
Z
w
w
5
J
F
J
OIL
Z0
K
Q
U
d
K
DO
z
Cx
LL
PemilSeN
100% PLANS
NOT FOR CONSTRUOILK
January 2007
LEGEND
loss, lose MODSWMM BASIN BOUNDARY
101 DIVERSION
® PIPE / CHANNEL
103 BASIN
104 DETENTION POND —
DIRECT FLOW NODE/ UNDEVELOPEDLAND
105 DESIGN POINT I 296
296
NOTE: RUNOFF FROM THE HARMONY 299 !
COMMUNITY IS ROUTED THROUGH POND D AND WILL OVERFLOW INTO BASIN 296. 322 —
302 , I POND D
I N
360 286
Oa
RMONY
302 AN
OMMUNITY
(M LE HOME PARK) 206
— — I
321
301 — Qlolls
Iop ec°o
NI vo ove�oo
301 HARMONY COMMUNITY o e
(MOBILE HOME PARK) FRONT RANG
seem a- 0 0 0 0
300 u U
0 a I
N 0 0
I I 0 0
HARMONY COMMUNITY
I 300 (MOBILE HOME PARK) a 0 0 0 0
(243
else seem
— - —220 215 I
215
ENGLISH RANCH POND#7 (214
lose sells .,� seem ONE —
seem
297 ; a
��lII����
UNDEVELOPED • INADV _TENT
•� F;j�
DETENTION
ONO C ® POND
HIP CAMPUS
II �� i
1
jx
---------------- f'����
_ :I,,,•JMI :L• G •,
i
City of Fort Collins, Colorado
UTILITY PLAN APPROVAL
THESE PUJIS HAVE BEEN RENEWED BY THE
LOCAL ENTRY FOR CONCEPT ONLY. THE
WPRWED:
REVIEW ODES NOT IMPLY RESPONSIBILITY BY
City Engineer
Dale
THE RENEWING DEPARTMENT, THE LOCAL
ENTITY ENGINEER, OR THE LOCAL ENTITY FOR
CHECKED
BY:
Water WWaelexatm Utility
Dale
ACCURACY AND CORRECTNESS OF THE
CALCUTATONS. FURTHERMORE, THE RENEW
CHECKED
BY'.
DOES NOT IMPLY MAT QUANTITIES OF ITEMS
Slormaater Utility
5 Te
ON THE FILMS ORE THE HNAL QDANTTRES
CHECKED
BY:
REQUIRED. THE REVIEW SHALL NOT BE
Parks A: Recreation
Date
CONSTRUED IN MY BUSCH AS ACCEPTANCE
OF FINANCIAL RESPONSIBNtt SY THE LOLL
CHECKED
BY:
ENTITY FOR ADDITIONAL QUANTITIES OF ITEMS
Traffic Engineer
Dare
SHOWN TNT MAY BE REQUIRED DURING THE
CHECKED
Sy:
CONSINUCTON PRISE.
Dote
4N f4
f
8lt
Koo c,gill
m �fi�eeE lfill!B
13aBa!
C �ppg6E6$aHyyy{�
Ili I�
)
r
I
I!
i
c6 g ca
LU �_ Qxm
CC
> �x
a w W
0 QZ U W
W Z
DO N�
Es LL �
PNTI.Bw
100% PLANS
NOT FOR CONSTRUCTION
January NT
R, wmei�Ji
DM x.m.: o-ly x.
AH• YY F
DIa•Yq NO. eC-153
Reneion Sheet
0 4od in
15
111 Q9 Abe
310
B "7 Mr
BMW
01
BM17.2 eaw
;,\ tlM1Y.tl Mw
HORSETOOTH
EA
I p
0 145
24 ®3 Bi A>R•
0!
BM323 Amr ( Be.10.9 Aar
W
BM20.6 Aar ® N
0242�1 f
9A-:1.9 ear
BM10. Aaw 14D 90001m
PARK REG
303 9e-ee9 ear 11 K1
215 C
21 214
BA-41.9 Aar
suKsnxf 03
)O5 304 p P t]gy91 Rµp1
POW p
96 213
9e-12.9 ear 296 ® 135
ee-a.e Aar
02 322 297
360 601 �-9 Pm01a 212 F21 Tj 121
® ® 70 125
br 206 0
0 BA-3e.e Aar
1;J.6xYR. ^. 1
j 09
B I0.1 ear
��Y
O6 50 p 30
BM10.0 ear BM0.6 Aar 250 O BAD.] Aar
BMe4.9 Aar �
d'
® 205 N
8e-17.2 Aar HARMONY ROAD
w
110
BM1].e Aar
(Hydrogr9Ph to
Foolhll• Basin)
10
�ydm
151 Rad
r
150 /)
IIIear
100
BM123 Aar
s
g p9
e F
��3tima
rya4yA 5
LEGEND
Pnixt wmer 187010251
re wm. r m.a.
_PQhU Sm, wuoo
�yt EXHIBIT4a
Redsion shw
0 Of