Loading...
HomeMy WebLinkAboutDrainage Reports - 02/05/2015 (2)I City of Ft. Collins pro Plans Approved By Date Final Drainage Report TIMBERVINE FORT COLLINS, COLORADO . Prepared For: WW Development Landon Hoover 1218 West Ash Street, Suite A Windsor, Colorado 80550 Prepared By: Galloway 3760 E. 15t' Street, Suite 202 Loveland, CO 80538 (970) 800-3300 Contact: James Prelog Project No. SPHLV0001.01 July, 2014 G la"I'll o w a Y Planning. Architecture. Engineering. July 23, 2014 Mr. Glen Schlueter City of Fort Collins 281 North College Avenue P.O. Box 580 ' Fort Collins, CO 80522 Re: Timbervine Dear Glen: Galloway & Company is pleased to submit this Final Drainage Report for your review. This report accompanies the July 2014 Final Plan submittal for the proposed Timbervine ' development. Comments from the Preliminary Review Letter dated June 13, 2014 have been addressed. This report has been prepared in accordance to Fort Collins Stormwater Criteria Manual (FCSCM) and serves to document the Stormwater impacts as associated with the proposed Timbervine project. We understand that review by the City is to assure general compliance with standardized criteria contained in the FCSCM. Please review this Final Drainage Report at your earliest convenience. We look forward to your comments and ultimate approval of the Drainage Report for this project. Please contact us if you have any questions. Sincerely, Gallowa ' Jame relog, E Senior Civil Project Engineer JamesPreloq@.gallowayUS.com G a o w a ' Planning. Architecture. Engineering. CERTIFICATION OF ENGINEER I hereby certify that this report for the preliminary drainage design of Timbervine was prepared by me (or under my direct supervision) in accordance with the provisions of the City of Fort Collins Stormwater Criteria for the owners thereof. James Prelog Registered Professional Engineer State of Colorado No. 39373 TABLE OF CONTENTS ' General Location and Description...............................................................................................1 1.1 Location................................................................................... .........................1 1.2 Description of Property.................................................................................................1 Drainage Basins and Sub-Basins.................................................................................................2 ' 2.1 Major Basin Description...............................................................................................2 2.2 Sub -Basin Description..................................................................................................2 DrainageDesign Criteria.............................................................................................................3 3.1 Regulations...................................................................................................................3 3.2 Hydrologic Criteria.......................................................................................................3 3.3 Hydraulic Criteria..........................................................................................................3 DrainageFacility Design.............................................................................................................4 4.1 General Concept...........................................................................................................4 4.2 Specific Details.............................................................................................................4 Conclusions............:...................................................................................................................6 5.1 Compliance with Criteria..............................................................................................6 ' 5.2 Drainage Concept..........................................................................................................6 References..................................................................................................................................7 Appendix A Reference Materials Appendix B Hydrologic. and Storm Sewer Calculations Appendix C Inlet Calculations Appendix D Water Quality and Detention Pond Calculations ' Appendix E Riprap Calculations Appendix F Drainage Maps ' Timbervine, Final Drainage Report ii ' General Location and Description 1.1 Location The proposed development of Timbervine is located in the northwest quarter of Section 8, Township 7 North, Range 68 West of the Sixth Principal Meridian in the City of Fort Collins, County of Larimer, State of Colorado. ' Timbervine (referred herein as "the site") is bounded to the west by the Dry Creek subdivision, to the south by International Industrial Complex, to the east by Lake Canal and to the north by the Burlington Northern Railroad and East Vine Drive. See Appendix ' A for a Vicinity Map. 1.2 Description of Property The site consists of approximately 39.2 acres of mostly undeveloped land. There is an existing valley running north to south through the middle of the site with slopes typically at 0.5%. To the east of the site is the Lake Canal irrigation ditch, which flows from the northwest to the southeast. According to the Natural Resources Conservation Service (MRCS) soils map, the site consists of the following soil types, ranked from most prominent to least prominent: Nlap Unit Map Unit Name Hydrologic Symbol 64 Loveland Clay Loam, 0 to 1 percent slopes C 49.1 33 Fluva uents nearly level D 27.0 53 Kim Loam, 1 to 3 percent slopes B 17.7 7 MLRA 67B — Ascalon Sandy Loam, 0 to 3 percent B 3.5 slopes 101 Stoneham Loam, 1 to 3 percent slopes B 1.6 54 Kim Loam, 3 to 5 percent slopes B 1.0 105 Table Mountain Loam, 0 to 1 percent slopes B 0.1 For more information on soil conditions, the Timbervine Soils Report will be provided for the Final Drainage Report. The project will consist mostly of single-family residential lots, and landscaped areas with associated roads, utilities, and stormwater detention facilities. Timbervine, Final Drainage Report Pagel of 9 ' Drainage Basins and Sub -Basins ' 2.1 Major Basin Description The site is located within the flood insurance rate maps (FIRMs), Community -Panel Numbers 08069C0983H, revised on May 2, 2012, and 08069C0981G, revised on June 17, 2008, located in Appendix A. The entire site is located in Zone X. According to the City of Fort Collins Stormwater Master Plan, the site is located within ' the Dry Creek Drainage Basin. The basin map is located in Appendix A. The Dry Creek Drainage Basin is tributary to the Poudre River. The upper and middle portions of the basin is composed of mostly rangeland and irrigated hay meadows and pastures. The ' lower basin is mostly developed land, including commercial, industrial, and residential uses. No irrigation ditches will be affected by the development of Timbervine. All runoff from Timbervine will be directed to the onsite detention/water quality ponds which will outfall to Dry Creek. There are no offsite flow patterns that will impact the site. ' 2.2 Sub -Basin Description The site was divided into sub -basins for the purposes of designing the inlets and storm sewer. Runoff from the sub -basins will travel overland to the curb and gutter. The curb and gutter will convey runoff to local inlets and the storm sewer system or to swales along the east and west sides of the development where it will be conveyed to the water quality/detention ponds. Timbervine, Final Drainage Report Page 2 of 9 Drainage Design Criteria ' 3.1 Regulations The drainage design is in accordance with the City of Fort Collins Stonnwater Criteria as ' well as the Urban Drainage and Flood Control District Criteria Manual. Wherever possible, the Directly Connected Impervious Area (DCIA) will be minimized by the use of a grass Swale, a PLD Swale, trickle channels, riprap, pervious pavement/pavers, and water quality ponds. The "Four Step Process", recommended by UDFCD, will be implemented to maximize water quality. 3.2 Hydrologic Criteria The one -hour rainfall Intensity -Duration -Frequency table (Tables RA-7 and RA-8) from the City of Fort Collins Stormwater Criteria was used to determine rainfall intensity and runoff flow for the minor and major storm events. ' The Rational Method, utilizing coefficients located in Tables RO-11 and RO-12 of the City of Fort Collins Stormwater criteria, was used to determine runoff flow rates for the ' design of the storm sewer and inlets. The detention discharge rate was set by the historical release rate of the Dry Creek Basin, provided by the City of Fort Collins as 0.2 cfs/acre. For the final report, the storage calculations were performed using the Rational Formula -based Federal Aviation Administration (FAA) procedure in conjunction with a twenty percent upward adjustment to account for the larger resulting storage volume that would be obtained from the SWMM modeling. One hundred percent of the water quality capture volume (WQCV) was added to the minor and major storm detention volumes of the 10- and 100-year events, respectively. Separate design storms have been analyzed for both the initial (2-year) and the major (100-year) events. ' 3.3 Hydraulic Criteria Street and inlet capacities have been determined using UDFCD's "UD-Inlet Version 3.14" program. ' Storm sewer capacities and hydraulic grade line calculations have been determined using "Hydraflow Storm Sewers Extension for AutoCAD Civil 313" for this Drainage Report. ' Tinibervine, Final Drainage Report Page 3 of 9 ' Drainage Facility Design 4.1 General Concept In the developed condition, the site is divided into two major basins, Basins A and B. These basins are further sub -divided into 16 basins for sizing of the inlets, storm sewer and swales. The site will ultimately consist of ground covered by pavement, rooftops, and landscape. Runoff from the sub -basins will travel overland to the curb and gutter. ' The curb and gutter will convey runoff directly to the swales and local inlets, where it will enter the storm sewer system. Both the swales and the storm systems will convey the runoff to the water quality/detention ponds. ' Runoff from the exiting water quality/detention ponds will flow south through the storm sewer and into a drainage channel, which ultimately outfalls to Dry Creek. Basin A Basin A is generally located in the eastern portion of the site and has been sub -divided into ten basins. The basin consists of single-family residential lots. Runoff from the "A" Basin is conveyed south by storm sewer or bioswale to Water Quality/Detention Pond A. Basin B Basin B is generally located in the western side of the site and has been sub -divided into six basins. The basin consists of single-family residential lots. Runoff from Basin B is conveyed by curb and gutter and swales to water quality/detention Pond B. 4.2 Specific Details The most difficult issue for the drainage system for this site was the flatness and lack cover available for the storm sewer. To solve this issue, runoff is designed to flow overland where possible. When storm sewer is necessary, elliptical pipes are designed to convey flow to the water quality/detention ponds at a minimum slope while still conveying the necessary runoff. The water quality/detention ponds will be hydraulically connected. There is a 24-inch RCP connecting the two ponds with 2 inlets contributing flows. This pipe has a capacity of 13.76 cfs. The inlets plus the inlet 100 yr flows require 12.73 cfs of which only 8.7 cfs capacity is needed to allow the ponds to equalize. The ponds onsite have been analyzed for both detention and water quality. The proposed ponds have been designed to' cumulatively provide the maximum storage volume capacity calculated for the site. The eastern pond (Pond A) will capture Major Basin A flows and discharge through the 24-inch RCP connecting Pond A to Pond B and into the western pond (Pond B). Pond B captures flows from Major Basin B and flows from Pond A. All flows will be released from the outlet structure in Pond B at the 2-year historical rate of 7.84 cfs (0.2 cfs/acre, provided by the City of Fort Collins). Detention pond calculations are located in Appendix D. Tinibervine, Final Drainage Report Page 4 of 9 After the flows have been released from Pond B, an outfall pipe will carry the flow south into the existing City Canal. A drainage easement will be dedicated for the outfall pipe and a Swale has been sized to appropriately carry 'the flow to the City Canal. Calculations for the offsite pipe and swale are located in Appendix B. In the event of the ponds reaching capacity, emergency spillways for both ponds are set at an elevation of 4932.95 feet. The overflow will release onto Mexico Way and south onto International Boulevard, which will release flows into the center detention islands and ultimately to the City Canal. To treat for water quality, 10 soft bottom pans will run along the bottom of both ponds A and B, as well as the water quality outlet structure located at the outfall of Pond B. Major Basin A will be treated by the 4' PLD low gradient swale which directs most of the basin flows to Pond A. Major Basin B will be treated by an offline Porous Land Detention pond before being released or overflowing into Pond B. Maintenance access will be provided to the ponds in order'to maintain water quality features and detention volumes. For both Pond A and Pond B, maintenance access will be provided along Mexico Way. The water ponding depths of the ponds are 4.20 feet and 4.83 feet for Pond A and Pond B, respectively. The ponds will be located within dedicated tracts surrounding both water quality/detention ponds, including all appurtenances necessary for the operation and maintenance. Timbervine, Final Drainage Report Page 5 of 9 Conclusions 5.1 Compliance with Criteria The drainage design for the Timbervine Subdivision site is in general compliance with the City of Fort Collins Stormwater Criteria, the City of Fort Collins Master Drainage Plan, as well as the Urban Drainage and Flood Control District Criteria Manual. Modifications from said Criteria include: 5.2 Drainage Concept The proposed storm drainage improvements for the site should provide adequate protection to the site and improvements downstream. Also, the drainage design for the site should not negatively impact the existing downstream storm drainage system. Timben,ine, Final Drainage Report Page 6 of 9 References 1. City of Fort Collins Stormwater Criteria, prepared by the City of Fort Collins, revised February, 2013. 2. Geologic and Preliminary Geotechnical Investigation, Timberline Subdivision, Fort Collins Colorado,. Project No. FC06508 prepared by CTL Thompson, April 28, 2014. 3. Stormwater Master Plan for the City of Fort Collins, prepared by the City of Fort Collins, accessed April, 2014. 4. Urban Drainage and Flood Control District, Drainage Criteria Manual Volumes 1 and 2, prepared by Wright -McLaughlin Engineers, dated March 1969 (updated June 2001), and the Volume 3, prepared by Wright -McLaughlin Engineers, dated September 1992 and revised July 1999. 5. Web Soil Survey, Natural Resources Conservation Service, United States Department of Agriculture. Online at: http://websoilsurvey.nres.usdaSpy/ Accessed: 04/07/2014 Tinibervine, Final Drainage Report Page 7 of 9 Appendix A (Reference Materials) Ga owa Planning. Architecture. Engineering. Final Drainage Report TIMBERVINE FORT COLLINS, COLORADO Ji I I T F Vine 73, Sr. —Mot S.11 st..tyr 1MFortCo4holB,,,-, Site ec Neer / Perk Lartr, Mobd, Hocoe Park ftsel. Ceowlm EMulberrySI MulberryS, $� �rUfal Area -.11,� .Fort fun From Range Arruc Cep. Fort Co4hos Nursery a IL Vicinity Map N.T.S Final Drainage Report TIMBERVINE - 8 r DRY CREEK hr. b O COOPER SLOUGH. -J✓:YI IC .V! WEST NNE SITE ® E r wml Sr owfl7wrEt.fr OLD TOWN CANAL IMPORTATION 8 CACHE LA ® j POUDRE N c�a+E r'J SPRING CREEK a FOOTHILLS F.0*M W1M MAIL CREEK jFOXMEADOWS w MR90" an a r M � M 8 FOSSIL CREEK C.R Vtt. to Major Basin Map N.T.S � va W cDLLR'C9 m 8m a. LLJ m -�ii R ) C Q O 00 ES�aE u0 W d 3 a `a Mt) < Z m �' W O a� � � LL S$z F w 2 z CL CL y o u S C9 d Fy a �6 oo Z O mGo o Ip Q .,LO O W :.i /-� F S °$SSA II o Z 4a_ .7 O U O w Ne= ggpp JE E E-e S sE�°o r� W (r] � a V aJ.. �Uf {Vy Ouwmo WWWO r��y/ vi Y� O W p� W rc £ice Nc� �O�cB$ aItO AAAA V.A LL Q O .a U Q = w awN. c7198 ! 6 fill U `o,Eic LC 0 O 0 o A m ® O? 3 Y E -$ELL0 C) 0�v a_ _ _ _ - LO N m d E 3 m o H N L O �3o=a AVM 318906 a lanoo U U J Q OV3H3133n9 g AVM In Q (18VH016 \� 3AWO = / O¢ b�S�bOa3W O cQzt AVM NOHAW 0R14E w 2 < o w w ¢w > It o Z yrC c Q, �O �P zF oD > o m �� fri)o 60 z COU z(r o ¢p � ¢co3AI80 N w w AAOOSn 3NVl VW3l E z z 0 0 a Gz,�N � Oc x � LU o U IU) v O W 0 12U SNOMO OA -AO All 0 O _ ALNnoo AiNnoo 2J3NIHV-1 0 o O } O FJ-I V1 � U E'i U 0. W o U U z 0 �z m N LL1 me rn W w� Lu u' oi°m e c—It_ Q O xx xam COm M N N v CL E0 E `$ o E LLI w t U ao w as Q a« m 7; w i nto a V,2 o ug M `Yam LLI A m P Z m Q LL qq $ m oobmb poo D n D IIp ` W U ■�y� 'per > C °"o°°� O Z /O� i o It d!!i� u m 0 Ta' _ E LL d a (n �' G'i fL w o $p �a3 =e r $ E w J cc C Z O O U i m b ��mB d: �o [� � o mP2 ccn„w V 0 O a .a O. n � z a� go om rn o N°� 9 O� oLL O O Ca ,�� Zw N s: x (a1 R;pE g 8 w SO=e mF�a� m Ti i E m IN tL 1.� V gS 8 .L Q LI — TLLU O u m - - __ __ —_m°a.E .. 9 ® 9 9 0 6 ® ®® 9 ® 9 0�°' w E o , Y _ m M E O N T 8 z z w to 3Wou HOwnw ienoo OOIX3W O � f Uj 00 O 7 Z w Oa N SI cs tJo Gs os L ; ss �` ticaci[u Er mnE $ • 8$ m w e o LJJ rn g A 90 n n 9 Wgg a5m 4a c°y"m am cb C.c v 3Z O fi LL a @ n 8 rc E o E W ON j gn L u 40 Q E F� w 0 Sa wam Em 3- uOmon a�nm U o t u m m 9LY s zW d„ 00 2a- Ynw wi Z m O «m 4EELL c 4' n O G $S� 4 Y o �v Otq mOnB S S8 ;a a O �C`2 O W 9 O c v➢ jj q E 8E c(i = FOO o2 4 m e c J O U LL 224455 ES ao n0 ��wam >n�e a m �\ rCO L U • a 4 c LLmo �i .°3 9 O 4m=m • 2 u o = s E S m m w E O • 0 g J p N N 9`0 �, .9 5 m UOC UD • N u ELL 0 O7 m N �E� m..0 0 _- U N UL / V 1 a N -t�� uF f• wwwyp O "cc -To U w U 0 w �vW �> p° LL LL L Z) C Yn w tea° E 3 fi w G o� N J A T W _ "� 'a � `-"taw m �o, '-' U9'^ m m io$ r c' Tu 0 C C u; O C V m O C w w w ccu LL W A w m> o c O p T U \ 0 9 w �-zg O N mL C C rnti S w N C d 2 c o o w y c 3 0 0 — a u v m Yw E u m 3> v (nJ ccw¢ m 0 ami `m w o 0E 6c 3 c W vow c E Q Q LLLLJJ y 0 'O Q C o a ° ° o a m N e T Q p '[ L >, N p C a+ CO C �J m b L ui Q ,p L '� U YO N Z N Q \ o Vm]i ' m 8t o °o L w c D 0° 'd C �Q O S v c v ¢ D E v O > m Cm yno Y w ° ° 'Ew w aLu v>NN Y v m Q0 — a E I'l Q w .� Q o w E m m y ¢ v v o L Z v o' lNo w m a V yN b� wE 0� a LwLOOo w O "H w a (=� m -0 O DO OC O C w > w S aN O a viZ m LLQ > o N o�mw� �O� oo " O O oD 'mw o o oo° wo E° w w n w n w o o w 6 A yQ ° Qaw N N w o w ° S ° i Of w>LLJ O 0 U O m LU _ Z N o o w > w a 0 o wO v O v 0 O N3 `1 C u Z mw umm n5Iwon� V w V w O ¢ ¢` 0 C tL O C p m O m > o N= wW ti L L Q W w Q w 2 Q W O Q w Q: Q W m Q W > W W > W 3 w !9 0 w C w X W X Cl w W 1�,,\ am+ ,���� F Y io 0 o 0 0 0 0 0 0 O O �� H Y O O O 2 P N OO8£6bb OZL£666 OV%64b 09SE666 O86E6" OOKav z H OHM" M SS i SOL z 'z^ P N R RmR 3 3 e V T d rqi � imp O T ow d ) � 'w O � / O O m c e Z O v � Z In o N �3 x � a o 0 4 ry p^ � C O n n !M9 7 Jl e Z C N O Z U M.6zz SOT CI, N7 Z O O LL Z a 0 Z W CD W J a w N 0 O O pp m C O « J UN (pl @ .@. O O Z @ t w y w 0 w C @@ @ I 3 C n @ Z N O V 0 N J O w N C_ E inm J aavNE m w J - w C p N N _E w C 0` w a yy m N N 0 m O a,U n YL L w U-,O0 Q yy jaNI N cl (b co2!NaZ w0 2LD m E Ja 10 Cy m C,(D ' v p1 C .joQ �E ;: m: Oy 0 m 0.L mdCc O w y Q w C O Q 4 a u mLd tnwwno Da E� (D �oNm o«E J J 'oaZou a._ (n C a) w m w m> y w 3 `w m L Gl l0 a 10 Z C .0 Q$m y m= -1 m y w C o N 0 m rT 7 E 2 w o L w N 'O c of v N W rn m O 'cm w C C N n Z >. w ;C m N 0 N f N O N E O V m 0 .o TE (n a; w O C Ecm Jc .k 0 U CDm Jp O y� CL @ w m omv� �' 0 CD 0 y m@ p V S a o w y C j n °�:° w u 0- w g> J T (n w - 2 E =, - Y n O n m m w E m E w w d E p p U }: U m o N a- 2 o.=o Q m F- 0 J (n (n o (n o m o U N L 0 E F- u ._ o w H _m > H N > @ T @ c @ 0 0 c U c T L n m O N = N N D o W ? O O 0 t N E 9 o a: a:a o l0 O U U o W d c 'm w N� Z i N O K = 7 Q O O® O U w n m a o Q @ > m N UI O C O C N CCc O O _ = m W p N Q O T p W Q C y d d O 0 0 D 0 o pp O O Q m¢ a m m U 0 a z m Q am m v c3 o z m Q a m m m V) V) Q N Ita m Z Hydrologic Soil Group—Larimer County Area, Colorado Timbervine Web Soil Survey Hydrologic Soil Group Hydrologic Soil Group— Summary by Map, Unit.- Larimer County Area, Colorado (CO644) - Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 7 MLRA 67B - Ascalon B 1.3 3.5% sandy loam, 0 to 3 percent slopes 33 Fluvaquents, nearly level D 10.0 27.0% 53 Kim loam, 1 to 3 percent B 6.6 17.7% slopes 54 Kim loam, 3 to 5 percent B 0.4 1.0% slopes 64 Loveland Gay loam, 0 to C 18.2 49.1 % 1 percent slopes 101 Stoneham loam, 1 to 3 B 0.6 1.6% percent slopes 105 Table Mountain loam, 0 B 0.0 0.1 % to 1 percent slopes Totals for Area of Interest 37.0 100.0% USDA Natural Resources Web Soil Survey 3/24/2014 2" Conservation Service National Cooperative Soil Survey Page 3 of 4 ' Hydrologic Soil Group—Larimer County Area, Colorado Timbervine Web Soil Survey ' Description Hydrologic soil groups are based on estimates of runoff potential. Soils are ' assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. ' The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. ' Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils ' have amoderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist ' chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. t Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer ' at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. ' If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method. Dominant Condition Component Percent Cutoff: None Specified Tie -break Rule: Higher UusD.n_ Natural Resources Web Soil Survey 3/24/2014 Conservation Service National Cooperative Soil Survey Page 4 of 4 DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF KA 80 70 60 0 t 50 s40 d r-0 30 20 10 5,000 sq, tt. homes ' 4,000 sq. f . homes ' 00000 3,000 sq. ft homes r - r - r - - 2,000 sq. R homes - ' 1,000 sq. ft. homes # i •- i / 0 0 1 2 3 4 5 6 Single Family Dwelling Units per Acre Figure RO-5—Watershed Imperviousness, Single -Family Residential Two -Story Houses ,.00 0.s0 - 0.80 - 0,70 u 0.60 $ 0.60 . U 0 � 0.40 - K 0.30 0.20 . 0.10 000 0% 10% 20% 30% 40% 50% 60% 70% 80% 80% 100% Watamhed Percentage Impamionness _ Figure RO-6—Runoff Coefficient, C, vs. Watershed Percentage Imperviousness NRCS Hydrologic Soil Group A 2007-01 RO-17 Urban Drainage and Flood Control District Appendix B (Hydrologic and Storm Sewer Calculations) Gas!"I'moway Planning. Architecture. Engineering. Galloway lob Name: Timbervine G a oway 3760 E. 15th Street, Suite 202 lob Number: SPHLV0001.01 Loveland, CO 8O538 Date: 7/23/2014 %arcing. Architecture. 6gineauq. Ph: (970) 800-3300 By: J. Prelog Timbervine Composite Runoff Coefficient Calculations Location: Fort Collins Municipality: Fort Collins Minor Design Storm: 2 Major Design Storm: 100 - Soil Type: C/D Table Rau Radonal Method Runoff Coef iclents ror Composite Ausl�sis Storm Return Period Freil vmrs m 1 II to 25 261050 51 ro 100 Basin Design Data I (%) = 95% 95% 42% 42% 50% 25% 10% 20% 1 (%) Runoff Coeff's Basin Name Design Point Apawd meets (sf) Add.Wc ooc (sf) ASFRo . (sf) Am,, SFH.. (sf) A crawl (sf) A an. tun (sf) Alscane la soil) (sf) Aivane(Q. soil) (sf) A Tonal (sf) A Toul (aC) Imp (%) KC0300 C2 CS C30 C100 Al 1 41,552 11,090 174,577 0 1,614 0 0 25,495 254,329 5.84 50.8% 0.26 0.34 0.34 0.34 0.43 A2 2 14,662 4,091 66,782 0 562 0 0 6,935 93,032 2.14 51.1% 0.26 0.34 0.34 0.34 0.43 A3 3 0 0 11,700 0 6,362 0 0 55,692 73,754 1.69 26.1% 0.36 0.20 0.20 0.20 0.25 A4 4 36,405 12,986 641103 - 17,421 3,858 0 0 35,813 170,586 3.92 52.9% 0.25 0.36 0.36 0.36 0.45 A5 5 0 0 27,494 0 4,336 0 0 60,763 92,593 2.13 27.9% 0.35 0.21 0.21 0.21 0.27 A6 6 0 0 0 4,928 1,382 0 0 23,281 29,591 0.68 25.1% 0.36 0.20 0.20 0.20 0.25 A7 7 0 5,868 0 24,980 1,459 0 0 15 32,223 0.74 52.0% 0.26 0.35 0.35 0.35 0.44 A8 8 15,508 11,708 0 46,755 0 0 0 29,601 103,572 2.38 49.6% 0.27 0.34 0.34 0.34 0.42 A9 9 0 5,741 0 15,088 2,429 0 0 6,674 29,932 0.69 47.9% 0.27 0.32 0.32 0.32 0.41 Al0 10 0 9,237 0 34,493 14,273 0 0 139,443 197,446 4.53 29.5% 0.34 0.22 0.22 0.22 0.28 B1 11 51,700 11,867 94,444 46,646 5,357 0 0 34,849 244,863 5.62 52.8% 0.25 0.36 0.36 0.36 0.44 B2 12 27,295 7,101 66,973 0 460 0 0 9,424 111,252 2.55 56.6% 0.24 0.38 0.38 0.38 0.48 B3 13 2,458 675 46,751 0 6,598 0 0 33,777 90,259 2.07 36.2% 0.32 0.26 0.26 0.26 0.32 B4 14 4,895 1,182 0 0 0 0 0 3,064 9,141 0.21 69.9% 0.19 0.49 0.49 0.49 0.61 B5 15 9,556 1,938 22,718 0 0 0 0 6,105 40,318 0.93 53.8% 0.25 0.36 0.36 0.36. 0.45 B6 16 0 0 18,170 0 4,451 0 0 111,834 134,456 3.09 24.0% 0.37 0.19 0.19 0.19 0.24 051 17 20,074 6,504 0 0 0 0 0 4,417 30,995 0.71 84.3% 0.13 0.65 0.65 0.65 0.81 052 18 20,133 6,527 0 0 0 0 0 4,483 31,143 0.71 84.2% 0.13 0.65 0.65 0.65 0.81 TOTAL SITE 204,031 83,485 593,711 190,211 53,142 0 0 582,766 1,707,346 39.20 43.7% 0.29 0.30 0.30 0.30 0.37 TRIB PONDA AREA 108,127 60,721 344,655 143,565 36,276 0 0 383,713 1,077,057 24.73 42.7% 0.29 0.29 0.29 0.29 0.37 TRIB POND B AREA 95,904 22,764 249,056 46,646 16,867 0 0 199,053 630,298 14.47 45.2% 0.28 0.31 0.31 0.31 0.39 8214_Rational Calculations.xlsx Developed C Page 1 of 1 Galloway Maruung. Alclutacture. E*rmd% Galloway lob Name: Timbervine 3760 E. 15th Street, Suite 202 Job Number: SPHLV0001.01 Loveland, CO, 80538 Date: 7/23/2014 Ph: (970) 800-3300 By: J. Prelog Timbervine Time of Concentration Calculations Location: Fort Collins Municipality: Fort Collins Minor Design Storm: 2 Major Design Storm: 100 Soil Type: C/D Travel Time (&) tc Urbanized Check t� Sub -Basin Data Initial Overland Time (y) tr=Length/(Velocity x 60) ' 4 p Com ON Final Basin Aac) Upper y Length Velocity 4 Time of - Total 4=0(min)tl Design Poin CS most Slope (%) Slope (%) Type of Land Surface Name (ac) (min) (ft) (fps) (min) Length (ft) 0 (min) 4n Length (h) 4++ti = t. Paved areas & shallow Al 1 5.94 0.34 75 2.5%' 8.9 637 0.6% 20 1.5 6.9 15.7 712 14.0 14.0 paved swales Paved areas & shallow A2 2 2.14 0.34 75 2.5% 8.8 707 0.6% 20 1.5 7.6 16.4 782 14.3 34.3 caveswales A3 3 1.69 0.20 56 2.5% 9.1 405 0.8% Grassed waterway 15 1.3 5.0 14.1 461 12.6 12.6 Paved areas & shallow A4 4 3.92 0.36 75 2.5% 8.7 762 0.6% 20 1.5 8.2 16.9 837 14.7 14.7 aved swales AS 5 2.13 0.21 45 2.5% 8.0 614 0.3% Grassed waterway 15 0.8 12.5 20.5 659 13.7 13.7 A6 6 0.68 0.20 52 6.4% 6.4 201 0.3% Grassed waterway 15 0.8 4.1 10.5 253 11.4 10.5 Paved areas & shallow A7 7 0.74 0.35 54 2.5% 7.4 163 1.3% 20 2.2 1.2 8.7 217 11.2 8.7 pavedswales Paved areas hallow &alses AS 6 2.38 0.34 75 2.5% 8.9 488 0.8% 20 1.8 4.6 13.6 563 13.1 13.1 aved sw Paved areas & shallow A9 9 0.69 0.32 60 2.5% 8.1 221 0.6% 20 1.5 2.4 10.5 281 11.6 10.5 paved swales A10 10 4.53 0.22 60 . 2.5% 9.2 643 0.6% Grassed waterway 15 1.2 9.2 18.4 703 13.9 13.9 Paved areas & shallow B1 11 5.62 0.36 75 2.5% 8.7 880 0.6% 20 1.5 9.5 18.2 955 15.3 15.3 aved swales Paved areas & shallow20 B2 12 2.55 0.38 75 2.5% 8.4 1294 0,6% 1.5 13.9 22.3 1369 17.6 17.6 paved swales B3 13 2.07 0.26 45 2.5% 7.6 1150 0.3% Grassed waterway 15 0.8 23.3 31.0 1195 16.6 16.6 Paved areas & shallow 84 14 0.21 0.49 15 2.0% 3.4 80 0.6% 20 1.5 0.9 4.3 95 10.5 5.0 aved swales Paved areas & shallow 85 35 0.93 0.36 60 2.5% 7.7 350 0.6% 20 1.5 3.8 11.5 410 12.3 11.5 paved swales B6 16 3.09 0.19 60 2.5% 9.5 655 1.0°.6 Grassed waterway 15 1.5 7.3 16.8 715 14.0 14.0 Paved areas & shallow O81 17 0.71 0.65 30 2.3% 3.5 730 0.6% aved swales 20 1.5 7.9 11.3 760 14.2 11.3 Paved areas & shallow OS2 18 0.71 0.65 30 2.3% 3.5 730 0.6% 20 1.5 7.9 11.3 760 14.2 11.3 aved swales 8214_Rational Calculations.xlsx Developed Tc Page 1 of 1 m C O W u m U O C E 0 to 0 9 m . `m oo O m u>1.2 d O m % m N Im 1 m d rmn� O E 0 2' � a on c O cc ry O 2 C a° dom Nmm L 0 � N m 002 q m m C m Y l7 m O i O ` o M 3� = o rrou > d rn �3 rn m m m m v> m o o a 4<¢ m m m a 0 a 0 a 0 a 0 a o a a a O a o= d d 0 d 0 d m m saloN O 0 O d O y O d O y p V°° p 0 5 0 0 m !0 0 m a0 0 m o m 0 a 0 a >>>>>>>> 0 0 0 0 0 ¢ d 0 m 0 00 0 0 0 o ~ 0 r (u!W) OW1 lelo 4 0 m Q r$, N $', N 0 n Q o n tl O �+ m o H m �v m o m O o w m o o 0 m 10 0 m A 0 m m o O o m 0 m o O 0 o Q 0 m 0 m (111W)jl O O O m N 0 0 0 O 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 O O F U C O C 0m (S(j) Ar�IaA m O o m 0 m 0 m 0 m °� (NI Ul6ual Q N N m a tO (sPl ad!d nV4,xwd(Sp) M01)ad0 'a(%) adot0 I m N N CJleualeW ad cl ci ci 0 lualeAal 5 5 5 5 5 5 jo (u) azlS adld o M m N N IooO, janm(ueo 0 paldawalu! 0 u c v w 5£ 5 4 p m m m adRl Lary! > > > U ¢ o o N 0 rn rn r r r a (sP) O nm m N m m N N O N N N m p Orn n N m o Q Onl m m t 0 (Iwu!) I w vo'i co rn v rn co rn ro m m ' m v M ai n 1 n 16 K = m m Q N o o rn rn m m (Ultu) of lelol O m Q o Q m ry o m m m rn iv o m o a m ¢ m (Sp) p m mm < A C m m N N O V O C N N m Cf v m v v N m N v m d I� Q m m Q] an d Q Q O Uw !) I m n Of m O a a O) �n m m a o LL a O m m rn O m ab o m n¢ m Q ' n a o m w m m a o m A m a Q a e r r o d o r r ad d r r o ¢ ro ro ro r a r r o m r n (3e) V.0 pp N N ONi O d O r N. G o C O N O N _ pO fV o G G o m�p 0 mm 6 O 0 r O (UIW)Ol O O O O m O O f0 N O n < O n th O N O O m O t•1 O O ci t7 O m h O f0 A O fD tO O N O N O O Q O m O m i gaol gonna m Q m Q m N m Q A N m N Q Q N Q Q m N Q Q m W. 0 N m 0 m 0 m Q 0 Q N 0 m 0 m 0 (0e) Bard yy m �d ^ fV A f0 N W of ^ lV [[pp fO, C. Q A G m lV m C m O m N m lV 0 lV N C O) C O M n G n O lulod u8!sa[) N m m Q m m m m n m m O O m m m aweN uiseg a N ¢ m ¢ I Q ¢ m ¢ m ¢ n ¢ m ¢ rn ¢ O ¢ m N m m Q m m m m m O N O `o u a 0 C x m C O 7 U W U O C K E 0 O 17 C O N m C `OO M O e a� Ea\a m z � — a o� m `c 0 N O S C a �m N L � � N m 0.oqm y .... m m �> y ` o 3 l\MlI E m t_ N b H m IJ a ¢ m m m 0 o E 7Eo 0 a 0 o. 0 a Co o. m m saloN 0 y 0 � 0 m 0 � o b o 0 0 0 o 0 a 0 a 0 0 Q a 0 0 d0' 0 K K K K opp 0p (ulw) awy lelo O Q M Q !00 N O N Q m pp �O O p p O^ N N th i0 O 0 p W m N o m �O t0 A pK tD (O O O O N �0 p O O Q m m m E - (Ulw)U o 0 o rn ry o o -o m 0 0 m 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 7 - m m (sdl) gnolaA fA O o h 0 Vl 0 N W 3 �VI W (U) L06ua� Q � N N M a. (sp) gloede adid "VY •xad (sp) mol j adld N m a (%) adolS 0 o 0 0 0 0 0 0 0 0 leualeW adld cai cai U ¢ of o ¢ ;ualenmb c C c s c c Jo (u) aziS adid O M O O N N (ooc) JaAO"W p paldawalul o 9 m c m m v m O¢ N N N addl lalul > " U D: 3 3 3 U U U n n 0 a0 m m v! F F F o a (Sp) o O 0 N m Q Q O O Q O U4NI) I N N ItQ N m Q OQ m m N m m m W O (oe) V,� o m rn o vi o N ry m n in ei Q o V; v (Ulw) of lelol om Q 0 6 0 N m ry m ry m o n �Oo r uoi_. of M tD tD Orn ¢ t7 h m ((sp) O tND Y N a pp �0 N ¢ Q Q m O N A m¢ a0 ^ a V C y h (p m O h N m Q' fO Of V C A tp w tp 10 N Q Q O¢ Q N O ¢22 m a m N mZZ O m a LL g' LL b LL O b LL O LL O (Jwul A A m Q N (D N N A N O) A O m m m of m ri F of ni di r F Q vi vi 1Vo— m 4 of vi vi fVo— v vi � m m vi vi (og) O r Q Q N tO N O LL O n O O O O O b O O O 00 O r O A o N O O O �O O W O m o l0 O f0 O O N O O O In O In (UIW)'JI Q Q N Q m O A C6 m 0 m O r f0 O L6 V Nu C_ ' Uaoo Uouna Q �? 00 Q 0 O o N t0 m 0 N 0 O N 0 10 m 0 Q 0 6 N m 0 N N o 0 m c [O m o (O N 0 01 Q 0 0 m 0 — 0 t0 a 0 w 00 (oe) eaN N N Oi R a m N O r O m N 0 V 10 [V N O O In O O lulod UBlsad N m m Q n m m m r co rn o o m m m aweN ulse8 ¢ N ¢ m ¢ Q ¢ �0 ¢ tJ ¢ r ¢ m ¢ D7 ¢ O < m mN mm Q m !0 m (O m O N 0 0 N 6 x O m O N U O C i E O O 9 C O ti 4! O `SOm O N y � a Eanm d � — o W s c o c• 0 2 c o N � M t ❑ O U � m 3 w m r D O d m A d } l7 m�oi a ` n � d 0 C > O (q N M M C') 10 N UI m O Q Q a a m m m ❑❑❑❑❑❑❑ a❑ a❑ v 0 0 O O O m m saloN 0 0 0 0 0 0 0= ° ° 0 0 a 0 a 0 s 0 a0 o a c 0 0 0 a0 0 0 0 0 0 0.= M w 0 0 0 v 0 m 0 m 0 o ~ 0 ~ (ww) ow1 lel0 O < M Q op tD N wrn 0 � Q t7 OO m O S rnO O N r N M S O O 0 Oo W f7 O 0 t0+1 YI S Ih S m O O O m S O O S Q M M m E (ulw)p o 0 o rn H o 0 0? 0 rn 4 —7 o 0 0 0 0 0 0 0 0 0 0 0 0 0 m m (sd;) gnola� m O o t0 0 V) 0 N 0 rn '9 W) 41Bual Q N N C) m (sP) Apedoo r 7 7 O rn n ad!d xelry'xwd n n o (sp)mold adld rn t0 m M N r m O 7 N m N m 'a (%) adolS N 0 Lq 0 0 0 0 0 leualeyl ad!d a u a ¢ a Q a 0 a 0 a C) lueleA!nb c c c c c c jo (u) emS edld n M n m N N (000: 1anO.(ueo 0 m paldamalu! 0 v 2 c t t E c c a 0 m 0 m od,(j lelul > ' i U m 3 3 U U U r T a c A N to aa. H H 00 (si0) O Ol IA n (i r N 40 N l0 N Q rn N (O W O N m o C (J4M) I rn CO N N lY (Oe) V.03 m O ci m C� r O vi m O m N m N In t'I r N vi Q Q 0 Q N e (ulw) 01 lelol n < o N o' ry ry o o ry r S S c (slo) 0 e o n m a� ($, rn m R'i 10 a a t0 a N m rn rn Q rn a a v c n r rn ci N n u1 a m c �i rn ci c a N o o a Q o 0 V a0 vi d m 0 0 m a d d U i!)I O li p m O ILL li O IL C O a r m IL p IL N N s r N N N ¢ r N N r m N N (3a)V.3 S N r O t7 O V. W. 0 0 N O a0 O N O9 O O N m O to O O f? O N O O O O O Fb O f S Cl p S p S S po' W M p f0 p S S O S O Ci Ci (ulw) of Q Q N Q CI O 'd t7 O t+f m r O ))ao� gonna Q C1 0 Q C1 0 N 0 S o N c p N 0 S 0 O t7 00 M N 0 Cicm'I 0 0 N 0 V 0 M 0 m 0 twD 0 N 0 (Og) gan/ to N m C1 N O Q r O m N N rn m O n m Q N m N N m N r O fV N O �n rn O rn O dl r O r O lu!od uB!s0a N n n Q m m m m r m rn O O m m m aweN u!se 9 as N a < Q a h a m a r a m a O) a O ¢ m N m n'f m Q m 10 m N m rn N Q `o m 6 x EL r O N 0 M : N L 3 s (V CA N r N In 0) v v a N � E 3 . Z cr> O ul) 0 5 O E N Q E `o FL 5 a a r�• yOD (OD S OD N C ? R P C gj J C U UU U. U U U L h � m 0 c a co ao ao a ap N � N N — C U) N N N W N N N N N 0 0) 0) 0) C C ? 7 7 7 7 V N lU 3 3 2 � fu U U U U U U U U U rn J fap `o L N a E 3 Z N N - - N N N .- N — C L S S S S S S S S t0 O O Cl) Cl) Cl) fh M fn 2 .... N � t V Of S S O S S S S .0 N N C J � O O N v 7 co N Uf N fro O O - " "' cn " Cl Cl) E a�i Rui rV i v ri v ri v ri v ri v ri v ri v ri v r0i v e 0 d N N F U' -U U Z G fn Q E 7 W N J a a ? a m m 0 E r r r M `o 0 0 'Z J J of J J J W y y Z Z Q Z Z Z LL ui U ti U N m 7 0 f0 r co G> d u� Z FA co 0 c c O O b a h> 0 N N H N C C G V C W N (h ? N � C W r aO � y GJ2 I� c Cl) N OD Cl) OD (D It r - 3 ., rn r 7 rn rn r rn 7 m U C N N N N C N O a, O r- O O O O O O O O O 0) a.) U 0 q n�(O O N , W S7 0) CY) 0) Cb ? 0) 0) 0) 0) c a C N Cl)( Cl) Cl) mNN N E i7 O v v v v v v OV v z SCE O r 0ON v a 0 N O 0)^ N N M N N (D G c G N O O O N O O O O O O ot R 0r1 (cO O' N N N pO� N pO� N N N N N JLu V V R a V C N O O W q ? O M C N N N N N N N N N N ' > J "' R V R R V V 7 7 C W � m aD r O N O N n •L-i N aO fO0. O 04 co (h N J N N N (7 N (U) N r- N U U U U U U U U U c - L J vl 3 0 N N N N N N U N C N C a0 m J 0 r b (O (O N O 0 O r O •O• LL D) fV fV D1 a0 `m L U N Y O o E u d c_ Q o J ? SO. v v ... E n `o CO c n a a a a a a a a ui S LL iii W r o p m c o N Cl) a in (o r ro rn a z J z E 0 U N N N O C (V r O 0 N O O N O J G Y o o (0 o d -a (a � Cl H N N O O O pp V' N O O NV" N 8 N O O N O N W O S N Y n N Ai 0 0 O O O O O O O O - - ❑ C coCD y e N O N O GD O O O O O N O .O�- O O - O O (N r N N 01 CD (D I� M r M ) 0) pO� 0) ONE W o.'�.. 7 0 7 7 (a(S O N Cl)N V 7 O Cl)' O i t O O O O O O (J O W H NN 7 r N co O (NO. fh N ` O fS . . ro r Q fV 04 �fh .- COV Cl (V 04 E z Z r r O O O O O N (P a N O N N N O N (p q N - G N — — N I— i d v v 7 7 CD 7} cli 7 N O pC�� �7pp f0 O v Vr N N N N N N N N N >> > N ^ C -y O V O v 0) v (A v 01 v O v (A v m v (A v M W fro O N (MO (r O J N 1 N M N - 0 N r Lo 0 O vP-N N N O O N m O O O O O O O fro N r 7 N fh N (MO CR . J> N OM') M M M OM•) N N N W d R V R Vaa N N N fopp O a I v O G O U) O ' O O N 0 r (Opp V N fro O fO� V O E m j Ui m In Iri 1 M (D M M d �) o n rn aRi Q Ir- Ire rn 0 ` Q H (V lh lh (V (V (V ❑ LN ppp �NOM�r6 I _ 7 OD a N r 7 q r (ei rn 7 Cl) Cl) U' d� rn rn rn rn rn 0) 0) m S u v v v IT IT IT v v v N ol r O NO � r I . O OD OD OD q) OD (A VN' OD r N- C') r 0 fD d> N N N N N N N N N •- > d "" (A (A (A (A (A (A fA W O r O N Q N N (o It) (o m (o ^ OD rn O r cy (A (A N N ` .(A CD E p 0 N m L d N N - - - N N N N a _ LL N_ C_ � N � N d O O N CO IT to (D r M W d Z J 8 N N (Ji - — _ ^A 1G O n o � M I N 0 N N N w co 0 Cn o N Cn 0 N o ,4 N 0 mcn PO 8 �8 co m_ W $ CD $ 8 8 Sta 0+00.00 - Outfall Grnd. El. 4930.38 Inv. El. 4928.01 In I I I I P I I I I I II I I I Ii I I I I I I I I I 8 8 8 Sta 0+55.213 - Ln: 1 Rim El. 4934.21 Inv. EL 4928.12 Out Inv. El. 4928.12 In Sta 2+07.358 - Ln: 2 Rim El. 4933.84 Inv. El. 4928.42 Out Inv. EL 4928.92 In Sta 2+31.177 - Ln: 3 Rim El. 4933.51 Inv. El. 4928.97 Out Inv. El. 4928.97 In Sta 2+62.843 - Ln: 4 Rim El. 4933.51 Inv. El. 4929.04 Out Inv. EL 4929.04 In Sta 2+89.843 - Ln: 5 Rim El. 4933.67 Inv. El. 4929.09 Out 8 8 SS�p O O O O O O O W O m O 0 O O w L � U (4 O 0 v o c) N O 1n0 9b"9Z617 l3 -AU1 WCE610'13 WIN N W 9 U1-ZZLL+OAS � I I � I I UI Zb"9Z69'13'AU1 ;no Zh"BZ64'13 "nUJ 49"EE "13 WIN UIS 00,0'00+0 e1S � - — — -I - it 0 S 8 8 S S S 0 o a) 0 > In a� qT IT w W O fn In0 V8'LZOV '13 nul' ZO O860 13 ➢wD 6 vl-86LO8+le1S n I � e ul Lf LZ60, 13 ^ul N L U I^1] LE LZBV 13 , 8G ff6V 13 w1 � 0 cZi Zi ul6l LZ60P 13 ^ul onO6l LZ6P '13 ^uI 80'EO6V 13 wIll e� uY 9Z'OS•0 e�•I. 0 031 w uIZO LZ6V I nul Z88Z6V 13'IPwO Ijullno - 00 oo.b ol$ p jai w m� m m a a m w s N M N N 0 d 6 d a E Z 0 m P th N N E N O J N LL N O EL t r�11 u o�� ago o rn y N N N N C ? ? 7 C N_ CL U UUU U U J m N N 16 O c 3 v vmm It 7 d N N-- N N N C a m o m m m q o r, r, m a N N N N N cli pN� C N Y � 2 c d U U V U U U U N J A O co E 3 Z N N N N N N ^' C_ 0 0 0 0 t S S S O O O O V l7 m _ 3 � 3 O L 0 0 S S 0 0 0 d .-. O O O O V In N N) J GI G y U U U U K � � 7 N O N N aW 0 y d N N d N V 7 F C C C C C s 2 2 i 2 O U U F U 7 Ix r 0 w _E N ` J (V 0 N 2 Z 0 0 O J J O Z Z v u v o CIA o) t N m n N 2 I 0^ CX 1- 1— k— e C O. 7 F 0 C C C C C L 0 N N c C G W N m IT N N N GJz c 3 .... N 0) 01 m N °� 0) m N OE 0 T v v v v v r C N (V O O O O (h W O) W qIn O) � J N N N N CNOD� N N C N N NNNN E 70)0) ? ? 2 SG� m o 0 0 0 C O N O N O N O N O O O O J fq a W 7 N N N N N N N > J 7 7 V C V CWC �{ C C N C J — W - V, 7 R 7 7 t r U� ,,t O N r O (O O O O O O O C C �"� N 7 r- O O N N J y w 01 N N C U U U U U U U c •- r J VI N N N N N CO ID U C US > J M ':.. m J CR CR q N N S 10 L E o � N E u °D c o 'g J Ih t0 0— N V LO U y ",?. �- LO :n. N, w a a o. n a n n o. � O c a a a a a a a ui af bi d uj O y c a a z 0 J z N Cl) N co r 8 N c 0 � � CL E 0 U @ c_ � o, q J ! E _ ¥ § 0 k 9 § _ !kE . ) § f . J;Z / / / / ! o o f f ) _ ■ £ 7 §�E OV / 2 / \ / § § IfE E - / d § � ; a _ ) { (0® It It « 7 K 2 CD£ . . )2E \ ( / § ( § \ )�E § § § § § § § . . \ E § 7.§ $ \ 2 § . $ § ■ Z o / A& Q Q& . . g m G 9@ G q m a m �>E § § § 9 7 @ § § 2 / / / § § \I£ . § § q § ] § / § I.K I 7 j § o E _ . ( } \ \ § § § (>E E r ) 7 7 g a — z _ \ \ / / a n IT (0 8 8 8 8 s $ C V ? cb 7 N C O S $L. N N 3n0 88'9Z64'13 J £L'6Z64'13 WIN c� 9 ul • 9LL CO, L L elS I — i -- — --- -- rS III OL'9Z64'13'nul 3nO OL'9Z64 '13 'nul 4£'££64'13 WIN 4 ul 9LL'ZL+OL elS I 5� c I N P I e 0 � I I ig s I I v ul 8L'SZ64 "13l m nu 1n08t'SZ64'13' I £0'Z£614 "13 WIN £ =u1- 9L4'9S+4; e16 I j I II QQ — JS j I I a' N I N I J N I r C! O ul 40"SZ64 "13 'nul N in040'SZ6V'13'nul o LZ-0£64 l3 WIN No Z ul - Zbl'48+L eiS $ e s W v N 1 ul L6'4Z64'13'nul N h0 L6 4Z64 'l3 'nul L4'0£64 "13 WIN L :ul LSO'OZ+L e1S o s = -- --- - --- --1 I II --� ul L9'4Z64'13'nul SO'LZ64'13 TWO II IIeAnO - 00'00+0 e1S y ? C V W E 0 y 0 o S S 8 poi N N N N O O O m O co v p CO N O 1n0 9l'SZ64 '13 'nul 69"6Z6413 WIZ L :u-1 - 00'SZ+O elS i a N � W UI 40'SZ6b'13'nul h0 40'SZ617'13 'nul LZ'0£617'13 W!a 00'00+0 elS � g S co L6 y v v LLI O 0 0 0 0 (V O) f0 l`') N N V V E `o W 0 0 0 0 0 0 N N N m (O M c0 M (+N N N V V V 7 V V O O O O O po � N 1n0 91'SZ64 '13 'nul 69 6Z617 -13 W21 9 :ul - 00'SZ+O e1S I O J c w O I V � I � p � O J 1 O i u1 40'SZ61,l3 nul cw 1n0 40,SZ6ti '13 'nul LZ'0£64'13 WN j 00'00+0 e1S L_ > m rn rn m m m IT c v v c c W Roughness Coefficient 0.013 ' Channel Slope 0.80000 % Normal Depth 1.00 ft Diameter 12.00 in ' Discharge 3.19 fN/s Results - ' Discharge 3.19 fN/s Normal Depth 1.00 ft Flow Area 0.79 ft' ' Wetted Perimeter 3.14 ft Hydraulic Radius 0.25 ft Top Width 0.00 ft Critical Depth 0.76 ft Percent Full 100.0 % ' Critical Slope 0.00920 fVft Velocity 4.06 ft/s Velocity Head 0.26 ft Specific Energy 1.26 ft Froude Number 0.00 Mapmum Discharge 3.43 ft3/s ' Discharge Full 3.19 fP/s Slope Full 0.00800 ft/ft ' Flow Type SubCdtical �GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ' IGVF Output Data Upstream Depth 0.00 ft ' Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods So39itite$Fld"aster V8i (SELECTseries 1) [08.11.01.03] t7/23120144:49:33 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 Desicin Point 3 Culvert jPVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fUs Upstream Velocity Infinity ft/s Normal Depth 1.00 ft Critical Depth 0.76 ft Channel Slope 0.80000 % Critical Slope 0.00920 ft/ft Bentley Systems, Inc. Haestad Methods SoEldidte$EbrferMaster V81 (SELECTseries 1) [08.11.01.03] 7/23/2014 4:49:33 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Design Point 3 Swale JProject Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.035 Channel Slope 0.50000 Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 ft/ft (H:V) Bottom Width 4.00 ft Discharge 3.06 fN/s 'Results Normal Depth 0.40 It Flow Area 2.24 ft' Wetted Perimeter 7.30 It Hydraulic Radius 0.31 ft Top Width 7.20 It Critical Depth 0.24 It Critical Slope 0.03082 ft/ft Velocity 1.37 ftls Velocity Head 0.03 It Specific Energy . 0.43 ft Froude Number 0.43 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 IGVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.40 ft Critical Depth 0.24 ft Channel Slope 0.50000 Bentley Systems, Inc. Haestad Methods SOB@idleQE81Yr011aster V8i (SELECTseries 1) [08.11.01.03] 7/23/2014 5:04:22 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 1 of 2 Design Point 3 Swale iGVF Output Data. " Critical Slope 0.03082 ft1ft Bentley Systems, Inc. Haestad Methods So9Ah]tegOd"aster V8i (SELECTseries 1) [08.11.01.03] 712312014 5:04:22 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Design Points 5 and 6 Culvert Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data gK Roughness Coefficient 0.013 Channel Slope 0.50000 Normal Depth 2.50 ft Diameter 30.00 in Discharge 29.00 fP/s Results Discharge 29.00 fN/s Normal Depth 2.50 ft Flow Area 4.91 ft' Wetted Perimeter 7.85 ft Hydraulic Radius 0.63 ft Top Width 0.00 ft Critical Depth 1.84 ft Percent Full 100.0 % Critical Slope 0.00632 ft/ft Velocity 5.91 fUs Velocity Head 0.54 ft Specific Energy 3.04 ft, Froude Number 0.00 Mapmum Discharge 31.20 fN/s Discharge Full 29.00 W/s Slope Full 0.00500 ft/ft Flow Type SubCritical LGVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 IGVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods So3diute;ffdwMaster Vfli (SELECTseries 1) [08.11.01.03] 7/23/2014 4:50:27 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 1 of 2 Design Points 5 and 6 Culvert GVF Output Data ' Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftts ' Upstream Velocity Infinity ft/s Normal Depth 2.50 ft Critical Depth 1.84 ft ' Channel Slope 0.50000 % Critical Slope 0.00632 ft/ft Bentley Systems, Inc. Haestad Methods SoHdktte$EEdwMaster V81 (SELECTseries 1) [08.11.01.03] 7/23/2014 4:50:27 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 2 of 2 Design Point 5 Swale ,Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.035 Channel Slope _ 0.30000 % Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 ft/ft (H:V) Bottom Width 4.00 ft Discharge 25.78 ft3/s ;Results Normal Depth 1.34 ft Flow Area 12.53 ft' Wetted Perimeter 15.04 ft Hydraulic Radius 0.83 ft Top Width 14.71 ft Critical Depth 0.83 ft Critical Slope 0.02210 ft/ft Velocity 2.06 ft/s Velocity Head 0.07 ft Specific Energy 1.40 ft Froude Number 0.39 Flow Type Subcritical ,GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ,GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope ' 7/23/2014 5:02:45 PM 0.00 ft 0.00 ft Infinity ft/s Infinity fVs 1.34 ft 0.83 ft 0.30000 % Bentley Systems, Inc. Haestad Methods So8tin"dHtevMaster V81 (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755.1666 Page 1 of 2 ' Design Point 5 Swale ' IGVFOutput Data Critical Slope 0.02210 ft/ft Bentley Systems, Inc. Haestad Methods So®tiotleF3dPIbaMaster V8i (SELECTseries 1) [08.11.01.031 ' 7/2312014 5:02:45 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 - Page 2 of 2 Design Point 6 Swale Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.035 Channel Slope 0.30000 Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 ft/ft (H:V) Bottom Width 4.00 ft Discharge 31.17 fN/s Results ^ Normal Depth 1.46 ft Flow Area 14.41 ft' Wetted Perimeter 16.06 ft Hydraulic Radius 0.90 ft Top Width 15.70 ft Critical Depth 0.91 ft Critical Slope 0.02151 ft1ft Velocity 2.16 fUs Velocity Head 0.07 ft Specific Energy 1.54 ft Froude Number 0.40 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope 712312014 5:02:19 PM 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.46 ft 0.91 ft 0.30000 Bentley Systems, Inc. Haestad Methods SOBrtiUte;EtOsrMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Orlve Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 . Page 1 of 2 Design Point 6 Swale :GVF Output Data t Critical Slope 0.02151 fVft Bentley Systems, Inc. Haestad Methods SoBBidteQ£marMaster V8i (SELECTseries 1) [08.11.01.031 7/23/2014 5:02:19 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 ' Design Point 13 Culvert ' Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.013 Channel Slope 0.50000 % Normal Depth 1.25 ft Diameter 15.00 in Discharge 4.57 fP/s 'Results Discharge 4.57 fN/s Normal Depth 1.25 ft Flow Area 1.23 ft' Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 1 0.00 ft Critical Depth 0.87 ft ' Percent Full 100.0 % Critical Slope 0.00732 ft/ft Velocity 3.72 fUs Velocity Head 0.22 ft Specific Energy 1.47 ft Froude Number 0.00 Mapmum Discharge 4.91 fN/s Discharge Full 4.57 fN/s Slope Full 0.00500 ft/ft Flow Type SubCritical [GVF Input Data ',r_', ] Downstream Depth 0.00 ft ' Length. 0.00 ft Number Of Steps 0 jGVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SoFAId1:¢EiIdwMaster V8i (SELECTseries 1) [08.11.01.03] 7/2312014 4:51:26 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 1 of 2 Design Point 13 Culvert IGVF Output Data, Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft1s Normal Depth 1.25 ft Critical Depth 0.87 ft Channel Slope 0.50000 % Critical Slope 0.00732 Wit Bentley Systems, Inc. Haestad Methods SoBAidtegfBSarMaster V8i (SELECTserles 1) [08.11.01.03] 7/23/2014 4:51:26 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2 Design Point 13 Swale jroject Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.035 Channel Slope 0.50000 % Left Side Slope. 4.00 fUft (H:V) Right Side Slope 4.00 ft/ft (H:V) Discharge 4.21 fN/s !Results Normal Depth 0.81 ft Flow Area 2.62 ft' Wetted Perimeter 6.67 ft Hydraulic Radius 0.39 ft Top Width 6.47 ft Critical Depth 0.59 ft Critical Slope 0.02799 ft/ft Velocity 1.61 ft/s Velocity Head 0.04 ft Specific Energy 0.85 ft Froude Number 0.45 Flow Type Subcritical GVF Input Data° Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVFbutput Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity fUs Upstream Velocity Infinity fUs Normal Depth 0.81 ft Critical Depth 0.59 ft Channel Slope 0.50000 Critical Slope 0.02799 fUft Bentley Systems, Inc. Haestad Methods SoBairtteffterMaster V8i (SELECTseries 1) [08.11.01.031 712312014 5:01:26 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1. of .1 International Blvd Outfall Friction Method Solve For Manning Formula Discharge Li Roughness Coefficient 0.013 Channel Slope 0.00500 ft/ft Normal Depth 2.35 ft Diameter 30.00 in Discharge 31.20 ft3/s Flow Area 4.79 ft' Wetted Perimeter 6.62 ft Hydraulic Radius 0.72 ft Top Width 1.19 ft Critical Depth 1.90 ft Percent Full 94.0 % Critical Slope 0.00672 ft/ft Velocity 6.51 flYs Velocity Head 0.66 ft Specific Energy 3.01 ft Froude Number 0.57 Maximum Discharge 31.20 fl:31s Discharge Full 29.00 ft3/s Slope Full 0.00579 ft/ft Flow Type SubCrifical Downstream Depth Length Number Of Steps 0.00 0.00 0 ft ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 94.00 % Downstream Velocity Infinity fVs - ----------- Bentley Systems, Inc. Haestad Methods Sd%*hdejMkheiMaster V8i (SELECTserles 1) [08.11.01.031 412212014 1:21:34 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1 Page 1 of 2 Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 412212014 1:21:34 PM Intemational Blvd Outfall Pipe Infinity fUs 2.35 ft 1.90 ft 0.00500 ft/ft 0.00672 ft/ft Bentley Systems, Inc. Haestad Methods ShcalimlapktaWaster V81 (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 2 of 2 Roughness Coefficient 0.035 Channel Slope 0.00350 f 1ft Normal Depth 1.50 ft Left Side Slope 4.00 ft/ft (H:V) Right Side Slope 4.00 ft/ft (H:V) Bottom Width 6.00 ft Results yY�07, 7-FYt Discharge 44.60 ft3/s Flow Area 18.00 ft2 Wetted Perimeter 18.37 ft Hydraulic Radius 0.98 ft ' Top Width 18.00 ft Critical Depth 0.96 ft Critical Slope 0.02066 ft/ft ' Velocity 2.48 ft/s Velocity Head 0.10 ft Specific Energy 1.60 ft ' Froude Number 0.44 Flow Type Subcritical Downstream Depth 0.00 ft Length 0.00 ft ' Number Of Steps 0 S °Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft ' Downstream Velocity Infinity Ws Upstream Velocity Infinity ft/s t Normal Depth - 1.50 ft Critical Depth 0.96 ft Channel Slope 1 0.00350 ft/ft Bentley Systems, Inc. Haestad Methods ScIfthdalC@laem aster V8i (SELECTseries 1) [08.11.01.03] ' 4122/2014 1:22:15 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 1 of 2 Critical Slope Drycreek Off -Site Swale 0.02066 fttft Bentley Systems, Inc. Haestad Methods ScIbaki efXftbsMaster V8i (SELECTseries 1) [08.11.01.03] ' 4/2212014 1:22:15 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 2 of 2 Appendix C (Inlet Calculations) G a,.N: ,,owaon Planning. Architecture. Engineering. DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project TlmbeMne Inlet ID: Inlet A2.11 Sr_how Demlb _ ROADWAY CENTERLINE esgn If ameauy dammined Inbughoffer meiron tom (local peak flow for l2 of Street OR arc ired CMrvnI): WKnown 0.5 1 N AZ Acres es Per!mpm SR Type: FbaDeveroeo For: NRCS Soil Type = A, B, C, or D O Sl[e 5 UDan O weer Dim Slope ft/ft L Ih h O Ste a florNlrbin O Area Infers In a Median Ovedand Flow= Channel Flow= ueslgn corm tceuan renoo ure-rely ream renoo, 1r— rrecip tauoR rt = in User -Defined Slonm Ruoff Coefficient (leave the blark to accept a cakaleted value), C = user-uenreo o-yr. noon wenioere teave ms mam o accept a caeaaatea vaae)• 's = Bypass (Carry -Over) Flow from upstream Subcatchmems, %= cfs Total Design Peak Flow, D - 0.5 2.1 crs Worksheet Protected IN THIS SECTION IN THE (IONS BELOW. U0.4nlet_v3.14-A2-1.adsm, O-Peak 7/23/2014, 5:22 PM ' Project: Inlet ID: 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storrs) 11 ga T, T,,,,,TcRwnr W Tx StrBetn rvw Qw Qx H d y S*`.� aa d� Allowable Width for Spread Behind Curb r Behind Curb (leave blank for no conveyance credit behind curb) Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Lino ce from Curb Face to Street Crown Width Transverse Slope ' Cross Slope (typically 2 inches over 24 inches or 0.083 R/ft) Longitudinal Slope - Ender 0 for sump condition g's Roughness for Street Section (typically between 0.012 and 0.020) Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) ' Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W " S, " 12)) Watw.Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) t Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowlire Depth rteACK - 0.018 TeT,,,,,= 9.0 ft SACK p.020 fU ft rISTREET = 0,016 Minor Storm Major Storm TM" = 16.2 16.2 ft dm-- 4.6 12.0 inches EI check = yes y= do = a= d= Tx = E. = Qx = Qw = QRACK - Qr= V= V'd = oretical Water Spread TrR = oretical Spread for Discharge outside the Gutter Section W (T - W) Tx TR = er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E. = oretical Discharge outside the Gutter Section W. carried in Section Tx TR Qx TR = el Discharge outside the Gutter Section W, (limited by distance TCROWn) Qx - :harge within the Gutter Section W (Qd - Qx) Qw = :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) _ QSACK = II Discharge for Major & Minor Storm (Pre -Safety Factor) Q = rage Flow Velocity Within the Gutter Section V = Product: Flow Velocity Times Gutter Flowline Depth V•d - ie-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm R = Flow Based on Allowable Depth (Safety Factor Applied) Qd = ultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = ultant Flow Depth at Street Crown (Safety Factor Applied) dcROWe = Minor Storm Major 4.37 4.37 1.6 1.6 0.00 0.00 4.37 4.37 10.2 10.2 0.710 0.710 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP 0.0 0.0 0.0 0.0 Minor Storm Major Storm 17.6 44.4 11.6 38.4 0.671 0.321 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP SUMP SUMP inches inches inches inches it cfs CIS cis cfs fps cfs cis CIS CIS cfs fps Cfs inches inches 2 STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm R STORM Allowable Capacity is based on Depth Criterion Q.r =1 SUMP I SUMP cfs storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' LID-Inlet_v3.14 - A2-1.xlsm, Q-Allow, 7/23/2014, 5:24 PM INLET IN A SUMP OR SAG LOCATION Project = Timbervine Inlet ID = Inlet A2-1 .t-Lo (C)-K - H-Curb H-Vert Wo W WP Lo (G) an Information (Input) of Inlet Inlet Type Depression (addibonal in continuous gutter depression'a' from'O-Allow) a. ber of Unit Inlets (Grate or Curb Opening) No :r Depth at F1owline (outside of local depression) Ponding Depth e Information th of a Unit Grate L. (G) i of a Unit Grate Wo Opening Ratio for a Grate (typical values 0.150.90) A. Sing Factor for a Single Grate (typical value 0.50 - 0.70) Cr (G) Wee CoeffKlent (typical value 2.15- 3.60) C. (G) Onfice Coefficient (typical value oko - 0.80) Co (G) Opening Information th of a Unit Curb Opening L. (C) it of Vertical Curb Opening in Inches Fi n 4 of Curb Orifice Thmat in belles H. : of Thmat (see USDCM Figure ST-5) Theta Width for Depression Pan (typically the gutter width of 2 feet) Wn lag Factor for a Single Curb Opening (typical value 0.10) Cr (C) Opening Weir Coefficient (typical %tNe 2.3-3.7) C. (C) Coefficient for Multiple Units Factor for Multiple Units pacify as a Weir (based on Modified HEC22 Method) m without Clogging m with Clogging 2acity as a Orifice (based on Modified HEC22 Method) )n without Clogging )n with Clogging pacify as Mixed Flow in without Clogging )n with Clogging ling Coefficient for Multiple Units king Factor for Multiple Units Opening as a Weir (based an Modified HEC22 Method) Opening as an Orifice (based on Modified HEC22 Method) Opening Capacity as Mixed Flow MINOR MAJOR CDOT Type C Grate 0.00 0.00 1 1 4.8 6.0 2.92 2.92 2.92 2,92 0.70 0.70 0.50 0.50 2.41 2.41 0.67 0,67 I WA I WA I Mies des I to 0venide 0eptta NI set set Cost Clog = 5. HE MINOR MAJOR 0.c = 2.90 5.36 cfs 0"= 1.45 2.611 cis MINOR MAJOR O°= 19.33 21.93 ds till. = 9.67 10.97 ,.fa MINOR MAJOR 0.-1 7.27 1 10.51 0- = 3.63 5.26Ids dsQ..a 1.45 2.68cfs MINOR MAJOR Coal =1 NIA WA Clog =1 N/A N/A MINOR MAJOR O, N/A N/A ds 0"= N/A N/A -Ids MINOR MAJOR Q. N/A N/A - cis Q. =1 N/A I N/A ids Interception with Clogging - V,,. = N/A N/A cfs Resulting Curb Opening Capacity (assumes clogged condition) Oc•w= NIA NIA CIS Resonant Street Conditions MINOR MAJOR Total )reel Length L =1 2.92 2.92 Resultant Street Flow Spread (based an sheet O-A/bw geometry) T = 17.6 222J:T-Crown Resultant Flow Depth at Sbeet Crown aCa N = ,0.4 1.6inches MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) 0e = 1.5 2.7 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>O PEAK) DPE.W.E .D= 0.5 1i 2.1 i1cfs UD-inlet_v3.14-A2-t.)dsm, Inlet In Sump 7/23/2014, 5:24 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project TlmbeMne Inlet ID: Inlet Sl w Details —� ROADWAY CENTERLINE ILY it already oeternimeoug olner me (IocetpeekfbwforiaofseeetOR grasaJiredchrreli-uKnevn cis If you enter values In Row 14, skip the rest of this sheet and proceed to sheet O-Allow or Area Inlet. og ap K in St Impervio s Area =�% Acres Percent lmpenioteress= % sR Type: Hews Developed For NRCS Soil Type = A, B. C, or D LOS: UStreet WetsS_bpe (fU_ff)) Lergth ((ftj) a HbWden O NW ea Web Ina Median Overland Fbw-mil J Channel File - - � r z � p iron an apr opt uesign berm nadm renuu, i, = years netun rancid unanour rreupnauon, rr= inchas l�r= V2 Li User -Defined Sbrm Ruoff Coefficlent (leave t is blank to accept a calculated value), C = user-uenred o-yr. Mu im wemoers (rave uvs mares to accept a cawuaceo vain:), �s = Bypass (Carry -Over) Flux from upstream Subcatchmems, Oe = cis Total Design Peak Fkhv, O = 1.8 7.0 cis 1 Worksheet Protected IN THIS SECTION IN THE TIONS BELOW. UD-tnlet_Jd.14-A4.adsm, O-Peak - 7/23/2014, 5:25 PM ' Project: Inlet ID: 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 ftd T. TyraTcnowwW-Tx�ow ox + mum Allowable Width for Spread Behind Curb Taox = 9.0 ft Slope Behind Curb (leave blank for no conveyance credit behind curb) S.. = 0.020 ftlft ung's Roughness Behind Curb (typically between 0.012 and 0.020) nsACx = 0.018 R of Curb at Gutter Flow Line - Hcum = 4.75 inches me from Curb Face to Street Crown TCROWN = 16.2 If u Width W = 1.17 If it Transverse Slope Sx = 0.023 Wit ❑ Gross Slope (typically 2 inches over 24 inches or 0.083 PoR) Sw = 0.098 Wit it Longitudinal Slope - Enter 0 for sump condition So = 0.000 Rift ung's Roughness for Street Section (typically between 0.012 and 0.020) nsnR r = 0.016 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Mirror & Major Storm Flow Depth at Street Crown (leave blank for no) ' Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2-) Gutter Depression (dc - (W - S, - 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W IT - W). ' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W. carried in Section Tx Discharge within the Gutter Section W (QT - DO Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) ' Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth )retical Water Spread xetical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) xetical Discharge outside the Gutter Section W. carried in Section Tx T„ iat Discharge outside the Gutter Section W, (limited by distance TCR N) harge within the Gutter Section W (Qd - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre -Safety Factor) 'age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm Flow Based on Allowable Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowlins (Safety Factor Applied) ultant Flow Depth at Street Crown (Safety Factor Applied) Misr Storm Major Storm Tyres ::1 16.2 1 16.2 ft dy" =j 4.8 1 12.0 linches p 121 check = yes Y= do = a= d= Tx = Eo = Qx= Qw= QeAC( = or= V= V•d = TT„ _ Tx TN = E. = Qx TN Qx Qw= QMM = Q= V= V'd = R= Qd = d= dCROWN = Minor Storm Major Storm 4.37 4.37 1.4 1.4 1.06 1.06 5.42 5.42 15.0 15.0 0.213 0.213 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP 0.0 0.0 0.0 0.0 Minor Storm Major Storm 13.7 40.5 12.5 39.4 0.254 0.081 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP SUMP SUMP inches inches inches inches it cis cis CIS CIS fps cfs cfs cis cfs cis fps CIS inches inches 2 STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm R STORM Allowable Capacity is based on Depth Criterion Q,a„„ =1 SUMP I SUMP cfs storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' storm max. allowable capacity GOOD - areater than flow given on sheet'Q-Peak' LID -Inlet v3.14 - A4.xlsm, Q-Allow - 7/23/2014, 5:25 PM INLET IN A SUMP OR SAG LOCATION Project = Timbervine Inlet ID = Inlet Ad ,�-Lo (C)-K H-Curb M-Vert Wo Wp W Lo (G) of Inlet I Depression (additiooel to continuous gutter depression 'a' fmm'O-Allow) bar of Unit Inlets (Grata or Curb Opening) x Depth at Flowiine (inside of local depression) a Information th of a Unit Grate 1 of a Unit Grate Opening Ratio for a Grate (typical values 0.150.90) 3in9 Factor for a Single Grate (typical value 0.50-0.70) e Weir Coefficient (typical value 2.15- 3,60) a Office Coefficient (typical value 0.60 - 0.80) Opening Information th of a Unit Curb Opening it of Vertical Curb Opening in Inches it of Curb Orifice Thmart in Inches a of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feet) Sing Factor for a Single Curb Opening (typical value 0.10). Opening Weir Coefficient (typical value 2.3-3.7) rig Coefficient for Multiple Units rig Facuir for Multiple Units Capacity as a Weir (bused on UDFCD - CSU 2010 Study) ption without Clogging :ption with Clogging Capacity as a Orifice (based on UDFCD - CSU 2010 Study) :ption without Clogging :ption with Clogging Capacity as Mixed Flow :ption without Clogging plan with Clogging Coefficient for Multiple Units Factor for Multiple Units ming as a Weir (based on UDFCD - CSU 2010 Study) )n without Clogging m with Clogging ming as an Orifice (based on UDFCD - CSU 2010 Study) m withoutCl ggi g m with Clogging ming Capacity as Mixed Flow m without Clogging )n with Clogging Inlet Length tint Street Flow Spread (based on sheet O-Allow geometry) Writ Flow Depth at Street Crown I Inlet Interception Capacity (assumes clogged condition) 0apacity IS GOOD for Minor and Major Storms (>O PEAK) Inlet Type Foci No Polling Depth L.(G)' Wo' A,wo Cr(G) C. (G): C.(G) Lo(C) CDOT Type R Curb Opening 4.25 4.25 1 1 4.8 69 M does niches o Orcfitle Depth; eel Be M.n= Hw..= Theta= W. = Cr(C)= C.(C)= &00 6.00 inches incises degree feet 6.00 6,00 63.40 6340 1.17 1.17 0.10 0.10 3.60 360 C.(C)= 0.67 0.67 MINOR MAJOR Coal = NIA N/A Clog = NIA N/A MINOR MAJOR O•= N/A WA _Ids 0-= NIA NIA cis 0, = C, ' Q. Lt. =1 MINOR MAJOR cis Cis cis ds N/A NIA N/A NIA MINOR MAJOR N/A NIA N/A I N/A Coef -1 11 1.00 Clog = 0.10 0.10 MINOR MAJOR O. 3,82 7.99 cis Ow= 3,44 T19 ds MINOR MAJOR 0• = 9.75 1129 cis Dv = 8.78 10.16 cis MINOR MAJOR Q. 5.67 ,......, �.8.83 .... cis 5.11 7.95 cis l3c.n= 3.44 7.19 ch L=I 5.00 1 5.00 feel T=j 117 1 21.6 IL>T-Cmwn ocxro .- 0.0 1.5 nches MINOR MAJOR �:a = 3.4 7.2 c(s Orresaeounm= 1.6 7.0 da UD4n1et_v3.14-A4.x1sm, Inlet In Sump 7/2312014, 5:25 PM Worksheet Protected DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project Timbemine ' Inlet ID: Inlet AS SIDE III I FLOW ° I I I DI STR� II I I FLAW ° I - GUTTER FLOW�GUTTER PLUS CARRYOVER FLOW -/� Shwv Dafaib ROADWAY CENTERLINE esign IT alreacly cletenninouug ocnerme iron term MajorSton <— peoeNp.ekfb for1n af.".t0R grssslmdtl Mnnep:-ua�ewo= b cls FILL IN THIS SECTION ff ou enter values in Row 14, skip the rest of this sheet and proceed to sheet O-Allow. or Area Inlet OR... Ueograpnic er data ui FILL IN THE Subcatctenert Area= Acres SECTIONS BELOW. Percent imperviousness= % <— Sae Type: 5ae a urean Lao Mvs Developed For: NRCS Soil Type =®A. O Sbeer Wets Sb fUff Le M ft B. C, or D Sre a ngrtllrbaz� O Ama IneR In a Me6an Overland Flo = Charnel Flew = minorblom maprSwrrn uesign awrtn rte. renoo, r- years nenfn ranee unanerr rreopnagon, r� = j(�a Uservser a tine omyn Rumff Coefficient (leave s Blanc to accept a caktYatetl valued C L. J w-Defined nea ryr. rtuort wertnen peavn h oia n t a cep ccepa c .le vaurel. C Bypass (CarrpOver( Flow from upstream Subcatchmems, Oe= cis Total Design Peak Flow, O = 0.8 Y.7 cis UD-Inlet v3.14 - A5.)dsm, Q-Peak 7/2312014, 5:27. PM I) ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm). II Project: Timbervine Inlet ID: Inlet A5 $ �� T, Tyrx r I w Tx EowId ox a - H� Sx mum Allowable Width for Spread Behind Curb TRACK( , g.O Ift Slope Behind Curb (leave blank for no conveyance credit behind curb) Smcx = 0.020 R/tt w g's Roughness Behind Curb (typically between 0.012 and 0.020) neACx = 0.018 M of Curb at Gutter Flow Lie HGIRe = 4.75 inches rice from Curb Face to Street Crown TCaowN = 16.2 it fr Width W = 6.00 it it Transverse Slope Sx = 0.023 ft/ft u Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = 0.023 ft/ft it Longitudinal Slope - Enter 0 for sump condition So = 0.000 ft/ft ring's Roughness for Street Section (typically between 0.012 and 0.020) rISTREET = 0.016 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Depth without Gutter Depression (Eq. ST-2) ical Depth between Gutter Lip and Gutter Flowline (usually 2") er Depression (dc - (W - S, " 12)) er Depth at Gutter Flowline rrable Spread for Discharge outside the Gutter Section W (T - W) per Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) :harge outside the Gutter Section W, carried in Section Tx :harge within the Gutter Section W (QT - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) :imum Flow Based On Allowable Spread r Velocity within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth oretical Water Spread oretical Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W. carried in Section Tx TH el Discharge outside the Gutter Section W, (limited by distance TcRowN) :harge within the Gutter Section W (Qa - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm (Pre -Safety Factor) rage Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ie-Based Depth Safety Reduction Factor for Major & Misr (d ? 6") Storm : Flow Based on Allowable Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultam Flow Depth at Street Crown (Safety Factor Applied) Minor Storm Major Storm TMAx = 16.2 16.2 ft dmm = 4.8 12.0 inches O O check = yes y= do = a= d= Tx = Eo - Qx = Qw = Q. QT = V= V'd = TTH Tx TH = Eo = Qx TH = Qx = Qw= Qencx = Q= V= V'd = R= Oa= d= dCRMN 4.37 4.37 1.6 1.6 0.00 0.00 4.37 4.37 10.2 10.2 0.710 0.710 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP 0.0 0.0 0.0 0.0 Minor Storm Major Storm 17.6 44.4 11.6 38.4 0.671 0.321 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP SUMP SUMP 2.17 3.82 0.00 0.00 inches inches inches inches 8 cfs cis cis cfs fps cis cis cis its cfs fps cfs inches inches i STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm R STORM Allowable Capacity is based on Depth Criterion Q.,,_ =1 sump I SUMP lcfs storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' storm max. allowable capacity GOOD - greater than flow given on shest'Q-Peak' U0.lnlet_0.14 - A5.xlsm, Q-Allow 7/23/2014, 5:27 PM INLET IN A SUMP OR SAG LOCATION Project = Timbamine Inlet ID Inlet AS Lo (C)- H-Curb H-Vert Wo Wp W Lo (G) 1n Information (Input) of Inlet Inlet Type Depression (additional to continuous gutter depression 'efrom'O-AIbW) A.. ter of Unit Inlets (Grate or Curb Opening) No r Depth at Flowine (outside of local depression) Pondirg Depth t Irdonnatlon h of a Unit Grate Lo(G) t of a Unit Grate Wo Opening Ratio fora Grate (typical values 6.15-0.90) A„m ling Facwr for a Single Grate (typical value 0.50 - 0.70) Cr (G) Web Coefficient (typical value 2.15-3.60) C„ (G) Orifice Coeffx]ent (typical value 0.60 - 0.80) Co (G) Opening lnfamation b of a Unit Curb Opening Lo (C) it of Vertical Curb Opening in Inches H. it of Curb Once Throat in Inches H. of Throat (see USDCM Figure ST-5) Theta Width for Depression Pan (typically the gutter width of 2 feet) We ling Factor for a Single Curb Opening (typical value 0.10) Cr (C) Opening Weir Coefficient (typical value 2.3-3.7) C. (C) Opening Orifice Coefficient (typical value 0.60-0.70) C. (C) ng Coefficient for Multiple Units ng Factor for Multiple Units Capacity as a Weir (based on Modified HEC22 Method) Capacity as a Orifice (based on Modified HEC22 Method) Capacityas Mixed Flay ing Coefficienl for Multiple Units wig Factor for Multiple Units Opening as a Weir (based on Modified NEC22 Method) Opening as an Orifice (based on Modified HEC22 Method) Opening Capacity as Mixed Flow nl Street Flow Spread (based on sheet O-Aaav geometry) M Flow Depth at Street Crown Inlet Interception Capacity (assumes clogged condition) ING: Inlet Capacity less than 0 Peak for MAJOR Storm MINOR MAJOR CDOT Type C Grate 0,00 0.00 1 1 4.8 6.0 2.92 2,92 2.92 2,92 0.70 0.70 0.50 0.50 2.41 2,41 0.67 0,67 IINOR MAJOR N/A N/A N/A N/A N/A N/A N/A N/A N/A NiA N/A WA N/A N/A N/A NIA IINOR MAJOR 1.00 1.00 l es O Overtyle Depths let -at 290 5.36 cis 0_= It 2.68 cis MINOR MAJOR Oa =1 19.33 21.93 cis C.= 9.67 10.97 cis q 1.45 I 2.68 Icfs MINOR MAJOR Coef =1 NIA N/A Clog =1 N/A N/A MINOR MAJOR OM =1 NIA N/A cis 0-= N/A N/A cis MINOR MAJOR 0. = NIA N/A cis Co- N/A N/A cis MINOR MAJOR Om = N/A N/A cis L-1 2.92 2.92 feel . T=j 17.6 1i 22.2 f.,T-Crown ckc p N= 0.4 1.6 Inches MINOR MAJOR �. = 1.5 2.7 cf8 a:oueeo= 0.6 2.7 cis UD4nlet_v3.14-A5.xlsm,.Inlet In Sump 7123/2014, 5:27 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project Tlmbervine Inlet ID: - Inlet B1 Stow 0e1ib7 . ROADWAY CENTERLINE - - Design IPW UNLY it already oetennune,clug o rme in Worksheet Protected p0celPeakfbwfar1adseeet0R grassJiraticMrvnp: 'uHno.o=U. I J.1 cts FILL IN THIS SECTION 'values in Row 14. skip the nest of this sheet and proceed to sheet O-Allow or Area Inlet OR... In FILL IN THE SlLcattignen Area= '.t== Acres SECTIONS BELOW. Percerr4I. v % - Site Type: Flows DMmed Fv: NRCS Soil Type =®A, B. C, or 9te K Uman StrtttlamSID Lao Sm Is Naniaban O Area [r4a In a I.te6an Overland Fbw= Channel Fbw= minarbionnn major 5una ueslgn amn ne rears rtetvn e renpg unnorr r mot= irntaa User -Defined Storm Rang Coefficiert (leave this blank OD accept a celGlated veha), C = useruermeo ayr. rtno[r wenoera Heave me warty m accept a caaasatea rasa), vs = Bypass (Cany-Over) Flow from upstream Subcatchrnems, Qe - efs Total Design Peak Flow, Q - 0.7 3.1 cis 1.1134nlel_v3.14 - Bl Asm, Q-Peak 712312014, 5:30 PM ' Project: Inlet ID: 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 T Ty,x T W Tx Qw Q: H� d y a do. num Allowable Width for Spread Behind Curb Tme - 11.0 R Slope Behind Curb (leave blank for no mmeyame credit behind curb) SaA = 0.020 ftift dng's Roughness Behind Curb (typically between 0.012 and 0.020) naA-= 0.018 it of Curb at Gutter Flow Line Hcum = 6.00 inches me from Curb Face to Street Crown TcR = 25.0 8 B Width W = 2.00 it t Transverse Slope Sx = 0.023 tuft it Cross Slope (typically 2 inches over 24 inches or 0.083 tuft) Sw = 0.083 fuft t Longitudinal Slope - Enter 0 for sump condition So = 0.000 full ung's Roughness for Street Section (typically between 0.012 and 0.020) rISTREI T = 0.016 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowfine for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (dc - (W " Sx' 12)) Water Depth at Gutter Flowline, Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) ' Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Minor Storm Major Storm Tmm = 25.0 25.0 ft d,m 6.0 12.0 jinches 0 check = yes y= do = a= d= Tx = Eo = Q. Qw= QBACK = QT= V= V'd = oretical Water Spread TTR = wetical Spread for Discharge outside the Gutter Section W (T - W) Tx TH = or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo - oretical Discharge outside the Gutter Section W. carried in Section Tx TR Ox TR = jet Discharge outside the Gutter Section W, (limited by distance Tceowe) %= :harge within the Gutter Section W (Qa - Qx) Qw = :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) QaACK = if Discharge for Major & Misr Storm (Pre -Safety Factor) Q = rage Flow Velocity Within the Gutter Section V = Product: Flow Velocity Times Gutter Flowline Depth V"d = *-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm R = : Flow Based on Allowable Depth (Safety Factor Applied) Qa = ultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = ultant Flow Depth at Street Crown (Safety Factor Applied) dcacwn - Minor Storm 6.75 6.75 2.0 2.0 1.45 1.45 8.20 8.20 23.0 23.0 0.230 0,230 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP 0.0 0.0 0.0 0.0 Minor Storm Major Storm 16.8 39.1 14.8 37.1 0.344 0.144 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP SUMP SUMP inches inches inches inches it cfs cfs cfs cfs fps cfs cfs cfs cfs cfs fps cfs inches inches 2 STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm R STORM Allowable Capacity is based on Depth Criterion Q,ia.+= SUMP I SUMP cfs storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' U0.lnlet_v3.14 - B1.xlsm, Q-Allow - 7/23/2014, 5:30 PM INLET IN A SUMP OR SAG LOCATION Project = Tlmbervine Inlet 10= - Inletl3l ,f--Lo IC) -may H-Curb H-Vert We WP W Lo (G) of Inlet Inlet Type I Depnssion (additional to continuous gutter depression's' fmm'O-Allovl) am.' bar of Ural Inlets, (Grate or Curb Opening) No a Depth at Flowfine (outside of local depression) Polling Depth' e Information th of a Unit Grate Lo (G) h of a Unit Grate W. Opening Ratio for a Grate (typical values 0.15.0.90) A.m' ging Factor for a Single Grate (typical value 0.50 - 0.70) Cr (G) s Weir Coefficient (typical value 2.15- 3.60) C. (G)' s Orifice Coefficient (typical value 0.60. 0.80) Co (G)' i Opening Information th of a Unit Curb Opening Lo (C) ht of Vertical Curb Opencg in Inches H.n' ht of Curb Orifice Thmat in Imes H. s of Thmet (we USDCM Figure ST-5) Theta Width for Depression Pan (typically the gutter width of 2 feet) Wr' ging Faclor for a Single Cum Opening (typical value 0.10) C, (C): Opening Weir Coefficient (typical value 2.3-3.7) C.(C): ODemn. Onfce Coefficient (tvccal value 0.60 - 0.70) Co (C): MINOR MAJOR CDOT Type R Curb Opening 3.00 3.00 1 &0 12.0 M-, N/A M/1.1U1f NIA NIA NIA N/A NIA NIA NIA NIA NIA NIA NIA MINOR MAJOR 5.00 5.00 6.00 6 00 6.D0 6,00 63.40 63.40 100 2,00 0.10 0A0 ng Coefficient for Multiple Units Coef= N/A N/A - rgFaclorforMWtipleUnils Clog = N/A N/A Capacity as a Weir (based on UDFCD -CSU 2010 Study) MINOR MAJOR :pdon without Clogging Q. N/A N/A iption with Clogging O„ = N/A N/A Capacity as a Orifice (based on UDFCD - CSU 2010 Study) MINOR MAJOR _ ptionwithout Clogging C6 N/A N/A ptionwiHiClogginy - Oo= N/A N/A Capacity as Mixed Flow MINOR MAJOR pbon without Clogging O„r= N/A N/A ption with Clogging Oo. = N/A NIA ling C IeStrient for Multiple Units ling Fector for Multiple Units Opening as a Weir (based on UDFCD - CSU 2010 Study) epeon wiOcut Cloggi g eption with Clogging Opening as an Orifice (based on UDFCD-CSU 2010 Study) eption without Gagging ept on with Clogging Opening Capacity as Mixed Flow eption without Clogging epbon with Clogging Inlet Length tent Street Flow Spread (based on sheet O-Allow geometry) land Flow Depth at Street Crown I Inlet Interception Capacity (assumes clogged condition) rapacity IS GOOD for Minor and Major Storms (>O PEAK) nches nrhes W Override Depda set eet Coe = 1.00 1.00 Cl 0.10 0.10 MINOR MAJOR Cw= 5.98 23.58 cis 0.. = 5.38 21.22 cis MINOR MAJOR ci = 975 13.62 cis C,= 878 12.26 cfs MINORMA JOR On.= 7.10 ••16. 7 .6 ds Oo== 6.39 15.00 cis Dc.n= 5.38 12.26 cfs L =1 5.00 5.00 feet T-I 16.8 39.1Ift.-T-Croom 4aowx= 0.0 3.8inches MINOR MAJOR Q. = 5.4 12.7 Cfs sours.= 0.7 3.1 Ca UD-Inlet_V3.14 - B1.xlsm, Inlet In Sump 7123/2014, 5:30 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project Tlmbervine Inlet ID: Inlet Stow Oalei6 ROADWAY CENTERUNIE asgn IT eUNTI'TITIDU unr5ugn offer rnes- M1FK Worksheet Protected (bctl peekfbwfor 12 of street OR gre aed cnarrap:-un,o.n-1 U.J I.J r values in Row 14. skip the rest of this sheet and proceed to sheet O-Allow or Area Inlet cis FILL IN THIS SECTION OR_ (Lner cam in M ol.o cemy FILL IN THE Subcatctrnert Am SECTIONS BELOW. Percefa lmpervbxaress= % See Type! FlosDeKbpW Fv: - NRCS Soil Type = A, B. C, or O 5Re fr Uean O street Inners Sio fr/fl Le th ff O 9te a NonUrban O Arm Nets in a Medan Overlard Flow = Channel Fbw= viinor=rrn mapr blo rm ueagn amrm Kea= rang, Ir= years neaan renoo ure-notr ereppltauon, r, = lrt= indos yx= y= User-De0rcd Slam Ruoff Coeffident (leave this blank to accept a cabAated ,ake), C = user-venneo o-yr. rtuon t.oeruum knave ms o41rw To awxpt a racxsavea vaael. _y = Bypass (Carry -Over) Fkm from upstream Subcatchments, De - cis Total Design Peak Flow, O - 0.3 1.3 cis UD4nlet_v3.14 - B2.)dsm, O-Peak 7/2312014, 5:31 PM ' Project: Inlet ID: 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 M'15f, T,Ty Tyy Tx-wQyTSt um Allowable Width for Spread Behind Curb TeA« = 11.0 ft lope Behind Curb (leave blank for no conveyance credit behind curb) «= 0.020 Wit ig s Roughness Behind Curb (typically between 0.012 and 0.020) nen« = 0.018 of Curb at Gutter Flow Line Hcun = 6.00 inches ce from Curb Face to Street Crown Tcaowe = 25.0 1t Width W = 2.00 ft Transverse Slope Sx = 0.023 Wit Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw = 0.083 Wit Longitudinal Slope - Enter 0 for sump condition So = 0,000 ft/ft ig's Roughness for Street Section (typically between 0.012 and 0.020) nSTREET = 0.016 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) er Depth without Gutter Depression (Eq. ST-2) ical Depth between Gutter Lip and Gutter Flowline (usually 2-) er Depression (dc - (W ' S,' 12)) ar Depth at Gutter Flowline vable Spread for Discharge outside the Gutter Section W (T - W) er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) harge outside the Gutter Sedan W, camied in Section Tx harge within the Gutter Section W (Or - Qx) harge Behind the Curb (e.g., sidewalk, driveways, & lawns) imum Flow Based On Allowable Spread Velocity within the Gutter Sedan Product: Flow Velocity times Gutter Flowline Depth oretical Water Spread oreticaf Spread for Discharge outside the Gutter Section W (T - W) er Flow, to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) oretical Discharge outside the Gutter Section W, carried in Section Tx TH at Discharge outside the Gutter Section W. (limited by distance TCROWN) :harge within the Gutter Section W (Od - Qx) :harge Behind the Curb (e.g., sidewalk, driveways, & lawns) it Discharge for Major & Minor Storm (Pre -Safety Factor) rage Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth ie-Based Depth Safety Reduction Factor for Major & Minor (d a 6") Storm : Flow Based on Allowable Depth (Safety Factor Applied) ultant Flow Depth at Gutter Flowline (Safety Factor Applied) ultanl Flow Depth at Street Crown (Safety Factor Applied) Minor Storm Major Storm Tmm = 25.0 25.0 ft dmm = 6.0 12.0 inches 0 G1 check = yes y= do = a= it Tx Eo = Qx Qw = QBACx = Or V= V'd = Tr„ = Tx rH = Eo = Qx TH = Qx = Qw = Qakc = Q= V= V-d = R= Qd = d= dCROWN = 6.75 6.75 2.0 2.0 1.45 1.45 8.20 8.20 23.0 23.0 0.230 0.230 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP 0.0 0.0 0.0 0.0 Minor Storm Major Storm 16.8 39.1 14.8 37.1 0.344 0.144 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 V inches inches inches inches ft cfs cfs its cfs fps cfs cfs cfs cfs cfs fps cfs inches Inches t STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm t STORM Allowable Allowable Capacity based on Depth Criterion on Depth Criterion Q., . = SUMP I SUMP Jcfs storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' ' UD-Inlet_0.14 - B2.xlsm, Q-Allow 7/23/2014, 5:31 PM o INLET IN A SUMP OR SAG LOCATION Project = Timbervine Inlet ID = Inlet 82 fi-Lo (C)-,F H-Curb HNen Wo W WP Lo (G) Depression (additional to continuous gutter depression'a' fmm'O-Allow') en of Unit Inlets (Grate or Curb Opening) a Information in of a Unit Grate h of a Unit Grate Opening Ratio for a Grata (typical values 0.15-0.90) girg Factor for a Single Grate (typical value 0.50 - 0.70) -Weir Coefficient (typical value 2.15 - 3.60) . 3 Orifice Coefficient (typical value 0.60- 0.80) I Opening Information In of a Unit Curs Opening ht of vertical Curb opening In Inches hl of Curb Orifice Throat in Inches 3 Of Throat (see USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feet) ging Favor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 2.3-3.7) Opening Orifice Coefficient (typical value 0.60 - 0.70) rig Coefficient for Multiple Units rig Factor for Multiple Units Capacity as a Weir (based on UDFCD - CSU 2010 Study) plan without Clogging ption with Clogging Capacity as a Orifice (based on UDFCD - CSU 2010 Study) �ptionwiOuut Clogging ption with Cogging Capacity as Mixed Flaw lition without Cloggelg ption with Clogging :Ina Grate Capacity (assumes clog led condition) ling Coefficient for Multiple Units Virg Factor for Multiple Units Opening as a Weir (based on UDFCD - CSU 2010 Study) eption without Clogging eption with Clogging Opening as an Orifice (based on UDFCD - CSU 2010 Study) eption without Clogging eption with Clogging Opening Capacity as Mixed Flow eption without Cloggi g eption with Clogging let Length rot Street Flow Spread (based on sheet O-ARow, geometry) int Flow Depth at Street Crown Inlet Interception Capacity (assumes clogged condition) 3pacity, IS GOOD for Minor and Major Stems (>O PEAK) Irdel Type No Polling Depth L. (G). We A. C,(G) C. (G) C.(G). L. C) MINOR MAJOR CDOT Type R Cub Opn 3.00 0ig 3 1 6.0 1 12.0 N/A NIA N/A NIA WA NIA NIA NIA N/A NIA NIA NIA ndles rwhe^ W Ovemd, Depths eel set A.n= 6.D0 &W inc Hmm = 6,00 inc 6.00 63.40 63.40 de( Theta= Wn= 2.00 2.00 fee C,(C)= 0.10 0.10 C.(C)= 3,60 3,60 C.(C)= 0.67 0.67 MINOR MAJOR Cost = N/A N/A , Clog = N/A N/A MINOR MAJOR 0,. = N/A N/A cis 0"= WA WA cis MINOR MAJOR - Od = WA WA cis Oa = N/A N/A pfe MINOR MAJOR Ow = N/A N/A .0- = N/A NIAIds cisNIA NIAcfs MINOR MAJOR Coef =1 1.00 1.00 Clog =1 0.10 0.10 MINOR MAJOR 0.-1 �5.96 23.56 cfs 0„ =1 5.38 1 21.22 Ids MINOR MAJOR = 9.75 13.62 lcfs Do. = 6.76 12.26 Ide MINOR MAJOR O'"= 7.70 16.67 = 6.39 15.00Ica: 5.38 12.26ch -=1 5.00 1 5.00 feel T-1 16.6 1 39.1 ft>T-Cmwn a..= 0.0 3.6 inches MINOR MAJOR Q. = 5.4 12.3 cis O vcwanfiaiwro= 0.3 1.3 efs UD-Inlet_v3.14 - B2.xlsm, Inlet In Sump 712312014, 5:31 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD - - Project TlmbeMne Inlet ID:__ Inlet 3- � '� snow Demi� ROADWAY CENTERLINE esgn 1-10iW: UNLY 41 aveaay Ueawnlrea uvuLgn0 me iror 6nm t (1ocalpakfbwfor1lofs1reet0R areeslinaecira wik -uano.n= -T 10 Sibwtcisnert Area=�Acres Peicert lmpenvblsness= % % Sae Type: Fews Develo xo W: NRCS Soil Type = A, B, C, or D O Sae Is urtm O som lam Sloftlft Le th ft O 4re is Non -urban O kea [rae6 in a Ne&an Overland Flow = Channel Flow = Uaagn ow) neum re)ea, I years neam rarou yr Mw rreapnau0n rr= ter= Ides '1= User-Defued Storm Riskin Coefficient (leave this blank t0 accept a wkWated veke), C = usartianreu 0-yr. nuon wernm leave ns mm o accept a cac eo vane),1 5 = Bypass (Carry -Over) Flow from upstream Subcatchments, Ds - cis Total Design Peak Flow, O = 7.0 6.3 cis O Worksheet Protected IN THIS SECTION IN THE TONS BELOW. UD4nlet_v3.14-S03-1.)dsm, O-Peak 7/23/2014, 5:33 PM Project: Inlet ID: 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storrn) . 11 ad rW�� r. S% mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) ring's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Lino :e from Curb Face to Street Crown Width Transverse Slope Goss Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Longitudinal Slope - Enter 0 for sump condition g's Roughness for Street Section (typically between 0.012 and 0.020) Allowable Spread for Minor & Major Storm Allowable Depth at Gutter FloW ine for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) ' Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowlim, (usually 2") Gutter Depression (dc - (W " S, - 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (Or - Qx) Discharge Behind the Curb (e.g.. sidewalk, driveways, &lawns) ' Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth Tenn = 11.0 fl Seacx = 0.020 R/ r§ncu = 0.018 fl HcuRs = 6.00 inches TCROWN= 25.0 ft W = 2.00 ft Sx = 0.023 Wit SW = 0.083 Wit So = 0.000 ff/ft nsr er =1 0.018 Minor Storm Major Storm Tunx = 25.0 25.0 it dunx = 6.0 12.0 inches E) 0 check = yes y= do = a= d= Tx = E. = Qx = QW = Qmn = Or= V= V'd = maximum l a acm for IIL afreef oases on wnowaore ueprn ' Theoretical Water Spread TrH - - Theoretical Spread for Discharge outside the Gutter Section W (T - W) Tx rH = Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo = ' Theoretical Discharge outside the Gutter Section W, carried in Section Tx rH Qx TH = Actual Discharge outside the Gutter Section W. (limited by distance TCROWN) % = ' Discharge within the Gutter Section W (Q, - Qx) OW = Discharge Behind the Curb (e.g.. sidewalk, driveways, & lawns) Qsncx = Total Discharge for Major & Minor Storm (Pre -Safety Factor) O = Average Flow Velocity Within the Gutter Section V = ' V"d Product: Flow Velocity Times Gutter Flowline Depth V"d = Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm R = Max Flow Based on Allowable Depth (Safety Factor Applied) Qe = . Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = Resultant Flow Depth at Street Crown (Safety Factor Applied) . dcROWN = Minor 6.75 6.75 2.0 2.0 1.45 1.45 8.20 8.20 23.0 23.0 0.230 0.230 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP 0.0 0.0 0.0 OA Minor Storm Major Storm 16.8 39.1 14.8 37.1 0.344 0.144 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP SUMP SUMP inches inches inches inches ft cfs cfs cfs cfs, fps cfs cfs cfs cfs cis fps cfs inches inches i STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm R STORM Allowable Capacity is based on Depth Criterion Q,s,,, = SUMP I SUMP cfs storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' U6lnlet_v3.14 - S03-1.xism, 0-Allow 7/23/2014, 5:33 PM INLET IN A SUMP OR SAG LOCATION Project= Tlmbervine Inlet ID = Inlet 5O3.1 .rLo (C)- H-Curb H-Vert Wo WP W Lo (G) Depression (additional in continumss gutter depression's' from'O-Allow') oerof Unit Inlets (Grate or Curb Opening) f Depth at Flowtoe (outside of local depression) t Information th of a Unit Grate 1 of a Unit Grate Opening Ratio for a Grate (typical values 0.15 0.90) jing Factor for a Single Grate (typical value 0.50 - 0.70) I Weir Coefficient (typical value 2.15- 3.60) I Orifice Coefficient (typical value O.60 - 0.80) Opening Information th of a Unit Curb Opening it of Vertical Cum Opening In Inches it of Curb Orifce Throat in Inches I of Throat (sea USDCM Figure ST-5) Width for Depression Pan (typically the gutter width of 2 feet) ping Factor for a Single Curb Opening (typical value 0.10) Opening Web Coefficient (typical value 2.3.3.7) Opening Onfice Coefficient (typical value 0.60 - 0.70) I Flow Analysis (Calculated) ling Coefficient for Multple Units ling Factor for Multiple Units I Capacity as a Weir (based on UDFCD -Call 2010 Study) Capacity as a Orifices (based on UDFCD - CSU 2010 Study) Capacity as Mixed Flow - spoon without Clogging eption with Clogging ting Grate Capacity (assumes clogged condition) Opening Flow Analysis iCaiculatedl irlg Ccefficer t for Multiple Units ing Facor for Multiple Units Opening as a Weir (based on UDFCD - CSU 2010 Study) splion without Clogging ,piton with Clogging Opening as an Odflpe (based on UDFCD - CSU 2010 Study) .pbon without Clogging sption with Clogging Opening Capacity as Mixed Flow .pbon wi0qul Clogging .ption with Clogging Inlet Length tans Sheet Flow Spread (based on Sheet O-A/bw geometry) tent Flow Depth at Steel Crown I Inlet Interception Capacity (assumes clogged condition) �apacity IS G00D for Minor and Major Storms (>O PEAK) Inlet Type ai, No Ponding Depth L.(G) W. A. CI(G) C. (G) Co(G) L.(C) H,.n Theta Wo MINOR MAJOR CDOT Type R Curt Opening 3.00 3.00 1 1 6.0 12.0 N/A NIA N/A NIA N/A N/A N/A WA N/A NIA N/A NIA MINOR MAJOR 5.00 •••••5.00 6.00 6.00 6.00 6.00 1 0.10 1 0.10 1 vim l aes C7+ override Depths set set Goof Clog = Q.-IQ.-I �= N/A N/A N/A N/A MINOR MAJOR N/A N/A cis N/A WAS cis Oa = Os = MINOR MAJOR N/A N/A cis N/A N/A cfs MINOR MAJOR OM= Om'= N/A N/A cfs N/Ajd)G..= N/Acfs N/A N/A MINOR MAJOR Coef = 1.00 1.00 Clog = 0.10 0.10 MINOR MAJOR Or =1 5.98 23.50 cis 0+= 5.38 21.22 cis MINOR MAJOR Oa = 9.75 13.62 cis Q. =1 818 1 12.26 1cfq MINOR MAJOR O.r = 4. = k.n = 7.10 16.67 cis 15.00 cis 12.26 c(s 6.39 5.38 eurunn ue Ina L=1 5.00 1 5.00 T= 16.8 39.1�171T-Cmwn doaown= 0.0 3.8Inches . MINOR MAJOR Qa = 5.4 12.3 C1s O vrucraeueeo=1 1.0 4.3 Icfa UD-Inlet_V3.14-SO3-1.xlsm, Inlet In Sump 7/2312014. 5:33 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project Tlmbervine Inlet ID: Inlet Stew Devils RDADWAY CENTERLIKE — — gn it already determinedug olrerme in Worksheet Protected (l Nixiekfbwfor Vto/saeet OR grainHiredciennaD: -unnown-�tfs ' If yoti enter values in Row 14. skip the rest of this sheet and proceed to sheet O-Allow or Area Inlet. FILL IN THIS SECTION OR... ograP in tre okiia oasX FILL IN THE StbImpe nen Aoes SECTIONS BELOW. ness; z Pamera lmpervbuaress= % — Site Type: Flown Dedo W R,r: NRCS Soil Type = A, B. C, or D O Sne Is Urlun . O Street tNels Sb fUR Lergthn O Slte n lbn Urtran O Nm [Nets In a lil n Ovadand Fbw= Charnel Flow = 7minorbuirm Major buirm uesgn emrm menm renou. I r = years nenm eerwo ure-nolr rreopitawn, rI = ter= inches V] VJ= User -Defined Sturm Runes Coefficient (leave this blare to accept a cakalated vakA), C = usertienneo yyr. rstron wemwern leave ms warn m accept a celozarep vase). us = Bypass (Carry -Over) Flow from upstream Subcatchmams, Ds= cis , Total Design Peak Flow, O = 1.0 0.3 cfs a UD4nlet_v3.14 - S03-2.)dsm, C-Peak 7123/2014, 5:33 PM III 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storrs) 11 Project: Timbervine Inlet ID: Inlet S03-2 'r- TT a` , _....____.- T � Sef� T. T gg W-* Tx C treat anA., Clw Qx _ num Allowable Width for Spread Behind Curb TmA = 11.0 Ift Slope Behind Curb (leave blank for no conveyance credit behind curb) %Acn =1 0.020 ft/ft ring's Roughness Behind Curb (typically between 0.012 and 0.020) ntm« = 0 lil it of Curb at Gutter Flow Line Hcum = 6.00 inches nce from Curb Face to Street Crown Tcaow- = 25.0 it it Width W = 2.00 it I Transverse Slope Sx = 0.023 Nft v Cross Slope (typically 2 inches over 24 inches or 0.083 Nit) Sw = 0.083 f 1ft t Longitudinal Slope - Enter 0 for sump condition So = 0.000 ft/ft ring's Roughness for Street Section (typically between 0.012 and 0.020) nsTMET = 0.016 Minor Storm Major Storm Allowable Spread for Minor & Major Storm Tmm = 25.0 25.0 ft - Allowable Depth at Gutter Flowline for Minor & Major Storm dm" = 6.0 12.0 inches Flow Depth at Street Crown (leave blank for no) 0 0check = yes Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowlins (usually 2") Gutter Depression (dc - (W " S, " 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Gutter Section W (QT - Qx) Discharge Behind the Curb (e.g., sidewalk, driveways, &lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V'd Product: Flow Velocity times Gutter Flowline Depth y= do = a= d= Tx = E. = Q. = OW = ABACK = Or= V= V'd = oretical Water Spread TTK = Dretical Spread for Discharge outside the Gutter Section W (T - W) Tx TK = er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo = oretical Discharge outside the Gutter Section W, carried in Section Tx TN Qx TH = of Discharge outside the Gutter Section W, (limited by distance TcaowN) Qx - :harge within the Gutter Section W (Qd - Qx) QW = :harge Behind the Curb (e.g.. sidewalk, driveways, & lawns) QBACK = it Discharge for Major & Minor Storm (Pre -Safety Factor) Q = rage Flow Velocity Within the Gutter Section V = Product: Flow Velocity Times Gutter Flowline Depth V•d = e-Based Depth Safety Reduction Factor for Major & Minor (d a 6") Storm R = : Flow Based on Allowable Depth (Safety Factor Applied) Oa = ultant Flow Depth at Gutter RoMine (Safety Factor Applied) - d - ultant Flow Depth at Street Crown (Safety Factor Applied) dCRoWN = 6.75 6.75 2.0 2.0 1.45 1.45 8.20 8.20 23.0 23.0 0.230 0.230 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP 0.0 0.0 0.0 0.0 Minor Storm Major Storm 16.8 39.1 14.8 37.1 0.344 0.144 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SUMP SUMP SUMP SUMP inches inches inches inches ft CIS cis CIS cfs fps cis CIS CIS cfs cis fps cfs inches inches I STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm R STORM Allowable Capacity is based on Depth Criterion O,ib„ = SUMP I SUMP Jcfs storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak' storm max. allowable caoacity GOOD - areater than flow given on shaet'O-Peak' LID-Inlet_v3.14 - S03-2.xlsm, Q-Allow 7/23/2014, 5:33 PM INLET IN A SUMP OR SAG LOCATION Project = Timbervine Inlet ID = Inlet SO3.2 ,�--Lo (C)--X H-Curb H-Vert Wo W WP Lo (G) Design Information In - MINOR MAJOR Type of Inlet Inlet Type =1 CDOT Type R Curb Opening Leal Depression (additional tocontinuous gutter depression'a' from'O-Allow') shod = 3.00 3.00 Inches Number of Unit Inlets (Grate or Curb Opening) No =1 1 1 1 dinam Water Depth at Flowline (outside of local depress on) Punning Depth = 6.0 12.0 Grate Information MINOR MAJOR uelans Length of a Unit Grate L. (G) = N/A N:A feet Width of a Unit Grate Wo= N/A WA feet rea Opening Ratio for a Grate (typical values 0.15-0.90) Meo = NIA N/A Clogging Factor for a Single Grate (typical value 0.50-0.70) Cr(G)= N/A WA Grate Weir Coefficient (typical value 2.15-3.60) C.(G)= N/A WA Grate Orifice Coefficient(typical value 0.60-0.80) Co (G) N/A N/A Curb Opening Information MINOR MAJOR Length of a Unit Curb Opening Lo(C)= 5.00 5,00 feet Height of Vertical Curb Opening in Inches H,..= 6.00 6.00 inches Height of Curb Critics Threat in Inches H...,h = 6.00 6,00 inches Angle of Threat (see USDCM Figure ST-5) Theta = 63.40 6,340 degrees Side Width for Depression Pan (typically the gutter width of 2 feet) W. = 2.00 2.00 feet Clogging Factor for a Single Curb Opening(typical value 0.10) Cr(C)= 0.10 0.10 Curb Opening Weir Coefficient (local value 2.3-3.7) C.(C)= 3.60 3.60 Curb Opening Orifice Coefficient (typical value 0.60-0.70) C.(C)= 0.67 0.67 Grate Flow Analysis lCalculatedl MINOR MAJOR Clogging Coefficient for Multiple Units Cost = N/A NIA Clogging Factor for Multiple Units Clog =1 NIA I NIA Grate Capacity as a Weir (based on UDFCD -CSU 2010 Study) MINOR MAJOR Interception without Clogging (), =1 N/A NIA cfs Interception with Clogging Q- =I N/A NIA cfs Grate Capacity as a Ort6ce (based on UDFCD- CSU 2010 Study) MINOR MAJOR Interception without Clogging Oa= N/A N/A cis Interception with Clogging Oa= NIA NIA cis Grate Capacity as Mixed Flow MINOR MAJOR Interceptionwithcu Clogging OM= NIA NIA cfs Interception with Clogging Q,.= N/A N/A cis Resulting Grate Capacity (assumes clogged condtion) Oe„e, -1 NIA I N/A lcfs Curb Opening Flow Analysis lCalculated MINOR MAJOR Clogging Coefficient for Multiple Units cost =1 1.00 1.00 Clogging Factor for Multiple Units Clog =1 0.10 0./0 Curb Opening as a Weir (based on UDFCD -CSU 2010 Study) MINOR MAJOR Interception without Clogging 0. =1 5.98 23.58 cfs Interception with Clogging ' Q- =I 5.30 21.22 cfs Curb Opening as an Origu (based on UDFCD- CSU 2010 Study) MINOR MAJOR Interception without Clogging On = 9.75 13.62 cfs Interception with Clogging Q. =1 8.78 12.26 cis Curb Opening Capacity as Mbred Flow MINOR MAJOR Interception without Clogging 0.-1 7.10 16.67 cfs Interception with Clogging Q,. = 6.39 15.00 cis Inlet Length tant Street Flow Spread (based on sheet O-Allow geometry) Cant Flow Depth at Street Crown I Inlet Interception Capacity (assumes clogged condition) 0apacity IS GOOD for Minor and Major Storms (>O PEAK) L = 500 5.00 t T= 16.8 39.7�:L--Crown dch N= 0.0 3.8Inches MINOR MAJOR Q. = 5.4 12.3 cfs Ore„h MO.MD 21 1.0 4.3 cfs 1 UD-Inlet_0.14-S03-2.xlsm, Inlet in Sump 712312014. 5:33 PM Appendix D (Water Quality and Detention Pond Calculations), G a o w a OF Planning. Architecture. Engineering. A-111- Galloway Job Name: Timbervine G O YY `w, a 3760 E. 15th Street, Suite 202 Job Number: SPHLV0001.01 Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014 Ph: (970) 800-3300 By: J. Prelog Permeable Pavement Calculations Total Alley Area Total Required Permeable Area Total Parking Area Pan (1500 ft(4ft) + additional flow areas) Total Permeable Area Provided Additional Area Provided 31,472 sq. ft. 7,868 sq.ft.- 898 sq. ft. 7,052 sq. ft. 7,951 sq. ft. 83 sq. ft. Design Procedure Form: Extended Detention Basin (EDB) Sheet 1 of 4 Designer: J. Prelog . Company: Galloway Date: July 23, 2014 Project: Tlmbervine - Location: Fort Collins, CO 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area. I, 6 = 43.7 % B) Tributary Area's Imperviousness Ratio (i = I,/ 100) 10.437 C) Contributing Watershed Area Area = 39.195 as , D) For Watersheds Outside of the Denver Region, Depth of Average ds = in Runoff Producing Storm Choose One E) Design Concept (Select EURV when also designing for flood control) ® Water Quality Capture Volume (wQCV) 1 O Excess Urban Runoff Volume (EURV) F) Design Volume (1.2 WOCV) Based on 40-hour Drain Time VOEsaN= 0.743 : ac-ft (Vms1o,,=(1.0"(0.91 -i .1.19"i +0.78"1)/ 12"Area' 1.2) G) For Watersheds Outside of the Denver Region, Vxsionorr, n= J . ac-ft Water Quality Capture Volume (WQCV) Design Volume - (V Wacv orNEB = (de1VE Evon/0.43)) H) User Input of Water Quality Capture Volume (WOCV) Design Volume VOEsioN USER= ac-ft , (Only if a different WQCV Design Volume is desired) Choose One 1) Predominant Watershed NRCS Soil Group O A O B O C/D J) Excess Urban Runoff: Volume (EURV) Design Volume For HSG A: EURVA = (0.1878i - 0.0104)'Area _ __ _ EURV = �� i acf t For HSG BEURV, = (0. 11781 - 0.0042)-Area For HSG GU: EUHVoc = (0.1U431 .O.0031)'Area t 2. Basin Shape: Length to Width Ratio L : W = 4.0 : 1 (A basin length to width ratio of at least 2:1 will improve TSS reduction.) - 3. Basin Side Slopes A) Basin Maximum Side Slopes Z = 4.00 ft / ft (Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet Riprap will be placed at all concentrated inflow locations. A) Describe means of providing energy dissipation at concentrated inflow locations: - UD-BMP_v3.03.xlsm, EDB 7/23/2014, 5:56 PM Design Procedure Form: Extended Detention Basin (EDB) - Sheet 2 of 4 Designer: J. Prelog Company: Galloway Date: July 23, 2014 - - Project: Timbervine - Location: Fort Collins, CO orebay A) Minim rebay Volume VFWiN = 0.019 ac-ft (VMN- % of the WQCV) B) Actual Forebay Volume VF = ac-ft C) Forebay Depth OF = in , .. (DF = 18 inch maximum) D) Forebay Discharge i) IMtletained 100-year Peak D'Ischarga +w = cfs ii) Forebay Discharge Design Flow = , Cfs (QF = 0.02' Q,.) E) Forebay Discharge Design Choose One O Berm With Pipe (flow too small for berm wl pipe) e O Wall with Rect. Notch cy O Wall with V-Notch War F) Discha a Size (minimum flinches) Calculated OF G) Rectangular Notch Width Calculated WN = ""-"—'-—� in Une PROVIDE A CONSISTENT LONGITUDINAL 6. Trickle Channel O Concrete SLOPE FROM FOREBAY TO MICROPOOL WITH NO MEANDERING. RIPRAP AND A) Type of Trickle Channel ® SCR Bettpm SOIL RIPRAP LINED CHANNELS ARE i. '`• -- NOT RECOMMENDED. MINIMUM DEPTH OF 1.5 FEET F) Slope of Trickle Channel S = 0.0025 ft/ ft 7. MiaoPoo re A) Depth a( Micmpool (2.Sfeet minimum) DO = ft `Y B) Surface Area of Micmcool if oft' minim e Choose One IIr® Orifice Plate O Other (Describe); D) Depth of Design Volume (EURV or 1.2 WOCV) Based on the Design H = 2.10 feet Concept Chosen Under I.E. E) Volume to Drain Over Prescribed Time WQCV =`- v(Y879 _7 ac-ft F) Drain Time To 40 hours (Min To for WQOV= 40 hours; Max To for EURV= 72 hours) G) Recommended Maximum Outlet Area per Row, (A,) i square inches H) Orifice Dimensions: i) Circular Orifice Diameter or __ Dam.. _ 1 -1 % 2_ � inches ii) Width of 2' High Rectangular Onfice Yvad'' _; .. J inches ' I) Number of Columns ne=,--'1 -!number J) Actual Design Outlet Area per Row (Aa) Po =­ ,. tt:77 ;square inches " _ K) Number of Rows (m) n, i number m. L) Total Outlet Area(A,) Aa 11.1 square inches - M )) Depth of WQCV (HQ,,) Hwocv = feet (Estimate using actual stagearea-volume relationship and Vwncv) N) Ensure Minimum 40 Hour Drain Time for WQCV fowocv =� hours AIM UD-BMP_v3.03.xlsm, EDB 7/23/2014, 5:56 PM Design Procedure Form: Extended,Detention Basin (EDB) Sheet Designer. J. Prelog Company: Galloway Date: July 23, 2014 Project: Timbervine " Location: Fort Collins, CO 8. Initial Surcharge Volume - A) Depth of Initial Surcharge Volume Ds = 4.0 in ' (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume Via=��-80.9 cut ft (Mnimum volume of 0.3%of the WQCV) _ RR BEIRFASE AREA OF M4GRQPQQ f Choose One 9. Trash Rack Ili O Circular (up to 1 1/4" diameter) A) Type of Water Quality Orifte Used I ® OraWr (greater than 1-1/4" diameter) OR Rtttangular (2" high) 't. B) Water Quality Screen Open Area: A, = Act38.5'(e-0 A, = 372 7 square inches ` C) For 1-1/4-", or Smaller, Circular Opening (See Fact Sheet T-12): f Width of Water Quality Screen and Concrete Opening(WY,,,,,,,) "inch=a " ii) Height of Water Quality Screen (H,) Hm = !inches Choose One iii) Type of Screen, Describe if "Other" r O S.S. Well Screen with 60% Open Area" y' IL O Other(Describe): #P? D) For Circular Opening (greater than 1-1/4' diameter) OR 2' High Rectangular Opening (See Fact Sheet T-12): i) Width of Water Quality Screen Opening(W.) W� l@ if) Height of Water Quality Screen(Hm) Hm=: P"--- Iff iii) Type of Screen, Describe If *Other Choose One ,^' O Aluminum Amin 10emp SR Series (ar equal t O Ofr (Desrnbe): v) Crossbar Spacing finches vi) Mnimum Bearing Bar Size a UD-BMP_v3.03.xlsm, EDB 7/2312014, 5:56 PM Design Procedure Form: Extended Detention Basin (EDB) ' Sheet 4 of 4 Designer: J. Prelog Company: Galloway - Date: July 23, 2014 - - Project: Timber -vine Location: Fort Collins, CO 10. Overflow Embankment A) Describe embankment protection for 100-year and greater overtopping: B) Slope of Overflow Embankment (Horizontal distance per unit vertical, 4:1 or flatter preferred) Ze - 4.00 ft / fl 11. vegetation • O Irrigated IIIr O Not Irrigated L � 12. Access A) Describe Sediment Removal Procedures Notes: UD-BMP_v3.03.xlsm, EDB 7/23/2014, 5:56 PM Ga1. OWa�/ Galloway Job Name: Timber01 ■ ■ 3760 E: SSth Street, Suite 202 Job Number: SPHLV000.01 Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014 Ph: (970) 800-3300 By: J. Prelog Timbervine Detention Pond Volume Calculations: FAA Procedure Based on FAA Procedure, per Federal Aviation Agency 'Airport Drainage" Manual Drainage Basin A Design Storm 10 year Composite "C" Factor 0.29 Basin Size 24.73 Release Rate Calculations Allowable Release Rate for Pond 8.70 cfs Rainfall Intensity Calculations Point Hour Rainfall (PI) : 1.40 Rainfall Intensity: FortCollinslDF Volume Calculations Inflow Volume = C ' I ' A' time (sec) Outflow Volume = Alowable Release Rate ' time (sec) Storage Volume = Invflow Volume - Outflow Volume Detention Storage Calculations Time t (min) Time t (sec) Intensity I (in/hr) Inflow Vin (ft) Outflow Vout (ft3) Storage Vstor (ft) 5.0 300 4.87 10,628 2,610 8,018 10.0 600 3.78 16,499 5,220 11,279 15.0 900 3.19 20,886 7,830 13,056 20.0 1,200 2.86 24,996 10,440 14,556 25.0 1,500 2.54 27,681 13,050 14,631 30.0 1,800 2.21 28,939 15,660 13,279 35.0 2,100 2.08 31,741 18,270 13,471 40.0 2,400 1.94 .33,919 20,880 13,039 45.0 2,700 1.81 35,507 23,490 12,017 50.0 3,000 1.67 36,506 26,100 10,406 55.0 3,300 1.54 36,915 28,710 8,205 60.0 3,600 1.40 36,665 31,320 5,345 Maximum Volume (ft') 14,631 Fort Collins Only (120%) 2,926 Required 10-yr Volume 17,557 ft3 8214_Rational Calculations.xlsx FAA-10-yr (A) Page 1 of 10 G a 01 OWa�/ Galloway Job Name: Timbervine ■ ■ 3760 E. 15th Street, Suite 202 Job Number: SPHLV000.01 Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014 Ph: (970) 800-3300 By: J. Prelog Timbervine Detention Pond Volume Calculations: FAA Procedure Based on FAA Procedure, per Federal Aviation Agency "Airport Drainage" Manual Drainage Basin A Design Storm 100 year Composite "C" Factor 0.37 Basin Size 24.73 Release Rate Calculations Allowable Release Rate for Pond 8.70 cfs Rainfall Intensity Calculations Point Hour Rainfall (Pt): 2.86 Rainfall Intensity: FortCollinslDF Volume Calculations Inflow Volume = C * I * A * time (sec) Outflow Volume = Alowable Release Rate * time (sec) Storage Volume = Invflow Volume - Outflow Volume Detention Storage Calculations . Time t (min) Time t (sec) Intensity I (in/hr) Inflow Vin (ft3) Outflow Vout (ft3) Storage Vstor (ft3) 5.0 300 9.95 27,144 2,610 24,534 10.0 600 7.72 42,121 5,220 36,901 15.0 900 6.52 53,361 7,830 45,531 20.0 1,200 5.85 63,873 10,440 53,433 25.0 1,500 5.19 70,747 13,050 57,697 30.0 1,800 4.52 73,985 15,660 58,325 35.0 2,100 4.25 81,138 18,270 62,868 40.0 2,400 3.97 86,691 20,880 65,811 45.0 2,700 3.70 90,734 23,490 67,244 -50.0 3,000 3.42 93,268 26,100 67,168 55.0 3,300 3.14 94,293 28,710 65,583 60.0 3,600 2.86 93,626 31,320 62,306 Maximum Volume (ft') 67,244 Fort Collins Only (120%) 13,449 Required 100-yr Volume 80,693 ft3 8214_Rational Calculations.xlsx FAA-100-yr (A) Page 2 of 10 O N Galloway Job Name: Timbervine G a : i oWay 3760 E. 15th Street, Suite 202 Job Number: SPHLV0001.01 Planning. Architecture. Engineering Loveland, CO80538 Date: 7/23/2014 Ph: (970) 800-3300 By: J. Prelog POND VOLUME A CALCULATIONS - STAGE. / STORAGE Pond Volume = Prismoidal Formula Volume Equation = (AS+A2+SQRT(AS'A2)•D/3 StaoA / Ctnrnoe Inrud TnhIA ELEVATION It DEPTH (D) It AREA (Al) ftz WEIGHTED AVG AREA (A2) ft' INCREMENTAL VOLUME W CUMMULATIVE VOLUME W 4927.8 75 0 4928.0 0.2 2,443 1,259 196 .196 4929.0 1.0 10,954 6,698 6,190 6,386 4930.0 1 1.0 29,977 20,465 19,684 26,070 4931.0 1.0 51,329 40,653 40,177 66,247 4932.0 1.0 64,936 58,132 57,999 124,246 4933.00 1.0 - 77,060 70,998 70,912 195,157 Top of Pond 4933.0 1 5.2 1 TOTALVOLUME1 195,157 cf 1 4.480 ac-ft Volume Summary Tahle Required Volume (ft) Required Volume (ac-ft) Water Surface Elevation Water Depth WQCV 0.000 ac-ft 4927.80 ft 0.00 ft V10 17,557 cf 0.403 ac-ft 4929.57 ft 1.77 ft V100 + 100% WQCV 80,693 cf 1.852 ac-ft 4931.25 ft 3.45 ft Volume Internnlatinn [alculatinnc WQCV V10 0%WQCV V300 + 100%WQCV Vol Elev Vol Elev Vol Elev 0.00 4927.80 6386.07 4929.00 66246.52 4931.00 0.00 4927.80 17556.66 4929.57 80693.04 4931.25 196.39 4928.00 26069.62 4930.00 124245.68 4932.00 8214_Rational Calculations.xlsx Vol Pond A Page 3 of 10 a i i - Galloway Job Name: Timbervine V i oway` 3760 E. 15th Street, Suite 202 Job Number:' SPHLV0001.01 Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014 Ph: (970) 800-3300 By: J. Prelog STAGE VS. STORAGE Water Quality Detention Pond 4934.0 4933.0 T p of Pond 95,157 cf 4933.0 4932.0 z 0 H V100 +10 %WQCV 80,6S 3 cf J V) 4931. 5 ft 4931.0 W W W Q m Ix H :3 W LL 4930.0 W W V10 O%VYQCV. 17,557 c 4929.57 4929.0 4928.0 4927.0 0 50,000 100,000 150,000 200,000 260,000 POND VOLUME (CF) 8214_Rational Calculations.xlsx Vol Pond A Page 4 of 10 G a„OWa� Galloway Job Name: Timbervine ,. '3760 E. 15th Street, Suite 202 Job Number: SPHLV000.01 Planning. Architecture. Engineering. Loveland, CO 80538 j Date: 7/23/2014 Ph: (970) 800-3300 By: J. Prelog Timbervine Detention Pond Volume Calculations: FAA Procedure Based on FAA Procedure, per Federal Aviation Agency "Airport Drainage" Manual Drainage Basin B Design Storm 10 year Composite "C" Factor 0.31 Basin Size 14.47 Release Rate Calculations Allowable Release Rate for Pond 7.84 cfs Rainfall Intensity Calculations Point Hour Rainfall (131) : 1.40 Rainfall Intensity: FortCollinslDF Volume Calculations Inflow Volume = C * I * A * time (sec) Outflow Volume = Alowable Release Rate * time (sec) Storage Volume = Inflow Volume - Outflow Volume Detention Storage Calculations Time t (min) Time t (sec) Intensity .I (in/hr) Inflow Vin (ft3) Outflow Vout (ft) Storage Vstor (ft3) 5.0 300 4.87 6,527 2,352 4,175 10.0 600 3.78 10,133 4,704 5,429 15.0 900 3.19 12,826 7,056 5,770 20.0 1,200 2.86 15,351 9,408 5,943 25.0 1,500 2'.54 16,999 11,760 5,239 30.0 1,800 2.21 17,772 14,112 31660 2,100 2.08 19,493 16,464 3,029 2,400 1.94 20,830 18,816 2,014 2,700 1.81 21,805 21,168 637 M 3,000 1.67 22,419 23,520 -1,101 3,300 1.54 22,670 25,872 -3,202 3,600 1.40 22,517 28,224 -5,707 Maximum Volume (ft') 5,943 Fort Collins Only (120%) 1,189 100% WQCV 32,347 ft3 Required 10-yr Volume + 100% WQCV 39,478 ft3 u 8214_Rational Calculations.xlsx FAA-10-yr (B) Page 5 of 10 Gal'0w Galloway Job Name: Timbervine ■. 3760 E. 15th Street, Suite 202 ' � Job Number: SPHLV000.01 Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014 Ph: (970) 800-3300 By: J. Prelog Timbervine Detention Pond Volume Calculations: FAA Procedure Based on FAA Procedure, per Federal Aviation Agency "Airport Drainage" Manual Drainage Basin B Design Storm 100 year Composite "C" Factor 0.39 Basin Size 14.47 Release Rate Calculations Allowable Release Rate for Pond 7.84 cfs Rainfall Intensity Calculations Point Hour Rainfall (Pt): 2.86 Rainfall Intensity: FortCollinslDF Volume Calculations Inflow Volume = C ' I ' A ' time (sec)+Vout (Pond A) Outflow Volume = Alowable Release Rate' time (sec) Storage Volume = Inflow Volume - Outflow Volume Detention Storage Calculations Time t (min) Time- t (sec) Intensity I (in/hr) Inflow Vin (ft3) Outflow Vout (ft) Storage Vstor (ft3) 5.0 300 9.95 19,280 2,352 16,928 10.0 600 7.72 31,087 4,704 26,383 15.0 900 6.52 40,600 7,056 33,544 20.0 1,200 5.85 49,666 9,408 40,258 25.0 1,500 5.19 56,497 11,760 44,737 30.0 1,800 , 4.52 61,095 14,112 46,983 35.0 1 2,100 4.25 68,098 16,464 51,634 40.0 2,400 3.97 74,119 18,816 55,303 45.0 2,700 3.70 79,212 21,168 58,044 50.0 3,000 3.42 83,378 23,520 59,858 55.0 3,300 3.14 86,617 25,872 60,745 60.0 3,600 2.86 88,818 28,224 60,594 Maximum Volume (W) 60,745 Fort Collins Only (120%) 12,149 100% WQCV 32,347 ft3 Required 100-yr Volume + 100% WQCV 105,241 ft3 8214_Rational Calculations.xlsx FAA-100-yr (B) Page 6 of 10 J alfloi Planning. Architecture. Engineering. Galloway 3760 E. 15th Street, Suite,202 Loveland, CO 80538 Ph: (970) 800-3300 POND VOLUME B CALCULATIONS - STAGE / STORAGE Pond Volume = Prismoidal Formula Volume Equation= (Al+A2+SQRT(Al•A2)•D/3 Staee / Storaee Inout Table Job Name: Timbervine Job Number: SPHLV0001.01 Date: 7/23/2014 By: J. Prelog ELEVATION ft DEPTH (D) ft AREA (Al) ftz WEIGHTED AVG AREA (A2) ftZ INCREMENTAL VOLUME W CUMMULATIVE VOLUME W 4927.0 1,180 0 4928.0 1.0 17,363 9,272 7,690 7,690 4929.0 1.0 26,358 21,861 21,705 29,395 4930.0 1 1.0 33,304 29,831 29,764 59,158 4931.0 1.0 38,715 36,009 35,975 95,134 4932.0 1.0 44,055 41,385 41,356 136,490 4933.0 1.0 49,369 46,712 46,687 183,177 Top of Pond 4933.0 6.0 TOTAL VOLUME 183,277 cf 4.205 ac-ft Volume Summary Table Required Volume (ft) Required Volume (ac-ft) Water Surface Elevation Water Depth WQCV 32,347 cf 0.743 ac-ft 4929.10 ft 2.10 ft VSO + 100% WQCV 39,478 cf 0.906 ac-ft 4929.34 ft 2.34 ft V100 + 100% WQCV 105,241 cf 2.416 ac-ft 4931.24 ft 4.24 ft Volume Interpolation Calculations WQCV V30 + 100% WQCV V100 + 100% WQCV Vol Elev Vol Elev Vol Elev 29394.56 4929.00 29394.56 4929.00 95133.52 4931.00 32347.01 4929.10 39478.21 4929.34 105241.13 4931.24 59158.10 4930.00 59158.10 4930.00 136489.70 4932.00 8214_Rational Calculations.xlsx Vol Pond B Page 7 of 10 G a silo waY •oway Planning. Architecture. Engineering. Galloway 3760 E. 15th Street, Suite 202 Loveland, CO 80538 Ph: (970) 800-3300 Job Name: Timbervine Job Number:. SPHLV0001.01 Date: 7/23/2014 By: J. Prelog STAGE VS. STORAGE Water Quality Detention Pond 4934.0 4933.0 Top of P 3nd 183,17 cf 4933. 4932.0 Z 00 +10 %WQC p 105,2 1 cf 4931.0 Q W N J � W W W Q m 4930.0 KH aiLL V10 +1000/ WQCV �- 39,478 f QCV H 4929.34 ft 2,347 cf Q 4929.0 29.10 ft 4928.0 4927.0 4926.0 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 POND VOLUME (CF) 8214_Rational Calculations.xlsx Vol Pond B Page 8 of 10 Gal Owa Galloway Job Name: Timbervine . � 3760 E. 15th Street, Suite 202 lob Number: SPHLV000.01 Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014 Ph: (970) 800-3300 By: Engineer ORIFICE CALCULATION WORKSHEET 10 Yr Orifice Plate Q=cA(2gH)".5 using Headwater above opening and C= 0.65 QMiNOR allowable release rate= 7.84 cfs Storm Select Orifice Type Rectangular Orifice Water Surface Elev (minor) 4929.34 feet WQCV Water Surface Elev 4929.10 feet Water depth to Orifice invert: 0.24 feet E Enter Opening Height 3.00 inches Multiple of Orifice Width 5 Circular orifice diameter: Circular orifice: diameter 3.00 inches diameter 0.25 feet Rectangular orifice: opening height 3.00 inches opening width 2.36 inches Q = cA(2gH)^.5 Q (calculated release rate) = 0.09 cfs c = 0.65 Area = 0.049 sf RESULT FOR A: g(gravity) = 32.20 fUs^2 Rectangular Orifice H(head) = 0.11 ft Height 3.0 inches Width 11.8 inches Release Rate for orifice opening 0.43 cfs 8214_Rational Calculations.xlsx Minor Orifice Page 9 of 10 0 Galloway lob Name: Timbervine G a OWa1 3760 E. 15th Street, Suite 202 Job Number: SPHLV0001.01 Loveland, CO 80538 Date: 7/23/2014 Planning. Architecture. Engineering. Ph: (970) 800-3300 By: J. Prelog ORIFICE PLATE AT OUTLET PIPE WORKSHEET Orifice Plate using Headwater above opening and Q=cA(2gH)A.5 C= 0.65 Summary of Available Pioe Releases Pipe Dia Area Head H Q Outfall Pipe at centroid avail out (in) (sf) (ft) (cfs) 12 0.79 3.94 8.13 15 1.23 3.82 12.50 18 1.77 3.69 17.71 24 � 3:1'4 1 3:44' 30 4.91 3.19 45.74 36 7.07 2.94 63.24 Q=cA(2gH)A.5 C= 0.65 Iteration Process Q 7.84 cfs c 0.65 Hh�a 3.44 ft Needed Area 0.81 s Using Area- determine Ao 0.81 sf Apipe 3.14 sf theta 3.9434 rad Ao-calced 0.81 sf QrenaoR allowable release rate: 7.84 cfs 100-yr Water Surface Elev: 4931.24 ft Inv Elev at Outlet Struct: 4926.80 ft Outlet Pipe at Structure: 24 in D To- O O / Ao = [Apoe(lr2;r - 9 + rsi B *rco 2)] m -0.39 ft distance above(+) or below(-) center m=YCO e) 2 H 0.61 ft Height above pipe invert H= r+m 8214_Rational Calculations.xlsx Major Orifice I Page 10 of 10 ' Pond A Spillway Project Description Solve For Discharge ' Input Data Headwater Elevation 4933.50 ft Crest Elevation 4932.95 ft ' Tailwater Elevation 4932.95 ft Weir Coefficient 3.00 US Crest Length 40.00 ft ' Results Discharge 48.95 fF/s Headwater Height Above Crest 0.55 ft Tailwater Height Above Crest 0.00 ft Equal Side Slopes 0.25 ft/ft (H:V) ' Flow Area 22.08 ft' Velocity 2.22 ft/s ' Wetted Perimeter 41.13 ft Top Width 40.28 ft Bentley Systems, Inc. Haestad Methods Sol8tia"d-rltwMaster V81(SELECTseries 1), [08.11.01.03] ' 7/23/2014 5:16:18 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755-1666 Page 1 of 1 Pond B Spillway Project Description Solve For Discharge Input Data Headwater Elevation 4933.50 ft Crest Elevation 4932.95 ft Tailwater Elevation 4932.95 ft Weir Coefficient 3.00 US Crest Length 40.00 ft Results Discharge 48.95 ft3/s Headwater Height Above Crest 0.55 ft Tailwater Height Above Crest 0.00 ft Equal Side Slopes 0.25 ft/ft (H:V)- Flow Area 22.08 ft' Velocity 2.22 ft/s Wetted Perimeter 41.13 It Top Width 40.28 It 0 Bentley Systems, Inc. Haestad Methods So03tiotW bwMaster VSi (SELECTseries 1) [08.11.01.03] ' 7/23/2014 5:16:44 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 u G a i o w a Planning. Architecture. Engineering. Appendix E (Riprap Calculations) 1 Determination of Culvert Headwater and Outlet Protection Project: Timbervine ' Basin ID: Basin 3 Upsteam Culvert i LP Design Discharge ular Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull -down list) Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull -down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Mannings number Bend Loss Coefficient Exit Loss Coefficient Tailwater Surface Elevation Tailwater Surface Height Max Allowable Channel Velocity Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Tailwater Depth for Design Adjusted Diameter OR Adjusted Rise Expansion Factor Flow/Diameter" OR Flow/(Rise'Span)o.s TaitwaterlDiameter OR Tailwater/Rise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation HeadwaterlDiameter OR Headwater/Rise Ratio Minimum Theoretical Riprap Sae x Nominal Riprap Sae UDFCD Riprap Type Length of Protection S4fiDM;e: • Sandy O Non -Sandy O = 3.0E cis D = 12 - inches Square End Projection OR Height(Rise)= ft. Width (Span) = ft. No= 1 Elev IN = 4936.49 ft Elev OUT = 4936.41 ft L= 20 ft n = 0.012 kb = 0 k. = 1 Y`= ft. Yx = 0.40 ft V = 5.00 ft/s h = 0.61 ft` A = 0.79 fe k. = 0.20 kr = 0.53 k. = 1.73 ft Yn = 0.65 ft Y. = 0.75 ft d = 0.87 ft D. = 0.83 ft 1/(2'tar{O))= 3.52 O/Wl.5 = 3.06 ft, 5/s Yt/D = 0.40 HW, = 1.29 ft HWo= 1.44 ft HW = 4,937.93 ft HW/D= 1.44 dw =Pi in dw= in TypeLe = ft Determination of Culvert Headwater and Outlet Protection Project: Timbervine, Basin ID: Design Point 3 - eat cwou= - LP n � o Irk � tin w Design Discharge ular Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull -down list) Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull -down list) Number of Barrels Inlet Elevation - - Outlet Elevation OR Slope Culvert Length Mannings number Bend Loss Coefficient ExR Loss Coefficient Tailwater Surface Elevation Tailwater Surface Height . 1 Max Allowable Channel Velocity Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Tailwater Depth for Design Adjusted Diameter OR Adjusted Rise Expansion Factor Flow/Diameter''5 OR Flow/(Rise'Spanp Tailwater/Diameter OR Taihvater/Rise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation HeadwaterfDiameter OR Headwater/Rise Ratio - Minimum Theoretical Riprap Size . Nominal Riprap Size UDFCD Riprap Type - Length of Protection �® sandy O Non -Sandy ............... ........... :..........................- ............. ............ - Q = 25.78 cfs ' D = 30 inches '- Square End Projection OR Height (Rise) =l ft. Width (Span) ft. No= 1 Elev IN = 34.88 R Elev OUT = 34.78 ft L= 20 ft n = 0.013 kb = 0 k. = 1 Yr - ft k. -1 1.38 Ift Yn - 1.83 ft Y. 1.73 R d = 2.12 ft D, = 2.17 ft 1/(2'tan(0)) = 6.70 Q/D1.5= 6.52 - ft"/s Yt/D = 0.40 HWi= 2.81 ft HWo= 3.04 ft HW= 37.92 ft HW/D= 1.21 dso = 5 in ds = 6 in Type= VL LP = 15 ft 1 ' 1 Determination of Culvert Headwater and Outlet Protection Project: Timbervine 1 Basin ID: Design Point 5 �x c� 1�� ° . I — 1 � _ S414c�11P8ne: j� Sandy O Non -Sandy Design Discharge ular Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull -down list) Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull -down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length - Mannings number Bend Loss Coefficient Exit Loss Coefficient Tailwater Surface Elevation Tailwater Surface Height Max Allowable Channel Velocity Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Tailwater Depth for Design Adjusted Diameter OR Adjusted Rise Expansion Factor Flow/Diameter" OR Flowl(RiWSpan)o b Tailwater/Diameter OR TailwatedRise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Minimum Theoretical Riprap Size - Nominal Riprap Size UDFCD Riprap Type Length of Protection Q = 31.17 cfs D = 30 inches Square End Projection OR Height (Rise) = ft. Width (Span)= ft. No= 1 Elev IN = 32.78 ft Elev OUT = 32.68 ft L= 20 ft n = 0.012 kb = 0 k, = 1 Yr Yr= 1.00 ft V = 7.00 fits Ar = 4.45 ft A = 4.91 fe k. = 0.20 kr= 0.16 k. = 1.36 ft Yn = 2.03 ft Y. = 1.90 ft d = 2.20 ft D. = 2.26 ft 1/(2'tan(0)) = 6.70 QIVI.5= 7.89 ft"Is Yt/D = 0.40 HWi = 3.32 ft HWo= 3.58 ft H W = 36.36 ft HWID = 1.43 d,,= 7 in d,,= 9 in Type= L Lp= 12 ft ' Determination of Culvert Headwater and Outlet Protection Project: Timbervine ' Basin ID: $torrn A Outlet Box comae n F-1 o Design Discharge ular Culvert: Bartel Diameter in Inches Inlet Edge Type (Choose from pull -down list) Culvert: Barrel Height (Rise) in Feet Bartel Width (Span) in Feet Inlet Edge Type (Choose from pull -down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Mannings number Berl Loss Coefficient Exit Loss Coefficient .Tailwater Surface Elevation Tailwater Surface Height Max Allowable Channel Velocity Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Tailwater Depth for Design Adjusted Diameter OR Adjusted Rise Expansion Factor Flow/Diameter's OR Flow/(Rise'Span)as Tallwater/Diameter OR Tadwater/Rise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation HeadwaterlDiameter OR Headwater/Rise Ratio Minimum Theoretical Riprap Size Nominal Riprap Size UDFCD Riprap Type Length of Protection _Stscupie:_ ® Sandy / O Non -Sandy O = 11.12 cfs D = 24 inches Square End Projection OR Height (Riga) ft. Width (Span) = ft. No= Elev IN = So = L = n = ke = k. = Yi 1 ft ft/ft ft 4928.12 0.002 55.12 0.012 0 1 Yi = 0.80 ft V = 5.00 ft/s E4 = 2.22 A = 3.14 k. = 0.20 kr = 0.58 k. = 1.78 ft Yn = 1.66 ft Y. = 1.20 ft d = 1.60 ft D. = 1.83 ft 1/(2'tan(0))= 3.52 Q/D"1.5 = 3.93 ft' '/s Yt/D = 0.40 HW.= 1.83 ft HWo= 2.03 ft HW= 4,930.15 ft HWID = 1.01 d. = 3 in d,,= 6 in Type= VL Lp= 6 ft ' Determination of Culvert Headwater and Outlet Protection Project: Timbervine ' Basin ID: Design Point 13 eox c n a n n *..Sandy Q Non-....S.a... ndy .. ......................................... Design Information (input): Design Discharge _ Q = 4.21 cfs Circular Culvert: ' Barrel Diameter in Inches D = 15 inches Inlet Edge Type (Choose from pull -down list) Square End Projection Box Culvert: OR Barrel Height (Rise) in Feet Height (Rise) _ - ft. ' Barrel Width (Span) in Feet Width (Span) = ft. Inlet Edge Type (Choose from pull -down list) Number of Barrels No = 1 Inlet Elevation - Elev IN = 4932.71 ft Outlet Elevation OR Slope So = 0.005 ft/ft . Culvert Length L = 155 ft Mannings number n = 0.012 Bend Loss Coefficient kb = 0 ' Exit Loss Coefficient k. = 1 Taitwater Surface Elevation Yr = ft. Required Protection (Output): ' Tailwater Surface Height .Y, = 0.50 ft Max Allowable Channel Velocity V = 5.00 ft/s Flow Area at Max Channel Velocity A, = 0.84 f Culvert Cross Sectional Area Available A = 1.23 ft' - Entrance Loss Coefficient - - k. - 0.20 ' Friction Loss Coefficient kr = 3.05 Sum of All Losses Coefficients k, = 4.25 ft Culvert Normal Depth Yn = 0.88 ft Culvert Critical Depth Y. = . 0.83 ft ' Tailwater Depth for Design d = 1.04 ft Adjusted Diameter OR Adjusted Rise D, = 1.07 ft Expansion Factor 1/(2-tan(0)) = 3.52 Flow/Diameter" OR Flow/(Rise'Span)°'s Q/D"1.5 = 3.01 ft"/s Tailwater/Diameter OR Tailwater/Rise YVD = 0.40 Inlet Control Headwater HW, = 1.32 ft Outlet Control Headwater HWo = 1.23 ft Design Headwater Elevation HW = 4,934.03 ft Headwater/Diameter OR HeadwaterlRise Ratio HW/D = 1.06 Minimum Theoretical Riprap Size d56 - 2 in ' Nominal Riprap Size d� = 6 in UDFCD Riprap Type Type = VL Length of Protection Lp = 4 ft Determination of Culvert Headwater and Outlet Protection Project: Timbervine Basin ID: Storm B eox cwac nT �II o w. xo Design Discharge ular Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull -down list) Culvert: Bartel Height (Rise) in Feet Bartel Width (Span) in Feet Inlet Edge Type (Choose from pulldown list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Mannings number Bend Loss Coefficient Exit Loss Coefficient Tailwater Surface Elevation Tailwater Surface Height Max Allowable Channel Velocity Flow Area at Max Channel Velocity Culvert Cross Sectional Area Available Entrance Loss Coefficient Friction Loss Coefficient Sum of All Losses Coefficients Culvert Normal Depth Culvert Critical Depth Tailwater Depth for Design Adjusted Diameter OR Adjusted Rise Expansion Factor Flow/Diameter' ' OR Flowl(Rise'Span)as Tailwater/Diameter OR TailwaterfRise Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Minimum Theoretical Riprap Size Nominal Riprap Size UDFCD Riprap Type Length of Protection rSQlJAwe: I • Sandy O Non -Sandy Q = 13 cfs D = 24 inches Square End Projection OR Height (Rise) = R. Width (Span) = R. No= Elev IN = So= L = n = kb = k, = Y, 1 ft Wit ft 4927.64 0.0035 180 0.013 0 1 Yt = 0.80 ft V = 5.00 ft A, = 2.60 ft` A = 3.14 ft k. = 0.20 kr = 2.22 k = 3.42 ft Y.= 1.59 ft Y. = 1.30 ft d= 1.65 ft D,= 1.79 ft 1/(2-tar<- = 2.39 Q0D 1.5 = 4.60 ft'.e/s YVD = 0.40 HWi - 2.04 ft HWo= 2.19 ft HW= 4,929.84 ft HW/D= 1.10 dw = 4 in d50 = 6 in Type = VL Lp = 6 ft 1 Determination of Culvert Headwater and Outlet Protection project: Timbervine ' Basin ID: Outfell I � <oaxE N a n 1 � .� 1 sandy Non -Sandy Fez .___._._. .._.._. ....._._.. Design Information (input): Design Discharge Q = 16.39 cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches 1 Inlet Edge Type (Choose from pull -down list) Square End Projection Box Culvert: OR Barrel Height (Rise) in Feet Height (Rise) = ft. Bael Width (Span) in Feet Barrel Width (Span) = ft. - 1 Inlet Edge Type (Choose from pull -down list) Number of Barrels - No = 1 Inlet Elevation Elev IN = 4924.91 ft Outlet Elevation OR Slope - So = 0.005 ft/ft , 1 Culvert Length L = 120 ft Mannings number n = 0.012 Berta Loss Coefficierd kb = 0 Exit Loss Coefficient k„ = 1 1 Tailwater Surface Elevation Y, = ft. TaiN ester Surface Height Y, = 0.80 ft Max Allowable Channel Velocity V = 5.00 ft/s 1 Flow Area at Max Channel Velocity A, = 3.28 fe Culvert Cross Sectional Area Available A = 3.14 Entrance Loss Coefficient - k, = 0.20 Friction Loss Coefficient kr = 1.26 ' Sum of All Losses Coefficients k, = 2.46 ft Culvert Normal Depth Y„ = 1.55 ft Culvert Critical Depth - Y. = 1.46 ft 1 Tailwater Depth for Design d = 1.73 ft Adjusted Diameter OR Adjusted Rise D, = 1.77 ft Expansion Factor 1/(2'tan(0)) = 1.85 Flow/Diameter"OR Flow/(Rise'Spanpb - Q/DM.5= 5.79 ft,/s 1 Tailwater/Diameter OR Tailwater/Rise Yf/D = 0.40 Inlet Control Headwater HWi = 2.46 ft Outlet Control Headwater HWo = 2.59 ft_ Design Headwater Elevation HW = 27 4,9.50 ft 1 Headwater/Diameter OR Headwater/Rise Ratio HWID = 1.30 Minimum Theoretical Riprap Sae d, = 5 in Nominal Riprap Size dm = 6 in UDFCD Riprap Type Type = VL Length of Protection LP = 6 ft 1 1 • Appendix F (Basin Maps) G a o w a Planning. Architecture. Engineering,y ONION SOCKw.PAOe ORN RAIwoID III Rl12.12 Is T _�— -- 1jAl :Eli iT. r- - I T f r `; i'll❑1` ��0 A3 A4 27 1' III I I Iz —_ BS I I / 1 _1 L CIS A. I4. �. PONDB PLO rw—sTVPewRiei _ �"'3 91 Poroe tismucTMRE AM ism O&MAR AMBER All LLC PASSEL kA MATCH A Lu x■ In ■ `O I 2 H id W 1 cf) i W Z J - — LET. OSWAE O 0 WS 1 l A5 4 i 2 011 1 i BIOSwµE O ON% A _ AID, 068 2'o O T1 -imp" +*„+� wENeuRB uaM HOMES SARNI All A10 \ a.' ♦ ASJ n2z \ ]� a T i L p POND all, I wSCi7 BOO PIN M HET RPE. OwRRol x A Pav,mvw o.n nc9 PARCE..em' OS2 -SEE THIS SHEET I I I I I I I im G 100 IT caror..i ax �100 _ m�R ROYXnw: 0 LEGEND: FROWSM MXJM cpNNORCOMMON—s0i]-- EASONGOAJOR ONTWR EXSTMG MINOR CMRYJR - - --- EXISTING STJW CONTO%ARR --------- PR OPOSE D STORM AMOO PROPOSED STORM SEWED � PROPOSESTOW LIFT Eli PROPOSED RIGHT-OF-WAY FJTORLL RIGHT-OF-WAY PROPWO LOTExE -- --_- Ill LOWNE — — EAYMCxTONP----"--- DRAINAGE SYMBOLS: -\J��BASIN ID BASIN AREA \ 1 .! (ACPES) `LA./ MINN RIINCiT CCEFxaEN9 1.D0 0.23 MAJOR WNW CCEFFICIEOm O.MS ACf9]IPON1 momommomm MAEN Usk MY .mmmm...= AIR BONN BOUNDARY ROW DIRECTION FIXi DRAINAGE REVIEW ONLY NOT FOR CONBTRUCTION PONDSUMMARY wl KONRION TOTµ ILO-rP HUAY pqy VCLWE YCWME VCLWE LIBEL Wl In9 (FT9 QP0 IF]) (US) A -- 1OA93 M693 493125 BJo e ]2.M] ]2AW 105,241 031.24 ].N SWALE SECTION AI -Al ., SWALE SECTION A2-A2 IIIT8.1 e � IT, SWALE SECTION B-B UTILITY PLAN APPROVAL IFPROVEO: a,] Pewees � WEaEO BY: w� W.m W W.M...w TTwy COECKED Br CHECKED BY: Cl BY. CIIECKEO Br e 4E a cc lop U. r r3 w�8 miff z N= m 3 mNO gt a. f Z W 0 Q z Wa 00w Ix co m W Q � > Z_ H C) Q 6� 0 Sheet DR01 Of 60 Sheets