Loading...
HomeMy WebLinkAboutDrainage Reports - 07/23/1993STORMWATER REVIEW COPY PLEASE RETURN WITH RESUMATTAL I'F't01'F:�FiT�' C�LLItNS U�T4UII4T4UF FINAL DRAINAGE AND EROSION CONTROL STUDY FOR STONE RIDGE P.U.D. SECOND FILING FORT COLLINS, COLORADO R$por� 1 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FINAL DRAINAGE AND EROSION CONTROL STUDY FOR STONE RIDGE P.U.D. SECOND FILING FORT COLLINS, COLORADO June 18, 1993 Prepared for: The Kaplan Company, Inc. 1060 Sailors Reef Ft Collins, Colorado 80525 Prepared by: RBD, Inc. Engineering Consultants 209 South Meldrum Fort Collins, Colorado 80521 (303) 482-5922 RBD Job No. 503-002 INC. ' Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 303/482-5922 FAX: 303/482-6368 ' June 18, 1993 ' Ms. Kate Malers City of Fort Collins Utility Services Stormwater ' 235 Mathews Fort Collins, Colorado 80522 ' RE: Final Drainage and Erosion Control Study for Stone Ridge P.U.D. Second Filing 1 1 1 1 Dear Kate: We are pleased to submit to you, for your review and approval, this revised Final Drainage and Erosion Control Study for Stone Ridge P.U.D. Second Filing. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, RBD Inc. Engineering Consultants Roger A. Curtiss, P.E. Project Engineer Kevin W. Gingery, Project Manager Other Offices: Denver 303/458-5526 • Vail 303/476-6340 TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION 1 A. LOCATION 1 B. DESCRIPTION OF PROPERTY 1 I1. DRAINAGE BASINS 1 A. MAJOR BASIN DESCRIPTION 1 III. DRAINAGE DESIGN CRITERIA 1 A. REGULATIONS 1 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2 C. HYDROLOGICAL CRITERIA 2 D. HYDRAULIC CRITERIA 2 E. VARIANCES FROM CRITERIA 2 IV. DRAINAGE FACILITY DESIGN 2 A. GENERAL CONCEPT 2 B. SPECIFIC DETAILS 3 V. EROSION CONTROL 4 A. GENERAL CONCEPT 4 B. SPECIFIC DETAILS 5 VI. CONCLUSIONS 6 A. COMPLIANCE WITH STANDARDS 6 B. DRAINAGE CONCEPT 6 C. EROSION CONTROL CONCEPT 6 REFERENCES 7 APPENDIX VICINITY MAP 1 SITE HYDROLOGY 2 DETENTION FACILITIES 8 DESIGN OF CURB INLETS & STORM SEWER 17 DESIGN OF CHANNEL AND SWALES 25 DESIGN OF RIPRAP 33 EROSION CONTROL 35 CHARTS, TABLES AND FIGURES 40 FINAL DRAINAGE AND EROSION CONTROL STUDY ' FOR THE STONE RIDGE P.U.D. SECOND FILING FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location 1 The Stone Ridge P.U.D. development is located immediately northwest of the intersection of Horsetooth Road and County Road 9. The site is bounded on the north by the proposed Pinecone P.U.D. project, on the west by Dakota Ridge, and on the south by Stone Ridge First Filing. The ' site is shown, along with the First Filing on the Vicinity Map in the appendix. More specifically, the site is situate in the South 1 /2 of the Southeast 1 /4 of Section 29, Township 7 North, Range 68 west of the Sixth P.M., City of Fort Collins, Larimer County, Colorado. B. Description of Prop ft The Stone Ridge P.U.D. Second Filing contains approximately 16.96 acres more or less which is currently undeveloped and will be developed into ' single family residential lots. The majority of the property consists of cultivated farmland. Existing topography is generally sloping from the west ' to the east at approximately 0.5%. ' I1. DRAINAGE BASINS A. Major Basin Description ' The site is located in the Foothills Basin. The drainage area is specifically described in the report entitled "Foothills Basin (Basin G) Drainage Master ' Plan" prepared by Resource Consultants, Inc. dated February 1981. DRAINAGE DESIGN CRITERIA A. Regulations The City of Fort Collins Storm Drainage Design Criteria is being used for the subject site. 1 ' B. Development Criteria Reference and Constraints The Foothills Basin (Basin G) Drainage Master Plan criteria and constraints indicate that the entire Stone Ridge P.U.D. site is to contain a permanent on -site detention facility in the northeast corner of the site. Ultimately the ' permanent detention pond will be required to release no more than 33 cfs of storm water runoff during a storm event. Temporary storm water detention ponds are to be designed to release up to the 2 year historic runoff rate for the site. Storage volume is to be the difference between the 100 year developed runoff and the 2 year historic ' runoff. C. Hydrological Criteria The rational method was used to determine runoff peak flows from the site and the surrounding off -site tributary areas. The 2 year and 100 year rainfall ' criteria, which was obtained from the City of Fort Collins, is the criteria which was utilized. The criteria is included in the Appendix. ' D. Hydraulic Criteria All calculations within this study have been prepared in accordance with the City of Fort Collins Drainage Criteria. E. Variances from Criteria ' The grassed swale th%u hQ the greenbelts of this project will be graded at approximately 0.6%. A variance is being sought to let the bottom of these remain grass, instead of installing concrete trickle pans. Storm sewers have been designed to accommodate the 2 year storm events for the ' surrounding basins. ' IV. DRAINAGE FACILITY DESIGN ' A. General Concept The Stone Ridge Second Filing is planned as a single family residential housing development. The Second Filing will include 43 single family residential lots. Storm water flows will be generally routed along historic drainage patterns, or from west to east. Included in the back pocket of this report is the Drainage, Erosion Control, and Offsite Grading Plan. • 2 ' B. Specific Details ' Basin 10 is a small portion of the site in the northwest corner of the site. Developed runoff from this basin will be collected in a small swale around the west and the north of the basin, and conveyed to a 15" RCP storm % sewer under Creekstone Drive, then conveyed along the north property line in a grass lined channel to the temporary detention pond. Basin 11 consists of residential lots and Jadestone Court. Developed runoff ' from this basin will be directed to Creekstone Drive and then south along Creekstone to a low point on the west side of Creekstone Drive. The minor ' storm will be collected in a curb inlet and storm sewer, the major storm will overtop the curb and will be directed east and north through the green belt to the northerly property line and routed east to the temporary detention pond. Developed flows from Basins 7 and 8 of the First Filing will also be collected at the low point in Creekstone Drive, and routed along with the flows from Basin 11. 100 year flows will overtop the crown of Creekstone ' at a depth of approximately 0.34', and would be approximately 110' wide. The storm sewer for the project is intended to convey only the minor, or 2 ' year runoff through the site. All major, or 100 year flows will be directed to the temporary detention ponds by surface swales and channels. ' Basin 12 consist of the westerly half of the lots along Creekstone Drive. Developed runoff from this basin will also be conveyed to a low point in ' Creekstone, and further conveyed to the temporary detention pond as described above. �— -' Developed runoff from Basins 13 and 15 for both the 2 year and 100 year storm events will be directed to the green belt, towards the northerly property line, and ultimately east to the detention pond. None of the ' developed flows from these basins is intended to enter the storm sewer. Basin 14 consists of residential lots and Jewelstone Court. Developed runoff ' will be conveyed to a low point located at the north side of the "T" intersection. The minor storm will be passed through a metal sidewalk culvert, and then to an open channel between lots 27 and 28. From there ' open channels will convey flows to the temporary detention pond. 100 year developed runoff will overtop the sidewalk culvert and will be directed to the open channel. Developed flows from basins 7, 8, 11, 12, 13, 14, and 15 are all being routed towards the northerly property line to be routed east to the temporary ' detention pond. These developed flows will remain separate from any of the ' 3 1 ' developed flows from the Pinecone or Dakota Ridge projects. None of the developed flows from either of those projects (Pinecone P.U.D. or Dakota ' Ridge)is intended to flow to the on -site detention pond within the Stone Ridge P.U.D. ' Basins 1-1 and 2-1 coincide with basins 1 and 2 of the First Filing Report. The intent of these basins remains as established in the First Filing. Runoff will be directed towards Fieldstone Drive, and then directed easterly in the ' curb and gutter. At the present time, runoff is collected in a temporary channel and directed north, and then east to the detention pond. The channel section installed with the First Filing will be relocated approximately ' 200 feet to the east. Developed runoff will still be routed north and then east to the Detention pond. When Fieldstone Drive is developed east of Kingsley Drive, curb inlets will be required to be installed as shown on these plans. ' A storm pipe up to the northerly Right -of -Way line of Fieldstone Drive will be installed with this filing for those future curb inlets. ' The owner of the Stone Ridge P.U.D. site does not wish to use the existing pond at the northeast corner of the site for storm water detention at this time. A temporary detention pond was built with the First Filing, and was ' sized per the FAA method to accommodate developed runoff from the First and Second Filings of Stone Ridge. The detention pond contains a type C area inlet and orifice plate in the pond bottom. The area inlet acts as a sediment collection barrier to help prevent sediment from entering the _ existing pond at the northeast corner of the site. This inlet will need to be cleaned out on a regular basis to ensure maximum benefit as a sediment ' collection barrier. A straw bale barrier should be placed around the area inlet outlet structure to help with routine maintenance. The area inlet is temporary with the temporary detention pond and will need to be removed once the permanent detention pond is constructed in the future. With the development of the Second Filing, a new orifice plate will need to be installed in the area, ' inlet. The existing orifice plate has been sized for a release rate of 18.6 cfs; the new orifice plate will contain an orifice sized to allow a release rate of 14.8 cfs. ' Storm water exiting the temporary detention pond will be transported down the approximate 10% slope by means of a riprap channel and enter the ' existing pond at the northeast corner of the site. The existing pond has an outlet pipe which discharges into the Fossil Creek Reservoir Inlet Ditch. An overflow weir has been installed on the northeast side of the temporary ' detention pond in the event the outlet pipe becomes plugged with sediment. As future development occurs, the temporary pond will be removed and the existing pond will be used and upgraded to City Stormwater Utility standards. 4 LI ' V. EROSION CONTROL A. General Concept .The Stone Ridge P.U.D. Second Filing lies within the Moderate Rainfall and Wind Erodibility Zone per the City of Fort Collins zone maps. The potential exists for erosion problems during construction of the Second Filing and ' after construction until the disturbed ground is revegetated. It is anticipated that the Second Filing improvements will be started in the spring of 1993. Thus the new improvements will be subject to both wind and rainfall ' erosion. Per the City of Fort Collins Erosion Control Reference Manual for ' Construction Sites and related calculations in the appendix, the Erosion Control Performance Standard for this project is 75.7%. From the calculations in the appendix, the, effectiveness of the proposed erosion ' control plan is 85.6%. during the construction portion of the development. Therefore, the erosion control plan, as specifically detailed below, meets the City of Fort Collins requirements. ' B. Specific Details ' Prior to the start of Overlot Grading, the first step is to insure that the Erosion Control Structures and measures, as installed with the First Filing are in place, and that the existing Temporary ' Detention Pond will function as a Sediment Trap for the Second Filing. After the Overlot Grading has been completed for the Second Filing, all disturbed areas not in a Roadway or Green belt area shall receive a temporary vegetation seed applied per the City of Fort Collins specifications. After seeding, a hay or straw mulch ' shall be allied over the seed at a rate of 2 tons/acre minimum, and the mulch shall be adequately anchored, tacked, or crimped into the soil per the City specifications. All new channels and swales shall receive straw bale check dams as soon as possible after ' overlot grading. Where possible, the existing vegetation and established grass shall be maintained. Fstraw bale dikes shall be ' ced in channels as shown on the Drainage and Erosion Control Plan, and und .the existing type C outstructure located in the temporary r ention pond. ' The pavement structure should be applied as soon as possible after the utilities have been installed. After installation of the curb inlets along Creekstone Drive, the inlets shall be filtered with a 5 I ' combination of concrete blocks, 1 /2" wire screen and 3/4" coarse gravel, constructed according to the detail on the detail sheet. After installation of the storm sewer within the green belt area, the green belt shall have a permanent seed mix and mulch applied ' per the City specifications. The existing temporary detention pond should be further excavated to allow ' for an additional 54 cubic yards of sediment load anticipated with the construction and development of this project. VI. CONCLUSIONS ' A. Compliance with Standards All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. ' B. Drainage Concept The temporary detention pond, built with the First Filing; will adequately ' provide for the detention of developed on -site flows from Stone Ridge Second Filing. The orifice plate in the outlet structure will have to be ' replaced to allow for an adjustment of the allowable release from the pond. The street conveyance system will adequately transport developed runoff from the Second Filing to the permanent and temporary channel sections. The developed storm water runoff has been controlled in order to eliminate off -site downstream damage from up to and including the 100 year storm event. ' The proposed drainage concepts presented in this report and shown on the drainage plan are in compliance with the City of Fort Collins drainage criteria. C. Erosion Control Concept ' The proposed erosion control concepts adequately provide for the control of wind and rainfall erosion from the Stone Ridge P.U.D. Second Filing. ' Through construction of the proposed erosion control concepts, the City of Fort Collins performance standards will be met. The proposed erosion control concepts presented in this report and shown on the erosion control ' plan are in compliance with the City of Fort Collins erosion control criteria. 6 1 1 1 1 REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, Revised January 1992. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991. 3. Foothills Basin (Basin G) Drainage Master Plan, Fort Collins, Colorado, by Resource Consultants, Inc. February, 1981. 4. Master Drainage Study for the Pinecone P.U.D., Fort Collins, Colorado, by RBD Inc., March 1992. 5. Final Drainage and erosion Control Study for Stone Ridge P.U.D. First Filing, Fort Collins, Colorado, by RBD, Inc. September 1992. 7 1� APPENDIX sNEaRW wooe rn bl.0 1 STOItERIDGE FIRST FILING I if mmm 1 \ t• STONE IDGk SECO I i --Z 1J VICINITY. . AP' 1 Z/� SITE HYDROLOGY 1 CLIENT L'6'�b� JOB NO. NC PROJECT 2MJ CALCULATIONSFOR Engineering Consultants MADE BY-2ar-1 DATE ZI2S, CHECKED BY DATE —SHEET OF t 17S� .... . . ....... -- ---- ----------- --- —T --- ---- . ... ... ... J -- ------ --- 1.7 "'2_IHNJ S _T .. ............ ------ 0. .......... 5, 4,o ----- - 4c> -- - ------- I I J...... ..... . ...... ei=-svbe),� ri 1- A... .... ... Y. i -7ay(=- 1. & ­ J. - - - - - - - - - - . . . . --- -- - - - ­ ­ --------- ­ - ---- 4 - ZTS�l 1---------­ --------------- — .... . . J (I C) -- ------- --------- ---------- -- --------- r 711 - ­ - - ----- -- --- ---------- T);= 0 I. — ___ 7 J­ to i! 4-eQ -- ----- ik ---------- t -56) 4'� .6. .74'� _21 4­ -- ------------- A ....... c� 7 lIJ it -- ---------- ------ IL A NX=. Z,� Z�)E 1 4�5 T .......... "PrE c 14r. 9 -I P92 Isr- r-= tL-A rJ m m STANDARD FORM SF- 2 W07 (OW dOW-C ON'�z TIME OF CONCENTRATION oo�._ ___. pi. GL7C.LlMS STD. SUBDIVISION STor.l� 2iDC�t= 2r 1 8, Cc�enss Fet. ZS,93 CALCULATED BY DATE tc= t�+t j eaD i i SUB -BASIN DATA INITIAL/OVERLAND TIME (t•) TRAVEL TIME tt FINAL tc REMARKS DESIG; (I) AREA Ac (2) C (3) LENGTH F/ (4) SLOPE % (5) ti Min (6) LENGTH FI (7) SLOPE % (8) VEL. FPS (9) tt Min (10) CALCULATIONS FOR COMPOSITE C Min -7 z_m %.7-/ -740 o.s I.s 8.2✓ pie Isr �iuN.c� `e- -1-I 3.`34 0.4z -a-Z 2.0o IS.( leo 5S I.ss S.I P�� Is-r �,u�.ic� ✓ 23.Z Z -re 8>-1 Z,61 0,47 IoS 2.oc> 9,G 375 o.Gr> 1.60 3 PE2 Isr �=iuNc. 13.5� Z tie. Io I.do d.4o go Z.o 03.3 o p.F� 9,?x�, 7. I I I.93 0.4$ lo0 2.0 9.ZJ Zso o.so I•s � 1Z o.7Z o.-i1 �o z.a 3.-T ✓ 450 0(�o I,co d.�r g Z. ��_ ► 3 �. Z4. d.4-t Coo z: o -7.9V 990 0 . �0 � . zs (3.Z✓ ZI . I � Z 14 2.3G o . rsz 4(� 2. zI ,s✓ 33c� D' I . 3 _� g.Z Z tee, (S 4.2b o.4o �75 Z.o `j c) 44o I.a 1.l�,0 ✓ Z-1 3.09 o.s0 ss Z,o C�.lo� 14wo O,S I.S I%.Z P�� IsT ��u..►� 22.8� Z Y2 Li -I o,�s O.so Ci0 Z_o g.4� 300 o•S I.S 3.3� ��e ISr �lu>.rc� I1.7•✓ Z .-�e STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA • � I IJD�cd"t>=S �v iSioti ��M au�i�1�L Suarv�� �T� WRC ENGINEERING, INC. C3.1� JcL 1Jo. �3 -ooZ 2 STANDARD FORM SF 2 �' •- � � ^ lao ` a. TIME OF CONCENTRATION �T. Got..LtuS STD. SUBDIVISION !S --IF Z' oy>= Znd CALCULATED BY &, CL-enss DATE FE_=e�_zr_ t.- t.+t" SUB -BASIN DATA INITIAL/OVERLAND TIME (t•) TRAVEL TIME tr FINAL tc REMARKS DESIG. (I) AREA Ac (2) C (3) LENGTH Ft (4) SLOPE % (5) ti Min (6) LENGTH . Ft (7) SLOPE % (8) VEL. FPS (9) tj Min (10) CALCULATIONS FOR COMPOSITE, C - Min t -740 o.s (.S 8-Z pie Isr Fiur.tc� 14.3 Im-r� �— I 3. ZZS Z.O� Iz.B 7�o - O. rig I.SS �. I PE>= IST �IU rbcr ✓� 8-I Z.61 0,477 lc>S 2.oc-.> -7.g 3-75 O.E,o I.C�o 3,9 PEe IsT C�un4v I I .-7 � I mti er -7. 1 17.6 loose I I 1.93 �,4g loo �.o -7.4 3� o � I.s 1-6 (=>-Z I 13.E Icoye 1 Z o.7 z o,-71 4o z, o 2,0 450 o.c o 1, co 4_7 •6.7 ✓ I m,ce- 13 4. Z4 d. 41 Fro Z. o 6.5 94:)0 o . 13 . Z � 20,0 (oOYe_ 14 213(m o Z 40 2,0 3. ► 33L, 0.50 I.SD 3-7 �.8� Imtire. I S 4.2.b o . 4o 7 S Z. o 7.7 44o 3Zo I . a o.= , , I.zs S_9 Z-I Sc)3. p.sp rjs Z,o s.Z I46c, O.s I.S I(c.z P1=e- Isr =iuQc ZI _4 ICXDYe -1 o,%S I 0-eo 90 Z.o 6.7 80o O.s I.S 3,3 r->f-=e Isr loc_�'Y2 .J 1 UKM UKAINAUt UtUIUN ANU TECHNICAL CRITERIA WRC ENGINEERING, INC. 1 ��LZJ_Qa J..lo -- So3 - ooZ 1 1 Film Loco t ion A . Design Point- •= .: , NMIm --©©m®o�oom m �i� - -• -- i(i • _- �m��iei i - - • mmi®i�i®�� . - • - • ®�a�m®�i� - - - �i m�iii� �mm�m - -- ®��i�iii�ia �■ii��i�� it - - -_ � i�s���ii��ii�®ii��i�i■ i - - . - - . I i 1 1 1 1 i 1 1 1 1 1 1 LocationSTORM Design Point Remarks iii�iii�i ► ' _ �iii ®i�ii - ii�ii��iii�i ...�■.ii.iii�.i i ®iaiiim� - • ��� iim�+����.. FEW," i i ii.wii■•••••ii•■•••ii.iiii iiii.■�i.i.■......�iiii�.■.i....ii MMm®m��i.i.iis.i•..i..®ii..i..iii..� .. ii®®i® ®®®®®®®®®®®®®®®®®®®®® t r - RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA OVERFLOW WEIR AT CREEKSTONE DRIVE TO GREEN BELT F. 3.000 STA ELEV �+ 40.2 21.86 C C�tv�sl QL - ?-7. Z 54.2 21.79 �ZI.SS STO. IrdZ.4✓- 170.8 �21.11 190.8 21.31 198.3 21.40 ZI.SS L' STy. Z+11•o7 229.8 21.77 N ELEVATION DISCHARGE (feet) ......... (cfs) 21.21 ......... 0.0 21.31 1.3 21.41 7.6 21.51 19.7 FaLfay. 21 • SS 21.61 38.7 21.71 65.4 ♦a / I C�tCZTa P_--@ Z r- ST_A...---- ro_._. l ■AINC Engineering Consultants 11 1 0 1 11 1 1 '.J 1 CLIENT ���L—O t�i rd= . JOB NO. PROJECT TLC 1J M I y %Ij CALCULATIONS FOR MADEBYE�L' DATE CHECKED BY— DATE SHEET OF +� 1 1 t 1 1 1 1 1 CHART 10 ISO 10,000 168 0,000 EXAMPLE (I) (vet) (3) 156 6 000 ' D•42 Inches (3.5 full) 6. 144 5,000 0. 120 sit 5. 4,000 Lm • NI7 6• S. 132 D fen 3,000 5. 4. 120 u) 2.5 e.e 4' (2) 2.1 7.4 108 2,000 (3) 2.2 7.7 4. 3, OD In,tult 3• 96 1,000 3 coo 64 600 2. 2. 500 / 72 400 a 2. x 300 2 N = 60 7200 1sw I3 2 W c 54 a $ 4 t— 100 C j 46 0 cc 80 Z � / Q x LL150W 42 0 60 Ow I.0 1.0 0 c HW ENTRANCE 0 ir 40 ALE TYPE W I.0 W m 36 30 (1) Spare edge with < 9 9 33 headwall C .9. Q C 2 (21 Groove end With Q W 30 hood.all x .8 8 (3) Groove end •6 27 projecting 10 24 8 7 .7 T 6 To *of same (2) or (3) Praises 21 5 horizontally to woes (1),Ihon 4 see otralght Inclined line through D and 0 scales, or reverse es 3 Illustrated. '6 .6 18 2 15 1.0 .s S .5 `12 HEADWATER DEPTH FOR HEADWATER SCALES 2153 CONCRETE PIPE CULVERTS BUREAU OF ANLIC ROADII JAK190 REVISED MAY 1964 WITH INLET CONTROL 181 Preceding page blank t1a a 0 PROJECT: STATION CULVERT DESIGN FORM SHEET OF DESIGNER/DATE: / REVIEWER/DATE: / HYDROLOGICAL DATA ELnd 24• S (It)— ROADWAY ELEVATION ?•S Ilol M ❑ METHOD: x •' ❑ DRAINAGE AREA: ❑ STREAM SLOPE: ❑ CHANNEL SHAPE: u 3rJ" HWI ELTt: I}tI So:-N a ROUTING: ❑ OTHER: --,�OR161NA �STp _DESIGN FLOWS/TAILWATER d FALL —� COED Tot ELI Ito) _ R.I. (YEARS) FLOW(clo) TIN((I) S>,.So- FALL/L ELp: S Ld•—� -. CULVERT DESCRIPTION: R0� FLO*^ HEADWATER CALCULATIONS : MATERIAL - SHAPE -SIZE • ENTRANCE o i w INLET CONTROL OUTLET CONTROL lalOa) O/N ► O > EWE o mow' COMMENTS NWt/D NWI FALL ELhI TW dC d..D hp k H EL hp 2 �SI �cp 1 2 ] 1 S T p u x u O> w�FEs D.8 b.8 2.8 3.S 34-2 D.Z. D.5 0.9 D,9 O.s 'D.ZD ZI.7 Zd.S 3 7 I TECHNICAL FOOTNOTES: (4) ELM- HWI• ELI(INVERT OF IS) hp • Too w (dp+D/2)(WHICHEVER tS GREAIM) 11) USE 0/118 FOR BOX CULVERTS INLET CONTROL SECTION) (T) H•C• hp. 129 R2 L) /RL33 V2/20 (2) HWI /D • HW �/ OR HWt/D FROM DESIGN CHARTS .3. S -[ 24, S - Zl •O) (S) TW BASED ON DOWN STREAM (8) ELhp• EL. t H • hp CONTROL OR FLOW DEPTH IN 13) FALL• HWI-(f(((EEEEELhd- ELatl i F& IS ZERO CHANNEL. FOR OXVER S ON GRAD SUBSCRIPT DEFINITIONS : COMMENTS / DISCUSSION : CULVERT BARREL SELECTED a. APPROXIMATE SIZE: I S, I. CULVERT FACE hd. DEBTOR HEADWATER hi. HEADWATER IN INLET CONTROL e�C�ht he. HEADWATER IN OUTLET CONTROL SHAPE: 1. INLET CONTROL SECTION a. OUTLET MATERIAL: eCP „ o. 013 91, STREAM" TREAMABED AT CULVERT FACE ENTRANCE: FLZXFa[) G:QDS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 RSD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION CHANNEL FROM CULVERT a CREEKSTONE DRIVE TO THE EAST ELEVATION (feet) 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 STA 0.00 20.00 40.00 'N' VALUE 0.035 AREA (sq ft) 1.0 4.0 9.0 16.0 25.0 36.0 49.0 64.0 81.0 100.0 '•SI MtQ. ELEV 20.00 15.00 20.00 SLOPE (ft/ft) 0.0150 VELOCITY (fps) 2.0 3.2 4.2 5.1 5.9 6.7 7.4 8.1 8.8 9.4 DISCHARGE (cfs) 2.03 12.88 37.97 81.76 148.21 240.98 363.46 518.87 710.29 940.64 FROUDE NO. 0.72 �Qz= ((1� O.t3c�c�S G� = O•Zdl 0.80 E GZ uo = Z - 4 c �s ci = p . S4-� 0.86 0.90 0.93 0.96 0.99 1.01 1.03 1.05 1 100= C).� I DESIGN OF DETENTION FACILITIES RMINC Engineering Consultants 1 1 1 1 'J CLIENT %APL_W4 r� JOBNO. ,523-=07 PROJECT STL7 - r M CALCULATIONS FOR J LITInbI_i MADE BY DATE CHECKED BY DATE SHEET 9 OF �e_ /, 870,/-CCf),q STANDARD FORM SF— 2 7 T= V TIME OF CONCENTRATION cc = / 06 ZY,e SUBDIVISION Sfancr„ly C. Cc CALCULATED BY KwG RBa DATE S -ZO-yz f, = t;+t, t _ SUB -BASIN DATA INITIAL/OVERLAND TIME (t•) TRAVEL TIME tr FINAL tc REMARK DESIG (I) AREA Ac (2) C (3) LENGTH Ft (4) SLOPE % (5) _ t/ Min (6) LENGTH F1 (7) SLOPE % (8) VEL. FPS (9) I t1 Min (10) CALCULATIONS FOR COMPOSITE C - - Min $ Z.61 d,47 /os- Z,00 7,8 37S a. Go /.!0 3,9 see -pfrs-/sl,ee- //,-7 /ooYR 9 0.6.s o,so 90 Z.o0 8"y 300 015-1 /,5 3.3 //17 9 0,65 o,s0 90 2.00 4,-7 300 0,5 /,S 3.3 /D , d /Oo 62 0-1 3.0 O;Zo yso 0•71 37,8 - - - - 37,8 N/ 578,e/c >ooY2 0-2 8.9 6. ZO .SOo 6.31 52.5 yy0 0,31 o,7 /a,S G3, 0 370,2/G /oo y,e 0-3 2Z.7 O. Zo. SOD 0.6o y2, / BSO . d, 35 0."1 20,Z 62,3 >eo Yo easws I-q Z5.29 0,20 500 1,1 36.5 1950 0.55 0 , 55 s9. / 95. ro z Y,e ///57•o,prG BA5/n/5 . oo,o-z, 3y,6 0,20 Soo 0.8o 38.3 10oo 0.67 0.S8 5/,7 90.0 /Od Y,e /t /sroer c 0-1 3,0 o.so q50 6.71 21.1 - - - - Zl,/ oE'UEcoPEo /00Y9 0--Z. 8.9 0.50 Soo 0.31 29.3 yY0 0.31 /, y 5, z 3y, S pEVEGa Ea loo YR J I UKM UflAINAGE DESIGN AND TECHNICAL CRITERIA WRC ENGINEERING, INC. �x r s A /00 YR joayo'_ rooY2 100 YI- 2 Y2 100 YA u'2YR. w I00 y2 ZYQ ZYK HISTUIC Mote HISTORu Ccr rA By KwI; 2 -s1, S-2G-R Z STORMDRAINAGE �iisi3'�Tr'ii�i�'�'•�' ���iii�ii��ii �iii�l�®iii��iii�ii�iii '• �L`�QQ�31QFiL1GIC�iIr7Ai��L� Imo'-7i�t�iiiiii�ii • • - . ZEN �iilQlr�f�likFd/������lt�13�'�-_'�'li►.�1t.L-�Fa�iii —__----_----- ���A��iiii���iiiiii��ii '• QF�3�FlEaL•ll�i[� • • ��• �l��L'�iiiii��ii •, �7�iii� - • I��rI�� • iii�ii�ii ��i�iiiiii��C�ii��^i�■i-�'�r��i.�i� -n "n Figure 5-1 '2"D'N a 1.) J C (V TYPICAL FORM FOR STORM DRAINAGE SYSTEM PRELIMINARY DESIGN DATA (z (From: Wright -McLaughlin Engineers, 1969) y aaa ".'w. I1•i 7 IZ ' --------------------- DETENTION POND SIZING BY FAA METHOD DEVELOPED BY JAMES C.Y. GUO, PHD, P.E. -------------DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF COLORADO AT DENVER EXECUTED ON 05-27-1992 AT TIME 13:51:39 1 ROJECT TITLE: STONERIDGE ULTIMATE TEMPORARY DETENTION POND SIZE I ** DRAINAGE BASIN DESCRIPTION BASINID NUMBER 1.00 BASIN AREA (acre)= 59.88 ' RUNOFF COEF = 0.47 ***** DESIGN RAINFALL STATISTICS ' DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY (IN/HR) -DURATION (MIN) TABLE IS GIVEN LRATION 5 10 20 30 40 50 60 80 100 120 150 180 �NTENSITY 9.0 7.3 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1.5 1.2 1.0 ***** POND OUTFLOW CHARACTERISTICS: ' MAXIMUM ALLOWABLE RELEASE RATE = 14.8 CFS OUTFLOW ADJUSTMENT FACTOR = .96 AVERAGE RELEASE RATE = 14.208 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. 1****COMPUTATION OF POND SIZE -------------------------- RAINFALL RAINFALL INFLOW DURATION INTENSITY VOLUME VMINUTE INCH/HR ACRE -FT' 0.00 0.00 0.00 5.00 9.00 1.78 ' 10.00. 7.30 2.88 15.00 6.25 3.70 ' 20.00 25.00 5.20 4.68 4.11 4.62 30.00 4.15 4.92 35.00 3.83 5.29 40.00 3.50 5.53 45.00 3.25 5.78 50.00 3.00 5.93 ' 55.00 2.80 6.08 OUTFLOW REQUIRED VOLUME STORAGE ACRE -FT ACRE -FT ----------------- 0.00 0.00 0.10 1.68 0.20 2.69 0.29. 3.41 0.39 3.72 0.49 4.13 0.59 4.33 0.68 4.60 0.78 4.75 0.88 4.90 0.98 4.95 1.08 5.01, F' ► t_sr �lu►J,G- 60.00 ' .00 70 70.00 75.00 80.00 ' 85.00 90.00 95.00 100.00 2.60 6:16 1.17 4.99 ` 2.46 6.32 1.27 5.05 2.32 6.43 1.37 5.06 2.19 6.48 1.47 5.01 2.05 6.48 1.57 4.91- 1.91 6.42 1.66 4.76 1.77 6.31 1.76 4.55 1.64 6.15 1.86 4.29 1.50 5.93 1.96 3.97 --------------------- ---------- RED POND SIZE = 5.059386 ACRE- 70 MINUTES ***** GEOMETRIES OF AN EQUIVALENT CIRCULAR POND '---------------------------------------------------- STAGE CONTOUR CONTOUR POND POND (DEPTH) DIAMETER AREA SIDE SLP STORAGE ACRE------FT/FT ACRE -FT ------FEET ---FEET 0.00 166.53 --------- 0.50 -------------- 3.00 0.00 0.50 169.53 0.52 3.00 0.25 ' 1.00 172.53 0.54 3.00 0.52 1.50 175.53 0.56 3.00 0.79 2.00 178.53 0.57 3.00 1.07 ' 2.50 181.53 0.59 3.00 1.37 3.00 184.53 0.61 3.00 1.67 3.50 187.53 0.63 3.00 1.98 ' 4.00 190.53 0.65 3.00 2.30 4.50 193.53 0.68 3.00 2.63 5.00 196.53 0.70 3.00 2.98 5.50 199.53 0.72 3.00 3.33 ' 6.00 202.53 0.74 3.00 3.70 6.50 205.53 0.76 3.00 4.07 ' 7.00 7.50 208.53 211.53 0.78 0.81 3.00 3.00 4.46 4.85 8.00 214.53 0.83 3.00 5.26 8.50 217.53 0.85 3.00 5.68 ' 9.00 220.53 0.88 3.00 6.12 ----------------------------------------------------- 1 I T:DINC Engineering Consultants 1¢ WENT "<Rpt AN JOBNO.SO3-601 PROJECT 5TOIU61Q_Io66 —CALCULATIONSFOR Pe-ten-b-c" 120'4 MADE aY_K9_j_6DATE S/07CHECKED BY— DATE —SHEET /0 OF 'N fo IV j_1 _L I it 11 !_­4405 J t 1_ 'l.." i i_ ................ .. .... . .... .. .... .... ..... .. 06.: All F, .. ........ q t? J., .... .. .......... ------ - --- ----- -- UTU -/1': _Y 7 - -------- -- -- ------ ---- 6 OM)m 1i L)� venr�- T —f4 it .r_.:... ! ;� r r ............. --------- — ­ 4- _41 . 7 T OP; 6f 75 , it J . ..... TT i _T.. Q_N_ ------ .... .. /Z ;eL, Pip 11 Id Y2 --- -- ----- ------ .4 [57 1:! X Z:7j ':b 727 M2(3 0 61NO f I --- -- -- r 4-1 Oii 77 _4 : I r ........ ... . LAHL _:i.. z z MA RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA STONERIDGE TEMPORARY POND OVERFLOW WEIR WEIR COEF. From IC-�nq I--- Bra{er F�anJbwk of N dnaulics i l9d, Y 3 3.200 A" �J STA ELEV 0. 0 12.40 1171z"v 4.0 11.40 y9i� Al 54.0 11.40 58.0 12.40 ELEVATION DISCHARGE --(feet)— --(cfs) -- FroM Ra{ ional c4/co/gilo"S 11.4 0.0 Q100 in -Flow max = 11.5 5.1 11.6 14.5 11.7 26.7 11.8 41.4 11.9 58.2 12.0 76.9 12.1 97.4 CAA/ PAss 0 Fs e wl p,3 o' -P boarrC 12.2 119.7,_�,� 12.3 143.6 `0& CAN pgss �cFsCFuNRE) �o 12.4 169.1 rv/ 0, Z r free bowl a� Progllram uses Q`CLN3/t Equ0.fion / �I (zST T3D,NG Engineering .Consultants CLIENT SC_bPl 11 JOB NO. 5Q3'��_Z PROJECT NLP.j�-F Zry CALCULATIONS FOR _0P_ r=AQF, MADEBV ,_DATE CHECKED BY DATE SHEETJI�_OF 1 1 1 1 DESIGN OF CURB INLETS AND STORM SEWER 1 1 1 1 1 1 1 1 1 1 , NC Engineering Consultants CLIENT LPL -7 /�' JOBNO.5=A-QOZ PROJECT`7T�1�7�L-+F G� CALCULATIONSFORQg1 Ll7r MADEBV WDATEZ'2_rn %' CHECKED BY -DATE SHEETOF ' 7 ------------------------------------------------------------------------------ <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ------------------------------------------------------------------------------ ' *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 1 Cie &� 1-1 ) ' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 ' REQUIRED CURB OPENING LENGTH(ft)= 12.26 IDEAL CURB OPENNING EFFICIENCY= 0.95 ACTURAL CURB OPENNING EFFICIENCY= 0.88 ' STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE ($) STREET CROSS SLOPE M = 0.50 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.32 GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 11.78 GUTTER FLOW DEPTH (ft) = 0.35 FLOW VELOCITY ON STREET (fps)= 2.06 ' FLOW CROSS SECTION AREA (sq ft)= 1.49 GRATE CLOGGING FACTOR M = 0.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.93 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= 3.08 2.71 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.08 ' FLOW INTERCEPTED (cfs)= 2.49 CARRY-OVER FLOW (cfs)= 0.00 __- 11 1 1 ------------------------------------------------------------------------------ <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ------------------------------------------------------------------------------ 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 9 CF=ae F=usuee cu2b 1%-JL�' 1 INLET HYDRAULICS: ON A GRADE. 1 GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 1 REQUIRED CURB OPENING LENGTH(ft)= 13.88 IDEAL CURB OPENNING EFFICIENCY= 0.90 ACTURAL CURB OPENNING EFFICIENCY= 0.82 ' STREET GEOMETRIES: 1 STREET LONGITUDINAL SLOPE (3) = STREET CROSS SLOPE M = 0.50 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.32 1 GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: 1 WATER SPREAD ON STREET (ft) = 12.91 GUTTER FLOW DEPTH (ft) = 0.37 FLOW VELOCITY ON STREET (fps)= 2.16 1 FLOW CROSS SECTION AREA (sq ft)= 1.77 GRATE CLOGGING FACTOR M = 0.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 1 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.43 1 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= 3.81 3.12 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.81 1 FLOW INTERCEPTED (cfs)= 2.91 CARRY-OVER FLOW (cfs)= 0.00 [1 1 e 1 :W,CLIENT .L&PL_nVj JOB NO. -7-nC�A-CX�P NC PROJECT S-n:>Q;=rz i p&mE=- 7- CALCULATIONS FOR -PI PP Engineering Consultants MADE BY IW_ DATEZ-22CHECKED BY -DATE -SHEET OF j iF EMbTIC------ ... ... .... .......... 6 77 T w V_ Z: e, I wt�j, J sow IS 1 7, ; L L -9 3. oa O -- - --- --------to _;_:_ --- ---- -------- ---- - - ------ ----- A W Ly_M_T,1c> 0) ---------- -76 - - ---- --------- 10 1 ------------------ -- zc, IZZiI ........ . . .. ..... 7'0?,. �J -7. J_: j - - ----------- - --- - ------- - ----- _4=04F .3 _7 1 7- ...... .. .. ......... .. 1... 4 O SAS '_T 7 ....... .... .. - Ia. ----------- -- L_:_ j d J a - - - - -- - - - - Ler. - M zr ----------- J, Li ... .. . P-1 %j .......... _211-- _j 'j­"!7­%, i-N-P E� M 7- C 'Z5 ZZ/ REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 4 DEVELOPED BY ' JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO ' *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 07.09-1993 AT TIME 09:22:12 ' *** PROJECT TITLE : STONERIDGE 2ND FILING STORM SEWER ' OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL "MANHOLE RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES INCH/HR CFS FEET FEET 1.00 N/A N/A N/A 19.70 15.00 13.70 OK 2.00 N/A N/A N/A 19.70 15.50 14.40 OK 3.00 N/A N/A N/A 8.30 17.80 15.83 OK 4.00 N/A N/A N/A 8.30 21.30 17.67 OK ' 5.00 N/A N/A N/A 8.30 20.76 20.18 OK 6.00 N/A N/A N/A 6.95 20.86 20.45 OK 7.00 N/A N/A N/A 6.95 20.86 20.55 OK 8.00 N/A N/A N/A 11.40 16.74 15.86 OK 9.00 N/A N/A N/A 2.91 16.90 16.11 OK 10.00 N/A N/A N/A 2.91 16.90 16.18 OK 11.00 N/A N/A N/A 6.00 17.70 17.15 OK ' OK MEANS WATER *** SUMMARY ELEVATION OF SEWER IS LOWER THAN GROUND ELEVATION HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ---------------- ------ ----- -------- --------- -------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) D1A(HIGH) D1A(HIGH) WIDTH ' 2.00 .--ID.NO. 3.00 ID NO. ------------------ 2.00 ROUND - -(IN) (FT) --------'--------- 19.57 (IN) (FT) 21.00 ---------- (IN) (FT) 21.00 --._._.... (FT) 0.00 1.00 2.00 1.00 ROUND 30.82 33.00 30.00 0.00 3.00 4.00 3.00 ROUND 19.57 21.00 18.00 0.00 4.00 5.00 4.00 ROUND 19.57 21.00 18.00 0.00 ' 5.00 6.00 5.00 ROUND 18.31 21.00 18.00 0.00 6.00 7.00 6.00 ROUND 18.31 21.00 18.00 0.00 7.00 8.00 2.00 ROUND 23.73 24.00 21.00 0.00 ' 8.00 9.00 9.00 10.00 8.00 9.00 ROUND ROUND 13.21 13.21 15.00 15.00 15.00 15.00 0.00 0.00 10.00 11.00 8.00 ROUND 19.73 21.00 15.00 0.00 ' DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. ' FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, EXISTING SIZE WAS USED 11 L3 xlz5b 11 1 1 1 L ------------------------------------------------------------------------------- SEWER DESIGN FLOW NORMAL NORAML CRITIC CRITIC FULL FROUDE COMMENT ID FLOW Q FULL Q DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS --------------------------------------------------------------------- 2.0 8.3 10.0 1.21 4.67 1.07 12.84 3.45 0.78 V-OK 1.0 19.7 18.4 2.50 4.01 1.50 6.40 4.01 0.00 V-OK 3.0 8.3 6.7 1.50 4.70 1.12 5.88 4.70 0.00 V-OK 4.0 8.3 6.7 1.50 4.70 1.12 5.88 4.70 0.00 V-OK 5.0 6.9 6.7 1.50 3.93 1.02 6.49 3.93 0.00 V-OK 6.0 6.9 6.7 1.50 3.93 1.02 5.44 3.93 0.00 V-OK 7.0 11.4 8.3 1.75 4.74 1.24 3.82 4.74 0.00 V-OK 8.0 2.9 4.1 0.78 3.62 0.69 16.47 2.37 0.78 V-OK 9.0 2.9 4.1 0.78 3.62 0.69 4.21 2.37 0.78 V-OK 10.0 6.0 2.9 1.25 4.89 0.99 2.79 4.89 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ---------------------------------------------------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) (FT) (FT) ---------------------------------------------------------- 2.00 0.40 14.48 13.36 1.57 0.39 NO 1.00 0.20 12.61 12.00 0.39 0.50 NO 3.00 0.40 15.86 14.68 3.94 1.62 OK 4.00 0.40 17.46 15.86 1.80 3.94 OK 5.00 0.40 17.60 17.46 1.76 1.80 OK 6.00 0.40 17.60 17.60 1.76 1.76 OK 7.00 0.27 14.17 13.36 0.82 0.39 -QDpiTldNLOa- GpV r--- Q 8.00 0.40 14.67 14.47 0.98 1.02 y�pgg� peo�l�oga 9.00 0.40 14.67 14.67 0.98 0.98 OK 10.00 0.20 14.91 14.67 1.54 0.82 OK STC�A.t STcUJEX. PL-a*j OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF .5 FEET P@oR L-f *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET IFEET ------------------------------------------------------------------------------- 2.00 281.00 0.00 16.23 15.11 15.83 14.40 SUBCR 1.00 305.00 305.00 15.11 14.50 14.40 13.70 PRSS'ED 3.00 295.00 295.00 17.36 16.18 17.67 15.83 PRSS'ED 4.00 400.00 400.00 18.96 17.36 20.18 17.67 PRSS'ED 5.00 36.00 36.00 19.10 18.96 20.45 20.18 PRSS'ED 6.00 0.10 0.00 19.10 19.10 20.55 20.45 PRSS'ED 7.00 300.00 300.00 15.92 15.11 15.86 14.40 PRSS'ED 8.00 50.00 )50.00 15.92 15.72 16.11 15.86 PRSS'ED 9.00 0.10 0.00 15.92 15.92 16.18 16.11 SUBCR 10.00 122.00 122.00 16.16 15.92 17.15 15.86 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT 1D FT -----------------------------------------•------------------..-...-------- 2.0 3.00 16.16 1.38 0.72 0.13 0.00 0.00 2.00 14.65 1.0 2.00 14.65 0.70 1.00 0.25 0.00 0.00 1.00 13.70 3.0 4.00 18.01 1.83 0.04 0.01 0.00 0.00 3.00 16.16 4.0 5.00 20.52 2.48 0.08 0.03 0.00 0.00 4.00 18.01 5.0 6.00 20.69 0.16 0.08 0.02 0.00 0.00 5.00 20.52 6.0 7.00 20.79 0.04 0.25 0.06 0.00 0.00 6.00 20.69 7.0 8.00 16.21 1.54 0.04 0.01 0.00 0.00 2.00 14.65 8.0 9.00 16.32 0.10 0.12 0.01 0.00 0.00 8.00 16.21 9.0 10.00 16.38 0.04 0.25 0.02 0.00 0.00 9.00 16.32 10.0 11.00 17.52 1.05 0.72 0.27 0.00 0.00 8.00 16.21 /vE6 BEND LOSS =BEND K* VHEAD IN SEWER. LATERAL LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. z� S6 DESIGN OF CHANNELS AND SWALES ' CLIENT "11-J JOB NO. c�3 -dAZ ■��INC PROJECT 2X'11A CALCULATIONS FOR n1.Ad..�� Engineering Consultants MADEBY 2.1 DATE?Z7 CHECKED BY- DATE -SHEET Z62 OF _5Ef=1 . 0 [1 [J F 11 i i RBD INC. ENGINEERING CONSULTANTS 1 CHANNEL RATING INFORMATION CHANNEL SECTION 1 . OVERFLOW FROM GREYSTONE DRIVE i 1 ..... ..... 0.00 20.00 20.00 15.00 1 40.00 20.00 1 'N' VALUE SLOPE .......... ............. (ft/ft) 1 0.035 0.0060 ELEVATION AREA VELOCITY DISCHARGE FROUDE 1 (feet) ......... (sq ft) ....... (fps) ........ (cfs) ......... NO. ...... 1 15.50 1.0 1.3 1.28 0.45 16.00 4.0 2.0 8.15 0.51 16.50 9.0 2.7 24.01 0.54 17.00 16.0 3.2 51.71 a 0.57 1 17.50 25.0 3.7 93.74 0.59 18.00 36.0 4.2 152.41 0.61 18.50 49.0 4.7 229.87 0:62 1 19.00 64.0 5.1 328.17 0.64 19.50 81.0 5.5 449.23 0.65 20.00 100.0 5.9 594.91 0.66 1 -1 1 1 1 1 . C cealEv. 1G.55 1 RBD INC. ENGINEERING CONSULTANTS 1 CHA NEL RATING INFORMATION C NEL SECTION 2 - DESIGN POINT 13 1 STA ELEV 1 ..... ...... 0.00 20.00 20.00 16.00 1 40.00 20.00 1 'N' VALUE ... ..... SLOPE ..... (ft/ft) ....... 1 0.035 0.0060 ELEVATION AREA VELOCITY DISCHARGE FROUDE 1 (feet) ......... (sq ft) ....... (fps) ........ (cfs) ......... NO. ...... 1 16.20 0.2 0.7 0.14 0.39 16.40 0.8 1.1 0.89 0.44 16.60 1.8 1.5 2.63 0.47 16.80 3.2 1.8 5.66 0.49 1 17.00 5.0 2.1 10.26 0.51 17.20 7.2 2.3 16.68 0.53 1 17.40 17.60 9.8 12.8 2.6 2.8 25.15 35.91 0.54 0.55 Q Q i,= = a`i.80 Ca. 1=L E�/• 1 %. GG 17.80 16.2 3.0 49.15 0.56 - 18.00 20.0 3.3 65.10 0.57 1 18.20 24.2 3.5 83.93 0.58 18.40 28.8 3.7 105.84 0.59 18.60 33.8 3.9 131.02 0.60 18.80 39.2 4.1 159.64 0.61 1 19.00 45.0 4.3 191.87 0.61 19.20 51.2 4.5 227.90 0.62 �� p �/ 19.40 57.8 4.6 267.88 0.63 P 1 19.60 64.8 4.8 311.97 0.63 19.80 72.2 5.0 360.34 0.64 1 1 1 1 1 1 1 1 1 RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION CHANNEL SECTION 3 . DESIGN POINT 14 STA ELEV 0.00 20.00 20.00 15.00 40.00 20.00 'N' VALUE SLOPE (ft/ft) .......... ............. 0.035 0.0290 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) (sq ft) (fps) (cfs) NO. 15.50 1.0 2.8 2.82 0.99 16.00 4.0 4.5 17.91 1.12 16.50 9.0 5.9 52.79 1.19 17.00 16.0 7.1 113.68 1.25 17.50 25.0 8.2 206.08 1.30 18.00 36.0 9.3 335.06 1.34 18.50 49.0 10.3 505.37 1.37 19.00 64.0 11.3 721.47 1.40 19.50 81.0 12.2 987.62 1.43 20.00 100.0 13.1 1307.91 1.46 1 1 t 1 1 1 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA OVERFLOW FROM JEWELSTONE COURT TO THE NORTH PROPERTY LINE WEIR COEF. 3.000 STA ELEV � I v E=N Q - I C�s 121.5 21.50 239.4 20.81 ST4 . Z i- 63, 4o 287.4 20.53 309.5 20.40 319.0 20.46 srd _ 25 49. S3 356.8 20.72 413.4 21.10 474.2 21.51 ELEVATION DISCHARGE (feet) (cfs) 20.40 0.0 20.50 1.2 20.60 6.7 20.70 18.1 20.80 37.4 20.90 66.3 21.00 104.7 21.10 153.4 21.20 214.9 21.30 288.2 21.40 374.1 21.50 473.3 C SL_GS./. Zj�>. 6-7 o.z-71 RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION CHANNEL SECTIONS 4 AND 5 . 100 YR FLOWS I STA ELEV 0.00 20.00 20.00 16.00 40.00 20.00 'N' VALUE SLOPE (ft/ft) 0.035 0.0060 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) ......... (sq ft) ....... (fps) ........ (cfs) ......... NO. ...... 16.20 0.2 0.7 0.14 0.39 16.40 0.8 1.1 0.89 0.44 16.60 1.8 1.5 2.63 0.47 16.80 3.2 1.8 5.66 0.49 gpSIN IS 17.00 5.0 2.1 10.26 0.51 a.4c7 (Zat, SLpV. 1-7,og 17.20 7.2 2.3 16.68 0.53 17.40 9.8 2.6 25.15 0.54 DeSIC.IIJ PT. 15 17.60 12.8 2.8 35.91 0.55 6 QI� _ �Z,Z <a EL EV• )7.70 17.80 16.2 3.0 49.15 0.56 18.00 20.0 3.3 65.10 0.57 18.20 24.2 3.5 83.93 0.58 18.40 28.8 3.7 105.84 0.59 18.60 33.8 3.9 131.02 0.60 18.80 39.2 4.1 159.64 0.61 19.00 45.0 4.3 191.87 0.61 19.20 51.2 4.5 227.90 0.62 19.40 57.8 4.6 267.88 0.63 19.60 64.8 4.8 311.97 0.63 19.80 72.2 5.0 360.34 0.64 - Z.7 -. wnlJ D. P. IS 5 S �Ioo=1.�1 Boslr.f IS MIN. DSPT44 RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION ' CHANNEL SECTION 6 -PER FILING 1 I DESIGN POINT 12 STA ELEV 0.00 20.00 20.00 15.00 25.00 15.00 45.00 20.00 W VALUE .......... SLOPE ............. (ft/ft) 0.035 0.0033 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) ......... (sq ft) ....... (fps) ........ (cfs) ......... NO. ...... 15.50 3.5 1.3 4.52 0.37 16.00 9.0 1.9 17.01 0.40 16.50 16.5 2.4 38.99 0.42 17.00 26.0 2.8 72.18 r 0.44 6 �2.[� c� S C-71 17.2Z 17.50 37.5 3.2 118.21 0.45 18.00 51.0 3.5 178.63 0.47 18.50 66.5 3.8 254.92 0.48 19.00 84.0 4.1 348.50 0.49 19.50 103.5 4.5 460.72 0.49 20.00 125.0 4.7 592.90 0.50 J 1 cA - 4 a k--4sl 1 1 1 1 RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION CHANNEL SECTION 7 . PER FILING 1 DESIGN POINT 14 STA ELEV 0.00 20.00 20.00 15.00 22.00 15.00 42.00 20.00 'N' VALUE SLOPE (ft/ft) .......... ............. 0.035 0.0027 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) ......... (sq ft) ....... (fps) ........ (cfs) ......... NO. ...... 15.50 2.0 1.0 2.10 0.32 16.00 6.0 1.5 9.29 0.35 16.50 12.0 2.0 23.54 0.37 17.00 20.0 2.3 46.61 0.39 17.50 30.0 2.7 80.10 0.40 ��' �t%�• S L.; S Lc7 t=LCJ�I. �-7.% z 18.00 42.0 3.0 125.50 0.41 18.50 56.0 3.3 184.22 0.42 19.00 72.0 3.6 257.57 0.43 19.50 90.0 3.9 346.83 0.44 20.00 110.0 4.1 453.23 0.45 lv i 31' NAl.l.z,z' DESIGN OF RIPRAP 11 1 1 1 1 1 i J RMINC Engineering Consultants CLIENT C APIAwI JOB NO. MB'C�Z PROJECT Sa i-V rx—J= 2r CALCULATIONS FOR R1 P 2�P MADE BYE DATE-2 -7 SAM CHECKED BY DATE SHEET-�4 OF /. by r 11 1 1 1 L CLIENT - A gyp! � � I �C1 JOB NO.�T:WINC PROJECT ST 6N 6YJLZ�� CALCULATIONSFOR Engineering Consultants MAOEBVN-1 DATE CHECKED BY DATE SHEET OF �/z Tay:►; A, + �' p z S - . i Peo PIL-1.�E.� S 9 _.. L�tJ677d OF_ PPI7TEC�'IIQAI� -�-z. [,�/ _ I L GG1N SLI :1-ESS Tk�Ct�l D • { • _. + - I SODI NCB i. i� L� i_L t'.... �IiJ.b - I I _ I _. { _ �.._L47tJL'LUSIOLJ'.-�_-_L•R:IPItp�= _-C.,,-L�- 1, --.��---.---------_..__ � '. i..F�.if�.rs•L . S' .a : 3S/ '56 EROSION CONTROL RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT: i� " •� STANDARD FORM A COMPLETED BY: DATE: ;:E3.21,93 DEVELOPED SUBBA§IN ERODIBILITY ZONE Asb (ac) Lsb (ft) Ssb M Lb (feet) Sb PS L 1 MARCH 1991 B-14 DESIGN CRITERIA EFFECTIVENESS CALCULATIONS PROJECT: STANDARD FORM B COMPLETED BY: aest.-> I Kid— DATE: Erosion control* C-Factor P-Factor Method Value Value Cominent -5-r ---------- ---- - ----- MAJOR PS SUB AREA BASIN BASIN (Ac) CALCULATIONS P"kj IS-:35,77— A sjT As L 41?-j Y" OL.4=44--. I NJ It-4Ler =19-45tr— -4-F! MARCH 1991 8-15 DESIGN CRITERIA EFFECTIVENESS CALCULATIONS PROJECT: d STANDARD FORM B COMPLETED BY: 2;�, cn4,e-x is.-, c-- ?--e.�o ,jam DATE: FE$.27,93 Erosion Control C-Factor P-Factor Method Value Value Comment MAJOR PS SUB AREA BASIN ($j BASIN (Ac) CALCULATIONS �.01 rt! v niy3yC—_�jjZ_-S�DJ.QI�i=•,.T � p—_ —_.I._tLe3—.3.5OZ—C'T_[a�.E—Lp�a�c>__P�a'rr✓ --- F� Sr--DiMEr.1'i Lo,fl PPa/(DE.o tv I :) MARCH 1991 8-15 DESIGN CRITERIA 1 3/ C CONSTRUCTION SEQUENCE C � PROJECT: STANDARD FORM C SEQUENCE FOR 19 93 ONLY COMPLETED BY: g Cue MSsS DATE: Indicate by use of a bar line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer, YEAR 199 3 MONTH I `� I s l o l ►� I D I j I F I M I d I M I OVERLOT GRADING WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other 1 .`1LNFALL EROSION CONTROL STRUCTURAL: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting Mulching/Sealant Temporary Seed Planting Sod Installation Nettings/Mate/Blankets Other STRUCTURES: INSTALLED BY MAINTAINED BY IVEGETATION/MULCHING CONTRACTOR ATE SUBMITTED APPROVED BY CITY OF FORT COLLINS ON CHARTS, TABLES AND FIGURES DRAINAGE CRITERIA MANUAL RUNOFF G� C_7d 1 s0 30 I— 20 ' w w U W 10:. z W 1 O. O 5. N W ' cc 3 O U 2 1 cr. W Q 3 1 ' 5' moll i FA I/FI1►. FAME Il I' • ,M IN oil •, ���I III ■I■�//�����■■■■� .1 .2 .3 .5 1 2 3 5 10 20 ' VELOCITY IN FEET PER SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR ' USE WITH THE RATIONAL FORMULA. f MOST FREQUENTLY OCCURRING "UNDEVELOPED" f LAND SURFACES IN THE DENVER REGION. REFERENCE: "Urban- Hydrology For Small Watersheds" Technical ' Release No. 55. USDA. SCS Jan. 1975. (j ROAN DRAINAGE; 3 FLOOD CONTROL DISTRICT No Text 43/� 'calculations for Curb Capacities and Velocities Major and Minor Storms per City of Fort Collins Storm Drainage Design Criteria RESIDENTIAL with drive over curb and gutter Prepared by: RBD, Inc. a is for one side of the road only February 28, 1992 ' V is based on theoretical capacities 1 `0 i� u 11 Area = 2.63 sq.ft. t Area = 20.11 sq.ft. Minor Storm : Major Storm Slope Red. . Minor . C V . Major . C V (X) :Factor : x : (cfs) (fps) : x : (cfs) (fps) 0.40 . 0.50 . 86.71 . 2.74 . 2.09 : 696.73 : 22.03 . 2.19 : 0.50 : 0.65 : 86.71 : 3.99 : 2.33 : 696.73 : 32.02 : 2.45 : 0.60 : 0.80 : 86.71 : 5.37 : 2.55 : 696.73 : 43.17 : 2.68,! 0.70 : 0.80 : 66.71 : 5.80 : 2.76 : 696.73 : 46.63 : 2.90 : 0.80 : 0.80 : 86.71 : 6.20 : 2.95 : 696.73 : 49.85 3.10 : 0.90 : 0.80 : 86.71 : 6.58 : 3.13 : 696.73 : 52.88 : 3.29 : 1.00 : 0.80 : 86.71 : 6.94 : 3.30 : 696.73 : 55.74 3.46 : 1.25 : 0.80 : 86.71 : 7.76 : 3.69 : 696.73 : 62.32 3.87 : 1.50 : 0.80 : 86.71 : 8.50 : 4.04 : 696.73 : 68.27 : 4.24 : 1.75 : 0.80 : 86.71 : 9.18 : 4.36 : 696.73 : 73.73 4.58 : /..00 : 0.80 : 86.71 : 9.81 : 4.66 : 696.73 : 78.83 4.90 : 2.15 : 0.78 : 86.71 : 10.15 : 4.95 : 696.73 : 81.52 5.20 2.50 : 0.76 : 66.71 : 10.42 : 5.21 : 696.73 : 83.72 5.48 2.75 : 0.74 : 86.71 : 10.64 : 5.47 : 696.73 : 85.50 5.75 3.00 0.72 : 86.71 : 10.81 : 5.71 : 696.73 : B6.89 6.00 3.25 : 0.69 : 86.71 : 10.79 : 5.94 : 696.73 : B6.67 6.25 3.50 : 0.66 : 86.71 : 10.71 : 6.17 : 696.73 : 86.03 6.48 3.75 : 0.63 : 86.71 : 10.58 : 6.38 : 696.73 : 85.00 6.71 4.00 : 0.60 : 66.71 : 10.41 : 6.59 : 696.73 : 83.61 6.93 4.25 : 0.58 : 86.71 : 10.37 : 6.80 : 696.73 : 83.31 7.14 4.50 : 0.54 : 66.71 : 9.93 : 6.99 : 696.73 : 79.81 7.35 4.75 : 0.52 : 86.71 : 9.83 : 7.19 : 696.73 : 78.96 7.55 5.00 : 0.49 : 86.71 : 9.50 : 7.37 : 696.73 : 76.34 7.75 5.25 : 0.46 : 86.71 : 9.14 : 7.55 : 696.73 : 73.43.: 7.94 5.50 : 0.44 : 66.71 : 8.95 : 7.73 : 696.73 : 71.89 : 8.13 0.42 : 86.71 : 8.73 : 7.91 : 696.73 : 70.17 : 8.31 6,W 0.40 : 86.71 : 8.50 : 8.08 : 696.73 : 68.27 : 8.49 Nrl Engineering Consultants 44V CLIENT (-) IT-1 Qf= E7 CJ I I Qc- -JOB NO. PROJECT — CALCULATIONS FOR C_') ?, FLCXU MADE BY__a0__ DATE 7'9Z CHECKED BY DATE —SHEET I OF -7— Ll :iT _TEiI IL H-7 F7-777777-- 7 71 _17_�'_ 7 F-i ---------- ji I L4 77 777 -t" _7-44-F­-�-e f­T1 P, Tj ------------ eu _15AL-OLE! is L 7­1- _i ........ .. - 4 UJ-0, E I r L i ' -rZD-Of= -c2AJ ZE L--1 77 ,7 �j — ----- - - - ------- j_Tc, .7 � - --------- F 11 i��14� }`�..�� �� ' 27..5�3 r/___�� � ___ L T CD L 7 I I t-� j I- 1 �-IF� I r I j_� �-""Yt(f''��^^�""""_'r-T .1 F ^-' 1 � 1 I ; Iy� � I I I I,, -� i L LL4 LL I -C=Z _-7 1 1 1 L I I I 1 I I I I I{ I 0, Oft 7 IV 1 Tj I- T a 10 1 Engineering Consultants I � CLIENT i iQ� . —JOB NO. PROJECT CALCULATIONS FORC-n4 Y7Tr flcyu MADE BY-ZYl— DATE 2! 'C�Z CHECKED BY DATE —SHEET Z- OF Z, —H, 17P—1 U E. c=Ad 1>fm�wn 7 L i C)-E: %ajAwy_ 777, -77—,,- 7-- T T 4- 4 f L 7- 7- ------- ---- L S4-j.cf.L 13 Cs T--_. W_C_X---p L jj � L JSO 1C1� 4S 17j-. Z3.17 i_i 3 1 C>C� 'a, f e I I oc� iZ)( . .......... T -7 ...... . ... C::, C�:) I 7­7Z:7 O10 C,45-! 7 7 E= TT-F-- I KA i 2-r-1 7—. -4 L -7— �..( NR_ L j 41 1 -H+1 -1111 1 7 TIM'! i 1 1 1 1 1 1 1 I I I&I 7� V G. ' Table 8-1 lists several gradations of riprap. The minimum average size designation for loose riprap shall be 12 inches. Smaller sizes of riprap shall be either buried on slopes which can be easily maintained (4 to 1 minimum side slopes) or grouted if slopes are steeper. Grouted riprap should meet all the requirements for regular riprap except that the smallest rock fraction (smaller than the 10 per- cent size) should be eliminated from the gradation. A reduction of riprap size by one size designation (from 18 inches to 12 inches or from 24 inches to 18 inches) is permitted for grouted riprap. 1 Table 8-1 CLASSIFICATION AND GRADATION OF ORDINARY RIPRAP t % of Total Weight 1 Smallerthanthe Stone Size dsot Riprap Designation Given Size (in pounds) (Inches) 70-100 85 Class 6 tt 50-70 35 1 35-50 10 6 2-10 <1 70-100 440 ' Class 12 50-70 275 35-50 85 12 2-10 3 1 100 1275 Class 18 50-70 655 35-50 275 18 2-10 10 1 100 3500 Class 24 50-70 1700 35-50 655 24 1 2-10 35 t dso = Mean Particle Size. At least 50 percent of the mass shall be stones equal to or larger than this dimension. tt Bury on 4 to 1 side slopes or grout rock if slopes are steeper. 1 Table 8-2 summarizes riprap requirements for a stable channel lining based on the following relationship: VSo.n 1 (dso))°"ee = 5.8 in which, V = Mean channel velocity in feet per second ' S = Longitudinal channel slope in feet per foot SS = Specific gravity of rock (minimum Ss =2.50) dso = Rock size in feet for which 50 percent of the riprap by weight is smaller. The rock sizing requirements in Table 8-2 are based on the rock having a specific gravity of 2.5 or 1 more. Also, the rock size does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper than 2h:1v. Rock lined side slopes steeper than 2h:1v are not recommended. 1 Table 8-2 RIPRAP REQUIREMENTS FOR CHANNEL LININGS fit 1 VSo.n/(S._ 1)o."t Rock Type tt 0 to 1.4 No Riprap Required ' 1.5 to 4.0 Class 6 Riprap 1 4.1 to 5.8 Class 12 Riprap 5.9 to 7.1 Class 18 Riprap 7.2 to 8.2 Class 24 Riprap 1 t Use S, = 2.5 unless the source of rock and its densities are known at the time of design. tt Table valid only for Froude number of 0.8 or less and side slopes no steeper than 2h:1 v. 1 MAY 1984 8-18 DESIGN CRITERIA 47/ The thickness o1 the riprap layer should be at least 1.75 times d50 (at least 2.0 times d50 in sandy soils) and should extend up the side slopes at least one foot above the design water surface. At the upstream - • and downstream termination of a riprap lining, the thickness should be increased 50 percent for at least 3 feet to prevent undercutting. Where only the channel sides are to be lined, the riprap blanket should ' extend at least three feet below the existing channel bed and the thickness of the riprap layer underneath the channel bed increased to at least three times d5o to prevent under cutting. Riprap should be placed on either filter material (gravel bedding), a plastic filter cloth, or a combination of both to protect channel embankment materials from washing out through the riprap. Generalized filter material specifications are listed in Tables 8-3 and 8-4. The Type I filter in Table 8-3 is designed to be the lower layer in a two layer filter for protecting fine grained soils and has a gradation identical to Colorado Division of Highways concrete sand specification AASHTO M 6 (Section 703.01). The Type II filter, the upper layer in a two layer filter, is equivalent to Colorado Division of Highways Class A filter material (Section 703.09) except that it permits a slightly larger maximum rock fraction. For fine grained soils either a two layer filter (Type I topped by Type II), or a single 12-inch layer of Type II filter is required. For coarse sand and gravel (50% or more by weight retained on the #40 sieve), only the Type II filter is required. Filter cloth is not a complete substitute for filter material. Recommenda- tions for its use are made in the Urban Storm Drainage Criterial Manual. ' Table 8-3 GRADATION FOR FILTER MATERIAL % by Weight passing Square Mesh Sieves ' Typal Typell (CDOH concrete sand specification (CDOH Class A, Sieve Size (AASHTO M6) Section 703.01) Section 703.09) [1 3" ... 90-100 1-1 /2" ... ... 3/4" ... 20-90 3/8" 100 ... #4 95-100 0-20 # 16 45-80 ... #50 10-30 ... # 100 2-10 ... #200 0-2 0-3 Table 8-4 THICKNESS REQUIREMENTS FOR FILTER MATERIAL Minimum Thickness (Inches) Fine Grained Soils t Course Grained Soils tt Riprap Designation Type I Type II Type II Gabions, slope mattresses, Class 6 and Class 12 riprap................................... Class 18 and Class 24 riprap.................................. t May substitute one 12 inch layer of Type II bedding. tt Fifty percent or more by weight retained on the #40 sieve. 4 4 4 6 6 8 ' MAY 1984 8-19 DESIGN CRITERIA 4-a/5�= 1 1 1 1 1.0 12 5 11 10 4 .9 8 10 3 .8 F 6 H 9 0 4 LL 2 u_ � i -T .7 3 u- e w i z 1.5 6 7 b_r U x�¢y/t 5. z 1.0 5 6 -_ Example, _Part a_ J 1'0 Z .9 z -.8- w 5.5 a - - - a .8 0 to ca .6 w w 5 = z o .7 'Uj .4 z z •4 3:w (D .6 ? 4.5 Z. 0 .3 W w = 4 t = .2 0 5 . z z o w .3 3.5 w w " .4 J o_ 0 a 0 I w u- ❑ o .08 0 0 .25 3 ~o .06 (D 3 x = c� c� ow z_ LJ w o: .04 25 = 2.5 = w Li 2 0- .03 a I- a .02 0 .2 2 a ►- a .15 .01 0 .15 L w 0 0 Yo a 1.5 --- -- - --ro: .10 a=2h -1 1.2 N Figure 5-2 NOMOG (TH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" Adapted from Bureau of Public Roads Nomograph MAY 1984 5-10 DESIGN CRITERIA • m D 0 _ TABLE 8-A toRAINFALL PERFORMANCE STANDARDS FOR FORT COLLINS, COLORADO FLOW LENGTH SLOPE (�) 1-(FT) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5' 5.0 6.0 7.0 8.0 9.0 10.0 20.0 30.0 40.0 50.0 .100 70.9 74.6 76.8 78.4 79.5 80.3 81.1 81.6 82.1 82.5 83.0 83.4 83.6 83.8 84.0 84.7 84.8 84.9 84.9 200: 72.0 76.3. 78.2 79.5 80.5 81.2 82.1 82.5 82.8 83.2 83.6 83.9 84.0 84.2 84.3 84.8 84.9 84.9 84.9 '.;:300 72.4 77.0 78.8 80.0 80.9 81.6 82.5 82.8 83.1 83.5 83.8 84.1 84.2 84.3 84.4 84.8 84.9 84.9 85.0 ' 400 72.6 77.4 79.1 80.3 81.2 81.8 82.7 83.0 83.3 83.7 84.0 84.2 84.3 84.4 84.5 84.8 84.9 84.9 85.0 •;500. 72.7 77.7 79.4 80.5 81.3 81.9 82.8 83.1 83.4 83.8 84.1 84.3 84.4 84.5 84.6 84.9 84.9 85.0 85.0 600 72.8 77.9 79.5 80.6 81.4 82.0 83.0 83.2 83.5 83.9 84.1 84.3 84.4 84.5 84.6 84.9 84.9 85.0 700 72.8 78.0 79.7 80.8 81.5 82.1 83.0 83.3 83.5 84.0 84.2 84.4.84.5 84.5 84.6 84.9 84.9 85.0 800 72.7 78.1 79.7 80.8 81.6 82.2 83.1 83.4 83.6 84.0 84.2 84.4 84.5 84.6'84.6.84.9 84.9 85.0 900, 72.7 78.2 79.8 80.9 81.7 82.2 83.2 83.4 83.6 84.1 84.3 84.4 84.5 84.6 84.7 84.9 84.9 85.0 10.00 72.7 78.3 79.9 81.0 81.7 82.3 83.2 83.5 83.7 84.1 84.3 84.4 84.5 84.6 84.7 84.9 84.9 85.0 1100 72.6 78.3 79.9 81.0 81.7 82.3 83.3 83.5 83.7 84.1 84.3 84.5 84.6 84.6 84.7 84.9 84.9 1200 72.6 78.4 80.0 81.0 81.8 82.3 83.3 83.5 83.7 84.2 84.3 84.5 84.6 84.6 84.7 84.9 84.9 1300 72.6 78.4 80.0 81.1 81.8 82.4 83.3 83.6 83.8 84.2 84.4 84.5 84.6 84.6 84.7 84.9 85.0 m i. 1400 72.5 78.5 80.1 81.1 81.8 82.4 83.4 83.6 83.8 84.2 84.4 84.5 84.6 84.7 84.7 84.9 85.0 1500 72.4 78.5 80.1 81.1 81.9 82.4 83.4 83.6 83.8 84.2 84.4 84.5 84.6 84.7 84.7 84.9 85.0 1600 72.4 78.5 80.1 81.1 81.9 82.4 83.4 83.6 83.8 84.2 84.4 84.5 84.6 84.7 84.7 84.9 1700 72.3 78.5 80.1 81.2 81.9 82.4 83.4 83.6 83.8 84.3 84.4 84.5 84.6 84.7 84.7 84.9 1800. 72.3 78.6 80.1 81.2 81.9 82.4 83.4 83.7 83.8 84.3 84.4 84.5 84.6 84.7 84.7 84.9 1900 72.2 78.6 80.2 81.2 81.9 82.5 83.5 83.7 83.9 84.3 84.4 84.5 84.6 84.7 84.7 84.9 200.0 72.2 78.6 80.2 81.2 81.9 82.5 83.5 83.7 83.9 84.3 84.4 84.6 84.6 84.7 84.7 84.9 2500 71.9 78.6 80.2 81.3 82.0 82.5 83.5 83.7 83.9 84.3 84.5 84.6 84.7 84.7 84.8 3000 71.6 78.7 80.3 81.3 82.0 82.5 83.6 83.8 84.0 84.4 84.5 84.6 84.7 84.7 84.8 3500 71.4 78.7 80.3 81.3 82.0 82.6 83.6 83.8 84.0 84.4 84.5 84.6 84.7 84.7 84.8 4000 71.1 78.6 80.3 81.3 82.0 82.6 83.6 83.8 84.0 84.4 84.5 84.6 84.7 84.8 84.8 4500 70.9 78.6 80.3 81.3 82.0 82.6 83.7 83.9 84.0 84.4 84.6 84.6 84.7 84.8 84.8 :o 5000 70.6 78.6 80.3 81.3 82.0 82.6 83.7 83.9 84.0 84.4 84.6 84.7 84.7 84.8 84.8 . m N .. 0 Z n A m m P. ' Table 8-13 C-Factors and P-Factors for Evaluating EFF Values (continued from previous page).. Treatment C-Factor P-Factor ' CONTOUR FURROWED SURFACE Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. ' Basin Maximum Slope Length M (feet) 1 to 2 400..........................................................................1.00 0.60 3 to 5 300..........................................................................1.00 0.50 6 to 8 200..........................................................................1.00 0.50 9 to 12 120..............................................................:...........1.00 0.60 13 to 16 80..........................................................................1.00 0.70 ' 17 to 20 60..........................................................................1.00 0.80 > 20 50.......................................................................... 1.00 0.90 ' TERRACING Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. ' Basin Slope M 1 to 2..................................................................................... 1.00 0.12 3 to 8.....................................................................................1.00 0.10 ' 9 to 12..................................................................................... 1.00 0.12 13 to 16..................................................................................... 1.00 0.14 17 to 20.....................................................................................1.00 0.16 20..................................................................................... 1.00 0.18 t> NOTE: Use of other C-Factor or P-Factor values reported in this table must be substantiated by documentation. 8-7 DESIGN CRITERIA 77 L 1 11 1 1 1 1 1 1 1 1 Table 86 C-Factors and P-Factors for Evaluating EFF Values. Treatment C-Factor P-Factor BARE SOIL Packedand smooth................................................................ 1.00 1.00 Freshlydisked........................................................................ 1.00 0.90 Roughirregular surface........................................................... 1.00 0.90 SEDIMENT BASIN/TRAP................................................................. 1 1.00 0.501" STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ 1.00 0.80 SILT FENCE BARRIER..................................................................... 1.00 0.50 ASPHALT/CONCRETE PAVEMENT ................................................... 0.01 1.00 ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A 1.00 SODGRASS................................................................................. 0.01 1.00 TEMPORARY VEGETATION/COVER CROPS .................................... 0.45121.- 1.00 HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10" 1.00 SOIL SEALANT....................................................................0.01-0.60"' 1.00 EROSION CONTROL MATS/BLANKETS............................................ 0.10 1.00 GRAVEL MULCH Mulch shall consist of gravel having a diameter of approximately 1/4" to 1 1/2" and applied at a rate of at least 135 tons/acre.............. 0.05 1.00 HAY OR STRAW DRY MULCH After olantino grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. Slope (%) 1 to 05.............................................................................0.06 1.00 6 to 10............................................................................. 0.06 1.00 11 to 15............................................................................. 0.07 1.00 16 to 20............................................................................. 0.11 1.00 21 to 25............................................................................. 0.14 1.00 25 to 33.............................................................................0.17 1.00 > 33.......................................................................... 0.20 1.00 NOTE: Use of other C-Factor or P-Facfor values reported in this table must be substantiated by documentation. (1) Must be constructed as the first step in overlot grading. (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required. (3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. MARCH 1991 8-6 DESIGN CRITERIA TABLE 12 - ENTRANCE LOSS COEFFICIENTS Outlet Control, Full or Partly Full Entrance head loss He = ke V2. 2g Type of Structure and Design of Entrance Pipe. Concrete Projecting from fill, socket end (groove -end) Projecting from fill, sq. cut end . . Headwall or headwall and wingwalls Socket end of pipe (groove -end) . . . Square -edge . . . . . . . Rounded (radius 1/12D) . . . . . Mitered to conform to fill slope . . *End -Section conforming to fill slope Beveled edges, 33.70'or.450 bevels Side -or slope -tapered inlet Pipe. or Pine -Arch. Corrugated Metal . . . . . . . 0.2 . . . . . . . . 0.5 Projecting from fill (no headwall) . . . . . . . Headwall or headwall and wingwalls square -edge . . . Mitered to conform to fill slope, paved or unpaved slope *End -Section conforming to fill slope . . . . . . Beveled edges, 33.7° or 45° bevels . . . . . . . Side -or slope -tapered inlet . . . . . . . . . Box. Reinforced Concrete 0.2 0.5 0.2 0.7 0.5 0.2 0.2 0.9 0.5 0.7 0:5 0.2 0.2 Headwall parallel to embankment (no wingwalls) Square -edged on 3 edges . . . . . . . . . . . . 0.5 Rounded on 3 edges to radius of 1/12 barrel dimension, or beveled edges on 3 sides . . . . . . . 0.2 Wingwalls at 30° to 75° to barrel Square -edged at crown . . . . . . . . . . . . . . 0.4 Crown edge rounded to radius of 1/12 barrel dimension, or beveled top edge . . . . . . . . . . 0.2 Wingwall at 10° to 25° to barrel Square -edged at crown . . . ... . . . . . . . . . 0.5 Wingwalls parallel (extension of sides) Square -edged at crown . . . , . . • . . . . . . 0.7 Side -or slope -tapered inlet . . . . . . . . . . . . . 0.2 *Note: "End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydrau- lic tests they are equivalent in operation to a headwall in both i01et and �ut1et control. Some end sections, incorporating a Elosed d have hydraulic taper in their sign a superior performance. These atter sections can be 179 f DRAINAGE CRITERIA MANUAL 60 ' o 40 a 20 ' o RIPRAP 5jS(Z' MENEM . FAAMPAAM 0 EM- . ME No, PP No.'/_Eim ME MMM®MM 0 .2 .4 .6 .8 1.0 Yt/D Use Do instead of D whenever flow is supercritical in the barrel. ' **Use Type L for a distance of 31) downstream. F57771.. ' FIGURE 5-7`RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET. ' 11-15-82 ' URBAN DRAINAGE 8 FLOOD CONTROL DISTRICT t DRAINAGE CRITERIA MANUAL r- 7 A = Expansion Angle Emme 0 0 MEN, 0 EYA ME IIMI IN 9/ RIPRAP 5 .1 .2 .3 .4 .5 .6 .7 .S TAILWATER DEPTH/ CONDUIT HEIGHT, Yt/D FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82 URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT 1 I I 11 0 1 F- ] i STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE.803 MANHOLE AND JUNCTION LOSSES AN NOT[ fa AI TIN • 1 1.1:1. 01 A USE EQUATION 801 E��_ +�`_ K CASE I �3 INLET ON MAIN LINE or K= 0,05 /�l,.inloefc MA;P1J.iiP- cn 0 $ �. PLAN USE EQUATION 805 °y PLAN USE EQUATION 005 Z °4-�, 1�� =—k VIZ .J °•.+,F SECTION CASE II INLET ON MAIN LINE WITH BRANCH LATERAL PLAN USE EQUATION 801 °1 A "L—K v-z i N. k=1.2S SECTION ES CTION CASE III MANHOLE ON MAIN LINE CASE N0. WITH A° BRANCH LATERAL CA INLET OR MANHOLE AT BEGINNING OF LINE CASE III K. A° K• �L Cr—J � 0.05 22-1/2 0.,5 0.25 45 0.50 1.25 60 0.35 90 0.25 No Lateral Sce CIrc I Date: NOV 1984 REFERENCE ' Rev• APWA Special Report No 491 1981 1 1 1 1 1. STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 802C STORM SEWER ENERGY LOSS COEFFICIENT (BENDS AT MANHOLES) 1.4 f.t•f 1.2 I.U'b 1.0 Y 0.8 Bend at d no Manhole, Special Shaping `aPROPOSED FUTURE CDNGRE� I�'. ^ A - if I1 PINECONE P.U.DOTA ROM. —_ N_. t � TYPE E B CAVA�, r REGRADE EXISTING 41•1)"ALE TO DAYLIGHT ` - _ —_-- _ — 10• —la 1• a � ' n �m� B ii •Bx 2y 1 re 1� e ^� i I b PS 2] 2g 30 a W. A 1 TL A 12'D. TYPE 6 RIPRAP TO g .oM p B 2E! I IF. )0 1F 2 11 �i MN—R.t Bp1. wIN-20tl sO .YOU-20. - GAFOEN -245 'ee 2 .. K 219 RYAS .MwB tp.9 L 3 BA2 T .M,- 1 ^ �}F2 31' 0 o Ary wWa "� F-u6 ! -- .A eo 0 i 1 N i / J_ 2A. CJURT - I I• k s^�\ JEWELS �� _ T u_��-•`� ,12' ? �� r1� �s� n n _ v4 m 2332 AV — `\�� r it T>22 Z2. % % • \ 1 fP N S I SCALE I'=50' p I.. r - % ,KILN _ r 2a ✓ 13 — ` Mi�l� 1' �h�C� 12 A I I 11.! 22� I 21 13 I' � NO,W�AS 14 4/ 'Ie o AV OF 1YAPA ON i. 15 lE 2' i R14 I�\A. TIT6 yy [. 42� ]2 I I n�. LQ R T •4 ';m I . .2, e m it a' �� ID T k V, A �� �IiA/� p1E�O5S ON `- I 38 T` N OgIVF ., i AN, 43 �m ^ 1p J k A0 I TD FIT r mifte w LELAENU __ y NOTES • MIN INDICATES I. NUM FINI NED GROUND ALL MARMOT Wxxx¢ 9wi BE wMILI swrur TEE. I'4RVa s Slur BE Fn.STrNG CONTOUR GILL EXISTING ELEVATION FOUNDATION FOR LOTS 10 SUSPECT, A % L D WT SA.'INA" vYE OF M AT 14 �. PROPOSED FINISHED CONTOUR TEMPgiARY SWALE ABUTTING `. Y DRAINAGE 2. yy UITS 9w1 W,W/ttD xm n WhAmm CGNYETANC SWALES. f�FO w IN M tl uy mm M uuxuu wr vo PENTOW E AREA B 0 6 BACK OF WALES M4 TCH C- STING " r f s1w x COI UI ATP.x.re sDu.1/ TO ,WALE 1 THE YPYY (XI rw HNSN➢ ONA0. TO ME HOUSE IS IWINOO AT I" IN PWI Ui r Hp NIGH PONT 1MEST E[TRIR Or FOUNDATION WALL AWN MINISTRY CEM1RuLL RIOE MAN 9 9uu BE x. 11 EACH EVALUATED By ARUMSTEm LP LOW POINT E%ISPNG TEMPORAR. A. M fx91En PYOE Awro RE LOWER Cro OWES NEOIvnx AV THE ROD OF cp'AD1p, SWKE CONSTRUCTED OF HOURES VIA Am6PEO TOM RDIP STATISTS 4V LOT OFi 10 TO DETEWxE THE TONE AND CLIENT 7 M T. TOP Of. CON(PETE FOUNDATION WALL N1N FIRST FILING 5 �dST AS AL NNTO ANAM SRTFY WOURED MONECOAL Is IAKNEuxiAINEEo 2. TE MAN STRIKE HOW RASE MCI - SPOT ELEVATON (PROPOSED) s. [ MI uVM TCVMAIKM [WNFi1W RBJ•h FLOOR NLN'ATY TO SAxTMIY 4R1 MAIN ^ 9�tO WADE UNMET a A IHng1 SMALL ME IT ARGCAUY SPOT ELEVATION (EASDING) FAN0, WAY TM9ED GRAND ATD FINISHED TOPCF s WS m 1 ON MWATEA SMALL IF saoDEO FDUrDATw Ts urc SOMATOBAD A A � FLOW DIRECTION wI E EASTMAN SCAB l STING KT SMI Hw uI STI BE CONSTRUCTED ON W pD OF SIT OCT.MY LANXILITY ONE NATO AN VANATONO � NOW �-� "�-� PROPOSED STORM DRAIN MED ROME mA w Px W1KNE OF THE LOT W ALL CASES UNLESS S{1DAq OR ROAMING NGIIG SOT SALAMIMAY LOT AONO IS YSn4upMy OY OESO REWIRE THE W9E➢ OXIDE AND fY91FD ALLOW DRAWAY CONSTR CTOW ETIUWSA. TOP OA AXONTAroN ELEVATIONS¢ TO AAAN. ♦ o. B ENDS GRADING DESIGNATION TYw LLCRUFALLS OF A%ONSTRUCTED IN ccarDxtt vw DATA STOTT PW (nq. '17V Engineering ConsultantsSTONE RIDGE P.U.D. FINAL GR 6- 002 SECOND FILING NO. BY DATE REN-SIO6 DESCRIPTION OUR CONSTRUCT 875 LS. OF TEMPORARY SWALE O D 40% y FURL IYEBUYEMEYT$ D' IT 1R 1 I. 4 ----- 4 SECTION -N.TS i.. I' 44 ADING PLAN rl 3 6