Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 10/27/2000
1 1 1 1 1 1 1 1 1 i 1 1 i 1 1 1 FINAL DRAINAGE AND EROSION CONTROL REPORT FOR CLYDESDALE PARK, P.U.D. LARIMER COUNTY, COLORADO Revised October 27, 2000 Revised October 10, 2000 Revised June 9, 2000 March 31, 2000 December 17, 1999 Prepared for Clydesdale Park, LLC C/O Dwayne Walker P.O. Box 7447 Loveland, Colorado 80537 Prepared by JR ENGINEERING 2620 E. Prospect Road, Suite 190 Fort Collins, CO 80525 (970)491-9888 Job Number 9201.02 I 1 ' October 27, 2000 ' Mr. Rusty McDaniel Larimer County Engineering Department ' P.O. Box 1190 Fort Collins, CO 80522 ft) J•R ENGINEERING A Subsidiary of Westrian ' RE: Final Drainage and Erosion Control Report for Clydesdale Park P.U.D. Dear Rusty, We are pleased to submit for your review and approval, this revised Final Drainage and Erosion Control Report for Clydesdale Park P.U.D. This report includes the design of the stormwater drainage facilities required to meet or exceed the criteria in the Larimer County Storm -Water Management Manual and includes changes to reflect comments by Larimer County. This project was originally submitted to include only Filing 1 (Phases 1 and 2) and it has now been expanded to include the over lot grading and the associated drainage facilities for Filing 2 (Phases 3, 4 and 5). A revised drainage plan is anticipated when the Filing 2 design is completed. More specifically, this document has been revised to include SWMM modeling of the 40 acres northeast of Clydesdale Park. Four single-family lots in the northeast corner of the site have been added to Filing 1 and addition of Filing 2. This addition resulted in an additional four detention ponds and 16 sub -basins. Notice that the 100 series sub -basin identification numbers reflect basins in Filing 1 (Phases 1 and 2) and the 200 series are for filing 2 (Phases 3, 4 and 5). All of the calculations for this area can be found in the appendices. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Sincerely, (�Prepa�re(\d�1 by, � (` William F. Strand, P.E. Project Engineer Attachments Revi ed by, fm B. Wright, P.E. Senior Project Manager 2620 East Prospect Road, Suite 190, Fort Collins, CO 80525 970-491-9888 • Fax: 970-491-9984 • w Jrengineering.wm I I ' TABLE OF CONTENTS PAGE ' LETTER OF TRANSMITTAL ' TABLE OF CONTENTS.................................................................................................................I VICINITYMAP........................................................................................................................... III ' ENGINEER'S CERTIFICATION................................................................................................ IV 1. INTRODUCTION.................................................................................................................. 1 ' 1.1 Project Description.............................................................................................................. 1 1.2 Purpose and Scope of Report .............................................................................................. 1 ' 1.3 Design Criteria.................................................................................................................... 1 2. EXISTING SITE DRAINAGE............................................................................................... 2 ' 3. PROPOSED DRAINAGE PLAN........................................................................................... 2 3.1 Flow Routing...................................................................................................................... 2 t 3.2 Hydrologic Analysis of the Proposed Drainage Conditions ............................................... 5 3.3 Allowable Street Flow Capacities....................................................................................... 8 3.4 Storm Drainage Structure Design....................................................................................... 8 ' 4. DETENTION POND DESIGN............................................................................................ 10 4.1 Summary of SWMM Analysis.......................................................................................... 10 ' 4.2 Details of the Rational Volumetric Method...................................................................... 11 4.3 Proposed Detention Ponds................................................................................................ 11 ' 5. EROSION CONTROL......................................................................................................... 13 5.1 Erosion and Sediment Control Measures.......................................................................... 13 5.2 Dust Abatement................................................................................................................ 13 ' 5.3 Maintenance......................................................................................................................13 6. MISCELLANEOUS............................................................................................................. 14 ' 6.1 Variances...........................................................................................................................14 6.2 Irrigation Ditches.............................................................................................................. 14 6.3 Maintenance Agreements.................................................................................................. 6.4 Safety Statement 14 14 ............................................................................................................... 7. REFERENCES..................................................................................................................... 15 Final Drainage and Erosion Control Report Page I ' Clydesdale Park P.U.D. October 10, 2000 APPENDIX A MAPS AND FIGURES ' APPENDIX B HYDROLOGIC CALCULATIONS APPENDIX C INLET SIZING APPENDIX D STORM PIPE DESIGN AND SWALE DESIGN ' APPENDIX E STREET CAPACITY CALCULATIONS APPENDIX F EROSION CONTROL APPENDIX G DETENTION POND CALCULATIONS APPENDIX H SWMM APPENDIX I REPORTS BY OTHERS 1 Final Drainage and Erosion Control Report Page II ' Clydesdale Park P.U.D. October 10, 2000 Vicinity Map N N NORTHERN RAILROAD W cc Q F cc ~ BAKER z LAKE I HIGHWAY 14 U) SITE a O cc z D O CITY OF U FORT COLLINS PROSPECT ROAD 0000e� J(Fr�� LL�, j VICINITY MAP SCALE 1"=2000' Final Drainage and Erosion Control Report Page III Clydesdale Park P.U.D. October 10, 2000 ' ENGINEER'S CERTIFICATION I hearby certify that this report (plan) for the final drainage design of Clydesdale Park P.U.D. was prepared by me (or under my direct supervision) for the owners thereof and meet or exceed the criteria in the Larimer County Storm -Water Management Manual. � � DO REG/s 1.✓� s William F. Strand ;� 4335 ; c Registered Professional Engineer 1jgto CL- 90 • State of Colorado No. 34335 '•••. `o`' �SS�ONAIL. Final Drainage and Erosion Control Report Page IV Clydesdale Park P.U.D. October 26, 2000 1. INTRODUCTION 1.1 Project Description Clydesdale Park P.U.D. is a proposed 75.82 acre medium density, single-family residential ' development located in Section 15, Township 7 North, Range 68 West of the Sixth Principal Meridian in Larimer County, Colorado (see Vicinity Map). ' This report considers Filing 1 (Phases 1 and 2) to be constructed complete with all ' infrastructure including streets, utilities, and storm water facilities. Filing 2 (Phases 3, 4 and 5) include for development will only the necessary grading of this area. Storm drainage facilities for Filing 2 will include the detention ponds, drainage swale for off -site drainage ' to be routed through the site, and drainage swales between the five detention ponds. Carnage Parkway forms the dividing line between Filing 1 and Filing 2. ' The site is located south of State Highway 14 and east of Interstate 25. The overall site is ' divided into five phases. The first two phases consist of 85 single-family lots and five (5) open space areas. Phases 3, 4, & 5 will be fully developed in the future. ' 1.2 Purpose and Scope of Report ' This report defines the proposed drainage and erosion control plan for proposed Clydesdale Park P.U.D. The drainage plan includes consideration of all on -site and tributary off -site ' runoff. 1.3 Design Criteria ' This report and associated calculations were prepared to meet requirements established in the "Larimer County Storm -Water Management Manual' (LCSWMM) dated April 1979. ' Runoff computations were made using the rational method for Area III of Larimer County. Detention requirements were determined using S WMM, a hydrograph routing model and the FAA Rational method. Where applicable, the criteria established in the "Urban Storm Drainage Criteria Manual' (UDFCD), 1984, developed by the Denver Regional Council of ' Governments, has been utilized. No master drainage plan exists for this area, therefore, the LCSWMM was utilized to govern release rates. Final Drainage and Erosion Control Report Page 1 Clydesdale Park P.U.D. October 10, 2000 [1 ' 2. EXISTING SITE DRAINAGE ' The existing site has historically been planted with corn and drains in a southwesterly direction at slopes ranging from 0.5 to 1 percent. The site also contains irrigation ditches that ' run north to south. All drainage from this site is eventually received by Boxelder Creek. According to the Flood Insurance Rate Map (FIRM) for the area, the site lies within Zone tC, which corresponds to an area of minimal flooding. The site is shown on a portion of the FIRM Map Panel No. 080101 1080E in Appendix A. The soils on this site include Ascalon Sandy loam, Loveland Clay loam and Satanta Clay ' loam. The predominate soil is the Satanta Clay loam which consists of nearly level soils on high terraces and fans (USDA, 1980). Pertinent characteristics of this soil include slight runoff and a slight to medium erosion hazard. Satanta Clay loam is categorized in ' Hydrologic Group B. A soils map for the Clydesdale Park P.U.D. site is found in Appendix A. ' 3. PROPOSED DRAINAGE PLAN 3.1 Flow Routing ' The site was graded so that stormwater runoff mirrors the historic drainage patterns as much as possible while collecting the majority of the runoff for detention. The proposed flow ' patterns with subbasin delineations are shown on the Drainage Basin Map included in the back pocket of this report. The entire site, except for subbasins 104a, 117, and 215 is ' directed into the proposed detention ponds (Ponds A, B, C, D, E, F, & G). Off -site runoff enters the site from two basins near the northeast comer of the site. A qualitative summarization of the drainage patterns within each sub -basin is provided in the following ' paragraphs. Filing 1 sub -basins are as follows: ' Runoff from Subbasin 102 is conveyed via sheet flow and gutter flow along the north and west gutter of Palomino Lane and finally to design point 2. The inlet at ' design point 2 directs runoff through a pipe and swale system that discharges to Pond A. 1 1 Final Drainage and Erosion Control Report Page 2 Clydesdale Park P.U.D. October 10, 2000 1 ' Runoff from Subbasin 103 is conveyed via overland and gutter flow along the south ' and east gutter of Palomino Lane and finally to design point 3. An inlet at design point 3 directs runoff into a pipe and swale system that discharges to Pond A. ' Runoff from Subbasin 104 is conveyed via overland flow and swale flow to a culvert at design point 4. Flows are conveyed into a pipe and swale system that ' discharges to Pond A. ' Runoff from Subbasin 1O4a is conveyed off -site via gutter flow along the north flow line of Brenton Drive and enters the subdivision called Waterdale. These flows are ' accepted by Waterdale without any great impact to the site. Runoff from Subbasin 105 is conveyed via overland and gutter flow to an on -grade ' inlet along the south gutter of Brenton Drive. Carryover flows leave the site along the gutter and enter the subdivision Waterdale. Waterdale accepts the flows without ' causing any major impact to the site. Flows that are intercepted by the inlet are directed to Pond A by a pipe and swale system. tRunoff from Subbasin 106 is conveyed via overland and swale flow to a culvert at ' design point 6 that diverts the storm water to Pond A. Runoff from Subbasin 107 is conveyed via overland and gutter flow to an inlet at design point 7. The runoff is then directed to Pond A for detention. ' Runoff from Subbasin 108 is conveyed via overland and gutter flow to an inlet on Jutland Lane at design point 8. From here water is diverted to Pond A. ' Subbasin 109 is the basin that includes Pond A. The runoff from this basin is ' conveyed via overland and gutter flow into Pond A and then into Pond B through an orifice and pipe. ' Runoff from Subbasin 110 is conveyed via overland and gutter flow to an inlet on Shetland Lane at design point 10. The inlet diverts the storm water to Pond B. ' Final Drainage and Erosion Control Report Page 3 Clydesdale Park P.U.D. October 10, 2000 1 I J 1 1 0 1 Runoff from Subbasin 111 is conveyed via overland and gutter flow to an inlet at design point 11 on the southern gutter of Shetland Lane. The runoff is then directed to Pond B for detention. Runoff from Subbasin 112 is conveyed via overland and gutter flow to an inlet at design point 12 that diverts the storm water to Pond B. Runoff from Subbasin 113 is conveyed via overland and gutter flow to an inlet at design point 13 on Jutland Lane. The runoff is then directed to Pond B for detention. Subbasin 114 is the basin that includes Pond B. The runoff from this basin is directly conveyed via overland flow into the pond for detention. Runoff from Subbasin 115 is conveyed via gutter flow to and inlet at design point 15 and then to Pond B for detention. Runoff from Subbasin 117 is conveyed off -site via overland and gutter flow along Carriage Parkway. Runoff from Subbasin 118 is conveyed via overland and gutter flow to join the runoff from Subbasin 115. The runoff is directed to design point 15 and then to Pond B for detention. With Filing 2 design being for over lot grading at this time, most of the basins will drain overland to specific detention ponds. Temporary swales will be constructed between the detention ponds to carry flows. Three subbasins in Filing 2 drain to Carriage Parkway and therefor will have a portion of their conveyance system constructed with Filing 1. Runoff from Subbasin 202 is conveyed via gutter flow along the east gutter of Carriage Parkway to an inlet at design point 22. Runoff is conveyed from the inlet to Pond C for detention. Final Drainage and Erosion Control Report Page 4 Clydesdale Park P.U.D. October 10, 2000 LJ ' Runoff from Subbasin 205 is conveyed via gutter flow along the east gutter of ' Carriage Parkway to an inlet at design point 25. Runoff is conveyed from the inlet to Pond E for detention. tRunoff from Subbasin 206 is conveyed via gutter flow along the east gutter of Carriage Parkway to an inlet at design point 26. Runoff is conveyed from the inlet to Pond B for detention. ' All other subbasins in Filing 2 will drain overland to detention ponds until such time the streets and storm sewer systems are constructed. ' Runoff from Subbasins 01, 201, 203 and 204 will flow overland to Pond C (design ' point 24). As noted above Subbasin 202 will flow to Pond C via Carriage Parkway. Pond D will collect runoff from Subbasin 207 via overland flow. Design point 27 ' is the outlet for Pond D. ' Runoff from Subbasins 208 and 209 will flow overland to Pond E (design point 29). tRunoff from Subbasins 210 and 211 will flow overland to Pond F (design point ' 31). Pond F also recieves the release from Pond E. Pond G collects runoff from Subbasins 212, 213 and 214 via overland flow. Flows ' from offsite Subbasin 02 are conveyed via channel flow to Pond G where they are released undetained. In addition, all the subbasins from the site will flow through ' Pond G with flow being routed from Pond C to Pond D to Pond E to Pond F and into Pond G. 3.2 Hydrologic Analysis of the Proposed Drainage Conditions ' Since the subbasins are less than 160 acres, the Rational Method was used to determine the ' 10-year and 100-year peak runoff rates for each subbasin. Runoff coefficients were assigned utilizing Table 4.2.6-1 of the LCSWMM. Rainfall intensity was based on the intensity ' duration curve for Area III of Larimer County as described in the LCSWMM. Details of the Final Drainage and Erosion Control Report Page 5 Clydesdale Park P.U.D. October 10, 2000 U hydrologic calculations associated with each subbasin are included in Appendix B. Table 3.1 provides a summary of the resulting peak flows for all subbasins and Design Points (DP's) associated with this site. Q., in the table includes applicable carry over flows at the ' indicated design point. 11 [1 1 L Final Drainage and Erosion Control Report Page 6 ' Clydesdale Park P.U.D. October 10, 2000 I n 0 n n Table 3.1 Drainage Summary Table Qrsfgn Tributary A C tc(10) Q(10)tot tc(100) Q(10D)tot Subbasfn Point (ac) (nin) (S) (mn) (Cfs) 2 102 218 0.42 13.2 20 13.2 7.2 3 103 1.08 0.42 14.3 1.0 14.1 3.5 4 104 0.64 0.29 10.0 3.5 9.3 124 4a 104a 0.09 0.67 5.0 0.2 5.0 0.7 5 105 0.51 0.47 10.2 0.6 8.5 23 6 106 0.38 0.20 9.9 4.2 9.5 .14.9 7 107 281 0.47 14.9 28 14.4 10.1 8 108 1.38 0.67 11.8 22 9.8 8.3 0 109 5.21 0.25 128 3.0 128 10.6 9 102, 103, 104, 105 14.20 0.38 17.0 10.8 17.0 38.2 106, 107, 108, 109 10 110 0.57 0.59 8.8 0.9 7.2 3.4 11 111 0.54 0.64 8.4 0.9 6.6 3.6 12 112 1.72 0.50 121 20 10.1 7.6 13 113 0.77 0.60 5.0 1.5 5.0 5.1 0 114 2.35 0.28 127 1.5 120 5.4 15 115 1.26 0.82 9.1 7.5 9.1 27.9 26 206 0.13 0.90 5.0 0.4 5.0 1.3 0 117 0.66 0.3D 11.8 0.5 11.8 1.6 18 118 3.51 0.59 11.8 4.8 9.9 18.4 14 110-115,118, 206 10.86 0.54 124 13.5 10.7 50.9 20 01 2.11 0.30 125 1.4 125 5.1 20A 02 40.00 0.20 56.5 7.9 54.6 28.3 21 201 2.75 0.50 128 3.1 14.2 10.5 22 202 4.38 0.50 17.0 5.8 18.9 19.6 23 203 1.70 0.56 122 5.3 11.7 18.4 204 278 0.27 123 1.7 13.8 5.8 24 01,201,20z203,204 13.71 0.43 17.4 11.5 18.1 39.9 27 205 6.06 0.57 18.6 7.1 18.6 28.7 26 206 0.13 0.90 5.0 21 5.0 15.6 27 207 288 0.37 17.3 21 17.3 7.5 28 208 205 0.57 10.1 29 8.5 11.0 209 1.13 0.31 11.5 10.8 11.2 427 29 205, 208, 209 9.24 0.54 18.6 9.5 18.6 33.5 30 210 1.84 0.64 9.1 3.1 7.2 11.7 211 3.66 0.28 124 5.4 124 20.0 31 210,211 5.50 0.40 1 13.5 4.8 1 129 17.5 32 212 3.44 0.59 9.0 5.3 7.5 20.1 213 8.39 0.26 21.7 3.9 21.7 1a7 34 214 7.38 0.54 16.1 8.1 16.1 28.5 02,212,213,214 1921 0.43 21.7 222 21.7 79.1 35 215 0.02 0.20 10.9 0.0 10.9 0.0 Final Drainage and Erosion Control Report Page 7 Clydesdale Park P.U.D. October 10, 2000 11 I 1 3.3 Allowable Street Flow Capacities The allowable street flow capacities are calculated according to the Larimer County Storm - Water Management Manual. The minor and major storm capacities are calculated in Appendix E of this report along with a comparison of the allowable flows and developed flows for the proposed development. The minor storm capacity uses the revised Manning's equation and the major storm capacity is calculated using Manning's equation according to the LCSWMM. 3.4 Storm Drainage Structure Design Storm drainage structures for this site include swales, inlets, and storm drainage pipes with riprap. The culvert adjacent to Highway 14 was sized as a 24-inch RCP to replace the existing 24-inch corrugated metal pipe under the assumption that there were no new flows entering the roadside ditch. The capacity of the pipes under Arabian Drive, the pipe outlets for Ponds B and C, and the swales on the site were determined using the computer program FlowMaster, which uses Manning's Equation. The pipes have capacity to convey peak flows from the 100-year storm and the swales have capacity to convey peak flows from the 100- year storm with a one -foot freeboard, criteria set fourth by the LCSWMM. All storm drainage structure size and locations are shown on the Drainage and Erosion Control Plan for the construction of this project included in the back pocket of this report. Curb inlets are proposed where sump conditions exist or where street runoff carrying capacity is exceeded. Inlet capacity reduction factors were used to account for inlet clogging. Inlets were sized using the computer program UDINLET, which was developed by James C. Y. Guo of the University of Colorado at Denver. Results of UDINLET sizing is equivalent to using Figures 6.3.3-1, 6.3.3.1-1 and 6.3.3.1-2 of the LCSWMM. Computer output files for the inlet sizing are provided in Appendix C of this report. For the storm pipe design, the computer programs StormCAD and F1owMaster, developed by Haestad Methods, Inc. were used. StormCAD considers whether a culvert is under inlet or outlet control and if the flow is uniform, varied, or pressurized and applies the appropriate equations (Manning's, Kutter's, Hazen -Williams etc). StormCAD also takes into account hydraulic losses that are encountered in the storm structures and tailwater effects. It calculates the losses through an inlet or manhole by allowing the user to assign a headloss coefficient for the equation, Final Drainage and Erosion Control Report Page 8 Clydesdale Park P.U.D. October 10, 2000 I hL= K*(VZ/2g) ' Where hL = headloss K = headloss coefficient ' V = average velocity (ft/s) g = gravitational constant (32.2 ft/s2) ' FlowMaster uses Mannings equation to determine normal depth for irregular and regular cross -sections including pipes. F1owMaster was used for non -pressurized single reach storm ' sewers. ' The StormCAD and F1owMaster output files are included in Appendix D of this report. Riprap is required at all of the storm pipe outlets. Riprap is sized according to the pipe size ' and the flow conditions at the outlet. Guidelines from the "Urban Storm Drainage Criteria Manual' (LJDFCD) were used to design the proposed riprap. Riprap calculations are shown ' in Appendix F. The US Army Corps of Engineers HEC-RAS water surface profile model was used to ' analyse the swale from Pond G to Boxelder Creek (Swale C-C). HEC-RAS is generally considered a great improvement over HEC-2. Some of the improvements include the ability ' to perform subcritical, supercritical or mixed flow regime calculations all in a single execution, an improved flow distribution calculation routine and more accurate critical depth ' calculations. HEC-RAS also has the ability to model multiple bridge and/or culvert openings of different shapes at the same road crossing, blocked ineffective flow areas, normal ' ineffective flow areas at any cross section station, blocked obstructions and levees. See Appendix D for the HEC-RAS analysis. ' Swale C-C was designed to pass the peak 100-year release of 79.1 cfs from Design Point 33, which includes the basin tributary to Pond G and Offsite Subbasin 02. The upper half of ' Swale C-C was designed as an earthen channel with 3:1 sideslopes. The lower half was designed with a 24 inch RCP low flow pipe and an earthen overflow channel with 3:1 ' sideslopes to keep the channel within the 50 foot drainage easement. The transition between the upper and lower half of the channel is accomplished with a concrete headwall. A Grouted ' Sloping Boulder Drop Structure is used to dissipate energy at the confluence of Swale C-C and Boxelder Creek. See Appendix F for calculations. Final Drainage and Erosion Control Report Page 9 ' Clydesdale Park P.U.D. October 10, 2000 4. DETENTION POND DESIGN 4.1 Summary of SWMM Analysis All proposed detention ponds were evaluated using UDSWM2-PC (SWMM) Rainfall/Runoff Prediction and Watershed Simulation Program endorsed by the Urban Drainage and Flood Control District. SWMM is a physically based hydrograph routing model. SWMM was used because the more simplified Rational Volumetric (FAA) Method did not result in a ' maximum detention volume for Ponds A, B, C, and F for a storm duration of less than 180 minutes. The elements of the SWMM model include tributary basins for each pond, conveyance elements (CE), detention ponds and nodes used to link elements. • Basin 401 includes the entire area tributary to Pond A (SWMM CE 301). Basin 401 includes the rational method subbasins 102, 103, 104, 105, 106, 107, 108, and 109 and is a total of 13.9 acres. • Basin 402 includes the entire area tributary to Pond B (SWMM CE 302). Basin 402 ' includes the rational method subbasins 110, 111, 112, 113,1114, 115, 116, and 118 and is a total of 11.2 acres. • Basin 404 includes the rational method subbasins 02, 201, 202, 203, and 204 and is a total of 13.7 acres. Basin 404 includes the entire area tributary to Pond C (SWMM CE 304). • Basin 407 includes the rational method subbasin 207 and is a total of 2.9 acres. Basin ' 407 is the entire area tributary to Pond D (SWMM CE 307). • Basin 409 includes the rational method subbasins 208 and 209 and is a total of 9.3 acres. ' Basin 409 includes the entire area tributary to Pond E (SWMM CE 309). • Basin 411 includes the rational method subbasins 210 and 211 and is a total of 5.5 acres. Basin 411 includes the entire area tributary to Pond F (SWMM CE 311). ' • Basin 413 includes the rational method subbasins 212, 213, and 214 and is a total of 19.2 acres. Basin 413 includes the entire area tributary to Pond G (SWMM CE 313). • Basin 420 includes the rational method offsite subbasin 02 and is a total of 40.0 acres. ' An average percent impervious of 45% was used for all basins except Basin 413. The basin widths were calculated using the equation, Final Drainage and Erosion Control Report Page 10 Clydesdale Park P.U.D. October 26,2000 W = A/L where W = basin width A = basin area (ft ) L = overland flow length (ft) The overland flow length for all basins except Basin 413 was set equal to 400', which is within the typical range for developed basins. Basin 413 contains a large area of open space with lower impervious values (35%) and larger overland flow lengths (500 feet).A model schematic is included in Appendix G along with the input and output files for the 100-year storm. ' 4.2 Details of the Rational Volumetric Method ' The sizing of Ponds C, D, E, F, and G was done using the Rational Volumetric Method, also known as the FAA Method. This method uses an inflow -outflow storage calculation to determine the detention volume required for the pond. It is based on the rational method and uses a given rainfall intensity rate over an area with a specific permeability coefficient to determine the inflow. ;The outflow is set according to LCSWMM standards. All pond volumes were verified using SWMM. 4.3 Proposed Detention Ponds The required size of the proposed detention ponds depends on the allowable release rates. The total allowable release from the entire Clydesdale Park site under developed conditions during a 100-year storm event was set equal to the historic 10-year peak flow rate. The ' historic 10-year peak flow for the entire Clydesdale Park site is 8.0 cfs. There are four subbasins that release flow off of the site without being detained. Subbasin 104a releases a ' peak 100-year flow of 0.7 cfs. Subbasin 105 drains to an on -grade inlet that allows approximately 0.1 cfs to pass undetained. Subbasin 117 releases a peak 100-year flow of 1.6 cfs. Subbasin 215 is extremely small and has no measurable peak 100-year release. Thus, the total undetained flow from the site is 0.7 + 0.1 + 1.6 = 2.4 cfs. The allowable release rate for the entire Clydesdale Park site is then 8.0 cfs (historic 10-year) — 2.4 cfs (undetained ' developed 100-year flow) = 5.6 cfs. The maximum release from Pond G was set to 4.9 cfs. The maximum release from the other six ponds was set so to optimize the operation of the ' ponds. Final Drainage and Erosion Control Report Page 11 Clydesdale Park P.U.D. October 26,2000 1 J 1 1 Ponds A, B, and G will be completely constructed with outlets controlled by orifices and emergency spillways. Ponds D, E, and F will be excavated as designed and connected by temporary swales sized for the 100-year peak flow. Pond C will be constructed with an outlet and control orifice discharging to Pond A. A temporary swale sized for the 100-year peak flow will release to Pond D. Calculations for the stage -storage -discharge for the three detention ponds are included in Appendix F. Pond A lies on the north side of Shetland Lane and has a volume of 2.2 ac-ft at an elevation of 4929.1 ft-msl. The maximum release rate is 1.0 cfs at the 100-year water surface level. A 6.68" orifice plate will control flows out of Pond A. Pond B lies on the south side of Shetland Lane and has 3.3 ac-ft available for detention at an elevation of 4928.0 ft-msl. A 3.77" orifice plate was sized to control the release from Pond B. Calculations for the stage - storage -discharge for both detention ponds are included in Appendix F. Pond C lies on the east side of Shetland Lane and has 2.6 ac-ft available for detention at an elevation of 4929.0 ft-msl. A 3.58" orifice plate was sized to control the release from Pond C. Calculations for the stage -storage -discharge for both detention ponds are included in Appendix F. Pond G has a volume of 2.0 ac-ft at the 100-year water surface elevation of 4921.76 ft-msl. The maximum release rate is 12.7 cfs (100-year release of 4.9 cfs release + 10-year release from offsite Subbasin 02 of 7.8 cfs) at the 100-year water surface level. It was decided after consulting Larimer County Engineering Staff to provide conveyance of the 10-yr historic flow from Subbasin 02 through Pond G and allow the 100-yr existing to spill over the Pond G spillway until detention is provided in offsite Subbasin 02. A 16.51" orifice plate will control flows out of Pond G. The stage -storage -discharge data for Pond G can be found in Appendix F. All of the ponds have emergency spillways that provide an overflow path for stormwater runoff in case the pond outlets become clogged. The overflow spillways are designed to pass 100% of the 100-year peak flow. The spillway for Pond A directs flow over Shetland Lane and into Pond B. The spillway for Pond B directs overflow safely onto Carriage Parkway and eventually into a Pond F. Until the streets and storm sewers for Filing 2 are constructed the temporary swales connecting Ponds C, D, E, F, and G will serve as emergency spillways. The temporary swales are sized for the 100-year peak flow. Pond C flows to Pond D. Pond Final Drainage and Erosion Control Report Page 12 Clydesdale Park P.U.D. October 10, 2000 1 5. 1 1 D flows to Pond E. Pond E flows to Pond F. Pond F flows to Pond G. The spillway for Pond G directs overflow to the swale to Boxelder Ditch. EROSION CONTROL 5.1 Erosion and Sediment Control Measures Erosion and sedimentation will be controlled during construction by inlet filters, silt fences, seeding and mulching. Existing irrigation ditches create erosion berms and will replace installation of silt fences where shown on the drainage sheets. These measures are designed to limit the overall increase in sediment yield due to construction activities. During overlot and final grading, the soil will be roughened and furrowed perpendicular to the prevailing winds. All soils exposed during land disturbing activity (stripping, grading, utility installations, stockpiling, filling, etc.) shall be kept in a roughened condition by ripping or disking along land contours until mulch, vegetation or other permanent erosion control is installed. No soils in areas outside project street rights of way shall remain exposed by land disturbing activity for more than thirty (30) days before required temporary or permanent erosion control (e.g. seed/ mulch, landscaping, etc.) is installed, unless otherwise approved. 5.2 Dust Abatement During the performance of the work required by these specifications or any operations appurtenant thereto, whether on right-of-way or elsewhere, the contractor shall furnish all labor, equipment, materials, and means required. The Contractor shall carry out proper efficient measures wherever and as necessary to reduce dust nuisance, and to prevent dust nuisance that has originated from his operations from damaging crops, orchards, cultivated fields, and dwellings, or causing nuisance to persons. The Contractor will be held liable for any damage resulting from dust originating from his operations under these specifications on right-of-way or elsewhere. 5.3 Maintenance All temporary and permanent erosion and sediment control practices must be maintained and repaired as needed to assure continued performance of their intended function. Straw bale dikes or silt fences will require periodic replacement. Sediment traps (behind straw bale barriers) shall be cleaned when accumulated sediments equal approximately one-half of trap storage capacity. Maintenance is the responsibility of the developer. Final Drainage and Erosion Control Report Page 13 Clydesdale Park P.U.D. October 10, 2000 6. MISCELLANEOUS 6.1 Variances There are no variances requested with the development of the Clydesdale Park P.U.D. site. 6.2 Irrigation Ditches Individual field irrigation service lines are being removed with the development of Clydesdale Park P.U.D. However, there are no irrigation ditches on site impacted by the development that would affect any other users. The main ditch along the east fence line and south property line will be preserved. 6.3 Maintenance Agreements The developer will be responsible for the maintenance of all temporary and permanent drainage structures. 6.4 Safety Statement The only safety concern on the Clydesdale Park P.U.D. site is the open flared end sections on the upstream end of pipe runs. These flared end sections are protected using a trash rack to keep all large objects from entering the pipe system. Final Drainage and Erosion Control Report Page 14 Clydesdale Park P.U.D. October 10, 2000 7. REFERENCES 1. Resource Consultants, Inc., "Larimer County Storm -Water Management Manual", (LCSWWM), dated April 1979. 2. Soil Survey of Larimer County Area, Colorado. United States Department of Agriculture Soil Conservation Service and Forest Service, 1980. 3. Urban Drainage and Flood Control District, "Urban Storm Drainage Criteria Manual", Volumes 1 and 2, dated March 1969, and Volume 3, dated September 1992. Final Drainage and Erosion Control Report Page 15 Clydesdale Park P.U.D. October 10, 2000 No Text NOTES TO USER A7 NRINNIIIII UTINAL Full IRUEua FaaMl I FIRM FLOOD INSURANCE RATE MAP LARUM COUNTY, COLORADO 07NINCORMRATED AREAS) PANEL 180 OF 278 COMMUNI7V-PANEL NUMBER 080101 0180 E MAP REVISED: MARCH 18,1996 Fedad Emar-7 MAlgemmt ASmc7 ZON60' I �; NmxT wb ;ZONE A4 so ECTS FROM LRMI OVEMOW KEY TO MAP NOYW (rr OrwWY� IKYW !rM R.rNY� !w I►1wOw IRYW lIrr O•rrw� � aOVW lrr li•rr1� N lr4 uwml.lr—�—SE)— �YClwwl••rl.r w rwr Er,.srrrwl Rxrn ww•11•Vww wYr t•w•• EN..I1w111.NwvENR MEIR ire Mrw ��� R1.w W4 •M1.5 •Rrw•W r W MIYrN Cwr1Y VNrI Ow M IfT EXPLANATION OF ZONE DESIGNATIONS EMS [RrEANAT1ox A Ma M 100Y IrY: Rr Ilr W WYw r 11.•E WwI1.Wp—MwIrL b Anr M IrY.w •,R•• O..Fiq •er. ewW „R.r.,• — III r aw pl N,I;a.w�Rrrl Nraer w+I.••. rx r nr Rw.r taw. RIWw4R. AM Ma .1 IOW'•a wM• OW� •le. MNI W rl•Y• M, 111 r1 Mr OI w.V Rw t1.4 .w.rue w rr•I. Rw r ar ArrR rwn w pr A1Jr Ma M 105 1bYW 4: N OM Wwtlw r 4r14rfaw.OlYrwYK IOR Ma M 1qp Rw0 r r M•WW lY MM FSW4 r,Ya M, wYMl4: M 0•Y •I,wtl,w r M4 •aat0 IaI•rl w r.Iuwl..F. • Mw Ywa Owls M M A61tr MM r f0 .iwIlrk •r w,I,r w.w wyln r ADyty 11.•F� E.r•�wl�eww,r lRarlNtrrrw. w aRRwW RNAyI w. a r Rir r W W M w ww rn1ar00Y 4.W M1•w lr RW I1.M. P.dln•�.FwY P t__:..awrrAnwr..lw ruFWl D Ma M Wrswrw. M rWlrt MM Rf{h V Ma M 101vw mI Ilw! •4 .tlwNr 1•w rwl' M Ilrl,lnrl,w r er Awre nwW w4irr,A Y1.vA A1W M 10DY.n swel Ilr •IA lsBY I.w my� nr W Wl� r n.r l�..w tay. A2 A ZONE FIGURE 2 - FIRM MAP CLYDESDALE PARK, P.U.D. 5 rwrwr.rw+�+.rww+rrlrrrwrw W n E rr wl'rYr Irrrw WY rMb rNr/ir WN]Y4 rwrw••I' W w•vrwwNrrrwwww.tw.wrwr LrY 1wIM—•Mrl A—rrwr rrr.saeas.. A W l wrr bwAA1.a.AC W IY.NE. Y.YI.ANOIC CwNlnrw•INMEPIYIWY W Wl4wrylw,.rV YI•r'r .Wwrrr•n.wlra.r wu rrrrwr•sewwr+.,wrNlwwr..rw N•bwN•ylnl► W rW WylNry rrllr•rMi eEmra A. n). FE NAZA"00UAARYRI"REYRNNIS: • mon. - ft0 m RAWC RAT[" EFFECTIVE: .E RL On !FOODrRVRAKt AATEMA!REVMA : ,E.ROI IR 1rr INIY ".INS RW r.Yr WKN II IRIS rYw,.w xr Ir,rNr r.11 Rr. Rr W WNr rW rrYl xwF IpR ra rrs.pwwrNNrw. TW Zw,rY. N a..e r.w Y w•OrN . w w..,wRr, M• 1.Wav,MlwuY Y. MrW/ rIW rrwv IwrW.r RO%Eai[a. YraaxwAre s Lt IN FEET RER 4 T �.�� �,; �\ ,.P ` A A I ➢ A Z m 110 0➢K0< A A Z T 2 pZK,, ➢�ppm to 400 .1�mn mm➢jr� N p p i m p c vpy inn' INN_ LEERING 2620 East Prospect Road, Suite 190 • Fat CoNns, CO 80525 970-491-9888 • Fax 970--491-9984 wwwjrengineeringoom APPENDIX B HYDROLOGIC CALCULATIONS ' JR Engineering 2620 E. Prospect Rd., Ste 190, Fort Collins, CO 80525 DRAINAGE SUMMARY TABLE Design Tributary A C tc (10) Q(10)tot tc (100) Q(100)tot Sub -basin Point (ac) (min) (cfs) (min) (cfs) 2 102 2.18 0.42 13.2 2.0 13.2 7.2 3 1 103 1.08 0.42 14.3 1.0 14.1 3.5 4 104 0.64 0.29 10.0 3.5 9.3 12.4 4a 104a 0.09 0.67 5.0 0.2 5.0 0.7 5 105 0.51 0.47 10.2 0.6 8.5 2.3 6 106 0.38 0.20 9.9 4.2 9.5 14.9 7 107 2.81 0.47 14.9 2.8 14.4 10.1 8 108 1.38 0.67 11.8 2.2 9.8 8.3 109 5.21 0.25 12.8 3.0 12.8 10.6 9 102, 103, 104, 105 14.20 0.38 17.0 10.8 17.0 38.2 106, 107, 108, 109 10 110 0.57 0.59 8.8 0.9 7.2 3.4 11 111 0.54 0.64 8.4 0.9 6.6 3.6 12 112 1.72 0.50 12.1 j 2.0 10.1 7.6 13 113 0.77 0.60 5.0 1.5 5.0 5.1 114 2.35 0.28 12.7 1.5 12.0 5.4 15 115 1.26 0.82 9.1 7.5 9.1 27.9 26 206 0.13 0.90 5.0 0.4 5.0 1.3 117 0.66 0.30 11.8 0.5 11.8 1.6 18 118 3.51 0.59 11.8 4.8 9.9 18.4 14 110-115,118, 206 10.86 0.54 12.4 13.5 10.7 "-9 ' 920101FLOWALS JR Engineering, Ltd. 2620 E. Pmpect Rd., Ste. 190. Fort Collins, CO 80525 I [1 RUNOFF COEFFICIENTS & % IMPERVIOUS LOCATION: CLYDESDALE PARK PROJECT NO: 9201.01 COMPUTATIONS BY: A. REED SUBMITTED BY: JR ENGINEERING, LTD. DATE: 10/9/00 Recommended Runoff Coefficients from Table 4.2, &1 of the Larimer County Storm -Water Management Manual Recommended % Impervious from Urban Storm Drainage Criteria Manual Single Family Pavement Lawns (heavy soil) Runoff coefficient C19 Runoff coefficient C100 % Impervious 0.40 0.50 Fig.2.1 0.90 1.00 100 0.20 0.25 0 SUB -BASIN DESIGNATION TOTAL AREA (a¢.) TOTAL AREA (sq.ft) NUMBER OF LOTS LOTS PER ACRE (ael) AREA PAVEMENT (sq.fl) AREA LOTS (sQ.B) AREA LANDSCAPE (sq.g) RUNOFF COEFF. (CID) 102 2.18 94,795 10.5 4.8 15,974 47.480 31,341 0.42 -' 103 '..: ,u1.08 46,87a,, ', 5,. ,iAs 4'.6 z'. 3;478„ ';31,799, _: 8,603 - -2` 0:42 104 0.64 27,935 2.5 3.9 0 13,068 14,867 0.29 104a 0.09 4.031 0 0.0 2.710 0 1,321 0.67 '0.51 , ' , 22,423 o. , ,31 4;576 -14,375 _ = 3,472 , `- 0.47 106 0.38 16,588 0 0.0 0 0 16,588 0.20 107 2.81 122,498 12.5 4.4 17,954 104.544 0 0.47 108 1.38 60,295 5 3.6 32,416 27.878 0 0.67 109 5.21 227.046 3 0.6 0 59,602 167,444 0.25 110 0.57 24.823 4 7.0 9.359 15.464 0 0.59 111 0.54 23.498 1.5 2.8 11.301 12,197 0 0.64 112 1.72 76,112 7 4.1 14,564 60,648 0 0.50 113 0.77 33,722 2.5 3.2 13,207 20,516 0 0.60 114 2.35 102,170 5.5 2.3 0 41,382 60.788 0.28 115 1.26 55,065 3 2.4 45,767 9,298 0 0.82 206 0.13 5,676 0 0.0 5,676 0 0 0.90 117 0.66 28.743 0 0.0 4.100 0 24.643 0.30 -" 118' :;`a ; 51' 153,iOU _ "13'.5, �3".8 =z61,626., _79,279„ a 12200 :--' 0.59'`. ,. Tdb. To Pond A 14.20 618.457 42 28 76,396 298.746 243,315 0.38 Trib. To Pond B 10.86 473.171 37 26 161,499 238,684 72,988 0.54 ' NOTES Calculated C coefficients & % Impervious are area weighted C=E(Ci Ai)/At Ci = runoff coefficient for specific area, Ai Ai = areas of surface with runoff coefficient of Ci n = number of different surfaces to consider At = total area over which C is applicable; the sum of all Ai's ' 920101FLOWXLS [1 a W ...1 W Q W O Ww C70 0 o U a ¢ a 11 U m O m o ? F m E O U p f m F O O o a N d d Y E E E V � N W > E E E c c c s i N 17 0 o N b b b b o b a o A o b g a y y N N Z E N N y OJ OI I�1 O! A b O Ol O1 0 0� A t� A 0 n r y _ E m lu O .. J N n N M ttNDD 11y0n m W2 N 01 m b IO O N Y m �- N m u � b y b OI O y O 7 N A 7 M N m Y Ia r VV 3 10 Ip 10 Y m N O A "I: y V N OI N N N N O b A y b N 00 b N b (O M 0 N N O' P O < N N O E l7 l'1 NO O N OI b 0 MMNNVMOON N LL J y W. W. OR O d b b O y < O t+! (7 0 IO m Ul IO V b b b b b b b b b b b b b b b b b le o 0 0 0 0 O I 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 w m o ` 0 0 o � m 0 0 0 N N IQ b N b N y N g N f0 N O b W O O O N N O O O O O O O O O IV .- r, _OXb � N M N Y 1t�p N A A OI N AA fO b O O O N N I m m K Y• J $ N y Y A N O N 17 Ol N N CI b O b O N � IQ E nl N A N O) A O) N H G N N Oi O A G' 0 y m tp O O O O N O N O O O O 1� O O O O O O O O O O y p b O Z O N N Ol A A O A A N p� y O O b NOOM y J O Y N 10 O O N Y 10 O N f0 g N IO N y y In NaN Q W G O 0 0 G O G O O O O O O O y_ 2w U m 0 (D O N M m N N IAO a n n y N 0 Ib0 m m d q G G O Q � � O N g 8m m m o O � N o O O 2 y N (7 < p N 1-1-1 IVIVI N N b< m F C O a N I 1 1 W -'a W W O{WW..�Uo C W a to N Uaaxa II U r m Om ZZQ I� o o°aU o J C U n 0 d � v Y E E E N N N Q IU ly lu 'EE E E E E E c c c i E i N (7 O N N O m m O N m 0 0 7 0 m Ol 1� J e m N m 01 < W N h n m O N N Ol N m 0 r ti v N OI m m OI m O n m O g m O m A m m r n u E o YIH N 01 OI O N N m O d N A 2N pOp p MI N m 9 v T F Y 7 t7 N N O m O m N m N m m T n II � YI O Oi fV 0 OI N Oi V Oi r tC G lV (O V Oi G b Oi O u = N m m V N f0 N O A O N O N O! 17 N N N O m n N m N N C4 N m m m O t7 b O N N N N O N 0 m OI lV O m O O N N LL J m OR m m O O m m' O O O g q V m m 7 N N Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O C j 0 0 0 m m 0 0 N N m m N 0 N N Pl t7 IN m 0 0 IO ID 5 O O C O N NO G O C o C G C O lV lV U' oaem f N n O n m N A m m m O O O m mOf m m N N n N m N 10 00 iD 10 N N gA �1O C'1 m Om m O p H Z It! N A h N m A N O m O! Y m O N O N Y ItY C m OO f0 A m A lh N l'1 17 A O IA O Ct IG O 1n = E as m O O O O N d N O O O O 1� O O O O O O O o lV N N N N '- fV N fV fV O N.- O YN N ` O O O N yy m p (y O A N A O O A O O J J Q U n O M O G N O O N N O O m 0 O C O C m 0 O m r O l7 W F � U z F m y O 10 O N m (7 m N N N p N N r n IN�I N O INO N m O O O O N YI V G G C N 00 M O GGy % N m 0 0 Ip 0 N o' N v Non m Q o 0 o a o 0 0 0 0 m m �- �- 0 0 - �- N - - 1N D N o O O N Z F U N O N PI O y N m A m m O N M N N m Y m F a N G � JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (10-YEAR) LOCATION: CLYDESDALE PARK PROJECT NO: 9201.01 COMPUTATIONS BY: A. REED SUBMITTED BY: JR ENGINEERING, LTD. DATE: 10/9/00 DIRECT RUNOFF CARRY OVER TOTAL REMARKS Design Point Tributary Sub -basin A (ac) C Cf tc (min) i (inmr) Q (10) (cfs) from Design Point Q (10) (cfs) Q(10)tot (cfs) 2 102 2.18 0.42 13.2 2.24 2.0 2.0 3 103 1.08 0.42 14.3 2.16 1.0 1.0 4 104 0.64 0.29 10.0 1 2.52 0.5 1 2.3 3.01 1 3.5 4a 104a 0.09 0.67 5.0 3.15 0.2 0.2 Offsite release 5 105 0.51 0.47 10.2 2.50 0.6 0.6 0.0 cfs offsite release 6 106 0.38 0.20 9.9 2.52 0.2 4.5 3.98 4.2 7 107 2.81 0.47 14.9 2.12 2.8 2.8 8 108 1.38 0.67 11.8 2.35 2.2 2.2 109 5.21 0.25 12.8 2.27 3.0 3.0 9 102, 103, 104, 105 106, 107, 108, 109 14.20 0.38 17.0 1.99 10.8 10.8 10 110 0.57 0.59 8.8 2.64 0.9 0.9 11 111 0.54 0.64 8.4 2.68 0.9 0.9 12 112 1.72 0.50 12.1 2.32 2.0 2.0 13 113 0.77 0.60 5.0 3.15 1.5 1.5 114 2.35 0.28 12.7 2.28 1.5 1.5 15 115 1.26 0.82 9.1 2.61 2.7 18 4.83 7.5 26 206 0.13 0.90 5.0 3.15 0.4 0.4 117 1 0.66 1 0.30 1 11.8 1 2.35 0.5 0.5 18 118 3.51 0.59 11.8 2.35 4.8 4.8 14 110-115,118, 206 10.86 0.54 12.4 2.30 13.5 13.5 Q=CiA Q = peak discharge (cfs) C = runoff coefficient I = rainfall intensity (in/hr) from Larimer County OF I = 26i(10+t�)^0.78 A = drainage area (acres) 920101 FLOWALS JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (100-YEAR) LOCATION: CLYDESDALE PARK PROJECT NO: 9201.01 COMPUTATIONS BY: A. REED SUBMITTED BY: JR ENGINEERING, LTD. DATE: 10/9/00 DIRECT RUNOFF CARRY OVER TOTAL REMARKS Des. Point Area Design. A (ac) C Cf tc (min) i (inRv) Q (100) (cfs) from Design Point Q (100) (cfs) Q(100)tot (cfs) 2 102 2.18 0.52 13.2 6.34 7.2 7.2 3 103 1.08 0.52 14.1 6.15 3.5 3.5 4 104 0.64 1 0.37 9.3 1 7.32 1.7 1 2.3 10.66 1 12.4 4a 104a 0.09 0.84 5.0 8.93 0.7 0.7 Offsite release 5 105 0.51 0.59 8.5 7.58 2.3 2.3 0.14 cis offsite release 6 106 0.38 0.25 9.5 7.26 0.7 4,5 14.16 14.9 7 107 2.81 0.59 14.4 6.09 10.1 10.1 8 108 1.38 0.84 9.8 7.18 8.3 8.3 109 5.21 0.32 12.8 6.42 10.6 10.6 9 102, 103, 104, 105 106,107,108,109 14.20 0.48 17.0 5.62 38.2 38.2 10 110 0.57 0.74 7.2 8.02 3.4 3.4 ll 111 0.54 0.80 6.6 8.24 3.6 3.6 12 112 1.72 0.62 10.1 7.09 7.6 7.6 13 113 0.77 0.74 5.0 8.93 5.1 5.1 114 2.35 0.35 12.0 6.60 5.4 5.4 15 115 1.26 1.02 9.1 7.39 9.5 18 18.36 27.9 26 206 0.13 1.13 5.0 8.93 1.3 1.3 117 1 0.66 0.37 1 11.8 1 6.64 1 1.6 1 1 1.6 18 118 3.51 0.73 9.9 7.14 18.4 18.4 14 110-115,118, 206 10.86 0.87 10.7 6.94 50.9 50.9 Q=CiA Q = peak discharge (cfs) C = runoff coefficient I = rainfall intensity (in/hr) from Larimer County IDF I = 75i(10+t�y-9.786 A = drainage area (acres) 920101 FLOW ALS ' JR Engineering 2620 E. Prospect Rd., Ste 190, Fort Collins, CO 80525 DRAINAGE SUMMARY TABLE Design Point Tributary Sub -basin A (ac) C tc (10) (min) Q(10)tot (cis) tc (100) (min) Q(100)tot (cis) 20 01 2.11 0.30 12.5 1.4 12.5 5.1 20A 02 40.00 0.20 56.5 1 7.9 54.6 28.3 21 201 2.75 0.50 12.8 3.1 14.2 10.5 22 202 4.38 0.50 17.0 5.8 18.9 19.6 23 203 1.70 0.56 12.2 5.3 11.7 18.4 204 2.78 0.27 12.3 1.7 13.8 5.8 24 01,201,202,203,204 13.71 0.43 17.4 11.5 18.1 39.9 25 205 6.06 0.57 18.6 1 7.1 18.6 28.7 26 206 0.13 0.90 5.0 2.1 5.0 15.6 27 207 2.88 0.37 17.3 2.1 17.3 7.5 28 208 2.05 0.57 10.1 2.9 8.5 11.0 209 1.13 0.31 11.5 10.8 11.2 42.7 29 205,208,209 9.24 0.54 18.6 9.5 18.6 33.5 30 210 1.84 0.64 9.1 3.1 7.2 11.7 211 3.66 0.28 12.4 5.4 12.4 20.0 31 210,211 5.50 0.40 13.5 4.8 12.9 17.5 32 212 3.44 0.59 9.0 5.3 7.5 20.1 213 8.39 0.26 21.7 3.9 21.7 13.7 34 214 7.38 0.54 16.1 8.1 16.1 28.5 33 02,212,213,214 19.21 0.43 21.7 1 22.2 21.7 79.1 35 215 0.02 0.20 10.9 0.0 10.9 0.0 h Historic, H 75.82 0.20 138.9 8.0 82.3 40.6 920102FLOWALS JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190. Fort Collins. CO 80525 r 1 920102FLOWXLS RUNOFF COEFFICIENTS & % IMPERVIOUS LOCATION: CLYDESDALE PARK FILING 2 PROJECT NO: 9201.02 COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING DATE: 1018/00 Recommended Runoff Coefficients from Table 4.2, 6-1 of the Larimer County Storm -Water Management Manual Recommended % Impervious from Urban Storm Drainage Criteria Manual Single Family Pavemenl Lawns (heavy soil] Runoff coefficient C70 Runoff coefficient C700 % Impervious 0.40 0.50 Fig. 2.1 0.90 1.00 100 0.20 0.25 0 SUB -BASIN DESIGNATION TOTAL AREA (ac.) TOTAL AREA (sq.8) NUMBER OFLOTS LOTS PER ACRE (ac ") AREA PAVEMENT (sq.H) AREA LOTS (s9.R) AREA LANDSCAPE (Sq.n) RUNOFF COEFF. (Cm) 01 2.11 91,877 1 0.5 N/A N/A N/A 0.30 62 40.00 1,742.400 0 0.0 0 0 1,742.400 0.20 201 2.75 119.782 10.5 3.8 24,969 90,954 3,859 0.50 202 4.38 190.657 7:5 1 1.7 67,727 1 80,704 52.226 0.50 203 1.70 74.102 6 3.5 23,747 48.674 1,681 0.56 204 2.78 120,908 6.75 2.1 0 41,929 78,979 0.27 205 6.06 263.974 19.25 3.2 92,884 169,054 2,036 0.57 206 0.13 5,676 0 0.0 5,676 0 0 0.90 207 2.88 125,453 9.25 3.2 10,075 72,969 42,409 0.37 208 2.05 89,185 7 3.4 29,686 59,499 0 0.57 209 1.13 49,255 3.5 3.1 0 26,970 22,285 0.31 210 1.84 80,150 5.5 1 3.0 38,022 1 42,128 0 0.64 211 3.66 159,510 7.75 2.1 0 60,132 99,378 0.28 212 3.44 149,846 11.25 3.3 57,637 89,397 2,612 0.59 213 8.39 365,468 14 1.7 0 115,756 249,712 0.26 214 7.38 321.473 20.5 2.8 87,267 234,206 0 0.54 215 0.02 871 0 0.0 0 0 871 0.20 Historic, H 75.82 3,302,602 0 0.0 0.20 NOTES - Calculated C coefficients & % Impervious are area weighted C=£(Cl Ai)/At Ci = runoff coefficient for specific area, Ai Ai = areas of surface with runoff coefficient of Ci n = number of different surfaces to consider I 1 1 ' Z 3� N IL H Z � W U 00 V Q ZG LL Q Lu ' N Lu F m U m O m zozF°m E F- Q W a y U O 20 m l O a U a o N x c E f K E E E c i h In m O Of n Y b O n .- In b r P 10 0 A A W W Q (V tG N - h N N1� W y n O - W W N (7 W W O - b C1 LL b b O N y Y (O W H! M q � c M yQ2 m i E v o = Qm W A N N O N U K l7 W 11 O U } N N W m d P N N N d O N N W P 1") W N W W P 0; 3 pp o N W N m �1y7 O N O m N IWO, 0 O InO, m N m O n LL E O^ Y N P W y A N A O n O O A CI A W C! W N yb O W W w W odA v, W ry Y, bmd�s lq n �qn W Y W b Io O N O N Q S > V P b b b b b Wb b y W I� b bbbbyb1 bO q G o O O 0 0 O0 0 0 0 0 0 0 0 � 0 0 G O o d W O ry N n b n IN O IA 10 CI b W W W A W b W f0 d 0 O O C G C lV O G 0 0 0 0- O C O C G C U X b W ~ J L b NN O �C,�m bWCl Nl Yy N t�I O t7 0N O W O O b N J N N N _ d 7 N q W p m d h 10 � b W d d N Y OR (h C) C m N d lV nNlO A IC A 1C tC IN 0< N N 0 G A 01 Q N O O W N O O O O O b O O 10 O O N O N N X N fN lV lV O N ft6 z L - O O N N m m N N I,b N fO CI A b b b W O pV N N b CI b m b p �Q 10 > y N N d faN VN YN NNb _ J n O O O O O O O O O O O O O O O 00 G O O O O F W v z F O 10 O n b O M. n b n A b! 0 b b b O M d N pp (O m b O pp 10 Y W C) b y N N O N W N N N Y lV P lV C) � tG O lV fV .- N U1 N 0 n W O 0 A Q v Z O N N N N = N Q N N 17 P N b b n b W m O �- N N 1") d m 10 Z N Q O 0 N O O N N O O N N O O N N O O N N O O N N N N O N N N N N 0 N O N N N N N N 0 2 re m co' = = z Q O N a N N CI N N d N y b N N n W N N W N O N N CI C) y Cl t7 CI b lh t N G IN o a I 1 CD r Z 0 LL F ' N Z W o V LL Z 00 Q V ' C 0 z co WWC L I N a W CKCZ7f OC1 7W7 N z G O h Cazo N U rn�p;o U W O zzza[w V F N p ati pp77 ) u o d E f E E S N m N W A W W O M N N W N d W N A A W M J H pp d b �- t7 t0 W N A W m A Cl Cl A fC G lV z E O N A tC C C — — C A — - of — — — - N m � N O � C � H � E C Cl N O ip d = Q tQ v N U LLm' �s u � tdp N O A W w�0 W m 0{y) N N N N m W N m A R q t7 M O M O N 0 N 0f N O 'q N (q aW0 O m a) N 0) O m OE 0 V t1` fV O a0 vi lV Ih O N O O m A 0m W lO lV 0 O � J LL O � � � � O �- �- N O S Cl � � G � � G � O r• O Z 2 d a A > S V W N N m m N N O1 W f0 N W N tp tO N N t0 N t0 N fp N 0 C t C� 0 0 0 0 0 O O O O O 0 0 0 0 0 0 0 0 0 0 0 O Q � O C C O G C C C G O O G C O G O G O 0 0 o Cf FK O N N A N A M O A N I7 N m m m A W Lq W OJ f0 F G O O G � J Yl d l�l W W M O O O d Q J K Z N N A A � In aD A N (O d Pl N U) W W aD W N Ol A 0 a7 m Oi Ih aC m N O 4 d O G I(1 t7 N Y) nl � O W E O N O O tl) N O O O O O m 0 0 q O O N O N N N e� h O A S CI fV M M l7 Cl Cl � M M N N a am0 a00 O R n N N WW Yl n fmO W OO N d 1!) m tt�� N i0 10 J C O ry N �O 0 N m yy ty N A W � O A 6 ttpp pp p n ty 0 0 1N N N W F U � ci o 0 0 6 0 6 0 0 0 0 0 c o 0 0 o 6 c o 0 0 0 0 o c c o 0 � z_ r m O m W N O' d d W pMM NNON A TIM m 2 cli N N N = N Q ry N l7 d N lt) W A 0) W 0) O � N N t7 d t7 N L 0] O O O N O N O N O N p N O N O N O N O N O N O N N N O_ N N N N N CI 7 N N N N _N = N O z z m N 0 IN (y pp�� Op yy LL N C 1 1 1 1 1 JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (10-YEAR) LOCATION: CLYDESDALE PARK FILING 2 PROJECT NO: 9201.02 COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING DATE: 10/10/00 DIRECT RUNOFF CARRYOVER TOTAL REMARKS Design Point Tributary Sub -basin A (ac) C Cf tc (min) I (in/hr) Q (10) (cfs) from Design Point Q (10) (ds) Q(10)tot (CIS) 20 01 2.11 0.30 12.5 2.29 1.4 1.4 Offsite basin 20A 02 40.00 0.20 56.5 0.98 7.9 7.9 Offsite basin 21 201 2.75 0.50 12.8 2.27 3.1 1 1 3.1 22 202 4.38 1 0.50 17.0 1 1.99 4.3 01 1.4 5.8 23 203 1.70 0.56 12.2 2.32 2.2 21 3.1 5.3 204 2.78 0.27 12.3 2.31 1.7 1.7 24 01,201,202,203,204 13.71 0.43 17.4 1.97 11.5 11.5 25 205 6.06 0.57 18.6 1.90 6.6 0.5 7.1 26 206 0.13 0.90 5.0 3.15 0.4 1.7 2.1 27 207 2.88 0.37 17.3 1.97 2.1 2.1 28 208 2.05 0.57 10.1 2.50 2.9 1 2.9 209 1.13 1 0.31 11.5 1 2.37 0.8 25,28 10.0 10.8 29 205,208.209 9.24 0.54 18.6 1.90 9.5 9.5 30 210 1.84 0.64 9.1 2.61 3.1 3.1 211 3.66 0.28 12.4 2.30 2.3 30 3.1 5.4 31 210,211 5.50 0.40 13.5 2.21 4.8 4.8 32 212 3.44 0.59 9.0 2.61 5.3 5.3 213 8.39 0.26 21.7 1.75 3.9 3.9 34 214 7.38 0.54 16.1 2.04 8.1 1 8.1 33 212,213,214 1 19.21 1 0.43 21.7 1.75 14.4 02 7.9 2Z2 35 215 0.02 0.20 10.9 2.43 0.0 0.0 Offsfte release h Historic, H 75.82 1 0.20 138.9 0.52 8.0 8.0 Q=CIA 920102FLOWALS Q = peak discharge (cfs) C = runoff coefficient I = rainfall intensity (in/hr) from Larimer County IDF A = drainage area (acres) I = 26/(10+t )''0.78 JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 RATIONAL METHOD PEAK RUNOFF (100-YEAR) LOCATION: CLYDESDALE PARK FILING 2 PROJECT NO: 9201.02 COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING DATE: 10/10/00 DIRECT RUNOFF CARRY OVER TOTAL REMARKS Des. Point Area Design. A (ac) C Cf tc (min) i (inmr) Q (100) (ofs) from Design Point Q (100) Ws) Q(100)tot (cfs) 20 01 2.11 0.38 12.5 6.48 5.1 5.1 Offsite basin 20A 02 40.00 0.25 54.6 2.83 28.3 28.3 Offsite basin 21 201 2.75 0.62 14.2 6.13 10.5 1 10.5 22 202 4.38 1 0.62 18.9 1 5.34 14.5 1 01 5A 19.6 23 203 1.70 0.69 11.7 6.67 7.9 21 10.5 18.4 204 2.78 0.34 13.8 6.22 5.8 5.8 24 01,201.202.203.204 13.71 0.53 18.1 5.45 39.9 39.9 25 205 6.06 0.72 18.6 5.38 23.4 22 5.3 28.7 26 206 0.13 1.13 5.0 8.93 1.3 14.3 15.6 27 207 2.88 0.47 17.3 5.58 7.5 7.5 28 208 2.05 0.71 8.5 7.58 11.0 1 11.0 209 1.13 1 0.39 11.2 1 6.79 3.0 25,28 39.7 42.7 29 205,208,209 9.24 0.68 18.6 5.38 33.5 33.5 30 210 1.84 0.80 7.2 8.01 11.7 11.7 211 3.66 0.34 12.4 6.51 8.2 30 11.7 20.0 31 210,211 5.50 0.50 12.9 6.41 17.5 17.5 32 212 3.44 0.74 7.5 7.91 20.1 20.1 213 8.39 0.33 21.7 4.95 13.7 13.7 34 214 7.38 0.67 16.1 5.78 28.5 1 28.5 33 212,213,214 19.21 0.53 21.7 4.95 50.7 02 28.3 79.1 35 215 0.02 0.25 t0.8 6.88 0.0 0.0 Offsite release h Historic, H 75.82 0.25 82.3 2.14 40.6 40.6 Q=CiA Q = peak discharge (cfs) C = runoff coefficient I = rainfall intensity (in/hr) from Larimer County IDF A = drainage area (acres) 920102FLOWALS I = 75/(10+Q-0.786 -1 C .L L REAL FS TA TF < ® L PHOTO ROOK FOR " ° °o N. FRONT RANGE �o � m • • ; . �\ • oxe4 It °� ii. •• 119391, : 7 II 49784. / ' 4996 z If ,r \ T9F314, ugi - -� Cr I 0 yF i a J ° 4935 LA 'POUDRE 49 BM 4915 './ t •49 • a � � Deav�lman 495/ I= 1` I / I I LakeIf ; A \ AI� \\2 ; 24 00 87 1- 11 2 Itif 4885......... r' If i 1II I " TIMNATH RESERVOIRit O � \ I �� �27k487e�\\ «as t I 4876 / 6i�� 25 \\ --- e, y 000 ol J to - -� < 7 - it 4487 �VJ 485 �..34 35 ' _ r �t o " 36 imnath T. 7 N. a l' I i, moo11 ' 11 BM 486" �1 rJ � b' •O • //�' ego 0 =�—. Pli APPENDIX C INLET SIZING ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD tS-E-R:JR ENGINEERS-DENVER CO ........................... ------.---..............- ON DATE 03-24-2000 AT TIME 11 :44 : 50 t** PROJECT TITLE: CLYDESDALE U [J 1 1 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 2 �-D?Z) INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 5. 00 - TN 6.00 0 27.00 2.00 0.17 depth to flow depth. STREET LONGITUDINAL SLOPE (%) = 0.78 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.88 GUTTER FLOW DEPTH (ft) = 0.46 FLOW VELOCITY ON STREET (fps)= 3.02 FLOW CROSS SECTION AREA (sq ft)= 2.38 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 9.99 (cfs)= 7.20Q106 (cfs) = 7.20 (cfs)= 0.00 (cfs)= 7.20 (cfs)= 7.20 (cfs)= 0.00 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD �SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 03 24-2000 AT TIME 11:45:28 1** PROJECT TITLE: CLYDESDALE (/ ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 3 ("vY3) ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft) = 5r00� HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.78 STREET CROSS SLOPE M = 2.00 ' STREET MANNING N GUTTER DEPRESSION = (inch)= 0.016 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 13.47 GUTTER FLOW DEPTH (ft) = 0.44 ' FLOW VELOCITY ON STREET (fps)= 2.88 FLOW CROSS SECTION AREA (sq ft)= 1.98 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 9.33 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.70= �tbo FLOW INTERCEPTED '(cfs)= 5.70 ' BY DENVER UDFCD METHOD: CARRY-OVER DESIGN FLOW FLOW (cfs)= (cfs)= 0.00 5.70 FLOW INTERCEPTED (cfs)= 5.70 CARRY-OVER FLOW (cfs)= 0.00 1 UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER -----------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -- SER:JR ENGINEERS-DENVER CO .........................--.....................- ON DATE 03-24-2000 AT TIME 13:57:25 1** PROJECT TITLE: Clydesdale (/ [I *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 5 LVP5) INLET HYDRAULICS ON A GRADE. GIVEN INLET DESIGN INFORMATION: -Oh &�4 -rvpe- l + ' INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet ' NUMBER OF GRATES = 2.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.00 ' STREET CROSS SLOPE (%) 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 1.63 GUTTER FLOW DEPTH (ft) = 0.17 FLOW VELOCITY ON STREET (fps)= 3.67 ' FLOW CROSS SECTION AREA (sq ft)= 0.14 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= 0.50ct IDEAL GRATE INLET CAPACITY (cfs)= 0.50 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 0.50 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.25 ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 5 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 7.00 ' REQUIRED CURB OPENING LENGTH (ft)= 7.31 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 0.93 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.00 ' BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED (cfs)= (cfs)= 0.00 0.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.25 FLOW INTERCEPTED (cfs)= 0.00 CARRY-OVER FLOW (cfs)= 0.25 ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 0.50 ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.50 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 0.50 ' CARRYOVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.25 ' FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.00 TOTAL FLOW INTERCEPTED (cfs)= 0.25 CARRYOVER FLOW (cfs)= 0.25 1 --------------------------------------=--------------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ----------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -SER:JR ENGINEERS-DENVER CO .................................................. ON DATE 03-24-2000 AT TIME 11:54:24 t** PROJECT TITLE: CLYDESDALE ' *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: T L/ INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' INLET GRATE WIDTH (ft)= INLET GRATE LENGTH (ft)= 1.87 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 3.00 ' STREET CROSS SLOPE (%) STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 5.28 ' GUTTER FLOW DEPTH (ft) = 0.27 FLOW VELOCITY ON STREET (fps)= 4.46 FLOW CROSS SECTION AREA (sq ft)= 0.45 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: ' DESIGN DISCHARGE (cfs)= IDEAL GRATE INLET CAPACITY (cfs)= 2.00 = oloo 1.87 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 1.81 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 0.94 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 5 ' INLET HYDRAULICS: ON A GRADE. (DP 5 eor ) ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 7.00 REQUIRED CURB OPENING LENGTH (ft)= 13.80 IDEAL CURB OPENNING EFFICIENCY = 0.72 ACTURAL CURB OPENNING EFFICIENCY = 0.61 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 0.13 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 0.19 ' FLOW INTERCEPTED (cfs)= 0.11 CARRY-OVER FLOW (cfs)= 0.07 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= 1.06 0.11 CARRY-OVER FLOW (cfs)= 0.96 ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 2.00 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= 1.81 FLOW INTERCEPTED BY CURB OPENING(cfs)= 0.11 TOTAL FLOW INTERCEPTED (cfs)= 1.9a= CARRYOVER FLOW .(cfs)= 0.07S oclatscfR BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 0.94 FLOW INTERCEPTED BY CURB OPENING (cfs)= 0.11 TOTAL FLOW INTERCEPTED (cfs)= 1.04 CARRYOVER FLOW (cfs)= 0.96 t ------------------=------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER --------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------- SER:JR ENGINEERS-DENVER CO ............................. ON DATE 03-24-2000 AT TIME 11:46:52 I** PROJECT TITLE: CLYDESDALE *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 7 (V17 7') ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 11 (4 ' HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 18.06 ' GUTTER FLOW DEPTH FLOW VELOCITY ON STREET (ft) = (fps)= 0.53 2.93 FLOW CROSS SECTION AREA (sq ft)= 3.43 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW .20.55 (cfs)= 10.10= Q�op FLOW INTERCEPTED (cfs)= 10.10 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 10.10 FLOW INTERCEPTED (Cfs)= 10.10 CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IUSER:JR ENGINEERS-DENVER CO.................................................. ON DATE 03-24-2000 AT TIME 11:48:11 '*** PROJECT TITLE: CLYDESDALE ' *** CURB OPENING INLET HYDRAULICS;AND SIZING: INLET ID NUMBER: 8 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: �7 GIVEN CURB OPENING LENGTH (ft)= 10.00 —Tipe F� HEIGHT OF CURB OPENING (in)= .00 0 ' INCLINED THROAT ANGLE (degree)= 27.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.60 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 16.75 ' GUTTER FLOW DEPTH FLOW VELOCITY ON STREET (ft) = (fps)= 0.50 2.81 FLOW CROSS SECTION AREA (sq ft)= 2.97 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW 20.09 (cfs)= 8.30 =Qipp FLOW INTERCEPTED (cfs)= 8.30 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 8.30 FLOW INTERCEPTED (cfs)= 8.30 CARRY-OVER FLOW (cfs)= 0.00 I ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER --------SUPPORTED -BY, METRO DENVER CITIES/COUNTIES AND UD&FCD IUSER:JR ENGINEERS-DENVER CO ........................ .... ON DATE 03-30-2000 AT TIME 15:47:46 '*** PROJECT TITLE: Clydesdale n 11 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 10 (t>-p 1 O INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft) = 10 . 00 - HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 6.50 STREET CROSS SLOPE W = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.78 GUTTER FLOW DEPTH (ft) = 0.40 FLOW VELOCITY ON STREET (fps)= 2.18 FLOW CROSS SECTION AREA (sq ft)= 1.55 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW 13.54 (cfs)= 3.40 % 0,00 FLOW INTERCEPTED (cfs)= 3.40 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.40 FLOW INTERCEPTED (cfs)= 3.40 CARRY-OVER FLOW (cfs)= 0.00 1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER ------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ' USER:JR ENGINEERS-DENVER CO ........................... ....................... ON DATE 03-30-2000 AT TIME 15:48:12 too- l*** PROJECT TITLE: Clydesdale ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 11 (DP li� ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 = rL ' HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= 6.00 J � 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.17 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION . (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.06 ' GUTTER FLOW DEPTH (ft) = FLOW VELOCITY ON STREET (fps)= 0.41 2.20 FLOW CROSS SECTION AREA (sq ft)= 1.62 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 13.74 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.60 FLOW INTERCEPTED (cfs)= 3.60 CARRY-OVER BY DENVER UDFCD METHOD: DESIGN FLOW FLOW (cfs)= (cfs)= 0.00 3.60 FLOW INTERCEPTED (cfs)= 3.60 CARRY-OVER FLOW (cfs)= 0.00 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG.DEPT. U OF COLORADO AT DENVER --------SUPPORTED-BYMETRO DENVER CITIES/COUNTIES AND UD&FCD LSER:JR ENGINEERS-DENVER CO........... ------------------------ ON DATE 03-24-2000 AT TIME 11:49:57 *** PROJECT TITLE: CLYDESDALE v% *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 12 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 6.00 27.00 2.00 0.17 depth to flow depth. STREET LONGITUDINAL SLOPE (%) = 1.20 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 13.94 GUTTER FLOW DEPTH (ft) = 0.45 FLOW VELOCITY ON STREET (fps)= 3.63 FLOW CROSS SECTION AREA (sq ft)= 2.11 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW 9.55 (cfs)= 7.60 Qioo FLOW INTERCEPTED (cfs)= 7:60 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 7.60 FLOW INTERCEPTED (cfs)= 7.60 CARRY-OVER FLOW (cfs)= 0.00 t ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER --------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IUSER:JR ENGINEERS-DENVER CO ............................. ..................... ON DATE 03-24-2000 AT TIME 11:50:26 �� ,� ✓ '*** PROJECT TITLE: CLYDESDALE 1 �I i I *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 13 CAP !-J> INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 5.00-� 6.00 27.00 2.00 0.17 depth to flow depth. STREET LONGITUDINAL SLOPE (%) = 1.20 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.59 GUTTER FLOW DEPTH (ft) = 0.40 FLOW VELOCITY ON STREET (fps)= 3.35 FLOW CROSS SECTION AREA (sq ft)= 1.51 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)=. 8.48 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= _^ 5.10-7"-jpp FLOW INTERCEPTED (cfs)= 5.10 CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.10 FLOW INTERCEPTED (cfs)= 5.10 CARRY-OVER FLOW (cfs)= 0.00 ---------------------------------------------------------------- ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER --------SUPPORTED -BY- METRO -DENVER CITIES/COUNTIES AND UD&FCD ' USER:JR ENGINEERS-DENVER CO .............. ................................... ON DATE 03-24-2000 AT TIME 11:51:17 /ro-y-r *** PROJECT TITLE: CLYDESDALE 1 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 15 ( D-P l S-) INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: STREET LONGITUDINAL SLOPE STREET CROSS SLOPE STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) _ GUTTER FLOW DEPTH (ft) _ FLOW VELOCITY ON STREET (fps)= FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR ($)_ CURB OPENNING CLOGGING FACTOR ()= 1s_000 7�pc 12 6.00 27.00 2.00 0.17 depth to flow depth. 0.50 2.00 0.016 2.00 2.00 29.13 0.75 3.53 8.65 50.00 10.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW 36.20 (cfs)= 30.30=4 0b FLOW INTERCEPTED (cfs)= 30.30 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 30.30 FLOW INTERCEPTED (cfs)= 30.30 CARRY-OVER FLOW (cfs)= 0.00 Engineering, Ltd. CLIENT JOB NO. JR %/a4 PROJECT �(/� �BY2 CHECK BY _ DATE ' SUBJECT / SHEET NO.__OF I I 1 1 1 i i MEN mom 7 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ,USER:JR ENGINEERS-DENVER CO ................................................. ON DATE 06-27-2000 AT TIME 08:20:27 *** PROJECT TITLE: Clydesdale #2 *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: 1 INLET ID NUMBER: ' J00-YV- Evcv1z INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1:87 ' INLET GRATE LENGTH (ft)= 3.25 INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 3.00 IS THE INLET GRATE NEXT TO A CURB ?-- YES Note: Sump is the additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N ." = 0.016 GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 24.44 GUTTER FLOW DEPTH (ft) = 0.66 FLOW VELOCITY ON STREET (fps)= 3.18 FLOW CROSS SECTION AREA (sq ft)= 6.14 ' GRATE CLOGGING FACTOR. M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: FOR 3 GRATE INLETS: DESIGN DISCHARGE (cfs)= 19.60 ' IDEAL GRATE INLET CAPACITY (cfs)= 16.06 BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 10.65 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 8.03 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 22 ' INLET HYDRAULICS: ON A GRADE. 0 ' GIVEN INLET DESIGN INFORMATION: �eSig�. �'t , ���✓ 1:✓ew� GIVEN CURB OPENING LENGTH (ft)= 10.90 REQUIRED CURB OPENING LENGTH (ft)= 34.67 ' IDEAL CURB OPENNING EFFICIENCY = 0.49 ACTURAL CURB OPENNING EFFICIENCY = 0.41 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.41 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 8.95 FLOW INTERCEPTED (cfs)= 3.64 CARRY-OVER FLOW (cfs)= 5.31 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.57 FLOW INTERCEPTED (cfs)= 3.53 ' CARRY-OVER FLOW (cfs)= 8.04 *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= 19.60 BY FAA HEC-12 METHOD: ' FLOW INTERCEPTED BY GRATE INLET (cfs)= 10.65 FLOW INTERCEPTED BY CURB OPENING(cfs)= 3.64 1 TOTAL FLOW INTERCEPTED (cfs) = 14 .29,+—l�U—`f/ <<t� CARRYOVER FLOW (cfs)= 5.31 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= 8.03 FLOW INTERCEPTED BY CURB OPENING (cfs)= 3.53 ' TOTAL FLOW INTERCEPTED (cfs)= 11.56 CARRYOVER FLOW (cfs)= 8.04 1 1 1J 1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD 'CTSER:JR ENGINEERS-DENVER CO .................................................. ON DATE 06-27-2000 AT TIME 08:42:21 '*** PROJECT TITLE: Clydesdale #2 *** COMBINATION INLET: GRATE INLET AND CURB OPENING: *** GRATE INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 25— ' �Skr K ✓ fiver. INLET HYDRAULICS: ON A GRADE. IGIVEN INLET DESIGN INFORMATION: INLET GRATE WIDTH (ft)= 1.87 INLET GRATE LENGTH (ft)= 3.25 ' INLET GRATE TYPE =Type 16 Grate Inlet NUMBER OF GRATES = 2.00 ' IS THE INLET GRATE Note: Sump is the NEXT TO A CURB ?-- YES additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 2.00 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 28.56 ' GUTTER FLOW DEPTH (ft) = 0.74 FLOW VELOCITY ON STREET (fps)= 3.49 FLOW CROSS SECTION AREA (sq ft)= 8.32 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: FOR 2 GRATE INLETS: DESIGN DISCHARGE (cfs)= 29.00 IDEAL GRATE INLET CAPACITY (cfs)= 17.82 ' BY FAA HEC-12 METHOD: FLOW INTERCEPTED (cfs)= 16.17 ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED (cfs)= 8.91 *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 25 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 7.00 42.95 0.27 0.22 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 5.16 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= ' CARRY-OVER FLOW (cfs)= ' *** SUMMARY FOR THE COMBINATION INLET: THE TOTAL DESIGN PEAK FLOW RATE (cfs)= BY FAA HEC-12 METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= ' FLOW INTERCEPTED BY CURB OPENING(cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= ' BY DENVER UDFCD METHOD: FLOW INTERCEPTED BY GRATE INLET (cfs)= FLOW INTERCEPTED BY CURB OPENING (cfs)= TOTAL FLOW INTERCEPTED (cfs)= CARRYOVER FLOW (cfs)= 18.83 4.19 14.64 20.09 4.13 15.96 29.00 10.17 4.19 14.64- T 8.91 4.13 13.04 15.96 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ' USER:JR ENGINEERS-DENVER CO ................................................. ON DATE 10-06-2000 AT TIME 10:10:07 '*** PROJECT TITLE: CLYDESDALE *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 26 DeS �Ih�o;n�Z6- ��/ T't�� r+^��- �ar�" R�A ' INLET HYDRAULICS: IN A SUMP. 1 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= INCLINED THROAT ANGLE (degree)= LATERAL WIDTH OF DEPRESSION (ft)= SUMP DEPTH (ft)= Note: The sump depth is additional STREET GEOMETRIES: 10.00 6.00 27.00 2.00 0.17 depth to flow depth. STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.50 GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 22.56 GUTTER FLOW DEPTH (ft) = 0.58 FLOW VELOCITY ON STREET (fps)= 3.00 FLOW CROSS SECTION AREA (sq ft)= 5.22 GRATE CLOGGING FACTOR 00 = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 21.39 (cfs)= (cfs)= 15.60 15.60-Q--lUD-i� (cfs) = 0.00 (cfs)= 15.60 (cfs)= 15.60 (cfs)= 0.00 STORM PIPE DESIGN AND SWALE DESIGN 1 �J 1 i 1 Project Title: Clydesdale Park Project Engineer: JR ENGINEERING, LTD. 1 x:\920101-Clydesdale-final\drainage\dp2,3.stm JR Engineering, Ltd StormCAD v1.511581 12/08/99 08:43:16 AM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 #@ ca 663E c$ I§ § , w (L to i•] P-2 Pond A Project Title: Clydesdale Park Project Engineer: JR ENGINEERING, LTD. x:\920101 Clydesdale-final\drainage\swaledp6.stm JR Engineering, Ltd StormCAD v1.5 [158) 1211Q199 09:46:27 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 A§; ƒ}{ m°CL ■/ !§ • A >� \k co 0 w° 0i 0 } . w § aaw ƒ } �}* § § § rl @ s &U£ ƒ § . ( § \ § #aw - . ( � 8& 2� \*Ci cli cm Citi) #i a co co k§ ' 3 ee 07 b§ • Cl) k ®k SS£ kk // k . . (D [ co/ . . IL « §k! CL ){ ��k CL k /fk iy i N ' DP 7 P-1 Pond A DP 8 i 1 � I 1 i 1 Project Title: Clydesdale Park Project Engineer: JR ENGINEERING, LTD. 1 x:\920101 Clydesdale-finalklrainage\dp7,8.stm JR Engineering, Ltd StormCAD v1.5 [158] 12/10/99 09:42:22 AM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 @ . R(; Co co �� EN > zk mg 2$ a0 2 cm / R. R R 2 . a co 40i co @ L . A co @ m N w �� @co 0 co ���co V 2 k \� @ � ■ LUO . 2 /\ /k w 0 IL j o{ , 22 2 j0 } /j as ® ID @ DCO rm�It N (/ §!! . C — FjR2 k(L cd a& ekerl ODr� 2�o /)§ � 1 1 1 r 1 [1 r 1 Pond A Pond B La n (.-7- �N Project Title: Clydesdale Park Project Engineer: JR ENGINEERING, LTD. x:%920101-clydesdale-finaltdrainagetdp9-0p14.stm JR Engineering, Ltd StormCAD v1.5 (158] 12/10/99 08:37:58 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 dw J b O I LJ r I I N O N N a)_ l9 V q N (aO (V fV K (I N J Q O CID 00 OD N cli O loi N!_ ONi = It It IT a A A q 8 C m N N N N rnmaW OCSWv It It v It clit o I It r L6 Ld v v p> m cli m rn rn v v a v a a m CL J 00 CD CD CID CM (.� v W 00) 0Ni_ ONi_ x a v a a cyi cq v d ai m rn 0i N N N N 7Clag m a C m It It O00Cl)i (O O N sf CL j v N N N N O) 4) 0) 0) � v a a v 000,,0) CL— N t6 (D t6 o O o 0 o a o 0 o U �ItCOOD N 0 0) 00) O W aco O O O O O O O O O O O C C m m m m 0 '4) m N m m � m 0 0 (qC� 0 0 U U U U N U U U U N N N N O O O L ^ tU CD— co O v � J m 0 = C a a g 0 y a a o 0 N O N O O O N 0 a 0. F aoo�n o UU m ¢'a W W U Z W N Q 7 tD ro ro U) to n O N m 0 n t0 0 U Da J N O! j C > �ro W K v '7 N Y O m co U C DP 12` TN Project Title: Clydesdale Park Project Engineer: JR ENGINEERING, LTD. x:\920101-Clydesdale-final%drainageWp12,13.stm JR Engineering, Ltd StormCAD v1.5 [158] 12/10/99 09:07:21 AM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 J O C7 v? m Z j N c o ¢ a w v Lu wU Z z O w h J p=9 m O m rn Q d e e m c co n o c w m ❑C7W� o v a a c v v O > x c rn c N n � � co c M nos m rn N = a v N 00 a e n n 00 m co N N 0 J nc7Wz v v m U N N J d > � rn rn C; c3 �cu 0 ID � m W IL n (V OS Cl) U C m c c IDy m L O O v « m m W� U U m N U U (n C C N N L O l7 y C� It Cl) fV a a v m y D d Q c O �� V m C c U N CL ❑ m m O) ❑ Q S C N F O O I — U O 4 x O [1' 1 1 1 1 i 1 P 1 1 C 1 1 1 1 1 E_1 1 Project Title: Clydesdale Park Project Engineer: JR ENGINEERING, LTD. x:%3920000.aIh3920102\drainage\dp15,26.stm JR Engineering, Ltd StormCAD v1.5 [158] 1 10/09/00 05:37:31 PM 11 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I 1 1 1 1 Pond C Outlet 15" RCP Cross Section for Circular Channel Project Description Project File x:\3920000.all\3920102\drainage\clyde-2.fm2 Worksheet Pond C Outlet 15" Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.013 Channel Slope 0.007800 ft/ft Depth 0.25 ft Diameter 15.00 in Discharge 0.50 cfs 0.25 ft 15.00 in ' 1 VD H 1 NTS 1 10/10/00 02:14:36 PM 1 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 I 1 1 t 1 Pond C Outlet 15" RCP Worksheet for Circular Channel Project Description Project File x:\3920000.all\3920102\drainage\clyde-2.fm2 Worksheet Pond C Outlet 15" Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.007800 ft/ft Diameter 15.00 in Discharge 0.50 cfs Results Depth 0.25. ft Flow Area 0.17 ft' Wetted Perimeter 1.16 ft Top Width 1.00 It Critical Depth 0.28 ft Percent Full 20.01 Critical Slope 0.005301 ft/ft Velocity 2.86 ft/s Velocity Head 0.13 ft Specific Energy 0.38 ft Froude Number 1.21 Maximum Discharge 6.14 cfs Full Flow Capacity 5.70 cfs Full Flow Slope 0.000060 ft/ft Flow is supercritical. 10/10/00 FlowMaster v5.15 ' 02:14:22 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i W J m v! W a a N In N � o N J p°0 N N S M rn V7 Y () N C > 00— U OD N O C Go co N N w rn rn v v rn rn J (O f0 OWE rn rn O O � N a a of o> rn m v a Go f0 N J D� co N = m rn IT v o w ad r) N >0— U C09 N a >> ao ao �C9W� rn rn v v n M J n OD W N N t 00 r j>C N N C °> O 'Q V _ Y N 0� o � O c° Un a N� o o 00 N U U C C_ O f0 M f7 N n r � N c� W) Cl) J v o D o a o o a a o ° U co In y N o a a O 0 Y a E N 0 N N co m N N n ci 0 N 0 N O 0 F U I G I 1 C� L 1 L h I LJ Entrance to *rive Culvert Worksheet for Circular Channel Project Description Project File x:\920101-Clydesdale-final\drainage\after reds\pipe&swa.fm2 Worksheet Culvert under Arabian Drive 1 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Diameter 24.00 in Discharge 14.60 cfs Results Depth 1.50 ft Flow Area 2.53 ftz Wetted Perimeter 4.19 ft Top Width 1.73 ft Critical Depth 1.38 ft Percent Full 75.06 Critical Slope 0.006208 ft/ft Velocity 5.77 ft/s Velocity Head 0.52 ft Specific Energy 2.02 ft Froude Number 0.84 Maximum Discharge 17.21 cfs Full Flow Capacity 16.00 cfs Full Flow Slope 0.004166 ft/ft Flow is subcritical. '03/24/00 FlowMaster v5.15 02:34:12 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Entrance to Arabtatt Drive Culvert Cross Section for Circular Channel ' Project Description Project File x:\920101-clydesdale-finandrainage\after reds\pipe&swa.fm2 Worksheet Culvert under Arabian Drive 1 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Depth 1.50 ft Diameter 24.00 in Discharge 14.60 cfs 1 03/24/00 ' 02:34:41 PM 1.50 ft 1L V H 1 NTS 24.00 in FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Downstream End of L�iatrCufvert ' Worksheet for Circular Channel Project Description Project File x:U20101-clydesdale-finandrainage\after reds\pipe&swa.fm2 Worksheet Culvert under Arabian Drive 2 ' Flow Element Circular Channel Method Manning's Formula _Solve For Channel Depth [1 I [1 1 Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Diameter 24.00 in Discharge 16.53 cfs Results Depth 1.71 ft Flow Area 2.86 ft2 Wetted Perimeter 4.71 ft Top Width 1.42 ft Critical Depth 1.47 ft Percent Full 85.33 Critical Slope 0.006782 ft/ft Velocity 5.79 ft/s Velocity Head 0.52 ft Specific Energy 2.23 ft Froude Number 0.72 Maximum Discharge 17.21 cfs Full Flow Capacity 16.00 cfs Full Flow Slope 0.005340 ft/ft Flow is subcritical. 03/24/00 FlowMaster v5.15 ' 02:36:27 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Downstream End of ArabiaR Culvert Cross Section for Circular Channel ' Project Description Project File x:\920101-clydesdale4inaNdrainage\after reds\pipe&swa.fm2 Worksheet Culvert under Arabian Drive 2 ' Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Depth 1.71 it Diameter 24.00 in ' Discharge 16.53 cfs 1 03/24/00 ' 02:36:45 PM 1.71 ft 1 V L H 1 NTS 24.00 in FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Worksheet C� Worksheet for Irregular Channel cJ a4 ' Project Description Project File x:\9201 01 -clydesdale-final\drainage\pipe&swa.fm2 Worksheet Swale in Sub -basin 104 ' Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data Channel Slope 0.005000 ft/ft Elevation range: 4,930.15 ft to 4,933.00 ft. Station (ft) Elevation (ft) Start Station End Station 0.00 4,932.40 0.00 16.00 4.50 4,932.00 16.00 18.00 12.00 4,931.32 18.00 28.24 13.30 4,931.00 16.00 4,930.32 17.00 4,930.15 18.00 4,930.32 ' 20.76 4,931.00 22.00 4,931.32 24.22 28.24 4,932.00 4,933.00 Discharge 14.60 cfs Results Wtd. Mannings Coefficient 0.020 Water Surface Elevation 4,931.12 ft Flow Area 4.31 ftz Wetted Perimeter 8.61 ft Top Width 8.38 ft Height 0.97 ft Critical Depth 4,931.04 ft ' Critical Slope 0.007042 ft/ft Velocity 3.39 ft/s Velocity Head 0.18 ft Specific Energy 4,931.29 ft Froude Number 0.83 Flow is subcritical. Notes: Roughness 0.035 0.016 0.035 Q = Q(100) Need minimum 8° freeboard = 0.667 ft ' Available Depth = 2 feet 12/15/99 ' 06:46:21 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 2 Cross Section Cross Section for Irregular Channel W ,� Project Description Project File x:\920101-Clydesdale-final\drainage\pipe&swa.fm2 Worksheet Swale in Sub -basin 104 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Data Wtd. Mannings Coefficient 0.020 Channel Slope 0.005000 ft/ft Water Surface Elevation 4,931.12 ft Discharge 14.60 cfs 4933, 4932.: 4932.0 N c 4931.5 Y W n 4931.0 4930.5 4930.0 0.0 5.0 10.0 15.0 20.0 25.0 Station (ft) 30.0 '12/15/99 FlowMaster v5.15 06:46:28 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Irregular Channel ' Project Description Project File x:\920101-clydesdale-finaf\drainage\pipe&swa.fm2 Worksheet Swale in Sub -basin 106 ' Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Input Data ' Channel Slope 0.005000 ft/ft Elevation range: 4,928.88 ft to 4,932.40 ft. Station (ft) Elevation (ft) Start Station End Station ' 0.00 4,932.40 0.00 13.32 1.67 4,932.00 13.32 15.32 5.68 4,931.00 15.32 27.33 9.40 4,930.04 ' 13.32 4,929.04 14.32 4,928.88 15.32 4,929.04 19.58 4,930.04 24.04 4,931.17 ' 27.33 Discharge 4,932.00 17.10 cfs Results Wtd. Mannings Coefficient 0.020 Water Surface Elevation 4,929.91 ft ' Flow Area 4.97 ftz Wetted Perimeter 9.33 ft Top Width 9.10 ft ' Height 1.03 ft Critical Depth 4,929.82 ft Critical Slope 0.007267 ft/ft ' Velocity 3.44 ft/s Velocity Head 0.18 ft Specific Energy 4,930.09 ft Froude Number 0.82 Flow is subcritical. ' Notes: I�Ja,,J Od'b Roughness 0.035 0.016 0.035 ' Q = Q(100) for DP 6 Need min. 8" freeboard Available depth = 3.5' 1 W99 06:48:48:06 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755.1666 FlowMaster v5.15 Page 1 of 1 Cross Section Cross Section for Irregular Channel Project Description Project File x:U2O1O1-clydesdale-finaftdrainage\pipe&swa.fm2 Worksheet Swale in Sub -basin 106 Flow Element Irregular Channel Method Manning's Formula Solve For Water Elevation Section Data Wtd. Mannings Coefficient 0.020 Channel Slope 0.005000 ft/ft Water Surface Elevation 4,929.91 ft Discharge 17.10 cfs 4932.5 4932.0 4931.E 4931.0 W 4930.0 4929.5 4929.0 4928.5 L 0.0 1 12/15/99 ' 06:48:11 PM 5.0 10.0 15.0 20.0 25.0 Station (ft) Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 30.0 FlowMaster v5.15 Page 1 of 1 J 1 DP#22 Inlet Outlet Pipe Worksheet for Circular Channel Project Description Project File x:\920102\drainage\clyde-2.fm2 Worksheet DP#22 Culvert Outlet Pipe Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth De- 5%cth T"o\1 Z-2- �16 Colnw.b; ,��oy. T�Jc� VJ0 po Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft ' Diameter UIOL 24.0 _ 1� Discharge 14.30 cfs ��--- ��—�`� ��^r�-��1 � r��"� .1-+• ' Results Depth 1.48 ft Flow Area 2.48 ft2 ' Wetted Perimeter 4.13 ft Top Width 1.76 ft Critical Depth 1.36 ft Percent Full 73.75 ' Critical Slope 0.006128 fVft Velocity 5.76 ft/s Velocity Head 0.52 ft ' Specific Energy 1.99 ft ' Froude Number 0.85 Maximum Discharge 17.21 cfs ' Full Flow Capacity 16.00 cfs Full Flow Slope 0,003996 fVft ' Flow is subcritical. 1 06/28/00 FlowMaster v5.15 ' 06:02:16 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 DP#25 Inlet Outlet Pipe Worksheet for Circular Channel Project Description Project File x:\920102\drainage\clyde-2.fm2 Worksheet DP#25 Inlet Outlet Pipe Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth —f,/(n.T"�ei" P iP e to✓ r'JOtilO ( C Kko A, ' Input Data Mannings Coefficient 0.013 Channel Slope 0.005000 ft/ft Diameter 24.00 in ' Discharge 14.40 cfs 100- t r Tv e+ Capp ` c ti c, ro w. V om te- 1 1 I 1 Results Depth 1.48 ft Flow Area 2.50 ftz Wetted Perimeter 4.15 ft Top Width 1.75 ft Critical Depth 1.37 ft Percent Full 74.19 Critical Slope 0.006154 ft/ft Velocity 5.76 fus Velocity Head 0.52 ft Specific Energy 2.00 ft Froude Number 0.85 Maximum Discharge 17.21 cfs Full Flow Capacity 16.00 cfs Full Flow Slope 0.004052 ft/ft Flow is subcdtical. t06/28/00 FlowMaster v5.15 06:04:15 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 [1 Temp Swale D-D Cross Section for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale D-D Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.030 Channel Slope 0,005000 fvft Depth 1.20 ft Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H : V Discharge 10.50 cfs 1 1 03:51:55 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 1.20 ft 1 VL H 1 NTS FlowMaster v5.15 Page 1 of 1 ' Temp Swale D-D Worksheet for Triangular Channel ' Project Description Project File x:\3920000.alf\3920102\drainage\temp swa.fm2 Worksheet Temp Swale D-D ' Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data ' Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft ' Left Side Slope Right Side Slope 3.000000 H : V 3.000000 H : V Discharge 10.50 cfs ' Results Depth 1.20 ft Flow Area 4.35 ftz Wetted Perimeter 7.62 ft Top Width 7.23 ft Critical Depth 0.95 ft Critical Slope 0.018051 ft/ft Velocity 2.41 ft/s Velocity Head 0.09 ft Specific Energy 1.30 ft Froude Number 0.55 Flow is subcritical. '10/09/00 FlowMaster v5.15 03:51:44 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Temp Swale E-E Cross Section for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale E-E Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft Depth 1.99 ft Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H : V Discharge 39.90 cfs 1.99 ft 1 VL H 1 NITS 10/09/00 ' 03:51:28 PM FlowMaster v5.15 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Temp Swale E-E ' Worksheet for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale E-E ' Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data ' Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H : V Discharge 39.90 cfs ' Results Depth 1.99 ft Flow Area 11.85 ft' Wetted Perimeter 12.57 ft Top Width 11.92 ft ' Critical Depth 1.62 ft Critical Slope 0.015107 ft/ft Velocity 3.37 ft/s Velocity Head 0.18 ft ' Specific Energy 2.16 ft Froude Number 0.60 Flow is subcritical. 1 1 1 '10/09/00 FlowMaster v5.15 03:51:18 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Temp Swale F-F Cross Section for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale F-F Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.030 Channel Slope 0.005000 fVft Depth 1.06 ft Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H : V Discharge 7.50 cfs n 1.06 ft 1 VN H 1 NTS 10/09/00 03:51:03 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 ' Temp Swale F-F Worksheet for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale F-F Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data ' Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft ' Left Side Slope Right Side Slope 3.000000 H : V 3.000000 H : V Discharge 7.50 cfs ' Results Depth 1.06 ft Flow Area 3.38 ft2 Wetted Perimeter 6.72 ft Top Width 6.37 ft Critical Depth 0.83 ft Critical Slope 0.018880 ft/ft Velocity 2.22 ft/s Velocity Head 0.08 ft Specific Energy 1.14 ft Froude Number 0.54 Flow is subcritical. '10/09/00 FlowMaster v5.15 03:50:51 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Temp Swale G-G Cross Section for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale G-G Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft Depth 1.86 ft Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H: V Discharge 33.50 cfs 1.86 ft 1 V L H 1 NTS 03:49:43 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 Temp Swale G-G Worksheet for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale G-G ' Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data ' Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft ' Left Side Slope Right Side Slope 3.000000 H : V 3,000000 H : V Discharge 33.50 cfs ' Results Depth 1.86 ft Flow Area 10.39 ft2 Wetted Perimeter 11.77 ft Top Width 11.17 ft Critical Depth 1.51 ft Critical Slope 0.015463 ft/ft Velocity 3.22 ft/s Velocity Head 0.16 ft Specific Energy 2.02 ft Froude Number 0.59 Flow is subcritical. 3 10 FlowMaster v5.15 03:49:31 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 Temp Swale H-H Cross Section for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 W rk h o s eet Temp Swale H-H ' Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Section Data ' Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft Depth 1.46 ft ' Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H : V Discharge 17.50 cfs 1.46 ft 1 VL H 1 NTS 10/09/00 ' 03:48:31 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 FlowMaster v5.15 Page 1 of 1 ' Temp Swale H-H Worksheet for Triangular Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale H-H ' Flow Element Triangular Channel Method Manning's Formula ' Solve For Channel Depth Input Data ' Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft ' Left Side Slope Right Side Slope 3.000000 H : V 3.000000 H : V Discharge 17.50 cfs Results 1 [1 C 1 Depth 1.46 ft Flow Area 6.39 ft2 Wetted Perimeter 9.23 ft Top Width 8.75 ft Critical Depth 1.16 ft Critical Slope 0.016862 ft/ft Velocity 2.74 ft/s Velocity Head 0.12 ft Specific Energy 1.58 ft Froude Number 0.57 Flow is subcritical. '10/09/00 FlowMaster v5.15 03:48:24 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 '10NO Swale 1-1 Cross Section for Trapezoidal Channel Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale 1-1 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft Depth 0.97 ft Left Side Slope 3.000000 H : V Right Side Slope 3.000000 H: V Bottom Width 8.00 ft Discharge 30.70 cfs 8.00 ft 0.97 ft 1 VD H 1 NTS 1 ' 10/09/00 FlowMaster v5.15 t03:49:06 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 I t +jmW Swale 1-1 Worksheet for Trapezoidal Channel ' Project Description Project File x:\3920000.all\3920102\drainage\temp swa.fm2 Worksheet Temp Swale 1-1 ' Flow Element Trapezoidal Channel Method Manning's Formula ' Solve For Channel Depth Input Data ' Mannings Coefficient 0.030 Channel Slope 0.005000 ft/ft t Left Side Slope Right Side Slope 3.000000 H : V 3.000000 H : V Bottom Width 8.00 ft Discharge 30.70 cfs ' Results ' Depth 0.97 ft Flow Area 10.62 ftz Wetted Perimeter 14.15 ft ' Top Width 13.83 ft Critical Depth 0.70 ft Critical Slope 0.016107 ft/ft Velocity 2.89 ft/s ' Velocity Head 0.13 ft Specific Energy 1.10 ft Froude Number 0.58 Flow is subcritical. 1 '10/09/00 - FlowMaster v5.15 03:48:55 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 -5�.1c� �3�,la�•r l�T�c-RAS 1 1 1 1 1 1 1 1 1 22 21 20 19 18 2 1Reach 1 n CO 17 0 n 16 O o 15 m 14 13 12 11.60 11 10 9 8 7 6 5 4 3 2 1 1 1 1 1 m LL a � o m rn 0 N 0 0 N O O LO JMn 3 cL o d O mt N m c > m 7 o � 0 o ^ I `s So\ N 0 n \ o N N 00 O O N < ! V K It ()J) uopene13 11 1 11 V r O N 0 n�, 0 0 0 0 00 00 N N to N 0 0 t0 u) a M N N 7 O O 0 tD 10 N tD to tD 10 N 10 to N O O O O O O O O O O O O O O O O O O O O O O O O 0 0 O (D m O n 0 0 N M V r V M . M� (A 00 to 1n N� N M M M M N M 1n tb O 6 n w O M 6 00 O N M N to N lil to to to uY M to u7 N a tb O t0 M_ O u7 (D O co O (D V V 0 V V M V V V u7 V V V N t0 l0 O O 0) O N V to 0 0 0 0 0 0 0 0 0 0 0 0 n N M LO co M C n t0 r-: t» O 6 0 0 0 C C m C C C C C C N N N N N M V V N (D r O O N N N N N N N N N N N N O (D M r 0 w m r O O N co M O Lq V 7 a0 M W tD V O Ou 00 10 10 10 f0 t0 10 10 1f. 1f1 10 10 10 10 10 10 10 N M M M N N o o M M M M M M M M M M M M m to M M O O r N V W O to f0 O O (D O O (D O O O O o 0 M W � O N 0 n M O M M M r 0 0 M O O M 0 0 0 M O O 0 M O 0 N n V M,, 0 0 M M M 0 M w 0 M 0 M O M N ^ O M O M O N O O O O O O O O O O O O O O O O O M O M O M O M O M O M O M O M O M O M O M O M O O O O O O O O O O O O O O O O O O O O O O O O O O . O O O O O O O O O O O O O O O O O O O O O O O O . O a O O 0 O O M M co M M OO O O N M V f0 ID r OD f0 N to W M N O M 0) O O D1 O N (A f0 n M CA 117 n O O O O O O O O lA W O m W O W OD lO r r f0 O O f0 N N N N N N N N . m m V V V V V V V V V V V V V V V V V V V V V V V V V O ui W V O N V V M D1 (O V M N N O 0 0 N M V 0 W n M V O n D1 M to n V O 1-M 0) t0 , n M to u7 O o O 6 CDm m m m m m w 00 r` r• Ih f0 (O N 1t) N N N N N N N m (n 0) CD CD ' m to DI O O O O M lA to to tT m (D to Of (D (n to m CD to V V V V V V V V �(n V V V V V V V V V V V �(n V �(n V V V V V O M V M u7 r tM 0f (0 N N a N 0 0 M m LQ n (0 0 ao of r.- r r-- 0 0 0 00 't V v rr 0 (o ro 0 0 —It V v M M M m m m m m 0 m 0 m m m m m w 0 0) w rn rn m m 0) rn rn rn v v a v a V v v V v v v v -Itv V V V a V V v V V v O O O O O O O O O O O O O O O O O O O O O O O O o OD OD OD 00 tD OD (D 00 OD du OR N a0 O O O O O O O O O O O O m m lA lA lA lA D1 fA O O m m O � C3 I [1 1 1 1 1 HEC-RAS September 1998 Version 2.2 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street, Suite D Davis, California 95616-4687 (916) 756-1104 X X XXXXXX XXXX XXXX XX XXXX X X X X X X X X X X X X X X X X X X X XXXXXXX XXXX X XXX XXXX XXXXXX XXXX X X X X X X X X X X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX PROJECT DATA Project Title: Revised Outlet Project File : Revout.prj Run Date and Time: 10/8/00 11:06:49 AM Project in English units PLAN DATA Plan Title: Plan 01 Plan File : x:\3920000.all\3920102\Drainage\Revout.p01 Geometry Title: Rev -outlet Geometry File : x:\3920000.all\3920102\Drainage\Revout.g01 Flow Title : Revout Flow File : x:\3920000.all\3920102\Drainage\Revout.fOI Plan :Summary Information: Number of: Cross Sections = 25 Mulitple Openings = 0 Culverts 0 Inline Weirs = 0 Bridges = 0 Computational Information Water surface calculation tolerance = 0.01 Critical depth calculaton tolerance = 0.01 Maximum number of interations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow FLOW DATA Flow Title: Revout Flow File : x:\3920000.all\3920102\Drainage\Revout.f01 Flow Data (cfs) River Reach RS PF 1 Clydesdale OutleReach 1 22.18 79.8 Clydesdale outleReach 1 11.59 71 Boundary Conditions ' River Reach Profile Upstream Downstream Clydesdale OutleReach 1 PF 1 Normal S = .0039 Normal S = .0039 GEOMETRY DATA ' Geometry Title: Rev -outlet Geometry File : x:\3920000.all\3920102\Drainage\Revout.g01 CROSS SECTION RIVER: Clydesdale Outle ' REACH: Reach 1 RS: 22.18 INPUT Description: t Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4925.25 20.55 4918.4 41.1 4925.25 Manning's n Values num= 3 ' Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. ' 0 41.1 100 100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 ' E.G. Elev (ft) 4921.54 Element Left OB Channel Right OB Vel Head (ft) 0.13 Wt. n-Val. 0.030 W.S. Elev (ft) 4921.41 Reach Len. (ft) 100.00 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 27.18 E.G. Slope (ft/ft) 0.002185 Area (sq ft) 27.18 ' Q Total (cfs) 79.80 Flow (cfs) 79.80 Top,Width (ft) 18.06 Top Width (ft) 18.06 Vel Total (ft/s) 2.94 Avg. Vel. (ft/s) 2.94 ' Max Chl Dpth (ft) Conv. Total (cfs) 3.01 Hydr. Depth (ft) 1707.4 Conv. (cfs) 1.51 1707.4 Length Wtd. (ft) 100.00 Wetted Per. (ft) 19.04 Min Ch El (ft) 4918.40 Shear (lb/sq ft) 0.19 Alpha 1.00 Stream Power (lb/ft s) 0.57 Frctn Loss (ft) 0.28 Cum Volume (acre-ft) 1.68 ' C 6 E Loss (ft) 0.01 Cum SA (acres) 0.97 ' CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 22 INPUT Description: Station Elevation Data num= 3 ' Sta Elev Sta Elev Sta Elev 0 4925.18 20.55 4918.33 41.1 4925.18 Manning's n Values num= 3 ' Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. ' 0 41.1 100 100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 ' E.G. Elev (ft) 4921.26 Element Left OB Channel Right OB [1 1 1 1 1 i 1 1 1 i 1 1 1 1 1 1 1 1 Vel Head (ft) 0.20 Wt. n-Val. 0.030 W.S. Elev (ft) 4921.06 Reach Len. (ft) 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 22.40 E.G. Slope (ft/ft) 0.003661 Area (sq ft) 22.40 Q Total (cfs) 79.80 Flow (cfs) 79.80 Top Width (ft) 16.39 Top Width (ft) 16.39 Vel Total (ft/s) 3.56 Avg. Vel. (ft/s) 3.56 Max Chl Dpth (ft) 2.73 Hydr. Depth (ft) 1.37 Conv. Total (cfs) 1318.8 Conv. (cfs) 1318.8 Length Wtd. (ft) 100.00 Wetted Per. (ft) 17.28 Min Ch E1 (ft) 4918.33 Shear (lb/sq ft) 0.30 Alpha 1.00 Stream Power (lb/ft s) 1.06 Frctn Loss (ft) 0.35 Cum Volume (acre-ft) 1.62 C 6 E Loss (ft) 0.00 Cum SA (acres) 0.93 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 21 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4924.79 20.55 4917.94 41.1 4924.79 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 41.1 100 100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4920.91 Element Left OB Channel Vel Head (ft) 0.18 Wt. n-Val. 0.030 W.S. Elev (ft) 4920.72 Reach Len. (ft) 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 23.25 E.G. Slope (ft/ft) 0.003313 Area (sq ft) 23.25 Q Total (cfs) 79.80 Flow (cfs) 79.80 Top Width (ft) 16.70 Top Width (ft) 16.70 Vel Total (ft/s) 3.43 Avg. Vel. (ft/s) 3.43 Max Chl Dpth (ft) 2.78 Hydr. Depth (ft) 1.39 Conv. Total (cfs) 1386.5 Conv. (cfs) 1386.5 Length Wtd. (ft) 100.00 Wetted Per. (ft) 17.61 Min Ch E1 (ft) 4917.94 Shear (lb/sq ft) 0.27 Alpha 1.00 Stream Power (lb/ft s) 0.94 Frctn Loss (ft) 0.30 Cum Volume (acre-ft) 1.57 C 6 E Loss (ft) 0.01 Cum SA (acres) 0.89 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 20 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4924.4 20.55 4917.55 41.1 4924.4 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 .03 Bank Sta: Left Right Lengths: Left Channel 0 41.1 100 100 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4920.60 Element Vel Head (ft) 0.16 Wt. n-Val. Right Coeff Contr. Expan. 100 .1 .3 100.00 Right OB 100.00 Left OB Channel Right OB 0.030 1 [I W.S. Elev (ft) 4920.44 Reach Len. (ft) 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 25.13 E.G. Slope (ft/ft) 0.002693 Area (sq ft) 25.13 Q Total (cfs) 79.80 Flow (cfs) 79.80 Top Width (ft) 17.37 Top Width (ft) 17.37 Vel Total (ft/s) 3.17 Avg. Vel. (ft/s) 3.17 Max Chl Dpth (ft) 2.89 Hydr. Depth (ft) 1.45 Conv. Total (cfs) 1537.9 Conv. (cfs) 1537.9 Length Wtd. (ft) 100.00 Wetted Per. (ft) 18.31 Min Ch E1 (ft) _ 4917.55 Shear (lb/sq ft) 0.23 Alpha 1.00 Stream Power (lb/ft s) 0.73 Frctn Loss (ft) 0.23 Cum Volume (acre-ft) 1.52 C 6 E Loss (ft) 0.01 Cum SA (acres) 0.86 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 19 ' INPUT Description: r C Station Elevation Data Sta Elev Sta 0 4924.01 20.55 Manning's n Values Sta n Val Sta 0 .03 0 Bank Sta: Left Right 0 41.1 CROSS SECTION OUTPUT E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C s E Loss (ft) CROSS SECTION REACH: Reach 1 num= 3 Elev Sta Elev 4917.16 41.1 4924.01 num= 3 n Val Sta n Val .03 41.1 .03 Lengths: Left Channel 100 100 Profile #PF 1 4920.36 Element 0.12 Wt. n-Val. 4920.24 Reach Len. Flow Area 0.001926 Area (sq f 79.80 Flow (cfs) 18.49 Top Width 2.80 Avg. Vel. 3.08 Hydr. Dept 1818.2 Conv. (cfs 100.00 Wetted Per 4917.16 Shear (lb/ 1.00 Stream Pow 0.15 Cum Volume 0.01 Cum SA (ac RIVER: Clydesdale Outle RS: 18 INPUT Description: Station Elevation Data Sta Elev Sta 0 4923.62 20.55 Manning's n Values Sta n Val Sta 0 .03 0 Bank Sta: Left Right 0 41.1 CROSS SECTION OUTPUT E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) num= 3 Elev Sta Elev 4916.77 41.1 4923.62 num= 3 n Val Sta n Val .03 41.1 .03 Lengths: Left Channel 100 100 Profile #PF 1 4920.20 Element 0.09 Wt. n-Val. 4920.11 Reach Len. Right Coeff Contr. . Expan. 100 .1 .3 (ft) (sq ft) t) (ft) (ft/s) h (ft) . (ft) sq ft) er (lb/ft s) (acre-ft) res) Left OB 100.00 Channel 0.030 100.00 28.50 28.50 79.80 18.49 2.80 1.54 1818.2 19.49 0.18 0.49 1.45 0.81 Right Coeff Contr. Expan. 100 .1 .3 Left OB Channel 0.030 (ft) 100.00 100.00 100.00 Right OB 100.00 Right OB 100.00 t I Crit W.S. (ft) Flow Area (sq ft) 33.51 E.G. Slope (ft/ft) 0.001250 Area (sq ft) 33.51 Q Total (cfs) 79.80 Flow (cfs) 79.80 Top Width (ft) 20.05 Top Width (ft) 20.05 Vel Total (ft/s) 2.38 Avg. Vel. (ft/s) 2.38 Max Chl Dpth (ft) 3.34 Hydr. Depth (ft) 1.67 Conv. Total (cfs) 2256.6 Conv. (cfs) 2256.8 Length Wtd. (ft) 100.00 Wetted Per. (ft) 21.14 Min Ch E1 (ft) 4916.77 Shear (lb/sq ft) 0.12 Alpha 1.00 Stream Power (lb/ft s) 0.29 Frctn Loss (ft) 0.10 Cum Volume (acre-ft) 1.38 C s E Loss (ft) 0.01 Cum SA (acres) 0.77 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 17 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4923.23 20.55 4916.38 41.1 4923.23 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 41.1 100 100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4920.10 Element Left OB Channel Right OB Vel Head (ft) 0.06 Wt. n-Val. 0.030 W.S. Elev (ft) 4920.03 Reach Len. (ft) 100.00 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 40.05 E.G. Slope (ft/ft) 0.000777 Area (sq ft) 40.05 Q Total (cfs) 79.80 Flow (cfs) 79.80 Top Width (ft) 21.92 Top Width (ft) 21.92 Vel Total (ft/s) 1.99 Avg. Vel. (ft/s) 1.99 Max Chl Dpth (ft) 3.65 Hydr. Depth (ft) 1.83 Conv. Total (cfs) 2862.2 Conv. (cfs) 2862.2 Length Wtd. (ft) 100.00 Wetted Per. (ft) 23.11 Min Ch E1 (ft) 4916.38 Shear (lb/sq ft) 0.08 Alpha 1.00 Stream Power (lb/ft s) 0.17 Frctn Loss (ft) 0.06 Cum Volume (acre-ft) 1.30 C 6 E Loss (ft) 0.01 Cum SA (acres) 0.72 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 16 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4922.84 20.55 4915.99 41.1 4922.84 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val ' 0 .03 0 .03 41.1 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 41.1 100 .100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4920.03 Element Left OB Channel Right OB Vel Head (ft) 0.04 Wt. n-Val. 0.030 W.S. Elev (ft) 4919.99 Reach Len. (ft) 100.00 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 47.91 ' E.G. Slope (ft/ft) 0.000482 Area (sq ft) 47.91 Q Total (cfs) 79.80 Flow (cfs) 79.60 Top Width (ft) 23.98 Top Width (ft) 23.98 Vel Total (ft/s) 1.67 Avg. Vel. (ft/s) 1.67 ' Max Chl Dpth (ft) 4.00 Hydr. Depth (ft) 2.00 Conv. Total (cfs) 3634.5 Conv. (cfs) '3634.5 Length Wtd. (ft) 100.00 Wetted Per. (ft) 25.27 Min Ch E1 (ft) 4915.99 Shear (lb/sq ft) 0.06 Alpha 1.00 Stream Power (lb/ft s) 0.10 ' Frctn Loss (ft) 0.04 Cum Volume (acre-ft) 1.20 C S E Loss (ft) 0.00 Cum SA (acres) 0.67 ' CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 15 INPUT Description: ' Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4922.45 20.55 4915.6 41.1 4922.45 ' Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 .03 Bank Sta: Left Right ' 0 41.1 CROSS SECTION OUTPUT ' E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) ' Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) ' Alpha Frctn Loss (ft) C & E Loss (ft) 1 1 1 1 1 Lengths: Left Channel 100 100 Profile #PF 1 Right Coeff Contr. Expan. 100 .1 .3 4919.99 Element Left OB 0.03 Wt. n-Val. 4919.96 Reach Len. (ft) 100.00 Flow Area (sq ft) 0.000304 Area (sq ft) 79.80 Flow (cfs) 26.14 Top Width (ft) 1.40 Avg. Vel. (ft/s) 4.36 Hydr. Depth (ft) 4577.9 Conv. (cfs) 100.00 Wetted Per. (ft) 4915.60 Shear (lb/sq ft) 1.00 Stream Power (lb/ft s) 0.02 Cum Volume (acre-ft) 0.00 Cum SA (acres) Channel Right OB 0.030 100.00 100.00 56.96 56.96 79.80 26.14 1.40 2.18 4577.9 27.56 0.04 0.05 1.08 0.61 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 14 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4922.06 20.55 4915.21 41.1 4922.06 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 ..03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 41.1 100 100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4919.96 Element Left OB Channel Right OB Vel Head (ft) 0.02 Wt. n-Val. 0.030 W.S. Elev (ft) 4919.94 Reach Len. (ft) 100.00 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 67.09 E.G. Slope (ft/ft) 0.000196 Area (sq ft) 67.09 ' Q Total (cfs) 79.80 Flow (cfs). 79.80 Top Width (ft) 28.37 Top Width (ft) 28.37 Vel Total (ft/s) 1.19 Avg. Vel. (ft/s) 1.19 Max Chl Dpth (ft) 4.73 Hydr. Depth (ft) 2.36 Conv. Total (cfs) 5694.2 Conv. (cfs) 5694.2 Length Wtd. (ft) 100.00 Wetted Per. (ft) 29.91 Min Ch E1 (ft) 4915.21 Shear (lb/sq ft) 0.03 Alpha 1.00 Stream Power (lb/ft s) 0.03 Frctn Loss (ft) 0.02 Cum Volume (acre-ft) 0.94 ' C s E Loss (ft) 0.00 Cum SA (acres) 0.55 CROSS SECTION RIVER: Clydesdale Outle ' REACH: Reach 1 RS: 13 INPUT Description: Station Elevation Data num= 3 ' Sta Elev Sta Elev Sta Elev 0 4921.67 20.55 4914.82 41.1 4921.67 Manning's n Values num= 3 ' Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 .03 1 �I 1 1 Bank Sta: Left Right 0 41.1 CROSS SECTION OUTPUT E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C 6 E Loss (ft) Lengths: Left Channel 100 100 Profile #PF 1 Right Coeff Contr. Expan. 100 .1 .3 4919.94 Element Left OB 0.02 Wt. n-Val. 4919.93 Reach Len. (ft) 100.00 Flow Area (sq ft) 0.000130 Area (sq ft) 79.80 Flow (cfs) 30.64 Top Width (ft) 1.02 Avg. Vel. (ft/s) 5.11 Hydr. Depth (ft) 6991.8 Conv. (cfs) 100.00 Wetted Per. (ft) 4914.82 Shear (lb/sq ft) 1.00 Stream Power (lb/ft s) 0.01 Cum Volume (acre-ft) 0.00 Cum SA (acres) CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 12 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4921.28 20.55 4914.43 41.1 4921.28 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 41.1 .03 . Bank Sta: Left Right 0 41.1 CROSS SECTION OUTPUT E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Lengths: Left Channel Right 40.9 40.9 40.9 Profile #PF 1 4919.93 Element 0.01 Wt. n-Val. 4919.92 Reach Len. (ft) Flow Area (sq ft) 0.000089 Area (sq ft) 79.80 Flow (cfs) Channel Right OB 0.030 100.00 100.00 78.26 78.26 79.80 30.64 1.02 2.55 6991.8 32.30 0.02 0.02 0.77 0.48 Coeff Contr. Expan. .1 .3 Left OB Channel Right OB 0.030 40.90 40.90 40.90 90.40 90.40 79.80 1 I ' Top Width (ft) 32.94 Top Width (ft) 32.94 Vel Total (ft/s) 0.88 Avg. Vel. (ft/s) 0.88 Max Chl Dpth (ft) 5.49 Hydr. Depth (ft) 2.74 ' Conv. Total (cfs) Length Wtd. (ft) 8474.6 40.90 Conv. (cfs) Wetted Per. (ft) 8474.6 34.72 Min Ch E1 (ft) 4914.43 Shear (lb/sq ft) 0.01 Alpha 1.00 Stream Power (lb/ft s) 0.01 Frctn Loss (ft) 0.00 Cum Volume (acre-ft) 0.57 ' C 6 E Loss (ft) 0.00 Cum SA (acres) 0.41 CROSS SECTION RIVER: Clydesdale Outle ' REACH: Reach 1 INPUT RS: 11.60 . Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev ' 0 4921.12 20.55 4914.27 41.1 4921.12 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val ' 0 .03 0 .03 41.1 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 41.1 .1 .1 .1 .1 .3 ' CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4919.93 Element Left OB Channel Right OB Vel Head (ft) 0.01 Wt. n-Val. 0.030 ' W.S. Elev (ft) 4919.92 Reach Len. (ft) 0.10 0.10 0.10 Crit W.S. (ft) Flow Area (sq ft) 95.66 E.G. Slope (ft/ft) 0.000076 Area (sq ft) 95.66 Q Total (cfs) 79.80 Flow (cfs) 79.80 Top Width (ft) 33.88 Top Width (ft) 33.88 ' Vel Total (ft/s) 0.83 Avg. Vel. (ft/s) 0.83 Max Chl Dpth (ft) 5.65 Hydr. Depth (ft) 2.82 Conv. Total (cfs) 9138.8 Conv. (cfs) 9138.8 Length Wtd. (ft) 0.10 Wetted Per. (ft) 35.71 ' Min Ch E1 (ft) 4914.27 Shear (lb/sq ft) 0.01 Alpha 1.00 Stream Power (lb/ft s) 0.01 Frctn Loss (ft) 0.00 Cum Volume (acre-ft) 0.49 C s E Loss (ft) 0.02 Cum SA (acres) 0.38 ' Warning: The conveyance ratio (upstream conveyance divided by downstream*conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. ' CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 11.59 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4924.13 21 4917.13 42 4924.13 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 42 59 59 59 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 ' E.G. Elev (ft) 4919.91 Element Left OB Channel Right OB Vel Head (ft) 0.19 Wt. n-Val. 0.030 W.S. Elev (ft) 4919.71 Reach Len. (ft) 59.00 59.00 59.00 . Crit W.S. (ft) Flow Area (sq ft) 20.04 ' ' E.G. Slope (ft/ft) 0.003900 Area (sq ft) 20.04 Q Total (cfs) 71.00 Flow (cfs) 71.00 Top Width (ft) 15.51 Top Width (ft) 15.51 ' Vel Total (ft/s) Max Chl Dpth (ft) 3.54 2.58 Avg. Vel. (ft/s) Hydr. Depth (ft) 3.54 1.29 Conv. Total (cfs) 1136.9 Conv. (cfs) 1136.9 Length Wtd. (ft) 59.00 Wetted Per. (ft) 16.35 Min Ch E1 (ft) 4917.13 Shear (lb/sq ft) 0.30 Alpha - 1.00 Stream Power (lb/ft s) 1.06 ' Frctn Loss (ft) 0.23 Cum Volume (acre-ft) 0.49 C a E Loss (ft) 0.00 Cum SA (acres) 0.38 ' CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 11 INPUT Description: ' Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4923.9 21 4916.9 42 4923.9 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right ' 0 42 CROSS SECTION OUTPUT ' E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) ' Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) ' Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) ' C 6 E Loss (ft) 1 1 Lengths: Left Channel Right 100 100 100 Profile #PF 1 4919.68 Element 0.19 Wt. n-Val. 4919.48 Reach Len. (ft) Flow Area (sq ft) 0.003900 Area (sq ft) 71.00 Flow (cfs) 15.51 Top Width (ft) 3.54 Avg. Vel. (ft/s) 2.58 Hydr. Depth (ft) 1136.9 Conv. (cfs) 100.00 Wetted Per. (ft) 4916.90 Shear (lb/sq ft) 1.00 Stream Power (lb/ft s) 0.39 Cum Volume (acre-ft) 0.00 Cum SA (acres) CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 10 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4923.51 21 4916.51 42 4923.51 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right 0 42 CROSS SECTION OUTPUT E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Lengths: Left Channel Right 100 100 100 Profile #PF 1 4919.29 Element 0.19 Wt. n-Val. 4919.09 Reach Len. (ft) Flow Area (sq ft) 0.003896 Area (sq ft) Coeff Contr. Expan. .1 .3 Left OB Channel Right OB 0.030 100.00 100.00 100.00 20.04 20.04 71.00 15.51 3.54 1.29 1136.9 16.35 0.30 1.06 0.46 0.36 Coeff Contr. Expan. .1 .3 Left OB Channel Right OB 0.030 100.00 100.00 100.00 20.05 20.05 I [1 0 Q Total (cfs) 71.00 Flow (cfs) 71.00 Top Width (ft) 15.51 Top Width (ft) 15.51 Vel Total (ft/s) 3.54 Avg. Vel. (ft/s) 3.54 Max Chl Dpth (ft) 2.58 Hydr. Depth (ft) 1.29 Conv. Total (cfs) 1137.5 Conv. (cfs) 1137.5 Length Wtd. (ft) 100.00 Wetted Per. (ft) 16.35 Min Ch E1 (ft) 4916.51 Shear (lb/sq ft) 0.30 Alpha 1.00 Stream Power (lb/ft s) 1.06 Frctn Loss (ft) 0.39 Cum Volume (acre-ft) 0.41 C 6 E Loss (ft) 0.00 Cum SA (acres) 0.32 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 9 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4923.12 21 4916.12 42 4923.12 , Manning's n Values num= 3- Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 42 100 100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4918.90 Element Left OB Channel Right OB Vel Head (ft) 0.19 Wt. n-Val. 0.030 W.S. Elev (ft) 4918.70 Reach Len. (ft) 100.00 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 20.04 E.G. Slope (ft/ft) 0.003900 Area (sq ft) 20.04 Q Total (cfs) 71.00 Flow (cfs) 71.00 Top Width (ft) 15.51 Top Width (ft) 15.51 Vel Total (ft/s) 3.54 Avg. Vel. (ft/s) 3.54 Max Chl Dpth (ft) 2.58 Hydr. Depth (ft) 1.29 Conv. Total (cfs) 1136.9 Conv. (cfs) 1136.9 Length Wtd. (ft) 100.00 Wetted Per. (ft) 16.35 Min Ch E1 (ft) 4916.12 Shear (lb/sq ft) 0.30 Alpha 1.00 Stream Power (lb/ft s) 1.06 Frctn Loss (ft) 0.39 Cum Volume (acre-ft) 0.37 C s E Loss (ft) 0.00 Cum SA (acres) 0.28 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 8 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4922.73 21 4915.73 42 4922.7.3 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 42 100 100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4918.51 Element Left OB Channel Right OB Vel Head (ft) 0.19 Wt. n-Val. 0.030 W.S. Elev (ft) 4918.31 Reach Len. (ft) 100.00 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 20.04 E.G. Slope (ft/ft) 0.003900 Area (sq ft) 20.04 Q Total (cfs) 71.00 Flow (cfs) 71.00 I 1 1 1 1 1 1 Top Width (ft) 15.51 Top Width (ft) 15.51 Vel Total (ft/s) 3.54 Avg. Vel. (ft/s) 3.54 Max Chl Dpth (ft) 2.58 Hydr. Depth (ft) 1.29 Conv. Total (cfs) 1136.9 Conv. (cfs) 1136.9 Length Wtd. (ft) 100.00 Wetted Per. (ft) 16.35 Min Ch E1 (ft) 4915.73 Shear (lb/sq ft) 0.30 Alpha 1.00 Stream Power (lb/ft s) 1.06 Frctn Loss (ft) 0.39 Cum Volume (acre-ft) 0.32 C & E Loss (ft) 0.00 Cum SA (acres) 0.25 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 7 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4922.34 21 4915.34 42 4922.34 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right 0 42 CROSS SECTION OUTPUT E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch E1 (ft) Alpha Frctn Loss (ft) C & E Loss (ft) Lengths: Left Channel 100 100 Profile #PF 1 Right Coeff Contr. Expan. 100 .1 .3 4918.12 Element Left OB 0.19 Wt. n-Val. 4917.92 Reach Len. (ft) 100.00 Flow Area (sq ft) 0.003896 Area (sq ft) 71.00 Flow (cfs) 15.51 Top Width (ft) 3.54 Avg. Vel. (ft/s) 2.58 Hydr. Depth (ft) 1137.5 Conv. (cfs) 100.00 Wetted Per. (ft) 4915.34 Shear (lb/sq ft) 1.00 Stream Power (lb/ft s) 0.39 Cum Volume (acre-ft) 0.00 Cum SA (acres) CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 6 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4921.95 21 4914.95 42 4921.95 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right Lengths: Left Channel 0 42 100 100 CROSS SECTION OUTPUT Profile #PF 1 Channel Right OB 0.030 100.00 100.00 20.05 20.05 71.00 15.51 3.54 1.29 1137.5 16.35 0.30 1.06 0.28 0.21 Right Coeff Contr. Expan. 100 .1 .3 E.G. Elev (ft) 4917.73 Element Vel Head (ft) 0.19 Wt. n-Val. W.S. Elev (ft) 4917.53 Reach Len. (ft) Crit W.S. (ft) Flow Area (sq ft) E.G. Slope (ft/ft) 0.003900 Area (sq ft) Q Total (cfs) 71.00 Flow (cfs) Top Width (ft) 15.51 Top Width (ft) Left OB Channel Right OB 0.030 100.00 100.00 100.00 20.04 20.04 71.00 15.51 I 1 11 1 I Vel Total (ft/s) 3.54 Avg. Vel. (ft/s) Max Chl Dpth (ft) 2.58 Hydr. Depth (ft) Conv. Total (cfs) 1136.9 Conv. (cfs) Length Wtd. (ft) 100.00 Wetted Per. (ft) Min Ch El (ft) 4914.95 Shear (lb/sq ft) Alpha 1.00 Stream Power (lb/ft s) Frctn Loss (ft) 0.39 Cum Volume (acre-ft) C 6 E Loss (ft) 0.00 Cum SA (acres) CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 5 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4921.56 21 4914.56 42 4921.56 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right Lengths: Left Channel Right 0 42 100 100 100 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4917.34 Element Vel Head (ft) 0.19 Wt. n-Val. W.S. Elev (ft) 4917.14 Reach Len. (ft) Crit W.S. (ft) Flow Area (sq ft) E.G. Slope (ft/ft) 0.003900 Area (sq ft) Q Total (cfs) 71.00 Flow (cfs) Top Width (ft) 15.51 Top Width (ft) Vel Total (ft/s) 3.54 Avg. Vel. (ft/s) Max Chl'Dpth (ft) 2.58 Hydr. Depth (ft) Conv. Total (cfs) 1136.9 Conv. (cfs) Length Wtd. (ft) 100.00 Wetted Per. (ft) Min Ch E1 (ft) 4914.56 Shear (lb/sq ft) Alpha 1.00 Stream Power (lb/ft s) Frctn Loss (ft) 0.39 Cum Volume (acre-ft) C S E Loss (ft) 0.00 Cum SA (acres) CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 4 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4921.17 21 4914.17 42 4921.17 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right Lengths: Left Channel Right 0 42 100 100 100 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4916.95 Element Vel Head (ft) 0.19 Wt. n-Val. W.S. Elev (ft) 4916.75 Reach Len. (ft) Crit W.S. (ft) Flow Area (sq ft) E.G. Slope (ft/ft) 0.003900 Area (sq ft) Q Total (cfs) 71.00 Flow (cfs) Top Width (ft) 15.51 Top Width (ft) Vel Total (ft/s) 3.54 Avg. Vel. (ft/s) 3.54 1.29 1136.9 16.35 0.30 1.06 0.23 0.18 Coeff Contr. Expan. .1 .3 Left OB Channel Right OB 0.030 100.00 100.00 100.00 20.04 20.04 71.00 15.51 3.54 1.29 1136.9 16.35 0.30 1.06 0.18 0.14 Coeff Contr. Expan. .1 .3 Left OB Channel Right OB 0.030 100.00 100.00 100.00 20.04 20.04 71.00 15.51 3.54 ' Max Chl Dpth (ft) 2.58 Hydr. Depth (ft) 1.29 Conv. Total (cfs) 1136.9 Conv. (cfs) 1136.9 Length Wtd. (ft) 100.00 Wetted Per. (ft) 16.35 Min Ch E1 (ft) Alpha 4914.17 1.00 Shear (lb/sq ft) Stream Power (lb/ft s) 0.30 1.06 Frctn Loss (ft) 0.39 Cum Volume (acre-ft) 0.14 C & E Loss (ft) 0.00 Cum SA (acres) 0.11 CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 3 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4920.78 21 4913.78 42 4920.78 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 1 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 42 100 100 100 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4916.56 Element Left OB Channel Vel Head (ft) 0.19 Wt. n-Val. 0.030 W.S. Elev (ft) 4916.36 Reach Len. (ft) 100.00 100.00 Crit W.S. (ft) Flow Area (sq ft) 20.05 E.G. Slope (ft/ft) 0.003896 Area (sq ft) 20.05 Q Total (cfs) 71.00 Flow (cfs) 71.00 Top Width (ft) 15.51 Top Width (ft) 15.51 Vel Total (ft/s) 3.54 Avg. Vel. (ft/s) 3.54 Max Chl Dpth (ft) 2.58 Hydr. Depth (ft) 1.29 ' Conv. Total (cfs) 1137.5 Conv. (cfs) 1137.5 Length Wtd. (ft) 100.00 Wetted Per. (ft) 16.35 Min Ch E1 (ft) 4913.78 Shear (lb/sq ft) 0.30 Alpha 1.00 Stream Power (lb/ft s) 1.06 ' Frctn Loss (ft) 0.39 Cum Volume (acre-ft) 0.09 C a E Loss (ft) 0.00 Cum SA (acres) 0.07 CROSS SECTION RIVER: Clydesdale Outle ' REACH: Reach 1 RS: 2 INPUT Description: - ' Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4920.39 21 4913.39 42 4920.39 Manning's n Values num= 3 ' Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right 0 42 CROSS SECTION OUTPUT E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Lengths: Left Channel Right 100 100 100 Profile #PF 1 4916.17 Element 0.19 Wt. n-Val. 4915.97 Reach Len. (ft) Flow Area (sq ft) 0.003900 Area (sq ft) 71.00 Flow (cfs) 15.51 Top Width (ft) 3.54 Avg. Vel. (ft/s) 2.56 Hydr. Depth (ft) Coeff Contr. Expan. .1 .3 Left OB 100.00 Channel 0.030 100.00 20.04 20.04 71.00 15'. 51 3.54 1.29 Right OB 100.00 Right OB 100.00 I [1 1 1 t Conv. Total (cfs) 1136.9 Conv. (cfs) Length Wtd. (ft) 100.00 Wetted Per. (ft) Min Ch E1 (ft) 4913.39 Shear (lb/sq ft) Alpha 1.00 Stream Power (lb/ft s) Frctn Loss (ft) 0.39 Cum Volume (acre-ft) C a E Loss (ft) 0.00 Cum SA (acres) CROSS SECTION RIVER: Clydesdale Outle REACH: Reach 1 RS: 1 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev 0 4920 21 4913 42 4920 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .03 0 .03 42 .03 Bank Sta: Left Right Lengths: Left Channel Right ' 0 42 0 0 0 CROSS SECTION OUTPUT Profile #PF 1 E.G. Elev (ft) 4915.78 Element Vel Head (ft) 0.19 Wt. n-Val. W.S. Elev (ft) 4915.58 Reach Len. (ft) Crit W.S. (ft) 4915.02 Flow Area (sq ft) E.G. Slope (ft/ft) 0.003900 Area (sq ft). Q Total (cfs) 71.00 Flow (cfs) Top Width (ft) 15.51 Top Width (ft) Vel Total (ft/s) 3.54 Avg. Vel. (ft/s) Max Chl Dpth (ft) 2.58 Hydr. Depth (ft) Conv. Total (cfs) 1136.9 Conv. (cfs) Length Wtd. (ft) Wetted Per. (ft) Min Ch E1 (ft) 4913.00 Shear (lb/sq ft) Alpha 1.00 Stream Power (lb/ft s) Frctn Loss (ft) Cum Volume (acre-ft) C 6 E Loss (ft) Cum SA (acres) SUMMARY OF MANNING'S N VALUES River:Clydesdale Outle Reach River Sta Reach 1 22.18 Reach 1 22 Reach 1 21 Reach 1 20 Reach 1 19 Reach 1 18 Reach 1 17 Reach 1 16 Reach 1 15 Reach 1 14 Reach 1 13 Reach 1 12 Reach 1 11.60 Reach 1 11.59 Reach 1 11 Reach 1 10 Reach 1 9 Reach 1 8 Reach 1 7 Reach 1 6 1136.9 16.35 0.30 1.06 0.05 0.04 Coeff Contr. Expan. .1 .3 nl n2 n3 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03 Left OB Channel Right OB 0.030 20.04 20.04 71.00 15.51 3.54 1.29 1136.9 16.35 0.30 1.06 Reach 1 5 .03 .03 .03 Reach 1 4 .03 .03 .03 Reach 1 3 .03 .03 .03 Reach 1 2 .03 .03 .03 Reach 1 1 .03 .03 .03 SUMMARY OF REACH LENGTHS River: Clydesdale Outle Reach River Sta. Left Channel Right Reach 1 22.18 100 100 100 Reach 1 22 100 100 100 Reach 1 21 100 100 100 Reach 1 20 100 100 100 Reach 1 19 100 100 100 Reach 1 18 100 100 100 Reach 1 17 100 100 100 Reach 1 16 100 100 100 Reach 1 15 100 100 100 Reach 1 14 100 100 100 Reach 1 13 100 100 100 Reach 1 12 40.9 40.9 40.9 Reach 1 11.60 .1 .1 .1 Reach 1 11.59 59 59 59 Reach 1 11 100 100 100 Reach 1 10 100 100 100 Reach 1 9 100 100 100 Reach 1 8 100 100 100 Reach 1 7 100 100 100 Reach 1 6 100 100 100 Reach 1 5 100 100 100 Reach 1 4 100 100 100 Reach 1 3 100 100 100 Reach 1 2 - 100 100 100 Reach 1 1 0 0 0 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Clydesdale Outle Reach River Sta. Contr. Expan. Reach 1 22.18 .1 .3 Reach 1 22 .1 .3 Reach 1 21 .1 .3 Reach 1 20 .1 .3 Reach 1 19 .1 .3 Reach 1 18 .1 .3 Reach 1 17 .1 .3 Reach 1 16 .1 .3 Reach 1 15 .1 .3 Reach 1 14 .1 .3 Reach 1 13 .1 .3 Reach 1 12 .1 .3 Reach 1 11.60 .1 .3 Reach 1 11.59 .1 .3 Reach 1 11 .1 .3 Reach 1 10 .1 .3 Reach 1 .9 .1 .3 Reach 1 8 .1 .3 Reach 1 7 .1 .3 Reach 1 6 .1 .3 Reach 1 5 .1 .3 ' Reach 1 4 .1 .3 Reach 1 3 .1 .3 Reach 1 2 .1 .3 ' Reach 1 1 .1 .3 1 1 1 I 1 I I APPENDIX E STREET CAPACITY CALCULATIONS I I I I JR Engineering 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 10/9/00 LOCATION: CLYDESDALE PARK, P.U.D. ITEM: CHECK OF STREET CAPACITY COMPUTATIONS BY: ALR SUBMITTED BY: JR ENGINEERING Des. Point Street Name Roadway Width (it) Slope (%) 10 yr Capacity (ds) Design flow 0(10) Ids) meets criteria? 100 yr Capacity (cis) Design flow Q(100) (cfs) meets criteria? 2 Palomino Lane 36 0.8 6.83 2.04 yes 79.54 7.2 yes 3 Palomino Lane 36 0.8 6.83 0.97 yes 79.54 3.5 yes 4a Brenton Drive 36 3.0 11.91 0.20 yes 138.63 0.7 yes 5 Brenton Drive 36 3.0 11.91 0.61 yes 138.63 2.3 yes. 7 Jutland Lane' 36 0.6 11.84 2.82 yes 137.77 10.1 yes 8 Jutland Lane' 36 0.6 11.84 2.17 yes 137.77 8.3 yes 10 Shetland Lane 36 0.5 4.39 0.89 yes 51.09 3.4 yes 11 Shetland Lane 36 0.5 4.39 0.92 yes 51.09 3.6 yes 12 Jutland Lane' 36 1.2 16.65 1.99 yes 193.85 7.6 yes 13 Jutland Lane' 36 1.2 16.65 1.45 yes 193.85 5.1 yes 15 Carriage Parkway 50 0.5 13.38 7.52 yes 46.12 27.9 yes 18 Carriage Parkway 50 0.6 9.02 4.83 yes 31.09 18.4 yes Note: Design flows and street capacities are given for flow coming from one side of the inlet. Otherwise flow is coming from both sides of the inlet and indicated by an asterisk ('). hl Slopes of streets are taken from the street profiles included in the construction plans for Clydesdale Park. When a sump condition exists it is possible to have varying slopes on both sides of the inlet. In this case the slope chosen is the one for which the majority of the flows (hence tributary area) is coming from. 9201 StreetCap.xls 1oft JR Engineering 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 10/9/00 LOCATION: CLYDESDALE PARK FILING #2 ITEM: CHECK OF STREET CAPACITY COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING Note: Design flows and street capacities are given for flow on one side of the inlet unless otherwise indicated by a star (•) Des. Street Name Roadway Slope 10 yr Design flow meets 100 yr Design flow meets Width N Capacity Q(10) criteria? Capacity Q(100) criteria? Point (ft) (cis) (cis) (cis) (ds) 22 Carriage Parkway' 50 0.5 6.7 5.8 yes 23.1 19.6 yes 25 Carriage Parkway. 50 0.6 9.0 7.1 yes 31.1 28.7 yes 26 Carriage Parkway ` 50 0.5 6.7 2.1 yes 23.1 15.6 yes 920102StreetCap.xls 1 Of 1 JR Engineering 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 10/6/00 LOCATION: CLYDESDALE PARK FILING #2 ITEM: CHECK OF STREET CAPACITY COMPUTATIONS BY: B. STRAND SUBMITTED BY: 1R ENGINEERING Street w/ 36' Roadway (drive -over curb, gutter & walk) - local street Minor Storm no curb topping, flow may spread to crown of street calculate for channel slopes from 0.4% to 7% Theoretical Capacity..* use revised Mannings eq. Allowable Gutter Flow., Q=0.56"Z/n"Strz"y8/' Qall=F'Q where Q = theoretical gutter capacity (cfs) F = reduction factor (Fig. 4-2) Z = reciprocal of cross slope (ft/ft) Qall = allowable gutter capacity (cfs) n = roughness coeff. S = channel slope (ft/ft) Q = Qa - Qb + Qc + Qd y = depth of flow at face of gutter (ft) Section A Section B Section C Z = 10.18 ft/ft Z = 10.18 ft/ft Z = 50.00 JIM n= 0.013 n= 0.013 n= 0.016 y= 0.40 ft y= 0.28 ft y= 0.28 It Both sides of street S Q. Qb n n Qtotal F Qall Qa9 0.40% 2.41 0.93 3.71 0.85 6.04 0.50 3.02 6.04 0.50% 2.69 1.04 4.15 0.95 6.75 0.65 4.39 8.78 0.60% 2.95 1.14 4.55 1.04 7.40 0.80 5.92 11.84 0.80% 3.41 1.32 5.25 1.20 8.54 0.80 6.83 13.67 1.00% 3.81 1.47 5.87 1.34 9.55 0.80 7.64 15.28 1.50% 4.67 1.80 7.19 1.64 11.70 0.80 9.36 18.71 2.00% 5.39 2.08 8.31 1.89 13.51 0.80 10.80 21.61 3.00% 6.60 2.55 10.17 2.32 16.54 0.72 11.91 23.82 4.00% 7.62 2.94 11.75 2.68 19.10 0.60 11.46 22.92 5.00% 8.52 3.29 13.13 3.00 21.35 0.48 10.25 20.50 6.00% 9.33 3.60 14.38 3.28 23.39 0.40 9.36 18.71 7.00% 10.08 3.89 15.54 3.54 1 25.27 0.34 8.59 17.18 4 3/4" FL Cr 17" I 14" 16.83' 1 A B / I1 3/8" `- Yb =Yc = (4 3/4") - (1 3/8") = 3 318" Ya = Yd = (= (4 3/4"/12") = 0.40' Section D Z = 3.58 ft/ft n = 0.013 y = 0.40 It 920102StreetCap.xis JR Engineering, Ltd. 2620 E. Prospect Rd.. Ste. 190, FM Collins. CO 80525 10/6/00 LOCATION: CLYDESDALE PARK FILING #2 ITEM: CHECK OF STREET CAPACITY COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING Street w/ 36' Roadway (drive -over curb, gutter & walk) • local street Major Storm (100-yr) depth of water not to exceed 6' over the crown or 18" over the curb, buildings shall not be inundated at the ground line calculate for channel slopes from 0.4% to 7% Theoretical Capacity., use Mannings eq. Allowable Gutter Flow., Q = 1.486/n' R' - S12' A Qall = F' Q when: Q = theoretical gutter capacity (cfs) F = reduction factor (Fig. 4-2) n = roughness coeff. Qall = allowable gutter capacity (cfs) R= A/P A = cross sectional area W) Q = Qa + Qb P = wetted perimeter (ft) S = channel slope Section A Section B A = 13.37 ftz A = 8.05 fe P = 19.48 ft P = 29.00 ft R = 0.69 ft R = 0.28 ft n = 0.016 n = 0.035 Both sides of street S Q. S Qb Q F Q.0 Q.0 0.40% 61.11 0.40% 9.20 70.31 0.50 35.15 70.31 0.50% 68.32 0.50% 10.28 78.60 0.65 51.09 102.18 0.60% 74.84 0.60% 11.27 86.11 0.80 68.88 137.77 0.80% 86.42 0.80% 13.01 99.43 0.80 79.54 159.08 1.00% 96.62 1.00% 14.54 111.16 0.80 88.93 177.86 1.50% 118.33 1.50% 17.81 136.15 0.80 108.92 217.83 2.00% 136.64 2.00% 20.57 157.21 0.80 125.77 251.53 3.00% 167.35 3.00% 25.19 192.54 0.72 138.63 277.26 4.00% 193.24 4.00% 29.09 222.32 0.60 133.39 266.79 5.00% 216.05 5.00% 32.52 248.57 0.48 119.31 238.62 6.00% 236.67 6.00% 35.63 272.29 0.40 108.92 217:63 7.00% 1 255.63 7.00% 1 38.48 1 294.11 0.34 1 100.00 199.99 FL I' 29' I 1.42' I 1.17' I 16.83' ' 0.5' 0.34' 0.11, Area A=(6')'(1J12")(1.42'+18')+(0.34')'(16.83")'(1/2)+(0.34')'(1.17')+(0.45-0.40)'(1.42)+(1.375"/12)'(1.1T)'(1/2)+(4.75"/12)'(1.42')'(1/2)=13.37sq.ft. Area B = (29')'(0.55)'(1/2) = 8.05 sq. ft. 920102Stn:etCap. ds 1 of 1 JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190, Fort Collins, CO 80525 10/6/00 LOCATION: CLYDESDALE PARK FILING #2 ITEM: CHECK OF STREET CAPACITY COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING Minor Stone Design in accordance to "Larimer County Storm -Water Management Manual", April 1979 Street with 50' Roadway, vertical curb and gutter no curb topping, flow may spread to crown of street calculate for channel slopes from 0.4% to 7% Theoretical Capacity. use revised Mannings eq. Q = 0.56'Z/n •S'"2' y 8"3 where Q = theoretical gutter capacity (cfs) Z = reciprocal of cross slope (ft/ft) n = roughness coeff. S = channel slope (ft/ft) y = depth of flow at face of gutter (ft) .Section A Section B Z = 12.0 ft/ft Z = 12.0 ft/ft n = 0.013 n = 0.013 y = 0.50 ft y = 0.33 ft Allowable Gutter Flow: Qall=F'Q F = reduction factor (Fig. 4-2) Qall = allowable gutter capacity (cfs) Q=Qa -Qb+Qc Section C Z = 50.0 ft/ft n = 0.016 y = 0.33 ft Both sides of ctrppt S Qa Qb QC Qtotal F Q811 Qall 0.40% 5.15 1.70 5.76 9.20 0.50 4.60 9.20 0.50% 5.76 1.90 6.44 10.29 0.65 6.69 13.38 0.60% 6.31 2.08 7.05 11.27 0.80 9.02 18.04 0.80% 7.28 2.40 8.14 13.02 0.80 10.41 20.83 1.00% 8.14 2.69 9.10 14.55 0.80 11.64 23.29 1.50% 9.97 3.29 11.15 17.83 0.80 14.26 28.52 2.00% 11.51 3.80 12.87 20.58 0.80 16.47 32.93 3.00% 14.10 4.66 15.76 25.21 0.72 18.15 36.30 4.00% 16.28 5.38 18.20 29.11 0.60 17.47 34.93 5.00% 18.20 6.01 20.35 32.54 0.48 15.62 31.24 6.00% 19.94 6.59 22.29 36.72 0.40 14.69 29.38 7.00% 21.54 7.11 24.08 38.51 0.34 13.09 26.18 FL Yb = Yc = 0.33 ft Ya = 0.5 ft CL 9201 StreetCap.xls JR Engineering, Ltd. 2620 E. Prospect Rd., Ste. 190. Fort Collins, CO 80525 10/6/00 1 1 1 1 1 LOCATION: CLYDESDALE PARK FILING #2 ITEM: CHECK OF STREET CAPACITY COMPUTATIONS BY: B. STRAND SUBMITTED BY: JR ENGINEERING Major Storm (100-yr) Design in accordance to "Larimer County Storm -Water Management Manual", April 1979 Street with 50' Roadway, vertical curb and gutter - collector street -depth of water over crown not to exceed 6", buildings shall not be inundated at the ground line -calculate for channel slopes from 0.4% to 7% Theoretical Capacity: use Mannings eq. Allowable Gutter Flow: Q=1.486/n-R23*S12-A Qall=F'Q where Q = theoretical gutter capacity (cfs) F = reduction factor (Fig. 4-2) n = roughness coeff. Qall = allowable gutter capacity (cfs) R = A / P Q = Qa+Qb A = cross sectional area (ft) P = wetted perimeter (ft) S = channel slope .,Section A Section B A = 9.83 f? A = 1.96 ft2 P = 25.93 ft P = 14.28 ft R = 0.38 ft R = 0.14 ft n = 0.016 n = 0.035 Both sides of street S Qa Qb Qtot F Qau "all 0.40% 30.33 1.40 31.73 0.50 15.87 31.73 0.50% 33.91 1.57 35.48 0.65 23.06 46.12 0.60% 37.14 1.72 38.86 0.80 31.09 62.18 0.80% 42.89 1.99 44.87 0.80 35.90 71.80 1.00% 47.95 2.22 50.17 0.80 40.14 80.27 1.50% 58.73 2.72 61.45 0.80 49.16 98.31 2.00% 67.81 3.14 70.95 0.80 56.76 113.52 3.00% 83.05 3.85 86.90 0.72 62.57 125.13 4.00% 95.90 4.44 100.34 0.60 60.20 120.41 5.00% 107.22 4.96 112.18 0.48 53.85 107.70 6.00% 117.45 5.44 122.89 0.40 49.16 98.31 7.00% 126.86 5.87 132.74 0.34 45.13 90.26 FL 9. Ct 0.15, 0.46' 0.17' Area A = (0.15')(23) + (2"/12)'(2')'(1/2) + (5.52'/12)'(2') + (5.52"/12)'(23')'(1/2) = 9.83 sq. ft. Area B = (14')•(3.36/12)"(1/2) = 1.96 sq.ft. 9201 StreetCap.xls r APPENDIX F EROSION CONTROL ,_1 I ' LOCATION: CLYDESDALE PARK ITEM: RIPRAP CALCULATIONS FOR CIRCULAR CONDUIT OUTLETS COMPUTATIONS BY: A. REED ' SUBMITTED BY: JR ENGINEERING DATE: 3/24/bb From Urban Strom Drainage Critedal Manual, March 1969 ' (Referenced figures are attached at the end of this section) O = discharge, cis D = diameter of circular conduit, 8 Y, = taihvater depth, R V = allowable non -eroding velocity in the downstream channel, BIs t = 7.0 We for erosion resistant soils = 5.5 ftls for erosive soils From From Design Tallwater Allowable Frg. 5.7 Table 5.1 ' Type of Flow Diam. - Depth Velocity Q. 1 ROMP db LOCATION Pipe Oros (cts) D (fQ Ye (to V MIS) Du D Type (in) DP 2 and 3 to Swale RCP 12.9 1.5 1.5 5.5 7.02 1.00 Type L 9.0 DP 4,5 to Swale 106 DP 6 to PondA RCP RCP 16.7 17.1 2.0 2.0 1.71 1.63 5.5 5.5 5.90 6.05 0.86 0.82 Type L Type L 9.0 9.0 ' DP 7,8 to Pond A RCP 18.4 2.0 2.0 5.5 6.51 1.00 Type L 9.0 Pond A to Pond B RCP 10.0 2 2.0 5.5 3.54 1.00 Type L 9.0 DP 12, 13 to Pond B RCP 12.7 2.0 2.0 5.5 4.49 1.00 Type L 9.0 DP 15,16 to Pond B Pond B outlet RCP RCP 43.5 1.0 3.0 1.25 3.0 1.25 5.5 5.5 8.37 0.72 1.00 1.00 Type L Type L 9.0 9.0 ' DP 24 to Pond A RCP 1.0 1.25 0.4 5.5 0.72 0.32 Type L 9.0 Em. Access Culvert RCP 7.2 1.50 1.02 5.5 3.92 0.68 Type L 9.0 DP 22 to Pond C RCP 14.3 2.00 2 5.5 5.06 1.00 Type L 9.0 ' DP 2510 Pond E RCP 14.4 2.00 2 5.5 5.09 1.00 Type L 9.0 1 1 1 t ' 920101RIPRAPXLS J LOCATION: CLYDESDALE PARK REM: RIPRAP CALCULATIONS FOR CIRCULAR CONDUIT OUTLETS COMPUTATIONS BY A. REED ' SUBMITTED BY: DATE: JR ENGINEERING 3/24/00 From Urban Strom Drainage Criterial Manual, March 1969 ' (Referenced figures are attached at the end of this section) 0 = discharge, cis D = diameter of circular conduit, R Yt = tailwater depth. R V = allowable non eroding velocity in the downstream channel, Bls = 7.0 8/s for erosion resistant soils ' = 5.5 its for erosive soils Figure 5-6 Rom Ripmp Ripmp Figure 5.9 Min. L ' Depth Depth Width Expansion L=(1/(2tanq)) from ' to 1-/2 L2 to L of Riprap g Factor At - olV •(At/Yt4V) Figure 54, L Use L LOCATION (in) (in) (ft) D" 142 fan B) Ill) (n) (R) (R) DP 2 and 3 to Swale 18.0 13.5 4.50 4.7 5.5 2.35 0.35 4.50 4.50 DP 4, 510 Swale 106 18.0 13.5 6,00 3.0 6.7 3.04 -1,50 6,00 6,00 DP 6 to Pond A 18.0 13.5 6.00 3.0 6.7 3.11 -0.62 6.00 6.00 ' DP 7.8 to Pond A 18.0 13.5 6.00 3.3 6.7 3.35 -2.19 6.00 6.00 Pond A to Pond B 18.0 13.5 6.00 1.8 6.7 1.82 -7.31 6.00 6.00 DP 12,13 to Pond B 18.0 13.5 6.00 2.2 6.7 2.31 -5.66 6.00 6.00. DP 15,16 to Pond B 18.0 13.5 9,00 2.8 6.7 7,91 -2,44 9.00 9.00 Pond B outlet 18.0 13.5 3.75 0.6 6.7 0.18 -7.40 3.75 3.75 ' DP 24 to Pond A 18.0 13.5 3.75 0.6 6.7 0.18 5.33 3.75 3.75 Em. Access Culvert 18.0 13.5 4.50 2.6 6.7 1.31 -1.45 4.50 4.50 DP 22 to Pond C 18.0 13.5 6.00 2.6 6.7 2.60 -4.69 6.00 6.00 DP.25 to Pond E 18.0 13.5 6.00 2.5 6.7 2.62 4.63 6.00 6.00 1 7 1 ' 920101RIPRAP.XLS DRAINAGE CRITERIA MANUAL Z4 2C RIPRAP 0 FAAgpd"Oag MENEM ' AAA 0 =AVAMEN 6 PAP= EA .Z .4 Y /D .6 .8 1.0 t Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance. of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. I1-15-82 URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL m c G = Expansion Angle ME�o RIPRAP .1 .2 .3 .4 .b 6 ./ X . TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 6 FLOOD CONTROL DISTRICT I. DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP ' Riprap % Smaller Than Intermediate Rock d50* Designation Given Size Dimension By Weight (Inches) Inches) ' Type VL 70-100 12 50-70 9 35-50 6 6** 2-10 2 Type L 70-100 15 ' 50-70 12 35-50 9 9** 2-10 3 ' Type M 70-100 21 50-70 18 35-50 2-10 12 12 4 Type H 100 30 50-70 24 35-50 18 18 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 ' 2-10 9 *d50 = Mean particle size ' ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock ' Wire enclosed.rock refers to wire basket that rocks that are bound together in a so they act as a single unit. One of the major advantages of wire enclosed rock is that it,provides an alternative in ' situations where available rock sizes are too small for ordinary riprap. Another advantage is the versatility that results from the ' regular geometric shapes of wire enclosed rock. The rectangular blocks and mats can be fashioned into almost any shape that can be 11-15-82 sn/00 1 1 1 t LOCATION: PARK PLACE P.U.D. ITEM: RIPRAP CALCULATIONS FOR OVERFLOW SPILLWAYS COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING Riprap requirements for a stable channel lining are based on the equation from the Drainage Criteria Manual by the Urban Drainage and Flood Control District V 50.17 = 5.8 (de,) ' (Ss - 1) where: V = mean channel velocity (fUs) S = longitudinal channel slope (fttft) SB = specific gravity of rock (minimum SB = 2.50) d5 = rock size in feet for which 50 percent of the riprap by weight is smaller Determine if riprap is required using Table 8-2 Longitudinal Specific Class of d5o Min. Riprap Velocity Slope Gravity V A!f Froude Is Riprap Table 8-1 Thickness LOCATION (fUs) (ft/ft) of Rock (S, -1)°'66 Number F < 0.8 ? Table 8-2 (in) (in) Pond A Spillway 2.0 0.03 2.5 0.84 0.25 TRUE 0 0 0 Pond B Spillway 2.0 0.01 2.5 0.70 0.25 TRUE 0 0 0 Pond C Spillway 1.8 0.04 2.5 0.77 0.31 TRUE 0 0 0 1 920101 RIPRAP.XLS ' DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-5 ' RIPRAP REQUIREMENTS FOR CHANNEL.LININGS ** VS0.17/.(Ss-1)0.66* Rock *** Type Aft /sec) ' 1.4 to.3.2 VL ' 3.3 to 3.9 L CO to 4.5 M ' 4.6 to 5.5 H 5.6 to 6.4 VH * Use Ss = 2.5 unless the source of rock and its densities are ' known at the time of design. ** Table valid only.for Froude number of 0.8 or less and side ' slopes no steeper than 2h:ly. *** Type VL and L riprap shall be buried after placement to ' reduce vandalism. SM9 slope mattress with toe protection may be substituted ' for Type VL or L riprap: G12 gabion with toe protection may be substituted for Type M and Type H riprap. 5.4.3 Toe Protection ' Where only the channel sides are to be lined, additional riprap is needed to provide for long term stability of the lining. In this ' case, the riprap blanket should extend at least 3 feet below the existing channel bed and the thickness of the blanket below the ' existing channel bed increasedto at least 3 times d50 to accommodate possible channel during scour floods (see Figure 5-4a). For sandy soils, consult specific criteria for channels on sandy soils. If wire ' enclosed rock lining is used, the toe must be protected by placing riprap at the toe. This is needed to protect against frequently ' occurring abrasion, (see Figure 5-4b and 5-4c). 1 5-1-84 8/31 /00 LOCATION: CLYDESDALE PARK, PUD ITEM: POND G OUTFALL RIPRAP CALCULATIONS —Tws cote tc 01S O-� OLJ le' ' COMPUTATIONS BY: B. STRAND �J SUBMITTED BY: JR ENGINEERING ' From Urban Strom Drainage Criterial Manual, March 1969 (Referenced figures are attached at the end of this section) Q = discharge, cfs ' D = diameter of circular conduit, ft W = width of rectangular conduit, ft H = height of rectangular conduit, ft ' Yt = tailwater depth, ft At = required area of -flow at allowable velocity, ftZ V = allowable non -eroding velocity in the downstream channel, ft/s ' = 7.0 ft/s for erosion resistant soils = 5.5 ft/s for erosive soils ' Pond G Outlet 26.4 inch oriface Q= 29.1 cfs —�,3c st-O.%cks Ctoc>Lir, re- Lec.se_4&v,.loe> . � \ ' D = 26.4 in = 2.2 ft Yt = 1.98 ft Flow depth in Boxelder Swale V = 9.2 ft/s Q/A ' Q/Dt'S = 8.9 Yt / D = 0.9 ' From Figure 5-7, use Type L for a distance 3D downstream, L = 6.6 It ' From Table 5-1, dr,0 = 9 in From Fig. 5-6. Riprap depth from outlet to dist. L/2 = 18.0 in Riprap depth from L/2 13.5 in Width of nprap (extend to height of culvert) = 6.6 ft Q/D25 = 4.1 ' From Fig. 5-9, Expansion factor, 1/(2 tan 0) = 6.7 At = Q/V = 3.16 ft2 L = (1/(2 tan 0))'(At/Yt - W) _ -4.04 ft ' Use L = 3H = 6.6 ft Use 7 feet 1 ' Riprap.xls Page 8 I LOCATION: Clydesdale Park, PUD pp ITEM: RIPRAP CALCULATIONS FOR OPEN CHANNELS -Ai,b,<kAer cJ (yops COMPUTATIONS BY: B. Strand / \ SUBMITTED BY: JR ENGINEERING (Io C=t C,,k Ste, ' Riprap requirements for a stable channel lining are based on the equation from Storm Drainage Design Criteria, City of Fort Collins, CO, May 1984 ' V So.17 = 5.8 (d5o) ' (Ss - 1) . 1 [1 where: V = mean channel velocity (ft/s) S = longitudinal channel slope Oft) SS = specific gravity of rock (minimum S. = 2.50) d5o = rock size in feet for which 50 percent of the riprap by weight is smaller Determine if riprap is required using Table 8-2 In cases where Froude no. > 0.8 check required size using Equation 6 from "Design of Riprap Revetment", FHWA Circular HEC-11 D50 = 0.01 Vaal. (da„8 .5 K, 1.5) where: D5o = median riprap particle size Va = average channel velocity d-%v = average flow depth K, _ [1-(sin20) / sin2�)]o.5 6 = bank angle of repose � = riprap angle of repose Boxelder Swale Aerial Crossing V = 3.61 ft/s S = 0.004 ft/ft Sb = 2 V S0.17 = 1.41 (S-o-sc1) . Since Froude number, F < 0.8 and side slopes no steeper than 2h:1v use Table 8-2, Class 6 Riprap is required Use Class 9 to be consistent w/ Pond G Ou4-VeA- ' DRAINAGE CRITERIA MANUAL STRUCTURES 2.3.4.3 Grouted Sloping Boulder Drops ' (GSB). This type of structure has gained popularity in the Rocky Mountain region due to close proximity to high quality ' rock sources, design aesthetics, and \� ---- —" successful applications. The quality of \� ' rock used, and proper grouting procedure are very important to the structural integrity. There is no maximum height requirement for this type of structure. The GSB drop is designed to operate as a hydraulic jump dissipator, although some energy loss is incurred due to the roughness of the grouted rock slope. Structure integrity and containment of the erosive turbulence within the basin area, are the main design objectives. Grouted boulder drops must be constructed of uniform size boulders, 18" minimum dimension, grouted in place through the approach, sloping face and basin areas of the drop. Figure 2-17 illustrates the general configuration of the GSB drop. It is important that the grout depth extends from the subgrade up to a minimum of two-thirds of the nominal rock size. Appearance and energy dissipation are improved if the grout depth is held to a maximum of three -fourths of the rock size. Adequate seepage provisions are critical to the design success. The following outlines the fundamental design steps with some additional guidelines. a. Hydraulics are to be completed as described in Section 2.3.2 or Section 2.3.3 as appropriate. b. The upstream apron has a 10 foot length of grouted boulders and must cover the area from the crest, upstream and over the cutoff. C. The vertical cutoff is located upstream of the crest a minimum of 5 feet. Locating the cutoff at the upstream edge of the grouted rock (and even extending the grouted rock more than 10 feet upstream of the crest) is helpful for seepage control. Evaluate specific site soils for use in seepage analysis and foundation suitability. d. The trickle channel extends through the drop crest section. Downstream, the trickle channel protection should extend past the main channel protection or large boulders and curves in the trickle channel can be used in the basin area to help dissipate the flow energy. e. Grout thickness D. , and rock thickness, Dr , are determined based upon a minimum safety surplus net downward force of 30 pounds. The rocks are to be carefully placed to create stepped appearance, which helps to increase roughness. Minimum Criteria is referred to in Step c. ' November 15, 1990 2-37 STRUCTURES PLAN DRAINAGE CRITERIA MANUAL of heavier rock !ction, width �, length depends anticipated jump 18:: MIN. ROCK WITH 12"MIN GROUT —� CONTROL GRADE Doo THICKNESS AT CREST OF GROUT Yt. Ym� f ANNELI _— —TOP OF GROUTED ROCK AT SIDES INVERT ICKLEB Ytl d INVERT AREAS TO BE LA LF Lb LT FREE OF GROUT EXCAVATE 12 MIN. TRENCH AND BACKFILL WITH CONC., HORIZONTAL (2% SLOPE) AND OTHER OPTIONS POSSIBLE, PERPENDICULAR WEEP DRAINS BUT CUTOFF ESSENTIAL. (BOTH ON 10 CENTERS 1 ACROSS THE DROP) DRAIN MATERIAL BETWEEN WEEP PROFILE PIPES AND ACROSS THE DROP FACE E SECTION A GROUTED SLOPING BOULDER DROP November 15, 1990 FIGURE 2- 17 2-38 1 ' DRAINAGE CRITERIA MANUAL STRUCTURES f. The main stilling basin is depressed, 1 to 2 feet depth, in order to stabilize the jump. A row ' of boulders is located at the basin end to create a sill transition to the downstream invert elevation. It is advisable to bury riprap for a distance of a 10 ft. downstream of the sill to minimize any erosion that may occur due to secondary currents. g. Generally, do not use slopes steeper than 4:1. Slopes flatter than 4:1 usually increase expense, but some improvement in appearance may be gained. ' h. Simplified design criteria are provided in Table 2-4 for grouted sloping boulder drops. This ' criteria is only valid where the channel flow conditions meet criteria in the Major Drainage Section and the drop configuration is according to Section 2.3.3.3. TABLE 2-4 GROUTED SLOPING BOULDER DROPS MINIMUM DESIGN CRITERIA FOR GRASS LINED CHANNELS MEETING UDFCD CRITERIA Design Drop Height (Hd) Drop Height (Hd) Parameter 3ft. or Less Greater than 3ft. Maximum Drop Slope 4H to 1V 4H to 1V ' Uniform Rock. Sizes - Dr 1.5 ft. minimum 2.0 ft. minimum Grout Thickness - Dg 1.0 ft. 1.5 ft. Basin Depression - B See Figures 2-11 and 2-12 ' Grouted for Rock Approach - L. See Figures 2-11 and 2-12 Basin Length - Lb" Erosive 20 ft. 20 ft. <4ft. drop 25 ft. >4ft. drop Nonerosive Basin Width - b, or b2 Trickle Flow Zone Provisions Trickle Zone Protection Width Below Drop Other Provisions 20 ft. < 1,000 cfs 25 ft. 25 ft. > 1,000 cfs 25 ft. Same as crest width, b, transition to downstream channel width, bl, see Section 2.3.3.3. Install large boulders in center basin zone to break up high flow stream, or apply separate water surface. profile analysis. See Section 2.3.2.2. 3(b,) or b2 (whichever is smaller, See Figure 2-17) A buried riprap zone should be installed for 10 foot _ minimum downstream of the basin. s Uniform rock size refers to the minimum dimension of all boulders measured in any direction. May use 1.5 ft. rock and 1.0 ft. grout for upstream flow depths (normal depth) less than 3 ft. Add 10 ft. to basin length for submerged drops or use hydraulic jump analysis to refine the main basin length and trickle flow zone dimensions. November 15, 1990 2-39 t 1 DRAINAGE CRITERIA MANUAL SEE TEXT FOR PRECAUTIONS ON USE OF GRAPH " _ I H- tJ vi 90 u.t I Liu j LLJ 0.4 a ..u=i80 k O X w Q w 70 W I. .: 0 3 I . �.4: h- 0 G O- .. I >- LL 50Uj .I 3 I. 2 20 I. f 10 -1 - 21 0 I- �y y �y O Pw 00 NORMAL 280 270 LOCITY '' �O 140 260 W 250 a h 0 240 Uj -O Yn NORMAL _©EPTII._ '30= STRUCTURES EXAMPL E For 0= 700 cfs, Drop Height= 5ft. bf = 9ft 42 = 9ft Yn = 4.2ft Vn = 6.2fps So = 0.0047' La = 5ft Other requirements, Lb = 25ft B = 2.25ft From FIG. 2-10, L fu -None Ltd-Wifhin Basin GRAPH ASSUMPTIONS: nchanne1=0.030 ntrans =0.042 ndrop =0.042 Grouted Boulders OTHER REQUIREMENTS: For Drop Height <3ft Lb =20ft for Q <_IOOOcfs Lb =25ft for Q > IOOOcf s For Drop Height23fI Lb =25ft For Drop HeightS4fI B = 2.0 ft for Q <_IOOOcfs B =1.75 ft for I000<QS 3000cfs B = 1.5ft for Q>3000 (Add 0.25ft for drops greater than 4 ft) 'THE SLOPE OF THE CHANNEL SHOULD BE FLAT FOR 13ft UP- STREAM OF THE CREST THEN GRADE AT So. DISCHARGE, 1000 cfs HYDRAULIC DESIGN PARAMETERS -TRAPEZOIDAL CREST SECTION, NON -EROSIVE SOIL CONDITIONS FIGURE 2-12 November 15, 1990 2-25 No Text F.1 9 31 a 0 k1coll DETENTION POND CALCULATIONS Pond Name Proposed Detention Pond - Stage/Storage LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: 100-yr WSEL- top of berm - 100-yr WSEL- spil/ crest top of berm - Clydesdale Park 9201.01 J. Zung JR ENGINEERING 12/9/99 V = 1 /3 d (A + B + sgrt(A*B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour POND A - north - oradina 12-9-99 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Total Storage (ac-ft) 4926.13 0 4927 10339 0.07 0.1 4928 41909 0.56 0.6 4928.4 57923 0.46 1.1 4929 81943 0.96 2.0 4929.1 85811 0.19 2.2 4930 120621 2.12 4.4 POND B - south - aradina 12-9-99 Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Total Storage (ac-ft) 4923.27 0 4924 18131 0.10 0.1 4925 33669 1 0.59 0.7 4926 36899 0.81 1.5 4927 40242 0.89 2.4 4928 43695 0.96 3.3 4928.1 44250 0.10 3.4 4928.5 46470 0.42 3.9 4929 49245 0.55 4.4 920101 pond.xls POND A 100-yr Event, Outlet Sizing LOCATION: Clydesdale Park PROJECT NO: 9201.01 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING DATE: 3/29/00 Submerged Orifice Outlet: release rate is described by the orifice equation„ Qo = COAO sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) Eo = geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Pond A Qo = 1.00 cfs (max. allowable release rate) outlet pipe dia = D = 24.0 in Invert elev. = 4926.13 ft (inv. Of outlet pipe) Eo = 4928.42 ft (downstream HGL) h = 4929.10 ft - 100 yr WSEL Co = 0.62 solve for effective area of orifice using the orifice equation Ao = 0.244 ft2 = 35.1 in orifice dia. = d = 6.68 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) d/ D = 0.28 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(ndv) = 1.87E+05 Co = (K in figure) = 0.62 check Use d = 6.68 in Ao = 0.243 R2 = 35.05 in2 Qmax = 1.00 cfs orifice - Pond A, 920101 pond-1 cfs.xls ' POND B ' 100-yr Event, Outlet Sizing LOCATION: Clydesdale Park ' PROJECT NO: 9201.01 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING ' DATE: 3/29/00 Submerged Orifice Outlet: ' release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) ' Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Pond B Qo = 0.80 cfs (allowable release = 10-yr historic - developed free release) ' outlet pipe dia = D = 24.0 in Invert elev. = 4923.27 ft (outlet pipe inv) Eo = 4923:43 ft (geometric center of orifice) ' h = 4928.00 ft - 100 yr WSEL Co = 0.6 ' solve for effective area of orifice using the orifice equation A. = 0.078 ft2 11.2 in orifice dia. = d = 3.77 in Check orifice discharge coefficient using Figure 5-21 (Hydraulic Engineering) ' d/ D = 0.16 kinematic viscosity, v = 1.22E-05 ft2/s Reynolds no. = Red = 4Q/(7rdv) = 2.65E+05 ' Co = (K in figure) = 0.6 check Use d = 3.77 in ' A o = 0.078 ft2 = 11.16 in 2 Qmax = 0.80 cfs 1 ' orifice - Pond B, 920101 pond-1 cfs.xls 280 5 Closed Conduit Flow I! ui( rnr 1.2 1.0 0.16 0.5 to, 102 10' 104 10 Res=N irdy Figure 5-21 Flow coefficient K and Rea/K versus the Reynolds number for orifices, nozzles, and venturi meters (20, 23) IttJ < V2-gAh Y e K u(' ((1' to, lo" �MMUMN N�N�� -IFAIM Oro IN INZIN r NNO� N �.._ M-..0I-_-- ry top scale with the slanted lines to determine K for given values of d, D, Ah and v. With K, we can then solve for Q from Eq. (5-31): The literature on orifice flow contains many discussions concerning the optimum placement of pressure taps on both the upstream and'downstream side of the orifice. The data given in Fig. 5-21 are for "corner taps.." That is, on the upstream side, the pressure readings were taken immediately upstream of the plate orifice (at the corner of the orifice plate and the pipe wall), and the downstream tap was at a similar downstream location. However, pressure data from flange taps (1 in. upstream and 1 in. downstream) and from the taps shown in Fig. 5-19 all yield virtually the same values for K— the differences are no greater than the deviations involved in reading Fig. 5-21.' 0 For more precise values of K with specific types of taps, see the ASME report on fluid meters (20). EX and the c Assu Sol either in pie the e( W1 :i The kin comput( From Fi i f'( ( t Detention Pond Emergency Overflow Spillway Sizing LOCATION: Clydesdale Park PROJECT NO: 9201.01 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING DATE: 3/28/00 top of term Equation for flow over a broad crested weir Q = CLHW where C = weir coefficient = 2.6 4 + Spill elevation H = overflow height ♦— L —� L = length of the weir The pond has a spill elevation equal to the maximum water surface elevation in the pond Design spillway with 0.5 ft flow depth, thus H = Size the spillway assuming that the pond outlet is completely clogged. Pond A H = 1.25 ft Q (100) = 39 cfs (100-yr peak DP 9, rational method) Weir length required: L= 11 ft Use L = 15 ft Pond B H = 0.5 ft Q (100) = 64 cfs (100-yr peak DP 14, rational method) Weir length required: L = 70 ft Use L = 70 ft spillway, 920101pond.xls ' Spillway flow at 0.5 foot depth Worksheet for Trapezoidal Channel Project Description Project File x:\920101-clydesdale finalldrainage\after reds\pipe&swa.fm2 Worksheet Pond A Spillway ' Flow Element Trapezoidal Channel Method Manning's Formula ' _Solve For Discharge ' Input Data Mannings Coefficient 0.060 Channel Slope 0.005000 ft/ft Depth Left Side Slope 0.50 ft 4.000000 H : V Right Side Slope 4.000000 H : V Bottom Width 15.00 ft Results ' Discharge 8.67 cfs Flow Area 8.50 ft2 Wetted Perimeter 19.12 ft ' Top Width 19.00 ft Critical Depth 0.21 ft Critical Slope 0.089642 ft/ft Velocity 1.02 ft/s ' Velocity Head 0.02 ft Specific Energy 0.52 ft Froude Number 0.27 ' Flow is subcritical. Notes: ' This calculation was done in order to size the sidewalk culvert for the spillway depth of 0.5'. 05/18/00 FlowMaster v5.15 ' 03:41:03 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 ' Sidewalk Culvert Calculation Worksheet for Rectangular Channel ' Project Description Project File x:\920101-clydesdale finalkdrainagelafter redMpipe&swa.fm2 ' Worksheet Flow Element Sidewalk Culvert for Pond A Spillway Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data ' Mannings Coefficient 0.012 Channel Slope 0.010000 f fft Bottom Width 4.00 ft tDischarge 8.33 cfs ' Results Depth 0.37 ft Flow Area 1.47 ft2 Wetted,.Perimeter 4.73 ft ' Top Width 4.00 ft Critical Depth 0.51 ft Critical Slope 0.003554 ft/ft Velocity 5.67 ft/s Velocity Head 0.50 ft Specific Energy 0.87 ft ' Froude Number 1.65 Flow is supercritical. ' Notes: ' The Discharge for a 4 foot sidewalk culvert exceeds the flow over the spillway at 0.5 feet deep. This means that 2-2 foot metal sidewalk culverts will pass the flows until the sidwalk is overtopped. 06/07/00 FlowMaster v5.15 ' 05:57:46 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-1666 Page 1 of 1 ' Cross Section Cross Section for Rectangular Channel ' Project Description Project File x:\920101-Clydesdale final\drainage\after reds\pipe&swa.fm2 Worksheet Sidewalk Culvert for Pond A Spillway ' Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Section Data ' Mannings Coefficient 0.012 Channel Slope 0.010000 ft/ft Depth 0.37 ft t Bottom Width 4.00 ft Discharge 8.33 cfs 1 1 ' I 0.37 ft '1 1 V 4.00 ft H 1 ' NTS 06/07/00 ' 05:57:53 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755-16W FlowMaster v5.15 Page 1 of 1 Detention Pond A Storage -Discharge Curve LOCATION: - Clydesdale Park PROJECT NO: 9201.01 COMPUTATIONS BY: A. Reed SUBMITTED BY: JR ENGINEERING DATE: 3/29/00 orifice dia. = 6.68 in. Ao = 0.24 W L = 15 it outlet invert = 4926.13 ft C = 2.6 Downstream HGL = 4928.42 ft orifice center = 4926.41 it Co = 0.62 100-yr WSEL top of bens h I storage I discharge I from orifice I d/s HGL I discharge I discharge I Discharge I aazc:vu V o7 0.93 0.33 4926.46 0.89 0:89 ; 4928.00 s>0 63 1.53 0.43 4926.56 1.45 1 48: 492850 134 1.75 0.46 4926.59 1.67 4929..00 :204 . .. 1.95 1.66 4927.79 1.33 492910 224 1.00 2.29 4928.42 1.00 0.00 100> 4930;00 4 36.. 1.52 3.37 4929.50 0.86 33.30 3416 4930 10 4 53 = 2.33 1.24 4927.37 2.00 3s on ar:nn ' c - Approx orifice discarge calculated using fro equal to the center elevation of the orifice - d/s depth found from FlowMaster output for given discharge - Approx. d/s HGL = outlet invert + d/s flow depth - Actual Orifice discharge found using Tailwater elev. = d/s HGL Rating-A,920101 pond-1 cfs.xls LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: Detention Pond B Storage -Discharge Curve Clydesdale Park 9201.01 A. Reed JR ENGINEERING 3/29/00 1 00-yr outlet Spillway orifice dia. = 3.6 in. A0 = 0.08 W L = 70 ft outlet invert = 4923.27 it C = 2.6 orifice center = 4923.43 ft co = 0.6 1 00-YR WSEL - spill crest Top of Berm - iWULOL4 Stage Det. Volume 10yr-Orifice Spillway Total h storage discharge discharge Discharge (ft) (ac-ft) (cfs) (cfs) (cfs) 0 r O:r 0 ,.24924,.001*<. 0 10 0.28 70- 0.47 .4926 0 0.60 Z' O.W. 0.71 "492800 < 334 0.80 28. 5 0.81 0.84 0.00 R 284 4929".009"...,� ...,j :4 0.88 64.35 6 _4929641 �; 53 0.89 84.59 <85.47, 0 5. Rating B,920101pond-1cfs.xls Pond Name Proposed Detention Pond - Stage/Storage LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand SUBMITTED BY: 1R ENGINEERING DATE: 10/10/00 V = 113 d (A + B + sgrt(A-B)) where V = volume between contours, ft3 d = depth between contours, ft A = surface area of contour PnNn r 100-yr WSEL/Spill Crest top of berm 100-yr WSEL/Spill Crest top of berm 100-yr WSEL/Splll Crest top of berm Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Total Storage (ac-ft) 4927 54145 0 0 4928 56982 1.28 1.3 4929 59874 1.34 2.6 4930 62851 1.41 4.0 POND D Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Total Storage (ac-ft) 4925.71 0 0.00 0.0 4927 895 0.01 0.0 4928 9162 0.10 0.1 4929 22051 0.35 0.5 4930 31304 0.61 1.1 4930.64 111 0.51 1.17 4931 41072 0.83 1.9 4931.64 41072 0.90 2.5 POND F Stage (ft) Surface Area (fe) Incremental Storage (ac-ft) Total Storage (ac-ft) 4923.81 0 0.00 0.0 4924 734 0.00 0.0 4925 7622 0.08 0.1 4926 9185 0.19 0.3 4927 10858 0.23 0.5 4928 12640 0.27 0.8 4929 12640 H. 1.1 4930 12640 1 0.29 1.4 100-yr WSELISp0l Crest top o1 berm 100-yr WSEL/Splll Crest top of berm PnNn F Stage (ft) Surface Area (ft) Incremental Storage (ac-ft) Total Storage (ac-ft) 4920 64992 4920.44 65148 0.00 0.0 4921 65347 0.84 0.8 4922 68853 1.54 2.4 4922.27 69993 0.42 2.80 4923 1 73154 1.63 4.0 4924 77633 1.73 5.7 4925 1 82212 1 1.83 1 7.6 d 1 1 1 1 onun rt Stage (ft) Surface Area (ft') .Incremental Storage (ac-ft) Total Storage (ac-ft) 4918.39 0 0.00 0.0 4919 9885 0.05 0.0 4920 26068 0.40 0.4 4921 38957 0.74 1.2 4921.76 49817 0.77 1.96 4922 1 53248 1.05 2.2 4923 66201 1.37 3.6 920102pond.xls JR Engineering DETENTION VOLUME CALCULATIONS Rational Volumetric (FAA) Method 100-Year Event Pond C LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand DATE: 10/06/00 Equations: Area trib. to pond = Developed f OW = Qo = CIA C (100) = Vol. In = Vi = T C I A = T Qo Developed C A = Vol. Out = Vo =K Qpo T Release rate, Qpo = storage = S = Vi - Vo K = Rainfall intensity from Ladmer County IDF Curve 13.7 acre 0.53 7.3 acre 0.5 cis 1 (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cis) Vol. In VI (ft) Vol. Out Vo (ft) Storage S (ftall Storage S (ac-ft) 5 8.93 64.8 19443 150 19293 0.44 10 7.12 51.7 31017 300 30717 0.71 20 5.18 37.6 45105 600 44505 1.02 30 4.13 30.0 53965 900 53065 1.22 40 1 3.46 25.2 60378 1200 1 59178 1.36 50 3.00 21.8 65396 1500 63896 1.47 60 2.66 19.3 69521 1800 67721 1.55 70 2.39 17.4 73026 2100 70926 1.63 80 2.18 15.8 76079 2400 73679 1.69 90 2.01 14.6 78786 2700 76086 1.75 100 1.86 13.5 81222 3000 78222 1.80 110 1.74 12.6 83438 3300 80138 1.84 120 1.63 11.9 85473 3600 81873 1.88 130 1.54 11.2 87357 3900 83457 1.92 140 1.46 10.6 89111 4200 84911 1.95 150 1.39 10.1 90753 4500 86253 1.98 160 1.32 9.6 92299 4800 87499 2.01 170 127 9.2 93759 5100 88659 2.04 180 121 8.8 95144 5400 89744 2.06 190 1.17 8.5 96461 •5700 90761 2.08 200 1.12 8.1 97718 6000 91718 2.11 250 0.95 6.9 103271 7500 95771 2.20 300 0.83 6.0 107924 9000 98924 2.27 350 0.73 5.3 111950 10500 101450 2.33 400 0.66 4.8 115510 12000 103510 2.38 450 0.61 4.4 118712 13500 105212 2.42 500 0.56 4.1 121627 15M 106627 2.45 550 0.62 3.8 124307 16500 107807 2.47 600 0.49 3.5 126792 18000 108792 2.50 650 0.46 3.3 129110 19500 109610 2.52 700 0.43 3.1 131286 21000 110286 2.53 750 0.41 3.0 133337 22500 110837 2.54 800 0.39 2.8 135279 24000 111279 2.55 850 0.37 2.7 137124 25500 111624 2.56 900 0.35 2.6 138882 27000 111882 2.57 950 0.34 2.5 140562 28500 112062 2.57 1000 0.33 2.4 142171 30000 112171 2.58 1050 0.31 2.3 143717 31500 112217 2.58 1100 0.30 2.2 145204 33000 112204 2.58 1150 029 2.1 146637 34500 112137 2.57 1200 0.28 2.1 148020 36000 112020 2.57 Required Storage Volume: 112217 W 2.58 acre-ft 920102pond.xls,Pond C-100yr JR Engineering DETENTION VOLUME CALCULATIONS Rational Volumetric (FAA) Method 100-Year Event Pond D LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand DATE: 10/06/00 Equations: Developed flow = QD = CIA Vol. In=Vi=TCIA=TQD Vol. Out = Vo =K QPo T storage = S = Vi - Vo Rainfall intensity from Larimer County IDF Curve Area trib. to pond = 2.88 acre C (100) = 0.47 Developed C A = 1.4 acre Release rate, QPo = 0.5 cfs K = 1 (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) Qo (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 8.93 12.1 3625 150 3475 0.08 10 7.12 9.6 5782 300 5482 0.13 20 5.18 7.0 8408 600 7808 0.18 30 4.13 5.6 10060 900 9160 0.21 40 3.46 4.7 11256 1200 10056 0.23 50 3.00 4.1 12191 1500 10691 0.25 60 2.66 3.6 12960 1800 11160 0.26 70 2.39 3.2 13614 2100 11514 0.26 80 2.18 3.0 14183 2400 11783 0.27 90 2.01 2.7 14687 2700 11987 0.28 100 1.86 2.5 15141 3000 12141 0.28 110 1.74 2.4 15555 3300 12255 0.28 120 1.63 2.2 15934 3600 12334 0.28 130 1.54 2.1 16285 3900 12385 0.28 140 1.46 2.0 16612 4200 12412 0.28 150 1.39 1.9 16918 4500 12418 0.29 160 1.32 1.8 17206 4800 12406 0.28 170 1.27 1.7 17479 5100 12379 0.28 180 1.21 1.6 17737 5400 12337 0.28 Required Storage Volume: 12418 ft3 0.29 acre-ft 920102pond.xls,Pond D-100yr I 1 [I 1 1 1 1 DETENTION VOLUME CALCULATIONS Rational Volumetric (FAA) Method 100-Year Event Pond E LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand DATE: 10/06/00 Equations: Area trib. to pond = 9.24 acre Developed flow = Q0 = CIA C (100) = 0.68 Vol. In = Vi = T C I A = T Q0 Developed C A = 6.2 acre Vol. Out = Vo =K QPo T Release rate, Opo = 13.0 cfs storage = S = Vi - Vo K = 1 (from fig 2.1) Rainfall intensity from Ladmer County IDF Curve Storm Duration, T (min) Rainfall Intensity, I (in/hr) OD (cfs) Vol. In VI (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 8.93 55.7 16701 3900 12801 0.29 10 7.12 44.4 26643 7800 18843 0.43 20 5.18 32.3 387" 15600 231" 0.53 30 4.13 25.8 46354 23400 22954 0.53 40 3.46 21.6 51863 31200 20663 0.47 50 3.00 18.7 56173 39000 17173 0.39 60 2.66 16.6 59716 46800 12916 0.30 70 2.39 14.9 62727 54600 8127 0.19 80 2.18 13.6 65350 62400 2950 0.07 90 2.01 12.5 67675 70200 -2525 -0.06 100 1.86 11.6 69768 78000 -8232 -0.19 110 1 1.74 10.9 1 71671 85800 -14129 1 -0.32 120 1.63 10.2 73419 93600 -20181 -0.46 130 1.54 9.6 75037 101400 -26363 -0.61 140 1.46 9.1 76544 109200 -32656 -0.75 150 1.39 8.7 77955 117000 -39045 -0.90 160 1.32 8.3 79282 124800 -45518 -1.04 170 127 7.9 80537 132600 -52063 -1.20 180 1.21 1 7.6 81726 1 140400 -58674 -1.35 Required Storage Volume: 23144 ft3 0.63 acre-ft 920102pond.xls,Pond E-100yr JR Engineering JR Engineering DETENTION VOLUME CALCULATIONS Rational Volumetric (FAA) Method 100-Year Event Pond F LOCATION: Clydesdale Park PROJECT NO: 9201.02 CONIPtTTATIONS BY: B. Strand DATE: 10/06/00 Equations: Developed flow = Qo = CIA Vol. ln=Vi=TCIA=TQq Vol. Out = Vo =K Qpo T storage = S = Vi - Vo Rainfall intensity from Latimer County OF Curve 61 Area trib. to pond = 5.5 ,acre C (100) = 0.50 Developed C A = 2.8 acre Release rate, Qpo = 0.5 cfs K = 1 (from fig 2.1) Storm Duration, T (min) Rainfall Intensity, I (in/hr) OD (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 8.93 24.5 7364 150 7214 0.17 10 7.12 19.6 11747 300 11447 0.26 20 5.18 14.2 17083 600 16483 0.38 30 4.13 11.4 20438 900 19538 0.45 40 3.46 9.5 1 22867 1200 21667 1 0.50 50 3.00 8.3 24768 1500 23268 0.53 60 2.66 7.3 26330 1800 24530 0.56 70 2.39 6.6 27658 2100 25558 0.59 80 2.18 6.0 28814 2400 26414 0.61 90 2.01 5.5 29839 2700 27139 0.62 100 1.86 5.1 30762 3000 27762 0.64 110 1.74 4.8 31601 3300 28301 0.65 120 1.63 4.5 32372 3600 28772 0.66 130 1.54 4.2 33085 3900 29185 0.67 140 1.46 4.0 33749 4200 29549 0.68 150 1.39 3.8 34371 4500 29871 0.69 160 1.32 3.6 34957 4800 30157 0.69 170 1.27 3.5 35510 5100 30410 0.70 180 121 3.3 36034 5400 30634 0.70 190 1.17 3.2 36533 5700 30833 0.71 200 1.12 3.1 37009 6000 31009 0.71 250 0.95 2.6 39113 7500 31613 0.73 300 0.83 2.3 40875 9000 31875 0.73 350 0.73 2.0 42399 10500 31899 0.73 400 0.66 1.8 43748 12000 31748 0.73 450 0.61 1.7 44960 13500 31460 0.72 500 0.56 1.5 46064 15000 31064 0.71 550 0.52 1.4 47080 16500 30580 0.70 600 0.49 1.3 48021 18000 30021 0.69 650 0.46 1.3 48899 19500 29399 0.67 700 0.43 1.2 49723 21000 28723 0.66 750 0.41 1.1 50499 22500 27999 0.64 800 0.39 1.1 51235 24000 27235 0.63 850 0.37 1.0 51934 25500 26434 0.61 900 0.35 1.0 52599 27000 25599 0.59 950 0.34 0.9 53236 28500 24736 0.57 1000 0.33 0.9 53845 30000 23845 0.55 1050 0.31 0.9 54431 31500 22931 0.53 1100 0.30 0.8 54994 33000 21994 0.50 1150 0.29 0.8 55537 34500 21037 0.48 1200 o.ze 0.8 1 56061 36000 20061 0.46 Required Storage Volume: 31899 ft3 0.73 acre-ft 920102pond.xls,Pond F-100yr JR Engineering 1 1 1 1 1 DETENTION VOLUME CALCULATIONS Rational Volumetric (FAA) Method 100-Year Event Pond G LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand DATE: 10/06/00 Equations: Developed flow = Q0 = CIA Vol. ln=Vi=TCIA=TQO Vol. Out = Vo =K Qpo T storage = S = Vi - Vo Rainfall intensity from Larimer County IDF Curve Area trib. to pond = 19.21 acre C (100) = 0.53 Developed C A = 10.2 acre Release rate, QPo = 4.9 cfs K = 1 (from fig 2.1) Storrs Duration, T (min) Rainfall Intensity, I (in/hr) Q0 (cfs) Vol. In Vi (ft) Vol. Out Vo (ft) Storage S (ft) Storage S (ac-ft) 5 8.93 90.9 27263 1470 25793 0.59 10 7.12 72.5 43492 2940 40552 0.93 20 5.18 52.7 63245 5880 57365 1.32 30 4.13 42.0 75669 8820 66849 1.53 40 3.46 35.3 84661 11760 72901 1.67 50 3.00 30.6 91698 14700 76998 1.77 60 2.66 27.1 97481 17640 79841 1.83 70 2.39 24.4 102396 20580 81816 1.88 80 2.18 22.2 106677 23520 83157 1.91 90 2.01 20.5 110474 26460 1 84014 1.93 100 1.86 19.0 113889 29400 84489 1.94 110 1.74 17.7 116996 32340 84656 1.94 120 1.63 16.6 119850 35280 84570 1.94 130 1.54 15.7 122491 38220 84271 1.93 140 1.46 14.9 124950 41160 83790 1.92 150 1.39 1 14.1 127253 44100 83153 1.91 160 1.32 13.5 129420 47040 82380 1.89 170 1.27 12.9 131468 49980 81488 1.87 180 1.21 12.4 133410 52920 80490 1.85 Required Storage Volume: 84656 ft3 1.94 acre-ft 1 920102pond.xls,Pond G-100yr POND C 100-yr Event, Outlet Sizing LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand SUBMITTED BY: JR ENGINEERING DATE: 10/6/00 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = Cok sgrt( 2g(h-Eo)) where Q. = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao = effective area of the orifice (ft) Eo = geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Pond D Qo = 0.50 cfs (max. allowable release rate) outlet pipe dia = D = 15.0 in Invert elev. = 4927.00 ft (inv. Of outlet pipe) Eo = 4927.15 ft (geometric center of orifice) h = 4929.00 ft - 100 yr WSEL Co = 0.65 solve for effective area of orifice using the orifice equation Ao = 0.070 ft2 = 10.1 in orifice dia. = d = 3.59 in Use d = 3.58 in Ao = 0.070 ft2 = 10.07• in2 Qmax = 0.50 cfs orifice - Pond C, 920102pond.xls POND D 100-yr Event, Outlet Sizing LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand SUBMITTED BY: JR ENGINEERING DATE: 10/6/00 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Q. = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A, = effective area of the orifice (ft) Eo = geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Pond D Qo = 0.50 cfs (max. allowable release rate) outlet pipe dia = D = 15.0 in Invert elev. = 4925.71 ft (inv. Of outlet pipe) Eo = 4925.83 ft (geometric center of orifice) h = 4930.64 ft - 100 yr WSEL Co = 0.65 solve for effective area of orifice using the orifice equation Ao = 0.044 ft2 = 6.3 in orifice dia. = d = 2.83 in Use d = 2.83 in A o = 0.044 ft-' = 6.29 Qmax = 0.50 cfs in 2 orifice - Pond D, 920102pond.xls POND E 100-yr Event, Outlet Sizing LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand SUBMITTED BY: JR ENGINEERING DATE: 10/6/00 Submerged Orifice Outlet: release rate is described by the orifice equation, Qa = CA sgrt(2g(h-E,)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A0 = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Pond E Q. = 13.00 cfs (allowable release = 10-yr historic - developed free release) outlet pipe dia = D = 24.0 in Invert elev. = 4923.81 ft (outlet pipe inv) Eo = 4924.46 ft (geometric center of orifice) h = 4928.00 ft - 100 yr WSEL Co = . 0.65 solve for effective area of orifice using the orifice equation Ao = 1.324 ft' = 190.7 in orifice dia. = d = 15.58 in Use d = 15.58 in A o = 1.324 ft2 = 190.64 in 2 Qmax = 12.99 cfs orifice - Pond E, 920102pond.xls POND F 100-yr Event, Outlet Sizing ' LOCATION: Clydesdale Park t PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand SUBMITTED BY: JR ENGINEERING DATE: 10/6/00 Submerged Orifice Outlet: release rate is described by the orifice equation, ' Qa = Cok sqrt( 2g(h-E,)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Aa = effective area of the orifice (ft2) ' Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) ' Pond ;F Qo = 0.50 cfs (allowable release = 10-yr historic - developed free release) outlet pipe dia = D = 18.0 in ' Invert elev. = 4920.44 ft (outlet pipe inv) E. = 4920.57 ft (geometric center of orifice) h = 4924.00 ft - 100 yr WSEL ' Co = 0.65 ' solve for effective area of orifice using the orifice equation Ao = 0.052 ft2 = 7.5 in ' orifice dia. = d = 3.08 in Use d = 3.08 in ' A o = 0.052 ft2 = 7.45 in 2 Qmax = 0.50 cfs orifice - Pond F, 920102pond.xls 1 1 1 1 POND G 100-yr Event, Outlet Sizing LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand SUBMITTED BY: JR ENGINEERING DATE: 10/5/00 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = COAO sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s Ao ='effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Pond G Qo = 4.90 cfs (allowable release = 10-yr historic - developed free release) outlet pipe dia = D = 18.0 in Invert elev. = 4918.39 ft (outlet pipe inv) Ea = 4918.81 ft (geometric center of orifice) h = 4921.76 ft - 100 yr WSEL Co = 0.65 solve for effective area of orifice using the orifice equation Ao = 0.547 ft2 = 78.7 in orifice dia. = d = 10.01 in Use d = 10.01 in Ao = 0.547 R2 = 78.70 in2 Qmax = 4.90 cfs orifice - Pond G, 920102pond.xls [1 1 1 1 1 POND G 100-yr Event, Outlet Sizing w/ Offsite Flow LOCATION: Clydesdale Park PROJECT NO: 9201.02 COMPUTATIONS BY: B. Strand SUBMITTED BY: JR ENGINEERING DATE: 10/9/00 Submerged Orifice Outlet: release rate is described by the orifice equation, Qo = CA sgrt( 2g(h-Eo)) where Qo = orifice outflow (cfs) Co = orifice discharge coefficient g = gravitational acceleration = 32.20 ft/s A, = effective area of the orifice (ft) Eo = greater of geometric center elevation of the orifice or d/s HGL (ft) h = water surface elevation (ft) Pond-.G Qo = 12.70 cfs (allowable release = 10-yr historic - developed free release) outlet pipe dia = D = 16.6 in Invert elev. = 4918.39 ft (outlet pipe inv) Eo = 4919.08 ft (geometric center of orifice) h = 4921.76 ft - 100 yr WSEL Co = 0.65 solve for effective area of orifice using the orifice equation Ao = 1.487 ft2 = 214.1 in orifice dia. = d = 16.51 in Use d = 16.51 in A o = 1.487 ff 2 = 214.08 in 2 Qmax = 12.70 cfs orifice - Pond G w OS, 920102pond.xls LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: Detention Pond C Storage -Discharge Curve Clydesdale Park 9201.02 B. Strand JR ENGINEERING 10/6/00 100-yr outlet Spillway orifice dia. = 3.580 A0 = 0.07 L= 16 ft outlet invert = 4927.00 C = 2.6 orifice center = 4927.15 Co = 0.65 1 00-YR WSEL - Top of Berm - approx Stage h (ft) Det. Volume storage (ac-ft) 10yr-Orifice discharge (cfs) Spillway discharge (cfs) Total Discharge (cfs) 4927 F.. 128, 0.34 .3 2.62' 0.50 0.00 0.62 41.60 Rating C,920102pond.xls LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: Detention Pond D Storage -Discharge Curve Clydesdale Park 9201.02 B. Strand JR ENGINEERING 10/6100 100-yr outlet Spillway orifice dia. = 2.830 Ao = 0.04 L = 5 ft outlet invert = 4925.71 C = 2.6 orifice center = 4925.83 Co = 0.65 100-YR ,WSEL Top of Berm approx Stage h (ft) Det. Volume storage (ac-ft) 10yr-Orifice discharge (cfs) Spillway discharge (cfs) Total Discharge (cfs) =4925.71 ,0 00„ off A927.00 .; 0.01 . 0.25 0.2 4928, 00 ;0 i 11 „ , , 0.34 .0 3 492900= 046 0.41. A 4 , 3493000 1 06 = : 0.47 0.5 930364 ; 1 57 0.50 0.00 4931'00 . " 1 89_ 0.52 13.00 13 5 -_4931 64 .2.471E.0.55 27.30 27.9 Rating D,920102pond.xls LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: 1 00-yr outlet 100-YR.WSEL- Top of Berm - Detention Pond E Storage -Discharge Curve Clydesdale Park 9201.02 B. Strand JR ENGINEERING 10/6/00 orifice dia. = 15.9 A0 = 1.38 outlet invert = 4923.81 orifice center = 4924.47 co = 0.65 Spillway L= 6 ft C = 2.6 approx Stage Det. Volume 10yr-Orifice Spillway Total h storage discharge discharge Discharge (ft) (ac-ft) (cfs) (cfs) (cfs) 1_811 000, 0.0 0.00 3.13 P.Q8, 5.22 �_4 9 8.88 FF.,8:9 4% Z7100"o 0351 11.42 492800, ---0.7,0 13 .49 0.00 FT929--.00'-- T 1-.07 15.29 15.60 30.9 Rating E,920102pond.xls LOCATION: PROJECT NO: COMPUTATIONS BY: SUBMITTED BY: DATE: Detention Pond F Storage -Discharge Curve Clydesdale Park 9201.02 B. Strand JR ENGINEERING 10/6/00 100-yr outlet Spillway orifice dia. = 3.4 A,= 0.06 L= 7 ft outlet invert = 4920.44 C = 2.6 orifice center = 4920.58 Co = 0.65 100-YR WSEL Top of Berm approx Stage Det. Volume 10yr-Orifice Spillway Total h storage discharge discharge Discharge (ft) (ac-ft) (cfs) (cfs) (cfs) 4920 0 00 0.00 492�1 00 0 84 0.24 :: 0 24 ,;, 49221?0,0 *.: 2 38 "£ 0.38 '; R0 38 , �492227 _ 2 80 i_� 0.42 042 4923T1)0 4 01 0.50 0.00 9.50mv 492244T_Q0 ,= , 5 74 :,; 0.59 0.00 = 0 .E 59 4925f0U '; 7 57,0.68 mj 18.20 " 18 88„ •F ;, Rating F,920102pond.xls LOCATION: PROJECT NO: COMPUTATIONS BY SUBMITTED BY: DATE: Detention Pond G Storage -Discharge Curve Clydesdale Park 9201.02 B. Strand JR ENGINEERING 10/26/00 100-yr outlet Spillway orifice dia. = 16.5 A0 = 1.49 L = 17 ft outlet invert = 4918.39 C = 3.367 orifice center = 4918.81 Co = 0.65 100-YR WSEL Top of Berm approx Stage Det. Volume 10yr-Orifice Spillway Total h storage discharge discharge Discharge (ft) (ac ft) (cfs) (cfs) (cfs) 4919600 005 ., 3.41_ 3.41 ;. `492000 Q`M44 ,.. 8.47 492.100 Ju 1.19 ...5 11.48 _ 11 48, =492176--196 •. , 13.33 0.00 492200,2;! 24£ 13.86 6.73 m,;120.59' "{ 44923`OOI "361 15.88 79.04 .94.92- Rating G OS,920102pond.xls APPENDIX H 44, IT- Engineering CLIENT JOB NO. 9 ?O I i O� PROJECT �I��AG�,IC PG. f BY _L�Ci-C BY ]DATE 0 0� 1 SUBJECT,/,, ,�.M ocilGI SHEETNO. OF_ 1 d F 1 1 1 1 1 1 1 1 1 1 ■■�■ No MOMw1 MEONE J . J SOON ■■■■■■■ ■■■■■■■■■■ wl / ■■ I / A I � ■ MOEN MEENE ■ ■ ■O■NNN� ■ MEN MOON ■■■ ■■■■■ s ` MOM, ,�. . NO■■■ ■ �i ■N■O■NNN N■■OSNSSN■i■NN■NaON ONO MONO ■NOON■■■■■■■■■■NO■N ONE NN■■■■ N■NNNNNNNNNN■■o■■■■■■NN■NN■ON■O Emma ONE MEN M ■NON ■ NN■N■NNENO N�No N■ ■ NNNNON ■ ■ NN N■N■■som NOON■■ N■■NNN■■N NNSSN■ MOM ■mom ■MEN ■■O NNONEN ON■ ■ ■i�i■O■ N■Omom ONO NN■■■N ON■iiO■NNN��niNNNNNN■NN■■ ■O■N■O mom i■N�iiNMOMON■i■■�■iON�N■n■N ■■■ON Na■■■M■■■N■Oii ■■■NNN ■NN■N ■■■■■■■N■■ No No MESS■■ ON ■■■ ■■■ ONaNNON■ 9 No Text I 1 1 1 r 1 1 1 1 MAM Input Clydesdale Park File: Cly-os.dat 1 of 3 2 1 1 2 3 4 WATERSHED Example data set for demonstration of the integrated SWMM model 100-YEAR Rainfall Event, File:CLY-OS.DAT, Analyses Offsite Basin 02 1 150 0 0 5. 1 2. 24 5. 0.60 0.96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 * Tributary Basins for Pond A * 1 401 201 1520 14.2 45. .01 .02 .2 .1 .4 3.6 0.5 0.0018 * Tributary Basins for Pond B * 1 402 202 1440 10.9 45. .01 .02 .2 .1 .4 3.6 0.5 0.0018 * Tributary Basins for Pond C * 1 404 204 1490 13.7 45. .01 .02 .2 .1 .4 3.6 0.5 0.0018 * * Tributary Basins for Pond D * 1 407 507 315 2.9 45. .01 .02 .2 .1 .4 3.6 0.5 0.0018 * * Tributary Basins for Pond E * 1 409 209 1011 9.3 45. .01 .02 .2 .1 .4 3.6 0.5 0.0018 * * Tributary Basins for Pond F * 1 411 211 600 5.5 45. .01 .02 .2 .1 .4 3.6 0.5 0.0018 * * Tributary Basins for Pond G * 1 413 213 1673 19.2 35. .005 .02 .2 1 .4 3.6 0.5 0.0018 * * Tributary Basins for Offsite Basin O2A * 1 420 220 1350 40.0 .00. .01 .02 .2 .1 .4 3.6 0.5 0.0018 * * ############################ END OF WATERSHED DATA ####################### * 0 0 * * The following is a channel with overbanks to model a street * 1 201 301 0 4 1.5 800. 0.010 50. 0. 0.016 0.5 16. 800. 0.010 10. 0. 0.020 2.0 * The following SWMM line is detention pond A * 0 301 501 7 2 .01 .01 0.0001 0.0 0.0 0.000 0.01 1 ' SWMM Input Clydesdale Park File: Cly-os.dat 2 of 3 .0001 .00001 0.07 1.-18 0.63 1.63 1.34 1.88 2.04 1.58 2.14 1.00 4.36 37.08 * * The following SWMM lines simulate a direct connection (no routing) * 1 501 302 0 3 1. * The following SWMM line is detention pond B * ' 0 302 502 .0001 .00001 8 2 .01 Ol 0.0001 0.10 0.28 0.0 0.69 0.0 0.46 0.000 1.50 0.01 0.59 2.38 0.69 3.34 0.78 3.86 0.82 4.41 65.21 * * The following is a channel with a with overbanks to model a street * 1 202 302 0 4 1.5 900. 0.010 50. 0. 0.016 0.5 16. 900. 0.010 10. 0. 0.020 2.0 ' * #################END OF FILING #1 CONVEYANCE DATA ###################### * * * * The following is a channel with overbanks to model a street * 1 209 529 0 4 1.5 1473. 0.005 50. 0. 0.016 0.5 16. 1473. 0.005 10. 0. 0.020 2.0 1 211 522 0 4 1.5 700. 0.016_ 50. 0. 0.016 0.5 1 213 521 0 4 16. 700. 0.016 1.5 1550. 0.005 10. 50. 0. 0. 0.020 0.016 2.0 0.5 16. 1550. 0.005 10. 0. 0.020 2.0 * The following is a grass lined channel 1 204 304 0 1 0.0 850. 0.005 50. 0. 0.030 5.0 * Grass lined channel from Basin 02 to Pond G 1 220 521 0 1 10. 2600. 0.005 4. 4. 0.030 8.0 * ' * The following SWMM line is detention pond C * 0 304 504 4 2 .01 .01 0.0001 0.0 0.0 0.000 0.01 0.0 10.0 1.28 0.30 2.62 0.50 4.03 37.00 1 * * The following SWMM line is detention pond D * ' 0 307 577 8 2 .01 .01 0.0001 0.0 0.0 0.000 0.01 0.0 0.0 0.01 0.20 0.11 0.30 0.46 0.40 1.06 0.50 1.57 0.50 1.89 16.10 2.47 33.30 * * The following SWMM line is detention pond E * 0 309 509 8 2 .01 .01 0.0001 0.0 0.0 0.000 0.01 0.0 0.0 0.01 3.00 0.08 5.10 0.28 8.60 ' 0.51 11.00 0.78 13.00 1.07 30.30 1.36 60.40 * * The following SWMM line is detention pond F * 0 311 511 7 2 .01 .01 0.0001 0.0 0.0 0.000 0.01 0.0 0.0 0.84 0.24 2.38 0.38 2.80 0.42 ' 4.01 0.50 5.74 26.59 7.57 74.21 ' SWMM Input Clydesdale Park File: Cly-os.dat 3 of 3 The following SWMM line is detention pond G ' 0 313 513 0.0 7 2 0.0 *01 .01 0.0001 0.05 3.41 0.0 0.0 0.000 0.01 0.44 8.47 1.19 11.48 1.96 13.33 2.24 20.59 3.61 94.92 * The following SWMM lines simulate a direct connection (no routing) * 1 502 522 0 3 1. 1 507 527 0 3 1. ' 1 504 301 0 3 1. 1 577 529 0 3 1. 1 509 522 0 3 1. 1 511 521 0 3 1. 1 527 307 0 3 1. 1 529 309 0 3 1. 1 522 311 0 3 1. ' 1 521 313 0 3 1. 0 0 ENDPROGRAM 1 I ' SWMM Input Clydesdale Park File: Cly2-100.dat ' 1 of 4 tENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. ' UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) ' UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) TAPE OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 0 0 0 0 ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 ' WATERSHED PROGRAM CALLED ., ' *** ENTRY MADE TO RUNOFF MODEL *** ' Example data set for demonstration of the integrated SWMM model 100-YEAR Rainfall Event, File:CLY-OS.DAT, Analyses Offsite Basin 02 NUMBER OF TIME STEPS 150 INTEGRATION TIME INTERVAL (MINUTES) 5.00 2.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES FOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR ' .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 ' Example data set for demonstration of the integrated SWMM model 100-YEAR Rainfall Event, File:CLY-OS.DAT, Analyses Offsite Basin 02 SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. DERV. MAXIMUM MINIMUM DECAY RATE NO 401 201 1520.0 14.2 45.0 .0100 .020 .200 .100 .400 3.60 .50 .00180 1 402 202 1440.0 10.9 45.0 .0100 .020 .200 .100 .400 3.60 .00180 1 .50 SWMM Input Clydesdale Park File: Cly2-100.dat 2 of 4 909 209 1990.0 13.7 95.0 .0100 .020 .200 .100 .900 3.60 .50 .00180 1 407 507 315.0 2.9 45.0 .0100 .020 .200 .100 .400 3.60 .50 .00180 1 409 209 1011.0 9.3 45.0 .0100 .020 .200 .100 .400 3.60 .50 .00180 1 411 211 600.0 5.5 45.0 .0100 .020 .200 .100 .400 3.60 .50 .00180 1 ' 413 213 1673.0 19.2 35.0 .00180 1 .0050 .020 .200 .100 .400 3.60 .50 420 220 1350.0 40.0 .0 .0100 .020 .200 .100 .400 3.60 .50 .00180 1 TOTAL NUMBER OF SUBCATCHMENTS, 8 TOTAL TRIBUTARY AREA (ACRES), 115.70 Example data set for demonstration of the integrated SWMM model 100-YEAR Rainfall Event, File:CLY-OS.DAT, Analyses Offsite Basin 02 *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** ' WATERSHED AREA (ACRES) 115.700 ' TOTAL RAINFALL (INCHES) TOTAL INFILTRATION (INCHES) 2.890 .903 TOTAL WATERSHED OUTFLOW (INCHES) 1.727 ' TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .260 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .000 Example data set for demonstration of the integrated SWMM model 100-YEAR Rainfall Event, File:CLY-OS.DAT, Analyses Offsite Basin 02 ' WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE ' GUTTER GUTTER NDP NP DEPTH JK OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 201 301 0 4 CHANNEL 1.5 800. .0100 50.0 .0 .016 .50 1 OVERFLOW 16.0 800. .0100 10.0 .0 .020 2.00 301 501 7 2 PIPE .0 0. .0001 .0 .0 .001 01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 1.2 .6 1.6 1.3 1.9 2.0 1.6 2.1 1.0 4.4 37.1 302 0 3 1.0 0. .0010 .0 .0 .001 '501 10.00 1 302 502 8 2 PIPE :0 0. .0001 .0 .0 .001 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .3 .7 .5 1.5 .6 2.4 .7 3.3 .6 3.9 .8 4.4 65.2 202 302 0 4 CHANNEL 1.5 900. .0100 50.0 .0 .016 50 1 OVERFLOW 16.0 900. .0100 10.0 .0 .020 2.00 209 529 0 4 CHANNEL 1.5 1473. .0050 50.0 .0 .016 .50 1 SWMM Input Clydesdale Park File: Cly2-100.dat 3 of 4 OVERFLOW 16.0 1973. .0050 10.0 .0 .020 2.00 211 522 0 4 CHANNEL 1.5 700. .0160 50.0 .0 .016 .50 1 OVERFLOW 16.0 700. .0160 10.0 .0 .020 2.00 213 521 0 4 CHANNEL 1.5 1550. .0050 50.0 .0 .016 .50 1 2.00 OVERFLOW 16.0 1550. .0050 10.0 .0 .020 ' 204 304 0 1 CHANNEL .0 850. .0050 50.0 .0 .030 5.00 1 220 521 0 1 CHANNEL 10.0 2600. .0050 4.0 4.0 .030 8. 1 309 30 509 9 2 PIPE .0 0. .0001 .0 .0 .001 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1.3 .3 2.6 .5 4.0 37.0 307 577 8 2 PIPE .0 0. .0001 .0 .0 .001 ' .O1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .2 .1 .3 .5 .4 1.1 .5 1.6 .5 1.9 16.1 2.5 33.3 ' 309 509 8 2 PIPE .0 0. .0001 .0 .0 .001 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 8 13.0 .0 .0 .0 3.0 .1 5.1 .3 8.6 .5 11.0 ' 1.1 30.3 1.4 60.4 311 511 7 2 PIPE .0 0. .0001 .0 .0 .001 .01 0 STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 'RESERVOIR .0 .0 .8 .2 2.4 .4 2.8 .4 4.0 .5 5.7 26.6 7.6 74.2 313 513 7 2 PIPE - .0 0. .0001 .0 .0 .001 01 0 RESERVOIR STORAGE IN ACRE-FEET VSSPILLWAY OUTFLOW .0 .0 .1 3.4 .4 8.5 1.2 11.5 2.0 13.3 2.2 20.6 3.6 94.9 502 522 0 3 1.0 0. .0010 .0 .0 .001 ' 10.00 1 507 527 0 3 1.0 0. .0010 .0 .0 .001 10.00 1 504 10.00 301 1 0 3 1.0 0. .0010 .0 .0 .001 577 529 0 3 1.0 0. .0010 .0 .0 .001 10.00 1 509 522 0 3 1.0 0. .0010 .0 .0 .001 10.00 1 '511 521 0 3 1.0 0. .0010 .0 .0 .001 10.00 1 527 307 0 3 1.0 0. .0010 .0 .0 .001 10.00 1 529 309 0 3 1.0 0. .0010 .0 �.0 .001 ' 10.00 1 522 311 0 3 1.0 0. .0010 .0 .0 .001 10.00 1 521 313 0 3 1.0 0. .0010 .0 .0 .001 ' 1 TOTAL 1 TOTAL NUMBER OF GUTTERS/PIPES, 25 ' Example data set for demonstration of the integrated SWMM model 100-YEAR Rainfall Event, File:CLY-OS.DAT, Analyses Offsite Basin 02 ' ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC� 201 0 0 0 0 0 0 0 0 0 0 401 0 0 0 0 0 0 0 0 0 14.2 202 0 0 0 0 0 0 0 0 0 0 402 0 0 0 0 0 0 0 0 0 10.9 204 0 0 0 0 0 0 0 0 0 0 404 0 0 0 0 0 0 0 0 0 13.7 ' SWMM Input Clydesdale Park File: Cly2-100.dat 4 of 4 209 0" 0 0 0 0 0 0 0 0 0 409 0 0 0 0 211 0 0 0 0 0 0 0 0 0 0 411 0 0 0 0 213 0 0 0 0 0 0 0 0 0 0 413 0 0 0 0 220 0 0 0 0 0 0 0 0 0 0 420 0 0 0 0 301 201 504 0 0 0 0 0 0 0 0 0 0 0 0 0 302 501 202 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 304 204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 307 527 0 0 0 0 0 0 0 0 0 0 0 0 0 0 309 529 0 0 0 0 0 0 0 0 0 0 0 0 0 0 311 522 0 0 0 0 0 0 0 0 0 0 0 0 0 0 313 521 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' THE FOLLOWING CONVEYANCE ELEMENTS RAVE NUMERICAL STABILITY PROBLEMS THAT LEAD TO HYDRAULIC OSCILLLATIONS DURING THE SIMULATION. 301 Example data set for demonstration of the integrated SWMM model 100-YEAR Rainfall Event, File:CLY-OS.DAT, Analyses Offsite Basin 02 **' PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENTION DAMS *** "' NOTE :S IMPLIES A SURCHARGED ELEMENT AND :D IMPLIES A SURCHARGED DETENTION FACILITY ' CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT:TYPE (CFS) (FT) (AC -FT) (HR/MIN) 201:4 56.3 .6 0 40. 202:4 44.3 .6 0 40. 204:1 47.7 1.0 0 40. 209:4 29.5 .6 0 40. 211:4 21.9 .4 0 40. 211:4 220:1 46.6 20.2 .7 .7 0 1 40. 15. ' 301:2 1.1 .0 2.1:D 2 45. 302:2 .7 .0 2.8:D 12 30. 304:2 .4 .0 2.2:D 3 15. t 307:2 309:2:. .4 11.7 .0 .0 .4:D .6:D 2 1 5. 5. 311:2 4 .0 3.1:D 12 30. 313:2 25.5 .0 2.3: D 1 40. Q 501:3 1.9 (DIRECT FLOW) 11 40. 502:3 .7 (DIRECT FLOW) 12 30. ' 504:3 .4 (DIRECT FLOW) 3 15. 507:3 11.5 (DIRECT FLOW) 0 40. 509:3 11.7 (DIRECT FLOW) 1 5. 511:3 - .4 (DIRECT FLOW) 12 30. 513:3 25.5 (DIRECT FLOW) 1 40. 521:3 49.7 (DIRECT FLOW) 0 40. ' 522:3 30.3 (DIRECT FLOW) 0 40. 527:3 11.5 (DIRECT FLOW) 0 40. 529:3 29.8 (DIRECT FLOW) 0 40. 577:3 .4 (DIRECT FLOW) 2 5. ' ENDPROGRAM PROGRAM CALLED 1 1 feojC 0 0 0 0 0 9.3 0 0 0 0 0 5.5 0 0 0 0 0 19.2 0 0 0 0 0 40.0 0 0 0 0 0 27.9 0 0 0 0 0 38.8 0 0 0 0 0 13.7 0 0 0 0 0 2.9 0 0 0 0 0 12.2 0 0 0 0 0 56.5 0 0 0 0 0 115.7 1 APPENDIX I REPORTS -BY OTHERS rK tc ri FINAL DRAINAGE REPORT FOR WATERDALE sot is Qps Submitted to: LARIMER COUNTY March 27, 2000 J � J y 7 N N J �1 A 1 1 1 1 fir lwl 1>1 Oe � J P �+ M i �° � a � W�� N 1 .r. 4 0 i� b � a � J � i P U � a W�� N '.��..:•::.'::.• I :. ... i — ............. :• :..... :•::: 1 La '= y= m 9 to IIyy b m mm m m p m pj'•. .•• Q'yQQyAyr�n pp - Z r p 'd g O N q bb r '0 V roObbq�m r y$ ryf U P �o t U q^+w P N U Oo P Oe aw N+ m W a N N W Oao ff]] Cai Oo O Oe .l W ^ O G O '0ppp O IJ O i� O !� O W pp N— p G O i. N r G N-- J J Y Gp r W •O Y1 r W G •0ppp 0— J J P JJ M� J r1 J O {{�A N Op0J P aa J .�pp W ++ O� J— ;O O r A pp •.•• •• • qOq O O POp O O O OOqP m O b POp g OOpP O qOq a O b qOq O a. O V OOq. Y JOJ pOp�� N N NO� O qOqHPIP N J N pq.OqqpOp��OO U N A P b OpOp�� N N qOqOVGWO O 'GO � OUO � ��•�'fl.'. .' ss's'ss's's 88888$ss888s88888888ssss$$8888 s iA — G q. {A aa— r Iw G a iW ,(„�G''q J .1 W a ee iwui�A J J iJA .! J G' J in'P�PNw J Iw J P J :a P Piwo P J G NAo N C tg v J •o o •O iw J Ni.o= �! O C O („' J �1 G 1p Iw 'p:i-:''.ii:•:•:• �+'k;•;,rry,r':';if '6;• mmU W YmY e�oaY';ov�ov�u 0 0 0 .o 0 L. 4 o G o L% �`��cF�o G G o u o F;oFP�o �o 0 0 'v o �o b FO00°;oF e c b o ro c 3Y:'Q A4.• ;w;;a,:•O �¢^•��•: ......... A W C W IY W N IY C. Y W r— C1 T W •^ W— W V. r T r r Q G1 r C� r C� W r �+ G� �J r P P rl P �J b� !J P — P !.! P — N R� W �,1 b, �•• O. (J P N U �.1 LI — �.1 G� 00 G ..... J G J G V O V O �G V O ;A V G U Iw M IJ �O O 10 C M IJ M LI U U G IJ U IJ U I,J �O U O L J U b IY V �O J �O U L OJ F.l N IJ W �.1 U Op IY Q m ii U IY U W pf {J J V J b U W IY P A •••••••• ••••� •••••• .... ..........'.'C' ................. ................. ................. ................. .................. 00 N G Iw 1A IA 1.1 •O �D IJ O P P CO — P O iY G P J �.! •O F U W YO F. V a G J r — O a 00 a {J J J U J r— {J J M O CO .1 A:�N�:'••'•'�� '1••�•' '�" •� W IM a V r CO O N r P J r O CC V V V a 4 II v U V a G 00 P J J 00 V Q O V a a J N II G N G � t,J J �o iJ :� P y! �'' .O a q F b Y N J U ,�" a rvco:.:•.,..,� �':....... DETENTION POND< SUMMARY 100 50. 0 IN 200 Pend Watery MeerlMGroff 100-YR 100-YR WaNMmilface Water Surface Raleaaa Rate SCAIF: 14 IN' A Wet dB38.13 4929.10 1.00 B :::::jet 4923.21 4938. 10 0.80 C Wat 4931.00 4929.10 0.50 D Of 4B2511 4930.84 0.50 LEOEIp E Dry CB i3 Bt d938.00 12.99 F We1 dB 30 Od 4911.00 0,50 Q OEIS Dfy 4918 39 493138 13.70 DESIGN POINT EXISTING PIPES BASIN ID EXI511NG 5' CONTOUR dO = RUNOf1= COEfflCIENT _____ ---- EXISTING1' CONTOUR AREA IN ACRES �RBe PROPOSED 5' CONTOUR FLOW DIRECTOR PROPOSED 1' CONTOUR n W W W E E M BASIN BOUNDARY DRAINAGE SUMMARY TABLES <g sg wo te°w'b FTmk'i�ogF „a�p..bo Fwaa Of ��a$<°na oo<< U Q W 0 O O Y W a moo OJ a E wo w Q 0 N a ,ow oo m N ti o a 7 Q a � Y Z Q a Q 00 ] Q N Z w Q Ey J � U SHEET I Cf 1 JOB NO. 9201.02 i l CHL/NE SHEET 1 asn adds J -------------------- ---------- It`I— '"q�,? � � FF._yp YV / / / / NSr&t"7.81.L.F. 43-A6s \ ,-'O'm Qf✓ l / // / - «ff MSTPlG6 LF. IY RLP Fan / 1 m JJ.-ma �rr.-aas / / Vv rF..ars r.! ufs �� 1 @ q + \ `I•��/ / r l I / // / ' Fr-afv ]- MCE1 .afl . -11 11 7 $ I ` _ .M.R.1 ElfioLVFAR la0/ FJ.afX F.N. _ I _� uw S 'I` i ' SS 'doop, Irt --- z aff i i aeioE ezrneo g918'\® eJSTA(L I I e arr.-sold .u. I l /�� .r.allf mz�r LRA WA7ER QU4U7Y \ R e w IOEZT zf \ Z w o b lao / lxvE r—J 'A` POND A + A av I __ _ i I al TA4L ISl6 L.F el- J soda f-b' 1..1 I / AV3JA(C J!R AF. JS INSTALL BJ. LF. 13' S / / 30 ABS Je-ABS I I � I bV CG PPB .F._Je' d � l l�/ sLE srNEr� / / / �/ / \� ZVA 9RAW 9 \ « f _► Y ;\` V5' tl 0 r I /CLASS 9 A>RRAR / ,[ , 1+ \ — — 182B— INLE 16-) _ % J� F— } LINE 3J-I '1 / iY - % -JO' WE p I ' 3 AYSTAL( lee.e0 L.P. 11•AO3 � Z SkF saEr lr / �/. s to' r7ir R M l� 'IENRLW RY LW Z ... ---- ---- ---- - - - -- - --- •p ` 3 I F=. \lee Rs _ AlAtO / w w / / 6 Oi05S^AN /'aaa, Et - ff aanfl_ _ I _ I I Iw W W WATER/gLU1UTY/ _� « 31 I I I I£MPORARY L�RAYFL ND B / 19 z • iµ ~ 1 �► I • I INLET F/L ILR I 5 Mol Lf/L I£Rr / I �l'MSSPANI yh I { ] aaa 1 ,O• "or ryi I ,� it r �`• Z_ r... 'I _ _ _____ __ e ___-__ ___ 0 ` I rr..alni b i � � e q I� r e i i� I ' Q iI •\ I --- am \ �� t]POSSRAN i8T INC • I g 9ineara VERNON I �\ \ ]N Miwlna M. BW U fool C . Cdaeb Joe w W77-003 O' WME B31271W \ ( RJ Rev. \ \ w[2 OF 2 i - \ C L ORADO ST,4 TE HIGHWA Y NO. LEGEND Erisfm9 5Confau/ — — — E iafng 1' Lm(our _ -- Propa 5' Centaur Piq vw I -Coma Pa Po storm s RrooseJ RiproP Boam ewmeo-r Bosm 144ntl? lk AM Osagn Panf Q MK aracfim W► Plgooaa9 54f iviww PEAK LYSOMRW OSA a) 24 BIT a4 1.4 E, 058 02 0.6 812 loB.mr. 39 HI INN Os[ 0.2 a5 BIJ as Z8 112 Al as 2.9 814 a5 20 HJ BI a2 2.5 CI a2 0.8 H4 B2 1.2 46 C2 aJ 0.9 H5 BY V 38 Ci a5 1.8 84 30 11.6 C4 0..8 JJ H2 85 as a9 DI 0.4 11 Al Be as 2.9 02 as 1.0 12 B2 08 3J OJ 1.8 B lJ Be 05 IJ DI 22 14 I 14 B9 a2 28 05 22 1 2 Jl - ----------------------- - - -- - \��\ K LdSHEAEr�IT"A1 1 W I e I KEYMAP I I I PEAK p.Sf/IAROE PEAK L95CY/AROE O 0 0 0 0 I I I\ h 2-M ,a0-M SLB 2-YB l0o-W 1 I I (W (Ch) m5al (cbJ kel I— 1 1 I 02 09 JS L2 44IZD al 40 KI a 31 / 4 / A9 36 92 --2 -. .. A as 1.9 KJ a4 Is . L5 59 K4 a9 32 / ,// - �\ 1 a2 a9 K5 aJ 1.0 as ,.2 K5 aT alas 1.2 K2 a2 LO 1.5 58 KB al 05 Ll 42 as 30 / a5 I9 is IL4 as 30 ( 111 ' 1 rr-1a� Ar.-Wli I / / 1' / I 10.0-1IF f1IXV RJIW / � � l \ - I �M o IW i o _ 4 49" rr.-44 _ —4918. MATCHL/NE SHEET 2 - / !r.-NJI FI.�gJI � F. 4z J J O f— z O U z O U) O a w ad W Q z Q 0 c� z 0 Q C" C^ / ]IB W,M,, Xoy, BMIl. 0 von coon.. coM em-22e-=7 An n. OB27--0af I aOF INK T1 / 2