HomeMy WebLinkAboutDrainage Reports - 02/05/2015 (2)I
City of Ft. Collins pro Plans
Approved By
Date
Final Drainage Report
TIMBERVINE
FORT COLLINS, COLORADO .
Prepared For:
WW Development
Landon Hoover
1218 West Ash Street, Suite A
Windsor, Colorado 80550
Prepared By:
Galloway
3760 E. 15t' Street, Suite 202
Loveland, CO 80538
(970) 800-3300
Contact: James Prelog
Project No. SPHLV0001.01
July, 2014
G la"I'll o w a Y
Planning. Architecture. Engineering.
July 23, 2014
Mr. Glen Schlueter
City of Fort Collins
281 North College Avenue
P.O. Box 580
' Fort Collins, CO 80522
Re: Timbervine
Dear Glen:
Galloway & Company is pleased to submit this Final Drainage Report for your review. This
report accompanies the July 2014 Final Plan submittal for the proposed Timbervine
' development. Comments from the Preliminary Review Letter dated June 13, 2014 have been
addressed.
This report has been prepared in accordance to Fort Collins Stormwater Criteria Manual
(FCSCM) and serves to document the Stormwater impacts as associated with the proposed
Timbervine project. We understand that review by the City is to assure general compliance with
standardized criteria contained in the FCSCM.
Please review this Final Drainage Report at your earliest convenience. We look forward to your
comments and ultimate approval of the Drainage Report for this project.
Please contact us if you have any questions.
Sincerely,
Gallowa
' Jame relog, E
Senior Civil Project Engineer
JamesPreloq@.gallowayUS.com
G a o w a
' Planning. Architecture. Engineering.
CERTIFICATION OF ENGINEER
I hereby certify that this report for the preliminary drainage design of Timbervine was prepared
by me (or under my direct supervision) in accordance with the provisions of the City of Fort
Collins Stormwater Criteria for the owners thereof.
James Prelog
Registered Professional Engineer
State of Colorado No. 39373
TABLE OF CONTENTS
' General Location and Description...............................................................................................1
1.1 Location................................................................................... .........................1
1.2 Description of Property.................................................................................................1
Drainage Basins and Sub-Basins.................................................................................................2
' 2.1 Major Basin Description...............................................................................................2
2.2 Sub -Basin Description..................................................................................................2
DrainageDesign Criteria.............................................................................................................3
3.1 Regulations...................................................................................................................3
3.2 Hydrologic Criteria.......................................................................................................3
3.3 Hydraulic Criteria..........................................................................................................3
DrainageFacility Design.............................................................................................................4
4.1 General Concept...........................................................................................................4
4.2 Specific Details.............................................................................................................4
Conclusions............:...................................................................................................................6
5.1 Compliance with Criteria..............................................................................................6
' 5.2 Drainage Concept..........................................................................................................6
References..................................................................................................................................7
Appendix A Reference Materials
Appendix B Hydrologic. and Storm Sewer Calculations
Appendix C Inlet Calculations
Appendix D Water Quality and Detention Pond Calculations
' Appendix E Riprap Calculations
Appendix F Drainage Maps
' Timbervine, Final Drainage Report
ii
' General Location and Description
1.1 Location
The proposed development of Timbervine is located in the northwest quarter of Section
8, Township 7 North, Range 68 West of the Sixth Principal Meridian in the City of Fort
Collins, County of Larimer, State of Colorado.
' Timbervine (referred herein as "the site") is bounded to the west by the Dry Creek
subdivision, to the south by International Industrial Complex, to the east by Lake Canal
and to the north by the Burlington Northern Railroad and East Vine Drive. See Appendix
' A for a Vicinity Map.
1.2 Description of Property
The site consists of approximately 39.2 acres of mostly undeveloped land. There is an
existing valley running north to south through the middle of the site with slopes typically
at 0.5%.
To the east of the site is the Lake Canal irrigation ditch, which flows from the northwest
to the southeast.
According to the Natural Resources Conservation Service (MRCS) soils map, the site
consists of the following soil types, ranked from most prominent to least prominent:
Nlap Unit
Map Unit Name
Hydrologic
Symbol
64
Loveland Clay Loam, 0 to 1 percent slopes
C
49.1
33
Fluva uents nearly level
D
27.0
53
Kim Loam, 1 to 3 percent slopes
B
17.7
7
MLRA 67B — Ascalon Sandy Loam, 0 to 3 percent
B
3.5
slopes
101
Stoneham Loam, 1 to 3 percent slopes
B
1.6
54
Kim Loam, 3 to 5 percent slopes
B
1.0
105
Table Mountain Loam, 0 to 1 percent slopes
B
0.1
For more information on soil conditions, the Timbervine Soils Report will be provided
for the Final Drainage Report.
The project will consist mostly of single-family residential lots, and landscaped areas
with associated roads, utilities, and stormwater detention facilities.
Timbervine, Final Drainage Report
Pagel of 9
' Drainage Basins and Sub -Basins
' 2.1 Major Basin Description
The site is located within the flood insurance rate maps (FIRMs), Community -Panel
Numbers 08069C0983H, revised on May 2, 2012, and 08069C0981G, revised on June
17, 2008, located in Appendix A. The entire site is located in Zone X.
According to the City of Fort Collins Stormwater Master Plan, the site is located within
' the Dry Creek Drainage Basin. The basin map is located in Appendix A. The Dry Creek
Drainage Basin is tributary to the Poudre River. The upper and middle portions of the
basin is composed of mostly rangeland and irrigated hay meadows and pastures. The
' lower basin is mostly developed land, including commercial, industrial, and residential
uses.
No irrigation ditches will be affected by the development of Timbervine. All runoff from
Timbervine will be directed to the onsite detention/water quality ponds which will outfall
to Dry Creek.
There are no offsite flow patterns that will impact the site.
' 2.2 Sub -Basin Description
The site was divided into sub -basins for the purposes of designing the inlets and storm
sewer. Runoff from the sub -basins will travel overland to the curb and gutter. The curb
and gutter will convey runoff to local inlets and the storm sewer system or to swales
along the east and west sides of the development where it will be conveyed to the water
quality/detention ponds.
Timbervine, Final Drainage Report
Page 2 of 9
Drainage Design Criteria
' 3.1 Regulations
The drainage design is in accordance with the City of Fort Collins Stonnwater Criteria as
' well as the Urban Drainage and Flood Control District Criteria Manual.
Wherever possible, the Directly Connected Impervious Area (DCIA) will be minimized
by the use of a grass Swale, a PLD Swale, trickle channels, riprap, pervious
pavement/pavers, and water quality ponds. The "Four Step Process", recommended by
UDFCD, will be implemented to maximize water quality.
3.2 Hydrologic Criteria
The one -hour rainfall Intensity -Duration -Frequency table (Tables RA-7 and RA-8) from
the City of Fort Collins Stormwater Criteria was used to determine rainfall intensity and
runoff flow for the minor and major storm events.
' The Rational Method, utilizing coefficients located in Tables RO-11 and RO-12 of the
City of Fort Collins Stormwater criteria, was used to determine runoff flow rates for the
' design of the storm sewer and inlets.
The detention discharge rate was set by the historical release rate of the Dry Creek Basin,
provided by the City of Fort Collins as 0.2 cfs/acre. For the final report, the storage
calculations were performed using the Rational Formula -based Federal Aviation
Administration (FAA) procedure in conjunction with a twenty percent upward adjustment
to account for the larger resulting storage volume that would be obtained from the
SWMM modeling.
One hundred percent of the water quality capture volume (WQCV) was added to the
minor and major storm detention volumes of the 10- and 100-year events, respectively.
Separate design storms have been analyzed for both the initial (2-year) and the major
(100-year) events.
' 3.3 Hydraulic Criteria
Street and inlet capacities have been determined using UDFCD's "UD-Inlet Version
3.14" program.
' Storm sewer capacities and hydraulic grade line calculations have been determined using
"Hydraflow Storm Sewers Extension for AutoCAD Civil 313" for this Drainage Report.
' Tinibervine, Final Drainage Report
Page 3 of 9
' Drainage Facility Design
4.1 General Concept
In the developed condition, the site is divided into two major basins, Basins A and B.
These basins are further sub -divided into 16 basins for sizing of the inlets, storm sewer
and swales. The site will ultimately consist of ground covered by pavement, rooftops,
and landscape. Runoff from the sub -basins will travel overland to the curb and gutter.
' The curb and gutter will convey runoff directly to the swales and local inlets, where it
will enter the storm sewer system. Both the swales and the storm systems will convey the
runoff to the water quality/detention ponds.
' Runoff from the exiting water quality/detention ponds will flow south through the storm
sewer and into a drainage channel, which ultimately outfalls to Dry Creek.
Basin A
Basin A is generally located in the eastern portion of the site and has been sub -divided
into ten basins. The basin consists of single-family residential lots. Runoff from the "A"
Basin is conveyed south by storm sewer or bioswale to Water Quality/Detention Pond A.
Basin B
Basin B is generally located in the western side of the site and has been sub -divided into
six basins. The basin consists of single-family residential lots. Runoff from Basin B is
conveyed by curb and gutter and swales to water quality/detention Pond B.
4.2 Specific Details
The most difficult issue for the drainage system for this site was the flatness and lack
cover available for the storm sewer. To solve this issue, runoff is designed to flow
overland where possible. When storm sewer is necessary, elliptical pipes are designed to
convey flow to the water quality/detention ponds at a minimum slope while still
conveying the necessary runoff.
The water quality/detention ponds will be hydraulically connected. There is a 24-inch
RCP connecting the two ponds with 2 inlets contributing flows. This pipe has a capacity
of 13.76 cfs. The inlets plus the inlet 100 yr flows require 12.73 cfs of which only 8.7 cfs
capacity is needed to allow the ponds to equalize.
The ponds onsite have been analyzed for both detention and water quality. The proposed
ponds have been designed to' cumulatively provide the maximum storage volume
capacity calculated for the site. The eastern pond (Pond A) will capture Major Basin A
flows and discharge through the 24-inch RCP connecting Pond A to Pond B and into the
western pond (Pond B). Pond B captures flows from Major Basin B and flows from Pond
A. All flows will be released from the outlet structure in Pond B at the 2-year historical
rate of 7.84 cfs (0.2 cfs/acre, provided by the City of Fort Collins). Detention pond
calculations are located in Appendix D.
Tinibervine, Final Drainage Report
Page 4 of 9
After the flows have been released from Pond B, an outfall pipe will carry the flow south
into the existing City Canal. A drainage easement will be dedicated for the outfall pipe
and a Swale has been sized to appropriately carry 'the flow to the City Canal. Calculations
for the offsite pipe and swale are located in Appendix B.
In the event of the ponds reaching capacity, emergency spillways for both ponds are set at
an elevation of 4932.95 feet. The overflow will release onto Mexico Way and south onto
International Boulevard, which will release flows into the center detention islands and
ultimately to the City Canal.
To treat for water quality, 10 soft bottom pans will run along the bottom of both ponds A
and B, as well as the water quality outlet structure located at the outfall of Pond B. Major
Basin A will be treated by the 4' PLD low gradient swale which directs most of the basin
flows to Pond A. Major Basin B will be treated by an offline Porous Land Detention
pond before being released or overflowing into Pond B.
Maintenance access will be provided to the ponds in order'to maintain water quality
features and detention volumes. For both Pond A and Pond B, maintenance access will
be provided along Mexico Way. The water ponding depths of the ponds are 4.20 feet and
4.83 feet for Pond A and Pond B, respectively.
The ponds will be located within dedicated tracts surrounding both water
quality/detention ponds, including all appurtenances necessary for the operation and
maintenance.
Timbervine, Final Drainage Report
Page 5 of 9
Conclusions
5.1 Compliance with Criteria
The drainage design for the Timbervine Subdivision site is in general compliance with
the City of Fort Collins Stormwater Criteria, the City of Fort Collins Master Drainage
Plan, as well as the Urban Drainage and Flood Control District Criteria Manual.
Modifications from said Criteria include:
5.2 Drainage Concept
The proposed storm drainage improvements for the site should provide adequate
protection to the site and improvements downstream. Also, the drainage design for the
site should not negatively impact the existing downstream storm drainage system.
Timben,ine, Final Drainage Report
Page 6 of 9
References
1. City of Fort Collins Stormwater Criteria, prepared by the City of Fort Collins, revised
February, 2013.
2. Geologic and Preliminary Geotechnical Investigation, Timberline Subdivision, Fort
Collins Colorado,. Project No. FC06508 prepared by CTL Thompson, April 28, 2014.
3. Stormwater Master Plan for the City of Fort Collins, prepared by the City of Fort Collins,
accessed April, 2014.
4. Urban Drainage and Flood Control District, Drainage Criteria Manual Volumes 1 and
2, prepared by Wright -McLaughlin Engineers, dated March 1969 (updated June 2001),
and the Volume 3, prepared by Wright -McLaughlin Engineers, dated September 1992 and
revised July 1999.
5. Web Soil Survey, Natural Resources Conservation Service, United States Department of
Agriculture.
Online at: http://websoilsurvey.nres.usdaSpy/
Accessed: 04/07/2014
Tinibervine, Final Drainage Report
Page 7 of 9
Appendix A
(Reference Materials)
Ga owa
Planning. Architecture. Engineering.
Final Drainage Report
TIMBERVINE
FORT COLLINS, COLORADO
Ji I I T F Vine 73,
Sr. —Mot S.11 st..tyr
1MFortCo4holB,,,-, Site
ec
Neer /
Perk Lartr, Mobd,
Hocoe Park
ftsel. Ceowlm
EMulberrySI
MulberryS,
$� �rUfal Area -.11,� .Fort fun From Range Arruc Cep.
Fort Co4hos Nursery a
IL
Vicinity Map
N.T.S
Final Drainage Report
TIMBERVINE
- 8
r
DRY CREEK hr.
b O COOPER SLOUGH.
-J✓:YI IC .V!
WEST NNE SITE
® E r wml Sr
owfl7wrEt.fr OLD TOWN
CANAL
IMPORTATION
8 CACHE LA
® j POUDRE
N c�a+E r'J
SPRING CREEK
a
FOOTHILLS
F.0*M W1M
MAIL CREEK
jFOXMEADOWS
w MR90" an
a
r M �
M
8
FOSSIL CREEK
C.R Vtt. to
Major Basin Map
N.T.S
�
va
W
cDLLR'C9
m
8m a.
LLJ
m
-�ii R
)
C
Q
O
00
ES�aE
u0
W
d
3 a `a
Mt) <
Z m �' W O
a�
� � LL S$z
F
w
2 z
CL CL
y o u S
C9
d
Fy
a
�6
oo
Z O
mGo o
Ip
Q
.,LO
O
W
:.i
/-�
F
S
°$SSA
II
o
Z
4a_
.7
O
U O
w
Ne=
ggpp
JE
E
E-e
S
sE�°o
r�
W
(r] � a
V
aJ..
�Uf {Vy
Ouwmo
WWWO
r��y/
vi
Y�
O
W p�
W
rc
£ice
Nc�
�O�cB$
aItO
AAAA
V.A LL
Q O
.a U Q
= w
awN. c7198
!
6
fill
U
`o,Eic
LC
0
O
0 o A m
®
O? 3 Y E
-$ELL0
C)
0�v
a_
_
_
_
-
LO
N
m d E 3 m
o
H N L O
�3o=a
AVM
318906
a
lanoo U U
J
Q
OV3H3133n9 g
AVM
In
Q
(18VH016
\�
3AWO
=
/ O¢
b�S�bOa3W
O
cQzt
AVM
NOHAW
0R14E
w
2
< o
w
w
¢w
>
It
o
Z
yrC c
Q,
�O
�P
zF
oD
>
o
m ��
fri)o 60
z
COU
z(r
o
¢p
�
¢co3AI80
N
w
w
AAOOSn
3NVl VW3l
E
z
z
0
0
a
Gz,�N
�
Oc
x
�
LU
o
U
IU)
v
O
W
0
12U
SNOMO OA -AO All
0
O
_
ALNnoo AiNnoo 2J3NIHV-1
0
o
O
}
O FJ-I
V1 �
U
E'i
U 0.
W
o
U
U
z
0
�z
m
N
LL1
me rn
W
w�
Lu
u'
oi°m e
c—It_
Q
O
xx
xam
COm
M
N N
v
CL E0
E `$ o E
LLI
w
t
U
ao
w
as
Q
a« m
7;
w
i
nto
a
V,2 o
ug
M
`Yam
LLI
A
m
P Z m
Q
LL
qq
$ m
oobmb poo
D n D
IIp
`
W
U
■�y�
'per
>
C
°"o°°�
O
Z
/O�
i o
It d!!i�
u
m 0 Ta' _
E LL
d
a
(n
�'
G'i
fL w
o
$p
�a3
=e
r
$ E
w
J
cc
C
Z
O
O
U
i
m
b
��mB
d:
�o
[�
�
o mP2
ccn„w
V
0
O
a
.a
O. n
� z
a�
go
om
rn
o
N°�
9
O� oLL
O
O
Ca
,��
Zw
N
s:
x (a1
R;pE
g 8
w
SO=e
mF�a�
m
Ti i E m
IN
tL
1.�
V
gS
8
.L
Q
LI
—
TLLU
O u m
- -
__
__
—_m°a.E
..
9
®
9
9
0
6 ®
®® 9
®
9
0�°' w
E o
, Y
_
m M E
O
N
T
8
z
z
w
to 3Wou
HOwnw
ienoo
OOIX3W
O
� f
Uj
00 O 7
Z w
Oa
N
SI
cs
tJo
Gs
os L ;
ss
�`
ticaci[u
Er mnE
$
•
8$
m
w e o
LJJ
rn
g
A
90
n
n
9
Wgg
a5m
4a
c°y"m
am
cb
C.c v
3Z O
fi
LL a
@
n
8 rc
E o
E
W
ON
j
gn
L
u
40
Q
E F�
w
0
Sa
wam
Em
3-
uOmon
a�nm
U
o
t
u
m
m
9LY
s
zW
d„ 00
2a-
Ynw wi
Z
m
O
«m
4EELL
c
4'
n O
G
$S�
4
Y
o
�v Otq
mOnB
S
S8
;a
a
O �C`2
O W
9
O c
v➢
jj
q
E
8E
c(i =
FOO
o2
4
m e
c J
O U LL
224455
ES
ao
n0
��wam
>n�e
a
m
�\
rCO L
U
•
a 4
c
LLmo
�i .°3
9 O
4m=m
•
2
u
o
= s
E S
m m w E
O
•
0 g
J p
N N
9`0
�, .9
5
m
UOC UD
•
N
u ELL 0
O7
m
N
�E�
m..0 0
_- U N
UL
/
V
1
a N
-t��
uF
f•
wwwyp
O
"cc -To
U w
U
0
w
�vW
�>
p°
LL
LL
L
Z)
C
Yn w
tea°
E 3
fi
w
G
o�
N
J A T
W
_ "�
'a
�
`-"taw
m
�o,
'-' U9'^
m
m
io$
r c'
Tu
0
C
C
u; O C
V m
O
C
w w
w
ccu
LL
W
A w m> o
c
O
p T U \
0
9 w
�-zg
O
N
mL
C C
rnti
S
w N
C d
2
c o
o
w
y
c
3
0 0
— a
u
v m
Yw E
u
m
3>
v
(nJ
ccw¢ m
0
ami
`m
w
o 0E
6c
3
c W
vow
c
E
Q Q
LLLLJJ
y 0
'O Q C
o
a °
° o
a
m
N
e
T
Q
p
'[ L
>, N
p
C a+ CO
C �J
m b
L
ui
Q
,p L
'� U
YO
N
Z
N Q \
o
Vm]i
' m
8t
o °o
L
w
c D
0°
'd
C
�Q
O
S v c v
¢
D
E v
O
>
m Cm
yno
Y
w
° °
'Ew
w
aLu
v>NN
Y
v m
Q0
—
a
E
I'l
Q w
.� Q o
w
E
m
m y
¢ v v
o
L
Z
v
o' lNo
w
m
a
V
yN
b�
wE
0�
a
LwLOOo
w
O
"H
w
a
(=�
m
-0
O
DO
OC
O
C w
>
w
S
aN
O
a
viZ
m
LLQ
>
o
N
o�mw�
�O�
oo
"
O
O
oD
'mw
o o
oo°
wo
E°
w
w
n
w
n
w
o o
w
6
A yQ
°
Qaw
N
N
w
o
w °
S
° i
Of
w>LLJ
O 0
U
O
m
LU
_
Z
N
o
o
w
>
w
a
0
o
wO v
O v
0
O
N3
`1
C
u
Z
mw
umm
n5Iwon�
V w
V w
O
¢ ¢`
0
C tL O
C p m
O
m >
o N= wW
ti L L
Q
W
w
Q
w
2
Q
W
O
Q
w
Q:
Q
W
m
Q
W
>
W
W
>
W
3
w !9
0 w C
w
X
W
X Cl
w W
1�,,\
am+
,����
F Y io 0 o
0
0
0
0
0
0
O
O
��
H Y
O
O O
2
P
N
OO8£6bb
OZL£666 OV%64b 09SE666 O86E6" OOKav
z
H
OHM"
M SS i SOL
z 'z^
P N
R RmR
3 3
e V
T
d
rqi
�
imp
O
T
ow
d
)
� 'w
O �
/ O
O
m
c
e
Z
O
v
�
Z
In
o
N
�3
x
�
a
o
0
4
ry
p^
� C
O
n
n
!M9
7 Jl
e
Z
C
N O
Z U
M.6zz
SOT
CI,
N7
Z
O
O
LL
Z
a
0
Z
W
CD
W
J
a
w
N
0
O
O
pp
m
C
O « J
UN (pl
@
.@.
O
O
Z
@ t
w y
w 0
w C @@
@
I
3 C
n
@
Z N
O V 0
N J O
w
N C_
E
inm
J
aavNE
m w
J -
w
C
p
N
N
_E
w
C
0`
w a
yy
m
N
N
0 m O
a,U
n
YL
L
w
U-,O0
Q
yy
jaNI
N
cl
(b
co2!NaZ
w0 2LD
m
E
Ja
10
Cy
m C,(D '
v
p1
C
.joQ
�E
;: m:
Oy
0
m 0.L
mdCc
O w
y
Q
w
C
O Q
4
a
u
mLd
tnwwno
Da
E�
(D
�oNm
o«E
J
J
'oaZou
a._
(n C
a) w
m
w
m>
y
w
3
`w m
L Gl
l0
a
10
Z
C
.0 Q$m
y
m=
-1
m
y
w
C
o N 0 m
rT
7 E
2
w o
L w N 'O
c
of v
N
W
rn
m
O 'cm w C
C N
n Z >.
w ;C m N 0
N f
N O
N
E
O V m 0
.o
TE
(n a;
w O C
Ecm Jc
.k 0 U CDm
Jp
O
y�
CL
@ w
m
omv�
�'
0
CD
0 y
m@
p V
S a o
w
y C j
n °�:° w u
0- w
g>
J T
(n w
- 2
E
=,
-
Y n
O n m m
w E m E
w w
d E
p p
U }: U
m o N a-
2 o.=o Q
m
F-
0 J
(n (n
o
(n o
m o
U N
L 0 E
F- u ._ o
w
H
_m
> H N
> @ T
@ c @
0 0
c U c
T
L
n
m
O N = N N D
o
W ? O O
0
t
N
E 9 o a: a:a
o
l0
O
U U
o W d c 'm w N�
Z i N O K = 7
Q
O O®
O
U
w
n
m
a
o
Q
@
>
m
N
UI
O
C
O
C
N
CCc O
O
_ =
m W
p
N
Q O
T p
W
Q
C
y d
d O 0 0
D 0
o
pp
O O
Q
m¢ a m m U 0 a z
m Q am
m v c3 o z
m Q
a m m
m
V)
V)
Q
N
Ita
m
Z
Hydrologic Soil Group—Larimer County Area, Colorado Timbervine Web Soil Survey
Hydrologic Soil Group
Hydrologic Soil Group— Summary by Map, Unit.- Larimer County Area, Colorado (CO644) -
Map unit symbol
Map unit name
Rating
Acres in AOI
Percent of AOI
7
MLRA 67B - Ascalon
B
1.3
3.5%
sandy loam, 0 to 3
percent slopes
33
Fluvaquents, nearly level
D
10.0
27.0%
53
Kim loam, 1 to 3 percent
B
6.6
17.7%
slopes
54
Kim loam, 3 to 5 percent
B
0.4
1.0%
slopes
64
Loveland Gay loam, 0 to
C
18.2
49.1 %
1 percent slopes
101
Stoneham loam, 1 to 3
B
0.6
1.6%
percent slopes
105
Table Mountain loam, 0
B
0.0
0.1 %
to 1 percent slopes
Totals for Area of Interest
37.0
100.0%
USDA Natural Resources Web Soil Survey 3/24/2014
2" Conservation Service National Cooperative Soil Survey Page 3 of 4
' Hydrologic Soil Group—Larimer County Area, Colorado
Timbervine Web Soil Survey
' Description
Hydrologic soil groups are based on estimates of runoff potential. Soils are
' assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive precipitation
from long -duration storms.
' The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly
wet. These consist mainly of deep, well drained to excessively drained sands or
gravelly sands. These soils have a high rate of water transmission.
' Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well drained
soils that have moderately fine texture to moderately coarse texture. These soils
' have amoderate rate of water transmission.
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
' chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of water
transmission.
t Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink -swell
potential, soils that have a high water table, soils that have a claypan or clay layer
' at or near the surface, and soils that are shallow over nearly impervious material.
These soils have a very slow rate of water transmission.
' If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in their
natural condition are in group D are assigned to dual classes.
Rating Options
Aggregation Method. Dominant Condition
Component Percent Cutoff: None Specified
Tie -break Rule: Higher
UusD.n_ Natural Resources Web Soil Survey 3/24/2014
Conservation Service National Cooperative Soil Survey Page 4 of 4
DRAINAGE CRITERIA MANUAL (V. 1)
RUNOFF
KA
80
70
60
0
t
50
s40
d
r-0
30
20
10
5,000 sq, tt. homes
' 4,000 sq. f . homes
'
00000
3,000 sq. ft homes
r -
r
-
r - -
2,000 sq. R homes
-
'
1,000
sq. ft. homes
#
i
•- i /
0
0 1 2 3 4 5 6
Single Family Dwelling Units per Acre
Figure RO-5—Watershed Imperviousness, Single -Family Residential Two -Story Houses
,.00
0.s0 -
0.80 -
0,70
u
0.60
$ 0.60 .
U
0
� 0.40 -
K
0.30
0.20 .
0.10
000
0% 10% 20% 30% 40% 50% 60% 70% 80% 80% 100%
Watamhed Percentage Impamionness _
Figure RO-6—Runoff Coefficient, C, vs. Watershed Percentage Imperviousness NRCS Hydrologic
Soil Group A
2007-01 RO-17
Urban Drainage and Flood Control District
Appendix B
(Hydrologic and Storm Sewer Calculations)
Gas!"I'moway
Planning. Architecture. Engineering.
Galloway lob Name: Timbervine
G a oway 3760 E. 15th Street, Suite 202 lob Number: SPHLV0001.01
Loveland, CO 8O538 Date: 7/23/2014
%arcing. Architecture. 6gineauq. Ph: (970) 800-3300 By: J. Prelog
Timbervine
Composite Runoff Coefficient Calculations
Location:
Fort Collins
Municipality:
Fort Collins
Minor Design Storm:
2
Major Design Storm:
100 -
Soil Type:
C/D
Table Rau
Radonal Method Runoff Coef iclents ror Composite Ausl�sis
Storm Return Period
Freil
vmrs
m 1
II to 25
261050
51 ro 100
Basin Design Data
I (%) =
95%
95%
42%
42%
50%
25%
10%
20%
1 (%)
Runoff Coeff's
Basin
Name
Design
Point
Apawd
meets (sf)
Add.Wc
ooc (sf)
ASFRo .
(sf)
Am,,
SFH..
(sf)
A crawl
(sf)
A an. tun
(sf)
Alscane la
soil)
(sf)
Aivane(Q.
soil) (sf)
A Tonal
(sf)
A Toul
(aC)
Imp
(%)
KC0300
C2
CS
C30
C100
Al
1
41,552
11,090
174,577
0
1,614
0
0
25,495
254,329
5.84
50.8%
0.26
0.34
0.34
0.34
0.43
A2
2
14,662
4,091
66,782
0
562
0
0
6,935
93,032
2.14
51.1%
0.26
0.34
0.34
0.34
0.43
A3
3
0
0
11,700
0
6,362
0
0
55,692
73,754
1.69
26.1%
0.36
0.20
0.20
0.20
0.25
A4
4
36,405
12,986
641103 -
17,421
3,858
0
0
35,813
170,586
3.92
52.9%
0.25
0.36
0.36
0.36
0.45
A5
5
0
0
27,494
0
4,336
0
0
60,763
92,593
2.13
27.9%
0.35
0.21
0.21
0.21
0.27
A6
6
0
0
0
4,928
1,382
0
0
23,281
29,591
0.68
25.1%
0.36
0.20
0.20
0.20
0.25
A7
7
0
5,868
0
24,980
1,459
0
0
15
32,223
0.74
52.0%
0.26
0.35
0.35
0.35
0.44
A8
8
15,508
11,708
0
46,755
0
0
0
29,601
103,572
2.38
49.6%
0.27
0.34
0.34
0.34
0.42
A9
9
0
5,741
0
15,088
2,429
0
0
6,674
29,932
0.69
47.9%
0.27
0.32
0.32
0.32
0.41
Al0
10
0
9,237
0
34,493
14,273
0
0
139,443
197,446
4.53
29.5%
0.34
0.22
0.22
0.22
0.28
B1
11
51,700
11,867
94,444
46,646
5,357
0
0
34,849
244,863
5.62
52.8%
0.25
0.36
0.36
0.36
0.44
B2
12
27,295
7,101
66,973
0
460
0
0
9,424
111,252
2.55
56.6%
0.24
0.38
0.38
0.38
0.48
B3
13
2,458
675
46,751
0
6,598
0
0
33,777
90,259
2.07
36.2%
0.32
0.26
0.26
0.26
0.32
B4
14
4,895
1,182
0
0
0
0
0
3,064
9,141
0.21
69.9%
0.19
0.49
0.49
0.49
0.61
B5
15
9,556
1,938
22,718
0
0
0
0
6,105
40,318
0.93
53.8%
0.25
0.36
0.36
0.36.
0.45
B6
16
0
0
18,170
0
4,451
0
0
111,834
134,456
3.09
24.0%
0.37
0.19
0.19
0.19
0.24
051
17
20,074
6,504
0
0
0
0
0
4,417
30,995
0.71
84.3%
0.13
0.65
0.65
0.65
0.81
052
18
20,133
6,527
0
0
0
0
0
4,483
31,143
0.71
84.2%
0.13
0.65
0.65
0.65
0.81
TOTAL SITE
204,031
83,485
593,711
190,211
53,142
0
0
582,766
1,707,346
39.20
43.7%
0.29
0.30
0.30
0.30
0.37
TRIB PONDA AREA
108,127
60,721
344,655
143,565
36,276
0
0
383,713
1,077,057
24.73
42.7%
0.29
0.29
0.29
0.29
0.37
TRIB POND B AREA
95,904
22,764
249,056
46,646
16,867
0
0
199,053
630,298
14.47
45.2%
0.28
0.31
0.31
0.31
0.39
8214_Rational Calculations.xlsx Developed C Page 1 of 1
Galloway
Maruung. Alclutacture. E*rmd%
Galloway
lob Name: Timbervine
3760 E. 15th Street, Suite 202
Job Number: SPHLV0001.01
Loveland, CO, 80538
Date: 7/23/2014
Ph: (970) 800-3300
By: J. Prelog
Timbervine
Time of Concentration Calculations
Location:
Fort Collins
Municipality:
Fort Collins
Minor Design Storm:
2
Major Design Storm:
100
Soil Type:
C/D
Travel Time (&)
tc Urbanized Check
t�
Sub -Basin Data
Initial Overland Time (y)
tr=Length/(Velocity x 60) '
4 p Com
ON
Final
Basin
Aac)
Upper
y
Length
Velocity
4
Time of
- Total
4=0(min)tl
Design Poin
CS
most
Slope (%)
Slope (%)
Type of Land Surface
Name
(ac)
(min)
(ft)
(fps)
(min)
Length (ft)
0 (min)
4n
Length (h)
4++ti = t.
Paved areas & shallow
Al
1
5.94
0.34
75
2.5%'
8.9
637
0.6%
20
1.5
6.9
15.7
712
14.0
14.0
paved swales
Paved areas & shallow
A2
2
2.14
0.34
75
2.5%
8.8
707
0.6%
20
1.5
7.6
16.4
782
14.3
34.3
caveswales
A3
3
1.69
0.20
56
2.5%
9.1
405
0.8%
Grassed waterway
15
1.3
5.0
14.1
461
12.6
12.6
Paved areas & shallow
A4
4
3.92
0.36
75
2.5%
8.7
762
0.6%
20
1.5
8.2
16.9
837
14.7
14.7
aved swales
AS
5
2.13
0.21
45
2.5%
8.0
614
0.3%
Grassed waterway
15
0.8
12.5
20.5
659
13.7
13.7
A6
6
0.68
0.20
52
6.4%
6.4
201
0.3%
Grassed waterway
15
0.8
4.1
10.5
253
11.4
10.5
Paved areas & shallow
A7
7
0.74
0.35
54
2.5%
7.4
163
1.3%
20
2.2
1.2
8.7
217
11.2
8.7
pavedswales
Paved areas hallow
&alses
AS
6
2.38
0.34
75
2.5%
8.9
488
0.8%
20
1.8
4.6
13.6
563
13.1
13.1
aved sw
Paved areas & shallow
A9
9
0.69
0.32
60
2.5%
8.1
221
0.6%
20
1.5
2.4
10.5
281
11.6
10.5
paved swales
A10
10
4.53
0.22
60 .
2.5%
9.2
643
0.6%
Grassed waterway
15
1.2
9.2
18.4
703
13.9
13.9
Paved areas & shallow
B1
11
5.62
0.36
75
2.5%
8.7
880
0.6%
20
1.5
9.5
18.2
955
15.3
15.3
aved swales
Paved areas & shallow20
B2
12
2.55
0.38
75
2.5%
8.4
1294
0,6%
1.5
13.9
22.3
1369
17.6
17.6
paved swales
B3
13
2.07
0.26
45
2.5%
7.6
1150
0.3%
Grassed waterway
15
0.8
23.3
31.0
1195
16.6
16.6
Paved areas & shallow
84
14
0.21
0.49
15
2.0%
3.4
80
0.6%
20
1.5
0.9
4.3
95
10.5
5.0
aved swales
Paved areas & shallow
85
35
0.93
0.36
60
2.5%
7.7
350
0.6%
20
1.5
3.8
11.5
410
12.3
11.5
paved swales
B6
16
3.09
0.19
60
2.5%
9.5
655
1.0°.6
Grassed waterway
15
1.5
7.3
16.8
715
14.0
14.0
Paved areas & shallow
O81
17
0.71
0.65
30
2.3%
3.5
730
0.6%
aved swales
20
1.5
7.9
11.3
760
14.2
11.3
Paved areas & shallow
OS2
18
0.71
0.65
30
2.3%
3.5
730
0.6%
20
1.5
7.9
11.3
760
14.2
11.3
aved swales
8214_Rational Calculations.xlsx Developed Tc Page 1 of 1
m
C
O
W
u
m
U
O
C
E
0
to
0
9
m
.
`m
oo
O
m
u>1.2
d O
m
%
m
N
Im
1
m
d
rmn�
O
E
0
2'
�
a
on
c
O
cc
ry
O
2
C
a°
dom
Nmm
L 0 �
N m
002 q m
m
C
m
Y
l7 m O i
O
`
o
M
3�
=
o
rrou
>
d
rn
�3
rn
m
m
m
m
v>
m
o
o
a
4<¢
m
m
m
a
0
a
0
a
0
a
0
a
o
a
a
a
O
a
o=
d
d
0
d
0
d
m
m
saloN
O
0
O
d
O
y
O
d
O
y
p
V°°
p
0
5
0
0
m
!0
0
m
a0
0
m
o
m
0
a
0
a
>>>>>>>>
0
0
0
0
0
¢
d
0
m
0
00
0
0
0
o
~
0
r
(u!W) OW1 lelo
4
0
m
Q
r$,
N
$',
N
0
n
Q
o
n
tl
O
�+
m
o
H
m
�v
m
o
m
O
o
w
m
o
o
0
m
10
0
m
A
0
m
m
o
O
o
m
0
m
o
O
0
o
Q
0
m
0
m
(111W)jl
O
O
O
m
N
0
0
0
O
0
0
O
0
0
0
0
0
0
0
0
0
0
0
0
0
O
O
F
U
C
O
C
0m
(S(j) Ar�IaA
m
O
o
m
0
m
0
m
0
m
°�
(NI Ul6ual
Q
N
N
m
a
tO
(sPl
ad!d nV4,xwd(Sp)
M01)ad0
'a(%)
adot0
I
m
N
N
CJleualeW
ad
cl
ci
ci
0
lualeAal
5
5
5
5
5
5
jo (u) azlS adld
o
M
m
N
N
IooO,
janm(ueo 0
paldawalu! 0
u
c
v
w
5£
5
4
p
m
m
m
adRl Lary!
>
>
>
U
¢
o
o
N
0
rn
rn
r
r
r
a
(sP) O
nm
m
N
m
m
N
N
O
N
N
N
m
p
Orn
n
N
m
o
Q
Onl
m
m
t
0
(Iwu!) I
w
vo'i
co
rn
v
rn
co
rn
ro
m
m
' m
v
M
ai
n
1
n
16
K
=
m
m
Q
N
o
o
rn
rn
m
m
(Ultu) of lelol
O
m
Q
o
Q
m
ry
o
m
m
m
rn
iv
o
m
o
a
m
¢
m
(Sp) p
m
mm
<
A
C
m
m
N
N
O
V
O
C
N
N
m
Cf
v
m
v
v
N
m
N
v
m
d
I�
Q
m
m
Q]
an
d
Q
Q
O
Uw !) I
m
n
Of
m
O
a
a
O)
�n
m
m
a
o
LL
a
O
m
m
rn
O
m
ab
o
m
n¢
m
Q
'
n
a
o
m
w
m
m
a
o
m
A
m
a
Q
a
e
r
r
o
d
o
r
r
ad
d
r
r
o
¢
ro
ro
ro
r
a
r
r
o
m
r
n
(3e) V.0
pp
N
N
ONi
O
d
O
r
N.
G
o
C
O
N
O
N
_
pO
fV
o
G
G
o
m�p
0
mm
6
O
0
r
O
(UIW)Ol
O
O
O
O
m
O
O
f0
N
O
n
<
O
n
th
O
N
O
O
m
O
t•1
O
O
ci
t7
O
m
h
O
f0
A
O
fD
tO
O
N
O
N
O
O
Q
O
m
O
m
i
gaol gonna
m
Q
m
Q
m
N
m
Q
A
N
m
N
Q
Q
N
Q
Q
m
N
Q
Q
m
W.
0
N
m
0
m
0
m
Q
0
Q
N
0
m
0
m
0
(0e) Bard
yy
m
�d
^
fV
A
f0
N
W
of
^
lV
[[pp
fO,
C.
Q
A
G
m
lV
m
C
m
O
m
N
m
lV
0
lV
N
C
O)
C
O
M
n
G
n
O
lulod u8!sa[)
N
m
m
Q
m
m
m
m
n
m
m
O
O
m
m
m
aweN uiseg
a
N
¢
m
¢
I
Q
¢
m
¢
m
¢
n
¢
m
¢
rn
¢
O
¢
m
N
m
m
Q
m
m
m
m
m
O
N
O
`o
u
a
0
C
x
m
C
O
7
U
W
U
O
C
K
E
0
O
17
C O N
m
C
`OO M
O
e
a�
Ea\a
m
z �
—
a
o�
m
`c
0
N
O
S
C
a
�m
N
L � �
N m
0.oqm
y ....
m
m
�>
y
`
o
3
l\MlI E
m
t_
N
b
H
m
IJ
a
¢
m
m
m
0
o
E
7Eo
0
a
0
o.
0
a
Co
o.
m
m
saloN
0
y
0
�
0
m
0
�
o
b
o
0
0
0
o
0
a
0
a
0
0
Q a
0
0
d0'
0
K
K
K
K
opp
0p
(ulw) awy lelo
O
Q
M
Q
!00
N
O
N
Q
m
pp
�O
O
p
p
O^
N
N
th
i0
O
0
p
W
m
N
o
m
�O
t0
A
pK
tD
(O
O
O
O
N
�0
p
O
O
Q
m
m
m
E
- (Ulw)U
o
0
o
rn
ry
o
o
-o
m
0
0
m
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
7
-
m
m
(sdl) gnolaA
fA
O
o
h
0
Vl
0
N
W
3
�VI
W
(U) L06ua�
Q
�
N
N
M
a.
(sp) gloede
adid "VY •xad
(sp) mol j adld
N
m
a
(%) adolS
0
o
0
0
0
0
0
0
0
0
leualeW adld
cai
cai
U
¢
of
o
¢
;ualenmb
c
C
c
s
c
c
Jo (u) aziS adid
O
M
O
O
N
N
(ooc)
JaAO"W p
paldawalul o
9
m
c
m
m
v
m
O¢
N
N
N
addl lalul
>
"
U
D:
3
3
3
U
U
U
n
n
0
a0
m
m
v!
F
F
F
o
a
(Sp) o
O
0
N
m
Q
Q
O
O
Q
O
U4NI) I
N
N
ItQ
N
m
Q OQ
m
m
N
m
m
m
W
O
(oe) V,�
o
m
rn
o
vi
o
N
ry
m
n
in
ei
Q
o
V;
v
(Ulw) of lelol
om
Q
0
6
0
N
m
ry
m
ry
m
o
n
�Oo
r
uoi_.
of
M
tD
tD
Orn
¢
t7
h
m
((sp) O
tND
Y
N
a
pp
�0
N
¢
Q
Q
m
O
N
A
m¢
a0
^
a
V
C
y
h
(p
m
O
h
N
m
Q'
fO
Of
V
C
A
tp
w tp
10
N
Q
Q
O¢
Q
N
O
¢22
m
a
m
N
mZZ
O
m
a
LL
g'
LL
b
LL
O
b
LL
O
LL
O
(Jwul
A
A
m
Q
N
(D
N
N
A
N
O)
A
O
m
m
m
of
m
ri
F
of
ni
di
r
F
Q
vi
vi
1Vo—
m
4
of
vi
vi
fVo—
v
vi
�
m
m
vi
vi
(og)
O
r
Q
Q
N
tO
N
O
LL
O
n
O
O
O
O
O
b
O
O
O
00
O
r
O
A
o
N
O
O
O
�O
O
W
O
m
o
l0
O
f0
O
O
N
O
O
O
In
O
In
(UIW)'JI
Q
Q
N
Q
m
O
A
C6
m
0
m
O
r
f0
O
L6
V
Nu
C_
' Uaoo Uouna
Q
�?
00
Q
0
O
o N
t0
m
0
N
0
O
N
0
10
m
0
Q
0
6
N
m
0
N
N
o
0
m
c
[O
m
o
(O
N
0
01
Q
0
0
m
0
—
0
t0
a
0
w
00
(oe) eaN
N
N
Oi
R
a
m
N
O
r
O
m
N
0
V
10
[V
N
O
O
In
O
O
lulod UBlsad
N
m
m
Q
n
m
m
m
r
co
rn
o
o
m
m
m
aweN ulse8
¢
N
¢
m
¢
Q
¢
�0
¢
tJ
¢
r
¢
m
¢
D7
¢
O
<
m
mN
mm
Q
m
!0
m
(O
m
O
N
0
0
N
6
x
O
m
O
N
U
O
C
i
E
O
O
9
C O ti
4!
O
`SOm
O
N
y � a
Eanm
d
�
—
o
W
s
c
o
c•
0
2
c
o
N � M
t ❑ O
U
� m
3 w m r
D O d m
A
d
}
l7 m�oi
a
`
n
�
d
0
C
>
O
(q
N
M
M
C')
10
N
UI
m
O
Q
Q
a
a
m
m
m
❑❑❑❑❑❑❑
a❑
a❑
v
0
0
O
O
O
m
m
saloN
0
0
0
0
0
0
0=
°
°
0
0
a
0
a
0
s
0
a0
o
a
c
0
0
0
a0
0
0
0
0
0
0.=
M
w
0
0
0
v
0
m
0
m
0
o
~
0
~
(ww) ow1 lel0
O
<
M
Q
op
tD
N
wrn
0
�
Q
t7
OO
m
O
S
rnO
O
N
r
N
M
S
O
O
0
Oo
W
f7
O
0
t0+1
YI
S
Ih
S
m
O
O
O
m
S
O
O
S
Q
M
M
m
E
(ulw)p
o
0
o
rn
H
o
0
0?
0
rn
4
—7
o
0
0
0
0
0
0
0
0
0
0
0
0
0
m
m
(sd;) gnola�
m
O
o
t0
0
V)
0
N
0
rn
'9
W) 41Bual
Q
N
N
C)
m
(sP) Apedoo
r
7
7
O
rn
n
ad!d xelry'xwd
n
n
o
(sp)mold adld
rn
t0
m
M
N
r
m
O
7
N
m
N
m
'a
(%) adolS
N
0
Lq
0
0
0
0
0
leualeyl ad!d
a
u
a
¢
a
Q
a
0
a
0
a
C)
lueleA!nb
c
c
c
c
c
c
jo (u) emS edld
n
M
n
m
N
N
(000:
1anO.(ueo 0
m
paldamalu! 0
v
2
c
t
t
E
c
c
a
0
m
0
m
od,(j lelul
>
'
i
U
m
3
3
U
U
U
r
T
a
c
A
N
to
aa.
H
H
00
(si0) O
Ol
IA
n
(i
r
N
40
N
l0
N
Q
rn
N
(O
W
O
N
m
o
C
(J4M) I
rn
CO
N
N
lY
(Oe) V.03
m
O
ci
m
C�
r
O
vi
m
O
m
N
m
N
In
t'I
r
N
vi
Q
Q
0
Q
N
e
(ulw) 01 lelol
n
<
o
N
o'
ry
ry
o
o
ry
r
S
S
c
(slo) 0
e
o
n
m
a�
($,
rn
m
R'i
10
a
a
t0
a
N
m
rn
rn
Q
rn
a
a
v
c
n
r
rn
ci
N
n
u1
a
m
c
�i
rn
ci
c
a
N
o
o
a
Q
o
0
V
a0
vi
d
m
0
0
m
a
d
d
U i!)I
O
li
p
m
O
ILL
li
O
IL
C
O
a
r
m
IL
p
IL
N
N
s
r
N
N
N
¢
r
N
N
r
m
N
N
(3a)V.3
S
N
r
O
t7
O
V.
W.
0
0
N
O
a0
O
N
O9
O
O
N
m
O
to
O
O
f?
O
N
O
O
O
O
O
Fb
O
f
S
Cl
p
S
p
S
S
po'
W
M
p
f0
p
S
S
O
S
O
Ci
Ci
(ulw) of
Q
Q
N
Q
CI
O
'd
t7
O
t+f
m
r
O
))ao� gonna
Q
C1
0
Q
C1
0
N
0
S
o
N
c
p
N
0
S
0
O
t7
00
M
N
0
Cicm'I
0
0
N
0
V
0
M
0
m
0
twD
0
N
0
(Og) gan/
to
N
m
C1
N
O
Q
r
O
m
N N
rn
m
O
n
m
Q
N
m
N
N
m
N
r
O
fV
N
O
�n
rn
O
rn
O
dl
r
O
r
O
lu!od uB!s0a
N
n
n
Q
m
m
m
m
r
m
rn
O
O
m
m
m
aweN u!se 9
as
N
a
<
Q
a
h
a
m
a
r
a
m
a
O)
a
O
¢
m
N
m
n'f
m
Q
m
10
m
N
m
rn
N
Q
`o
m
6
x
EL
r
O
N
0
M
:
N
L
3
s
(V
CA
N
r
N
In
0)
v
v
a
N
�
E
3
.
Z
cr>
O
ul)
0
5
O
E
N
Q
E
`o
FL
5
a
a
r�•
yOD
(OD S OD
N
C
?
R
P
C
gj
J
C
U
UU
U.
U
U
U
L
h
�
m
0
c
a
co
ao
ao
a
ap
N
� N
N
— C
U)
N
N
N
W
N
N
N
N
N
0
0)
0)
0)
C C
?
7
7
7
7
V
N
lU
3
3
2
�
fu
U
U
U
U
U
U
U
U
U
rn
J
fap
`o
L
N
a
E
3
Z
N
N
-
-
N
N
N
.-
N
— C
L
S
S
S
S
S
S
S
S
t0
O
O
Cl)
Cl)
Cl)
fh
M
fn
2
....
N
�
t
V
Of
S
S
O
S
S
S
S
.0
N
N
C
J �
O
O
N
v
7
co
N
Uf
N
fro
O
O -
"
"'
cn
"
Cl
Cl)
E a�i
Rui
rV
i
v
ri
v
ri
v
ri
v
ri
v
ri
v
ri
v
ri
v
r0i
v
e
0
d
N
N
F
U'
-U
U
Z
G
fn
Q
E
7
W
N
J
a
a
?
a
m
m
0
E
r
r
r
M
`o
0
0
'Z
J
J
of
J
J
J
W
y
y
Z
Z
Q
Z
Z
Z
LL
ui
U
ti
U
N
m
7
0
f0
r
co
G>
d
u� Z
FA
co
0
c
c
O
O
b
a
h>
0
N
N
H N
C C G
V
C
W
N
(h
?
N
�
C
W
r
aO
�
y
GJ2 I�
c
Cl)
N
OD
Cl)
OD
(D
It
r
-
3
.,
rn
r
7
rn
rn
r
rn
7
m
U
C N
N
N
N
C
N
O
a,
O
r-
O
O
O
O
O
O
O
O
O
0)
a.)
U
0
q
n�(O
O
N
,
W
S7
0)
CY)
0)
Cb
?
0)
0)
0)
0)
c
a
C
N
Cl)(
Cl)
Cl)
mNN
N
E
i7 O
v
v
v
v
v
v
OV
v
z
SCE
O
r
0ON
v
a
0
N
O
0)^
N
N
M
N
N
(D G
c G
N
O
O
O
N
O
O
O
O
O
O
ot
R
0r1
(cO
O'
N
N
N
pO�
N
pO�
N
N
N
N
N
JLu
V
V
R
a
V
C
N
O
O
W
q
?
O
M
C
N
N
N
N
N
N
N
N
N
N
'
> J "'
R
V
R
R
V
V
7
7
C W �
m
aD
r
O
N
O
N
n
•L-i
N
aO
fO0.
O
04
co
(h
N
J N
N
N
(7
N
(U)
N
r-
N
U
U
U
U
U
U
U
U
U
c
- L
J vl
3
0
N
N
N
N
N
N
U
N
C N C
a0
m
J
0
r
b
(O
(O
N
O
0
O
r
O •O•
LL
D)
fV
fV
D1
a0
`m
L
U
N
Y
O
o
E
u
d
c_
Q
o
J
?
SO.
v
v
...
E
n
`o
CO
c
n
a
a
a
a
a
a
a
a
ui
S
LL
iii
W
r
o
p
m
c o
N
Cl)
a
in
(o
r
ro
rn
a
z
J z
E
0
U
N
N
N
O
C
(V
r
O
0
N
O
O
N
O
J G Y
o
o
(0
o
d
-a (a
�
Cl H
N
N
O
O
O
pp
V'
N
O
O
NV"
N
8
N
O
O
N
O
N
W O S
N
Y
n
N
Ai
0
0
O
O
O
O
O
O
O
O - -
❑
C
coCD
y e
N
O
N
O
GD
O
O
O
O
O
N
O
.O�-
O
O -
O
O
(N
r
N
N
01
CD
(D
I�
M
r
M
)
0)
pO�
0)
ONE
W o.'�..
7
0
7
7
(a(S
O
N
Cl)N
V
7
O
Cl)'
O
i t
O
O
O
O
O
O
(J
O
W
H
NN
7
r
N
co
O
(NO.
fh
N
`
O
fS
.
.
ro
r
Q
fV 04
�fh
.-
COV
Cl
(V
04
E
z
Z
r
r
O
O
O
O
O
N
(P
a
N
O
N
N
N
O
N
(p
q N -
G
N — — N
I—
i d
v
v
7
7
CD
7}
cli
7
N
O
pC��
�7pp
f0
O
v
Vr
N
N
N
N
N
N
N
N
N
>>
> N ^
C -y
O
V
O
v
0)
v
(A
v
01
v
O
v
(A
v
m
v
(A
v
M
W
fro
O
N
(MO
(r
O
J
N
1
N
M
N
-
0
N
r
Lo
0
O
vP-N
N
N
O
O
N
m
O
O
O
O
O
O
O
fro
N
r
7
N
fh
N
(MO
CR
.
J>
N
OM')
M
M
M
OM•)
N
N
N
W d
R
V
R
Vaa
N
N
N
fopp
O
a
I
v
O
G
O
U)
O
'
O
O
N
0
r
(Opp
V
N
fro
O
fO�
V
O
E
m
j
Ui
m
In
Iri
1
M
(D
M
M
d
�)
o
n
rn
aRi Q
Ir-
Ire
rn
0
`
Q H
(V
lh
lh
(V
(V
(V
❑
LN
ppp
�NOM�r6
I
_
7
OD
a
N
r
7
q
r
(ei
rn
7
Cl)
Cl)
U' d�
rn
rn
rn
rn
rn
0)
0)
m
S u
v
v
v
IT
IT
IT
v
v
v
N
ol
r
O
NO
�
r
I
.
O
OD
OD
OD
q)
OD
(A
VN'
OD
r
N-
C')
r
0
fD
d>
N
N
N
N
N
N
N
N
N
•-
> d ""
(A
(A
(A
(A
(A
(A
fA
W
O
r
O
N
Q
N
N
(o
It)
(o
m
(o
^
OD
rn
O
r
cy
(A
(A
N
N
`
.(A
CD
E
p
0
N
m
L
d
N
N
-
-
-
N
N
N
N
a
_
LL
N_
C_
�
N
�
N
d
O
O
N
CO
IT
to
(D
r
M
W
d
Z
J
8
N
N
(Ji
- —
_
^A
1G
O
n
o
�
M
I
N
0
N
N
N
w
co
0
Cn
o
N
Cn
0 N
o ,4
N
0
mcn
PO
8 �8
co
m_
W $ CD
$ 8 8
Sta 0+00.00 - Outfall
Grnd. El. 4930.38
Inv. El. 4928.01 In
I
I
I
I
P
I
I
I
I
I
II
I
I
I
Ii
I
I
I
I
I
I
I
I
I
8 8 8
Sta 0+55.213 - Ln: 1
Rim El. 4934.21
Inv. EL 4928.12 Out
Inv. El. 4928.12 In
Sta 2+07.358 - Ln: 2
Rim El. 4933.84
Inv. El. 4928.42 Out
Inv. EL 4928.92 In
Sta 2+31.177 - Ln: 3
Rim El. 4933.51
Inv. El. 4928.97 Out
Inv. El. 4928.97 In
Sta 2+62.843 - Ln: 4
Rim El. 4933.51
Inv. El. 4929.04 Out
Inv. EL 4929.04 In
Sta 2+89.843 - Ln: 5
Rim El. 4933.67
Inv. El. 4929.09 Out
8
8
SS�p
O
O
O
O
O
O
O
W
O
m
O
0
O
O
w
L
�
U
(4
O
0
v
o
c)
N
O
1n0 9b"9Z617 l3 -AU1
WCE610'13 WIN
N
W
9 U1-ZZLL+OAS
�
I
I
�
I
I
UI Zb"9Z69'13'AU1
;no Zh"BZ64'13 "nUJ
49"EE "13 WIN
UIS
00,0'00+0 e1S
�
- —
— -I
-
it 0
S
8
8
S
S
S
0
o
a)
0
>
In
a�
qT
IT
w
W
O
fn
In0 V8'LZOV '13 nul'
ZO O860 13 ➢wD
6 vl-86LO8+le1S
n
I
�
e
ul Lf LZ60, 13 ^ul
N
L
U
I^1] LE LZBV 13
,
8G ff6V 13 w1
�
0
cZi
Zi
ul6l LZ60P 13 ^ul
onO6l LZ6P '13 ^uI
80'EO6V 13 wIll
e�
uY 9Z'OS•0 e�•I.
0
031
w
uIZO LZ6V I nul
Z88Z6V 13'IPwO
Ijullno - 00 oo.b ol$
p
jai
w m� m
m
a
a
m
w
s
N
M
N
N
0
d
6
d
a
E
Z
0
m
P
th
N
N
E
N
O
J
N
LL
N
O
EL
t
r�11
u
o��
ago
o
rn
y
N
N N
N
C
?
?
7
C
N_
CL
U
UUU
U
U
J
m
N
N
16
O
c
3
v
vmm
It
7
d
N
N--
N
N
N C
a
m
o
m
m
m
q
o
r,
r,
m
a
N
N
N
N
N
cli
pN�
C
N
Y
�
2
c
d
U
U
V
U
U
U
U
N
J
A
O
co
E
3
Z
N
N
N
N
N
N ^'
C_
0
0
0
0
t
S
S
S
O
O
O
O
V
l7
m
_
3 �
3
O
L
0
0
S
S
0
0
0
d .-.
O
O
O
O
V
In
N
N)
J
GI
G
y
U
U
U
U
K
�
�
7
N
O
N
N
aW
0
y d
N
N
d
N
V
7 F
C
C
C
C
C
s
2
2
i
2
O
U
U
F
U
7
Ix
r
0
w
_E
N
`
J
(V
0
N
2
Z
0
0
O
J
J
O
Z
Z
v
u
v
o
CIA
o)
t
N
m
n
N 2
I
0^
CX
1-
1—
k—
e
C O.
7 F
0
C
C
C
C
C
L
0
N
N
c C G
W
N
m
IT
N
N
N
GJz
c
3 ....
N
0)
01
m
N
°�
0)
m
N
OE
0
T
v
v
v
v
v
r
C N
(V
O
O
O
O
(h
W
O)
W
qIn
O)
�
J
N
N
N
N
CNOD�
N
N
C
N
N
NNNN
E
70)0)
?
?
2
SG�
m
o
0
0
0
C O
N
O
N
O
N
O
N
O
O
O
O
J fq
a
W 7
N
N
N
N
N
N
N
> J
7
7
V
C
V
CWC
�{
C
C
N
C J
— W -
V,
7
R
7
7
t
r
U�
,,t
O
N
r
O
(O
O
O
O
O
O
O
C C �"�
N
7
r-
O
O
N
N
J y
w
01
N
N
C
U
U
U
U
U
U
U
c
•- r
J VI
N
N
N
N
N
CO
ID
U
C US
>
J M ':..
m
J
CR
CR
q
N
N
S
10
L
E
o
�
N
E
u
°D
c
o
'g
J
Ih
t0
0—
N
V
LO
U
y
",?.
�-
LO
:n.
N,
w
a
a
o.
n
a
n
n
o.
�
O
c
a
a
a
a
a
a
a
ui
af
bi
d
uj
O
y
c
a
a
z
0
J z
N
Cl)
N
co
r
8
N
c
0
�
�
CL
E
0
U
@
c_
�
o,
q
J ! E
_
¥
§
0
k
9
§
_
!kE
.
)
§
f
.
J;Z
/
/
/
/
!
o
o
f
f
)
_
■ £
7
§�E
OV
/
2
/
\
/
§
§
IfE
E
- /
d
§
�
;
a _
)
{
(0®
It
It
« 7
K
2
CD£
. .
)2E
\
(
/
§
(
§
\
)�E
§
§
§
§
§
§
§ .
.
\
E
§
7.§
$
\
2
§ .
$
§
■ Z
o
/
A&
Q
Q&
. .
g
m
G
9@
G
q
m
a
m
�>E
§
§
§
9
7
@
§
§
2
/
/
/
§
§
\I£
.
§
§
q
§
]
§
/
§
I.K
I
7
j
§
o E
_
.
(
}
\
\
§
§
§
(>E
E
r
)
7
7
g
a
—
z
_
\
\
/
/
a
n
IT
(0
8
8 8
8
s
$
C
V ?
cb
7
N C
O
S
$L. N
N
3n0 88'9Z64'13
J
£L'6Z64'13 WIN
c�
9 ul • 9LL CO, L L elS
I
—
i
--
— ---
-- rS
III OL'9Z64'13'nul
3nO OL'9Z64 '13 'nul
4£'££64'13 WIN
4 ul 9LL'ZL+OL elS
I
5�
c
I
N
P
I
e
0
� I
I
ig
s
I
I
v
ul 8L'SZ64 "13l
m
nu
1n08t'SZ64'13' I
£0'Z£614 "13 WIN
£ =u1- 9L4'9S+4; e16
I
j
I II
QQ
— JS
j I
I
a'
N
I
N
I
J
N
I
r
C!
O
ul 40"SZ64 "13 'nul
N
in040'SZ6V'13'nul
o
LZ-0£64 l3 WIN
No
Z ul - Zbl'48+L eiS
$ e s
W
v N
1
ul L6'4Z64'13'nul
N
h0 L6 4Z64 'l3 'nul
L4'0£64 "13 WIN
L :ul LSO'OZ+L e1S
o
s
=
-- --- - ---
--1
I
II
--�
ul L9'4Z64'13'nul
SO'LZ64'13 TWO
II
IIeAnO - 00'00+0 e1S
y
?
C
V
W
E
0
y
0 o
S
S
8
poi
N
N
N
N
O
O
O
m
O
co
v
p
CO
N
O
1n0 9l'SZ64 '13 'nul
69"6Z6413 WIZ
L :u-1 - 00'SZ+O elS
i a N
� W
UI 40'SZ6b'13'nul
h0 40'SZ617'13 'nul
LZ'0£617'13 W!a
00'00+0 elS
�
g S
co L6
y
v v
LLI
O
0 0 0 0
(V O) f0 l`')
N N
V V
E
`o
W
0 0 0 0 0 0
N N N m (O M
c0 M (+N N N
V V V 7 V V
O
O
O
O
O
po �
N
1n0 91'SZ64 '13 'nul
69 6Z617 -13 W21
9 :ul - 00'SZ+O e1S
I O J
c w
O
I V �
I �
p �
O
J
1 O i
u1 40'SZ61,l3 nul cw
1n0 40,SZ6ti '13 'nul
LZ'0£64'13 WN j
00'00+0 e1S L_
> m rn rn m m m
IT c v v c c
W
Roughness Coefficient
0.013
'
Channel Slope
0.80000
%
Normal Depth
1.00
ft
Diameter
12.00
in
'
Discharge
3.19
fN/s
Results
-
' Discharge
3.19
fN/s
Normal Depth
1.00
ft
Flow Area
0.79
ft'
'
Wetted Perimeter
3.14
ft
Hydraulic Radius
0.25
ft
Top Width
0.00
ft
Critical Depth
0.76
ft
Percent Full
100.0
%
' Critical Slope
0.00920
fVft
Velocity
4.06
ft/s
Velocity Head
0.26
ft
Specific Energy
1.26
ft
Froude Number
0.00
Mapmum Discharge
3.43
ft3/s
'
Discharge Full
3.19
fP/s
Slope Full
0.00800
ft/ft
' Flow Type
SubCdtical
�GVF Input Data
Downstream Depth
0.00
ft
Length
0.00
ft
Number Of Steps
0
' IGVF Output Data
Upstream Depth
0.00
ft
' Profile Description
Profile Headloss
0.00
ft
Average End Depth Over Rise
0.00
%
Bentley Systems, Inc. Haestad Methods So39itite$Fld"aster V8i (SELECTseries 1) [08.11.01.03]
t7/23120144:49:33 PM 27 Siemons Company Drive Suite 200 W Watertown, CT
06795 USA +1-203-755-1666 Page 1 of 2
Desicin Point 3 Culvert
jPVF Output Data
Normal Depth Over Rise
100.00
%
Downstream Velocity
Infinity
fUs
Upstream Velocity
Infinity
ft/s
Normal Depth
1.00
ft
Critical Depth
0.76
ft
Channel Slope
0.80000
%
Critical Slope
0.00920
ft/ft
Bentley Systems, Inc. Haestad Methods SoEldidte$EbrferMaster V81 (SELECTseries 1) [08.11.01.03]
7/23/2014 4:49:33 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2
Design Point 3 Swale
JProject Description
Friction Method
Manning Formula
Solve For
Normal Depth
Input Data
Roughness Coefficient
0.035
Channel Slope
0.50000
Left Side Slope
4.00
ft/ft (H:V)
Right Side Slope
4.00
ft/ft (H:V)
Bottom Width
4.00
ft
Discharge
3.06
fN/s
'Results
Normal Depth
0.40
It
Flow Area
2.24
ft'
Wetted Perimeter
7.30
It
Hydraulic Radius
0.31
ft
Top Width
7.20
It
Critical Depth
0.24
It
Critical Slope
0.03082
ft/ft
Velocity
1.37 ftls
Velocity Head
0.03 It
Specific Energy
. 0.43 ft
Froude Number
0.43
Flow Type Subcritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
IGVF Output Data
Upstream Depth
0.00
ft
Profile Description
Profile Headloss
0.00
ft
Downstream Velocity
Infinity
ft/s
Upstream Velocity
Infinity
ft/s
Normal Depth
0.40
ft
Critical Depth
0.24
ft
Channel Slope
0.50000
Bentley Systems, Inc. Haestad Methods SOB@idleQE81Yr011aster V8i (SELECTseries 1) [08.11.01.03]
7/23/2014 5:04:22 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755.1666 Page 1 of 2
Design Point 3 Swale
iGVF Output Data. "
Critical Slope 0.03082 ft1ft
Bentley Systems, Inc. Haestad Methods So9Ah]tegOd"aster V8i (SELECTseries 1) [08.11.01.03]
712312014 5:04:22 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2
Design Points 5 and 6 Culvert
Project Description
Friction Method
Manning Formula
Solve For
Full Flow Capacity
Input Data
gK
Roughness Coefficient
0.013
Channel Slope
0.50000
Normal Depth
2.50 ft
Diameter
30.00 in
Discharge
29.00 fP/s
Results
Discharge
29.00 fN/s
Normal Depth
2.50 ft
Flow Area
4.91 ft'
Wetted Perimeter
7.85 ft
Hydraulic Radius
0.63 ft
Top Width
0.00 ft
Critical Depth
1.84 ft
Percent Full
100.0 %
Critical Slope
0.00632 ft/ft
Velocity
5.91 fUs
Velocity Head
0.54 ft
Specific Energy
3.04 ft,
Froude Number
0.00
Mapmum Discharge
31.20 fN/s
Discharge Full
29.00 W/s
Slope Full
0.00500 ft/ft
Flow Type
SubCritical
LGVF Input Data
Downstream Depth
0.00 ft
Length
0.00 ft
Number Of Steps
0
IGVF Output Data
Upstream Depth
0.00 ft
Profile Description
Profile Headloss
0.00 ft
Average End Depth Over Rise
0.00
Bentley Systems, Inc. Haestad Methods So3diute;ffdwMaster Vfli (SELECTseries 1) [08.11.01.03]
7/23/2014 4:50:27 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 1 of 2
Design Points 5 and 6 Culvert
GVF Output Data
'
Normal Depth Over Rise
100.00
%
Downstream Velocity
Infinity
ftts
' Upstream Velocity
Infinity
ft/s
Normal Depth
2.50
ft
Critical Depth
1.84
ft
'
Channel Slope
0.50000
%
Critical Slope
0.00632
ft/ft
Bentley Systems, Inc. Haestad Methods SoHdktte$EEdwMaster V81 (SELECTseries 1) [08.11.01.03]
7/23/2014 4:50:27 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 2 of 2
Design Point 5 Swale
,Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient
0.035
Channel Slope _
0.30000
%
Left Side Slope
4.00
ft/ft (H:V)
Right Side Slope
4.00
ft/ft (H:V)
Bottom Width
4.00
ft
Discharge
25.78
ft3/s
;Results
Normal Depth
1.34
ft
Flow Area
12.53
ft'
Wetted Perimeter
15.04
ft
Hydraulic Radius
0.83
ft
Top Width
14.71
ft
Critical Depth
0.83
ft
Critical Slope
0.02210
ft/ft
Velocity
2.06
ft/s
Velocity Head
0.07
ft
Specific Energy
1.40
ft
Froude Number
0.39
Flow Type Subcritical
,GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
,GVF Output Data
Upstream Depth
Profile Description
Profile Headloss
Downstream Velocity
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope
' 7/23/2014 5:02:45 PM
0.00 ft
0.00 ft
Infinity ft/s
Infinity fVs
1.34 ft
0.83 ft
0.30000 %
Bentley Systems, Inc. Haestad Methods So8tin"dHtevMaster V81 (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755.1666 Page 1 of 2
' Design Point 5 Swale
' IGVFOutput Data
Critical Slope 0.02210 ft/ft
Bentley Systems, Inc. Haestad Methods So®tiotleF3dPIbaMaster V8i (SELECTseries 1) [08.11.01.031
' 7/2312014 5:02:45 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 - Page 2 of 2
Design Point 6 Swale
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient
0.035
Channel Slope
0.30000
Left Side Slope
4.00
ft/ft (H:V)
Right Side Slope
4.00
ft/ft (H:V)
Bottom Width
4.00
ft
Discharge
31.17
fN/s
Results
^
Normal Depth
1.46
ft
Flow Area
14.41
ft'
Wetted Perimeter
16.06
ft
Hydraulic Radius
0.90
ft
Top Width
15.70
ft
Critical Depth
0.91
ft
Critical Slope
0.02151
ft1ft
Velocity
2.16
fUs
Velocity Head
0.07
ft
Specific Energy
1.54
ft
Froude Number
0.40
Flow Type Subcritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth
Profile Description
Profile Headloss
Downstream Velocity
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope
712312014 5:02:19 PM
0.00 ft
0.00 ft
Infinity ft/s
Infinity ft/s
1.46 ft
0.91 ft
0.30000
Bentley Systems, Inc. Haestad Methods SOBrtiUte;EtOsrMaster V8i (SELECTseries 1) [08.11.01.03]
27 Siemons Company Orlve Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 . Page 1 of 2
Design Point 6 Swale
:GVF Output Data
t
Critical Slope 0.02151 fVft
Bentley Systems, Inc. Haestad Methods SoBBidteQ£marMaster V8i (SELECTseries 1) [08.11.01.031
7/23/2014 5:02:19 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2
' Design Point 13 Culvert
' Project Description
Friction Method Manning Formula
Solve For Full Flow Capacity
Input Data
Roughness Coefficient
0.013
Channel Slope
0.50000
%
Normal Depth
1.25
ft
Diameter
15.00
in
Discharge
4.57
fP/s
'Results
Discharge
4.57
fN/s
Normal Depth
1.25
ft
Flow Area
1.23
ft'
Wetted Perimeter
3.93
ft
Hydraulic Radius
0.31
ft
Top Width
1
0.00
ft
Critical Depth
0.87
ft '
Percent Full
100.0
%
Critical Slope
0.00732
ft/ft
Velocity
3.72
fUs
Velocity Head
0.22
ft
Specific Energy
1.47
ft
Froude Number
0.00
Mapmum Discharge
4.91
fN/s
Discharge Full
4.57
fN/s
Slope Full
0.00500
ft/ft
Flow Type SubCritical
[GVF Input Data ',r_',
]
Downstream Depth
0.00
ft
'
Length.
0.00
ft
Number Of Steps
0
jGVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00
Bentley Systems, Inc. Haestad Methods SoFAId1:¢EiIdwMaster V8i (SELECTseries 1) [08.11.01.03]
7/2312014 4:51:26 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 1 of 2
Design Point 13 Culvert
IGVF Output Data,
Normal Depth Over Rise
100.00
%
Downstream Velocity
Infinity
ft/s
Upstream Velocity
Infinity
ft1s
Normal Depth
1.25
ft
Critical Depth
0.87
ft
Channel Slope
0.50000
%
Critical Slope
0.00732
Wit
Bentley Systems, Inc. Haestad Methods SoBAidtegfBSarMaster V8i (SELECTserles 1) [08.11.01.03]
7/23/2014 4:51:26 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2
Design Point 13 Swale
jroject Description
Friction Method
Manning Formula
Solve For
Normal Depth
Input Data
Roughness Coefficient
0.035
Channel Slope
0.50000
%
Left Side Slope.
4.00
fUft (H:V)
Right Side Slope
4.00
ft/ft (H:V)
Discharge
4.21
fN/s
!Results
Normal Depth
0.81
ft
Flow Area
2.62
ft'
Wetted Perimeter
6.67
ft
Hydraulic Radius
0.39
ft
Top Width
6.47
ft
Critical Depth
0.59
ft
Critical Slope
0.02799
ft/ft
Velocity
1.61
ft/s
Velocity Head
0.04
ft
Specific Energy
0.85
ft
Froude Number
0.45
Flow Type
Subcritical
GVF Input Data°
Downstream Depth
0.00
ft
Length
0.00
ft
Number Of Steps
0
GVFbutput Data
Upstream Depth
0.00
ft
Profile Description
Profile Headloss
0.00
ft
Downstream Velocity
Infinity
fUs
Upstream Velocity
Infinity
fUs
Normal Depth
0.81
ft
Critical Depth
0.59
ft
Channel Slope
0.50000
Critical Slope
0.02799
fUft
Bentley Systems, Inc. Haestad Methods SoBairtteffterMaster V8i (SELECTseries 1) [08.11.01.031
712312014 5:01:26 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1. of .1
International Blvd Outfall
Friction Method
Solve For
Manning Formula
Discharge
Li
Roughness Coefficient
0.013
Channel Slope
0.00500
ft/ft
Normal Depth
2.35
ft
Diameter
30.00
in
Discharge
31.20
ft3/s
Flow Area
4.79
ft'
Wetted Perimeter
6.62
ft
Hydraulic Radius
0.72
ft
Top Width
1.19
ft
Critical Depth
1.90
ft
Percent Full
94.0
%
Critical Slope
0.00672
ft/ft
Velocity
6.51
flYs
Velocity Head
0.66
ft
Specific Energy
3.01
ft
Froude Number
0.57
Maximum Discharge
31.20
fl:31s
Discharge Full
29.00
ft3/s
Slope Full
0.00579
ft/ft
Flow Type
SubCrifical
Downstream Depth
Length
Number Of Steps
0.00
0.00
0
ft
ft
GVF Output Data
Upstream Depth
0.00
ft
Profile Description
Profile Headloss
0.00
ft
Average End Depth Over Rise
0.00
%
Normal Depth Over Rise
94.00
%
Downstream Velocity
Infinity
fVs
- -----------
Bentley Systems, Inc. Haestad Methods Sd%*hdejMkheiMaster V8i (SELECTserles 1) [08.11.01.031
412212014 1:21:34 PM 27 Siemons
Company Drive Suite 200 W Watertown, CT
06795 USA +1-203-755-1666 1 Page 1 of 2
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope
Critical Slope
412212014 1:21:34 PM
Intemational Blvd Outfall Pipe
Infinity fUs
2.35 ft
1.90 ft
0.00500 ft/ft
0.00672 ft/ft
Bentley Systems, Inc. Haestad Methods ShcalimlapktaWaster V81 (SELECTseries 1) [08.11.01.03]
27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755.1666 Page 2 of 2
Roughness Coefficient
0.035
Channel Slope
0.00350
f 1ft
Normal Depth
1.50
ft
Left Side Slope
4.00
ft/ft (H:V)
Right Side Slope
4.00
ft/ft (H:V)
Bottom Width
6.00
ft
Results yY�07,
7-FYt
Discharge
44.60
ft3/s
Flow Area
18.00
ft2
Wetted Perimeter
18.37
ft
Hydraulic Radius
0.98
ft
' Top Width
18.00
ft
Critical Depth
0.96
ft
Critical Slope
0.02066
ft/ft
' Velocity
2.48
ft/s
Velocity Head
0.10
ft
Specific Energy
1.60
ft
' Froude Number
0.44
Flow Type
Subcritical
Downstream Depth
0.00
ft
Length
0.00
ft
'
Number Of Steps
0
S °Output Data
Upstream Depth
0.00
ft
Profile Description
Profile Headloss
0.00
ft
'
Downstream Velocity
Infinity
Ws
Upstream Velocity
Infinity
ft/s
t Normal Depth -
1.50
ft
Critical Depth
0.96
ft
Channel Slope
1
0.00350
ft/ft
Bentley Systems, Inc. Haestad Methods ScIfthdalC@laem aster V8i (SELECTseries 1) [08.11.01.03]
' 4122/2014 1:22:15 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 1 of 2
Critical Slope
Drycreek Off -Site Swale
0.02066 fttft
Bentley Systems, Inc. Haestad Methods ScIbaki efXftbsMaster V8i (SELECTseries 1) [08.11.01.03]
' 4/2212014 1:22:15 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203.755-1666 Page 2 of 2
Appendix C
(Inlet Calculations)
G a,.N:
,,owaon
Planning. Architecture. Engineering.
DESIGN PEAK FLOW FOR ONE-HALF OF STREET
OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD
Project TlmbeMne
Inlet ID: Inlet A2.11
Sr_how Demlb _
ROADWAY CENTERLINE
esgn If ameauy dammined Inbughoffer meiron tom
(local peak flow for l2 of Street OR arc ired CMrvnI): WKnown 0.5 1
N AZ Acres es
Per!mpm
SR Type: FbaDeveroeo For:
NRCS Soil Type = A, B, C, or D
O Sl[e 5 UDan
O weer Dim
Slope ft/ft L Ih h
O Ste a florNlrbin O Area Infers In a Median
Ovedand Flow=
Channel Flow=
ueslgn corm
tceuan renoo ure-rely
ream renoo, 1r—
rrecip tauoR rt = in
User -Defined Slonm Ruoff Coefficient (leave the blark to accept a cakaleted value), C =
user-uenreo o-yr. noon wenioere teave ms mam o accept a caeaaatea vaae)• 's =
Bypass (Carry -Over) Flow from upstream Subcatchmems, %= cfs
Total Design Peak Flow, D - 0.5 2.1 crs
Worksheet Protected
IN THIS SECTION
IN THE
(IONS BELOW.
U0.4nlet_v3.14-A2-1.adsm, O-Peak 7/23/2014, 5:22 PM
' Project:
Inlet ID:
11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storrs) 11
ga T, T,,,,,TcRwnr
W Tx StrBetn rvw
Qw Qx
H d y S*`.�
aa d�
Allowable Width for Spread Behind Curb
r Behind Curb (leave blank for no conveyance credit behind curb)
Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Lino
ce from Curb Face to Street Crown
Width
Transverse Slope '
Cross Slope (typically 2 inches over 24 inches or 0.083 R/ft)
Longitudinal Slope - Ender 0 for sump condition
g's Roughness for Street Section (typically between 0.012 and 0.020)
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
Flow Depth at Street Crown (leave blank for no)
' Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression (dc - (W " S, " 12))
Watw.Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
t Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section Tx
Discharge within the Gutter Section W (QT - Qx)
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V'd Product: Flow Velocity times Gutter Flowlire Depth
rteACK - 0.018
TeT,,,,,= 9.0 ft
SACK p.020 fU
ft
rISTREET = 0,016
Minor Storm Major Storm
TM" = 16.2 16.2 ft
dm-- 4.6 12.0 inches
EI check = yes
y=
do =
a=
d=
Tx =
E. =
Qx =
Qw =
QRACK -
Qr=
V=
V'd =
oretical Water Spread
TrR =
oretical Spread for Discharge outside the Gutter Section W (T - W)
Tx TR =
er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
E. =
oretical Discharge outside the Gutter Section W. carried in Section Tx TR
Qx TR =
el Discharge outside the Gutter Section W, (limited by distance TCROWn)
Qx -
:harge within the Gutter Section W (Qd - Qx)
Qw =
:harge Behind the Curb (e.g., sidewalk, driveways, & lawns) _
QSACK =
II Discharge for Major & Minor Storm (Pre -Safety Factor)
Q =
rage Flow Velocity Within the Gutter Section
V =
Product: Flow Velocity Times Gutter Flowline Depth
V•d -
ie-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm
R =
Flow Based on Allowable Depth (Safety Factor Applied)
Qd =
ultant Flow Depth at Gutter Flowline (Safety Factor Applied)
d =
ultant Flow Depth at Street Crown (Safety Factor Applied)
dcROWe =
Minor Storm Major
4.37
4.37
1.6
1.6
0.00
0.00
4.37
4.37
10.2
10.2
0.710
0.710
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
0.0
0.0
0.0
0.0
Minor Storm Major Storm
17.6
44.4
11.6
38.4
0.671
0.321
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
SUMP
SUMP
inches
inches
inches
inches
it
cfs
CIS
cis
cfs
fps
cfs
cis
CIS
CIS
cfs
fps
Cfs
inches
inches
2 STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm
R STORM Allowable Capacity is based on Depth Criterion Q.r =1 SUMP I SUMP cfs
storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak'
LID-Inlet_v3.14 - A2-1.xlsm, Q-Allow, 7/23/2014, 5:24 PM
INLET IN A SUMP OR SAG LOCATION
Project = Timbervine
Inlet ID = Inlet A2-1
.t-Lo (C)-K -
H-Curb H-Vert
Wo
W
WP
Lo (G)
an Information (Input)
of Inlet
Inlet Type
Depression (addibonal in continuous gutter depression'a' from'O-Allow)
a.
ber of Unit Inlets (Grate or Curb Opening)
No
:r Depth at F1owline (outside of local depression)
Ponding Depth
e Information
th of a Unit Grate
L. (G)
i of a Unit Grate
Wo
Opening Ratio for a Grate (typical values 0.150.90)
A.
Sing Factor for a Single Grate (typical value 0.50 - 0.70)
Cr (G)
Wee CoeffKlent (typical value 2.15- 3.60)
C. (G)
Onfice Coefficient (typical value oko - 0.80)
Co (G)
Opening Information
th of a Unit Curb Opening
L. (C)
it of Vertical Curb Opening in Inches
Fi n
4 of Curb Orifice Thmat in belles
H.
: of Thmat (see USDCM Figure ST-5)
Theta
Width for Depression Pan (typically the gutter width of 2 feet)
Wn
lag Factor for a Single Curb Opening (typical value 0.10)
Cr (C)
Opening Weir Coefficient (typical %tNe 2.3-3.7)
C. (C)
Coefficient for Multiple Units
Factor for Multiple Units
pacify as a Weir (based on Modified HEC22 Method)
m without Clogging
m with Clogging
2acity as a Orifice (based on Modified HEC22 Method)
)n without Clogging
)n with Clogging
pacify as Mixed Flow
in without Clogging
)n with Clogging
ling Coefficient for Multiple Units
king Factor for Multiple Units
Opening as a Weir (based an Modified HEC22 Method)
Opening as an Orifice (based on Modified HEC22 Method)
Opening Capacity as Mixed Flow
MINOR MAJOR
CDOT Type C Grate
0.00
0.00
1
1
4.8
6.0
2.92
2.92
2.92
2,92
0.70
0.70
0.50
0.50
2.41
2.41
0.67
0,67
I WA I WA I
Mies
des I
to 0venide 0eptta NI
set
set
Cost
Clog =
5.
HE
MINOR
MAJOR
0.c =
2.90
5.36
cfs
0"=
1.45
2.611
cis
MINOR
MAJOR
O°=
19.33
21.93
ds
till. =
9.67
10.97
,.fa
MINOR
MAJOR
0.-1
7.27
1 10.51
0- =
3.63
5.26Ids
dsQ..a
1.45
2.68cfs
MINOR
MAJOR
Coal =1
NIA
WA
Clog =1
N/A
N/A
MINOR
MAJOR
O,
N/A
N/A
ds
0"=
N/A
N/A
-Ids
MINOR
MAJOR
Q.
N/A
N/A -
cis
Q. =1
N/A
I N/A
ids
Interception with Clogging
- V,,. =
N/A
N/A
cfs
Resulting Curb Opening Capacity (assumes clogged condition)
Oc•w=
NIA
NIA
CIS
Resonant Street Conditions
MINOR
MAJOR
Total )reel Length
L =1
2.92
2.92
Resultant Street Flow Spread (based an sheet O-A/bw geometry)
T =
17.6
222J:T-Crown
Resultant Flow Depth at Sbeet Crown
aCa N =
,0.4
1.6inches
MINOR
MAJOR
Total Inlet Interception Capacity (assumes clogged condition)
0e =
1.5
2.7
cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>O PEAK)
DPE.W.E .D=
0.5 1i
2.1
i1cfs
UD-inlet_v3.14-A2-t.)dsm, Inlet In Sump
7/23/2014, 5:24 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET
OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD
Project TlmbeMne
Inlet ID: Inlet
Sl w Details
—� ROADWAY CENTERLINE
ILY it already oeternimeoug olner me
(IocetpeekfbwforiaofseeetOR grasaJiredchrreli-uKnevn cis
If you enter values In Row 14, skip the rest of this sheet and proceed to sheet O-Allow or Area Inlet.
og ap K in
St Impervio s Area =�%
Acres
Percent lmpenioteress= %
sR Type: Hews Developed For NRCS Soil Type = A, B. C, or D
LOS:
UStreet WetsS_bpe (fU_ff)) Lergth ((ftj) a HbWden O NW ea Web Ina Median Overland Fbw-mil J
Channel File
- - � r z � p iron an apr opt
uesign berm nadm renuu, i, = years
netun rancid unanour rreupnauon, rr= inchas
l�r=
V2
Li
User -Defined Sbrm Ruoff Coefficlent (leave t is blank to accept a calculated value), C =
user-uenred o-yr. Mu im wemoers (rave uvs mares to accept a cawuaceo vain:), �s =
Bypass (Carry -Over) Flux from upstream Subcatchmems, Oe = cis
Total Design Peak Fkhv, O = 1.8 7.0 cis
1
Worksheet Protected
IN THIS SECTION
IN THE
TIONS BELOW.
UD-tnlet_Jd.14-A4.adsm, O-Peak - 7/23/2014, 5:25 PM
' Project:
Inlet ID:
11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11
ftd
T. TyraTcnowwW-Tx�ow ox +
mum Allowable Width for Spread Behind Curb
Taox =
9.0
ft
Slope Behind Curb (leave blank for no conveyance credit behind curb)
S.. =
0.020
ftlft
ung's Roughness Behind Curb (typically between 0.012 and 0.020)
nsACx =
0.018
R of Curb at Gutter Flow Line
- Hcum =
4.75
inches
me from Curb Face to Street Crown
TCROWN =
16.2
If
u Width
W =
1.17
If
it Transverse Slope
Sx =
0.023
Wit
❑ Gross Slope (typically 2 inches over 24 inches or 0.083 PoR)
Sw =
0.098
Wit
it Longitudinal Slope - Enter 0 for sump condition
So =
0.000
Rift
ung's Roughness for Street Section (typically between 0.012 and 0.020)
nsnR r =
0.016
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Mirror & Major Storm
Flow Depth at Street Crown (leave blank for no)
' Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2-)
Gutter Depression (dc - (W - S, - 12))
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W IT - W).
' Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W. carried in Section Tx
Discharge within the Gutter Section W (QT - DO
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)
' Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V'd Product: Flow Velocity times Gutter Flowline Depth
)retical Water Spread
xetical Spread for Discharge outside the Gutter Section W (T - W)
er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
xetical Discharge outside the Gutter Section W. carried in Section Tx T„
iat Discharge outside the Gutter Section W, (limited by distance TCR N)
harge within the Gutter Section W (Qd - Qx)
harge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre -Safety Factor)
'age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm
Flow Based on Allowable Depth (Safety Factor Applied)
ultant Flow Depth at Gutter Flowlins (Safety Factor Applied)
ultant Flow Depth at Street Crown (Safety Factor Applied)
Misr Storm Major Storm
Tyres ::1 16.2 1 16.2 ft
dy" =j 4.8 1 12.0 linches
p 121 check = yes
Y=
do =
a=
d=
Tx =
Eo =
Qx=
Qw=
QeAC( =
or=
V=
V•d =
TT„ _
Tx TN =
E. =
Qx TN
Qx
Qw=
QMM =
Q=
V=
V'd =
R=
Qd =
d=
dCROWN =
Minor Storm Major Storm
4.37
4.37
1.4
1.4
1.06
1.06
5.42
5.42
15.0
15.0
0.213
0.213
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
0.0
0.0
0.0
0.0
Minor Storm Major Storm
13.7
40.5
12.5
39.4
0.254
0.081
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
SUMP
SUMP
inches
inches
inches
inches
it
cis
cis
CIS
CIS
fps
cfs
cfs
cis
cfs
cis
fps
CIS
inches
inches
2 STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm
R STORM Allowable Capacity is based on Depth Criterion Q,a„„ =1 SUMP I SUMP cfs
storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak'
storm max. allowable capacity GOOD - areater than flow given on sheet'Q-Peak'
LID -Inlet v3.14 - A4.xlsm, Q-Allow - 7/23/2014, 5:25 PM
INLET IN A SUMP OR SAG LOCATION
Project = Timbervine
Inlet ID = Inlet Ad
,�-Lo (C)-K
H-Curb
M-Vert
Wo
Wp
W
Lo (G)
of Inlet
I Depression (additiooel to continuous gutter depression 'a' fmm'O-Allow)
bar of Unit Inlets (Grata or Curb Opening)
x Depth at Flowiine (inside of local depression)
a Information
th of a Unit Grate
1 of a Unit Grate
Opening Ratio for a Grate (typical values 0.150.90)
3in9 Factor for a Single Grate (typical value 0.50-0.70)
e Weir Coefficient (typical value 2.15- 3,60)
a Office Coefficient (typical value 0.60 - 0.80)
Opening Information
th of a Unit Curb Opening
it of Vertical Curb Opening in Inches
it of Curb Orifice Thmart in Inches
a of Throat (see USDCM Figure ST-5)
Width for Depression Pan (typically the gutter width of 2 feet)
Sing Factor for a Single Curb Opening (typical value 0.10).
Opening Weir Coefficient (typical value 2.3-3.7)
rig Coefficient for Multiple Units
rig Facuir for Multiple Units
Capacity as a Weir (bused on UDFCD - CSU 2010 Study)
ption without Clogging
:ption with Clogging
Capacity as a Orifice (based on UDFCD - CSU 2010 Study)
:ption without Clogging
:ption with Clogging
Capacity as Mixed Flow
:ption without Clogging
plan with Clogging
Coefficient for Multiple Units
Factor for Multiple Units
ming as a Weir (based on UDFCD - CSU 2010 Study)
)n without Clogging
m with Clogging
ming as an Orifice (based on UDFCD - CSU 2010 Study)
m withoutCl ggi g
m with Clogging
ming Capacity as Mixed Flow
m without Clogging
)n with Clogging
Inlet Length
tint Street Flow Spread (based on sheet O-Allow geometry)
Writ Flow Depth at Street Crown
I Inlet Interception Capacity (assumes clogged condition)
0apacity IS GOOD for Minor and Major Storms (>O PEAK)
Inlet Type
Foci
No
Polling Depth
L.(G)'
Wo'
A,wo
Cr(G)
C. (G):
C.(G)
Lo(C)
CDOT Type R Curb Opening
4.25
4.25
1
1
4.8
69
M
does
niches
o Orcfitle Depth;
eel
Be
M.n=
Hw..=
Theta=
W. =
Cr(C)=
C.(C)=
&00
6.00
inches
incises
degree
feet
6.00
6,00
63.40
6340
1.17
1.17
0.10
0.10
3.60
360
C.(C)=
0.67
0.67
MINOR MAJOR
Coal = NIA N/A
Clog = NIA N/A
MINOR MAJOR
O•= N/A WA _Ids
0-= NIA NIA cis
0, =
C,
'
Q.
Lt. =1
MINOR MAJOR
cis
Cis
cis
ds
N/A
NIA
N/A
NIA
MINOR MAJOR
N/A
NIA
N/A
I N/A
Coef -1
11
1.00
Clog =
0.10
0.10
MINOR
MAJOR
O.
3,82
7.99 cis
Ow=
3,44
T19 ds
MINOR
MAJOR
0• =
9.75
1129 cis
Dv =
8.78
10.16 cis
MINOR
MAJOR
Q.
5.67 ,......,
�.8.83 ....
cis
5.11
7.95 cis
l3c.n=
3.44
7.19 ch
L=I
5.00
1 5.00
feel
T=j
117
1 21.6
IL>T-Cmwn
ocxro .-
0.0
1.5
nches
MINOR
MAJOR
�:a =
3.4
7.2
c(s
Orresaeounm=
1.6
7.0
da
UD4n1et_v3.14-A4.x1sm, Inlet In Sump 7/2312014, 5:25 PM
Worksheet Protected
DESIGN PEAK FLOW FOR ONE-HALF OF STREET
OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD
Project Timbemine '
Inlet ID: Inlet AS
SIDE
III I FLOW ° I I I DI STR� II I I FLAW ° I
- GUTTER FLOW�GUTTER
PLUS CARRYOVER FLOW -/�
Shwv Dafaib
ROADWAY CENTERLINE
esign IT alreacly cletenninouug
ocnerme iron term
MajorSton
<—
peoeNp.ekfb for1n af.".t0R grssslmdtl Mnnep:-ua�ewo=
b cls
FILL IN THIS SECTION
ff ou enter values in Row 14, skip the rest of this sheet and proceed to sheet O-Allow. or Area Inlet
OR...
Ueograpnic er data ui
FILL IN THE
Subcatctenert Area=
Acres
SECTIONS BELOW.
Percent imperviousness=
%
<—
Sae Type:
5ae a urean
Lao
Mvs Developed For: NRCS Soil Type =®A.
O Sbeer Wets Sb fUff
Le M ft
B. C, or D
Sre a ngrtllrbaz�
O Ama IneR In a Me6an Overland Flo =
Charnel Flew =
minorblom
maprSwrrn
uesign awrtn rte. renoo, r-
years
nenfn ranee unanerr rreopnagon, r� =
j(�a
Uservser a tine omyn Rumff Coefficient (leave s Blanc to accept a caktYatetl valued C L. J
w-Defined
nea ryr. rtuort wertnen peavn h oia n t a cep
ccepa c .le vaurel. C
Bypass (CarrpOver( Flow from upstream Subcatchmems, Oe= cis
Total Design Peak Flow, O = 0.8 Y.7 cis
UD-Inlet v3.14 - A5.)dsm, Q-Peak 7/2312014, 5:27. PM
I) ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm). II
Project: Timbervine
Inlet ID: Inlet A5
$
�� T, Tyrx r I
w Tx
EowId
ox a -
H� Sx
mum Allowable Width for Spread Behind Curb
TRACK(
, g.O
Ift
Slope Behind Curb (leave blank for no conveyance credit behind curb)
Smcx =
0.020
R/tt
w g's Roughness Behind Curb (typically between 0.012 and 0.020)
neACx =
0.018
M of Curb at Gutter Flow Lie
HGIRe =
4.75
inches
rice from Curb Face to Street Crown
TCaowN =
16.2
it
fr Width
W =
6.00
it
it Transverse Slope
Sx =
0.023
ft/ft
u Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)
Sw =
0.023
ft/ft
it Longitudinal Slope - Enter 0 for sump condition
So =
0.000
ft/ft
ring's Roughness for Street Section (typically between 0.012 and 0.020)
rISTREET =
0.016
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
Flow Depth at Street Crown (leave blank for no)
er Depth without Gutter Depression (Eq. ST-2)
ical Depth between Gutter Lip and Gutter Flowline (usually 2")
er Depression (dc - (W - S, " 12))
er Depth at Gutter Flowline
rrable Spread for Discharge outside the Gutter Section W (T - W)
per Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
:harge outside the Gutter Section W, carried in Section Tx
:harge within the Gutter Section W (QT - Qx)
:harge Behind the Curb (e.g., sidewalk, driveways, & lawns)
:imum Flow Based On Allowable Spread
r Velocity within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
oretical Water Spread
oretical Spread for Discharge outside the Gutter Section W (T - W)
er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
oretical Discharge outside the Gutter Section W. carried in Section Tx TH
el Discharge outside the Gutter Section W, (limited by distance TcRowN)
:harge within the Gutter Section W (Qa - Qx)
:harge Behind the Curb (e.g., sidewalk, driveways, & lawns)
it Discharge for Major & Minor Storm (Pre -Safety Factor)
rage Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
ie-Based Depth Safety Reduction Factor for Major & Misr (d ? 6") Storm
: Flow Based on Allowable Depth (Safety Factor Applied)
ultant Flow Depth at Gutter Flowline (Safety Factor Applied)
ultam Flow Depth at Street Crown (Safety Factor Applied)
Minor Storm Major Storm
TMAx = 16.2 16.2 ft
dmm = 4.8 12.0 inches
O O check = yes
y=
do =
a=
d=
Tx =
Eo -
Qx =
Qw =
Q.
QT =
V=
V'd =
TTH
Tx TH =
Eo =
Qx TH =
Qx =
Qw=
Qencx =
Q=
V=
V'd =
R=
Oa=
d=
dCRMN
4.37
4.37
1.6
1.6
0.00
0.00
4.37
4.37
10.2
10.2
0.710
0.710
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
0.0
0.0
0.0
0.0
Minor Storm Major Storm
17.6
44.4
11.6
38.4
0.671
0.321
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
SUMP
SUMP
2.17
3.82
0.00
0.00
inches
inches
inches
inches
8
cfs
cis
cis
cfs
fps
cis
cis
cis
its
cfs
fps
cfs
inches
inches
i STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm
R STORM Allowable Capacity is based on Depth Criterion Q.,,_ =1 sump I SUMP lcfs
storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak'
storm max. allowable capacity GOOD - greater than flow given on shest'Q-Peak'
U0.lnlet_0.14 - A5.xlsm, Q-Allow 7/23/2014, 5:27 PM
INLET IN A SUMP OR SAG LOCATION
Project = Timbamine
Inlet ID Inlet AS
Lo (C)-
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
1n Information (Input)
of Inlet
Inlet Type
Depression (additional to continuous gutter depression 'efrom'O-AIbW)
A..
ter of Unit Inlets (Grate or Curb Opening)
No
r Depth at Flowine (outside of local depression)
Pondirg Depth
t Irdonnatlon
h of a Unit Grate
Lo(G)
t of a Unit Grate
Wo
Opening Ratio fora Grate (typical values 6.15-0.90)
A„m
ling Facwr for a Single Grate (typical value 0.50 - 0.70)
Cr (G)
Web Coefficient (typical value 2.15-3.60)
C„ (G)
Orifice Coeffx]ent (typical value 0.60 - 0.80)
Co (G)
Opening lnfamation
b of a Unit Curb Opening
Lo (C)
it of Vertical Curb Opening in Inches
H.
it of Curb Once Throat in Inches
H.
of Throat (see USDCM Figure ST-5)
Theta
Width for Depression Pan (typically the gutter width of 2 feet)
We
ling Factor for a Single Curb Opening (typical value 0.10)
Cr (C)
Opening Weir Coefficient (typical value 2.3-3.7)
C. (C)
Opening Orifice Coefficient (typical value 0.60-0.70)
C. (C)
ng Coefficient for Multiple Units
ng Factor for Multiple Units
Capacity as a Weir (based on Modified HEC22 Method)
Capacity as a Orifice (based on Modified HEC22 Method)
Capacityas Mixed Flay
ing Coefficienl for Multiple Units
wig Factor for Multiple Units
Opening as a Weir (based on Modified NEC22 Method)
Opening as an Orifice (based on Modified HEC22 Method)
Opening Capacity as Mixed Flow
nl Street Flow Spread (based on sheet O-Aaav geometry)
M Flow Depth at Street Crown
Inlet Interception Capacity (assumes clogged condition)
ING: Inlet Capacity less than 0 Peak for MAJOR Storm
MINOR MAJOR
CDOT Type C Grate
0,00
0.00
1
1
4.8
6.0
2.92
2,92
2.92
2,92
0.70
0.70
0.50
0.50
2.41
2,41
0.67
0,67
IINOR MAJOR
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A NiA
N/A WA
N/A N/A
N/A NIA
IINOR MAJOR
1.00 1.00
l es
O Overtyle Depths
let
-at
290
5.36 cis
0_=
It
2.68 cis
MINOR
MAJOR
Oa =1
19.33
21.93 cis
C.=
9.67
10.97 cis
q
1.45
I 2.68 Icfs
MINOR
MAJOR
Coef =1
NIA
N/A
Clog =1
N/A
N/A
MINOR
MAJOR
OM =1
NIA
N/A cis
0-=
N/A
N/A cis
MINOR
MAJOR
0. =
NIA
N/A cis
Co-
N/A
N/A cis
MINOR
MAJOR
Om =
N/A
N/A cis
L-1
2.92
2.92
feel .
T=j
17.6 1i
22.2
f.,T-Crown
ckc p N=
0.4
1.6
Inches
MINOR
MAJOR
�. =
1.5
2.7
cf8
a:oueeo=
0.6
2.7
cis
UD4nlet_v3.14-A5.xlsm,.Inlet In Sump 7123/2014, 5:27 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET
OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD
Project Tlmbervine Inlet ID: - Inlet B1
Stow 0e1ib7 .
ROADWAY CENTERLINE - -
Design IPW UNLY it already oetennune,clug o rme in
Worksheet Protected
p0celPeakfbwfar1adseeet0R grassJiraticMrvnp: 'uHno.o=U. I J.1 cts
FILL IN THIS SECTION
'values in Row 14. skip the nest of this sheet and proceed to sheet O-Allow or Area Inlet
OR...
In
FILL IN THE
SlLcattignen Area=
'.t==
Acres
SECTIONS BELOW.
Percerr4I. v
%
-
Site Type: Flows DMmed Fv: NRCS Soil Type =®A,
B. C, or
9te K Uman StrtttlamSID
Lao
Sm Is Naniaban O Area [r4a In a I.te6an Overland Fbw=
Channel Fbw=
minarbionnn
major 5una
ueslgn amn ne
rears
rtetvn e renpg unnorr r
mot=
irntaa
User -Defined Storm Rang Coefficiert (leave this blank OD accept a celGlated veha), C =
useruermeo ayr. rtno[r wenoera Heave me warty m accept a caaasatea rasa), vs =
Bypass (Cany-Over) Flow from upstream Subcatchrnems, Qe - efs
Total Design Peak Flow, Q - 0.7 3.1 cis
1.1134nlel_v3.14 - Bl Asm, Q-Peak 712312014, 5:30 PM
' Project:
Inlet ID:
11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11
T Ty,x T
W Tx
Qw Q:
H� d y
a do.
num Allowable Width for Spread Behind Curb
Tme -
11.0
R
Slope Behind Curb (leave blank for no mmeyame credit behind curb)
SaA =
0.020
ftift
dng's Roughness Behind Curb (typically between 0.012 and 0.020)
naA-=
0.018
it of Curb at Gutter Flow Line
Hcum =
6.00
inches
me from Curb Face to Street Crown
TcR =
25.0
8
B Width
W =
2.00
it
t Transverse Slope
Sx =
0.023
tuft
it Cross Slope (typically 2 inches over 24 inches or 0.083 tuft)
Sw =
0.083
fuft
t Longitudinal Slope - Enter 0 for sump condition
So =
0.000
full
ung's Roughness for Street Section (typically between 0.012 and 0.020)
rISTREI T =
0.016
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowfine for Minor & Major Storm
Flow Depth at Street Crown (leave blank for no)
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression (dc - (W " Sx' 12))
Water Depth at Gutter Flowline,
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section Tx
Discharge within the Gutter Section W (QT - Qx)
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)
' Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V'd Product: Flow Velocity times Gutter Flowline Depth
Minor Storm Major Storm
Tmm = 25.0 25.0 ft
d,m 6.0 12.0 jinches
0 check = yes
y=
do =
a=
d=
Tx =
Eo =
Q.
Qw=
QBACK =
QT=
V=
V'd =
oretical Water Spread
TTR =
wetical Spread for Discharge outside the Gutter Section W (T - W)
Tx TH =
or Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Eo -
oretical Discharge outside the Gutter Section W. carried in Section Tx TR
Ox TR =
jet Discharge outside the Gutter Section W, (limited by distance Tceowe)
%=
:harge within the Gutter Section W (Qa - Qx)
Qw =
:harge Behind the Curb (e.g., sidewalk, driveways, & lawns)
QaACK =
if Discharge for Major & Misr Storm (Pre -Safety Factor)
Q =
rage Flow Velocity Within the Gutter Section
V =
Product: Flow Velocity Times Gutter Flowline Depth
V"d =
*-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm
R =
: Flow Based on Allowable Depth (Safety Factor Applied)
Qa =
ultant Flow Depth at Gutter Flowline (Safety Factor Applied)
d =
ultant Flow Depth at Street Crown (Safety Factor Applied)
dcacwn -
Minor Storm
6.75
6.75
2.0
2.0
1.45
1.45
8.20
8.20
23.0
23.0
0.230
0,230
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
0.0
0.0
0.0
0.0
Minor Storm Major Storm
16.8
39.1
14.8
37.1
0.344
0.144
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
SUMP
SUMP
inches
inches
inches
inches
it
cfs
cfs
cfs
cfs
fps
cfs
cfs
cfs
cfs
cfs
fps
cfs
inches
inches
2 STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm
R STORM Allowable Capacity is based on Depth Criterion Q,ia.+= SUMP I SUMP cfs
storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak'
U0.lnlet_v3.14 - B1.xlsm, Q-Allow - 7/23/2014, 5:30 PM
INLET IN A SUMP OR SAG LOCATION
Project = Tlmbervine
Inlet 10= - Inletl3l
,f--Lo IC) -may
H-Curb H-Vert
We
WP
W
Lo (G)
of Inlet
Inlet Type
I Depnssion (additional to continuous gutter depression's' fmm'O-Allovl)
am.'
bar of Ural Inlets, (Grate or Curb Opening)
No
a Depth at Flowfine (outside of local depression)
Polling Depth'
e Information
th of a Unit Grate
Lo (G)
h of a Unit Grate
W.
Opening Ratio for a Grate (typical values 0.15.0.90)
A.m'
ging Factor for a Single Grate (typical value 0.50 - 0.70)
Cr (G)
s Weir Coefficient (typical value 2.15- 3.60)
C. (G)'
s Orifice Coefficient (typical value 0.60. 0.80)
Co (G)'
i Opening Information
th of a Unit Curb Opening
Lo (C)
ht of Vertical Curb Opencg in Inches
H.n'
ht of Curb Orifice Thmat in Imes
H.
s of Thmet (we USDCM Figure ST-5)
Theta
Width for Depression Pan (typically the gutter width of 2 feet)
Wr'
ging Faclor for a Single Cum Opening (typical value 0.10)
C, (C):
Opening Weir Coefficient (typical value 2.3-3.7)
C.(C):
ODemn. Onfce Coefficient (tvccal value 0.60 - 0.70)
Co (C):
MINOR MAJOR
CDOT Type R Curb Opening
3.00
3.00
1
&0
12.0
M-,
N/A
M/1.1U1f
NIA
NIA
NIA
N/A
NIA
NIA
NIA
NIA
NIA
NIA
NIA
MINOR MAJOR
5.00 5.00
6.00
6 00
6.D0
6,00
63.40
63.40
100
2,00
0.10
0A0
ng Coefficient for Multiple Units
Coef=
N/A
N/A -
rgFaclorforMWtipleUnils
Clog =
N/A
N/A
Capacity as a Weir (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
:pdon without Clogging
Q.
N/A
N/A
iption with Clogging
O„ =
N/A
N/A
Capacity as a Orifice (based on UDFCD - CSU 2010 Study)
MINOR
MAJOR
_
ptionwithout Clogging
C6
N/A
N/A
ptionwiHiClogginy -
Oo=
N/A
N/A
Capacity as Mixed Flow
MINOR
MAJOR
pbon without Clogging
O„r=
N/A
N/A
ption with Clogging
Oo. =
N/A
NIA
ling C IeStrient for Multiple Units
ling Fector for Multiple Units
Opening as a Weir (based on UDFCD - CSU 2010 Study)
epeon wiOcut Cloggi g
eption with Clogging
Opening as an Orifice (based on UDFCD-CSU 2010 Study)
eption without Gagging
ept on with Clogging
Opening Capacity as Mixed Flow
eption without Clogging
epbon with Clogging
Inlet Length
tent Street Flow Spread (based on sheet O-Allow geometry)
land Flow Depth at Street Crown
I Inlet Interception Capacity (assumes clogged condition)
rapacity IS GOOD for Minor and Major Storms (>O PEAK)
nches
nrhes
W Override Depda
set
eet
Coe =
1.00
1.00
Cl
0.10
0.10
MINOR
MAJOR
Cw=
5.98
23.58
cis
0.. =
5.38
21.22
cis
MINOR
MAJOR
ci =
975
13.62
cis
C,=
878
12.26
cfs
MINORMA
JOR
On.=
7.10
••16. 7 .6
ds
Oo==
6.39
15.00
cis
Dc.n=
5.38
12.26
cfs
L =1
5.00
5.00
feet
T-I
16.8
39.1Ift.-T-Croom
4aowx=
0.0
3.8inches
MINOR
MAJOR
Q. =
5.4
12.7
Cfs
sours.=
0.7
3.1
Ca
UD-Inlet_V3.14 - B1.xlsm, Inlet In Sump 7123/2014, 5:30 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET
OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD
Project Tlmbervine
Inlet ID: Inlet
Stow Oalei6
ROADWAY CENTERUNIE
asgn IT eUNTI'TITIDU unr5ugn offer rnes- M1FK
Worksheet Protected
(bctl peekfbwfor 12 of street OR gre aed cnarrap:-un,o.n-1 U.J I.J
r values in Row 14. skip the rest of this sheet and proceed to sheet O-Allow or Area Inlet
cis
FILL IN THIS SECTION
OR_
(Lner cam in M ol.o cemy
FILL IN THE
Subcatctrnert Am
SECTIONS BELOW.
Percefa lmpervbxaress=
%
See Type! FlosDeKbpW Fv: - NRCS Soil Type =
A, B. C, or
O 5Re fr Uean O street Inners Sio fr/fl Le th ff
O 9te a NonUrban O Arm Nets in a Medan Overlard Flow =
Channel Fbw=
viinor=rrn mapr blo rm
ueagn amrm Kea= rang, Ir=
years
neaan renoo ure-notr ereppltauon, r, =
lrt=
indos
yx=
y=
User-De0rcd Slam Ruoff Coeffident (leave this blank to accept a cabAated ,ake), C =
user-venneo o-yr. rtuon t.oeruum knave ms o41rw To awxpt a racxsavea vaael. _y =
Bypass (Carry -Over) Fkm from upstream Subcatchments, De -
cis
Total Design Peak Flow, O - 0.3 1.3
cis
UD4nlet_v3.14 - B2.)dsm, O-Peak 7/2312014, 5:31 PM
' Project:
Inlet ID:
11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11
M'15f,
T,Ty Tyy Tx-wQyTSt
um Allowable Width for Spread Behind Curb
TeA« =
11.0
ft
lope Behind Curb (leave blank for no conveyance credit behind curb)
«=
0.020
Wit
ig s Roughness Behind Curb (typically between 0.012 and 0.020)
nen« =
0.018
of Curb at Gutter Flow Line
Hcun =
6.00
inches
ce from Curb Face to Street Crown
Tcaowe =
25.0
1t
Width
W =
2.00
ft
Transverse Slope
Sx =
0.023
Wit
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)
Sw =
0.083
Wit
Longitudinal Slope - Enter 0 for sump condition
So =
0,000
ft/ft
ig's Roughness for Street Section (typically between 0.012 and 0.020)
nSTREET =
0.016
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
Flow Depth at Street Crown (leave blank for no)
er Depth without Gutter Depression (Eq. ST-2)
ical Depth between Gutter Lip and Gutter Flowline (usually 2-)
er Depression (dc - (W ' S,' 12))
ar Depth at Gutter Flowline
vable Spread for Discharge outside the Gutter Section W (T - W)
er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
harge outside the Gutter Sedan W, camied in Section Tx
harge within the Gutter Section W (Or - Qx)
harge Behind the Curb (e.g., sidewalk, driveways, & lawns)
imum Flow Based On Allowable Spread
Velocity within the Gutter Sedan
Product: Flow Velocity times Gutter Flowline Depth
oretical Water Spread
oreticaf Spread for Discharge outside the Gutter Section W (T - W)
er Flow, to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
oretical Discharge outside the Gutter Section W, carried in Section Tx TH
at Discharge outside the Gutter Section W. (limited by distance TCROWN)
:harge within the Gutter Section W (Od - Qx)
:harge Behind the Curb (e.g., sidewalk, driveways, & lawns)
it Discharge for Major & Minor Storm (Pre -Safety Factor)
rage Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
ie-Based Depth Safety Reduction Factor for Major & Minor (d a 6") Storm
: Flow Based on Allowable Depth (Safety Factor Applied)
ultant Flow Depth at Gutter Flowline (Safety Factor Applied)
ultanl Flow Depth at Street Crown (Safety Factor Applied)
Minor Storm Major Storm
Tmm = 25.0 25.0 ft
dmm = 6.0 12.0 inches
0 G1 check = yes
y=
do =
a=
it
Tx
Eo =
Qx
Qw =
QBACx =
Or
V=
V'd =
Tr„ =
Tx rH =
Eo =
Qx TH =
Qx =
Qw =
Qakc =
Q=
V=
V-d =
R=
Qd =
d=
dCROWN =
6.75
6.75
2.0
2.0
1.45
1.45
8.20
8.20
23.0
23.0
0.230
0.230
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
0.0
0.0
0.0
0.0
Minor Storm Major Storm
16.8
39.1
14.8
37.1
0.344
0.144
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
V
inches
inches
inches
inches
ft
cfs
cfs
its
cfs
fps
cfs
cfs
cfs
cfs
cfs
fps
cfs
inches
Inches
t STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm
t STORM Allowable Allowable Capacity based on Depth Criterion on Depth Criterion Q., . = SUMP I SUMP Jcfs
storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak'
' UD-Inlet_0.14 - B2.xlsm, Q-Allow 7/23/2014, 5:31 PM
o INLET IN A SUMP OR SAG LOCATION
Project = Timbervine
Inlet ID = Inlet 82
fi-Lo (C)-,F
H-Curb HNen
Wo
W WP
Lo (G)
Depression (additional to continuous gutter depression'a' fmm'O-Allow')
en of Unit Inlets (Grate or Curb Opening)
a Information
in of a Unit Grate
h of a Unit Grate
Opening Ratio for a Grata (typical values 0.15-0.90)
girg Factor for a Single Grate (typical value 0.50 - 0.70)
-Weir Coefficient (typical value 2.15 - 3.60) .
3 Orifice Coefficient (typical value 0.60- 0.80)
I Opening Information
In of a Unit Curs Opening
ht of vertical Curb opening In Inches
hl of Curb Orifice Throat in Inches
3 Of Throat (see USDCM Figure ST-5)
Width for Depression Pan (typically the gutter width of 2 feet)
ging Favor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 2.3-3.7)
Opening Orifice Coefficient (typical value 0.60 - 0.70)
rig Coefficient for Multiple Units
rig Factor for Multiple Units
Capacity as a Weir (based on UDFCD - CSU 2010 Study)
plan without Clogging
ption with Clogging
Capacity as a Orifice (based on UDFCD - CSU 2010 Study)
�ptionwiOuut Clogging
ption with Cogging
Capacity as Mixed Flaw
lition without Cloggelg
ption with Clogging
:Ina Grate Capacity (assumes clog led condition)
ling Coefficient for Multiple Units
Virg Factor for Multiple Units
Opening as a Weir (based on UDFCD - CSU 2010 Study)
eption without Clogging
eption with Clogging
Opening as an Orifice (based on UDFCD - CSU 2010 Study)
eption without Clogging
eption with Clogging
Opening Capacity as Mixed Flow
eption without Cloggi g
eption with Clogging
let Length
rot Street Flow Spread (based on sheet O-ARow, geometry)
int Flow Depth at Street Crown
Inlet Interception Capacity (assumes clogged condition)
3pacity, IS GOOD for Minor and Major Stems (>O PEAK)
Irdel Type
No
Polling Depth
L. (G).
We
A.
C,(G)
C. (G)
C.(G).
L. C)
MINOR MAJOR
CDOT Type R Cub Opn
3.00
0ig
3
1
6.0
1 12.0
N/A
NIA
N/A
NIA
WA
NIA
NIA
NIA
N/A
NIA
NIA
NIA
ndles
rwhe^
W Ovemd, Depths
eel
set
A.n=
6.D0
&W inc
Hmm =
6,00 inc
6.00
63.40
63.40 de(
Theta=
Wn=
2.00
2.00 fee
C,(C)=
0.10
0.10
C.(C)=
3,60
3,60
C.(C)=
0.67
0.67
MINOR MAJOR
Cost = N/A N/A ,
Clog = N/A N/A
MINOR MAJOR
0,. = N/A N/A cis
0"= WA WA cis
MINOR MAJOR
- Od = WA WA cis
Oa = N/A N/A pfe
MINOR MAJOR
Ow = N/A N/A
.0- = N/A NIAIds
cisNIA
NIAcfs
MINOR MAJOR
Coef =1 1.00 1.00
Clog =1 0.10 0.10
MINOR MAJOR
0.-1 �5.96 23.56 cfs
0„ =1 5.38 1 21.22 Ids
MINOR MAJOR
= 9.75 13.62 lcfs
Do. = 6.76 12.26 Ide
MINOR MAJOR
O'"= 7.70 16.67
= 6.39 15.00Ica:
5.38 12.26ch
-=1
5.00
1 5.00
feel
T-1
16.6
1 39.1
ft>T-Cmwn
a..=
0.0
3.6
inches
MINOR
MAJOR
Q. =
5.4
12.3
cis
O vcwanfiaiwro=
0.3
1.3
efs
UD-Inlet_v3.14 - B2.xlsm, Inlet In Sump
712312014, 5:31 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET
OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD - -
Project TlmbeMne Inlet ID:__ Inlet 3-
� '� snow Demi�
ROADWAY CENTERLINE
esgn 1-10iW: UNLY 41 aveaay Ueawnlrea uvuLgn0 me iror 6nm t
(1ocalpakfbwfor1lofs1reet0R areeslinaecira wik -uano.n= -T
10
Sibwtcisnert Area=�Acres
Peicert lmpenvblsness=
%
%
Sae Type:
Fews Develo xo W: NRCS Soil Type =
A, B, C, or D
O Sae Is urtm
O som lam
Sloftlft Le th ft
O 4re is Non -urban
O kea [rae6 in a Ne&an
Overland Flow =
Channel Flow =
Uaagn ow) neum re)ea, I
years
neam rarou yr Mw rreapnau0n rr=
ter=
Ides
'1=
User-Defued Storm Riskin Coefficient (leave this blank t0 accept a wkWated veke), C =
usartianreu 0-yr. nuon wernm leave ns mm o accept a cac eo vane),1 5 =
Bypass (Carry -Over) Flow from upstream Subcatchments, Ds -
cis
Total Design Peak Flow, O = 7.0 6.3 cis
O
Worksheet Protected
IN THIS SECTION
IN THE
TONS BELOW.
UD4nlet_v3.14-S03-1.)dsm, O-Peak 7/23/2014, 5:33 PM
Project:
Inlet ID:
11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storrn) . 11
ad
rW�� r. S%
mum Allowable Width for Spread Behind Curb
Slope Behind Curb (leave blank for no conveyance credit behind curb)
ring's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Lino
:e from Curb Face to Street Crown
Width
Transverse Slope
Goss Slope (typically 2 inches over 24 inches or 0.083 ft/ft)
Longitudinal Slope - Enter 0 for sump condition
g's Roughness for Street Section (typically between 0.012 and 0.020)
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter FloW ine for Minor & Major Storm
Flow Depth at Street Crown (leave blank for no)
' Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowlim, (usually 2")
Gutter Depression (dc - (W " S, - 12))
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section Tx
Discharge within the Gutter Section W (Or - Qx)
Discharge Behind the Curb (e.g.. sidewalk, driveways, &lawns)
' Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V'd Product: Flow Velocity times Gutter Flowline Depth
Tenn = 11.0 fl
Seacx = 0.020 R/
r§ncu = 0.018
fl
HcuRs =
6.00
inches
TCROWN=
25.0
ft
W =
2.00
ft
Sx =
0.023
Wit
SW =
0.083
Wit
So =
0.000
ff/ft
nsr er =1 0.018
Minor Storm Major Storm
Tunx = 25.0 25.0 it
dunx = 6.0 12.0 inches
E) 0 check = yes
y=
do =
a=
d=
Tx =
E. =
Qx =
QW =
Qmn =
Or=
V=
V'd =
maximum l a acm for IIL afreef oases on wnowaore ueprn
'
Theoretical Water Spread TrH -
-
Theoretical Spread for Discharge outside the Gutter Section W (T - W) Tx rH =
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo =
'
Theoretical Discharge outside the Gutter Section W, carried in Section Tx rH Qx TH =
Actual Discharge outside the Gutter Section W. (limited by distance TCROWN) % =
'
Discharge within the Gutter Section W (Q, - Qx) OW =
Discharge Behind the Curb (e.g.. sidewalk, driveways, & lawns) Qsncx =
Total Discharge for Major & Minor Storm (Pre -Safety Factor) O =
Average Flow Velocity Within the Gutter Section V =
'
V"d Product: Flow Velocity Times Gutter Flowline Depth V"d =
Slope -Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm R =
Max Flow Based on Allowable Depth (Safety Factor Applied) Qe =
.
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d =
Resultant Flow Depth at Street Crown (Safety Factor Applied) . dcROWN =
Minor
6.75
6.75
2.0
2.0
1.45
1.45
8.20
8.20
23.0
23.0
0.230
0.230
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
0.0
0.0
0.0
OA
Minor Storm Major Storm
16.8
39.1
14.8
37.1
0.344
0.144
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
SUMP
SUMP
inches
inches
inches
inches
ft
cfs
cfs
cfs
cfs,
fps
cfs
cfs
cfs
cfs
cis
fps
cfs
inches
inches
i STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm
R STORM Allowable Capacity is based on Depth Criterion Q,s,,, = SUMP I SUMP cfs
storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak'
U6lnlet_v3.14 - S03-1.xism, 0-Allow 7/23/2014, 5:33 PM
INLET IN A SUMP OR SAG LOCATION
Project= Tlmbervine
Inlet ID = Inlet 5O3.1
.rLo (C)-
H-Curb
H-Vert
Wo
WP
W
Lo (G)
Depression (additional in continumss gutter depression's' from'O-Allow')
oerof Unit Inlets (Grate or Curb Opening)
f Depth at Flowtoe (outside of local depression)
t Information
th of a Unit Grate
1 of a Unit Grate
Opening Ratio for a Grate (typical values 0.15 0.90)
jing Factor for a Single Grate (typical value 0.50 - 0.70)
I Weir Coefficient (typical value 2.15- 3.60)
I Orifice Coefficient (typical value O.60 - 0.80)
Opening Information
th of a Unit Curb Opening
it of Vertical Cum Opening In Inches
it of Curb Orifce Throat in Inches
I of Throat (sea USDCM Figure ST-5)
Width for Depression Pan (typically the gutter width of 2 feet)
ping Factor for a Single Curb Opening (typical value 0.10)
Opening Web Coefficient (typical value 2.3.3.7)
Opening Onfice Coefficient (typical value 0.60 - 0.70)
I Flow Analysis (Calculated)
ling Coefficient for Multple Units
ling Factor for Multiple Units
I Capacity as a Weir (based on UDFCD -Call 2010 Study)
Capacity as a Orifices (based on UDFCD - CSU 2010 Study)
Capacity as Mixed Flow -
spoon without Clogging
eption with Clogging
ting Grate Capacity (assumes clogged condition)
Opening Flow Analysis iCaiculatedl
irlg Ccefficer t for Multiple Units
ing Facor for Multiple Units
Opening as a Weir (based on UDFCD - CSU 2010 Study)
splion without Clogging
,piton with Clogging
Opening as an Odflpe (based on UDFCD - CSU 2010 Study)
.pbon without Clogging
sption with Clogging
Opening Capacity as Mixed Flow
.pbon wi0qul Clogging
.ption with Clogging
Inlet Length
tans Sheet Flow Spread (based on Sheet O-A/bw geometry)
tent Flow Depth at Steel Crown
I Inlet Interception Capacity (assumes clogged condition)
�apacity IS G00D for Minor and Major Storms (>O PEAK)
Inlet Type
ai,
No
Ponding Depth
L.(G)
W.
A.
CI(G)
C. (G)
Co(G)
L.(C)
H,.n
Theta
Wo
MINOR MAJOR
CDOT Type R Curt Opening
3.00
3.00
1
1
6.0
12.0
N/A
NIA
N/A
NIA
N/A
N/A
N/A
WA
N/A
NIA
N/A
NIA
MINOR MAJOR
5.00 •••••5.00
6.00 6.00
6.00 6.00
1 0.10 1 0.10 1
vim
l aes
C7+ override Depths
set
set
Goof
Clog =
Q.-IQ.-I
�=
N/A
N/A
N/A
N/A
MINOR MAJOR
N/A
N/A cis
N/A
WAS cis
Oa =
Os =
MINOR MAJOR
N/A
N/A cis
N/A
N/A cfs
MINOR MAJOR
OM=
Om'=
N/A
N/A cfs
N/Ajd)G..=
N/Acfs
N/A
N/A
MINOR MAJOR
Coef = 1.00 1.00
Clog = 0.10 0.10
MINOR MAJOR
Or =1 5.98 23.50 cis
0+= 5.38 21.22 cis
MINOR MAJOR
Oa = 9.75 13.62 cis
Q. =1 818 1 12.26 1cfq
MINOR MAJOR
O.r =
4. =
k.n =
7.10
16.67 cis
15.00 cis
12.26 c(s
6.39
5.38
eurunn
ue Ina
L=1
5.00 1
5.00
T=
16.8
39.1�171T-Cmwn
doaown=
0.0
3.8Inches
.
MINOR
MAJOR
Qa =
5.4
12.3
C1s
O vrucraeueeo=1
1.0
4.3
Icfa
UD-Inlet_V3.14-SO3-1.xlsm, Inlet In Sump
7/2312014. 5:33 PM
DESIGN PEAK FLOW FOR ONE-HALF OF STREET
OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD
Project Tlmbervine
Inlet ID: Inlet
Stew Devils
RDADWAY CENTERLIKE — —
gn it already determinedug olrerme in
Worksheet Protected
(l Nixiekfbwfor Vto/saeet OR grainHiredciennaD: -unnown-�tfs
' If yoti enter values in Row 14. skip the rest of this sheet and proceed to sheet O-Allow or Area Inlet.
FILL IN THIS SECTION
OR...
ograP in tre okiia oasX
FILL IN THE
StbImpe nen
Aoes
SECTIONS BELOW.
ness; z
Pamera lmpervbuaress=
%
—
Site Type: Flown Dedo W R,r: NRCS Soil Type =
A, B. C, or D
O Sne Is Urlun . O Street tNels Sb fUR Lergthn
O Slte n lbn Urtran O Nm [Nets In a lil n Ovadand Fbw=
Charnel Flow =
7minorbuirm Major buirm
uesgn emrm menm renou. I r = years
nenm eerwo ure-nolr rreopitawn, rI =
ter=
inches
V]
VJ=
User -Defined Sturm Runes Coefficient (leave this blare to accept a cakalated vakA), C =
usertienneo yyr. rstron wemwern leave ms warn m accept a celozarep vase). us =
Bypass (Carry -Over) Flow from upstream Subcatchmams, Ds=
cis
,
Total Design Peak Flow, O = 1.0
0.3 cfs
a
UD4nlet_v3.14 - S03-2.)dsm, C-Peak 7123/2014, 5:33 PM
III
11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storrs) 11
Project: Timbervine
Inlet ID: Inlet S03-2
'r- TT a` , _....____.- T �
Sef� T. T gg
W-* Tx C
treat
anA.,
Clw Qx _
num Allowable Width for Spread Behind Curb
TmA =
11.0 Ift
Slope Behind Curb (leave blank for no conveyance credit behind curb)
%Acn =1
0.020
ft/ft
ring's Roughness Behind Curb (typically between 0.012 and 0.020)
ntm« =
0 lil
it of Curb at Gutter Flow Line
Hcum =
6.00
inches
nce from Curb Face to Street Crown
Tcaow- =
25.0
it
it Width
W =
2.00
it
I Transverse Slope
Sx =
0.023
Nft
v Cross Slope (typically 2 inches over 24 inches or 0.083 Nit)
Sw =
0.083
f 1ft
t Longitudinal Slope - Enter 0 for sump condition
So =
0.000
ft/ft
ring's Roughness for Street Section (typically between 0.012 and 0.020)
nsTMET =
0.016
Minor Storm
Major Storm
Allowable Spread for Minor & Major Storm
Tmm =
25.0
25.0
ft
-
Allowable Depth at Gutter Flowline for Minor & Major Storm
dm" =
6.0
12.0
inches
Flow Depth at Street Crown (leave blank for no)
0
0check = yes
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowlins (usually 2")
Gutter Depression (dc - (W " S, " 12))
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section Tx
Discharge within the Gutter Section W (QT - Qx)
Discharge Behind the Curb (e.g., sidewalk, driveways, &lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V'd Product: Flow Velocity times Gutter Flowline Depth
y=
do =
a=
d=
Tx =
E. =
Q. =
OW =
ABACK =
Or=
V=
V'd =
oretical Water Spread
TTK =
Dretical Spread for Discharge outside the Gutter Section W (T - W)
Tx TK =
er Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Eo =
oretical Discharge outside the Gutter Section W, carried in Section Tx TN
Qx TH =
of Discharge outside the Gutter Section W, (limited by distance TcaowN)
Qx -
:harge within the Gutter Section W (Qd - Qx)
QW =
:harge Behind the Curb (e.g.. sidewalk, driveways, & lawns)
QBACK =
it Discharge for Major & Minor Storm (Pre -Safety Factor)
Q =
rage Flow Velocity Within the Gutter Section
V =
Product: Flow Velocity Times Gutter Flowline Depth
V•d =
e-Based Depth Safety Reduction Factor for Major & Minor (d a 6") Storm
R =
: Flow Based on Allowable Depth (Safety Factor Applied)
Oa =
ultant Flow Depth at Gutter RoMine (Safety Factor Applied) -
d -
ultant Flow Depth at Street Crown (Safety Factor Applied)
dCRoWN =
6.75
6.75
2.0
2.0
1.45
1.45
8.20
8.20
23.0
23.0
0.230
0.230
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
0.0
0.0
0.0
0.0
Minor Storm Major Storm
16.8
39.1
14.8
37.1
0.344
0.144
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
SUMP
SUMP
SUMP
SUMP
inches
inches
inches
inches
ft
CIS
cis
CIS
cfs
fps
cis
CIS
CIS
cfs
cis
fps
cfs
inches
inches
I STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm
R STORM Allowable Capacity is based on Depth Criterion O,ib„ = SUMP I SUMP Jcfs
storm max. allowable capacity GOOD - greater than flow given on sheet'Q-Peak'
storm max. allowable caoacity GOOD - areater than flow given on shaet'O-Peak'
LID-Inlet_v3.14 - S03-2.xlsm, Q-Allow 7/23/2014, 5:33 PM
INLET IN A SUMP OR SAG LOCATION
Project = Timbervine
Inlet ID = Inlet SO3.2
,�--Lo (C)--X
H-Curb H-Vert
Wo
W
WP
Lo (G)
Design Information In -
MINOR
MAJOR
Type of Inlet
Inlet Type =1
CDOT Type R Curb Opening
Leal Depression (additional tocontinuous gutter depression'a' from'O-Allow')
shod =
3.00
3.00
Inches
Number of Unit Inlets (Grate or Curb Opening)
No =1
1
1 1
dinam
Water Depth at Flowline (outside of local depress on)
Punning Depth =
6.0
12.0
Grate Information
MINOR
MAJOR
uelans
Length of a Unit Grate
L. (G) =
N/A
N:A
feet
Width of a Unit Grate
Wo=
N/A
WA
feet
rea Opening Ratio for a Grate (typical values 0.15-0.90)
Meo =
NIA
N/A
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Cr(G)=
N/A
WA
Grate Weir Coefficient (typical value 2.15-3.60)
C.(G)=
N/A
WA
Grate Orifice Coefficient(typical value 0.60-0.80)
Co (G)
N/A
N/A
Curb Opening Information
MINOR
MAJOR
Length of a Unit Curb Opening
Lo(C)=
5.00
5,00
feet
Height of Vertical Curb Opening in Inches
H,..=
6.00
6.00
inches
Height of Curb Critics Threat in Inches
H...,h =
6.00
6,00
inches
Angle of Threat (see USDCM Figure ST-5)
Theta =
63.40
6,340
degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)
W. =
2.00
2.00
feet
Clogging Factor for a Single Curb Opening(typical value 0.10)
Cr(C)=
0.10
0.10
Curb Opening Weir Coefficient (local value 2.3-3.7)
C.(C)=
3.60
3.60
Curb Opening Orifice Coefficient (typical value 0.60-0.70)
C.(C)=
0.67
0.67
Grate Flow Analysis lCalculatedl
MINOR
MAJOR
Clogging Coefficient for Multiple Units
Cost =
N/A
NIA
Clogging Factor for Multiple Units
Clog =1
NIA
I NIA
Grate Capacity as a Weir (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
Interception without Clogging
(), =1
N/A
NIA
cfs
Interception with Clogging
Q- =I
N/A
NIA
cfs
Grate Capacity as a Ort6ce (based on UDFCD- CSU 2010 Study)
MINOR
MAJOR
Interception without Clogging
Oa=
N/A
N/A
cis
Interception with Clogging
Oa=
NIA
NIA
cis
Grate Capacity as Mixed Flow
MINOR
MAJOR
Interceptionwithcu Clogging
OM=
NIA
NIA
cfs
Interception with Clogging
Q,.=
N/A
N/A
cis
Resulting Grate Capacity (assumes clogged condtion)
Oe„e, -1
NIA
I N/A
lcfs
Curb Opening Flow Analysis lCalculated
MINOR
MAJOR
Clogging Coefficient for Multiple Units
cost =1
1.00
1.00
Clogging Factor for Multiple Units
Clog =1
0.10
0./0
Curb Opening as a Weir (based on UDFCD -CSU 2010 Study)
MINOR
MAJOR
Interception without Clogging
0. =1
5.98
23.58
cfs
Interception with Clogging '
Q- =I
5.30
21.22
cfs
Curb Opening as an Origu (based on UDFCD- CSU 2010 Study)
MINOR
MAJOR
Interception without Clogging
On =
9.75
13.62
cfs
Interception with Clogging
Q. =1
8.78
12.26
cis
Curb Opening Capacity as Mbred Flow
MINOR
MAJOR
Interception without Clogging
0.-1
7.10
16.67
cfs
Interception with Clogging
Q,. =
6.39
15.00
cis
Inlet Length
tant Street Flow Spread (based on sheet O-Allow geometry)
Cant Flow Depth at Street Crown
I Inlet Interception Capacity (assumes clogged condition)
0apacity IS GOOD for Minor and Major Storms (>O PEAK)
L =
500
5.00
t
T=
16.8
39.7�:L--Crown
dch N=
0.0
3.8Inches
MINOR
MAJOR
Q. =
5.4
12.3
cfs
Ore„h MO.MD 21
1.0
4.3
cfs
1 UD-Inlet_0.14-S03-2.xlsm, Inlet in Sump
712312014. 5:33 PM
Appendix D
(Water Quality and Detention Pond Calculations),
G a o w a
OF Planning. Architecture. Engineering.
A-111-
Galloway Job Name: Timbervine
G O YY `w, a 3760 E. 15th Street, Suite 202 Job Number: SPHLV0001.01
Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014
Ph: (970) 800-3300 By: J. Prelog
Permeable Pavement Calculations
Total Alley Area
Total Required Permeable Area
Total Parking Area
Pan
(1500 ft(4ft) + additional flow areas)
Total Permeable Area Provided
Additional Area Provided
31,472
sq. ft.
7,868
sq.ft.-
898
sq. ft.
7,052
sq. ft.
7,951
sq. ft.
83
sq. ft.
Design Procedure Form: Extended Detention Basin (EDB)
Sheet 1 of 4
Designer: J. Prelog .
Company: Galloway
Date: July 23, 2014
Project: Tlmbervine -
Location: Fort Collins, CO
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area. I,
6 = 43.7 %
B) Tributary Area's Imperviousness Ratio (i = I,/ 100)
10.437
C) Contributing Watershed Area
Area = 39.195 as ,
D) For Watersheds Outside of the Denver Region, Depth of Average
ds = in
Runoff Producing Storm
Choose One
E) Design Concept
(Select EURV when also designing for flood control)
® Water Quality Capture Volume (wQCV) 1
O Excess Urban Runoff Volume (EURV)
F) Design Volume (1.2 WOCV) Based on 40-hour Drain Time
VOEsaN= 0.743 : ac-ft
(Vms1o,,=(1.0"(0.91 -i .1.19"i +0.78"1)/ 12"Area' 1.2)
G) For Watersheds Outside of the Denver Region,
Vxsionorr, n= J . ac-ft
Water Quality Capture Volume (WQCV) Design Volume
-
(V Wacv orNEB = (de1VE Evon/0.43))
H) User Input of Water Quality Capture Volume (WOCV) Design Volume
VOEsioN USER= ac-ft ,
(Only if a different WQCV Design Volume is desired)
Choose One
1) Predominant Watershed NRCS Soil Group
O A
O B
O C/D
J) Excess Urban Runoff: Volume (EURV) Design Volume
For HSG A: EURVA = (0.1878i - 0.0104)'Area
_ __ _
EURV = �� i acf t
For HSG BEURV, = (0. 11781 - 0.0042)-Area
For HSG GU: EUHVoc = (0.1U431 .O.0031)'Area
t
2. Basin Shape: Length to Width Ratio
L : W = 4.0 : 1
(A basin length to width ratio of at least 2:1 will improve TSS reduction.)
-
3. Basin Side Slopes
A) Basin Maximum Side Slopes
Z = 4.00 ft / ft
(Horizontal distance per unit vertical, 4:1 or flatter preferred)
4. Inlet
Riprap will be placed at all concentrated inflow locations.
A) Describe means of providing energy dissipation at concentrated
inflow locations: -
UD-BMP_v3.03.xlsm, EDB 7/23/2014, 5:56 PM
Design Procedure Form: Extended Detention Basin (EDB)
- Sheet 2 of 4
Designer: J. Prelog
Company: Galloway
Date: July 23, 2014 - -
Project: Timbervine -
Location: Fort Collins, CO
orebay
A) Minim rebay Volume
VFWiN = 0.019 ac-ft
(VMN- % of the WQCV)
B) Actual Forebay Volume
VF = ac-ft
C) Forebay Depth
OF = in
, ..
(DF = 18 inch maximum)
D) Forebay Discharge
i) IMtletained 100-year Peak D'Ischarga
+w = cfs
ii) Forebay Discharge Design Flow
= , Cfs
(QF = 0.02' Q,.)
E) Forebay Discharge Design
Choose One
O Berm With Pipe (flow too small for berm wl pipe)
e
O Wall with Rect. Notch
cy
O Wall with V-Notch War
F) Discha a Size (minimum flinches)
Calculated OF
G) Rectangular Notch Width
Calculated WN = ""-"—'-—� in
Une PROVIDE A CONSISTENT LONGITUDINAL
6. Trickle Channel
O Concrete SLOPE FROM FOREBAY TO MICROPOOL
WITH NO MEANDERING. RIPRAP AND
A) Type of Trickle Channel
® SCR Bettpm SOIL RIPRAP LINED CHANNELS ARE
i.
'`•
-- NOT RECOMMENDED.
MINIMUM DEPTH OF 1.5 FEET
F) Slope of Trickle Channel
S = 0.0025 ft/ ft
7. MiaoPoo re
A) Depth a( Micmpool (2.Sfeet minimum)
DO = ft
`Y
B) Surface Area of Micmcool if oft' minim
e
Choose One
IIr® Orifice Plate
O Other (Describe);
D) Depth of Design Volume (EURV or 1.2 WOCV) Based on the Design
H = 2.10 feet
Concept Chosen Under I.E.
E) Volume to Drain Over Prescribed Time
WQCV =`- v(Y879 _7 ac-ft
F) Drain Time
To 40 hours
(Min To for WQOV= 40 hours; Max To for EURV= 72 hours)
G) Recommended Maximum Outlet Area per Row, (A,)
i square inches
H) Orifice Dimensions:
i) Circular Orifice Diameter or
__
Dam.. _ 1 -1 % 2_ � inches
ii) Width of 2' High Rectangular Onfice
Yvad'' _; .. J inches '
I) Number of Columns
ne=,--'1 -!number
J) Actual Design Outlet Area per Row (Aa)
Po = ,. tt:77 ;square inches
"
_
K) Number of Rows (m)
n, i number
m.
L) Total Outlet Area(A,)
Aa 11.1 square inches
-
M )) Depth of WQCV (HQ,,)
Hwocv = feet
(Estimate using actual stagearea-volume relationship and Vwncv)
N) Ensure Minimum 40 Hour Drain Time for WQCV
fowocv =� hours
AIM
UD-BMP_v3.03.xlsm, EDB 7/23/2014, 5:56 PM
Design Procedure Form: Extended,Detention Basin (EDB)
Sheet
Designer. J. Prelog
Company: Galloway
Date: July 23, 2014
Project: Timbervine "
Location: Fort Collins, CO
8. Initial Surcharge Volume
-
A) Depth of Initial Surcharge Volume
Ds = 4.0 in '
(Minimum recommended depth is 4 inches)
B) Minimum Initial Surcharge Volume
Via=��-80.9 cut ft
(Mnimum volume of 0.3%of the WQCV)
_
RR BEIRFASE AREA OF M4GRQPQQ
f
Choose One
9. Trash Rack
Ili
O Circular (up to 1 1/4" diameter)
A) Type of Water Quality Orifte Used
I ® OraWr (greater than 1-1/4" diameter) OR Rtttangular (2" high)
't.
B) Water Quality Screen Open Area: A, = Act38.5'(e-0
A, = 372 7 square inches
`
C) For 1-1/4-", or Smaller, Circular Opening (See Fact Sheet T-12):
f Width of Water Quality Screen and Concrete Opening(WY,,,,,,,)
"inch=a
"
ii) Height of Water Quality Screen (H,)
Hm = !inches
Choose One
iii) Type of Screen, Describe if "Other"
r O S.S. Well Screen with 60% Open Area"
y'
IL O Other(Describe):
#P?
D) For Circular Opening (greater than 1-1/4' diameter)
OR 2' High Rectangular Opening (See Fact Sheet T-12):
i) Width of Water Quality Screen Opening(W.)
W� l@
if) Height of Water Quality Screen(Hm)
Hm=: P"--- Iff
iii) Type of Screen, Describe If *Other
Choose One
,^'
O Aluminum Amin 10emp SR Series (ar equal
t
O Ofr (Desrnbe):
v) Crossbar Spacing
finches
vi) Mnimum Bearing Bar Size
a
UD-BMP_v3.03.xlsm, EDB 7/2312014, 5:56 PM
Design Procedure Form: Extended Detention Basin (EDB)
' Sheet 4 of 4
Designer: J. Prelog
Company: Galloway -
Date: July 23, 2014 - -
Project: Timber -vine
Location: Fort Collins, CO
10. Overflow Embankment
A) Describe embankment protection for 100-year and greater overtopping:
B) Slope of Overflow Embankment
(Horizontal distance per unit vertical, 4:1 or flatter preferred)
Ze - 4.00 ft / fl
11. vegetation
•
O Irrigated
IIIr O Not Irrigated
L �
12. Access
A) Describe Sediment Removal Procedures
Notes:
UD-BMP_v3.03.xlsm, EDB 7/23/2014, 5:56 PM
Ga1. OWa�/ Galloway Job Name: Timber01
■ ■ 3760 E: SSth Street, Suite 202 Job Number: SPHLV000.01
Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014
Ph: (970) 800-3300 By: J. Prelog
Timbervine
Detention Pond Volume Calculations: FAA Procedure
Based on FAA Procedure, per Federal Aviation Agency 'Airport Drainage" Manual
Drainage Basin A
Design Storm 10 year
Composite "C" Factor 0.29
Basin Size 24.73
Release Rate Calculations
Allowable Release Rate for Pond 8.70 cfs
Rainfall Intensity Calculations
Point Hour Rainfall (PI) : 1.40
Rainfall Intensity: FortCollinslDF
Volume Calculations
Inflow Volume = C ' I ' A' time (sec)
Outflow Volume = Alowable Release Rate ' time (sec)
Storage Volume = Invflow Volume - Outflow Volume
Detention Storage Calculations
Time
t
(min)
Time
t
(sec)
Intensity
I
(in/hr)
Inflow
Vin
(ft)
Outflow
Vout
(ft3)
Storage
Vstor
(ft)
5.0
300
4.87
10,628
2,610
8,018
10.0
600
3.78
16,499
5,220
11,279
15.0
900
3.19
20,886
7,830
13,056
20.0
1,200
2.86
24,996
10,440
14,556
25.0
1,500
2.54
27,681
13,050
14,631
30.0
1,800
2.21
28,939
15,660
13,279
35.0
2,100
2.08
31,741
18,270
13,471
40.0
2,400
1.94
.33,919
20,880
13,039
45.0
2,700
1.81
35,507
23,490
12,017
50.0
3,000
1.67
36,506
26,100
10,406
55.0
3,300
1.54
36,915
28,710
8,205
60.0
3,600
1.40
36,665
31,320
5,345
Maximum Volume (ft') 14,631
Fort Collins Only (120%) 2,926
Required 10-yr Volume 17,557 ft3
8214_Rational Calculations.xlsx FAA-10-yr (A) Page 1 of 10
G a 01 OWa�/ Galloway Job Name: Timbervine
■ ■ 3760 E. 15th Street, Suite 202 Job Number: SPHLV000.01
Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014
Ph: (970) 800-3300 By: J. Prelog
Timbervine
Detention Pond Volume Calculations: FAA Procedure
Based on FAA Procedure, per Federal Aviation Agency "Airport Drainage" Manual
Drainage Basin A
Design Storm 100 year
Composite "C" Factor 0.37
Basin Size 24.73
Release Rate Calculations
Allowable Release Rate for Pond 8.70 cfs
Rainfall Intensity Calculations
Point Hour Rainfall (Pt): 2.86
Rainfall Intensity: FortCollinslDF
Volume Calculations
Inflow Volume = C * I * A * time (sec)
Outflow Volume = Alowable Release Rate * time (sec)
Storage Volume = Invflow Volume - Outflow Volume
Detention Storage Calculations .
Time
t
(min)
Time
t
(sec)
Intensity
I
(in/hr)
Inflow
Vin
(ft3)
Outflow
Vout
(ft3)
Storage
Vstor
(ft3)
5.0
300
9.95
27,144
2,610
24,534
10.0
600
7.72
42,121
5,220
36,901
15.0
900
6.52
53,361
7,830
45,531
20.0
1,200
5.85
63,873
10,440
53,433
25.0
1,500
5.19
70,747
13,050
57,697
30.0
1,800
4.52
73,985
15,660
58,325
35.0
2,100
4.25
81,138
18,270
62,868
40.0
2,400
3.97
86,691
20,880
65,811
45.0
2,700
3.70
90,734
23,490
67,244
-50.0
3,000
3.42
93,268
26,100
67,168
55.0
3,300
3.14
94,293
28,710
65,583
60.0
3,600
2.86
93,626
31,320
62,306
Maximum Volume (ft') 67,244
Fort Collins Only (120%) 13,449
Required 100-yr Volume 80,693 ft3
8214_Rational Calculations.xlsx FAA-100-yr (A) Page 2 of 10
O N Galloway Job Name: Timbervine
G a : i oWay 3760 E. 15th Street, Suite 202 Job Number: SPHLV0001.01
Planning. Architecture. Engineering Loveland, CO80538 Date: 7/23/2014
Ph: (970) 800-3300 By: J. Prelog
POND VOLUME A CALCULATIONS - STAGE. / STORAGE
Pond Volume = Prismoidal Formula
Volume Equation = (AS+A2+SQRT(AS'A2)•D/3
StaoA / Ctnrnoe Inrud TnhIA
ELEVATION
It
DEPTH (D)
It
AREA (Al)
ftz
WEIGHTED
AVG AREA (A2)
ft'
INCREMENTAL
VOLUME
W
CUMMULATIVE
VOLUME
W
4927.8
75
0
4928.0
0.2
2,443
1,259
196
.196
4929.0
1.0
10,954
6,698
6,190
6,386
4930.0
1 1.0
29,977
20,465
19,684
26,070
4931.0
1.0
51,329
40,653
40,177
66,247
4932.0
1.0
64,936
58,132
57,999
124,246
4933.00
1.0
- 77,060
70,998
70,912
195,157
Top of Pond
4933.0 1 5.2 1 TOTALVOLUME1 195,157 cf 1 4.480 ac-ft
Volume Summary Tahle
Required
Volume (ft)
Required Volume
(ac-ft)
Water Surface
Elevation
Water Depth
WQCV
0.000 ac-ft
4927.80 ft
0.00 ft
V10
17,557 cf
0.403 ac-ft
4929.57 ft
1.77 ft
V100 + 100% WQCV
80,693 cf
1.852 ac-ft
4931.25 ft
3.45 ft
Volume Internnlatinn [alculatinnc
WQCV
V10 0%WQCV
V300 + 100%WQCV
Vol
Elev
Vol
Elev
Vol
Elev
0.00
4927.80
6386.07
4929.00
66246.52
4931.00
0.00
4927.80
17556.66
4929.57
80693.04
4931.25
196.39
4928.00
26069.62
4930.00
124245.68
4932.00
8214_Rational Calculations.xlsx Vol Pond A Page 3 of 10
a i i - Galloway Job Name: Timbervine
V i oway` 3760 E. 15th Street, Suite 202 Job Number:' SPHLV0001.01
Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014
Ph: (970) 800-3300 By: J. Prelog
STAGE VS. STORAGE
Water Quality Detention Pond
4934.0
4933.0
T
p of Pond
95,157 cf
4933.0
4932.0
z
0
H
V100 +10
%WQCV
80,6S
3 cf
J V)
4931.
5 ft
4931.0
W
W W
Q m
Ix H
:3 W
LL
4930.0
W
W V10 O%VYQCV.
17,557 c
4929.57
4929.0
4928.0
4927.0
0 50,000 100,000 150,000 200,000 260,000
POND VOLUME (CF)
8214_Rational Calculations.xlsx Vol Pond A Page 4 of 10
G a„OWa� Galloway Job Name: Timbervine
,. '3760 E. 15th Street, Suite 202 Job Number: SPHLV000.01
Planning. Architecture. Engineering. Loveland, CO 80538 j Date: 7/23/2014
Ph: (970) 800-3300 By: J. Prelog
Timbervine
Detention Pond Volume Calculations: FAA Procedure
Based on FAA Procedure, per Federal Aviation Agency "Airport Drainage" Manual
Drainage Basin B
Design Storm 10 year
Composite "C" Factor 0.31
Basin Size 14.47
Release Rate Calculations
Allowable Release Rate for Pond 7.84 cfs
Rainfall Intensity Calculations
Point Hour Rainfall (131) : 1.40
Rainfall Intensity: FortCollinslDF
Volume Calculations
Inflow Volume = C * I * A * time (sec)
Outflow Volume = Alowable Release Rate * time (sec)
Storage Volume = Inflow Volume - Outflow Volume
Detention Storage Calculations
Time
t
(min)
Time
t
(sec)
Intensity
.I
(in/hr)
Inflow
Vin
(ft3)
Outflow
Vout
(ft)
Storage
Vstor
(ft3)
5.0
300
4.87
6,527
2,352
4,175
10.0
600
3.78
10,133
4,704
5,429
15.0
900
3.19
12,826
7,056
5,770
20.0
1,200
2.86
15,351
9,408
5,943
25.0
1,500
2'.54
16,999
11,760
5,239
30.0
1,800
2.21
17,772
14,112
31660
2,100
2.08
19,493
16,464
3,029
2,400
1.94
20,830
18,816
2,014
2,700
1.81
21,805
21,168
637
M
3,000
1.67
22,419
23,520
-1,101
3,300
1.54
22,670
25,872
-3,202
3,600
1.40
22,517
28,224
-5,707
Maximum Volume (ft') 5,943
Fort Collins Only (120%) 1,189
100% WQCV 32,347 ft3
Required 10-yr Volume + 100% WQCV 39,478 ft3
u
8214_Rational Calculations.xlsx FAA-10-yr (B) Page 5 of 10
Gal'0w Galloway Job Name: Timbervine
■. 3760 E. 15th Street, Suite 202 ' � Job Number: SPHLV000.01
Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014
Ph: (970) 800-3300 By: J. Prelog
Timbervine
Detention Pond Volume Calculations: FAA Procedure
Based on FAA Procedure, per Federal Aviation Agency "Airport Drainage" Manual
Drainage Basin B
Design Storm 100 year
Composite "C" Factor 0.39
Basin Size 14.47
Release Rate Calculations
Allowable Release Rate for Pond 7.84 cfs
Rainfall Intensity Calculations
Point Hour Rainfall (Pt): 2.86
Rainfall Intensity: FortCollinslDF
Volume Calculations
Inflow Volume = C ' I ' A ' time (sec)+Vout (Pond A)
Outflow Volume = Alowable Release Rate' time (sec)
Storage Volume = Inflow Volume - Outflow Volume
Detention Storage Calculations
Time
t
(min)
Time-
t
(sec)
Intensity
I
(in/hr)
Inflow
Vin
(ft3)
Outflow
Vout
(ft)
Storage
Vstor
(ft3)
5.0
300
9.95
19,280
2,352
16,928
10.0
600
7.72
31,087
4,704
26,383
15.0
900
6.52
40,600
7,056
33,544
20.0
1,200
5.85
49,666
9,408
40,258
25.0
1,500
5.19
56,497
11,760
44,737
30.0
1,800 ,
4.52
61,095
14,112
46,983
35.0
1 2,100
4.25
68,098
16,464
51,634
40.0
2,400
3.97
74,119
18,816
55,303
45.0
2,700
3.70
79,212
21,168
58,044
50.0
3,000
3.42
83,378
23,520
59,858
55.0
3,300
3.14
86,617
25,872
60,745
60.0
3,600
2.86
88,818
28,224
60,594
Maximum Volume (W) 60,745
Fort Collins Only (120%) 12,149
100% WQCV 32,347 ft3
Required 100-yr Volume + 100% WQCV 105,241 ft3
8214_Rational Calculations.xlsx FAA-100-yr (B) Page 6 of 10
J
alfloi
Planning. Architecture. Engineering.
Galloway
3760 E. 15th Street, Suite,202
Loveland, CO 80538
Ph: (970) 800-3300
POND VOLUME B CALCULATIONS - STAGE / STORAGE
Pond Volume = Prismoidal Formula
Volume Equation= (Al+A2+SQRT(Al•A2)•D/3
Staee / Storaee Inout Table
Job Name:
Timbervine
Job Number:
SPHLV0001.01
Date:
7/23/2014
By:
J. Prelog
ELEVATION
ft
DEPTH (D)
ft
AREA (Al)
ftz
WEIGHTED
AVG AREA (A2)
ftZ
INCREMENTAL
VOLUME
W
CUMMULATIVE
VOLUME
W
4927.0
1,180
0
4928.0
1.0
17,363
9,272
7,690
7,690
4929.0
1.0
26,358
21,861
21,705
29,395
4930.0
1 1.0
33,304
29,831
29,764
59,158
4931.0
1.0
38,715
36,009
35,975
95,134
4932.0
1.0
44,055
41,385
41,356
136,490
4933.0
1.0
49,369
46,712
46,687
183,177
Top of Pond
4933.0 6.0 TOTAL VOLUME 183,277 cf 4.205 ac-ft
Volume Summary Table
Required
Volume (ft)
Required Volume
(ac-ft)
Water Surface
Elevation
Water Depth
WQCV
32,347 cf
0.743 ac-ft
4929.10 ft
2.10 ft
VSO + 100% WQCV
39,478 cf
0.906 ac-ft
4929.34 ft
2.34 ft
V100 + 100% WQCV
105,241 cf
2.416 ac-ft
4931.24 ft
4.24 ft
Volume Interpolation Calculations
WQCV
V30 + 100% WQCV
V100 + 100% WQCV
Vol
Elev
Vol
Elev
Vol
Elev
29394.56
4929.00
29394.56
4929.00
95133.52
4931.00
32347.01
4929.10
39478.21
4929.34
105241.13
4931.24
59158.10
4930.00
59158.10
4930.00
136489.70
4932.00
8214_Rational Calculations.xlsx Vol Pond B Page 7 of 10
G a silo waY
•oway
Planning. Architecture. Engineering.
Galloway
3760 E. 15th Street, Suite 202
Loveland, CO 80538
Ph: (970) 800-3300
Job Name: Timbervine
Job Number:. SPHLV0001.01
Date: 7/23/2014
By: J. Prelog
STAGE VS. STORAGE
Water Quality Detention Pond
4934.0
4933.0
Top of P
3nd
183,17
cf
4933.
4932.0
Z
00 +10
%WQC
p
105,2
1 cf
4931.0
Q
W N
J �
W W
W
Q m
4930.0
KH
aiLL V10
+1000/
WQCV
�-
39,478
f
QCV
H
4929.34
ft
2,347 cf
Q 4929.0
29.10 ft
4928.0
4927.0
4926.0
0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000
POND VOLUME (CF)
8214_Rational Calculations.xlsx Vol Pond B Page 8 of 10
Gal Owa Galloway Job Name: Timbervine
. � 3760 E. 15th Street, Suite 202 lob Number: SPHLV000.01
Planning. Architecture. Engineering. Loveland, CO 80538 Date: 7/23/2014
Ph: (970) 800-3300 By: Engineer
ORIFICE CALCULATION WORKSHEET
10 Yr Orifice Plate
Q=cA(2gH)".5
using Headwater above opening and
C= 0.65 QMiNOR allowable release rate= 7.84 cfs
Storm Select Orifice Type Rectangular Orifice
Water Surface Elev (minor) 4929.34 feet
WQCV Water Surface Elev 4929.10 feet
Water depth to Orifice invert: 0.24 feet
E
Enter Opening Height 3.00 inches
Multiple of Orifice Width 5
Circular orifice diameter:
Circular orifice: diameter 3.00 inches
diameter 0.25 feet
Rectangular orifice: opening height 3.00 inches
opening width 2.36 inches
Q = cA(2gH)^.5
Q (calculated release rate) = 0.09 cfs
c = 0.65
Area = 0.049 sf
RESULT FOR A: g(gravity) = 32.20 fUs^2
Rectangular Orifice H(head) = 0.11 ft
Height 3.0 inches
Width 11.8 inches Release Rate for orifice opening 0.43 cfs
8214_Rational Calculations.xlsx Minor Orifice Page 9 of 10
0 Galloway lob Name: Timbervine
G a OWa1 3760 E. 15th Street, Suite 202 Job Number: SPHLV0001.01
Loveland, CO 80538 Date: 7/23/2014
Planning. Architecture. Engineering. Ph: (970) 800-3300 By: J. Prelog
ORIFICE PLATE AT OUTLET PIPE WORKSHEET
Orifice Plate using Headwater above opening and
Q=cA(2gH)A.5 C= 0.65
Summary of Available Pioe Releases
Pipe Dia
Area
Head H
Q
Outfall
Pipe
at centroid
avail out
(in)
(sf)
(ft)
(cfs)
12
0.79
3.94
8.13
15
1.23
3.82
12.50
18
1.77
3.69
17.71
24
� 3:1'4 1
3:44'
30
4.91
3.19
45.74
36
7.07
2.94
63.24
Q=cA(2gH)A.5 C= 0.65
Iteration Process
Q
7.84 cfs
c
0.65
Hh�a
3.44 ft
Needed Area
0.81 s
Using Area- determine
Ao
0.81 sf
Apipe
3.14 sf
theta
3.9434 rad
Ao-calced
0.81 sf
QrenaoR allowable release rate: 7.84 cfs
100-yr Water Surface Elev:
4931.24
ft
Inv Elev at Outlet Struct:
4926.80
ft
Outlet Pipe at Structure:
24
in
D
To-
O O /
Ao = [Apoe(lr2;r -
9 + rsi B *rco 2)]
m -0.39 ft distance above(+) or below(-) center m=YCO e)
2
H 0.61 ft Height above pipe invert H= r+m
8214_Rational Calculations.xlsx Major Orifice I Page 10 of 10
'
Pond A Spillway
Project Description
Solve For
Discharge
'
Input Data
Headwater Elevation
4933.50
ft
Crest Elevation
4932.95
ft
' Tailwater Elevation
4932.95
ft
Weir Coefficient
3.00
US
Crest Length
40.00
ft
' Results
Discharge
48.95
fF/s
Headwater Height Above Crest
0.55
ft
Tailwater Height Above Crest
0.00
ft
Equal Side Slopes
0.25
ft/ft (H:V)
'
Flow Area
22.08
ft'
Velocity
2.22
ft/s
' Wetted Perimeter
41.13
ft
Top Width
40.28
ft
Bentley Systems, Inc. Haestad Methods Sol8tia"d-rltwMaster V81(SELECTseries 1), [08.11.01.03]
' 7/23/2014 5:16:18 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755-1666 Page 1 of 1
Pond B Spillway
Project Description
Solve For
Discharge
Input Data
Headwater Elevation
4933.50
ft
Crest Elevation
4932.95
ft
Tailwater Elevation
4932.95
ft
Weir Coefficient
3.00
US
Crest Length
40.00
ft
Results
Discharge
48.95
ft3/s
Headwater Height Above Crest
0.55
ft
Tailwater Height Above Crest
0.00
ft
Equal Side Slopes
0.25
ft/ft (H:V)-
Flow Area
22.08
ft'
Velocity
2.22
ft/s
Wetted Perimeter
41.13
It
Top Width
40.28
It
0
Bentley Systems, Inc. Haestad Methods So03tiotW bwMaster VSi (SELECTseries 1) [08.11.01.03]
' 7/23/2014 5:16:44 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1
u
G a i o w a
Planning. Architecture. Engineering.
Appendix E
(Riprap Calculations)
1 Determination of Culvert Headwater and Outlet Protection
Project: Timbervine
' Basin ID: Basin 3 Upsteam Culvert
i LP
Design Discharge
ular Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull -down list)
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull -down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Mannings number
Bend Loss Coefficient
Exit Loss Coefficient
Tailwater Surface Elevation
Tailwater Surface Height
Max Allowable Channel Velocity
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Tailwater Depth for Design
Adjusted Diameter OR Adjusted Rise
Expansion Factor
Flow/Diameter" OR Flow/(Rise'Span)o.s
TaitwaterlDiameter OR Tailwater/Rise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
HeadwaterlDiameter OR Headwater/Rise Ratio
Minimum Theoretical Riprap Sae
x Nominal Riprap Sae
UDFCD Riprap Type
Length of Protection
S4fiDM;e:
• Sandy
O Non -Sandy
O = 3.0E cis
D =
12 -
inches
Square End Projection
OR
Height(Rise)=
ft.
Width (Span) =
ft.
No=
1
Elev IN =
4936.49
ft
Elev OUT =
4936.41
ft
L=
20
ft
n =
0.012
kb =
0
k. =
1
Y`=
ft.
Yx =
0.40
ft
V =
5.00
ft/s
h =
0.61
ft`
A =
0.79
fe
k. =
0.20
kr =
0.53
k. =
1.73
ft
Yn =
0.65
ft
Y. =
0.75
ft
d =
0.87
ft
D. =
0.83
ft
1/(2'tar{O))=
3.52
O/Wl.5 =
3.06
ft, 5/s
Yt/D =
0.40
HW, =
1.29
ft
HWo=
1.44
ft
HW =
4,937.93
ft
HW/D=
1.44
dw =Pi
in
dw= in
TypeLe = ft
Determination of Culvert Headwater and Outlet Protection
Project: Timbervine,
Basin ID: Design Point 3 -
eat cwou= -
LP
n � o
Irk � tin
w
Design Discharge
ular Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull -down list)
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull -down list)
Number of Barrels
Inlet Elevation -
- Outlet Elevation OR Slope
Culvert Length
Mannings number
Bend Loss Coefficient
ExR Loss Coefficient
Tailwater Surface Elevation
Tailwater Surface Height .
1 Max Allowable Channel Velocity
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Tailwater Depth for Design
Adjusted Diameter OR Adjusted Rise
Expansion Factor
Flow/Diameter''5 OR Flow/(Rise'Spanp
Tailwater/Diameter OR Taihvater/Rise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
HeadwaterfDiameter OR Headwater/Rise Ratio
- Minimum Theoretical Riprap Size .
Nominal Riprap Size
UDFCD Riprap Type -
Length of Protection
�® sandy
O Non -Sandy
............... ........... :..........................- ............. ............ -
Q = 25.78 cfs
' D =
30
inches '-
Square End Projection
OR
Height (Rise) =l
ft.
Width (Span)
ft.
No=
1
Elev IN =
34.88
R
Elev OUT =
34.78
ft
L=
20
ft
n =
0.013
kb =
0
k. =
1
Yr -
ft
k. -1 1.38 Ift
Yn - 1.83 ft Y. 1.73 R
d = 2.12 ft
D, = 2.17 ft
1/(2'tan(0)) = 6.70
Q/D1.5= 6.52 - ft"/s
Yt/D = 0.40
HWi= 2.81 ft
HWo= 3.04 ft
HW= 37.92 ft
HW/D= 1.21
dso = 5 in
ds = 6 in
Type= VL
LP = 15 ft
1 '
1 Determination of Culvert Headwater and Outlet Protection
Project: Timbervine
1 Basin ID: Design Point 5
�x c�
1�� °
. I —
1 � _
S414c�11P8ne:
j� Sandy
O Non -Sandy
Design Discharge
ular Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull -down list)
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull -down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
-
Mannings number
Bend Loss Coefficient
Exit Loss Coefficient
Tailwater Surface Elevation
Tailwater Surface Height
Max Allowable Channel Velocity
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Tailwater Depth for Design
Adjusted Diameter OR Adjusted Rise
Expansion Factor
Flow/Diameter" OR Flowl(RiWSpan)o b
Tailwater/Diameter OR TailwatedRise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Minimum Theoretical Riprap Size -
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection
Q = 31.17 cfs
D =
30
inches
Square End Projection
OR
Height (Rise) =
ft.
Width (Span)=
ft.
No=
1
Elev IN =
32.78
ft
Elev OUT =
32.68
ft
L=
20
ft
n =
0.012
kb =
0
k, =
1
Yr
Yr= 1.00 ft
V = 7.00 fits
Ar = 4.45 ft
A = 4.91 fe
k. = 0.20
kr= 0.16
k. = 1.36 ft
Yn = 2.03 ft
Y. = 1.90 ft
d = 2.20 ft
D. = 2.26 ft
1/(2'tan(0)) = 6.70
QIVI.5= 7.89 ft"Is
Yt/D = 0.40
HWi = 3.32 ft
HWo= 3.58 ft
H W = 36.36 ft
HWID = 1.43
d,,= 7 in
d,,= 9 in
Type= L
Lp= 12 ft
' Determination of Culvert Headwater and Outlet Protection
Project: Timbervine
' Basin ID: $torrn A Outlet
Box comae
n F-1 o
Design Discharge
ular Culvert:
Bartel Diameter in Inches
Inlet Edge Type (Choose from pull -down list)
Culvert:
Barrel Height (Rise) in Feet
Bartel Width (Span) in Feet
Inlet Edge Type (Choose from pull -down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Mannings number
Berl Loss Coefficient
Exit Loss Coefficient
.Tailwater Surface Elevation
Tailwater Surface Height
Max Allowable Channel Velocity
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Tailwater Depth for Design
Adjusted Diameter OR Adjusted Rise
Expansion Factor
Flow/Diameter's OR Flow/(Rise'Span)as
Tallwater/Diameter OR Tadwater/Rise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
HeadwaterlDiameter OR Headwater/Rise Ratio
Minimum Theoretical Riprap Size
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection
_Stscupie:_
® Sandy /
O Non -Sandy
O = 11.12 cfs
D = 24 inches
Square End Projection
OR
Height (Riga)
ft.
Width (Span) = ft.
No=
Elev IN =
So =
L =
n =
ke =
k. =
Yi
1
ft
ft/ft
ft
4928.12
0.002
55.12
0.012
0
1
Yi = 0.80 ft
V = 5.00 ft/s
E4 = 2.22
A = 3.14
k. = 0.20
kr = 0.58
k. = 1.78 ft
Yn = 1.66 ft
Y. = 1.20 ft
d = 1.60 ft
D. = 1.83 ft
1/(2'tan(0))= 3.52
Q/D"1.5 = 3.93 ft' '/s
Yt/D = 0.40
HW.= 1.83 ft
HWo= 2.03 ft
HW= 4,930.15 ft
HWID = 1.01
d. = 3 in
d,,= 6 in
Type= VL
Lp= 6 ft
' Determination of Culvert Headwater and Outlet Protection
Project: Timbervine
' Basin ID: Design Point 13
eox c
n a n
n
*..Sandy
Q Non-....S.a...
ndy
..
.........................................
Design Information (input):
Design Discharge _ Q = 4.21 cfs
Circular Culvert:
' Barrel Diameter in Inches D = 15 inches
Inlet Edge Type (Choose from pull -down list) Square End Projection
Box Culvert: OR
Barrel Height (Rise) in Feet Height (Rise) _ - ft.
' Barrel Width (Span) in Feet Width (Span) = ft.
Inlet Edge Type (Choose from pull -down list)
Number of Barrels No = 1
Inlet Elevation - Elev IN = 4932.71 ft
Outlet Elevation OR Slope So = 0.005 ft/ft
. Culvert Length L = 155 ft
Mannings number n = 0.012
Bend Loss Coefficient kb = 0
' Exit Loss Coefficient k. = 1
Taitwater Surface Elevation Yr = ft.
Required Protection (Output):
' Tailwater Surface Height .Y, = 0.50 ft
Max Allowable Channel Velocity V = 5.00 ft/s
Flow Area at Max Channel Velocity A, = 0.84 f
Culvert Cross Sectional Area Available A = 1.23 ft' -
Entrance Loss Coefficient - - k. - 0.20
' Friction Loss Coefficient kr = 3.05
Sum of All Losses Coefficients k, = 4.25 ft
Culvert Normal Depth Yn = 0.88 ft
Culvert Critical Depth Y. = . 0.83 ft
' Tailwater Depth for Design d = 1.04 ft
Adjusted Diameter OR Adjusted Rise D, = 1.07 ft
Expansion Factor 1/(2-tan(0)) = 3.52
Flow/Diameter" OR Flow/(Rise'Span)°'s Q/D"1.5 = 3.01 ft"/s
Tailwater/Diameter OR Tailwater/Rise YVD = 0.40
Inlet Control Headwater HW, = 1.32 ft
Outlet Control Headwater HWo = 1.23 ft
Design Headwater Elevation HW = 4,934.03 ft
Headwater/Diameter OR HeadwaterlRise Ratio HW/D = 1.06
Minimum Theoretical Riprap Size d56 - 2 in
' Nominal Riprap Size d� = 6 in
UDFCD Riprap Type Type = VL
Length of Protection Lp = 4 ft
Determination of Culvert Headwater and Outlet Protection
Project: Timbervine
Basin ID: Storm B
eox cwac
nT �II o
w.
xo
Design Discharge
ular Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull -down list)
Culvert:
Bartel Height (Rise) in Feet
Bartel Width (Span) in Feet
Inlet Edge Type (Choose from pulldown list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Mannings number
Bend Loss Coefficient
Exit Loss Coefficient
Tailwater Surface Elevation
Tailwater Surface Height
Max Allowable Channel Velocity
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth
Tailwater Depth for Design
Adjusted Diameter OR Adjusted Rise
Expansion Factor
Flow/Diameter' ' OR Flowl(Rise'Span)as
Tailwater/Diameter OR TailwaterfRise
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Minimum Theoretical Riprap Size
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection
rSQlJAwe:
I • Sandy
O Non -Sandy
Q = 13 cfs
D = 24 inches
Square End Projection
OR
Height (Rise) = R.
Width (Span) = R.
No=
Elev IN =
So=
L =
n =
kb =
k, =
Y,
1
ft
Wit
ft
4927.64
0.0035
180
0.013
0
1
Yt = 0.80 ft
V = 5.00 ft
A, = 2.60 ft`
A = 3.14 ft
k. = 0.20
kr = 2.22
k = 3.42 ft
Y.= 1.59 ft
Y. = 1.30 ft
d= 1.65 ft
D,= 1.79 ft
1/(2-tar<- = 2.39
Q0D 1.5 = 4.60 ft'.e/s
YVD = 0.40
HWi - 2.04 ft
HWo= 2.19 ft
HW= 4,929.84 ft
HW/D= 1.10
dw = 4 in
d50 = 6 in
Type = VL
Lp = 6 ft
1 Determination of Culvert Headwater and Outlet Protection
project: Timbervine
' Basin ID: Outfell
I � <oaxE
N a n
1 � .�
1
sandy
Non -Sandy
Fez .___._._.
.._.._. ....._._..
Design Information (input):
Design Discharge
Q = 16.39 cfs
Circular Culvert:
Barrel Diameter in Inches
D = 24
inches
1
Inlet Edge Type (Choose from pull -down list)
Square End Projection
Box Culvert:
OR
Barrel Height (Rise) in Feet
Height (Rise) =
ft.
Bael Width (Span) in Feet
Barrel
Width (Span) =
ft. -
1
Inlet Edge Type (Choose from pull -down list)
Number of Barrels
- No = 1
Inlet Elevation
Elev IN = 4924.91
ft
Outlet Elevation OR Slope
- So = 0.005
ft/ft ,
1
Culvert Length
L = 120
ft
Mannings number
n = 0.012
Berta Loss Coefficierd
kb = 0
Exit Loss Coefficient
k„ = 1
1
Tailwater Surface Elevation
Y, =
ft.
TaiN ester Surface Height
Y, =
0.80
ft
Max Allowable Channel Velocity
V =
5.00
ft/s
1
Flow Area at Max Channel Velocity
A, =
3.28
fe
Culvert Cross Sectional Area Available
A =
3.14
Entrance Loss Coefficient -
k, =
0.20
Friction Loss Coefficient
kr =
1.26
'
Sum of All Losses Coefficients
k, =
2.46
ft
Culvert Normal Depth
Y„ =
1.55
ft
Culvert Critical Depth -
Y. =
1.46
ft
1
Tailwater Depth for Design
d =
1.73
ft
Adjusted Diameter OR Adjusted Rise
D, =
1.77
ft
Expansion Factor
1/(2'tan(0)) =
1.85
Flow/Diameter"OR Flow/(Rise'Spanpb -
Q/DM.5=
5.79
ft,/s
1
Tailwater/Diameter OR Tailwater/Rise
Yf/D =
0.40
Inlet Control Headwater
HWi =
2.46
ft
Outlet Control Headwater
HWo =
2.59
ft_
Design Headwater Elevation
HW =
27
4,9.50
ft
1
Headwater/Diameter OR Headwater/Rise Ratio
HWID =
1.30
Minimum Theoretical Riprap Sae
d, =
5
in
Nominal Riprap Size
dm =
6
in
UDFCD Riprap Type
Type =
VL
Length of Protection
LP =
6
ft
1
1
•
Appendix F
(Basin Maps)
G a o w a
Planning. Architecture. Engineering,y
ONION SOCKw.PAOe ORN RAIwoID III
Rl12.12
Is T
_�— -- 1jAl
:Eli iT.
r-
-
I
T
f
r
`; i'll❑1` ��0
A3
A4
27
1'
III I I Iz
—_ BS
I I /
1 _1 L CIS A.
I4. �.
PONDB
PLO rw—sTVPewRiei
_ �"'3 91 Poroe tismucTMRE
AM
ism
O&MAR AMBER
All LLC
PASSEL kA
MATCH
A
Lu
x■
In ■
`O I
2
H
id
W 1
cf) i
W
Z
J - —
LET.
OSWAE O 0 WS
1
l
A5 4 i
2
011
1
i BIOSwµE O ON%
A _
AID,
068 2'o O T1
-imp" +*„+�
wENeuRB
uaM
HOMES
SARNI
All
A10
\ a.' ♦ ASJ n2z \
]� a
T i L p POND all,
I wSCi7 BOO PIN
M HET RPE.
OwRRol
x A Pav,mvw
o.n nc9 PARCE..em'
OS2
-SEE THIS SHEET
I
I
I
I
I
I
I
im G 100
IT caror..i
ax �100
_ m�R
ROYXnw: 0
LEGEND:
FROWSM MXJM cpNNORCOMMON—s0i]--
EASONGOAJOR ONTWR
EXSTMG MINOR CMRYJR - - ---
EXISTING STJW CONTO%ARR ---------
PR OPOSE D STORM
AMOO
PROPOSED STORM SEWED �
PROPOSESTOW LIFT Eli
PROPOSED RIGHT-OF-WAY
FJTORLL RIGHT-OF-WAY
PROPWO LOTExE -- --_-
Ill LOWNE — —
EAYMCxTONP----"---
DRAINAGE SYMBOLS:
-\J��BASIN ID
BASIN AREA \ 1 .!
(ACPES) `LA./ MINN RIINCiT CCEFxaEN9
1.D0 0.23 MAJOR WNW CCEFFICIEOm
O.MS
ACf9]IPON1
momommomm MAEN Usk MY
.mmmm...= AIR BONN BOUNDARY
ROW DIRECTION
FIXi DRAINAGE REVIEW ONLY
NOT FOR CONBTRUCTION
PONDSUMMARY
wl
KONRION
TOTµ
ILO-rP
HUAY
pqy
VCLWE
YCWME
VCLWE
LIBEL
Wl
In9
(FT9
QP0
IF])
(US)
A
--
1OA93
M693
493125
BJo
e
]2.M]
]2AW
105,241
031.24
].N
SWALE SECTION AI -Al
.,
SWALE SECTION A2-A2
IIIT8.1 e
� IT,
SWALE SECTION B-B
UTILITY PLAN APPROVAL
IFPROVEO:
a,] Pewees
�
WEaEO BY:
w�
W.m W W.M...w TTwy
COECKED Br
CHECKED BY:
Cl BY.
CIIECKEO Br
e
4E
a
cc
lop
U.
r
r3
w�8
miff z
N= m 3
mNO
gt
a.
f
Z
W
0 Q
z
Wa
00w
Ix
co
m
W Q
�
> Z_
H
C) Q
6�
0
Sheet
DR01
Of 60 Sheets