HomeMy WebLinkAboutDrainage Reports - 08/05/1994TINC.
Engineering Consultants
1
1
1
1
1
.1
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR
STONERIDGE P.U.D. THIRD FILING
FORT COLLINS, COLORADO
July 14, 1994
Prepared for:
Client:
The Kaplan Company
1060 Sailors Reef
Fort Collins, Colorado 80525
Prepared by:
RBD, Inc. Engineering Consultants
209 South Meldrum Street
Fort Collins, Colorado 80521
(303) 482-5922
RBD Job No. 503-005
INC.
'
Engineering Consultants
209 S. Meldrum
Fort Collins, Colorado 80521
303/482-5922
'
FAX:303/482-6368
July 14, 1994
'
Mr. Basil Harridan
Mr. Glen Schleuter
'
City of Fort Collins
Utility Services Stormwater
235 Mathews
Fort Collins, Colorado 80522
' RE: Final Drainage and Erosion Control Study
' for the Stone Ridge P.U.D. Third Filing
Dear Glen:
' We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion
Control Study for the Stoneridge P.U.D. Third Filing. All computations within this report have
been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria.
' We appreciate your time and consideration in reviewing this submittal. Please call if you have
any questions.
' Respectfully,
RBD Inc. Engineering Consultants
' Prepared by: Reviewed by: .
1
'A,7 P. McEnany, E.I.E.I.T. Kevin W. Gingery, P.E.
Project Engineer Water Resource
Project Manager
1
' Denver303/458-5526
OATINR�_ I► ►_
I.
GENERAL LOCATION AND DESCRIPTION
A. LOCATION I
B. DESCRIPTION OF PROPERTY 1
U.
DRAINAGE BASINS
A. MAJOR BASIN DESCRIPTION I
III.
DRAINAGE DESIGN CRITERIA
A. REGULATIONS 1
B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2
C. HYDROLOGICAL CRITERIA 2
D. HYDRAULIC CRITERIA 2
E. VARIANCES FROM CRITERIA 2
IV.
DRAINAGE FACILITY DESIGN
A. GENERAL CONCEPT 2
B. SPECIFIC DETAILS 3
V.
STORM WATER QUALITY
A. GENERAL CONCEPT 5
B. SPECIFIC DETAILS 5
VI.
EROSION CONTROL
A. GENERAL CONCEPT 5
VII.
CONCLUSIONS
A. COMPLIANCE WITH STANDARDS 6
B. DRAINAGE CONCEPT 6
C. STORM WATER QUALITY 6
D. EROSION CONTROL CONCEPT 6
REFERENCES 7
VICINITY MAP
1
HYDROLOGY
2
INLET & STORM DRAIN DESIGN
21
SWALE & CHANNEL DESIGN
51
RIP -RAP DESIGN
59
EROSION CONTROL
66
CHARTS, TABLES, & FIGURES
76
I
FINAL DRAINAGE AND
EROSION CONTROL STUDY
FOR
STONE RIDGE P.U.D.
THIRD FILING
. FORT COLLINS, COLORADO
GENERAL LOCATION AND DESCRIPTION
A. Location
' The Stoneridge P.U.D. development is located immediately northwest of the
' intersection of Horsetooth Road and County Road 9. The site is bounded on the
north by Pinecone P.U.D., on the west by the previous filings of Stoneridge
P.U.D., and on the south by Horsetooth Road. More specifically, the site is
' situate in the South 1/2 of the Southeast 1/4 of Section 29, Township 7 North,
Range 68 West of the 6th P.M., Larimer County, Colorado. The site is shown on
the Vicinity Map in the appendix.
B. Description of Property
' The Stoneridge P.U.D. Third Filing contains approximately 20 acres, more or less.
This area is currently undeveloped, and consists of cultivated farmland. The
existing topography is generally sloping from the west to east at approximately 0.5
percent.
III. DRAINAGE BASIN
' A. Major Basin Description
The site is located within the, Foothills Basin. The drainage area is specifically
' described in the report entitled "Foothills Basin (Basin G) Drainage Master Plan"
prepared by Resource Consultants, Inc., dated February 1981.
DRAINAGE DESIGN CRITERIA
' A. Regulations
The City of Fort Collins Drainage Design Criteria is being used for the subject
site.
B.
Development Criteria Reference and Constraints
The Foothills Basin (Basin G) Drainage Master Plan criteria and constraints
indicate that the 'Stone Ridge P.U.D. site is to contain a permanent on -site
'
detention facility in the northeast corner of the site. The permanent detention pond
is required to release no more than 33 cfs of storm water runoff during the 100-
year storm event. The detention facility is under construction at this time.
C.
Hydrological Criteria
'
The rational method was used to determine peak runoff rates from the site and
from the adjacent off -site tributary areas, specifically from the First and Second
'
Filings. The minor and major storm events utilize 2-year and 100-year City of
Fort Collins rainfall criteria, respectively. The criteria is included in the appendix.
D.
Hydraulic Criteria
'
All calculations within this study have been prepared in accordance with the City
of Fort Collins Storm Drainage Design Criteria Manual.
E.
Variances from Criteria
No variance from standard criteria is sought at this time.
'
IV. DRAINAGE
FACILITY DESIGN
IA. General Con
' The Stoneridge P.U.D. Third Filing is planned as a single family residential
housing development. The Third Filing will include two phases, with 28 lots in
Phase 1, and 30 lots in Phase 2. Storm water flows will generally be routed along
' historic drainage patterns, i.e., from the southwest toward the northeast. The
Drainage and Erosion Control Plan is included in the back pocket of this report.
1
L
Ll
2
1
B. Specific Details
'
Subbasins
Subbasins 16 through 29 consist of the residential lots and the adjacent streets.
'
Runoff is also conveyed through the site from the First and Second Filings. The
drainage from Horsetooth Road and from Blackstone Drive west of Swanstone
Drive is routed onto Swanstone Drive (including flows from the First Filing). Two
'
ponds in subbasins 27 and 30 are connected by an equalization pipe that crosses
Swanstone Drive. Additional flows from the future fourth and fifth filings of
Stoneridge P.U.D. have been accounted for in the design. Runoff from the
'
majority of the site converges at a low point in Fieldstone Drive, then flows north
in Channel 'B' to Channel 'A' along the north property boundary. Channel 'A'
flows east into an inlet structure that outlets to the Stoneridge Detention Pond
being
currently constructed.
' Storm Drain System
Where the minor storm event produces runoff in excess of the street hydraulic
capacity, a curb inlet and storm drain pipe have been placed. The storm drain
' system is located in Fieldstone Drive and in Blackstone Drive, and is sized to carry
the 2-year storm event. For curb inlets, the gutter capacity is based on a 6" drive -
over curb within the transition section adjacent to the inlet. For the concrete
sidewalk culvert, gutter capacity is based on drive -over curb and gutter. The
design of inlet openings give the flow split where carryover flow that is not
intercepted by the inlet continues in the gutter. Several of the curb inlets are on
' grade and will only intercept a portion of the runoff. The inlet scheme is
dependant upon the on -grade inlets intercepting the maximum possible runoff,
' based on acceptable calculation procedures.
The street hydraulic capacity is adequate for the 100-year storm event. The
' calculations in the appendix include capacity calculations for the three different
street sections used in this development, i.e., 28', 36', and 70' flowline to
flowline. Fieldstone Drive receives a large percent of runoff. The Fieldstone
' Drive Storm Drain was designed to convey two year design storm flows, but the
100 year runoff flows in the street as well., The concentration of flows to design
point #23 are diverted under Fieldstone Drive through Inlet #23 and an 18"
' concrete pipe for the two year storm. The conveyance in the concrete pipe and
over the street crown is sufficient to pass 100 year flows across Fieldstone Drive
within the maximum depth of 0.5 feet above the street crown. The 100 year flow
to design point #19 ponds up to elevation 4913.7 feet, spills over the sidewalk or
flows through the 30" ADS N-12 pipe that extends from Inlet #19. The back
lot easements were widened at the corners of lots 51 and 52 for drainage over the
' sidewalk from this low point in Fieldstone Drive.
1 3
I
' The Final Drainage and Erosion Control Study for Stoneridge P.U.D. Second
Filing stated that when Fieldstone Drive is continued east of Kingsley Drive, curb
' inlets would be required on each side of Fieldstone Drive. These inlets will be
installed with the Third Filing construction, and will outlet into the existing 21"
ADS N-12 pipe which was installed with the Second Filing.
' Detention
With the construction of the Third Filing, the permanent detention. pond will also
' be improved. This pond has been designed to accept flows from all of the
developed subbasins, existing and future, within the Stoneridge P.U.D. The
' temporary detention pond will be done away with when the Fourth Filing area is
overlot graded. The improvements to the permanent pond are explained in a
separate report entitled "Overall Site Detention Pond", by RBD Engineering
Consultants, which was previously approved. The detention pond is currently
under construction.
' Off -site Flows
Off -site flows from the First, Second, and future Fourth and Fifth Filings are
incorporated into the design for the Third Filing. These are the only off -site flows,
' as the adjacent developments, Dakota Ridge and Pinecone, will not contribute any
flows to the Third Filing, nor to the Stoneridge Detention Pond.
Channels & Swales
Many of the lots will drain toward the greenbelts behind the lots. Some of the
grass swales through the greenbelts will transport the collected runoff toward the
' permanent channel: on the north side of the site. Along the north property line, the
permanent channel constructed with the First and Second Filings will be continued
' through the Third Filing, through subbasins 16, 17, and on through the fourth
filing to the permanent detention pond. Where the proposed bike trail connection
crosses the channel, two 30 inch culverts will be installed for the conveyance of
' 100-year flows. The Channel 'A' section that begins 750 feet east of the northwest
property comer of this filing will slope at 3.79 % to a drop inlet. Channel velocities
will be high (approximately 7-8 fps), therefore to control erosion, a material
specified as North American Green P-300 will be placed centered in a twenty foot
wide section of the channel immediately after permanent seeding and mulching.
' On the north side of Horsetooth Road, a permanent drainage swale/landscape pond
in subbasin 27 will collect flows conveyed under Kingsley Drive by a 15" concrete
pipe from subbasin 5-1. A culvert is to be installed under Swanstone Drive to
' hydraulically connect landscape Ponds 27 and 30. An outlet pipe from Pond 27
ties to the Fieldstone Drive Storm Drain. The ponds are permanent landscape
features that will have a constant water surface elevation of 4917.5 feet. Pond 30
will receive runoff from a low point in Horsetooth Road through a 2' curb chase
' 4
[1
V.
and metal sidewalk culvert.
Horsetooth Road
As mentioned in the Overall Drainage Study for Stoneridge P.U.D., as Horsetooth
Road is extended east, the hydraulic capacity may be exceeded. In anticipation of
this, flows in the north gutter of Horsetooth Road are being diverted to Swanstone
Drive. Additional flow is diverted from Horsetooth Road east of Swanstone Drive
at Design Point 29.
-6"UT- -
A. General Concert
' Beginning in October of 1992, the water quality of storm water. runoff was
required to be addressed on all final design utility plans. The Stoneridge P.U.D.
is continuing construction in 1994. Therefore, for this study, we have sought to
' find various Best Management Practices for the treatment of storm water runoff at
this final design phase.
' B. Specific Details
The concept of storm water quality should address the treatment of the initial first
' flush runoff in a water quality pond and how the pollutants can be filtered out of
the storm water runoff. The Stoneridge Detention Pond will collect nearly all the
runoff from the site. A forebay area is planned for the west corner of the pond
where the runoff will be entering from Channel 'A' along the north boundary of
the site. This area is to have a normal water depth of one foot such that submerged
' and partially submerged plants can grow and act as a natural filter. The pond will
also be used for irrigation purposes which will circulate water and keep it from
becoming stagnant. The landscape ponds located near the Swanstone Drive
entrance to Stoneridge P.U.D. may need to be aerated for odor control. They,
too, will collect sediment from runoff.
' VI. EROSION CONTROL
A. General Concept
' The Stoneridge PU.D. Third Filing lies within the Moderate Rainfall and Wind
Erodibility Zones per the City of Fort Collins zone maps. The potential exists for
' erosion problems during construction of the Third Filing and after construction,
until the disturbed ground is revegetated.
According to the City of Fort Collins Erosion Control Reference Manual for
5
1
F
Construction Sites, erosion control performance standards were calculated.
Temporary seeding with mulch will be used for areas that are overlot graded.
Permanent seeding with mulch will follow installation of storm sewers and
swales/channels for the greenbelt areas. Gravel filters are to be placed at all curb
inlets and straw bales in -all swales and channels immediately after construction.
' VII. CONCLUSIONS
' A. Compliance with Standards
All computations within this report have been completed in compliance with the
' City of Fort Collins Storm Drainage Criteria.
B. Drainage Concept
The two year storm runoff generated within the site will be conveyed to the
permanent detention pond by a series of storm drain pipes, streets, swales, and
' channels.. The 100 year storm runoff will also be conveyed along the same general
path. Detention. will be provided by the construction of the detention pond at the
northeast corner of the Stoneridge parcel.
' C. Storm Water Quality
' Since storm water quality has become a requirement, the site will contain features
that address this storm water aspect. The Stoneridge Detention Pond and the
landscape ponds described in this report will have several attributes that increase
water quality leaving the site. Natural processed of aeration, filtration, and settling
provide for cleaner water.
' D. Erosion Control Concept
' The erosion control performance standard was calculated, and appropriate measures
have been taken to control erosion from the site according to the performance
standard as shown in the appendix. The erosion control measures are consistent
with the City of Fort Collins Erosion Control Reference Manual for Construction
Sites.
�J
I
on
REFERENCES
1.
2.
3.
4.
5.
6.
7.
Storm Drainage Design Criteria and Construction Standards, by the City of Fort
Collins, Colorado, May 1984, revised January 1992.
Erosion Control Reference Manual for Construction Sites, by the City of Fort
Collins, Colorado, January 1991.
Foothills Basin (Basin G) Drainage Master Plan, Fort Collins, Colorado, by
Resource Consultants, Inc., February 1981.
Overall Drainage Study.for Stone Ridge P.U.D., Fort Collins, Colorado, by RBD,
Inc., July 1992.
Final Drainage and Erosion Control Study for Stone Ridge P.U.D. First Filing,
Fort Collins, Colorado, by RBD, Inc., September 1992.
Final Drainage and Erosion Control Study for Stone Ridge P.U.D. Second Filing,
Fort Collins, Colorado, by RBD, Inc., June 1993.
Overall Site Detention Pond or Stone Ridge P.U.D., Fort Collins, Colorado, by
RBD Inc., March, 1994.
7
iJ
APPENDIX
'I
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
VICINITY MAP
z
us
z (n m
J t v)N2
OVJ JEi
^ � J
SQ O U O
G M z
= Z
z uj
I/i (7 r
z 0
o QM °o C
W W J Q )
0
ul
�tt z N
OJ bN 'Pa
LL
O J L
Oct U
T aka' O
J i
3i
N O River �a�",� 6pN P�1 00
{•J� O N .
W
d
cr-
W7J / ¢ i O*i wNX. atH
f saw 3 y(*@ .Z'�E>},yt�;•:
x�y+.'lei�',Yi Via• R'Ja wf ,eiJb9 C
a6` e ss c."ae �� : 3'H'8l sY.> a.-w�b •� 543�.-tiv'
e � ���'€��,.....w ""�."ie"'s' ° 4: �..� ����i �k�.'`� i��ik.�"�w�-a� Ssy's' �,p•�'' L
,..z,5�`„E?�a
�.w ;i Z>lx � ...� � �� Z• 'i0 ! n� `i�-.r spa 'H 'F .a, ^�f" £.. . "iii,si O
g£ �a•�'�i���•3,��n�'i>"rr� ��`>;Y Y.;<' � . �,�°x`a+3 �` � '��3"�`j uz'�b day
r( .� y'a+, HK..>.:� }.���n ¢ .Esv6 w G a ,a , x`i F•f%,« `aaf• � r�:s``ra `� .f�'d s�"" • [ '� z'i Fa£i'.*��. v
r+�r r>+� Lira,3 4 yxi'� ra �•^Z � xx C
� ��3r�l hh L��E3�� a �rt 7�x3,c•La�k��P �7litf xe ]t9��OV£ YS3(011,
r
sy^i'KR7 yr r"A 4 szPv a.exY e� `{`
r< x ��7.Y" 11 M xs• Ry. � t' i "Q.3^. �Fv .� T5 'X 1�.•'•`Sa H .y
D r§
�i� �:£� �: •S.',»u >-3 �� 3�xr n ,Nr r`°.w z ^`�{tf ��'w .µ£, R %�Yb aak �• 3i"C'a,F'�a a'
Y : .£ L`CP t'�f 4i fC A y ik E ff.
`. v x n� ; i; 5`n a �* `$'1q e � g>b.+. 3;S.a.x tw s✓ f ^� `K.Y ^� �M ..
e m� •n k �); qnyh "'t a3`s F S'R£ix w tes x3� LStk 'w 3'"` �i'r 11411
£s,�;,i. 4 9S'�3t td �Ta"y yh '£'� s.
"'i �3T`�. yMSM •.^%f T�•i$'': SP{�lN VS� Yl' L • � 'iiL S i �'x 'x lRie. _�L
^� n iG�p$ 9�aN i��'yiy�4\x k�c�. �7nOY •y�a•3� y.�"Xz°'Y 4',e.i �gwsL7�; �E >iiiyi U
/• +$ .3jF nd Sf�>'M �ii tl f� �l,w n Yo Y� rti�f�A:�E, e4�N i'O q �A 'wS .i .
O� ✓ i v �he7 z T �»lk���9 H��¢��3> y �'1S•• � �` t .�v �s�: n'
Cct� 3f(wr ti$% 't,.•<.�,}�.s, a .;� j��} c ��a :p s r
n � O 3 - r;y��i '�L'bs`E a7�'t 8�s'� a}� "? tf�r�ikR.ze 'i'z ✓max•, L� '^n E ><s
..
L R23 IpH 11a!��,
1 lD S � 9 1 u a�a
f���ss``%��x
00 J i,y'S. ti�N h" £f �:rEa ",.r+x' ✓ai \`
r r
Z Q I
• '�l Puo�i�n0
I
I
HYDROLOGY
11
u
Stoneridge PUD, Third Filing TPM
Kaplan Co. revised 6-16-94
This sheet calculates the composite "C" values for the Rational Method.
Design
Area
Impervious
licit
Pervious
licit
A,total
(ac.)
A,imp
(ac.)
Percent
Imperv.
Percent
Pervious
Comp.
licit
16
0.95
0.2
1.466
0.092
6.3
93.7
0.25
17
0.95
0.2
1.468
0.181
12.3
87.7
0.29
18
0.95
0.2
2.332
0.981
42.1
57.9
0.52
19
0.95
0.2
1.784
0.616
34.5
65.5
0.46
20
0.95
0.2
2.206
0.275
12.5
87.5
0.29
21
0.95
0.2
2.166
0.933
43.1
56.9
0.52
22
0.95
0.2
1.105
0.527
47.7
52.3
0.56
23
0.95
0.2
3.105
0.698
22.5
77.5
0.37
24
0.95
0.2
1.795
0.459
25.6
74.4
0.39
25
0.95
0.2
0.402
0.094
23.4
76.6
0.38
26
0.95
0.2
1.324
0.708
53.5
46.5
0.60
27
0.95
0.2
1.975
0.066
3.3
96.7
0.23
28
0.95
0.2
0.889
0.653
73.5
26.5
0.75
29
0.95
0.2
0.237
0.197
83.1
16.9
0.82
30
0.95
0.2
0.511
0.023
4.5
95.5
0.23
Total
0.95
0.2
22.8
6.503
28.6
71.4
0.41
31-4
0.95
0.2
2.960
1.558
52.6
47.4
0.59
32-4
0.95
0.2
1.801
0.57
31.6
68.4
0.44
36-4
0.95
0.2
1.291
0.203
15.7
84.3
0.32
37-4
0.95
0.2
4.352
2.03
46.6
53.4
0.55
38-4
0.95
0.2
1.596
0.101
6.3
93.7
0.25
39-4
0.95
0.2
1.379
0.179
13.0
87.0
0.30
' Note: Basins 31, 32, 36-39 are from the Fourth Filing.
STANDARD FORM SF-2
TIME OF CONCENTRATION
STONERIDGE P.U.D. THIRD FILING
2-YEAR DESIGN RUNOFF
by: TPM
March 13, 1994
revised June, 1994
Sub -Basin Data
Initial/Overland
Time, Ti
Travel Time, Tt
Final
Ti+Tt
Design
Basin
Area
ac.
C
Length
ft.
S
%
Ti
min.
Length
ft.
S
%
Vel
fps
Tt
min,
To
min.
Remarks
16
1.47
0.25
0
2
0.0
348
1
1.1
5.3
5.3
Tc is added for total contrib. area.
17
1.47
0.29
0
2
0.0
427
1
1.8
4.0
4.0
Tc is added for total contrib..area.
18
2.33
0.52
170
2
11.2
270
0.4
1.3
3.5
14.7
19
1.78
0.46
128
2
10.7
430
0.6
1.3
5.5
16.3
20
2.21
0.29
---
2
0.0
410
0.8
1.2
5.7
5.7
Te is added for total contrib. area,
21
2.17
0.52
175
2
11.4
310
0.5
1.3
4.0
15.4
Flows in N gutter, E Blackstone Dr.
22
1.11
0.56
85
2
7.4
312
10.4
1.3
4.0
11.4
23
3.11
0.37
280
2
18.1
304
0.6
1.4
3.6
21.7
24
1.80
0.39
300
2
18.3
120
0.5
1.3
1.5
19.8
25
0.40
0.38
1 2
13.8
130
0.5
1.3
1.7
15.5
Flows in N gutter, W Blackstone Dr.
26
1.32
0.60
60
2
5.7
585
0.5
1.3
7.5
13.2
W gutter flows to S inlet, Blackstone D
27
1.98
0.23
*
16.1
600
1
1.4
7.1
23.2
Perm. Pond (combine w/Pond in 30)
28
0.89
0.75
***
16.1
870
0.5
1.3
11.2
27.3
E gutter flows to S inlet, Blackstone Dr
29
0.24
0.82'
35
2
2.5
110
0.4
1.3
1.4
3.9
Flow to curb chase --use Tc=5 min.
30
0.51
0.23
Perm. Pond (combine w/Pond in 27)
31-4
2.96
0.59
180
1 2
1 10.2
310
0.6
1.4
3.7
13.8
Offsite flows to Swanstone Dr.
32-4
1.8
0.44
170
2
12.8
50
0.6
1.4
0.6
13.4
Offsite flows to Swanstone Dr.
36-4
1.29
0.32
307
2.5
18.8
0
0.5
2
0.0
18.8
Offsite flows @ Waterstone Ct.-4th filin
37-4
4.35
0.55
100
2
8.2
690
0.7
1.6
7.2
15.4
Offsite flows @ Waterstone Ct.-4th filin
38-4
1.60
0.25
170
2
16.4
225
2.5
2.4
1.6
18.0
Offsite flows to Channel 'B'
39-4
1.38
0.30
110
3
10.9
645
3
2.8
3.8
1 14.7
Offsite flows to Channel 'A'
Note: Travel time velocities were taken from
UDFCD's Figure 3-2 "Estimate of Average Flow
Velocity for use with the Rational Formula".
* Tc for subbasin 5-1 is 16.1 minutes.
** Tc for subbasin 4-1 is 13.8 minutes.
*** Tc for subbasin 6-1 is 16.1 minutes.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
,
r
•
,
�In111111111111'�Illlellllllellllllllli
.
�1011llllllllllllllllllllllllllllllll
���1�111111111111111111616111�111116
�1
I�Illllllllllll�lllllle
:111
11111
�6lIIIIIIIIIIIIII
�
eAlllllllllllllldlll
.
®01110111011111111111111111111111111
11
�Illllllllllllllllllelllllllllllllllll
�9�1111111111111111111111111111111111
�8�1111111111111111111811111111111111
�011111111111111111�11111111111�111l11
�011`e����...■�■��
111[�1
1��111
.11111
`
`
�9�1''111111111�11111
11111�111111111�
.
®1�11111.1111111.`
11111
1111111
111111
®O�I�e1111�1�e�e1e�111�e1L�l�lle11111
�0
111:111
�
1�1:IIIIIEillllllllll
:1:11
�
�0®11111111111�1116111111111111111111,
MAY 1984
5-3
y
o
}i p
3
Q
0
Z
W
0
}
Q
Z�
�C7)
W y
c�
ad
c�
w rn
W
�
N NL
W �
LL Z
QL
O �
¢�
OE
N LL
c¢
O
LL
cc
0
LL
U
a
DESIGN CRITERIA
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
u
u
6,411
01111
�
11
�
111111111111111111111111111
��61111�11�11�111111111111111111111111
�����111�1�11�19�661111111111111111111
�8��111�1�11�����'�1111111111111111111
�9@�111�1�11�1����1111111111111111111
�9���1��1�1111�1111111111111111111111
�9�9�I����C::��1111111111111111111111
�9�1�1�11�11�1�1�11111111111111111111
.
�061�1�11�11�1�1�11111111111111111111
�0�1�1�11�11�1�1�11111111111111111111
�0�1�1�11�11
I�I�illlllllllllllllllll
�C�1�1�11�11�1�1�11111111111111111111
8�0
�e
�o
�o
�I�1�16�i�ll�l�l�llllllllllllllllllll
.MAY 1984
5-3
Q
0
z
w
0
}
z
�C)
J �
Q
a.
0
LLJ
� c
c
w
w o)
0) QJ
LL Z�
CE
0 rn
cc
OE
N o
crU.
O
LL
0
U.
U
a
DESIGN CRITERIA
STANDARD FORM SF-2
TIME OF CONCENTRATION
STONERIDGE P.U.D. THIRD FILING
100-YEAR DESIGN RUNOFF
by: TPM
May 12, 1994
Sub -Basin Data
Initial/Overland
Time, Ti
Travel Time, Tt
Final
Ti+Tt
Design
Basin
Area
ac.
C
Length
ft.
S
%
Ti
min.
Length
ft.
S
%
Val
fps
Tt
min.
To
min.
Remarks
16
1.47
0.25
0
2
0.0
348
0.6
1.1
5.3
5.3
To is added for total contrib. area.
17
1.47
0.29
0
2
0.0
427
1.5
1.8
4.0
4.0
To is added for total contrib. area.
18
2.33
0.52
170
2
8.7
270
0.4
1.3
3.5
12.2
19
1.78
0.46
128
2
8.8
430
0.6
1.3
5.5
14.3
20
2.21
0.29
2
0.0
410
0.8
1.2
5.7
5.7
To is added for total contrib. area.
21
2.17
0.52
175
2
8.8
310
0.5
1.3
4.0
12.8
Flows in N. 1/2 Blackstone Dr.
22
1.11
0.56
85
2
5.5
312
0.4
1.3
4.0
9.5
23
3.11
0.37
280
2
15.8
304
0.6
1.4
3.6
19.5
24
1.80
0.39
300
2
15.7
120
0.5
1.3
1.5
17.3
25
0.40
0.38
*
2
12.4
130
0.5
1.3
1.7
14.1
Flows in N. 1/2 Blackstone Dr.
26
1.32
0.60
60
2
4.0
585
0.5
1.3
7.5
11.5
Flows in S. 1/2 Blackstone Dr.
27
1.98
0.23
"
15
600
1
1.4
7.1
22.1
Flows to Pond 27
28
0.89
0.75
•'*
2
15.5
870
0.5
1.3
11.2
27.0
Flows in S. 1/2 Blackstone Dr.
29
0.24
0.82
35
2
0.7
110
0.4
1.3
1.4
2.1
Use To = 5 min.
30
0.51
0.23
•
Perm. Pond (combine w/Pond in 27)
31-4
2.96
0.59
180
2
7.2
310
0.6
1.4
3.7
10.9
Offsite flows to Swanstone Dr.
32-4
1.80
0.44
170
2
10.6
50
0.6
1.4
0.6
11.2
Offsite flows to Swanstone Dr.
36-4
1.29
0.32
307
2.5
16.9
0
0.5
0
0.0
16.9
Offsite Flows @Waterstone Ct-4th filin
37-4
4.35
0.55
100
2
6.1
690
0.7
1.6
7.2
13.3
Offsite Flows @Waterstone Ct-4th filin
38-4
1.60
0.25
170
2
15.2
225
2.5
2.4
1.6
16.8
Offsite Flows to Channel 'B'
39-4
1.38
0.30
110
3
9.9
645
3
3.8
2.8
12.7
jOffsite flows to Channel 'A'
Note: Travel time velocities were taken from
UDFCD's Figure 3-2 'Estimate of Average Flow
Velocity for use with the Rational Formula".
* Tc for subbasin 5-1 is 15.0 minutes.
* * Tc for subbasin 4-1 is 12.4 minutes.
*** Tc for subbasin 6-1 is 15.8 minutes.
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1 •-
T
1
1
E
u
u
v
i
•
1
�Illlllli�lllllllllllllllilllllllllll
.
�'111=111�1111111111111111111
�01611111
-
�AII�IIII1111111�IC�liill�llll�lllllll�
�1116111�11111111�1111111�1111�`IAlilll�
�Ie116�L.1111111111111111111111111111111
®0011if1l�1111111111111111111111�11111
-
�11�111�1111111111911111111111111111111
�IAA�Al11o111818181818181818i11111111!,
� •
�9�@IIIIf�11111111A1111111111111111119
�1111111111111111111111111111�1111i11'
�alllllllllllllllllllllllllllllllllll
.
�9�•-
°Il�lllllllli�l�lll•�1�111�1111i1
®1�1111�111111111�1
•11111
•`11111111111
-
®01�
•�I�illllllllll�lll�illli�llllli8,
®0
�
Illllil
llli
,
.111€�1,1�111
,11111111.
�01116111�1111111�1�1�1
�
!��illlll�lll
Milo
\
I
.MAY 1984
5-3
E
Jo
z
Qus
LIJ
a�
� a
? oo
f �C)
0 W y
N � d
��
}
W
ul NL
W rn
LL Z
¢t
o
�cc
g OE
„ No
CIL Q LLL
�- O
LL
LL
0
� U
J
DESIGN CRITERIA
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1!
w
H
lis'o
le
���1,�'1'1.„■'111,1„'1"1"1"„"'111
��1'�'1'u��111�11"11'11'1"111"'11
��G�lg116111��Q��@�1111111111111111111
�6���h11�111�������1111111111111111111
�BI��IIIIIl���1111111111111111111111111
�01���111���1111111111111111111111111
�91�Q�11
61�1111111111111111111111111
�9�II�I��III�����R1111111111111111111
��9�II�IS1111������1111111111111111111
a.
�911�1111111�111�11111111111111111111
o:=:m�11111111111111111111
�9�1��l�11�1�1�1�1�111111111111111111
.
�9�1��1�11�1�1�1�1�111111111111111111
�0�1��1�II�I�I�I�Ii11111111111111111
cc
�E�1��1�11�1�1�1�1111111111111111111
0�1ll1l11l1l1l1�11111111111111111111
8�0
moo,
�0
���I���II�III�I�I��IIIIIIIIIIIIIIII
MAY 1984
5-3
H
Q
Z
W
0
}
Z �
¢�
a�
v
gc
u c
�w
C
uY N L
j U.; 7
Z0
¢t
0
c�
OE
N�
CLL
cc
LL
J
U
a
r
DESIGN CRITERIA
No Text
No Text
is
to It.
7! %
sdi
40010A
N
$13
U54
400ifA
u 5�60
I
[in
14- 11
Q +
LLJ
02
cc
Lu
cr:
rn
V
-=ojy
cr
ra
CL
LU
�*Unkf
1000
LU
IP
z
pt.. tntyo
'I
C?
in
V)
cr
cc
t.
In -
Ln
o
=mmiliiii
®il'i'l
fn
q!
• � u ;�oN E 1Z i DG�E : ii
zj
t
3:
1
IY
1
1
=-
1
-
1
�BIIIIIIIIIIIIIIIIIIIIA1611�111111111�
BIIIIIIIIIIIIIIIII��I�I�AI�IIIIIIIIII�
�IIIIIIIIIIIIIIIIIA�1�1��1�1�1111111�
9i111111111Allllll�ald(l��IAllllllllll�
BIIIIIIIIIIIIIIIII��1����1�1111111111�
611111111111i11111��1���1�111111111�
811111111111111A11��11���A�1�1111111�'
��811111�11111111111��1����1�1�1111111�'
�811111�IIIIIIIIIII�IOIIIAA�IIi111111A�
01�11��1�11�11�111���1�111�1�1�1�1�11�
8111i1�1111111111111i1111Y1YI111i11Y1
811111�1111111111111111111111111011
_
81�11���1�11�111�1�1�11111�I��f1
=109�II��II�I��Ili��1�1�11111�1�1�11
��oi101�1�11l.��Il��illlllllll�l�llll
�I
IIIIIf�li�11��11V��1111111�►�1�1111
�Illllllll��lli��l�illll�l�
1111
�OIIII�II�li�11�111�i1�1�111I1��1111
�0161111�i1�l1�
Il��l�i�fllll���l�ll
G
DESIGN CRITERIA
�Y.,
k
UP
LL
cl:
0
LL
i
1
I
z
0
CO
ca
D
to
44
C3
2"4'FiL, i t4or Z= 12,
tj
I
LLJ
cr-
Z.4,u
.-j
0
LO U
z
JT
0
.4 Lo
0 m
u CL4
VII
CL
w a.
> u-
za
CL
0
oc
-1 0,co
Id
0-
0
.,6
z
1)
g
LU
�o
06
cr-
>3�
�G
9" to
ol
LU
V)
z
z
a3
<
LU
1
co
Z3
zo
N
Z
O
IL
LL
f -
c
.W
CC,
v-
o
CC
O
LL
Z.
W
. U
0
i
p-_
cr.
z
N_
F
C)ffl
p
LL
1
0
�¢.
w
,.
F..
o
0
N
of
>
Lu
Q
J
8
�
m
U
U
13.
n—r� Fl LI 61
.V)
d
d
d
of
d
ty
d
_
N
d
Q
W
9
9
8
s
8
88
8$
8
a
Nl
0
a0
u
u
u
a 0
01
01
0.
Q
a
UJ
..._o
Iro
y
LA
°lIco
LI
CL
V)
0
da
D
to
10
01
07
0
-
r
N
—
J
�
o_,
>�
W
9,
0
4
0
a
0
00
0
0
Q
oW
�° `"
N
N
N
N
N
N
N
N
N
N
N
fit=
Z
LLLL.
w ..
N
N
0
Q
n
r
au
0
d
$
Qa'
M
N
d
f;
ND
N
z
U
o
6
mQaN
_
1Ni
i
I
N-d
o
sve
T
W:
LA
471 Ll�
Nn
a
.11
sl* ;;ounm
uoll owwnsulll�l����l�
I�
�II
�I�
1
1
1
1
1
1
1
1
i
i
1
1
1
1
1
1
1
I�BIII�1�111111�11111�1�1�11111111111
�8111@I�111181�1�111�1�@I@I
11111111
•
I
0
1
Calculations for
Curb Capacities and
velocities
'
Major end Minor
City of Fort
Storrs
Collins
Storm Drainage Design
Criteria
per
RESIDENTIAL with
drive over curb and gutter
Prepared by: R6D, Inc.
0 is for
one side of the
road only
February
23, 1992
'
V is based on theoretical
capacities
Area = 2.63
sq.ft.
Area a 20.11
sq.ft.
'
Minor
Storm
Major
Storm
Slope
Red..
Minor
C
V .
Major .
a
V
(X) :Factor
X
(cfs)
(fp<.)
X .
(cfs)
(fps)
D.40
0.50-:
65.71
2.74
2.C'9 :
E96.7S :
22.03
2.19
0.50 :
0.65
.&S.71
3.99.
2.33 :
696.73 :
32.02 :
2.45 :
0.60 :
0.80
66.71
5.37 :
MS
696.73 :
43.17 :
2.68 :
'
0.70 :
0.80
65.71
5.80
2.76 :
696.73 :
45.63
2.90 :
D.60 :
0.60 :
66.71
:• 6.20 :
2.95
696.73 :
49.ES
3.10 :
'
0.90 :
1.00 :
0.80.:
0.ED :
65.71
66.71
6.58
6.94
3.13 :.
3.10.:
696.73 :
696.73 :
52.88':
55.74
3.29 :
3.46 :
1.2S :
0.ED :
65.71
7.76 :
3.69 :
696.73 :
62.32 :
3.E7 :
1.50 :
0.80 :
86.71
8.50
4.04 :
696.73 :
68.27 :
4.24•:
'
1.75 .
0.80 :
66.71
9.18
4.36 :
676.73 :
3.73 ;
4.58
2.00 :
0.60 :
66.71
9.81
4.65
696.73 :
78.E3
4.90
2.25 :
0.78 :
66.71
10.1S
4.55 :
696.73
E1.52
5.20
2.50 :.
0.76 :
66.71
10.42 :
5.21 :
696.73 :
E3.72
5.48
'
2.75 :
0.74 :
85.71
1D.6.4
5.47 :
696.73
E5.50
5.75
3.00 :
0.72 :
85.71
10.81.:
5.71 :
696.73
66.29 :
6.00
3.25 :
0.69 :
66.71
10:79 s
5.94 :
E96.73
65.67 :
6.25 .
3.50 :
0.66 :
E6.71
10.71
6.17 :
696.73
U.03
6.48
3.75 :
0.63 :
65.71
• 10.56 :
6.18 :
696.73
E5.00 :
.6.71
4.00 :
0.60 :
66.71
i0.41 :
6.57 :
696.73
E3.61
6.93
4.25 .
0.58
65.71
. 10.37 :
6.13 :
696.73
E3.31
7.14 '
4.50 :
0.54 •
55.71
: 9.93 :
6.97 :
696.73 •
79.81
7.35
4.75 :
0.52 :
65.71
. 9.83 :
7.19 :
676.73 :
78.96
7.55
5.00 :
0.49 :
65.71
: 9.50 :
7.37 :
696.73 :
76.34
7.i"5
'
5.25 :
0.46 :
66.71
: 9.14 :
7.55 :
696.73 :
73.43
7.94
5.50 :
0.44 :
86.71
. 8.95
7.r3 :
696.73 :
71.E9 :
8.13 .
5.73 .
0.42 .
8.5.71
. 8.73
7.91 .
696.73 .
70.17 :
8.31
6.00 :
0.40 .
65.71
. 8.50
8.C8 :
696.73 .
63.27 :
8.49 .
'
CLIENT S_''T`� �%_
LNC PROJECT
-T` "21JtS d0EN0.
CALCULATIONS FOPc,\L31 i ?_ i=�
Engineering Consultants MADE BY S1 DATE 2-5Z
CHECKED EY DATE SHERD —OF 7
r if
T~=Z-
Ll
F�
. -_ __-i------ ^ 7- --- -_
T.�.�.71f.1.I_.�i_.]"'Jr7"4�•-r. ��L�J �..i��vCJi�J�-.l�.i li•��-_.�-.
_.CL+3�.'--•-•-----
_ __ __ -. _ _- __ I_%� �>=?Ti-L L`i=_FiL'�.�.1- �� +,=d•C_a . OF G^U7i=�.�.- T'�: .-._ _.
s nl
03`}+_-' -- - - - -- --- - - ---.-
a
1- - - . --- - •----•--•--'---
2.b3_—Z
-�3 — f- _ - -- ----- - — - — -- /z - -
17
1
v
I
[J
1
0
0
CLIENT C ' J^4 c�i-- l +^! t -"QS JOB N0.
PROJECT CALCULATIONS FOP.C�A T—P1-..-'Aj
Engineering Consultants WADE EY DATECHECKED EY DATE SHEET Z OF Z
-J_- - 1 J.. ,
'ls�-t-Z_fir'-�_CL�.i'^CJTIe-S_-:-',-----
�.: -t '�I� L:T-��-lL%11�_:_...,_- •��.-- --T=4 ' jVl-JUC
___..__
Nit
•---___._._:__ -_=- -- _-�-_--____�_=�.4 _- Viz: -- -�-�-g��_•�:_:�..: .....__..---- `
77
1
1 '
' .� •---S�TIS_. lS.d7 ram_ .�V �Z. F .. _ . _ .. . - !.:'-
1 tJ:ap'�:... %r . U o1=. -. � C•��•i•'_ L.1..%dit=�! ci%3 -
T�Goo. Sp,
,
Cl�zx1: ;c .So : ICr�•Oo 45.1?-Z3.iZ l
7-B;9 1.4z� r l:a x .sue=�9.�4JJJ
t:Oy, j
]•7:r73.1,1. 0.035.
- - - - - - _ J-
- _
_
I _Ail
-1 -
i i . -� I 1 _i_ n�
—'� •I •�=
•"T i i- � � i �.�� 7`-j i ?-l- T'� I �
11 I 1 Lam• i_i_
i__!! _,--{ ___i r--; i i .LL1
17 i-1 i
T� ,
1 1 L:_r:
! � Vic_.= T ��� , _=i 3 �_ : _ :: r i : _?_!_ •T � � � �_
_� �-_.� , _'
_7'
1 I r•-1 ! i 1:
-� '�- t 7 I , �{-. , _, _ : +.l- 1 ! ; 3 ! -_� 1 i !
-_ _-�__ •- -
S.
INC
' Engineering Consultants
CUEHY CI'-rq oc T=;mz7- n r'r , ,UL JOB NO.
PROJECT CALCUTATIOHSFORUMZ RCuj
N.ADEBY_a�_,DATEZ'z CHECKED BY - DATE SHEET I OF .Z-
_In
. ��.5 I D E�JT_►.d.C--1.__.__ lam/ :_�2�v =_ ov �=�J Za ;yyr_ r'�2_- ,-s ,a �va�._-__
?.�. - � Jam.--'•---';- •' • T _
l_i..oulJl�,g_.ST'2EET_G1.iP�USLE.S:.�_...i�:_�-__--•----.._--�--_'_-��i�
i ; .1-1 . .� .+ ._.. -_ - - _-`�-� �a 2.�.T1•C� _.C� uTI"1= � _�.iit�.-dCJ3"f_ G-nr•'S. - - -
77
' _.._'.:_.:..:...: _;-._..__.�:._>S��i=aT�1_Cr==:_.E`tixil_�-_�dc^—oF�C-�7ri'�.i=•�C-f_�:�:_- _'--1
z�uvuhlcsS�1r��:u5.0.oiC��-
1 ; - - --
_ _
_ 77
.L�11-�,.SJ.�aE_E; Rau.J.T,�__"r��,_o>=;.._c:u'>✓S _� 0 39'I '
----J
yn
- ..._..,
.j-
.._..._- _ _ __ _ ! ' u _ =_ Ca,T�7.i�1:. _�z� • _ b_'.+1_C � ' ri---=^•-=-- ----•t 1-,• � :..; ----- -- -
c' :G_o-
11
colz._:o..SC��•//-' 1•oF�0._ �'Z.6:T8%s � I =�.:� .2:45?�i_ _�- -' ' _'-' ' •----'
L_ _—
J.
i--- i
I I113
! : 1 1 I �S i i ;•_:� 1, i I 1 4_1_ °—ls i_ Jam_' I
:--
' . CT�_ _1 O •.Sfo . _ 3.is'31-: O 39}— $,i ! i - ' '.1 �.'.3Z:..! �_;_i �-1 __.._ � .i.L� � -- - t ' _J..
'•(/./ O ....
I_._C�,1. , 1 I r 1 i 1! I 1' 1 t � j ^•._ 7 1 iI �• 1 i - i-4_\'_O•._.—i _ _T— �..si1._.1 _�y_.� �. _._l.__i—�.J.�t�_
' I tS 1
�i-1 1 1 1 1 1 ! � ! S 1 1� ! � •--1" _1 t j : -' I' t �—' , �;-1-j+� i
' CLIENT ` '�� n� 1=&?.7 C 'nt I 1�r JOH NO.
LNG PROJECT CALCULATIONSFOR�•1r
Engineering Consultants MADE SYJaO, DATE Jc•CJ�7 CHECKED 6Y DATE SHEET Z. OF Z
' t-csl>_r=tines
;_ �l.1.L�1J�Z�l:E•--`S'.Ti..���c-T'—�_CdP�CJ III_�—_:'::-1-----'-------•'----•r-�-- -�-}-.�:_-----
_ 4lo-.4•� -'c-1o)_Wdy---- 2Qj
r.: ..--- - - ---• --j-__1.alyoz...5ror=�..t'_ 1._____---=_--�-�'_
_,_ C4 q-
F-I
1---...:_.4. =Qo :per-Q - �= -- ---=-'---- -,
i
. C.-oLi.iN: S1-•abll �.loT_. Ex:cB-_.�.._-C-�I� _. =r.. U�� �rl-'1�++•�_U1�T'1=�; i-h.:lE-: 1Oo.Si
AREA = /2 (20.00 a40 00
' -1- (0.40'. + 0.412/) C 3.'(59
+ rz (0.4-e' + 0.S7/) (I.42') = 0. 9G
' i- %y (0. t37'+ 0.76p) ( I. 17') = 0,96
4-
19:-�?.�o:o'ic>:-
1
1
1
1.
.40
1
> _ J./1diJT�11.J11'_S'_.��(
}I I• ' 1 , : :- �z� t .� ..L:..:._j'i1 �-- } i �1--=1 JZ.
L_ L-_C,1: Iv1�.J0 •�i. '�----77�'_.
1
• 1 I 1 } ;��-�j .-j T��I-.-'���y.��i.� . 4LJOi-� �-� 1_- ; �.1 I 1
, 1 , : 1
---
�' HT
-
- :_ _' 1 1 ii • : : : 1 } � : t '_I I�-+t-1 1 1 _�_+�_+_: ! r I i 1 ! , 1 : :
'•I -1._ i_i-
T_
? 1 7- I-i :
_ .__i_t.L�..
1-•�.
_ : : 1..,
_ 1•: 1 1 } : 1 1 1_: ;I 1 : : 1
1 :+ t l l 1 1• 1,: ••1 + i�-1 1 1} I ,} �_ 1 I } 1 i 1 1 } 1 1 1• I
1 1'
_}
•
,.1. }•�_TT , i f... 1 �I
__- _
I
21 .
0
INLET DESIGN
STORM DRAIN DESIGN
1
1
1
t
------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
--SUPPORTED-BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------ ----- -------- ----------------------------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ..............................
ON DATE 06-20-1994 AT TIME 09:41:31
'*** PROJECT TITLE: Stoneridge III
' *** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 14- 25
' INLET HYDRAULICS: ON A GRADE. _J /�rOoe �jT 2 M
' GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 10.00
REQUIRED CURB OPENING LENGTH (ft)= 12.25
' IDEAL CURB OPENNING EFFICIENCY = 0.95
ACTURAL CURB OPENNING EFFICIENCY = 0.88
'
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE
($) =
0.50
STREET CROSS SLOPE
M =
2.00
'
STREET MANNING N
=
0.016
GUTTER DEPRESSION
(inch)=
1.38
GUTTER WIDTH
(ft) =
1.17
'
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET
GUTTER FLOW DEPTH
(ft) =
(ft) =
11.97
0.35
FLOW VELOCITY ON STREET
(fps)=
2.08
FLOW CROSS SECTION AREA
(sq ft)=
1.54
GRATE CLOGGING FACTOR
M =
50.00
CURB OPENNING CLOGGING
FACTOR(%)=
15.00
INLET INTERCEPTION CAPACITY:
'
IDEAL INTERCEPTION CAPACITY
(cfs)=
3.03
BY FAA HEC-12 METHOD:
DESIGN FLOW
(cfs)=
3.18 &1z
FLOW INTERCEPTED
(cfs) =
2.80
'
CARRY-OVER
FLOW (cfs)=
0.38 a}�
BY DENVER UDFCD METHOD:
DESIGN FLOW
(cfs)=
3.18
FLOW INTERCEPTED
(cfs)=
2.58
'
CARRY-OVER
FLOW (cfs)=
0.60
1
-------------------------------------------------------------=----------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U.OF COLORADO AT DENVER
--------SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-----------------------------------------------------
SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ..............................
ON DATE 06-22-1994 AT TIME 12:47:00
'*** PROJECT TITLE: Stoneridge III �^ �
*** CURB OPENING INLET HYDRAULICS AND SIZING: M /
grok %702m
INLET ID NUMBER: 25
' INLET HYDRAULICS: ON A GRADE.
' GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 10.00
REQUIRED CURB OPENING LENGTH (ft)= 24.81
' IDEAL CURB OPENNING EFFICIENCY = 0.60
ACTURAL CURB OPENNING EFFICIENCY = 0.53
'
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE
(%) =
0.50
STREET CROSS SLOPE
M
2.00
'
STREET MANNING N
0.016
GUTTER DEPRESSION
(inch)=
1.38
GUTTER WIDTH
(ft) =
1.17
'
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET
GUTTER FLOW DEPTH
(ft) =
(ft) =
19.66
0.51
FLOW VELOCITY ON STREET
(fps)=
2.74
FLOW CROSS SECTION AREA
(sq ft)=
3.97
'
GRATE CLOGGING FACTOR
(%)=
50.00
CURB OPENNING CLOGGING
FACTOR(%)=
15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY
(cfs)=
6.58
BY FAA HEC-12 METHOD:
DESIGN FLOW
(cfs)=
10.87
FLOW INTERCEPTED
(cfs)=
5.76
'
CARRY-OVER
FLOW (cfs)=
5.11
BY DENVER UDFCD METHOD:
DESIGN FLOW
(cfs)=
10.87
FLOW INTERCEPTED
(cfs)=
5.59
CARRY-OVER
FLOW (cfs)=
5.28
1
' 2 3,
------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
--SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----------------------------------I---------------------------
SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 04-14-1994 AT TIME 08:22:50 �7
'*** PROJECT TITLE: Stoneridge III 1'2• Z�
*** CURB OPENING INLET HYDRAULICS AND SIZING: �/L �No2oeM
INLET ID NUMBER: 26
'
INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
10.00
HEIGHT OF CURB OPENING (in)=
6.00
INCLINED THROAT ANGLE (degree)=
63.40
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.00
Note: The sump depth is additional
depth to flow depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
0.50
STREET CROSS SLOPE M =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.38
'
GUTTER WIDTH (ft) =
1..17
'
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
14.50
GUTTER FLOW DEPTH (ft) =
0.40
'
FLOW VELOCITY ON STREET (fps)=
2.30
FLOW CROSS SECTION AREA (sq ft)=
2.21
GRATE CLOGGING FACTOR M =
50.00
'
CURB OPENNING CLOGGING FACTOR(%)=
15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
8.05
'
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)= 5.10 0-2
FTAW TNTERCEPTED (Cfs) = 5 _ 1 0 l0,;
CARRY-OVER FLOW (cfs)= 0.00
' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.10
FLOW INTERCEPTED (cfs)= 5.10
CARRY-OVER FLOW (cfs)= 0.00
i Z
------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-----------------------------------------------------------------------
USER: KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 05-16-1994 AT TIME 17:26:40
*** PROJECT TITLE: Stoneridge III C. 2%
*** CURB OPENING INLET HYDRAULICS AND SIZING: M A,Toa- SToe__jt1
IINLET
ID NUMBER:
26
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
10.00
HEIGHT OF CURB OPENING (in)=
6.00
INCLINED THROAT ANGLE (degree)=
63.40
I
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.00
Note: The sump depth is additional depth to flow
depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE ($) =
0.50
STREET CROSS SLOPE M =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.38
GUTTER WIDTH (ft) =
1.17
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
24.06
GUTTER FLOW DEPTH (ft) =
0.60
FLOW VELOCITY ON STREET (fps)=
3.10
FLOW CROSS SECTION AREA (sq ft)=
5.90
GRATE CLOGGING FACTOR M =
50.00
CURB OPENNING CLOGGING FACTOR(%)=
15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
14.39
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
18.13 Qiop
FLOW INTERCEPTED (cfs)=
12.80
CARRY-OVER
FLOW (cfs)=
5.33
BY DENVER UDFCD METHOD:-DES3GN_�L�OW (cfs)=
FLOW INTERC
12.23
FLOW (cfs)=
1-9-Q
1
i
1
------------------------------------------------------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
---------------------------------------------=---------------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 06-24-1994 AT TIME 12:07:54
t*** PROJECT TITLE: Stoneridge III
1
1
fl
1
1
1
u
1
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 21
INLET HYDRAULICS: ON A GRADE. /Aw 5/00A
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)= 10.00
REQUIRED CURB OPENING LENGTH (ft)= 9.98
IDEAL CURB OPENNING EFFICIENCY = 1.00
ACTURAL CURB OPENNING EFFICIENCY = 0.97
STREET GEOMETRIES:
STREET
LONGITUDINAL
SLOPE (%) =
0.50
STREET
CROSS SLOPE
(%) =
2.00
STREET
MANNING N
=
0.016
GUTTER
DEPRESSION
(inch)=
1.38
GUTTER
WIDTH
(ft) =
1.17
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) = 10.28
GUTTER FLOW DEPTH (ft) = 0.3%44
FLOW VELOCITY ON STREET (fps)= 1.94
FLOW CROSS SECTION AREA (sq ft)= 1.16
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 15.00
INLET INTERCEPTION CAPACITY: 7
IDEAL INTERCEPTION CAPACITY (cfs)= 2.15
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
2 .i5 Qz' Z•75 ��s
t'-6:7
X.2
1. 1
3
1
------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-----------------------------------------=----------------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 06-24-1994 AT TIME 12:11:31
t*** PROJECT TITLE: Stoneridge III
*** CURB OPENING INLET HYDRAULICS AND SIZING:
1 INLET ID NUMBER: 21
1
l _1
I
11
1
1
1
INLET HYDRAULICS: ON A GRADE. /VlAJO2 l7/uIZM
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
REQUIRED CURB OPENING LENGTH (ft)=
IDEAL CURB OPENNING EFFICIENCY =
ACTURAL CURB OPENNING EFFICIENCY =
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
STREET CROSS SLOPE (%) =
STREET MANNING N =
GUTTER DEPRESSION (inch)=
GUTTER WIDTH (ft) =
STREET FLOW HYDRAULICS:
10.00
28.56
0.54
0.47
0.50
2.00
0.016
1.38
1.17
WATER SPREAD ON STREET (ft) = 21.63
GUTTER FLOW DEPTH (ft) = 0.55
FLOW VELOCITY ON STREET (fps)= 2.91
FLOW CROSS SECTION AREA (sq ft)= 4.78
GRATE CLOGGING FACTOR (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 7.57
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= Q51'= 14.02
FLOW INTERCEPTED (Cfs)= 6.60
CARRY-OVER FLOW (Cfs)= 7.42
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 14.02
FLOW INTERCEPTED (Cfs)= 6.43
CARRY-OVER FLOW (Cfs)= 7.59
1
1 27
------------------------------------------------------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
U----------------------------------------------------------------------------
SER: KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 06-20-1994 AT TIME 14:05:16
'*** PROJECT TITLE: Stoneridge III
*** CURB OPENING INLET HYDRAULICS AND SIZING: lVkl✓r7r
INLET ID NUMBER: 31
'
INLET HYDRAULICS: ON A GRADE.
GIVEN. INLET DESIGN INFORMATION:
'
GIVEN CURB OPENING LENGTH (ft)=
1.5.00
REQUIRED CURB OPENING LENGTH (ft)=
14.48
IDEAL CURB OPENNING EFFICIENCY =
1.00
'
ACTURAL CURB OPENNING EFFICIENCY =
0.99
STREET GEOMETRIES:
-
STREET LONGITUDINAL SLOPE (%) -
0.40
STREET CROSS SLOPE (%) =
2.00
'
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.38
GUTTER WIDTH (ft) =
1.17
'
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
14.59
'
GUTTER FLOW DEPTH (ft) =
0.41
FLOW VELOCITY ON STREET (fps)=
2.07
FLOW CROSS SECTION AREA (sq ft)=
2.24
GRATE CLOGGING FACTOR (%)=
50.00
'
CURB OPENNING CLOGGING FACTOR(%)=
10.00
' INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 4.62
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= Q2= 4.62
FLOW INTERCEPTED (cfs)= gv nc%4.58
' CARRY-OVER FLOW (cfs)=214� =0.04
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 4.62
FLOW INTERCEPTED (cfs)= 4.16
' CARRY-OVER FLOW (cfs)= 0.46
28
-----------------------------=------------------------------------------------
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
----------------------------------------------------------------------------
SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 06-22-1994 AT TIME 13:08:39
'*** PROJECT TITLE: Stoneridge III
*** CURB OPENING INLET HYDRAULICS AND SIZING: AA J _�em-
INLETLET ID NUMBER: 31
L
1-7
L
11
1
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
REQUIRED CURB OPENING LENGTH (ft)=
IDEAL CURB OPENNING EFFICIENCY =
ACTURAL CURB OPENNING EFFICIENCY =
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
STREET CROSS SLOPE (%) =
STREET MANNING N =
GUTTER DEPRESSION (inch)=
GUTTER WIDTH (ft) =
STREET FLOW HYDRAULICS:
15.00
32.81
0.67
0.61
0.40
2.00
0.016
1.38
1.17
WATER SPREAD ON STREET (ft) = 25.94
GUTTER FLOW DEPTH (ft) = 0.63
FLOW VELOCITY ON STREET (fps)= 2.91
FLOW CROSS SECTION AREA (sq ft)= 6.83
GRATE CLOGGING FACTOR, (%)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 10.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 13.21
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)19.80
FLOW INTERCEPTED (cfs)= 12.18
-UARRY-OVER FLOW (cfs)= 7.62
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 19.80
FLOW INTERCEPTED (cfs)= 11.89
CARRY-OVER FLOW (cfs)= 7.91
'-------------------------------------------------------------------------- ?9 -
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
------- ------------ ---- ---- -------- ---------------------------------------
-
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 04-20-1994 AT TIME 16:57:51
*** PROJECT TITLE: STONERIDGE III _ �• �_ 23
' *** CURB OPENING INLET HYDRAULICS AND SIZING:���1Q row
INLET ID NUMBER: 23
'
INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
5.00
HEIGHT OF CURB OPENING (in)=
6.00
'
INCLINED THROAT ANGLE (degree)=
90.00
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.02
'
Note: The sump depth is additional depth to flow
depth.
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE ($) =
0.40
STREET CROSS SLOPE M =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.38
'
GUTTER WIDTH (ft) =
1.17
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
14.50
GUTTER FLOW DEPTH (ft) =
0.40
'
FLOW VELOCITY ON STREET (fps)=
2.06
FLOW CROSS SECTION AREA (sq ft)=
2.21
GRATE CLOGGING FACTOR ($)=
50.00
'
CURB OPENNING CLOGGING FACTOR(%)=
20.00
INLET INTERCEPTION CAPACITY:
'
IDEAL INTERCEPTION CAPACITY (cfs)= 5.40
BY FAA HEC-12 METHOD: DESIGN FLOW (sf� =
4 ._53 2
FLOW INTERCEPTED (cfs)=
4.53
CARRY-OVER
FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
4.53
FLOW INTERCEPTED (cfs)=
4.32
CARRY-OVER
FLOW (cfs)=
'
* Ae gt rP
I
w.z. ", " f �or.J l
L/0.21
n L ,/e �eiL S
1
'---------------------------------------------------------------------------'2°
' UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
U-------------------=--------------------------=----------------------------
SER: KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 05-16-1994 AT TIME 17:35:33
*** PROJECT TITLE: Stoneridge III 2 P. 23__,_______
*** CURB OPENING INLET HYDRAULICS AND SIZING: MAro_2__�TofZJ'�—_
INLET ID NUMBER: 23
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
'
GIVEN CURB OPENING LENGTH (ft)=
5.00
HEIGHT OF CURB OPENING (in)=
6.00
INCLINED THROAT ANGLE (degree)=
63.40
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.00
'
Note: The sump depth is additional
depth to flow
depth.
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE ($) =
0.40
STREET CROSS SLOPE ($) =
2.00
STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)=
1.38
'
GUTTER WIDTH (ft) =
1.17
'
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
39.81
GUTTER FLOW DEPTH (ft) =
0.91
FLOW VELOCITY ON STREET (fps)=
3.83
'
FLOW CROSS SECTION AREA (sq ft)=
15.96
GRATE CLOGGING FACTOR ($)=
50.00
CURB OPENNING CLOGGING FACTOR($)=
20.00
5
INLET INTERCEPTION CAPACITY:
L
r-,H
IDEAL INTERCEPTION CAPACITY (cfs)=
11.14
'
BY FAA HEC-12 METHOD: DESIGN FLOW
cfs =
6 L�
FLOW INTERCEPTED (cfs)=
28.�o5S
CARRY-OVER FLOW (cfs)=
52.36
BY DENVER UDFCD METHOD: DRS3GN-LOW_
(cfs)=B
'
FLOW INTER EDP { =
8.92
_CARR*-OVE FLOW
(cfs)=
52,3A_
4
' /J1GtX/vYturN Aok) 1'
G✓off - c.✓ow✓j {lor,J Gc/(ou�S `7%• �i % G75 , 7 S �s
�i
------------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-----------------------------------------------------------------------------
USER: KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 05-25-1994 AT TIME 04:20:46
' *** PROJECT TITLE: Stoneridge III
*** CURB OPENING INLET HYDRAULICS AND SIZING: Minla2 ifoiUl
' INLET ID NUMBER: 19
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
' GIVEN CURB OPENING LENGTH (ft)= 10.00
HEIGHT OF CURB OPENING (in)= 6.00
' INCLINED THROAT ANGLE (degree)= 63.40
LATERAL WIDTH OF DEPRESSION (ft)= 2.00
SUMP DEPTH (ft)= 0.00
.Note: The sump depth is additional depth to flow depth.
STREET GEOMETRIES:
' STREET LONGITUDINAL SLOPE (%) = 0.40
STREET CROSS SLOPE ($) = 2.00
STREET MANNING N = 0.016
GUTTER DEPRESSION (inch)= 1.38
GUTTER WIDTH (ft) = 1.17
STREET FLOW HYDRAULICS:
' WATER SPREAD ON STREET (ft) = 15.16
GUTTER FLOW DEPTH (ft) = 0.42
' FLOW VELOCITY ON STREET (fps)= 2.11
FLOW CROSS SECTION AREA (sq ft)= 2.40
GRATE CLOGGING FACTOR M = 50.00
CURB OPENNING CLOGGING FACTOR(%)= 15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 8.44
' BY FAA HEC-12 METHOD: DER GN_ELOW (cfs.)= 5.05 QZ
FLOW INTERCEPTED cfs)= 5.05
CARRY-OVER FLOW (cfs)= 0.00
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 5.05
FLOW INTERCEPTED (cfs)= 5.05
CARRY-OVER FLOW (cfs)= 0.00
I
3Z
----------------------------------------------------------=-------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COL0RADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
'--------------------------------------------------------------------------
USER:KEVIN GINGERY-RDB INC'FT. COLLINS COLORADO.................... ..... .
ON DATE 05-16-1994 AT TIME 17:38:55
' *** PROJECT TITLE: Stoneridge III 12, P, I`�__.____
*** CURB OPENING INLET HYDRAULICS AND SIZING: AA 2 r2 S"rn►Z/'�
' INLET ID NUMBER: 19
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
HEIGHT OF CURB OPENING (in)=
.10.00
6.00
INCLINED THROAT ANGLE (degree)=
63.40
'
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.00
'
Note: The sump depth is additional
depth to flow depth.
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE (%) =
0.40
STREET CROSS SLOPE M =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.38
GUTTER WIDTH (ft) =
1.17
H
1
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft).= 32.69
GUTTER FLOW DEPTH (ft) = 0.77
FLOW VELOCITY ON STREET (fps)= 3.37
FLOW CROSS SECTION AREA (sq ft)= 10.79
GRATE CLOGGING FACTOR M = 50.00
CURB OPENNING CLOGGING FACTOR(%)= 15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 19.84
BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
CARRY-OVER FLOW (cfs)=
aloe f'' r� I5 �S�sGcvYl ZGI %
/ � � o ✓�i'��oliJ wL1Gre �Gl�
11
Qsrr.Fr:r
=
- Z9.I
= 53.
27�fs
Q 14ef =
41. f -
M 7 �
14 c-FS
f g •
I as :. o�
'-------------------------------- ------------------------------------------- 3
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
---------------------------------------------------------------------------
' USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 05-18-1994 AT TIME 04:11:32
' *** PROJECT TITLE: Stoneridge III
*** CURB OPENING INLET HYDRAULICS AND SIZING: Alsp�_�To2N\_
'
INLET ID NUMBER: 9-I
'
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
10.00
REQUIRED CURB OPENING LENGTH (ft)=
13.89
IDEAL CURB OPENNING EFFICIENCY =
0.90
'
ACTURAL CURB OPENNING EFFICIENCY =
0.82
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE ($) =
0.55
STREET CROSS SLOPE M =
2.00
STREET MANNING N =
0.016
'
GUTTER DEPRESSION (inch)=
1.38
GUTTER WIDTH (ft) =
1.17
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
12.63
'
GUTTER FLOW DEPTH (ft) =
0.37
FLOW VELOCITY ON STREET (fps)=
2.24
FLOW CROSS SECTION AREA (sq ft)=
1.70
GRATE CLOGGING FACTOR M =
50.00
'
CURB OPENNING CLOGGING FACTOR(%)=
15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
3.42
BY FAA HEC-12 METHOD: DESIGN FLOW
cfs = 3.81
L2 z
FLOW INTERCEPTED (cfs =� 3.12��p,FS
'
CARRY-OVER FLOW (cfs)= y 0.69YG�6r
BY
DENVER UDFCD METHOD: DE,SI FLOW
(cfs)=
FLOW IN
2:91
'
,CARRY —OVERFLOW
(cfs)=_-----0-,9a
1
' --------------------------------
-------------------------------------------�—
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
'--------------------------------------------------------------------------USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO...............................
ON DATE 05-16-1994 AT TIME 17:46:01
' *** PROJECT TITLE: Stoneridge III n,
*** CURB OPENING. INLET HYDRAULICS AND SIZING: MATo%Z 57-b&64
tINLET ID NUMBER: 9-1 ,--
'
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
'
GIVEN CURB OPENING LENGTH (ft)=
REQUIRED CURB OPENING LENGTH (ft)=
IDEAL CURB OPENNING EFFICIENCY =
'
ACTURAL CURB OPENNING EFFICIENCY =
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE
STREET CROSS SLOPE M _
STREET MANNING N =
'
GUTTER DEPRESSION (inch)=
GUTTER WIDTH (ft) _
'
STREET FLOW HYDRAULICS:
10.00
28.96
0.53
0.46
0.55
2.00
0.016
1.38
1.17
WATER SPREAD ON STREET (ft),= 21.16
' GUTTER FLOW DEPTH (ft) = 0.54
FLOW VELOCITY ON STREET (fps)= 3.01
FLOW CROSS SECTION AREA (sq ft)= - 4.58
' GRATE CLOGGING FACTOR M = 50.00
CURB OPENNING CLOGGING FACTOR(%)= 15.00
1
1
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)= 7.36
BY FAA HEC-12 METHOD: DESIGN FLOW _(cfs)= 13.79,00
FLOW INTERCEPTED (cfs)= 6.41
CARRY-OVER FLOW (cfs)= 7.38
BY DENVER UDFCD METHOD: DE-S3 FLOW (Cfs)=3-9
FLOW INTER�C -TE0--( = 6.25
COVER FLOW (cfs)=
7
'----------------------------------------------------------------------------� S
UDINLET: INLET HYDARULICS AND SIZING
t DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
IF-------------------------------------------------------- --
SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ......................:.......
ON DATE 04-19-1994 AT TIME 14:19:58
1*** PROJECT TITLE: Stoneridge III 12. 1 - 2
1
I
C
1
I
*** CURB OPENING INLET HYDRAULICS AND SIZING:
INLET ID NUMBER: 1- 2 MINo2 e:�Tog,Aj
INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
REQUIRED CURB OPENING LENGTH (ft)=
IDEAL CURB OPENNING EFFICIENCY =
ACTURAL CURB OPENNING EFFICIENCY =
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE ($) =
STREET CROSS SLOPE M =
STREET MANNING N
GUTTER DEPRESSION (inch)=
GUTTER WIDTH (ft) =
STREET PLOW HYDRAULICS:
10.00
13.19
0.52
0.84
0.77'
2.00
0.016
1.38
1.17
WATER SPREAD ON STREET (ft) = 10.75
GUTTER FLOW DEPTH (ft) = 0.33
FLOW VELOCITY ON STREET (fps)= 2.45
FLOW CROSS SECTION AREA (sq ft)= 1.26
GRATE CLOGGING FACTOR ($)= 50.00
CURB OPENNING CLOGGING FACTOR(%)= 15.00
' INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
BY FAA HEC-12 METHOD: DESIGN FLOW
' BY DENVER UDFCD METHOD:
1
FLOW INTERCEPTED
CARRY-OVER FLOW
DESIGN FLOW
FLOW INTERCEPTED
CARRY-OVER FLOW
2.84
�2
(cfS)=
3�08
(cfS)=
3.08
(cfs)=
2.4.1
(cfs)=
0.67
'--------------------------------------------------------------------------fb
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
IL DR. JAMES GUO, CIVENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO,DENVER CITIES/COUNTIES AND UD&FCD
'--------------------------------------------------------------------------- USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 05-16-1994 AT TIME 17:54:07
' *** PROJECT TITLE: Stoneridge III
*** CURB OPENING INLET HYDRAULICS AND SIZING: AAA -Toe 5 1_nA
' INLET ID NUMBER: 1-2,
' INLET HYDRAULICS: ON A GRADE.
GIVEN INLET DESIGN INFORMATION:
' GIVEN CURB OPENING LENGTH (ft)= 10.00
REQUIRED CURB OPENING LENGTH (ft)= 28.05
1 IDEAL CURB OPENNING EFFICIENCY = 0.55
ACTURAL CURB OPENNING EFFICIENCY = 0.48
STREET GEOMETRIES:
'
STREET LONGITUDINAL SLOPE ($) =
0.77
STREET CROSS SLOPE
M =
2.00
STREET MANNING N
=
0.016
GUTTER DEPRESSION
(inch)=
1.38
GUTTER WIDTH
(ft) =
1.17
'
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET
(ft) =
18.34
'
GUTTER FLOW DEPTH
(ft) =
0.48
FLOW VELOCITY ON STREET
(fps)=
3.27
FLOW CROSS SECTION AREA
(sq-ft)=
3.47
' GRATE CLOGGING FACTOR M = 50.00
CURB OPENNING CLOGGING FACTOR(%)= 15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
6.22
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
11.35
FLOW INTERCEPTED
(cfs)=
5.42
CARRY-OVER FLOW
(cfs)=
5.93
'
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
11.35
FLOW INTERCEPTED
(cfs)=
5.29
CARRY-OVER FLOW
(cfs)=
6.06
--------------------------------------------------------------------------?
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
1p---------------------------------------------------------------------------
SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO ..............................
ON DATE 04-19-1994 AT TIME 21:23:27
'*** PROJECT TITLE: S.toneridge III b. p 18
*** CURB OPENING INLET HYDRAULICS AND SIZING: /M/A)C2 Srnrem
' INLET ID NUMBER: 18
' INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
'
GIVEN CURB OPENING LENGTH (ft)=
4.00
HEIGHT OF CURB OPENING (in)=
6.00
INCLINED THROAT ANGLE (degree)=
90.00
'
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.00
Note: The sump depth is additional
depth to flow
depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE ($) =
0.40
'
STREET CROSS SLOPE ($) =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
GUTTER WIDTH (ft) =
1.38
1.17
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET (ft) =
11.50
GUTTER FLOW DEPTH (ft) =
0.34
FLOW VELOCITY ON STREET (fps)=
1.83
'
FLOW CROSS SECTION AREA (sq ft)=
1.43
GRATE CLOGGING FACTOR ($)=
50.00
CURB OPENNING CLOGGING FACTOR($)=
20.00
'
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
3.54
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
2.62 2
'
FLOW INTERCEPTED (cfs)=
2.62 Qu�vr
CARRY-OVER
FLOW (cfs)=
0.00
'
BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)=
FLOW INTERCEPTED (cfs)=
2.62
2.62
CARRY-OVER
FLOW (cfs)=
0.00
H
'-------------------------------------------------------------------------- 38
UDINLET: INLET HYDARULICS AND SIZING
' DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-------------------------------------------------=---------------------------
USER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 05-17-1994 AT TIME 05:38:21
' *** PROJECT TITLE: Stoneridge III �12. S __
*** CURB OPENING INLET HYDRAULICS AND SIZING: MATo2 Srarz/A_—
' INLET ID NUMBER: 18 �� Gwc.. !�7 j pC_,, / A sic, C��V rIZ.rJ
INLET HYDRAULICS: IN A SUMP.
GIVEN INLET DESIGN INFORMATION:
GIVEN CURB OPENING LENGTH (ft)=
4.00
HEIGHT OF CURB OPENING (in)=
6.00
INCLINED THROAT ANGLE (degree)=
90.00
'
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.00
Note: The sump depth is additional
depth to flow
depth.
'
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE ($) =
0.40
STREET CROSS SLOPE M =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
1.38
'
GUTTER WIDTH (ft)
1.17
STREET FLOW HYDRAULICS:
'
WATER SPREAD ON STREET (ft) =
19.84
GUTTER FLOW DEPTH (ft) =
0.51
FLOW VELOCITY ON STREET (fps)=
2.47
'
FLOW CROSS SECTION AREA (sq ft)=
4.04
GRATE CLOGGING FACTOR M =
50.00
'
CURB OPENNING CLOGGING FACTOR(%)=
20.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
6.39
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
9.97
FLOW INTERCEPTED
(cfs)=
5.72
CARRY-OVER
FLOW (cfs)=
4.25 Weir r1no
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
9.97
FLOW INTERCEPTED
(cfs)=
5.12
CARRY-OVER
FLOW (cfs)=
4.85
4' ovPr-�imcJ iJ ear ® b• (100-•Y2�e5�t,�
(Za} wy C_-� ve, " Q
1
I
-----------------------------------------------------------------------------
UDINLET: INLET HYDARULICS AND SIZING
DEVELOPED BY
DR. JAMES GUO, CIVIL ENG DEPT. U OF COLORADO AT DENVER
SUPPORTED BY METRO DENVER CITIES/COUNTIES AND UD&FCD
-------------------------------------------------=--------------------
-SER:KEVIN GINGERY-RDB INC FT. COLLINS COLORADO..............................
ON DATE 06-24-1994 AT TIME 09:30:53
'*** PROJECT TITLE: Stoneridge III
*** CURB OPENING INLET HYDRAULICS AND SIZING:
c„4
INLET ID NUMBER: 29
v taIk
Gw�yeyf
'
INLET HYDRAULICS: IN A SUMP.
'
GIVEN INLET DESIGN INFORMATION:
X�
GIVEN CURB OPENING LENGTH (ft)=
2.00
HEIGHT OF CURB OPENING (in)=
6.00
INCLINED THROAT ANGLE (degree)=
90.00
'
LATERAL WIDTH OF DEPRESSION (ft)=
2.00
SUMP DEPTH (ft)=
0.00
'
Note: The sump depth is additional depth to flow
depth.
STREET GEOMETRIES:
STREET LONGITUDINAL SLOPE (%) =
0.40
STREET CROSS SLOPE (%) =
2.00
STREET MANNING N =
0.016
GUTTER DEPRESSION (inch)=
2.00
'
GUTTER WIDTH (ft) =
2.00
STREET FLOW HYDRAULICS:
WATER SPREAD ON STREET (ft) =
5.38
GUTTER FLOW DEPTH (ft) =
0.27
FLOW VELOCITY ON STREET (fps)=
1.63
'
FLOW CROSS SECTION AREA (sq ft)=
0.46
GRATE CLOGGING FACTOR M =
50.00
'
CURB OPENNING CLOGGING FACTOR(%)=
15.00
INLET INTERCEPTION CAPACITY:
IDEAL INTERCEPTION CAPACITY (cfs)=
1.85
BY FAA HEC-12 METHOD: DESIGN FLOW
(cfs)=
Q2= 0.74
'
FLOW INTERCEPTED (cfs)=
0.74
CARRY-OVER
FLOW (cfs)=
0.00
BY DENVER UDFCD METHOD: DESIGN FLOW
(cfs)=
0.74
'
FLOW INTERCEPTED
(cfs)=
0.74
CARRY-OVER
FLOW (cfs)=
0.00
C
L
1
1
1�
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1�
1
RMINC
Engineering Consultants
¢D
CLIENT 44P,14AI ! .[J JOBNO. ��3"C0
PROJECT iTp��2.+�G� CALCULATIONS FOR STo21�( bi2AinJ AIJAiyS,s
MADE BY �!'� DATE CHECKED BY- DATE SHEET I OF
I
I
_
�
r
�. .. iL L..
+
,
I
_ i
3 �
L.
2 ,
O
FIT
I
HDPE
Iq
!a' T 1 P
:IZ CL3
rn4 �T
o�
ZZ
IVY
1 _
Z
-
10; _TYP.�
,.
12 .GI,�12.�
1 �^
��L.ILT: ,
:
-
-
o
t O
Zb
1= T�rP�
.
1
I
,w1 221-T
31
:
I
�
I _ .. � I
fi
-
Fi tnP
- Io;:S% t �l
i6�
>a ° 1 b l' :4`Ia8 3 oq
I .
2 .7T
31
0 4 Zoo I _ 10L
2
tP
1
o:4 �slj' _ Il'•38 I1•`Iq
i 1d ,. t�"_ 12GP lo•� 3l5' ;: Il 59:� � !3•,25
i3 Zs
47 i70
_
1 - _{
O P1P�
I 1"" tFPPG .ZS 146' II.55 ) 5
------------------------------------------------------------------------------
REPORT OF STORM SEWER SYSTEM DESIGN
✓k{/Q 51tg�! ✓1
USING UDSEWER-MODEL VERSION 4
-
DEVELOPED✓�
'
'
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL
ENGINEERING, UNIVERSITY OF COLORADO
AT DENVER
URBAN
IN COOPERATION WITH
DRAINAGE AND FLOOD CONTROL DISTRICT
'
------------------------------
DENVER, COLORADO
-------------------------------
------------------------------------------------------------------------------
***
EXECUTED
BY DENVER
CITY/COUNTY USE ONLY .............................................
'
***
PROJECT
ON
TITLE :
DATA 06-24-1994 AT TIME 13:27:19
Stoneridge P. U.D. Third Filing Storm Drain Analysis
'
***
RETURN PERIOD OF
FLOOD IS 2 YEARS
***
SUMMARY
OF SEWER
HYDRAULICS NOTE: THE GIVEN FLOW DEPTH
-TO -SEWER
SIZE RATIO= .9
-------------------------------------------------------------------------------
SEWER
MAMHOLE
NUMBER SEWER REQUIRED SUGGESTED
EXISTING
'
1D
NUMBER
UPSTREAM
DNSTREAM SHAPE DIA(HIGH) DIA(HIGH)
DIA(HIGH)
WIDTH
ID NO.
ID NO. (IN) (FT) (IN) (FT)
(IN) (FT)
(FT)
'
-------------------------------------------------------------------------------
1.00
2.00
19.00
22.00
10.00 ROUND 26.96 27.00
19.00 ROUND 25.02 27.00
30.00
27.00
0.00
0.00
3.00
32.00
22.00 ROUND 25.02 27.00
27.00
0.00
4.00
31.00
32.00 ROUND 25.02 27.00
27.00
0.00
5.00
21.00
31.00 ROUND 20.20 21.00
24.00
0.00
6.00
26.00
21.00 ROUND 18.66 21.00
21.00
0.00
'
7.00
1.00
21.00 ROUND 13.66 15.00
15.00
0.00
11.00
23.00
19.00 ROUND 14.96 15.00
18.00
0.00
16.00
27.00
26.00 ROUND 8.88 15.00
15.00
0.00
'
8.00
9.00
2.00
25.00
1.00 ROUND 13.66 15.00
2.00 ROUND 13.66 15.00
15.00
15.00
0.00
0.00
15.00
5.00
25.00 ROUND 13.66 15.00
15.00
0.00
17.00
7.00
27.00 ROUND 8.88 15.00
15.00
0.00
13.00
3.00
23.00 ROUND 14.96 15.00
18.00
0.00
' DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES; UNITS FOR BOX SEWER ARE 1N FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
' SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
-------------------------------------------------------------------------------
SEWER
DESIGN
FLOW
'NORMAL
NORAML
CRITIC
CRITIC
FULL
FROUDE
COMMENT
'
ID
FLOW Q
FULL 0
DEPTH
VLCITY
DEPTH
VLCITY
VLCITY
NO.
NUMBER
CFS
CFS
. FEET
FPS
FEET
FPS
FPS
'
-------------------------------------------------------------------------------
1.0
2.0
21.8
16.0
29.1
19.6
1.61
1.54
6.50
5.51
1.58
1.39
6.65
6.20
4.44
4.02
0.97
0.82
V-OK
V-OK
3.0
16.0
19.6
1.54
5.51
1.39
6.20
4.02
0.82
V-OK
4.0
16.0
19.6
1.54
5.51
1.39
6.20
4.02
0.82
V-OK
5.0
9.0
14.3
1.15
4.83
1.08
5.22
2.87
0.88
V-OK
6.0
7.3
10.0
1.11
4.56
1.00
5.15
3.04
0.82
V-OK
'
7.0
3.2
4.1
0.83
3.69
0.72
4.36
2.59
0.76
V-OK
11.0
4.5
7.4
0.84
4.42
0.82
3.33
2.56
0.94
V-OK
16.0
3.3
13.4
0.42
9.01
0.73
6.09
2.68
2.86
V-OK
8.0
9.0
3.2
3.2
4.1
4.1
0.83
0.83
3.69
3.69
0.72
0.72
29.92
6.22
2.59
2.59
0.76
0.76
V-OK
V-OK
15.0
3.2
4.1
0.83
3.69
0.72
4.52
2.59
0.76
V-OK
17.0
3.3
13.4
0.42
9.01
0.73
4.28
2.68
2.86
V-OK
13.0
4.5
7.4
0.84
4.42
0.82
3.22
2.56
0.94
V-OK
'
FROUDE NUMBER=O
INDICATES
THAT A
PRESSURED
FLOW OCCURS
1
0
'
----------------------------------------------------
------------------ Fi.cbQ tme P,,-'lvQ
SEWER SLOPE INVERT ELEVATION
BURIED
DEPTH COMMENTS
Y1 .
ID NUMBER UPSTREAM DNSTREAM
CFT)
UPSTREAM
(FT)
DNSTREAM
(FT)
CG d
----
----
6
J
1.00 0.50 4909.11
4908.30
0.95
2.50 NO
2.00 0.40 4909.41
4909.11
1.64
1.20 OK
3.00 0.40 4910.31
4909.41
1.74
1.64 OK
4.00 0.40 4911.12
4910.30
2.03
1.75 OK
'
5.00 0.40 4911.38
4911.12
2.02
2.28 OK
6.00 0.40 4911.55
4911.39
2.20
2.26 OK
7.00 0.40 4911.99
4911.39
2.76
2.76 OK
11.00 0.50 4909.33
4909.11
1.96
1.95 OK
'
16.00 4.25 4917.50
4911.55
-2.75
2.70 NO
8.00 0.40 4913.25
4911.99
2.70
2.76 OK
9.00 0.40 4913.44
4913.25
3.21
2.70 OK
15.00 0.40 4913.44
4913.44
3.21
3.21 OK
17.00 4.25 4917.50
4917.50
-2.75
-2.75 NO
13.00 0.50 4909.33
4909.33
1.75
1.96 OK
OK MEANS BURIED DEPTH IS GREATER
THAN REQUIRED SOIL
COVER OF 1 FEET
*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG
-------- -'-------------------'---------------------------------------'--'-----
SEWER SEWER SURCHARGED CROWN ELEVATION
SEWERS
WATER ELEVATION
FLOW
ID NUMBER LENGTH LENGTH UPSTREAM
DNSTREAM
UPSTREAM DNSTREAM CONDITION
FEET FEET
FEET
FEET
FEET FEET
-------------------------------------------------------------------------------
1.00 161.00 0.00
4911.61
4910.80
4911.03 4910.00
SUBCR
2.00 75.80 14.89
4911.66
4911.36
4911.93 4911.03
SUBCR
3.00 224.70 71.53
4912.56
4911.66
4912.39 4911.93,
SUBCR
'
4.00 204.10 0.00
5.00 65.00 0.00
4913.37
4913.38
4912.55
4913.12
4912.80 4912.39
4913.03 4912.80
SUBCR
SUBCR
6.00 41.00 17.21
4913.30
4913.14
4913.47 4913.03
SUBCR
7.00 151.00 130.62
4913.24
4912.64
4913.62 4913.03
SUBCR
11.00 44.00 44.00
4910.83
4910.61
4911.34 4911.03 PRSSIED
16.00 140.00 17.26
4918.75
4912.80
4918.23 4913.47
JUMP
'
8.00 315.00 97.29
4914.50
4913.24
4914.34 4913.62
SUBCR
9.00 47.00 0.00
4914.69
4914.50
4914.43 4914.34
SUBCR
15.00 0.10 0.00
4914.69
4914.69
4914.50 4914.43
SUBCR
17.00 0.10 0.00
4918.75
4918.75
4918.26 4918.23
JUMP
'
13.00 0.10 0.10
4910.83
4910.83
4911.37 4911.34 PRSS'ED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC
JUMP; SUBCR=SUSCRITICAL
FLOW
'
*** SUMMARY OF ENERGY GRADIENT LINE
ALONG
SEWERS
UPST MANHOLE SEWER
JUNCTURE
LOSSES DOWNST MANHOLE
SEWER MANHOLE ENERGY FRCTION
BEND
BEND LATERAL
LATERAL MANHOLE
ENERGY
IDNOID N0, ELEV FT IT
K COEF LOSS
FT K
COEF LOSS FT ID
FT
'
-----------------------------------------------------------------------
1.0 19.00 4911.34 1.03
1.00
0.31
0.00 0.00 10.00
4910.00
2.0 22.00 4912.18 0.51
1.32
0.33
0.00 0.00 19.00
4911.34
3.0 32.00 4912.64 0.44
0.08
0.02
0.00 0.00 22.00
4912.18
4.0 31.00 4913.05 0.39
0.08
0.02
0.00 0.00 32.00
4912.64
'
5.0 21.00 4913.16 0.00
1.32
0.17
0.00 0.00 31.00
4913.05
6.0 26.00 4913.62 0.27
1.32
0.19
0.00 0.00 21.00
4913.16
7.0 1.00 4913.73 0.46
1.00
0.10
0.00 0.00 21.00
4913.16
11.0 23.00 4911.44 0.08
0.25
0.03
0.00 0.00 19.00
4911.34
16.0 27.00 4918.34 4.70
0.25
0.03
0.00 0.00 26.00
4913.62
8.0 2.00 4914.44 0.71
0.08 -
0.01
0.00 0.00 1.00
4913.73
9.0 25.00 4914.54 0.09
0.08
0.01
0.00 0.00 2.00
4914.44
15.0 5.00 4914.60 0.04
0.25
0.03
0.00 0.00 25.00
4914.54
17.0 7.00 TOM= 0.00
0.25
0.03
0.00 0.00 27.00
4918.34
'
13.0 3.00 4911.47 0.00
0.25
0.03
0.00 0.00 23.00
4911.44
BEND LOSS =BEND K* FLOWING FULL VHEAD IN
SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS
K*INFLOW
FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE
OR POSSIBLE
ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD
OF FULL FLOW
CONDITION.
A MINIMUM JUCTION LOSS
OF 0.05
FT WOULD BE
INTRODUCED UNLESS LATERAL K=O.
'
FRICTION LOSS WAS ESTIMATED BY
BACKWATER
CURVE COMPUTATIONS.
45
I
I
I
I
I
I
H
L
I
I
I
I
I
CLIENT Kkt)!,4,A ---JOB NO. 503-6c,60
T:DINC PROJECT 17�,,V66CM, CALCULATIONS FOR
Engineering Consultants MADEBY122 DATE CHEfD BY DATE -SHEET -Of
L-4 tom.. ......... ..lil
A
YID
L
fill
t
7-1
it
7--- i7'
4- �4-
4-
--
- ------ -
-1-4
1
i LJL
L] ....
.. 1-i-
------ --- -
qi.
------------
--- -------
--------- --
T-H
----
LA
44.
t---
-------- -- --
J----------
1.
----------
...... ... . .
-41---
-A
........ .......
----- - - ---
T�
L
I
I -,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
Isom
Engineering Consultants
j rl IFNT
JOB NO.
PROJECT CALCULATIONS FOR
MADE BY- DATE- CHECKED BY- DATE -SKEET- OF
.4,
4
7F
d
Lf.aJ,
-T-
_4 .
.. ....
Li 11
j t
d
d
dd
i
I /
'd
J
--
.0
Ld
7i! ET
----
-------
-
d
—A
L
LZ
N!
—
+
d
d
d
yz� I't'-
tt
Id
d
J.....
r
..
d'
--- -----
Ell
7__ 7
-7
T
d
d
d
d ......
....
'd
d
-7-1 11
d
1
1 L
I d
d
d
j
77
d
d
d
J..
id
4d
--
--- 7 -
I.
7-
..L—d—L
L_ j
—
------------
—- --
A—L.
d
T
_7
f------- -- — A—L
__j
- -----
d
------
- I d
L
YS
J
2
O
v1
(� • �1)
-�
yc�
O
L
W
m
rJ
^__
4110013A
o
U.
J
Z
1311n0
Kcr
Q
UJ
V
N
W W
4,
NOIl�A313
N�
m
W
p
1-• ~
I
tl310MOV3N
10tli N00
O
w
¢
V J W
<
G
_ e
F3
.. z
gw
W
zWUJ
_
I
ml
\
N
W
W
I.r
2 r�
ru
r�
U
O ccW
r• I �I y y J
= n
c
z
u
J
Q zi
of
to
wLe
O
e m
\v
_
N
V
F
0
OO
c0
IN
N1:1
J
•O
a
e • J�
� IL 11
IQ.)
y
L S W
W
S
i
¢a.�
C�
^
z
--111CCNLLL��
~
J
Q W
J J
¢
z
y = O
3 39
LL O Q
).. S
W W
06
i n
'
I
J 0
F
y y.
N
In
C
U) ,
J;
/��
S V N S W
= 7
cc/,)
F
O W
�=
9cc ;
r
U
H W W 3
F� •
,
Q
Q
O y C Q
2
F •-
11V
u
V
J ❑ �❑ 3 '� V
�
d
u y
V t OJ O
a
0 W
0 w
W
I
iS 11
IaL
I..
H
=
v
y > ell a
=
O
..
0 y
mil
`•/O�
F V W
f z
S Q S O"
W
`1'
= X ¢O v
2 W
W y .. < O
C
�
)•• m J~
e
QVFtCO
IL
o < i i Y
jJ
0 y
0 C =
O
G <=o"
F
W
•
{i
3 O U ¢ 6
¢ <
Q 2 S
! Ste) m
W
❑ ❑ ❑ ❑
W ¢
2
I
z W J
xaz«uy�a<
:.: OW °001-JW
' W
GMOZS20N
'$INS'1.00V 339
J 1
7 <
C
L
P
L) m S
w
m
<u
6
V
V
240
I
N
I
11
I
I
I
I
r
I
I
I
I
I
1
RMINC
Engineering Consultants
CLIENT �4 pi_,l Aj JOB NO. 22 _S OS
PROJECT CALCULATIONS FOW�',GaglZ Vr .01.';<16A)
MADE BY 7PAI DATE HECKEDBY—DATE SHEETOF
10
77
----
----- -
7
4
7-
7_T_jT
----- ---
--I-:
......
if
- ------------
26 r-,ov
........ .. .
— -- ------ P6
f
f
j 1
`LA 7
------ -- -- -- -
--------- -
yI --- ----- --
-------------
--------
--- ----------
oors
(f>Y
4
-----------
4
J_
7_1
.4
L
1.
----- --- --
. . .... ....
J L
4
CO.7
�/
CLIENT I<AY_"LACtKf ^ JOB NO.
■��INC PROJECTT7iZlam— b 7T1,11CALCULATIONSFOR( a vy T
Engineering Consultants MADESY4^�DATE* CHECKED BY DATE SHEET OF
- 4g
CLIENT ! /a).1 _ JOB NO. -'=2�
■AINC PROJECT CALCULATIONS FO 1 y g7 t
Engineering Consultants MADE BV�2DATE/- HECKED BV DATE SHEET OF
—
y
I
1 � -�
I I �
{ kZ1
1 ......-- -
.._.... J ... _�. ... ....�.. _. ..... _.-_.. ._:. .�... 9
ZZZ.♦ 7C0 { .
y,
I
{
1 -
�.
_
j
I
f3ew
1
_ ., I - --
_
77
— — — -- = —
r
I ADS End Section Dimensions
40
1
1
1
1
1
1
1
1TYP.
I
I
B
I \
1
L
Q�Q
L
I
1
ar H
I.A.
W
V�H
TOP VIEW
END VIEW
SIDE VIEW
Dimensions (inches)
Pipe
Diameter
Part No.
A (1 t)
B MAX
H (1 t)
L (1 /2 t)
W (2 t )
12" and 15"
1210 NP
6.5
10
6.5
25
29
18"
1810 NP
7.5
15
6.5
32
35
24"
2410 NP
7.5
18
6.5
36
45
. 3�" -* S,S
1 Comparison of End Sections
1
1
1
*6.S ,Ire ke,o
COST
EASE OF
INSTALLATION
DURABILITY
APPEARANCE
ADS
LOW
VERY EASY
EXCELLENT
EXCELLENT
STEEL
LOW
VERY EASY
POOR
GOOD
CONCRETE
HIGH
VERY DIFFICULT
I EXCELLENT
EXCELLENT
POURED IN PLACE
HIGH
VERY DIFFICULT
EXCELLENT
EXCELLENT
RIP RAP
HIGH
DIFFICULT
FAIR
GOOD
1 Installation Instructions
1. Spread the End Section collar and place it over the last pipe
1 corrugation. Make sure the collar seats properly in the corrugation
valley.
2. Insert cable tie through the pre -drilled holes in the End Section collar.
Insert the cable tie tab into the keeper and pull tight.
1 3. Place backfill around the End Section and over the toe plate.
Nationwide Sales and Manufacturing Network
1 Madera, CA 209-674-0903 Charlotte, NC 704.527-0137
Monticello, IL 217.762.9448 London, OH 614-852-4067
Iowa City, IA 319-338-3689 Brentwood. TN 615-373.9964
Ludlow, MA 413.589-0515 Washougal, WA 206-835.8522
Owosso, MI 517-725.7893 Ft. Collins, CO 303-493-7234
i Insist on the ADS green stripe.
ADVANCED DRAINAGE SYSTEMS, INC.
' Corporate Headquarters/33D0 Riverside Drive, Columbus, Ohio 43221 /(614) 457-3051
414
DRAINAGE CRITERIA MANUAL
INLETS 9 CULVERTS
-to 0
10.000
(1)
(E) (3)
Ise
e,000
EzAM�LE
Ibe
6000
e••t I••s•s Isfool .ry
•.
114
5'000
/• It0.1.
b.
4 000
• Nt
e.
4.
3'000
111 t.t M
b'
Ito
R! 9.1 7.4
10e
l,000
(at.t 7.7
1
1'
3.
•! 1• fm
99
1000
3.
e00
e4i—
Soo
400.
y
!.
/
5.
4.
3.
!-
= 300
so '� too // F
:
/
O
54 ..
i
0
4/�/t
0
8
u
t
_
1�
4! u
h
e0 416
b0
1.0
1.0
ENTRANCE O
o
0 SCALE TYPE c
1.0
3e
W
30x
e
f
kills
VI some 06Poft ;
e
33
s•Nwn O
1
O
!0 m M•••• •w/ wits t
?gyp
30
••NM11 S
.e
•e
111 M•••• •N
•e
!7
r•1«I ISO
10
!4
e
7
T
7
e r• ..• •s•M Itl or Is) rN••1
1 «. slr•IlM Ms"a" N•• Nr•so
o w 4 N•1••, or ►««« as
le
I5
LO
.b
'! HEADWATER DEPTH FOR
CONCRETE PIPE CULVERTS
WITH INLET CONTROL
FIGURE 10-.10.
II-IS-6e
Donor nelww1 C•misil d iti•rnnm•nfs
1
1
1
1
1
DRAINAGE CRITERIA MANUAL
c
/: : I Ir
2000
14
From BPR
INLETS 8 CULVERTS
2
3
:o
HEAD FOR
CONCRETE PIPE CULVERTS
FLOWING FULL
n • 0.012
FIGURE 10-13.
Denver N.«eea Council of Wwrnmen4
150
I
I
I
I
I
I
I
11
I
I
I
I
I
I
NC
Engineering Consultants
CLIENT 144M JOB NO.-Sr,-M- a--=7!:S
PROJECT Jft ik%t�r�g CALCULATIONSFOR
MADE BY49L�_'// DATE,.�*4 CHECKED BY -DATE -SHEET -OF
J."
ri
DRAINAGE . CRITERIA MANUAL RIPRAP
JOa.,
led
n q�
0
x
3
0
�6
%.o
MEN
MMEM111APPE
NESS
I
limp
0
00 .2 .4 .6 .81.0
Yt/H o•84
Use Ha instead of H whenever culvert has supercritical flow in the barrel.
*,*Use Type L for a distance of 3H downstream.
FIGURE 5-8. RIPRAP EROSION PROTECTION AT RECTANGULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE a FLOOD CONTROL DISTRICT
I
51
I
I
SWALE & CHANNEL
DESIGN
t I
5Z
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
STONERIDGE III - POND 27 OVERFLOW WEIR
WEIR COEF.
3.000
EMI :Mivj
0.0
4919.50
4.0
4918.50
14.0
4918.50
18.0
4919.50
4" 1 nti�x
hidesloPeh
19 s
ELEVATION
DISCHARGE
(feet)
(cfs)
.........
4918.50
---------
0.0
4918.60
1.0
4918.70
2.8
4918.80
5.4
4918.90
8.5
a 92 ifs
4919.00
12.1
Wi 0.41•,
4919.10
16.3
w�EL `= 41
4919.20
21.1
4919.30
26.4
4919.40
32.2
4919.50
38.6
P, ��&.
C-,) =
CLEAN/Z
I
53
NC
Engineering Consultants
1
I]
0
11
1
0
1
CLIENT JOBNO. 5b5-0Q F;
PROJECTZT''�E�V� �JI— CALCULATIONS FOR( epy, c7CREFT FivW
MADEBYIVM DATE-015 CHECKEDBV DATE SHEET OF
54--
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
Stoneridge III -- Cross Crown Flow for Fieldstone Drive
WEIR COEF.
3.000
�911i:��ir1�1+/
2070.0
4913.98
2092.0
4913.58
2115.0
4913.33
2125.0
4913.29
2300.0
4913.99
ELEVATION
( feet)
4913.29
4913.39
4913.49
4913.59
DISCHARGE
(cfs)
0.0
1.6
8.0
21.0
4913.69 42.0
4913.79 71.6 �rey'a = 49.2cF5
4913.89 110.3
3A2
'i5�
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
Stoneridge III -- Flow over walk to swale past Inlet #19
L .I
WEIR COEF.
3.000
STA ELEV
7 �
Jl J
49 13,80
4-1 5me-
0. 0
4914.10
w5 E+- 49 i'.
4.0
4913.10
0•57'
44.0
4913.10
48.0
4914.10
2
44
ELEVATION
DISCHARGE
X_S�LTIor�/
(feet)
--
(cfs)
--
4913.10
0.0
4913.20
3.8
4913.30
10.9
4913.40
20.2
4913.50
31.3
4913-60
44.0
�re4'd
=s3.3 cts
4913.70
58.2
4913.0
.9
VJS�Ir=
4-1i3.�7,
4913.90
90
90.9
4914.00
109.1
4914.10
128.7
for o-F:� OAPJV-.
f'2oc�2A M EQ.K
r0c-kGrUS+2dC L&V- Q= LL 3/L
,.J G wekr GOe{, - 3.0
1'y b°ATIE� K,aU
RBD INC. ENGINEERING CONSULTANTS
WEIR SECTION FLOW DATA
Stoneridge III - 4' Over -flow weir @ D.P. 18 (100-yr design)
WEIR COEF.
3 . 000 G ' 77•0 �Zt'• ruZ 5-5(A-) 1Je4r (C#*"iU
STA ELEV
0.0 4915.00 Ks29 1�v)-e-I r
10.0 4914.20 U
20.0 4914.20 _ CLH3�2
35.0 4915.00
ELEVATION DISCHARGE
(feet)(cfs)
-------
4914.20 0.0
4914.30 1.1
4914.40 3 . 3� Q rP4�d = 4 ?$ �j S 0�8✓ ��Du> Pkh�
4914.50 6.6 0
4914.60 11.0
4914.70 165
4914.80 23..2
4914.90 31.2
NC
Engineering Consultants
/)., Nni
CLIENT (�kp L 40 C__-O JOB NO. S03-00S
PROJECT 1vr,.-3Ejejo&k_ my:_ CALCULATIONS FOR�IA�I..i�.l.-A/
MADEBVTrM DATE 5-23 CHECKED BY DATE SHEET OF
lTlli g /knlRLYS/S
07a;.'S„J A(� GiEfTiotil A A (Sa Obi
J
I � —�/7
}
,T7 H4a
I 't I I I I lliJl �
i y -J 11✓� i �.',._ [!✓i �l Oaf+/ i L I � 1.
1
{ 1 .i. ....
CCC 1
457
CLIENT �4PL4.✓ 60_ JOSNO. E �-cot?
■AINC PROJECT GJ fI delCALCULATIONS FOR e!!!// f 1 -led )�!, FEJe J5
Engineering Consultants MADEBY-MM DATES CHECKED BY DATE SHEET OF
aa
} _
11
0
ofo _I�
,......
-
°p
�I
=
... ,
- ---
,
iQ-•F�aTlscrz.IEo
�
77 _
Tam
Icy`_
GF5 1
_
i
.- ...._..
- _
/
t
7.
O
7.
Q Ior,' 82 4 cis
{
�I� 1
j-L
TIry
j
c
!
/
2 74
I ...u_I(�..._
Al
l rT
`
-
_
_+
I
I - . _ -
1.
1 -
;:_' ........
_
-, -
_
-
I I I
I
I
100
I
I
n 10
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
:MINC
Engineering Consultants
CLIENT A-PL-A 1) 6Z5 JOB NO.
PROJECT X1 CALCULATIONS FOR
MADEBY7RAA DATE CHECKED BY_ DATE -SHEET- OF
"M-L'
AWIj M
j
7 7
It 717-H'i
-AL 1--F
f 34�
?V
.
7-JA
_i
-7'
..... ...
...
-.i
--i
1 /J\ I
� I /�
I i I
I I 1+
I i'
+ I I
1 1
I
L _I.
F i-T
M,
_7
I
71
7-1
if 7�
7-1 -------
------- - --
J_.d --- 1-4 j
�J!
-- - -------
1
L
J.,
J.
------ ---
-- _T
... . .......
L
....... . .. . . ...... ..... .
t
--- - ---
------
7 ----------- ------
--
_j.
I
NC
Engineering Consultants
CLIENT JOB NO.
PROJECT �OMEK-r2e- 10Z CALCULATIONS FOR
MADEBYTP'-" DATE CHECKED BY DATE -SHEET I OF
-A L
_T_
... .......
"TT'lF
151:2 Liz j -_ � I -
•_
j -77�71
� 7
rN
---- - -----------
_J I
L!
Sf t T-1
If:
f T-7- F-F
iT L-f i---
f
L
4 4
I
FFF if
......... .. ------
t
-- --------
r
.. .. .....
if
C
Lh
A
7-
...... ......
5
L
F
zLh S"
1-4
4_1
. I
--------
7
4 1
_TT
Z",
4
- L i
77 J.. 59 5
5_,
-24-
-----------
4i
'1 4
Uk'7 r-, (p ^ (e f2D >,-' uy I r&,, 1, I,-Awk_
1
�� CLIENT f'�•A`�L'�` JOB NO.
1 NC PROJECT Sro JlG1ZII�G/� �� CALCULATIONSFOR _ Qldlef
Engineering Consultants MADE BY TPh DATE CHECKED BYDATE -SHEET-OF
1
1
F2o+-A D�� I,TX
+ .A� -
M rF a u� TC> jI,rsi'c ►111 ��J
,
_ T ! .. ' i ' Ions
T I
— — -i
.
-
j
1 IT _ !
lJ l7 �f� IGMA�
L ,
�_b D25 1 } I I I
i_.
I
D,T -
_ O
= - -
I - 1- -- -70, o- 6 r
- -
AILJ
f..:.
1 - �- ;- K -
10
1 -
40 IFDP� �Mno PipZ,. -
� 1 p a
(/-(7 �J �� (ram._ 1 i1.+ �J"i0
1 T ._ -
l f
I
i i
1'
1 1-
— — — —
1 ► j
. ;
f '
i
t
r .
:
r
' REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
1N COOPERATION WITH
'
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
------------------------------------------------------------------------------
------------------------------------------------------------------------------
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .............................................
'
ON DATA 06-30-1994 AT TIME 10:19:35
*** PROJECT TITLE
Stoneridge l// - Drop Inlet Pipe Out/et
*** RETURN PERIOD OF FLOOD IS 100 YEARS
*** SUMMARY OF SEWER HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .9
----------------------"'.-'--------."'-------------------------'---------
SEWER MAMHOLE NUMBER. SEWER REQUIRED SUGGESTED EXISTING
ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH
ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT)
-.-.'."'------"'-------"""-------------------------------------
1.00 2.00 1.00 ROUND 41.24 42.00 48.00 0.00
2.00 3.00 2.00 ROUND, 41.24 42.00 48.00 0.00
- DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
'
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
'
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
EXISITNG SIZE WAS USED
----------------------------------------._.'-----------------------------------
SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT
'
ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO.
NUMBER CFS CFS FEET FPS FEET FPS FPS
'
-------------------------------------------------------------------------------
1.0 162.0 243.6 2.38 20.75 3.62 13.54 12.89 2.59 V-HI
2.0 162.0 243.6 2.38 20.75 3.62 13.54 12.89 2.59 V-HI
FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS
---------------------------------.__------__-------_-__-_---__--------
SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS
ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM
'
----- ---------- (FT) (FT) (FT) (FT)
1.00 2.86 4886.00 4884.00 6.00 4.00 NO - F�
2.00 2.86 4886.00 4886.00 6.00 6.00 OK
'
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
1
*** SUMMARY
OF HYDRAULIC
GRADIENT LINE ALONG SEWERS
----------"
---_._.-'----------------------------------------------------------
SEWER
SEWER SURCHARGED
CROWN ELEVATION
WATER ELEVATION
FLOW
ID NUMBER
LENGTH
LENGTH
UPSTREAM DNSTREAM
UPSTREAM
DNSTREAM CONDITION
-'-------- .'-'
1.00
FEET
---------------------------------------'------------------
70.00
FEET
52.52
FEET FEET
4890.00 4888.00
FEET
4890.16
FEET
4889.50
JUMP
2.00
0.10
0.10
4890.00 4890.00
4890.81
4890.16
PRSS'ED
'
PRSS'ED=PRESSURED FLOW;
JUMP=POSSIBLE HYDRAULIC JUMP;
SUBCR=SUBCRITICAL
FLOW
'
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST
MANHOLE
'
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE
ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID
---------------------------------'---------------------------------------------
FT
1.0 2.00 4892.74 0.66 1.00 2.58 0.00 0.00 1.00
4889.50
2.0 3.00 4893.39 0.00 0.25 0.65 0.00 0.00 2.00
4892.74
BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
'
FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS
LATERAL K=O.
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
■_J
1
' ****** HYCHL ****** (Version 2.0) ******
Commands Read From File: 50300501.DAT
' JOB STONERIDGE CHANNEL 'A' RIPRAP
CHL 0.0379 162.13
TRP 0 5 5
'** LEFT SIDE SLOPE 5.0 AND RIGHT SIDE SLOPE
** THE BASE WIDTH OF THE TRAPEZOID (FT) .00
LRG 2
' ** THE MAXIMUM CHANNEL DEPTH (FT) IS .00
END
**************END OF COMMAND FILE************
STONERIDGE CHANNEL 'A' RIPRAP
INPUT REVIEW
' DESIGN PARAMETERS:
DESIGN DISCHARGE (CFS): 162.13
CHANNEL SHAPE: VSHAPED
CHANNEL SLOPE (FT/FT): .038
-----------------------------------------
HYDRAULIC CALCULATIONS USING NORMAL DEPTH
' -----------------------------------------
DESIGN
MAXIMUM
'
FLOW (CFS)
162.13
.00
DEPTH (FT)
1.88
.00
AREA (FT-2)
WETTED PERIMETER (FT)
17.73
19.20
.00
.00
HYDRAULIC RADIUS (FT)
.92
1.00
VELOCITY (FT/SEC)
9.15
.00
MANNINGS N (LOW FLOW)
.030
.040
'STABILITY ANALYSIS
------------------
LINING
CONDITIONION TYPE
---------
LOW FLOW LINING
' BOTTOM; STRAIGHT GROUTED RIPRAP
*** NORMAL END OF HYCHL ***
1
PERMIS SHR.
(LB/FT-2)
' Ila
*******
5.0
Date 05-25-94
CALC. SHR STAB.
(LB/FT-2) FACTOR REMARKS
4.45 ****** STABLE
Ik,5E IZj MO. '- 62PkT%A
WIrFt1J Liti. r� 47401hi 01)
pLcE� � p2o���r �JH �T ,�rzou�Jf�
QrznP i��r'r S�uuc--rv-2.�.
' NC
Engineering Consultants
1
I
99 ,
vet ,
_ 4
Ij
CLIENTkP�g� JOB NO.
PROJECT TO�E�yy.,� �^^7r JT CALCULATIONS FOR �I Q Y
MADEBT_rPD✓dr
M DATECL 4cHECKED BY DATE -SHEET OF
DRAINAGE CRITERIA MANUAL
f
9 = Expansion Angle
r
RIPRAP
.1 .2 .3 A .5 .6 .7 .8
TAILWATER DEPTH/CONDUIT HEIGHT, Y t / D
FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS
11-15-82
URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT
DRAINAGE CRITERIA MANUAL
@4
RIPRAP
MMEMMMEMEM
MEMOVAA
Mi
0
�
0
FAA
M
MEMO
/
.M
0
.■■
��
M,
m
agap
MENNESEEIME
WRO�-
2 0.Z5 A Y /D .6 .8 1.0
t
Use Da instead of D whenever flow is supercritical in the barrel.
**Use Type L for a distance of 3D downstream.
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET. , .
11-15-82
URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT
I
I - W,
IEngineering Consultants
I
I
I
11
I
I
I
I
I
I
I
I
I
I
I
CLIENT JOB NO. 15�c --3 -cc>
PROJECT %CALCULATIONS FORS
MADE BY_DATE_ CHECKED BY -DATE _SHEET- OF
vz',terL
L
L L..
. .....
7
- - - - - - - - - -
-1., LIE.1
Orvy
7
L
_' J_
........ .....
----
---------- ------------
L
---
. ......
------
------ ......
......
2_1
- ---------
it
Z - 4:01.4
T r
41 P
------------
;_
_: -- ---------
------ ------
..... .... .....
--
--------- - ------ ---
L - -i 4)n
N
�6
59
RIPRAP DESIGN
T:WINC
Engineering Consultants
CLIENT jL,&FLA,-3 (-,o JOBNO-2O
CALCULATIONSFOR
ME
PROJECT �2
I MADE BY I""" DATE '5-2-S CHECKEDBY—DATE _SHEET —OF
L-Lj i
Jill,
�T±=T
TIT
I
I1 1
1
-14
L.L 1-4--L
I. -j-L]-Lj-
71= J I
.... . . ........
F"F7
T-
'4
T-i -71=17-
I j
L
... ......... . . .....
j
-4 F-L
17
J
Ll
--
-----------
7�-I
1 L
I
'T 1-
F 1
L
Y,
-----------
I-A ---
F
Li
L-
-A
A-
1. t
L
0.111--i
i
J
1-4
j. L
r
I
-f-t-
f +i
I X ly
--------------
-------- --
J
1-y
3
107,
DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE
1
5.6.2 Required Rock Size
'
The required rock size may be selected from Figure 5-7.for circu-
lar conduits and from Figure 5-8 for rectangular conduits. Figure 5-7
'
is valid for Q/D2.5.of 6.0 or less and Figure 5-8 is valid for Q/WH1.5
of 8.0 or less. The parameters in these two figures are:
-
a. Q / DI'S or Q/WHO'S in which Q is the design discharge in
'
cubic feet per second and D is a circular conduit diameter
in feet and W and H are the width and height ofa
'
rectangular conduit in feet.
b. Yt/D or Yt / H in which Yt is the tailwater depth in feet, D
'
is the diameter of a circular conduit and H is the height of
a rectangular conduit in feet. In cases where Yt is unknown
'
or a hydraulic jump is suspected downstream of the outlet,
use Yt / D = Yt / H = 0.40 when using Figures 5-7 and 5-8.
t
C. The riprap size requirements in Figures 5-7 and 5-8 are
based on the non -dimensional parametric equations 5-5 and
5-6 (11)(25).
'
Circular Culvert:
'
(d50/D)(Yt/D)1.2 / (Q/D2.5) = 0.023 (Equation 5-5)
Rectangular Culvert:
'
(d50/D)(Yt/H)`/ (Q/WHI'5) = 0.014 (Equation 5-6)
'
The rock size requirements were determined assuming that the flow in
the barrel
culvert is not supercritical. It is possible to use
Equations 5-5 and 5-6 when the flow in the culvert is less than pipe
'
full and is supercritical if the value of D or H is modified for use
in Figures 5-7 and 5-8. Whenever the flow is supercritical in the
'
culvert, substitute Da for D and Ha for H, in which Da is defined as
Da = }(D + Yn) (Equation 5-7)
'
in which maximum Da shall not exceed D, and
'
Ha = }(H + Yn) (Equation 5-8)
in which maximum Ha shall not exceed H, and
'
Da = A parameter to be used in Figure 5-7
11-15-82
0
I
1
1
LI
C
1
u
1
1
1
1
1
DRAINAGE CRITERIA MANUAL MAJOR DRAINAGE
whenever the culvert flow is supercritical.
D = Diameter of a circular culvert in feet.
Ha = A parameter to be used in Figure 5-8 whenever
the culvert flow is supercritical_
H = Height of a rectangular culvert in feet.
Yn = Normal depth of supercritical flow in
the culvert.
5.6.3 Extent of Protection
The length of the riprap protection downstream from the outlet
depends on the degree of -protection desired. If it .is to preveflt all
erosion, the riprap must be continued until the velocity has been
reduced to an acceptable value. For purposes of outlet protection
during major floods the acceptable velocity is set at 5.5 fps for very
erosive soils and at 7.7 fps for erosion resistant soils. The rate at
which the velocity of a jet from a conduit outlet decreases is not
well known. For the procedure recommended here it is assumed to be
related to the angle of lateral expansions, 9, of the jet. The velo-
city is related to the expansion factor, (1/(2tan e)), which may be
determined directly using Figure 5-9 or 5-10.
Assuming that the expanding jet has a rectangular shape:
in which:
L = (1/(2 tan e))(At/Yt - W) (Equation 5-9)
L = length of protection in feet,
W = width of the conduit in feet (use diameter for circular
�conduits), I._, \/ l I �/ r
t I �/v `' Y /� �a�le, �wn�J VY�oGI �y = S fps .
11-15-82
1
1 `-
1
1
1
1
1
1
1
1-�
1
1
1
1
1
1
1
DRAINAGE CRITERIA MANUAL
E
G. = Expansion Angle
Elmommom
MEIrMld
VIA
MUM
0
VA
WA
E
OF
rA
W��
EFFAVA
I V1
100
PAA
E
E
0
0
0
MENNEN
•
RIPRAP (-
.l .2 .3 A .5 .6 .7 .8
TAILWATER DEPTH/ CONDUIT HEIGHT, Yt / D
FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS
11-15-82
URBAN DRAINAGE a FLOOD CONTROL DISTRICT
DRAINAGE CRITERIA MANUAL
RIPRAP 10r7
■
.®
r
2 A Yt /D .6 .8 D$5 1.0
Use Da insleod of D whenever flow is supercriticol in the barrel.
**Use Type L for a distance of 3D downstream.
FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR
CONDUIT OUTLET.
11-15-82
URBAN DRAINAGE S FLOOD CONTROL DISTRICT
I
EROSION CONTROL
00
1
Engineering Consultants
209 S. Meldrum
Fort Collins, Colorado 80521
'
303/482-5922
FAX:303/482-6368
' May 10, 1994
' Mr. Basil Hamdan
City of Fort Collins
Utility Services Stormwater
' 235 Mathews
Fort Collins, Colorado 80522
IRE: Erosion Control Report, Calculations, Cost Estimate and Schedule for the
Stoneridge P.U.D. Third and Fourth Filing and Area Detention Pond
' Dear Basil:
We are pleased to submit to you, for your review and approval, this Erosion Control Plan for
' the Stone Ridge P.U.D. Third and Fourth Filing and Detention Pond. All computations for
erosion control efficiency and performance within this report have been completed in compliance
with the City of Fort Collins Storm Drainage Design Criteria.
The erosion control cost estimate was determined on a unit cost per acre basis for the total area
of 50.2 acres. The total estimate is $37,650.
' The measures to be most widely used for controlling erosion during the overlot grading of the
Third and Fourth Filings will be temporary and permanent seeding of plant species approved by
' the Fort Collins Stormwater Utility Department for such use. The development to be completed
during the summer and fall of 1994 will be the Third Filing, final submittal of the Fourth Filing,
and the Detention Pond. Horsetooth Road and County Road 9 east of the Third Filing will not
' be improved at this time, therefore existing pavement will remain in place. It is expected that
the paving of residential streets and private drives proposed with these filings will be in place
' within six weeks of the overlot grading, otherwise, gravel mulch will be required in the
proposed roadways according to the City's design criteria. Straw bale barriers will be placed
in all swales spaced every 200 feet, both permanent and temporary. Gravel inlet filters are
required at all inlets as soon as they are constructed.
1
' Denver303/458-5526
T:WINC.
Engineering Consultants
209 S. Meldrum
Fort Collins, Colorado 80521
303/482-5922
FAX: 303/482-6368
The construction sequence for these measures are shown in Standard Form C of the attachments
to this letter. The performance and efficiency calculations are also. attached.
We appreciate your time and consideration in reviewing this report. Please call if you have any
questions.
' Respectfully,
RBD Inc. Engineering Consultants
7 /r v . McEnany, E.I.T.
Project Engineer
Roger A. Curtis, P.E.
Project Engineer
Denver 303/458-5526
RAINFALL PERFORKkNCE STANDARD EVALUATION
PROJECT: �7-oaE;Z� pC� p t� 17. - F^:. }l. t I • 5 STANDARD FORM A
COMPLETED BY: T:p-tilP—t2>:25r> DATE: 4 30 4-
O
DEVELOPED
ERODIBILITY
Asb
Lsb
Ssb
Lb
Sb
S
SUBBASIN
ZONE
(ac)
I (ft)
($)
(feet)
M
M
31
p
490
I.1
32
60
1.7
7�0.4-
4.76,
388
1.3
33
n�Jc �
I• (oI
820
0, �-
�4
$S¢
2,7
g'
-740
1.29
307
2.5
37
4.35
790
0.9
38
I.c�o
3q5-
2.3
3.o
O
4-0
ML- 5
1.4-7
34a
1
17
''
1.47
47-7
1 S
jI
2' 33
4 -0
I
loz5
2.33
Zo
Z,ZI
410
0,8
1,77
7.45
410
0• 1
19
MoD ---
178
ZZ
i . 1 I
3�7
0,74-
23
�•
3. i I
���
l . 3.
24-
i, Go
4-Zo
I.
2
I. 19D
4.85
p
32.4-
.O
I.o
ZT
o,gq
670
o,.5
012
333
I .
30
`'
P,45 1
120 1
5-0 1
124
a
I�.2q --_ S�� _. _�•Z 70,4
MARCH 1591 E•141 1 DESIGN CRITERIA
78. 4- = �1 Z • Z
1
0
0) c+
o 0 0
O
CC Ln
Ln6^
1
U)
g q
co co co
O
0)0)m0%000000
1
O
<
Q Q
g co
C < U) U) 47 U) U) Uf .
q co q q q co co q
O
gC)C)L1C)CfC)C1C)C)
C1C)000
O
CC C'QCCCQC<C<U)U)Ui
n
g q q
co q q q q q q q q q 0 co
1
O
co 01 01 O1 01 01 C) C) C) O) 01 O) 01 O) C) 0\ C1
r q
O
«
C C C« C C C«« C C C C C
N
q q
g q co q co co coco co q q q co q q q q
1
O
Ong
U) 'l)10t7cor r rrrrrrrrrrq q q qqq
O
O
C<
C C C< C « < C C C C C C C Q C< C C C C C
0
ri
qco
ggDqcoqqOOqcoqqqcom 0co m0
1
O
qN C,
QU)V)V)% 0O t9tzvrrrrrrrrrr co coco
p
a
a%
n C
C C or C< C C< C C C C C C< v C v C C444
O
co co rx
coOcogcogqcoqqcocoqcococo0q'cogcocoq
U
1
o
�00
nv<L)Le) LnLnk3 %Doko kD kD %D 1.0LD %Drrrrrr
rn
co
n<
CvC<QC C«<CCvvQCCCa CCQC
.'7..
coco a
cocococococa cog00cocogcocococoOcococococo
H
a
O
CC)
N n n< C< Q Ln V) L7 L7 n N U) Ln U7U kD%D D 0LOr
1
.
. .
. . . . • . . . . . . . . .
. . 04.4
O
r
n n
C C<
Q v v Q « C C Q Q C C C Q Q Q Q<
Q C
U
Co. CD m
O co co g O co co q O co q co co co co co co co q q co coca
O
00
0ri'iNNnnnn«CCV CvCU)U)LnU) Vt0
E
. . . . .
O
1
L7
nn r,
v<CvC<v C vv vCCQCQ<CCCC QC
Gr
co co
coco q q q coco co co co g co co co co co co co co q co coco
'.
..o
Ln r4 Le
rcoC100riririNNNNNnnnnnC V Cvv
co r64
Ln
Nn r
n Cl) n< C Q v v v C C C C C C QCCQCCCC
co co
cogcococococoOcococococococococococococogcJ
[:7 L7
L�
140
CrU)
rico
n<.LnLU)% %o r rrcocoq coco coC)C)G100000
I 0
a Q
N N
n n n n n n n n n n n n n n n n n n v v v Q r
E-4 0
1
L7
q q a
co g co q co co co g co q co q q co co g q q co co q q q
iTCy
O
%Dn
Ora N m v v m N L7V V l7U 1.0 N N r, N q Co. q C%n
C
ra N
n n n n n n n n n n n n n n n n n n n n n n n
0 0
co 0 0 0 co co q O O O O O co co O co co q co co co 0 0
1
U
0
.
ri ri v
r O.00 ri N N n n n a< C C QCU) 0 N g co LO (�(�
n
riN
.
Nnnn ntnnnnninnnnnnnnnnnnn
coca
q co C coq O= C) O Oq= O Q Cl C C co q q= co
1
0
0
nN
co C% 0 H N N n n n v C Q vC-C, L7 L7 U) U) L^,� 0O0
fr
n
. .
0H
• . . . • . . . • . • . . • . . . .
ririNNNNNNNNNNNNNNNNNNNNN
co ca
co O g O O q p co g q co co O co co co O co co 0 co co co
1
U)
N0 c
N n C n L7 r r r p co co n m Cl m n Ct 000000
a
• .
. . . . . • . . . . . . . . . . . . • . . . .
a
N
C) O c
ri ri ri ri ri H ri ri ri ri ri ri ri ri ri ri ri N N N N N N
r0 a
O O G g O O co 0000 cogOcogqOO coOgco
O
<U)
.'T.
nL7,ObOLl000riri'-iriNNNNnnnnnn
1 H
�y
N
..
co nO
..,.,............0..•...
O ,O O OJ O ri r t ri r{ ri ri ri ri ri ri ri H ri ri H H ri
Fes-=••
r- r- C:f
co C;co co CO. cO coC) CDq co co g q q C q 0 q q q co W
Le)O
N
C L7 (�(� co CS c1 O O ri ri ri ri ri N N N n n n n n
r♦ t7O
r-4c4 C1C1 Gl C). c1000000000000000
i l� I CO co CO CO CD CO q co CO CO co co co
q
l
O
l7 n
< r lc O •rig N n n < < U) Ln U) L7 to D LD 0 (l r, Q to Vr
1
.O, CO. O CO. M.g CO. O O g O O co q O CD CD co co
U)
C10
.V'
Ic�ir!rrrrr�rrrrrrrrrrrrr
rI=Or r r% OID 0vCn0NNn0 q. ri n%D
1
0
..
O N
•-
..�.�...................•
N N �N EV (N N N N N N N N N N N N N H H H H O O
r-
r-
r jr �rrrrrrrrrrrrrrrrrrr
iol
OC7H
00
00
0100 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00106,01000000000000000000
azF+
1 {�v
riN
L7l'7 p�0 gvgvoNm m000Ln000
ririririririHr-1r♦r♦NNnnvvLn
a
m
10.41
1
1
1
1
1
1
1
EFFECTIVENESS CALCULATIONS
YxVJL%-.1�; SraE2rQ',,E P. U 17 - 4.11, F1„�j STANDARD FORM B .
COMPLETED BY: -� M �J, R Q DATE: 30 9
Erosion Control C-Factor P-Factor
Method Value. Value Comment
PV 0.01 (. o0
W-':A L--^A) 0.0�0 (0.07)
-r7kAI_G� 0.80
�e,..eL GuQg t f�2 LCa F� l . 00 0. to
r'3PcZE C�>Zow�l1� - Rc . U H Chi) I . G o b
j(JAZA90
vJ�-f uctJi
T
MAJOR PS SUB ARE
BASIN (t) BASIN (Ac) CALCULATIONS
78.4-
31, 32
4.7�
�jeEDln t-. ' q/Ze 7-0 19Z
•
7-HA- 14Aye /-Wel-rENr
PAPS.
�/«✓inJ(� 6tJ•« i3G 2E'Q.•�,�y r�l�r-/.�
'f c�
gy��ydr Goo„�G, oreew�sE
!y2AVEL Mut W /S T 8E AA'c/ED (�4"c�iq. - l" {>•+iG% �4rer�.
N
Ary _ 2.0-r— i LI.SM z. 7� e� /
W44- C, - o . c e.- 4. 7 • o, c
%p
9�7o (> 719.4-� �k
7-9 9
33,
$.9q
XISTItJb PA�EN,[��T Gov2P1 P02ricn�S or j3 35
34,
5e��.t u�ul Ct)ic-� /3G� uSFJ� FUL' A 2Es-�S /�/cT
35
lZ�c,c�v/.vG Pq���,�.7�✓i �✓ir,�„✓/ (� wCc-Ks,
51-gA.J PjA ES Aer, To r3e ,,j i1, u.
0.4 Ast'A = $. Sri ,-t_
w��-G� `o.o�(c,.c'n�>+ o,o�(g.59>]' SS.S`� = o•oS8 6
•
6.J�Q- P = o. �
o.css Co. S))too = I� (o C> l`j•`j) c�`
=G P4V/4I6 r)oi5s,J'r oc-e-"2 wrrH,J !p wj4s cp ovcaor
t5Q9Di , 3/4" &1Z4vEL /5 To 6e To 442�5
T 66 /-�4> v4F,0 T /" T,cr 64 pgne.
N-c'
J0- P
I+A-L
MARCH 1991
0mr.m rarmvA
iWA
EFFECTIVENESS CALCULATIONS
PROJECT.: P.0- - 4Frj�L,3 STANDARD FORM B
COMPLETED BY: -Q Fj ci DAM. 5 4
Erosion Control C-Factor P-Factor
Method Value Value Comment
'ar C�V) u. of l•o
TiZa•L.J C3 A t. E�__C S i'J
A R-F- Ca N D -
ZAvrL /A%kLc4
MAJOR
PS
SUB
AREA
BASIN
(t)
BASIN
(Ac)
SD, o-5?
S. lag
0.cti i•r)
CALCULATIONS
Sear T;)/r4, x H 42G To f3lL_ t�-sL=-.n IQ AZeAS
rAl- L,J<L-L_ rJOT 4AVe. P.4VrMc-,JT - 02 F3LP6
-f aPS. -;F4veX-. 5rJ7- WILL HAvr % f3,4&
I.J ir,4, J 40 �JEQkS
13 a u� 5 / k2 rr,(: TD 6E, R-A-c r/i' „J 5LA)Ati es,
��P•ZLac)]' 8•�Z=IL04(
p/r•Auw{ w«L- C3G u,�jr(7 �oi2 �OLJ1�.
wfsF= 1.0
/ J (o
*iF PAv/Nb 15 mar PEE uJrr,,,,j to wKs or= cvmL0r-6eAoA4j
C72AVCL Mu.L1H 15 To Rr u.sc_0 AjS7-rr,.g0.
MARCH 1991
8-15
n FSLG,J morn,•
EFFECTIVENESS CALCULATIONS
PROJECT: `-ToFz�f� �uD T12D �v_�'H Fu�J6S STANDARD FORM B
COMPLETED BY: P,)D DATE:
Erosion Control C-Factor P-Factor
Method Value Value Comment
OAPF-
��Y�✓.T'�PY�----- d, OI ff , oo
�.100
MAJOR
PS
SUB
FREA
BASIN
(t)
BASIN
(Ac)
CALCULATIONS
1(0,
7.
AkL-H w,l� c3,✓ usr� HRa�HO�r
17,
TE G- �Nr,5vJAL-E5, A -so #3atjKs� �r�
j g�
A�J i3A�S Diu SE- AT VA2,oeL-S
Lnnoc Tion}j qco THE -Pi LjP/qTH-S.
—
=CI- D,o.Z5),1o0 - g0,�2 > 7lP 4
704,
(,AA,z,�s
21-3a
n/or ��ec�a5�00�2/�yJ/rJ% D�
F=-aOway
G YrL ilLc7- �� ornE s AT- ALL- ,��7-S
}k��� = iO• I4— ti� ,46M = 2,0e�z- Ate= 3. I
= O. 2S
> 78,4%
012-,
DL
MARCH 1991 8.15 DESIGN CRITERIA
EFFECTIVENESS CALCULATIONS
PROJECT: SrDG� �. D. - f:�',",J& STANDARD FORM B
COMPLETED BY: TPtA DATE:
Erosion Control
Method
cJ F{t1,GS
C-Factor P-Factor
Value Value
BASIN ($) BASIN (Ac) CALCULA
Comment
Fir 6w43 ✓V4-r- S
TICNS
SQ• Z 16=29 22.38 �Po2s7 e y �o,�v/tifk gut ✓,« u�Eo
ci2 �2i�75 TvATQ2e D/rCCLGT (a/��Qr/',
r=/Lc,*'
c:r S�/Lt1 �FyJr /✓✓1utGy L1iLL GLccJ l/I$TRCl
o J
C�28 /�tk r5 /ice c t ��rE� y 4 F Trc2 Go JS7A
a�� ��s. R✓ To �� t'L<1c �� ✓ ✓' ��
��'nn`G= LO.rI (o.o�.• 22.2%��.n`��/Z2.38' - C.oi.�
MARCH 1991
8-15 DESIGN CRITERIA
7A
' Table 83 C-Factors and P-Factors for Evaluating EFF Values.
Treatment C-Factor
P-Factor
'
BARE SOIL
Packed and smooth .............................. 1.00
1.00
Freshlydisked ...................................................................... 1.00
0.90
'
Rough irregular surface........................................................... 1.00
0.90
SEDIMENT BASIN/TRAP................................................................. 1.00
0.5011
STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ 1.00
0.80
SILT FENCE BARRIER..................................................................... 1.00
0.50
'
ASPHALT/CONCRETE PAVEMENT ................................................... 0.01
1.00
ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A
1.00
SODGRASS................................................................................. 0.01
1.00
TEMPORARY VEGETATION/COVER CROPS .................................... 0.451-1
1.00
'
HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10,31
1.00
SOIL SEALANT ............................. ............... ................ ...... ..0.01-0.601"
1.00
'
EROSION CONTROL MATS/BLANKETS............................................ 0.10
1,00
GRAVEL MULCH
'
Mulch shall consist of gravel having a diameter of approximately
1/4" to 1 1/2" and applied at a rate of at least 135 tons/acre.............. 0.05
1.00
HAY OR STRAW DRY MULCH
'
After Planting grass seed, apply mulch at a rate of 2 tons/acre (minimum):and adequately
anchor,
tack or crimp material into the soil.
slope W
1 to 05... .....0.06
1.00
6 to 10....:........................................................................ 0.06
1.00
11 to 15........................................................................... 0.07
1.00
1to 20� 0.11
1.00
21 to 25 . .
...........................................................................0.14
1.00
25 to 33.............................................................................0.17
1.00
> 33.......................................................................... 0.20
.1.00
NOTE: Use of offer C Factor or P Fa, -tor values refined in this tab'e must be sub=rtti. ,ed by dxvmentadon.
(1) Must be constructed as the first step in overlot grading.
'
(2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are
not required.
(3) ' Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated.
(4) Value used must be substantiated by documentation.
0
1
' MARCH 1991 8.6 DESIGN CRITERIA
'
CONS TRDCTION SEQUENCE
^ROJECT:oa
E u. D, - Q F(,
STANDARD FOR.H C
SEQUENCE
1
FOR 19. �t ONLY- COYPLETEA, BY: TPA
DATE:
Indicate
by use of a bar line or slruols w`en erosion control measures will be installed.
'Yajcr
modifications to an approved schedta a Way recuire submitting a
new schedule for
approval
by the City Engineer.
YEAR
Icj�1 ¢ jj
I el S
'
MONTH
/AAy1�,J IIA ° I ^� I �I.TI
I
�IMIAr
I
!
'OVER_ OT GRADING----,
WiXD. EROSION CONTROL
soil Roughening____..._—-��—
' Perineter Barrier
Additional Barriers
Vegetative Y.ethods
' soil Sealant
other
' rfiINFALL EROSION CONTROL,
S TRUCTU'RAL :
Sed sent Trap/Basin
Inlet Filters
' ' Stzaia�3a.rrie—•------ .._...
Silt Fence Barriers
' Sand Bags
Bare Soil Preparation
Contour Furrows
Terracing
' Asphalt/Concrete Paving
Other -&zAvCL N, uLH
' VEGETATIVZ:
Permanent Seed Planting
..ulchinv_/Sealant
Temporary. Seed Planting
Sod Installation
Nettings/Y.ats/Blankets
' Other
ITRUCTURF_S: BY YAINTAIhiD BY
-GETATION/YULCHING C0NTRACTOR
nT3 SUBMITTED APPROVED BY CITY OF FORT COLLINS O1i
' MARCH IsS1 8.16 DESIGN CRITERIA
-11
CHARTS, TABLES,
& FIGURES
-1
No Text
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
r
DRAINAGE CRITERIA MANUAL
50
30
1-- . 20
Z
w
U
cc
w
Cl- 10
E�i
w
a
OJ 5
w3
cc 3
O Z.45
U 2
F- 16
o$
o.�
5
RUNOFF 78
�=00011n�AFAIVAU5111riffm
MENSmn�
�riI��u:,�
a�
�::e!A::!:1�
�rl
—___..M....,._,�,,._I___...._
.1 .2 .3 .5 1 5 10 20
. l'Li�4 2•L 2.
VELOCITY IN FEET PER SECOND
FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR
USE WITH THE RATIONAL FORMULA.
*MOST FREQUENTLY OCCURRING "UNDEVELOPED"
LAND SURFACES IN THE DENVER REGION.
REFERENCE: 'Urban Hydrology For Small Watersheds" Technical
Release No. 55. USDA, SCS Jan. 1975.
5-1-84
URBAN DRAINAGE 3 FLOOD CONTROL DISTRICT
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
i
1
1
STORM DRAINAGE DESIGN AND TECHNICAL CRITERIATTABLE 3 ,
3 of 3
�y
STORM SEWER ENERGY LOSS COEFFICIENT
(BENDS AT MANHOLES)
i
1.2
t
1.0
I
0.e
Bend at Manhole,
I
no Special Shaping
I
I
Deflector
0.6
t
Curved
I
0.4
y
Bend at Manhole.
Curved or Deflectorl
I
I
Manhole
0.2
I
I
1
I
Xo
I
I
u zu- 4V 60° Soo goo 1000
Deflection Angle i , Degrees
NOTE: Head loss applied at outlet of manhole.
r
ATE: FEB. 1989 REFERENCE:
REV: Modern Sewer Design, AISI, Washington D.C., 1980.
ACSDDTC 8-12
i
'(
I
I
1
r
1
STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA
MANHOLE AND JUNCTION LOSSES
°, • -- -- o�•,
PL.AN
b<pwraaa - -
USE EQUATION 801 ECTION
NOT[: Fm Any Type
of I.let.
CASE I
INLET OR STRAIGHT THROUGH
MANHOLE ON MAIN LINE
0
\1-
a.el
' I USE EQUATION 805
IJ
1
i
Ones
1
PLAN
ECTI N
CASE m
_MANHOLE ON MAIN LINg
WITH 9° BRANCH LATERAL.
°alto
!ti
°y PLAN
oe
SECTION
TABLE 803
USE EQUATION 805
.CASE II
INLET ON MAIN LINE
IN
PLAN
USE EQUATION 801
Os r.
t
SECTION
CASE
INLET OR MANHOLE AT
BEGINNING OF LINE
CASE
III
CASE N0. m
K m
I 0.05
22-1/2
0:15
II 0.25
45
0.50
IV 1.25
60
0.35
90
0.25
No Lateral See Case I
Date: FEB 1989
Rev:
ACSDDTC
REFERENCE: APWA Special Report No. 49, 1981