HomeMy WebLinkAboutDrainage Reports - 08/22/2014Final Drainage Report
For
Hickory Commons
Fort Collins, Colorado
Prepared for:
Hickory'Commons, LLC
c/o Charles Meserlian
1222 Trapper's Point Drive
Fort Collins, Colorado
Prepared by:
ENGINEERING
908 Laporte Avenue
Fort Collins, CO 80521
(970) 219-2834
June 28, 2014
Final Drainage Report
For
Hickory Commons
Fort Collins, Colorado
Prepared for:
Hickory Commons, LLC
c/o Charles Meserlian
1222 Trapper's Point Drive
Fort Collins, Colorado
Prepared by:
ENGINEERING
908 Laporte Avenue
Fort Collins, CO 80521
(970) 219-2834
June 28, 2014
ENGINEER'S CERTIFICATION
1 hereby state that this Drainage and Erosion Control report for the Hickory Commons
subdivision was prepared by me or under my direct supervision for the owners thereof and
meets or exceeds the criteria in the City of Fort Collins Storm Drainage Design Criteria and
Construction Standards.
Stacy j. Gowing
Registered Professional Engineer
State of Colorado No: 34290
TABLE OF CONTENTS
I.
INTRODUCTION ...............................................................................................
II.
GENERAL LOCATION AND DESCRIPTION ............................................... 1
AProperty
Location..........................................................................................................................
B.
Description of Property................................................................................................................I
III.
DRAINAGE BASINS AND SUB-BASINS......................................................... 2
AMajor
Basin Description...............................................................................................................2
B.
Existing Conditions........................................................................................................................2
C.
Developed Conditions..................................................................................................................2
IV.
DRAINAGE DESIGN CRITERIA......................................................................3
ADevelopment
Regulations............................................................................................................3
B.
Development Criteria Reference and Constraints................................................................3
C.
Hydrological and Hydraulic Criteria.........................................................................................3
V.
DRAINAGE FACILITY DESIGN....................................................................... 3
AGeneral
Concept............................................................................................................................3
B.
Specific Details — Detention.........................................................................................................4
C.
Specific Details — Stormwater Quality......................................................................................5
D.
Specific Details — Swales..............................................................................................................5
E.
Specific Details — Inlets and Storm Sewer................................................................................5
F.
Specific Details — Curb Cuts........................................................................................................6
VI.
SEDIMENT/EROSION CONTROL................................................................... 6
VII.
CONCLUSIONS..................................................................................................6
A
Compliance with standards.........................................................................................................6
B.
Drainage Concept..........................................................................................................................6
VIII.REFERENCES
...................................................................................................... 7
IX. APENDICES.......................................................................................................... 7
INTRODUCTION
This report presents the pertinent data, methods, assumptions, and references used in
analyzing and preparing the final drainage, erosion control and water quality design for the
Hickory Commons subdivision project (the "project").
GENERAL LOCATION AND DESCRIPTION
A. Property Location
The project is located on the north side of Hickory Street. The legal description
is: A tract of land located in the Southeast One -quarter of Section 2, Township 7
North, Range 69 West of the Sixth Principal Meridian being all of Lots I through 8,
Block 21, of the Riverside Park Subdivision, a subdivision of record in the City of
Fort Collins, except the West 5 feet thereof and together with the West Half of
the vacated portion of Fourth Avenue; and all of Lots 9 through 18, Block 21, of
the said Riverside Park Subdivision, together with the East Half of the vacated
Alley and that part of the West Half of the vacated portion of Fourth Avenue in
Block 21 of the said Riverside Park Subdivision, County of Larimer, State of
Colorado.
p_ .
z:
213 .
ZH7
Vicinity Map, NTS
B. Description of Property
I. The project site is currently undeveloped. The proposed use is multi -use
live/work project consisting of 26 two-story units in 7 separate buildings. The
project also includes widening of Hickory Street, utilities and site improvements
such as garages, parking areas, drive aisles, hardscape and landscaping.
III. DRAINAGE BASINS AND SUB -BASINS
A. Major Basin Description
1. The project site lies within the City of Fort Collins Cache La Poudre River Basin.
2.
The project site is located outside the I00-year and 500-year floodplains, as shown
in the following image from the City of Fort Collins webs�i+te:
f
B. Existing Conditions
The project site is currently undeveloped. The site is currently covered with
native and volunteer vegetation, and slopes gently from north to south at
approximately 1 %.
C. Developed Conditions
The site will drain from north to south through a series of storm sewers and
overland flow paths. The majority of the developed flows will ultimate drain
through a detention/water quality pond to a proposed storm outfall pipe along
Hemlock Street towards the west. A small portion of the flows on the west, east,
and south edges of the site will run off the site un-detained. These flows are
significantly less than the existing flows leaving the site.
2. The off -site storm outfall pipe will be a public line, serving adjacent properties with
the conditions discussed herein, in addition to the Hickory Commons site.
2
IV. DRAINAGE DESIGN CRITERIA
A. Development Regulations
I. Design criteria from the City of Fort Collins Storm Drainage Design Criteria and
Construction Standards were followed for this drainage report
B. Development Criteria Reference and Constraints
I. The proposed storm water release rate is 4.71 CFS, which is the capacity of an
18" RCP pipe at 0.2%. The outfall pipe is proposed as a 21" RCP, which has
capacity for 7.11 CFS. The remaining capacity of 2.4 CFS is allocated to adjacent
properties as shown on the enclosed Drainage Exhibit and Grading Plan.
C. Hydrological and Hydraulic Criteria
I. Hydrologic and hydraulic criteria is as per the City of Fort Collins Storm Drainage
and Design Criteria and Construction Standards.
2. Analyses are performed using City of Fort Collins spreadsheets and the
methodologies presented in Urban Storm Drainage Criteria Manual Volumes I and
2; Urban Drainage and Flood Control District, Denver, Colorado, September,
1999.
3. Please see the various computation spreadsheets in Appendix I.
V. DRAINAGE FACILITY DESIGN
A. General Concept
I. The general direction of proposed storm water flow is from north to south.
2. Storm water from the improved section along Hickory Street and the majority of
the site flow though a series of storm sewers to a proposed detention pond located
at the southwest corner of the site. Additional detention is provided within the
drive aisle. The detention pond discharges to a proposed off -site storm outfall pipe
located within the ROW for Hemlock Street. This pipe ultimately discharges to a
natural drainage way near the entrance to the McMurry Natural Area.
3. Although the off -site storm sewer is entirely located within the right-of-way for
Hemlock Street, an easement has been obtained from the City of Fort Collins
Natural Areas to accept the drainage discharge for conveyance to the river.
3
B. Specific Details —Detention
The treatment drainage area for the site is 2.09 acres, which includes the project
site and a portion of the Hickory Street ROW located along the frontage of the
site. Only 1.89 acres on the project site is able to drain to the detention pond,
however 2.09 acres is the calculated area that will be treated for detention by the
new detention pond.
a. The release rate for the project is proposed to be 4.71 CFS, which is the
capacity of an 18" RCP at 0.2% slope. It should be noted that additional capacity
is provided in the proposed 2 1 " RCP outfall storm pipe to allow for adjacent
properties to drain to this public storm drain pipe as discussed above. In
general, those properties are located along the north side of Hemlock Street,
west of the project site.
b. The drainage basin is 90% impervious, which requires 0.084 acre-feet of
extended detention volume. The water quality volume is provided at elevation
4973.19'. The calculations for the water quality volume are located in the
appendix.
c. The required detention volume was calculated using the City's rational formula
based detention pond design worksheet. The required detention volume is
0.196 acre-feet. The total required volume of 0.280 acre-feet is provided at
elevation 4974.70'. The calculations for the detention volume are located in the
appendix.
d. A relatively small amount of detention volume is provided in the drive aisle. The
maximum depth of the 100-year ponding in the drive aisle is 1.1'.
e. There are 0.20 acres of the site on the west, south, and east borders that will is
not able to drain to the detention pond and will instead runoff the site
undetained and untreated. These flows are generated by Basin B and C and
total 0.93 CFS for the 100-year storm and 0.18 CFS for the 2-year storm. This
is less than the existing 100-year runoff from the site, which is 2.79 CFS, but
more than the existing 2-year runoff from the site which is only 0.06 CFS.
2. As previously mentioned, the detention pond drains to a proposed public off -site
storm outfall pipe located within the ROW for Hemlock Street, ultimately
discharging to the Cache La Poudre River.
3. An emergency spillway path is provided for the undetained 100-year flow from the
site (20.8 CFS) plus the developed, detained flow from basin OS I (0.22 CFS),
located within the southern drive aisle for the site. The spill elevation for this
structure is 4974.88'. The depth required to convey the developed un-detained
100-year discharge from the site is 0.42'.
u
C. Specific Details - Stormwater Quality
Water quality is provided in accordance with Best Management Practices as
presented in the Urban Storm Drainage Criteria Manual Volume 3. Best
Management Practices; Urban Drainage and Flood Control District, Denver,
Colorado, September, 1999.
2. Permanent structural BMP's consists of extended detention within the proposed
detention pond. See the above discussion of the detention pond for more details.
D. Specific Details - Swales
There is an 8' wide swale with 5:1 side slopes to the east of the property
boundary on City of Fort Collins Parks property. This swale is designed to convey
133% of the 100-year storm for Basin B at a depth of 0.39'. This 8' wide swale and
landscaping adjacent to the 10' wide concrete trail will be maintained by the
developer as per an agreement between the two parties.
E. Specific Details - Inlets and Storm Sewer
I. Runoff discharges from Hickory Street are collected in a proposed Type R inlet
located in a sump condition. The drainage area to this inlet is quite small, and a
5' Type R inlet is more than adequate to collect the developed 100-year runoff
discharge.
2. The majority of the discharges from the site are collected by proposed Type 13
inlets in the inverted -crown drive aisle. These flows are conveyed along with the
flows from Hickory Street through a series of storm sewers to the detention
pond.
3. The minor flows on the western side of the site will be collected in a swale within
the sidewalk and conveyed to the detention pond.
4. 100-year flows are conveyed through the site with a combination of storm sewers
and the swale created by the inverted crown of the drive aisle. Storm sewer
calculations are included in the appendix.
S. A plugged storm sewer stub is provided to the property immediately to the west
of the site (Basin OS I) for future detained discharges. This pipe and
downstream pipes within the site are sized based on an assumption that this site
will be developed using a standard release rate of 0.2 CFS/acre (0.22 CFS). It is
important to note that the proposed drainage systems within the site cannot
accept discharges in excess of this amount.
5
r�
u
6. An off -site storm sewer is proposed to convey discharges from the site to the
Poudre River. This 2 1 " RCP has a capacity of 7.11 CFS. As previously discussed,
the release rate for the project site has been established as 4.71 CFS and the
discharge from the adjacent property 0.22 CFS. Since the release rate for future
developments contributing to this storm sewer is 0.20 CFS/acre, the excess
capacity of 2.18 CFS will accommodate 10.9 acres of additional development
from adjacent properties.
F. Specific Details — Curb Cuts
I. There are no curb cuts proposed with the project.
VI. SEDIMENT/EROSION CONTROL
Temporary erosion control measures will be installed with this project, as detailed under
a separate report entitled "Erosion and Sediment Control Report", dated 7/27/2014,
prepared by Apex Engineering.
VI1. CONCLUSIONS
A. Compliance with standards
I. All drainage design conforms to the criteria and requirements of City of Fort
Collins Storm Drainage Design Criteria and Construction Standards.
2. Proposed drainage improvements conform to the concepts and recommendations
of the Dry Creek Basin master plan.
B. Drainage Concept
The proposed drainage plan concept for
control of stormwater runoff and water
conforms to City of Fort Collins standards.
the project will be effective for the
quality for the proposed site and
6
VI11. REFERENCES
I. City of Fort Collins Storm Drainage and Design Criteria and Construction Standards
2. The Dry Creek Basin Master Plan
3. Urban Storm Drainage Criteria Manual Volume I; Urban Drainage and Flood Control
District, Denver, Colorado, March, 1969.
4. Urban Storm Drainage Criteria Manual Volume 2; Urban Drainage and Flood Control
District, Denver, Colorado, March, 1969.
5. Urban Storm Drainage Criteria Manual Volume 3. Best Management Practices; Urban
Drainage and Flood Control District, Denver, Colorado, September, 1999.
IX. APENDICES
Appendix I - Hydrologic Calculations
■ Peak Discharge Calculations
Appendix II - Hydraulic and Detention Calculations
■ Detention Pond Sizing Worksheet
■ Water Quality Calculations
■ Pond Stage -Storage Worksheet
■ Storm Sewer Calculations
■ Emergency Spillway and Swale Sizing Reports
Appendix III - Mapping and Plans
■ Drainage Exhibit (24"x36")
7
C Appendix I — Hydrology
CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD
Project Title HICKORY COMMON S
Catchment ID. basin Al. 100-yea Discharge for Storm ADesign
I Catchment Hydrologic Data
Catchment I D = Al
Area= 1.22 Acres
Peroertt ItrParviasness = 90.00 %
NRCS Soil Type = B A B. C. or D
` - Y Rainfall Information
I linch?rr) = C1 ' P1 ((C2 + Td)" C3
CDesign
Storm Retum Period. Tr =
100 y es> I input rerun period for design storm)
C1=
M50 l input the value of C 1)
Cat=
10 00 (input the value of Cif
Cat=
0 793 (ir+put the value of C3)
P1=
Z 51 indves [input onia-M praripti tion-see Sheet ''Cesign Ir•a:•
i
t
10. Analysis of Flow T'mro (Time of Concentration) for a Catchment
Runoff Coefidrx. C =
0.81
Overi oe Rurci CoefidMt C=
lerta a^ overlde C value if mifec, or leave dlarx to accept caoulatec C
5-yT ?:.noffCaeffioient C-5=
0.73
CWYIce f-yr Rl neff Ceeticient. C =
enter an Cverice C-F v3ILe 0 oes fed. or IEwe 7l>9na to a calculeleo C-�
Illustration
N
l
/��' w'rful LEA
l 1 Our
Read S f
el 50000
Flwr DUmdn
Nr-r► i B.a4�
A
-.-_--_
_
'',3ge,'
sa-
ve31�.
Grassea
Paved Areas&
?.,Cc
-?L
C.ew
`?_-y,'=_
Safe
S0r3im
Sh.3-ice. F3.e-S.c3:e=_
Cala,letrons
f,eQI01-31 I C = 11 Lo
PeakRtmoff Predidi in using Cornputed To diction using Regional To
RairbilIntensity atTc,1= 8.83irx—. °.a -fall Inter5ay at To,1= 724inch hr
Peat Fiewae. Cc= 8.72 cfs Pea. Flux^ate QP= 71C• cfs
1.9
CALCULATION OF A PEAK RUNOFF USING RATIONAL t9ETHOD
Project Title: HICKORY COMON S
Catchment ID: Basin A, 100-year Discharge for StormA Design
1. Catchment Hydrologic Data
Cat&i ei,tID=At
Area= 1.49 Has
Percent ImpervtoLaness = 9300 %
NRCS Scil Type = 8 A B. C, cf C
F. Rainfall Information 1 linchlhr) = C1' P1 f(C2 • TdM3
Cesigr Serra Relurr Period, Tr =
100 years
I inpu return percd for Cesigr star rri�
C 1 =
2850
1 input the value d C 1)
C2=
10.00
( input the value of C2)
C3=
0 793
(input the value d C 3)
PI=
Z91 in m
(input arahr pecipitaliar.-see Sheet'Cesigr Inb')
11. Ark*sis of Fbw Time (Time of Conoentratkm) fo► a Catdnment
Runoff CoeNiclent, C= 095
Overide Runoff Coefficient C= lenter On DVe ide C value if desiredor leave dared tD accept calculated C ;
5-yr. Runoff Coefficient C-5= 0"
Cverde fryr Runoff Coefficient. C = lent i an overide C-ff value if desiret. D, leave tlar. in accept caladaied C-`_ )
Illustration
N
Krrrk r
A
{�
IGarAi Oow
Resr IN
Flow Diswdei
c.ekr l
u.0 ."ry
5RCSL3-c
idlapre
S'tpt
ri[ael
titmse:
F'w.� d.�re3s&
T y[�
I.te3d,o�
=�e'y
Fs=_e:re
c3•e
S..ax
S . - - f _ S:rales
„or eys
ralculatldns
Reash
S�o =-
Ler tt
f-�r
%p CS
C
S
L
Rmff
Convey,
4ec_-,
Tdre
Cod
ante
Tf
Rft
t
CT -
input
input
output
input
output
output
Overland
3 54
1
0.
359
00
Computed
141
4.3t
2
Warn425
Tc =
789
Kagiona to= 1t l
Peak Runoff Prediction using Computed Tc diction using Regional Tc
R airfae l Wrens ity at Tc, 1= 8.42 inch hf Randall lrtensity at Tc, 1= 7.05 mJ,. fit
Peas Fbn+ate. Qp- 1o.55 Lfs Peat: Flomate, Qp- 8 93 cis
7
CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD
Protect Ttle. HICKORY COrM)OtlS
Catchment ID'. Emstng 2-year Discharge from Ste
1. Catchment Hydrologic Data
a"s"rrw+tlC= Bert
Ares = 209 Aa es
Psoent imperviousness= 200 %
NRCS Sod Type= a A S. C, ^ 0
1. Rainfall Information
1 (inc hbr) - C1 • P1 I(C2 s Td)^C3
- amigr S9rm. RslIum Period, Tr =
2 ymts Input retum period for design Storm;
C1=
2850 (Input the va6rrdC1)
Cr
10.00 tinpttthe value ofC2,1
C3=
13.79t3 Irphtthe value ofC31
P1=
0,82 imt es I input one -In precipitation -see Sneet 'Desi®r Irt
It. Analysis of Flow Time (Time of Concentration) for a Catchment
Runot Coeffroett. C=
3 33-
Overioe Runot Coeffdert C=
:enter an ovende C value if lesseea leave tiane m accept ralculatee C
5-yT. RLM11 Coefficiert C-5=
0.08
Ovenide `-yr. Ru•wt CoeffiaM. C -
lenrta an overide C-5 value d oersted. oT leave blanr. m accect ralcutsLc C-O
N
Illustration
-� wrxLwt
Rrmh 1 dw
RrmIs2 -r
_) Rrdndwc
Flow Dimdmi
r--
6blurwr
RCS 13rd
Ks.y
-'3c-
:�-^.
'ver;
Griae�
Fared,r-as&
Type
: ea Ind
FEi7
3x"- c
__ c
SA'alas
Sr3.':•. "a.Er S�3*s
-3:lrs
-
L'i 3:e:':35
Steet%0.
meysrx
C alct.latic rs
Reach
Sboe
-engtt
I.z I -
Fl,+:
Ft✓�;
D
S
L
c.rc=
_ -
-. ec,-n
Tine
CW
a oc
Tf
1rt
It
C-5
fps
n1nues
meet
"put
cuput
input
ytpur
output
Overland
0.0100
0 38
0m
40 1 0
F
Con-ps.ted
Tc =
4070
'egjcral Ic= i<,rt
Peak Runoff Prediction using Comptrtesd Te itbon using RegionalTc
e aria:: ;ry a: Te l = IAT inch" Rainfall IrtersiD, of Tc, l = 201 I,k. nr
cam• cic.v'•3tE = DOC cis Fc cl-"t-a[c.'Oc= 0.1-- d;
W
CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD
Project Title HICKORY COsh1AOH S
Catchment ID: Existing 10"ear Dischargefrom Site
I. Catchment Hydrologic Data
CatlTmer!ID= But
Araq = 209 Acres
Parser[ IrrpervhihSnss = 200 %
1vPCSSctTym= BAB.C.orD
1. RahnfaIIInformation Ilinch 0hr)=C1•P1/(C2+Td)"C3
Design Sbrrn cat-- �3 ix T- = 100 years I input feturn per ad fir design starrM
I rPht the value of C l )
10.00 I rput the value of C 2
C3= 0793 1 input the value d C 3)
P1= 291 rdres I input ore-hr pecipitation-see Sheet 'Design Inbi
IN. Analysis of Flow Time (Time of Concentration) for a Catdumert
Runoff Coefficiert. C= 0.X
OveideR inoff Cieffi dens C= lento a cvEr a e C cal Le oes rec, or leave Garr. r accept ceWallei C.)
°-yT P. niff Coefficient C-5- 0.08
G�'erce Syr Purmff Coefficient. C- ;enter a --vgioe C-5 value t des red, or leave blare c aocept calculated C-5 )
Illustration
N
Wr►:t.I
r<
Rrvh i
J
M DlnsWh
f
Carkhw..r
tboip
^S -a-c -ra.•,
T
peat;
=ratse=
eve eas &
Type '.'era:
_�<:.�
:;2.•e
5are
3v:s
3:a11ow Patted &oaks
_
':b aaicr.: �5
$fR4I Ffp0.'r
.Ar'R ndeU
11---7
11CJ
Calm laticr s
Re :h
= - -
.arch
MRCS
Raw
Fro,..
C
=
Puroff
Convey,
Velocity
Tir1>f
coo
Znta
V
T'
_
It
C;,
fps
M%%F
"D-t
rrput
OVIDO
Input
autprt
overianc
0.0100
490
039
0
t
3
4
5
Sum
430
-Iomct
sec Tc =
40.70
Hegioral Tc= 12.Ti
Peak Runoff Prediction. using Computed Tc dicion using Regional Tc
31r6II -!e ;rt; 3t Tc. 1 = 2 eS I-d-.. -• '.31^(jll at L I = e 97 r::r. ^(
Fr5•'Wc= z —d Gs Fe3.-1c.,'31e.CL= `u cis
F
CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD
Project Title: HICKORY COM LAC r15
CaehrnentID. Basin8.2-aearDscharoefor CtfsrteCesim
L Catchment Hydrologic Data
C.33Dhr.er,tI-_= B
Area= 0.11 ACRs
Percm Intpermusmss = 75:DD'.
MRCS Sal Type = B A. B. C. orD
11 Raffailkformatim 1(kwWhj=C1'P1(C2+T4"C2
:t •- Wit- �O-W. Tr = 2 mrs fmolt return nerc•1. `7r :.es,:- st "-.
C
C1=-3815if fttl the Mue v,
C?- fmpd the slue 7 C=.
C3.—'m u the A--,e d C3,.
..
Ptie<i�11nb';
It Arelyss of F1w Tine (Tkm of Cmm,ih tioN for a Cachnere
Coeficlert C = 0.51
3E =_--4, 3mCf lwt C= IertS 3r pnerr:F C '4ue A:ES'eC. Jr lea'+e Dlar�Y.toaroect ratLHE4 C
=_c=:CefioatG5= 0.54
ie rter an cr*rm G. 's IIE i` CS ireJ. or IE9',e pi3rk b 3Joept c9cLsaw C 5. j
Muskation
C
fV
Dow GLG[?¢
s.
M+-o
_. .5-.
-:..
2x
5^04
-3'.e`ArE35A
caiO'R�
?a=
Sa 3kE
5^3 V:r=3: e. S.t3CIE
Laws
cr:.`"
0.3P_ra3.'-
5^eet'c.,
'-.s--zt-r'
Peg" Te= 12V
PeakRurdfPredictionusingComputedTc edctimusingRegionlai Tc
-a..a..-terst; a:T:, I= r--n -'a'-ters.tva Tc, 1= 2.02 MCK tr
`ea, %:Tae. Cpw r9tri;nrafe, Qp ITTt ff
4-ckwyCortrors - LC P,atora Eas,r E :f STOPJ.'. E )Es. T: arc =-*-
10+242D72.109B AM
12
CALCULATION OF APE AK RUNOFF USING RATIONAL LIE THOD
Project Tale FlICKORY COM IAONS
Catchy erit lO Basing, I00-year Discharnefor %Yale B andOffsrte Deslm
1. Cathmert Fydrolow Casa
Camtrr'atID= B
Area= 0.11 Aces
=�rrnIrwJvu5ness= '•:
N R.CS Sol Tyne =- 9A. B, C. orD
1. Ravial Homriion 1Imwlv1h =C1 • P14C2 • Tc*"C
wood. Tr = 10D was 6rpu raur terDz. b Jes#:;r sorrr:
Ct =-1i= firpu the ' W t Q 4
C< 19.w0 (rnpu the slue { CZ
m=--- 'Sm fir -pa tresue,,i:T,
P7=.1 Inrhas irnpu St -Mt DK,7 Irt-,
It Analysis of F1wrTine (Tine of Concertrahonj for a Catchment
a. StC- �Dr
Jre'><F_•_`:-:ti_,r,C-e-tzar:,rr,3kCaloe0-es,rec.:rleawbJanktoammaptmtuC@yC.!
e-y Rum! Coa'Faart C-:• = D!4
O•atrde`-y Rur+oA!Coe9ieiantC= ert>a• _+er�3e: `.s.* `xsIrr..riea•redark wameptt:ak:JaladC-5.t
nl�rtrarw,
rr
tCrr G:� � 9R�w1C
Fbw Dtwr,kr
-
r'e3=ca
'k!k]
=3e:.k
�39_
5:. e•-
- . =�.{' °
PneralTc= 1,2'.7
Peak Runoff PmiJi tionusmgCtmµtedTc eddtmusing FitWnal Tc
rtersr.,vTc: _ "*. nChM Paj-�:;C l rteryrxTa I= `r
4ciaryComar ors - UO Ratonal Basin B IMV STORU Bads. T c r. ?aae'
1 y14D12.1D:38 AM
13
CALCULATION OF APE AK RUNOFF USING RATIONAL NJETHOD
Project Title: HICKORY COMMONS
Catchmertl6 B3sinC.2-vex Discharge to Ado-:ableOffsteRms
I. Cathmert Hydrologic Data
c4ml rertlD= C
Area= OD9 Acres
=erm-rt Imper towwSs=Do '.
MRCS Sal Type= 6 A., E. C. or
l Rainfall ktomubm I ticlvlO =Ct • P7 AC2+ Tcj'M
Design Siorm Peum Pww, Tr = 2 ,.ems Iinpa r4turr perDd is desCr, sc ,--
C.,=� fmgttte Md eofCn
C2:; Idw 6npuC tta •slue of CZ
C'. D lmputtte '+Auecdcl
P1= .82 en&415 (mote orp-nr t2upU a�w Shwt 2k— :r, Ir t ;
IlArrifyssafFkmTimm (TimeofC wetratioNfaraCAch-pvt
%rbfTCeftrrartC- om
O+er).E'R.unpf'fCDeftlertC= lemaano.endeC•alued*stw rle3'.eb6nktpamept'MCLA*e C.i
5-V. Runof Omfiicwt G5 = 0.35
Overde:-yFhavPCoeEi-antC= ertean�eriSeGS'aleraaia.cr'�ebait3cceptaicJateCC-5.;
pl �xtr3firr:
lu
3" b 1 81s.
IYsr h r
_7 Mr LwL u
Iwo Dtayr
C.,Ju..aa
B....Lq
r D.: C wA
np rl
oa:N,
ow=i
3 v;a t
' 5-:
2J 0.35
]:?3
3. T
z
SuT
Convaw%z
3.55
magona I c= ?V.l-
Peak RurdfPredictionusirgCanpAedTc eddionusing PbowW Tc
Fbrftl lnMstvatT c l= 3.01 rchtr Aantil lrtetsity3Tc, 1= 221 lndi,fT
Peak Fburae Op =-3 78 ct Peak Flowraw Oa =— UM crs
liokwyCcrtmpne - UDRaona Basin C 2y STORM CA-, Te atd F eakC
a 02a'Ir312.10:33AM
14
CALCULATION OF A PEAK RUNOFF USING RATIONAL METH OD
Project Titie: HICKORY COMMONS
CActmert IU 8asn C. •Wf-rear Discharge forAllavabde Off site Flov6
I. Cathmert Hydrologc Data
Cavrre-tlC= C
:re3= C:D9 Acres
Peruert 50:X"
N PCS frail T5ce= $A, S. C. or
t Rairf3l Irtormatim I (indlrh„ = Cl ^ Pt $C2+ Tdj'C3
Doren Stm Relum Penod, Tr = 133 \ears
rmou rieurn cerod trdesm st •r-
C' = -✓r'S
Iinpd the ,due of C1)
Cr- ITY5
rani t the ,sue ci CZ
C r-. 0.793
(rnPLa the *Mu* Of C31
P'- i.Fl indg
C6iTIrt)
It A raysis of Rwv T int (Time of Conamtratianj for a Catelmert
Runoff C,*fi::Jwt C = C 52
O`erltp Punetf Coef wt C = !emer an o*D* C `atue fidegred, a *z a blank malt aCulared C ;
:y Rurof Ccefawt :,5 _ 0.35
Ore 5-5c Runof Coegrmrt C = iertet an o mM C-5 Wm -f Issued, or km* dark ID acoept calcdai= C-5.
.�SIiC.d90[I
IV
c�3rv:a1 9s�
� `� Poor Dtasyn!
71
_Ia>t
MN
N31e6
59117Seei
5
:3leraa.s
91
i,r
IY. cs
-b*
I -C..
Fx
V
.-,
-
.. C-5
r%i o.mJ.
I"
ns
aao.r
-r.-. e:
PE;C3 - ] _ - -
Peak Rurm f Predctionusing CanpAL-dTc edrQionusing RegorW Tc
P3m€� rrerstyatTc 1 = V).49 rc tv Pa,•!al! Ina•Srtya Tc l = '38 mth••tr
ftimryCa mars - L C•Rator* Emr C *DV STORM Cads. T c am7 Peak,.^
1024D12.10 S3AM
V
Appendix II - Hydraulics
Detention Pond Sizing Worksheet
Hickory Commons
.C.. vdue
'C' 125
Area 209 acre:
Rekase Rate 1 4.71
DETENTION POND SIZING
ThJs is to convert % imp to a C value Pegmred detentes
imust�mert%x p. andC pernousl G- I 4,
Modrfied
ModAed
M EATER D fUDISH
C LI
51% Nov-97
Nov-96
PME
I nv
TIME
aimm.
isecs�
INTENSITY
30 rear
un4,1
Q 100
Ids1
Runoff
Volume
ife31
Release
Cumin. total
Ie3j
Regwred
Detention
(ft"3)
Required
Detenbon
uc-ft,
0
0
000
0
DO
0.0
O.DDOD
300
9950
2080
6238.65
14130
48257
01108
6D0
7.720
1613
%80.88
28260
68549
0.1574
5
900
6-S20
1363
1226412
42390
SIMI
0.1842
2D
12DD
5.600
11-70
140443
5652.0
83928
0.197r
25
1SDO
4.900
1041
156123
706So
85473
01962
30
18Do
4.520
9.45
170D424
847110
85262
0.1957
35
21DO
4.OBD
a53
17907.12
9891.0
80161
0.1840
4D
24DO
3740
7.82
18759.84
11304.0
745iB
0.1712
45
xw
3.460
T23
1952478
12717.D
6807.8
0.1563
50
30DO
3-230
675
202521
14130.1)
612Z1
0.1405
55
33DO
3030
633
2089791
15543.0
53549
0.1229
60
36DO
2-860
598
2151 a 64
16956.0
45626
0 1041
65
39DD
2720
568
2217D72
18369.0
38D1.7
0.0673
-D
ADO
2590
S41
2273502
19782-0
2953.0
0.0678
75
45DO
2-480
518
233244
21195.0
2129.4
0.0489
90
48DO
2380
497
2387616
22608.0
12632
00291
95
51DD
2290
479
2440911
24021.0
38a I
O.OD89
90
S4DD
2-210
462
2494206
25434.0
-491.9
-0.0113
95
57DO
2130
445
253,469
26847.0
-14723
-00338
00
60DO
2D60
431
256324
28260.0
-2427.6
-00557
105
63DO
200D
418
26334
29673.0
-3339.0
-00767
A
66DO
1940
405
2676036
31096.0
-4325.6
-00993
69DO
I %D
3.95
2725569
324990
-S2433
C 204
- D0
1.840
3.85
2768632
33912-0
-6223.7
429
Apex E ngineen rig ConBdentsal 511M13 Page
No Text
Pond Stage -Storage Worksheet
Hidcory Commons
Pond ID: Detention Pond I
Input
Detention Volume Required = 0.196 acre-ft
WQCV Required = 0.084 acre-ft
Total Pond Volume Required = 0.280 acre-ft
Where:
Volume = 1/3(d)(A+B+AB^0.5)
d = elevation„ - elevationMI
A = area of elevationn.i contour
B = area of elevation„ contour
Results:
100-year WSEL = 74.70
WQ WSEL = 73.19
Calculations:
Cumulative
Elev. Area Area Storage Storage
(feet) (SF) (acre) (acre-ft) (acre-feet)
70.42
0
0.000
0.000
0.000
71.00
777
0.018
0.003
0.003
72.00
1,522
0.035'
0.026
0.029
73.00
2,505
0.058
0.046
0.075
74.00
4,349
0.100
0.078
0.153
75.00
12,172
0.279
0.182
0.335
1U
C
il CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)
Proud: HickoryCormions
PipelD: Calculation forAllmatile Release Rate
T
Mciv
eslgn infc; matron ilnputl
ice i^:ecccce
Sc=
00D::0 fth
r.i3--:-,S ^-, 31.-
n=
0.0130
¢e ,.,13^xte
D=
18,00 Inches
"gn discharge
=
4.71 efs
„14th.r arm- Af=
4 JIC ,reciec C Er1r —e, Pf =
aff �u':'21 -.ngle Treta =
ull-now rapaciry Of =
1 _
-C ft
ft
lacla's
ds
•. -1
1=
171
i-3N ��ral AnGle <T�eta<'_ 1�, Theta=
-Ica aes An=
TCc .+1dh Tn=
h ettec oe,ir*ve, Pn =
F{ca 7ecr Yn=
Floc +elcciry Vr -
Discharge On=
Percent Full Flow Flow=
Normal Depth Froude flumber Fr„=
ZX
radars
sgft
ft
R
P.
fm
ds
of full flow
suberitical
1.5f.
118
340
1.22
? 0=
171
100. 00Re
0.i
atf �-tral Angle; O�T�*ta-c='_ 14. Treta-C=
'meal flc"area Ar-=
r rt,c�t t x .der Tc =
ritcal flowdepth Yc=
r meal Flcx V OLD Caf Vc=
ritical Deptn Freuo*Nurmar
I
raoia^s
s=h
R
R
fm
101
149
0.83
4f7
UW
1
r
CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)
Pro" Hickory Commons
Pipe ID Storm Sewer At (Note: 2.2E CF S bypass dovmstreamto pond)
�a Y60rtt uir�! .
.%iM 1r
t1 �
Iris: Sly Sc-
M1tar, i ;s r._ya1_,E n =
=is--.VLer D—
gn discharge 0=
OMAO
f:t
inches
ofs
0 0130
15.00
6.66
„II-flc'n Bre3 Al =
„l-flc%N oerec der irr_[e Ft=
atf Cer:rsl Angle Ti ewta =
utl-flow capacity Of =
1 -
sp ft
t
ra Mars
cts
—
? lq
6.66
all er-ral Angle O<Thets<3. 14) Theta =
Ic,% Brea Ar =
ccaidth Tn=
r enee oerimei&r Pn =
lo',v oactt Yr =
IC,% veiccrty Vn =
ischarge On=
ardent Full Flow Flow=
ornal Depth Froude Number Fr-=
' 25
radials
left
t
f,
t
fc-
CIS
of full flow
subcritical
tE8
11°
3 40
1. Z
430
6-66
100-OOU.,
0.65
If Cer::al Able'^,=Treta_n_114; Tneta-c=
rtical flca a*ea Ac=
Rica) tar mcl!t Tc =
iticaf Aowdepth Yc=
itical flc.! . elcaty Vc =
itical Decx- c,aoe'.:.rite hr_=
-
!aclars
3-ft
ft
fps
'=
1.00
°_1,-1
1.00
20
CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)
Propel. HickoryCOrrtf11on8
Pipe ID Smrm Sewer A (0.83 CF S bypass directfy overland to pond)
T
How 2149
U
I^v9: �Icoe
f.1ar^i^^ys ^->3f.f
gn discharge
„ILflca 3S-
., IFFIc �y .ti H:� ca�nl3cr
alf C tr91 AryiE
ull-Flow opacity
So= 000=0 ftf:
r = 00130
C = 2100 rcr,s
O = 10.05 ds
Al
Pf =
Theta=
Of=
Zat
;oft
ft
raotarn
ds
5.50
31.
1005
21 Cer:rai=.ngl=_;0<Tha-ta<^' 14,
Theta=
-:2
rooter;
Icn area
Ar =
Z ' 1
s ❑ ft
bG .vrJth
Tr =
' M
ft
'' ct:ec pe'r'rieE•
Pr =
2 se
It
Ic% elect
Yr=
- -2
ft
Ic.% ..4C cry
Vr =
L -f
fie
hscharge
On=
10.05
ds
'ercent Full Flaw
Flow=
100. 00 �z
of full flow
ormal Depth Froude Number
Fr, =
0.i57
subcrtical
aIf ::.•:rnlA -
,Mcai flGs 3'E9
r dicW trG a rS".
Mica! flowdepth
r itical flc.% vdccrty
r Rlpl::ecth
6
T huts-c =
Ac=
Tc =
Yc =
Vc=
rr_=
K
•a ora •s
sift
It
ft
fps
-
1.18
°%^
. 00
21
CIRCULAR CONDUIT FLOW (Normal & Cntical Depth Computation) 1
Pro)rct: FiICkOryCOFTrrX)ls
PipelD- 21" 0utfall Pipe
Aren
-e -
u
Ir o3t Slope So=
htwr.mgs r-•:31ue r =
Ciemeter C=
;n discharge O =
73000
ft ft
incf es
ds
0 0130
:10
T11
„IFtlrs 3e3 Al=
„14f1r:: ,,erec cgs-W.e• Pf=
aM sal =.-gke Theta
ull-Flow rapacity Of =
2=1
sph
ds
�.11
ill Coral A.mle ';: Theta: ° '=
Thata =
2T
racla-s
:.+area
An=
211
sgft
c %par
Tn-
134
ft
enec perimeter
Pn =
397
ft
:A7KT
Yn=
It
iw vekuty
Vn =
? 37
fps
sdtarge
On=
711
ds
scent Full Flow
Flow=
100.00%
of full flow
irmai Depth Froude Plumber
Fr,=
O.d7
subcrtical
Iculation of Cntical Flow Condition
If =+t-31 ,N* :.=T-e,, �214
Theta-r_=
1.?0
r27U3
mi fl-"ass
AC =
1.40
scft
d ICal tCC ,fit''
Tc=
174
ft
thcal ffowdepth
Yc=
0.35
ft
Racal flc.v v Nccig
Vc =
c, 04
fps
itiral Depth Ffoude Nurnca
hr.-
1 00
22
Hydraulic Analysis Report
Project Data
Project Title: Hickory Commons
Designer:
Project Date: Thursday, August 07, 2014
Project Units: U.S. Customary Units
Notes:
Channel Analysis: Emergency Spillway
Notes:
Input Parameters
Channel Type: Triangular
Side Slope 1 (Z1): 25.0000 ft/ft
Side Slope 2 (Z2): 25.0000 ft/ft
Longitudinal Slope: 0.0200 ft/ft
Manning's n: 0.0150
Flow: 21.8200 cfs
Result Parameters
Depth: 0.4200 ft
Area of Flow: 4.4104 ft^2
Wetted Perimeter: 21.0179 ft
Hydraulic Radius: 0.2098 ft
Average Velocity: 4.9473 ft/s
Top Width: 21.0011 ft
Froude Number: 1.9025
Critical Depth: 0.5433 ft
Critical Velocity: 2.9574 ft/s
Critical Slope: 0.0051 ft/ft
Critical Top Width: 27.16 ft
Calculated Max Shear Stress: 0.5242 Ib/ft^2
Calculated Avg Shear Stress: 0.2619 lb/ft^2
23
11
Channel Analysis: Swale B
Notes:
Input Parameters
Channel Type: Triangular
Side Slope 1 (Z1): 5.0000 ft/ft
Side Slope 2 (Z2): 5.0000 ft/ft
Longitudinal Slope: 0.0050 ft/ft
Manning's n: 0.0400
Flow: 0.6800 ds
Result Parameters
Depth: 0.3937 ft
Area of Flow: 0.7750 ft^2
Wetted Perimeter: 4.0150 ft
Hydraulic Radius: 0.1930 ft
Average Velocity: 0.8774 ft/s
Top Width: 3.9371 ft
Froude Number: 0.3485
Critical Depth: 0.2583 ft
Critical Velocity: 2.0391 ft/s
Critical Slope: 0.0474 ft/ft
Critical Top Width: 2.58 ft
Calculated Max Shear Stress: 0.1228 Ib/ft^2
Calculated Avg Shear Stress: 0.0602 Ib/ft^2
�J
Appendix III — Mapping and Plans
Fn
O
n
b
ffi
0
i
6
�
C
6
e
S
z
z
g
Y
0
�
Z 9g
W <oA
w "'
� W s
N
0
r
$
m
�
x
o
�
O
Q
J
0
Z
O
O
u
U_
p
S
SHEET:
C8 of C 16