No preview available
HomeMy WebLinkAboutDrainage Reports - 02/28/2007Eta sr .,,.may 'S.l:a C'7 M Ft Appmvw Final Drainage and* �'2 Erosion Control Study for Front Range Village Fort Collins, Colorado February 2007 PREPARED FOR: Bayer Properties, Inc. 2222 Arlington Avenue Birmingham, Alabama 35205 PREPARED BY: Stantec Consulting Inc. 209 South Meldrum Fort Collins, Colorado 80521 F . Final Drainage and Erosion Control Study for Front Range Village Fort Collins,. Colorado February 2007 PREPARED FOR: Bayer Properties, Inc. 2222 Arlington Avenue Birmingham, Alabama 35205 PREPARED BY: Stantec Consulting Inc. 209 South Meldrum Fort Collins, Colorado 80521 Stantec Consulting Inc 2000 South Colorado Boulevard Suite 2-300 Denver CO 80222 Tel: (303) 758-4058 Fax: (303) 758-4828 stantec.com tv StantK February 21", 2007 Mr. Basil Hamden City of Fort Collins Water Utilities-Stormwater 700 Wood Street Fort Collins, Colorado 80521 RE: Final Project Development Plan Drainage and Erosion Control Study for Front Range Village Dear Mr. Hamden: We are pleased to submit to you, for your review and approval, this Final Project Development Plan Drainage and Erosion Control Study for the Front Range Village. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Re: Sta Pre Tin Project > ngmeer Front Range Village City of Fort Collins Final Drainage and Erosion Control Study TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION................................................................1 A. Location.............................................................................................................................1 B. Description of Property....................................................................................................1 C. Drainage Concept..............................................................................................................1 C.1 Existing Drainage Conditions..................................................................................... 1 C.2 Developed Drainage Concept..................................................................................... 2 II. DRAINAGE BASINS....................................................................................................... 4 A. Major Basin Description.................................................................................................. 4 B. Sub -basin Description....................................................................................................... 4 III. DRAINAGE DESIGN CRITERIA................................................................................. 4 A. Regulations........................................................................................................................ 4 B. Development Criteria Reference and Constraints......................................................... 4 C. Hydrologic Criteria........................................................................................................... 5 D. Hydraulic Criteria............................................................................................................ 5 E. Variance.............................................................................................................................5 IV. DRAINAGE FACILITY DESIGN.................................................................................. 5 A. General Concept................................................................................................................ 5 B. Specific Details.................................................................................................................. 6 B.1 Fox Meadows Basin Drainage Master Plan Update ................................................... 6 B.2 Modified City Master Drainage Plan .......................................................................... 6 B.3 Proposed Detention Ponds.......................................................................................... 8 BAStorm Water Quality................................................................................................. 10 B.5 Harmony Mobile Home Park.................................................................................... 10 B.6 Harmony Road.......................................................................................................... 10 B.7 Paragon Outlet.......................................................................................................... 11 B.8 Storm Sewer Design................................................................................................. 11 B.9 Subbasin Description................................................................................................ 12 B.10 Street Capacity .......................................................................................................... 12 V. EROSION CONTROL.......................................................................................................12 VI. CONCLUSIONS.............................................................................................................13 A. Compliance with Standards...........................................................................................13 B. Drainage Concept............................................................................................................13 C. Stormwater Quality Concept.........................................................................................13 Stantec Consulting, Inc. - i - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study D. Erosion Control Concept................................................................................................14 VII. REFERENCES................................................................................................................15 APPENDICES APPENDIX A — CITY OF FORT COLLINS STORMWATER BASINS APPENDIX B — ModSWMM HYDROLOGY ModSWMM INPUT ModSWMM OUTPUT ModSWMM INFLOW HYDROGRAPHS FOR DETENTION PONDS ORIGINAL CITY OF FORT COLLINS ModSWMM MODEL INPUT AND OUTPUT APPENDIX C — EPA SWMM 5.0 HYDROLOGY APPENDIX D — DETENTION POND DESIGN POND RATING CURVES WATER QUALITY CONTROL VOLUME SPILLWAY CALCULATIONS RIP RAP SIZING APPENDIX E — RATIONAL METHOD HYDROLOGY DEVELOPED 10-YEAR STORM EVENT DEVELOPED 100-YEAR STORM EVENT APPENDIX F — STREET CAPACITY CALCULATIONS APPENDIX G — INLET SIZING INLET SIZING — UDINLET INLET SIZING — AREA INLETS APPENDIX H — STORM SEWER DESIGN APPENDIX I — EROSION CONTROL PERFORMANCE STANDARDS, EFFECTIVENESS, CONSTRUCTION SEQUENCE, COST ESTIMATE APPENDIX J — SOIL TYPES APPENDIX K — OFFSITE DRAINAGE EXISTING CONDITIONS DRAINAGE BASIN MAP.....................................BACK POCKET PROPOSED DRAINAGE BASIN MAP...............................................................BACK POCKET SWMM DRAINAGE EXHIBIT..............................................................................BACK POCKET SWMM SCHEMATIC DRAINAGE EXHIBIT..................................................BACK POCKET Stantec Consulting, Inc. - ii - December 2006 Front Range Village City of Fort Collins I. GENERAL LOCATION AND DESCRIPTION A. Location Final Drainage and Erosion Control Study The Front Range Village site is situated in the Southeast quarter of Section 32, Township 7 North, Range 68 West of the 6`h Principal Meridian, City of Fort Collins, County of Larimer, State of Colorado and comprises approximately 101 acres. Front Range Village is located to the North and West of Paragon at the Northwest corner of the intersection of Ziegler Road and Harmony Road. The project site is bounded on the South by Harmony Road, to the North by empty fields and to the East by Ziegler Road. The Harmony Mobile Home Park borders the site on the West. For the purposes of this report, the Front Range Village property will be referred to as the "site". This project includes improvements to Harmony Road from the intersection with Timberline Road to the main entrance of HP and improvements to Ziegler Road from the intersection of Harmony Road to the intersection of Horsetooth Road. B. Description of Property The Front Range Village property, approximately 101 acres, is currently zoned as Commercial and will be developed into a retail shopping center. The shopping center will consist of approximately 30 shops/stores. The project site's current use is fallow agricultural land that consists of fallow farmland with tall native grasses and other low growing vegetation. The site generally slopes in a northeasterly direction at approximately 0.5% to 1.5%. Harmony Road is an East-West four -lane collector road that varies in width due to the exclusive turn lanes at the major intersections. Currently, there is no curb and gutter on either side of Harmony Road except at major intersections. Improvements to westbound Harmony Road will consist of widening the westbound lanes. Improvements to the eastbound lanes include reconfiguration of the median to accommodate dual left turn lanes into the project site. No new curb and gutter will be constructed on the either side of Harmony Road as part of these improvements. A roadside ditch will be constructed along the North side of Harmony Road to collect runoff from the North half of Harmony Road. C. Drainage Concept CA Existing Drainage Conditions The current drainage pattern for the site drains from the southwest corner of the site northeast to an irrigation ditch that runs across the property. Seethe existing conditions drainage map located in a pocket in the Appendix. The irrigation ditch starts approximately 400 feet west of the Paragon parking lot entrance at Harmony Road and runs north approximately half a Stantec Consulting, Inc. - 1 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study mile, where it turns to the east and discharges into an 18-inch culvert. The culvert conveys the water from the irrigation ditch, under Ziegler Road, to a swale on the Hewlett-Packard (HP) Harmony Campus. The irrigation ditch on the site currently collects some of the on -site stormwater as well as some offsite flows. The irrigation ditch collects on -site stormwater from the area west of the ditch and off -site flows enters the ditch through an 18-inch culvert from an irrigation ditch that runs along the south side of Harmony Road. An existing area inlet, located in the median on Harmony Road, collects flows from the median and discharges them to the North, into the irrigation ditch within the site. The on -site runoff from the area east of the irrigation ditch flows overland to an on -site detention pond which discharges to two 18-inch storm culverts under Ziegler Road. The two culverts carry the stormwater under Ziegler Road to a drainage channel on the HP Harmony Campus. Off -site runoff from the eastern portions of the Harmony Mobile Home Park currently passes through the site during the 100-year stone event. Currently, flows from the mobile home park travel to an 18" stone sewer system that runs adjacent to the West side of the site. This storm sewer system conveys lower frequency storm flows to a small detention facility located at the northeast corner of the mobile home park. It is assumed that runoff from the less frequent, high intensity stone events exceeds the capacity of the existing storm sewer, causing runoff to overtop and enter into two existing small swales adjacent to the existing stone sewer system. When the capacity of these two swales is exceeded, the swales then overtop and discharge into the Front Range Village project site. Flows from the Paragon site and a small portion of the Front Range Village property drain to a detention pond located in the Southeast corner of the Paragon site. This detention pond currently discharges to the eastern part of the Front Range Village site. These flows travel overland to existing dual 18-inch storm sewer culverts under Ziegler Road. These culverts convey the storm water under Ziegler Road to the HP Harmony Campus drainage channel. C.2 Developed Drainage Concept Runoff from the Front Range Village development will be conveyed to the on -site ponds via overland flow, curb and gutter, cross -pans, inlets and storm sewer systems. See the proposed drainage basin map located in a pocket in the Appendix. On -site runoff will drain to six proposed on -site detention ponds, Ponds A, B, C, D, E and F, which are located in the North and East portions of the site. Off -site flows from the Pads at Harmony development will also be routed via storm sewer to Pond D. Detention and water quality for this offsite development will be provided in Pond D. Combined, the six detention ponds will provide approximately 33.6 acre-feet of detention, including WQCV. An additional existing offsite pond on the Paragon property provides an additional 5.3 acre-feet of detention for the Paragon property as well as some areas of the Front Range Village development. Stantec Consulting, Inc. - 2 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study Off -site flows from the Harmony Mobile Home Park that exceed the capacity of the existing Harmony Mobile Home Park storm sewer system will be collected and routed into Pond D via storm sewer. However, Pond D and its outlet structure have been sized to detain on -site and Pads at Harmony runoff only. As a result, during the 100-year storm event, runoff entering Pond D from the Harmony Mobile Home Park will be discharged through the Pond D spillway and will not be detained within Pond D. This runoff which is discharged through the Pond D spillway will drain into the undeveloped field to the north of the Front Range Village development and will flow along the path that it has historically to the existing culvert under Ziegler Road. By routing the offsite flows through Pond D in this way the extra detention capacity available in Pond D during storm events smaller than the 100-year storm can be utilized for the offsite flows. With the construction of Pond D and the storm sewer systems within the Front Range Village development, the volume of runoff which drains to the existing culvert under Ziegler Road from the Harmony Mobile Home Park will be held to historic levels. Overflow from English Ranch will be allowed to enter the inadvertent detention area along Ziegler as it has historically and will be passed through the existing 18" PVC storm culvert. The inadvertent detention along Ziegler will overflow slightly onto Ziegler Road. The overflow is consistent with the historic conditions shown by the City of Fort Collins' ModSWMM model. This ponding will be alleviated with the construction of the Future Ziegler Pond. Detention ponds A, B, C and D will function in series. The ModSWMM model for this site was used to generate the input hydrographs for the EPA SWMM 5.0 model, which uses dynamic wave routing to route Ponds A through D in series. The off -site Paragon pond, Pond E and Pond F will also function in series. The discharge from the off -site Paragon pond will pass through Ponds E & F prior to being discharged into the existing 18" culvert under Ziegler Road. The existing 18" culvert discharges into the drainage channel on the HP Harmony Campus site. Detention ponds A, C, D, E and F will require individual outlet control devices. The combined peak release rate from the Front Range Village site and the Paragon site will be approximately 26.9 cfs. Please refer to section B.3 Proposed Detention Ponds for a detailed explanation of how this release rate was determined. Stormwater detention and water quality has been provided for the undeveloped lots that front Harmony Road. A drainage easement has been dedicated to allow the undeveloped lots to connect into the proposed Front Range Village storm sewer system. Connection points to the proposed storm drain system have been specified in the construction drawings and must be adhered to by future developers. Stantec Consulting, Inc. - 3 - December 2006 Front Range Village City of Fort Collins II. DRAINAGE BASINS A. Major Basin Description Final Drainage and Erosion Control Study The Front Range Village development is located within the Fox Meadows Drainage Basin. The Fox Meadows Drainage Basin generally flows south to north. The City of Fort Collins Stormwater Basins can be seen in the Drainage Exhibit found in Appendix A. B. Sub -basin Description The area encompassed by the proposed Front Range Village site has been divided into approximately 100 rational sub -basins, 101-165,200-221, 300-307, 400-414, and 500-505, in order to determine the Rational flows for each sub -basin and to size the storm sewer. The site was also divided into 6 SWMM sub -basins 206, 207, 208, 209, 210 and 250 in order to determine the volume of required on -site detention. On -site runoff from these basins is routed to one of six on -site detention ponds via overland flow, curb and gutter and storm drain systems. Ponds A through D are located along the northern boundary of the site while Ponds E and F can be found along the eastern boundary of the site. The SWMM Sub -basin map is located in a pocket within the Appendix. A copy of the Rational Sub -basin map is located in the map pockets of the Appendix. III. DRAINAGE DESIGN CRITERIA A. Regulations The Front Range Village site is located in the Fox Meadows Drainage Basin in the City of Fort Collins. As such, the drainage design criteria that will be followed for this report will be to detain the developed stormwater runoff up to the 100-year event. The maximum peak flow from the site is restricted to approximately 29.6 cfs, a value that is based on the Fox Meadows Basin Drainage Master Plan Update. The Urban Storm Drainage Criteria Manual (published by the Urban Drainage and Flood Control District — Denver, Colorado) and the City of Fort Collins Storm Drainage Design Criteria have been used to calculate the stormwater runoff and to size the on -site storm sewer facilities. Appendix D - Drainage Facility Design provides a detailed description of the calculated release rate based on the Fox Meadows Basin Drainage Master Plan Update. B. Development Criteria Reference and Constraints The design criteria, constraints, and recommendations utilized for this Drainage Study were obtained from the City of Fort Collins Master Plan and the Fox Meadows Basin Drainage Master Plan Update. Stantec Consulting, Inc. - 4 - December 2006 Front Range Village City of Fort Collins C. Hydrologic Criteria Final Drainage and Erosion Control Study Since The Front Range Village is less than 160-acres, the Rational Method was used to calculate developed stormwater runoff. The 10-year and 100-year storm events were used in calculating rational runoff values and the City of Fort Collins intensity duration frequency curves were used to obtain rainfall data for each storm specified. Rational Method computations are provided in Appendix E. Only the 100-year storm event was used in calculating ModSWMM and EPA SWMM 5.0 runoff values. D. Hydraulic Criteria All hydraulic calculations within this report have been prepared in accordance with the City of Fort Collins Drainage Criteria and are included in the Appendix. The detention pond sizing was computed using ModSWMM and EPA SWMM 5.0. The required Water Quality Capture Volumes were computed using the Water Quality Capture Volume equation from the Urban Storm Drainage Criteria Manual, Volume 3. Calculations and criteria are included in Appendix D. E. Variance The City of Fort Collins Urban Storm Drainage Criteria Manual requires 1.0 ft of freeboard for all detention ponds. This requirement could not be met for all onsite detention basins due to site constraints. Ponds B, C and D provide 1.0 R of freeboard per City of Fort Collins requirements. The existing Paragon pond provides 0.80 ft of freeboard. Ponds A, E and F provide 0.50 ft of freeboard during the 100 year storm. All overflow structures were designed with the above mentioned freeboards taken into account. IV. DRAINAGE FACILITY DESIGN A. General Concept The majority of the runoff produced by the Front Range Village flows via curb and gutter, cross -pans, inlets, and storm pipe to one of six proposed detention ponds located within the site. The Rational Method has been used to size the on -site storm sewer systems. Four of the six proposed detention ponds are located along the northern boundary of the site while the fifth and sixth ponds can be found along the eastern boundary of the site. Combined, the five detention ponds will provide approximately 33.6 acre-feet of detention, including WQCV. Off -site flows from the Harmony Mobile Home Park will be routed through Pond D, but will not be detained during the 100-year storm event. Offsite flows from the Commercial Pads at Harmony Road, directly south of the Harmony Mobile Home Park, will also be routed to Pond D via storm sewer pipe and these flows will be detained. Offsite Stantec Consulting, Inc. - 5 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study flows also enter the site from the northern half of Harmony Road that is directly adjacent to the project site. Flows from an existing irrigation ditch that crosses the site will be piped through the site and discharged on the north side of the proposed development. Additionally, a small amount of runoff from the proposed parking lot just northwest of the existing Paragon building will overtop the existing curb -and -gutter and flow east through a drainage swale to the Front Range Village site. A drainage easement has been provided for this overflow. No other off -site runoff from properties surrounding the Front Range Village site traverse through the site. B. Specific Details BA Fox Meadows Basin Drainage Master Plan Update The City of Fort Collins has developed a ModSWMM model of the selected drainage master plan. This model is to be used as a guideline for new construction to insure proper rates of discharges into existing storm drainage systems. When development occurs, the master plan is to be updated to demonstrate and document the effect that the development will have on the City's existing storm system. The master plan shows Front Range Village, combined with half of the future development to the North of the site, as Basin 210. The other half of the site and the future development to the North is shown as Basin 200. The Paragon site is Basin 205 and the Harmony Mobile Home Park West of the site is Basin 300. Basins 210, 200 and 205 drain to detention pond 201 that in turn drains to the drainage channel on the HP Harmony Campus, node 212. During the 100-year event the mobile home park, Basin 300, drains to conveyance element 299 and then to the HP swale, 212. A detention pond for English Ranch, the subdivision to the North, node 214, drains directly to the HP swale. In the original Fox Meadows Basin Drainage Master Plan, the English Ranch Pond overflowed to the detention pond 201, in Basin 200. The English Ranch detention pond was sized using outdated rainfall data prior to the City revised rainfall data of 1999. Applying the new rainfall data to the English Ranch Pond (214) causes the pond to overtop and flow to the future Ziegler detention pond at node 297 during the 100-year storm. B.2 Modified City Master Drainage Plan The City of Fort Collins Master Drainage Plan ModSWMM model was modified to reflect the proposed design conditions for this project site. Together, basins 206, 207, 208, 209, 210 and 250 make up the Front Range Village site, and Basin 296 makes up half of the future development to the North. Basin 297 contains the other half of the future development to the North. The Harmony Mobile Park, Basin 300, was divided into six basins, 300, 301, 302, 243, 244 and 245. Basin 300 represents the southern most portion of the mobile park, Basin 301 is the middle portion and Basin 302 is in the northernmost portion of the mobile park. Stantec Consulting, Inc. - 6 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study Basins 243, 244 and 245 represent different portions of the proposed Pads at Harmony Road development, currently under development by others. The Harmony Mobile Park Basins 300, 301, 243, 244, and 245 drain to Pond D, node 360. Basin 302 drains directly to Basin 296. Per an agreement with the neighboring developer detention for basins 243, 244 and 245 will be provided in Pond D. During the 100-year event, the flows from the Harmony Mobile Park Basins 300 and 301 will pass through the Pond D spillway and will be routed to the undeveloped field north of the site, Basin 296. Front Range Village Basin 207 drains to Pond C (287). Front Range Village Basin 208 drains to Pond B (288). Front Range Village basin 209 drains to Pond A (289). Front Range Village basin 210 drains to Pond E (200). Front Range Village basin 250 drains to Pond F (249). Ponds A, B, C, D, E, and F are denoted as nodes 209, 208, 207, 360, 200, and 249, respectively, in the ModSWMM model. The six detention ponds will be hydraulically connected with storm sewer pipe. Detention Pond D drains to detention Pond C, which drains to detention Pond B, which drains to detention Pond A. Detention Pond A discharges through a proposed storm drain that connects to an existing 30" storm drain running under Ziegler Road. Detention pond F receives inflows from the existing Paragon detention pond (205). Detention pond F drains to detention Pond E. Detention pond E will discharge through the existing 18" storm sewer pipe under Ziegler Road to the existing channel on the East side of Ziegler Road. The peak discharge rate from Ponds A and E was limited so that the combined peak discharge rate in the drainage channel on the HP Harmony Campus from the Front Range Village site will be limited to 29.8 cfs or less during the 100-year storm event. The future development north of the Front Range Village is divided into two basins, Basin 296 and 297. The future development basin 296, along with the Harmony Mobile Park basin 302, will drain to node 296. Node 296 and overflows from the English Ranch Pond (214) then drain to the future Ziegler detention pond (298). Basin 297 drains to the future Ziegler Pond. The future Ziegler Pond (298) will be located approximately where the existing irrigation ditch crosses under Ziegler Road. This ditch starts approximately 400 feet west from the Paragon parking lot entrance and runs north approximately half a mile where it takes a turn east to a drainage culvert. This culvert takes the water collected from the ditch under Ziegler Road to a swale on the HP Harmony Campus, conveyance element 212 in the City's Master Drainage Plan. The future Ziegler detention pond will be constructed with the development of basins 296 and 297. This pond, once constructed will release at a maximum rate of 20.1 cfs. Stantec Consulting, Inc. - 7 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study Copies of the ModSWMM Schematic for the proposed conditions along with the input/output from the modified City of Fort Collins Master Drainage Plan ModSWMM model can be found in the map pockets and in Appendix B of this report respectively. B.3 Proposed Detention Ponds The proposed detention ponds will detain the water quality capture volume for approximately 40 hours before draining into the HP Harmony campus channel per the requirements from the City of Fort Collins Master Stormwater Drainage Plan. The existing City Master Plan hydrologic model has a peak discharge of 76.7 cfs entering into the drainage channel on the HP Harmony Campus. After construction of Front Range Village and the property to the North is complete, a total of four storm drain systems will discharge into the drainage channel on the HP Harmony Campus. The first is an existing 30" storm drain system that originates from the English Ranch Subdivision detention pond. The second will be a storm drain system out of Pond E. The Pond E storm drain outlet will connect the existing 18-inch storm culvert that cross under Ziegler Road. The third storm drain system, which Pond A will tie into, is an existing 30" storm culvert that runs under Ziegler Road. It is believed that this storm culvert was constructed to achieve easy access to the HP drainage channel without having to reconstruct Ziegler Road. The future development to the North of the Front Range Village will tie into the other existing 30" culvert at Ziegler Road. The existing outlet, from the English Ranch Subdivision, discharges at a rate of 26.8 cfs during the 100-year storm, thus the two future developments north of the site, the existing Paragon site and the Front Range Village can discharge at a total combined rate of 49.9 cfs. In order to determine the allowable release rates of each of these areas, it was decided that each development would release at a rate comparable to the percent of land that it encompasses. The total tributary area to design point 212, not including the English Ranch contribution, is approximately 226.6 acres. The combined tributary area of the two undeveloped parcels to the north of the site and of the Harmony Mobile Park is 91.4 acres, or 40.33% of the total. The combined tributary area of the major portion of Front Range Village property and of the commercial Pads at Harmony Road is approximately 105.6 acres, or 46.61 % of the total. The combined tributary area of the remainder of the Front Range Village development and of the Paragon site is 29.6 acres, or 13.06% of the total. Applying these ratios to the allowable combined release rate of 49.9 cfs yields a release rate of 23.3 cfs from Pond A, 6.5 cfs from Pond E, and 20.1 cfs from the future Ziegler Road pond. Thus, the computed maximum allowable release rate for ponds A and E, which includes the Front Range Village development, the commercial Pads at Harmony Road development, and the existing Paragon site, is 29.8 cfs. The maximum allowable release rate for the future Ziegler Pond (298) on the future development north of the site is 20.1 cfs. As ModSWMM cannot do the dynamic wave routing necessary to analyze ponds in series, within the ModSWMM model we have routed the flow from Ponds A, B, C and D directly to node 212. This was done in order to determine a preliminary detention pond size needed for Stantec Consulting, Inc. - 8 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study each of the on -site basins and to provide the inflow hydrographs for each pond that were needed for the EPA SWMM 5.0 model. EPA SWMM 5.0 was then used to calculate the backwater effects of interconnecting the ponds and to size the pipes that interconnect the ponds. The stage -discharge hydrographs for the proposed ponds were taken from the output of the EPA SWMM 5.0 model and interpolated to get a volume -discharge rating curve. The detention volume provided in each of the six proposed on -site detention ponds was shifted from one basin to another with some ponds over detaining tributary runoff to compensate for ponds that cannot detain enough volume due to area constraints in that part of the site. In this way, the combined peak total discharge from the Front Range Village property, the commercial Pads at Harmony Road, and from the Paragon property will be restricted to a release rate of 26.9 cfs. Proposed detention ponds A, D, E, and F will also provide additional capacity to accommodate water quality capture volume. These ponds were sized for the worst -case scenario where it is assumed that the proposed ponds are already filled with the water quality capture volume prior to the 100-year storm event occurring. The six proposed detention ponds were designed with side slopes of 4:1 and provide the required volume between the spillway elevation and bottom of the pond to detain the developed 100-year storm event. If the outlet structure for any of these ponds should ever become plugged, each pond's spillway is designed to provide a controlled release while maintaining one foot of freeboard. In the event that the pond outlet becomes clogged, the stormwater from Pond D will overflow to the undeveloped field north ofthe site, Pond C will .overflow into a grated manhole just east of the overflow spillway and continue to Pond B, overflow from Pond B will be released through a spillway and be directed to a grated manhole and then conveyed to Pond A. Ponds A, E and F will overflow onto Ziegler Road. Required Pond Volumes: WQCV Required Detention Volume Required Total Volume Required Pond A 1.55 6.09 7.64 Pond B N/A 2.23 2.23 Pond C N/A 1.37 1.37 Pond D 1.83 17.95 19.78 Pond E 0.15 0.77 0.92 Pond F 0.28 1.41 1.69 Total 3.81 29.82 33.63 Stantec Consulting, Inc. - 9 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study With the construction of Front Range Village flows from the existing off -site irrigation ditch will be routed through the site via a proposed irrigation pipe and discharged to the existing irrigation ditch north of the site. Offsite flows from the portion of the westbound lanes of Harmony Road directly adjacent to the Front Range Village property will be calculated and accounted for in the storm sewer design of the Front Range Village. B.7 Paragon Outlet With the construction of the Front Range Village, an entrance will be built from Ziegler Road that crosses over the area where the Paragon site discharges their on -site flows. In order not to impede the existing flows from the Paragon site, a proposed storm sewer and drainage swale will be built to direct the storm flows under the proposed entrance road and to proposed Pond F, which will discharge to the HP Harmony Campus drainage channel. As part of these improvements an outlet control structure will be installed on the outlet pipe of the existing Paragon detention pond. This proposed outlet control structure will allow the excess detention volume available in the Paragon detention pond to be utilized and will help the existing pond work in series with proposed Ponds E and F within the Front Range Village development such that the combined peak 100-year discharge rate from all three ponds does not exceed allowable limits. B.8 Storm Sewer Design The storm drain design for the Front Range Village will meet the 10-year storm drainage inlet and pipe design criteria set forth by the City of Fort Collins. NeoUDSewer was utilized for computing the hydraulic grade lines for the proposed storm sewer systems. The minimum velocity in the proposed storm sewer systems was set at 2 feet/second (fps) to prevent silting. Based on the results of NeoUDSewer, the hydraulic grade line along the length of the pipe, and energy grade line at the inlets, is below the ground surface or 1.0 feet above the ground in the parking lot. Inflows to the storm sewer were calculated using the rational method. CDOT Type R inlets were sized based on flows computed using the rational method and using UDInlet, a spreadsheet created by the Urban Drainage and Flood Control District. Gutter flows during the 10-year storm event are maintained within the curb and gutter section and do not exceed 18-inches during the 100-year storm event. If overtopping were to occur during a 100-year event, the building pad elevations were set so that they will not be inundated. Clogging factors of 0.2, 0.15, and 0.1 were applied to 5', 10' and 15' Type R inlets, respectively. Area inlets were sized using a combination of weir and orifice equations. Weir flow and orifice flow was calculated across the inlet and the minimum flow was taken to be the controlling flow. A clogging factor of 0.20 was applied to all area inlets and a maximum ponding depth of 1 foot was used in the parking areas. Stantec Consulting, Inc. - 11 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study B.4 Storm Water Quality The State of Colorado requires Stormwater Management Plans as part of their permit process. The final drainage report will seek to find various Best Management Practices for the treatment of storm water runoff that could be implemented in the construction phase of the project as well as after the completion of the project. The Front Range Village will be providing six grass lined detention ponds (on -site), four of which will be equipped with a water quality discharge control structure with a 40-hour release time. These water quality ponds will provide a mechanism for pollutants to settle out of the stormwater runoff before flows are directed to the drainage channel on the HP Harmony Campus. B.5 Harmony Mobile Home Park With the construction of the Front Range Village, the contributing storm water runoff from the eastern part of the mobile home park will be routed through proposed detention pond D. During the 100-year event runoff to the existing southern most inlet will exceed the capacity of the inlet and overflow into the existing drainage swale to the east. The runoff will then flow north toward the second, middle existing inlet where it will combine with the runoff that the existing storm sewer system is unable to capture. The excess runoff will then continue to flow north and to a proposed inlet which will convey the flow to Pond D via a proposed storm sewer system. B.6 Harmony Road Along with the development of the Front Range Village property, a portion of Harmony Road will be widened. Currently, there is no curb and gutter on either side of the road except at major intersections. Improvements to Harmony Road will consist of widening the westbound lanes. Improvements to the eastbound lanes include reconfiguration of the median to accommodate dual left turn lanes into the project site. No curb and gutter will be constructed on the either side of the side of Harmony Road with this project. There is an existing irrigation ditch adjacent to the South side of Harmony Road and a roadside ditch will be constructed adjacent to the site along the North side of Harmony Road to collect runoff from the north half of Harmony Road. As previously mentioned an existing area inlet located in the median on Harmony Road collects flows from the median and discharges them into the irrigation ditch on the property site. Due to the widening of Harmony Road, the area inlet will be demolished and flows from the westbound lanes of Harmony Road will drain to a proposed swale along the North side of the road. A new median will be constructed with the improvements on Harmony Road. The median will contain a proposed catch basin that will also drain into the proposed drainage swale. Stantec Consulting, Inc. - 10 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study B.9 Subbasin Description The Front Range Village site has been subdivided into approximately 100 on -site subbasins in order to determine inflow and the concentration points for the storm sewer. The attributed runoffs from the majority of the basins are routed to one of the six on -site detention ponds located within the Front Range Village property. A subbasin map illustrating the subbasin characteristics is located in the pocket pockets in the Appendix of this report. B.10 Street Capacity The flows for the street capacities for the streets inside the Front Range Village development were calculated using the Rational Method and UDInlet. The proposed street designs for the Front Range Village meet the required 10-year and 100-year street capacity requirements set forth in the City of Fort Collins Standards. During the minor 10-year storm event the storm water runoff does not overtop the curb and at least one-half of the roadway width is free of water in each direction. During the major 100-year storm event the storm runoff does not overtop the crown of the road and the depth of the storm runoff is below 18 inches at the flowline of the gutter. Supporting calculations for the street analyses are provided in Appendix F. V. EROSION CONTROL This development lies within the Moderate Rainfall Erodibility Zone and the Moderate Wind Erodibility Zone per the City of Fort Collins zone maps. There should be minimal -to no erosion problems after completion of the Front Range Village development. Silt fence will be installed along the North and East sides of the site to prevent sediment from leaving the site. Two vehicle -tracking pads will also be placed at entrances/exits to the site. Straw Bale inlet filters will be placed at the openings of the proposed area inlets as well as the pond outlets. Gravel inlet filters will be placed at the opening of the proposed Type R inlets. Straw Bale check dams will be placed approximately every 300 feet along the swales located within the site. During the construction of Front Range Village, all disturbed areas will be permanently landscaped or temporarily seeded and mulched within 30 days of initial disturbance. All disturbed areas not in a roadway or greenbelt area shall have temporary vegetation seed applied within 30 days of initial disturbance. After seeding, a hay or straw mulch shall be applied over the seed at a rate of 1.5-tons/acre minimum, and the mulch shall be adequately anchored, tacked, or crimped into the soil. Those roads that are to be paved as part of the Front Range Village must have a 1-inch layer of gravel mulch applied at a rate of at least 135 tons/acre immediately after overlot grading is completed. The pavement structure shall be applied within 30 days after the utilities have been installed. Stantec Consulting, Inc. - 12 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study If the disturbed areas will not be constructed upon within one growing season, a permanent seed shall be applied. After seeding, a hay or straw mulch shall be applied over the seed at a minimum rate of 1.5 tons/acre, and the mulch shall be adequately anchored, tacked or crimped into the soil. In the event a portion of the roadway pavement surface and utilities will not be constructed for an extended period of time after overlot grading, a temporary vegetation seed and mulch shall also be applied to the roadway areas as previously discussed. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES permit shall be obtained so that construction grading may commence within this development. VI. CONCLUSIONS A. Compliance with Standards All assumptions, computations and design criteria utilized for the completion of this report are in compliance with the City of Fort Collins Erosion Control Reference Manual for Construction Sites and the Urban Storm Drainage Criteria Manual. The site drainage design corresponds with and adheres to the recommendations stipulated in the City of Fort Collins Master Drainage Plan. B. Drainage Concept The proposed drainage concepts presented in this report will adequately provide for the conveyance of developed on -site stormwater runoff as well as off -site flows to the proposed drainage facilities of the proposed project site. The combination of the proposed curb and gutter, cross -pans, inlets, and storm pipes will provide conveyance for the 10-year and the 100-year flows to reach one of the six proposed detention ponds located on the site. The sizes, locations and release rates of these ponds will allow the Front Range Village site to be developed in conformance with the City of Fort Collins Master Drainage Plan concepts and within the City criteria. If, at the time of construction, groundwater is encountered, a Colorado Department of Health Construction Dewatering Permit will be required. C. Stormwater Quality Concept The proposed design has addressed the water quality aspect of stormwater runoff. Water Quality facilities will be provided in Ponds A, D, E and F. Calculations for the WQCV required in these four ponds are provided in the Appendix. Stantec Consulting, Inc. - 13 - December 2006 Front Range Village City of Fort Collins D. Erosion Control Concept Final Drainage and Erosion Control Study The proposed erosion control concepts mitigate the control of wind and rainfall erosion for the Front Range Village. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standard will be met. The proposed erosion control concepts presented in this report and shown on the erosion control plan are in compliance with the City of Fort Collins Erosion Control criteria. Stantec Consulting, Inc. - 14 - December 2006 Front Range Village City of Fort Collins Final Drainage and Erosion Control Study VII. REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, interim revision January 1997. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991. 3. Fox Meadows Basin Drainage Master Plan Update Selected Plan Report by ICON Engineering Inc, December 24, 2002, revised February 2003. 4. The Urban Storm Drainage Criteria Manual (published by the Urban Drainage and Flood Control District — Denver, Colorado — June 2001). 5. Overall Drainage Study and Phase I Final Drainage Study for the Symbios Logic Site, by The Sear -Brown Group (now Stantec Consulting Inc.), July 1997. Stantec Consulting, Inc. - 15 - December 2006 APPENDIX - A December 2006 CITY OF FORT COLLINS STORMWATER BASINS Stantec 0, 0 0 5 VIM Lw�q ] � . • r J ►t a�1 r.S 'r,C. :lr•Ss�p `li s . "�' >. - �' .. 'r ! _ f ;.'° /? tYx'1'^•1 A i t•1 y[f a]d•` -//yet: - t.�f is ♦y{i•' % _ ti• r•4N r/t. \ �,J�±�.-��7•.,Tca�.•r a:.r�]:�ai7<<�•��.r (=j! 0 r:� •� �J '�110 '_s--'�•'`. .:'.., .�: ♦�.:a.. z ra �'ti�'. �y_tl'. i .,' . ,� �>i-� •� 'r. }�r _ X' _ ,-•f. 1 _•C.l�' _• t 1'.},• •�y����ye���±± . _ , _ _ \ �; f �- 1 tr�K •M� W�1'ay„l :•5 i �n♦a":�� Iv '�✓w-•..'1 lai �i �fKr�,'•,.�..s,�'•i �� �••:'Si.�!• � • • _ • 1 t!-• e' '� � ``�\ y '`,�� ` y, t. .;,i. i'Tc1'Xi1I.�i��.. �• �i1Wjj;...i'!r.. ,�Y .' Iv� �. ^vl. :! �`:i♦ , -� �w• � iF . y.. '.�-�. ,�i .:.� ``;� ♦. #'!� n� Y i� �ii'•�`w �+i. rj R -... ��3 4AA''�-�- '.1�V .♦•.•'v 1 ' 1 .r �" �}�r77var cis .:�rt �' � :-nY . -� - •. }� i"i .y �aa a. li•Y A iayt r• ♦ i • ,,(( .�L _ - - - _• • :w�"taw:�q'. •,r 14 �-4% �#k "1'�'�^`'� i 'i 'i i "i1 _ i. i rE 1. � • J i.�.i .�. ii' l,'�!�•i.' �j - y .. \ Y f�� .a • � i.e._a -. 9� +�,.� .i1-:• ij i1�ai• ..�iirv�y i.� M - •tw- � ' .t - a�i+ +' _`t �w�! 1 t � 'w...� `•i' j''l,i` a/•'•Y 6�•'ak�"'}i+F �'�a�a- �r'ist; -••I.t .;s� I'���: yl���iS] � r•rY -�.r:z ,j'�,,•� � � �'' ♦*• '=` � "'t� /' , .a � .t �•Y �_i .\• � ��"�trT•i laZ f �'• 1' aa „_//'�• Ya ,+ 'a '• \ a �� �, _ ..• ✓. �-. _.r: � •iY-� ♦. r� r•.•.N '♦„►1 r •n�a]a.dl� � - v '•_ CiN! •> _ �� .C. ` 1 TFif? •S' l �C. a-' • . •.is: t•• .(!-�' '•+r+ �s;A`.-.[•i'rb� K] �f�� •,c: �` �?ra�i.�`•� ..•r� �i.. .F,�i,�.i. _ �� I � -,is i � - �,• �I i 'v - r .r .a tr •- •i- f a,•w/.- >tit nF`�q,' �f U!?ay�-IS Cam: .�y'�t.� �a,�•••���� -=' ?/! •t; � !�._ '�•,.: �: ,;ur ` I •♦ ��.: �4.•�'� .• t�•.. - '�• f •d• .aw _•_t .' ••.r^lprt 1 -'r�f - ati ,�-P� af3v�fa_ �I. i t C�"r�Cr�_ �1 �. �,•r r�1y�yJ \ 'i-+ - . �.. �.: q of �T' r . f- �'V a.•\:., YC. ) Nt ij I ._ •�• .,r. „♦ !!... •Y r T _ _ "'�!/! - _ ~- o^+•.-�._u.� _ t _�+s.t r._ _^ -„'+•l '� � � _M�' ] - - -1 .ri, a.Y _'•_•, .a 1. ..? ... 1 f'= �:� dX •-� _ t-'f ems.; •. .c- :, h'� 'i '• f'.Y � r1 s� Ali 'I(_'-. .' i J •i y 4 r � 9 • i � '(i I 1 � 7 tt • _ (�J�• '# <. • �� ! y1J[jJ`•(._k.. (�+ tG_..a,'.. j.Xntti•• '?.i; r. .��+:a ti. ��f,n _ '. r��1, - �'�-it�,l�j 'ti �7.i� r ,s •C% .. a �L-• 'j •,•. AIL a,y(jg t�.1•�".. � � .1' �w i. SF: .� tl y ay,1 aS�f - .:1 T+�`♦�a•',•'J,'f'.r1 � � 'a.���t Ij .2 �1 ^' -♦v..y rs � Vi�� t �t4 _ �w.as-:� •tT • . •I� a � t 'h. ff �...• fa' :1 " T 1T�� S� • w`': V.. •.:.���yya•. • t �i. �.�`. ..%.. Y..�yyh!•^,._.-.-i�i` �.-. � �}} . � `•R r. ��Ir♦� .� �V:. �Y t ' Ta, {- '�±f1:.c ♦ �."_ ]' .}�Y .�, .1. - '� h yj. Jiai•i'•.LC�St�"V�Ci�I•\Oji: :a•a•): '�L V �;J.SY- '.f _ 'rrrrfi :.i - ii`; �a ir.r '•� '�� +• fa r ""-- - - � *' �•�'•:/eT.ia�itj rS•w•� i a v •L •e10. t- _ r•� '.�. `� f j- ':,.'.. !'j�S'`;• :.p t` .. *.'. i�: \G• y }?. �. ,• '• �,• 1 St... t:vJl� ti Jt.•�..ln.0 �. .t l f •t _ -� �+lF �t ��i ,� ! V \ ) •l ' • -Ir1�~�Yf-a• \/rtI`.: <w Jf. �l a f► y{ -.7 e. .t 1 -t.� Y-•>s�._ ♦ �,; ^�. ,-jy'• t • r. ,� 1�iL .�[:.CS-t .r .,1]1 a:-N' ►a • y ] 'y _'t :'• i M.. _ � y'�ii Y.:. ]• r\.�•a¢-, y.;; -'r�� 'w� ��._� � r.♦�.�)Y 1 a- LJ. F ^� '.T! � •t, }T :. f rh♦ � ' �• i .I i .� a �"•Ufv. rr ;1'f•J.,. vT fyy r4'!�a -e �t 1" _ t `dp.-f au (-t r l4 t��-�'�'•t•��v �i'_1 �- a. �.1_'•{�� i - �, r p;• ^rL."�•F.-'_Vrr'i ;ir y� i. _ Yam•' _ `""l•.� .C� ,.%. 1L` C'' .tea d: :,,�/�,. �� f -. 5T{'ys. �� •r x •�`^: ri.. 'i f t�r,�'•s]LftZ�i1 �I i. i ?G T -.a `,- �',- Mn S „^'�.e}` •� r•a.: �f ��'°`, y :l 'i -•"'� ' '. .. /. �.. ay ' 1��e-,'�y�•I.-'•�'.. _ iYiai4N. _ia •• i"a_. }3L` -♦ ea��•�Jr =f' 1-S ,��T � Z i.a Via' `•t►��. d+.+ . ...� -, •�� -� �, rr,- � 4:'�C wr r % 'i �' a � -. �a .�'t*r"�•�. t F-"� '�• Y `H ' X •• ��p q ."'. w'y� r a,'' �♦ •i_ •icrj7 , • . - : :1i 45r 1�,'7� i+i "f i •- ' ��•.r�.�pp��..���� j] II='si`{���, �' _ :�+ 't.'�...v :_ - _ •`` `2 a. '�, s .a 'I! �. t[!' k..`�� � r +�'if;: 4 .f. „4�+ „� 1•�:_.__I - LR.i _., I..y a'l it �l-' ;. fir•:!" ,r-': >& •�},. S ..a J . {1' ,.. +so t�� - i^`� .aa 't _ 5---, ;'L.li+w�'r- -: _ _1 ^••'�L`C�.'_.� "' •• y. _ q� it�_j•' i` f �..�, ;1�+�, +•� r ��-��fli h'`�j' •r. � 6i' ��'w ��••.a'r�.1� •`,,/.�,'`ii .`w -_ __ C a•.a - s .�i rl _ _` .a;--7 �i a�ti`__..,,wT -�f _ -• r..t.: a. s,rt'>V .• � a � I I1� _ "R �?�. t,'t�!'C.iY�I�"•�Ai�!(�r. r. -�t' • r-a._ 4 ^ _ t •� � � •• V i C.�i� •,: • fL -.! is i I I I •r:,� ",il f ,YIWil' .!� -_.-i ._ R.� s - .\ r.p�- ^S r_. i f. r• :;z" - :f9��'" - C if� .:nY- _: - A` .:�.1�y�Jll �r •-.' .♦ •r�ry.v. „ •i jn `y''i � •� �� '1 - i . oily: _ ♦i! _ 1 ♦1 } "•AE ] -t Y• t -�i.^. s... ��� v ♦� • x ,l�,�t'y -• - 1'1II'I �..•�F--_ y ,t:� { - i 1 -.� _ a ,� t • - s .✓•� `}. r .rr_+,Y) ' !� • _ t} .,�..�, _ . w a�,• -`it�i 'N, 'w'v s � -•1.� w.2•ni \ '� •ylr'} r l + e �*� � 11�; I� , ,,,, � - .��';T.•' �� '- s 1•:.'^r'i'• v. � •a. jwla ='e"L' i:.t, ••t�AC a: 7^.".- �t�j1 ♦ �. - f v• •� V. "y •.tw:�, -' �-'.. ^ y+[. _aJ r "•1 _ ;!��1~•ll1 1.4+.^...3 r� _ � ':._t--- .. _ ���t i ,�. .f> - 6 I I' S#i . • raft a a ` y_: +b }I'-�rw, i .s+i �7 ' x.J 2� � r a i� ' �Y' �llr '�:} ��� '•.•+ .• � _ iT'- v .•v r . �fi!G `•'. i' .1 . .. � ,� a ��.��'yy'.r�, •� a .c• �. _ t ...` -•!� :.' ��=yal" a.•`�. —,. _ { ; '� `xy t - ,-'c..r ��. 4'•+y � n `t • a .r :�l.a�a�...�'�-I- r- - p^� C.r4. t`_�L�e'w F'D '$�S':`����. 1.� - r. _�_ - a _�. _ � ��. .. ty. ' ♦ � '_• i. ,p F I 1- � �. .ir - J• � T -'t' • >•�ZS,:I. i'. ,a ♦• r� � 14' � 1 ' �.� � 7 t .♦ ..` . �: I�r / ^ .�. y •,�' a _I, '�� 'T •♦ u Vt I:.�u:" f f �i _..n •� r 1 7 ' " _ �� .'� .1 - • _r_ +.. T.� .J, ."_ axia: t. . �; '♦ f •_. y .a• i .,j��il\l?�• �R'.. l: - , a _ / �iF._ 'F»Y ..p - 1 i - r - ,�' ,,•risr_-. a r. .� °�- - ..ctwlt.i^i^!+. '7 :;"- k�' _..'_-•: y'(r X i - _ '-w _ v^ .-a:-'-, •::. 4 `W,��'�+ � ci!'.y-!1 y_.t� �_' .>f •:`a 4>�._i .L ,1: �<4 � '♦ e ...aaa _ ti'<vi_ -.i �j.� _ tF -r •S �„ -E. _ .~ '�'',- _ r,!f.. ,f+FMrir�.: _ic' •4' .�.]}-�r I., y}. �F 7:{• tt� , - `qr".•'�.t 4� u.,. „L �.�_,�'' f:_'w•.., :]:' x \l^ 3' r _ _ .�•�'� y.i - ..r v.+.ir l.r . - - .(,.' ♦ 'r"?I".-. -}'}`C t _ l•. _ ' X "! •'\. T, • VrIn1Y ( £ �^' ..�. • •l:i. a7 ai•\. saa .9_ tq� 'v 11j� •. � .7ir F r .Ca�j f� �•lr'.'S _. w: �,.i- _ \, '-�..4f�: n }k _ t '^ a• ♦ :sue r..t�_'a. ��.. :y-,w. '��_.,n�i, t•ig''-•1 _ '�?R" , _.!`i >%�"w -- i r_. `%y( _a.'-. _ 4 %l- �� f.. w1•- iN•.'•, �; �i•"r..�::l.:Y-^'"� 1 s\ -i Jx .:F!'-t _LA � � f '�"_ s. �av i+¢.:.. .�iTi�•• '.1.aAc....�. :� i _. ":n.-�.�,•. a -• 2 _ _ ML a, < a - .r 5}} .� -�a• t �� -� ♦ f ..,may r'._r.^•�'t a�. � r ftvye ,yr. a � r 'r r f•z-:- ��'�" . �` - � w t4� � µti-'- - - t , 1. INTRODUCTION The Fox Meadows Drainage Basin is generally located west of Interstate 25, east of Warren Lake, north of Harmony Road, and south of Hoorsetooth Road. Figure 1 presents the location map for the Fox Meadows Drainage Basin. The Fox Meadows Drainage Basin does not include a major drainage way to convey flow from the upper end of the basin to the downstream discharge points along the Fossil Creek Reservoir Inlet Ditch (FCRID). Instead, a network of storm sewers, local drainage channels, and detention ponds control and transport the storm runoff through the basin. The majority of area within the Fox Meadows Basin has previously been developed and few locations remain for new development. Much of the current development has occurred after stormwater development criteria had been established by the City of Fort Collins. However, several drainage problems have been still been identified in the basin mainly due to increases in flow data due to rainfall updates. These problems include overtopping of existing detention facilities, ponding behind railroad embankments, roadway overtopping, and lack of freeboard for flood conveyance structures. Up to fourteen residential structures are estimated as being damaged throughout the basin during the 100-year event. The specific problem area locations are presented in Figure 2. The selected improvement plan combines 100-year drainage improvements with additional public safety and maintenance improvements throughout the basin. The Selected Plan focuses on both alleviating flooding for existing drainage problems, as well as preventing damages that could potentially result due to potential embankment failures. Elements within the selected improvement plan include structural, non-structural, and development criteria components. Structural components' include construction of new detention facilities, modifications to existing detention facilities, addition of spillways to existing detention facilities, and the construction of culverts and other drainage conveyance systems. Structural improvements may also include riprap installation for erosion and scour protection at critical locations within the basin. Non-structural components of the Selected Plan may include the installation of flood warning devices to warn area residents of potential flood conditions. The non-structural improvements are recommended at problem locations where potential failure of an embankment during a storm event could lead to significant damage or loss of life. Development criteria recommendations have also been included in the selected improvement plan to provide guidance for any new development that may occur. Habitat and floodplain criteria components were not included in the Selected Plan, since a natural stream, or drainageway, does not exist within the Fox Meadows Basin. 2. SELECTED IMPROVEMENT PLAN DESCRIPTION Three improvement reaches have been defined in the Fox Meadows Basin for the Selected Plan. The first reach extends west from the Poudre River to Ziegler Road. The second reach encompasses the drainage basin between Ziegler Road and Timberline Road. The final reach includes the remainder of the basin from Timberline Road, west, to South Lemay Avenue. The reach limits are defined, along with the selected improvement plan, on Figure 3. Table 1 provides a basin wide discharge comparison between existing conditions flows and discharges after the implementation of the selected improvement plan. 1 Fox Meadows Master Plan ICON Engineering, Inc. December 2002 TABLE 1: SELECTED PLAN DISCHARGE COMPARISON TABLE 100-YEAR Existing Selected Plan Conditions Conditions Location (cfs) (cfs) HP Site FCRID Bypass 367 380 Fossil Creek Reservoir Inlet Ditch (FCRID) 595 595 at Harmony Road Fossil Creek Reservoir Inlet Ditch (FCRID) 416 416 t Woodland Park Fossil Creek Reservoir Inlet Ditch (FCRID) 336 300 at Horsetooth Road Hewlett-Packard Drainage Channel 305 311 Overflow Through English Ranch South 180 0 orsetooth Road / Ziegler Road 301 174 Intersection* Kingsley Drive 209 158 Sunstone Village Pond #5 (46 / 39)** (40 / 0)** Isunstone Village Regional Detention Pond (27 / 212)** (27 * Reflects discharge in roadway, pipe flow not included ** Reflects (Pipe Outflow/Spill Outflow) at detention facilities Fox Meadows Master Plan ICON Engineering, Inc. December 2002 2.1 Reach l (Poudre River to Ziegler Road) Two problem areas have been identified along the first reach. First, the FCRID (Location A, shown on Figure 2) does not have capacity to pass the 100-year existing conditions flows while meeting the City's freeboard requirements of 1-foot. Channel freeboard, along the east canal bank, is as low as 0.5-ft for over 550 feet of channel. Second, overflow from the Hewlett- Packard site (Location B) currently discharges across the FCRID over a bypass flume. Additionally, a spill structure for the FCRID (Location B) has been proposed in the East Harmony portion of the McClellands Creek Master Plan Update immediately upstream of Harmony Road. This spill structure is proposed to limit flow under the roadway to 444-cfs. This will enable the FCRID to meet freeboard requirements within the McClellands Drainage Basin. The spill structure and the bypass flume release a combination of up to 367-cfs of discharge during the 100-year event. This release occurs along the FCRID bank. Erosion and scour from the overflow could potentially lead to a FCRID bank failure at this location. The selected improvement plan recommends drainage improvements at both of these locations. First, along the FCRID Channel it is recommended that the portions of the east channel bank that do not meet the City's. freeboard requirements be improved to meet criteria. Improvements are assumed to consist primarily of the installation of acceptable fill material along the crest and sides of the existing canal embankment. Second, the selected improvement plan proposes to reinforce the FCRID bank at the FCRID/bypass flume spill location with riprap protection in order to help reduce the risk of bank failure during large storm events. A specific sequence of construction is not required for this reach. It is recommended that the riprap protection at the FCRID/bypass flume spill location be permanently installed after the completion of the Harmony Road FCRID spill structure. New development within this reach shall meet criteria recommended under the Development Criteria section of this report. 2.2 Reach 2 (Ziegler Road to Timberline Road) Several problem locations have been identified within the second basin reach. First, Sunstone Village Pond #4 (Location C) displays overtopping during storm events greater than the 50- year. During overtopping, this pond overflows at two locations simultaneously. The majority of the flow, 33-cfs during the 100-year event, spills along the west bank and travels overland to the north. A smaller volume of flow, around 3-cfs, also spills through low points in the eastern embankment into the Mobile Home Park. The capacity of the Sunstone Village Pond #5 (Location D) is also exceeded during storm events greater than the 50-year frequency. Spill flow rates approach 39-cfs during the 100-year event. Since a defined spillway for the pond was not constructed, flows are expected to overtop the north embankment and sheet flow around the adjacent residential structures. Without a designated spillway, significant damage could result to the embankment. Significant backwater also develops upstream in the adjacent Mobile Home Park. Significant damage to the mobile homes is not expected since the mobile homes are typically raised approximately 2-feet higher 6 Fox Meadows Master Plan ICON Engineering, Inc. December 2002 then the ground surface. The flow depth downstream of the pond is not anticipated to impact adjacent structures. The capacity of the Sunstone Village Regional Detention Pond (Location E) is exceeded during the 100-year event. Existing pond spills are anticipated to approach 209-cfs during the 100- year event. Overflow from this pond contributes to flooding of three residential structures along Kingsley Drive and significantly contributes to flood problems at other locations, such as English Ranch Detention Ponds #2 through #5. The capacity of the Fox Meadows Pond (Location F) is exceeded during the 100-year event. Although no structures are impacted due to the backwater from the pond, the overflow does contribute to flooding at the Ziegler Road/Hoorsetooth Road intersection. During major flow events, English Ranch Ponds #2 through #5 (Location G) function together as upstream ponds spill overland into the subsequent downstream ponds. Overflows from the Sunstone Village Regional Pond travel north on Kinsley Drive and combine with additional runoff at English Ranch Pond #2. The combined flow continues east through each of the remaining detention ponds. Kingsley Drive and Antelope Drive are overtopped and significant overflows are expected to collect at the intersection of Horsetooth Road and Ziegler Road before sheet flowing to the FCRID. As much as 301-cfs collects in the intersection during the 100-year event. Five residential structures adjacent to the ponds have been identified as potentially impacted during the 100-year event. In addition to residential structure damages, additional damages are anticipated at Kingsley Drive, Ashmount Drive, the Horsetooth Road/Ziegler Road intersection, and other locations where flow overtops the embankments. During the existing conditions, the runoff from the Harmony Mobile Home Park that does not enter the local storm sewer to Sunstone Village Pond #5 will overflow through English Ranch South. Up to 180-cfs is anticipated to overflow through English Ranch South (Location H) during the 100-year event. Overflow from the Harmony Mobile Home Park occurs for storm events greater than or equal to the 5-year event. Additionally, the overflow contributes to the volume of water in the English Ranch South_ detention ponds. Pond overtopping is expected during the 100-year event. The inadvertent detention occurs upstream of Ziegler Road (Location 1). The inadvertent detention area primarily exists only on undeveloped land. However, two residential structures located to the south of the English Ranch South development are impacted from the ponded water. Damage to the residential structures is expected for events equal to or exceeding the 5- year frequency. Improvements proposed for Reach 2 primarily consist of structural improvements to alleviate flooding. The improvements are discussed below in more detail. A detention improvement summary for Reach 2 is presented in Table 2. Sunstone Village Pond #4: The selected improvement plan proposes to formalize a spillway for Sunstone Village Pond #4 along the north end of the pond, following the outlet pipe. The plan assumes the existing detention volume will remain unchanged. 7 Fox Meadows Master Plan ICON Engineering, Inc. December 2002 TABLE 2: REACH 2 - DETENTION IMPROVEMENT SUMMARY Volume Before Overtopping (acre-ft) 4.5 Overtopping Elevation (feet) 4919.0 EXISTING CONDITIONS Discharge at Overtopping100-Year Elevation (cfs) 5 Event Volume Before Overtopping Overto In (acre-ft) 4.7 SELECTED Overtopping Elevation (feet) 4919.0 IMPROVEMENT Dischargp at Overtopping Elevation (cfs) 5 PLAN 100-Year Event Location English Ranch Pond #3 Water Surface (feet ) 4920.2 4931.3 N/A Total Discharge (cfs) 222 103 N/A Spill Discharge (cfs) 217 Water Surface (feet) 4920.0 Total Discharge (cfs) 168 Spill Discharge (cfs) 163 Fox Meadows Pond 5.8 4931.0 30 73 10.8 4931.0 34 4930.0 34 0 Ziegler Pond N/A N/A N/A N/A 15.8 »» N/A » 25 N/A* 25 0 ..ow detention racntty. I uo-year water surface shall beset as to not impact adjacent or upstream structures. •» Reflects 1-foot freeboard. Fox Meadows Master Plan 8 ICON Engineering, Inc. December 2002 Sunstone Village Pond #5 & Ziegler Pond: The selected improvement plan proposes to divert flow from the Harmony Mobile Home Park to a new detention facility, located upstream of Ziegler Road by redirecting the existing 36-inch storm sewer outfall to a new location. With this flow diversion, flooding downstream of Sunstone Village Pond #5 is greatly reduced. As a result of the improvements, Sunstone Village Pond #5 only overtops during the 100-year event and the resultant overflow discharge is not great enough to cause significant damage downstream. Additionally, damages are also reduced downstream of the Sunstone Village Regional Detention Pond since overflow discharges along Kingsley Drive and English Ranch Detention Ponds #2 through #5 are reduced as a result of the improvements. A recommendation for the installation of a formalized spillway is recommended at Sunstone Village Pond #5 to protect the embankment during periods of overflow. In order to minimize damages from the overflows exceeding the capacity of the Harmony Mobile Home Park, a new detention facility, Ziegler Pond, is proposed to be located within the undeveloped basin to the east of the mobile home park. The pond is proposed to be sized for the 100-Year event in order to eliminate all overflows, and associated damages within English Ranch South. The outlet from the new detention facility is proposed to be connected directly to the drainage channel along the north side of the Hewlett Packard site. It is assumed that the outlet system will consist of a drainage channel. However, as the downstream basins develop, a storm sewer system may be considered. It is anticipated that drainage from Ziegler Pond will cross Ziegler Road through an existing 30-inch pipe that is_currend :1-3'.gpd. The pipe stub out is located immediately across of Ziegler Road from the Hewlett Packard drainage channel. Ziegler Pond will be required to provide detention for Harmony Mobile Home Park flows to a level that downstream facilities are not impacted above their capacity. Additional volume for water quality is recommended, but has not been included in the size and cost of this improvement. It is anticipated that improvements downstream of the Ziegler Pond could effectively be used to mitigate flood damages at the two residences, located to the south of English Ranch South. It is recommended that the improvements downstream of the Ziegler Pond be completed in a manner that either intercepts inadvertent flows before they reach the residences, or provides a berm or levee to prohibit the flooding from reaching the homes. Fox Meadows Pond: The selected improvement plan recommends grading modifications to the Fox Meadows Pond in order to increase the overall pond volume by up to 5 acre-feet in order to eliminate a portion of roadway flooding along Horsetooth Road. Construction is anticipated to involve excavating the pond deeper and rebuilding the outlet structure between the pond and downstream storm sewer manhole. Pond improvements at this location will eliminate the overtopping during the 100-year event and provide 1-foot of additional freeboard. English Ranch Detention Ponds #2 through #5: The selected improvement plan recommends the installation of a double 3-foot by 8-foot box culvert below Kingsley Drive, between English Ranch Detention Ponds #2 and #3. The box culvert would allow flow from Pond #2 to travel freely into Pond #3 without backwater. This will help eliminate flooding to homes adjacent to Pond #2. This improvement will also help maintain an additional point of access into the subdivision during flooding events. A direct connection between the existing 27-inch storm sewer in Kingsley Road and the box culvert is also recommended with this improvement. 9 Fox Meadows Master Plan ICON Engineering, Inc. December 2002 Improvement construction sequencing is not required in this reach. However, it is recommended that the Ziegler Pond improvements be implemented as soon as possible in order to reduce the flood potential in English Ranch South. Layout and design of this pond should be closely coordinated with any development that may occur in the adjacent basins. Similarly, the box culvert installation below Kingsley Drive would help alleviate some existing flood problems. The Fox Meadows Pond improvements should be coordinated with any roadway improvements that may occur along Ziegler Road. After the pond improvements are completed, the required discharge to be conveyed by Ziegler Road can be reduced. There are not any specific sequencing requirements for the installation of spillways at existing detention facilities. Groundwater elevations were not available at the time of this report and should be considered with the construction of the detention pond improvements. New development within this reach shall meet criteria recommended under the Development Criteria section of this report. 2.3 Reach 3 (Timberline Road to South Lemay Avenue) One main problem area has been identified along Reach 3. Several factors contribute to the flood problems at the Golden Meadows Detention Pond (Location n. The first factor is the presence of the Union Pacific Railroad (UPRR) immediately downstream of the detention pond. The Golden Meadows pond only has capacity for 9 acre-feet of storm -water detention before overtopping. Once the capacity of the pond is exceeded, water will continue to build up behind the UPRR embankment until the storm -water passes through a 36-in pipe outlet or overtops the embankment. The hydrology completed for this study, indicated that the 100-year existing conditions stone flow would not overtop the UPRR embankment. However, almost 52 acre-feet of volume (10.1-feet deep) are detained behind the railroad embankment during the 100-year event. The estimated water surface is within 1.3-ft of the embankment crest. Given that the upper portion of the railroad embankment is usually ballast, and there is the potential for storing significant volume, the railroad embankment could have significant damage, or even fail, during a large storm event. In addition, there is not a designated spillway for flows greater than the 100-year event since this location has not been designed as a detention pond. Finally, a potential exists for significant damage downstream if the embankment is breached after a large volume of water has collected upstream. Backwater (behind the UPRR embankment during the 100-year event) extends into the various roadways within the subdivision, however, there are no impacts to the residential structures from this backwater. The selected improvement plan recommends that flood warning be provided at this location. As discussed above, significant damage could result downstream in the event of an embankment failure. It is assumed for this improvement that the flood warning device will consist of a combination rain and flow gage, including a pressure transducer and stand pipe. The devise will also be tied into the existing City flood warning network. Even with the installation of a flood warning device at this location, it is also recommended that the current stability of the embankment be analyzed and the potential downstream damages be estimated based on those findings. 10 Fox Meadows Master Plan ICON Engineering, Inc. December 2002 Specific construction sequencing is not required in this reach. New development within this reach shall meet criteria recommended under the Development Criteria section of this report. 3. DEVELOPMENT CRITERIA Development within the drainage basin can have major impacts to existing flood hazards. Development typically increases the volume of storm -water runoff and decreases the storm - water travel time, which can result in increased peak discharges. In general, the existing development within the basin has provided on -site detention. However, as determined by this study, many of the existing ponds are undersized and overtop during the larger storm events. Given the development potential remaining within the Fox Meadows basin, development regulations must minimize the impacts to downstream facilities. Areas of particular concern include development tributary to Sunstone Village Pond #3 (Hydrologic Basin 335) and within the Collindale Business Park (Hydrologic Basins 345 and 350), where development without adequate on -site detention could result in overtopping of ponds that currently do not overflow. Development of areas (Hydrologic Basins 200 and 210) contributing to the inadvertent detention upstream of Ziegler Road could potentially increase damages at the adjacent homes if runoff is not controlled through on -site detention. Finally, there is the potential for additional development between the FCRID and Ziegler Road in Hydrologic Basins 135, 140, 145 and 150. Without on -site detention, discharges could be increased in the FCRID. As a result, the City's freeboard requirements may not be met. Development regulations for these areas should require on -site detention to offset the impacts of increased discharge peaks and volumes and decreased travel times. Detention at a minimum shall meet the City's standard of detaining to the 2-year historic storm level. Detention shall also be regulated so that downstream facilities are not adversely impacted. The allowable release rate for new development in the Fox Meadows Basin shall not excee�0.23-cfs/acre Extended detention, for the benefit of water quality, should also be considered in any new development. By detaining the runoff for an extended amount of time, one can decrease the amount of pollutants in the water before releasing the runoff back into the natural ecosystem. The City's standards should be referred to in order to design adequate water -quality features within each detention pond: 4. BENEFIT/COST ANALYSIS A Benefit -Cost analysis has been performed in order to compare the expenditures of the selected improvement plan with the benefits of the plan. For the purposes of this analysis, the benefits and costs have been measured in present worth dollars. Only direct benefits have been included in the B/C ratios. "Intangible" damages including: loss of life, business and sales tax losses, loss of employees' salaries, and damages due to failure of an embankment impounding floodwaters, have not been included in the B/C analysis. II Fox Meadows Master Plan ICON Engineering, Inc. December 2002 The benefits included in the B/C ratio are the reductions in potential damages from the problems described in the selected improvement plan description section .of this report. Because of the proposed improvements, damages may be reduced or eliminated all together. These potential damages include: direct damage to residential or commercial structures and contents, damages to roadways and utilities, any costs associated with clean-up activities, and the indirect damages associated with emergency response. Table 3 presents a summary of the benefits, costs, and B/C ratio for the Selected Plan. Table 4 presents a detailed summary of costs for the Selected Plan. According to the results presented in the table, the B/C ratios indicate the costs exceed the benefits for this plan. Regardless of the low B/C ratio, the selected improvement plan does greatly reduce flood damages within the basin. Incidental and intangible damages such as loss of life, loss of income, etc., will also be greatly reduced as a result of this plan Table 3: Summary of Benefit -Cost Analysis Golden Meadows Pond $14,100 Sunstone Village Pond #4 $49,198 Sunstone Village Pond #5 $63,701 English Ranch Ponds #2 through #5 $33%570 Fox Meadows Pond $161,528 Ziegler Pond $673,205 Hewlet Packard Site - FCRID Bypass Channel / FCRID Spill Structure $34,222 FCRID Bank Modifications $20,189 Total $1,355,712 Basin Damages (Present Worth) $674,829 Approximate Benefits (Damages Reduced) $630,557 Alternative Costs $1,355,712 Benefit -Cost Ratio (All Improvements) 0.47 Benefit -Cost Ratio (Flood Control Improvements)* 0.60 B/C ratio computed using only Flood Control Improvement costs at Sunstone Village Pond #5, English Ranch Ponds #2 through #5, and Ziegler Pond. 12 Fox Meadows Master Plan ICON Engineering, Inc. December 2002 RM 5NS1 a tk\ lily I/ �/ . �� 0_4` 2 M k - I -- it L rA"j pe APPENDIX — B IN December 2006 ModSWMM HYDROLOGY Stantec LEGEND _ -Sno- NEW INJLK CONTOURS NEW IJIf RMEDIATE CONIOUR`i NEW STORM DRAIN WITH MANHOLE ar_ BASIN OOUNDARY r r SUB-6ASIN BOUNDARY DESIGN POINT 302 UASIN NUMaFR 11 3 BASIN ACRES INQ 'a Kid e77F4 Ie77 �, NGLISH RANH.r, ��.E$ � � .. r Pb } _ xA. v.-�,A ` �i, •V..V.\.�IY/C_.1 L/4VJ1 .R.VP•II > a p v 1 . POND D Vtvamm,=20.4 acre-ft.. i"r �JIT[ "ik W CV 2.2 acre-R * a x j 3 POND C POND B }(. =1.4 acre-ft E j� = 2.3 acre-ft A.qr OFFSITE MOBILE HOME PARK g—Ly, .� 'r t I 4Ct '.7rif 'y d..: ,v 207 • t ja S a.:;, . " \d � w " a . b t37 "�`FaJ r » '}`'P'i pain's , a ' n 1 r aN,I,T ,`j�� ., • t r i a" A,',W `' ¢ «y v l�'i` $ �q ml 3 OFFSITE MOBILE HOME PARK ,� r , # l xE. _ �„ ^•sIR-' ii �f��.. +�.7th ''+p r a f � $ � "F`f � �.',,"# . ii � ♦ � i A ; c'. :«,� 1��; '".a �H 14 q 1 y+ . � q. , { a r R n4 ft -aii� U �, fax" a I g a= Lap a. r P � Tsrt �'' "Ftaa }"&4rs'J ,'s � C'i'L3 Y IFUI oA .�_">x,.. 'Y" :. 4 t 1s h y, r !t �,. a m �.� • a, *� , � .$� t A 10 \ v 300 y h I 1 23.1.a y V .= 7.6 acre-ft V'QCV =1.53 acre-ft • { d `A DLI. �Y HP SWALE (OUTLET) Q,,,,. = 76.7cfs (MAX) wwlm Q.-- 26.8 cfs Qda = 26.9 cfs Qnm.= 20.1 cfs .. POND L VN„,R�0 4T acro-ft WOCV — 0.07 acre-fi POND F V . 1.7 acre-ft W CV 0.33 acre ft - w � e 4 i q v r •� k e _.dSnM1.. City of Fort Collins, CDlomdo UTILITY PLAN APPROVAL �""ROVED: .._......._._.._.._.._.._...-...-..._..._........ City Engineer I]uic W(I.P.t h WCStCwnY i'i _� llv 0( HI:CKED BY. stnrmwater U I,,y Lot, CIE CKED 01 FcrM; k 4eoe.1'.an Lute '.IFCKLD NY voile r�gineer Data KED EY_ Dnte T I c. u+. I+'Hteyo._ -He REVrIv noes Not Y [:iA t'.IAI.TI f3 Ct 1 M5 "'It Ter 'CANS !SF n_ E,"..L LJANTI L� I I+LU -FL RCVILW]ItA_: EE IrJIS-kLECI N ANY REASON AS ACCFPTANCi ,.. _ _ I cll Ni I. 1 e= El_2 € % SHE 1111 Z UU 0 g W J LU a a rY Q U It. K z $ QccY m cc Pemlil-Seal 100% PLANS NOT FOR CONSTRUCTION January 2007 H m x r2 2 z Ln 0 P.o,.., N. .. 187010251 112 u Jon A.M ilL nx. ymM.nn Dsavnng No- C-152 Revision Stoat 0 24 of 13T ModSWMM SCHEMATIC Stantec LEGEND MODSWMM BASIN BOUNDARY FW71 DIVERSION ® PIPE / CHANNEL 103 BASIN 1(�Q DETENTION POND _— DIRECT FLOW NODE I UNDEVELOPED LAND® A DESIGN POINT I 296 296 7�C NOTE: RUNOFF FROM THE HARMONY / COMMUNITY IS ROUTED THROUGH POND D AND WILL OVERFLOW INTO BASIN 296. 322 / 302 POND D etc 1 360 286 I M O 302 MONY MMUNITV � N — (M LE HOME PARK) 206 i 321 1 301 r I O6, ovor�o ® a 0 o m o m I N I o 0 o 0 0 o 0 301 HARMONY COMMUNITY ' — (MOBILE HOME PARK)— o o FRO�N�T F a••• 0 a 0 D 300 -. D D 0 0 D 0 0 D HARMONY COMMUNITY I ' 300 (MOBILE HOME PARK) u 0 a D 0 o-i(i rDiii. 243 220 215 ENGLISH RANCH POND #7 e UNDEVELOPED LAND INADVERTENT DETENTION C Q o eo o Qo 0 0 o,= CID�oe�o oe� oo ve Ie C o (^ /ILLAGE o 0 0 o eD e O o C o0 o d 210 0 0 0 0cp 0 o O 0 209 0 210 � Rm HARMONY ROAD w HP CAMPUS (AVAGO) 0 ]Da 400 am SCALEINFEET .t 9 City of Fort Collins. Colorado UTILITY PLAN APPROVAL THESE PUNS HAVE BEEN REVIEWED BY THE LOCAL ENTITY FOR CONCEPT ONLY. THE APPROVED: REVIEW DOES NOT IMPLY RESPONSIBILITY BY City Engineer Date THE REVIEWING DEPARTMENT, THE LOCAL CHECKED BY: ENTITY ENGINEER. OR THE LOCAL ENTITY FOR WPter k Woete.oter U011ty Dale ACCURACY AND CORRECTNESS OF THE CALCULATIONS. FURTHERMORE. THE REVIEW CHECKED BY: DOES NOT IMPLY THAT QUANTITIES OF ITEMS Stor—ter Utility Date ON THE PLANS ARE THE FINAL QUANTITIES CHECKED BY: REQUIRED. THE REVIEW SHALL NOT BE Par" 3 Recreation Dota CONSTRUED IN ANY REASON AS ACCEPTANCE OF RNANCX RESPONSIBILITY BY THE LOCAL CHECKED BY: iraRlc Engineer Dcte ENTITY FOR ADDITIONAL QUANTITIES OF ITEMS SHOWN THAT MAY BE REQUIRED DURWG THE CHECKED BY: CONSTRUCTION PHASE. Wte 100% PLANS NOT FOR CONSTRUCTION Jaws M7 P.w, Nv.a..: 107010251 i� rM Mc — Dn. nww DTaAiI19 Nay G-153 ROYWM Sheet 0 25 Of 137 ModSWMM HYDROLOGY FOR SWMM 5.0 INPUT ModSWMM INPUT frv-100-ult-p.in 2 1 1 2 3 4 WATERSHED 0 FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRv by Stantec, Jan 2007 999 000 1.0 1 0.0 1 , 24 5.0 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.67 1 100 100 2881 12.3 32.00.0390.0160.2500.1000.300 0.51 0.50 0.0018 1 105 105 641 3.4 10.00.0230.0160.2500.1000.300 0.51 0.50 0.0018 1 110 110 2758 17.6 90.00.0300.0160.2500.1000.300 0.51 0.50 0.0018 1 115 115 3722 18.8 13.50.0860.0160.2500.1000.300 0.51 0.50 0.0018 1 120 120 4665 36.2 86.50.0160.0160.2500.1000.300 0.51 0.50 0.0018 1 125 125 3494 36.5 68.80.0230.0160.2500.1000.300 0.51 0.50 0.0018 1 130 129 8604 39.7 78.00.0310.0160.2500.1000.300 0.51 0.50 0.0018 1 135 135 4127 21.6 13.30.0290.0160.2500.1000.300 0.51 0.50 0.0018 1 140 140 8223 58.9 24.80.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 145 145 4915 38.7 12.00.0160.0160.2500.1000.300 0.51 0.50 0.0018 1 150 10 3026 19.8 6.80.0510.0160.2500.1000.300 0.51 0.50 0.0018 1 155 115 9801 17.1 70.00.0130.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Paragon, Basin 205 (Previously LSI Logic) 1 205 205 2497 17.2 82.00.0160.0160.2500.1000.300 0.51 0.50 0.0018 ------------------------------------------------------------------------- Front Range village, Basins 206 - 210 1 206 206 7957 54.8 81.20.0170 M60.2500.1000.300 0.51 0.50 0.0018 1 207 207 1812 4.0 81.60.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 208 208 5467 17.9 89.50.0200.0160.2500.1000.300 0.51 0.50 0.0018 1 209 209 2960 18.1 88.70.0150.0160.2500.1000.300 0.51 0.50 0.0018 1 210 210 2654 3.9 86.60.0420.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * English Ranch, Basins 215 - 240 1 215 215 9265 41.9 38.50.0070.0160.2500.1000.300 0.51 0.50 0.0018 1 220 215 4630 16.9 38.50.0120.0160.2500.1000.300 0.51 0.50 0.0018 1 225 225 5678 21.9 38.50.0240.0160.2500.1000.300 0.51 0.50 0.0018 1 230 230 5639 18.9 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 235 235 5949 29.5 38.50.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 240 240 5007 32.3 41.50.0120.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Pads at Harmony Road, Basins 243 - 245 1 243 243 3359 5.5 92.70.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 244 244 1098 2.5 54.80.0170.0160.2500.1000.300 0.51 0.50• 0.0018 1 245 245 1245 2.8 63.20.0130.0160.2500.1000.300 0.51 0.50 0.0018 ------------------------------------------------------------------------- * Front Range village, Basin 250 1 250 250 1654 8.5 79.80.0180.0160.2500.1000.300 0.51 0.50 0.0018 ------------------------------------------------------------------------- * Future Development north of FRv, Basins 296, 297 1 296 296 2703 12.9 90.00.0100.0160.2500.1000.300 0.51 0.50 0.0018 1 297 297 4199 28.9 90.00.0070.0160.2500.1000.300 0.51 0.50 0.0018 ------------------------------------------------------------------------- Harmony Trailer Park west of Front Range village, Basins 300-302, 305 1 300 300 3357 23.1 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 301 301 2977 20.5 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 302 302 1992 11.3 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 305 305 7663 24.1 38.50.0150.0160.2500.1000.300 0.51 0.50 0.0018 =------------------------------------------------------------------------- 1 310 31012018 84.7 37.00.0050.0160.2500.1000.300 0.51 0.50 0.0018 1 315 315 9023 60.9 38.50.0060.0160.2500.1000.300 0.51 0.50 0.0018 1 320 320 5102 29.4 38.50.0210.0160.2500.1000.300 0.51 0.50 0.0018 1 325 325 2084 14.4 40.00.0210.0160.2500.1000.300 0.51 0.50 0.0018 1 330 330 2038 15.3 46.80.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 335 334 3567 30.3 27.80.0150.0160.2500.1000.300 0.51 0.50 0.0018 Page 1 frv-100-ult-p.in 1 340 340 4623 34.6 30.00.0270.0160.2500.1000.300 0.51 0.50 0.0018 1 345 345 5109 44.8 27.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 350 345 6639 34.9 90.00.0110.0160.2500.1000.300 0.51 0.50 0.0018 1 355 355 2940 27.4 48.00.0100.0160.2500.1000.300 0.51 0.50 0.0018 1 400 400 6703 51.7 71.50.0240.0160.2500.1000.300 0.51 0.50 0.0018 1 405 405 7493 41.8 60.80.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 410 410 7013 58.6 48.50.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 415 415 5458 42.1 40.00.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 420 421 7066109.0 11.60.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 425 425 5627 31.0 38.50.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 430 430 2979 22.5 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 435 435 3776 31.9 10.00.0110.0160.2500.1000.300 0.51 0.50 0.0018 1 440 440 2603 9.5 38.50.0110.0160.2500.1000.300 0.51 0.50 0.0018 0 0 0 430 440 0 5 1.25 600 0.0130 0 0 0.013 1.25 1 513 0.0120 20 20 0.020 5.00 0 440 437 0 3 0 0 0.0000 0 0 0.000 0.00 436 437 426 3 3 0 0 0.0000 0 0 0.000 0.00 0.00 0.0 4 0.0 10000 9996.0 0 426 425 0 2 1.25 1339 0.0100 0 0 0.013 1.25 0 436 435 0 1 15 1889 0.0080 8 8 0.035 5.00 0 425 423 0 3 0 0 0.0000 0 0 0.000 0.00 0 435 434 0 3 0 0 0.0000 0 0 0.000 0.00 0 423 415 0 5 1.5 1457 0.0050 0 0 0.013 1.50 1 1457 0.0050 20 20 0.020 5.00 0 434 415 0 4 0.5 768 0.0050 12 12 0.016 0.50 10 768 0.0050 20 20 0.020 5.00 0 415 400 0 3 0 0 0.0000 0 0 0.000 0.00 0 410 400 0 5 2.5 1301 0.0090 0 0 0.013 2.50 1 1380 0.0070 20 20 0.020 5.00 0 405 400 0 5 3 1065 0.0090 0 0 0.013 3.00 80 1065 0.0090 1 1 0.005 5.00 0 400 401 0 3 0 0 0.0000 0 0 0.000 0.00 0 401 340 11 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.001 8.0 4.85 12.7 8.97 16.7 9.03 23.0 10.29 57.9 11.59 70.8 16.67 80.7 31.34 98.0 52.86 115.4 95.93 705.0 0 355 340 0 4 0.25 608 0.0050 12 0 0.016 0.50 5 608 0.0050 20 0 0.020 5.00 0 340 342 0 3 0 0 0.0000 0 0 0.000 0.00 0 342 341 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.20 2.9 5.68 23.5 14.66 53.0 28.14 73.1 47.36 88.5 72.54 103.6 95.53 111.0 0 341 325 0 5 3.5 1200 0.0050 0 0 0.013 3.50 1 1200 0.0050 20 20 0.020 5.00 0 325 324 0 3 0 0 0.0000 0 0 0.000 0.00 0 324 314 0 5 3.5 1242 0.0030 0 0 0.013 3.50 1 1242 0.0030 20 20 0.020 5.00 0 421 347 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.16 2.1 8.27 10.5 34.02 17.4 43.63 18.7 0 347 314 0 2 1.5 1139 0.0150 0 0 0.013 1.50 0 345 344 0 3 0 0 0.0000 0 0 0.000 0.00 0 344 314 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.04 1.9 2.79 16.8 10.12 27.6 21.56 35.0 0 314 313 0 3 0 0 0.0000 0 0 0.000 0.00 0 313 312 0 5 2 409 0.0090 0 0 0.013 2.00 Page 2 frv-100-ult-p.in 10 409 0.0350 5 5 0.035 6.00 0 330 312 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.001 4.0 0.97 6.6 1.98 8.0 3.04 104.0 0 312 311 0 3 0 0 0.0000 0 0 0.000 0.00 0 311 310 0 5 2 1566 0.0090 0 0 0.013 2.00 10 1566 0.0090 5 5 0.035 6.00 0 334 333 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.012 5.6 0.32 21.9 6.45 34.0 16.40 100.0 0 333 320 0 5 2 1064 0.0090 0 0 0.013 2.00 5 1075 0.0090 3 3 0.035 6.00 0 320 319 0 3 0 0 0.0000 0 0 0.000 0.00 0 319 318 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.003 0.4 0.52 3.3 2.06 6.2 4.21 9.2 5.92 11.0 6.27 17.5 7.07 109.6 7.93 260.7 0 318 305 0 5 1.25 1320 0.0050 0 0 0.013 1.25 1 1384 0.0040 20 20 0.020 5.00 0 305 304 0 3 0 0 0.0000 0 0 0.000 0.00 0 304 303 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.027 13.6 0.59 28.3 2.19 37.7 6.49 46 7.13 100 7.77 200 8.24 300 0 303 310 0 5 2 671 0.0060 0 0 0.013 2.00 10 671 0.0060 5 5 0.035 6.00 0 310 309 0 3 0 0 0.0000 0 0 0.000 0.00 0 309 308 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.004 0.7 1.40 17.6 7.92 25.5 20.29 26.9 25.02 27.4 30.20 273 242 308 307 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 27.4 0 273 245.6 0 307 306 0 2 2.5 1351 0.0060 0 0 0.013 2.50 0 315 306 10 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.287 10.4 0.97 15.0 3.07 22.9 5.50 29.0 8.27 33.2 11.42 35.7 13.14 36.2 13.61 106 13.97 206.0 0 306 238 0 3 0 0 0.0000 0 0 0.000 0.00 *------------------------------------------------------------------------- * Harmony Trailer Park routing 0 300 291 0 3 0 0 0.0000 0 0 0.000 0.00 0 291 321 0 2 4 660 0.0050 0 0 0.013 4.00 0 301 321 0 3 0 0 0.0000 0 0 0.000 0.00 0 321 292 0 3 0 0 0.0000 0 0 0.000 0.00 0 292 360 0 2 4 500 0.0050 0 0 0.013 4.00 0 302 322 0 3 0 0 0.0000 0 0 0.000 0.00 0 322 299 0 3 0 0 0.0000 0 0 0.000 0.00 0 299 296 0 2 6.0 270 0.0100 0 0 0.013 6.00 ------------------------------------------------------------------------- * Pads at Harmony Road routing 0 245 247 0 3 0 0 0.0000 0 0 0.000 0.00 0 247 294 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.01 2.1 0.06 3.4 0.13 4.4 0.25 5.1 0.37 10.0 0 244 246 0 3 0 0 0.0000 0 0 0.000 0.00 0 246 290 7 2 0.1 1 0.0100 0 0 0.010 0.10 Page 3 frv-100-ult-p.in 0.00 0.0 0.01 1.9 0.02 3.1 0.06 3.9 0.12 4.6 0.21 5.2 0.30 10.0 0 290 243 0 2 2 600 0.0100 0 0 0.013 2.00 0 294 243 0 2 2 834 0.0100 0 0 0.013 2.00 0 243 295 0 3 0 0 0.0000 0 0 0.000 0.00 0 295 206 0 2 4 1800 0.0100 0 0 0.013 4.00 0 206 360 0 3 0 0 0.0000 0 0 0.000 0.00 *------------------------------------------------------------------------- * undeveloped site north of FRv routing 0 296 293 0 3 0 0 0.0000 0 0 0.000 0.00 0 293 297 0 1 4 1800 0.0050 4 4 0.035 4.00 0 297 298 0 3 0 0 0.0000 0 0 0.000 0.00 * Future detention pond 298 by others 0 298 212 3 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 19.00 19.6 22.50 24.2 *------------------------------------------------------------------------- * Front Range village onsite routing 0 360 286 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond D 0 286 276 4 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 6.01 0.2 12.01 0.4 18.01 1.1 0 276 270 0 1 1 2160 0.0100 4 4 0.035 4.00 0 207 287 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond c 0 287 277 4 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.61 0.3 1.21 0.6 1.81 1.1 0 277 270 0 1 1 1730 0.0100 4 4 0.035 4.00 0 208 288 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond B 0 288 278 4 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 1.67 2.1 3.33 9.8 5.01 13.8 0 278 270 0 1 1 1150 0.0100 4 4 0.035 4.00 0 209 289 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond A 0 289 279 4 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 1.51 4.1 3.01 8.1 4.51 10.1 0 279 270 0 1 1 250 0.0100 4 4 0.035 4.00 *------------------------------------------------------------------------- * AMD (Previously L5I Logic) pond routing through FRv onsite Basins 210 and 250 0 205 216 0 3 0 0 0.0000 0 0 0.000 0.00 * AMD Pond 0 216 204 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.35 0.0 1.30 0.0 1.38 11.4 1.65 21.9 3.12 40.3 7.04 66.0 8.48 200.0 0 204 249 0 2 4 50 0.0100 0 0 0.013 4.00 0 250 249 0 3 0 0 0.0000 0 0 0.000 0.00 0 249 248 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond F 0 248 251 4 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 1.01 1.21 3.01 4.1 6.01 6.7 0 251 200 0 2 4 50 0.0100 0 0 0.013 4.00 0 210 200 0 3 0 0 0.0000 0 0 0.000 0.00 0 200 201 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond E 0 201 202 4 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 1.01 1.21 3.01 4.1 6.01 6.7 Page 4 frv-100-ult-p.in 0 202 270 0 4 15 902 0.0020 4 8 0.035 6.00 87 902 0.0020 20 20 0.020 2.00 ------------------------------------------------------------------------- 0 270 212 0 3 0 0 0.0000 0 0 0.000 0.00 0 242 240 0 4 0.5 1779 0.0070 12 12 0.016 0.50 10 1779 0.0070 20 20 0.020 5.00 0 240 235 0 3 0 0 0.0000 0 0 0.000 0.00 0 238 237 0 5 3 787 0.0060 0 0 0.013 3.00 1 787 0.0060 20 20 0.020 5.00 0 237 236 0 3 0 0 0.0000 0 0 0.000 0.00 0 236 232 0 5 3 740 0.0050 0 0 0.013 3.00 1 740 0.0050 20 20 0.020 5.00 0 235 234 0 3 0 0 0.0000 0 0 0.000 0.00 0 234 233 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.44 3.1 2.350 4.2 2.81 4.6 4.69 5.1 6.39 100.6 7.13 203.7 8.21 401.9 230 233 232 5 3 0 0 0.0000 0 0 0.000 0.00 0 0 5 0 101 95 204 198 402 396 0 232 231 0 3 0 0 0.0000 0 0 0.000 0.00 0 231 227 0 5 3 311 0.0030 0 0 0.013 3.00 1 311 0.0030 20 20 0.020 5.00 0 230 229 0 3 0 0 0.0000 0 0 0.000 0.00 0 229 228 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.07 2.0 1.12 2.9 3.46 3.5 4.60 200.8 5.29 401 225 228 227 4 3 0 0 0.0000 0 0 0.000 0.00 0 0 4 0 201 197 401 397 0 227 226 0 3 0 0 0.0000 0 0 0.000 0.00 0 226 222 0 5 3 477 0.0060 0 0 0.013 3.00 1 477 0.0060 20 20 0.020 5.00 0 225 224 0 3 0 0 0.0000 0 0 0.000 0.00 0 224 223 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.002 1.0 0.51 2.7 1.99 3.6 3.90 4.3 4.46 4.5 4.85 200 5.10 400 155 223 222 4 3 0 0 0.0000 0 0 0.000 0.00 0 0 4 0 200 195 400 395 0 222 221 0 3 0 0 0.0000 0 0 0.000 0.00 0 221 152 0 5 3 1569 0.0240 0 0 0.013 3.00 1 1569 0.0140 20 20 0.020 8.00 0 152 0 3 0 0 0.0000 0 0 0.000 0.00 0 215 214 0 3 0 0 0.0000 0 0 0.000 0.00 0 214 203 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.08 12.6 0.411 14.9 4.00 21.8 9.62 26.9 12.17 28.7 13.04 149 13.17 149.4 14.04 149.9 297 203 213 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 29.5 0 150 120 0 213 212 0 5 3 610 0.0030 0 0 0.013 3.00 1 610 0.0030 20 20 0.020 5.00 0 212 211 0 3 0 0 0.0000 0 0 0.000 0.00 0 211 125 0 4 5 1670 0.0060 4 4 0.035 6.00 53 1670 0.0060 4 40 0.020 3.00 0 125 111 0 3 0 0 0.0000 0 0 0.000 0.00 0 111 110 0 4 10 1400 0;0040 0 0 0.013 4.00 Page 5 frv-100-ult-p.in 10 1400 0.0040 20 20 0.020 3.50 0 110 105 0 3 0 0 0.0000 0 0 0.000 0.00 0 105 104 0 3 0 0 0.0000 0 0 0.000 0.00 100 104 103 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 20 0 2000 1980 0 103 120 0 2 2.8 617 0.0050 0.00 0.00 0.013 2.80 0 129 120 0 1 130 956 0.0080 60.00 6.00 0.030 8.00 0 120 100 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 100 101 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 101 99 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 1.54 4.0 6.085 13.9 11.93 22.0 19.08 377.8 27.46 1130 29.80 1400 0 154 221 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 150 146 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 146 145 0 4 31 1384 0.0020 1.50 1.50 0.035 6.00 62 1384 0.0020 0.00 15.00 0.050 12.00 0 145 141 0 3 0 0 0.0000 0.000 0.000 0.000 0.00 0 141 139 0 4 31 1193 0.0020 1.50 1.50 0.035 6.00 62 1193 0.0020 0.00 15.00 0.050 12.00 0 140 139 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.01 1.0 0.39 7.0 1.65 8.9 3.96 10.5 5.45 11.2 7.07 40.0 7.99 100.0 0 139 136 0 3 0 0 0.0000 0.000 0.000 0.000 0.00 0 136 135 0 4 31 910 0.0020 1.50 1.50 0.035 6.00 62 910 0.0020 0.00 15.00 0.050 12.00 0 135 116 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 116 115 0 4 31 2552 0.0020 1.50 1.50 0.035 6.00 62 2552 0.0020 0.00 15.00 0.050 12.00 95 99 115 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 25 0 1012 987 0 115 90 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 95 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 -1 11 150 2 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 300 100 300 0 10 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 155 154 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 91 90 80 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 444 0 6000 5556 0 80 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 91 95 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 15 5 200 205 206 207 208 209 210 244 245 249 250 300 301 302 360 ENDPROGRAM Page 6 ModSWMM OUTPUT Stantec ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 1 Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 ri NUMBER OF TIME STEPS 999 INTEGRATION TIME INTERVAL (MINUTES) 1.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 9.95 1.22 1.06 1.00 .95 .91 .87 .84 .73 .71 .69 .67 4.12 2.48 1.46 .81 .78 .75 V:\52870f\active\187010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out 2 Prini Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 100 100 2881.0 12.3 32.0 .0390 .016 .250 .100 .300 .51 .50 .00180 1 105 105 641.0 3.4 10.0 .0230 .016 .250 .100 .300 .51 .50 .00180 1 110 110 2758.0 17.6 90.0 .0300 .016 .250 .100 .300 .51 .50 .00180 1 115 115 3722.0 18.8 13.5 .0860 .016 .250 .100 .300 .51 .50 .00180 1 120 120 4665.0 36.2 86.5 .0160 .016 .250 .100 .300 .51 .50 .00180 1 125 125 3494.0 36.5 68.8 .0230 .016 .250 .100 .300 .51 .50 .00180 1 130 129 8604.0 39.7 78.0 .0310 .016 .250 .100 .300 .51 .50 .00180 1 135 135 4127.0 21.6 13.3 .0290 .016 .250 .100 .300 .51 .50 .00180 1 140 140 8223.0 58.9 24.8 .0090 .016 .250 .100 .300 .51 .50 .00180 1 145 145 4915.0 38.7 12.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 150 10 3026.0 19.8 6.8 .0510 .016 .250 .100 .300 .51 .50 .00180 1 155 115 9801.0 17.1 70.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 205 205 2497.0 17.2 82.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 206 206 7957.0 54.8 81.2 .0170 .016 .250 .100 .300 .51 .50 .00180 1 207 207 1812.0 4.0 81.6 .0130 .016 .250 .100 .300 .51 .50 .00180 1 208 208 5467.0 17.9 89.5 .0200 .016 .250 .100 .300 .51 .50 .00180 1 209 209 2960.0 18.1 88.7 .0150 .016 .250 .100 .300 .51 .50 .00180 1 210 210 2654.0 3.9 86.6 .0420 .016 .250 .100 .300 .51 .50 .00180 1 215 215 9265.0 41.9 38.5 .0070 .016 .250 .100 .300 .51 .50 .00180 1 220 215 4630.0 16.9 38.5 .0120 .016 .250 .100 .300 .51 .50 .00180 1 225 225 5678.0 21.9 38.5 .0240 .016 .250 .100 .300 .51 .50 .00180 1 230 230 5639.0 18.9 38.5 .0180 .016 .250 .100 .300 .51 .50 .00180 1 235 235 5949.0 29.5 38.5 .0130 .016 .250 .100 .300 .51 .50 .00180 1 240 240 5007.0 32.3 41.5 .0120 .016 .250 .100 .300 .51 .50 .00180 1 243 243 3359.0 5.5 92.7 .0080 .016 .250 .100 .300 .51 .50 .00180 1 244 244 1098.0 2.5 54.8 .0170 .016 .250 .100 .300 .51 .60 .00180 1 245 245 1245.0 2.8 63.2 .0130 .016 .250 .100 .300 .51 .50 .00180 1 250 250 1654.0 8.5 79.8 .0180 .016 .250 .100 .300 .51 .50 .00180 1 296 296 2703.0 12.9 90.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 297 297 4199.0 28.9 90.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 300 300 3357.0 23.1 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 301 301 2977.0 20.5 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 302 302 1992.0 11.3 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 305 305 7663.0 24.1 38.5 .0150 .016 .250 .100 .300 .51 .50 .00180 1 310 310 12018.0 84.7 37.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 315 315 9023.0 60.9 38.5 .0060 .016 .250 .100 .300 .51 .50 .00180 1 320 320 5102.0 29.4 38.5 .0210 .016 .250 .100 .300 .51 .50 .00180 1 325 325 2084.0 14.4 40.0 .0210 .016 .250 .100 .300 .51 .50 .00180 1 330 330 2038.0 15.3 46.8 .0130 .016 .250 .100 .300 .51 .50 .00180 1 335 334 3567.0 30.3 27.8 .0150 .016 .250 .100 .300 .51 .50 .00180 1 V:\52870t\active\l87010251\Reports\Drainage\ModSVVMM\frv-100-ult-p.out 3 Print 340 340 4623.0 34.6 1 345 345 5109.0 44.8 1 350 345 6639.0 34.9 1 355 355 2940.0 27.4 1 400 400 6703.0 51.7 1 405 405 7493.0 41.E 1 410 410 7013.0 58.6 1 415 415 5458.0 42.1 1 420 421 7066.0 109.0 1 425 425 5627.0 31.0 1 430 430 2979.0 22.5 1 435 435 3776.0 31.9 1 440 440 2603.0 9.5 1 TOTAL NUMBER OF SUBCATCHMENTS, TOTAL TRIBUTARY AREA (ACRES), Stantec 30.0 .0270 .016 .250 .100 .300 .51 .50 .00180 27.0 .0080 .016 .250 .100 .300 .51 .50 .00180 90.0 .0110 .016 .250 .100 .300 .51 .50 .00180 48.0 .0100 .016 .250 .100 .300 .51 .50 .00180 71.5 .0240 .016 .250 .100 .300 .51 .50 .00180 60.8 .0180 .016 .250 .100 .300 .51 .50 .00180 48.5 .0090 .016 .250 .100 .300 .51 .50 .00180 40.0 .0090 .016 .250 .100 .300 .51 ' .50 .00180 11.6 .0080 .016 .250 .100 .300 .51 .50 .00180 38.5 .0090 .016 .250 .100 .300 .51 .50 .00180 38.5 .0180 .016 .250 .100 .300 .51 .50 .00180 10.0 .0110 .016 .250 .100 .300 .51 .50 .00180 38.5 .0110 .016 .250 .100 .300 .51 .50 .00180 53 1512.80 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 4 Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 1OO-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 1512.800 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .742 TOTAL WATERSHED OUTFLOW (INCHES) 2.867 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .060 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 5 Pdni Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N 430 440 0 5 PIPE 1.3 600. .0130 .0 .0 .013 0 OVERFLOW 1.0 513. .0152 20.0 20.0 .020 440 437 0 3 .0 0. .0010 .0 .0 .001 0 437 426 3 3 .0 0. .0010 .0 .0 .001 436 DIVERSION TO GUTTER NUMBER 436 TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 4.0 .0 10000.0 9996.0 426 425 0 2 PIPE 1.3 1339. .0100 .0 .0 .013 0 436 435 0 1 CHANNEL 15.0 1889. .0080 8.0 8.0 .035 0 425 423 0 3 .0 0. .0010 .0 .0 .001 0 435 434 0 3 .0 0. .0010 .0 .0 .001 0 423 415 0 5 PIPE 1.5 1457. .0050 . .0 .0 .013 0 OVERFLOW 1.0 1457. .0050 20.0 20.0 .020 434 415 0 4 CHANNEL .5 768. .0050 12.0 12.0 .016 0 OVERFLOW 10.0 768. .0050 20.0 20.0 .020 415 400 0 3 .0 0. .0010 .0 .0 .001 0 410 400 0 5 PIPE 2.5 1301. .0090 .0 .0 .013 0 OVERFLOW 1.0 1380. .0085 20.0 20.0 .020 405 400 0 5 PIPE 3.0 1065. .0090 .0 .0 .013 0 OVERFLOW 80.0 1065. .0090 1.0 1.0 .005 400 401 0 3 .0 0. .0010 .0 .0 .001 0 401 340 11 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 8.0 4.8 12.7 9.0 16.7 9.0 23.0 57.9 11.6 70.8 16.7 80.7 31.3 98.0 52.9 115.4 95.9 705.0 355 340 0 4 CHANNEL .3 608. .0050 12.0 .0 .016 0 OVERFLOW 5.0 608. .0050 20.0 .0 .020 340 342 0 3 .0 0. .0010 .0 .0 .001 0 342 341 8 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 2.9 5.7 23.5 14.7 53.0 28.1 73.1 88.5 72.5 103.6 95.5 111.0 341 325 0 5 PIPE 3.5 1200. .0050 .0 .0 .013 0 OVERFLOW 1.0 1200. .0050 20.0 20.0 .020 325 324 0 3 .0 0. .0010 .0 .0 .001 0 324 .314 0 5 PIPE 3.5 1242. .0030 .0 .0 .013 0 OVERFLOW 1.0 1242. .0030 20.0 20.0 .020 421 347 5 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .2 2.1 8.3 10.5 34.0 17.4 43.6 18.7 347 314 0 2 PIPE 1.5 1139. .0150 .0 .0 .013 0 345 344 0 3 .0 0. .0010 .0 .0 .001 0 344 314 5 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.9 2.8 16.8 10.1 27.6 21.6 35.0 314 313 0 3 .0 0. .0010 .0 .0 .001 0 313 312 0 5 PIPE 2.0 409. .0090 .0 .0 .013 0 OVERFLOW 10.0 409. .0090 5.0 5.0 .035 330 312 5 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW V:\52870f\active\l 87010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out DEPTH (FT) 1.25 5.00 10.00 10.00 1.25 5.00 10.00 10.00 1.50 5.00 .50 5.00 10.00 2.50 5.00 3.00 5.00 10.00 .10 10.3 .50 5.00 10.00 .10 47.4 3.50 5.00 10.00 3.50 5.00 .10 1.50 10.00 .10 10.00 2.00 6.00 .10 ♦^ 6 Print Stantec 312 0 311 0 334 0 333 0 320 0 319 0 11.0 318 0 305 0 304 0 100.0 303 0 310 0 309 0 27.4 308 242 307 0 315 0 33.2 306 0 300 0 291 0 301 0 321 0 292 0 302 0 322 0 299 0 245 0 247 0 10.0 244 0 246 0 0 .0 .0 4.0 1.0 6.6 2.0 8.0 3.0 104.0 311 0 3 .0 0. .0010 .0 .0 .001 310 0 5 PIPE 2.0 1566. .0090 .0 .0 .013 OVERFLOW 10.0 1566. .0090 5.0 5.0 .035 333 5 2 PIPE .1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 5.6 3 21.9 6.5 34.0 16.4 100.0 320 0 5 PIPE 2.0 1064. .0090 .0 .0 .013 OVERFLOW 5.0 1075. .0089 3.0 3.0 .035 319 0 3 .0 0. .0010 .0 .0 .001 318 9 2 PIPE .1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .4 .5 3.3 2.1 6.2 4.2 9.2 6.3 17.5 7.1 109.6 7.9 260.7 305 0 5 PIPE 1.3 1320. .0050 .0 .0 .013 OVERFLOW 1.0 1384. .0048 20.0 20.0 .020 304 0 3 .0 0. .0010 .0 .0 .001 303 8 2 PIPE .1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 13.6 .6 28.3 2.2 37.7 6.5 46.0 7.8 200.0 8.2 300.0 310 0 5 PIPE 2.0 671. .0060 .0 .0 .013 OVERFLOW 10.0 671. .0060 5.0 5.0 .035 309 0 3 .0 0. .0010 .0 .0 .001 308 7 2 PIPE .1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .7 1.4 17.6 7.9 25.5 20.3 26.9 30.2 273.0 307 3 3 .0 0. .0010 .0 .0 .001 DIVERSION TO GUTTER NUMBER 242 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 27.4 .0 273.0 245.6 306 0 2 PIPE 2.5 1351. .0060 .0 306 10 2 PIPE .1 1. .0100 .0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 10.4 1.0 15.0 3.1 22.9 11.4 35.7 13.1 36.2 13.6 106.0 14.0 206.0 238 0 3 .0 0. .0010 .0 291 0 3 .0 0. .0010 .0 321 0 2 PIPE 4.0 660. .0050 .0 321 0 3 .0 0. .0010 .0 292 0 3 .0 0. .0010 .0 360 0 2 PIPE 4.0 500. .0050 .0 322 0 3 .0 0. .0010 .0 299 0 3 .0 0. .0010 .0 296 0 2 PIPE 6.0 270. .0100 .0 247 0 3 .0 0. .0010 .0 294 6 2 PIPE .1 1. .0100 .0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.1 .1 3.4 .1 4.4 246 0 3 .0 0. .0010 .0 290 7 2 PIPE .1 1. .0100 .0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.9 .0 3.1 .1 3.9 5.2 .3 10.0 290 243 0 2 PIPE 2.0 600. .0100 .0 0 V:\52870f\active\l87010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out .0 .013 .0 .010 5.5 29.0 .0 .001 .0 .001 .0 .013 .0 .001 .0 .001 .0 .013 .0 .001 .0 .001 .0 .013 .0 .001 .0 .010 10.00 2.00 6.00 .10 2.00 6.00 10.00 .10 5.9 1.25 5.00 10.00 .10 7.1 2.00 6.00 10.00 .10 25.0 10.00 2.50 .10 8.3 10.00 10.00 4.00 10.00 10.00 4.00 10.00 10.00 6.00 10.00 .10 .3 5.1 .4 0 .001 10.00 0 .010 .10 1 4.6 .2 0 .013 2.00 7 Prin1 Stantec 294 243 0 2 PIPE 2.0 834. .0100 .0 .0 .013 2.00 0 243 295 0 3 .0 0. .0010 .0 .0 .001 10.00 0 295 206 0 2 PIPE 4.0 1800. .0100 .0 .0 .013 4.00 0 206 360 0 3 .0 0. .0010 .0 .0 .001 10.00 0 296 293 0 3 .0 0. .0010 .0 .0 .001 10.00 0 293 297 0 1 CHANNEL 4.0 1800. .0050 4.0 4.0 .035 4.00 0 297 298 0 3 .0 0. .0010 .0 .0 .001 10.00 0 298 212 3 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 19.0 19.6 22.5 24.2 360 286 0 3 .0 0. .0010 .0 .0 .001 10.00 0 286 276 4 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 6.0 .2 12.0 4 18.0 1.1 276 270 0 1 CHANNEL 1.0 2160. .0100 4.0 4.0 .035 4.00 0 207 287 0 3 .0 0. .0010 .0 .0 .001 10.00 0 287 277 4 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 6 .3 1.2 6 1.8 1.1 277 270 0 1 CHANNEL 1.0 1730. .0100 4.0 4.0 .035 4.00 0 208 288 0 3 .0 0. .0010 .0 .0 .001 10.00 0 288 278 4 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.7 2.1 3.3 9.8 5.0 13.8 278 270 0 1 CHANNEL 1.0 1150. .0100 4.0 '4.0 .035 4.00 0 209 289 0 3 .0 0. .0010 .0 .0 .001 10.00 0 289 279 4 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.5 4.1 3.0 8.1 4.5 10.1 279 270 0 1 CHANNEL 1.0 250. .0100 4.0 4.0 .035 4.00 0 205 216 0 3 .0 0. .0010 .0 .0 .001 10.00 0 216 204 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 .0 1.3 .0 1.4 11.4 1.6 21.9 3.1 40.3 7.0 66.0 8.5 200.0 204 249 0 2 PIPE 4.0 50. .0100 .0 .0 .013 4.00 0 250 249 0 3 .0 0. .0010 .0 .0 .001 10.00 0 249 248 0 3 .0 0. .0010 .0 .0 .001 10.00 0 248 251 4 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.0 1.2 3.0 4.1 6.0 6.7 251 200 0 2 PIPE 4.0 50. .0100 .0 .0 .013 4.00 0 210 200 0 3 .0 0. .0010 .0 .0 .001 10.00 0 200 201 0 3 .0 0. .0010 .0 .0 .001 10.00 0 201 202 4 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 1.0 1.2 3.0 4.1 6.0 6.7 202 270 0 4 CHANNEL 15.0 902. .0020 4.0 8.0 .035 6.00 0 OVERFLOW 87.0 902. .0020 20.0 20.0 .020 2.00 270 212 0 3 .0 0. .0010 .0 .0 .001 10.00 0 242 240 0 4 CHANNEL .5 1779. .0070 12.0 12.0 .016 .50 0 OVERFLOW 10.0 1779. .0070 20.0 20.0 .020 5.00 240 235 0 3 .0 0. .0010 .0 .0 .001 10.00 0 238 237 0 5 PIPE 3.0 787. .0060 .0 .0 .013 3.00 0 V:\52870f\active\l 87010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out 8 Print Stanteo OVERFLOW 1.0 787. .0060 20.0 20.0 .020 5.00 237 236 0 3 .0 0. .0010 .0 .0 .001 10.00 0 236 232 0 5 PIPE 3.0 740. .0050 .0 .0 .013 3.00 0 OVERFLOW 1.0 740. .0050 20.0 20.0 .020 5.00 235 234 0 3 .0 0. .0010 .0 .0 .001 10.00 0 234 233 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 3.1 2.4 4.2 2.8 4.6 4.7 5.1 6.4 100.6 7.1 203.7 8.2 401.9 233 232 5 3 .0 0. .0010 .0 .0 .001 10.00 230 DIVERSION TO GUTTER NUMBER 230 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 5.0 .0 101.0 95.0 204.0 198.0 402.0 396.0 232 231 0 3 .0 0. .0010 .0 .0 .001 10.00 0 231 227 0 5 PIPE 3.0 311. .0030 .0 .0 .013 3.00 0 OVERFLOW 1.0 311. .0030 20.0 20.0 .020 5.00 230 229 0 3 .0 0. .0010 .0 .0 .001 10.00 0 229 228 6 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 1.1 2.9 3.5 3.5 4.6 200.8 5.3 401.0 228 227 4 3 .0 0. .0010 .0 .0 .001 10.00 225 DIVERSION TO GUTTER NUMBER 225 - TOTAL 0 VS DIVERTED Q IN CFS 0 .0 4.0 .0 201.0 197.0 401.0 397.0 227 226 0 3 .0 0. .0010 .0 .0 .001 10.00 0 226 222 0 5 PIPE 3.0 477. .0060 .0 .0 .013 3.00 0 OVERFLOW 1.0 477. .0060 20.0 20.0 .020 5.00 225 224 0 3 .0 0. .0010 .0 .0 .001 10.00 0 224 223 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .5 2.7 2.0 3.6 3.9 4.3 4.5 4.5 4.8 200.0 5.1 400.0 223 222 4 3 .0 0. .0010 .0 .0 .001 10.00 155 DIVERSION TO GUTTER NUMBER 155 - TOTAL Q VS DIVERTED Q IN CFS .0 .0 4.0 .0 200.0 195.0 400.0 395.0 222 221 0 3 .0 0. .0010 .0 .0 .001 10.00 0 221 152 0 5 PIPE 3.0 1569. .0240 .0 .0 .013 3.00 0 OVERFLOW 1.0 1569. .0240 20.0 20.0 .020 8.00 152 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 215 214 0 3 .0 0. .0010 .0 .0 .001 10.00 0 214 203 9 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 12.6 .4 14.9 4.0 21.8 9.6 26.9 12.2 28.7 13.0 149.0 13.2 149.4 14.0 149.9 203 213 3 3 .0 0. .0010 .0 .0 .001 10.00 297 DIVERSION TO GUTTER NUMBER 297 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 29.5 0 150.0 120.0 213 212 0 5 PIPE 3.0 610. .0030 .0 .0 .013 3.00 0 OVERFLOW 1.0 610. .0030 20.0 20.0 .020 5.00 212 211 0 3 .0 0. .0010 .0 .0 .001 10.00 0 211 125 0 4 CHANNEL 5.0 1670. .0060 4.0 4.0 .035 6.00 0 OVERFLOW 53.0 1670. .0060 4.0 40.0 .020 3.00 125 111 0 3 .0 0. .0010 .0 .0 .001 10.00 0 111 110 0 4 CHANNEL 10.0 1400. .0040 .0 .0 .013 4.00 0 OVERFLOW 10.0 1400. .0040 20.0 20.0 .020 3.50 110 105 0 3 .0 0. .0010 .0 .0 .001 10.00 0 105 104 0 3 .0 0. .0010 .0 .0 .001 10.00 0 104 103 3 3 .0 0. .0010 .0 .0 .001 10.00 100 DIVERSION TO GUTTER NUMBER 100 - TOTAL 0 VS DIVERTED 0 IN CFS V:\52870t\active\187010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out 9 Print Stantec 0 .0 20.0 .0 2000.0 1980.0 103 120 0 2 PIPE 2.8 617. .0050 .0 .0 .013 2.80 0 129 120 0 1 CHANNEL 130.0 956. .0080 60.0 6.0 .030 8.00 0 120 100 0 3 .0 0. .0010 .0 .0 .001 10.00 0 100 101 0 3 .0 0. .0010 .0 .0 .001 10.00 0 101 99 7 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.5 4.0 6.1 13.9 11.9 22.0 19.1 377.8 27.5 1130.0 29.8 1400.0 154 221 0 3 .0 0. .0010 .0 .0 .001 10.00 0 150 146 0 3 .0 0. .0010 .0 .0 .001 10.00 0 146 145 0 4 CHANNEL 31.0 1384. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 1384. .0020 .0 15.0 .050 12.00 145 141 0 3 .0 0. .0010 .0 .0 .001 10.00 0 141 139 0 4 CHANNEL 31.0 1193. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 1193. .0020 .0 15.0 .050 12.00 140 139 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .4 7.0 1.6 8.9 4.0 10.5 5.5 11.2 7.1 40.0 8.0 100.0 139 136 0 3 .0 0. .0010 .0 .0 .001 10.00 0 136 135 0 4 CHANNEL 31.0 910. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 910. .0020 .0 15.0 .050 12.00 135 116 0 3 .0 0. .0010 .0 .0 .001 10.00 0 116 115 0 4 CHANNEL 31.0 2552. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 2552. .0020 .0 15.0 .050 12.00 99 115 3 3 .0 0. .0010 .0 .0 .001 10.00 95 DIVERSION TO GUTTER NUMBER 95 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 25.0 .0 1012.0 987.0 115 90 0 3 .0 0. .0010 .0 .0 .001 10.00 0 95 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 11 150 2 3 .0 0. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS 0 300.0 100.0 300.0 10 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 155 154 0 3 .0 0. .0010 .0 .0 .001 10.00 0 90 80 3 3 .0 0. .0010 .0 .0 .001 10.00 91 DIVERSION TO GUTTER NUMBER 91 - TOTAL Q VS DIVERTED 0 IN CFS 0 .0 444.0 .0 6000.0 5556.0 80 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 91 95 0 3 .0 0. .0010 .0 .0 .001 10.00 0 TOTAL NUMBER OF GUTTERS/PIPES, 144 V:\52870f\active\1B7010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 10 Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 101 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 436.4 103 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 348.2 111 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 327.2 116 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119.2 129 0 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0 0 0 0 0 39.7 136 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97.6 140 0 0 0 0 0 0 0 0 0 0 140 0 0 0 0 0 0 0 0 0 58.9 141 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.7 146 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 201 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.6 202 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.6 204 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.2 211 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 290.7 213 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58.8 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58.8 216 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.2 221 222 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 901.5 224 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.9 226 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 879.6 229 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.9 231 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 860.7 234 235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.8 236 237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798.9 238 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798.9 242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 246 244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 247 245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 248 249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 251 248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 276 286 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.2 277 287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.0 278 288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.9 279 289 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.1 286 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.2 287 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.0 288 208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.9 289 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.1 290 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 291 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.1 292 321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43.6 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 11 Print Stantec 293 296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.2 294 247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 295 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.8 298 297 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53.1 299 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.3 303 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.8 304 305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.8 307 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738.0 309 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738.0 311 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 569.5 313 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 554.2 315 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 60.9 318 319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59.7 319 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59.7 324 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 365.5 330 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 15.3 333 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.3 334 0 0 0 0 0 0 0 0 0 0 335 0 0 0 0 0 0 0 0 0 30.3 341 342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351.1 342 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351.1 344 345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79.7 347 421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.0 355 0 0 0 0 0 0 0 0 0 0 355 0 0 0 0 0 0 0 0 0 27.4 401 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 289.1 405 0 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 41.8 410 0 0 0 0 0 0 0 0 0 0 410 0 0 0 0 0 0 0 0 0 58.6 421 0 0 0 0 0 0 0 0 0 0 420 0 0 0 0 0 0 0 0 0 109.0 423 425 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63.0 426 437 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.0 430 0 0 0 0 0 0 0 0 0 0 430 0 0 0 0 0 0 0 0 0 22.5 434 435 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31.9 436 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 106 TO GUTTER 100 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 130 TO GUTTER 95 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 138 TO GUTTER 91 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 12 Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 10 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (0) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 200 205 206 207 208 209 210 244 245 249 0 1. .1 .0 .1 .0 .1 .0 .1 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 6. .9 1.6 5.3 .6 2.8 1.8 .8 .3 .4 1.0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 11. 3.9 7.9 27.6 3.0 13.2 9.0 3.9 1.4 1.7 4.7 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 16. 5.5 16.3 58.9 4.8 22.6 18.6 5.4 2.1 2.7 8.8 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 21. 8.6 29.0 105.4 7.7 36.8 33.1 8.4 3.3 4.2 14.9 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 26. 14.9 46.0 166.4 12.6 58.4 52.2 14.5 6.1 7.4 23.7 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 31. 29.3 95.3 340.3 26.1 117.3 105.9 28.6 14.0 16.3 49.6 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 36. 29.9 140.8 504.1 32.1 146.9 152.2 28.6 18.6 21.4 94.2 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 41. 15.7 74.9 273.8 15.3 69.1 78.0 13.6 10.1 11.1 66.5 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 46. 10.8 46.4 175.3 9.2 42.0 47.7 8.2 6.2 6.9 54.7 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 51. 8.4 29.8 117.1 5.8 26.6 30.4 5.3 3.9 4.3 47.0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 0 56. 7.9 23.0 92.0 4.7 21.5 23.6 4.4 3.0 3.4 43.3 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 1. 7.7 19.2 77.9 4.0 18.6 20.0 3.9 2.5 2.8 40.6 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 6. 7.8 17.2 70.4 3.7 17.3 18.1 3.6 2.2 2.5 38.6 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 11. 7.8 15.9 65.6 3.5 16.3 16.9 3.4 2.0 2.3 36.9 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 16. 7.9 15.0 62.1 3.3 15.6 16.0 3.3 1.9 2.2 35.3 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 21. 7.9 14.2 59.1 3.2 14.9 15.2 3.1 1.7 2.0 33.8 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 26. 7.9 13.5 56.6 3.0 14.3 14.6 3.0 1.6 1.9 32.4 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 31. 8.0 12.9 54.3 2.9 13.7 14.1 2.9 1.5 1.8 31.1 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 36. 8.0 12.4 52.0 2.8 13.2 13.5 2.8 1.5 1.7 29.8 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 41. 8.0 11.9 49.8 2.7 12.7 13.0 2.7 1.4 1.7 28.6 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 46. 8.1 11.5 47.8 2.6 12.3 12.5 2.6 1.3 1.6 27.4 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 51. 8.1 11.1 46.0 2.5 11.9 12.2 2.5 1.3 1.5 24.7 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 1 56. 8.2 10.7 43.8 2.4 11.6 11.8 2.4 1.2 1.5 22.6 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 1. 7.7 9.6 38.9 2.0 9.8 10.5 1.8 1.0 1.2 20.3 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 6. 6.2 4.5 20.3 .6 3.2 4.8 .3 .3 .4 15.3 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 11. 6.0 2.6 12.4 .3 1.5 2.7 .1 .2 .2 11.2 .00( ) .00( ) .00( ) .00(.) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 16. 6.0 1.6 8.3 .2 .8 1.7 .0 .1 .1 5.9 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 21. 6.0 1.1 5.5 .1 .5 1.1 .0 .1 .1 3.3 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 26. 5.9 .8 3.7 .1 .3 .8 .0 .1 .1 1.9 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 31. 5.9 .6 2.6 .0 .2 .6 .0 .0 .0 1.2 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 36. 5.9 .5 1.9 .0 .2 .4 .0 .0 .0 .9 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 41. 5.8 .4 1.5 .0 .1 .3 .0 .0 .0 .6 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 46. 5.8 .3 1.1 .0 .1 .3 .0 .0 .0 .5 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 51. 5.8 .2 .9 .0 .1 .2 .0 .0 .0 .4 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 2 56. 5.8 .2 .7 .0 .1 .2 .0 .0 .0 .3 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) V:\52870t\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 13 Print Stantec 3 1. 5.7 .2 .6 .0 .1 .1 .0 .0 .0 .2 .00(.) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 6. 5.7 .1 .5 .0 .0 .1 .0 .0 .0 .2 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 11. 5.7 .1 .4 .0 .0 .1 .0 .0 .0 .2 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 16. 5.6 .1 .3 .0 .0 .1 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 21. 5.6 .1 .3 .0 .0 .1 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 26. 5.6 .1 .2 .0 .0 .1 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 31. 5.5 .1 .2 .0 .0 .1 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 36. 5.5 .0 .2 .0 .0 .1 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 41. 5.5 .0 .2 .0 .0 .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 46. 5.4 .0 .1 .0 .0 .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 3 51. 5.4 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 00( ) .00( ) .00( ) .00( ) 3 56. 5.4 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 1. 5.3 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 6. 5.3 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 11. 5.3 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 16. 5.2 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 21. 5.2 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 26. 5.2 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 31. 5.1 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 36. 5.1 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 41. 5.1 .0 .1 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 46. 5.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 51. 5.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 4 56. 5.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 1. 5.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 6. 4.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 11. 4.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 16. 4.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 21. 4.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 26. 4.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 31. 4.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 36. 4.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 41. 4.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 46. 4.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 51. 4.7 .0 .0 .0 .0 .0 .0 .0 .0 . .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 5 56. 4.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 1. 4.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 6. 4.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 11. 4.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 16. 4.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 21. 4.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) " 6 26. 4.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 31. 4.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 36. 4.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 41. 4.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ). .00( ) .00( ) .00( ) .00( ) V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 14 Print Stantec 6 46. 4.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 51. 4.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 6 56. 4.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 1. 4.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 6. 4.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 11. 4.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 16. 4.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ), .00( ) .00( ) .00( ) .00( ) .00( ) 7 21. 4.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 26. 4.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 31. 4.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 36. 4.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00(.) .00( ) .00( ) .00( ) 7 41. 4.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 46. 4.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 51. 4.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 7 56. 4.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 1. 3.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 6. 3.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 11. 3.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 16. 3.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 21. 3.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 26. 3.7 .0 .0 .0 .0 .0 .0 ..0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 31. 3.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 36. 3.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 41. 3.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 46. 3.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 51. 3.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 8 56. 3.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 1. 3.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 6. 3.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 11. 3.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 16. 3.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 21. 3.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 26. 3.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 31. 3.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 36. 3.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 41. 3.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 46. 3.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 51. 3.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 9 56. 3.1 .0 .0 .0 .0 .0. .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 1. 3.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 6. 3.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 11. 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 16. 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 21. 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 26, 3.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 15 Print Stantec 10 31. 2.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 36. 2.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 41. 2.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 46. 2.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 51. 2.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 10 56. 2.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 1. 2.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 6. 2.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 11. 2.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 16. 2.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 21. 2.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 26. 2.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 31. 2.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 36. 2.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 41. 2.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 46. 2.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 51. 2.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 11 56. 2.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 1. 2.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 6. 2.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 11. 2.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 16. 2.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 21. 2.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 26. 2.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 31. 2.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 36. 2.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 41. 2.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 46. 2.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 12 51. 2.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00(') .00( ) .00( ) .00( ) .00( ) .00( ) 12 56. 2.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 1. 2.2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 6. 2.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 11. 2.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 16. 2.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 21. 2.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 26. 2.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 31. 2.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 36. 2.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 41. 2.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 46. 2.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 51. 2.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 13 56. 1.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 1. 1.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 6. 1.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 11. 1.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 16 Print Stantec 14 16. 1.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 21. 1.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 26. 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 31. 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 36. 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 41. 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 46. 1.8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 51. 1.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 14 56. 1.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 1. 1.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 6. 1.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 11. 1.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 16. 1.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 21. 1.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 26. 1.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 31. 1.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 36. 1.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 41. 1.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 46. 1.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 51. 1.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 15 56. 1.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) AN ) .00( ) .00( ) .00( ) 16 1. 1.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 16 6. 1.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 16 11. 1.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 16 16. 1.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 16 21. 1.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 16 26. 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 16 31. 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) 16 36. 1.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .00( ) .DO( ) FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 5 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 250 300 301 302 360 0 1. ,00( ) .00( ) .00( ) .00( ) .00( ) 0 6. 1.0 1.2 1.1 .7 6.2 .00( ) .00( ) .00( ) .00( ) .00( ) 0 11. 4.7 5.9 5.3 3.2 34.9 .00( ) .00( ) .00( ) .00( ) .00( ) 0 16. 8.8 10.8 9.6 5.5 76.4 .00( ) .00( ) .00( ) .00( ) .00( ) 0 21. 14.9 18.1 16.0 9.0 136.9 .00( ) .00( ) .00( ) .00( ) .00( ) 0 26. 23.7 29.4 26.1 14.9 215.6 V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 17 Print Stantec .00( ) .00( ) .00( ) .00( ) .00( ) 0 31. 49.5 66.3 58.8 34.2 448.3 .00( ) .00( ) .00( ) .00( ) .00( ) 0 36. 69.5 108.1 95.9 55.6 613.4 .00( ) .00( ) .00( ) .00( ) .00( ) 0 41. 35.3 75.8 67.2 39.1 383.0 .00( ) .00( ) .00( ) .00( ) .00( ) 0 46. 21.7 59.3 52.6 30.2 284.5 .00( ) .00( ) .00( ) .00( ) .00( ) 0 51. 13.8 45.8 40.7 22.9 226.3 .00( ) .00( ) .00( ) .00( ) .00( ) 0 56. 10.8 38.1 33.8 18.7 201.2 .00( ) .00( ) .00( ) .00( ) .00( ) 1 1. 9.1 32.5 28.8 15.7 187.1 .00( ) .00( ) .00( ) .00( ) .00( ) 1 6. 8.2 28.5 25.3 13.7 179.6 .00( ) .00( ) .00( ) .00( ) .00( ) 1 11. 7.6 25.4 22.5 12.1 114.6 .00( ) .00( ) .00( ) .00( ) .00( ) 1 16. 7.2 22.9 20.3 10.8 106.1 .00( ) .00( ) .00( ) .00( ) .00( ) 1 21. 6.8 20.8 18.4 9.8 99.0 .00( ) .00( ) .00( ) .00( ) .00( ) 1 26. 6.5 19.0 16.9 8.9 93.1 .00( ) .00( ) .00( ) .00( ) .00( ) 1 31. 6.2 17.5 15.6 8.2 87.9 .00( ) .00( ) .00( ) .00( ) .00( ) 1 36. 6.0 16.2 14.4 7.6 83.2 .00( ) .00( ) .00( ) .00( ) .00( ) 1 41. 5.7 15.1 13.4 7.0 78.7 .00( ) .00( ) .00( ) .00( ) .00( ) 1 46. 5.5 14.1 12.5 6.6 74.8 .00( ) .00( ) .00( ) .00( ) .00( ) 1 51. 5.3 13.2 11.7 6.2 71.2 .00( ) .00( ) .00( ) .00( ) .00( ) 1 56. 5.2 12.4 11.0 5.8 67.6 .00( ) .00( ) .00( ) .00( ) .00( ) 2 1. 4.5 11.0 9.8 5.1 60.8 .00( ) .00( ) .00( ) .00( ) .00( ) 2 6. 1.9 7.1 6.3 3.1 35.2 .00( ) .00( ) .00( ) .00( ) .00( ) 2 11. 1.0 5.5 4.9 2.4 23.6 .00( ) .00( ) .00( ) .00( ) .00( ) 2 16. .6 4.5 4.0 2.0 17.5 .00( ) .00( ) .00( ) .00( ) .00( ) 2 21. .4 3.9 3.4 1.7 13.3 .00( ) .00( ) .00( ) .00( ) .00( ) 2 26. .3 3.4 3.0 1.4 10.4 .00( ) .00( ) .00( ) .00( ) .00( ) 2 31. .2 2.9 2.6 1.2 8.5 .00( ) .00( ) .00( ) .00( ) .00( ) 2 36. .2 2.6 2.3 1.1 7.1 .00( ) .00( ) .00( ) .00( ) .00( ) 2 41. .1 2.3 2.1 1.0 6.1 .00( ) .00( ) .00( ) .00( ) .00( ) 2 46. .1 2.1 1.8 .8 5.3 .00( ) .00( ) .00( ) .00( ) .00( ) 2 51. .1 1.9 1.6 .8 4.6 .00( ) .00( ) .00( ) .00( ) .00( ) 2 56. .1 1.7 1.5 .7 4.0 .00( ) .00( ) .00( ) .00( ) .00( ) 3 1. .0 1.5 1.3 .6 3.6 .00( ) .00( ) .00( ) .00( ) .00( ) 3 6. .0 1.4 1.2 .5 3.2 .00( ) .00( ) .00( ) .00( ) .00( ) 3 11. .0 1.2 1.1 .5 2.8 .00( ) .00( ) .00( ) .00( ) .00( ) 3 16. .0 1.1 1.0 .4 2.6 .00( ) .00( ) .00( ) .00( ) .00( ) 3 21. .0 1.0 .9 .4 2.3 .00( ) .00( ) .00( ) .00( ) .00( ) 3 26. .0 .9 .8 .4 2.1 .00( ) .00( ) .00( ) .00( ) .00( ) 3 31. .0 .8 .7 .3 1.9 .00( ) .00( ) .00( ) .00( ) .00( ) 3 36. .0 .8 .7 .3 1.7 .00( ) .00( ) .00( ) .00( ) .00( ) 3 41. .0 .7 .6 .3 1.6 .00( ) .00( ) .00( ) .00( ) .00( ) 3 46. .0 .6 .6 .2 1.4 .00( ) .00( ) .00( ) .00( ) .00( ) 3 51. .0 .6 .5 .2 1.3 .00( ) .00( ) .00( ) .00( ) .00( ) 3 56. .0 .5 .5 .2 1.2 .00( ) .00( ) .00( ) .00( ) .00( ) 4 1. .0 .5 .4 .2 1.1 .00( ) .00( ) .00( ) .00( ) .00( ) 4 6. .0 .4 .4 .2 1.0 .00( ) .00( ) .00( ) .00( ) .00( ) 4 11. .0 .4 .4 .1 .9 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 18 Pdn1 Stantec :00( ) .00( ) .00( ) .00( ) .00( ) 4 16. .00( ) .00( ) .00( ) .00( ) .00( ) 4 21. .0 .3 .3 .1 .8 .00( ) .00( ) .00( ) .00( ) .00( ) 4 26. .0 .3 .3 .1 .7 .00( ) .00( ) .00( ) .00( ) .00( ) 4 31. .0 .3 .2 .1 .6 .00( ) .00( ) .00( ) .00( ) .00( ) 4 36. .0 .3 .2 .1 .6 .00( ) .00( ) .00( ) .00( ) .00( ) 4 41. .0 .2 .2 .1 .5 .00( ) .00( ) .00( ) .00( ). .00( ) 4 46. .0 .2 .2 .1 .5 .00( ) .00( ) .00( ) .00( ) .00( ) 4 51. .0 .2 .2 .1 .4 .00( ) .00( ) .00( ) .00( ) .00( ) 4 56. .0 .2 .1 .0 .4 .00( ) .00( ) .00( ) .00( ) .00( ) 5 1. .0 .1 .1 .0 .4 .00( ) .00( ) .00( ) .00( ) .00( ) 5 6. .0 .1 .1 .0 .3 .00( ) .00( ) .00( ) .00( ) .00( ) 5 11. .0 .1 .1 .0 .3 .00( ) .00( ) .00( ) .00( ) .00( ) 5 16. .0 .1 .1 .0 .3 .00( ) .00( ) .00( ) .00( ) .00( ) 5 21. .0 .1 .1 .0 .2 .00( ) .00( ) .00( ) .00( ) .00( ) 5 26. .0 .1 .1 .0 .2 .00( ) .00( ) .00( ) .00( ) .00( ) 5 31. .0 .1 .1 .0 .2 .00( ) .00( ) .00( ) .00( ) .00( ) 5 36. .0 .1 .1 .0 .2 .00( ) .00( ) .00( ) .00( ) .00( ) 5 41. .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) 5 46. .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) 5 51. .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) 5 56. .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) 6 1. .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) 6 6. .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) 6 11. .00( ) .00( ) .00( ) .00( ) .00( ) 6 16. .0 .0 .0 .0 .1 .00( ) .00( ) .00( ) .00( ) .00( ) 6 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 6 26. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 6 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 6 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 6 41. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 6 46. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 6 51. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 6 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 1. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 16. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 26. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 41. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) 00( ) .00( ) 7 46. .0 .0 .0 .0 .00( ) .00( ) .00( )( ) .00( ) 7 51. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 7 56. .0 .0 .0 .0 .0 V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 19 Print Stantec .00( ) .00( ) .00( ) .00( ) .00( ) 8 1. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 8 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 8 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 8 16. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 8 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 8 26 .00( ) .00( ) .00( ) .00( ) .00( ) 8 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 8 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 8 41. ,00( ) .00( ) .00( ) .00( ) .00( ) 8 46. ,00( ) .00( ) .00( ) .00( ) .00( ) 8 51. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00(') .00( ) 8 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 1 .00( ) .00( ) .00( ) .00( ) .00( ) 9 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 16. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 26. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 41. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 46. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 51. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 9 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 1. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 16. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 26. ,00( ) .00( ) .00( ) .00( ) .00( ) 10 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 36. ,00( ) .00( ) .00( ) .00( ) .00( ) 10 41. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 46. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( )' .00( ) 10 51. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 10 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 1. ,00( ) .00( ) .00( ) .00( ) .00( ) 11 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 16. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 26. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 31. ,00( ) .00( ) .00( ) .00( ) .00( ) 11 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 41. .0 .0 .0 .0 .0 V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 20 NO Stantec .00( ) .00( ) .00( ) .00( ) .00( ) 11 46. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 51. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 11 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 1. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 16. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 26. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 12 41. .00( ) .00( ) .00( ) .00( ) .00( ) 12 46. .00( ) .00( ) .00( ) .00( ) .00( ) 12 51. _00( ) .00( ) .00( ) .00( ) .00( ) 12 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 1. .00( ) .00( ) .00( ) .00( ) .00( ) 13 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 11. .00( ) .00( ) .00( ) .00( ) .00( ) 13 16. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 26. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 41. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 46. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 51. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 13 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 1. .00( ) .00( ) .00( ) .00( ) .00( ) 14 6. .00( ) .00( ) .00( ) .00( ) .00( ) 14 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 16. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 26. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 31. .00( ) .00( ) .00( ) .00( ) .00( ) 14 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 41. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 46. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 51. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 14 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 15 1. .00( ) .00( ) .00( ) .00( ) .00( ) 15 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 15 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 15 16. .00( ) .00( ) .00( ) .00( ) .00( ) 15 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( ) 15 26. .0 .0 .0 .0 .0 V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 21 Print Stantec .00( ) .00( ) .00( ) .00( ) .00( 15 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 15 36. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ). .00( ) .00( 15 41. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 15 46. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 15 51. .00( ) .00( ) .00( ) .00( ) .00( 15 56. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 16 1. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 16 6. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 16 11. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 16 16. .00( ) .00( ) .00( ) .00( ) .00( 16 21. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 16 26. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 16 31. .0 .0 .0 .0 .0 .00( ) .00( ) .00( ) .00( ) .00( 16 36. .0 .0 .0 .0 .0 00( ) 00( ) 00( ) .00( ) .00( THE FOLLOWING CONVEYANCE ELEMENTS WERE SURCHARGED DURING THE SIMULATION. THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 292 THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 401 V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 22 Pdn1 Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 10:3 85.3 (DIRECT FLOW) 0 35. 11:3 300.0 (DIRECT FLOW) 0 1. 80:3 444.0 (DIRECT FLOW) 0 32. 90:3 595.0 (DIRECT FLOW) 0 35. 91:3 151.0 (DIRECT FLOW) 0 35. 95:3 478.6 (DIRECT FLOW) 0 46. 99:3 401.4 (DIRECT FLOW) 0 48. 100:3 1177.5 (DIRECT FLOW) 0 35. 101:2 401.4 .1 19.3:D 0 48. 103:2 32.5 1.9 0 32. 104:3 466.1 (DIRECT FLOW) 0 35. 105:3 466.1 (DIRECT FLOW) 0 35. 110:3 452.0 (DIRECT FLOW) 0 35. 111:4 284.7 2.7 0 36. 115:3 595.0 (DIRECT FLOW) 0 35. 116:4 447.6 3.3 0 53. 120:3 645.0 (DIRECT FLOW) 0 35. 125:3 309.3 (DIRECT FLOW) 0 35. 129:1 297.8 .6 0 36. 135:3 488.3 (DIRECT FLOW) 0 41. 136:4 413.0 3.2 0 46. 139:3 416.4 (DIRECT FLOW) 0 41. 140:2 52.9 .1 7.3:D 1 22. 141:4 405.9 3.1 0 41. 145:3 423.9 (DIRECT FLOW) 0 35. 146:4 300.0 2.6 1 0. 150:3 300.0 (DIRECT FLOW) 0 1. 152:3 230.4 (DIRECT FLOW) 2 24. 154:3 155.3 (DIRECT FLOW) 2 20. 155:3 155.3 (DIRECT FLOW) 2 20. 200:3 40.0 (DIRECT FLOW) 0 35. 201:2 3.4 .1 2.5:D 9 8. 202:4 3.4 .3 9 12. 203:3 26.8 (DIRECT FLOW) 2 0. 204:2 33.3 1.3 0 49. 205:3 155.8 (DIRECT FLOW) 0 35. 206:3 554.7 (DIRECT FLOW) 0 35. 207:3 39.1 (DIRECT FLOW) 0 35. 208:3 176.5 (DIRECT FLOW) 0 35. 209:3 170.1 (DIRECT FLOW) 0 35. 210:3 38.8 (DIRECT FLOW) 0 35. 211:4 64.2 1.7 2 13. 212:3 64.4 (DIRECT FLOW) 2 7. 213:5 26.8 1.9 2 1. 214:2 26.8 .1 9.5:D 2 0. 215:3 360.6 (DIRECT FLOW) 0 35. 216:2 33.2 .1 2.6:D 0 49. 221:5 230.4 3.9 2 24. 222:3 75.8 (DIRECT FLOW) 2 13. 223:3 160.1 (DIRECT FLOW) 2 19. 224:2 160.1 .1 4.8:D 2 19. 225:3 164.0 (DIRECT FLOW) 0 56. 226:5 71.0 3.5 2 8. 227:3 71.0 (DIRECT FLOW) 2 6. 228:3 162.6 (DIRECT FLOW) 2 18. 229:2 162.6 .1 4.4:D 2 18. 230:3 171.8 (DIRECT FLOW) 0 48. 231:5 67.0 3.8 2 6. 232:3 67.0 (DIRECT FLOW) 2 4. 233:3 168.0 (DIRECT FLOW) 2 12. 234:2 168.0 .1 6.9:D 2 12. 235:3 379.1 (DIRECT FLOW) 0 35. 236:5 61.0 3.5 2 4. 237:3 61.0 (DIRECT FLOW) 2 1. 238:5 61.0 3.4 2 1. 240:3 194.6 (DIRECT FLOW) 0 35. 242:4 158.0 1.2 2 12. 243:3 63.9 (DIRECT FLOW) 0 35. 244:3 22.0 (DIRECT FLOW) 0 35. 245:3 25.5 (DIRECT FLOW) 0 35. 246:2 6.4 .1 .2:D 0 45. 247:2 6.9 .1 .3:D 0 45. 248:2 6.0 .1 5.1:D 2 16. 249:3 100.9 (DIRECT FLOW) 0 35. 250:3 79.1 (DIRECT FLOW) 0 35. 251:2 6.0 .6 2 16. 270:3 24.6 (DIRECT FLOW) 2 8. 276:1 2.2 .5 3 34. 277:1 .5 .2 2 32. V:\52870t\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-p.out 23 Print Stantec 278:1 11.0 .9 2 1. 279:1 9.4 .8 2 2. 286:2 2.2 .1 27.6:D 3 22. 287:2 .5 .1 1.1:D 2 6. 288:2 11.0 .1 3.8:D 2 0. 2:2 1,4 . 4.1:1 2 1, 29090:2 6.4 .77 0 46. 291:2 109.0 3.7 0 35. 292:2 109.2 4.0 1.0:S 0 46. 293:1 117.2 2.4 0 38. 294:2 6.9 .8 0 47. 295:2 58.4 1.8 0 35. 296:3 183.2 (DIRECT FLOW) 0 35. 297:3 360.2 (DIRECT FLOW) 0 35. 298:2 13.1 .1 12.7:D 2 14. 299:2 61.0 1.5 0 35. 300:3 116.6 (DIRECT FLOW) 0 35. 301:3 103.5 (DIRECT FLOW) 0 35. 302:3 60.3 (DIRECT FLOW) 0 35. 303:5 40.2 2.7 2 14. 304:2 40.2 .1 3.5:D 2 11. 305:3 178.0 (DIRECT FLOW) 0 35. 306:3 61.0 (DIRECT FLOW) 1 56. 307:2 27.4 1.8 2 50. 308:3 186.8 (DIRECT FLOW) 2 6. 309:2 186.8 .1 28.4:D 2 6. 310:3 486.3 (DIRECT FLOW) 0 35. 311:5 120.1 3.4 4 12. 312:3 120.1 (DIRECT FLOW) 4 6. 313:5 114.0 3.4 4 26. 314:3 114.0 (DIRECT FLOW) 4 25. 315:2 33.6 .1 8.8:D 1 56. 318:5 45.4 2.1 1 38. 319:2 47.0 .1 6.5:D 1 28. 320:3 210.8 (DIRECT FLOW) 0 35. 321:3 212.5 (DIRECT FLOW) 0 35. 322:3 60.3 (DIRECT FLOW) 0 35. 324:5 76.5 4.1 7 53. 325:3 102.1 (DIRECT FLOW) 0 35. 330:2 16.7 .1 2.1:D 1 8. 333:5 26.9 2.4 1 30. 334:2 27.0 .1 2.9:D 1 21. 340:3 411.8 (DIRECT FLOW) 0 35. 341:5 76.5 3.3 6 58. 342:2 76.6 .1 32.4:D 7 10. 344:2 30.6 .1 14.7:D 2 4. 345:3 508.0 (DIRECT FLOW) 0 35. 347:2 12.6 1.2 3 52. 355:4 149.2 1.7 0 36. 360:3 663.9 (DIRECT FLOW) 0 35. 400:3 1504.5 (DIRECT FLOW) 0 35. 401:2 114.4 .1 51.6:D 2 4. 405:5 329.2 3.3 0 35. 410:5 281.5 3.9 0 36. 415:3 479.8 (DIRECT FLOW) 0 36. 421:2 12.6 .1 16.1:D 3 50. 423:5 130.9 2.7 0 37. 425:3 185.9 (DIRECT FLOW) 0 35. 426:2 6.9 1.1 0 33. 430:5 124.7 2.2 0 35. 434:4 189.3 1.4 0 43. 435:3 195.2 (DIRECT FLOW) 0 40. 436:1 117.8 1.3 0 41. 437:3 187.8 (DIRECT FLOW) 0 35. 440:3 187.8 (DIRECT FLOW) 0 35. ENDPROGRAM PROGRAM CALLED V:\52870f\active\l 87010251 \Reports\Drainage\ModSW MM\frv-100-ult-p.out 24 Print ModSWMM INFLOWS HYDROGRAPHS FOR DETENTION PONDS Stantec TIME Design Point 200 205 206 207 208 209 210 244 Hours Minutes Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) 0 1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0 6 0.9 1.6 5.3 0.6 2.8 1.8 0.8 0.3 0 11 3.9 7.9 27.6 3.0 13.2 9.0 3.9 1.4 0 16 5.5 16.3 58.9 4.8 22.6 18.6 5.4 2.1 0 21 8.6 29.0 105.41 7.7 36.8 33.1 8.4 3.3 0 26 14.9 46.0 166.4 12.6 58.41 52.2 14.5 6.1 0 31 29.3 95.3 340.3 26.1 117.31 105.9 28.6 14.0 0 36 29.9 140.8 504.1 32.1 146.9 152.2 28.6 18.6 0 41 15.7 74.9 273.8 15.3 69.1 78.0 13.6 10.1 0 46 10.8 46.4 175.3 9.2 42.0 47.7 8.2 6.2 0 51 8.4 29.8 117.1 5.8 26.6 30.4 5.3 3.9 0 56 7.9 23.0 92.0 4.7 21.5 23.6 4.4 3.0 1 1 7.7 19.2 77.9 4.0 18.6 20.0 3.9 2.5 1 6 7.8 17.2 70.4 3.7 17.31 18.1 3.6 2.2 1 11 7.8 15.9 65.6 3.5 16.3 16.9 3.4 2.0 1 16 7.9 15.0 62.1 3.3 15.6 16.0 3.3 1.9 1 21 7.9 14.2 59.1 3.2 14.9 15.2 3.1 1.7 1 26 7.9 13.5 56.6 3.0 14.3 14.6 3.0 1.6 1 31 8.0 12.9 54.3 2.9 13.7 14.1 2.9 1.5 1 36 8.0 12.4 52.0 2.8 13.2 13.5 2.8 1.5 1 41 8.0 11.9 49.8 2.7 12.7 13.0 2.7 1.4 1 46 1 8.1 11.5 47.8 2.6 12.31 12.5 2.6 1.3 1 51 8.1 11.1 46.0 2.5 11.9 12.2 2.5 1.3 1 56 8.2 10.7 43.8 2.4 11.6 11.8 2.4 1.2 2 1 7.7 9.6 38.9 2.0 9.8 10.5 1.8 1.0 2 6 6.2 4.5 20.3 0.6 3.2 4.8 0.3 0.3 2 11 6.0 2.6 12.4 0.3 1.5 2.7 0.1 0.2 2 16 6.0 1.6 8.3 0.2 0.8 1.7 0.0 0.1 2 21 6.0 1.1 5.5 0.1 0.5 1.1 0.0 0.1 2 26 1 5.9 0.8 3.7 0.1 0.31 0.8 0.0 0.1 2 31 5.9 0.6 2.6 0.0 0.2 0.6 0.0 0.0 2 36 5.9 0.5 1.9 0.0 0.2 0.4 0.0 0.0 2 41 5.8 0.4 1.5 0.0 0.1 0.3 0.0 0.0 2 46 5.8 0.3 1.1 0.0 0.1 0.3 0.0 0.0 2 51 5.8 0.2 0.9 0.0 0.1 0.2 0.0 0.0 2 56 5.8 0.2 0.7 0.0 0.1 0.2 0.0 0.0 3 1 5.7 0.2 0.6 0.0 0.1 0.1 0.0 0.0 3 6 1 5.7 0.1 0.5 0.0 0.01 0.1 0.0 0.0 3 11 5.7 0.1 0.4 0.0 0.0 0.1 0.0 0.0 3 16 5.6 0.1 0.3 0.0 0.0 0.1 0.0 0.0 3 21 5.6 0.1 0.3 0.0 0.0 0.1 0.0 0.0 3 26 5.6 0.1 0.2 0.0 0.0 0.1 0.0 0.0 3 31 5.5 0.1 0.2 0.0 0.0 0.1 0.0 0.0 3 36 5.5 0.0 0.2 0.0 0.0 0.1 0.0 0.0 3 41 5.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 3 46 5.4 0.0 0.1 0.0 0.01 0.0 0.0 0.0 3 51 5.4 0.01 0.1 0.0 0.0 0.0 0.0 0.0 3 56 5.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 1 5.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 6 5.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 11 5.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 16 5.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 21 5.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 26 5.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 31 5.1 0.01 0.1 0.0 0.0 0.0 0.0 0.0 4 36 5.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 41 5.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 4 46 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 51 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 56 5.0 0.01 0.0 0.0 0.0 0.0 0.01 0.0 TIME Design Point 200 205 206 207 208 209 210 244 Hours Minutes Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) 5 1 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 6 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 11 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 16 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 21 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 26 4.8 0.0 0.0 0.0 0.01 0.0 0.0 0.0 5 31 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 36 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 41 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 46 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 51 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 56 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 1 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 6 4.6 0.0 0.0 0.0 0.01 0.0 0.0 0.0 6 11 4.6 0.0 0.0 0.0 0.01 0.0 0.0 0.0 6 16 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 21 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 26 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 31 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 36 4.4 0.01 0.0 0.0 0.0 0.0 0.0 0.0 6 41 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 46 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 51 4.4 0.0 0.0 0.01 0.0 0.0 0.0 0.0 6 56 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 1 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 6 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 11 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 16 4.2 0.01 0.0 0.0 0.0 0.0 0.0 0.0 7 21 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 26 4.2 0.0 0.0 0.0 0.01 0.0 0.0 0.0 7 31 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 36 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 41 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 46 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 51 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 56 4.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 8 1 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 6 3.9 0.0 0.0 0.0 0.01 0.0 0.0 0.0 8 11 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 16 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 21 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 26 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 31 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 36 3.7 0.01 0.0 0.0 0.0 0.0 0.0 0.0 8 41 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 46 3.6 0.0 0.0 0.0 0.01 0.0 0.0 0.0 8 51 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 56 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 1 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 6 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 11 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 16 3.4 0.01 0.0 0.0 0.0 0.0 0.0 0.0 9 21 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 26 3.3 0.0 0.0 0.0 0.01 0.0 0.0 0.0 9 31 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 36 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 41 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 46 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 51 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 56 3.11 0.01 0.01 0.0 0.0 0.0 0.0 0.0 TIME Design Point 200 205 206 207 208 209 210 244 Hours Minutes Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) 10 1 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 6 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 11 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 16 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 21 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 26 3.0 0.0 0.0 0.01 0.0 0.0 0.01 0.0 10 31 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 36 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 41 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 46 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 51 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 56 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 1 2.8 0.01 0.0 0.0 0.01 0.0 0.0 0.0 11 6 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 11 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 16 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 21 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 26 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 31 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 36 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 41 2.5 0.01 0.0 0.0 0.01 0.0 0.0 0.0 11 46 1 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 51 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 56 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 1 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 6 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 11 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 16 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 21 2.3 0.01 0.0 0.0 0.01 0.0 0.0 0.0 12 26 1 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 31 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 36 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 41 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 46 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 51 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 56 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 1 2.2 0.01 0.0 0.0 0.01 0.0 0.0 0.0 13 6 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 11 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 16 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 21 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 26 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 31 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 36 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 41 2.0 0.01 0.0 0.0 0.01 0.0 0.0 0.0 13 46 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 51 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 56 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 1 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 6 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 11 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 16 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 21 1.9 0.01 0.0 0.0 0.01 0.0 0.0 0.0 14 26 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 31 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 36 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 41 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 46 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 51 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 56 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TIME Design Point 200 205 206 207 208 209 210 244 Hours Minutes Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) 15 1 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 6 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 11 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 16 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 21 1.6 0.01 0.0 0.0 0.0 0.0 0.0 0.0 15 26 1.6 0.0 0.0 0.0 0.01 0.0 0.0 0.0 15 31 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 36 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 41 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 46 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 51 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 56 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 1 1.5 0.01 0.0 0.0 0.0 0.0 0.01 0.0 16 6 1.5 0.0 0.0 0.0 0.01 0.0 0.0 0.0 16 11 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 16 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 21 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 26 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 31 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 36 1 1.4 0.0 0.01 0.0 0.0 0.01 0.0 0.0 200 - Total inflow to Pond E 205 - Total inflow to Paragon pond 206 - Inflow to Pond D from on -site and from Harmony Pads 207 - Inflow to Pond C from on -site basins (does not include flow from Pond D) 208 - Inflow to Pond B from on -site basins (does not include flow from Pond C) 209 - Inflow to Pond A from on -site basins (does not include flow from Pond B) 210 - Inflow to Pond E from on -site basins (does not include flow from Pond F) 244 - Inflow to east pond at Harmony Pads 245 - Inflow to west pond at Harmony Pads 249 - Total inflow to Pond F from on -site basins and from Paragon pond 250 - Inflow to Pond F from on -site basins and from Paragon property (does not include flow from Paragon pond) 300 - Inflow to inlet from off -site basin 300 301 - Inflow to inlet from off -site basin 301 302 - Inflow to inlet from off -site basin 302 360 - Total inflow to Pond D from on -site basins, Harmony Pads and from Harmony Trailer Park TIME 245 249 250 300 301 302 360 Hours Minutes Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) 0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0 6 0.4 1.0 1.0 1.2 1.1 0.7 6.2 0 11 1.7 4.7 4.7 5.9 5.3 3.2 34.9 0 16 2.7 8.8 8.8 10.8 9.6 5.5 76.4 0 21 4.2 14.9 14.9 18.1 16.0 9.0 136.9 0 26 7.4 23.7 23.7 29.4 26.1 14.9 215.6 0 31 16.3 49.6 49.5 66.3 58.8 34.2 448.3 0 36 21.4 94.2 69.5 108.1 95.9 55.6 613.4 0 41 11.1 66.5 35.3 75.8 67.2 39.1 383.0 0 46 6.9 54.7 21.7 59.3 52.6 30.2 284.5 0 51 4.3 47.0 13.8 45.8 40.7 22.9 226.3 0 56 3.4 43.3 10.8 38.1 33.8 18.7 201.2 1 1 2.8 40.61 9.1 32.5 28.81 15.7 187.1 1 6 2.5 38.6 8.2 28.5 25.3 13.7 179.6 1 11 2.3 36.9 7.6 25.4 22.5 12.1 114.6 1 16 2.2 35.3 7.2 22.9 20.3 10.8 106.1 1 21 2.0 33.8 6.8 20.8 18.4 9.8 99.0 1 26 1.9 32.4 6.5 19.0 16.9 8.9 93.1 1 31 1.8 31.1 6.2 17.5 15.6 8.2 87.9 1 36 1.7 29.8 6.0 16.2 14.4 7.6 83.2 1 41 1.7 28.61 5.7 15.1 13.41 7.0 78.7 1 46 1 1.6 27.4 5.5 14.1 12.5 6.6 74.8 1 51 1.5 24.7 5.3 13.2 11.7 6.2 71.2 1 56 1.5 22.6 5.2 12.4 11.0 5.8 67.6 2 1 1.2 20.3 4.5 11.0 9.8 5.1 60.8 2 6 0.4 15.3 1.9 7.1 6.3 3.1 35.2 2 11 0.2 11.2 1.0 5.5 4.9 2.4 23.6 2 16 0.1 5.91 0.6 4.5 4.01 2.0 17.5 2 21 0.1 3.3 0.4 3.9 3.4 1.7 13.3 2 26 0.1 1.9 0.3 3.4 3.0 1.4 10.4 2 31 0.0 1.2 0.2 2.9 2.6 1.2 8.5 2 36 0.0 0.9 0.2 2.6 2.3 1.1 7.1 2 41 0.0 0.6 0.1 2.3 2.1 1.0 6.1 2 46 0.0 0.5 0.1 2.1 1.8 0.8 5.3 2 51 0.0 0.4 0.1 1.9 1.6 0.8 4.6 2 56 0.0 0.31 0.1 1.7 1.51 0.7 4.0 3 1 0.0 0.2 0.0 1.5 1.3 0.6 3.6 3 6 0.0 0.2 0.0 1.4 1.2 0.5 3.2 3 11 0.0 0.2 0.0 1.2 1.1 0.5 2.8 3 16 0.0 0.1 0.0 1.1 1.0 0.4 2.6 3 21 0.0 0.1 0.0 1.0 0.9 0.4 2.3 3 26 0.0 0.1 0.0 0.9 0.8 0.4 2.1 3 31 0.0 0.1 0.0 0.8 0.7 0.3 1.9 3 36 0.0 0.11 0.0 0.8 0.71 0.3 1.7 3 41 0.0 0.1 0.0 0.7 0.6 0.3 1.6 3 46 1 0.0 0.1 0.0 0.6 0.6 0.2 1.4 3 51 0.0 0.0 0.0 0.6 0.5 0.2 1.3 3 56 0.0 0.0 0.0 0.5 0.5 0.2 1.2 4 1 0.0 0.0 0.0 0.5 0.4 0.2 1.1 4 6 0.0 0.0 0.0 0.4 0.4 0.2 1.0 4 11 0.0 0.0 0.0 0.4 0.4 0.1 0.9 4 16 0.0 0.01 0.0 0.4 0.31 0.1 0.8 4 21 0.0 0.0 0.0 0.3 0.3 0.1 0.8 4 26 0.0 0.0 0.0 0.3 0.3 0.1 0.7 4 31 0.0 0.0 0.0 0.3 0.2 0.1 0.6 4 36 0.0 0.0 0.0 0.3 0.2 0.1 0.6 4 41 0.0 0.0 .0.0 0.2 0.2 0.1 0.5 4 46 0.0 0.0 0.0 0.2 0.2 0.1 0.5 4 51 0.0 0.0 0.0 0.2 0.2 0.1 0.4 4 1 56 001 001 0.0 0.21 0.11 0.01 0.4 TIME 245 249 250 300 301 302 360 Hours Minutes Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) 5 1 0.0 0.0 0.0 0.1 0.1 0.0 0.4 5 6 0.0 0.0 0.0 0.1 0.1 0.0 0.3 5 11 0.0 0.0 0.0 0.1 0.1 0.0 0.3 5 16 0.0 0.0 0.0 0.1 0.1 0.0 0.3 5 21 0.0 0.0 0.0 0.1 0.11 0.0 0.2 5 26 0.0 0.0 0.0 0.1 0.1 0.0 0.2 5 31 0.0 0.0 0.0 0.1 0.1 0.0 0.2 5 36 0.0 0.0 0.0 0.1 0.1 0.0 0.2 5 41 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5 46 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5 51 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5 56 0.0 0.0 0.0 0.0 0.0 0.0 0.1 6 1 0.0 0.01 0.0 0.0 0.01 0.0 0.1 6 6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 6 11 0.0 0.0 0.0 0.0 0.0 0.0 0.1 6 16 0.0 0.0 0.0 0.0 0.0 0.0 0.1 6 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 36 0.0 0.0 0.0 0.0 0.0 0.01 0.0 6 41 0.0 0.01 0.0 0.0 0.0 0.0 0.0 6 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 11 0.0 0.0 0.0 0.0 0.01 0.0 0.0 7 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 21 0.0 0.01 0.0 0.0 0.0 0.0 0.0 7 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 51 0.0 0.0 0.0 0.0 0.01 0.0 0.0 7 56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 1 0.0 0.01 0.0 0.0 0.0 0.0 0.0 8 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 31 0.0 0.0 0.0 0.0 0.01 0.0 0.0 8 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 41 0.0 0.01 0.0 0.0 0.0 0.0 0.0 8 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 11 0.0 0.0 0.0 0.0 0.01 0.0 0.0 9 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 21 0.0 0.01 0.0 0.0 0.0 0.0 0.0 9 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 56 0.0 0.0 0.0 0.01 0.01 0.01 0.0 TIME 245 249 250 300 301 302 360 Hours Minutes Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) Flow (CFS) 10 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 56 0.0 0.0 0.01 0.0 0.0 0.0 0.0 11 1 0.0 0.0 0.0 0.0 0.01 0.0 0.0 11 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 41 0.0 0.0 0.0 0.0 0.01 0.0 0.0 11 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 21 0.0 0.0 0.0 0.0 0.01 0.0 0.0 12 26 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 1 0.0 0.0 0.0 0.0 0.01 0.0 0.0 13 6 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 41 0.0 0.0 0.0 0.0 0.01 0.0 0.0 13 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 21 0.0 0.0 0.0 0.0 0.01 0.0 0.0 14 26 1 0.0 0.01 0.0 0.0 0.0 0.0 0.0 14 31 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 56 0.0 0.0 0.0 0.OF-0 0 0.0 0.0 ModSWMM HYDROLOGY EXISTING CONDTION WITH FRONT RANGE VILLAGE CONSTRUCTION ModSWMM INPUT frv-100-int-s.in 2 1 1 2 3 4 WATERSHED 0 FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 999 000 1.0 1 0.0 1 24 5.0 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.67 1 100 100 2881 12.3 32.00.0390.0160.2500.1000.300 0.51 0.50 0.001E 1 105 105 641 3.4 10.00.0230.0160.2500.1000.300 0.51 0.50 0.001E 1 110 110 2758 17.6 90.00.0300.0160.2500.1000.300 0.51 0.50 0.001E 1 115 115 3722 18.8 13.50.0860.0160.2500.1000.300 0.51 0.50 0.0018 1 120 120 4665 36.2 86.50.0160.0160.2500.1000.300 0.51 0.50 0.001E 1 125 125 3494 36.5 68.80.0230.0160.2500.1000.300 0.51 0.50 0.0018 1 130 129 8604 39.7 78.00.0310.0160.2500.1000.300 0.51 0.50 0.0018 1 135 135 4127 21.6 13.30.0290.0160.2500.1000.300 0.51 0.50 0.0018 1 140 140 8223 58.9 24.80.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 145 145 4915 38.7 12.00.0160.0160.2500.1000.300 0.51 0.50 0.0018 1 150 10 3026 19.8 6.80.0510.0160.2500.1000.300 0.51 0.50 0.0018 1 155 115 9801 17.1 70.00.0130.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Paragon, Basin 205 (Previously LSI Logic) 1 205 205 2497 17.2 82.00.0160.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Front Range village, Basins 206 - 210 1 206 206 7957 54.8 81.20.0170.0160.2500.1000.300 0.51 0.50 0.0018 1 207 207 1812 4.0 81.60.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 208 208 5467 17.9 89.50.0200.0160.2500.1000.300 0.51 0.50 0.0018 1 209 209 2960 18.1 88.70.0150.0160.2500.1000.300 0.51 0.50 0.0018 1 210 210 2654 3.9 86.60.0420.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * English Ranch, Basins 215 - 240 1 215 215 9265 41.9 38.50.0070.0160.2500.1000.300 0.51 0.50 0.0018 1 220 215 4630 16.9 38.50.0120.0160.2500.1000.300 0.51 0.50 0.0018 1 225 225 5678 21.9 38.50.0240.0160.2500.1000.300 0.51.0.50 0.0018 1 230 230 5639 18.9 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 235 235 5949 29.5 38.50.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 240 240 5007 32.3 41.50.0120.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Pads at Harmony Road, Basins 243 - 245 1 243 243 3359 5.5 92.70.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 244 244 1098 2.5 54.80.0170.0160.2500.1000.300 0.51 0.50 0.0018 1 245 245 1245 2.8 63.20.0130.0160.2500.1000.300 0.51 0.50 0.0018 ------------------------------------------------------------------------- Front Range village, Basin 250 1 250 250 1654 8.5 79.80.0180.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Future Development north of FRV, Basins 296, 297 1 296 296 2703 12.9 05.00.0100.0160.2500.1000.300 0.51 0.50 0.0018 1 297 297 4199 28.9 05.00.0070.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Harmony Trailer Park west of Front Range village, Basins 300-302, 305 1 300 300 3357 23.1 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 301 301 2977 20.5 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 302 302 1992 11.3 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 305 305 7663 24.1 38.50.0150.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- 1 310 31012018 84.7 37.00.0050.0160.2500.1000.300 0.51 0.50 0.0018 1 315 315 9023 60.9 38.50.0060.0160.2500.1000.300 0.51 0.50 0.0018 1 320 320 5102 29.4 38.50.0210.0160.2500.1000.300 0.51 0.50 0.0018 1 325 325 2084 14.4 40.00.0210.0160.2500.1000.300 0.51 0.50 0.0018 1 330 330 2038 15.3 46.80.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 335 334 3567 30.3 27.80.0150.0160.2500.1000.300 0.51 0.50 0.0018 Page 1 frv-100-int-s.in 1 340 340 4623 34.6 30.00.0270.0160.2500.1000.300 0.51 0.50 1 345 345 5109 44.8 27.00.0080.0160.2500.1000.300 0.51 0.50 1 350 345 6639 34.9 90.00.0110.0160.2500.1000.300 0.51 0.50 1 355 355 2940 27.4 48.00.0100.0160.2500.1000.300 0.51 0.50 1 400 400 6703 51.7 71.50.0240.0160.2500.1000.300 0.51 0.50 1 405 405 7493 41.8 60.80.0180.0160.2500.1000.300 0.51 0.50 1 410 410 7013 58.6 48.50.0090.0160.2500.1000.300 0.51 0.50 1 415 415 5458 42.1 40.00.0090.0160.2500.1000.300 0.51 0.50 1 420 421 7066109.0 11.60.0080.0160.2500.1000.300 0.51 0.50 1 425 425 5627 31.0 38.50.0090.0160.2500.1000.300 0.51 0.50 1 430 430 2979 22.5 38.50.0180.0160.2500.1000.300 0.51 0.50 1 435 435 3776 31.9 10.00.0110.0160.2500.1000.300 0.51 0.50 1 440 440 2603 9.5 38.50.0110.0160.2500.1000.300 0.51 0.50 0 0 0 430 440 0 5 1.25 600 0.0130 0 0 0. 1 513 0.0120 20 20 0. 0 440 437 0 3 0 0 0.0000 0 0 0. 436 437 426 3 3 0 0 0.0000 0 0 0. 0.00 0.0 4 0.0 10000 9996.0 0 426 425 0 2 1.25 1339 0.0100 0 0 0. 0 436 435 0 1 15 1889 0.0080 8 8 0. 0 425 423 0 3 0 0 0.0000 0 0 0. 0 435 434 0 3 0 0 0.0000 0 0 0. 0 423 415 0 5 1.5 1457 0.0050 0 0 0. 1 1457 0.0050 20 20 0. 0 434 415 0 4 0.5 768 0.0050 12 12 0. 10 768 0.0050 20 20 0. 0 415 400 0 3 0 0 0.0000 0 0 0. 0 410 400 0 5 2.5 1301 0.0090 0 0 0. 1 1380 0.0070 20 20 0. 0 405 400 0 5 3 1065 0.0090 0 0 0. 80 1065 0.0090 1 1 0. 0 400 401 0 3 0 0 0.0000 0 0 0. 0 401 340 11 2 0.1 1 0.0100 0 0 0. 0.00 0.0 0.001 8.0 4.85 12.7 16.7 9.03 23.0 10.29 57.9 11.59 70.8 80.7 31.34 98.0 52.86 115.4 95.93 705.0 0 355 340 0 4 0.25 608 0.0050 12 0 0. 5 608 0.0050 20 0 0. 0 340 342 0 3 0 0 0.0000 0 0 0. 0 342 341 8 2 0.1 1 0.0100 0 0 0. 0.00 0.0 0.20 2.9 5.68 23.5 53.0 28.14 73.1 47.36 88.5 72.54 103.6 111.0 0 341 325 0 5 3.5 1200 0.0050 0 0 0. 1 1200 0.0050 20 20 0. 0 325 324 0 3 0 0 0.0000 0 0 0. 0 324 314 0 5 3.5 1242 0.0030 0 0 0. 1 1242 0.0030 20 20 0. 0 421 347 5 2 0.1 1 0.0100 0 0 0. 0.00 0.0 0.16 2.1 8.27 10.5 17.4 43.63 18.7 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 013 020 000 000 013 035 000 000 013 020 016 020 000 013 020 013 005 000 010 8.97 16.67 016 020 000 010 14.66 95.53 013 020 000 013 020 010 34.02 0 347 314 0 2 1.5 1139 0.0150 0 0 0.013 0 345 344 0 3 0 0 0.0000 0 0 0.000 0 344 314 5 2 0.1 1 0.0100 0 0 0.010 0.00 0.0 0.04 1.9 2.79 16.8 10.12 27.6 21.56 35.0 0 314 313 0 3 0 0 0.0000 0 0 0.000 0 313 312 0 5 2 409 0.0090 0 0 0.013 Page 2 1.25 5.00 0.00 0.00 1.25 5.00 0.00 0.00 1.50 5.00 0.50 5.00 0.00 2.50 5.00 3.00 5.00 0.00 0.10 0.50 5.00 0.00 0.10 3.50 5.00 0.00 3.50 5.00 0.10 1.50 0.00 0.10 0.00 2.00 frv-100-int-s.in 10 409 0.0350 5 5 0.035 6.00 0 330 312 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.001 4.0 0.97 6.6 1.98 8.0 3.04 104.0 0 312 311 0 3 0 0 0.0000 0 0 0.000 0.00 0 311 310 0 5 2 1566 0.0090 0 0 0.013 2.00 10 1566 0.0090 5 5 0.035 6.00 0 334 333 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.012 5.6 0.32 21.9 6.45 34.0 16.40 100.0 0 333 320 0 5 2 1064 0.0090 0 0 0.013 2.00 5 1075 0.0090 3 3 0.035 6.00 0 320 319 0 3 0 0 0.0000 0 0 0.000 0.00 0 319 318 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.003 0.4 0.52 3.3 2.06 6.2 4.21 9.2 5.92 11.0 6.27 17.5 7.07 109.6 7.93 260.7 0 318 305 0 5 1.25 1320 0.0050 0 0 0.013 1.25 1 1384 0.0040 20 20 0.020 5.00 0 305 304 0 3 0 0 0.0000 0 0 0.000 0.00 0 304 303 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.027 13.6 0.59 28.3 2.19 37.7 6.49 46 7.13 100 7.77 200 8.24 300 0 303 310 0 5 2 671 0.0060 0 0 0.013 2.00 10 671 0.0060 5 5 0.035 6.00 0 310 309 0 3 0 0 0.0000 0 0 0.000 0.00 0 309 308 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.004 0.7 1.40 17.6 7.92 25.5 20.29 26.9 25.02 27.4 30.20 273 242 308 307 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 27.4 0 273 245.6 0 307 306 0 2 2.5 1351 0.0060 0 0 0.013 2.50 0 315 306 10 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.287 10.4 0.97 15.0 3.07 22.9 5.50 29.0 8.27 33.2 11.42 35.7 13.14 36.2 13.61 106 13.97 206.0 0 306 238 0 3 0 0 0.0000 0 0 0.000 0.00 *------------------------------------------------------------------------- * Harmony Trailer Park routing 0 300 291 0 3 0 0 0.0000 0 0 0.000 0.00 0 291 321 0 2 4 660 0.0050 0 0 0.013 4.00 0 301 321 0 3 0 0 0.0000 0 0 0.000 0.00 0 321 292 0 3 0 0 0.0000 0 0 0.000 0.00 0 292 360 0 2 4 500 0.0050 0 0 0.013 4.00 0 302 322 0 3 0 0 0.0000 0 0 0.000 0.00 0 322 299 0 3 0 0 0.0000 0 0 0.000 0.00 0 299 296 0 2 6.0 270 0.0100 0 0 0.013 6.00 *------------------------------------------------------------------------- * Pads at Harmony Road routing 0 245 247 0 3 0 0 0.0000 0 0 0.000 0.00 0 247 294 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.01 2.1 0.06 3.4 0.13 4.4 0.25 5.1 0.37 10.0 0 244 246 0 3 0 0 0.0000 0 0 0.000 0.00 0 246 290 7 2 0.1 1 0.0100 0 0 0.010 0.10 Page 3 frv-100-int-s.in 0.00 0.0 0.01 1.9 0.02 3.1 0.06 3.9 0.12 4.6 0.21 5.2 0.30 10.0 0 290 243 0 2 2 600 0.0100 0 0 0.013 2.00 0 294 243 0 2 2 834 0.0100 0 0 0.013 2.00 0 243 295 0 3 0 0 0.0000 0 0 0.000 O.00 0 295 206 0 2 9 1723 0.0020 0 0 0.013 9.00 0 206 360 0 3 0 0 0.0000 0 0 0.000 0.00 *------------------------------------------------------------------------- * undeveloped site north of FRv routing 0 296 293 0 3 0 0 0.0000 0 0 0.000 0.00 0 293 297 0 1 200 1800 0.0050 4 4 0.035 1.00 0 297 298 0 3 0 0 0.0000 0 0 0.000 0.00 * Existing culvert under ziegler Road 0 298 212 4 2 0.1 1 0.0100 0 0 0.010 O.1C 0.00 0.00 2.95 13.02 10.74 15.95 16.18 17.23 *------------------------------------------------------------------------- * Front Range village onsite routing 0 360 286 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond D 0 286 601 10 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.03 0.70 1.62 0.93 4.12 1.04 6.92 1.14 9.87 1.24 12.99 1.32 16.28 1.41 17.94 1.42 19.80 104.84 296 601 276 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 1.42 0 104.26 102.84 0 276 207 0 2 1.5 362 0.0020 0 0 0.013 1.50 0 207 287 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond c 0 287 277 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.17 0.72 0.31 0.86 0.49 0.98 0.70 1.09 0.95 1.19 1.25 1.28 1.59 1.36 1.97 1.44 0 277 208 0 2 1.5 217 0.0020 0 0 0.013 1.50 0 208 288 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond B 0 288 278 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.01 1.59 0.19 9.93 0.60 24.27 1.12 33.73 1.71 37.47 2.38 38.00 0 278 209 0 2 4 850 0.0020 4 4 0.013 4.00 0 209 289 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond A 0 289 279 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.04 9.77 0.60 10.70 1.89 12.41 3.28 13.92 4.77 15.27 6.34 16.30 7.70 16.35 0 279 270 0 2 3 570 0.0020 0 0 0.013 3.00 *------------------------------------------------------------------------- * Paragon (Previously BSI Logic) pond routing through FRv Basins 210 and 250 0 205 216 0 3 0 0 0.0000 0 0 0.000 0.00 * Paragon Pond 0 216 204 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.46 0.53 1.53 0.80 2.89 0.99 4.52 1.15 6.44 1.30 0 204 249 0 2 2.5 143 0.0020 0 0 0.013 2.50 0 250 249 0 3 0 0 0.0000 0 0 0.000 0.00 0 249 248 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond F Page 4 frv-100-int-s.in 0 248 251 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.01 2.58 0.04 3.07 0.42 5.39 0.87 6.97 1.37 8.26 1.65 8.83 0 251 200 0 2 2 230 0.0020 0 0 0.013 2.00 0 210 200 0 3 0 0 0.0000 0 0 0.000 0.00 0 200 201 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond E 0 201 202 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.01 4.41 0.18 7.09 0.68 10.21 1.23 12.58 1.83 14.57 0 202 270 0 4 15 902 0.0020 4 8 0.035 6.00 87 902 0.0020 20 20 0.020 2.00 *------------------------------------------------------------------------- 0 270 212 0 3 0 0 0.0000 0 0 0.000 0.00 0 242 240 0 4 0.5 1779 0.0070 12 12 0.016 0.50 10 1779 0.0070 20 20 0.020 5.00 0 240 235 0 3 0 0 0.0000 0 0 0.000 0.00 0 238 237 0 5 3 787 0.0060 0 0 0.013 3.00 1 787 0.0060 20 20 0.020 5.00 0 237 236 0 3 0 0 0.0000 0 0 0.000 0.00 0 236 232 0 5 3 740 0.0050 0 0 0.013 3.00 1 740 0.0050 20 20 0.020 5.00 0 235 234 0 3 0 0 0.0000 0 0 0.000 0.00 0 234 233 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.44 3.1 2.350 4.2 2.81 4.6 4.69 5.1 6.39 100.6 7.13 203.7 8.21 401.9 230 233 232 5 3 0 0 0.0000 0 0 0.000 0.00 0 0 5 0 101 95 204 198 402 396 0 232 231 0 3 0 0 0.0000 0 0 0.000 0.00 0 231 227 0 5 3 311 0.0030 0 0 0.013 3.00 1 311 0.0030 20 20 0.020 5.00 0 230 229 0 3 0 0 0.0000 0 0 0.000 0.00 0 229 228 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.07 2.0 1.12 2.9 3.46 3.5 4.60 200.8 5.29 401 225 228 227 4 3 0 0 0.0000 0 0 0.000 0.00 0 0 4 0 201 197 401 397 0 227 226 0 3 0 0 0.0000 0 0 0.000 0.00 0 226 222 0 5 3 477 0.0060 0 0 0.013 3.00 1 477 0.0060 20 20 0.020 5.00 0 225 224 0 3 0 0 0.0000 0 0 0.000 0.00 0 224 223 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.002 1.0 0.51 2.7 1.99 3.6 3.90 4.3 4.46 4.5 4.85 200 5.10 400 155 223 222 4 3 0 0 0.0000 0 0 0.000 0.00 0 0 4 0 200 195 400 395 0 222 221 0 3 0 0 0.0000 0 0 0.000 0.00 0 221 152 0 5 3 1569 0.0240 0 0 0.013 3.00 1 1569 0.0140 20 20 0.020 8.00 0 152 0 3 0 0 0.0000 0 0 0.000 0.00 0 215 214 0 3 0 0 0.0000 0 0 0.000 0.00 0 214 203 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.08 12.6 0.411 14.9 4.00 21.8 9.62 26.9 12.17 28.7 13.04 149 13.17 Page 5 frv-100-int-s.in 149.4 14.04 149.9 297 203 213 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 29.5 0 150 120 0 213 212 0 5 3 610 0.0030 0 0 0.013 3.00 1 610 0.0030 20 20 0.020 5.00 0 212 211 0 3 0 0 0.0000 0 0 0.000 0.00 0 211 125 0 4 5 1670 0.0060 4 4 0.035 6.00 53 1670 0.0060 4 40 0.020 3.00 0 125 111 0 3 0 0 0.0000 0 0 0.000 0.00 0 111 110 0 4 10 1400 0.0040 0 0 0.013 4.00 10 1400 0.0040 20 20 0.020 3.50 0 110 105 0 3 0 0 0.0000 0 0 0.000 0.00 0 105 104 0 3 0 0 0.0000 0 0 0.000 0.00 100 104 103 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 20 0 2000 1980 0 103 120 0 2 2.8 617 0.0050 0.00 0.00 0.013 2.80 0 129 120 0 1 130 956 0.0080 60.00 6.00 0.030 8.00 0 120 100 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 100 101 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 101 99 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 1.54 4.0 6.085 13.9 11.93 22.0 19.08 377.8 27.46 1130 29.80 1400 0 154 221 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 150 146 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 146 145 0 4 31 1384 0.0020 1.50 1.50 0.035 6.00 62 1384 0.0020 0.00 15.00 0.050 12.00 0 145 141 0 3 0 0 0.0000 0.000 0.000 0.000 0.00 0 141 139 0 4 31 1193 0.0020 1.50 1.50 0.035 6.00 62 1193 0.0020 0.00 15.00 0.050 12.00 0 140 139 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.01 1.0 0.39 7.0 1.65 8.9 3.96 10.5 5.45 11.2 7.07 40.0 7.99 100.0 0 139 136 0 3 0 0 0.0000 0.000 0.000 0.000 0.00 0 136 135 0 4 31 910 0.0020 1.50 1.50 0.035 6.00 62 910 0.0020 0.00 15.00 0.050 12.00 0 135 116 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 116 115 0 4 31 2552 0.0020 1.50 1.50 0.035 6.00 62 2552 0.0020 0.00 15.00 0.050 12.00 95 99 115 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 25 0 1012 987 0 115 90 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 95 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 -1 11 150 2 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 300 100 300 0 10 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 155 154 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 91 90 80 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 444 0 6000 5556 0 80 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 91 95 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 7 5 201 216 248 286 287 288 289 ENDPROGRAM Page 6 0 ModSWMM OUTPUT Stantec .` ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** V:\52870f\acbve\7 87010251 \Reports\Drainage\ModSW MM\frv-100-int-s.out 1 Print I Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 NUMBER OF TIME STEPS 999 INTEGRATION TIME INTERVAL (MINUTES) 1.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 1.22 1.06 1.00 .95 .91 .87 .73 .71 .69 .67 9.95 4.12 2.48 1.46 .84 .81 .78 .75 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 2 P6ni Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 100 100 2881.0 12.3 32.0 .0390 .016 .250 .100 .300 .51 .50 .00180 1 105 105 641.0 3.4 10.0 .0230 .016 .250 .100 .300 .51 .50 .00180 1 110 110 2758.0 17.6 90.0 .0300 .016 .250 .100 .300 .51 .50 .00180 1 115 115 3722.0 18.8 13.5 .0860 .016 .250 .100 .300 .51 .50 .00180 1 120 120 4665.0 36.2 86.5 .0160 .016 .250 .100 .300 .51 .50 .00180 1 125 125 3494.0 36.5 68.8 .0230 .016 .250 .100 .300 .51 .50 .00180 1 130 129 8604.0 39.7 78.0 .0310 .016 .250 .100 .300 .51 .50 .00180 1 135 135 4127.0 21.6 13.3 .0290 .016 .250 .100 .300 .51 .50 .00180 1 140 140 8223.0 58.9 24.8 .0090 .016 .250 .100 .300 .51 .50 .00180 1 145 145 4915.0 38.7 12.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 150 10 3026.0 19.8 6.8 .0510 .016 .250 .100 .300 .51 .50 .00180 1 155 115 9801.0 17.1 70.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 205 205 2497.0 17.2 82.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 206 206 7957.0 54.8 81.2 .0170 .016 .250 .100 .300 .51 .50 .00180 1 207 207 1812.0 4.0 81.6 .0130 .016 .250 .100 .300 .51 .50 .00180 1 208 208 5467.0 17.9 89.5 .0200 .016 .250 .100 .300 .51 .50 .00180 1 209 209 2960.0 18.1 88.7 .0150 .016 .250 .100 .300 .51 .50 .00180 1 210 210 2654.0 3.9 86.6 .0420 .016 .250 .100 .300 .51 .50 .00180 1 215 215 9265.0 41.9 38.5 .0070 .016 .250 .100 .300 .51 .50 .00180 1 220 215 4630.0 16.9 38.5 .0120 .016 .250 .100 .300 .51 .50 .00180 1 225 225 5678.0 21.9 38.5 .0240 .016 .250 .100 .300 .51 .50 .00180 1 230 230 5639.0 18.9 38.5 .0180 .016 .250 .100 .300 .51 .50 .00180 1 235 235 5949.0 29.5 38.5 .0130 .016 .250 .100 .300 .51 .50 .00180 1 240 240 5007.0 32.3 41.5 .0120 .016 .250 .100 .300 .51 .50 .00180 1 243 243 3359.0 5.5 92.7 .0080 .016 .250 .100 .300 .51 .50 .00180 1 244 244 1098.0 2.5 54.8 .0170 .016 .250 .100 .300 .51 .50 .00180 1 245 245 1245.0 2.8 63.2 .0130 .016 .250 .100 .300 .51 .50 .00180 1 250 250 1654.0 8.5 79.8 .0180 .016 .250 .100 .300 .51 .50 .00180 1 296 296 2703.0 12.9 5.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 297 297 4199.0 28.9 5.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 300 300 3357.0 23.1 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 301 301 2977.0 20.5 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 302 302 1992.0 11.3 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 305 305 7663.0 24.1 38.5 .0150 .016 .250 .100 .300 .51 .50 .00180 1 310 310 12018.0 84.7 37.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 315 315 9023.0 60.9 38.5 .0060 .016 .250 .100 .300 .51 .50 .00180 1 320 320 5102.0 29.4 38.5 .0210 .016 .250 .100 .300 .51 .50 .00180 1 325 325 2084.0 14.4 40.0 .0210 .016 .250 .100 .300 .51 .50 .00180 1 330 330 2038.0 15.3 46.8 .0130 .016 .250 .100 .300 .51 .50 .00180 1 335 334 3567.0 30.3 27.8 .0150 .016 .250 .100 .300 .51 .50 .00180 1 V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 3 Print Stantec 340 340 4623.0 34.6 30.0 .0270 .016 .250 .100 .300 .51 .50 .00180 1 345 345 5109.0 44.8 27.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 350 345 6639.0 34.9 90.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 355 355 2940.0 27.4 48.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 400 400 6703.0 51.7 71.5 .0240 .016 .250 .100 .300 .51 .50 .00180 1 405 405 7493.0 41.8 60.8 .0180 .016 .250 .100 .300 .51 .50 .00180 1 410 410 7013.0 58.6 48.5 .0090 .016 .250 .100 .300 .51 .50 .00180 1 415 415 5458.0 42.1 40.0 .0090 .016 .250 .100 .300 .51 .50 .00180 1 420 421 7066.0 109.0 11.6 .0080 .016 .250 .100 .300 .51 .50 .00180 1 425 425 5627.0 31.0 38.5 .0090 .016 .250 .100 .300 .51 .50 .00180 1 430 430 2979.0 22.5 38.5 .0180 .016 .250 .100 .300 .51 .50 .00180 1 435 435 3776.0 31.9 10.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 440 440 2603.0 9.5 38.5 .0110 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 53 TOTAL TRIBUTARY AREA (ACRES), 1512.80 V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 4 Print . Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 1512.800 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .775 TOTAL WATERSHED OUTFLOW (INCHES) 2.835 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .060 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 5 Prini, Stentec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 430 440 0 5 PIPE 1.3 600. .0130 .0 .0 .013 1.25 0 OVERFLOW 1.0 513. .0152 20.0 20.0 .020 5.00 440 437 0 3 .0 0. .0010 .0 .0 .001 10.00 0 437 426 3 3 .0 0. .0010 .0 .0 .001 10.00 436 DIVERSION TO GUTTER NUMBER 436 TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 4.0 .0 10000.0 9996.0 426 425 0 2 PIPE 1.3 1339. .0100 .0 .0 .013 1.25 0 436 435 0 1 CHANNEL 15.0 1889. .0080 8.0 8.0 .035 5.00 0 425 423 0 3 .0 0. .0010 .0 .0 .001 10.00 0 435 434 0 3 .0 0. .0010 .0 .0 .001 10.00 0 423 415 0 5 PIPE 1.5 1457. .0050 .0 .0 .013 1.50 0 OVERFLOW 1.0 1457. .0050 20.0 20.0 .020 5.00 434 415 0 4 CHANNEL .5 768. .0050 12.0 12.0 .016 .50 0 OVERFLOW 10.0 768. .0050 20.0 20.0 .020 5.00 415 400 0 3 .0 0. .0010 .0 .0 .001 10.00 0 410 400 0 5 PIPE 2.5 1301. .0090 .0 .0 .013 2.50 0 OVERFLOW 1.0 1380. .0085 20.0 20.0 .020 5.00 405 400 0 5 PIPE 3.0 1065. .0090 .0 .0 .013 3.00 0 OVERFLOW 80.0 1065. .0090 1.0 1.0 .005 5.00 400 401 0 3 .0 0. .0010 .0 .0 .001 10.00 0 401 340 11 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 8.0 4.8 12.7 9.0 16.7 9.0 23.0 10.3 57.9 11.6 70.8 16.7 80.7 31.3 98.0 52.9 115.4 95.9 705.0 355 340 0 4 CHANNEL .3 608. .0050 12.0 .0 .016 .50 0 OVERFLOW 5.0 608. .0050 20.0 .0 .020 5.00 340 342 0 3 .0 0. .0010 .0 .0 .001 10.00 0 342 341 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 2.9 5.7 23.5 14.7 53.0 28.1 73.1 47.4 88.5 72.5 103.6 95.5 111.0 341 325 0 5 PIPE 3.5 1200. .0050 .0 .0 .013 3.50 0 OVERFLOW 1.0 1200. .0050 20.0 20.0 .020 5.00 325 324 0 3 .0 0. .0010 .0 .0 .001 10.00 0 324 314 0 5 PIPE 3.5 1242. .0030 .0 .0 .013 3.50 0 OVERFLOW 1.0 1242. .0030 20.0 20.0 .020 5.00 421 347 5 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .2 2.1 8.3 10.5 34.0 17.4 43.6 18.7 347 314 0 2 PIPE 1.5 1139. .0150 .0 .0 .013 1.50 0 345 344 0 3 .0 0. .0010 .0 .0 .001 10.00 0 344 314 5 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 1.9 2.8 16.8 10.1 27.6 21.6 35.0 314 313 0 3 .0 0. .0010 .0 .0 .001 10.00 0 313 312 0 5 PIPE 2.0 409. .0090 .0 .0 .013 2.00 0 OVERFLOW 10.0 409. .0090 5.0 5.0 .035 6.00 330 312 5 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW V:\52870f\active\l87010251 \Reports\Drainage\ModSW MM\frv-100-int-s.out 6 Print Stantec 312 0 311 0 334 0 333 0 320 0 319 0 11.0 318 0 305 0 304 0 100.0 303 0 310 0 309 0 27.4 308 242 307 0 315 0 33.2 306 0 300 0 291 0 301 0 321 0 292 0 302 0 322 0 299 0 245 0 247 0 10.0 244 0 246 0 0 .0 .0 4.0 1.0 6.6 2.0 8.0 3.0 104.0 311 0 3 .0 0. .0010 .0 .0 .001 310 0 5 PIPE 2.0 1566. .0090 .0 .0 .013 OVERFLOW 10.0 1566. .0090 5.0 5.0 .035 333 5 2 PIPE .1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 5.6 3 21.9 6.5 34.0 16.4 100.0 320 0 5 PIPE 2.0 1064. .0090 .0 .0 .013 OVERFLOW 5.0 1075. .0089 3.0 3.0 .035 319 0 3 .0 0. .0010 .0 .0 .001 318 9 2 PIPE .1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .4 .5 3.3 2.1 6.2 4.2 9.2 6.3 17.5 7.1 109.6 7.9 260.7 305 0 5 PIPE 1.3 1320. .0050 .0 .0 .013 OVERFLOW 1.0 1384. .0048 20.0 20.0 .020 304 0 3 .0 0. .0010 .0 .0 .001 303 8 2 PIPE .1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 13.6 .6 28.3 2.2 37.7 6.5 46.0 7.8 200.0 8.2 300.0 310 0 5 PIPE 2.0 671. .0060 .0 .0 .013 OVERFLOW 10.0 671. .0060 5.0 5.0 .035 309 0 3 .0 0. .0010 .0 .0 .001 308 7 2 PIPE .1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .7 1.4 17.6 7.9 25.5 20.3 26.9 30,2 273.0 307 3 3 .0 0. .0010 .0 .0 .001 DIVERSION TO GUTTER NUMBER 242 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 27.4 .0 273.0 245.6 306 0 2 PIPE 2.5 1351. .0060 .0 306 10 2 PIPE. .1 1. .0100 .0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 10.4 1.0 15.0 3.1 22.9 11.4 35.7 13.1 36.2 13.6 106.0 14.0 206.0 238 0 3 .0 0. .0010 .0 291 .0 3 .0 0. .0010 .0 321 0 2 PIPE 4.0 660. .0050 .0 321 0 3 .0 0. .0010 .0 292 0 3 .0 0. .0010 .0 360 0 2 PIPE 4.0 500. .0050 .0 322 0 3 .0 0. .0010 .0 299 0 3 .0 0. .0010 .0 296 0 2 PIPE 6.0 270. .0100 .0 247 0 3 .0 0. .0010 .0 294 6 2 PIPE .1 1. .0100 .0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.1 .1 3.4 .1 4.4 246 0 3 .0 0. .0010 .0 290 7 2 PIPE .1 1. .0100 .0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.9 .0 3.1 .l 3.9 5.2 .3 10.0 290 243 0 2 PIPE 2.0 600. .0100 .0 0 V:\52870f\active\187010251 \Reports\Drainage\ModSW MM\frv-100-int-s.out .0 .013 .0 .010 5.5 29.0 .0 .001 .0 .001 .0 .013 .0 .001 .0 .001 .0 .013 .0 .001 .0 .001 .0 .013 .0 .001 .0 .010 .3 5.1 .0 .001 .0 .010 .1 4.6 .0 .013 10.00 2.00 6.00 .10 2.00 6.00 10.00 .10 5.9 1.25 5.00 10.00 .10 7.1 2.00 6.00 10.00 .10 25.0 10.00 2.50 .10 8.3 10.00 10.00 4.00 10.00 10.00 4.00 10.00 10.00 6.00 10.00 .10 .4 10.00 .10 2 2.00 7 Print Stantec 294 243 0 2 PIPE 2.0 834. .0100 .0 .0 .013 0 243 295 0 3 .0 0. .0010 .0 .0 .001 0 295 206 0 2 PIPE 9.0 1723. .0020 .0 .0 .013 0 206 360 0 3 .0 0. .0010 .0 .0 .001 0 296 293 0 3 .0 0. .0010 .0 .0 .001 0 293 297 0 1 CHANNEL 200.0 1800. .0050 4.0 4.0 .035 0 297 298 0 3 .0 0. .0010 .0 .0 .001 0 298 212 4 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 3.0 13.0 10.7 15.9 16.2 17.2 360 286 0 3 .0 0. .0010 .0 .0 .001 0 286 601 10 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .7 1.6 .9 4.1 1.0 6.9 1.1 1.2 13.0 1.3 16.3 1.4 17.9 1.4 19.8 104.8 601 276 3 3 .0 0. .0010 .0 .0 .001 296 DIVERSION TO GUTTER NUMBER 296 - TOTAL 0 VS DIVERTED Q IN CFS 0 .0 1.4 .0 104.3 102.8 276 207 0 2 PIPE 1.5 362. .0020 .0 .0 .013 0 207 287 0 3 .0 0. .0010 .0 .0 .001 0 287 277 9 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 .7 .3 .9 .5 1.0 .7 1.1 1.2 1.3 1.3 1.6 1.4 2.0 1.4 277 208 0 2 PIPE 1.5 217. .0020 .0 .0 .013 0 208 288 0 3 .0 0. Y .0010 .0 .0 .001 0 288 278 7 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.6 .2 9.9 .6 24.3 1.1 33.7 37.5 2.4 38.0 278 209 0 2 PIPE 4.0 850. .0020 4.0 4.0 .013 0 209 289 0 3 .0 0. .0010 .0 .0 .001 0 289 279 8 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 9.8 .6 10.7 1.9 12.4 3.3 13.9 15.3 6.3 16.3 7.7 16.4 279 270 0 2 PIPE 3.0 570. .0020 .0 .0 .013 0 205 216 0 3 .0 0. .0010 .0 .0 .001 0 216 204 6 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .5 .5 1.5 .8 2.9 1.0 4.5 1.1 1.3 204 249 0 2 PIPE 2.5 143. .0020 .0 .0 .013 0 250 249 0 3 .0 0. .0010 .0 .0 .001 0 249 248 0 3 .0 0. .0010 .0 .0 .001 0 248 251 7 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.6 .0 3.1 .4 5.4 .9 7.0 8.3 1.6 8.8 251 200 0 2 PIPE 2.0 230. .0020 .0 .0 .013 0 210 200 0 3 .0 0. .0010 .0 .0 .001 0 200 201 0 3 .0 0. .0010 .0 .0 .001 0 201 202 6 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW V:\52870f\active\l87010251 \Reports\Drainage\Mod3VVMM\frv-100-int-s.out 2.00 10.00 9.00 10.00 10.00 1.00 10.00 .10 10.00 .10 9.9 10.00 1.50 10.00 .10 .9 1.50 10.00 .10 1.7 4.00 10.00 .10 4.8 3.00 10.00 .10 6.4 2.50 10.00 10.00 .10 1.4 2.00 10.00 10.00 .10 8 Print Stantec .0 .0 .0 4.4 .2 7.1 .7 10.2 1.2 12.6 1.8 14.6 202 270 0 4 CHANNEL 15.0 902. .0020 4.0 8.0 .035 6.00 0 OVERFLOW 87.0 902. .0020 20.0 20.0 .020 2.00 270 212 0 3 .0 0. .0010 .0 .0 .001 10.00 0 242 240 0 4 CHANNEL .5 1779. .0070 12.0 12.0 .016 .50 0 OVERFLOW 10.0 1779. .0070 20.0 20.0 .020 5.00 240 235 0 3 .0 0. .0010 .0 .0 .001 10.00 0 238 237 0 5 PIPE 3.0 787. .0060 .0 .0 .013 3.00 0 OVERFLOW 1.0 787. .0060 20.0 20.0 .020 5.00 237 236 0 3 .0 0. .0010 .0 .0 .001 10.00 0 236 232 0 5 PIPE 3.0 740. .0050 .0 .0 .013 3.00 0 OVERFLOW 1.0 740. .0050 20.0 20.0 .020 5.00 235 234 0 3 .0 0. .0010 .0 .0 .001 10.00 0 234 233 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 3.1 2.4 4.2 2.8 4.6 4.7 5.1 6.4 100.6 7.1 203.7 8.2 401.9 233 232 5 3 .0 0. .0010 .0 .0 .001 10.00 230 DIVERSION TO GUTTER NUMBER 230 - TOTAL O VS DIVERTED 0 IN CFS 0 .0 5.0 .0 101.0 95.0 204.0 198.0 402.0 396.0 232 231 0 3 .0 0. .0010 .0 .0 .001 10.00 0 231 227 0 5 PIPE 3.0 311. .0030 .0 .0 .013 3.00 0 OVERFLOW 1.0 311. .0030 20.0 20.0 .020 5.00 230 229 0 3 .0 0. .0010 .0 .0 .001 10.00 0 229 228 6 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .1 2.0 1.1 2.9 3.5 3.5 4.6 200.8.e 5.3 401.0 228 227 4 3 .0 0. .0010 .0 .0 .001 10.00 225 DIVERSION TO GUTTER NUMBER 225 - TOTAL 0 VS DIVERTED O IN CFS 0 .0 4.0 .0 201.0 197.0 401.0 397.0 227 226 0 3 .0 0. .0010 .0 .0 .001 10.00 0 226 222 0 5 PIPE 3.0 477. .0060 .0 .0 .013 3.00 0 OVERFLOW 1.0 477. .0060 20.0 20.0 .020 5.00 225 224 0 3 .0 0. .0010 .0 .0 .001 10.00 0 224 223 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .5 2.7 2.0 3.6 3.9 4.3 4.5 4.5 4.8 200.0 5.1 400.0 223 222 4 3 .0 0. .0010 .0 .0 .001 10.00 155 DIVERSION TO GUTTER NUMBER 155 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 4.0 .0 200.0 195.0 400.0 395.0 222 221 0 3 .0 0. .0010 .0 .0 .001 10.00 0 221 152 0 5 PIPE 3.0 1569. .0240 .0 .0 .013 3.00 0 OVERFLOW 1.0 1569. .0240 20.0 20.0 .020 8.00 152 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 215 214 0 3 .0 0. .0010 .0 .0 .001 10.00 0 214 203 9 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 12.6 .4 14.9 4.0 21.8 9.6 26.9 12.2 28.7 13.0 149.0 13.2 149.4 14.0 149.9 203 213 3 3 .0 0. .0010 .0 .0 .001 10.00 297 DIVERSION TO GUTTER NUMBER 297 - TOTAL 0 VS DIVERTED O IN CFS 0 .0 29.5 .0 150.0 120.0 213 212 0 5 PIPE 3.0 610. .0030 .0 .0 .013 3.00 0 OVERFLOW 1.0 610. .0030 20.0 20.0 .020 5.00 212 211 0 3 .0 0. .0010 .0 .0 .001 10.00 0 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 9 Print Stantec 211 125 0 4 CHANNEL 5.0 1670. .0060 4.0 4.0 .035 6.00 0 OVERFLOW 53.0 1670. .0060 4.0 40.0 .020 3.00 125 ill 0 3 .0 0. .0010 .0 .0 .001 10.00 0 ill 110 0 4 CHANNEL 10.0 1400. .0040 .0 .0 .013 4.00 0 OVERFLOW 10.0 1400. .0040 20.0 20.0 .020 3.50 110 105 0 3 .0 0. .0010 .0 .0 .001 10.00 0 105 104 0 3 .0 0. .0010 .0 .0 .001 10.00 0 104 103 3 3 .0 0. .0010 .0 .0 .001 10.00 100 DIVERSION TO GUTTER NUMBER 100 TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 20.0 .0 2000.0 1980.0 103 120 0 2 PIPE 2.8 617. .0050 .0 .0 .013 2.80 0 129 120 0 1 CHANNEL 130.0 956. .0080 60.0 6.0 .030 8.00 0 120 100 0 3 .0 0. .0010 .0 .0 .001 10.00 0 100 101 0 3 .0 0. .0010 .0 .0 .001 10.00 0 101 99 7 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.5 4.0 6.1 13.9 11.9 22.0 19.1 377.8 27.5 1130.0 29.8 1400.0 154 221 0 3 .0 0. .0010 .0 .0 .001 10.00 0 150 146 0 3 .0 0. .0010 .0 .0 .001 10.00 0 146 145 0 4 CHANNEL 31.0 1384. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 1384. .0020 .0 15.0 .050 12.00 145 141 0 3 .0 0. .0010 .0 .0 .001 10.00 0 141 139 0 4 CHANNEL 31.0 1193. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 1193. .0020 .0 15.0 .050 12.00 140 139 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .4 7.0 1.6 8.9 4.0 10.5 5.5 11.2 7.1 40.0 8.0 100.0 139 136 0 3 .0 0. .0010 .0 .0 .001 10.00 0 136 135 0 4 CHANNEL 31.0 910. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 910. .0020 .0 15.0 .050 12.00 135 116 0 3 .0 0. .0010 .0 .0 .001 10.00 0 116 115 0 4 CHANNEL 31.0 2552. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 2552. .0020 .0 15.0 .050 12.00 99 115 3 3 .0 0. .0010 .0 .0 .001 10.00 95 DIVERSION TO GUTTER NUMBER 95 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 25.0 .0 1012.0 987.0 115 90 0 3 .0 0. .0010 .0 .0 .001 10.00 0 95 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 11 150 2 3 .0 0. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS'INFLOW IN CFS .0 300.0 100.0 300.0 10 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 155 154 0 3 .0 0. .0010 .0 .0 .001 10.00 0 90 80 3 3 .0 0. .0010 .0 .0 .001 10.00 91 DIVERSION TO GUTTER NUMBER 91 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 444.0 .0 6000.0 5556.0 80 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 91 95 0 3 .0 0. .0010 .0 .0 .001 10.00 0 TOTAL NUMBER OF GUTTERS/PIPES, 145 VA52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 10 Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 101 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 436.4 103 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 348.2 111 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 327.2 116 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119.2 129 0 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0 0 0 0 0 39.7 136 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97.6 140 0 0 0 0 0 0 0 0 0 0 140 0 0 0 0 0 0 0 0 0 58.9 141 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.7 146 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 201 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.6 202 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.6 204 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.2 211 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 290.7 213 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58.8 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58.8 216 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.2 221 222 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 901.5 224 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.9 226 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 879.6 229 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.9 231 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 860.7 234 235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.8 236 237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798.9 238 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798.9 242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 246 244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 247 245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 248 249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 251 248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 276 601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.2 277 287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113.2 278 288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 131.1 279 289 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 149.2 286 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.2 287 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113.2 288 208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 131.1 289 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 149.2 290 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 291 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.1 292 321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43.6 V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 11 Pdni Stantec 293 296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.2 294 247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 295 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.8 298 297 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53.1 299 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.3 303 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.8 304 305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.8 307 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738.0 309 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738.0 311 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 569.5 313 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 554.2 315 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 60.9 318 319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59.7 319 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59.7 324 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 365.5 330 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 15.3 333 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.3 334 0 0 0 0 0 0 0 0 0. 0 335 0 0 0 0 0 0 0 0 0 30.3 341 342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351.1 342 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351.1 344 345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79.7 347 421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.0 355 0 0 0 0 0 0 0 0 0 0 355 0 0 0 0 0 0 0 0 0 27.4 401 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 289.1 405 0 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 41.8 410 0 0 0 0 0 0 0 0 0 0 410 0 0 0 0 0 0 0 0 0 58.6 421 0 0 0 0 0 0 0 0 0 0 420 0 0 0 0 0 0 0 0 0 109.0 423 425 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63.0 426 437 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.0 430 0 0 0 0 0 0 0 0 0 0 430 0 0 0 0 0 0 0 0 0 22.5 434 435 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31.9 436 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 107 TO GUTTER 100 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 131 TO GUTTER 95 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 139 TO GUTTER 91 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. V:\52870t\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-stout 12 Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 7 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 201 216 248 286 287 288 289 0 1. .0 .0 .0 .0 .0 .0 .0 .DD(S) OO(S) OO(S) OO(S) .DD(S) OO(S) OO(S) 0 6. .9 .0 .6 .5 .0 1.3 1.1 .00(S) .01(S) OO(S) .02(S) .00(S) .01(S) OO(S) 0 11. 4.4 .1 2.6 .7 .1 3.5 6.4 .01(S) .04(S) .01(S) .15(S) .02(S) .05(S) .03(S) 0 16. 4.7 .2 3.1 .8 .2 7.8 9.9 .03(S) .13(S) .04(S) .53(S) .05(S) .14(S) .08(S) 0 21. 5.3 .3 3.5 .9 .4 13.5 10.1 .07(S) .29(S) .11(S) 1.28(S) .10(S) .29(S) .26(S) 0 26. 6.3 .6 4.2 1.0 .7 21.0 10.7 .13(S) .55(S) .22(S) 2.46(S) .17(S) .51(S) .58(S) 0 31. 7.6 .7 5.5 1.1 .9 31.1 11.5 .27(S) 1.06(S) .46(S) 4.79(S) .31(S) .97(S) 1.23(S) 0 36. 9.1 .9 7.1 1.2 1.0 37.6 13.0 .50(S) 2.02(S) .91(S) 8.92(S) .56(S) 1.86(S) 2.42(S) 0 41. 9.7 1.0 7.8 1.3 1.1 37.9 13.9 .60(S) 2.65(S) 1.17(S) 11.98(S) .69(S) 2.19(S) 3.25(S) 0 46. 10.0 1.0 8.1 1.4 1.1 37.9 14.4 .65(S) 3.02(S) 1.30(S) 14.16(S) .77(S) 2.28(S) 3.81(S) 0 51. 10.2 1.0 8.2 1.4 1.1 37.9 14.8 .68(S) 3.26(S) 1.36(S) 15.85(S) .82(S) 2.24(S) 4.21(S) 0 56. 10.3 1.1 8.3 1.4 1.2 37.8 15.1 .70(S) 3.42(S) 1.39(S) 17.30(S) .85(S) 2.14(S) 4.55(S) 1 1. 10.3 1.1 8.3 35.8 1.2 37.7 15.3 .71(S) 3.56(S) 1.41(S) 18.56(S) .89(S) 2.02(S) 4.85(S) 1 6. 10.4 1.1 8.4 82.6 1.2 37.6 15.5 .72(S) 3.67(S) 1.41(S) 19.40(S) .91(S) 1.89(S) 5.13(S) 1 11. 10.4 1.1 8.4 99.7 1.2 37.5 15.7 .73(S) 3.78(S) 1.42(S) 19.71(S) .94(S) 1.76(S) 5.40(S) 1 16. 10.5 1.1 8.4 103.0 1.2 36.9 15.9 .74(S) 3.87(S) 1.42(S) 19.77(S) .96(S) 1.62(S) 5.66(S) 1 21. 10.5 1.1 8.4 102.7 1.2 36.0 16.0 .75(S) 3.97(S) 1.42(S) 19.76(S) .99(S) 1.48(S) 5.91(S) 1 26. 10.5 1.1 8.4 100.5 1.2 35.2 16.2 .75(S) 4.05(S) 1.41(S) 19.72(S) 1.01(S) 1.34(S) 6.15(S) 1 31. 10.6 1.1 8.3 97.3 1.2 34.3 16.3 .76(S) 4.14(S) 1.41(S) 19.66(S) 1.03(S) 1.21(S) 6.38(S) 1 36. 10.6 1.1 8.3 93.5 1.2 32.9 16.3 .76(S) 4.22(S) 1.40(S) 19.60(S) 1.05(S) 1.08(S) 6.60(S) 1 41. 10.6 1.1 8.3 89.4 1.2 30.7 16.3 .77(S) 4.29(S) 1.39(S) 19.52(S) 1.07(S) .95(S) 6.80(S) 1 46. 10.6 1.1 8.3 85.4 1.2 28.7 16.3 .77(S) 4.36(S) 1.38(S) 19.45(S) 1.09(S) .84(S) 6.99(S) 1 51. 10.6 1.2 8.3 81.4 1.2 26.9 16.3 .77(S) 4.43(S) 1.37(S) 19.38(S) 1.11(S) .74(S) 7.16(S) 1 56. 10.6 1.2 8.2 77.7 1.3 25.3 16.3 77(S) 4.50(S) 1.35(S) 19.31(S) 1.13(S) .65(S) 7.31(S) 2 1. 10.6 1.2 8.2 73.7 1.3 23.2 16.4 .77(S) 4.56(S) 1.34(S) 19.24(S) 1.15(S) .57(S) 7.45(S) 2 6. 10.6 1.2 8.1 64.5 1.3 19.6 16.4 .76(S) 4.60(S) 1.31(S) 19.08(S) 1.15(S) .47(S) 7.54(S) 2 11. 10.5 1.2 8.0 53.2 1.3 16.1 16.4 .74(S) 4.61(S) 1.27(S) 18.87(S) 1.16(S) .37(S) 7.58(S) 2 16. 10.4 1.2 7.9 42.9 1.3 13.1 16.4 .72(S) 4.62(S) 1.23(S) 18.69(S) 1.16(S) .28(S) 7.59(S) 2 21. 10.3 1.2 7.8 34.3 1.3 10.7 16.4 .71(S) 4.62(S) 1.19(S) 18.53(S) 1.16(S) .21(S) 7.58(S) 2 26. 10.3 1.2 7.7 27.3 1.3 8.4 16.4 .69(S) 4.62(S) 1.14(S) 18.41(S) 1.16(S) .16(S) 7.55(S) 2 31. 10.2 1.2 7.6 21.8 1.3 6.6 16.4 .67(S) 4.61(S) 1.10(S) 18.31(S) 1.16(S) .12(S) 7.50(S) 2 36. 10.1 1.2 7.5 17.5 1.3 5.2 16.4 .65(S) 4.61(S) 1.06(S) 18.23(S) 1.17(S) .09(S) 7.44(S) 2 41. 10.0 1.2 7.4 14.1 1.3 4.1 16.3 .64(S) 4.60(S) 1.02(S) 18.17(S) 1.17(S) .06(S) 7.37(S) 2 46. 9.8 1.2 7.2 11.5 1.3 3.4 16.3 .62(S) 4.60(S) .97(S) 18.12(S) 1.17(S) .05(S) 7.28(S) 2 51. 9.7 1.2 7.1 9.5 1.3 2.8 16.3 .60(S) 4.59(S) .93(S) 18.08(S) 1.17(S) .04(S) 7.20(S) 2 56. 9.6 1.2 7.0 7.9 1.3 2.4 16.3 .58(S) 4.58(S) .89(S) 18.06(S) 1.17(S) .03(S) 7.11(S) V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 13 Print Stantec 3 1. 9.5 1.2 6.9 6.6 1.3 2.1 16.3 .57(S) 4.58(S) .85(S) 18.03(S) 1.17(S) .02(S) 7.01(S) 3 6. 9.4 1.2 6.8 5.6 1.3 1.9 16.3 .55(S) 4.57(S) .81(S) 18.02(S) 1.17(S) .02(S) 6.92(S) 3 11. 9.3 1.2 6.7 4.8 1.3 1.7 16.3 .53(S) 4.56(S) .78(S) 18.00(S) 1.17(S) .01(S) 6.82(S) 3 16. 9.2 1.2 6.5 4.2 1.3 1.6 16.3 .51(S) 4.56(S) .74(S) 17.99(S) 1.18(S) .01(S) 6.72(S) 3 21. 9.1 1.2 6.4 3.6 1.3 1.4 16.3 .49(S) 4.55(S) .70(S) 17.98(S) 1.18(S) .01(S) 6.62(S) 3 26. 8.9 1.2 6.3 3.2 1.3 1.3 16.3 .48(S) 4.54(S) .67(S) 17.97(S) 1.18(S) .01(S) 6.52(S) 3 31. 8.8 1.2 6.1 2.8 1.3 1.3 16.3 .46(S) 4.53(S) .63(S) 17.96(S) 1.18(S) .01(S) 6.42(S) 3 36. 8.7 1.2 6.0 2.5 1.3 1.3 16.3 .44(S) 4.52(S) .60(S) 17.96(S) 1.18(S) .01(S) 6.31(S) 3 41. 8.6 1.2 5.9 2.2 1.3 1.3 16.2 .42(S) 4.52(S) .57(S) 17.95(S) 1.18(S) .01(S) 6.21(S) 3 46. 8.5 1.2 5.8 2.0 1.3 1.3 16.2 .40(S) 4.51(S) .53(S) 17.95(S) 1.18(S) .01(S) 6.11(S) 3 51. 8.4 1.2 5.7 1.8 1.3 1.3 16.1 .38(S) 4.50(S) .50(S) 17.95(S) 1.18(S) .01(S) 6.01(S) 3 56. 8.3 1.2 5.6 1.6 1.3 1.3 16.0 .37(S) 4.49(S) .47(S) 17.94(S) 1.18(S) .01(S) 5.91(S) 4 1. 8.1 1.2 5.5 1.5 1.3 1.3 16.0 .35(S) 4.49(S) .44(S) 17.94(S) 1.18(S) .01(S) 5.80(S) 4 6. 8.0 1.2 5.4 1.4 1.3 1.3 15.9 .33(S) 4.48(S) .41(S) 17.94(S) 1.19(S) .01(S) 5.70(S) 4 11. 7.9 1.2 5.2 1.4 1.3 1.3 15.8 .31(S) 4.47(S) .38(S) 17.93(S) 1.19(S) .01(S) 5.60(S) 4 16. 7.8 1.2 5.0 1.4 1.3 1.3 15.8 .29(S) 4.46(S) .36(S) 17.93(S) 1.19(S) .01(S) 5.50(S) 4 21. 7.7 1.2 4.9 1.4 1.3 1.3 15.7 .27(S) 4.45(S) .33(S) 17.93(S) 1.19(S) .01(S) 5.40(S) 4 26. 7.6 1.2 4.7 1.4 1.3 1.3 15.6 .25(S) 4.45(S) .31(S) 17.92(S) 1.19(S) .01(S) 5.31(S) 4 31. 7.4 1.2 4.6 1.4 1.3 1.3 15.6 .23(S) 4.44(S) .28(S) 17.92(S) 1.19(S) .01(S) 5.21(S) 4 36. 7.3 1.2 4.4 1.4 1.3 1.3 15.5 .21(S) 4.43(S) .26(S) 17.91(S) 1.19(S) .01(S) 5.11(S) 4 41. 7.2 1.2 4.3 1.4 1.3 1.3 15.4 .19(S) 4.42(S) .24(S) 17.91(S) 1.19(S) .01(S) 5.01(S) 4 46. 7.0 1.2 4.2 1.4 1.3 1.3 15.4 .17(S) 4.42(S) .22(S) 17.90(S) 1.19(S) .01(S) 4.91(S) 4 51. 6.7 1.1 4.0 1.4 1.3 1.3 15.3 .16(S) 4.41(S) .20(S) 17.89(S) 1.19(S) .01(S) 4.82(S) 4 56. 6.4 1.1 3.9 1.4 1.3 1.3 15.2 .14(S) 4.40(S) .18(S) 17.89(S) 1.20(S) .01(S) 4.72(S) 5 1. 6.2 1.1 3.8 1.4 1.3 1.3 15.1 .12(S) 4.39(S) .16(S) 17.88(S) 1.20(S) .01(S) 4.63(S) 5 6. 5.9 1.1 3.7 1.4 1.3 1.3 15.1 .11(S) 4.38(S) .14(S) 17.87(S) 1.20(S) .01(S) 4.53(S) 5 11. 5.7 1.1 3.6 1.4 1.3 1.3 15.0 .09(S) 4.38(S) .12(S) 17.86(S) 1.20(S) .01(S) 4.44(S) 5 16. 5.5 1.1 3.5 1.4 1.3 1.3 14.9 .08(S) 4.37(S) .11(S) 17.85(S) 1.20(S) .01(S) 4.34(S) 5 21. 5.3 1.1 3.4 1.4 1.3 1.3 14.8 .06(S) 4.36(S) .09(S) 17.85(S) 1.20(S) .01(S) 4.25(S) 5 26. 5.1 1.1 3.3 1.4 1.3 1.3 14.7 .05(S) 4.35(S) .08(S) 17.84(S) 1.20(S) .01(S) 4.16(S) 5 31. 4.9 1.1 3.2 1.4 1.3 1.3 14.6 .04(S) 4.35(S) .06(S) 17.83(S) 1.20(S) .01(S) 4.06(S) 5 36. 4.7 1.1 3.1 1.4 1.3 1.3 14.6 .03(S) 4.34(S) .05(S) 17.82(S) 1.20(S) .01(S) 3.97(S) 5 41. 4.5 1.1 3.0 1.4 1.3 1.3 14.5 .02(S) 4.33(S) .03(S) 17.81(S) 1.20(S) .01(S) 3.88(S) 5 46. 3.5 1.1 2.8 1.4 1.3 1.3 14.4 .01(S) 4.32(S) .02(S) 17.80(S) 1.21(S) .01(S) 3.79(S) 5 51. 2.7 1.1 2.6 1.4 1.3 1.3 14.3 .01(S) 4.31(S) .01(S) 17.79(S) 1.21(S) .01(S) 3.70(S) 5 56. 1.9 1.1 1.4 1.4 1.3 1.3 14.2 .00(S) 4.31(S) .01(S) 17.79(S) 1.21(S) .01(S) 3.61(S) 6 1. 1.3 1.1 . 1.2 1.4 1.3 1.3 14.1 .00(S) 4.30(S) .00(S) 17.78(S) 1.21(S) .01(S) 3.52(S) 6 6. 1.2 1.1 1.1 1.4 1.3 1.3 14.1 .00(S) 4.29(S) .00(S) 17.77(S) 1.21(S) .01(S) 3.43(S) 6 11. 1.1 1.1 1.1 1.4 1.3 1.3 14.0 .00(S) 4.28(S) .00(S) 17.76(S) 1.21(S) .01(S) 3.35(S) 6 16. 1.1 1.1 1.1 1.4 1.3 1.3 13.9 .00(S) 4.28(S) .00(S) 17.75(S) 1.21(S) .01(S) 3.26(S) 6 21. 1.1 1.1 1.1 1.4 1.3 1.3 13.8 .00(S) 4.27(S) .00(S) 17.74(S) 1.21(S) .01(S) 3.17(S) 6 26. 1.1 1.1 1.1 1.4 1.3 1.3 13.7 .00(S) 4.26(S) .00(S) 17.73(S) 1.21(5) .01(S) 3.09(S) 6 31. 1.1 1.1 1.1 1.4 1.3 1.3 13.6 .00(S) 4.25(S) .00(S) 17.72(S) 1.21(S) .01(S) 3.00(S) 6 36. 1.1 1.1 1.1 1.4 1.3 1.3 13.5 .00(S) 4.24(S) .00(S) 17.71(S) 1.22(S) .01(S) 2.92(S) 6 41. 1.1 1.1 1.1 1.4 1.3 1.3 13.4 .00(S) 4.24(S) .00(S) 17.70(S) 1.22(S) .01(S) 2.83(S) V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 14 Print Stantec 6 46. 1.1 1.1 1.1 1.4 1.3 1.3 13.4 .00(S) 4.23(S) .00(S) 17.69(S) 1.22(S) .01(S) 2.75(S) 6 51. 1.1 1.1 1.1 1.4 1.3 1.3 13.3 .00(S) 4.22(S) .00(S) 17.68(S) 1.22(S) .01(S) 2.67(S) 6 56. 1.1 1.1 1.1 1.4 1.3 1.3 13.2 .00(S) 4.21(S) .00(S) 17.67(S) 1.22(S) .01(S) 2.58(S) 7 1. 1.1 1.1 1.1 1.4 1.3 1.3 13.1 .00(S) 4.21(S) .00(S) 17.66(S) 1.22(S) .01(S) 2.50(S) 7 6. 1.1 1.1 1.1 1.4 1.3 1.3 13.0 .00(S) 4.20(S) .00(S) 17.65(S) 1.22(S) .01(S) 2.42(S) 7 11. 1.1 1.1 1.1 1.4 1.3 1.3 12.9 .00(S) 4.19(S) .00(S) 17.64(S) 1.22(S) .01(S) 2.34(S) 7 16. 1.1 1.1 1.1 1.4 1.3 1.3 12.8 .00(S) 4.18(S) .00(S) 17.63(S) 1.22(S) .01(S) 2.26(S) 7 21. 1.1 1.1 1.1 1.4 1.3 1.3 12.7 .00(S) 4.17(S) .00(S) 17.62(S) 1.22(S) .01(S) 2.18(S) 7 26. 1.1 1.1 1.1 1.4 1.3 1.3 12.7 .00(S) 4.17(S) .00(S) 17.61(S) 1.23(S) .01(S) 2.10(S) 7 31. 1.1 1.1 1.1 1.4 1.3 1.3 12.6 .00(S) 4.16(S) .00(S) 17.60(S) 1.23(S) .01(S) 2.03(S) 7 36. 1.1 1.1 1.1 1.4 1.3 1.3 12.5 .00(S) 4.15(S) .00(S) 17.59(S) 1.23(S) .01(S) 1.95(S) 7 41. 1.1 1.1 1.1 1.4 1.3 1.3 12.4 .00(S) 4.14(S) .00(S) 17.58(S) 1.23(S) .01(S) 1.87(S) 7 46. 1.1 1.1 1.1 1.4 1.3 1.3 12.3 .00(S) 4.14(S) .00(S) 17.57(S) 1.23(S) .01(S) 1.79(S) 7 51. 1.1 1.1 1.1 1.4 1.3 1.3 12.2 .00(S) 4.13(S) .00(S) 17.56(S) 1.23(S) .01(S) 1.72(S) 7 56. 1.1 1.1 1.1 1.4 1.3 1.3 12.1 .00(S) 4.12(S) .00(S) 17.55(S) 1.23(S) .01(S) 1.64(S) 8 1. 1.1 1.1 1.1 1.4 1.3 1.3 12.0 .00(S) 4.11(S) .00(S) 17.54(S) 1.23(S) .01(S) 1.57(S) 8 6. 1.1 1.1 1.1 1.4 1.3 1.3 11.9 .00(S) 4.10(S) .00(S) 17.54(S) 1.23(S) .01(S) 1.50(S) 8 11. 1.1 1.1 1.1 1.4 1.3 1.3 11.8 .00(S) 4.10(S) .00(S) 17.53(S) 1.23(S) .01(S) 1.42(S) 8 16. 1.1 1.1 1.1 1.4 1.3 1.3 11.7 .00(S) 4.09(S) .00(S) 17.52(S) 1.23(S) .01(S) 1.35(S) 8 21. 1.1 1.1 1.1 1.4 1.3 1.3 11.6 .00(S) 4.08(S) .00(S) 17.51(S) 1.24(S) .01(S) 1.28(S) 8 26. 1.1 1.1 1.1 1.4 1.3 1.3 11.5 .00(S) 4.07(S) .00(S) 17.50(S) 1.24(S) .01(S) 1.21(S) 8 31. 1.1 1.1 1.1 1.4 1.3 1.3 11.4 .00(S) 4.07(S) .00(S) 17.49(S) 1.24(S) .01(S) 1.14(S) 8 36. 1.1 1.1 1.1 1.4 1.3 1.3 11.3 .00(S) 4.06(S) .00(S) 17.48(S) 1.24(S) .01(S) 1.07(S) 8 41. 1.1 1.1 1.1 1.4 1.3 1.3 11.2 .00(S) 4.05(S) .00(S) 17.47(S) 1.24(S) .01(S) 1.00(S) 8 46. 1.1 1.1 1.1 1.4 1.3 1.3 11.2 .00(S) 4.04(S) .00(S) 17.46(S) 1.24(S) .01(S) .93(S) 8 51. 1.1 1.1 1.1 1.4 1.3 1.3 11.1 .00(S) 4.04(S) .00(S) 17.45(S) 1.24(S) .01(S) .87(S) 8 56. 1.1 1.1 1.1 1.4 1.3 1.3 11.0 .00(S) 4.03(S) .00(S) 17.44(S) 1.24(S) .01(S) .80(S) 9 1. 1.1 1.1 1.1 1.4 1.3 1.3 10.9 .00(S) 4.02(S) .00(S) 17.43(S) 1.24(S) .01(S) .73(S) 9 6. 1.1 1.1 1.1 1.4 1.3 1.3 10.8 .00(S) 4.01(S) .00(S) 17.42(S) 1.24(S) .01(S) .67(S) 9 11. 1.1 1.1 1.1 1.4 1.3 1.3 10.7 .00(S) 4.00(S) .00(S) 17.41(S) 1.24(S) .01(S) .60(S) 9 16. 1.1 1.1 1.1 1.4 1.3 1.3 10.6 .00(S) 4.00(S) .00(S) 17.40(S) 1.25(S) .01(S) .54(S) 9 21. 1.1 1.1 1.1 1.4 1.3 1.3 10.5 .00(S) 3.99(S) .00(S) 17.39(S) 1.25(S), .01(S) .47(S) 9 26. 1.1 1.1 1.1 1.4 1.3 1.3 10.4 .00(S) 3.98(S) .00(S) 17.38(S) 1.25(S) .01(S) .41(S) 9 31. 1.1 1.1 1.1 1.4 1.3 1.3 10.3 .00(S) 3.97(S) .00(S) 17.37(S) 1.25(S) .01(S) .35(S) 9 36. 1.1 1.1 1.1 1.4 1.3 1.3 10.2 .00(S) 3.97(S) .00(S) 17.36(S) 1.25(S) .01(S) .29(S) 9 41. 1.1 1.1 1.1 1.4 1.3 1.3 10.1 .00(S) 3.96(S) .00(S) 17.35(S) 1.25(S) .01(S) .23(S) 9 46. 1.1 1.1 1.1 1.4 1.3 1.3 10.0 .00(S) 3.95(S) .00(S) 17.34(S) 1.25(S) .01(S) .17(S) 9 51. 1.1 1.1 1.1 1.4 1.3 1.3 9.9 .00(S) 3.94(S) .00(S) 17.33(S) 1.25(S) .01(S) .11(S) 9 56. 1.1 1.1 1.1 1.4 1.3 1.3 9.8 .00(S) 3.94(S) .00(S) 17.32(S) 1.25(S) .01(S) .05(S) 10 1. 1.1 1.1 1.1 1.4 1.3 1.3 3.2 .00(S) 3.93(S) .00(S) 17.31(S) 1.25(S) .01(S) .01(S) 10 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.6 .00(S) 3.92(S) .00(S) 17.30(S) 1.25(S) .01(S) .01(S) 10 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.4 .00(S) 3.91(S) .00(S) 17.29(S) 1.26(S) .01(S) .01(S) 10 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.91(S) .00(S) 17.28(S) 1.26(S) .01(S) .01(S) 10 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.90(S) .00(S) 17.27(S) 1.26(S) .01(S) .01(S) 10 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.89(S) .00(S) 17.26(S) 1.26(S) .01(S) .01(S) V:\52B70t\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 15 Pdn1 Stantec 10 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.88(S) .00(S) 17.25(S) 1.26(S) .01(S) .01(S) 10 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.88(S) .00(S) 17.24(S) 1.26(S) .01(S) .01(S) 10 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.87(S) .00(S) 17.23(S) 1.26(S) .01(S) .01(S) 10 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.86(S) .00(S) 17.22(S) 1.26(S) .01(S) .01(S) 10 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.85(S) .00(S) 17.21(S) 1.26(S) .01(S) .01(S) 10 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.85(S) .00(S) 17.20(S) 1.26(S) .01(S) .01(S) 11 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.84(S) .00(S) 17.19(S) 1.26(S) .01(S) .01(S) 11 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(5) 3.83(S) .00(S) 17.18(S) 1.26(S) .01(S) .01(S) 11 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.82(S) .00(S) 17.17(S) 1.27(S) .01(S) .01(S) 11 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.82(S) .00(S) 17.16(S) 1.27(S) .01(S) .01(S) 11 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.81(S) .00(S) 17.15(S) 1.27(S) .01(S) .01(S) 11 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.80(S) .00(S) 17.14(S) 1.27(S) .01(S) .01(S) 11 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.79(S) .00(S) 17.13(S) 1.27(S) .01(S) :01(S) 11 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.79(S) .00(S) 17.12(S) 1.27(S) .01(S) .01(S) 11 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.78(S) .00(S) 17.11(S) 1.27(S) .01(S) .01(S) 11 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.77(S) .00(S) 17.10(S) 1.27(S) .01(S) .01(S) 11 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.76(S) .00(S) 17.10(S) 1.27(S) .01(S) .01(S) 11 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.76(S) .00(S) 17.09(S) 1.27(S) .01(S) .01(S) 12 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.75(S) .00(S) 17.08(S) 1.27(S) .01(S) .01(S) 12 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.74(S) .00(S) 17.07(S) 1.28(S) .01(S) .01(S) 12 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.73(S) .00(S) 17.06(S) 1.28(S) .01(S) .01(5) 12 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.73(S) .00(S) 17.05(S) 1.28(S) .01(S) .01(S) 12 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.72(S) .00(S) 17.04(S) 1.28(S) .01(S) .01(S) 12 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.71(S) .00(S) 17.03(S) 1.28(S) .01(S) .01(S) 12 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.70(S) .00(S) 17.02(S) 1.28(S) .01(S) .01(S) 12 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.70(S) .00(S) 17.01(S) 1.28(S) .01(S) .01(S) 12 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.69(S) .00(S) 17.00(S) 1.28(S) .01(S) .01(S) 12 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.68(S) .00(S) 16.99(S) 1.28(S) .01(S) .01(S) 12 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.67(S) .00(S) 16.98(S) 1.28(S) .01(S) .01(S) 12 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.67(S) .00(S) 16.97(S) 1.28(S) .01(S) .01(5) 13 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.66(S) .00(S) 16.96(S) 1.28(S) .01(S) .01(S) 13 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.65(S) .00(S) 16.95(S) 1.29(S) .01(S) .01(S) 13 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.64(S) .00(S) 16.94(S) 1.29(S) .01(S) .01(S) 13 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.64(S) .00(S) 16.93(S) 1.29(S) .01(S) .01(S) 13 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.63(S) .00(S) 16.92(S) 1.29(S) .01(S) .01(S) 13 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.62(S) .00(S) 16.91(S) 1.29(S) .01(S) .01(S) 13 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.61(S) .00(S) 16.90(S) 1.29(S) .01(S) .01(S) 13 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.61(S) .00(S) 16.89(S) 1.29(S) .01(S) .01(S) 13 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.60(S) .00(S) 16.88(S) 1:29(S) .01(S) .01(S) 13 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.59(S) .00(S) 16.87(S) 1.29(S) .01(S) .01(5) 13 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.58(S) .00(S) 16.86(S) 1.29(S) .01(S) .01(S) 13 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.58(S) .00(S) 16.85(S) 1.29(S) .01(S) .01(5) 14 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.57(S) .00(S) 16.84(S) 1.29(S) .01(S) .01(S) 14 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.56(S) .00(S) 16.83(S) 1.30(S) .01(S) .01(S) 14 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.56(S) .00(S) 16.82(S) 1.30(S) .01(S) .01(S) V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 16 Print Stantec 14 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.55(S) .00(S) 16.81(S) 1.30(S) .01(S) .01(S) 14 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.54(S) .00(S) 16.80(S) 1.30(S) .01(S) .01(S) 14 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.53(S) OO(S) 16.79(S) 1.30(S) .01(S) .01(S) 14 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.53(S) .00(S) 16.78(S) 1.30(S) .01(S) .01(S) 14 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.52(S) .00(S) 16.77(S) 1.30(S) .01(S) .01(S) 14 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.51(S) .00(S) 16.76(S) 1.30(S) .01(S) .01(S) 14 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.50(S) .00(S) 16.75(S) 1.30(S) .01(S) .01(5) 14 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.50(S) .00(S) 16.74(S) 1.30(S) .01(S) .01(S) 14 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.49(S) .00(S) 16.73(S) 1.30(S) .01(S) .01(S) 15 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.48(S) .00(S) 16.72(S) 1.30(S) .01(S) .01(S) 15 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.48(S) OO(S) 16.71(S) 1.30(S) .01(S) .01(S) 15 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.47(S) .00(S) 16.70(S) 1.31(S) .01(S) .01(S) 15 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.46(S) .00(S) 16.69(S) 1.31(S) .01(S) .01(S) 15 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.45(S) .00(S) 16.68(S) 1.31(S) .01(S) .01(S) 15 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.45(S) .00(S) 16.67(S) 1.31(S) .01(S) .01(S) 15 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.44(S) .00(S) 16.66(S) 1.31(S) .01(S) .01(S) 15 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.43(S) OO(S) 16.66(S) 1.31(S) .01(S) .01(S) 15 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.42(S) OO(S) 16.65(S) 1.31(S) .01(S) .01(S) 15 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.42(S) .00(S) 16.64(S) 1.31(S) .01(S) .01(S) 15 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.41(S) 00(S) 16.63(S) 1.31(S) .01(S) .01(S) 15 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.40(S) .00(S) 16.62(S) 1.31(S) .01(S) .01(S) 16 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.40(S) .00(S) 16.61(S) 1.31(S) .01(S) .01(S) 16 6. 1.1 1.0 1.1 1.4 1.3 1.3 1.3 .00(S) 3.39(S) .00(S) 16.60(S) 1.31(S) .01(S) .01(S) 16 11. 1.1 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.38(S) .00(S) 16.59(S) 1.32(S) .01(S) .01(S) 16 16. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.37(S) .00(S) 16.58(S) 1.32(S) .01(S) .01(S) 16 21. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.37(S) .00(S) 16.57(S) 1.32(S) .01(S) .01(S) 16 26. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.36(S) .00(S) 16.56(S) 1.32(S) .01(S) .01(S) 16 31. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.35(S) OO(S) 16.55(S) 1.32(S) .01(S) .01(S) 16 36. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.34(S) .00(S) 16.54(S) 1.32(S) .01(S) .01(S) THE FOLLOWING CONVEYANCE ELEMENTS WERE SURCHARGED DURING THE SIMULATION. THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 292 THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 401 V:\52870t\active\187010251\Reports\DrainageWodSWMM\frv-100-int-s.out 17 Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 10:3 85.3 (DIRECT FLOW) 0 35. 11:3 300.0 (DIRECT FLOW) 0 1. 80:3 444.0 (DIRECT FLOW) 0 32. 90:3 595.0 (DIRECT FLOW) 0 35. 91:3 151.0 (DIRECT FLOW) 0 35. 95:3 495.1 (DIRECT FLOW) 0 46. 99:3 416.3 (DIRECT FLOW) 0 48. 100:3 1189.0 (DIRECT FLOW) 0 35. 101:2 416.3 .1 19.5:D 0 48. 103:2 32.5 1.9 0 32. 104:3 477.6 (DIRECT FLOW) 0 35. 105:3 477.6 (DIRECT FLOW) 0 35. 110:3 463.5 (DIRECT FLOW) 0 35. 111:4 296.0 2.8 0 36. 115:3 595.0 (DIRECT FLOW) 0 35. 116:4 447.6 3.3 0 53. 120:3 645.0 (DIRECT FLOW) 0 35. 125:3 320.5 (DIRECT FLOW) 0 35. 129:1 297.8 .6 0 36. 135:3 488.3 (DIRECT FLOW) 0 41. 136:4 413.0 3.2 0 46. 139:3 416.4 (DIRECT FLOW) 0 41. 140:2 52.9 .1 7.3:D 1 22. 141:4 405.9 3.1 0 41. 145:3 423.9 (DIRECT FLOW) 0 35. 146:4 300.0 2.6 1 0. 150:3 300.0 (DIRECT FLOW) 0 1. 152:3 230.4 (DIRECT FLOW) 2 24. 154:3 155.3 (DIRECT FLOW) 2 20. 155:3 155.3 (DIRECT FLOW) 2 20. 200:3 45.4 (DIRECT FLOW) 0 35. 201:2 10.6 .1 .8:D 1 58. 202:4 10.6 .5 2 2. 203:3 26.8 (DIRECT FLOW) 2 0. 204:2 1.2 .4 2 21. 205:3 155.8 (DIRECT FLOW) 0 35. 206:3 546.6 (DIRECT FLOW) 0 35. 207:3 40.2 (DIRECT FLOW) 0 35. 208:3 177.5 (DIRECT FLOW) 0 35. 209:3 204.5 (DIRECT FLOW) 0 35. 210:3 38.8 (DIRECT FLOW) 0 35. 211:4 70.1 1.7 2 16. 212:3 70.2 (DIRECT FLOW) 2 9. 213:5 26.8 1.9 2 1. 214:2 26.8 .1 9.5:D 2 0. 215:3 360.6 (DIRECT FLOW) 0 35. 216:2 1.2 .1 4.6:D 2 20. 221:5 230.4 3.9 2 24. 222:3 75.8 (DIRECT FLOW) 2 13. 223:3 160.1 (DIRECT FLOW) 2 19. 224:2 160.1 .1 4.8:D 2 19. 225:3 164.0 (DIRECT FLOW) 0 56. 226:5 71.0 3.5 2 8. 227:3 71.0 (DIRECT FLOW) 2 6. 228:3 162.6 (DIRECT FLOW) 2 18. 229:2 162.6 .1 4.4:0 2 18. 230:3 171.8 (DIRECT FLOW) 0 48. 231:5 67.0 3.8 2 6. 232:3 67.0 (DIRECT FLOW) 2 4. 233:3 168.0 (DIRECT FLOW) 2 12. 234:2 168.0 .1 6.9:0 2 12. 235:3 379.1 (DIRECT FLOW) 0 35. 236:5 61.0 3.5 2 4. 237:3 61.0 (DIRECT FLOW) 2 1. 238:5 61.0 3.4 2 1. 240:3 194.6 (DIRECT FLOW) 0 35. 242:4 158.0 1.2 2 12. 243:3 63.9 (DIRECT FLOW) 0 35. 244:3 22.0 (DIRECT FLOW) 0 35. 245:3 25.5 (DIRECT FLOW) 0 35. 246:2 6.4 .1 .2:D 0 45. 247:2 6.9 .1 .3:D 0 45. 248:2 8.4 .l 1.4:D 1 15. 249:3 80.0 (DIRECT FLOW) 0 35. 250:3 79.1 (DIRECT FLOW) 0 35. 251:2 8.4 1.4 1 15. 270:3 27.0 (DIRECT FLOW) 2 3. 276:2 1.4 .6 1 56. 277:2 1.3 .5 16 39. V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 18 Print Stantec 278:2 37.9 2.2 0 49. 279:2 16.4 1.6 2 17. 286:2 103.2 .1 19.8:D 1 18. 287:2 1.3 .1 1.3:D 16 39. 288:2 37.9 .1 2.3:0 0 46. 289:2 16.4 .1 7.6:0 2 16. 290:2 6.4 .7 0 46. 291:2 109.0 3.7 0 35. 292:2 109.2 4.0 1.O:S 0 46. 293:1 111.0 .4 1 33. 294:2 6.9 .8 0 47. 295:2 51.2 1.8 0 36. 296:3 125.6 (DIRECT FLOW) 1 14. 297:3 134.4 (DIRECT FLOW) 1 29. 298:2 17.1 .1 15.7:D 3 14. 299:2 61.0 1.5 0 35. 300:3 116.6 (DIRECT FLOW) 0 35. 301:3 103.5 (DIRECT FLOW) 0 35. 302:3 60.3 (DIRECT FLOW) 0 35. 303:5 40.2 2.7 2 14. 304:2 40.2 .1 3.5:D 2 11. 305:3 178.0 (DIRECT FLOW) 0 35. 306:3 61.0 (DIRECT FLOW) 1 56. 307:2 27.4 1.8 2 50. 308:3 186.8 (DIRECT FLOW) 2 6. 309:2 186.8 .1 28.4:D 2 6. 310:3 486.3 (DIRECT FLOW) 0 35. 311:5 120.1 3.4 4 12. 312:3 120.1 (DIRECT FLOW) 4 6. 313:5 114.0 3.4 4 26. 314:3 114.0 (DIRECT FLOW) 4 25. 315:2 33.6 .1 8.8:D 1 56. 318:5 45.4 2.1 1 38. 319:2 47.0 .1 6.5:D 1 28. 320:3 210.8 (DIRECT FLOW) 0 35. 321:3 212.5 (DIRECT FLOW) 0 35. 322:3 60.3 (DIRECT FLOW) 0 35. 324:5 76.5 4.1 7 53. 325:3 102.1 (DIRECT FLOW) 0 35. 330:2 16.7 .1 2.1:D 1 8. 333:5 26.9 2.4 1 30. 334:2 27.0 .1 2.9:D 1 21. 340:3 411.8 (DIRECT FLOW) 0 35. 341:5 76.5 3.3 6 58. 342:2 76.6 .1 32.4:D 7 10. 344:2 30.6 .1 14.7:D 2 4. 345:3 508.0 (DIRECT FLOW) 0 35. 347:2 12.6 1.2 3 52. 355:4 149.2 1.7 0 36. 360:3 655.8 (DIRECT FLOW) 0 35. 400:3 1504.5 (DIRECT FLOW) 0 35. 401:2 114.4 .1 51.6:D 2 4. 405:5 329.2 3.3 0 35. 410:5 281.5 3.9 0 36. 415:3 479.8 (DIRECT FLOW) 0 36. 421:2 12.6 .1 16.1:D 3 50. 423:5 130.9 2.7 0 37. 425:3 185.9 (DIRECT FLOW) 0 35. 426:2 6.9 1.1 0 33. 430:5 124.7 2.2 0 35. 434:4 189.3 1.4 0 43. 435:3 195.2 (DIRECT FLOW) 0 40. 436:1 117.8 1.3 0 41. 437:3 187.8 (DIRECT FLOW) 0 35. 440:3 187.8 (DIRECT FLOW) 0 35. 601:3 103.2 (DIRECT FLOW) 1 18. ENDPROGRAM PROGRAM CALLED V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-int-s.out 19 Print ModSWMM HYDROLOGY MASTER PLAN CONDITION , !!};�!| • | /bQ �| \!� p= | | ) z_ _ 2 (w 2w 187010251 � ND � 4 ` 0 . ModSWMM INPUT frv-100-ult-s.in 2 1 1 2 3 4 WATERSHED. 0 FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRv by Stantec, ]an 2007 999 000 1.0 1 0.0 1 24 5.0 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.67 1 100 100 2881 12.3 32.00.0390.0160.2500.1000.300 0.51 0.50 0.0018 1 105 105 641 3.4 10.00.0230.0160.2500.1000.300 0.51 0.50 0.0018 1 110 110 2758 17.6 90.00.0300.0160.2500.1000.300 0.51 0.50 0.0018 1 115 115 3722 18.8 13.50.0860.0160.2500.1000.300 0.51 0.50 0.0018 1 120 120 4665 36.2 86.50.0160.0160.2500.1000.300 0.51 0.50 0.0018 1 125 125 3494 36.5 68.80.0230.0160.2500.1000.300 0.51 0.50 0.0018 1 130 129 8604 39.7 78.00.0310.0160.2500.1000.300 0.51 0.50 0.0018 1 135 135 4127 21.6 13.30.0290.0160.2500.1000.300 0.51 0.50 0.0018 1 140 140 8223 58.9 24.80.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 145 145 4915 38.7 12.00.0160.0160.2500.1000.300 0.51 0.50 0.0018 1 150 10 3026 19.8 6.80.0510.0160.2500.1000.300 0.51 0.50 0.0018 1 155 115 9801 17.1 70.00.0130.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Paragon, Basin 205 (Previously LSI Logic) 1 205 205 2497 17.2 82.00.0160.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Front Range village, Basins 206 - 210 1 206 206 7957 54.8 81.20.0170.0160.2500.1000.300 0.51 0.50 0.0018 1 207 207 1812 4.0 81.60.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 208 208 5467 17.9 89.50.0200.0160.2500.1000.300 0.51 0.50 0.0018 1 209 209 2960 18.1 88.70.0150.0160.2500.1000.300 0.51 0.50 0.0018 1 210 210 2654 3.9 86.60.0420.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * English Ranch, Basins 215 - 240 1 215 215 9265 41.9 38.50.0070.0160.2500.1000.300 0.51 0.50 0.0018 1 220 215 4630 16.9 38.50.0120.0160.2500.1000.300 0.51 0.50 0..0018 1 225 225 5678 21.9 38.50.0240.0160.2500.1000.300 0.51 0.50 0.0018 1 230 230 5639 18.9 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 235 235 5949 29.5 38.50.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 240 240 5007 32.3 41.50.0120.0160.2500.1000.300 0.51 0.50. 0.0018 *------------------------------------------------------------------------- * Pads at Harmony Road, Basins 243 - 245 1 243 243 3359 5.5 92.70.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 244 244 1098 2.5 54.80.0170.0160.2500.1000.300 0.51 0.50 0.0018 1 245 245 1245 2.8 63.20.0130.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Front Range village, Basin 250 1 250 250 1654 8.5 79.80.0180.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Future Development north of FRv, Basins 296, 297 1 296 296 2703 12.9 90.00.0100.0160.2500.1000.300 0.51 0.50 0.0018 1 297 297 4199 28.9 90.00.0070.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- * Harmony Trailer Park west of Front Range village, Basins 300-302, 305 1 300 300 3357 23.1 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 301 301 2977 20.5 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 302 302 1992 11.3 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 305 305 7663 24.1 38.50.0150.0160.2500.1000.300 0.51 0.50 0.0018 *------------------------------------------------------------------------- 1 310 31012018 84.7 37.00.0050.0160.2500.1000.300 0.51 0.50 0.0018 1 315 315 9023 60.9 38.50.0060.0160.2500.1000.300 0.51 0.50 0.0018 1 320 320 5102 29.4 38.50.0210.0160.2500.1000.300 0.51 0.50 0.0018 1 325 325 2084 14.4 40.00.0210.0160.2500.1000.300 0.51 0.50 0.0018 1 330 330 2038 15.3 46.80.0130.0160.2500:1000.300 0.51 0.50 0.0018 1 335 334 3567 30.3 27.80.0150.0160.2500.1000.300 0.51 0.50 0.0018 Page 1 frv-100-ult-s.in 1 340 340 4623 34.6 30.00.0270.0160.2500.1000.300 0.51 0.50 0.0018 1 345 345 5109 44.8 27.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 350 345 6639 34.9 90.00.0110.0160.2500.1000.300 0.51 0.50 0.0018 1 355 355 2940 27.4 48.00.0100.0160.2500.1000.300 0.51 0.50 0.0018 1 400 400 6703 51.7 71.50.0240.0160.2500.1000.300 0.51 0.50 0.0018 1 405 405 7493 41.8 60.80.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 .410 410 7013 58.6 48.50.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 415 415 5458 42.1 40.00.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 420 421 7066109.0 11.60.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 425 425 5627 31.0 38.50.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 430 430 2979 22.5 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 435 435 3776 31.9 10.00.0110.0160.2500.1000.300 0.51 0.50 0.0018 1 440 440 2603 9.5 38.50.0110.0160.2500.1000.300 0.51 0.50 0.0018 0 0 0 430 440 0 5 1.25 600 0.0130 0 0 0.013 1.25 1 513 0.0120 20 20 0.020 5.00 0 440 437 0 3 0 0 0.0000 0 0 0.000 0.00 436 437 426 3 3 0 0 0.0000 0 0 0.000 0.00 0.00 0.0 4 0.0 10000 9996.0 0 426 425 0 2 1.25 1339 0.0100 0 0 0.013 1.25 0 436 435 0 1 15 1889 0.0080 8 8 0.035 5.00 0 425 423 0 3 .0 0 0.0000 0 0 0.000 0.00 0 435 434 0 3 0 0 0.0000 0 0. 0.000 0.00 0 423 415 0 5 1.5 1457 0.0050 0 0 0.013 1.50 1 1457 0.0050 20 20 0.020 5.00 0 434 415 0 4 0.5 768 0.0050 12 12 0.016 0.50 10 768 0.0050 20 20 0.020 5.00 0 415 400 0 3 0 0 0.0000 0 0 0.000 0.00 0 410 400 0 5 2.5 1301 0.0090 0 0 0.013 2.50 1 1380 0.0070 20 20 0.020 5.00 0 405 400 0 5 3 1065 0.0090 0 0 0.013 3.00 80 1065 0.0090 1 1 0.005 5.00 0 400 401 0 3 0 0 0.0000 0 0 0.000 0.00 0 401 340 11 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.001 8.0 4.85 12.7 8.97 16.7 9.03 23.0 10.29 57.9 11.59 70.8 16.67 80.7 31.34 98.0 52.86 115.4 95.93 705.0 0 355 340 0 4 0.25 608 0.0050 12 0 0.016 0.50 5 608 0.0050 20 0 0.020 5.00 0 340 342 0 3 0 0 0.0000 0 0 0.000 0.00 0 342 341 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.20 2.9 5.68 23.5 14.66 53.0 28.14 73.1 47.36 88.5 72.54 103.6 95.53 111.0 0 341 325 0 5 3.5 1200 0.0050 0 0 0.013 3.50 1 1200 0.0050 20 20 0.020 5.00 0 325 324 0 3 0 0 0.0000 0 0 0.000 0.00 0 324 314 0 5 3.5 1242 0.0030 0 0 0.013 3.50 1 1242 0.0030 20 20 0.020 5.00 0 421 347 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.16 2.1 8.27 10.5 34.02 17.4 43.63 18.7 0 347 314 0 2 1.5 1139 0.0150 0 0 0.013 1.50 0 345 344 0 3 0 0 0.0000 0 0 0.000 0.00 0 344 314 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.04 1.9 2.79 16.8 10.12 27.6 21.56 35.0 0 314 313 0 3 0 0 0.0000 0 0 0.000 0.00 0 313 312 0 5 2 409 0.0090 0 0 0.013 2.00 Page 2 frv-100-ult-s.in 10 409 0.0350 5 5 0.035 6.00 0 330 312 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.001 4.0 0.97 6.6 1.98 8.0 3.04 104.0 0 312 311 0 3 0 0 0.0000 0 0 0.000 0.00 0 311 310 0 5 2 1566 0.0090 0 0 0.013 2.00 10 1566 0.0090 5 5 0.035 6.00 0 334 333 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.012 5.6 0.32 21.9 6.45 34.0 16.40 100.0 0 333 320 0 5 2 1064 0.0090 0 0 0.013 2.00 5 1075 0.0090 3 3 0.035 6.00 0 320 319 0 3 0 0 0.0000 0 0 0.000 0.00 0 319 318 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.003 0.4 0.52 3.3 2.06 6.2 4.21 9.2 5.92 11.0 6.27 17.5 7.07 109.6 7.93 260.7 0 318 305 0 5 1.25 1320 0.0050 0 0 0.013 1.25 1 1384 0.0040 20 20 0.020 5.00 0 305 304 0 3 0 0 0.0000 0 0 0.000 0.00 0 304 303 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.027 13.6 0.59 28.3 2.19 37.7 6.49 46 7.13 100 7.77 200 8.24 300 0 303 310 0 5 2 671 0.0060 0 0 0.013 2.00 10 671 0.0060 5 5 0.035 6.00 0 310 309 0 3 0 0 0.0000 0 0 0.000 0.00 0 309 308 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.004 0.7 1.40 17.6 7.92 25.5 20.29 26.9 25.02 27.4 30.20 273 242 308 307 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 27.4 0 273 245.6 0 307 306 0 2 2.5 1351 0.0060 0 0 0.013 2.50 0 315 306 10 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.287 10.4 0.97 15.0 3.07 22.9 5.50 29.0 8.27 33.2 11.42 35.7 13.14 36.2 13.61 106 13.97 206.0 0 306 238 0 3 0 0 0.0000 0 0 0.000 0.00 ------------------------------------------------------------------------- Harmony Trailer Park routing 0 300 291 0 3 0 0 0.0000 0 0 0.000 0.00 0 291 321 0 2 4 660 0.0050 0 0 0.013 4.00 0 301 321 0 3 0 0 0.0000 0 0 0.000 0.00 0 321 292 0 3 0 0 0.0000 0 0 0.000 0.00 0 292 360 0 2 4 500 0.0050 0 0 0.013 4.00 0 302 322 0 3 0 0 0.0000 0 0 0.000 0.00 0 322 299 0 3 0 0 0.0000 0 0 0.000 0.00 0 299 296 0 2 6.0 270 0.0100 0 0 0.013 6.00 *------------------------------------------------------------------------- Pads at Harmony Road routing 0 245 247 0 3 0 0 0.0000 0 0 0.000 0.00 0 247 294 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.01 2.1 0.06 3.4 0.13 4.4 0.25 5.1 0.37 10.0 0 244 246 0 3 0 0 0.0000 0 0 0.000 0.00 0 246 290 7 2 0.1 1 0.0100 0 0 0.010 0.10 Page 3 frv-100-ult-s.in 0.00 0.0 0.01 1.9 0.02 3.1 0.06 3.9 0.12 4.6 0.21 5.2 0.30 10.0 0 290 243 0 2• 2 600 0.0100 0 0 0.013 2.00 0 294 243 0 2 2 834 0.0100 0 0 0.013 2.00 0 243 295 0 3 0 0 0.0000 0 0 0.000 0.00 0 295 206 0 2 9 1723 0.0020 0 0 0.013 9.00 0 206 360 0 3 0 0 0.0000 0 0 0.000 0.00 *------------------------------------------------------------------------- * Undeveloped site north of FRv routing 0 296 293 0 3 0 0 0.0000 0 0 0.000 0.00 0 293 297 0 1 4 1800 0.0050 4 4 0.035 4.00 0 297 298 0 3 0 0 0.0000 0 0 0.000 0.00 * Future detention pond 298 by Others 0 298 212 3 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 19.00 17.3 22.50 21.9 *------------------------------------------------------------------------- * Front Range village onsite routing 0 360 286 0 3 0 0. 0.0000 0 0 0.000 0.00 * Pond D 0 286 601 10 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.03 0.70 1.62 0.93 4.12 1.04 6.92 1.14 9.87 1.24 12.99 1.32 16.28 1.41 17.94 1.42 19.80 104.84 296 601 276 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 1.42 0 104.26 102.84 0 276 207 0 2 1.5 362 0.0020 0 0 0.013 1.50 0 207 287 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond C 0 287 277 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.17 0.72 0.31 0.86 0.49 0.98 0.70 1.09 0.95 1.19 1.25 1.28 1.59 1.36 1.97 1.44 0 277 208 0 2 1.5 217 0.0020 0 0 0.013 1.50 0 208 288 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond B 0 288 278 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.01 1.59 0.19 9.93 0.60 24.27 1.12 33.73 1.71 37.47 2.38 38.00 0 278 209 0 2 4 850 0.0020 4 4 0.013 4.00 0 209 289 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond A 0 289 279 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.04 9.77 0.60 10.70 1.89 12.41 3.28 13.92 4.77 15.27 6.34 16.30 7.70 16.35 0 279 270 0 2 3 570 0.0020 0 0 0.013 3.00 *------------------------------------------------------------------------- * Paragon (Previously psi Logic) pond routing through FRv Basins 210 and 250 0 205 216 0 3 0 0 0.0000 0 0 0.000 0.00 * Paragon Pond 0 216 204 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.46 0.53 1.53 0.80 2.89 0.99 4.52 1.15 6.44 1.30 0 204 249 0 2 2.5 143 0.0020 0 0 0.013 2.50 0 250 249 0 3 0 0 0.0000 0 0 0.000 0.00 0 249 248 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond F 0 248 251 7 2 0.1 1 0.0100 0 0 0.010 0.10 Page 4 frv-100-ult-s.in 0.00 0.00 0.01 2.58 0.04 3.07 0.42 5.39 0.87 6.97 1.37 8.26 1.65 8.83 0 251 200 0 2 2 230 0.0020 0 0 0.013 2.00 0 210 200 0 3 0 0 0.0000 0 0 0.000 0.00 0 200 201 0 3 0 0 0.0000 0 0 0.000 0.00 * Pond E 0 201 202 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.00 0.01 4.41 0.18 7.09 0.68 10.21 1.23 12.58 1.83 14.57 0 202 270 0 4 15 902 0.0020 4 8 0.035 6.00 87 902 0.0020 20 20 0.020 2.00 *------------------------------------------------------------------------- 0 270 212 0 3 0 0 0.0000 0 0 0.000 0.00 0 242 240 0 4 0.5 1779 0.0070 12 12 0.016 0.50 10 1779 0.0070 20 20 0.020 5.00 0 240 235 0 3 0 0 0.0000 0 0 0.000 0.00 0 238 237 0 5 3 787 0.0060 0 0 0.013 3.00 1 787 0.0060 20 20 0.020 5.00 0 237 236 0 3 0 0 0.0000 0 0 0.000 0.00 0 236 232 0 5 3 740 0.0050 0 0 0.013 3.00 1 740 0.0050 20 20 0.020 5.00 0 235 234 0 3 0 0 0.0000 0 0 0.000 0.00 0 234 233 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.44 3.1 2.350 4.2 2.81 4.6 4.69 5.1 6.39 100.6 7.13 203.7 8.21 401.9 230 233 232 5 3 0 0 0.0000 0 0' 0.000 0.00 0 0 5 0 101 95 204 198 402 396 0 232 231 0 3 0 0 0.0000 0 0 0.000 0.00 0 231 227 0 5 3 311 0.0030 0 0 0.013 3.00 1 311 0.0030 20 20 0.020 5.00 0 230 229 0 3 0 0 0.0000 0 0 0.000 0.00 0 229 228 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.07 2.0 1.12 2.9 3.46 3.5 4.60 200.8 5.29 401 225 228 227 4 3 0 0 0.0000 0 0 0.000 0.00 0 0 4 0 201 197 401 397 0 227 226 0 3 0 0 0.0000 0 0 0.000 0.00 0 226 222 0 5 3 477 0.0060 0 0 0.013 3.00 1 477 0.0060 20 20 0.020 5.00 0 225 224 0 3 0 0 0.0000 0 0 0.000 0.00 0 224 223 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.002 1.0 0.51 2.7 1.99 3.6 3.90 4.3 4.46 4.5 4.85 200 5.10 400 155 223 222 4 3 0 0 0.0000 0 0 0.000 0.00 0 0 4 0 200 195 400 395 0 222 221 0 3 0 0 0.0000 0 0 0.000 0.00 0 221 152 0 5 3 1569 0.0240 0 0 0.013 3.00 1 1569 0.0140 20 20 0.020 8.00 0 152 0 3 0 0 0.0000 0 0 0.000 0.00 0 215 214 0 3 0 0 0.0000 0 0 0.000 0.00 0 214 203 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.08 12.6 0.411 14.9 4.00 21.8 9.62 26.9 12.17 28.7 13.04 149 13.17 149.4 Page 5 frv-100-ult-s.in 14.04 149.9 297 203 213 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 29.5 0 150 120 0 213 212 0 5 3 610 0.0030 0 0 0.013 3.00 1 610 0.0030 20 .20 0.020 5.00 0 212 211 0 3 0 0 0.0000 0 0 0.000 0.00 0 211 125 0 4 5 1670 0.0060 4 4 0.035 6.00 53 1670 0.0060 4 40 0.020 3.00 0 125 111 0 3 0 0 0.0000 0 0 0.000 0.00 0 111 110 0 4 10 1400 0.0040 0 0 0.013 4.00 10 1400 0.0040 20 20 0.020 3.50 0 110 105 0 3 0 0 0.0000 0 0 0.000 0.00 0 105 104 0 3 0 0 0.0000 0 0 0.000 0.00 100 104 103 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 20 0 2000 1980 0 103 120 0 2 2.8 617 0.0050 0.00 0.00 0.013 2.80 0 129 120 0 1 130 956 0.0080 60.00 6.00 0.030 8.00 0 120 100 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 100 101 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 101 99 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 1.54 4.0 6.085 13.9 11.93 22.0 19.08 377.8 27.46 1130 29.80 1400 0 154 221 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 150 146 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 146 145 0 4 31 1384 0.0020 1.50 1.50 0.035 6.00 62 1384 0.0020 0.00 15.00 0.050 12.00 0 145 141 0 3 0 0 0.0000 0.000 0.000 0.000 0.00 0 141 139 0 4 31 1193 0.0020 1.50 1.50 0.035 6.00 62 1193 0.0020 0.00 15.00 0.050 12.00 0 140 139 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.01 1.0 0.39 7.0 1.65 8.9 3.96 10.5 5.45 11.2 7.07 40.0 7.99 100.0 0 139 136 0 3 0 0 0.0000 0.000 0.000 0.000 0.00 0 136 135 0 4 31 910 0.0020 1.50 1.50 0.035 6.00 62 910 0.0020 0.00 15.00 0.050 12.00 0 135 116 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 116 115 0 4 31 2552 0.0020 1.50 1.50 0.035 6.00 62 2552 0.0020 0.00 15.00 0.050 12.00 95 99 115 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 25 0 1012 987 0 115 90 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 95 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 -1 11 150 2 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 300 100 300 0 10 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 155 154 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 91 90 80 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 444 0 6000 5556 0 80 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 91 95 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 7 5 201 216 248 286 287 288 289 ENDPROGRAM Page 6 frv-100-ult-s.in Page 7 ModSWMM OUTPUT Stantec ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** V:\52870t\active\187010251\Reports\Drainage\ModSVVMM\frv-100-ult-s.out 1V , Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 NUMBER OF TIME STEPS 999 INTEGRATION TIME INTERVAL (MINUTES) 1.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1.33 2.23 2.84 5.49 9.95 1.22 1.06 1.00 .95 .91 .87 .84 .73 .71 .69 .67 4.12 2.48 1.46 .81 .78 .75 V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 2V . Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 100 100 2881.0 12.3 32.0 .0390 .016 .250 .100 .300 .51 .50 .00180 1 105 105 641.0 3.4 10.0 .0230 .016 .250 .100 .300 .51 .50 .00180 1 110 110 2758.0 17.6 90.0 .0300 .016 .250 .100 .300 .51 .50 .00180 1 115 115 3722.0 18.8 13.5 .0860 .016 .250 .100 .300 .51 .50 .00180 1 120 120 4665.0 36.2 86.5 .0160 .016 .250 .100 .300 .51 .50 .00180 1 125 125 3494.0 36.5 68.8 .0230 .016 .250 .100 .300 .51 .50 .00180 1 130 129 8604.0 39.7 78.0 .0310 .016 .250 .100 .300 .51 .50 .00180 1 135 135 4127.0 21.6 13.3 .0290 .016 .250 .100 .300 .51 .50 .00180 1 140 140 8223.0 58.9 24.8 .0090 .016 .250 .100 .300 .51 .50 .00180 1 145 145 4915.0 38.7 12.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 150 10 3026.0 19.8 6.8 .0510 .016 .250 .100 .300 .51 .50 .00180 1 155 115 9801.0 17.1 70.0 .0130 .016 .250 .100 .300 .51 .50 .00180 1 205 205 2497.0 17.2 82.0 .0160 .016 .250 .100 .300 .51 .50 .00180 1 206 206 7957.0 54.8 81.2 .0170 .016 .250 .100 .300 .51 .50 .00180 1 207 207 1812.0 4.0 81.6 .0130 .016 .250 .100 .300 .51 .50 .00180 1 208 208 5467.0 17.9 89.5 .0200 .016 .250 .100 .300 .51 .50 .00180 1 209 209 2960.0 18.1 88.7 .0150 .016 .250 .100 .300 .51 .50 .00180 1 210 210 2654.0 3.9 86.6 .0420 .016 .250 .100 .300 .51 .50 .00180 1 215 215 9265.0 41.9 38.5 .0070 .016 .250 .100 .300 .51 .50 .00180 1 220 215 4630.0 16.9 38.5 .0120 .016 .250 .100 .300 .51 .50 .00180 1 225 225 5678.0 21.9 38.5 .0240 .016 .250 .100 .300 .51 .50 .00180 1 230 230 5639.0 18.9 38.5 .0180 .016 .250 .100 .300 .51 .50 .00180 1 235 235 5949.0 29.5 38.5 .0130 .016 .250 .100 .300 .51 .50 .00180 1 240 240 5007.0 32.3 41.5 .0120 .016 .250 .100 .300 .51 .50 .00180 1 243 243 3359.0 5.5 92.7 .0080 .016 .250 .100 .300 .51 .50 .00180 1 244 244 1098.0 2.5 54.8 .0170 .016 .250 .100 .300 .51 .50 .00180 1 245 245 1245.0 2.8 63.2 .0130 .016 .250 .100 .300 .51 .50 .00180 1 250 250 1654.0 8.5 79.8 .0180 .016 .250 .100 .300 .51 .50 .00180 1 296 296 2703.0 12.9 90.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 297 297 4199.0 28.9 90.0 .0070 .016 .250 .100 .300 .51 .50 .00180 1 300 300 3357.0 23.1 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 301 301 2977.0 20.5 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 302 302 1992.0 11.3 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 305 305 7663.0 24.1 38.5 .0150 .016 .250 .100 .300 .51 .50 .00180 1 310 310 12018.0 84.7 37.0 .0050 .016 .250 .100 .300 .51 .50 .00180 1 315 315 9023.0 60.9 38.5 .0060 .016 .250 .100 .300 .51 .50 .00180 1 320 320 5102.0 29.4 38.5 .0210 .016 .250 .100 .300 .51 .50 .00180 1 325 325 2084.0 14.4 40.0 .0210 .016 .250 .100 .300 .51 .50 .00180 1 330 330 2038.0 15.3 46.8 .0130 .016 .250 .100 .300 .51 .50 .00180 1 335 334 3567.0 30.3 27.8 .0150 .016 .250 .100 .300 .51 .50 .00180 1 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 3V . Print Stantec 340 340 4623.0 34.6 30.0 .0270 .016 .250 .100 .300 .51 .50 .00180 1 345 345 5109.0 44.8 27.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 350 345 6639.0 34.9 90.0 .0110 .016 .250 .100 .300 .51 .50 .00180 1 355 355 2940.0 27.4 48.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 400 400 6703.0 51.7 71.5 .0240 .016 .250 .100 .300 .51 .50 .00180 1 405 405 7493.0 41.8 60.8 .0180 .016 ..250 .100 .300 .51 .50 .00180 1 410 410 7013.0 58.6 48.5 .0090 .016 .250 .100 .300 .51 .50 .00180 1 415 415 5458.0 42.1 40.0 .0090 .016 .250 .100 .300 .51 .50 .00180 1 420 421 7066.0 109.0 11.6 .0080 .016 .250 .100 .300 .51 .50 .00180 1 425 425 5627.0 31.0 38.5 .0090 .016 .250 .100 .300 .51 .50 .00180 1 430 430 2979.0 22.5 38.5 .0180 .016 .250 .100 .300 .51 .50 .00180 1 435 435 3776.0 31.9 10.0 .0110 016 .250 .100 .300 .51 .50 .00180 1 440 440 2603.0 9.5 38.5 .0110 .016 .250 .100 .300 .51 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 53 TOTAL TRIBUTARY AREA (ACRES), 1512.80 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 4V _ Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 1512.800 TOTAL RAINFALL (INCHES) 3.669 TOTAL INFILTRATION (INCHES) .742 TOTAL WATERSHED OUTFLOW (INCHES) 2.867 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .060 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 V:\52870t\active\187010251\Reports\Drainage\ModSVVMM\frv-100-ult-s.out 5V. Pdnt Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 430 440 0 5 PIPE 1.3 600. .0130 .0 .0 .013 1.25 0 OVERFLOW 1.0 513. .0152 20.0 20.0 .020 5.00 440 437 0 3 .0 0. .0010 .0 .0 .001 10.00 0 437 426 3 3 .0 0. .0010 .0 .0 .001 10.00 436 DIVERSION TO GUTTER NUMBER 436 TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 4.0 .0 10000.0 9996.0 426 425 0 2 PIPE 1.3 1339. .0100 .0 .0 .013 1.25 0 436 435 0 1 CHANNEL 15.0 1889. .0080 8.0 8.0 .035 5.00 0 425 423 0 3 .0 0. .0010 .0 .0 .001 10.00 0 435 434 0 3 .0 0. .0010 .0 .0 .001 10.00 0 423 415 0 5 PIPE 1.5 1457. .0050 .0 .0 .013 1.50 0 OVERFLOW 1.0 1457. .0050 20.0 20.0 .020 5.00 434 415 0 4 CHANNEL .5 768. .0050 12.0 12.0 .016 .50 0 OVERFLOW 10.0 768. .0050 20.0 20.0 .020 5.00 415 400 0 3 .0 0. .0010 .0 .0 .001 10.00 0 410 400 0 5 PIPE 2.5 1301. .0090 .0 .0 .013 2.50 0 OVERFLOW 1.0 1380. .0085 20.0 20.0 .020 5.00 405 400 0 5 PIPE 3.0 1065. .0090 .0 .0 .013 3.00 0 OVERFLOW 80.0 1065. .0090 1.0 1.0 .005 5.00 400 401 0 3 .0 0. .0010 .0 .0 .001 10.00 0 401 340 11 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 8.0 4.8 12.7 9.0 16.7 9.0 23.0 10.3 57.9 11.6 70.8 16.7 80.7 31.3 98.0 52.9 115.4 95.9 705.0 355 340 0 4 CHANNEL .3 608. .0050 12.0 .0 .016 .50 0 OVERFLOW 5.0 608. .0050 20.0 .0 .020 5.00 340 342 0 3 .0 0. .0010 .0 .0 .001 10.00 0 342 341 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 2.9 5.7 23.5 14.7 53.0 28.1 73.1 47.4 88.5 72.5 103.6 95.5 111.0 341 325 0 5 PIPE 3.5 1200. .0050 .0 .0 .013 3.50 0 OVERFLOW 1.0 1200. .0050 20.0 20.0 .020 5.00 325 324 0 3 .0 0. .0010 .0 .0 .001 10.00 0 324 314 0 5 PIPE 3.5 1242. .0030 .0 .0 .013 3.50 0 OVERFLOW 1.0 1242. .0030 20.0 20.0 .020 5.00 421 347 5 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 2 2.1 8.3 10.5 34.0 17.4 43.6 18.7 347 314 0 2 PIPE 1.5 1139. .0150 .0 .0 .013 1.50 0 345 344 0 3 .0 0. .0010 .0 .0 : .001 10.00 0 344 314 5 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 1.9 2.8 16.8 10.1 27.6 21.6 35.0 314 313 0 3 .0 0. .0010 .0 .0 .001 10.00 0 313 312 0 5 PIPE 2.0 409. .0090 .0 .0 .013 2.00 0 OVERFLOW 10.0 409. .0090 5.0 5.0 .035 6.00 330 312 5 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 4.0 1.0 6.6 2.0 8.0 3.0 104.0 V:\52870f\active\l87010251 \Reports\Drainage\ModSW MM\frv-100-ult-s.out 6V Print stantec 312 311 0 3 .0 0. .0010 .0 .0 .001 10.00 0 311 310 0 5 PIPE 2.0 1566. .0090 .0 .0 .013 2.00 0 OVERFLOW 10.0 1566. .0090 5.0 5.0 .035 6.00 334 333 5 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 5.6 .3 21.9 6.5 34.0 16.4 100.0 333 320 0 5 PIPE 2.0 1064. .0090 .0 .0 .013 2.00 0 OVERFLOW 5.0 1075. .0089 3.0 3.0 .035 6.00 320 319 0 3 .0 0. .0010 .0 .0 .001 10.00 0 319 318 9 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .4 .5 3.3 2.1 6.2 4.2 9.2 5.9 11.0 6.3 17.5 7.1 109.6 7.9 260.7 318 305 0 5 PIPE 1.3 1320. .0050 .0 .0 .013 1.25 0 OVERFLOW 1.0 1384. .0048 20.0 20.0 .020 5.00 305 304 0 3 .0 0. .0010 .0 .0 .001 10.00 0 304 303 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 13.6 .6 28.3 2.2 37.7 6.5 46.0 7.1 100.0 7.8 200.0 8.2 300.0 303 310 0 5 PIPE 2.0 671. .0060 .0. .0 .013 2.00 0 OVERFLOW 10.0 671. .0060 5.0 5.0 .035 6.00 310 309 0 3 .0 0. .0010 .0 .0 .001 10.00 0 309 308 7 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .7 1.4 17.6 7.9 25.5 20.3 26.9 25.0 27.4 30.2 273.0 308 307 3 3 .0 0. .0010 .0 .0 .001 10.00 242 DIVERSION TO GUTTER NUMBER 242 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 27.4 .0 273.0 245.6 307 306 0 2 PIPE 2.5 1351. .0060 .0 .0 .013 2.50 0 315 306 10 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 10.4 1.0 15.0 3.1 22.9 5.5 29.0 8.3 33.2 11.4 35.7 13.1 36.2 13.6 106.0 14.0 206.0 306 238 0 3 .0 0. .0010 .0 .0 .001 10.00 0 300 291 0 3 .0 0. .0010 .0 .0 .001 10.00 0 291 321 0 2 PIPE 4.0 660. .0050 .0 .0 .013 4.00 0 301 321 0 3 .0 0. .0010 .0 .0 .001 10.00 0 321 292 0 3 .0 0. .0010 .0 .0 .001 10.00 0 292 360 0 2 PIPE 4.0 500. .0050 .0 .0 .013 4.00 0 302 322 0 3 .0 0. .0010 .0 .0 .001 10.00 0 322 299 0' 3 .0 0. .0010 .0 .0 .001 10.00 0 299 296 0 2 PIPE 6.0 270. .0100 .0 .0 .013 6.00 0 245 247 0 3 .0 0. .0010 .0 .0 .001 10.00 0 247 294 6 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.1 .1 3.4 .l 4.4 .3 5.1 .4 10.0 244 246 0 3 .0 0. .0010 .0 .0 .001 10.00 0 246 290 7 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.9 .0 3.1 .1 3.9 .1 4.6 .2 5.2 .3 10.0 290 243 0 2 PIPE 2.0 600. .0100 .0 .0 .013 2.00 0 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 7V Print Stantec 294 243 0 2 PIPE 2.0 834. .0100 .0 .0 .013 0 243 295 0 3 .0 0. .0010 .0 .0 .001 0 295 206 0 2 PIPE 9.0 1723. .0020 .0 .0 .013 0 206 360 0 3 .0 0. .0010 .0 .0 .001 0 296 293 0 3 .0 0. .0010 .0 .0 .001 0 293 297 0 1 CHANNEL 4.0 1800. .0050 4.0 4.0 .035 0 297 298 0 3 .0 0. .0010 .0 .0 .001 0 298 212 3 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 19.0 17.3 22.5 21.9 360 286 0 3 .0 0. .0010 .0 .0 .001 0 286 601 10 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .7 1.6 .9 4.1 1.0 6.9 1.1 1.2 13.0 1.3 16.3 1.4 17.9 1.4 19.8 104.8 601 276 3 3 .0 0. .0010 .0 .0 .001 296 DIVERSION TO GUTTER NUMBER 296 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 1.4 .0 104.3 102.8 276 207 0 2 PIPE 1.5 362. .0020 .0 .0 .013 0 207 287 0 3 .0 0. .0010 .0 .0 .001 0 287 277 9 2 PIPE .l 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 .7 .3 .9 .5 1.0 .7 1.1 1.2 1.3 1.3 1.6 1.4 2.0 1.4 277 208 0 2 PIPE 1.5 217. .0020 .0 .0 .013 0 208 288 0 3 .0 0. .0010 .0 .0 .001 0 288 278 7 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.6 .2 9.9 .6 24.3 1.1 33.7 37.5 204 38.0 278 209 2 PIPE 4.0 850. .0020 4.0 4.0 .013 0 209 289 0 3 .0 0. .0010 .0 .0 .001 0 289 279 8 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 9.8 .6 10.7 1.9 12.4 3.3 13.9 15.3 6.3 16.3 7.7 16.4 279 270 0 2 PIPE 3.0 570. .0020 .0 .0 .013 0 205 216 0 3 .0 0. .0010 .0 .0 .001 0 216 204 6 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .5 .5 1.5 .8 2.9 1.0 4.5 1.1 1.3 204 249 0 2 PIPE 2.5 143. .0020 .0 .0 .013 0 250 249 0 3 .0 0. .0010 .0 .0 .001 0 249 248 0 3 .0 0. .0010 .0 .0 .001 0 248 251 7 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 2.6 .0 3.1 .4 5.4 .9 7.0 8.3 1.6 8.8 251 200 0 2 PIPE 2.0 230. .0020 .0 .0 .013 0 210 200 0 3 .0 0. .0010 .0 .0 .001 0 200 201 0 3 .0 0. .0010 .0 .0 .001 0 201 202 6 2 PIPE .1 1. .0100 .0 .0 .010 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW V:\52870f\active\l87010251 \Reports\Drainage\ModSVVMM\frv-100-ult-s.out 2.00 10.00 9.00 10.00 10.00 4.00 10.00 .10 10.00 .10 9.9 10.00 1.50 10.00 .10 .9 1.50 10.00 .10 1.7 4.00 10.00 .10 4.8 3.00 10.00 .10 6.4 2.50 10.00 10.00 .10 1.4 2.00 10.00 10.00 .10 8V Print Stantec .0 .0 .0 4.4 .2 7.1 .7 10.2 1.2 12.6 1.8 14.6 202 270 0 4 CHANNEL 15.0 902. .0020 4.0 8.0 .035 6.00 0 OVERFLOW 87.0 902. .0020 20.0 20.0 .020 2.00 270 212 0 3 .0 0. .0010 .0 .0 .001 10.00 0 242 240 0 4 CHANNEL .5 1779. .0070 12.0 12.0 .016 .50 0 OVERFLOW 10.0 1779. .0070 20.0 20.0 .020 5.00 240 235 0 3 .0 0. .0010 .0 .0 .001 10.00 0 238 237 0 5 PIPE 3.0 787. .0060 .0 .0 .013 3.00 0 OVERFLOW 1.0 787. .0060 20.0 20.0 .020 5.00 237 236 0 3 .0 0. .0010 .0 .0 .001 10.00 0 236 232 0 5 PIPE 3:0 740. .0050 .0 .0 .013 3.00 0 OVERFLOW 1.0 740. .0050 20.0 20.0 .020 5.00 235 234 0 3 .0 0. .0010 .0 .0 .001 10.00 0 234 233 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 6.4 .0 .0 .4 3.1 2.4 4.2 2.8 4.6 4.7 5.1 100.6 7.1 203.7 8.2 401.9 0. 10.00 233 232 5 3 .0 .0010 .0 .0 .001 230 DIVERSION TO GUTTER NUMBER 230 - TOTAL 0 VS DIVERTED 0 IN CFS 0 5.0 .0 101.0 95.0 204.0 198.0 402.0 396.0 232 231 0 .0 3 .0 0. .0010 .0 .0 .001 10.00 0 231 227 0 5 PIPE 3.0 311. .0030 .0 .0 .013 3.00 0 OVERFLOW 1.0 311. .0030 20.0 20.0 .020 5.00 230 229 0 3 .0 0. .0010 .0 .0 .001 10.00 0 229 228 6 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 1.1 2.9 3.5 3.5 4.6 200.8 5.3 401.0 228 227 4 3 .0 0. .0010 .0 .0 .001 10.00 225 DIVERSION TO GUTTER NUMBER 225 - TOTAL 0 VS DIVERTED 0 IN CFS 0 4.0 .0 201.0 197.0 401.0 397.0 227 226 0 .0 3 .0 0. .0010 .0 .0 .001 10.00 0 226 222 0 5 PIPE 3.0 477. .0060 .0 .0 .013 3.00 0 OVERFLOW 1.0 477. .0060 20.0 20.0 .020 5.00 225 224 0 3 .0 0. .0010 .0 .0 .001 10.00 0 224 223 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .5 2.7 2.0 3.6 3.9 4.3 4.5 4.5 4.8 200.0 5.1 400.0 0. .001 10.00 223 222 4 3 .0 .0010 .0 .0 155 DIVERSION TO GUTTER NUMBER 155 - TOTAL 0 VS DIVERTED 0 IN CFS 0 4.0 .0 200.0 195.0 400.0 395.0 222 221 0 .0 3 .0 0. .0010 .0 .0 .001 10.00 0 221 152 0 5 PIPE 3.0 1569. .0240 .0 .0 .013 3.00 0 OVERFLOW 1.0 1569. .0240 20.0 20.0 .020 8.00 152 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 215 214 0 3 .0 0. .0010 .0 .0 .001 10.00 0 214 203 9 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 12.6 .4 14.9 4.0 21.8 9.6 26.9 12.2 28.7 13.0 149.0 13.2 149.4 14.0 149.9 203 213 3 3 .0 0. .0010 .0 .0 .001 10.00 297 DIVERSION TO GUTTER NUMBER 297 - TOTAL 0 VS DIVERTED 0 IN CFS 29.5 .0 150.0 120.0 213 212 .0 0 .0 5 PIPE 3.0 610. .0030 .0 .0 .013 3.00 0 OVERFLOW 1.0 610. .0030 20.0 20.0 .020 5.00 212 211 0 3 .0 0. .0010 .0 .0 .001 10.00 0 V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 9V Print Stantec 211 125 0 4 CHANNEL 5.0 1670. .0060 4.0 4.0 .035 6.00 0 OVERFLOW 53.0 1670. .0060 4.0 40.0 .020 3.00 125 ill 0 3 .0 0. .0010 .0 .0 .001 10.00 0 ill 110 0 4 CHANNEL 10.0 1400, .0040 .0 .0 .013 4.00 0 OVERFLOW 10.0 1400. .0040 20.0 20.0 .020 3.50 110 105 0 3 .0 0. .0010 .0 .0 .001 10.00 0 105 104 0 3 .0 0. .0010 .0 .0 .001 10.00 0 104 103 3 3 .0 0. .0010 .0 .0 .001 10.00 100 DIVERSION TO GUTTER NUMBER 100 TOTAL Q VS DIVERTED Q IN CFS 0 .0 20.0 .0 2000.0 1980.0 103 120 0 2 PIPE 2.8 617. .0050 .0 .0 .013 2.80 0 129 120 0 1 CHANNEL 130.0 956. .0080 60.0 6.0 .030 8.00 0 120 100 0 3 .0 0. .0010 .0 .0 .001 10.00 0 100 101 0 3 .0 0. .0010 .0 .0 .001 10.00 0 101 99 7 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.5 4.0 6.1 13.9 11.9 22.0 19.1 377.8 27.5 1130.0 29.8 1400.0 154 221 0 3 .0 0. .0010 .0 .0 .001 10.00 0 150 146 0 3 .0 0. .0010 .0 .0 .001 10.00 0 146 145 0 4 CHANNEL 31.0 1384. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 1384. .0020 .0 15.0 .050 12.00 145 141 0 3 .0 0. .0010 .0 .0 .001 10.00 0 141 139 0 4 CHANNEL 31.0 1193. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 1193. .0020 .0 15.0 .050 12.00 140 139 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .4 7.0 1.6 8.9 4.0 10.5 5.5 11.2 7.1 40.0 8.0 100.0 139 136 0 3 .0 0. .0010 .0 .0 .001 10.00 0 136 135 0 4 CHANNEL 31.0 910. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 910. .0020 .0 15.0 .050 12.00 135 116 0 3 .0 0. .0010 .0 .0 .001 10.00 0 116 115 0 4 CHANNEL 31.0 2552. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 2552. .0020 .0 15.0 .050 12.00 99 115 3 3 .0 0. .0010 .0 .0 .001 10.00 95 DIVERSION TO GUTTER NUMBER 95 - TOTAL Q VS DIVERTED 0 IN CFS 0 .0 25.0 .0 1012.0 987.0 115 90 0 3 .0 0. .0010 .0 .0 .001 10.00 0 95 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 11 150 2 3 .0 0. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS 0 300.0 100.0 300.0 10 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 155 154 0 3 .0 0. .0010 .0 .0 .001 10.00 0 90 80 3 3 .0 0. .0010 .0 .0 .001 10.00 91 DIVERSION TO GUTTER NUMBER 91 - TOTAL Q VS DIVERTED 0 IN CFS .0 .0 444.0 .0 6000.0 5556.0 80 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 91 95 0 3 .0 0. .0010 .0 .0 .001 10.00 0 TOTAL NUMBER OF GUTTERS/PIPES, 145 V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 10V Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 101 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 436.4 103 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 348.2 111 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 327.2 116 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119.2 129 0 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0 0 0 0 0 39.7 136 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97.6 140 0 0 0 0 0 0 0 0 0 0 140 0 0 0 0 0 0 0 0 0 58.9 141 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.7 146 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 201 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.6 202 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.6 204 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.2 211 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 290.7 ' 213 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58.8 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58.8 216 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.2 221 222 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 901.5 224 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.9 226 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 879.6 229 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.9 231 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 860.7 234 235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.8 236 237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798.9 238 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798.9 242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 246 244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 247 245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 248 249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 251 248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.7 276 601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.2 277 287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113.2 278 288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 131.1 279 289 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 149.2 286 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.2 287 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 113.2 288 208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 131.1 289 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 149.2 290 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 291 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23.1 292 321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43.6 V:\52870t\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out I Print Stantec 293 296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.2 294 247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 295 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.8 298 297 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53.1 299 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.3 303 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.8 304 305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.8 307 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738.0 309 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738.0 311 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 569.5 313 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 554.2 315 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 60.9 318 319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59.7 319 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59.7 324 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 365.5 330 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 15.3 333 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.3 334 0 0 0 0 0 0 0 0 0 0 335 0 0 0 0 0 0 0 0 0 30.3 341 342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351.1 342 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351.1 344 345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79.7 347 421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.0 355 0 0 0 0 0 0 0 0 0 0 355 0 0 0 0 0 0 0 0 0 27.4 401 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 289.1 405 0 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 41.8 410 0 0 0 0 0 0 0 0 0 0 410 0 0 0 0 0 0 0 0 0 58.6 421 0 0 0 0 0 0 0 0 0 0 420 0 .0 0 0 0 0 0 0 0 109.0 423 425 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63.0 426 437 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.0 430 0 0 0 0 0 0 0 0 0 0 430 0 0 0 0 0 0 0 0 0 22.5 434 435 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31.9 436 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 107 TO GUTTER 100 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 131 TO GUTTER 95 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 139 TO GUTTER 91 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. V:\52870f\active\l87010251\Reports\Drainage\ModSVVMM\frv-100-ult-s.out 12V Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 7 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENTION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (0) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 201 216 248 286 287 288 289 0 1. .0 .0 .0 .0 .0 .0 .0 .00(S) OO(S) .00(S) .00(S) OO(S) .00(S) .00(S) 0 6. .9 .0 .6 .5 .0 1.3 1.1 .00(S) .01(S) .00(S) .02(S) OO(S) .01(S) .00(S) 0 11. 4.4 .1 2.6 .7 .1 3.5 6.4 .01(S) .04(S) .O1(S) .15(S) .02(S) .05(S) .03(S) 0 16. 4.7 .2 3.1 .8 .2 7.8 9.9 .03(S) .13(S) .04(S) .53(S) .05(S) .14(S) .08(S) 0 21. 5.3 .3 3.5 .9 .4 13.5 10.1 .07(S) .29(S) - .11(S) 1.28(S) .10(S) .29(S) .26(S) 0 26. 6.3 .6 4.2 1.0 .7 21.0 10.7 .13(S) .55(S) .22(S) 2.46(S) .17(S) .51(S) .58(S) 0 31. 7.6 .7 5.5 1.1 .9 31.1 11.5 .27(S) 1.06(S) .46(S) 4.79(S) .31(S) .97(S) 1.23(S) 0 36. 9.1 .9 7.1 1.2 1.0 37.6 13.0 .50(S) 2.02(S) .91(S) 8.92(S) .56(S) 1.86(S) 2.42(S) 0 41. 9.7 1.0 7.8 1.3 1.1 37.9 13.9 .60(S) 2.65(S) 1.17(S) 11.98(S) .69(S) 2.19(S) 3.25(S) 0 46. 10.0 1.0 8.1 1.4 1.1 37.9 14.4 .65(S) 3.02(S) 1.30(S) 14.16(S) .77(S) 2.28(S) 3.81(S) 0 51. 10.2 1.0 8.2 1.4 1.1 37.9 14.8 .68(S) 3.26(S) 1.36(S) 15.85(S) .82(S) 2.24(S) 4.21(S) 0 56. 10.3 1.1 8.3 1.4 1.2 37.8 15.1 .70(S) 3.42(S) 1.39(S) 17.30(S) .85(S) 2.14(S) 4.55(S) 1 1. 10.3 1.1 8.3 35.8 1.2 37.7 15.3 .71(S) 3.56(S) 1.41(S) 18.56(S) .89(S) 2.02(S) 4.85(S) 1 6. 10.4 1.1 8.4 82.6 1.2 37.6 15.5 .72(S) 3.67(S) 1.41(S) 19.40(S) .91(S) 1.89(S) 5.13(S) 1 11. 10.4 1.1 8.4 99.7 1.2 37.5 15.7 .73(S) 3.78(S) 1.42(S) 19.71(S) .94(S) 1.76(S) 5.40(S) 1 16. 10.5 1.1 8.4 103.0 1.2 36.9 15.9 .74(S) 3.87(S) 1.42(S) 19.77(S) .96(S) 1.62(S) 5.66(S) 1 21. 10.5 1.1 8.4 102.7 1.2 36.0 16.0 .75(S) 3.97(S) 1.42(S) 19.76(S) .99(S) 1.48(S) 5.91(S) 1 26. 10.5 1.1 8.4 100.5 1.2 35.2 16.2 .75(S) 4.05(S) 1.41(S) 19.72(S) 1.01(S) 1.34(S) 6.15(S) 1 31. 10.6 1.1 8.3 97.3 1.2 34.3 16.3 .76(S) 4.14(S) 1.41(S) 19.66(S) 1.03(S) 1.21(S) 6.38(S) 1 36. 10.6 1.1 8.3 93.5 1.2 32.9 16.3 .76(S) 4.22(S) 1.40(S) 19.60(S) 1.05(S) 1.08(S) 6.60(S) 1 41. 10.6 1.1 8.3 89.4 1.2 30.7 16.3 .77(S) 4.29(S) 1.39(S) 19.52(S) 1.07(S) .95(S) 6.80(S) 1 46. 10.6 1.1 8.3 85.4 1.2 28.7 16.3 .77(S) 4.36(S) 1.38(S) 19.45(5) 1.09(S) .84(S) 6.99(S) 1 51. 10.6 1.2 8.3 81.4 1.2 26.9 16.3 .77(S) 4.43(S) 1.37(S) 19.38(S) 1.11(S) .74(S) 7.16(S) 1 56. 10.6 1.2 8.2 77.7 1.3 25.3 16.3 .77(S) 4.50(S) 1.35(S) 19.31(S) 1.13(S) .65(S) 7.31(S) 2 1. 10.6 1.2 8.2 73.7 1.3 23.2 16.4 .77(S) 4.56(S) 1.34(S) 19.24(S) 1.15(S) .57(S) 7.45(S) 2 6. 10.6 1.2 8.1 64.5 1.3 19.6 16.4 .76(S) 4.60(S) 1.31(S) 19.08(S) 1.15(S) .47(S) 7.54(S) 2 11. 10.5 1.2 8.0 53.2 1.3 16.1 16.4 .74(S) 4.61(S) 1.27(S) 18.87(S) 1.16(S) .37(S) 7.58(S) 2 16. 10.4 1.2 7.9 42.9 1.3 13.1 16.4 .72(S) 4.62(S) 1.23(S) 18.69(S) 1.16(S) .28(S) 7.59(S) 2 21. 10.3 1.2 7.8 34.3 1.3 10.7 16.4 .71(S) 4.62(S) 1.19(S) 18.53(S) 1.16(S) .21(S) 7.58(S) 2 . 26. 10.3 1.2 7.7 27.3 1.3 8.4 16.4 .69(S) 4.62(S) 1.14(S) 18.41(S) 1.16(S) .16(S) 7.55(S) 2 31. 10.2 1.2 7.6 21.8 1.3 6.6 16.4 .67(S) 4.61(S) 1.10(S) 18.31(S) 1.16(S) .12(S) 7.50(S) 2 36. 10.1 1.2 7.5 17.5 1.3 5.2 16.4 .65(S) 4.61(S) 1.06(S) 18.23(S) 1.17(S) .09(S) 7.44(S) 2 41. 10.0 1.2 7.4 14.1 1.3 4.1 16.3 .64(S) 4.60(S) 1.02(S) 18.17(S) 1.17(S) .06(S) 7.37(S) 2 46. 9.8 1.2 7.2 11.5 1.3 3.4 16.3 .62(S) 4.60(S) .97(S) 18.12(S) 1.17(S) .05(S) 7.28(S) 2 51. 9.7 1.2 7.1 9.5 1.3 2.8 16.3 .60(S) 4.59(S) .93(S) 18.08(S) 1.17(S) .04(S) 7.20(S) 2 56. 9.6 1.2 7.0 7.9 1.3 2.4 16.3 .58(S) 4.58(S) .89(S) 18.06(S) 1.17(S) .03(S) 7.11(S) V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 13V Print Stantec 3 1. 9.5 1.2 6.9 6.6 1.3 2.1 16.3 .57(S) 4.58(S) .85(S) 18.03(S) 1.17(S) .02(S) 7.01(S) 3 6. 9.4 1.2 6.8 5.6 1.3 1.9 16.3 .55(S) 4.57(S) .81(S) 18.02(S) 1.17(S) .02(S) 6.92(S) 3 11. 9.3 1.2 6.7 4.8 1.3 1.7 16.3 .53(S) 4.56(S) .78(S) 18.00(S) 1.17(S) .01(S) 6.82(S) 3 16. 9.2 1.2 6.5 4.2 1.3 1.6 16.3 .51(S) 4.56(S) .74(S) 17.99(S) 1.18(S) .01(S) 6.72(S) 3 21. 9.1 1.2 6.4 3.6 1.3 1.4 16.3 .49(S) 4.55(S) .70(S) 17.98(S) 1.18(S) .01(S) 6.62(S) 3 26. 8.9 1.2 6.3 3.2 1.3 1.3 16.3 .48(S) 4.54(S) .67(S) 17.97(S) 1.18(S) .01(S) 6.52(S) 3 31. 8.8 1.2 6.1 2.8 1.3 1.3 16.3 .46(S) 4.53(S) .63(S) 17.96(S) 1.18(S) .01(S) 6.42(S) 3 36. 8.7 1.2 6.0 2.5 1.3 1.3 16.3 .44(S) 4.52(S) .60(S) 17.96(S) 1.18(S) .01(S) 6.31(S) 3 41. 8.6 1.2 5.9 2.2 1.3 1.3 16.2 .42(S) 4.52(S) .57(S) 17.95(S) 1.18(S) .01(S) 6.21(S) 3 46. 8.5 1.2 5.8 2.0 1.3 1.3 16.2 .40(S) 4.51(S) .53(S) 17.95(S) 1.18(S) .01(S) 6.11(S) 3 51. 8.4 1.2 5.7 1.8 1.3 1.3 16.1 .38(S) 4.50(S) .50(S) 17.95(S) 1.18(S) .01(S) 6.01(S) 3 56. 8.3 1.2 5.6 1.6 1.3 1.3 16.0 .37(S) 4.49(S) .47(S) 17.94(S) 1.18(S) .01(S) 5.91(S) 4 1. 8.1 1.2 5.5 1.5 1.3 1.3 16.0 .35(S) 4.49(S) .44(S) 17.94(S) 1.18(S) .01(S) 5.80(S) 4 6. 8.0 1.2 5.4 1.4 1.3 1.3 15.9 .33(S) 4.48(S) .41(S) 17.94(S) 1.19(S) .01(S) 5.70(S) 4 11. 7.9 1.2 5.2 1.4 1.3 1.3 15.8 .31(S) 4.47(S) .38(S) 17.93(S) 1.19(S) .01(S) 5.60(S) 4 16. 7.8 1.2 5.0 1.4 1.3 1.3 15.8 .29(S) 4.46(S) .36(S) 17.93(S) 1.19(S) .01(S) 5.50(S) 4 21. 7.7 1.2 4.9 1.4 1.3 1.3 15.7 .27(S) 4.45(S) .33(S) 17.93(S) 1.19(S) .01(S) 5.40(S) 4 26. 7.6 1.2 4.7 1.4 1.3 1.3 15.6 .25(S) 4.45(S) .31(S) 17.92(S) 1.19(S) .01(S) 5.31(S) 4 31. 7.4 1.2 4.6 1.4 1.3 1.3 15.6 .23(S) 4.44(S) .28(S) 17.92(S) 1.19(S) .01(S) 5.21(S) 4 36. 7.3 1.2 4.4 1.4 1.3 1.3 15.5 .21(S) 4.43(S) .26(S) 17.91(S) 1.19(S) .01(S) 5.11(S) 4 41. 7.2 1.2 4.3 1.4 1.3 1.3 15.4 .19(S) 4.42(S) .24(S) 17.91(5) 1.19(S) .01(S) 5.01(S) 4 46. 7.0 1.2 4.2 1.4 1.3 1.3 15.4 .17(S) 4.42(S) .22(S) 17.90(S) 1.19(S) .01(S) 4.91(S) 4 51. 6.7 1.1 4.0 1.4 1.3 1.3 15.3 .16(S) 4.41(S) .20(S) 17.89(S) 1.19(S) .01(S) 4.82(S) 4 56. 6.4 1.1 3.9 1.4 1.3 1.3 15.2 .14(S) 4.40(S) .18(S) 17.89(S) 1.20(S) .01(S) 4.72(S) 5 1. 6.2 1.1 3.8 1.4 1.3 1.3 15.1 .12(S) 4.39(S) .16(S) 17.88(S) 1.20(S) .01(S) 4.63(S) 5 6. 5.9 1.1 3.7 1.4 1.3 1.3 15.1 .11(S) 4.38(S) .14(S) 17.87(S) 1.20(S) .01(S) 4.53(S) 5 11. 5.7 1.1 3.6 1.4 1.3 1.3 15.0 .09(S) 4.38(S) .12(S) 17.86(S) 1.20(S) .01(S) 4.44(S) 5 16. 5.5 1.1 3.5 1.4 1.3 1.3 14.9 .08(S) 4.37(S) .11(S) 17.85(S) 1.20(S) .01(S) 4.34(S) 5 21. 5.3 1.1 3.4 1.4 1.3 1.3 14.8 .06(S) 4.36(S) .09(S) 17.85(S) 1.20(S) .01(S) 4.25(S) 5 26. 5.1 1.1 3.3 1.4 1.3 1.3 14.7 .05(S) 4.35(S) .08(S) 17.84(S) 1.20(S) .01(S) 4.16(S) 5 31. 4.9 1.1 3.2 1.4 1.3 1.3 14.6 .04(S) 4.35(S) .06(5) 17.83(S) 1.20(S) .01(S) 4.06(S) 5 36. 4.7 1.1 3.1 1.4 1.3 1.3 14.6 .03(S) 4.34(S) .05(S) 17.82(S) 1.20(S) .01(S) 3.97(S) 5 41. 4.5 1.1 3.0 1.4 1.3 1.3 14.5 .02(S) 4.33(S) .03(S) 17.81(S) 1.20(S) .01(S) 3.88(S) 5 46. 3.5 1.1 2.8 1.4 1.3 1.3 14.4 .01(S) 4.32(S) .02(S) 17.80(S) 1.21(S) .01(S) 3.79(S) 5 51. 2.7 1.1 2.6 1.4 1.3 1.3 14.3 .01(S) 4.31(S) .01(S) 17.79(S) 1.21(S) .01(S) 3.70(S) 5 56. 1.9 1.1 1.4 1.4 1.3 1.3 14.2 .00(S) 4.31(S) .01(S) 17.79(S) 1.21(S) .01(S) 3.61(S) 6 1. 1.3 1.1 1.2 1.4 1.3 1.3 14.1 .00(S) 4.30(S) .00(S) 17.78(S) 1.21(S) .01(S) 3.52(S) 6 6. 1.2 1.1 1.1 1.4 1.3 1.3 14.1 .00(S) 4.29(S) .00(S) 17.77(S) 1.21(S) .01(S) 3.43(S) 6 11. 1.1 1.1 1.1 1.4 1.3 1.3 14.0 .00(S) 4.28(S) .00(S) 17.76(S) 1.21(S) .01(S) 3.35(S) 6 16. 1.1 1.1 1.1 1.4 1.3 1.3 13.9 .00(S) 4.28(S) .00(S) 17.75(S) 1.21(S) .01(S) 3.26(S) 6 21. 1.1 1.1 1.1 1.4 1.3 1.3 13.8 .00(S) 4.27(S) .00(S) 17.74(S) 1.21(S) .01(S) 3.17(S) 6 26. 1.1 1.1 1.1 1.4 1.3 1.3 13.7 .00(S) 4.26(S) .00(S) 17.73(S) 1.21(S) .01(S) 3.09(S) 6 31. 1.1 1.1 1.1 1.4 1.3 1.3 13.6 .00(S) 4.25(S) .00(S) 17.72(S) 1.21(S) .01(S) 3.00(S) 6 36. 1.1 1.1 1.1 1.4 1.3 1.3 13.5 .00(S) 4.24(S) .00(S) 17.71(S) 1.22(S) .01(S) 2.92(S) 6 41. 1.1 1.1 1.1 1.4 1.3 1.3 13.4 .00(S) 4.24(S) .00(S) 17.70(S) 1.22(S) .01(S) 2.83(S) V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 14V Print Stantec 6 46. 1.1 1.1 1.1 1.4 1.3 1.3 13.4 .00(S) 4.23(S) .00(S) 17.69(S) 1.22(S) .01(S) 2.75(S) 6 51. 1.1 1.1 1.1 1.4 1.3 1.3 13.3 .00(S) 4.22(S) .00(S) 17.68(S) 1.22(S) .01(S) 2.67(S) 6 56. 1.1 1.1 1.1 1.4 1.3 1.3 13.2 .00(S) 4.21(S) .00(S) 17.67(S) 1.22(S) .01(S) 2.58(S) 7 1. 1.1 1.1 1.1 1.4 1.3 1.3 13.1 .00(S) 4.21(S) .00(S) 17.66(S) 1.22(S) .01(S) 2.50(S) 7 6. 1.1 1.1 1.1 1.4 1.3 1.3 13.0 .00(S) 4.20(S) .00(S) 17.65(S) 1.22(S) .01(S) 2.42(S) 7 11. 1.1 1.1 1.1 1.4 1.3 1.3 12.9 .00(S) 4.19(S) .00(S) 17.64(S) 1.22(S) .01(S) 2.34(S) 7 16. 1.1 1.1 1.1 1.4 1.3 1.3 12.8 .00(S) 4.18(S) .00(S) 17.63(S) 1.22(S) .01(S) 2.26(S) 7 21. 1.1 1.1 1.1 1.4 1.3 1.3 12.7 .00(S) 4.17(S) .00(S) 17.62(S) 1.22(S) .01(S) 2.18(S) 7 26. 1.1 1.1 1.1 1.4 1.3 1.3 12.7 .00(S) 4.17(S) .00(S) 17.61(S) 1.23(S) .01(S) 2.10(S) 7 31. 1.1 1.1 1.1 1.4 1.3 1.3 12.6 .00(S) 4.16(S) .00(S) 17.60(S) 1.23(S) .01(S) 2.03(S) 7 36. 1.1 1.1 1.1 1.4 1.3 1.3 12.5 .00(S) 4.15(S) .00(S) 17.59(S) 1.23(S) .01(S) 1.95(S) 7 41. 1.1 1.1 1.1 1.4 1.3 1.3 12.4 .00(S) 4.14(S) .00(S) 17.58(S) 1.23(S) .01(S) 1.87(S) 7 46. 1.1 1.1 1.1 1.4 1.3 1.3 12.3 .00(S) 4.14(S) .00(S) 17.57(S) 1.23(S) .01(5) 1.79(S) 7 51. 1.1 1.1 1.1 1.4 1.3 1.3 12.2 .00(S) 4.13(S) .00(S) 17.56(S) 1.23(S) .01(S) 1.72(S) 7 56. 1.1 1.1 1.1 1.4 1.3 1.3 12.1 .00(S) 4.12(S) .00(S) 17.55(S) 1.23(S) .01(S) 1.64(S) 8 1. 1.1 1.1 1.1 1.4 1.3 1.3 12.0 .00(S) 4.11(S) .00(S) 17.54(S) 1.23(S) .01(S) 1.57(S) 8 6. 1.1 1.1 1.1 1.4 1.3 1.3 11.9 .00(S) 4.10(S) .00(S) 17.54(S) 1.23(S) .01(S) 1.50(S) 8 11. 1.1 1.1 1.1 1.4 1.3 1.3 11.8 .00(S) 4.10(S) .00(S) 17.53(S) 1.23(S) .01(S) 1.42(S) 8 16. 1.1 1.1 1.1 1.4 1.3 1.3 11.7 .00(S) 4.09(S) .00(S) 17.52(S) 1.23(S) .01(S) 1.35(S) 8 21. 1.1 1.1 1.1 1.4 1.3 1.3 11.6 .00(S) 4.08(S) .00(S) 17.51(S) 1.24(S) .01(S) 1.28(S) 8 26. 1.1 1.1 1.1 1.4 1.3 1.3 11.5 .00(S) 4.07(S) .00(S) 17.50(S) 1.24(S) .01(S) 1.21(S) 8 31. 1.1 1.1 1.1 1.4 1.3 1.3 11.4 .00(S) 4.07(S) .00(S) 17.49(S) 1.24(S) .01(S) 1.14(S) 8 36. 1.1 1.1 1.1 1.4 1.3 1.3 11.3 .00(S) 4.06(S) .00(S) 17.48(S) 1.24(S) .01(S) 1.07(S) 8 41. 1.1 1.1 1.1 1.4 1.3 1.3 11.2 .00(S) 4.05(S) .00(S) 17.47(S) 1.24(S) .01(S) 1.00(S) 8 46. 1.1 1.1 1.1 1.4 1.3 1.3 11.2 .00(S) 4.04(S) .00(S) 17.46(S) 1.24(S) .01(S) .93(S) 8 51. 1.1 1.1 1.1 1.4 1.3 1.3 11.1 .00(S) 4.04(S) .00(S) 17.45(S) 1.24(S) .01(S) .87(S) 8 56. 1.1 1.1 1.1 1.4 1.3 1.3 11.0 .00(S) 4.03(S) .00(S) 17.44(S) 1.24(S) .01(S) .80(S) 9 1. 1.1 1.1 1.1 1.4 1.3 1.3 10.9 .00(S) 4.02(S) .00(S) 17.43(S) 1.24(S) .01(S) .73(S) 9 6. 1.1 1.1 1.1 1.4 1.3 1.3 10.8 .00(S) 4.01(S) .00(S) 17.42(S) 1.24(S) .01(S) .67(S) 9 11. 1.1 1.1 1.1 1.4 1.3 1.3 10.7 .00(S) 4.00(S) .00(S) 17.41(S) 1.24(S) .01(S) .60(S) 9 16. 1.1 1.1 1.1 1.4 1.3 1.3 10.6 .00(S) 4.00(5) .00(S) 17.40(S) 1.25(S) .01(S) .54(S) 9 21. 1.1 1.1 1.1 1.4 1.3 1.3 10.5 .00(S) 3.99(S) .00(S) 17.39(S) 1.25(S) .01(S) .47(S) 9 26. 1.1 1.1 1.1 1.4 1.3 1.3 10.4 .00(S) 3.98(S) .00(S) 17.38(S) 1.25(S) .01(S) .41(S) 9 31. 1.1 1.1 1.1 1.4 1.3 1.3 10.3 .00(S) 3.97(S) .00(S) 17.37(S) 1.25(S) .01(S) .35(S) 9 36. 1.1 1.1 1.1 1.4 1.3 1.3 10.2 .00(S) 3.97(S) .00(S) 17.36(S) 1.25(S) .01(S) .29(S) 9 41. 1.1 1.1 1.1 1.4 1.3 1.3 10.1 .00(S) 3.96(S) .00(S) 17.35(S) 1.25(S) .01(S) .23(S) 9 46. 1.1 1.1 1.1 1.4 1.3 1.3 10.0 .00(S) 3.95(S) .00(S) 17.34(S) 1.25(S) .01(S) .17(S) 9 51. 1.1 1.1 1.1 1.4 1.3 1.3 9.9 .00(S) 3.94(S) .00(S) 17.33(S) 1.25(S) .01(S) .11(S) 9 56. 1.1 1.1 1.1 1.4 1.3 1.3 9.8 .00(S) 3.94(S) .00(S) 17.32(S) 1.25(S) .01(S) .05(S) 10 1. 1.1 1.1 1.1 1.4 1.3 1.3 3.2 .00(S) 3.93(S) .00(S) 17.31(S) 1.25(S) .01(S) .01(S) 10 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.6 .00(S) 3.92(S) .00(S) 17.30(S) 1.25(S) .01(S) .01(S) 10 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.4 .00(S) 3.91(S) .00(S) 17.29(S) 1.26(S) .01(S) .01(S) 10 16. 1.1 1.1 1.1 • 1.4 1.3 1.3 1.3 .00(S) 3.91(S) .00(S) 17.28(S) 1.26(S) .01(S) .01(S) 10 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.90(S) .00(S) 17.27(S) 1.26(S) .01(5) .01(S) 10 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.89(S) .00(S) 17.26(S) 1.26(S) .01(S) .01(S) V:\52B70f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 15V Print Stentec 10 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.88(S) .00(S) 17.25(S) 1.26(S) .01(S) .01(S) 10 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.88(S) .00(S) 17.24(S) 1.26(S) .01(S) .01(S) 10 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.87(S) .00(S) 17.23(S) 1.26(S) .01(S) .01(S) 10 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.86(S) .00(S) 17.22(S) 1.26(S) .01(S) .01(S) 10 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.85(S) .00(S) 17.21(S) 1.26(S) .01(S) .01(S) 10 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.85(S) .00(S) 17.20(S) 1.26(S) .01(S) .01(S) 11 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.84(S) .00(S) 17.19(S) 1.26(S) .01(S) .01(S) 11 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.83(S) .00(S) 17.18(S) 1.26(S) .01(S) .01(S) 11 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.82(S) .00(S) 17.17(S) 1.27(S) .01(S) .01(S) 11 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.82(S) .00(S) 17.16(S) 1.27(S) .01(S) .01(S) 11 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.81(S) .00(S) 17.15(S) 1.27(S) .01(S) .01(S) 11 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.80(S) .00(S) 17.14(S) 1.27(S) .01(S) .01(S) 11 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.79(S) .00(S) 17.13(S) 1.27(S) .01(S) .01(S) 11 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.79(S) .00(S) 17.12(S) 1.27(S) .01(S) .01(S) 11 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.78(S) .00(S) 17.11(S) 1.27(S) .01(S) .01(S) 11 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) MR S) .00(S) 17.10(S) 1.27(S) .01(S) .01(S) 11 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.76(S) .00(S) 17.10(S) 1.27(S) .01(S) .01(S) 11 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.76(S) .00(S) 17.09(S) 1.27(S) .01(S) .01(S) 12 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.75(S) .00(S) 17.08(S) 1.27(S) .01(S) .01(S) 12 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.74(S) .00(S) 17.07(S) 1.28(S) .01(S) .01(S) 12 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.73(S) .00(S) 17.06(S) 1.28(S) .01(S) .01(S) 12 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.73(S) .00(S) 17.05(S) 1.28(S) .01(S) .01(S) 12 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.72(S) .00(S) 17.04(S) 1.28(S) .01(S) .01(S) 12 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.71(S) .00(S) 17.03(S) 1.28(S) .01(S) .01(S) 12 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.70(S) .00(S) 17.02(S) 1.28(S) .01(S) .01(S) 12 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.70(S) .00(S) 17.01(S) 1.28(S) .01(S) .01(S) 12 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.69(S) .00(S) 17.00(S) 1.28(S) .01(S) .01(S) 12 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.68(S) .00(S) 16.99(S) 1.28(S) .01(S) .01(S) 12 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.67(S) .00(S) 16.98(S) 1.28(S) .01(S) .01(S) 12 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.67(S) .00(S) 16.97(S) 1.28(S) .01(S) .01(S) 13 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.66(S) .00(S) 16.96(S) 1.28(S) .01(S) .01(S) 13 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.65(S) .00(S) 16.95(S) 1.29(S) .01(S) .01(S) 13 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.64(S) .00(S) 16.94(S) 1.29(S) .01(S) .01(S) 13 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.64(S) .00(S) 16.93(S) 1.29(S) .01(S) .01(S) 13 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.63(S) .00(S) 16.92(S) 1.29(S) .01(S) .01(S) 13 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.62(S) .00(S) 16.91(S) 1.29(S) .01(S) .01(S) 13 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.61(S) .00(S) 16.90(S) 1.29(S) .01(S) .01(S) 13 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.61(S) .00(S) 16.89(S) 1.29(S) .01(S) .01(S) 13 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.60(S) .00(S) 16.88(S) 1.29(S) .01(S) .01(S) 13 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.59(S) .00(S) 16.87(S) 1.29(S) .01(S) .01(S) 13 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.58(S) .00(S) 16.86(S) 1.29(S) .01(S) .01(S) 13 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.58(S) .00(S) 16.85(S) 1.29(S) .01(S) .01(S) 14 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.57(S) .00(S) 16.84(S) 1.29(S) .01(S) .01(S) 14 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.56(S) .00(S) 16.83(S) 1.30(S) .01(S) .01(S) 14 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.56(S) .00(S) 16.82(S) 1.30(S) .01(S) .01(S) V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 16V Print Stantec 14 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.55(S) OO(S) 16.81(S) 1.30(S) .01(S) .01(S) 14 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.54(S) OO(S) 16.80(S) 1.30(S) .01(S) .01(S) 14 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.53(S) OO(S) 16.79(S) 1.30(S) .01(S) .01(S) 14 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.53(S) OO(S) 16.78(S) 1.30(S) .01(S) .01(S) 14 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.52(S) OO(S) 16.77(S) 1.30(S) .01(S) .01(S) 14 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.51(S) OO(S) 16.76(S) 1.30(S) .01(S) .01(S) 14 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.50(S) OO(S) 16.75(S) 1.30(S) .01(S) .01(S) 14 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.50(S) OO(S) 16.74(S) 1.30(S) .01(S) .01(S) 14 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.49(S) OO(S). 16.73(S) 1.30(S) .01(S) .01(S) 15 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.48(S) OO(S) 16.72(S) 1.30(S) .01(S) .01(S) 15 6. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.48(S) OO(S) 16.71(S) 1.30(S) .01(S) .01(S) 15 11. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.47(S) OO(S) 16.70(S) 1.31(S) .01(S) .01(S) 15 16. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.46(S) OO(S) 16.69(S) 1.31(S) .01(S) .01(S) 15 21. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.45(S) OO(S) 16.68(S). 1.31(S) .01(S) .01(S) 15 26. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.45(S) OO(S) 16.67(S) 1.31(S) .01(S) .01(S) 15 31. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.44(S) OO(S) 16.66(S) 1.31(S) .01(S) .01(S) 15 36. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.43(S) OO(S) 16.66(S) 1.31(S) .01(S) .01(S) 15 41. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.42(S) OO(S) 16.65(S) 1.31(S) .01(S) .01(S) 15 46. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.42(S) OO(S) 16.64(S) 1.31(S) .01(S) .01(S) 15 51. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.41(S) OO(S) 16.63(S) 1.31(S) .01(S) .01(S) 15 56. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.40(S) OO(S) 16.62(S) 1.31(S) .01(S) .01(S) 16 1. 1.1 1.1 1.1 1.4 1.3 1.3 1.3 .00(S) 3.40(S) OO(S) 16.61(S) 1.31(S) .01(S) .01(S) 16 6. 1.1 1.0 1.1 1.4 1.3 1.3 1.3 .00(S) 3.39(S) OO(S) 16.60(S) 1.31(S) .01(S) .01(S) 16 11. 1.1 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.38(S) OO(S) 16.59(S) 1.32(S) .01(S) .01(S) 16 16. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.37(S) OO(S) 16.58(S) 1.32(S) .01(S) .01(S) 16 21. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.37(S) OO(S) 16.57(S) 1.32(S) .01(S) .01(S) 16 26. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.36(S) OO(S) 16.56(S) 1.32(S) .01(S) .01(S) 16 31. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.35(S) OO(S) 16.55(S) 1.32(S) .01(S) .01(S) 16 36. 1.0 1.0 1.0 1.4 1.3 1.3 1.3 .00(S) 3.34(S) .00(S) 16.54(S) 1.32(S) .01(S) .01(S) THE FOLLOWING CONVEYANCE ELEMENTS WERE SURCHARGED DURING THE SIMULATION. THIS COULD LEAD TO ERRORS IN THE SIMULATION RESULTS!! 292 THE FOLLOWING CONVEYANCE ELEMENTS HAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 401 V:\52870f\active\187010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 17V Print Stantec FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT, Revised for FRV by Stantec, Jan 2007 *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** *** NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 10:3 85.3 (DIRECT FLOW) 0 35. 11:3 300.0 (DIRECT FLOW) 0 1. 80:3 444.0 (DIRECT FLOW) 0 32. 90:3 595.0 (DIRECT FLOW) 0 35. 91:3 151.0 (DIRECT FLOW) 0 35. 95:3 495.9 (DIRECT FLOW) 0 46. 99:3 417.0 (DIRECT FLOW) 0 48. 100:3 1189.7 (DIRECT FLOW) 0 35. 101:2 417.0 .1 19.5:D 0 48. 103:2 32.5 1.9 0 32. 104:3 478.3 (DIRECT FLOW) 0 35. 105:3 478.3 (DIRECT FLOW) 0 35. 110:3 464.1 (DIRECT FLOW) 0 35. 111:4 296.8 2.8 0 36. 115:3 595.0 (DIRECT FLOW) 0 35. 116:4 447.6 3.3 0 53. 120:3 645.0 (DIRECT FLOW) 0 35. 125:3 321.2 (DIRECT FLOW) 0 35. 129:1 297.8 .6 0 36. 135:3 488.3 (DIRECT FLOW) 0 41. 136:4 413.0 3.2 0 46. 139:3 416.4 (DIRECT FLOW) 0 41. 140:2 52.9 .1 7.3:D 1 22. 141:4 405.9 3.1 0 41. 145:3 423.9 (DIRECT FLOW) 0 35. 146:4 300.0 2.6 1 0. 150:3 300.0 (DIRECT FLOW) 0 1. 152:3 230.4 (DIRECT FLOW) 2 24. 154:3 155.3 (DIRECT FLOW) 2 20. 155:3 155.3 (DIRECT FLOW) 2 20. 200:3 45.4 (DIRECT FLOW) 0 35. 201:2 10.6 .1 .8:D 1 58. 202:4 10.6 .5 2 2. 203:3 26.8 (DIRECT FLOW) 2 0. 204:2 1.2 .4 2 21. 205:3 155.8 (DIRECT FLOW) 0 35. 206:3 546.6 (DIRECT FLOW) 0 35. 207:3 40.2 (DIRECT FLOW) 0 35. 208:3 177.5 (DIRECT FLOW) 0 35. 209:3 204.5 (DIRECT FLOW) 0 35. 210:3 38.8 (DIRECT FLOW) 0 35. 211:4 72.7 1.7 2 33. 212:3 72.8 (DIRECT FLOW) 2 27. 213:5 26.8 1.9 2 1. 214:2 26.8 .1 9.5:D 2 0. 215:3 360.6 (DIRECT FLOW) 0 35. 216:2 1.2 .1 4.6:D 2 20. 221:5 230.4 3.9 2 24. 222:3 75.8 (DIRECT FLOW) 2 13. 223:3 160.1 (DIRECT FLOW) 2 19. 224:2 160.1 .1 4.8:D 2 19. 225:3 164.0 (DIRECT FLOW) 0 56. 226:5 71.0 3.5 2 B. 227:3 71.0 (DIRECT FLOW) 2 6. 228:3 162.6 (DIRECT FLOW) 2 18. 229:2 162.6 .1 4.4:D 2 18. 230:3 171.8 (DIRECT FLOW) 0 48. 231:5 67.0 3.8 2 6. 232:3 67.0 (DIRECT FLOW) 2 4. 233:3 168.0 (DIRECT FLOW) 2 12. 234:2 168.0 .1 6.9:D 2 12. 235:3 379.1 (DIRECT FLOW) 0 35. 236:5 61.0 3.5 2 4. 237:3 61.0 (DIRECT FLOW) 2 1. 238:5 61.0 3.4 2 1. 240:3 194.6 (DIRECT FLOW) 0 35. 242:4 158.0 1.2 2 12. 243:3 63.9 (DIRECT FLOW) 0 35. 244:3 22.0 (DIRECT FLOW) 0 35. 245:3 25.5 (DIRECT FLOW) 0 35. 246:2 6.4 .1 .2:D 0 45. 247:2 6.9 .1 .3:D 0 45. 248:2 8.4 .1 1.4:D 1 15. 249:3 80.0 (DIRECT FLOW) 0 35. 250:3 79.1 (DIRECT FLOW) 0 35. 251:2 8.4 1.4 1 15. 270:3 27.0 (DIRECT FLOW) 2 3. 276:2 1.4 .6 1 56. 277:2 1.3 .5 16 39. V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out 18V Print Stantec 278:2 37.9 2.2 0 49. 279:2 16.4 1.6 2 17. 286:2 103.2 .1 19.8:0 1 18. 287:2 1.3 .1 1.3:D 16 39. 288:2 37.9 .1 2.3:0 0 46. 289:2 16.4 .1 7.6:0 2 16. 290:2 6.4 .7 0 46. 291:2 109.0 3.7 0 35. 292:2 109.2 4.0 1.0:S 0 46. 293:1 119.0 2.4 1 25. 294:2 6.9 .8 0 47. 295:2 51.2 1.8 0 36. 296:3 183.2 (DIRECT FLOW) 0 35. 297:3 360.2 (DIRECT FLOW) 0 35. 298:2 20.1 .1 21.1:D 2 44. 299:2 61.0 1.5 0 35. 300:3 116.6 (DIRECT FLOW) 0 35. 301:3 103.5 (DIRECT FLOW) 0 35. 302:3 60.3 (DIRECT FLOW) 0 35. 303:5 40.2 2.7 2 14. 304:2 40.2 .1 3.5:D 2 11. 305:3 178.0 (DIRECT FLOW) 0 35. 306:3 61.0 (DIRECT FLOW) 1 56. 307:2 27.4 1.8 2 50. 308:3 186.8 (DIRECT FLOW) 2 6. 309:2 186.8 .1 28.4:D 2 6. 310:3 486.3 (DIRECT FLOW) 0 35. 311:5 120.1 3.4 4 12. 312:3 120.1 (DIRECT FLOW) 4 6. 313:5 114.0 3.4 4 26. 314:3 114.0 (DIRECT FLOW) 4 25. 315:2 33.6 .1 8.8:D 1 56. 318:5 45.4 2.1 1 38. 319:2 47.0 .1 6.5:D 1 28. 320:3 210.8 (DIRECT FLOW) 0 35. 321:3 212.5 (DIRECT FLOW) 0 35. 322:3 60.3 (DIRECT FLOW) 0 35. 324:5 76.5 4.1 7 53. 325:3 102.1 (DIRECT FLOW) 0 '35. 330:2 16.7 .1 2.1:D 1 8. 333:5 26.9 2.4 1 30. 334:2 27.0 .1 2.9:D 1 21. 340:3 411.8 (DIRECT FLOW) 0 35. 341:5 76.5 3.3 6 58. 342:2 76.6 .1 32.4:D 7 10. 344:2 30.6 .1 14.7:D 2 4. 345:3 508.0 (DIRECT FLOW) 0 35. 347:2 12.6 1.2 3 52. 355:4 149.2 1.7 0 36.. 360:3 655.8 (DIRECT FLOW) 0 35. 400:3 1504.5 (DIRECT FLOW) 0 35. 401:2 114.4 .1 51.6:0 2 4. 405:5 329.2 3.3 0 35. 410:5 281.5 3.9 0 36. 415:3 479.8 (DIRECT FLOW) 0 36. 421:2 12.6 .1 16.1:D 3 50. 423:5 130.9 2.7 0 37. 425:3 185.9 (DIRECT FLOW) 0 35. 426:2 6.9 1.1 0 33. 430:5 124.7 2.2 0 35. 434:4 189.3 1.4 0 43. 435:3 195.2 (DIRECT FLOW) 0 40. 436:1 117.8 1.3 0 41. 437:3 187.8 (DIRECT FLOW) 0 35. 440:3 187.8 (DIRECT FLOW) 0 35. 601:3 103.2 (DIRECT FLOW) 1 18. ENDPROGRAM PROGRAM CALLED V:\52870f\active\l87010251\Reports\Drainage\ModSWMM\frv-100-ult-s.out .19V Print ORIGINAL CITY OF FORT COLLINS ModSWMM INPUT AND OUTPUT Stantee 31 �V306 `J ENCUSH FOX RANCH MEADOWS POND /2 POND 303 Acres 30 4=64 6 Acres L 24 / BA=32.3 Arcre� 23 242 BA=29.5 Acres SUNSTONE VILLAGE POND 45 21 BA=83 3 Acres ENGLISH RA! 1 POAlD /4 4A= I'd.0 Acres J 150 HORSETOOTH ROAD 'CH LINE SEE THIS Cui 0 23 w BA=38.7 Acres BA=18.9 Acres Li N 22 BA=21.9 Acres 2� 6.9 Acres 21 BA=41.9 Acres PROJECT No.01-043-001 14 BA=58.9 Acres 1 "` 145 oUl 141 VA L O WOODLAN �T PARK REGION POND 140 139 � `y 2 33 13 BA=21.6 Acres F12 211 125 12 BA=36.5 Acres U BA=681 Acres INADVERTENT DETENTION A 14� UNDEVELOPED L 2 Q O 205 Of Ls 2 0 POND Q� LLJ BA=14.3 Acres cD . Ld Fv DRAWN 8JL DESIGNED CDJ CHECKED DJW I 152 (Hydrogroph to Foothals Rosin) tHydrogroph to %oothills Basin) a)Hydrograph (300—cfs Inflow from Rodial Gate) 11 A-19.8 Acres HORSETOOTH ROAD fCH LINE SEE THIS SHEET GRAPHIC SCALE cTK�1 1 IsL � 00a R ' j 135 BA=18.\Acre 13A=17.6 Acres 110 LEGEND CONTOUR INTERVAL = 2 FEET BASIN 1 1 BASIN ID Y MAIN CONVEYANCE FLOW LINE _.._..� DIVERSION OVERFLOW FLOW LINE 430 PIPE / CHANNEL 440 DIRECT FLOW NODE / DESIGN POINT 401 DETENTION POND 437 DIVERSION 105 10 13 104 A=3.4'Acres BA=39.7 Acres 1 2 HPSITE 103 \ 1 0 BA=36.2 Acres 9(;� 115 129 120 HARMONY ROAD 1 5 95 90 BA=17.1 Acres 80 l(��'1/nTq FOX MEADpy;STM OFI FORTRCOLLINS. COLORADO PLAN UPDA DECA200 ENGINEERING INCSHEET or ort slap S. Ara, sbwt. sw loo, &W,.004 00 eo z S;13B%SIN AND MODSWMM ELEMENT MAP Phe I= 221—OM / Fm (aWT 221-4019 - CFI FrTFl1 IAAGDnt rr�irr.iT of A.' A --'I 1 I .i HORSEEOOTH ROAD I --------------------------------- I I I ------- ---- I I I I I I I i]0 N] I I I ]b I � � b• ]10 I I I i I VI sic } •.� I T 4aas uo N] . u • m �m I V I a+ I I .uy'a�M uaaep I ® a No NI m w o`1 I m m m 4u m ••+ �1---� NO m I m ra.a .ae a a•]• I I 'M, ]n OI wI �u LLI m � I 14 aI jI &� x 40 = ffi K 5 oI wm w :I HARMONY ROAD F I ----------------------L-----------L----------------Jill 3 0 J m Fox Meodows Basin LE!%END 1 6ASIN ID FLOW LINE OVERFLOW FROM DIVERSION m PIPE / CHANNEL CONVEYANCE ELEMENT DIRECT FLOW NODE / DESIGN POINT © INI'LOW HYDROGRAPH ® DETENTION POND DIVERSION I p r m I �SSII ;RfE '"' 1 �'.•taa' EERVOIR 114 D g I n Illul t.u,1L ` ET HORSE— — ROAD T m wr---------- ---- — In ]an• b a1 m s INIAMMIotax al m m y] I IN +a M in ` I I ® 7W • aS ® • m ID 'ala ® • I O • tm IN in IN +M IS w � I ..•" m m m m I I 0 I m I s l ®• m. • m INIUMININ I I MIS >a T I I ® • >fn ® I �� x+] I I= I an • I 7 . } • . I� — +a fai +m O ra Iw IN Iz T I O a ,a m IN n] IL I Q I T i I in ,m IN OQ 0 I� I ,ffi. &I IW g I 0: I� I wJI W In I HARMONY ROAD ,NI Io I --------------------------------I--------------,-_------- — — — — — - P DAWN DESIGNED CDr CHEED PRO.IFr:T No.01-041-001-415 I nm ][SCOT ENGINEERIN(3t INC MEADOWS BASIN DRAINAGE MASTER PLAN UPDA E DATE CITY OF FORT COLLINS, COLORADO JAN 2( MODSWMM /;ONNECTNfTY DIAGRAM "r..1, r SHEET I SP-100.in 2 1 1 2 3 4 WATERSHED 0 FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT 999 000 1.0 1 0.0 24 5.0 1.00 1.14 1.33 2.23 2.84 5.49 9.95 4.12 2.48 1.46 1.22 1.06 1.00 0.95 0.91 0.87 0.84 0.81 0.78 0.75 0.73 0.71 0.69 0.67 1 100 100 2881 12.3 32.00.0390.0160.2500.1000.300 0.51 0.50 0.0018 1 105 105 641 3.4 10.00.0230.0160.2500.1000.300 0.51 0.50 0.0018 1 110 110 2758 17.6 90.00.0300.0160.2500.1000.300 0.51 0.50 0.0018 1 115 115 3722 18.8 13.50.0860.0160.2500.1000.300 0.51 0.50 0.0018 1 120 120 4665 36.2 86.50.0160.0160.2500.1000.300 0.51 0.50 0.0018 1 125 125 3494 36.5 68.80.0230.0160.2500.1000.300 0.51 0.50 0.0018 1 130 129 8604 39.7 78.00.0310.0160.2500.1000.300 0.51 0.50 0.0018 1 135 135 4127 21.6 13.30.0290.0160.2500.1000.300 0.51 0.50 0.0018 1 140 140 8223 58.9 24.80.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 145 145 4915 38.7 12.00.0160.0160.2500:1000.300 0.51 0.50 0.0018 1 150 10 3026 19.8 6.80.0510.0160.2500.1000.300 0.51 0.50 0.0018 1 155 115 9801 17.1 70.00.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 200 200 5921 68.1 8.30.0070.0160.2500.1000.300 0.51 0.50 0.0018 1 205 205 2112 14.3 70.00.0170.0160.2500.1000.300 0.51 0.50 0.0018 1 210 209 6621 83.3 5.70.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 215 215 9265 41.9 38.50.0070.0160.2500.1000.300.0.51 0.50 0.0018 1 220 215 4630 16.9 38.50.0120.0160.2500.1000.300 0.51 0.50 0.0018 1 225 225 5678 21.9 38.50.0240.0160.2500.1000.300 0.51 0.50 0.0018 1 230 230 5639 18.9 38.50.0180.0X60.2500.1000.300 0.51 0.50� 0.0018 1 235 235 5949 29:5 38.50.0130.0 60.2500.1000.300 0.51 0.56 0.0018 1 240 240 5007 32.3 41.50.0120.0160.2500.1000.300 0.51 0.50 0.0018 1 300 300 8849 64.6 35.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 305 305 7663 24.1 38.50.0150.0160.2500.1000.300 0.51 0.50 0.0018 1 310 31012018 84.7 37.00.0050:0160.2500.1000.300 0.51 0.50 0.0018 1 315 315 9023 60.9 38.50.0060.0160.2500.1000.300 0.51 0.50 0.0018 1 320 320 5102 29.4 38.50.0210.0160.2500.1000.300 0.51 0.50 0.0018 1 325 325 2084 14.4 40.00.0210.0160.2500.1000..300 0.51 0.50 0.0018 1 330 330 2038 15.3 46.80.0130.0160.2500.1000.300 0.51 0.50 0.0018 1 335 334 3567 30.3 27.80.0150.0160.2500.1000.300 0.51 0.50 0.0018 1 340 340 4623 34.6 30.00.0270.0160.2500.1000.300 0.51 0.50 0.0018 1 345 345 5109 44.8 27.00.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 350 345 6639 34.9 90.00.0110.0160.2500.1000.300 0.51 0.50 0.0018 1 355 355 2940 27.4 48.00.0100.0160.2500.1000.300 0.51 0.50 0.0018 1 400 400 6703 51.7 71.50.0240.0160.2500.1000.300 0.51 0.50 0.0018 1 405 405 7493 41.8 60.80.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 410 410 7013 58.6 48.50.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 415 415 5458 42.1 40.00.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 420 421 7066109.0 11.60.0080.0160.2500.1000.300 0.51 0.50 0.0018 1 425 425 5627 31.0 38.50.0090.0160.2500.1000.300 0.51 0.50 0.0018 1 430 430 2979 22.5 38.50.0180.0160.2500.1000.300 0.51 0.50 0.0018 1 435 435 3776 31.9 10.00.0110.0160.2500.1000.300 0.51 0.50 0.0018 1 440 440 2603 9.5 38.50.0110.0160.2500.1000.300 0.51 0.50 0.0018 0 0 0 430 440 0 5 1.25 600 0.0130 0 0 0.013 1.25 1 513 0.0120 20 20 0.020 5.00 0 440 437 0 3 0 0 0.0000 0 0 0.000 0.00 436 437 426 3 3 0 0 0.0000 0 0 0.000 0.00 0.00 0.0 4 0.0 10000 9996.0 0 426 425 0 2 1.25 1339 0.0100 0 0 0.013 1.25 0 436 435 0 1 15 1889 0.0080 8 8 0.035 5.00 0 425 423 0 3 0 0 0.0000 0 0 0.000 0.00 Page 1 G SP-100.in 0 435 434 0 3 0 0 0:0000 0 0 0.000 0.00 0 423 415 0 5 1.5 1457 0.0050 0 0 0.013 1.50 1 1457 0.0050 20 20 0.020 5.00 0 434 415 0 4 0.5 768 0.0050 12 12 0.016 0.50 10 768 0.0050 20 20 0.020 5.00 0 415 400 0 3 0 0 0.0000 0 0 0.000 0.00 0 410 400 0 5 2.5 1301 0.0090 0 0 0.013 2.50 1 1380 0.0070 20 20 0.020 5.00 0 405 400 0 5 3 1065 0.0090 0 0 0.013 3.00 80 1065 0.0090 1 1 0.005 5.00 0 400 401 0 3 0 0. 0.0000 0 0 0.000 0.00 0 401 340 11 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.001 8.0 4.85 12.7 8.97 16.7 9.03 23.0 10.29 57.9 11.59 70.8 16.67 80.7 31.34 98.0 52.86 115.4 95.93 705.0 0 355 340 0 4 0.25 608 0.0050 12 0 0.016 0.50 5 608 0.0050 20 0 0.020 5.00 0 340 342 0 3 0 0 0.0000 0 0 0.000 0.00 0 342 341 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.20 2.9 5.68 23.5 14.66 53.0 28.14 73.1 47.36 88.5 72.54 103.6 95.53 111.0 0 341 325 0 5 3.5 1200 0.0050 0 0 0.013 3.50 1 1200 0.0050 20 20 0.020 5.00 0 325 324 0 3 0 0 0.0000 0 0 0.000 0.00 0 324 314 0 5 3.5 1242 0.0030 0 0 0.013 3.50 1 1242 0.0030 20 20 0.020 5.00 0 421 347 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.16 2.1 8.27 10.5 34.02 17.4 43*63 18.7 0 347 314 0 2 1.5 1139 0.0150 0 0 O.bl3 1.50 0 345 344 0 3 0 0 0.0000 0 0 0.000 0.00 0 344 314 5 2. 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.04 1.9 2.79 16.8 10.12 27.6 21.56 35.0 0 314 313 0 3 0 0 0.0000 0 0 0.000 0.00 0 313 312 0 5 2 409 0.0090. 0 0 0.013 2.00 10 409 0.0350 5 5 0.035 6.00 0 330 312 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.001 4.0 0.97 6.6 1.98 8.0 3.04 104.0 0 312 311 0 3 0 0 0.0000 0 0 0.000 0.00 0 311 310 0 5 2 1566 0.0090 0 0 0.013 2.00 10 1566 0.0090 5 5 0.035 6.00 0 334 333 5 2 0.1 1 '0.0100 0 0 0.010 0.10 0.00 0.0 0.012 5.6 0.32 21.9 6.45 34.0 16.40 100.0 0 333 320 0 5 2 1064 0.0090 0 0 0.013 2.00 5 1075 0.0090 3 3 0.035 6.00 0 320 319 0 3 0 0 0.0000 0 0 0.000 0.00 0 319 318 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.003 0.4 0.52 3.3 2.06 6.2 4.21 9.2 5.92 11.0 6.27 17.5 7.07 109.6 7.93 260.7 0 318 305 0 5 1.25 1320 0.0050 0 0 0.013 1.25 1 1384 0.0040 20 20 0.020 5.00 0 305 304 0 3 0 0 0.0000 0 0 0.000 0.00 0 304 303 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.027 13.6 0.59 28.3 2.19 37.7 6.49 46 7.13 100 7.77 200 8.24 300 0 303 310 0 5 2 671 0.0060 0 0 0.013 2.00 10 671 0.0060 5 5 0.035 6.00 0 310 309. 0 3 0 0 0.0000 0 0 0.000 0.00 0 309 308 7 2 0.1 1 0.0100 0 0 0.010 0.10 Pagel n SP-100.in 0.00 0.0 0:004 0.7 1.40 17.6 7.92 25.5 20.29 26.9 25.02 27.4 30.20 273 242 308 307 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 27.4 0 273 245.6 0 307 306 0 2 2.5 1351 0.0060 0 0 0.013 2.50 0 315 306 10 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.287 10.4 0.97 15.0 3.07 22.9 5.50 29.0 8.27 33.2 11.42 35.7 13.14 36.2 13.61 106 13.97 206.0 0 306 238 0 3 0 0 0.0000 0 0 0.000 0.00 0 299 212 0 1 1 2100 0.0100 4 4 0.035 4.00 0 242 240 0 4 0.5 1779 0.0070 12 12 0.016 0.50 10 1779 0.0070 20 20 0.020 5.00 0 240 235 0 3 0 0 0.0000 0 0 0.000 0.00 0 238 237 0 5 3 787 0.0060 0 0 0.013 3.00 1 787 0.0060 20 20 0.020 5.00 0 237 236 0 3 0 0 0.0000 0 0 0.000 0.00 0 236 232 0 5 3 740 0.0050 0 0 0.013 3.00 1 740 0.0050 20 20 0.020 5.00 0 235 234 0 3 0 0 0.0000 0 0 0.000 0.00 0 234 233 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.44 3.1 2.350 4.2 2.81 4.6 4.69 5.1 6.39 100.6 7.13 203.7 8.21 401.9 230 233 232 5 3 0 0 0.0000 0 0 0.000 0.00 0 0 5 0 101 95 204 198 402 396 0 232 231 0 3 0 0 0.0000 0 0 0.000 0.00 .0 .231 227 0 5 3 311 0.0030 0 0 0.013 3.00 1 311 0.0030 20 20 0.020 .5.00 0 230 229 0 3 0 0 0.0000 0 0 0.000 0.00 0 229 228 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.07 2.0 1.12 2.9 3.46 3.5 4.60 200.8 5.29 401 225 228 227 4 3 0 0 0.0000 0 0 0.000 0.00 0 0 4 0 201 197 401 397 0 227 226 0 3 0 0 0.0000. 0 0 0.000 0.00 0 226 222 0 5 3 477 0.0060 0 0 0.013 3.00 1 477 0.0060 20 20 0.020 5.00 0 225 224 0 3 0 0 0.0000 0 0 0.000 0.00 0 224 223 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.002 1.0 0.51 2.7 1.99 3.6 3.90 4.3 4.46 4.5 4.85 200 5.10 400 155 223 222 4 3 0 0 0.0000 0 0 0.000 0.00 0 0 4 0 200 195 400 395 0 222 221 0 3 0 0 0.0000 0 0 0.000 0.00 0 221 152 0 5 3 1569 0.0240 0 0 0.013 3.00 1 1569 0.0140 20 20 0.020 8.00 0 152 0 3 0 0 0.0000 0 0 0.000 0.00 0 215 214 0 3 0 0 0.0000 0 0 0.000 0.00 0 214 .203 9 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.08 12.6 0.411 14.9 4.00 21.8 9.62 26.9 12.17 28.7 13.04 149 13.17 149.4 14.04 149.9 200 203 213 3 3 0 0 0.0000 0 0 0.000 0.00 0 0 29.5 0 150 120 0 213 212 0 5 3 610 0.0030 0 0 0.013 3.00 1 610 0.0030 20 20 0.020 5.00 0 209 200 0 1 1200 1282 0.0060 50 50 0.050 3.00 0 205 204 8 2 0.1 1 0.0100 0 0 0.010 0.10 ' 0.00 0.0 0.35 0.0 1.30 0.0 1.38 11.4 1.65 21.9 3.12 40.3 7.04 66.0 8.48 200.0 0 204 200 0 1 10 526 0'.0060 150 4 0.050 4.00 Page 3 5P-100.in 0 200 201 0 3 0 0 0.0000 0 0 0.000 0.00 0 201 202 5 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 8.09 19.7 23.10 27.3 32.19 100.0 36.42 200.0 0 202 212 0 4 15 902 0.0020 4 8 0.035 6.00 87 902 0.0020 20 20 0.020 2.00 0 212 211 0 3 0 0 0.0000 0 0 0.000 0.00 0 211 125 0 4 5 1670 0.0060 4 4 0.035 6.00 53 1670 0.0060 4 40 0.020 3.00 0 125 111 0 3 0 0 0.0000 0 0 0.000 0.00 0 111 110 0.4 10 1400 0.0040 0 0 0.013 4.00 10 1400 0.0040 20 20 0.020 3.50 0 110 105 0 3 0 0 0.0000 0 0 0.000 0.00 0 105 104 0 3 0 0 0.0000 0 0 0.000 0.00 100 104 103 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 20 0 2000 1980 0 103 120 0 2 2.8 617 0.0050 0.00 0.00 0.013 2.80 0 129 120 0 1 130 956 0.0080 60.00 6.00 0.030 8.00 0 120 100 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 100 101 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 101 99 7 2 0.1 1 0.0100 0 0 0.010 0.10 0.00. 0.0 1.54 4.0 6.085 13.9 11.93 22.0 19.08 377.8 27.46 1130 29.80 1400 0 154 221 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 150 146 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 146 145 0 4 31 1384 0.0020 1.50 1.50 0.035 6.00 62 1384 0.0020 0.00 15.00 0.050 12.00 0 145 141 0 3 0 0 0.0000 0.000 0.000 0.000 0.00 0 141 139 0 4 31 1193 0.0020 1.50 1.50 0:035 6.00 62 1193 0.0020 0.00 15.00 . 0.050 12.00 0 140 139 8 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.01 1.0 0.39 7.0 1.65 8.9 3.96 10.5 5.45 11.2 7.07 40.0 7.99 100.0 0 139 136 0 3 0 0 0.0000 0.000 0.000 0.000 0.00 0 136 135 0 4 31 910 0.0020 1.50 1.50 0.035 6.00 62 910 0.0020 0.00 15.00 0.050 12.00 0 135 116 0 3 0 0 0.0000' 0.00 0.00 0.000 0.00 0 116 115 0 4 31 2552 0.0020 1.50 1.50 0.035 6.00 62 2552 0.0020 0.00 15.00 0.050 12.00 95 99 115 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 25 0 1012 987 0 115 90 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 95 0 3 0 0 0.0000 0.00 . 0.00 0.000 0.00 -1 11 150 2 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 300 100 300 0 10 0 3 0 0 0.0000 0.00 0.00 0:000 0.00 0 155 154 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 300 299 6 2 0.1 1 0.0100 0 0 0.010 0.10 0.00 0.0 0.18 6.9 1.32 13.1 4.07 18.7. 8.59 23.7 14.13 28.3 91 90 80 3 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 444 0 6000 5556 0 80 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 91 95 0 3 0 0 0.0000 0.00 0.00 0.000 0.00 0 0 ENDPROGRAM Page 4 SP-100.in Page 5 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) *** ENTRY MADE TO RUNOFF MODEL *** L:V06S\102300IWft%Drainage\SVNMM\City of Fort Collins FUes%SP•100.o1A 1 Pdr FOX MEADOWS MASTER PLAN UPDATE - 2002. By ICON Engineering, Inc SELECTED PLAN. 100-YEAR EVENT NUMBER OF TIME STEPS 999 INTEGRATION TIME INTERVAL (MINUTES) 1.00 25.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS. THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR 1.00 1.14 1,33 2.23 2.84 5.49 .9.95 4.12 2.48 1.46 1.22 1.06 1.00 .95 .91 .87 .84 .81 .78 .75 .73 .71 .69 .67 LkKWl0230011data0mInageNSWMWC4 of Fort CoHIns F9es\SP-t00Atd 2 Pdn FOX MEADOWS MASTER PLAN UPDATE - 2002. By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) AGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 100 100 2881.0 12.3 32.0 .0390 .016 .250 .100 .300 .51 .50 .00180 1 105 105 641.0 3.4 10.0 .0230 .016 .250 .100 .300 .51 .50 .00180 1 110 110 2758.0 17.6 90.0 .0300 .016 .250 .100 .300 .51 .50 .00180 1 115 115 3722.0 18.8 13.5 .0860 .016 .250 .100 .300 .51 .50 .00180 1 ' 120 120 4665.0 36.2 86.5 .0160 .016 .250 .100 .300 .51 .50 .00180 1 125 125 3494.0 36.5 68.8 .0230 .016 .250 .100 .300 .51 .50 .00180 1 130 129 8604.0 39.7 78.0 .0310 .016 .250 .100 .300 .51 .50 .00180 1 135 135 4127.0 21.6 13.3 .0290 .016 .250 .100 .300 .51 .50 .00180 1 140 140 8223.0 58.9 24.8 .0090 .016 .250 .100 .300 .51 .50 .00180 1 145 145 4915.0 38.7 12.0 .0160 .016 250 .100 .300 .51 .50 .00180 1 150 10 3026.0 19.8 6.8 .0510 .016 .250 .100 .300 .51 .50 .00180 1 155 115 9801.0 17.1 70.0 .0130 .016 .250 .100 .300 .51 .50 .00180, 1 200 200 5921.0 68.1 8.3 .0070 .016 .250 .100 .300 .51 .50 .00180 1 205 205 2112.0 14.3 70.0 .0170 .016 .250 .100 .300 .51 .50 .00180 1 210 209 6621.0 83.3 5.7 .0090 .016 .250 .100 .300 .51 .50 .00180 1 215 215 9265.0 41.9 38.5 .0070 .016 .250 .100 .300 .51 .50 .00180 1 220 215 4630.0 16.9 38.5 .0120 .016 .250 .100 .300 .51 .50 .00180 1 225 225 5678.0 21.9 38.5 .0240 .016 .250 .100 .300 .51 .50 .00180 230 230 5639.0 18.9 38.5 .0180 .016 .250 .100 .300 .51 .50 .00180 1 235 235 5949.0 29.5 38.5 .0130 .016 .250 .100 .306 .51 .50 .00180 1 240 240 5007.0 32.3 41.5 .0120 .016 .250 .100 .300 .51 .50 .00180 1 300 300 8849.0 64.6 35.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 305 305 7663.0 24.1 38.5 .0150 .016 .250 .100 .300 .51 .50 .00180 1 310 310 12018.0 84.7 37.0 Ob50 .016 .250 .100 .300 .51 .50 .00180 1 315 315 9023.0 60.9 38.5 .0060 .016 .250 .100 .300 .51 .50 .00180 1 320 320 5102.0 29.4 38.5 .0210 .016 .250 .100 .300 .51 .50 .00180 1 325 325 2084.0 14.4 40.0 .0210 .016 .250 .100 .300 .51 .50 .00180 1 330 330 2038.0 15.3 46.8 .0130 .016 .250 .100 .300 .51 .50 .00180 1 335 334 3567.0 30.3 . 27.8 .0150 .016 .250 .100 .300 .51 .50 .00180 1 340 340 4623.0 34.6 30.0 .0270 .016 .250 .100 .300 .51 .50 .00180 1 345 345 5109.0 44.8 27.0 .0080 .016 .250 .100 .300 .51 .50 .00180 1 350 345 6639.0 34.9 90.0 .0110 .016 .250 .100 -.300 .51 .50 .00180 1 355 355 2940.0 27.4 48.0 .0100 .016 .250 .100 .300 .51 .50 .00180 1 400 400 6703.0 51.7 71.5 .0240- .016 .250 .100 .300 .51 .50 .00180 1 405 405 7493.0 41.8 60.8 .0180 .016 .250 .100 .300 .51 .50 .00180 1 410 410 7013.0 58.6 48.5 .0090 .016 .250 .100 .300. .51 .50 .0P180 1 415 415 5458.0 42.1 40.0 .0090 .016 .250 .100 .300 .51 .50 .00180 �420 421 7066.0 109.0 11.6 .0080 .016 .250 .100 .300 .51 .50 .00180 1 425 425 5627.0 31.0 38.5 .0090 .016 .250 .100 .300 .51 .50 .00180 1 430 430 2979.0 22.5 38.5 .0180 .016 .250 .100 .300 .51 .50 .00180 1 L•UOM10230011def \Dralnage\SWMATCIty of Fort Copins FRes1.SP-100.out 3 Pr1n 435 435 3776.0 31.9 10.0 .0110 1 440_ 440 2603.0 9.5 38.5 .0110 1 TOTAL NUMBER OF SUBCATCHMENTS. 42 TOTAL TRIBUTARY AREA (ACRES). 1511.20 016 .250 .100 .300 .51 .50 .00180 016 .250 .100 .300 .51 .50 .00180 L-%,MS1023001Vdaffi1DrWnape SWMW%aty of Fon Odin FUeMP-100.oW 4 Pdn FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering. Inc. SELECTED PLAN, 100-YEAR EVENT *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) TOTAL RAINFALL (INCHES) TOTAL INFILTRATION (INCHES) TOTAL WATERSHED OUTFLOW (INCHES) TOTAL SURFACE STORAGE AT END OF STROM (INCHES) ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL n 1511.200 3.669 .857 2.746 .066 .000 o A.Irma%ing.wl1dataM)ralnaoe%SWMM%CNv of Fort Collins FIIes\,SP-100.out 5 Pdr FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT WIDTH INVERT OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE jK NUMBER CONNECTION (FT) (FT) (FT/FT) 430 .440 0 5 PIPE 1.3 600. .0130 0 OVERFLOW 1.0 513. .0152 440 437 0 3 .0 0. .0010 0 437 426 3 3 .0 0. .0010 436 DIVERSION TO GUTTER NUMBER 436 - TOTAL O VS DIVERTED 0 IN CFS 0 .0 4.0 .0 10000.0 9996.0 426 425 0 2 PIPE 1.3 1339. .0100 0 436 435 0 1 CHANNEL 15.0 1889. .0080 0 425 423 0 3 .0 0. .0010 0 435 434 0 3 .0 0. .0010 0 423 415 0 5 PIPE 1.5 1457. .0050 0 OVERFLOW 1.0 1457. .0050 434 415 0 4 CHANNEL .5 768. .0050 0 OVERFLOW 10.0 768. .0050 415 400 0 3 .0 0. .0010 0 410 400 0 5 PIPE 2.5 1301. .0090 0 OVERFLOW 1.0 1380. .0085 405 400 0 5 PIPE 3.0 1065. .0090 0 OVERFLOW 80.0 1065. .0090 400 401 0 3' .0 0. .0010 0 401 340 11 2 PIPE .1 1. .0100 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 57.9 355 340 0 340 342 0 342 341 0 88.5 SIDE SLOPES HORIZ TO VERT MANNING DEPTH L R N (FT) .0 .0 .013 1.25 20.0 20.0 .020 5.00 .0 .0 .001 10.00 .0 .0 .001 10.00 .0 .0 8.0 8.0 .0 .0 .0 .0 .0 .0 20.0 20.0 12.0 12.0 20.0 20.0 .0 .0 .0 .0 20.0 20.0 .0 .0 1.0 1.0 .0 k .0 .0 .0 .013 .035 .001 .001 .013 .020 .016 .020 .001 .013 .020 .013 .005 .001 .010 .0 .0 .0 8.0 4.8 12.7 9.0 . 16.7 9.0 23.0 11.6 70.8 16.7 80.7 31.3 98.0 52.9 115.4 95.9 705.0 0 4 CHANNEL .3 608. .0050 12.0 .0 .016 OVERFLOW 5.0 608. .0050 20.0 .0 .020 0 3 ,0 0. .0010 .0 .0 .001 8 2 PIPE 1 1. .0100 .0 .0 .010 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 2.9 5.7 23.5 14.7 72 5 103 6 95.5 111.0 341 325 0 5 PIPE 3.5 1200. .0050 0 OVERFLOW 1.0 1200. .0050 325 324 0 3 .0 0. 0 ' 324 314 0 5 PIPE 3.5 1242. 0 OVERFLOW 1.0 1242. 421 347 5 2 PIPE .1 1. 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 2 2.1 8.3 10.5 347 314 0 2 PIPE 1.5 1139. 0 345 344 0 3 .0 0. 0 344 314 5 2 PIPE .1 1. 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 1.9 2.8 16.8 314 313• 0 3 .0 0. 0 313 312 0 5 PIPE 2.0 409. OVERFLOW 10.0 409. 330 312 5 2 PIPE .1 1. 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 4.0 1.0 6.6 L'U W10230011data\Dralnage\SVVMM1CNy of Fort C o line FIOMSP-100.out .0010 .0030 .0030 .0100 1.25 5.00 10.00 10.00 1.50 5.00 .50 5.00 10.00 2.50 5.00 3.00 5.00 10.00 .10 10.3 y .50 5.00 10.00 .10 53.0 28.1 73.1 47.4 .0 .0 .013 3.50 20.0 20.0 .020 5.00 .0 .0 .001 10.00 .0 .0 .013 3.50 20.0 20.0 .020 5.00 .0 .0 .010 .10 34.0 17.4 43.6 18.7 .0150 .0 .0 .013 1.50 .0010 .0 .0 .001 10.00 .0100 .0 .0 .010 .10 10.1 27.6.. '21.6 35.0 , .0010 .0 .0 .001 10.00 .0090 .0 .0 .013 2.00. j 5.0 5.0 .035 6.00 .0090 .0100 .0 .0 .010 .10 2.0 8.0 3.0 104.0 6 Pdn 312 311 0 3 .0 0. .0010 .0 .0 .001 10.00 0 311 310 0 5 PIPE 2.0 1566. .0090 .0 .0 .013 2.00 0 OVERFLOW 10.0 1566. .0090 5.0 5.0 .035 6.00 334 333 5 2 PIPE .1 1. .0100 .0 .0 .010 .10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 5.6 .3 21.9 6.5 34.0 16.4 100.0 333 320 0 5 PIPE 2.0 _ 1064. .0090 .0 .0 .013 2.00 0 OVERFLOW 5.0 1075. .0089 3.0 3.0 .035 6.00 320 319 0 3 .0 0. .0010 .0 .0 .001 10.00 0 319 318 9 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .4 .5 3.3 2.1 6.2 4.2 9.2 5.9 11.0 6.3 17.5 7.1 109.6 7.9 260.7 318 305 0 5 PIPE 1.3 1320. .0050 .0 .0 .013 1.25 0 OVERFLOW 1.0 1384. .0048 20.0 20.0 .020 5.00 305 304 0 3 .0 0. .0010 -0 .0 .001 10.00 0 304 303 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE I.N ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 13.6 .6 28.3 2.2 37.7 6.5 .46.0 7.1- 100.0 7.8 200.0 8.2 300.0 303 310 0 5 PIPE 2.0 671. .0060 .0 .0 .013 2.00 0 OVERFLOW 10.0 611. .0060 5.0 5.0 .035 6.00 310 309 0 3 .0 0. .0010 .0 .0 .001 10.00 0 309 308 7 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .7 1.4 17.6 7.9 25.5 20.3 26.9 25.0 27.4 30.2 273.0 308 307 3 - 3 .0 0. .0010 .0 .0 .001 10.00 242 DIVERSION TO GUTTER NUMBER 242 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 27.4 -0 273.0 245.6 307 306 0 2 PIPE 2.5 1351. .0060 .0 .0 .013 2.50 0 315 306 10 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 10.4 1.0 15.0 3.1 22.9 5.5 29.0 8.3 33.2 11.4 35.7 13.1 36.2 13.6 106.0 14.0 206.0 306 238 0 3 .0 0. .0010 .0 .0 .001 10.00 0 299 212 0 1 CHANNEL 1.0 2100. .0100 4.0 4.0 .035 4.00 0 242 240 0 4 CHANNEL .5 1779. 0070 12.0 12.0 .016 .50 0 OVERFLOW 10.0 1779. .0070 20.0 20.0 .020 5.00 240 235 0 3 .0 0. .0010 .0 .0 .001 10.00 0 238 237 0 5 PIPE 3.0 787. .0060 .0 .0 .013 3.00 0 OVERFLOW 1.0 787. .0060 20.0 20.0 .020 5.00 237 236 0 3 .0 0. .0010 .0 .0 .001 10.00 0 236 232 0 5 PIPE 3.0 740. .0050 .0 .0 • .013 3.00 0 OVERFLOW 1.0 740. .0050 20.0 20.0 .020 5.00 235 234 0 3 .0 0. .0010 .0 .0 .001 10.00 0 234 233 8 2 PIPE .1 1.. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .4 3.1 2.4 4.2 2.8 4.6 4.7 5.1 6.4 100.6 7.1 203.7 8.2 401.9 233 232 5 3 .0 0. .0010 'D .0 .001 .10.00 230 DIVERSION TO GUTTER NUMBER 230 - TOTAL 0 VS DIVERTED Q IN CFS 0 5.0 .0 101.0 95.0 204.0 198.0 402.0 396.0 232 231 0 .0 3 .0 0. .0010 .0 .0 .001 10.00 0 231 227 0 5 PIPE 3.0 311. .0030 .0 .0 .013 3.00 0 OVERFLOW 1.0 311. .0030 20.0 20.0 .020 5.00 230 229 0 3 .0 0. .0010 .0 .0 .001 10.00 0 i .tlr R11o23001\data\Drainage\SWMWC4ty of Fort Collins FIIes\SP-100.out 7 Prfr 229 228 6 2 PIPE 1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 2.0 1.1 2.9 3.5 3.5 4.6 200.8 5.3 401.0 228 227 4 3 .0 0. .0010 .0 .0 .001 10.00 225 DIVERSION TO GUTTER NUMBER 225 - TOTAL Q VS DIVERTED 0 IN CFS .0 .0 4.0 .0 201.0 197.0 401.0 397.0 227 226 0 3 .0 0. .0010 .0 .0 .001 10.00 0 226 222 0 5 PIPE 3.0 477. .0060 .0 .0 .013 3.00 0 OVERFLOW 1.0 477. .0060 20.0 20.0 .020 5.00 225 224 0 3 .0 0. .0010 .0 .0 .001 10.00 0 224 223 8 2 PIPE 1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .5 2.7 2.0 3.6 3.9 4.3 4.5 4.5 4.8 200.0 5.1 400.0 223 222 4 3 .0 0. .0010 .0 .0 .001 10.00 155 DIVERSION TO GUTTER NUMBER 155 - TOTAL Q VS DIVERTED 0 IN CFS .0 .0 4.0 .0 200.0 195.0 400.0 395.0 222 221 0 3 .0 0. ..0010 .0 .0 .001 10.00 0 221 152 0 5 PIPE 3.0 1569. .0240 .0 .0 .013 3.00 0 OVERFLOW 1.0 1569. .0240 20.0 20.0 .020 8.00 152 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 215 214 0 3 .0 0. .0010 .0 .0 .001 10.00 0 214 203 9 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 12.6 .4 14.9 4.0 21.8 9.6 26.9 12.2 28.7 13.0 149.0 13.2 149.4 14.0 149.9 203 213 3 3 .0 0. .0010 .0 .0 .001 10.00 200 � DIVERSION TO QUTTER NUMBER 200 - TOTAL 0 VS DIVERTED 0 IN CFS 0 .0 29.5 .0 150.0 120.0 213 212 0 5 PIPE 3.0 610. .0030 .0 .0 .013 3.00 OVERFLOW 1.0 610. .0030 20.0 20.0 .020 5.00 209 200 0 1 CHANNEL 1200.0 1282. .0060 50.0 50.0 .050 3.00 0 205 .204 8 2 PIPE 1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 .0 1.3 .0 1.4 11.4 1.6 21.9 3.1 40.3 7.0 66.0 8.5 200.0 204 200 0 1 CHANNEL 10.0 526. .0060 150.0 4.0 .050 4.00 0 200 201 0 3 .0 0. .0010 .0 .0 .001 10.00 0 201 202 5 2 PIPE .1 1. .0100 .0 .0 .010 10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 8.1 19.7 23.1 27.3 32.2 100.0 36.4 200.0 202 212 0 4 CHANNEL 15.0 902. .0020 4.0 8.0 .035 6.00 0 OVERFLOW 87.0 902. .0020 20.0 20.0 .020 2.00 212 211 0 3 .0 0. .0010 .0 .0 .001 10.00 0 211 125 0 4 CHANNEL 5.0 1670. .0060 4.0 4.0 .035 6.00 0 OVERFLOW 53.0 1670. .0060 4.0 40.0 .020 3.00 125 111 0 3 .0 0. .0010 .0 .0 .001 10.00 0 111 110 0 4 CHANNEL 10.0 1400. .0040 .0 .0 .013 4.00 0 OVERFLOW 10.0 1400. 0040 20.0 20.0 .020 3.50 110 105 0 3 .0 0. .0010 .0 .0 .001 10.00 0 105 104 0 3 .0 0. .0010 .0 .0 .001 10.00 0 104 103 3 3 .0 0. .0010 .0 .0 .001 �10.00 100 . DIVERSION TO GUTTER NUMBER 100 - TOTAL 0 VS DIVERTED Q IN CFS - 0 20.0 .0 2000.0 1980.0 103 120 0 .0 2 PIPE 2.8 617. .0050 .0 .0 .013 2.80 0 129 120 0 1 CHANNEL 130.0 956. .0080 60.0 6.0 .030 8.00 0 L110W1023001Vb t 0ffikW99WVVMM1C1ty of Fort CoWnS F9GSW-100.01A 6 Pdn 120 100 0 3 .0 0. .0010 .0 .0 .001 10.00 0 - 100 101 0 3 .0 0. .0010 .0 .0 .001 10.00 0 101 99 7 2 PIPE 1 1. .0100 .0 .0 .01.0 .10 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.5 4.0 6.1 13.9 11.9 22.0 19.1 377.8 27.5 1130.0 29.8 1400.0 154 221 0 3 .0 0. .0010 .0 .0 .001 10.00 0 150 146 0 3 .0 0. .0010 .0 .0 .001 10.00 0 146 145 0 4 CHANNEL 31.0 1384. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 1384. .0020 .0 15.0 .050 12.00 145 141 0 3 .0 0. .0010 .0 .0 .001 10.00 0 141 139 0 4 CHANNEL 31.0 1193. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 1193. .0020 .0 15.0 .050 12.00 140 139 8 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 1.0 .4 7.0 1.6 8.9 4.0 10.5 5.5 11.2 7.1 40.0 8.0 100.0 139 136 0 3 .0 0. .0010 .0 .0 .001 10.00 0 136 135 0 4 CHANNEL 31.0 910. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 910. .0020 .0 15.0 .050 12.00 135 116 0 3 .0 0. .0010 .0 .0 .001 10.00 0 116 115 0 4 CHANNEL 31.0 2552. .0020 1.5 1.5 .035 6.00 0 OVERFLOW 62.0 2552. .0020 .0 15.0 .050 12.00 99 115 3 3 .0 0. .0010 .0 .0 .001 10.00 95 DIVERSION TO GUTTER NUMBER 95 - TOTAL 0 VS DIVERTED O IN CFS 0 .0 25.0 .0 1012.0 987.0 115 90 0 3 .0 0. .0010 .0 .0 .001 10.00 0 95 0 0 3 .0 0. .0010 .0 .0 .001 10.00 J 11 150 2 3 .0 0. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS 0 300.0 100.0 300.0 10 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 155 154 0 3 .0 0. .0010 .0 .0 .001 10.00 0 300 299 6 2 PIPE .1 1. .0100 .0 .0 .010 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .2 6.9 1.3 13.1 4.1 18.7 8.6 23,7 14.1 28.3 90 80 3 3 .0 0. .0010 .0 .0 .001 10.00 91 DIVERSION TO GUTTER NUMBER 91 - TOTAL O VS DIVERTED 0 IN CFS 0 .0 444.0 .0 6000.0 5556.0 80 0 0 3 .0 0. .0010 .0 .0 .001 10.00 0 91 95 0 3 .0 0. .0010 .0 .0 .001 10.00 0 TOTAL NUMBER OF GUTTERS/PIPES. 107 t tmc;NionWlWateNDrainaae%SWMRAC tv of Fort C Mr%s FHesVSP-100.otd 9 Pdn LilOBS11WWjWata\DrWnaOQ\SWMMCkof Fort C 1ns Fies\SP-100.out 10 Pdn FOX MEADOWS MASTER PLAN UPDATE - 2002, By ICON Engineering, Inc. SELECTED PLAN, 100-YEAR EVENT ARRANGEMENT OF SUBCATCMMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.AJAC) 101 100 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 0 0 434,8 103 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 346.6 111 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 325.6 116 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119.2 129 0 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0 0 0 0 0 39.7 136 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97.6 140 0 0 0 0 0 0 0 0 0 0 140 0 0 0 0 0 0 0 0 0 58.9 141 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38.7 146 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 201 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 165.7 202 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 165.7 204 205 0 0_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.3 205 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 14.3 209 0 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 83.3 211 212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 289.1 213 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58.8 214 215 0 0 0 0 0 0 0 0 0 0 0 0 0, 0 0 0 0 0 0 58.8 221 222 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01.5 224 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.9 226 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 879.6 229 230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18.9 231 232 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 0 0 860.7 234 235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61.8 236 237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798.9 238 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 798.9 242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 299 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.6 300 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 64.6 303 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.8 304 305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.6 307 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 738.0 309 310 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 738.0 311 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 569.5 313 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 554.2 315 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 60.9 318 319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59.7 319 320 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 59.7 324 325 0 0 0 0 0 0- 0 0 0 0 0 0 0 0 0 0 0 0 0 365.5 330 0 0 0 0 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 15.3 333 334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.3 L UOBS11023001WatelDralnagelSWMW0 ty of Fod Collins Fpes1.SP-100.01A 11 Pdr 334 0 0 0 0 0 0 0 0 0 0 335 0 0 0 0 0 0 0 0 0 30.3 341 342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351.1 342 340 0 0 0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 351.1 344 345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0- 0 0 0 .7 347 421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 109.0 355 0 0 0 0 0 0 0 0 0 0: 355 0 0 0 0 0 0 0 0 0 27.4 401 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 289.1 405 0 0 0 0 0 0 0 0 0 0 405 0 0 0 0 0 0 0 0 0 41.8 410 0 0 0 0 0 0 0 0 0• 0 410 0 0 0 0 0 0 0 0 0 58.6 421 0 0 0 0 0 0 0 0 0 0 420 0 0 0 0 0 0 0 0 0 109.0 423 425 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63.0 426 437 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32.0 430 0 0 0 0 0 0 0 0 0 0 430 0 0 0 0 0 0 0 0 0 22.5 434 435 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31.9 436 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ORDER OF TREE STRUCTURE (NGUT VALUE) DECREASES THROUGH DIVERSION FROM GUTTER 101 TO GUTTER 91 COMP THROUGH DIVERSION WILL LAG ONE TIME STEP UNLESS GUTTER CARDS ARE MODIFIED TO REVERSE DIVERSION. ij L4JMM1O230011dat XDrWnepe4SWMM0ty of Fort Cd9m FRes4SP-100.out 12 Pdry FOX MEADOWS MASTER PLAN UPDATE - 2002. By ICON Engineering, Inc. SELECTED PLAN. 100-YEAR EVENT *** PEAK *** NOTE FLOWS. STAGES :S IMPLIES A AND STORAGES OF GUTTERS AND DETENTION DAMS *** SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 10:3 85.3 (DIRECT FLOW) 0 35. 11:3 300.0 (DIRECT FLOW) 0 1. 80:3 444.0 (DIRECT FLOW) 0 32. 90:3 595.0 (DIRECT FLOW) 0 35. 91:3 151.0 (DIRECT FLOW) 0 35. 95:3 480.0 (DIRECT FLOW) 0 46. 99:3 402.2 (DIRECT FLOW) 0 48. 100:3 1179.6 (DIRECT FLOW) 0 35. 101:2 402.2 .1 19.4:D 0 48. 103:2 32.5 1.9 0 32. 104:3 468.1 (DIRECT FLOW) 0 35. 105:3 468.1 (DIRECT FLOW) 0 35. 110:3 454.0 (DIRECT FLOW) 0 35. 111:4 286.6 2.7 0 36. 115:3 595.0 (DIRECT FLOW) 0 35. 116:4 447.6 3.3 0 53. 120:3 645.0 (DIRECT FLOW) 0 35. 125.3 311.2 (DIRECT FLOW) 0 35. 129:1 297.8 .6 0 36. 135:3 488.3 (DIRECT FLOW) 0 41. 136:4 413.0 3.2 0 46. 139:3 416.4 (DIRECT FLOW) 0 41. 140:2 52.9 .1 7.3:0 1 22. 141:4 405.9 3.1 0 41. 145:3 423.9 (DIRECT FLOW) 0 35. 146:4 300.0 2.6 1 0. 150:3 300.0 (DIRECT FLOW) 0 1. 152:3 230.4 (DIRECT FLOW) 2 24. 154:3 155.3 (DIRECT FLOW) 2 20. 155:3 155.3 (DIRECT FLOW) 2 20. 200:3 184.8 (DIRECT FLOW) 1 1. 201:2 26.5 .1 21.5:D 3 39. 202:4 26.5 .9 3 45. (� 203:3 26.8 (DIRECT FLOW) 2 0. 204:1 25.3 .5 1 3. 205:2 26.7 .1 2.0:D 0 50. 209:1 82.9 .1 1 17. 211:4 76.6 1.8 2 32. 212:3 76.7 (DIRECT FLOW) 2 25. 213:5 26.8 1.9 2 1. 214:2 26.8 .1 9.5:D 2 0. 215:3 360.6 (DIRECT FLOW) 0 35. 221:5 230.4 3.9 2 24. 222:3 75.8 (DIRECT FLOW) 2 13. 223:3 160.1 (DIRECT FLOW) 2 19. 224:2 160.1 .1 4.8:0 2 19. 225:3 164.0 (DIRECT FLOW) 0 56. 226:5 71.0 3.5 2 8. 227:3 71.0 (DIRECT FLOW) 2 6. 228:3 162.6 (DIRECT FLOW) 2 18. 229:2 162.6 .1 4.4:0 2 18. 230:3 171.8 (DIRECT FLOW) 0 48. 231:5 67.0 3.8 2 6. 232:3 67.0 (DIRECT FLOW) 2 4. 233:3 168.0 (DIRECT FLOW) 2 12. 234:2 168.0 .1 6.9:0 2 12. 235:3 379.1 (DIRECT FLOW) 0 35. 236:5 61.0 3.5 2 4. 237:3 61.0 (DIRECT FLOW) 2 1. 238:5 61.0 3.4 2 1. 240:3 194.6 (DIRECT FLOW) 0 35. 242:4 158.0 1.2 2 12. 299:1 25.1 1.3 2 10. 300:2 25.2 .1 10.4:D 2 3. 303:5• 40.2 2.7 2 14. 304:2 40.2 .1 3.5:D 2 11. 305:3 178.0 (DIRECT FLOW) 0 35. 306:3 61.0 (DIRECT FLOW) 1 56. 307:2 27.4 1.8 2 50. 308:3 186.8 (DIRECT FLOW) 2 6. 309:2 186.8 .1 28.4:0 2 6. 310:3 486.3 (DIRECT FLOW) 0 35. 311:5 120.1 3.4 4 12. 312:3 120.1 (DIRECT FLOW) 4 6. 313:5 114.0 3.4 • 4 26. 314:3 114.0 (DIRECT FLOW) 4 25. 315:2 33.6 .1 8.8:0 1 56. 318:5 45.4 2.1 1 38. 319:2 47.0 .1 6.5:0 1 28. r a vwc%irrimi%t4ata%nminanakgWUKArJtvnf FnA r'.-Ainc F11ac1RP-ln0.out 13 Pdr 320:3 210.8 (DIRECT FLOW) 0 35. 324:5 76.5 4.1 7 53. 325:3 102.1 (DIRECT FLOW) 0 35. 330:2 16.7 .1 2.1:D 1 8. 333:5 26.9 2.4 1 30. 334:2 27.0 .1 2.9:D 1 21. 340:3 411.8 (DIRECT FLOW) 0 35. 341:5 76.5 3.3 6 58. 342:2 76.6 .1 32.4:0 7 10. 344:2 30.6 .1 14.7:D 2 4. 345:3 508.0 (DIRECT FLOW) 0 35. '347:2 12.6 1.2 3 52. 355:4 149.2 1.7 0 36. 400:3 1504.5 (DIRECT FLOW) 0 .35. 401:2 114.4 .1 51.6:D 2 4. 405:5 329.2 3.3 0 35. 410:5 281.5 3.9 0 36. 415:3 479.8 (DIRECT FLOW) 0 36. 421:2 12.6 .1 16.1:D 3 50. 423:5 130.9 2.7 0 37. 425:3 185.9 (DIRECT FLOW) 0 35. 426:2 6.9 1.1 0 33. 430:5 124.7 2.2 0 35. 434:4 189.3 1.4 0 43. 435:3 195.2 (DIRECT FLOW) 0 40. 436:1 117.8 1.3 0 41. 437:3 187.8 (DIRECT FLOW) 0 35. 440:3 187.8 (DIRECT FLOW) 0 35. ENDPRDGRAM PROGRAM CALLED 14 Prin L'U M10230011data\DrWnage\SWMM1Ctty of Fort CdIIns FNes\SP-1o0.out APPENDIX - C December 2006 E P'A-SWMM OUTPUT Stantec a� o, CL a h 3 ti EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.009) -------------------------------------------------------------- ++++++++++++++++ Analysis Options ++++++++++++++++ Flow Units ............... CFS Flow Routing Method ...... DYNWAVE Starting Date ............ NOV-06-2006 00:01:00 Ending Date .............. NOV-12-2006 04:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:05:00 Routing Time Step ........ 1.00 sec ++++++++++++++++++++++++++ Volume Volume Flow Routing Continuity ++++++++++++++++++++++++++ acre-feet --------- Mgallons --------- Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 0.000 0.000 Gioundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 29.722 9.685 External Outflow ......... 25.544 8.324 Surface Flooding ......... 0.000 0.000 Evaporation Loss ......... 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 4.027 1.312 Continuity Error (%) ..... 0.510 ++++++++++++++++++ Node Depth Summary ++++++++++++++++++ ` -------------------------------------------------------- Average Maximum Maximum Depth Depth HGL Node Type Feet Feet Feet -------------------- J8 ----------------------------- JUNCTION 0.66 3.41 4928.82 J10 JUNCTION 6.26 6.98 4933.46 J11 JUNCTION 6.05 6.78 4933.49 J4 JUNCTION 1.74 5.93 4927.88 J5 JUNCTION 0.99 5.21 4927.91 J6 JUNCTION 0.69 4.93 4928.00 J7 JUNCTION 0.60 5.03 4928.38 J1 JUNCTION 0.73 1.84 4920.81 J2 JUNCTION 0.54 2.00 4921.87 J12 JUNCTION 5.78 6.52 4933.52 J9 JUNCTION 0.65 3.30 4928.83 J3 JUNCTION 0.43 4.09 4924.58 01 OUTFALL 0.70 1.37 4920.31 PONDD STORAGE 6.91 9.24 4936.24 POND-C STORAGE 7.18 7.91 4933.44 POND-B STORAGE 0.64 5:36 4928.79 POND -A STORAGE 3.18 7.37 4927.86 +++++++++++++++++ Node Flow Summary ----------------- Node ----------------- J8 SWMM5 Time of Max Total Total Occurrence Flooding Minutes days hr:min acre -in Flooded ------------------------------ 0 00:48 1 17:10 1 17:15 0 02:04 0 02:04 0 02:01 0 00:50 0 02:06 0 02:05 1 17:08 0 00:48 0 00:09 0 02:06 0 02:40 1 17: 07 0 00:48 0 02:05 -------------------------------------------------- Maximum Maximum Maximum Lateral Total Time of Max Flooding Inflow Inflow Occurrence Overflow Type CFS CPS days hr:min CFS JUNCTION 0.00 1.32 1 18:14 0.00 Time of Max Occurrence days hr:min Page 1 J10 JUNCTION 0.00 2.50 0 00:09 0.00 J11 JUNCTION 0.00 2.62 0 00:05 0.00 J4 JUNCTION 0.00 36.74 0 00:41 0.00 J5 JUNCTION 0.00 37.89 0 00:39 0.00 J6 JUNCTION 0.00 37.89 0 00:39 0.00 J7 JUNCTION 0.00 37.90 0 00:39 0.00 J1 JUNCTION 0.00 16.35 0 02:06 0.00 J2 JUNCTION 0.00 16.53 0 00:12 0.00 J12 JUNCTION 0.00 1.43 0 02:40 0.00 J9 JUNCTION 0.00 1.32 1 17:05 0.00 J3 JUNCTION 0.00 16.35 0 02:05 0.00 01 OUTFALL 0.00 16.35 0 02:06 0.00 PONDD STORAGE 503.99 503.99 0 00:36 0.00 POND-C STORAGE 32.10 33.21 0 00:36 0.00 POND-B STORAGE 146.88 147.86 0 00:36 0.00 POND -A STORAGE 152.17 185.16 0 00:36 0.00 Storage Volume Summary -------------------------------------------------------------------------------------- Average Avg Maximum Max Time of Max Maximum Volume Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full 1000 ft3 Full days hr:min CFS ----------- PONDD -------------------------------------------------------------------- 445.719 49 781.270 87 0 02:40 1.43 POND-C 51.032 59 60.607 70 1 17:07 1.32 POND-B 2.885 2 97.196 71 0 00:48 37.90 POND -A 10.312 4 265.166 96 0 02:05 23.61 Outfall Loading Summary ----------------------------------------------- Flow Avg. Max. _ Freq. Flow Flow Outfall Node Pcnt. CFS CFS ----------------------------------------------- 01 99.89 2.16 16.35 ----------------------------------------------- System 99.89 2.16 16.35 Link Flow Summary *******xxxxxxxxx**** -- Maximum Time --------------------- of Max Maximum Max/ Flow Occurrence Velocity Full Link ----------------------- Type - CFS ----------------------------------- days hr:min ft/sec Flow PIPE12 CONDUIT 2.50 0 00:09 3.08 0.54 PIPE11 CONDUIT 1.77 0 00:10 2.67 0.37 PIPE9 CONDUIT 1.32 1 19:11 2.38 0.28 PIPER CONDUIT 37.90 0 00:39 5.36 1.32 PIPET CONDUIT 37.89 0 00:39 5.36 1.26 PIPE6 CONDUIT 37.89 0 00:39 5.36 1.27 PIPES CONDUIT 36.74 0 00:41 3.50 0.58 PIPE4 CONDUIT 36.58 0 00:41 2.97 0.38 PIPE2 CONDUIT 16.35 0 *02:06 4.05 0.89 PIPE1 CONDUIT 16.35 0 02:06 4.92 0.86 PIPE13 CONDUIT 2.62 0 00:05 3.05 0.56 PIPE10 CONDUIT 1.32 1 18:14 2.15 0.26 PIPE3 CONDUIT 16.53 0 00:12 6.77 0.53 D DUMMY 1.43 0 02:40 A DUMMY 16.35 0 02:05 C DUMMY 1.32 1 17:05 Max/ Total Full Minutes Depth ------------------ Surcharged 1.00 8847 1.00 8848 1.00 217 1.00 268 1.00 275 1.00 305 1.00 219 1.00 307 0.77 0 0.64 0 1.00 8846 1.00 205 0.75 0 SWMM 5 Page 2 Flow Classification Summary ###################++*+#### ---------------------------------------------- Adjusted --- Fraction of Time ------------------------------ in Flow Class ---- Avg. Avg. /Actual Up Down Sub Sup Up Down Froude Flow Conduit Length Dry Dry Dry Crit Crit Crit Crit Number Change -------- ------------- PIPE12 1.00 ---------------------------------------------------------- 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.10 0.0000 PIPEll 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.10 0.0000 PIPE9 1.00 0.00 0.00 0.00 0.05 0.00 0.00 0.95 0.56 0.0001 PIPE8 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.48 0.0000 PIPET 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.44 0.0000 PIPE6 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.23 0.0000 PIPE5 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.06 0.0000 PIPE4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 0.0000 PIPE2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.38 0.0000 PIPE1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.29 0.0000 PIPE13 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.10 0.0000 PIPE10 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.42 0.0001 PIPES 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.71 0.0000 ###xxxx*xxxx+x+xxxx++++++ Highest Continuity Errors xxxxxxxxxxxxxxxxxxxx+#+xx Node J4 (0.128) Node J5 (0.078) Node J3 (0.068) Node Jll (0.04%) Node J10 (0.04%) xx xx#+++++x++#+++++###x*### Time -Step Critical Elements Link PIPE1 (6.498) Routing Time Step Summary Minimum Time Step 0.88 sec Average Time Step 0.99 sec Maximum Time Step 1.00 sec Percent in Steady State 0.00 Average Iterations per Step 2.00 Analysis begun on: Fri Feb 16 11:51:52 2007 Total elapsed time: 00:00:50 SWMM 5 Page 3 6 11 r I SWMM 5 Page 1 EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.009) -------------------------------------------------------------- Analysis Options *****++*++++++++ Flow Units ............... Flow Routing Method ...... Starting Date ............ Ending Date .............. Antecedent Dry Days ...... Report Time Step ......... Routing Time Step ........ Flow Routing Continuity f fffffffff #ffffxfff#ff #fff Dry Weather Inflow ....... Wet Weather Inflow ....... Groundwater Inflow ....... RDII Inflow .............. External Inflow .......... External Outflow ......... Surface Flooding ......... Evaporation Loss ......... Initial Stored Volume .... Final Stored Volume ...... Continuity Error (%) ..... *****##*#******f*f Node Depth Summary ****#*f*f*ff+ff*fx Node J3 J2 J1 02 POND -Paragon POND-E POND-F ****xx}}}x******* Node Flow Summary CFS DYNWAVE NOV-06-2006 00:01:00 NOV-12-2006 00:00:00 0.0 00:05:00 1.00 sec Volume Volume acre-feet Mgallons --------- 0.000 --------- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.278 2.697 8.734 2.846 0.000 0.000 0.000 0.000 0.462 0.151 0.007 0.002 -0.011 -------------------------------------- Average Maximum Maximum Time of Max Total Depth Depth HGL Occurrence Flooding Type Feet Feet Feet days hr:min acre -in ----------------------------------------------------------- JUNCTION 0.22 3.06 4927.06 0 01:14 0 JUNCTION 0.49 2.52 4925.52 0 01:51 0 JUNCTION 0.93 1.84 4924.24 0 01:55 0 OUTFALL 1.01 1.24 4923.54 0 01:56 0 STORAGE 1.26 4.29 4928.29 0 02:19 0 STORAGE 1.06 2.72 4925.12 0 01:56 0 STORAGE 0.92 4.06 4927.06 0 01:15 0 Maximum Maximum Lateral Total Inflow Inflow Node Type CFS CFS ------------------------------------------------ J3 JUNCTION 0 00 1 19 J2 JUNCTION 0.00 8.33 J1 JUNCTION 0.00 10.51 02 OUTFALL 0.00 10.51 POND -Paragon STORAGE 140.72 140.72 POND-E STORAGE 26.60 35.07 POND-F STORAGE 69.47 70.15 Storage Volume Summary Maximum Total Minutes Flooded Time of Max Flooding Time of Max Occurrence Overflow Occurrence days hr:min CFS days hr:min ---------------------------------- 0 02:19 0.00 0 01:15 0.00 0 01:56 0.00 0 01:56 0.00 0 00:35 0.00 0 00:35 0.00 0 00:35 0.00 0 0 0 0 0 0 0 SWMM 5 Page 1 ****}}******+********* ----------------------------------- Average Avg ----------------------------------------- Maximum Max Time of Max Maximum Volume Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full 1000 ft3 Full days hr:min CFS -------------------------------------------------------------------------------------- POND-Paragon 50.259 18 220.063 78 0 02:19 1.19 POND-E 0.772 1 33.709 41 0 01:56 10.51 POND-F 1.253 2 61.524 85 0 01:15 8.33 Outfall Loading Summary +++++++++++++++++++++++ Flow Avg. Max. Freq. Flow Flow Outfall Node Pcnt. CFS CFS ----------------------------------------------- 02 66.48 1.10 10.51 ----------------------------------------------- System 66.48 1.10 10.51 Link Flow Summary ----------------------------------------------------------------------------------------- Maximum Time of Max Maximum Max/ Max/ Total Flow Occurrence Velocity Full Full Minutes Link ----------------------------------------------------------------------------------------- Type CFS days hr:min ft/sec Flow Depth Surcharged PIPE3 CONDUIT 1.22 0 03:52 2.56 0.08 1.00 143 PIPE2 CONDUIT 8.33 0 01:16 2.65 0.73 1.00 145 PIPE1 CONDUIT 10.51 0 01:56 6.20 1.48 0.91 254 Paragon DUMMY 1.19 0 02:19 F DUMMY 8.33 0 01:15 E DUMMY 10.51 0 01:56 Flow Classification Summary ------------------------------- Adjusted /Actual Conduit ------------------------------- Length PIPE3 1.00 PIPE2 1.00 PIPE1 1.00 Highest Continuity Errors Node J1 (0.08%) Node J2 (0.028) Node POND-E (-0.028) Node POND-F (0.01%) Node J3 (-0.00%) *************************** Time -Step Critical Elements ********}********}**}**}*}* None --- Fraction of Time in Flow Class ---- Avg. Avg. Up Down Sub Sup Up Down Froude Flow Dry Dry Dry Crit Crit Crit Crit Number Change ---------------------------------------------------------- 0.00 0.36 0.00 0.64 0.00 0.00 0.00 0.29 0.0000 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.09 0.0000 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.09 0.0001 SWMM 5 Page 2 Routing Time Step Summary Minimum Time Step 1.00 sec Average Time Step 1.00 sec Maximum Time Step 1.00 sec Percent in Steady State 0.00 Average Iterations per Step 2.00 Analysis begun on: Fri Feb 16 11:54:30 2007 Total elapsed time: 00:00:20 SWMM 5 Page 3 m m a U�, ; £d£ K� i N 0 EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.009) -------------------------------------------------------------- Analysis Options **************** Flow Units ............... CFS Flow Routing Method ...... DYNWAVE Starting Date ............ NOV-06-2006 00:00:00 Ending Date .............. NOV-12-2006 00:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:05:00 Routing Time Step ........ 1.00 sec ************************** Volume Volume Flow Routing Continuity ##################*####### acre-feet --------- Mgallons --------- Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 0.000 0.000 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 39.688 12.933 External Outflow ......... 34.980 11.399 Surface Flooding ......... 0.000 0.000 Evaporation Loss ......... 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 4.559 1.486 Continuity Error (%) ..... 0.376 Node Depth Summary ---------------------------------------------------------------------------------------- Average Maximum Maximum Time of Max Total Total Depth Depth HGL Occurrence Flooding Minutes Node Type Feet Feet Feet days hr:min acre -in Flooded -------------------- J8 JUNCTION ---------------------------------------------------- 0.67 3.41 4928.82 0 00:48 0 0 J10 JUNCTION 6.35 7.03 4933.51 1 17:56 0 0 J11 JUNCTION 6.15 6.83 4933.54 1 17:16 0 0 J4 JUNCTION 1.74 5.93 4927.88 0 02:04 0 0 J5 JUNCTION 1.00 5.21 4927.91 0 02:03 0 0 J6 JUNCTION 0.70 4.93 4928.00 0 02:01 0 0 J7 JUNCTION 0.61 5.03 4928.38 0 00:50 0 0 Jl JUNCTION 0.73 1.84 4920.81 0 02:05 0 0 J2 JUNCTION 0.54 2.00 4921.87 0 02:06 0 0 J12 JUNCTION 5.88 6.57 4933.57 1 17:11 0 0 J9 JUNCTION 0.65 3.30 4928.83 0 00:48 0 0 J3 JUNCTION 0.43 4.09 4924.56 0 00:09 0 0 01 OUTFALL 0.70 1.37 4920.31 0 02:06 0 0 02 OUTFALL 0.00 0.00 4936.00 0 00:00 0 0 PONDD STORAGE 7.04 9.81 4936.81 0 01:17 0 0 POND-C STORAGE 7.29 7.96 4933.49 1 17:22 0 0 POND-B STORAGE 0.65 5.36 4928.79 0 00:48 0 0 POND -A STORAGE 3.19 7.37 4927.86 0 02:05 0 0 #*##*############ Node Flow Summary ################# ------------------------------------------------------------------------------------ Maximum Maximum Maximum Lateral Total Time of Max Flooding Time of Max Inflow Inflow Occurrence Overflow Occurrence Node ------------------------------------------------------------------------------------ Type CFS CFS days hr:min CFS days hr:min SWMM 5 Page 1 J8 JUNCTION 0.00 1.32 1 20:11 0.00 J10 JUNCTION 0.00 2.56 0 00:09 0.00 J11 JUNCTION 0.00 2.79 0 00:05 0.00 J4 JUNCTION 0.00 36.74 0 00:41 0.00 J5 JUNCTION 0.00 37.89 0 00:39 0.00 J6 JUNCTION 0.00 37.89 0 00:39 0.00 J7 JUNCTION 0.00 37.90 0 00:39 0.00 J1 JUNCTION 0.00 16.35 0 02:06 0.00 J2 JUNCTION 0.00 16.53 0 00:12 0.00 J12 JUNCTION 0.00 1.47 0 01:17 0.00 J9 JUNCTION 0.00 1.32 1 17:22 0.00 J3 JUNCTION 0.00 16.35 0 02:05 0.00 01 OUTFALL 0.00 16.35 0 02:06 0.00 02 OUTFALL 0.00 102.97 0 01:15 0.00 PONDD STORAGE 613.29 613.29 0 00:36 0.00 POND-C STORAGE 32.10 33.27 0 00:36 0.00 POND-B STORAGE 146.68 147.86 0 00:36 0.00 POND -A STORAGE 152.17 185.16 0 00:36 0.00 }###*f#*ffff4ff###f*** Storage Volume Summary -------------------------------------------------------------------------------------- Average Avg Maximum Max Time of Max Maximum Volume Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full 1000 ft3 Full days hr:min CFS ------------- POND- 464.041 ----------- 51 870.629 ----------- 97 0 ----------- 01:17 104.44 POND-C 52.333 61 61.374 71 1 17:22 1.32 POND-B 2.956 2 97.198 71 0 00:48 37.90 POND -A 10.593 4 265.174 96 0 02:05 23.61 +++++++++++++++++++++++ Outfall Loading Summary +++++++++++++++++++++++ ----------------------------------------------- Flow Avg. Max. Freq. Flow Flow Outfall Node Pcnt. CFS CFS ----------------------------------------------- 01 99.89 2.19 16.35 02 3.18 28.98 102.97 ----------------------------------------------- System 51.53 31.17 118.64 ++++++++++++++++++++ Link Flow Summary ----------------------------------------------------------------------------------------- Maximum Time of Max Maximum Max/ Max/ Total Flow Occurrence velocity Full Full Minutes Link ----------------------------------------------------------------------------------------- Type CFS days hr:min ft/sec Flow Depth Surcharged PIPE12 CONDUIT 2.56 0 00:09 3.10 0.55 1.00 8612 PIPE11 CONDUIT 1.83 0 00:10 2.69 0.38 1.00 8613 PIPES CONDUIT 1.32 1 20:02 2.38 0.28 1.00 217 PIPER CONDUIT 37.90 0 00:39 5.36 1.32 1.00 268 PIPE7 CONDUIT 37.89 0 00:39 5.36 1.26 1.00 275 PIPE6 CONDUIT 37.89 0 00:39 5.36 1.27 1.00 305 PIPES CONDUIT 36.74 0 00:41 3.50 0.58 - 1.00 219 PIPE4 CONDUIT 36.58 0 00:41 2.97 0.38 1.00 307 PIPE2 CONDUIT 16.35 0 02:06 4.05 0.89 0.77 0 PIPE1 CONDUIT 16.35 0 02:06 4.92 0.86 0.64 0 PIPE13 CONDUIT 2.79 0 00:05 3.11 0.60 1.00 8611 PIPE10 CONDUIT 1.32 1 20:11 2.15 0.26 1.00 205 PIPE3 CONDUIT 16.53 0 00:12 6.77 0.53 0.75 0 SWMM5 Page 2 2 WEIR 102.97 0 01:15 D DUMMY 1.47 0 01:17 A DUMMY 16.35 0 02:05 C DUMMY 1.32 1 17:22 +*++++++++++*++++++++++++++ Flow Classification Summary -------------------------------- Adjusted --- --------------------------- Fraction of Time in Flow Class ---- /Actual Up Down Sub Sup Up Down Conduit Length Dry Dry Dry Crit Crit Crit Crit ------------------------------------------- PIPE12 1.00 0.00 0.00 ---- 0.00 1.00 --------------- 0.00 0.00 0.00 PIPEll 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE9 1.00 0.00 0.00 0.00 0.05 0.00 0.00 0.95 PIPER 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE7 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE6 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPES 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE4 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE2 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE13 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE10 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 PIPE3 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 Highest Continuity Errors +++++++++++++++++++++++++ Node J4 (0.12%) Node J5 (0.078) Node J3 (0.06%) Node J11 (0.048) Node J10 (0.04%) Time -Step Critical Elements ++++++x**xxxxxxxxxx+x+xi+ii Link PIPE1 (6.67%) Routing Time Step Summary Minimum Time Step 0.88 sec Average Time Step 0.99 sec Maximum Time Step 1.00 sec Percent in Steady State 0.00 Average Iterations per Step 2.00 Analysis begun on: Fri Feb 16 11:53:15 2007 Total elapsed time: 00:00:50 0.57 0 Avg. Avg. Froude Flow Number Change --------------- 0.10 0.0000 0.10 0.0000 0.56 0.0001 0.47 0.0000 0.44 0.0000 0.23 0.0000 0.07 0.0000 0.03 0.0000 0.39 0.0000 0.30 0.0000 0.10 0.0000 0.42 0.0001 0.71 0.0000 SWMM5 Page 3 A P,,, � A 0 L,,-k -C I o vi 18.0- 16.0_ _1- - 14.0 12.0- 10.0- 8.0- 0.0 n 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 Il Bapsed Toe (hours) Swmm 5 Page 1 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 Pond S ok-a� low 0.0-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Elapsed Tire (hours) SWMM 5 Page 1 1.2 1.0 0 0.2 P.,A c 0.0- 6 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Bapsed Tffne (hours) Swmm 5 Page 1 E Pona b GL-A (Coy-%'kro, 4 2- 0- 0.h I 0 1 2 3 4 5 6 8- Elapsed Tme (hours) Swmm 5 Page 1 120.0 100.0 80.0 60.0 LL 40.0 20.0 po'A b 0,,tJlOvv (Sp -ill wqy) 0.04 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Bapsed Tffne (hours) Swmm 5 Page 1 12.0 10.0 8.0 6.0 4.0 2.0 Fir. I. t 0.01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Bapsed Time (hours) SWMM 5 Page 1 .0 8.0 TC 6.0 5.0 L) 4 3.0 2.( IA Pow F C 1 I 0.0 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lb it Bapsed Tirre (hours) Swmm 5 Page 1 1.0 OA 0.4 0.2 01 ParO,30rN O(A**NW -0.2- 0 6 7 8 9 10 11 12 13 14 15 16 17 Bapsed Tore (hours) SWMM 5 Page 1 APPENDIX — D December 2006 DETENTION POND DESIGN Stantec Flow Division Summary The Front Range Village development will outlet, per the City Master Drainage Plan to a swale on the HP Harmony Campus. The current City model demonstrates 76.7 cis coming into the swale on the HP Harmony Campus. It has been agreed upon that this flow is to remain at 76.7 cfs after the construction of the Front Range Village. There are four storm systems that outlet into the HP swale. An existing system from a subdivision detention pond, The Front Range Village, the existing AMD property and the future development to the north of the Front Range Village development. The existing outlet discharges at a rate of 26.8 cfs during the 100-year storm, thus the three other properties can discharge at a combined rate of 49.9 cis. The below calculations were used to determine the amount of water each site shall be allowed to release at during the 100-year storm. Land Summary tuna i otai Area Basins Contributing % area of Total Pond Sub -Pond Contributing Area (acres) Area 297 ---- 296 12.9 91.4 40.33% ---- 297 28.9 ---- 300 9.3 --- 301 17.2 --- 302 23.1 209 206 (A) 206 54.8 105.64 46.61 % 207 (B) 207 4.0 208 (C) 208 18.0 209 (D) 208 18.1 --- 243 5.5 --- 244 2.5 ---- 245 2.8 210E 210 3.90 250 (F) 1 250 1 8.5 Flow Summary Flow at HP Swale = 76.7 cfs Flow from Offsite Pond = 26.8 cfs Flow Left = 49.9 cfs Max Allowable 100-Year Release Rate Pond Pond A Pond E u ure Dev. Total SWMM 209 210 297 ---- Area % 46.61 % 13.06% 40.33% ---- Q % 46.61 % 13.06% 40.33% ---- Allowable Quut 23.3 6.5 20.1 49.9 EPA SWMM QO t 16.4 10.5 20.3 - 47.0 - Future Ziegler Pond (297) Release Rate, Assumed 1023001 Pond Rating Curves 100%.xls POND RATING CURVES Stantec Pond Storage Volume Pond A Volume Equation: Vol (V) = 1/2h(A1+A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by Successive Contours nafed, n2/16/07 Contour Elev. Ft Area SF Al+A2 SF (A1+A2u2 SF Contour Interval Ft Depth Ft Volume V CF Accum. Vol. AV CF Accum. Vol. AV Ac-ft Discharge CFS 4920.49 0 ., 0.00 0.00 0.00 1929 965 0.51 0.51 491.9 4921.00 1929 I:- - kw%4_t� 14,!� 492 0.01 0.46 'M 23563 11782 1 1.51 11781.5 4922.00 21634 °+ .« M,Anv,,4,z � a s -1NVO04r PI" 12273 0.28 0.46 65536 32768 1 2.51 32768.0 :1,'O"MOVu• 4923.00 43902' . t . - % ., tis. ,nw^i ".: , . � ` t`4 45041 1.03 0.46 92883 46442 1 3.03 24149.6 T �"N&ky__--' t'�' ?" : 4923.52 48981 NOOM N4M, OAP. 69191 1.59 9.77 s 'v RigW. 102392 51196 0 3.51 24574.1 kC wz - 4924.00 53411 `s ��112137 - ...g,. :�a .ar>':_ - ,�.., ;.,.a.^i` 93765 2.15 10.70 � .;. K NT:? M$ •; 56069 1 4.51 56068.5 4925.00 58726 149834 3.44 12.41 ism -• - : , °: V-, = 121365 60683 1 5.51 60682.5 f., �s' .. 9r �� w -' a %`��'� :° = 4926.00 62639 .:"^ PMUMN, WWXj9X ? K k%r r.� 210516 4.83 13.92 129285 64643 1 6.51 64642.5 4927.00 66646 �".'��WVXV-, k 275159 6.32 t5.27 �- �� "" r VA 137398 68699 1 7.51 68699.0 °i� �'�1 ' 4928.00 70752 343858 7.89 116.52 V:\52870Ractive\187010251\Reports\Drainagel[Pond Rating Curves 100%.xls]Future Ziegler Spillway Elevation = 4927.86 WQCV (including 20% for Sediment) = 1.55 ac-ft 100-Yr Volume (from SW WM Model) = 6.09 ac-ft 7.64 ac-ft Including WQCV WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes WQCV Water Surface Elev. = 4923.52 WQCV + 100-Year Water Surface Elev. _ 4927.86 Pond Storage Volume Pond B Volume Equation: Vol (V) = 1/2h(A1 +A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by Successive Contours Dated 02/16/07 Contour Elev. (Ft) Area (SF) At +A2 (SF) (A1+A2Y2 (SF) Contour Interval (Ft) Depth (Ft) Volume V (CF) Accum. Vol. AV (CF) Accum. Vol. AV (Ac-ft) Discharge (CFS) 4923.43 0 XMI M104 �ffiwov, -,�qpw 0.00 UO 0.00 rMMOUNEM OM!Nw 1414 707 0.57 0.57 403.0 QMTNNPNNI'm 4924.00 1414 1 't. ; v r M­V 403 0.01 1.59 Alw."X_ A TIW4?< W_3U% 15555 7778 1 1.57 7777.5 7777� M&, 4925.00 14141 f MZRMIIZ' 777', `- ,` duwiftl E 7mftl 8181 0.19 9.93 35626 17813 1 2.57 17813.0 JMSSMNe&, 10WMM 4926.00 21485 P%1�47 -%' MM A &M.O."AN, Ef'4,W4Wq,,,,MA 25994 0.60 24.27 UWAMMW4 Mk _,�AXZI 45837 22919 1 3.57 22918.5 4927-00 24352 a 1__AARW­LW UMWM� MAMYW 48912 1.12 33.73 "90t MW�UftA 51678 25839 1 4.57 25839.0 t;f��NAUXMX W"51$UMM 4928.00 27326 MW X 972-VAM TUN-MON-441 74751 1.72 37.47 NMOftwl F1,12:10%_,.QIr"M 57737 28869 1 5.57 28868.5 L, ft*,MW-,10W 4929.00 30411 �T�,I,-, . �_,, AlrM1, M"= P 103620 2.38 38.00 V:\52870f\active%187010251\Reports\DrainagelPond Rating Curves 100%.xls]Future Ziegler Spillway Elevation = 4929.00 1 00-Yr Volume (from SWWM Model) = 2.23 ac-ft WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes 100-Year Water Surface Elev. = 4928.79 Pond Storage Volume Pond C Volume Equation: Vol (V) = 1/2h(A1+A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by Successive Contours natal- mil Rim Contour Elev. Ft Area SF At+A2 SF (A1+A2y2 Ft Contour Interval Ft Depth Ft Volume V CF Accum. Vol. AV CF Accum. Vol. AV Ac-ft Discharge CFS 4925.53 0 ' h .772 . 0.00 0.00 0.00 ,.� �t �` ., ;. 386 0.47 0.47 181.4 . P ., �,,, em" ".� ,z .� .a �1 e_ .�;., 4926.00 772 , ,-., ., '�:"� w`_^� ,t a 181 0.00 0.26 IT, 4828 2414 1 1.47 2414.0 ,', ` ::. 1. t, _ 4927.00 4056 ` �'< :. `-# . 3 .. f .�. -� �.£w` ,, ._ 2595 0.06 0.54 9479 1 4740 1 2.47 4739.5 �` -". . w s::+ ',.s ;� �F __ �"' .,�': �: 4928.00 5423 '> "I � - „-."_�.,�-``� 7335 0.17 0.72 -V 12318 6159 1 3.47 6159.0 :� r... 4929.00 6895 ".:Al ..,15363 P.v 13494 0.31 0.86 7682 1 4.47 7681.5 5,T1 4A%,Y ;` e a ' MVPWKSM 4930.00 8468 '?,��. `�:t�v�,,�„'� "�.- ,W,� 21175 0.49 0.98 P0.11 „ N1 18611 9306 � 1 5.47 9305.5 15f�-�¢�.�"�+'�.pr EE ��� �'_� '"���AA 4931.00 10143 m.`'°:`'tom„ Pal "�� �w.�'��`i„� 'K) 30481 0.70 1.09 22061 11031 1 6.47 11030.5 4932.00 11918 '1".'- M 41511 0.95 1.19 �L-4 %',1 25713 12857 1 7.47 12856.5 4933.00 13795 k'�ht;EJ 54368 1.25 1.28 P = 4W4 *Jx4d4r 29568 14784 1 8.47 14783.8 4934.00 15773 ; .ft1 a�' ' s ':._- 69152 1.59 1.36 VV 33632 16816 1 9.47 16815.8 UV� ZW €; 4935.00 17859 " +., ^"PoZ_ a ,'?. 85967 1.97 1.44 V:\52870t\active\187010251\Reports\DrainagelPond Rating Curves 100%.xls]Future Ziegler Spillway Elevation = 4934.00 100-Yr Volume (from SWWM Model) = 1.43 ac-ft WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes 100-Year Water Surface Elev. = 4933.44 00 Pond Storage Volume Pond D Volume Equation: Vol (V)= 1/2h(A1+A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by Successive Contours n.t.,+ mnaim Elev. Ft Contourh_N8125 Al+A2 SF (At+A2)/2 SF Countour Interval Ft Depth Ft Volume V CF Accum. Vol. AV CF Accum. Vol. AV Ac-ft Discharge CFS 4927.00x`. mwx�^ 0.00 0.00 0.00 6637 3319 1 1.00 3318.E.4928.00'.�r3319 0.08 0.70 34762 17381 1 2.00 17381.1 -41 z ze, ., m : -a _-. .., i " U4929.00 k.`:r s- ; '. , x • . _°. ,.. - ;:=-_ 20700 0.48 0.70 93843 1 46922 1 3.00 46921.7 4930.00 65718 ...m m<. ,,, 3 67621 1 1.55 0.70 k, . '_= L, � _ : 165871 8293E 1 4.00 82935.7 �,".'nt M,, .pry` !C �:' 4931.00 100153 *0; ' "S'P..� =° 150557 3.46 0.93 s-:.., , 2-4 218420 109210 1 5.00 109209.8 4932.00 11826E '"' "�cx.» :°� .� $" '� '� -fir= s �:..'.au .., W'" m0-H&LO 259767 5.96 1.04 Z� ,'41&6 243485 121742 1 6.00 121742.4 C_ 0rj-' 4933.00 125218 �'"_,.� ,,,r"'`.-#:°„'.,,"�' "a 381509 8.76 1.14 257491_ 128746 1 7.00 128745.E 4934.00 132273 :_ .. )PS, : ", . r ,,;"' ,.„at IWISKv+ .....) .: MAC*� 510255 11.71 1.24 271698 135849 1 8.00 135848.8 '�-W' WW WA* 4935.00 139425 # -; ., Si-. .r,- 'VhWA' ,. m'Wkl. „ :� •9*.s,`,'4 646104 14.83 1.32 tv: s R .VAIRW.69 286197 143099 1 9.00 143098.7 N i *'� W * , �°PkY . 4936.00 146773 €, r` `, 789202 18.12 1.41 -9 A l 301432 150716 1 10.00 150716.0 7 `Oe4 16d,1t, > 7'. 7771 4937.00 154660 = " .€ ff r ,. ..x -' =s, -"-. ' "x ° � , " r 939918 21.58 1.48 V:\52870f1active\187010251\Reports\DrainagelPond Rating Curves 100%.xls]Future Ziegler Spillway Elevation = 4936.24 WQCV (including 20% for Sediment) = 1.84 ac-ft 100-Yr Volume (from SWWMModel) = 17.94 ac-ft 19.78 ac-ft Including WQCV WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes WQCV Water Surface Elev. = 4930.18 WQCV + 100-Year Water Surface Elev. = 4936.24 Pond Storage Volume Pond E Volume Equation: Vol (V) = 1/2h(A1+A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by Successive Contours naiad• mne/m Contour Elev. Ft Area SF At+A2 SF (At+A2)/2 SF(Ft) Contour Interval Depth Ft Volume V CF Accum. Vol. AV CF Accum. Vol. AV Ac-ft Discharge CFS 4922.40 0� ." 0.00 0.00 0.00 x"GAN �M. ""M..s 4923 2462'.. 0.60 0.60 1476.9 E1,N,.�°�aN''2', `a�.�`"?'f@it..0 4923.00 4923"-�.,. -25779 1477 0.03 0.02 12890 1 1.60 12889.5 .. �' ;, A-.. ., e, 04. i`M=a 4924.00 20856 ; W , ,. r; � ,. ;" w F. _Z. 1 14366 0.33 7.09 ,; C`?QNK,,L-o1, 43789 21895 1 1 2.60 1 21894.5 4XIM- N 4925.00 22933 =: �J. "...: - ` 2 _ ,' .¢� ; r am : �� 36261 0.83 10.21 .``.."..=+.. 47966 23983 1 3.60 23983.0zA'a_.s`; .",a.-w~'."°'. 4926.00 25033 .�._ ._ �, _ _: L __. _.`' fir. _" ,. '.� r" 60244 1.38 12.58 ��f ` I �-::.-;��t� �;'� " 52245 26123 1 4.60 26122.5 4927.00 27212 e. " o '�� ' 'S s , : �, P" »�' � - tip""; ,'>� 86366 1.98 14.57 V:\52870f1active\787010251 UReportslDrainagegPond Rating Curves 100%.xls]Future Ziegler Spillway Elevation = 4926.00 WQCV (including 20% for Sediment) = 0.15 ac-ft 100-Yr Volume (from SWWM Model) = 0.77 ac-ft 0.92 ac-ft Including WQCV WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes WClCV Water Surface Elev. = 4923.43 WQCV + 100-Year Water Surface Elev. = 4925.12 Pond Storage Volume Pond F Volume Equation: Vol (V) = 1/2h(A1+A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by'Successive Contours Dated, 02/16/07 Contour Elev. Ft Area SF Al+A2 SF (A1+A2y2 SF Contour Interval Ft Depth Ft Volume V CF Accum. Vol. AV CF Accum. Vol. AV Ac-ft Discharge CFS 4923.00 12784 F (�� �z�t a 0.00 0.00 0.00 28090 14045 1 1.00 14045.0 4924.00 15306 14045 0.32 3.07 33234 16617 1 2.00 16617.0 •,�.=s`*`.I, e �.;'a''w`�«x: 4925.00 17928 a. ." r+W "N "' N',W, _Nk r 30662 0.70 5.39 38588 19294 1 1 3.00 19294.0h 4926.00 20660 49956 1 1.15 6.97 wadN' x W, `W m 44151 22076 1 4.00 22075.5 ""tvmr ." 4,"1'z *s1A' .,,cta.�?<Ig 4927.00 23491 �t �' . �. ;'�. e�' ,. �. �� . "_ „ 'a„1„ r.; ... ,�:` 72032 1.65 8.26 48436 242181, 1 4.50 12109.0 A7' WW. 4927.50 24945 ;: ", Y . w.A, .___ - �ft , 84141 1.93 8.83 V:\52870tWCUve\787010251\Reports\DrainagegPond Rating Curves 100%.xls]Future Ziegler Spillway Elevation = 4927.06 WQCV (including 20% for Sediment) = 0.28 ac-it 100-Yr Volume (from SWWM Model) = 1.41 ac-ft 1.69 ac-ft Including WQCV WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes WQCV Water Surface Elev. = 4923.86 WQCV + 100-Year Water Surface Elev. = 4927.06 Pond Storage Volume Pond Paragon Volume Equation: Vol IV) = 1/2h(A1+A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by Successive Contours n.t.H. tnnam7 Contour Elev. (Ft) Area SF A1+A2 SF (A1+A2)/2 SF Contour Interval Ft Depth Ft Volume V CF Accum. Vol. AV CF Accum. Vol. AV Ac-fl Discharge CFS 4924.00 47 :. - 0 0.00 0.00 ::.: ; a�s�,, rc,,ab y 40246 20123 1 1.00 20123.2 ""?' *� ', w.. ,�,fls.? . ;:°mT'.., 4925.00 40199 0 T� 20123 0.46 0.53 93415 46707 1 2.00 46707.5 � 4926.00 53216 E �- :.?r. >�. -�, - ,i.: ,m ws_z .. '' '.� t r_.v; q­ 66831 1.53 0.80 -INC „ ftTWPv„'W4 117763 58882 1 3.00 58881.E 4927.00 64548 V?,, a a` 1 ,14 125712 1 2.89 0.99 i Q N � 142198 71099 1 4.00 71098.9 5 �4.52 .., �s `.°sa 4928.00 77650 .` _ .'� - _ - _ . R . �',.. , 196811 1.15 in KTMR UAL x" 167155 83577 1 5.00 83577.4 ` `:,�E,�.. �' @b ..�:; �`U,11F$1„.'�: .. 4929.00 89505 `i'�d` t �a,sw,"`�°. x "°1.,'a ': rg�<„'1 280389 6.44 1.32 V:\52870Pactive\187010251\ReponsUkainagel[Pond Rating Curves 100%.als]Future Ziegler Spillway Elevation = 4928.29 100-Yr Volume (from SWWM Model) = 5.29 ac-ft WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes 100-Year Water Surface Elev. = 4928.29 Pond Storage Volume Inadvertant Ziegler Detention Volume Equation: Vol (V) = 1/2h(A1 +A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by Successive Contours Dated, 02/16107 Contour Elev. (Ft) Area (SF) At +A2 (SF) (Al +A2)/2 (SF) Contour Interval Ft) Depth (Ft) Volume V (CF) Accum. Vol. AV (CF) Accum. Vol. AV (Ac-ft) Discharge (CFS) 4923.00 56155 0 0.00 0.00 256912 128456 1 1.00 128456.0 fE!,*- Ab3z 4924.00 251227 Un 7 1215456 2.95 13.02 678775 339388 1 2.00 339387.5 492500 427548 tO W-;M 1ci AXAt�,VIW 467844 10.74 15.95 A, "-, , "''tA 64 1.Z 17 6 6.� 1 � v�� P • 1 4925.50 1 519836 70� NK AA 704690 16.18 1 17 2'3 V:152870MCtive1187010251X2eportsXDminage\[Pond Rating Curves 100%.xlffuture Ziegler Spillway Elevation = 4928.29 1 OG-Yr Volume (from SWWM Model) = 15.70 ac-ft WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes 1 00-Year Water Surface Elev. = 4925.4 Pond Storage Volume Future Ziegler Pond Volume Equation: Vol (V) = 112h(Al +A2) V = Volume in Cubic Feet (CF) or Acre -Feet (Ac-Ft) h = Contour Interval in Feet (Ft) A1,A2 = Area Enclosed by Successive Contours Dated, 02/16/07 Contour Elev. (Ft) Area (SF) Al +A2 (SF) (Al +A2)/_2 (SF) Contour Interval (Ft) Depth (Ft) Volume V (CF) Accum. Vol. AV (CF) Accum. Vol. Discharge AV (Ac-ft) (CFS) 4920.00 0 0 0.00 0.00 "t x 206910 103455 8 8.00 827640.0 ti �t 4928.00 206910 e_� � _� 11W - )1K V �11 'ellN,--ft NO"' 145N ST X,'A� A Xi 827640 19.00 17.30 416910 208455 1 8.73 152172.1 4928.73 210000 979812 22.49 21.90 V:152870McUveII87010251IReports\DrainagelPond Rating Curves 100%.xis]Future Ziegler Spillway Elevation = 4928.44 100-Yr Volume (from SWWM Model) = 21.10 ac-ft . WATER SURFACE INTERPOLATIONS WSEL Interpolations below represent Calculated WSEL based on Required Volumes 1 00-Year Water Surface Elev. = 4928.44 WATER QUALITY CONTROL VOLUME Stantec 11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11 Designer: Company: Date: Project: Location: Josh Ziliak Stantec Consulting January 25, 2007 FRV Pond A 1. Basin Storage Volume 1. = 88.37 % A) Tributary Area's Imperviousness Ratio (i = I , / 100) i = 0.88 1 B) Contributing Watershed Area (Area) Area = 39.970 acres C) Water Quality Capture Volume (WQCV) WQCV = - 0.34 ,watershed inches (WQCV =1.0' (0.91 ' 13 - 1.19' I2 + 0.78. 1)) D) Design Volume: Vol = (WQCV / 12)' Area' 1.2 Vol =-, 1.5508 acre-feet 2. Outlet Works A) Outlet Type (Check One) X Orifice Plate Perforated Riser Pipe Other. B) Depth at Outlet Above Lowest Perforation (H) H = 3.01 feet C) Recommended Maximum Outlet Area per Row, (A o) A. = 1.9 square inches D) Perforation Dimensions i) Circular Perforation Diameter or D =1 1.500 inches ii) Width of 2" High Rectangular Perforations W =+ inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc =( 1 number F) Actual Design Outlet Area per Row (A J k = " - 1.8 'square inches G) Number of Rows (nr) nr = 9 number H) Total Outlet Area (A,) Ao, _; 16.0 . square inches 3. Trash Rack A) Needed Open Area: A, = 0.5' (Figure 7 Value)' A o, B) Type of Outlet Opening (Check One) C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (W „J from Table 6a-1 ii) Height of Trash Rack Screen (H TR) A,=! 511 square inches X < 2" Diameter Round 2" High Rectangular Other: Ww„, = 15 'inches HTR =. 66 inches Pond A.xls, EDB 1/25/2007, 6:35 PM Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 Designer: Josh Zillak Company: Stantac Consulting Date: January 25, 2007 Project: FRV Location: Pond A iii) Type of Screen (Based on Depth H), Describe if "Other" I S.S. #93 VEE Wire (US Filter) Other. iv) Screen Opening Slot Dimension, Describe if "Other" I :0.139" (US Filter) Other: v) Spacing of Support Rod (D.C.) Type and Size of Support Rod (Ref.: Table 6a-2) vi) Type and Size of Holding Frame (Ref.: Table 6a-2) inches D) For 2' High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = 'inches ii) Width of Perforated Plate Opening (W = W + 12") W.„c _>�.: ' ' - 'inches iii) Width of Trashrack Opening (W op.*,e) from Table 6b-1 W;=, ; inches iv) Height of Trash Rack Screen (H m) Hm _; - inches v) Type of Screen (based on depth H) (Describe if "Other") KlemoTM KPP Series Aluminum Other: vi) Cross -bar Spacinq (Based on Table 6b-1. KlempTm KPP I — inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlempTm Series, Table 6b-2) (Based on depth of WOCV surcharael 4. Detention Basin length to width ratio I VW) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (3% to 5% of Design Volume from 1 D) acre-feet (3% - 5% of Design Volume (0.0465 - 0.0775 acre-feet.) B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no Pond A.As, EDB 1/25/2007. 6:35 PM 11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11 Designer: Josh Ziliak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond A 6. Two -Stage Design - See Figure EDBA A) Top Stage (Depth D wo = 2' Minimum) Dwo = feel Top Stage Storage: no less than 99.5% of Design Volume (1.543 acre-feet.) Storage= acre-feet B) Bottom Stage Depth (D Bs = 0.33' Minimum Below Trickle Channel Invert) Des = feet Bottom Stage Storage: no less than 0.5% of Design Volume (0.0078 acre-feet.) Storage= acre-feet Storage = A' Depth Above WS To Bottom Of Top Stage Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.50 ` Top Stage Depth or 2.5 Feet) D) Total Volume: Vol m, = Storage from 5A + 6A + 6B Volat = -� ' acre-feet (Must be > Design Volume in 1 D, or 1.5508 acre-feet.) 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other. notes: Pond A.As, EDB 1/25/2007, 6:35 PM Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 7 of 3 Designer: Josh Ziliak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond D 1. Basin Storage Volume I, = 81.21 % A) Tributary Area's Imperviousness Ratio (i = I , / 100) i = 0.81 B) Contributing Watershed Area (Area) Area = 54.750 acres C) Water Quality Capture Volume (WQCV) WQCV =: 0.34. watershed inches (WQCV =1.0-(0.91' 1I_ 1.19"12+0.78"1)) D) Design Volume: Vol = (WQCV / 12)' Area' 1.2 Vol = 1.8396 acre-feet 2. Outlet Works A) Outlet Type (Check One) B) Depth at Outlet Above Lowest Perforation (H) C) Recommended Maximum Outlet Area per Row, (A J D) Perforation Dimensions : i) Circular Perforation Diameter or ii) Width of 2" High Rectangular Perforations E) Number of Columns (nc, See Table 6a-1 For Maximum) F) Actual Design Outlet Area per Row (A J G) Number of Rows (nr) H) Total Outlet Area (A w) 3. Trash Rack A) Needed Open Area: A, = 0.5' (Figure 7 Value)' At B) Type of Outlet Opening (Check One) C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (W mm) from Table 6a-1 ii) Height of Trash Rack Screen (H �) x_Orifice Plate _ Perforated Riser Pipe Other: H = 3.18 feet A. = 2.1 square inches D ='. 1.625 'inches W = inches nc 1 number Ao = - 2.1 square inches nr=• .10 -..number Ap, _' 1907 square inches At 622 'squareinches X < 2" Diameter Round 2" High Rectangular Other: W.n, = 18 inches Hm _ - 68 ' inches Pond D.xls, EDB 1/25/2007, 6:36 PM Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 Designer: Josh Ziliak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond D iii) Type of Screen (Based on Depth H), Describe if "Other" I S.S. #93 VEE Wire (US Filter) Other. iv) Screen Opening Slot Dimension, Describe if "Other" I ' 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) Type and Size of Support Rod (Ref.: Table 6a-2) vi) Type and Size of Holding Frame (Ref.: Table 6a-2) inches D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = ! inches ii) Width of Perforated Plate Opening (W m� = W + 12") W.. _ inches iii) Width of Trashrack Opening (W op nnq) from Table 6b-1 W.�ni,e =� inches iv) Height of Trash Rack Screen (H TR) HTR =' inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other: vi) Cross -bar Spacinq (Based on Table 6b-1, KlempTM KPP inches Grating). Describe if "Other"Other. vii) Minimum Bearinq Bar Size (KlempT Series, Table 6b-2) 4. Detention Basin length to width ratio I (L/W) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (3% to 5% of Design Volume from 1 D) acre-feet (3%- 5% of Design Volume (0.0552 - 0.092 acre-feet.) B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no Pond D.As, EDB 1/25/2007, 6:36 PM 11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11 Designer: Josh Zlliak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond D 6. Two -Stage Design - See Figure EDBA A) Top Stage (Depth D wo = 2' Minimum) Dwo = feet Top Stage Storage: no less than 99.5% of Design Volume (1.8304 acre-feet.) Storage= acre-feet B) Bottom Stage Depth (D Bs = 0.33' Minimum Below Trickle Channel Invert) Des = feet Bottom Stage Storage: no less than 0.5% of Design Volume (0.0092 acre-feet.) Storage= acre-feet Storage = A' Depth Above WS To Bottom Of Top Stage Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.50' Top Stage Depth or 2.5 Feet) D) Total Volume: Vol ,m = Storage from 5A + 6A + 6B Volta' _; - acre-feet (Must be > Design Volume in 1 D, or 1.8396 acre-feet.) 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other") Native Grass Irrigated Turf Grass Other: Notes: Pond CIA% EDB 1/25/2007, 6:36 PM Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 1 of 3 Designer: Josh Ziliak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond E 1. Basin Storage Volume la = 86.59 % A) Tributary Area's Imperviousness Ratio (i = I e / 100) 1 = 0.87 B) Contributing Watershed Area (Area) Area = 3.910 acres C) Water Quality Capture Volume (WQCV) WOCV = 0.37 'watershed inches (WQCV =1.0' (0.91 ' 13 - 1.19. IZ + 0.781)) D) Design Volume: Vol = (WQCV / 12)' Area ' 1.2 Vol = 0.1462 acre-feet 2. Outlet Works A) Outlet Type (Check One) X Orifice Plate Perforated Riser Pipe . Other: B) Depth at Outlet Above Lowest Perforation (H) H = 1.03 feet C) Recommended Maximum Outlet Area per Row, (A o) A. = 6.9 square inches D) Perforation Dimensions : i) Circular Perforation Diameter or _ D =' 1.000 _ inches ii) Width of 2" High Rectangular Perforations W = inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc =: 1 number F) Actual Design Outlet Area per Row (A o) Ao = 0.8 'square inches G) Number of Rows (m) nr =-'. 3 number H) Total Outlet Area (A,,) Ao, = 2.4 'square inches 3. Trash Rack A) Needed Open Area: A, = 0.5' (Figure 7 Value) ' A m A, = 83 square inches B) Type of Outlet Opening (Check One) x < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller. Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (W mm) from Table 6a-1 Wm� = 6 ' inches ii) Height of Trash Rack Screen (H TR) HTR = 42 inches Pond E.xls, EDB 1/25/2007, 6:36 PM Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 2 of 3 Designer: Josh Ziliak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond E iii) Type of Screen (Based on Depth H), Describe if "Other" I S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other" 0.139" (US Filter) Other. v) Spacing of Support Rod (O.C.) inches Type and Size of Support Rod (Ref.: Table 6a-2) vi) Type and Size of Holding Frame (Ref.: Table 6a-2) D) For 2" High Rectangular Opening (Refer to Figure 61b): 1) Width of Rectangular Opening (W) W = inches ii) Width of Perforated Plate Opening (W = W + 12") W WM _ - inches iii) Width of Trashrack Opening (W a�,,;,,g) from Table 6b-1 Waning = r ' inches iv) Height of Trash Rack Screen (H TO HTR = - inches v) Type of Screen (based on depth H) (Describe if "Other") KlempTm KPP Series Aluminum Other. vi) Cross -bar Spacinq (Based on Table 6b-1, KlempTM KPP I � inches Grating). Describe if "Other" Other: vii) Minimum Bearinq Bar Size (KlempTm Series, Table 6b-2) 4. Detention Basin length to width ratio I (UW) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (3% to 5% of Design Volume from 1 D) acre-feet (3% - 5% of Design Volume (0.0044 - 0.0073 acre-feet.)_ B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no Pond E.xls, EDB 1/25/2007, 6:36 PM Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: Josh Ziliak Company: Stantec Consulting Date: January 25,2007 Project: FRV Location: Pond E 6. Two -Stage Design - See Figure EDBA A) Top Stage (Depth D wo = 2' Minimum) Dwo = feet Top Stage Storage: no less than 99.5% of Design Volume (0.1455 acre-feet.) Storage= acre-feet B) Bottom Stage Depth (D as = 0.33' Minimum Below Trickle Channel Invert) Dss = feet Bottom Stage Storage: no less than 0.5% of Design Volume (0.0007 acre-feet.) Storage= acre-feet Storage = A' Depth Above WS To Bottom Of Top Stage Surf. Area= acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.50' Top Stage Depth or 2.5 Feet) D) Total Volume: Vol Storage from 5A + 6A + 613 Volm _; - ' acre-feet (Must be > Design Volume in 1D, or 0.1462 acre-feet.) - 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = (horizontal/vertical) per unit vertical) Minimum Z = 3, Flatter Preferred 9. Vegetation (Check the method or describe "Other') Native Grass Irrigated Turf Grass Other. notes: Pond E.xls, EDB 1/25/2007. 6:36 PM 11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11 Sheet 1 of Designer: Josh Ziliak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond F 1. Basin Storage Volume la = 79.78 % A) Tributary Area's Imperviousness Ratio (i = I a/ 100) i = 0.80 B) Contributing Watershed Area (Area) Area = 8.510 acres C) Water Quality Capture Volume (WQCV) WQCV = ��'0.33 ' watershed inches (WQCV =1.0' (0.91 ' 11. 1.19' IZ + 0.78 " 1)) D) Design Volume: Vol = (WQCV / 12)' Area 1.2 Vol =. _ 027U2 acre-feet 2. Outlet Works A) Outlet Type (Check One) X Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 0.86 feet C) Recommended Maximum Outlet Area per Row, (A ,) A, _ - 2.3 'square inches D) Perforation Dimensions i) Circular Perforation Diameter or D =' 1.750 '. inches ii) Width of 2" High Rectangular Perforations W = , inches E) Number of Columns (nc, See Table 6a-1 For Maximum) nc =:. 1- `number F) Actual Design Outlet Area per Row (A ,) Ao =' 2.4 '; square inches G) Number of Rows (nr) nr =`� 3 " �: number H) Total Outlet Area (A„) k, _. 6.2' 'square inches 3. Trash Rack A) Needed Open Area: A, = 0.5' (Figure 7 Value)' A ,� A, = 193 square inches B) Type of Outlet Opening (Check One) X < 2" Diameter Round 2" High Rectangular Other: C) For 2", or Smaller, Round Opening (Ref.: Figure 6a): i) Width of Trash Rack and Concrete Opening (W from Table 6a-1 W„n, _ 12 'inches ii) Height of Trash Rack Screen (H TR) HTR _. 40 inches Pond F.xls, EDB 1/25/2007, 6:36 PM 11 Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility 11 2of3 Designer: Josh Zillak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond F iii) Type of Screen (Based on Depth H), Describe if "Other" I S.S. #93 VEE Wire (US Filter) Other: iv) Screen Opening Slot Dimension, Describe if "Other' 0.139" (US Filter) Other: v) Spacing of Support Rod (O.C.) Type and Size of Support Rod (Ref.: Table 6a-2) vi) Type and Size of Holding Frame (Ref.: Table 6a-2) inches D) For 2" High Rectangular Opening (Refer to Figure 6b): 1) Width of Rectangular Opening (W) W = --,inches ii) Width of Perforated Plate Opening (W W + 12") W.W = - inches iii) Width of Trashrack Opening (W n, v) from Table 6b-1 WoPmng = inches iv) Height of Trash Rack Screen (H TR) HTR =; inches v) Type of Screen (based on depth H) (Describe if "Other") Klemp'm KPP Series Aluminum Other: vi) Cross -bar Spacing (Based on Table 6b-1, KlempTM KPP : inches Grating). Describe if "Other" Other: vii) Minimum Bearing Bar Size (KlemoTm Series. Table 6b-2) 4. Detention Basin length to width ratio I (L/W) 5 Pre -sedimentation Forebay Basin - Enter design values A) Volume (3% to 5% of Design Volume from 1 D) acre-feet (3% - 5% of Design Volume (0.0083 - 0.0139 acre-feet.) B) Surface Area acres C) Connector Pipe Diameter inches (Size to drain this volume in 5-minutes under inlet control) D) Paved/Hard Bottom and Sides yes/no Pond F.xls, EDB 1/25/2007, 6:36 PM Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility Sheet 3 of 3 Designer: Josh Ziliak Company: Stantec Consulting Date: January 25, 2007 Project: FRV Location: Pond F 6. Two -Stage Design - See Figure EDBA A) Top Stage (Depth D wo = 2' Minimum) Dwo = feet Top Stage Storage: no less than 99.5% of Design Volume (0.2768 acre-feet.) Storage= acre-feet B) Bottom Stage Depth (D es = 0.33' Minimum Below Trickle Channel Invert) Des = feet Bottom Stage Storage: no less than 0.5% of Design Volume (0.0014 acre-feet.) Storage= acre-feet Storage = A' Depth Above WS To Bottom Of Top Stage Surf. Area= - acres C) Micro Pool (Minimum Depth = the Larger of Depth= feet 0.50' Top Stage Depth or 2.5 Feet) D) Total Volume: Vol . = Storage from 5A + 6A + 6B Vol,, = acre-feet (Must be > Design Volume in 1 D, or 0.2782 acre-feet.) 7. Basin Side Slopes (Z, horizontal distance per unit vertical) Z = (horizontal/vertical) Minimum Z = 4, Flatter Preferred 8. Dam Embankment Side Slopes (Z, horizontal distance) Z = (hodzontaVvertical) per unit vertical) Minimum Z = 3. Flatter Preferred 9. Vegetation (Check the method or describe 'Other) Native Grass Irrigated Turf Grass Other: Notes: Pond F.xls, EDB 1/25/2007, 6:36 PM Orifice Plate Perforation Sizing Circular Perforation Sizlna Chart may be applied to orifice plate or verttal outlet Hole Dia n Hole Die in Min. Sc in Area per Row In ) n=1 n=2 11 n=3 1/4 0.25 1 0.05 0.1 0.15 5/16 0.313 2 0.08 0.15 023 3/8 0.375 2 0.11 022 0.33 7/16 0.438 2 0.15 0.3 0.45 12 0.5 2 02 0.99 0.59 9/16 0.563 3 025 f 0.5 0.75 5/8 0.625 3 0.31 1 0.61 0.92 11/16 0.688 3 0.37 1 0.74 1.11 3/4 0.75 3 0.44 1 0.88 1.33 13116 0.813 3 0.62 1.04 1.66 7/8 0.875 3 0.6 12 1.8 15/16 0.938 3 0.69 1.38 2.07 1 1 4 0.79 1.57 2.36 1 1/16 1.063 4 0.89 1.77 2.66 1 1/8 1.125 4 0.99 1.99 2.98 1 3116 1.188 4 1.11 222 3.32 1 1/4 125 4 123 2.45 3.68 1 W16 1.313 4 1.35 2.71 4.06 1 3/8 1.375 4 1.48 2.97 4.45 1 7/16 1.438 4 1.62 325 4.87 1/2 1.5 4 1.77 3.53 5.3 1 .9/16 15563 4 1.92 3.83 5.75 1 5/8 1.625 4 2.07 4.15 622 1 11/16 1.688 4 224 4.47 6.71 1 3/4 1.75 4 2.41 4.81 722 1 13116 1.813 4 2.58 5.16 7.74 1 7/8 1.875 4 2.76 5.52 828 1 W16 1.938 4 2.95 5.9 8.84 2 2 4 3.14 628 9.42 n=n ns Minimum Steel late Thicknew1/4' S/16' - 3/8' o e = mseutoe Denvean now Rectangualr Perforation Sizing Only one colum of rectanguair perforations allowed Rectangular Height = 2inches Rectangular Width (in) = Required Area per Row Or?) / 2' Rectangular Hole Width Min. Steel Thickness 5 1/4' 6 1/4' 7 5/32• 8 5/16• 9 11/32• 10 3/6• >10 1/2' DRAINAGE CRITERIA MANUAL (V.3) STRUCTURAL BEST MANAGEMENT PRACTICES 10 :6 4 2 1. 0.6 00.4 E V� In 0.2 U M M 0.019 no i SOLUTION: Required Area per III goo WQCV 40 010 PAJ in which, K 40 =0-013DWQ +0.22DWQ -0.10 P'J' PAV =ME P0010 Elm ARA 0.01 0. �•�Y V.VV V. lu u.zu U.4U 0.60 1.0 2.0 .4.0 6.0 Required Area per Row,a (in.2 ) - FIGURE EDB-3 Water Quality Outlet Sizing: Dry Extended Detention Basin With a 40-Hour Drain Time of the Capture Volume 9-1-99 Urban Drainage and Flood Control District S-43 STRUCTURAL BEST MANAGEMENT PRACTICES DRAINAGE CRITERIA MANUAL (V. 3) 0.50 0.45 0.40 - 0.35 t 0.30 0.25 3 0.20 0.15 0.10 0.05 0.00 S-42 Om i i i MAP and Porous Landscape Detention M1124xxrDraInThne 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Total Imperviousness Ratio (1= I oN00) 0.8 0.9 1 FIGURE EDB-2 Water Quality Capture Volume (WQCV), Se Percentile Runoff Event 9-1-99 Urban Drainage and Food Control District Orifice Plate Perforation Sizing Circular Perforation Sizing Chart may be applied to orifice plate or vertical pipe outlet. Hole Dio Hale Dio Min. Sc Area per Row (sq in) 1 /4 0.250 1 0.05 0.10 r 0.15 5/16 0.313 2 0.08 0.15 1 0.23 3/8 0.375 2 0.11 0.22 1 0.33 7/16 0.438 2 0.15 0.30 T 0.45 1 2 0.500 2 0.20 0.39 1 0.59 9116 0.563 3 0.25 0.50 0.75 5 8 M625 3 0.31 0.61 0.92 11 16 0.688 3 0.37 0.74 1.11 3 4 0.750 3 0.44 0.88 1.33 13 16 0.813 3 0.52 1.04 1.56 7 8 0.875 3 0.60 1.20 1.80 15 16 0.938 3 0.69 1.38 2.07 1 1.000 4 0.79 1.57 2.36 1 1 6 1.063 4 0.89 1.77 2.66 1 1 1.125 4 1 0.99 1.99 2.98 1 3 6 1.188 4 1 1.11 2.22 3.32 1 t 4 1.250 4 1.23 2.45 3.68 1 5/16 1.313 4 1.35 2.71 4.06 1 318 1.375 4 1.48 2.97 4.45 1 7 16 1.438 4 1.62 125 4.87 1 1 1.500 4 1.77 3.53 5.30 1 9 16 1.563 4 1.92 3.83 5.75 1 5 8 1.625 4 2.07 4.15 6.22 1 11 6 1.688 4 2.24 4.47 6.71 1 3 4 1.750 4 2.41 4.81 7.22 1 13'16 1.813 4 2.58 5.16 7.74 1 7 1. 75 4 2.76 5.52 8.28 1 15 16 1.938 4 2.95 5.90 8.84 2 .000 4 3.14 6.28 1 9.42 n e Number of columns of perforations Minimum sled plate thickness 1/4 _ 5/16 3/8 • Designer may interpolate to the nearest 32nd inch to better match the required ores, it desired. Rectangular Perforation Sizing Only one column of rectangular perforations allowed. Rectangular Height = 2 inches Rectangular Width (inches) = Required Area per Row (sq in) 2" Rectangular Hole Width Min. Steel Thickness 5" 1 4 6" 1 4 7" 5/32 " 8" 5/16 " 9" 11/32 " 10" 3/8 " >10" 1/2 " 1 Urban Drainage and I Figure 5 Flood Control District Drainage Criteria Manual (V.3) Fir DetaYad"q WOCV Outlet Orifice Perforation Sizing I%* 140 149 C" 3'- 6" SEFL CHANNEL FORMED (MIN CONCRETE SIDES — 0 — 6" WATER QUALITY (WQ 6" F- RACK 3/8" ROUND OR HOLE (TYP.), D- r.5 51"x'l" CRAI 1/4' PLATE. WELDED . . .... .. -TWISTED CROSS I A -T-- TO GRATE. WITH � ROUND OR BAR I, - 1 "N318" 3/8% 1" FLAT A B TWISTED CROSS D A _TI �/9%6" THREADED BOLT r '7 BARS AT 3" 0 C.. FRAME . . . . . 27 TO FASTEN GRATE DOWN REARING HAR HOLDING I __1 BAR "TYP PP�� SIDE) WELDED To 1"xJ/8 BEARING BARS AT I C.C.) WEE- SCREEN'• (MIN.) 2 112 1 - - STEEI FLOW CONTROL No, 93 (U.S. tO FILTER ST AINLESS ESS PI -ATE pool ST;LL OR EQUAL) STAINLESS STFFI, ANCHOR BOLT �Typ )TIOM ROW OF STAINLESS STEEL ANCHOR BOLTS OR Bc FLOW CONTROL PLATE I AND SIDES HOLES TO BE AT . .... . RCP OUT( Fr PIPE SECTION -13 CONTROL WELL SCREEN _-FLOW . . . ......... - ....... ... ... ...... ..... ...... PLATE ar C SECTION A -A LEGEND U, S.CTION LINE A -A (ARROWS . . ... ... J A IINT IN DIRECTION SECTION BOLTS 12: OC IS VIEWED) 10 HOLD HINGE 2 1/4- FROM CDCE of ABBREVIATIONS a, I/ ............. . . GRATE (TYP CLR. CLLAPANI,L TYP' TYPICAL DIA, DIAMETER Wo WIDTH OF CONCRETE OPENING -1/4- METAL PLATE ILL V. LLIFVATFON VIP WIDTH Of PLATE TO (,OVER OPENING INV. INVERT AD WATER DUALITY WELL SCREEN NO. 93 (FASTEN WITH 3/8",6" L MAX, MAXIMUM Ls LENGTH OF STRUCTURE (U.S. FILTER STAINLESS A B FREADED BOLTS) D �/E" 6' 3OLT TO HOLD MIN� MINIMUM 'WeWIDTH OF STRUCTURE STEEL OR EQUAL) IN PLACE, 1/4" O.C. ON CENTER NUMBER PLAN GP ATE SPILL EtIEV-4927.86 OPP. OPPOSITE a AT 1/4" PLATE, WELDED TRASH RACK ��Typ Opp. SIDE) TO GRATE, WITH (NOTE 5) ELEV-4924 77 3/8"96" rHREAO[D BOLT TO FASTEN GRATE DOWN ELEV=4923,52 J4@12* 24" RCP I Pond A ff OU7LET PIPE F! EV A (POND INV 4920.49' GENERAL NOTES WELL SCREEN NO. 93 ELEV. 9 (WCCU .1--4) 492.3.52' (U.S. FILTER STAINLESS I CONCRETE SHALL BE CLASS 8 MAY BE CAST-N-P,_ACE OR PRECAST. STEEL OR EQUAL) • 1 L* ELEV. C 4924.77* 2 REINFORCING BARS SHALL BE EPDXY COALED AND 'ErTORME0, AND SHALL SPILL ELEV 4927 86' HAVE A MINIMUM 2" CLEARANCE. FLOW CONTROL --r— PLATE I —OUTLLIPIPE CM..24' 3 STEPS SHALL BE PROVIDED WHEN VERTICAL DiMfNS:0N LX=S S-6' 3 '/2- 100-YR ORIFICE Ok 14.88 AND SHALL BE IN ACCORDANCE WITH AASHIO M !99. CLR. 1.11100-YEAR OUTLET ORIFICE _PLATE S' CLR. 4. ALL TRASH RACKS SHAL_ BE MOUNTED USINC STAN-ESS STEEL HARDWARE AND 491 1 1 A v x 1 1/2' 71- Ws 5. PROVIDED WITH HINGED AND LOCKABLE OR POLABI I ACCESS PANELS. LLEV=4920 49 O= 1418' 1 KEY 5, TRASH RACKS SHALL BE STAINLESS STEEL, ALUMINUM, OR SCR. aEL TRASH! 'A Wo 6" RACKS SHALL BE HOT DIP GALVANIZED AND MAY BE H07 POWDER PhNI T AFTER CALVANIZNC. - ---- -- WO HOLE CIA. 6. INVERT OF 100-YEAR OUTLET PLATE ORIFICE TO MATCH INVERT OF OUTLET PIPE " �#4012 #4t*l LTIA018- SECTION C-C EY 100-YR ORIFICE -7- #49';"' #4 HOOP O.C' 1/0' PCALVANII BAR METAL OR CONCRETE 1 PIPE -#4 DI;.oCNA: C, f 'TYP CCNC BOLTS 0 1 1/2" Z ORIFICE P KT 5E-AiLS N: SECTION D—D ea City of Fort Collins, Colorado UTILITY PLAN APPROVAL Cif, cqmY.e, D"". C<CKED DY:_ —_ water A, woverruat UtIfty 0,11, Cr'F^KID 4BY - - ____­- - st"'.Ier ji"Ily11. ow, It----- ---- — ------ palt'. III Realeel..' Lora 1-r-ECI(D bY,— e(k L ....... Date . . . ...... ... .... ­ - ­ u0ta FIESE PANS III ETTER REVIEWED DY THE LOOM. (N-ITY FOR CENCILIT OPHY I-F REVIEW DOES NOT M�Y RfSFONSIBIL11Y NY IHE R"IFW!NG 'TPAR%!FRT. JIIL CCAL FNI ENGINEER. OR THE ':COAL ENTITY FOR ACCURACY AND CORRECTNESS OF NE�EALCUI-AfiON5. FURTHERMORE. 'HE REVIEW DOES IMP!" THAT 0,AN;ITIVS C' ITEMS ON THE L Me ARE Ii 'E ;INAL CL;AN71;[S RLO.11I T14E 'LAfw NOT 8: CONSTRUED 1% MY REASON P- III z 0 EL cj z ILE UL! C) LET ILE 0. 0w 0 w z § 0 0 LLJ CD a 9 z 0 z 0 < 0 L) 100% PLANS NOT FOR CONSTRUCTION January 2007 187010251— DriiIii"I'lo. C-513 Revillim Sheill 0 134 of 139 l i AT 1' 4' C" 3'...6" S'. IF GH.Ali FCRMED L---� ----'----- IN`0 CONCRE_C SICES (MIN.) Err 6 ti" 6' -- TRASH (RACK. i L.. 3/6 ROUND OR I I �1 x``1 CRATING WISILD CROSS 1/4" PLATE, WELDED \ BAr TO GRATE.WITH (3/6 ROUND OR r 1"x.3 8' -- 3/8°xi" FLAT A $ w!sTFD GRoss D 1 / 3/8"x6" I'HREADEI7 BOL( � REARING BAIT HOLDING TO ppCRATE DOWN BARS Al 3' U.C. BAR FRAME TO FASTEN DPP. SIDE) WELDED 1C 1",C. ud "' BEARING BARS AT WELL SCREEN D / 1 FILTER STAINLESS I__. } STEEL R EQUAL) 1 T-CE . ._ ° r/._ FLOW - -T \ I CP OUTNEI O PIPE _____ ..._ .............. ........ N(NRU155 STEEL ANCHOR COLTS (JR o � .._ .. _.___. ...... .._. PLATE rz01 L �L i WLID$ ON 10P AND SIDES L SCREEN __.. C = C SECTION A —A .. °.� .. .i ......... A .,, ..,,.. ' 3/8 x6 BOLTS 12 O C -- 'U HOLD HINGE IN PLACE a 2 1/4" FROM EOCE OF GRAIL ('YP. DPP SIDE) \__1/4• METAL PLATE TO COVER OPENING (FASTEN WITH 3/8"x6" WELL SCREEN NO, 93 (L.S. FILTER STAINLESS A B TREADED BOLTS) D 3/8"x6" BOLT TO HOLD STEP OR EQUAL) - PLAN HINGE IN PLACE, 2 1/4- FROM EDGE OF GRATE SPILL ELEV=4936.24 (TYP. OPP. SIDE) TRAH RACK 1 /4" PLATE, WELDED S T?% TO GRATE, WITH (NOTE 5)--� ELEV=4931 187Rj/��\� 3/N"x6" iFIIRE.A0f.:1J BpLi TO FASTEN GRATE DOWN FLEV=.4930I ii ... j)4072" -18" RCP OL'TLF PIPE GENERAL NOTES WELL SCREEN NO, 93 44012" (U S. FILTER STAINLESSj — T CONCRETE SHALL BE CLASS B. MAY BE CAS rN-PLACE OR PRECAST. STEEL OR EQUAL) S' 2 FVWE MINI BARS SHALL 6E EPDXY COATED AND DEFORMED, AND $wLLL a HAVE A MINIMUM Y• CLEARANCE. I -FLOW CCNTRO!. j PIAl[ 3 STEPS SHALL HE PROVIDED WHEN VERTICAL DIMENSION EXCEEDS d'-6• 3" ! AND SHALL BE IN ACCORDANCE WITH b\SHTO M T99 CLR. 3 '/2" 3" CLR. 4, ALL TRASH RACKS SHALL BE MOUNTED USING STAINLESS STEEL HARDWARE AND 4' K 1/2^ KEY PROVIDED WITH MINCED AND LOCKABLE OR BOIIABLE ACCESS PANELS. E.LFV=4927.00 5. TRASH RACKS SHALL 13E STAINLESS STEEL, ALUMINUM, OR STEEL. SNIEL [RASH T4 RACKS SHALL BE HOT DIP GALVANIZED AND MAY BE HOT POWDER PAINTED ° A AF7rR GALVANIZING. �........................ __ _ _. _. .......__ ... ....._....._ ..a..._.... __...__..... ..._..__ 6. INVERT OF 100-YEAR OUTLET PLATE ORIFICE TO MACH INVERT OF OUTLET J°IPE. b4Rp12" SECTION C-C —...T._-,I—WAii.R QUALITY (WC) HOLE (FTD.)r U.-'.625" 4 ° I 1/4" (MIN.) THICK ° 4 ° STEEL FLOW CONTROL PLATE. --STNNLF.SS STEEL. ANCHOR BOLT (ttP.) BOTTOM Row OF FLOW CONTROL PLATE HOLES TO BE AT - INVERT OF PLATE SECTION B-B LEGEND fT CTIOI LINE A -A (ARROWS ('TIT IN DIRECTION (ARROWS s VTW[D) ABBRI=VIATIONS G _H. clt AkAltu IY'. TYPICAL CIA. DIAMETER WP WIDTH Of CONCRETE OPENING ELEV. ELEVA110% Wp WIDTH Di PLATE !NV, INVERT wD WATER DUALITY MAX. MAXIMUM Ls LENGTH OF STRUCTURE MIN. MINIMUM We WIDTH OF STRUCTURE O.C. ON CENTER # NUMBER OPP. OPPOSITE a AT ! ELEV. A (POND I%.) ELEV. B�(WOCU DIV) ELEV. C 1 SPILL. E' EV. OUTLET PIPE DIA. 4927.00' 4930.18' 493:.18' 4936.29' 18" 100-YR ORIFICE DA -- Ls 4' Ws 4' Wo 6" I IOII:. DIA. L625" WO )J 01" ROW$ 10 If OE' COLUMNS N4�T... N4 HOOP U.(:. BAR METAL Of? CONCRETE PIPE /3;I JI SECTION D-D p4 UI; rGr;r.A (w) jjM1�12" C.(: City of Fort Collins, Colorado UTILITY PLAN APPROVAL APPROVED _____.._......_.._.. _..__.—__ City L'n9lneer Uutn -- CHECKLD BY _ W°Im & WRvtewRter Utility Dn:e .-FGKED H• _..- -- r."c 1�5 nfr:r .0:a T IE5E P ANS IAIF HEEN K V WF7 Rv T LC AI FV IIY FIR CPNCPT OA 1 TIF RFV-F;'IF NCT IM'=Y RI IN'.IlilllY Pv iF RFVIFWINC DEPAfTx1I %T, T If OCA. N ENCINEFR. OR TPL LOCAL EATrTv FOR ACCURACI Art.` CORRECNECS OF THE CAL CUV.TONS, `UR'HERMORE, THE REVIEW :OES NOT IMI'." TIIAI UUANIITIL, 0, IFVI ON THE. PI.AN`I aFi I'rIF ;INAI. CI.ANIII'F.S R1:C'UIRCD. THI: REVIEW E.IIA1 NO'I OF I;QNSIRULD IN ANY REASON n5 A('T'I. FAC.1 IF INANI AI. RLS.,ONSRILPY OY THI OCAI --NFIY FOR AOOIOONA'. )JANTITIE4 O I tMR -::4% IHA' MAY III RTCUIR.EG "At-4,'HF CONS.-RUB:;ON 1111L I z Z O EL W Of 0V i� u � ]of) u �O s r �O ]U 100% PLANS NOT FOR CONSTRUCTION Jwnuery 2007 Pwi.[ mr. 8701 r.wo,rrmT: .rwN aw .IIR; Pnn ef"rry yAI I1P DlrAep No. C-514 Rwiw Sheet 0 135 of 139 J 3,_ 6.. (MIN.) 6.. 6_ TRASH RACK 3/8" ROUND OR /4' PI -ATE, WELDED — r 51"41" CRATING TWISTED CP.OSS / 10 CRATE. WITH (3 Y?. OPF. SIDE PROCOR �R -..1/8° 3/8°x6" THREADED BOLT A B TWISTED CROSS "x3 SS � BEARING G FASTEN GRATE DOWN-7 BARS AI 3 O.C., BAR (T - )� WELDED TO 1'05 '---ttu I BLARING (BARS At P � .., IN °--CF'ATFRL.INE OF LAI' 23 FLOW HERCP OUTLET PIPE CONTROL - .._.__ _. ......... ........ f PLATE ._ ...._......_...— -- — — — C C UP3/8°x6" BOLTS I,' O.C. 1 :T -- 10 HOLD HINGE IN PLACE u - : - — --1 a 2 1/4" FROM EDGE OF N 'O-... Y LIP (TYP ) GRATE (TYP. OPP SIDE) --1/4" METAL PLATE TO COVER OPENING (FASTEN WITH 3/8"x6" WELL SCREEN AI 93 TREADED BOLTS) (US FOR E STAINLESS A B J/8"W BOLT TO HOLD SrEEi. OR FGUAL`,-- PLAN HINGE IN PLACE, 2 1/4" FROM EDGE OF GRATE (TYP. OPa. SIDE) 1/4" PLATE., WELDED TRASH RACE TO GRATE, WITH (NOTE. 5) ELE'✓=4924,76 3/8"x6' THREAGED BOLT GENERAL NOTES TO FASTEN GRATE DOWN I CONCRETE SHALL BE CLASS B MAY BE CAS' -IN -PLACE OR PRECAST. ELEV=4923.43 2. REINFORCING BARS SHALL HE EPDXY COATED AND DEFORMED, AND SHALL + HAVE A MINIMUM 2" CLEARANCE. WELL SCREEN NO. 93 3. STEPS SHALT. BE PROVIDED WHEN VIiRTICAL DIMENSION EXCEEDS S-6- (U.S. FILTER STAINLESS AND SHALL BE IN ACCORDANCE WITH AASHTO M 199. a STEEI,. OR EQUAL) -- 4. All TRASH PACKS SHALL O MOUNTED USING TABLE AC STEEL PANELS. RE AND O FLOW CONEROI_ PROVIDED Wlihl hIINC@ ANU LCCKABLf. OR BOLTABLE ACCESS PANf_L5. �� PLATE TRASH RACKS SHALL BE STAINLESS STILL, ALUMINUM, OR STEEL. STEEL TRASH 100 YEAR OUTLC- i RACKS SHALL BE H07 DIP GALVANIZED AND MAY Sit HOT POWDER PANTED AFTER OaLvaN¢ING. CL E PLATE DA.-1-��I 1 III LJIA. 608" 6. NVERT Of 100-YEAR OUTLET PLAT,r ORIFICE 70 MATCH INAJEW OF OUTLET PIPE ELEV=49"[2 40 A 0 �A®12 m , 100 _YR ORIFICE 1/8" PIQALVANIZED n _I_.:'SAa" CONC. OCLTS I P.. Air Jr A, rC N'S S'�El CHANNE. CRMWD IN C CCNCRT'r SILL% \6" )FBI -1- 3/8 K1" FLAT PAH HOLDING FPIR - 'WEL. SCREEN NG. 93 (LL5. ILOR STAINLESS STEEL OR _.. __. .. L._..._... EQUAL) TAINLESS STEEI. ANCHOR BOLTS OR ?FRMTTANT WELDS ON TOP AND SITES WELLSCREEN SECTION A —A -V. A (FOND INV.) 1 ,.V. 6 (WOCU ELEV) LI[:V. C SPILL ELTV OUTLET PIPE. DIA, 100-YR ORIFICE DIA Ls WS Wo HOLE DIAL WO # OF ROWS F# OF COLUMNS SPILL ELEV-4926.00 14"x 27" HERCP OUTLET PIPE #4012" 3 1/2" x' 112. 3" K,`_Y N c,, aa§ - WAII R GUAI IIY .NL1 o - S m e5'a3 _ ---� ° rn Bbmna, a;cape I .6= �9=x Nc •• .._. 1/4" (MIN.) THICK FLOW STEEL CONTROL PI ATF • M i � STAINLESS STEEI. ANCHOR BOLT (TYP,) I E BOTTOM ROW OF - FLOW CONTROL PLATE HOLES TO 8E,I I I"` INVERT OF PLATE SECTION B—B Pond E LEGEND 4923,43' A -A (ARROWS StICTCOENI a923.43' I DIRECTION POINT m )IRTCnOry skcnoN i5 VEWED) 4A24.7B ABBREVIATIONS 4926.OU' 18" CLR. Cl EARANCFI TYP, TYPICAI. 16.08 CIA. DIAMETER Wo WIDTH 01 CCNCREIL OPENING 4 @L. EV. ELEVATION An WIDTH Or PLATE INV. INVERT WO WATER QUALITY F 5 MAX. MAXIMUM Ls LENGTH OF STRUCTURE 6" MN. MINIMUM WS WIDTH OF STRUCTURE S 0,9^ 0 C. ON CENTER III NUMBER I I I I I Ir 3 OPP, OPPOSITE @ AT -- -- APPROX. 19 LF OF NEW 14"x 23" HERCP (MATCH EXIST'..NC SLOPE) FOR SITE LOCATICN SFE 5HEFT C-250 STORM LINE 'V' PLAN VIEW HOOP CH4 9AR \\ MI17AL OR CONCRETE . PIPE 'I 12" C3R� — a F 4°6 L� 4y, �. ...... J/— E%ISrING 14"x 23" HERCP REMOVE E%S'INC FES AND CONNECT TO -MISTING 14 x 23 HERCP Mi EXISTING INVERT 0 APPKrV 4922.25 #4012' TOG' p4012" O.C. City of Fort Collins Colorado UTILITY PLAN APPROVAL APPROVED Cuy fng lee, URty-- CHECKED 31;. Water N Wnelewaler Utility DOtc C-rckr", o mwnl Utility Dote — I r 4 W Rcr <albr. Gala Clif `.KED c'M1r ^ ncc TIM, L`+ ' AY uVI It k . W.D 3- T-E -OCAL kN I- ON CGINCtill ON., 1"F RENEW DOES NOT IM-, Y RE6 ON>IHILIIY HY IHL REVIEWING OLPAen,!-NI, III[ .GM ':NTCY ENGINEER, OR -HD LOCAL ENTITY ICR ACCURACY AND CORRECTNESS OF THE CALCJVdIONS. rHRTHERAIORE THE REVIEW ODES NOT IM('IY THAT GI.gN'1?IES DF ITEMS ON THE PLANS A(S 1^II IINAI C4AMITIES REOURED. THE Nk VIEW SHALL NOT UC CONS'RUCD IN ANY REASCh AS AC'ECTANCC 'If FINANCIAL. RCEPON6117I1.1— 81 THE II,ICAE ENTITY FOP ADDITONAIOUANTI?I�; DT TIPS S-'OWN THAI MAY RE REOUIR<_'O IYJRIRD !HI CONSI'RUCT'ON NHAST'. N g W � F > 0. C) m 9 0.16 W Z Pemit-Seel 100% PLANS NOT FOR CONSTRUCTION January 2007 %,.•I wm..: 187010251 H JW ruwa. v , Drawing No. C-515 Rat Sheet 0 136 of 139 1,5 IS W 0 Z O OL W Of JU L � u� u� ZO ff H CO ] U i 1' 4'-C" 3'--n" -- S1--EL CHANNEL FORME: INID CONCRETE SIDES _ ACK 3/8 POUND OR t/h' PLATE, WLLOEU C _ SII�x51�GRATING TWISTED CROSS BAR TO GRAt WITH (3/8' ROUND OR D _ 3/8"x6 THREADED ROLT A B TWISTED CROSS BEARING ._. - - 3/e"x1" FLAT 10 IA',IEN GRATE SIDE) DOWN BARS AT 3' O.C.17 BEARING f T BAR H01C]NG y WELDED TO 1'x3/8" _ -�I OAR T17AMF, BEARING BARS AT / 2 1/2" O.C.) / WELL. SCREEN (U.:>. FILTER STAINLESS 1...._ STEEL OR L EQUAL) --- .-, _ ZSS STUFF ANCHOR 30 IO IS R CENTERLINE OF 18 IN FRMIFTANTLI V,S ON TOP AND SIDES ._ R(P OUTLET PIPE o 'FLOW CDNDRaL -- WELL SCREEN PLATE ..._.. -.... C r °....._ C SECTION A -A A N-3/8"x6" BOLTS 12" O.C. it - TO HOLD HINGE IN PLACE 2 1/4- FROM EDGE OF GRATE (TYP PPP. SIDE) 1/4 METAL PLATE J IF COVER WITH 3/OPENING (rASTEN WITH 3/8'.h' WELL SCREEN NO R.i ADID HCLT:) z (U.S. rarER TA A B D /8"x6" aoLT r0 HoLo STEEL OR ECUAI PLAN HINGE IN PucE, 2 1/a" FROM EDGE OF GRATE (TYP. OFP. SIDE) SPILT ElEV=A926.00 /a" PLATE, YIELDED TRASH RACK �../ !^ GRATE, WITH (NOTE 5+ ELEV=492`t5 i�ij y�\�iN���� 3,l x6" THREADED BOLT 3 TO FASTEN GRATE DOWN -. .'.........-- �-s ELEV=4923.8E ell H40I2" 8" RCP OU'I=_r PIPE WILL SCREEN NO. 93 GENERAL NOTES u' (U.S. FILTER STAINLESS --- . 1. CONCRETE SHALL BE CLASS B. MA. BE CASI-IN-PLACE OR PRECAST. STEEL OR EQUAL) a 2. REINFORCING BARS SHALL BE EPDXY COATED AND DEFORMED, M'O SHALL FLEW CONTROL HAVE. A MINIMUM 'I• CLEARANCE. j 1 STEPS SHALL BE PROVIDED WHEN VERTICAL DIMENSION EXCEEDS S-6• T.. T PLATE AND SHALL BE IN ACCORDANCE WITH Al M 199. -' IL '00-YEAR OLTLG .• 3 -/2" <. ALL PROVIOEDrWR1HCN5SHALL BE NGED AND LOCKABLE OfllNG 50LTABNEESS STEEL ACCF55-PANELS lv7E NJO ELEV=4923L 0Cui�+ ol• Dp'FIC248" ---" ) KEY I/2" 3" CLR. 5. TRASH RACKS SHALL BE STAINLESS STEEL, ALUMINUM, OR STEEL. SEE, TRASH 1 ARACKSFTER SHALL BE HOT DIP GALVANIZED AND MAY BE HOT POWDER PAINTEDAFTEP. GALVANIZING. 1 ' 6. INVERT OF 100-YEAR OUT. ET PLA" ORIFICE TO MATCH INVERT OF OUTLET PIPE. rill�2. #4012" � e4i SECTION C-C 100-YR CRIPCF --7/8' PLGN9ANf1ED I) 11 H- ` LAP I I/2 ONE COL I< 4° E uh IL;1" PA'F ECTAIIi._ NT$ C' WATER QUALITY (Ai HOLE (TYP.), D--'.75" I a� J-7 v it O o I A s I -I/4" (MIN.) THICK 4 STEEL FLOW CONTROL PLATE STAINLESS STEEL ANCHOR BOLT (TYP,) BOTTOM ROW OF - FLOW CONTROL PLATE HOLES 10 BE AT INVERT OF PLATE SECTION B-B LEGEND , -"1ION LINEA-A (ARROWS ^71N DIRECTION SECTION JQ S NrWEO) ABBREVIATIONS CLR. CLEARANC IYP, TY.ICAI OIA. MAMETER Wo WIDTH 01 CONCRETE OPENING ELEV. ELEVATION Wp WIDTH OF PLATE NV. INVERT NO WATER DUALITY MAX. MAXIMUM Ls LENGTH OF STRUCTURE MIN. MINIMUM WE WIDTH OF STRUCTURE O.0 ON CENTER H NUMBER OPP. OPPOSITE a AT NnnH I-IEV. A POND INV.) 4923.00' ELEV. B (WOCU EL.V) 4923.86' ELEV. C 4925,19' SPILL ELEV. Al OUTLET PIPE DIA. ,8" 100-YR ORIFICE DA '2.48' Ls 4' WE 4' WO 6" HULE DA. 1.75 WO 4 Or RDWs s A OF COLUMNS F4®,.,, N4 HOOP O.C. R METAL OR CONCRETE PIPE: ! - -#4 DIAGCNAI Ih C-T (TT'P.) CLIy of Fort Collins, Colorado UTILITY PLAN APPROVAL APPROVED: -------- Clty Eng,neer Drill, CHECKED BY: Wmter k wastewater ULnly Ome CHECKED By -_ Stor IDael. UI 11, _ iu:• CHECKED BY Parks h ,en•nf •nn .. .. CHECKS, By. t ffll P-ANS HAVE BEEN REV :wy.O BY 'ley ,CC+L ENTTY FOR CONCEPT ON Y THE. REVIf'A DOS NOT IMILY RESPONSIBILITY BY IHE RFVICWINC DEPARTMENT, THE LOCAL ENTITY ENOINCER, OR TLIE LOCAL ENTITY FOR ACCURACY AN, CORRECTNESS Ot THE CALCUInTIONS. FURTHERMORE, `HE REVIEW DOES NOT Ial IHA, QUANTITIES Oa HEMS ON THE. PLANS ARE, IHE FINIAL C'LAN'IIIII.S RE.CUIRCD. IHI REVIEW SHALL NOT BE CONSPIULCI IN ANY RLA.';tl AS AC`[-A%,L Of FINANCIAL RCS%-ONSIBILHY il IHE LOCm EMITY :OR ADDITIONA_ or Al I'EMS S•C'N.N r-A' MAY HE RECIAREL` All '•' CONS RUCf0N l�IIA f, z � ai g W J H � W W a 0 of U a � UJI o LL LL Permtl-SaM W z Z 0 a W DIC Cn H U W Ly W J a0 z� z `a0 00 100% PLANS NOT FOR CONSTRUCTION Jan., 207 l e°mo..187010251 i. I- c-sn: Km my IA. In 7n a I1[o" n VM p:l DTrmq No.C-516 Revialm St" 0 137 of 139 SPILLWAY CALCULATIONS Stantec Project: Bayer Location: POND A Broad Crested Weir - Basic Equation: Q= C,L,H1.5 Calculate H from Q and L C= 3.00 Q= 171.18 cfs L= 140 ft H= 0.5 ft Stantec Proj. Number: 187010251 By: J. Ziliak 1023001 OverflowWeirs.xls Project: Bayer Location: POND B Broad Crested Weir - Basic Equation: Q = C*L*H1.5 Calculate H from Q and L C= 3.00 Q= 152.20 cfs L= 50 ft H= 1.0 ft Stantec Proj. Number: 187010251 By: J. Ziliak 1023001 1 OverflowWeirs.xls Project: Bayer Location: POND C Broad Crested Weir - Basic Equation: Q= C*L*H1.5 Calculate H from Q and L C= 3.00 Q= 32.10 cfs L= 10 ft H= 1.0 ft Stantec Proj. Number: 187010251 By: J. Ziliak 1023001 OverflowWeirs.xls Project: Bayer Location: POND D Broad Crested Weir - Basic Equation: Q= CeL*H1.5 Calculate H from Q and L C= 3.00 Q= 629.49 cfs L= 200 ft H= 1.0 ft Stantec Proj. Number: 187010251 By: J. Ziliak 1023001 OverflowWeirs.xls Project: Bayer Location: POND E Broad Crested Weir - Basic Equation: Q = CoLaH1.5 Calculate H from Q and L C= 3.00 Q= 28.60 cfs L= 25 ft H= 0.5 ft Stantec Proj. Number: 187010251 By:. J. Ziliak 1023001 OverflowWeirs.xls Project: Bayer Location: POND F Broad Crested Weir - Basic Equation: Q _ C9L*H1.5 Calculate H from Q and L C= 3.00 Q= 69.50 cfs L= 60 ft H= 0.5 ft Stantec Proj. Number: 187010251 By: J. Ziliak 1023001 OverflowWeirs.xls Project: Bayer Stantee Location: POND Paragon Proj. Number: 187010251 By: J. Ziliak Broad Crested Weir - Basic Equation: Q = CoLoH1.5 Calculate H from Q and L C= 3.00 Q= 140.80 cfs L= 65 ft H= 0.8 ft 1023001 OverflowWeirs.xls RIP RAP SIZING SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-P Outlet" Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 36 in Fffix Type: Erosion Resistant Soil (Clay) Discharge: Q 19.15 cfs Velocity: v 7.7 ft/sec Taiwwater*: y 1.2 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: O/D2.5 = 1.23 < 6 --> use design charts D = 3.00 ft YVD = 0.40 Q/DAl .5 = 3.69 d50 = 3.05 in -------> 6 in ----> Use Type VL (Class 6) riprap ^� N5e e r.\0.1-e l Cer%C.K}e 2. Expansion Factor: 10gn 1/2tan0= 6.45 3. Riprap Length: At = Q/V = 2.49 ft2 L = 1/2tanO * (AVYt - D) _ -6 ft 4. Governing Limits: L> 3D 9 ft increase length to 9 ft L<10D 30 ft =>-6ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (36 in /12) = 9 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VL (Class 6) riprap Length = 9 ft Depth = 1 ft Width = 9 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-P-O-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-Q Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 18 inIISo-ilType: Erosion Resistant Soil (Clay) Discharge: Q 3.5 cfs IMax Velocity: v 7.7 ft/sec ailwater': y 0.6 ft unknown Assume that y=0.4'D if tailwater conditions are unknown 1. Required riprap type: O/D2.5 = 1.27 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 1.91 d50 = 1.58 in -------> 0 in ----> Use geotextile or minimum riprap gradation. Use 2. Expansion Factor: C 3 $'O 1/2tan0= 6.41 3. Riprap Length: At = Q/V = 0.45 ft2 L = 1/2tanO * (At/Yt - D) _ -5 ft 4. Governing Limits: L> 3D 5 ft increase length to 5 ft L<10D 15 ft =>-5ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (0 in / 12) = 0 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: geotextile or minimum riprap gradation. Length = 5 ft Depth = 0 ft Width = 5 ft gXS IvA V Geotcxt;l� Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \RE PORTS\DRAI NAGE\RI P-RAP\STRM-N-Q-OUTLET.XLS 4 I STEM N—Q ta,f HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity [fps] Area (sq.ft) Hydraulic Radius ft Normal Depth ft 0.5 1.0 2.68 1.31 1 0.22 0.28 LINER RESULTS C350 S = 0.0200 1 L Bottom 1 4.0 Width = 3.50 ft 4.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psfl Safety Factor Remarks Staple Pattern Phase Class Type PDensity Straight C350 Vegetation 3 D Mix, 7.00 0.35 19.65 STABLE Staple E Soil Clay Loam 1.200 0.070 17.03 STABLE SEAR - BROWN 2. Expansion Factor: 1/2tanO= 3.63 3. Riprap Length: At = Q/V = 4.98 ft2 L = 1 /2tanO * (At/Yt - D) = 9 ft 4. Governing Limits: L>3D 8 ft L < 10D 25 ft 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: 7. Riprap Width: in 13"x ti3 NAB Front Range Village Riprap Rundown at STRM-N-R Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 30 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 38.33 cfs Max Velocity: v 7.7 ft/sec Tailwater*: y 1.0 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 3.88 < 6 --> use design charts D = 2.50 ft YUD = 0.40 Q/D^1.5 = 9.70 d50 = 8.04 in -------> 9 ----> Use Type L (Class 9) riprap C35-0 GCCJCX-E',�C. <=9ft->OK =>9ft-->OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (30 in /12) = 8 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type L (Class 9) riprap Length = 9 ft Depth = 1.5 ft Width = 8 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-R-OUTLET.XLS SEAR - BROWN Front Range Village Riprap Rundown at STRM-N-V Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 18 in rffix Type: Erosion Resistant Soil (Clay) Discharge: Q 8.33 cfs Velocity: V 7.7 ft/sec Tailwater*: y 0.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 3.02 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 4.53 d50 = 3.76 in -------> 6 in ----> Use Tyne VL (Class 6) riprap 2. Expansion Factor: 1/2tan0= 4.42 3. Riprap Length: At = Q/V = 1.08 ft2 L = 1 /2tanO * (At/Yt - D) = 1 ft 4. Governing Limits: L> 3D 5 ft increase length to 5 ft L<1OD 15 ft =>1ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VL (Class 6) riprap Length = 5 ft Depth = 1 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTIVE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-V-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-W Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D . 18 in 1[9-o-i—IType: Erosion Resistant Soil (Clay) Discharge: Q 15.65 cfs IMax Velocity: v 7.7 ft/sec ailwater*: y 0.6 ft unknown Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.1 = 5.68 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 8.52 d50 = 7.06 in -------> 9 in ----> Use Type L (Class 9) riprap 2. Expansion Factor: 1/2tan0= 2.02 3. Riprap Length: At = Q/V = 2.03 ft2 L = 1/2tan0 * (At/Yt - D) = 4 ft 4. Governing Limits: L> 3D 5 ft increase length to 5 ft L<10D 15 ft =>4ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type L (Class 9) riprap Length = 5 ft Depth = 1.5 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-W-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-1 Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 24 inJ[S7o_iII_Type: Erosion Resistant Soil (Clay) Discharge: Q 9.94 cfs IMax Velocity: v 7.7 ft/sec ailwater;: y 0.8 ft unknown Assume that y=0.4'D if tailwater conditions are unknown 1. Required riprap type: Q/Dz.5 = 1.76 < 6 --> use design charts D = 2.00 ft YUD = 0.40 Q/D^1.5 = 3.51 d50 = 2.91 in -------> 0 in ----> Use cieotextile or minimum riaraa gradation.=2 LxSe 2. Expansion Factor: 0"CCet 1/2tanO= 5.91 3. Riprap Length: At = ON = 1.29 ft2 L = 1/2tan0' (At/Yt - D) = -2 ft 4. Governing Limits: L>3D 6 ft L<1OD 20 ft 5. Maximum Depth: Depth = 2d50 = 2 (0 in / 12) = 0 ft 6. Bedding: 7. Riprap Width: increase length to 6 ft => -2 ft --> OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (24 in /12) = 6 ft (Extend riprap to minimum of culvertheight or normal channel depth.) Summary: geotextile or minimum riprap gradation. Length = 6 ft Depth = 0 ft Width = 6 ft e 1n\M_rl -fir; ck I e- Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \RE PORTS\DRAINAGE\RI P-RAP\STRM-N-I-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-J Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 24 in I[Toi—I-Type: Erosion Resistant Soil (Clay) Discharge: Q 24.73 cfs IMax Velocity: v 7.7 ft/sec ailwater*: y 0.8 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: O/D2.5 = 4.37 < 6 --> use design charts D = 2.00 ft Yt/D = 0.40 Q/D^1.5 = 8.74 d50 = 7.25 in -------> 9 in ---> Use Type L (Class 9) riprap to x)o )VAG 2. Expansion Factor: 1/2tanO= 3.10 3. Riprap Length: At = Q/V = 3.21 ft2 L = 1/2tanO * (At/Yt - D) = 6 ft 4. Governing Limits: L > 3D 6 ft L<10D 20 ft 5. Maximum Depth: Depth =2d50=2(9in/12)= 1.5 ft 6. Bedding: 7. Riprap Width: C 350 6co�ex�;\e. <=6ft-->OK =>6ft-->OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (24 in /12) = 6 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type L (Class 9) riprap Length = 6 ft Depth = 1.5 ft Width = 6 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-J-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-K Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 18 in JF§o_i_IType: Erosion Resistant Soil (Clay) Discharge: Q 0.52 cfs IMax Velocity: V 7.7 ft/sec ailwater*: y 0.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 0.19 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 0.28 d50 = 0.23 in -------> 0 in ----> Use geotextile or minimum riprap gradation. 2. Expansion Factor: 1/2tanO= #N/A 3. Riprap Length: At = ON = 0.07 ft2 L = 1/2tan0 * (At/Yt - D) _ #N/A ft 4. Governing Limits: L>3D 5 ft L < 10D 15 ft 5. Maximum Depth: Depth = 2d50 = 2 (0 in / 12) = 0 ft 6. Bedding: 7. Riprap Width: #N/A #N/A Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7 L&5 8x S` NAG C 3,�,'O Gco�ex�;1t Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: geotextile or minimum riprap gradation. Length = #N/A ft Depth = 0 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-K-OUTLET.XLS S T 9M, M- K 0�+ Ie:.6 HYDRAULIC RESULTS Discharge cfs Peak Flow Period (his)Radiusft Velocity (fps) Area (sq.ft) Hydraulic Normal Depth ft 0.5 1.0 1 1.41 1 0.37 1 0.09 0.09 L 4.0 LINER RESULTS Bottom Width = 3.50 ft 11 4.0 Not to Scale Reach Matting Type S tability Analysis Vegetation Characteristics Permissible Shear Stress (Psf) Calculated Shear Stress (Psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight C350 Vegetation 3 D Mix >=95% 7.00 0.12 59.08 STABLE Staple E Soil Clay Loam 1.200 0.024 50.67 STABLE it; SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-L Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 18 in IFTIType: Erosion Resistant Soil (Clay) Discharge: Q 13.99 cfs IMax Velocity: V 7.7 ft/sec ailwater*: y 0.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 5.08 < 6 --> use design charts D = 1.50 ft Yt/D = 0.40 Q/D^1.5 = 7.62 d50 = 6.31 in -------> 9 in ---> Use Type L (Class 9) riprap 2. Expansion Factor: 1 /2tanO = 3. Riprap Length: At=Q/V= L = 1 /2tanO * (At/Yt - D) = 4. Governing Limits: L>3D L<1OD 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 6. Bedding: 7. Riprap Width: 63so 2.36 1.82 ft2 4 ft `tIxq% NAB Geoke_xk,1e. 5 ft increase length to 5 ft 15 ft =>4ft-->OK 1.5 ft Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type L (Class 9) riprap Length = 5 ft Depth = 1.5 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-L-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-M Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 18 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 1.27 cfs Max Velocity: v 7.7 ft/sec Tailwater*: y 0.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 0.46 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 0.69 d50 = 0.57 in -------> 0 in ----> Use geotextile or minimum riprap gradation. s7 u Se C n\ of-5 C 2. Expansion Factor: 1/2tanO= #N/A 3. Riprap Length: At = Q/V = 0.16 ft2 L = 1/2tanO * (At/Yt - D) = #N/A ft 4. Governing Limits: L>3D 5 ft L < 10D 15 ft 5. Maximum Depth: Depth = 2d50 = 2 (0 in / 12) = 0 ft 6. Bedding: 7. Riprap Width: #N/A #N/A Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: geotextile or minimum riprap gradation. Length = #N/A ft Depth = 0 ft Width = 5 ft ConcmC e. +rtCI ke- lockn Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-M-OUTLET.XLS SEAR -BROWN 2. Expansion Factor: 1/2tanO= 5.07 3. Riprap Length: At = Q/V = 0.89 ft2 L = 1 /2tan0 * (At/Yt - D) = 0 ft 4. Governing Limits: L>3D 5 ft L < 10D 15 ft 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: 7. Riprap Width: 8' x 8` NAG Front Range Village Riprap Rundown at STRM-N-N Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 18 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 6.86 cfs IMax Velocity: v 7.7 ft/sec ailwater*: y 0.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: O/D2.5 = 2.49 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 3.73 d50 = 3.09 in -------> 6 in ---> Use Type VL (Class 6) riprap C35-0 GGckt.KItAe. increase length to 5 ft =>0ft-->OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type VL (Class 6) riprap Length = 5 ft Depth = 1 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \RE PORTS\DRAI NAGE\RIP-RAP\STRM-N-N-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown for STRM-N-A Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Box Width: W 10 ft Soil Type: Erosion Resistant Soil (Clay) Box Height: H 3 ft Max Velocity: v 7.7 ft/sec Discharge: Q 147.12 cfs Tailwater*: y 1.2 ft unknown * Assume that y=0.4*H if tailwater conditions are unknown 1. Required riprap type: Q/WH^1.5 = 2.83 < 8 --> use design charts H = 3.00 ft Yt/H = 0.40 Q/WH^0.5 = 8.49 d50 = 3.57 in --> 6 ----> Use Type VL (Class 6) riprap 2. Expansion Factor: 1/2tan0= 3.99 3. Riprap Length: At = ON = 19 ft2 L = 1/(2tan0) * (At/Yt - W) = 24 ft 4. Governing Limits: in Lk5c 0160 = I Z TYPe M (00,55 iZ) L>3H 9 ft <=24ft-->OK L<1OH= 30 ft =>24ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width (minimum): t�5t Width = 2H = 2 (3 ft) = 6 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: M 12. Type Vt Class 6 riprap Length =_ 24 ft Depth = 1 ft Width = -& ft =7 36� Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-A-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-B Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 72 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 129.7 cfs Max Velocit : v 7.7 ft/sec Tailwater*: y 2.4 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 1.47 < 6 --> use design charts D = 6.00 ft YUD = 0.40 Q/D^1.5 = 8.82 d50 = 7.31 in -------> 9 ----> Use Type L (Class 9) riprap 2. Expansion Factor: 1/2tanO= 6.20 3. Riprap Length: At = Q/V = 16.84 ft2 L = 1/2tan0 * (At/Yt - D) = 6 ft 4. Governing Limits: L>3D 18 ft L<10D 60 ft 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: 7. Riprap Width: in increase length to 18 ft =>6ft-->OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (72 in /12) = 18 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Z Typek (Class,9-) riprap Length = 18 ft Depth = 1.5 ft Width = 18 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \RE PORTS\DRAI NAGE\RI P-RAP\STRM-N-B-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-C Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 54 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 52.63 cfs Max Velocity: v 7.7 fUsec ailwater*: y 1.8 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: O/D2.5 = 1.23 < 6 --> use design charts D = 4.50 ft YVD = 0.40 Q/D^1.5 = 5.51 d50 = 4.57 in -------> -6- in ---> Use Tyne VL (Class 6) riprap 2. Expansion Factor: 1/2tan0= 6.45 3. Riprap Length: At = Q/V = 6.84 ft2 L = 1/2tanO * (At/Yt - D) = -5 ft 4. Governing Limits: L>3D 14 ft L<1OD 45 ft 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 6. Bedding: 7. Riprap Width: 7 uge � so ' 12 T'rpe AA.( Class IZ) increase length to 14 ft => -5 ft --> OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (54 in /12) = 14 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type-Yt (Class 8) riprap Lengtn = 14 tt Depth = 1 ft Width = 14 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-C-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-D Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 48 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 66.57 cfs IlMax Velocity: v 7.7 ft/sec Tailwater*: y 1.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 2.08 < 6 --> use design charts D = 4.00 ft Yt/D = 0.40 Q/D^1.5 = 8.32 d50 = 6.90 in -------> 9 ---> Use Type L (Class 9) riprap 2. Expansion Factor: 1/2tan0= 5.57 3. Riprap Length: At = Q/V = 8.65 ft2 L = 1/2tan6 * (At/Yt - D) = 8 ft 4. Governing Limits: L>3D 12 ft L<10D 40 ft 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: 7. Riprap Width: in 7 1A 5e 'J\So ; IZ T,/O2. M (Luis (2) increase length to 12 ft => 8 ft --> OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (48 in /12) = 12 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: M t7� Type,V(Class8) riprap Length = 12 ft Depth = 1.5 ft Width = 12 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-D-OUTLET.XLS SEAR -BROWN Front Range Village By: MBK 187010251 Riprap Rundown for STRM-N-F Outlet Checked: Updated: 26-Jan-07 Box Width: W 6 ft Soil Type: Erosion Resistant Soil (Clay) Box Height: H 2 ft Max Velocity: v 7.7 ftlsec Discharge: Q 54.27 cfs Tailwater*: y 0.8 ft unknown * Assume that y=0.4*H if tailwater conditions are unknown 1. Required riprap type: QfWH^1.5 = 3.20 < 8 --> use design charts H = 2.00 ft YUH = 0.40 Q/WH^0.5 = 6.40 7 LAg 2 d50 = 2.69 in --> 0 in M ----> Use geotextile or minimum riaraa gradation. To e 2. Expansion Factor: 1/2tanO = 3.28 3. Riprap Length: At=QN= 7 ft2 7 )2 L = 1/(2tanO) * (At/Yt - W) = 9 ft 3. Governing Limits: L>3H 6 ft <=9ft-->OK L<10H= 20 ft =>9ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (0 in / 12) = 0 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width (minimum): Width = 2H = 2 (2 ft) = 4 ft (Extend nprap to minimum of culvert height or normal channel depth.) Summary: Type M W&55 ►7.) r;prap Length = -8- II ft tZ Depth = -8' ft 1.0` Width = -� ft III dso = 1 Z (CIg5s IZ> Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-N-F 1-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-G Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 18 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 15.31 cfs Max Velocity: V 7.7 ft/sec ailwater*: y 0.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 5.56 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 8.33 d50 = 6.91 in -------> 9 in ----> Use Type L (Class 9) riprap 2. Expansion Factor: 1 /2tan0 = 2.09 3. Riprap Length: At = QN = 1.99 ft2 L = 1/2tanO * (At/Yt - D) = 4 ft 4. Governing Limits: L> 3D 5 ft increase length to 5 ft L<1OD 15 ft=>4ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type L (Class 9) riprap Length = 5 ft Depth = 1.5 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAT NAGE\RIP-RAP\STRM-N-G-OUTLET.XLS SEAR -BROWN Front Range Village Riprap Rundown at STRM-N-H Outlet Updated: 26-Jan-07 By: MBK 187010251 Checked: Pipe Diameter: D 18 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 3.74 cfs JIMax Velocity: v 7.7 fUsec ailwater 0.6 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 1.36 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 2.04 d50 = 1.69 in -------> 0 in ----> Use geotextile or minimum nora gradation. 2. Expansion Factor: 1/2tan0= 6.32 3. Riprap Length: At = Q/V = 0.49 ft2 L = 1 /2tan0 * (AUYt - D) = -4 ft 4. Governing Limits: L > 3D 5 ft L < 10D 15 ft 5. Maximum Depth: Depth = 2d50 = 2 (0 in / 12) = 0 ft 6. Bedding: 7. Riprap Width: NAG increase length to 5 ft => -4 ft --> OK Use 1 ft thick layer of Type II'(CDOT Class A) bedding material. Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: geotextile or minimum riprap gradation. Length = 5 ft Depth = 0 ft Width = 5 ft -7 U Se C 3So Gcd�eXCle-. Reference: UDFCD USDCM, Vol. 1, Major Drainage; Page MD-105 V:\52870F\ACTI VE\187010251 \REPORTS\DRAI NAGE\RI P-RAP\STRM-N-H-OUTLETALS s' ST ?- to • • HYDRAULIC RESULTS Discharge cfs Peak Flow Period hrs Velocity [fps] Area (sq.ft) Hydraulic Radius ft Normal Depth ft 0.7 1.0 1 2.72 1 1.36 0.23 0.29 L 4.0 LINER RESULTS Bottom Width = 3.50 ft 11 4.0 Not to Scale Reach Matting Type Stability Analysis Vegetation Characteristics Permissible Shear Stress (psf) Calculated Shear Stress (psf) Safety Factor Remarks Staple Pattern Phase Class Type Density Straight C350 Vegetation 3 D Mix >=95% 7.00 0.36 19.25 STABLE Staple E Soil Clay Loam 1.200 0.073 16.51 STABLE 0 APPENDIX - E 0 December 2006 Stantee r'- RATIONAL METHOD HYDROLOGY Stantec a/■ �-+tea-�� ��-RR Ra . -_. Riiiiiiiiiiiiia, Is r. — _ _ I HYDROLOGIC SUMMARY TABLE POND SUMMARY TABLE :Pad iTotal Vol ReR.:Yd Pmvidad 104Yr WBEL A 7.64 f 648 4927.86 B 1 2.23 1 3,09 4e23.7€ O 1 1.37 f L% 4433.39 D 19 78 23 12 4435.15 E 0 u2 f ?5 4v25.i2 F _ 1.8Fi 1 03 _ 3927 G3 "iraq.. 1 5US 644 4105N v 0 1N 300 450 I SCALE IN FEET --- NROPCSEO ILOIt INE cM73:C [Cxia:NS NEW SipM NX4N Rir. reINTR,1 EXISTNC SiIXM MAN —�— PROPOSED SWALE era Pv!yDSEG AKAAIE STREET acpE C'TfETICN D( FLM GES" PPNI Eat ESTANACE RI 9NWNMY NO. = BASIN N1.wN AL = SANN ANEA (IN ACWE) FOR DRAINAGE REVIEW ONLY NOT FOR CONSTRUCTION City of Fort Collins, Colomdo UTILITY PLAN APPROVAL A PRDYD: City Fcg;nGcr Da•� CHECKED BY:........_..._—__- Weter & Wcelevater UtINZY Di:e CHECKED BY: Stcrm.aler LIVYy C:--ECKED BY: Pol+x h RCcEM..n Oa:< CHECKED BY:_ __.._. Trntllc F,q Amer CG;e CHECKED BY,_ _ CG:e I HESE PANS HAVc NEEN 4tvt*ILT SO trE _OCA- _N`I1Y TOR COMCEP- O\LY IHE RCNEW DOES NO! VPLY RESPOINS'S TY BY II R YtEWINC � PARTMHNI. THE IOCA. P011y FNCI-'ER 04 T'.T - CA, ENTITY FOR ACCURN Y AND CORRECTNESS G IHE CAI.C.ULA IONS FURT H VORE. T E rEVEW rICES Nr IVPLY THAT Q�A%TITES DF ITCVS ON THE PLANS NE fNk O uk E< REOL :HE REV:w A. N3et IN 1W qn7kSON A, - A• NA1,C At 1-,v%r E, T, mm c � a1 4R�dxn ' a Am IIII� X Y m U WIT" 100% PLANS BID SET NOT FOR CONSTRUCTION January 2007 rk N<N:<'t _SI N� aIa iw �v 1n. [nNe o<er - 01211 D. C-151 Revision Sheet 0 23 of 137 Developed Site Hydrology Front Range Village 187010251 Design Point Basin(s) Area (acre) Composite "C" Qio (cfs) Q100 (cfs) 100 100 3.83 0.85 15.24 38.14 101 101 0.18 0.83 0.73 1.79 102 102 0.57 0.76 2.03 5.39 103 103 2.41 0.84 9.17 23.68 104 104 0.45 0.95 2.07 4.45 105 105 0.91 0.84 3.61 9.05 106 106 1.51 0.86 4.83 12.16 107 107 0.37 0.84 1.51 3.66 108 108 0.40 0.95 1.87 4.02 109 109 1.67 0.85 6.76 16.57 110 110 0.62 0.78 2.16 6.02 111 111 1.03 0.87 4.37 10.23 112 112 0.83 0.86 3.08 7.77 113 113 1.00 0.90 4.41 9.99 114 114 1.00 0.90 4.38 9.93 115 115 1.27 0.90 5.59 12.64 116 116 0.70 0.95 3.25 6.98 117 117 1.69 0.89 7.29 16.79 118 118 1.03 0.92 4.64 10.27 119 119 0.57 0.91 2.52 5.67 120 120 0.59 0.92 2.64 5.88 121 121 0.42 0.81 1.67 4.20 122 122 0.86 0.71 2.26 6.30 123 123 1.24 0.60 2.83 7.57 124 124 0.11 0.95 0.53 1.14 125 125 0.31 0.84 1.18 3.10 126 126 0.67 0.95 3.03 6.63 130 130 1.08 0.95 4.98 10.72 131 131 0.81 0.67 2.64 6.75 1:04 PM The Sear -Brown Group 1 /25/2007 132 132 0.23 0.95 1.05 2.26 133 133 0.14 0.95 0.65 1.40 134 134 0.82 0.95 3.79 8.15 135 135 0.39 0.70 1.31 3.38 136 136 0.36 0.95 1.65 3.55 137 137 0.47 0.95 2.19 4.71 138 138 1.84 0.91 8.19 18.34 139 139 1.70 0.58 3.93 10.63 140 140 0.38 0.65 1.15 3.10 141 141 3.26 0.95 15.08 32.43 142 142 1.23 0.85 4.81 12.27 143 143 4.90 0.76 18.06 46.13 150 150 3.36 0.65 8.10 23.09 151 151 1.48 0.62 3.84 11.00 160 160 1.63 0.85 6.55 16.23 161 161 0.97 0.81 3.77 9.62 162 162 0.77 0.90 3.38 7.68 163 163 0.65 0.95 2.99 6.44 164 164 1.50 0.83 5.07 13.27 165 165 0.55 0.91 2.41 5.42 200 200 2.74 0.85 10.41 27.24 201 201 1.36 0.88 5.70 13.55 202 202 0.32 0.95 1.49 3.20 203 203 0.10 0.84 0.40 0.97 204 204 0.24 0.95 1.11 2.38 205 205 0.37 0.95 1.70 3.65 206 206 0.32 0.92 1.42 3.16 207 207 1.22 0.78 4.23 11.91 208 208 0.29 0.94 1.34 2.91 209 209 0.16 0.93 0.71 1.56 210 210 0.39 0.91 1.73 3.91 211 211 0.38 0.90 1.68 3.82 212 212 0.44 0.95 2.04 4.39 213 213 1.71 0.86 6.82 17.01 214 214 1.12 0.89 4.89 11.19 215 215 1.53 0.61 3.53 10.15 216 216 0.16 0.95 0.75 1.61 217 217 1.41 0.95 6.50 13.99 218 218 0.23 0.95 1.08 2.32 219 219 0.40 0.95 1.87 4.01 220 220 2.01 0.91 8.43 19.95 1:04 PM The Sear -Brown Group 1 /25/2007 221 221 1.04 0.72 3.36 9.31 300 300 0.55 0.60 1.19 3.50 301 301 1.38 0.87 5.45 13.72 302 302 0.21 0.95 0.97 2.08 303 303 0.30 0.66 0.95 2.50 304 304 0.28 0.95 1.29 2.78 305 305 0.31 0.95 1.43 3.08 306 306 0.69 0.90 3.02 6.86 307 307 0.81 0.60 2.15 6.10 400 400 0.26 0.95 1.21 2.59 401 401 0.30 0.95 1.38 2.96 402 402 2.04 0.87 8.28 20.29 403 403 0.33 0.87 1.38 3.24 404 404 1.75 0.86 7.33 17.45 405 405 1.16 0.89 5.04 11.52 406 406 1.11 0.89 4.47 11.09 407 407 0.90 0.88 3.55 8.99 408 408 1.72 0.88 7.30 17.14 409 409 1.98 0.80 7.68 19.61 410 410 0.38 0.93 1.71 3.74 411 411 0.28 0.88 1.20 2.79 412 412 4.34 0.95 20.08 43.19 413 413 0.37 0.77 1.38 3.56 414 414 1.12 0.62 2.78 7.77 500 500 3.02 0.84 9.88 30.06 501 501 0.85 0.65 2.67 6.82 502 502 1.13 0.76 3.23 8.70 503 503 1.25 0.74 3.21 8.75 504 504 0.87 0.67 2.86 7.31 505 505 3.03 0.91 8.22 19.12 1:04 PM The Sear -Brown Group 1 /25/2007 Developed Weighted Runoff Coefficients Front Range Village 187010251 This sheet calculates the composite "C' values for the Rational Method. 100 0.95 0.25 166,990 3.83 141,946 3.26 85 15 0.85 101 0.95 0.25 7,836 0.18 6,473 0.15 83 17 0.83 102 0.95 0.25 24,763 0.57 18,135 0.42 73 27 0.76 103 0.95 0.25 104,864 2.41 87.688 2.01 84 16 0.84 104 0.95 0.25 19,503 0.45 19,503 0.45 100 0 0.95 105 0.95 0.25 39,629 0.91 33,469 0.77 84 16 0.84 106 0.95 0.25 65,653 1.51 56,931 1.31 87 13 0.86 107 0.95 0.25 16,004 0.37 13,575 0.31 85 15 0.84 108 0.95 0.25 17,608 0.40 17,608 0.40 100 0 0.95 109 0.95 0.25 72,532 1.67 62,397 1.43 86 14 0.85 110 0.95 0.25 27,018 0.62 20,457 0.47 76 24 0.78 111 0.95 0.25 44,804 1.03 39,800 0.91 89 11 0.87 112 0.95 0.25 36,293 0.83 31,587 0.73 87 13 0.86 113 0.95 0.25 43,752 1.00 40,661 0.93 93 7 0.90 114 0.95 0.25 43,479 1.00 40,419 0.93 93 7 0.90 115 0.95 0.25 55,344 1.27 51,690 1.19 93 7 0.90 116 0.95 0.25 30,564 0.70 30,564 0.70 100 0 0.95 117 0.95 0.25 73,502 1.69 66,894 1.54 91 9 0.89 118 0.95 0.25 44,976 1.03 43,230 0.99 96 4 0.92 119 0.95 0.25 24,839 0.57 23,386 0.54 94 6 0.91 .120 0.95 0.25 25,747 0.59 24,598 0.56 96 4 0.92 121 0.95 0.25 18.404 0.42 14,806 0.34 80 20 0.81 122 0.95 0.25 37,614 0.86 24,514 0.56 65 35 0.71 123 0.95 0.25 54,110 1.24 26,777 0.61 49 51 0.60 124 0.95 0.25 5,000 0.11 5,000 0.11 100 0 0.95 125 0.95 0.25 13,554 0.31 11,520 0.26 85 15 0.84 126 0.95 0.25 29,025 0.67 28,892 0.66 100 0 0.95 130 0.95 0.25 46,921 1.08 46,921 1.08 100 0 0.95 131 0.95 0.25 35,341 0.81 21,163 0.49 60 40 0.67 132 0.95 0.25 9,912 0.23 9,912 0.23 100 0 0.95 133 0.95 0.25 6,146 0.14 6,146 0.14 100 0 0.95 134 0.95 0.25 35,696. 0.82 35,696 0.82 100 0 0.95 135 0.95 0.25 16,896 0.39 10,888 0.25 64 36 0.70 136 0.95 0.25 15,526 0.36 15,526 0.36 100 0 0.95 137 0.95 0.25 20,601 0.47 20,601 0.47 100 0 0.95 138 0.95 0.25 80,287 1.84 76,027 1.75 95 5 0.91 139 0.95 0.25 74,128 1.70 35,077 0.81 47 53 0.58 140 0.95 0.25 16,685 0.38 9,549 0.22 57 43 0.65 141 0.95 0.25 141,976 3.26 141,976 3.26 100 0 0.95 142 0.95 0.25 53,733 1.23 46,351 1.06 86 14 0.85 143 0.95 0.25 213,552 4.90 154,556 3.55 72 28 0.76 150 0.95 0.25 146,398 3.36 84,003 1.93 57 43 0.65 151 0.95 0.25 64,570 1.48 34,537 0.79 53 47 0.62 160 0.95 0.25 71,072 1.63 60,517 1.39 85 15 0.85 161 0.95 0.25 42,097 0.97 33,831 0.78 80 20 0.81 162 0.95 0.25 33,623 0.77 31,170 0.72 93 7 0.90 163 0.95 0.25 28,175 0.65 28,175 0.65 100 0 0.95 164 0.95 0.25 65,370 1.50 54,520 1.25 83 17 0.83 165 0.95 0.25 23,746 0.55 22,307 0.51 94 6 0.91 200 0.95 0.25 119,242 2.74 101,442 2.33 85 15 0.85 201 0.95 0.25 59,318 1.36 53,774 1.23 91 9 0.88 202 0.95 0.25 13,995 0.32 13,995 0.32 100 0 0.95 203 0.95 0.25 4,226 0.10 3,578 0.08 85 15 0.84 204 0.95 0.25 10,408 0.24 10,408 0.24 100 0 0.95 205 0.95 0.25 16,000 0.37 16,000 0.37 100 0 0.95 1:06 PM The Sear -Brown Group 1/25/2007 206 0.95 0.25 13,843 0.32 13,237 0.30 96 4 0.92 207 0.95 0.25 53,125 1.22 40.599 0.93 76 24 0.78 208 0.95 0.25 12,740 0.29 12,524 0.29 98 2 0.94 209 0.95 0.25 6,818 0.16 6,601 0.15 97 3 0.93 210 0.95 0.25 17,100 0.39 16,049 0.37 94 6 0.91 211 0.95 0.25 16,703 0.38 15,479 0.36 93 7 0.90 212 0.95 0.25 19,229 0.44 19,229 0.44 100 0 0.95 213 0.95 0.25 74,470 1.71 64,981 1.49 87 13- 0.86 214 0.95 0.25 48,973 1.12 45,006 1.03 92 8 0.89 215 0.95 0.25 66,487 1.53 34,120 0.78 51 49 0.61 216 0.95 0.25 7,065 0.16 7,065 0.16 100 0 0.95 217 0.95 0.25 61,240 1.41 61,240 1.41 100 0 0.95 218 0.95 0.25 10,176 0.23 10,176 0.23 100 0 0.95 219 0.95 0.25 17,567 0.40 17,567 0.40 100 0 0.95 220 0.95 0.25 87,358 2.01 82,640 1.90 95 5 0.91 221 0.95 0.25 45,296 1.04 30,411 0.70 67 33 0.72 300 0.95 0.25 23,979 0.55 11,889 0.27 50 50 0.60 301 0.95 0.25 60,081 1.38 53,487 1.23 89 11 0.87 302 0.95 0.25 9,111 0.21 9,111 0.21 100 0 0.95 303 0.95 0.25 13,224 0.30 7,761 0.18 59 41 0.66 304 0.95 0.25 12,183 0.28 12,183 0.28 100 0 0.95 305 0.95 0.25 13,504 0.31 13.504 0.31 100 0 0.95 306 0.95 0.25 30,023 0.69 27,819 0.64 93 7 0.90 307 0.95 0.25 35,491 0.81 17,851 0.41 50 50 0.60 400 0.95 0.25 11,354 0.26 11,354 0.26 100 0 0.95 401 0.95 0.25 12,958 0.30 12,958 0.30 100 0 0.95 402 0.95 0.25 88,821 2.04 78,892 1.81 89 11 0.87 403 0.95 0.25 14,197 0.33 12,578 0.29 89 11 0.87 404 0.95 0.25 76,380 1.75 66,654 1.53 87 13 0.86 405 0.95 0.25 50,443 1.16 46,350 1.06 92 8 0.89 406 0.95 0.25 48,535 1.11 44,084 1.01 91 9 0.89 407 0.95 0.25 39,357 0.90 35,510 0.82 90 10 0.88 408 0.95 0.25 75,043 1.72 68,017 1.56 91 9 0.88 409 0.95 0.25 86,373 1.98 67,254 1.54 78 22 0.80 410 0.95 0.25 16,370 0.38 15,979 0.37 98 2 0.93 411 0.95 0.25 12,225 0.28 11,009 0.25 90 10 0.88 412 0.95 0.25 189,069 4.34 189,069 4.34 100 0 0.95 413 0.95 0.25 16,243 0.37 11,988 0.28 74 26 0.77 414 0.95 0.25 49,001 1.12 25,993 0.60 53 47 0.62 500 0.95 0.25 131,589 3.02 111,485 2.56 85 15 0.84 501 0.95 0.25 36,998 0.85 20,892 0.48 56 44 0.65 502 0.95 0.25 49,424 1.13 36,325 0.83 73 27 0.76 503 0.95 0.25 54,327 1.25 37,711 0.87 69 31 0.74 504 0.95 0.25 37,970 0.87 23,017 0.53 61 39 0.67 505 0.95 0.25 132,192 3.03 124,326 2.85 94 6 0.91 506 0.95 0.25 98,245 2.26 89.225 2.05 91 9 0.89 1:06 PM The Sear -Brown Group 1/25/2007 DEVELOPED 10-YEAR STORM EVENT Stantec TIME OF CONCENTRATION 10 year design storm Front Range Village 187010251 1.87(I.1 - CC7 ).fD Sa333 t, = ti +tL Cr = 1.00 SUB -BASIN DATA INITIALIOVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA C LENGTH SLOPE t; LENGTH CHANNEL SLOPE VELOCITY 4 Tr NO. (ac) (ft) N (min) (ft) TYPE(a) N WEI) (min) (min) 1 2 3 4 5 6 7 8 10 12 13 100 3.83 0.85 217 2 5.6 1 PA 2 2.72 0.0 5.6 101 0.18 0.83 30 2 2.2 101 PA 1.34 2.21 0.8 5.0 102 0.57 0.76 127 2 5.6 1 PA 2 2.72 0.0 5.7 103 2.41 0.84 15 2 1.5 650 PA 1.5 2.35 4.6 6.1 104 0.45 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 105 0.91 0.84 244 2.58 5.5 1 PA 2.58 3.10 0.0 5.5 106 1.51 0.86 50 3.17 2.2 915 PA 0.98 1.89 8.1 10.3 107 0.37 0.84 19 2 1.7 251 PA 1.15 2.05 2.0 5.0 108 0.40 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 109 1.67 0.85 259 2.67 5.4 1 PA 2.67 3.15 0.0 5.4 110 0.62 0.78 186 2 6.5 1 PA 2 2.72 0.0 6.5 111 1.03 0.87 210 2 4.9 1 PA 2 2.72 0.0 5.0 112 0.83 0.86 28 2 1.9 427 PA 0.5 1.34 5.3 7.2 113 1.00 0.90 194 2.51 3.8 1 PA 2.51 3.05 0.0 5.0 114 1.00 0.90 196 2.41 3.9 1 PA 2.41 2.99 0.0 6.0 115 1.27 0.90 234 2 4.5 1 PA 2 2.72 0.0 5.0 116 0.70 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 117 1.69 0.89 30 2 1.7 246 PA 1.23 2.12 1.9 5.0 118 1.03 0.92 110 2.35 2.6 1 PA 2.35 2.95 0.0 5.0 119 0.57 0.91 146 2 3.4 1 PA 2 2.72 0.0 5.0 120 0.59 0.92 142 2.14 3.1 1 PA 2.14 2.81 0.0 5.0 121 0.42 0.81 45 2 2.9 99 PA 0.87 1.77 0.9 5.0 122 0.86 0.71 60 2 4.5 616 PA 0.82 1.72 6.0 10.5 123 124 0.60 25 2 3.7 621 PA 0.81 1.71 6.0 9.8 124 0.11 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 125 0.31 0.84 151 1.28 5.4 117 PA 1.07 1.97 1.0 6.4 126 0.67 0.95 55 2 1.7 284 PA 0.5 1.34 3.5 5.2 130 1.08 0.95 50 1.6 1.7 294 PA 2.5 3.05 1.6 5.0 131 0.81 0.67 1 1 0.8 1 PA 1 1.91 0.0 5.0 132 023 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 133 0.14 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 134 0.82 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 135 0.39 0.70 78 2.53 4.8 50 PA 1.62 2.44 0.3 5.2 136 0.36 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 137 0.47 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 138 1.84 0.91 273 2.14 4.5 1 PA 2.14 2.81 0.0 5.0 139 1.70 0.58 32 2 4.4 550 PA 1.14 2.04 4.5 8.9 140 0.38 0.65 50 2 4.7 93 PA 0.5 1.34 1.2 5.9 141 3.26 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 142 1.23 0.85 50 2 2.6 319 PA 0.63 1.50 3.5 6.1 143 4.90 0.76 1 1 0.6 1 PA 1 1.91 0.0 5.0 150 3.36 0.65 108 2 6.9 280 GW 0.7 1.29 3.6 10.5 151 1.48 0.62 80 1.8 6.5 114 GW 0.8 1.38 1.4 7.9 160 1.63 0.85 207 2 5.4 1 PA 2 2.72 0.0 5.4 161 0.97 0.81 152 2.05 5.2 1 PA 2.05 2.75 0.0 5.2 162 0.77 0.90 176 2.86 3.5 1 PA 2.86 3.27 0.0 5.0 163 0.65 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 164 1.50 0.83 30 2 2.2 758 PA 1.11 2.01 6.3 8.4 165 0.55 0.91 64 2 2.3 100 PA 2.59 3.10 0.5 5.0 200 2.74 0.86 100 1.92 3.8 260 PA 0.8 1.70 2.5 6.4 201 1.36 0.88 302 2.09 5.5 1 PA 2.09 2.78 0.0 5.5 202 0.32 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 203 0.10 0.84 60 2 3.0 45 PA 2.28 2.91 0.3 5.0 204 0.24 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 205 0.37 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 206 0.32 0.92 28 2 1.4 126 PA 1.88 2.63 0.8 5.0 207 1.22 0.78 233 2.4 6.7 1 PA 2.4 2.99 0.0 6.7 1:07 PM The Sear -Brown Group 1/25/2007 208 0.29 0.94 95 2 2.3 129 PA 1.44 2.30 0.9 5.0 209 0.16 0.93 30 2 1.4 62 PA 1.98 2.70 0.4 5.0 210 0.39 0.91 89 2 2.7 112 PA 0.5 1.34 1.4 5.0 211 0.38 0.90 35 2 1.8 109 PA 0.5 1.34 1.4 5.0 212 0.44 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 213 1.71 0.86 290 2.23 - 5.8 1 PA 2.23 2.87 0.0 5.8 214 1.12 0.89 134 3 3.1 1 PA 3 3.35 0.0 5.0 215 1.53 0.61 130 2 8.3 218 PA 1.4 2.26 1.6 9.9 216 0.16 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 217 1.41 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 218 0.23 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 219 0.40 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 220 2.01 0.91 374 1.5 5.9 1 PA 1.5 2.35 0.0 5.9 221 1.04 0.72 149 2.5 6.4 1 PA 2.5 3.05 0.0 6.4 300 0.55 0.60 128 1 10.6 35 PA 0.75 1.64 0.4 11.0 301 1.38 0.87 152 1.42 4.7 173 PA 0.88 1.79 1.6 6.3 302 0.21 0.95 23 2 1.1 180 PA 0.66 1.54 1.9 5.0 303 0.30 0.66 30 2 3.6 180 PA 0.66 1.54 1.9 5.5 304 0.28 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 305 0.31 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 306 0.69 0.90 38 2 1.8 297 PA 0.96 1.87 2.7 5.0 307 0.81 0.60 97 2.4 6.9 1 PA 2.4 2.99 0.0 6.9 400 0.26 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 401 0.30 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 402 2.04 0.87 119 1.9 3.8 261 PA 1.29 2.17 2.0 5.8 403 0.33 0.87 98 2 3.4 133 PA 0.5 1.34 1.7 5.0 404 1.75 0.86 215 3 4.5 71 PA 1.5 2.35 0.5 5.1 405 1.16 0.89 204 1.9 4.5 1 PA 1.9 2.65 0.0 5.0 406 1.11 0.89 204 2.1 4.5 145 PA 0.5 1.34 1.8 6.3 407 0.90 0.88 218 1.5 5.3 104 PA 0.5 1.34 1.3 6.6 408 1.72 0.88 302 2.35 5.3 1 PA 2.35 2.95 0.0 5.3 409 1.98 0.80 28 2 2.4 1 PA 2 2.72 0.0 5.0 410 0.38 0.93 68 2 2.0 130 PA 0.5 1.34 1.6 5.0 411 0.28 0.88 68 2 2.7 101 PA 0.5 1.34 1.3 5.0 412 4.34 0.95 1 1 0.3 1 PA 1 1.91 0.0 5.0 413 0.37 0.77 65 2.11 3.9 95 PA 0.5 1.34 1.2 5.1 414 1.12 0.62 64 2 5.7 281 PA 0.62 1.49 3.1 8.8 500 3.02 0.84 240 0.5 9.4 1 PA 0.5 1.34 0.0 9.4 501 0.85 0.65 50 4.37 3.7 1 PA 4.37 4.06 0.0 5.0 502 1.13 0.76 25 2.8 2.2 992 PA 1.13 2.03 8.1 10.4 503 1.25 0.74 26 1 3.5 1026 PA 1.09 1.99 8.6 12.1 504 0.87 0.67 52 6.6 3.1 1 PA 6.6 5.01 0.0 5.0 505 3.03 0.91 60 2 2.2 1195 PA 0.5 1.34 14.9 1 17.1 Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture 8. Lawns, GW = Grassed Waterway 1:07 PM The Sear -Brown Group 1/25/2007 m m E m z m o dth thrr th�nmmnm�mrnNrnd Nd north th mthmd NNm� NmrnmN�O modNA t'i d - m N d th d V N th n d N N N O t7 d N Om .- .- CV m M m lh N O cY'000000000000000000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � �c000000000000000c0000c000c00000000cocc0000000 N AOoOmmNmn th Od thN NNm NtOmNmN OCt m0mAMm�w Of O4O mNA �� U �CNNNthOCI <th V V Nthn V NCI CIC nth OCl,Oth, NaG thO Nth tGm O C tll thmn� N� n OANth thOOrOOt (hn OlNmd � nm�f7dNOimrdOmmlhOmmlhA I= Q m C1O0NOO�OO�O�O'-��0��OOOO�OOO �-0000000� �-Oth �-dth� � O N t C A O) m A N d A A m A r O A A A A AAA A A A O O n n A A A N A AAA ty A m A O N N � A m m N m A A m m A d m m m m m m m m m m Ii ai m N m m m m m m m m m m Ci m m N m A 4 A m m 2 c o4 44644 ocooco th6o�aocoovoi oi000vo6oc00000i6000th600 V mmAm0)mm OimAmmOI 0�0) W m0) W O)mnmlTm Of 0)m OtTOtn O�Of ANmO�mnmmmm� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 000000000000000000000000000000000000O00000000 E m O A O N N O O d N O N 0 0 0 0 0 0 0 0 0 N m O d N O O p O O N O p O W Ot O O N Oz d N 's'ENNNmNNa-NNNtdNrNNNNNNNNN0-mNNNNNNNNNNNNacNNNN nNN =' E E > C p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E ti otictiocc000coc0000tioti ticcc0000ti000000000000000 �2 o > LL c m _ S N O K r � F I L m J E m O A w O N O 0 d N O N O 0 0 N m o d N O 0 0 0 N O O O m O) O O N W d N m N N� 6 N N N m N A 6 6 N N N N N 6 N 6 N 6 N 6 � OI N m N N N 6 N N N 0,6 N N m N N m NN N N m 0000000000� � �NNNNNNNIh th th th C)lh th th lh the ddd NNmm m C O C m .9 V () 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - - - - - - ^ N - th M th M M M th - - - - - N N m m y J m o_ 0 0 o_ N C IA l0 m T C O N S N N a m a mOr OOO�-ON('I Q �-l�l [[ppeNOC)mOmrNmmmrlA Q)C)N � �mmpmp C)dr mOm�Ommmmrl7�mN N l7 m O Q e r Q Q.- r Q N C l r r t O O m m m r m O m e t 7 Q m m N d 0 N M N l h C f O d m CJ m r N l7 r m m N N m N N t7N6N6 0Q 0mNmNNMNm m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O O O O O O O O O O O O O O O O O O O O O O O O O ( Op O O O O O O O O O m O O O O O O O O O O O O m O O m O O O O O O m W r"QOD7O"ON(7Q (7meNm(")mnOme (7�emmNeO�N [7 NfmI C')Oe I(JOmrN�lh m(DmNN mN N M m O e r Q Q r Q N {7 r r m O m m m r (7N mN6'-0 e •-O� �Nmef7Om�-ppm(7 •-mOO� �MN.-�-m� r 1(l df7rr�� pN �NO)Nf")NNm m n tmOn�rtm�f��NmfN�)NN�f7 t7QrNm�QN000�OmNmNt7mmNthOMrm�mrmnNlh (7�Om�NmO m 00 � O N � 00000 � 00000 � � •-O � 00 N � O � OOOOOOOON O� � �-O � �-00 d O�-NO �-�-017 0) m m O m m r m m m m m Q m m m m m m m r m m m m m Q m m m r m m m M m m m m m m m Q r m m m m m m m m r N m m M e Q e e e e e e e e e e e e Q e e e d P l d d Q e e Q l 7 e e e e d d d Q d e e d d d d d d d d d d t h l h d f h C 1 d N N mmwrnmnrn�rnmrnmr rnrnmrnrnmmsomrnrnmrnnnmrnnrnmmnrnmmmmmmmmmmmrnnmmmnnma 0000000000000000000000000000000000000000000000000000000 0 o OeoQ m o N � N N tC N N 2 o o r o o 000 m Omo o o o mQ--no m doom o omo 6oc�m�noo oo 6md o oo� ? N N tG � m 6 � 6 N �[) N N � N � Yf Oi N Vf IN tD � �G N N � � N (O �[) i[f N N � Nt t0 N � N Vf N N O) 6O^ eN- 6 ! co 0 6 6 0 a 6 0 6 0 a 6 6 0 O O O O O O O O O O O 0 0 a 6 6 0 a 0 0 0 6 6 0 0 a 0 0 0 6 6 6 6 0 6 0 0 6 6 6 6 6 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O I I i I I I I I 1 I I I I I I I 1 I I 1 1 I I i I I I I I I I� I I I I 1 1 I I I 17 1 1 I I I I I I t i l t o ododm00000r00000mom0000md4mom000moomo�ommc�0000�mdo?�o� N MemO�NC)e�Omr mm- ---Q mmrmmO�O�NC')d UlmrpOp epppNp MQYoo1 (OrmmO'-N t7Q0�-NMe N N N N N N N N N N N�� N t 7 d m O N t 7 Q m m r m m O- N t 7 e m m r m m O O N (n Q N m r O Np mp e h m r m m O N t 7 Q O N t 7 Q O m p m mmm0000000000 - -- - --- - --N NOOOOOOOOOPdQ V aev a o0 oa a anuoi voi voi coin N NNNNNNNNNNNNNNNNNNNN Nf")C'l Cl f")f")C'l Mlh Vd �"� F T N 0 N 0 N m m- M m Q- N M m M Q M m M m t D i[ I QQ m A A M M N Q d O M M N O A m M i l l d M, M m Q M m m am N m O Q - m N 0 O CO m O m N m A N M M m d N m O m d W P N Om0 d Q m m m O O m m m M m m m A m 6 - N O �� N A d m N A A m A m � O m v o o l A m M Ili Q A N m m N N d Q Q Q m o -- N N N N N d d d d d m N .- m m M m d N d M mdTdddMdQmdNMMN hmM d�DMd m M d M m m N m M m 7 o m- wOomM Oi �6 am 6 N 0 6 o;N C �N O A m O- m N mO M m Ooom OM a m v o0A66 O m MV dNm N Od �d v� NQNOM NN NN ----- O N m M N m M m m 00 d mwmo m m m M d MN� m m O W mammom� W A N m m m d ONOG� A Q N MN 00 cO Of T QON A m O ' m m � M M d d N N N 64 M Q m m m d O - Q m O N A m m A N N N N N M M m N M M Q M m A A an d O r O O N M h m �'s- A m N Q Q N N m m m m m m A m m m m 0 N d d O m M O M m A A m A m m M 0 a" Am M m 0 O O N . A" M O m m 0 N O O m m . . m N m m d M M N M O m M m Q M N" A N N � � � � � � � � 44 d d M M M d d M . d N N N N N N N .- �- Q Q M M M M M M Q Q Q O 444 . d d M MA � m n m A r A A m tp m m m m m m m m m� m A A m m m m m m m m m m m m m m m m m m m m m m m m O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O 0 0 66 666 660 O m N Q Q M m N O Q O m M O Cl! O A Q A m Q N m Q m N N O O d O d M A d 0 m m N m O m M m N Q N d M M M M d d d N H m m A 6,6 N A M m MMM Yl A m!R �2 M M A m m m m m A m m N NNN Q m m m N O O N A m d O m O d N m N O M N o m Q m a a o m o Q O Q O Q A m m d ad am O M A O m N to N n 1:'i 16 1 V 1 V O N O N M M Q O N m O M t7 0 N Q m 6 N m C N N �: C C 1 O � O- 666 O W N m m m m m m N m m m N ; m m m N N N N N N m m m m m m N N N N N N N I N N N N m m 0 0 0 0 0 0 0 0 0 0 0 0 0 �-�- - 066666 ---- � � � - � �-- � 0 0 O O O O O O O O O O O O O O O O O o o o- Oa N N N N N N N N N N d N N N d d d O O< N N N N N N Q O< O< O O O O C V 0 0 0 0 0 0 0 0 0 0 O O O O O O O 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O ¢aaaaaaa¢¢ a aaa a as aaaaaaa¢¢ aaaaaaa a a as as ¢¢¢aaaaaaa a aaa a as ¢¢aaaaaaa aaaaaaa a a as as o000ooO0Oo 0 000 0 O0 0000O0000 000O000 0 0 00 00 000 oom vm 0 0 000 0 oa 0pp� o00 00 0cooQ D o c o m d A� y e- N N m � Q O m N Q Q M m N O O O m m O N m Q Q A Q m In m d m N NQ O O O O d M A Q 0 N N O O M M N d d N M M M M d d dip N N N N m m 60 A m N Q N m M A m A A m N m m m m m m N N N M M M MMmAmm000 M m �000000 m mommmmm�� 77777 m 0 0 0 0 0 0 0 0 o N d N M N O O O M o m m N O M m m m o N m o o o o A m m O N M Ip Q N M M 0 -O - <-OOo00o00 -O �t7 O N N OOa N N N N M M O O O tp m_ o o N N tOtptp66,666 M N Ip h o o N o �- M M N N d� '000000o0 N 0 0 0 0 0 0 0 O O � O O Q m A m o m m A d Z M Q❑ ' Q 0 0 0 0 m m t0 0 - m N " � � � � � � � M M M N N N �0 �a cQ a N m m m F 0 0 0 0 N N a a c c 0 0 a a E E 0 0 vM 0 y Lp LD N N U U O O II II a o N wl�wNl� now m0 Qm MM ow m� W mNI� w- w N ww m0) O)w I�mNmQO NOI� h.- Oh N aOww ^ Ow N O nw �j N W w NN QQ Q �m NOJ OOJ O � I�� m Nmm mIU IU "1U NNNNNN �NNNN NN N O O � O O N w 1 w N h m o w m 0 Q m O J O 1 w w m T m N t l (J w o w N w A M M w w 1 m N m Q O N O n n O A f 0 f p n m N w w w A O( O Cl! O ^ O �j N A t p N N w a N m w N < 0 0 f7 (V to O w O I� C fG Vi lV O C G N m m n o I � N i N N N N N � NNN N N N N Q- W vm1 O w w Nwh mw Qw 0 wO w- (O"Mom A Q N �� o0w ww Q w IOh ha V V N m w m n 00 Q O w w ON I O) .-N N W w w w w aw W M m N h f` Q Q N m m NN N N O.- a w n n n N h w r m I N N n w I N N w I N w m w 0 11 O w 0 0 f O N w r a w ' wmNw V O QwQ wQ ww wQ wm wm wmamol ww w Q mm) wm- wQ `a m mmNNN Qmm Q Q Q Q QQ QQ o v 6 veci ClN QQQ m mmm mmm aQ w O m N N f D I 1 A Q)[ O W (O wwwwww rIt TOE C( rnw wrn ww w Of IOQa c oc000 acw coo 00 00 0a 00 00 00 Owwww oocooc a0l a cocc o00 a0a 000 a 00 O wQD7mm ^ I�Q Oh 00� OQ Or �w Or QI�N0 OIL O w wNOi �n0 ON i! N N N O' c-4 In tG 6,6 N w 6 n 66 If) n w m�R N 666 CJ ai T M- N 66 i III mwwwQa --66M6 QQN OQ ' On Or a 00 oQ O- o ON w O's a-MMWQ 6ci wQ 0n m 0 666 w avr 000 aoQ O ow O� w w w w w w w w N I^ N N N w w N N N N N w w I I I!, I O O O O O O O O O O O O O 0 0 0 0 0 0 O O O O O O N N N N N N N N Q O Q O Q O Q N N Q Q Q Q Q N N O 0 0 0 0 0 0 C C G l V G (V O N O O G O O G G O C 00 111 a< < aaaaaa. as am a a a a aaaaa a. a a.as as a 00OOoo 00 0 0 0 O� 0 o0 0 00 00 0 GOO N 1p 066aq GO 0 0 O) OO 6O w w m m- Q N w (n W W m m N w N Q m w N <Cw <Am l� A n 00 00 00 00 00 �-Q h N 00 t� O wwN 00 m" N � � � w w �.....: i o oo--�� a m w N o 0000o mm QQ o0 0 N N N N N N N N O N N N Q N w w O Q O Y v Y Y 4 _m N q Y V Q O O O w w o m O O O O O O N N O N O N N N Q N N Q a Q 0 0 0 0 0 y N N N Q 0 0 m 0 0 0 0 0 0 0 N N N N N N O N N N N N w O Q O O O O O Q QQQ Q Q Q Q Q Q 00 m N O O O O O O O m w¢ Q m a N h A w O- Q w w a Q a Q Q w a O w Q O O O "m w 0 N Q O O O m w w 0 0 0 0 N m m p Q O m N O O O Q O Z N N N N N Z a N N N N N N N N N N" Q Q � Q Q Z Q Q Q Z Q Q Z a w w Z a m a a a o m DEVELOPED 100-YEAR STORM EVENT Stantec TIME OF CONCENTRATION 100 year design storm Front Range Village 187010251 1.87(1.] - CCU ),� t, = S„1„ t, = to+tt Cr = 1.25 SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA C LENGTH SLOPE 4 LENGTH CHANNEL SLOPE VELOCITY tL tc NO. (ac) (ft) N (min) (ft) TYPE(a) M (fUs) (min) (min) 1 2 3 4 5 6 7 8 10 12 13 100 3.83 0.85 217 2.0 2.2 1 PA 2.0 2.72 0.0 5.0 101 0.18 0.83 30 2.0 0.8 101 PA 1.3 2.21 0.8 5.0 102 0.57 0.76 127 2.0 2.5 1 PA 2.0 2.72 0.0 5.0 103 2.41 0.84 15 2.0 0.6 650 PA 1.5 2.35 4.6 5.2 104 0.45 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 105 0.91 0.84 244 2.6 2.1 1 PA 2.6 3.10 0.0 5.0 106 1.51 0.86 50 3.2 0.9 915 PA 1.0 1.89 8.1 9.0 107 0.37 0.84 19 2.0 0.6 251 PA 1.2 2.05 2.0 5.0 108 0.40 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 109 1.67 0.85 259 2.7 2.2 1 PA 2.7 3.15 0.0 5.0 110 0.62 0.78 186 2.0 2.5 1 PA 2.0 2.72 0.0 5.0 Ill 1.03 0.87 210 2.0 2.2 1 PA 2.0 2.72 0.0 5.0 112 0.83 0.86 28 2.0 0.8 427 PA 0.5 1.34 5.3 6.1 113 1.00 0.90 194 2.5 1.9 1 PA 2.5 3.05 0.0 5.0 114 1.00 0.90 196 2.4 2.0 1 PA 2.4 2.99 0.0 5.0 115 1.27 0.90 234 2.0 2.3 1 PA 2.0 2.72 0.0 5.0 116 0.70 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 117 1.69 0.89 30 2.0 0.8 246 PA 1.2 2.12 1.9 5.0 118 1.03 0.92 110 2.4 1.5 1 PA 2.4 2.95 0.0 5.0 119 0.57 0.91 146 2.0 1.8 1 PA 2.0 2.72 0.0 5.0 120 0.59 0.92 142 2.1 1.7 1 PA 2.1 2.81 0.0 5.0 121 0.42 0.81 45 2.0 1.0 99 PA 0.9 1.77 0.9 5.0 122 0.86 0.71 60 2.0 2.5 616 PA 0.8 1.72 6.0 8.5 123 1.24 0.60 25 2.0 2.6 621 PA 0.8 1.71 6.0 8.7 124 0.11 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 125 0.31 0.84 151 1.3 2.1 117 PA 1.1 1.97 1.0 5.0 126 0.67 0.95 55 2.0 1.1 284 PA 0.5 1.34 3.5 5.0 130 1.08 0.95 50 1.6 1.1 294 PA 2.5 3.05 1.6 5.0 131 0.81 0.67 1 1.0 0.5 1 PA 1.0 1.91 0.0 5.0 132 0.23 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 133 0.14 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 134 0.82 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 135 0.39 0.70 78 2.5 2.7 50 PA 1.6 2.44 0.3 5.0 136 0.36 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 137 0.47 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 138 1.84 0.91 273 2.1 2.4 1 PA 2.1 2.81 0.0 5.0 139 1.70 0.58 32 2.0 3.1 550 PA 1.1 2.04 4.5 7.6 140 0.38 0.65 50 2.0 3.0 93 PA 0.5 1.34 1.2 5.0 141 3.26 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 142 1.23 0.85 50 2.0 1.0 319 PA 0.6 1.50 3.5 5.0 143 4.90 0.76 1 1.0 0.3 1 PA 1.0 1.91 0.0 5.0 150 3.36 0.65 108 2.0 4.4 280 GW 0.7 1.29 3.6 8.0 151 1.48 0.62 80 1.8 4.4 114 GW 0.8 1.38 1.4 5.8 160 1.63 0.85 207 2.0 2.1 1 PA 2.0 2.72 0.0 5.0 161 0.97 0.81 152 2.1 1.8 1 PA 2.1 2.75 0.0 5.0 162 0.77 0.90 176 2.9 1.7 1 PA 2.9 3.27 0.0 5.0 163 0.65 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 164 1.50 0.83 30 2.0 0.8 758 PA 1.1 2.01 6.3 7.1 165 0.55 0.91 64 2.0 1.2 - 100 PA 2.6 3.10 0.5 5.0 200 2.74 0.85 100 1.9 1.5 260 PA 0.8 1.70 2.5 5.0 201 1.36 0.88 302 2.1 2.5 1 PA 2.1 2.78 0.0 5.0 202 0.32 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 203 0.10 0.84 60 2.0 1.1 45 PA 2.3 2.91 0.3 5.0 204 0.24 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 205 0.37 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 206 0.32 0.92 28 2.0 0.8 126 PA 1.9 2.63 0.8 5.0 1:07 PM The Sear -Brown Group 1/25/2007 207 1.22 0.78 233 2.4 2.5 1 PA 2.4 2.99 0.0 5.0 208 0.29 0.94 95 2.0 1.4 129 PA 1.4 2.30 0.9 5.0 209 0.16 0.93 30 2.0 0.8 62 PA 2.0 2.70 0.4 5.0 210 0.39 0.91 89 2.0 1.4 112 PA 0.5 1.34 1.4 5.0 211 0.38 0.90 35 2.0 0.9 109 PA 0.5 1.34 1.4 5.0 212 0.44 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 213 1.71 0.86 290 2.2 2.4 1 PA 2.2 2.87 0.0 5.0 214 1.12 0.89 134 3.0 1.5 1 PA 3.0 ' 3.35 0.0 5.0 215 1.53 0.61 130 2.0 5.7 218 PA 1.4 2.26 1.6 7.3 216 0.16 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 217 1.41 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 218 0.23 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 219 0.40 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 220 2.01 0.91 374 1.5 3.2 1 PA 1.5 2.35 0.0 5.0 221 1.04 0.72 149 2.5 3.4 1 PA 2.5 3.05 0.0 5.0 300 0.55 0.60 128 1.0 7.5 35 PA 0.8 1.64 0.4 7.8 301 1.38 0.87 152 1.4 2.1 173 PA 0.9 1.79 1.6 5.0 302 0.21 0.95 23 2.0 0.7 180 PA 0.7 1.54 1.9 5.0 303 0.30 0.66 30 2.0 2.2 180 PA 0.7 1.54 1.9 5.0 304 0.28 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 305 0.31 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 306 0.69 0.90 38 2.0 0.9 297 PA 1.0 1.87 2.7 5.0 307 0.81 0.60 97 2.4 4.8 1 PA 2.4 2.99 0.0 5.0 400 0.26 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 401 0.30 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 402 2.04 0.87 119 1.9 1.6 261 PA 1.3 2.17 2.0 5.0 403 0.33 0.87 98 2.0 1.5 133 PA 0.5 1.34 1.7 5.0 404 1.75 0.86 215 3.0 1.9 71 PA 1.5 2.35 0.5 5.0 405 1.16 0.89 204 1.9 2.2 1 PA 1.9 2.65 0.0 5.0 406 1.11 0.89 204 2.1 2.1 145 PA 0.5 1.34 1.8 5.0 407 0.90 0.88 218 1.5 - 2.4 104 PA 0.5 1.34 1.3 5.0 408 1.72 0.88 302 2.4 2.4 1 PA 2.4 2.95 0.0 5.0 409 1.98 0.80 28 2.0 0.8 1 PA 2.0 2.72 0.0 5.0 410 0.38 0.93 68 2.0 1.2 130 PA 0.5 1.34 1.6 5.0 411 0.28 0.88 68 2.0 1.2 101 PA 0.5 1.34 1.3 5.0 412 4.34 0.95 1 1.0 0.2 1 PA 1.0 1.91 0.0 5.0 413 0.37 0.77 65 2.1 1.7 95 PA 0.5 1.34 1.2 5.0 414 1.12 0.62 64 2.0 3.8 281 PA 0.6 1.49 3.1 7.0 500 3.02 0.84 240 0.5 3.6 1 PA 0.5 1.34 0.0 5.0 501 0.85 0.65 50 4.4 2.4 1 PA 4.4 4.06 0.0 5.0 502 1.13 0.76 25 2.8 1.0 992 PA 1.1 2.03 8.1 9.1 503 1.25 0.74 26 1.0 1.7 1026 PA 1.1 1.99 8.6 10.3 504 0.87 0.67 52 6.6 1.8 1 PA 6.6 5.01 0.0 5.0 505 3.03 0.91 60 2.0 1.1 1195 PA 0.5 1.34 14.9 16.1 Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway 1:07 PM The Sear -Brown Gmup 1 /25/2007 L W E m z W C �rtrnh�00 �fmOOmONrOrnI�"'T�NtrD�Ntmh N��tNO n ANQ�tmh� hth t00�<N�OONtNO (mO �:NN<tn N t7 V-tDm-tGNOtG mm6N mMOO��[7m� cr O y O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ix 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O rnrn�mmmmN rNNnrn �m°'nnmO O r QOmmOmmQthp(hr rnOmNm r Q N O N Cl m O a. gym.-NNQrn�[�)Q�m�nrnrn N m m N f") n r N Q � l h 1 A r � rn O f m � � w 0 m� N.,m��1(I NQmn �Mm�mN �-ml"f f") Qm�Mt7�Q N��rnr W mmr m.- non Ntn (boon orn<hnrnNmQ� nm�th ^Nrnmn QOmm�Omccpp then L C m Z rn rn rn m rn rn O rn rn rn rn rn e7 rn rn rn rn rn rn rn rn rn N rn rn rn rn rn rn rn rn rn rn rn rn m rn rn rn rn Q m rn rn rn C rn rn rn rn rn rn m rn rn rn rn rn rn rn rn rn rn rn rn rn rn rn m m rn rn rn rn rn rn rn rn rn rn rn rn m rn rn rn rn m rn rn rn rn cj pppp O O rn 0 0 0 0 0 0 0 rn O 0 0 0 0 0 0 0 0 0 0 m r 0 0 0 0 m O O O m O 0 0 r m O O rn m 0 0 0 ----------.- O G--OO G--- U mmnmrnmmmrnmnmmmrnmrnmrnmrnmnmrnmrnrnmrnmrnnrnmrnmmrnmnmmmmrn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E mNNNNNONY)�NNtt) Nil)NNNNNOY)oJ G)Oi[)NNNi()NNOtAONI�YI NtAN 6�N UINN m j C 3. L° E E tiOOOtiOooti0000000000ti000000000000Oti000000000000 y �T o > LL IA C O e O C n W T L m J N N 000------- - NNNNNN Nan to th mthm m--m QQ QQ m m m mm m a° O N C' f Q m m r m 01 0 Nth Q m m n N rn 0 N (h Q N m O V N l h Q m m n m O 1 0 N[ 7 0 O N N N N N N N [h m m N� m m t7 —m m— l1 m O_ fh O_ O O N C Vl N m T C O N 2 N N C N IL Q Q N m C I m T m m O) m m (h f m 4t 7 � m M Nm. t 7 m m m m � N� C l O N h l7 � N � f h f 7 � �� � � N Q� O f � N N N t 7 co N N N � � 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000000000000000000000000000000000000000 Q N N N O n m m m m N A m N O n m O m m m O T m N Q y y O T Q OI m n N O N Q Q NOC)m OiNAmth m C)O Om n Om,6N N nn mn mn nCl 7 T 6m C1 m� miny� C)ONMf7Nf")CIQ� �� �� NQO)CI�NNNI")mmNpNN fh�� w �f")N (7nmmmn'' �m� Q Q py O O m Q m N O Q n N N Q 7 m m m Q^ m N Q O O I l M N (7 N M f O m N f �) O mmmC ( aC m a'-Nl7a a.0. O �ON�00000�-00000� �-�O•-OON.-O�OOOOOOOONO�-�-�-0� �OOQ O.-ma--Om 0)� N Q m m 1A 1A 1A m N IA m IA N m 1(J m m IA t7 IA m N IA IA IA In m N m lA In IA N m m N IA m m m N N m 1A m lA O m N N (�% N O m olm olm wmmmmmm o>rn mrn mrnm nmrn mrn o> mm m m rn m rn m m m of m m of rn m W m olm mmmOmmn oQ ci m mrnmrnmrnmmwmmrnmmmmmmmmmrnrnrnmrnmmmmmm mmmmmm mrnrnmmmmrnmmmmnmm mQ 000000000am0000000m000000moom000m000000000rn000mmO�mNQo mm 0000000000a0000000n00000rnnoom000n000000000m000 n o m0)mmo mm 6 mm m mrnmmmmmmmnmrnmmrnma�'ommrnmmrnnmwmmmmrnmmmmmm wmm mm�rnnmmmnQn mm non' 000000000000000000000000000000000000000000000000000000 00 0.-00000000000 o 0 o o 0 Cl o o oo o om o oo o o 00000000000000000006-0� I: � N 0N H N� N� l A Ni[I N N N N N N l� N� N N N �� N N N N N N N N N N N t� N A� N N� Y I i[ l N N N N i (I Q N� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O m 0 N O Q a 0 m N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f7 O O O O O O m O O O O O O O O O O O O O O O O O O O O O O O O ci O Ia ko� N N O N- Q- m n m- O O N f") Q IA m n O n mp O O" N (7 Q O N (7 Q N 1pph 10o[l th � � p p p pN ppQ pmp N N N N N N N N N N N N N N N N N N N N N N M M (7 f") M f") (� 1 f 7 Q Q V V Q O V Q Q O O Q O 0 0 v0i v0i v0i u0i n v0i d m Q) Q T C)Qm0'-NMQmmn m010� NCI Q mmnmdlO�O�NIhQ ON mopn pOp pp� pNp tpp7 pQp ippOm pnp mO)O�NIh QO e-N C)Q N Q N N N N N N N N N N N N N N N N N N N N N N m C0] m m Coi (7 M Q Q Q Q Q Q Q R Q V< O Q V Q u0i v0i N N N N Op m M C P CD c 3 e m N m m Q d m n d O N O O m d i i Epp p Q N A N m O� A N A N m Q O N O C n A f N O O N O `r°mm� N� mmmO N no _ ��w � NNmmmd d Q-WNQNMQO Nmtm'ld N� 7 mdd OHO m Oil dm'1 -wNd O N.m-0 Omd W n'�tp0 (O mm�mmmdN n m0) mm� N w d O N{h N M` V V � Nm mOI Nm m m NA maO)�ONmO) V N mm�d IAOmci A m' ��n nOO- N N N-" m m m m m O N m m - fO O__ N N m m m d d d N m m d QN N Q m t 7 N O I[ 7 Y 1 m m m t 7 m O f m Q m N m m W N m (O O Q N O) N O f m � A e- p no A O O m m A d O N mmmmv V NN N Q l7R m� n m m t7 <(Cm m O O o m �QVW O CI__NNNNNNm [' l d m m O m- N Ntn (�IQY)Y]nn an d 0 0 now m n 7 N nm 7 7Im0O vAON NTm�NN7OTT10N1N9 a9 � 0-NQ mmommmm h0 N0 M N dmmmmmmmN rnm mmnO .T mmm mmOmmaaamm mmnnnOmO rnm rnm rnmrn mmmn m m O m O m m A n O O O O O O O O d O n 0 0 0 0 0 0 0 O O O O O O O O O O O O O On O O O O m m O w m m m m m Oa O O O O m O O O) N 00 O O O o O 0 o O O O O O O O O O O O O O O O O O O O m O) ---- OM ON m m m m O o w N n m N N m m m O n m m On 0 0 A m m O O O m rn nm n rr Pn nOO . rnm mmm O mmn mn A cc cG mmmmm mmmmmmmm mm rnm mmm mmmm . 000000000 00 0000 0 000 0000000000 00000000 00 00 000 0000 rn u�nnOmmmA Od N omo _7modmmOOo odmAvomm _o ow omo OmOt�O N 61�G<G h N4 Onm 0.; M rN VW0 lm��-6 Ct Nw w,6w 6m0mmmdQQNmm NNNNm m Q m m N O O N A m d m IT m N O m N O m d m IT d O m O IT IT IT A m m IT d O m O m A O m N m . . N m - m m - Q - Q N N m m Q O N m O m m O N Q m O N m a- 0 0 0 O W N m m m m m m m m m N m m m N N N N N N m m m m m m i N N N N N N N N N � N N m m m 000000000 e- OO o �- �- - �-000000 - �- •- - �-�- �- N N N N N N N N N d N N N d d Q d d Q N N N N N N d Q Q Q Q Q d Q d d d N N N 0 0 0 0 0 0 0 0 0 O 000 O O O O O O O O O O O O O O O O O O O O O O O O O O m aaa ana.aaaaaa¢aa mmammmm a a aILa.mmm(L a aaa as a as aaa 0 o N o m O m N 0 O O m Q Q N O O N O a 0 O t7 � -m N "N " ^^^ m d - N N N m d � N m O_ m m m h h n m c0 m m O O O O Q m O O O m _ 0 m O IT m m m O O d f7 n d O h O O O O (7 O O m O d d d m m m N 6 A n O t7 A N O �G M M �j uj n O) ow 60 660 N N O m c� m m m N NNN C') o wmwWmm0 m 0,66666000 m OOAmm000 O Oo _O _OO_OOOO NN mO nm 0O-Nmm Nm mm OOOOOO Om 0OaO ow wow0000moo ^ ^ --- NNNNN 00 m m m n m m n Or 5777 _- m NOOO N N N NNNNmm _000 OOOm O _ O Om Q pOppOOppOO mmmON OOOOOOOO m 00 NOOO 000 N N m m h m m _______ ________ mm N N N p ArnNC4aOOO "i aovoeeacv m �Om O__O NN _ O O O O O O d 0 N 0 0 0 0 0 0 0 O O O O Q Q Q Q Q O Q� Q m n m 0 N O N m m a O O w Q Q Q Q p� _ Q O Q O m m A d_ N n m¢ O N m d O) N O an d _"m O m O m 0 m d -- 0000 o¢ O O _ m m 0_ _ m O O _ O -NO _ N N N N _ _ _ _ _ _ _ _ O O O m m m O O O O a .... �p _ �a _ a N a e m m m 0 0 0 0 N N a a c o 0 a a E E 9� U (O (0 n (A� Cml fh II II 8 8 Q d pp N (. O!O� QI 17 In AOf w^ Q tt,pp NOA(nv W A rn0 0 In ^N �j n0(h m0 O<O(Oo N m0 Mn (v�N V O N O (G Cj0 of mN mI w M ^GO Ow0 N e- O m n r (ri of m (n p O)O) ttpp NOA my 7O N Ao(1 ,(O N l0 �Cp O7 W 7IQ O(0 (hr mN QN �n Q� AN 0rA NN Q t0 M"AaO (0 n"m 06 N� —00(O(0 NRM m7 v- N(O —M Am "mNmInN C) A n A c(v Q Nf")(7 NN 00 ON 1N ON N ONIn nmm v'P v v In(O— Inv Inm In cO InN InA O"Wm(0— IA0 pp (O a MW O N O(3 (w 7 CI OIn O)0 C(v q7 mM m W qOO NM NIn OIIn v m m n v 0-0 Q7 n tG In YIO Oi aGn mm mm mm mM mw mOJ(O w( 0m 0 (O m(O(O �nb Qai O O O o 0 M 0 0 0 0 0 0 O— 0 0 0 0 0 0 0 0 0 0 0 0 O O O v Q N v v 0 0 OOO o0 O>00 00 00 O A 00 00 000000 00 O O A 00 m mm 00 a-- .- -- �O 11 1 r 1 �lm _� �� � � GGC 600 N. nnnmmm-m mm nmmmmmmnmw m m m mwm�wm m0m Omm 00000 oco 00 00 06 co a . oc0000 0000 000 ooO a v O( 0 0 0) O O A O n am O v o- O N O- v A N q O n O m O v- m q m O V J "mmm— NOi 00 h(G Nan IN Inn In(O ( N M0 INI (C A Ism 0a-m N(O MMOvo oon on am a a o—MM0 V oA m M OQn owv oIn O (0 m 6 o V � O 0 0 O r Ci (V G r G N (G O O O O ( G G C O O M OJ mM W mt0 N A N n N n N N(nN N N N N M0 n ` aaaaa ' 00 ' N �- ` N f ' N �.- 0 0 1` , 00 I 16 Cl! N N Cl! Cl! Cl! N Q 0 v 0 v O v O N N v v v Q v N N 0 0 0 0 0 0 O O O N O N O N 0 0 0 0 0 0 O O O O O N aaaaa as a a a a a aaaaa aaaa aaa aaa m 00000 OIn O O O O O OOOm N O O m 00 00 N mmC') I(yn Q)D)(yN In N v fh In OJr �Q NO (h C( (O Q own 0 0 0 00 0 0 0 0 0 0 0 0 O O O O A O O O v m m m 0 a O N M O1 N O N m N In 0 In In In In In N 6 In In A N W N In In w A A A In In _.. O m n I (7 In mo m �- (7 N N In Cf In r N N Pf m (n v v lh m O O •-�- N N N N N 0 0 N N O N N N v N (0 (O O ovG v 00 pO oOp $ v v ai N v q v Q Q 00 O N O O O O O O O O O O O N r n O O N 0 N N N v N N V v v 0 0 0 Oi O OQ a 0 W Q N N N Q In N N N 0 m y N N N N N N N N N N (O Q v V O v v m N 0 Q QmQN vIn v In Ol'n a(O COQ Q Q Q�� O — v(3 AMM O O O 07 N N Nm N N N N (00 N N N O p Q 0 p O 0 p p 0 Q v Q v Nl7 m p v v v v 0 0 I n I nz O Z (7 O N N N N Z 0 N N N Z 0 e Z 0 Z 0 0 a a m a m a c m APPENDIX — F 0 stantec December 2006 STREET CAPACITY CALCULATIONS Stantec ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spirits Project: Bayer Inlet to: STIN-85-2 TBACK TCROWN ' SBAC T, T MA% K W Tx \_ Street Crown i QwQx i y HCURB d S x _. le �. I a 1404 mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) dng's Roughness Behind Curb of Curb at Gutter Flow Line re from Curb Face to Street Crown Depression Transverse Slope Longitudinal Slope - Enter 0 for sump condition ng's Roughness for Street Section Allowable Depth at Gutter Flow Line for Minor 8 Major Storm Allowable Water Spread for Minor 8 Major Storm [Discharge uwtter Cross Slope (Eq. STA)star Depth without Gutter Depression (Eq. ST-2) star Depth with a Gutter Depression lowable Spread for Discharge outside the Gutter Section W (T - W) utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)scharge outside the Gutter Section W, carded in Section Tx scharge within the Gutter Section W (Or - Qx) Behind the Curb (e.g.. sidewalk, driveways, 8 lans) aximum Flow Based On Allowable Water Spread rotieel Water Spread retical Spread for Discharge outside the Gutter Section W (T - W) K Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) retical Discharge outside the Gutter Section W. tamed in Section Tx n, it Discharge outside the Gutter Section W, (limited by distance T,, x) urge within the Gutter Section W (Qd - Qx) Discharge for Major 6 Minor Stoma ~Based Depth Safety Reduction Fectm for Major 8 Minor Storm arge Behind the Curb (e.g., sidewalk, driveways, 8 lawns) num Flow Based on Allowable Gutter Depth flows a"! tlLM the Ta =1 50.0 ft Se =1 0.0200 ft. ven. I ft. horiz nsr = 0.0290 Hcurm= 6.00 inches Tcr = 15.0 ft a = 2.00 inches W = 2.00 ft Sx = 0.0200 ft. van. I ft. horiz So = 0.0250 ft. van. I ft. horiz nsran!r = 0.016D Minor Storm Major Storm tlu =1 6.001 18.00 inches Twx= 15.0 15.0 ft Sw y' d: Tx: Eo' ox: Qw' QedcK' Or: TTM TX ni Eo: Ox M: Qx' OW: Q= R= Qencx Odd Q.K.. 0.1033 0.1033 3.60 3.60 5.60 5.60 13.0 13.0 0.421 0.421 7.6 7.6 5.5 5.5 0.0 0.0 113.21 13.2 u�. C..._ a-:..- c...._ 16.7 66.7 14.7 64.7 0.378 0.086 10.5 549.4 10.5 247.4 6.4 51.8 16.9 299.0 0.86 0.70 0.0 152.7 14.51 315.2 13. Vft xhes aches fs fs is ft is is is is is is StreetCapacitySTIN-85-2.xls, Q-Allow 11/30/2006, 11:13 AM Street Section with Flow Depths 40 -60 -50 -40 -30 -20 -10 0 10 20 Section of 1/2 Street (distance in feet) Ground elev. Minor d-max Major d-max Minor T-max x Major T-max S1reelCapacilySTIN-B5-2.xls, O-Allow 11/30/2006, 11:13 AM I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) J (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Bayer Inlet ID: STIN-B3-3 TRACK TCRO W N SB c T, TMAX K _W ... Tx � Street - - I- -' -;- Crown Qw Qx YI H S .. ' CURB J -\ mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb I of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition rg's Roughness for Street Section Allowable Depth at Gutter Flow line for Minor 8 Major Storm Allowable Water Spread for Misr 8 Major Storm Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W IT - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Me outside the Gutter Section W, carried in Section Tx rge within the Gutter Section W (Or - Qx) rge Behind the Curb (e.g.. sidewalk, driveways, 8 lawns) um Flow Based On Allowable Water Spread retical Water Spread reticel Spread for Discharge outside the Gutter Section W (T - W) f Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) retieal Discharge outside the Gutter Section W. carried in Section Tx ra it Discharge outside the Gutter Section W, (limited by distance Ty) large within the Gutter Section W I% - Qx) Discharge for Major a Minor Storm Based Depth Safety Reduction Factor for Major 8 Minor Storm arge Behind the Curb (e.g., sidewalk, driveways, 8 lawns) num Flow Based on Allowable Gutter Depth Te -1 50.0 ft Se K = n, n = 1 0.0200 ft. vat. I ft. horiz 0.0290 Hcu,s, = 6.00 inches Tcnowa = 19.0 ft a = 2.00 inches W = 2.00 ft S. = 0.0200 ft. vert. I ft. horiz So = 0.0050 ft. vet. / ft. horn n5TREET = Minor Storm Ma or Storm duAx =1 6.001 184inches Tux =1 13.51 19.0 ft Sw y it T. Eo' ox: Qw' OexcK Or: TTM Txrx Eo Qx nt Qx' ow! Q R ABACK Qa' Q. than the how ai:en o 0.1033 0.1033 3.24 4.56 5.24 6.56 11.5 17.0 0.467 0.330 2.5 7.0 2.2 3.5 0.0 0.0 4.61 10.4 u;.,... ce- U.w cr...... 16.7 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 136.8 2.9 23.1 7.6 159.8 1.00 10 0 68.3 7.61 228.1 left riches t is is is :fs t t Is is is is is is StreetCapacity-STIN-B3-3.xls. Q-Allow 11/3012006, 11:13 AM Street Section with Flow Depths ,O -60 -50 -40 -30 -20 -10 0 10 20 30 Section of 1/2 Street (distance in feet) —Ground elev Major d-max Major T-max Minor d-max Minor T-max StreetCapacity-STIN-B3-3.xls. O-Allow 11/30/2006, 11:13 AM I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Bayer Inlet ID: STIN-1334 TRACK TCROWN T. TMAx SBACK ... -. W Tx. - - - -- teet S Crown I .Qw -.I Qx � y; HCURB d a -N.-\ mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb I of Curb at Gutter Flow Line os from Curb Face to Street Crown Depression Width Transvema Slope LongitWinal Slope - Enter 0 for sump condition rig's Roughness for Street Section Allowable Depth at Gutter Flow Lim for Minor & Major Storm Allowable Water Spread for Mkror & Major Storm Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W (T - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) rge outside the Gutter Section W, carried in Section Tx rge within the Gutter Section W (Or - Ox) rge Behind the Curb (e.g., sidewalk, driveways. & la"s) um Flow Based On Allowable Water Spread retical Water Spread mbcal Spread for Discharge outside the Gutter Section W (T - W) K Flow to Design Flow Ratio by FHWA HEC-22 method (Eq- ST-7) retical Discharge outside the Gutter Section W, tamed in Section Tx 1x it Discharge outside the Gutter Section W, (limited by distance Tux.K) arge within the Gutter Section W I%- Ox) Discharge for Major & Misr Storm Based Depth Safety Reduction Fact" for Major & Minor Storm arge Behind the Curb (e.g.. sidewalk, driveways, & lawns) num Flow Based on Allowable Gutter Depth Ta�cx = 50.0 ft S= = 0.0200 ft. van. / ft. horiz nay = 0.0290 Hcurm = 6.00 inches Tcs = 19.0 ft a = 2.00 inches W = 2.00 ft Sx = 0.0200 R van. / ft. horn So = nslazer = 0.0050 ft. van. / ft. honz 0.0160 Mirror Storm Major Storm dr = 8.00 18.00 inches T.= 13.5 19.0 ft SW y d' Tx' E. Ox: Ow' Cie.: Or' TTM Tx ra Eo Ox TM Qx' Ow' O' R (� � oat K' Gd' 0.1033 0.1033 3.24 4.56 5.24 6.56 11.5 17.0 0.467 0.330 2.5 7.0 22 3.5 0.0 0.0 4.61 10A VIt aches nches t Is :fs ,is ds Minor Storm Major Storm 16.7 66.7 ft 14.7 64.7 ft 0.378 0.088 4.7 245.7 4.7 136.8 2.9 23.1 7.6 159.8 1.00 1.00 0.0 68.3 7.61 228.1 Minor Storm G, m =L 4.61 is .is .is is StreetCapacity-STIN-B34.xls. O-Allow 11 /30/2006. 11:14 AM Street Section with Flow Depths .10 -60 -50 -40 -30 -20 -10 0 10 20 30 Section of 1/2 Street (distance in feet) —Ground elev Major d-max Major T-max Minor d-max Minor T-max StreelCapacity-STIN-B34.xls, O-Allow 11/30/2006, 11:14 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor (Based on Regulated Criteria for Maximum Allowable Flow Deoth and Snraa Project- Bayer Inlet ID: STIN-137-1-1 .. -TRACK _. - TCROWN.- S T, TMAx BACK W T. - Y, HCURB d Qw Qx. mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind wrb) ring's Roughness Behind Curb of Curb at Gutter Flow Line m from Curb Face to Street Crown Depression Transverse Slope Longitudinal Slope - Enter 0 for sump condition og's Roughness for Street Section Allowable Depth at Gutter Flow Line for Minor & Major Storm Aflamble Water Spread for Minor & Major Storm Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W (T - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) rge outside the Gutter Section W, canted Section Tx rge within the Gutter Section W (Qr - Qx) rile Behind the Curb (e.g., sidewalk, driveways, & lawns) um Flow Based On Allowable Water Spread retinal Water Spread retinal Spread for Discharge outside tte Gutter Section W (T - W) or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) retinal Discharge outside the Gutter Section W. carded in Section Tx ra it Discharge outside the Gutter Section W. (limited by distance T.) large within the Gutter Section W (Qd - Qx) Discharge for Major & Minor Storm Based Depth Safety Reduction Factor for Major & Minor Storm arge Behind the Curb (e.g., sidewalk, driveways, & towns) num Flow Based on Allowable Gutter Depth 101241 ble flows are in= Tay = 0 ft San = 0.02050.0 ft. vert / ft. hertz naxox = 0.0290 Hcuse = 6.00 inches Tcaowa = 15.0 ft a = 2.00 inches W = 2.00 ft Sx = 0.0200 ft. van. / ft. hertz So = 0.0050 ft. Vert./ft. here nsra,u = 0.0160 Minor Storm Ma or Storm dµor = 8.00 18.00 inr9res TM = 15-01 15.0 ft Sw y d Tx Eo Qx Qw' C.: Qr' Tm Txm Qx�' Qx' Qw' Q R= Qa.tx " Qa` Qa 0.1033 0.1033 3.60 3.60 5.60 5.60 13.0 13.0 0.421 0.421 3A 3.4 2.5 2.5 0.0 0.0 5.9 5.9 know cm.... U."' e....... 16.7 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 110.7 2.9 23.1 7.5 133.7 1.00 1.00 0.0 68.3 7.5 202.0 ftm Inches ft cis as as Ma i t is :is Its is StreelCapacity-STIN-B7-1-1.xls, O-Allow 11/30/2006. 11:14 AM Street Section with Flow Depths 40 -60 -50 40 -30 -20 -10 0 10 20 Section of 1/2 Street (distance in feet) —Ground elev Major d-max Major T-max Minor d-max Minor T-max SlreelCapacily-STIN-U-1-1.xls. 0-Allow - 11/30/2006, 11:14 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Bayer Inlet to: STIN437-2-1 TRACK -- - - TCROWN - - SBACT. TMAx he W Tx - Street -- - - Crown y I Qw I Qx HCURB d J - S x I � a rum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) iing's Roughness Behind Curb of Curb at Gutter Flow Une e from Curb Face to Street Crown Transverse Slope Longitudinal Slope - Ether 0 for sump condition g's Roughness for Street Section Depth at Gutter Flow Une for Minor & Major Storm Water Spread for Minor 8 Major Storm ( mawnnwa wear a.a acn aww am cur sera namr a ma Gutter Cross Slope (Eq. ST-8) Water Depth without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W. named in Section Tx Discharge within the Gutter Section W (Gr - Cx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Water Spread retital Water Spread retkal Spread for Discharge outside the Gutter Section W IT - W) r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) e0ral Discharge outside the Gutter Section W, cabled in Section Tx ra I Discharge outside the Gutter Section W, (limited by distance Tax,) arge within the Gutter Section W (Dr - Dx) Discharge for Major & Minor Storm -Based Depth Safety Reduction Factor for Major & Minor Storm arge Behind the Curb (e.g.. sidewalk, driveways, & lawns) num Flow Based on Allowable Gutter Depth OK: These TercK =1 50.0 ft SWR =1 0.0200 ft. van. I ft. fora ri , =1 0.0290 Hcure = 6.00 inches Tcewva = 15.0 ft a = 2.00 inches W = 2.00 ft S, = 0.0200 ft, van. I ft. hroriz So = 0.0050 ft. van. I R hloriz ns,,,u = Minor Storm Major Storm daxx = 6.00 18.00 Inches T. =1 15.01 15.0 ft Sw, y' d Tx' Eo Ox: Qw: Oa K Qrr Tn., Txr Eo Dx rn O,' Ow O R o1WK' Gd' 0.1033 0.163 3.60 3.60 5.60 5.so 13.0 13.0 0.421 OA21 3.4 3.4 2.5 2.5 0.0 0.0 59 5.9 r,;- er..- ue:.,. e.....-. 16.7 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 110.7 2.9 23.1 7.5 133.7 1 1.00 R 68.3 7.51 202.0 Minor Storrn Major Storm 5.89 5.8s Vft 1d1es fiches is fs Is fa ,is fs fs is Is is StreelCapacily-STIN-87-2-1.xls, O-Allow 11/30/2006, 11:14 AM Street Section with Flow Depths 40 -60 -50 -40 -30 -20 -10 0 10 Section of 1/2 Street (distance in feet) i —Ground elev. Minor d-max Major d-max Minor T-max x Major T-max KIM SlreelCapadly-STIN-87-2-1.xls, O-Allow 11/30/2006. 11:14 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor (Based on Rectulated Criteria for Maximum Allowable Flow naath and s...aa Project: Ba r Inlet ID: STIN-B-9 TBACK TCROWN _.. S - T' TMAx BACK W Tx-- - Crown I i y Qw I Qx I - HCURB d t I al _ mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) hing's Roughness Behind Curb of Curb at Gutter Flow Line x from Curb Few to Street Crown Depression Transverse Slope Longitudinal Slope - Enter 0 for sump condition g's Roughness for Street Section Allowable Depth at Gutter Flow Line for Minor & Major Storm Allowable Water Spread for Minor & Major Stonn Cross Slope (Eq. ST-a) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W (T - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) rge outside the Gutter Section W. carried in Section Tx rge within the Gutter Section W (Or - Dx) rge Behind the Curb (e.g., sidewalk, driveways, & lawns) um Flow Based On Allowable Water Spread retical Water Spread retkal Spread for Discharge outside the Gutter Section W (T - W) e Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) retical Discharge outside the Gutter Section W. carried in Section Tx rH d Discharge outside the Gutter Section W, (limited by distance TuW large within the Gutter Section W (Or - Dx) Discharge for Major & Minor Storm -Based Depth Safety Reduction Factor for Major & Minor Stonn arge Behind the Curb (e.g.. sidewalk, driveways. & lawns) num Flow Based on Allowable Gutter Depth o•wable flowa Ts,,c. =1 50.0111 Swa = 0.0200 ft. van. I h. horiz rl � = 0.0- Hcunm = 6.00 inches T = 15.0 ft a = 2.00 inches W = 2.00 ft % = 0.0200 ft. van. I ft. horiz SO = 0.0050 ft. vert. I ft. tor¢ ns,au = 0.0160 Mirror Storm Ma or Storm dwx = 6.00 18.00 Inches T. 15.0 15.0ft Sw y d Tx E, Dx' ow: err' TIN Txrs: E.' Dxm' Dx: ow: D= R= Okuc. Qe' p_= flow ui'.'en On 0.10331 0.1033 3.60 3.60 5.60 5.60 13.0 13.0 0.421 0.421 3.4 3.4 2.5 2.5 0.0 0.0 5.9 5.9 16.7 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 110.7 2.9 23.1 7.5 133.7 1.00 1.00 0.0 68.3 1 7.5 202.0 i f/R ndhes nches 1 :fs fs Is fs fs Is is is is is StreetCapacity-STIN-B-9.xls. O-Allow 11/3012006, 11:14 AM Street Section with Flow Depths 40 -60 -50 -40 -30 -20 -10 0 10 20 Section of 1/2 Street (distance in feet) Ground elev. Minor d-max Major d-max Minor T-max x Major T-max StreetCapacity-STIN-B-9.xls• O-Allow 11/30/2006. 11:14 AM I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) �I (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: - Bayer Inlet ID: STIN-G-1 __._TRACK - TCROWN _.. .. _ T, ST BACK MAX .. - ---- W Tx Street Crown I I Y QW. i Qx .. CURB d mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind Curb) hirg's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Fete to Street Crown Depression Width Transverse Slope LorgMWhutl Slope - Enter 0 for sump condition 1g's Roughness for Street Section Allowable Depth at Gutter Flow Line for Minor 8 Major Storm Allowable Water Spread for Minor 8 Major Storm I Gutter Cress Slope (Eq. ST-8) star Depth without Gutter Depression (Eq. ST-2) titer Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W. carried in Section Tx Discharge within the Gutter Section W (Or . Ox) Discharge Behind the Curb (e.g.. sidewalk, driveways, 8 lawns) Maximum Flow Based On Allowable Water Spread rental Water Spread re0wl Spread for Discharge outside the Gutter Section W (T - W) f Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) retieal Discharge outside the Gutter Section W. carried in Section Tx m it Discharge outside the Gutter Section W, (limited by distance T,c,,,,) arge rrimin the Gutter Section W (Oa - Ox) Discharge for Major 8 Minor Storm -Based Depth Safety Reduction Factor for Maim d Minor Storm arge Behind the Curb (e.g.. sidewalk, driveways, & lawns) num Flow Based on Allowable Gutter Depth allowable flows are gnoli1Qa Tw,cx= So.o ft S = 0.0200 R. vert. / R. hertz nWK= 0.0290 Hcuse = 6.00 inches T. = 31.0 R a = 2.00 inches W = 2.00 R % = 0.0200 ft ven. / R. hertz So = 0.0050 ft. vert. / ft hertz nsmEV = Mirror Storm Me'or Storm cl , = 6.00 18.00 Inches Tzohx = 31.0 31.0 R Sw' y' d= Tz= Eo ` Ox= O f�w= QWK= Or T": Txm: Eo' Oxni Oz= ow - 0- R= amcK = Ozz Q, 0.1033 0.1633 7.44 7.44 9.44 9.44 29.0 29.0 0.195 0.195 29.0 29.0 9.5 9.5 2.4 2.4 38A 38.4 ui.,.,r ew...., u-w Qr...... 16.7 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 195.4 2.9 23.1 7.6 218.5 1.00 1.00 0.0 fi8.3 7.8 288.8 7 Storm yR ches ►Gres 1s fs fs fe fs is fs fs fs fs StreetCapacity-STIN-G-1.xls. O-Allow 11/30/2006. 11:14 AM Street Section with Flow Depths -60 -40 -20 0 20 40 Section of 1/2 Street (distance in feet) —Ground elev Major d-max * Major T-max Minor d-max Minor T-max SlreelCapacily-STIN-G-t.xls, Q-Allow 11/3012006. 11:14 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spree Project: Bayer Inlet to: STIN-Gd TBACx - ,� .. _ --_. TCROWN ....-_ .. ._. SB T. TMAx < . W Tx �_.. tre t S e Crown Qw Qx y HCURe d _ _ S x a\f - _�4 mum Allowable width for Spread Behind Curb Slope Behind Curb (Issue blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line s from Curb Face to Street Crown Depression Transverse Slope Longitudinal Slope - Enter 0 for sump condition Vs Roughness fix Street Section Allowable Depth at Gutter Flow Lure for Minor & Major Storm Allowable Water Spread fix Misr & Major Stonn Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W (T - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) rge outside the Gutter Section W, carried in Section Tx rge within the Gutter Section W (Or - Ox) Me Behind the Curb (e.g., sidewalk, driveways, & lawns) um Flow Based On Allowable Water Spread retloal Water Spread re0cal Spread for Discharge, outside the Gutter Section W (T - W) r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) vilest Discharge outside the Gutter Section W. carried in Sedan Tx TH 1 Discharge outside the Gutter Section W, (limited by distance TM) arge within the Gutter Section W (Od - Ox) Discharge for Major & Misr Stone -Based Depth Safety Reduction Factor for Major & Minor Stone arge Behind the Curb (e.g., sidewalk, driveways, & lawns) num Flow Based on Allowable Gutter Depth allowable =1 50.0 ft CTsmcx ` WK = ri . =1 0.0200 ft. ven. / ft. horiz 0.0290 Hcuas = 6.00 inches Tc�K = 31.0 ft a = 2.00 inches W = 2.00 ft Sx = 0.0200 ft. ven. / ft. horiz So = 0.0050 ft. vent / R hertz nsm" = 0.0160 Misr Storm Major Storm dam= 6.001 /8.00 inches T� =1 31.01 31.0 ft SW y. d TX: E.: Oz: (� Dw: osI x' Or' Tr,, TxTM: Eo' Oxnr' Oz: Ow: O= R= QB K Od' 0A033 0.1033 7.44 7.44 9.44 9.44 29.0 29.0 0.195 0.195 29.0 29.0 9.5 9.5 2.4 2.4 38.41 38.4 mi.,,. cr...,, u.w Q..,.... 16.7 66.7 14.7 64.7 0.378 0.688 4.7 245.7 4.7 195A 2.9 23.1 7.6 218.5 1.00 1.00 0.0 68.3 7-61 286.8 ft/ft kid lord ft cis cis cfs cfs 9 1 .fs :fs is is is :h Mirror Storm Ma or Storm QN = 7.56 38.42 cfs ..n on sheet'O-peak' StreetCapacity-STIN-G-4.xls, Q-Allow 11/302006. 11:14 AM 9 Street Section with Flow Depths -60 -40 -20 0 20 40 Section of 1/2 Street (distance in feet) —Ground elev. Major d-max Major T-max i Minor d-max Minor T-max StreetCapacity-STI N-G-4. xls. 9-Allow 11/30/2006, 11:14 AM I� ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) �I (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Bayer Inlet to: STIN-0-1 TBACx - TCROWN BACK - T, TMAx k W Tx . Crown -- -- i I Qw I Qx Y HCURB d _ S a Ci 4% \- mm Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) iirtg's Roughness Behind Curb of Curb at Gutter Flaw Line m from Curb Face to Street Crown Transverse Slope Longitudinal Slope - Enter 0 for sump condition 1g's Roughness for Street Section Allowable Depth at Gutter Flow Lino for Minor & Major Stone Allowable Water Spread for Mirror & Major Stone Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W (T - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) rge outside the Gutter Section W. canned in Section Tx rge within the Gutter Section W (OT - Ox) rge Behind the Curb (e.g., sidewalk, driveways, & lawns) um Flaw Based On Allowable Water Spread rental Water Spread rental Spread for Discharge outside the Gutter Section W (T - W) f Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) retinal Discharge outside the Gutter Section W, tamed in Section Tx n, d Discharge outside the Gutter Section W, (lirnited by distance Tw ) large within the Gutter Section W (tie - Ox) Discharge for Major & Minor Storm ,Based Depth Safety Reduction Factor for Major & Minor Storm arge Behind the Curb (e.g.. sidewalk, driveways, & lawns) num Flow Based on Allowable Gutter Depth Tezcx = 50.0 ft Sezcx = 0.0200 ft. verL I ft. horiz rkt = 0.0290 Hcwm = 6.0o inches TcR =1 50.0 ft a = 2.00 inches W = 2.00 ft Sx =1 0.0200 ft. ven. I ft. horiz So =1 0.0050 ft. van. I ft. horiz nSTREET = Minor Storm Ma'or Sform rl x =1 6.D01 18.00 inches T. = 13.5 19.0 ft Sw' y' d Tx: Eo' Oz' ow: os x : chi TTM Txra Eo' ox Ta' Oz: Ow' O R Dentx ' De: 0.1033 0.1033 3.24 4.56 5.24 6.56 11.5 17.0 0.467 0.330 2.5 7.0 2.2 3.5 0.0 0.0 4.61 10.4 u� Qr....., ".w cr...... 16.7 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 136.8 2.9 23.1 7.6 159.8 1.00 1.00 0.0 68.3 7.8 228.1 Stone ftm nci nd 1 ;ts -is -is :fs t is h ,is fs is StreetCapacity-STIN-0-1.xls, 0-Allow 11130I2006, 11:15 AM Street Section with Flow Depths MI -60 -40 -20 0 20 40 60 Section of 1/2 Street (distance in feet) —Ground elev. Major d-max Major T-max Minor d-max Minor T-max SlreelCapacily-STIN-0-1.xls. O-Allow 11/30/2006. 11:15 AM ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Snreadl Project: Bayer Inlet ID: STIN-0-2 ' TBACK •-- - - -- TCROWN S T. TMAX BACK - - - - W Tx Street Crown 1 ow .� Qx ..� y HCURB d c- .0, a c"' mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Wkth Transverse Slope Longitudinal Slope - Enter 0 for sump condition V's Roughness for Street Section Allowable Depth at Gutter Flow Line for Minor & Major Storm Allowable Water Spread for Miner & Major Storm Tern =1 50.011 Sswc = 0.0200 ft. ven. / ft. hor¢ nertx = 0.0290 Hams = 8.00 Inches Tceovm = 19.0 fl a = 2.00 khches W Sx = 0.0200 ft. ven. / ft. hor¢ So = 0.0050 R ven. / ft. hors nsr,,,u = Mmor Storm Mabr Storm d. = 8.00 18.00 inches Tw,,=1 13.51 19.0 ft / g mawnnum u r �a act aaaan no g note waters an Gutter Cross Slope (Eq. ST-8) Sw : star Depth without Gutter Depression (Eq. ST-2) y ater Depth with a Gutter Depression d kwrable Spread for Discharge outside the Gutter Section W (T- W) Tx: utter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo ischarge outside the Gutter Section W. carried in Section Tx Ox Discharge within the Gutter Section W (Or - Ox) Qw = Discharge Behind the Curb (e.g., skewalk, driveways, & Lawns) Q.. Maximum Flow Based On Allowable Water Spread Or. retieal Water Spread Trill retical Spread for Discharge outside the Gutter Section W (T - W) Tx ni r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo radical Discharge outside the Gutter Section W. ranted in Section Tx r„ Ox.K it Discharge outside the Gutter Section W, (limited by distance T.) Olt arge within his Gutter Section W (Gd - Dili Ovr' Discharge for Major & Minor Storm O ~Based Depth Safety Reduction Factor for Major & Minor Storm R : arge Behind the Curb (e.g.. sidewalk, driveways, & lawns) OWK num Flow Based on Allowable Gutter Depth Qd table Gutter Capacity Based an Minimum of Q. or - Q,r,,, OK: These maximum allawable flows it,, ::realci than the fluw liven o 0.1033 0.1033 324 4.56 524 6.56 115 17.0 0.461 0.330 2S 7.0 22 3.5 0.0 0.0 4.8 70.4 ui..... cr....., u..w ..- 16.71 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 136.8 2.9 23.1 7.6 159.8 1.00 10 0 68.3 7.8 228.1 LL7W inches ft cis cis cis ere t It is is Its is is StreelCapacity-STIN-0-2.xls, O-Allow 11130/2006, 11:15 AM f Street Section with Flow Depths -60 -50 -40 -30 -20 -10 0 10 20 30 Section of 1/2 Street (distance in feet) —Ground elev. : ; Minor d-max Major d-max Minor T-max Major T-max StreetCapacity-STI N-O-2. xl s. O-Allow 11/3012006. 11:15 AM APPENDIX — G December 2006 INLET SIZING Stantec INLET SIZING — Udlnlet Type R Curb Inlets Stantec DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Baver STIN-A2-1 Design Flow = Gutter Flow + Carry-over Flow yUVFLOWND SIDE y STREET FLOW nD FLOWy F GUTTER FLOW PLUS CARRY-OVER FLOW e F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 3.10 cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet O-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope ft/ft Length (ft) Site is Urban: I Overland Flow = Site Is Non -Urban: -"` Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P1 I ( CC2 + T,) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = ': inches Cj= C2 = C3= User -Defined Stonn Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C3 = Bypass (Carry -Over) Flow from upstream Subcatchments, q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/A Calculated 5-yr. Runoff Coefficient, C5 - N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, is = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, Tc = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, O =1 3.10 cfs STIN-A2-1.xls, Q-Peak 1/25/2007, 2:50 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-A2-1 "- Lo (C) 11 Design Information (Input) Type of Inlet Type = COOT Type R Curb Opening , Local Depression (in addition to gutter depression's' irom'Q-AIIow') ate= - 300 inches Number of Unit Inlets (Grate or Curb Opening) No = 1 Grate Information Length of a Unit Grate L. (G) _ " N/Afeet idth of a Unit Grate W, N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,, = N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) _ N/A Grate Weir Coefficient (typical value 3.00) C„ (G) _ N/A Grate Orifice Coefficient (typical value 0.67) Co (G) _ ` N/A Curb Opening Information _ Length of a Unit Curb Opening L. (C) _ - 5.00 feet Height of Vertical Curb Opening in Inches H,.,,r = 6.00 inches Height of Curb Orifice Throat in Inches Hr„e = ': 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) =, - 6.20. Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) = 2.30 Curb Opening Odfice Coefficient (typical value 0.67) Co (C) = 0.67 Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = N/A' Clogging Factor for Multiple Units Clog = N/A s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 3.1 cis curb) dv =. WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cis curb) Qe = N/A inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 3.1 cfs curb) da _' N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cis curb) d. _ N/A' inches Resulting Gutter Flow Depth Outside of Local Depression cl o = NIA Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = - 1.00. Clogging Factor for Multiple Units Clog = 0201 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 3.1 cis curb) d,„ = 3.5 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.1 cls curb) cl, = 3.8 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 3.1 cis curb) da = 3.3inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cfs curb) d„ = 3.7 inches Resulting Gutter Flow Depth Outside of Local Depression tl"u„ = 0.8 inches Resultant Street Conditions Total Inlet Length L = _ . 5.0feet Total Inlet Interception Capacity (Design Discharge from O-Peak) 0, = 3.1 cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = 0.8& inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T = 0.6 feet Resultant Flow Depth at Maximum Allowable Spread daeeew= 0.0 inches STIN-A2-1.xls, Inlet In Sump 1/25/2007, 2:50 PM 27 - 2625 24 23 I —I 22 2120 A I 19 I I �1817 m I I I I I I 13 78 I I l— 1n 15 a I �► I C 13 I / 01 m 12 76 7. 6 4! 3 11 I I I 1I i 2 I l l l I I 1 Iol i i I I 01 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (Cf8) —6 Curb Weir —0 Curb Onf. E3 Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-A2-1.xls, Inlet In Sump 1/25/2007, 2:50 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-A3-1 Design Flow = Gutter Flow + Carry-over Flow OVERLAND I SIDE I IOVERLAND I Y FLOW W I STREET I W FLOW W FGUTTER FLOW PLUS CARRY -EVER FLOW 1 ® F GUTTER FLEW INLET INLET I/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Cl = 10.63 cfs * If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B. C, or D Site: (Check One Box Only Slope (ftlft) Lenth ft Site is Urban:j Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, I ( C2 + T, ) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches C,= C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tc = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, Tc = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, Tc = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 10.63 cfs STIN-A3-1.xis, Q-Peak 1/25/2007, 2:50 PM INLET IN A SUMP OR SAG LOCATION Project= - - Bayer ,. Inlet ID = STIN-A3.1 G --Lo (C)—� Design Information (Input) Type of Inlet Type = COOT Type R Curb Opemng Local Depression (in addition to gutter depression'a' from'Q-Allow) a.,i - 3.00. inches Number of Unit Inlets (Grate or Curb Opening) No = - 1 Grate Information Length of a Unit Grate L. (G) = WA feet idth of a Unit Grate W. = NIA feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,. =. WA Clogging Factor for a Single Grate (typical value 0.50) " _ C, (G) _ WA` Grate Weir Coefficient (typical value 3.00) C„ (G) = - NIA Grate Orifice Coefficient (typical value 0.67) C. (G) = - NIA. Curb Opening Information _ Length of a Unit Curb Opening L, (C) = - 10.00 feet Height of Vertical Curb Opening in Inches H,,,,i =-(` 6.00 inches Height of Curb Orifice Throat in Inches Hq,P„=" 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = 63A degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp =! - - 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) _' 0.15 Curb Opening Weir Coefficient (typical value 2.30.3.00) C„ (C) =' - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C. (C) _: - 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coal = NIA! Clogging Factor for Multiple Units Clog =-. N/AI s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 10.63 cis curb) d„, _, WA' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.63 cis curb) d,,, _' N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 10.63 cis curb) da = - NIA. inches Flow Depth at Local Depression with Clogging (0 cis grate, 10.63 cfs curb) d. _'. N/A' inches Resulting Gutter Flow Depth Outside of Local Depression cl D = N/A inches [Resultina Gutter Flow Depth for Curb Opening Inlet Caoacitv in a Sum _ Clogging Coefficient for Multiple Units Coal = 1.00� Clogging Factor for Multiple Units Clog = - 0.15 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 10.63 cfs curb) d., = 5.8' inches Flow Depth at Local Depression with Clogging (0 cis grate, 10.63 cis curb) d,„ = 6.3 inches Curb as an Orifice, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 10.63 cis curb) d,; = 4.6 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 10.63 cfs curb) d. _'. 5.3 inches Resulting Gutter Flow Depth Outside of Local Depression d,.u,ro =; 3.3 Inches Resultant Street Conditions Total Inlet Length _ L = 10.0 feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. _, 10.6 cls Resultant Gutter Flow Depth (based on sheet 0-Allow geometry) d =: 3.3 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 5.5 feet Resultant Flow Depth at Maximum Allowable Spread dgPREAD = 0.0 inches STIN-A3-1.xls, Inlet In Sump 1/25/2007, 2:51 PM 30 29 28 27 26 — 25 — 24 — 23 22 I I i 2120 I / O I N 17 a 10 76 fA I I Q 15 74 C I 0 13 m 12 11 10 9 1 I 0 I I I 8 5- l I 3. 2 l O 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (die) -6 Curb Weir 0 Curb 06L —B—Not Used • Reported Design —O— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-A3-1.xls, Inlet In Sump 1/25/2007, 2:51 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-Ag-I Design Flow = Gutter Flow + Carry-over Flow �OV RLAND SIDE yOVER AND I STREET e GUTTER FLOW PLUS CARRY-OVER FLOW c F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 11.53 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Onl) Slope ft/ft Len th ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P1 I ( C2 + Tc ) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vc = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = NIA minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 11.53 cfs STIN-A9-1.xls, Q-Peak 1/25/2007, 2:52 PM INLET IN A SUMP OR SAG LOCATION Project= - - Bayer I Inlet ID = - STIN-A9-1 —Lo (C) / Design Information (input) Type of Inlet Type=".CDOT Type Curb Opening . Local Depression (in addition to gutter depression'a' fmm'O-AIIow') aim = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = 1 Grate Information Length of a Unit Grate L, (G) = N/A feet Width of a Unit Grate WP =- N/A feet rea Opening Ratio for a Grate (typical values 0.15-0.90) A,,,P =--"- N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = N/A Grate Weir Coefficient (typical value 3.00) C. (G) = N/A' Grate Orifice Coefficient (typical value 0.67) C. (G) = N/A Curb Opening Information Length of a Unit Curb Opening LP (C) = ` - 10.00 feet Height of Vertical Curb Opening in Inches H,,,,,= - 6.00 inches Height of Curb Orifice Throat in Inches H,rP = 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta ='' �' - 63.4. degrees Side Width for Depression Pan (typically the gutter width of 2 feet) WP =. _ 2.00. feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) _ 0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) - C. (C) _ -, 2.30' Cum Opening Orifice Coefficient (typical value 0.67) C. (C) _: 0.67 Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef= N/Al Clogging Factor for Multiple Units Clog = N/At s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 11.53 cis cum) d,„ _, WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 11.53 cfs cum) d„, _ NIA inches s an Orifrte _ Flow Depth at Loral Depression without Clogging (0 cis grate, 11.53 cfs cum) dy = - N/A'. inches Flow Depth at Local Depression with Clogging (g cfs grate, 11.53 cis cum) dP, _ N/A inches Resulting Gutter Flow Depth Outside of Local Depression d,4„„ _ N/A inches Resultin Gutter Flow Depth for Cum Opening Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef = 1.00 Factor for Multiple Units Clog = Cum as a Weir, Grate as an Orifice ,Clogging Flow Depth at Local Depression without Clogging (0 cfs grate, 11.53 cis cum) d,„ = - 6.2 inches Flow Depth at Local Depression with Clogging (0 cfs grate. 11.53 cis cum) d,„ =. 6.7 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 11.53 ofs cum) d. = 4.9 inches Flow Depth at Local Depression with Clogging (0 cis grate, 11.53 cfs cum) d. = 5.8inches Resulting Gutter Flow Depth Outside of Local Depression d,.c,,,,= 3.7 inches Resultant Street Conditions _ Total Inlet Length L =. 10.0 feet Total Inlet Interception Capacity (Design Discharge from O-Peak) O, = 11.5 cis Resultant Gutter Flow Depth (based on sheet O-Allow geometry) of =" 3.7 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T =- 7.0. feet Resultant Flow Depth at Maximum Allowable Spread d3PREAD = 0.0 inches STIN-A9-1.xls, Inlet In Sump 1/25/2007, 2:51 PM 28 27 26 26 — — 24 I I 23 —� I 22 21 20 19 18 `17. 9 18 I 1CL n 18 m N 14 C 13 :5 a m 12 — 11. 10 5 3 2 Goal 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 a (cfs) —6 Curb Weir Curb Od/. E9 Not Used • Reported Design —o— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R.) STIN-Ag-t.xls, Inlet In Sump 1/25/2007, 2:51 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-A10-1 Design Flow = Gutter Flow + Carry-over Flow OVERLANDI STREEET FLOW ND FLOW FLOW F GUTTER FLOW PLUS CARRY-OVER FLOW me u F GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q = 6.75 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = - % NRCS Soil Type IA, B. C, or D Site: (Check One Box Only) Slope ft/ft) Lenth tt Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) ^ C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tc = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, Tc = N/A minutes Recommended Tc = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 6.75 cfs STIN-A10-1.xls, Q-Peak 1/25/2007, 2:53 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = - STIN-A10-1 Desi n Information (Input) Type of Inlet Type = COOT Type R Curb Opening Local Depression (in addition to gutter depression's' fmm'(D-Allow') al" 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = - 1. Grate Information Length of a Unit Grate L. (G) = WA feet idth of a Unit Grate W, _ WA feet Area Opening Ratio for a Grate (typical values 0.15-0,90) A,.w= N/A" Clogging Factor for a Single Grate (typical value 0.50) Ci (G) _ . WA Grate Weir Coefficient (typical value 3.00) Cw (G) _ : N/A Grate Orifice Coefficient (typical value 0.67) Co (G) _ : N/A' Curb Opening Information Length of a Unit Curb Opening L. (C) _ 10.00 feet Height of Vertical Curb Opening in Inches H,, = 6.00 inches Height of Curb Orifice Thmat in Inches Hprpr, _ 5.96 inches Angle of Throat (see USDCM Figure STS) Theta = " 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp =I - 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) G (C) _:.... 0.M Curb Opening Weir Coefficient (typical value 2.30-3,00) C. (C) 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C. (C) _ 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = N/A. Clogging Factor for Multiple Units Clog ='- N/A. s a Weir _ Flow Depth at Local Depression without Clogging (0 cis grate, 6.75 cfs curb) d- = N/A; inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.75 cis curb) d„, _ N/A' inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 6.75 cfs curb) d. _ N/A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.75 cfs curb) it. _. N/A. inches Resulting Gutter Flow Depth Outside of Local Depression d",er = N/A inches Resulting Gutter Flow De th for Curb Openina Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coal= 1.00' Clogging Factor for Multiple Units Clog =' 0.20" Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.75 cfs curb) rl , 4.3 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.75 cfs curb) it. _ 4.8' inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.75 cis cum) it. _ 3.4' inches Flow Depth at Local Depression with Clogging (0 cfs grate. 6.75 cfs cum) cf . _ 3.9 inches Resulting Gutter Flow Depth Outside of Local Depression cl c =. 1.8" inches Resultant Street Conditions _ Total Inlet Length L = 10.0 feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. _ 6.8 cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) of = 1.8. Inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = � 1.3' feet Resultant Flow Depth at Maximum Allowable Spread dspaeea='. 0.0 inches STIN-A10-1.xls, Inlet In Sump 1/25/2007, 2:53 PM 30 29 }{ 28 27 26 25 24 - 23 22 21 - 20 79 18 — — m 17' I .LL.. 76 CL 13_ C m 12 11 I I I O I I t0 O 9- O — 8 5 O� O 1 ' I 2 1 1 i 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (Cfs) —E—Curb Weir —0 Curb Orif. —B—Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-A10-1.xls, Inlet In Sump 11/25/2007, 2:53 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-133-1-1 Design Flow = Gutter Flow + Carry-over Flow OVERLAND SIDE �OV FLOW FLOW I STREET I y I� F GUTTER FLOW PLUS CARRY-OVER FLOW yE— F GUTTER FLOW INLET INLET I/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q = 5.67 cfs * If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness - Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Onl) Slope (ft/ft) en th (ft) Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ '...: C2 C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, 4 = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 5.67 cfs STIN-B3-1-1.xls, Q-Peak 1/25/2007, 2:53 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer - Inlet ID = - STIN-B3.1.1 ,I Lo (C) i Design Information (input) - Type of Inlet Type = COOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'O-AIIoW) a� = _ 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = - 1 Grate Information Length of a Unit Grate L. (G) = N/A feet idth of a Unit Grate Wo =. - N/A feet Area Opening Ratio fora Grate (typical values 0.15-0.90) A„. = - ' N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) _ , WA Grate Weir Coefficient(typical value 3.00) C„ (G) - N/k Grate Orifice Coefficient (typical value 0.67) Co (G) _ - N/A Curb Opening Information Length of a Unit Curb Opening L, (C) _ ` :, 5.00 feet Height of Vertical Curb Opening in Inches H, = - 6.00 inches Height of Curb Orifice Throat in Inches H� = - 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = - 2.00, feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) =' - 0.20 Curb Opening Weir Coefficient (typical value 2.303.00) C„ (C) _. 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C. (C) =; - - 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef=' N/A. Clogging Factor for Multiple Units Clog =: NIA, s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 5.67 cis curb) dM = N/A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 5.67 cfs curb) d„, _ N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 5.67 cfs curb) da =. N/A.. inches Flow Depth at Local Depression with Clogging (0 cis grate. 5.67 cis curb) d. _. - N/A inches Resulting Gutter Flow Depth Outside of Local Depression d,.c,,,, _ - NIA inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef= 1.00. Clogging Factor for Multiple Units Clog Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 5.67 cis curb) dam, _ 5.2 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 5.67 cfs curb) d„p = • 5.7 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 5.67 cis curb) da = ° 4.8 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 5.67 cfs curb) d„ _. 6.1 inches Resulting Gutter Flow Depth Outside of Local Depression cl . = 2.7 inches Resultant Street Conditions Total Inlet Length L = 5.0feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Q. =, 5.7 cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d =; 2.7 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T =' 2.8. feet Resultant Flow Depth at Maximum Allowable Spread d3MEw = 0.0 inches STIN-B3-1-1.xls, Inlet In Sump 1/25/2007, 2:53 PM 30 29 28 26 2 25 24. I 23 22 I 0 21 I I 1 20 - 19 / LL ; 1i 16 N 14 _ to to 0 1 t 73 a 12 - O I- 11 I 10 9 g � O i I I I I fi 5 I m 3 2LXi 0 . 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) —a Curb Weir Curb Orif. 8 Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-B3-1-1.xls, Inlet In Sump 1/2512007, 2:53 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-B3-1 Design Flow = Gutter Flow + Carry-over Flow OVERLAND I FLOW y Sl u E- GUTTER FLOW PLUS CARRY-OVER INLET DE ❑VERLAIND 2EET FLOW I y FLOW E- ® E- GUTTER FLOW INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q = 3.10 cfs " If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope (f tft) Length ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, " P1 I ( CC2 + Tc ) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches Cj= C2 = Ci3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q _ Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T. = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 3.10 cfs STIN-B3-1.xls, Q-Peak 1/25/2007, 2:54 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer - Inlet ID =' STIN-B3-1 Lo (C) ,f Deakin Information (input) Type of Inlet Type =CDOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'O-Allow') aKK,i =. - - 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No =; 1 Grate Information Length of a Unit Grate L. (G) _ ` ' WA. feet Width of a Unit Grate W. = WA feet Area Opening Ratio for a Grate (typical values 0.15-0.90) N.. _ • - N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = _ N/A Grate Weir Coefficient (typical value 3.00) C. (G) = N/A Grate Orifice Coefficient (typical value 0.67) C, (G) = "'- .. N/A Curb Opening Information ' Length of a Unit Curb Opening L. (C) - ' 10.00 feet Height of Vertical Curb Opening in Inches H,,,,r= 6.00 inches Height of Curb Orifice Throat in Inches Hr,,,i inches Angle of Throat (see USDCM Figure ST-5) Theta =- - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W, _. 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) _ 0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) Cw (C) _ - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C, (C) _ - 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity In a Sump Clogging Coefficient for Multiple Units Coef =. - N/A!. Clogging Factor for Multiple Units Clog = N/A, s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 3.1 cis curb) d,� _,. WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cis curb) d,q = N/A. inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 3.1 cis curb) d„ _' N/A. inches Flow Depth at Local Depression with Clogging (0 cis grate. 3.1 cis curb) d„ _. N/A inches Resulting Gutter Flow Depth Outside of Local Depression tl,.e„„ =; N/A inches Resultino Gutter Flow Depth for Curb Ooenlno Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef =' 1.00 Clogging Factor for Multiple Units Clog =. 0.15 Curb as a Weir, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 3.1 cis curb) cl„ _' 2.6 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.1 cis curb) d„, _, 2.8 inches Curb as an Orifice, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 3.1 cis curb) d„ _' 2.8 inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.1 cis curb) d„ _ 2.9. inches Resulting Gutter Flow Depth Outside of Local Depression d.c,m = ° 0.0 inches Resultant Street Conditions _ Total Inlet Length L =.J - 10.0 feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q, _, 3.1 cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d =' 0.0 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 0.0 feet Resultant Flow Depth at Maximum Allowable Spread cl Y EAD =. 0.0 inches STIN-B3-1.xls, Inlet In Sump 1/25/2007, 2:54 PM 30 - 29 L 28 27 - I 24 23 22 21 20 19 I I I 0 1 ai 17 10 V N 18 a -- p _` y 15 N / 1— =Q 14 C G 13. a! — 12 11 ,g g. I 6�I� I� II III 3 2- - 0 0 2 4 6 -8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (Cfs) —ar Curb Weir 0 Curb Orif. —9—Not Used • Reported Design --O—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-133-1.xls, Inlet In Sump 1/25/2007, 2:54 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer. STIN-B3-3 Design Flow = Gutter Flow + Carry-over Flow yOVERLAND SIDE W I STREET W IOV FLOW FLOWy e CUTTER FLOW PLUS CARRY -`MOVER FLOW C F GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q = 7.57 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type IA. B, C, or D Site: (Check One Box Only Slope ft/ft Len th ft Site is Urban: Overland Flow = Site Is Non-Urban:l Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ` Pr / ( CZ + Tc ) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ CZ = C3- User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = I N/A cfs Total Design Peak Flow, Q =1 7.57 cfs STIN-B3-3.xls, Q-Peak 1/25/2007, 2:54 PR INLET IN A SUMP OR SAG LOCATION Project = Inlet ID = . -Lo (C) r, STIN-B3-3 Design Information In ut Type of Inlet Type = CDOT Type R Curb Opening Loral Depression (in addition to gutter depression'a' from'Q-Allow') al._' ' 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No =- 1 Grate Information Length of a Unit Grate L. (G) = WA. feet idth of a Unit Grate W. = N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,,,a=: NIA Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = - WA Grate Weir Coefficient (typical value 3.00) C„. (G) = - N/A Grate Orifice Coefficient (typical value 0.67) C. (G) = N/A Curb Opening Information Length of a Unit Curb Opening L. (C) - 10.00 feet Height of Vertical Curb Opening in Inches H,,,,, =- - 6.00 inches Height of Curb Orifice Throat in Inches Hy ,= - 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta =' _ 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W p = 2,00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) G (C) = - 0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) C.„ (C) = - , - - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C, (C) =;` - 0.67 Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = NIA Clogging Factor for Multiple Units Clog = NIA' s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 7.57 cis curb) qM =' WA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 7.57 cfs curb) d„„ = N/A inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 7.57 efs curb) da = WA inches Flow Depth at Local Depression with Clogging (0 cfs grate. 7.57 cfs curb) d„ = N/A inches Resulting Gutter Flow Depth Outside of Local Depression tl,e,,,, _:. N/A' inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = 1.00, Clogging Factor for Multiple Units Clog = 0.151 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 7.57 cis curb) d, = - 4.7"inches Flow Depth at Local Depression with Clogging (0 cis grate. 7.57 cis curb) d„, =; 5.0 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 7.57 cfs curb) d. =" 3.6 inches Flow Depth at Local Depression with Clogging (0 cfs grate. 7.57 cfs curb) d. _,. 4.0, inches Resulting Gutter Flow Depth Outside of Local Depression d,.cu„ = 2.0 Inches Resultant Street Conditions _.._. -.. __. Total Inlet Length L _. 10.0feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. _ 7.6' cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = 2.0 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 0.2 feet Resultant Flow Depth at Maximum Allowable Spread dspseno =' 0.0 Inches STIN-B3-3.xls, Inlet In Sump 112512007, 2:54 PM 30 - 2 —� 28 ( 26 2 - 25 LL 24 23 22 21 20 18 18 N 17 m 16 CL to 75, I I m 0 14 13 a 12 0 I 11 10 O - gAl I II 8 6 5- 3- 2. I 0 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (Cfs) —a Curb Weir 0 Curb Orif. a Not Used • Reported Design —*—Reported Design , Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (fl) - STIN-B3-3.xls, Inlet In Sump 1/25/2007, 2:54 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-B3-4 Design Flow = Gutter Flow + Carry-over Flow OII �VND DO LOWSTREET yVND FLOW t�ttliu F GUTTER FLOW PLUS CARRY-OVER FLOW F F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q = 6.30 cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box On] ) Slope ft/ft Length ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inchlhr) = C, ` P1 / ( CZ + T° ) ^ C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T° = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T° = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 6.30 cfs STIN-133-4.xls, Q-Peak 1/25/2007, 2:55 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = - STIN-B3-4 �Lo (C) ,f Design Information In Type of Inlet Type = CDOT Type Curb Opening -. Local Depression (in addition to gutter depression'a' fmm'Q-Allow') a=. 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = • 1 Grate Information Length of a Unit Grate La (G) _ :- - NIA' feet idth of a Unit Grate W. = - N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,,,== N/A Clogging Factor for a Single Grate (typical value 0.50) - C, (G) = - WA Grate Weir Coefficient (typical value 3.00) C„ (G) = N/A Grate Orifice Coefficient (typical value 0.67) Co (G) = WA, Curb Opening Information Length of a Unit Curb Opening L. (C) = - - 5.00 feet Height of Vertical Curb Opening in Inches H, = 6.00 inches Height of Curb Orifice Throat in Inches Hn = 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = - - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp =.. 2.00 feet Clogging Factor fora Single Curb Opening (typical value 0.10) C, (C) = ,. --- 0.20 Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) = - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C. (C) = 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum _ Clogging Coefficient for Multiple Units Coef = N/A+ Clogging Factor for Multiple Units Clog NIA: s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 6.3 cis curb) d. _ � N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.3 cis curb) d„p = N/A inches s an Or ice Flow Depth at Local Depression without Clogging (0 cis grate, 6.3 cis curb) dp _ N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.3 cis curb) dp, = NIA. inches Resulting Gutter Flow Depth Outside of Local Depression d, w = NIA inches Resulting Gutter Flow Depth for Curb OpeningInlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = 1.00 Clogging Factor for Multiple Units Clog = 0.20 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate. 6.3 cis curb) d„ = 5.6 inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.3 cis curb) d. = 6.1 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.3 cfs curb) d„ =' 5.3. inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.3 cis curb) d-= 6.8 inches Resulting Gutter Flow Depth Outside of Local Depression d,.cp,p = 3.8 Inches Resultant Street Conditions _ Total Inlet Length L =' 5.0. feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Q, = 6.3 cfs Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = 3.8 inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T = 7.7 feet Resultant Flow Depth at Maximum Allowable Spread dspREao'' 0.0 inches STIN-B3-4.xls, Inlet In Sump 1/25/2007, 2:55 PM 30 29 28 —I 27 26 25 — 24- 23� 22 L - 21 m 20. 19- -- �1817 m I I I I I I m16 I i � I G / 15 d / C 14 G 13 . 12 . 11 10 9O 6 7111I I I 2 to 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 O(Cta) —6—Curb Weir Curb Odt.--B—Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft) STIN-B3-4.xls, Inlet In Sump 1/25/2007, 2:55 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-B5-1 Design Flow = Gutter Flow + Carry-over Flow OVERLAND LOWy `MI S1 F GUTTER FLEW PLUS CARRY—OVER INLET DE I OVERLAND y 2EET I FLOW F- F GUTTER FLOW INLET 112 ❑F STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 6.02 cfs ` If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope ft/ft Length (ft) Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + Tc) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches Ci= C2 = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q _ Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 6.02 cfs STIN-135-1.xls, Q-Peak 1/25/2007, 2:55 PM INLET IN A SUMP OR SAG LOCATION Project = . Bayer Inlet ID = STIN-B5-1 - ", Lo (C) K Design Information (Input) Type of Inlet Type = CDOT Type Curb Opening Local Depression (in addition to gutter depression'a' fmm'O-Allow') ab i =' .3.00 inches Number of Unit Inlets (Grate or Curb Opening) No ='. 1 Grate Information Length of a Unit Grate L. (G) = - - WAfeet idth of a Unit Grate W. = N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,,,, =- N/A. Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = WA` Grate Weir Coefficient (typical value 3.00) C„ (G) = N/A. Grate Orifice Coefficient (typical value 0.67) Co (G) = N/A' Curb Opening Information _ Length of a Unit Curb Opening L. (C) = - 5.00, feet Height of Vertical Curb Opening in Inches H,.,n = 6.00 inches Height of Curb Orifice Throat in Inches Hp =' 5.96inches Angle of Throat (see USDCM Figure ST-5) Theta = - 63.4' degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W p =. 2.00. feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = 0.20. Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) = - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C. (C) = 0.67 Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum _ Clogging Coefficient for Multiple Units Coef = N/A` Clogging Factor for Multiple Units Clog =. N/k s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate. 6.02 cfs curb) cl� _' _ N/A: inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.02 cfs curb) d.„, _. N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.02 cis curb) da =' WA'. inches Flow Depth at Local Depression with Clogging (0 cfs grate. 6.02 cis curb) d„ = N/A inches Resulting Gutter Flow Depth Outside of Local Depression d� = N/A inches !Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump _ Clogging Coefficient for Multiple Units Coef= 1.00: Clogging Factor for Multiple Units Clog = 0.20, Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.02 cis curb) d, = 5.4. inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.02 cfs curb) d„, _. 5.9` inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 6.02 cfs curb) d,i = 5.1- inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.02 cis curb) d„ = 6.5-inches Resulting Gutter Flow Depth Outside of Local Depression ci . = 2.9 inches Resultant Street Conditions Total Inlet Length L = 5.0 feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q, = 6.0' cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) it = 2.9' inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T =' 3.8' feet Resultant Flow Depth at Maximum Allowable Spread depeeao = 0.0 inches STIN-B5-1.xis, Inlet In Sump - 1/25/2007, 2:55 PM 29 7 2 I 26 25 24 4 23 22- 21 20 19 17 � A m 16 C C. to 15 N I / C 14 I - / G t3 0 t2 11 10 9' 0 5 kH 4 3 1 2 0 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (Cf8) -a Curb Weir 0 Curb Odf. -B- Not Used • Reported Design -O- Reported Design Flow Depth (in.) Flow Depth (in.) Flaw Depth (in.) Spread (ft.) STIN-65-1.xls, Inlet in Sump 1/25/2007, 2:55 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-B5-2 II Design Flow = Gutter Flow + Carry-over Flow yOVERLAND I LOW SIDE f OVFND I STREET � J� F GUTTER FLOW PLUS CARRY -`MOVER FLOW F ® F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 7:77 cfs ` If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope ft/ft Length ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' PI / ( C2 + T,) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches Cj= C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tc, = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = NIA cfs Total Design Peak Flow, Q =1 7.77 cfs STIN-B5-2.xls, Q-Peak 1/25/2007, 2:55 PM INLET IN A SUMP OR SAG LOCATION Project= - - .Bayer - Inlet ID = _ - • �- STIN•B5.2 ,fLo (C) i Desi n Information (input) Type of Inlet Type = COOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'Q-Allow') a„ cai = f-"- 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = Grate Information Length of a Unit Grate L. (G) =- N/A feet idth of a Unit Grate Wo = NIA feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,auo = - N/A' Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = "" N/A Grate Weir Coefficient (typical value 3.00) C„, (G) = - NIA` Grate Orifice Coefficient (typical value 0.67) C. (G) - ' `" NIA' Curb Opening Information Length of a Unit Curb Opening Lo (C) - 10.00 feet Height of Vertical Curb Opening in Inches H„a„ 6.06 inches Height of Curb Orifice Throat in Inches Hm., 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta - • 63.4degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp -' `-. 2.00' feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = 015. Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) _ `, 2.30. Curb Opening Onfice Coefficient (typical value 0.67) Co (C)- -0.67'. Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coal= NIX Clogging Factor for Multiple Units Clog =.' _ N/A� s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 7.77 cfs Curb) d, WA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 7.77 cfs curb) d„, _;, N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 7.77 cfs curb) do; =:v - �N/A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 7.77 cfs curb) cl a = N/A inches Resulting Gutter Flow Depth Outside of Local Depression d,.c,,,, _ N/A inches Resulting Gutter Flow Depth for Curt Opening Inlet Capacity in a Sum _ Clogging Coefficient for Multiple Units Coef=`- • : 1-�� 1.00: Clogging Factor for Multiple Units Clog = ° 0.15� Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 7.77 cfs curb) dv =.�' 4.7 inches Flow Depth at Local Depression with Clogging (0 cfs grate. 7.77 cis curb) d„, _' ' - 5.1, inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 7.77 cis curb) d„ -' 3.7inches Flow Depth at Local Depression with Clogging 0 cfs rate, 7.77 cfs curb P P 99 9( 9 ) da, =, - i 4a.inches Resulting Gutter Flow Depth Outside of Local Depression d,.c„b =, 2.1' Inches Resultant Street Conditions -�-�10A _ Total Inlet Length L-'_� feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. =- 7,5 cis Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d =,'' 2.1 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = , - 0.5. feet Resultant Flow Depth at Maximum Allowable Spread dSMEne = - - 0.0 inches STIN-B5-2.xls, Inlet In Sump 1/25/2007, 2:55 PM 30 29. 28 - I 27 25 I 24 — I 23 22 2119 I 20 III ml Is LL17 16 6 y I 0 - U 14 a13 m 12 11 10 — 1 ICI I_I 6 i i t i l 5 k I II 31111��111 2 1 I �/0 XI 1 1 1 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) —6 Curb Weir Curb Onf. —B—Nat Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-B5-2.xls, Inlet In Sump 1/25/2007, 2:55 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD _ Bayer STIN-137-1-1 Design Flow = Gutter Flow + Carry-over Flow yOVERLAND SIDE W I STREET I IUVL11W,'D FLOW FGUTTER FLOW PLUS CARRY -,MOVER FLOW E— t_=EE� F- GUTTER LOW INLET 1NL ET 112 ❑F STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q = 3.66 cfs * If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B, C, or D Site: (Check One Box Only Slope ft/ft Len th ft Site is Urban]' Overland Flow -F. Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, I ( CZ + Tc) ^ C3 - : "_ Design Storm Return Period, T = years -_' Return Period One -Hour Precipitation, Pi _ inches Cj= C2 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G = = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = NIA fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 3.66 cfs STIN-B7-1-1.xls, Q-Peak 1/25/2007, 2:56 PM INLET IN A SUMP OR SAG LOCATION Project = - - - Bayer Inlet ID = . _ STIN-87-11-1 , Lo (C) , Design Information (input) Type of Inlet Type = "COOT Type R Curb Opening Loral Depression (in addition to gutter depression'a' from'O-Allow') a,«a, _ �. 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No Grate Information Length of a Unit Grate L. (G) " " N/A" feet idth of a Unit Grate W. = " " " "N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A„„o =- - N/A Clogging Factor for a Single Grate (typical value 0.50) Cf (G) - N/A Grate Weir Coefficient (typical value 3.00) C„. (G) - " NIA: Grate Orifice Coefficient (typical value 0.67) Co (G) - - WA Curb Opening Information _ Length of a Unit Curb Opening Le (C) - ,' 5.00--feet Height of Vertical Curb Opening in Inches H,,,,f = 6.00 inches Height of Curb Orifice Throat in Inches Hm., = " - 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta --" 63:4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp - 2.00, feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cf (C) = 0.15� Curb Opening Weir Coefficient (typical value 2.30-3.00) C,„ (C) - °. 2.30, Curb Opening Orifice Coefficient (typical value 0.67) Ca (C) = - .: 0.67' Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = N/A Clogging Factor for Multiple Units Clog =1 N/AI s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 3.66 cfs curb) d. = - NIA inches Flow Depth at Loral Depression with Clogging (0 cfs grate, 3.66 cfs curb) tl„, _ - N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 3.66 cfs curb) _ do =�' N/A' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.66 cfs curb) da = " N/A inches Resulting Gutter Flow Depth Outside of Local Depression d,.c. = - NIA'. inches lResulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum _ Clogging Coefficient for Multiple Units Coef =:-`- 1.00, Clogging Factor for Multiple Units Clog =. 0.15' Curb as a Weir, Grate as an Orifice .3.9' Flow Depth at Local Depression without Clogging (0 cfs grate, 3.66 cfs curb) d„, _ j ," inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.66 cls curb) d„ = 4.1 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 3.66 cfs curb) do, 3.6, inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.66 cfs curb) d. _: - 3.9' inches Resulting Gutter Flow Depth Outside of Local Depression d,.c, = 1.1 inches Resultant Street Conditions Total Inlet Length L 5.0' feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Q. = j 3.7' cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d 1.1 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T =" - 0.9-feet I Resultant Flow Depth at Maximum Allowable Spread dspeem=}" 0.0-inches STIN-B7-1-1.xis, Inlet In Sump - 1/25/2007, 2:55 PM 30 29 28 27 25 2 - 24 23 ( I O 22 21 20 19 ..., 18LL m 17 113 (0 m CL t 15 u 14 c I I O 4) 13 N 12 11 10 8 7 6 I T 21 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (ofs) —6—Curb Weir —0 Curb Orif. —e—Not Used • Reported Design —O--Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-67-1-1.xls, Inlet In Sump 1/25/2007, 2:55 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-87-2-1 Design Flow = Gutter Flow + Carry-over Flow OVEROL\AAy ND Y S1 E— GUTTER FLOW PLUS CARRY-OVER INLET DE �O\/ RLAND I = T FLOW FLOW tt�i F- GUTTER FLOW INLET i/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q =F 12.16 cfs ' If you entered a value here, ski the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B, C, or D Site: (Check One Box Only Slope ft/ft Len th ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C� ' P1 I ( C2 + Tc ) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q _ Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, _ N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 12.16 cfs STIN-67-2-1.xls, Q-Peak 1/25/2007, 2:56 PM INLET IN A SUMP OR SAG LOCATION Project = _ _ Bayer �- Inlet ID = STIN-B7-2-1 i Lo (C) x, Desi n Information (input)_ Type of Inlet Type = CDOT Type R Curb Opening Local Depression (in addition to gutter depression 'a' from'Q-Allow') A.,= 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = .1 Grate Information Length of a Unit Grate LP (G) = WA feet idth of a Unit Grate W. = N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) N.. = N/A Clogging Factor for a Single Grate (typical value 0.50) C, (G) =. WA Grate Weir Coefficient (typical value 3.00) Cw (G) = - N/A Grate Orifice Coefficient (typical value 0.67) CP (G) = N/A Curb Opening Information Length of a Unit Curb Opening LP (C) = - - 10.00 feet Height of Vertical Curb Opening in Inches H„w,=. 6.00 inches Height of Curb Orifice Throat in Inches HP , = - 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) WP =. 2.00 feet Clogging Factor fora Single Curb Opening (typical value 0.10) C, (C) = 0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) = 2.30 Curb Opening Orifice Coefficient (typical value 0.67) CP (C) = 0.67' Resultina Gutter Flow Depth for Grate Inlet Capacity In a Sum Clogging Coefficient for Multiple Units Coat=. N/A Clogging Factor for Multiple Units Clog = N/A` s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 12.16 cfs curb) d„, _ N/A' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 12.16 cls curb) d. _, N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 12.16 cis curb) da = WA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 12.16 cis curb) cl P = N/A. inches Resulting Gutter Flow Depth Outside of Local Depression d,.e,,,, = N/A inches Resulting Gutter Flow Depth for Curb Openina Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coal= 1.00' Clogging Factor for Multiple Units Clog = Curb as a Weir, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 12.16 cfs curb) cl� = 6.4 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 12.16 cis curb) d„y = 6.9- inches Curb as an Orifice, Grate as an Orifice _ Flow Depth at Loral Depression without Clogging (0 cls grate, 12.16 cfs curb) da = 5.2, inches Flow Depth at Local Depression with Clogging (0 cfs grate, 12.16 cfs curb) d. _' 6.1 inches Resulting Gutter Flow Depth Outside of Local Depression dreum = 3.9 inches Resultant Street Conditions - _ Total Inlet Length L - 10.0�feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. = 12.2 cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) it = 3.9 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 8.0 feet Resultant Flow Depth at Maximum Allowable Spread d5PREM = 0.0 inches STIN-B7-2-1.xls, Inlet In Sump 1/25/2007, 2:56 PM 30 I 26 25 24 23 22 — 2120 19 I 0 18 I d 17 a m 16 G to 15 4) C 14 I 0 13 CIL e) G 12 0 11 10- 8 O I I I 7 O 8 5- I — g. l O i i 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) —6—Curb Weir —0 Curb Onf. a- Not Used • Reported Design —0— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R.) STIN-B7-2-1.xls, Inlet In Sump 1/25/2007, 2:56 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-B9-1 Design Flow = Gutter Flow + Carry-over Flow yUVFLOWuD SSIDE REET �OVERLAND FLOW GUTTER FLOW PLUS CARRY -LIVER FLOW F GUTTER FLOW iNLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q = 4.2Q cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One BOX Only) Slope ft/ft Length (ft) Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CZ + T, ) ^ C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C,= C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C - N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended Tc = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 06= N/A cfs Total Design Peak Flow, Q =1 4.20 cfs STIN-139-1.xls, Q-Peak 1/25/2007, 2:56 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer - Inlet ID = STIN-B9.1 Lo (C)r, Design Information (input) Type of Inlet Type =:CDOT Type R Curb Opening Local Depression (in addition to gutter depression'a' frem'Q-AIIoW) a = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = 1- Grate Information Length of a Unit Grate L.(G)=�:' N/A feet idth of a Unit Grate W. 'N/Afeet Area Opening Ratio for a Grate (typical values 0.15-0.90) A"a. = NIA' Clogging Factor for a Single Grate (typical value 0.50) Ci (G) = N/A' Grate Weir Coefficient (typical value 3.00) C„ (G) = N/A. Grate Orifice Coefficient (typical value 0.67) Co (G) = N/A - Curb Opening Information Length of a Unit Curb Opening Lo (C) _ '::., " 5.00� feet Height of Vertical Curb Opening in Inches H,,,,i =' - 6.00 inches Height of Curb Orifice Throat in Inches Ham„ = 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W n =;, 2A0 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = 0.20: Curb Opening Weir Coefficient (typical value 2.30-3.00) C„.(C)=' 2.30'. Curb Opening Orifice Coefficient (typical value 0.67) Co (C) _ - 0.67` Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef =' N/At Clogging Factor for Multiple Units Clog =: N/A4 s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 4.2 cis curb) rim = I" N/7 inches Flow Depth at Local Depression with Clogging (0 cis grate, 4.2 cfs curb) dw =- - N/k inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 4.2 cis curb) dd =' N/A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 4.2 cfs curb) d„ _. N/A'. inches Resulting Gutter Flow Depth Outside of Local Depression cl ter, = N/A: Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity In a Sum Clogging Coefficient for Multiple Units Coef = 1.00, Clogging Factor for Multiple Units Clog = 0.M Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 4.2 cis curb) d„, = 4.31 inches Flow Depth at Local Depression with Clogging (0 cis grate, 4.2 cfs curb) de = 4.6'' inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 4.2 cfs curb) _ dq =� 3.91 inches Flow Depth al Local Depression with Clogging (0 cfs grate, 4.2 cfs curb) da. _ - 4.5. inches Resulting Gutter Flow Depth Outside of Local Depression d,.c„s =, 1.6'' inches Resultant Street Conditions Total Inlet Length L =' 5.0feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) O, _" 4.Z cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d =. 1.6'. inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T =' 1.3 feet Resultant Flow Depth at Maximum Allowable Spread ds Eeo = 0.0 inches STIN-B9-1.xls, Inlet In Sump 1/25/2007, 2:56 PM 30 - 29 1— 2827 - — I 261- 25 - 24 o 23 22 21 20 i 7817 m �76 I m I �— CL to 15 _ N 14 t 13- O. Q 12 ii I' m 10 I I I 5 4 I I I I I 3 1 11 I I I I I 2.I�i 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q(C13) —a Curb Weir 0 Curb Onf. —9— Not Used • Reported Design —0— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-B9-1.xls, Inlet In Sump 1/25/2007, 2:56 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-B-1 Design Flow = Gutter Flow + Carry-over Flow OVERLAND FLOW W S W F GUTTER FLOW PLUS CARRY-OVER INLET SIDE I OVERLAND TREET y FLOW < F GUTTER FLOW INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 6.63 cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B, C, or D Site: (Check One Box Only Slope ft/ff Len th ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C33 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G = Bypass (Carry -Over) Flow from upstream Subcatchments, Q, = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 6.63 cfs STIN-B-1.xls, Q-Peak 1/25/2007, 2:56 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-B-1 i Lo (C),/ Desi n Information flnputl Type of Inlet Type = CDOT Type R Curb Opening - Local Depression (in addition to gutter depression's' from'O-Allow') a„w = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = 1 Grate Information - Length of a Unit Grate LP (G) = N/A feet idth of a Unit Grate W. = N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A„.= NIA Clogging Factor for a Single Grate (typical value 0.50) C, (G) = WA Grate Weir Coefficient (typical value 3.00) C. (G) = -N/A Grate Orifice Coefficient (typical value 0.67) Co (G) = WA Curb Opening Information Length of a Unit Curb Opening L, (C) = 10.00. feet Height of Vertical Curb Opening in Inches H� = 6.00 inches Height of Curb Orifice Throat in Inches Hu., _. 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta ='� 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W, = 2.00 feet _ Clogging Factor for a Single Curb Opening (typical value 0.10) C, (C) = - - 0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) C„ (C) =.: 2.30. Curb Opening Orifice Coefficient (typical value 0.67) Co (C) = 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Cost = N/A. Clogging Factor for Multiple Units Clog = NIA. s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 6.63 cis curb) 4,. = WA inches Flow Depth at Local Depression with Clogging (0 cfs grate. 6.63 cfs curb) d—= N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 6.63 cis curb) da = N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.63 cfs curb) it. = N/A inches Resulting Gutter Flow Depth Outside of Local Depression d,c„d = NIA inches Resultina Gutter Flow Depth for Curb Opening Inlet CapacityIn m Clogging Coefficient for Multiple Units Coef = 1.00' Clogging Factor for Multiple Units Clog = 0.15 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 6.63 cis curb) d„, _ 4.3 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.63 cis curb) d„, _ 4.6 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 6.63 cis curb) rid = 3.4 inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.63 cis curb) d. _, 3.7 inches Resulting Gutter Flow Depth Outside of Local Depression d,i,,,p= 1.6 inches Resultant Street Conditions Total Inlet Length L= 10.0 feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Q. = 6.6 cfs Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = 1.6 inches Resultant Street Flow Spread (based on sheet O-Allow, geometry) T = 1.3 feet Resultant Flow Depth at Maximum Allowable Spread d8PREM = 0.0 inches STIN-B-1.xls, Inlet In Sump 1/25/2007, 2:56 PM 30 29 II I I 28 T 2726 ( III I I I I 25� I. 24 _ 23 22. 21. I I A 20 19 I 0 7813 17 10 16 to 15 V 14 I I a13 12 i�l I I II L — 11 10 7 6 4. �_ — 2. '�IIIII I II III 0 _ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) —tr—Curb Weir —Curb Orif. —8 Not Used • Reported Design —O— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R.) STIN-B-1.xls, Inlet In Sump 1/25/2007, 2:56 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-B-9 Design Flow = Gutter Flow + Carry-over Flow OVERLAND OWy S1 y GUTTER FLOW PLUS CARRY-OVER INLET DE I �OVFLOWND y 2EET FLOW F- uIE GUTTER FLOW INLET I/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q cfs If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B, C, or D Site: (Check One Box Only) Slope ft/ft Length (ft) Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) =.C, ' P1 / ( C2 + Tc ) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches C,= C2 = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, Tc = N/A minutes Recommended Tc = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 1.79 cfs STIN-B-9.xls, Q-Peak 1/25/2007, 2:57 PM INLET IN A SUMP OR SAG LOCATION Project = Inlet ID = i Lo (C)--{ Design Information (input)_ Type of Inlet Type = COOT Type R Curb Opening . Local Depression (in addition to gutter depression'a' from'Q-AIIow) 611.1 ` 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = . -':.1 Grate Information _ Length of a Unit Grate La (G) _ NIA' feet Width of a Unit Grate W. =: N/A feet a Opening Ratio for a Grate (typical values 0.15-0.90) A, = N/A Clogging Factor for a Single Grate (typical value 0.50) Ct (G) = - NIA Grate Weir Coefficient (typical value 3.00) C„ (G) = - NIA Grate Orifice Coefficient (typical value 0.67) C. (G) = WA Curb Opening Information Length of a Unit Curb Opening L. (C) = _ ` - 5.00 feet Height of Vertical Curb Opening in Inches H� = 6.00. inches Height of Curb Orifice Throat in Inches Hp t = - 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp =. 2000 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = 0.20 Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) = 2.30' Curb Opening Orifice Coefficient (typical value 0.67) C, (C) = 0.67 Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = NIA Clogging Factor for Multiple Units Clog = NIA`. s a Weir _ Flow Depth at Local Depression without Clogging (0 cis grate, 1.79 cis curb) cl i =- NIA: inches Flow Depth at Local Depression with Clogging (0 cis grate, 1.79 cis curb) d.„, _' NIA! inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 1.79 cfs curb) dq = N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 1.79 cis curb) d„ = NIA` inches Resulting Gutter Flow Depth Outside of Local Depression it NIA. inches Resultina Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef = 1.00- Clogging Factor for Multiple Units Clog = 0.201 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 1.79 cis curb) dv = 2.4 inches Flow Depth at Local Depression with Clogging (0 cis grate, 1.79 cis curb) it. = � 2.6. inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate. 1.79 cfs curb) d4 = 2.9`inches Flow Depth at Local Depression with Clogging (0 cis grate. 1.79 cis curb) dw = 3.0 inches Resulting Gutter Flow Depth Outside of Local Depression cl � _. 0.0 inches Resultant Street Conditions _ Total Inlet Length L = 5.0 feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Qp = 1.8 cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d =' 0.0' inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 0.0 feet Resultant Flow Depth at Maximum Allowable Spread dspaeno = 0.0 inches STIN-B-9.xls, Inlet In Sump 1/25/2007, 2:57 PM 30 9 28 - 27 26 I-- 25 24 23. 22 21 2019 LL 18m I 0 `16 I w 1 ► 1 N 15 I 013 12 11 10 6 11 3 2 IOI 6 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) —6 Curb Weir Curb Odf. —B—Not Used • Reported Design —O—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-B-9.xls, Inlet In Sump 1/25/2007, 2:57 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-CS-1 Design Flow = Gutter Flow + Carry-over Flow yOVERLAND FLOW I I S1 F GUTTER FLOW PLUS CARRY-OVER INLET DE OVF RO AND I 2EET FLOW E- F GUTTER FLOW INLET 112 ❑F STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 11.91 cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Onl Slope (ft/ft) Len th ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches C, _ CZ = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 11.91 cfs STIN-05-1.xls, Q-Peak 1/25/2007, 4:45 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-CS-1 - T Lo (C) ,r Design Information (input)_ Type of Inlet Type = '.CDOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'O-AIIoW) a, = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No =- - 1. Grate Information _ Length of a Unit Grate L. (G) = N/A feet idth of a Unit Grate W. = �'+ - N/A feet a Opening Ratio for a Grate (typical values 0.15-0.90) A„w= N/A CloggingFactor for a Single Grate (typical value 0.50) )G (G) _. - WA' Grate Weir Coefficient (typical value 3.00) C„ (G) _ - WA'. Grate Orifice Coefficient (typical value 0.67) C. (G) _' NIA Curb Opening Information Length of a Unit Curb Opening Lo (C) - - 10.00 feet Height of Vertical Curb Opening in Inches H,,,,, = I 6.00 inches Height of Curb Orifice Throat in Inches Hs,,,, = 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = 0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) Cw (C) = 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C. (C) =. 0.67 Resultina Gutter Flow Death for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = `' NIA Clogging Factor for Multiple Units Clog = WAl As a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 11.91 cis curb) cl � _' WA' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 11.91 cis curb) d„e =: N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 11.91 cis curb) rid =. NIA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 11.91 cis curb) it. = . N/A inches Resulting Gutter Flow Depth Outside of Local Depression d"r,,, _' NIA inches Resultina Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef =' 1.00 Clogging Factor for Multiple Units Clog Curb as a Weir, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 11.91 cfs curb) dam; _- 6.3 inches Flow Depth at Local Depression with Clogging (0 cis grate, 11.91 cis curb) d„, _:. 6.8 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 11.91 cfs curb) da = �' 5.1 inches Flow Depth at Local Depression with Clogging (0 cis grate, 11.91 cis curb) d„ _ _ 6.0 inches Resulting Gutter Flow Depth Outside of Local Depression it, _ 3.8 inches Resultant Street Conditions Total Inlet Length L =' - 10.0 feet Total Inlet Interception Capacity (Design Discharge from O-Peak) O, =: , 11.9 cfs Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d =; 3.8` Inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T = 7.5 feet Resultant Flow Depth at Maximum Allowable Spread db>REM = � 0.0 Inches STIN-05-1.xls, Inlet In Sump 1/2512007, 4:45 PM 30-� 29 I u 28 27 - 26 25 2423 I— I I I O 17 22 21 I I 20 0 19 r 18 17 m 16 CL O 15 N N u 14 C 13_ m G 12 0 - 11 10 8 A 4 3 2 01 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 (cfs) —6 Curb Weir 9 Curb Orif. —9 Not Used • Reported Oesign —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (%.) STIN-05-1.xls, Inlet In Sump 1125/2007, 4:45 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-C6-1 Design Flow = Gutter Flow + Carry-over Flow y OVERLAND FLO I Sl GUTTER LOW PLUS CARRY -,MOVER INLET DE �OVFLOWND y ?EET FLOW ® F GUTTER FLOW INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 6.81 cfs If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope ft/ft Length ft Site is Jrban:j Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = G ' P, / ( C2 + Tc ) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C NIA Calculated 5-yr. Runoff Coefficient, C5 = NIA Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = NIA fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 6.81 cfs STIN-C6-1.xls, Q-Peak 1/25/2007, 4:46 PM INLET IN A SUMP OR SAG LOCATION Project=. Bayer Inlet ID STIN-C61 d Lo (C) i Desi n Information (Input) Type of Inlet Type = CDOT Type R Curb Opening Local Depression (in addition to gutter depression's' from'Q-AIIoW) ab = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = - 1 Grate Information _ Length of a Unit Grate Lp (G) _ N/A feet [Width of a Unit Grate W. -N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A„pp= : N/Al Clogging Factor for a Single Grate (typical value 0.50) Cr (G) _.. - N/A Grate Weir Coefficient (typical value 3.00) C„ (G) _ N/A: Grate Orifice Coefficient (typical value 0.67) C. (G) _ N/A Curb Opening Information Length of a Unit Curb Opening L. (C) _ 5.00 feet Height of Vertical Curb Opening in Inches H,.,,r 6.00 inches Height of Curb Orifice Throat in Inches Hy,ppr =, -- 5.96 inches ngle of Throat (see USDCM Figure ST-5) Theta =:. ' MA degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = - 0.20 Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) = - 2.30' Curb Opening Orifice Coefficient (typical value 0.67) C. (C) -`0.67' Resulting a Gutter Flow Depth for Grata Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef =- N/AI Clogging Factor for Multiple Units Clog = N/A; s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 6.81 cfs curb) cl� _: WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.81 cis curb) dw. _ N/A' inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.81 cis curb) dy = NIA' inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.81 cis cum) it. = NIA inches Resulting Gutter Flow Depth Outside of Local Depression dw„„ = NIA. inches Resul in Gutter Flow Depth for Curb Opening Inlet Capacity in a Sumo _ Clogging Coefficient for Multiple Units Coef Clogging Factor for Multiple Units Clog = 0.20' Cum as a Weir, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 6.81 cis cum) d v =' 5.9 inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.81 cis cum) d,q = 6.4 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 6.81 cis cum) de =' 5.8' inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.81 cis cum) d„ _. 7.5 inches Resulting Gutter Flow Depth Outside of Local Depression tl,.c„p = 4.5, inches Resultant Stree Conditions - of Inlet Length L- -v� 5.0�foet otal Inlet Interception Capacity (Design Discharge from O-Peak ) O, _ 6.8' efs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = 4.5 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = . 10.6 feet Resultant Flow Depth at Maximum Allowable Spread dspaeao= 0.0, Inches STIN-C6-1.xls, Inlet In Sump 1125/2007, 4:46 PM 30 29 — 28 27 - — 26 — 25 24 - - O 23 22 21 0---{--r 20 19- O LL18 _ 17 ns �16 I m 6 to 15--I m L C 14 O II I 1 .L.. 13 a O ' I 12 - 11 10 9 I0 6- 5 I 4 I I 3 ' I I I 2 4 1- III o 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) -tr-Curb Weir -0 Curb Orif. -9- Not Used • Reported Design -0- Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-C6-t.xls, Inlet In Sump 1/25/2007, 4:46 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer. STIN-C7-T Design Flow = Gutter Flow + Carry-over Flow �OVFROL\PND SIDE �OVFLOW ND STREETY tEEE�lE—GUTTER FLOW PLUS CARRY -`OVER FLOW F ® E— GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 4.17 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type =1 1A, B, C, or D Site: (Check One Box Only) Slope ft/ft Len th ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = G " P, I ( C2 + T,) A C3 I= Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, _ inches C_ CZ = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 4.17 cfs STIN-C7-1.xls, Q-Peak 1/25/2007, 4:46 PM INLET IN A SUMP OR SAG LOCATION Project = Inlet ID = STIN-CM ,I—Lo (C) { Design Information In td _ Type of Inlet Type = �CDOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'Q-Alloxr) a� =. 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No Grate Information - Length of a Unit Grate - L, (G) = -N/A feet Idth of a Unit Grate W. = ` = N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,, = N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = '. - N/A Grate Weir Coefficient (typical value 3.00) C„. (G) = ' `- - N/A' Grate Orifice Coefficient (typical value 0.67) C. (G) _>.. WA' Curb Opening Information Length of a Unit Curb Opening L, (C) _': -5.00 feet Height of Vertical Curb Opening in Inches H,,,,r=' 6.00 inches Height of Curb Orifice Throat in Inches Hy,,,r=- 5.96 inches gle of Throat (see USDCM Figure ST-5) Theta =. .. 63A degrees Side Width for Depression Pan (typically the gutter width of 2 feet) WP =- - 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cf (C) = 0.20' Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) = - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) Co (C) _' 0.67'' Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef NIA. Clogging Factor for Multiple Units Clog =:..- N/AI As a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 4.17 cis curb) dam, _ . WA' inches Flow Depth at Local Depression with Clogging (0 cis grate, 4.17 cis curb) d.. = N/A, inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 4.17 cis curb) it, = N/A. inches Flow Depth at Local Depression with Clogging (0 cfs grate, 4.17 cis curb) d. = N/A' inches Resulting Gutter Flow Depth Outside of Local Depression d,s„„ = NIA Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = 1.00: Clogging Factor for Multiple Units Clog = 0.20, Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 4.17 cis curb) d„;_ - 4.3 inches Flow Depth at Local Depression with Clogging (0 cis grate, 4.17 cis curb) cl , ='. 4.6; inches Curb as an Orifice, Grate as an Orifice Ftow Depth at Local Depression without Clogging (0 cis grate, 4.17 cis curb) cl ; =. T 31 inches Flow Depth at Local Depression with Clogging (0 cis grate, 4.17 cis curb) dw = s 4.5 inches Resulting Gutter Flow Depth Outside of Local Depression cl G =° 1.6, inches Resultant Street Conditions Total Inlet Length L = 5.0 feet Total Inlet Interception Capacity (Design Discharge from O-Peak) 0, _; 4.2, cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = , 1.6. Inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 1.3 feet Resultant Flow Depth at Maximum Allowable Spread dSPREeo = 0.0, Inches STIN-C7-1.xls, Inlet In Sump 1/25/2007, 4:46 PM 30 29 - 28 27 26-- 25 - T lit I 24 23 2.2 21 I' 20 19 O N LL 17 N m — — a! 16 a 0 —Z 15-- N m u 14 C t 13 a O - 1211 m 10- 8 7 3 2 1 0111 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) —a Curb Weir —0 Curb Orif. —9—Not Used • Reported Design —o— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-C7-1.xls, Inlet In Sump 1/25/2007, 4:46 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-G-1 Design Flow = Gutter Flow + Carry-over Flow �oVFLOW y I S1 III F GUTTER FLOW PLUS CP.RRY-OVER INLET DE �UVFLOWND y '.EET FLOW ®J F GUTTER FLOW INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q = 8.75 Cfs * If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B. C, or D Site: (Check One Box Only) Slope ft/ft Len th ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' PI / ( C2 + T,) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = Cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, Vo = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 06 = N/A cfs Total Design Peak Flow, Q =1 8.75 cfs STIN-G-1.xls, Q-Peak 1/25/2007, 4:46 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = - STIN-G-1 �Lo(C) 4, Design Information (Input) Type of Inlet Type = CDOT Type R Curb Opening - Local Depression (in addition to gutter depression'a' from'Q-AIIow) a,,,, - 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = 1 Grate Information . Length of a Unit Grate L. (G) = WA. feet idth of a Unit Grate W. = . WA feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A„r,= N/A Clogging Factor for a Single Grate (typical value 0.50) Cf (G) = WA. Grate Weir Coefficient (typical value 3.00) C„ (G) = - NIA Grate Orifice Coefficient (typical value 0.67) C. (G) = NIX Curb Opening Information .. Length of a Unit Curb Opening L. (C) = 10.00 feet Height of Vertical Curb Opening in Inches H,„f = 6.00" inches Height of Curb Orifice Throat in Inches H, = 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wf, = 2,00. feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cf (C) = 0d5! Curb Opening Weir Coefficient (typical value 2.30-3.00) C„ (C) = 2.30, Curb Opening Orifice Coefficient (typical value 0.67) C, (C) = 0.67 Resulting Gutter Flow Depth for Grate Inlet Caoacitv in a Sum Clogging Coefficient for Multiple Units Coef = NIX Clogging Factor for Multiple Units Clog = NIAI As Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 8.75 cfs curb) cl� _' WA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 8.75 cis curb) cl q = . NIA, inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 8.75 cis curb) it, =f N/A. inches Flow Depth at Local Depression with Clogging (0 cfs grate, 8.75 cfs curb) d„ = N/A' inches Resulting Gutter Flow Depth Outside of Local Depression d,c,,,, _ NIA. inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sump_ Clogging Coefficient for Multiple Units Cost= 1.00: Clogging Factor for Multiple Units Clog = 0.15! Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 8.75 cfs curb) it, =' 5.1, inches Flow Depth at Local Depression with Clogging (0 cfs grate, 8.75 cfs curb) d„„ _ 5.6, inches Curb as an Orifice, Grate its an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 8.75 cfs curb) d,; _, 4.01 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 8.75 cis curb) d„ _ = 4.5 inches Resulting Gutter Flow Depth Outside of Local Depression d,.c,,,e = 2.6, inches Resultant Street Conditions - -� - -- - -10.0' Total Inlet Length L - feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. _ 8.8, cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) of = 2.61 inches Resultant Street Flow Spread (based on sheet C-Allow geometry) T = 2.3 feet Resultant Flow Depth at Maximum Allowable Spread dsrarw = 0.0, inches STIN-G-1.xls, Inlet In Sump 1125/2007, 4:46 PM 30 u 29 28 27 26 25 24 23 22 21 - -- 20 I v ,9. I I p 1817 m p- m 78 I I I i m �15 m IIr c 14 p CL m 0 12. 11 m p �I 5. I m 3 2 1 / �I 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (CIS) —A—Curb Weir —0 Curb Onf. --8 Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread ft) STIN-G-1.xls, Inlet In Sump 1/25/2007, 4:46 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer. STIN-G-4 . Design Flow = Gutter Flow + Carry-over Flow y0IVERLAF OWND y SIDE �OVF 0WND I STREET F GUTTER FLOW PLUS CARRY-OVER FLOW F F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q = 8.70 cfs * If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B, C, or D Site: (Check One Box Only) Slope ft/ft Length ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CZ + T,) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, _ '-" inches C, _ CZ = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, (I = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 8.70 cfs STIN-G-4.xls, Q-Peak 1/25/2007, 4:47 PM INLET IN A SUMP OR SAG LOCATION Project = Bauer - Inlet ID = STING-4 �Lo (C) ,f Design Information (input)' Type of Inlet Type =' COOT Type R Curb Opening. - Local Depression (in addition to gutter depression'a' kom'O-AIIoW) abpd = i' ' 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = 1 Grate Information Length of a Unit Grate L. (G) _ - N/A feet idth of a Unit Grate Wp =; - N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A„rp = - N/A. Clogging Factor for a Single Grate (typical value 0.50) Cr (G) _'. - - N/A Grate Weir Coefficient (typical value 3.00) C. (G) = - N/A Grate Orifice Coefficient (typical value 0.67) Cp (G) _ WA Curb Opening Information Length of a Unit Curb Opening L. (C) _' 10.00 feet Height of Vertical Curb Opening in Inches H,.,,r =:. _. ^ .: 6.00 inches Height of Curb Orifice Throat in Inches Hu = 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = - ` - ' 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W p = 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) G (C) =- 0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) = - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) Co (C) _ 0.67. Resultina Gutter Flow Depth for Grate Inlet Capacity In a Sum Clogging Coefficient for Multiple Units Coef =� NIA; Clogging Factor for Multiple Units Clog =. N/A' s a Weir Flow Depth at Local Depression without Clogging (0 cis grate. 8.7 cfs curb) d v =, N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 8.7 cis curb) d„ _ N/A inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 8.7 cis curb) da = NIA inches Flow Depth at Local Depression with Clogging (0 c/s grate, 8.7 cfs curb) dp, _ N/A inches Resulting Gutter Flow Depth Outside of Local Depression cl . = NIA. inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coat= 1.00 Clogging Factor for Multiple Units Clog = - 0.15- Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 8.7 cfs curb) cl, = - 5.-1: inches Flow Depth at Local Depression with Clogging (0 cis grate, 8.7 cis curb) dM = 5.5 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 8.7 cis curb) d,; = 3.9, inches Flow Depth at Local Depression with Clogging (0 cis grate, 8.7 cfs curb) dp, = 4.4 inches Resulting Gutter Flow Depth Outside of Local Depression cl"c ='. 2.5 Inches Resultant Street Conditions Total Inlet Length L =' 10.0' feet Total Inlet Interception Capacity (Design Discharge from O-Peak) O, = 8.7'cfs Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = 2.5 inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T = 2.2 feet Resultant Flow Depth at Maximum Allowable Spread dapne•o = 0.0- inches STIN-G-4.xls, Inlet In Sump 1/25/2007, 4:47 PM 30' 29 28 27 26 - 25 ) 24 23 22 21- 0 20 19- 18 m 0) I� 16 i NCL 75 m l _ U) N 14 C / G13 m 0 12 I m 11 ) I O 10 - 9- 8 I 6 6 4. 3 — 2. 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (dfs) —,6 Curb Weir Curb Orif. El Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R) STIN-G-4.xls, Inlet In Sump 1/25/2007, 4:47 PM 11 DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD 11 Bayer STIN-H-1 Design Flow = Gutter Flow + Carry-over Flow �OV RLAND SIDE I OVERLAND I STREET Y F—GUTTER FLOW PLUS CARRY -`LOVER FLOW c5 ® E—CUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus Flow bypassing upstream subcatchments): 'Q cfs ` If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only) Slope ft/ft Length ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ` P1 / ( CZ + Tc ) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches Cr = CZ = C3 User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C3 = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cis Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tc = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 =1 N/A cfs Total Design Peak Flow, Q = 3.74 cis STIN-H-1.xls, Q-Peak 1/25/2007, 4:47 PM INLET IN A SUMP OR SAG LOCATION Project= Bayer Inlet ID = STIN-H-1 ` �Lo(C) 4, Design Information (Input) Type of Inlet Type CDOT Type R Curb Opening, Local Depression (in addition to gutter depression'a' from'Q-Allow') al� = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = 1. Grate Information _ Length of a Unit Grate L.(G)= -• N/A feet Width of a Unit Grate W. =,* N/A feet lArea Opening Ratio for a Grate (typical values 0.15-0.90) A,.. _ N/A Clogging Factor for a Single Grate (typical value 0.50) Ch (G) _ • NIA Grate Weir Coefficient (typical value 3.00) C. (G) _ N/A Grate Orifice Coefficient (typical value 0.67) C. (G) _ N/A Curb Opening Information Length of a Unit Curb Opening Le (C) _ : .: "' 5.00 feet Height of Vertical Curb Opening in Inches H. =: 6.00 inches Height of Curb Orifice Throat in Inches Hy =' 5.96 inches gle of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W n = - '° 2.00. feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = - 0.20' Curb Opening Weir Coefficient (typical value 2.30-3.00) - C„. (C) = 2.30. Curb Opening Orifice Coefficient (typical value 0.67) C, (C) = 0.67. Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = N/Ait Clogging Factor for Multiple Units Clog = • N/Al. s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 3.74 cis curb) d„r ='- - N/A° inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.74 cis curb) d„, _' ' < Nlk inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 3.74 cfs curb) da = WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.74 cfs curb) d„ = N/A inches Resulting Gutter Flow Depth Outside of Local Depression d",.,. _' N/A. inches Resultino Gutter Flow Depth for Curb Openina Inlet Capacity in a Sum _ Clogging Coefficient for Multiple Units Coef= 1.00h Clogging Factor for Multiple Units Clog =' 0.20' Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 3.74 cis curb) d„r =, 4.0 inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.74 cis curb) d„., _ 4.3inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 3.74 cis curb) do =' 3.6' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.74 cfs curb) d. = 4.1; inches Resulting Gutter Flow Depth Outside of Local Depression d.c�n = 1.3 inches Resultant Street Conditions Total Inlet Length L =: _ 5.0. feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. = 3.7 cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) cl = 1.3 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 1.0' feet Resultant Flow Depth at Maximum Allowable Spread dsyse,ho = 0.0 inches STIN-H-1.xls, Inlet In Sump 1/25/2007, 4:48 PM 30 29 I i � 28 I 27 - 26 25 - 24 I 0 23 — ( 22 21 - /I 20 d 19. .18— V d m 17 `76 6 N 15- m L 0 14- C I 0 - I 013 G I 12 _� 11 1 P 10- 9 I e _ I I 6 5 O I IO I I I ( 2 '�I I I I ( I 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 O (cte) —6 Curb Weir —0 Curb Orif. —9 Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (8.) STIN-H-1.xls, Inlet In Sump 1/25/2007, 4:48 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer . ,,- STIN-1-1 Design Flow = Gutter Flow + Carry-over Flow OVERLANDO\I SIDE 0\/ RL\AND Y STREET O F GUTTER FLOW PLUS CARRY-OVER FLOW F- ® e GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q cfs If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B. C, or D Site: (Check One Box Only Slope ft/ft Length (ft Site is Urban: I Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ CZ = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cis Total Design Peak Flow, Q =1 2.79 cis STIN-1-1.xls, Q-Peak 1/25/2007, 4:48 PM ji� INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-1-1 4 Lo (C) r, Design Information (input) Type of Inlet Type = COOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'O-Allow') a� _: 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No =- 1. Grate Information _ Length of a Unit Grate L. (G) _ N/A feet rdth of a Unit Grate W, = WA feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,,,„= N/A. Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = N/A. Grate Weir Coefficient (typical value 3.00) C„ (G) _ N/A Grate Orifice Coefficient (typical value 0.67) C, (G) _ - N/A Curb Opening Information Length of a Unit Curb Opening L. (C) _ 5.00. feet Height of Vertical Curb Opening in Inches H,,,,h = 6.00 inches Height of Curb Orifice Throat in Inches Hr,,,, _- 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W p = ` 2.00. feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) _ . 0.20 Curb Opening Weir Coefficient (typical value 2.30.3.00) G. (C) _ 2.30:: Curb Opening Orifice Coefficient (typical value 0.67) Co (C) _ 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef =! NIA- Clogging Factor for Multiple Units Clog = NW s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 2.79 cfs curb) dm _' N/A;. inches Flow Depth at Loral Depression with Clogging (0 cls grate, 2.79 cfs curb) d,„ _% N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 2.79 cfs curb) it. = NIA'... —.-- Flow Depth at Local Depression with Clogging (0 cfs grate, 2.79 cfs curb) d. _+ NIA. inches Resulting Gutter Flow Depth Outside of Local Depression d,4r,d =' NIA inches Resulting Gutter Flow Depth for Curb Openina Inlet Capacity in a Sum _ Clogging Coefficient for Multiple Units Coef =' 1.00' Clogging Factor for MuMple Units Clog = 0.20 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 2.79 cis curb) d„ = 3.3' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 2.79 cfs curb) d„m = 3.5, inches Curb as an Orifice,, Grate as an Or'dice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 2.79 cfs curb) da =' 3.2. inches Flaw Depth at Local Depression with Clogging (0 cis grate, 2.79 cfs curb) de, = 3.5 inches Resulting Gutter Flow Depth Outside of Local Depression d,.c, =, 0.5 inches Resultant Street Conditions otal Inlet Length L=, 5.0�feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Oa = 2.8 cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d =, 0.5 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 0.4 feet Resultant Flow Depth at Maximum Allowable Spread d,PRrAa = 0.0, inches STIN-1-1.xls, Inlet In Sump 1/25/2007, 4:48 PM 30 29 28-- I I 27 26- 25 - 24 23 22 21 m I 20 19 18 — m 1L I 17 16 a f/1 I l 15 N m C iq. I C 13 12 — � 11 IIII � 10 9 I O ( 6. 3 - —�— ILj 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 a (efs) - —a Curb Weir 0 Curb Onf. —9— Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-I-t.xls, Inlet In Sump 1/25/2007, 4:48 PM 11 DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Sayer STIN-1-2 Design Flow = Gutter Flow + Carry-over Flow I �OVERLAND STREET I OVERLAND I le GUTTER FLOW PLUS CARRY-OVER FLOW le GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): Q = 7.77 cfs If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type JA, B, C, or D Site: (Check One Box Only lope ft/ft Len th ft Site is Urban: I Overland Flow = = Site Is Non -Urban: Gutter FlowF. Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + Tc ) A C3 Design Storm Return Period, Tr = ,- years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 =1 N/A cfs Total Design Peak Flow, Q = 7.77 cfs STIN-1-2.xls, Q-Peak 1/25/2007, 4:50 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = - STIN-1-2 ` �Lo (C) I Warning 5 Design Information (input) Type of Inlet Type =CDOT Type Curb Opemng Local Depression (in addition to gutter depression'a' from'Q-Allow') a„ �,�= 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = Grate Information Length of a Unit Grate L, (G) = N/A feet idth of a Unit Grate W o =' - N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A„n,=, N/A` Clogging Factor for a Single Grate (typical value 0.50) Cr (G) _. N/A' Grate Weir Coefficient (typical value 3.00) C„ (G) _ N/A Grate Orifice Coefficient (typical value 0.67) Co (G) _ , - N/A` Curb Opening Information Length of a Unit Curb Opening L. (C) _ .5.00' feet Height of Vertical Curb Opening in Inches H, = - "" 6.00 inches Height of Curb Orifice Throat in Inches Hy _ -5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta =' 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = 0.20. Curb Opening Weir Coefficient (typical value 2.30-3.00) C„ (C) =' - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) Co (C) = 0.67' Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coal =' N/AI Clogging Factor for Multiple Units Clog =' N/Ai saWeir Flow Depth at Local Depression without Clogging (0 cfs grate, 7.77 cfs curb) cl,r = _ NIA! inches Flow Depth at Local Depression with Clogging (0 cis grate, 7.77 cis curb) cl , = N/A'. inches s an OriFlce Flow Depth at Local Depression without Clogging (0 cis grate, 7.77 cis curb) da =' N/A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 7.77 cls curb) d. = N/A. inches Resulting Gutter Flow Depth Outside of Local Depression d".. = N/A; inches Resulting Gutter Flow Depth for Curb Openina Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef=' 1.00: Clogging Factor for Multiple Units Clog = 0.24" Curb as a Weir, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 7.77 cis curb) CIM = 6.4 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 7.77 cis curb) d,„ =, 7.0. inches Curb as an Orifice, Grate as an Orifice _ _ Flow Depth at Local Depression without Clogging (0 cis grate, 7.77 cis curb) cl ; = 6.7 inches Flow Depth at Local Depression with Clogging (0 cis grate, 7.77 cis curb) d„ =' 9.0` inches Resulting Gutter Flow Depth Outside of Local Depression cl . = 6.0 inches Resultant Street Conditions _ Total Inlet Length L = 5.0'� feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. = 7.8, cis Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = 6.0' inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 16.7 feet Resultant Flow Depth at Maximum Allowable Spread d3PREM= 0.0 inches Warning 5: Gutter flow depth is greater than the 6 inches allowed for the MINOR STORM (see sheet'Q.Allow') STIN-1-2.xls, Inlet In Sump 1/25/2007, 4:50 PM 30 _ 29 - — 28 - — 27 — I if 26 25 24 O 23 22 m 21 20 ,6. N m I „17 16 m m CL to 15 m tE 14 I I :5 13 O. N 12 I — 11 10 I I I s- 8 7 II I II 5-©I��� 4. - 3 2- ' oil a,, 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 a (cfs) —6 Curb Weir 0 Curb Orif. —B— Not Used • Reported Design --*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-1-2.xls, Inlet In Sump 1/2512007, 4:50 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-J-1 Design Flow = Gutter Flow + Carry-over Flow I DIVERLAND SIDE UV ND Lyy OW y I STREET � I LOW GUTTER FLOW PLUS CARRY-OVER FLOW F NE LOW INLET INLET I/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus Flow bypassing upstream subcatchments): "Q = 19.95 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope ft/ft Length (ft) Site is Urban:1 Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = G ' P, / (C + Tc ) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches C, _ CZ = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, 4 = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 19.95 cfs STIN-J-1.xls, Q-Peak 1/25/2007, 4:51 PM INLET IN A SUMP OR SAG LOCATION Project= Bayer ` Inlet ID = STINJ•1" ` Lo (C) X Desi n Information (input) Type of Inlet Type = COOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'Q-AIIow) a� = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = 1 Grate Information -' Length of a Unit Grate L. (G) _ N/A' feet idth of a Unit Grate W. = _ _ - N/A feet Area Opening Ratio fora Grate (typical values 0.15-0.90) A„. _ .-- `, NIA Clogging Factor for a Single Grate (typical value 0.50) Cr (G) _ - N/A Grate Weir Coefficient (typical value 3.00) G. (G) _ _ NIA! Grate Orifice Coefficient (typical value 0.67) CP (G) _ - WA Curb Opening Information Lengm of a Unit Curb Opening Lo (C) _ :: 15.00 feet Height of Vertical Curb Opening in Inches H„,r = - 6.00 inches Height of Curb Orifice Throat in Inches Hs =±. - 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = - -- - 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) _ 0.10 Curb Opening Weir Coefficient (typical value 2.30-3.00) C„ (C) _ - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C. (C) = 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coet Clogging Factor for Multiple Units Clog =, _ N/A' s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 19.95 cis curb) d,„ _. N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 19.95 cfs curb) Q,., = N/A inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 19.95 cfs curb) da =' - N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 19.95 cis curb) da =- N/A inches Resulting Gutter Flow Depth Outside of Local Depression cf . r, _ - N/A Inches Resultino Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum _ Clogging Coefficient for Multiple Units Coef =' 1.00' Clogging Factor for Multiple Units Clog = 0.10 Curb as a Weir. Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 19.95 cis curb) d„i =� 8.3 inches Flow Depth at Local Depression with Clogging (0 cis grate, 19.95 cis curb) d„, _ 8.9inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 19.95 efs curb) d„ _ �' 5.6, inches Flow Depth at Local Depression with Clogging (0 cis grate, 19.95 cis curb) d. _ 6.3' inches Resulting Gutter Flow Depth Outside of Local Depression d� _. 5.9 Inches Resultant Street Conditions Total Inlet Length L = - 15.0 feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. _. 20.0: cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = - 5.9' inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 16.4 feet Resultant Flow Depth at Maximum Allowable Spread dsPRem = 0.0 inches STIN-J-1.xls, Inlet In Sump 1/25/2007, 4:51 PM 30 28 — 0 27 — 26 25 - 24- I / 23-� 22 d 0 21 20 19 18 - LL 17 16 to 15 m L 14 � I/ 13 CL 0 I 12. 4 11 I � - 10 O I 5. 2. 1 �� 0 1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cts) —6 Curb Weir 0 Curb On(. E3 Not Used • Reported Design -*-Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-J-1.xls, Inlet In Sump 1/25/2007, 4:51 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-L-1 Design Flow = Gutter Flow + Carry-over Flow yUVi\D FLOWJ I Sl y F GUTTER FLOW PLUS CARRY-OVER INLET DE �OVFLOWND ?EET FLOW le t7771 <-- GUTTER FLOW INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak Flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 16.00 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type IA, B, C, or D Site: (Check One Box Onl) Slope ft/ft) Length(ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T� ) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, = C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G = Bypass (Cant' -Over) Flow from upstream Subcatchments, Q, = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 16.00 cfs STIN-L-1.xls, Q-Peak 1/2512007, 4:51 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-L-1 F—Lo (C) 11 Design Information (input) Type of Inlet Type ='CDOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'O-Allox+) a _. - 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = 1 Grate Information Length of a Unit Grate L, (G) = " _ WA feet idth of a Unit Grate W. - N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) gave- N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) -, NIA- Grate Weir Coefficient (typical value 3.00) C„ (G) _ -`- N/A'. Grate Orifice Coefficient (typical value 0.67) Ca (G) = " NIA Curb Opening Information Length of a Unit Curb Opening La (C) _ - - 10.00 feet Height of Vertical Curb Opening in Inches H,.,,r='-_.>., 6.00 inches Height of Curb Orifice Throat in Inches Hr =:: - 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta =_ 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) 0.15. Curb Opening Weir Coefficient (typical value 2.30-3.00) C„ (C) _ 2.30; Curb Opening Orifice Coefficient (typical value 0.67) Ca (C) _ 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum f Clogging Coefficient for Multiple Units Coef N/A Clogging Factor for Multiple Units Clog =1 N7 s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 16 cis curb) d v =; N/A,I inches Flow Depth at Local Depression with Clogging (0 cis grate, 16 cis curb) d„ _ : N/A inches As an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 16 cis curb) d„ _;. N/Ainches Flow Depth at Local Depression with Clogging (0 cis grate, 16 cis curb) da. _; N/A inches Resulting Gutter Flow Depth Outside of Local Depression d� =' NIA Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum , Clogging Coefficient for Multiple Units Coef=. 1.00' Clogging Factor for Multiple Units Clog =; -- 0.151 Curb as a Weir, Grate as an Orifice LL7.7' Flow Depth at Local Depression without Clogging (0 cfs grate, 16 cis curb) d„r =i inches Flow Depth at Local Depression with Clogging (0 cis grate, 16 cis curb) d», _:. - 8.3' inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 16 cis curb) cl ; _;" 7.0, inches Flow at Local Depression with Clogging (0 cis grate, 16 cis curb) it. _ 8.6 inches teplh Resulting Gutter Flow Depth Outside of Local Depression da.c,ae=' 5.6 inches Resultant Street Conditions Total Inlet Length L = I 10.0. feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Oa =' 16.0 cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d =:, 5.6• inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = " 15.1 feet Resultant Flow Depth at Maximum Allowable Spread dacaew ='. - 0.0 inches STIN-L-1.xls, Inlet In Sump 1/25/2007, 4:51 PM 30 29 28 27 I - — 26 25 24 23 22 21 I I I m 20 19 — �_ m 8 , to N CL 15 r C14 G 13 12 11 ,0 I 0 I 8 I �- 5 �- 3 2 I 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (Cfs) --6 Curb Weir Curb Onf. —9 Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-L-i.xls, Inlet In Sump 1/25/2007, 4:51 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-N-1 Design Flow = Gutter Flow + Carry-over Flow OVERLAND I y FLOW y I ST F— GUTTER -LOW PLUS CARRY-OVER INLET DE I OVERLAND PAND 'EET FLOW F F GUTTER FLOW INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 12.72 cfs " If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope ft/ft Len th ft Site is'Urban:l I Overland Flow - Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T, ) A C3 Design Storm Return Period, Tr = years - Return Period One -Hour Precipitation, P, = inches C, _ CZ = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, t� = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 12.72 cfs STIN-N-1.xls, Q-Peak 1/25/2007, 4:51 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-N-1 'iI Lo (C) Desi n Information finout) Type of Inlet Type = COOT Type R Curb Opening - Local Depression (in addition to gutter depression'a' Imm'0-AIIow') a. = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No Grate Information Length of a Unit Grate LP (G) = NIA feet Width of a Unit Grate W. = NIA feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A,, =. ' WA. Clogging Factor for a Single Grate (typical value 0.50) C, (G) = . ° - - NIA Grate Weir Coefficient (typical value 3.00) C„. (G) =! N/A' Grate Orifice Coefficient (typical value 0.67) C. (G) = N/A Curb Opening Information Length of a Unit Curb Opening L. (C) = 10.00 feet Height of Vertical Curb Opening in Inches H,,,,,= 6.00 inches Height of Curb Orifice Throat in Inches Ham„ = - 5.96 inches ngle of Throat (see USDCM Figure ST-5) Theta = 63.4degrees Side Width for Depression Pan (typically the gutter width of 2 feet) WP = _ `- 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) C,(C)=: --,- -0.15' Curb Opening Weir Coefficient (typical value 2.30-3.00) C„ (C) = 2.30; Curb Opening Orifice Coefficient (typical value 0.67) C. (C) = 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef = • NIA''. Clogging Factor for Multiple Units Clog = INA! is a Weir Flow Depth at Local Depression without Clogging (0 cis grate. 12.72 cis curb) d,= WAI inches Flow Depth at Local Depression with Clogging (0 cis grate, 12.72 cis curb) d„ = �. N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 12.72 cis curb) da = - N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 12.72 cis curb) d. = N/A inches Resulting Gutter Flow Depth Outside of Local Depression tl,.er,,, _; N/A inches Resulting Gutter Flow Depth for Curb Openinti Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = _ 1.M Clogging Factor for Multiple Units Clog =. 0.15� Curt as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 12.72 cis curb) d„ _' 6.6, inches Flow Depth at Local Depression with Clogging (0 cis grate. 12.72 cis curb) d— _ 7.1 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 12.72 cis curb) dy = 5.4 inches Flow Depth at Local Depression with Clogging (0 cis grate. 12.72 cis curb) d. _' 6.4 inches Resulting Gutter Flow Depth Outside of Local Depression cl . = 4.1 inches Resultant Street Conditions Total Inlet Length L =' _ 10.0 feet Total Inlet Interception Capacity (Design Discharge from O-Peak) 0, _; ., 12.7 rcB Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = 4.1 inches Resultant Street Flow Spread (based on sheet Q-Alfow geometry) T = 8.8 feet Resultant Flow Depth at Maximum Allowable Spread d9PREM = 0.0 inches STIN-N-t.xls, Inlet In Sump 1/25/2007, 4:51 PM 30 — 28 27 26 25 24 23 0 - 22 21 20 —O 19 m LL 17 10 16- a rn O 15 —Z N N L 14 C 13 :5 a m 12 11 10 9 I I 7 4 �I 3 — 2 I I rO ( 1 0 / 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (ifs) - a Curb Weir —0 Curb Orif. —O—Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (N.) STIN-N-1.xls, Inlet In Sump 1/25/2007, 4:51 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-0-1 . Design Flow = Gutter Flow + Carry-over Flow yOVERLAND SIDE OVERLAND STREEET FLOW FLOWW W � e GUTTER LOW PLUS CARRY-OVER FLOW F F CUTTER LOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): Q = 2.50 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Onl) Slope ft/ft Len th ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ` P, I ( C2 + Tc ) A C3 Design Storm Return Period, T,= years Return Period One -Hour Precipitation, P, = inches C,= C2 = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G = Bypass (Carry -Over) Flow from upstream Subcatchments, q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended Tc = N/A minutes Time of Concentration Selected by User, Tc = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 2.50 cfs STIN-0-1.xls, O-Peak 1/25/2007, 4:52 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-0-1 Lo (C) A Desicin Information (input) Type of Inlet Type = CDOT Type R Curb Opening,. - Local Depression (in addition to gutter depression 'a'from'Q-AlloW) ate„= - 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = V Grate Information Length of a Unit Grate La (G) = WA feet idth of a Unit Grate W. =' - WA feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A„� = - N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = WA' Grate Weir Coefficient (typical value 3.00) C„ (G) = MAI Grate Orifice Coefficient (typical value 0.67) Co (G) =. N/A Curb Opening Information Length of a Unit Curb Opening L. (C) 5.06 feet Height of Vertical Curb Opening in Inches H,„„ = 6.00inches Height of Curb Orifice Throat in Inches Hy j = F 5.96, inches Angle of Threat (see USDCM Figure ST-5) Theta = - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W p = 2.00' feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = 0.20 Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) = 2.30• Curb Opening Oce Coefficient (typical value 0.67) Co (C) =. - 0.67' Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Cost = NW Clogging Factor for Multiple Units Clog = N/A s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 2.5 cfs curb) dM = N/A i. inches Flow Depth at Local Depression with Clogging (0 cis grate, 2.5 cis curb) d. = N/A. inches s an Orfce Flow Depth at Local Depression without Clogging (0 cfs grate, 2.5 cis curb) dM = N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 2.5 cis curb) d. = N/A` inches Resulting Gutter Flow Depth Outside of Local Depression d,.c„„ = NIA` inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = 1.00 Clogging Factor for Multiple Units Clog = 0201 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 2.5 cfs curb) dM =. 3.0� inches Flow Depth at Local Depression with Clogging (0 cis grate, 2.5 cfs curb) d„, = 3.3, inches Curb as an Orifice, Grate as an Orifice w �3.1 Flow Depth at Local Depression without Clogging (0 cis grate, 2.5 cfs curb) rid = inches Flow Depth at Local Depression with Clogging (0 cfs grate, 2.5 cfs curb) d„ = 3.3, inches Resulting Gutter Flow Depth Outside of Local Depression d,.c, =. 0.3' inches Resultant Street Conditions Total Inlet Length L=' 5.0.--feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Q. _' 2.51 cfs Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = 0.3, inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T = 02; feet Resultant Flow Depth at Maximum Allowable Spread - dapaeee= 0.0. inches STIN-0-1.xls, Inlet In Sump 1/25/2007, 4:62 PM 30 29 - 28-- 27 26 25 24 I I O 23- 22 21 — I 20 19- / 18 L 17— V m 4 1s a rn � 15 m t c 74 I G 13 m G 12- O 11 - 10 9 8 7 5 4 3- I 0 2 1 0 fit A 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (CIS) —a Curb Weir 8 Curb Orif. —9— Not Used • Reported Design —O— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-at.xls, Inlet In Sump 1/25/2007, 4:52 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-O-2 Design Flow = Gutter Flow + Carry-over Flow OVERLAND SIDE �OV OVERLAND y I STREET Y J E GUTTER FLOW PLUS CARRY -`MOVER FLOW GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 2.08 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Subcatchment Area = " Acres Percent Imperviousness = % NRCS Soil Type =1 JA, B, C, or D Site: (Check One Box Only Slope fUft) Length ft Site is Urban: Overland Flow - Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CZ + Tc) A C3 Design Storm Return Period, Tr= years Return Period One -Hour Precipitation, P, = inches Ci= C2 = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cis Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, Tc = N/A minutes Recommended Tc = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, Cy = N/A cfs Total Design Peak Flow, Q =1 2.08 cfs STIN-0-2.xls, Q-Peak 1/25/2007, 4:52 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-0-2 —Lo (C) ,r Design Information (Input) Type of inlet Type =. CDOT Type R Curb Opening Local Depression (in addition to gutter depression's' from'O-AIIow') a.= - - - 3.00 inches Number of Unit Inlets (Grate or Cum Opening) No = Grate Information Length of a Unit Grate L, (G) - - WA, feet Width of a Unit Grate We = - - NIA feet a Opening Ratio for a Grate (typical values 0.15-0.90) A„o, = - - -' WA Clogging Factor for a Single Grate (typical value 0,50) C, (G) = WA', Grate Weir Coefficient (typical value 3.00) C„ (G) _ - N/A Grate Orifice Coefident (typical value 0.67) Ca (G) _ ` N/A Cum Opening Information _ Length of a Unit Cum Opening L. (C) - - . 5.00" feet Height of Vertical Cum Opening in Inches H,.,,, = � - 6.00 inches Height of Cum Orifice Throat in Inches Hy,,,i = `. "- 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta ='.'- - '63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = 2.00, feet Clogging Factor for a Single Cum Opening (typical value 0.10) C, (C) - 0.20 Cum Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) = 2.30 Cum Opening Orifice Coefficient (typical value 0.67) Co (C) -, - - 0.67' Resultina Gutter Flow Depth for Grate Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coal -.� N/AI Clogging Factor for Multiple Units Clog =' N/Af s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 2.08 cfs cum) d„, N/A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 2.08 cfs cum) dw., =Y - - NIA inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 2.08 cfs cum) _ dd =1 N/A' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 2.08 cfs cum) cl , = i N/A' inches Resulting Gutter Flow Depth Outside of Local Depression cl . = - NIA' inches Resulting Gutter Flow Depth for Cum Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef =; - 1.00' Clogging Factor for Multiple Units Clog =' 0.20 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 2.08 c/s cum) d. _ : 2.7 inches Flow Depth at Local Depression with Clogging (0 cis grate, 2,08 cfs cum) d,e = _ 2.9' inches Cum as an Orifice, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate. 2.08 cis cum) do =! 3.0 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 2.08 cfs cum) d„ _; 3.19 inches Resulting Gutter Flow Depth Outside of Local Depression cl . = 0.0 inches Resultant Street Conditions _ Total Inlet Length - L = ` 5.0 feet Total Inlet Interception Capacity (Design Discharge from O-Peak) O, = - 2.1 -cfs Resultant Gutter Flow Depth (based on sheet 0-Allow geometry) d = 0.0. inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T 0.0 feet Resultant Flow Depth at Maximum Allowable Spread dWRExo = 0.0 inches STIN-0-2.xis, Inlet In Sump 1/25/2007, 4:52 PM 30 29 28- 27 - 26 25 - 2423 �I 0 22 21 20 / 19H— ^ 19 (D IL 17 I A 16 O I / 15 u / 1a c .L 13 ' 6 m 12 O 11 19 _ 7 6 I 6 I m l 3_ 2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 O (cfs) —Gr Curb Weir —0 Curb Orif. 8 Not Used • Reported Design —o—Reported Design Flow Depth (in.) Flow Depth (in.) - Flow Depth (in.) Spread (ft.) STIN-0-2.xls, Inlet In Sump 1/25/2007, 4:52 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-O-3 Design Flow = Gutter Flow + Carry-over Flow OVERLAND FLOWy S1 y ®� GUTTER FLOW PLUS CARRY-OVER INLET DE �OVFLOWNS y ?FET FLOW F LEI E GUTTER LOW INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 13.72 Cfs ' If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope ft/ft Length (ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( C2 + T,) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches C,= C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A c% Total Design Peak Flow, Q = 13.72 cfs STIN-0-3.xls, Q-Peak 1/25/2007, 4:52 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer ` Inlet ID = STIN-0.3 E ,, Lo (C)-1� Desi n Information (input) Type of Inlet Type = `CDOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'O-AIIow) a. = ` 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = -' 11 Grate Information Length of a Unit Grate L. (G) = WA. feet Width of a Unit Grate Wo =: �.' N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A� = - - - N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) =:_ WA Grate Weir Coefficient (typical value 3.00) C„. (G) = -. NIA Grate Odfice Coefficient (typical value 0.67) C, (G) = - - WA' Curb Opening Information Length of a Unit Curb Opening L. (C) = - 10.00 feet Height of Vertical Curb Opening in Inches H_ . 6.00 inches Height of Curb Orifice Throat in Inches Hy,,,r= 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta =;. - -63.4 degrees Side Width for Depression Pan (typically the gutter Moth of 2 feet) WP =;: - s 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = s - 0.15' Curb Opening Weir Coefficient (typical value 2.30-3.00) C, (C) = - 2.30 Curb Opening Orifice Coefficient (typical value 0.67) Co (C) _ - _ 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Cost = N/A` Clogging Factor for Multiple Units Clog WA. s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 13.72 cfs curb) d- _ ; WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 13.72 cfs curb) d.. _? N/A' inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 13.72 cfs curb) dd = l NIA' inches Flow Depth at Local Depression with Clogging (0 cfs grate, 13.72 cfs curb) d. _ • N/A inches Resulting Gutter Flow Depth Outside of Local Depression cl .Gr, _' NIA, inches Resultino Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = 1.00 Clogging Factor for Multiple Units Clog Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 13.72 cfs curb) d„ _'- - 6.9 inches Flow Depth at Local Depression with Clogging (0 cfs grate. 13.72 cfs curb) tl„ _ -, 7.5 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 13.72 cfs curb) rid = _W 51 inches at Flow Depth at Local Depression with Clogging (0 cfs grate, 13.72 cfs curb) it. _. 7.1 inches Resulting Flow Depth Outside of Local Depression d,. m=' , 4.5 inches Resultant Street Conditions Total Inlet Length L = 10.0r feet Total Inlet Interception Capacity (Design Discharge from O-Peak) O, _ 13.7' cfs Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = 4.5 inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T =- 10.4 feet Resultant Flow Depth at Maximum Allowable Spread d9PREA =. 0.0 inches STIN-0-3.xls, Inlet In Sump 1/25/2007, 4:52 PM 29 28 27 28 - I It 25 24 23 I I I I 22 O / 21 I 2019 LL I I t 17 o M Gl 16. C15, to m N m 14 C 13 C 12 . 11 10 I I 9TT I 0 5 3 1 . 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (Cfs) —6 Curb Weir 0 Curb Orif. —G Not Used • Reported Design —O— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (R.) STIN-0-3.xls, Inlet In Sump 1/25/2007, 4:52 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-Q-1 Design Flow = Gutter Flow + Carry-over Flow �OVFROLWND SIDE �OVERLAND y' I STREET FLUTTER LOW PLUS CARRY-OVER LOW F F GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 3.50 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness - Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only) Slope fUft Lenth ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P1 / ( C2 + T,) A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches C=:;.. C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tG = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 3.50 cfs STIN-Q-1.xls, Q-Peak 1/25/2007, 4:52 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer" - Inlet ID = STIN-0-1 i Lo (C)— Design Information (input) Type of Inlet Type ='CDOT Type.R Curb Opening Local Depression (in addition to gutter depression'a' from'Q-AIIow) 81" - -3.00 inches Number of Unit Inlets (Grate or Curb Opening) No =. 1 Grate Information Length of a Unit Grate L. (G) = N/Afeet Width of a Unit Grate W. = N/A feet a Opening Ratio for a Grate (typical values 0.15-0.90) A„rp = . "N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = -' - N/A' Grate Weir Coefficient (typical value 3.00) Cw (G) = �' ' N/A Grate Orifice Coefficient (typical value 0.67) Co (G) _ -. ".. -- N/A Curb Opening Information _ Length of a Unit Curb Opening Lp (C) =' ' �. 5.00 feet Height of Vertical Curb Opening in Inches H=' 6.00 inches Height of Curb Orifice Throat in Inches Hs,,,, _ • 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = _ 63.4' degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp =' -' 2.00. feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = . — 0.20 Curb Opening Weir Coefficient (typical value 2.30-3.00) Cw (C) = - ,. 2.30 Curb Opening Orifice Coefficient (typical value 0.67) Cp (C) ='.. - ,;:0.67' Resultina Gutter Flow Depth for Grate Inlet Ca aci in Sum Clogging Coefficient for Multiple Units Coef =' N/A Clogging Factor for Multiple Units Clog =:.. N/AI s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 3.5 cfs curb) d,„ =+ WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.5 efs curb) rl , _ , NIA inches s an Orifice , Flow Depth at Local Depression without Clogging (0 cfs grate, 3.5 cis curb) da =, NIX inches Flow Depth at Loral Depression with Clogging (0 cfs grate, 3.5 cis curb) rip, = NIA. inches Resulting Gutter Flow Depth Outside of Local Depression d,.,. =; N/A inches Resulting Gutter Flow Depth for Curb OPenInA Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = too Clogging Factor for Multiple Units Clog => 0.20 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 3.6 cis curb) dr =1 3.8 inches Flow Depth at Local Depression with Clogging (0 cls grate, 3.5 cis curb) d„., _ ; 4.1 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 3.5 cis curb) da = 3.5 inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.5 efs curb) dpp _' 4.0 inches Resulting Gutter Flow Depth Outside of Local Depression tl . m =- 1.1, Inches Resultant Street Conditions Total Inlet Length L =' 5.0' feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. _ 3.5 efs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = 1.1 Inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 0.9 feet Resultant Flow Depth at Maximum Allowable Spread dspneao =, 0.0 Inches STIN-Q-t.xls, Inlet In Sump 1125/2007, 4:53 PM 29 - 28 - 27 - 26 25 - --{ 23 22 -}-I 21 I m 20 - 19 117 « N 7 fx 1s fd 15 N C 14 I / II-- I .+ 13 a m 12 LL 11 10 I O 8. 7 I� 3 � ( 2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 (ofs) —6 Curb Weir Curb Orif. —B—Not Used • Reported Design —O—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-Q-1.xls, Inlet In Sump 1/25/2007, 4:53 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-R-1 Design Flow = Gutter Flow + Carry-over Flow OVERLAND SIDE FLOW y I STREET GUTTER PLOW PLUS CARRY-OVER LOW F ® F GUTTER FLOW INLET INLET 1/2 ❑F STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): *Q = 12.27 cfs * If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope ft/ft) Len th ft Site is Urbanj Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, * P, / ( Cz + T� A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches Ci= CZ = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), G = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tc = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 12.27 cfs STIN-R-1.xls, Q-Peak 1/25/2007, 4:53 PM INLET IN A SUMP OR SAG LOCATION Project =. Bayer Inlet ID = STIN-R-1 "Lo (C) r Design Information (input) Type of Inlet Type = CDOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'O-Allow') A., = - 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No =' 1 Grate Information _ Length of a Unit Grate L. (G) _ - ' - �- N/A feet idth of a Unit Grate W. -.:.-. N/A feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A„n, _ N/A Clogging Factor for a Single Grate (typical value 0.50) C, (G) _ - - - NIA Grate Weir Coefficient (typical value 3.00) C„ (G) _ WA Grate Orifice Coefficient (typical value 0.67) Co (G) _ - - WA Curb Opening Information Length of a Unit Curb Opening L. (C) _ - 10.00 feet Height of Vertical Curb Opening in Inches H,,,,r = - -- 6.00 inches Height of Curb Orifice Throat in Inches Hr,,,, = 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W, = ` 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = ` ,0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) C. (C) =. '"" 2.30 Curb Opening Orifice Coefficient (typical value 0.67) C. (C) = 0.67 Resuftina Gutter Flow Depth for Grate Inlet Capacity in a Sumo Clogging Coefficient for Multiple Units Coef =. NIA! Clogging Factor for Multiple Units Clog = NIAi s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 12.27 cis curb) dw = N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 12.27 cis curb) d. = NIX inches s an Orifice Flow Depth at Local Depression without Clogging (0 cfs grate, 12.27 cts curb) da = N/A' inches Flow Depth at Local Depression with Clogging (0 cis grate, 12.27 cis curb) da = . NIA'. inches Resulting Gutter Flow Depth Outside of Local Depression d,.o„r, = NIA Inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = 1.00 Clogging Factor for Multiple Units Clog = 0.15.. Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 12.27 cis curb) cl v = ___ 6.4inches Flow Depth at Local Depression with Clogging (0 cis grate, 12.27 cis curb) cl, = 7.0 inches Curb as an Orifice, Grate as an Orifice . Flow Depth at Local Depression without Clogging (0 cis grate, 12.27 cis curb) da = 5.2 inches Flow Depth at Local Depression with Clogging (0 cis grate, 12.27 cts curb) d. = - 6.2 inches Resulting Gutter Flow Depth Outside of Local Depression d,c,,, = 4.0- inches Resultant Street Conditions Total Inlet Length L =' 10.0 feet Total Inlet Interception Capacity(Design Discharge from O-Peak) 0,= 12.3 cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = 4.0 Inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 8.1 feet Resultant Flow Depth at Maximum Allowable Spread d9PRE,1D= 0.0, Inches STIN-R-1.xls, Inlet In Sump 1/25/2007, 4:53 PM 30 29 - 28 I I 27 26 25 24 - 23 - 0 — 22 . 21 0 O 19 I I 18 m 17 0 16 0. I I 0 15 L 14 C O 13 :E C m 12 11 O 10 m g i i 7 4 t- 5 - I 3 O 2 1 0 1LA / 1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 (cfs) —6 Curb Weir 8 Curb Onf. --8 Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flaw Depth (in.) Spread (ft.) STIN-R-t.xls, Inlet In Sump 1/25/2007, 4:53 PM INLET SIZING — Area Inlets CDOT Type C and CDOT Type D Stantec Area Inlet Design - Sump Condition Area Inlet for Design Point 053 (STIN-Al-1) Project No. 187010251 This sheet computes the controlling area inlet Flow condition. Weir Equation: 3 Q, =CLH' where: H = head above weir Orifice Equation: Q = C. A. 2Ky where: H= h z- h r Grate: CDOT Type C Area Inlet Weir: Orifice: Cesar = 3.20 0.65 L� = 11.74 ft. (1) Aar. = 7.97 W Clogging Factor = 0.20 Number of Inlets = 6 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 95.90 100 year WSEL (95.9) = 0.65 Head (ft.) Qww Qf. Odw WSEL 0.00 0.00 0.00 0.00 0.00 0.50 63.76 141.03 63.76 0.50 1.00 180.33 199.44 180.33 1.00 1.50 331.28 24427 244.27 1.50 2.00 510.04 282.06 282.06 2.00 2.50 712.80 315.35 315.35 2.50 3.00 937.00 345.45 345.45 3.00 3.50 1180.76 373.13 373.13 3.50 4.00 1442.61 398.89 398.89 4.00 4.50 1721.39 423.09 423.09 4.50 5.00 2016.11 445.97 445.97 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control tt]weir t Oorifice 2500 4 ;3 N 2000 + 1500 3 ic 1000 `. ---- -- , 500 0 ) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. The Sear -Brown Group 4:55 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 138 (STIN-All-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: i Q,,;, = CLH' where: H = head above weir Odfice Equation: Q is = C. A. -gH H =hz -h Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cw& = 3.20 - C„yk, = 0.65 L� = 8.42 ft. (1) Aar . = 4.27 fl` Clogging Factor = 0.20 Number of Inlets = 3 Fiowline elevation of grate = 0.00 100 year Design Flow (cfs) = 18.34 100 year WSEL (18.34) = 0.44 Head (ft) Q. Qa,f. c6r r WSEL 0.00 0.00 0.00 0.00 0.00 0.50 22.85 37.79 22.85 0.50 1.00 64.64 53.44 53.44 1.00 1.50 118.75 65.45 65.45 1.50 2.00 182.83 75.58 75.58 2.00 2.50 255.51 84.50 84.50 2.50 3.00 335.88 92.56 92.56 3.00 3.50 423.26 99.98 99.98 3.50 4.00 517.12 106.88 106.88 4.00 4.50 617.05 113.37 113.37 4.50 5.00 722.70 119.50 119.50 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. 4:55 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 052 (STIN-A5-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 CLH 2 where: H = head above weir Orifice Equation: Q =C.A 2KH where: H= h z- h r Grate: CDOT Type C Area Inlet Weir: Orifice: Cwcr = 3.20 0.65 = 11.74 ft. (1) A,,;" = 7.97 ft` Clogging in Factor = 0.20 Number of Inlets = 6 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 108.00 100 year WSEL (108) = 0.70 Head (ft.) Qwer Oo,;. Q. mw WSEL 0.00 0.00 0.00 0.00 0.00 0.50 63.76 141.03 63.76 0.50 1.00 180.33 199.44 180.33 1.00 1.50 331.28 244.27 244.27 1.50 2.00 510.04 282.06 282.06 2.00 2.50 712.80 315.35 315.35 2.50 3.00 937.00 345.45 345.45 3.00 3.50 1180.76 373.13 373.13 3.50 4.00 1442.61 398.89 398.89 4.00 4.50 1721.39 423.09 423.09 4.50 5.00 2016.11 445.97 445.97 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tpweir -F Llorifice 2500 2000 ---•-•- 1500 � LL 1000 500 � f r 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth t) Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width= 2.66 ft. Effective GrateWidth= 3.74 ft. 4:55 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 137 (STIN-A6-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: CLH: where: H = head above weir Orifice Equation: Q_,_ = C. A. 2gH where: H= h z- h t Grate: CDOT Type C Area Inlet Weir: Orifice: Cwar = 3.20 Cf. = 0.65 L� = 11.74 ft. (1) Ajr� = 7.97 ft` Clogging Factor = 0.20 Number of Inlets = 1 . Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 4.71 100 year WSEL (4.71) = 0.27 Head (ft.) Q,,. , Cam. Q.„ WSEL 0.00 0.00 0.00 0.00 0.00 0.50 10.63 23.50 10.63 0.50 1.00 30.05 33.24 30.05 1.00 1.50 55.21 40.71 40.71 1.50 2.00 85.01 47.01 47.01 2.00 2.50 118.80 52.56 52.56 2.50 3.00 156.17 57.57 57.57 3.00 3.50 196.79 62.19 62.19 3.50 4.00 240.44 66.48 66.48 4.00 4.50 286.90 70.51 70.51 4.50 5.00 336.02 74.33 74.33 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir-Orffice Control tQweir -i-Clorifice 400 350 300- e 2`0 3 200 X 150 100 so.. - 0 " 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Len th = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. The Sear -Brown Group 4:56 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 136 (STIN-A7-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Q., = CLH' where: H = head above weir Orifice Equation: C. A. f2KH where: H =hz -hr Grate: CDOT Type C Area Inlet Weir: Orifice: C,,.e; = 3.20 Cam. = 0.65 L� = 11.74 ft. (1) Aorjr. = 7.97 ft` Clogging Factor= 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 3.55 100 year WSEL (3.55) = 0.21 Head (ft.) Q. Q., Q. i WSEL 0.00 0.00 0.00 0.00 0.00 0.50 10.63 23.50 10.63 0.50 1.00 30.05 33.24 30.05 1.00 1.50 55.21 40.71 40.71 1.50 2.00 85.01 47.01 47.01 2.00 2.50 118.80 52.56 52.56 2.50 3.00 156.17 57.57 57.57 3.00 3.50 196.79 62.19 62.19 3.50 4.00 240.44 66.48 66.48 4.00 4.50 286.90 70.51 70.51 4.50 5.00 336.02 74.33 74.33 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control t4weir -�--Qorifice 400 ___ ._ ......._�.. 350 300 200 3 0 x ISO 100 ®11 50 0 ( I 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWicith= 3.74 ft. 4:56 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 134 (STIN-A8-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q. = CLH- where: H = head above weir Orifice Equation: C..4o 2 H where: H =hz -h, Grate: CDOT Type C Area Inlet Weir: Orifice: C e; = 3.20 C., re, = 0.65 L� = 20.92 ft. (1) Ao� = 25.13 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 8.15 100 year WSEL (8.15) = 0.24 Head (ft.) Qww Qonroe Q nt.1 WSEL 0.00 0.00 0.00 0.00 0.00 0.50 18.94 74.13 18.94 0.50 1.00 53.57 104.84 53.57 1.00 1.50 98.41 128.40 98.41 1.50 2.00 151.51 148.26 148.26 2.00 2.50 211.74 165.76 165.76 2.50 3.00 278.33 181.58 181.58 3.00 3.50 350.74 196.13 196.13 3.50 4.00 428.52 209.67 209.67 4.00 4.50 511.33 222.39 222.39 4.50 5.00 598.88 234.42 234.42 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tDweir -i-Qorifice 700 600 500 r` 400 o300 200 100 ---- 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 7.60 ft. Effective Grate Length = 6.72 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. The Sear -Brown Group 4:56 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 133 (STIN-All-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q o = CLH' where: H = head above weir Orifice Equation: Q.,,,ra = C. A. 2RH where: H =hz -hr Grate: Modred CDOT Type C Area Inlet Weir: Orifice: C. r = 3.20 C,r f. = 0.65 L� = 8.42 ft. (1) A„� = 4.27 ft Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 3.66 100 year WSEL (3.66) = 0.31 Head (ft.) O.& O� 0,,tm WSEL 0.00 0.00 0.00 0.00 0.00 0.50 7.62 12.60 7.62 0.50 1.00 21.55 17.81 17.81 1.00 1.50 39.58 21.82 21.82 1.50 2.00 60.94 25.19 25.19 2.00 2.50 85.17 28.17 28.17 2.50 3.00 111.96 30.85 30.85 3.00 3.50 141.09 33.33 33.33 3.50 4.00 172.37 35.63 35.63 4.00 4.50 205.68 37.79 37.79 4,50 5.00 240.90 39.83 39.83 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Space width = 0.0417 IL Bar width= 0.0208ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:56 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 130 (STIN-Al2-1) Project No. 187010251 This sheet computes the controlling area inlet Bow condition. Weir Equation: } Q. , = CLH z where: H = head above weir Orifice Equation: Q .,,ra = C. A. 2-gH where: H =h2 -hr Grate: CDOT Type C Area Inlet Weir: Orifice: Cwar = 3.20 C� = 0.65 L� = 11.74 ft. (1) Aa,w. = 7.97 ft` Clogging Factor = 0.20 Number of Inlets = 1 Fiowline elevation of grate = 0.00 100 year Design Flow (cfs) = 10.72 100 year WSEL (10.72) = 0.50 Head (ft.) O,,.ar 0a . Q.m WSEL 0.00 0.00 0.00 0.00 0.00 0.50 10.63 23.50 10.63 0.50 1.00 30.05 33.24 30.05 1.00 1.50 55.21 40.71 40.71 1.50 2.00 85.01 47.01 47.01 2.00 2.50 118.80 52.56 52.56 2.50 3.00 156.17 57.57 57.57 3.00 3.50 196.79 62.19 62.19 3.50 4.00 240.44 66.48 66.48 4.00 4.50 286.90 70.51 70.51 4.50 5.00 336.02 74.33 74.33 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control --#-0weir -a-Oonfice 400 350 -- g250 E 200 - _41, 3 LL 150 100 I 50 e 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (tL) Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width= 2.66 ft. Effective GrateWidth = 3.74 ft. 4:56 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 121 (STIN-B3-5) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Qr� = CLH'- where: H = head above weir Orifice Equation: Q ,,, _ = C, Ao 2gH where: H= h z- h r Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cwv ; = 3.20 Co , = 0.65 L� = 8.42 ft. (1) Aamw = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 4.20 100 year WSEL (4.2) = 0.20 Head (ft.) O..w Q ff. O�i WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir-Oriflce Control -T-avert --aorifice 600 500 � _400 300 0 LL 200 100 i 0 1' 0.00. 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:56 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 120 (STIN-63-6) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: i Q.,,, = CLH'- where: H = head above weir Orifice Equation: Q7� ,- = Co Ao 2 H where: H= h Z- h r Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C„e; = 3.20 Cam;. = 0.65 La = 8.42 ft. (1) Arm. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 5.88 100 year WSEL (5.88) = 0.26 Head (ft.) Q.,w Qr, , O� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control taveir t porifice 600 00 400 F� 300 0 200 100 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:56 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 118 (STIN-133-7) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q... = CLH: where: H = head above weir Orifice Equation: ()o„rn = Co A, 2RH where: H = h 2 -h, Grate: Modred CDOT Type C Area Inlet Weir: Orifice: Cwe, = 3.20 C0 once = 0.65 Lam = 8.42 ft. (1) Ada, = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 10.27 100 year WSEL (10.27) = 0.40 Head (ft.) 0. Qorif. Qcantml WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control Oweir t Dorifice 600 500 _400 - -+---- 300 a 200 100 e s 0.00- 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (R) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:56 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 117 (STIN-133-8) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: i CLH 2 where: H = head above weir Orifice Equation: Co A, f2 gH H=hz- Grate: Modified COOT Type C Area Inlet Weir: Orifice: C.& = 3.20 C rr. = 0.65 L� = 8.42 ft. (1) Aowice = 4.27 ft` Clogging Factor= 0.20 Number of Inlets = 3 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 16.79 100 year WSEL (16.79) = 0.42 Head (ft.) O.wr Q.M. O,,, WSEL 0.00 0.00 0.00 0.00 0.00 0.50 22.85 37.79 22.85 0.50 1.00 64.64 53.44 53.44 1.00 1.50 118.75 65.45 65.45 1.50 2.00 182.83 75.58 75.58 2.00 2.50 255.51 84.50 84.50 2.50 3.00 335.88 92.56 92.56 3.00 3.50 423.26 99.98 99.98 3.50 4.00 517.12 106.88 106.88 4.00 4.50 617.05 113.37 113.37 4.50 5.00 722.70 119.50 119.50 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tDweir t Qorifice 700 - 600 500 400 b o M 300 200 100 ^�w',., ts_ ,.ny➢Y3.'PE. e a t 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 IL Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWldth = 2.50 ft. 4:57 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 114 (STIN-B4-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 0,,,; = CLH- where: H = head above weir Orifice Equation: Ca A. f2gH where: H =hz -h, Grate: Modified CDOT Type C Area Inlet Weir: Orifice: 3.20 0.65 8.42 ft.(1) A.K. = 4.27 ft Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 9.93 100 year WSEL (9.93) = 0.39 Head (ft.) Q. Qf. Ct., WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control Oweir t porifice 00 500 400 n, 300 0 n 200 100 a 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow DepN (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:57 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 113 (STIN-134-2) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: i Q _ = CLH 1 where: H = head above weir Orifice Equation: Q. , - = Ca A. f2KH where: H =h2 -hr Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cwar = 3.20 0.65 L= = 8.42 ft. (1) Aorif. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 9.99 100 year WSEL (9.99) = 0.39 Head (ft.) Q.& Qorir. Q.r l WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control +Oweir -W- Qori6ce 600 500 - 400 V 300 3 o i } 200 100 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Len th = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:57 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 151 (STIN-137-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: =CLH= where: H = head above weir Orifice Equation: Q. ,_ = Co A. 2gH where: H= h 2- h r Grate: CDOT Type C Area Inlet Weir: Orifice: Cw& = 3.20 C f. = 0.65 L� = 11.74 ft. (1) AoM. = 7.97 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 11.00 100 year WSEL (11) = 0.51 Head (ft.) Oweir Q a. Omnwl WSEL 0.00 0.00 0.00 0.00 0.00 0.50 10.63 23.50 10.63 0.50 1.00 30.05 33.24 30.05 1.00 1.50 55.21 40.71 40.71 1.50 2.00 85.01 47.01 47.01 2.00 2.50 118.80 52.56 52.56 2.50 3.00 156.17 57.57 57.57 3.00 3.50 196.79 62.19 62.19 3.50 4.00 240.44 66.48 66.48 4.00 4.50 286.90 70.51 70.51 4.50 5.00 336.02 74.33 74.33 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control'eir -i-Cforifice 400 350 0 25 'e 0 3 200 LL 150 100 1 r 50 0 � 4 AN 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Len th = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWtdth = 3.74 ft. The Sear -Brown Group 4:57 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 165 (STIN-87-3-1-1) Project No. 187010251 This sheet computes the controlling area inlet Flow condition. Weir Equation: i Q..P =CLH= where: H = head above weir Orifice Equation: Q.,,,_ = Co A„ 2gH where: H = h 2 -h Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C.ar = 3.20 C,, . = 0.65 L� = 8.42 ft. (1) A,.T , = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 5.42 100 year WSEL (5.42) = 0.41 Head (ft.) Q,,.ar Q f,. Q.r WSEL 0.00 0.00 0.00 0.00 0.00 0.50 7.62 12.60 7.62 0.50 1.00 21.55 17.81 17.81 1.00 1.50 39.58 21.82 21.82 1.50 2.00 60.94 25.19 25.19 2.00 2.50 85.17 28.17 28.17 2.50 3.00 111.96 30.85 30.85 3.00 3.50 141.09 33.33 33.33 3.50 4.00 172.37 35.63 35.63 4.00 4.50 205.68 37.79 37.79 4.50 5.00 240.90 39.83 39.83 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. 300 250 200 e ;150 100 50 0 Weir -Orifice Control toweir -0-00rifice 0.00 1.00 2.00 Flow D ptli (k.) 4.00 5.00 6.00 Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. 4:58 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 164 (STIN-137-3-1) Project No. 187010251 This sheet computes the controlling area inlet Flow condition. Weir Equation: a CLH a where: H = head above weir Orifice Equation: i�..,.x.. = C. A. j2gH where: H = h 2 -h, Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C„& = 3.20 Cam. = 0.65 L� = 8.42 ft. (1) AoK,. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 13.27 100 year WSEL (13.27) = 0.46 Head (ft.) Q.,a, QoM. Q.m WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control t0lweir - W-Dorifce 600 500 t _ m 3 1. 400 300 200 �_ 100 T 0 f 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth 1ftJ Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:58 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 161 (STIN-137A-1) Project No. 187010251 This sheet computes the controlling area inlet How condition. Weir Equation: Q,,; = CLH' where: H = head above weir Orifice Equation: Q., - = Co A. 2KH where: H= h z- h r Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cyr = 3.20 C,,;rk, = 0.65 L� = 8.42 ft. (1) Ate, = 4.27 W Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 9.62 100 year WSEL (9.62) = 0.38 Head (ft.) Q„w Qan6. Q., WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control Oweir t Oorice 600 r 4 500 400 v 300 �• a LL 200 100 0.00 1.00 2.00 FI�3.00�tft) 4.00 5.00 6.00 Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:59 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 161 (STIN-B7-4-2) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 CLH z where: H = head above weir Orifice Equation: Qo..sn = Co A. 2KH where: H= h z- h t Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C. - = 3.20 C.M. = 0.65 L� = 8.42 ft. (1) A„f. = 427 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 4.81 100 year WSEL (4.81) = 0.38 Head (ft.) O.& 06M. O� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 7.62 12.60 7.62 0.50 1.00 21.55 17.81 17.81 1.00 1.50 39.58 21.82 21.82 1.50 2.00 60.94 25.19 25.19 2.00 2.50 85.17 28.17 28.17 2.50 3.00 111.96 30.85 30.85 3.00 3.50 141.09 33.33 33.33 3.50 4.00 172.37 35.63 35.63 4.00 4.50 205.68 37.79 37.79 4.50 5.00 240.90 39.83 39.83 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control tOweir t Oriffce 300 �f 250 200 a ;150 0 u 100 50_. 0- 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (k.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Len th = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:59 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 162 (STIN-B7-4-3) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 QM, = CLH 2 where: H = head above weir Orifice Equation: where: H =hz -hr Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cwar = 3.20 C.M. = 0.65 L = 8.42 ft. (1) A„ n. = 4.27 W Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 7.68 100 year WSEL (7.68) = 0.50 Head (ft.) Oar Q., O� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 7.62 12.60 7.62 0.50 1.00 21.55 17.81 17.81 1.00 1.50 39.58 21.82 21.82 1.50 2.00 60.94 25.19 25.19 2.00 2.50 85.17 28.17 28.17 2.50 3.00 111.96 30.85 30.85 3.00 3.50 141.09 33.33 33.33 3.50 4.00 172.37 35.63 35.63 4.00 4.50 205.68 37.79 37.79 4.50 5.00 240.90 39.83 39.83 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control --#-Oweir -i-Qonfice 300 250 _200 150 0 LL 100 50 . 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. 4:59 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 162 (STIN-137-4-4) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Q,,;, = CLH'- where: H = head above weir Orifice Equation: Q.,.,_ =C. A. 2gH where: H= h 2- h r Grate: Modred CDOT Type C Area Inlet Weir: Orifice: C..w = 3.20 C.V,. = 0.65 L„� = 8.42 ft. (1) Aa nc, = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 7.68 100 year WSEL (7.68) = 0.50 Head (ft.) Q,., C,df. Q� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 7.62 12.60 7.62 0.50 1.00 21.55 17.81 17.81 1.00 1.50 39.58 21.82 21.82 1.50 2.00 60.94 25.19 25.19 2.00 2.50 85.17 28.17 28.17 2.50 3.00 111.96 30.85 30.85 3.00 3.50 141.09 33.33 33.33 3.50 4.00 172.37 35.63 35.63 4.00 4.50 205.68 37.79 37.79 4.50 5.00 240.90 39.83 39.83 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control 0 Oweir -� Oorice 300 250200 x a ;150 �100 50 # - .1 J c 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (k.) Space width = 0.0417 ft. Bar width= 0.0208ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:59 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 150 (STIN-87-5-1) Project No. 187010251 This sheet computes the controlling area inlet Flow condition. Weir Equation: CL H z where: H = head above weir Orifice Equation: r_)„„_ = C. A. 2gH where: H= h z- h r Grate: CDOT Type C Area Inlet Weir: Orifice: Cwer = 3.20 Cam, = 0.65 L� = 11.74 ft.(1) Ar. = 7.97 W Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 23.09 100 year WSEL (23.09) = 0.53 Head (ft.) Ow Q.M. O.Mrol WSEL 0.00 0.00 0.00 0.00 0.00 0.50 21.25 47.01 21.25 0.50 1.00 60.11 66.48 . 60.11 1.00 1.50 110.43 81.42 81.42 1.50 2.00 170.01 94.02 94.02 2.00 2.50 237.60 105.12 105.12 2.50 3.00 312.33 115.15 115.15 3.00 3.50 393.59 124.38 124.38 3.50 4.00 480.87 132.96 132.96 4.00 4.50 573.80 141.03 141.03 4.50 5.00 672.04 148.66 148.66 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tt)weir -f- Clonfice 800 - - 00 600 7500 u ; 400 T 300 200 100 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. The Sear -Brown Group 4:59 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 115 (STIN-B-2) Project No. 187010251 This sheet computes the controlling area inlet Bow condition. Weir Equation: 0 CLHr where: H = head above weir Orifice Equation: Q-,R = C. A. 2gH where: H= h 2- h I Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C. = 3.20 Cpw = 0.65 L°m = 8.42 ft. (1) Arr. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 12.64 100 year WSEL (12.64) = 0.45 Head (ft.) O..w Q„� Q� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir-Ortfice Control tQweir t Dorifice 600 - - a 500 +�--"-'- ----- 400^ e 300 ° :,.. LL 260 '' d'°,'o "� �s. P. 100 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:59 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 111 (STIN-B-3) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: } Q„ = CLH: where: H = head above weir Orifice Equation: Q, , = C. A. 2KH where: H = h 2 -hr Grate: Modified CDOT Type C Area Inlet Weir: Orifice: 3.20 Ca,a , = 0.65 Lit = 8.42 ft. (1) Ao,f,. = 4.27 f' Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 10.23 100 year WSEL (10.23) = 0.39 Head (ft.) Q ar Qff. Q� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tQweir f Q06fice 600 I¢ 500 400 y s S 3 300 _o u 200 100 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth= 2.50 ft. The Sear -Brown Group 4:59 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 109 (STIN-13-4) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: a Q, =CLHZ where: H = head above weir Orifice Equation: C7._,_ = Co A. 2 H where: H= h 2- h t Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C.m = 3.20 C.M. = 0.65 L� = 8.42 ft. (1) AoM. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 3 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 16.57 100 year WSEL (16.57) = 0.41 Head (ft.) Q„a, Oo,ifi=, 0�moi WSEL 0.00 0.00 0.00 0.00 0.00 0.50 22.85 37.79 22.85 0.50 1.00 64.64 53.44 53.44 1.00 1.50 118.75 65.45 65.45 1.50 2.00 182.83 75.58 75.58 2.00 2.50 255.51 84.50 84.50 2.50 3.00 335.88 92.56 92.56 3.00 3.50 423.26 99.98 99.98 3.50 4.00 517.12 106.88 106.88 4.00 4.50 617.05 113.37 113.37 4.50 5.00 722.70 119.50 119.50 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tQmeir t Qorifice 00 700 600 g500 L 400 E 300 200 100 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 4:59 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 105 (STIN-B-S) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Qu.,,, = CLH 2 where: H = head above weir Orifice Equation: Q. ,_ = C,. A. f2gH where: H= h 2- h r Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C„� = 3.20 C.M. = 0.65 = 8.42 ft. (1) Aaf,. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 9.05 100 year WSEL (9.05) = 0.36 Head (ft.) Q„& Qf. Q., WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control 0weir -i- Dorifice 00 500 --�- 400 � a;Y LL 200 100 0i 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth Ik.1 Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth= 2.50 ft. The Sear -Brown Group 4:59 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 103 (STIN-B-6) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q, = CLH 2 where: H = head above weir Orifice Equation: C. A. f2gH where: H= h z- h r Grate: Modified CDOT Type C Area Inlet ' Weir: Orifice: C„e = 3.20 C.M. = 0.65 Lam = 8.42 ft. (1) A,ff" = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flovdine elevation of grate = 0.00 100 year Design Flow (cfs) = 6.19 100 year WSEL (6.19) = 0.28 Head (ft.) Q� Qadke Q� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control t0weir -st-Coifice 600 500 400 �-• a 200 100 3 300 0 k 3` 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (k.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:00 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 103 (STIN-B-7) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir - Weir Equation: 3 Q,, = CLH 2 where: H = head above weir Orifice Equation: Q, 0_ = Co A. 2g7-1 where: H= h z- h 1 Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cw.� = 3.20 C,, . = 0.65 L� = 8.42 ft. (1) A,e. = 4.27 ft` Clogging Factor 0.20 Number of Inlets = 3 Fiowline elevation of grate = 0.00 100 year Design Flow (cfs) = 17.49 100 year WSEL (17.49) = 0.43 Head (ft.) Q r Oa,a. Orq„wi WSEL 0.00 0.00 0.00 0.00 0.00 0.50 22.85 37.79 22.85 0.50 1.00 64.64 53.44 53.44 1.00 1.50 118.75 65.45 65.45 1.50 2.00 182.83 75.58 75.58 2.00 2.50 255.51 84.50 84.50 2.50 3.00 335.88 92.56 92.56 3.00 3.50 423.26 99.98 99.98 3.50 4.00 517.12 106.88 106.88 4.00 4.50 617.05 113.37 113.37 4.50 5.00 722.70 119.50 119.50 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Sow directions. Weir -Orifice Control t•C e,,r. t porice 600 T 700 600 - P 500 -- V 400 u 300 200 � , 100 i a 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Len th = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth= 2.50 ft. The Sear -Brown Group 5:00 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 102 (STIN-B-8) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Q.< = CLH' where: H = head above weir Orifice Equation: Qo,,,a = C.A. 2 H where: H =hz -h, Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C.& = 3.20 C f. = 0.65 L� = 8.42 ft. (1) Aa,f. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 5.39 100 year WSEL (5.39) = 0.25 Head (ft.) Ow Qa;n<, Q� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control taveir -�-Ooritice 600 500 400 -- � a `v 300 LL 200 100 o !r I 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. 5:00 PM The Sear -Brawn Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 214 (STIN-C2-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 O»„ =CLH2 where: H = head above weir Orifice Equation: Q ,,,i_ = C. A. 2gH where: H =hz -h, Grate: Modred CDOT Type C Area Inlet Weir: Orifice: C..6, = 3.20 C'a. = 0.65 Laes� = 8.42 ft. (1) A.w = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 5.60 100 year WSEL (5.6) = 0.25 Head (ft.) Q„& Q rir. Q..,o WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control t0weir i-a0rifice 600 - - .41 Soo400 7 ' 13 300 e u 200 �r 100 0 1 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flew Depth (ft.) Space width = 0.0417 ft. Bar width= 0.0208ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:00 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 215 (STIN-C2-2) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q,,.,o = CLH x where: H = head above weir Orifice Equation: A. 2gH where: H= h 2- h r Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C..k = 3.20 C.M. = 0.65 L� = 8.42 ft. (1) A.K. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 10.15 100 year WSEL (10.15) = 0.39 Head (ft.) Q. Oa;i, O6� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate Length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:00 PM 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 214 (STIN-C2-1-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: i CLH' where: H = head above weir Orifice Equation: Q_, = C.,4., 2RH where: H = h z - h , Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C", = 3.20 Coenca = 0.65 L = 8.42 ft. (1) Aoff" = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowiine elevation of grate = 0.00 100 year Design Flow (cfs) = 11.19 100 year WSEL (11.19) = 0.42 Head (ft.) Qv; Qf, Q� WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control taveir t Dorifice 600 500 a 400 `u 3 30U e LL 200 100 j 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:00 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 213 (STIN-C3-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q,, =CLHz where: H = head above weir Orifice Equation: Q_xa = C. A. 12gH where: H = h 2 - h Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C , = 3.20 0.65 L� = 8.42 ft. (1) A.K,. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 3 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 17.01 100 year WSEL (17.01) = 0.42 Head (ft.) Qrer QoM. Cl. i l WSEL 0.00 0.00 0.00 0.00 0.00 0.50 22.85 37.79 22.85 0.50 1.00 64.64 53.44 53.44 1.00 1.50 118.75 65.45 65.45 1.50 2.00 182.83 75.58 75.58 2.00 2.50 255.51 84.50 84.50 2.50 3.00 335.88 92.56 92.56 3.00 3.50 423.26 99.98 99.98 3.50 4.00 517.12 106.88 106.88 4.00 4.50 617.05 113.37 113.37 4.50 5.00 722.70 119.50 119.50 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control taveir t Dorifice 600 700 e 500 400 9°l " 3 200 �e 100- 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:00 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 207 (STIN-05-2) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Q... = CLH- where: H = head above weir Orifice Equation: Qo„sre = C.'„ A;, 2KH H=hz -h Grate: CDOT Type C Area Inlet Weir: Orifice: Cweir = 3.20 Corifice = 0.65 L� = 11.74 ft. (1) Aonrce = 7.97 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 10.00 100 year WSEL (10) = 0.48 Head (ft.) - Owen Cloffice Ommmi WSEL 0.00 0.00 0.00 0.00 0.00 0.50 10.63 23.50 10.63 0.50 1.00 30.05 33.24 30.05 1.00 1.50 55.21 40.71 40.71 1.50 2.00 85.01 47.01 47.01 2,00 2.50 118.80 52.56 52.56 2.50 3.00 156.17 57.57 57.57 3.00 3.50 196.79 62.19 62.19 3.50 4.00 240.44 66.48 66.48 4.00 4.50 286.90 70.51 70.51 4.50 5.00 336.02 74.33 74.33 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tQweir Qonfce 400 "^----vr-- 350 300 le m 250 3 200 O i- 150 100 50 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) �. A Space width = 0.1640 ft. - Bar width = 0.0328 ft. Number of bars = 14 Number of spaces= 13 Grate length = 2.59 ft. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. The Sear -Brown Group 5:00 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 201 (STIN-C8-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Q.eir = CLH 2 where: H = head above weir Orifice Equation: Qo,,_ =C., A. 2KH H =h2 -h Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C.� = 3.20 Cod. = 0.65 Lr = 8.42 ft. (1) Aofu = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 13.55 100 year WSEL (13.55) = 0.47 Head (ft.) C.& Q rir,,. O,=„t,ol WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control t!)vreir t orifice 600 500 Ma 400 NN 3 300 0 u 200 too 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) aaa` Space width = 0.0417 ft. ' Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. - Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:01 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 413 (STIN-D1-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q = CLH' where: H = head above weir Orifice Equation: Q,,,,$- = Co A. r2gH where: H= h z- h r Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cwdr = 3.20 Con., = 0.65 Ley = 8.42 ft. (1) A., = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 3.56 100 year WSEL (3.56) = 0.31 Head (ft.) Q eir Qr,M. Q.n,.i WSEL 0.00 0.00 0.00 0.00 0.00 0.50 7.62 12.60 7.62 0.50 1.00 21.55 17.81 17.81 1.00 1.50 39.58 21.82 21.82 1.50 2.00 60.94 25.19 25.19 2.00 2.50 85.17 28.17 28.17 2.50 3.00 111.96 30.85 30.85 3.00 3.50 141.09 33.33 33.33 3.50 4.00 172.37 35.63 35.63 4.00 4.50 205.68 37.79 37.79 4.50 5.00 240.90 39.83 39.83 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tl]weir ' t Dorifice 300 250 200 d m 3 1 b0 a o 100 50 0 L: 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. 5:01 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 220 (STIN-D2-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Q.,, = CLH 2 where: H = head above weir Orifice Equation: Co A. f2gH where: H =h2 -hr Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cw = 3.20 C.M. = 0.65 L� = 8.42 ft.(1) Aod. = 4.27 W Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 2.79 100 year WSEL (2.79) = 0.25 Head (ft.) Q. Qfl. Q.a,,,,a WSEL 0.00 0.00 0.00 0.00 0.00 0.50 7.62 12.60 7.62 0.50 1.00 21.55 17.81 17.81 1.00 1.50 39.58 21.82 21.82 1.50 2.00 60.94 25.19 25.19 2.00 2.50 85.17 28.17 28.17 2.50 3.00 111.96 30.85 30.85 3.00 3.50 141.09 33.33 33.33 3.50 4.00 172.37 35.63 35.63 4.00 4.50 205.68 37.79 37.79 4.50 5.00 240.90 39.83 39.83 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tQweir --Qorifice 0 250 200 ,p } 150 '} 100 50 0 t 1 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. 5:01 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 408 (STIN-F2-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir - Weir Equation: r where: H = head above weir Orifice Equation: Q_0_ = C. A. 2gH where: H =hz -hr Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C.& = 3.20 C.,W. = 0.65 Lrrm = 8.42 ft. (1) Aa,;rw = 4.27 W Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 17.14 100 year WSEL (17.14) = 0.53 Head (ft.) Q...;, Qo,m. Ocordrol WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tQweir ---Qorifice 500 400 tl 5300 o 200 100 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.). Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. 5:01 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 405 (STIN-F3-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 Q,.,= = CLH 2 where: H = head above weir Orifice Equation: Q t„ = Co Ao 2gH where: H =hz -hr Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cweir = 3.20 Co,ni. = 0.65 L� = 8.42 ft. (1) Aarnlr, = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 11.52 100 year WSEL (11.52) = 0.43 Head (ft.) Oar Q.r, Qww WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tOweir -11-Ooice 600 500 400---w-- o poo o 200 100 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces= 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:01 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 404 (STIN-F3-2) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation 3 where: H = head above weir Orifice Equation: C. A. 12gH H=hz-hr Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cwa, = 3.20 Cep;. = 0.65 L = 8.42 ft. (1) Ad,. = 4.27 ft` Clogging Factor= 0.20 Number of Inlets = 3 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 17.45 100 year WSEL (17.45) = 0.43 Head (ft.) Q ar Qo,;r,ce Qwni l WSEL 0.00 0.00 0.00 0.00 0.00 0.50 22.85 37.79 22.85 0.50 1.00 64.64 53.44 53.44 1.00 1.50 118.75 65.45 65.45 1.50 2.00 182.83 75.58 75.58 2.00 2.50 255.51 84.50 84.50 2.50 3.00 335.88 92.56 92.56 3.00 3.50 423.26 99.98 99.98 3.50 4.00 517.12 106.88 106.88 4.00. 4.50 617.05 113.37 113.37 4.50 5.00 722.70 119.50 119.50 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tOweir t Qorifice 800 600 0 400 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) 300 Space width =- 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 k. Effective Grate Length = 1.71 k. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 k. Effective GrateWidth = 2:50 k. The Sear -Brown Group 5:01 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 404 (STIN-F3-3) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q.Q� =CLH- where: H = head above weir Orifice Equation: Qo..a_ = Co A. 2RH H=hr-h Grate: Modified CDOT Type C Area Inlet Weir: Orifice: C..ar = 3.20 Co,;r;. = 0.65 L� = 8.42 ft. (1) Aorifica = 4.27 ft` Clogging Factor= 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 8.70 100 year WSEL (8.7) = 0.35 Head (ft.) Qwar Qonr. Om WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. ' Weir -Orifice Control-aweir -�-Qonfice 600 500 400 300 0 v 200 100 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) J Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:01 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 406 (STIN-F-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q�P =CLHz where: H = head above weir Orifice Equation: C, ..r.. = Co A. 29H where: H =hz -hr Grate: Modred CDOT Type C Area Inlet Weir: Orifice: Cwdr = 3.20 C,ff. = 0.65 L� = 8.42 ft. (1) Aorif. = 4.27 fl` Clogging Factor = 0.20 Number of Inlets = 3 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 20.08 100 year WSEL (20.08) = 0.46 Head (ft.) Ower - 4ar. Qm WSEL 0.00 0.00 0.00 0.00 0.00 0.50 22.85 37.79 22.85 0.50 1.00 64.64 53.44 53.44 1.00 1.50 118.75 65.45 65.45 1.50 2.00 182.83 75.58 75.58 2.00 2.50 255.51 84.50 84.50 2.50 3.00 335.88 92.56 92.56 3.00 3.50 423.26 99.98 99.98 3.50 4.00 517.12 106.88 106.88 4.00 4.50 617.05 113.37 113.37 4.50 5.00 722.70 119.50 119.50 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tOweir t Confice 800 700 600 a 500 3 400 E300 a;41, 200 1 100 - 0.00 1.00 2.00 FI�3.00� (ft 1 4.00 5.00 6.00 Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Len th = 1.71 ft. Space width = 0.3125 ft. Bar width= 0.0208ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:01 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 403 (STIN-F-2) Project No. 187010251 This sheet computes the controlling area inlet Flow condition. Weir Equation: r Q,,; = CLH' where: H = head above weir Orifice Equation: (;.A. 12gH where: H =hz -hr Grate: Modified CDOT Type C Area Inlet Weir: Orifice: Cash = 3.20 C.r. = 0.65 Lo� = 8.42 ft. (1) A,,;r=, = 4.27 W Clogging Factor = 0.20 Number of Inlets = 4 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 23.53 100 year WSEL (23.53) = 0.43 Head (ft.) 0..®r Q.K. 0.,,,,d WSEL 0.00 0.00 0.00 0.00 0.00 0.50 30.47 50.39 30.47 0.50 1.00 86.19 71.26 71.26 1.00 1.50 158.34 87.27 87.27 1.50 2.00 243.77 100.77 100.77 2.00 2.50 340.68 112.67 112.67 2.50 3.00 447.84 123.42 123.42 3.00 3.50 564.34 133.31 133.31 3.50 4.00 689.50 142.51 142.51 4.00 4.50 822.74 151.16 151.16 4.50 5.00 963.60 159.33 159.33 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control taveir t porifce 1200 1000 800 ) 600- r { $. LL 400 200- 1 d i $, 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width= 2.69 ft. Effective GrateWidth = 2.50 ft. The Sear -Brown Group 5:02 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 411 (STIN-11-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: 3 O„o = CLH 2 where: H = head above weir Orifice Equation: Q. ,_ = C„ A. 2KH where: H =hz -hr Grate: Modred CDOT Type C Area Inlet Weir: Orifice: Cwdr = 3.20 CoMce = 0.65 L. = 8.42 ft. (1) Aar;r,. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 2.79 100 year WSEL (2.79) = 0.25 Head (ft.) Qwdr O fce Q.n WSEL 0.00 0.00 0.00 0.00 0.00 0.50 7.62 12.60 7.62 0.50 1.00 21.55 17.81 17.81 1.00 1.50 39.58 21.82 21.82 1.50 2.00 60.94 25.19 25.19 2.00 2.50 85.17 28.17 28.17 2.50 3.00 111.96 30.85 30.85 3.00 3.50 141.09 33.33 33.33 3.50 4.00 172.37 35.63 35.63 4.00 4.50 205.68 37.79 37.79 4.50 5.00 240.90 39.83 39.83 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control-t-dweir f- Qorifice 300 250 51 200 O 3150 O u 100 IN a Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Length = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 ' Grate Width = 2.69 ft. Effective GrateWidth = 2.50 ft. 5:02 PM The Sear -Brown Group 1/25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 220 (STIN-J-2) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: CLH' where: H = head above weir Orifice Equation: Co A. r2gH where: H = h z - h , Grate: CDOT Type C Area Inlet Weir: Orifice: Cw.k = 3.20 Cf.. = 0.65 L� = 11.74 ft. (1) Aoac. = 7.97 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 7.77 100 year WSEL (7.77) = 0.23 Head (ft.) Clan Qoe. Qmnwl WSEL 0.00 0.00 0.00 0.00 0.00 0.50 21.25 47.01 21.25 0.50 1.00 60.11 66.48 60.11 1.00 1.50 110.43 81.42 81.42 1.50 2.00 170.01 94.02 94.02 2.00 2.50 237.60 105.12 105.12 2.50 3.00 312.33 115.15 115.15 3.00 3.50 393.59 124.38 124.38 3.50 4.00 480.87 132.96 132.96 4.00 4.50 573.80 141.03 141.03 4.50 5.00 672.04 148.66 148.66 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control tOweir -!- Orrice 800 700 600 i 500 t i 400 : 300 M 200 100 -- 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 ft. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. The Sear -Brown Group 5:02 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 217 (STIN-K-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: =CLH2 where: H = head above weir Orifice Equation: Q , = C� A. ZgH where: H =hz -h, Grate: CDOT Type C Area Inlet Weir: Orifice: Cwo, = 3.20 Co,;l;ce = 0.65 L� = 11.74 ft.(1) A.6r. = 7.97 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) _ . 13.99 100 year WSEL (13.99) = 0.37 Head (ft.) Owet Q.K,. Dmeod WSEL 0.00 0.00 0.00 0.00 0.00 0.50 21.25 47.01 21.25 0.50 1.00 60.11 66.48 60.11 1.00 1.50 110.43 81.42 81.42 1.50 2.00 170.01 94.02 94.02 2.00 2.50 237.60 105.12 105.12 2.50 3.00 312.33 115.15 115.15 3.00 3.50 393.59 124.38 124.38 3.50 4.00 480.87 132.96 132.96 4.00 4.50 573.80 141.03 141.03 4.50 5.00 672.04 148.66 148.66 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir-Oriflce Control t0weir -F Qorifice 00 700 600 7500 �_.. 400 u 300 200 100 - EE 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth Space width = 0.1640 ft. Bar width = 0.0328 ft. Number of bars = 14 Number of spaces = 13 Grate length = 2.59 fl. Effective Grate Length = 2.13 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. . Effective GrateWidth = 3.74 ft. The Sear -Brown Group 5:02 PM 1 /25/2007 Area Inlet Design - Sump Condition Area Inlet for Design Point 301 (STIN-0-3) Project No. 187010251 This sheet computes the controlling area inlet flow condition. weir - Weir Equation: CLH: where: H = head above weir Orifice Equation: Q,,,,r.. = Co A.. 2KH where: H= h z- h r Grate: Modred CDOT Type C Area Inlet Weir: Orifice: C,,& = 3.20 0.65 L = 8.42 ft. (1) Aa„ r,. = 4.27 ft` Clogging Factor = 0.20 Number of Inlets = 2 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 13.72 100 year WSEL (13.72) = 0.47 Head (ft.) Q..ar Q., Q�„W WSEL 0.00 0.00 0.00 0.00 0.00 0.50 15.24 25.19 15.24 0.50 1.00 43.09 35.63 35.63 1.00 1.50 79.17 43.64 43.64 1.50 2.00 121.89 50.39 50.39 2.00 2.50 170.34 56.33 56.33 2.50 3.00 223.92 61.71 61.71 3.00 3.50 282.17 66.65 66.65 3.50 4.00 344.75 71.26 71.26 4.00 4.50 411.37 75.58 75.58 4.50 5.00 481.80 79.67 79.67 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant Flow directions. Weir -Orifice Control Qweir t Qorifice 600 S M g haw 500 �E 400 --- 0 200 100 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.0417 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 2.58 ft. Effective Grate Len th = 1.71 ft. Space width = 0.3125 ft. Bar width = 0.0208 ft. Number of bars = 9 Number of spaces = 8 Grate Width = 2.69 ft. Effective GrateWidth = 2.50ft. The Sear -Brown Group 5:02 PM 1 /25/2007 APPENDIX - H December 2006 f STORM SEWER DESIGN Stantec o 1 ;ST,of,h ,3 TpV .41-1 015, S-r '[IV A2-1-�016-r 1 12 3'Xl 0' R66 2 ' &flot A -1 33')1O'P,66 3 4 3'YJO' 'ZLL2) STT�j A3 -1 — (V7 - xto , 04 05 18—ST--AIV iq-//-/ SOH A -AI � 30I , E i a 6 3 X(to 1 R(fz 6 711 3TVV S-7N41+-8 � 7 3 tY,(� 1 IS I ( (3,,,8- 0 20, 8,q8 i do 21-57-ZA) A7-4 20 %­9 9 ZIS it 13 022 ,SM A-19-1 OTTN -�l;1 )10 S-W 4 -9 j"-j-wG23,al22bjo 5TOJ+t PdO--( 024,023, ?4-0 25 STT-4J Sit 4 (3 12q3" SNT141M A--)1- 12--- El 25 it 26 12 d 1330 13 Cj'l 430, 14 H ST-mH A-12-1 NeoUDS Results Summary Project Title: STRM-A Project Description: FRV Output Created On: 6/8/2007 at 8:15:11 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information -F-� Time of Concentration I -I Manhole Basin JArea Overland Gutter BasinF(In ain I Peak Flow ID # * C (Minutes) (Minutes) (Minutes).h/Hour) (CFS) 1 0.001 5.01 0.01 0.01 36780.001 147.1 (- 2 0.00 5.0 0.0 0.0 38737.50 154.9 �- 0.00 5.0 0.0 0.0 F 28700.00 F 114.8 4 0.00 5.0 0.0 0.0 30272.50 F 121.1 j 5 1 0.001 5.01 0.01 0.01 29730.001 118.9 0.00. 5.0 0.0 0.0 F 30600.00. 122.4 ,�- 0.00; 5.0' 0.0' 0.0 30600.00' 122.4' -8 0.00 5.0 0.0 0.0 r 13355.00 I--53.4 -9 - 0.00 5.0 F_--0.0 F-7-0.0 [ C3220-ooF 52.9 10 0.00 5.0 0.0 1 0.0 F 13220.00 52.9 11 66 61 5.0 0.0 0.0 12777.50.1 51.1 12 0.00 5.0 0.0:1 0.0 F 12227.50 48.91 13 0.00 5.0 0.0 0.0 F 12035.001 48.1 14 F 0.00 F 5.0 0.0 0.0 12035.00 (-48.1 1 15 1 0.001 5.01 0.01 0.01 23975.001 95.9 16 0.00 5.0 0.0 � 0.0 F 775.00 � 3.1 17 0.00 5.0 0.0 � 0.0 2657.50 10.6 18 0.00 5.0 0.0 0.0 �4585.00 18.3 F-19 0.00 5.010.0 F- 0.0 '--27000.00 108.0 20 0.00 l- 5.0 F 0.0 I 0.0 + 1177.50 4.7 21 _ 0 F`5.0�-0.0r.-_- 0.0;_.�__887.50E-3.5 Manhole Basin 10verland I Gutter reaC(Mnutes) '(Minutes) i Basin Rain I PeakFlow (CSID# F) w 22 0.00 5.0 1_ 0.0 F-0.0 1 2037.50 8.1 23 0.00 5.0 1- 0.0 0.0 F 845.00 3.4 24 0.00 5.0 0.0 0.0 61� 87 5050 6.8 25 0.00 5.0 0.0 F 0.0 F 915.00 3.7 26-1 0.00 5.0 0.0 0.0 F 165.00 0.7 27 0.00 5.0 0.0 0.0 165.00 0.7 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Manhole ID # 1 Contributing Rainfall Duration Area * C (Minutes) 0 0.0 ' Rainfall .peak 1 Intensity (Inch/Hour) 0.00[147.1[4934-00, Design Flow (CFS) Ground Elevation (Feet) Water Elevation (Feet) 4934.66 Comments Water [Presenturface I 20.1 5.0 1489.90 154.9 4937.98 4934.61I- 3 0.1 5.0 1195.83 114.8F4937.62 4935.25 4 -- 0.09 5.0 �- 0.08 5.0 1376.02 121.1 1486.50 118.9 4937.20 4935.64 I 4938.02 4935.92 F- r-- 0.07 F 5.0 F 1700.00 122.4 F4939.17 4935.94 F_ 7 0.07 5.0 1800.00 I 122.4 4940.50 F4936.64 F8 F 0.06 5.0 953.93 53.4 4942.44 4937.97 �- 0.05 5.0 1101.67 F 52.9 4942.92 4938.28 F_ 10 0.04 5.0 1322.00 52.9 ! 4941.34 4938.59- ----- .0 1597_19 51.11 4942.18 F4938.99 F'_ Manhole ID # Contributing Area C Rainfall Duration (Minutes) Rainfall Intensity (Inch/Hour) Design Peak (Flow Ground Elevation (Feet) Water Elevation (Feet) Comments 12 0.02 5.0 2445.50 48.9 4943.95 4939.40 F- 13 0.01 5.0 6017.50 48.1 4949.54 4943.25 14 -1 0 � 5.0 12035.00 48.1 F-4948.32 F4944.94 �+ 15 F 0 5.0 F23975.00 r 95.9 4943.90 4938.88 16 � 0- 5.0 F 775.00 F 3.1 F4937.4F4935.50 17 0 5.0 2657.50 10.6 4937.56 4936.18 18 0 5.0 F4585.00 18.3 4936.37. 4936.52 Surface Water Present 19 F 0E-5-91 27000.00 F108.0 4945.90 4945.10 F7- 20 F- 0 5.0 1177.50 4.7 4938.5o 1 4937.47 r- 21 r- 0 F-5-OF--iV.501 3.5 4939.62 4938.34 r' 22 F OF 5.01 2037.50F 8.1 F4939.80 4938.86 23 F 0 5.0 845.00 3.4 4941.38 4938.91 F- 24 I 0 (--5.0 1687.50 F 6.8 [ 4941.71 F 4939.46 F^--- 25 F 0 5.0 915.00 3.7 4942.37 4939.37 F-- F26 0.01 5.0 82.50 _ 0.7 4941.07 4939.63 �- 27 F- 0 5.0 165.00 0.7 4940.90; 4939.64 F- Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number �- Calculated Suggested Existing ?Sewer ID # Upstream Downstream Sewer Shape Diameter (Rise) (Inches) FTe Diameter (Rise) (Inches) FT Diameter (Rise) (Inches) E. Width (FT) �2 F2 1 Box 2.2� 2� 3� 10 3 - 3 r 2- Box F------- 1.8 F 2 (_____--_ 3 F-10 1 4 I 4 3 Box [-.-- 1.91----.-- 2 F 3[ 10 F 5 -F 5 -I 4 iFBoxF 1.9F- 2F- 3F 10 F 6 ( 6 F 5 !� 7--- L___ 7 r 6 Box �3.6 Box �_____.._ 3 0 4 �4 3 3 6 _ _ 6 Sewer ID # Upstream Downstream Sewer, Shape p Diameter (Rise) Inches (inches) (FT) Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT) Width (FT) 8 I 8 F -7FRoundF 44.8 F 481 48 N/A —F 9 F —8FRoundF 44.6 F 48F 48 N/A 10 F 10 F 9 --FRoundF 44.6F 48F 48 N/A 11 F 11 F I -0FRoundF 44.1 F 48F 48 N/A 12 12 11 Round 43-3F 48 F 48 N/A 13 13 12 Round I----- 25.9 27 30 [ /A 14 14 13 Round 25.9. 27 30 N/A - F1 15 Round' 27.9 30 30r N/A I15 16 ' Roun18d . 18 N/A 16 17 F —4Round: 14.6. 18 F 18 f N/A 17 F 18 �! RoundI 27.5 30 30 N/A 18 20 F— 7 -- Round 11.7 �-18 r 18 N/A 19 F 19 I ' — Round F 37.9 F 421 30 N/A 20 F 21 I 8 — Round F 11.3 F 18 F 18 FN/A 21 F 22 F —9FRoundF 14.01 18F 18 N/A 22 23 10 Round 9.5 18 18 N/A 23 24 F11.. Round: 9.9 18 18 . N/A 2T7F 25 F 11 FRoundF IOAF 18F 18 N/A 25 26 12 Round 5.6 18 18 FN/A 26 27 26 Round; 5.6 18 12 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Full Normal Normal Critical Critical FFwer FroudeFlow Depth Velocity Depth Velocity CommentID (CFS) (Feet) (FPS) (Feet) (FPS) Number r 2 - 154.9 169.2 2.24 F 6.9 1.95 F 7.9 5.2 0.81 I -' 114.8 169.2 1.83 6.3 1.60 1- 7.2 F-3.8 0.81 i--� 121.1 169.2 1.90 6.4 1.66 7.3 4.0 F 0.81 1,- 5 118.9 169.2 1.88 6.3. 1.64 7.3 4.0 0.81 F- 6 122.4 92.3 3.00 6.8 r 3.00 F- 0.0 F- 6.8 N/A r--- F7 122.4 22.3 F 3.00 F 6.8 3.00 F 0.0 F 6.8 N/A F 8 53.4 64.4 2.78 5.7 2.20 7.5 4.3 0.64 F-- 9-- 52.9 [64.4 2.76 5.7 �2.19' 7.5 4.2 0.64 F 7`- 10 52.9 64.4 2.76 5.2.19. 7.5+ 4.2 0.64 �- 11 51.1 64.4 2.69 F-571 2.16. 7.4: 4.1 F 0.65`F- 12 F748.K64.4 F 2.61 F 5.6 2.12. 7.2' 3-qF 6.66 F- 13 48.1 -71.2F-1.5,F 15.6F 2.24F 10AF 9.8F 2.45F - 4 48.1 71.2 1.51 � 15.6 2.24 10.4 9.8 2.45 F-- 1ocity F_ 95.9[116.31.73 26.5 2.46I --F 19.6 19.5 3.72 IsiHigh 15 3.1 29.8 0.33 10.9 0.67 4.0 1.8 4.01 1- I 16 F 10.6 18.7 0.81 10.9 1.25 6.8 6.0 F 2.39 F 17 F 18.3 23.3 1.67 5.3:F 1..2ij 3.7 0.76'f- 18 F 4.7F 14.9 F 0.58F 7.5F 6.84F 4.7 F 2.7F 2F Fig108.0 58.2 2.50 22.0 2.47F22.0 22.0 N/A 20 3.5 12.5 F-6.55 ( 6.1 F 0.74 4.1 2.0 F 1.68 Is'Ocg F- 21 F 8.1 16.1 F 0.75 9.1 1-11F 5.8 F 4.61 2.09 f- 22 3.4 88.7 0.43 8.0 F 0.73 4.0 1.9 2.54 F- r23 6.8 33.31 0.46 14.8 F 1.00 F 5.4 3.8 4.52 -`--^ F-24F-3.7FI4.9F OJIF 7.0 F 0.75F 4.1 F 2.1 F 2.02 F--- 25 F0.7 14.9 1- 0.22 4.2 0.33 2.3 0.4 r 1.94 F- 26 F 07F.5.1 0.24� 4.4�0.35� 2.7�0.8�1.88F- A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information -� Invert Elevation[ -Buried Depth roT U st aerm IDI (Feet) Downstream U stream (Feet) (Feet) DownstreamSewer (Feet) Comment 2 -� 0.20 4931.43 4931.00 3.55 0.00 Sewer Too Shallow F- 3 -- 0.20 4931.62 4931.44 3.00 F 3.54 F 4 0.20 F4932.69 F 3.00 1 5 - 0.20 4932.21 4932.09 2.81 2.11 '---^ F- 6 Fo.2oF4932.44F 4932.22 3.73 2.801 F- 7-F0.20) 4932.82 F- 4932.44,( 4.68 �- 3.73 �- I- 8 0.20 4933.12 4932.81; 5.32 3.69 0.20 4933.25 4933.13 5.67;r^-5.31---- - ., 0204933.38'4933.255'_45 -- 493.3.96'-5.6710 3.96.26 4933.38F1�1 0-49 3.63r 12 6.20 4933.93 4933.63 6.02 (---_--- 4.55 13 3.00 4941.ol 4933.93 6.03 7.521 -- 14 3.00 4942.26 4941.01 3.56 6.031 �1--� 8.00 4934.33 4931.45 �� 7.07 �� ! 4.04 r� 15 8.00 4933.40 �4932.62;F 2.44 �- u3.50.[- - 16 3.16' 4932.40 4932.09 1- 3-60! 3.61'� 17 0.32 4932.68 4932.21 1.19 3.31 Sewer Too Shallow 18 2.00 4933.54 4932.82 3.46 6.181 -- 19 2.00F 4-93437F4932.82 9.03 5.181 20 1.40 4933.99 4933.12 4.13 7.82 r- 21 r 2.34F 4934.00 F 4933.25F 4.30 F 8.17 r 22 F3.15F 4934.00 F 4933.38F 5.88 F 6.461 F 23 10.00 4935.60 4933.63 4.61 �� 7.06 F- 24 r-2.00 4935.28 _ 4933.63 5.59 ��� 7.05 i 25 r 2.00 1-4934.62 4933.93 r 26 2.00 4934.72 4934.62 5.18 5.45 Summary of Hydraulic Grade Line F__ Invert Elevation Water Elevation Fe Sewer Surcharged ra eg dra eg d Upstream Downstream Upstream ID' ownstream Length Length (Feet) (Feet) (Feet) I (Feet) [Condition (Feet) (Feet) 21216.691 216.69 4931.43 4931.00 4934.61 4934.66 Pressured r 3 �90.59 90.59 4931.62 4931.44 �4935.25-4934.61 Pressured f -4 (233J2 233.72 4932.09 4931.62 4935.64 4935.25 [ Pressured F- 5' 58.54 58.54[4932.21 4932.09 4935.92 4935.64 Pressured 6 - 111.92 111.92 4932.44 493212 4935.94, 4935.92 Pressured 191.1 191.1; 4932.82 4932.44 4936.64; 4935.94. Pressured 4936.64•P4932814937.97I° 15249 151494MA2 ressured �- 62.21 62.21-F 4933.25; 4933.13j 4938.28 4937.97E ressured, 10 64.98 64.9&�4933.38 4933.25[ 4438.59 4938.28 FPressured 11F 125.05 125.05 49 33.63 F 4 333.38 49 88.99 F 4 338.59 Pressured 12 149.4 149.4 4933.93 4933.63: 4939.40F. 4938.99 Pressured 13 235.87 112.11 [ 4441.01 4933.93 4943.25 4939.40. Jump 14 41.79 41.79 F 49 22.26 [- 941 -of F 4944.94F 4943.25 Pressured 1 36.08 36.08 4934.33 4931.44 �4938.88 4934.61 Pressured 15 9.76' 9.76 4933.40. 4932.62, 4935.50 4935.25 Pressured 16 9.69 9.69 4932.40 4932.09 4936.18 4935.64 Pressured' 17 146.98 146.98-4932.68 4932.21 ( 4936.52 4935.92 ( Pressured 18 36.04 36.04,[4933.54 4932.82 [74937.47 4936.64 rPressured 19 77.32 77.32 4934.37 4932.82 4945.10 4936.64 Pressured 20 F62-68F 62.08 4933.99F 4933.12 4938.34 9937.97 Pressured 21 32.22 32.22 4934.00 -4933.25F-4938.861 4938.28 Pressured 22 19.67 19.67 �4934.00 4933.38 4938.91 4938.59 Pressured �23 �-19.76 19.76 4935.60 4933.62 4939.40 4938.99 Pressured 24 82.54 [ 82.54 �4935.28 4933.63 4939.37 �4938.99 Pressured 25 42 34.42 �4934.62 r 4933.93 F 4939.63 F 4939.40 Pressured 26 5 5_09_4934J2 - 4934.62- 4939.64 j-4939.63 Pressured Summary of Energy Grade Line F-1 Upstream Manhole F Dow nstream (� Juncture Losses Manhole Sewer # Manhole ID # Energy ElevationFriction (Feet) Sewer [BendK oefficient (Feet) Bend Lateral K Loss Coefficient (Feet) Lateral ----F ManholeID Loss I ID # (Feet) (- 2 F 2 !- 4935.02 0.36 0.05 0.00 0.00 0.00 F -1-_--1 .4934.66 F 3 (_- 3 ' � 4935.48 0.08) OA7 0.02 0.25 r 0.36 F 2 4935.02 4-- 4935.90 0.24 0.05 0.01----0.25 F0.16 `- 3 4935.48 r 5 -F 5 - 4936.16 0.061 0.05 0.01 0.25 0.191 4-4935.90. 6 6 4936.65 0.39 0.05 � 0.04� 0.25' 0.06 5 4936.16 � -I 7 - 4937 36 0.67 0.05] 0.04 OAO o-66 F 6 . 4936.65, 8 F- 4938 25 0.21 0 11 0.03; 0.25J 0.65 7 - 4937.36 -F 9 4938.56 6. o 8,1 0 05_ 0.01 0.25 0.21--8 - 4938.25 10 10 4938.87 0.09 0.05 0.01 0.25 ( 0.21 F--9 -- 4938.56 11 11 4939.25 F-0.16 F--^0.05 0.01 0.25 F 0.21 16 4938.87 12 �12 4939.63 �0.17 � ^ 0.05 0.01 �'-0.25 0 20 F 11 4939.25 �13 13 4944.92 5.17 0.05 0.07 0.25[70.05 �12 4939.63 14 14 4946.44 0 57 0.63 0.94 F 0.00 0.00 13 [_,j944.92 1 15 4944 81 . 1.96 132 7.82' 0 00 OAOI- 2--. 4935.02: 15 16 4935 55 0.01, 1.32 0.06 0 00 0.00 F 3 4935.48 F16-F 17 r 4936.74 6.10 1.32 [ 034 0.00 F 50 4 4935.90 17 18 4936.74 0.29 132 F0.29---0.00 0.00 F 5 - 4936.16 18 20 4937.58 �0.07 132 0.15` 0.00 0.00 7 - 4937.36 19 19 4952.61 �5.33 r-_--_ 1.32 9.92 � 0.00 0.00 � 7 �4937.36 20 1-21 F4938.40 F0.07 1.32 0.08:r 0.00 OAO 8-1 4938.25 F21-F 22 F4939.19F o-19F 1.32 FO.44F 0.00I uo F- 9 4938.56 22 ( 23 4938.96 j- 0.02 132 6.67 6.00 6.00 10 �4938.87 23 24 4939.63 0.08 132 030 0.00 0.00 11 4939.25 24 25 4939.44 0.10 132 0.09 0.00 0.00 11 4939.25 25 26 4939.63 0.00 0.90 0.00 0.00 0 00 _12_ r 4939.63 IF 26 - r _ 27 _ 4939.65 j OAO r 1.25 OA 1 1_ 0.00 0.00 __ 26 __ 4939.63 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole ID # Rim Elevation (Feet) Invert Elevation (Feet) Manhole Height (Feet) F 1 4934.00 4931.001 3.00 F 2-1 4937.98 1 4931.43-- 6.55 F--3-7.1 4937.621 4931.62 �4 4937.20 l 4932.091 5.11 I -5-1 4938.021 4932.21:1 5.81 I 6-1 4939.17 1- 4932.44 1-6.73 r 7-1 4940.501 4932.811 7.69 I 8- 4942.441 4933.121 9.32 9-1 4942.92 14933.25 F 9.67 10-1 4941.341 4933.38 �- 7.96 11 4942.181 4933.621 8.56 12 041,95] 4933.93 10.02: 13 4949.54'1- 4941.011 8.53 14 4948.321 4942.261 6.06 15 4943.90 1- 4934.33 F 9.57 F-IT-1 4937.841 4933.40 4.44 17 4937.501 4932.401 5.10 18-1 4936.371 4932.681 3.69 19 4945.90 F- 4934.37 11.53 20 1 4938.501 4933.54 [- 4.96 21 4939.621 4933.991 5.63 22 1 4939.801 4934.00 y- - -_- 5.80 23 1 4941.381 4934.00 �- -- 7.38 24 5 4941.71 _ 4935.60 6.11 25 5 4942.37 4935.28 F 7.09 F 26 I 4941.07 F-y 4934.62 �� 6.45 27 4940.90 4934.72 , ^ 6.18 Sewer ID # Upstream Trench Width On At Ground Invert (Feet) (Feet) Downstream Trench Width On At Ground Invert (Feet) (Feet) I Trench Length (Feet) -`-� Wall Thickness (Inches) Earth Volume (Cubic yards) I- 2 - 19.9 F 15.2 1- 12.8 15.2 F 216.69 1 7. 81 732 F-3 18.8 15.21 19.9[-15.2 90.59 7.18 385 (- 4 17.0 F 15.2 18.8 r 15.2 1 233.72 7.18 880 5 18.4 15.2 17.0 15.2 58.54 7.18 217 16.5 11.0 14.6-11-6F 111.921 5.791 353 I ' 18.4: 11.0 6.5 111.0 191.1 5.79 713 F 8 -F 15.8 F 6.81 12.5 6.8 1 22.49. 5.00 447 �- 16.5 6.8 15.8 1- 6.8 62.21 5.00 215 10 F 13.1 F 6.8 F 16.5F 6.8F 64.98 F 5.001 201 11 F 14.3 F 6.8F 13.1 F 6.8F 125.05 F 5.00 F 348 12 17.2 F 6.8F 14.3 f 6-iF 149.4 5.00 F 501 13 16.0 5.1 18.9 5.1 235.87 3.50 796 14 11.0 5.1. 16.0 5.1 41.79 3.50. 95 18.1 5.1 12.0' S.f 36.08 F 3.50 F 98 15 9.0 3.qF-16.1F 3.9F 9.76F 2.50 F 11 16 10.3 F 3.9 F 10.3F 3.9 9.69 F 2.50 F 12 F-17-r 6.3 5.1 F 10.5F 5.1 r 146.98F 18 10.0 3.9 15.4 3.9F 36.04 3.50 F 2.50F F 180 67 19 22.0 5.1 14.3 f 5.1 F 77.32 20 F 11.3F 3.9 F-18.7F 3.9 F 62.08F F-3.501 2.50 287 F 155 21 1 11.7 3.9 19.4 3.9 F 3-2-221 2.50 86 22 14.8 3.9 I 16.0 3.9 19.67 �2.-50 49 23 12.3 3.9 1 17.2 3.9 19.76 2.50 46 24 F 14.3F 3.9F 17.2F 3.9F 82.54 F 2.50 F 214 25 F- 13.0 3.9 F 20.1 F-3.9 F 34.42 [- 2.50 101 ---� 26 � 13.0 3.3 13.6 3.3 r ____��� 5 .09 I-- 9 2.00 36 N.0 Q •'\� STSN - A-k -2: -3 y S� ST14H-83-1 -20a STIw-A3-2 STMH-8-3 \ 04 a C73r-.7-6 % STIN- 64-7 \ \ 068 72 / 5815 5905888-60 61 061 62r1r STMM A3'� 97 STn N *83-2 S ti ,I �'1 •63 m *41 •6,y C 3. 063 StTN-63-1 ti s nTN-A-3 Q}- �23�.•24 Srry-6S 2 •67t66*64 b �, b \ srzN. �`'( vJ 63-3-1 =-n• 64 S,ZN-63-2 •57 t -s 86-1 3TSN-6-1-3-� � `i2 165 STtr-S-1-3-1-1 �3 • STIN-6-Y �25 S's" .'- s a.." :x � 55 _. /4Th" -6--1. 3`• •51� 510,52F'529-53--53 • fr4-• 64 i 55s_.y�t' is 10 tr ST"%N-62 — �2g ® �a 6`o•!' LSTs+v_ (fi7-3-1-y ■ 69 �l>7 %a 4 all 11 14 441. 70 1 N_ SUM-61-i-16o / L Zy.�45-45 46-46 47-47048`6"4 s gcwN-6-'I'2A � 4TAN-67-3., a 0��, ■481%4% 4t - 12 S7 M � STMH'd-I a26"al �' � �6�� �� •49f yf` • 13 s,,K-n-3— 39 •46 !'4o 72 6 4-1 s - 41 f ?� Sr V - 41 69 STIN-B-1 -15� STnM B 8 042 S-rr4,' STsy-6-I �/'�STh1{-e'7.y 8.7 17 CJD-- s*rH-8-5 - 18 - 3, 30 0—SZZN-6.10 STMN- -34 -331� 032 �4TiA) 12-1 $Tru-B�-s-z — i st��-61-5-\ NeoUDS Results Summary Project Title: STRM-B Project Description: FRV Output Created On: 6/5/2007 at 1:10:01 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration Manhole Basin �O�ver�landGutter BasinRain I Peak Flow ID # Area * C inutes) Inch/Hour) �(Mi ((Minutes) (Minutes) i(' (CFS) I F-0.00 � -- 5.0 -- 0.0 �-0.0 32166.00 F 128.6 2 F-o 00 5.0F 0.0F0.01 32160.00 128.E 3 - 0 00 5.0 F 0.0 0.0 r 36160.00 1 144.6 4 -- 0.00 F- 5.0 1 -0.0 1- 0.0 ( 36160.00 144.6 � F -5F-6-66F 5.011 6.0 0 0 36160.00 144.6 -- 6-- 0.00 F-5.0 F- 0.0F 0.01 29777.50 19.1 0.00 r- 5.01-- 0.0 0.01-28932_50I 115.7 --0.00 5.0`- 0.0 0.0 0121.08�324 9 F- 0.00� 5.0� 0.0[ 0.0302--121.0 10 ir- 0.00 ! 5.0 F 0.01- .0 0.0 29885.00 119.5 11 0.00-5.0 0.0 0.0 F-i8810.00 115.2 12 F-- 0.00 5.0 F-0.0 F 0.0 F 13852.50 F 55.4 13 ; 0.00� 5.0j 0.0�-0.0I 13852.50� 55.4� I 14 0.00 �- 5.0 jM-_ 0.0 0.0 13175.00 I 52.7 ' - 5 15 i- 0.00 .0 --- - - - -- -(v-0.00 0.0 .0 --- 0.0 r 13175.00 52.71 16, 5.01 0.0 i 0.0 9972.50 39.9 17 1 0.001 5.0' 0.01 0.0 9972.501 - 39.9 18 0.001 5.0E 0.01 0.01 9972.50 11 39.9 i 19 1 0.001 5.0 0.0 0.0 9535.001 38.11 20 0.001 5.0 I 0.01 0.0 j 500.001 2.01 21 0.00 ; 5.0 0.0! 0.01 500.001 2.0 iManhole , Basin Overland IF Gutter Basin Rain I Peak Flow ID # !Area * C ,(Minutes)1(Minutes) j(Minutes) ;(Inch/Hour) (CFS) 22--�0.00 5.0 ---0.0 ��-_ 0.0 4492.50 ��- 18.0 r^ 23 -10.00 5.0 --- -- 0.01` _ _0.01 _ 2497.501_ 10.0 24 0.00 r"-5.0--0.0 0.0 F 145.00 12.6 r 25 0.00 5.0 I ---0.0 0.0 r^-1942.50 I 7.8 F 26 F-0.00 5.0 0.0 F 0.0 I 750.001- 3.0 27 0.00 r 28 F- 0.001- r� 5.0 0.0 5.0 F 0.0 0.0 1 1000.00 -- 4.0 r- - 0.0 F 17357.501 `- 69.4 r`29 I- 0.00 I 5.0 0.0 _ 0.0 . 16080.00 64.3 31 0.00---5.0 r--0.0 0.0 7007.50 F 28.0 32 F 0.00 F 5.0 F o6F 0.0 7007.50 33 0.00 5.0 0.0 0.0 i 00572 0F F 28.0 11.0 34 0.00 5.0 0.0 F-6.6F 5772.50 F 23.1 35 0.00 5.0 0.0 0.0 5772.50E-23.1 39 r 0.00 r- 5.0 0.0 F 0.01 8782.50 35.1 40 I 41 0.00 r-0.00 5.6 r^ 0.0 �- - - -) 5.0 0.0 � 0.0 r--8782.50 r 35.1 _ 1920.00 -- 0.0-----r---- 7.7' I� 42 ( 0.00 5.0 r r-4057.550 16.2 44 F _ -0_0 -��0.0 0.00r 5.0r 0.0F 0.0I 3315.00F -_ 13.3 45 0.00 F -.5.0 F 0.0 0.0 F 662.50 2.7 r- 46 F- 0.00 F 2.0 r--0.0 f- 0.0 F 662.50 2.7 0.00 F 47 �--5.0 0.0 r- 0.0 662.50 2.7 48 0.001- 5.0 I ~ - 0.0 0.0 662.50 2.7 F 49 ( 0 00 �5.0 �- 0.0 r 0.0 1 662.50 2.7 -50 r- 0.00 +--_--5.0-- -�0.0) } -- 0.0 1662.50 I A 2.7 j- 51 0.00r--5.0r 0.0r 0.0� 1355.00ru 5.4 52 r- 0.00 i- 5.01 i- O.O r- 0.0 337.5O r- 1.4 53 F- .00 r- 5.6 I 0.0 0.01 337.50 1.4 ---- 1 54 0.00 5.0 0.0 0.0 r�337.50 r- 1.4 55 1 0.001 5.01 0.01 0.01 337.501 1.41 r 56 _ r 0.001 5.01 0.0 �' 0.0 -_ 337.50 -- 1.41 57 j 0.001 5.01 0.01 0.01 337.50 i 1.4 58 f 0.00 , 5.0 � 0.01 0 0 12107.501 48.4 59 1 0.00 5.01 0.0 0.0: 12107.501 48 4! Manhole i Bas n IfOverland ( Gutter Basin i Rain I Peak Flow j ID # !Area C 1(Minutes) !(Minutes) (Minutes) ;(Inch/Hour) I (CFS) F_ - ---- + . 60 j 0.00-5.0 61 0.00 r-_ _- 0.0 0.0 (� 10167.50 5.01 8832.50 F 40.7 ( 35.3 62 0.00 5.0 0.0 0.0 8590.00 -'34.4 63-� 0.00 F- 5.0 F- 0.01 0.0 ! 7925.001 31.7 64 j 0.00 F�5.0 I~ _ 0.01 - 0.0 F 7452.501 29.8 65 r 0.00 66- 0.00 F-5.0 F 0.0 (---5.0 -0.0 F -- 0.0,- 5942.50 23.8 r -- 0.0 �..__.._. 4130.00 - 16.5 67 F0.00 5.0 0.01 0.0 750.00 3.0 69 0.00 5.01 0.0 0.0 915.00 3.7 70 6.00 F 5.01 0.0 F 0.0 F 3640.00 F--12.2 71 6.00 5.0 F- 0.0 F O.O'F 12316.001 49.2 1 72 0.00 5.0 0.0 0.0 1920.00 7.7 1 68 0.00 5.0 F 0.0 r O.OF 12310.00 49.2 73 0 00 5.0 F- 0.0 0.0 F 285.00 1.1 37 j--0.00 F 5.0 30 ! 0.00 5.0 F- 0.0 0.01 F 0.0 1050.00 0.01 16080.00 I 4:2 i. 64.31 + r- 36 1-0.00 r 38 1 --_-0.001----- F-1 5.01-V 0.0 0.014267.501 5.0F_..---- F --0.0 _.-..-- [- _.._._0.0 4520.00 57.1 I F ---- 18.1 ,�- 0 5.0 0.0 0.0,F-1317.50 5.3, ! 74 � 0.00 �-5.0 �- 0.0 0.0 1745.00 F-75 -j- 0.00 ( 0.01-- .0 0.0 I--_ �0.0 0.00 1 _ 6.8 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+Total Length/ 180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Manhole ID # Contributing i Area * C Rainfall Duration (Minutes) Rainfall Intensity (Inch/Hour) Design peak Flow (CFS) Ground (Elevation I (Feet) r ! Water .Elevation ' (Feet) Comments 1 ' 0 �- 0.0 -Surface 0.001 128.6F--[932.004933.95 Water Present - 2 -- 0.29 5.0 �- 440.55 466.8if 4933.74 ��- F 3 F-0.29 F 5-6F 502.22 144.6 [4937.87 4933.82 F 4 20 5.0 516.57 144.E 4937.66 4934.32 (- - -� 5 0.27 F­5.0 F 531.76 144.6 � 4937.30 4934.66 F- 6 0.21 �� 5.0 r 572.64 119.1 4936.50 4935.12 I--- 7 8 0.2 0.19 5.0 5.0 r 567.30 630.16 115.7 4937.32 121.0 4939.43 4935.21 4935.43 9- 0.19 F5.0 F--643.56 F 1� F 4937.10 F4935.59 r 0 0.18 5.0 679.20 119.5 r 4937.47 -i935.97 -� r l l 0.17 , 5.01 685.95 1 15.24938.58 4936.28 F-- 12 0.04 F 5.oF 1385.25 r-55.4 4938.40 4936.42 F- 13 F 0.04F 5.0 F 1539.17 F 55.4F 4939.01 ( 4936.48 F 14 0.03 5.0 1882.14 j�52.7 �4938.74 4936.88 15 �--- 0.02 r5.0 2195.83 52.7 � 4939.07 4937.02 F-- 16 0.02 5.0 2493.12 ( 39.9 4939.80 4937.45 17 0.01 5.0 3324.17 39.9 r 4939.17 4937.68 18 r- 0.01 r- 5.01-7 4986.25 r 39.9 r 4942.26 r-4937.74 (- ------- 19 0-5.0 9535.00 1 -38.1 4943.51 4937.90 j 20 1 0 I 5.0 r 500.00F 2.0 i 4937.87 r-4934.181 1 21 F 0 [- 5.0 F 500.00 r" 2.0 1-4937.66 1 4934.65 F-- I 22 -1 0.01 r 5.01 2246.25 r 18.0 r^49- 8 1 r 4935.53 r'- --- �___.---[ j 23a �0 j 5.0 2497.50 i 10.0 4936.38 4935.85 r 24 0.01 5.01 1- 1572.501 12.6 4937.68 4936.17 - -- -.. _ --- - - - -- _-.-_--__.-.. --_---------- 25 r 0 j 5.0 1942.501 7.81 4938.04 , 4936.46 #---------- - --I - 26 - - -�--0 - 5.0 - 750.00 , 3.01 4940.941 4936.30 -- -- 27 t 0 ; 5.0 1000.00 j 4.04941.701 4936.97 i �anhole 'Contributing Rainfall[(In Rainfall 1!Design rGround Peak !Elevation'Elevation Water ID # Area * C DurationIntensity ! Flow Comments I Ij '(Minutes) ch/Hour) i (CFS) (Feet) (Feet) 28 0.12 ---5.0 559.92 69.41 4938.37 F 4936.51 29 0.11 �5.0 574.29 64.3 4942.27I 4936.85 F 31 0.021 5.0 1401.50 28.0 ( 4943.71 r 4937.67 F 3i .0 0.02 5.01- 1751.88 F 28.0 r 4948.79 r 4939.66 i r_ 33 _ 01-----5.0 �4 V2750.001 11.0 4943.80 F 34 0.01 0 r� 2886.25 23.1 4948.96 4941.14 35 1 01 5.0 5772.50 [-23.1 4947.00 4942.57 I------- ��� - Surface 39 0.02I 5.0 1756.50 35.1 4937.30 4937.58 Water FPresent 40 0.021 5.0 2195.62 35.1 4937.30 Surface 4937.64 Water Present r- --- Surface 41 0.01 5.0 960.00 7.7) 4937.30 4937.83 Water Present 42 11 0-- 5-oF 4057.50 f6-iF 4941.13 [4938.06------ 44 0.03 5.0 (------473.57 ( 13.3 4938.71 4937.65 ------�i- 45 0.02 { 5.0 110.42 2.7 ! 4939.20 4938.53 Surface Water `Present Surf ce 46 0.02 5.0 132.50 2.7 4938.20 4938.58 1Water !Present FF`---���� 47 0.021 5.0 165.62 i 2.7 4938.20 �iSurf e - 4938.63 Water 1 j + Present F 48 0.01 1 T5.0 F-220.83 F 2.7 4939.39 j-4938.671 -49F, 0.0111 5.0 331.25 2.7 ` 4939.00 ( 4938.741 - 50 1 01 5.01 662.50 I 2.71 4939.00 i 4938.791 51 F� 0.031 5.01 193.571 5.41 4938.441 4937.641 0.021 - 5.0 56.251 - 1.4 - 4938.281 4937.78 j 53- 1 5_O1 67.501 1 4; 4938281 4937.80 - _ _0.02!_- - 54 1 0.021 5.0 ! 84.38 1 1.4 ; 4938.28 I 4937.81 ! 55 0.01 1 5.01 1 1 2.50 1.4 4939.47 , 4937.82 j (Manhole (Contributing Rainfall Duration Rainfall Intensity Design peak Ground Elevation Water Elevation Comments ' ID # Area * C [ (Minutes) t (Inch/Hour) Flow (CFS) (Feet) (Feet) 56 0.01 , 5.6 j 168.751 _ 1.4 4939.00 __ 4937.90 (� 57 [--- 01 5.01 337.501 1.4 [ 4939.001 4938.01 ------- --5.0-1008.96 48.4 49387358 r4 j 59 -I 0.04 5.0 1100.68 ` 48.4 4936.49 1 4935.46 r 60 0.04 -5.01 1016.751 40.7 4936.50 r 4935.54 r- 61- 0.04 r-�` 5.0 rY 981.39 �V 35.31 4935.90 4935.60 r r 62 0.03 F-5.0 r- 1073.75 [v34.4 I 4935.90 F4935.66 r�-{ 63 0.03 5.0 rl 132.14 31.7 4937.32 4935.70 ��Surface 64 ( 0.02F- 5.0 1242.08 29.8 4935.90 4935.93 Water Present 65 0.02 5.0 1485.62 23.8 - Surface 4935.91 4936.49 Water Present F r 66 0.01 r- 5.0 r- -I 1376.67 I 16.5 r4936.9] 4936.72 �_ f j 67 r- 0 r� 5.0 _ _ 750.00 3.0 r 4938.80 4936.31 69 ( 0 -- 5.0 r- 915.00 3.7 4938.36 r 4936.72 r� 70 ;- 0 5.0 �� 3040.00 12.2 4938.37 4936.71 F- -71 06 r -- --5.0 F 820.67 49 2 4936.03 4934.97 r- --Surfer ace 72 0 5.0 1920.00, 7.7 4937.30 4937.92 Water Present 68 0.05 5.0 46 9.92 r 49.2 4936.48 4935.20 73 0 ( 5.0 ( 285.00 1.1 4936.47 4935.12 r-37 r 0 �^ 5.0 1050.00 i `4.2 4942.44 ( 4937.46-+ �1 30 j - 0.11 5.0 r-64.3 r- Ti-,49�4937.08 _595.56 - 36 r 0.04 r' 5.01[ 1297.05 , 57.1 , 4942.671 4937.33 i 38 ; 0.061 5.01 - 301.331 18.1 1 4940.441 4937.35 r�u� - 43�- -�- 0 5.01 1317.50 r-�5.3 4939.99 4937.58 , 1 74 01 5.01 1745.001 7.01 4939.13 4937.67 75 I 01 0 0 ( - ' 0.00 j 6.8 ,[ 4939.04 _4937.82 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. J___Ralculated ole ID Number F9uggesie'd1 Existing Diameter Diameter Diameter Sewer ID# Upstream Downstream Sewer Shape (Rise) (Inches) (Rise) (inches) (Rise) (inches) lWidth (IT) (FT) (Fr) (Fr) F 2-1 1 _F_ Box F­___ 2.4 F--3 4 [--F--8 ——, __F_2 F2 F3 _ BoxF F—2.6 F —31 '4'F-8 F _3F_4_F_ _3FBox 2.6 3 F 4---8 F_---4F 5 F 4 j liox 12.6 3 4 8 6 F_ 5 F -F---*-- Box 2.3 3 4 8'-'- — r 6 1 _7 F 6 F--F---'— Box 2.2F_iF 4 8 r— F8 7 7 _ Box 2.3 3 4 8. F_8F _9F —8F—Box F­__2.3 (_..._._--_--3 F__ 4F­8 9 F 9 F 1-0 Box 2.3 3F 41 8 10 Flo F —"if Box 2.2 2 8 12 F 1 _1'F 11 _FRouWF­_45 4F48F__481 N/A F12 F 1-3 -'--,r---12 45.4-F­-----48 r----48 1---N/A- -F­ _1_1_oundF_ F_13 1`14 3 R 44.61-- 48F-4— 8 F_ N/A __1 i—nd F-141-1-5- r 14 Roun F­44._6 48 4-8 F_ r N/A F —,5F —16 r 15 —rRoundF-4o.iF-42 48 N 16 [48 — r F 1-7 16 RoundF-40.2F-421—F _N/A F 17—F _181' 17 FRound F 40.2F 42 F 42 F N/A 18 19 1 18 lRound [_39.5 42 42r _N/A 19 20 3 lRound I 8.5 18 18 20 21 14 [Round 8.5 18 I'l 8FN/A 2'1 22 1 —i [kound 301 N/Al 22 23 ',d[ 22 Rounoun 21.0 211 241 N/A 'Round 23 24 9 22.9 241 241 N/A ---------- 24 25 24N/A! 24 'Round 1 19.1 21 1 ...... .... ... 10 Round N/A I 25 26 9.9 18 F I _d 26 27 id 11.0 i 181 N/A! 13 ;Round) 27 28 11 'Round! 43.41 48 601 N/Ai' (Sewer Sewer Diameter (Rise) Diameter (Rise) ' Diameter (Rise) Width I ID # Upstream Downstream Shape (Inches) (Inches) (Inches) (FT) (FI) (FT) (FT) 28 29 28 ;Round 48 �- 60 N/A 30 31 36 lR n F 25.3 27 30 N/A 31 F 32 31 jRound 25.3 27 F-- 30 [-N/A 32 �- 33 -� 32 - (Round 21.8 -----24 (------ 24 N/A �33 �34 �32 �ound 24.2 27 30 N/A 34 F35 -( 34 Round j - -- 24.2 j__-_-_... 27 F- 30 I N/A j 38 39 j 36 —1 Arch 38.3 F 42 38 60 �39 F 40 F 39 FArchF 38-iF 42F 38 F 60 40 F 41 1� 40 jRound 21.6----24 (i 24 N/A 41 42 40 Round 25.2 27 30 F N/A 43 F 44 �— 38 jRound 23.3---- - 24 (_--- 18 I N/A F-445 44 (Round �- -- 12.8 ( 18 18 �N/A 45 46 �45 - Round 12.8 i- 18 18 F-K/A jv46 47 46 -Round �`12.8 18 I 18 N/A 47 I 48 47 FRoundF 12.8F 181 18 N/A 1 48 F 49 48 _ !R uo nd 12.8 ` - 18 F— 18 N/A 49 F 50 F 49 RoundF 12.iF 18 F 18 N/A 50 51 ��—jRo F 16.7 18 i8 N/A F51 �52 51 Round( 9.9 -- - 18 --- 181 52 53 52 Round 9.9 I— 18 18 N/A 53 54 �— 53 (Round �— 9.9 r -- 18-- 18 �N/A 54 55 i --54 rRound 9.9 18 18 N/A 55- 56 55 jRound—^ 9.9 ( _ 18 12 �N/A �56 1 57 1- 56 - jRound F~- -9.9 F 18 �— l2 �N/A 58 j 59 i 58 Round 43.2 j _ I 48 �- 54 j N/A 59 60 _ I- -59 !Round 40.4 r __ -42 i —� 54 �N/A 60 F— if 60 jRound 38.4 - 421 54 N/A --- --- ------ 62 63 62 Arch' 36.8 42 43 68 I 63 ! 64 63 ;Round; 36..-0 3636' N/AI 64 65 64 !Round 33.11 36 r 36 f N/Ai Round; 28.81 301 241 N/Ai 66 ; 67 ! 64 ;Round, 9.91 181 181 N/A Sewer ID # r 68 1Upstream Downstream I F 69 28 Sewer Shape _ (Round Diameter (Rise) (Inches) (FT) [ 14.4 Diameter (Rise) (Inches) (FT) 18 r Diameter (Rise) (Inches) (FT) 18 !Width (FT) i N/A 69 71 F61 �- 70 28 �_71__r 5 62 61 I Round-- Round Arch -- 22.6 (_ - 43.5 38.0 24 �_ 48 42 36 I 54 I 43 N/A N/A i r-57 F 72 I 41 iRound �- 21.6 -- 24 �� 24 ` N/A r-67 73 71 - Round-10.6 F- 18 - 18 �N/A 70 68 �r -- 71 - FRound 43.5 �- 48 54 r N/A 72 58 68 Round 43.2 48 54 N/A 36 37 15 Round 10.2 F-- 18 F- 18 N/A I 24 r 35 l 30 r- 36 F 29 `FRoundl 30 _-[Round 42.21 !--..--40.3 48 42 60 1------- 60 N/A r N/A 37 38 I 30 Round r- 26.2 r---- 27 36 r-N/A 42 43 r 66 Round 12.2 r-- 18 r 18 N/A 73 74 �66 Round 20.9 21 18 N/A r 74 75 40 Round [- 18.2 21 ( 18 (I �N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. iDesin j Full final Normal Sewers g I ( Critical (Critical I Full �Froude ID i Flow i Flow Depth Velocity j (CFS) I(CFS) (Feet) i (FPS) Depth (Velocity (Feet) I (FPS) Velocity , (FPS) Nul mbeC Comment 1 1-' 128.6 r198.7 f 2.39 6.7 0 (--8.0 r 4.01-- 0.77 (--'-- - 2r-144.6 j 198.7 (-- 2.60 j l-- 7.0 �. 2.17 _ 8.4 r-------4.5 -_ 0.76 - ...---- -- r 3;.6197.0 -- r� --- 4.517 0.76 --- i 4 r 144.61 198.71 2.601 7.0j 2.171 8.41 4.5 , 0.761 5 j l l 9. I j l 98.7 i 2.26 j 6.6--- 1.90 r! 7.8 (- - 3.7 �� 0.77 r-- - 6- 115.71 198.7 ; _ 2.22 j- �6.5 if- 1.87 7.8 3.6 0.77 11 7 121.0198.7 2.291 a 6.6 �y 1.92' 7.91 ti 3.8; 0.771 i Design Sewer Flow I Full Normal Normal Cry itical Critical Flow Depth 'Velocity Depth Velocity I Full ---- Velocity I Froude Comment ID (CFS) I(CFS) I (Feet) ( (FPS) (Feet) (FPS) Number , (FPS) j 198_7 1_ 2.29 6.6 �_ 1.92 � 7.9 3.81 -8 _;-121.0 9 119.5 -- 198.7� 2.27r 6.61 1.91� 7.88� - 3.70.77� ---0.77 � 10 115.2�198.7 221 F- 6.51 1.861 7.7� 3.6 : 0.77� -- 11 1 55.4 64.4 2.86 �- 5.8 F- 2.24 7.61- 4.4 0.62 F- 12 55.4 64.4 2.86 5.8 F 2.241 7.6 4.4 0.62 F-- F 13 52.7 64.4 f 2.75 r 5.7 2 1� 9 �7.5 14.2 �0.64--- 14 I 52.7 64.4 2.75 5.7 2.19 7.5 4-2 0.64 �- 15 F 39.9 64.4� 2.28�-u5.4F 1.96F 6.51 _ 3.2�0.7�- 16 39.9 64.4 2.28 5.4 F-1i96 F-6.5 3.2 1- 0.7 F-- 17 F39.9 r 45.1 2.561 5.3 ( 1.97 � 7.2 � 4.1 � _0.6 1- 18 ( 38.1 45.1 2.47� 5.3 1.93�7.0f4.0�0.61(---� r 19- 2.Or 14.9 0.37I 5.9r -0.54 3.5F 1.1 2.02( 20 2.0 14.9 F 0.37 5.9 F 0.54 3.5 F- 1.1 F- 2.02 r- 21 j� 18.0 26.0 1.53 5.7 F 1.43 6.2 3.7 0.89 - - 22 ( Ol( 0F 14.3I 1.23 4.9� 1.13 5.5�� 3.2F-0.85r 2 12.6 14.3 1.45 5.2 F - 1^27 6i0 �4.0 �0 78 -- r 24 7.8' 14.3F 1.05 4.7, 1.01 4.9 0.9� - - 25 3.0 -14.91 0.46 F 6.61 0.661 4.0 1.7 2.02-- 26 i 4.0 14.9 0.53 ( 7.1 ( 0.78-- 4.3 2.3 2.02+� �27 ; 69.4 165.2 2.26 8.0 2.45 r 7.3 3.5 1.08 28 ( 64.3 165.2 2.17 f 7.9 �2.27 7.4 F 3.3F 1.08 F 30 r 28.0 44.3 1.44 r 9.6 r 1.77 , 7.5 5.7 F 1.541 i 31 . 28.0 44.3[ 1.44� 9.6( 1.77 7.5� 5.7 1.54�-� 32 11.0 14.3 1.3 I j - 5.0 I.19 5.7 3.5F � 0.83 33 ! 23.1 41.1 1.34 8 6 �l .63 6.8 �- 4.7 1.47--- - _ _ 34 I1 i 1.34 f_ .I _1.63=`.4.7 -23_1_r_41 _l -.__8-6 138 F 35.1 �--68-f 1 . 2.08 ( F I.v78 �- 6 4�- 0-72 i �-- ._..5'2 .._ ------_•-2„7 -----: 39 ; 35.1 I 68.1 2.081 5.2 i 1.781 6.41 2.71 0.72 � - 1.301 3.6 1.01 �__... 4.81 _...._.2.4 (---0.59 �- --- - 40 -; --- 7.7,1 10.11 , I 41 j 16.2 (�26.0 1.43 - 5.6 �- 1.37 r ' 5.9 3.3 0.91 _ 1.341 -V 8.0 ; 7.5 N/A 43 ; 13.31 6.71 1.501 A A - �..� 1 4 '7 T11 GG 2 !. { n f"2 (�--__--Z 4 i G n QA I i - -- Des�gn Full Sewer Flow Flow --r-- Normal Normal Depth Velocity Critical Critical Full Depth Velocity Velocity Froude Number Comment i lID (CFS) I(CFS) (Feet) I (FPS) (Feet) (FPS) (FPS) ---------I--- 45 2.7 6 7 -- i -- 3.6 0.66 0.63 I .. 3.8 ---1.5 r- .-1 0 88 �46 2.7 �6.7 0.66 �- 3.6 �0.63 I 3.8-- 1.5 0.881 47 F-2.7r 67I 0.66�- 3.6( 0.631 3.8 1.5r 0.88�- 48 2.7 6.7[.66 3-6r0.63 F 3.8 1_5F0.88� 49 2.7[6.7 0.66� 3.61 0.63 1.5 3.8�0.88�---- 50 5.4 F 6 7 1.031- 4.21 0.89 4.9 F-3.1 F-0.77 [---I �51 1.4 j 6.7 f 0461 3.01 645F 3.0 F o8r 0.9 (-_-- - 52 1.4 6.7 0.46 3.0 0.45 3.0 ! 0.8 6.9 F F 53 1.4 6.7 0.46 �- - 3.0 - 0.45 �- - 3.0 �- 0.8 0.9 54 I 1.4 6.7r 0.46� 3.0� 0.45 3.0 0.8 0.9F 55 1.4�2.3 0.56 3.0� 0.50�3.4� 1.7� 0.79� -__ F-56 I 1.4 I 2.3 F 0.56 �-- -3.0 0.50 r - 3.4 �__- 1.7 - 0.79 (-- _- 58 48.4 88.2 2.38 F- 5.7 2.03 7.0 3.0 [-0.73 r--^ 59 40.7 88.2 2.15 5.4 1.88 6.5 2.6 �--0.74------ r 60 �35.3 88.2� 1.98�- 5.2� 1.78� 6.0-2.2r 0.75��� 62 31.7 94.9 1.84 5.1 1.64 1- 5.9 1.9 F-0.76 63 29.8�29.9�2.45� 4.8�^ -1.76� 6.9� 4.2� 0.52 64 I 23.8 29.9 �2.02 � 4.7 1.59 F 6.31- 3.4 0.62 �---- 65 16.5 10.1 2.00 5.3 1.47 6.7 5.3 N/A -- I 66 �3.0 14.9 F 0.46 6.6 0.66 4.0 1.7 � 2.02 68 . 3.7F 6.7F 0.79 3-qF 6.75F 4. I F ilF 0.86 F _ -- 69 F 12.2 ( 42.3 I.10 5.2 1.17 4.8 1.7 I.O1 F--I 71 F 49-2-F 88.2F 2.4oF 5.7F 2.04F ToF 3.1 F 0.721 61 ( 34.4 94.9 1.93 5.2 1.70 6 1 2.0 0.76 .3.6 4.8 24 0557 �7 10.1 1309--� 167 1.1 4.7 r 0.50 (.-__.2.2 0.43 `- - - 2.7 0.6 0.64--__._�) -70 1 49.21 88.2 j 2.40 i_- 5.7 +--.- 2.04 [--__. --7.01 -- 3.1 0.721_- 72 ;- 48.4188.2 i---2.38 F-----5.7 I- 2.031 7.01 3.01-_ -0.731 - 36 4.2 19.1 0.481 8.7� 0:79( 4.41 2.4, 2.6 29 64.3 j 165.2 2.17 I ---- 7.9 _ 2.27 3.31 _-1.08 35 57.1165.2j 2.031 2.I5- 7.11 2.9r-1.09j--- ---' 37 1, 42.3 1.37� 1.37 5.8f 2.61-0.9 I8.9! Design Full 'Normal; Normal rcritiiti cal 1Crcal I Full Sewer Froude ID ,Flow Flow Depth Velocity Depth Velocity Velocity Number Comment (CFS) j(CFS) (Feet) (FPS) (Feet) (FPS) I (FPS) 42 _�.. 5.3 �. 14.9 ( 0.621 ._- 7.7 0.88 �_- 4.9I---.3.9�.3.0 ( _--1`99 �___ - - -73 j-7.Or-4.7�150� 3.9�1.02) �5.4� N/A� F 74 j -6.8 6.7 1.56F 3.8 f 1.01 � 5.4 � 3.8 ( N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation ( Buried Depth F �ISewer ID Sl p Upstream Downstream ( Upstream Downstream Comment /o (Feet) (Feet) (Feet) (Feet) I 0.20 4928.09 4928.00 �� 4.731 0.00 �Se er Too Shallow �2 0.20 4928.33 4928.13 �---5.54 F 4.69 r j 3 0.20 4928.79 4928.33 4.87 5.54 4 0.20 r 4928.96 4928.79 -4.34 4.87--Ai 1F5 0.20 4929.17 F 4928.95 F 3.33 4.35 6 (( 0 4929.25 4929. t 8 4.07 3.32 I ' 0 2OF 492956F 4929251 5.87F 4.071 �8 4929.57 5.86�049 9 4929.88 ---.21 3.18 -_-- 3.22 10 0.20 4930.55 �4930.29 4.03 3.18 F-11 0.20 4930.68I 4930.55 3.72 4.03I~ 12 0.20 4930.75 4930.69 4.26 3.71 13 I 0.2F 4930.93 F 4930.75 F 3.81 4.26 l4 0.20 ( 4 319 05 4930.93 4.02 3.81 �w 5 0.20 4931.331 4931.06 -- 4.47 4_01 - 16 ( 0.201 4931.39 4931.33 , 3.78' 4 47 i 17 1 0.201 4931.531 49-3 7.23 r 4.271 -- 18 0.201 4932.68 � 4932.58 { ` 7.33 j -_- 6.181 -�`--------- 19 ( 2.001 4930.38 - 4928.33 , 20 ; 2.00 I 4929.291 4928.79 , F 2 _1 - 0.40-4929.721 4929.25 ! 5.99 � 8.04 j 6.871 7.37 i 4.161 5.571 Slope rUpstream Sewer ID' %(Feet) Downstream Upstream (Feet) ( (Feet) Downstream (Feet) Comment -� 22 F0.40 4930.22 -4929 74 j 4.16 F 23- j 0.40 , 4930.331 4929.90 5.35 - 4.64 5.21 -4928.731 4928.34 00 C� 7.31 I _) F-220 32.73 4930.7 . 6.7 81 26 �2.00 4i 933.06 4930.75 �- 7.14 -7.34124 6.76 v--I 27 0.40 4930.69 4930.55 2.68 3.03 28 0.40 30 v [ 1.16 4931.65 I 4934.32 F _ 4930.68 - 4932.59 F-_ 5.62 r 6.89 F- _ 2_69 7.58 F-` - 31 1.16 [4937.89 4934.31 �- 8.40 6.96 F^� 32 Fo.40 F4939.66 F 4937.89 F 2.80 8.901 33 1.00 4939.61 4937.89 7.45 8.40 �- 34 1.00 4940.94 4939.01 �3.56 7.45- 38 0.26 4932.92 F-4932.59 1.21 6.91 JSewer Too Shallow 39 0.20 4933.65 40 0.20 ! 4933.18 4932.93 4933.07 1.08 2.12 1.20 2.23 ISewer Too Shallow 41 {-0.40 4933.71 4933.05 4.92 1.75 ISewer Too Shallow 0.40 4932.38 4932.13 �4.83 6.8143 F 0.40 -92. 1-- 4.07 4.81 F- - � 0.40 4932.90 �32.65 4945 3.80 4.06 46 (0.40 4933.16 r 4932.96 3.54 3.80 -u - 47 � 0 40 � 4 3339 6 �4933.18 � 4.53 �- 3.52 1- 1 48 1 0.401 4933.531 4933.361 3.97f 4.53 r 49 0.40 4933.81 50 6 46 ! 4�- 432.51 51_ 0.40 4932.64 1 933.54 F-4932.13 4932.531 3.69 3.96 , F-4.43 - 6.81 -_ - - 4.14 4.41 52 , 0 4646 4932.91 -- 4932.66 I 3.87 �- 4.12 53 i 0.40 4r 933.19 f 4932.92 3.59 3.86 754 4040 4933.56 4933.19 4.47 3.59. ! - -� -,, 55 40 0 4933.64 - _ I-4933.50 j 4.36 - 4.97 T-- - !! 56�� 0.40 4933.93 4933.66 4.07 �� 4.34 �r ---- j --_._ - 0.2_0 (-. 4929.3 l IF4929.19-_ F [-~ 2.68 � 5.04 I i r--58 IF 59 0.201 49229.391 4929.31 ; 2.61 2.68 , 60 0.20 I 4929.46 4929.391 r 2.61 !Sewer Too Shallow Slope Upstream !Downstream .Sewer ID i % + (Feet) 1 (Feet) I _ _ 62 ! 0.20 r-4929.91 -- 4929.70 ---- r 634930.17 Upstream Downstream (Feet) I (Feet) r.-- 3.83)-- ---__ -4.41� 2.73 Comment --_-- -- -- 4 8 9 2.7102r 49301 r- 6 65 0.20 4930.63 4930.494.28 3.42� F 66 P.00 r`4933.43 4931.39 i 3.87 r -- 3.011 I 68 0.40 r-4930.75 I4930.69 I 69 0.40 j 4930.75 4930.69 r�6.11 r 6.18 4.62 r - 4.68 r 71 0 201 4929.07 , 4928.98 2 463.82 61 0.20 r-4929.70 �- 4429.47 r-- 2.62 r- 2.85 r 57 , 0.20 4933.30 i-v4933.18 2.00 - 2.12 67 0.20 r 4429.11 4929.09 5.861 5.441 70 10.20 F 4929.10 4929.08 2.88F 2.45 r----_ 72 0.20 r-4929.171 T4929.10 r- 5.06, - -� 2.881 36-�_5.00 - 29 0.401 35 j 0.401 4935.98 4931.15 4931.761 4931.65 4932.601 4.96 5.35 r- 6.42 j ! -- 5.62 J -4931.761-- r` 37 i 0.40 4932.13 4931.76 42 2 001 4934.72 r 4931.67 Ir-6.83 _55.071 -5_35 5.31 r 7.35 r^�Y _) - 73 0.20 4930.80 4930.65 4.76 4 _ 0 0 I I (�-_ 4933 28 -- 4933.05 4.26 �� 2 75 Summary of Hydraulic Grade Line F- r F Invert Elevation Water Elevation I A Sewer Surcharged I Sewer I Upstream Downstream:Upstream -� F ID# (Feet) ;Downstream (Feet) (Feet) f (Feet) ndition (engt) Feet (engt> Feet l�! 44.81--- -44.81 4928.09 _..._.-.-4928.001 -4933.744933.95 (Pressured 2 ; 100.581 100.58 4928.331 4928.13. 4933.82 I 4933.74.-Pressured l 3 229.431 229.431 4928.791 4928.331 4934.321 4933.82Pressured 4 _ 1 85.88 I - - 85.881 Y 4928.96 f - 4928.791 4934.661 _ 4934.32 Pressured _ , _ , 4929.171 4928.951 4935.1 _ , 4934.66 Pressured 6 37.46 � � 1 37.46! 49�9.2 5 j 4929.18 ! 4935.21 1 4935.1 2 !�----_..._ Pressured; 'Sewer Fe Length (Feet) Surcharged Upstream Downstream LengthCondition (Feet) i (Feet) (Feet) r Upstream ;Downstream (Feet) 1 (Feet) 7 153.27 I 153.27 4929.56 4929.25 r 4935.43 4935.21 (Pressured 8 1 160.751- 160.75 F4929.89 ( 4929.571 4935.59 j 4935.431 Pressured 3 f4930.29�4935.97 j 4935.591 Pressured- 9i0263-206.8 10 129.53129.53 4930.55' 4930.29 I`4936.28 4935.97 Pressured r r-11 62.83 62.83 I 4930.68 _ _F - 4930.55 4936.42 i 4936.28 rPressured 12 j 403 4 jf 30.44 4930.75 r _ 4930.69 r 4936.48 4936.42 Pressured 13 90.64 j---- 90.64 4930.93 i�-_ 4936.75 4936.88 {---4936.48 Pressured 14 I 60.011 60.01 4931.05 F 4930.93 F 4937.02 4 336.88 [ Pressured 15 135.66 r 135.66 4931.33 4931.06 4937.45 4937.02 Pressured 16 30.61 30.61 r 4931.39 �- 461.33 F 4937.68 4937.45 Pressured 17 r 64.88 64.88 4931.53 4931.40 4937.74 F 4 337.68 Pressured 18 51.17 �51.17 4932.68 r4932.58 r 4937.904937.74 Pressured 19 102.47 �� 102.47 [ 4930.38 4928.33 4934.18 4933.82 Pressured 20 C 24.77 24.77 4 229.29 4428.79 ( 4934.65 F- 4934.32 Pressured 1 21 1116.44 116.44 r-.4929.72 4929.25 4935.53 �--4935.21 Pressured f 22 �120.34 ( 120.34 23 j 108.74 108.74 24 96.3 96.3 4930.22 4930.33 4928.73 4929.74 4929.90 4928.34 F 4935.85 4936.171 r 4936.46 4935.53 4935.59 4936.17 Pressured Pressured Pressured 25 i 1821 24 128.24 4932.73 4930.17 f 4936.30 T 4935.97 Pressured i �i - -` r---- 26 115.47 115.47 4933.06 4930.75 4936.97 4936.48 Pressured I _� r`27 34.25 34.25 4930.69 4930.55 4936.51 4936.28 Pressured 28 241.97 I- 241.97 �4931.65 4930.68 4936.85 4936.51 Pressured 36 i 149 1818 149.18F4934.32F 4932.59 4937.67 9 733 Pressured r 31 1 308.721 127.8 4937.89 4934.3 l i 4939.66F 4937.67 F Jump r'32 r277.38 277.38 F 4939.00 F 4937.89 F 49- 1 � 4939.66I Pressured 33 j 111.9 75.17 i 4939.01 4937.891 4941.14 i 4939.66 y Jump! 34 i 193.151 01 4940.94 I 4939.01 4942.57 4941.14 Jump' .._..___. _. _ .. .. .. ._..__. .____ ._.-_._ 38 I162.33 162.33 4932.92 4932.59 4937.58 4937.33 Pressured 39 60 j 601 4933.05 j 4932.931 4937.64 I 4937.58 1 Pressured 40 1 56.771-- _ 56.77 ; 4933. If ( 4933.07 ; 4937.831 4937.64 Pressured -41 i 164.651 164.65 � 4933.71 ! 4933.05 I 4938.06 4937.64 f Pressured 43 62.69 i 62.69 1 4932.38 r 4932.13 i 4937.65' 493 7.3 5 Pressured' Sewer; Sewer 'Surcharged Upstream !DownstreamUpstream .Downstream 1 r Length Length i lCondition i ID # (Feet) (Feet) i (Feet) (Feet) (Feet) (Feet) f 44 57 91 ; 57.91 4932 63 493� 40 j 4938 53 4937 65 Pressured 45 __ _-.-_r._ 63.67 63.67 4932.90 4932.65 ! 4938.581 4938.53 Pressured 46 63.84 , 63.84 G 4933.16 ! 4932.90 1 4938.631 4938.58 ! Pressured r 47 j 45.561 45.56 4933.36 4933.18 ( 4938.67 ; 4938.63 Pressured 48 1 42.571 42.57 F---- 4933.53 4933.361 4938.74 r _ 4938.67 Pressured _ 49-�- 68 _ 68 [4933.81 4933.541 4938.791 4938.741 Pressured I. 50 95.02 1�-95.02 F4932.51 4932.13 ' 4937.641 4937.35 Pressured �_- 51 _ 28.72 ^ 28.72 4932.64 4932.53 �4937.78 4937.64 Pressured C 52 -�62.67 62.67 4932.91 4932.66 4937.80 4937.78 Pressured 53 66.671 66.67 4933.19 4932.92 4937.81 4937.80 Pressured 5 -4'j 78.12 j 78.12 4933.50 4933.191 4937.82 4937.81 Pressured 55 34.52 1 34.52 1 4933.64 - 4933.50 ` 4937.90; 4937.82 i Pressured, 56 � 681 _ _ 1 68 r 4933.934933.66 1 4938.01 �_._ _ 4937.90 Pressured 58.23 ; 58.23 4929.31 4929.19 ( 4935.46 j 4935.23 Pressured 59 39 34 j- 39 �- 4929.31 4935.541 _ 4935.46 Pressured; �60-' 32.63 32.63 �4929.46 4929.391 4935.60 4935.54 Pressured j 62 103.021 103.02 ( 4929.911 4929.70 �- 4935 70 4935 66 Pressured Ii 63 -I _ j- 130.97 I _ - 130.97 4930.17 4929.91 I _ 4935.931 - ---- 4935.70 Pressured 64 144.51 144.5 1-4930.48 1-- 4930.19 4936.49i 4935.93 Pressured �65 ( 70.98 70.981 4930.63 4930.49 j 4936.72 4936.49 Pressured I 66 j 101 8888 7 101.88 F 4933.431-- 4931.391 -- 4936.31 { 4935.93 Pressured F-68 68 15.14 __F-_ I 15.14 4930.754 �-_ 4930.69 r_ 4936.72 _ 4936.51 r-I Pressured! 69 I 16.031 16.03F493 0.75 4930.69 4936.71 4936.51 Pressured' 71 1 45.44 F 45.44 F 4929.07 j 4928.981 4934.97 4934.66 Pressured 61 116.981 116.98 4929.70 4929.47 , 4935.66 . 4935.60 Pressured j 57 58.59 I 58.59 j 4933.301 4933.18 ; 4937.92 ; 4937.83 Pressured i 67 I 11.67 .__ .._.. _____ 11.67 4929_.11 I 4929.09 ! _.. _____ 4935. l2 4934.97 f Pressured': 70 j 11.671 11.67 i 4929.101 4929.08 4935.2011 4934.97 Pressured 72 35.7 35.71 4929.17 I 4929.10 ' 4935.231 4935.20 j Pressured; 36 96.531 96.191 4935.98 4931.15 j 4937.46 i 4937.021 Pressured 29 I 27.19 i 27.191 4931.761 4931.65 4937.08 ; 4936.85 i Pressured 35 -! 209.8141.091 4932.601 4931.76 4937.33 4937.0811 Jump � Sewer Surcharged.F(Fee -.�---.--- Sewer tream Downstream Upstream !Downstream i ID # jLength Length t) (Feet) (Feet) (Feet) [Condition (Feet) (Feet) 1 37 92.91 92.91 F-4932.13j 4931.761 4937.35 ' 4937.08 Pressured 1 42 i 152.42 j 152.42 4934.72 I 4931.671 4937.58 4936.72 Pressured 73 75.96 75.96 I 4930.80 I 4930.65 4937.67 1 4936.72 Pressured 74 56.94 56.94 4933.28 F- 4933.05 ( 4937.82 I 4937.64 F Pj-- ressured Summary of Energy Grade Line [-F___ Upstream Manhole Juncture Losses Downstream Manhole i- Sewer ID # Manhole ID # _ �Energy 'Elevation _1 Sewer Friction Bend ( Lateral Bend K Loss Lateral K Loss Coefficient Manhole ID # Energy Elevation (Feet) (Feet) (Coefficient I Feet) I (Feet) (Feet) r 1 2 4933.99 0.04 I -0.051-0.00 i - -0.00 0.00 ��1- 4933.95 F-2 F 3 -1 4934.141 --- 0.11 0.13 0.04 �- 0.00 0.00 2 - - �4933.99 �3 1 4 4934.63 �0.24 0.05 0 02 0.25 r 0.24 3 4934.14 F-4`(- 5 I 4934.98 0.09 (--- 0_05 0.02 (- ( 0.24 I 4 4934.631 r 5 1 6 4935.33 j 0.08 - 0.20 0.04 ^0.25 0.38 0.24 F 5 54934.98 j F 6-F-7 I 4935.41 F 0.03I 0.2510.-05 0.001-0.001- 6 `1 4935.33 1 8 4935.65 0.11 0.05 0.01 0.41 r 0.11 7 �4935.41 8 h 9 I 4r 935.81 -0.12 r 0.20 �0.04 0.00 0.00 8 4935.65 1 9 1 10 �4936.18 i 0.15 �_ 0.25 �0.05 (--- -26 0 17 9 0. �4935.81 10 11 4936.491 0.09 0.25 �0.05 0.25 0 17 10 4936.18 1 1 12 f 4936.72 0.09 0.05 r0.02 j-�0.25 0.13 F 11 �4936.49 �_ ��- 12 13 --- 3 -� 0^04 49 6 78 OA5 0.02 0_00 0.00 12-, 4936.72 13 j _ 14 4937.15 r -0.12 1 0.05 0.01 - - i 0.25 0.23 13 4936.781 _ 14 15 _, _ _ --- 4937.30 0.08 - -- --- --' 0.25 0.07 , 0.00 0.00 - 14 - [-4937.15 15 1 16 1 4937.611 0.101 1.321 0.211 0.001 0.001 15 4937.30 _ 16 F-17 -j 4937.841 0.021-- 1.32 j 0.211 0.00 1 16 ( 4937.61 1 17- 18 ( 4938.01 0.10 ` - 0.25 0.07 0.00 0.001 17 ; 4937.84 18 19 I 4938.14 _ 0.07 i 0.251 0.061 0.00 0.00 j 18 4938.01 19 20_- 4934.20 0.041 1.32 ' 0.03 - 0.00 , 0.00 3 1 4934.14; 20 21 1 4934.67 ! 0.01 I 1.321 0.031 0.00 i 0.00 4 1 4934.63' 21 I 22 4935.74 0.221 0.51 0.11 0.00, 0.001 7 4935.41 nergy Sewer j Bend Lateral Energy Sewer'Manhole vion Friction Bend K i Loss } Lateral K Loss Manhole;Elevation� FEat ID # ID # ( Coefficient Coefficient ID # I I (Feet) (Feet) i(Feet) j (Feet) I I (Feet) 22--�-- 23 - j 4936.01 j Y-0.231 -- 0.251 0.04I-- 0.00I 0.001-_-22 --4935.74 23 24 -{ 4936.42 - 0.33 - - -l.l l j 0.281 v 0.001 0.00 9 I 4935.81 24 25 1 4936.56 , 0.11 0.25 0 52 `-^0.00 0.00 24 �4936.42 25 26 i 4936.35 �.10 1.32 �0.061 0.00 0.00 j 10 4936.18 26 �27 4937.05 0.17^1.32 0 11 0.00 0.00 13 �4936.78 27 28 IF -4936.7070.02 1.00 0.19 0.00 F-0.00 11 4936.49 F 28 29 1-4937.01 0.15 �� 0.05 ( 0 1 - 0.25 0.15 28 4936.70 30 ir- 31 -1 4938.18 6 F- 0.05 10.03 1 0.251 0.001 36 �4937.46 31 j 32 ---- 4940.54 �- 2.34 0.05 ` 0.03 0.00 0.00 31 4938.18 32 33 4941.40 0.65 ( 1.061 0.201 0.00 -0.00 ( 32 I 4940.54 �33 34 1-4941.49 0.24 0.83 (-0.29 -_ 0.25 ( 0.42 32 4940.54 34-I� 35 -( 4943.291 -1.72 -- 0.25 0.09 �- 0.00I 0.00 (- 34 -- -4941.49 �38 39 4937.69 0.09 �� _ 1.32 �0.15 � _ 0.00 0.00 36 --- _..- � 4937.46 39 40 4937.75 �0.03 �� 0.25 0.03 -0.00 �0.00 F-39 4937.69 F40 F 41 4937.93 0.06 (-� 0.25 F0 021 0.25 6- 9 -4937.75 41 42 j 4938.231-0.26 1.32 0.22 lV 0.00 r 0.00 40- �4937.75 j 43 44 I 4938.52 0.99 ( 0.03 0.03F0.39 0.05 38 49.37.45 44 1-45 4938.571�0.04 0.25 0.01 0.00 0.001-44 1 4938.52 1 45 46 4938.61 10.04 0.251-0.01 I 0 001 0 45 4 46 ��1 4938.66 j --0.04 F 0.25 0.01 1 - 0.00 0.00 1 46 --- 4938.61 47 1 48 4938.70 0.03 0.25 F 0.01 F _ 0.00 0.00 47 ( 4938.66 48 49 � 4938.77 0.03 � 1.32 0.05 0.00 0 00 48 � 4938.70 49 50 F4938.831 0.041 0.25 F 0.01 0.00 0.00 F-9 4938.77 50 f 51 4r 937.78 0.25 0.55 0.08 0.00 0.00 1 38 I 4937.45 __ 51 52 _ 4�0.00 0.53 ( 0.001 0.00 0.00 ' 51^r _ _ _ 4937.781 52 I - 53 4937.801 0.011 01 ( 0.25 I 0.001 0.00 - 0.00 I 52 j 4937.79 53 1 54 1 4937.821 0.011 0.25 -0.00 ( 0.00 ( 0.00 i 53 4937.80 ! 54 1 55 4937.83 0 O1 ! 0.25 , 0.00! 0.001 0.00 r 54 I 4937.82.1 4 0.0055 0.001 55 4937.83 56 57 C 4938.05 0.10 j 0.251 0.01 ! 0.00 I 0.00 j 56 4937.94 58 59 ! 4935.60 j 0.04 i 1.32 , 0 191 - 0 00 0.00 1- 58 4935.381 59 60 i 4935.64 i 0.02 i 0.25 0.03 ! 0.001 0.00 59 4935.60It i Energy Sewer rSewer ;Manhole 'Friction Bend i Lateral ! Bend K i Lateral K j Manhole ( Energy , ID # ID # Elevation Feet Feet Coefficient r Loss Loss I Feet Coefficient # Feet ' ID # Elevations Feet 60 j 61 4935.671 0.01 ( 0.25 j 0.02 0.0011 0.00 ; 60 4935.641 62 ( 63 4935.76 i 0.02 0.25 0.01 0.00 0.00 ; 62 I 4935.72 �63�j 64 1 4936.211 0.261 0.691 0.19. T 0.00 , 0.00 ; 63 4935.76 j 64 65 1 4936.67 0.181- 0.25 0.04 j 0.25 ;� 0.231 64 4936.211 65 1 66 67 4937.151 0.38 4936.35 j 0.08 0.251 1.32 0.111 0.06--�0.00 0.00 - 0.00 j 0.00 �64 65 -� 4936.67 - I 4936.21 i-66 68 -_ 69 ---_-_�_______- 4936.79 1 0.02-1.00 _._r 0 07 ( ._r 0.00 i 0.00E 28 I _ _.__.__ 4936.70 F69 70�j 4936.76 j 0.01 1 1.00 0.05 _ 0.00 0.00 28 -j 4936.70 i r 71 71 -- 4935.12 0.03 0.75 F -0.11 0.00 0.00 , 5 4934.98 1- 61 T- 62 --1 4935.72---.0.03 , ._ _..____.0.25 0.02 (__-___.____.0.001_._.__0.001 _61 _.__�- 4935.67 1-57 72 w ( 4938.021 0.07I 0.251 0.02 i 0.001 _ 0.00 41 1 4937.93 } �' ; 73 4935.131 W-0.001..__.__._.1.32 0.01 1-- v 0.00 �___. 0.00; 71-- 4935.12 1 70 ( 68 i 4935.351 0.01 _ 0.751 0.111 0.251 0.111 71 4935.121 1�72 58 4935.381 0.02 i 0.05 0.01 - 0.00 i 0.00 j 68 1 4435.351 --- 36 37 4937.55�-�0.231---0.25 !�--151 0.02�-�O.00 j 0.00 4937.301 _�- 29 30 i- 4937.25 0 02 1.32 �0.221 0.00 0.001 �29 4937.011 35 - 36 4937.461 0.07 0.05 0.011 0.25 + 0.13 C 30 j 4937.251 37 1 38� 1 4937.451- 0.07I-_ ------ 1.321 0.13+- 0.00 0.00 }0.001 30 1-4937.25 42 1 43 4937.71 ( 0.38 �� 1.321 0.181 0.00; 0.00; 66 4937.15 73 i 74 ..-._-e_ '1 4937.91 1 0.33 ( 0.25 1 0.06 , .-_.._. r._,._,.-._ 0.25 j _ 0.37 66 4937.15 74 75 1 _ 1--.241 �0.25 �0.06 j -0.001 4938.05 0.00, 40 1 4937.75 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. _. ......... Manhole.Rim Elevation; Invert Elevation 'Manhole Height ID # ( (Feet) (Feet) (Feet) - 1 ( 4932.001 4928 00 I 4 00 2 ` 4936.821 4928.091 8.73 3 i 4937.871 4928.33 1 9.54 1 4 � 4937.661 _-- 4928.791 _-�---_8.87 4937.301 4928.95 j 8.35 6 1 4936.501 4929.17 (- 7.33 7 4937.32 - 4929.25 -- 8.07 8 4939.43 4929.56 [- 9.87 9 �-------- 493 7. 10 i4929.88 f----.._.----____-7.22 10--t --- -4937.47 4930.17 7.31 -11 _ 4938.58 -- - 4930.55 `�_ -- - 8.03 r 12 i-' 4938.40 4930.68 C 7.72 13 1 4939.011 4930.751 8.26 14 4938.741 4930.931 7.81 15 4939.07 �051 8.02 F 16 4939.801 4931.331 8.47 17 ! 4939.171 4931.39 7.78 18 4942.26 4931.531 10.73 19 4943.51 4932.68 i 10.83 f 20 4937.871 4930.38 7.49 21 { 4937.66 29.291 8.37 22--, _. 4936.38 4929.72 ,_...__._6.66 23 4936.381 4930.22 6.161 24 i 4937.681 4928.341 9.341 -. 25 4938.041 4928.73 1 9.31 11 26 4940.94 4932.73 j 8.21 27 ; 4941.701 4933.06! 8.641 28 ? 4938.371 4930.68' 7.691 .... ........ -..--- -- 29 4942.27., 4931.65 10.62 Manhole !Rim Elevation Invert Elevation !Manhole Height ID # (Feet) (Feet) (Feet) j 31 4943.71 4934.31 -- 32 4948.79 4937.89 10.90, 33 j 4943.80 1 4939.00 �- 4.80 34 4948.96 �--4939.01 j 9.95 35--4947.00 �- 4940.941 6.06 39 -- 4937.301 -- - 4932.92 [ 4.38 40 F- 4937.30 4933.051 4.25 1-41 j 4937.30 r 4933.18 A 4.12 42 4941.131 4933.71 r 7.42 44 � 4938.71 F- 4932.38 �-6.33 45 F 4938.2oF 4932.63- - 5.57 46 j -4938.201 4932.90---- 5.30 F-47 4938.201------4933.16 F 5.04 48 4939.39 -- 49 � 4939.00 j 50 4939.00 51 4938.44 52 4938.28 I F- 4933.36 ---4933.53T-...__.___-_._- i 4933.81 4932.51 r_._...__..___4932.64 F - _ v �__.______._._.._-__ 6.03 5.47 5.19 5.93 5.64 53 4938.28 --4932.91 �- - --� 5.37 54 4938.28 4933.19 r-- 5.09 1 - 55 4939.47 4933.501 --__T-5.97 i 56---- 4939.00 I--- 4933.64-- 5.36 57 F4939.00E- 4933.93F--5.07 I 58 4938.73 �- 4929.17 9.56 59 4936.49 - 4929.31 i 60 �4936.50-- 4929.391 - - 7.18 7.11 ' 61 ij- 4935.90 1 4929.461 6.44 62 F- 4935.90 F--- 4929.70 F-6.20 I�I 63 ' 4937.32 -- 4929.91 7.41 . 64 ! 4935.90 4930.17 1 5.73 j 65 j 4935.911 4930.481 5.431 66 ; 4936.91 j 4930.631 6.28 j -67 - - - 4938.80 (__-----_.._-4933.43 j 5.371 Manhole Rim Elevation ilnvert Elevation Manhole Height ID # (Feet) (Feet) j (Feet) 69 4938.36 4930.751 7.61 - 70 4938.37 ._ 4930.751 7.62 -- 71 -` �4936.03^- 4929.07;- - --- 6.96 r 72 j 4937.30 4933.301 4.00 68 i 4936.48 4929.10 7.38 7F3I I 4936.47 4929.11 j-� �7.36 �37 4942.44 �- 4935.981 - 6.46 30 1 4942.11 �- 4931.761 10.35 36 j^-4942.67F-----4932.59r- 10.08 38 F- 4940.44 F- 4932.13 F8.31 43 4939.99- 4934.72 I _ 5.27 74 j 4939.13 4930.801 -- T 8.33 F 75 F- 4939.041 ! 4933.281 5.76 j Upstream Trench Downstream 1 Width Trench Width ( j -I Sewer) --- r On At ---------i------ On I At �--- -- Trench ------------L. Wall `- Earth Volume ID # Ground Invert Ground Invert Ij Length Thickness Cubic (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) � i Yards) 13.2 - -10.8 `--13.2 F--_- 44.81 i --- - 7.381 173 �- 2 - j 21.8 33.2 F- 20.2 13.2 100.58 F 7.38 555 -3 i 20.5 13.2 i- 21.8 13.2 �229.43 7.38 21� 82 4 F 19.4 F13.21 20.51 13.2 (- 85.88 F-7.38 F 441 � 5 17.4 F 13.2 F'�19.5 { 13.21 108.92 �- 7.38 500 6 18.9 ` 13.2 I - - 17.4 13.2 37.46 7.38 i 1681 -; 7 - _ _ 22.5 1 - 13.2 F- _ 18.9---13.2 --153.27 (- - 7.38 ! -- -- 8331 ---- -- ..-- 8 - - - -- --- --------- 17.21 13.2; 22.5 r _ 13.2 r- 160.75, 7.38 827 9 17.1� 13.2� -17.2; 13.2� 206.83r__--- i i -7.38 861, 0 18.8 13.21 _, _ _ - 17.1 �---13.2--- 129.53 7.38 j - _ - - 574 1?.61-_6.8r--__I3.2I -6.8 �---12 -�---- 13.7 ; �6.8 �--__--12.6 �-----6.8 i - _ _ --1 3 ; - --- 1 2.8 ! -- 6.81 ._.13.7 r. --- -6.8 -62.83 _ 5.00 r - 163 30.441 5.001 81 1 90.64 ; At On --_EarthOn At Trench WallSewer Volume ID# I Ground Invert Ground vert [in Length Thickness(Cubic I I(Feet) (Feet) (Feet) Feet) (Feet) i (Inches) ) yards 14 13.2 I 6.8 �� 12.8 6.8 60.01 5.00 _ 157 15-14.1 6.8 13.2 F- 6.8 F135.66 �-5.00 376 16--I-------12.7 � 6.8 r...._.__ _._14.1 1 6.8 I ._..---- 30.61 r---____-5.00 1---------_83 i 17 r 19.2F- 6.2�-- 13.3� 6.2� 64.88�-- 4.501 219 18 19.4� -6.2I� 17_1� - 51.17 4.50� 202I -19 15.1 r�3.9 19.2 �6.2) r 3.9 102.47 j -- 2.50 F 311 20 16.8F3.9 17.8 [ 3.9 ^- 24.77 2.50 76 21 12.2 5.1 15.0 ry 5.1 116.44 3.50 264 22 11.8F4.5(-- - 12.8F 4.5r 120.34 3.00� 216 23 F 14.21- 4.5 F-13.9 F 4 5F 108 74F 3.00 [ 242 24�F 18.1�4.5I- �18.2�! 4.5[---..--96.3 --.3.001 ----__- 3321 _._-__.3.9 I 25lC- - -16.5 3.9 r - - 14.7 1- F--128.24 I ------ 2.50 326 26 F_ 17.4 3 9 1666 r 115.471 2_50 341 -3.9 r 27 1 13.4 10.0 14.1 I 10.6 34.25 !- 1- 6.00 - 117 i 28 F 19.2 10.0 F---13.4 F 10.0 241.97 F 6.00 r 1018 30 ( l 7.7 5.1 F 19.1 F 5.1-149.18 [-- 3.50 f 547 31 20.7 5.1 17.7-5.1 308.72-u- 3.50 1226 32 9 11 - 4.5 21.3 4.5 �277.38 3.00 799 F 33 r- 18.8 1 5.1 r--------20.7 I----5.1 r 111.9 F---_- 3.50 1465 r.....__._.._.5.1 - 193.15 .... ---- 3.50---- 528 �- - 34 r-_ 11.0 r 5.1 (- ...._. 18.8 r-38 10.6 r 9.8 r- 22.0 9.81 162.33 - 5.08 5981 39 ] 0.3 9.8F ---10.6 r- 9.8 r^ -60 r-_ 5.08 116 --40 _,� 7.7 r__ 4.S r -- -8.0 4.5 r- - 56.77 r - -3.00 r__..-- 55' F 41 I 13.8 5.1 j - 7.4 (�- 5.1 -164.65 C 3.50 r'-273 - 43 j 12.7 j 3.9 r-- 16.7 r-- 3.9 r 62.69 r-� 2.50 146' 44 - ' 11.21 3.91 12.7 r--- 3.9 r 57.91 2.501 93 45 I 10.71 3.9 ��-- 11,2 r�-~-3.9 `- r ' - 2.50 j - - 88 -63.67 46 10.21 3.91 10.71 3.91 63.841 2.501 821 47 ! 12.1 -3.91 10.11 3.9 { . - _45.56 f _ 2.50166 --- 48 �l 1.0 1 -3,9 .._ _.._._12.1-3.9 42.57 r -- -- --2.50 r--_ -_ _--65 49 1 10.5F 11.01 3.9j 682.501 92! 50 11.9 ; 3.9; 16.71 3.9! 95.021 2.50;212 On ; At On 1 At �-Trench .�- Wall ^r Earth Sewer j Ground 1 ID # ; Invert Ground ' Invert Length ( Thickness I Volume ( Cubic (Feet) ' (Feet) (Feet) (Feet) j (Feet) (Inches) Yards) 51 11.4) 3.91 11.9 3.91 28.72 2.50 44 52 i` 10.8 1 3.9 -_ 11.31 ' -3.9 i 62.67 - 2.50 �89 53 j 10.31 3.9 10-81 3.91 66.671 2.50 87 54 ; 12.01 3.91 10.3 , 3.91 78.12 2.50 112 55 , ' 12.6 3-3_f_____- I 34.52 2.001 52 - - 56 i 10.81 3.3 r I l 1.41 3.3 �68 ------- 2.00I__ 90 F58 �� 12.91 9.4 � - 17.7 -9.4 1-�- 58.23 � 5.501 212 59- 1 __.____. -..--_ 12.8 9.4 �� 1_ 12.91 _. __I__ 9.4 1 _. 39.34 5.50 __ - 116, j 60 ^-� 11.5 �9.4 - 12.8 i- 9.4 F-- 32.63 F­ 5.501 _ 91 62 �� 62 16.4 rv_ 10.6-� 14.0 ��10.6 �� 103.02 5.62 337 63 i 9.81 5.71 13.2 5.7 T 130.97 4 00 � 252 � - 64 - -- 9.21 _ 5.7 98� 5.7.._ , ..144.SJ - 4.001 2191 1 65 12.11 4.5 10.31 - 4.5 70.98 , 3.00 66 10.81 3.91 9.11 3.91 101.88 2.50 ( 123 68 j 15.31 3.9 15.4 �3.9� 15.14 - 2.50� 371 �69 i 13.6 5.7 j 13.71 5.7 1 16.03 �- 4.00 39 71 F 12.5 9A F --- 15.2 �_ 9.4 45.44 5.50 C 146 61-� -- -----; 14.0 - 0 j- 144�10.6F 116.98j �_- 5.62�- 350 57 ; i_- 7.51 _.._. 4.51 _. . 7.71 4.51 _.... 58. 3.00j 551 { --67 i --14.8� _3.9� 140� 3.9�-- _11.67t _ -2.50[. _ 26 70 F` _13.3 _ _ �.._9.4 9.4 12.5 ( �___-- 11.67 (- _--_.- I __.._-__-.._1 5.50 35 17.7j 9.41 13.3�� 9.4) 35.7 5.50� 132� �- - 36 13.0 , _.3 9 I_._______ 15.9 j 3.9 96.53 ( _ _._...._. 2.501 2161 1 29 ; 18.71 10.0 19.2 � 10.0 { 27.19 j 6.001 1361 35 18.1 1 10.0; 18 7 j 10.01 209.81 6.001 1 009i 37 ; 15.0j 5.7 19.01 5.7, 92.911 4.00 31511 j 42 10.61 3.91 10.61 3.91� 152.42 ' 2.50 j 201 73 i 16.71 3.91 12 6 .[ 3 91 75.96 i 2.501 176 j 74 116 39 86! 3.9[ 56.941 2501 71j Total earth volume for sewer trenches = 21308.88 Cubic Yards. TV 01�- fEs 59 2,r I� $yafl 3I ® 3` S-TMH - c - 2. I Syjj 44r 04--� C -3 S74M -G q s 116 5 A* z9 I6" sTxN-c2-I 4p14 13 5all'15� STSN-CI-7-1 \YtMF1 -c -q STEM -e- ) -1 6a 6 At �16615©8�-ST"A c-S Srsu-c3-1 Sr2N-Cy-I s{MH- G-fo ®1 w 18®18 �STSN-c$�1_2 \I� W 17 li sT"H-c4-I�®17p11-f7 zr�2e j27 S,trA%\ -) ' 2 1t® 19 a 818„ �m 25 SZMIt\-�s� =,j_Cy-�-z —® 21a 2* 20 ®8 21 zz�22®/ r HERcP SrSu - c 4 - l -1 i9 4m 27 28 ae �q" x3c 2255 q 9,d " 28 029 6123 24 ' \ 1 „ u 24 s $TMH-C--7 �9d2t30 it? \ 24 �v�e s S�ti � s'. StMH—C_8/ � \ T � .T,L, � c °s s., I/ \ 11 3L� L-10 STMH- srzN-c8-I�® 11/ �i � 12 � 12—STXN -r- - 1) NeoUDS Results Summary Project Title: STRM-C Project Description: FRV Output Created On: 2/16/2007 at 8:56:14 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Manhole,,[ Basin 1 i ID # Area * C Time of Concentration =� Overland; Gutter Basin Rain I (Minutes); (Minutes). (Minutes)' (Inch/Hour) j Peak Flow (CFS) �E a __OAOj 5.0; 0_Oj 0�0 13775.001 _ 55,1 �- y-58.8! 0.00 _ SA! -_ 0.00 5.0 �- OA� -- „ 0,0� -- 0-A �15145 00 _ _60.6E _____._0 15827 SOj _ 63.3E 16512 50 66v1 I _A0.00 5.0; 0.00 __ 0A 14225:00 - � t- it ..__._' . 3._ ___ . _Sm�; O.Oi ___ ..0.0: 13660^00� _ _.__._54 6 f0.00' _ 5.0 _ M -0.0` 12560.001 _ 50.2? 1F 9 � To 5.0 _70.0� 0.0 10257.SOj 41.0� 11 0 00; 5.0 _0K� 0.0, 9205.001 36.8 1 12_ JF 00 S.Oi _ 0.01 0.01 6810.00' _ 2_7.2 13 1 0 5`�{ � _ ___. _.. _-,..a 0 0! 3937.SOI 15.8 14 !� ____� j 10.14 ___ F 15 0.001 5.0` 0.0 � _ _ _ . -- _ - _ __ _ _ .__ I ��2537.50; 0 0 2797.50 11.2 I _ 16 1 0.00 _ 5.0; _ _ 0.0 _ 0.0� 4252 50 17.0; : F 17 0.00 -� �5.0 _� �0> D 0.0� 1932.50# 7.7; ._ ____ __ 0 0: 0 _ _ 955 0__3�8 19 -! ,_ __0_00(_ _- - 5.0 _ _-_ OASE --- 0 0' -- 955.00 3.8J 21 0.001 S.Oi 0. ___e_.0 977.50! 0.0� 9....._..__277 50? _ _ 39; 3.9; 0•6' 3132 50 _ 12.5 Manhole Basin FOvierulandl Gutter Basm Ram I ID # J Area * CItes)l (Minutes); (Mmutes)j (Inch/Hour) Peak Flow: (CFS) s rt 23 IOA(Y5.0`; 0.0 0.0.'i- 2775.001 } ,�2977.56 25 -- O.00i 5.0 0.O _.._ 0.0 SOO.00j - --_ 2.0 1[726 0 00 5.0 - 0.01 0.0 727.S JO - 2.9 27_} 0.00� __ 5.0` O.O, �._ 0.7,6E 727.501 _ 2 9 ^_ 28_ _- i - 0.00 -. 5.0< 0 0 ___ ____0 Oj _ ___-._595_00 - _. _2.4 30 J _T0.0011.1_ 5.0 .--Y0.01-_. 0-0; -- m--A-9 ! _- 3.2 32 O.00 ry SA O.O W 0.0 3387rv5O - 13.6 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Manhole ID # Contributing; Area* C 1 Rainfall Duration I { (Minutes); Rainfall , Intensity i (Inch/Hour). Design Peak Flow (CFS) Ground j Elevation' f (Feet) Water 1 Elevation! (Feet) ! Comments I -- OAi O.00j 55.1j F 493m 4926.85j� I 498.62 �57 8i 4935.8T -4928.871E -_ „-0.11 _-- _ _ S - 911 0.89 T 60 6! I 4935331-_ 4929.28 S.OI __ -586 20a - 63.3 4933.48) 4929.381 f I 5.01F 35.10 66.11 4932.591 4929.541 I 6 1 -0.09` _ 5.0 646.59 - 6791[74935.39j[ 4930g14 [ I 76A8± Oj 683.66 54.6 4938.14 493q_99�� �� 0.06 - 5.0 � 897.14j 50 2 4937.90 493 ' 81F 1 7 [ u OA2' S.Oj�2051 50 41 O'l 4931 11 ( 0.01` F 3068.33 36.8j 4934.93) 4932.053�� Rainfall Rainfall ; Designs Ground Water Manhole ID # Contributingi Area * C ' Duration [ (Minutes)i Intensity E (Inch/Hour) Peak 3 Flow 1 Elevation (Feet) { Elevation (Feet) Commentsi (CFSJ 12 S.oj _ 681 .000 27.2� -4936.53j 4932�72j� !____13_1---_.-_-_._ 0.01�_--_ 50__._._196875 15.8 49320811 I 0 2537 50 10 1f 4932:66j 4930 8^' -14 __ `_ -5 -_2797.501 11.2 T 4932.081 4930.83 I ,16 J 5.0 4252.501 Y 17.0 4933.48 4931.34 � �386�50j 7.7 4939.03� 4931.61 I J j 18 0.01 5.0�477 50 3 8I 4938.11 4931.85� F 19 5 0 �955 00; 3.8 4938.07 4932LL18� j �� jI 0.01 SAS 488 75( _ - 4938.13 4931.8711 21 0� 5.0E 977 50 � 3 9G��1 _� 4938.08 4932 70 �OA3jF 91 56� 3 23 0.02! ______ SA 693.75, 11.1 -4936.05 4931.771� i 24 0.01E 5.0; 1488.75t 11.9 4931.00� 4932.00 Surface Water Present .._ _ l j 25 01 5.0E ( 500.00 2.0 4931.91 4932.48� Surface Water j Present 3 26 0.01� 5.0 363.75;�^ 2.9 4936.27] N493LgF 27, 1F- =-A _ 5.0 727.50; ^9 2.; 4936.29 4931_91�� 28 5.0 595A- 72.41 4936.32� 4931.76E J � 29 �� SwO� 390.00 1.6E � 4935.84! �493 L81�� I 32 Oi - 5 01--3387.50- 13.6! 4934.141 4933.17�F--,-j Summary of Sewer Hydraulics Note: The Oven depth to flow ratio is 0.9. jF- Sewer: ! ID # Manhole ID Number�� -� Upstream. Downstream! Sewer Shape) Calculated Diameter (Rise) (Inches) ! (Fr) Suggested Diameter (Rise) i (Inches) AFT).-._; Existing Diameter j (Rise) ' Width' (Inches) (FT) _ (Fr (� �I ( Round _ _ __ 46�2I _ _ _�483 _{ _ m 54 N/A _3 3 Round 47.Oj - 48 54� N/A ___�� � _it __...___ ___ ___ 54j N/Ai ;Roundi - 45_948 _ - 48i N/A 7 _ I _- _I !.____(__._ 6. _ Roundi ___....-__-45 _._.___. 48t ___- .___. 48i N/A'':, --48j N/A -__l1 - i -12 i 12 _ - 11 -� Roundi26. _ 27i _- - 30� „ N/AI 13,_ ��5 -, � � Rounds __.23.9�F !' 13 ` _ 1_4 ! - _ _ 13_ . _ i Round] - __ 20.2j __.___-.. __? 1 i _.._ . _ _ _._ 24� N/AI -14- 15- _;� Round 18.4j 21 18 _15 __----- 2-- __27 EKA, 16 1l I _2J_NA 1I 81 N/A! -9 _ 18 j Ru"dj _ 148 NALi _ 1_]Ro 7 Roundi 10.9118i 18 N/Ai { 20 Round __--- ._ -10.9 _-__ _ _ . 18 - - `-18( N /A i 21 __-22-_. _il ° I Round -26.Oi - -,27! - - J6l N/A' Roundi �_ __�2 _. -_�3 _ __- 36 N/A 23 i 24 23 Arch± 25.5 27i 19E 30 i _24 : _ 25 -_24 Round 13 1E 18 18 N/Ai 18 N/Ai 27 - 28 - _ 22 - 7 1Round] -_ 9. IF - 18 18j N/A 28 29 -23 - }Round! 7.7; _ - - 18s - -- - - 181 N/A 29 30 ' F Roundi ._ _ 10.1 i ___. _... 1 g! _ - _ _ __ __ 18 i N/Af 10 Diameter j Diameter Diameter E Sewer; Up stream Downstream Sewer (Rise) (Rise) (Rise) Width ID # ; Shape (Inches) (Inches) (Inches) j (FT) (FT) I �(FT_) J _ (FT_) 1811 18� N/A) Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. I Sewer ID Design Flow ! (CFS) �_s Full Flow (CFS), Normal] Depth j (Feet) # Norman Velocity (FPS) Critical Depth (Feet) ( Critical ( Velocity (FPS _ Full i Velocityl (FPS) 1� Froude Number} Commend 1 2 _ 57�8i 88 2 ` 2.66; _5 9j 2 270.7 _ 60.6i 88.2' 2.74 _ _ 6.0� 2.31 F 7.4E 38j _ r 2.82!___. 6.0 66.1 88.2! 2.90 _ 6.1� 2 39 ___..__ .__ _4.2F 0.68 I 6 � 56II 6474' 2.92 v 5 8$ T 2 27j �7.7 4w5j 0.61 i�� 7 54.6 64.4, - ,� 50.2I 64.41 _-.2.66j 5.7 2 14(� 7.37.34.0 �0.65 1 9_ 4 17. qjI F64�4, _2`32; 5.4 1 98; _ 6.6 T 3.3i 0.69E 1F 11_' _ 3_ 29 - 3A01 _....._ 5� 1 971 ______. J 12 27.2# 36.8 , 1.60j -___ 8.2 1 15.8! 16.0` _ -1 61j 5�8! 1.42 6.6� 5.0; 0.79]�? 13 10.1 16A 1.15; 5.4� 1.143.21 _ ^0.98 r 14 j 11.2� 10.5!1.SOj 6.3( 1 27 7 0) 6.31 _ N/Ay 15 17.0� 22.7! 1.29 7 91 1 49 F. 6.8� E. 5.4 16 F 7.7(_ 32 1! 0.0J v _ 8 4) _ _1 i11 . 4 8' 2.Sj 2.12'F �17 j 3 149; _ 0.52 _ 7.1� _ 0.76i ___4�2 2.2� 2621F 18 3.8j 149, - 0.52� -- 7�1 _ 0 76 __ 4.2i � 2.2j -- 2.021 1791 3.9� 20 i -T. 1, 14.9 0.521 7.11 0 77 ..._ 4-J3 _ 2 2? .._w - 2.02I� 21 12.5E 29.9, 1.35 4.0I_ 1 18: 4.9T 1,8j 0.7C� _ 22 ll.lj 29 1.27� ___-__3.9 ` 1.081 4.8 1.6 0.71jj�_- i Sewer Design Full Normal! Normal, CriticalFPs tical` 1 Full Fro de I ID Flow (CFS) Flow; (CFS) Depth (Feet) - Velocity! (FPS) Depth (Feet)(F) _ city, Velocity) ?Number __ Comment] __ f IF23 j11_9� - 26 ! -_2.91 ----7.4 _ 0.65 4.Oj 0.66(� _ 3.9j 1R6 0.99 1.3! , 2A2,'F--,----j 29 ; _ 3 2MI ,14.9 _.._ 0.47 6 7 0.68! �i 4.1 j - ._ 1 _81 _ 2.02 31 j 13.6! 14.9 1 12! _ 96 -_ -1 35j 8.1) E 7.7 -1.61IF I A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation I Buried Depth !) Sewer ID` Slope Upstream Downstream Upstream Downstream' Comment 0 (Feet _ (Feet) (Feet) L(Feet) i 2 0.20il 4926.311 4926.01 j 5.06 -0.51;Sewer Too Shallow) i '_._? --�-2.0 ---4926 61 4926 31 i _.__ I ' 1j 0.20`. 4926.75: -- � ^4926.61I __._.___2.23; _ ._ 4.1_2 5 � 0.20 4926"86; � 4926.75 � 1 23mm 2 23 Sewer To Shallow! 0.20. 4927.19; � 4926.85 _ 4.20 1.74 Sewer Too Shallow; j� . 0.20', v 4927.86; _ 4927.19 6.28! -�I 0.201 _ 4927.93i ___ . 4927.861 - 5.97 .._ IF 9 0�.20 492-� - 4�927. 22 R 4.43' __ __ 5.98; _-� � I Ir __ _'�I - ._J� _ 11 j 0.20• 4928.51 i _ 4928.11 � 3.421 _-- iL_ ! 0.80 E4929901- 4 4929.17i 4.13 - 1 .. 0.50 4926.98j _ .___4926.__3.73! 91 3.211- - 14 ( _ 10.00' 4927.21 t_ _ 4926.8-6 �3----- - 4.28-= 164929.38, _ 4927.86j_ __. _ _ 17 i 2.00'F 493ol3F 4929.43} 6.48 F 8.16 on Sewer ID' !�! _ Slo a p ' %� Upstream. (Feet Downstream* (Feet) Upstream) .._ (Feet) Downstream{ (Feet) j Comment 18 A2 0i 4931.42 !___ 4nq j_ j � 5�15 _ 6.48j 19 j 2.00' 493061; 4929 38 - 6.05E j 20 Tj 2.00 4931.93`.� 4930T65i 4.65 -- -45 98, 21 1 0^20; �4928.11; 4927 93 -__._ 5.44 6.97j _ - l 1 22 1 0.20 4928.26! 4928 10'' 4 79; 5 45 23 !! 0.20 4928.0 F7928 260 73�` 6 20' Sewer Too Shallow' 2�4 0.20, 49�28.99, 4928.80j�1.42 F0.70 Sewer Too Shallow) `I _ j�l____. �1 __ _ it _ ,�__... j 25- ` j ._ 0.50; 4928 36 ^ _ 4928 11' - 6 411 6 94' _ _ r 26 0_50 4928_49j _ 4928.37j 630i _. 27 J 2.00' 4928.27�-4928.11 j _ m 6.55 6.94j ` Y 28 ? 2.00' _ 4928.42j 4928.226 E 5.921 29 _IF2.00: _4928_81 j 4928.11 j _ -6.02; 6.931 _..____ 3.64i _ _ -_.._.4 Summary of Hydraulic Grade Line Invert Elevation 1 Water Elevation Sewer Surcharged. { ;j Sewers ; Upstreamr Downstream F-P(F-eTet--.', DownstreamLength Length 4ConditionID # Feet)(Feet) (Feet)-----__-_-- 2 148.521 0( 4926.31 4926.01 4928.87 4926 8585 Subcritical. + 3-� 147.91' 0 4926.61' 4926.31; 4929.28 4928.8Ti Subcnticali I�___ ,� __ ____ - __ _ ! `' 69.65?F 4926.75] 4926.61j 4929.381 T 4929.28; Subcritical; 5 55.851 OiOi 4926.86 4926 75? 4929.54j 4929.381 Subcritical' I 6 167.8': 01 E4927.191, 4926.85 4930.141 4929.54-1 Subcritical !� " 332.9'� 4927.86j 4927.19) 4930.99 4930.14j Subcritical, --- _I- I 8 _i 33.65}r 01 4927_93j 4927.86 4931.28 493099; Subcritical 9 93.47 00� 4928.11 4927.921 49�31.55493�1_28 Subcritical 11 IF�_ 198.66 _ __198.66 4928 51 4928.11 4932.05 1_I.. 4931.55 _____F Pressured' -12 9L26 v --91.26; - 4929.90 4929.17 4932^72 _ 4932.051 Pressured! 1 23.6' 23.623.E 4926.98 ;I��v_ _J 4926.8E 4930 47f 4929.54, Pressured 13 90.81 90.81 4927.45! 4927.00� 4930 89' 4930 47! Pressured", _ -_ _ _ _ -_. ___M.__ _ __ _._.. __.. __ _� __ _. 14 -3 .28; 35.281 4927.21jF _4926.86 4930.83I 4929.54? Pressured FFe Sewer�Surcharged � LengthCondition; _ ,-(Feet) eamownstream et) Fp (Feet) i Upstream; (Feet) DownstLen (Feet) {{et). 85.67� 4928 OS! 4927.19 4931 341 4930.14i Pressured: 16 ; 75.97i 75.97 4929.38 �4927-86EF 4931.4930.99,1 Pressureds { 17 i 35.22j __ �� ._..-. 35.22 __� 4930.13E .._.._____...... ____J 4929.43 __ 4931.85f _ 493_1.611 Pressured` T ..�..� -.. _18 64.71 -19.96 4931.42� 4930.13i E4932.18 4931 85- Jump 19 61.42� 4949.4-4`�-4-93-0--6-1i 4929 38� 4931.87� 4931.61 Jump i 20 64�14 493L93) _ 4930.6�_2.76F 4931.871-Jump' - 21� ; 88.28' �- 88.28j 4928.11� _ 4927�93� �493 L70� 4931.28� Pressured 22 � 78.46; 78.46� 4928 26j 4928.10j 4931 77� 4931.703 Pressured`, ' 23 t 213.92' 213.92 4928.69'�492�8.26 49�32 23� 4931.771 Pressured ;��I_ _ �I____ ____.__ � j 24 ; 95.19 95.19 492 -9-9 __ 4928.80E 4932.48 4932.23! Pressured' 25 11`__ 26 E _-6: 0 75i [I_ 25' _ .V 5 50.75( 4928 36' . 25� _ 4928.49j 4928 11 4931 8484' 4�931.70 Pressured 4928.3 �4931 91 �4931.84i Pressured _-,.r. _ _27 __ 7.98j 49: 8.271 4928-j1 _493L76F - 4931.70 Pressured 28 798i 7.98� 4928.4928.26 81_ 4931.4931.77� Pressured! T _ 2 4i J .. _.. 29 I 35.05,. 35.05 4928.81 4928.11" 4931 83 4931.551 Pressured; _ _ _ _� J 1 31_j 24.53' 24.53; ^ 4929.00I 4928_511 4933.1K _ 4932.05� Pressured Summary of Energy Grade Line Upstream f f Downstream j Juncture Losses Manhole Manhole ----o.___� __._____._, _ __ _ ! ; Energy ( Sewer 'Bend" fFte ; Energy Sewer Manhole i Bend K teral KManhole, ID # ID # Elevation Faction Coefficient! Loss efficientt ID#Elevation(Feet) j (Feet) iJ (Feet); ______ .I - - - (Feet) F-c_ 4929.46� 2.61 - 0 OSj -0 00-Oj00{{{� 4926.85 �..-.._- 4.-_..._.._...-.-...__.J � 3���_ 3 � 3 ( 4929.88 0 38� 0 153 0.03 0.00 2 4929.461 _�._ __ _ _0.00, �� :4930.05 -016; u 0.081 0.02� ----O.00j _ O.00j� 4929.88 4930.05� E_._ i___"___.1 4930.71� 0.281 Om05, 0 25 0 [ 4930.231 _ -0.oT m -v -- 7 F- a 4931.4-9 0.52 0�05 11 OA 0.25{ 0.24�(- 6 4930.71 4931.65� _ 0.00 ___ __..-0.05 0971 0.25; 0.23f _ �.; __4931.49i 4931.65' 11 11 4932.47 0.60 0.050.05°� 0.02�: 0.25i�--0.06�; 9 49�31.79, Sewer n 'F Manhole; 7D Ene y rg r Sewer Bend Bend ' � I Lateral t Lateral: Loss h 7ol e an Energy Elevation! i 1D#Coefficient, Elevation I F ni r 0 Frictions Coefficient, Coe le Loss L Feet)( F ID 4 (Feet) �F F4933.. T�-7 F J —�7 F —. F,77�-4—F--- --P.q F-�,-9f 5,1 .. L 7� F - 11 - 11 32.471 -1-1-1 11 I T I F --: 71� 7,.,F-4q3o.--8.6F--- .1jif-7 4930.23! F 0 OS!70 F 1-7-7- 13 4930.861 0.06F 5 0.00 F--j- 7, F- —1— E-49371- —7jo F, 7 0:q—q, F- —F.--,o-: 1 F 7 - —99j,F ---- �q--qq; F-7--7-71 4931.491 17 O OS 17 FT� 1.70! 18 ET? D, F-T?�? F- F 18 4931.92i ------ -_0.05F ... 7__O.,251 f __q - F_ �931.70! -- , " A 2 1 'F 7 0__' E F- 4931.95 1 E22 F217�— : . .... ... . F- —i?3T75,1 25 E-7�0:51F2—[,- —1- 'FT47"F�5 ;,,F-- 4932.4� 25]F I -T 4931 22 ;1 .7�1� -----J _ _ —F 4931.881 27 4931.811 [ Tq ]'F---To.—1[:TqL-1— 9 4931.79! F�— Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole; Rim Elevation Invert Elevation Manhole Height; ID (Feet) i � (Feet) (Feet) 4926 011 3 99 2 14935 87 4926 31 9 56 4935.2311 __ _. 4926 61 8.621 4933.�8 4926 75 673 ._.._ _. 4932.59jj_—_�_- 4926 85 _.._..___5 74; 6 4935.39492719. 8.201 4938 14 4927 86` w 10 281 8�! 4937 901 911 9.98a 4936 54�928 1l'F 8.431 11 � 4934.93j 928.51 � 6.42 4936.53! 4929 90 6.63; 13,�.___.4926 98 5.101 iF _14 1�932 6614927 45 [—�--� 5 21 C15 4932.081�- 4927 21 4 87j t, 16 4933 48�l�-4928 05 5 43 _ � 17 4929 38 9.65 „ �4939.03 18 ! 493811# 493013 798 19 4938 07 � 4931 4Z 6.65 4938.131 4930 61! 7.52' 21 4938.081� 493193€F 615 22 { 4936.55; 4928 10 8 45 _ �. 23 m , 4936 O5 4928 261 W -- 7.79 24 m i _4931.Ooij 4928 69 _ 2.31, F 25_ 1 26M' 4936 27, ,_4928 36 7.91 2�7 936.2 49 4928 � .49] 7 803 4936 *321 4928 27: _._. ... 8 O5 29 4935 841 4928 42 .. __.._.__. 7.42';, 4936 3W 4928 81f 3 7.52 32 4934 14 4929 06 5.14 10 11 _ Sewer I ID # E Upstream Trench { Width _ j On ! At Ground ! Invert (Feet) (Feet) __ _-- _ Downstream Trench Width l_ On At Ground Invert (Feet) (Feet) I. -- __-- _ __� __. ____ __l E Trench ! Length (Feet) , _ ____ __ -Wall i I Thickness (Inches) . __.___ _.._.Yards) Earth Volume (Cubic 1 1 - 2 - -- -- 17.7] _. 9.4� 6 6! 941 - 148.521 5.50.'j 455 _--- -17.711 4j __ 9.___ -,147.9 Imo- --` - -- 12=0� ---- 15_8! - 9.4j -- 69 651 I --'---` - --- 10:0� _ 9.4� ------12-.�I _ 9•� -__� 55.85i --��._--- - 5.50j ____ __ _143{ I_----- --`-'_--_ _ _13.6; - - 6.81 _ - g=j ----6-8� 167.8! F 7 ; _ _ 17.7; -6.8� ______13.6I 6.8j 332,9 5.00 ----1115, ! ° - - -17.1 j 6.8! -- - 17.7� - 6.8) .__ 33.651"� - 5.00 -130i � I ._7__t _. 14.0! 6.8j _.._..._17.1i 6.8j._ 93.47�5.00j _ .._.__310'; 11-- + - 1 L2! -5=�! .... _ 15m ..._ _..__5 7j 198.6611 Y•��; 463 971 '•SOj _ 1571 - ---1 _ 9.71 4;5I _- ---° TT ___ 4w5i. --- 23 6 _ ..._ 3..00 - __33 _ -13-_! - -9 9 ._ _ 4-5 - 9 4.:5 .--_. 90.81� �OOj .- _. _ _._._ 117j ._ 39i --_._w_ 11.5; _ 391 - 35.28j1 �3 _ ..__,.- ` 50 --- -- 47" 15 71 _ -10-4j _ 4.5 ____ 15.J ___._4�57ij 85.67 3.001 _ _177 T -_ 20.11 -4 Si - -- 75 97 3.00' -296 -77 - ' - - 16.O - 3.9 _.-._ 19.3 _3.91-- - 35.22! _... 2.50; - - 113' - 18 - - 13.4( -. 3.91 ----16.1!._.._.__ 39I ._ _.64.71! -- 2_501 - 1491 19 15.11, 3.9' 19.4] 3.9 61.42 2.50 189E F77i-q-!_12 4! _ 3.9 _ 15.Oj 3 91- 64.14 2.50! _ _ 131i - 21- -5.7� --- 18=3 ----5.7 - 88.28 _ 4.00j - -291 _22 j -- 1--y __J_5_7�__- 15.21-_ 5.7 m 78.46 - 23 _ 5.41- 5� _ - 16 4j 5�0� -213.921- 3.04 - 369i 24 - 5.91- - 3.9j -�- 4.5 r -y 3�9j 95.191--- -2.501 511 - -25 -- -15 ;9! _.- 3.9� - . 17.0� 3.9j - 50.75€ 2.501 - --_-141' - 26 - j . _ 15.7j - - -3.91 - -15 9i ----3.9 25; - - - -?-S61 - -- 65j ___7'981 _____ 2-50 _______ 23� - 28 - _- - -14.9j --- 3.9! -15.71.___ 3.9i _. �w98' 2.SOj.. ----20' 29 15.1! 3.9! - 16.9 3.9j - - 35.05; - 2.50, _ 94 11 Earth Sewer On Ground At Invert On Ground At Invert Trench ( Length t Wall Thickness Volume ID # (Feet) 1 (Feet) (Feet) (Feet) (Feet) (Inches) (Cubic _ Yards) 1 31 Total earth volume for sewer trenches = 6519.67 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+l 12 STU-A SI.MH- D- 07 012 L GT Ail - D-Z 6a 7 ya In 8 jz 30 4)10 bt-x STANN - bj-j-,Z 48d F65 6aO powla Ida NeoUDS Results Summary Project Title: STRM-D Project Description: FRV Output Created On: 6/5/2007 at 2:30:19 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information `-- Time of Concentration Manhole (Basin ID # Area * C Overland (Minutes) Gutter Basin Rain I (Minutes) #(Minutes) ,(Inch/Hour) Peak Flow (CFS) F 1 -F 0.001 5.0 �0.0 �~ 0.01 16642.50 66.6 �2 0.00 5.0 0.0 �- 0.0 i 16642.50 F 66.6 3� 0.00 5.0 i 0.0 0.0 16642.50 66.6 r�4 00 0 S.O r- 0.O r- 0.0 1 _ 19512.50 � 78.1 5� OOI 0�- -� 5.00.01 - 0001 �8410.00 �33.6� F 6 0.00 5.0 r� 0.0 O.O r 8410.00 F33.6 __ 7 0.00 �----_-r__ 5.0 0.0 0.0 8410.00 33.6 8 0.00----5.0 _...____----_-.__-- L_.-.. -0.0 1._ . --0.0 ......10797.50 43.2 1� 10797.501 - -43.2 l 0 r 0.00 T5.0 r0.0 rY -- 0.0 ( 6477.50- _ 25.9 F 11 ( 0.001- 5.0 F 0.0 ) - 0.0 F - 4320.00 F 17.3 12 j�-0.00 0.0� 0.0� 1.0.0� 0.00� 2.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (l O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Manhole ID # Contributing Area * C Rainfall { Duration ((Minutes) Rainfall Intensity ((Inch/Hour) Design Peak Flow (CFS) Ground Elevation I (Feet) -F Water Elevation (Feet) -! Comments r__ 1--�-�---- 0 �0.0 0.00 66.6 �4925.71 � 4922.00 �------ F 2 3 I --4 -I (----•- 0.04 0 04 ---0.03 F- 5.0 5.0 �- - -5.O F-1664.25 �--1849.1 *7 I 2439.06I 66.6 66.6 78.1 F4927.00 4928.14 � 4929.001 4924.41-F---- 4924.52 4926.13 - (_.------.__-__) 5 0.01 5.0 2803.33 33.6 4929.12 [ 4927.81 F-- 0.01 5.0 4205.00 33.6 4929.00 4928.44 - ���� 7 0 5.01 8410.00 33.6 4926.44 4928.59 jPresent Surface Water 8 --� 0.02 �-- 5.0 � 2699.37 � 43.2 r 4930.11 4927.29 �- 0.01 5.0 3599.17 43.2 4931.56 4927.40---- 10 F_---- 0 5.01 6477.50 r 25.9 4931.72 F 4928.38 F i 11 r- 0 5.0 4320.00 17.3 4931.70 4928.01 -- 12 F-0 0.0 0.00 2.0 4930.11 4928.17 F---- Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. 1Manhole ID Number _Calculated rSuggested Existing Diameter Diameter Diameter Sewer ID # [Upstream'Downstream I lFsewer Shape (Rise) (Inches) (Rise) (Inches) (Rise) ;Width 3 (Inches) ! (IT) (I) �+ 2 ~F--1 ,Round - 42.7 F-- 48 _(FT) F 481 N/A 2 ---3 F--- 2 ---- {Round F- 42.7 F 48 r` 48 [ N/A i �-- -- 4 3 4 3 {Round r--- - 45.4 ---- 48 --- 48 N/A 4 i 5 ----- 4 - --'Rounds 33.1-- -- - 36�__..--- 361 N/A! 5 6 1 5 lRound i 33.1 i 36 36 N/A I --- 6 - i ---7 -- 1 6 !Round, 33.1 L_-_- ----36 _..------ 361 _ N/A � I8 4 Round 36.31 42, 42, N/A; Sewer ID # Upstream ----- Downstream Sewer Shape Diameter Rise _I (Rise) (Inches) (FT) r Diameter Rise (Rise) (Inches) (FT) Diameter (Rise) Width (Inches) (FT) (FT) 8 F _ 9 -r 8 -- Round r 36.3 42 F 42 N/A F 9 10 (- -- 9 -Round 30.0 30 30 N/A F 10 I 11 9 Round 25.8 � _27 30 N/A 11 IF 12 F- 5 Round F_ 11.5 I---- 18 1- 18 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full Normal Normal Critical CriticalF Full Sewer Flow Flow Depth Velocity Depth Velocity elocity Froude Comment ID (CFS) (CFS) (Feet) (FPS) (Feet) (FPS) I (FPS) Number 1-l-1 66.6 91.1 52 4 7.9 2.46F 8.2F 5.3F 6.94 F_ -2-- 66 6F 91.1 2.54 7.9 46 5.3 0.94 F 3- 78.1 91.1 2.85 F 8.1 2 67 �8.8 F-6.2 F-0.88 �- �4 33.6 42.3 r 2.02 �.6 1.88 �7.2 �� 4.8 0.87 i--- 5 33.6 542.3 ll_ 2.02 F 7.2 �- - - 4.8 [----0.87 [Y-- - 1 6 33.6 �42.3 �2.02 6.6 �1.88 7.2 F_--4.8 � 0.87 F-__ 7! 43.2 63.iF 2.11F 7.1 [ 2.041 7.4[ 4.51 0.94� 8 -- 43.2 63.8 2.11 7.1 F 2.04 7.4 F 4.5 0.94 F 9 F259F 266F 2.04 F6.0 F 1.77 7.0 F 5.3 0 71 F �00 F17.3 26.0 1.49 I Y 5.7 1.41 r _ 6.1 3.5 �- 0.9 1 I 2.0 6 7 j 0.56 ( 3.3 T 0.54 -_3.5 F_ 1.1 0.9 F- A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation ( Buried Depth�� - I Slope !Upstream !jDownstream Upstream Sewer ID ( % I (Feet) I (Feet) , (Feet) Downstream (Feet) I Comment I 1 40 0 4921.891 4921.54 I ` l . l l 0.17 ISewer Too Shallow F- 2 -) 0.40 i 49 12 95 4921.86 2.19 1.14 !Sew r Too Shallow E �- 0.40 4922.70 4921.18 2.30 2.961 F- 4 j 0.40 4923.07 4922.33 3.05 3.67 5 -�0.40 4923.35 4922.80 2.65 3.32 I V 0.40 4923.43 4923.27 0.01 2.73 Sewer Too Shallow F 7 - 0.40 4922.76 4922.70 3.85 2.80--- 8 0.40 4922.98 �-4922.77 5.08 3.84 9 0.40 4923.50 4922.98 5.72 1 6.09 r----- 10 0.40 4924.92 32494 4.28 4.68 - --- _11FO_4oF_4923.13F__4423.07F 5.4iF 4.55 Summary of Hydraulic Grade Line -FInvert Elevation �� --� r Water Elevation 1___ !Sewer ID # Sewer Surcharged f g ILength I Length Upstream ( (Feet) Downstream (Feet) [ jupstreamDownstream (Feet) (Feet) [Condition (Feet) I (Feet) 1 86.5 ( 0 4921.89 I - 4921.54 F 4924.41 r- 4922.00 iSubcritical 2 22.54 0 4921.95 4921.86 4924.52 4924.41 Subcritical F_ � _ _ _ _I r 3 379. l6 0 r-4922.70 �- 4921.18 4926.13 r-4924.52 Subcritical F 4 184.04 r---184.04 4923.07, 4922.33 4927.81 4926.131 Pressured ! r 5 11� 38.49 r- 138.49 4923.354922.80 i 4928.44 F_4927.81 ! Pressured r 6 38.96 38.96 4923.43 r- 4923.27 r-4928.59 4928.44 Pressured r 7 1 14.831 14.831 4922.761 4922.70 4927.29F~4926.13 1 Pressured r 8 51.73 �- 51.73 4922.98 4922.77 1 4927.40 4927.291 Pressured 9 ( 131.871 131.87 1 4923.50 4922.98 4928.38 4927.40; Pressured 10 i 134.65 134.651 4924.92 4924.381 4928.011 4927.40 I Pressured j 1 1 I 14.5 I 14.51 4923.13 ! 4923.071 4928.17 , 4927.81 i Pressured ! Summary of Energy Grade Line FUpstream - Manhole Downstream Juncture Losses Manhole ��-- Sewer ID # Energy Manhole ID # I (Feet) Sewer FrictionLossLoss (Feet) Bend Bend K Coefficient (Feet) Lai- teral [�Lat�e�ral K ' (Coefficient 1 (Feet) F- ManholeElevation ID # Fei)o -1 2 4925.40 3.40 F- 0.05 0.00 ( 0.00 0.00 �1 ( 4922.00 F-2 -F 3 4925.48 �0.06 0.05 0.02 �0.00 0.00 �2 4925.40 3 1- 4 I 4927.16 1.10 1- 0.96 1 0.58 ( 0.00 F 0.00 [_3 [_4925.48 i- 4 F- 5 4928.16 0.47 F-0.05 0.02 0.25 F 0.51 r 4 - 4927.16 �5 �ti 4928.79 0.35 0.05 0.02 0.25 0.26 F 5--- 4928.16 r 6 I 7 4928.94 0.10 0.14 0.05 0.00 F 0.00 F- 6 - 4928.79 F7 ( 8v 4927.60 F 0.03 1.32 FO.41 0.00 0 00 F 4--F4627.16 �8 I- 9 - 4927.71 0.09 0.05 0.02 0.00 0.00 F 8--[ 4927.60 �9 10 10 I 11 I 7 11 ( 12 �4928.81 4928.21 �4928.19 0.52 m0.24 -0.01-- 1.32 �- 1.32 i^ ._.._-1.32 ( 0.57 0.25 0.03 0.00 0.00 r----0.00 0.00 0.00 �0.00 � 9 4927.71 i _- 9 -^ 4927.71 _^-5 4928.16 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is I . ;Manhole;Rim Elevation -invert Elevation ID # (Feet) I (Feet) 4925.71 4921.54 1-2--�---- 4927.00I_------4921.86 anhole Height (Feet) 4.17 5.14 3 --� _- -- 4928.14 �----_---4921.18 f----- 6.96 4 4929.00 4922.331 6.67 Manhole +Rim Elevation Invert Elevation Manhole Height ID # (Feet) i (Feet) ( (Feet) 5 j 4929.121 - - 4922.80 6.32 6 4929.00�-------4923.27 5.73 �7 4926.44 4923.431 3.01 S 4930.11 - 4922.761 7.35 9 �4931.56 F--4922.97 !- 8.59 F-10 F-4931.72 jv--^ 4923.50 � �- 8.22 11 (--- 4931.70 [ - _. _. _ . 4924.92 1. _._._____.____.6.78 12 4930.11 -4923.13 1 6.98 Upstream Trench Width Downstream � Trench Width Sewer ID # On At Ground Invert (Feet) (Feet) On ' Ground (Feet) At Invert I (Feet) I Trench Length (Feet) Wall Thickness (Inches) Earth ( Volume (Cubic i Yard124 1 ' 7.4 6.8 5.5 6.8 �- 86.5 5.00 1 F 2 9.5 ; 6.8 7.4 6.8 22.54 5.00-39 1' 3 9.8 6.8 4 �i 10.4 5.7 _ I 5 ( -- --9.6 ` 5.7 C- 6 �4.4 [- �- - --11.1-m i11.7 11.0 -6.8 5.7 -_ 5.7 379.16 -184.04- 138.49 -� 5.00 -- __.._ 4.00 �..__.__- 4.00 779 i 334 --__231-� F-� -47 F 7 F 12.5 6.2F 10.3F6.2j' 14.83F-m 4.50E 31 8 F 14.9 6 2 [- 12.4 [- 6.2 [- 51.73 F- -4.50 F- 134 9-M15.4 5.1 16.1 10712.51 5.1 [--.---13.3 I I 14.0 j 3.9 i 12.2 i �- 5.1 131.871 3.50 i 3721 F- .5.1 i-__-134.65 F -3.501 - - 278I _ _-3 9 . 14.5 ( ___2.50 27 Total earth volume for sewer trenches = 2397.02 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48. inches. If the bottom width is less than the minimum width, the minimum width was used. The backtill depth under the sewer was assumed to be I foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 STMN -E 3 N-E-Z r. kA c4 0�JAet NeoUDS Results Summary Project Title: STRM-E Project Description: FRV Output Created On: 2/16/2007 at 9:04:29 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration _I Manhole', Basin `Overland! Gutter �[B asin Rain1 ! PeakFlowj ID # Area*CI (Minutes); (Minutes)Mnutes) _...._..,_.____ (Inch/Ho(C _.__._,.._..._._ II-- 1- --{I------O.0011_ _ 5.0I___ O.O�I_ OA'I_ 4462.50�I---17.9 _; F- - Oro- ` _ 5 0 0 01 — 0.0; _ 4462.50� — 17.9 I�C�I�II�III]l�XI��III11,�11�1)1 � �fY.X.IIA���� ) 4 11 0.00;1 5.01 0.011 0.01 4462.5011 17.911 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (lO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics I Design Manhole; Contributing * Rainfall s Duration! Rainfall Intensity Peak + Ground Elevation Water j Elevation; j) Comments! ID #; Area C Minutes Inch/Hour Flow (CFS) Feet 1 Feet -A. - -- -- i 174 4926.51� 4919.6011[ 5.0 _ 1487.50!1 -17.91 --4926.53� 4921.03 i I " 0.01 5.0'; 2231.25! 17.91 4925.89' 4924.47 Rainfall Rainfall DesignI Ground Water Manhole! Contributing Duration Intensity Peak Elevation' Elevations Comments ID # ; i Area * C (Minutes)! (Inch/Hour); Flow I (CFS) i (Feet) (Feet) 4 70' 5.0 i 4462.50 17.91 4922.49 I 4925.23i __j Surface Water Present Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Sewer; ID # Manhole ID Number Upstream; Downstream E Sewer Shape C—alcua te#_1 Diameter (Rise) (Inches) j Suggested Diameter (Rise) (Inches) Existin Diameter (Rise) Width (Inches) ! (Fr) FI 30i 2 __N/A Roundi 2 _24 — N/Al Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information !Invert Elevation Buried Depth Upstream Downstream II Sewer ID'FS1ope,,1Upstream,1Downstream1 (Feet) ! (Feet) Feet ( ) Feet ( ) Comment 1 1l 0.201_4918.97] 4918.9411 5.56]1 5.57!1� �F 0.20 F 4919.87(— 4918.9711I4.02i 5.56;� � l�t�l(11�1171tLJ►�Il�i`]ISL�L :%��I�III���IL'IIE. • wnM Summary of Hydraulic Grade Line Invert Elevation j Water Elevation ' Sewer , Surcharged] ;Sewer t Upstream! LengthI Length � � Downstream) Upstream! Downstream ID # Feet1 (Feet) (Feet) ( ) (Feet) (Feet) Condition (Feet) 14.23j A 14.23 4918 9 4918.94 4921 A31 � 4919.601 Pressure j 448.81 448.81 i _4919.87 4918.97 4924._ 7' _ 4921. E Pressured! 3 106.6a 106.6! 4920.49 _ 4919.85; _ 49�25.23 4924.471 Pressured) F Summary of Energy Grade Line { Upstream { f Downstream Juncture Losses Manhole_ �I ! Manhole ! -- Energy Sewer [Bend Laterals I EnergySewer' Manhole;Bend K 1 Lateral K j F— Friction Loss Loss Elevation(Feet) ID # ;Elevation! j (Feet) Coefficient Feet)] Coefticient� (Feet)D # (- (Feet)_' �. _ __ _. _� _ i492153 �11nhole'ID# 1 0 05! �O.00j � 0.00� 0 00'� 4919.60 4921.53� Ir 3 4 4925.73 0.66 0 19 0.10 - 0.001, �W O-EF 3 j 4924.97, Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 3 Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole!", Rim Elevation,e Invert F Elevation Manhole Heights - ( ) _ ( ) (Feet) — __ 4926.511F _ 4918 9411----7.57� 'i� 4926.53� 4918.9711 7.56! � j� 4925.89� 4919.885`6.0411 —� _ 1� (—� �4922.491 � 4920.49!�AO� Upstream Trench Downstream I Width a Trench Width Trench _ --- �At ._ E _ Earth Sewer i On On At j Trench { Wall Volume ID # +: Ground Invert i Ground Invert ; 1 Length ; Thickness (Cubic Feet (Feet) (Feet) (Feet) (Feet) ! (Inches) _Yards) _3.00! 34� --6 4.5! 448.81' 3.60 89898� 4.5I 11.61I m4.51 106.6( _ 3.00' — 114� Total earth volume for sewer trenches = 1046.37 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 12 51tt" - T: 016 15 Jj ,014 1 13 10 STIm F-4 10 9 .'yS jlg'i6 y NeoUDS Results Summary Project Title: STRM-F Project Description: FRV Output Created On: 6/5/2007 at 1:44:51 PM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information (--� Time of Concentration 'Man elel ID # Basin Area * C Overland Gutter (Minutes) (Minutes) Basin (Minutes) Rain I Peak Flow (Inch/Hour) I (CFS) F 1 0.00 5.0 F 0.0 F- 0.0 F 13182.501 52.7 r 2 �0.00 5.0 0.0 0.0 �14992.50 60.0 1-3 0.00 5.0 0.0 F- 0.0 14992.50 4 0.00 � 5.0 0.0 �--_-�-��--0.0 F I5370.00 60.0 61.5 5-� 0.001- 5.0 0.0F0.0F 15370.00F 61.5 00 0 -5.0 0.0 0.0 12082.50 48.3 r 7-1 0.00 5.0 0.0 F 0.01 6445.00 25.8 8 0.00 5.0� 0.0 F-0.0�500.00 2.0 �� 0.00 5.0 I ^� 0.0 I 0.0 F-500.00 � 2.0 10 0.00 5.0 0.0 F-- 0.0 I ` 4285.00 F- 17.1 (�11 - 0.00 5.0 0.0 0.0 6530.00 26.1 12 0.00 5.6 F 0.0 0.0 4362.50 17.5 14 0 00 5.6F OA F� 0.0 1750.00----7.0 16 17 0.00 5.0 F - 0.0F.-0.0 I - 500.00 0.005.0r _0.0j 0.0r 14992. 2.0 60.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/l80) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Manhole ID # Contributing Area * C Rainfall Duration ((Minutes) Rainfall Intensity (Inch/Hour) , DesignGround Peak I Flow (CFS) jElevation (Feet) Water Elevation (Feet) ;Comments 1- 0 j�- 0.0 �- 0.00 �52.7 4924.10 4923.68 - 0 . . i- 4928.52_ F 3 0.04 5. 362.95 60.0F4929.04 _4924._55 4925.48_-6v -2--)F---` 5.0 1921.25 928.55 4926.7_14 �j -- 0.03 5.0 2195.71 61.5 �4927.99 4927.71 F6 F 0.02 F 5.0 F 2013.75F 48.3 4929.83 4928.27 r� F7 !F 0 5.0 6445.00 25.8 4930.01 4929.11 F 18 0.01 5.0 - 250.00 F-2.0 4930.26 F4925.17-� r 9 - F O r 5.0 F 500.00 F 2.0 4931.85 4925.22 10 --- 0 5.0 4285.00 17.1 4927 O r 4927.18 11 0.02 5.0 1632.50 26.1 4928.20 Surface 4928.86 Water- _ ;Present rF 12 -� 0.01 5.0 r 1454.17-17.5 4929.41 4929.26 F- 14 0.01-5.0 875.00 j 7.0 4929.90 4929.61 F 16�i 0 5.0 500.00 1- 2.0 4931.82 4929.88 F� 1 -^ 0.04 5.0 1499.25 �60.0 �492832 4925.82 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number j Calculated Suggested Existing _�_--- (- -- --- -Diameter j Diameter Diameter-�w !Sewer U stream (Downstream (Sewer (Rise) (Rise) (Rise) ;Width ID # p 'Shape (Inches) (Inches) (Inches) (FT) i ( (FT) (FT) (FT) i j_._.. - -_ ..._. i 1 2 1 i Box! 2.1,F 2- 2; 5 2 ; 3 2 Box; 2.1 2' 21 5 4 5 f 4 �- pox! 2.2 21 21 5 5 6 5 j Box 1.8 2! 2 1---5 Sewer ID # U pstream I Downstream Sewer Shape Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT) Diameter (Rise) (Inches) (FT) Width (FT) -6 F 7 - F 6 -IR nuo d _ � 34.1 -- � ---- 36 �---24 N/A r 7 F 8 �- 2 lRound I 11.5 I--- 18 �- 18 �N/A 8 F9 -� 8 Round �� 11.51 18 18 N/A 10 11 (- 6 ---Round 30.11 33 36 N/A 11 12 11 -Round- 25.9 F- 27 r 30 N/A 13 14 ( 12 Round (--18.4 r---- 21 �- -- 18 N/A 15 16 F 14 Round 11.5 18 18 N/A F 9 - 10 -17FRoundF 25.7F 27 F 18 N/A F-31 17 F 3 Box F- 2.1 (-- 2 F-. 2 5 16 �- 17 Box 2.2 (----- 2 F 2 F 5 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer Design[FIFull Normal Normal Critical Critical Full Flow ow Depth Velocity De th Veloci -[Velocity [Froude umber --- - ID p � p tY � !Number Comment (CFS) CFS) (Feet) (FPS) (Feet) (FPS) (FPS) �l 60.0 41.0�2.00 6.0�2.00r 0.0�6.0� N/AF F 2 60.0 41.0 2.00 6.0 F 2.00 O -oF 6.0 N/A F� r 4 61.5 41.0 2.00 6.1 2.00 0 0 6.1 + - N/A -- r 5- 48.3r 41.0 1.82� 5.3 L43� 6.8�4.8 0.7F r6 25.8 10.1 [ 2.00 �8.2 1.76 j 8.8 ( 8.2 F N/A-i j 7 F2.0�6.7�0.56� 3.3r 0.54F - 3.51 1.IF-0.9F I 8 F 2.0F 6.7j 0.56I 3.31 0.54 3.5(� 1.11 j I 0 26.1 42.3 ( 1.70 6.31 1.66 6.5 .7 0.94 11 17.5 i6.0 (- 1.50 5.7 I 1.41 6.1 1 3.6 j 0.89 i- j 13 7.0I 6.71 1.50 4.0F 1.02�5.5� 4.0; N/A F15 1 2.01 6.71 0.56 � --3.3 [- 0.54 �- 3.5 � 1.1 ? - 0.9 � I 9 1 17.11 6.71 1.501 9.71 1.42 , 9.9 � -----9.7 N/A � 5FF ormal Normal Critical Critical FullFroude w Depth VelocityDepth(VelocityVelocityNumber) (Feet) (FPS) (Feet) (FPS) (FPS) 04l.0 2.00 6.0 2.00 0.0 6.i N/A3^r60.0I - ( 16 61.5 41.0 2.00 6.1 ( 2.00 (-- - 0.0 6.1 �N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information FF-1Invert Elevation Buried Depth -- - ( Slope Upstream Downstream Upstream Downstream Fse-- wer (Feet) (Feet) (Feet) (Feet) �- Comment I ' 0.201 4922.311 4922.10 F- 4.21 0.00 _ ISewer Too Shallow F- 2 - 0.20 4922.53 4922.30 F 4.51 4.22--- 1-4 Fo.26F 4923.20 4 222.84 F 2.79 F 3.711 F5 (0.20 4923.39 4923.21 4.44 F-2.78--- (- 6 0.20 4923.57 4923.39 4.44 4.44 f - 7 --F 0.40 F 4923.02 4922.31 1- 5.74 4.71 F 8 - 6.40 F4923.32 F 4923.02F 7.03 F 5.741 10 0.40 49 33.79 4 223.39 1.41 I 3.44 ISewer Too Shallow 11 F 13 -- 0.40 10.40 4924.30 r--- 4923.80 1. 4924.61 [ _- 4924.31 2.61 [-.__-_3.79 1.89 Sewer Too Shallow r_._ _.._..__._ 3.60 _---- 15 0.40 4924.98 4924.62 15.34---- 3.78 F-9 0.40 4922.85 4922.65 2.85 F--- 4.17 3 0.20 F4922.65 F 4922.55F 3.67-- - 4.49 F---- 16 [ 0.20 F4922.84 63 4922.3.71 �3.69f �'� Summary of Hydraulic Grade Line Invert Elevation r Water Elevation -__ I -I 'Sewer Surcharged! ��-_1� er Upstream Downstream Upstream Downstream FID# (Feet) (Fee) Length Length (Feet) (Feet) (Feet) (Feet) Condition F 1 1[-4 03.54 103.54 922.31 _ 4922.10 4924.55 4923.68 Pressured 2 - 112.59 112.59 r-4922.53 4922.30 4925.48 4924.55 Pressured F 4 180.37 180.37 4923.20 F 4922.841 4927.71 4926.71 Pressured 5�-�88.67 88.67 4923.39 F 4923.21 4928.27 -- -4927.71 Pressured j 6 89.49-89.49 F 4923.57 F 4923.39 F 4929.11 4928.27 Pressured F 7 178.65 178.65 F4923.02 F- 4922.31 4925.17 1- 4924.55 I Pressured F 8 1 74.32 44.32 4923.32 F 4923.02 F 492-5-221 4925.17 FPressured 10 100.5 100.5 4923.79 4923.39 4928.86 1 4928.27 Pressured 11 122.74 122.74 4924.30 4923.80 4929.26 j 4928.86 Pressured F re -su�red 13 75.14 r 75.14 4924.6, F 4924.31 4929.61 4929.26 Pressured 15 90.88 90.88 4924.98 4924.62 4929.88 4929.61 Pressured �9 49.41 49.41 4922.85 4922.65F4927.18 4925.82 Pressured 3 51.26 51.26 [-4922.65 F-4922.551-4925.82 F 4-925.48 Pressured 16 (104.56 104.56 4922.84 4922.63 F 4926.71 4925.82 Pressured Summary of Energy Grade Line UpstreamDownstream Manhole Juncture Losses Manhole r__ Energy Sewer Bend Lateral Energy 1Sewer Manhole Bend K Lateral K Manhole ! ;Elevation Friction Loss Loss Elevation ( ID # ID # (Feet) (Feet) (Coefficient (Feet) iCoefficient (Feet) ID # (Feet) FT 2 T 4925.10 1.421 0.051 0.001 - 0.00 0.00 1 4923.68 1 2 3 1 4926.031 -0.481 ^^ 0.05 0.03 j� 0.25 ( 0.42 ` 2 4925.10 0.33 0.19 r 0.00 ( 4 1 5 4928.301 0.81 0.4927.29 �- 00 --- F--44 ----ir -- 9 - 5 . r___._� I.- 4928.641 0.251 0.25 r 0.09--_..._. _._.0.00 i 0.00 I 5 ----1--- 4928.30 1 6 7 1 4930.151 1.16, 0.25 0.261 0.251 0.101 6 1 4928.64 7 1 4925.19 i 0.06 0.921 0.021 _ 0.00!, 0.001 2 4925.10 j 8 i 9 4925.24 0.031 1.321 0.03 0.001 0.00, 8 4925.19'. 11 4929.07 0.15, 1.32' 0.281 0.00! 0.006 I 4928.64 ID# Energy Sewer[F3 Manhole ID # levaton Friction (Feet) (Feet) end end K efficient 1 Loss ((Feet) Lateral K Coefficient LateralI---EnerSewer Loss (Feet) Manhole ID # Elevation (Feet) 11 12 -� 4929.46 i 0.22 I 0.85 0.17 0.00 0.00 11 4929.07 13 �4 4929.85 0.33 - 0.25 1 0.06 r-- 0.00 �- 0.00 �12 4929.46 1 15 16 !F 4929.96 F- 0.03 I 1.01 0.02 l-- 0.00 OAO F14 ( 4929.85 9 10 4928.64 1.31 r 0.65 �0.95 0.00 f 0.00 17 4926.38 F- 3 - 17 4926.38 F 0.22 0.23 o. 13F 6.00F 0.00 F 3 F4926.03 16 F4 4927.29 0.47 0.05 0.03 0.25 I 0.41 17 4926.38 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate Man o el Rim Elevation ID # I (Feet) Invert Elevation Manhole Height (Feet) I (Feet) �1 4924.101 4922.10 F 2.00 I 2 4928.521 4922.30 F 6.22 3 r----4929.04 r------4922.531 - --6.51 I -4 I--. 4928.55 4922.84---� �5.71 5 F 4927.99 1- 4923.20 F 4.79 F 6-1 4929.8314923.391 6.44 ! ' 1 4930.011 4923.571 6.44 8 1 4930.26 4923.02 r -�7.24 9 -- 4931.85 4923.32 - - 8.53 10 4927.26 4922.85 4.35 11 j-- 4928.20 i 12 4929.41 -- - ----.-.---_.__._._...._ 14 4929.90 �- 4923.79F--4 4924.301--------..._.___ 4924.61 41 5.11 __._.__.__...-._...._.__.._._._ 5.29 j 16 4931.821 4924.98 1 6.84 i 17 i 4928.32 1 4922.631 5.691 F Sewer ID# I Upstream Trench Width On At Ground Invert (Feet) (Feet) Downstream 6onch Width Trench On At Ground Invert (Feet) (Feet) Trench Length (Feet) I Wall Thickness (Inches) i Earth Volume (Cubic Yards) 16.7F-9 -8 F--8.2F-9.8F -1631 54 4.571 215 F'2 F-17.3F-9.8F'----16.7F--'-'--9 .8 F 1 12.59-F--- 4.57F 354 F -4 F-13-8F-9-8 F 15.7F--9.8 F 180.37F-4--57F-456 F -5F-1 7.1 F-9.8 r 13.8F 9.8F 88.67F 4.57F 241 1--6 F-1241 4.51- 12AF-4-5F-6-49 F 3.00E-162 7 F- F- -1 F -9 F-17865F-- 4639 F-- - -125F-3 256F 355 F -8F-17.1 F-3-91- 14.6F-3-9F -74.32F-2.50 F-195 7.2 -- F- F--- F 10 5.71 11.2 5.7 100.5 4.00 151 11 -F-9 1 F-5-1 I 7.7F-5.1 F 122.74F---3.50F 146 F 10.7 3.9 1-3 F-- F- F 10.3 F--3". 9 75.14 F 2.50 97 F 1-5 F-- 13.8 F 3.91- 10.6F- 3.9 -90.88- F 2.50 F 153 F -9 F-8-8F-3.-9- F-1 I.4F-3-9F 4-9.41 F 2-50 F 61 -----17.2F-9.81- 51.26F-4 57 152 F 3 15 6 981 F r 16 F 15.7F 9.8F 15.6F 9.8F 104.56 ----F F �4.57 287 Total earth volume for sewer trenches = 3020.4 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either I foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be I foot. The sewer wall thickness is equal to: (equivalent diameter in inches/ 1 2)+l 57 6 rF5 m NeoUDS Results Summary Project Title: STRM-G Project Description: FRV Output Created On: 2/16/2007 at 9:28:33 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration Manhole 7Basi7ni Overland Gutter Basin _ Ram I Peak Flow! ID # J Aa C� (Minute )� (Minutes) (Minutes)` (Inch/Hour)� (CFS !1 — I� - 0.001 _ 5.0) - 0.0[ - 0.0j1 3827.501115.3 O.00I 5.0 E 0.0, �16.0 3 0.000.00 5.0, T TM�0.0 0 0 �4�007.50�16.0, ` 0.00� 5.0 0.0$ 0 0' 2187.50 8.8E The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Rainfall E Rainfall ( Designs Ground! Water E Manhole ID # Contributing' Area * C Duration Intensity 'Peak ' { Flow I Elevation' i Elevation, ! Comments i (Minutes); --.,.__._.�._ (Inch/Hour)! _.._.__.__ __� (CFS.__- �..,.-.- (Feet) (Feet) i 1 �0 0.0� - 0.00 15 3 � 492 ---o 4923.91 i- 16Aj 4927 31 4925.33' 3 i 0.01, 5.0' 2003.75� 16.Oj 4926.88' 4925.82I Rainfall Rainfall ;Design; Ground Water Manhole' ID # Contributing. Area * C Duration Intensity ; Peak Flow Elevation III Elevation, Comments; (Minutes); (Inch/Hour), + (Feet) (Feet) I (CFS) _ 492:733t Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Sewerr ID# Manhole ID Num_ ber ' _ l Upstream'! stream Downstream] Sewer Shape' Calculated Diameter (Rise) (Inches) (FT) _ Su ested Diameter (Rise) (Inches) ; (FT_) Existing! Diameter (Rise) Width (Inches) (FT) a .__(FT) 301 _ 24i T N/A1 `--- -- -3-----1j___ 2 -- - Round; -- 28.5jI._. N/A 4_— I _'_.__- _; Round -- 22.E 24 _ 241 N/A� Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. 1 Design4 Full Normah Normala Criticah[Critic1[_ Fulj SIr Flow ! FlowDepth Velocity Depthelocity VelocityaNumon berComment (CFS) (CFS)] (Feet) (FPS Feet) ;(FPS) (FPS) w 1 16_0 _ 10_1! _ 2_00� �� 5.1 �1.42 6�7j 5.I N/A f i I- 16.01 10.1`. 2.00( 5 1; � 1 4 6 7 5.1 N/A;� s I ' 8.8 101i 1.43i. 36 1061. .__._51055�� - A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information �� ! _Invert Elevation - Buried Depth _ ;F ffS1o7pe,, Upstream Downstreami Upstream) DownstreamSewer IDifComment (% (Feet) ! _ (Feet) (Feet) j (Feet) it 1 110.20'I 4923.1411 4923.02I 2.17� -0.02 (Sewer Too Shallow, _ . 7 _ 0 4923.21;' 4923.1411 67 2.17� Sewer Too Shallow iF 3 F O. 26F 4923.38F 4923.221F441' Sewer Too Shallow] Summary of Hydraulic Grade Line Invert Elevation j Water Elevation„ lF Sewer Surcharged _ ; Upstream Downstream; Upstream Downstream) ! I ewer; Lengthy Length � , � � Condition (Feet) ; (Feet)�I —[Downs ID # (Feet) ! (Feet) (Feet) (Feet) j 1 6199 �� 6L99j _ 492314; 4923.021 492533� m 4923 91 Pressured 37.23' _ 37.231 4923.21 4923.144 4925.82� �4925.33j red! Pressui _ 3 80.35E _ 80.35� 4923 38 �923.3- 4926.331 4925.82j Pressured; Summary of Energy Grade Line Upstream I Downstream + 3 Juncture Losses Manhole Manhole Energy Sewer nd' ;Lateral` EnerSewerManhole' Bend K Lateral K' ?ManholeElevation' Friction Loss ! Loss Elevation! ID# ' ID # Coefficient; Coefficient ID #(Feet) J _ _ [Be Feet)( (Feet) (Feet) ; 1 .O _-2 + `4925.73j —1.82 �0.05, ^0�.00 �OOI _ O:OO;r�1 4923.911 1_ _,_.._.._._1 2 3 4926 231 0.19I 0 77 0.31 0.001 O.00)[2 4925.71 0.00 70.0 [7= 4926.23 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 3 Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole; Rim Elevation Invert Elevation Manhole Height f ID # 1 (Feet) _ ._j ._._Feet)— - (Feet)- - - -- -_ (-1, -J 4925.001 4923.02;1 1.981 (___2 ._ 111 _4927 311 4923.11�[ `� 4926.88� 4923.2_67 4926_82� - .4923.38' 3.4411 Upstream Trench Downstream11 f Width Trench Width �� Earth Sewer On At On E At j Trench Wall Volume Ground Invert I Ground Invert ! Length Thickness j (Cubic (Feet) (Feet) (Feet) ; (Feet) (Feet) (Inches) yards) I-_-._`.- F_ __ 4.5] 3.5 4.5 61.99 3.001 ---- 46j 6 81 4.5; 7.8; 4.5� 37.23� 3AO1 331 � _ 3 _ _ 7-4.5 .- Total earth volume for sewer trenches = 143.3. Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 El ,Y�v r m Cl n C / El FES S TSkj K- I ,S-rrvl f+ -K- 2 STM V K-1 cl NeoUDS Results Summary Project Title: STRM-K & L Project Description: FRV Output Created On: 6/8/2007 at 9:25:17 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information —F—Time of Concentration Manhole [Basin Overland. Gutter Basin � Rain I Peak Flow ID # Area * C' Minutes ( ) Minutes ( ), (Minutes Inch/Hour ( ) (CFS) 1 0.001 5.01 0.01 0.01 3807.501 15.2 0.00 5.0 0.0 0.0 3807.50 15.2 �— 0.00 5.0 0.0 0.0 F 3807.50 15.2 4 0.00 5.0 0.0 F-6-61 2742.50 11.0 5 - 0.00 5.0 0.0 0.0 1065.00 4.3 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+Total Length/l80) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics ` Design,_ - .. Manhole Contributing Rainfall Rainfall Peak Ground' Water ID # Area * C Duration' Intensity Flow ` Elevation Elevation Comments Minutes (Minutes) (inch/Hour), (CFS) (Feet) ) Feet ( ) Surface 15.2: 4926.54 4926.85. Water Present -. 0.02 5 0 951 87. 15 2 4935.56 4928.36 F- 3 0.01 5#1 1269.17• 15.2i 4935.99;1 4929.80,� Surface 4 [70 5.0; 2742.50� 11.01 493208' 4932.34 Water Present —ti0 S Oi 1065 00 F-44935 _.. 90 4932.52^ _ Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number j Calculated ; Suggested ' Existing Sewer: ID # Upstream; Downstream; Sewers Shape! Diameter (Rise) (Inches) Diameter (Rise) (Inches) ; i Diameter (Rise) (Inches) i (FI) Width: (IT) _(FT) . . 18 N/A. Lam`_ .�'., ..�.`_.. Round .. _.._ 19.2; 21; -I-I . . - - * I ? ..Round! .. 16.1 18 18' —�— �-- .... Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer Design Full NormalFNmal rri'i cal Critical' Full Froude ID FlowFlowcityepth VelocityVelocityNumber(CFS) (CFS) (Feet)PS) Feet) (FPS) (FPS) 1 15.2 12.9 1.50 8.6 1.39 8.9 8.6 N/A F_ 2 15.2 F 12.9 F 1.50 8.6 1.39 F 8.9 F 8.6 N/A 3 - 11.0 14.9 0.96F 9.2 1.26 F 6.9 F 6.2 F 1.79 4 - 4.3 4.4 0.80 6.4 F 0.86 5.9 5-41 1.23 A Froude number = 0 indicated that a pressured flow occurs Summary of Sewer Design Information -� Invert Elevation F -Buried Depth Slope Upstream Downstream Upstream Downstream Sewer ID' (Feet) (Feet) (Feet) (Feet) Comment 1 1 2.001 4926.381 4925.151 7.681 -0.11 (Sewer Too Shallow 2 2.00 4927.24 4926.38 7.25 7.68 -3F-2.001 4927.67 4927.24 2.91 7.25 r_-- 4 2.00 4928.78 F 4927.24F 612F 7751 Summary of Hydraulic Grade Line -�-�- Invert Elevation Water Elevation Sewer Surcharged Sewer Upstream Downstream Upstream Downstream ID # Length Length Feet Feet Condition ( ) ( ) (Feet) (Feet) (Feet) (Feet) r 1-1 61.441 61.441 4926.38 49-25.151 4928.36 1 4926.85 Pressured r -2F43.15F 43.15F 4927.24 F 4926.38 4929.80 F 4928.36 Pressured F 3 21.28 21.28 4927.67 4927.24 4932.34 4929.80 Pressured F 4 F 76-9F 76.9 4928.78 F -4927.24F 4932.52F 4929.80 Pressured Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole Energy Sewer Manhole ID # ID # �E (vat j n Feet Sewer F( ict t) Feet Bend K Coefficient Bend (Feet) Lateral K Coefficient Lateral (Feet) Manhole ID # Energy E (F ett) n �1-2-1 4929.511 2.66 0.03 FO.00F 0.001 0.0011- 4926.85 2-F 3 4930.96 l -261 0.21 F0.24 0.00. 0.00 F 2 4929.51 3-F 4 - 4932.94 0.231 1.25FO.751 0.25 1.00 F 3 4930.96 F4 F 5 4932.98 1.46 1.25 0.57 0.00 0.00 3 4930.96 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole ID # Rim Elevation Invert Elevation (Feet) I (Feet) Manhole Height (Feet) F 4926.54 �- 4925.151 1.39 2 4935.56 4926.381 -9.18' 3 1 4935.99 1 4927.241 8.75 4 -1 4932.08 4927.671 4.41 5 1 4935.901 4928.78 r---7.12 Upstream Trench Downstream Width Trench Width Earth Sewer On At On At Trench Wall Volume ID # Ground Invert Ground Invert . Length Thickness (Cubic Feet (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) Yards) —1 18.4 3.9 1- 2.9 3.9 61.44 2.50 116 F 2 17.6 3.9 18.4 3.9 F---43.15F 2.50 F 142 3 8.9 3.9 17.6 3.9 21.28 F 2.56F 44 4 — 14.9 3.3 18.2 F 3.3 76-9F 2.66-F 211 Total earth volume for sewer trenches = 513.27 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 S TRYvI - � -- H 3 z cl �. i cl cl • • NeoUDS Results Summary Project Title: STRM-H Project Description: FRV Output Created On: 6/5/2007 at 11:24:25 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information —F— r---_ Time of'Concentration Manhole Basin Overland Gutter Basin 'Rain I Peak Flow ID # Area C (Minutes) (Minutes) (Minutes) (' Inch/Hour) (CFS) (-� 1 - 0.00 F-5.0 1— 0.0 I---- 0.0 r 935.00 F-3.7 2 0.00 F- 5.0 A l— 0.0 F 935.00 3.7 F- 3 — o:oo o.o ( o.o 1--- o:o F— 0.00 F— 2.6 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics �_ ---; RainRainfall 1 Design rGround Water F Manhole Contributing i Duration Intensity ;Peak ,Elevation Elevation 'C4 ID # Area C ; Flow i I ) I ;(Minutes) !(Inch/Hour) ( I (Feet) (Feet) _ i (CFS) - - 1 -�-- --- -- --O--- --0.0 -- _._..---0.00G __...-3.7 L[ 4 ._ 4924.50 i 922.491 ! 2 Oi _._--_._, 3— 0 '_ --- 5.01 935.001 3.7 ............. ...-- _...- 0.01 0.00' 2.6 j 4929.381 4923.92 j 4931.50 4924.55 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number Calculated I Suggested Existing� r---' ,Sewer Diameter Diameter Diameter Downstream #Sewer (Rise) (Rise) (Rise) Width 1D it jUpstream l Shape (Inches) (Inches) (Inches) (FT) (F') (FT) (7')_ (-1 —F 2--F1 ---iR _ uo nd 14.5 � 18 I 18 N/A 2 3 2 — Round 12.7 18 �T 12 N/A j Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer iDe gs n Full Normal Normal Critical[Cr itcalFullFroude ID Flow Flow Depth Velocity Depthelocity VeocityNumber(CFS) (CFS) (Feet) (FPS) (Feet)(FPS) (FPS) 1 3.7 6.7 0.80 3.9 0.76 4.2 2.1 0.85 2 2.6 2.3 1 -661 3.3 0.71 4.4 3.3 F—N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth T Slope ;Upstream Downstream (Upstream ownstream j ,Sewer ID % I (Feet) , (Feet) I (Feet) (Feet) j Comment 1 ----� �— 0 40 (� 4923.12 4923.02 h 4.76 (— --0.02 Sewer Too Shallow � 1 2 1 0.401 4923.40 f 4923.13 7.10 Summary of Hydraulic Grade Line Invert Elevation Water Elevation ' Surcharged mI Downstream Upstream Length [ConditionSewer gtd ID#Lenth (Feet) (Feet) (Feet) (Feet) (Fee(Feet) F_ 1 1 24.91 F-- 0 r 4923.12 F- 4923.02 [-4923.92 I 4922.49 Subcritical 923.40 r 4923.13 4924.551-- 4923.92 Pressured (2-1 66.57 66.57 �4 Summary of Energy Grade Line Upstream Manhole Juncture Losses Downstream Manhole ID# Energy Manhole ---Bend ID # _ _ Sewer Friction _ K Coefficient [Bend oss Lateral Lateral K Loss Coefficient ManholeElevation ID # EnergySewer Elevation (Feet) Feet (Feet ) eet) (Feet) (Feet) 1---F---2 4924.15 I 3� 4924.72 -1.66 O.35F- 0.05 - 1.25 ( 0.00 0.21 7 6.00 0.00 F 6.00 0.00E-2-- r -- 1 -F-4922.49 4924.15 2 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole Rim Elevation J evn t Elevation ;Manhole Height ID it I (Feet) I (Feet) I (Feet) �i -� 4924.50 4923.02-1.48 2 4929.38 4923. l2 6.26 3 _4931.50 4923.401 �� 8.10 Upstream Trench Downstream i Width Trench Width I T— I� �— Sewer �On Ground At _ Invert On Ground At Invert Trench Length Wall Thickness Earth. Volume ID # (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) (Cubic ( Yards) 1 F-12.6 _ F-3.9 _ _ I 3.0 _ 3.9 I 24.91 �2.501 ' 26 2 _ 16.9�3.3 13`2 3.3� 66.57 2.00� 153 Total earth volume for sewer trenches = 179.76 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 s .'L NeoUDS Results Summary Project Title: STRM-I Project Description: FRV Output Created On: 2/16/2007 at 9:33:57 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information i_ I __7 Time of Concentration Manholell Basin � Overland; Gutter Basin j Rain I Peak Flow':I ID # t Area * C (Mmutes)= I (Minutes) (Minutes); (Inch/Hour)' (CFS) The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (I O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Designs Manholel Contributing * Rainfall Duration Rainfall Intensity Peak ` I Ground ' Elevation' Water Elevation! I Comments! ID # Area C ; (Minutes)! (Inch/Hour), Flow CFS I (Feet) (Feet) 1 6FO 0 00 i 9 9! 4923.48 � `Surface 4923.51 j Water __-__._ _____.__.._ .._ __._: _._� __..__. _... __ _.-.__ ;Present �I. — - 1286.25 �--10-3�:�� 4929.44;1 4923.891 F 3 F 9 S.OI _1942.50 7 8 4929 29 4924.62I 'j Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. E Manhole ID Number [Calculated gcsteqjj istm { Diameter Diameter Diameter Sewer' ID # ! Upstream Downstream. Sewer( Shape (Rise) (Inches) (Rise) (Inches) (Rise) (Inches) } Width (FT) I - (FT) _ (FT) (FT) _1 I��I �-�(- f Roundj 21.2�� 24 18 N/A `-.--: --- 3-._ __a _� ..I `__ .__ _ ;Round __ _.-_19.1]_ 21 - —18i -N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. ID Design; CFS) Full 'FNall[Normal Flowelocity (C1 S)a(FPS) Criticali Depth (Feet) Critical Velocity (FPS) i(FPS) FullSewer, , Velocity FroudeFlow NumberE1 Comment J 10.3j 6.7i 1.50 5.88 , 1.23i `6.6? 5.8] 7 N/A j __?_ 778; 6.7 — 1.501 __ 4.- 1.06� ._ 5 8 -^ 4_4 N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information F- Invert Elevation i Buried Depth I_ __ 11 .__.. __ __ -JI Sewer ID! Slope: Upstream Downstream' Upstream Downstream! Comment 3I (Feet) f (Feet) (Feet) (Feet) I 1 0.401 4922.17il 4922.0111 5.77' 0.03i Sewer Too Shallowll l i 11 0.40' 4� 922.45E 4922.iq'IF 5.34i 5.751� i 2 Summary of Hydraulic Grade Line Invert Elevation Water Elevation } `Sewer; Sewer i Surchargeda ! a Upstream; Downstream: Upstream Downstream`': j { _ ;Length' Length ;Condition ID # (Feet) (Feet) (Feet) ; (Feet) f .(Feet) j _ (Feet) -- _.__ _ ___ --_.-_ _ _ - __ __ .... 1 40.46' 40.46111 4922.17€ 4922.01 4923.89' 4923.51 Pressured) 2 1 66.02f 66.02( 4922.45 4922.19 4924.62( 4923.8911 Pressured) Summary of Energy Grade Line Upstream Downstream Juncture Losses Manhole � � Manhole Sewer Manhole ID # ;ElevatonFriction( Energy (Fe(Feet) Sewer j i !Loss Bendateral(�anholeID# ;Feet) [Bend Coefficiet, Lateran LossElevationCoefficient: (Feet) [ ( D# _ Energy (Feet) � 1 2 J 4924.42� 0.91 j _ 0 05 09001[ _4923.51 } 3 ( 4924.92 70.361' F ^ 0.471 0.14F _ 0.00 0.00;r 2 4924.42 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manholej Rim Elevation, Invert Elevation] Manhole Height] ID # i (Feet) (Feet) (Feet) 9 923.4814922.01 ! 1.47 i 4929.44 __4922.171 7.27 ^� _ _ __.4929 29! 4922 45 _...__ .__6 8I 3 j11 Upstream Trench Width Downstream i Trench Width,Earth I v On j At On I At Trench Wall Sewer Ground i Invert E Ground Invert Length Thickness Volume ID # (Feet) (Feet) (Feet) (Feet) (Feet) i (Inches) Cubic Yards)-..; 1 14 614 6'��3.9I�3.0 �3-9 40.4 2.50� �� 13 8 3 14 6 3 9 66.02€ 2^50 142 Total earth volume for sewer trenches = 194.67 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 4 s+rr► - 3- STIA/ --------- -- ---- NeoUDS Results Summary Project Title: STRM-J Project Description: FRV Output Created On: 2/16/2007 at 9:37:23. AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration anhole Basin Overland! Gutter 1 Basin Rain I Peak Flow F-11)# i Area * C+ (Minutes): (Minutes){ (Minutes)` (Inch/Hour) (CFS) 1 II_ il____ 0.0011__ s.o,lo.o l - _ �o.o l 6182.5011 24.7 22 IF 0.0015.01 6.01�O.OF 6182.50124.71 1���11hIlli�X1}l�ll�l��l�l]�.I<I►�.ill�l�', The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (IO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Manhole, Contributing! Rainfall Rainfall Design; Peak 3 Ground Water ID # Area * C Duration' Intensity ; Flow ; Elevation' Elevation! Comments; (Minutes); (Inch/Hour)� _(CFS.._.....-__)_- (Feet) (Feet) I24.—[4926.0011 -4924.13 �! -- O.OL SA-j 2060.83 24.7!- 4929.89 - 4926.30� 04 5.0 232.50' 0-- 4931.65 4927.27if, 7 Rainfall Rainfall Design n Ground Water # i Manhole; Contributing `; Peak Elevation; Comments; ID # ! Area * C Duration Intensity I Flow Elevation; (Minutes). (Inch/Hour)i (Feet) (Feet) .(CFS)� I '...._.° _-_Oi . __ __Sy0( 500 00 _._ _2 0 4929 23 4927.35 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number ___--______ Calculated f Suggested Existing ___ Diameter Diameter Diameter j Sewer ID # i Upstream' DownstreamI Sewer Shape, (Rise) I (Inches) (Rise) (Inches) j (Rise) 1 Width' (Inches) (FT) i i Round3�---�29 (FT) 5 _(FT)._._ I 30 . (Fr 24i N/A �� F _ _3 �F 2 j Round 8,6� l.gi 18� _ N/A� �� 4-�� 2_ __i I_.__�— l_R_ounds .�L_ 12.11 ._ 1 - 1 8 1 1818 N/A� A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. ,Sewer. Design` 1 Full !Formal Normal'+ i Critical' Critical Full 1 Froude! Flow Flow;Velocity Depth ; Velocityl Velocity NumbedFS)? Comment:ID (CFS) (FPS (Feet) ; (FPS) -(FPS) r� _ 38i —._ 2- _- 0.5' 0_-.9?I�_J ---3 ..__ 2.01 5.8 0.611 _.__._3.0 0 54 .._.-_ .3 SI _,_.___ 1 li 0.77i1 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth FSewer Slope Upstream. Downstream Upstream] j Downstream ID % o ; (Feet) (Feet) m (Feet) (Feet) ' Comment 1 0.40] 4924.12 I 4924.03F� 3.77 I_ __— -0.03 (Sewer Too Shallow __ _ __ ___ — ___ . _ _I ; _ 0.40; 4924.71' .. 4924T13_j __—:T� R, F 4.2611 I IF 3 ? FO.40 4924.95F 4924.1511F 2.78IF 4.24E Summary of Hydraulic Grade Line Invert Elevation Water Elevation t I Sewer ? Surcharged Sewer � � Upstream= Downstream Upstream, Downstream, i ID # Length( Length (Feet)�(Feet) j (Feet) (Feet) (Feet) �—_____.��____._�_! (Feet) Condition 4924.12 T rvm4924_03 4926.30T - 4924. 3 Pressured; -- 23.18 23.18 2 145.811 -11 F 4924.71' _ _4_924.13; 4927.27 F 7 7 4926.301 Pressured; l[— 200.32 __ 200 4924.15 492735[ 6,30j Pressuredi Summary of Energy Grade Line Upstream j Downstream Manhole Juncture Losses 1 Manhole j -� tF Sewer; ---- _ Ener ElevationE Sewer Frictions j[oeffIcient _ _ _ _ __--_ Bend i Laterals Bend K Lateral K Loss Loss -_ - - Ener Manhole; Elevation ID # (Feet) i (Feet) s CoefficientfID#_ (Feet); _ i _ (Feet) j (Feet) — j _1 j _4 2- 7.27j�3K14j µ4 0.0510 00 _0.00 — OAO 4924.13: } 2 3 4927.28s 0.01# 0 22 0 00 - _-. 0.00, v 9961— 4927.271 IMF- 4 I 4927.373 -T. 0 F 2 - 0 00 11 F____ _. 0 00 0 00 _ 4927 27 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 3 Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole; Rim Elevations Invert Elevation, Manhole Height! ID # Feetet) �I 1 IF__ (-4926.00� .._ _ (Feet) � .__ (Fe ._ ` --- -_ 24 03 1.971 !��929.89 4924.121 5.77� I '.__mil 4931.65 f 4924.71 __. _ _ _.6.94i ' __ __4929.231 4924.95 — —_._._.. 4•18 I Upstream Trench Width Downstream Trench Width Sewer ID s On Grounds (Feet ---)_ At Invert = Feeet et- _ (Fe _--)F)Feet On € Ground (-_ At Invert (>Feet.. i Trench Length �__..T) Wall Thickness (Inches) (_______i Earth 1 Volume j (Cubic I _Yards) j 3.9i 145.811[ 2.50 2641 3.9f 2OL332J , _F 2.501 � 250 Total earth volume for sewer trenches = 536.75 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 9 FES NeoUDS Results Summary Project Title: STRM-K Project Description: FRV Output Created On: 2/16/2007 at 9:40:27 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information of Concentration Manhole Basin ' Overland] Gutter { Basin Rain I Flow; ID # -- - - #__' Area * Ci _ --- I inutes ' _ �, Minutes ' - - _)( mutes (M -�l Inch/Hour nch/H- - � feak CFS II- - 1 1I 0.01 �130.0011 0.5 F -210.00i 5.0 O.Of 0.0 —56.661F 0.51 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Manholei ID # E Contributing Area * t ' Rainfall 1 Duration (Minutes)! Rainfall 1 i Intensity j (Inch/Hour)' Designi Peak : Flow t CFS Ground' Elevation; (Feet) Water Elevationj { (Feet) m Comentsi i ___..�---- 0.f 0 0 0 00; -0.5 4927.50': 4923.891 _I ` "_` 5 0{ 130 003 LLa 0 5# 4933 11 v 4927 84Y _ Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number j Calculated Suggested ;Existing Diameter Diameter Diameter Sewer' ; Upstream'; Downstream Sewer (Rise) (Rise) (Rise) Width! I ID # ! Shape (Inches) (Inches) (Inches) i (FT) 1 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. S Iwllen Designs Flow f (CFS) Full Flow ` (CFS) Normal Depth (Feet) Normal'; Velocity FPS) Critical][C- Depth (Feet)(FPS) ritical] elocity Full ; Velocity{NumberComment -(FPS Fro de 170.51 14.9'�0.19 391 030 21-031 1.92�—` A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert. Elevation -_ .Buried Depth _- x Slope Upstream. Downstream] Upstreama Downstream, Sewer IDS oho Feet Feet ! Feet a Feet Comment j I_ 1 jj_2.00 4927.54il 4926.11 4.07 -0.11 Sewer Too Shallow! Summary of Hydraulic Grade Line _ r� Invert Elevation _Water Elevation j� `Sewer;FLenh11",,, Surcharged` Length Upstream i Downstream UpstreamI Downstream Conditions ID # j(Feet) (Feet) (Feet) _ (Feet) (Feet) 1 ! 7L65 4927.54I 4926y11 4927 R 4923.891 Jump Summary of Energy Grade Line Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes'the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. ID # 11 (Feet) 11 (Feet) 'I_1 _11_ �4927.50J1 4926.1111 1.391 F- 2 1 4933.11 i1927.54'F 5.571 3 Upstream Trench Width Downstream Trench Width Sewerj On At On At Trench Wall Earth Volume I Ground Invert 3 Ground Invert i Length Thickness . Cubic (Feet) (Feet) ( (Feet) (Feet) (Feet) (Inches) yards ` _ 1 j ____ 11.2 _ 3.9 _ 2.9 _ _ 3.9{ __— 71.65j 2.50� _ —653 Total earth volume for sewer trenches = 64.65 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 0 5 ',�, 57I7.AJ NeoUDS Results Summary Project Title: STRM-L Project Description: FRV Output Created On: 2/16/2007 at 9:42:00 AM . Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information �--- Time of Concentration ` Manhole; Basm Overland'[Gutter Basin i Rain I Peak Flow ID # Area * C (Minutes);Minutes)] (Minutes) (Inch/Hour) (CFS) 2 1 11 1 1 1 1 1 1 1 0.011 3497 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/l80) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics 1 I Manhole! ID # ! _�_i Contributing' Area * C Rainfall Duration ! (Minutes) Rainfall Intensi (Inch/Hour)! Design Peak ' Flow ' CFS) Ground Elevation' (Feet) Water Elevation' (Feet) I j Comments; ! I 4923_891 � -K-714#F 4933.981 4927 76]-� Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. �- Manhole ID Number __._ Cal _ culated ` ste Sugged 11 xisting Diameter ? Diameter j Diameter Sewer! Upstream. ` Downstream! Sewer! (Rise) (Rise) (Rise) ! Width i ID # ; ! Shapel (Inches) (Inches) (Inches) (FT) ! (Fr) (F.T) 1 E 2 _� Round � � 17.611� 18 1 181 N/Ai Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer Design` low Full ' Flow Normalj Depth Normal (rri'i Velocity]epth cal! Critical Velocity Full VelocityFroudeComment;ID(C; (CFS). (Feet) ! (FPS) =IIIFeet) ! (FPS) ^T(FPS) Number r 1 _ 14At 14.9 1_15I 9. 1.36� _�83� 7. 1Y57 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation IF Buried Depth -- Sewer ID,r1807 a Upstream: Downstream _ (Feet) j (Feet) I (Feet) i (Feet) Comment U stream, Downstream 1 2.00 4926.40 4926.10 6.08E -0.10 Sewer Too Shallow! �.____J __ _.t __ ._�_— _ _� Summary of Hydraulic Grade Line �� _ Invert Elevation Water Elevation j Sewer Sewer Length. Surcharged' Length Upstream Downstream] Upstream! Downstream E I ID # (Feet) ; (Feet) _.� j (Feet) (Feet) I I (Feet) _ (Feet) Condition; —715_160.03� _ 4926_40f 4926� 4927 76!4923.89j Summary of Energy Grade Line Upstream Downstream I Juncture Losses iI Manhole Manhole f Sewer. Manhole Energy Sewer Bend K j Bend Lateral K ' Laterah ! Manhole; Energy ID # ID # j Elevations Friction Coefficient' ((Feet)i Loss Coefficient, Loss ID # Elevation (Feet)_ (Feet) ____.__._ S�) (Feet) eet _. l_1 =I_ 2 11 4928.8311 4.94�1 0.005f1 O.00l 0.0011 0.00II 1 �I) 4923.891) Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. I ID # 11__ (Feet) al _ _ (Feet) _.r I Feet) _._ I� 4927.50;�926�10� 1.40j F 2 11 4933.981 4926.401F 7.581 3 Upstream Trench i _ Width Downstream Trench Width ( Sewer On At 3 On At Trench o Wall Thickness ;Earth Volume ID # Ground Invert II Ground Invert ( Length (Cubic (Feet) (Feet) 1 (Feet) (Feet) (Feet) (Inches) ! yards) 29MIiF 3 9; V—� 15.16(TM i �2v50� 21j Total earth volume for sewer trenches = 21.16 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be I foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 0 5Te YJ , N - /l/N yl NeoUDS Results Summary Project Title: STRM-M Project Description: FRV Output Created On: 2/16/2007 at 9:43:33 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information t� y Time of Concentration Manholes Basin I Overland Gutter BasinV ain I Flow ID # Area * C` �_ (Minutes); (Minutes) (Mmutes)!h/Hour) lieak (CFS) The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (lO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Rainfall ' Rainfall Design? Ground! Water Manhole Contributing' Duration! Intensity 1 Peak , Elevation! Elevation` Comments; ID # * Area C (Minutes)' (Inch/Hour)` Flow E CFS f (Feet) (Feet) ; ) 89i 1._31 4935 00' 4925 98 f----- __�( Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number 1= Calculated -Suggested Existing Diameter Diameter Diameter Sewer; ID # Upstream € Downstream) Sewers Shape, (Rise) f (Rise) (Rise) Width . (Inches) (Inches) (Inches) (FT) 1 i� __ �.._ ._ �� (FT) �) __J _ _I _lam _? 'I ss Round l l �i . 1.8 _W N/Ai �2 �� 3 _ i 2 __— ;Round; - - —11.0` 18F _ � m mm18i N/Aj Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Design Full `, Normal Normal , Critical{[Critical Full Froude j Sewer. ID Flow Flow ; Depth ! Velocity] Depth Velocity Velocity Numbers luomment; 4--- (CFS) - (CFS) (Feet) (FPS) (Feet) (FPS) (FPS) j J v �.57j - - 2.Oi 0.44� 2.9! 0.7 0.55�m Ir 2 4 _ 1.3 — 4mT 7E53 2.3f0.44 2.9 — A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information ��'— Invert Elevation Buried Depth Slope Upstream Downstream Upstream, Downstream, Sewer IDI eet € Feet Feet Feeta Comment 1 0.20'• 4925.41 4924.98 8.09 0.01' Sewer Too Shallow j�_._._.__J�� m_ 1 _ - _ _I F —210.20 4925.52i 4925-421F 0.0018.08 Sewer Too Shallow; 2 Summary of Hydraulic Grade Line ��- �- Invert Elevation Water Elevation Sewer; s Sewer ;rLen gtgth hConditionsID# Feet ieet rcharged, pstreamDownstream (Feet) (Feet) i Upstream; (Feet) Downstream (Feet) fLen � 216.461 4925.41 4924.98j 4925 98[ 4923.89j Subcritical) j—-4925.52 4925.42 4926.06 4925.98j Subcritical Summary of Energy Grade Line Upstream Downstream Juncture Losses Manhole Manhole Energy I, Sewer ID # 11 ID # Bend } Lateral!s Energy Bend K Loss Lateral K ( Loss Manhole Energy oefficient ,.. Coefficient! ,— I — 1) 1 11__2 26.05]1— 2.16�j� 0.051� 0.00il 0 00�1 0 001) 1 � 4923.891 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user eiven trench side slope is 1. Manhole; Rim Elevation' Invert Elevation; Manhole Height, ID # J(Feet) —(Feet) �� (Feet) 4926.471_ 4924.98111.49i 4935.00i _4925.41 15911 �1.501 3 Upstream Trench ' Downstream [ Width �''= Trench Width On At On i At Trench Wall Earth E Sewer Ground ' i Invert ; Ground Invert ; Length g Thickness i Volume ID # � (Feet) 1 (Feet) (Feet) (Feet) ? (Feet) I (Inches) i (Cubic a___ - _..._._____ ._ _ _ __: _. __ _ __ .+ ..______ _Yards) L _19.3_.3�1m _.,_..391 216.4611._________`•50 �__-__' 442 9.___ ..3 3 9' __. _52�.36E . 2.50! _.._..._W.107 Total earth volume for sewer trenches = 549 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 C! S-T",-2M-N-d SrMH -N- 3 S 7_U -N- I NeoUDS Results Summary Project Title: STRM-N Project Description: FRV Output Created On: 6/5/2007 at 11:37:17 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration r—_—�._ Manhole Basin TOverland Gutter Basin RainI Peak Flow ID # 'Area * C)(Minutes) (Minutes) (Minutes) }(Inch/Hour) (CFS) 1 1 0.001 5.0 �� 0.0 � — 0.0 �-3167.50 F 12.7 2---0.00F 5.0F 0.0�� 0.0j 3167.5012.7 F 3 —F 0.00F 5.0F 0.0E--- -0.0J 3167.501F— 12.7 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (IO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be. urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics —�—��—;Desi n j r! Rainfall Rainfall g ! Ground Water Manhole ,Contributing I Peak i 1 ID # Area C , Duration I Intensity a ;Elevation Elevation 'Comments I * Minutes ( Inch/Hour Flow Feet Feet '(Minutes) �( ) (CFS) (Feet) (Feet) 10 0.01 0!0.00 12.7 r _ 4928.601 4925.781 5.01 1583.751 12.71 4935.00 4930.53 3..__ _.. ....._. - .. -. 0 5.0 ! 3167.50 12.7 ; 4934.901 4931.68 I Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number Calculated Suggested j Existing Diameter Diameter Diameter iSewer;Upstream ID # Downstream Sewer Shape ( (Rise) (Inches) �— (Rise)— { (Inches) (Rise) Width (Inches) (FT) (FT) i (FT) i (FT) 1 -- 1 Round-- i 19.3 i _�__ 21 18 N/A — 2 1 3 j 2 iRound 19.3 21 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. r---- Sewer iDesign ID Flow 1--.._W.._. Full iNormal Normal Flow 1 Depth Velocityh �.._.�.--. ._._. al Critical Full Froude l Velocity Velocity Commend FDe ((CFS) (CFS) j (Feet) (FPS) ) i (FPS) , (FPS) Number I ' I 12.710.5� 1.501 7.21 I.321�-7.71�7.2N/AI�v—._ 12.7 10.5 1.501-7.21 1.32F 7.7F 7.2F N/A1— �— A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information ------------_._..—. { Invert Elevation Buried Depth Sewer ID Slope ;Upstream ;Downstream Upstream ;Downstream 1 % ' Feet Comment (Feet) (Feet) j (Feet) } (Feet) 1 i 1.00 4928.421 4927.061, 5.081 0.04 ;Sewer Too Shallow 1 2 1.001 4928.53 ; 4928.421 4.871 5.081 Summary of Hydraulic Grade Line Invert Elevation Water Elevation Sewer F(F ed_� _. Sewer Length ,Upstream (Downstream Upstream i'Downstream j ID # I (Feet) (Feet) i (Feet) i (Feet) (Feet) [Condition 1!� 136.18 136.18 4928.42 r 4927.06 4930.53 4925.781 Pressured _ I _ 2 �10.56 10.56I— 4928.53 ��4928.42-4931.68 �4930.53 Pressured Summary of Energy Grade Line Upstream Juncture Losses � Downstream Manhole Manhole Energy Sewer Bend CLateral Energy Sewer Manhole Elevation Friction I Bend K Loss Lateral K Loss Manhole Elevation ID # i ID # (Feet) (Feet) Coefficient (Feet) Coefficient i (Feet) ID # (Feet) �--1 [-2 i 4931.33 F 5.55 [-0.97 [ 0.00 F 0.00 00 0 F 1F4925.78 I—-32 F4932.48 ( 0415-� 1.25 1.00 0.00 0 00 r— 2 -4931.33 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole;Rim Elevation Invert Elevation Manhole Height ID # ( (Feet) ! (Feet) (Feet) j— 1 i— 4928.60 ��—4927.06 j .54 2 !' 4935.001 4928.421 6.58 3 ^� 4934.901 _ 4928.53 � �� 6.37 F [Up am T Width Downst ream FTrench Width `` Sewer ID # On Ground I (Feet) �rench - I At Invert I (Feet) On At Ground Invert (Feet) (Feet) Trench Length (Feet) Wall Thickness (Inches) Earth Volume (Cubic Yards) F 13.2 3.9F 3.2j 3.9F 136.181 2.501 155 — 2 12.8�_ 3.9� 13.2 �� 3.9�10.56� 2.50�-_-20 Total earth volume for sewer trenches = 174.75 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either I foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 3 3 2�74 FES NeoUDS Results Summary Project Title: STRM-O Project Description: FRV Output Created On: 2/16/2007 at 9:46:43 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration E� { Manhole} Basm Overland', Gutter Basin Rain I ;Peak Flow ID # ;Area * C (Minutes) � (Minutes) (Minutes), (Inch/Hour) (CFS) 0.00, 5.0` 0.0 6 q 4445.00 17.8' 10 _ � : 0._- � 5� 0.01 � 0.0 4445.001 17.8 IF 0.00 _ 5.0` 00) 0.0 3885.00 15 5i IE 0.00 5.0 0.0} 0.0 3430. O 13.7E The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (IO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Rainfall Rainfall Design Ground Water Manhole: Contributing: 1 * ; Duration i Intensity Peak 1 Elevation. Elevation3 i Comts men ID # Area C _3 (Minutes)] (Inch/Hour), Flow (CFS ' (Feet) (Feet) j 0 0; 0 00, 17 4928 00� -._ �4925.84 0.01; 5-- 0 6T 17.81 4937.18 4929.69;F �7_. I ' 0.01; _ _ 5.0; W1481 1942.50 15.51 4937.111 4931.111 Manhole i ID # 1 Contributing Area * C ____... ............. m_..... Rainfall Duration (Minutes)! Rainfall ! Intensity 1 (Inch/Hour); Design Peak Flow Ground Elevation (Feet) Water Elevation) (Feet) Comments' I _- . ? 0 F 0 13.7 - 4936 46 e 4931.72' ^� Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. !� `,Manhole k Sewer! ID # i 1 Upstream? ID Number +� Downstream) (( Sewer Shape- Calculated Diameter (Rise) ! (Inches) Suggested Diameter ' (Rise) (Inches) Existing Diameter (Rise) ? (Inches) Width (FT) (F I) ! (FT) _J —1 IL=2 I _ ` -_; ._._.I ' ___ l E f __-___I ;Round! Round` 19.31 _. -._ _ __ 18.3 i 211 _ _ _._ 21.' 18 _.__._ 18 i N/A j N—/A r 3 4^ 1811 A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. f Designs 'Sewer Flow (CFS) lA j 17 8� Full Normal{ Normal Ir__ri"ca'itical Flow i Depth i Velocityepth lFelocijeloc-ity--F— (CFS)! (Feet) j (FPS FeedPS _ 14.9 1.50? 10.1 1.47 10.� Full Vroude (FPS) Number 10 1j N/AI— CommentID �a 1.50 8 8� 1.39' � 9� 8.8j N/A! '-3 —` -13.T 14.9 --1. — 96 --1.35'-- 8.2j _ 7.8 � --1.611 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information i Invert Elevation Buried Depth ;Slope Upstream` Downstream' Upstream' Downstream' Sewer ID Comment ? % (Feet) Feet Feet Feet _ _ t _ ...�._.._� . a �._ _� .�__._� - it 2.00` E 4927 72 4926.62 7.961 -0.12 Sewer Too Shallow) JF 2.00 4928.69 4927.78j _-- 6.92� 7.90� 2.00j 4929.11 4928.75 5.85 6.86� Summary of Hydraulic Grade Line Invert Elevation _ Water ElevationF Sewer ;Surcharged! � !� (Feet) p i D Upstream)FDream",I, (F ConditionLenhl �_-1 5.251, .25 55.25 4927.72 4926.62 4929.66K- 4925.84� Pressured! Il f 45.34j 45.34 4928.69 _ 4927.78 �4931.11 4929mm69 Pressured tl ' 17.98, 17.98, 4929.11 _ ___ _ 4928.75 4931.72 4931.11 Pressured Summary of Energy Grade Line _ i Upstream ! Downstream Juncture Losses Manhole !j i Manhole Energy iFBe E Bend Lateral] Energy Elevation Sewer Manhole !nd K Lateral K Manhole,ID ID # CoefficentLossLoss ? Elevation;Coefficientl(Feet) ID#Feet) - - ((Feet) ^- -w_J (Feet) lI E - 1 ! 4931.26 5.42 O.OSj O.00i - m 0.00 0.00 4925.84j 2 i 3 4932.31 - 0.99E 0 05� 0.06 _ 0.00 0�0qj',F--- 4931, 3 (�4 4932.661 - 0.30 _: 0.05 0.05 0.00� 0.00 3-_ 4932_31 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 3 Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manholes ID # -_ ___J Rim Elevation Feet _- - Invert Elevations Feet s > Manhole Height Feet f _>_..___ r l ._�383 4928.00�_-, 4926.62 2 __ 4937.118f 4927.7211 9.46 4937.11��— 4928.69E 8.421 4936.46j1 4929.11';� 7.35E E Upstream Trench j Downstream i I Width i Trench Width 4 Earth ' Sewer k On At On At 1 P Trench Wall � Volume ID # { Ground Invert Ground Invert Length Thickness (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) Yards) 3.91 _ _55.25 �1 I_ 4 _� 14.8E 39' 16.8E 3. 911 -_17.98 2.561 47 Total earth volume for sewer trenches = 304.39 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 40 4 -ro,Met (v ff. d fS`MN " , , AA, A 5fs---Jl, NeoUDS Results Summary Project Title: STRM-P Project Description: FRV Output Created On: 2/16/2007 at 9:48:39 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of ConcentrationI 'I Manhole Basm Overlandi Gutter ( Basin ! Ram I FlowE ID # Area * C (Minutes) (Minutes) (Minutes) (Inch/Hour][Peak (CFS) The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (IO+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics i Rainfall Rainfall Design Ground Water Manhole Contributing' Duration Intensity Peak Elevations Elevation! Comments ID # Area * C ! Flow F i (Minutes)' _ (Inch/Hour) (CFS) (Feet) (Feet) 17 0.0i w , 0 00; 1.4E 4927_76j 4926.20lF ,! F -�! F 0 - 91 5.0i F_.. 88 75: 1A 4937.29 4927.04�� ' Designi Water Manhole, Contributing i Rainfall Duration Rainfall Intensity Peak ; Ground Elevation; Elevation: Comments ID # Area * C (Minutes); (Inch/Hour) Flow i ; (CFS) (Feet) (Feet) ; 33 1 4� 4938 08' 4927 28� ,,118 { *_ 0.01 �____._5 �3 ___.._._ 177 50 1 4; _._4938 OS' 4927.50�1�__ ' 5 �; i55.00 1 4[ 4928 47V 4927 __.. Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. �— Manhole ID Number ' �C��a��l��culat��ed ` Suggested i Exishn Diameter Diameter i Diameter Sewer ID # U stream Downstream! p Sewerj Shape,! (Rise) (Inches) (Rise) E (Inches) (Rise) Width (Inches) (Fr) _.! ______ ._ __ F _.�__ �_ .. (FT) _ __.._ __ _ _ __ _ ._. �Fr> _ .. _._._- - . - --- _< SFr) 3 1 2_.__.il______ �_ 1..__.. Round 5181 N/A _! ____ .._..11 1 2 3�l l ws .l g _.I '�;I _1__�?._.___ 18i Ai Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. ;Design Sewer; Flow Full `Normal, Flow Depth Normal' ! Velocity; Critical Depth Critical , Full { Velocity, Froude Comment _ (CFS) ; (CFS) (Feet) (FPS) 3 ;Velocity, Feet) ; FPS) '` ( _. _. (FPS _.__._ ) F Number, j 0.64F_. _ 2 0 46'70.56 _. 3'�_ �I _Y.__., __._.1 4 4 7 0.56, 2.3_ 0 46 .3_l..._0 8 0.64 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth 3F- 11 rSlopel,, Upstream; Downstream'i Upstream Downstream{ Sewer IDi% Feet Feet Feet Comment ( ) J _ (.__) i _ (Feet) (Feet) 0.20 - 4926.48 4926.271 9.31 fO.OIj Sewer Too Shallowl �E 0.20 4926.71 ` F- 4926.48 -- 9.87 9.31 I ' 0.20j 4926.894926.71 9.66�� -987 0.20 4926.991 F 4926.8C Too Shallow Summary of Hydraulic Grade Line Invert Elevation j Water Elevation Sewer': Sewer Surcharged) 1F-�-;)m- F- Upstream Downstream, Condition', Lengthy (Feet)t Length (Feet) Feet)etFeet) � -1 102 88 r Oj 4926.48 - 4926.27 4927.04 4926Y20; Subcritical'wnstream; 116.71jF--- -6.1 4926.71 4926.483 4927.28 4927.04 Subcritical 1 3 ? 87.99[- 0 4926.89 4926.71, F�- _27.50,11 927.28 Subcn icalj 4926.99] -- 4926.88] 4927.57� _ 4927.501 Subcritical Summary of Energy Grade Line" Upstream Manhole ; Downstream Juncture Losses Manhole I - _ �� Energy 1 Sewer; Manhole Sewer Bend Lateral Energy K LateralK anholeElevation. ID # (Feet) [Bend Friction1 LossLoss ElevationID# oefficient Coefficient}} ID #; (Feet) (Feet) (Feet) (Feet) ---- - _ _.�i _ 1 2 4927.13 0 93; OAS OAO€ 4 0.00� ^ 0.0011 4926.20 2 3 j 4927.37 0 23 0.67 0.01 j 0.00� O.00j 2 4927.13; _ _ 4 5 _ 4927.65 - 0 08 0.05 0.00 - 0.00� 0.00�� -4927.57 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. 3 Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth.Excavation Volume for Cost Estimate The user given trench side slope is 1. ff hole` Rim Elevations Invert Elevation` Manhole Height!� (Feet) _ (Feet) (Feet) � 4927.763 4926.27 _ � 1.49j 4937.2911 4926.48'1 10.811 4938.08 4926.71!J11.37� i� 4938.05 4926.88j 11.171 1.50� ! Upstream Trench E Downstream ! i Width Trench Width Earth Sewer On At On At 1 Trench Wall ' Volume ID # € Ground Invert Ground Invert Length Thickness (Cubic S (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) yards 3.9 102.88; 2.501 258) 22.8 3.91 21.7 3.9; 116.71 2.SO' -� 569j E 73 ( 3.9j —77—.991 2.56 441 3.1{ _ T 3_9� 22.4 ____3 9i -____._ 5L _ ________2_50 ____ _-143j Total earth volume for sewer trenches = 1410.93 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 4 STRM-N-a STIAl -a -1 NeoUDS Results Summary Project Title: STRM-Q Project Description: FRV Output Created On: 2/16/2007 at 9:54:11 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration Manholei Basin Overland! Gutter Basin 1 Rain I I Peak Flow ID # Area * C (Minutes) a (Minutes) _ (Minutes) .____._� es f_.___� (Inch/Hour)j .. (CFS) j IF -i I O.00I 5.0? 0.0? 0.0' F 875.66I3.51 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics i Manhole, ID # E Contributing. * Area C I Rainfall Duration (Minutes) Rainfall i Intensity ty i (inch/Hour), Design! 1 Peak ' I Flow (CFS) � ...._ Ground Elevation] (Feet) Water Elevation (Feet) Commentsl -.. � �__0 00; ___.__.3 53 _4931 ���� 0 5.0 875.00 3.S 4936.66i 4933.0111 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. r Manhole ID Number � Calculated Suggested M Existing m E Sewer; ! ! Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width Upstream' Downstream, ID # ;Shape (Inches) (Inches) I (Inches) (FT) (FT) (FT) (FT) I 2 I Round�� 18� 18 N/AE Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. 3Sewer ID II Design Flow (CFS) — Full f Flow (CFS): Normal Depth (Feet) Normal' Velocity (FPS) Critical Depth (Feet) CriticalFFuct Velocity (FPS) loityNumber PS Froude Comment 3 Sj —23 6 0.39 9-61F 0.741F 4.01 2.0 3.19 . „ —] A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information �� -Invert Elevation Buried Depth l Slope Upstream Downstreami Upstream3 Downstream. Sewer IDI ( (Feet) i i (Feet) — I (Feet) — (Feet) Comment `1__ 1 11 5.001 4932.27j1 4929.73 2.89-0.23]Sewer Too Shallowil Summary of Hydraulic Grade Line � Invert Elevation Water Elevation � — Sewer; Sewer' i Surchargedf i Upstream Downstream Upstream , Downstream; ID # Length, Length (Feet) (Feet) (Feet) (Feet) Condition ---= Feet) = --(Feet)- --- — -- - ------ - - - — - -- ._, .._ _ ._ 1 F 50.85F 4932.27 _ 4929.73 4933.O1j 4930.18 Jumpy Summary of Energy Grade Line Upstream Juncture Losses �I � Manhole Downstream 3 Manhole ...___jjj _ I 1 Energy Sewer ([Bend j Laterals Sewed Manhole' Bend K Lateral K I Elevation' Friction. (oss Loss ID # ID # Coefficient, Coefficient IFeet)(Feet ;Feet- (Feet) Energy Manhole Elevationj ID #Feet F ) _� 1 2 j 4933.26J 3.08j 0.05j O.00 F 0.0000� 0.001 4930.18 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user eiven trench side Slone is 1. ID # 11 1 11 4931.0011 4929.7311 1.2711 It► �,ixrslMS 1lci►• ffil�lI«�' 3 Upstream Trench Downstream Width — Trench Width - - Earth f On At On At Trench ch Wall Volume ID # Ground Invert ; Ground Invert l Length Thickness I i (Cubic (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) I Yards) j I 1 I`s — 8.9� - �3 9j 2.6j 3.9 50.85 2.SO 34� Total earth volume for sewer trenches = 34.41 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 4 5`T(ZM - N-(�?- (P5 5-'MH-R% -- --- ----- O 4 STMk1 -1i2-2 NeoUDS Results Summary Project Title: STRM-R Project Description: FRV Output Created On: 2/16/2007 at 9:55:49 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration_ Peak Flow (CFS) i Manhole ID # Basm 'Overland; JArea * CI (Minutes)] Gutter (Minutes) Basin ' (Minutes) Rain I (Inch/Hour)I IO.00i - 5.0 _ � 0 .__ O.00 5 0, m : 0.0� - OA 9582�Syi 0 0 - 9582�50� _-38 3� ___-_ 38.3 __I `' i 0.00` --5.0 0,0 0:0 6892.50� 27.6 ___-..___0.0 -- �1215.0q T�» 4.9' The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Design! ! Manhole, { Contributing Rainfall � Duration: Rainfall ( Intensity Peak Ground Elevation! Water � Elevation! Comments! ID # Area * C .(Minutes); (Inch/Hour). Flow ( ) j (Feet) (Feet) + 1— F- F-- ---0 0.0; � O.00j � 38.3E 4933.50; 4934.30 , Surface Water Present Manhole ID # Contributing] Area * C Rainfall i Duration in Rainfall ;Design= Intensity `Peak Inch/Hour ; 3 Flow ; Ground i Elevation; Feet F Water Elevation` Feet Comments? O,Olj 5.0 2702 50 32 4; a4938 23= 4934 38,"j ,4937.55€�— �— 0 5.0 1215 00' 4 9 4938 20 4935 53�-- Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number ' _ Calculated mm _ ___ Su ested _ gg Existin g 3 Diameter E Diameter Diameter Sewer; ID # E Upstream; Downstream' Sewer; Shape] (Rise) (Inches) (Rise) [ (Inches) l (Rise) Width! (Inches) (FT) _ __� �.._'._..__..(F-1r) __....i . _ .(FT) (FT).____ _._.__..._.. �____, I '.,__.� 2 F �,Round€F29.3 � 301!j N/A _` __ _3. .�I�` _'�.� Round ._ �� Sl _ 30 _. 30=. N/Al __ 3 __ 4 I77 _. Round _____ __.2914[._30I_. 301 N/AI mo' .181 mmN/A`=i Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer Design Full !Norman Normal €Critical; Critical; Full j Froude ID Flow Flow i Depth , Velocity Depth ;Velocity; Velocity= Commend (CFS)1(CFS)3 (Feet) (FPS) (Feet) (FPS) (FPS) `Number 2 4 341 1 1 67 9 3E 1 94 7 9' 6 6; 1 34E� '� �` i�I '.__-- ` 27 6 29.17F E1 94 6 7� ... 1 77: 7 4 5.6 — 0 85____—__' .i _. _ _ 4.9 10 SE _�_ 0 72 ... 7 s 8. _..._ 0 85._..__. .. 4 �' _.._ _.. 2.g` ___ 1.381 I A Froude number = 0 indicated that a pressured flow occurs. 2 Summary of Sewer Design Information J � i Invert Elevation '_Buried Depth J Sewer ID ! Slope `% ( lupstream]Downstream� (Feet)` (Feet) Upstream! (Feet) Downstream (Fe et) Comment -� 1 ( 1.00, 49�31.41!�4931.0-6 2.67 0 06 eweroo STShallow _ 1.00� - 4932.44'; 4931.441 3.29! 2.64 � 0.50! 4934.09 4932.441--2.041 3.29 II `� !E ---6 4933.06i _ 4932.441 3.64f Summary of Hydraulic Grade Line Invert Elevation 11,_W_ater Elevation� ewer' Surchar i gUpstream Downstream Upstream Downstream jSewer' ength Length ID # ( + Feet (Feet) (Feet) (Feet) (Feet) [Fe Iet) ! ( ) - -- . Condition �1 34.92I-0.011E4931.4 493L06j - 4933.56 - 4934.30 JumIF 2 i 100.44 � 4932 44' 4931.44, 4934 38, 4933.561 Jump 3 330.38� 330.38 4934.09I 4932.441 4937 SSi 4934.38 Pressured) �4 �I —1 62.16+ 62.16 4933.06 4932.44' I_.___ ___ AF- 4935 53i 4934.38i ._.__ ,, __ Pressured', � Summary of Energy Grade Line Upstream j Manhole_ _ ' Energy Sewer Manhole; # i Evation: Friction, # et) (Feet)-j + Juncture Losses Bend K Lateral K ( oss oss [1e-nd Laterall Coefficientl Coefficient! (eet)( (Feet i Downstream Manhole EnergSewer; ; Manholei ElevaioID ID ,ID _^ -_ (Feet) j 2 - 4934.51 0.21 _ 0.05j 0.00 -- _ OAO O.00I7l 4934.30 Ti.3 4935.36a 0_821 m', 0 0.03j OAO 0.001�2 493 J 4.51; i ` 3 4 _4938.04 1.481:_ 1.32 0.65j 0.25j ._ 0.56 3 _ 4935.36' 4 4935.65, 013j 1.32j 0.16 _ O.00I M 0.00;� 4935.36' Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. 3 A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole; j ID #,j Rim Elevation! Invert Elevation`, Manhole Height (Feet) (Feet) (Feet) 4933.501 493106 2.44' ��-4936.58 - 4931 Al! 5.171 F7 73714938 23 _ 4932 44`�� 5.79 -4938 63 _4934 09IF7777_ 4.541 �� 4938.201[ — 4933.0611 5.141 Upstream Trench Downstream I---] Width Trench Width j -!= - Earth Sewer ' On At On 1 At Trench Wall Volume ID # Ground Invert Ground Invert Length Thickness (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) Yarn I- _-.'__- " --- 9.3i-- 5' _ _----3.8; — 9.2j 5.1; 100.441 3_50j 14411 I ' — 8.01 ET, 10.5s 5.1 _ 330.38I- 3-5qjl 441) I `' 10.4i 3.9 11 7� 3.9i 62.16 2.5O' 88+ ____ - - Total earth volume for sewer trenches = 707.45 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 0 I Tww L NeoUDS Results Summary Project Title: STRM-S Project Description: FRV Output Created On: 2/16/2007 at 9:57:37 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of ConcentrationvYVw Manhole Basin Overland Gutter Rain II Peak Flow! ID # Area * Cj (Minutes)I I[Xasitn (Minutesnues)! (Inch/Hour) (CFS) 5 5. 2360.0011 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (I O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Manhole] ID # � Contributing, Area* C j —' Rainfall I Duration� (Minutes)] Rainfall Intensity � � (Inch/Hour)! Desrgn Peak Flow (CFSJ Ground Elevation; (Feet) Water } Elevations E (Feet) ( Comments _ __-_I '_ __.' __ _.----.._ -----__0 o _._____ _ 0 00, _ 9 4� 4930;82] 4928.13 0 4, 4933.221� 4929.991� 1 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number 'IF 7 lFCalculate—d Suggested Existing E i i f Diameter Diameter Diameter i Width' Sewer' ID # 3 Upstream. i Downstream! ! Sewer Shape (Rise) (Inches) (Rise) (Inches) (Rise) (Inches) (FT) I �Fr) (FT) _ ( ) Round 17.3' 18 _ 18� N/Ai Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. I Desi n� gFroude Full Normal Normal Clri'*Ca'l,[Critical FullSewer FlowFlow Depth VelocityDepth elocity)VelocityNumberComment, l ID (CFS)(CFS) 1 (Feet) (FPS) (Feet) ;FPS) _ (FPS)jj _ --A 9.4� 10.5! 1.11 --1.19i 6.3j 5.3 L15 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried Depth I� Sewer IDIrl.ofe Upstream Downstream Upstream Downstream)Comment�//! Feet Feet=� -- -- ._.(Feet) (Feet)..__ l� 1 i 1.00; 4928880!__ 4928.131 2.92 1�19 Sewer Too Shallow) Summary of Hydraulic Grade Line j��� Invert Elevation W� Water Elevation —� 111FSewer Surcharged) j DownstreamE Upstream. DownstreamLngth iUpstream Length eet) (Feet) (FeeFee Condition -(Feet) 66.77� � -0.12 4928.y80J �-4928.13 4929.99 w 4928.13 Jumpy Summary of Energy Grade Line Upstream Juncture Losses Downstream I l Manhole ; Manhole _ _ _.._. Energy Sewer BendI Lateral Energy FSewer!l,, Manhole Bend K Lateral K Manhole! j �Elevation Friction Loss Loss Elevation!ID # i Coefficients ,_ Coefficient .� ID # 1 I 1 it 2 11 4930.6011 2.4711 0.0S1 0.0011 0.0011 0.0011 1 EI 4928.1311 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. l— (Feet) J (Feet) 11 (Feet) J 4930.82i _____.. -.._ 4928.13� 2.69 IF 11 4933.22E 4928.801;1 4.42 3 Upstream Trench Width Downstream Trench Width _ On At On At Trench Wall i Earth I Sewer Ground Invert I Ground Invert Length Thickness Volume ID # (Feet) (Feet) I (Feet) (Feet) (Feet) (Inches) ; (Cubic yards) I 'jF8.91 _ 3.9j --__�J.5 3.9 66.77 2.50j 53 Total earth volume for sewer trenches = 52.59 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 0 57 i� M _ trlt - T 1! NeoUDS Results Summary Project Title: STRM-T Project Description: FRV Output Created On: 2/16/2007 at 9:59:47 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration F j Basm Overland] Gutter Basin ! Rain I Peak Flow'i FI'TD Area * C� (Minutes)' (Minutes)) (Minutes) (Inch/Hour _ (CFS) 1i=Nrl11�0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For.urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <= (10+-Total Length/l80) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics ? Manhole's, ID # 1 s Contributing+ Area * C Rainfall Duration i (Minutes), Rainfall € Intensity ;Flow (Inch/Hour)I Design Peak j (CFS) Ground I j Elevation! (Feet) Water Elevation, (Feet) Comments -- Oi _---_ --.... �._�_ _ __ ____ 0 00 __ __ 2.0 0 5.0 500 00' v 2.0 4959.331 �4949.173� Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number � Calculated_ Suggested Existijg, I Sewer ID # ( Upstream E Downstream! Sewer Shape Diameter (Rise) (Inches) Diameter (Rise) (Inches) Diameter (Rise) (Inches) Width (FI') 2 ';E::T �IRound 8.51 �18 18 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Full ` Norman Normal Critical Critical FullSewer:FroudeID [Design FloFlow ; Depth Velocity Depth Velocity VelocityNumberComment)CFS (CFS)i (Feet) (FPS) (Feet) (FPS) (FPS) !� lr 1I�2.0) 3r51I_____. iJI.-____2.02I�I A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information it 11 l Invert Elevation j Buried De th Slope; Upstream Downstream` Upstream Downstreami �) Sewer ID' (— ) Comment (Feet) � Feet _ (Feet) I 1 2.00'1 4948.6314946.6111 9.2011 0.0 0 Sewer Too Shallow Summary of Hydraulic Grade Line 1� Invertt Elevati in Water Elevation - Sewer I Surchar ed� Fee gt Length F- 100. Summary of Energy Grade Line jUpstream Manhole fit Downstream Juncture Losses Manhole � i ' � Energy Sewer Manhole] � Sewer � 1 Bend � �— � � Laterals � Energy j Bend K Lateral K Manhole) Loss Elevation ID # ; ID # J Friction Loss I Elevation! Coefficient) Coefficient; ID # ; Feet) I v(Feet) ry.(Feet) ; _... m�Feet)_a__ _ (Feet)_J IF---_ 26 ____ — O.O50.00 _ _ 0.00 0.00 1 � 3 4946.50I Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. ID # it 1 it 4948.1211 4946.6111 1.5111 li�lsiI.S�cicll�i•' :�1c��[IILIIIA 3 Upstream Trench JFDownstream Width Trench Width Sewer On At On At Trench Wall Earth Volume ID # j Ground Invert Ground Invert Length Thickness (Cubic (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) I Yards) j 1 _ 21.5j ` 3.9� 3.1 3.9� 85� T 100. 2.50 248 Total earth volume for sewer trenches = 248.32 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 M STEM --M v r� it �3 ' � FFs o ,, -.�\t NeoUDS Results Summary Project Title: STRM-V Project Description: FRV Output Created On: 2/16/2007 at 10:03:57 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration Manhole Basm Overland][Gutter Basin Ram I Peak Flow: ID # ; Area * Cs (Minutes); Iinutes) (Minutes)i (Inch/Hour) (CFS) 1 ___►I_ o.00 � 5.0!� o.o � 0.01 2082.5011 8.3 2 ! o.00i s.o; o.oi o.o 2082.5o1 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Rainfall Rainfall Design! Ground Water ' ; Manhole! Contributing, Duration ; Intensity peak ; f Elevation Elevation; Comments! ID # Area * C ! ' I 01 (Minutes)l (Inch/Hour)i Flow CFS i (Feet) { (Feet) , 1 0.0 0F F-- 8.3 4924.53 4925.00z Surface Water __,_ _._! ____._.___ _._ ____ Present 25.Oi (7.5011"![ 8.3 4925.00-- F4926.09',""" _--- --' � Present Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number Ta vCalculated Suggested —T Existing Diameter Diameter 3 Diameter I Seweri Upstream ( Downstream[1 Sewer (Rise) j (Rise) (Rise) i Width ID # Shape] (Inches) (Inches) t (Inches) (FT) (Fr) � � ._. _I? _ (F]P) I jl G I Round)18J Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer+ Design] Full j Normalf Normal Critical' Critical Full Froudel ID Flow Flow Depth Velocity Depth Velocity Velocity Comment ! (CFS) (CFS)E (Feet) FPS Feet FPS F Numbed Ij 8.3i — 1.50 4.7 1.12 5.9 4.7 N/Ai�) A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation Buried De th ! ! Slo e' U stream' Downstream U stream Downstream Sewer ID u p p p Comment — _ _X I _ (Feet) - t (Feet) - ..m (Feet) — (Feet) L"1�,(� 0.20I 4923.00il 4922.541_ 0.5011 0.491ISewer Too Shallowl Summary of Hydraulic Grade Line Invert Elevation Water Elevation s j Sewer i Surchargedl i Sewer; j Length; Length j j Upstream: Downstream, Upstream DTistream' { Condition. ID # Feet)(Feet) i 1 � 229.71 � 229.71 (Feet) i (Feet) (Feet) eet) ____�...._a_.._�___� 4923.00� 4922.54� 4926 09; 4925.00� Pressured Summary of Energy Grade Line Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. MID nhole Rim Elevations Invert Elevation Manhole Heights # (Feet) (Feet) (Feet) mm !F- 4924.53� 4922.54; 1.991 4925.00i �4923.00 A 3 Upstream Trench Width Downstream Trench Width Sewer On At On At Trench i Wall Earth Volume ID # I Ground Invert Ground Invert Length j Thickness Cubic (Feet) ___ (Feet) (Feet) ( (Feet) (Feet) (Inches) yards )_ y 1 ;`. 4.1 1. 1 4-- I M____-3.jq 229.71 2 SOj v100 Total earth volume for sewer trenches = 99.84 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 M sTtt.A -W VJ - It 11 2 It FES NeoUDS Results Summary Project Title: STRM-W Project Description: FRV Output Created On: 2/16/2007 at 10:05:46 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration Manhole] Basin !Overland`, Gutter Basm Rarn I Peak Flow' ID # Area * C (Minutes); (Minutes) J (Minutes) (Inch/Hour) (CFS) F �11�ir 5.011 V.U! 0.0' 3912.50 15.6? 0.0011 5.01 0.0 �� 0.0] 3912.501 15.611 I3-10.00F5.0 O.OI 0.0' -2252.5611 9.0 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Rainfall Rainfall Design Ground Water Manhole! Contributing' * ' Duration I Intensity Peak Elevations Elevation' Comments ID # Area C (Minutes); E (Inch/Hour)! Flow (CFS) E (Feet) ( (Feet) 1 0 1 0.0 0 001 15.6 j 4926.50, 4928.29! Surface Water Present Rainfall Rainfall ;Design Ground Water Manhole Contributing! Duration Intensity i Peak Elevation, Elevation3 Comments! ID # Area * C = Flow ; (Minutes) (Inch/Hour)1 (Feet) 1 (Feet) �ETD 0.01 j _ 5.0 1956.25 _ 15.6 4928.601 _ 4927.74 I i� 3 01 5.0 2252.5019.0 j 4928.901 G 4929.021 Surface ater water - ' _ i Present__ i Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. F-1111 Manhole ID Number j 1 Calculated Suggested _ Existing 1 j Diameter Diameter Diameter Sewer; Upstream; Downstream Sewer (Rise) (Rise) (Rise) Width ID # ( Shapel (Inches) (Inches) (Inches) (FT) _ 71 2 _ � Round - 24.8 27 18 N/A � _I _` _i 3 I ` __ i Ro....._und1..._ - 20.21 _ ._.._ 21 j 18 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. S Iwllen j Designl Flow (CFS) Full Flow (CFS); Normal Depth (Feet) Normal! Velocity (FPS) Criticall Depth (Feet) Critical Velocity' (FPS) Full Velocity (FPS) 1 Number' 1 Comment1 ��1 15.6 6 7; 1.56 8 9E 1 39! 9 11 8 9i - N/A � (I `__-' __ -9=-0� - 6 7 _.._1.50 _ 5 1 i 1 16 _6.-1 .. 5 1 _N/A�I__.._- A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation —Buried Depth i +Slope` Upstream Downstream r— I-- 1 0.40i 4925.15 2 11 0.46E 49 55.41 i 4925.0311 1.95 4925.1 Summary of Hydraulic Grade Line Too S ewer Too Shal tl a }� Invert Elevation Water Elevation DF1I Sewer ` Surcharged Sewer: Length Length i Upstream Downstream Upstream DownstreamE I [ondition ID # ; (Feet) ; (Feet) (Feet) (Feet) (Feet) (Feet) __ �! - ; _ _... _ _ � 30.45 492515 4925.03 4927.74 4928.29� Pressur_ed'; 1 30.451_ _ _ _ 22 F 60.36( 60.36� 4925.41i 4925.17i 4929.02i� 4927.741 Pressured? Summary of Energy Grade Line Upstream j i Manhole ; Downstream Juncture Losses Manhole Energy Sewer Sewer; Manhole. Elevation Friction[Bend ID # ID # i (Feet (Feet) -- i Bend' Lateral, E Energy K Loss I LateralLoss j ManholeElevahon! oefficient, Coeffacient4 ID # (Feet)] J (Feet) __ _� (Feet) 492896 0.05 0.� 0.00 7F I ' 4928.29 r 2 I 4929.42 �0.67j 044— 0.0 M 0.02 0.00� O.00r 2 �4928.96! Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. 3 Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. iManhole' Rim Elevation, Invert Elevation Manhole Height` ID # '(Feet) i (Feet) ; (Feet) ) (�1 4926.50(� 4925.03111 47 2 4928.60 4925 15---�� 3 45j 4928.90 1­ 4925 41=� 3.49' Upstream Trench','[ Downstream I _; Width Trench Width _Trench _ On At On i At Wall Earth Sewer Ground ! Invert Ground Invert Length I Thickness Volume E # i (Feet) (Feet) (Feet) 1 (Feet) (Feet) (Inches) i (Cubic Yards) _ 3045 __.___ 2.50_17 3.9 6.9 _ 3 9 .___._ 60.36 ..____._ 2.5 0 .____ _44 il Total earth volume for sewer trenches = 61.11 Cubic Yards. The earth volume was . estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 4 APPENDIX — I December 2006 EROSION CONTROL PERFORMANCE STANDARDS EFFECTIVNESS CONSTRUCTION SEQUENCE COST ESTIMATE RAINFALL PERFORMANCE STANDARD EVALUATION 187010251 font Range.Village. JOZmr 15-iSTANDARD FORNI 11 DatO-;" -'.:,4112912006,7 DEVELOPED SUBBASIN ERODIBILITY Asb ZONE (ac) Lab (it) Ssb I%) Lb (ft) Sb I%) Ps 206 Modulate oz).bu 1884 0.50 985.7 0.26 207 Moderate 4.00 150 2.00 5.6 0.08 208 Moderate 17.40 1580 0-50 258.7 0.08 209 Moderate 18.33 970 1.00 167.3 0.17 210 Moderate 2.74 90 2.00 2.3 0.05 250 Moderate 8.20 620 0.80 478 0.06 Total 106.27 7.521 0.70 75.0 EQUATIONS Lb = Sum(AiLiySurn(AJ) Sb = sum(AiSlysum(Ai) 1467.5 0.70 UPS (during cdnstrucUon) • 74 0_ . I (from Table BA) PS jLfter construction) . --75. 0 ffiskg-i." 1 $8.2 -w EFFECTIVENESS CALCULATIONS 187010251 Project +1 Front Range N/kgesu Cedwlated8':. JOZ rc S rb.) +�zr o 4:`'.��!:a.._. .Date' r t.1,1/29r200B ^P-Factor Erosion Control C-Factor Comment Number Method Value Value 3 Bare Soil - Rough Irregular Surface 1 0.9 6 Gravel Filter 1 0.8 5 Straw Bale Barrier 1 0.8 6 Gravel Filter . 1 0.8 8 Silt Fence Barrier 1 0.5 38 Gravel Mulch 0.05 1 39 111-lay or Straw Dry Mulch (1-5% slope) 1 0.06 1 1 SUB PS AREA BASIN (X ac Site 75.00 106.27 SUB SUB AREA Practice C • A P' A Remarks BASIN AREA ae DURING CONSTRUCTION 206 Impervious 36.44 38 1.82 36.44 Gravel Mulch 206 Pervious 10.35 39 0.62 10.35 Hay or Straw Dry Mulch (1-5% slope) 206 Building 8.81 3 8.81 7.93 Bare Sal - Rough Irregular Surface 207 Impervious 2.68 38 0.13 2.68 Gravel Mulch 207 Pervious 0.73 39 0.04 0.73 Hay or Straw Dry Mulch (1-5% slope) 207 Building 0.59 3 0.59 0.53 Bare Soil - Rough Irregular Surface 208 Impervious 11.98 38 0.60 11.98 Gravel Mulch 208 Pervious 1.85 39 0.11 1.85 Hay or Straw Dry Mulch (1-5% slope) 208 - Building 3.57 3 3.57 3.21 Bare Soil - Rough Irregular Surface 209 Impervious 11.22 38 0.56 11.22 Gravel Mulch 209 Pervious 2.21 39 0.13 2.21 Hay or Straw Dry Mulch (1-5% slope) 209 Building 4.90 3 4.90 4.41 Bare Soil - Rough Irregular Surface 210 Impervious 2.22 38 0.11 2.22 Gravel Mulch 210 Pervious 0.52 39 0.03 0.52 Hay or Straw Dry Mulch (1-5% slope) 210 Building 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface 250 Impervious 6.65 38 0.33 6.65 Gravel Mulch 250 Pervious 1.55 39 0.09 1.55 Hay or Straw Dry Mulch (1-5% slope) 250 Building 0.00 3 0.00 0.00 Bare Soil - Rough Irregular Surface Cnet = 0.21 Pnet = 0.786547 EFF = (1-C•P)100 EFF = 83.4 > 75.0 PS Before EFFECTIVENESS CALCULATIONS 187010500 t ns`4 FinfR Vl,0. Cn alc.u.- late,: d 8 - }.?:-" fi1: `% ry:., ....ny. JOoZ_. �•-�, 4.s. law:.e'3,t...".".^ ., <._"^'f,z` 'rra g.e� SFOsRM'1B t.�', °rs� ".+rra' 4;4 8 n..a�.: Ai£Date ;,3 Y'1tLw+S',Fi. Erosion Control C-Factor P-Factor Comment Number Method Value Value 9Asphalt/Concrete P Asphalt/Concrete Pavement 0.01 1 12 Established Grass Ground Cover - 30% 0.15 1 14 Established Grass Ground Cover - 50% 0.08 1 16 Established Grass Ground Cover - 70% 0.04 1 18 Established Grass Ground Cover - 90% 0.025 1 SUB PS AREA BASIN %) ac Site 88.24 106.21 SUB BASIN SUB AREA AREA ac Practice C' A PA Remarks AFTER CONSTRUCTION 206 Impervious 36.44 9 0.3644 36.44 Asphaft/Concrete Pavement 206 Pervious 10.35 18 0.911 10.35 Established Grass Ground Cover- 90% 206 Building 8.81 9 0.3644 8.81 Asphalt/Concrete Pavement 207 Impervious 2.68 9 0.3644 2.68 AsphalVConcrete Pavement 207 Pervious 0.73 18 0.911 0.73 Established Grass Ground Cover - 90% 207 Building 0.59 9 0.3644 0.69 AsphalVConcrele Pavement 208 Impervious 11.98 9 0.3644 11.98 Asphah/Concrete Pavement 208 Pervious 1.85 18 0.911 1.85 Established Grass Ground Cover - 90% 208 Building 3.57 9 0.3644 3.57 Asphalt/Concrete Pavement 209 Impervious 11.22 9 0.3644 11.22 Asphalt/Concrete Pavement 209 Pervious 2.21 18 0.911 2.21 Established Grass Ground Cover - 90% 209 Building 4.90 9 0.3644 4.9 Asphalt/Concrete Pavement 210 Impervious 2.22 9 0.3644 2.22 AsphaWConcrete Pavement 210 Pervious 0.52 18 0.911 0.52 Established Grass Ground Cover - 90% 210 Building 0.00 9 0.3644 0 Asphalt/Concrete Pavement 250 Impervious 6.65 9 0.3644 6.65 Asphatt/Concrete Pavement 250 Pervious 1.55 18 0.911 1.55 Established Grass Ground Cover - 90% 250 Building 0.00 9 0.3644 0 Asphalt/Concrete Pavement Cnet 0.089154 Pnet = 1.00 EFF = 1-C'P 100 EFF = 91.1 > 88.2 PS After EROSION CONTROL CONSTRUCTION SEQUENCE Front Ran,,e VW&,,e STANDARD FORM C caAd.w By. Joz Date fUlYldpd SEOUENCE FOR "7 & 2 ONLY lmlk by uae of a W be w SMWIS when —=- Wt —aes wi pe Maded. appmaJ by ft Cly EViv.. YEAR MY Mll MONTH IN A I M j I A S 0 N O i F m 5WIkOT GRADM IMNO EROSION CONTROL Soi RougtxrV pwillei Bart!! �i*8 Banks Vepeha4y Meftft Sol Sealard otha RANFALL EROSION CONTROL STRUCTURAL Seclk,umrt Tompliasin be Flan sv;Pa so le SaFemBirdam Ij l Sard sap B" Sw Pmpwsdm Coftm FM Twadm AsplmltlCw Paft Dow VEGETATIVE: Pm..om S"dPlub itittfts"ibli a TamwayseecIplod Am Sod YWalatbn Ode STRUCTURES: INSTALLED BY MAINTAINED BY VEGETAnOWMULCHING CONTRACTOR DATE SUBMITTED APPROVED BY CITY OF FORT COLLINS ON EROSION CONTROL COST ESTIMATE Project> + *3 t" aik yj,pK� r iy C M k oN c w�' "� Front RetigegVlllage, r jk 't w 10610251 Pre red,c ,�' N + 40z a:, . , , .: ' ""? Date.' CITY RESEEDING COST F� Unit Total Method Quantlty Unit Cost Cost Notes Reseed/mulch 106.27 ac $723 $76,833.21 Subtotal $76,833 Contingency 50% $38,417 Total $115,250 Notes: 1. A<=5 ac=$655/ac; A>5 ac=$615/ac. EROSION CONTROL MEASURES Unit Total Number Method Quantlty Unit Cost Cost Notes 6 Gravel Filter 86 ea $300 $25,800 5 Straw Bale Barrier 55 ea $150 $8,250 8 Silt Fence Barrier 6170 LF $3 $18,510 38 Gravel Mulch 71.19 ac $1,350 $96,107 39 Hay or Straw Dry Mulch (1-5% slope) 17.21 ac $500 $8,605 Subtotal $157 272 Contingency 50% $78,636 Total $235,907 Total Security _., s $235,907 x 0 O 0 N 00 W W ONO coNcoNcoNaND 't O W W W W OI W O) W S W Of W N N N O aA m aaD aD .O}) W a� aW ��{ aW W W yW Oy) aW W yW aT pa1 yW N aD aD a0 aD a0 a0 CD aD a0 a0 ED a0 a0 OD C Cl y<y N fa0 fap fp fp A �A} aA aA} A f.�} aA ah aA A aA A aW 00 OD OD 00 OD O OD W aD a0 GO a0 GO CO aD a0 aD aD a0 a0 00 OO yNy eM�t N )D N (O (aO W (O W (p aA fad aA yA sA� aA A A A eh� 0a0 (yp <p W aM0 aD 0D aD aO aD a0 aD CD aD o7 a0 a0 aD 00 (D a eN� M a7 < ah yN aN aN coo co .froo (D w coo (Dw coo 0r-- A r- t- yA h a6 OMO a0 aD aD a0 (O aD fO aD aD aD aD aD aD aD aD o7 f0 O a W N M M r CDcli adW O co M V CMD co � q -,taN N N (D (00 (G a� y� CN} yN aM aM aO aV aV aV yT co W aD aD aD c0 a0 aD aD a0 aD aD c0 aD aN aD (O aD aD a0 O N N 0 M W a V .- N N N M M f0 aD Nt Nt M M M It T� y � aP� s.}- s y s a y O aD aD W aD aD aD aND m Go aD cMD m a a a� aD a0 a0 a0 O N Ci W g M a N N (O (D r A t• m W a0 W W tp N N OD M y� W W W S 7 M (7 M (`6 M a') M c) l7 M (7 M M W W W W W W OD W 00 W W W W co M M M aD W W aD 00 W W W CD O (0 N W CO) I N '-t N N N ((D� Co (0 ((D A W r_ N W W W W V (+M� (e+t� ((.D 0G0 000 aND GMD co aD aD c0 co GM0 OD OD GMD ODGoa0 aD OMO aA, (0 a0 Go OD OD OD m aD co QO Lq .- N A OD M M, N N Cl) Cl) M W W V� y� •�t N N W co (DGo A A m t test (O� f co GND OND OODD ONO co MN Go OD OODD 00 fN� m m _m ODOD W 00 f0 OD f0 coMGM0 coMcoM Go ` O � M N (D W W N �- N N M CO) Cl) 7 V It O V a O CO N N N N N CO (D co (D L M 1 (V fV N N (V N N N (V N (V Co W W W W W W 00 00 W W W W W W OD W fV N N N c i N N(- W W W W W W co W )O N N W N M R N wr n r W W W W W W W W W N N N N N N Cb 0 0 W W co co co W N r W aD W W W W W W W W W W W W W W W W W O N O M N W W co W N N N N M M M M M M N W w a00 a00 a00 a00 000 aD co OD OD W OD OD co OD co co OD W a0 O W N W — 7 N 1-r W W W O O �- �- N N N M M M M M (0 W 00 D) W W W W W W W W W 0 0 0 0 0 0 0 0 0 0 0 0 0 n r n r r r r A n n r W W W OD W W W W co co W W co O (D M r a r` 01 W N M M,t p N N N N (0 Co W Co r r (O f0 f0 v (o r r; r r, r a6 0 o6 0 co 0 c6 0 0 o ao ao oA a; cd o Op ao co, n r A r r n n r n r n n n n n n n n r n n r n r n O W N 7 CO r 00 W r r r CO (D (D (N y M M N N W (O O W (D 0 o N r n n N � n 04 N N n N N n C� n n n n n o 0 0 0 0 0 o 0 o o o 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 r co W 3 0 LL C N M Y N tp 1� t0 O N M Y N t0 h co W 0 U N N N N M 47 er N N (p O O O O N M y N M y In N M V Ip fp f� a0 O O ^ �N,- - - - — � O] — O N M •f C04 (O p � N N N N N N a' O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 O M O N O M O � / /| k k27 c{� ||J !!� . !!! \ . //#!/&�0aa0cc �2,aa2a!!!!2 .$■■■■■■■■■■ \_ !! la2aafla 77kt7ka 2 . °ll,,,,l,,,l� k M. ;|£zre|;|r| !_ /�£777!!!I2!! ■-■,,,|| „ ;,� !! _ ■■ w ;MMMMMM;MMMMMM 6 6cic;§ƒ§)/!\/;)§;/:§6 @@aKk/J/K\ -\)})}\\)\'\ ; k{r 32\2\k2)2) I kk\\\\\\\\\\ } =dkƒ2/d777J77JJ77"`�k!!f;!!!\ff a2a s aBaa elk}}ikk��}) ])3]]]]))w(n (n7A227\}7A N Vl N Y1 p O F2 D L O O O O y OOOOO pO O O O O O 8 S N N N N N N W W a e � �'• momN m y W 2 N m tl II II 11 1�Q1j II .L.•L.. L.. V � U C C ap m m mm c c LL LLC c d d ddcc'cc'c•cEEEE dv IaAL m C C yA o m y m m m m m J J O J E E E 0 umi � m Yi umi m m m m m m E E E E J J J •' n a a n a a n g g t€ m E E E E 9 r€ E E E f i o 0 0 0 o mN N5 8 8 N N V O O O O O o o o o o o m````o .- � Y Y Y Y Y II 11 II 11 `o Yif o IYS u ° o U ° ° E E E E E E u o 0 5 u u u u LLa 5c 5 Q LL o o S 8 S o au d. d d LL LL m m m m m m m m CL a a Q E Q Q Q E n m m m m m m m m 9 2£ €€ a n n n n n a1a1 E o v m o o m o o y XI v MI m m m m m m m$ $ I I . c c c c c c c •c •c 'c c g $ m m � r• m m m m m m m Raa8�c caaaaaa p E E E E E E E o 0 0 `o cc c� $ E E E E E E E �' �' °° 4 5 ,,$�� c m € o m T E E E E E E c E E go Eo c I Simi m _� $ m c c c _ m ab m m m 5pp ¢ c c c W W ,� a O N N N N N N N 0 L L 5 a ,C a000sos6??330�' mmmmmm ;G -S$ t O O O E E E L$ O O O °p pJ pJ o Q f a a a 1O 1 .fi -5-5 fi 6 m 'm S ac E E E E -E E E$ E E m _$ E E E_ E E E 8 C m C m C 6 a 6 a a a a o Q m m• W a m a m m J J J � > > J J J le It It It It le > > ? O O o O O O jjjjp Nb 8 R R 'Qop 2 2 2 2 2 2 f11 N N N N N In N II It 11 11 11 11 {mp (mp m Nw E E E c a s c° a a a° Er'o 8 D) p, 0) a O) a c c c C C y c c C Oi c c c c y y y Ol Ol OI c c c E E E E E E E E E E 8 8 8 8 8 8 _ mmm `mm `m `m 'x ,X w in m iil a ffi O i � � � � F F O O O O N m � N t9 • 19 � W M! mmmmmmmmmmmmmmmmmmmmmmmamm .- .- e- e- — — — 0 W 0 w O N .- N v 00 17 O O O O O a 6 G O O O O O h _ p O G O O O O-- N �- �- �- O C O O O G C O o _p N C C m m m m 0 G 1 Q 6 {0 8 �Np ryN �0 a L SI 1] N O w _ N e d° 2e N N ag dQ a 2' a aeaeb R m m mm mm O. c m _O O v v v v m m m 8 8 m 8 N Tn o .9 t t L m m m m m m m N N O O U U U U U t 'C t 'C 'C '!: '[ C N N c c c N N N 0) N fn N NVN N B B- N Zb 2b 3 B . ae ae O E E E O O Q E t t t `fie N 2m a2 m m IL IL IL LL � m FF ^ZJL m m 0 J N2 N fn U% .N ) 0 m OO O O O O O �c c c O O QT 5 T T T T T a� m m m m 2 V V NW 7 = S= 0 U U U U H Fa Fm- APPENDIX - J December 2006 SOIL TYPE SOIL SURVEY OF Larl"mer County Area, Colorado United States Department of Agriculture Soil Conservation Service and Forest Service In cooperation with Colorado Agricultural Experiment Station v f N O 0 0 0 t CN � N O Z _ O Q cr O o O a 42 SOIL SURVEY 4/3) moist; moderate medium and coar prismatic structure parting to modera medium subangular blocky; very hard nearly very stickus clay and efillmsaon ' thi eds noncalcareous; mildly alkaline; Ilea smooth boundary. Baca-24 to 29 inches; pale brown (10YR 6/3 clay loam, brown (10YR 5/3) moist weak medium subangular blocky strtureut h n' very hard, firm, very plastic; fe calcium carbo�e°occurrinaces, visible nodules; calcareous g as small line; gradual smooth boundary. moderately alka- line; to 47 inches; light yellowish brown (10YR 6/4) clay loam, dark yellowish brown (10YR 4/4) moist; massive; very calciumcar}mnate occurxw plastic. sticky and ' visible thin seams, and str g as nodules, moderately alkaline; eaka; calcareous; boundary. gradual smooth C2ca-47 to 60 inches; light yellowish brown (2.5Y 6/3) clay loam, light olive brown (2.5Y 5/3) moist; massive; very hard, firm, sticky and plastic. some visible calcium carbonate but less than in the EkalClca horizon; calcareous; ,'moderately The A horizonislight clay loam o'r clay 1 10 to 12 inches thick in cultivated areas. The combinoed'thick- ness of the A and B horizons ranges from 16 to 40 inches The to calcareous is heavy clay loam or -light 'lay. Depth material ranges from 10 to se 30 inches. Sand and gravel are below a depth to inches in some profiles. Some profiles have bs ) with a redder hue. . n 73—Nunn clay loam, 0 to 1 percent elopes, level soil is on high terraces and fans. This soil ' r profile similar to the one described as representative the series, but the combined thickness of the surf layer and subsoil is about 35 inches. Included with this soil in mapping are small a Of soils that are more sloping. Also included are a f w small areas of Satanta, Fort Collins, and Ulm soils an a few small areas of soils that have a surface layer subsoil of silty clay loam. su Runoff is slow, and the hazard of erosion is slight beans, barley _! If irrigated, this soil is suited to corn, sugar beef , wheat, and alfalfa. Under drylani management it is suited to wheat or barley. It is alai suited to pasture and native IIs-1, irrigated, and IIIc-1 grasses.dryCapability unit! range site; windbreak suitability group FootW g ty group 1. 74—'Nmn clay loam, 1 to 3 soil nearly level soil Is on high terraces andnfaslopes. This . has the profile described as representative of he series. Included with this soil in mapping are a few small a arefew as of soils that are more sloping or less sloping and small areas of soils that have a surface layer and subsoil of silty clay loam Also included are small areas Of Satanta, Fort Collins, and Uhn soils. Runoff is slow to medium, the hazard of wind erosion is slight, and the hazard Qf water erosion is moderate If irrigated, this ��, barley, soil is suited to corn, sugar beets, alfalfa, and wheat. Under dryland management It is suited to wheat and barley. It is also well suited to pasture or native grasses (fig. 10). Ptsa►e 10.--Alfalfa bales oa Dunn rye loaa4 1 to 3 vereent slopes. LARIMER COUNTY AREA, COLORADO ( Capability units IIe-1, irrigated, and IIIe-6, dryland ayey Foothill range site; windbreak suitability grou 75—Nunn clay loam, 3 to 5 percent slopes. This gently sloping soil is on high terraces and fans. This soil .has a profile similar to the one described as rep- resentative of the series, but the combined thickness of the surface layer and subsoil is about 24 inches. Included with this soil in mapping are small area of soils that are more sloping or less sloping and a fe small areas of soils that have a surface layer of light clay. Also included are a few small areas of Satanta and Ulm soils. Runoff is medium. The hazard of water erosion is moderate, and the hazard of wind erosion is slight. If irrigated, this soil is suited to barley, alfalfa, and wheat and, to a lesser extent, corn, sugar beets, and beans: Under dryland management it is suited to wheat or barley. It is also well suited to pasture and native grasses. Capability units III:-2, irrigated, and IIIe-7, dryland; Clayey Foothill range site; windbreak suit- ability group 1. 76—Nunn clay loam, wet, 1 to 3 percent slopes. This nearly level, somewhat poorly drs med soil is on low terraces and alluvial fans, commonly adjacent to drainageways. This soil has a profile similar to the one described as representative of the series, but a seasonal high water table is at a depth of 20 to 30 inches during part of the growing season. Included with this soil in mapping are a few small areas of soils that have a strongly alkaline surface layer and a few small areas of soils that are moderately �ll drained. Also included are a few areas of soils tbtarEeets, have a surface layer of loam or clay and a few of soils that are less sloping. noff is slow, and the hazard of erosion is slight. is soil is suited to pasture and hay. If the water is lowered by management practices, corn, sugar wheat, and barley can be grown. Capability unit 1, irrigated; Wet Meadow range site; windbreak ility group 5. r Series i Otero series consists of deep, well drained soils ormed in alluvium and wind -deposited material. soils are on alluvial fans and terraces. Elevation B from 4,800 to 5,600 feet. Slopes are 0 to 15 It. The native vegetation is mainly blue grams, grass, bluestems, and some forbs and shrubs. annual precipitation ranges from 13 to 15 inches, annual air temperature ranges from 480 to 500 1 the frost -free season ranges from 135 to 150 representative profile the surface layer is brown loam about 4 inches thick. The underlying Al is pale brown sandy loam about 18 inches her light brownish gray sandy loam. neability is rapid, and the available.water ca- is medium. Reaction is mildly alkaline above a about 4 inches and moderately alkaline below soils are used mainly for native grasses and ed crops. A few areas are used for ir- 1.0 _- 43 Representative profile of Otero sandy loam in an p area of Otero -Nelson sandy loams, 3 to 25 percent slopes, in native grass, about 300 feet south and 1,420 feet west of the northeast corner of sec. 11, T. 10 N., R. 68 W.: A1=0 to 4 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 3/3) moist; weak very fine granular structure • soft s very friable; calcareous; mildly structure; v' line; clear smooth boundary. Clca--4 to 17 inches; pale brown (10YR 6/3) sandy loam, brown (10YR 5/3) moist; weak medium and coarse subangular blocky structure; hard, very friable; cal- careous; visible calcium carbonate as few soft spots; moderately alkaline; gradual smooth boundary. C2ca-17 to 60 inches; light brownish gray (10YR 6/2) sandy loam, dark grayish brown (10YR. 4/2) moist; massive; hard, very friable; calcareous; visible calcium carbonate as few soft spots; moderately alkaline. The A horizon is sandy loam or fine sandy loam 8 to 12 inches thick in cultivated areas. The C horizon is sandy loam or fine sandy loam. The soil is generally calcareous throughout, but the surface layer is leached in places. Distribution of lime in the profile is erratic. Soft sandstone is at a depth of 40 to 60 inches in some profiles. 77—Otero sandy loam, 0 to 3 percent slopes. This nearly level soil is on uplands and fans. This soil has a the series,ofile ilar bu to surface ane yer pis representative 10 toe 12 inches thick. Included with this soil in mapping are some small areas of soils that have a surface layer of loam or fine sandy loam. Also included are some areas of soils that are redder and a few small areas of Ascalon, Nelson, and Kim soils. Runoff is slow. The hazard of water erosion is slight, and the hazard of wind erosion is moderate. If irrigated, this soil is suited to corn, barley, sugar beets, wheat, and beans. Under dryland management it is suited to pasture and native grasses and, to a lesser extent, wheat and barley. Capability units IIIe-5, irrigated, and IVe-5, dryland; Sandy Plains range site; windbreak suitability group 2. 78—Otero sandy loam, 3 to 5 percent slopes. This gently sloping soil is on uplands and fans. This soil has a profile similar to the one described as representa- tive of the series, but the surface layer is about 8 inches thick. Included with this soil in mapping are a few small areas of soils that are more sloping or less sloping. Also included are some small areas of soils in which sandstone is at a depth of 40 to 60 inches and a few small areas of Ascalon, Nelson, and Kim soils. Runoff is medium, and the hazard of erosion is moderate. If irrigated, this soil is suited to barley, wheat, alfalfa, and pasture and, to a lesser extent, Born and beans. Under dryland management it is well suited to pasture and native grasses. Capability units IIIe-4, irrigated, and VIe-2, dryland; Sandy Plains range site; windbreak suitability group 2. APPENDIX - K 0 December 2006 r OFFSITE DRAINAGE CALCULATIONS Developed Weighted Runoff Coefficients Bayer 187010251 This sheet calculates the composite "C' values for the Rational Method. OS-1 0.95 0.25 22,033 0.51 21,770 0.50 99 1 0.94 OS-2 0.95 0.25 28,472 0.65 28,312 0.65 99 1 0.95 OS-3 0.95 0.25 81,518 1.87 80,668 1.85 99 1 0.94 OS-4 0.95 0.25 14,545 0.33 9,345 0.21 64 36 0.70 OS-5 0.95 0.25 21,028 0.48 12,973 0.30 62 38 0.68 OS-6 0.95 0.25 0 0.00 0 0.00 0 100 0.25 OS-7 0.95 0.25 17,295 0.40 17,295 0.40 100 0 0.95 OS-8 0.95 0.25 107.523 2.47 87.206 2.00 81 19 0.82 The Sear -Brown Group 12:50 PM 1 /312007 TIME OF CONCENTRATION 10 year design storm Bayer 187010251 1.87(1.1- CC )✓D r, = S0311 t,= tj+tL Cf = 1.00 SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA C LENGTH SLOPE t; LENGTH CHANNEL SLOPE VELOCITY tL tc NO. (ac) (ft) N (min) (ft) TYPE(a) N (ft/s) (min) (min) 1 2 3 4 5 6 7 8 10 12 13 OS-1 0.51 0.94 75 2 2.0 270 PA 0.5 1.34 3.4 5.4 OS-2 0.65 0.95 80 2 2.0 265 PA 0.5 1.34 3.3 5.3 OS-3 1.87 0.94 55 2 1.7 725 PA 1.2 2.09 5.8 7.5 OS-4 0.33 0.70 56 2 4.4 40 PA 3.2 3.46 0.2 5.0 OS-5 0.48 0.68 35 2 3.7 112 PA 2 2.72 0.7 5.0 OS-6 0.00 0.25 0 0 0.0 0 PA 1 1.91 0.0 5.0 OS-7 0.40 0.95 1 2 0.2 647 PA 0.5 1.34 8.1 8.3 OS-8 2.47 0.82 50 2 3.0 1200 PA 0.5 1.34 15.0 17.9 77� .ae59 7 $ J. r Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway 12:50 PM The Sear -Brown Group 1 /312007 TIME OF CONCENTRATION 100 year design storm Bayer 187010251 1.87(l.l - CCj. ),l D tr = Sa3» tc= t;+tr Cr = 1.25 SUB -BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA C LENGTH SLOPE t; LENGTH CHANNEL SLOPE VELOCITY 4 I. NO. (ac) (ft) N (min) (ft) TYPE(a) M (f /s) (min) (min) 1 2 3 4 5 6 7 8 10 12 13 OS-1 0.51 0.94 75 2.0 1.3 270 - PA 0.5 1.34 3.4 5.0 OS-2 0.65 0.95 80 2.0 1.3 265 PA 0.5 1.34 3.3 5.0 OS-3 1.87 0.94 55 2.0 1.1 725 PA 1.2 2.09 5.8 6.9 OS-4 0.33 0.70 56 2.0 2.5 40 PA 3.2 3.46 0.2 5.0 OS-5 0.48 0.68 35 2.0 2.2 112 PA 2.0 2.72 0.7 5.0 OS-6 0.00 0.25 0 0.0 0.0 0 PA 1.0 1.91 0.0 5.0 OS-7 0.40 0.95 1 2.0 0.1 647 PA 0.5 1.34 8.1 8.2 OS-8 2.47 0.82 50 2.0 1.0 1200 PA 0.5 1.34 15.0 16.0 _ ki •"' .rv'Y Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway 12:49 PM The Sear -Brown Group 102007 , | � q,Rg2§\ 88888888 � ` [ .t888888881 «! [ !�� ( ! : | : !-� [ ƒ�' [ \ \`' §!R R 2!ƒ Jleeg!ƒ {!Sage\ �l222:\ �t [ §25000) \9G2g\ | / a$ Area Inlet Design - Sump Condition Area Inlet for (STIN-A001-3) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: Q,,; = CLH z where: H = head above weir Orifice Equation: Qo„f,P C.A. 2gH where: H= h z- h r Grate: CDOT Type C Area Inlet Weir: Orifice: Cwar = 3.20 C.W. = 0.65 L� = 20.92 ft. (1) AoM=, = 25.13 W Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 4.09 100 year WSEL (4.09) = 0.13 Head (ft.) Qw , QeM. Qm WSEL 0.00 0.00 0.00 0.00 0.00 0.50 18.94 74.13 18.94 0.50 1.00 53.57 104.84 53.57 1.00 1.50 98.41 128.40 98.41 1.50 2.00 151.51 148.26 148.26 2.00 2.50 211.74 165.76 165.76 2.50 3.00 278.33 181.58 181.58 3.00 3.50 350.74 196.13 196.13 3.50 4.00 428.52 209.67 209.67 4.00 4.50 511.33 222.39 222.39 4.50 5.00 598.88 234.42 234.42 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice Control --H Qa'eir t!)orifice 700 500 - - y` 400 9300 LL i i 200 I :• 100 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 7.60 ft. Effective Grate Length = 6.72 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth = 3.74 ft. The Sear -Brown Group 12:57 PM 1 /3/2007 Area Inlet Design - Sump Condition Area Inlet for (STIN-A001-2) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir - Weir Equation: Q„s = CLH 2 where: H = head above weir Orifice Equation: Co A. r2gH where: H =h2 -hr Grate: CDOT Type C Area Inlet Weir: Orifice: C.& = 3.20 0.65 L� = 20.92 ft. (1) Ao,dim = 25.13 ft` Clogging Factor = 0.20 Number of Inlets = 1 Fiowline elevation of grate = 0.00 100 year Design Flow (cfs) = 2.91 100 year WSEL (2.91) = 0.09 Head (ft.) Q.& Qrtf. Qr,, l WSEL 0.00 0.00 0.00 0.00 0.00 0.50 18.94 74.13 18.94 0.50 1.00 53.57 104.84 53.57 1.00 1.50 98.41 128.40 98.41 1.50 2.00 151.51 148.26 148.26 2.00 2.50 211.74 165.76 165.76 2.50 3.00 278.33 181.58 181.58 3.00 3.50 350.74 196.13 196.13 3.50 4.00 428.52 209.67 209.67 4.00 4.50 511.33 222.39 222.39 4.50 5.00 598.88 234.42 234.42 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Space width = 0.1640 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 7.60 ft. Effective Grate Length = 6.72 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth= 3.74 ft. 12:57 PM The Sear -Brown Group 1 /3/2007 DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD 11 Bayer STIN-AA01-1 Design Flow = Gutter Flow + Carry-over Flow i OVERLAND y STRUEET FLOW GUTTER -LOW PLUS CARRY-OVER FLOW F e GUTTER FLOW INLET INLET 1/2 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): Q = 3.32 cfs ` If you entered a value here, skip the rest of this sheet and proceed to sheet O-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = • A, B, C, or D Site: (Check One Box Onl) Slope (ft/ Length ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = Ci ` P, / ( C2 + T,) A C3 Design Storm Return Period, T, = years Return Period Ode -Hour Precipitation, P, = inches C, _ C2 = C'33 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, Tc = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended Tc = N/A minutes Time of Concentration Selected by User, Tc = N/A minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 L__ - 3.32 cfs STIN-AA01-1.xls, Q-Peak 1/3/2007, 12:53 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer - Inlet ID = - STIN-AA01-1 —Lo (C) T Design Information (Input) Type of Inlet Type = COOT Type R Curb Opening - Local Depression (in addition to gutter depression'a' from'Q-Allow') a�=. 3.00. inches Number of Unit Inlets (Grate or Curb Opening) - No =• 1 Grate Information Length of a Unit Grate L. (G) _ N/A- feet dth of a Unit Grate Wo - NIAfeet me Opening Ratio for a Grate (typical values 0.15-0.90) Ii A„�,= ' N/A' Clogging Factor for a Single Grate (typical value 0.50) Cf (G) _ N/A Grate Weir Coefficient (typical value 3.00) C„ (G) _ - NIA' Grate Orifice Coefficient (typical value 0.67) - C. (G) _ - N/A'. Curb Opening Information Length of a Unit Curb Opening L, (C) _ -5.00feet Height of Vertical Curb Opening in Inches H,,,,, 6.00'. inches Height of Curb Orifice Throat in Inches Ham, =. 5.96- inches Angle of Throat (see USDCM Figure ST-5) Theta =- 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = 2.00' feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) _' . 0.20, Curb Opening Weir Coefficient (typical value 2.30-3.00) C.„ (C) _;.. 2.30 Curb Opening Orifice Coefficient (typical value 0.67) Co (C) _ - 0.67. Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef =', N/A- Clogging Factor for Multiple Units Clog =. N/A, s a Weir Flow Depth at Local Depression without Clogging (0 cfs grate, 3.32 cfs curb) d. _' N/A' inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.32 cis curb) d„, _ N/A, inches s an Or fice Flow Depth at Local Depression without Clogging (0 cfs grate, 3.32 cfs cum) d. _ - N/A inches Flow Depth at Local Depression with Clogging (0 cfs grate, 3.32 cis cum) d. _ . N/A. inches Resulting Gutter Flow Depth Outside of Local Depression dam,,,, ='' - NIA -. inches Resulting Gutter Flow Depth for Cum Opening Inlet Capacity In a Sum Clogging Coefficient for Multiple Units Coal= 1.M Clogging Factor for Multiple Units Clog =. 0.20: Curb as a Weir, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 3.32 cis cum) dam, = { - 3.7 inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.32 cfs cum) d. = 4.01 inches Cum as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 3.32 cfs cum) do = _ 3.4 inches Flow Depth at Local Depression with Clogging (0 cis grate, 3.32 cfs cum) d. _, 3.8i inches Resulting Gutter Flow Depth Outside of Local Depression d,.c„s =. 1.0, inches Resultant Street Conditions Total Inlet Length L =. 5.0; feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. = j 3.3`: cts Resultant Gutter Flow Depth (based on sheet O-Allow geometry) d = 1.0" inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 0.8 feet Resultant Flow Depth at Maximum Allowable Spread clsm o = 0.0' inches STIN-AA01-1.xls, Inlet In Sump 1/3/2007, 12:54 PM 30 i 29- -- — 28 - 27 26 25 - 24 O 23 - 22 - 21 - 20- I I I O li 17 A d 16 I I 0 CL to I / I- 15 W d u 14 / 6 13 a 12 11 10 9- 0 7 7 6 5 3 1 1 011 .. 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 a (Cfs) —E—Curb Weir 0 Curb Orif, —B—Not Used • Reported Design —O— Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft.) STIN-AA01-1.xls, Inlet In Sump 1/312007, 12:54 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer_ STIN-AD01 Design Flow = Gutter Flow + Carry-over Flow �OV LROW STREET ySIDE UVAND FLOW e GUTTER FLOW PLUS CARRY-OVER FLOW F <—GUTTER FLOW INLET 1NLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus Flow bypassing upstream subcatchments): 'Q = 16.74 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area Snt Percent Imperviousness - Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Onl) Slope ft/ft Length ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CC2 + Tc ) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C'3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Q = Bypass (Carry -Over) Flow from upstream Subcatchments, 4 = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, Tc = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 16.74 cfs STIN-AD01.xls, Q-Peak 1/3/2007, 12:55 PM INLET IN A SUMP OR SAG LOCATION Project = -- - Bayer Inlet ID = STIN-AD01 - -Lo(C) , Design Information (Input) Type of Inlet Type = COOT Type R Curb Opening _ Local Depression (in addition to gutter depression 'a' from'Q-Allow) alai = - 3.00: inches Number of Unit Inlets (Grate or Curb Opening) No = 1' Grate Information Length of a Unit Grate L, (G) = N/A feet idth of a Unit Grate W. _. N/A feet Area Opening Rabo for a Grate (typical values 0.15-0.90) A„e, _ - N/A. Clogging Factor for a Single Grate (typical value 0.50) C, (G) _. WA Grate Weir Coefficient (typical value 3.00) C„ (G) _ NIA Grate Orifice Coefficient (typical value 0.67) C. (G) _ - N/A - Curb Opening Information _ Length of a Unit Curb Opening L. (C) _ - 15.00feet Height of Vertical Curb Opening in Inches H,,,r =, 6.00 inches Height of Curb Orifice Throat in Inches Hn,,,, _. 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta =' - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = ' 2.00, feet Clogging Factor for a Single Curb Opening (typical value 0.10) C, (C) _ 0.10- Curb Opening Weir Coefficient (typical value 2.30-3.00) C„ (C) _ 2.30 Curb Opening Orifice Coefficient (typical value 0.67) Co (C) _ - 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sump Clogging Coefficient for Multiple Units Coef =: +N/A.. Clogging Factor for Multiple Units Clog = WAi s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 16.74 cfs curb) d„, _ N/A' inches Flow Depth at Local Depression with Clogging (0 cis grate, 16.74 cls cum) d. = N/A--, inches s an Orifice _ Flow Depth at Local Depression without Clogging (0 cfs grate, 16.74 cis cum) da =. NIA inches Flow Depth at Local Depression with Clogging (0 cfs grate, 16.74 cis cum) d„ = N/A. inches Resulting Gutter Flow Depth Outside of Local Depression d� = N/A- inches Resultina Gutter Flow Depth for Cum Opening Inlet Capacity in a Sum _ Clogging Coefficient for Multiple Units Coef = 1.00' Clogging Factor for Multiple Units Clog =.. 0.10 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 16.74 cis cum) cl� _ 7.4, inches Flow Depth at Local Depression with Clogging (0 cis grate, 16.74 cfs cum) d„, _" 8.0 inches Curb as an Orifice, Grate as an Orifice _ Flow Depth at Local Depression without Clogging (0 cis grate, 16.74 cis cum) dy = 4.8. inches Flow Depth at Local Depression with Clogging (0 cfs grate, 16.74 cfs cum) d. _ 5.3'. inches Resulting Gutter Flow Depth Outside of Local Depression d.an = 5.0, inches Resultant Street Conditions Total Inlet Length L=. 15.0'feet Total Inlet Interception Capacity (Design Discharge from O-Peak) O, _: 16.7-i cfs Resultant Gutter Flow Depth (based on sheet Q-Allowgeometry) d = 5.0inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T =' 12.3' feet Resultant Flow Depth at Maximum Allowable Spread d3mEw = 0.0 inches STIN-AD01.xls, Inlet In Sump 1/3/2007, 12:55 PM 30 29 - 28 27 26 - 25 24 23 22 21 20 - 19 18- m �17- t1 to Ca rn 15 0 t 1-f STIN-ADO1.xls, Inlet In Sump 1/3/2007, 12:55 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD -Bayer STIN-AE01.2 Design Flow = Gutter Flow + Carry-over Flow �OVFW ROLI SIDE � FLOW' `Y I STREET � y F GUTTER FLOW PLUS CARRY-OVER FLOW e ® F GUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): 'Q = 6.50 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SubcaPercent Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only) Slope ft/ft Length ft Site is Urban: Overland Flow = Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ` P, I ( C2 + T� A C3 Design Storm Return Period, Tr = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C - N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 6.50 cfs STIN-AE01-2.xls, Q-Peak 1/3/2007, 12:55 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN•AE01.2 ' ,(—Lo (C) ,r Design Information tinput) Type of Inlet Type = CDOT Type R Curb Opening Local Depression (in addition to gutter depression'a' from'O-Allow) a,.,i = 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = - t Grate Information Length of a Unit Grate L. (G) =. N/A feet Width of a Unit Grate W. ='. N/A'. feet Area Opening Ratio for a Grate (typical values 0.15-0.90) h,w = ' N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) _' WA Grate Weir Coefficient (typical value 3.00) C. (G) _ N/A Grate Orifice Coefficient (typical value 0.67) Co (G) _ N/A, Curb Opening Information Length of a Unit Curb Opening L. (C) _; 5.00 feet Height of Vertical Curb Opening in Inches H,,,,t= , - �. 6.00 inches Height of Curb Orifice Throat in Inches H ft t _',..: - 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp =: 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) = r. 0.20 Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) _' .. 2.30 Curb Cpenin 10 Oce Coefficient (typical value 0.67) C, (C) _ 0.67 ResultinQ Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef Clogging Factor for Multiple Units Clog = N/A s a weir Flow Depth at Local Depression without Clogging (0 cis grate, 6.5 cis curb) it. = WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.5 cis curb) cl„_, N/A inches As an Orifice Flow Depth at Local Depression without Clogging (0 cis grate. 6.5 cis curb) da =. _ WA inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.5 cis curb) d„ _ N/A inches Resulting Gutter Flow Depth Outside of Local Depression cl . -,, _ N/A inches Resulting Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coal '=. 1.00- Clogging Factor for Multiple Units Clog = Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 6.5 cis curb) dµ =. 5.7 inches Flow Depth at Local Depression with Clogging (0 cis grate, 6.5 cis curb) d—=, 6.2� inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 6.5 cis curb) da = 5.5 inches Flow Depth at Local Depression with Clogging (0 cfs grate, 6.5 cis curb) de, = 7.1 inches Resulting Gutter Flow Depth Outside of Local Depression d =- 4.1 inches Resultant Street Conditions Total Inlet Length L = - 5.0 feet Total Inlet Interception Capacity (Design Discharge from, O-Peak) O, _ - 6.5 cis Resultant Gutter Flow Depth (based on sheet O-Allow geometry) it = 4.1 inches Resultant Street Flow Spread (based on sheet O-Allow geometry) T = 8.8. feet Resultant Flow Depth at Maximum Allowable Spread d9PXEM = - 0.0 inches STIN-AE01-2.xls, Inlet In Sump 1/312007, 12:55 PM 30 29 28 �I 27 26 - 2524 23 22 21 20 i 19 _ 18 lL 17 . D I O I A C18 t1 to 15 — H m ( I I 0 14 - O I! Q 13 N 12 11 10 - I I y. O I I I 6 . 5 © � I 4- ) I I 3 ' 1 I I II 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) —6 Curb Weir 0 Curb Orif. —9—Not Used • Reported Design —*—Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (ft) I STIN-AE01-2.xls, Inlet In Sump 1/3/2007, 12:55 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-AF01-2 Design Flow = Gutter Flow + Carry-over Flow OVERLAND < Sl GUTTER FLOW PLUS CARRY-OVER INLET i DE FLOW .EET Y FLOW E— F— GUTTER FLOW INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): "Q = 15.57 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness - Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Onl lope ft/ft Length ft Site is Urban: Overland Flow - Site Is Non -Urban: Gutter Flow = Rainfall Information: Intensity I (inch/hr) = C, ' P, / ( CZ + T� A C3 Design Storm Return Period, Tr = years Return Period Orie-Hour Precipitation, P, = inches C, _ C2 = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, tc = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, Tc = N/A minutes Recommended Tc = N/A minutes Time of Concentration Selected by User, Tc = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q =1 15.57 cfs STIN-AF01-2.xls, Q-Peak 1/3/2007, 12:56 PM INLET IN A SUMP OR SAG LOCATION Project= Bayer - Inlet ID = STIN-AF01-2 r—Lo (C) f, Design Information (input) Type of Inlet Type = CDOT Type R Curb Opening Local Depression (in addition to gutter depmssion'a' fmm'O-PJIOW) A.,= - - 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No = - 1 Grate Information .. - ... . ..._ Length of a Unit Grate Le (G) _ 't-• N/A feet Width of a Unit Grate W. = N/A feet a Opening Ratio for a Grate (typical values 0.15-0.90) A„. _ - N/A Clogging Factor for a Single Grate (typical value 0.50) Cr (G) _ - N/A Grate Weir Coefficient (typical value 3.00) C„. (G) _ N/A Grate Orifice Coefficient (typical value 0.67) C. (G) _ : N/A Curb Opening Information Length of a Unit Curb Opening L. (C) _ 10.D0 feet Height of Vertical Curb Opening in Inches H� _ - 6.00 inches Height of Curb Orifice Throat in Inches H� _' 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta =' - 63.4 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W p = 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) Cr (C) _; ., 0.15 Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) _ - - 2.30' Curb Opening Orifice Coefficient (typical value 0.67) C. (C) _ 0.67 Resulting Gutter Flow Depth for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = N/A' Clogging Factor for Multiple Units Clog =• N/A s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 15.57 cfs curb) qw =. WAS inches Flow Depth at Local Depression with Clogging (0 cis grate, 15.57 cis curb) d„, _ N/A inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 15.57 cis curb) da = N/A� inches Flow Depth at Local Depression with Clogging (0 cis grate, 15.57 cis curb) d. _ - N/A inches Resulting Gutter Flow Depth Outside of Local Depression d,.D,,,, = N/A Inches Resulting Gutter Flow Depth for Curb Ovenina Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef = 1.00, Clogging Factor for Multiple Units Clog = 0.15. Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 15.57 cis curb) d. _ 7.5 inches Flow Depth at Local Depression with Clogging (0 cis grate, 15.57 cis curb) cl , _ ` 8.2' inches Curb as an Orifice, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 15.57 cis curb) da = 6.7 inches Flow Depthh at Locat Depression with Clogging (0 cis grate, 15.57 cis curb) da. _. 8.3' inches Resulting Gutter Flow Depth Outside of Local Depression d,.D„b = 57 inches Resultant Street Conditions Total Inlet Length L =. - 10.0 feet Total Inlet Interception Capacity (Design Discharge from O-Peak) Q. = 15.6 cfs Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d =.. 5.3 inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.8feet Resultant Flow Depth at Maximum Allowable Spread dspee.D 0 0.0 inches STIN-AFOt-2.xls, Inlet In Sump 1/3/2007, 12:56 PM 30 29 - — 28 27 26 - 25 - 24 - 23 22 0 21 20 - 19 18 O LL 17 V N 1615 � ( I 0 Lc1 14 13 CL G 12 �0 11 10- 0 8 7 3 I —' I 0 �I 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 (cfs) --&--Curb Weir .-8 Curb Orif. -e Not Used • Reported Design -o- Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (fL) STIN-AF01-2.xls, Inlet In Sump 1/3/2007, 12:56 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD Bayer STIN-AH01-2 Design Flow = Gutter Flow + Carry-over Flow OVERLAND y SIDE OVERLAND STREET E- GUTTER FLOW PLUS CARRY-OVER FLOW 45 leGUTTER FLOW INLET INLET 112 OF STREET Design Flow: ONLY if already determined through other methods: (local peak flow for 1/2 of street, plus flow bypassing upstream subcatchments): Q = 19:12 cfs . If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow Geographic Information: (Enter data in the blue cells): Area SntImp Percent Imperviousness = Imperviousness =Acres NRCS Soil Type = A, B, C, or D Site: (Check One Box Only Slope (ft/ft Length (ft Site is Urban: Overland Flow - Site Is Non-Urban:j Gutter Flow = Rainfall Information: Intensity I (inch/hr) = G ' P1 / ( C2 + Tc ) A C3 Design Storm Return Period, T, = years Return Period One -Hour Precipitation, P, = inches C, _ C2 = C3 = User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), q = Bypass (Carry -Over) Flow from upstream Subcatchments, Q = cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design Storm Runoff Coefficient, C = N/A Calculated 5-yr. Runoff Coefficient, C5 = N/A Overland Flow Velocity, Vo = N/A fps Gutter Flow Velocity, VG = N/A fps Overland Flow Time, to = N/A minutes Gutter Flow Time, to = N/A minutes Calculated Time of Concentration, T, = N/A minutes Time of Concentration by Regional Formula, T, = N/A minutes Recommended T, = N/A minutes Time of Concentration Selected by User, T, = NIA minutes Design Rainfall Intensity, I = N/A inch/hr Calculated Local Peak Flow, 4 = N/A cfs Total Design Peak Flow, Q = 19.12 cfs STIN-AH01-2.xls, Q-Peak 1/3/2007, 12:56 PM INLET IN A SUMP OR SAG LOCATION Project = Bayer Inlet ID = STIN-AH01-2 ¢—Lo (C) K Design Information finput) Type of Inlet Type = CDOT Type R Curb Opening - Local Depression (in addition to gutter depression's' from'Q-Allow) a.., _ - 3.00 inches Number of Unit Inlets (Grate or Curb Opening) No =' - 1, Grate Information Length of a Unit Grate L. (G) = NIA feet Width of a Unit Grate Wo =,.. ' -' WA feet Area Opening Ratio for a Grate (typical values 0.15-0.90) A� _, NIA Clogging Factor for a Single Grate (typical value 0.50) Cr (G) = N/A Grate Weir Coefficient (typical value 3.00) C„. (G) = N/A. Grate Orifice Coefficient (typical value 0.67) C, (G) = r NIA" Curb Opening Information Length of a Unit Curb Opening L. (C) _ 15.00 feet Height of Vertical Curb Opening in Inches H_ 6.00 inches Height of Curb Orifice Throat in Inches H�_ 5.96 inches Angle of Throat (see USDCM Figure ST-5) Theta = 63A degrees Side Width for Depression Pan (typically the gutter width of 2 feet) Wp = _ - 2.00 feet Clogging Factor for a Single Curb Opening (typical value 0.10) C, (C) = 0.10 Curb Opening Weir Coefficient (typical value 2.30-3.00) C„. (C) = y 2.30' Curb Opening Orce Coefficient (typical value 0,67) Co (C) _ 0.6T Resulting Gutter Flow De th for Grate Inlet Capacity in a Sum Clogging Coefficient for Multiple Units Coef= NIAi Clogging Factor for Multiple Units Clog = N/A, s a Weir Flow Depth at Local Depression without Clogging (0 cis grate, 19.12 cis curb) d,M = N/A inches Flow Depth at Local Depression with Clogging (0 cis grate, 19.12 cfs curb) d. _' N/A. inches s an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 19.12 cis curb) da = NIA inches Flow Depth at Local Depression with Clogging (0 cis grate, 19.12 cis curb) d. = NIA inches Resulting Gutter Flow Depth Outside of Local Depression it... _ NIA inches Resultina Gutter Flow Depth for Curb Opening Inlet Capacity in a Sum Clogging Coefficient for Multiple Units _ Coef = 1.00' Clogging Factor for Multiple Units Clog = 0.10 Curb as a Weir, Grate as an Orifice Flow Depth at Local Depression without Clogging (0 cis grate, 19.12 cis curb) clm = 8.1 inches Flow Depth at Local Depression with Clogging (0 cis grate, 19.12 cis curb) cl, = 8.7 inches Curb as an Orifice, Grate as an Orifice Flow Depth at Loral Depression without Clogging (0 cis grate, 19.12 cfs curb) dw = 5.4 inches Flow Depth at Local Depression with Clogging (0 cis grate, 19.12 cfs curb) cl , = 6.0 inches Resulting Gutter Flow Depth Outside of Local Depression it . = 5.7 inches Resultant Street Conditions Total Inlet Length L = - _ 14 feet Total Inlet Interception Capacity (Design Discharge from Q-Peak) Q. _, 19.1 cis Resultant Gutter Flow Depth (based on sheet Q-Allow geometry) d = - 5.7' inches Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 16.4 feet Resultant Flow Depth at Maximum Allowable Spread dsrseao =' 0.0 inches STIN-AH01-2.xls, Inlet In Sump 1/312007, 12:56 PM 30 29 28 27 26 25 24 23 22 21 20 19 18 m LL 17 9 m d 16 a 1n c 15 m n 1a c « 13 a m C 12 11 - 10 s 8 7- 6- 5 4 3 2- 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Q (cfs) -tr-Curb Weir --0 Curb Orif. -a- Not Used • Reported Design -O- Reported Design Flow Depth (in.) Flow Depth (in.) Flow Depth (in.) Spread (fL) I / 0 O i 0 I 0 O O O I I STIN-AH01-2.xls, Inlet In Sump 1/3/2007. 12:56 PM Area Inlet Design - Sump Condition Area Inlet for(STIN-AE01-1) Project No. 187010251 This sheet computes the controlling area inlet flow condition. Weir Equation: r Q_ = CLH' where: H = head above weir Orifice Equation: C. A. f2.YH H =hz -h Grate: CDOT Type C Area Inlet Weir: Orifice: Cesar = 3.20 0.65 Lit = 20.92 ft. (1) AeM. = 25.13 ft` Clogging Factor = 0.20 Number of Inlets = 1 Flowline elevation of grate = 0.00 100 year Design Flow (cfs) = 5.03 100 year WSEL (5.03) = 0.15 Head (ft.) Qwar QoM. O.m=i WSEL 0.00 0.00 0.00 0.00 0.00 0.50 18.94 74.13 18.94 0.50 1.00 53.57 104.84 53.57 1.00 1.50 98.41 128.40 98.41 1.50 2.00 151.51 148.26 148.26 2.00 2.50 211.74 165.76 165.76 2.50 3.00 278.33 181.58 181.58 3.00 3.50 350.74 196.13 196.13 3.50 4.00 428.52 209.67 209.67 4.00 4.50 511.33 222.39 222.39 4.50 5.00 598.88 234.42 234.42 5.00 Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. Weir -Orifice ControlOweir t Oaice 700 600 500 400 0 300 ,K L. 200 100 - r 0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow Depth (ft.) Space width = 0.1640 ft. Bar width = 0.0208 ft. Number of bars = 42 Number of spaces = 41 Grate length = 7.60 ft. Effective Grate Length = 6.72 ft. Space width = 0.6230 ft. Bar width = 0.0328 ft. Number of bars = 5 Number of spaces = 6 Grate Width = 2.66 ft. Effective GrateWidth= 3.74 ft. 12:57 PM The Sear -Brown Group 1/3/2007 .o ST9m -AAO-1 jzcq NeoUDS Results Summary Project Title: STRM-AA01 Project Description: FRV OFFSITE Output Created On: 2/16/2007 at 11:30:39 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information F_ Time of Concentration Manhole Basin ;0verland'[ Gutter Basin Ram I Peak Flow! ID # Area * C�nutes)iMinutes), __ (Minutes) .. (Inch/Hour)j _� (CFS) _ 5. 830.0011 3.3 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Rainfall # i Rainfall Design]— 1 1 Manhole Contributing * Duration 1 Intensity 1 Peak Ground Elevation. Water Elevation j Commentsl i ID # Area C 1 (Minutes) (Inch/Hour)( Flow I (Feet) (Feet) (CFS) 1 Oj 0.0 O.00j 1 3.3� I 4953.301 _ 4953.701 _ Surface Water Present ��� Oi � 5 0 830.00t 3.3 4960.45 4953.83! 1 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. _ Manhole ID Number {{Calculated ' Suggested Existin g J Diameter Diameter 1 Diameter Sewer' i Upstream;. 1 Downstream Sewer (Rise) (Rise) (Rise) Width ID # 1 Shape (Inches) (Inches) (Inches) (FT) (FT) (FT) i _. (FT) I 2 Round) 13.3�� 181 _ 181 N/All Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. +Sewer; Design Full i Normal[0rm.�I Criticall Critical Full Froude 1 j ID Flow 1 Flow ; Depth !eloci IFPS) Depth VelocityVelocitylNumberComment(CFI (CFS) (Feet) (Feet) (FPS) (FPS) IEE ` 3.31 7.4 0.701 4.1� 0.70 4.11 17 0.9g11 A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information -invert Elevation IF Buried Depth lr jI Sewer IDI Slope' Upstream; Downstream' Upstream Downstream) i % (Feet) ! (Feet) (Feet) (Feet) i _Comment i 1 0.501 4952.33!1 4951.801 6.62 0 00j Sewer Too Shallow _ .__ Summary of Hydraulic Grade Line Invert Elevation Water Elevation Feer,,",' Sewer Len 1 (Fee_ _� . Surcharged Length __ (Feet) U stream p (Feet ) Downstreami ( ) __..Feet U stream! p (Fee ) _t Downstream (Feet) Condition! 1 106.58j _86.85 4952.33 4951.80 4953.831 .__.., _ ,_, 4953.70 Subcritical� Summary of Energy Grade Line Upstream Manhole __-_-- _ _ i Downstream I Juncture Losses _ ! . _. _.— _ Manhole J Sewer' ID # _ 1 Manhole! ID # j Energy Elevation[Friction; _(Feet) Sewer (Feet)Aj Bend K Coeffcient Bend Loss 3 I (Feet)] JF--, Lateral K Coefficient Lateral} Loss (Fee] 1 Manhole ! ID # __� Energy Elevation] (Feet) I 1 fE 2 j 4953.891 0 l9 0.05 0.06 O.Oo 0.00! 1 i 4953_70 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. ID # 11 (Feet) I'1__._ 1 __ 11_ ___ 4953.301 4951.80'1 1.50 12 4960.45; — 4952.33{F �8.121 3 Upstream Trench Width Downstream Trench Width On At On At Trench Wall Sewer f Ground In Ground Invert Length Thickness.: Volume ID # (Feet) (Feet) , (Feet) (Feet) (Feet) (Inches). (Cubic yards _ Total earth volume for sewer trenches = 166.14 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 4 .s-rgM - ADOI 1 is" Ize-P •) NeoUDS Results Summary Project Title: STRM-ADO1 Project Description: FRV OFFSITE Output Created On: 2/16/2007 at 11:33:10 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information �F _' Time of Concentration Manhole( Basin Overland: Gutter Basin Rain I ;Peak Flow ID # Area * C (Minutes); (Minutes) (Minutes) (Inch/Hour (CFS) The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/l80) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics ` Design I Manholes Contributing Rainfall Duration! Rainfall I Intensity ! Peak E Ground ( Elevation I Water Elevation, Comments! ID # Area * C (Minutes)G (Inch/Hour)! Flow { j (Feet) 3 (Feet) J____.___..___,____..___.___(CFS)I,_________�_.__.__.__._._�__. ! � 0.001 i 16.71 j 4922.501 � 4925.02 ! Surface Water Present _ -- 0.01 5.012092.50's 16 7j 493005 4926_4811 3 0.._. _ 5.0 4185 00 16 7 4932.18i 4929.701 1 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. Manhole ID Number _ „LL _�-�aleulatFCF-7ugpestedjlj _Existing Sewer Sewer Diameter (Rise) Diameter (Rise) Diameter (Rise) Width Upstream Downstream ID # i Shape (Inches) (Inches) (Inches) (FT) J _ (IT) _ (FT) (r)__ IF1 2 Round . 19.61_N/A� -- 3 �1-- —� `--- -� Round 1 __ _ -21 4 _ _—_ _ 24 _- - 18 N/A Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer! ID ;Flow Design[IowIePth (CFS)FS)', ull j Normal? D;Velocity (Feet) Normal (FPS) Critical Depth (Feet) Critical Velocity (FPS) j Full Velocity (FPS) Froude NumbersComment A - ijF � 167� 13•J 1.5095j Nei i �1, 16.7 10.5! 1.50j 9.Sj 1.41 9.7 9.51 N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevation ied Depth Upstream Downstream4 Comment (Feet)- I (Feet) �Sewer ID±Slope; Upstream; Downstream '� % (Feet) ! (Feet) I 1 € 1.60 _ 4922.80j 4920.99 5.75 O.Olj Sewer Too Shallow; __ -r __ �I `_T 1.00 E4923.96 ^ Y_ 4923AOj 6.72-_ 5.55�— Summary of Hydraulic Grade Line IF- — Water Elevation Sewer SurchargedG Length; Length Fe j UpstrTea DownstreamF(Fee am Downstream) (Fe(Feet) (Feet) _ (Feet) 112.831 _ 112.83 F4932 84920.^99 2 96.13i 96.13 4923.96 4923.00 t) (Feet) ' Condition _ 4926 48� 4925.02 Pressure 4929.70 4926.48 Pressured Summary of Energy Grade Line Upstream Downstream Juncture Losses s ManholeManhole j .i 1 Sewed ID # = I Manholes ID # Energy Elevation (Feet) I Sewers Friction (Feet) s Bend K i ! Coefficients E Bend , Loss (Feet) ' Lateral K Coefficient _J Lateran Loss (Feet) Manhole ID # Energy Elevations (Feet) s i j_.....__....... ._.._.-.._._. � - 4927.87 2.85 0.05(( O.00I O.003j _ 000�I 1� __ a 4925A21 j F��� 4931.09� - 2.43] OST 0.79 0.00 0.00 2 4927:87; Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. Manhole' Rim Elevation; Invert Elevation, Manhole Height' Iy �J (Feet) (Feet) (Feet)y_j !� - 492 0 �N 492099�- 151 4930.05 4922.80�--7.25( 8 22' I] Upstream Trench Downstream Width Trench Width Sewer On At On At Trench 1 Wall Earth Volume ! ID # { Ground Invert Ground ! ; Invert Length Thickness (Cubic (Feet) (Feet) (Feet) f (Feet) (Feet) (Inches) 1 yards __.2.501 1481 16.K— 3.9j — 14.2j — 3-9J _.Y_ 96.13 2.50 238 Total earth volume for sewer trenches = 385.9 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 M -~.^�� __��� ° , , " -_ ___ 1 O � 1 ' --- ---------------'-��---- '��� K ^��' r --^ NeoUDS Results Summary Project Title: STRM-AE01 Project Description: FRV OFFSITE Output Created On: 2/16/2007 at 11:34:55 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration Basin Overland Gutter Basin i Rain I Peak Flow rMian7hole,," ID # Area * C( (Minutes) (Minutes) (Mmutes) (Inch/Hour) (CFS) _ OAE 0�0 _ 1625.00 6.5? ___.6 1625.00� The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Rainfall Rainfall DesignI Ground Water Manhole Contributing; Duration Intensity Peak ; = Elevation Elevation; Comments ID # Area *.0 (Minutes) (Inch/Hour); Flow (Feet) (F ) (Feet) 4930.801 wmm 4927.6681 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. ',,I Manhole ID Number 11 Calculated Su ested Existing Diameter Diameter Diameter Sewers Upstream Downstream Sewer (Rise) (Rise) i (Rise) Width ID # ; Shape (Inches) f (Inches) (Inches) (FT) 1 - 2 ;� Round 17.1j v18 118j N/Al Round and arch sewers are measured in inches. Box sewers are measured in feet. . Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer; Design Flow Full Flow Normall, Depth Normal Velocity CriticalFIclI[eloc,tyl'iticalFull Depth CommentID iNumber(CFSj (CFS)E (Feet) (FPS) (Feet)PS) oFroude FP 6•511 7.4 1.08 4.8] 0 98 �Y —3 771 � 0.83E A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information Invert Elevations Buried Depth I �I Moo­'� pe: Upstreamf Downstream Upstream{ Downstream;Sewer ID { (Feet)T (Feet) _� (Feet) (Feet) 111 Comment 1 0.50 4926.60' 4924.80 2.70 1.10; Sewer Too Shallowl 2 Summary of Hydraulic Grade Line i ! Invert Elevation Water Elevation —1rt .__—...._. ._. Sewer; Sewer i Surcharged Upstream Downstream) U stream i Downstream 1 ID # Length] (Feet)- Length (Feet) (Feet) (Feet) (Feet) i Condition' ---= -_. 359.83 � 4926.60 4924.80l -- 9727- 8j — 4926.23! Subcriticalil Summary of Energy Grade Line 1 Upstream I Manhole Juncture Losses — Downstream Manhole_ Energy I Sewer I Bend Lateral Sewer•II f Manhole Bend K Lateral K Elevation Frictions 1 Loss Loss Energy Manhole{ Elevation] ID # = ID # j Coefficient, Coefficient i I ,(Feet)(Feet) (Feet)] j (Feet) �4928.04j ID # —(Feet) j — 1.81 j O.OSa —0.00 0.00 0.00 4926.21, Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. ID # (I 1 II 4927.4011 4924.8011 2.6011 1 2 11 4930.8011 4926.601 4.2011 3 Upstream Trench Downstream Width 11 Trench Width Sewer ID # kEarth On At ( Ground - Invert I (Feet) (Feet) (Feet) On i At Ground Invert (Feet) E (Feet) Trench Length (Feet) Wall Thickness (Inches) l Volume Yards) 359.831— 2.50 267 Total earth volume for sewer trenches = 267.47 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 4 s-V2n\ - a Fat 's Is1. (tce NeoUDS Results Summary Project Title: STRM-AFO1 Project Description: FRV OFFSITE Output Created On: 2/16/2007 at 11:38:48 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration hole, ffID# Basin Area * C Overland Gutter ( Basin Rain I ]Peak Flow J (Minutes); (Minutes)} (Minutes)!VInch/Hour (CFS)� i�� 0.00 S.Oj 0.0 O Oj 3892-5 � 15.6 (I f 0.0�1 ._ 5 �i 0.0 �O 3892.50� 15.6 m _.. 2650.00 ..._._. 10�6j The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Rainfall 3 Rainfall Desig n Ground � Water Manhole Contributing; Duration Peak � � ID # Area * C Intensity Flow Elevation! Elevation Comments (Minutes) (Inch/Hour) (Feet) i (Feet) 4923.561�_____.._ 0.01 SA; 1946 25j 15�6 4925.54J 4924.061J j _ _ Surface j 3 0 5 0 2650.00 10.6 4923 901 4926.131 Water j 'Present 17 Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. '=1Manhole ID Numberj= Calculated 1 Suggested Existing�� Diameter Diameter Diameter Sewer; m Upstrea= Downstream, Sewer (Rise) (Rise) } (Rise) Width!. ID # i Shape (Inches) i (Inches) (Inches) (Fr) (FT) (FT) (Fr) I�� — -_..2 Round , 28 K 30j � 181 � N/Al IF-- ___ 3 _ Rounds __ 24.21 Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. rSewer Design ID°w (CFS)(CFS)I 15.6� 210.6 Full !Normal Flow Depth (Feet) 4.81 1.50 4.8 1.50 Normal, Critical Velocity DcphVelocity! j (FPS) F�(FPS� 8.8 T 1.39 6.0 1.24 Critical `1._. �6.8i Full ' Fronde Velocity; (FPS) I Namber _ N/AIL._ { Comment _J A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information _'Invert Elevation_ _ ] F Buried Depth Sewer IDI Slope Upstream! Downstream Upstream! Downstream( Comment (Feet) (Feet) T (Feet (Feet) ;� _. 0.2114922.1111 4922.061F 1.931F 0.00 SewerToo S 11 2 11 0.2111 4922AQ 4922.1111 0.0011 1.93 (Sewer Too Shallow`:( PA Summary of Hydraulic Grade Line Sewer Surcharged Sewer; Lengthl Length ID # (Feet); (Feet) Invert Elevation Water Elevation - _ i UpstreamI Downstream Upstream; Downstream ! , Condition {{ (Feet) (Feet) (Feet) (Feet) _ __.,__. J=F22.R�' 22.841 4922.1I 4922.06� 4924.06 4923.56 2 137.82 137.82 4922.40]! _— —4922.11 4926 13 4924.06� „Pressured Pressured Summary of Energy Grade Line i Upstream E Manhole I Downstream Juncture Losses I I Manhole J iFSewer. Manhole` H) # !I ner 1 (Feet) Sewer i (Feet) � Bend KF CoefficientefficientID#— Bend Loss feet) ateral K . — . Lateral Loss (Feet) Manhole,ElevationFriction Enerj Elevation (Feet) 1�I 4925.271 1.71j 0.05 0.00 0.00� 0.001 1 11 4923.561 —2� 0.00 4925.27 Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition: A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations.. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is 1. i Manhole` _ ID # Rim Elevation! (Feet) Invert Elevation' (Feet) } Manhole Height! (Feet) I _— 4923_561 _— 4922.061 1.501 4925.54! V 4922.11 ��^m3.43! 3 4923.90! 4922.40 1.SOj 3 IUpstream Trench Downstream f i Width Trench Width ( Sewer , ID # I On At Ground Invert , On At Ground Invert Trench Length Wall ; Thickness , Earth Volume Cubic (Feet) (Feet) (Feet) (Feet) ? (Feet) (Inches) yards —__ — _) 6.9i 3.9 3�1� 39 22.84� 2.50 1� F 391 69 _ 9 3_7 821F 50, 76 Total earth volume for sewer trenches = 88.08 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 4 5 -rp-)V) - A H 0 -1_ acp NeoUDS Results Summary Project Title: STRM-AHO1 Project Description: FRV OFFSITE Output Created On: 2/16/2007 at 11:41:22 AM Using NeoUDSewer Version 1.5. Rainfall Intensity Formula Used. Return Period of Flood is 100 Years. Sub Basin Information Time of Concentration Manhole; Basin Overland! Gutter Basin Rain I j Peak FlowEl ID # i Area * Ci (Minutes)) (Minutes) (Minutes) (Inch/HourJ (CFS) `s. 1 � 0.00 I 5.0] 0.0 ( O.O",I _ 4780.019.1J IF 2 l o.001F 5.0 o.o1F_6-6T 4780.001119.1 11 The shortest design rainfall duration is 5 minutes. For rural areas, the catchment time of concentration is always => 10 minutes. For urban areas, the catchment time of concentration is always => 5 minutes. At the first design point, the time constant is <_ (1 O+Total Length/180) in minutes. When the weighted runoff coefficient => 0.2, then the basin is considered to be urbanized. When the Overland Tc plus the Gutter Tc does not equal the catchment Tc, the above criteria supersedes the calculated values. Summary of Manhole Hydraulics Design' Manhole! Contributing= Rainfall Duration Rainfall l Intensity Peak Ground Water J ID # 1, Area * C i 1 Flow E Elevation Elevation! Comments, — (Minutes) (Inch/Hour), (CFS)Ji (Feet) (Feet) j �j 0; 0.00.0'� 0.00` 1�91� 49�2425 4923.70 �� 0 5� _ 4780.00 19.1 1 4925.61 4925.07� Summary of Sewer Hydraulics Note: The given depth to flow ratio is 0.9. �- Manhole ID Number j� Calculated Suggested Existing EDiameter Diameter Diameter Sewer; 1 1 Upstream. i Downstream; Sewer (Rise) (Rise) _ (Rise) Width ID # Shape (Inches) (Inches) (Inches) (FT) (IT) (FT) (FTLA F I Roun� _ _ ....�� _.25 77! _._._ ___ .27j 26I /Aj Round and arch sewers are measured in inches. Box sewers are measured in feet. Calculated diameter was determined by sewer hydraulic capacity. Suggested diameter was rounded up to the nearest commercially available size All hydraulics where calculated using the existing parameters. If sewer was sized mathematically, the suggested diameter was used for hydraulic calculations. Sewer Design Full - Normal Normal Critical' Critical[Fun FlowFlowDepth Velocity Depth Velocity locityFroude CommentNumber,ID (CFS) (CFS)(Feet) (FPS) (Feet FP FPS) —, r 1 19.1j 18.9 2.1 5.4 1.56 7.1 5.4 N/A A Froude number = 0 indicated that a pressured flow occurs. Summary of Sewer Design Information �F----Jj Invert Elevation ] Buried Depth F it F- I Summary of Hydraulic Grade Line !�y Invert Elevation ' Water Elevation ' t Surcharged i FSewer ee i Length, Length Upstream, DownstreamE Upstream; Downstream! I Condition (Feet) Feet (Feet) (Feet) I (Feet) (Feet) 1 1j8.55) 38.551I 4922.?J4 4922.75(l 4925.0711 4923.77011 Pressured+ Summary of Energy Grade Line Bend loss = Bend K * Flowing full vhead in sewer. Lateral loss = Outflow full vhead - Junction Loss K * Inflow full vhead. A friction loss of 0 means it was negligible or possible error due to jump. Friction loss includes sewer invert drop at manhole. Notice: Vhead denotes the velocity head of the full flow condition. A minimum junction loss of 0.05 Feet would be introduced unless Lateral K is 0. Friction loss was estimated by backwater curve computations. Summary of Earth Excavation Volume for Cost Estimate The user given trench side slope is_l. I1 ID # J� (Feet) (Feet) _ (� (Feet) ! j F_1_- 2 4924.�l4922.75 � 1.50 IF 21 4925.6111 4922.9411 2.671 K Upstream Trench Downstream Width v�Trench WidthEarth Sewer On At On j At Trench Wall Volume ID # f Ground Invert Ground Invert Length ( Thickness Cubic (Feet) (Feet) (Feet) (Feet) (Feet) (Inches) _ __ Yards) 1 ! 4.7 4.61 ___2.4 _�._.._ 4 21 Total earth volume. for sewer trenches = 21.41 Cubic Yards. The earth volume was estimated to have a bottom width equal to the diameter (or width) of the sewer plus two times either 1 foot for diameters less than 48 inches or 2 feet for pipes larger than 48 inches. If the bottom width is less than the minimum width, the minimum width was used. The backfill depth under the sewer was assumed to be 1 foot. The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 4 (Based on Regulated criteria for maximum Allowable Flow Depth and Spread) Project:.. - .. Bayer . Inlet ID: - - STIN•AA01.1" �TBACK TCROWN T, TMAx Tx S ,t mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave btank for no conveyance credit behind curb) zing's Roughness Behind Curb TBACK = 50.0 ft SBA« = 0.0200 ft. vert. / ft. horiz %AC = .0.0290 : of Curb at Gutter Flow Line Hmm = - 6.00 inches ce from Curb Face to Street Crown TcRw _ 75.0 ft Depression a = 2.00 inches Width W = . -: 2.00 ft Transverse Slope Sx = 0.0200 ft. vert. / ft. hodz Longitudinal Slope - Enter 0 for sump condition So = 0.0050 ft. vert. / ft. horiz ng's Roughness for Street Section %T� = 0.0160 Allowable Depth at Gutter Flow Line for Minor & Major Stone Allowable Water Spread for Minor & Major Storm Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression able Spread for Discharge outside the Gutter Section W (T - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Irge outside the Gutter Section W. tamed in Section T x Irge within the Gutter Section W (Q T - DO uge Behind the Curb (e.g., sidewalk, driveways, & lawns) lum Flow Based On Allowable Water Spread etical Water Spread etical Spread for Discharge outside the Gutter Section W (T - W) r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) e0cal Discharge outside the Gutter Section W. carded in Section T xTn I Discharge outside the Gutter Section W, (limited by distance T mAx) arge within the Gutter Section W (0 d - O0 Discharge for Major & Minor Storm -Based Depth Safety Reduction Factor for Major & Minor Storm arge Behind the Curb (e.g.. sidewalk, driveways, & lawns) num Flow Based on Allowable Gutter Depth Minor Storm Major Stone dmm = 6.001 18.00 inches Tmm 37.51 0 ft Sw = y= d= Tx E. = Q. = QW= QBACK = QT= TTH = Txm= E. = Qx TH Qx= Qw Q= R= QaALK = Od' 0.1033 0.1033 9.00 18.00 11.00 20.00 35.5 73.0 0.159 0,076 49.6 339.5 16.0 130.2 6.6 102.4 65.61 469.7 Minor Storm Maior Storm 16.7 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 245.7 2.9 - 23.1 7.6 268.8 1.00 1.00 0.0 2 3 7.6 337.0 Stone Major Stone Io Year = 1.54 cFs Wit inches inches ft cis cis cis cfs cis cis cis cis cis cis ►oo Yeox = 3.3Z. cs Street Capacity STIN-AA01-1.xls, Q-Allow 1/4/2007, 9:02 AM Street Section with Flow Depths •1$ i • I•••• ♦♦ • ••A• 16 — — I I —T-d N d a p I 8- � cm 6 0-0 I 4 — I Q2—, -60 -40 -20 0 20 40 60 80 100 Section of 1/2 Street (distance in feet) —Ground elev. o Minor d-max -• Major d-max x Minor T-max x Major T-max Street Capacity STIN-AA01-t.xls, Q-Allow 1/4/2007, 9:02 AM II ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) II (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: - Bayer Inlet ID: STIN-AD01. i �TBACK TCROWN S T. TMAx \ BACK W Tx I Street T - Crown y� Q w jj j( j HCURB d S x 5�s mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb TRACK = 50.0 ft SBACK = 0,0200 ft. van. / ft. horiz naACK --...0.0299 of Curb at Gutter Flow Line Hcu%= - 6.00 inches :e from Curb Face to Street Crown Tcaovm = 68.5 ft Depression a = 2.00 inches Width W = 2.00 ft Transverse Slope Sx = ` -� - U200 ft. vert / ft. horiz Longitudinal Slope - Enter 0 for sump condition So = " " 0.0120 ft. van. / ft. horiz Ig's Roughness for Street Section nsmeln = 0.0160 Allowable Depth at Gutter Flow Line for Minor & Major Storm Allowable Water Spread for Minor & Major Storm Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W (T - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) rge outside the Gutter Section W. carried in Section T x rge within the Gutter Section W (Q T - Ox) rge Behind the Curb (e.g., sidewalk, driveways, & lawns) um Flow Based On Allowable Water Spread etical Water Spread vifical Spread for Discharge outside the Gutter Section W (T - W) r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) 'etcal Discharge outside the Gutter Section W, carried in Section T x TH I Discharge outside the Gutter Section W. (limited by distance TMAx) arge within the Gutter Section W (O e - Ox) Discharge for Major & Minor Storm -Based Depth Safety Reduction Factor for Major & Minor Storm arge Behind the Curb (e.g., sidewalk, driveways, & lawns) num Flow Based on Allowable Gutter Depth Minor Storm Major Storrs dmm=1 6.00 18.00 inches Tuex = , 34.31 68.5 1 ft Sw = y= d= Tx = Eo = Ox = Ow = OBACK = OT_ 0.1033 0.1033 8.22 16.44 10.22 18.44 32.3 66.5 0.175 0.083 59.5 410.1 19.2 153.7 6.5 116.4 78.71 563.8 Minor Storn Ma or Storm 16.7 66.7 14.7 64.7 .. 0.378 0.086 7.3 380.6 7.3 380.6 4.4 35.7 11.7 - 416.4 1.00 - 1.00 0.0 105.8 111JI 522.1 to Ysa,'f = -7.4$ cis Raft inches inches ft cis cis cis cfs efs cfs cis cis cis cis 100 '(tar = 16.14 Js Street Capacity STIN-AD01.xls, Q-Allow 1/4/2007, 9:08 AM Street Section with Flow Depths �.4 MJ— d 12 , x xx xx s a _ G 8- r Cm m 4 2 0 -60 -40 -20 0 20 40 60 80 Section of 1/2 Street (distance in feet) —Ground elev. o Minor d-max -. Major d-max x Minor T-max * Major T-max Street Capacity STIN-AD01.xls, Q-Allow 1/4/2007, 9:08 AM 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) 11 (13ased on Kegulateo t:rnena Tor Maximum Allowable rtow Dn and sprea eptd/ Project: .._- -- - .. _._ -- Bayer. _ _ - Inlet ID:. STIN-AE01-2 / TBACK� TCROWN STMAx BACK T� K W Tx Street Crown \ \Qw, iQx��j.// H CURB x a 54 mum Allowable Width for Spread Behind Curb TRACK - 0 ft Slope Behind Curb (leave blank for no conveyance credit behind curb) Sencx - ' 0.050.O R. vert. / ft. horiz ring's Roughness Behind Curb nBncx - - 0.0290 it of Curb at Gutter Flow Line Hcum = - 6.00 inches nee from Curb Face to Street Crown TCRowm = "_ 79.0 ft it Depression a = 2.00 inches it Width W = -- 2.00 ft it Transverse Slope Sx = - -.-.0.0200 ft. vert. / ft. hodz 4 Longitudinal Slope - Enter 0 for sump condition So = ` - 0.0050 ft. vert. / ft. hertz zing's Roughness for Street Section neTHEPT = -' 0.0160 Depth at Gutter Flow Line for Minor & Major Storm Water Spread for Minor & Major Storm Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression ble Spread for Discharge outside the Gutter Section W (T - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) rge outside the Gutter Section W. carried in Section T x rge within the Gutter Section W (D T - Ox) rge Behind the Curb (e.g., sidewalk, ddveways, & lawns) um Flow Based On Allowable Water Spread -etical Spread for Discharge outside the Gutter Section W (T - W) - r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) -etical Discharge outside the Gutter Section W, carried in Section T xTH I Discharge outside the Gutter Section W. (limited by distance T arge within the Gutter Section W (O d - Ox) Discharge for Major & Minor Storm -Based Depth Safety Reduction Factor for Major & Minor Storm arge Behind the Curb (e.g.. sidewalk, driveways, & lawns) mum Flow Based on Allowable Gutter Depth OK: These maximum Minor Storm Major Storm dmm= 1 6.001 18.00 inches Turx= 39.5 ..-79.0 ft Sw = y= d= Tx = Eo = Ox= Ow = OBAcic = OT_ TTM Tx TH - Eo = Ox TH = Ox- Dw= O= R= DBAC = Od= Q.1b 0.1033 0:1033 9.48 18.96 11.48 20.96 37.5 77-0 0.150 0.072 57.5 - 391.4 18.6 -151.5 8.4 121.3 76.11 642.9 Minor Storm Major Storm 16.7 66.7 14.7 64.7 " 0.378 0.086 4.7 245.7 4.7 245.7 2.9 23.1 7.6 268.8 1.00 1.00 0.0 68.3 7.6 .337.0 tO i'Im = 2.95 c-�s ft/ft inches inches ft cis cis cis CIS cfs CIS CIS CIS CIS cfs too Year = (,.5 cars Street Capacity STIN-AE01-2.xls, O-Allow 1/4/2007, 9:10 AM Street Section with Flow Depths ♦ I ♦ 18 ♦ i►♦♦♦♦♦♦ ♦♦♦♦♦♦ ♦* 16 I - 12 —{ ;W KX xx ;<x xxi CL m _ _ L x —4— K7 2 — -60 -40 -20 0 20 40 60 80 100 Section of 1/2 Street (distance in feet) —Ground elev. 0 Minor d-max . ♦ Major d-max x Minor T-max )K Major T-max Street Capacity STIN-AE01-2.xls, Q-Allow 114/2007, 9:10 AM II ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Major & Minor Storm) II (Based on Kegulatea Cnteria for Maximum Allowable glow Oeptn and spread) Project: Bayer - Inlet ID: STIN-AF01-2. yyy 1 //--TBACK TCROWN 'I T, TMAx \ S1BACK W Tx Street Y �Q�i�j i���%� HCURB d \� S x a I\g� mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line ce from Curb Face to Street Crown Depression Width Transverse Slope Longitudinal Slope - Enter 0 for sump condition ng's Roughness for Street Section Allowable Depth at Gutter Flow Line for Minor & Major Storm Allowable Water Spread for Minor & Major Storm Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression able Spread for Discharge outside the Gutter Section W IT - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) uge outside the Gutter Section W, carried in Section T x ttge within the Gutter Section W (0 T - DO uge Behind the Curb (e.g., sidewalk, driveways, & lawns) turn Flow Based On Allowable Water Spread retical Water Spread retical Spread for Discharge outside the Gutter Section W (T - W) r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) retical Discharge outside the Gutter Section W, tarred in Section T x TH it Discharge outside the Gutter Section W, (limited by distance T large within the Gutter Section W (0 d - Qx) Discharge for Major & Minor Storm -Based Depth Safety Reduction Factor for Major & Minor Storm large Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based on Allowable Gutter Depth OK: These maximum allowable flows are TBACK = - - 50.0 ft SBACK = 0.0200 ft. vert. / ft. horiz nBACX = 0.0290 Hcurm= 6.00 inches- TCRQvN = 30.0 ft a = 2.00 inches W = ' 2.00 ft Sx = 0.0200 ft. van. / ft. hodz So = 0.0050 ft. van. / ft. hodz nSTREET = Minor Storm Major Storm cimm = 6.001 18.00 inches Tmm = 15.0 - - 30.0 ft Sw = y= it TX = Ec = 0.= Qw ABACK = QT= TTH = TX TH - Eo = OX TH = Qx= Ow = 0= R= ABACK = Qd = Q.1i , = 0.1033 0.1033 3.60 7.20 5.60 9.20 13.0 28.0 0.421 - 0.202 3.4 26.4 2.5 8.7 0.0 2.0 5.91 35.1 Minor Storm Major Storm 16.7 66.7 14.7 64.7 0.378 0.086 4.7 245.7 4.7 191.6 2.9 23.1 7.6 214.6 1.00 1.00 0.0 68.3 7.6 282.9 to Yeox % S.$i C 3 Rift inches inches ft cfs cis CIS cts cfs cfs CIS cfs CIS Its loo Yew- = IS.57 J3 Street Capacity STIN-AF01-2.xls, O-Allow 1/412007, 9:16 AM Street Section with Flow Depths e e 18 eAk I , 1 N d � 12 c CL \iOl 1 �I 2 o -60 -40 -20 0 20 40 Section of 1/2 Street (distance in feet) —Ground elev. o Minor d-max A- Major d-max x Minor T-max x Major T-max Street Capacity STIN-AF01-2.xls, C-Allow 1/4/2007, 9:16 AM Project:�� Inlet ID: �TBACK S on Regulated Criteria for Q Y \ \ HCURB d TCROW N T, TMAX Tx Sx num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb of Curb at Gutter Flow Line m from Curb Face to Street Crown Depression Transverse Slope Longitudinal Slope - Enter 0 for sump condition Tg's Roughness for Street Section Allowable Depth at Gutter Flow Line for Minor & Major Storm Allowable Water Spread for Minor & Major Storm Cross Slope (Eq. ST-8) Depth without Gutter Depression (Eq. ST-2) Depth with a Gutter Depression able Spread for Discharge outside the Gutter Section W IT - W) Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) age outside the Gutter Section W, carried in Section T X age within the Gutter Section W (Q T - QX) age Behind the Curb (e.g., sidewalk, driveways, & lawns) lum Flow Based On Allowable Water Spread etical Water Spread etical Spread for Discharge outside the Gutter Section W (T - W) r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) 'etical Discharge outside the Gutter Section W. carded in Section T XTR I Discharge outside the Gutter Section W, (limited by distance T MAX) arge within the Gutter Section W (Q d - QX) Discharge for Major & Minor Storm -Based Depth Safety Reduction Factor for Major & Minor Storm arge Behind the Curb (e.g., sidewalk, driveways, & lawns) num Flow Based on Allowable Gutter Depth rown - - "'.50.0 ft TSBAACKOX 0,0200 ft. vent. I ft. horiz nBA� _ `= 0.0290 Hcum inches TCRovm -ft a =inches 4`0.0050 SX -ft. vent. I ft. hodz So = ft. vert. I ft. hodz nSTREET =L Minor Storm Major Storm dmm 6.001 18.00 inches Tum 29.3 - 58.5 ft SW= y' d• TX: Eo' QX= QW= ABACK' QTr TTR TX TR ` Eo, QX TH - QX= QW= Q= R= ABACK' Qd' io `&f 'r : c-5' S 0.1033 ,._` 0.1033 -" 7.02 `. 14.04 9.02 .16.04 27.3 56.5 -0.208 ' 0.099 .-24.5 .171:4 --8.2 61a2 ' 1.7 ' 42.4 32.71 232.6 14.7 64.7 ";. 0.378 _ 0.086 4.7 245.7 4.7 '244.7 *s 2.9 23A 7.6 267.8 1.00 1.00 . 0.0 683 _ 7.6 : 336.1 Ift fiches fiches I fs fs 15 is fs is is fs fs fs ioo seat = nx.16 V�s Street Capacity STIN-AH01-2.xls, Q-Allow 1/4/2007, 9:22 AM Street Section with Flow Depths 18 s®AA A, AA ®asp I a Am �6- - -x-I -x it k_.X'_.YC_X'_`X._. 11 14— N d 1 c I i o 8-` r tm iu 000 I 2 -60 -40 -20 0 20 40 60 80 Section of 1/2 Street (distance in feet) —Ground elev. o Minor d-max m.. Major d-max x Minor T-max x Major T-max Street Capacity STIN-AH01-2.xls, Q-Allow 1/4/2007, 9:22 AM SEAR;• BROWN' :k Front Range Village Riprap Rundown at STRM-AA01 Outlet Updated: 8-Feb-07 By: JOZ 187010251 Checked: Pipe Diameter: D, h_`= 1'8- in JSWlType: Erosion Resistant Soil (Clay) Discharge: 3.32 cfs IMax Velocity: v 7.7 ft/sec Taiwwater*: 0 6 ft (unknown) * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 1.20 < 6 --> use design charts D = 1.50 ft YUD = 0.40 Q/D^1.5 = 1.81 d50 = 1.50 in -------> 0 in ----> Use geotextile or minimum riprap gradation. 2. Expansion Factor: 1/2tanO= 6.47 3. Riprap Length: At = QN = 0.43 ft2 L = 1/2tan0 * (At/Yt - D) = -5 ft 4. Governing Limits: L > 3D 5 ft L<1OD 15 ft 5. Maximum Depth: Depth = 2d50 = 2 (0 in / 12) = 0 ft 6. Bedding: 7. Riprap Width: increase length to 5 ft => -5 ft --> OK Use 1 ft thick layer of Type II (CDOT Class A) bedding material. Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: NAG C3So geotextile Length = --Irlr8 ft Depth = 0 ft Width = .5- 8 ft LA5e 8' b"V 8, NAG C3S0 Geoiext:le— Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTIVE\187010251 \REPORTS\DRAT NAG E\R I P-RAP\STRM-AAOI-OUTLET.XLS SEAR -BROWN ti Front Range Village Riprap Rundown at STRM-AD01 Outlet Updated: 8-Feb-07 By: JOZ 187010251 Checked: Pipe Diameter: D 18 in JVoillType: Erosion Resistant Soil (Clay) Discharge: Q 16.5 cfs IMax Velocity: v 7.7 ft/sec Tailwater*: y 0.6 !ft (unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 5.99 < 6 --> use design charts D= 1.50 ft YUD = 0.40 Q/D^1.5 = 8.98 d50 = 7.44 in -------> 9 in --> Use Type L (Class 9) riprap 2. Expansion Factor: 1/2tanO = 1.85 3. Riprap Length: At = QN = 2.14 ft2 L = 1 /2tan6 * (At/Yt - D) = 4 ft 4. Governing Limits: L> 3D 5 ft increase length to 5 ft L<10D 15 ft =>4ft-->OK 5. Maximum Depth: Depth = 2d50 = 2 (9 in / 12) = 1.5 ft 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width =3D=3(18in/12)= 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type L (Class 9) riprap Length = 5 ft Depth = 1.5 ft Width = 5 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870FW CTIVE\187010251 \REPORTS\DRAINAGE\RI P-RAP\STRM-ADO1-OUTLETALS SEAR -BROWN' Front Range Village Riprap Rundown at STRM-AH01 Outlet Updated: 8-Feb-07 By: JOZ 187010251 Checked: Pipe Diameter: D 18 in IF§o�iiType: Erosion Resistant Soil (Clay) Discharge: Q 9.56 cfs IMax Velocity: V 7.7 ft/sec Taiwwater*: y 0.6 ft (unknown) * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: Q/D2.5 = 3.47 < 6 --> use design charts D = 1.50 ft ° Yt/D = 0.40 Q/D^1.5 = 5.20 d50 = 4.31 in -------> 6 in ----> Use 2. Expansion Factor: 1/2tanO = 4.01 3. Riprap Length: At = QN = 1.24 ft2 L = 1 /2tan0 * (At/Yt - D) = 2 ft 4. Governing Limits: L> 3D 5 ft increase length to 5 ft L<10D 15 ft=>2ft—>OK 5. Maximum Depth: Depth = 2d50 = 2 (6 in / 12) = 1 ft 7 1 S0 -�4 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (18 in /12) = 5 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type L, (CIGss 9) rtpr-y -Type V64GIass 6) riprap Lengtn = 0 rt Depth = i ft 1. 5* {k Width = 5 ft L � C Io.sS R) r; IP r- r Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTIVE\187010251 \REPORTS\DRAINAGE\RIP-RAP\STRM-AH0I-OUTLETALS SEAR -BROWN Front Range Village Riprap Rundown at STRM-AA01 Outlet Updated: 16-Feb-07 By: JOZ 187010251 Checked: Pipe Diameter: D 27 in Soil Type: Erosion Resistant Soil (Clay) Discharge: Q 21 cfs IMax Velocity: v 7.7 ft/sec ailwater*: y 0.9 ft unknown * Assume that y=0.4*D if tailwater conditions are unknown 1. Required riprap type: O/D2.5 = 2.77 < 6 --> use design charts D = 2.25 ft Yt/D = 0.40 Q/D^1.5 = 6.22 d50 = 5.16 in -------> 6 ---> Use Typ 4 GI;as" riprap 2. Expansion Factor: 1/2tanO= 4.73 3. Riprap Length: At = QN = 2.73 ft2 L = 1 /2tanO * (At/Yt - D) = 4 ft 4. Governing Limits: 5. Maximum Depth: =7 LA5 e 'frP - L i c lass 4� rI,pr he Dso = 9 L> 3D 7 ft increase length to 7 ft L<1OD 23 ft =>4ft-->OK Depth = 2d50 = 2 (6 in / 12) _ —1-^ ft 7 I•5- �i 6. Bedding: Use 1 ft thick layer of Type II (CDOT Class A) bedding material. 7. Riprap Width: Width = 3D = 3 (27 in /12) = 7 ft (Extend riprap to minimum of culvert height or normal channel depth.) Summary: Type L (Class 9) r;prgiO T Length = 7 ft Depth = —a-- ft t-64-� .0 Width = 7 ft Reference: UDFCD USDCM, Vol. 1, Major Drainage, Page MD-105 V:\52870F\ACTI VE\l87010251 \REPORTS\DRAT NAGE\RI P-RAP\STRM-AAO 1 -OUTLETALS ENGUSX RANCH L_____________________ "-- I Il i` `♦ `\ ♦ \ I \ \\ \\ E%ISIING�19'-SNItM-...__..._ T t T \ \ \ \ I \ \ \ 1 SEWER CULVERT j II\t �\♦ �`` \\ \�� \�\ � \l �\ \\ rl 1. � I t mill E\ \` `� ` \� I \ \\ ` I h \\ \\ I\ XISTING IRRIGATION -ARM AL DITCH I I " I I HP HARMONY I CAMPUS SWALE 110 I I/ \ \`�1 1 1 \ I 1 \ \ \\ ��� \\ --1 /1 EXISTING MOBILE HOME / II 1V III i \ V 1 I A\�*`� PARK AREA INLET / / r / 1 / I _ — 1+ I I I I � r � �\ \ N III IIIIII I I ll \ I I I I I \ i L— li II I I j� I A A A I 1 1 I �I gilIl \ \ \ I\ \ \\ \ \ 1 \ I II \ I 11 1 I1 I STORMS TING DUAL 18 HARMONY ILE HOME PAROK WIN CULVERTS RRIGADUATIII I `I II IY 1 \ \ I II I I I 1 I DITCH LATERALS \ \ 1 I \ I I 1 \ \ \ \ EXISTING MOBILE HOME ` \ I 1 \ \ 1 I \ I I I II 1 1 1 .IIII i� PARK AREA INLETS I 1 I I \ \ \ \\ III I 1 1 1 A \ i \\\\\\\Illll I TAll . >_ F'(20NT R41JGE VIL GE N I I 1 1 I I 1 j- V II I AV AI V AV 11 II 11 1 1 II / Y 1\ 1 11 \ 11 \I \I 1 11 I 1 1 11 1 1 / HARMONY MOBILE HOME PARK \\ 11 II II �I I� I II 1 IV II 11 1/ / Lille (HARMONY COMMUNITY) PARAGON \ 1 1 1 \ — PAID OUTLET - 114 41 \ �y IGIe I �I III11 HP CAMPUS EXISTING MOBILE HOME I 1 A A A V 1 II (AVAGO) PARK AREA INLETif 1 \ \ \ \ \ \ \ 1 E%IS NC PRIVATE I A A A A V 1 V IR ATIW DITCH / \v v A A\ `\ II 1 1 Av I II ✓� Y � / � : f V Avvv \vvvv v`� vv I vIv vv �.. �v III \\ II\ PARAGON /jS� III'1111: //AI I RBI I� I � . . . • � , � �� I � II A A � 4 . I /// O , I 1 , [ - :� . `•'. uT — _\ \\ ` \� IRAI ATOM FLOWS TO ! \\ \\ \ DIRECTED I I" THROUGH 51 I A k—\\\ I // \\\\\ N hill II HARMWT LOAD tGr III?\ GRASS MEDIAN I \ r �I`. —{ \ \ I `/III 18' STORM DRAINyPARAGON (TO BE REMO\iD)� EXISTING 15'J �E%ISPNG 18'Y !LLVIA� IRRIGATOR PIPE IRRIGATOR PIPE 'I p' RNLI / 0 ISO w AID SCALE IN FEET --- RIwT-a-wR DTI CONTWR5 EVSTING STORM DRAW —� DIRECTOR OF ROW FOR DRAINAGE REVIEW ONLY NOT FOR CONSTRUCTION City of Fort Collins, Colorado UTILITY PLAN APPROVAL APPROVED: City Engineer Date CHECKED BY: Water 4 Wastewater Utility OWe CHECKED BY: Stormwater Utility Dole CHECKED BY: PaMa k Recreotion Date CHECKED BY: Traffic Engineer Dote CHECKED BY: Date THESE PUNS HAVE BEEN RENEWED BY ME LOCO ENTITY FOR CONCEPT ONLY. TIE RENEW DOES NOT IMPLY RESPONSIBILITY BY ME RENEWING DEPARTMENT, ME LOCAL ENTRY ENGINEER, OR THE LOCAL ENTRY FOR ACCURACY AND CORRECTNESS OF THE CALCULATIONS. FURTHERMORE, TIE RENEW DOES NOT IMPLY THAT QUANTITIES OF ITEMS ON TIE PUNS ORE THE FINAL QUANTITIES REQUIRED. THE RENEW SHALL NOT BE CONSTRUED IN ANY REASON AS ACCEPTANCE OF FINANCIAL RESPONSIBIUTY BY THE LOCAL ENTITY FOR ADOMONAL QUANTITIES OF ITEMS SHOWN THAT MAY BE REWIRED DURING THE CONSTRUCTION PHASE. Tb n e i$ T�� aq 9 u�i �8:9E Ija el �SEEjae$$$gg{� �SEddB I ly Illy lis Ij I S t III �y I I� = 4w7 a Q ai w 5 Oz a iN O m 0 LWD Q V W CL Of a 13 w ~ rZ n OW LL u� a 100% PLANS NOT FOR CON51RLCTtt1N January M7 Pm He Ikma: C-lso xaf JAA AIR All Chu Qua DelYM Dmwing %. C-150 Recision Sn t 0 22 N 139 7,I HYDROLOGIC SUMMARY TABLE Design Point Basinsteam) Area Composite "C" QW cM1 Q1a cM1 100 100 383 0.85 15.24 38.14 101 101 018 083 073 1.79 102 102 0.57 075 203 539 103 103 241 ON 9.17 23 Bit 10/ IN 046 On 207 445 105 105 091 0.84 381 905 109 IN 1.51 ON 4.83 12.16 107 107 037 0.84 151 388 100 IN 040 00 167 4.02 109 109 167 0.85 6.76 Has, 110 110 062 078 2A6 1 6.02 111 111 103 087 437 1023 112 112 DUN 0.86 3.08 TR 113 113 1.DO 0.90 441 999 114 114 1.00 0.90 4.38 9,93 116 115 127 am 5.59 12.M Ila 116 070 095 325 an 117 117 1.W on 7.29 16.79 tie lie 103 0.92 484 1027 119 119 0.5] 0.91 252N 67 120 120 0.59 ON 264. 5.88 121 121 042 0.81 1.611 42D 122 122 0.W 0.]t 2.2B 6.30 123 123 1.24 on 2.83 ].5] IN IN 0.11 095 0.53 1.14 126 125 0.31 O84 1.18 3.10 1M in 0.67 095 303 6.63 In 130 1.08 0.95 498 10.72 131 131 0.81 067 26,1 875 132 132 0.23 095 1.05 2.26 133 133 0.14 095 am 1.40 134 IN 0.82 0.95 3]9 8.15 136 135 0,39 070 1.31 3.38 In IN on 095 165 3,55 137 137 047 095 2.19 4.71 In in 1.84 091 8.19 1834 139 139 1.70 0.56 3,93 1063 140 140 on 065 1.15 3.10 141 141 3A 095 15.0 3243 142 142 1.23 00 481 1227 10 143 BOB 076 18.M a13 150 in 335 0.85 8.10 23N 151 151 148 062 384 11M 190 IN 1.63 0.85 BUSS 1623 161 lei 0.97 0,81 3.7 962 162 in 0.]] ON 3.38 765 181 in 065 095 2.99 644 1" 164 1,50 082 01 13.27 166 IN 0.55 0.91 241 542 200 29MD 274 ON 101 2724 301 201 136 O88 570 13.55 202 202 032 0.95 1.49 320 203 203 0.10 0.84 0.40 0.97 zes 204 024 D.95 1m 2.38 205 205 03] 0.95 1]0' 385 spit spit 032 092 142 3.16 307 207 1.22 078 4.23 11.91 2D6 spit 029 0.94 1.3d, 291 3W 209 0.1fi 0.93 0.71 1.55 210 210 0.39 0.91 In 3.91 211 211 038 090 1W 3.82 212 212 044 0.95 2.as 4.39 213 213 171 0.as 6.82 1]01 214 214 1.12 0.89 4.89 1119 216 215 1.53 0.61 3.53 f 0.15 216 216 0,16 095 075 161 217 217 141 0.95 6.SO 1399 218 218 023 095 1.OR 2,32 219 219 040 0.95 187 4,01 NO 220 201 091 843 19.95 221 221 101 OT2 3.Be 931 300 BOND 0.55 am 1.19 3.SO 301 MY In 087 5.45 13.12 302 JD3_.F 302 303 021 a 095 066 097 095 20 250 304 304 0.28 095 129 2078 305 ' _ 306 0.31 095 141 IDS 308 306 069 0.0 3.02 686 307 3W 0,81 am 2.15 6.10 as 4O0 am 00 121 2.59 401 -461 0.30 095 138 2.% 42 402 204 067 828 202) 406 403 033 067 138 324 404 404 1_75 on 733 1745 as 405 1.16 0.89 504 1152 as 406 111 089 447 11.09 07 407 0.SO 0as 3.55 Esw as 409 172 088 ]30 17.14 4M 409 1.Be 0SO 7W 1961 410 410 On 093 171 374 411 411 028 068 120 2.79 412 412 ATM ON 20.0 43.19 413 413 0.37 on Ise 3.as 414 414 112 062 278, 7T/ NO 500 302 ON 988 30W 601 501 065 1.13 125 am 26 682 $02 502 0 ]8 32 8.8 W3 5W O74 3.21 875 604 We OB] OBT 2.86' 731 606 We03 091 8.22 1912. POND SUMMARY TABLE Pak Tael VW. Re ON VI9EL a41 ml A 7.61 927 W B 223 s8J9 C 1,37 93339 M23,124WA6 D 19.76 WA6D.92 935.12F 1eg 2]O6505 estis 0 ISO BOB 450 SCARF IN FEET MaT-M-WAY PROPOSED FLON ------��- m311NG CONTOURS NEW INTERIM BRAIN WITH MANHOLE EATSING STORM DRAIN PROPOSED SMILE PNCWiEO AVERAGE STREET APE DIRECTION OF FLOW DE9ON POINT 96iiiiiiiiiiia IS ■ salas DRAINAGE! BASIN BOUNDARY /ND\. - BASIN NUMBER `AD " BASIN AREA (IN AWES) FOR DRAINAGE REVIEW ONLY NOT FOR CONSTRUCTION City of Fort Collins, Colorado UTILITY PLAN APPROVAL APPROVED: City Engineer Dole CHECKED Eff Wale, It Wasleeater Utility Dale CHECKED BY: stormrale, Utility Date CHECKED HY: Raft h Recreation Date CHECKED BY: Trot6c Engineer Dote CHECKED BY: Date THESE PLANS HAVE BEEN RENEWED BY THE 10CA- ENITY FOR CONCEPT ONLY. ME RENEW WES NOT IMPLY RESPONSIBILITY BY ME REVIEWING DEFARTMEM, THE LOCAL ENMY` ENGINEER, OR THE LOLL ENTIIY FOR ACCURACY AND CORRECTNESS OF ME CIICUUPONS. FURTHERMORE. ME REVIEW DOES NOT IMPLY TUT QUANTITIES OF ITEMS ON ME PLANS ARE ME RNAl DUAIJIITES REWIRED. ME REVIEW SHALL NOT BE CQNSTRUED IN MY REASON AS ACCEPTANCE OF FINANCIAL RESPONSIBILITY BY ME LOCAL EMIIY FOR ADDIPONLL QUANTITIES OF REMS SHOWN TIUT NAT BE REQUIRED DURING ME CONSRNCTON PHASE. - N 7 5 z W U1 J > OL 0 Z 0 K �¢ W Q 0O ON. 2 III z al O uA aED ED a LL � P"I Seel 100% PLANS NOT FQ4 CQV5IRIKTKNi Jenuery0*7 FnizlFnpd X� YB JFG DrAwN NO. C-151 Revision Stleel 0 23 DI 139 20.4 acre-ft WOCV=2.2 au' 0 ISO k� •=4 it ••wk, it I ■kp OFFSITE MOBILE HOME PARK t ! s Fl EtiMM���j M all ENGLISH RANCH `.4-2w kill. will 'FUTURE DEVELOPMENT - FUTURE DEVELOPMENT' >iima: , lit Vic xA 296 - - , I ALE 3 12,9 �. ' - — - � - . (OUTLET) It QwO=76.7cfs(MAR) 297 I QN„p 26.8 cfa r , ze 9 , Q-e 26.9 cfs ■ ■ Q ', 20.1 OR A m /� POND POND It VI=7.6 ■ acre-0 ���' �(e = 1.4 Bere-ft }(.,, , — 2.3 acre -I I W Q(V — I s3 acr-1 i map j7 1' • , •it 207 - 1b0 30) • Y1410, .. . In �°°� _ ■ ■ SCNLE IN FEET ■ � 209 I ■ ■ r ' 210 PONDS ■ d __ __ 10 VN xn-0.47 acro-8 W V=0.07a ft 200 ' /.� ! k PONDIT1 VNIIII)E= 1.7 acre-ft Y ■W =0.33 acre-ft250 elm WIF1 ■ .. — - - �' FUTURE DEVELOPMENT , ' Io .+ ijj We at ■ i J ■ ' ipjE 205 Q q!tr tJ .n 'PARAGON y� , City of Fort Collins, Colorado yw 172�� ' UTILITY PLAN APPROVAL '1' , ■ a Nt PPER ID ■ :' I,e , \ 1 , GUY EOA my Oofe i +\ 1 r CHECKED BY %e \ Water k Wastewater utility me W CHECKED BY: 'r 244 _" ■ I I E . AMD P� N ^ staNawater Illility OWN i AT HARMONY 2.47 t = w p' ■ - „+ �' Y+'� =5.3 acre-R cHECKEo er: ` WOCV = 0.38 acre-ft may" - 1 �,,,, ! Parw : Rearaauon Date w -� — CHECKED BY: _ le III_ _ _— - '� r^ iroK Engineer Oe[e IN - MiCHECKED BY. HARMONY ROAD y mte _ • • s '��ILT- _ - � - — - - THESE PUNS R4VE BEEN RENENED BY ME LOLL �.4 _ ENTITY FOR CONCEPT ONLY ME RFAEW DOES NOT I !�+ 7• IMPLY RESPONI BY ME RENEWING DEPAWtlENT nti✓<+ +: t • Ef i' �� FOR DRAINAGE I' j ME LOcu ENTITY ENGNEER, OR ME LOrsL B,RTY Ir FOR ACCURACY MD CORRECTNESS OF THE •' REVIEW ONLY III CPLCUOTIONS. FURTHERMORE, ME RENEW DOES Nor ��„- . 1\ r' E ■ R s� 3� NCIT FOR CONSTRUCTION IMPLY MAT ODM,DDES OF ITEMS ON ME PW1S MBE (( ' ■ !! t>• K I • __ - THE PHIL QUANTITIES REQUIRED. ME REOIPW SHMFL ■ =•• ewe: r G\ .`Neil - W NOT BE CONSTRUED IN ANY REWN M ACCEPTANCE 1 1 1�1 I t lit 1 } � OF nNANCyM. RESPONSIBILITY BY ME LOCAL ENTITY s y-may FOR A➢DIIDIVIL OUMPTIES OF ITEMS SHOWN THAT , 1 \WNW1 — e�wI 1 MAY -at BE REQUIRED DURING ME CONSTRUCTION P It - 111 • x1— QE mn ass zl cis=`$oo� I Ja_PP$ �g aaE 1 Ili I €1 pE Z w w 5 J F J OIL Z0 K Q U d K DO z Cx LL PemilSeN 100% PLANS NOT FOR CONSTRUOILK January 2007 LEGEND loss, lose MODSWMM BASIN BOUNDARY 101 DIVERSION ® PIPE / CHANNEL 103 BASIN 104 DETENTION POND — DIRECT FLOW NODE/ UNDEVELOPEDLAND 105 DESIGN POINT I 296 296 NOTE: RUNOFF FROM THE HARMONY 299 ! COMMUNITY IS ROUTED THROUGH POND D AND WILL OVERFLOW INTO BASIN 296. 322 — 302 , I POND D I N 360 286 Oa RMONY 302 AN OMMUNITY (M LE HOME PARK) 206 — — I 321 301 — Qlolls Iop ec°o NI vo ove�oo 301 HARMONY COMMUNITY o e (MOBILE HOME PARK) FRONT RANG seem a- 0 0 0 0 300 u U 0 a I N 0 0 I I 0 0 HARMONY COMMUNITY I 300 (MOBILE HOME PARK) a 0 0 0 0 (243 else seem — - —220 215 I 215 ENGLISH RANCH POND#7 (214 lose sells .,� seem ONE — seem 297 ; a ��lII���� UNDEVELOPED • INADV _TENT •� F;j� DETENTION ONO C ® POND HIP CAMPUS II �� i 1 jx ---------------- f'���� _ :I,,,•JMI :L• G •, i City of Fort Collins, Colorado UTILITY PLAN APPROVAL THESE PUJIS HAVE BEEN RENEWED BY THE LOCAL ENTRY FOR CONCEPT ONLY. THE WPRWED: REVIEW ODES NOT IMPLY RESPONSIBILITY BY City Engineer Dale THE RENEWING DEPARTMENT, THE LOCAL ENTITY ENGINEER, OR THE LOCAL ENTITY FOR CHECKED BY: Water WWaelexatm Utility Dale ACCURACY AND CORRECTNESS OF THE CALCUTATONS. FURTHERMORE, THE RENEW CHECKED BY'. DOES NOT IMPLY MAT QUANTITIES OF ITEMS Slormaater Utility 5 Te ON THE FILMS ORE THE HNAL QDANTTRES CHECKED BY: REQUIRED. THE REVIEW SHALL NOT BE Parks A: Recreation Date CONSTRUED IN MY BUSCH AS ACCEPTANCE OF FINANCIAL RESPONSIBNtt SY THE LOLL CHECKED BY: ENTITY FOR ADDITIONAL QUANTITIES OF ITEMS Traffic Engineer Dare SHOWN TNT MAY BE REQUIRED DURING THE CHECKED Sy: CONSINUCTON PRISE. Dote 4N f4 f 8lt Koo c,gill m �fi�eeE lfill!B 13aBa! C �ppg6E6$aHyyy{� Ili I� ) r I I! i c6 g ca LU �_ Qxm CC > �x a w W 0 QZ U W W Z DO N� Es LL � PNTI.Bw 100% PLANS NOT FOR CONSTRUCTION January NT R, wmei�Ji DM x.m.: o-ly x. AH• YY F DIa•Yq NO. eC-153 Reneion Sheet 0 4od in 15 111 Q9 Abe 310 B "7 Mr BMW 01 BM17.2 eaw ;,\ tlM1Y.tl Mw HORSETOOTH EA I p 0 145 24 ®3 Bi A>R• 0! BM323 Amr ( Be.10.9 Aar W BM20.6 Aar ® N 0242�1 f 9A-:1.9 ear BM10. Aaw 14D 90001m PARK REG 303 9e-ee9 ear 11 K1 215 C 21 214 BA-41.9 Aar suKsnxf 03 )O5 304 p P t]gy91 Rµp1 POW p 96 213 9e-12.9 ear 296 ® 135 ee-a.e Aar 02 322 297 360 601 �-9 Pm01a 212 F21 Tj 121 ® ® 70 125 br 206 0 0 BA-3e.e Aar 1;J.6xYR. ^. 1 j 09 B I0.1 ear ��Y O6 50 p 30 BM10.0 ear BM0.6 Aar 250 O BAD.] Aar BMe4.9 Aar � d' ® 205 N 8e-17.2 Aar HARMONY ROAD w 110 BM1].e Aar (Hydrogr9Ph to Foolhll• Basin) 10 �ydm 151 Rad r 150 /) IIIear 100 BM123 Aar s g p9 e F ��3tima rya4yA 5 LEGEND Pnixt wmer 187010251 re wm. r m.a. _PQhU Sm, wuoo �yt EXHIBIT4a Redsion shw 0 Of