Loading...
HomeMy WebLinkAboutDrainage Reports - 12/31/2014City of`Ft.: Collins p ved Plans Approved BRU Date 7�_ FINAL DRAINAGE REPORT Ridgewood Hills Fourth Filing Multi -Family Residential Development Triangle Drive & Avondale Road Fort Collins, Colorado Prepared For: M. Timm Development, Inc. 233 E. Carrillo St., Suite D Santa Barbara, CA 93101 (805) 963-0358 Prepared By: COWEN CONSULTING GROUP, INC. 3715 Shallow Pond Drive, Fort Collins, CO 80528 Phone: 970-226-0264 Fax: 970-226-3760 October 2014 I Proj. No.: 12-390 RIDGEWOOD HILLS FOURTH FILING MULTI -FAMILY RESIDENTIAL DEVELOPMENT PRELIMINARY DRAINAGE REPORT Table of Contents ENGINEER'S CERTIFICATION............................................................................................1 I. LOCATION AND DESCRIPTION OF PROPERTY AND PROPOSED DEVELOPMENT ....... 2 A. Location...........................................................................................................................2 B. Description of Property....................................................................................................2 C. Description of Proposed Development.............................................................................2 II. DRAINAGE BASINS AND SUB-BASINS...............................................................................3 A. Major Basin Description .................... :...................... ........................................................ 3 B. Sub -Basin Description.....................................................................................................3 III. DRAINAGE DESIGN CRITERIA...........................................................................................4 A. Regulations.....................................................................................................................4 B. Development Criteria Reference and Constraints............................................................4 C. Hydrologic Criteria...........................................................................................................4 D. Hydraulic Criteria.............................................................................................................5 E. Floodplain Impacts..........................................................................................................6 F. Waiver / Variance from Criteria........................................................................................6 IV. WETLAND PRESERVATION AND MITIGATION..................................................................6 V. DRAINAGE FACILITY DESIGN............................................................................................6 A. General Concept.............................................................................................................6 B. Specific Details................................................................................................................6 C. Detention Pond Analysis...............................................................................................10 D. Erosion Control and Storm Water Considerations.........................................................11 VI. CONCLUSIONS..................................................................................................................12 A. Compliance with Standards...........................................................................................12 B. Drainage Concept......................:..................................................................................12 VII. REFERENCES....................................................................................................................13 VIII. APPENDICES A. GENERAL B. SWMM C. HYDRAULICS D. LID CALCULATIONS E. MAPS n RIDGEWOOD HILLS FOURTH FILING MULTI -FAMILY RESIDENTIAL DEVELOPMENT FINAL DRAINAGE REPORT ENGINEER'S CERTIFICATION I hereby certify that this Final Drainage Report for the design of stormwater management facilities for the Ridgewood Hills Fourth Filing multi -family residential development was prepared by me, or under my direct supervision, in accordance with the provisions of the City of Fort Collins Storm Drainage Design Criteria and Construction Standards for the owners thereof. I State of Colorado No. 29871 F RIDGEWOOD HILLS FOURTH FILING MULTI -FAMILY RESIDENTIAL DEVELOPMENT FINAL DRAINAGE REPORT I. LOCATION AND DESCRIPTION OF PROPERTY AND PROPOSED DEVELOPMENT A. LOCATION The proposed development is located in the Southeast Quarter of Section 14, Township 6 North, Range 69 West of the 6'h Principal Meridian, City of Fort Collins, County of Larimer, State of Colorado. The site is bounded on the west, south of Avondale Rd., by single-family residential lots fronting onto Triangle Dr., on the north and west, north of Avondale Rd., by Triangle Dr., on the east by vacant land, and on the south by single-family residential lots fronting onto Peyton Dr. Adjacent land use to the south, west and north of the project site is single-family residential, and to the east of the site, the vacant land immediately adjacent to the site is designated for medium -density mixed -use neighborhood development, and beyond that for neighborhood commercial development. The site is entirely within the bounds of the City of Fort Collins. B. DESCRIPTION OF PROPERTY The site comprises a total area of 10.4 acres. The property is currently vacant, but has been used for agriculture in past. The current ground cover is a mix of native grasses. The site slopes generally from west to east, at surface gradients ranging between 3.5% and 15%. There is a gentle ridge, however, that bisects the site along an axis aligned roughly from northwest to southeast and generally corresponding to the alignment of Avondale Road, which effectively subdivides the site into two natural drainage basins, both ultimately draining to the east, but in the context of the site alone, one drains to the northeast and the other to the southeast. The native soils underlying the site are predominantly silty loams (Wiley loam — 65.6% of site area; Fort Collins loam — 27.7% of site area; and Satanta loam — 6.7% of site area). All of these soils fall within NRCS Hydrologic Soil Group B. A geotechnical engineering investigation that was conducted at the site in 2004 characterized the subsurface soils as sandy, lean clays, extending to depths in excess of 15 feet, in most areas of the site. At one boring location in the northern portion of the site and at two locations in the southern portion of the site, weathered siltstone/claystone bedrock was encountered at depths of approximately 11 — 12 feet. No groundwater was encountered during initial boring or when the borings were reinspected several days later. Flood plain mapping for the vicinity of the development site indicates that no portion of the site lies within any mapped floodplain area (unprinted FEMA FIRM Panel #08069C1200F). C. DESCRIPTION OF PROPOSED DEVELOPMENT The proposed development of the site will consist of multi -family residential buildings, including 146 dwelling units in 11 buildings (2-story and 3-story); 33 enclosed garages in 2 three buildings; a clubhouse, with adjoining pool / spa, sports court, tot lot and recreation ' area; paved access driveways, sidewalks, and outdoor parking areas; and landscaped open space. Buildings will cover approximately 19.8% of the site; paved drive aisles, sidewalks and vehicle parking areas will cover approximately 29.2% of the site; and landscaped open space will account for 51.0% of the site area. Access to the development will be via the eastward extension of Avondale Road from ' Triangle Drive. The layout of the proposed development is shown as the base of the Drainage Plan, which is included as an attachment to this report. Municipal infrastructure for supply of potable water and collection of sanitary sewage is ' available adjacent to the site in Triangle Drive, as well as at the end of Peyton Dr., south of the site. Appropriate utility mains will be extended throughout the site to serve the development. Electric power, natural gas, telephone and cablevision services are also available to serve the development. Stormwater runoff from the development will be directed via overland flow to appropriately ' sized and located storm drain inlets and drainage piping, and conveyed to one of two existing off -site detention basins; one located across Triangle Dr. from the north tip of the site, and the other located south of Peyton Dr., approximately 250 feet south of the site. DRAINAGE BASINS AND SUB -BASINS ' A. MAJOR BASIN DESCRIPTION The proposed development lies within the Fossil Creek Master Drainage Basin, as ' delineated in the City of Fort Collins Drainage Basin Master Plan (City of Fort Collins, June 2004). B. SUB -BASIN DESCRIPTION ' The site is located in Basins OS-4, 821 and 918, as well as a portion of Basin 917, as delineated in the Ridgewood Hills PUD, Filing 3, Final Drainage & Erosion Control Study ' (Nolte Associates, June 2000). The northern portion of the site (Tract B) drains to the east and is Basin OS-4. According to ' the Nolte report, development of Basin OS-4 was anticipated to include multi -family residential dwellings, and runoff was to be routed through one of the two Ridgewood Hills 3rd Filing detention basins (labeled as Detention Ponds #1 and #2). Both of the detention ponds were reported to have sufficient capacity to accommodate developed runoff from ' Tract B. The southern portion of the site (Tract A) consists of Basin 821 and a portion of Basin 917. ' Tributary flows include those from on -site areas, as well as the rear portions of the developed single-family lots along the east side of Triangle Dr., between Avondale Rd., and Peyton Dr., and the rear portions of the developed single-family lots along the north side of ' Peyton Dr., east of Triangle Dr. This basin also includes the front halves of the first 3'/z lots on the east side of Triangle Dr., south of Avondale Rd., and the east half of Triangle Dr., abutting those lots. The total off -site area that is tributary to the southern drainage system is approximately 1.59 ac. ' 3 A portion of the site along the east perimeter slopes away sharply from the remainder of the ' site. Runoff from this area cannot reasonably be captured and directed to the detention basins. Thus, runoff will flow overland from this area onto the adjacent undeveloped land, as it does currently. There are no improvements proposed in this area of the site, aside from grading and landscaping, so the rate of runoff from this area will be essentially the same as it is for the historic, undeveloped condition. The total area of the undetained portion of the site is approximately 1.25 ac (0.90 ac. north of Avondale Rd., and 0.35 ac. ' south of Avondale Rd.). For purposes of analyzing the drainage regime for the proposed development, the project site and off -site tributary areas have been subdivided into 27 drainage sub -basins, reflective of the anticipated final topography of the site. These drainage sub -basins range in size from 0.04 acres to 1.87 acres. These on -site and off -site sub -basins comprise the drainage regime for the project and are accounted for in the stormwater management analysis and ' the design of stormwater management improvements for the project. While final grading of the development site will result in localized ridges and depressions, ' the overall direction of storm flow will continue to be generally consistent with the existing predevelopment drainage patterns of the site. III. DRAINAGE DESIGN CRITERIA A. REGULATIONS The proposed stormwater management improvements for the Ridgewood Hills Fourth Filing development are designed in compliance with the requirements of the City of Fort Collins Stormwater Criteria Manual (City of Fort Collins, December 2011) which adopts and amends ' the Urban Storm Drainage Criteria Manual (Urban Drainage and Flood Control District, Revised December 2012). The design of stormwater management improvements for the project also takes into account the previously approved Ridgewood Hills PUD, Filing 3, Final Drainage & Erosion Control Study (Nolte Associates, June 2000). The recently approved ' amendment to the Fort Collins Stormwater Criteria Manual, requiring the incorporation of Low -Impact Development (LID) principles and criteria, applies to this development. B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS The criteria used as the basis for analysis and design of stormwater management ' improvements for this site are those found in the references cited in the section immediately above. To the knowledge of the author, there are no other capital drainage improvements planned ' for this portion of the Fossil Creek Master Drainage Basin, aside from those referred to above, that would constrain or otherwise influence the design of the stormwater improvements for this site. ' C. HYDROLOGIC CRITERIA ' Stormwater runoff from the respective sub -basins of the Ridgewood Hills Fourth Filing site is analyzed for storms with 2-year and 100-year return frequencies. Due to the relatively small aggregate area of the tributary drainage sub -basins ' (approximately 13.5 acres, including off -site tributary areas), the Rational Method was 4 chosen for use in the design of the stormwater management improvements. The Rational Method provides that: Q = CIA, where: Q = Design flow in cubic feet per second (cfs) C = Coefficient of runoff for the area under consideration I = Rainfall intensity for the design storm duration (in/hr) A = Area of the drainage sub -basin under consideration (ac) Composite coefficients of runoff were calculated for the two design storm events, based on the applicable percent imperviousness of the respective surfaces (roof, pavement, landscaped areas, etc.) within the various sub -basins. Rainfall intensities were determined using information presented in the City of Fort Collins Storm Drainage Design Criteria and Construction Standards. For this Final Drainage Report the adequacy of the two off -site detention basins is accepted, per the Nolte report. Tract B (the northern portion of the site) will, for the most part, drain to the northeast and into existing Detention Pond #1 and Tract A (the southern portion of the site), plus a small portion of Tract B, will drain to the southeast and into existing Detention Pond #2. The design worksheets included in the Attachments to this Final Drainage Report present documentation of the hydrologic calculations for the on -site storm drainage systems. EPA SWMM 5.0 was used to calculate pond volumes and orifice plates of the existing pond in relation to the development. D. HYDRAULIC CRITERIA Within the development, a significant portion of the runoff will be conveyed on the surface, initially as sheet flow and subsequently as concentrated flow in shallow pans and gutters, as well as in grassed swales. In order to minimize surface accumulations of runoff, the assessment of required capacity and the sizing of the respective components of the drainage system are based on the anticipated runoff from the 100-year storm event. No detention is planned within any of the traffic circulation or parking areas, and it is the intent of the design that there be minimal, if any, accumulation of runoff'in paved parking or travel areas. Inevitably, however, some accumulation will occur under extreme storm events, due to the constriction presented by inlet openings. In all cases, it is the intent of the design that the maximum depth of accumulation be less than one foot and that the duration of localized impoundment be short. Where the site grading design in localized areas precludes continuous surface migration of runoff to the respective detention basins, appropriately sized inlets and storm drain piping are included to convey the accumulated runoff from these localized collection points to the detention basins. Inlet locations and sizing will be refined in the final design phase of the project. The calculation spreadsheets included in the Attachments to this Final Drainage Report reflect this design approach. 5 E. FLOODPLAIN IMPACTS As stated in Section I B (Description of Property) above, there are no mapped floodplains that impact this property. ' F. WAIVER / VARIANCE FROM CRITERIA ' There are currently no waivers or variances from the City of Fort Collins Storm Drainage Design Criteria and Construction Standards requested in connection with the design of the stormwater management facilities for the Ridgewood Hills Fourth Filing development. IV. WETLAND PRESERVATION AND MITIGATION ' There are no wetlands within the boundaries of the site. V. DRAINAGE FACILITY DESIGN ' A. GENERAL CONCEPT In general, developed flows will follow the intent of the Ridgewood Hills PUD, Filing 3 ' drainage report, with all tributary flows updated to reflect 1997 Rainfall. As stated above, Tract B will, for the most part, drain to existing Detention Pond #1 and Tract A, plus a small portion of Tract B, will drain to existing Detention Pond #2. Water quality requirements will t be addressed through implementation of LID principles, on -site, as well as within the detention basins. Off -site migration of runoff will be minimized to the extent practical. ' The design of the stormwater management systems for the Ridgewood Hills development is based on the premise that runoff generated within the site should be managed within the site, to the greatest extent practicable, such that there is no adverse impact to either the development or to adjacent or downstream properties, drainage facilities and waterways. ' The grading plan for the site has been designed to promote positive drainage away from all building envelopes, and to direct collectable runoff flow to the collection system and then to the detention basins. ' The design worksheets included in the attachments to this Final Drainage Report present details of the hydrologic and hydraulic calculations pertinent to the design of the on -site ' storm drainage system. A Final Drainage Plan, showing the proposed development of the site and developed drainage patterns is included in the map pocket following the attachments. ' B. SPECIFIC DETAILS There are a number of collection and conveyance scenarios within the drainage regime ' associated with this development. The respective scenarios are described below. Runoff from all buildings and the immediately adjacent landscaped areas will migrate via ' overland flow to either an adjacent parking area and drive aisle or to an area inlet in a nearby landscaped collection area. Within Tract B, runoff from the buildings along the west side of this portion of the site adjacent to Triangle Drive will be, for the most part, directed to a series of connected area 6 inlets and a piping network beneath the landscaped area between the buildings and the street. Runoff from the adjacent drive aisle and parking area, including the west half of the garages, t will flow overland to a low -point curb cut at the north end of the drive aisle. This flow will be conveyed to the North 'A' Bioswale where the runoff will be treated and detained. This Bioswale provides a WQCV of 1,232 cu. ft. North "A" Bioswale is designed to treat a WQCV depth of one foot. The flows in excess of the WQCV, up to and including the 100-year flow, ' will be captured via two CDOT Type C overflow area inlets and conveyed through the storm sewer system to the detention pond. Runoff from the clubhouse and amenities area in the central region of Tract B, as well as from the adjacent drive aisle to the east and south, will migrate via overland flow to the east drive aisle, where it will be conveyed through slotted curb openings along the east side of ' the site to the North 'B' Bioswale for treatment and detainment. This Bioswale provides a WQCV of 1,296 cu. ft. North "B" Bioswale is designed to treat a WQCV depth of one foot. The flows in excess of the WQCV, up to and including the 100-year flow, will be captured via ' two CDOT Type C overflow area inlets and conveyed through the storm sewer system to the detention pond. The runoff accumulating at the Bioswales in the northeastern area of the site, along with that ' accumulating at the northwest side of site, will be piped northward to the existing inlet in the east gutter of Triangle Drive, and from there to existing Detention Pond #1.. At a point in this piped system just upstream of the existing Triangle Drive inlet, the accumulated runoff from ' the buildings and surrounding landscaping along the Triangle Drive frontage of Tract B will be comingled with the flows from the interior areas of the site. The peak design flow entering the existing Triangle Drive inlet from the drainage systems serving Tract B is calculated to be 33.43 cfs. In addition to this collected runoff, there will be uncollected runoff from the landscaped area along the east perimeter of Tract B. That runoff is calculated to be a maximum of 15.61 cfs, which will exit the site in a relatively uniform sheet flow across a property line measuring approximately 706 feet in length (0.022 cfs / ft). ' Within Tract A, there will also be a blend of overland flow and piped flow, but the areas tributary to the piped collection system are more broadly integrated than those in Tract B. ' Runoff from the southern portions and surrounding landscaping of the Tract B buildings fronting onto Avondale Road, as well as from a corner of the building and adjacent landscaping in the northwest corner of Tract A, and from the off -site single-family area ' draining to Triangle Drive and then to Avondale Road either migrates to the adjacent street gutter and flows to one of several street inlets, or is collected in a series of area inlets in the respective landscaped areas, from where it is piped to the storm main to be located within the Avondale Road right-of-way. ' Runoff from the buildings, adjacent landscaped areas and paved drive aisle and parking area in the northeast quadrant of Tract A will be collected in area inlets and a parking lot ' inlet at the east end of the drive aisle, and piped to the storm main that will be an extension of the storm main serving the Avondale Road sub -basins. Runoff from the buildings, driveways, parking areas and landscaped space within the three ' interior sub -basins in Tract A, comprising the majority of the area tributary to this drainage system, will migrate via overland sheet flow and shallow gutter flow, to three different 'Silva Cell' areas. These 'Silva Cells' provide a modular suspended pavement system that uses ' soil volumes to provide powerful on -site stormwater management through absorption, 7 1 evapotranspiration, and interception. These three areas provide a total of 1,572 cu. ft. of ' WQCV detention. Flows not captured by the 'Silva Cell' areas are conveyed via shallow gutter flow to the South 'A' Bioswale, where 1,139 cu. ft. of WQCV is provided. The flow in ecess of the WQCV, up to and including the 100-year flow, is designed to over -top the 1 bioswale, where it will be intercepted by two CDOT Type D area inlets and piped to a connection point with the storm drain serving the Avondale Road sub -basins and those in the eastern region of the site, and from there to existing Detention Pond #2. ' There is a drainage sub -basin along the southern perimeter of Tract A, which includes a landscaped buffer area between this site and the adjacent single-family lots, the southern half of the most southwesterly building on this site, the southeast quarter of the most ' southeasterly building on this site, and the rear portions of the single-family lots. Runoff from this tributary area will migrate via overland sheet flow to a grassed Swale running along the southern perimeter of the site, and eventually into an area inlet near the southeast ' corner of the site. A series of 18 surface impoundments upstream of check dams in the swale will provide 1,188 cu. ft of WQCV. Flows accumulated at the area inlet will be comingled with the runoff piped from the central region of Tract A and piped to the connection with the main north -south storm drain along the eastern perimeter of the site. The drainage sub -basins, overland flow directions and the piped drainage systems serving the proposed development are shown on the drawings included with this report. Specific t LID details including the bioswales, 'Silva Cells', and check dams are shown on the LID drawings also included with this report. ' The following table presents a summary of the tributary sub -basins and corresponding calculated hydrology for the proposed Ridgewood Hills Fourth Filing development. L•, I 1 C DRAINAGE DATA SUMMARY TABLE SUB -BASIN DESIGN BASIN COMP. RUNOFF COEFF. CUMM.DES.RUNOFF cfs I.D. POINT AREA ac C2 Cloo Q2 Qioo North System N1 1 0.353 0.36 0.57 0.36 2.01 N2 2 0.276 0.36 0.57 0.64 3.58 N3 3 0.301 0.41 0.63 0.99 5.47 N4 4 0.211 0.33 0.54 1.15 6.60 N5 5 1.872 0.55 0.78 2.62 14.53 N6 6 0.830 0.71 0.95 1.67 7.84 N7 7a 0.900 0.25 0.25 3.21 15.61 7b 4.62 24.29 8 5.58 30.21 OS-1 9 0.401 0.60 0.83 6.17 33.43 South S stem S1 10 0.125 0.43 0.65 0.13 0.74 S2 11 0.560 0.25 0.44 9.79 43.57 S3 12 0.235 0.29 0.49 0.20 1.14 13 9.90 44.34 S4 14 0.121 0.31 0.51 0.10 0.61 S5 15 0.125 0.29 0.49 0.10 0.60 S6 16a 0.154 0.61 0.85 10.02 46.17 S7 17 0.155 0.25 0.43 0.11 0.66 S8 34 0.575 0.55 0.78 1.50 7.67 S9 19 0.112 0.63 0.87 0.47 0.96 20 9.97 46.31 S10 21 0.119 0.56 0.79 11.40 51.91 S11 22 0.201 0.46 0.69 0.26 1.38 23 11.40 51.25 S12 24 0.436 0.50 0.73 0.56 3.18 25 11.65 53.76 S13 26 0.041 0.45 0.68 0.05 0.28 27 11.58 54.04 S14 28 1.866 0.49 0.73 1.97 12.09 S15 29 1.153 0.66 0.90 3.40 19.11 S16 30 0.204 0.68 0.93 3.62 31.03 S17 31 0.810 0.18 0.33 0.42 2.32 S18 32 0.990 0.15 0.28 4.18 35.19 33 14.76 87.10 S19 0.352 0.25 0.31 0.25 1.10 I C. DETENTION POND ANALYSIS Existing Ponds #1 and #2 were originally designed in the Ridgewood Hills Filing 3 drainage report using the City of Fort Collins' pre-1997 rainfall data. The ponds were originally modeled in MODSWMM, a modified version of EPA SWMM. In addition to using rainfall data that has been subsequently become outdated, the original study excluded Filing 3 basin OS4 (Tract B) and the analysis for Pond #2 used only historic runoff coefficients for Basin 821 and portions of Basin 917 to size the ponds. To better assess the capacity of the ponds, five models were run for each pond using EPA SWMM 5.0 software: 1) Baseline Model - Pre-1997 rainfall and original design pond volumes 2) Baseline Model with As -built Pond - Pre-1997 rainfall with as -built pond volumes 3) Corrected Model - New rainfall data with as -built pond volumes 4) Proposed Model - new rainfall data, as -built pond volumes, corrected impervious values, and adjusted orifice diameters 5) Clogged Orifice - new rainfall data, as -built pond volumes, corrected impervious values, and clogged orifice to calculate overflow weirs The following tables summarize the results of the detention pond analysis for Pond #1: Pond #1 SWMM Model Summary 100-yr Detention Orifice WQCV WQCV Model Invert Release Volume WQCV EL Diameter E WS L (ac-ft) Depth (ft) Rate (cfs) (ac ft) (in) 1 5070.00 8.78 5075.93 '6.56 0.75 1.72 5071.72 11.5 2 5069.55 9.18 5075.99 6.49 0.75 2.27 5071.82 11.5 3 5069.55 9.79 5076.94 8.11 0.75 2.27 5071.82 11.5 4 5069.55 9.86 5077.52 9.15 0.74 2.25 5071.8 11.25 Pond #1 SWMM Model Weir Summary Model Weir Elevation Top of Bank LSpilh ,,, ft Max Flow (cfs) Flow Depth (ft) 1 5078.00 5079.00 40 0.00 0.00 2 5078.00 5079.00 40 0.00 0.00 3 5078.00 5079.00 40 0.00 0.00 4 1 5078.00 1 5079.00 1 40 1 0.00 1 0.00 5 1 5078.00 1 5079.00 1 40 1 18.43 1 0.05 As seen from the tables above, the only modification to Pond #1 will be to replace the orifice plate. Although the water surface elevation was raised, the lowest top of bank elevation still provides at least one foot of freeboard in the pond. The following tables summarize the results of the detention pond analysis for Pond #2: 10 Pond #2 SWMM Model Summar 100-yr Detention WQCV Orifice 100 r WQCV Model Release Invert Volume Depth WQCV EL Diameter WSEL (ac-ft) Rate (cfs) (ac-ft) (ft) (in) 1 9.81 5059.00 5066.28 13.66 1.4 2.08 5061.08 11.5 2 10.33 5058.39 5066.41 13.54 1.4 2.81 5061.20 11.5 3 11.30 5058.39 5067.74 17.66 1.4 2.81 5061.20 11.5 4 9.89 5058.39 1 5067.71 17.56 1.273 2.7 5061.09 10.75 Pond #2 SWMM Model Weir Summary Model Weir Elevatio Top of Bank 4p7h"aY(ft) Max Flow (cfs) Flow Depth 1 5068.00 5069.00 150 0.00 0.00 2 5068.00 5069.00 150 0.00 0.00 3 5068.00 5069.00 150 0.00 0.00 4 5068.00 5069.00 150 0.00 0.00 5 1 5068.001 5069.00 1 150 1 29.36 1 0.04 As seen from the tables above, the only modification to Pond #2 will be to replace the orifice plate. Although the water surface elevation was raised, the lowest top of bank still provides at least one foot of freeboard in the pond. It should be noted that the SWMM models (and onsite basins) utilized reduced imperviousness areas as allowed by Urban Storm Drainage Volume III Figure 3-8, Effective Imperviousness Adjustments for Level 2 MDCIA due to the onsite LID uses. The basic tenant of the site design was that the onsite filter storages will detain an equivalent volume equal to or greater than volume required for WQCV for the site. Pond #1 originally neglected to include water quality for the site, therefore the WQCV elevation essentially stayed the same. Pond #2 WQCV was incorporated in the original design, therefore the WQCV elevation was reduced due to the onsite LID volumes. D. EROSION CONTOL AND STORM WATER QUALITY CONSIDERATIONS Permanent water quality enhancement will be provided through the implementation of on - site LID improvements, as well as the outlet control structure components of the detention facilities, as addressed above. In addition, storm water quality and erosion control during construction will be addressed through the application of Best Management Practices (BMPs), as recommended in Volume III of the Urban Storm Drainage Criteria Manual (UDFCD, April 2008). Throughout the course of construction and until such time as permanent drainage surfaces and/or vegetation are established throughout the development, appropriate measures will be implemented and maintained to minimize erosion and limit the transport and migration of sediment. Silt fencing will be installed along the downstream perimeters of the site (south and east), as well as around sub -sites or work areas within the site, as appropriate. 11 Temporary drainage swales will be established throughout the site, as necessary, to collect ' and convey storm runoff from the work areas, and temporary sediment barriers will be installed at regular intervals along the lengths of these swales to slow the runoff flows and promote deposition of sediment and other suspended solids. The anticipated locations of the temporary swales, as well as details of erosion control Best Management Practices (BMP's) are shown on the Erosion Control Plan, submitted as part of the Final Compliance drawing set. ' All runoff from the disturbed portions of the site will be intercepted and directed to one of the temporary sediment traps within the site, and discharge from these facilities will be controlled. Accumulated sediments will be periodically removed from these facilities and properly disposed of. Permanent landscaping will be installed within the developed area, as soon as practical, and ' temporary revegetation or mulching will be implemented if there are any areas disturbed by construction activities, but not scheduled for immediate implementation of development improvements. ' VI. CONCLUSIONS ' A. COMPLIANCE WITH STANDARDS The design of the storm water management improvements to serve the Ridgewood Hills ' Fourth Filing development is in compliance with the City of Fort Collins Storm Drainage Design Criteria and Construction Standards. The criteria and recommendations of the Urban Storm Drainage Criteria Manual are also reflected in the design of the drainage ' systems. B. DRAINAGE CONCEPT ' The proposed drainage improvements for the Ridgewood Hills Fourth Filing development will effectively protect the proposed development, as well as downstream properties, drainage facilities and natural waterways, from the potential impacts of storm runoff, ' resulting in no adverse impacts from the improvements proposed for this site. Development of the site, as proposed, should have a beneficial impact on water quality in downstream drainage facilities and drainage ways by reducing or delaying the initial discharge of runoff ' from the site such that sediments and other potential pollutants typically carried by this first flush are removed from the flow. 1 12 VII. REFERENCES "City of Fort Collins Stormwater Criteria Manual" City of Fort Collins, Adopted December 2011 "City of Fort Collins Municipal Code", Chapter 10 — Flood Protection and Prevention City of Fort Collins, 1987 "Urban Storm Drainage Criteria Manual", Volumes 1 & 2, UDFCD, Revised December 2012 "Urban Storm Drainage Criteria Manual", Volume 3, UDFCD, Revised December 2012 13 APPENDIX A - GENERAL DATA SUMMARY TABLE 100-YEAR STORM EVENT 2-YEAR STORM EVENT 100-YEAR TIME OF CONCENTRATION 2-YEAR TIME OF CONCENTRATION COMPONENT AREAS UNADJUSTED IMPERVIOUSNESS VALUES NRCS SOIL DATA n DRAINAGE DATA SUMMARY TABLE SUB -BASIN DESIGN BASIN COMP. RUNOFF COEFF. CUMM.DES.RUNOFF cfs I.D. POINT AREA (ac) C2 Cioo O2 Oioo North S stem N1 1 0.353 0.36 0.57 0.36 2.01 N2 2 0.276 0.36 0.57 0.64 3.58 N3 1 3 0.301 0.41 0.63 0.99 5.47 N4 4 0.211 0.33 0.54 1.15 6.60 N5 5 1.872 0.55 0.78 2.62 14.53 N6 6 0.830 0.71 0.95 1.67 7.84 N7 7a 0.900 0.25 0.25 3.21 15.61 7b 4.62 24.29 8 5.58 30.21 OS-1 9 6.401 0.60 0.83 6.17 33.43 South System S1 10 0.125 0.43 0.65 0.13 0.74 S2 11 0.560 0.25 0.44 9.79 43.57 S3 12 0.235 0.29 0.49 0.20 1.14 13 9.90 44.34 S4 14 0.121 0.31 0.51 0.10 0.61 SS 1 15 0.125 0.29 0.49 0.10 1 0.60 S6 16a 0.154 0.61 0.85 10.02 46.17 S7 17 0.155 0.25 0.43 0.11 0.66 S8 34 0.575 0.55 0.78 1.50 7.67 S9 19 0.112 0.63 0.87 0.47 0.96 20 9.97 46.31 S10 21 0.119 0.56 0.79 11.40 51.91 Si 1 22 0.201 0.46 0.69 0.26 1 1.38 23 11.40 51.25 S12 24 0.436 0.50 0.73 0.56 3.18 25 11.65 53.76 S13 26 0.041 0.45 0.68 0.05 0.28 27 11.58 54.04 S14 28 1.866 0.49 0.73 1.97 12.09 S15 29 1.153 0.66 0.90 3.40 19.11 S16 30 0.204 0.68 0.93 3.62 31.03 S17 31 0.810 0.18 0.33 0.42 2.32 S18 32 0.990 0.15 0.28 4.18 35.19 33 14.76 87.10 S19 0.352 0.25 0.31 0.25 1.10 RIDGEWOOD HILLS APARTMENTS ONSfTE STORM DRAINAGE SYSTEM DESIGN (Ratiaml hf a Pm[e4ure) I( YR STORM EVENT PRpyp p(. LC O. Dam: 111I.W13 D�wa Rvdi Cmnm "Ruemh D1m IGMmFW FWr T,a Tme Bam SrPBnn RUM Tme0 C'A I RaLial TWIT C1enm. Vvre l Fbw Poe V T LD, Pae Mea Qxft focaV. Ruvh alC . C'A Runk Fbw Sue xl Ix) (nie Csl mnl xl (nnrl ItlF1 nFl Ih Ida lYl (M 11s) 141 Ibs (mml North Svstem NI 1 0.353 0.57 2.4 0.20 9.95 2.01 2.4 0.20 9.95 2.01 2.01 1.80 12 4.79 222 5.98 0.62 N2 2 0.276 0.57 2.0 GAS 9.95 1.57 3.0 0.36 9.95 3.58 3.58 4.44 12 7.52 135 9.77 0.23 N3 3 0.301 0.63 1.4 0.19 9.95 1.90 3.2 0.55 9.95 5.47 5.47 3.20 12 6.39 388 8.14 0.79 N4 4 0.271 0.54 2.7 0.71 9.95 1.13 4.0 0.66 9.95 6.60 6.60 4.50 12 7.57 103 9.65 0.18 N5 5 1.872 0.78 3.7 1.46 9.95 14.53 3.7 1.46 9.95 14.53 .53 2.30 18 15.92 164 9.01 0.30 N6 6 0.830 0.95 1.6 0.79 9.95 7.84 1.6 0.79 9.95 7.84 .84 0.70 18 8.78 14 5.67 0.04 7b 4.0 2.47 9.82 24.29 .29 1.10 24 23.70 118 7.54 0.26 8 4.2 3.14 9.63 30.21 .21 2.50 24 35.73 17 12.85 0.02 OS-1 9 0.401 0.83 3.4 0.33 9.95 3.33 4.2 3.47 9.63 33.43 124 .43 1.57 30 28.32 80 36.07 0.04 N7 7a 0.900 0.25 6.1 0.22 9.26 2.08 6.1 1.69 9.26 15.61 .61 1.10 24 23.70 23 7.54 0.05 49.03 al Design Runoff from the North Drainage System u h §ystem St 10 0.125 0.65 4.6 0.08 9.16 1 0.74 4.6 0.08 9.16 0.74 0.74 8.70 12 10.53 23 9.00 0.04 S2 11 0.560 0.44 8.3 0.24 SA7 1.99 8.3 5.33 8.17 43.57 1 1 43.57 2.15 18 15.40 41 7.23 0.09 915 9151 4.230 0.59 9.1 2.49 8.72 21.67 9.1 1 2.49 8.72 21.67 3.501/6 0.49 98 7.02 0.23 916 916 3.670 0.69 9.4 2.52 8.39 21.17 9.4 2.52 8.39 21.17 2.80% 0.49 213 5.87 0.60 11b 42.84 S3 12 0.235 0.49 2.5 0.11 9.95 1.14 2.5 0.11 9.95 1.14 1.14 1.14 12 3.81 166 4.42 0.63 13 8.4 5.45 8.14 44.34 44.34 2.15 18 15.40 130 7.67 0.28 S4 14 0.121 0.51 4.3 0.06 9.95 0.61 4.3 0.06 9.95 0.61 0.61 1.47 12 4.33 101 4.85 0.35 S5 15 0.125 0.49 3.5 0.06 9.95 0.60 3.5 0.06 9.95 0.60 0.60 0.54 12 2.62 60 3.97 0.25 S6 16a 0.154 0.85 0.3 0.13 9.95 1.30 8.7 5.70 8.10 46.17 46.17 2.00 18 14Z5 126 8.32 0.25 16b 0.154 0.85 0.3 0.13 9.95 1.30 0.3 0.13 9.95 1.30 S7 17 0.155 0.43 3.1 0.07 9.95 0.66 3.1 0.07 9.95 0.66 0.66 4.t8 12 7.30 100 6.14 0.27 S8 18 0.412 0.78 3.4 0.32 9.95 3.20 3.4 0.32 9.95 7.67 2.50% 0.31 144 4.27 0.56 S9 19 0.112 0.87 0.9 0.10 9.95 0.96 0.9 0.10 9.95 0.96 2.86% 0.21 138 4.03 0.57 20 9.0 5.77 8.03 46.31 46.31 2.00 18 14.85 142 9.16 0.26 S10 21 0.119 0.79 1.6 0.09 9.95 0.94 9.2 6.09 7.94 48.34 48.34 1.76 18 1 13.93 13 8.91 0.02 Sit 22 0.201 0.69 3.1 0.14 9.95 1.38 3.1 0.14 9.95 1.38 6.67% 0.32 1 30 5.51 0.09 23 9.2 6.09 7.84 47.73 47.73 1.76 18 13.93 151 8.99 0.28 S12 24 0,436 0.73 3.6 0.32 9.95 3AS 3.6 0.32 9.95 3.18 3.18 2.69 18 17.22 19 7.60 0.G4 25 9.5 6.41 7.84 50.24 50.24 6.98 18 27.74 179 16.17 0.18 S13 26 0.041 0.68 3.3 0.03 9.95 0.28 3.3 0.03 9.95 0.28 0.28 25.00 8 6.05 8 9.19 0.01 27 9.7 6.44 7.78 50.52 - 50.52 T80 18 29.32 8 16.76 0.01 S14 28 1.866 0.73 6.9 1.35 7.91 10.71 6.9 1.43 7.91 11.35 3.09% 0.36 236 6.53 0.60 $15 29 1.153 0.90 1.3 1.04 9.95 10.36 7.5 2.48 7.72 19.11 1.22e/ 0.48 130 5.18 0.42 S16 30 0,204 0.93 0.3 0.19 9.95 1.88 8.0 4.10 7.57 31.03 31.03 14.20 18 39.57 70 22.84 0.05 S17 31 0.810 0.33 7.3 0.27 8.63 2.32 7.3 0.27 8.63 2.32 3.45% 0.61 566 3.85 2.45 SIB 32 0.990 0.28 5.7 0.28 9.50 2.66 8.0 4.65 T57 35.19 35.19 1.40 24 26.74 30 15.44 0.03 33 8.0 11.06 7.57 83.70 83.70 1.04 30 41.Al 74 8.52 0.14 S19 0.352 0.31 4.4 0.11 9.95 1.10 4.4 0.11 9.95 1.10 This runofl exits the site undetained, as is the current condition. 54.79 Total Design Runoff from the South Drainage System I 1 RIDGEWOOD HILLS APARTMENTS ONSME STORM DRAINAGE SYSTEM DESIGN (Rational MetIIW Pmce M) 2-YR STORM EVENT R C/: 1.C.0 Dale: tl/la.2a13 Oiwe Cun "Rv CIa /G .Fb F. Ta. Tme 9®n SaO aMn gVgl Tmaq I C'A I Raital 0ei n TMalllma Cum RaWdr Cunm. CMmel Fbw V i ID. Pp1 Ma C Como. RIxM al Calc. C'A Me " RUM Flax See KY IKI fnfi dal mM FM i dsl 1%, IN (dal (Y.) Inl (dsl (x) 1.) North System NI 1 0.353 0.36 4.5 0.13 2.85 0.36 4.5 0.13 2.85 0.36 0.36 1.80 12 4.79 222 4.33 0.85 N2 2 0.276 0.36 3.8 0.10 2.85 0.28 5.4 0.23 2.85 0.64 0.64 4.44 12 7.52 135 6.90 0.33 N3 3 0.301 0.41 3.1 0.12 2.85 0.35 5.7 0.35 2.85 0.99 0.99 3.20 12 6.39 388 7.00 6.92 N4 4 0.211 0.33 3.7 0.07 2.85 0.20 6.6 0.42 2.74 IA5 1.15 4.50 12 7.57 103 8.20 0.21 N5 5 1 1.872 0.55 8.0 1.02 2.57 2.62 8.0 1.02 2.57 2.62 2.62 2.30 18 15.92 164 7.57 0.36 N6 6 0.830 0.71 4.0 0.59 2.85 1.67 4.0 0.59 2.85 1.67 1.67 I 0.70 18 8.78 14 4.18 0.06 7b 8.4 1.83 2.52 4.62 4.62 1.10 24 23.70 118 6.26 0.31 8 8.7 2.25 2.48 5.58 5.58 2.50 24 35.73 17 8.98 0.03 0S.1 9 0.401 0.60 8.3 0.24 2.52 0.60 8.7 2.49 2.48 6.17 6.17 1.57 30 28.32 80 31.74 0.04 N7 7a 0.900 0.25 6.6 0.22 2.58 0.58 6.6 1.25 2.58 3.21 3.21 1.10 24 23.70 23 6.26 0.06 9.39 Total Design Runoff from the North Drainage System ulh S stem S1 10 0.125 0.43 9.5 0.05 2.46 0.13 9.5 0.05 2.46 0.13 0.13 8.70 /2 10.53 23 9.00 0.04 S2 11 0.560 0.25 11.6 0.14 2.23 0.32 1 11.6 1 4.39 2.23 9.79 9.79 2.15 18 15.40 41 4.97 0.14 915 4.230 1 0.51 13.7 1 2.16 1 4.94 4.19 13.7 1 2.16 1.94 4.19 3.50% 1 0.30 98 4.97 0.33 916 3.670 0.57 14.6 2.09 1.89 3.95 14.6 2.09 1.89 3.95 2.80% 0.30 213 4.48 0.79 lib 8.14 S3 12 0.235 0.29 4.1 0.07 2.85 0.20 4.1 0.07 2.85 0.20 0.20 1.14 12 3.81 166 3.11 0.89 13 11.7 4.46 2.22 9.90 9.90 2.15 18 15.40 130 5.31 0.41 S4 14 0.121 0.31 6.7 0.04 2.76 0.10 6.7 0.04 2.76 0.10 0.10 1.47 12 4.33 101 2.76 0.61 S5 15 0.125 0.29 5.8 0.04 2.85 0.10 5.8 0.04 2.85 0.10 0.10 0.54 12 2.62 60 3.97 0.25 S6 Ise 0.154 0.61 4.0 DOS 2.85 0.27 12.1 4.53 2.21 10.02 10.02 2 000 18 14.85 126 5.88 0.36 16b 0.154 0.61 4.0 0.09 2.85 0.27 4.0 0.09 2.85 0.27 1.67% 0.14 133 2.35 0.94 S7 17 0.155 0.25 4.7 0.04 2.85 0.11 4.7 0.04 2.85 0.11 0.11 4.18 12 7.30 100 4.18 0.40 S8 18 0.412 0.55 7.2 0.23 2.67 0.60 7.2 0.23 2.67 1.50 2.50% 0.17 1 144 3.38 0.71 S9 19 0.112 0.63 3.7 0.07 2.85 0.20 7.7 0.16 2.85 0.47 2.86% 0.11 138 2.67 0.86 20 12.5 4.57 2.18 9.97 9.97 2.00 18 14.85 142 6.64 0.36 SID 21 0.119 0.56 4.9 0.07 2.85 0.19 12.9 4.99 2.15 10.72 10.72 1.76 18 13.93 13 6.46 0.03 Sit 22 0.201 0.46 6.0 0.09 2.85 0.26 6.0 0.09 2.85 0.26 6.67% 0.16 30 3.43 0.15 23 12.9 4.99 2.12 10.72 10.72 1.76 18 13.93 151 6.62 0.38 S12 24 0.436 0.50 8.5 0.22 2.55 0.56 8.5 0.22 2.55 0.56 0.56 2.69 18 17.22 19 5.17 0.06 25 13.3 5.21 2.11 f 0.99 10.99 5.94 18 25.59 179 10.57 0.28 S13 26 0.041 0.45 8.6 0.02 2.60 0.05 8.6 0.02 2.60 0.05 1 1 1 0.05 25.00 8 6.05 8 4.33 0.03 27 1 1 13.5 5.23 2.09 10.92 10.92 7.80 18 29.32 8 11.95 0.01 S14 28 1.866 0.49 12.5 0.92 2.02 1.86 12.5 0.97 2.02 1.97 3.09% 0.24` 236 4.90 0.80 S15 29 1.153 0.66 5.0 0.76 2.85 2.17 13.3 1.74 1.96 3.40 1.22% 0.32 130 3.77 0.57 S16 30 0.2G4 0.68 5.9 0.14 2.85 0.40 13.9 1.87 1.93 3.62 3.62 14.20 18 39.57 70 15.90 0.07 S17 31 0.810 0.18 4.9 0.15 2.85 0.42 4.9 0.15 2.85 0.42 3.45% 0.40 566 2.93 3.22 S78 32 0.990 0.15 6.3 0.15 2.67 0.39 13.9 2.17 1.93 4.18 4.18 1.40 24 26.74 30 12.56 0.04 33 14.0 7.37 1.92 14.16 14.16 1.04 30 41.81 74 7.15 0.17 S19 0.352 0.25 5.2 0.09 2.81 0.25 5.2 0.09 2.81 0.25 This runoff exits the site unaetained, as is the current condition. 14.40 Total Design Runoff from the South Drainage System n F s N m N H Z W O r Q N cw' Q ID E ' y J J C .. U O N 2 0 o p dd Eo ' w~ Q ' o U LL U J E E ' J O ¢ a T a p m � m n m ' a LL s E E m cc r c v o v .- n m v m M M m m 7 v rn m 7 m m m m m m n v LL a c m M O m �- O t0 m p� O N .- m N m V m m O <? m Of Op 1� m 1� N O O O N O O O N O m O s U t r o r U r m 0 0 m m m 0 1Q m N N N m m m a N V N V m E E m o It m <u o v in m m m m m � m m m � Lf1 m C� rn m N N co r m U n m o rn m r-� m a m o a in rn n m N N N O N O N O O O N O m O O O O O O O O O m E 27 m O O LL O O O LL O LL L 0 0 0 0 0 0 0 0 0 0 0 0 j_ a O n LL 11 ll ll N N m m 0 O LL m m m m 0 1� O dU ` N N N m m a d m (7 N m Nn nO nO N N N N m N N 0 > `aa aa a a a a a d �d o a 0 s 0 a 0 a 0 o 0 0 o 0 a 0 o 0 0 0 0 0 o 0 a o o a 0 a 0 o 0 a 0 o n m n m m 0 O m O M m O O m m O m m 0 L U O m a M ry v a N r .- m n o o m o m v o m 0 m m N m M O m 4� E F a d o a° 0 0 0 0 0 0 o 0 0 4 0 0 0 0 0 6 o 0 0 0 0 0 0 0 0 0 O O to C N N N N m N N N m N N M N N N O N N i0 c t m O U n n m a m m m m m v m m m M m m rn m m m o cm m m �n m m m n m N m m v v �n v m v n M m r m m m � rn rn m N m O O O O O O O O O O O O O o o O O O O O O O O O O O O m ¢ A O M m �- N O O m O N m V N N N m m m m a O O N N c m '"' e m N n O 1� M O O N m M N N N i[1 O m a m m 0 rn m M m a' m N m N m m m tO N V N V O m N m m m t7 o d d d .- d a,0 0 0 o d O o 0 o d d d o n N jA N N 5 'y N Z Z Z Z Z Z z � (Q (/] pl 0 0 (q m (n (/l M (n fn [n (Q (n (n (n (A lq to F 0 Z %1 ' Prepared by. L.C.O. Frequency Adjustment Factor: 1.00 I h 1 C RIDGEWOOD HILLS APARTMENTS Times of Concentration 2-yr Storm Event Date: I I/26/2013 Sub -Basin Data Initial / Overland Time Channel Travel Time Tc Check Final Tc Remarks Basin Area Runriff Coetl Length S Ti Length Slope velocity Tt Como Tc I Tat. Length I Tc • L-iW;.,o I.D. (ac) (R) %) (min) (it) (%) (fps) (min) (min) (it) I (min) (min) North System N7 0.353 0.36 35 6.0% 4.54 200 Pipe Flow 4.54 235 11.3 4.5 N2 0.276 0.36 35 10.0% 3.84 200 Pipe Flow 3.84 235 11.3 3.8 N3 0.301 0.41 35 15.0 % 3.13 220 Pipe Flow 3.13 255 11.4 3.1 N4 0.211 0.33 30 10.0% 3.68 120 Pipe Flow 3.68 150 10.8 3.7 N5 1.872 0.55 95 6.0 % 5.60 460 2.65 % 3.20 2.40 7.99 555 13.1 8.0 N6 0.830 0.71 20 5.0 % 1.94 515 4.47 % 4.20 2.04 3.98 535 13.0 4.0 N7 0.900 0.25 83 11.0% 6.56 368 Pipe Flow 6.56 451 12.5 6.6 OS-1 0.401 0.60 54 2.0% 5.50 596 3.36% 3.60 2.76 8.26 650 13.6 8.3 South System Si 0.125 0.43 75 2.01/6 8.65 81 1.23% 1.60 0.84 9.50 156 10.9 9.5 S2 0.560 0.25 57 2.0 % 9.51 375 2.40% 3.00 2.08 11.59 432 12.4 11.6 S3 0.235 0.29 45 15.0% 4.14 165 Pipe Flow, 4.14 210 11.2 4.1 S4 0.121 0.31 24 2.0% 5.77 167 2.40% 3.00 0.93 6.70 191 11.1 6.7 S5 0.125 0.29 23 2.09/6 5.77 35 Pipe Flow 5.77 58 10.3 5.8 S6 0.154 0.61 30 2.0% 3.99 64 Pipe Flow 3.99 94 10.5 4.0 S7 0.155 0.25 25 5.0% 4.69 60 Pipe Flow 4.69 105 10.6 4.7 S8 0.412 0.55 35 2.0% 4.86 400 2.25% 2.90 2.30 7.15 435 12.4 7.2 S9 0.112 0.63 20 2.5 % 2.92 120 1.70 % 2.60 0.77 3.69 140 10.8 3.7 S10 0.119 0.56 33 3.01/6 4.06 137 2.19% 2.80 0.82 4.87 170 10.9 4.9 Sit 0.201 0.46 22 2.01/6 4.48 150 1.33% 1.70 1.47 5.95 172 11.0 6.0 S12 0.436 0.50 63 2.0% 7.08 140 0.70% 1.70 1.37 8.45 203 11.1 8.5 S13 0.041 0.45 50 1.0 % 8.59 0 0.00 % 1.00 0.00 8.59 50 10.3 8.6 S14 1.866 0.49 156 1.0 % 14.16 291 1.03% 2.00 2.43 16.58 447 12.5 12.5 S15 1.153 0.66 28 2.0% 1 3.47 306 2.55% 3.30 1.55 5.02 334 11.9 5.0 S16 0.204 0.68 40 1.0% 4.95 103 2.00% 1.80 0.95 5.91 143 10.8 5.9 S17 0.810 0.18 28 25.09% 3.15 215 1.86% 2.00 1.79 4.94 243 11.4 4.9 S18 0.990 0.15 18 20.0% 2.81 573 3.49% 2.70 3.54 6.35 591 13.3 6.3 S19 0.352 0.25 78 20.00/6 5.22 0 0.00 % 0.00 5.22 78 10.4 5.2 Total 13.32 Q U Z W ' W cc < � Q Q W IL ' aUv cnao J N O co = U (h ' O 0 � W m U u) 9 < ' Z Q M 00 N(O t`N O UnO to�0NNOO V V �IoOOnMm V nNm N r (O (O Cl) N 00 O M N m m (O CD CA In N N Co V m m N N O a N It to 0 Cl) Nr rrr m—to N O r 000 r N O O O r O O M O r m M rl ch V O O O O O O O O CV 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 I-: tQ N 0 U rn O V M I` m M t` O O m m m r V W W M N (n m O M N M W O to W R a C O M M I'- M M ICI W M M m M� In � 7 f- (D In m r� 7 (O N A co 7 r 01 comnn M CO (D m CD m r 00 N C0 r to 00 T N r- Itm N CD CD N T to Nil M r CO) In nm lna N V t`MMN tnm—ra 00 (D MN InM O) co M r M r M 'ItO r N r N Cl) m M m M r W O O CO (D m O m n O to O O O (D 'It r N Cl) M to M O M r M C. co r CD t` O O r a N t` M M O M 0 0 0 0 r N n m a C0 O CA r r C) - O O O r O O O O O O O O O O T O O M= O O O O r m V 0 0 0 0 0 6 0 0 0 O O O O O O O O O O O O O O O O O O O T r CO y C_ = M M W M 4i M O OI 0 O m m CM m O m 0 0 0 r Ui r <F N r 't N OI Io O 7 In N In V n m M O (D N 00 m O V Cl) 00 m 00 CD t� t` M m O r O N CD N N O N O Co In If) W N m r Cl) OD r oc m N il m V CD M n M r N r M r V M CD (D r M- r M M to co Cri O O O O V N O (DIM m 0 0 0 0 V) O CO V O O t` (D N O CD 0 M cD 0 0 0 0 O t� O cD O O O O O O O LL! r. t-. O r, O m M r O 0 CD M M O O O O m M O N O N O O O O r O M O 0 CD r 0 (D M r 0 0 0 R N V O O O O O O O O r O O O O O O O O O O O O O O O O O O O N 0 m C E N o 0 0 0 o V o M n 7 0 0 0 0 (D O M V (D O n O (O In O O OI N m ca O O r to In O m N to CO ti CD m O O m CO to to In M M N V O In CO m Ili lir co m to M M ^ Ni EO "- 7 N r N N O C N r r CO CO N O CD C' O In to to V- to to N m rO m co M V' O O NM m to n CD r M O O et m N M N N In to r,r r M',I- W M O r m m Cl) P MCM MN 00 OD m It Inr Nr rlor rN V OCO NMMMM R V 0 0 0 0 0 0 6 L6 O O O O O O O O O O O O O r r 6 6 6 0 O aM T co co L Q (6 M r m In V N h M N M M M O M Q n m N r� N V h M V V M W r Cl) to CO .- W In `7 CO n In N N r "T If) V n m W m 0 M M n O r W Cl) MO.-,0--"r0 V V NN V r t` O M rr.- m W N N M M r co O r 0 . In Nc`0m (D mna V In O In In(D(D I6.1 Cn N C6- OCp to M tnM P-71 T M CM N N N CO In CM r CO 00 N N M tO m E 6 a E a 6 d O�.-N z z co z V z N(0 z z r� z arEi Cn (n NMd'm(Drmm�rNM (n in (n (n (n (n cn in V In O t`00m E d � L 0 T = (n cn cn cn cn (n v) U) Co T m 0 (p 7 U) ra Z t Cn L j 0 O I I F- ' RIDGEWOOD HILLS APARTMENTS RUNOFF COEFFICIENTS & PERCENT IMPERVIOUSNESS (SEE SWMM APPENDIX FOR ADJUSTED VALUES PER UDFCD VOL III - FIGURE 3-8) Rational Method Runoff Coefficients & % Imperviousness ' Runoff Coeff % Imprerv. Roof 0.95 90 Pavement 0.95 100 ' Landscaped 0.25 0 Basin I.D. Total Basin Bldg Footprint Pavement Landscaped Composite Composite Area Area Area Area Runoff Coeff. % Im erv. (ac) (ac) (ac) (ac) North System N 1 0.353 0.139 0.000 0.213 0.53 35.50 N2 0.276 0.108 0.000 0.168 0.52 35.31 N3 0.301 0.139 0.000 0.162 0.57 41.57 N4 0.211 0.075 0.000 0.136 0.50 31.83 N5 1.872 0.181 0.964 0.727 0.68 60.19 N6 0.830 0.076 0.572 0.182 0.80 77.13 N7 0.900 0.000 0.000 0.900 0.25 0.00 OS-1 0.401 0.000 0.266 0.135 0.71 66.41 South System S1 0.560 0.046 0.219 0.295 0.58 46.51 S2 0.125 0.029 0.000 0.095 0.41 21.04 S3 0.235 0.070 0.000 0.165 0.46 26.66 S4 0.121 0.039 0.000 0.082 0.47 28.74 S5 0.125 0.037 0.000 0.088 0.46 26.44 S6 0.154 0.000 0.105 0.050 0.73 67.86 S7 0.155 0.035 0.000 0.120 0.41 20.10 S8 0.575 0.000 0.351 0.160 0.65 61.04 S9 0.112 0.000 0.078 0.034 0.74 69.66 S10 0.119 0.000 0.074 0.045 0.69 62A5 S11 0.201 0.106 0.000 0.095 0.62 47.34 S12 0.436 0.074 0.171 0.190 0.64 54.64 S13 0.041 0.021 0.000 0.020 0.61 46.45 S14 1.866 0.372 0.667 0.827 0.64 53.67 S15 1.153 1 0.193 0.656 0.305 0.77 71.92 S16 0.204 0.043 0.112 0.049 0.78 73.90 S17 0.810 0.086 1 0.000 1 0.724 1 0.32 9.60 S18 0.990 0.043 0.000 0.947 0.28 3.92 S19 0.352 0.000 0.000 0.352 0.25 0.00 North System Tota 4.742 0.718 1.536 2.489 0.58 46.01 South System Totz 8.335 1.193 2.433 4.645 0.55 42.07 Tributary Area Tot. 13.078 1.911 3.969 7.134 0.56 43.50 a Hydrologic Soil Group--Larimer County Area, Colorado ' b, 0 (Ridgewood Hills Soil Survey) 492730 492790 492850 492910 492970 40° 29'9'N 1 W 493030 C 0 40' 299'N 0 myN_ P 40 28 52' N 493090 3 C; 12/3/2013 Page 1 of 4 I I 4 0 � ■ ■ 0 z & � a z § -j IL � \ \ FL °k \f�) ( ®0 §M �� ) } (D /±}\ 0 E! p a 6 0 m E 7() { m! G i f k{ �k k§§ !§[ $�§®` \ ! «`:g 3!» / ƒ/ / ;# / [//® \k {ƒ r/E /\\k§ {$ 3® E !£� !# \f -§ z0 ^ t -IE k 3 \§{\2 CD 2[ «0C )_ - 0 =2;« \ -® _� (0 / \\« /j \ s \\� 0."k)\21 / @ k\ m /\*§( kk k0f aA/) w ;/ 0 / \ \ \ ^ o {) S 7§ o o _cr= g! o B ■ 13 VD |) {« $ co S o G a }« $ w S o R o jq!\CEE■/q/E)ƒ$$$$ # a f {« $ = 2 $§ ( \0 \0 2a � r C 1 1 Hydrologic Soil Group—Larimer County Area, Colorado Hydrologic Soil Group Ridgewood Hills Soil Survey Hydrologic Soil Group— Summary by Map Unit — Larimer County Area, Colorado (CO644) Map unit symbol Map unit name Rating Acres in Aol Percent of A01- 37 Fort Collins loam, 5 to 9 percent slopes B 5.2 16.8% 96 Satanta loam, 3 to 5 percent slopes B 1.6 5.1 % 1 118 Wiley silt loam, 1 to 3 percent slopes — B 1.5 4.9% I 119 Wiley silt loam, 3 to 5 percent slopes B 22.5 73.2% Totals for Area of Interest 30.8 100.0% i Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long -duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. usDA Natural Resources Web Soil Survey 12/3/2013 1f� Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—Larimer County Area, Colorado Ridgewood Hills Soil Survey Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff.- None Specified Tie -break Rule: Higher USDA Natural Resources Web Soil Survey 12/3/2013 �� Conservation Service National Cooperative Soil Survey Page 4 of 4 APPENDIX B - SWMM POND 1 SUMMARY POND 2 SUMMARY POND REFERENCE DATA POND 1 CALCULATIONS POND 2 CALCULATIONS I 1 11 1 1 1 Pond #1 SWMM Model Summary 100-yr Orifice 100-yDetention WQCV WQCV Model Invert Release Volume (ac WQCV EL Diameter SEL WSEL (ac-ft) Depth (ft) Rate (cfs) ft) (in) 1 5070.00 8.78 5075.93 6.56 0.75 1.72 5071.72 11.5 2 5069.55 9.18 5075.99 6.49 0.75 2.27 5071.82 11.5 3 5069.55 9.79 5076.94 8.11 0.75 2.27 5071.82 11.5 4 5069.55 9.86 5077.52 9.15 0.74 2.25 5071.8 11.25 Pond #1 SWMM Model Weir Summary Model Weir Elevation Top of Bank Lsp;llway (ft) Max Flow Flow Depth (ft) 1 5078.00 5079.00 40 0.00 0.00 2 5078.00 5079.00 40 0.00 U.00- 3 5078.00 5079.00 40 0.00 0.00 4 5078.00 5079.00 40 0.00 0.00 5 5078.00 1 5079.00 40 18.43 1 0.05 Ridewood Development Effects Before After % Filing 4 Inflow (cfs) Detention Volume (ac-ft) 280.36 306.00 9.15% 8.11 9.15 12.82% I Pond #2 SWMM Model Summary 100-yr Detention Orifice 100-yr WQCV (ac WQCV Model Release Invert Volume (ac WQCV EL Diameter WSEL ft) Depth () De ft Rate (cfs) ft) (in) 1 9.81 5059.00 5066.28 13.66 1.4 2.08 5061.08 11.5 2 10.33 5058.39 5066.41 13.54 1.4 2.81 5061.20 11.5 3 11.30 5058.39 5067.74 17.66 1.4 2.81 5061.20 11.5 4 9.89 5058.39 5067.71 1 7.56 1.273 2.7 5061.09 10.75 Pond #2 SWMM Model Weir Summary Model Weir Elevation Top of Bank 4pillway (ft) Max Flow (cfs) Flow Depth (ft) 1 5068.00 5069.00 150 0.00 0.00 2 5068.00 5069.00 150 0.00 0.00 3 5068.00 5069.00 150 0.00 0.00 4 5068.00 5069.00 150 0.00 0.00 5 5068.00 5069.00 1 150 29.36 0.04 Ridewood Development Effects Before After % Filing 4 Inflow (cfs) 486.92 531.61 9.18% Detention Volume (ac-ft) 15.9 17.56 10.44% I u)Z�,t\ \ I I1111 � A I \\ \ \\ _ 2 19 -RIDGEWOOD HILLS P.U.D., FILING 3 1b N %_. �, DRAINAGE AND EROSION CONTROL PLAN t r.. lIYONO INGIN!l IING p y wT� a ww..., y «w ornawo w non ,e ru rxvmn� . .r w xoi guar ran w,a. sFle r. rm wuxe ca. w.e ' •e«..�� r n M w PREPARED FOR. MELODY HOMES. W CATE SI MITTED06/W/00 fC0045 it - I J III Y ' /-— lip r imp 0 f' �t l r S . \ L? SL e? e a p RIDGEWOOD HILLS P.U.D., FILING 3 21 :\€^ DRAINAGE AND EROSION CONTROL PLAN ...... r..r eerono eneinee e�na u r`��..e...ry...... PREPARED Fd WLMY HOMES. W. DAn SORMTT M/N/W ECar ViN a l�scC sx[[r on g JIF tip!, I jpy ia alit30 t jib tP a all 11 _ kkFF a SG i ♦ - 1. pp i ° Pt pg3 $apt Y Q t 7 E y """ — --_: SHJ DOAH PUD: FILING ONE P" owl a ~` NVLJ G RIDGEWOOD HILLS P.U.D., FILING 3 21d PHASE III TEMPORARY DRAINAGE PLAN ^„ _ 1 •ePowo •H e,wee r,wa p ^ .• w w e PREPARED FOR:M MY HOMES. P DATE $I.Bµ1TED.Oe/1P/00 FCOD6 i• LEGEND DETEti—I 1N POND #1 XXX MAJOR WATERSHED L`E� PIPE ROUTING ELEMENT O DETENTION FACILITY DETEN—GCN POND #2 -� Ridgewood Hills P.U.D. - Filing SHEET 3"`""B� SWMM SCHEMATIC DIAGRAM 1 c� RITONO EN at" lEIto NO 10F 1 SHE TS 432 S. LINK LINE PLAZA iCiR COLLINS, M. 80524 W 970.=2400 TEL 97:=r24_5 FAX WWW.NOLTE.COM PREPARED FOR: Melody Homes DATE SUBMITTED: 4/20/99 FOB NU4� �N XPEFS., BASE 110 1,30 77,77: 150 1 0 - vl� ELI-- - Aq� is a oW Ridgewood Hills P.U.D.Filing 3 SWMM BASINS TE11Tr_11JrNtj-%r%_T_ 90YOND WEGINSURINGNy 432 S. UNK LANE KAZX ;MTCDWNS, 00. 80524 970.2=.2400 TEL FAX WWW.NGLTF_CDM PREPARED FOR: Melody Homes DATE SUBMITTED: CF NUMBER 1 FC0045 � N a E. Y O N D c Y. : I N E E x F N G Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 ' Basins 920, 921 and 924 combine at D.P. 924. A 26' on -grade combination inlet captures 20.16 cfs of 100-year developed flow with 0.29 cfs bypassing to ' Shenandoah P.U.D. At D.P. 919 a 46' on -grade combination inlet captures 35.71 cfs of the 100-year developed flow for the Phase 3 temporary drainage (discussed ' later in Detention Pond Design) with 0.22 cfs bypassing to Shenandoah. At the build out of Avondale Rd., the flow at D.P. 919 will reduce to 4.36 cfs which will ' be caught in its entirety by the combination inlet. ' 4.3 Detention Pond Design A total of six SWMM Models (See Appendix D) were developed to size the detention ponds. The first two are for the orifice controlled outfall and the plugged outlet condition for Pond #L The second two are for the orifice controlled outfall and the plugged outlet condition for Pond 42. The final two models are for the temporary drainage for the construction of Phase 3 (see plan sheets 2 1 d and 21e). Pond volume calculations (See Appendix D) show that Pond #1 and Pond #2 have `brim full' capacities of 10.67 ac-ft and 18.89 ac-ft, respectively. The results of the SWMM runs indicate required storage capacities in Pond #1 of 7.05 ac-ft (W.S.E.L.=5076.25) which includes the 0.75 ac-ft water quality storage, and 14.4 ac-ft (W.S.E.L.=5066.54) in Pond 42 which includes the 1.40 ac-ft water quality storage. During the construction of Phase 3, the proposed Traffic Circle on Avondale Rd. will be temporarily re -graded with concrete curb and gutter on the east side so that flows from the north flowline of Kim Dr. will travel to D.P. 919 and enter Pond 41. This will allow the construction of Phase 3 without the construction of Pond #2 and the related offsite outfall system. The required storage capacity for this is 8.55 ac-ft (W.S.E.L. = 5077.09). The south flowline of Kim (Basin 807) will temporarily be retained in Pond 43 (temporary 12 N:\FC0045-NEWkDrainagekWord\DmgRp1041100.doc Final Drainage & Erosion Control Study Ridgewood Hills P. U.D., Filing No. 3 pond) which has a storage of 0.31 ac-ft which is twice the 100 year requirement. This temporary pond will have no outfall and will empty through evaporation. The results from the plugged outlet run for the temporary condition show that the ' required storage will be 9.0 ac.-ft. with a 100 yr. W.E.S. = 5077.90. The crest of the spillway for Pond #1 is at 5078.00. At the buildout condition of Avondale Rd., flows from Kim Drive will route to Pond #2 through Storm Drain Systems G and E respectively. Refer to Appendix D for a schematic diagram of the S WMM ' model conveyance elements and ponds, SWMM Basins exhibit, input data summaries and input/output files. ' 1n each pond, there is sufficient storage volume to capture and detain the entire ' 100-year storm event, Water Quality Capture Volume (WQCV) and maintain at least one foot of freeboard. As a precaution though, an emergency spillway was ' sized to discharge 53% (106.3 cfs) from Pond #1 to Triangle Dr. from where the discharge will flow onto Shenandoah P.U_D. The spillway in Pond 42 was sized ' _0 carry the 373.0 maximum inflow to the pond. The discharge from the spillway will flow east in the historic drainage path toward the intersection of U.S. Hwy. 287 and C.R. 32. Erosion protection on the back side of the Pond #2 embankment will be maintained with American Green P300 Erosion Control/Turf Reinforcement Matting. ' The outlet system for Pond #1 will regulate the release rate at 9.9 cfs (Q,H,S=9.9 cfs) through a 11.5" diameter orifice plate. Pond #1 will discharge into an existing 21" RCP that exists as part of the Shenandoah P.U.D., First Filing storm drainage improvements. 13 N:\FC0045.NEW\Drainage\Word\DmgRpt041100.doc ' Final NCO= Drainage & Erosion Control Study B EYO NO P r G N E E N ING ' Ridgewood Hills P. U.D., Filing No. 3 ' The tailwater downstream of our outlet structure was accounted for in the design ' of Pond #1. The downstream system was originally designed to accept 25 cfs from our Site. We re-evaluated the downstream tailwater condition using the ' proposed Pond #1 release rate of 9.9 cfs. The outlet structure will operate under inlet control. Refer to Appendix E for portions of the approved Final Drainage ' Report for Shenandoah P.U.D., First Filing. ' The outlet system for Pond #2 regulates the release rate at 10.1 cfs (Q,H,S ] 0.1 ---- cfs) through a l 1-1/2" diameter orifice plate. Pond 42 discharges to the proposed off -site storm drainage system (See Appendix D). The design of the system is included as part of the Ridgewood Hills P.U.D., Filing No. 3 drainage improvements. ' The Pond 42 outfall connects to the proposed off -site system at a manhole in the southeast corner of the Site. From here, the system heads directly east and across ' the property owned by Colorado Land Source. A letter of intent from Colorado Land Source (dated December 14. 1998) has been submitted to the City of Fort Collins. The developed runoff will be piped under College Avenue and across the Colland Center Third Filing property in existing road right-of-way and an existing ' drainage easement. The pipe will daylight east of the Colland Center Third Filing -oroperty into an existing swale. Nolte Associates, Inc. is working with the ' engineer for Colland Center Third Filing, Northern Engineering Services, Inc., to design a common outfall for this line and the outfall from their proposed detention pond. The existing swale has a capacity of approximately 124 cfs (Note: representative cross -sections downstream of the proposed outfall, which were ' selected following a site visit, are included in Appendix Q. Please refer to Appendix F for an 11" x l7" copy of the Colland Center Third Filing Plat. 14 N:\F0004i.NEMDrainage\Word\DmgRpt041100.doc NCE E Final Drainage & Erosion Control Study 3£YOnO elYLn EEgING Ridgewood Hills P. U.D., Filing No. 3 4.4 Water Quality Criteria outlined in Volume 3 of the Manual were used to determine the required WQCV. Pond #1 and Pond 92 are both "extended detention basins". The water quality storage volume is equal to 120 percent of the WQCV based on a 40-hour drain time. The WQCV is based on the total basin area draining to the detention pond and percentage of that total area which is impervious. The calculated water quality storage volumes for Pond #1 and Pond #2 are 0.75 ac-ft and 1.40 ac-ft, respectively (See Appendix D for calculations). Water quality perforated outlet plate details are included on sheet 22b and sheet 75 of the construction plans. 15 N:\F00045,NEW\Draina9e\Word\Dm,-Rpt041100.dot Calculating the WQCV and Volume Reduction Chapter 3 11 EEEEEEEEE1EEE EE111MEmown =1' :.EEEElio AEE�EEE�EEiEEEEEEE EE:= '=:::111111:1: ::::CCC:wE''Ewww� EEwEEww- w w ww:::C::wwwwwwwwwNo Ew: w C::::::wwling am mown www www wwwwwww :E: ':: 'EE."'E.'.E ' :a mown :: 1, wmom :wwwwwwwwwEEw NEwww::www EEEE EEEEE=E6=eEEE= EEE €EEEE= EEE==EEEE .1•, CwwwEwwwww:ww:E::'EE www' www w'�Ewwww':wCww wwwwwwwwwwwww . www wwww ww wwww .. .m wwww wwwwwwww . w . .. .. . ....... wwwCwwwwwww :w w:w . : w w:wwwwwww E::::::::EEE EE EEE E EEE EEEEEEEEE 1' :::E::www .. w wwwww www:ww wwww .. :Iwwwwww°w..°EEE E=EE EEEEEE:�°E::::� ........w:.. : 1 �:::::w w: r ww w w wwwwwwwwwwww Ewwwwwwww::::::::::C::E Ea�EE:�:E:E�EEE:::C::::::: wwwwwwwwwwwwww -� Cw: C:CC wwwCwwwwwwwww: 1 CCCCwwwwwC::i I iwww wwww wwww wwwwwwwwwwwww .... wwww '=E aEE:::EE:::E -:::EE::::� EE. ... :own a E anOON E-.I EEE°EEEE °!%P=EEEEEEEIII EEEEEEEEEEEEE EEEEEEEEEEEEEE Figure 3-8. Effective Imperviousness Adjustments for Level 2 MDCIA 4.3 Site -level Volume Reduction Methods For site -level planning, whether at a conceptual level or a more advanced stage of design, it is not ' necessary to use default D and R values if the various area fractions of a site (i.e., DCIA, UTA, RPA, and SPA) can be defined. Two options are available for quantification of volume reduction at the site level when these fractions have been identified: ' 1. SWMM modeling using the cascading plane approach, or 2. UDFCD Imperviousness Reduction Factor (IRF) charts and spreadsheet (located within the UD-BMP ' workbook available at www.udfcd.org) The UDFCD IRF charts and spreadsheet were developed using a dimensionless SWMM modeling approach developed by Guo et al. (2010) that determines the effective imperviousness of a site based on the total area -weighted imperviousness and the ratio of the infiltration rate (average infiltration rate based on Green-Ampt ), f, to the rainfall intensity,1. Because the IRF is based on cascading plane CUHP/SWMM modeling, it will yield results that are generally consistent with creation of a site -specific SWMM model. 3-14 Urban Drainage and Flood Control District August 2011 ' Urban Storm Drainage Criteria Manual Volume 3 ' POND 1 ' January 11, 2001 B E Y O N O E M G I MEE RING ' Mr. Basil Hamdan City of Fort -Collins ' Utility Services, Stormwater 700 Wood St. Fort Collins, CO 80521 ' RE: Ridgewood Hills P.U.D., Third Firing Detention Pond No. I Certification of Volume Required ' Dear Basil: - Melody Homes, Inc. has requested the certification of Detention Pond No.l. Our survey department has provided current record survey elevation data information for this pond From this data, contours and area calculations have been generated to determine the volume of the detention pond utilizing the City's volume equation noted in Section 9 - Slorm Drainage Design Criteria and Construction ' Standards (revised January 1997). The required detention volume per the design plans is 7.05 ac-ft. at the related ponding elevation of 5076.25 for the 100-year storm event. The results of the record survey data (see attachment) show that at the pondmg elevation of 5076.37 the 7.05 ac-ft. of required volume is provided This minor increase in ponding depth will not adversely effect outflows from the pond outlet nor the overflow ' spillway, which is at an elevation of 5078.0. Thus, we certify the current pond grading for the required vole= and ask the City to accept this certification of Detention Pond No.I of Ridgewood Hills P.U.D., Third Filing. ' Sincerely, Notre Associates, Inc. w �Ci � �„pRtiiy-" . •QT%— Tom Ochwat, P.E. ' Project Manager y, 1 Cc: Ms. Anna Lee Zimbelman, Melody Homes, Inc. ' Ms. Dena Cavutess, Melody Homes, Inc. N O LT E ASSOCIATES. INC. NAFC0I Md 1vlCiry of fiFo11i0s12001-01-I llcic-detp0od Ian-0t I ]OI.dOc 1901 SHARP POINT DRIVE. SUITE A FORT COLLINS. -O 80S25 970.221.2400 TEL 920.211.241S FAX www.NOLTE.CON POND 1 4 fs • ;PROJECTPROJECT NAME: NO.: RIDGEWOOD HILLS P.Ub�F�G #3 Ir DATE: 1/11/01 • r 1 1 / PI 1 r1 1 111 1 it 1 rl 11 11 1 111 1 1 1 .1 • :r �g��®aA�osas�®r•a�, �' ��`�'.■1®E>El�� n�l>�I��Sw■v e®®ems®�����®��® .�����,�.■��•� ac®!®r..m>r,FRgIC9pf! w"3mgun �lerl.saxnnc�.��� I�nrsn.sa e S9 _®t®ft• �1d®® `Q!!�ls8i•O�LJ!®�®�iTu�f l��i���il' 1®e¢�®0�®��9 LIL®od���'£�Ai��i���� e�0te��leRl�l�F3iiSS=I.�F! ®f�®��16� 1>i�333�o��•t! �A`-■' !0•!lJs�.�„�,•wa®EiQ �1�®er�r.n••�.e��k�sv3 MWEW � 1, sia�.'>��7i.T.R1YE9Si���'-a O„-�•w��•r minLl���®Li t�ffiS.R•V �.��.���1l��il®®C� qp�p� Imm �r"�■■������,QlB ���®use ����� -, „ per—��n,� ■>,>�,s®� 40111111111»,®IIII[IIIIIaN m lymm a H—w all �QI■fi7J���a it+��®I���A�II10S11�!!.!•��i®®�JIED lF min EZM ��e� plc•®ems �ril�� . ,. Notre Associates, Inc. 1/11/01 Page 1 k .� _ .d.si"' w9�Y3'.��$S?T . � :iY�xks�,k''"``�•YT '���. vna a�u pE I RIDGEWOOD HILLS P.U.D. POND-1 j Ai J ^e ••e ••�•!»e VERIFICATION w..m.a.:,no.rnvs nc do suwm®. Pond #1 Overall Ilao Composite Composite Effective Effective Effective Basin ID Area (ac) Cz Clo Ciao C %I I 2 I 10 I 100 N1 0.35257 0.53 35.50 24.24534 28.3332 30.91762 0.36 0.42 0.57 N2 0.27633 0.52 35.31 24.08518 28.16274 30.74146 0.36 0.42 0.57 N3 0.3011 0.57 41.57 29.6258 33.98359 36.70708 0.41 0.47 0.63 N4 0.21086 0.50 31.83 21.16245 25.02598 27.48322 0.33 0.39 0.54 N5 1.87222 0.68 60.19 48.38881 52.79332 55.39184 0.55 0.59 0.78 N6 0.82971 0.80 77.13 68.41426 71.83689 73.59858 0.71 0.74 0.95 N7 0.89961 0.25 0.00 0 0 0 0.25 0.25 0.25 N8 0.16306 0.68 60.97 49.25339 53.63401 56.20901 0.55 0.60 0.78 OS-1 0.40112 0.71 66.41 55.40766 59.56536 61.93694 0.60 0.64 0.83 5.307 = Total Area Composite Effective 1100 = 44% Composite C 100 = 0.68 11 STAGE -STORAGE SIZING FOR DETENTION BASINS Project: Ridgewood Hills Fourth Filing Basin ID: Pond #1 Proposed D� Side Slgz F1� w i silk S* z G l I I silk S* z Dam eyx ca-fir,}r 7' < ----------- L--------- > shsbrz Sit Sdgta Dm M WI E-L-> �sh'a ' Design Information (Inout): Check Basin Width of Basin Bottom,,L =� ft Right Triangle Length of Basin Bottom, L = it Isosceles Triangle Dam Side -slope (H:V), Ze = fVft Rectangle Circle / Ellipse Irregular ' Storage Requirement from Sheet'Modified FAA': Stage -Storage Relationship: Storage Requirement from Sheet'Hydrograph': Storage Requirement from Sheet 'Full -Spectrum': She e OR... OR... OR... OR... (Use Overide values in cells G32:G52) MAJOR acre-ft. Jacre-ft. acre-ft. - MINOR Labels for WQCV, Minor, 8 Major Storage Stages (input) Water Surface Elevation 1t (input) Side Slope (H:V) flift Below El. (input) Basin Width at Stage 4 (output) Basin Length at Stage it (output) Surface Area at Stage ft2 (output) Surface Area at Stage ft2 User Overide Volume Below Stage ft3 (output) Surface Area at Stage acres (output) Volume Below Stage acre-ft (output) Target Volumes for WQCV, Minor, 8 Major Storage Volumes (for goal seek 5069.55 0 0.000 0.000 5070.00 0.00 0.00 517 116 0.012 0.003 5071.00 0.00 0.00 19,497 10,123 0.448 0.232 5071.81 0.00 0.00 35,108 32,102 0.806 0.737 WQCV 5072.00 0.00 0.00 38,890 39,317 0.893 0.903 5073.00 0.00 0.00 - 57,352 87,438_ 1.317 2.007 5074.00 0.00 0.00 63,491 147,859 1.458 3.394 5075.00 0.00 0.00 67,875 213,542 1.558 4.902 5076.00 0.00 0.00 72,230 283,595 1.658 6.510 5077.00 0.00 0.00 76,698 358,059 1.761 8.220 5077.52 0.00 0.00 78,009 398,283 1.791 9.143 100-YR 5078.00 - 0.00 0.00 79.219 436,017 1.619 10.010 5078.51 0.00 0.00 81,282 476,945 1.866 10.949 5079.01 0.00 1 81,282 1 517,586 1.866 11.882 UD-Detention_v2.33 Pond#1.xls, Basin 1214/2013. 12:22 PM F W L � J w �H e O 3 1 Ilr;0D0 J O CCO 10000' W � OOGi00G0 IL a ,I � U � � coo .`0000i � i s Q o 1 cc W Q LL in T6 m>iCg C m a y m U 6 m y U HRI n�nit I a _ I I ¢tp i 2 I ¢ --' - - I; a e £ w s¢ 8 e3 I 1 �! u � €" II mill ,9 elo o$lo 000� o ooccco'3 g HIM�-aml-�"�. dO000000g'$3 oo (dad ��I I i ' e�d o ddadoeoloo�o' $ duo d 6fd 6 did did �o) Y uvi$smsss.$ssnsu', _� oev�i 9i 9i�9i 9i 9i 9i 9i gi I 1 11 11 STAGE -STORAGE SIZING FOR DETENTION BASINS 11 Project: Ridgewood Hills Fourth Filing Basin ID: Pond #1 As -built Dv rdeslpz Wi F . V speskpz L rtskr z o,. ay Jm,4�#•au- �-------------------i sae Sul,Z sasye. m D.. I � W L Skp,rea Design Information (Input): Check Basin Sha Width of Basin Bottom, W # Right Triangle OR... Length of Basin Bottom, L = tt Isosceles Triangle OR... Dam Side -slope (H:V), Za = Wit Rectangle OR... Circle/Ellipse OR... Irregular (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet'Modified FAA': acre-ft. Stage -Storage Relationship: Storage Requirement from Sheet'Hydrograph': acre-ft. Storage Requirement from Sheet'Full-Spectrum': acre-ft. Labels for WOCV, Minor, 8 Major Storage Stages (input) Water Surface Elevation N i t) Side Slope (H:V) fa71 Below El. (inpun Basin Width at Stage R (output) Basin Length at Stage it (output) Surface Area at Stage N' lou u0 Surface Area at Stage R' User Ovedde Volume Below Stage ft' (output) Surface Area at Stage acres (outoui Volume Below Stage acre-ft (output) Target Volumes for WOCV, Minor, 8 Major Storage Volumes for pal seek 5069.55 0 0.000 0.000 5070.00 0.00 0.00 517 116 0.012 0.003 5071.00 0.00 0.00 19,497 10,123 0,448 0.232 5071.82 0.00 0.00 35.419 32,666 0.813 0.750 WOCV 5072.00 tim 0.00 38,890 39,317 t 0.893 0.903 5073.00 0.00 0.00 57.352 87,438 1.317 2.007 5074.00 0.00 0.00 63,491 147,859 1.458 3.394 5075.00 0.00 0.00 67,875 213,542 1.558 4.902 5076.00 0.00 0.00 72,230 283,595 1.658 6.510 5077.00 0.00 0.00 76,698 358,059 1.761 8.220 5078.00 0.00 0.00 79,219 436,017 1.819 10.010 5078.50 0.00 0.00 81,282 476,143 1.866 10.931 5079.00 0.00 0.00 81,282 516,784 1.866 11.864 81,282 #N/A #N/A #N/A #N/A #NIA #MA #WA #NIA #WA #MA #WA #WA #WA #NIA #WA #N/A #WA #WA #WA #N/A #MA #MA #WA #N/A #WA #WA #WA #NIA #WA #N/A #N/A #NIA #N/A #WA #N/A #NIA #NIA #MA #N/A #N/A #WA #NIA #N/A #N/A #N/A #N/A #NIA #N/A #NIA #MA #NIA #NIA #WA #NIA #WA #N/A #MA #WA #MA #NIA #WA #WA UD Detention Existing t.xls, Basin 121412013, 12:10 PM STAGE -STORAGE SIZING FOR DETENTION BASINS Project: Basin ID: UD Detention Existing t.xls, Basin 1214/2013, 12:10 PM u SWMM Input Data - Pond #1 Models 1-3 Ridewood Hills P.U.D. Filing #4 Basin Length Width Slope Subbasin Area (ac) Total Impervious Area %Impery Composite "C" (ft) (ft) (ac) 909 2.06 0.63 31% 0.47 910 1.43 0.57 40% 0.53 100 150 1696 2% 911 0.63 0.31 49% 0.59 912 1.24 0.42 34% 0.49 913 0.26 S4% 0.63 Sum: %11 5.84 2.19 Weighed Average: 37% Basin Length Width Slope Subbasin Area (ac) Total Impervious Area %Impery Composite "C" (ft) (ft) (ac) 900 2.78 0.98 35% 0.5 901 2.36 1.09 46% 0.57 902 0.68 0.3 44% 0.56 903 0.55 0.3 56% 0.64 110 150 4135 2% 904 0.87 0.45 51% 0.61 905 0.88 0.45 51% 0.6 906 2.94 0.88 30% 0.46 907 2.78 0.92 33% 0.48 908 0.4 0.11 28% 0,44 Sum:j 14.24 -5.48 Weighed Average: 38% Basin Length Width Slope Subbasin Area(ac) Total Impervious Area %Impery Composite"C" (ft) (ft) (ac) 914 1.11 0.51 46% 0.57 922 0.61 0.4 65% 0.7 923 1.41 0.67 48% 0.58 130 200 2863 2% 925 7.86 3.93 50% 0.7 1005 1.63 0.47 29% 0.45 1006 0.52 0.25 47% 0.58 Surnt 13.14 6.23 Weighed Average: 47% Basin Length Width Slope Subbasin Area (ac) Total Impervious Area %Impery Composite "C" (ft) (h) (ac) 919 0.48 0.4 83% 0.83 920 2.01 0.79 39% 0.52 150 150 2426 2% 921 1.96 0.6 31% 0.46 924 0.64 0.42 65% 0.71 926 3.26 0.29 8% 0.31 Sum: 8,35 2.49 Weighed Average: 30% Length Element Size (in) Slope 10 30 365 1.5% 11 Direct Connection Element 12 42 1055 1.2% 13 Direct Connection Element 14 42 S00 6.5% 15 Direct Connection Element 16 21 100 1.0% Pond Cutfall to existing 21" RCP in Shenandoah P.U.D. Filing No. 1 I 1 SWMM Input Data - Pond #1 Models 4-5 Ridewood Hills P.U.D. Filing #4 Basin Length Width Slope Subbasin Area lac) Total Impervious Area %Impery Composite (ft) (ft) Jac) ,C„ 909 2.06 0.63 31% 0.47 910 1.43 0.57 40% 0.53 100 150 1696 2% 911 0.63 0.31 49% 0.59 912 1.24 0.42 34% 0.49 913 0.48 0.26 54% 0.63 Sum: 5.84 2.19 Weighed Average: 37% Basin Length Width Slope Subbasin Area lac) Total Impervious Area %Impery Composite (ft) (ft) Jac) ,C, 900 2.78 0.98 35% 0.5 901 2.36 1.09 46% 0.57 902 0.68 0.3 44% 0.56 903 0.55 0.3 56% 0.64 110 150 4135 2% 904 0.87 0.45 51% 0.61 905 0.88 0.45 51% 0.6 906 2.94 0.88 30% 0.46 907 2.78 0.92 33% 0.48 908 0.4 0.11 28% " sum: 14.24 1 5.48 Weighed Average: 38% Basin Length Width Slope Subbasin Area Jac) Total Impervious Area %Impery Composite (ft) (ft) Jac) ,C, 914 1.11 0.51 46% 0.57 922 0.61 0.4 65% 0.7 923 1.41 0.67 48% 0.58 130 200 2863 2% 925 7.86 3.93 50% 0.7 1005 1.63 0.47 29% 0.45 1006 0.52 0.25 47% 0.58 sum: 13.14 1 6.23 Weighed Average: 47% Length Width Total Impervious Area Composite Basin Slope Subbasin Area Jac) %Impery (ft) (ft) Jac) ,C, 919 0.48 GA 83% 0.83 920 2.01 0.79 39% 0.52 921 1.96 0.6 31% 0.46 150 150 2426 2% 924 0.64 0.42 65% 0.71 926 3.26 0.28 8% 0.31 927 4.91 2.10915 43% 0.68 Sum: 13.26 4.59915 Weighted Average: 35% Total Area 46.48 Ac Weighted 1 39.43% Conveyance Elements I ng)th Element Size (in) Slope 10 30 365 1.5% it Direct Connection Element 12 42 1055 1.2% 13 Direct Connection Element 14 42 500 6.5% 15 Direct Connection Element 16 21 100 1.0% Pond Outfall to existing 21" RCP in Shenandoah P.U.D. Filing No. 1 I 1 1 BASELINE SWMM MODEL I 1 C d M ca W C 0. a ,i �°immmmmm 88� yyl aa; «Wi000000 cmi i� iwi =o¢i m OYI utVl 041 LVI i O 14f a9 WVI WVI p 00loo0o00 di OV0 V'I� O la in r01 00000 Ei OI LP; Mtl p1 VI OOOOoaO S21 Oo000 U o m 4 iooao o 6i ' iY tlpl pEi IN aw >919 I¢ UI o00000o VI 100 V I+UI z ULiL WT!� .n Ti qt qi looa000 • ulu n-�n» OYI 3YIF EI WI P 14 y01 LYI t1Vi OOOOOOa Im tll 14 mi NpI NVI yGI 9E1 UI > G 1 00000 N mrvevlmm� HQI �GIm di O � i0 u w 02iS.�»-�.n+L� O.la .Oils LI a �1 aSl� y _ I.Y( I4K 4 44 IS i0 o i »£Y YpjN 1 >i m>1 VVI 1^ OVI 61VpV£VF VI p 1.N+a �orve'- 91nn >yl� -�91 .G+91 -�a In IC ££„=6V TIpO �4 m•n mN `u 1�9m w m .. »»_»».. .: n °.i1 IVV'o DUOV¢ » IEN 1> 1 1 IOPPPPPPP 1 S r N Yt O y y O_ 4 GV y V y m EI W EI J K EI � 61 Eln K EI VCR w 4m1N�P9999999 p LI o Lrn ai V VlI OOa » �61 COI a�I rvnry F IFFYF ry mmra LI o1JJJJ IoOoo ¢ ' `u �1 rvrvrvry £�I0000 L 6»Icnnn yVy.. p N lu E 1 O uy1 Fi O M4 1 n.+inm yy11 mlooao pil-�I�� In £4 Oyl£ y c pNIF E1 000 OIo00C » Z olI i 'u w Eli 9 ZI 000 Sl0000 £ O z>�� 4 ry u i0000 0 Z4Z momomon.+ I¢¢¢¢ N K2� Kn 1+ Sd Ir ' WON000000�N 'oaOOIm ii xo-.o..owoo..00000zd000mzzoo o Iz cl al mq1 sL " of �Glm EI p wLIF VUVV q%I ~O O EI 6F IrZi iW4F. I.YiW Zl000O £i0000 » �V VCY U CY,C Y 6 z6 OI�gi1 N1 m111-' O — 1.0] _ EI — 9a7 N�Zmm44 ¢ YiOM2COOZm 10 � —� L m FY£FY 40 !. t 1 I»Si�uNYf F m I¢ q OOc �6J4»uNN(�YZNNdd �l0 .lm2E(�d t N U IY V �u Cql O —» Z2¢OON 1 IF ZNdN Im O1VL4imC F$ O C Y 4 F i 9 !� v �..V OJY¢ I IF Y4�+ I IS FYYz I'+mxO.�m �Oq g6iiz z Eio � i t- li I Y¢¢OYddO¢Nm..2 Y4Ym Im I y H L9C Y3�+3Km�01Y1m 1011F0¢nV l�^U Y__I 4T1F01 �^ Vlw m EI m]1 4�1 j 604044 d0[\L1y Ndf-Y Oi41¢Z K �Y I ZY p 21 V J i I MN FO V 042iY FI�NI.ZI IZYNNOCW¢O.�Z4z«OZOuu ..Op ..W ry N m a d C 4 m � O a a - 9.na ai o' OI V� Yn 10 OV dUm N C Gi W m C p �m >".'o oo ..+�a.�«� . o c c o c o occooao °o' °oi of a IU O� + EI ¢O + a`m rrvnv F �......................... 1 O 91 9 9I P OI 0i UI VI V� N X � rvNmvmFnnl� X I in 10 IV 6 OON waaaaaaaaaaaaaaaaaaamaamaa zzr. of - P Y..YNha.9.9...Nf.hh 5C. 90 Yf FF N OFFFFFVVVVV�lVVVVUnFUVUVVUU C OF44 — y� pO S ny Ty01 cL 1C1C .EiVIn�Op000C0�00�0OO� G�QO�00� �h2CO2 H £.L+ 021 �,2 a.]I O]10 m�l 0000000000000000000000000 C 3 N C d Aca m C Q IL i m CE: OI > 1 aP•G+: °E.• mi o<ao aE- 4� ' p�a :d�C: :C: V�-^• �4a iCu=EOmE ul� C60 •HG <•16 �W nt'16Y205 I EVy i S .t •' •+ �� r. n �n .+ iE= ' £CE! I oo0o_COo F'aEo E�Svt i £F^ n mnc ry �E•l �On`Y000-1;-J �YYFYYF44s ^i •a �t •t O O it _ Z`J m a d m a d N Mca W C C a <a}Wu�000 C SUI 6OV1000 146 r 000 Va• 03 T� cCCiOCO 40pr 00 Ti ..am 5' : G• • tl JE! m'- 0 4 E•: I �W` s r. �Cu E: 1240 O O -.o nCr I LW41 .• O e-V %Ocla �SOCI t' e000000 r EV¢IOOc00000 �.FGn �e- �ae�u� o F F F Li 6i355H JLV • € I Frl`VCOVp03 1 I I •V 4^ ^ r ter...... .._,oz .... BASELINE W/ AS -BUILT POND SWMM MODEL C -. IcopCpp uEi !J • p'4 !p WU!o . p 1 CVic O :m OE ' : Y7;ocoppp - - "Ia onpGCOo - J .. • o V S •n G lcoo_co E! - iT�S IK U! CappGCp tl ;K !ppp_pp i� F; • S;i �eIJ CI �jS IpO0000C+ IVIF - 01 eEl I >i p,pCGOpO CAI 4; ceavncbt- -'.ci GW - ;ri a irta < aW 13 >u I t: �t'. .n .��'l ill n :u:n •. :u �+_Ir^.v -. -•.+ i- n rZ;t •n iVIpOVGUY �+ iEt ;Y :W O 1 Ct U EI E• 4 E; O E: E! 6 fil VYI 1Ei 9L-J iPO'J '_...�.. nn� ___.. •.p —.. .. .. r. —.. .. .... _. ......n _.. .. .J —.. .. �:2 _.. ....-.nn..no3 Ts ou p a c L; �5� ppp Llp 1 IC iF ai o00 n 31auc-« I o; L G ui c V T $ n of cl — e o.�l loopG x'cppp .. a`u 6 E+ 2>nowor0 _ ry FLIP JpOp J J O00 Z!oopo £�ppoo - �30ooOCoon F•O ij•}yy . ........ C3 pGpp - COI ll0 6! Y+ T-4 O Ei Cn n J UUU o000 -. CV rS - CF Si02 _ i. QO o�•z--yNFY 6 W Mo�t52,LLyOozY v i^, i0 2 i cl 6' 4G 1+ - I Ir.6JC..�'.-•l _F Fes•^-i-i <:n cl el <-Z nmLL14''y .i :.l .-.. F a u IC ." I ] ✓I 4.4i F 2 ie � I IF n4rl 114FnF2 I-G�7J<I yIC-1 v.b .. 4 OI CUI F IJ IS Y6CpF000S Y. uI� 4Y<: WIJ I<: 3 '��O m u .r �6C� O 4W WFN'J:aCZZ ^'ZZ O�„..FnW6'i:Z2�3¢41WCpJz4!O r+0Y0 _..I .v. SLlu wa^063C64�+>JLZNF.u£ >Fi _._OC •-.. .. g �.W •-.. .. .. .-.. .. ..n nn.. -.. .. r+.a ..n -.--n .•^.. 7.- .. m a m m a 0 ` a 7 a 3 m Vi C a° Li of E m ' m a 1 C O a ' 5 a N Q ' C y loo•oae :.m.•Soo:l° l0 �m o�-._ om..n a..•m��m >' `ceee.:-:n+. �..:«-:�000 oo00000000 In h � v�nmF 1 V Y anv vvvvvan vv 0 .n rvrvnn co C t-a rv^i ocnrvn nwFm Fip Occ OJ0000c .4.+.+ . ry i sg �•rv.,m„a�� oi� a xi 4 OON OC I u2Y CYY 6Y¢SCYYYp2"Cp SpCCCCY I Y>T. ;. T•'v >•»hh>.N ZZF Z W 1 ^P `ez¢s -�titi-�•w~+Aw.rvy n'c'^^ss's'aan' WOO OOO�+h 4 OG ooc000000^oho 0000„-000000 t'Lj — srt� N ' 00 ' Of~uIIM�MF�-1-?M J4 m LL4LLLLC� l��y WE F I u t OFFIJ ``oua^ !h Z C £u 021 ia° nNNv a_aaiia°�io°. -.. ..00c0000 o...... o.. o'u o o oo..o� .. u.. ..� — c� .. ................ N G • �• EEE _9 • EOE-. • E 9 £ v yq : �yW n E- E� • D• 9 4 _ CE• CI d� - Es 9 � 4 LlO Z4'.000Y'•,J £� yOC nVV V h Y2420tf�Jo00� W OC SE• 2 ; c OEa EV �acov000v �Oc n nnnnn..nn � � I - n�JJ JOJlo 12 E o 0000JJvn iYJ mmma 22222" Z2222^ 0 00005 a.:u oo `c �auG� UUVVvUWiC Fit'/4 �.7foS»S5Y _ _nM KO T• • is �3 rL oo�oL;Jo a V 1 y Ec Emlo - _ >il .JJJJ.JOJ e� ai • E• •6 COU t4 o iCWi. Ocu� ^OC' 3 N IS4 c iEO e0•pol !£� iSCEi 3t� O0000000 £WVI o000000 �wDa !Eaw ani Pn i E O V i 64 O cnv ;•u i�4 ^ �7hh7Nu Yp61 ^O'ov76'v: M; GSiE p CORRECTED SWMM MODEL k d 10 CO C CD d d O U C 0 a OI iW� aJJo� 0 .o eY�v io va "41 _ +ol nPl £2i000Joa J ,o V im c ovvoo EI •Oe aF. E_ ip Viovococvv 4 yy ...+ �. _. J f• i w S T, Y .00v000 IC la Ei i bl_ v iooJooJa. nEi >i ioocJJo uY r h 1 a'a"e I` '+CI 10 IV IG ei of 41 W� ,F.mearvaJ.. s - i4 i4 �3 64 %L i0 P �9 Ei � Q E� Ei 4 fi� 6 Ei jE�P99LOC ^? LM1VIwf o`o e nc 9� i,5 � aeo I yt a�ntl� O I M1 11. Yt-1- .I O I to p]IHYFt- �I Yi0000 alm 1 O� YI tll K LYM; nrv:ary Zi0000 p6 y 3 L� .ov_.o pal-I-e� N E._ Di mioocJ 0000 r n m..,ti O�rr�ti n E+ _ _ .2333 �ooJc £i000c £ II F o ocmosi: �o lscsx t 3cvov000n Fv {- 14> i mK2� 2G t ONOOooOJnry vaooC4~ COI O �; Si E4=L V30.-o+0 �00.+OCOoo21000 .. �.70 y - SCI iG £-+� IOJ O fll0 CTI„ CIfF.. fFUWy oJoc £Iv000 _ F LIti A 1 M1£ 4r Z W £44 �O M1 LI Z y Or �121 u2aIL41-uI YI NI Z.F „ I3 i Ci �C! 14 Z. ' M1 u' C°i _.�_ �Lg� I IFsmvF Im uu_ urn u,�_ O�Ya IM1IM1-4� 1140 M1FF2 I-20.]m��J pp J L^ _ o < .�1'ui ^U 1^ I�CCzcYLL Cmu1 •�3t6Ym IJ VI �^- i1 T1'^O .^. - Ei 2 91 J F C9'• M13 C I IW 10 IJd M1I IF O,YSI ,+2 Zl�^VZ I j IF I > 0;1 � Z F `o `c' obi 14. 14-W•`s zi'a seum'�JOJza�. . 04 3 N N ' N d L L U O .. a a'- - ai - a Y5 _ Z o t"I �3 - _ E --------------- n _ O _ u1 CC.Y5CCKCC65CCCCCCSCCCCCC uCY2 CCCSCC5CCCS5CYCCCYC 3C55 _ K OC FF�� 4444�G444 JVJJVVUJUJ<.V VJ.i t. 1. :: _ _ FFFnFI-FFMF�tFFhY1-.YY-I+FtYN JUVV'YiVJUUVJJUJ'J �YCY - 3333333Y333�33SZL333?3 ........... �2Z2ZZ^S�?22ZZZZ22iZ2ZZ2 3 N C 3 9 I VCJ �6C I ] i C ill • n• G61ac i� 0 WAINW G _• peE+ • E9E0 ill • S: 4 • a £4£46 • it. A �- al••nocco-+or i OOEslo MAMMA� ocaJc000 `Y eoace000 E�ri ooaooeoo - �• G s Y LCEi F, oococ_c ESIm� E� ocaoocoo w0^ I .sw o Oar �[h[ ems` 1 E -• _ - iE�°+ s' Io�o�oa��W is€�oa��JW i�•Y F1+F 4Yg Y644 �22u�^�MMF ±22�22nF0 I W 8f G` Yi: vdiC $a $$ oo.uo rcoo.:o aoo ✓la - I V10 P :'° e _ > V Oy7 :COJ:Oti00C � C�� •5•YWnvtWL • O: T.+O�uu.mi j.�iC •w•j3464%IJY ].�WU : E: .Y•~ "3 ors iEr L0 t 6•c i £CBI +la C £ _ i Cl'il' MOe ionvosgoo WHOM4 .. 6L A d rr ' d�mOE2 r�6Wi c _ WISH" A iVE ]J iANTARM •- V i £cE� zc _ _ V �£S v OU 111821126 O� Q U O FOa q Vl r£W 1 ` 2 y �� VOA - r Sr 11 Ei OCR 1 E- 9 [a to ry I 149 S 1a C - Flo 14WVfc jig Q £ !£S lw- a CI 1111111 qE 1WW6119 �OOj y _ III p. as i x31 E ki 11 �c 9r m1 AI �o i 1 �Vj 4 u1 I; z,rr is MISS fir rr_ n. a: air,1„ 3 H g N I PROPOSED SWMM MODEL 9L [o! w LVIo �-: I Oo�co VET >4 ii a°. a401000000 �JI np� � ti0� C0000 -•.� C O �.r O� Vic000c000 SZ�COCcoc Oooco E� �4 OI - >S19 ICy Ui000coo _- U F 'ZZ V6i6 I> V� o� o000o irc IR I - I Oulm .. l000000cn 9E1 >I 14 � 000coo nH i I Y S� c(aanwcC +GI qq pp rC 021y 'e �S• VIr.mOOa�o o.>� SO�c cz s i3R a co c i> ;9 Y ee O S _ iJ 4 O_ � N ei VCI ✓. N 9DL0 9. ac V .cl � Oo0 N u�l O f � NFY r 0000 m 91a 21rvc vN I I JI K O e COI ��.ry ate Yi o00 9 I.. V 2 S MC�n_n+ \ i� Ei c lo0oo p� oco n ]Y - Ov R S� E+ 9 _ �5665 .0000 E� 00o L G 04¢oxcc�io F �h lu ioo Jn 86 Y Osoo^cccn� .Oo �O� p� _o.o o.-00000 Z(u000s2.-.oc [®iW ifF�.L OFi '.'i Ei C Si - s°O�° u ei -�CIM 2`Hi.Y. �3333 �i=zzz r o0o sR± o00 - OV Oti F2 6 -FO SIo2 1 6YJ O 2U' H� S41 IG ItIV [n OZ sz 41yy IF O IC 2 � E1 Oy Ei — �.Si N .-m ulY< 5 w FDaitZ Y'OGwy � a� tt O>FC IFIF F R�+ IOFN4w I^q IOS i.j2 V^ E i F 6 NI ° 2[ �'. J F Vic[ IJ IF Fszc F3G� RF6Fit � Jt Fz..aacoc I N Ij I iF rc.0 I� :� "I ; r FOI - Z i U t' I - I..a I 2 ilo [ -F-6GV OYVG<R1oo40ii a�6FN C441R i OJZJFn4'r'ZZ33K44:COJZ4WnOZ0�+ _ �05 g _ ',- m a F W a c0 L O a 0 a` a 0 0 a W a 0 a a 0 0 a 0 IL` u a_ 0 a o`c o`o -V • C -6 4[ a; 61 a KSC zzz E_I F J - p OM1 23 333 Cop02 c£� pp OZ� WJI ~2i� 9�3 �s�a �oas 19 IV GI EI 4� J D K tC¢S......56YCC........ CY KCCCY665YCCr]'K¢YYYCYC W _ NN>. CCC Fh'J� F 4t4464<46(6 a :iFJ000VVVUUVV Vl`U^UVVV„V-u VVM1FVFnFM1VM1FYnYFFM1FFF� _ FFFFFFM1M1M1M1•h-FtM1M1M1M1M1M1YFI+F �. V..UJVUVVI`VVV plp .....1 � EG WWWWWWiWWWw w Iu 4. Lrv4 W1u 44. LV. W4.'- •e L. o Gc000000000000000000�000 zz3 zz 233333zzzz3 3iSY cC cc�ccc �c 4` r. a° amnw _tea°a°$a'a°c°?a'a'----"o'c'c 000'oa'o'o S'o'o o.'�. 'o'co'o o'o'c'o'oc ii�iiii�zi'z `z-`zzi�Wz?zzz 3 N >z m oiJ ,a c•. io ry rvaV ��OE910 - ]91 �SSCE-„]♦ occ +'Ja _000000cc C cc000coc C Ire' � o oconccov O N 1O is'. _ its! O aoo - O L M A Eli jre -106 ie-•on _ _ ii�` So.." oa � a1 mlawn �£- az£-- o€ ,••n, l 000`o'o`o»u l ocos c`'`c��w IHu JV «V22ZFY� y Tr - ��. 22 O yiz2-22_HF^v :J C L1_> : F: YFF-�+•J• : E: E i 1 O• E OE.• '�': S3 13 • LCL'+ VJ O O11282p y t4£ T4 t<: I N I.. -.«n c . - E O C 9 WIN L•O O 111114111114429 O e°eo oa.�o �.-i nco o..0000 C. o a' O Yk ;21 : � c.°• WHOM OlIam I •O >I •SEC _ ] 'y, 2, 00 C a a zaTzxz_���000_ s �iv aE: > F� - E• - L• pp C I sit P•• E G gi £q{^ �p� -6 E ECOO SCE~ ins. a 16v~'I .E .E uGD s'-OOOv16>u ti ia— ni� maa 411111 •••• a , - O :G: e0�.+9� _ +CwuEN•• T: - o,L O«OOo J: �i LW� _ y[DYS H o o :O•� _ v1 <� ma`s io wo:. c°i•�. 'c- .c. i:.}- a s - o: T - E: c w i 66p0 . ^9 �: 6. V6 ,+a .. l4KS,y]6 Y 3 S: F`I •L. r.+4V (v. v.3 v,¢41Y �owLV H•.] d a N 3 N : EL- •EL n is E� ZM1y Ci 6Ka ..n n 6InaE nm CO IY Wj�a o L N Gonp c O S 4i £cam o si o '_< _ Ak- L 1 Epi a � i HI ES n ry Y 1 y e b A C - n IL - � � 1 22 22 L i : Y A 2044 31 6� VU�Y 31 O 1+• CORE, > : I. E. I_: p y : 5: Pi :O: :>: _ C. J 9� 1y6>J IS>o� le — I N 3 y CLOGGED ORIFICE SWMM MODEL n mvl W4ic WViO n� nl ae K <;o Joio OVOO_ w l0000�0 8°,Iry C � O 11p 0000000 d L O Jc Sz; vOOvc 1 U 4icooOCO sq„ IW O'Ooau000 y, j •� Y- - c; .- 2 1 2 9' O +Ef Ic000Oov N` n fL�Y Q% Io0oc00 LY� �S Q; >I arvc e,-m o.. .ten c O EI a L jl �81P 26 •Kf O S O ii0 SS a Iu:n.in of ut ua �..nru..� Tlya n iv a I� N'VcSK�FI .. O a z ".n::so'.",'i,nm aec= p.. ) '•Y x l �J .. :.x4; .w.._ = ..2 06hYdY nZ aY; V�� 000 C; ry Oo 11 a�_ry rvr, b' F U w,n i o I oi_umm Q _ �i'o oo oo0 � m 's ire-ry U a�1 O J= O. o at 'O s_ I:oi000000.. ry�i5".' $oar >. QQ IL Z £ate kW� �I� al �� Ft b I+YY Iw 10 CF• tt 1� «Yv�t GI Z 1 ul OOZW 06�n•n Wu1 10 �;Z <WK �,Oi; K�I .•x «qz O.OY I IY£ ti.N Ilb+tu0> WaWL WIF£WC � T 4 1- W+ O7Fa I IY �R«� IDMYYz 1•'oxO..W is .� a J2 t: v v 6 �; vl Y r IJ WF M1Ocd5 KnW«3F6FN IJ 11 1 I z c+ V E; .rtt J a^v¢ F3n2tiYC4114 10 Y OK•.O I�bUY i Rr I Ful ^ 1 ¢ DIN 1 - T. O4`S46C WWT6FTJJW¢2Zz.•C22 > IZY 6 Zi N 21 z 65 (zi1NNCWW¢O-f26WnOY0-�+ Wp� •� h' hY0 ...b ,rW9tt W .00SOC6n>JSZNLu£ .. ..£ •.•.. .. .. .... .. .. n .r .^.-r ._.�..«n �. _. ._. .. ..n r.. .� .. m a h N I u 1 L� 1 < U V O U �o 3 •3 Yn o IL IL st - i 0:� h,v_ — a < 4- Odi 3 Vb N U Q N D1 O U L_ 3 d N O O IL E, von r ma oo a��aoo�on n-____ n ............... ----..___.. C o ' IL ai ,o Iw CYYSCSTCC55CSCTCYC66YCCC ¢YYCC5C5TYCCCSCTYCCC556Y .. _ YhYNYYYY hhNY a3 7=L t �U~.VVVVUVVUVVVUVVU'v '~,•~ F.FFFF-M"r M1-Ff-^F.F p.n~.FtF..~F Al L.E YtNi+MFFFFFFn YFF FY FFry. F f F W W VV:IUVVf:VUUV�VVJVVV::V UUUV CM.�/- EC444'CL4 ^.44 E ;✓WI�I,.Ip. C. Lc.?WWWWS. 4. a 1•. : L. L. .fi c c[[cc cc 2 Ccjecccc oCOcj.�c 3��3�433w3���3 'o o'o'0 0 '0 S'm ooc'oc izzizizzzzizzziizzzzzzzzz —...,n w m a I �V COO .. s' .• x N U .£CEO a'`T OOOGOOC O - eep eeepppp L 'Fii 3 `Q 1 FLu o ..O a)w e, eCwi ii_ d OGO IFY - � e r mo.W l ppp�pp.,, Y O ILit CL O• h' L EEO �•• E- k � • EOEup 6- < 3 • E 9 E L S L aG a. 0 CI 0EY O cE- OI ,I >1 � I 4 � 4 E �• p O400 eiL•�irzzsasooeo- Y � •Li L 2� W� 1L sE: EV yOTG G2G� O••O � �a^v 16c :E`n 0: :0a SOY. Tv £O. Sr 42� E :O OLD ...u.. s+ 04 2c pOOV 3'C Ohs a..V -hy' ?O _�TaL�C-c•P4uw-Eic S� a9C :00 wV"o�2w'44u6Fa.- utli CYO ..L c :6: 46 �+4 N014CZjS i O1p .>" oopoo-0p £cE, ppapOOo you y yU� I ,•F FMFF�6.f as i ziz=o �a i410 O� ne. CI loe�oopppp E• p p�• u G���T 06 ••OOO�u> :G: 9LVC CS qt> E: u.: .au`.wu.mac. gCL x ao ft _ \! \ #: ) A \ No Text NOTE a E Y ON 0 E "a IN E E R ING June 27, 2005 Jay Barber City City of Fort Collins Utility Services, Stormwater 700 Wood St. Fort Collins, CO 80521 RE: Ridgewood Hills FIX .D., Filing 3 Detention Pond No. 2 Volume Certification Dear Jay: The following is being provided in response to your request for a volume certification for Detention Pond No. 2 at Ridgewood Hills P.U.D., Filing 3. Nohe's survey department provided record survey elevation information for Detention Pond ' No.2. The survey data was gathered in July 2002. Nolte used the record survey data to generate contours, calculate the area of each contour, and determine the volume of the detention pond utilizing the volume equation given in Section 9.2 - Storm Drainage Design Criteria and ' Construction Standards (revised April 1997). The results of the record survey are provided below. The required detention volume per the approved design plans is 14.40 ac-ft (i.e., WQCV + 100- ' year storage volume) at Water Surface Elevation (WSE) 5066.54. The results of the record survey data (see attachment) show that at WSE 5066.71 the approved volume of 14.40 ac-ft is provided. The top of the spillway is at elevation 5067.55t. t1.40 ac-ft of Water Quality Capture Volume (WQCV) is provided at elevation 5061.20. ' Based upon the results presented above, we certify that Detention Pond No. 2 is in substantial conformance with the approved plans. ' Sincerely, ��. e��T F Nolte Associates, Inc. :Q Herman Feissner, P.E. OF�SS�OiJAL Associate Engineer NOLTE ASSOCIATE5, INC. 1901 SHARP POINT DRIVE. SUITE A ' FORT COLLINS. CO 80525 970.221.2400 TEL 970.221.24.5 FAX WWW.NOLTE.COM 1 NAFC0 i I S%dclOCiry of FI.Fo11ins,20050523,Pond 2 Cmificsion 20050523.dw i 12- t A; ,, 1 r 7 -b-W-[*ffn-ti6n-g ra�g��,V6[Ume--!�-REC-ORD-SURVEY--- 7 A�fla 7=7, Project FCO 115 jtjr NvRidgewood�q= �cwood HiM P.U.D. Filing Calculated By. HHF ENGINEERING Date: 6127/2005 BEYOND Detention pond volume (V): 1/3d(A+B+(AB)") (uniform sides) where: V= Volume between contours, f? d= Depth bct.ween contours. ft A- Surface area of contour line, ft' B- Sirfuz& arza of contour I ibe at a depth relevant to d. R2 -'POVD42.-RECOWSURYEY_-. ---- 4 Volume _ Elevation E feet De ft A fl,- a ft 2 I- --jCUrQMUIAtiVCjCIIiTMWlRtiVC V Volume , Volume ft 3 Volume ar-h- Vb. 5058.39 1 0.00 0 0- 0 0 0.00 1 5059.00 0.61 0 4736� 983 1 983 1 0.02 Y2 5060.00 1.00 4,836 21.739 1 12,276 f 13,259 1 030 V3 5061'.00 1.00 21.738 50.358 1 35,661 1 48.320* 1 1.11 vii-&„„,�• 506Y.20. 1.40 V,: 5062.00 1.00 50.359 74.656 62,110 j 110,430 2;54 vi 5063.00 1.00 74.656 94.389 94.330 i 194;760 4.47 V6. 5064.00 1.00 F 94.399 110.294 102.238 296,998 6.92 V, =5065DO 1.00 110.294 119,116 114.677 411,675 '9,45 vt 5066.00' 1.00 119,116 126.555 122,917 F 534,491 1 '12-27 Kai: 5M6.71 -14.40 V, 5067.00 1.00 126,555: 134 130.275 64.766. 15.26 SM7�55 &9i VID 5068.00 1.00- 134,031 141,419 137,708 802,475 18.42 Notre Associates, Inc. 6127P-005 10:31 AM No Text ..,� a � �Ci"r _ z x S �r i6 739 V �-. ..r a �i4 +. 1 1 _ _ � i «end i � �._ i .1:_._. _. Pond #2 Overall 1100 Composite Composite Effective Effective Effective Basin ID Area (ac) Cz Czo Czoo C %1 Iz Izo 1100 S1 0.56045 0.58 46.51 34.27125 38.75631 41.52775 0.43 0.48 0.65 S2 0.12461 0.41 21.04 12.87914 15.8192 17.71605 0.25 0.31 0.44 S3 0.23473 0.46 26.66 17.05351 20.52415 22.74786 0.29 0.35 0.49 S4 0.12098 0.47 28.74 18.67753 22.31737 24.64287 0.31 0.37 0.51 S5 0.12495 0.46 26.44 16.88301 20.33476 22.54702 0.29 0.35 0.49 S6 0.15413 0.73 67.86 57.10303 61.1841 63.48925 0.61 0.65 0.85 S7 0.15512 0.41 20.10 12.20995 15.0506 16.88527 0.25 0.30 0.43 S8 0.41191 0.68 61.15 49.44714 53.82214 56.39169 0.55 0.60 0.78 S9 0.11185 0.74 69.66 59.2383 63.21414 65.42971 0.63 0.67 0.87 S10 0.11917 0.69 62.15 50.55675 54.89776 57.43486 0.56 0.61 0.79 Sll 0.20126 0.62 47.34 35.07292 39.57119 42.34493 0.46 0.52 0.69 S12 0.436 0.64 54.64 42.44235 46.95625 49.67905 0.50 0.55 0.73 513 0.04141 0.61 46.45 34.2122 38.6962 41.46739 0.45 0.51 0.68 S14 1.86609 0.64 53.67 41.43216 45.95445 48.6914 0.49 0.55 0.73 S15 1.15319 0.77 71.92 61.95543 65.78399 67.87644 0.66 0.70 0.90 S16 0.20372 0.78 73.90 64.37522 68.0606 70.0352 0.68 0.72 0.93 S17 0.81047 0.32 9.60 5.335278 6.862765 7.859599 0.18 0.23 0.33 S18 0.98974 0.28 3.92 2.070792 2.732693 3.166663 0.15 0.20 0.28 S19 0.35234 0.25 0.00 0 0 0 0.25 0.25 0.31 8.172 = Total Area Composite Effective 110 = 38% Composite C zoo = 0.62 [1 0 [1 r STAGE -STORAGE SIZING FOR DETENTION BASINS Project: Ridgewood Hills Fourth Filing Basin ID: Pond #2 As -built Dm Sleilf2 Fn W;: 5d SY' L L LY Sbr Y Dw A x----------- C--------- > Zik SYteZ 2St Shrei pv n. Wl F L 1 SkS�r Design Information flnputl: Check Basin Sha Width of Basin Bottom, W 11 Right Triangle OR... Length of Basin Bottom, L . tt Isosceles Triangle OR... Dam Side -slope (H:V), 7b . flttt Rectangle OR... Circle /Ellipse OR... Ineqular (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet'Modified FAA% acre- t. Stage -Storage Relationship: Storage Requirement from Sheet'Hydrograph% acre-ft. Storage Requirement from Sheet'Full-Specuunt: acre-ft. Labels for WOCV, Minor, 8 Major Storage Stages (input) Water Surface Elevation fl (input) Side Slope (H:V) ft/ t Below El. (noull Basin Width at Stage ft (output) Basin Length at Stage g (Output) Surface Area at Stage ft' (Output) Surface Area at Stage ft' User Overide Volume Below Stage W (output) Surface Area at Stage acres (output) Volume Below Stage acre-fl (output) Target Volumes for WOCV, Minor, 8 Major Storage Volumes for goal seek 5058.39 0 0.000 0.000 5059.00 0.00 0.00 4,836 1,475 0.111 0.034 5060.00 0.00 0.00 21,738 14,762 0.499 0.339 5061.00 0.00 0.00 50,358 50,810 _ 1.156 1.166 5061.20 0.00 0.00 55,218 61,368 1.268 1.409 WOCV 5062.00 0.00 0.00 74,656 113,317 1.714 2.601 5063.00 0.00 0.00 94.389 197,839 2.167 4.542 5064.00 0.00 0.00 110,294 300,181 2.532 6.891 5065.00 0.00 0.00 119,116 414,886 2.735 9.524 5066.00 0.00 0.00 126,555 537,721 2.905 12.344 5067.00 0.00 0.00 134,031 668,014 3.077 15.336 5068.00 0.00 0.00 141,419 805,739 3.247 18.497 5068.50 0.00 '0.00 144,419 876,449 3.247 1 20.121 5069.00 1 0.00 0.00 141,419 947,158 3.247 21.744 #N/A #N/A #N/A #WA #N/A #N/A #N/A #WA #N/A #N/A #N/A #WA #N/A #N/A #WA #N/A #N/A #WA #N/A #WA #N/A #N/A #N/A #WA #N/A #N/A #WA #WA #N/A #WA #N/A #WA #N/A #N/A #N/A #N/A #N/A I #N/A #N/A #WA #N/A #WA #WA #WA #N/A #WA #N/A #NIA #N/A #N/A #N/A #WA #N/A #N/A #WA #WA #WA #WA #N/A #WA UD Detention Existing 2.xls, Basin 12/4/20/3, 12:08 PM ,STAGE -STORAGE CURVE FOR THE POND 11069.55 - 10069.55 i 9069.55 i d 1 8069.55 d tm l0 I 7069.55 ! 6069.55 i 5069.55 0.00 . " 5.00 10.00 15.00 20.00 25"00 Storage (acre-feet) ' UD Detention Existing 2.xls, Bmin. 12/4/2013, 12:08 PM I 11 STAGE -STORAGE SIZING FOR DETENTION BASINS 11 Project: Ridgewood Hills Fourth Filing Basin ID: Pond #2 Proposed Dv Side SbpeY n Ftn W; L e Sae SkpeY Design Information (Input): Width of Basin Bottom, W Length of Basin Bottom, L Dam Side -slope (H:V), Za Stage -Storage Relationship: saesi. z Dem F1w <.--------- y--------- > Sae SkreY St SY�ez Dem M W L i � Sik Skrea Check Basin tt Right Triangle (t Isosceles Triangle f /ft Rectangle Circle / Ellipse Irregular Shane OR... OR... OR... OR... (Use Overide values in cells G32:G52) MINOR MAJOR Storage Requirement from Sheet'Modified FAA': acre-ft. Storage Requirement from Sheet'Hydrograph': acre-ft. Storage Requirement from Sheet 'Full -Spectrum': - acre-ft. Labels for WQCV, Minor, & Major Storage Stages (input) Water Surface Elevation ft (input) Side Slope (H:V) Will Below El. (input) Basin Width at Stage ft (output) Basin Length at Stage ft loutput) Surface Area at Stage ft2 (output) Surface Area at Stage ftz User Overide Volume Below Stage ft 3 (output) Surface Area at Stage acres (output) Volume Below Stage acre-ft (output) Target Volumes for WQCV, Minor, & Major Storage Volumes (for goal seek 5058.39 0 0.000 0.000 5059.00 0.00 0.00 4,836 1,475 0.111 0.034 5060.00 0.00 0.00 21,738 14,762 0.499 0.339 5061.00 0.00 0.00 50,358 50,810 1.156 1.166 5061.09 0.00 0.00 52,545 55,441 1.206 1.273 WQCV 5062.00 0.00 0.00 74,656 _ 113,317 1.714 Z601 5063.00 0.00 0.00 94,389 197,839 2.167 4.542 5064.00 0.00 0.00 110,294 _ 300,181 2.532 6.891 5065.00 0.00 0.00 119,116 414,886 2.735 9.524 5066.00 0.00 0.00 126,555 537,721 2.905 12.344 5067.00 0.00 0.00 134,031 668,014 3.077 15.336 5067.71 0.00 0.00 139,276 765,039 3.197 17.563 100- r 5068.00 0.00 0.00 141,419 805,739 3.247 18.497 5068.50 0.00 0.00 141,419 876,449 3.247 20.121 5069.00 0.00 0.00 141,419 947,158 3.247 21.744 UD-Detention_v2.33 Pond#2.xfs, Basin 12/4/2013, 12:31 PM l � $ $ > > � a` a' a' MO 8 $ `a �3 �s o$am�e z mix BB oo35 �nn$ma8 PP �0 88 �exci�fw � r� F V9£ ~ §. q E � m bj N x o _ _ Wg c s�sry ooe Hs�- a j a s � i i s ¢ i I ¢ m 2 1 1 _ o � !3 i `u c¢ ¢ �w o a y W �U ID i U I ¢ 1 I ¢� d�dooddddeeoddd �j000_Or`o��o gg 88�=, 1101 �.0 $gyp s obi ¢$ 888"d ddodooe og=--��rr� odd odddd i ¢$� �I o,aeedo o old adddd om; j800 Ml� 3�m$r ¢ d6 d d d d d o o � g Iil o $l� $I 3 ^.m { ¢ gji d Odd Gid G C d G G � aI6 I le In 6 88$$8 g8 g888,8�85? I C SWMM Input Data - Pond p2 Proposed Models Ridewood Hills P.U.D. Filing d4 Basin Length Width Slope Subbasin Area lac) Total Impervious Area %Impery Composite N (h) lac) ,C7 803 1.98 0.7 36% 0.5 804 2.79 1.16 42% 0.54 805 3.32 0.86 26% 0.43 806 1.19 0.54 46% 057 807 2.31 1.34 58% 0.66 220 725 7511 2%, 808 4.09 1.95 48% 0.58 809 2.82 0.93 33% 0.48 809a 1.65 0.83 50% 0.6 810 1.99 0.93 47% 0.58 817 3.41 0.97 28% 0.45 Sum: 25.55 4.6 Weighed Average: 41% Basin Length Width Slope Subbasin Area lac) Total Impervious Area %Impery Composite (h) (h) lac) ,C, Boo 7.25 1.59 22% 0.4 901 2.55 0.99 39% 0.52 210 125 6107 2% 802 4.68 1.59 34% 0.49 811 3.05 1.4 46% 0.57 Sum: 17.52 5.57 Weighed Average: 32% Basin Length Width Slope Subbasin Area lac) Total Impervious Area %Impery Composite lk) (h) lac) ,C, 814 0.66 0.4 61% 0.68 815 0.99 0.57 57% 0.65 230 150 1511 2% 816 0.64 0.41 64% 0.7 820 2.91 1.1 38% 0.51 Sum: 5.2 2.48 Weighed Average: 48% Basin Length I Width Slope Subbasin Area lac) Total Impervious Area %Impery Composite (k) (k) Jac) ,C, 812 4.78 172 36% 0.5 1S0 125 5627 2% 813 0.61 0.49 81% 0.81 822 9.26 0.83 9% 0.31 Sum: 14.65 3.04 Weighted Average: 21% Basin Length Width Slope Subbasin Area lac) Total Impervious Area %Impery Composite IN lei) lac) ,V 818 2.51 1.25 So% 0.6 819 1.51 079 52% 0.62 821 5.37 0.39 7% 0.3 260 125 5627 2% 915 4.23 1.35 32% 0.47 916 3.67 1.59 43% 0.55 917 1.95 0.85 44% 0.56 918 0.57 0.48 83% 0.83 Sum:j 19.81 1 5.37 Weighed Average: 31% Conveyance Elements length Element Size (in) Slope (ft) 20 48 225 5.67% 21 24 565 4.30% 22 48 575 1.20% 23 Direct Connection Element 25 24 65 1.00% 26 48 460 27' 24 100 1.00% 30 48 205 5.00% Pond Outfall V SWMM Input Data - Pond #2 Models 4-5 Ridewood Hills P.U.D. Filing g4 Basin Length Width Slope Slope Subbasin Area Jac) Total Impervious %Impery Composite Ift) (it) Jac) 'C" 803 1.98 0.7 36% 0.5 804 2.79 1.16 42% 0.54 805 3.32 0.86 26% 0.43 806 1.19 0.54 46% 0.57 807 2.31 1.34 58% 0.66 220 325 7511 2% 808 4.09 1.95 48% 0.58 809 2.82 0.93 33% 0.48 809a 1.65 0.83 50% 0.6 830 1.99 0.93 47% 0.58 817 3.41 0.97 28% OAS So.:! um: 25.55 4.6 Weighed Average: 41% Basin Length Width Slope Subbasin Area Jac) Total Impervious %Impery Composite Ift) (ftl Area Jac) 'C" 800 7.25 1.59 22% 0.4 801 2.55 0.99 39% 0.52 230 125 6307 2% 1 802 4.68 1.59 34% 0.49 811 3.05 1.4 46% 0.57 SUm:1 17.52 5.57 Weighed Average: 32% Basin Length Width Slope Subbasin Area Jac) Total Impervious %Impery Composite (it) (ft) Area(ac) .C. 814 0.66 0.4 61% 0.68 815 0.99 0.57 57% 0.65 230 350 1511 2% 816 0.64 0.41 64% 0.7 820 2.91 1.1 38% 0.51 Sum: 5.2 2.48 Weighed Average: 48% Length Width Total Impervious Composite Basin (k) (ft) Slope Subbasin Area Jac) Area Jac) %Impery „C" 812 4.78 1.72 36% 0.5 250 125 5627 2% 813 0.61 0.49 81% 0.81 822 9.26 0.83 9% 0.31 Sum: 14.65 3.04 Weighted Average: 21% Length Width Total Impervious Composite Basin (k) Ift) Slope Subbasin Area lac) Area Jac) %Impery "C" 818 2.51 1.25 50% 0.6 819 1.51 0.79 52% 0.62 821 8.172 0.39 38% 0.62 260 125 5627 2% 915 4.23 1.35 32% 0.47 916 3.67 1.59 43% 0.55 918 0.57 0.48 83% 0.83 SUm:j 20.662 1 5.37 Weighed Average: 41% Total Area 83.58 Ac Average l 36.14% L Element Size (in) Slope (nfg)th 20 48 225 5.67% 21 24 565 4.30°% 22 48 575 1.20% 23 Direct Connection Element 25 24 65 1.00% 26 48 460 270 24 100 1.00% 30 48 205 5.00°% Pond Outfall I BASELINE SWMM MODEL 1 1 1 1 1 1 �c, eeeeee .� ,ov00000 CEO Lc �2!0 I N 000000 O O -Vim Ivo000ovo0 up i c' VI mpg t� �4�vvv000v c U- y �'-�ocO0oo0 V^'O J ,W EI .)COCOooc d Ncl eeeeee c Ia FI ' y -I �"oy: o �I cocoeoo m 'r cc 4�� 000000 N � 41 a.i n C w?� nC`� � GO -�ip O •1i i2 �.....+...... V W % t� OOiOooco66 8±�r6 �Zi � vvnervrvv0.. u yi v IL iL Or £Cia �L QQ i oelnnn Y. ul n<f r. nn w ..n uEE nnrvNNrvn u9 'ry u iA alCu£YV5CC[Fll .�. y. ` ~O� �2� VUUtVC 4`1 i> 1 _ j 41 J I. '-3 vG3 1 e vc�e0000 yl VI u 0.1 1 [ L nrvrvNn C.Y]IYJFIF.I IF.I I 3 03C0 n 31 ..�Nu1 v 6cireanN eInNNNn x cac0 0. ebcl CO iEi £� 6 C n yi Nit u i. a==ee cease L - ry wJ,.. rvrvNnn ' a o' v ry Eu � i]GOp[1 .. i00000 £ 1 aOOC ' ey- OSmOSOa+o-.0 �COOo S S CCCI C IM a 000Y 00 u ooe_c SOvvO000` i-N 1= vc �I SOO p qqTI J�FUV GI- M.4y 6�02 'N O'O Fa I IF !1160 s2-o�.Z. 1-"+a0> yIo p 1ZE I� IFFaa.FLL ZF6 Ea°O�� -Fr3.. nz..g...Fa21N-JWamaWzmaNaNcJWaW3 �oaO�tz...�.M1uNI (cJ.��£ Y�„1 -Oo1 .. In� =Cgo4`8rc4Lgz'e< w£zgo i _ C 3 y 1 1 1 1 d V O d C .y l9 ik "o O a si of s"i� - �__n,.�nnrvrv....rvrvrvrvrv,�..rvrvrvry Is q. �..:.` d 9 O d C N : i I i ,O "^'n-n^ on-.. loee...���,nrv....000�o���0000� �I e tp YI^�mNe�a��� O Iv IL i. - w;3 F, OOJOOOOOOOon.. ...-. ..rnn .......................................... : n ai a; G, __ _ MY5 C5CY CYK¢CCi CSCCCSYCYSCC Z ;4a00000 oQ0000000 -�_ F, C C_WCSC c O 2 C G9N�LL7C FYY FNFhI-Hull F H FHYFMnHhFt-HF:-Yt, F - v: �G� UU= ETV 4L UIUUUUVVVVUVVVVVJV14'`VL �UOUGOOa60G5C0 6 .[�� 00; ,'"pZ OCO G eSiH H U.I000..t .l .Jl j.] �00.. 00.].l..i.)......._00000000000000 0000co m m a C 3 N ease ne..e e.•ve i i sj i-rvrv..w i _oo..o S CE 000ucccoo 000000coo D .. Ou ocoa �EVT O T_2 i £c CQ G 1f.VY Or � E � ce0000co ✓V. E v nOv w� C4 .Lp ov0000.a.., `�maom�oo a i�s� ' .......... rvrvrvry io�o�a�o__N6 e s e -- ti; FFF.w. iw+U y'SC � �� Ti __ UUW4 : E: ''-i ^oi^7•Yi ^oiG Oi'1 -a v"•a `oiY00 E . C• E C E N c I •FFF �n .E kl d Jim _VJ CSEGS ioi r>CC >i.op p Oi GS •s.4 .i[ •n. t'^I �v rv�v .� .Z. t rvn 7-1nrv[Vn3' 2. , Zinnrv:an n.v '00 O tle u` > P i pd (yyy >i nCe: i C p'8i _ >Li 09i w 11. w e onoo w� Nms S " ml £I UCC V w 22O�JJ000.. y pC• .E?� S2i £<O PLC T E :V:y Oa •000 - �''��.✓. o: iT Yss - ` "o�-N �soo oc u°O: `w.. 'mow., oc>� 9Y✓ 24i SOY CCU i`E E • C, 3i my� mi`c .6. u41 . V. � ✓ �--`i$�OE^i^N a m: uoy 4Sc 1. c: 00••OOjy� £ K: cJC LC CVOJ 1- o :C,: m✓9¢ j: -�•✓✓ - vvV ♦c_ � � N:� c�o.`jy ✓¢E? uaY FM i w W Se�� ..p e CY I 1 ¢v- c g _ Li, G1G . SC: 6. 46 w4NY462�6 S • 6: FY•O.N1..0 . 4. . 2 V C Jet .`• . a -.LU v a h 3 y CL )/\\j 00 \` ° f \\\� ; Of \�\ IL2222 \\ I t C 0 1 BASELINE W/ AS -BUILT POND SWMM MODEL V au i •: ,•• �..000000 621 O OVio .'_.0 in 1 I COI JC00000 L O LI ooa.o00c0 CL Y V-O J'I �310G7000J '41 COOOCC Iry QI ' OaiC iY V 1 9u YCiZ2 uwia I> O�OCOOoc j Q ti6 iC �O JI - y6I i4 _ 3 3w �>COOOOo i5 Inry -n n,oa e1.�4] 3F16Y E� •(n W u', � j i a E� 9 I > n 000ooco xF, 4i rl n I �ioo 0 _ �IJ>000'c'oo LTip� i $i � i sue' c.i o, p o'FI a __ i2 ass sssW 64666 p144 •Ui£V iJ �<lV di �«'N O 61t6 L ass Y,= 1 � nn�f �: u, n.n w ,.n of .�._!n.0 rv.iN nry « ,N In Ei .3i el E a I E' Eis« > i Yr1 cJ ...«.. f.$ vG3 u o ac a�INNNnN N boo _ n 31u'Wi+r,on a uVl a�IM_e,ry IrvNNNry o�,�o _ yy V 1+4 i.�nN nn v.C�OJO Irrrrr cn •Q% 6 �W £ , E 3 m t.iOOcoo .Vl.; 000C [i% W O: J ^ .J N`in N NNnn 1 94 �lOOOCo �' Sn �u n «> o.Oc oo a �f000000e aa�� Fx i� "04 iO3u '6 (40'�oov+'o �'sopo ' C] O.N+ V2 + 0000uyCcoOSyS b E pi 6 4 qqT: 5 (iUUV O -01 KFIw ¢14L44FiW �� COG.. LI 00�0 Fi U 6 OFF +10 - 4+ 2 £SS OI n I O 02 tlS _I (•4 LZ-p-O CFO IOI�F I O 2 I +C p �" cam: dr U16 O O�WW46 Y Nzp y.Y002 i. O I ~ L" IC 2 I Ei - FY F:-£iN Y II I[]I�14, 6.Y wanll ..F iy��OY �I £maa. �l v(Y�6JW K_ LL.0 I i IF 4 t ,�[[ GFU� Ku ^NO + IH lO IY ^ I IF :n4« 114 F:nF2 1�-O ul IOJ p IJ + U �I 6 'U � �}al S F V f F3n�.200oQW'i 10 FOYwU IY O.V 14 I = (- <9C ` q 44a WWa.a Fa.��;a%.^.zd szz 04Z WY<ZG3KWWCOJu W 0+�+ �F �i. za �„3i iio 1 m a C N C C a 1 a Q 3 j CM ,o,-m.cnna.e c:� , nnn..mma PN,o ,uvnnvveaaa �m 1 c C a° I �J ,s ^Y._ T....rvrv.-.rv.. o�..W ..«.. ,.., �.,,rv�na ,., ,•„•,rvrv.. ,...�, ,,, .�rvrv..«rv, a C O a ' 9 a N Q C —y vi ca. m N 1 h C hIC O n n J .00Oa o o o o o......-........•.•.... -.tV IL o a N o R IV 4 06:n ✓ua,✓✓✓..✓u./J -+--~i-i--. YCYCCh„„NCCCii CCiYi i i C C C C NNYa. a�a�a.NNi.Y000 oc„o Yi o ' ... nCp�pnmm; COU? .�. -�i- -m. --�+ L3�➢P LJ as L�a� J000e Cc 4 oc coo.00p000000c .....00o=Z 4 0009 �9LrP _�5a �f 4<64N 4r 4N 64 O FFF F F F FFF OF q C CCc i cL `v. JC96 nL' VW VaJ. VW UL. UW U.. IWU. UL. LU. UWGUWJ T EO VOOUpOUCOVWOUWOV[O.. WVOWO d-te i`cC"c eC 06SG FMnN VW`CC aOCC 4 ...gO . CZ LL 66 ..t f.0 LLLu`C WChy OO O OO 0000 JOOO c^.Y2J CL a / ] g CL \ }§\ � \\} \/22/22 ,._.,,==,z=,,,. , { - 2Jvg92©a94 © \\\\\/ )\ /!/ClgG/~©S2Qbd ;///2] 5l2g222; /2\ ( 1 21 ` 0000a i KOVI iqi-- 1=n;; 0 C ;C_ V 6 •7 1' E E � 1 0 .I Oc 14N'J� .. ..n.. _Ooaoo 4^ Q uG.Li; Ipi - IE� •� � E I O l0 aa000 00 IL J I +Y N '�J3 V� 64F Enr .20 oce plc ICO „ of C O 1E.�;0 niLY p a ;ac410 c ;<' to oa •� Lp„ 6�acy?; 'ZS� ' 6L 7 ;£ Wjya a O Ci �E�u Q O m>oi SV4 'c¢n li`y; 00 L a ; v p�m O L ni Y�VI Ity cm N PQ+ C �252 it ;pppp nUl a° u) b i F 1711h 4 : • ua 5q 1 �• 1 • O• N y� y 1 S• 2 L• •O• Np 4 O• Jlnry N�a OiN•. •Z• N� 2• r� 2�nN N i N IL :O: CEO ; C�L �SyV N 3 N n m a CORRECTED SWMM MODEL I 1 1 1 1 1 1 ��,JJJJJJJ Jj_ , 000000 kE� t_c WTI OhiJ !c Ctv i i'i0 _ _0000rem m0� I C! V!JOJOOJ000 - mP• F. UA !O £Z,ocooCOJ 1 .OocOcO� E� Y T!S l5 r CCOCCOOc r Z C 4 C Y I w � OJOOCO •a l c'n�NN,ov Ci'r. YFT.I Ei w� a4 � cee0000.- _ Er G, CI £�IN iW pp 2 Y i6t �j4V46" Yi l -Y. oY � wi rcz�aai es:Hi - .�.+N - w4 J aPIOJ J 'it s° Lt: N.nNNn of a-IHHtHH _ 6100000 I m 31 -n,oN £y6 Z v EI IrvNNNN E� 0000 a. S h.-. i NccnN o � J000 o N S >I Ci fi t - -I v000 £ICOvvo N F+Io G 04xomOmo.. .. 5 � sss¢ H 3co00oOcn FO G is z�3G C� u w0�•Oc o��0� 02vOOCS�2 `Co y � VY4 Cam-. -. OOOU SI s9 O -q�. CI .4 U(IUUV u10 %I £-,O al nnl� Ki4weHi. LHiW 21JOOCo £I O fll 00000 O e V v I H£ - °soJ r iO01:�2 40�s02W £ Vin -ii r'U2FH C:f 1,+YUu I ei 1 C -6..n •n u: ci Y,•ZI O,nn6 �IO�W2' I Y T ��1 Cu -. rv_ 22_Sa C_ I IHSy Im uU66.aW LLrt Ira �' 'i' I - L O Y 'O 1'-IFF 4�+ 1 ISU HFH2 I�O2.-._ Ci d6 �2 0 o sUl AIM SI F'FssUHLL s,n O c.3F6Ft:q 1 GISO Z Ei- EI 4n h 00' O 3YCOC v1 IWW 1 IH w.0 IR LU�1 R G i cs.o <Ro._ 'i Fr�S ezzz..s22 �i.izH "qs. 'K _ hdC O>r-.I-IF 4'r'3083CWY OJZ6m�+0Y0 ��+ � L� -a u.. :SSWIJ N..JSZGCRm>.i£zN.. .. •-.. ::5 .. .. ::L -_.. ..n NNNN -.. ..ry NNN.v -.. .NNNNn m a 1 of �000P_0000� - o� a 91 a ooN - z Ei W CKa¢C £�J 4 _vl iY p F¢gNN oCC� Vim.\ YC - SPi m ;o_ �P EI -•.v F.s •�u�•ma .•nnc oc.•wnv.n �u f-ma i•1 00000oco a o-- -n- __ooccoo.._ ' To 10 O IV U MYCYCCSYY¢C555Y5CC56 C5 YCC5 _ ___ wNY _22CCCSCCCYCCK _ =YY IVVU C(644(6<664 p0000000000cc�o OI-MMMhFF'F FI+�i�hYFYYFHFYYFYF _ iEi UUUVUVVVVUVVV'v l`UUVVV'v�VV c y0aoof000 O LLL9C �'J C�9L V9aaa99 Sa W009000�O�iCOO�O�.00O�� ]jC000 OCa000O o.�n c°`a - VUJVVVF'VVV -�•-•`=o''J'oo'o o'0000c'o oo'c N 3 N No Text ' on-e c`eq i " - nnryry '' ache - rSCE � 00000p[.cn O OY ticon nOm pop000Cco * e _ _ £CEi oo o o o Cco Ot iE�L U Coc000_o L 'E u iEJ O 1 E 1rO i -r040 N � r ecpe TaoW _ 'p caws _p C n n n , m popoop O 1&� a _2e' :�. .......... mmmr` zz 00 zO rOp0OJ.:W r000000J�J O u UUi4C 44 J^.O :E: E 3€ ^h'a :^a •a 'Y v� M1� ']'�-.Z .^a ^vGv Y caa'c 'o: E_tlEJL a= 4• _ -e6<. L2 Vjry ^3 • x• - a: 242Y< y. .v rvrvryn.a Z. r Z i rv"n.v nnn.r .,Y ..• � 2 i avnnnnnrvry N � � c - Vi�u oorvo .,poc�000p L r f CE• N or < pe e O 00• 0400 C 9r al IL ry yJ. r.: GE CO 9 p SI O>V: JJY JNJ J nZZY222�OJcopon V• C .J. - C00 Ln 90 AC ->nY 00 - -E..o :O: .}sSS vn 220 E •+'.Oi-' �.. v>~ e-�e O. p` S� O•v£��T cG✓uCuufi:�v. �+ e 4 __u C�+000iL 4LY� CD VF F VO CP :U•10. •So _ ' zeC chi L :„GCw V'L13�JA �6u T7 C :O. 4LM d a U � 000J0000 N000JJ000 C -- � a �V Oti v CO��222Yn : E; OOOOKN E •t'V'OVUUVv2 V v.-v .n rvrv/arvGY W� <W� J_JJJ o'er oJOJo !G42: C� n0000 �6+ r V'C JooJ_ v0 �vrJoOOOc T➢�IJ �Fnu`0000cJ co°�� 0000J co uLl L m; l'OOOOG V I ]40p.1 �JVEi CCO CZ 8E1 /•• � 99� 33'4/ I CE DO 4 VS ul 91 Llrvrvrvrvry 4<F �EOca r EOc .oio is' FI N ��omiJ oJJ - of eoE< LG I Gv+y cc0 W)b G o o OU oaaV k V _ �QEi � � T YI CB LLI 81 000 ` Q aIZ oV.c'. 000 ci77. J N ii p $' oco Em C ul OVr Oi WSJ r^ Q S a m ^zzzz �oocoo t 6 _ Fv-Y VI O pvFF r 6iJUUVrJ Ji OG 000 �� • T. 'Si '�i 'a 'i i o I q 2 vo7 � I L: 2: N � 1 nrvaa a.n • 2• W I .. cr vvrvn • Jv• EEC SOr - SWLv c C CUI LLLLCI.. z" O rE- r ECm v£y- ISCE off- I£ 3 N N 3 N 0 PROPOSED SWMM MODEL cIJ �ml q5' tom' �s OVI a°rtio Dui ou°':o cu°I ' -�y r0000000 -or I EI - nP� nPl .000JOJoco -y V_�O US101 Z21 GC_OJJ 9 S; C0000� ,W E'cC0000000 ' Y` U_i4 (ii v. '� OY 3M1 .�.rO000000 F.� I O L i �+�, c0000cc aY � 1 aI ✓r .........aa CL £y OY;4W xy is CC CCCY IGS §§466W c;-.OE nNrvNnN.UhJJO' Uzi" oozy ��4wuuu.. > IC_ Uy,n. 1 l.ry �..E'u H E,` EiC '`ry �.. t''i ,.n .r-• ~u" ..N-,NnNrv..r —E �.. .E. N.., ^,NrvN ^,rvNNry — .. ,Y 1 5 n I `v J awl tl .�.t I OOoc CI Z � N CUlrv.urvnry FI ml; 9'000 OOC p18�8 S08 I u i ' ' L E 1 x •� C 6 p:e n[a N[vry £ � ooJco CQ C •i > E i CL O E i£ ai a o' Eu .. 0000 £ioaoOc F 2ooc OOO OO e' 'w rY C'OOOYY a- `Sp�O-.v o j� v, =c LJSmCSJcjOry Oo.. o _OO.+OOc00 �.^a.c �3S Y C CIOOOOc �I %i W Y Ar qq C+I ,Z+ qqpl 614W��iw .. OVO� i� oOcc O _ az£,u:, Lls -1 �I' fW "tit Z r nj> oz sz al-r;W2 c' ualW46 iOp:?ytOGYN ry-i v: £ � Li •-� ti Yc _ YM1M1M1£YY eZ F '�500M1 si unrv.. I IY£]:+F IW WV14.lWC F y4.0 O �F¢ 1 IF YSn I I4 M1FM12 1-0 SCJm IOi S T - 4 L 6 1 fevc i„ IF �CmpYC-pKN N.[3t6YN W 2,[ JJ IW !"1 1p I IY OY�+U' IaT G. VCK I y51J SO 4T M1 I 2 E E ? 4L r' 5 4 q 66C Jon �,Yie m a d a 41 'O O � N tll CL O 1 a ' v JJJJJ_�JJJm 8� �� a---------- .. _ a 4i E 1 C 6YYCZCz £�J Y1 4 L �Y o oop000c�oo �'qG n zC t�[ O 000;000 Vr.2 O-„O ' FFoyoorvrvrvrv.v-----rvrv..nn--- F MFFI+r. :.142mC2 4 GS�n 82. .: v.:.` 5.1 N O O 2 1 N U) O O L a - _ :;mvaM�="��JJJJJJ_JJJJ o PJ IL E qa _.VnvN u.`mc ..nnv Jc_rvnvv, �,f z.n F I -o0uupocOOCOnnnn___..nnn.ry C JOocO0a0000__ O� �O IV U JJ -_ SYSC66¢SCC5C6C5CCC5¢SCCCY P Pti Pyyi y r-n1Jy n%'lnti.� OOJooOcoc000000O0000Oc� ' mm�n ngnn C=K= jnL�ilaGL t➢ .O OOO0000000000000000coo 4CYSSC56CSSSYYY 009„9DL9C S<6ry2^ry6N6n N FU`FFFFFFi+Fhf-FFFFfY4FFFFF o IVVV EI V VVVVVUUU'JVVVUVVUV„VV v saevvvo� _- eaccoaea�a i_ W. 4 LL 4 Y00000000000001 2 i _CjCODOCCjLOCOp jGjCC��CCC3 I. F1-f.MMi�{. 1-f-F {-1+M �6YOJCC �CO�O �C ULrr44U'JVVvW4UV oo'o'o oc5'0'0c'o'o'o o'o'00'005 N 3 m 0 [J 1 0 v nin --------- W oil 001'� icy _oo�000000 ---------- ......... 0 . . . . . . . A Q IEVYI itiviciiiid 1 im --------- KIM 1 1 its ...... IL 12221222122 COL 15Z 1017 . . . 2 RRIEFF, w 191-0222: PASS, 0 121- jr. a m A 1 :TWIT W .1 % E . E E E 3 40121 A:G 1 : 2 : Wtv : i : ....... R 1 i F 1 1 MINTH tit 0:000 Aly C14 ASIM 2 &W WAMUT A WTHHH M-U&S-1 MUM9 O�K�uOnCC :EH :i 1 .[4V 1 OOOOO 7B1 OCR oocao _ aE�J000 Ix Ic Ia)+ IGVI OOJOO VJ IVJVi W _ C 0000a 62 iLi d 1�-ul c0000 0oc- OOOOO�JO n C o; - o eJPeeJJe �o�o! eJPOP E1 - a - rvry v ����� JJeJJ JJJ IL eases _ « M1tFFw OJO O- C V VVOS 101 :6 33, I 1 fC fit 1 avrv,.nnrve2 .4 � ��mrvrv..�ry :i,: I .Irvrv�rv,•� 2a`%° IEa WIN Ids V _- Is C 1 03111 Oo U .E i Ii£ � Wit...x C� cG 1 V1EO S9 oo Wj3v_i i WHIME 1 'Ev+too ~>e £' COW 1£> O m¢m Vi VEE EI C000 My- IO1J0 0V II1EE- 0 1 O FG91- ITpW y yDI1I L rll nl c0 EO c-J. C c �I iV )1 PHI- �1 ANNIP 121bW OI �n tC'^ 14W z IL nl - C L �24 1 22i2 iPEu so. _ 1411 F' if g 1G1 1 •4• =3�E N 3 y I CLOGGED ORIFICE SWMM MODEL 1 1 1 1 L 1 1 r 1 1 V t_ O d Im Cb O U 3 d 0 cO C 0 O a 0 a` C O IL V 4) I CD 0 O U t 3 m v 0 4) d N 0 a a` c C 0 IL i4i Poceeo ai -.� ococoo v_ u4io - mOOooms OUin 1 �O�OOOooco E ocoOcco w aC J�iO C4i O00000 �� £=ioOCOooO _ - M1O�� V6�G "'O-ooccoc - N .Ooa000v �Y E� �i r6 "a31 ccmccc.. re �� « . OOo000 N!-. `2 R � >. n.v nr•--.n nn C _ E xis re_ _ Ei_. ____ oM1, ✓ n e m m �81.. :gym YCYr4 a4 aaaac - ..ui�.�cNmn.� ..min ..W im + �n.. ��nrvry -. r_ -.r u_��_•_.e :.. ^i� - o pia ii > ti; - u: uc� caasar °c a` 7 it �=:: .. ..nnnnrvrvry =:: ._.N-..-'=a -.. .. ...rn nn n•rn �:. .. �a -.. ..nann.,unx -.. .. _.. .. ..r �...a s..nm.. N )Y c ac _ it oo�o 71 s �GI n EI a ;E OL E� OI O� dS CI - VL E+ - roOcoo SI c000 u1 Wnoaan0 n M1 o 04mOmOPOn.+ SOO00000n Fo .S¢Z=Z is �Yz�sa W or000000�.�.'.oa�' poi tl)0 vx�..o+o-.00..o'o'o'oPzacooszxco ii Er Si Z -�i4 u O Ei a�T,r^i 5 yvWW~aL _ coc- £i oocc CV W'W OI F 6102 GYv �I 6z�W��l u A 6v- ^ -N2 M1CumNWWY�mi 6LL IO.il ul Zf4f... W sm'0W1��Wc F > 1 S U LL✓ �i - O Win 0M1 1 IF£V� IW Ve4JWC O7M16 I IM1 M14�+ 114 YM1FZ I�027Ju1 O� -I IFFi60F000S v.N �+ 6M1N I 1 J91 ^ y xp U 4 Z -� - ^ EI " 49! _q +p01 ACC I-3+sYC pOI IWW 1p I IF C+V I�D.VY I QZOF6S1_ WWa.6FN0�`YZ2 Yi.^. S' M1_ I >F r - 1+ ) O �82 WWaO ONV; S m m a I 1 C n C 000 Ui o� V� of e FI' 4 OS_ 00' � F EI U4R 3 V JC WVy = JOB _ hVIW 12 R. 3'= i.....aaa===ave ___............ E s°J m nne�e oOnev n�a inm�mm i Taop00000o0ac..nnnn.-.�.. .._nnry a0000000000-..+-. .+n.+.n.-. a _ CYYCYYCCYC2C33¢CCYYxCC¢ iC ���4 OG�➢ CCYCC CY6YYY6 CYCSC `10 OI` -1` OoocccooCOo00000 -� R 46444444C6 OHFFFY�F FFFFFFHFFI-YFrFFhFFt _ _ :.VVVUUVVVVVVV000U V'V V'VVVVVV O V=U- C9�999L99^99 £a " WWWWWWWWWWWL.W L. W:uWW u000VOYiO ' c=O 4ca asWicn aOWOo000�]0O0C0V0U0Uo... 0Jc..C.V.D .V..].---Cocc5000VGo V.V. Vfr-H�N4HWHyM.UuFLFLFrFWFWUFL.F6 FU..lU-t4F�1W-O�FF� 3 m d orv_o ,E _ Oi rvryrary � 9y Ea .O - OOfa_O_00 £cE 000000co - - OOOOOC-o - L �Ej�.i 04c cOoo00oc •Y 31 - ; MVZus Oco0000C 0 i£ a0 o_ �'elu iY yoi ;E 1 u Q' Q 6.: a nry s �-� a T S FFVFFFZyS CwC FFFFCU�C • Ti 2_22i__FO 222i2^_^YG Q • E• 4 4EE f - • T• PEC o 0S 3 =eE< �: p i G C 6C rv.a . 2. O � Z �rvnf+rvrvrvvc.J ... . Z. � S I^an ry tv :a to n'Ny • a a o ry 1Ci iP P6Yti CC oorva jv w000000c0 P E I p I V c eoi ` o'er - � - `>i 'o u e IE i gry moo. o�o'o" s sl e� o; - °£i �v YY: "' moomco `oL Y,ro -a:o m �`o ^za.zzx�b�c oc oo.. F LS s, w� - ic _ u 8. CSC E �E G S -. u £� vdU 'Om4"a6 E : V: • 000 "2T>.O.Y W w .ai 0Ja.N .O. :U C O>vOi H E ea 6� OGT ti051VY�3 LCs9u Rv rJ C m. p.nWn w � aao zs �. 4. Wa ., c.Nu`trci.Yia x c. Fw•. .o ..0 a: �a"usw m`�H�m� F: �.i m a w _ OyE� oco0 O= - � a0000 W Q _ _ coaco U ,oEi aaa •3 � uE^ C I G � :Vi o0a00 oaoo tiEi 0000 _ 00099 acoo [+ry d - ooaaa N c; L a FFF _ -aaa �• • •O V l V 3 i G\ 3 3 v a° i a t,nrvY v. , J,.,n rvarvry : V: ' ...rvrvrvrvry 44F v=rs E+,a000 �2WV �rrtl 0 m a h 3 N g� �� � aovolgo a s3sry<ss EP x3 a>'��55 e bb o 03 ss 99<0 2 E$; U m� m E$ y a8 B m O _ II IN 11, 1. lmill UNIIII 111 liiiiiiiiiinuillimilloll NEI milli liiiiiiiiiiiiiiiimlllillilli ME mumull 11111 III llligillilligulmillilmi 3: 1 1 i 1 1 1 1 1 1 y 0. 06k ��� Q0;•- cV VOGI 0000i a g E--oo o o o� , Isis I IS I a I IIIIIIII III III IN gilligillillillillillilligill IN III IIIIIIIIIII ligillill 111 1111111 Mill IS I I Is ii N (1 N N L U N O O O O O O O pO pO O pO pO pO pO pO pO pO O pO pO 8O O 8 ONI 0 NN � 1� n N 10 N N O O M M N O a I m I\ (•naIa yawl) a6elS APPENDIX C - HYDRAULICS STREET CAPACITY CALCULATIONS INLET CALCULATIONS STORM SEWER/HGL CALCULATIONS 4+!ork,heet Pra:�cte<1 DESIGN PEAK FLOW FOR ONE-HALF OF STREET - OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project: - Ridgewood Hills Fourth Filing Inlet ID: Design Point 61nlet OSIDE VERLAND D STREET GURER FLOWGUTTER PLUS CARRYOVER FLOWi Show Detaus ROADWAY CENTERLINE Design 1 am m s: Mkpr Storm Major Slonn _ (oral peNr lkrx lw IQ of seen OR arasaircaFNrvwg: Q(n .w cis FILL IN THIS SECTION ' e m enter vales In Row t4, sk the rest of thle sheet and roceetl to sheet O-Allow or Area Inlet. R... 43cographicorma er m..n FILL IN THE S,beatcirner,t Area=Acres SECTIONS BELOW. ou Format enter values lor O and use the O calculator at the same tkne Percent Inpoviolaness. % — �Tw. �' illisitais Urtran[00Sect INns NRCS Soil Type. A, B, C. or SIDW (Ilnt) Length (It) O Na'c na U0a Mai mats in a NedW Overland Flow= Gisler Flow = + a tmru anal y Inc , r a ,nor torm majorstorm Desgn Storm Retun Period, T,. ye ars One Retwn Period OHow Precipitaoorc P, = aches Q=� (Isar-Defire Storm Ruoff Coe6iciM (Lave ttis ola* to accept a calasaled valet. C = User-Delined Syr. R"fl Coefficient (Lave Iris blank to accept a WksWled vase), CS = Byposs (CarrpOver) Flow from upstream Sutrcatcherents, Oe ml g.0 I 0.0 Icts Total Design Peak Flow, O v 1.] ].8 cis Design Point 6Inlet Sump.tdsm, O-Peak 121412013, 1:38 PM 1 1 1 1 1 INLET IN A SUMP OR SAG LOCATION Project = Ridgewood Hills Fourth Filing Inlet ID = Design Point 6lnlet {Lo (C) H-Curb H-Vert -- We � W WP Lo Of on Information (hwrtl of Mat Iriet Type I Depression (additional to certiuols gutter depession'a from') -Abut) ay. wr of Unt Irtets (Grate or Cub Opening) No e Depth at Fbrire (outside of beat depression) Pondng Depth t Information N of a Unit Grate L. (G) 1 of a Unt Graze Wo Opening Ratio for a Grate (typical values 0.15-0.90) A. prg Factor for a Sirgls Graze (typical value 0.50 -0.70) Cr (G) i Weir Covficient (typical value 2.15 - 3.60) C. IG) I Orifice Coefficient (typical vale O.60 - 0.60) C. (G) Opening Mormation n of a Unit Cub Operng I. (C) t of Vemcai Cub Opening in hrhes H— I of CUE Ortibe Throat in inches i of Throat (see USDCM Figure ST-5) Theta Width Ior Depression Pan (typically the gutter vridth of 2 (act) We yrg Favor for a Single Cub Opening (typical vale 0.10) - C, (C) Opening Weir Coefficim (typical Value 2.3-3.6) C. (C), Opening Odfbe Coefficient (typical vale 0.60 - 070) C. (C) 11 Inlet Interception Capacity (assumes clogged condition) a. = Capeuty, 6 GOOD for War and Major Sioets(>O PEAK) Orvw ac.. MINOR MAJOR CDOT Type R Cub Operirp 3.00 37 inches 1 i 6.0 7.5 inches MINOR MAJOR (NemUe needs WA WA wit WA N%.A feel WA WA WA WA WA MA NIA W'A 5.00 5.00 6.00 6.00 6.00 0.00 63.40 G740 2.00 2,05 0.10 0.10 3.60 3.G0 0.67 0.67 MINOR MAJOR eel 'ches rcfes agrees NA Design Point 6lnlet Sump.xlsm, Inlet In Sump 1PJ412013, 1:39 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project: Ridgewood Hills Fourth Filing Inlet ID: Design Point 11 Inlet ROADWAY CENTERLINE ILY if already determined through other methods: (beat peak flow for 12 of street OR grass -fined channel): cannel enter values for 0 and use the 0 calculator at the same time Site Type: ® Site is Urban Flows Developed For: ® Street Inlets O Site is Nan-Ulbnn O Area Inlets in a Medan alnfall Information: ImeaciN I finctvhrl = (,.' P. / I C. i T- I A C. Show Data Minor Storm '()known =r 8.5 Subcatchmem Area = Acres Percent Imperviousness= NRCS Soil Type =1 IA. 8, C, or Slope (fuh) Length (it) Overland Flow = Gutter Flow = Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C'= User -Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Op =1 0.0 0.0 Cis Total Design Peak Flow, 0 =1 8.5 45.5 cfs Design Point 11 Inlet Grade Street —Use Me - NEW FC INLET.Asm, O-Peak 1013/2014, 11:23 AM Project: Inlet ID: 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 —43 T, Tara Tca--porn ��yl� I encx W Tx _ Crown Ow Qx/ H� d y a do 5/ er Geometry (Enter data in the blue cellsl num Avowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) urg's Roughness Behind Curb (typically between 0.012 and 0.020) it of Curb at Gutter Flow Line we from Curb Face to Street Crown r Width t Transverse Slope ,r Cross Slope (typically 2 inches over 24 inches or 0.003 Will t Longitudinal Slope - Enter 0 for sump condition ing's Roughness for Sheet Section (typically between 0.012 and 0.020) Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) T::= 13.0 it Seacx.= 0.020 Nit nmci = 0.020 Horne = 6.00 inches Tcarnvm = 25.0 it W = 2.00 it Sx = 0.020 fuh S. = 0.003 Nit So- 0.027 Wit nsrraEer = 0.015 Mirror Storm Major Storm Twnx = 19.5 25.0 ft dwe = 6.0 9.1 inches ❑ ❑ check = yes i STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm R STORM Allowable Capacity is based on Spread Criterion O,u,,, = 19.6 51.5 cis storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' Design Point 11 Inlet Grade Street —Use Me - NEW FC INLET.xlsm, O-Allow 10/3l2014, 11:24 AM INLET ON A CONTINUOUS GRADE Project: Ridgewood Hills Fourth Filing Inlet 1D: Design Point 11 Inlet i, Lo (C) It H-Curb H-Vert we W La (G) Design Information (input) - MINOR MAJOR Type of Inlet Type . CDOT Type R Curb Opening Leal Depression (additional to continuous gutter depression's from'O-AIIoW) - atocAt = 3.0 3.0 inches Taal Number of Units in the Inlet (Grate or Curb Opening) No . 1 I - Length of a Single Unit Inlet (Grate m Curb Opening) L, . 5.00 5.00 h Width of a Unit Grate (cannot be greater than W from o-Allow) W,. WA WA It Clogging Factor for a Single Unit Grate (typical min. value . 0.5) CrG . WA WA Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) CrC . 0.10 0.10 Street reulics:OK-0< maximum allowable from sheet'Q-Allow' MINOR MAJOR Total Inlet Interception Capacity O = 3.53 6.81 otal Inlet Carry -Over Flow (flow bypassing inlet) 4 = 4. 338.7 ].f: Capture Percentage = WQ. = C%c 42 15 % Design Point 11 Inlet Grade Street —Use Me -NEW FC INLET.xlsm, Inlet On Grade 101312014, 11:25 AM DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project: Ridgewood Hills Fourth Filing Inlet ID: Design Point 21 Inlet ROADWAY CENTERUNE ILY it already determined through other methods: (beat peak flow for UL of street OR grass -Intl charnel): enter values for O and use the O calculator at the same time Site Type: Flaws Developed For: ® Site Is Urban ® Street Inlets O Site it Nan -Urban O Area Inlets in a Median nformation: IntensityI (inctuhrl = C, ' P, I (C, + T.) - C, Show Data Minor Storm Major Storm 'QKn. = 4.6 37.0 Gf5 %flow or Area Inlet. . Subcatchment Area = Acres Percent Imperviousness = % NRCS Soil Type = A, B, C, or D Slope i7h) Length (0). Overland Flow = Gutter Flow = _ Design Storm Return Period, T, Return Period One -Hour Precipitation, P, C, User -Defined Storm Runoff Coefficient (leave Ws blank to accept a calculated value), C = User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), C5= Bypass (Carry -Over) Flow from upstream Subcatchments, OD = 0.0 0.04fs Total Design Peak Flow, 0 = 4.6 37.0 cis a Design Point 21 Inlet SumpAsm, O-Peak 1214/2013, 1:40 PM INLET IN A SUMP OR SAG LOCATION Project = Ridgewood Hills Fourth Filing Inlet ID = Desian Point 211nlet Lo (C) H-Curb H-Vert Wo Wp w on Information (Input) of Inlet Inlet Type I Depression (additional to continuous gutter depression's' from'O-A low) ate - bar of Unit Inlets (Grate or Curb Opening) No = ,r Depth at Flowline (outside of local depression) Ponding Depth = a Information th of a Unit Grate L, (G) i of a Unit Grate Wu = Opening Ratio for a Grate (typical values 0.15.0.90) Am = Sing Factor for a Single Gram (typical value 0.50 - 0.70) C, (G) ; Weir Coefficient (typical value 2.15 - 3.60) C. (G) _ Orifice Coe"IdeM (typical value 0.60. 0.80) C, (G) _ Opening Information Ih of a Unit Curb Opening Io (C) _ it of Vertical Curb Opening in Inches H. = it of Curb Orifice Throat in Inches H. _ ; of Throat (see USDCM Figure ST-5) - Theta = Width for Depression Pan (typically the gutter width of 2 feet) Wy = ling Factor for a Single Curb Opening (typical value 0:10) C, (C) = Opening Weir Coefficient (typical value 2.3.3.6) C. (C) = Opening Orifice Coefficient (typical value 0.60 - 0.70) C. (C) - II Inlet Interception Capacity (assumes clogged condition) Q. _ N1NG: Inlet Capacity less than O peak for MAJOR Storm Qoeuc erour+co = MINOR MAJOR CDOT Type R Curb Opening 3.00 3.00 4 4 6.0 7.5 WA WA N/A WA WA WA WA WA WA NIA WA WA 5.00 5.00 6.00 6.00 6.00 6.00 63.40 (i3.40 2.00 2.00 0.10 0.10 3.60 3.60 0.67 0.67 fiches cues ❑ Override 0apdrs let -et eel nches nches legrees act Design Point 21 Inlet SumpAsm, Inlet In Sump 12/4f2013, 1:42 PM DESIGN PEAK FLOW FOR ONE-HALF OF STREET OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project: Rldgewood Hills Fourth Filing Inlet ID: Design Point 241nlet Show Deta ROADWAY. CENTERLINE 1LY it already determined through other methods: (beat peak flow for 12 of street OR grass -lined charnel): *QK. Subcatchmem Area= Acres cannot enter values for 0 and use the 0 calculator at the same time - Percent Imperviousness = Site Type: ® Si[e is U ban Rows Developed For: ® Street Inlets NRCS Soil Type = I I A, B, C. or D Slope (fi4t) Length (ft O Site's Nan-U ban Q Area Inlets in a MedWn Overland Flow = Gutter Flow = ainfall Information: Intensity I (incMv) - C, ' P, / ( Ci+T,) ^ Ca Storm Major Storm Design Storm Return Period, T, =1 rMirror ��years �inches Return Period One -Hour Precipitation, P, User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C - User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, % =1 0.0 0.0 efs Total Design Peak Flow, 0 =1 0.6 3.2 cfs Design Point 24 Inlet Sump Street.ldsm, O-Peak 12/4/2013, 1:43 PM Project: ' Inlet ID: 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 vesiyn rmm cv caner T. S T, Tw W _ C o�wtr Qw Dx/ H d Y d SxJ a do ar Geometry (Enter data In the blue cells) num Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) iirg's Roughness Behind Curb (typically between 0.012 and 0.020) . it of Curb at Gutter Flow Line me from Curb Face to Street Crown �r Width t Transverse Slope ,r Cross Slope (typically 2 inches over 24inches or 0.083 ft/ft) 1 Longitudinal Slope - Enter 0 for sump condition ung's Roughness for Street Section (typically between 0.012 and 0.020) Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) TaA« = 0.0 it Se•cx = 0.000 hill nexcx = 0.020 HcuRa= 6.00 inches TcRowN = 25.0 If W = 2.00 ft Sx = 0.020 run Sw = 0.083 tt0l SO = 0.012 tun rnsTREET= 0.015 Minor Storm Major Storm TNax = 19.5 25.0 ft dM x = 6.0 1 6.0 jimhes ❑ check = yes i STORM Allowable Capacity Is based on Depth Criterion Minor Storm Major Storm R STORM Allowable Capacity is based on Depth Criterion O.,,_ =1 16.2 1 16.2 cfs storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' Design Point 24 Inlet Sump Street.xism, O-Allow, 12(412013, 1:43 PM INLET IN A SUMP OR SAG LOCATION Project= Ridgewood Hills Fourth Filing Inlet ID = Design Point 241nlet y Lo (C) H-Curb H-Vert Wo Wp W Lo (G) of Inlet Inlet Type Depression (additional to continuous gutter depression -a' from'O-Allow) ac . ow of Unit Inlets (Grate or Curb Opening) No r Depth at Flowline (outside of local depression) Ponding Depth . :Information Ih of a Unit Grate L. (G) 1 of a Unit Grate Wo • Opening Ratio for a Grate (typical values 0.15-0.90) A,.m - Sing Factor Iw a Single Grate (typical value 0.50 - 0.70) Cr (G) - i Weir Coefficient (typical value 2.15 .3.60) " (G) r Orifice Coefficient (typical value 0.60 - 0.60) C, (G) Opening Information th of a Unit Curb Opening L. (C) it of Ventral Curb Opening in Inches H..n it of Curb Orifice Throat in Inches Hy = 1 of Throat (see USDCM Figure ST-5) Theta Width for Depression Pan (typically the gutter width of 2 feet) Wp - ling Factor for a Single Curb Opening (typical value 0.10) CG (C) . Opening Weir Coefficient (typical value 233.6) C, (C), Opening Orifice Coefficient (typical value 0.60- 0.70) C. (C). it Inlet Interception Capacity (assumes clogged condition) - Q. = Capacity IS GOOD for Minor and Major Storms (>O PEAK) ICA. eeourcD MINOR MAJOR CDOT Type R Curb Opening 3.00 3.00 inches t 1 6.0 7.5 inches MINOR MAJOR I�Overnae 0a0tla WA WA feet WA N,,A feet WA RA WA WA WA WA WA WA 5.00 5.00 6.00 6.00 6.00 6.00 63.40 63,40 2.00 20D 0.10 0.10 3.60 3.60 0.67 0.67 WI riches nches Jegrees eat Design Point 24 Inlet Sump Slreet.xlsm, Inlet In Sump 12/4/2013, 1:44 PM OR GRASS -LINED CHANNEL BY THE RATIONAL METHOD Project: Ridgewood Hills Fourth Filing Inlet ID: Design Point 34 Inlet Show Data ROADWAY CENTERLINE Design Flow: ONLY if already determined through other methods: Minor Storm Major Storm (1oca1peakfbwfor12ofstreelOR grass-tnedchanneq: *GKii.n =1 1.5 1 7.7 Icis ' If you enter values in Row 14 skip the rest of this sheet and eroceed to sheet O-Allow or Area Inlet. Geographic Information: (Enter data in the blue cells): Area =�% Acres You cannot enter values for Q and use the 0 calculator at the same time percent Imperviousness Percent Imperviousness = Y Site Type: Flom Dmloped For: ® Site is urban ® Sheer inlets NRCS Soil Type = Slope Mitt) A. B, C. or D Length (tt O Site is Non -Urban O Araa inlets in a Median Overland Flaw = Gutter Flow = Rainfall Information: intensity I (inchBa)= C. ' P. / (C, + T_ ) A C. Minor Storm Maior Storm Design Storm Return Period, T, = yea Return Period One -Hour Precipitation, P, = incl C, = C3 = C3= User -Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User -Defined Syr. Runoff Coefficient (leave this blank to accept a calculated value), Cs = Bypass (Carry -Over) Flow from upstream Subcatchments, Oa = 0.0 0.0 cis Total Design Peak Flow, 0 =1 1.5 7.7 CIS Design Point 34 Inlet Sump Street.xlsm, O-Peak 10/3/2014, 11:06 AM I 1 1 C 1 1 Project: Inlet ID: 11 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) 11 T. Tw e W��Tx _ Cm�wnt Qw Dx _ H�w d y Sx a d, 5f Dr Geometry niter data in the mue cells) mum Allowable Width for Spread Behind Curb Slope Behind Curb (leave blank for no conveyance credit behind curb) urg's Roughness Behind Curb (typically between 0.012 and 0.020) it of Curb at Gutter Flow Line me from Curb Face to Street Crovm !r Width :t Transverse Slope x Cross Slope (lypicaly 2 inches over 24 inches or 0.083 ft/ft) !t Longitudinal Slope - Enter 0 for sump condition ring's Roughness for Street Section (typically between 0.012 and 0.020) Allowable Spread for Mirror & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm Flow Depth at Street Crown (leave blank for no) : ;=13.0 ft Sawa = 0.020 flrft nanrx = 0.020 Hcum= 6.00 inches TcR N= 25.0 ft W = 2.00 h Sx = 0.020 fun Sw = 0.093 Nit So= 0.017 Inn naTREU= 0.015 Minor Storm Major Storm Tmm = 19.5 25.0 it cl u = 6.0 9.1 inches check = yes i STORM Allowable Capacity Is based on Depth Criterion Mirror Storm Major Storm R STORM Allowable Capacity Is based on Spread Criterio19.0 40.5 cfs storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' storm max. allowable capacity GOOD - greater than flow given on sheet'O-Peak' Design Point 34 Inlet Sump Street.xlsm, Q-Allow _ _ 101312014, 11:06 AM INLET IN A SUMP OR SAG LOCATION Project = Ridgewood Hills Fourth Filing Inlet ID = Design Point 341nlet Lo(C)�' m H-Vert H-Cu we W INp Lo (G) ' in Information (Input) of Inlet Inlet Type Depression (additional to continuous gutter depression's fnxn'O-Allow) a. per of Unh Inlets (Grate or Curb Opening) No r Depth at Flowline (outside of local depression) Pending Depth 1 Information th of a Unit Grate L. (G) t of a Unit Grate W. Opening Ratio for a Grate (typical values 0.15-D.90) - A.m ling Factor for a Single Grate (typical value 0.50. 0.70) G (G) n Weir Coefficient (typical value 2.15 - 3.60) C. (G) I Orifice Coefficient (typical value 0.60 - 0.80) C. (G) , Opening Information Ih of a Unit Curb Opening L, (C) 11 of Vertical Curb Opening in Inches H_, 11 of Curb Onfice Threat in Inches H. r of Throat (see USDCM Figure ST-5) Theta • Width for Depression Pan (typically the gutter width of 2 feet) Wp • ling Factor for a Single Cum Opening (typical value 0.10) CI (C) Opening Weir Coefficient (typical value 2.3-3.6) C. (C) Opening Orifice Coefficient (typical value 0.60 - 0.70) C, (C) • II Inlet Interception Capacity (assumes clogged condition) a. Capacity IS GOOD for Minor and Major Storms (>O PEAK) Dp[R{ rvE O = MINOR MAJOR CDOT Type R Curb Opening 3.00 3.00 inches 1 1 6.0 7.8 inches MINOR MAJOR ��ue Depths N/A WA feet WA WA feet WA WA WA WA WA WA WA WA "HWIR M&InR 5.00 5.00 6.00 6.00 6.00 6.00 63.40 63.40 2.00 2,00 0.10 0.10 3.60 3.60 0.67 0.67 eat riches aches legrees eel Design Point 34 Inlet Sump SOeet.xlsm, he[ In Sump 10/312014, 11:03 AM Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: Area Inlet 7a Grate Dimensions and Information: Grate Type: Area Inlet, Type D M-604-11 Width (W): 2.625 ft Length (L): 3.35 ft Open Area (A): 6.6944 ft2 Reduction Factor (F): 50% Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)112 4 = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant =. H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets: NftFlow Q = cfs H= Calculations: Results: A = Number of Inlets * A 6.6944 ft2 Q = 35.99 cfs O,g = 18.00 cfs QA«Ow = 18.00 cfs QnCTU, = 15.61 cfs Input = Output = 0.67 32.2 ft/s2 Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: Area Inlet 32 Grate Dimensions and Information: Grate Type: (2) Area Inlet, Type D M-604-11 Width (W): . 2.625 ft Length (L): 8.7 ft Open Area (A): 1338 ftZ Reduction Factor (F): 50% Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)1/2 Q. = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets: Z25qft Flow Q = cfs H = Calculations: Results: A = Number of Inlets * A 13.38 ftZ Q = 113.75 cfs Qg = 56.87 cfs, Input= Output = 0.67 32.2 ft/s' •, Q' Inlet capacity is not exceeded, INLET IS GOOD a Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: Area Inlets, Basin N1 Grate Dimensions and Information: Grate Type: 24" NDS Width (W): 2 ft Length (L): 2 ft Open Area (A): 1.2986 ft2 Reduction Factor (F): 50% Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)1/2 0, = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets: 1 Flow Q = 2'Ol cfs H = 0:75 ft Calculations: Results: A = Number of Inlets * A 1.2986 ft' Q = 6.05 cfs Qg = 3.02 cfs QALLOW = 3.02 cfs QAcrU, = 2.01 cfs Input Output =� 0.67 32.2 ft/s2 Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: Area Inlets, Basin N2 Grate Dimensions and Information: Grate Type 24" NDS Width (W): 2 ` ft Length (L): 2 = ft Open Area (A): 1.2986 ftz Reduction Factor (F): 50% Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)1/2 Q; = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area ofgrate g = Graviational constant = H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = QI*(1-F) Number of Inlets: 1. Flow Q = 1.57.- cfs H = 0.5: ft Calculations: Results: A = Number of Inlets * A 1.2986 ftz Q; = 4.94 cfs C g = 2.47 cfs QAuow = 2.47 cfs QAcruAL = 1.57 cfs Input = Output = 0.67 32.2 ft/s, Inlet Flow Calculations for Area Inlets ' Project: Ridgewood Hills Fourth Filing Number: 12-390 ' Calculations By: MAP Date: 11/21/2013 ' Inlet ID: Area Inlets, Basin N3 Grate Dimensions and Information: Grate Type: 24" NDS ' Width (W): - 2 ft Length (L): 2 ft Open Area (A): 1.2986 ftz ' Reduction Factor (F): 50% Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)1/2 Q. = Ideal Capacity ' C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = ' H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) ' Number of Inlets: 1 Flow Q = 1.9Ift cfs H = Calculations: ' A = Number of Inlets * A 1.2986 ftz Q; = 6.05 cfs Qg = 3.02 cfs ' Results: . QAuow = 3.02 cfs ' QAcru, 1.9 cfs Input = Output = 0.67 32.2 ft/s' Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP ' Date: 11/21/2013 ' Inlet ID: Area Inlets, Basin N4 Grate Dimensions and Information: ' Grate Type: 24" NDS ' Width (W): 2 ft Length (L): 2 ft Open Area (A): 1.2986. ft2 ' Reduction Factor (F): 50% Grate Flow: ' Use the orifice equation Q; = C*A*(2*g*H)t/2 Q; = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = ' H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets: 1 FIowQ= 1.13 cfs H = 0:5 '> ft 1 Calculations: Results: A = Number of Inlets * A 1.2986 ft2 Q = 4.94 cfs Qg = 2.47 cfs Input = Output = 0.67 32.2 ft/s2 I Q' Inlet capacity is not exceeded, INLET 15 GOOD Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: STMH N2 Grated Lid, Basin N4 Grate Dimensions and Information: input Output = Grate Type 24" Neenah MH Grate, R-1553 pg. 115, Neenah Catalog Diameter (D):ft Open Area (A): 1.1 ftZ Reduction Factor (F): 50% Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)1/2 Q; = Ideal Capacity C = Orifice discharge Coefficient = 0.67 A = Orifice area (ft2) - open area of grate g = Graviational constant = 32.2 ft/sZ H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets: 1 Flow Q = 1:13 cfs H = 0.75 ft Calculations: Results: A = Number of Inlets * A 1.1 ftz Q; = 5.12 cfs Qg = . 2.56 cfs •• Q' Inlet capacity is not exceeded, INLET IS GOOD Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: Area Inlets, Basin S4 Grate Dimensions and Information: Grate Type 24" NDS Width (W): 2 ft Length (L): 2 ft Open Area (A): 1.2986 ft2 Reduction Factor (F): 50% Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)1/2 Q; = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets:[ 1 Flow Q =' 0.61 cfs H = 0.31 ft Calculations: Results: A = Number of Inlets * A 1.2986 ft2 Q; = 3.89 cfs Qtg = 1.94 cfs QAuow = 1.94 cfs QACTUAt = 0.61 cfs Input = Output = 0.67 32.2 ft/s2 1 1 1 1 1 Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: Area Inlets, Basin S5 Grate Dimensions and Information: Grate Type: 24" NDS Width (W): 2 ft Length (L): 2 ft Open Area (A): ''1.2986 ft2 Reduction Factor (F): 50% Grate Flow: Input = Output = Use the orifice equation Q; = C*A*(2*g*H)1/2 C! = Ideal Capacity C = Orifice discharge Coefficient = 0.67 A = Orifice area (ft2) - open area of grate g = Graviational constant = 32.2 ft/s2 . H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets: 1 Flow Q = 0.6 _ [ cfs H = -'1;81 ft Calculations: A = Number of Inlets * A 1.2986 ft2 Q = 9.39 cfs Qg = 4.70 cfs Results: •. O' Inlet capacity is not exceeded, INLET IS GOOD Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: Area Inlets, Basin S12 Grate Dimensions and Information: Grate Type 24" NDS Width (W): , 2 ft Length (L): "2 ft Open Area (A): 1.2986 ftZ Reduction Factor (F): 50% Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)1/2 Q. = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets: 1 Flow Q = Od795 cfs 1/4 of Total Basin 3.18 H = 0.5" ft Calculations: Results: A = Number of Inlets * A 1.2986 ft' Q = 4.94 cfs Qg = 2.47 cfs Input = Output = 0.67 32.2 ft/s2 •, Q' Inlet capacity is not exceeded, INLET IS GOOD Inlet Flow Calculations for Area Inlets ' Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP ' Date: 11/21/2013 ' Inlet ID: Area Inlets, Basin S13 Grate Dimensions and Information: ' Grate Type 24" NDS ' Width (W): 2 ft Length (L): 2 ft Open Area (A): 1.2986 ftZ ' Reduction Factor (F): 50% Grate Flow: ' Use the orifice equation Q; = C*A*(2*g*H)1/2 Q; = Ideal Capacity ' C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = ' H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) ' Number of Inlets: 1 Flow Q = 0.28 cfs H = OS8 ft 1 Calculations: A = Number of Inlets * A 1.2986 ft' ' Q = 5.32 cfs Qg = 2.66 cfs Input = Output = �.A 32.2 ft/sZ ' Results: QAuow = 2.66 cfs QAcruAL = 0.28 cfs exceeded,Inlet capacity is not GOOD Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Fourth Filing Number: 12-390 Calculations By: MAP Date: 11/21/2013 Inlet ID: Area Inlets, Basin S4 Grate Dimensions and Information: Grate Type 24" NDS Width (W): 2 ft Length (L): 2 ft Open Area (A): 1.2986 ftZ Reduction Factor (F): 50%` Grate Flow: Use the orifice equation Q; = C*A*(2*g*H)1/2 0; = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Number of Inlets: 1 Flow Q = 0:61 cfs H 0.75 ' ft Calculations: Results: A = Number of Inlets * A 1.2986 ft' Q = 6.05 cfs C g = 3.02 cfs Input = Output = 0.67 32.2 ft/sZ •, Q' Inlet capacity is not exceeded, INLET 15 GOOD I 1 cn 0 3 cn M O Sta 0+00.00 - Outfall Gmd. El. 70.70 Inv. El. 64.80 In G) Sta 1+52.159 - Ln: 1 Rim El. 70.87 Inv. El. 66.17 Out m C) Inv. El. 66.37 In c Sta 2+41.617 - Ln: 2 Rim El. 77.74 Inv. El. 72.43 Out Inv. El. 72.63 In Sta 2+86.627 - Ln: 3 c Rim El. 83.07 Inv. El. 74.47 Out Inv. El. 74.67 In O Sta 3+31.607 - Ln: 4 Rim El. 84.80 Inv. El. 76.53 Out Inv. El. 76.73 In (D a) Sta 4+72.064 - Ln: 5 Rim El. 86.80 Inv. El. 82.99 Out Inv. El. 83.19 In 0) 41 01 Sta 6+13.134 - Ln: 6 Rim El. 90.70 Inv. El. 86.37 Out o Inv. El. 86.57 In O Sta 7+39.167 - Ln: 7 Rim El. 92.70 Inv. El. 88.49 Out o Inv. El. 88.69 In Sta 8+69.654 - Ln: 8 71 Rim El. 95.72 o Inv. El. 91.46 Out Inv. El. 91.66 In Sta 9+14.184 - Ln: 9 Rim El. 96.10 Inv. El. 92.60 Out oI CA (n O 3 cn m F m m (D O N O W V O J A J Oo W N O O O O Sta 0+00.00 - Outfall Gmd. El. 70.70 j Inv. El. 64.80 In r I N i N 1 m C) r i i or II ! I i i � { fOl i r r I I N r i CD O N I n j o i O 1 O I 1 1 ! i I i I 1 N r � i I i i I 1 I I I i I i i o Sta 1+52.159 - Ln: 1 Rim El. 70.87 i Inv. El. 66A 7 Out i i N O A OVo N O O O O O O O O r O O O O O 3 w m m m N C7 A O 0) 07 cm ' N O O O O O O O O v I O Sta 0+00.00 Rim El. 70.87 Inv. El. 66.17 Out Inv. El. 66.37 In I 2 r of I I i m rN 'I O � i I I i I w• i of i I I i i A m O 1 47 O i 1 i C n) I S O i � I I I i, 1 0] 1 O 1 1 i i 1 1 I I J � O i i i Oo 1 O i I i ' Sta 0+89.458 - Ln: 2 o Rim El. 77.74 i I 1 i Inv. El. 72.43 Out i I I. o I O N O O V A C7 O CD O) tD N O O O O O O O O O O O O M m O t0 V c0 V W A ID t0 �O A � O i Sta 0+00.00 i Rim El. 77.74 I Inv. El. 72.43 Out Inv. El. 72.63 In 2 � r I I I I o' m � I i i i I N O I I I I I i I I i I :U (D O li n W: S of I � I I I 1 j I i AI 1 'i i i Sta 0+45.01 - Ln: 3 Rim El. 83.07 Inv. El. 74.47 Out i o' I i i i I I m.l of I (D A (O A cp A O O O O O O O O O O O O F. I t E ' L o cn Un 0 3 ch M (D p CD CD (D co Sta 0+00.00 Rim El. 84.80 Inv. El. 76.53 Out Inv. El. 76.73 In r7 C) O CD a) 0 OD o o O O Sta 1+40.457 - Ln: 5 o Rim 1.86.80 Inv. El. 82.99 Out p PO U) 0 33 f m N m (D O A OOD N 00) i o I I I i Sta 0+00.00 i Rim EI. 86.80 Inv. El. 82.99 Out Inv. El. 83.19 In of 2 r i N I O 1 I I m G) w r O A I O i 1 ut O � I i I I rn i i I I o �i fD i (D A i i 3 � i 1 t i (D � i i O I i I i O i i i O i ' _ I N i O � i 1 i I w of i A Sta 1+41.07 - Ln: 6 0 Rim E1.90.70 Inv. El. 86.37 Out I of I ao O ao A m OD m N co m O vi ch M CD � Sta 0+00.00 Rim ET 90.70 Inv. El. 86.37 Out Inv. El. 86.57 In r7 O O 13 O O (D ED vl ao o of O Sta 1+26.033 - Ln: 7 Rim El. 92.70 Inv. El. 88.49 Out m m w y m o m W m o 0 o o 0 x I o I Sta 0+00.00 Rim El. 92.70 Inv. El. 88.49 Out Inv. El. 88.69 In � I r ! I i I i (V O � I m 1 C i W of i i �� i A 1 ' I i O i. i 1 ! O I 1 i i i Ol ! O (D v i 1 i O O i I 1 O I O I 1 I! I ii i i O � O I i i i i o I i i I i I I i O ! i i w Sta 1+30.487 - Ln: 8 o Rim El. 95.72 i Inv. El. 91.46 Out I of m m o 0 O_ O O O O O N O O O O O O O O N E 3 f m m m o I I Sta 0+00.00 Rim El. 95.72 Inv. El. 91.46 Out i Inv. El. 91.66 In S I r r I 1 I o i m L7 r � i N O �I i I I I � o i i I i I N O S w o i A ' O Sta 0+44.53 - Ln: 9 Rim El. 96.10 Inv. El. 92.60 Out w i 0 m os I 1 w co co 0 0 0 0 0 0 0 0 0 M Z 0 N N 0 2 co l45) 4i pipe .o Z co ��) pipe l45) E z �6 p.XPe 0 a aJ N 9, N Z , N 2` 2 N Z L 0 O Z LL V N 0 IL M 0) 0) 0 A OD O a 0+00 00 utfall +00'0 4L 0— IN GmT U 777 �d I v. 0 91 nv. El. 70.691 1 Ln: 1 Sta 0+ 6.659 r7 MINIMUM 11111111111111111111 Rim El. 76.80 Inv.El.71.10 u Inv. El. 71.30 11 m O cl cl O O Sta 1+34,126 - Ln: 3 Inv E 7264 tut Inv. El . 72841 Sta 1+57.058 - Ln: 4 Rim El 76 00 Inv. El. 73.00 Out OD Ilr m m O4 N J N J N O O 1 Sta 0+00.00 - Outfall Gmd. El. 77.91 Inv. El. 70.69 In C) OI ! I i Sta 0+16.659 - Ln: 1 Rim El. 76.80 m N Inv. El. 71.10 Out o Inv. El. 71.30 In r i' i w' o! I i A O ! I i O i x W 1� � 0 0 S rn O i I i J ' O ! I I i i! ! O i O 1 i i 1 i i 1 i I O ii i O 1 i Sta 1+00.257 - Ln: 2 o' o Rim El. 80.25 Inv. El. 75.10 Out 0 O J J N V J OD N Q! J <p N O O O O O O m m T co V V V J 0 Q W O O O O O O O 1 � Sta 0+00.00 - Outfall Gmd. El. 77.91 Inv. El. 70.69 In 2 r m orj A rn e � Sla 0+16.659 - ln: 1 Rim El. 76.80 Inv. El. 71.10 Out N O C O N A S W ` O A ' O 1 O O aD V_ J A J J Oo O Oo W O O O O O O O O O O O O m m milmommomilill SriMEMO Dut n Ln: 2 >ut 0) 0 3 M (D CD co -4 N V 0) O 0 00 A 90 Sta 0+00.00 Rim El. 76.80 Inv. El. 71.10 Out Inv. El. 71.30 In C) m O .4 rn (D a) 0 O O O C) O Ill Sta 1+17.468 - Ln: 3 Rim El. 76.19 Inv. El. 72.64 Out 90 -4 -4 9) CD 90 m m OJ J W N (ml O O O O O i o I Sta 0+00.00 Rim El. 76.19 Inv. El. 72.64 Out Inv. El. 72.84 In r I r7 I �I of m G i I I i i I i N O ? i i i Sta 0+22.932 - Ln: 4 Rim El. 76.00 I Inv. El. 73.00 Out i I m N o wi S of i i i I I i A � O 1 I i i i I . 1 i of i 1 I i i i I i I O I O j I I J O J W J T J t0 N N OD fly O O O O O O C APPENDIX D - LID CALCULATIONS LID TREATMENT FACILITIES DATA SUMMARY TABLE BIOSWALE OUTFALL PIPE CALCULATIONS BIOSWALE AREA INLET CALCULATIONS _@ @ E z U) @ N O U) a) �U @ LL C a) co V Cl) t/X (00 U .O NNZ 000 N 07 ll'1 u Q x (n W '> ,O^ N X N l°�Z 0 u>�mU rn a) x O (n N r-- 0) N (n N M (n _ `L m Q L co X N (� ��O O 0 N�e-- co N Co 0)x x 00 O U N m�a� N co 3 (D Co 3 c m o > M N cl) O O C p D Z N m V' CO O icn 13N @ 000 (n Nm N CL xs E (n m O U to in > � a) 3 m M x Ta i 0 0) N N O ON N Z x tOp�N m m io 0 U o N u�ca'_CV x CO N O sr N I+ N c- O m Z X ry @ O U a> E m O x y �� EN E' ,� E a3 >1 c0 O 76 (D HUH m y �c v.N a) Q a�f7� d g o� cQ3-c E m �� o3 _�(L a�N m� a) Utc -mJ cr O(9 I�Z>O (D O cc C c a) n N O v m@( E Z � a> a) -.;-,. (moo N @ > Vca cm C CO U a) a) U (D c O @� v- 't O U C M '- M 0 3 0 Ems°' N O) >. _N = @ N a) 3 N U " O CCo@ L C to N @ 3 -p X O c} @ w a) O` c Cl_O c `� O N N U O E>� @o r E c a O O a) @ N U O a) N `O Q=_ CU 3 O o _N M' c — s E 30 C° L) ccC) E 3 m m, O VI > 0 cO� — N N O co @� @� O Q a) E O— �? O (n a) E (n 0 t a) U 3 U C c@ 00 m @ co> O c @@ U E @� m c > a) @ -> c @ N C .0 N E0 U) N 'aF O@ 0 t U a) � U C •p U " N r- -O O @ O . > Co` O FAr O c c@ > CL a)3 O N C O �. M m V- O "@6 .t..0 3 @ — L CV @ @ N r co E �- Q X N co �>+ (Dm - CL (D X O ` ca 3 N O w. O C @ > m 't "O . 3 (n @ ._ rn � O a) c :m.y c •E a�( ma> c(D@c.c= ct3c(n (D•+ O O N @ O m 0 U Co p a) > - T a) @ aa) cu 0ioc�a)Jca)a) �3m N�NH 3"H.'c.. 0E- O Z N co 1 �Y N O 00 N O O O O (ld) U0IIBAa13 N ii S� co 0 0 cu I N 0 Hydraulic Analysis Report Project Data Project Title: Designer: Project Date: Tuesday, September 30, 2014 Project Units: U.S. Customary Units Notes: Channel Analysis: NORTH B PIPE Notes: Input Parameters Channel Type: Circular Pipe Diameter: 1.5000 ft Longitudinal Slope: 0.0150 ft/ft Manning's n: 0.0110 Flow: 14.5300 cfs Result Parameters Depth: 1.1737 ft Area of Flow: 1.4834 ft^2 Wetted Perimeter: 3.2566 ft Average Velocity: 9.7948 ft/s Top Width: 1.2378 ft Froude Number: 1.5767 Critical Depth: 1.3945 ft Critical Velocity: 8.4851 ft/s Critical Slope: 0.01.19 ft/ft Critical Top Width: 0.7670 ft Calculated Max Shear Stress: 1.0986 Ib/ft^2 Calculated Avg Shear Stress: 0.4264 Ib/ft^2 x H a 0 z w 3 0 H N C O O O O (}j) u01jena13 N 00 _ 0 0 im is 7 Hydraulic Analysis Report Project Data Project Title: Designer: Project Date: Tuesday, September 30, 2014 Project Units: U.S. Customary Units Notes: Channel Analysis: NORTH A PIPE Notes: Input Parameters Channel Type: Circular Pipe Diameter: 1.5000 ft Longitudinal Slope: 0.0040 ft/ft Manning's n: 0.0110 Flow: 7.8400 cfs Result Parameters Depth: 1.2275 ft Area of Flow: 1.5479 ft^2 Wetted Perimeter: 3.3913 ft Average Velocity: 5.0649 ft/s Top Width: 1.1568 ft Froude Number: 0.7716 Critical Depth: 1.0847 ft Critical Velocity: 5.7291 ft/s Critical Slope: 0.0052 ft/ft Critical Top Width: 1.3423 ft Calculated Max Shear Stress: 0.3064 Ib/ft^2 Calculated Avg Shear Stress: 0.1139 Ib/ft^2 Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Number: 12-390 Calculations By: MAP Date: 10/2/2014 Inlet ID: Bioswale'B' North Grate Dimensions and Information: Grate Type: Area Inlet, Type C M-604-10 Width or Diameter (W): 2.77. ft Length (L) or Perim.: 3.35 ft Open Area (A): 6.69 ft' Reduction Factor (F): 50% Weir Flow Number of Inlets: 1 Design Flow Q ='. 14 53,,; cfs H= 2.03 `,ft Use weir equation Qi = C*L*H3/2 Q„, = Ideal Capacity C = Weir Coefficient = 3.0 L = Weir Length (ft) - perimeter of grate H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) 0. = 29.07 cfs QGw = 14.53 cfs Orifice Flow: Use the orifice equation Q;o = C*A*(2*g*H)1/2 4 = Ideal Capacity C = Orifice discharge Coefficient = 0.67 A = Orifice area (ft2) - open area of grate g = Graviational constant = 32.2 ft/sZ H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q,*(1-F) Q.0 =. 51.28 cfs Quo = 25.64 cfs Results: QALLow = 14.53 cfs Weir Controls QAncrUAI = 14.53 cfs Inlet Flow Calculations for Area Inlets Project: Ridgewood Hills Number: 12-390 Calculations By: MAP Date: 10/2/2014 Inlet ID: Bioswale'A' North Grate Dimensions and Information: Grate Type: (2) Area Inlet, Type C M-604-10 Width or Diameter (W): 2`>77 ft Length (L) or Perim.: 19'00 , ft Open Area (A): 13:38 ft' Reduction Factor (F): 50% Weir Flow Number of Inlets:= 1 y s;; Design Flow Q= 7t84 ;.;;; cfs H = 0.62 '' ft Use weir equation Q;W = C*L*H3/z qW = Ideal Capacity C = Weir Coefficient = 3.0 L = Weir Length (ft) - perimeter of grate H = Head on grate centroid; ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) QQW = 27.83 cfs QIG,N = 13.91 cfs Orifice Flow: Use the orifice equation Q;o = C*A*(2*g*H)1/2 Q. = Ideal Capacity C = Orifice discharge Coefficient = A = Orifice area (ft2) - open area of grate g = Graviational constant = H = Head on grate centroid, ponding depth (ft) QG = Reduced Inlet Capacity = Q;*(1-F) Results: Q;o = 56.65 cfs Quo = /QAuoW = 13.91 cfs Weir Controls `tACTU, - 7.84 cfs 0.67 32.2 ft/sZ 28.32 cfs APPENDIX E -MAPS DRAINAGE PLAN STORMWATER DETAILS LID EXHIBIT - NORTH LID EXHIBIT -SOUTH LID EXHIBIT DETAILS LID EXHIBIT DETAILS LID EXHIBIT ENLARGEMENTS DRAINAGE DATA SUMMARY TABLE DRAINAGE DATA SUMMARY TABLE SUB -BASIN DE IGN BASIN COMP, RUNOFF COEFF. CUMM.DES.RUNOFF (cfs I.D. POINT AREA (ac) C2 CIM 02 DIN North S stem NI 1 0.353 0.36 0.57 0.36 2.01 N2 2 3 A 6 T6 a 0.276 0.36 0.57 0.64 3.58 N3 T301 0.41 0.63 0.99 5.47 N4 0.211 0.33 0.54 1.15 6.60 N5 1.872 0.55 0.78 2.62 14.53 N6 0.830 0.71 0.95 1.67 7.84 N7 0.900 0.25 0.25 3.21 15.61 lb 4.62 24.29 6 5.58 30.21 0S-1 9 0.401 0.60 0.33 6.17 33.43 South Systm Si n0 0.125 0.43 0.65 0.13 0.74 S2 ;11 0.560 0.25 0.44 9.79 43.57 S3 12 0.235 0.29 0." 0.20 1.14 13 9.90 44.34 Sq 4 0.121 0.31 0.51 0.10 0.61 S5 15 118B 0.125 0.29 OAS 0.10 0.60 S6 0.154 0.61 0.85 10.02 46.17 S7 17 0.155 0.25 0.43 0.11 0.66 S8 34 0.575 0.55 0.78 1.50 7.67 S9 19 0.112 0.63 0.87 0.47 0.96 20 9.97 46.31 S10 i 3 0.119 0.56 0.79 11.40 51.91 $11 0,201 0.46 0.69 0.26 1.38 11.40 51.25 S12 0.436 0.50 0.73 0.56 3.18 11.65 53.76 S13 0.041 0.45 0.68 0.05 0.28 7 11.58 54.D4 S14 28 1,866 0.49 0.73 1.97 12.09 S15 29 1,153 0.66 0.90 3.40 19.11 S16 1 2 0.204 O.BB 0.93 3.62 31.03 S17 0.810 0.18 0.33 0,42 2.32 S18 0.990 0.15 0.28 4.18 35.19 14.76 87AO S19 0.352 0.25 0.31 0.25 1.10 LEGEND: MI STORM BASIN I.D. X. #N MNDM 9Tp1M RUNJfFCOEFFILIFM pRAwWBEYFX PAEA I/,CI A DESIGN POINT i OVE:RLAND FLOW DIRECTION CALL UTILITY NIOPFICATION CENTER OF DOLORADO 1-800-922-1987 534-6700 ow]« GLL 2 MNM BNK IN 1 VANLE BEFORE MXI dq mVbE. M MAVA E IN CITY OF FORT COLLINS, COLORADO UTILITY PLAN APPROVAL 1107111;bHEEf81B-21 FOR STONYpWN PLNl6 PROFNE6. � 7x, � X�RWM,T , ♦ // HAM�IAFACRRR . I / NJ IDfAI x .MRv�z MEORNN / N7 / gYKB ARFAIP].W •1�\ 1 \� \ I ``, 116V1 MI`IIIi 1T Mem Tam, FM nK MI G Lf W16FA unN7Ex N'Fnx \uswMNN ♦® / FI a ` xm SCALE: 1'=3tl-0" NORTH ♦-- \` p AIIIIIIIIIIIA 4L. _ N, ON INEENNE Re i i ON r KNOW iREw�'mw "RR'�N R:NoM E%IBIINO OETIENRON Pom METC \ BgTI WYLLi Rc®MIkT pR TRFXBFwM ACIOBEO LETELORBIT sIMNa�ERNI '� / W EA-1E1"1076 00 ' m 00 40� xLFEoazn ImREm2.m': � M +R a P N �Am mw`aoeoWe/ x4 =, �0 // omEoo �x 3 \ , ryaEw]FTm N WRY IM]D e q Q 2"_ 4/ -7_ EONMMEXT MATCHUNE (SEE=HEET7 OF 9)AA - AIIIIIIIIIIIIA 1Y69 NCbvw:na AVFtm'fAp6D 91Gi 669.I1319 J1D61-MEMWIIE19.aB:PLAM6N OWEN CONSULTING GROUP, INC. "ms'mm OWNER M. TIMM O LOFI AM BUIENIM 233 CABILLO BTREEi B NTA84RB4 CAWI01 (eosl m3n35e J J In C7 G0 2 Q J Fp O LL 6U H KZ j J 5 0 W o LL Q QO 'RLlEUINFMx1TIN PBQIECT NUMBER: 111-IMC DAM OEC 1A 2013 PHASE: FP iWBIMs. O DI 2014 FINAL MrLAR DRAINAGE PLAN NORTH HI 5 MEET 5 OF 41 IF NO 1 , ifI n� CALL UMUTY NOTIFICATION CENTER OF COLORADO 1-800,022-1987 ssa —e7oo"DINNER hi CALL i Bill OAK IN AOVAN6 NBFBE Ydl BA;, GRACE, M MAVAM m TE uAAMINt OF UNDERGROUND MBANNEn unullEs. i Cl OF FORT GOLLINS, COLORADO UTILITY PIAN APPROVAL XCKED BY. a m uNm I'm CHECMM 9T: G OIeFAmll w¢ CMCMm K rxn Ro DTI]® Bf. uRANn mare IMF MATCHLINE � D MM]IISTWOIRUNY£f.OEFFN.'F]!T — ORNNAGE BASIIIARFA ydI 0 DESIGN POINT OVERLAND 'A FLOW DIRECTION IF 1mVVS elm. 2 r n q\ ��A•� F� NORTH \ SCALE: 1'=30'-0' p �. l xD Es 1. SEFSHEE ig-V FORSTD601100H YMYTAHE 2. SEESHEk319-21 FDR STORM DRAM PLNIBPROFNES. NMI r ' < NoINJJJ 4AM , is6U lT, ,, %Nl \ r YLYYm' AaAMmn r,- I =SHEET 6 O (SEE SHEET S OF B) v mEnwET 6IpYCJw III elms) xe. , m $gymJIMelm /T rvrtRlra[r a. om L� vem ' 2WNR '' as '�I ®��tv�r II►I� �� ��' JIII . �'� AFr KA Cpp II All A 1y/.lam I II w' TFCP� 1kpNGrvi�NAylpbtl�NN, (910 MB ]t)1 W I�CA £ PRCHRECTS n SIIE RANNEPS © OWEN CONSULTING GROUP, INC. "i OWNER M. TIMM OEVELCPMENT ATTN: BILL TIMM 2W CMILLO STREET SANTA &WBARA. CF 0101 Imsl D89WSB v/ Wo J _ z so 0 J FO O LL bU WZ C. J J U U.I Q O LL E Q QO PRCIERINFBRNATON: %IO UNUMB .111-123C OATS: DEC IB W13 FNIASEL FP AFVI5CN4'. IMI-2014 FINAL MYLAR SHFFTTRIE. DRAINAGE PLAN SOUTH M NGYM 6 SRHT 6 G 41 ��exM �MWHL�� aw NF anlm IGa w Rxy1 z I Nee..a I_ 1Mm Vwix �— mo�m ,3 umm g� ~ Ce nY,Fm� P'M' wart 'Tan . r~NO r—,AM So W VM Y W W NO No q q.1 rw TaR o MI on I e 1 ��q e e L-Iw1Iw-Fx_s' Va t ac W rMe 1—a me r. racl xI rr rc ON A A REGUL It INILET -''I rY N aA rt F- O--T D� O u .D J DJD-1.11 A�LACD� W WIIN SECTION A -A INLET DROP BO%.-N>5 FT. 1F00bii CMnpular no In 0"0' n G� Sneet RaNebne Colorado Drpmhnelt of TranEyartolian r4201 m un µmore RIN scLOC)75vemMe Project OBMaprnent Brancn SRJ/L' ca HI as oVBe/as uI a.: m.. �m/L, FIk. LN1N FIM — — —, --- Ha=x„n IYIWL INT- wl M aD � ,n R. 10.1d6 Rr , --� o� M �b NOUN NR �6 WLMx 1BWN le .r W d - Iq a , d --.1 d r._w. d:; ) d r d 310jjj __ Y C r r4 6 Ap , i1 ro 1.IT-le- {I l 5 MI a xry'. k �Y d d C r u 'o ]1 ri.. KS 15 y s M [MiTAX WJIT m. OA m 16, 32i w. ms. _ _ R41N ql Iq O W W __ u n + -_v ml _ e 12 . I y s r m. IF In 93 a .Y >_I x 0 a e u ,M as s_ =i i'-3' 15 a ea Iw44 ME 71 ME Y Iis - __ _. RK ME F { t ri' s Nso - — e3 TV M _ F Iva E'E i' d O Mk V. .me SLOE .1 sX ac F r j s!5'oc Hxv Ir" rum, -TOIL ru r Fn GN.IT. - .a �` iiA SR MkN aVi I ;all 1 IIWO.0 iHua � H - ME T VMOM ROOK M NE MM ` VilF 4au `rae SIRrflw WM m CURB INLET TYPE R Sheet No. 1 of 2 O9"S ITW Ali FFill m6. wu'AZ.. MR S LWID WRRORS69WLHOSEW®B6Ap,/e�NAM ocall �� Haw�gwv a aWY6 u9r� � `�Y �OEIHwiwrl MwgE s w oaM eH IRI.Ia It w�Im�NL�w m w�M.Om B[mnmvrnE ua NMWL nE MpFXe aox x smMw °E W"aw"`imn wlmmEwvaemaa 9Wa ilH 6,is R0.a6 xSPOL M HF plWlll6 NGI6 KKu6 Ntld F q. 9 PLO TOLL ITww® No SOUL ITNmlmwY WITH ELEVATION NRM T r INwill .iffi.i 1r ,N nr �e POSITION s pB1yM r r 1r w N' 1' N w INwia 1h• r r y MIR InM oll T�e• opli 10' M SECTION AT HOLF "I Pidtl_11flY AT Fl cvAlloN NEIY LLWNOLF RING (TEE I MEOWS mM - i) No, 4. Fr a�'.TEh� rSfrJ,�ra/.4c iTM x v INK w A MEN M[N MIT K II.—� O 1, _ xf q FAll w, T I— —I_ J J LIrJ_J BM ammur: nrr:peuc .. (murMFII ARE nF_ml,lrr OF Ili Cdoraeo DepaM1nelt of TronVortntlon STANDARD PLAN NO. EIZE n l � � CURB INLET TYPE R M�0412 Prpje=t Da xoOment arancn 9 JJLJA I Mum of Pro;RLt oev&mwt Nw On M, a. mIIB Sheet No. 2 of 2 rnslxo FF 95 INSIDE_• �OBOk L L ENTIW 1�KA OUTLET (1BE SI PULEE BE To' REPIAQO �EAs1WG MLEi GAME IVol EMRVG 1RLA91 RACK R9r 22.w• El51MG MICV RAZE EIOSPHG ro Y ArRACED OUTSIDE 51" Cr BOX EXISTING I r1T, 5- 1 pg' ON,LFT UIrICF PLATE ro a RERA® ONE a4Lr GRAN 2. STAINLEss STEEL Z ANCHOR BCIT (T9.) B "IrooPo HOLES (T,P ) ZL97' Y (MAo • . TIT.) BOTTGM ROW OF; A. HOLES TO BE AT MINT OF PLATE iLAIE THO MEM - f- P�'OPOSED tW ARAE55 STEEL C FIAT (Tor") RVPOSD Ro FOMM (Tor♦ ROWS 01 W4(BJITGIRO HOES To W AT MOVIT Of PLATE •RAN TNO MIESS - I' EXISTING ERQPOSED SOUTH POND #2 OUTLET STRUCTURE MODIFICATIONS CALL UTILITY NOTIFICATION CENTER OF COLORA00 1-800-922-1987 534-6700 WEMO DEN CALL 2 BUSINESS DAYS M ADVANCE RFOE YW M. MR . OR EXCAVATE FW THE YARNING O VMFAGRWIq M UR UTILITIES. C" OF FORT COLLINS, COLORADO UTLR PLAN APPROVAL Min cxETxm W. w,F A NOT OIEO(FB 9Y'. slonngw xTLEY Ma MEMO IN Flan No Fau1w oln MEMO BY: Iwrc nnlmr wrt t Icrya�C�^4 1 Ct ` I MNCAANA,NNAYn,3LaYsa COMSIl Enim3m gsgnMlpfeyn.m. Nw.1lpNsgn.mm YneM,P[A..1.61.A.1lnIMN OWEN CONSULTING GROUP, INC. v01LM. TIMM DEVELOPMENT 233CARIU0STREET GRIlLO SANTA 80RBPRh, G4991o1 C (eosl RB.Ra95a (m)11 y J J w0 z Z ¢O G �O 0 LL .d U �� ~ C 3 wJ 0 0 0 ,W V LL — 0 Im Q QO aNWECT TFORAPIION. PRQIECTNUMBER: 111-1 ] C WE: DEC t9, 2T119 PHASE FP OLV EONS a012014 FINAL MVLAR y EETTOU STORM DRAIN -.NGMRDETAILS 32 1EV 32 OF 41 LEGEND: 71 IMPERVIOUS CAPTURE ElDIOSWALE PRE-TREATMENT EmOONTINOUS TREE POCKET W/ pILANTING SOIL LID DATA TABLE: CATCHMENT AREA TABLE: AREA UNIT PERCENTAGE TOTPL IMPEFNgUB: MIDI SF BUILDING 81.806 SF SIDEWNJcs A8,8Z8 BE SPORTCOURT ERR BF PGOL DECK 4.70 BE DRIVES B PARKING 1r.DBB W TOTA Giw sBPARKMIG', MISS W T A_ DRIVES. PMKIAVG B BUILDING'. m.m BE TOTKWRETREATMEN(GTCHMEM Im.616 BF SOUTH GTCHMEM 117.071 IF NORTH CATCHMENT 53,548 IF GENERAL NOTES: 1. THESE LIDIO(LOVI IF ACT CEVEIAPMENPLA NS ANS SHN_L BE USED IN CG UNCTIM WITH THE UANWC E. DWMGE AND GRADING PLANS FORA COMPLETESETOF%LN18. Know what% below, \ Call before you dig. \ \ W SCALE: V=30'-O- NORTH t imifilfi 0 1530' 60' SO' 100% 83% SB% \ —sraa— i / eFDRrs \ /TOT LOT POOL I I / I 6 I �• �I I L I � II i �II \ III I II INDEX TO DRAWINGS h T I I LIDA LID EXHIBIT —NORTH UD.2 UD EXHIBIT —SOUTH UD.3 UD EXHIBIT DETAILS UD.4 UD EXHIBIT DETAILS U0.5 UD EXHIBIT —ENLARGEMENTS Ij I';III. 9/ercyw 1]BBNCwtrL Aw WMdCOM1'fl IM4MB3D1 M•9nMhB4^Yn.mn mrrvllgb,9rvmm LVYfdFEMgIIECIBA WIEHIN6® OWEN CONSULTING GROUP, INC. a'uwm$N,N� OA1,Efl M. Tl ILLTIM e,A M C BILL TRAM 333 DMILLO BTR SVITA BAR64M.C0% GB3101 (N5IB8303Y J o0 J Z z o 0 ¢o O M -U O cr PB0 mo? UU W o or LL Q 00 FANECTNFMWI0N. PR03ECTNUMBER IIIA FC DATE. DEC 13, W13 PHASE: FP RMKMS'. OT312014 f esu. 0& W XIA FPPeFup LID EXHIBIT - NORTH LIDA H£ 37 a 41 I MATCHUNE IN � �y d (SEE SHEET LID.i) T / / 1 \ / max°' v IS / i • / I / "NIT / I El Ili 1. I Slim. / / _ -� qPIS IN SH IT IT i a \IS / _ IT / J IT T, ES IS Ili, 241-UNIT "1°4 � z�MNR / i I a // v/� / i 1 I- qIT i rSe ail _N�-�" Not IS - IN / t �. I6UNIT 2 IN/ CATCHMENT AREA TABLE: LEGEND: /r IMPERVIOUS CAPTURE • -'s•d ® A� / � r S LL�JBIOSWAIE PRE-TREATMENT �"N�qn_ m CONTINOUS TREE POCKET -F / W/ PLANTING SOIL �h bd,�,p� SCALE: r= 30'-0• NORTH j Hit I C8llbefonyy�wilig, 0 15160 1mNTFIGO" W tlAl 1�1�3n, � uog.,>m �Juw AIIIME w OWEN CONSULTING GROUP, INC. mNER. M. TYNm pwabq,w; AM:BIU TIMM 333 GRILLO STREET SWIA BPABMA G99101 (eBBIM13mw J op J_ ..J S O 0 J O O a �o O J W o �� LL 0 QO PROJECT INFORMATION PROJECT NUMBER I I I I=FC GTE: WC 13. M13 PNASE: FP REVASIW4 ,3112014 fP Resupm Ut Ioo1.A1. FP RxWmmal LID EXHIBIT -SOUTH SHEET NANETTE LID.2 mEiEr 38 Ni, 41 5 n 'SCOURERSTOP CHECK DAM WITH NOTCH SPILL DRAIN WITH SEE DETAIL 2AUD.3 TRANSITION MAT UNDISTURBED NATIVE SOIL VI, 4- MAIN WITH VEGETATIVE COVER >PLAN n' M1 k� ' SEE GRADING PLANS FIBER TURF REINFORCEMENT WT. 12'WIGTH 1 1 C PERFORATED PVC PIPE COLLECTKIN PIPE WITH FILT SOCK SEE GRADING PLANS 'RFOINGpI'll 0 L1N5 �REAGRAVEL GRASS SWALE CHECK DAM SCME NTS S PtMT DRIVE NOTES: 1. SEDIMENTMAP TO BE CLEANED OUT BY REMOVING AND REPLACING WITH NEW PEA GRAVEL WHEN FULL OF DEBRIS. 2. DIG TREE PGCK.ETS A MINIMUM OF 2 TIMES AS WIDE AS DETER OF ROOT BALL OR CONTAINER. AND DEPTH SUFFICIIENT TO ALLOW TOP OF ROOT BALL AT TRUNK TO SIT MINIMUM OF X ABOVE SURROUNDING GRADE FOR SHRUBS. W ABOVE FOR DECIDUOUS TREES AND rS ABOVE FOR CONIFEROUS TREES. TREE POCKETS SMALL BE CONTINUOUS, SEE LANDSCAPE PWIS FOR LOCATIONS AND SIZE. 3. SACNFILL MATERIAL TREE AND SHRUB PLANTING PITS SHALL BE BACKFILLED WITH THE FOLLOWING MIX: 75%TOPSOIL WY VOLUME (SOIL EXCAVATED FROM RANTING PRS). 25%COMPOST BY VOLUME. THE SPECIFIED BACKFILL MATERIALS SHALL BE PPE -MIXED USING INDUSTRY ACCEPTED TEGHNOUE IN ORDER TO OBTAIN A UNIFORM, EVENLY BLENDED CONSISTENCY, FREE FROM POCKETS OF UNBLENDED MATERIAL. AND CLODS OR STONES GREATER THAN TWO INCHES IN DIAMETER. BACKFILL MIX SHALL BE DELIVERED TO EACH TREE POCKET AFTER MIXING HAS OCCURRED. INSTALL BACHFILL IN B IUFTS TO0%COMPACTION, 4. COMPOST: A TOTALLY ORGANIC PRODUCT THAT HAS BEEN AEROBICALLY AND NAVURALLY PROCESSED WRIKKR THE ADDRION OF COARSE WOOD CHIPS. IN SUCH A MANNER AS TO MAINTAIN ACONSISTENT TEMPERATURE OF IQ DEGREES FAHRENHEIT OR GREATER FOR A PERIOD OF TIME SUFFICIENT TO CREATE THE FOLLOWING CHARACTERISTICS MEASURED BY DRY WEIGHT: MAXIMUM ALLOWASLE ORGANIC WM R:BO GANICMATTERTONITROGENRATIO:25:1TO30:1;PH:7TO8PHBALTB'. 20TO3.0MMH0S: LESS THAN 25%INORGANIC MATTER; LESS THEN 1%SOIL, DIRT OR SAND; MAXIMUM PARTICLE SIZE OF 9 INCH DIAMETER, ERADICATION OF ALL HARMFUL WEED SEEDS, PATHOGENSAND BACTERIA; A NON -OFFENSIVE EARTHLY SMELL. POCKET DETAIL 3GAUE.M SIDE SLOPE 3:1 MAX SEE GRADING PLANS LOW FLOW NOTCH — CHECK PAM WIT ME DEI`AUL IUD 1M19.3 TRANSITION MAT PIPE COLLECTCN CHECK DAM -SECTION SCME:NTS SEE BIOSWALE DETAIL 3I LID.3 FOR SEDDINGISTORAGE PEDUIREMENTS NOTES: 1. SEE DRAINAGE PLAN FOR SPECIFIC IM YEAR MEL, INLET SIZE, RIM ELEVATION, AND OLRFALL STORM DRAIN SIZE 5 BIOSWALE OVERFLOW DETAIL SGUS NTS SLOTTED CURB W WIDE OPENING AT BETTER. BOTTOM SHALL BE SLOPED TO DRAIN TOWARDS THE SEDIMENT TAP SEE RAMS FOR LOCATIONS, PERFOATED STEEL EDGER SEDIMENTMAP PEA GRAVEL, 3' DEPTH NOTE: 1. SEDIMENT TRAP TO BE CLEANED OUT BY REMOVING AND REPLACING WITH NEW PEA GRAVEL WHEN FULL OF DEBRIS. SWALE 7 WATER QUALITY BIOSWALE �- WCCV WATER SURFACE SEE DETAIL SUD1 3 MIN �IL 4 HOPE��i MEMBRANE /` VI �\ IN PEA GRAVEL DIAPHRAGM 0 LAYER OF COOT N0. 4 AGGREGATE, DEPTH AND WIDTH VARIES, SEE PI -AN AND SILNG TABLE BIOBWAIE WIDTH HEBC LENGTH CA NORTH T 4' 11B ILH NORTHB e Y 135 R SOUTHA S' 4' BY j a SOUTHS SLF IRmi 3V' SamiHq,NI e9 TN[ILTRMAZODAL 3 BIOSWALE DETAIL 3GNE: N18 I INN IMIZILu LL Lj CaNIIIPeM Rea I.D. CA-1 G-2 CA-3 CA< 2B,B11 1052 CA" m 931 CAE 13.09 561 T Aree ZI458 29OB9 532B2 R im IIIALI 1144 1212 2.039 LI.O. FNGNMY TYPO Mmm URNMle SUM08 SWMB 9oswole Slue CMIS Silva CRAM Na A NaIMB IMWU tlments SwthA B. BIoswele South B Lgx4'x135' See Nvef D31rltloniTTeabmlit Aim T><I'X110'i B'x4'x89'; 2AHels2/veee@ 1Nee@ Gmu Dimewmm"(S) Below 38'x18'x4' 4Dx20'xW Carty Corse OHBVM Corse tSee Note 2 Soil See Nm 3 Sal _ Teslment Me6un Came Grevtl Greta Gnlvel Me01Mn P/ (96) _ 1 a _ 7 40 _ 40 40 20 20 TM voluoTOn/TreebnBM Volu_IFW (ft) 1,232 _ 1296 2008.__.-.1139 I —972 6W-_ NOTES 1. WOCV AMOUNTMG TO1.18B F13 WILL BE PROAODED r ASERIES OF 18 SURFACE IMPOUNDMENTS UPSTREAIA OF CHECK DAMS IN THE SWALE ALONG THE SOUTH PERIMETER OF THBE SUE THE BALANCE OF THE WOO WILL SE PROVIDED IN AGUBSURFACE GRAVEL AREA BENEATH BIOSWALE SOUTH B. THE SUBSURFACE GRAVEL AREA WILL HAVE A RAN AREA OF APPROXIMATELY 900 FT2 AND A DEPTH OF 2.5 FT., RESULTING IN AN EFFECTIVE DETENTION) TREATMENT VOLUME OF 5W FT3. 2. THE TWO AREAS DESIGNATED FOR INSTAILAg10N OF THE SILVA CELLS WILL ACCOMMODATE A TOTAL OF 06 CELLS, STACKED THREE DEEP, WITH EACH CELL BEING 4' X 2 X 133' HNGH, AND CONTAINING 10 FT3 OF SOIL WITH POROSITY OF ID%, RESULTING IN AN EFFECTIVE DETENTION I TREATMENT VOLUME OF 972 FTB, 3, THE AREA DESIGNATED FOR INSTALLATION Oil' SILVA CELLS IN CATCHMENT AREA WILL ACCOMMODATE A TOTAL OF WCELLS, STACIMD THREE DEEP, RESULTING IN AN EFKGTNE DETENTION ITREATMENT VOLUME OF 600 M. 6 L.I.D. TREATMENT DATA TABLE SCALE NTS SEED MIX SLOPED TO DRAIN INLET, SEE LANDSCAPE RAN AND DETAILS 36 SUD.3 u, WIDTH L BI0.SWALEBIOSWAL£ SWING TABLEABOVE 6 E:WS r TFG I E69 H OM,BM.IMatlCOYmI DNBNSIP xaVg.IwrrPmn .w.�mn IAMHfXEMM1EilSe BRERAMlr OWEN CONSULTING GROUP, INC. ., 9lawtlO4 Pbw TN YOM 3715 t N.IO rnmTP: M.T'm MHH,eM ATTN'BILL TIMM 2WCARILLOSTREET SANTA34RBAR&CABHO1 IBc51 eB3d35e v/ J 00 J WD 2 ZO G 20 0 LL �0 b N O UU J ' W LLI O o U LL 0 00 Q flg1ECTlxf `1 PROTECT CTNUNUMBER: DEC% VISE: DEC 2019 PHASE: FP UVRm 0734IDH FPRmWnIW 160L=4 FPR®4,YN NEBTRU: LID EXHIBIT DETAILS aEE MurA LIDNN3 RER 39 Df 41 PAVING, PER PROJECT SPECIFICATIONS 12' AGGREGATE SASE COURSE PAIR SPACE BETWEEN SILVA CELL DECK AND PLANTING SOB PAVINGB PER 0 A; PROJECT SPECIFICATKINS A rJ DECKS TO R SCREW CELL DECKS TO FRAMES AFTER SNAPPING IN PUCE (TYP.))GEO . \ ' MINIMUM LOW BACKFI BELOWM'IT MINIMUM AT OVERLAPiOPOF ,y CELLS. TOPOFLELLS. /\\ C 3H8HINGGE % - GRID Sd4$ TOSILVALELLSATPACH SILATTACELLAIA ENCHI j LEVELMIDDECOK BALNFILLLED IN LIFTS, WITHIN PBFFlOpI GEOTEXTILE ON CSUSGFUE OF DECKS, COMPACTED T095% SUBGRA OE W11GRADE BELOW GEOTEMILE AND W PERFORATED PVC _ AGGREGATE BASE COURSE, COMPACTED TO%% COLLECTION PIPE J <' AGGREGATE SUB WE. COMPACTED TO M WITH FILTER SOCK J SILVA CELL BM1£ SLOPE TO MAX. S% r7 PPRMNO BAY RATE EE DETAIL 91 LID 4 . PER PROJECT IONS 'J 6 MINIMUM BELOW BACKFILL AT BASE, 12- MINIMUM AT TOP OF OEILS, CELL•PARKING LOT ISLAND DETAIL ETAIL11LID 5 AREA DRAIN, INSPECTKN RISER AND CLEAN OUT: RIGIDATPAVEMENTSFCTION AREA DAMN PERFORATED AT SILVA CELL qt USFWPUWTINGIAEA4 SYSTEM. WHERE PFAFOMTED. WRAP IN CEOIEKRLEANOSECUWE WIMZIPTIES. -f3 WOOD IMLCH. IEE CAPE OTES SEEPROO UBIS IMT 1 DIEMEP UB162 ROOTBMRIER J llB'LEEP B' AREA DRAIN, INSPECTION RISER. WITH CLEAN OUT CONNECTED TO � D TRIBUTKKi%PE. BLOTTED LID SHALL REACH 7 ABOVE MULCH SIURFACE SEE DETAIL 91 LIDA X. TAMPED TO MAX. B596 A AREA DRAIN AND INSPECTION RISER •"• .M� NBELOW ROOT PACIWGE ,7 PIPE IV CURSAMDSIREETIN R SCREW CELL DECKS TO FRAMES AFTER SNAPPING IN PLACE TYP, GEOGRIO,'J' 6 MINIMUM BELOW BACKFILL AT BASE. OVERSI I MINIMUM AT TOP OF CELLS. VI XI4- ZIP TIES. ATTACHING MCKMID TO SILVA CELLS AT EACH LEVEL AND AT CELL DEM �L' LVACELL BA4E SLOPE TOMAX B% GEOT EKTB£ on coMPACTeD wBLRwE T AGGREWTE SUB WE, COMPACTED TO 95% SUBGRADEBELOWGEOTEXTILEAND AGCAiEGATE BASE COURSE, COMPACTED TO 95% C AREA DRNN, INSPECTION RISER, WI HDIJEANgRODMNECTEDTO DISTRIBUTION PIPE. SLOTTED LID SMALL REACH 2' ABOVE MULCH SURFACE. ME DETAIL 91 LIDA ARBOR TIE-1 TREE ROOT PACKAGE, SIZE VARIES SEE PLANTING NOTES PLANTING SOIL, TAMPED TO MAX. SPECIFICATIONS, INSTALLED W W LIFTS D LIFTS PER CELL) FOLD ENDS OF ARBptTIE BACK. SECURE TO STAKE WITH V GALVANIZED ROOFING NIL OR USE AN KNOT. SPFORf1)ARBORRf GREEN (ORWMNEI STMJNG AND DNYNG MIA maw is To BE HU, WOVEN, PIXYPRO Unf MATERMI, I- WIDE WITH M 0, BREAK STRENGTH AMMUTHE 11 BEEASTENEO TO STAXES IN MANNER WHICH PERMIR TREE MOVEMENT AND SUPPORTS ME TREE. WALL SHALL BE USED IN COWUNCTION WT:M LLVA CELL STANDARD DETANS, aBS aN- W16YAFEAR]FILCISs SITERAMETS ®OWEN CONSULTING GROUP, INC. N mmw NF M. Tim Iopnwil ATTNBILL TMM 23S CARILLO STREET SANTA BARBARA. CA 0101 (BOS�BLI30958 V/ J o0 J O 2 _Z z0 2 a0 O LL E 0. ow Q2 F Z U 1D 0 ,ui 0 F V LL Qy Q 0 IL VP0.ECi MELRWTYW. PROJECTNU DKIE:D CIS, WEE: RIF 1B 3B13 PIUSE: R MOONS 0731.A14 FPRqup f ,OLISV FPRn mUJ MEET 7TLF' LID EXHIBIT DETAILS SNER xJNIa- LIDA 40 v 41 �LL W.V COI^E TO PROTECT AREA DRAM FROM WOOD MULCH _ MIGAAWN,MP) A' PERFORATED PVC DISTRIBUTION PIPE SYSTEM. SEE DETAIL 121 LIDA B' PERFORATED COLLECTION PIPE CONNECTED TO STORMNATER WE DETAIL IC LIDA. RE: DRAINAGE PLANS .............. SILVA CELLS PER ACKED WATER CAPTURE "'• DETAILS. STACKFDTNREENEA. UNDER ASPXAL SEE SHEET \ ` SEE SHEET LIDA I)'[�'•f�`�'''•..\`^'Nl PHA1 DRIVE \y / PARKING AREA \ CELL LAYOUT -ISLAND 1 �1 'SILVA CELLS' PER WATER CAPTURE — DETAILS. STACKEDTHREE HIGH UNDER ASPHALT PARKING AREA, SEE SHEET LIDA W PERFORATED COLLECTION PIPE CONNECTED TO STORMWATER. SEE DETAIL 121 UDA. RE: DRAINAGE PLANS SLOTTED CUM (TYPI. SEE DETAIL T 1 UD3 CUNCREIE CURB, (TYP) 3'WIDE SEDIMENT TRAP C I 1REEf ) '\ £ FROMw BLE MULCH ECTMEApWN FROM WK30D MULCH MIGRATION, (TYP) AREA WAIN, INSPECTION RISER AND CLEAN OIUT, MPL SEE DETAIL BI UDA SHRUB, ITYP) g A DRMEwivie 6 'd E SILVA "ELL LAYOUT -ISLAND 3 r PARKING ISLAND / LANDSCAPE AREA ...... SLOTTED wRB (IVP6 sEe DETAIL Sm:CU CONCRETE WRB.IIYP) 3'N1DE9EONIFI/f j� SHRUB. RYoI ' I� 1REE IT1P1 6Z n EVFAG.(81 SHRB,(EN) - AT DRABS DRABS \ BEGM SOLID DRAIN PIPE, RE. ORANAGE PLANS CONCRETE DRAIN PAN A- PERFORATED PVC DIS A.TION PRE SYSTEM. SEE DETAIL I2/LIDA CONCRETE DRAIN PAN BEGIN SOLID OIWN PIPE. BE: DRAINAGE PLAINS 41111111, PARMNG ISLAND LANDSCAPE AREA., SCALE NTS ASPHALT J EVERGREEN EN / DRIVE , SHRUB. 1 SCALE' NTS AT PERFORATED PVC DISTRIBUTION — PIPS SYSTEM. WEOETA 121 LIDA BN E ISPED TO STORN CT ER PIPE — CpINETW121 LIDA, RE AIER.SEE DETAIL I2/UDA. RE DRAINAGE PLANS SILVACELLB'PERWATERCAPTURE — OETNLS. STACIO:D THREE HIGH UNDER MBPI W LT PARKING AREA, SEESHEETUDA ASPHALT DRIVE $LOTTEV, CURB jTW). WE DETNLTIUDS CONCRETE CURB.(TYR) A' WIDE SEGMENT TREE (TYP) r COW BETE DRNM PAN ASPHALTmill ISLAND PARKINGAIEA t- LANDSCAPE AREA j......._ .......� ... 1..._... .. ...... GE BEGIN SOLID /.� DRAIN PIPE, RE'.ORAINA 1 ? ••• ..iy: PLW3 LE AREhD RA1K INIBBMCTICN RISER AND CoNcRAritW,�\CLEA UT.(TYP*SEEDETAIL91 LIDA TCOBBLETOPROTECTAREA DRAIN FR,, WOCO MULCH L MIGRATKIN, (TYP) 2 SILVA CELL LAYOUT -ISLAND 2 $DALE, NTS Roow wears below. 12BBNCbeWtl M,LaYM W B1M] MOIbIB )]B] Amin§tlBeeQglran wwdpM,Ml.mn L�VIMfAFE.ViCTIlECl9.91ER�11iBIB OWEN CONSULTING GROUP, INC. aneMs.N,NON. 'rvlul aeon., q.Ts..co NNa anm..w.eN..I N:dE0. M. TMn MWip,WM ATTN:BILL nMM 2B3 CARBL08R1EET SNITABMBUU, CA B9101 )BBB)383U358 J � J wS _ _Z O O 0 M mO p LL _ Q tl N �Z W 0 UJ O o F U. ZO O NQN Q LL ORWECTINFORMAFICK PROJECTNUMBER IIi-U2FC DATE' DEC 1A W43 PHASE: FP PEVNM 07-31-214 FP A... l,L 1"1-2014 FPR®W W RLID EXHIBIT - ENLARGEMENTS LID.5 r 41 41