Loading...
HomeMy WebLinkAboutDrainage Reports - 08/05/1994TINC. Engineering Consultants 1 1 1 1 1 .1 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR STONERIDGE P.U.D. THIRD FILING FORT COLLINS, COLORADO July 14, 1994 Prepared for: Client: The Kaplan Company 1060 Sailors Reef Fort Collins, Colorado 80525 Prepared by: RBD, Inc. Engineering Consultants 209 South Meldrum Street Fort Collins, Colorado 80521 (303) 482-5922 RBD Job No. 503-005 INC. ' Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 303/482-5922 ' FAX:303/482-6368 July 14, 1994 ' Mr. Basil Harridan Mr. Glen Schleuter ' City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 ' RE: Final Drainage and Erosion Control Study ' for the Stone Ridge P.U.D. Third Filing Dear Glen: ' We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion Control Study for the Stoneridge P.U.D. Third Filing. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. ' We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. ' Respectfully, RBD Inc. Engineering Consultants ' Prepared by: Reviewed by: . 1 'A,7 P. McEnany, E.I.E.I.T. Kevin W. Gingery, P.E. Project Engineer Water Resource Project Manager 1 ' Denver303/458-5526 OATINR�_ I► ►_ I. GENERAL LOCATION AND DESCRIPTION A. LOCATION I B. DESCRIPTION OF PROPERTY 1 U. DRAINAGE BASINS A. MAJOR BASIN DESCRIPTION I III. DRAINAGE DESIGN CRITERIA A. REGULATIONS 1 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2 C. HYDROLOGICAL CRITERIA 2 D. HYDRAULIC CRITERIA 2 E. VARIANCES FROM CRITERIA 2 IV. DRAINAGE FACILITY DESIGN A. GENERAL CONCEPT 2 B. SPECIFIC DETAILS 3 V. STORM WATER QUALITY A. GENERAL CONCEPT 5 B. SPECIFIC DETAILS 5 VI. EROSION CONTROL A. GENERAL CONCEPT 5 VII. CONCLUSIONS A. COMPLIANCE WITH STANDARDS 6 B. DRAINAGE CONCEPT 6 C. STORM WATER QUALITY 6 D. EROSION CONTROL CONCEPT 6 REFERENCES 7 VICINITY MAP 1 HYDROLOGY 2 INLET & STORM DRAIN DESIGN 21 SWALE & CHANNEL DESIGN 51 RIP -RAP DESIGN 59 EROSION CONTROL 66 CHARTS, TABLES, & FIGURES 76 I FINAL DRAINAGE AND EROSION CONTROL STUDY FOR STONE RIDGE P.U.D. THIRD FILING . FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location ' The Stoneridge P.U.D. development is located immediately northwest of the ' intersection of Horsetooth Road and County Road 9. The site is bounded on the north by Pinecone P.U.D., on the west by the previous filings of Stoneridge P.U.D., and on the south by Horsetooth Road. More specifically, the site is ' situate in the South 1/2 of the Southeast 1/4 of Section 29, Township 7 North, Range 68 West of the 6th P.M., Larimer County, Colorado. The site is shown on the Vicinity Map in the appendix. B. Description of Property ' The Stoneridge P.U.D. Third Filing contains approximately 20 acres, more or less. This area is currently undeveloped, and consists of cultivated farmland. The existing topography is generally sloping from the west to east at approximately 0.5 percent. III. DRAINAGE BASIN ' A. Major Basin Description The site is located within the, Foothills Basin. The drainage area is specifically ' described in the report entitled "Foothills Basin (Basin G) Drainage Master Plan" prepared by Resource Consultants, Inc., dated February 1981. DRAINAGE DESIGN CRITERIA ' A. Regulations The City of Fort Collins Drainage Design Criteria is being used for the subject site. B. Development Criteria Reference and Constraints The Foothills Basin (Basin G) Drainage Master Plan criteria and constraints indicate that the 'Stone Ridge P.U.D. site is to contain a permanent on -site ' detention facility in the northeast corner of the site. The permanent detention pond is required to release no more than 33 cfs of storm water runoff during the 100- year storm event. The detention facility is under construction at this time. C. Hydrological Criteria ' The rational method was used to determine peak runoff rates from the site and from the adjacent off -site tributary areas, specifically from the First and Second ' Filings. The minor and major storm events utilize 2-year and 100-year City of Fort Collins rainfall criteria, respectively. The criteria is included in the appendix. D. Hydraulic Criteria ' All calculations within this study have been prepared in accordance with the City of Fort Collins Storm Drainage Design Criteria Manual. E. Variances from Criteria No variance from standard criteria is sought at this time. ' IV. DRAINAGE FACILITY DESIGN IA. General Con ' The Stoneridge P.U.D. Third Filing is planned as a single family residential housing development. The Third Filing will include two phases, with 28 lots in Phase 1, and 30 lots in Phase 2. Storm water flows will generally be routed along ' historic drainage patterns, i.e., from the southwest toward the northeast. The Drainage and Erosion Control Plan is included in the back pocket of this report. 1 L Ll 2 1 B. Specific Details ' Subbasins Subbasins 16 through 29 consist of the residential lots and the adjacent streets. ' Runoff is also conveyed through the site from the First and Second Filings. The drainage from Horsetooth Road and from Blackstone Drive west of Swanstone Drive is routed onto Swanstone Drive (including flows from the First Filing). Two ' ponds in subbasins 27 and 30 are connected by an equalization pipe that crosses Swanstone Drive. Additional flows from the future fourth and fifth filings of Stoneridge P.U.D. have been accounted for in the design. Runoff from the ' majority of the site converges at a low point in Fieldstone Drive, then flows north in Channel 'B' to Channel 'A' along the north property boundary. Channel 'A' flows east into an inlet structure that outlets to the Stoneridge Detention Pond being currently constructed. ' Storm Drain System Where the minor storm event produces runoff in excess of the street hydraulic capacity, a curb inlet and storm drain pipe have been placed. The storm drain ' system is located in Fieldstone Drive and in Blackstone Drive, and is sized to carry the 2-year storm event. For curb inlets, the gutter capacity is based on a 6" drive - over curb within the transition section adjacent to the inlet. For the concrete sidewalk culvert, gutter capacity is based on drive -over curb and gutter. The design of inlet openings give the flow split where carryover flow that is not intercepted by the inlet continues in the gutter. Several of the curb inlets are on ' grade and will only intercept a portion of the runoff. The inlet scheme is dependant upon the on -grade inlets intercepting the maximum possible runoff, ' based on acceptable calculation procedures. The street hydraulic capacity is adequate for the 100-year storm event. The ' calculations in the appendix include capacity calculations for the three different street sections used in this development, i.e., 28', 36', and 70' flowline to flowline. Fieldstone Drive receives a large percent of runoff. The Fieldstone ' Drive Storm Drain was designed to convey two year design storm flows, but the 100 year runoff flows in the street as well., The concentration of flows to design point #23 are diverted under Fieldstone Drive through Inlet #23 and an 18" ' concrete pipe for the two year storm. The conveyance in the concrete pipe and over the street crown is sufficient to pass 100 year flows across Fieldstone Drive within the maximum depth of 0.5 feet above the street crown. The 100 year flow to design point #19 ponds up to elevation 4913.7 feet, spills over the sidewalk or flows through the 30" ADS N-12 pipe that extends from Inlet #19. The back lot easements were widened at the corners of lots 51 and 52 for drainage over the ' sidewalk from this low point in Fieldstone Drive. 1 3 I ' The Final Drainage and Erosion Control Study for Stoneridge P.U.D. Second Filing stated that when Fieldstone Drive is continued east of Kingsley Drive, curb ' inlets would be required on each side of Fieldstone Drive. These inlets will be installed with the Third Filing construction, and will outlet into the existing 21" ADS N-12 pipe which was installed with the Second Filing. ' Detention With the construction of the Third Filing, the permanent detention. pond will also ' be improved. This pond has been designed to accept flows from all of the developed subbasins, existing and future, within the Stoneridge P.U.D. The ' temporary detention pond will be done away with when the Fourth Filing area is overlot graded. The improvements to the permanent pond are explained in a separate report entitled "Overall Site Detention Pond", by RBD Engineering Consultants, which was previously approved. The detention pond is currently under construction. ' Off -site Flows Off -site flows from the First, Second, and future Fourth and Fifth Filings are incorporated into the design for the Third Filing. These are the only off -site flows, ' as the adjacent developments, Dakota Ridge and Pinecone, will not contribute any flows to the Third Filing, nor to the Stoneridge Detention Pond. Channels & Swales Many of the lots will drain toward the greenbelts behind the lots. Some of the grass swales through the greenbelts will transport the collected runoff toward the ' permanent channel: on the north side of the site. Along the north property line, the permanent channel constructed with the First and Second Filings will be continued ' through the Third Filing, through subbasins 16, 17, and on through the fourth filing to the permanent detention pond. Where the proposed bike trail connection crosses the channel, two 30 inch culverts will be installed for the conveyance of ' 100-year flows. The Channel 'A' section that begins 750 feet east of the northwest property comer of this filing will slope at 3.79 % to a drop inlet. Channel velocities will be high (approximately 7-8 fps), therefore to control erosion, a material specified as North American Green P-300 will be placed centered in a twenty foot wide section of the channel immediately after permanent seeding and mulching. ' On the north side of Horsetooth Road, a permanent drainage swale/landscape pond in subbasin 27 will collect flows conveyed under Kingsley Drive by a 15" concrete pipe from subbasin 5-1. A culvert is to be installed under Swanstone Drive to ' hydraulically connect landscape Ponds 27 and 30. An outlet pipe from Pond 27 ties to the Fieldstone Drive Storm Drain. The ponds are permanent landscape features that will have a constant water surface elevation of 4917.5 feet. Pond 30 will receive runoff from a low point in Horsetooth Road through a 2' curb chase ' 4 [1 V. and metal sidewalk culvert. Horsetooth Road As mentioned in the Overall Drainage Study for Stoneridge P.U.D., as Horsetooth Road is extended east, the hydraulic capacity may be exceeded. In anticipation of this, flows in the north gutter of Horsetooth Road are being diverted to Swanstone Drive. Additional flow is diverted from Horsetooth Road east of Swanstone Drive at Design Point 29. -6"UT- - A. General Concert ' Beginning in October of 1992, the water quality of storm water. runoff was required to be addressed on all final design utility plans. The Stoneridge P.U.D. is continuing construction in 1994. Therefore, for this study, we have sought to ' find various Best Management Practices for the treatment of storm water runoff at this final design phase. ' B. Specific Details The concept of storm water quality should address the treatment of the initial first ' flush runoff in a water quality pond and how the pollutants can be filtered out of the storm water runoff. The Stoneridge Detention Pond will collect nearly all the runoff from the site. A forebay area is planned for the west corner of the pond where the runoff will be entering from Channel 'A' along the north boundary of the site. This area is to have a normal water depth of one foot such that submerged ' and partially submerged plants can grow and act as a natural filter. The pond will also be used for irrigation purposes which will circulate water and keep it from becoming stagnant. The landscape ponds located near the Swanstone Drive entrance to Stoneridge P.U.D. may need to be aerated for odor control. They, too, will collect sediment from runoff. ' VI. EROSION CONTROL A. General Concept ' The Stoneridge PU.D. Third Filing lies within the Moderate Rainfall and Wind Erodibility Zones per the City of Fort Collins zone maps. The potential exists for ' erosion problems during construction of the Third Filing and after construction, until the disturbed ground is revegetated. According to the City of Fort Collins Erosion Control Reference Manual for 5 1 F Construction Sites, erosion control performance standards were calculated. Temporary seeding with mulch will be used for areas that are overlot graded. Permanent seeding with mulch will follow installation of storm sewers and swales/channels for the greenbelt areas. Gravel filters are to be placed at all curb inlets and straw bales in -all swales and channels immediately after construction. ' VII. CONCLUSIONS ' A. Compliance with Standards All computations within this report have been completed in compliance with the ' City of Fort Collins Storm Drainage Criteria. B. Drainage Concept The two year storm runoff generated within the site will be conveyed to the permanent detention pond by a series of storm drain pipes, streets, swales, and ' channels.. The 100 year storm runoff will also be conveyed along the same general path. Detention. will be provided by the construction of the detention pond at the northeast corner of the Stoneridge parcel. ' C. Storm Water Quality ' Since storm water quality has become a requirement, the site will contain features that address this storm water aspect. The Stoneridge Detention Pond and the landscape ponds described in this report will have several attributes that increase water quality leaving the site. Natural processed of aeration, filtration, and settling provide for cleaner water. ' D. Erosion Control Concept ' The erosion control performance standard was calculated, and appropriate measures have been taken to control erosion from the site according to the performance standard as shown in the appendix. The erosion control measures are consistent with the City of Fort Collins Erosion Control Reference Manual for Construction Sites. �J I on REFERENCES 1. 2. 3. 4. 5. 6. 7. Storm Drainage Design Criteria and Construction Standards, by the City of Fort Collins, Colorado, May 1984, revised January 1992. Erosion Control Reference Manual for Construction Sites, by the City of Fort Collins, Colorado, January 1991. Foothills Basin (Basin G) Drainage Master Plan, Fort Collins, Colorado, by Resource Consultants, Inc., February 1981. Overall Drainage Study.for Stone Ridge P.U.D., Fort Collins, Colorado, by RBD, Inc., July 1992. Final Drainage and Erosion Control Study for Stone Ridge P.U.D. First Filing, Fort Collins, Colorado, by RBD, Inc., September 1992. Final Drainage and Erosion Control Study for Stone Ridge P.U.D. Second Filing, Fort Collins, Colorado, by RBD, Inc., June 1993. Overall Site Detention Pond or Stone Ridge P.U.D., Fort Collins, Colorado, by RBD Inc., March, 1994. 7 iJ APPENDIX 'I 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 VICINITY MAP z us z (n m J t v)N2 OVJ JEi ^ � J SQ O U O G M z = Z z uj I/i (7 r z 0 o QM °o C W W J Q ) 0 ul �tt z N OJ bN 'Pa LL O J L Oct U T aka' O J i 3i N O River �a�",� 6pN P�1 00 {•J� O N . W d cr- W7J / ¢ i O*i wNX. atH f saw 3 y(*@ .Z'�E>},yt�;•: x�y+.'lei�',Yi Via• R'Ja wf ,eiJb9 C a6` e ss c."ae �� : 3'H'8l sY.> a.-w�b •� 543�.-tiv' e � ���'€��,.....w ""�."ie"'s' ° 4: �..� ����i �k�.'`� i��ik.�"�w�-a� Ssy's' �,p•�'' L ,..z,5�`„E?�a �.w ;i Z>lx � ...� � �� Z• 'i0 ! n� `i�-.r spa 'H 'F .a, ^�f" £.. . "iii,si O g£ �a•�'�i���•3,��n�'i>"rr� ��`>;Y Y.;<' � . �,�°x`a+3 �` � '��3"�`j uz'�b day r( .� y'a+, HK..>.:� }.���n ¢ .Esv6 w G a ,a , x`i F•f%,« `aaf• � r�:s``ra `� .f�'d s�"" • [ '� z'i Fa£i'.*��. v r+�r r>+� Lira,3 4 yxi'� ra �•^Z � xx C � ��3r�l hh L��E3�� a �rt 7�x3,c•La�k��P �7litf xe ]t9��OV£ YS3(011, r sy^i'KR7 yr r"A 4 szPv a.exY e� `{` r< x ��7.Y" 11 M xs• Ry. � t' i "Q.3^. �Fv .� T5 'X 1�.•'•`Sa H .y D r§ �i� �:£� �: •S.',»u >-3 �� 3�xr n ,Nr r`°.w z ^`�{tf ��'w .µ£, R %�Yb aak �• 3i"C'a,F'�a a' Y : .£ L`CP t'�f 4i fC A y ik E ff. `. v x n� ; i; 5`n a �* `$'1q e � g>b.+. 3;S.a.x tw s✓ f ^� `K.Y ^� �M .. e m� •n k �); qnyh "'t a3`s F S'R£ix w tes x3� LStk 'w 3'"` �i'r 11411 £s,�;,i. 4 9S'�3t td �Ta"y yh '£'� s. "'i �3T`�. yMSM •.^%f T�•i$'': SP{�lN VS� Yl' L • � 'iiL S i �'x 'x lRie. _�L ^� n iG�p$ 9�aN i��'yiy�4\x k�c�. �7nOY •y�a•3� y.�"Xz°'Y 4',e.i �gwsL7�; �E >iiiyi U /• +$ .3jF nd Sf�>'M �ii tl f� �l,w n Yo Y� rti�f�A:�E, e4�N i'O q �A 'wS .i . O� ✓ i v �he7 z T �»lk���9 H��¢��3> y �'1S•• � �` t .�v �s�: n' Cct� 3f(wr ti$% 't,.•<.�,}�.s, a .;� j��} c ��a :p s r n � O 3 - r;y��i '�L'bs`E a7�'t 8�s'� a}� "? tf�r�ikR.ze 'i'z ✓max•, L� '^n E ><s .. L R23 IpH 11a!��, 1 lD S � 9 1 u a�a f���ss``%��x 00 J i,y'S. ti�N h" £f �:rEa ",.r+x' ✓ai \` r r Z Q I • '�l Puo�i�n0 I I HYDROLOGY 11 u Stoneridge PUD, Third Filing TPM Kaplan Co. revised 6-16-94 This sheet calculates the composite "C" values for the Rational Method. Design Area Impervious licit Pervious licit A,total (ac.) A,imp (ac.) Percent Imperv. Percent Pervious Comp. licit 16 0.95 0.2 1.466 0.092 6.3 93.7 0.25 17 0.95 0.2 1.468 0.181 12.3 87.7 0.29 18 0.95 0.2 2.332 0.981 42.1 57.9 0.52 19 0.95 0.2 1.784 0.616 34.5 65.5 0.46 20 0.95 0.2 2.206 0.275 12.5 87.5 0.29 21 0.95 0.2 2.166 0.933 43.1 56.9 0.52 22 0.95 0.2 1.105 0.527 47.7 52.3 0.56 23 0.95 0.2 3.105 0.698 22.5 77.5 0.37 24 0.95 0.2 1.795 0.459 25.6 74.4 0.39 25 0.95 0.2 0.402 0.094 23.4 76.6 0.38 26 0.95 0.2 1.324 0.708 53.5 46.5 0.60 27 0.95 0.2 1.975 0.066 3.3 96.7 0.23 28 0.95 0.2 0.889 0.653 73.5 26.5 0.75 29 0.95 0.2 0.237 0.197 83.1 16.9 0.82 30 0.95 0.2 0.511 0.023 4.5 95.5 0.23 Total 0.95 0.2 22.8 6.503 28.6 71.4 0.41 31-4 0.95 0.2 2.960 1.558 52.6 47.4 0.59 32-4 0.95 0.2 1.801 0.57 31.6 68.4 0.44 36-4 0.95 0.2 1.291 0.203 15.7 84.3 0.32 37-4 0.95 0.2 4.352 2.03 46.6 53.4 0.55 38-4 0.95 0.2 1.596 0.101 6.3 93.7 0.25 39-4 0.95 0.2 1.379 0.179 13.0 87.0 0.30 ' Note: Basins 31, 32, 36-39 are from the Fourth Filing. STANDARD FORM SF-2 TIME OF CONCENTRATION STONERIDGE P.U.D. THIRD FILING 2-YEAR DESIGN RUNOFF by: TPM March 13, 1994 revised June, 1994 Sub -Basin Data Initial/Overland Time, Ti Travel Time, Tt Final Ti+Tt Design Basin Area ac. C Length ft. S % Ti min. Length ft. S % Vel fps Tt min, To min. Remarks 16 1.47 0.25 0 2 0.0 348 1 1.1 5.3 5.3 Tc is added for total contrib. area. 17 1.47 0.29 0 2 0.0 427 1 1.8 4.0 4.0 Tc is added for total contrib..area. 18 2.33 0.52 170 2 11.2 270 0.4 1.3 3.5 14.7 19 1.78 0.46 128 2 10.7 430 0.6 1.3 5.5 16.3 20 2.21 0.29 --- 2 0.0 410 0.8 1.2 5.7 5.7 Te is added for total contrib. area, 21 2.17 0.52 175 2 11.4 310 0.5 1.3 4.0 15.4 Flows in N gutter, E Blackstone Dr. 22 1.11 0.56 85 2 7.4 312 10.4 1.3 4.0 11.4 23 3.11 0.37 280 2 18.1 304 0.6 1.4 3.6 21.7 24 1.80 0.39 300 2 18.3 120 0.5 1.3 1.5 19.8 25 0.40 0.38 1 2 13.8 130 0.5 1.3 1.7 15.5 Flows in N gutter, W Blackstone Dr. 26 1.32 0.60 60 2 5.7 585 0.5 1.3 7.5 13.2 W gutter flows to S inlet, Blackstone D 27 1.98 0.23 * 16.1 600 1 1.4 7.1 23.2 Perm. Pond (combine w/Pond in 30) 28 0.89 0.75 *** 16.1 870 0.5 1.3 11.2 27.3 E gutter flows to S inlet, Blackstone Dr 29 0.24 0.82' 35 2 2.5 110 0.4 1.3 1.4 3.9 Flow to curb chase --use Tc=5 min. 30 0.51 0.23 Perm. Pond (combine w/Pond in 27) 31-4 2.96 0.59 180 1 2 1 10.2 310 0.6 1.4 3.7 13.8 Offsite flows to Swanstone Dr. 32-4 1.8 0.44 170 2 12.8 50 0.6 1.4 0.6 13.4 Offsite flows to Swanstone Dr. 36-4 1.29 0.32 307 2.5 18.8 0 0.5 2 0.0 18.8 Offsite flows @ Waterstone Ct.-4th filin 37-4 4.35 0.55 100 2 8.2 690 0.7 1.6 7.2 15.4 Offsite flows @ Waterstone Ct.-4th filin 38-4 1.60 0.25 170 2 16.4 225 2.5 2.4 1.6 18.0 Offsite flows to Channel 'B' 39-4 1.38 0.30 110 3 10.9 645 3 2.8 3.8 1 14.7 Offsite flows to Channel 'A' Note: Travel time velocities were taken from UDFCD's Figure 3-2 "Estimate of Average Flow Velocity for use with the Rational Formula". * Tc for subbasin 5-1 is 16.1 minutes. ** Tc for subbasin 4-1 is 13.8 minutes. *** Tc for subbasin 6-1 is 16.1 minutes. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 , r • , �In111111111111'�Illlellllllellllllllli . �1011llllllllllllllllllllllllllllllll ���1�111111111111111111616111�111116 �1 I�Illllllllllll�lllllle :111 11111 �6lIIIIIIIIIIIIII � eAlllllllllllllldlll . ®01110111011111111111111111111111111 11 �Illllllllllllllllllelllllllllllllllll �9�1111111111111111111111111111111111 �8�1111111111111111111811111111111111 �011111111111111111�11111111111�111l11 �011`e����...■�■�� 111[�1 1��111 .11111 ` ` �9�1''111111111�11111 11111�111111111� . ®1�11111.1111111.` 11111 1111111 111111 ®O�I�e1111�1�e�e1e�111�e1L�l�lle11111 �0 111:111 � 1�1:IIIIIEillllllllll :1:11 � �0®11111111111�1116111111111111111111, MAY 1984 5-3 y o }i p 3 Q 0 Z W 0 } Q Z� �C7) W y c� ad c� w rn W � N NL W � LL Z QL O � ¢� OE N LL c¢ O LL cc 0 LL U a DESIGN CRITERIA 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 u u 6,411 01111 � 11 � 111111111111111111111111111 ��61111�11�11�111111111111111111111111 �����111�1�11�19�661111111111111111111 �8��111�1�11�����'�1111111111111111111 �9@�111�1�11�1����1111111111111111111 �9���1��1�1111�1111111111111111111111 �9�9�I����C::��1111111111111111111111 �9�1�1�11�11�1�1�11111111111111111111 . �061�1�11�11�1�1�11111111111111111111 �0�1�1�11�11�1�1�11111111111111111111 �0�1�1�11�11 I�I�illlllllllllllllllll �C�1�1�11�11�1�1�11111111111111111111 8�0 �e �o �o �I�1�16�i�ll�l�l�llllllllllllllllllll .MAY 1984 5-3 Q 0 z w 0 } z �C) J � Q a. 0 LLJ � c c w w o) 0) QJ LL Z� CE 0 rn cc OE N o crU. O LL 0 U. U a DESIGN CRITERIA STANDARD FORM SF-2 TIME OF CONCENTRATION STONERIDGE P.U.D. THIRD FILING 100-YEAR DESIGN RUNOFF by: TPM May 12, 1994 Sub -Basin Data Initial/Overland Time, Ti Travel Time, Tt Final Ti+Tt Design Basin Area ac. C Length ft. S % Ti min. Length ft. S % Val fps Tt min. To min. Remarks 16 1.47 0.25 0 2 0.0 348 0.6 1.1 5.3 5.3 To is added for total contrib. area. 17 1.47 0.29 0 2 0.0 427 1.5 1.8 4.0 4.0 To is added for total contrib. area. 18 2.33 0.52 170 2 8.7 270 0.4 1.3 3.5 12.2 19 1.78 0.46 128 2 8.8 430 0.6 1.3 5.5 14.3 20 2.21 0.29 2 0.0 410 0.8 1.2 5.7 5.7 To is added for total contrib. area. 21 2.17 0.52 175 2 8.8 310 0.5 1.3 4.0 12.8 Flows in N. 1/2 Blackstone Dr. 22 1.11 0.56 85 2 5.5 312 0.4 1.3 4.0 9.5 23 3.11 0.37 280 2 15.8 304 0.6 1.4 3.6 19.5 24 1.80 0.39 300 2 15.7 120 0.5 1.3 1.5 17.3 25 0.40 0.38 * 2 12.4 130 0.5 1.3 1.7 14.1 Flows in N. 1/2 Blackstone Dr. 26 1.32 0.60 60 2 4.0 585 0.5 1.3 7.5 11.5 Flows in S. 1/2 Blackstone Dr. 27 1.98 0.23 " 15 600 1 1.4 7.1 22.1 Flows to Pond 27 28 0.89 0.75 •'* 2 15.5 870 0.5 1.3 11.2 27.0 Flows in S. 1/2 Blackstone Dr. 29 0.24 0.82 35 2 0.7 110 0.4 1.3 1.4 2.1 Use To = 5 min. 30 0.51 0.23 • Perm. Pond (combine w/Pond in 27) 31-4 2.96 0.59 180 2 7.2 310 0.6 1.4 3.7 10.9 Offsite flows to Swanstone Dr. 32-4 1.80 0.44 170 2 10.6 50 0.6 1.4 0.6 11.2 Offsite flows to Swanstone Dr. 36-4 1.29 0.32 307 2.5 16.9 0 0.5 0 0.0 16.9 Offsite Flows @Waterstone Ct-4th filin 37-4 4.35 0.55 100 2 6.1 690 0.7 1.6 7.2 13.3 Offsite Flows @Waterstone Ct-4th filin 38-4 1.60 0.25 170 2 15.2 225 2.5 2.4 1.6 16.8 Offsite Flows to Channel 'B' 39-4 1.38 0.30 110 3 9.9 645 3 3.8 2.8 12.7 jOffsite flows to Channel 'A' Note: Travel time velocities were taken from UDFCD's Figure 3-2 'Estimate of Average Flow Velocity for use with the Rational Formula". * Tc for subbasin 5-1 is 15.0 minutes. * * Tc for subbasin 4-1 is 12.4 minutes. *** Tc for subbasin 6-1 is 15.8 minutes. 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 •- T 1 1 E u u v i • 1 �Illlllli�lllllllllllllllilllllllllll . �'111=111�1111111111111111111 �01611111 - �AII�IIII1111111�IC�liill�llll�lllllll� �1116111�11111111�1111111�1111�`IAlilll� �Ie116�L.1111111111111111111111111111111 ®0011if1l�1111111111111111111111�11111 - �11�111�1111111111911111111111111111111 �IAA�Al11o111818181818181818i11111111!, � • �9�@IIIIf�11111111A1111111111111111119 �1111111111111111111111111111�1111i11' �alllllllllllllllllllllllllllllllllll . �9�•- °Il�lllllllli�l�lll•�1�111�1111i1 ®1�1111�111111111�1 •11111 •`11111111111 - ®01� •�I�illllllllll�lll�illli�llllli8, ®0 � Illllil llli , .111€�1,1�111 ,11111111. �01116111�1111111�1�1�1 � !��illlll�lll Milo \ I .MAY 1984 5-3 E Jo z Qus LIJ a� � a ? oo f �C) 0 W y N � d �� } W ul NL W rn LL Z ¢t o �cc g OE „ No CIL Q LLL �- O LL LL 0 � U J DESIGN CRITERIA 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1! w H lis'o le ���1,�'1'1.„■'111,1„'1"1"1"„"'111 ��1'�'1'u��111�11"11'11'1"111"'11 ��G�lg116111��Q��@�1111111111111111111 �6���h11�111�������1111111111111111111 �BI��IIIIIl���1111111111111111111111111 �01���111���1111111111111111111111111 �91�Q�11 61�1111111111111111111111111 �9�II�I��III�����R1111111111111111111 ��9�II�IS1111������1111111111111111111 a. �911�1111111�111�11111111111111111111 o:=:m�11111111111111111111 �9�1��l�11�1�1�1�1�111111111111111111 . �9�1��1�11�1�1�1�1�111111111111111111 �0�1��1�II�I�I�I�Ii11111111111111111 cc �E�1��1�11�1�1�1�1111111111111111111 0�1ll1l11l1l1l1�11111111111111111111 8�0 moo, �0 ���I���II�III�I�I��IIIIIIIIIIIIIIII MAY 1984 5-3 H Q Z W 0 } Z � ¢� a� v gc u c �w C uY N L j U.; 7 Z0 ¢t 0 c� OE N� CLL cc LL J U a r DESIGN CRITERIA No Text No Text is to It. 7! % sdi 40010A N $13 U54 400ifA u 5�60 I [in 14- 11 Q + LLJ 02 cc Lu cr: rn V -=ojy cr ra CL LU �*Unkf 1000 LU IP z pt.. tntyo 'I C? in V) cr cc t. In - Ln o =mmiliiii ®il'i'l fn q! • � u ;�oN E 1Z i DG�E : ii zj t 3: 1 IY 1 1 =- 1 - 1 �BIIIIIIIIIIIIIIIIIIIIA1611�111111111� BIIIIIIIIIIIIIIIII��I�I�AI�IIIIIIIIII� �IIIIIIIIIIIIIIIIIA�1�1��1�1�1111111� 9i111111111Allllll�ald(l��IAllllllllll� BIIIIIIIIIIIIIIIII��1����1�1111111111� 611111111111i11111��1���1�111111111� 811111111111111A11��11���A�1�1111111�' ��811111�11111111111��1����1�1�1111111�' �811111�IIIIIIIIIII�IOIIIAA�IIi111111A� 01�11��1�11�11�111���1�111�1�1�1�1�11� 8111i1�1111111111111i1111Y1YI111i11Y1 811111�1111111111111111111111111011 _ 81�11���1�11�111�1�1�11111�I��f1 =109�II��II�I��Ili��1�1�11111�1�1�11 ��oi101�1�11l.��Il��illlllllll�l�llll �I IIIIIf�li�11��11V��1111111�►�1�1111 �Illllllll��lli��l�illll�l� 1111 �OIIII�II�li�11�111�i1�1�111I1��1111 �0161111�i1�l1� Il��l�i�fllll���l�ll G DESIGN CRITERIA �Y., k UP LL cl: 0 LL i 1 I z 0 CO ca D to 44 C3 2"4'FiL, i t4or Z= 12, tj I LLJ cr- Z.4,u .-j 0 LO U z JT 0 .4 Lo 0 m u CL4 VII CL w a. > u- za CL 0 oc -1 0,co Id 0- 0 .,6 z 1) g LU �o 06 cr- >3� �G 9" to ol LU V) z z a3 < LU 1 co Z3 zo N Z O IL LL f - c .W CC, v- o CC O LL Z. W . U 0 i p-_ cr. z N_ F C)ffl p LL 1 0 �¢. w ,. F.. o 0 N of > Lu Q J 8 � m U U 13. n—r� Fl LI 61 .V) d d d of d ty d _ N d Q W 9 9 8 s 8 88 8$ 8 a Nl 0 a0 u u u a 0 01 01 0. Q a UJ ..._o Iro y LA °lIco LI CL V) 0 da D to 10 01 07 0 - r N — J � o_, >� W 9, 0 4 0 a 0 00 0 0 Q oW �° `" N N N N N N N N N N N fit= Z LLLL. w .. N N 0 Q n r au 0 d $ Qa' M N d f; ND N z U o 6 mQaN _ 1Ni i I N-d o sve T W: LA 471 Ll� Nn a .11 sl* ;;ounm uoll owwnsulll�l����l� I� �II �I� 1 1 1 1 1 1 1 1 i i 1 1 1 1 1 1 1 I�BIII�1�111111�11111�1�1�11111111111 �8111@I�111181�1�111�1�@I@I 11111111 • I 0 1 Calculations for Curb Capacities and velocities ' Major end Minor City of Fort Storrs Collins Storm Drainage Design Criteria per RESIDENTIAL with drive over curb and gutter Prepared by: R6D, Inc. 0 is for one side of the road only February 23, 1992 ' V is based on theoretical capacities Area = 2.63 sq.ft. Area a 20.11 sq.ft. ' Minor Storm Major Storm Slope Red.. Minor C V . Major . a V (X) :Factor X (cfs) (fp<.) X . (cfs) (fps) D.40 0.50-: 65.71 2.74 2.C'9 : E96.7S : 22.03 2.19 0.50 : 0.65 .&S.71 3.99. 2.33 : 696.73 : 32.02 : 2.45 : 0.60 : 0.80 66.71 5.37 : MS 696.73 : 43.17 : 2.68 : ' 0.70 : 0.80 65.71 5.80 2.76 : 696.73 : 45.63 2.90 : D.60 : 0.60 : 66.71 :• 6.20 : 2.95 696.73 : 49.ES 3.10 : ' 0.90 : 1.00 : 0.80.: 0.ED : 65.71 66.71 6.58 6.94 3.13 :. 3.10.: 696.73 : 696.73 : 52.88': 55.74 3.29 : 3.46 : 1.2S : 0.ED : 65.71 7.76 : 3.69 : 696.73 : 62.32 : 3.E7 : 1.50 : 0.80 : 86.71 8.50 4.04 : 696.73 : 68.27 : 4.24•: ' 1.75 . 0.80 : 66.71 9.18 4.36 : 676.73 : 3.73 ; 4.58 2.00 : 0.60 : 66.71 9.81 4.65 696.73 : 78.E3 4.90 2.25 : 0.78 : 66.71 10.1S 4.55 : 696.73 E1.52 5.20 2.50 :. 0.76 : 66.71 10.42 : 5.21 : 696.73 : E3.72 5.48 ' 2.75 : 0.74 : 85.71 1D.6.4 5.47 : 696.73 E5.50 5.75 3.00 : 0.72 : 85.71 10.81.: 5.71 : 696.73 66.29 : 6.00 3.25 : 0.69 : 66.71 10:79 s 5.94 : E96.73 65.67 : 6.25 . 3.50 : 0.66 : E6.71 10.71 6.17 : 696.73 U.03 6.48 3.75 : 0.63 : 65.71 • 10.56 : 6.18 : 696.73 E5.00 : .6.71 4.00 : 0.60 : 66.71 i0.41 : 6.57 : 696.73 E3.61 6.93 4.25 . 0.58 65.71 . 10.37 : 6.13 : 696.73 E3.31 7.14 ' 4.50 : 0.54 • 55.71 : 9.93 : 6.97 : 696.73 • 79.81 7.35 4.75 : 0.52 : 65.71 . 9.83 : 7.19 : 676.73 : 78.96 7.55 5.00 : 0.49 : 65.71 : 9.50 : 7.37 : 696.73 : 76.34 7.i"5 ' 5.25 : 0.46 : 66.71 : 9.14 : 7.55 : 696.73 : 73.43 7.94 5.50 : 0.44 : 86.71 . 8.95 7.r3 : 696.73 : 71.E9 : 8.13 . 5.73 . 0.42 . 8.5.71 . 8.73 7.91 . 696.73 . 70.17 : 8.31 6.00 : 0.40 . 65.71 . 8.50 8.C8 : 696.73 . 63.27 : 8.49 . ' CLIENT S_''T`� �%_ LNC PROJECT -T` "21JtS d0EN0. CALCULATIONS FOPc,\L31 i ?_ i=� Engineering Consultants MADE BY S1 DATE 2-5Z CHECKED EY DATE SHERD —OF 7 r if T~=Z- Ll F� . -_ __-i------ ^ 7- --- -_ T.�.�.71f.1.I_.�i_.]"'Jr7"4�•-r. ��L�J �..i��vCJi�J�-.l�.i li•��-_.�-. _.CL+3�.'--•-•----- _ __ __ -. _ _- __ I_%� �>=?Ti-L L`i=_FiL'�.�.1- �� +,=d•C_a . OF G^U7i=�.�.- T'�: .-._ _. s nl 03`}+_-' -- - - - -- --- - - ---.- a 1- - - . --- - •----•--•--'--- 2.b3_—Z -�3 — f- _ - -- ----- - — - — -- /z - - 17 1 v I [J 1 0 0 CLIENT C ' J^4 c�i-- l +^! t -"QS JOB N0. PROJECT CALCULATIONS FOP.C�A T—P1-..-'Aj Engineering Consultants WADE EY DATECHECKED EY DATE SHEET Z OF Z -J_- - 1 J.. , 'ls�-t-Z_fir'-�_CL�.i'^CJTIe-S_-:-',----- �.: -t '�I� L:T-��-lL%11�_:_...,_- •��.-- --T=4 ' jVl-JUC ___..__ Nit •---___._._:__ -_=- -- _-�-_--____�_=�.4 _- Viz: -- -�-�-g��_•�:_:�..: .....__..---- ` 77 1 1 ' ' .� •---S�TIS_. lS.d7 ram_ .�V �Z. F .. _ . _ .. . - !.:'- 1 tJ:ap'�:... %r . U o1=. -. � C•��•i•'_ L.1..%dit=�! ci%3 - T�Goo. Sp, , Cl�zx1: ;c .So : ICr�•Oo 45.1?-Z3.iZ l 7-B;9 1.4z� r l:a x .sue=�9.�4JJJ t:Oy, j ]•7:r73.1,1. 0.035. - - - - - - _ J- - _ _ I _Ail -1 - i i . -� I 1 _i_ n� —'� •I •�= •"T i i- � � i �.�� 7`-j i ?-l- T'� I � 11 I 1 Lam• i_i_ i__!! _,--{ ___i r--; i i .LL1 17 i-1 i T� , 1 1 L:_r: ! � Vic_.= T ��� , _=i 3 �_ : _ :: r i : _?_!_ •T � � � �_ _� �-_.� , _' _7' 1 I r•-1 ! i 1: -� '�- t 7 I , �{-. , _, _ : +.l- 1 ! ; 3 ! -_� 1 i ! -_ _-�__ •- - S. INC ' Engineering Consultants CUEHY CI'-rq oc T=;mz7- n r'r , ,UL JOB NO. PROJECT CALCUTATIOHSFORUMZ RCuj N.ADEBY_a�_,DATEZ'z CHECKED BY - DATE SHEET I OF .Z- _In . ��.5 I D E�JT_►.d.C--1.__.__ lam/ :_�2�v =_ ov �=�J Za ;yyr_ r'�2_- ,-s ,a �va�._-__ ?.�. - � Jam.--'•---';- •' • T _ l_i..oulJl�,g_.ST'2EET_G1.iP�USLE.S:.�_...i�:_�-__--•----.._--�--_'_-��i� i ; .1-1 . .� .+ ._.. -_ - - _-`�-� �a 2.�.T1•C� _.C� uTI"1= � _�.iit�.-dCJ3"f_ G-nr•'S. - - - 77 ' _.._'.:_.:..:...: _;-._..__.�:._>S��i=aT�1_Cr==:_.E`tixil_�-_�dc^—oF�C-�7ri'�.i=•�C-f_�:�:_- _'--1 z�uvuhlcsS�1r��:u5.0.oiC��- 1 ; - - -- _ _ _ 77 .L�11-�,.SJ.�aE_E; Rau.J.T,�__"r��,_o>=;.._c:u'>✓S _� 0 39'I ' ----J yn - ..._.., .j- .._..._- _ _ __ _ ! ' u _ =_ Ca,T�7.i�1:. _�z� • _ b_'.+1_C � ' ri---=^•-=-- ----•t 1-,• � :..; ----- -- - c' :G_o- 11 colz._:o..SC��•//-' 1•oF�0._ �'Z.6:T8%s � I =�.:� .2:45?�i_ _�- -' ' _'-' ' •----' L_ _— J. i--- i I I113 ! : 1 1 I �S i i ;•_:� 1, i I 1 4_1_ °—ls i_ Jam_' I :-- ' . CT�_ _1 O •.Sfo . _ 3.is'31-: O 39}— $,i ! i - ' '.1 �.'.3Z:..! �_;_i �-1 __.._ � .i.L� � -- - t ' _J.. '•(/./ O .... I_._C�,1. , 1 I r 1 i 1! I 1' 1 t � j ^•._ 7 1 iI �• 1 i - i-4_\'_O•._.—i _ _T— �..si1._.1 _�y_.� �. _._l.__i—�.J.�t�_ ' I tS 1 �i-1 1 1 1 1 1 ! � ! S 1 1� ! � •--1" _1 t j : -' I' t �—' , �;-1-j+� i ' CLIENT ` '�� n� 1=&?.7 C 'nt I 1�r JOH NO. LNG PROJECT CALCULATIONSFOR�•1r Engineering Consultants MADE SYJaO, DATE Jc•CJ�7 CHECKED 6Y DATE SHEET Z. OF Z ' t-csl>_r=tines ;_ �l.1.L�1J�Z�l:E•--`S'.Ti..���c-T'—�_CdP�CJ III_�—_:'::-1-----'-------•'----•r-�-- -�-}-.�:_----- _ 4lo-.4•� -'c-1o)_Wdy---- 2Qj r.: ..--- - - ---• --j-__1.alyoz...5ror=�..t'_ 1._____---=_--�-�'_ _,_ C4 q- F-I 1---...:_.4. =Qo :per-Q - �= -- ---=-'---- -, i . C.-oLi.iN: S1-•abll �.loT_. Ex:cB-_.�.._-C-�I� _. =r.. U�� �rl-'1�++•�_U1�T'1=�; i-h.:lE-: 1Oo.Si AREA = /2 (20.00 a40 00 ' -1- (0.40'. + 0.412/) C 3.'(59 + rz (0.4-e' + 0.S7/) (I.42') = 0. 9G ' i- %y (0. t37'+ 0.76p) ( I. 17') = 0,96 4- 19:-�?.�o:o'ic>:- 1 1 1 1. .40 1 > _ J./1diJT�11.J11'_S'_.��( }I I• ' 1 , : :- �z� t .� ..L:..:._j'i1 �-- } i �1--=1 JZ. L_ L-_C,1: Iv1�.J0 •�i. '�----77�'_. 1 • 1 I 1 } ;��-�j .-j T��I-.-'���y.��i.� . 4LJOi-� �-� 1_- ; �.1 I 1 , 1 , : 1 --- �' HT - - :_ _' 1 1 ii • : : : 1 } � : t '_I I�-+t-1 1 1 _�_+�_+_: ! r I i 1 ! , 1 : : '•I -1._ i_i- T_ ? 1 7- I-i : _ .__i_t.L�.. 1-•�. _ : : 1.., _ 1•: 1 1 } : 1 1 1_: ;I 1 : : 1 1 :+ t l l 1 1• 1,: ••1 + i�-1 1 1} I ,} �_ 1 I } 1 i 1 1 } 1 1 1• I 1 1' _} • ,.1. }•�_TT , i f... 1 �I __- _ I 21 . 0 INLET DESIGN STORM DRAIN DESIGN 1 1 1 t ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED-BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------ ----- -------- ---------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 06-20-1994 AT TIME 09:41:31 '*** PROJECT TITLE: Stoneridge III ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 14- 25 ' INLET HYDRAULICS: ON A GRADE. _J /�rOoe �jT 2 M ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 12.25 ' IDEAL CURB OPENNING EFFICIENCY = 0.95 ACTURAL CURB OPENNING EFFICIENCY = 0.88 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.50 STREET CROSS SLOPE M = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 ' STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET GUTTER FLOW DEPTH (ft) = (ft) = 11.97 0.35 FLOW VELOCITY ON STREET (fps)= 2.08 FLOW CROSS SECTION AREA (sq ft)= 1.54 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 3.03 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.18 &1z FLOW INTERCEPTED (cfs) = 2.80 ' CARRY-OVER FLOW (cfs)= 0.38 a}� BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.18 FLOW INTERCEPTED (cfs)= 2.58 ' CARRY-OVER FLOW (cfs)= 0.60 1 -------------------------------------------------------------=---------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U.OF COLORADO AT DENVER --------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 06-22-1994 AT TIME 12:47:00 '*** PROJECT TITLE: Stoneridge III �^ � *** CURB OPENING INLET HYDRAULICS AND SIZING: M / grok %702m INLET ID NUMBER: 25 ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 24.81 ' IDEAL CURB OPENNING EFFICIENCY = 0.60 ACTURAL CURB OPENNING EFFICIENCY = 0.53 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M 2.00 ' STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 ' STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET GUTTER FLOW DEPTH (ft) = (ft) = 19.66 0.51 FLOW VELOCITY ON STREET (fps)= 2.74 FLOW CROSS SECTION AREA (sq ft)= 3.97 ' GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.58 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 10.87 FLOW INTERCEPTED (cfs)= 5.76 ' CARRY-OVER FLOW (cfs)= 5.11 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 10.87 FLOW INTERCEPTED (cfs)= 5.59 CARRY-OVER FLOW (cfs)= 5.28 1 ' 2 3, ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER --SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------I--------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 04-14-1994 AT TIME 08:22:50 �7 '*** PROJECT TITLE: Stoneridge III 1'2• Z� *** CURB OPENING INLET HYDRAULICS AND SIZING: �/L �No2oeM INLET ID NUMBER: 26 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.40 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 ' GUTTER WIDTH (ft) = 1..17 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.50 GUTTER FLOW DEPTH (ft) = 0.40 ' FLOW VELOCITY ON STREET (fps)= 2.30 FLOW CROSS SECTION AREA (sq ft)= 2.21 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.05 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 5.10 0-2 FTAW TNTERCEPTED (Cfs) = 5 _ 1 0 l0,; CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.10 FLOW INTERCEPTED (cfs)= 5.10 CARRY-OVER FLOW (cfs)= 0.00 i Z ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------- USER: KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 05-16-1994 AT TIME 17:26:40 *** PROJECT TITLE: Stoneridge III C. 2% *** CURB OPENING INLET HYDRAULICS AND SIZING: M A,Toa- SToe__jt1 IINLET ID NUMBER: 26 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.40 I LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.50 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 24.06 GUTTER FLOW DEPTH (ft) = 0.60 FLOW VELOCITY ON STREET (fps)= 3.10 FLOW CROSS SECTION AREA (sq ft)= 5.90 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 14.39 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 18.13 Qiop FLOW INTERCEPTED (cfs)= 12.80 CARRY-OVER FLOW (cfs)= 5.33 BY DENVER UDFCD METHOD:-DES3GN_�L�OW (cfs)= FLOW INTERC 12.23 FLOW (cfs)= 1-9-Q 1 i 1 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------=--------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-24-1994 AT TIME 12:07:54 t*** PROJECT TITLE: Stoneridge III 1 1 fl 1 1 1 u 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 21 INLET HYDRAULICS: ON A GRADE. /Aw 5/00A GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 9.98 IDEAL CURB OPENNING EFFICIENCY = 1.00 ACTURAL CURB OPENNING EFFICIENCY = 0.97 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.50 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 10.28 GUTTER FLOW DEPTH (ft) = 0.3%44 FLOW VELOCITY ON STREET (fps)= 1.94 FLOW CROSS SECTION AREA (sq ft)= 1.16 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: 7 IDEAL INTERCEPTION CAPACITY (cfs)= 2.15 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 2 .i5 Qz' Z•75 ��s t'-6:7 X.2 1. 1 3 1 ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -----------------------------------------=---------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-24-1994 AT TIME 12:11:31 t*** PROJECT TITLE: Stoneridge III *** CURB OPENING INLET HYDRAULICS AND SIZING: 1 INLET ID NUMBER: 21 1 l _1 I 11 1 1 1 INLET HYDRAULICS: ON A GRADE. /VlAJO2 l7/uIZM GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: 10.00 28.56 0.54 0.47 0.50 2.00 0.016 1.38 1.17 WATER SPREAD ON STREET (ft) = 21.63 GUTTER FLOW DEPTH (ft) = 0.55 FLOW VELOCITY ON STREET (fps)= 2.91 FLOW CROSS SECTION AREA (sq ft)= 4.78 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 7.57 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= Q51'= 14.02 FLOW INTERCEPTED (Cfs)= 6.60 CARRY-OVER FLOW (Cfs)= 7.42 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 14.02 FLOW INTERCEPTED (Cfs)= 6.43 CARRY-OVER FLOW (Cfs)= 7.59 1 1 27 ------------------------------------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD U---------------------------------------------------------------------------- SER: KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-20-1994 AT TIME 14:05:16 '*** PROJECT TITLE: Stoneridge III *** CURB OPENING INLET HYDRAULICS AND SIZING: lVkl✓r7r INLET ID NUMBER: 31 ' INLET HYDRAULICS: ON A GRADE. GIVEN. INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 1.5.00 REQUIRED CURB OPENING LENGTH (ft)= 14.48 IDEAL CURB OPENNING EFFICIENCY = 1.00 ' ACTURAL CURB OPENNING EFFICIENCY = 0.99 STREET GEOMETRIES: - STREET LONGITUDINAL SLOPE (%) - 0.40 STREET CROSS SLOPE (%) = 2.00 ' STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.59 ' GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 2.07 FLOW CROSS SECTION AREA (sq ft)= 2.24 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 10.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 4.62 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= Q2= 4.62 FLOW INTERCEPTED (cfs)= gv nc%4.58 ' CARRY-OVER FLOW (cfs)=214� =0.04 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 4.62 FLOW INTERCEPTED (cfs)= 4.16 ' CARRY-OVER FLOW (cfs)= 0.46 28 -----------------------------=------------------------------------------------ ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ---------------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-22-1994 AT TIME 13:08:39 '*** PROJECT TITLE: Stoneridge III *** CURB OPENING INLET HYDRAULICS AND SIZING: AA J _�em- INLETLET ID NUMBER: 31 L 1-7 L 11 1 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: 15.00 32.81 0.67 0.61 0.40 2.00 0.016 1.38 1.17 WATER SPREAD ON STREET (ft) = 25.94 GUTTER FLOW DEPTH (ft) = 0.63 FLOW VELOCITY ON STREET (fps)= 2.91 FLOW CROSS SECTION AREA (sq ft)= 6.83 GRATE CLOGGING FACTOR, (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 13.21 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)19.80 FLOW INTERCEPTED (cfs)= 12.18 -UARRY-OVER FLOW (cfs)= 7.62 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 19.80 FLOW INTERCEPTED (cfs)= 11.89 CARRY-OVER FLOW (cfs)= 7.91 '-------------------------------------------------------------------------- ?9 - ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ------- ------------ ---- ---- -------- --------------------------------------- - USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 04-20-1994 AT TIME 16:57:51 *** PROJECT TITLE: STONERIDGE III _ �• �_ 23 ' *** CURB OPENING INLET HYDRAULICS AND SIZING:���1Q row INLET ID NUMBER: 23 ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 90.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.02 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE ($) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 ' GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.50 GUTTER FLOW DEPTH (ft) = 0.40 ' FLOW VELOCITY ON STREET (fps)= 2.06 FLOW CROSS SECTION AREA (sq ft)= 2.21 GRATE CLOGGING FACTOR ($)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 5.40 BY FAA HEC-12 METHOD: DESIGN FLOW (sf� = 4 ._53 2 FLOW INTERCEPTED (cfs)= 4.53 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 4.53 FLOW INTERCEPTED (cfs)= 4.32 CARRY-OVER FLOW (cfs)= ' * Ae gt rP I w.z. ", " f �or.J l L/0.21 n L ,/e �eiL S 1 '---------------------------------------------------------------------------'2° ' UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD U-------------------=--------------------------=---------------------------- SER: KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 05-16-1994 AT TIME 17:35:33 *** PROJECT TITLE: Stoneridge III 2 P. 23__,_______ *** CURB OPENING INLET HYDRAULICS AND SIZING: MAro_2__�TofZJ'�—_ INLET ID NUMBER: 23 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 63.40 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE ($) = 0.40 STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 ' GUTTER WIDTH (ft) = 1.17 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 39.81 GUTTER FLOW DEPTH (ft) = 0.91 FLOW VELOCITY ON STREET (fps)= 3.83 ' FLOW CROSS SECTION AREA (sq ft)= 15.96 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 20.00 5 INLET INTERCEPTION CAPACITY: L r-,H IDEAL INTERCEPTION CAPACITY (cfs)= 11.14 ' BY FAA HEC-12 METHOD: DESIGN FLOW cfs = 6 L� FLOW INTERCEPTED (cfs)= 28.�o5S CARRY-OVER FLOW (cfs)= 52.36 BY DENVER UDFCD METHOD: DRS3GN-LOW_ (cfs)=B ' FLOW INTER EDP { = 8.92 _CARR*-OVE FLOW (cfs)= 52,3A_ 4 ' /J1GtX/vYturN Aok) 1' G✓off - c.✓ow✓j {lor,J Gc/(ou�S `7%• �i % G75 , 7 S �s �i ------------------------------------------------------------------------------ UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD ----------------------------------------------------------------------------- USER: KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 05-25-1994 AT TIME 04:20:46 ' *** PROJECT TITLE: Stoneridge III *** CURB OPENING INLET HYDRAULICS AND SIZING: Minla2 ifoiUl ' INLET ID NUMBER: 19 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 63.40 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 .Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 15.16 GUTTER FLOW DEPTH (ft) = 0.42 ' FLOW VELOCITY ON STREET (fps)= 2.11 FLOW CROSS SECTION AREA (sq ft)= 2.40 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 8.44 ' BY FAA HEC-12 METHOD: DER GN_ELOW (cfs.)= 5.05 QZ FLOW INTERCEPTED cfs)= 5.05 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.05 FLOW INTERCEPTED (cfs)= 5.05 CARRY-OVER FLOW (cfs)= 0.00 I 3Z ----------------------------------------------------------=------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COL0RADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD '-------------------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC'FT. COLLINS COLORADO.................... ..... . ON DATE 05-16-1994 AT TIME 17:38:55 ' *** PROJECT TITLE: Stoneridge III 12, P, I`�__.____ *** CURB OPENING INLET HYDRAULICS AND SIZING: AA 2 r2 S"rn►Z/'� ' INLET ID NUMBER: 19 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= HEIGHT OF CURB OPENING (in)= .10.00 6.00 INCLINED THROAT ANGLE (degree)= 63.40 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 H 1 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft).= 32.69 GUTTER FLOW DEPTH (ft) = 0.77 FLOW VELOCITY ON STREET (fps)= 3.37 FLOW CROSS SECTION AREA (sq ft)= 10.79 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 19.84 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= aloe f'' r� I5 �S�sGcvYl ZGI % / � � o ✓�i'��oliJ wL1Gre �Gl� 11 Qsrr.Fr:r = - Z9.I = 53. 27�fs Q 14ef = 41. f - M 7 � 14 c-FS f g • I as :. o� '-------------------------------- ------------------------------------------- 3 UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD --------------------------------------------------------------------------- ' USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 05-18-1994 AT TIME 04:11:32 ' *** PROJECT TITLE: Stoneridge III *** CURB OPENING INLET HYDRAULICS AND SIZING: Alsp�_�To2N\_ ' INLET ID NUMBER: 9-I ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 13.89 IDEAL CURB OPENNING EFFICIENCY = 0.90 ' ACTURAL CURB OPENNING EFFICIENCY = 0.82 STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE ($) = 0.55 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.63 ' GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 2.24 FLOW CROSS SECTION AREA (sq ft)= 1.70 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.42 BY FAA HEC-12 METHOD: DESIGN FLOW cfs = 3.81 L2 z FLOW INTERCEPTED (cfs =� 3.12��p,FS ' CARRY-OVER FLOW (cfs)= y 0.69YG�6r BY DENVER UDFCD METHOD: DE,SI FLOW (cfs)= FLOW IN 2:91 ' ,CARRY —OVERFLOW (cfs)=_-----0-,9a 1 ' -------------------------------- -------------------------------------------�— UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD '--------------------------------------------------------------------------USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO............................... ON DATE 05-16-1994 AT TIME 17:46:01 ' *** PROJECT TITLE: Stoneridge III n, *** CURB OPENING. INLET HYDRAULICS AND SIZING: MATo%Z 57-b&64 tINLET ID NUMBER: 9-1 ,-- ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ' ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE STREET CROSS SLOPE M _ STREET MANNING N = ' GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ ' STREET FLOW HYDRAULICS: 10.00 28.96 0.53 0.46 0.55 2.00 0.016 1.38 1.17 WATER SPREAD ON STREET (ft),= 21.16 ' GUTTER FLOW DEPTH (ft) = 0.54 FLOW VELOCITY ON STREET (fps)= 3.01 FLOW CROSS SECTION AREA (sq ft)= - 4.58 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 1 1 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 7.36 BY FAA HEC-12 METHOD: DESIGN FLOW _(cfs)= 13.79,00 FLOW INTERCEPTED (cfs)= 6.41 CARRY-OVER FLOW (cfs)= 7.38 BY DENVER UDFCD METHOD: DE-S3 FLOW (Cfs)=3-9 FLOW INTER�C -TE0--( = 6.25 COVER FLOW (cfs)= 7 '----------------------------------------------------------------------------� S UDINLET: INLET HYDARULICS AND SIZING t DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD IF-------------------------------------------------------- -- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ......................:....... ON DATE 04-19-1994 AT TIME 14:19:58 1*** PROJECT TITLE: Stoneridge III 12. 1 - 2 1 I C 1 I *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1- 2 MINo2 e:�Tog,Aj INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = STREET CROSS SLOPE M = STREET MANNING N GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET PLOW HYDRAULICS: 10.00 13.19 0.52 0.84 0.77' 2.00 0.016 1.38 1.17 WATER SPREAD ON STREET (ft) = 10.75 GUTTER FLOW DEPTH (ft) = 0.33 FLOW VELOCITY ON STREET (fps)= 2.45 FLOW CROSS SECTION AREA (sq ft)= 1.26 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW ' BY DENVER UDFCD METHOD: 1 FLOW INTERCEPTED CARRY-OVER FLOW DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 2.84 �2 (cfS)= 3�08 (cfS)= 3.08 (cfs)= 2.4.1 (cfs)= 0.67 '--------------------------------------------------------------------------fb UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY IL DR. JAMES GUO, CIVENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO,DENVER CITIES/COUNTIES AND UD&FCD '--------------------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 05-16-1994 AT TIME 17:54:07 ' *** PROJECT TITLE: Stoneridge III *** CURB OPENING INLET HYDRAULICS AND SIZING: AAA -Toe 5 1_nA ' INLET ID NUMBER: 1-2, ' INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 10.00 REQUIRED CURB OPENING LENGTH (ft)= 28.05 1 IDEAL CURB OPENNING EFFICIENCY = 0.55 ACTURAL CURB OPENNING EFFICIENCY = 0.48 STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE ($) = 0.77 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 GUTTER WIDTH (ft) = 1.17 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 18.34 ' GUTTER FLOW DEPTH (ft) = 0.48 FLOW VELOCITY ON STREET (fps)= 3.27 FLOW CROSS SECTION AREA (sq-ft)= 3.47 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.22 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 11.35 FLOW INTERCEPTED (cfs)= 5.42 CARRY-OVER FLOW (cfs)= 5.93 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 11.35 FLOW INTERCEPTED (cfs)= 5.29 CARRY-OVER FLOW (cfs)= 6.06 --------------------------------------------------------------------------? UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD 1p--------------------------------------------------------------------------- SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO .............................. ON DATE 04-19-1994 AT TIME 21:23:27 '*** PROJECT TITLE: S.toneridge III b. p 18 *** CURB OPENING INLET HYDRAULICS AND SIZING: /M/A)C2 Srnrem ' INLET ID NUMBER: 18 ' INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 4.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 90.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.40 ' STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 1.38 1.17 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 11.50 GUTTER FLOW DEPTH (ft) = 0.34 FLOW VELOCITY ON STREET (fps)= 1.83 ' FLOW CROSS SECTION AREA (sq ft)= 1.43 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 20.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.54 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 2.62 2 ' FLOW INTERCEPTED (cfs)= 2.62 Qu�vr CARRY-OVER FLOW (cfs)= 0.00 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= 2.62 2.62 CARRY-OVER FLOW (cfs)= 0.00 H '-------------------------------------------------------------------------- 38 UDINLET: INLET HYDARULICS AND SIZING ' DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------=--------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 05-17-1994 AT TIME 05:38:21 ' *** PROJECT TITLE: Stoneridge III �12. S __ *** CURB OPENING INLET HYDRAULICS AND SIZING: MATo2 Srarz/A_— ' INLET ID NUMBER: 18 �� Gwc.. !�7 j pC_,, / A sic, C��V rIZ.rJ INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 4.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 90.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.38 ' GUTTER WIDTH (ft) 1.17 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 19.84 GUTTER FLOW DEPTH (ft) = 0.51 FLOW VELOCITY ON STREET (fps)= 2.47 ' FLOW CROSS SECTION AREA (sq ft)= 4.04 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.39 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 9.97 FLOW INTERCEPTED (cfs)= 5.72 CARRY-OVER FLOW (cfs)= 4.25 Weir r1no BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 9.97 FLOW INTERCEPTED (cfs)= 5.12 CARRY-OVER FLOW (cfs)= 4.85 4' ovPr-�imcJ iJ ear ® b• (100-•Y2�e5�t,� (Za} wy C_-� ve, " Q 1 I ----------------------------------------------------------------------------- UDINLET: INLET HYDARULICS AND SIZING DEVELOPED BY DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD -------------------------------------------------=-------------------- -SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO.............................. ON DATE 06-24-1994 AT TIME 09:30:53 '*** PROJECT TITLE: Stoneridge III *** CURB OPENING INLET HYDRAULICS AND SIZING: c„4 INLET ID NUMBER: 29 v taIk Gw�yeyf ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: X� GIVEN CURB OPENING LENGTH (ft)= 2.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 90.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE (%) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 5.38 GUTTER FLOW DEPTH (ft) = 0.27 FLOW VELOCITY ON STREET (fps)= 1.63 ' FLOW CROSS SECTION AREA (sq ft)= 0.46 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.85 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= Q2= 0.74 ' FLOW INTERCEPTED (cfs)= 0.74 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 0.74 ' FLOW INTERCEPTED (cfs)= 0.74 CARRY-OVER FLOW (cfs)= 0.00 C L 1 1 1� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1� 1 RMINC Engineering Consultants ¢D CLIENT 44P,14AI ! .[J JOBNO. ��3"C0 PROJECT iTp��2.+�G� CALCULATIONS FOR STo21�( bi2AinJ AIJAiyS,s MADE BY �!'� DATE CHECKED BY- DATE SHEET I OF I I _ � r �. .. iL L.. + , I _ i 3 � L. 2 , O FIT I HDPE Iq !a' T 1 P :IZ CL3 rn4 �T o� ZZ IVY 1 _ Z - 10; _TYP.� ,. 12 .GI,�12.� 1 �^ ��L.ILT: , : - - o t O Zb 1= T�rP� . 1 I ,w1 221-T 31 : I � I _ .. � I fi - Fi tnP - Io;:S% t �l i6� >a ° 1 b l' :4`Ia8 3 oq I . 2 .7T 31 0 4 Zoo I _ 10L 2 tP 1 o:4 �slj' _ Il'•38 I1•`Iq i 1d ,. t�"_ 12GP lo•� 3l5' ;: Il 59:� � !3•,25 i3 Zs 47 i70 _ 1 - _{ O P1P� I 1"" tFPPG .ZS 146' II.55 ) 5 ------------------------------------------------------------------------------ REPORT OF STORM SEWER SYSTEM DESIGN ✓k{/Q 51tg�! ✓1 USING UDSEWER-MODEL VERSION 4 - DEVELOPED✓� ' ' BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER URBAN IN COOPERATION WITH DRAINAGE AND FLOOD CONTROL DISTRICT ' ------------------------------ DENVER, COLORADO ------------------------------- ------------------------------------------------------------------------------ *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ' *** PROJECT ON TITLE : DATA 06-24-1994 AT TIME 13:27:19 Stoneridge P. U.D. Third Filing Storm Drain Analysis ' *** RETURN PERIOD OF FLOOD IS 2 YEARS *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .9 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ' 1D NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) ' ------------------------------------------------------------------------------- 1.00 2.00 19.00 22.00 10.00 ROUND 26.96 27.00 19.00 ROUND 25.02 27.00 30.00 27.00 0.00 0.00 3.00 32.00 22.00 ROUND 25.02 27.00 27.00 0.00 4.00 31.00 32.00 ROUND 25.02 27.00 27.00 0.00 5.00 21.00 31.00 ROUND 20.20 21.00 24.00 0.00 6.00 26.00 21.00 ROUND 18.66 21.00 21.00 0.00 ' 7.00 1.00 21.00 ROUND 13.66 15.00 15.00 0.00 11.00 23.00 19.00 ROUND 14.96 15.00 18.00 0.00 16.00 27.00 26.00 ROUND 8.88 15.00 15.00 0.00 ' 8.00 9.00 2.00 25.00 1.00 ROUND 13.66 15.00 2.00 ROUND 13.66 15.00 15.00 15.00 0.00 0.00 15.00 5.00 25.00 ROUND 13.66 15.00 15.00 0.00 17.00 7.00 27.00 ROUND 8.88 15.00 15.00 0.00 13.00 3.00 23.00 ROUND 14.96 15.00 18.00 0.00 ' DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES; UNITS FOR BOX SEWER ARE 1N FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. ' SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ------------------------------------------------------------------------------- SEWER DESIGN FLOW 'NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW Q FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS . FEET FPS FEET FPS FPS ' ------------------------------------------------------------------------------- 1.0 2.0 21.8 16.0 29.1 19.6 1.61 1.54 6.50 5.51 1.58 1.39 6.65 6.20 4.44 4.02 0.97 0.82 V-OK V-OK 3.0 16.0 19.6 1.54 5.51 1.39 6.20 4.02 0.82 V-OK 4.0 16.0 19.6 1.54 5.51 1.39 6.20 4.02 0.82 V-OK 5.0 9.0 14.3 1.15 4.83 1.08 5.22 2.87 0.88 V-OK 6.0 7.3 10.0 1.11 4.56 1.00 5.15 3.04 0.82 V-OK ' 7.0 3.2 4.1 0.83 3.69 0.72 4.36 2.59 0.76 V-OK 11.0 4.5 7.4 0.84 4.42 0.82 3.33 2.56 0.94 V-OK 16.0 3.3 13.4 0.42 9.01 0.73 6.09 2.68 2.86 V-OK 8.0 9.0 3.2 3.2 4.1 4.1 0.83 0.83 3.69 3.69 0.72 0.72 29.92 6.22 2.59 2.59 0.76 0.76 V-OK V-OK 15.0 3.2 4.1 0.83 3.69 0.72 4.52 2.59 0.76 V-OK 17.0 3.3 13.4 0.42 9.01 0.73 4.28 2.68 2.86 V-OK 13.0 4.5 7.4 0.84 4.42 0.82 3.22 2.56 0.94 V-OK ' FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS 1 0 ' ---------------------------------------------------- ------------------ Fi.cbQ tme P,,-'lvQ SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS Y1 . ID NUMBER UPSTREAM DNSTREAM CFT) UPSTREAM (FT) DNSTREAM (FT) CG d ---- ---- 6 J 1.00 0.50 4909.11 4908.30 0.95 2.50 NO 2.00 0.40 4909.41 4909.11 1.64 1.20 OK 3.00 0.40 4910.31 4909.41 1.74 1.64 OK 4.00 0.40 4911.12 4910.30 2.03 1.75 OK ' 5.00 0.40 4911.38 4911.12 2.02 2.28 OK 6.00 0.40 4911.55 4911.39 2.20 2.26 OK 7.00 0.40 4911.99 4911.39 2.76 2.76 OK 11.00 0.50 4909.33 4909.11 1.96 1.95 OK ' 16.00 4.25 4917.50 4911.55 -2.75 2.70 NO 8.00 0.40 4913.25 4911.99 2.70 2.76 OK 9.00 0.40 4913.44 4913.25 3.21 2.70 OK 15.00 0.40 4913.44 4913.44 3.21 3.21 OK 17.00 4.25 4917.50 4917.50 -2.75 -2.75 NO 13.00 0.50 4909.33 4909.33 1.75 1.96 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 1 FEET *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG -------- -'-------------------'---------------------------------------'--'----- SEWER SEWER SURCHARGED CROWN ELEVATION SEWERS WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 1.00 161.00 0.00 4911.61 4910.80 4911.03 4910.00 SUBCR 2.00 75.80 14.89 4911.66 4911.36 4911.93 4911.03 SUBCR 3.00 224.70 71.53 4912.56 4911.66 4912.39 4911.93, SUBCR ' 4.00 204.10 0.00 5.00 65.00 0.00 4913.37 4913.38 4912.55 4913.12 4912.80 4912.39 4913.03 4912.80 SUBCR SUBCR 6.00 41.00 17.21 4913.30 4913.14 4913.47 4913.03 SUBCR 7.00 151.00 130.62 4913.24 4912.64 4913.62 4913.03 SUBCR 11.00 44.00 44.00 4910.83 4910.61 4911.34 4911.03 PRSSIED 16.00 140.00 17.26 4918.75 4912.80 4918.23 4913.47 JUMP ' 8.00 315.00 97.29 4914.50 4913.24 4914.34 4913.62 SUBCR 9.00 47.00 0.00 4914.69 4914.50 4914.43 4914.34 SUBCR 15.00 0.10 0.00 4914.69 4914.69 4914.50 4914.43 SUBCR 17.00 0.10 0.00 4918.75 4918.75 4918.26 4918.23 JUMP ' 13.00 0.10 0.10 4910.83 4910.83 4911.37 4911.34 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUSCRITICAL FLOW ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY IDNOID N0, ELEV FT IT K COEF LOSS FT K COEF LOSS FT ID FT ' ----------------------------------------------------------------------- 1.0 19.00 4911.34 1.03 1.00 0.31 0.00 0.00 10.00 4910.00 2.0 22.00 4912.18 0.51 1.32 0.33 0.00 0.00 19.00 4911.34 3.0 32.00 4912.64 0.44 0.08 0.02 0.00 0.00 22.00 4912.18 4.0 31.00 4913.05 0.39 0.08 0.02 0.00 0.00 32.00 4912.64 ' 5.0 21.00 4913.16 0.00 1.32 0.17 0.00 0.00 31.00 4913.05 6.0 26.00 4913.62 0.27 1.32 0.19 0.00 0.00 21.00 4913.16 7.0 1.00 4913.73 0.46 1.00 0.10 0.00 0.00 21.00 4913.16 11.0 23.00 4911.44 0.08 0.25 0.03 0.00 0.00 19.00 4911.34 16.0 27.00 4918.34 4.70 0.25 0.03 0.00 0.00 26.00 4913.62 8.0 2.00 4914.44 0.71 0.08 - 0.01 0.00 0.00 1.00 4913.73 9.0 25.00 4914.54 0.09 0.08 0.01 0.00 0.00 2.00 4914.44 15.0 5.00 4914.60 0.04 0.25 0.03 0.00 0.00 25.00 4914.54 17.0 7.00 TOM= 0.00 0.25 0.03 0.00 0.00 27.00 4918.34 ' 13.0 3.00 4911.47 0.00 0.25 0.03 0.00 0.00 23.00 4911.44 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. ' FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 45 I I I I I I H L I I I I I CLIENT Kkt)!,4,A ---JOB NO. 503-6c,60 T:DINC PROJECT 17�,,V66CM, CALCULATIONS FOR Engineering Consultants MADEBY122 DATE CHEfD BY DATE -SHEET -Of L-4 tom.. ......... ..lil A YID L fill t 7-1 it 7--- i7' 4- �4- 4- -- - ------ - -1-4 1 i LJL L] .... .. 1-i- ------ --- - qi. ------------ --- ------- --------- -- T-H ---- LA 44. t--- -------- -- -- J---------- 1. ---------- ...... ... . . -41--- -A ........ ....... ----- - - --- T� L I I -, I I I I I I I I I I I I I I 1 I Isom Engineering Consultants j rl IFNT JOB NO. PROJECT CALCULATIONS FOR MADE BY- DATE- CHECKED BY- DATE -SKEET- OF .4, 4 7F d Lf.aJ, -T- _4 . .. .... Li 11 j t d d dd i I / 'd J -- .0 Ld 7i! ET ---- ------- - d —A L LZ N! — + d d d yz� I't'- tt Id d J..... r .. d' --- ----- Ell 7__ 7 -7 T d d d d ...... .... 'd d -7-1 11 d 1 1 L I d d d j 77 d d d J.. id 4d -- --- ­7 - I. 7- ..L—d—L L_ j — ------------ —- -- A—L. d T _7 f------- -- — A—L __j - ----- d ------ - I d L YS J 2 O v1 (� • �1) -� yc� O L W m rJ ^__ 4110013A o U. J Z 1311n0 Kcr Q UJ V N W W 4, NOIl�A313 N� m W p 1-• ~ I tl310MOV3N 10tli N00 O w ¢ V J W < G _ e F3 .. z gw W zWUJ _ I ml \ N W W I.r 2 r� ru r� U O ccW r• I �I y y J = n c z u J Q zi of to wLe O e m \v _ N V F 0 OO c0 IN N1:1 J •O a e • J� � IL 11 IQ.) y L S W W S i ¢a.� C� ^ z --111CCNLLL�� ~ J Q W J J ¢ z y = O 3 39 LL O Q ).. S W W 06 i n ' I J 0 F y y. N In C U) , J; /�� S V N S W = 7 cc/,) F O W �= 9cc ; r U H W W 3 F� • , Q Q O y C Q 2 F •- 11V u V J ❑ �❑ 3 '� V � d u y V t OJ O a 0 W 0 w W I iS 11 IaL I.. H = v y > ell a = O .. 0 y mil `•/O� F V W f z S Q S O" W `1' = X ¢O v 2 W W y .. < O C � )•• m J~ e QVFtCO IL o < i i Y jJ 0 y 0 C = O G <=o" F W • {i 3 O U ¢ 6 ¢ < Q 2 S ! Ste) m W ❑ ❑ ❑ ❑ W ¢ 2 I z W J xaz«uy�a< :.: OW °001-JW ' W GMOZS20N '$INS'1.00V 339 J 1 7 < C L P L) m S w m <u 6 V V 240 I N I 11 I I I I r I I I I I 1 RMINC Engineering Consultants CLIENT �4 pi_,l Aj JOB NO. 22 _S OS PROJECT CALCULATIONS FOW�',GaglZ Vr .01.';<16A) MADE BY 7PAI DATE HECKEDBY—DATE SHEETOF 10 77 ---- ----- - 7 4 7- 7_T_jT ----- --- --I-: ...... if - ------------ 26 r-,ov ........ .. . — -- ------ P6 f f j 1 `LA 7 ------ -- -- -- - --------- - yI --- ----- -- ------------- -------- --- ---------- oors (f>Y 4 ----------- 4­ J_ 7_1 .4 L 1. ----- --- -- . . .... .... J L 4 CO.7 �/ CLIENT I<AY_"LACtKf ^ JOB NO. ■��INC PROJECTT7iZlam— b 7T1,11CALCULATIONSFOR( a vy T Engineering Consultants MADESY4^�DATE* CHECKED BY DATE SHEET OF - 4g CLIENT ! /a).1 _ JOB NO. -'=2� ■AINC PROJECT CALCULATIONS FO 1 y g7 t Engineering Consultants MADE BV�2DATE/- HECKED BV DATE SHEET OF — y I 1 � -� I I � { kZ1 1 ......-- - .._.... J ... _�. ... ....�.. _. ..... _.-_.. ._:. .�... 9 ZZZ.♦ 7C0 { . y, I { 1 - �. _ j I f3ew 1 _ ., I - -- _ 77 — — — -- = — r I ADS End Section Dimensions 40 1 1 1 1 1 1 1 1TYP. I I B I \ 1 L Q�Q L I 1 ar H I.A. W V�H TOP VIEW END VIEW SIDE VIEW Dimensions (inches) Pipe Diameter Part No. A (1 t) B MAX H (1 t) L (1 /2 t) W (2 t ) 12" and 15" 1210 NP 6.5 10 6.5 25 29 18" 1810 NP 7.5 15 6.5 32 35 24" 2410 NP 7.5 18 6.5 36 45 . 3�" -* S,S 1 Comparison of End Sections 1 1 1 *6.S ,Ire ke,o COST EASE OF INSTALLATION DURABILITY APPEARANCE ADS LOW VERY EASY EXCELLENT EXCELLENT STEEL LOW VERY EASY POOR GOOD CONCRETE HIGH VERY DIFFICULT I EXCELLENT EXCELLENT POURED IN PLACE HIGH VERY DIFFICULT EXCELLENT EXCELLENT RIP RAP HIGH DIFFICULT FAIR GOOD 1 Installation Instructions 1. Spread the End Section collar and place it over the last pipe 1 corrugation. Make sure the collar seats properly in the corrugation valley. 2. Insert cable tie through the pre -drilled holes in the End Section collar. Insert the cable tie tab into the keeper and pull tight. 1 3. Place backfill around the End Section and over the toe plate. Nationwide Sales and Manufacturing Network 1 Madera, CA 209-674-0903 Charlotte, NC 704.527-0137 Monticello, IL 217.762.9448 London, OH 614-852-4067 Iowa City, IA 319-338-3689 Brentwood. TN 615-373.9964 Ludlow, MA 413.589-0515 Washougal, WA 206-835.8522 Owosso, MI 517-725.7893 Ft. Collins, CO 303-493-7234 i Insist on the ADS green stripe. ADVANCED DRAINAGE SYSTEMS, INC. ' Corporate Headquarters/33D0 Riverside Drive, Columbus, Ohio 43221 /(614) 457-3051 414 DRAINAGE CRITERIA MANUAL INLETS 9 CULVERTS -to 0 10.000 (1) (E) (3) Ise e,000 EzAM�LE Ibe 6000 e••t I••s•s Isfool .ry •. 114 5'000 /• It0.1. b. 4 000 • Nt e. 4. 3'000 111 t.t M b' Ito R! 9.1 7.4 10e l,000 (at.t 7.7 1 1' 3. •! 1• fm 99 1000 3. e00 e4i— Soo 400. y !. / 5. 4. 3. !- = 300 so '� too // F : / O 54 .. i 0 4/�/t 0 8 u t _ 1� 4! u h e0 416 b0 1.0 1.0 ENTRANCE O o 0 SCALE TYPE c 1.0 3e W 30x e f kills VI some 06Poft ; e 33 s•Nwn O 1 O !0 m M•••• •w/ wits t ?gyp 30 ••NM11 S .e •e 111 M•••• •N •e !7 r•1«I ISO 10 !4 e 7 T 7 e r• ..• •s•M Itl or Is) rN••1 1 «. slr•IlM Ms"a" N•• Nr•so o w 4 N•1••, or ►««« as le I5 LO .b '! HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS WITH INLET CONTROL FIGURE 10-.10. II-IS-6e Donor nelww1 C•misil d iti•rnnm•nfs 1 1 1 1 1 DRAINAGE CRITERIA MANUAL c /: : I Ir 2000 14 From BPR INLETS 8 CULVERTS 2 3 :o HEAD FOR CONCRETE PIPE CULVERTS FLOWING FULL n • 0.012 FIGURE 10-13. Denver N.«eea Council of Wwrnmen4 150 I I I I I I I 11 I I I I I I NC Engineering Consultants CLIENT 144M JOB NO.-Sr,-M- a--=7!:S PROJECT Jft ik%t�r�g CALCULATIONSFOR MADE BY49L�_'// DATE,.�*4 CHECKED BY -DATE -SHEET -OF J." ri DRAINAGE . CRITERIA MANUAL RIPRAP JOa., led n q� 0 x 3 0 �6 %.o MEN MMEM111APPE NESS I limp 0 00 .2 .4 .6 .81.0 Yt/H o•84 Use Ha instead of H whenever culvert has supercritical flow in the barrel. *,*Use Type L for a distance of 3H downstream. FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE a FLOOD CONTROL DISTRICT I 51 I I SWALE & CHANNEL DESIGN t I 5Z RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA STONERIDGE III - POND 27 OVERFLOW WEIR WEIR COEF. 3.000 EMI :Mivj 0.0 4919.50 4.0 4918.50 14.0 4918.50 18.0 4919.50 4" 1 nti�x hidesloPeh 19 s ELEVATION DISCHARGE (feet) (cfs) ......... 4918.50 --------- 0.0 4918.60 1.0 4918.70 2.8 4918.80 5.4 4918.90 8.5 a 92 ifs 4919.00 12.1 Wi 0.41•, 4919.10 16.3 w�EL `= 41 4919.20 21.1 4919.30 26.4 4919.40 32.2 4919.50 38.6 P, ��&. C-,) = CLEAN/Z I 53 NC Engineering Consultants 1 I] 0 11 1 0 1 CLIENT JOBNO. 5b5-0Q F; PROJECTZT''�E�V� �JI— CALCULATIONS FOR( epy, c7CREFT FivW MADEBYIVM DATE-015 CHECKEDBV DATE SHEET OF 54-- RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Stoneridge III -- Cross Crown Flow for Fieldstone Drive WEIR COEF. 3.000 �911i:��ir1�1+/ 2070.0 4913.98 2092.0 4913.58 2115.0 4913.33 2125.0 4913.29 2300.0 4913.99 ELEVATION ( feet) 4913.29 4913.39 4913.49 4913.59 DISCHARGE (cfs) 0.0 1.6 8.0 21.0 4913.69 42.0 4913.79 71.6 �rey'a = 49.2cF5 4913.89 110.3 3A2 'i5� RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Stoneridge III -- Flow over walk to swale past Inlet #19 L .I WEIR COEF. 3.000 STA ELEV 7 � Jl J 49 13,80 4-1 5me- 0. 0 4914.10 w5 E+- 49 i'. 4.0 4913.10 0•57' 44.0 4913.10 48.0 4914.10 2 44 ELEVATION DISCHARGE X_S�LTIor�/ (feet) -- (cfs) -- 4913.10 0.0 4913.20 3.8 4913.30 10.9 4913.40 20.2 4913.50 31.3 4913-60 44.0 �re4'd =s3.3 cts 4913.70 58.2 4913.0 .9 VJS�Ir= 4-1i3.�7, 4913.90 90 90.9 4914.00 109.1 4914.10 128.7 for o-F:� OAPJV-. f'2oc�2A M EQ.K r0c-kGrUS+2dC L&V- Q= LL 3/L ,.J G wekr GOe{, - 3.0 1'y b°ATIE� K,aU RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA Stoneridge III - 4' Over -flow weir @ D.P. 18 (100-yr design) WEIR COEF. 3 . 000 G ' 77•0 �Zt'• ruZ 5-5(A-) 1Je4r (C#*"iU STA ELEV 0.0 4915.00 Ks29 1�v)-e-I r 10.0 4914.20 U 20.0 4914.20 _ CLH3�2 35.0 4915.00 ELEVATION DISCHARGE (feet)(cfs) ------- 4914.20 0.0 4914.30 1.1 4914.40 3 . 3� Q rP4�d = 4 ?$ �j S 0�8✓ ��Du> Pkh� 4914.50 6.6 0 4914.60 11.0 4914.70 165 4914.80 23..2 4914.90 31.2 NC Engineering Consultants /)., Nni CLIENT (�kp L 40 C__-O JOB NO. S03-00S PROJECT 1vr,.-3Ejejo&k_ my:_ CALCULATIONS FOR�IA�I..i�.l.-A/ MADEBVTrM DATE 5-23 CHECKED BY DATE SHEET OF lTlli g /knlRLYS/S 07a;.'S„J A(� GiEfTiotil A A (Sa Obi J I � —�/7 } ,T7 H4a I 't I I I I lliJl � i y -J 11✓� i �.',._ [!✓i �l Oaf+/ i L I � 1. 1 { 1 .i. .... CCC 1 457 CLIENT �4PL4.✓ 60_ JOSNO. E �-cot? ■AINC PROJECT GJ fI delCALCULATIONS FOR e!!!// f 1 -led )�!, FEJe J5 Engineering Consultants MADEBY-MM DATES CHECKED BY DATE SHEET OF aa } _ 11 0 ofo _I� ,...... - °p �I = ... , - --- , iQ-•F�aTlscrz.IEo � 77 _ Tam Icy`_ GF5 1 _ i .- ...._.. - _ / t 7. O 7. Q Ior,' 82 4 cis { �I� 1 j-L TIry j c ! / 2 74 I ...u_I(�..._ Al l rT ` - _ _+ I I - . _ - 1. 1 - ;:_' ........ _ -, - _ - I I I I I 100 I I n 10 I I I I I I I I I I I I I I I I :MINC Engineering Consultants CLIENT A-PL-A 1) 6Z5 JOB NO. PROJECT X1 CALCULATIONS FOR MADEBY7RAA DATE CHECKED BY_ DATE -SHEET- OF "M-L' AWIj M j 7 7­ It 717-H'i -AL 1--F­ f 34� ?V . 7-JA _i­ -7' ..... ... ... -.i --i 1 /J\ I � I /� I i I I I 1+ I i' + I I 1 1 I L _I. F i-T M, _7 I 71 7-1 if 7� 7-1 ------- ------- - -- J­_.d --- 1-4 j �J! -- - ------- 1 L J., J. ------ --- -- _T ... . ....... L ....... . .. . . ...... ..... . t --- - --- ------ 7 ----------- ------ -- _j. I NC Engineering Consultants CLIENT JOB NO. PROJECT �OMEK-r2e- 10Z CALCULATIONS FOR MADEBYTP'-" DATE CHECKED BY DATE -SHEET I OF -A L _T_ ... ....... "TT'lF 151:2 Liz j -_ � I - •_ j -77�71 � 7 rN ---- - ----------- _J I L! Sf t T-1 If: f T-7- F-F iT L-f i--- f L 4 4 I FFF if ......... .. ------ t -- -------- r .. .. ..... if C Lh A 7- ...... ...... 5 L F zLh S" 1-4 4_1 . I -------- 7 4 1 _TT Z", 4 - L i 77 J.. 5­9 5 5_, -24- ----------- 4i '1 4 Uk'7 r-, (p ^ (e f2D >,-' uy I r&,, 1, I,-Awk_ 1 �� CLIENT f'�•A`�L'�` JOB NO. 1 NC PROJECT Sro JlG1ZII�G/� �� CALCULATIONSFOR _ Qldlef Engineering Consultants MADE BY TPh DATE CHECKED BYDATE -SHEET-OF 1 1 F2o+-A D�� I,TX + .A� - M rF a u� TC> jI,rsi'c ►111 ��J , _ T ! .. ' i ' Ions T I — — -i . - j 1 IT _ ! lJ l7 �f� IGMA� L , �_b D25 1 } I I I i_. I D,T - _ O = - - I - 1- -- -70, o- 6 r - - AILJ­ f..:. 1 - �- ;- K - 10 1 - 40 IFDP� �Mno PipZ,. - � 1 p a (/-(7 �J �� (ram._ 1 i1.+ �J"i0 1 T ._ - l f I i i 1' 1 1- — — — — 1 ► j . ; f ' i t r . : r ' REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER 1N COOPERATION WITH ' URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ' ON DATA 06-30-1994 AT TIME 10:19:35 *** PROJECT TITLE Stoneridge l// - Drop Inlet Pipe Out/et *** RETURN PERIOD OF FLOOD IS 100 YEARS *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .9 ----------------------"'.-'--------."'-------------------------'--------- SEWER MAMHOLE NUMBER. SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) -.-.'."'------"'-------"""------------------------------------- 1.00 2.00 1.00 ROUND 41.24 42.00 48.00 0.00 2.00 3.00 2.00 ROUND, 41.24 42.00 48.00 0.00 - DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES ' DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. ' FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISITNG SIZE WAS USED ----------------------------------------._.'----------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ' ------------------------------------------------------------------------------- 1.0 162.0 243.6 2.38 20.75 3.62 13.54 12.89 2.59 V-HI 2.0 162.0 243.6 2.38 20.75 3.62 13.54 12.89 2.59 V-HI FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------.__------__-------_-__-_---__-------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ' ----- ---------- (FT) (FT) (FT) (FT) 1.00 2.86 4886.00 4884.00 6.00 4.00 NO - F� 2.00 2.86 4886.00 4886.00 6.00 6.00 OK ' OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET 1 *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ----------" ---_._.-'---------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION -'-------- .'-' 1.00 FEET ---------------------------------------'------------------ 70.00 FEET 52.52 FEET FEET 4890.00 4888.00 FEET 4890.16 FEET 4889.50 JUMP 2.00 0.10 0.10 4890.00 4890.00 4890.81 4890.16 PRSS'ED ' PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW ' *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE ' SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID ---------------------------------'--------------------------------------------- FT 1.0 2.00 4892.74 0.66 1.00 2.58 0.00 0.00 1.00 4889.50 2.0 3.00 4893.39 0.00 0.25 0.65 0.00 0.00 2.00 4892.74 BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. ' FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. ■_J 1 ' ****** HYCHL ****** (Version 2.0) ****** Commands Read From File: 50300501.DAT ' JOB STONERIDGE CHANNEL 'A' RIPRAP CHL 0.0379 162.13 TRP 0 5 5 '** LEFT SIDE SLOPE 5.0 AND RIGHT SIDE SLOPE ** THE BASE WIDTH OF THE TRAPEZOID (FT) .00 LRG 2 ' ** THE MAXIMUM CHANNEL DEPTH (FT) IS .00 END **************END OF COMMAND FILE************ STONERIDGE CHANNEL 'A' RIPRAP INPUT REVIEW ' DESIGN PARAMETERS: DESIGN DISCHARGE (CFS): 162.13 CHANNEL SHAPE: VSHAPED CHANNEL SLOPE (FT/FT): .038 ----------------------------------------- HYDRAULIC CALCULATIONS USING NORMAL DEPTH ' ----------------------------------------- DESIGN MAXIMUM ' FLOW (CFS) 162.13 .00 DEPTH (FT) 1.88 .00 AREA (FT-2) WETTED PERIMETER (FT) 17.73 19.20 .00 .00 HYDRAULIC RADIUS (FT) .92 1.00 VELOCITY (FT/SEC) 9.15 .00 MANNINGS N (LOW FLOW) .030 .040 'STABILITY ANALYSIS ------------------ LINING CONDITIONION TYPE --------- LOW FLOW LINING ' BOTTOM; STRAIGHT GROUTED RIPRAP *** NORMAL END OF HYCHL *** 1 PERMIS SHR. (LB/FT-2) ' Ila ******* 5.0 Date 05-25-94 CALC. SHR STAB. (LB/FT-2) FACTOR REMARKS 4.45 ****** STABLE Ik,5E IZj MO. '- 62PkT%A WIrFt1J Liti. r� 47401hi 01) pLcE� � p2o���r �JH �T ,�rzou�Jf� QrznP i��r'r S�uuc--rv-2.�. ' NC Engineering Consultants 1 I 99 , vet , _ 4 Ij CLIENTkP�g� JOB NO. PROJECT TO�E�yy.,� �^^7r JT CALCULATIONS FOR �I Q Y MADEBT_rPD✓dr M DATECL 4cHECKED BY DATE -SHEET OF DRAINAGE CRITERIA MANUAL f 9 = Expansion Angle r RIPRAP .1 .2 .3 A .5 .6 .7 .8 TAILWATER DEPTH/CONDUIT HEIGHT, Y t / D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL @4 RIPRAP MMEMMMEMEM MEMOVAA Mi 0 � 0 FAA M MEMO / .M 0 .■■ �� M, m agap MENNESEEIME WRO�- 2 0.Z5 A Y /D .6 .8 1.0 t Use Da instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. , . 11-15-82 URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT I I - W, IEngineering Consultants I I I 11 I I I I I I I I I I I CLIENT JOB NO. 15�c --3 -cc> PROJECT %CALCULATIONS FORS MADE BY_DATE_ CHECKED BY -DATE _SHEET- OF vz',terL L L L.. . ..... 7 - - - - - - - - - - -1., LIE.1 Orvy 7 L _' J_ ........ ..... ---- ---------- ------------ L --- . ...... ------ ------ ...... ...... 2_1 - --------- it Z - 4:01.4 T r 41 P ------------ ;_ _: -- --------- ------ ------ ..... .... ..... -- --------- - ------ --- L - -i 4)n N �6 59 RIPRAP DESIGN T:WINC Engineering Consultants CLIENT jL,&FLA,-3 (-,o JOBNO-2O CALCULATIONSFOR ME PROJECT �2 I MADE BY I""" DATE '5-2-S CHECKEDBY—DATE _SHEET —OF L-Lj i Jill, �T±=T TIT I I1 1 1 -14 L.L 1-4--L I. -j-L]-Lj- 71= J I .... . . ........ F"F7 T- '4 T-i -71=17- I j L ... ......... . . ..... j -4 F-L 17 J Ll -- ----------- 7�-I 1 L I 'T 1- F 1 L Y, ----------- I-A --- F Li L- -A A- 1. t L 0.111--i i J 1-4 j. L r I -f-t- f +i I X ly -------------- -------- -- J 1-y 3 107, DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE 1 5.6.2 Required Rock Size ' The required rock size may be selected from Figure 5-7.for circu- lar conduits and from Figure 5-8 for rectangular conduits. Figure 5-7 ' is valid for Q/D2.5.of 6.0 or less and Figure 5-8 is valid for Q/WH1.5 of 8.0 or less. The parameters in these two figures are: - a. Q / DI'S or Q/WHO'S in which Q is the design discharge in ' cubic feet per second and D is a circular conduit diameter in feet and W and H are the width and height ofa ' rectangular conduit in feet. b. Yt/D or Yt / H in which Yt is the tailwater depth in feet, D ' is the diameter of a circular conduit and H is the height of a rectangular conduit in feet. In cases where Yt is unknown ' or a hydraulic jump is suspected downstream of the outlet, use Yt / D = Yt / H = 0.40 when using Figures 5-7 and 5-8. t C. The riprap size requirements in Figures 5-7 and 5-8 are based on the non -dimensional parametric equations 5-5 and 5-6 (11)(25). ' Circular Culvert: ' (d50/D)(Yt/D)1.2 / (Q/D2.5) = 0.023 (Equation 5-5) Rectangular Culvert: ' (d50/D)(Yt/H)`/ (Q/WHI'5) = 0.014 (Equation 5-6) ' The rock size requirements were determined assuming that the flow in the barrel culvert is not supercritical. It is possible to use Equations 5-5 and 5-6 when the flow in the culvert is less than pipe ' full and is supercritical if the value of D or H is modified for use in Figures 5-7 and 5-8. Whenever the flow is supercritical in the ' culvert, substitute Da for D and Ha for H, in which Da is defined as Da = }(D + Yn) (Equation 5-7) ' in which maximum Da shall not exceed D, and ' Ha = }(H + Yn) (Equation 5-8) in which maximum Ha shall not exceed H, and ' Da = A parameter to be used in Figure 5-7 11-15-82 0 I 1 1 LI C 1 u 1 1 1 1 1 DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE whenever the culvert flow is supercritical. D = Diameter of a circular culvert in feet. Ha = A parameter to be used in Figure 5-8 whenever the culvert flow is supercritical_ H = Height of a rectangular culvert in feet. Yn = Normal depth of supercritical flow in the culvert. 5.6.3 Extent of Protection The length of the riprap protection downstream from the outlet depends on the degree of -protection desired. If it .is to preveflt all erosion, the riprap must be continued until the velocity has been reduced to an acceptable value. For purposes of outlet protection during major floods the acceptable velocity is set at 5.5 fps for very erosive soils and at 7.7 fps for erosion resistant soils. The rate at which the velocity of a jet from a conduit outlet decreases is not well known. For the procedure recommended here it is assumed to be related to the angle of lateral expansions, 9, of the jet. The velo- city is related to the expansion factor, (1/(2tan e)), which may be determined directly using Figure 5-9 or 5-10. Assuming that the expanding jet has a rectangular shape: in which: L = (1/(2 tan e))(At/Yt - W) (Equation 5-9) L = length of protection in feet, W = width of the conduit in feet (use diameter for circular �conduits), I._, \/ l I �/ r t I �/v `' Y /� �a�le, �wn�J VY�oGI �y = S fps . 11-15-82 1 1 `- 1 1 1 1 1 1 1 1-� 1 1 1 1 1 1 1 DRAINAGE CRITERIA MANUAL E G. = Expansion Angle Elmommom MEIrMld VIA MUM 0 VA WA E OF rA W�� EFFAVA I V1 100 PAA E E 0 0 0 MENNEN • RIPRAP (- .l .2 .3 A .5 .6 .7 .8 TAILWATER DEPTH/ CONDUIT HEIGHT, Yt / D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE a FLOOD CONTROL DISTRICT DRAINAGE CRITERIA MANUAL RIPRAP 10r7 ■ .® r 2 A Yt /D .6 .8 D$5 1.0 Use Da insleod of D whenever flow is supercriticol in the barrel. **Use Type L for a distance of 3D downstream. FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. 11-15-82 URBAN DRAINAGE S FLOOD CONTROL DISTRICT I EROSION CONTROL 00 1 Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 ' 303/482-5922 FAX:303/482-6368 ' May 10, 1994 ' Mr. Basil Hamdan City of Fort Collins Utility Services Stormwater ' 235 Mathews Fort Collins, Colorado 80522 IRE: Erosion Control Report, Calculations, Cost Estimate and Schedule for the Stoneridge P.U.D. Third and Fourth Filing and Area Detention Pond ' Dear Basil: We are pleased to submit to you, for your review and approval, this Erosion Control Plan for ' the Stone Ridge P.U.D. Third and Fourth Filing and Detention Pond. All computations for erosion control efficiency and performance within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. The erosion control cost estimate was determined on a unit cost per acre basis for the total area of 50.2 acres. The total estimate is $37,650. ' The measures to be most widely used for controlling erosion during the overlot grading of the Third and Fourth Filings will be temporary and permanent seeding of plant species approved by ' the Fort Collins Stormwater Utility Department for such use. The development to be completed during the summer and fall of 1994 will be the Third Filing, final submittal of the Fourth Filing, and the Detention Pond. Horsetooth Road and County Road 9 east of the Third Filing will not ' be improved at this time, therefore existing pavement will remain in place. It is expected that the paving of residential streets and private drives proposed with these filings will be in place ' within six weeks of the overlot grading, otherwise, gravel mulch will be required in the proposed roadways according to the City's design criteria. Straw bale barriers will be placed in all swales spaced every 200 feet, both permanent and temporary. Gravel inlet filters are required at all inlets as soon as they are constructed. 1 ' Denver303/458-5526 T:WINC. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 303/482-5922 FAX: 303/482-6368 The construction sequence for these measures are shown in Standard Form C of the attachments to this letter. The performance and efficiency calculations are also. attached. We appreciate your time and consideration in reviewing this report. Please call if you have any questions. ' Respectfully, RBD Inc. Engineering Consultants 7 /r v . McEnany, E.I.T. Project Engineer Roger A. Curtis, P.E. Project Engineer Denver 303/458-5526 RAINFALL PERFORKkNCE STANDARD EVALUATION PROJECT: �7-oaE;Z� pC� p t� 17. - F^:. }l. t I • 5 STANDARD FORM A COMPLETED BY: T:p-tilP—t2>:25r> DATE: 4 30 4- O DEVELOPED ERODIBILITY Asb Lsb Ssb Lb Sb S SUBBASIN ZONE (ac) I (ft) ($) (feet) M M 31 p 490 I.1 32 60 1.7 7�0.4- 4.76, 388 1.3 33 n�Jc � I• (oI 820 0, �- �4 $S¢ 2,7 g' -740 1.29 307 2.5 37 4.35 790 0.9 38 I.c�o 3q5- 2.3 3.o O 4-0 ML- 5 1.4-7 34a 1 17 '' 1.47 47-7 1 S jI 2' 33 4 -0 I loz5 2.33 Zo Z,ZI 410 0,8 1,77 7.45 410 0• 1 19 MoD --- 178 ZZ i . 1 I 3�7 0,74- 23 �• 3. i I ��� l . 3. 24- i, Go 4-Zo I. 2 I. 19D 4.85 p 32.4- .O I.o ZT o,gq 670 o,.5 012 333 I . 30 `' P,45 1 120 1 5-0 1 124 a I�.2q --_ S�� _. _�•Z 70,4 MARCH 1591 E•141 1 DESIGN CRITERIA 78. 4- = �1 Z • Z 1 0 0) c+ o 0 0 O CC Ln Ln6^ 1 U) g q co co co O 0)0)m0%000000 1 O < Q Q g co C < U) U) 47 U) U) Uf . q co q q q co co q O gC)C)L1C)CfC)C1C)C) C1C)000 O CC C'QCCCQC<C<U)U)Ui n g q q co q q q q q q q q q 0 co 1 O co 01 01 O1 01 01 C) C) C) O) 01 O) 01 O) C) 0\ C1 r q O « C C C« C C C«« C C C C C N q q g q co q co co coco co q q q co q q q q 1 O Ong U) 'l)10t7cor r rrrrrrrrrrq q q qqq O O C< C C C< C « < C C C C C C C Q C< C C C C C 0 ri qco ggDqcoqqOOqcoqqqcom 0co m0 1 O qN C, QU)V)V)% 0O t9tzvrrrrrrrrrr co coco p a a% n C C C or C< C C< C C C C C C< v C v C C444 O co co rx coOcogcogqcoqqcocoqcococo0q'cogcocoq U 1 o �00 nv<L)Le) LnLnk3 %Doko kD kD %D 1.0LD %Drrrrrr rn co n< CvC<QC C«<CCvvQCCCa CCQC .'7.. coco a cocococococa cog00cocogcocococoOcococococo H a O CC) N n n< C< Q Ln V) L7 L7 n N U) Ln U7U kD%D D 0LOr 1 . . . . . . . • . . . . . . . . . . . 04.4 O r n n C C< Q v v Q « C C Q Q C C C Q Q Q Q< Q C U Co. CD m O co co g O co co q O co q co co co co co co co q q co coca O 00 0ri'iNNnnnn«CCV CvCU)U)LnU) Vt0 E . . . . . O 1 L7 nn r, v<CvC<v C vv vCCQCQ<CCCC QC Gr co co coco q q q coco co co co g co co co co co co co co q co coco '. ..o Ln r4 Le rcoC100riririNNNNNnnnnnC V Cvv co r64 Ln Nn r n Cl) n< C Q v v v C C C C C C QCCQCCCC co co cogcococococoOcococococococococococococogcJ [:7 L7 L� 140 CrU) rico n<.LnLU)% %o r rrcocoq coco coC)C)G100000 I 0 a Q N N n n n n n n n n n n n n n n n n n n v v v Q r E-4 0 1 L7 q q a co g co q co co co g co q co q q co co g q q co co q q q iTCy O %Dn Ora N m v v m N L7V V l7U 1.0 N N r, N q Co. q C%n C ra N n n n n n n n n n n n n n n n n n n n n n n n 0 0 co 0 0 0 co co q O O O O O co co O co co q co co co 0 0 1 U 0 . ri ri v r O.00 ri N N n n n a< C C QCU) 0 N g co LO (�(� n riN . Nnnn ntnnnnninnnnnnnnnnnnn coca q co C coq O= C) O Oq= O Q Cl C C co q q= co 1 0 0 nN co C% 0 H N N n n n v C Q vC-C, L7 L7 U) U) L^,� 0O0 fr n . . 0H • . . . • . . . • . • . . • . . . . ririNNNNNNNNNNNNNNNNNNNNN co ca co O g O O q p co g q co co O co co co O co co 0 co co co 1 U) N0 c N n C n L7 r r r p co co n m Cl m n Ct 000000 a • . . . . . . • . . . . . . . . . . . . • . . . . a N C) O c ri ri ri ri ri H ri ri ri ri ri ri ri ri ri ri ri N N N N N N r0 a O O G g O O co 0000 cogOcogqOO coOgco O <U) .'T. nL7,ObOLl000riri'-iriNNNNnnnnnn 1 H �y N .. co nO ..,.,............0..•... O ,O O OJ O ri r t ri r{ ri ri ri ri ri ri ri H ri ri H H ri Fes-=•• r- r- C:f co C;co co CO. cO coC) CDq co co g q q C q 0 q q q co W Le)O N C L7 (�(� co CS c1 O O ri ri ri ri ri N N N n n n n n r♦ t7O r-4c4 C1C1 Gl C). c1000000000000000 i l� I CO co CO CO CD CO q co CO CO co co co q l O l7 n < r lc O •rig N n n < < U) Ln U) L7 to D LD 0 (l r, Q to Vr 1 .O, CO. O CO. M.g CO. O O g O O co q O CD CD co co U) C10 .V' Ic�ir!rrrrr�rrrrrrrrrrrrr rI=Or r r% OID 0vCn0NNn0 q. ri n%D 1 0 .. O N •- ..�.�...................• N N �N EV (N N N N N N N N N N N N N H H H H O O r- r- r jr �rrrrrrrrrrrrrrrrrrr iol OC7H 00 00 0100 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00106,01000000000000000000 azF+ 1 {�v riN L7l'7 p�0 gvgvoNm m000Ln000 ririririririHr-1r♦r♦NNnnvvLn a m 10.41 1 1 1 1 1 1 1 EFFECTIVENESS CALCULATIONS YxVJL%-.1�; SraE2rQ',,E P. U 17 - 4.11, F1„�j STANDARD FORM B . COMPLETED BY: -� M �J, R Q DATE: 30 9 Erosion Control C-Factor P-Factor Method Value. Value Comment PV 0.01 (. o0 W-':A L--^A) 0.0�0 (0.07) -r7kAI_G� 0.80 �e,..eL GuQg t f�2 LCa F� l . 00 0. to r'3PcZE C�>Zow�l1� - Rc . U H Chi) I . G o b j(JAZA90 vJ�-f uctJi T MAJOR PS SUB ARE BASIN (t) BASIN (Ac) CALCULATIONS 78.4- 31, 32 4.7� �jeEDln t-. ' q/Ze 7-0 19Z • 7-HA- 14Aye /-Wel-rENr PAPS. �/«✓inJ(� 6tJ•« i3G 2E'Q.•�,�y r�l�r-/.� 'f c� gy��ydr Goo„�G, oreew�sE !y2AVEL Mut W /S T 8E AA'c/ED (�4"c�iq. - l" {>•+iG% �4rer�. N Ary _ 2.0-r— i LI.SM z. 7� e� / W44- C, - o . c e.- 4. 7 • o, c %p 9�7o (> 719.4-� �k 7-9 9 33, $.9q XISTItJb PA�EN,[��T Gov2P1 P02ricn�S or j3 35 34, 5e��.t u�ul Ct)ic-� /3G� uSFJ� FUL' A 2Es-�S /�/cT 35 lZ�c,c�v/.vG Pq���,�.7�✓i �✓ir,�„✓/ (� wCc-Ks, 51-gA.J PjA ES Aer, To r3e ,,j i1, u. 0.4 Ast'A = $. Sri ,-t_ w��-G� `o.o�(c,.c'n�>+ o,o�(g.59>]' SS.S`� = o•oS8 6 • 6.J�Q- P = o. � o.css Co. S))too = I� (o C> l`j•`j) c�` =G P4V/4I6 r)oi5s,J'r oc-e-"2 wrrH,J !p wj4s cp ovcaor t5Q9Di , 3/4" &1Z4vEL /5 To 6e To 442�5 T 66 /-�4> v4F,0 T /" T,cr 64 pgne. N-c' J0- P I+A-L MARCH 1991 0mr.m rarmvA iWA EFFECTIVENESS CALCULATIONS PROJECT.: P.0- - 4Frj�L,3 STANDARD FORM B COMPLETED BY: -Q Fj ci DAM. 5 4 Erosion Control C-Factor P-Factor Method Value Value Comment 'ar C�V) u. of l•o TiZa•L.J C3 A t. E�__C S i'J A R-F- Ca N D - ZAvrL /A%kLc4 MAJOR PS SUB AREA BASIN (t) BASIN (Ac) SD, o-5? S. lag 0.cti i•r) CALCULATIONS Sear T;)/r4, x H 42G To f3lL_ t�-sL=-.n IQ AZeAS rAl- L,J<L-L_ rJOT 4AVe. P.4VrMc-,JT - 02 F3LP6 -f aPS. -;F4veX-. 5rJ7- WILL HAvr % f3,4& I.J ir,4, J 40 �JEQkS 13 a u� 5 / k2 rr,(: TD 6E, R-A-c r/i' „J 5LA)Ati es, ��P•ZLac)]' 8•�Z=IL04( p/r•Auw{ w«L- C3G u,�jr(7 �oi2 �OLJ1�. wfsF= 1.0 / J (o *iF PAv/Nb 15 mar PEE uJrr,,,,j to wKs or= cvmL0r-6eAoA4j C72AVCL Mu.L1H 15 To Rr u.sc_0 AjS7-rr,.g0. MARCH 1991 8-15 n FSLG,J morn,• EFFECTIVENESS CALCULATIONS PROJECT: `-ToFz�f� �uD T12D �v_�'H Fu�J6S STANDARD FORM B COMPLETED BY: P,)D DATE: Erosion Control C-Factor P-Factor Method Value Value Comment OAPF- ��Y�✓.T'�PY�----- d, OI ff , oo �.100 MAJOR PS SUB FREA BASIN (t) BASIN (Ac) CALCULATIONS 1(0, 7. AkL-H w,l� c3,✓ usr� HRa�HO�r 17, TE G- �Nr,5vJAL-E5, A -so #3atjKs� �r� j g� A�J i3A�S Diu SE- AT VA2,oeL-S Lnnoc Tion}j qco THE -Pi LjP/qTH-S. — =CI- D,o.Z5),1o0 - g0,�2 > 7lP 4 704, (,AA,z,�s 21-3a n/or ��ec�a5�00�2/�yJ/rJ% D� F=-aOway G YrL ilLc7- �� ornE s AT- ALL- ,��7-S }k��� = iO• I4— ti� ,46M = 2,0e�z- Ate= 3. I = O. 2S > 78,4% 012-, DL MARCH 1991 8.15 DESIGN CRITERIA EFFECTIVENESS CALCULATIONS PROJECT: SrDG� �. D. - f:�',",J& STANDARD FORM B COMPLETED BY: TPtA DATE: Erosion Control Method cJ F{t1,GS C-Factor P-Factor Value Value BASIN ($) BASIN (Ac) CALCULA Comment Fir 6w43 ✓V4-r- S TICNS SQ• Z 16=29 22.38 �Po2s7 e y �o,�v/tifk gut ✓,« u�Eo ci2 �2i�75 TvATQ2e D/rCCLGT (a/��Qr/', r=/Lc,*' c:r S�/Lt1 �FyJr /✓✓1utGy L1iLL GLccJ l/I$TRCl o J C�28 /�tk r5 /ice c t ��rE� y 4 F Trc2 Go JS7A a�� ��s. R✓ To �� t'L<1c �� ✓ ✓' �� ��'nn`G= LO.rI (o.o�.• 22.2%��.n`��/Z2.38' - C.oi.� MARCH 1991 8-15 DESIGN CRITERIA 7A ' Table 83 C-Factors and P-Factors for Evaluating EFF Values. Treatment C-Factor P-Factor ' BARE SOIL Packed and smooth .............................. 1.00 1.00 Freshlydisked ...................................................................... 1.00 0.90 ' Rough irregular surface........................................................... 1.00 0.90 SEDIMENT BASIN/TRAP................................................................. 1.00 0.5011 STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ 1.00 0.80 SILT FENCE BARRIER..................................................................... 1.00 0.50 ' ASPHALT/CONCRETE PAVEMENT ................................................... 0.01 1.00 ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A 1.00 SODGRASS................................................................................. 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS .................................... 0.451-1 1.00 ' HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10,31 1.00 SOIL SEALANT ............................. ............... ................ ...... ..0.01-0.601" 1.00 ' EROSION CONTROL MATS/BLANKETS............................................ 0.10 1,00 GRAVEL MULCH ' Mulch shall consist of gravel having a diameter of approximately 1/4" to 1 1/2" and applied at a rate of at least 135 tons/acre.............. 0.05 1.00 HAY OR STRAW DRY MULCH ' After Planting grass seed, apply mulch at a rate of 2 tons/acre (minimum):and adequately anchor, tack or crimp material into the soil. slope W 1 to 05... .....0.06 1.00 6 to 10....:........................................................................ 0.06 1.00 11 to 15........................................................................... 0.07 1.00 1to 20� 0.11 1.00 21 to 25 . . ...........................................................................0.14 1.00 25 to 33.............................................................................0.17 1.00 > 33.......................................................................... 0.20 .1.00 NOTE: Use of offer C Factor or P Fa, -tor values refined in this tab'e must be sub=rtti. ,ed by dxvmentadon. (1) Must be constructed as the first step in overlot grading. ' (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required. (3) ' Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. 0 1 ' MARCH 1991 8.6 DESIGN CRITERIA ' CONS TRDCTION SEQUENCE ^ROJECT:oa E u. D, - Q F(, STANDARD FOR.H C SEQUENCE 1 FOR 19. �t ONLY- COYPLETEA, BY: TPA DATE: Indicate by use of a bar line or slruols w`en erosion control measures will be installed. 'Yajcr modifications to an approved schedta a Way recuire submitting a new schedule for approval by the City Engineer. YEAR Icj�1 ¢ jj I el S ' MONTH /AAy1�,J IIA ° I ^� I �I.TI I �IMIAr I ! 'OVER_ OT GRADING----, WiXD. EROSION CONTROL soil Roughening____..._—-��— ' Perineter Barrier Additional Barriers Vegetative Y.ethods ' soil Sealant other ' rfiINFALL EROSION CONTROL, S TRUCTU'RAL : Sed sent Trap/Basin Inlet Filters ' ' Stzaia�3a.rrie—•------ .._... Silt Fence Barriers ' Sand Bags Bare Soil Preparation Contour Furrows Terracing ' Asphalt/Concrete Paving Other -&zAvCL N, uLH ' VEGETATIVZ: Permanent Seed Planting ..ulchinv_/Sealant Temporary. Seed Planting Sod Installation Nettings/Y.ats/Blankets ' Other ITRUCTURF_S: BY YAINTAIhiD BY -GETATION/YULCHING C0NTRACTOR nT3 SUBMITTED APPROVED BY CITY OF FORT COLLINS O1i ' MARCH IsS1 8.16 DESIGN CRITERIA -11 CHARTS, TABLES, & FIGURES -1 No Text 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r DRAINAGE CRITERIA MANUAL 50 30 1-- . 20 Z w U cc w Cl- 10 E�i w a OJ 5 w3 cc 3 O Z.45 U 2 F- 16 o$ o.� 5 RUNOFF 78 �=00011n�AFAIVAU5111riffm MENSmn� �riI��u:,� a� �::e!A::!:1� �rl —___..M....,._,�,,._I___...._ .1 .2 .3 .5 1 5 10 20 . l'Li�4 2•L 2. VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. *MOST FREQUENTLY OCCURRING "UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE: 'Urban Hydrology For Small Watersheds" Technical Release No. 55. USDA, SCS Jan. 1975. 5-1-84 URBAN DRAINAGE 3 FLOOD CONTROL DISTRICT 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 i 1 1 STORM DRAINAGE DESIGN AND TECHNICAL CRITERIATTABLE 3 , 3 of 3 �y STORM SEWER ENERGY LOSS COEFFICIENT (BENDS AT MANHOLES) i 1.2 t 1.0 I 0.e Bend at Manhole, I no Special Shaping I I Deflector 0.6 t Curved I 0.4 y Bend at Manhole. Curved or Deflectorl I I Manhole 0.2 I I 1 I Xo I I u zu- 4V 60° Soo goo 1000 Deflection Angle i , Degrees NOTE: Head loss applied at outlet of manhole. r ATE: FEB. 1989 REFERENCE: REV: Modern Sewer Design, AISI, Washington D.C., 1980. ACSDDTC 8-12 i '( I I 1 r 1 STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA MANHOLE AND JUNCTION LOSSES °, • -- -- o�•, PL.AN b<pwraaa - - USE EQUATION 801 ECTION NOT[: Fm Any Type of I.let. CASE I INLET OR STRAIGHT THROUGH MANHOLE ON MAIN LINE 0 \1- a.el ' I USE EQUATION 805 IJ 1 i Ones 1 PLAN ECTI N CASE m _MANHOLE ON MAIN LINg WITH 9° BRANCH LATERAL. °alto !ti °y PLAN oe SECTION TABLE 803 USE EQUATION 805 .CASE II INLET ON MAIN LINE IN PLAN USE EQUATION 801 Os r. t SECTION CASE INLET OR MANHOLE AT BEGINNING OF LINE CASE III CASE N0. m K m I 0.05 22-1/2 0:15 II 0.25 45 0.50 IV 1.25 60 0.35 90 0.25 No Lateral See Case I Date: FEB 1989 Rev: ACSDDTC REFERENCE: APWA Special Report No. 49, 1981