Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Drainage Reports - 07/16/2002
Y OF e FINAL DRAINAGE REPORT FOR THE TIMBERS PI) Submitted to: LARIIVIER COUNTY June 28, 2002 I June 28, 2002 �I Mr. Rex Bums Larimer County Engineering Department P.O. Box 1190 Fort 11 I I 1 1, Collins, CO 80522 Re: The Timbers Planned Development Project No. 0695-097 Dear Mr: Bums: We are pleased to present you with this Final Drainage Report for the Timbers PD. This report was prepared based on Larimer County and City of Fort Collins criteria. We believe it satisfies all criteria for a final report. This report also includes discussion of erosion and sediment control measures that will be utilized during and after construction, as required by the August 1996 revision of Section 10 of the Larimer County Drainage Criteria Manual. It has been revised based on comments received from the City of Fort Collins and Larimer County. We look forward to your review and comment and will gladly may have. O� REc TS 3/'`47 te 6 Ed �uhrman, SS�ONAL.E EMF/sj Enclosures TST, INC. Consulting Engineers ENGINEERS 748 Whalers Way - Building D Fort Collins, CO 80525 (970) 226-0557 Metro (303) 595-9103 Fax(970) 226-0204 Email info@tstinc.com www.tstinc.com ansWgtr.,Orry questions you NO AV • = V 3213.5 B. , P.E i TABLE OF CONTENTS Pace 1.0 Introduction 1.1 Scope and Purpose...................................................................................................1 1.2 Project Location and Description...............................................................................1 1.3 Previous Studies........................................................................................................1 2.0 Historic Conditions..........................................................................................................3 3.0 Developed Conditions Plan 3.1 Design Criteria...........................................................................................................4 ' 3.2 Drainage Plan Development 3.2.1 Street Capacity . ......................................................................................5 .. 9 3.2.2 Inlet Design....................................................................................................9 3.2.3 Storm Sewer Design....................................................................................12 3.2.4 Swale Design...............................................................................................12 3.2.5 Riprap Design..............................................................................................12 3.2.6 Detention Pond Design................................................................................12 3.3 Erosion/Sediment Control Plan................................................................................15 Figures Figure1 - Vicinity Map................................................................................................................2 Tables Table 1 — Hydrologic Calculations Worksheet..........................................................................6-7 Table 2— Summary of Attenuated Runoff....................................................................................8 Table 3 — Summary of Street Capacity Analysis.......................................................................10 Table 4 — Summary of Inlet Analysis and Design......................................................................11 Table 5 — Summary of Storm Sewer Design.............................................................................13 Table 6 — Summary of Riprap Design.......................................................................................14 Technical Appendices Appendix A — Rational Method Analysis Appendix B — Street Capacity Analysis ' Appendix C — Inlet Analysis and Design Appendix D — Storm Sewer Design Appendix E — Riprap and Swale Design Appendix F — Westchase P.U.D. Supporting Documentation ' Sheets Drainage Plan................................................................................................ Sheets 1 and 2 of 2 Westchase PUD Drainage Plans................................................................... Sheets 2 and 3 of 4 I [l i Introduction ' 1.1 Scope and Purpose This report presents the results of a Final Drainage Evaluation for the Timbers PD. In accordance with the requirements of the Larimer County Stormwater Management Manual (LCSWMM), the purpose of this report is to present a storm drainage plan that identifies peak runoff conditions and provides a means by which to safely collect and convey runoff across the site. This report will evaluate hydrologic conditions for the proposed development to determine the location and magnitude of the storm runoff, and will use that information for hydraulic analysis of the proposed streets and conveyance facilities. 1.2 Project Location and Description The Timbers PD is a proposed 184 dwelling unit, 23 building multi -family residential development located in the South half of the Northwest Quarter of Section 8, Range 68 West of the 6"' PM in Larimer County, Colorado. The site is bounded on the west by Timberline Road, the south by the single-family Westchase P.U.D. development, the east by agricultural open land and on the north by land owned by the Poudre R1 School District. A vicinity map illustrating the project location is provided in Figure 1. This project is located entirely within the Fossil Creek Reservoir Drainage Basin. A master drainage study does not exist for this portion of the basin. An existing Fossil Creek Drainage Basin Master Drainage Planning Study by Simons, Li and Associates, Inc. in August of 1982,. addresses the upstream reaches of the Fossil Creek Drainage Basin but does not include the Timbers PD site. However, the topography indicates that the proposed site drains to Fossil Creek Reservoir. In addition, the Timbers PD is outside the 100-year flood limits on the FEMA 1 flood insurance rates map (panel #080101 0208C) of the Cache la Poudre River. 1.2 Previous Studies The "Final Drainage Report for Westchase P.U.D." (David Evans and Associates, Inc., ' November 2000) was reviewed prior to the preparation of this report. Pertinent information from this report has been included. i TST, Inc. I June 28, 2002 0695-097 _j FIGURE 1 INI VICINITY MAP SCALE 1" = 3000' 7. 16 0.1 hl r H; RM©N� RO DJ•. ..��� > • �,�,�, f .i 6L�N • RO-A 2 I I L� I I I I I I G I 2.0 Historic Conditions The proposed site has historically been agricultural in nature and drains in a southeasterly direction at slopes ranging from 0.6 to under 2 percent. It is currently undeveloped, with existing vegetation consisting of a hay crop. Fossil Creek Reservoir eventually receives all drainage from this site. There are no off -site basins other than the Poudre R1 School District property, located to the north that historically drains onto this site. The drainage from this site has been accounted for in our drainage analysis at the historic rate. This information was obtained from the Westchase P.U.D. Drainage Report as the combined drainage from the two sites (Timbers PD. and School District) passes through Westchase. As stated in the Westchase report, Timberline Road to the west of the site redirects flows coming from the west to the south towards Fossil Creek. No drainage from the west side of Timberline Road has been accounted for in the routing through Westchase by the Westchase report. At the request of the City of Fort Collins, conveyance for the west side of Timberline Road has been provided at a discharge of 8 cfs through this site and through Westchase. The 8 cfs was determined by extra discharge that Timbers PD. had in order to keep the runoff entering Westchase at the amount used by the Westchase report. C' TST, Inc. 3 June 28, 2002 0695-097 10 Developed Conditions Plan 3.1 Design Criteria The drainage system presented in this report has been developed in accordance with the criteria established by the Larimer County Storm Water Management Manual (LCSWMM) dated April 1979 and where applicable the City of Fort Collins Storm Drainage and Design Criteria and Construction Standards Manual (SDDC) dated May 1984 and revised in January 1997. Where applicable, design guidelines and information were also obtained from the Denver Regional Council of Government Urban Storm Drainage Criteria Manual (USDCM). Developed condition hydrology was evaluated based on the 2-year and 100-year storm frequencies as dictated by Table 2.3.1-1 of the LCSWMM manual. After reviewing the Westchase report, onsite detention is not required onsite, as Westchase has provided detention. Runoff rates determined by this report were compared for those by Westchase to confirm compliance with their design. Because of the limited size of the subbasins on the site, the Rational Method was selected to calculate runoff. The Rational Method utilizes the LCSWMM manual equation: Q = CfCIA where Q is the flow in cfs, A is the total area of the basin in acres, Cf is the storm frequency adjustment factor, C is the runoff coefficient, and I is the rainfall intensity in inches per hour. The runoff coefficient, C, was based on values from Table 4.2 of the LCSWMM manual based on the proposed developed condition land use. A composite runoff coefficient was calculated for each subbasin based on the percentage of impervious surface (C = .90) and pervious surface (C = 0.2-0.3). The frequency adjustment factor, Cf, is given on page 4.2-6 of the LCSWMM manual and is 1.0 for the 2-year storm and 1.25 for the 100-year storm. The appropriate rainfall intensity was interpolated from the rainfall intensity duration table in Figure 3-1 of the SDDC manual dated 1999. It was specified by the City of Fort Collins that this rainfall intensity information be used for the site. To obtain the rainfall intensity, the time of concentration was determined by the following equation: 1 tc=t,+tf where tc is the time of concentration in minutes, ti is the initial or overland flow time in minutes, and t, is the travel time in the ditch, channel, or gutter in minutes. The initial or overland flow time was calculated with LCSWMM manual equation 4.2.4-1: t;=[1.87(1.1-CCf)Losj/(S)0.33 ' TST, Inc. 4 June 28, 2002 0695-097 where L is the length of overland flow in feet (limited to a maximum of 500 feet), and S is the average basin slope in percent, C is the composite runoff coefficient, and Cr is the storm frequency coefficient. The formula limits the product of CCr to 1.0 and when the product exceeds this value 1.0 is used in its place. Gutter (or channel) travel times were determined by utilizing Figure 3-3 for the flow velocity within the conveyance element. The travel time was then determined by dividing the gutter flow length by the velocity. This procedure for computing time of concentration allows for overland flow as well as travel time for runoff collected in streets, gutters, channels, or ditches. After the peak runoff was calculated, attenuated runoff was calculated. This was done by combining all contributing areas upstream of a given design point. The time of concentration for the design point was taken as the greatest time of all the contributing subbasins. 3.2 Drainage Plan Development The proposed drainage plan consists of a combination of overland flow and gutter flow. The ' runoff will sheet flow across landscaped yards and common areas, then concentrate at proposed streets or swales. Gutter flow in streets and swales will be collected at low points via curb and area inlets. This developed runoff will then be conveyed through the proposed storm sewer system and discharged undetained to the existing conveyance channel designed and constructed by Westchase PUD. Subbasins were delineated based on the proposed grading. Final grading and basin delineation is shown on the Drainage Plans, which can be found at the back of this report. The Westchase conveyance channel has been designed to convey the developed Timbers PD stormwater and historic runoff from the property to the north. Therefore, the Poudre R1 School ' District property shall be restricted to release only what has historically left their property at a release rate of 17.1 cfs. In addition to the existing Westchase conveyance channel, Westchase has designed all of their proposed storm sewer and detention facilities to accept the Timbers developed runoff. The design flow used by Westchase for the property north of their property line (Timbers and the school site) was 201 cfs in their SWMM model. Copies of pertinent information from the "Final Drainage Report for Westchase PUD" by David Evans and Associates, Inc., November 11, 2000, are located in Appendix F. Additionally, copies of .the approved Westchase PUD drainage plan sheets are located in the back of this report. ' Basins A and B encompass the west portion of the site. Storm drainage from these basins will be collected by inlets and a storm sewer system in Zephyr Road and discharge into a swale behind Westchase. This swale has been constructed by Westchase. Basin C includes the east 1/3 of the site. Storm drainage from this basin will be collected by inlets and conveyed by storm sewer to a swale at the south property line. This swale will convey the drainage across Westchase to the main channel designed and constructed by ' Westchase. The results of the Rational Method Hydrologic Analysis can be found in Table 1 with the ' methodology of calculations shown in Appendix A. Table 2 shows the results of the runoff attenuation described previously. The release rate from the site (including the school site) is 139.34 cfs, compared to Westchase's values of 139.40 cfs (rational method) and 201 cfs I(SWMM.) TST, Inc. 5 June 28, 2002 0695-097 .,�' hm0000000 ,_oo oo oomo oo�n roots nooroMMr d0000000 `M N _ _ N N �O .� h ,,., _ d h b d Vl vt •-_ O� O� N �O d M r �O ' ': •'.':• •' :.: O d "R v1 M n M N d IR N M n d d d N 00 n 00 d 0 V1 N M N d 00 N '^"�:••�::.♦ d O 00 'O O N M r O n '+ �O O O� M V) M N 'nR oo d Vt h oo d O. MCt CT ....... 7 CI N N Ci N vi N O M M M N Ci N O d M N 7 vi 7 fV N M tV �G �C d O C� W 000 It In Od0 a h N `MO r N W r ri h 'n V` M h M O. 'n I b n b m .................... .��:��•:� 00 N N N (V 00 N N N N N N fV N N N �/1 N� N V1 N N N N N N N N N M N O N -I�I�I�I�I�IdlNlsl� _IQI�I�IAAI IMINI86INI6INI 1 v1 V1 h h w1 h h h h h h h h hh h h h h h h h h hh N N N N N N N N N N N N N N . .... .. . N N N N N N N N N N N 0 0 mm 0000000$$0000000000$ 00000$0 $00$$ V(:.:::: v n � Ow o0 O M a0 r M y M of O n �D r T O M M N T O O� N O O O M O o0 %0 %q 1O lO V w r r � b r b n r� h b Vf 00 V1 V1 �q r n %O N N N r N n C C C G G C C O G C O C O G C O C C O C C C G C C G G C C C G C C C '.... +.�. ii�'i ii'i "h N r 0 0 00 y O n 00 N �D •'+ M O O �O �O �D �D 10 M r V1 O Ul y N O O N It _ fn M M C1 10 N M d d n rn OO 6 0 0 O �•:':YY�:l+ ••-d d �/1 V1 �O � ^' N V1 �D �D 00 CT O� O N _ M d O _ _ N M d d ,..i �p d M M V1 •'•:..� a�a�aa�a� mmmmmmmm�,�,m�,mm �uo�uuu 000000 ������•�:::. �'::: •�� h h O N O� m oo m r O r �D ^ m V1 �D oo r vt N h m aO ao R V1 N� 00 'V�'::'::'�''�L V [� N m �p N �O m .•. Vl n N O� m m v1 n n m O� O� � T O� .. oo a O� m V1 t�l W � l� 00 10 < N Nl �1 ^ 00 ,� .+ l.: N Vl .+ 1n n r n m N „Nm O O }. •�'` v r v oo m m q v r v cc le m r m M %O r N Vl O o0 01 01 N 00 00 O� y O N r 2':"L �nmagnaoaNv�nanv%o lei ooam C 0 0 0 0 0 ^ N O n+ O^ O ^ H1 ^ 0 0 N^ O O O O N V1 V1 V1 N n O of vt v1 Vl wi V1 �D r Vl vt Vl q Ol �O N O n of h O N n O V1 � I� W ao U O� 00 O of N r aaaoira ao�aoiaiao6raaodadr noeraa+�er roc vi T oq er O OR V1 O1 q 00 r o0 `O r �O �O .+ O a0 N �D 00 0o � r a0 (3) aO V1Nt0O0�1 R0R0 ?.V+1 ?PNi NO� COOG� UN O�nG mCi 0 C� tbit m., m $h/��rmbO ^ t� cl vl"Ial I^It\Ialmlinlm r N N VI vl m wa nSn�F-"R� ao� .� r Z h h^ tm O .r. T ^ININININI^IOI olll�l�lolol lolololololololooglolgloo ololol0dl lolcl, :::: G': �+;, .•• V V Vt Vt �O b .- N V5 �O �O 00 O� T O N m O O .-� r N m �f Q ^� R m m V1 •::!:•m"� ^ t'>:ym <��aaa� a h b m mmmmmmmmmm�mmm N < Y1 �O r 00 O+ � " ..i „N,i .m+ � UUU�UUU N m 'V' 000000 o�N 7 ^� I 1 I ................ W Y m N N O b Q �i V P $ r P n N p b O N P p n „i O b N r N Y rl y n O V O W:'... m n N rf W P r G .O n_ r N m Y V b Y V` N r N N n P P N N O n T Y n '�: a�ryryry am=vrj��ro,� $o a W nary N e a nn 81 n ................. f Y- n N V h N N d d N b m P P N OA N ' '•'.':.'... :.::.:': ............. ••• •a' r N N N n N N N N N b b b n N N N N N b O O O O �' .ir'•• O W P m O P InP m P P r y P P b n n r N n e (' i;ft ❑ Z:•••:•.o'.'.� o;r�rP mmryryryo;a afNN a P m o bbOJ ob b-Y bnm n nn n m r r ob r r n n n n nC ................. .... = O. i s U iii.!r:.iii: n:...• w� m� e d d In $$$oo W W N W N W N N ryryrN P r P Mrry N 3 r r.py N W 4000 W W Nrnm Nm P,aryry o3 �'.::• •....•.•::. - r W W W' fV r r r r r .� r r r r r r- r ....i':iiFi �.... y W 4 .�C•1Sri:i y ":•'::.M::::• P' N N N P n n y a y �p ��pp O O n r r_ n n b N W W P r 00 r P 11 W r n P P P N N b W. ea+� M '. '.... ..:' �.....:.:.... 0 ryryry ryry ryryryryryryry ory ry ryryi�., -- - -- ry ry ry ry ry �`! �'! ��}!•:�.;. O O O O O O O O O O O O •y O Y O O O O O O O O O O O O$ O O O '••' ''' .••• - r b b r W V N O n m b P 0- N b P b. b h W V W N f N P b N n Y n r o b o P b N n •O Y `O N n b b n `O b o b 0000 0 0 0 0 0 0 0 O O G O O c o o 0 0 O O 0 0 O O O 9 im aann�e N FOR ory ory S$ n w=n ORa$a $vri• o m no ry e r r OO 0• r O r eV fV N N W .6 w O 3 �iiia'Fi}ir 4 n o v� 6 d r tt��11 y IL 4 0 O m b 4 fbL Gay C N 0.❑ b " n ❑ y 6 :�.'.ID'. b <`66 m N r �O.f+m ❑ r Qi N W gym❑ N6 U nn nr� ?'F.iiQ�Q:•:y� < ❑❑ m m m m m� � m ff m � O Y. v�n!❑'1 o: R7 on 0 'e :;':i: n 2rodP Wm r bNf znro d N z? - o •:.:'.ftl'.'� _ :•.0:= N n OI ..... C ...,.. < 61 U m I 3.2.1 Street Capacity Four street sections (public streets) will be used on the internal streets: 1.) A local street section with 30 foot FL -FL width with vertical curb and gutter with a detached sidewalk, 2.) a local street section with 30 foot FL -FL and neckdowns of 24 foot FL -FL width with vertical curb and gutter and a detached walk, 3.) a connector street section with 36 foot FL -FL width with vertical curb and gutter with a detached sidewalk, and 4.) a collector street section with 50 foot FL -FL width with vertical curb & gutter with a detached sidewalk. In addition to these street sections, the driveways between the garages have 30' between the buildings. This section has an inverted crown with a 4' valley pan. Street encroachment criteria for the streets was taken from Table 5.1-1 of the LCSWMM for the minor and major storm events.. The minor event (2-yr) criteria allows no curb ' overtopping and flow may spread to the crown. The major event (100-yr) criteria allows for flow depths of up to 18 inches over the gutter flowline. For this event, the width of flow was limited to back of walk. All of the streets meet these requirements and will function below the allowable capacities. The results of the Street Capacity Analysis can be found in Table 3 with supporting calculations presented in Appendix B. 3.2.2 Inlet Design ' CDOT Type "R" curb inlets were used to collect 100-yr. runoff from low points in the streets. The maximum ponding depths for the inlets were set such that flow would spread to the R.O.W. (back of walk) were possible. Type "16" valley pan inlets are used in some of the driveways to collect storm drainage. ' All of these inlets are in sump conditions, with maximum ponding set such that storm drainage will not overtop the sidewalk and flow into the adjacent streets. ' CDOT Type "C" inlets were used to collect 100-yr. runoff from the swale west of Regal Road. ' The inlets are connected to storm sewer systems that convey the runoff to the swale. The results of the Inlet Analysis and Design can be found in Table 4 with supporting calculations presented in Appendix C. ' In addition to these inlets, curb cuts have been designed at the back of driveways that do not have inlets. These curb cuts have all been sized to pass the 100-yr storm ' drainage through the curb cut without overtopping the curb. They have been sized base on the storm drainage from the largest 'driveway' basin. ' TST, Inc. 9 June 28, 2002 0695-097 ' ICI V N M1I HI , yl ' ei ' Ivi ' 09 09 aOIN IOIoIOloIN1-INI -INI -1 IWMI -Ie I -INIw-I M O O N 21 i t f�1 hh i M en M C h 42 h Ili C M V�1 ROD I�I�I�I�IMI -41-i'Vl -I IWI -ICI -I�I� a�n o,+ ma�o van vl�n nor a�n �o r ad 44 01010101010101 1oIoIoloIcI I 0-I01!I!I!I`.I�I!I IO101!10Io15100 a'a H�aa'ao/aaaa aaa'aFFF W H 4n F V O O 3 fig. r 0"'i�O00 300 E E O F <a mmwmmmm�m �i �idduv� 0] - W U C7 GO �I�I I-I-1=1=1=1=ININININI IMIMIMIMIMIMIM 3M■E F W W Z a FZV FU[Zil 0 0 C C O 0 eo h 60 G1 rh y+ O in r- 0 0 C'. N mc O C N N N O N N N NIcI0�I I�INIoII�INI oIlIIINlI,: 0 � ql I�I�I_I�la Q N 0�Iw Vi (� NI00 N �I!I!l I!I00ICoICoICoIOQI !I00IQ*IOQlololCQlOQl IooIolo1009 O O O O 0 0 0 0 0 0 O OIOIOI 1�-11- NIM2121!1 nI^I�I7I�I$I$I�I I$I$INI� 'I"I`I I�I^I2III0I�I'i .. OR .I IOINI I�lololo 0 0 0 O O O O O O O O O O O O O O aaza za�aaaa�aa��&z� rr r r r aa�a r wwww mw��ww�www�ww� ww�w a av, v, -H1N vi �o �o ooaavo— en —na ��-1GZOaa5 N6NiNQ F FFF FFFF�"'E" HFFFFFFF FFFF tt 11 a m u 1 1 3.2.3 Storm Sewer Design The storm sewer lines were analyzed with UDSEWER. The pipes were sized such that the hydraulic grade remains below the flow line of the proposed inlets in the 100-yr 1 storm. Storm Sewer Line ST-1 conveys water from the west 2/3 of the site. The majority of the 1 system is in Zephyr Road, with laterals connecting various inlets in the driveways and Owens Avenue. This line has also been sized to convey the historic runoff from the School Site to the north of the Timbers. In addition to this runoff, a storm line has been 1 extended to the west side of Timberline Road. The system has been sized to accept 8 cfs from the west side of Timberline Road, which was determined so that the overall release from Timbers into Westchase would not exceed the 139.4 cfs pre determined by 1 Westchase. The 100-yr water surface at the downstream end was determined by a normal depth calculation in the downstream swale. 1 Storm Sewer Line ST-2 conveys water from the east 1/3 of the site. The 100-yr water surface at the downstream end was determined by a normal depth calculation in the downstream swale. 1 The results of the Storm Sewer Design can be found in Table 5 with supporting UDSEWER results presented in Appendix D. 1 3.2.4 Swale Design Along the south property line of the project, is a swale with a 2' concrete pan. This 1 swale is used to convey storm drainage along the property line from both Westchase and Timbers. It was sized to convey 133% of the 100-yr runoff in these locations. 1 The swale from ST-1, around Westchase, was checked to verify compliance with the Westchase drainage report. The water surface in this swale is below that calculated by Westchase. 1 The results of the swale analysis can be found with supporting calculations in Appendix E. Documentation of Westchase's calculations can be found in Appendix F. 1 3.2.5 Riprap Design 1 All of the proposed .channels and swales were designed to convey runoff at velocities that would not promote erosion. However, outlet velocities of the storm sewers will require riprap to prevent channel bank and bed erosion. Our calculations indicate that 1 Class 9 riprap will accommodate each of the pipe outlet conditions. The Class 9 riprap will be buried as specified by the criteria. The results of the Riprap Design can be found in Table 6 with supporting documentation provided in Appendix E. 3.2.6 Detention Pond Design 1 There is no detention designed for the Timbers PD. All proposed Timbers PD storm drainage facilities have been designed to convey the 100-year storm event and will ' TST, Inc. 12 June 28, 2002 0695-097 TABLE 5. SUMMARY OF STORM SEWER DESIGN i. !iL ST-1 SWALE MH IA 91.3 54 RCP MH IA MH ID 77.3 48 RCP MH ID MH IF 77.3 48 RCP MH IF INLET IJ 5.5 15 RCP INLET IJ INLET 11 1.2 15 RCP MH IF INLET 1K 20.9 24 RCP INLET IK SCHOOL SITE 17.1 24 RCP MH IF MH IG 54.6 48 RCP MH 1G INLET IN 9.5 18 RCP MET IN INLET IM 7.0 18 RCP INLET IM INLET I L 3.3 15 RCP MH IG MH 1H 48.9 42 RCP MR IH INLET 10 1.9 15 RCP MH IH MH 11 48.1 42 RCP MH 11 MH 1K 25.9 29"x45" Ellip RCP MH IK INLET IQ 8.4 24 RCP MH IK INLET IP 11.3 24 icp MH IK MH IL 7.7 24 RCP MH 1L INLET IR 7.7 21 RCP MH 11 MH IJ 25.9 30 RCP MH IJ MH IM 8.0 18 RCP MH IM MH IN 8.0 18 RCP MH IJ INLET IA 17.9 30 RCP INLET IA INLET IB 16.6 30 RCP INLET III INLET IC 7.9 21 RCP INLET I C INLET ID 2.0 15 RCP MH IA MH IB 18.8 27 RCP MH IB F.E.S. IA 8.9 18 RCP MH IB MH IC 13.9 24 RCP MH IC INLET IF 6.0 15 RCP INLET IF INLET IE 4.2 15 RCP MH IC INLET IH 8.0 18 RCP INLET IH INLET IG 5.7 15 RCP ST-2 SWALE MH 2A 37.2 36 RCP MH 2A MH 2B 37.2 36 RCP MH 2B INLET 2A 14.9 24 RCP INLET 2A INLET 2B 7.9 18 RCP MH 2B INLET 2C 22.8 30 RCP INLET 2C MH 2C 21.6 30 RCP MH 2C MH 2D 21.6 24"x38" Ellip RCP MH 2D INLET 2D 9.0 21 RCP MH 2D INLET 2E 12.9 24"x38" Ellip RCP TST, INC. CONSULTING 4/5/2002 ENGINEERS 695097-HYDIALS 'Co 'to In .-i a r v v �0 0 1 0", 0 0 00 N N to en r-- 1 kn h n 06 b <u 1 discharge into the existing Westchase PUD conveyance facilities. Westchase PUD has ' designed all of their conveyance and detention facilities to accept and route the developed storm runoff from the Timbers PD. From the Westchase PUD detention pond, all release rates shall be at the historic rates associated with these two (2) ' projects. Copies of the SWMM modeling and drainage plans designed and prepared by David Evans and Associates, Inc. in the "Final Drainage Report for Westchase PUD," submitted on November 3, 2000, have been provided in Appendix F at the end of this ' report. 3.3 Erosion/Sediment Control Plan ' The grading of The Timbers PD will be consistent with the approved Larimer County storm drainage and construction criteria, therefore minimal erosion control efforts will be necessary ' during the construction of the project. A concern regarding sediment transport from the site is the single-family lots under construction to the south of the site. During construction, this concern will be mitigated primarily by temporary structural measures of silt fence adjacent to areas that drain offsite. Additional measures will be used upstream in the basins by installing gravel filters over all of the inlets and curb openings and straw bale check dams will be installed in the swales were required. In the swales along the south property line, erosion of the soils is ' not a concern due to the low velocities. Upon completion of the utility work, the roads will be paved and the entire disturbed area of the site will be reseeded and mulched to provide soil stabilization until build out. Elimination of bare ' soils by pavement, riprap, or established vegetation will help eliminate the potential of soil erosion caused by storm runoff. Since it will take at least one growing season for the vegetation to establish itself, it will be necessary to leave the structural measures used during ' construction in place for some time. The developer will be responsible for periodic maintenance of the erosion control facilities during construction and the warranty period. At the end of the warranty period, and with the approval of the city, the developer will be responsible for removing ' all of the filters and silt fence. It may also be necessary to flush and remove any sediment that may have built up in the storm sewers. It is anticipated that once the buildings are completed an irrigation system will be installed and the common areas sodded. If there is to be a delay of more than 30 days in the construction of the buildings, the disturbed areas will be reseeded and mulched as described above. The Drainage Plan sheets, located at the end of the report, show the location of the proposed temporary and permanent erosion control measures. These measures are also shown the Grading & Erosion Control Plan sheets in the utility plan set. ' TST, Inc. 15 June 28, 2002 0695-097 1_l 1 1 1 1 1 1 A 1 1 1 1 1 TABLE 5-3. CONSTRUCTION SEQUENCE FOR CONSTRUCTION PROJECT: TIMBERS P.U.D. STANDARD FORM C SEQUENCE FOR: 2002 COMPLETED BY: EMF DATE: NOVEMBER 2001 Indicate by use of bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. MONTH OF CONSTRUCTION 1 2 3 4 5 6 OVERLOT GRADING WIND EROSION CONTROL Soil Roughing Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temp. Seed Planting Sod Installation Nettings/Mats/Blankets Other STRUCTURES: INSTALLED BY CONTRACTOR MAINTAINED BY: CONTRACTOR VEGETATION/MULCHING CONTRACTOR: TO BE DECIDED BY BID DATE SUBMITTED: 11/15/01 APPROVED BY CITY OF FORT COLLINS ON F [YLSQ]� ;I' X\ & 0 a 0 1 0 NI�I�ININI,piOI Ir OI 1p 09 MIq O O 00 �O O m N N M N MItVIM VII V'I �I aI MINI It IIn C- Ia! In rl: " V!IM "I"I0-I0-I".lal IN al Ihl^�VII 1-i 09 c INTO " INININ NININ N NINIV NI9I " �Imlvei, .n - veil IM �O 1 N �O of a v7 M t� h O N IVIOIMl I 0 Vf O Vl `b' " wl O Y1 O O O O O Q O vl O O O" 0 0 0 Vt V O� „ v h DD b b 00 M „y b .. r b Vl r N M N r N N .................. :::;. ......FY1........ :� •. Vl V7 V7 h Vf h h Vl h h h h Vl h V7 V7 h h h h h h h h N V7 h h V7 V7 V7 h h II'1 . N ...... ... N N N N N N N N fV fV N N N N N N N N N N N N fV N •''''"''''+:' OO lo oo0000pO 00000 O O O O O O O O O O O O O O O O S S O O O O O O O O S O _.c r%o aIomo MCG IRM Mvio��o%aOM MNaorn N 000Mom V. �O �O �O �O Vl �D l� n b b � r b n n h b h 00 I Vl �O Vl t� �D �O � N N N h N 1� �y 0 0 0 0 0 0 0 O O O O O O O O C O G G O O O O O C G O O 0 0 0 0 0 0 '.:.'.d..�:.": N 1� O p 00 � O l� a0 N �O •-+ M O O �O �O �D �O �O M 1� h O �/f a N O O � of N wl N 1� � T a M 7 a{ N fV t� rf M 00 N N V •" en M M M �D N M O� a{ r a O C C O O .+ G 0 0 G G G G -'r O r G G C --.� 0 0 c`! •'-C C G O O 7 7 Vl Vf �o b 0O rNM V V 'It M M h C04M M M M M M M N + r N a��Va�a`aO M� caNmVw' Val,�wO lm� 0w0 Oa,� mra,.mr NmNM~a h b 'm uu�uu 00M 0;V 0h 0b 0 o� �Q (j 51 W F �U 2 6 vi a wi a{ Oz Oz m O\ O+ h t+l m N1 r N r O N of ao b O � N t+t AI o '+ ,':; .� n N .-� of r• r r ri 00 6 O r Iq NI CR r m O ON hw b V n a H1 b h ONO 't "i b b b b b r a O .N+ eel ONO h b .-� N1 T O� O� 00 O 09 G\ m O V O� N1 Q+ O O� '+ l� m m CT CT m O V1 N r O� O\ m T r O M r v h O\ '+ O O\ m �-+ h v O v h h O\ '+ O m ...� m y m h N b O r N r b r m m r m b b b r .- O m N b m m CT r r m O� r b b m M N N N N M rt N N N N tV N N N N N tV of N N h N N N '+ N �+ N O N N N b b O\ a h N ONE O h vi ri .- r i V V ri 00 00 ri 06 �I`ol�l`�I �I�I�I I�Ityl oil�G l�G I'�I�I�I MI $Ib vlr,: t l -:I11 rlrlh rn r r. m r i r C G G -% of ao .-+ ni _INININ�NI_IOI I_I_I...I°--o�" �INl O PICTIOOI OBI i v �Iwi M Irnlolm h„ � � �I�lal�l I�I�I RNINIIII1RSIMIA- FAM' _...._. 000hhIn h In m m h le h In m rn rn h 000000h�000000 ohhO000b OO000h h v, a ry ry h oho o h b h h In :::::... o o ..; :.;.�;:..+ o.• .-oo 00000c000-%o -ioo-�000000 00.%0.%0 L: :1 ::: �'Fi':'Fi b r N h b b m CT O� O N Nl 7 O ..• ..+ N t�l '7 � V rl rf h .W":'F? b m N O h b r m O\ O� .-+ •-+ „Nw .�N Al 7 h b 7 h b wmwmmogmmaocamaamm+ c�c�uu�u� 000000 U 0 U v� V W �n O J 'J I 11 •': •'•::: •':•J'•��•�•� m d N N O .+ N O T O � r N N m T O `O P W...V W n N nl m• r 1� r n N m Y O b P N n N N n P OTi N N � T T Y m� ................ a :...a::'.•. nnNNn NNNNNb b r NNN yNNb P P b oo 11 11 O m n N nN y r o°• Z...._:.....:...... < mod::::::::::. �: L.:Y n P T yy n �O T n n P N N m m d d ry ry d N (� 1� N P O� P m 00 N b `O W b b n yy m, T T 1� r T m n r O b r ^ ^ T r T r (] 4 d N.;.$:- ^�vryry^I m«Yj$000 om mry�I�N V���Y rv''l o oo v.nn W,� W ao��`� 03 8 N N Y N n N N W W ro N N N N T T T f d' T d e T Y `C V b n1 a d O g V O Y N N V yyyrr''............ Y al d `O b b `� � Y Y ry ry b b r� h r b G n b V Y V �O n n m w� m• P O� fy N Y '[M.•. .y � r r y1 :'::. T..'...'....'� y A4Y NEI 3 8 - r -- -- - - -- - - - 'i:�iiii:!^ � $E 8 E; 8888888 _8 8 888 888 $8 e 8 88 8 8 8 u '::':' •({yam••::: r Iq b b n b N o T m b P o Vq b P 1O b Npypypy a m N m N d b N P b N T a n n p b o P b N T b ♦ `O N T b b T b b O b 0. O 0• O O O O O O OO 0• 0• O O 0• 0. 0. 0• 0. O O O 00 O O O ..:: .'...... ::'.'�.'•':M T a r r V N� b f m0 O O O mm m P � Y V d O N O N n O b ' 4n yO u 3 s y1Z.; N 4 W W a r 0. M �ry ro a b 0.1m O��pp ono GOp p an :•:'::..p¢ a �i Y .:o m p n N m w p U d V in pp mmmmmm m a �p O $$ppppm p U (�i U '''m y?� "'r •^• •: < (� N O m •"::••.GJ. `O N Y T ry N ry n N N N� *Q w Mal< mU m N CLIENT: JOB NO: 0695-097 mwEcr: Timbers cALcuLAnONsFo0.' Runoff Coefficient MAOEBr: EMF GATE: 10/3/01 SHEET: 1 OF 1 COMPOSITE RUNOFF COEFFICIENT: (Based on values from Table 4.2 LCSWM) % Impervious/Pervious based on proposed layout with areas determined by Autocad. C = [(%PERV)(COEF PERV)+(%IMP)(COEF IMP)y1 SUBBASIN PERVIOUS AREA IMPERVIOUS AREA COMP. C SUBBASIN PERVIOUS AREA IMPERVIOUS AREA COMP. C % COEF. % COEF. % COEF. % COEF. Al 73 0.3 27 0.9 0.46 C1 53 0.2 47 0.9 0.53 A2 33 0.2 67 0.9 0.67 C2 40 0.2 60 0.9 0.62 A3 35 0.2 65 0.9 0.66 C3 44 0.2 56 0.9 0.59 A4 30 0.2 70 0.9 0.69 C3.1 28 0.2 72 0.9 0.70 A5 34 0.2 66 0.9 0.66 64 30 0.2 70 0.9 0.69 A6 53 0.3 47 0.9 0.58 C5 37 0.2 63 0.9 0.64 A23 43 0.2 57 0.9 0.60 C6 40 0.2 60 0.9 0.62 SUBBASIN PERVIOUS AREA IMPERVIOUS AREA COMP. C % COEF. % COEF. B1 25 0.2 75 0.9 0.73 SUBBASIN PERVIOUS AREA IMPERVIOUS AREA COMP. C B2 17 0.2 83 0.9 0.78 % COEF. % COEF. B4 33 0.2 67 0.9 0.67 OF1 100 0.2 0 0.9 0.20 B5 38 0.2 62 0.9 0.63 OF2 100 0.2 0 0.9 0.20 B6 37 0.2 63 0.9 0.64 OF3 100 0.2 0 0.9 0.20 B7 24 0.2 76 0.9 0.73 OF4 24 0.2 76 0.9 0.73 B8 36 0.2 64 0.9 0.65 OF5 Undeveloped 0.20 B9 28 0.2 72 0.9 0.70 OF6 17 0.2 83 0.9 0.78 B10 19 0.2 81 0.9 0.77 B11 48 0.2 52 0.9 0.56 1311.1 33 0.2 67 0.9 0.67 B12 44 0.2 56 0:9 0.59 B13 15 0.2 85 0.9 0.80 B14 53 0.2 47 0.9 0.53 I C J T Mo INC. Consulting Engineersim CLIENT /"//-RAGA./ �i�7 r/4,eTA�E.�S JOB NO. PROJECT _,34 GLc P�"�. CALCULATIONS FOR JSu.uQFf-- MADE BY X /X f DATE �o �� /"/ CHECKED BY DATE SHEET I OF Z . _ �o �GlG `A+«HL�47lorlf �/!t�/yT%�<AG i�� . �r/�Nf�� • /i1e'TiVOfj - . INC. Cons Consulting En im cUEM /�IZJAAt� NO. OG95-4-97 PROJECT k, /v�•n.O�ta Py' D CALCULAnONS FOR REWO FF ' MADE BY G r DATE CHECKED BY DATE SHEET OF Z ...�N,4N�ye2 I 6tiTTEiz �vw : .. - " aE 17EF�dE'D i45 Ftov '!I•� S�'�3 '.c'see CN!4�un/EC.S, ' Gt4eE .� Z.._.fievrt riI/w .6eoTl A &, +f ?d 6u7reMS += Gy4wJUEzS,• ' 7Mre T,t t vez TncE : i - I .. .. . , r _ , , I , .r , y r _ .. .... _ _� ---.— _— a _•_ _.• � _ 17nFn7N.A ' Table 4.2,6-1 Runoff Coefficients for Rational Method ' (From: American Soc. of Civil Engineers and Water Pollution Control Fed. [1970] and Seelye [1960]) ' Character of surface Runoff coefficients F.Ange '. Recommended ' Pavement --asphalt or concrete 0.70-0.95 0.90 Gravel, from clean and loose to clayey and compact 0.25-0.70 0.50 ' Roofs 0.70-0.95 0.90 Lawns (irrigated) sandy'soil Flat, 2 percent 0.05-0.15 0.10 ' Average, 2 to 7 percent. 0.15-0.20 0.17 Steep, 7 percent or more 0.20-0.30 0.25 Lawns (irrigated) heavy soil ' Flat, 2 percent 0.13-0.17. 0.15 Average, 2 to 7 percent 0.18-0.22 0.20 Steep, 7 percent 0.25-0.35 0.30 ' Pasture and non -irrigated lawns Sand Bare Light vegetation 0.15-0.50 0.10-0.40 0.30 0.25_ Loam Bare 0.20-0.60 0.40 ' Light vegetation 0.10-0.45 0.30 Clay Bare 0.30-0.75 0.50 ' Light vegetation 0.20-0.60 0.40 Cotposite areas ' Urban Single-family, 4-6 units/acre 0.25-0.50 0.40 Multi -family, >6 units/acre 0.50-0.75 0.60 Rural (mostly non -irrigated lawn area) ' <1/2 acre - 1 acre 0.20-0.50 0.35 1 acre - 3 acres 0.15-0.50 0.30. Industrial Light 0.50-0.80 0.65 ' Heavy 0.60-0.90 0.75 Business Downtown Neighborhood 0.70-0.95 0.50-0.70 0.85 0.60 Parks 0.10-0.40 0.20 Rural open space a ' LCS-WM Manual 4.2 --- 4 April 1979 DRAINAGE CRITERIA MANUAL 50 30 F- 20 z W V Cr W a 10 z W a O 5 N W arc 3 M O V 2 cc W Q 3 1 RUNOFF �■■■■1111//MEN II■I�IIIII/ w �■■■��� FIE ON IN ��ttl•tt■ �r�MM/■■11 ■WAWA� MMM■■■■� .2 .3 .5 1 2 3 . 5 10 20 VELOCITY IN 'FEET PER SECOND FIGURE 3-2. ' ESTIMATE OF AVERAGE FLOW, VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING"UNDEVELOPED" LAND SURFACES IN `THE DENVER REGION, REFERENCE: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. 5 -1-84 URBAN • DRAINAGE A FLOOD CONTROL DISTRICT No Text I City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method (5 minutes - 30 minutes) Figure 3-1 a puration (minutes) 2-year Intensity inmr 10-year Intensity in/hr 100-year Intensity in/hr 5.00 2.85 4.87 9.95 6.00 2.67 4.56 9.31 7.00 2.52 4.31 8.80' 8.00 2.40 4.10 8.38 9.00 2.30 3.93 8.03 10.00 2.21 3.78 7.72 11.00 2.13 3.63 7.42 12.00 2.05 3.50 7.16 13.00 1.98 3.39 6.92 14.00 1.92 3.29 6.71 15.00 1.87 3.19 6.52 16.00 •1.81 3.08 6.30 . 17.00 1.75 2.99 6.10 18.00 1.70 ' 2.90 5.92 19.00 1.65 2.82 5.75 20.00 1.61 2.74 5.60 21.00 1.56 2.67 5.46 22.00 1.53 2.61 5.32 23.00 1.49 2.55 5.20 24.00 1.46 2.49 5.09 25.00 1.43 2.44 4.98 26.00 1.40 2.39 4.87 27.00 1.37 2.34 4.78 28.00 1.34 2.29 4.69 29.00 1.32 2.25 4.60 30.00 1.30 2.21 4.52 I I 1 1 I City of Fort Collins Rainfall Intensity -Duration -Frequency Table for using the Rational Method (31 minutes - 60 minutes) Figure 3-1b Duration (minutes) 2-year Intensity in/hr 10-year Intensity in/hr 100-year Intensity in/hr 31.00 1.27 2.16 4.42 32.00 1.24 2.12 4.33 33.00 1.22 2.08 4.24 34.00 1.19 2.04 4.16 35.00 1.17 2.00 4.08 36.00 1.15 1.96 4.01 37.00 1.13 1.93 3.93 38.00 1.11 1.89 3.87 39.00 1.09 1.86 3.80 40.00 1.07 1.83 3.74 41.00 1.05 1.80 3.68 42.00 1.04 1.77 3.62 43.00 1.02 1.74 3.56 44.00 1.01 1.72 3.51 45.00 0.99 1.69 3.46 46.00 0.98 1.67 3.41 47.00 0.96 1.64 3.36 48.00 0.95 1.62 3.31 49.00 0.94 1.60 3.27 50.00 0.92 1.58 3.23 51.00 0.91 • 1.56 3.18 52.00 0.90 1.54 3.14 53.00 0.89 1.52 3.10 54.00 0.88 1.50 3.07 55.00 0.87 1.48 3.03 56.00 0.86 1.47 2.99 57.00 0.85 1.45 2.96 58.00 0.84 1.43 2.92 59.00 0.83 1.42 2.89 60.00 0.82. 1.40 2.86 �I 0 7 0 0 POIRDE YR-M U �CrJI�[I U� d e U L.CIT 0 I 0 1 1 0 1 o� �� .� w Y W N .� Q L N> Y" .r P. 0 A V y U F W W FxC> F U W i 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1.0 .9 .8 .7 0 2 4 6 8 IO 12 14 "S,.OPE OF GUTTER Figure 4-2 REDUCTION FACTOR FOR ALLOWABLE GUTTER CAPACITY Apply reduction factorforappl'Icable slope tothetheorekal guttercapac ty to obtain allowable gutter capacity. (From: U.S. Dept of Commerce, Bureau of Public Roads,1965) MAY 1954 4-4 DESIGN CRITERIA ' TST, INC. Consulting Engineers 1 CL1ENi JOB NO. 11495'' O 9 PROJECT /CAMS PV'� CALCULATIONS FOR 1 MADE BY L %h� DATE /u CHECKED BY DATE SHEET / OF _ . OLLEGj02 ✓lKEFr Aem R.4,L/•��-0•W.� l�ER77u4a- C'rG w/ DcTRc•Is0 (�/AtK_ aCAAf," gy Atxr---Anpo /07,G� 17 1 ..17 _ . i_____ .. 4 :- - _.:. fi { - ! t t j" TST, INC. Consulting Engineers . WENT_ No. 0(04$ —o'77 TST, INC. Consulting Eng CLIENT �. j NO. O9& 95-- 09-7 PROJECT ��c/++xB��s V ' D • CALCULATIONS FOR �P�< ' / MADE BY GIstF DATE is �'! W CHECKED BY DATE SHEET OF 3 ib"Em,Fys:l 19'eal'oF/ Zy'.fe`we o evl¢6r So' gE'rw*W-AJ GA,eA6s0. ' � � rN.o sr' Co.+Sea JArr ✓E ScEN i4•R t o .. CHrzK �v�-�rrz (F�ow s��no,� SAm.E 940R aovv. GIB /i A= Y74 M9.:.ti'9 e ` 1 .......... .. .... .._.. J ...... — -- F i ' ... ' 11 ...._. 1 i i t � � I D D 0 1 . ... ....... 0 0 O 0 0 C O ..:'i.. . '. �4 Vl OO V1 OC V'1 V1 V1 V1 0 ^ 0 4'i Qi 00 V1 0 0 O G N1 u ui: Hl 1+1 Hl m 1�1 M1 NI y t1 rl H1 MI t�l f+l ..... �:'::'::'::::":'•':' ................... y. m ^ .:,:'' �n of of 1� N1 N O N N O �O m N 0 l� R '% `o Nlvfl I�{I MI'.'I NIt+1I P11 al ml INI'+I O^Ihl�l I�I�I09 mI "iI INI I ml IllllllmmmmmmmmOR OR mmmmmm CIR OR O O O O O O OOO OOO 10101 I01010 0101 I-I�°INI�,I$I$I �,1=1=I�I�I$I$I� Wool I OIOIOIOI IOIOIOIOIOIOI OI 5I5I OIOI OIOIOI IOIOIOI OIO azaac `xz��aa �aa� aa� zgeaa& � wwww ww��ww�www�ww� ww�ww 0 U Cl) a a �n Vt Pt N Vi �O �O m Q. T a 0 t�1 .•• � of 7 V y z 0 F am_va wwc7m��xa�zow x amugw � N N N N N F FFF FFFF�""f" FFFFFFFF FFFFF ,..� ' TST, INC. Consulting ' ECLIENT JOB NO. 06 3p5— O9 7 PROJECTW�'^Wim ' • VA• CALCULATIONS FOR MADE BY / L"p4F DATE �� ��/u� CHECKED BY DATE SHEET OF 0 0 o N\ DD 1'JU LJ O �aa �a�a coaaa I 0 a TABLE 5. SUMMARY OF STORM SEWER DESIGN $T. r . .......... ST-1 SWALE MH IA 91.3 54 RCP MH IA MH ID 77.3 48 RCP MH ID MH IF 77.3 48 RCP MH IF INLET IJ 5.5 15 RCP INLET IJ INLET 11 1.2 15 RCP MH IF INLET IK 20.9 24 RCP INLET IK SCHOOL SITE 17.1 24 RCP MH IF MH IG 54.6 48 RCP MH IG INLET IN 9.5 18 RCP INLET IN INLET IM 7.0 18 RCP INLET I M INLET IL 3.3 15 RCP MH IG MH IH 48.9 42 RCP MH III INLET 10 1.9 15 RCP MH III MH 11 48.1 42 RCP MH 11 MH IK 25.9 29"x45" Ellip RCP MH IK INLET IQ 8.4 24 RCP MH IK INLET IP 11.3 24 RCP MH IK MH IL 7.7 24 RCP ME IL INLET IR 7.7 21 RCP MH 11 MH IJ 25.9 30 RCP MH IJ MH IM 8.0 18 RCP MH IM MH IN 8.0 18 RCP MH IJ INLET IA 17.9 30 RCP INLET IA INLET IB 16.6 30 RCP INLET IB INLET IC 7.9 21 RCP INLET IC INLET I D 2.0 15 RCP MH IA MH IB 18.8 27 RCP MH III F.E.S. IA 8.9 18 RCP MH III MH IC 13.9 24 RCP MH IC INLET IF 6.0 15 RCP INLET IF INLET IE 4.2 is RCP MH IC INLET 1H 8.0 18 RCP INLET I H INLET IG 5.7 15 RCP ST-2 SWALE MH 2A 37.2 36 RCP MH 2A MH 2B 37.2 36 RCP MH 2B INLET 2A 14.9 24 RCP INLET 2A INLET 2B 7.9 18 RCP MH 2B INLET 2C 22.8 30 RCP INLET2C MH2C 21.6 30 RCP MH2C MH 2D 21.6 24"x38" Ellip RCP MH 2D INLET 2D 9.0 21 RCP MH 2D INLET 2E 12.9 24"x38" Ellip RCP TST, INC. CONSULTING 4/5/2002 ENGINEERS 695097-HYDI.XLS 7 ' INC. Consulting Enginea". CLIENT1/-/+�.'� � 7/LG L7-� ' JJOOB' NO. s./..rr�G"��J P U �. CALCULATIONS FOR ✓!` vem PROJECT ' MADE BY / DATE CHECKED BY DATE SHEET / OF z 5� =1 e� o� m M ' TST, INC. Consulting Enginee��j/�J CLIENT /r PROJECT S-G'P t.� P V' �• CALCULATIONS FOR JOB NO. e)&9S "U 5?"7 1 MADE BY fM>< DATE CHECKED BY DATE SHEET z OF i -5 I I I [] 1 I I I r I i 1 STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver Metro Denver Cities/Counties & UDFCD Pool Fund Study ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ USER:TST Inc Consulting Engineers ............................................ ON DATA 03-14-2002 AT TIME 14:48:08 VERSION=07-17-1995 *** PROJECT TITLE :Timbers ST-1 *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ------------------------------------------------------------------------------- 0.00 0.00 0.00 0.00 91.30 4942.00 4941.00 OK 1.00 743.58 1559.32 0.12 91.30 4946.50 4942.08 OK 2.00 564.57 1355.51 0.14 77.33 4950.30 4943.74 OK 3.00 550.80 1313.28 0.14 77.33 4952.50 4945.82 OK 4.00 537.03 1271.34 0.14 77.33 4952.50 4945.94 OK 5.00 55.08 2036.14 0.10 5.49 4951.90 4947.59 OK 6.00 13.77 340.72 0.40 5.49 4951.90 4947.71 OK 7.00 27.54 6045.16 0.04 1.17 4950.90 4948.34 OK 8.00 13.77 2496.89 0.08 1.17 4950.90 4948.49 OK 9.00 55.08 363.05 0.38 20.92 4951.90 4947.09 OK 10.00 13.77 53.94 1.52 20.92 4951.90 4947.27 OK 11.00 27.54 189.61 0.62 17.10 4952.40 4947.54 OK 12.00 13.77 72.64 1.24 17.10 4952.40 4947.66 OK 13.00 413.10 1418.25 0.13 54.62 4953.50 4946.47 OK 14.00 82.62 1702.87 0.11 9.47 4950.80 4948.20 OK 15.00 13.77 165.27 0.69 9.47 4950.80 4948.32 OK 16.00 55.08 1500.26 0.13 6.97 4950.30 4948.62 OK 17.00 13.77 248.86 0.51 6.97 4950.30 4948.69 OK 18.00 27.54 1627.70 0.12 3.27 4950.30 4948.86 OK 19.00 13.77 668.02 0.24 3.27 4950.30 4948.89. OK 20.00 316.71 1162.21 0.15 48.91 4953.20 4947.02 OK 21.00 27.54 3235.84 0.07 1.91 4952.30 4949.81 OK 22.00 13.77 1333.81 0.14 1.91 49521.30 4950.18 OK 23.00 275.40 992.06 0.17 48.11 4952.30 4947.37 OK 24.00 110.16 676.36 0.24 25.91 4950.40 4949.15 OK 25.00 27.54 486.12 0.30 8.36 4950.17 4949.34 OK 26.00 13.77 195.40 0.61 8.36 4950.17 4949.37 OK 27.00 27.54 327.75 0.41 11.31 4950.17 4949.40 OK 28.00 13.77 129.83 0.82 11.31 4950.17 4949.45 OK 29.00 151.47 1019.73 0.17 25.90 4953.20 4948.01 OK 30.00 110.16 1088.74 0.16 17.90 4950.80 4948.32 OK 31.00 13.77 67.97 1.30 17.90 4950.80 4948.98 OK 32.00 82.62 827.40 0.20 16.62 4950.32 4948.42 OK 33.00 13.77 75.69 1.21 16.62 4950.32 4948.98 OK 34.00 55.08 1284.04 0.14 7.87 4950.32 4548.68 OK 35.00 13.77 211.80 0.57 7.87 4950.32 4948.72 OK 36.00 27.54 3090.56 0.07 1.98 4950.80 4948.85 OK 37.00 13.77 1273.66 0.14 1.98 4950.80 4948.86 OK 38.00 41.31 920.38 0.19 7.65 4950.90 4949.34 OK 39.00 27.54 545.42 0.28 7.65 4949.86 4949.56 OK 40.00 13.77 219.95 0.56 7.65 4949.86 4949.61 OK 41.00 165.24 1714.45 0.11 18.84 4947.51 4944.68 OK 42.00 27.54 451.44 0.32 8.85 4945.38 4945.00 OK 1 11 1 i I I I I u I I I G I 43.00 13.77 181.04 0.64 8.85 4945.38 4945.11 OK 44.00 123.93 1754.06 0.11 13.88 4949.25 4945.63 OK 45.00 55.08 1825.26 0.11 5.98 4948.67 4946.61 OK 46.00 13.77 304.57 0.43 5.98 4948.67 4946.71 OK 47.00 27.54 1166.80 0.15 4.24 4948.67 4947.11 OK 48.00 13.77 477.20 0.31 4.24 4948.67 4947.16 OK 49.00 55.08 1261.39 0.14 7.98 4948.65 4946.23 OK 50.00 13.77 207.92 0.58 7.98 4948.65 4946.47 OK 51.00 27.54 799.42 0.21 5.69 4948.65 4946.62 OK 52.00 13.77 325.11 0.41 5.69 4948.65 4946.85 OK 53.00 27.54 514.69 0.29 8.00 4955.90 4950.53 OK 54.00 13.77 207.23 0.58 8.00 4953.00 4951.56 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 SEWER MAMHOLE NUMBER ID NUMBER UPSTREAM DNSTREAM ID NO. ID NO. ------------------------------ SEWER REQUIRED SUGGESTED EXISTING SHAPE DIA(RISE) DIA(RISE) DIA(RISE) WIDTH (IN) (FT) (IN) (FT) (IN) (FT) (FT) ---------------------------------------------- 0 1.00 1.00 0.00 ROUND 48.10 54.00 54.00 0.00 12.00 2.00 1.00 ROUND 45.19 48.00 48.00 0.00 23.00 3.00 2.00 ROUND 45.19 48.00 48.00 0.00 34.00 4.00 3.00 ROUND 45.19 48.00 48.00 0.00 45.00 5.00 4.00 ROUND 14.11 15.00 15.00 0.00 56.00 6.00 5.00 ROUND 14.11 15.00 15.00 0.00 57.00 7.00 5.00 ROUND 7.90 15.00 15.00 0.00 78.00 8.00 7.00 ROUND 7.90 15.00 15.00 0.00 49.00 9.00 4.00 ROUND 23.31 24.00 24.00 0.00 910.00 10.00 9.00 ROUND 23.31 24.00 24.00 0.00 911.00 11.00 9.00 ROUND 21.61 24.00 24.00 0.00 1112.00 12.00 11.00 ROUND 21.61 24.00 24.00 0.00 413.00 13.00 4.00 ROUND 39.67 42.00 48.00 0.00 1314.00 14.00 13.00 ROUND 17.85 18.00 18.00 0.00 1415.00 15.00 14.00 ROUND 17.85 18.00 18.00 0.00 1416.00 16.00 14.00 ROUND 16.29 18.00 18.00 0.00 1617.00 17.00 16.00 ROUND 16.29 18.00 18.00 0.00 1618.00 18.00 16.00 ROUND 12.27 15.00 15.00 0.00 1819.00 19.00 18.00 ROUND 12.27 15.00 15.00 - 0.00 1320.00 20.00 13.00 ROUND 38.06 42.00 42.00 0.00 2021.00 21.00 20.00 ROUND 8.12 15.00 15.00 0.00 2122.00 22.00 21.00 ROUND 8.13 15.00 15.00 0.00 2023.00 23.00 20.00 ROUND 37.83 42.00 42.00 0.00 2324.00 24.00 23.00 ARCH 29.99 30.00 29.00 45.00 2425.00 25.00 24.00 ROUND 18.82 21.00 24.00 0.00 2526.00 26.00 25.00 ROUND 18.82 21.00 24.00 0.00 2427.00 27.00 24.00 ROUND 21.08 24.00 24.00 0.00 2728.00 28.00 27.00 ROUND 21.08 24.00 24.00 0.00 2329.00 29.00 23.00 ROUND 29.99 30.00 30.00 0.00 2930.00 30.00 29.00 ROUND 26.11 27.00 30.00 0.00 3031.00 31.00 30.00 ROUND 26.11 27.00 30.00 0.00 3032.00 32.00 30.00 ROUND 25.39 27.00 30.00 0.00 3233.00 33.00 32.00 ROUND 25.39 27.00 30.00 0.00 3234.00 34.00 32.00 ROUND 19.18 21.00 21.00 0.00 3435.00 35.00 34.00 ROUND 19.18 21.00 21.00 0.00 3436.00 36.00 34.00 ROUND 11.43 15.00 15.00 0.00 3637.00 37.00 36.00 ROUND 11.43 15.00 15.00 0.00 2438.00 38.00 24.00 ROUND 18.98 21.00 24.00 0.00 3839.00 39.00 38.00 ROUND 18.98 21.00 21.00 0.00 C�� 1 3940.00 40.00 39.00 ROUND 18.98 21.00 21.00 0.00 141.00 41.00 1.00 ROUND 25.52 27.00 27.00 0.00 4142.00 42.00 41.00 ROUND 14.82 15.00 18.00 0.00 1 4243.00 43.00 42.00 ROUND 14.82 15.00 18.00 0.00 4144.00 44.00 41.00 ROUND 16.59 18.00 24.00 0.00 4445.00 45.00 44.00 ROUND 14.57 15.00 15.00 0.00 4546.00 46.00 45.00 ROUND 14.57 15.00 15.00 0.00 4547.00 47.00 45.00 ROUND 12.81 15.00 15.00 0.00 4748.00 48.00 47.00 ROUND 12.81 15.00 15.00 0.00 4449.00 49.00 44.00 ROUND 16.24 18.00 18.00 0.00 4950.00 50.00 49.00 ROUND 16.24 18.00 18.00 0.00 4951.00 51.00 49.00 ROUND 14.31 15.00 15.00 0.00 5152.00 52.00 51.00 ROUND 14.31 15.00 15.00 0.00 2953.00 53.00 29.00 ROUND 19.30 21.00 18.00 0.00 5354.00 54.00 53.00 ROUND 19.30 21.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ----------------------------------------------------------------------- glpxAP de. Qv�p t2 SEWER DESIGN FLOW NORMAL NORAML ITilC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. ' CFS FEET FPS FEET FPS FPS --NUMBER-----CFS 1.0 ------------------------ 91.3 124.7 2.86 .5 2.79 8.80 5.74 0.96 V-OK 12.0 77.3 91.1 2.83 8.14 2.66 8.72 6.15 0.89 V-OK ' 23.0 77.3 91.1 2.83 8.14 2.66 8.72 6.15 0.89 V-OK 34.0 77.3 91.1 2.83 8.14 2.66 8.72 6.15 0.89 V-OK 45.0 5.5 6.5 0.88 5.92 0.95 5.49 4.47 1.16 V-OK 56.0 5.5 6.5 0.88 5.92 0.95 5.49 4.47 1.16 V-OK 57.0 1.2 6.5 0.36 4.00 0.44 3.04 0.95 1.39 V-OK 78.0 1.2 6.5 0.36 4.00 0.44 3.04 0.95 1.39 V-OK 49.0 20.9 22.7 1.51 8.19 1.63 7.61 6.66 1.11 V-OK 910.0 20.9 22.7 1.51 8.19 1.63 7.61 6.66 1.18 V-OK 911.0 17.1 22.7 1.30 7.93 1.49 6.81 5.44 1.32 V-OK 1112.0 17.1 22.7 1.30 7.93 1.49 6.81 5.44 1.32 V-OK 413.0 54.6 11.1 2.23 7.51 2.23 7.60 4.35 0.99 V-OK 1314.0 9.5 9.7 1.20 6.26 1.19 6.31 5.36 0.98 V-OK 1415.0 9.5 9.7 1.20 6.26 1.19 6.31 5.36 0.98 V-OK 1416.0 7.0 9.1 0.98 5.69 1.02 5.44 3.94 1.08 V-OK 1617.0 1618.0 7.0 3.3 9.1 5.6 0.91 0.69 5.69 4.75 1.02 0.73 5.44 4.41 3.94 1.01 2.66 1.12 V-OK V-OK 1819.0 3.3 5.6 0.69 4.75 0.73 4.41 2.66 1.12 V-OK 1320.0 48.9 63.8 2.30 7.31 2.18 7.77 5.08 0.91 V-OK 2021.0 1.9 9.8 0.37 6.21 0.56 3.63 1.56 2.11 V-OK ' 2122.0 1.9 9.8 0.37 6.20 0.56 3.63 1.56 2.10 V-OK 2023.0 48.1 63.8 2.27 7.29 2.16 7.72 5.00 0.91 V-OK 2324.0 25.9 45.5 1.67 6.29 1.64 6.40 3.47 0.96 V-OK 2425.0 8.4 16.0 1.02 5.16 1.04 5.04 2.66 1.01 V-OK 2526.0 8.4 16.0 1.02 5.16 1.04 5.04 2.66 1.01 V-OK 2427.0 11.3 16.0 1.24 5.54 1.20 5.73 3.60 0.95 V-OK 2728.0 11.3 16.0 1.24 5.54 1.20 5.73 3.60 0.95 V-OK 2329.0 25.9 26.0 2.04 6.04 1.77 6.97 5.28 0.72 V-OK 2930.0 17.9 26.0 1.52 5.71 1.43 6.16 3.65 0.89 V-OK 3031.0 17.9 26.0 1.52 5.71 1.43 6.16 3.65 0.89 V-OK 3032.0 16.6 26.0 1.45 5.62 1.38 5.97 3.39 0.90 V-OK 3233.0 16.6 26.0 1.45 5.62 1.38 5.97 3.39 0.90 V-OK k I 11 I I I 1 I I 3234.0 7.9 10.0 1.17 4.62 1.04 5.30 3.27 0.80 V-OK 3435.0 7.9 10.0 1.17 4.62 1.04 5.30 3.27 0.80 V-OK 3436.0 2.0 4.1 0.61 3.31 0.56 3.68 1.61 0.84 V-OK 3637.0 2.0 4.1 0.61 3.31 0.56 3.68 1.61 0.84 V-OK 2438.0 7.7 14.3 1.04 4.64 1.01 4.82 2.44 0.90 V-OK 3839.0 7.7 10.0 1.14 4.60 1.02 5.24 3.18 0.81 V-OK 3940.0 7.7 10.0 1.14 4.60 1.02 5.24 3.18 0.81 V-OK 141.0 18.8 22.0 1.61 6.21 1.52 6.61 4.74 0.90 V-OK 4142.0 8.9 14.9 0.83 8.79 1.15 6.08 5.01 1.89 V-OK 4243.0 8.9 14.9 0.83 8.79 1.15 6.08 5.01 1.89 V-OK 4144.0 13.9 37.3 0.85 10.99 1.34 6.21 4.42 2.42 V-OK 4445.0 6.0 6.5 0.95 5.99 0.99 5.75 4.87 1.09 V-OK 4546.0 6.0 6.5 0.95 5.99 0.99 5.75 4.87 1.09 V-OK 4547.0 4.2 6.5 0.74 5.,63 0.83 4.89 3.46 1.27 V-OK 4748.0 4.2 6.5 0.74 5.63 0.83 4.89 3.46 1.27 V-OK 4449.0 8.0 10.5 0.98 6.56 1.06 5.96 4.52 1.25 V-OK 4950.0 8.0 10.5 0.98 6.56 1.06 5.96 4.52 1.25 V-OK 4951.0 5.7 6.5 0.91 5.95 0.97 5.59 4.64 1.13 V-OK 5152.0 5.7 6.5 0.91 5.95 0.97 5.59 4.64 1.13 V-OK 2953.0 8.0 6.7 1.50 4.53 1.06 5.98 4.53 0.00 V-OK 5354.0 8.0 6.7 1.50 4.53 1.06 5.98 4.53 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ----------------------------------------------------------- 01.00 0.40 4939.25 4938.99 2.75 ----------- -1.49 NO 12.00 0.40 4940.51 4939.25 5.79 3.25 OK 23.00 0.40 4942.40 4940.52 6.10 5.78 OK 34.00 0.40 4942.65 4942.40 5.85 6.10 OK 45.00 1.00 4946.59 4946.48 4.06 4.77 OK 56.00 1.00 4946.60 4946.59 4.05 4.06 OK 57.00 1.00 4947.90 4946.79 1.75 3.86 OK 78.00 1.00 4947.91 4947.90 1.74 1.75 OK 49.00 1.00 4943.25 4942.85 6.65 7.65 OK 910.00 1.00 4943.26 4943.25 6.64 6.65 OK 911.00 1.00 4943.75 4943.45 6.65 6.45 OK 1112.00 1.00 4943.76 4943.75 6.64 6.65 OK 413.00 0.40 4943.45 4942.65 6.05 5.85 OK 1314.00 0.85 4946.51 4945.45 2.79 6.55 Ok 1415.00 0.85 4946.52 4946.51 2.78 2.79 OK 1416.00 0.75 4946.91 4946.71 1.89 2.59 OK 1617.00 0.75 4946.92 4946.91 1.88 1.89 OK 1618.00 0.75 4947.30 4947.11 1.75 1.94 OK 1819.00 0.75 4947.31 4947.30 1.74 1.75 OK 1320.00 0.40 4944.33 4943.45 5.37 6.55 OK 2021.00 2.31 4949.26 4946.00 1.79 5.95 OK 2122.00 2.30 4949.27 4949.25 1.78 1.80 OK 2023.00 0.40 4945.04 4944.33 3.76 5.37 OK 2324.00 0.40 4946.06 4945.04 1.92 4.84 OK 2425.00 0.50 4946.42 4946.39 1.75 2.01 OK 2526.00 0.50 4946.43 4946.43 1.74 1.74 OK 2427.00 0.50 4946.42 4946.29 1.75 2.11 OK 2728.00 0.50 4946.43 4946.43 1.74 1.74 OK 2329.00 0.40 4945.82 4945.04 4.88 4.76 OK 2930.00 0.40 4946.42 4945.82 1.88 4.88 OK 3031.00 0.40 4946.43 4946.43 1.87 1.87 OK 3032.00 0.40 4946.53 4946.42 1.29 1.88 OK 5�- I n 1 I 1 1 3233.00 0.40 4946.54 4946.54 1.28 1.28 OK 3234.00 0.40 4946.63 4946.53 1.94 2.04 OK 3435.00 0.40 4946.64 4946.64 1.93 1.93 OK 3436.00 0.40 4946.74 4946.63 2.81 2.44 OK 3637.00 0.40 4946.75 4946.75 2.80 2.80 OK 2438.00 0.40 4946.66 4946.32 2.24 2.08 OK 3839.00 0.40 4946.88 4946.66 1.23 2.49 OK 3940.00 0.40 4946.89 4946.89 1.22 1.22 OK 141.00 0.50 4941.69 4939.75 3.57 4.50 OK 4142.00 2.00 4943.15 4942.18 0.73 3.83 NO 4243.00 2.'00 4943.16 4943.14 0.72 0.74 NO 4144.00 2.70 4944.29 4941.89 2.96 3.62 OK 4445.00 1.00 4944.93 4944.49 2.49 3.51 OK 4546.00 1.00 4944.94 4944.93 2.48 2.49 OK 4547.00 1.00 4945.65 4945.34 1.77 2.08 OK 4748.00 1.00 4945.66 4945.65 1.76 1.77 OK 4449.00 1.00 4945.14 4944.49 2.01 3.26 OK 4950.00 1.00 4945.15 4945.14 2.00 2.01 OK 4951.00 1.00 4945.65 4945.34 1.75 2.06 OK 5152.00 1.00 4945.66 4945.65 1.74 1.75 OK 2953.00 0.40 4947.42 4945.82 6.98 5.88 OK 5354.00 0.40 4948.13 4947.42 3.37 6.98 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET --------------------------------------------- 1.00 65.00 0.00 4943.75 4943.49 4942.08 4941.00 SUBCR 12.00 314.91 0.00 4944.51 4943.25 4943.74 4942.08 SUBCR 23.00 471.17 0.00 4946.40 4944.52 4945.82 4943.74 SUBCR 34.00 62.55 0.00 4946.65 4946.40 4945.94 4945.82 SUBCR 45.00 11.33 0.00 4947.84 4947.73 4947.59 4945.94 JUMP 56.00 1.00 0.00 4947.85 4947.84 4947.71 4947.59 JUMP 57.00 110.65 0.00 4949.15 4948.04 4948.34 4947.59 JUMP 78.00 1.00 0.00 4949.16 4949.15 4948.49 4948.34 JUMP 49.00 40.01 40.01 4945.25 4944.85 4947.09 4945.94 PRSS'ED 910.00 1.00 1.00 4945.26 4945.25 4947.27 4947.09 PRSS'ED 911.00 30.00 30.00 4945.75 4945.45 4947.54 4947.09 PRSS'ED 1112.00 1.00 1.00 4945.76 4945.75 4947.66 4947.54 PRSS'ED 413.00 200.89 0.00 4947.45 4946.65 4946.47 4945.94 SUBCR 1314.00 124.77 124.77 4948.01 4946.95 4948.20 4946.47 PRSS'ED 1415.00 1.00 1.00 4948.02 4948.01 4948.32 4948.20 PRSS'ED 1416.00 27.26 27.26 4948.41 4948.21 4948.62 4948.20 PRSS'ED 1617.00 1.00 1.00 4948.42 4948.41 4948.69 4948.62 PRSS'ED 1618.00 25.33 25.33 4948.55 4948.36 4948.86 4948.62 PRSS'ED 1819.00 1.00 1.00 4948.56 4948.55 4948.89 4948.86 PRSS'ED 1320.00 220.95 0.00 4947.83 4946.95 4947.02 4946.47 SUBCR 2021.00 141.12 0.00 4950.51 4947.25 4949.81 4947.02 JUMP 2122.00 1.00 0.00 4950.52 4950.50 4950.18 4949.81 JUMP 2023.00 176.53 0.00 4948.54 4947.83 4947.37 4947.02 SUBCR 2324.00 255.66 255.66 4948.48 4947.46 4949.15 4947.37 PRSS'ED 2425.00 5.67 5.67 4948.42 4948.39 4949.34 4949.15 PRSS'ED 2526.00 1.00 1.00 4948.43 4948.43 4949.37 4949.34 PRSS'ED 2427.00 25.67 25.67 4948.42 4948.29 4949.40 4949.15 PRSS'ED 2728.00 1.00 1.00 4948.43 4948.43 4949.45 4949.40 PRSS'ED 2329.00 195.28 0.00 4948.32 4947.54 4948.01 4947.37 SUBCR C� I [J 1 [1 2930.00 149.17 0.00 4948.92 4948.32 4948.32 4948.01 SUBCR 3031.00 1.00 0.00 4948.93 4948.93 4948.98 4948.32 SUBCR 3032.00 27.41 0.00 4949.03 4948.92 4948.42 4948.32 SUBCR 3233.00 1.00 0.00 4949.04 4949.04 4948.98 4948.42 SUBCR 3234.00 25.34 25.34 4948.38 4948.28 4948.68 4948.42 PRSS'ED 3435.00 1.00 1.00 4948.39 4948.39 4948.72 4948.68 PRSS'ED 3436.00 27.41 27.41 4947.99 4947.88 4948.85 4948.68 PRSS'ED 3637.00 1.00 1.00 4948.00 4948.00 4948.86 4948.85 PRSS'ED 2438.00 84.32 84.32 4948.66 4948.32 4949.34 4949.15 PRSS'ED 3839.00 55.50 55.50 4948.63 4948.41 4949.56 4949.34 PRSS'ED 3940.00 1.00 1.00 4948.64 4948.64 4949.61 4949.56 PRSS'ED 141.00 388.41 388.41 4943.94 4942.00 4944.68 4942.08 PRSS'ED 4142.00 48.50 48.50 4944.65 4943.68 4945.00 4944.68 PRSS'ED 4243.00 1.00 1.00 4944.66 4944.64 4945.11 4945.00 PRSS'ED 4144.00 88.99 60.93 4946.29 4943.89 4945.63 4944.68 JUMP 4445.00 44.01 44.01 4946.18 4945.74 4946.61 4945.63 PRSS'ED 4546.00 1.00 1.00 4946.19 4946.18 4946.71 4946.61 PRSS'ED 4547.00 31.35 31.35 4946.90 4946.59 4947.11 4946.61 PRSS'ED 4748.00 1.00 1.00 4946.91 4946.90 4947.16 4947.11 PRSS'ED 4449.00 64.66 0.00 4946.64 4945.99 4946.23 4945.63 JUMP 4950.00 1.00 0.00 4946.65 4946.64 4946.47 4946.23 JUMP 4951.00 31.35 0.00 4946.90 4946.59 4946.62 4946.23 JUMP 5152.00 1.00 0.00 4946.91 4946.90 4946.85 4946.62 JUMP 2953.00 400.00 400.00 4948.92 4947.32 4950.53 4948.01 PRSS'ED 5354.00 176.98 176.98 4949.63 4948.92 4951.56 4950.53 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ---------------------------------------- UPST MANHOLE SEWER SEWER MANHOLE ENERGY FRCTION BEND ID NO ID NO. ELEV FT FT K COEF ---------------------------------------- 1.0 1.00 4943.25 2.25 0.50 12.0 2.00 4944.76 1.12 0.05 23.0 3.00 4946.85 1.50 1.01 34.0 4.00 4946.75 0.00 0.08 45.0 5.00 4947.90 0.84 1.01 56.0 6.00 4948.02 0.04 0.25 57.0 7.00 4948.48 0.58 0.05 78.0 8.00 4948.51 0.02 0.25 49.0 9.00 4947.78 0.34 1.01 910.0 10.00 4947.96 0.01 0.25 911.0 11.00 4948.00 0.17 0.10 1112.0 12.00 4948.12 0.01 0.25 413.0 13.00 4947.19 0.00 0.05 1314.0 14.00 4948.65 1.01 1.01 1415.0 15.00 4948.77 0.01 0.25 1416.0 16.00 4948.86 0.12 0.40 1617.0 17.00 4948.93 0.00 0.25 1618.0 18.00 4948.97 0.06 0.40 1819.0 19.00 4949.00 0.00 0.25 1320.0 20.00 4947.74 0.33 0.08 2021.0 21.00 4950.02 2.24 1.01 2122.0 22.00 4950.22 0.20 0.05 2023.0 23.00 4948.19 0.42 0.08 2324.0 24.00 4949.33 0.95 1.01 2425.0 25.00 4949.45 0.01 1.01 2526.0 26.00 4949.48 0.00 0.25 ----------------------------------- JUNCTURE LOSSES DOWNST MANHOLE BEND LATERAL LATERAL MANHOLE ENERGY LOSS FT K COEF LOSS FT ID FT --------------------------------------- 0.00 0.00 0.00 0.00 4941.00 0.03 0.25 0.36 1.00 4943.25 0.59 0.00 0.00 2.00 4944.76 0.05 0.00 0.00 3.00 4946.85 0.31 0.00 0.00 4.00 4946.75 0.08 0.00 0.00 5.00 4947.90 0.00 0.00 0.00 5.00 4947.90 0.00 0.00 0.00 7.00 4948.48 0.70 0.00 0.00 4.00 4946.75 0.17 0.00 0.00 9.00 4947.78 0.05 0.00 0.00 9.00 4947.78 0.12 0.00 0.00 11.00 4948.00 0.01 0.25 0.51 4.00 4946.75 0.45 0.00 0.00 13.00 4947.19 0.11 0.00 0.00 14.00 4948.65 0.10 0.00 0.00 14.00 4948.65 0.06 0.00 0.00 16.00 4948.86 0.04 0.00 0.00 16.00 4948.86 0.03 0.00 0.00 18.00 4948.97 0.03 0.25 0.19 13.00 4947.19 0.04 0.00 0.00 20.00 4947.74 0.00 0.00 0.00 21.00 4950.02 0.03 0.00 0.00 20.00 4947.74 0.19 0.00 0.00 23.00 4948.19 0.11 0.00 0.00 24.00 4949.33 0.03 0.00 0.00 25.00 4949.45 2427.0 27.00 4949.60 0.06 1.01 0.20 0.00 0.00 24.00 4949.33 2728.0 28.00 4949.65 0.00 0.25 0.05 0.00 0.00 27.00 4949.60 2329.0 29.00 4948.52 0.31 0.05 0.02 0.00 0.00 23.00 4948.19 2930.0 30.00 4948.74 0.01 1.01 0.21 0.00 0.00 29.00 4948.52 3031.0 31.00 4949.19 0.40 0.25 0.05 0.00 0.00 30.00 4948.74 3032.0 32.00 4948.72 0.00 0.40 0.07 0.00 0.00 30.00 4948.74 3233.0 33.00 4949.16 0.40 0.25 0.04 0.00 0.00 32.00 4948.72 ' 3234.0 34.00 4948.85 0.06 0.40 0.07 0.00 0.00 32.00 4948.72 3435.0 35.00 4948.89 0.00 0.25 0.04 0.00 0.00 34.00 4948.85 3436.0 36.00 4948.89 0.03 0.40 0.02 0.00 0.00 34.00 4948.85 3637.0 37.00 4948.90 0.00 0.25 0.01 0.00 0.00 36.00 4948.89 2438.0 38.00 4949.43 0.10 0.05 0.00 0.00 0.00 24.00 4949.33 3839.0 39.00 4949.72 0.13 1.01 0.16 0.00 0.00 38.00 4949.43 3940.0 40.00 4949.76 0.00 0.25 0.04 0.00 0.00 39.00 4949.72 141.0 41.00 4945.03 1.43 1.01 0.35 0.00 0.00 1.00 4943.25 ' 4142.0 42.00 4945.39 0.34 0.05 0.02 0.00 0.00 41.00 4945.03 4243.0 43.00 4945.49 0.01 0.25 0.10 0.00 0.00 42.00 4945.39 4144.0 44.00 4946.23 0.62 1.01 0.31 0.25 0.27 41.00 4945.03 ' 4445.0 45.00 4946.97 0.37 1.01 0.37 0.00 0.00 44.00 4946.23 4546.0 46.00 4947.08 0.01 0.25 0.09 0.00 0.00 45.00 4946.97 4547.0 47.00 4947.30 0.13 1.01 0.19 0.00 0.00 45.00 4946.97 4748.0 48.00 4947.35 0.00 0.25 0.05 0.00 0.00 47.00 4947,30 4449.0 49.00 4946.55 0.00 1.01 0.32 0.00 0.00 44.00 4946.23 4950.0 50.00 4946.78 0.16 0.25 0.08 0.00 0.00 49.00 4946.55 4951.0 51.00 4947.10 0.22 1.01 0.34 0.00 0.00 49.00 4946.55 5152.0 2953.0 52.00 53.00 4947.18 4950.84 0.00 2.31 0.25 0.05 0.08 0.02 0.00 0.00 0.00 0.00 51.00 29.00 4947.10 4948.52 5354.0 54.00 4951.88 1.02 0.05 0.02 0.00 0.00 53.00 4950.84 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. TST, INC. Consulting Engin CLIENT _ PROJECT ✓�^ �-- �//1 JOB NO. P d CALCULATIONS FOR ' MADE BY T DATE CHECKED BY DATE SHEET. I OF STORM SEWER SYSTEM DESIGN USING UDSEWER MODEL Developed by Dr. James Guo, Civil Eng. Dept, U. of Colorado at Denver ------------------------------------------------------------------------------ Metro Denver Cities/Counties & UDFCD Pool Fund Study ------------------------------------------------------------------------------ USER:TST Inc ON DATA Consulting 03-14-2002 Engineers ............................................ AT TIME 16:46:28 VERSION=07-17-1995 *** PROJECT TITLE :Timbers PUD ' *** SUMMARY OF HYDRAULICS AT MANHOLES ------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ' ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET ' ------------------------------------------------------------------------------- 1.00 0.00 0.00 0.00 37.18 4944.00 4942.18 OK 2.00 77.35 266.48 0.48 37.18 4946.20 4943.06 OK 3.00 63.58 205.45 0.58 37.18 4946.40 4943.48 OK ' 4.00 5.00 42.25 13.77 401.07 88.72 0.35 1.08 14.87 14.87 4945.63 4945.63 4944.22 4944.31 OK OK 6.00 14.72 229.41 0.54 7.92 4945.63 4944.45 OK 7.00 0.94 5.00 8.38 7.92 4945.63 4944.53 OK ' 8.00 9.00 7.56 0.94 16.80 5.00 3.01 24.07 22.75 22.75 4946.24 4946.24 4944.39 4944.48 OK OK 10.00 5.67 9.84 3.81 21.61 4948.16 4945.04 OK 11.00 4.72 5.73 4.57 21.61 4947.03 4945.85 OK ' 12.00 13.00 1.89 0.94 5.00 5.00 4.75 9.50 8.98 8.98 4946.52 4946.52 4946.20 4946.25 OK OK 14.00 1.89 5.00 6.83 12.91 4946.52 4946.20 OK 15.00 0.94 5.00 13.66 12.91 4946.52 4946.27 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS ' THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .85 -------NOTE_ SEWER ------------------------------------------------------------------- MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ' ID NUMBER UPSTREAM ID NO. DNSTREAM NO. SHAPE DIA(RISE) (IN) (FT) DIA(RISE) (IN) (FT) DIA(RISE) (IN) (FT) WIDTH (FT) --------------- 12.00 2.00 1.00 ROUND ---------------------------------- 34.34 36.00 36.00 0.00 23.00 34.00 3.00 4.00 2.00 3.00 ROUND ROUND 34.34 24.35 36.00 27.00 36.00 24.00 0.00 0.00 45.00 5.00 4.00 ROUND 24.35 27.00 24.00 0.00 46.00 6.00 4.00 ROUND 19.23 21.00 18.00 0.00 67.00 38.00 7.00 8.00 6.00 3.00 ROUND ROUND 19.23 28.56 21.00 30.00 18.00 30.00 0.00 0.00 89.00 9.00 8.00 ROUND 28.56 30.00 30.00 0.00 810.00 10.00 8.00 ROUND 28.02 30.00 30.00 0.00 ' 1011.00 1112.00 11.00 12.00 10.00 11.00 ARCH ROUND 28.02 20.16 30.00 21.00 24.00 21.00 38.00 0.00 1114.00 14.00 11.00 ROUND 23.10 24.00 24.00 0.00 1213.00 13.00 12.00 ROUND 20.16 21.00 21.00 0.00 1415.00 15.00 14.00 ROUND 23.10 24.00 24.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. ST'- z I 1 r SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED "- f/g�✓Ip'F vu raPr R/PRAP ------------------------------------------- ---------------------------------- SEWER DESIGN FLOW NORMAL NORAML IT IC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. CFS CFS FEET FPS FEET FPS FPS --NUMBER- 12.0 ------------------------------ 37.2 42.3 2.18 -------------------------------------- 6.75 1.98 7.52 5.26 0.83 V-OK 23.0 37.2 42.3 2.18 . 5 1.98 7.52 5.26 0.83 V-OK 34.0 14.9 14.3 2.00 4.73 1.42 6.25 4.73 0.00 V-OK 45.0 14.9 14.3 2.00 4.73 1.42 6.25 4.73 0.00 V-OK 46.0 7.9 6.7 1.50 4.48 1.06 5.92 4.48 0.00 V-OK 67.0 7.9 6.7 1.50 4.48 1.06 5.92 4.48 0.00 V-OK 38.0 22.8 26.0 1.81 5.97 1.62 6.77 4.63 0.81 V-OK 89.0 22.8 26.0 1.81 5.97 1.62 6.77 4.63 0.81 V-OK 810.0 21.6 26.0 1.74 5.93 1.58 6.63 4.40 0.83 V-OK 1011.0 21.6 28.4 1.69 5.96 1.56 6.53 4.12 0.87 V-OK 1112.0 9.0 10.0 1.29 4.72 1.11 5.58 3.73 0.75 V-OK 1114.0 12.9 14.3 1.48 5.17 1.29 6.03 4.11 0.76 V-OK 1213.0 9.0 10.0 1.29 4.72 1.11 5.58 3.73 0.75 V-OK 1415.0 12.9 14.3 1.48 5.17 1.29 6.03 4.11 0.76 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ---------------------------------------------------------------------- % (FT) (FT) (FT) (FT) 12.'00 0.40 4940.90 4940.66 2.30 0.34 NO 23.00 0.40 4941.20 4940.90 2.20 2.30 OK 34.00 0.40 4941.35 4941.20 2.28 3.20 OK 45.00 0.40 4941.56 4941.56 2.07 2.07 OK 46.00 0.40 4941.68 4941.55 2.45 2.58 OK 67.00 0.40 4941.69 4941.69 2.44 2.44 OK 38.00 0.40 4941.47 4941.20 2.27 2.70 OK 89.00 0.40 4941.48 4941.48 2.26 2.26 OK 810.00 0.40 4942.19 4941.47 3.47 2.27 OK 1011.00 0.40 4943.06 4942.18 1.97 3.98 OK 1112.00 0.40 4943.17 4943.07 1.60 2.21 OK 1114.00 0.40 4942.17 4942.06 2.35 2.96 OK 1213.00 0.40 4943.18 4943.18 1.59 1.59 OK 1415.00 0.40 4942.18 4942.18 2.34 2.34 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS --------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM FEET FEET FEET --------------------------FEET 12.00 60.00 0.00 ------- 4943.90 4943.66 23.00 75.25 0.00 4944.20 4943.90 34.00 36.62 36.62 4943.35 4943.20 45.00 1.00 1.00 4943.56 4943.56 46.00 31.34 31.34 4943.18 4943.05 67.00 1.00 1.00 4943.19 4943.19 ---------------------------- WATER ELEVATION FLOW UPSTREAM DNSTREAM CONDITION FEET FEET -------------------------- 4943.06 4942.18 SUBCR 4943.48 4943.06 SUBCR 4944.22 4943.48 PRSS'ED 4944.31 4944.22 PRSS'ED 4944.45 4944.22 PRSS'ED 4944.53 4944.45 PRSS'ED 38.00 67.18 67.18 4943.97 4943.70 4944.39 4943.48 PRSS'ED 89.00 1.00 1.00 4943.98 4943.98 4944.48 4944.39 PRSS'ED 810.00 1011.00 179.70 219.28 179.70 219.28 4944,69 4945.06 4913,97 4944.18 1945.04 4914.39 PRSS'ED 4945.85 4945.04 PRSS'ED 1112.00 25.49 25.49 4944.92 4944.82 4946.20 4945.85 PRSS'ED 1114.00 26.20 26.20 4944.17 4944.06 4946.20 4945.85 PRSS'ED 1213.00 1.00 1.00 4944.93 4944.93 4946.25 4946.20 PRSS'ED 1415.00 1.00 1.00 4944.18 4944.18 4946.27 4946.20 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 12.0 2.00 4943.76 1.58 0.50 0.00 0.00 0.00 1.00 4942.18 ' 23.0 3.00 4944.19 0.30 0.28 0.12 0.00 0.00 2.00 4943.76 34.0 4.00 4944.57 0.16 0.64 0.22 0.00 0.00 3.00 4944.19 45.0 5.00 4944.66 0.00 0.25 0.09 0.00 0.00 4.00 4944.57 46.0 6.00 4944.76 0.18 0.05 0.02 0.00 0.00 4.00 4944.57 67.0 7.00 4944.84 0.01 0.25 0.08 0.00 0.00 6.00 4944.76 38.0 8.00 4944.72 0.21 0.05 0.02 0.35 0.31 3.00 4944.19 ' 89.0 810.0 9.00 10.00 4944*11 4945.34 0.00 0.50 0.25 0.40 0.01 0.12 0.00 0.00 0.00 0.00 B.00 8.00 1944.72 4944.72 1011.0 11.00 4946.11 0.51 1.01 0.27 0.00 0.00 10.00 4945.34 1112.0 12.00 4946.41 0.08 1.01 0.22 0.00 0.00 11.00 4946.11 1114.0 14.00 4946.46 0.08 1.01 0.26 0.00 0.00 11.00 4946.11 ' 1213.0 13.00 4946.47 0.00 0.25 0.05 0.00 0.00 12.00 4946.41 1415.0 15.00 4946.53 0.00 0.25 0.07 0.00 0.00 14.00 4946.46 ' BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE ' NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. DDDDOA F� MM ° " D W� D -,�l�j '0e a r S S N N kn i inn n in Wn n 00 �o Caw n rn 0 v� a+ �o U H H z H 0 W CLIENT: Paragon Point Partners PROJECT: Timbers P.U.D. MADE6Y: EMF DATE-11/12/01 695-097788-071 CALCULATIONS FOR: Riprap SHEET: 1 OF 1 EXTENTS OF RIPRAP PROTECTION: (Per Urban Drainage Criteria) L=(1/2Tan6)(At/Yt-w) (EQ 5-9, USDCM) where: L = Length of Riprap Protection (3D _< L s 1 OD) At = Q/V for V=5.5 fps for erosive soil Yt = Tailwater Depth (ft) w = Pipe Diam (ft) 1/2Tan6 = Expansion factor from Fig 5-9 USDCM 100-yr PIPE DESIGN 100-yr `RIPRAP LINE DIAM FLOW VELOCITY Yt DESIGN CONTROLS L (Eq 5-9) Req. L in) (cfs) (f s ft Yt/D Q/D2-5 1/2Tan6 ft ft ST-1 54 91.3 8.57 2 0.44 2.13 6 22.80 23 ST-2 36 37.2 6.75 2 0.67 2.39 6.75 2.58 9 ' Table 8-1 lists several gradations of riprap. The minimum average Size designation for loose riprap shall be 12 inches. Smaller sizes of riprap shall be either buried on slopes which can be easily ' maintained (4 to 1 minimum side slopes) or grouted it slopes are steeper. Grouted riprap should meet all the requirements for regular riprap except that the smallest rock fraction (smaller than the 10 per- cent size) should be eliminated from the gradation. A reduction of riprap size by one size designation (from 18 inches to 12 inches or from 24 inches to 18 inches) is permitted for grouted riprap. ' TableB-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP GR��11 rra� ' xofTotalWeigM ------ SeatlwVM the stone size dsot MpwDemSnation Givensae (Ipounds) Carcftes) Class 6 tt �70 00 85 35 35.50 10 6 ' 2-10 <1 70-100 440 Class 12 50.70 275 t 35-50 85 12 2-10 3 100 1275 Class 18 50.70 655 35-M 275 18 2-10 10 100 3500 Class 24 50.70 1700 35-50 555 . 24 2-10 . t dso= Mean Particle Size. At leastso percent of the mass slid be stones equal to or large em ihls drrtMsion. ' 1't BLffy en 4 to 1 side slopes or grout rock If atopes are steeper. Table 8-2 summarizes rhprap requirements for a stable channel lining based on the following relationship: ,� V = 5.6 (dso)�°7 ' in which, V = Mean channel velocity in feet per second S = Longitudinal channel slope In feet per foot S. =Specific gravity of rock (minimum S,=250) dso = Rock size in feet for which 50 percent of the dprap by weight is smaller. The rock sizing requirements in Table 6-2 are based on the rock having a specific gravity of 2-5 or more. Also, the rock sae does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper, than 2h:1v. Rock. lined side slopes steeper than 2h:1v are not ' recommended. Table 8.2 RIPRAP REQUIREMENTS FOR CHANNEL LUNGS tt Vo.17A-1)o-eet RockType" ' 0 to 1.4 No Riprap Required 1.5 to 4.0 Class 6 Riprap 4.1 to 5.8 Class 12 Riprap 5.9 to 7.1 Class 18 Riprap ' 72 to 82 Class 24 Ripmp t use Ss = 25 unless the source of rock and its dert0es are lowwn at the time of design. tt Table valid any for Fronde manber of 0.8 or less and side slopes no steeper fhan 2h:1v. MAY 1984 8-18 DESIGN CRITERIA DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE Table 5-1 ;Ftf P �iRAD�¢rto� C4ASSIFICATION AND GRADATION OF ORDINARY RIPRAP Riprap Smaller Than Intermediate Rock d50* Designation Given Size Dimension ' By Weight (Inches) Inches Type VL 70-100 12 50-70 g 35-50 6 6** 2-10 2 Type L 70-100 15 ' 50-70 12 35-50 g g** ' 2-10 3 Type M 70-100 21 50-70 18 ' 35-50 12 12 2-10 4 Type H 100 30 ' 50-70 24 35-50 18 18 ' 2-10 6 Type VH 100 42 50-70 33 35-50 24 24 2-10 g ' *d50 = Mean particle size ** Bury types VL and L with native top soil and revegetate to protect from vandalism. 5.2 Wire Enclosed Rock Wire enclosed rock refers to rocks that are bound together in a wire basket so that they act as a single unit. One of the major ' advantages of wire enclosed rock is that it provides an alternative in situations where available rock sizes are too small for ordinary ' riprap.' Another advantage is the versatility that results from the regular geometric shapes of wire enclosed rock. The rectangular ' blocks and mats can be fashioned into almost any shape that can be 1 11-15-82 DRAINAGE CRITERIA MANUAL RIPRAP Yt/D SSE TT/� sfy /F 1-(,JVRA-VLLr- SInMp Use Da instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR 1 CONDUIT OUTLET. 11-15-82 URBAN DRAINAGES FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL Il 6 = EXDansion Anale Immom room lrd� Arm VA VA a a MEN *19. INVANE EVIANNAPH-Hum mummanom 05 IF) IF .1 .L .3 .4 .5 .6 .7 .8 TAILWATER DEPTH/CONDUIT HEIGHT, Yt/D RIPRAP ' FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT Timbers P.U.D. ST-1 Outfall Swale INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 19.050000 CFS 0.000000E+00 FT 2.000000E-02 FT/FT 4.000000 3.500000E-02 1.098545 FT 3.946797 FPS 5.492150E-01 FT 8.788358 FT 9.385246E-01 1.340427 FT 93.150000 CFS 0.000000E+00 FT 2.000000E-02 FT/FT 4.000000 3.500000E-02 1.992038 FT 5.868778 FPS 9.959732E-01 FT 15.936300 FT 1.036325 2.526860 FT 123.890000 CFS 0.000000E+00 FT 2.000000E-02 FT/FT 4.000000 3.500000E-02 2.216854 FT 6.301994 FPS 1.108488 FT 17.734830 FT 1.054835 2.833549 FT I Timbers P.U.D. ' Subbasin Al Swale, Includes runoff from OF1 C u 1 r 11 INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 5.900000E-01 CFS 2.000000 FT 5.000000E-03 FT/FT 4.000000 3.500000E-02 2.230929E-01 FT 9.141210E-01 FPS 1.705344E-01 FT 3.784743 FT 3.900945E-01 2.360683E-01 FT 2.620000 CFS 2.000000 FT 5.000000E-03 FT/FT 4.000000 3.500000E-02 4.800252E-01 FT 1.392184 FPS 3.222381E-01 FT 5.840201 FT 4.321953E-01 5.101210E-01 FT 3.480000 CFS 2.000000 FT 5.000000E-03 FT/FT 4.000000 3.500000E-02 5.509768E-01 FT 1.502060 FPS 3.615615E-01 FT 6.407814 FT 4.402184E-01 5.860106E-01 FT Timbers P.U.D. ' Subbasin A6 Swale, Includes runoff from OF2 1 1 1 11 1 .1 INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 1.970000 CFS 2.000000 FT 5.400000E-03 FT/FT 4.000000 3.500000E-02 4.089280E-01 FT 1.324872 FPS 2.820748E-01 FT 5.271424 FT 4.396063E-01 4.361840E-01 FT 8.850000 CFS 2.000000 FT 5.400000E-03 FT/FT 4.000000 3.500000E-02 8.377924E-01 FT 1.973696 FPS 5.152607E-01 FT 8.702339 FT 4.845502E-01 8.982812E-01 FT 11.770000 CFS 2.000000 FT 5.400000E-03 FT/FT 4.000000 3.500000E-02 9.531202E-01 FT 2.124260 FPS 5.756650E-01 FT 9.624962 FT 4.933950E-01 1.023190 FT L 1 1 r Timbers P.U.D. Subbain B14 Swale, Includes runoff from subbasin OF6 INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 1.670000 CFS 2.000000 FT 4.000000E-03 FT/FT 4.000000 3.500000E-02 4.058359E-01 FT 1.135534 FPS 2.803053E-01 FT 5.246687 FT 3.779692E-01 4.258582E-01 FT 7.650000 CFS 2.000000 FT 4.000000E-03 FT/FT 4.000000 3.500000E-02 8.394520E-01 FT 1.700597 FPS 5.161333E-01 FT 8.715616 FT 4.171503E-01 8.843594E-01 FT 10.170000 CFS 2.000000 FT 4.000000E-03 FT/FT 4.000000 3.500000E-02 9.548076E-01 FT 1.830131 FPS 5.765423E-01 FT 9.638461 FT 4.247550E-01 1.006817 FT 1 I I 11 u i Timbers P.U.D. ST-2 Outfall Swale INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 9.200000 CFS 0.000000E+00 FT 2.000000E-02 FT/FT 4.000000 3.500000E-02 8.361172E-01 FT 3.289695 FPS 4.180950E-01 FT 6.688938 FT 8.965824E-01 1.004162 FT 43.030000 CFS 0.000000E+00 FT 2.000000E-02 FT/FT 4.000000 3.500000E-02 1.491151 FT 4.838551 FPS 7.454945E-01 FT 11.929210 FT 9.875637E-01 1.854685 FT 57.230000 CFS 0.000000E+00 FT 2.000000E-02 FT/FT 4.000000 3.500000E-02 1.659444 FT 5.195847 FPS 8.296880E-01 FT 13.275550 FT 1.005243 2.078649 FT TIMBERS PUD SWALE F CROSS-SECTION INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE _ SIDE SLOPE _ MANNINGS N = RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= INPUT DATA: DISCHARGE _ BOTTOM WIDTH = BED SLOPE SIDE SLOPE _ MANNINGS N RESULTS: NORMAL DEPTH = FLOW VELOCITY = HYDR. DEPTH = TOP WIDTH = FROUDE NUMBER = SPECIFIC ENERGY= 1.610000 CFS 0.000000E+00 FT 1.000000E-02 FT/FT 10.000000 3.500000E-02 3.490221E-01 FT 1.321102 FPS 1.745848E-01 FT 6.980442 FT 5.571924E-01 3.761232E-01 FT 2Yr 7.650000 CFS 0.000000E+00 FT 1.000000E-02 FT/FT 10.000000 3.500000E-02 6.261417E-01 FT 1.950670 FPS 3.131664E-01 FT 12.522830 FT 6.142825E-01 6.852273E-01 FT 10.170000 CFS 0.000000E+00 FT 1.000000E-02 FT/FT 10.000000 3.500000E-02 6.967068E-01 FT 2.094736 FPS 3.484269E-01 FT 13.934140 FT 6.253821E-01 7.648422E-01 FT jooyr K 1.33 6�9?o TIR D) o M cuq M UG°JMOW 0 0 0 0 0 r 0 FINAL DRAINAGE REPORT FOR WESTCHASE P.U.D. At The Northeast Comer of Trilby Road and Timberline Road Larimer County, Colorado Prepared for: Marcus S. Palkowitsh Willowood Corporation 760 Whalers Way, Suite B-102 Fort Collins, Colorado 80525 (970)204-4070 January 11, 2000 Rev: June 6, 2000 Rev: August 18, 2000 Rev. November 3, 2000 Project Number: MSPP 0000-0002 Prepared by: . Roy L"Vestal, P.E. David Evans and Associates, Inc. 777 South Wadsworth Boulevard Building 3, Suite 100 Lakewood, CO 80226 DAVID EVANS AND ASSOCIATES, I Westchase P.U.D. ' Final Drainage Report well outside of the 100-yr flood limits, on the flood insurance rate maps from FEMA ' (panel # 080101 0208 C), of the Cache la Poudre River. 2. The basin is experiencing urbanization at the present time. The land characteristics 1 are primarily farm land and varying degrees of density residential development. 3. As stated in the description of the property, the irrigation patterns are evident on the topography and a detailed map showing a field underdrain is attached in the appendices. A lateral from the Mercer Ditch crosses under Timberline Road near the northwest comer of the site. This lateral serves four farms south of the property. ' Final service is located approximately''/2 mile south of the property. B. Sub -Basin Description 1. Historically, the project area can be divided into two sub -basins. The eastern portion being approximately 148 acres (of which 14 acres is offsite) has historically drained to a wetland area located in the southeast comer of the project. The southwest portion being approximately 25 acres has historically followed a flowpath through the Lefler Farmstead located directly to the south of the project. The historic release rate from the entire site is determined to be approximately 105 cfs. 2. This site has no adjacent properties which contribute runoff or which impact the proposed development. Approximately 38 acres of the adjacent quarter section to the north flows to the east end of the boundary. This area of contributing basin is ' undeveloped at this time and will likely be graded to drain with the adjacent proprunofferty upon development. The contributing area has been accounted form calculations as undeveloped land. Timberline Road forms a dam that redirects flows from the west directly to Fossil Creek The easterly property has been leveled as part of a farming operation and flows generally due south. Should these flows creep to the west, a well-defined natural outfall channel is located on this property's east boundary line. This channel has historically drained runoff as well as irrigation ' wastewater from this site. And finally, the quarter section to the south is lower than this property and does not contribute runoff to this area. ' III. DRAINAGE DESIGN CRITERIA A. Regulations ' The policy and guidelines outlined in the Larimer County Storm -Water Management Manual (LCSWMM) and the Storm Drainage Design Criteria of the City of Fort Collins have been used for planning drainage facilities for the Westchase Planned Unit ' Development (P.U.D.). The Urban Storm Drainage Criteria Manual (USDCM) was also used where the guidelines in the LCSWMM and of the City of Fort Collins required elaboration. ' B. Development Criteria Reference and Constraints As stated previously, the adjacent study for the Fossil Creek drainage basin as no impact on the drainage patterns of the Westchase site, or vice versa. The Westchase ' development, however, will have an impact on the downstream release through the Lefler Farmstead. The major design constraint is limiting the outfall release rate to the Fossil Creek Reservoir swale to less than the historic flow of 70 cfs. The constraint having the greatest impact on the micro -design for this project was the street design, or more specifically the curb and gutter capacity. Trilby Road and Tilden Street are the only David Evans and Associates, Inc. 1 5 1 Westchase P.U.D. ' Final Drainage Report ' For local and collector streets, the depth of water was not to exceed the crown of the street by more than 6 inches. The allowable capacity for arterial streets was not to exceed the lesser of 18 inches over the flowline, or 6 inches over the crown of the street. In all 1 cases within and adjacent to the site, the 6 inches over the crown of the street was found to control. ' Using the above equations and the Fort Collins Criteria, the allowable capacities were then determined for slopes ranging between 0.5% and 3.0%. Once again a spreadsheet was used to determine these values, which were then compared to actual flows determined from the rational method. ' IV. DRAINAGE FACILITY DESIGN A. General Concept ' 1. The development was divided into 3 main basins all draining to 3 respective design points. The sub -basins included in each basin are listed on the drainage plan. The proposed drainage improvements involve a series of swales, channels, streets and ' culverts, which collect site runoff and direct the flow to the water quality/detention pond with final outfall to the swale to Fossil Creek Reservoir. The sub -basins, drainage improvements and technical data are summarized in the Appendices. As . discussed earlier, the typical drainage patterns have routed runoff towards the southeast comer of the project. Historically, two natural detention areas have controlled this runoff, and limited the major storm event release rate from the site to ' 105 cfs. The drainage design for the project not only adheres to the natural drainage patterns, but also restricts the outfall for the major storm event to 40 cfs in order to minimize damage to the swale draining directly into Fossil Creek Reservoir. 2. Offsite runoff was considered, but upon further investigation was found not to contribute or affect any of the drainage design for the site. Offsite runoff is either diverted away from the site by natural obstructions, or natural grades adjacent to the site. Approximately 38 acres along the north property line from the neighboring site to the north, however, was included in the runoff calculations as undeveloped land. This 38 acres of undeveloped land was used to design a temporary drainage swale ' along the north property line of the site. This swale was placed in a drainage ' easement and only conveys historic flows. Upon development of this neighboring north property, it is anticipated that 27 of the 38 acres will be multi -family residences. This 27 acres of developed runoff will be routed through the Westchase site and all detention for this land will be accommodated on Westchase property. 3. Various tables and figures were used and are included in the Appendices in the general order used in any calculations. Similarly, the Appendices are arranged in the order of calculations performed. The Fort Collins Criteria, the LCSWMM, the USDCM, and the Jefferson County Storm Drainage Design and Technical Criteria were all used to obtain these tables and figures. ' The drainage plan included with this report will show locations and sizes of the drainage structures for the project. Also shown are the drainage basins with the corresponding acreage and runoff coefficients used. Upon finalization of building ' plans and landscaping, it may be necessary to determine composite runoff David Evans and Associates, Inc. 8 No Text 01-7 _ vA P lt- - COMPOSITE RUNOFF COEFFICIENTS (USING TABLE 3-3) SUBBASIN BASIN AREA ROOF AREA STREET AREA LAWN AREA POND AREA C %I M 13 1.29 0.31 0.38 0.80 0 0.65 51 14 0.69 0.11 0.38 022 0 0.69 67 15 2.43 0.55 0.75 1.13 0 0.68 51 16 2.10 0.50 0.57 1.03 0 0.56 49 17 1.45 025 0.40 0." 0 0.53 45 18 0.56 0.07 0.29 020 0 0.66 63 SWMM 1 0.52 142 2.75 3.95 0 0.58 52 SWMM 28 10.90 0.00 0.00 10.90 0 0.15 5 SWMM29 4.50 0.00 0.00 4.50 O 0.13 5 SWMM 30• 1120 1 6.18 1 2.80 224 0 0.65 70 SWMM 26' SAO I L97 1 1.35 1.08 0 US 70 SWMM 25• 5.90 1 325 1AS 1.17 0 0.65 70 SWMM 2 920 020 0.00 9.00 0 0.17 5 19 4.37 0.74 1.41 222 0 0S4 48 20 3.90 0.77 1.12 2.01 0 0.54 46 21 1.70 021 0.44 1.06 0 0.46 37 22 226 0.38 0.59 1 1.29 0 0.49 41 23 223 0.37 0.50 128 0 0.49 41 21 8.00 1.41 1.03 1 5.58 1 0 0.39 L 29 1/ 3.64 0.14 0 1 3.50 1 0 0.18 5 SWMM 3 28.10 4.02 5.17 1 18.911 1 0 1 OA3 1 34 IVI/Y..1 W.l! 1{i0 .../i ... V a.w. �.. a = - 31 2.15 0.20 0.65 1.30 0 0.47 39 32 4.69 0.52 0.88 3.29 0 0.39 29 33 0.69 0.00 0.38 0.31 0 0.59 55 34 2.31 0.17 0.88 1.46 0 0.44 36 35 2.28 0.17 0.70 1.39 0 0.46 38 38 0.71 0 0.38 0.33 0 0.58 54 37 4.96 0.52 0.90 3.54 0 0.36 28 38 2.20 0.00 1.13 1.07 0 0.58 51 SWMM 5 19.97 1.58 5.70 12.69 0 OA4 39 30 0.75 0 0 0.75 0 0.15 5 39 192 0.21 0.00 2.71 0 0.21 6 40 2.74 OAS 0.90 1.38 0 0.55 48 42 1.05 0.00 0.79 026 0 0.75 76 43 4.10 0.85 1.21 2.04 0 0.55 48 44 .120 027 0.57 0.38 0 0.71 68 45 8.70 . 1.69 1.44 3.57 0 0.52 44 46 1.12 0 0.72 0.40 0 0.66 64 47 4.53 1.19 0.81 2.53 0 0.50 42 48 2.39 0.57 1 0.77 1.09 0 0.59 52 49 211 1.03 0 0.5851 0.36 0.08 0 0.77 77 52 1.17 0.40 0 0.68 65 53 2A3 MOA662 1.34 0 0.51 43 54 1.58 1,23 0 0.33 21SWMM 4 35.15 19.17 0 0.51 44 90 SWMM S 10.65 9.09 4.32 0.13 5 91 0.50 a 0.25 0.25 0 0.55 So 82 0.19 0 0.19 0 0 0.95 100 83 4.17 0.75 0.02 3.40 0 0.30 17 75 107 0.33 1.04 1.60 0 0.52 45 78 L05 021 0.57 1.27 0 0.46 37 77 3.30 0.63 1.16 1.51 0 0.68 52 78 1.62 OA3 0.47 0.72 0 OA9 53 50 1.66 0.33 0.47 0.80 0 0.54 46 79 1.79 0.37 0.53 0.89 0 0.55 48 80 1.38 0.31 0.39 0.68 0 0.58 48 81 1.36 024 OA4 0.68 0 0.55 - 48 n = 82 1.88 029 0.73 0.66 0 0.61 59 83 L64 0.55 0.66 1.43 0 0.52 44 84 0.09 0 0.09 0 0 0.95 100 64 1.08 0.43 0.09 0.56 0 0.54 44 SWMM 7 26AS 4.07 7.10 14.51 0 0.51 43 65 0.34 0 022 0.12 0 0.67 65 66 027 0 027 0 0 0.95 100 67 021 0 021 0 0 0.95 100 68 1.89 0 1.89 0 0 0.96 100 69 1.47 0 1.09 0.38 0 0.74 74 70 1.62 0 1.34 028 0 0.81 83 72 0.59 0.19 0.32 0.08 0 0.64 83 73 1.40 0.43 0.53 0.52 0 0.67 62 74 1.31 0.36 0.46 OAS 0 0.65 60 SWMM 6 8.98 0.98 6.13 1.37 0 0.78 78 71 SWMM 10 735 123 US 2.37 0 0.70 67 91 SWMM 9 9.90 0.51 0 4.80 1A8 020 7 M IALZ W01 1.W lf.10 Z .20 1. u.0a •0 Runoff % charactarof Surface coefficient Impervious Roof Area 0.95 90 Street Area 0.95 100 Lim Area (2%<s<7%) 0.15 0 Pond Area 0.10 0 Runoff we ants taken from Table 3-3 of the . . Fort Collins Criteria, but the USDCM Is the source for Ore % knpervleus values. No % Impervious values are provided in the Fort Collins Wants. Assumption of MuIO-FaMy (attached) made for Basins 25. 26, and 30. Each Basin area broken down 55% roof area, 25% street area, and 20% lawn area. LEGEND cJ ASIN DESIGN (SWMM BASIN) TION 20. 4 AREA IN ACRES % IMPERVIOUS 301 CONVEYANCE ELEMENT 800 DETENTION POND FOSSIL CREEK SERVOIR SWALE DAVID EVANS AND ASSOCIATES, INC. SN Whin Complex, BMO. 4 M Lakewood, Se. 00 6 1 fihd., Su1M 100 26 Tell30, 00 1019 Fox J 03-91-102 D NVER F°x: SOJ-01h101J Engineers • Surveyors • Planners F INAGE SCHEMATIC UBDIVISION (USED FOR DESIGN OF NORTHERN SWALE) kaw Job Number FRO Yspv 0000-0002 i� 1 1 1 1 1 1 1 1 1 1 1 1 1 1! LEGEND BASIN DESIGN cJ (SWMM BASIN) TION 20. 4 AREA IN ACRES % IMPERVIOUS 30 CONVEYANCE ELEMENT 8 O O DETENTION POND Z7 0, 'e&xx CREEK SWALE DAVM EVANS AND ASSOCIATES, INC. Im"9109 a+k,. eomPi... nao. 3 M U. Wodsvorlh 9Wd., suit. 100 lakwoed, CO 50225 T.h 303-914-1019 DENVER Feu 303-914-1023 Engineers • Surveyors • Planners DRAINAGE SCHEMATIC WESTCHASE SUBDIVISION (DEVELOPED SIMPLIFIED) Designer. AJR Job Number DetaUer: FRO MSPP o00o-0002 o A m 0 6V. O 07 OI Q ppppM NbeiNmNONbNMNI�b ri ribmbNAmmbO1� Z S n w1f n nI n V n n n O n n n f N n n! n N n f n V N Qpry MCC P m � ' G F O� F f '•I �O 1� 'I P 'I N O m 10 m P b 0 ri N '1 e1 n m O P m b 'I Hei ei r11'! nN n edn r+rlf nNn Y� y... N � � P rnnbPm f N I:Nm O ri PnP V a�-I 1�0n1� N f A b M D7 U a`-' PNn f n1� � ONPNPry O.11` NN M '1N Nri el e•IN nnl nnel n rd Y m N � 3 a Q Q � �� n.lm rnnnN♦1mmrNnnN H.•1mNN.df NriP o a� I 1 STANDARD FORM SF-2 TIME OF CONCENTRATION LOCATION: Wast&ase SubdMslon CALCULATED BY: ksw DATE:. 2-NOV-00 CHECKED BY: RLV ` J //447 CALCULATED BY: AJR DATE: 2-NN40 CHECKED SY.' RLV STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE) LOCATION: Westftse Subdivislart (DS 1) DESIGN STORM: 4mv, C, a 125 DIRECT RUNOFF TOTAL RUNOFF STREET DESIGN POINT AREA OSON. AREA (AC) c cm To (WA Om' A (Aci I I a Tc (r*I SUWC%o!Al LAC) 1 (IfAd 0 (ds) (2) (4) (5) (6) m (5) tic) I 1 02) (13) Chandler (N) Sheet 1 17 1.45 0*53 0.66 9 0.96 9.95 9.6 9 0.96 9.95 9.6 Nds Chandler (N) Sheet 2 Is 2.43 0.58 0.73 15 1.76 8.52 1115 1902.72 3.75 15.7 Chan court 4 13 1.29 0.50 0.73 11 0.94 7.42 8.9 23 . a 3.66 .20 19.0 .......... Is 1 0.561 0065 x. 0.53 6 01MAR.4- OAG X, 9.31 . . . . . . . . . . . 4.3 . 6 W �., y . . . . . . sm 0. 0 0.40 9.31 4.3 Chandler (S) smmt Chandler S SIMI 3 Is 2A0 0.56 0.70 Is 1.47 0,52 9.6 15 1.93 6.52 12.6 Chandler S court 4 14 14 0.69 0.69 0.86 a 0.60 8.38 5.0 is 2.53 5.92 15.0 . . . . . ..... 10.90 0.15 0.19 18 2.04 5.92 12.1 18 • 2.04 5.92 12.1 39 28 40 29 29 4.50 0.15 0.19 16 0.84 6.92 5.0 18 2.69 .5.92 17.1 5 97 27 11.2D 0.65 0.81 17 9.10 1'. '0 6.10 55.5 17 11.99 6.10 73.1, 39 26 r 4 5.40 0.65 0.81 is 4.39 4.39 5.92 28.0 18 6.43 5.92 38.1 40 25 5 SO 5.90 0.65 0.81 17 N4 79 4.79 6.10 29.2 41. --- 7.50 3.68 28.3 5 2 to 2D 9.2D N2.23 0.17 0.21 18 1.96 3.92 11.8 41 26.06 3.68 103.2 a . DO a.00 0.41 0.51 16 4.10, 4 10 6.30 25.8 is 4.10 6.30 25.8 chim CW) Orde 6 24 CtfiW (E) ChIs 8 23 0.49 0.61 14 1.371 0.71 9.2 Is 6A7 6.30 34.4 TMestead (W) court 7 22 2.26 0.49 0.01 13 1.38 0.92 9.6 20 6.95 5.60 38.4 court 7 21 1.70 0.51 0.64 13 1.08 6.92 7.5 20 7.93 6.60 44.4 RO.3882' Road a 20 3.90 0.51 16 2.49 6.30 1 15.7 24 10.42 1 5.09 53.0 Road a '19 4.37 0.54 0.68 17 2.96 6.101 18.0 1 24 1 13.371 31091 68.1 Wg", ME 7 IMM'"71m WERE= 224= 9 ii 3.54 1 0.181 0.231 14 6.71 1 5.51 651 42.24 1 3.031 12 M I I r-- 1 1 i i i 1 1 1 1 Id 1 1 CALCULATED BY: AIR DATE 2-Nw•00 CHECKED BY: RLV STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE) LOCATION: Westehase Subdivision (DO 1) DESIGN STORM: IV, CI a 1.00 DIRECT RUNOFF TOTAL RUNOFF STREET DESIGN POINT AREA OWN, AREA e cl Te n Cs'A I D da Tc SUMWA) I O cN 1 e o 11 12 10 Chandler N Street 1 17 1.45 0.53 9 0.77 2.30 1.8 9 0.77 2.30 1.8 Chandler Street 2 15 2.43 0.58 15 1.41' 1.87 28 19 218 1.65 3.8 Chandler N Court 13 1.29 0.58 11 0.75 2.13 1.6 23 2.93 1.49 4.4 J^.�.•Y:S. 'iC. .: \ Chandler S "FS: 3n"v: Streal y4 'S>:`•P 0.50 0.66 8 0.37 287 1.0 6 0.37 287 1.0Chandler S Street 3 2.10 0.56 15 1.18 1.87 22 15 1.55 1.87 29 Chandler S F. ;.. Court yM,nv 4 ..ry::x,ok:y!+:.� 0.69 10.90 0.99 0.16 8 18 0.48 ,• 1.64 240 ;y 1.75 1.1 29 18 18 202 1.64 1.70 1.70 3.4 2.5 39 40 4.50 0.15 18 0.68 1.76 1.2 18 231 1.70 3.9 5 27 11.20 0.65 17 7.28 1.78 12.7 17 0.59 1.75 16.8 39 26 5.40 0.65 18 3.61 1.7O 6.0 18 6.15 1.70 8.7 40 25 5.90 0.55 17 3.54 1.75 6.7 41 6.15 1.05 6.5 5 2 9.20 0.17 18 1.56 1.70 2.7 41 22.44 1.05 23.6 Circle 6 24 8.00 0.41 18 3.28 1.81 6.9 16 3.28 1.81 5.9 G r E Clyde 8 23 2.23 0.49 14 1.09 1.92 2.1 16 4.37 1.81 7.9 Treestead Court 7 22 2.28 0.49 13 .1.11 1.98 22 20 5.48 1.61 8.8 Traestead E Court 7 21 1.70 0.51 13 0.87 1.98 1.7 2D 0.35 1.61 10.2 Clymer E Road 8 20 3.90 0.51 18 1.99 1.81 3.8 24 8.34 1.46 12.2 CI r Road ;c5, ;%W`. 8 ,y `. ;9# t? ' 9 19 ?Y 11 4.37 "•y�%:i 3.84 0.64 9; i3 w.'w 0.18 17 3+'iiA 14 2.36 a'rir <<,. ..: 0.66 1.75 `YS : 1.92 4.1 1.3 24 �;3}%a,: vyy. y 55 10.70 •' ~33.80 1.48 ;� .„ • 0.87 15.6 :+# mom 1 29.4 1 Channel Calculator Given Input Data: Shape........................... Solving for ..................... Plowrate ......................... Slope........................... Manning's n ..................... Height.......................... Bottom width .................... Leftelope ...................... Rightelope ..................... Computed Results: Depth........................... Velocity........................ Full Plowrate ................... Flow area ....................... Plow perimeter .................. Hydraulic radius ................ Topwidth ....................... Area............................ Perimeter ....................... Percent full .................. BB12 Ditch-2yr.txt Trapezoidal Depth of Flow 43.0000 cfs 0.0113 ft/ft 0.0350 54.0000 in 60.0000 in 0.2500 ft/ft (V/H) 0.2500 ft/ft (V/H) 14.0304 in 3.8006 fps 850.7746 cfa 11.3141 ft2 175.6977 in 9.2729 in 172.2433 in 103.5000 ft2 305.2954 in 25.9822 t Critical Information Critical depth .................. 12.0794 in Critical elope .................. 0.0207 ft/ft Critical velocity ............... 4.7325 fps Critical area ................... 9.0861 ft2 Critical perimeter .............. 159.6089 in Critical hydraulic radius ....... 8.1976 in Critical top width .............. 156.6349 in Specific energy ................. 1.3937 ft Minimum energy .................. 1.5099 ft Proude number ................... 0.7547 Flow condition .................. Subcritical [I r Page 1 [I 1 I 1 Channel Calculator Given Input Data: Shape........................... Solving for ..................... Flowrate ........................ Slope........................... Manning-s n ..................... Height.......................... Bottom width .................... Leftslope ...................... Rightslope ..................... a.. p4ns SB12 Ditch-100yr.txt Trapezoidal Depth of Flaw 341.8000 cfs(1.33.257cfs) 0.0113 ft/ft 0.0350 54.0000 in 60.0000 in 0.2500 ft/ft (V/H) 0.2500-ft/£t (V/H) Computed Results: Depth ........................... 36.5610 in Velocity ........................ 6.5255 fps Full Plowrate ................... 850.7746 cfs Plow area ....................... 52.3792 ft2 Plow perimeter .................. 361.5393 in Hydraulic radius ................ 20.8625 in Top width ....................... 352.5361 in Area ............................ 103.5000 ft2 Perimeter ....................... 505.2954 in Percent full .................... 67.7167 4 Critical Information Critical depth .................. 34.1081 in Critical elope .................. 0.0155 ft/ft Critical velocity ............... 7.3462 fps Critical area ................... 46.5274 ft2 Critical perimeter .............. 341.2628 in Critical hydraulic radius ....... 19.6328 in Critical top width .............. 332.8650 in Specific energy ................. 3.7090 ft Minimum energy .................. 4.2635 ft Proude number ................... 0.8616 Flow condition .................. Subcritical Page 1 1 I r 1 1 l� WAT QUALITY CAPTURE VOLUME (SUBBASIN 90) Basin I Basin Are Roof Area Street Area Lawn Area Pond Area 1'A % Impervious 1 81.93 6.04 7.92 67.97 0 1335.E 1 16.3 2 65.76 8.30 15.23 37.91 4.32 2270 34.5 3 49.81 7.60 17.18 23.55 1.48 2402 48.2 Total I 197.50 21.94 40.33 129.43 5.80 6007.6 30.4 Where I„or = 90 % 15mt = 100 % pawn = 0 % 1pwd = 0 % WQCV = 0.15 inches (Figure SQ-2 USDCM for 40-hr drain time) Storages = 2.51: ao-ft OUTLET DESIGN FOR SOUTHEAST POND (SUBBASIN 90) From the historic SWMM analysis, the release rates were determined to be as follows: 2-yr Storm: 8 cfs 100-yr Storm: 172 cfs ' The allowable WQCV release rate can be determined as follows: 1 1 1 1 Q = V/t = 0.76 To obtain a longer drain time than 40 hours, however, a perforated pipe will be extended into the pond being approximately 2 feet beneath the surface. See the attached trench detail. Therfore, the outlet structure will be designed to control the 2-yr and 100-yr storm respectively. From the 2-yr developed SWMM analysis, the flow entering the pond will be 29-cfs, and this in turn will be the maximum allowable release from the pond for the 2-yr storm. For the 100-yr storm, it was decided to limit the release rate to the capacity of a 36" outlet pipe, which was determined to be approximately 109-cfs for the 100-yr water surface. This limits the release rate to well below the historic value of 164-cfs. From the SWMM model, the required storage capacities for the 2-yr and 100-yr storm are: 2-yr => 7.1 Ac-ft + WQCV = : 9>6: Ao-ft 100-yr => 35 Ac-ft + WQCV = 31:6' Ac-ft Qoa>o� Qo com gar I, I 600 I L VM�x IaJl.04y Vim' .: - Y ILit K'.aM1 g YUB UY514V eAax. RabW moue. ARYk Ian its A ow m) Il .0 5 At A nsz 645 a.M ud M S am M1Y aM DS AS S a m oaa '- IID me Ad e. tm alld-I Im am eat >. it am o¢ a% 6la m . M alz 0 a.n Il) J, R" a am o. am me e W.sl z ad % aA an 9.P 3.71 66 16 aAl am am 39 C111YAR AWr yiW ® is all P aU 191 19 Im an a.P "A ad 19 1.P lA 1]l) 61a m 016 aW aJ1 Ul Im 7.71 1D H1 n al] 0..0 9.n eut 11 on ov Id1 e36 ��/��e/�p��� eu la oN am CAI Ix yY/��CRE SI 014 N IA m say c m im am IA1 745 CI 11 d am )A ]9t OO )1 Im a�t IA 791 m alb 0.0 )]1 e 1k slag z " a m as on am aA (a 31 iP am am man H06 'N am In an r OF � I am ay aW a036 all aP 1 OA u am am 6]II ]el ON l aA3 a�a "I - ve om a in • ON add 1.6I , N Alf, scnav s'!rdlN nayN l aN r a6f g_e r.n aer r aw cs r,v as r ax 71A111L UMMME0 mra FIA V � I I 1 bd5 Ac. ,t .rri SiB► \ , •.gyo 1 , I I �I I� I ili III i II I , I I I LAIL a�m X.G.S. F.M.P. z g-� w a O I Q J a W e y, W W Q Z W Q Z � Z 0 J � a a O /w W cW L Q F Z KFV MAP M9rzs sa sixn z %e c9Aw.vc )Nu)es 00 o m Im aetl. [LdBID y Ytve olRErnox —a.— SALT FpLE as L.O.D.Port CRllllia — Lovalemd water District HIM IMRRastR � City of Ft. Calling, Colorado sroRR 7ryp, REVER E'er Y C'pY.aE1E 9Aµ soth uFo Colllae 9e1LLtaUoa Dietrlot ConaVltingsT� Engineers UTQI'1'Y PLAN APPROVAL ).e xnal.,. an. Reg o z' MEr6E soexztll Fort cogym, caI i mIOPOSEo • WlvEm A�RDVID: yto-Zze-osv WMWR My6nelnaae Vistxg aro E)ISTxV ® TYFE 19 ixlrT MkxaM D. I1 Manager Daie gIEIXEO BY: wp 695-09) - CONTOURRa4t k eeetweler liability p TYPE 'R' Ixl£y CHECKED BY: 9te,mnefv VtWt) Catv lOR a^six lOf-5I.5D OF FOUxakppx CHEIXEO BY: wrt 6/l/01 DnAyrox R.M r..k. k R.er..M66 a... a,yg Av. ceuxuiW TmrY W. fa, ill. Spirits Engineer Dole CHEIXEO BY: fF�a965.0 "II5NE0 FLOOgo RDrve)roN hWla 8ylnn. Rete srtn Ik el,v,oee om, adJ,lmq del.11m. LIIEIXED BY: 35 01 36 Yi wlmt eFda �Y a FuiefdAba�aNma M v waKd; xatwe Rmu.oa Det. R 14CE55 RILV .Y35 Sgif ELEV611W _ ad 1M Sw fat CdFe Smitatxn gM6d. eat >. it am o¢ a% 6la m . M alz 0 a.n Il) J, R" a am o. am me e W.sl z ad % aA an 9.P 3.71 66 16 aAl am am 39 C111YAR AWr yiW ® is all P aU 191 19 Im an a.P "A ad 19 1.P lA 1]l) 61a m 016 aW aJ1 Ul Im 7.71 1D H1 n al] 0..0 9.n eut 11 on ov Id1 e36 ��/��e/�p��� eu la oN am CAI Ix yY/��CRE SI 014 N IA m say c m im am IA1 745 CI 11 d am )A ]9t OO )1 Im a�t IA 791 m alb 0.0 )]1 e 1k slag z " a m as on am aA (a 31 iP am am man H06 'N am In an r OF � I am ay aW a036 all aP 1 OA u am am 6]II ]el ON l aA3 a�a "I - ve om a in • ON add 1.6I , N Alf, scnav s'!rdlN nayN l aN r a6f g_e r.n aer r aw cs r,v as r ax 71A111L UMMME0 mra FIA V � I I 1 bd5 Ac. ,t .rri SiB► \ , •.gyo 1 , I I �I I� I ili III i II I , I I I LAIL a�m X.G.S. F.M.P. z g-� w a O I Q J a W e y, W W Q Z W Q Z � Z 0 J � a a O /w W cW L Q F Z KFV MAP M9rzs sa sixn z %e c9Aw.vc )Nu)es 00 o m Im aetl. [LdBID y Ytve olRErnox —a.— SALT FpLE as L.O.D.Port CRllllia — Lovalemd water District HIM IMRRastR � City of Ft. Calling, Colorado sroRR 7ryp, REVER E'er Y C'pY.aE1E 9Aµ soth uFo Colllae 9e1LLtaUoa Dietrlot ConaVltingsT� Engineers UTQI'1'Y PLAN APPROVAL ).e xnal.,. an. Reg o z' MEr6E soexztll Fort cogym, caI i mIOPOSEo • WlvEm A�RDVID: yto-Zze-osv WMWR My6nelnaae Vistxg aro E)ISTxV ® TYFE 19 ixlrT MkxaM D. I1 Manager Daie gIEIXEO BY: wp 695-09) - CONTOURRa4t k eeetweler liability p TYPE 'R' Ixl£y CHECKED BY: 9te,mnefv VtWt) Catv lOR a^six lOf-5I.5D OF FOUxakppx CHEIXEO BY: wrt 6/l/01 DnAyrox R.M r..k. k R.er..M66 a... a,yg Av. ceuxuiW TmrY W. fa, ill. Spirits Engineer Dole CHEIXEO BY: fF�a965.0 "II5NE0 FLOOgo RDrve)roN hWla 8ylnn. Rete srtn Ik el,v,oee om, adJ,lmq del.11m. LIIEIXED BY: 35 01 36 Yi wlmt eFda �Y a FuiefdAba�aNma M v waKd; xatwe Rmu.oa Det. R 14CE55 RILV .Y35 Sgif ELEV611W _ ad 1M Sw fat CdFe Smitatxn gM6d. N Alf, scnav s'!rdlN nayN l aN r a6f g_e r.n aer r aw cs r,v as r ax 71A111L UMMME0 mra FIA V � I I 1 bd5 Ac. ,t .rri SiB► \ , •.gyo 1 , I I �I I� I ili III i II I , I I I LAIL a�m X.G.S. F.M.P. z g-� w a O I Q J a W e y, W W Q Z W Q Z � Z 0 J � a a O /w W cW L Q F Z KFV MAP M9rzs sa sixn z %e c9Aw.vc )Nu)es 00 o m Im aetl. [LdBID y Ytve olRErnox —a.— SALT FpLE as L.O.D.Port CRllllia — Lovalemd water District HIM IMRRastR � City of Ft. Calling, Colorado sroRR 7ryp, REVER E'er Y C'pY.aE1E 9Aµ soth uFo Colllae 9e1LLtaUoa Dietrlot ConaVltingsT� Engineers UTQI'1'Y PLAN APPROVAL ).e xnal.,. an. Reg o z' MEr6E soexztll Fort cogym, caI i mIOPOSEo • WlvEm A�RDVID: yto-Zze-osv WMWR My6nelnaae Vistxg aro E)ISTxV ® TYFE 19 ixlrT MkxaM D. I1 Manager Daie gIEIXEO BY: wp 695-09) - CONTOURRa4t k eeetweler liability p TYPE 'R' Ixl£y CHECKED BY: 9te,mnefv VtWt) Catv lOR a^six lOf-5I.5D OF FOUxakppx CHEIXEO BY: wrt 6/l/01 DnAyrox R.M r..k. k R.er..M66 a... a,yg Av. ceuxuiW TmrY W. fa, ill. Spirits Engineer Dole CHEIXEO BY: fF�a965.0 "II5NE0 FLOOgo RDrve)roN hWla 8ylnn. Rete srtn Ik el,v,oee om, adJ,lmq del.11m. LIIEIXED BY: 35 01 36 Yi wlmt eFda �Y a FuiefdAba�aNma M v waKd; xatwe Rmu.oa Det. R 14CE55 RILV .Y35 Sgif ELEV611W _ ad 1M Sw fat CdFe Smitatxn gM6d. 71A111L UMMME0 mra FIA V � I I 1 bd5 Ac. ,t .rri SiB► \ , •.gyo 1 , I I �I I� I ili III i II I , I I I LAIL a�m X.G.S. F.M.P. z g-� w a O I Q J a W e y, W W Q Z W Q Z � Z 0 J � a a O /w W cW L Q F Z KFV MAP M9rzs sa sixn z %e c9Aw.vc )Nu)es 00 o m Im aetl. [LdBID y Ytve olRErnox —a.— SALT FpLE as L.O.D.Port CRllllia — Lovalemd water District HIM IMRRastR � City of Ft. Calling, Colorado sroRR 7ryp, REVER E'er Y C'pY.aE1E 9Aµ soth uFo Colllae 9e1LLtaUoa Dietrlot ConaVltingsT� Engineers UTQI'1'Y PLAN APPROVAL ).e xnal.,. an. Reg o z' MEr6E soexztll Fort cogym, caI i mIOPOSEo • WlvEm A�RDVID: yto-Zze-osv WMWR My6nelnaae Vistxg aro E)ISTxV ® TYFE 19 ixlrT MkxaM D. I1 Manager Daie gIEIXEO BY: wp 695-09) - CONTOURRa4t k eeetweler liability p TYPE 'R' Ixl£y CHECKED BY: 9te,mnefv VtWt) Catv lOR a^six lOf-5I.5D OF FOUxakppx CHEIXEO BY: wrt 6/l/01 DnAyrox R.M r..k. k R.er..M66 a... a,yg Av. ceuxuiW TmrY W. fa, ill. Spirits Engineer Dole CHEIXEO BY: fF�a965.0 "II5NE0 FLOOgo RDrve)roN hWla 8ylnn. Rete srtn Ik el,v,oee om, adJ,lmq del.11m. LIIEIXED BY: 35 01 36 Yi wlmt eFda �Y a FuiefdAba�aNma M v waKd; xatwe Rmu.oa Det. R 14CE55 RILV .Y35 Sgif ELEV611W _ ad 1M Sw fat CdFe Smitatxn gM6d. I I �1 — _ all - - som moss_ - — � ♦ —_ - — _ ur 1 TAIT i - — w0 - sa / _ f9b Q nWe 49— v_ `•. - is �. t•�i��r _ Fiot �., mo .#iil,aat'IoIT` OTB •a9917 J4 1Y let t• py -. _ �` ^C °9 A_ ll -/w,. 2J1 Ac. 1 • @WWI 495.g 01_ as i * LALrOrr _ 4953 ' u 1eII)utnRrrprrrru I tir AN r{/prrl. TrT:. 'A 4r- �__ �� .. ` VY �'C Ar..... 0 JJ .4c. _ I' Jim c ill K 411, 1109�A RIBM 2 1" as Wass ,} 0.20 Ac. U / 7 mNxs asset n4v LEGEND —A,— 4LT FENCE & L.o.o. MY�pCfC - W/.r•.�.� SWAL y IIIIIIIII FLOW dxcrpR PROPOSED E- . �.. Y mrclow Pµ Y wl 9c£rtU( C0.YFftT EXISTING STORM SENER _ ° rH ! TYPE 19 HET slm vR0F9SEG CONTOUR H L� T9E lC IRIET k USTIJG CwrtOVa L!�UNFAttet i0F=51:50 FF=4945.0 EELEVAlaMl�N¢a7pN 0=0 ROOR R ACCESS All .5 Sol E1£VATITNI YC/A9Y r rra.YN r sy. AM /.Ir g.p /.V 0.M 1 0.W c< L.rr as 1 a@ seeruv s da4(aI er z r .ay. A@ LM.C. E.M.F. ,LU I It , No z cc to AMPOS= WIN o yYr a 31 ^i ea6 -� 194 494E + Z w r C w i W 11 a - ---------------- I It ry. i� _ I „ Z ` W Q , rt o�N15 p g o 4964 __ --yq>Y i -� s _ r cN. ,•.6V 1•al L Q KEY MAP Port Collins South Fo - Loveland Water t COLIus Sanitation District District City UT1W7R APPRDVED: CHECKED of BY: Ft. Collins. Colorado PLAN APPRO'NAI. dW Imel••x ♦.Ye A r�Rw•Yr a4Y om a.L• � U!L INC, coneman9 En91neers ,Xe MTeley. o akn N Fen uN.., �4danoea mG-EM-ass, w 695-091 4kaaW D. TMlllo. Manager Date CHECKED BY: eLo.o,aw Lnwv — ate• Wo r•. M. I.rz 6/1/01 d1ECKED BY: CHECKED BY: Pat a R.nvum a•L• aa. T y ( ys 9inax xr W. Fa 11, 5 txN En Data ym n.m• In4Wx. aL• H •ner;0e:,d"n. oeu,an.. "Go to qw Oaeap• mu•1 M gpawe. aNwXYq aY F a• fvl diF• - Lm�lma Wales d•Irkl CHECKED BY: WLaee1 M•amo•• aV /�/� /•A .+V OF 3 V and tla $wN FM CyYn SaMlaam d°Yk1. No Text i -- My of Fort Collins, CWa Gdo PLAN APPROVAL pIPPROWD: qiY ENOU R M1E DINEDKED BY: Tfft A W"1uKAlm UwN DAIS CpiECKEO By. STg0IwAvn VAU" - OArt CHECKED BY: PM"k flECAFAMMI OAM CHECKED BY: 1RAfF% Minim OWN CHECKED UY: DAa L swas awe Millis w1111K 31111111 0011111111112 11111011-1MINOR �.. ftq��., 70, SEE SHEET 1 j i NO CONSTRUCTION CAN OCCUR IN TBTS AREA BA7'IVEBN OCTOBER fEtA ANU RANCH fatA OF ANY GIVEN TEAR 0 w ,m. r � I UA IE64 I wp . 100 M. TWM ❑ PROPOSER STORM -.IN.'' i PROPosEre $TapM� '�Ny m PFOPOS% FEARED IT . Dom` GNATION1. 9QJSlK AREA R1 ACRES - PERCENT 4MPERM011I $, - Q DESIGN pA*T`4• 'r Imm 0=1 J1101% =BASIN OftNDARY CyJ F: a� Di mo mr au-q lit ti iny„M . G alI CL