Loading...
HomeMy WebLinkAboutDrainage Reports - 02/16/1995PROrFRTY OF Fina! ,red RWor COLT �- zn��ss FINAL DRAINAGE AND ROSION CONTROL STUDY FOR STETSON CREEK P.U.D. FIRST FILING ART COLLINS, COLORADO 02 ' 15 wnh 4� C W ne w�S I -NlC-1I2 vfAd�c,- i ✓l �4GYL ! PC -�vKL FINAL DRAINAGE AND EROSION CONTROL STUDY FOR STETSON CREEK P.U.D. FIRST FILING FORT COLLINS, COLORADO ' April 29, 1994 Prepared for: Client: Geneva Corporation ' 344 East Foothills Parkway, Suite 12 Fort Collins, Colorado 80525 ' Prepared by: ' RBD, Inc. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 (303) 482-5922 ' RBD Job No. 395-003 _I .., TWINC. ' Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 -- 303/482-5922 FAX: 3031482-6368 ' April 29, 1994 ' Mr. Glen Schlueter City of Fort Collins Utility Services Stormwater ' 235 Mathews Fort Collins, Colorado 80522 ' RE: Final Drainage and Erosion Control Study for Stetson Creek P.U.D. First Filing ' Dear Glen: ' We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion Control Study for Stetson Creek P.U.D. First Filing. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. ' We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. ' Respectfully, 1 10 RBD Inc. Engineering Consultants Terry cEn Kevin W. G ' Other Office: Denver 303/458-5526 TABLE OF CONTENTS DESCRIPTION PAGE I. GENERAL LOCATION AND DESCRIPTION A. LOCATION 1 B. DESCRIPTION OF PROPERTY 1 �1 H. DRAINAGE BASINS A. MAJOR BASIN DESCRIPTION 1 B. SUB -BASIN DESCRIPTION 2 III. DRAINAGE DESIGN CRITERIA A. REGULATIONS 2 B. DEVELOPMENT CRITERIA REFERENCE 2 AND CONSTRAINTS C. HYDROLOGICAL CRITERIA 2 D. HYDRAULIC CRITERIA 3 E. VARIANCES FROM CRITERIA 3 IV. DRAINAGE FACILITY DESIGN A. GENERAL CONCEPT 3 B. SPECIFIC DETAILS 3 V. STORM WATER QUALITY A. GENERAL CONCEPT 8 VI. EROSION CONTROL A. GENERAL CONCEPT 9 B. SPECIFIC DETAILS 9 VII. CONCLUSIONS A. COMPLIANCE WITH STANDARDS 10 B. DRAINAGE CONCEPT 10 ' C. STORM WATER QUALITY 10 D. EROSION CONTROL CONCEPT 10 REFERENCES 11 APPENDIX VICINITY MAP 2 HYDROLOGY 3 OFFSITE HYDROLOGY 15 DESIGN OF INLETS, STORM SEWER AND SWALES 19 DETENTION 54 EROSION CONTROL 72 McCLELLANDS BASIN DRAINAGEWAY 78 SWMM MODEL ANALYSIS 112 CHARTS, TABLES AND FIGURES 185 t] FINAL DRAINAGE AND EROSION CONTROL STUDY FOR STETSON CREEK P.U.D. FIRST FILING FORT COLLINS, COLORADO GENERAL LOCATION AND DESCRIPTION A. Location The Stetson Creek P.U.D. First Filing development is located south of Harmony Road and immediately east of Timberline Road. The site is shown on a Vicinity Map in the appendix. The site is located immediately south of the Timber Creek P.U.D. development which is being designed at this time. More particularly, the proposed development is located in the West Half of Section 5, Township 6 North, Range 68 West of the Sixth P.M., Larimer County, Colorado. B. Description of Property The Stetson Creek P.U.D. development contains approximately 80 acres more or less of which all of the area is currently undeveloped and ultimately proposed for residential development. The First Filing of Stetson Creek contains 18.29 acres. The property has consisted of cultivated farm land. Various irrigation ditches lie within and adjacent to the overall site and have been used for on -site irrigation. The existing irrigation ditch between the Stetson Creek P.U.D. and the Timber Creek P.U.D. will be abandoned with the construction of these developments. The McClellands Basin Drainageway traverses through the site in a west to east direction. The site generally slopes from the northwest to the southeast at approximately 1 % . DRAINAGE BASINS A. Major Basin Description The site is located in the McClellands Basin. This drainage area is specifically described in the; report entitled McClellands Basin Master Drainage Plan, prepared by Greenhorn and O'Mara, Inc. 1986. As part of the Master Plan, a SWMM model was developed for this basin, but the original SWMM Model was not available from the City of Fort Collins Stormwater Utility for utilization with this project. Because the original SWMM Model was not available from the City, the upstream OakRidge development existing 10 and 100 year SWMM 1 Models were utilized and added onto for this developmental analysis. A schematic of the original Greenhorn and O'Mara and OakRidge development SWMM models are included in the Appendix. Included in the back pocket of this report is a new SWMM Model Exhibit drawing for the area directly east of the Oakridge development to the east property line of the Stetson Creek and Timber Creek developments. Further discussion about the site specific SWMM modeling completed is included later within this report. B. Sub -Basin Description Historic drainage patterns for the site are southeasterly across the site towards the McClellands Basin Drainageway. Once storm water runoff reaches the drainageway, runoff is collected in the drainageway and directed easterly to eventually reach the Cache La Poudre River. Off -site areas to the north and south of the site, drain onto and across the site in an historic condition. ,= M. DRAINAGE DESIGN CRITERIA A. Reeulations ■ All regulations, as established by the City of Fort Collins Stormwater Utility, are used for this Final Drainage and Erosion Control Study. A variance is being ' requested for the riprap used in the drop structure for the McClellands Basin Drainageway because the Urban Drainage & Flood Control District standard design for drop structures has been revised recently and it now differs from the rr current City of Fort Collins criteria. B. Development Criteria Reference and Constraints The McClellands Basin Master Drainage Plan criteria and constraints are being utilized in this Final Drainage and Erosion Control Study. Drainage criteria not specified in the McClellands Master Drainage Plan will be in accordance with the City of Fort Collins Storm Drainage Design Criteria and Construction Standards Manual. The Master Plan for the McClellands Basin requires on -site detention using a staged release rate of 0.20 cfs/acre for a 10 year design storm and 0.50 cfs/acre for a 100 year design storm. IC. Hvdroloaical Criteria The rational method was used to determine runoff peak flows from the site. The 2 and 100 year rainfall criteria, which was obtained from the City of Fort Collins, is the criteria utilized for this study. This criteria is included in the Appendix. ' 2 I 11 I 1 1 i Per a request from the City of Fort Collins Stormwater Utility, a SWMM Model has also been added to the hydrological analysis as discussed later within this study. D. Hydraulic Criteria All calculations within this study have been prepared in accordance with the City of Fort Collins Storm Drainage Criteria. E. Variances from Criteria A variance is being sought for the type of riprap rock used in the McClellands Basin Drainageway Drop Structure as discussed later within this report. In addition, a variance is being sought to release, for the 10 year storm event from Pond # 371, 1.17 cfs rather than the 0.56 cfs required. This variance is being requested on the grounds that this is relatively insignificant, 0.61 cfs of flow. IV. DRAINAGE FACILITY DESIGN ' A. General Concept As development occurs within Stetson Creek Filing No. 1, a portion of the on -site fully developed flows will flow directly into detention pond numbers 370, 371 and 373 with the remainder of the flows flowing directly into the McClellands ' Basin Drainageway. Flows directed into the McClellands Basin Drainageway will be accounted for by over detaining in detention pond 373. Detention pond 373 and incoming drainage channels have been designed with the Timber Creek P.U.D. development. The Preliminary Drainage and Erosion Control Report for the remainder of the Stetson Creek development is being revised at this time. ' B. Specific Details High groundwater will be encountered during construction, and an underdrain will be constructed. In addition, a Colorado Department of Health Construction Dewatering Permit will be required. McClellands Basin Drainageway From the McClellands Basin Master Plan, twin 7 foot by 5 foot reinforced concrete box culverts, with an adjacent drop structure, were proposed by Greenhorn & O'Mara, Inc. in 1986, at the Timberline Road Crossing to pass 500 cfs of storm water under Timberline Road. The McClellands Basin Drainageway is a Regional Drainage Channel and is eligible for basin reimbursement through 1 .1 ' the Developer Repay Program from the City of Fort Collins Stormwater Utility. Final design of Timberline Road, from Harmony Road south to the south property line of the Stetson Creek development, is currently being done by Northern Engineering. Included within the Timberline Road final design will be the box culvert design at the McClellands Basin Drainageway. 1' The McClellands Basin Drainageway has been final designed, along with the Stetson Creek P.U.D. First Filing, from the eastern right-of-way line of ' Timberline Road, east to the existing pipe/bridge near the southeast corner of the Stetson Creek site. For the McClellands Basin Drainageway design parameters, ' the existing pipe/bridge invert near the southeastern comer of the Stetson Creek site was held as a fixed beginning point. The new channel was established by utilizing the McClellands Basin Master Drainage Plan slope of 0.50% along the channel. The new channel was designed with a natural trickle channel, 1 foot deep, sized to carry 1 % of the 100 year storm water flow. The initial 500 feet of the trickle channel, from the existing pipe/bridge upstream, has been reduced in slope to 0.40% to provide a 1.5 foot deep trickle channel adjacent to the outlet pipe for Detention Pond 373. This deeper trickle channel is necessary due to clearance problems with the detention pond outlet pipe and the existing sanitary ' sewer line. After passing by Detention Pond 373, the trickle channel is reduced to a 1 foot depth by a small riprap transition. The Stetson Creek P.U.D. First Filing Final Plat does not include the ' McClellands Basin Drainageway and therefore the proposed box culvert under Dry Creek Lane was not designed at this time. The proposed box culvert has been sized as a 3 foot high by 16 foot wide structure to adequately pass the 100 ' year storm water flow in the channel. When the box culvert is designed in the future, it should contain a trickle channel through the box as well as headwalls and wingwalls at its upstream and downstream ends. With the initial McClellands Basin Drainageway construction, the drainageway grading will just be extended through where the future box culvert will be located. ' In order to provide sanitary sewer service to the southern portion of the Stetson Creek development, crossing the McClellands Basin Drainageway in two locations ' was required. A drop structure within the McClellands Basin Drainageway has been designed near the middle of the development in order to facilitate one of the sanitary sewer crossings required to serve the Stetson Creek development south of the drainageway. The McClellands Basin Master Drainage Plan prepared by Greenhorn and O'Mara, Inc. in 1986, indicated that a drop structure was planned some where within this reach of the channel. The drop structure has been ' designed in accordance with the Urban Drainage & Flood Control District's (UD&FCD) design criteria and includes a maintenance access road along the north side of the drainageway. The UD&FCD criteria requires that a uniform ' riprap boulder size be utilized as the uniform rock size was determined to 4 1 perform with the best results throughout the Denver Metro Area. An 18" minimum rock size is therefore required to meet the UD&FCD criteria. No ' gradation of smaller rock is recommended by the UD&FCD and therefore not included with our design. A variance is hereby requested to construct the drop structure with 18',' minimum riprap boulders instead of a uniform gradation of riprap as has been utilized in the past within the City of Fort Collins. The SWMM modeling done for the site yielded different results than the original ' McClellands Basin Master Drainage Plan prepared by Greenhorn and O'Mara, Inc. 1986. The total 100 year flow at Timberline Road in the McClellands Basin Drainageway, from the SWMM modeling, yielded a flow value of 284 cfs compared to the 500 cfs indicated in the original McClellands Basin Master Drainage Plan. As discussed later in this report, the 100 year storm water flow ' in the McClellands Basin Drainageway was confirmed to be 284 cfs at Timberline Road. The McClellands Basin Drainageway was therefore hydraulically modeled utilizing the HEC II computer model with the flow values indicated from the new ' SWMM modeling. The HEC II output results are included within the Appendix and the 100 year water surface elevations and floodplain limits within the drainageway have been shown on the Utility Drawings. ' SWMM Modelinz In order to analyze the five ultimate ,permanent detention ponds and the McClellands Basin Drainageway within the Stetson Creek and Timber Creek developments, the Urban Drainage and Flood Control District's SWMM computer ' model was required to be used by the City of Fort Collins Stormwater Utility. As part of the McClellands Basin Master Plan, a SWMM model was developed for this basin, but the original SWMM Model was not available from the City of Fort Collins Stormwater Utility for utilization with this project. Because the original SWMM Model was not available from the City, the upstream OakRidge development existing 10 and 100 year SWMM Models were utilized and added ' onto for this developmental analysis. A schematic of the original Greenhorn and O'Mara and OakRidge development SWMM models are included in the Appendix. Included in the back pocket of this report is a new SWMM Model Exhibit drawing for the area directly east of the Oakridge development to the east property line of the Stetson Creek and Timber Creek developments. ' The Oakridge development SWMM model was used as an initial component of the ultimate SWMM model. The City of Fort Collins Stormwater Utility requested that the upstream Oak/Cottonwood Farm 100 year SWMM model be linked to the Oakridge 100 year SWMM model. Because the Oakridge SWMM model contains different input for the 10 and 100 year models, the Oak/Cottonwood Farm 100 year model was the only model linked to the Oakridge -' SWMM model. Linking of the 2,5,10,25, and 50 year models will be done in 5 ' the future by the City of Fort Collins Stormwater Utility through a Master Plan Update process. The Oakridge SWMM model was originally created after some ' of the development had already occurred within the basin. The original design assumptions regarding the characteristics of the Oakridge Development detention pond and upstream contributory basin were previously well established. It is ' believed that the original design assumptions for the Oakridge Detention Pond are still valid. No further research into the original Oakridge Detention Pond design assumptions was done with this project. ' The SWMM model was then added onto for the property within the McClellands Basin between the Oakridge development and the eastern property line of the ' Stetson Creek and Timber Creek developments, including the new proposed Harmony Crossing P.U.D. development. The Harmony Crossing P.U.D. development Final Drainage and Erosion Control Report contains information on basins and conveyance elements added onto the SWMM model between the Oakridge development and Timberline Road. ' Per the City of Fort Collins Stormwater Utility, future developments with Basin 301,303,304, and 316 must perform SWMM modeling to ensure no adverse ' impact to downstream facilities and provide a disk with the SWMM model update for the basin being revised. Output from the SWMM model is included in the Appendix. ' Stetson Creek First Filine A portion of the Stetson Creek First Filing and undeveloped later filings of Stetson Creek lying north of Stetson Creek Drive, drain easterly and into ' Detention Pond 373. On the Stetson Creek First Filing Utility Plans, these drainage waters have been shown heading in an easterly direction to the swale running north/south through the site to Detention Pond 373. The swale and ultimate sized Detention Pond 373 have been designed as part of the Timber ' Creek P.U.D. developmentand the swale and ultimate size Detention Pond 373 improvements will be in place before the Stetson Creek P.U.D. First Filing ' improvements have been completed. A temporary culvert under Stetson Creek Drive, along with the temporary gravel road (Stetson Creek Drive) has been designed with this project to route storm water runoff into Detention Pond 373. ' Once Stetson Creek's 2nd Filing occurs, the temporary culvert will be replaced with a box culvert per the Preliminary Drainage Report for the remainder of the Stetson Creek Development. It is further intended that this portion of the Stetson ' Creek P.U.D. First Filing storm water runoff will be detained in Detention Pond 373. Therefore, no design of the Swale and Detention Pond 373 improvements have been included with the Stetson Creek P.U.D. First Filing. 1. 1 The storm drainage facilities to be constructed for the Stetson Creek P.U.D. First Filing include a storm sewer system which directs runoff to Detention Pond #370 ' which serves basins 407,408,409, and 410. This storm sewer system was designed to ensure that during a 100 year storm event, backwater from the detention pond will not cause the City of Fort Collins Stormwater Utility criteria 1 to be exceeded. Therefore a portion of the storm sewer system has been designed to carry the 100 year storm event. In addition, portions of this system allow storm water runoff, during a 100 year storm event, to pond up over the inlets and cross over the crown of the adjacent street and proceed on downstream in the system. The detention pond outlets into the McClellands Basin Drainageway and 1 has been designed to meet the 10 and 100 year release requirements for this basin. An orifice plate at the pond outlet pipe controls the rate of release. The emergency overflow weir will pass the 100 year flows if the outlet structure is 1 plugged. In order to not exceed the street storm water carrying capacity in Stetson Creek 1 Drive, a storm sewer system was necessary in Stetson Creek Drive and has been developed as a part of this the Stetson Creek First Filing development. The storm sewer system has been sized for future anticipated development in later 1 filings of the Stetson Creek development. This storm sewer system was designed to ensure that during a 100 year storm event, backwater from the downstream swale will not cause the City of Fort Collins Stormwater Utility criteria to be 1 exceeded. Therefore a portion of the storm sewer system has been designed to carry the 100 year storm event. 1 A portion of the Stetson Creek P.U.D. First Filing storm water runoff is direct flow to the McClellands Drainageway from the rears of the lots and adjacent grassed open spaces. These undetained storm water flows will be accounted for ' by over detaining storm water runoff collected in Detention Pond 373. Per the Timber Creek PUD Final Drainage and Erosion Control Report, the amount of water being over detained is to be exactly the amount of water being released 1 directly into the McClellands Basin Drainageway. No extra over detention is to occur. 1 A portion of the Stetson Creek P.U.D. First Filing storm water runoff is directed into Detention Pond #371 by a concrete sidewalk culvert and swales into the detention pond. The detention pond serves basins 412 and 413, outlets into the 1 McClellands Basin Drainageway, and has been designed to meet the 10 and 100 year release requirements for this basin. An orifice plate at the pond outlet pipe controls the rate of release. The emergency overflow weir will pass the 100 year 1 flows if the outlet structure is plugged. A variance is being sought to release, for the 10 year storm event from Pond # 371, 1.17 cfs rather than the 0.56 cfs required. This variance is being requested on the grounds that this is relatively 1 insignificant, 0.61 cfs of flow. 1 7 1 When Timberline Road is improved in the future, runoff from the east half of the street will be collected by curb and gutter and directed to an inlet and pipe, then ' to the future box culvert for the McClellands Basin Drainageway. Areas in Basin 406 not immediately adjacent to the McClellands channel will be collected.in drainage swale #162 and diverted to the McClellands Basin Drainageway. V. STORM WATER QUALITY A. General Concept ' Beginning in October of 1992, the water quality of storm water runoff was required to be addressed on all final design utility plans. The Stetson Creek P.U.D. First Filing development is anticipating construction beginning in the spring of 1994. Therefore for this project, we have sought to find various Best Management Practices for the treatment of storm water runoff. The Stetson Creek P.U.D. First Filing will be providing grass swales and grass detention ponds. These grass lined features will provide a mechanism for pollutants to settle out of the storm water runoff as the runoff is directed to the McClellands ' Basin Drainageway. VI. EROSION CONTROL A. General Concept The Stetson Creek P.U.D. First Filing development lies within the Moderate Rainfall Erodibility Zone and the Moderate Wind Erodibility Zone per the City ' of Fort Collins zone maps. Due to the existing site slopes of 1 % the potential exists for erosion problems after the first filing improvements are completed and the ground is bare. It is anticipated that the first filing improvements will be completed during the summer of 1994. Thus the new improvements will be subjected to both wind and rainfall erosion before new vegetation has taken hold or the new residential lots are developed. Per the City of Fort Collins Erosion Control Reference Manual for Construction Sites and the related calculations in the appendix, the erosion control performance ' standard for the subject site is 84% or less. From the calculations in the appendix, the effectiveness of the proposed erosion control plan is well above this. Therefore the erosion control plan as specifically detailed below, meets the ' City of Fort Collins requirements. 1 1 8 ilI t Vu. B. Specific Details As Overlot Grading is being completed, seed/mulch is to be applied to all areas that are not being paved. The section of Stetson Creek Drive that is to be paved as a part of the First Filing must have a 1 inch layer of gravel mulch (1/4" to 1 1/2" gravel) applied at a rate of at least 135 tons/acre immediately after overlot grading is completed. All disturbed areas not in a Roadway or a Green belt area shall receive a temporary vegetation seed applied. After seeding, a hay or straw mulch shall be applied over the seed at a rate of 2 tons/acre minimum, and the mulch shall be adequately anchored, tacked, or crimped into the soil. All new channels and swales shall receive straw bale check dams as soon as possible after overlot grading. Where possible, the existing vegetation and established grass shall be maintained. Straw bale check dams should be installed along the drainage swales as shown on the drainage plan. The pavement structure should be applied as soon as possible after the utilities have been installed. After installation of the concrete sidewalk culvert and -curb inlets, they shall be filtered with a combination of concrete blocks, 1/2" wire screen and 3/4" coarse gravel. After installation of the storm drains, riprap protection shall be installed at the outlets. All construction activities must also comply with the State of Colorado permitting process for Stormwater Discharges Associated with Construction Activity. A Colorado Department of Health NPDES Permit will be required before any construction grading can begin within this development. CONCLUSIONS A. B. Compliance with Standards All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. No variances are being sought for the subject site. Drainage Concept The proposed drainage concepts adequately provide for detention of developed runoff from the Stetson Creek First Filing site. The detention ponds within the site have been provided with emergency overflow outlets in the event the outlet structure and pipe become plugged. A storm sewer system has been provided to remove storm water from the streets so that criteria is not violated when the street capacities exceed City of Fort Collins standards. 0 11 The City of Fort Collins will not be responsible for maintaining on -site storm drainage facilities, rather the homeowners association will be responsible for ' maintaining the on -site storm drainage facilities. Storm drainage facilities in the public right-of-ways and the McClellands Basin Drainage will be maintained by the City of Fort Collins. ' Because groundwater will be encountered during the construction of the site and dewatering will be used to install utilities, a State of Colorado Construction ' Dewatering Wastewater Discharge Permit will be required in order for dewatered water to be discharged into any waters of the United States. ' C. Storm Water Quality ' Because storm water quality has become a requirement, the site has addressed this storm water aspect. Grass lines swales and detention ponds will provide an opportunity for storm water pollutants to filter out of the storm water runoff ' before the runoff enters the McClellands Basin Drainageway. D. Erosion Control Concept The proposed erosion control concepts adequately provide for the control of wind and rainfall erosion from the Stetson Creek P.U.D. First Filing. Through ' construction of the proposed erosion control concepts, the City of Fort Collins performance standards will be met. The proposed erosion control concepts presented in this report and shown on the erosion control plan are in compliance ' with the City of Fort Collins erosion control criteria. ' 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, revised March 1991. t2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January, 1991. 3. McClellands Basin Master Drainage Plan, by Greenhorn and O'Mara, Inc., 1986. 4. Master Drainage Study for Wild Wood Farm, by RBD, Inc. July, 1988. 5. Overall/Preliminary Drainage and Erosion Control Study for Hillside at Rock Creek, by ' RBD, Inc., August, 1993. 6. Overall/Preliminary Drainage and Erosion Control Study for Brookside at Rock Creek, ' by RBD, Inc., August, 1993. 1 10 d No Text No Text 1 ' ' HYDROLOGY 3 CLIENT GEAJE✓AfS JOBNO.5��3 ' INC PROJECT 57N:.T o 1 ClK- CALCIJLATIONSFOR!�* , e-w' _ Engineering Consultants MADE BYTr� DATE EI 19 CHECKED BY -DATE SHEET Y OF 5" Stetson Creek First Filing Drainage ' This sheet calculates the composite ace values. 1 H KWG 1-25-94 Design Area" Impervious 'C' Pervious 'C' A,total (ac.) A,imp (ac.) Percent Imperviou Percent Pervious Composit 'C' 401 0.95 0.2 1.13 0.107 9.5 90.5 0.27 402 0.95 0.2 2.04 0.284 13.9 86.1 0.30 403 0.95 0.2 0.5 0.199 39.8 60.2 0.50 404 0.95 0.2 0.39 0.313 80.3 19.7 0.80 405 0.95 0.2 0.48 0.395 82.3 17.7 0.82 406 0.95 0.2 4.55 0.532 11.7 88.3 0.29 407 0.95 0.2 2.25 1.261 56.0 44.0 0.62 408 0.95 0.2 3.19 1.421 44.5 55.5 0.53 409 0.95 0.2 0.46 0.336 73.0 27.0 0.75 410 0.95 0.2 1.13 0.213 18.8 81.2 0.34 411 0.95 0.2 0.99 0.604 61.0 39.0 0.66 412 0.95 0.2 0.91 0.213 23.4 76.6 0.38 413 0.95 0.2 1.87 0.423 22.6 77.4 0.37 414 0.95 0.2 0.89 0.604 67.9 32.1 0.71 415 0.95 0.2 0.34 0.187 55.0 45.0 0.61 416 0.95 0.2 1.38 0.825 59.8 40.2 0.65 9 E 'E 'E E N N 0 0' y i Y [' 2 fV r fi OO CI C F c F E W n a ry ry o d e e r ry o rz e o N r r fl C1 C1 fV CI N 7 N N N N F" c 'u ,y F 2 � F E- N N N O � c z O O O N N b b d V OO O OO G OO OO OO OO G C 0' 0' C O OO G o o of o c a o c c o G .W I 7 Nm N C 5 u C i i o 0 0 •o c � i 3' i ry r r �• V 2 M v1 fl vN F v1 �o •o ry ry o r �o r hl lV CI r of fl OO C1 CI y e 'y N 1 < C1 N C1 < C1 IV fV CI C1 C1 ' 6 y � OO OO G G OO G OO C O G OO G C p t✓ e r � � o c� o Q 25 o 0 0 0 0 0 0 � F e A � F e o o •o 2 E E G CI vi P vl C1 r IH r N N N N N N N N A Ory O O O O &] e0 N F � 2 0 o 0 0 ro 0 0 U o c o c o o c 0 o p �{ fV OO OO OO O O OO G O A N S n iiliC lm a���i��iliiii�iiiloisiliii i1 1110 1110 1110 • 1110o���sne�ee�si 0 no F O Z 0 V5 w 0 zto tcn o W-- �a W LO 1n t m w rn LL Z It r Om c3 OE �0 0 LL CC 0 J Q }U F ,.MAY 1984 5-3 DESIGN CRITERIA i No Text I 1 1 1 1 1 #^ T o s S �Q �BIII�11�l116���101111111111111111111 ,. MAY 1984 5-3 0 Z 0 U) W 0 r Q z to LU c ao gc � a >W Lb . NL d W rn LL Oi Z _j o� of �o aC LL LL 2 cc 0 LL U a DESIGN CRITERIA T 00, I Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Stetson Creek 1st Fg Comment: Pipe flow to box from E. side Timberline Rd. (R P• 4041405) Solve For Actual Depth Given Input Data: Diameter.......... Slope ............. Manning's n....... Discharge......... Computed Results: Depth ............. Velocity.......... Flow Area.. .... Critical Depth.... Critical Slope.... Percent Full...... Full Capacity..... QMAX @.94D........ Froude Number..... 1.25 ft 0.0050 ft/ft 0.013 2.29 cfs 0.63 ft 3.72 fps 0.61 sf 0.60 ft 0.0056 ft/ft 50.08 % 4.57 cfs 4.91 cfs 0.94 (flow is Subcritical) ' Open Channel Flow Module, Version 3.21 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1 ' Circular Channel Analysis & Design Solved with Manning's Equation ' Open Channel - Uniform flow ' Worksheet Name: Stetson 408 Comment: Flow in pipe at D.P. 408 ' Solve For Actual Depth Given Input Data: Diameter.......... 1.25 ft ' Slope.. 0.0050 ft/ft Manning's n....... 0.013 Discharge......... 3.60 cfs ' Computed Results: Depth ............. 0.84 ft Velocity.......... 4.12 fps Flow Area.. 0.87 sf Critical Depth.... 0.77 ft Critical Slope.... 0.0064 ft/ft ' Percent Full...... 66.93 % Full Capacity..... 4.57 cfs QMAX @.94D........ 4.91 cfs Froude Number..... 0.84 (flow is Subcritical) ' Open Channel Flow Module, Version 3.21 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 ' iz I 13 L n t t Circular Channel Analysis & Delsign Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: stetson 407 Comment: Pipe flow at D.P. 407 Solve For Actual Depth Given Input Data: Diameter.......... Slope............. Manning's n....... Discharge......... Computed Results: Depth ............. Velocity.......... Flow Area......... Critical Depth.... Critical Slope.... Percent Full...... Full Capacity..... QMAX @.94D........ Froude Number..... 1.50 ft 0.0050 ft/ft 0.013 6.77 cfs 1.12 ft 4.76 fps 1.42 sf 1.01 ft 0.0066 ft/ft 74.97 % 7.43 cfs 7.99 cfs 0.80 (flow is Subcritical) Open Channel Flow Module, Version 3.21 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 11 LJ Ik P t f] t Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: Stetson 409 Comment: Pipe flow @ D.P. 409 Solve For Actual Depth Given Input Data: Diameter.......... Slope ............. Manning's n....... Discharge......... Computed Results: Depth ............. Velocity.......... Flow Area......... Critical Depth.... Critical Slope.... Percent Full...... Full Capacity..... QMAX @.94D........ Froude Number..... 1.50 ft 0.0060 ft/ft 0.013 7.07 cfs 1.08 ft 5.19 fps 1.36 sf 1.03 ft 0.0068 ft/ft 72.06 % 8.14 cfs 8.75 cfs 0.91 (flow is Subcritical) Open Channel Flow Module, Version 3.21 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 1s OFFSITE HYDROLOGY 4 1 N 2 O N 1 ti w 1 O U V Q O U 1- 1 z° Q U. O 0 � n m i- z O Z m < 0 U D U � m ^A ^Q Q 1 _ 16 ac N r of r d d T of T Q T ? T T Q 7 7 TCtf LLJ 0� . 11.. N 94 w b` N 0 m u A r' z tN oW � E-F F a co m a o a� m� o o o m m J 9 Q 4` r0 n� 119 to n, w m 4 w- N W oa 0000 d d d ►-- �= i 0 0 9 I za ��.JQf) N N a N In M — crLLJ >, , W o \ow W° N N N N N R1 N N N It \J)Z o a O Q Z J 4.... S _9 N W C — In lf� V ? o O o Q O 0 6 a c miQcoo Wabi n s C N N hA NNNNrcc lfJ � 0, V) ccr, 0 20.1E Gr - � 1 ErsofJ (2iLt=�� - \ r- z 1 . STORM . DRAINAGE SYSTEM PRELIMINARY DESIGN. -DATA F-1, � 3�Z� _are bated o�,. Location °f Design Point H ` m t `a E w FJE! Flow Time 0 c o m cmi ) .- F• U E d :u _` U U= L al. C_ __ o o 0 m-_ Q Q= 0 0 meu+L •,-. O K c.� d 0 e v-. O c� 0 o u o' E 0 Ee J t!'1 Street Pipe Street Pipe Remarks - E o _ O 0 tt1 o m e o G •� Q U ci ce> O N o N w o O r- U c.� •m w 0 c.� a u G H I 2 3 4::- 5 6 7 8 9 10 II 12 13 14- 15 16 17 IS 19 20 21 22 23 0.4o Z,75 2.3Z 2. ss Z-SS Z-o 4,7 Z.oS Z.9 S2-7 5Z7 IZ,9 O.sO 2,30 1,29 1, L10 1.48 D,4o 4, II S I2.9 O,Yy 2.30 3,61 3.65 3,65 0,40 4,11' 3.65 1,50 3,29 cfs rAn 15'.rNaEr Nve SzZ o/s OF D.P. 5Z7 szz 14,6 o.so Z.10 2.Is 2,29 Z,Z9 0.40 4,11 2,Z9 L.sa szz szo, z7 4.4 17.3 D•4(. 2.0o s,79 5,33 3,29 2.OY p,40 4..11 2,04 1•aD 4.4 Z _ bcfh A s_�+{r-s+reel ' Comv G = s.v� v rz.is(,so 5,79=o.Y6 521 521 16.7 6,56 2.05 3.66 3.75 3,-75 o.4o 5.Y8 3.75 /,S I 3,75C6 rvro 101,v6CrV0, SZI D D.P.521 S23 15. O.SD 1,95 2.66 2.79 2.79 D-40 4.11 2.79 1.5 renv Tmc- 4•� n ;�, ,5 5�0Z2 , 4ZZ7. 22Y1..89 I23.,938I 1I0I,.35Y3 7B.0ro9 3,30 0.4o 4.1I II( •.vz 522, ZL 2GAZS�3�,2�z3. rrd, U�-[cc �,.s.im�,�nz-YeCEo EE"ol/a sd SZ4 IZ-Z O.SD 1-6-7 1.9Z Z O.4o 4,11 I1I.-.-sSsS T=S va,aacEi� ��= TU1.E6sS45 S24 96 bO,.YsSD I1.,7655 2-eq 0.40 4.11 _ TA�sV.aE5 2+1E, 3l�sF 22D5 12--7 D-SO 2.25 2,60 2.93 2.`/3 0,40 4.11 1 .c94),IS(-Us o =ZS 520,5 1, 3.4 28,7. o,Eao 1.50 Ib.58 12.YY 8.69 3,75 0.40 4•II 3,75 1.5 WSrdu ID, CU26 1UlEr Va, 52S 322,5 3, S2G-, Z.,16 .caps i�lT'E2.G�.o7SD 8z� II.1 a.sD Z-zs 0.75 D.BZ 0.9z 0.4D 4.11 p,sz I•s 526 5W,5 1, 1•� 30,0 D•SD 1.'tb 17.31 12,01 I1.67 1,1y 0.4D 1.5 52Z 523 5Zv, 525,52(0 52 I 1 1 1 1 1 1 1 1 1 1 1 1 1 �1 i 1 1 lDo-t2.1 MICTIAM., M. ��■■a��������t�s����®ems � sz7 u�J r 1 i 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 DESIGN OF INLETS, STORM SEWER AND SWALES 19 '------------------------------------------------------BY----------------------- «STREET DRAINAGE INLET., DESIGN: DEVELOPED CU-DENVER» UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ---------------------------------------------------------------------- *** CURB OPENING INLET HYDRAULICS AND SIZING: Z YR 5FOQM tINLET ID NUMBER: 415 1 .1 1 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH.(ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE STREET CROSS SLOPE STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: 5.00 13.34 0.57 0.47 0.40 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 13.38 GUTTER FLOW DEPTH (ft) = 0.43 FLOW VELOCITY ON STREET (fps)= 2.06 FLOW CROSS SECTION AREA (sq ft)= 1.96 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 20.00 INLET'INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.28 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 4.00 FLOW INTERCEPTED (cfs)= 1.89 CARRY-OVER FLOW (cfs)= 2.11 ' BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 4.00 FLOW INTERCEPTED (cfs)= 1.83 CARRY-OVER FLOW (cfs)= 2.17 1 1 k 1 z) ---------------------------------------------------------------------------- «STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ---------------------------------------------------------------------- *** CURB OPENING INLET HYDRAULICS AND SIZING: 2 Yk 57-okm ' INLET ID NUMBER: 408 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.40 ' STREET CROSS SLOPE ($) 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.17 tGUTTER WIDTH (ft) = 1.04 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 13.38 GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 1.95 ' FLOW CROSS SECTION AREA (sq ft)= 1.88 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (Cfs)= 4.36 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 1 3.64 3.64 0. 00 3.64 3.49 0.15 OK {or 2YR, 5ron. inP,ck up0,ls�fs�oc+ worFA ioctAsiw) jr0t+site t ZZ r --------------STREET------DRAINAGE----------INLET---- DESIGN:-------- --DEVELOPED--------BY------CU-DENVER------» ------------ « UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ---------------------------------------------------------------------------- *** CURB OPENING INLET HYDRAULICS AND SIZING• IooyR STORrA tINLET ID NUMBER: 408 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE 0.40 ' STREET CROSS SLOPE M _ 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.04 ' GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 22.56 GUTTER FLOW DEPTH (ft) = 0.54 FLOW VELOCITY ON STREET (fps)= 2.65 FLOW CROSS SECTION AREA (sq ft)= 5.17 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 7.80 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= ' D-e:�crmir•e amov,+ of low -t & WW cross • 47e- cro,unof -j-he sf*eef, Qx-c= Quo-Qin/e} = 137y- y,5= 9.2Hc#'S 13.74 6.90 6.84 13.74 6.24 i P CA�aci W 7.50 Y.Scfs 15"kcp o 0. 50% ' ,vo4co See 54,ee4 Crown Oue4jow c(effii clnaly$15 eo nexf ra3e, O�er�low w;11 hee� down SoufLwesf side o)c Qr,, Creek Zane '3 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA MOUNTAIN CREEK CIRCLE CROWN OVERFLOW ANALYSIS WEIR COEF. 3.000 STA ELEV 0.0 33.29 88.0 32.73 101.0 32.37 114.0 32.75 131.0 32.83 145.0 32.93 ELEVATION (feet)- 32.37 32.47 32.57 32.67 32.77 2nj 32.87 �— ntioo- 9.Z4 cfs ovtr Crown of 5{rra{ DISCHARGE --(cfs)-- 0.0 0.2 1.3 3.7 7. 8 $ 9 Zycfs 16.2 /j {-ti ove�Crown = 32.79-32.37= OyZf'F 4 OIT04 ioK) prL, ztvr �Ses Q=GLH3/z �c�vaFion Aia4ee- Sfor„,wA4w rvno-Pf w;l16o oxe -the s)deuAlk a„d back up 4Ae sfreef until i%e watt+ -SVnoQre ekvel;on m4c-4es a fo)nf whem waie.r flaws over -the- croon of the sfreei as shown in 4c profile above. 1 - zti ------------------------------------------- 7---------------------------------- <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ------------------------------------------------------------------------------ *** CURB OPENING INLET HYDRAULICS AND SIZING: 2YQ STORM INLET ID NUMBER: 407 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. 1 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 STREET CROSS SLOPE M STREET MANNING N 2.00 0.016 GUTTER DEPRESSION (inch)= 1.17 GUTTER WIDTH (ft) = 1.04 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.63 GUTTER FLOW DEPTH (ft) = 0.35 FLOW VELOCITY ON STREET (fps)= 1.89 FLOW CROSS SECTION AREA (sq ft)= GRATE CLOGGING FACTOR M = 1.69 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.48 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.17 FLOW INTERCEPTED (cfs)= 3.17 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.17 FLOW INTERCEPTED CARRY-OVER FLOW (cfs)= (cfs)= 3.17 0.00 i I I I 2S u I <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>, ' --------- UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ------------------------------------------------------------------- 1 *** CURB OPENING INLET HYDRAULICS AND SIZING: tooyrt tTrrmm INLET ID NUMBER: 407 INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 HEIGHT OF CURB OPENING (in)= 6.00 ' INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 ' Note: The sump depth is additional depth to flow depth. STREET GEOMETRIES: ' STREET LONGITUDINAL SLOPE ($) = 0.40 STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 1.17 ' GUTTER WIDTH (ft) = 1.04 1 1 1 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 26.69 GUTTER FLOW DEPTH (ft) = 0.63 FLOW VELOCITY ON STREET (fps)= 2.95 FLOW CROSS SECTION AREA (sq ft)= 7.21 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= BY FAA HEC-12 METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED CARRY-OVER FLOW 21.36 (cfs)= 21.30 (cfs)= 18.16 (of s)= 3.14 (cfs)= 21.30 (cfs)= 18.16 6?;f e. urder Shedt) (cfS)= 3.14 (flow over Sireek Grown) N04e: See. Sfrce,+ Frown Over -Flow dse� A anrtl} s;s on nex �Pa9e , 1 1 1 1 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA DRY CREEK LANE CROWN OVERFLOW WEIR COEF. 3.000 STA ELEV 0.0 33.23 36.3 32.65 114.9 32.34 135.0 32.26 142.0 32.38 155.0 32.39 165.0 32.51 175.0 32.67 ELEVATION (feet) 32.26 3 2. 3 6 32.31 32.46 �— 32.56 32.66 2& 4100= 3.IYcfs over Crown o-P.Vwtt DISCHARGE (cfs) 0.0 1.1 # 3.iqcf 7.2 20.6 42.1 De,p+k Over Crown = 32.34-32,2to= 0 13 <O So F{ CaK) Program Uses Q=CL1f 3/2 E9va4ioo Alo it : 5}onawaJr runoff w1114o over +Re S>de.,w l K and back ur -Fl+e 5%.ea+ vnf l -He, w 4ei sv 4ce elevaficw reacties a fo7ntWe Profile •µa Cnfi✓n oP-Kc Sfinet as shown n 0.6oue ZO 1 ------ --------------- <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> ----------- ----------UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ----------------------------------------------------- *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 409 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to STREET GEOMETRIES: STREET LONGITUDINAL STREET CROSS SLOPE STREET MANNING N GUTTER DEPRESSION GUTTER WIDTH SLOPE (%) = 0.40 (%) = 2.00 - 0.016 (inch)= 1.04 (ft) = 1.17 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 14.59 GUTTER FLOW DEPTH (ft) = 0.38 FLAW VELOCITY ON STREET (fps)= 2.03 FLOW CROSS SECTION AREA (sq ft)= 2.21 GRATE CLOGGING FACTOR (%)= 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: loo year Si'orM flow depth. IDEAL INTERCEPTION CAPACITY (cfs)= 4.61 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 4.50 FLOW INTERCEPTED (cfs)= 4.07 CARRY-OVER FLOW BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= (cfs)= 0.43 4.50 FLOW INTERCEPTED (cfs)= 3.69 (PipcioPW) CARRY-OVER FLOW (Cfs)= 0.81 (-RPow over "IK and into Pond) 1 ISONC Engineering Consultants CLIENT C�tbL JOBNO. 395-003 PROJECT SJLe SCY1 ClpG St CALCULATIONS FOR sfDri+'� Sewer MADEBY KL116 DATE Z-I(e"9Y CHECKED BY__ DATE -SHEET ___ OF u U17 SaWalp— (QT1 ' iT DOT a 2 15, 20, 2, 2 1 .8, 500, 300, .2 ,Y 4.9 , 3.8 2.7 , 2.2 1.8 , 1.4 .89 5 1, 31.5 , 0, 1 1 0, 0, 0 26.35 , 0 , 2 , .2 , 0 , 0 , 0 , 0 , 0 2,31.76, 1 12,0,0,0 26.35 , 0 , 2 , . 2 , 0 , 0 , 0 , 0 , 0 3,31.87,2, 13,0,0,0 22.66, 0, 2, 2, 0, 0, 0, 0, 0 4,32.48,3,14,0,0,0 4.50,2,.2,0,0,0,0,0 532.48,4,0,0,0,0,0 4.50,2,.2,0,0,0,0,0 4 141,.6,30.1.013,0,0, 127,0 2 , 36 , .5 , 30.28 , .013 , .16 , 0 , 1 27 , 0 3 , 151 5 , 3104 , .013 , 1.32 , 0 , 1 , 18 , 0 4 .1 .5 , 31.64 , .013 , .25 , 0 , 1 18 , 0 H .1 Z°��• REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 DEVELOPED BY DEPARTMENT OF CIVIL ENGINEERING, NIIVERSITYPOF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO =a=as_aaa=a=aa=a=a=a=aaamaaaaca=ea=_ a=---- _ EXECUTED BY DENVER CITY/COUNTY USE ONLY............ ON DATA 02-15-1994 AT TIME 16:57:00" •"* PROJECT TITLE : *** SUMMARY OF HYDRAULICS AT MANHOLES -------•-----------_ MANHOLE CNTRBTING ID NUMBER AREA a C RAINFALL DURATION RAINFALL __ _____ DESIGN 'GROUND _ WATER -COMMENTS MINUTES INTENSITY PEAK FLOW ELEVATION ELEVATION INCH/MR ..................... _ CFS FEET FEET 1.00 N/A 2.00 N/A N/A N/A ______________----------------------------- N/A 26.35 31.50 31.40 OK 3.00 N/A N/A N/A N/A 26.35 31.76 22.66 31.01 OK 4.00 N/A 5.00 N/A N/A 31.87 4.50 32.48 31.46 OK 32.28 N/A N/A N/A 4.50 32.48 OK 32.30 OK tOK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *"' SUMMARY OF SEWER HYDRAULICS ' - ----NOTE:-THE . GIVEN ......................... FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ' SEWER MANHOLE NUMBER IDNUMBERUPSTREAM DNSTREAM SEWER REQUIRED SUGGESTED ID.NO----ID -------- - SHAPE - NO DIA(HIGH) DIA(HIGH) DIA(HIGH)ISTING (IN) (FT) (IN) (FT) (IN) WIDTH (FT) (FT) 1.00 2.00 2.00 3.00 1.00 2.00 ROUND 27.97 30.00----27.00-__--•0.00 ' 3.00 4.00 4.00 5.00 3-00 4.00 ROUND ROUND 27.35 30.00 14.92 18.00 27.00 0.00 18.00 0.00 ROUND 14.92 18.00 18.00 0.00 DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX ' REQUIRED DIAMETER WAS DETERMINED SUGGESTED SEWER ARE IN FEET BY SEWER HYDRAULIC CAPACITY. DIAMETER WAS DETERMINED FOR A NEW SEWER, FLOW WAS ANALYZED BY COMMERCIALLY AVAILABLE SIZE. ' EXISTING SIZE WAS USED ........................ BY THE SUGGESTED SEWER SIZE; OTHERWISE, SEWER DESIGN FLOW ID FLOW Q FULL Q NORMAL DEPTH NORAML - _ CRITIC CRITIC FULL FROUDE COMMENT ' CFS CFS.... FEET VLCITY FPS DEPTH VLCITY VLCITY NO. --NUMBER- . . . ...... .......... FEET FPS FPS 1.0 26.4 24.1 2.0 22.7 22.0 2.25 2.25 6.63 5.70 1.79 ---7.77---6.63-_-_0.00 1.67 8.34 5.70 V-OK-- 0.00 V-OK 4.0 4.5 2 7.4 0.84 4.41 0.82 4.57 2.55 0.94 V-OK 1 FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM ' ...------._ -----_ X-- ................................................. (FT) (FT) (FT) (FT) 1.00 0.60 27.85 27.60 1.66 1.65 OK 2.00 0.50 28.03 27.85 1.59 1.66 OK ' 3.00 0.50 29.54 28.79 1.44 1.58 OK 4.00 0.50 29.54 29.54 1.44 1.44 OK OK MEANS BURIED DEPTH 1S GREATER THAN REQUIRED SOIL COVER OF 1 FEET ' *** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS ........................................:...................................... SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW ' ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION FEET FEET FEET FEET FEET FEET ------------------------------------------------------------------------------- 1.00 41.00 41.00 30.10 29.85 31.01 31.40 PRSS'ED 2.00 36.00 36.00 30.28 30.10 31.46 31.01 PRSS'ED ' 3.00 151.00 151.00 31.04 30.29 32.28 31.46 PRSS'ED 4.00 0.10 0.10 31.04 31.04 32.30 32.28 PRSS'ED ' i PRSS'ED=PRESSURED FLOW;+JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW - *** SUMMARY OF ENERGY GRADIENT LINE .ALONG SEWERS -•-----------------------------------------••-.-------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE ' SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT ------------------------------------------------------------------------------- 1.0 2.00 31.70 0.30 0.00 0.00 0.00 0.00 1.00 31.40 2.0 3.00 31.97 0.19 0.16 0.08 0.00 0.00 2.00 31.70 ' 3.0 4.00 32.38 0.28 1.32 0.13 0.00 0.00 3.00 31.9Z 4.0 5.00 32.40 0.00 0.25 0.03 0.00 0.00 4.00 32.38 ' BEND LOSS =BEND K* FLOWING FULL VHEAD IN SEWER. LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K*INFLOW FULL VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE 10 JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE ' NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 0 30` ff) � � Q Q r I} r i kk-F-T IE - ' �NC Engineering Consultants I l 1 11 1 CLIENT G>=�,��o - cYJ_OB�N�O.p�� -G173 PROJECT�a�T-FTZQ.�N M� Par=r CALCULATIONS FOR .I1�JwI MADE BY Tx' DATEC�CHECKED BY -DATE SHEET: 'OF �I�F� C_IY2�P. OLJ'r-L�T 1 V E=N '. C` ZT- for ass 'ADru< 11 32 ------------------------------------------------------------------------ <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ---------------------------------------------------------------------------- *** CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 413 2 VP, STORM ' INLET HYDRAULICS: IN A SUMP. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 4.00 60NG.510EW/311< CULVE27- HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 ' LATERAL WIDTH OF DEPRESSION (ft)= 2.00 SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 2.00 ' STREET CROSS SLOPE (%) 2.00 STREET MANNING N 0.016 GUTTER DEPRESSION (inch)= 1.17 t GUTTER WIDTH (ft) = 1.32 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 4.94 GUTTER FLOW DEPTH (ft) = 0.20 FLOW VELOCITY ON STREET (fps)= 2.96 ' FLOW CROSS SECTION AREA (sq ft)= 0.33 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 1.52 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 1.00 ' FLOW INTERCEPTED (cfs)= 1.00 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLAW (cfs)= 1.00 ' FLOW INTERCEPTED (cfs)= 1.00 CARRY-OVER FLAW (cfs)= 0.00 ' 4Jia�= 3,38 cf5 /.00 OFS y' CCNC. S �DEwNLK CUcUEQi /uTFRCEp770•� CNP/7Clry = /, 52 c`FS (-F^om alb�e ) Pass 3.30-/.52=/,86 cf5 over fop of Sidewalk ana( info SW41e- See. weir oLe_,41nw cold /&+fm on nexffaoc, 33' I n 11 1 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLAW DATA CANYON CREEK COURT 100 YEAR FLOW OVER SIDEWALK WEIR COEF. 3.000 STA ELEV 0.0 4931.25 106.7 4930.82 172.0 4931.11 ELEVATION (feet) 4930.82 4930.92 49Q 30.9Zy 4931.02 DISCHARGE (cfs) Pro�ran. uses weir eymfion Q= CLN3/2 QieO.= 1.8(. cQs ow-r+op of sidewalk 0.0 1.6 I.6�— 9.0 Flow dep+l = 0.10 f+ over 5idecvaIK a+ Low p'f. 7/5i5 iS wri7 t:;� Cri Ze ;a. CkecY, lateral exienf af-ouerC/00i ; 5/ope+0 west-= 0.yY90 slcpa fo eas{-r 0.Y090 o_lo = 22,73 f+ o044 6.10 = ZS•60 �f •OoYO 7_a+a1 Flow _ y7 73 Sp read Pla*+eA wid+A of ec,5emen+ ofeOing= 27,e9 ff wid+h ih exce5S o; easemen'f-= 47,73-?7.89= = 19,84f+ _?sides = 9.9zft. Flow Sfr*41 w;11 cArrX across lofs 28i29 whm (e 104il;� vn eosee njsJ +Aere-�)re. no addi{ipn.l eaSemerrfs are req✓irecC dcross (0(5 20¢29. N04e.t Drop beh!4 srdewalK in+0 Conc. 5idew.1K cvlver' wi// ensure flew sprea.i across ld$ Z89r24 w;// Ee. m 1ni.nize.i. 3q,; RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION SWALE FROM CANYON CREEK COURT TO DETENTION POND (SEC17" R-fi ON DRA r URGE PLNu) ELEVATION (feet) STA 0.00 4.00 5.00 12.00 'N'VALUE - - 0.060 AREA (sq ft) 4928.85 0.0 4928.95 0.2 4929.05 0.4 4929.15 0.8 4929.25 1.2 4929.35 H929.3� 1.7 4929.45 2.4 4929.55 3.1 4929.65 3.9 4929.75 4.8 4929.85 5.8 4929.95 6.9 ELEV 4930.00 4929.00 4928.75 4930.00 Q too' 3.3Sc s SLOPE(ft/ft) - 0.0286 VELOCITY DISCHARGE FROUDE (fps) (cfs) NO. 0.6 0.9 1.2 1.4 1.6 1.9 V=2•0-rPs �- 2.1 �- 2.2 2.4 2.6 2.8 2.9 l,vb6 "35'/ZA ProGnar.. uses R7ann7n9s E9. 4- � R 0.03 0.44 0.17 0.50 0.51 0.53 1.09 0.56 1.98 0.58 3.22 33B¢s 0.60 4.85 �- 0.61 6.93 0.63 9.48 0.64 12.55 0.65 16.19 0.66 20.41 0.67 Def+. = H929,36-H920-75= 0-61 -Ft- FieeboaJ=1.33(3.3$)=y.--4cfs which is less -than 20,41 CFS (max, Swale crcify ) )so ow. Secause Y-4c swale cross sec{p,' varies ifiis te{7n cur 2 jai iaKen a1 -lAe. ",Z+) res{rickj ?Ocafion. See_ FN4 omdin9 plan -For Scale, Vtv inq reguiremegrs,, I RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION BASIN 412 SWALE INTO THE DETENTION PONDS%� STA ELEV ' ----- ------ Y Boa= 2,82 �i5 f6a5in y12) 0.00 4929.00 5.00 4928.00 Q,00= 2,02 10.00 4928.00 (8451n5`412) 15.00 4929.00 6,2o°fs yl3 Swale) ' 'N' VALUE SLOPE (ft/ft) ---------- ------------- 0.060 0.0100 ELEVATION AREA VELOCITY DISCHARGE FROUDE ' (feet) (sq --------- ft) (fps) (Cfs) ------------------------ NO. ------ ' 4928.10 0.6 0.5 0.28 .0.29 4928.20 1.2 0.8 0.92 0.33 4928.30 ygz8.37 �- 2.0 1.0 LowVeloc, 1.89 ?, crs 0.34 Q 4928.40 2.8 1.1 An 3.18 0.36 ' 4928.50.4y926,5,7 3.8 1.3 will berrovideoi 4.82 °?D 0.37 4- 4928.60 4.8 1.4 6.83 0.38 ' 4928.70 4928.80 6.0 1.5 9.21 7.2 1.7 11.99 0.39 0.39 4928.90 8.6 1.8 15.19 0.40 ' Prograr o5e5 /✓lannlny5 f , C� 6 Rz135*�q U h �Bns,n 412) DeFtt, = 497.8.37-9928,00 = 0,37ff FreeboarA =l-33(2,$Z): 3,75cf5 vhlch is less ftia,i Is,l9 c{'s (max, ' swalc capaci'ly)l5, OK, Secaose tl e Swale- cross aec-+for caries +I js r,, irn9 CUr Ve "s -/Zken a-l' 7%E v 031(' ' (e.sErlcW /ocafw7, See FHq 8ra.4ir9 fAm for ./ S aM It grading re- o irernen'f5, ' � Basin 41zl bcf i,=49Z8,57-y9/2ff,00= o,S7ff y135wak) FrecLoara�'1,33(6,'7�)=P,2SGf5 which 1.s less fiian/S,19cfc(max, Swalt caP40{y%i5a OK, 3(o RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION Drainage Swale #162 L«e�Q �o y �• sib Tw der �,ne i �... [rs; n 4-o,6. STA ELEV 100.00 10.00. 106.00 8.50 0� 112.00 10.00° W 'N' VALUE SLOPE (ft/ft) O ---------- ------------- 0.060 0.0060 \J\ Ji) J W ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) (sq ft) (fps) (cfs) NO. 8.60 0.0 0.3 0.01 0.20 8.70 0.2 0.4 0.07 0.23 8.90 =0.45' 0.6 0.24 9.00 1.0 0.6 f Qrn,n- 0.56�1� 0.41 0.25 0.7 0.75 0.26 9.10 1.4 0.8 1.22 0.27 9.20 2.0 0.9 1.84 0.28 9.30 2.6 1.0 2.62 0.29 9.40 d °1,05 3.2 40 1.1 0.29 9.60 4.8 oJdoit _53.59 1:3 4.75 6.13 0.309.50 e-- cuCrd ti) 0.30 9.70 5.8 W; 11 64fro%dj,� 1. 3 7.73 0.31 9.80 6.8 1.4 9.57 0.31 9.90 7.8 1.5 11.65 0.31 0- = 4/3 Lq w a�or = 4/3 5.54 7.4 ��5 39' . STETSON CREEK DRIVE STORM SEWER 34 --------------------------------------------------------------------------- ' <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING . --------------------------------------------------------------------------- ' *** CURB OPENING INLET HYDRAULICS AND SIZING: Z Year Siarw, ' INLET ID NUMBER: 521 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 ' HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 ' STREET CROSS SLOPE STREET MANNING N M 2.00 0.016 GUTTER DEPRESSION (inch)= 1.04 GUTTER WIDTH (ft) = 1.17 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 13.56 ' GUTTER FLOW DEPTH (ft) = 0.36 FLOW VELOCITY ON STREET (fps)= 1.95 FLOW CROSS SECTION AREA (sq ft)= 1.92 ' GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00, INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 6.70 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.75 ' FLOW INTERCEPTED CARRY-OVER (cfs)= FLOW (cfs)= 3.75 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.75 FLOW INTERCEPTED (cfs)= 3.75 CARRY-OVER FLOW (cfs)= 0.00 t 1 yd ------------------------------------------------------------------------------ <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ------------------------------------------------------------------------------ ' *** CURB OPENING INLET HYDRAULICS AND SIZING: /00 Year S+oMn INLET ID NUMBER: 521 INLET HYDRAULICS: IN A SUMP. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 ' HEIGHT OF CURB OPENING (in)= 6.00 INCLINED THROAT ANGLE (degree)= 0.00 LATERAL WIDTH OF DEPRESSION (ft)= 2.00 ' SUMP DEPTH (ft)= 0.00 Note: The sump depth is additional depth to flow depth. ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 ' STREET CROSS SLOPE STREET MANNING N (%) 2.00 0.016 GUTTER DEPRESSION (inch)= 1.04 GUTTER WIDTH (ft) = 1.17 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 22.56 ' GUTTER FLOW DEPTH (ft) = 0.54 FLOW VELOCITY ON STREET (fps)= 2.65 FLOW CROSS SECTION AREA (sq ft)= 5.17 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: ' IDEAL INTERCEPTION CAPACITY (cfs)= 12.34 . BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 13.84 ' FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 10.98 2.86 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 13.84 FLOW INTERCEPTED (cfs)= 10.49 CARRY-OVER FLOW (cfs)= 3.35 y0,. ------------------------------------------------------------------------- ' <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ------------------------------------------------------------------------- ' *** CURB OPENING INLET HYDRAULICS AND SIZING: 2 Year Smarm F [J 1 1 1 1 1 INLET ID NUMBER: 522 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = STREET CROSS SLOPE (%) = STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = STREET FLOW HYDRAULICS: 15.00 12.63 1.00 1.00 0.40 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (fty = 12.81 GUTTER FLOW DEPTH (ft) = 0.42 FLOW VELOCITY ON STREET (fps)= 2.02 FLOW CROSS SECTION AREA (sq ft)= 1.81 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.65 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 3.65 FLOW INTERCEPTED (cfs)= 3.65 CARRY-OVER FLOW (cfs)= 0.00 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 3.65 FLOW INTERCEPTED (cfs)= 3.29 CARRY-OVER FLOW (cfs)= 0.37 NZ ------------------------------------------------------------ 7---------- ' <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ----------------------------------------------------------------------- ' *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 522 INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: ' GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: 1 I 1 1 STREET LONGITUDINAL SLOPE STREET CROSS SLOPE STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: 15.00 27.00 0.77 0.71 0.40 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 22.19 GUTTER FLOW DEPTH (ft) = 0.61 FLOW VELOCITY ON STREET (fps)= 2.68 FLOW CROSS SECTION AREA (sq ft)= 5.09 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR($)= 10.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 10.52 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= /00 year 5-%rm 13.70 9.77 3.93 13.70 9.47 4.23 i 43 ---------------------------------------------------------------------------- «STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ------------------------------------------------------------------------------ ' *** CURB OPENING INLET HYDRAULICS AND SIZING: ' INLET ID NUMBER: 523' INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: 11 GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = 5.00 11.90 0.62 0.52 ' STREET LONGITUDINAL SLOPE (t) = 0.40 STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 ' GUTTER WIDTH (ft) = 2.00 ' STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 12.25 GUTTER FLOW DEPTH (ft) = 0.41 FLOW VELOCITY ON STREET (fps)= 1.98 ' FLOW CROSS SECTION AREA (sq ft)= 1.67 GRATE CLOGGING FACTOR M = 50.00 ' CURB OPENNING CLOGGING FACTOR(%)= 20.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 2.06 ' BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 1 1 1 Z Year 5-form 3.30 1.72 1.58 3.30 1.65 1.65 t -------------------------------------------------------------------------- <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ---------------------------------------------------------------------------- . *** CURB OPENING INLET HYDRAULICS AND SIZING: year Sfvrl-el ' INLET ID NUMBER: 523 .rob INLET HYDRAULICS: ON A GRADE. ' GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 5.00 ' REQUIRED CURB OPENING LENGTH (ft)= 31.50 IDEAL CURB OPENNING EFFICIENCY = 0.27 ' ACTURAL CURB OPENNING EFFICIENCY = 0.22 STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) = 0.40 ' STREET CROSS SLOPE M = 2.00 STREET MANNING N = 0.016 GUTTER DEPRESSION (inch)= 2.00 ' GUTTER WIDTH (ft) = 2.00 STREET FLOW HYDRAULICS: WATER SPREAD ON STREET (ft) = 24.81 GUTTER FLOW DEPTH (ft) = 0.66 FLOW VELOCITY ON STREET (fps)= 2.87 ' FLOW CROSS SECTION AREA (sq ft)= 6.32 GRATE CLOGGING FACTOR (%)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 20.00 ' INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY. (cfs)= 4.83 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= 18.08 ' FLOW INTERCEPTED (cfs)= 3.92 CARRY-OVER FLOW (cfs)= 14.16 BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= 18.08 ' FLOW INTERCEPTED (cfs)= 3.87 CARRY-OVER FLOW (cfs)= 14.21 vy 45, I 1 1 u 1 1 n -------------------------------------------------------------------- <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET-MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING -------------------------------------------------------------------- CURB OPENING INLET HYDRAULICS AND SIZING: INLET ID NUMBER: 525 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= REQUIRED CURB OPENING LENGTH (ft)= IDEAL CURB OPENNING EFFICIENCY = ACTURAL CURB OPENNING EFFICIENCY = STREET GEOMETRIES: STREET LONGITUDINAL SLOPE (%) _ STREET CROSS SLOPE M _ STREET MANNING N = GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) _ STREET FLOW HYDRAULICS: 10.00 12.85 0.93 0.86 0.40 2.00 0.016 2.00 2.00 WATER SPREAD ON STREET (ft) = 13.00 GUTTER FLOW DEPTH (ft) = 0.43 FLOW VELOCITY ON STREET (fps)= 2.03 FLOW CROSS SECTION AREA (sq ft)= 1.86 GRATE CLOGGING FACTOR M = 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY (cfs)= 3.50 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW (cfs)= FLOW INTERCEPTED (cfs)= CARRY-OVER FLOW (cfs)= 2 YearS_[Vrl+? 3.75 3.22 0.53 3.75 2.98 0.77 0 N6 ------------------------------------------------------------------------- <<STREET DRAINAGE INLET DESIGN: DEVELOPED BY CU-DENVER>> UDINLET—MENU NETWORK:DESIGN MENU:INLET SIZING:CURB OPENING ------------------------------------------------------------------------- ' *** CURB OPENING INLET HYDRAULICS AND SIZING: roo Year 5%rm ' INLET ID NUMBER: 525 INLET HYDRAULICS: ON A GRADE. GIVEN INLET DESIGN INFORMATION: GIVEN CURB OPENING LENGTH (ft)= 10.00 ' REQUIRED CURB OPENING LENGTH (ft)= 35.29 IDEAL CURB OPENNING EFFICIENCY = 0.45 ACTURAL CURB OPENNING EFFICIENCY = 0.39 ' STREET GEOMETRIES: STREET LONGITUDINAL SLOPE ($) = 0.40 ' STREET CROSS SLOPE ($) = 2.00 STREET MANNING N = 0.016 ' GUTTER DEPRESSION (inch)= GUTTER WIDTH (ft) = 2.00 2.00 STREET FLOW HYDRAULICS: ' WATER SPREAD ON STREET (ft) = 26.88 GUTTER FLOW DEPTH (ft) = 0.70 FLOW VELOCITY ON STREET (fps)= 3.01 ' FLOW CROSS SECTION AREA (sq ft)= 7.39 GRATE CLOGGING FACTOR ($)= 50.00 CURB OPENNING CLOGGING FACTOR(%)= 15.00 INLET INTERCEPTION CAPACITY: IDEAL INTERCEPTION CAPACITY. (cfs)= 10.05 BY FAA HEC-12 METHOD: DESIGN FLOW (cfs)= ' FLOW INTERCEPTED (cfs)= CARRY—OVER FLOW (cfs)= BY DENVER UDFCD METHOD: DESIGN FLOW FLOW INTERCEPTED (cfs)= (cfs)= CARRY—OVER FLOW (cfs)= 1 22.28 8.71 13.57 22.28 8.54 13.74 RMINC Engineering Consultants i-�'�95oo3S3.Mr _ C CLIENT ��E�E��� LLAF=VS JOB NO. PROJECT�CALCULATIONS FOR OAS;—�� iFo MADE BY -?;91— DATE CHECKED BY DATE SHEET �JOF e 1swe I .n LJ 1 H I I 1 C 11 STETSON CREEK DRIVE STORK SEWER 1 15 , 20 , 2 2., 1 , .8 500 300 .2 ,Y 2 5 4.9 , 3.8 , 2.7 , 2.2 , 1.8 , 1.4 , .89 14 1,28.5,0 112000 34.17 , 0 2 .2 , 0, 0, 0, 0 0 2, 30.02 12 1 23 0, 0 0 34.17 , 0, 2, .2 0 0 0 0 0 3, 30.14 23 1 34 0 0 0 34.17 , 0, 2,. 2 0, 0, 0, 0, 0 4,32.11,34 1,450 00 25.63 , 0 2 .2 0 0 0 0 0 5 , 32.76 45 2 56 , 58 , 0 , 0 25.63 , 0, 1 .1 0, 0, 0, 0, 0 6, 32.76 56 1 67 0 0 0 1.8,0,2,.2,0,00,0,0 7, 32.76, 67, 0, 0, 0, 0, 0 1.8,0,2,.20,0,0,00 8 , 34.2 58 , 2 812 89 0 0 19.96 0 2 .2 0 0 0 0 0 9, 37, 89, 1, 910 0 0,0 10.49 0 2, .2, 0, 0 0 00 10 , 37.75 91D , 1 , 1011 0 , 0 , 0 10.49, 0 2, .2 0 0 0 0 0 11 , 37.75 1011 0 0 0 0 0 10.49, 0 2, .2 0 0 0 0 0 12 , 34.8 812 , 1 1213 , 0 0 , 0 9.47, 0 2, .2, 0 0 0 0 0 13 , 35.75 , 1213 , 1 1314 0 0 , 0 9.47 , 0, 2, .2 0 0 0 0 0 14, 35.75, 1314 0 0 0 0 0 9.47 , 0 2, .2 , 0, 0 0 0, 0 13 12, 70 .5 28.35 .013 1 0, 1 33 0 23 , 88 , .5 , 28.79 .013 .18 0 1 33 0 34375.4,30.38, .013, .03,0, 130,0 45 206 .4 31.19 .013 .03 0 1 30 , 0 56 36.5 31.37,.013 1.02 0 1 15 0 58 250 .6 , 32.69 .013 .02 0 1 24 0 89 367 .4 34.52 .013 .48 0 1 18 0 910 35 .6 , 34.73 .013 .3 0 1 18 0 812 121 .45 33.23 .013 .02 , 0 , 1 21 , 0 1213 260 , .4 34.27 , .013 , .6 , 0 , 1 21 , 0 67 , .1 .4 , 31.37 , .013 , .25 , 0 , 1 15 , 0 1314.1.4 34.27,.013,.25 0, 1 21 0 1011 .1 .4 34.73 .013 .25 0 1 18 0 UDS�u✓;2 1ti.lPu-r �D1kTA p 4� _- CIIIIIIIILIIELECEE.......EII EE L E E L ' REPORT OF STORM SEWER SYSTEM DESIGN ' USING UDSEWER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER ' IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO LJI �I 1 1 EXECUTED BY DENVER CITY/COUNTY USE ONLY .............................. ON DATA 04-21-1994 AT TIME 15:01:16 *** PROJECT TITLE : STETSON CREEK DRIVE STORM SEWER *** SUMMARY OF HYDRAULICS AT MANHOLES MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION " INCH/HR CFS FEET FEET .......... 1.00 -------------MINUTES N/A ...................................................... N/A N/A 34.17 28.50 27.30 OK 2.00 N/A N/A N/A 34.17 30.02 28.16 OK 3.00 N/A N/A N/A 34.17 30.14 28.51 OK 4.00`" N/A N/A N/A 25.63 - 32.11 29.91 OK 5.00 ' N/A N/A N/A 25.63 32.76 30.74 OK 6.00 N/A N/A N/A 1.80 32.76 30.76 OK 7.00 N/A N/A N/A 1.80 32.76 30.81 OK 8.00 N/A N/A N/A 19.96 34.20 32.70 OK 9.00 N/A N/A N/A 10.49 37.00 34.78 OK 10.00 N/A N/A N/A 10.49 37.75 35.29 OK 11.00 N/A N/A N/A 10.49 37.75 35.43 OK 12.00 N/A N/A N/A 9.47 34.80 33.52 OK 13.00 N/A N/A N/A 9.47 35.75 34.65 OK 14.00 N/A N/A N/A 9.47 35.75 34.71 OK OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: ............................................................................ THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 SEWER MANHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(HIGH) DIA(HIGH) WIDTH ID NO. ID NO. (IN) (FT) (IN) (FT) (IN) (FT) (FT) .................................................................... 12.00 2.00 1.00 ROUND 31.91 33.00 33.00 0.00 23.00 3.00 2.00 ROUND 31.91 33.00 33.00 0.00 34.00 4.00 3.00 ROUND 29.87 33.00 30.00 0.00 45.00 5.00 4.00 ROUND 29.87 33.00 30.00 0.00 56.00 6.00 5.00 ROUND 10.58 15.00 15.00 0.00 58.00 8.00 5.00 ROUND 25.21 27.00 24.00 0.00 89.00 9.00 8.00 ROUND 21.37 24.00 18.00 0.00 910.00 10.00 9.00 ROUND 19.80 21.00 18.00 0.00 812.00 .12.00 8.00 ROUND 20.11 21.00 21.00 0.00 1213.00 13.00 12.00 ROUND 20.56 21.00 21.00 0.00 67.00 7.00 6.00 ROUND 11.03 15.00 15.00 0.00 1314.00 14.00 13.00 ROUND 20.56 21.00 21.00 0.00 1011.00 11.00 10.00 ROUND 21.37 24.00 18.00 0.00 1 0 ' DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, ' EXISTING SIZE WAS USED ............................................................................... SEWER DESIGN FLOW NORMAL NORMAL CRITIC CRITIC FULL FROUDE COMMENT ' ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS ............................................................................... 12.0 34.2 37.5 2.06 7.16 1.95 7.60 5.75 0.89 V-OK 23.0 34.2 37.5 2.06 7.16 1.95 7.60 5.75 0.89 V-DK ' 34.0 25.6 26.0 2.02 6.04 1.77 9.19 5.22 0.73 V-OK 45.0 25.6 26.0 2.02 6.04 1.77 6.90 5.22 0.73 V-OK 56.0 1.8 4.6 0.54 3.51 0.54 50.40 1.47 0.96 V-OK ' 58.0 89.0 20.0 17.6 10.5 6.7 2.00 1.50 6.35 5.94 1.60 1.24 0.67 6,35 0,00 V-OK 1.15 5.94 0.00 V-OK 910.0 10.5 8.2 1.50 5.94 1.24 12.78 5.94 0.00 V-OK 812.0 9.5 10.7 1.28 5.01 1.14 6.31 3.94 0.80 V-OK 1213.0 9.5 10.0 1.35 4.75 1.14 6.31 3.94 0.72 V-OK 67.0 1.8 4.1 0.58 3.23 0.54 20.63 1.47 0.85 V-OK 1314.0 9.5 10.0 1.35 4.75 1.14 5.69 3.94 0.72 V-OK 1011.0 10.5 6.7 1.50 5.94 1.24 6.06 5.94 0.00 V-OK FROUDE NUMBER=O INDICATES THAT A PRESSURED FLOW OCCURS ' ...................................................................... SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM '. X_ (FT) (FT) (FT) (FT) .................. 12.00 .................................................. 0.50 25.60 25.25 1.67 0.50 NO 23,00 0.50 26.04 25,60 1.35 1.67 OK 34.00 0.40 .27.88 26.38 1.73 1.26 OK 45.00 0.40 28.69 27.87 1.57 1.74 OK a' 56.00 0.50 30.12 29.94 1.39 1.57 OK 58.00 0.60 30.69 29.19 1.51 1.57 OK 89.00 0.40 33.02 31.55 2.48 1.15 OK ' 910.00 0.60 33.23 33.02 3.02 2.48 OK 812.00 0.45 31.48 30.94 1.57 1.51 OK 1213.00 0.40 32.52 31.48 1.48 1.57 OK 67.00 0.40 30.12 30.12 1.39 1.39 OK 1314.00 0.40 32.52 32.52 1.48 1.48 OK ' 1011.00 0.40 33.23 33.23 3.02 3.02 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF i FEET ' *** SUMMARY --- _------- ____ OF HYDRAULIC --------- _-------- GRADIENT LINE ALONG SEWERS _---- _----- ___________________________________ SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW . ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM CONDITION ' FEET FEET FEET FEET FEET FEET - _---_--__ 12.00 __________________________________________________________ 70.00 0.00 28.35 28.00 28.16 27.30 SUBCR Z3.00 88.00 0.00 28.79 28.35 28.51 28.16 SUBCR 34.00 375.00 0.00 30.38 28.88 29.91 28.51 SUBCR ' 45.00 206.00 0.00 31.19 30.37 30.74 29.91 SUBCR 56.00 36.00 0.00 31.37 31.19 30.76 30.74 SUBCR 58.00 250.00 0.00 32.69 31.19 32.70 30.74 PRSS'ED 89.00 367.00 0.00 34.52 33.05 34.78 32.70 PRSS'ED 910.00 35.00 35.00 34.73 34.52 35.29 34.78 PRSS'ED ' 812.00 121.00 90.66 33.23 32.69 33.52 32.70 SUBCR 1213.00 260.00 107.67 34.27 33.23 34.65 33.52 SUBCR 67.00 0.10 0.00 31.37 31.37 30.81 30.76 SUBCR 1314.00 0.10 0.10 34.27 34.27 34.71 34.65 PRSS'ED ' 1011.00 0.10 0.10 34.73 34.73 35.43 35.29 PRSS'ED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW 1 LJ 51 SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ......... UPST ........ MANHOLE ...... ..........'________-- SEWER " "".._.__........ JUNCTURE LOSSES ........ _ DOWNST MANHOLE SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT _______________________________________________________________________________ 12.0 2.00 28.68 0.86 1.00 0.51 0.00 0.00 1.00 27.30 ' 23.0 3.00 29.02 0.25 0.18 0.09 0.00 0.00 2.00 28.68 }� 1 130.14 34.0 4.00 30.34 1.31 0.03 0.01 0.00 0.00 3.00 29.02 45.0 5.00 31.16 0.81 0.03 0.01 0.00 0.00 4.00 30.34 IAILJ r ' 32 "1L 56.0 6.00 30.79 0.00 1.02 0.03 0.00 0.00 5.00 31.16 ' 58.0 8.00 33.33 2.15 0.02 0.01 0.00 0.00 5.00 31.16 89.0 9.00 35.33 1.74 0.48 0.26 0.00 0.00 8.00 33.33 910.0 10.00 35.84 0.35 0.30 - 0.16 0.00 0.00 9.00 35.33 I 812.0 12.00 33.76 0.42 0.02 0.00 0.00 0.00 8.00 33.33 1E 1*IIFr- 3Z-l� 1213.0 13.00 34.89 0.99 0.60 0.14 0.00 . 0.00 12.00 33.76 H' 67.0 7.00 30.84 0.04 0.25 0.01 0.00 0.00 6.00 L 1314.0 14.00 34.95 0.00 0.25 0.06 0.00 0.00 73.00 i4 89 +t IwI�T"•�S 1011.0 11.00 35.98 0.00 0.25 0.14 0.00 0.00 10.00 35.84 -' BEND LOSS -SEND K* FLOWING FULL VHEAD IN SEWER. *r I�1L-ET - '��•1S LATERAL LOSS= OUTFLOW FULL VHEAD-JCT LOSS K'INFLOW FULL VHEAD FRICTION LOSS-0 MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. 1 1 1 1 51 H STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA TABLE 802C STORM SEWER ENERGY LOSS COEFFICIENT (BENDS AT MANHOLES) 1.1 i•> r.z�r 1.2 I6 I,IZ' I.cU 1.0 0:16 Y 0.6 Bend at Y Manhole, I H I 11 I I I I I I I I I RMINC Engineering Consultants CLIENT 1r�_ _JOBNO.aF)S-C=R PROJECT c� 777nb�l DFGY CALCULATIONS FOR -TELINIP- ell X LIF-Rr— MADE BY-�DATE— CHECKED By— DATE —SHEET 52 OF — if f LL !4_,4J P '� L �7 11-Li 1 I LA f-T _j _LL 1 1.4 L CL- ------- - - Liz". jE-= i I i I fly e-: �E_- f;;� �A c R1 1 t 1 T 1 L T-I j _ _Ljj I I L I L 1-Lll Lp F_ el T_+4 _p_ D -L.e' p 1 1 _1 f-I 9 a-D t'l 71- 4 7 T L f L`�M�'iE _ '_ � I I +' 'rr— �. �0.� I hJ lA S` IT"y' L! LL -j_ _I LF T __7 .I4LL LMR - .4 1 LI T I I SL Li, IT 1 7 _17 L4T4 . I LLi t- J 4,1 i= A jL ! L L1 - -UL-L I -J 7 4 1 7 RWINC Engineering Consultants 21 P �p (—'I ... ....... ........... I I I I I I I ;..e� ia6lSi i m —JOB NO. PROJECT 57-,ok I ('.e 1=-;= v CALCULATIONS FOR Z MADE BY _[�>L DATE 12 - 16 CHECXEDBY_DATE SHEET 53 OF 4 L 1 r 1 1 DETENTION I I I I I 11 11 11 I I IMINC Engineering Consultants WENT 6r-,jc-\/A JOBNO. 6'7!r' 05 PROJECT CALCULATIONSFOR Pe-+ 3-70 MADEBY 17A4 DATE CHECKED BY DATE _SHEET SIT OF LL tT-i 4- M Tl- - ------ 4 T-, l- TT A T j,; t 77 . . . . . . . . .... 1- -L- J. -- ---- 4- it; -Tj i I Ill. '3-!;-75 L 77 T -1-, -rim- l L ..... 4q- ;:-r1. f A- . J 1- Z1 'Z> - 0 0 oo4-- + T A-1 ..... 912 7 7 7 J� , Z E -T ... ... �A -0.5 i p L L; 7-07AL 7 - 0-341— 6e = 0,54- ------ — ----- 1 1 1 f ' 1 ■r�/INC Engineering Consultants CLIENT /f CJrd VA JOBNO. PROJECT S♦G}5?H� G✓• ISt CALCULATIONSFOR Wr- FpAJD 37p MADEBYFM DATE CHECKED By— DATE SHEET OF ons! 31 - 1 Caw ) '' i _ ,�eoAn ib%rF�i e •� Po ra 370 RA-rr _cu2vE 1�nr�n srmi��YoL. �rT L�/SEL _/NRT>o�s `r t 1��'T� /Lim l��UcAS� (�9ir��. IQ�1YQ- SECS= 43� 3 I/n Ye r,JSE[_ 493o p i pit] c� I �_ 1 1,• J I- y.._Z�i { ,- I_. T Y D {, �5�031135 r 2Sy < 3,SZ 1 4 O:: J _3 8 o-^3s 3 _45 . �_ I it _ so, .-_��i _3.-5'z _=.Ld D�wt♦ •,- � -T 1 1 1 � — 1 1 — --F r - mar��l— , _ 1 �, T _ 1 } r �f II -I11 Pill-�-r I I I r ET" %li?G=jjC1,4 ?� i s I 1 a AJLrT I { I,7: 0 021FIL(,OPEJtJC� . (o O (oJ cr _ t I%7,I.. 1 , I - _ y r { { Ls To Z vl.r�»� oF,-z�' ui/ oa�rci 1L ' ' I I ALL 1—r- MA n. / 441- b� AAR, I TMINC Engineering Consultants P CLIENT (S�_n eva JOB NO. 5?-5__LW3 PROJECT 64e:+50" Ck 151' CALCULATIONS FOR PLf, Po,x #370 MADEBY7-PM DATEO�CHECKEDBY_ DATE -SHEET 51 OF "r M7 Ci7 C" I I __L -7- D 11KAT-ED _jo ;T-'­C*P -C T ...... 7- 7_7 7-, 7 T- L 7 _T= 71 j 7 . .. ....... AP _S_ T 4- 7 T- L: 1. 31 5 7 7 f A .. . ......... ir-- A 4 313 T_ ow", A°y 2 L V 5,174 S � 6 o 4 3 1, 1 i/1 Z' Design head -for foot- Min. freeboard weir flow ,7 100 year water surface- /0 year water surface ==13�. Heodwoler for 100 year flow ... 10 Pond invert (trickiechoi Headwater forL/ 119 year !`/OW�. Rio - A./,z - Orifice opening trashrock required Topof berm Grated inlet capacity greater than twice 100yr. weir flow. %\-/00 year control of throo;'-- Outlet pipe /00 year of oullet pipe, orifice plate capacity 0 Min.) may be required IS TYPE 2 OUTLET No Scale Date:. NOV 1984 REFERENCE: Prepared by WRC ENGINEERING, INC. Rev: 1 1 1 t 1 1 yfL OkT1.G'r Gi>'izlAatruR — DGrFNToti1 �orJD It 570 Z 0.5 Cr > 0.4 0 x F- 0.3 w 0 0 ? 0.2 0 z 0 SN O.OL111111111111111111111I 11 11111111 11 It 11111 11111 I I ri 0 1 2 3 31?l 4 5 FLOW INTO INLET PER SO. FT. OF OPEN AREA (CFS/FT2) Figure 5-3 CAPACITY OF GRATED INLET IN SUMP II (From: Wright -McLaughlin Engineers, 1969) i1 AC�EAFL Na. IL GRArEO In1�F' OF" AREA = 27c) =v I � CcMMCKCC LIT �VPP I/. I Y 9! ; �iiuHr MAY 1984 5-11 DESIGNCRITERIA 1] 1 1 Li 1 1 1 i 1 1 1 1 1 1 1 1 1 DETENTION POND #370 ORIFICE RATING CURVE TABLE for 10-Year Flow Control Diameter,ft Coefficient a.: 0.463 0.61 for 100-Year Flow Contro Diameter,ft Coefficien Q,= 0.931 0.61 H,ft Qo,cfs WSEL,ft 1 0.69 4927.8 1.1 0.73 4927.9 1.2 0.78 4928 1.3 0.82 4928.1 1.4 0.86 4928.2 1.5 0.90 4928.3 1.6 0.94 4928.4 1.7 0.97 4928.5 1.8 1.01 4928.6 1.9 1.04 4928.7 2 1.07 4928.8 2.1 1.10 4928.9 2.2 1.13 4929 2.3 1.16 4929.1 2.4 1.19 4929.2 2.5 1.22 4929.3 2.6 1.25 4929.4 2.7 1.28 4929.5 2.8 1.30 49.29.6 2.9 1.33 4929.7 3 1.35 4929.8 3.1 1.38 4929.9 3.2 1.40 1.40 4930 co3.2 4930 _-I P, WAtL 3.3 1.43 4980.1 3.57 1.49 4930.37 Qo=C,A0 v29(H-do/Z) "'= N-d'�z h,ft Qo,cfs WSEL,ft 0.2 1.14 4929.6 0.3 1.40 4929.7 0.4 1.62 4929.8 0.5 1.81 4929.9 0.6 1.98 4930 0.7 2.14 4930.1 0.8 2.28 4930.2 0.9 2.42 . 4930.3 1 2.55 4930.4 1.1 2.68 4930.5 1.2 2.80 4930.6 1.3 2.91 4930.7 1.4 3.02 4930.8 1.5 3.13 4930.9 1.6 3.23 4931 1.7 3.33 4931.1 1.8 3.43 4931.2 1.9 3.52 4931.3 lao-4R. p1_ Qoa CdAO ZTn' . Tw",., -�is-iR Fww (S Z J LL CO O^ CO Cl) Q % U.0 Y Q a > U Z j Z 0 U CO Z W lu- occ N N N M M 7 U O d T 00 O O O OD M N N N IU O y CO) M T U O 0 >, O O c0 M -tr O vl O T T U O O M r M M C coy v n U U b d c O U N (D O OO (D dp'ti nrnrnrn + J 1: 1 1 N N N N 0 O W It 'gr V' -t I m m m m O N N N N co N 1l m r r r C R R a U V � o b c OU U 00 mr.LncoroLI) O r N M � M (DD: j Cl) C � T 7 _ 0 00 vmTrnaom coo v Ln (D i. 0 0 0 0 0 0 E m U R O O 'IT tD Cl N T m O) O T N T T O � R y O It O tO v m (D V' R 0 0 0 7 O w m °R O 7 N N N N N o d o 0 o d o 0 0 0 0 0 0 0 0 R m V N n V T CO Q y CO O r N N r T m m 0 c0 T M j CO N N N N M O M T W N M M W '____________________________C====DETENTION POND SIZING ING BY FAA METHOD Developed by ' Dr. Jams Guo, Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Fund Study Denver Urban Drainage and Flood Control District, Colorado USER=KEVIN GINGERY RBD INC FT. COLLINS COLORADO .............................. ' EXECUTED ON 04.25-1994 AT TIME 16:07:54 PROJECT TITLE: Stetson Creek 1 st Filing -- Detention Pond #370 i**'* DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER - 370.00 BASIN AREA (acre)_ 7.03 RUNOFF COEF 0.68 DESIGN RAINFALL STATISTICS ' DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 ' INTENSITY 9.0 7.3 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1.5 1.2 1.0 •"" POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE OUTFLOW ADJUSTMENT FACTOR = 3.52 CFS = .96 ' AVERAGE RELEASE RATE = 3.3792 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE ' ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE ' INCH/HR ACRE -FT ACRE -FT ACRE -FT ---MINUTE ...... ___....... ___....... ___------- ______________ 0.00 0.00 0.00 0.00 0.00 5.00 9.00 0.30 0.02 0.27 10.00 7.30 0.48 0.05 0.43 15.00 6.25 0.62 0.07 0.55 20.00 5.20 0.69 0.09 0.59 25.00 4.68 0.77 0.12 0.65 30.00 4.15 0.82 0.14 0.68 ' 35.00 3.83 0.88 0.16 0.72 40.00 3.500.92 0.19 0.74 45.00 3.25 0.96 0.21 0.75 50.00 3.00 0.99 0.23 0.76 ' 55.00 2.80 1.01 0.26 0.76 60.00 2.60 -1.03 0.28 0.75 65.00 2.46 .1.05 0.30 0.75 70.00 2.32 1.07 0.33 0.75 75.00 2.19 1.08 0.35 0.73 ' 80.00 2.05 1.08 0.37 0.71 85.00 1.96 1.10 0.40 0.70 ' THE REQUIRED POND SIZE _ .7589563 ACRE -FT "tea THE RAINFALL DURATION FOR THE A80VE POND STORAGE= 55 I I 6i F 1 [1 1 1 DETENTION POND SIZING BY FAA METHOD DEVELOPED BY JAMES C.Y. GUO, PHD, P.E. DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF COLORADO AT DENVER ' EXECUTED ON 02-09-1994 AT TIME 16:28:22 PROJECT TITLE: Stetson Creek 1st Filing - Detention Pond #370 **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 370.00 BASIN AREA (acre)= 7.03 RUNOFF COEF = 0.54 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 10.00 '7TbQJA INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 5.6 4.4 3.2 2.6 2.2 1.9 1.6 1.3 1.1 0.9 0.8 0.6 ***** POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE = 1.406 CFS OUTFLOW ADJUSTMENT FACTOR = .97 AVERAGE RELEASE RATE = 1.36382 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE .................................................. RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT ..................................................... 0.00 0.00 0.00 0.00 0.00 5.00 5.64 0.15 0.01 0.14 10.00 4.40 0.23 " 0.02 0.21 15.00 3.82 0.30 0.03 0.27 ' 20.00 3.24 0.34 0.04 0.30 25.00 2.92 0.38 0.05 0.34 30.00 2.60 0.41 0.06 0.35 35.00 2.39 0.44 0.07 0.38 40.00 2.18 0.46 0.08 0.38 45.00 2.02 0.48 0.08 0.39 50.00 1.86 0.49 0.09 0.40 55.00 1.74 0.50 0.10 0.40 . 60.00 1.62 0.51 0.11 0.40 65.00 1.54 0.53 0.12 0.41 70.00 1.46 0.54 0.13 0.41 75.00 1.38 0.55 0.14 0.40 80.00 1.30 0.55 0.15 0.40 85.00 1.25 0.56 0.16 0.40 ' 90.00 1.19 0.57 0.17 0.40 95.00 1.14 0.57 0.18 0.39 100.00 1.09 0.57 0.19 0.39 ..................................................... THE REQUIRED POND SIZE = .4073517 ACRE -FT vOL."A G. erl- 2Q ieJl THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 70 MINUTES MINC Engineering Consultants CLIENT __ 6E.3eVA- JOBNO. 395'-003 Inc PROJECT iSCr-J �" _ CALCULATIONS FOR ' Pb J370 MADEBY IPM DATE �41 CHECKED By -DATE SHEET60� OF 0 IMINC Engineering Consultants Ul C 1 CLIENT r+r to"4A. JOBNO. 3�JS�Lb3 PROJECT S47'-�YACrttk CALCULATIONS FOR Def,PO„d371 MADE BVTPM DATE 1 CHECKED BY_DATE I SMEETIO—OF TMINC Engineering Consultants CLIENT cgemvk JOBNO.gq"-003.. PROJECT 644rort CiPetr- CALCULATiONSFOR Qf-+' P0437/ MADEBY,rpm DATE CHECKED By— DATE —SHEET�ff- OF T 1 ,1-7 1, 1-7 -f III -I 71= T T -;-1 -1 7� I f O-A4 rc ace; 71 7 � iCT - -------- - M, /co rtz 7- it 7 -4 7-1 I—L-L L 1 T MK) Tb- P-4- L 7 FT7, A-kt T-, 7 Z 0 T T -4— i -4- J- ��i- 7 -1-A 777771 1 �-z I-F c - � ! -I I -J. . F --------- ---- -�v 4 j ja) 1 1� 1 1 1 1 1 1 1 1 1 i 1 1 1 1� Il 1 NC Engineering Consultants CLIENT 6e4leum JOB NO. 3l5--003 PROJECT C4e*5Oh Ge4- CALCULATIONS FOR De-'FI Pend 3-7 I MADEBY�m DATE CHECKED BY_ DATE SHEET-to.5' OF zy i lZ ; r cavti 1% L� 7 0 'r 1 ! j� - I - y _ n- �z5 J _ fll I J v. 1 1 - 1 ! I k.i V rcfLFiro A t FF - t - 1 '-i 1 1 L.._ L '. t FiT-- I _ 7 L Ci � qT ' y L� •�' •-J. 1 1 I ,LL i1 1 I 1 -I i I 1 I - 1 I 1 1 N o, 1 7 ' (4o ' Stetson Creek 1st Filing TPM 2-9-94 (rev'd 4-27-94) DETENTION POND #371 ORIFICE RATING CURVE TABLE for 100-Year Flow Control (submerged outlet) ' Diameter,ft Coefficient - dp - 0.69 0.61 RLoRrW F, TA6�e 3-io, �� �F:,C4Z. gF, F0.2 WAT7,2 ML,uoEP.c�Ga. 4 moo•, by h,ft Qo,cfs WSEL,ft 0.2 0.67 4924.7 TW el. = 4924.5' ' 0.3 0.83 4924.8 " 0.4 0.95 4924.9 " 0.5 1.07 4925 0.6 1.17 4925.1 " 0.7 1.26 4925.2 " 0.8. 1.35 4925.3 " ' 0.85 1.39 4925.35 for 10-Year Flow Control (unsubmerged outlet) TW el. = 4923.5' ' H,ft Qo,cfs WSEL,ft 1 1.48 4924.5 1.1 0.83 4924.6 ' 1.2 0.95 4924.7 1.3 1.07 4924.8 1.45 1.17 4924.95 cEEDS I0-y2 rzrLrjse RAre O.S(ockS 194 0.(e1 ' c1� vc ia: T .4,c O Ye.ltifjv2 inSY nifGa•..cC of i��5 cV2v�oiJ. o, �I (o, o )Z ¢ ' _ �. �1 • ¢ (o, ioy'�Z 2(64 4)(ti- Z z _ L n2y � 2.z1(R�) f3 vA0 z D,lel 4, 0,4,9,)1 Z(44.4X(�_0.5'�� CG- u too ¢ 2y W _ �(ol 4 (0,0 2(32�Z), �4 ' a �ol�e �sti C� 2 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 O Z J LL CO a: M LL Y LLI W a > U Z j O FuOj Z O W H o rCi - N 7 U O Q >. r cl O N r r U O a f� C9 a co m m N U V O O C O () N ? R d + N N 7 V Wp � t0 N (1) W N N O N fl O. IN (6 N U V O C c 0 0_ o N u) U U r r (D CC C N = O O 1� Cl)CD CDm w O O O O 7 U y o o n <o R O N O N U O N N a m o 0 0 o O O O m x rn n o Q co 0 N N W fh y N a N W N N 4 DETENTION POND SIZING BY FAA METHOD Developed by ' Dr. James Guo, Civil Eng. Dept., U. of Colorado Supported by Denver Metro Cities/Counties Pool Furl Study Denver Urban Drainage and Flood Control District, Colorado USER=KEVIN GINGERY RBD INC FT. COLLINS COLORADO .............................. ' EXECUTED ON 04-27.1994 AT TIME 10:16:54 PROJECT TITLE: Stetson Creek 1 st Filing - Detention Pond #371 DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 371.00 BASIN AREA (acre)= 2.78 ' RUNOFF COEF = 0.46 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 ' INTENSITY(1N/HR)-DURATION(MIN) TABLE IS GIVEN DURATION 5 10 20 30 40 50 60 80 100 120 150 180 t INTENSITY 9.0 7.3 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1.5 1.2 1.0 ***** POND OUTFLOW CHARACTERISTICS: _ MAXIMUM ALLOWABLE RELEASE RATE = 1.39 CFS ' OUTFLOW ADJUSTMENT FACTOR AVERAGE RELEASE RATE = .94 = 1.3066 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ------------------------------------------------------ RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED ' DURATION INTENSITY VOLUME VOLUME MINUTE INCH/HR ACRE -FT ACRE -FT STORAGE ACRE-FT ----------------------------------------------------- 0.00 0.00 0.00 0.00 0.00 5.00 9.00 0.08 0.01 0.07 10.00 7.30 0.13 0.02 0.11 15.00 6.25 0.17 0.03 0.14 20.00 5.20 0.18 0.04 0.15 25.00 4.68 0.21 0.04 0.16 ' 30.00 4.15 0.22 0.05 35.00 3.83 0.24 0.06 0.17 0.17 40.00 3.50 0.25 0.07 0.18 45.00 3.25 0.26 0.08 0.18 50.00 3.00 0.27 0.09 0.18 55.00 2.80 0.27 0.10 0.17 ' 60.00 2.60 0.28 0.11 0.17 65.00 2.46 0.28 0.12 0.17 70.00 2.32 0.29 0.13 0.16 ' 75.00------2.19---- 0.29 0.13 0.16 THE REQUIRED POND SIZE = .1787687 ACRE -FT RP�JN-/f4' volt., Volt'' THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 45 uMINUTES .1 1 �q 1______________ _____________:_____ DETENTION POND SIZING BY FAA METHOD DEVELOPED BY ' JAMES L.Y. GUO, PHD, P.E. DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF COLORADO AT DENVER ' EXECUTED ON 02-14-1994 AT TIME 14:16:13 PROJECT TITLE: Stetson Creek 1st F111no - Detention Pond #371 DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER - 413.00 ' BASIN AREA (acre)= 2.78 RUNOFF COEF 0.37 DESIGN RAINFALL STATISTICS ' DESIGN RETURN PERIOD (YEARS) = 10.00 -4 10- Y2 d1;51! I,D STOQm INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN ' DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 5.6 4.4 3.2 2.6 2.2 1.9 1.6 1.3 1.1 0.9 0.8 0.6 POND OUTFLOW CHARACTERISTICS: MAXIMUM ALLOWABLE RELEASE RATE - .56 CFS OUTFLOW ADJUSTMENT FACTOR RATE = .94 _ AVERAGE RELEASE .5264 CFS AVERAGE RELEASE RATE = MAXIMUM RELEASE RATE * ADJUSTMENT FACTOR. COMPUTATION OF POND SIZE ' ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW DURATION INTENSITY VOLUME VOLUME REQUIRED STORAGE MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT ..................................................... 0.00 0.00 0.00 . 0.00 0.00 5.00 5.64 0.04 0.00 0.04 ' 10.00 4.40 0.06 0.01 0.06 15.00 3.82 0.08 0.01 0.07 20.00 3.24 0.09 0.01 0.08 25.00 2.92 0.10 0.02 0.09 ' ' 30.00 2.60 0.11 0.02 0.09 35.00 2.39 0.12 0.03 0.09 40.00 2.18 0.12 0.03 0.10 45.00 2.02 0.13 0.03 0.10 50.00 1.86 0.13 0.04 0.10 ' 55.00 1.74 0.14 0.04 0.10 60.00 1.62 0.14 0.04 0.10 65.00 1.54 0.14 0.05 0.10 70.00 1.46 0.15 0.05 0.10 ' 75.00 1.38 0.15 0.05 0.09 ..................................................... .THE REQUIRED POND SIZE = 9.723264E-02 ACRE -FT ' THE RAINFALL DURATION FOR THE ABOVE POND STORAGE= 45 MINUTES . 1 11 TWING Engineering Consultants CLIENT !: &kM JOB NO. 39S-ae3 PROJECT ,ieJ . TKSSOH Cm� k- CALCULATIONS FOR__9 // MADE BY KW 6+DATE Ib IN CHECKED BY_DATE SHEET 10 OF 7l ' DRAINAGE CRITERIA MANUAL INLETS B CULVERTS ' 180 10,000 q e *XArTLLEE (I) (2) (3) l5� t,000 - 156 1 000 t•41 Is" It.t tool •. - ' 114 . S 060 aIts 6. " /000 • He 4• 5. - 132 too 3.000 5' 1 . 4. ' I20 1.1 7.• 2,000 03 1.9 7.7 4' 3. 108 •0 I• he 3. ' 96 1,000 3. t4 So0 500 - _♦ 2 — 7 400 -300 _ 00 200 1.5 -54 r 4, W 100 ' / tt 50 60 i• 1.0 1.0 w SO ' �EM7rIR Hp 1.0 t40 SCAL W 3� 'S .5 olip Idth ' = 33 n !0 fel / weave a" gob e t SO � / Itl M•••• W j / M••wll Z •� .5 • t7 i - M•lnlly ' 24 7• •.• wW lit) « 431 MNrt •"Neff y Is "am Ill, m• 1 .•• offs N anew "" 1•r••t• t ••t • $40", w rw•r•• •. .5 5 -16 3 OlatrtlN. • ' -15 1.0 .5 ' 1t HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS WITH INLET CONTROL FIGURE 10-10. ' 11-13-68 06nwr A•e1•II•l e«w•o M 4M•r•wMM O o x . 4J v . Lo O la o ° w $4 Lr) � O .: w 4 a' d c� A. y . : 3 � ro � x c4 � ro Z) CU Pr 3 m' 0 w v w 7 0 D m >a _ In .�A 0 7 0o CO -t N rn co co d- N 00 0) rn rn rn o D� 00 ib 00 o O O O O O O O O x - aojolad quauz4snCpv Auoulno 714 No Text 729 1 RMINC. 1 Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 3031482-5922 1 FAX: 3031482-6368 April 21, 1994 1 Mr. Glen Schlueter City of Fort Collins Utility Services Stormwater 1 235 Mathews Port Collins, Colorado 80522 1 Re: Stetson Creek P.U.D. 1st Filing Erosion Control Cost Estimate 1 Dear Glen: This letter is intended to satisfy the City of Fort Collins requirements for an erosion control 1 security deposit for Stetson Creek P.U.D. 1st Filing. The City of Fort Collins current cost factors will be used for this estimate. 1 1 II 1 1 1 1 1 1 There will be approximately 18.29 acres (Gross platted area) disturbed within this project. In addition, approximately 0.50 acres (Stetson Creek Drive Temporary Road) will be disturbed with this project. Also, approximately 5.00 acres (McClellands Basin Drainageway) will be disturbed with this project. Using the City criteria of $ 500.00 per acre for construction sites greater than 10 acres, and using a 150% contingency, the total obligation of Geneva Corporation for security deposit would be: (23.79 acres) *.($500.00 per acre) * (150% contingency) C$17,942.50 The Owner of the Stetson Creek PUD has obtained bids for the erosion contro 'requirements for this project. The bids received include the following: (23.79 acres) * ($500.00 per acre) _ $ 11,895.00 Includes disking, drilling, straw mulching and crimping the grass seed and mulch Gravel Inlet Filters, Gravel Sidewalk Culvert Filters, Straw Bale Check Dams, and Gravel Mulch = $ 5,805.00 Ge Total = $17,700.005 B Other Office: Denver 303/458-5526 7z8 ' Therefore, the total obligation required will be $ 17,842.50 ' Please call if you have any questions regarding this estimate. Respectfully, RB1DJ Inc. Engineering Consultants ' Kevin W. Gingery, P.E. t I F 1 F 1 1 11 RAINFALL PERFORFANCE STANDARD EVALUATION 73 PROJECT: S-rF-r GeeFx P. 11 • D. 15* Flu ,1G STANDARD FORM A COMPLETED BY: TnM Q iZPt, p DATE: /2 s- DEVELOPED SUBBAgIN ERODIBILITY ZONE Asb (ac) Lsb (ft) Ssb 0) Lb (feet) Sb 0) PS M 4-oi MoD 1.1 535 0.191 0 — 2 c 4- 70o 0,, 62 40 ¢ 5 o. ¢g o. 55 do _ 4.55 _4zp 970 0.15 5 $37 , o. &s 74.6 0, S1 37Z a• 9 73.5 411 0.8n- 41 S o. 3¢ _ .34-5_ - 0.5 o.so_ 4,28 4o n/lor> 2.25 I 0. Sg -�-- 0.73 401 0,46 3 2S 41 o I•/ 3 ioc) 2• oo 6.74 7 O, S8 41 Z Min O. $$ 270 1 • ZZ 4-13 Z.ol 0, 57 2.87 237 D,�l% 7�• J I MARCH 1991 9.14 DESIGN CRITERIA 7y EFFECTIVENESS CALCULATIONS PROJECT: �E'(Zra^S GfIL �u�Sd-:1�G STANDARD FORM B COMPLETED BY: .TPM® (Z8b DATE: IZ S Erosion Control C-Factor P-Factor Method Value Value Comment �iZ�`�c�IL'roi.t�2vl2G� Cam) �.p0 O.�'10 VFpvMT A-,�Pk4a-r/coi,4(Fv) f55TA13LISH CWRASS C EG t- 8A I MAJOR PS SUB AREA BASIN ($) BASIN (Ac) CALCULATIONS 74. (O 4oi (- /3 - ,�=o:(P�ocL A� = o.4-7ac AEz, =rO,or„(o.to6�a 0-140(0.47.19 - 0.)0 �' ��F= [,_ (0,8)(0.,0 ]goo = 927 >74•� o Vl 74•(o Z.o4 �� ATM = Q $7c t� = D• �i,"� A BS = O. 56 Lo•04pASM�OI(p liEb �" �'�'4957/Z.o4sc. = r(o,obXO.FS7�F(o, I(oXo. �7) � CI•o�o,So�J 04- 9,Qras+ I,o(A5,,•i+4E6 L4 *o.g(SS =[o.y(o.5)+• I.o(o.5c7+o.67��/Z.ai 'ko,8 = o•7e i 74, 07o -Apy Ay, r o.o�/�SMJ�o,3j `�O.ol�o.313 to.q,(a01) = O.OZ a.ay D.02. 1.0)] 100 - SI7o ) 74-, (P%v oK. �)1L o k MARCH 1991 8.15 DESIGN CRITERIA 1 1 1 1 -7S EFFECTIVENESS CALCULATIONS PROJECT: �7>"Er�o� Cam,p D. 16 r` aG STANDARD FORM B COMPLETED BY: TPhI`e^� DATE: 12 S 9 Erosion Control' C-Factor P-Factor Method Value Value Comment 1 o.. Jo A<�VAAti-16W(. FIIAAT- (pV) 4':>,of 1'00 `Je-F-� ML'L ,L4 (Sn t, -1v�-7Agc.ESe 1-co �j-TTL4k1 64 rt S C5g3 1400 0 70 (oR 6VAVEL IOI L[el- FIt-%1 es) 1 6;�VeL- Mkl<.,.1 (6M) 0.05 /, D --�frrsoA) CejL i%rjV6 Ap-F�4 MAJOR PS SUB AREA BASIN BASIN (Ac) CALCULATIONS 74 4-o 5' o a$ — G _ 10. 01 Af V + 0. 06 A51A IV>, ' / _ [0•oi(,o, i r O,oIaCO.OgS / ID AS ' "777 fF [p/ \77 \ • 1 `�AXo.02y/r00 - 10/0 74.6% 74./ 40(, 4•55 AUA "IZZM �i = O. O (p V- Cs rya a T-a) >74,(e 403, Ate. 41, 415, Asm 3. 35 .]/5.01 = 10.05(1.1e1e>+o.o(, C3.3S� (o Grkpr, O,13 '1 iJ = �•o S.0 1 73,5 % Dv— MARCH 1991 8.15 DESIGN CRITERIA . ' 76. 1 1 I 1 F 1 1 EFFECTIVENESS CALCULATIONS PROJECT: 5r F_T;SVIJ (fZeeg IC� u. p, i 5t Fes, STANDARD FORM B COMPLETED BY: TPM DATE: /Z Erosion Control C-Factor P-Factor Method Value Value Comment .. "�AIZG.rjolt. -✓occy�En2c�iPJS) � .Do-....._.. Q,.gQ... _ ,..-......_ As�HA�r//��IG• P�.-T(PV) 0,0/ A06D /NuGG N �SM>. .5ce T Sc izArJ 8A�/Gs (S �> • o o, 8o (a2 6Z4 V4i4 r,�Iz-re rre- �sT��.is�l�/�G�)� MAJOR PS SUB AREA BASIN ($) BASIN (Ac) CALCULATIONS 407, Ae6= 1. 528 � ASN = 5• Z12 F-e.- ��74 . 0.04(5'z1?-)1,74, = D. 27 �t 6174 p�.:Frl.>ZSCol) *- ,212���6.74 * o.$ =0.7$. L ((IKAV FL. 14LF r 1=/is✓UZS� �n y i C), 24 = 2, L 8 4-ID C� _ (1,00AFv + 0to%As,A 1/2-71 - L 1.0 (O.?-J)+ ov&(2_68�/ %.7;7 o� MARCH 1991 9.15 DESIGN CRITERIA ' CONSTRUCTION SEQUENCE '77. -ROJECT: C—F- rcy' {�t�,�� ISM �'1�'�-'G STANDARD FORM c ' SEQUENCE FOR 19.4- ONLY COMPLETED BY: DATE- 2 qy 'Indicate by use of a bar.line or symbols when erosion control measures will be installed. Major modifications to an approved schedule may require submitting a new schedule for approval by the City Engineer. ' YEAR MONTHI.A IMIJ,�.ILi.ilvl l�l :.I GRADING 'QVSRL03' WIND EROSION CONTROL ' Soil Roughening Perimeter Barrier I i I Additional Barriers Yggetati3Le—}+.ethode --'-- —_-- ' - — ' Soil Sealant. _' I __�-------- Other 'r§INFALL EROSION CONTROL j STRUCTURAL: Sediment Trap/Basin ' Inlet Fi1tQ_r_g Sxraw Barrie_ra w Silt Fence Barriers' - t Sand Bags Bare Soil p -- ----- - ---+------------.I_--------------------- j- -.� - Contour Furrows Terracing ' Asphalt/Concrete Paving —' Other 1 . I VEGETATIVE: j Permanent Seed Planting I i Y.ulching/Sealant-_ 1 Temporary Seed_P.lanting -_,___ —�--- ----'- Sod Installation - --- --- Nettings/Mats/Blankets + Other j I I RUCTURES: INSTALLED BY �GETATION/Y.ULCHING CONTRACTOR DATE SUBMITTED MARCH1991 MAINTAINED BY APPROVED BY CITY OF FORT COLLINS ON 8.16 DESIGN CRITERIA t McCLELLANDS BASIN DRAINAGE WAY TRICKLE CHANNEL DESIGN 0 1 ' RBD INC.­ ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION MCCLELLANDS BASIN TRICKLE CHANNEL RATING CURVE STA ELEV 0.00 100.00 3.00 99.00 6.00 100.00 3 3 'N' VALUE- SLOPE (ft/ft) 0.030 0.0050 ELEVATION AREA VELOCITY DISCHARGE FROUDE ' -(feet)-- (sq ft) ------- --(fps)- (cfs) --------- NO. ------ 99.10 0.0 0.5 0.01 0.36 ' 99.20 0.1 0.7 0.09 0.41 99.30 0.3 1.0 0.26 0.44 99.40 0.5 1.2 0.56 0.46 99.50 0.7 1.3 1.01 0.47 99.60 1.1 1.5 1.64 0.49 99.70 1.5 1.7 2.48 0.50 ' 99.80 99.03 1.9 99.90�- 2.4 1.8 2.0 3.54 43.9A 4.84 0.51 0.52 100.00 3.0 2.1 6.41 0.53 ' COmrv+alion$ USG. -4a Alan/,',"is &Rloclrkon Q=� h96 Ry'sy"q , m DROP STRUCTURE DESIGN ■■ri INC Engineering Consultants CLIENT Geneva. I6mcS JOB NO. 395 003 PROJECT /21GCIC11ad5 &Sirs QrainaeeCULATIONSFOR S'frvCC{vre MADEBY W6 DATE'i Z2�U CHECKED By- DATE SHEETf3Z�OF rCG�_-e.... anal�srs-_Js 7nG,r�aeQ-I /aYr-K/n„Yhis_R:<UCiC..__: 'itlnq „}A� EG L_ anairsl5 �.�de}ermine �{il� a a� dls{Rnce._ 1if e7vr_F _ _1 t I ' l HGL 1 � hdnnel nar aljdeP}h_ i5 .3.00 I T— T nnel norms rde�%h,:_Dj5- �a 2:92 eanncl nOry„a� Velau'Fj a!S .-3.y.fp ` i4nnd nor al{ ✓elac/fy D/5 36fps -fi TWINC Engineering Consultants I 1 t 11 6Gnl.a CLIENT ffDM[5 JOB NO. 3?-S"Op,3 PROJECT&53 M OrOin CAJay CALCULATIONS FOR DSO S4mc/*,/e_ MADE BY u16 tl L DATE IZ�ZIi3CMECKED BY_ DATE SHEET -93—OF • r ■■■■■mom ■■■■■■■■■■■r,�■■■MEE ME■■■■■■■■■■■■■■■ MEN ME0 ENE ■■■■■■■■■■■■ ■■■■■■■■M W.Q��■!RC■■►01d■■■■■■■�■■■mom 0 Eno■■■■■■Y!7."�1■■■■■■■�IIAf■■■ii■ ENE ■■O.CaA■■ ■■■■■■ENE NO Kowo ME ;F,M ■■■■■■■■■■■■■■■■■■■■■■■■■■■AFT ■■■■■►f�.lr■■■■7■■■■■■■■■■■■■■■■■■■■■■■■■■■_ AME�����■������■���� ■■■■I/III■■■■OICi�■■■■GCC�■■■■■■■■■■■■■■■■■■ M momEMEM ■O■G■■■■■r0�■1�.7■■■■■■r©�■■.�Ae-■■MEMO ■MO17■mzmm MEN M■M■■■O■E■■■■■■■mom ■■■■■■E■■MEMO mr9ev��E m���� mEms■ WAN■■ ■MEMO MM■■■ iii■■■■■MEN O■■■■■ ■■■I/ME MEN ■M■■OEM■■■■MM■■■O O �...►.■. MEN MEMEMO MEN ....�.■■ ■MEMO ..■.■■..■....■■. ENE ■■■■. ..■Hi■EM ■MEMO ■.■..■■... mom ...NEW ..... ■■■n■■■ ■■■■■■■■■■■■mom ■■■■■■■■■■■■■■■■■ .....■......MEMO .........CONE ■■■■■■■■■■i ....■.■..■..■■■■■■..■■ME■ENNW ■EE.E■EEE■ ...■......■.■■■■■■■.■..... ENE ...■■...■.� .....■...■..■■■■■■...■...■ MEN ...■■..... M��MENNEN�����NN���a������ i :W1, NC Engineering Consultants i. CLIENT 6f:nCV& YOMe-, JOB NO. 3?5'-003 PROJECT Inc Cle-110 45603-10 19n!LnO�ALCULATIONS FORW . D5�rValVfe MADE BY W6 DATE ILIZ-Z- bICHECKEDBY— DATE SHEET S.5' OF L V 7 —I d 71 6 I -- --j .1 L 7 -- ----- 1 71 ? -- ---- ---- L L I - - - - - - - - - - - rC_ t;-.4e44 4E Son mW t 4- Dee C �14 L Fb.� -T- Ei-+- 14-A ... .. 5-ta 1Of7q-- L -4 ----- -- T Ro� S-, Zt DI%7— T If 16 e:j 7,1 d, L! J- fm�sivh 0 alleasu 7 7 -4, , --cr- 75 . I . �— ;- 7 7T- 7 -�P Z51'abio f _7 T L 4. iJ r Cssv hfab,✓,{y T --- L L L 1. j .1. J_� From 4; ------- AS -------- - ---- Y-1- Lb �27 A - ell L 14 'i— L 7, ZS-7-7777 0.i=. a r; le. 0 OZZ ✓ L T- i ...... ..... . 77- . . ..... ..... . : I TWINC Engineering Consultants 0.37 45 440 V, "a IA35 a' k 0' 30 1 2 CLIENT cgYI,eA�m 1�ome5 JOB NO. 375'-003 PROJECTAeLILIS &�" OM70W9LA Y CALCULATIONS FOR Dn�e Sfrc4U,-e MADEBYKYJ6 DATE i&PCHECKED By— DATE —SHEET R(P OF 4 10 20 40 60 100 200 400 600 0ePa°k 66 '6 COS pep 0 0 Rounded .6 Rounded and Angular • Angular 1251 0.01 0.1 1.0 10 Mean Diameter, in. Fig. 3.7.3 Angle of repose. v'z rj Z_ 1);7n 7 4 0 I:Ii .......... 4 L -T- 1:2 -LI-1, _'__ CUENT - S nem 1� 0i ns JOB NO. 395-oas INC PROJECT A0te1/4 15 n4$1 n 400aiMllffCALCULATIONSFORDroP S-Fr-d+uC Engineering Consultants MADEBT KW6 DATEI101 CHECKED By— DATE SHEET OF 1I '` I 1 1 1 RMINC Engineering Consultants 1 1 1 1 CLIENT r2tAtV0. dYoMet, JOB NO. 39S-003 PROJECT /&C/Q/L0JS BaSIn DT' ;W CALCOLATIONSFOR D%e Str dVK MADEBY I"( DATEI�CHECKEDBY_ OATS SHEET 0 OF ■ri/iNc Engineering Consultants CLIENT __GQnG✓o- 14omcS JOBNO. 395-003 PROJECT mcCtalla s Bas-in DMi'-- a-&LCULATIONS FOR Dro0 5fro +t re MADEBYkW( OATEII %z YS CHECKED BY_ DATE SHEET 09 OF 1 yPeORATO 9� ' mn � 7 1 r crd0' 8,1®. November 22, 1993 1 RBD, Inc. 1 209 South Meldrum Street Fort Collins, Colorado 80521 1 Attn: Mr. Kevin Gingery Re: McClelland Basin Channel Fort Collins, Colorado 1 Project No. 20935100 40 Empire Laboratories, Inc. A Division of The Terracon Companies, Inc. P.O. Box 503 • 301 No. Howes Fort Collins, Colorado 80522 (303) 484-0359 FAX No. (303) 484-0454 Chester C. Smith, P.E. Neil R-Sherrod. C.P.G. 1 Gentlemen: As requested, this letter is intended to furnish you with a value of Lane's weighted creep ratio 1 correlating with the on -site clay material encountered during our preliminary investigation for the proposed residential development south of Harmony Road and east of Timberline Road in southeast Fort Collins, Colorado. 1 As we understand, a concrete drop structure is to be constructed in the general vicinity of Boring 8 (see our Preliminary Geotechnical Engineering Report, Project No. 20935100 dated May 20, 1 1993). Based on the soft to medium stiff sandy lean clay material encountered in Boring 8, it is our opinion a weighted creep ratio of 2.5 should be used the design of the concrete drop structure founded on similar sandy lean clay material. This value was derived by the tabulation of Lane's weighted creep ratios for various soils on page 341 of "Design of Small Dams" Second Edition 1 1973 by United States Department of Interior, Bureau of Reclamation. We wish to emphasize that the weighted creep ratio of 2.5 is for soft to medium stiff clay ' materials. If different soils are encountered during the construction of the drop structure, the value of the weighted Creep ratio should be reevaluated. ' If we can be of further service to you on this project, please feel free to contact us. Sincerely, ' EMPIRE LABORATORIES, INC. A Division of The Terracon Companies, Inc. David A. Richer, P.E. 1 Geotechnical Engineer DAR/cic 1 Offices of The Terracon Companies, Inc. Geotechnical, Environmental and Materials Engineers Arizona: Tucson ■ Colorado: Colorado Springs, Denver, Ft. Collins, Greeley, Longmont ■ Idaho: Boise ■ Illinois: Bloomington, Chicago, Rock Island- ■ Iowa: Cedar Falls, Cedar Rapids, Davenport, Des Moines, Storm Lake Ill Kansas: Lenexa, Topeka, Wichita ■ Minnesota: St. Paul ■ Missouri: Kansas City ■ Nebraska: Lincoln, Omaha 0 Nevada: Las Vegas 1 ■ Oklahoma: Oklahoma City, Tulsa ■ Texas: Dallas ■ Utah: Salt Lake City 0 Wyoming: Cheyenne QUALITY ENGINEERING SINCE 1965 I 9t ' DRAINAGE CRITERIA MANUAL STRUCTURES f. The main stilling basin is depressed, 1 to 2 feet depth, in order to stabilize the jump. A row ' of boulders is located at the basin end to create a sill transition to the downstream invert elevation. It is advisable to bury riprap for a distance of a 10 ft. downstream of the sill to minimize any erosion that may occur due to secondary currents. ' g. Generally, do not use slopes steeper than 4:1. Slopes flatter than 4:1 usually increase expense, but some improvement in appearance may be gained. . ' h. Simplified design criteria are provided in Table 2-4 for grouted sloping boulder drops. This ' criteria is only valid where the channel flow conditions meet criteria in the Major Drainage Section and the drop configuration is according to Section 2.3.3.3. TABLE 2-4 GROUTED SLOPING BOULDER DROPS MINIMUM DESIGN CRITERIA FOR ' GRASS LINED CHANNELS MEETING UDFCD CRITERIA Design Drop Height (Hd) Drop Height (Hd) Parameter 3ft. or Less Greater than 3ft. Maximum Drop Slope 4H to IV 4H to 1V Uniform Rock Size* - Dr 1.5 ft. minimum 2.0 ft. minimum Grout Thickness - D& 1.0 ft. 1.5 ft. ' Basin Depression - B See Figures 2-11 and 2-12 Grouted for Rock Approach -,L. See Figures 2-11 and 2-12 Basin Length - Ib" Erosive 20 ft. 20 ft. <4ft. drop ' 25 ft. >4ft. drop Nonerosive 20 ft. <1,000 cfs 25 ft. 25 ft. > 1,000 cfs 25 ft. ' Basin Width - b, or bz Same as crest width, b, transition to downstream channel width, bl, see Section 2.3.3.3. Trickle Flow Zone Provisions Install large boulders in center basin zone to break up ' high flow stream, or apply separate water surface profile analysis. See Section 2.3.2.2. Trickle Zone Protection Width 3(b,) or bZ (whichever is smaller, See Figure 2-17) Below Drop Other Provisions A buried riprap zone should be installed for 10 foot ' minimum downstream of the basin. * Uniform rock size refers to the minimum dimension of all boulders measured in any direction. May use 1.5 ft. rock and 1.0 ft. grout for upstream flow depths (normal ' depth) less than 3 ft. ** Add 10 ft. to basin length for submerged drops or use hydraulic jump analysis to refine the main basin length and trickle flow zone dimensions. November 15, 1990 2-39 9Z STRUCTURES DRAINAGE CRITERIA MANUAL SEE TEXT FOR MATCH- BELOW PRECAUTIONS ON B 140 USE OF GRAPH - "' .. 290 «130 - -. _ ... _: .. -. 270 O 1 ~ O ,, a � Q uo 3 tir 260,n, Y � UJI cx ce 250 J 90 �40 .� cc W x 5 0 3 = Bo I Y� NORMAL x LI)V I DEPTH 30= o< w o I 0 uj cc �o Zzo ` } d 0 W O � Q. 4 a ,.:... k -.- i x 210� to .0 3 50 I Yc CREST DEPTH i2ooLU m I' 190-0 N30 ' . Vy 180 ' Q ..� O s0 O z 20 SLOPS• J: 1 O 170 -Q 4; 16 ROCK APPROACH Vo LENGTHI use. La S� .. .. I 1 I 0 ... 1 MATCH ABOVE 150 0.5 1.0 2.0 3.0 40 so An 7n EXAMPLE - For 0=3,600cfs, Drop Height=4ft. bt = i24ft b2 = 90 fJ Yn = 5 fJ Vn = 5 fps So = 0.00142' Ld= t6ft Other requirements Lb = 20ft B = t ft From FIG. 2-10, 4UN20-90=321t, 5ff9Ltd<20fJ GRAPH ASSUMPTIONS: nchannel 20.030 ntrans =0.042 ndrop =0.042 Grouted Boulders OTHER RESULTS: Vn = 5.0 fps OTHER REQUIREMENTS: Lb = 20ft for drop <_ 4 f t Lb =25ft for drop > 4 ft B =1.75ft for 05 IOOOcfs B=1.50f1 for 1000<0 $ 2500 cfs B =1.0f1 for 0>2500 'THE SLOPE OF THE CHANNEL )HOULD BE FLAT :OR 15ft UP- ;TREAM OF THE :REST, THEN TRADE AT 50, DISCHARGE, 1000 cfs HYDRAULIC DESIGN PARAMETERS —TRAPEZOIDAL CREST SECTION, EROSIVE SOIL CONDITIONS FIGURE 2-II November 15, 1990 2-24 93 1 1 1 1 1 1 HEC 2 ANALYSIS 1 1 1 1 1 1 CALCULATIONS TO DETERMIM THE DOWNSTREAM STARTING WATER SURFACE ELEVATION eAj JS _W- CLIENT !> 4CIL91A 1�� JOB NO. NC PROJECTY"- _ Z��A 2LAAa XCULATIONSFOR -S- %%6C-L Engineering Consultants MADE By � DATE CHECKED By— DATE —SHEET OF 7 7 7 T I 96 1 i 1 i 1 1 1 1 i 1 1 1 1 \ \ % F iY x e oT`a W 4110013A 131100 43 v I ¢ y IJ W N NOI1�A313 m O tl3HM013N lotl1N00 +' C ~¢ e 2 W w W e e u 11 J < H¢ We P V H H i W J U' W N > Q VI W W > t I ylI N H' J I j �,(^� kn •= I SI i Ul \ a I O Id N. O II e J 11 of H 5 e • < N W 1; I1 _ a O Li1 C V � I I OZ F W a 23 W ¢ u yo 11 H S W W J 2 p; 3 .. �Q N Ol y\ J¢ p 4 O J S LA 2 V H 0 O p(y V) E W mZ` J H{ II O S� 4- Q L V J 302 W Z �.0 u O \ V _ _� s r ;- � 8 _Li ¢ 3 F H � v M O � 90 SP q `n Q s < f W W J = U b < V a O y G J ❑ ❑ W W O U J O —y < ¢cri O In J LL J O 4 2 W O J F Q J O 0 W .. W O �a JJ 2 0o V O W 6 H N F J W O 20 -W z a < O¢ O F Z WGF N W •• < 6 3< 11 Q Z 0 1- m J O e W LL R��u - 0 < W 2 Y f.l S 6 .W.. W <■Fi Ow O • S Z N H LL 4 3 1 W V G ; U f t <Z m _.F«C<� i c u ¢ O J Q Z ' s ta M1 �`i1=r n: > u O O .0-7 O ❑❑❑❑ 6 i W JW x H 3 i << UOV��C1130 Vc H �JVy<WJSF 0. 'S1N91001338 < ) U 7 2 4 W 01 6002SO 30 240 17 RBD INC. ENGINEERING CONSULTANTS WEIR SECTION FLOW DATA MCCLELLANDS BASIN DRAINAGE WAY WEIR FLOW OVER DOWNSTREAM BRIDGE WEIR COEF. 3.000 STA ELEV -- Qlo oea -6 c-fs 0. 0 492424.05 100.0 4921.65 119.0 4921.18 158.0 4921.70 258.0 4924.30 ELEVATION DISCHARGE (feet) --- ---- (cfs) 4921.18 0.0 4921.38 2.2 4921.58 12.4 19 Cf5 a EL 492�, by 4921.78 36.2 4921.98 75.3 4922.18 128.4 4922.38 196.8 4922.58 281.2 203 cfs aa) y9Z2.58 4922.78 382.7 4922.98 502.1 4923.18 640.3 4923.38 798.2 4923.58 976.5 4923.78 1176.0 4923.98 1397.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 OCHART 4 3 2 I Ea CANNOT EXCEED TOP OF PIPE I.S 0 1A. - -H-1 0 10 20 30 40 SO 60 70 60 90 100 DISCHARGE-0-CFS w W W LL 0 S F a W O J a u DISCHARGE-0-CFS u 14 12 BUREAU OF PUBLIC ROADS JAN. 1964 CANNOT EXCEED TOP OF DISCHARGE-0-CFS E CRITICAL DEPTH CIRCULAR PIPE 184 m I 99 CHART 10 180 10,000 168 8,000 EXAMPLE ��� (2) (3) 6. 156 6,000 D•42 inches (3.3 «1) 6 144 5,000 0.120 efs 5 4,000 • NM 6. 5.' 132 3,000 D feet (11 2.5 8.8 4. 5', 4. . 120 2.1 7.4 2,000 (3) 2.2 7.7 4• 3' 108 3. . s0 is fver 96 1.00 3. 80 84 00 / / 500 / _ 2. 72 400 / 3 _ - 300 E+j / 1.5 1.5 u z U) / a 60 U. 200 H 1.5 = Z / W 0 5 / Q w 0 100 C _ 46 / ¢ 80 _ p / a - 0. 1.0 1.0 U. 42 060 H 50 HW ENTRANCE G I.0 c 40 p SCALE TYPE m 9 iW- 36 30 (1) Square edge Rite < . .9 W 33 haod.oll •c= a 20 (2) Groove end .ith W 30 hood.oll -S .8 .8 (3) Groove sod '8 27 projecting 10 .7 24 8 .7 .7- 6 To ash scale (2) or (3) project 21 5 hori2ontaly 10 scale 11), then 4 use alro)ghl inclined tine through D and 0 scales, or relate. ae •6 6 3 illustrated. i 6 18 2 1.5 15 .5 5 1.0 Liz HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS - HEADWATER SCALES 283 WITH INLET CONTROL - REVISED MAY 1964 BUREAU OF PUBLIC ROA0S JAN. 1963 181 Preceding page blank I NC Engineering Consultants 1 1 1 1 1 CLIENT Geneva. JOB NO.39S-003 PROJECT S+Z*50� �C�tee'�' CALCULATIONSFOR 14,ciellgaSA ci Cweye� MADEBV�DATE ._(_L'L CHECKED By -DATE SHEET (�n OF HEC 2 OUTPUT RESULTS I 10l '1}llfiffl•1f}fffR#kfYYYfffRYYYYRf111R}f}MfRf * HEC-2 WATER SURFACE PROFILES Y f * Version 4.6.2; May 1991 fi t * RUN DATE 03FEB94 TIME 14:41:41 1H+RRRRIRRRYfittktfitf f 11111fiRf fitf11t11ttf f 1f X X XXXXXXX XXXXX XXXXX x X X X X X X X X X X X xxxxxxx XXXX x xxxxx xxxxx x X x x X X X X X x X X X XXXXXXX xxxxx XXXXXXX '1 03FEB94 14:41:41 ' U.S. ARMY CORPS OF ENGINEERS • HYDROLOGIC ENGINEERING CENTER ' 609 SECOND STREET, SUITE D ' DAVIS, CALIFORNIA 95616-4687 * (916) 756-1104 ffffffffRlRRkfRRf}1RRR1RR+11fYfiR111fif PAGE 1 J THIS RUN EXECUTED 03FES94 14:41:41 wwwr+wwwfifwww#t1t#}f11111f1fRf+1RRRRf HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991 ++11f:Ywlt+tR»}ft11t1ft11fY+Ye+++ftf GENEVA HOMES, RSD JOB NO. 395-003, FEBRUARY 1994 'T1 T2 ANALYSIS FOR 100 YR. FLOODPLAIN T3 MCCLELLANDS BASIN DRAINAGE WAY, HEC-2 DATA FILE NO. 39500301.DAT J1 (CHECK IND NINV IDIR STRT METRIC HVINS O WSEL FO ' 0 2 0 0 0 0' 0 0 4922.6 0 J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC IBW CHNIM ITRACE ' -1 0 .1 0 0 0 0 0 0 0 NC ' OT 0.045 0.045 0,045 1 388 0 0 DOWNSTREAM STARTING WATER SURFACE ELEVATION IS 4922.6 START WSEL ASSUMES 105 CFS IN 48" RCP 8 283 CFS OVER BRIDGE X1 0 4 0 39 ' GR 4923 0 4917 13 4917 25 4922 39 BEGIN 16' WIDE MAIN CHANNEL BOTTOM WIDTH x1 70 4 0 55 68 76 71 0 0 0 GR 4922 0 4917 20 4917 36 4922 55 xi 270 4 0 57 195 205 200 0 0 0 GR 4923 0 4918 20 4918 36 4923 57 1 293 'OT X1 572 4 0 52 301 303 302 0 0 0 GR 4924 0 4919.5 18 4919.5 34 4924 52 OT 1 289 869 4 0 48 301 296 298 'xi GR 4925 0 4921 16 4921 32 4925 48 OT 1 287 BEGINNING OF 2' DROP SECTION ' Xt 1070 4 0 48 GR 4926 0 4922 16 END OF 2' DROP SECTION X1 1078 4 0 48 GR 4928 0 4924 16 1 03FEB94 14:41:41 X1 1278 4 0 48 GR 4929 0 4925 16 ' START OF 22 DEGREE BEND X1 1398 4 0 48 GR 4929.6 0 4925.6 16 'X1 1457 4 0 53 GR 4929.9 0 4925.9 18 '%1 GR 1515 4930.2 4 0 0 4926.2 58 20 END OF 22 DEGREE BEND X1 1558 4 0 58 4930.4 0 4926.4 20 'GR NC 0.6 OT 1 284 END OF 16' X 3' BOX CULVERT 'X1 1716 6 29 45 X3 10 GR 4932.5 0 4932.5 29 GR 4932.5 75 ' SC 1.013 0.4 3 0 BEGINNING OF 16' X 3' BOX CULVERT X1 1762 6 29 45 X2 0 0 2 X3 10 ' BT -3 0 4933 GR 4932.5 0 4932.5 29 GR 4932.5 75 X1 1805 4 0 66 GR 4933 0 4927.6 25 NC 0.045 0.045 0.045 0 1877 4 0 63 'X1 GR 4933 0 4928 23 X1 2078 4 0 60 GR 4933 0 4929 22 %1 2278 4 0 50 GR 4934 0 4930 17 2478 4 0 48 'X1 GR 4935 0 4931 16 1 03FEB94 14:41:41 X1 2594 4 0 48 GR 4935.6 0 4931.6 16 ' %1 2712 4 0 56 GR 4936.2 0 4932.17 20 199, 201 201 4922 32 4926 - 48 8 8 8 4924 32 4928 48 PAGE 2 201 199 200 4925 32 4929 48 122 122 122 4925.6 32 4929.6 48 65 51 58 4925.9 34 4929.9 53 62 54 58 4926.2 36 4930.2 58 45 43 44 4926.4 36 4930.4 58 0.8 157 157 - 157 0 0 0 4933 4933 4927.19 29 4927.19 45 4932.5 45 3 16 46 8.1 4927.42 4927.19 46 46 46 4933 4933 .4933 40 4933 80 4933 4927.42 29 4927.42 45 4932.5 45 43 43 43 4927.6 41 4934 66 0 70 74 72 4928 39 4933 63 201 201 201 4929 38 4933 60 200 200 200 4930 33 4934 50 200 200 200 4931 32 4935 48 PAGE 3 120 112 115 4931.6 32 4935.6 48 113 123 118 4932.17 36 4936.2 56 102 ' 103 '1 03FEB94 14:41:41 PAGE 4 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 OLOB OCH OROB ALOE ACH ARDS VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR (TRIAL IDC ICONT CORAR TOPWID ENDST *PROF 1 0 *SECNO .000 3280 CROSS SECTION .00 EXTENDED .60 FEET" ' DOWNSTREAM STARTING WATER SURFACE ELEVATION IS 4922.6 START WSEL ASSUMES 105 CFS IN 4811 RCP 8 283 CFS OVER BRIDGE .000 5.60 4922.60 .00 4922.60 4922.71 .11 .00 .00 4923.00 388.0 .0 388.0 .0 .0 144.6 .0 0 .0 4922.00 ' .00 .00 2.68 .00 .000 .045 .000 .000 49,17.00 .87 .001224 0. 0. 0. 0 0 0 .00 38.13 39.00 *SECNO 70.000 ' 3280 CROSS SECTION 70.00 EXTENDED .71 FEET 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.56 ' BEGIN 16- WIDE MAIN CHANNEL BOTTOM WIDTH 70.000 5.72 4922.72 -.00 .00 4922.77 .05 .05 .00 4922.00 388.0 .0 388.0 .0 .0 -216.8 .0 .3 .1 4922.00 - .01 .00 1.79 .OD .000 .045 .000 .000 4917.00 .00 ' .000503 68. 71. 76. 2 0 0 .00 55.00 55.00 *SECNO 270.000 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .69 270.000 4.83 4922.83 .00 .00 4922.91 .08 .14 .00 4923.00 388.0 .0 388.0 .0 .0 172.8 .0 1.2 .3 4923.00 '.04 .00 2.25 .00 .000 .045 .000 .000 4918.00 .69 .001048 195. 200. 205. 2 0 0 .00 55.58 56.27 *SECNO 572.000 ' 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .57 572.000 3.70 4923.20 .00 .00 4923.30 .10 .40 .00 4924.00 293.0 .0 293.0 .0 .0 113.9 .0 2.2 .7 4924.00 .07 .00 2.57 .00 .000 .045 .000 .000 . 4919.50 3.21 .001838 301. 302. 303. 2 0 0 .00 45.59 48.79 r03FEB94 14:41:41 - PAGE 5 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 OLOB OCH OROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WIN ELMIN SSTA SLOPE XLOBL XLCH XLOBR (TRIAL IDC ICONT CORAR TOPWID ENDST ' *SECNO 869.000 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .62 iay ' 869.000 2.92 4923.92 .00 .00 4924.12 .20 .82 .00 4925.00 289.0 .0 289.0 .0 .0 81.0 .0 2.8 1.0 4925.00 .09 .00 3.57 .00 .000 .045 .000 .000 4921.00 4.30 004578 3111, 298, 296. 2 0 0 .00 39.39 43.70 . *SECNO 1070.000 BEGINNING OF 2' DROP SECTION 1070.000 2.86 4924.86 .00 .00 4925.07 .21 .95 .00 4926.00 ' 287.0 .0 287.0 .0 .0 78.6 .0 3.2 1.2 4926.00 .11 .00 3.65 .00 .000 .045 .000 .000 4922.00 4.55 .004902 199. 201. 201. 2 0 0 .00 38.91 43.45 '*SECNO 1078.000 3685 20 TRIALS ATTEMPTED WSEL,CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED ' END OF 24 DROP SECTION 1078.000 1.83 4925.83 4925.83 .00 4926.53 .70 .08 .00 4928.00 287.0 .0 287.0 .0 .0 42.7 .0 3.2 1.2 4928.00 .11 .00 6.73 .00 .000 .045 .0011 .000 4924,00 8.68 ' .027211 8. 8. 8. 20 14 0 .00 30.64 39.32 *SECNO 1278.000 ' 3301 HV CHANGED MORE THAN HVINS WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRAT10 = 2.61 '3302 1278.000 3.02 4928.02 .00 .00 4928.20 .18 1.67 .00 4929.00 287.0 .0 287.0 .0 .0 84.7 .0 3.5 1.3 4929.00 .12 .00 3.39 .00 .000 .045 .000 .000 4925.00 3.93 ' .003981 201. 200. 199. 5 0 0 .00 40.15 44.07 1 03FEB94 14:41:41 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV O GLOB OCH OROB ALOB ACH AROB VOL TWA R•BANK ELEV TIME VLOB VCR VROB XNL XNCH XNR WTN ELMIN SSTA ' SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST 'SECNO 1398.000 START OF 22 DEGREE BEND 1398.000 2.92 4928.52 .00 .00 4928.72 .20 52 00 4929.60 287.0 .0 287.0 .0 .0 80.8 .0 3.8 1.4 4929.60 .13 .00 3.55 .00 .000 .045 .000 .000 4925.60 4.32 ' .004535 122. 122. 122. 3 0 0 .00 39.36 43.68 *SECNO 1457.000 1457.000 2.89 4928.79 .00 .00 4928.97 .18 .25 .00 4929.90 287.0 .0 287.0 .0 .0 85.1 .0 3.9 1.5 4929.90 ' .14 .00 3.37 .00 .000 .045 .000 .000 4925.90 4.97 .004255 65. 58. 51. 2 0 0 .00 42.77 47.75 '*SECNO 1515.000 1515.000 2.85 4929.05 .00 .OD 4929.21 .16 .24 .00 4930.20 287.0 .0 287.0 .0 .0 88.2 .0 4.0 1.5 4930.20 .14 .00 3.25 .00 .000 .045 .000 .000 4926.20 5.75 .004129 62. 58. 54. 0 0 0 .00 45.92 51.67 *SECNO 1558.000 ' END OF 22 DEGREE BEND PAGE 6 1 ioS .. ' 1558.000 2.83 4929.23 287.0 .0 287.0 .15 .00 3.28 004217 45 44- CCHV= .600 CEHV= .800 .00 .00 4929.40 .17 .0 .0 87.5 .0 .00 .000 .045 .ODD 6i_ O 0 0 .18 .00 4930.40 4.1 1.6 4930.40 .000 4926.40 5.83 .00 45.76 51.59 *SECNO 1716.000 ' 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .60 '.3495 OVERBANK AREA ASSUMED NON -EFFECTIVE, ELLEA= 4933*10 ELREA= 4933,00 END OF 161 X 31 BOX CULVERT 1716.000 2.99 4930.18 .00 .00 ,4930.73 .55 1.02 .30 4932.50 284.0 .0 284.0 .0 .0 47.8 .0 4.3 1.7 4932.50 .00 5.94 .00 :000 .045 .000 .000 4927.19 29.00 '.15 .011482 157. 157. 157. 2 0 0 .00 16.00 45.00 1 ' 03FEB94 14:41:41 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 OLOB OCH OROB ALOB ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST tSPECIAL CULVERT SC CUNO CUNV ENTLC COFO RDLEN RISE SPAN 1 .013 .40 3.00 .00 3.00 16.00 CHART 8 - BOX CULVERT WITH FLARED WINGWALLS; NO INLET TOP EDGE BEVEL SCALE 1 - WINGWALLS FLARED 30 TO 75 DEGREES '*SECNO 1762.000 SPECIAL CULVERT OUTLET CONTROL EGIC = 4930.887 EGOC = 4931.026 PCWSE= 4930.179 ELTRD= 4933.000 ' SPECIAL CULVERT PAGE 7 CULVLN CHRT SCL ELCHU ELCHD 46.00 8 1 4927.42 4927.19 EGIC EGOC H4 OWEIR OCULV VCH ACULV ELTRD WEIRLN 4930.89 4931.03 .30 0. 284. 5.732 48.0 4933.00 0. 3495 OVERSANK AREA ASSUMED NON -EFFECTIVE, ELLEA= 4933.00 ELREA= 4933.00 'BEGINNING OF 16- X 3' BOX CULVERT 1762.000 3.10 4930.52 .00 .00 4931.03 .51 .30 .00 4932.50 284.0 .0 284.0 .0 .0 49.5 .0 4.4 1.7 4932.50 .16 .00 5.73 .00 .000 .045 .000 .000 4927.42 29.00 ' .010325 46. 46. 46. 3 0 0 .00 16.00 45.00 *SECNO 1805.000 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRAT10 = 2.56 1805.000 3.73 4931.33 .00 .00 4931.42 .09 .14 .25 4933.00 284.0 .0 284.0 .0 - .0 119.2 .0 4.4 1.8 4934.00 .00 2.38 .00 .000 .045 .000 .000 4927.60 7.72 '.16 .0015-80 43. 43. 43. 2 0 0 .00 47.86 55.58 '*SECNO 1877.000 ' 1877.000 3.46 4931.46 .00 .00 4931.56 .10 .13 .01 4933.00 284.0 .0 284.0 .0 .0 111.5 -0 4.6 1.8 4933.00 .17 .00 2.55 .00 .000 .045 .000 .000 4928.00 7.10 .002002 70- 72- 74. 3 0 0 .00 48.49 55.59 ' 1 . 03FEB94 14:41:41 -- PAGE 8 SECNO DEPTH CNSEL CRIWS WSELK EG HV HL 0LOSS L-BANK ELEV 0 OLOS OCH OROB ALOB - ACH AROB VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WIN ELMIN SSTA - SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *SECNO 2078.000 2078.000 2.96 4931.96 .00 .00 4932.10 .14 .51 .03 4933.00 ' 284.0 .0 284.0 .0 .0 95.5 .0 5.1 2.1 4933.00 .19 .00 2.97 .00 .000 .045 .000 .000 4929.00 5.72 .003336 201. 201. 201. 2 0 0 .00 48.55 54.28 ' *SECNO 2278.000 2278.000 2.77 4932.77 .00 .00 4932.98 .21 .83 .06 4934.00 284.0 .0 284.0 .0 .0 76.9 -0 5.5 2.3 4934.00 .00 3.69 .00 .000 .045 .000 .000 4930.00 5.23 '.20 .005261 200. 200. 200. 2 0 0 .00 39.54 44.77 *SECNO 2478.000 2478.000 2.81 4933.81 .00 .00 4934.03 .21 1.04 .00 4935.00 ' 284.0 .0 284.0 .0 .0 76.6 .0 5.9 2.4 4935.00 .22 .00 3.71 .00 .000 .045 .000 .000 4931.00 4.75 .005153 200. 200. 200. 2 0 0 .00 38.50 43.25 *SECNO 2594.000 - - 2594.000 2.81 4934.41 .00 .00 4934.62 .21 .59 .00 4935.60 284.0 .0 284.0 .0 .0 76.7 .0 6.1 2.5 4935.60 .00 3.70 .00 .000 .045 .000 .000 4931.60 4.74 '.23 .005132 120. 115. 112. 0 0 0 .00 38.52 43.26 ' *SECNO 2711,001 2712.000 2.85 4935.02 .00 .00 4935.19 .17 .55 .03 4936.20 284.0 .0 284.0 .0 .0 85.8 .0 6.3 2.7 4936.20 .24 .00 3.31 .00 .000 .045 .000 .000 4932.17 5.87 .004228 113. 118. 123. 1 0 0 .00 44.26 50.13 03FES94 14:41:41 PAGE 9 THIS RUN EXECUTED 03FEB94 14:41:42 #t#*****###ff###f#**tt**f#t*#******** HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991 'f#*4ttt4kf Off i#fff###ttt#tkk*f#i#i### NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST 'LLANDS BASIN DRAINAGE WA SUMMARY PRINTOUT TABLE 150 ' /07 SECNO XLCH ELTRD ELLC ELMIN 0 CWSEL CRIVS EG 10*KS VCH AREA .01K t.000 * .00 .00 .00 4917.00 388.00 388.00 4922.60 4922.72 .00 4922.71 4922.77 12.24 5.03 2.68 1.79 144.58 216.79 110.92 70.000 71.00 .00 .00 4917.00 .00 173.04 * 270.000 200.00 .00 .00 4918.00 388.00 4922.83 .00 4922.91 10.48 2.25 172.77 119.86 ' * . 572.000 302.00 .00 .00 4919.50 293.00 4923.20 .00 4923.30 18.38 2.57 113.90 68.35 • 869.000 298.00 .00 .00 4921.00 289.00 4923.92 .00 4924.12 45.78 3.57 80.98 42.71 ' 1070.000 201.00 .00 .00 4922.00 287.00 4924.86 .00 4925.07 49.02 3.65 78.61 40.99 ' 1078.000 8.00 .00 .00 4924.00 287.00 4925.83 4925.83 4926.53 272.11 6.73 42.66 17.40 * 1278.000 200.00 .00 .00 4925.00 287.00 4928.02 .00 4928.20 39.81 3.39 84.74 45.49 1398.000 122.00 .00 .00 4925.60 287.00 4928.52 .00 4928.72 45.35 3.55 80.84 42.62 1457.000 58.00 .00 .00 4925,90 287.00 4928.79 .00 4928.97 42.55 3.37 85. 06 44.00 ' 4926.20 287.00 4929.05 4929.21 41.29 3.25 88.20 44.66 1515.000 58.00 .00 .00 .00 1558.000 44.00 .00 .00 4926.40 287.00 4929.23 .00 4929.40 42.17 3.28 87.53 44.20 * 1716.000 157.00 .00 .00 4927.19 284.00 4930.18 .00 4930.73 114.82 5.94 47.80 26.50 1762.000 46.00 4933.00 .00 4927.42 284.00 4930.52 .00 4931.03 103.25 5.73 49.55 27.95 t* 1805.000 43.00 .00 .00 4927.60 284.00 4931.33 .00 4931.42 15.80 2.38 119.18 71.44 1877.000 72.00 .00 .00 4928.00 284.00 4931.46 .00 4931.56 20.02 2.55 111.46 63.47 I.00 2078.000 201.00 .00 4929.00 284.00 4931.96 .00 4932.10 33.36 2.97 95.52 49.17 03FE894 14:41:41 - PAGE 10 ' SECNO XLCH ELTRD ELLC ELMIN 0 CWSEL CRIVS EG 10*KS VCH AREA .OIK 2278.000 200.00 .00 .00 4930.00 284.00 4932.77 .00 4932.98 52.61 3.69 76.91 39.15 t2478.000 200.00 .00 .00 4931.00 284.00 4933.81 .00 4934.03. 51.53 3.71 76.62 39.56 2594.000 115.00 .00 .00 4931.60 284.00 4934.41 .00 4934.62 51.32 3.70 76.73 39.64 2712.000 118.00 .00 .00 4932.17 284.00 4935.02 .00 4935.19 42.28 3.31 85.80 43.68 03FEB94 14:41:41 PAGE 11 LLANDS BASIN DRAINAGE WA PRINTOUT TABLE 150 tSUMMARY SECNO 0 CWSEL DIFWSP DIFWSX DIFKWS TOPWID XLCH 388.00 4922.60 .00 .00 .00 38.13 .00 '.000 ' 70.000 388.00 4922.72 .00 .12 .00 55.00 71.00 • 270.000 388.00 4922.83 .00 .11 .00 55.58 200.00 '* 572.000 293.00 4923.20 .00 .37 .00 45.59 302.00 * 869.000 289.00 4923.92 .00 .72 .00 39.39 298.00 ' 1070.000 287.00 4924.86 .00 .94 .00 38.91 201.00 1 * 1078.000 1 * 1278.000 1398.000 ' 1457.000 1515.000 '1558.001 * 1716.000 1762.000 ' + 1805.000 1877.000 2078.000 2278.000 ' 2478.000 2594.000 2712.000 11 287.00 4925.83 .OD .97 .00 30.64 8.00 287.00 4928.02 .00 2.19 .00 40.15 200.00 287.00 4928.52 .00 .50 .00 39.36 122.00 287.00 4928.79 .00 .27 .OD 42.77 58.00 287.00 4929.05 .00 .26 .00 45.92 58.00 287.00 4929.23 .00 .18 .00 45.76 44.00 284.00 4930.18 .00 .95 .00• 16.00 157.00 284.00 4930.52 .00 .34 .00 16.00 46.00 284.00 4931.33 .00 .82 .00 47.86 43.00 284.00 4931.46 .00 .13 .00 48.49 72.00 284.00 4931.96 .00 .50 .00 48.55 201.00 284.00 4932.77 .00 .81 .00 39.54 200.00, 284.00 4933.81 .00 1.04 .00 38.50 200.00 284.00 4934.41 .00 .59 .00 38.52 115.00 284.00 4935.02 .00 .62 .00 44.26 118.00 03FEB94 14:41:41 1 SUMMARY OF ERRORS AND SPECIAL NOTES ' WARNING SECNO= 70.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 270.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE ' WARNING SECNO= 572.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLERANGE WARNING SECNO= 869.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE 'CAUTION SECNO= 1078.000 PROFILE= 1 CRITICAL DEPTH ASSUMED CAUTION SECNO= 1078.000 PROFILE= 1 PROBABLE MINIMUM SPECIFIC ENERGY CAUTION SECNO= 1078.000 PROFILE= 1 20 TRIALS ATTEMPTED TO BALANCE WSEL WARNING SECNO= 1278.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 1716.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 1805.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE 1 1 ►m PAGE 12 10819 '1##iYYYYrt##+*+w#rt#a#wfYrtrtfwffRRRRwwR+RRRRRR1k • HEC-2 WATER SURFACE PROFILES f ! * Version 4.6.2; May 1991 t # * RUN DATE 04FEB94 TIME 09:54:49 +afffRf+l+##lf111ffi1f#ttaairtt#rtrttwYwiatat» 1 X X XXXXXXX XXXXX ' x X X x X x x x x XXXXXXX XXXX x x X X x X X X X X X x XXXXXXX XXXXX 04FEB94 09:54:49 ifllfiiY+YYa++Y*rtww+#w**R+R+fefR+»fe HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991 krt#wartkkrtwif**!!f f 1f111f1ffllff f1111f Tl GENEVA HOMES, RBD JOB NO. 395-003, FEBRUARY 1994 T2 ANALYSIS FOR 10 YR. FLOODPLAIN T3 MCCLELLANDS BASIN DRAINAGE WAY, HEC-2 DATA FILE NO. 39500302.DAT J1 ICHECK INO NINV IDIR STRT METRIC HVINS 0 2 0 0 0 0 0 J2 NPROF IPLOT PRFVS XSECV XSECH FN ALLDC .1 0 .1 0 0 0 0 ,NC 0.045 0.045 0.045 0 0 OT 1 124 DOWNSTREAM STARTING WATER SURFACE ELEVATION IS 4921.64 START WSEL ASSUMES 105 CFS IN 48" RCP 8 19 CFS OVER BRIDGE X1 0 4 0 39 GR 4923 0 4917 13 4917 25 BEGIN 16' WIDE MAIN CHANNEL BOTTOM WIDTH X1 70 4 0 55 68 76 ' GR 4922 0 4917 20 4917 36 X1 270 4 0 57 195 205 GR 4923 0 4918 20 4918 36 'OT 1 100 X1 572 4 0 52 301 303 GR 4924 0 4919.5 18 4919.5 34 OT 1 99 X1 869 4 0 48 301 296 GR 4925 0 4921 16 4921 _ 32 'OT 1 99 BEGINNING OF 2' DROP SECTION ' R#kk####t#YtttttttYttttttttttttt#tttlt# • U.S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER • 609 SECOND STREET, SUITE D * DAVIS, CALIFORNIA 95616-4687 • (916) 756-1104 XXXXX x X x XXXXX XXXXX X X XXXXXXX PAGE 1 THIS RUN EXECUTED 04FEB94 09:54:49 O WSEL FO 0 4921.64 0 IBW CHNIM ITRACE 0 0 0 4922 39 71 0 0 0 4922 55 200 0 0 0 4923 57 302 0 0 0 4924 52 298 4925 48 ' X7 1070 4 0 48 199 GR 4926 0 4922 16 4922 END OF 2- DROP SECTION X1 1078 4 0 48 8 GR 4928 ,0 4924 16 4924 1 ' 04FES94 09:54:49 X1 ' GR 1278 4929 4 0 0 4925 48 16 201 4925 START OF 22 DEGREE BEND X1 1398 4 0 48 122 'GR_ 4929.6 0 4925.6 16 4925.6 X1 1457 4 0 53 65 GR 4929.9 0 4925.9 18 4925.9 •,X1 1515 4 0 58 62 GR 4930.2 0 4926.2 20 4926.2 END OF 22 DEGREE BEND X1 1558 4 0 58 45 GR 4930.4 0 4926.4 20 4926.4 NC 0.6 0.8 OT 1 99 END OF 169 X 3' BOX CULVERT X1 1716 6 29 45 157 X3 10 _ ' GR 4932.5 0 4932.5 29 4927.19 GR 4932.5 75 SC 1.013 0.4 3 0 3 BEGINNING OF 161 X 31 BOX CULVERT ' X1 1762 6 29 45 46 X2 0 0 2 4933 X3 10 L BT -3 0 4933 40 -� GR 4932.5 0 4932.5 29 4927.42 GR 4932.5 75 X1 1805 4 0 66 43 GR 4933 0 4927.6 25 4927.6 0.045 0.045 0.045 0 0 'NC x1 1877 4 0 63 70 GR 4933 0 4928 23 4928 2078 4 0 60 201 'X1 GR 4933 0 4929 22 4929 X1 2278 4 0 50 200 GR 4934 0 4930 17 4930 ' X1 2478 4 0 48 200 GR 4935 0 4931 16 4931 1 ' 04FEB94 09:54:49 X1 2594 4 0 48 120 jGR 4935.6 0 4931.6 16. 4931.6 X1 2712 4 0 56 113 GR 4936.2 0 4932.17 20 4932.17 201 201 32 4926 8 8 32 4928 199 200 32 4929 122 122 32 4929.6 51 58 34 4929.9 54 58 36 4930.2 43 44 36 4930.4 157 157 29 4927.19 16 46 46 46 4933 29 4927.42 43 43 41 4934 74 72 39 4933 201 201 38 4933 200 200 33 4934 200 200 32 4935 112 115 32 4935.6 123 118 36 4936.2 48 48 PAGE 2 48 48 53 58 58 0 0 0 4933 4933 45 4932.5 45 8.1 4927.42 4927.19 4933 4933 80 4933 45 4932.5 45 66 63 60 50 48 48 56 PAGE 3 m ' 04FEB94 09:54:49 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL GLOSS L-BANK ELEV O OLOB OCH OROS ALOB ACH ARDS VOL TWA R-BANK ELEV TIME VLOS VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOSL XLCH XLOBR .ITRIAL IDC ICONT CORAR TOPWID ENDST j*PROF 1 *SECNO .000 DOWNSTREAM STARTING WATER SURFACE ELEVATION IS 4921.64 ' START WSEL ASSUMES 105 CFS IN 48" RCP 8 19 CFS OVER BRIDGE .000 4.64 4921.64 .00 4921.64 4921.66 .02 .00 .00 4923.00 124.0 .0 124.0 .0 .0 109.1 .0 .0 .0 4922.00 .00 .00 1.14 .00 .000 .045 .000 .000 4917.00 2.95 . 000278 0, 0, 0. 0 0 0 .00 35.05 37.99 ' *SECNO 70.000 ' 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.46 BEGIN 161 WIDE MAIN CHANNEL BOTTOM WIDTH 70.000 4.66 4921.66 .00 .00 4921.67 .01 .01 .00 4922.00 124.0 .0 124.0 .0 .0 159.3 .0 .2 .1 4922,00 .03 .00 .78 .00 .000 .045 .000 .000 4917.00 1.36 .000130 68. 71. 76. 0 0 0 .00 52.35 53.71 c' *SECNO 270.000 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .63 270.000 3.69 4921.69 .00 .00 4921.71 .02 .04 .00 4923.00 124.0 .0 124.0 .0 .0 115.3 .0 .8 .3 4923.00 ' .08 .00 1.08 .00 .000 .045 .000 .000 4918.00 5.20 .000323 195. 200. 205. 1 0 0 .00 46.33 51.54 ' *SECNO 572.000 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .40 572.000 2.33 4921.83 .00 .00 4921.88 .04 .16 .00 4924.00 ' 100.0 .0 100.0 .0 .0 59.0 .0 1.5 .6 4924.00 .13 .00 1.69 .00 .000 .045 .000 .000 4919.50 8.68 .001324 301. 302. 303. 2 0 0 .00 34.64 43.32 04FES94 09:54:49 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV O GLOB OCH OROS ALOE ACH ARDS VOL TWA R-BANK ELEV TIME VLOS VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *SECNO 869.000 ,3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .43 869.000 1.49 4922.49 .00 .00 4922.63 .14 .76 .00 4925.00 99.0 .0 99.0 .0 .0 32.8 .0 1.8 .8 4925.00 .00 3.02 .00 .000 .045 .000 .000 4921.00 10.03 '.15 .006876 301. 298. 296. 3 0 0 .00 27.94 37.97 PAGE 4 PAGE 5 *SECNO 1070.000 " ' BEGINNING OF 2' DROP SECTION 1070.000 1.66 4923.66 .00 .00 4923.76 .11 1.13 .00 4926.00 99.0 .0 99.0 .0 .0 37.5 .0 1.9 .9 4926.00 .18 .00 2.64 .00 .000 .045 .000 .000 4922.00 9.38 -.004686 199. 201. 201. 3 0 0 .00 29.25 38.63 ' *SECNO 1078.000 3685 20 TRIALS ATTEMPTED WSEL,CWSEL " 3693 PROBABLE MINIMUM SPECIFIC 3720 CRITICAL DEPTH ASSUMED ENERGY END OF 2' DROP SECTION 1078.000 .97 4924.97 4924.97 .00 4925.38 .41 .08 .00 4928.00 99.0 .0 99.0 .0 .0 19.3 .0 1.9 .9 4928.00 .00 5.13 .00 .000 .045 .000 .000 4924.00 12.12 '.18 .032215 8. 8. 8. 20 11 0 .00 23.77 35.88 *SECNO 1271.000 ' 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 3.11 1278.000 1.82 4926.82 .00 .00 4926.90 .09 1.52 .00 4929.00 ' 99.0 .0 99.0 .0 .0 42.3 .0 2.1 1.1 4929.00 .20 .00 2.34 .00 .000 .045 .000 .000 4925.00 8.73 .003326 201. 200. 199. 5 0 0 .00 30.53 39.27 ' *SECNO 1398.000 START OF 22 DEGREE BEND 1398.000 1.67 4927.27 .00 .00 4927.37 .11 .47 .00 4929.60 99.0 .0 99.0 .0 .0 38.0 .0 2.2 1.1 4929.60 .21 .00 2.61 .00 .000 .045 .000 .000 4925.60 9.31 j .004511 122. 122. 122. 3 0 0 .00 29.39 38.69 e: 1 ' 04FES94 09:54:49 SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 GLOB OCH OROB ALOB ACH ARDS VOL TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA SLOPE XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST *SECNO 1457.000 1457.000 1.64 4927.54 .00 .00 4927.64 .10 .26 .00 4929.90 99.0 .0 99.0 .0 .0 38.5 .0 2.2 1.2 4929.90 .22 .00 2.57 .00 .000 .045 .ODD .000 4925.90 10.64 .004623 65. 58. 51. 2 0 0 .00 31.13 41.77 *SECNO 1515.000 ' 1515.000 1.61 4927.81 .00 .00 4927.91 .10 .27 .00 4930.20 99.0 .0 99.0 .0 .0 39.0 .0 2.3 1.2 4930.20 .22 .00 2.54 .00 .000 .045 .000 .000 4926.20 12.00 .004737 62. 58. 54. 0 0 - 0 .00 32.80 44.80 '*SECNO 1558.000 END OF 22 DEGREE BEND 1558.000 1.62 4928.02 .00 .00 4928.11 .10 .20 .00 4930.40 99.0 .0 99.0 .0 .0 39.5 .0 2.3 1.3 4930.40 '.23 .00 2.50 .00 .000 .045 .000 .000 4926.40 11.92 .004565 45. 44. 43. 0 0 0 .00 32.96 44.88 'CCHV= .600 CEHV= .800 *SECNO 1716.000 PAGE 6 3495 OVERBANK AREA ASSUMED NONEFFECTIVE, ELLEA= END OF 16' X 3' BOX CULVERT 1716.000 1.71 4928.90 .00 .00 ' 99.0 .0 99.0 .0 .0 .24 .00 3.61 .00 .000 ..007569 157. 157. 157. 2 4933:00 ELREA= 4933.00 4929.11 .20 .91 .08 4932.50 27.4 .0 2.5 1.3 4932.50 .045 .000 .000 4927.19 29.00 0 0 .00 16.00 45.00 SPECIAL CULVERT SC CUNO CUNV ENTLC COFO RDLEN RISE SPAN ' 1 .013 .40 3.00 .00 3.00 16.00 CHART 8 -BOX CULVERT WITH FLARED WINGWALLS; NO INLET TOP EDGE BEVEL 1 - WINGWALLS FLARED 30 TO 75 DEGREES 'SCALE *SECNO 1762.000 1 04FEB94 09:54:49 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV 0 GLOB OCH GROB ALOB ACH ARDS TIME VLOB VCH VROB XNL XNCH XNR SLOPE XLOBL XLCH XLOBR (TRIAL IDC ICONT SPECIAL CULVERT OUTLET CONTROL EGIC = 4929.094 EGOC = 49 CULVLN CHRT SCL ELCHU. ELCHD 46.00 8 1 4927.42 . 4927.19 HL GLOSS L-BANK ELEV VOL TWA R-BANK ELEV WIN ELMIN SSTA CORAR TOPWID ENDST 29.239 PCWSE= 4928.904 ELTRD= 4933.000 " SPECIAL CULVERT 'EGIC EGOC H4 OWEIR GCULV VCH ACULV ELTRD WEIRLN 4929.09 4929.24 .13 0. 99. 3.888 48.0 4933.00 0. 3495 OVERSANK AREA ASSUMED NONEFFECTIVE, ELLEA= 4933.00 ELREA= 4933.00 BEGINNING OF 164 X 3' BOX CULVERT 1762.000 1.58 99.0 .0 4929.00 99.0 .00 .0 .00 .0 4929.24 25.5 .23 .0 .13 2.5 .00 1.4 4932.50 4932.50 .25 .00 3.89 .00 .000 .045 .000 .000 4927.42 29.00 .009505 46. 46. 46. 2 0 0 .00 16.00 45.00 ' *SECNO 1805.000 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.80 ' 1805.000 1.87 4929.47 .00 .00 4929.54 .08 .21 .10 4933.00 99.0 .0 99.0 .0 .0 44.7 .0 2.5 1.4 4934.00 .25 .00 2.21 .00 .000 .045 .000 .000 4927.60 16.36 .002922 43. 43. 43. 2 0 0 .00 31.93 48.29 ' *SECNO 1877.000 1877.000 1.71 4929.71 .00 .00 4929.80 .09 .24 .01 4933.00 ' 99.0 .26 .0 .00 99.0 2.42 .0 .00 .0 .000 41.0 .045 .0 .000 2.6 .000 1.4 4928.00 4933,00 15.15 .003917 70. 72. 74. 3 0 0 .00 32.03 47.19 2078.000 '*SECNO 2078.000 1.57 4930.57 .00 .00 4930.67 .10 .87 .01 4933.00 99.0 .0 99.0 .0 .0 39.1 .0 2.8 1.6 4933.00 .28 .00 2.53 .00 .000 .045 .000 .000 4929.00 13.29 .00480E 201. 201, 201. 1 0 0 .00 33.42 46.71 ' PAGE 7 108E 101" 04FES94 09:54:49 PAGE 8 ' SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV 0 GLOB 0CH GROB ALOB ACH AROB VOL TWA R-BANK ELEV . TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA .' SLOPE XLOBL XLCH XLOBR (TRIAL IDC ICONT CORAR TOPWID ENDST *SECNO 2278.000 2278.00D 1.59 4931.59 .00 .00 4931.70 .12 1.01 .01 4934.00 99.0 .0 99.0 .0 .0 36.1 .0 2.9 1.7 4934.00 ' .30 .00 2.74 .00 .000 .045 .000 .000 4930.00 10.26 .005363 200. 200. 200. 2 0 0 .00 29.48 39.74 *SECNO 2478.000 2478.000 1.63 4932.63 .00 .00 4932.74 .11 1.04 .00 4935.00 99.0 .0 99.0 .0 .0 36.6 .0 3.1 1.9 4935.00 .32 .00 2.70 .00 .000 .045 .000 .000 4931.00 9.49 t.005010 200. 200. 200. 1 0 0 .00 29.01 38.51 *SECNO 2594.000 ' 2594.0111 1.61 99.0 .0 4933.21 99.0 .00 .0 .00 .0 1933.33 36.3 .12 .0 .58 3.2 .00 1.9 4935.60 4935.60 .33 .00 2.73 .00 .000 .045 .000 .000 4931.60 9.54 .005140 120. 115. 112. 1 0 0 .00 28.92 38.46 '*SECNO 2712.000 2712.000 1.63 4933.80 .00 .00 4933.90 .10 .56 .01 4936.20 99.0 .0 99.0 .0 .0 39.6 .0 3.3 2.0 4936.20 '.35 .00 .004436 113. 2.50 118. .00 123: .000 0 .045 0 .000 0 .000 .00 4932.17 32.27 11.87 44.13 r 1 04FES94 09:54:49 PAGE 9 THIS RUN EXECUTED 04FEB94 09:54:50 trt+++xx++xxxx+xxxxxrrxxrrxrrrrrrrrxr HEC-2 WATER SURFACE PROFILES Version 4.6.2; May 1991 ASTERISK 1*1 AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST 'NOTE- LLANDS BASIN DRAINAGE WA ,SUMMARY PRINTOUT TABLE 150 SECNO XLCH ELTRD ELLC ELMIN 0 CWSEL CRIWS EG 10*KS VCH AREA .01K ' .000 .00 .00 .00 4917.00 124.00 4921.64 .00 4921.66 2.78 1.14 109.15 74.32 * 70.000 71.00 .00 .00 4917.00 124.00 4921.66 .00 4921.67 1.30 .78 159.26 108.80 '* 270.000 200.00 .00 .00 4918.00 124.00 4921.69 .00 4921.71 3.23 1.08 115.29 69.03 * 572.000 302.00 .00 .06 4919.50 100.00 4921.83 .00 4921.88 13.24 1.69 59.00 27.48 869,000 298.00 .00 .00 1921.00 99.00 4922,411 .00 4922,63 68.76 3.02 32.78 11.94 ,* ' 1070.000 201.00 .00 .00 4922.00 99.00 4923.66 .00 4923.76 46.86 2.64 37.47 14.46 1178.000 8.00 .00 .00 4924,011 99.00 1914,97 4924,97 4925.38 322, 15 5.13 19.31, 5.52 '* * 1278. ODD 200.00 .00 .00 4925.00 99.00 4926.82 .00 4926.90 33.26 2.34 42.26 17.17 _ 1398.000 122.00 .00 .00 4925.60 99.00 4927.27 .00 4927.37 45.11 2.61 37.97 14.74 ' 1457.000 58.00 .00 .00 4925.90 99.00 4927.54 .00 4927.64 46.23 2.57 38.53 14.56 1515.000 58.00 .00 .00 4926.20 99.00 4927.81 .00 4927.91 47.37 2.54 39.03 14.38 1558.000 44.00 .00 .00 4926.40 99.00 4928.02 .00 4928.11 45.65 2.50 39.54 14.65 1716.000 157.00 .00 .00 4927.19. 99.00 4928.90 .00 4929.11 75.69 3.61 27.40 11.38 46.00 4933.00 .00 4927.42 99.00 4929.00 .00 4929.24 95.05 3.89 25.46 10.15 '1762.000 * 1805.000 43.00 .00 .00 4927.60 99.00 4929.47 .00 4929.54 29.22 2.21 44.71 18.31 1877.000 72.00 .00 .00 4928.00 99.00 4929,71 .00 4929,80 39.17 2.42 40.96 15.B2 ' 2078.000 201.00 .00 .00 4929.00 99.00 4930.57 .00 4930.67 48.06 2.53 39.14 14.28 1 ' 04FEB94 09:54:49 PAGE 10 SECNO XLCH ELTRD ELLC ELMIN 0 CVSEL CRIVS EG 10*KS VCH AREA .01K ' 2278.000 200.00 .00 .00 4930.00 99.00 4931.59 .00 4931.70 53.63 2.74 36.08 13.52 2478.000 200.00 .00 .00 4931.00 99.00 4932.63 .00 4932.74 50.10 2.70 36.60 13.99 2594.000 115.00 .00 .00 4931.60 99.00 4933.21 .00 4933.33 51.40 2.73 36.28 13.81 ' 2712.000 118.00 .00 .00 4932.17 99.00 4933.80 .00 4933.90 44.36 2.50 39.56 14.86 t ' 04FEB94 09:54:49 PAGE 11 LLANDS BASIN DRAINAGE WA ' SUMMARY PRINTOUT TABLE 150 SECNO 0 CWSEL DIFWSP DIFWSX DIFKWS TOPWID XLCH ' .000 124.00 4921.64 .00 .00 .00 35.05 .00 * 70.000 124.00 4921.66 .00 .02 .00 52.35 71.00 ' * 270.000 124.00 4921.69 .00 .03 .00 46.33 200.00 * 572.000 100.00 4921.83 .00 .14 .00 34.64 302.00 ' * 869.000 99.00 4922.49 .00 .66 .00 27.94 298.00 1070.000 99.00 4923.66 .00 1.16 .00 29.25 201.00 1178,000 99.00 4924,97 .00 1.31 .00 23.77 8.00 '* * 1278.000 99.00 4926.82 .00 1.85 .00 30.53 200.00 1398.000 99.00 4927.27 .00 .45 .00 29.39 122.00 ' 1457.000 99.00 4927.54 .00 .27 .00 31.13 58.00 1515.000 99.00 4927.81 .00 .27 .00 32.80 58.00 ' 1558.000 99.00 4928.02 .00 .21 .00 32.96 44.00 ' nip 1716.000 99.00 4928.90 .00 .89 .00 16.00 157.00 1762.000 99.00 4929.00 .00 .10 .00 16.00 46.00 * 1805.000 99.00 4929.47 .00 .46 .00 31.93 43.00 ' 1877.000 99.00 4929.71 .00 .24 .00 32.03 72.00 2078.000 99.00 4930.57 .00 .87 .00 33.42 201.00 2278.000 99.00 4931.59 .00 1.01 .00 29.48 200.00 2478.000 99.00 4932.63 .00 1.04 .00 29.01 200.00 ' 2594.000 99.00 4933.21 .00 .58 .00 28.92 115.00 2712.000 99.00 4933.80 .00 .59 .00 32.27 118.00 t ' 04FEB94 09:54:49 PAGE 12 ' SUMMARY OF ERRORS AND SPECIAL NOTES WARNING SECNO= 70.000 PROFILE= t CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE _ ' WARNING SECNO= 270.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 572.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE ' WARNING SECNO= 869.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE 1_ CAUTION SECNO= 1078.000 PROFILE= t CRITICAL DEPTH ASSUMED CAUTION SECNO= 1078.000 PROFILE= 1 PROBABLE MINIMUM SPECIFIC ENERGY CAUTION SECNO= 1078.000 PROFILE= 1 20 TRIALS ATTEMPTED TO BALANCE WSEL WARNING SECNO= 1278.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE WARNING SECNO= 1805.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE 1 1 ' 1 1 1 SWMM MODEL ANALYSIS W, SUPPORT DOCUMENTATION 0 uN a - LL O M11 ` K s N.., p _ 1: Q� eiS iiiii'i's Z Q . S • t w I U 22t Ae. -. .. N d .x ti :R / - — %` E 8 88SR8'_' t ■t(Rt t:t':' 6' I.IJ I..+ c.................................. Q _ b. ., � C 5_ s.adYA%ei�s�exi AF"?z?i§�5jj$'z5x9 I ' � � /v'�• A � a• l x e i. �.� E25aEEE'EE6 .. G..EC •• ••_�• j f 'wrn it • ;E 53 3 . _ai:a:exx:r 3?e:; �:•;a J3 JJ J7 � e= = 111 y P r Q :i"a,aae S... .....s..s.s.siiis;:SE.Ei:l;,aa,,,;:: � ....e..............^........................ rt-'l2td= xr iicd=o d=i::=3 � - •� `�, i •••. W �•t !9q$i.ianZiq..... l° il4Aaosi 3'f3a�Ii€Ssee !• �% , iE teag-xa Egx x_2PAer'IaAeAIYAt A AESl=SCj EAad 01 I e;za:::cY - rsazaaaiur: aiaaateta-•:as W i' zat o _ __zauzzc[z-a:::acs:::aai::ei_ u 9 OARRIDGE BUSINESS PARR DRAINAGE MASTER PLAN ' INFORMATION 1 1 1 _ - ' I' INTRODUCTION The results of a Master Drainage%Plan for the Oakridge Business ' Park are presented in this report. A comprehensive plan for the control of storm water.is proposed for the use in planning future.. development. This type of management approach is outlined by the ' City of Fort Collins r ' The Oakridge Business Park and Oakridge villages are located in ' South Fort Collins, Colorado. The site is bounded on the north by Harmony Road, the west by Lemay Avenue, the east by Union Pacific Rail Road and the south by Southridge Greens. The Business Park portion occupies approximately half of the total 263 acre site. 1.1 Purpose ' This Master Plan has been developed for the.following.reasons: 1. Suggest.specific detention.release rates for individual ' sites during the modeled 10 and 100 year storm events in conformance with the intent.of previous studies, the City of Fort Collins criteria, and, generally, for the mitigation of ' downstream impacts, 2. Provide documentation for the enforcement of a mutually agreed upon approach to the control of storm water, 3. Act as a tool for possible minor revisions of subsequent development, 4. Analyze the effects of upstream flows as they enter the property and flow to the Pond 1, Search and Replace: Search ' for "POND 111; replace with "Oakridge Development Pond", 5. Evaluate the impact of the discharge from the Pond 1 to the downstream portion of McLellands Basin, ' 6. Evaluate individual design points within the subdivision for their individual hydraulic performance. ' Figures in this report are found at the end of the Appendices at the back of the report. Further, and to avoid confusion, the reader should be aware that the 100 yenumbering scheme in the ' Flow Diagram (Figure 9) is ot exactlyar a same nasthe 10 year Diagram (Figure 10). W en reviewing the SWMM ou pu , p ease re er to the associated Flow Diagram. Also, all references to "Pond 1" ' are associated with the large detention facility located at the south east corner of the property. Pond l is the combined Elements 1 and 2-in the SWMM Model City of Fort Collins, Storm Drainage Design Criteria and Construction Standards, May, 1984, Section 1.2.2 1 - I .0 1 1 1 At the time of this report the Oakridge Business Park consists of office buildings separated by areas of undeveloped land. The existing development of the site can be seen on the "Overall Master Drainage Plan" in the pocket of this report. An offsite drainage way enters the site at the north west corner. The runoff originates from land north of Harmony Road and west of Lemay Avenue, and from a portion of Harmony Road itself. The second offsite drainagewav enters the site through three 36" RCP's under Lemay Avenue on the west side of the nronerty. Currently about half of the Oakridge site is slated for commercial development. The residential portion is almost completely built, while about 50% of the business area remains to be developed. The undeveloped areas are covered with natural grasses and slope to the southeast at about one percent. 1.2.2 Proposed Development As mentioned above, the commercial area remains to be built out. The development of the SwMM model for this portion of the site is timely because this area will be relatively impervious and will account for a significant portion of the site generated runoff volumes. 1.3 Previous Reports and Criteria for a a was area lellands uuwu5�ream Lo rimDeriine xoaa. Figure 1 (see Figure packet at end of this report) shows the extent of McClellands Basin as well as the location of the Oakridge.Business Park within the basin. The construction of the street infrastructure and the Comlinear development was completed prior. to 1986. The southerly, or Oakridge Village, portion of the development began construction in 1986 and is near full build out at the time of this report. There were several drainage reports filed with the City of Fort Collins during the course of.development and are listed below in the "Reference" section. 2 Greenhorn and O'Mara, Inc, McClellands Basin Master Drainage Plan, June 20, 1986, Fort Collins . I n0 _The above mentioned reports.discuss criteria specific to the Oakridge project, as does the Greenhorns report. Release rate criteria is specified3`'and is based on generalized parameters relating to allowable discharge_in units of cfs per acre. This ' approach is discussed in section 2.2.1;-below. Generally, however, the recommendations were to control the 10 ' and 100 year events by restricting outflow rates to 0.2 and 0.5 cfs per acre, respectively. The developer chose to install a large capacity detention pond (Pond 1) near the south east corner of the site suplementing several upstream site specific detention ponds. ' II HYDRAULIC AND HYDROLOGIC SUMMARY 2.1 Event Simulation Computer Models ' The model chosen for this report is the UDSWM2-PC as revised by several entities. This computer program is described in more detail, below, but is classified as an event simulation model. It ' is important to use this type of model, instead of one that evaluates many different storms,because two very specific types of storms are being evaluated in conformance with the City of Fort Collins regulations. These storms have a 10% and 1% chance ' of occurring in any year and arecalled the 10 and 100 year events. ' 2.1.1 S.WMM Model -Description This computer model had its origins with the U.S. Environmental Protection Agency (EPA) and originally contained both runoff and water quality blocks. The model has undergone several modifications, including deletion of the water quality block,. with the latest revision performed by Boyle Engineering for the ' Urban Drainage and Flood Control District, Denver, Colorado. The SWMM model (= UDSWM2PC) is a physically based single event ' simulation digital computer model. It mathematically evaluates various physical phenomenon involved in the hydrologic process and generates hydrographs of excess, or surface, storm water flow. 3 Greenhorne. ., Ibid., page 3 ' 4 Urban Drainage and Flood Control District, Users Manual, Urban Drainage Storm Water Management Model - PC Version WDSWM2 PC , March, 1985. Software Support by Boyle Engineering, Denver Colorado. Further details of operation and additional software ' support by Dr. James Guo, Univ..of Colo. @ Denver, Short Course on Colorado Urban Hydrograph Procedures, January 8-10, 1986, Section entitled "Introduction to Modified SWMM". ' There is one characteristic of the model that differs slightly from other similar computer models and relates to, the establishment'of Mannings n values to channel and overland flows. In relation to channels n = 0.393(S)0.38(R)•0.16. This ,.. .' requires an iterative process for proper determination. ' For the Oakridge model; however; a generalized value of 0.035 was used. This judgement is made in light of the fact that most of the routing control in the channels is determined by the backwater effects and structure caused attenuation in the 100 ' year event, not the channel friction. The value of 0.035 is slightly conservative considering that the channels will be maintained quite well and the actual values should be closer to 0.0306. ' The overland flow n value used is 0.25 and is recommended by the sources cited in note 5 and 6, below. in fact, this is the ' default value built into the model by its authors. The asphalt or concrete surfaces should be about 25% greater than normal values, or 0.016 for average conditions. ' 2.1.2 Hydrology ' For the basins that have free undetained release to the conveyance systems, the SWMM model makes a step by step accounting of the development ofthe designated storm for the construction of hydrographs.7 ' The infiltration parameters, or absorbtion rate of the soil are _abstracted through the use of the Phi Index Method as recommended ' by the Greenhorne study- This me od assumes a constant infiltration rate of 0.5" er hour and further assumes a relatively saturated antecPd'.t ' The individual hydrographs are lagged and summed and appear in a matrix in the SWMM output. Summary output appears on pages 1 and 2 of Appendix A. The basins that include detention ponds have ' been routed through the use of a,modified FAA Mass Balance Method as described in Section 2.1.3, below. The rainfall hyetographs for the 100 and 10 year events were ' taken from the Greenhorne study and provided by the City of Fort Collins, respectively. ' s Op. Cit., UDFCD, page 16; and also Op. Cit., Gyo, page 12 ' 2.1 3,,Routing Techniques ..: The'SWMM Model allows two types of routing8. The first is for ' subcatchments (overland) and the second.is for conveyance routing (pipes, channels, etc.)..Both are calculated using Kinematic Wave: theory. ' For the basins that contain detention facilities a modified version of the FAA Mass Balance method is used9. The modification to the Mass Balance method was simply to have the ' outflow from the pond begin at the time of concentration. This aproach was deemed acceptable by.City Staff. Figure 2 graphically depicts 1) the developed triangular hydrograph construction from ' information provided on 2) the mass diagram. The development of the.outf low hydrograph is described as follows; 1. Gather pertinent data about the basin including ' ■ Runoff coeff. 'C' (C) ■ Area (acres) (A) ■ Longest travel distance (L) ' ■ Outflow peak discharge = Qout peak = 0.5*Acres (max 0.5 cfs per acre) 2. Apply the 100 and 10 year storm Intensity -Duration ' Frequency data to a least squares regression and derive the best fit formula. See Figure 3 for the results. ' 3. Calculate the Time of concentration, Tc, by the formula Tc = (L/180)+10 (1) ' This formula assumes that a flow velocity of 3 feet per second exists for overland and conveyance flow. It is somewhat conservative and will reveal slightly higher rainfall intensities. 4. tag the beginning of the outflow by the Tc (see Figure 2). 5. Calculate storage volumes for five minute increments (see Appendix A, pages 3 through 7 for detailed ' output). This is accomplished by subtracting the outflow volume from the inflow volume. Observe the time at which the peak outflow occurs. This is the Time to ' Peak (T1, Fig. 2) of the outflow hydrograph. ' 6.Chow,. Ven T., Open Channel Hydraulics, McGraw Hill, 1959, page 112, C.b.2, page 120 (13). ' 7 Op. Cit., UDFCD, page 3 8 UDFCD; op. cit., page 4 ' 6... The ascending limb of the inflow hydrograph (triangular assumption) begins at time 0 and end§:at the:.. coordinates for the Qpeak (inflow)`:at`its Time of Concentration (Tc, and.is T1/2 ±, Fig. 2). The recession limb descends from that point to intersect with Qpeak (outflow) and Ti. The integrated area within. ' the described 5 points.(0;0; Qin,Tc; Qout,Tl; 0,Tc; 0,0) is equal to the outflow volume under the recession limb (Vs) of the outflow hydrograph. The time for the outflow hydrograph, from beginning to end, may now be ' calculated as T2 = Vs/((Qpeak outflow)/30). 7. Introduce.the coordinates for beginning, peak and end ' of the outflow hydrograph to the SWMM model. The SWMM model lags and sums all upstream hydrographs at Pond 1 (Element 17, see Figure 9 for 100 year diagram). This is known as ' a "dummy" conveyance element and is used simply to combine the upstream hydrographs for routing at Pond 1. Similar in nature to Element 17 is Element 3 which is the calculated resultant outflow ' hydrograph at a point immediately to the east of the rail road tracks. Element 17 is not input as a channel leading through the Pond.l ' pond simply because it will not act as a channel experiencing steady uniform flow. The bottom of the pond will be covered with water about 40 minutes after the storm.begins. This determination .� is made by observing that; 1. Most of The surface area of the pond is covered with storm water at elevation 4950t 2. This elevation corresponds to 45 cfs, approximately, on Figure 4. The outflow hydrograph from the SWMM output ' indicates that 45 cfs occurs about 40 minutes after the storm begins. ' At that early point in the storm.event the channel area will be inundated. This is a conservative approach because no lag is .calculated to the outlet works. ' 2.2 Hydraulic Output summary 2.2.1 Allowable Discharge Criteria ' The Greenhorne study recommends that no more than 0.5 cfs per, cis/acre ror the 10 year ' resulting detained flow approximately event. The rationale used was that the egua s the 100 year historic flow rate. This, obviously, is arrived at by dividing the historic flow rate into the total acreage for the basin. ' �� Greenhorns..., Op. Cit., pages 3 and 5 ' The output from the current Oakridge SWMM model suggests that an alteration of the previously mentioned release rates is appropriate. The' overall scheme for future planning in the ' neighborhood must naturally' evolve from the specific detail of offsite, onsite and downstream conditions. The offsite flows accepted by Oakridge Subdivision enter the property at two locations. The first is located at the triple 36" culverts passing under Lamay Avenue approximately 3000 feet south of Fiermeny Rea _ Thp ' contributory area is 238 acres with a planned 100 year developed release rate of 0.5 cfs/acre or 119 cfs. ' The second is located at the north west corner of the subject property and is designated as Design Point 86 in the Greenhorne study. The peak flow is specified as 59 cfs17. The area contains 118 acres ± of mixed use land. The total offsite area is, therefore, 238 + 118 or 356.acres. Total future fully developed 100.year .offsite contribution is.178 cfs. The watershed area for all of Oakridge Subdivision is about 263 ' acres. The total upstream area contributing to Element 17, therefore, is 619.acres. Conforming to the Greenhorne study release criteria and comparing to the Oakridge SWMM results we find the following results at Pond 1; Allowable Actual SWMM Amt. < ' 10 Year Storm12 123.8 cfs 83 cfs -40.8 (33%) 100 Year Storm 309.5 cfs 203 cfs -106.5 (34%) ' These results were obtained by albd lowing free undetained release from several basins in the Oakrid a Suivision for the 100 ear ' storm and did not include any site specific detent on for the 10 ear storm. Followin is a list of the basins in the northern portion of the onsite area (except offs to basin 300) and include all of Oakridge Business park. Those that will require detention ' of the 100 year storm .will have a maximum disc arge rate of 0.5 cfs/acre. See the enclosed Drainage Plan for locations of the it Greenhorne, Op. Cit., Table 4 lists SWMM point 86, future ' conditions as 65 cfs (100 year). The author understands, however, that the outflow hydrograph was provided by Greenhorn... and indeed indicates a Q100 peak of 59 cfs. 12 By accident the offsite flows were left at 0.5 cfs per acre for the 10 year model. This will remain unchanged, however, to allow for a downstream factor of safety. t -. ' BASIN - 340 330 ' 320 1 1 100 YEAR 10 YEAR CONTROL CONTROL YESNONE NO NO YES 290 YES- " 280 NO if 270 YES it 260 YES if 250 YES 240 NO 230 YES 220 YES 210 NO 200 NO 160 NO 120 NO 110 NO The 10 year storm model REMARKS Possible, if onsite problems exist Cemetary Offsite from north of Harmonv Existi Street Existing Downstream street capacity is OK From sump in Innovation to channel Possible YES*; Direct to Pond Internal street system13 Possible YES*; Includes Comlinear Internal street system14 * There may be a need for local detention due to certain physical site constraints. As an example there may be flat topography that restricts longitudinal street grade. 2.2.2 Flow Characteristics STREET SYSTEM FLOW DEPTH Page 8 of Appendix A is a sorted.list of all the basins and conveyance elements with their respective flow depths. The internal street system was evaluated according to allowable flow depth. The City of Fort Collins criteria states that75 both local and collector streets may have an 1811 depth of runoff in the gutter for the major (100 year) storm event and arterial streets are only allowed a depth. of 0.5' above the crown. There are no arterial streets internal to the Oakridge site. For comparative purposes only, the above mentioned evaluation is based on the arterial standard. 13 . West half of Harmony,. -Wheaton and a small portion of Oak Ridge 14 East half of Harmony, Innovative, McMurry and about half of the easterly portion of Oak Ridge. 15 City of Fort Collins, Op. Cit., Table 4-4, page 4-6. 123_, ' There are only three streets that exceed 0.51in crown depth and are located at the downstream end of the basin (see enclosed - Drelinage.Plan). This exceedance'is only 0.04 feet in each case: ' They are Elements 21 (Innovation Drive), 12 (internal future street near Comlinear) and 7 (Wheaton Drive). Innovation Drive and Wheaton Drive have been built. All the internal streets have ' 100 year water surface levels below the allowed.18" standard and present no hinderance to the passage of emergency vehicles. Element 12 is associated with Basin,120 (Comlinear) and was ' evaluated at a minimum grade of 0.6% slope. Following is an evaluation of Elements 18 (McMurry Drive) and 11 ' (internal street system leading to, and including, Keenland Drive). These Elements are not combined in the model. Flow depth is calculated as follows; ' From the Ft. Collins criteria formula 4.2.2.2; Z = 50 Q = 14 + 9 (see SWMM output, last page) ' S = 0.006 ft/ft n = 0.016 Use Q/2 to evaluate 1/2 street depth; ' (Qn/(Z*0.56*S•s))o.3a = Y = 0.39' OK Also see Figure 7 The onsite street systems are adequate for the conveyance of the 100 year storm. ' CULVERTS AND CROSSINGS Elements 41, 42 and 43 exist within the "drainage channel" ' truncating the site from north-west to south-east. Each element contains culverts that flow beneath Oakridge, Wheaton and McMurry, respectively, under various hydraulic conditions during ' the 100 year event. Figure.5 refers to the hand calculation of Element #43 (McMurry at Pond 1) for both tailwater rating curve and culvert hydraulics. The maximum flow rate is 232 cfs and the ' culvert operates under Inlet control flowing at about 87% full. These two 42" culverts are not pressurized. Element 42 also contains two 42" RCP culverts and, except for the ' flow rate, operate under the same conditions as Element 41. The above stated Figure 5 for Element 43 applies also to Element 41. That is to say, the culverts have similar head/tail water ' conditions, operate under inlet control and have adequate capacity to handle the 100 year storm. A series of elements are next evaluated within Basin 270 and at Oak Ridge Drive. This area is somewhat hydraulically complex and has been dealt with, aside from the SWMM model, as illustrated in Figure 6 and as follows; L I1 1t5' The assumption that.head water conditions prevail is substantiated by the use of the following; 29(n)2 (L) Z H = (Ke + Ko +--------- ) V /2g R1.33 ,., _ Appendix A, page 9 shows the results of the evaluation of required headwater elevations and Figure 6 graphically displays the schematic view. The local detention pond depths do not control the hydraulics of this system. The tailwater depth does not reach the crown of the culvert. The depth above inside crown (Hp on Figure 6) at the upstream end of the 42" culvert is 0.9 feet. The grading plan for this property (Filing 10) that there is adequate head available and that no spill will occur toward the detention pond area. The head above inside crown for the 36" culverts (Ho on Figure 6) is 1.38 feet. There is a sump, or low area, in the southerly portion of Innovation Drive (Basin 210). A concrete channel (Element 44) was introduced at this location to convey peak flows south to Pond 1. TABLE-2 Element Location 0100 Flow 010 Pressurized ? 41 Oakridge 70 89 YES 42 Wheaton 79 147 " 43 MacMurry 159 232 " lne Lu Year riow rates are greater than the 100 year because the offsite flow rates entering the site were not changed from the 100 year data and the 10 year storm is not detained, but the 100 year event is detained for several basins that affect the above listed elements. 2.2.3 Routing and Downstream Impact ' The attenuation of the resultant 100 year hydrograph to downstream properties will clearly mitigate future flood events. The recession limb of the hydrograph will extend flow in the ' channel longer than the historic conditions, but the peak flow is truncated to a rate less than historic16. The soil type or other aspects of the channels morphology is not known at this time; 16 This observation is made in light of the Greenhorn study ' statement that 0.5 cfs per acre discharge reflects historic conditions, and the regional pond discharges 10o year and 10 year flows at about 30% less than that rate. See text, above. I 1 1 however, the sustained rate of recession flow is not expected to alter; the downstream cross sectional geometry.' III CONCLUSIONS It is -the finding of this report that the existing conditions and proposed design for the oakridge Basin -is appropriate and will mitigate downstream flooding for the 10 and 100 year event to a rate less then that specified in the Greenhorne and O'Mara study (see note 15). There.are several site specific recommendations and are listed below for convenient reference; 1. Overlot grading and street design in Basin 270 (extreme north west corner of the site) should be sensitive to the headwater conditions.experienced at Element 41 Ridge (Oak ..:Drive). The headwater elevation is calculated to be 75.78 in the 100 year event. Grading adjacent to the channel should ' accomodate this high water elevation. 2. The.channel leading from the north west corner of -the property to Pond 1 should be maintained in a clean condition t with the grass mowed to allow optimum hydraulic efficiency. . 10 year control at 0.2 cfs per acre is not necessary for the onsite Basins or offsite land to the west of Lemav (Basin 3001. The flow is controlled at Pond 1. Staged release therefore, will not be used. ' 4. Although Basins 330 (Innovation Dr.), 120 (Comlinear) and upper 200 (north east corner of the site) do not need detention ponds to control discharge to Pond 1, the developer may elect to add detention to these sites simply to control onsite runoff or. mitigate expected local hydraulic problems. ' overall, the subdivision is.a capable hydraulic system that manages major flood events.well and reduces downstream impact. IV REFERENCES 1. City of Fort Collins,_Storm Drainaae Design.and Construction ' Standards, May, 1984 2. Greenhorne and O'Mara, Inc., McLellands Basin Master ' Drainage Plan, June 20, 1986, Fort Collins 3. Urban Drainage and flood Control District, Users Manual. Urban Drainaae Storm Water Manaaement Model - PC Version ' (UDSWM2-PC), March, 1985 4. Guo, Dr. James, U of Co. at Denver, Short Course on Colorado ' Urban Hydroaraph Procedures, January, 1986 5. Chow, Ven T., Open Channel Hydraulics, McGraw Hill, 1959 Viessman et. al, Introduction to Hydrology, Harper and Row, 1977 7. Wright McLaughlin Engineers; Urban Storm Drainage criteria ,. Manual, Urban drainage and Flood Control. District, 1969 and 1983 Project Reuse revision. ' 8. Final Drainaae Reoort for 01akridge Village P U D Filing No. 2, Revised July 16, 1986, by RBD, Inc. Engineering Consultants. ' 9. Drainage Report for the Oakridge Village P U D Filings 3 4 and 5, April 26, 1987, by RBD, Inc., Engineering ' Consultants. 10.:.-Draft Drainage Investigation for Oakridge Business Park, May 17, 1987 by James H. Stewart and. Associates Inc. 11. Final Drainaae Rebort for the Oakridge Business Park Tenth Filing, November 10, 1987, by RBD, Inc. Engineering ' Consultants. 12. Final Drainaae Report for the Seventh Filing of oakridge. ' Village P.U.D, Revised September 9, 1988, by RBD, Inc., Engineering Consultants. END OF REPORT 1 128 ORIGINAL OAKRIDGE BUSINESS PARR SWMM MODEL SCHEMATICS [J 1 129 I 11, 1 a � N o� a O O a .- N r cc W M�M LL O . o 7- 9, N ^ •- .21 a4t a C C Enmcv wat-ja `o _y W 0, N i\ m a .c Q lb m c CD 0 O d. T O C U p O O O m n a Lo o �� n m N O p e M O N � '�YYYJf m U m ac m m 'E c IDO_ Uw co I c 0 10 C m O _m lL m m L m QO m W m ` m � Tm Cl) O 0 Ll- Zi LL 150 LJ 1 t 1 I I ,. CO O r W N / vC O 1O CD O cc 'O vo o p N .. cd_ mqt a a a > C N > d w c fi C, ca C V �I M OBI 0 O�co 0 r I I L ORIGINAL OARRIDGE BUSINESS PARR SWMM MODEL 04zi lilp a OJINts104fA*1 10 YEAR AND 100 YEAR STORM EVENTS 131 132 ' 2 1 1 2 3 4 WATERSHED 0 ' OAKRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL OAKIO.DAT) 50 0 0 5.0 1 1.0 25 5 0.48 0.60 0.72 0.96 2.16 3.12 5.64 2.28 1.12 0.84 '0.72 0.60 0.60 .048 0.36 0.36 0.24 0.24 0.24 0.24 0.12 0.12 0.00 0.00 0.00 •2 .016 .250 0.1 0.5 0.5 0.5.0018 1 80 8 313057.12 40 .01 '1 60 6 1150 8.95 40 .01 1 70 7 135029.38 40 .01 1 130 13 67524.66 40 .01 1 100 10 85013.19 40 .01 1 50 5 50 3.56 80 .02 '1 150 15 50 1.84 80 .02 1 160 16 3500 4.02 84 .02 1 110 11 34 9.58 84 .02 1 120 12 110017.79 80 .02 '1 90 9 411013.12 10 .01 1 190 19 250 1.38 80 .01 1 200 20 70031.34 80 .01 1 210 21 500 7.51 80 .01 1 220 14 70023.70 80 .01 1 230 23 80014.40 80 .01 1 240 24 300 5.00 80 .01 1 250 25 500 1.60 80 .01 1 260 34 160022.40 80 .01 '1 270 33 61011.80 80 .01 1 280 28 50 6.90 80 .02 1 330 36 900 5.63 80 .02 1 340 35 600 3.80 80 .02 0 0 0 5 0 15 ' 0 4 0 7 0 6 0 8 0 13 ' 0 12 0 16 0 11 0 10 ' 0 9 0 18 0 19 0 20 0 14 ' 0 21 0 44 0 22 0 43 0 0 23 0 24 0 25 0 35 ' 0 34 0 36 0 26 ' 0 42 0 33 0 27 0 41 ' 0 28 1 4 0 1 0 3100 0.004 0 50 0.016 1.5 4 0 1 0 1600 0.004 50 0 0.016 1.5 6 0 1 0 800 0.0044 4 4 0.035 5.0 6 0 1 0 1400 0.0100 0 50 0.016 1.5 17 0 1 0 1200 0.0032 4 4 0.035 5.0 17 0 1 0 1800 0.0033 4 4 0.035 5.0 17 0 1 0 3600 0.006 50 0 0.016 1.5 22 0 1 0 1300 0.006 50 0 0.016 2.5 22 0 1 0 3500 0.006 50 50 0.016 2.0 17 0 1 0 8350 0.006 50 0 0.016 1.5 17 0 1 0 1600 0.006 50 0 0.016 1.5 17 0 1 5 1000 0.006 15 15 0.035 5.0 17 0 1 0 - 1100 0.006 50 0 0.016 1.5 17 0 1 0 200 0.005 100 100 0.016 1.5 17 0 1 0 2100 0.005 4 4 0.035 5.0 22 0 1 .5 900 0.005 25' 25 0.016 1.5 44 0 1 0 1200 0.005 50 0 0.016 1.5 17 0 1 3 800 0.005 10 10 0.035 2.0 43 0 1 0 1600 0.007 4 4 0.035 5.0 17 4 2 .1 1 0.001 0 0 0.016 0.1 0 0 133 .01 140 .02 150 18 0 1 0 1300 0.005 50 0 0.016 1.5 7 0 1 0 700 0.008 50 0 0.016 1.5 22 0 2 1.25 500 0.005 0.013 1.25 11 0 1 10 850 0.005 50 50 0.016 2.0 26 0 1 .5 800 0.005 50 0 0.016 1.5 21 0 1 .0 800 0.005 50 50 0.016 2.0 42 0 5 3.5 800 0.005 0.016 3.5 10 800 0.005 4 4 0.035 5.0 22 0 2 6 1 0.005 0.016 6.0 27 0 1 0 800 0.005 4 4 0.016 1.5 41 0 1 0 800 0.005 50 0 0.016 1.5 26 0 5 4.0 100 0.005 0.016 4.0 10 100 0.005 50 50 0.016 1.0 27 0 1 0 5000 0.005 0 50 0.016 1.5 i33 ' -1 290 29 3 3 0. 0. 0 29 18 0 2 •1 300 30 3 3 0. 0. 0 30 4 0 3 -1 310 31 11 3 0. 0.3333 10. ' 0.67 59. 0 31 27 0 3 0 17 2 0 1 ' 0 2 1 10 2 0.0 0.0 10.10 47.0 33.12 289.0 ' 0 1 3 7 2 0.0 0.0 0.93 380. 0 1 0.001 0 0.22 3.06 6.98 1.00 500 0.005 0 1 0.001 0 0.46 120.0 5.85 0 1 0.001 0 0 1 0.001 0 0.08 0. 0.17 0.42 25. 0.50 0.75 55. 5.00 0 1 0.001 0 10 500 0.005 15 0.1 1 0.0001 0.26 13.0 1.30 18.24 55.0 23.55 38.19 636.0 0.1 1 0.0001 0.03 6.00 0.22 1.19 434. 0 0.001 1.0 0 0.013 1.0 0 0.001 10.0 0 0 0.001 10.0 0 0.001 10.0 0. 0.25 2. 38. 0.58 53. 55. 0 0.001 10.0 15 0.040 5.0 5.000 0.1 25.0 4.38 37.0 60.0 28.05 62.0 5.000 0.1 93. 0.54 247. 0 1 46 1 2 3 4 5 b 7 8 9 10 11 12 13 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 230 250 260 27 290 300 310 41 42 43 44 14 34 35 36 330 16 tERDPROORAM 1 0 139 ' 2 1 1 2 3 4 WATERSHED 0 OAKRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ' ( TOTAL DEVELOPED BUILDOUT:MODEL OAK100.DAT) 50 0 0 5.0 1 1.0 25 5 0.60 1.20 0.96 0.84 1.44 0.60 1.68 3.00 0.48 0.36 5.04 0.36 9.00 0.24 3.72 2.16 0.24 0.24 1.56 0.24 0.12 0.12 0.00 0.00 0.00 -2 .016 .250 0.1 0.5 0.5 0.5.0018 1 80 8 313057.12 40 .01 1 60 6 1150 8.95 40 .01 1 70 7 135029.38 40 .01 1 130 13 67524.66 40 .01 1 100 10 85013.19 40 .01 50 5 50 3.56 80 .02 1 150 15 50 1.84 80 .02 '1 1 160 16 3500 4.02 84 .02 1 110 11 34 9.58 84 .02 1 120 12 50017.79 80 .02 90 9 40013.12 10 .01 '1 1 190 19 250 1.38 80 .01 1 200 20 70031.34 80 .01 1 210 21 500 7.51 80 .01 240 24 300 5.00 80 .01 1 280 28 50 6.90 80 .02 '1 1 330 33 700 5.63 80 .01 0 0 0 5 4 0 1 0 3100 0.004 0 50 0.016 0 15 4 0 1 0 1600 0.004 50 0 0.016 0 4 6 0 1 0 800 0.0044 4 4 0.035 .,0 0 7 6 0 1 0 1400 0.0100 0 50 0.016 6 17 0 1 0 1200 0.0032 4 4 0.035 0 8 17 0 1 0 1800 0.0033 4 4 0.035 0 13 17 0 1 0 3600 0.006 50 0 0.016 0 12 22 0 1 0 1300 0.006 50 0 0.016 16 22 0 1 0 3500 0.006 50 50 0.016 '0 0 11 17 0 1 0 8350 0.006 50 0 0.016 0 10 17 0 1 0 1600 0.006 50 0 0.016 0 9 17 0 1 5 1000 0.006 15 15 0.035 0 18 17 0 1 0 1100 0.006 50 0 0.016 0 19 17 0 1 0 200 0.005 100 100 0.016 0 20 17 0 1 0 2100 0.005 4 4 0.035 0 21 44 0 1 0 1200 0.005 50 0 0.016 0 44 17 0 1 3 800 0.005 10 10, 0.035 -1 220 22 3 3 0 1 0 0 0.32 11.87 4.1 0 0 22 43 0 1 0 1600 0.007 4 4 0.035 0 43 17 4 2 0.1 1 0.001 0.016 ., 0 0 0 133 .01 140 .02 -1 230 23 3 3 0 1 0. 0. 0.30 7.21 7.16 0 0 23 18 0 1 0 1300 0.005 50 0 0.016 0 24 7 0 1 0 700 0.008 50 0 0.016 -1 250 25 3 3 0 1 ' 0. 0. 0.08 0.32 5. 0.32 0 25 22 0 2 1.25 500 0.005 0.013 -1 260 26 3 3 0 1 0. 0. 0.24 11.19 6.99 0 0 26 42 0 5 3.5 800 0.005 0.016 ' 10 800 0.005 4 4 0.035 0 42 22 0 2 6 1 0.005 0.016 -1 340 11 3 3 0 1 0. 0. 0.23 1.91 6.96 0 t -1 270 27 3 3 0 1 0. 0. 0.24 5.89 6.98 0 0 27 41 0 1 0 800 0.005 50 0 0.016 0 41 26 0 5 4.0 1110 0.005 0.016 ' 10 100 0.005 50 50 0.016 1 1.5 1.5 5.0 1.5 5.0 5.0 1.5 2.5 2.0 1.5 1.5 5.0 1.5 1.5 5.0 1.5 2.0 5.0 0.1 150 1.5 1.5 1.25 3.5 5.0 6.0 1.5 4.0 1.0 11 ' 0 28 27 0 1 0 5000 0.005 0 50 0.016 1.5 -1 290 29 3 3 0 1 0. 0. 0.22 3.06 6.98 0 0 29 18 0 2 1.00 500 0.005 0.013 1.0 -1 300 30 3 3 0 1 0. 0. 0.46 120.0 5.85 0 0 30 4 0 3 0 1 0 33 21, 0 1 0 700 0.008 50 0 0.016 1.5 -1 310 31 11 3 0 1 ' 0. 0. 0.08 0. 0.17 0. 0.25 2. 0.33 10. 0.42 25. 0.50 38. 0.58 53. 0.67 59. 0.75 55. 5.00 55. 31 27 0.3 0 1 '0 0 17 2 0 1 10 500 0.005 15 15 0.040 5.0 0 2 1 10 2 0.1 1 0.0001 5.000 0.1 0.0 0.0 0.26 13.0 1.30 25.0 4.38 37.0 10.10 47.0 18.24 55.0 23.55 60.0 28.05 62.0 33.12 289.0 38.19 636.0 0 1 3 7 2 0.1 1 0.0001 5.000 0.1 0.0 0.0 0.03 6.00 0.22 93. 0.54 247. 0.93 380. 1.19 434. t 0 44 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 220 230 250 260 270 290 300 310 41 42 43 44 33 16 160 ENDGROGRAM 1 1 1 1 13.5, 136 ORIGINAL OARRIDGE BUSINESS PARR SAMM MODEL OUTPUT SUMMARY FILES 10 YEAR AND 100 YEAR STORM EVENTS VV ' OAKRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ( TOTAL DEVELOPED SUILDOUT:MODEL OAKIO.DAT) ' *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ' ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 300 130. (DIRECT FLOW) 0 30. 310 58. (DIRECT FLOW) 0 40. 36 19. .4 0 40. ' 290 3. (DIRECT FLOW) 0 15. 24 15. .4 0 40. 30 130. (DIRECT FLOW) 0 30. 15 3. .3 0 45. S 3. 3 1 0. ' 31 58. (DIRECT FLOW) 0 40. 28 5. .3 1 15. 33 36. 1.3 0 40. 21 3 40. 29 3. 3. .7 1.0 .0 1 1 0. ' 23 37. .7 0 40. 35 12. .3 0 40. 7 58. .7 0 40. 4 119. 2.9 0 35. ' 27 89. .9 0 45. 44 30. 1.0 0 45. 20 48. 2.0 0 45. 19 5. .2 0 35. 18 35. .b 0 45. 9 '4. .3 0 40. 10 18. .5 0 40. 11 7. .4 1 25. 13 19. .5 0 45. ' 8 71. 2.5 0 40. 6 179. 3.6 0 45. - 41 89. 1.0 .0 0 45. 34 71, .9 0 4. 17 398. 98. 2.5 0 455. ' 26 138. 5.0 .1 0 45. 2 80. .1 28.5 3 10. 42 147. 3.4 0 45. _ 25 5. 1.3 .0 0 40. ' 14 56. .8 0 40. 16 6. .3 0 40. 12 53. .8 0 40. 1 . .2 3 . 22 229. 29. 3.4 45 0 45. ' 3 80. (DIRECT FLOW) 3 10. 43 232. .1 .1 0 50. 1 ' ENDPROGRAM PROGRAM CALLED 1 t 13d ' OAKRIDGE OVERALL DRAINAGE MODEL FOR A 100 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL OAK100.DAT) ' "' PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS CONVEYANCE PEAK STAGE STORAGE TIME ' ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 300 130. (DIRECT FLOW) 0 30. 310 58. (DIRECT FLOW) 0 40. 33 33. .6 0 40. 290 3. '(DIRECT FLOW) 0 .15. 230 8. (DIRECT FLOW) 0 20. 24 27. .6 0 40. 30 130. (DIRECT FLOW) 0 30. 15 6. .4 0 45. ' 5 7. .4 0 55. 31 58. (DIRECT FLOW) 0 40. 28 10. .4 1 5. ' 270 21 6. 68. (DIRECT .9 FLOW) 0 0 15. 40. 29 3. 1.0 .0 1 0. 23 7. .4 0 45. 340 2. (DIRECT FLOW) 0 15. 7 111. .9 0 40. ' 4 125. 3.0 0 45. 27 70. .9 1 10., 44 59. 1.4 0 45. ' 20 19 99. 10. 2.6 .2 0 0 45. 35. 18 9. .4 0 55. 9 9. .5 0 45. 10 36. .7 0 40. 11 10. .4 1 30. 13 39. .7 0 45. 8 143. 3.3 0 40. 6 243. 4.0 0 45. 41 70, 2.8 1 10. ' 260 12. (DIRECT FLOW) 0 15. 17 635. 3.1 0 45. 26 79. 4.2 1 10. 250 0. (DIRECT FLOW) 0 5. 2 203. .1 31.2 1 45. ' 42 79. 2.4 1 10. 25 0. .2 0 35. 220 12. (DIRECT FLOW) 0 20. ' 16 12 . 83. 83 .3 .9 0 0 40. 40. 1 203. .1 .4 1 50. 22 155. 2.9 0 45. 3 203. (DIRECT FLOW) 1 50. ' 43 159. .1 .0 0 50. IENDPROGRAM PROGRAM CALLED 1 131 GENEVA/EVERITT SWMM MODEL BASIN PARAMETERS AND CONVEYANCE ELEMENT PARAMETERS I 1 1 TWINC Engineering Consultants CLIENT G"P-\)& gom3c JOB NO.'3?5- 00.3 PROJECT -21L f oN Cree g P. (1 , D. CALCULATIONS FOR 5w/Nfm Ai0a'61 MADEBY kU)G DATE tl'29-43 CHECKED By- DATE SHEET 190 OF _ - GIUEN Orlglnn171SWMM yr dMI'la�,rc Sn,fo rma ,II -. ` O (I 16r`•een;Rorne jQrd-, O d:ed Svn i..1486` -. t ---1, }I ' jI Oo.Kridr'e_ BVs,.fne55 Par'K _I 71 Dra., rise r7]as� tJ _ Plan -_by� 1 �. J I ' -_ iei } ItInZnP _ ___, LL _SI+ICHn I a^"ionroe _ G ae 0%B--_--_= s�1s�I 3 e� R3mO4P_.>T5.f5St � lI - ND ac fB H{ 5i�11'�'f1jIn)}1II . ,C2N_aVYz i7'+__1 nJ.Er7 1+li- iLn io- ''0IL ''I ,3DV1 arP 5i e- .� c✓-�7e{3ilm-d,Cnz +1 R 7jmI.I b:. -.a (n oe1 ie1P�R5C .Mce�(al Sh d ra-ei {i- w 1 B2+267'9oyr 7x3/17?0 1 ")dse�� 07u E[FVL 9.{_ CPo) 3I+5rY"9+ 3/oc7eso-I Y1C 87T s'�oo/e%a. • OrHuBdse taz 9ylo9Qp —3ro-S-eL-4 Shea _ - i-1 '09LJ_ -,2�mL1L2 ( W4S 5II i6 3lX _-- 1s/__1'-#._, o 9A 5 zOo .t)uZo1eoI' - i. 1 I+ te- :K Z1 110+I 7. 1 1c /5 i1 m%0 a aloe-_: j 5n2 sa8aiV/ir/eo 2,0 �)7t<e¢p1soo)I HPF51Bz9 I_ .�eE.i��..Q._' �f)) _._C-nL_--_ r -_- Fj y. _ -9? /t0�+ 34 wiIyX_ G�Ia(r _n Q.Eu�5 -1 00 t-.EY�p-tf1f'3 o yf++ 0I13l Se36o. aez/ W5wsD- �Ih Aa [o /vC1ro[n6onYreCGl«aCs 11e z0z o s490 '_ JloE_Pralo v/ do chon�ela _� - +' ' { P C 0 0200 _ (mM Ca{'Slare) 1 - -1_7I%S'm 1 LT - n� I ' :§DNC Engineering Consultants 1 1 CLIENT GGneVX Ames JOB NO.39S--Ot3 PROJECT 574--I3 on Cre'eK pU,O• CALCULATIONSFOR.SG/mm No,& MADEBY4)4 DATELZ9'9i CHECKED BY_ DATE SHEET 141 OF -ITf Ir 5w3 -A'Zaaz4,S 62— 7Lo'ai92srCao�AO—DOrooD�roq�0s_0 NIYyY.9Y1Ir7SN ��o�S)3SL3SSSY__Con/_11 'N-yYIv_'.__../1 ir' +oG3a' c1, 6Mb'0f50or/a)s,lo )n��_7l/n6e1c wse. r9(lY s LUt?% (0.41.YliFWl$48Yo4}DIy' = Yo0TC4 "_o t ! 31Y L - 3Yo d:W,fA-of Jrf/, I uI%s/I7r n 1' O e rfre • T'f� ,I�I�_ lL,+IL +Ly}•_ . � ,L__--�'z Bc_ e 'ir:•I r -loeizo 2 , 7X ------------ b w,oTN I/eRr op ORDIA LN54:0 EE¢i 3j16 62Bs9 r/. - _-t.- II' II: _ _ - 1365 ."j Q •//25� b0Y5 ,._yi �/ 035 235� Le.,�i1, %Z en{,re /en�}h."/oic/A.e. 1(•366^Lib 377�. o05D _4i y Of 5' Y ao I" I 3B i 0 108o ooso y `! 035, 3.;5o Ce„9K, fo j 373+, Ocu[ 3.7y- ll 39 0 2160 00so T I { I { � 4, c/ °� S plus'/Z �oPfs k /cnpfA��.R�ei l{ fI �. ' 14Z ' POND 373 EVALUATION ' AND EXCERPTS FROM THE TIMBER CREEK DEVELOPMENT WHICH CONTAINS THE FINAL ' DESIGN OF THIS POND 1 1 1 CLIENT Gene-� dames JOBNO. 395--003 ANC PROJECT SC> -500 Creak PUP CALCULATIONS FOR SCUM/Il MOdC( Engineering Consultants MADEBYK 6 DATE 12-4113 CHECKED BY_ DATE SHEETH3 OF 1_I 1 '.i 1 1 1 J 1 1� 1 1 1 1 1 1 1 I i 'J 1 1 i 1 1 1 TM. Engineering Consultants CLIENT Geneva j4yt S JOBNO. 3VS-00� PROJECT S'FCtSOA cmeK PUD CALCUTATIONSFOR SCfJTAt gio,,,cLC � � MADEBYKtUI' � DATE IZ-Z-Y3 CHECKED BY_ DATE SHEET �OF 1 WINC Engineering Consultants CLIENT Fut.rl�{- EiOmG$ JOBNO._Q3S-/3y PROJECT CALCULATIONSFORQCf'•Pa-A 373 MADEBYA(4- DATE J�HECKED BY- DATE SHEET 46 OF 144 d W LL TMINC Engineering Consultants 11 1 CLIENT 'veurr NDm PS JOB NO. 0-75 U4, PROJECT Trn96E/ CrC-F-K CALCULATIONS FOR De+.PO.,e( 373 MADEBY ANK� DATE;2_1LY3 CHECKED By- DATE -SHEETS11 OF ►yy B 1 1� 1 1 1 i 1 1 1 1- 1 1 1 1 1 1 1 I. 1 ■rYirc Engineering Consultants CLIENT EuerrH- homes JOB No. 03S-/3V PROJECT Timber CYLe..IC CALCULATIONSFOR De}, Polo 373 MADEBYXU)G DATE Q-17- CHECKED BY— DATE —SKEET �S OF jtiyG IIr SWMM MODEL 10 YEAR OUTPUT IWO 10 YEAR t STORM ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 ' DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (DUNE 1973) ' HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) OTAPE OR DISK ASSIGNMENTS JIN(t) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JINGO) ' 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOLT 00) ' 1 2 0 NSCRAT(t) 0 0 0 0 0 0 NSCRAT(2) NSCRAT(3) NSCRAT(4) 0 NSCRAT(5) 3 4 0 0 0 1 1' i �.' WATERSHED PROGRAM CALLED ' *** ENTRY MADE TO RUNOFF MODEL *** GENEVA/EVERITT DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL 39500310.DAT) NUMBER OF TIME STEPS 50 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER t RAINFALL HISTORY IN INCHES PER HOUR .48 .60 .72 .96 2.16 3.12 5.64 2.28 1.12 .84 ' .72 .60 .60 .48 .36 .36 .24 .24 .24 .24 .12 .12 .00 .00 .00 1 GENEVA/EVERITT DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL 39500310.DAT) ' SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGEON) INFILTRATION RATE(IN/HR) GAGE NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO 0 0. .0 .0 .0300 .016 .250 .100 .500 .50 .50 .00180 '-2 80 8 3130. 57.1 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 1 ' 60 6 1150. 8.9 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 70 7 1350. 29.4 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 13 675. 24.7 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 '130 100 10 850. 13.2 40.0 .0100 .016 .250 .100 .500 .50 ".50 .00180 50 5 50. 3.6 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 150 15 50. 1.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 160 16 3500. 4.0 84.0 .0200 .016 .250 .100 .500 .50 .50 .00180 110 11 34. 9.6 84.0 .0200 .016 .250 .100 .500 .50 .50 .00180 120 12 1100. 17.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 90 9 400. 13.1 10.0 .0100 .016 .250 .100 .500 .50 .50 .00180 190 19 250. 1.4 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 20 700. 31.3 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 '200 210 21 500. 7.5 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 220 14 700. 23.7 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 230 23 800. 14.4 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 24 300. 5.0 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 250 25 500. 1.6 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 '240 260 34 1600. 22.4 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 270 33 600. 11.8 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 280 28 50. 6.9 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 330 36 900. 5.6 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 340 35 600. 3.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 304 92 2000. 71.5 5.0 .0100 .016 .250 .100 .500 .50 .50 .00180 301 91 2400. 30.2 10.0 .0077 .016 .430 .100 .600 .50 .50 .00180 302 95 3500. 47.3 45.0 .0100 .016 .390 .100 .600 .50 .50 .00180 3 4100. 108.9 5.0 .0113 .016 .250 .10D .50D .50 .50 .00180 '303 305 365 1988. 78.5 3.9 .0110 .016 .250 .100 .150 .50 .50 .00180 306 372 1729. 8.7 31.2 .0200 .016 .250 .100 .990 .50 .50 .00180 " 307 359 960. 5.4 17.0 .1262 .016 .250 .100 .600 .50 .5D .00180 308 370 1335. 7.0 40.0 .0200 .016 .250 .100 .600 .50 .50 .00180 309 361 507. 1.6 4.0 .1262 .016 .250 .100 .600 .50 .50 .00180 311 371 315. 2.8 40.0 .0200 .016 .250 .100 .900 .50 .50 .00180 ` 312 363 569. 2.1 2.3 .1262 .016 .25D .100 .500 .50 .50 .00180 313 366 495. .9 1.0 .0500 .016 .250 .100 .600 .50 .50 .00180 373 3040. 90.5 34.0 .0200 .016 .250 .100 .950 .50 .50 .00180 '314 315 374 1000. 15.1 40.0 .0200 .016 .250 .100 .500 .50 .50 .00180 316 39 2764. 99.0 2.0 .0169 .016 .250 .100 .100 .50 .50 .00180 OTOTAL NUMBER OF SUBCATCHMENTS, 38 OTOTAL 1 TRIBUTARY AREA (ACRES), 888.20 GENEVA/EVERITT DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL 39500310.DAT) HYDROGRAPHS ARE LISTED FOR THE FOLLOWING ' TIME(HR/MIN) 305 306 307 11 SUBCATCHMENTS = AVERAGE VALUES 308 309 311 WITHIN 312 TIME INTERVALS 313 314 315 316 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' 0 15. 0 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0 20. 2. 2. 1. 2. 0. 1. 0. 0. 9. 2. ' ' 2. • 0 25. 5. 5. 2. 5. 0. 2. 0. 0. 29. 7. ' 0 30. 4. 10. 8. 3. 8. 0. 3. 0. 0. 64. 15. 9. 0 35. 21. 14. 5. 14. 0. S. 1. 0. 121. 27. ' 22. ly7 0 40. 24. ' 30. 0 45. 19. 29. ' 0 50. 19. 30. 0 55. 18. 30. 1 0. 18. 29. ' 1 5. 17. 28. 1 10. 17. 27. 1 15. 16. 26. ' 1 20. 15. 25. 1 25. 15. ' 23. 1 30. 14. 22. 1 35. 14. 22. 1 40. 13. ' 1. 13 1 45. 13. 20. 1 50. 1. 199. 1 55. 12. ' 18. 2 0. 11. 17. 2 5. 11. 17. 2 10. 10. 2 15. 100. 15. 2 20. 10. 15. 2 25. 9. ' 14. 2 30. 9. 14. 2 35. 9. 13. 10. 7. 13. 2. 4. 3. 3. S. 7. 2. 2. 3. 3. S. 6. 1. 1. 2. 3. 3. 5. 1. 1. 1. 2. 3. 4. 1. 1. 1. 2. 2. 3. 1. 1. 1. 2. 2. 3. 0. 1. 1. 2. 1. 2. 0. 1. 0. 1. 1. 2. 0. 1. 0. 1. 1. 2. 0. 1. 0. 1. 1. 1. 0. 0. 0. 1. 1. 1. 0. 0. 0. 1. 1. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 122. 27. 1. 68. 15. 1. 43. 11. L 32. 9. 0. 26. 8. 0. 23. 7. 0. 21. 6. 0. 18. 6. 0. 15. 5. 0. 13. 4. 0. 11. 4. 0. 10. 3. 0. 10. 3. 0. 9. 3. 0. 7. 2. 0. 6. 2. 0. 4. 2. 0. 4. 1. 0. 3. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 148 1 2 40. 8. 0. 0. 0. 0. 0. 13. 2 45. 8. 0. 0. 0. 0. 0. 12. 2 50. 8. 0. 0. 0. 0. 0. `.' 12. y. k' 2 55. 8. 0. 0. 0. -0. 0. } 11. 3 0. 8. 0. 0. 0. 0. 0. 17. 3 5. 7. 0. 0. 0. 0. 0. t 10. 3 10. 7. 0. 0. 0. 0. 0. 10. 3 15. 7. 0. 0. 0. 0. 0. 10. 8 3 20. 7. 0. 0. 0. 0.. 0. 9. 3 25. 6. 0. 0. 0. 0. 0. 9. 3 30. 6. 0. 0. 0. 0. 0. 9. 3 35. 6. 0. 0. 0. 0. 0. 8. c r- 3 40. b. 0. 0. 0. 0. 0. 8 3 45. b. 0. 0. 0. 0. 0. s' 8. 3 50. 6. 0. 0. -0. 0. 0. 8. - 3 55. 5. 0. 0. 0. 0. 0. 7 ' 4 0. S. 0. 0. 0. 0. 0. 7. 4 5. 5. 0. 0. 0. 0. 0. ' 7. 4 10. 5. 0. 0. 0. 0. 0. 7 GENEVA/EVERITT DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL 39500310.DAT) *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 888.200 ' TOTAL RAINFALL (INCHES) 1.853 0. 0. 1. 0. 0. i. 0. 0. 7. 0. 0. 1. 0. 0.' 1. 0. 0. 1. 0. 0. 1. 0. 0. ,. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7. i. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. w9 f i so TOTAL INFILTRATION (INCHES) .550 TOTAL WATERSHED OUTFLOW (INCHES) .794 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .509 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .003 1 GENEVA/EVERITT DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL 39500310.DAT) WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION _ (FT) (FT) (FT/FT) L R N (FT) .' 5 4 0 1 CHANNEL .0 3100. .0040 .0 50.0 .016 1.50 0 15 4 0 1 CHANNEL .0 1600. .0040 50.0 .0 - ..016 1.50 0 4 6 0 1 CHANNEL .0 800. .0044 4.0 4.0 .035 5.00 0 7 6 0 1 CHANNEL .0 1400. .0100 .0 50.0 .016 1.50 0 6 17 0 1 CHANNEL .0 1200. .0032 4.0 4.0 .035 5.00 0 17 0 1 CHANNEL .0 1800. .0033 4.0 4.0 .035 5.00 0 '8 13 17 0 1 CHANNEL .0 3600. .0060 50.0 .0 .016 1.50 0 12 22 0 1 CHANNEL .0 1300. .0060 50.0 .0 .016 2.50 0 16 22 0 1 CHANNEL .0 3500. .0060 50.0 50.0 .016 2.00 0 11 17 0 1 CHANNEL .0 8350. .0060 50.0 .0 .016 1.50 0 10 17 0 1 CHANNEL .0 1600. .0060 50.0 .0 .016 1.50 0 9 17 0 1 CHANNEL 5.0 1000. .0060 15.0 15.0 .035 5.00 0 18 17 0 1 CHANNEL .0 1100. .0060 50.0 .0 .016 1.50 0 19 17 0 1 CHANNEL .0 200. .0050 100.0 100.0 .016 1.50 0 20 17 0 1 CHANNEL .0 2100. .0050 4.0 4.0 .035 5.00 0 14 22 0 1 CHANNEL .5 900. .0050 25.0 25.0 .016 1.50 0 ,,. 21 44 0 1 CHANNEL .0 1200. .0050 50.0 .0 .016 1.50 0 '- 44 17 0 1 CHANNEL 3.0 800. .0050 10.0 10.0 .035 2.00 0 22 - 43 0 1 CHANNEL .0 1600. .0070 4.0 4.0 .035 5.00 0 43 17 4 2 PIPE .1 1. .0010 .0 .0 .016 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 133.0 .0 140.0 .0 150.0 23 18 0 1 CHANNEL .0 1300. .0050 50.0 .0 .016 1.50 0 7 0 1 CHANNEL .0 700. .0080 50.0 .0 .016 1.50 0 '24 25 22 0 2 PIPE 1.3 500. .0050 .0 .0 .013 1.25 0 35 11 0 1 CHANNEL 10.0 850. .0050 50.0 50.0 .016 2.00 0 34 26 0 1 CHANNEL .5 800. .0050 50.0 .0 .016 1.50 0 ' 36 26 21 42 0 0 1 5 CHANNEL PIPE .0 3.5 800. 800. .0050 .0050 50.0 .0 50.0 .0 .016 .016 2.00 3.50 0 0 OVERFLOW 10.0 800. .0050 4.0 4.0 .035 5.00 42 22 0 2 PIPE 6.0 1. .0050 .0 .0 .016 6.00 0 33 27 0 1 CHANNEL .0 800. .0050 4.0 4.0 .016 1.50 0 27 41 0 1 CHANNEL .0 800. -.0050 50.0 .0 .016 1.50 0 ' 41 26 0 5 PIPE 4.0 100. .0050 .0 .0 .016 4.00 0 OVERFLOW 10.0 100. .0050 50.0 50.0 .016 1.00 28 27 0 1 CHANNEL .0 5000. .0050 4.0 4.0 .035 5.00 0 290 29 3 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS .0 .0 .2 3.1 7.0 .0 29 18 0 2 PIPE 1.0 500. .0050 .0 .0 .013 1.00 0 300 30 3 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS ' .0 .0 .5 120.0 5.8 .0 30 4 0 3 .0 1. .0010 .0 .0 .001 10.00 0 .. 310 31 11 3 .0 1. .0010 .0 .0 .001 10.00 -1 ' TIME IN HRS VS INFLOW .0 .0 IN CFS .1 .0 .2 .0 .3 2.0 .3 10.0 .4 25.0 .5 38.0 .6 53.0 .7 59.0 .8 55.0 5.0 55.0 31 27 0 3 .0 1. .0010 .0 .0 .001 10.00 0 17 2 0 1 CHANNEL .. 10.0 500. .0050 15.0 15.0 .040 5.00 0 2 1 10 2 - PIPE .1 1: .0001 .0 .0 5.000 .10 0 ' RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 1 ' 151 ' .0 .0 .3 13.0 1.3' 25.0 4.4 37.0 10.1 47.0 18.2 55.0 23.5 60.0 28.0 62.0 33.1 289.0 38.2 636.0 ' 1 3 6 2 PIPE .1 1. .0001 .0 .0 5.000 10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 0 .0 .0 .0 6.0 .2 93.0 .5 247.0 .9 380.0 1.2 434.0 3 357 0 1 CHANNEL 4.0 2050. .0100 50.0 60.0 .052 5.00 0 91 93 0 1 CHANNEL .0 1325. .0150 4.0 4.0 .060 5.00 0 ' 93 94 10 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 1.8 1.0 5.1 1.6 7.2 2.4 8.8 3.3 10.2 4.3 16.0 5.4 21.7 6.5 94.5 '94 357 0 1 CHANNEL .0 1000. .0027 3.0 3.0 .035 5.00 0 92 357 0 1 CHANNEL 2.0 2000. .0100 2.0 2.0 .036 5.00 0 95 93 0 3 .0 1. .0010 .0 .0 .001 10.00 0 357 358 0 1 CHANNEL 16.0 10. .0050 4.0 4.0 .045 4.00 0 358 359 0 2 PIPE 9.4 103. .0050 .0 .0 .013 9.44 0 '359 360 0 1 CHANNEL 16.0 950. .0050 4.0 4.0 .045 4.00 0 360 361 0 2 PIPE 9.4 46. .0050 .0 .0 .013 9.44 0 361 362 0 1 CHANNEL 16.0 619. .0050 4.0 4.0 .045 4.00 0 362 363 0 1 CHANNEL 16.0 215. .0050 4.0 4.0 .045 4.00 0 '363 364 0 1 CHANNEL 16.0 415. .0050 4.0 4.0 .045 4.00 0 364 366 0 1 CHANNEL 16.0 90. .0050 4.0 4.0 .045 4.00 0 365 366 0 1 CHANNEL .0 1125. .0045 4.0 4.0 .035 2.30 0 366 367 0 1 CHANNEL 16.0 377. .0050 4.0 4.0 .045 4.00 0 38 373 0 1 CHANNEL .0 1080. .0050 4.0 4.0 .035 3.50 0 ' 39 38 0 1 CHANNEL .0 2160. .0050 4.0 4.0 .035 3.50 0 370 361 8 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .0 .8 .2 1.1 .4 1.4 .6 3.5 3.7 .9 4.0 7 371 362 7 2 PIPE .1 1. .0015 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .1 1.2 .2 1.4 .3 1.4 .4 1.6 .6 1.8 ' 372 363 0 2 PIPE 1.0 80. .0020 .0 .0 .013 1.20 0 373 364 30 2 PIPE .1 1. .0042 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 .0 1.6 .0 3.5 6.4 3.7 6.8 ' - 3.9 7.1 4.2 8.1 4.4 9.4 4.7 11.1 4.9 13.1 5.2 15.2 5.4 15.6 5.6 16.0 5.9 16.4 6.2 16.8 6.4 17.2 6.7 17.6 7.0 18.0 7.3 18.4 7.5 18.8 7.8 19.2 8.1 19.6 8.4 19.8 8.7 20.0 9.0 29.9 9.3 47.8 9.6 71.0 9.9 98.3 10.2 129.3 374 38 0 2 PIPE 1.0 50. .0050 .0 .0 .013 1.50 0 ,OTOTAL NUMBER OF GUTTERS/PIPES, 64 1 ' GENEVA/EVERITT DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ( TOTAL DEVELOPED BUILDOUT:MODEL 39500310.DAT) ' ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) ' 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 230.5 2 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 230.5 3 1 0 0 0 0 0 0 0 0 0 303 0 0 0 0 0 0 0 0 0 339.4 ' 4 5 15 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.4 5 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 3.6 ' 6 4 7 0 0 0 0 0 0 0 0 60 .0 0 0 0 0 0 0 0 0 48.7 7 24 0 0 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 34.4 ' 8 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 57.1 1 ' 9 11 12 13 14 ' 15 16 ' 17 18 ' 19 20 21 22 23 ' 24 25 ' 26 27 28 29 30 ' 31 33 ' 34 35 ' 36 38 ' 39 41 42 43 44 ' 91 92 ' 93 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 8 13 11. 10 9 18 19 20 44 23 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 12 16 14 25 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 41 0 0 0 0 0 0 0 0 33 28 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 1 0 0 0 0 0 300 0 0 0 0 0. 0 0 0 0 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 95 0 0 0 0 0 0 0 0 15Z 90 0 0 0 0 0 0 0 0 0 13.1 100 0 0 0 0 0 0 0 0 0 13.2 110 0 0 0 0 0 0 0 0 0 13.4 120 0 0 0 0 0 0 0 0 0 17.8 130 0 0 0 0 0 0 0 0 0 24.7 220 0 0 0 0 0 0 0 0 0 23.7 150 0 0 0 0 0 0 0 0 0 1.8 160 0 0 0 0 0 0 0 0 0 4.0 0 0 0 0 0 0 0 0 0 0 230.5 0 0 0 0 0 0 0 0 0 0 14.4 190 0 0 0 0 0 0 0 0 0 1.4 200 0 0 0 0 0 0 0 0 0 31.3 210 0 0 0 0 0 0 0 0 0 13.1 0 0 0 0 0 0 0 0 0 0 88.2 230 0 0 0 0 0 0 0 0 0 14.4 240 0 0 0 0 0 0 0 0 0 5.0 250 0 0 0 0 0 0 0 0 0 1.6 0 0 0 0 0 0 0 0 0 0 41.1 0 0 0 0 0 0 0 0 0 0 18.7 280 0 0 0 0 0 0 0 0 0 6.9 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 270 0 0 0 0 0 0 0 0 0 11.8 260 0 0 0 0 0 0 0 0 0 22.4 340 0 0 0 0 0 0 0 0 0 3.8 330 0 0 0 0 0 0 0 0 0 5.6 0 0 0 0 0 0 0 0 0 0 114.1 316 0 0 0 0 0 0 0 0 0 99.0 0 0 0 0 0 0 0 0 0 0 18.7 0 0 0 0 0 0 0 0 0 0 41.1 0 0 0 0 0 0 0 0 0 0 88.2 0 0 0 0 0 0 0 0 0 0 13.1 301 0 0 0 0 0 0 0 0 0 30.2 304 0 0 0 0 0 0 0 0 0 71.5 0 0 0 0 0 0 0 0 0 0 77.5 ' 153 ' 94 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77.5 95 0 0 0 0 0 0 0 0 0 0 302 0 0 0 0 0 0 0 0 0 47.3 290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ' 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 357 3 94 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 488.4 ' 358 357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 488.4 359 358 0 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 493.8 ' 360 359 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 493.8 361 360 370 0 0 0 0 0 0 0 0 309 0 0 0 0 0 0 0 0 0 502.4 362 361 371 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 505.2 ' 363 362 372 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 516.0 364 363 373 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 720.6 ' 365 0 0 0 0 0 0 0 0 0 0 305 0 0 0 0 0 0 0 0 0 78.5 366 364 365 0 0 0 0 0 0 0 0 313 0 0 0 0 0 0 0 0 0 800.0 ' 370 0 0 0 0 0 0 0 0 0 0 308 0 0 0 0 0 0 0 0 0 7.0 371 0 0 0 0 0 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 2.8 372 0 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0 8.7 373 38 0 0 0 0 0 0 0 0 0 314 0 0 0 0 0 0 0 0 0 204.5 0 0 0 0 0 0 0 0 0 0 315 0 0 0 0 0 0 0 0 0 15.1 '374 1 GENEVA/EVERITT DRAINAGE MODEL FOR A 10 YEAR STORM EVENT ' ( TOTAL DEVELOPED BUILDOUT:MODEL 39500310.DAT) HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 23 CONVEYANCE ELEMENTS ' THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET ' (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 93 91 95 3 94 357 92 358 359 360 361 362 363 364 365 366 38 39 370 371 372 373 374 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .O(S) -0( ) .0( ) -0( ) .0( ) .0( ) .O( ) .0( ) .0() .0( ) 0. 0. 0. 0. 0. 0. D. 0. 0., 0. ' .0( ) .0( ) .0( ) .0( ) .0( ) -0() .0( ) -O( ) A(S) .O(S) 0. 0. 0. -0( ) .O(S) .0( ) , 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' AM .0( ) .0c ) .0( ) 0( ) .0( ) of ) .o( ) .0( > .0( > 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ' .O( ) .O( ) .O( ) .O( ) .0( ) .0( ) .0( ) .0( ) .O(S) .O(S) 0. 0. 0. -1( ) .O(S) .1( ) ' 0 15. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. .O(S) .1( ) -0( ) .0( ) .O( ) .0( ) .0( ) .0c ) .0( > .0( ) ' 0. .0( ) 0. .0( ) 0. -0( ) 0. -0( ) 0. -1( ) 0. .0( ) 0. .1( ) 0. .1( ) 0. .O(S) 0. .O(S) 1. 0. 0. .4( ) AM .3( ) ' ' 0 20. 0. 0. 12. 0. 0. 1. 0. 1. 0. 0. .1(S) .4( ) .0( ) .1( ) .1( ) .1( ) .2( ) .2( ) .0( ) .1( ) ' 0. .0( ) 0. .0( ) 1. .1( ) 0. .0( ) 1. A( ) 0. .0( ) 1. .4( ) 0. .3( ) 0. .O(S) 1. .O(S) 2. 0. 3. .0(0) ACS) .0(0) ' 0 25. 1. 2. 31. 2. 0. - 4. 2. 4. 1. 1. .2(S) .6( ) .0( ) .2( ) .2( > .3( ) .4( ) A( ) .1c ) .2( ) 0. 0. 1. 1. 2. 1. 2. 1. 1. - 1. ' .0( ) .1( ) Ac ) .1( ) .6( > .1( ) .6( ) .4( ) .O(S) .O(S) 2. 0. 3. .0(0) .3(S) .0(0) 0 30. 2. 4. 62. 6. 0. 11. 5: 11. 4. 3. .5(S) .8( ) .0( ) .3( ) .4( ) .5( ) .6( ) .7( ) .2( ) A( ) 1. 1. 2. 2. 5. 3. 3. 2. 1. 1. ' .1( ) .1( ) .2( ) .2( ) .9( ) .2( ) .7( ) .7( ) .1(S) .O(S) 2. 0. 3. AM JCS) .1(0) . ' 0 35. 6. 9. 111. 14. 1. 26. 10. 25. 12. 12. 1.2(S) 1.1c ) .0( ) A( ) .7( ) .8( ) .9( ) 1.0( ) .5( ) .7( ) 5. 3. 4. 3. 13. 10. 5. 8. 1. 1. ' .3( ) .2( ) .2( ) .2( ) 1.3( ) A( ) .9( ) 1.0( ) .2(S) .1(S) 2. 0. 3. .2(0) 1.6(S) .3(0) ' 0 40. 8. 11. 65. 23. 3. 40. 14. 40. 27. 27. 1.8(S) 1.1( ) .0( ) .5( ) .9( ) 1.0( ) 1.1( ) 1.3( ) .B( ) 1.1( ) 16. 12. 11, 11. 19, 24, 9, 15. 1. 1. ' .6( ) .5( ) .5( ) .5( ) 1.5( ) .7( ) 1.1( ) 1.3( ) .3(S) .1(S) 2. 3. 3. .2(0) 2.5(S) .5(0) 0 45. 8. 9. 33. 30. 5. 48. 13. 48. 41. 41. 2.1(S) 1.1( ) .0( ) .6( > 1.1( ) 1.1( ) 1.0( ) 1.4( ) 1.0( ) 1.3( ) 32. 28. 24. 27. 19. 40. 15. 20. 1. 1. ' .9( ) .8( ) .7( ) .8( ) 1.4( ) 1.0( ) 1.3( ) 1.4( ) .3(S) .1(S) 2. 5. 3. .2(0) 3.0(S) .5(0) 0 50. 9. B. 32. 37. 7. 56. 12. 55. 51. 51. 155 ' 2 ' 46 1 ' 0 55. 2 9 2 t 56 1 2 ' 1 0. 9 2 ' 63 1 2 ' 1 5. 9 2 ' 69 1 2 F, 1 10. 10 2 74 1 2 ' 1 15. 10 2 78 1 2 ' 1 20. 10 3 81 ' 1 2 ' 1 25. 10 3 83 ' 1 2 0 1 30. 10 .4(S) 1.0() .0( ) .7( ) 1.2( ) 1.2( ) 1.0( ) 1.5( ) 1.1( ) 1.4( ) 44. 40. 44. 19. 57. 21. 24. 1. 1. .1( ) 1.0( ) 1.0() 1.0( ) 1.4( ) 1.2( ) 1.5( ) 1.5( ) .3(S) .1(S) 6. 3. .2(0) 3.4(S) .6(0) 7. 19. 44. 8. 62. 11. 62. 59. 59. .5(S) 1.0( ) .0( ) .7( ) 1.3( ) 1.3( ) 1.0( ) 1.6( ) 1.2( ) 1.5( ) 55. 53. 59. 18. 73. 25. 26. 1. 1. .2( ) 1.2( ) 1.2( ) 1.2( ) 1.4( ) 1.4( ) 1.6( ) 1.6() .3(S) .1(S) 7. 3. .2(0) 3.7(S) .6(0) 6. 25. 50. 8. 68. 10. 68. 65. 65. .7(S) .9( ) .0( ) .7( ) 1.3( ) 1.3( ) .9( ) 1.7( ) 1.3( ) 1.6( ) 63. 62. 69. 18. .85. 28. 27. 1. 1. .3( ) 1.3( ) 1.3( ) 1.3( ) 1.4( ) 1.5( ) 1.6( ) 1.6( ) .4(S) .1(S) 7. 3. .2(0) 4.0(S) .7(0) 6. 14. 54. 9. 73. 10. 73. 71. 71. .8(S) .9( ) .0( ) .8( ) 1.3( ) 1.4( ) .9( ) 1.7( ) 1.4( ) 1.7( ) 69. 69. 77. 18. ` 93. 29. 27. 1. 1. .3( ) 1.3( ) 1.3( ) 1.4( ) 1.4( ) 1.6( ) 1.7( ) 1.6() .4(S) .1(S) 9. 3. .2(0) 4.3(S) .7(0) 5. 21. 58. 9. 77. 10. 77. 75. 75. .9(S) .9( ) .0( ) .8( ) 1.4( ) AM ) .9( ) 1.8() 1.4( ) 1.7( ) 74. 75. 85. 17. 100. 30. 27. 1. 1. .4( ) 1.4( ) 1.4() 1.5( ) 1.4( ) 1.6( ) 1.7( ) 1.6( ) .4(S) .1(S) 11. 3. .2(0) 4.6(S) .7(o) 5. 10. 61. 9. 80. 9. 80. 78. 78. .9(S) .9( ) .0( ) .8( ) 1.4( ) 1.4( ) .9( ) 1.8( ) 1.4( ) 1.8( ) 78. 79. 91. 16. 106. 30. 27. 1. 1. .4( ) 1.4( ) 1.4( ) 1.6( ) 1.4( ) 1.7( ) 1.7( ) 1.6( ) .4(S) .1(S) 13. 3. .2(0) 4.9(S) .7(0) 5. 17. 63. 10. 82. 9. 82. 81. 81. .0(S) .8( ) M ) .8( ) 1.4() 1.5( ) .9( ) 1.8( ) 1.5( ) 1.8( ) 81. 82. 96. 16. 111. 29. 26. 1. 1. .5( ) 1.5( ) 1.5( ) 1.6( ) 1.4( ) 1.7( ) 1.7( ) 1.6( ) .4(S) .1(S) 14. 3. .2(0) 5.1(S) .8(0) 4. 6. 65. 10. 83. 8. 83. 83. 83. . 0(S) .8( ) .0( ) .8( ) 1.4( ) 1.5( ) .8( ) 1.8( ) 1.5( ) 1.8( ) 84. 85. 100. 15. 114. 29. 25. 1. 1. .5( ) 1.5( ) 1.5( ) 1.6( ) 1.3( ) 1.8( ) 1.7( ) 1.6( ) .4(S) .1(S) 15. 3. ,2(0) 5.3(S) .8(0) 4. 14. 67. 10. 84. 8. 84. 84. 84. ' 1 35. ' 1 55. 3.1(S) .8( ) .0( ) .8( ) 1.4( ) 1.5( ) .8( ) 1.9( ) 1.5( ) 1.8( ) 85. 85. 87. 102. 15. 116. 28. 24. 1. 1. 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.3( ) 1.8( ) 1.6( ) 1.6( ) .4(S) .1(S) 2. 16. 3. .2(o) 5.4(S) .8(0) _ 10. 4. 5. 68. 10. 85. S. 85. 85. 85. 3.1(S) .8( ) .0( ) .8( ) 1.4( ) 1.5( ) .8( ) 1.9( ) 1.5( ) 1.9( ) 86. 87. 88. 104. 14. 118. 27. 23. 1. 1. 1.5( ) 1.5( > 1.5( ) 1.7( ) 1.3( ) 1.8( ) 1.6( ) 1.5( ) .4(S) .1(S) 2. 16. 3. .2(0) 5.6(S) .8(0) 10. 4. 13. 69. 10. 86. 7. 86. 86. 86. 3.1(S) .8( ) .0( ) .8( ) 1.4( ) 1.5( .8( ) 1.9( ) 1.5( ) 1.9( ) 87. 88. 89. 105. 14. 119. 26. 22. 1. 1. 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.3( ) 1.8( ) 1.6( ) 1.5( ) .4(S) .1(S) 2. 16. 3. .2(0) 5.7(S) .8(0) 10. 3. 3. 70. 10. 87. 7. 87. 87. 87. 3.1(S) .7( ) .0( ) .8( ) 1.4( ) 1.5( ) .8( ) 1.9( ) 1.5( ) 1.9( ) 88. 88. 90. 106. 13. 119. 25. 21. 1. 1. 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.3( ) 1.8( ) 1.6( ) 1.5( ) .4(S) .1(S) 2. 16. 3. .2(0) 5.8(S) .8(0) 10. 3. 11. 70. 10. 87. 7. 87. 87. 87. 3.1(S) .7( ) .0( ) .8( ) 1.4( ) 1.5( ) A( ) 1.9( ) 1.5( ) 1.9( ) 88. 89. 91. 107. 13. 120. 24. 21. 1. 1. 1.5( ) 1.5( ) 1.6( ) 1.7( ) 1.2( ) 1.8( ) 1.6( ) 1.5( ) .4(S) .1(S) 2. 16. 3. .2(0) 5.9(S) .8(0) 10. 3. 1. 70. 10. 87. 7. 87. 87. 87. 3.1(S) .7( ) .0( ) .8( ) 1.4( ) 1.5( ) .7( ) 1.9( ) 1.5( ) 1.9( ) 88. 89. 91. 108. 12. . 120. 23. 20. 1. 1. 1.5( ) 1.5( ) 1.6( ) 1.7( ) 1.2( ) 1.8( ) 1.5( ) 1.4( ) .4(S) .1(S) 2. 17. 3. .2(o) 6.0(S) .8(0) 10. 3. 9. 71. 10. 87. 6. 87. 87. 87. 3.1(S) .7( > ..0( ) .8( ) 1.4( ) 1.5( ) .7( ) 1.9( ) 1.5( ) 1.9( ) 88. 89. 91. 108. 12. 119. 22. 19. 1. 1. 1.5( ) 1.5( ) 1.6( ) 1.7( ) 1.2( ) 1.8( ) 1.5( ) 1.4( ) .4(S) .O(S) 2. 17. 3. .2(0) 6.1(S) .8(0) 10. 3. 0. 71. 10. 86. 6. 86. 87. 87. 3.1(S) .7( ) .0( ) .8( ) 1.4( ) 1.5( ) .7( ) 1.9( ) 1.5( ) 1.9( ) 88. 89. 91. 108. 11. 119. 22. 18. 1. 1. 1.5( ) 1.5( ) 1.6( ) 1.7( ) 1.2( ) 1.8( ) 1.5( ) 1.4( ) .4(S) .O(S) 2. 17. 3. .2(0) 6.2(S) .8(0) 10. 2. 7. 71. 10. 86. 6. 86. 86. 86. 3.1(S) .7( ) .0( ) .8( ) 1.4( ) 1.5( ) .7( ) 1.9( ) 1.5( ) 1.9( ) ' 88. 1.5( ) 89. 1.5( ) 91. 1.6( ) 108. 1.7( ) 11. 1.2( ) 119. 1.8( ) 21. 1.5( ) 17. 1.4( 1. ) .4(S) 1. .O(S) 2. 17. 3. .2(0) 6.2(S) .8(0) ' 2 15., 10. 2. 0. 71. 10. 86. 5. 86. 86. 86. 3.0(S) .6( ) .0( ) .8( ) 1.4( ) 1.5( ) .7( ) 1.9( ) 1.5( ) 1.9( ) 88. 89. 90. 107. 10.. 118. 20. 17. 1. 1. 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.2( ) 1.8( ) 1.5( ) 1.4( ) .4(S) .O(S) 2. 17. 3. .2(0) 6.3(S) .7(0) ' 2 20. 10. 2. 6. 70. 10. 85. 5. 85. 86. 86. 3.0(S) .6( ) .0( ) .8( ) 1.4( ) 1.5( ) .7( ) 1.9( ) 1.5( ) 1.9( ) 87. 88. 90. 107. 10. 117. 19. 16. 1. 1. ' 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.1( ) 1.8( ) 1.4( ) 1.3( ) .4(S) AM 2. 17. 3. .1(0) 6.3(S) .7(0) ' 2 25. 10. - 2. 0. 70. 10. 85. 5. 85. 86. 86. 3.0(S) .6( ) .0( ) .8( ) 1.4( ) 1.5( ) .6( ) 1.9( ) 1.5( ) 1.9( > 87. 88. 90. 107. 10. 117. 19. 15. 1. 1. ' 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.1( ) 1.8( ) 1.4( ) 1.3( ) .3(S) AM 2. 17. 3. .1(0) 6.3(S) .7(0) '. 2 30. 10. 2. S. 70. 10. 85. 5. 85. 85. 85. 2.9(S) .6( ) .0( ) .8( ) 1.4( ) 1.5( ) .6( ) 1.9( ) 1.5( ) 1.9( ) - 87. 87. 89. 106. 9. 116. 18. 15. 1. 1. ' 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.1( ) 1.8( ) 1.4( ) 1.3( ) .3(S) -. O(S) 2. 17. 3. .1(0) 6.3(S) .7(0) ' 2 35. 10. 2. 0. 70. 10. 84. 5. 84. 85. 85. 2.9(S) .6( ) .0( ) .8( ) 1.4( ) 1.5( ) .6( ) 1.9( ) 1.5( ) 1.9( ) 86. 87. 89. 106. 9. . 115. 18. 14. 1. 1. ' 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.1( ) 1.8( ) 1.4( ) 1.3( ) .3(S) .O(S) 2. 17. 3. .1(0) 6.4(S) .7(0) 2 40. 9. 2. 4. 70. 10. 84. 5. 84. 84. 84. 2.9(S) .6( ) .0( ) .8( ) 1.4( ) 1.5( ) .6( ) 1.8( ) 1.5( ) 1.9( ) 86. 87. 88. 106. 9. 115. 17. 14. 1. 1. ' 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.1( ) 1.8( ) 1.4( ) 1.3( ) .3(S) .O(S) 2. 17. 3. .1(0) 6.4(S) .7(0) ' 2 45. 9. 2. 0. 71. 10. 85. 4. 85. 85. 85. 2.8(S) .6( ) .0( ) .8( ) 1.4( ) 1.5( ) .6( ) 1.9( ) 1.5( ) 1.9( ) 86. 86. 88. 105. 9. 114. 16. 13. 1. 1. ' 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.1( ) 1.8( ) 1.3( ) 1.2( ) .3(S) .O(S) 2. 17. 3. _ .1(0) 6.4(S) .7(0) 2 50. 9. 2. 3. 73. 9. 87. 4. 87. 86. 86. 151 1 2 55. ' 3 0. ' 3 5. 3 10. ' 3 15. ' 3 20. ' 3 25. ' 3 30. 2.8(s) .6( ) .0( ) -.9( ) 1.4( ) 1.5( ) .6( ) 1.9( ) 1.5( ) 1.9( > 86. 87. 88. 105. 8. 114. 16. 13. 1. 1. 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.1( ) 1.8( ) 1.3( ) 1.2( ) .3(S) .O(S) 2. 17. 3. AM 6.4(S) .6(0) 9. 2. 0. 77. 9. 90. 4. 90. 88. 88. 2.7(S) .6( ) .0( ) .9( ) 1.4( ) 1.5( ) .6( ) 1.9( ) 1.5( ) 1.9( ) 88. 88. 89. 106. 8. 114. 15. 12. 1. 0. 1.5( ) 1.5( ) 1.5( ) 1.7( ) 1.0( ) 1.8( ) 1.3( ) 1.2( ) .3(S) .O(S) 2. 17. 3. .1(0) 6.4(S) .6(0) 9. 2. 3. 80. 9. 93. 4. 93. 91. 91. 2.7(S) .6( ) .0( ) .9( ) 1.4( ) 1.6( ) .6( ) 1.9( ) 1.6( ) 1.9( ) 91. 90. 91. 108. 8. 115. 15. 12. 1. 0. 1.6( ) 1.5( ) 1.6( ) 1.7( ) 1.0( ) 1.8( ) 1.3( ) 1.2( ) .3(S) AM 2. 17. 3. AM 6.4(S) .6(0) 9. 1. 0. 83. 9. 96. 4. 96. 94. 94. 2.6(S) .5( ) .0( ) .9( ) 1.4( ) 1.6( ) .6( ) 2.0( ) 1.6( ) 1.9( ) 93. 93. 94. 110. 8. 117. 15. 11. 1. 0. 1.6( ) 1.6( ) 1.6( ) 1.7( ) 1.0( ) 1.8( ) 1.3( ) 1.2( > .3(S) .O(S) 2. 17. 3. .0(0) 6.4(S) .6(0) 9. 1. 3. 85. 9. 98. 4.. .98. 96. 96. 2.6(S) .5( ) .0( ) .9( ) 1.4( ) 1.6( ) .6( ) 2.0( ) 1.6( ) 2.0( ) 96. 96. 96. 113. 7. 120. 14. 11. 1. 0. 1.6( ) 1.6( ) 1.6( ) 1.7( ) 1.0( ) 1.8( ) 1.3( ) 1.2( ) .3(s) .O(S) 2. 17. 3. .0(0) 6.3(S) .6(o) 9. 1. 0. 86. 9. 99. 4. 99. 98. 98. 2.6(S) .5( ) .0( ) .9( ) 1.4( ) 1.6( ) .6( ) 2.0( ) 1.6( ) 2.0( ) 98. 98. 99. 116. 7. 122. 14. 10. 1. 0. 1.6( ) 1.6( ) 1.6( ) 1.8( ) 1.0( ) 1.8( ) 1.3( ) 1.1( ) .3(S) .O(S) 2. 17. 3. .0(0) 6.3(S) .6(0) 9. 1. 2. 86. 9. 99. 4. 99. 98. 98. 2.5(S) .5( ) .0( ) .9( ) 1.4( ) 1.6( ) .5( ) 2.0( ) 1.6( ) 2.0( ) 99. 99. 100. 117. 7. 124. 13. 10. 1. 0. 1.6( ) 1.6( ) 1.6( ) 1.8( ) 1.0( ) 1.8( ) 1.2( ) 1.1( ) .3(S) AM 2. 17. . 3. .0(0) 6.3(S) .6(o) 9. 1. 0. 86. 9. 98. 4. 98. 99. 99. 2.5(S) .5( ) .0( ) .9( ) 1.4( ), 1.6( ) ..5( ) 2.0( ) 1.6( ) 2.0( ) 100. 100. 100. 117. 7. 124. 13. 10. 1. 0. 1.6( ) 1.6( ) 1.6( ) 1.8( ) 1.0( ) 1.8( ) 1.2( ) 1.1( ) .2(S) .O(S) 0. 17. 3. .3( ) 6.3(S) .5(0) ' 9. 1. 2. 85. 9. 97. 3. 98. 98. 98. ' 2.4(S) .5( ) ..0( ) .9( ) 1.3( ) 1.6( ) .5( ) 2.0( ) 1.6( ) 2.0( ; 100. 100. 100. 117. 6. 124. 13. 9. 1. 0. ' 1.6( ) 0. 1.6( ) 17. 1.6( ) 3. 1.8( ) 1.0( ) 1.8( ) 1.2( ) 1.1( ) .2(S) O(S) .0( ) 6.3(S) .5(0) 3 35. 9. 1. 0. 84. 9. 96. 3. 96. 97.. 97. ' 2.4(S) .5( ) .0( ) .9( ) 1.3( ) 1.6( ) .5( ) _ 2.0( ) 1.6( ) 2.0( ; W. 99. 99. 116. 6. 123. 12. 9. 1. 0. ' 1.6( ) 0. 1.6( ) 17. 1.6( ) 3. 1.8( ) 1.0( ) 1.8( ) 1.2( ) 1.1( ) .2(S) .O(S) .0( ) 6.2(S) .5(0) 3 40. 9. 1. 2. 82. 9. 94. 3. 94. 96. 96. ' 2.3(S) .5( ) .0( ) .9( ) 1.3( ) 1.6( ) .5( ) 2.0( ) 1.6( ) 2.0( ) 98. 98. 98. 115. 6. 122. 12. 9. 1. 0. 1.6( ) 1.6( ) 1.6( ) 1.8( ) .9( ) 1.8( ) 1.2( ) 1.1( ) .2(S) .O(S) ' 0. 17. 3. .0( ) 6.2(S) .5(0) 3 45. 9. 1. 0. 81. 9. 92. 3. 92. 94. 94. ' 2.3(S) .5( ) .0( ) .9( ) 1.3( ) 1.6( ) .5( ) 1.9( ) 1.6( )' 2.0( ) 96. 96. 97. 114. 6. 120. 12. B. 1. 0. 1.6( ) 1.6( ) 1.6( ) 1.8( ) .9( ) 1.8( ) 1.2( ) 1.1( ) .2(S) .O(S) ' 0. 17. 3. .0( ) 6.2(S) .5(0) _ 3 50. 8. 1. 2. 79. 9. 90. 3. 90. 92. 92. ' 2.2(S) .5( ) .0( ) .9( ) 1.3( ) 1.5( ) :5( ) 1.9( ) 1.6( ) 1.9( ) 94. 95. 95. 112. 6. 119. 11. 8. 1. 0. - 1.6( ) 1.6( ) 1.6( ) 1.7( ) .9( ) 1.8( ) 1.2( ) 1.0( ) .2(S) .O(S) ' 0. 17. 3. .0( ) 6.1(S) .5(0) 3 55. 8.- 1. 0. 76. 9. 88. 3. 88. 90. 90. ' 2.2(S) .5( ) .0( ) .9( ) 1.3( ) 1.5( ) .5( ) 1.9( ) 1.5( ) 1.9( ) 92. 93. 93. 110. 6. 117. 11. 8. 1. 0. 1.6( ) 1.6( ) 1.6( ) 1.7( ) .9( ) 1.8( ) 1.2( ) -1.0( ) .2(S) .O(S) ' 0. 17. 3. .0( ) 6.1(S) .4(0) 4 0. 8. 1. 2. 74. 8. 86. 3. 86. 88. 88. ' 2.1(S) .5( ) .0( ) .9( ) 1.3( ) 1.5( ) .5( ) 1.9( ) 1..5( ) 1.9( ) 90. 90. 91. 108. 5. 114. 11. 8. 1. 0. 1.5( ) 1.5( ) 1.6( ) 1.7( ) .9( ) 1.8( ) 1.1( ) 1.0( ) .2(S) .O(S) ' 0. 17. 3. .0( ) 6.1(S) AM _ 4 5. 8. 1. 0. 72. 8. 83. 3. 83. 85. 85. ' 2.1(S) .5( ) .0( ) .9( ) 1.3( ) 1.5( ) .5( ) 1.8( ) 1.5( ) 1.9( ) 88. 88. 89. 106. 5. 112. 10. 7. 1. 0. 1.5( ) 1.5( ) 1.5( ) 1.7( ) .9( ) 1.7( ) 1.1( ) 1.0( ) .2(S) .O(S) ' 0. 17. 3. .0( ) 6.0(S) .4(0) ' 4 10. 8. 1.. 1. 70. 8. 81. 3. 81. 83. 83. 1 151 j(po 2.1(S) .5( ) .0( ) .8( ) 1.3( ) 1.5( ) .5( ) 1.8( ) 1.5( ) 1.8( ) 86. 86. 87. 104. 5. 109. 10. 7. 1. 0. ' 1.5( ) 0. 1.5( ) 17. 1.5( ) 1.7( ) .9( ) 1.7( ) 1.1( ) 1.0( ) .2(S) .O(S) 3. .0( ) 6.0(S) .4(0) GENEVA/EVERITT DRAINAGE MODEL FOR A 10 YEAR STORM EVENT - ( TOTAL DEVELOPED BUILDOUT:MODEL 39500310.DAT) ' *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** ' CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 300 130. (DIRECT FLOW) 0 30. 36 19. .4 0 40. ' 290 3. (DIRECT FLOW) 0 15. 24 15. .4 0 40. 30 130. (DIRECT FLOW) 0 30. 15 3. .3 0 G. ' 5 3. .3 0 1 0. 21 35. .7 0 40. 29 3. 1.0 .0 1 0. 23 . .7 0 40. 35 12. 12 .3 0 40. 7 58. .7 0 40. 4 119. 2.9 0 35. 44 30. 1.0 0 45. { 20 48. 2.0 0 45. i' 19 5. .2 0 35. 18 35. .6 0 45. 9 4. .3 0 40. " - 10 18. .5 0 40. 11 7. .4 1 25. 13 19. .5 0 45. 8 71. 2.5 0 40. 6 179. 3.6 0 45. 17 95 398, 111. L5 (DIRECT FLOW) 0 45. 0 35. 91 11. 1.1 0 40. 2 83. .1 28.5 3 5. 93 10. .1 3.1 1 50. 1 83. .1 .2 3 5. ' 92 14. 1.1 0 40. 94 10. 1.4 1 55. 3 86. .9 3 20. 357 358 99. 99. 1.6 2.0 3 20. 3 20. 359 99. 1.6 3 25. 310 58. (DIRECT FLOW) 0 40. 370 1. .1 .4 1 25 DO.OD 376 4156L = 30.00 j g 11'..Afcz l.N/ Gfs 360 99. 2.0 3 25. ' 31 58. (DIRECT FLOW) 0 40. 28 4. .8 1 20. 33 36. 1.3 0 40. 374 39 371 3. 27. 1 1.0 1.6 1 .8 1 1 45. 1 5. 0 55 ' POND 371 WSE- 25.00, QaWoux6le` O'S(as 361 100. 1.6 3 25. 27 89. .9 0 45. 38 30. 1.7 1 10. 372 2. 1.0 .2 1 10. 362 100. 1.6 3 25. 41 89. 1.0 .0 0 45. 34 71. .9 0 40. ' 373 17. .1 6.4 363 100. 1.6 26 138. 5.0 .1 365 1. 1. ' 364 117. 1.8 42 147. 3.4 . 25 S. 1.3 .0 14 56. .8 16 6. .3 ' 12 53. .8 366 124. 1.8 22 229. 3.4 367 124. (DIRECT FLOW) ' 43 1 232. .1 .1 ' ENDPROGRAM PROGRAM CALLED 1 iF l - 1 2 50. 3 25. 0 45. 0 40. 3 25. 0 45. 0 40. 0 40. 0 40. 0 40. 3 25. 0 45. 3 25. 0 50. IW i �Z 11 1 R u .1 SWMM MODEL 100 YEAR OUTPUT too YEI3k 10 - srokm ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) ' HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) OTAPE OR DISK ASSIGNMENTS -' JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JINGO) 2 1 0 0 0 0 0 0 0 0 JOUT(1) JOUTM JOUT(3) JOUT(4) JOUT(5) JOUT(6)JOUT(7) JOUT(8) JOUT(9) JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 3 4 0 0 0 }, 1 r' S WATERSHED PROGRAM CALLED ' *** ENTRY MADE TO RUNOFF MODEL *** COTTONWOOD FARMS, OAKRIDGE, HARMONY CROSSING, STETSON CREEK; AND TIMBER CREEK DRAINAGE MODEL FOR A 100 YEAR STORM (TOTAL DEVELOPED BUILDOUT 39503100.DAT) NUMBER OF TIME STEPS 50 OINTEGRATION TIME INTERVAL (MINUTES) S.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH FOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR ' .60 .96 1.44 1.68 3.00 5.04 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 .24 .24 .12 .12 .00 i COTTONWOOD FARMS, OAKRIDGE, HARMONY CROSSING, STETSON CREEK, AND TIMBER CREEK DRAINAGE MODEL FOR A 100 YEAR STORM (TOTAL DEVELOPED BUILDOUT : 39503100.DAT) SUBAREA GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) INFILTRATION RATE(IN/HR) GAGE - NUMBER OR MANHOLE (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. MAXIMUM MINIMUM DECAY RATE NO -2 0 0. .0 .0 .0300 .016 .250 .IOD .500 .50 .50 .00180 80 8 3130. 57.1 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 ' 60 6 , 1150. 8.9 40.0 .0100 :016 .250 .100 .500 .50 .50 .00180 70 7 1350. 29.4 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 130 13 675. 24.7 40.0 .0100 .016 .250 .100 - .500 .50 .50 .00180 100 10 850. 13.2 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 150 15 50. 1.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 160 16 3500. 4.0 B4.0 .0200 .016 .250 .100 .500 .50 .50 .00180 110 11 34. 9.6 84.0 .0200 .016 .250 .100 .500 .50 .50 .00180 120 12 500. 17.8 80.0 .0200 .016 .250 .100 .500 .50 .50 .00180 ' 90 9 400. 13.1 10.0 .0100 .016 .250 .100 .500 .50 .50 .00180 190 19 250. 1.4 80.0 .0100 -.016 .250 .100 .500 .50 .50 .00180 r. 200 20 700. 31.3 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 210 240 . 21 24 500. 300. 7.5 5.0 80.0 80.0 .0100 .0100 .016 .016 .250 .250 .100 .100 .500 .500 .50 .50 .50 .50 .00180 .00180 280 28 50. 6.9 80.0 .0200 .016 .250 .100 .500 '.50 .50 .00180 330 33 700. 5.6 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 304 92 2000. 71.5 5.0 .0100 .016 .250 .100 .500 .50 - .50 .00180 320 315. 14.8 14.5 .0183 .016 .250 .100 .500 .50 .50 .00180 '201 202 322 700. 22.9 50.0 .0165 .016 .250 .100 .500 .50 .50 .00180 203 172 1000. 32.3 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 - 204 166 900. 19.0 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 205 206 168 171 650. 650. 5.8 7.7 47.0 70.0 .0105 .0080 .016 .016 .250 .250 .100 .100 .500 .500 .50 .50 .50 .50 .00180 .00180 207 176 650. 13.8 57.0 .0235 .016 .250 .100 .500 .50 .50 .00180 208 178 950. 27.1 70.0 .0170 .016 .250 .100 .500 .50 .50 .00180 209 321 435. 23.4 40.0 .0085 .016 .250 .100 .500 .50 .50 .00180 324 400. 8.9 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 '165 211 325 700. 10.9 40.0 .0200 .016 .250 .100 .500 .50 .50 .00180 212 328 400. 4.2 70.0 .0380 .016 .250 .100 .500 .50 .50 .00180 213 180 700. 23.3 45.0 .0055 .016 .250 .100 .500 .50 .50 .00180 214 179 2200. 1.6 90.0 .0110 .016 .250 .100 .500 .50 .50 .00180 215 331 35. .7 90.0 .0270 .016 .250 .100 .500 .50 .50 .00180 216 329 35. 1.0 90.0 .0060 .016 .250 .100 .500 .50 .50 .00180 301 91 2400. 30.2 5.0 .0077 .016 .430 .100 .600 .50 .50 .00180 302 95 3500. 47.3 45.0 .0100 .016 .390 .100 .600 .50 .50 .00180 3 4100. 108.9 5.0 .0113 .016 .250 .100 .500 .50 .50 .00180 ±'303 305 365 1988. 78.5 3.9 .0110 .016 .250 .100 .250 .50 .50 .00180 306 372 1729. 8.7 31.2 .0200 .016 .250 .100 .950 .50 .50 .00180 307 359 960. 5.4 17.0 .1262 .016 .250 .100 .950 .50 .50 .00180 308 370 1335. 7.0 40.0. 0200 .016 .250 .100 .600 .50 .50 .00180 '.'309 361- 507. 1.6 4.0 .1262 .016 .250 .100 .990 .50 .50 .00180 311 371 315. 2.8 40.0 .0200 .016 .250 .100 .900 .50 .50 .00180 312 363 569. 2.1 2.3 .1262 .016 .250 .100 .990 .50 .50 .00180 313 366 495. .9 1.0 .0500 .016 .250 .100 .900 .50 .50 .00180 314 373 3040. 90.5 34.0 .0200 .016 .250 .100 .950 .50 .50 .00180 315 374 1000. 15.1 40.0 .0200 .016 .250 .100 .500 .50 .50 .00180 316 39 2764. 99.0 2.0 .0169 .016 .250 .100 .300 .50 .50 .00180 OTOTAL NUMBER OF SUBCATCHMENTS, 47 TOTAL TRIBUTARY AREA (ACRES), 1024.32 COTTONWOOD FARMS, OAKRIDGE, HARMONY CROSSING, STETSON CREEK, AND TIMBER CREEK ' DRAINAGE MODEL FOR A 100 YEAR STORM (TOTAL DEVELOPED BUILDOUT : 39503100.DAT) HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 11 SUBCATCHMENTS - AVERAGE VALUES WITHIN TIME INTERVALS ' TIME(HR/MIN) 305 306 307 308 309 311 312 313 314 315 316 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. . ' 0. 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 15. 3. 3. 1. 2. 0. 1. 0. 0. 9. 3. 2. 0 20. 5. 5. 1. 5. 0. 2. - 0. 0. 29. 7. 3. 1 0 25. S. 7. 5. 1 0 30. 17. 15. 13. 0 35. 41. 24. ' 43. 0 ' 0 40. 45. 51. 63. 46. 25. U. 67. 0 50. 48. 16. ' 72. 0 55. 48. 71. 12. 1 0. 47. 47. 10. 70. ' 1 5. 66. bb. 8. 1 10. 42. 2. 6. 1 1 15. 40. 40. 4. 59. 1 20. 4. ' 55. 55. 1 25. 36. 52. 3. ' 1 30. 35. 2. 49. ' 1 35. 47. 47. 2. 1 40. 32. 44. 2. ' 1 45. 30. 2. 42. ' 1 50. 40. 40. 2. 1 55. 28. 1. 1 2 0. 38. 27. 1. 36. 2 5. 1. ' 34. 34. 2 10. 24. 1. ' 2 15. 32. 23. 0. 31. ' 2 20. 2. 29. 0. 1 3. 7. 0. 3. 0. 0. 57. 13. S. 13. 0. 5. 0. 0. 109. 24. 10. 28. 1. 9.- 1. 1. 209. 50. 16. 29. 5. 9. 6. 3. 219. 52. 13. 18. 4. S. 6. 3. 135. 33. 11. 15. 3. 5. 4. 2. 103. 27. 8: 11. 2. 4. 3. 1. 87. 23. 6. 9. 2. 3. 2. 1. 74. 19. 4. 6. 1. 2. 1. 1. - 63. 15. 3. 5. -1. 2. 1. 0. _ 54. 13. 2. 4. 0. 2. 1. 0. 46. 10. 2. 3. 0. 1. 1. 0. 41. 9. 1. 2. 0. 1. 0. 0. 37. S. 1. 2. 0. 1. 0. 0. 33. 7. 1. 2. 0. 1. 0. 0. 30. 6. 1. 2. 0. 1. 0. 0. 28. 5. 1. 1. 0. 1. 0. 0. 27. 5. 1. 1. 0. 1. 0. 0. 25. 4. 0. 1. 0. 1. 0. 0. 23. 4. 0. 1. 0. - 0. 0. 0. 21. 3. 0. 1. 0. 0. 0. 0. 19. 3. 0. 0. 0. 0. 0. 0. 16. 2. 0. 0. 0. 0. 0. 0. 15. 2. 0. 0. 0. 0. 0. 0. 13. 2. 1&5 2 25. 21. 0. 0. 0. 0. 0.. 0. ' 28. 2 30. 20. 0. 0. 0. 0. 0. 0. 26. 2 35. 20. 0. 0. 0. 0. 0. 0. ' 25. r 2 40. 19. 0. 0. 0. 0. 0. 0. 24. 2 45. 18. 0. 0. 0. 0. 0. 0. 23. 2 50. 18. 0. 0. 0. 0. 0. 0. 22. 2 55. 17. 0. 0. 0. 0. 0. 0. 21. 3 0. 16. 0. 0. 0. 0. 0. 0. 20. 3 5. 16. 0. 0. 0. 0. 0. 0. ' 19. ,. 3 10. 15. 0. 0. 0. 0. 0. 0. 18. 1 3 15. 15. 0. 0. 0. 0. 0. 0. 18. 3 20. 14. 0. 0. 0. 0. 0. 0. 17. 3 25. 14. 0. 0. 0. 0. 0. 0. 3 30. 16. 13. 0. 0. 0. 0. 0. 0. 16. 3 35. 13. 0. 0. 0. 0. 0. 0. ' 15. 3 40. 12. 0. 0. 0. 0. 0. 0. 14. ' 3 45. 12. 0. 0. 0. 0. 0. 0. 14. 3, 50. 11. 0. 0. 0. 0. 0. 0. 13. 3 55. 11. 0. 0. 0. 0. 0. 0. ' 4 0. 13. 111.. D. 0. 0. 0. 0. 0. 12. 4 5. 10. 0. 0. 0. 0. 0. 0. 12. 4 10. 10. 0. 0. 0. 0. 0. 0. ' 1 11. COTTONWOOD FARMS, OAKRIDGE, HARMONY CROSSING, STETSON CREEK, AND TIMBER CREEK DRAINAGE MODEL FOR A 100 YEAR STORM (TOTAL DEVELOPED BUILDOUT : 39503100.DAT) 0. 12. 2. 0. 11. 1. 0. 11. 1. 0. 10. 1. 0. 9. 1. 0. 9. 1. 0. 8. 1. 0. 8. 1. 0. 7. 1. 0. 7. 1. 0. 6. 1. 0. 6. 1. 0. 6. 1. 0. S. 0. 0. 5. 0. 0. 5. 0. 0. 5. 0. 0. 4. 0. 0. 4. 0. 0. 4. 0. 0. 4. 0. 0. 4. 0. iW *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 1024.320 TOTAL RAINFALL (INCHES) 2.890 TOTAL INFILTRATION (INCHES) .564 ' TOTAL WATERSHED OUTFLOW (INCHES) 1.685 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .641 'ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .002 1 'COTTONWOOD FARMS, OAKRIDGE, HARMONY CROSSING, STETSON CREEK, AND TIMBER CREEK DRAINAGE MODEL FOR A 100 YEAR STORM (TOTAL DEVELOPED BUILDOUT : 39503100.DAT) WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAM LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 4 0 1 CHANNEL .0 1600. .0040 50.0 .0 .016 1.50 0 ',15 4 6 0 1 CHANNEL .0 800. .0044 4.0 4.0 .035 5.00 0 7 6 0 1 CHANNEL .0 1400. .0100 .0 50.0 .016 1.50 0 6 17 0 1 CHANNEL .0 1200., .0032 4.0 4.0 .035 5.00 0 8 17 0 1 CHANNEL .0 1800. .0033 4.0 4.0 .035 5.00 0 17 0 1 CHANNEL .0 3600. .0060 50.0 .0 .016 1.50 0 '13 12 22 0 1 CHANNEL .0 1300. .0060 50.0 .0 .016 2.50 0 16 22 0 1 .CHANNEL .0 3500. .0060 50.0 50.0 .016 2.00 0 11 17 0 1 CHANNEL .0 8350. .0060 50.0 .0 .016 1.50 0 17 0 1 CHANNEL .0 1600. .0060 50.0 .0 .016 1.50 0 '10 9 17 0 1 CHANNEL 5.0 1000. .0060 15.0 15.0 .035 5.00 0 18 17 0 1 CHANNEL .0 1100. .0060 50.0 .0 .016 1.50 0 19 17 0 1 CHANNEL .0 200. .0050 100.0 100.0 .016 1.50 0 20 17 0 1 CHANNEL .0 2100. .0050 4.0 4.0 .035 5.00 0 21 44 0 1 CHANNEL .0 1200. .0050 50.0 .0 .016 1.50 0 1 44 17 0 1 CHANNEL 3.0 800. .0050 10.0 10.0 .035 2.00 0 220 22 3 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS .0 .0 .3 11.9 4.1 .01 ' 22 43 0 1 CHANNEL .0 1600. .0070 4.0 4.0 .035 5.00 0 43 17 4 2 PIPE .1 1. .0010 .0 .0 .016. 10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 133.0 .0 140.0 .0 150.0 230 23 3 3 .0 1. .0010 .0 .0 .001 10.00 .1 ' TIME IN HRS VS INFLOW IN CFS .0 .0 .3 7.2 7.2 .0 23 18 0 1 CHANNEL .0 1300. .0050 50.0 .0 .016 1.50 0 ' 24 250 7 25 0 3 1 3 CHANNEL .0 .0 700. 1. .0080 .0010 50.0 .0 .0 .0 .016 .001 1.50 10.00 0 -1 TIME IN HRS VS INFLOW IN CFS .0 .0 .1 .3 5.0 .3 25 22 0 2 PIPE 1.3 500. .0050 .0 .0 .013 1.25 0 260 26 3 3 - .0 1. .0010 .0 .0 .001 10.00 -1 ' TIME IN HRS VS INFLOW IN CFS .0 .0 .2 11.2 7.0 .0 26 42 0 5 PIPE 3.5 800. .0050 .0 .0 .016 3.50 0 '42 22 0 2 OVERFLOW PIPE 10.0 6.0 800. 1. .0050 .0050 4.0 .0 4.0 .0 .035 .016 5.00 6.00 0 340 11 3 3 .0 1. .0010 .0 .0 .001 10.00 .1 TIME IN HRS VS INFLOW IN CFS .0 .0 .2 1.9 7.0 .0 270 27 3 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS ' .0 .0 .2 5.9 7.0 .0 27 41 0 1 CHANNEL .0 800. .0050 50.0 .0 .016 1.50 0 41 26 0 5 PIPE 4.0 100. .0050 .0 .0 .016 4.00 0 ' OVERFLOW 10.0 100. .0050 50.0 50.0 .016 1.00 28 27 0 1 CHANNEL .0 5000. .0050 .0 50.0 .016 1.50 0 _ 290 29 3 3 .0 1. .0010 .0 .0 .001 10.00 -1 TIME IN HRS VS INFLOW IN CFS .0 .0 .2 3.1 7.0 .0 ' 29 18 0 2 PIPE 1.0 500. .0050 .0 .0 .013 1.00 0 166 167 0 2 PIPE 2.5 96. .0032 .0 .0 .013 2.51 0 167 169 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 5.00 0 168 169 0 2 PIPE 1.3 10. .0017 .0 .0 .013 1.25 0 169 170 0 2 PIPE 2.5 40. .0070 .0 .0 .013 2.47 0 170 174 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 5.00 0 171 174 0 2 PIPE 1.3 10. .0038 .0 .0 .013 1.25 0 173 0 2 PIPE 1.5 120. .0033 .0 .0 .013 1.50 0 173 175 0 1 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 '172 174 175 0 2 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 175 177 0 2 PIPE 2.5 853. .0123 .0 .0 .013 2.50 0 176 177 0 2 PIPE 1.0 315. .0020 .0 .0 .013 1.00 0 180 0 2 PIPE 3.0 480. .0100 .0 .0 .013 3.00 0 '177 178 177 0 2 PIPE 2.3 1150. .0038 .0 .0 .013 2.25 0 320 321 0 1 CHANNEL 5.0 1350. .0050 4.0 4.0 .035 5.00 0 321 324 8 2 PIPE .1 300. .0053 .0 .0 .013 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .3 2.6 .8 4.3 1.5 5.5 2.5 6.4 ' 3.8 7.3 5.4 8.0 322 323 0 2 PIPE 1.5 10. .0100 .0 .0 .013 1.50 0 323 324 0 1 CHANNEL .0 1500. .0142 50.0 .0 .016 1.50 0 331 0 2 PIPE 3.0 120. .0050 .0 .0 .013 3.00 0 '3,24 325 326 0 1 CHANNEL 4.0 420. .0050 3.0 3.0 .035 3.00 0 326 327 0 2 PIPE 3.5 100. .0050 .0 .0 .013 3.50 0 327 329 0 1 CHANNEL 4.0 750. .0050 3.0 3.0 .035 3.00 0 . 328 329 0 2 PIPE 1.8 100. .0100 .0 .0 .013 1.75 0 329 180 0 1 CHANNEL 5.0 240. .0050 4.0 4.0 .035 4.00 0 ' 179 324 0 2 PIPE 1.5 80. .0050 .0 .0 .013 1.50 0 ,. 331 325 0 2 PIPE 3.0 80. .0050 .0 .0 .013 3.00 0 180 30 0 2 PIPE 5.2 130. .0015 .0 .0 .013 5.20 0 '30 33 4 21 0 0 3 1 CHANNEL .0 .0 1. 700. .0010 .0080 .0 50.0 .0 .0 .001 .016 10.00 1.50 0 0 310 31 11 3 .0 1. .0010 .0 .0 .001 10.00 .1 TIME IN HRS VS INFLOW IN CFS .0 .0 .1 .0 .2 .0 .3 2.0 .3 10.0 .4 25.0 .5 38.0 .6 53.0 .7 59.0 .8 55.0 5.0 55.0 31 27 0 3 .0 1. .0010 .0 .0 .001 10.00 0 17 2 0 1 CHANNEL 10.0 500. .0050 15.0 15.0 .040 5.00 0 2 1 10 2 PIPE .1 1. .0001 .0 .0 5.000 .10 0 ' RESERVOIR .0 STORAGE IN .0 ACRE-FEET VS .3 13.0 SPILLWAY OUTFLOW 1.3 25.0 4.4 37.0 10.1 47.0 18.2 55.0 23.5 60.0 28.0 62.0 33.1 289.0 38.2 636.0 1 3 6 2 PIPE .1 1. .0001 .0 .0 5.000 .10 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 6.0 .2 93.0 .5 247.0 .9 380.0 1.2 434.0 '.0 3 357 0 1 CHANNEL 4.0 2050. .0100 50.0 60.0 .052 5.00 0 91 93 0 1 CHANNEL .0 1325. .0150 4.0 4.0 .060 5.00 0 93 94 10 2 PIPE .1 1. .0050 .0 .0 .013 .10 0 ' RESERVOIR .0 STORAGE IN .0 ACRE-FEET VS .1 .0 SPILLWAY OUTFLOW .5 .0 1.0 .0 1.6 1.9 2.4 5.4 3.3 7.7 4.3 14.0 5.4 20.7 6.5 93.9 94 357 0 1 CHANNEL .0 1000. .0027 3.0 3.0 .035 5.00 0 92 357 0 1 CHANNEL 2.0 2000. .0100 2.0 2.0 .036 5.00 0 95 93 0 3 .0 1. .0010 .0 .0 .001 10.00 0 357 358 0 1 CHANNEL 16.0 10. .0050 4.0 4.0 .045 4.00 0 358 359 0 2 PIPE 9.4 103. .0050 .0 .0 .013 9.44 0 359 360 0 1 CHANNEL 16.0 950. .0050 4.0 4.0 .045 4.00 0 360 361 361 362 0 0 2 1 PIPE CHANNEL 9.4 16.0 46. 619. .0050 .0050 .0 4.0 .0 4.0 .013 .045 9.44 4.00 0 0 362 363 0 1 CHANNEL 16.0 215. .0050 4.0 4.0 .045 4.00 0 363 364 0 1 CHANNEL 16.0 415. .0050 4.0 4.0 .045 4.00 0 364 366 0 1 CHANNEL 16.0 90. .0050 4.0 4.0 .045 4.00 0 366 0 1 CHANNEL .0 1125. .0045 4.0 4.0 .035 2.30 0 '365 366 367 0 1 CHANNEL 16.0 377. .0050 4.0 4.0 .045 4.00 0 38 373 0 1 CHANNEL .0 1080. 39 38 0 1 CHANNEL .0 2160. ' 370 361 9 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .0 .0 .8 .7 3.7 .8 3.9 1.0 4.1 371 362 7 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .0 .5 .1 1.2 .6 1.8 372 363 0 2 PIPE 1.3 80. 373 364 30 2 PIPE .1 1. RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .1 .0 .5 .0 3.9 7.1 4.2 8.1 4.4 9.4 5.4 15.6 5.6 16.0 5.9 16.4 ' 7.0 18.0 7.3 18.4 7.5 18.8 8.7 20.0 9.0 29.9 9.3 47.8 374 38 0 2 PIPE 1.5 50. OTOTAL NUMBER OF GUTTERS/PIPES, 90 '1 COTTONWOOD FARMS, OAKRIDGE, HARMONY CROSSING, STETSON CREEK, AND TIMBER CREEK DRAINAGE MODEL FOR A 100 YEAR STORM (TOTAL DEVELOPED BUILDOUT : 39503100.DAT) ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES ' GUTTER TRIBUTARY GUTTER/PIPE 1 2 0 0 0 0 0 0 0 0 0 2 17 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 3 ' - 4 15 30 0 0 0 0 0 0 0 0 6 4 7 0 0 0 0 0 0 0 0 7 24 0 0 0 0 0 0 0 0 0 ' 8 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 ' 10 0 0 0 0 0 0 0 0 0 0 i 11 340 0 0 0 0 0 0 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 1 13 0 0 0 0 0 0 0 0 0 0 t ' 15 0 0 0 0 0 0 0 0 0 0 1 16 0 0 0 0 0 0 0 0 0 0 1 17 6 8 13 11 10 9 18 19 20 44 18 23 29 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 1 ' 20 0 0 0 0 0 0 0 0 0 0 2 21 33 0 0 0 0 0 0 0 0 0 21 ' 22 12 16 220 25 42 0 0 0 0 0 1 .0050 4.0 4.0 .035 3.50. 0 .0050 4.0 4.0 .035 3.50 0 .0050 .0 .0 .013 .10 0 .2 1.1 .4 1.4 .6 3.5 .0015 .0 .0 .013 .10 0 .2 1.4 .3 1.4 .4 1.6 .0040 .0 .0- .013 1.25 0 .0042 .0 .0 .013 .10 0 1.6 .0 3.5 6.4 3.7 6.8 4.7 11.1 4.9 13.1 5.2 15.2 6.2 16.8 6.4 17.2 6.7 17.6 7.8 19.2 8.1 19.6 8.4 19.8 9.6 71.0 9.9 98.3 10.2 129.3 .0040 .0 .0 .013 1.50 0 TRIBUTARY SUBAREA 60 80 90 00 10 20 30 50 60 90 00 D.A.(AC) 0 0 0 0 0 0 0 0 0 0 426.1 0 0 0 0 0 0 0 0 0 0 426.1 03 0 0 0 0 0 0 0 0 0 535.0 0 0 0 0 0 0 0 0 0 0 219.2 0 0 0 0 0 0 0 0 0 262.5 70 0 0 0 0 0 0 0 0 0 34.4 0 0 0 0 0 0 0 0 0 57.1 0 0 0 0 0 0 0 0 0 13.1 0 0 0 0 0 0 0 0 0 13.2 0 0 0 0 0 0 0 0 0 9.6 0 0 0 0 0 0 0 0 0 17.8 0 0 0 0 0 0 0 0 0 24.7 0 0 0 0 0 0 0 0 0 1.8 0 0 0 0 0 0 0 0 0 4.0 0 0 0 0 0 0 0 0 0 0 426.1 0 0 0 0 0 0: 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 1.4 0 0 0 0 0 0 0 0 0 31.3 0 0 0 0 0 0 0 0 0 0 13.1 0 0 0 0 0 0 0 0 0 0 28.7 23 230 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 ' 25 250 0 0 0 0 0 0 0 0 0 26 2611 41 0 0 0 0 0 0 0 0 27 270 28 31 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 ' 29 290 0 0 0 0 0 0 0 0 0 - 30 180 0 0 0 0 0 0 0 0 0 31 310 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 38 39 374 0 0 0 0 0 0 0 0 ' 39 0 0 0 0 0 0 0 0 0 0 41 27 0 0 0 0 0 0 0 0 0 ' 42 26 0 0 0 0 0 0 0 0 0 43 22 0 0 0 0 0 0 0 0 0 ' 44 21 0 0 0 0 0 0 0 0 0 91 0 0 0 0 0 0 0 0 0 0 92 0 0 0 0 0 0 0 0 0 0 93 91 95 0 0 0 0 0 0 0 0 94 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95 166 0 0 0 0 0 0 0 0 0 0 ' 167 166 0 0 0 0 0 0 0 0 0 168 0 0 0 0 0 0 0 0 0 0 169 167 168 0 0 0 0 0 0 0 0 170 169 0 0 0 0 0 0 0. 0 0 171 0 0 0 0 0 0 0 0 0 0 ' 172 0 0 0 0 0 0 0 0 0 0 173 172 0 0 0 0 0 0 0 0 -0 ' 170 171 0 0 0 0 0 0 0 0 174 175 173 174 0 0 0 0 0 0 0 0 ' 176 0 0 0 0 0 0 0 0 0 0 177 175 176 178 0 0 0 0 0 0 0 ' 178 0 0 0 0 0 0 0 0 0 0 179 10 0 0 0 0 0 0 0 0 0 180 177 329 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 240 0 0 0 0 0 0 0 0 0 5.0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 - 0 0 0 0 0 0 0 6.9 0 0 0 0 0 0 0 0 0 0 6.9 280 0 0 0 0 0 0 0 0 0 6.9 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 217.4 0 0 0 0 0 0 0 0 0 0 .0 330 0 0 0 0 0 0 0 0 0 5.6 0 0 0 0 0 0 0 0 0 0 114.1 316 0 0 0 0 0 0 0 0 0 99.0 0 0 0 0 0 0 0 0 0 0 6.9 0 0 0 0 0 0 0 0 0 0 6.9 0 0 0 0 0 0 0 0 0 0 28.7 0 0 0 0 0 0 0 0 0 0 13.1 301 0 0 0 0 0 0 0 0 0 30.2 304 0 0 0 0 0 0 0 0 0 71.5 0 0 0 0 0 0 0 0 0 0 77.5 0 0 0 0 0 0 0 0 0 0 77.5 302 0 0 0 0 0 0 0 0 0 47.3 204 0 0 0 0 0 0 0 0 0 19.0 0 0 0 0 0 0 0 0 0 0 19.0 205 0 0 0 0 0 0 0 0 0 5.8 0 0 0 0 0 0 0 0 0 0 24.9 0 0 0 0 0 0 0 0 0 0 24.9 206 0 0 0 0 0 0 0 0 0 7.7 203 0 0 0 0 0 0 0 0 0 32.3 0 0 0 0 0 0 0 0 0 0 32.3 0 0 0 0 0 0 0 0 0 0 32.5 0 0 0 0 0 0 0 0 0 0 64.8 207 0 0 0 0 0 0 0 0 0 13.8 0 0 0 0 0 0 0 0 0 0 105.7 208 0 0 0 0 0 0 0 0 0 27.1 214 0- 0 0 0 0 0 0 0 0 1.6 213 0 0 0 0 0 0 0 0 0 217.4 ' 220 0 0 0 0 0 0 0 0 0 0 230 0 0 0 0 0 0 0 0 0 0 ' 250 0 0 0 0 0 0 0 0 0 0 260 0_ 0 0 0 0 0 0 0 0 0 270 0 0 0 0 0 0 0 0 0 0 290 0 0 0 0 0 0 0 0 0 0 ' 310 0 0 0 0 0 0 0 0 0 0 320 0 0 0 0 0 0 0 0 0 0 ' 321 320 0 0 0 0 0 0 0 0 0 322 0 0 0 0 0 0 0 0 0 0 323 322 0 0 0 0 0 0 0 0 0 ' 324 321 323 179 0 0 0 0 0 0 0 1 325 331 0 0 0 0 0 0 0 0 0 ' 326 325 0 0 0 0 0 0 0 0 0 327 326 0 0 0 0 0 0 0 0 0 328 0 .0 0 0 0 0 0 0 0 0 2 329 327 328 0 0 0 0 0 0 0 0 2 331 324 0 0 0 0 0 0 0 0 0 2 340 0 0 0 0 0 0" 0 0 0 0 357 3 94 92 0 0 0 0 0 0 0 358 357 0 0 0 0 0 0 0 0 0 359 358 0 0 0 0 0 0 0 0 0 3 ' 360 359 0 0 0 0 0 0 0 0 0 361 360 370 0 0 0 0 0 0 0 0 3 ' 362 361 371 0 0 0 0 0 0 0 0 363 362 372 0 0 0 0 0 0 0 0 3 364 363 373 0 0 0 0 0 0 0 0 ' 365 0 0 0 0 0 0 0 0 0 0 3 366 364 365 0 0 0 0 0 0 0 0 3 ' 0 0 0 0 0 0 0 0 0 0 3 370 371 0 0 0 0 0 0 0 0 0 0 3 ' 372 0 0 0 0 0 0 0 0 0 0 3 373 38 0 0 0 0 0 0 0 0 0 3 374 0 0 0 0 0 0 0 0 0 0 3 FARMS, OAKRIDGE, HARMONY CROSSING, STETSON CREEK, AND TIMBER CREEK 'COTTONWOOD DRAINAGE MODEL FOR A 100 YEAR STORM (TOTAL DEVELOPED BUILDOUT 39503100.DAT) 201 209 202 211 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 14.8 0 0 0 0 0 0 0 0 0 38.2 0 0 0 0 0 0 0 0 0 22.9 0 0 0 0 0 0 0 0 0 0 22.9 65 0 0 0 0 0 0 0 0 0 71.6 0 0 0 0 0 0 0 0 0 83.2 0 0 0 0 0 0 0 0 0 0 83.2 0 0 0 0 0 0 0 0 0 0 83.2 12 0 0 0 0 0 0 0 0 0 4.2 16 0 0 0 0 0 0 0 0 0 88.3 15 0 0 0 0 0 0 0 0 0 72.3 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 684.0 0 0 0 0 0 0 0 0 0 0 684.0 07 0 0 0 0 0 0 0 0 0 689.4 0 0 0 0 0 0 0 0 0 0 689.4 09 0 0 0 0 0 0 0 0 0 698.1 0 0 0 0 0 0 0 0 0 0 700.8 12 0 0 0 0 0 0 0 0 0 711.7 0 0 0 0 0 0 0 0 0 0 916.2 05 0 0 0 0 0 0 0 0 0 78.5 13 0 0 0 0 0 0 0 0 0 995.6 08 0 0 0 0 0 0 0 0 0 7.0 11 0 0 0 0 0 0 0 0 0 2.8 06 0 0 0 0 0 0 0 0 0 8.7 14 0 0 0 0 0 0 0 0 0 204.5, 15 0 0 0 0 0 0 0 0 0 15.1 ' HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 49 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. .DISCHARGE INCLUDES SPILLWAY OUTFLOW. " (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER - TIME(HR/MIN) 93 91 95 3 94. 357 92 358 359 360 ' 361 362 363 364 365 366 38 39 370 371 372 373 374 166 167 168 169 170 171 172 ' 173 174 175 176 177 178 180 320 321 322 323 324 325 326 327 328 329 179 331 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0(S) .O( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .O( ) .O( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .O(S) .O(S) ' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( > .O(S) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .O( >- 0. .0( ) O. .0( 0, ) .0( ) 0. .0( ) 0, .0( ) 0. .0( ) 0, .O( ) 0, -0( ) 0. .O(S) 0. .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. .Oc ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( > 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - y .O(S) .O( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( > ' 0. .0( ) 0. .Oc 0. ) .Oc ) 0. .0( ) 0. .0( ) 0. .0( i 0. .0( ) 0. .O( ) 0. .O(S) 0. .0(S) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .I( ) .O(S) .1( ) .i( ) .0( ) .1( ) .O( ) .0( 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .O( ) .0( > .0( ) .i( ) .0( ) .0( > .0( ) .0( ) .O(S) .1( ) ' 0. .0( ) 0. .1( 0.. > .0( ) 0. .0( ) 0. .0( ) 0. .0( > 0. .0( > 0. .1( ) 0. .0( 0 15. 0. 0. 14. 0. - 0. 1: 0. 0. 0. 0. .1(S) .3( ) .O( ) .1( ) -0( ) .1( ) .2( ) .2( ) .0( ) .i( ) ' 0. 0. 2. 1. 1. 0. 1. 0. 0. 1. .0( ) .0( ) .2( ) .i( ) .4( ) .O( ) .4( ) .3( ) .O(S) .0(S) 4. 0. 5. 4. 1. 2. 3. 1. 3.' 4. ' .0(0) .1(5) 1.0( ) .7( > .3( ) .9( ) .5( ) .2( ) .7( ) .9( ) 0. 3. 1. 2. 4. 2. 6. - 0. 0. 4. .3( > .4( > .3( ) .0(0) .5( ) .5( ) .8( ) .0( ) .O(S) .7( ) ' 1. 5. 3. 2. 0. 2. 1. 3. 4. .1( ) .6( ) A( ) .4(.1 .1( ) .5( ) .2( ) .7( ) .6( ) 0 20, 0. 1. 30, 1, 0, 3, 2. 3. 1. 1. ' .2(S). .4( ) .0( ) .2( ) .0( ) .2( ) .4( ) .4( ) .1( ) .2( ) 0. 0. 4. 3. 2. 2. 3. 1. 1. 1. .0( ) . .1( ) .2( ) .2( ) .6( ) .1( ) .7( ) .4( ) .0(S) .0(S) ,, 4. 0. 7. 12. 8. 3. 11. 5. 4. 6. ' -.0(0) 3(S) .0(0) 1.3( ) .9( ) .0(0) 1.0( ) .7( ) .0(0) .0(0) 2. 11. 10. 2. 17. 9. 29. 0. 0. 11. ' .7( ) .7( ) .8( ) .0(0) 1.0( ) 1.1( ) 1.8( ) .1( ) .O(S) 1.3( ) - 4. 10. 12. 12. 4. 5. 6. 2. 11. ) .9( ) .9( ) 1.0( ) .5( ) .7( ) .5( ) .5( ) 1 M ) '.2( 0 25. 0. 2. 54. 3. 0. 7. 4. 7. 2. 2. .5(S) .6( ) A( ) .2( ) .0( ) .4( ) .6( ) .6( ) .2( ) 3( ) 1. 1. 5. 4. 4. 5. 6. '.9( 2. 1. 1. .1( ) .1( ) 3( ) 3( ) .8( ) 3( ) ) .6( ) A(S) .O(S) 4. 0. T. 25. 20. 3. 22. 14. 4. 6. ' AM .7(S) .0(0) 2.2( ) 1.5( ) .0(0) 1.5( ) 1.3( .0(0) .2(0) ' 4. 17. 19. 2. 48. 21. 79. 1. 1. 11. .8( ) 1.0( ) 1.1( ) AM 1.9( ) .1(0) 3.2( ) .2( ) A(S) .0(0) ' 8. 3( ) 21. 1.4( ) 27. 1.3( ) 26. 1.5( ) 14. .9( ) 8. .9( ) 19. .9( ) S. .9( ) 21. 1.4( ) 0 30. 0. 4. 103. 8. 0. 17. 9. 16. 8. 8. 1.1(S) .8( ) .0( ) M ) .1( ) .6( ) .9( ) .8( ) M ) .6( ) ' 3. 2. 6. 6. 11. 12. 8. 5. 1. 1. .2( ) .2( ) 3( ) 3( ) 1.2( ) .5( ) 1.0( ) .8( ) .2(S) A(S) 4. AM 0. 1.5(S) 7, .2(0) 25. .1(0) 26, 1.7( ) 3, AM 30. 1.8( > 25. 1.7( > 4, AM 6, .5(0) 5. 31. 32. 2. 47. 21. 119. 4. 2. 11. .9( ) 1.4( ) 1.5( ) .3(0) 1.9( ) 3(0) .0(0) M ) 3(S) .2(0) -' 10. 38. 52. 51. 34. 16. 45. 8. 41. 3( ) 2.1( ) 1.8( ) 2.2( ) 1.4( ) 1.4( ) 1.5( ) .0(0) 2.1( ) 0 35. 4. 9. 207. 23. 1. 46. 23. 45. 25. 24. ' 2.2(S) 1.1( ) .0( ) .5( ) .5( ) 1.1( ) 1.4( ) 1.4( ) .8( ) 1.0( ) 12. 9. 10. 13. 28. 29. 13. 17. 1. 1. .5( ) .4( ) A( ) .5( ) 1.7( ) .8( ) 1.2( ) 1.4( ) A(S) .1(S) 4. 5. 7. 25. 25. 3. 27. 28. 4. 6. .2(0) 3.0(S) .5(o) .5(o) 1.7( ) .2(0) 1.7( ) 1.8( ) AM 1.3(o) 6. 31. 38. 2. 63. 21. 119. 9. 4. 11. ' .9( ) 1.4( ) 1.8( ) .7(0) 2.3( ) .9(0) .4(0) .7( ) .6(S) .6(0) 11. 51. 95. 76. 73. 17. 88. 8. 51. .4( ) .0(0) 23( ) AM 2.1( ) .1(0) 2.0( ) .0(0) AM ' 0 40. 8. 15. 108. 43. 2. 80. 35. 79. 59. 59. 33(S) 1.3( ) .0( ) .7( ) .8( ) 1.4( ) 1.7( ) 1.8( ) 1.2( ) 1.6( ) 41. 33. 30. 37. 42. 68. 25. 34. 3. 1. ' 1.0( ) .9( ) .8( ) .9( ) 2.0( ) 1.3( ) 1.6( ) 1.8( ) .5(S) .2(S) 4. 11. 7. 25. 25. 3. 29. 28. 4. 6. .4(0) 4.6(S) .8(0) 1.0(0) 1.7( ) AM 1.8( ) 1.8( ) .6(0) 2 3(o) 6. 34. 38. 2. 59. 21. 119. 14. 5. 11. .9( ) 1.4( ) 1.8( ) 1.1(0) 2.2( ) 1.6(0) 1.2(0) .8( ) 1.0(S) 1.1(o) 11. 51. 86. 76. 76. 17. 101. 8. 51. ' .4( ) .0(0) 2.2( ) .2(0) 2.1( ) .1(0) 2.1( ) .0(0) .1(0) 0 45. 12. 16. 80. 61. 5. 102. 36. 101. 91. 91. 4.0(S) 1.3( ) .0( ) .8( ) 1.1( ) 1.7( ) 1.7( ) 2.0( ) 1.6( ) 1.9( ) 78. 72. 64. 77. 45. 110. 40. 48. 4. 1. 1 6 1.4( ) 1.4O 1.3( ) 1.4( ) 2.0( ) 1.7( ) 1.9( ) 2.0( ) .6(S) .2(S) 4. 16. 7. 25. 25. 3. 28. 28. 4. 6. AM 5.6(S) 1.0(0) 1.3(0) 1.7( ) AM 1.7( ) 1.8( ) .7(0) 3.0(0) 6. 31. 39. 2. 62. 21. 119. 13. 5. 11. .9( ) 1.4(, ) 1.8( ) 1.3(0) 2.3( ) 2.1(0) 1.8(0) .8( ) 1.4(S) 1.4(0) 11. 43. 71. 76. 76. 17. 95. 8. 51. .4( ) 2.3( ) 2.0( ) .2(0) 2.1( ) AM 2.1( ) .0(0) .1(0) 0 50. 15. 18. 64. 78. 9. 124. 38. 124. 116. 115. ' 4.5(S) 1.4( ) .0( ) .9( ) 1.4( ) 1.8( ) 1.7( ) 2.2( ) 1.8( > 2.2( ) 109. 105. 102. 117. 47. 153. 54. 58. 4. 1. 1.7( ) 1.7( ) 1.7() 1.8( ) 2.0( ) 2.1( ) 2.1( ) 2.2( ) .7(S) .2(S) 4. 17. 7. 25. 25. 3. 28. 28. 4. 6. .5(0) 6.6(S) 1.1(0) 1.5(0) 1.7( ) .5(0) 1.8( ) 1.8( ) .8(0) 3.6(0) ' - 6. .9( ) 34. 1.4( ) 39. 1.8( ) 2. 1.5(0) 60. 2.2( ) 21. - 2.4(0) 119. 2.3(0) 12. .8( ) 6. 1.7(S) 11. 1.6(0) 11. 30. 70. 76. 76. 17. 97. 3. 51. .4( ) 1.8( ) 2.0( ) .1(0) 2.1( ) .0(0) 2.1( ) .7( ) .O(G) ' 55. 18. 19. 56. 91. 13. 142. 38. 142.- 135. 135. .0 4.9(S) 1.4( ) .0( ) .9( ) 1.5( ) 2.0( ) 1.7( ), 2.4( ) 1.9( ) 2.3( ) { ' 131. 1.9( ) 129. 1.9( ) 129. 1.9( ) 146. 2.0( ) 48. 2.1( ) 187. 2.3( ) 65. 2.3( ) 64. 2.2( ) 4. ,.8(S) 1. .2(5) 4. 19. 7. 25. 25. 3. 28. 28. 4. 6. .6(0) 7.5(S) 1.2(0) 1.6(0) 1.7( ) .5(0) 1.7( ) 1.8( ) .9(0) 4.0(0) 6. 31. 39. 2. 61. 21. 119: 11. 6. 11. .9( ) 1.4( ) 1.8( ) 1.7(0) 2.3( ) 2.6(0) 2.8(0) .7( ) 1.9(S) 1.8(0) 11. .4( ) 31. 1.8( ) 56. 1.8( ) 76. .0(0) 76. 2.1( ) 7. .8( ) 88. 2.0( ) 1. 3( ) 33. . 1.9( ) 1 0. 20. 19. 45. 102. 16. 155. 38. 155. 150. 150. 5.3(S) 1.4( ) .0( ) 1.0( ) 1.7( ) 2.1( ) 1.7( ) 2.5( ) 2.0( ) 2.5( ). 148. 147. 148. 166. 47. 209. 71. 67. 4. 1. 2.0( ) 2.0( ) 2.0( ) 2.1( ) 2.0( ) 2.4( ) 2.3( ) 2.3( ) .8(S) .2(S) ' 4. .6(0) 20. 8.3(S) 7. 1 3(0) 25. 1.6(0) 25. 1.7( ) 3. .6(0) 28. 1.8( ) 28. 1.8( ) 4. .9(0) 6. 4.4(0) 6. 33. 39. 2. 61. 21. 119. 10. 6. 11. .9( ) 1.4( ) 1.8( ) 1.8(0) 23( ) 2.8(0) 3.1(0) .7( ) 2.1(S) 1.9(0) 11. 26. 41. 50. 64. 3. 72. 2. 26. .4( ) 1.6( ) 1.6( ) 2.2( ) 1.9( ) .5( ) 1.8( ) .6( ) 1.6( ) 1 5. 28, 18. 39, 109. 20. 165. 36. 165. 161. 161. ' 5.5(S) 1.4( ) .0( ) 1.0( ) 1.8( ) 2.1( ) 1.7( ) 2.6( ) 2.1( ) 2.6( ) 161. 161. 162. 195. 46. 233. 73. 67. 4. 1. 2.1( ) 2.1( ) 2.1( ) 2.3( ) 2.0( ) 2.6( ) .2.4( ) 2.3( ) .8(S) .2(S) ' 4. 35. 7. 25. 25. 3. 28. 28. 4. 6. .6(0) 9.0(S) 1.3(0) 1.6(0) 1.7( ) .6(0) 1.7( ) 1.8( ) 1.0(0) 4.6(0) 6. 31. 39. 2. 61. 21. 119. 10. 6. 11. 1.0( ) 1.4( ) 1.8( ) 1.9(0) 2.3( ) 2.8(0) 3.3(0) .7( ) 23(S) 2.0(0) 11. 27. 38. 30. 42. 4. 52. 0. 28. .4( ) 1.6( ) 1.5( ) 1.6( ) 1.6( ) .6( ) 1.6( ) .1( ) 1.7( ) ' 1 10. 37. 17. 32. 113. 28. 175. 35. 175. 171. 171. 17.5, 5.7(S) 1.4( ) .0( ) 1.0( ) 2.1( ) 2.2( ) 1.7(.) 2.7( ) 2.2O 2.6( ) ' 171. 2.2( ) 171. 2.2( ) 173. 2.2( ) 240. 2.6( ) 43. 2.0( ) 272. 2.8( ) 73. 2.4( ) 65. 2.3( ) 4. .8(S) 1. .3(S) 4. 70. 7. 25. 25. 3. 28. 28. 4. 6. .6(0) 9.5(S) 1.4(0) 1.5(0) 1.7( ) .6(0) 1.8( ) 1.8( ) 1.0(0) 4.8(0) ' 6. 33. 39. 2. 61. 21. 119. 9. 6. 11. 1.0( ) 1.4( ) 1.8( ) 1.9(0) 2.3( ) 2.9(0) 3.3(0) .6( ) 2.4(S) 2.0(0) ' 11. .4( ) 24. 1.5( ) 35. 1.5( ) 42. 1.9( ) 37. 1.5( ) 1. .4( ) 40. 1.4( ) 1. .4( ) 24. 1.5( ) 1 15: 41. 16. 28. 115. 35. 182. 33. 182. 179. 179. 5.7(S) 1.3( ) .0( ) 1.0( ) 2.2( ) 2.3( ) 1.6( ) 2.7( ) 2.2( ) 2.7( ) 179. 180. 182. 274. 41. 309. 71. 62. 4. 1. 2.2( ) 2.2( ) 2.3( ) 2.8( ) 1.9( ) 3.0( ) 2.3( ) 2.2( ) .8(S) - .3(S) 4. .6(0) 93. 9.8(5) 7. 1.4(0) 25. 1.5(0) 25. 1.7( ) 3. .6(0) 28. 1.7( ) 28. 1.8( ) 4. 1.0(0) 6. 4.9(0) 6. 32. 39. 2. 61. 21. 119. 8. 6. 11. 1.0( ) 1.4( ) 1.8( ) 2.0(0) 2.3( ) 2.9(0) 3.3(0) .6( ) 2.5(S) 2.0(0) ' 11. 25. 32. 26. 34. 3. 38. 0. 26. .4( ) 1.5( ) -1.4( ) 1.4( ) 1.4( ) .5( ) 1.3( ) .1( ) 1.6( ) 1 20, 41, 15, 24. 115. 39, 185, 31, 185, 184. 184, ' 5.7(S) 1.3( ) .0( ) 1.0( ) 2.3( ) 2.3( ) 1.6( ) 2.7( ) 2.3( ) 2.7( ) 186. 187. 189. 290. 39. 327. 68. 59. 4. 1. 2.3( ) 2.3( ) 2.3O 2.9( ) 1.9( ) 3.0( ) 2.3( ) 2.2( ) .8(S) .3(S) 4. 102. 7. 25. 25. 3. 28. 28. 4. 6. .6(0) 9.9(S) 1.4(0) 1.4(0) 1.7( ) .6(0) 1.8( ) 1.8( ) 1.0(0) 5.1(0) 6. 33. 39. 2. 61. 21. 119. 7. 6. 11. ' 1.0( ) 1.4( ) 1.8( ) 2.0(0) 2.3( ) 2.8(0) 3.2(0) .6( ) 2.6(S) 2.1(0) 11. 22. 30. 36. 31. 1. 34. 1. 22. .4( ) 1.4( ) 1.4( ) 1.8( ) 1.4( ) .3( ) 1.3( ) .3( ) 1.5( ) ' 1 25. 40. 14. 22. 119. 40. 189. 30. 189. 188. 188. 5.7(S) 1.3( ) .0( ) 1.0( ) 2.4( ) 2.3( ) 1.5( ) 2.8( ). 2.3( ) 2.8( ) 190. 191. 195. 298. 37. 334. 66. 56. 4. 1. ' 2.3( ) 2.3( ) 2.3( ) 2.9( ) 1.9( ) 3.1( ) 2.3( ) 2.1( ) .8(S) .2(S) 4. 103. 7. 25. 25. 3. 28. 28. 4. 6. .6(0) 9.9(S) 1.4(0) 1.3(0) 1.7( ) .6(0) 1.7( ) 1.8( ) 1.0(0) 5.1(0) ' 6. 32. 39. 2. 61. 21. 119. 7. 7. 11. 1,0( ) 1.4( ) 1.8( ) 2.1(0) 2.3( ) 2.8(0) 3.1(0) .6( ) 2.7(S) 2.1(0) 11. 23. 28. 24. 30. 2. 32. 0. 24. ' ..4( ) 1.5( ) 1.3( ) 1.4( > 1.4( ) .4( ) 1.2( > .2( ) 1.5( ) 1 30. 38. 14. 19. 133, 39. 200. 28. 200. 194. 194. 5.7(S) 1.2( ) .0( ) 1.1( ) 2.3( ) 2.4( ) 1.5( ) 2.9( ) 2.3( ) 2.8( ) ' 195. 196. 199. 298., 36. 335. 63. 53. 4. 1. 2.3( ) 2.3( ) 2.4( ) 2.9( ) 1.8( ) 3.1( ) 2.2( ) 2.1( ) .8(S) .2(S) 4. 100. 7. 25. 25. 3. 28. 28. 4. 6. ' .6(0) 9.9(S) 1.4(0) 1.2(0) 1.7( ) .6(0) 1.8( ) 1.8( ) 1.0(0) 5.2(0) 6. 33. 39. 2. 61. 21. 119. 7. 7. 11. 1.0( ) 1.4( ) 1.8( ) 2.1(0) 2.3( ) 2.7(0) 3.0(0) .5( ) 2.8(S) 2.1(0) ' 11. 21. 27. 31. 28. 1. 30, 0. 22. ' .4( ) 1.4( ) 1.3( ) 1.6( ) 1.3( ) .2( ) 1.2( ) 3( ) 1.4( ) 1 35, 36. 13, 18, 155, 38. 219. 27, 219, 208, 208. ' 5.6(S) 1.2( 7 .0( ) 1.1( ) 23( ) 2.5( ) 1.5( ) 3.0( ) 2.4( ) 2.9( ) 205. 205. 206. 302. 34. 335. 60. 50. 4. 1. 2.4( ) 2.4( ) 2.4( ) 2.9( ) 1.8( ) 3.1( ) 2.2( ) 2.0( ) .8(S) .2(S) 4. 96. 7. 25. 25. 3. 28. 28. 4. 6: .6(0) 9.8(S) 1.4(0) 1.0(0) 1.7( ) .6(0) 1.7( ) 1.8( ) 1.0(0) 5 3(0) ' 6. 1.0( ) 32. 1.4( ) 39. 1.8( ) 2. 2.1(0) 61. 2.3( ) 21. 2.7(0) 119. 2.9(0) 6. .5( ) 7. 2.8(S) 11. 2.0(0). 11. 23. , 26. 23. 27. 1. 29. 0. 23. .4( ) 1.5( ) 13( ) 1.4( ) 13( ) 3( ) 1.2( ) .2( ) 1.5( ) ' 1 40. 33. 12. 16. 179. 36. 240. 26. 240. 227. 227. 5.6(S) 1.2( ) .0( ) 1.2( ) 2.3( ) 2.6( ) 1.4( ) 3.1( ) 2.5( ) 3.1( ) 222, 221, 220, 311, 33, 341, 57, 48, 4, 1. ' 2.5( ) 2.5( ) 2.5( ) 3.0( ) 1.8( ) 3.1( ) 2.1( ) 2.0( ) .8(S) .2(S) 4. 91. 7. 25. 25. 3. 28. 28. 4. 6. AM ' 9.8(S) 1.4(0) .9(0) 1.7( ) .6(0) 1.8( ) 1.8( ) .9(0) 5 3(0) 6. 33. 39. 2. 61. 21. 119. 6. 7. 11. 1.0( ) 1.4( ) 1.8( ) 2.1(0) 23( ) 2.6(0) 2.7(0) .5( ) 2.9(S) 2.0(0) 11. 21. 26. 29. 26. 1. 28. 0. 21. ' .4( ) 1.4( ) 13( ) 1.6( ) 13( ) .2( ) 1.2( ) .2( ) 1.4( ) 1 45. 31. 11. 16. 199. 33.- 258. 25. 257. 246. 246. 5.6(S) 1.2( ) .0( ) 13( ) 2.2( ) 2.7( ) 1.4( ) 33( )' 2.6( ) 3.2( ) 242. 240. 239. 325. 31. 353. 54: 45. 4. 1. 2.6( ) 2.6( ) 2.6( ) 3.0( ) 1.7( ) 3.2( ) 2.1( ) 2.0( ) .7(S) .2(S) - 4. 87. 7. 25. 25. 3. 28. 28. 4. 6. ' .6(0) 9.7(S) 1.4(0) .8(0) 1.7( ) .6(0) 1.7( ) 1.8( ) .9(0) .5 3(0) 6. 32. 39. 2. 61. 21. 119. 5. 7. 11. 1.0( ) 1.4( ) 1.8( ) 2.1(0) 23( ) 2.5(0) 2.6(0) .5( ) 2.9(S) 2.0(0) ' 11. 22. 25. 22. - 26. 1. 27. 0. 22. M ) 1-.4( ) 1.2( ) 1.3( ) 1.3( ) 3( ) 1.1( .2( ) 1.4( ) 1- 50. 29. 11. 14. 216. 31. 271. 24. 271. 262. 262. ' 5.5(S) 1.2( ) .0( ) 1.3( ) 2.2( ) 2.8( ) 1.4( ) 3.4( ) 2.7( ) 3.3( ) 259. 258. 258. 340. 30. 367. 52. 43. 4. 1. 2.7( ) 2.7( ) 2.7( ) 3.1( ) 1.7( ) 3.2( ) 2.1( ) 1.9( ) .7(S) .2(S) 4. 83. 7. 25. 25. 3. 28. 28. 4. 6. .5(0) 9.7(S) 1.3(0) .6(o) 1.7( ) .6(0) 1.7( ) 1.8( ) .9(0) 5.4(0) 6. 33. 39. 2. 61. 21. 119. 5. 7. 11. ' 1.0( ) 1.4( ) 1.8( > 2.2(o) 23( ) 2.4(0) 2.4(0) .5( ) 3.0(S) 2.0(0) 11. 21. 25. 27. 25. 1. 26. 0. 21. .4( ) 1.4( ) 1.2( ) 1.5( ) 1.2( ) 3( ) 1.1( ) .2( ) 1.4( ) ' 1 55. 27. 10. 13. 227. 30. 279. 23. 279. 274. 274. 5.5(S) 1.1( ) .0( ) 1.3( ) 2.1( ) 2.8( ) 1.4( > 3.4( ) 2.8( ) 3.4( ) 273. 273. 274. 352. 29. 378. 50. 41. 4. 1. ' 2.8( ) 2.8( ) 2.8( ) 3.2( ) 1.7( ) 3.3( ) 2.0( ) 1.9( ) .7(S) .2(S) 4. 79. 7. 25. 25. 3. 28. 28. 4. 6. .5(0) 9.6(S) 1.3(0) .5(0) 1.7( ) .6(0) 1.7( ) 1.8( ) .9(0) 5.4(0) 6. 32. 39. 2. 61. 21. 119. 5. 7. 11. 176 11 177 ' 1.0( > 1.4( ) 1.8( ) 2.2(0) 2.3( ) 2.3(0) 2.3(0) .5( ) 3.0(S) 1.9(0) ' 11. .4( ) 21. 1.4( ) 24. 1.2( ) 22. 1.3( ) 25. 1.2( ) 1. .3( ) 26. 1.1( ) 0. .2( ) 21. 1.4( ) 2 0. 25. 10. 11. 234. 28. M. 22. 283. 281. 281. 5.5(S) 1.1( ) .0( ) 1.3( ) 2.1( ) 2.8( ) 1.3( ) 3.4( ) 2.8( ) 3.4( ) ' 282. 282. 285. 359. 27. 385. 48. 39. 4. 1. 2.8( ) 2.8( ) 2.8( ) 3.2( ) 1.7( ) 3.3( ) 2.0( ) 1.9( ) .7(S) .2(S) ' 4. .5(0) 75. 9.6(S) 7. 1.3(0) 25. .3(0) 25.. 1.7( ) 3. .6(0) 28. 1.7( ) 28. 1.8( ) 4. .9(0) 6. 5.4(0) 6. 33. 39. 2. 61. 21. 119. 5. 7. 11. 1.0( ) 1.4( ) 1.8( ) 2.2(o) 2.3( ) 2.2(0) 2.1(0) .5( > 3.0(S) 1.9(0) 11. 20. 23. 25. 24. 0. 25. 0. 21. .4( ) 1.4( ) 1.2( ) .1.4( ) 1.2( ) .2( ) 1.1( ) .2( ) 1.4( ) 2 5, 23, 9, 10, 237, 26, 284. 21. 284. 284. 284. 5.5(S) 1.1( ) .0( ) 1.4( ) 2.0( ) 2.8( ) 1.3( ) 3.4( ) 2.8( ) 3.4( ) 286. 287. 291. 361. 26. 387. 46. 37. 4. 1. 2.8( ) 2.9( ) 2.9( ) 3.2( ) 1.6( ) 3.3( ) 2.0( ) 1.8( ) .7(S) .2(S) ' 4. 70. 7. 25. 25. 3. 28. 28. 4. 6. .5(0) 9.6(S) 1.3(0) .2(o) 1.7( ) .5(0) 1.7( ) 1.8( ) .8(0) 5.4(0) 6. 32. 39. 2. 61. 21. 119. 4. 7. 11. ' 1.0( ) 1.4( ) 1.8( ) 2.2(0) 2.3( ) 2.1(0) 1.9(0) .4( ) 3.1(S) 1.9(0) 11. 21. 23. 21. 23. 0. 24. 0. 20. .4( ) 1.4( ) 1.2( ) 1.3( ) 1.2( ) .2( ) 1.1( ) .1( ) 1.4( ) 2 10. 21. 9. 8. 238. 24. 282. 20: 282. 283. 283. 5.4(S) 1.1( ) .0( ) 1.4( ) 1.9( ) 2.8( ) 1.3( ) 3.4( ) 2.8( ) 3.4( ) 287. 289. 293. 360. 25. 385. 44. 35. 4. 1. 2.8( ) 2.9( ) 2.9( ) 3.2( ) 1.6( ) 3.3( ) 1.9( ) 1.8( ) .6(S) .2(S) 4. 66. 7. 25. 25. 3. 28. 28. 4. 6. .5(0) 9.5(S) 1.2(0) .0(0) 1.7( ) .5(0) 1.7( ) 1.8( ) .8(0) 5.4(0) ' 6. 33. 39. 2. 61. 21. 119. 4. 7. 11. 1.0( ) 1.4( ) 1.8( ) 2.2(0) 2.3( ) 2.0(0) 1.7(0) .4( ) 3.1(S) 1.8(0) 11. 20. 22. 23. 22. 0. 23. 0. 20. '.4( ) 1.4( ) 1.2( ) 1.4( ) 1.2( ) .1( ) 1.0( ) .1( ) 1.4( ) 2 15. 21. 8. 8. 236. 22. 277. 19. 277. 280. 280. 5.4(S) 1.0( ) .O( ) 1.3( ) 1.9( ) 2.8( ) 1.2( ) 3.4( ) 2.8( ) 3.4( ) ' 285. 287. 292. 355. 24. 380. 42. 33. 4. 1. 2.8( ) 2.8( ) 2.9( ) 3.2( ) 1.6( ) 3.3( ) 1.9( ) 1.8( ) .6(S) .2(S) 4. 63. T. 5. 13. 3. 16. 22. 4. 6. ' .4(0) 9.5(S) 1.2(0) .8( ) 1.2( ) .5(0) 1.2( ) 1.6( ) .8(0) 5.4(0) 6. 26. 35. 2. 58. 21. 119. 4. 7. 11. 1.0( ) 1.2( ) 1.6( ) 2.2(0) 2.2( ) 1.9(0) 1.5(0) .4( ) 3.1(S) 1.8(0) ' 11. 20. 21. 20. 22. 0. 22. 0. 20. .4( ) 1.4( ) 1.1( ) 1.3( ) 1.2( ) .1( ) 1.0( ) .0( ) 1.4( ) 2 20. 20. 8. 6. 233. 21. 272. 18. 272. 276. 276. ' 5.4(S) 1.0( ) .0(.) 1.3( ) 1.9( ) 2.8( ) 1.2( ) 3.4( ) 2.8( ) 3.4( ) 281. 283. 289. 348. 23. 373. 40. 32. 4. 1. 2.8( ) 2.8( ) 2.9( ) 3.1( ) 1.6( ) 3.3( ) 1.9( ) 1.7( ) .6(S) .2(S) ' 4. 59. 7. 0. 2. 3. S. 12. 4. 6. ' AM 9.4(S) 1.2(0) .0( ) :4( ) .5(0) .6( ) 1.1( ) .8(0) SAM 6. 16. 25. 2. 49. 21. 119. 4. 7. 11. ' 1.0( ) .9( ) 1.3( ) 2.2(0) 1.9( ) 1.8(0) 1.2(0) .4( ) 3.1(S) 1.7(0) 11. 19. 21. 22. 21. 0. 22. 0. 20. .4( ) 1.3( ) 1.1( ) 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.4( ) ' 2 25. 20. 7. 7. 229. 21. 267. 17. 267. 270. 271. 5.3(S) 1.0( ) .0( ) 1.3( ) 1.B( ) 2.7( ) 1.2( ) 3.3( ) 2.8( ) 3.3( ) 276. 278. . 284. 341. 22. 365. 39. 30. 4. 1. ' 2.8( ) 2.8( ) 2.8( ) 3.1( ) 1.5( ) 3.2( ) 1.9( ) 1.7( ) .6(S) .2(S) 4. 56. 7. 3. 1. 3. 4. 6. 4. 6. .4(0) 9.4(S) 1.1(0) .6( ) .3( ) .5(0) .6( ) .8( ) .8(0) 5.4(0) ' 6. 10. 17. 2. 40. 21. 119. 4. 7. 11. 1.0( ) .7( ) 1.1( ) 2.2(0) 1.7( ) 1.7(0) .9(0) .4( ) 3.1(S) 1.7(0) ' 11. .4( ) 20. 1.3( ) 21. 1.1( ) 20. 1.3( ) 21. 1.1( ) 0. .1( ) 21. 1.0( ) 0. .0( ) 19. 1.3( ) 2 30. 20. 7. 5. 224. 20. 261. W. 261. 265.. 265. 5.3(5) 1.0( ) .0( ) 1.3( ) 1.8( > 2.7( ) 1.2( ) 3.3( ) 2.7( ) 3.3( ) ' 271. 273. 279. 332. 21. 356. 37. 29. 3. 1. 2.8( ) 2.8( ) 2.8( ) 3.1( ) 1.5( ) 3.2( ) 1.8( ) 1.7( ) .5(S) .2(S) t 4. .3(0) 53. 9.3(S) 7. 1.1(0) 0. .2( ) 2. .4( ) 3. .5(0) 5. .6( ) 5. .7( ) 4. .7(0) 6. 5.3(0) 6. 9. 15. 2. 38. 21. 119. 3. 7. 11. 1.0( ) .7( ) 1.0( ) 2.2(0) 1.6( ) 1.5(0) .5(0) .4( ) 3.1(S) 1.6(0) 11. 19. 20. 21. 21. 0. 21. 0. 20. .4( ) 1.3( ) 1.1( ) 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 2 35. 19. 7. 6. 219. 20. 254. 16. 255. 259. 259. ' 5.2(S) 1.0( ) .0( ) 1.3( ) 1.8( ) 2.7( ) 1.2( ) 3.2( ) 2.7( ) 3.3( ) 264. 267. 273. 324. 20. - 346. 36. 27. 3. 1. 2.7( ) 2.7( ) 2.8( ) 3.0( ) 1.5( ) 3.1( ) 1.8( ) 1.6( ) .5(S) .2(S) ' 4. 51. 7. 2. 1. 3. 4. 4. 4. - ,6. .3(0) 9.3(S) 1.0(0) .5( ) .3( ) AM .6( ) .7( ) .7(0) 5.3(0) 6. 8. 15. 2. 37. ' 21. 119. 3. 7. 11. ' 1.0( ) .7( ) 1.0( ) 2.2(0) 1.6( ) 1.4(0) AM .4( ) 3.1(S) 1.6(0) 11. 19. 20. 20. 20. 0. 21. 0. 19. .4( ) 1.3( ) 1.1( ) 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) ' 2 40. 19. 6. 4. 213. 20. 248. 15. 248. 252. 252. 5.2(S) .9( ) .0( ) 1.3( ) 1.8( ) 2.6( ) 1.1( ) 3.2( ) 2.7( ) 3.2( ) 258, 260, 266. 315, 19, 337. 34. 26. 3. 1. ' 2.7( ) 2.7( ) 2.7( ) 3.0( ) 1.5( ) 3.1( ) 1.8( ) 1.6( ) .5(S) .2(S) 4. 48. 7. 1. 1. 3. 4. 4. 4. 6. .3(0) 9.3(S) 1.0(0) .3( ) .3( ) .4(0) .6( ) .6( ) .7(0) 5.3(0) ' 6. 9. 15. 2. 37. 21. 69. 3. 7. 11. 1.0( ) .7( ) 1.0( ) 2.2(0) 1.6( ) 1.3(0) 3.0( ) A( ) 3.1(S) 1.5(0) 11. 19. 20. 21. 20. 0. '20. 0. 19. A( ) 1.3( ) 1.1( ) 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 2 45. 19. 6. 5. 207. 19. 241. 15. 241. 246. 246. 5.1(S) .9( ) .0( ) 1.3( ) 1.8( ) 2.6( ) 1.1( ) 3.2( ) 2.6( ) 3.2( ) ' 251. 253. 260. 307. 19. 327. 33. 25. 3. 1. s 1 ' 2.7( 1.4( 3.0( 1.8( 1.6( 2.7( ) 2.7( ) ) 2.9( ) ) ) ) ) .5(s) .1(s) 4. 46. 7. 1. 1. 3. 4. 4. 4. 6. ' .3(0) 9.2(S) 1.0(0) .4( ) .3( ) .4(0) .6( ) .6( ) .6(0) 5.3(0) 6. 8. 15. 2. 37. 21. 54. 3. 7. 11. 1.0( ) .6( ) 1.0( ) 2.2(0) 1.6( ) 1.1(0) 2.6( ) .4( ) 3.1(S) 1.4(0) >' 11. 19. 20. 20. 20. 0. 20. 0. 19. .4( ) 13( ) 1.1( ) 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 13( ) 2 50. 18. 6. 4. 200. 19. 234. 14. 234. 239. 239. 5.0(S) .9( ) .0( ) 1.3( > 1.8( ) 2.6( ) 1.1( ) 3.1( ) 2.6( ) 3.1( > 244. 246. 253. 298. 18. 318. 32. 24. 2. 1: _ 2.6( ) 2.6( ) 2.7( ) 2.9( )- 1.4( ) 3.0( ) 1.7( ) 1.5( > .5(S) .1(S) 4. 45. 7. 1. 1. 3. 4. 4. 4. 6. ' .2(0) 9.2(S) .9(0) .3( ) .3( ) .4(0) .6( ) .6( ) .6(0) 5.2(0) 6. 8. 15. 2. 37. 21. 65. 3. 7. 11. 1.0( ) .7(-) 1.0( ) 2.1(0) 1.6( ) 1.0(0) 2.9( ) .3( ) 3.1(S) 1.4(0) ' 11. 19. 20. 20. 20. 0. 20. 0. 19. .4( ) 1.3( ) 1.1( ) 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 2 55. 18. 6. 4. 192. 18. 224. 14. 225. 230. 231. ' 5.0(S) .9( ) .0( ) 1.2( ) 1.8( ) 2.5( ) 1.1( ) 3.0( ) 2.5( ) 3.1( ) 236. 239. 245. 289. 17. 309. 31. 23. 2. 1. 2.6( ) 2.6( ) 2.6( ) 2.9( ) 1.4( ) 3.0( ) 1.7( ) 1.5( ) .5(S) .1(s) ' 4. 43. 7. 1. 1. 3. 4. 4. 4. 6. .2(0) 9.2(S) .9(0) .3( ) .2( ) .4(0) .5( ) .6( ) .6(0) 5.2(0) 6. 8. 15. 2. 37. 21. 56. 3. 7. 11. Y' 1.0( ) .6( ) 1.0( ) 2.1(0) 1.6( ) .9(0) 2.6( ) .3( ) 3.1(S) 1.3(0) 11. 19. 20. 19. 20. 0. 20. 0. 19. ?'- .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 3 0. 18. 5. 3. 182. 18. 214. 13. 214. 221. 221. 4.9(S) .9( ) .0( ) 1.2( ) 1.8( ) 2.4( ) 1.0( ) 3.0( ) 2.5( ) 3.0( ) 227. 230. 237. 279. 17. 298. 30. 22. 2. 1. ' 2.5( ) 2.5( ) 2.6( ) 2.8( > 1.4( ) 2.9( ) 1.7( ) 1.5( ) .4(S) Ms) 4. 41. 7. 1. 1. 3. 4. 4. 4. 6. .2(0) 9.1(S) .8(0) .3( ) .2( ) AM .5( ) .6( ) AM 5.2(0) 6. 8. 14. 2. 37. 21. 62. 3. 7. 11. 1.0( ) .6( ) 1.0( ) 2.1(0) 1.6( ) .7(0) 2.8( ) .3( ) 3.1(S) 1.2(0) 11. 19. 20. 20. 20. 0. 20. 0. 19. .4( ) 1.3( ) 1.1( ) 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 3 5. 17. 5. 4. 172. 18. 202. 13. 202. 210. 210. 4.9(S) .9( ) .0( > 1.2( ) 1.7( ) 2.4( ) 1.0( ) 2.9( ) 2.4( ) 2.9( ) 217. 219. 227. 267. 16. 286. 29. 21. 2. 1. 2.5( ) 2.5( ) 2.5( ) 2.7( ) 1.4( ) 2.8( ) 1.7( ) 1.5( ) MS) ..1(s) 4. 40. 7. 1. 1. 3. 3. 4. 4. 6. AM 9.1(S) .8(0) .3( ) .2( > .3(0) .5( ) .6( .5(0) 5.1(0) 6. 8. 14. 2. 37. 21. 56. 2. 7. 11. 1.0( ) .6( ) 1.0( ) 2.1(0) 1.6( ) .6(0) 2.6( ) .3( ) 3.1(S) 1.2(0) 11. 19. 19. 19. 20. 0. 20. 0. 19.1 .4( ) 1.3( ) 1.7( ) 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 10. 17. S. 3. 161. 17. 191. 12. 191. 199. 199. 1 nm 4.8(S) .8( ) .0( ) 1.2( ) 1.7( ) 2.3( ) 1.0( ) 2.8( ) 2.4( ) 2.8( ) 205. 208. 216. 255. 16. 274. 28. 20. 2. 1. ' 2.4( ) 2.4( ) 2.5( ) 2.7( ) 1.3( ) 2.8( ) 1.6( ) 1.4( ) .4(S) .1(S) 4. 38. 7. 0. 1. 3. 3. 3. 4. 6. ` .1(0) 9.1(S) .7(0) .2( ) .2( ) .3(0) .5( ) .6( ) .5(0) 5.1(0) 6. 8. 14. 2. 36. 21. 60. 2. 7. 11. ' 1.0( ) .6( ) 1.0( ) 2.1(0) 1.6( ) .5(0) 2.7( ) .3( ) 3.1(S) 1.1(0) 11. 19. 19. 20. 19. 0. 19. 0. 19. ) 1.3( ) 1.1( ) 1.3( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3(") '.4( 3 15. 16. 5. 3. 151. 17. 180. 12. 180. 188. 188. - 4.7(S) .8( ) .0( ) 1.1( ) 1.7( ) 2.2( ) 1.0( ) 2.7( ) 2.3( ) 2.8( ) 194. 197. 205. 242. 15. 261. 27. 19. 1. 1. ' 2.3( ) 2.3( ) 2.4( ) 2.6( ) 1.3( ) 2.7( ) 1.6( ) 1.4( ) .4(S) .1(S) 4. 37. 7. 0. 0. 3. 3. 3. 4. 6. AM '9.1(S) .7(0) .2( ) .2( ) .3(0) .5( ) .6( ) .5(0) 5.1(0) ' 6. 8. 14. 2. 36. 21. 57. 2. 7. 11. 1.0( ) .6( ) 1.0( ) 2.1(0) 1.6( ) .3(0) 2.6( ) .3( ) 3.1(S) 1.0(0) 11. 19. 19. 19. 19. 0. 19. 0. 19. .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 20. 16. 4. 2. 142. 17. 170. 11. 170. 177. 177. 4.7(S) .8( ) .0( ) 1.1( ) 1.7( ) 2.2( ) 1.0( ) 2.6( ) 2.2( > 2.7( ) ' 183. 186. 194. 230. 14. 248. 26. 18. 1. 1. 2.3( ) 2.3( ) 2.3( ) 2.5( ) 1.3( ) 2.6( ) 1.6( ) 1.4( ) .4(S) .1(S) 4. 35. 7. 0. 0. 3. 3. 3. 4. 6. .0(0) 9.0(S) .6(0) .2( ) .2( ) .3(0) .5( ) .6( ) .4(0) 5.0(0) 1 6. 8. 14. 2. 36. 21. 59. 2. 7. 11. 1.0( ) .6( ) 1.0( ) 2.1(0) 1.6( ) .2(0) 2.7( ) .3( ) 3.1(S) 1.0(0) 11. 19. 19. 19. 19. 0. 19. 0. 19. .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 25. 16. 4. 3. 134. 16. 161. 11. 162. 168. 168. 4.6(S) .8( ) .0( ) 1.1( ) 1.7( ) 2.1( ) 1.0( ) 2.6( ) 2.2( ) 2.6( ) 174. 176. 184. 218. 14. 235. 26. 18. 1. 1. 2.2( ) 2.2( ) 2.3( ) 2.5( ) 1.3( ) 2.6( ) 1.6( ) 1.4( ) .4(S) 1(S) 1 4. 34. 7. 0. 0. 3. 3. 3. 4. 6. .0(0) 9.0(S) .6(0) .2( ) .2( ) .3(0) .5( ) .6( ) .4(0) 5.0(0) 6. 7. 14. 2. 36. 21. 57. 2. 7. 11. 1.0( ) .6( ) 1.0( ) 2.1(0) 1.6( ) .1(0) 2.6( ) .3( ) 3.0(S) .9(0) 11. 19. 19. 19. 19. 0. 19. 0. 19. ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) '.4( 3 30. 15. 4. 2. 127. 16. 154. 11. 154. 159. 159. 4.6(S) .8( ) .0( ) 1.1( ) 1.7( ) 2.1( ) .9( ) 2.5( ) 2.1( ) - 2.5( ) 165. 167. 172. 206. 13. 223. 25. 17. 1. 1. ' 2.1( ) 2.2( ) 2.2( ) 2.4( ) 1.3( ) 2.5( ) 1.6( ) 1.4( ) .4(S) .I(S) 1. 33. 7. 0. 0. 3. 3. 3. 4. 6. .5( ) 9.0(S) .6(0) .2( ) .2( ) .2(0) .5( ) .6( ) AM 4.9(0) ' 6. 8. 14. 2. 30. 12. 52. 2. 7. 11. 1.0( > .6( ) 1.0( ) 2.1(0) 1.4( ) 1.3( ) 2.5( ) .3( ) 3.0(S) .8(0) ' 11. 19. 19. 19. 19. 0. 19. 0. 19. lops ' 1.3( 1.1( 1.2( 1.1( 1.0( 1.3( .4( ) ) ) ) .O( ) ) .0( ) 3 35. 15. 4. 3. 121. 15. 147. 10. 147. . 152. 152. 4.5(S) .8( ) .0( ) 1.0( ) 1.7( ) 2.0( ) .9( ) 2.4( ) 2.0( )_ 2.5( ) 157. 159. 162. 194. 13. 210. 24. 16. 1. 1. 2.1( ) 2.1( ) 2.1( ) 2.3( ) 1.3( ) 2.4( ) 1.6( ) 1.3( ) .4(S) .1(S) 0. 32. 7. 0. 0. 3. 3. 3. 4. 6. ' .0( ) 9.0(S) .5(0) .2( ) .1( ) .2(0) .5( ) .6( ) .4(0) 4.9(0) 6. 7. 14. 2. 19. 2. 40. 2. 7. 11. 1.0( ) .6( ) 1.0( ) 2.1(0) 1.1( ) .5( ) 2.2( ) .3( ) 3.0(S) .8(0) ' 11. 19. 19. 19. 19. 0. 19. 0. 18. .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 40. 15. 4. 2. 115. 15. 140. 10. 141. 145. 145. ' 4.4(S) .8( ) .0( ) 1.0( ) 1.6( ) 2.0( ) .9( ) 2.4( ) 2.0( ) 2.4( ) 150. 152. 154. 185. 13. 200. 23. 16. 1. 1. 2.0( ) 2.0( ) 2.1( ) 2.3( ) 1.2( ) 2.4( ) 1.5( ) 1.3( ) .4(S) .1(5) 0. 31. T. 0. 0. 3. 3. 3. 4. 6. .1( ) 9.0(S) .5(o) .2( ) .1( ) .2(0) - .5( ) .6( ) .3(0) 4.9(o) 6. 8. 14. 2. 16. 1. 37. 2. 7. 11. ' 1.0( ) .6( ) 1.0( ) 2.1(0) 1.0( ) .4( ) 2.1( ) .3( ) 3.0(S) .7(0) 11. 19. 19. 19. 19. 0. 19. 0. 19. .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 45. 14. 4. 2. 110. 15. 135. 10. 135. 139. 139. . 4.4(S) .8( ) .0( ) 1.0( ) 1.6( ) 1.9( ) .9( ) 2.3( ) 2.0( ) 2.4( ) 143. 145. 147. 178. 12. 192. 23. 15. 1. 1. ' 2.0( ) 2.0( > 2.0( ) 2.2( ) 1.2( ) 2.3( ) 1.5( ) 1.3( ) .4(S). .1(S) 0. 30. 7. 0. 0. 3. 3. 3. 4. 6. ' .1( ) 9.0(S) .4(0) _ .2( ) .1( ) .2(0) .5( ) .6( ) .3(0) 4.8(0) 6. 7. 14. 2. 17. 1. 37. 2. 7. 11. 1.0( ) .6( ), .9( ) 2.0(0) 1.0( ) .3( ) 2.1( ) .3( ) 3.0(S) .6(0) 11. 18. 19. 19. 19. 0. 19. 0. 18. ' .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 50. 14. 3. 1. 105. 14. 129. 9. 129. 133. 133. 4 3(S) 138. .7( ) 139. .0( ) 141. 1.0( ) 171. 1.6( ) 12. 1.9( ) 185.- .9( ) 22. 2.3( ) 14. 1.9( ) 1. 2.3( ) 1. 1.9( ) 2.0( ) 2.0( ) 2.2( ) 1.2( ) 2.3( ) 1.5( ) 1.3( ) .4(S) .1(S) 0. 29. 7. 0. 0. 3. 3. 3. 4. 6. ' .i( ) 8.9(S) AM .2( ) .1( ) .2(o) .5( ) .6( ) .3(0) 4.8(0) 6. 7. 14. 2. 16. 1. 37. 2. 7. 11. 1.0( ) 11. .6( ) 18. .9( ) 19. 2.0(0) 19. -1.0( ) 19. .3( ) 0. 2.1( ) 19. .3( ) 0. 2.9(S) 18. .6(0) .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .O( ) .9( ) .0( ) 1.3( ) 3 55. 13. 3. 2. 100. 14. 123. 9. 123. 128. 128. ' 4.3(S) .7( ) .0( ) 1.0( ) 1.6( ) 1.8( ) .9( ) 2.2( ) 1.9( ) 2.3( ) 132. 134. 136. 165. 11. 178. 22. 14. 1. 1. 1.9( ) 0. 1.9( ) 29. 1.9( ) 7. 2.1( ) 0. 1.2( ) 0. 2.2( ) 3. 1.5( ) 3. 1.3( ) 3. .3(S) 4. .O(S) 6. .1( ) 8.9(S) .3(0) .2( ) .1( ) .2(0) .5( ) .5( ) .2(o) 4.7(o) ' 6. 7. 14. 2. 16. 1. 36. 2. 7. 11. 1071 ' 1.0( 2.0(0) 1.0( 2.1() 2.9(S) ) .6() .9( ) ) .3( ) .3( ) .5(0) 11. 18. 19. 19. 19. 0. 19. 0. 18. '.4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) .9( ) .0( ) 1.3( ) 4 0. 13. 3. 1. 95. 14. 118. 9. 118. 122. 122. 4.2(S) .7( ) .0( ) 1.0( ) 1.6( ) 1.8( ) .9( ) 2.2( ) 1.8( ) 2.2( > ' 126. 128. 130. 158. 11. 171. 21. 13. 1. 1. 1.9( ) 1.9( ) 1.9( ) 2.1( ) 1.2( ) 2.2( ) 1.5( ) 1.2( ) .3(S) .O(S) 0.- 28. 7. 0. 0. 3. 3. 3. 4. 6. ' .0( > 8.9(S) .3(0) - .2( ) .1( ) .1(0) .5( ) .5( ) .2(0) 4.7(0) 6. T. 14. 2. 16. 0. 36. 2. 7. 11. 1.0( ) .6( ) .9( ) 2.0(0) 1.0( ) .2( ) 2.1( ) .3( ) 2.9(S) .4(0) 11. 18. 19. 19. 19. 0. 19. 0. 18. .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( > .O( ) .9( ) .O( ) 1.3( ) 4 5. 13. 3. 2. 91. 13. 112. 8. 112. 117. 117. ' 4.1(S) .7( ) .0( ) .9( ) 1.6( ) 1.7( ) .8( ) 2.1( ) 1.8( ) 2.2( ) 121." 122. 124. 152. 11. 164. 21. 13. 1. 1. 1.8( ) 1.8( ) 1.8( ) 2.0( ) 1.2( ) 2.1( ) 1.5( ) 1.2( ) .3(5) .O(S) 0. 27. 7. 0. 0. 3. 3. 3. 4. 6. ' .0( ) 8.9(5) .2(0) .2( ) .1( ) .1(0) .5( ) .5( ) .2(0) 4.7(0) 6. 7. 14. 2. 16.- 0. 36. 2. 7. 11. (� 1.0( ) .6( ) .9( ) 2.0(0) 1.0( ) .2( ) 2.0( ) .2( ) 2.9(S) .3(0) 11. 18. 19. 19. 19. 0. 19. 0. 18. .4( 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) .9( ) .0( ) 1.3( ) 4 10. 12. 3. 1. 86. 13. 107. 8. 107. 111. 111. ' 4.1(S) .7( ) .0( ) .9( ) 1.5( ) 1.7( ) :8( ) 2.1( ) 1.7( ) 2.1( ) 115. 117. 119. 146. 10. 158. 20. 12. 1. 1. 1.8( ) 1.8( ) 1.8( ) 2.0( ) 1.2( ) 2.1( ) 1.5( ) 1.2( ) .3(S) .O(S) 0. 27. 7. 0. 0. 3. 3. 3. 4. 6. .0( ) 8.9(S) .2(0) .1( ) .1( ) .1(0) .5( ) .5O .2(0) 4.6(0) 6. - 7. 14. 2. 16. 0. 36. 2. 7. 11. 1.0( ) .6( ) .9( ) 2.0(0) 1.0( ) .2( ) 2.0( ) .2( ) 2.9(S) .3(0) 11. 18. 18. 19. 19. 0. 19. 0. 18. 1 .4( ) 1.3( ) 1.1( ) 1.2( ) 1.1( ) .0( ) .9( ) .0( ) 1.3( ) COTTONWOOD FARMS, OAKRIDGE, HARMONY CROSSING, STETSON CREEK, AND TIMBER CREEK DRAINAGE MODEL FOR A 100 YEAR STORM (TOTAL DEVELOPED BUILDOUT : 39503100.DAT) *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) ' 322 11. 1.5 2.1 1 25. 320 14. .8 0 40. 179 8. 1.5 .0 0 40. 323 11. .4 1 . ' 321 7. .1 3.1 35 2 35. 166 25. 2.5 1.6 1 0. 324 51. 3.0 .0 '0 35. 168 3. 1.3 .6 1 20. 167 26. 1.7 0 30. ' 331 51. 3.0 .1 0 40. 169 30. 1.8 0 30. 325 95. 2.3 0 35. 171 4. 1.3 1.0 1 15. ' 170 28. 1.8 0 35. 172 6. 1.5 5.4 2 5. 326 76. 3.5 .2' 0 45. 174 173 34. 6. 1.4 1.0 0 2 40. 25. ' 328 17. 1.8 .1 0 40. 327 76. 2.1 0 55. 178 21. 2.3 2.9 1 10. 176 2. 1.0 2.2 2 10. ' 175 39. 1.8 1 15. 329 101. 2.1 0 40. 177 63. 2.3 0 35. 1110 119, 5.2 3.3 1 10, 33 33. .6 0 , 40. ' 290 3. (DIRECT FLOW) 0 15. 230 B. (DIRECT FLOW) 0 20. 24 27. .6 0 40. 30 159. (DIRECT FLOW) 0 30. ' 15 6. .4 0 45. 21 68. .9 0 40. 29 3. 1.0 .0 1 0. 23 7. .4 0 45. ' 340 2. (DIRECT FLOW) 0 15. 7 111. .9 .0 40. 4 124. 2.9 0 50. 44 59. 1.4 0 45. 20 99. 2.6 0 45. ' 19 10. .2 0 35. 18 9. .4 0 55. 9 9. .5 0 45. 10 36. .7 0 40. - 11 10. .4 1 30. ' 13 39. .7 0 45. 8 143. 3.3 0 40. 6 240. 4.0 0 45. - 17 632. 3.1 0 45. ' 95 207. (DIRECT FLOW) 0 35. 91 19. 1.4 1 0. 2 212. .1 31.4 1 55. 93 41. .1 5.7 1 20. 1 212. .1 .5 1 55. ' 92 38. 1.7 0 55. 94 40. 2.4 1 25. 3 238. 1.4 2 10. ' 357 358 284. 284. 2.8 3.4 2 2 5. 5. 359 284. 2.8 2 5. 310 58. (DIRECT FLOW) 0 40. 370 4. .1 .8 1 10. POND 370 a6,gt 31. qo Qarremablc° 3.52 CFs 360 284. 3.4 2 5. ' 31 58. (DIRECT FLOW) 0 40. 28 10. .4 1 5. 270 6. (DIRECT FLOW) 0 15. ' 339 31 371 7. 1 6. 1 . 22.33 1 1.4 3 1 1 1 2. 0 0. 15 POLO 371 WSEC= 25,80 Qal/ouab�e� -361 287. 2.8 2 10. 27 70. .9 1 10. 38 73. 2.4 1 5. ' 372 4. 1.3 .6 1 15. 362 289. 2.9 2 10. 41 70. 2.8 1 10. ' 260 373 12. 103. (DIRECT .1 FLOW) 9.9 0 1 15. 25. 363 293. 2.9 2 10. - 26 79. 4.2 1 10. 250 0. (DIRECT FLOW) 0 5. ' 365- 48. 2.1 0 55. 1 364 361. 42 79. 25 0. 220 12. ' 16 ib 12. 12 83. 366 387. ' 22 367 . 387 387. 1 43 159. :1 ENDPROGRAM PROGRAM CALLED 1 3.2 2 5. 2.4 1 10. .2 0 35. (DIRECT FLOW) 0 20. .3 0 40. .9 0 40. 3.3 2 5. 2.9 0 45. (DIRECT FLOW) 2 5. .1 ..0 0 50. f_] CHARTS, TABLES, AND FIGURES H H No Text r s x y Calculations for curb Capacities and velocities a, Major and Minor Storms per City of Fort Collins Storm Drainage Design Criteria RESIDENTIAL w/ 6- Vertical curb and gutter , Prepared by. RBD, Inc. : =AX' z+, ,,� ' �:•*� 0 is for one aids of the road only • November 23, 1993 v is based on theoretical capacities Area - 3.37 eq ft. Area • 18.495 sq.ft. Minor Storm .Major Storm ' Slope : Red. : Minor : 0 v Major : 0 v _ (%) :Factor : X : We) : (fps) X : (efs) : (fps) i a '0.40 : 0.50 : 129.87' : 4.11 : 2.31 : 647.33 : 20.47 : 1.41 : ' 0.50 : 0.65 : 129.87 : 5.97 : 2.59 : 647.33 29.75 1.58 : 0.60 : 0.80 129.87 : 8.05 : 2.83 647.33 40.11 1.73 :' r 0.70 : 0.80 : 129.87 : 8.69 3.06 a 647.33 : 43.33 : 1.87 : 0.80 : 0.80 : 129.87 : 9.29 : 3.27 : 647.33 : 46.32 : 2.00 : 0.90 : 0.80 : 129.87 : 9.86 : 3.47 : 647.33 : 49.13 : 2.12 - - 1.00 : 0.110 129.87 : 10.39 : 3.66 : 647.33 : 51.79 : 2,24 - 1.25 : 0.80 : 129.87 : 11.62 : 4.09 : 647.33 : 57.90 : 2.50 1.50 : 0.80 : 129.87 : 12.72 : 4.48 : 647.33 : 63.43 : 2.74 1.75 : 0.80 129.87 : 13.74 : 4.84 : 647.33 : 68.51 : 2.96 : - - 2.00 : 0.80 : 129.87 : 14.69 : 5.17 : 647.33 : 73.24r. 3.16 2.25 : 0.78 129.87 : 15.19 : 5.49 : 647.33 : 75.74 : 3.35 2.50 : 0.76 a 129.87 : 15.61 5.78 : 647.33 : 77.79 : 3.53 -,2.75 : 0.74 : 129.87 : 15.94 : 6.07 : 647.33 : 79.44 : 3.71 3.00 : 0.72 : 129.87 : 16.20 : 6.34 : 647.33 : 80.73 : 3.87 3.25 : 0.69 : 129.87 : 16.15 : 6.60 : 647.33 : 80.52 : 4.03 3.50 : 0.66 : 129.87 : 16.04 : 6.84 : 647.33 : 79.93 : 4.18 : °> '3.75 : 0.63 : 129.87 : 15.84 : 7.08 : 647.33 : 78.97 : 4.33 4.00 : 0.60 : 129.87 : 15.58 7.32 : 647.33 : 77.68 : 4.47 4.25 0.58 : 129.87 15.53 : 7.54 : 647.33 : 77.40 : 4.61 �•` 4.50 : 0.54- 129.87 : 14.98 : ' 7.76 : 647.33 : 74.15 : 4.74 4.75 0.52 : 129.87 : 14.72 .7.97 647.33 : 73.36 : 4.87 : L r 5.00 : 0.49 : 129.87 : 14.23 : 8.18 : 647.33 : 70.93 : 5.00 : ._ t• - 5.25 : 0,46 129.87 13.69 : 8.38 : 647.33 : 68.23 : 5.12 '5.50 : 0.44 129.87 :- 13.40 8.58 647.33 : 66.80 : 5.24 : 5.75 : 0.42 : 129.87 : 13.08 : 8.T7 : 647.33 : 65.19 : 5.36 : 6.00 0.40 129.87 12.72 8.96 :, 647.33 63.43 5.48 rat Yii�Kxx, .,. ' a 1 1+ 31 +.�i��„J�^24•�ir j t y,��i { t h. b t � r x f } Y � apsrJx1tw11• r.�?".'. . .. 1 WENT 414 T`/ C>P (=Z:Z7_-�' .yG JOB NO. 1 U PROJECT CALCULATIONS FOR 4'ti F U / 1 Engineering Consultants MADE 13Y_W.OATEZ92 CHECKEDBY_DATE SHEET I OF Z ,�ESI OEw7T�.l. W� 6i1 V E2TGoi.. CT1.�ePS � �T�IL �- QIG�FIT..OF-.�1Ja.Y--------- - 36-.F+-OIVUNE To 1=iouLuwlE Ir.loe. St'M ' 1 PE7_ SPr�1o1.1Z.Z.Z. GITy or�_ F-,pzr� was �ESIC�J GP�TEP� �1JKEP� Q IT}4E02E7.1CGL_ Cali-1�'8e. C.a.'acc._.ITY CC_FS) i Is7s?,,► c = : F _.cw C_n, F cr' c+urrEe �FZ ) I Q-0L�! FFN ESS C�6PPIU 6L11'" Urms- olb, IZ.ECJ P 2GXdl: OF C _cos 6L.0'PE FT/FT', I 1 O.SI 1 i ( i N %zXo.3ZX(o34?-) 1 ` 3.3? aF Er MINoe" I =�� 6te� �4 gas) Q- X ISI/z 1 . j ; n) 1 I i I , IZ.oc\Cc.S a/a� = i=�.IS I JI- 1 aZ = �C'o. j�,I2.00 �o.3z %J zo.lz E,4 I j Ci.ls-z�.►Z�4-�g31j 1 - 1z9.a7 cu I 1 1 1 :BDIIN Engineering Consultants CLIENT`- "T"f 01=Pr rr G JOB NO. PROJECT CALCULATIONS FOR MADE BY 2�0-_ DATE JLZy CHECKED BY_ DATE SHEET_ OF No Text ' LO 12 5 ' 9 II l8 4 10 3 .8 6 2, G F 9 U. ��-� \ 7 - z 3 �/ Z 1.5 � r 0 7 a / � U L / z - 1.0 ' z .5 art a 9 5.5 cY — ---- a 8 ' co 6 w 5 = z 0. .7 U_ .4 z z ,q F W x z 4.5 z. 0 3 w 6 L ' {L x V 0 0 5 ' co 4 x '2 F z z F z ,3 z W 3.5 w '' .4 oa a. J I 0 W 0 0 0 .08 F F .25 3 F F ' x x O .06 3 t� C� O z IL = 2.5 = x .04 .25 LU Li ' 2 . n .03 F r a F 3 U_ 2 a .02 0 x 2 cai F n. ' 15 .01 0 .15 L W 0 0 ' --- -- - - -- -- Yo a 1.5 x a=2 h .10 I 1.2 ' Figure 5.2 NOMOGRPAH FOR CAPACITY OF CURB OPENING INLETS IN SUMPS, DEPRESSION DEPTH 2" ' lJ Adapted from Bureau of Public Roads Nomograph MAY 1964 5.10 DESIGN CRITERIA jq2 O CHART 2 180 10,000 168 8,000 EXAMPLE (�1 156 6,000 D, 361ae.as(].0lost) 6. 121 5.000 0.46 ofa (3' 144 4,000 mot Mar 5. 6 132 i 3,000 D (1«6 y 6. 120 , 11) 1.8 5.4 , 2,000 12) 2.1 6.3 5. 108 u (3) 2.2 6.6 4' so In fast3. 4. a 96 F 1,000 3, 800 84 m 600 2' Soo T2 400 _ — — — — 2. 2. 300 60 u 200 = Z G 54 f*�/ W W too / 48 ¢ Q 8p� p J 4 x' 42 ; _ 1.0 1.0 0 //w � S0F 0 40 W 1.0 W 36 O 30 HW ENTRANCE — — 33 p SCALE W .6 C 20 (1) Maaball .6 6 30 (2) Y1t.ra0 to un1eM W d U ele,a x .B n 27 10 P) Pralaellaa n 8 •T .7 2 24 6 7 m 5 21 Te eu small (2) ar (3) prowl 4 Isirl.w.11) 1. .Hla (1). Its. .a. atrala.l Witold 11.. 1.IO.a6 .6 .6 3 0 .a6 0 a..1... .r nnn..a " 8 IB 10.016f.6. 2 15 .5 1.0 s 12 HEADWATER DEPTH FOR C. M. PIPE CULVERTS WITH INLET CONTROL BUREAU OF PYBUIC1OID0 AIL 1666 182 DRAINAGE CRITERIA MANUAL,. RIPRAP S" l 1 f 4 1 t " = G = Expansion Angle ' 8 Ala 5 o 4 z 0 to ' 2. ao X 2 w 1 1 0 0 1 2 .3 .4 .5 .6 .7 . .8 - ; TAILWATER DEPTH/CONDUIT HEIGHT, Yt/D } � -mod • a xc si s: ryp ' FIGURE 5-9. EXPANSION FACTOR FOR CIRCULAR CONDUITS 11-15-82` URBAN DRAINAGE 9 FLOOD CONTROL DISTRICT ' DRAT ®® o 40 115' DRAINAGE CRITERIA MANUAL INLETS a CULVERTS ISO 10,000 166 6,000 EF MPPLE (I) (2) (3) I56 6 000 0.411 When 13.9 led) 6. 144 3,000 or It* do s. 4.000 H■ 6. I32 "iS' reel 3 000 4 120 RI 9.1 7.4 106 2.000 - 131 t.t 7.7 4: •0 is too 96 1,000 3. e00 B4 600-- 72 500 400 / Y. _ 300 � Z A4j / Z 60 q u too / = c 64cc 2 / i / W ' 0 > 4s i z /�0 a eo / / u 4£ ci7 60 j W U. c S0 H1Y ENTRANCE /0 ¢ 40 SCALE —� ; TYPE ;- m I.O ►I 36 30 /pl/ square eei:.le3 3scdall .4 33 ., r�eMe ee4 •ile, c a 30 / / 1lscbell ,V = V1.-17 __rrrl4atly / 10 .7 24 /.o 6 6 ` 7o sc6 +realn 121 or NI r.gsc1 21 .'b horizontally I4 scale UI,Iese 4 .ee 61re431 les0es4 lies through 0 ens 0 scale•, or rneree as 3 illustrated. 6 3. 4. 3. 2. —+= 27 1.5 E- 1.3 For design, use charts and nornographs IY in chapter )0. FIGURE 4-2 INLET CONTROL NOMOGRAPH EXAMPLE IL-15-68 Denver Regional Council of Governments ' I N I0 o g q 0 tci O 1 a ' U y z H ' a U 0 O 44 1 O O [-a ao C� N ' N L-7 U P4 FI z z N R 1 t O IO101010f 000000 O < C< C N N N N N N < g q q q q q 0 q 0 0 O 1001 C101 1101 C1 C1 C1 C1 C1 C1000 O C « <<<< C C C C< N N N n q 0 0 0 0 0 0 g q q 0 0 0 q 0 O r0 q 001 C101 C10.1 101 C1010f 01010101010101 • • • • • • . • • . • • • • . . • • • N g 0 0 q q q q 0 p 0 0 q q q 0 q 0 0 0 0 - O O n< N 0 %2 'V D r r r r r r r r r r r r 0 0 0 c0 0 0 o <a v<ve vvv.rccvvve vvv«vv<va rl g 0 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 q 0 0 0 0 0 O IC! Nn1! N"i 1Ot7V1010rrrrr111rrga0 c1 n«<e a«««««««««<a 0 0 0 0 g 0 0 0 0 0 0 0 0 0 0 0 q 0 0 0 0 0 0 0 co q O 'VONnC<NNNN10V0Uf0 'l.f V' 'U 'UV 'Urrrrrr q n < < < < < < < < < < < < < < < < < < < < < < < < < O v m rl N n n«< C N On no no 0 NV^ %D%0 V' fD for r n n C C < < C C < C < < C C < < C < < < < < < C < < Co. 0 0 0 c0 0 0 Co. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O t0 O O ri rl N N n n n n<<<<<<<< N N N N U U V' n n n <'< < < C C < < C < C < < < C < < C < C < < < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 co 0 0 0 0 0 co 0 0 10 N N N r coC100 ri ri.i N N N N N n n n n n C C IV CC 'N N n n n n n C<<< C< C< C< C C C<<<<<<< 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c7 0 0 0 0 0 co 0 0 N ri0 ri n v n n 0 V rr r 0000 c00n mm 00000 < N N n n n n n n n n n n n n 4 n n n n n 4 4 4 44 4 g O O q 0 0 0 0 0 0 CO 0 0 0 0 0 0 0 0 0 0 g 0 0 0 0 O V' N co O ri N n C C N n 010 ID 0100 r r r r 000 C1 C1 n n n n n n n n n n n n n n n n n n n n n 0 g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N riril11r000liNNnnn<««00n D%Dl7rr n 4NNNN999994999n4nr44r;c4 4 4 4c4 4 41 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 1".1 N ' c0 C10 ri N N rin n«CCC CNNN N ' 0 17 17 n Orl ri ri riNNNNNNNNNNNNNNNNNNNNN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g 0 N NN C1N n<N1 rr r 000 C1 C101 C1 C1C C0 C!C 00 r O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g 0 0 0 q O NOnNf0OOOc 09C!iririNOm O O O O O O 0 ri ri H r1 r♦ ri ri ri ri ri 4 4 4 ri ri 4 4rr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0NN0ri<NrrgClL100ririririegNNNnnnnnri 00 C1 C1 Cl C1 C1 C> CI C1000000 000000 O O O lr2, I, I, r r r r r r r r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O f0 O ri < 'V•r DNd C1 O C O O N N r r r x Hr. 000 TZ4 00 zF. riNn rC,0;r4Nnn< <NNNN1Df0V Orr0U' 0 r r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c; c'0 0 0 0 r r r r r r r r r r I, r r r r r r I, I, r r r r00r r r 1'O IoV N< C n n N N C110 C ri a110 N N N N N N N N N N N N N N N N r i r i r i r i 0 0 r r r,r r r r r r r r r r r r r r- r r r r r 00000000000000000000000 0000ll 0000000000000000000 <N10r001oriNnCN or001000NOno i t�� r1 r{'i ri ri ri ri r{'i riNN n n C <N L ' � N,ARCH 1991 E-4 DESIGN CRITERIA I, 0-1 Table 86 C-Factors and P-Factors for Evaluating EFF Values. ' Treatment C-Factor P-Factor BARE SOIL Packed and smooth................................................................ 1.00 1.0.0 ' Freshly disked........................................................................ 1.00 0.90 Roughirregular surface........................................................... 1.00 0.90 ' SEDIMENT BASIN/TRAP................................................................. 1.00 0.50M STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG ........................ 1.00 0.80 ' SILT FENCE BARRIER..................................................................... 1.00 0.50 ASPHALT/CONCRETE PAVEMENT ................................................... 0.01 1.00 ' ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A 1.00 SOD GRASS................................................................................. 0.01 1.00 ' TEMPORARY VEGETATION/COVER CROPS .................................... 0.451-1 1.00 HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10" r 1.00 ' SOIL SEALANT....................................................................0.01-0.60"' 1.00 EROSION CONTROL MATS/BLANKETS............................................ 0.10 1.00 GRAVEL MULCH Mulch shall consist of gravel having a diameter of approximately 1/4' to 1 1/2' and applied at a rate of at least 135 tons/acre.............. 0.05 1.00 HAY OR STRAW DRY MULCH After planting grass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, ' tack or crimp material into the soil. Slope (%) 1 to 05.............................................................................0.06 1.00 ' 6 to 10.... :........................................................................ 0.06 11 to 15............................................................................. 0.07 1.00 1.00 16 to 20.............................................................................0.11 1.00 21 to 25.............................................................................0.14 1.00 25 to 33.............................................................................0.17 1.00 ' > 33.......................................................................... 0.20 .1.00 NOTE: Use of other C-Factor or P-Factor clues reported in this table must be substantiated by dxumente-tion. ' (1) Must be constructed as the first step in overlot grading. (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required. (3) Hydraulic mulches shall be used only between March 15 and May 15 unless irrigated. ' (4) Value used must be substantiated by documentation. MARCH 1991 ' . 8.6 DESIGN CRITERIA h 1 1 1 0.3 5 ESTABLISHED GRASS GROUND COVER (%) 8-8 DESIGN CRITERIA II I a 1 1 �II STRAW BALE CHECK DAN I SWALE net I 405 .ABAC ANINLEj I ANDDS STORM DRAIN BY 0714IT p SEE PLANS B I 1 ` I �-�--•w'�•m 6b.w AM, nw, A] WWAIF SOIgM AM l 1 believe "AME NOTION NI 1'1 _ - vm �..u, o.w00imN • I ,I L • . - - . E FU S _ t ewuB eEDTON ec 7 • •• T N E. __ - _ _ - E PED CH E • / �6• 'RCP •• A - _ - BARNS DRAINED T wa AM O a yen.. a•m.iuu. au .. E) / MAXRElE RATE 3.52 AIR Ow N) RECLINED ALI 0.76 AI .Z9A �Alw'a - VI PROAMED MMM-FT MCA -- • FMEw2 ERE. ItoIT r • \ WILL %tH LW Fr • . `u . CNLL ELE VA30 • - \ / \ � OLfPI{p ELCVAiW 323x,Ma0 ' a DEIWIIOx IanID ml ' 522 ��� ••�..f MAAYRSCM RED I2 tl3 • - S R B6A S" P'R'_ : • •, _ RELEASE Rare CIA 6N DOD y.) I CURB 18A STORM DR Iry B� , - _ FT IN R[pArtO WLLM (1.18 AC- INLE N0, 622 NH SDa a CROSS PAN E to • • h PLUG --..� • H 1\� _ AU0 16 MC-FT MGR WATER DIX x5]5 i FREEBOARD .fi - 1 • ' 1 `52.J fi RIP / WILL ELF LEM CIN W x . It _- V� _-__._ e1• am1.1 AM"••�.._-- �.. n. dt -i I 7 � •.... _ 7 ;.� �� o.ERrw EavnroN M.joas �� 'ice• ­Ng\���- I� L V G LELLANDkBASIN DR) .,a °r °•u 1�11a1.I.I5fohnloMI l - IRA OW I 1M«..�.M•I•r•A �' � I •esWN•u`�Mm.r+n RENSION 10 I 3° 19• AS 01 PIPE W/ ORIFICE PLATE. 'EE DETAIL. . - `.ET Id. ` 8 J •• • T • _CAA CLASS 6 RIPRAP ` • \ • i • •ApQ).ERFL R� IK I _ TALLIED OU T BOX NRE 1 END • _ • • e �i • 4U e S E l,_ p EO WIOE EN CENCY • i - -- � RNo. 37 •_- ` q / 'INB fl CREEK RE p. _ �_ __�WI 1 • =SHEET I'.,._ ww ••r• •• Aq OVERFLOLi W 1 iu I -�_ •w•. A� TEN % \ TRAIN A _------- CLASS_ It 8 RIPRAP INSTAQ1 MH. TO BE -+ l=1T-P4C PIPES _"- - ___ INSTALLED�W/ TIMBER • INSTALLED WITH • I a TO LINBENE - _.._. - - _ .�Jv�••aa �.�•wa•�uwr••� fl CREEK -P.U.O. --_. ...,Ix _ CHANNEL DROP SIRUCNIRE SCALE TO MAIN TRICKLE W RCP W TBE STA. 10.74 SEE SHT. N CHANNEL TO BE '�; W TIMBER I mm W - Dy-ww TIMES NOTESFORFDETAIL INSTALLED W/ TIMBER ORE K INSTALLED W/ 11MBERCRE �I AM to1. on MAL AW ,. a w.s Fw Sm A" M1Una. PMEw : \j .. . c6Mw w:e z.s.Wl Dww• 401 CLASS 12 RIPRAP MALL w...na.. .e•e w. B S' MAT TO BE m. M1. • w sw E.,•w fmlw ro1., ww s.w.ma rm• me Ww1 1.13AC INSTALLED W/ TIMBER tl2EEN . �`•"Y. _ .Me MA •m- +- w e. Maaxw. ONNIA aW bn, m:, a xwa we sp, nnW1w. ( -"� -.uI•��„.�e. r, i•Rssw,rs��. T. AIRt�11w1 u,OY-N.D-,hool. We °vwa of 0. mE °•IwNobel1m s'WWa w6-�Wa.lnml'°wamr[�1 nw.. _... P� ..._, _..w.•xv a .• .also u.w V ..avNE n1 Palo . n `OwN Y Nee Y ° Iw,.� NAM9 va:1 w,1 MI WAY "IN AMR �p, a... •A1..: ,.. wWw°ixym the nw: A „, w• p en MW:,Wwa Dew. INww .:.,w WwAWA y to IIIWX .°°R1m I. ..„ We w,AMR„. We w•.w16:,.w ARM' Mw.. °• ,"• EROSION CONTROL xoT[s °" a . Me A AM AM A "• AN a n. MA,�.• a. .w:Mn. w .e•wIm a....w:e. • L STARMz.11m MRD LaMo-reRM Sla Ar ANNAUExT. o s°'Re 10 AWARE; W ALLMAR w w,,m°I � I. to be • SCALE I'=100' - ON EI LEGEND PROPOSED STORM DRAIN EXISTING CONTOUR PROPOSED CONTOUR 403 BASIN DESIGNATION 1.13AC BASIN AREA �• .� BASIN BOUNDARY ® DESIGN PONT -� FLOW DIRECTION HIP. HIGH PONT LP. LOW PONT SPOT ELEVATION (PROPOSED) °w AVERAGE STREET SLOPE CRo �•���� PROPOSED STORM SEINER w/ INLETS PROPOSED CROSS PAN '♦�- SWALE/DITCH W/ ROW ARROW 0 GRAVEL INLET FILTER Cruel STRAW BALE NECK DAM ® ROWS 0 DESIGN POINT /36 FROM OOERALL PRELIMINARY DRAINAGE REPORT BY RED, Inc. DATED AUGUST 2, 1993. tin--►- SILT FENCE OE66AWm SITE MIMOIDOY pERGN BASIN wl wl wx.. awS.N exG tar 402 a@wa♦ ♦ e S63 ISLO wa ao3.nlaaal aA5 xa 406 " 103 51 w5 wa M Lxs ; .93 C WL AN SEE OF w6 05e Ssa a2 we •.x5 1Q11 w7 w:40 631 xlJ AC! M Jea aW wx.OBaC9 'SR 973 0 .Aimm 10 ;19 79 2142 ai atl a 131 MIN u 412 O77 262 a1J 4IZ413 LU -al 0 674 `14u6 JM 1 ea 1 LS,a16 J26 16.5E a6 ue LIM en I rq1. a 53.1z 5x1 s11 175 vw 522 322 x.N i06 523 523 z.r9 10.0 sa ua .92 vs 525 us Lw n.ze 6M 526 0.02 ]1r CALL Anomp CENTER OF COLORAW 1-800-922-1987 534-6700 M `. w m 1WW�aw2°°a1'.'"ew°°m1w1.t ew It City of Fort Collins, Colorado •+-••--•.-... • FAMIAN WHORM W..w, W, WAW ... 1.. 'Yiw:ie1/4- .of W.....,w.• •-� .1. OTQ.ITY PLAN APPROVAL WAA A dowhip we •I A W F the Whe s M thew.. y�'eI.-vum, mmne+.M IN AvvRDYEO: - _ aw °.°..a.. L. 1 a✓�::`, �°,IT .,.wthe Da�lm m aonnnNDe n1. w. Gxv. .wRM °1w.1. P. mp Ww1. AMR, Wd .:'��„Has ieu,¢ w nwwee AN A Who A sa• to s wla o. MeMy DRm cw s CHECKED BY: ,�A, AM a Mile ft We w: °�IMi. me AA Ielm 8 luleweler Utltit) Dole _.. ,w.•w••..wwn•wen rue• A, ANN RAMS a uw:, e ' MAP LAW "[Wholl For e. ww.a. n m A .•.:°e, •.aa . .d egva, w VAX,, ea. -EN WIN -'MN Mw u.a Wd®.. salN u. Mw. a.Id &NA MIX • ARN who R.ewe Nun COIN An www l• ww... CHECKED BY: Z. hew W AN w AN A ..Me _ mxm .a ma„Iw. A e• ms my 1 nto I - w W wPMe WW 9l r "May Uuty Dek Re n w WaIA •e... 1N, WI uw. � No both mw .NH uti � W •- , a°°tiu"m 9 a CHECKED BY: :hei"A. -. x. Rrz u.w. w..aR... -1. Fwa oMi. Rw«. °w..w..I...1.d w e A I. I" e•u w: I., eM°.',7. r Pvb a Baez " OEM D' • .. L u .R, A EM A CI I.a PAR RAN WwO. 6. Nm6CR AND MANITAI FL r m. nwa wwm .pew w s -m owl a MX Me CHECKED BY: Icwe °1 m wu•1. a4 a --•-eM`.e°'Mi Mi'. eweAN wu, r, SMAN n r the I.. mit • M My CORE cw.n P..:R. xD1c ALL rvs a NmAR RRUE eE Rsm S'a� CHECKED BY: Mb MAN DE9MRD wEHD DECIDED Engineering COnsultent6 STETSON CREEK P.U.D., FIRST FILING SHFFrs SHEET ��Y 1 FINAL DRAINAGE AND EROSION S `xew" ED.1 2NM A` R:M "' Re, ` AJxE_telt �JECTN V Fm . w L. wH u.2-5127 .COSH °w'.mMe°, aal1 FORT COLLINS, COLORADO 23 4 AEPxuWD DARE PROJECT No 3m i Hex -»a w /Nye-sx6 CONTROL PLAN FUTURE DEVELOPMENT IN THIS BASIN MCCLELLANDS BASIN DRNNAGEWAY MUST PERFORM SWIM MODELING TO ENSURE NO ADVERSE IMPACT TO O DOWNSTREAM DRAINAGE FACMUTIES, ` J THEN Rai A DISK WITH THE S'AMM MODEL FOR THE AREA. UNDEVELOPED PROPERTY UNDEVELOPED PROPERTY 30{ 92 J1.5D ®a® FUTURE DEVELOPMENT IN THIS BASIN MUST PERFORM SWIM MODEUNG TO ENSURE NO ADVERSE IMPACT TO DOWNSTREAM DRAINAGE FACIUPES, THEN PROVIDE A DISK WITH THE SWAM MODEL FOR THE AREA, J03 108.9 mHMrar.-sa Tsr. sr...-. 3p2 {J.30 HARMONY CROSSING P.U.D. 91 TIMBERLINE ROAD ~ SCALE I- = 200' 5s - O FUTURE DEVELOPMENT IN TIIS BASIN MUST PERFORM SWMM MODELING TO ENSURE NO ADVERSE IMPACT TO DOWNSTREAM DRAINAGE FACILITIES. THEN PROVDE A DISK WtM THE SWIM MODEL FOR THE AREA. 301 J0.20 UNDEVELOPED PROPERTY SWMM MODEL LEGEND 301 SWMM SUBBASIN IDENTIFICATION 96.50 SUBBASIN AREA IN ACRES MCCLELLANDS BASIN DRAINACEWAT � J01 SWAM LONWYANCE ELEMENT NUMBER Ot $WMM DETENTION POND NUMBER / UNDEVELOPED PROPERTY 3DJ i VB 80 I Lt � 311 �NUt.tl ! . ✓i rq 9Tlb UNDEVELOPED, PROPERTY ' - \ �MBEN CRLLK VU U� s �StE 60N CREEK P.U.O� 00 Stb6) I O C99 MUSTFUTUREPERFORM DEVELOPMENT IH DELI BASINS UNDEVELOPED PROPERTY ENSL ENOAD IWMM MODELING TO 312 ENSURE EA ADVERSE E IMPACT TODOWi THEN DRAINAGE WITH THE S. 209 TEEN PROVIDE A DISK PARE ONE ' S M1F.IM MODEL FOR THE AREA. - (UNDEVELOPED PROPERTY( MCCLELLANDS BASIN DRNNAGEWAY ]15 { _ - 1 I 313 _ . - 0.91 ---_ - -' IRRIGAPON LATERAL v { UNDEVELOPED PROPERTY UNDEVELOPED PROPERTY UNDEVELOPED PROPERTY DRAWN -- TERIMS II _ CHEOUD :8D Engineering Consultants STETSON CREEK P.U.D. DRAINAGE PLAN FOR DETENTION APRIL 1994 3s5-003 r"' ' - TIMBER CREEK P.U.D. > > NO. By DATE REMSIDN DESCRIPTION � AWKWDATE Pacwcl �:1 1 SWMM MODEL EXHIBIT FUTURE DEKLOPMENT IN TMS BA MUST PERFORM SMMM MODELING ENSURE NO ADVERSE IMPACT TO nnMNSTRFAM ORAINAM FAOI LBF5 FURRE DEVELOPMENT IN THIS BADI MUST PERFORM SWUM MODELING TO ENSURE NO ADVERSE IMPACT TO FUTURE DEVELOPMENT IN THIS \ MUST PERFORM MODELINGG TO TO ENSURE NO ADVERSE IMPACT TO DOWNSTREAM DRAINAGE FACILITIES THENOA DISK MATH H THE SNNM MODEL FIXV TIE AREA. UNDEVELOPED PROPERTY J04 Tt.S0 SCALE V = 200' SWUM MODEL IEGEND JO1 SWMM SUBBASIN IDENT19CATON B m SUBBASIN AREA IN ACRES Ot SWMM CONVEYANCE ELEMENT NUMBER DA SWNM DETENTION POND NUMBER Mc ELLANDS BASIN DRAINAGEWAY UNDEVELOPED PROPERTY �] J.42 JOJ ]B.JO JOY 1.eJ UNDEVELOPED PROPERTY 312 2.09 MCCLEWNDS BASIN DRAP UNDEVELOPED PROPERtt UNDEVELOPED PROPERTY UNDEVELOPED PROPERTY to z 0 0 KWC KWL .. H ETS DRAM DESONED CRE Tiol",. Engineering Consultants STETSON CREEK P.U.D. DRAINAGE PLAN FOR DETENTION APRRIIE199a Jes-00J calh U al tlm ems. �h Aw. t. «. N",. r F,„'"""""' ,o N " ,""-'R "'b`"" "° ' T TIMBER CREEK P.U.D. SWMM MODEL EXHIBIT > Sj NO. BY DATE PERSON DESCRIPTION APPROMD DAIS PROECT NO w / Ae2-Asn W / Aye-56n .v i / I�uo